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Abstract. Low Entropy Masking Schemes (LEMS) are a recent coun-
termeasure against side-channel attacks. They aim at reducing the ran-
domness requirements of masking schemes under certain (adversarial and
implementation) conditions. Previous works have put forward the inter-
est of this approach when such conditions are met. We complement these
investigations by analyzing LEMS against adversaries and implementa-
tions that deviate from their expected behavior, in a realistic manner.
Our conclusions are contrasted: they confirm the theoretical interest of
the countermeasure, while suggesting that its exploitation in actual prod-
ucts may be risky, because of hard(er) to control hardware assumptions.

1 Introduction

Masking is a frequently considered countermeasure against side-channel attacks.
In a masked implementation, any sensitive data is split into several shares, and
all the computations are performed on the shared values only. For this purpose,
the algorithm must be written in a way that is consistent with this representa-
tion of the sensitive data. The resulting process, usually called d-sharing scheme
when the data is split in d shares, is expected to provide improved physical
security since: (i) more “points of interest” (i.e. more dimensions in the leak-
age distribution) may have to be identified and exploited concurrently by the
adversary, and (ii) if the masking scheme is carefully implemented (i.e. if the
leakages of all the shares are independent), higher-order moments of the leakage
distribution have to be estimated to reveal key-dependent information. The lat-
ter property is known as the “d-1th-order SCA security” [4]. It has been shown
that the data complexity of a successful attack against such an implementation
increases exponentially with the number of shares (first in the restricted con-
text of single-bit DPA[3], then experimentally in more general contexts [13], and
more recently using the mutual information put forward in [12] as evaluation
metric [9]).

Quite naturally, a central condition for this SCA security guarantees to hold
is that all the shares are uniformly distributed, which implies strong random-
ness requirements in masked implementations [5]. Starting from this observa-
tion, a recent line of works - denoted as Low Entropy Masking Schemes (LEMS)
in the following- has investigated possibilities to maintain the security order

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 33–43, 2014.
DOI: 10.1007/978-3-319-08302-5 3, c© Springer International Publishing Switzerland 2014



34 V. Grosso et al.

of masked implementations with reduced randomness requirements [1,2,7,8].
LEMS can be seen as 2-sharing schemes, with the particularity that any n-bit
sensitive value x is randomized with a mask variable M chosen within a subset
(aka code) of the 2n possible masks. In this setting, preserved security orders
can be obtained with reduced randomness requirements under two important
conditions:

1. Adversarial condition. The attacks performed are only univariate, i.e. they
exploit exclusively the leakage of the masked value x ⊕ M .

2. Implementation condition. The leakage function’s deterministic part is linear
in the bits of x ⊕ M (such as, e.g. for the Hamming weight function).

These results directly raise the question whether such conditions are realistic
- i.e. whether LEMS can give rise to actual security improvements in practical
scenarios. In order to answer this question, this paper provides a systematic
evaluation of these assumptions, leading to two main results.

1. On the adversarial condition. In general, it is of course natural to consider
multivariate attacks, since the shares used in any masked implementation
have to be generated on chip, which possibly leaks information. We analyze
such bivariate attacks and show that despite the reduced number of masks,
LEMS still provide first-order security in this case (with a slight security
degradation). We further confirm that if an adversary is limited (for some
reasons) to univariate attacks, LEMS allow ensuring security orders of 2 or 3,
as previously demonstrated by Carlet et al. [2] and Nassar et al. [8].

2. On the implementation condition. We show that as soon as the leakage func-
tion’s deterministic part deviates from a purely linear one, the security guar-
antees provided by LEMS vanish, even in the univariate attack context. We
further illustrate that the security order of the countermeasure is reduced
according to the degree of the leakage function, e.g. that a quadratic leakage
function is less damaging than a cubic one, quartic one, . . . and additionally
provide an explanation of this phenomenon (see Sect. 3.2).

Summarizing, the first (adversarial) condition may not be a too big issue in prac-
tice. Given that maximum 2-share implementations are considered1, LEMS are
a theoretically relevant solution to mask under the assumption of linear leakage
functions, since it maintains the security order of univariate (resp. bivariate)
attacks to two or three (resp. one). By contrast the second (implementation)
condition seems more difficult to fulfill, since the shape of a leakage function is
typically hard to control by cryptographic designers. We conclude that despite
its theoretical interest, the deployment of LEMS in actual embedded devices
should be considered with care, and standard masking schemes are generally
safer to implement because of easier-to-verify hardware assumptions.
1 Current results in LEMS do not provide generalizations to more shares.
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2 Background

2.1 Univariate vs. Multivariate / 1st-Order vs. Higher-Order
Attacks

Let X be a sensitive variable and L = [L1, L2, . . . , Ld] be a leakage trace. A side-
channel attack typically exploits the conditional distributions Pr[X|L] in order
to recover information about X. We say that the attack is univariate if it exploits
unidimensional leakage vectors L = [L1]. We say that the attack is bivariate if it
exploits bidimensional leakage vectors L = [L1, L2]. More generally, the attack is
said to be d-variate if it exploits multidimensional leakage vectors with d samples
L = [L1, L2, . . . , Ld]. Note that finding the samples of interest in a leakage trace
is usually challenging, which may be a reason for some adversaries to restrict
themselves to univariate attacks when it is possible. Of course, leaving leakage
samples aside may only result in a loss of information, hence a suboptimal attack.

Independent of the dimensionality of the leakage distribution, the order of a
side-channel attack relates to the smallest (mixed) statistical moment that leaks
sensitive information. For this purpose, we use the following definitions:

Definition 1 (Central moment of order d). Let X be a random variable,
then the central moment of order d of X is defined by:

E((X − E(X))d),

Definition 2 (Central mixed moment of orders d1, . . . , dr). Let {Xi}ri=1

be a set of r random variables, then the central mixed moment of orders d1, . . . , dr
of {Xi}ri=1 is defined by:

E((X1 − E(X1))d1 × · · · × (Xr − E(Xr))dr ).

In both definitions, E(.) denotes the expectation operator. For simplicity, we
will sometimes denote the integer value d =

∑
i di as the order of the cen-

tral mixed moment of a tuple (Xi)i=1..r. Central moments are typically used in
univariate attacks (e.g against hardware implementations, where the different
shares of a masked implementation are manipulated in parallel). Central mixed
moments are typically used in multivariate attacks (e.g. against software imple-
mentations, where the different shares of a masked implementation are processed
sequentially). Intuitively, the dimensionality of an attack has a direct impact on
its time complexity (since it determines the number of samples on which the dis-
tinguisher has to be applied). By contrast the order of an attack mainly relate
to its data complexity (since the number of measurements required to estimate
a statistical moment increases with the order of this moment) [3,9].

2.2 Low Entropy Masking Schemes

As detailed in the introduction, the main goal of LEMS is to guarantee high
security orders for masked implementations, with less randomness requirements
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than traditional masking schemes. For this purpose, the mask M (which is bit-
wise added to the sensitive datum s) is chosen as part of a sub-set of the definition
set of s. Different solutions have been published in the literature. In the rest of the
paper, we will use the code proposed in [1], next referred to as C16, and to the one
proposed in [8], next referred to as C12. Both subsets are designed for 8-bit sensi-
tive values (i.e. are typically applicable to protect the registers of 8-bit devices).
Following previous analyzes, LEMS with C12 is expected to provide security
against first- and second-order attacks, while LEMS with C16 is expected to pro-
vide security against first-, second- and third-order attacks (under the adversarial
and implementation conditions stated in introduction). Codes are specified as:
C12 = {0x03, 0x18, 0x3f, 0x55, 0x60, 0x6e, 0x8c, 0xa5, 0xb2, 0xcb, 0xd6, 0xf9},
C16 = {0x10, 0x1f, 0x26, 0x29, 0x43, 0x4c, 0x75, 0x7a, 0x85, 0x8a, 0xb3, 0xbc,
0xd6, 0xd9, 0xe0, 0xef}. Both were selected amongst the lowest size set that
provides the required security order, while the first one minimizes the mutual
information metric defined in the next subsection as additional criteria.

2.3 Evaluation Framework

We will analyze the LEMS countermeasure based on the evaluation framework
introduced in [12], which holds in two main steps. First, an Information The-
oretic (IT) analysis is performed, in order to analyze the leakages independent
of the adversary exploiting them. It is aimed to capture the quality of a coun-
termeasure in a worst-case scenario. Next, a security analysis is performed, in
order to evaluate the actual data complexity required by an adversary to exploit
the available leakage (e.g. in order to turn it into a key recovery). For this
purpose, we will consider the following simulated leakages. Let s be a sensitive
value (i.e. the target of the attack), M a variable representing a word of the code
used to protect the sensitive value, and N1, N2 two normally distributed noise
variables, with mean 0 and variance σ2. We define our leakages as:

L1 = L(s ⊕ M) + N1,

L2 = L(M) + N2,

where L(.) is a polynomial in the bits of the input. In the following, we will assume
this polynomial to be the Hamming weight function (excepted in Subsect. 3.2,
where we will consider higher-degree polynomials). Furthermore, we will consider
both univariate attacks exploiting only the leakage sample L1, and bivariate
attacks exploiting L1 and L2 jointly2. This implies computing the following
information theoretic metric in the univariate case:

PI(S;L1) = H[S] −
∑

s∈S
Pr[s]

∑

l1∈L
Pr
chip

[l1|s] · log2 Pr
model

[s|l1],

2 Note that the univariate attacks considered in LEMS are different than the classical
univariate higher-order DPAs, where a combination of the two leakage samples (e.g.
their normalized product) is exploited by the adversary [10]. Any such combination
would provide leakages and successful attacks similar to the ones of a bivariate
attack, with an information loss similar to the one investigated in [13].
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and its extension to two dimensions in the bivariate case:

PI(S;L1, L2) = H[S] −
∑

s∈S
Pr[s]

∑

l1,l2∈L
Pr
chip

[l1, l2|s] · log2 Pr
model

[s|l1, l2].

Let us denote the probability density function of a Gaussian distribution taken
on input x, with mean μ (resp. mean vector µ) and variance σ2 (resp. covari-
ance matrix Σ) as N (x|μ, σ2) (resp. N (x|µ, Σ)). We will generally compute the
probabilities in these equations as follows (e.g. in the bivariate case):

Pr
model

[s|l1, l2] =
N (l1, l2|µs, Σs)∑

s∗∈S N (l1, l2|µs∗ , Σs∗)
, (1)

for unprotected implementations, and:

Pr
model

[s|l1, l2] =
∑

m∗∈C N (l1, l2|µs,m∗ , Σs,m∗)
∑

s∗∈S
∑

m∗∈C N (l1, l2|µs∗,m∗ , Σs∗,m∗)
, (2)

for masked implementations (and similarly for LEMS), with all the secrets and
masks distributed uniformly over their specified set. That is, the leakage distri-
butions conditioned on the sensitive values will be modeled as Gaussian mix-
tures, where each mode corresponds to a mask value. Following the discussion
in [11] and since we are considering simulated experiments, the probability dis-
tributions Prchip and Prmodel will be identical in most of our evaluations. This
implies that the Perceived Information (PI) will be identical to the (classical)
Mutual Information (MI) in most cases. As only exception, we will also evaluate
the information leakage of a suboptimal bivariate adversary, who models leakage
distributions conditioned on the sensitive values as single (bivariate) Gaussians,
i.e. who simplifies Eq. 2 into Eq. 1, even in the masked case. This boils down to
summarizing the second-order information in the covariance between the leak-
age samples l1 and l2. By plotting the MI/PI metrics in function of the noise
variance, we can directly obtain intuition about the order of the masking, which
simply corresponds to the slope of these curves [13].

Following the information theoretic analysis, we will apply a security analysis
and compute the success rate (as defined in [12]) of template attacks against the
target s, using Prmodel[s|l1] and Prmodel[s|l1, l2] as leakage models. This will allow
us to evaluate the data complexities of these worst-case attacks in Sect. 4.

3 Information Theoretic Analysis of LEMS

3.1 Hamming Weight Leakages

Our IT analysis of LEMS and its comparison with other masking schemes are
in Fig. 1, from which the following observations can be extracted.

Starting with the univariate case (in the left part of the figure), we first
observe that information leakage is only available if a strict subset of the 2n

possible masks is available (e.g. the curves and are stuck to zero in
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Fig. 1. Information theoretic analysis of different masking schemes. Left: univariate
attacks. Right: bivariate attacks. The curve is for the unprotected case. The curves

are for LEMS with C12, C16 and a badly chosen code, respectively.
The curve is for masking with the full set (only non-zero in the bivariate case).
The curve is for the bivariate attack using approximated Gaussian templates (in
place of Gaussian mixtures) for masking with the full set.

this case, hence not represented in this part of the figure). We also note that a
badly chosen code (e.g. C = {0x00, 0x01, 0x02, . . . , 0x0B}) leads to first-order
univariate weaknesses for the LEMS countermeasure, as witnessed by the slope
of the curve that is parallel to the one of the unprotected implementation

. This confirms the requirement to use uniform randomness in the security
proofs of standard masking schemes, e.g. [6,9]. By contrast and as expected,
the LEMS countermeasure with codes C12 and C16 enforces second- and third-
order security against univariate side-channel attacks (i.e. curve has slope
3 and curve has slope 4). Interestingly, we also see that C12 leads to a
slightly smaller information leakage than C16 for low noise values - which is
also expected since minimizing the information leakages was considered as an
additional optimization criteria in the selection of C12 only.

Next in the bivariate case, we first observe that most attacks (i.e. using
all masks with Gaussian or Gaussian mixture modeling, and using C12 or C16)
converge towards the same slope as the noise increases. The slope of these curves
is 2 implying first-order security in all these cases The curve is again a
counter-example, because of a badly chosen code. So an important conclusion
is that the first (adversarial) condition mentioned in introduction for LEMS to
provide improved security against univariate attacks does not imply a penalty in
the security order when considering bivariate attacks. By contrast, we observe
a small security degradation for small noise values, i.e. a constant information
leakage loss between curves and , similar to the difference between
C12 and C16 in univariate attacks. Interestingly, we also observe the impact
of incorrect modeling for these small noise values. That is, when considering
Gaussian mixture leakage models - as for curve - we see a “wave” in the
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information theoretic curve that is not found when simplifying the mixtures into
a simpler Gaussian model - as for curve . This wave can be explained by
the fact that characterizing the full distribution with a Gaussian mixture allows
exploiting higher-order moments that are easy to estimate for low noise values
(and hard to estimate with more noise). By contrast, the Gaussian modeling only
exploits two statistical moments (i.e. mean vector, covariance matrix), leading to
less (and more regular) information leakage. A similar reason makes the Gaussian
modeling impossible to apply to univariate attacks against LEMS with C12 and
C16: since such attacks only leak in the third- and fourth-order moments of the
conditional leakage distributions, a Gaussian model with only two statistical
moments will not be able to characterize this information.

3.2 Polynomial Leakages

The previous subsection provided IT curves under the assumption that the
implementation constraint mentioned in introduction is fulfilled. Since such a
constraint may be difficult to verify in practice, we now investigate the conse-
quences of a leakage function deviating from purely linear. For this purpose, we
replace the previously used Hamming weight leakage function by a polynomial of
higher degree. Such a polynomial is of the form L(s) :=

∑
i aisi +

∑
i

∑
j bi,jsi ×

sj +
∑

i

∑
j

∑
k ci,j,ksi×sj ×sk, where si denotes the ith bit of the sensitive value

s, and ai, bi,j and ci,j,k are some constants. For simplicity, we will consider the
case where ∀i ai = a ∈ {0, 1}, ∀i, j bi,j = b ∈ {0, 1} and ∀i, j, k ci,j,k = c ∈ {0, 1}.

The results of our investigations in this advanced context are plotted in Fig. 2.
The main conclusion is that the security guarantee claimed by LEMS does not
hold in this case. Interestingly, we can even observe a relation between the degree
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Fig. 2. IT analysis for polynomial leakage functions and LEMS with C16. The curve
is for the Hamming weight leakage function. The curve is for the leakage

function with a = 0, b = 1 and c = 0. The curve is for the leakage function with
a = 0, b = 0 and c = 1. The curve is for the leakage function with a = 1, b = 1 and
c = 1. The curve is for the unprotected case in the previous subsection.
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of the leakage function polynomial and the security order. Namely, the higher
the degree, the lower the order - see, e.g. curves . This relation can
be explained as follows. Say the leakage corresponding to s ⊕ M in the LEMS
countermeasure only contains information in its fourth-order moment (as for
C16). Since M is not uniform, we know that raising this leakage to the fourth
power, i.e. computing (Llin(s ⊕ M) + N1)4 will lead to first-order information,
while raising the noise to the fourth power as well. Say now the leakage function
is not linear anymore, but quartic. Then the same first-order information will
be found in samples of the form Lquart(s ⊕ M) + N1, i.e. without amplifying
the noise. More generally, if the leakage function only contains terms of a single
degree, the security order of LEMS will be divided accordingly. For example, the
curve for which L has degree 3 has slope 4/3, the curve for which L
has degree 2 has slope 4/2=2, . . . As for leakage functions with terms of various
degrees, the situation is intermediate, e.g. the curve for which L has degree
3 but contains terms of degree 1 and 2, has slope between the previous ones.

4 Security Analysis of LEMS

We now confirm the previous IT evaluations with security analyses. For this
purpose, we compute 1st-order success rates (as defined in [12]) estimated over
10000 independent experiments, in various scenarios. These results aim to trans-
late information leakages into a number of measurements to recover the key. Note
that higher-order success rates could be considered as well (to express the trade-
off between time and data complexities in side-channel attacks). However, they
do not reveal more intuition regarding the security of LEMS vs. masking.

4.1 Univariate Attacks

Our first experiments correspond to univariate template attacks with different
noise levels, and are given in Fig. 3. A preliminary observation is that, as in
the previous section, Gaussian templates are not able to exploit information in
this case (i.e. only Gaussian mixture models lead to successful key recoveries).
Next and more importantly, the two parts of the figure clearly illustrate that
the impact of estimating higher-order statistical moments in masking and LEMS
mostly reveals itself as noise increases (as already highlighted in [13]). That is, the
difference between the success rates attacking an unprotected implementation
vs. LEMS with C12 or C16 is more significant in the right part of the figure. This
confirms the information theoretic evaluations in the previous section, where the
slope of the different curves also becomes stable as noise increases.

As additional experiment, we also wanted to test the usual intuition that the
success rate of a template attack is highly correlated with the information leakage
measured with the PI estimated thanks to the same (here Gaussian mixture)
leakage model. For this purpose, it is interesting to observe that the IT curves
corresponding to LEMS with C12 and C16 intersect in the left part of Fig. 1.
Therefore, we launched template attacks against these two countermeasures,
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Fig. 3. Univariate template attacks with Gaussian mixture leakage model. Left:
σ2 = 10−4. Right σ2 = 10. The curves are for LEMS with C12. The curves

are for LEMS with C16. The curves are for the unprotected implementation.

0 50 100 150 200

0

2

4

6

8

10

·10−1

number of queries

su
cc
es

ra
te

0 50 100 150 200 250

0

2

4

6

8

10

·10−1

number of queries

Fig. 4. Univariate template attacks with Gaussian mixture leakage model. Left:
σ2 = 0.4. Right σ2 = 0.5. The curves and are for LEMS with C12 and C16.

with noise variance just left (σ2 = 0.4) and right (σ2 = 0.5) of this intersection.
The results of these attacks are plotted in Fig. 4, were we indeed observe that
the success rate is slightly higher (resp. lower) when using codes C12 and C16,
depending on the noise. That is, LEMS with C16 delivers more information at
low noise levels, but has higher security order, and consequently becomes less
informative when enough noise is present in the measurements.

4.2 Bivariate Attacks

To conclude this work, we also paid attention to the efficiency of bivariate
template attacks with Gaussian mixture modeling, as reported in Fig. 5. Here,
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Fig. 5. Bivariate template attacks with Gaussian mixture leakage model. Left:
σ2 = 10−4. Right σ2 = 10. The curves are for LEMS with C12. The curves

are for LEMS with C16. The curves and are for masking with the full
set, using Gaussian and Gaussian mixture leakage modeling, respectively.

the most revealing feature is that, as already indicated by the information
theoretic analysis in the right part of Fig. 1, both LEMS and masking with
the full set have the same security order. As a result, the impact of noise on the
separation between the success rate curves is the opposite of the one in the pre-
vious subsection. Namely, as noise increases, these curves get closer. This effect
is particularly significant in attacks using Gaussian modeling, i.e. curves -
because it implies a significant loss of information for low noise values (see Fig. 1).
Besides, and as they all correspond to the estimation of a second-order moment
in the leakage probability distribution, the data complexity of these attacks is
naturally lower than the one when considering univariate attacks against LEMS
with C12 and C16 in Fig. 3. This eventually confirms that while LEMS indeed
provides interesting security guarantees against univariate attacks, their worst-
case security level is only obtained by analyzing bivariate ones.

5 Wrapping Up

The consequences of our analysis for LEMS are contrasted. First, while its adver-
sarial condition may not always be practically relevant, the investigations in
Sects. 3.1 and 4.2 suggest that the countermeasure remains an interesting alter-
native to mask with reduced randomness requirements, even if adversaries exploit
bivariate leakages (as there is no penalty for the security order in this case). By
contrast, the observations in Sect. 3.2 suggest that the security of LEMS is highly
dependent on the (hard to control) leakage function. In particular, the apparition
of higher-degree terms in this function directly implies an exploitable penalty in
the security order of the countermeasure.
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