
Revisiting Atomic Patterns for Scalar
Multiplications on Elliptic Curves

Franck Rondepierre(B)

Oberthur Technologies, Crypto Group, 420, Rue Estienne D’Orves,
92 700 Colombes, France

f.rondepierre@oberthur.com

Abstract. This paper deals with the protection of elliptic curve scalar
multiplications against side-channel analysis by using the atomicity prin-
ciple. Unlike other atomic patterns, we investigate new formulæ with
same cost for both doubling and addition. This choice is particularly
well suited to evaluate double scalar multiplications with the Straus-
Shamir trick. Thus, in situations where this trick is used to evaluate
single scalar multiplications our pattern allows an average improvement
of 40 % when compared with the most efficient atomic scalar multiplica-
tion published so far. Surprisingly, in other cases our choice remains very
efficient. Besides, we also point out a security threat when the curve para-
meter a is null and propose an even more efficient pattern in this case.

Keywords: Elliptic curves · Scalar multiplication · Straus-Shamir trick ·
Side-Channel Analysis · Atomicity

1 Introduction

The first algorithms performing public-key cryptography, such as the Rivest-
Shamir-Adleman (RSA) algorithm [27], have been published in the seventies
and remain widely used nowadays. However, current key lengths required with
these protocols are limiting their efficiency. Elliptic Curve Cryptography (ECC)
provides equivalent cryptographic primitives, but with significant improvements
in terms of speed and memory, and is now recommended by governmental orga-
nizations such as the National Institute of Standards and Technology (NIST).
The main resource-consuming operation in ECC is the computation of a scalar
multiplication [k] P for a secret scalar k and a public point P on an elliptic curve.

We hence consider the implementation on smart cards of scalar multiplica-
tions on standardized elliptic curves over Fp. In this context, side-channel resis-
tance, memory and power consumptions have to be taken into account before
designing a fast implementation.

Side-Channel Analysis (SCA) is one of the main attack used to disclose secret
data hidden in low-resource devices. SCA exploits the fact that a device leaks
information about the processed operations and data, that can be physically
measured: timing, power consumption, electromagnetic emanations, etc. Among

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 171–186, 2014.
DOI: 10.1007/978-3-319-08302-5 12, c© Springer International Publishing Switzerland 2014



172 F. Rondepierre

all kinds of SCA, the Simple Side-Channel Analysis (SSCA) [21] focuses on
detecting on a single execution trace differences of behavior depending on a
secret value. Many proposals have been made to thwart SSCA and the atomicity
principle introduced by Chevallier-Mames et al. [3] is one of the most efficient
propositions. This countermeasure has been widely studied and improved first
by P. Longa [22] and then by C. Giraud and V. Verneuil [12].

In this paper, we revisit EC formulæ in a novel way and propose correspond-
ing patterns to optimally benefit from the Straus-Shamir trick, a twice as fast
method to evaluate double scalar multiplications [u]P + [v]Q. Few ECC proto-
cols explicitly require double scalar multiplications. However as shown in [28] it
can be adapted to process single scalar multiplications [k] P which gives us an
advantage since the best implementation known so far [12] cannot take advan-
tage of this trick. Besides, when this method is not used (e.g. because of memory
constraints) our formulæ still allow the most interesting ratio between perfor-
mances and memory cost. In all cases, our implementation requires less memory
than other methods. Besides, we also point out a security flaw concerning many
implementations computing over Weierstrass curves with a = 0. Therefore, our
method outperforms existing solutions in terms of security, memory and speed
and is suited for low-resource devices.

The rest of the paper is organized as follows. In the next section we introduce
some background on elliptic curves and detail known techniques to perform
efficient scalar multiplications. Then Sect. 3 deals with the security of scalar
multiplications against SSCA. In Sect. 4 we present our formulæ which allow the
use of the most efficient scalar multiplication algorithms. Eventually we conclude
in Sect. 5.

2 Elliptic Curve Background

2.1 Definitions

An elliptic curve E over Fp, for a prime p > 3 is defined with the short Weierstrass
equation [15]:

E : y2 = x3 + ax + b, (1)

where x, y, a, b ∈ Fp and 4a3 + 27b2 �= 0.
With the so-called chord-and-tangent law, the set of all points on the ellip-

tic curve together with the point at infinity (denoted by O) form an abelian
group E(Fp). Excepting trivial cases, the group law requires the computation of
one inverse in Fp which is significantly more expensive than a multiplication.
Therefore we use Jacobian coordinates to represent points in order to limit the
number of inversions performed in a scalar multiplication. These coordinates use
the following equivalence class, for non all-zero triples:

(X : Y : Z) = {(λ2X,λ3Y, λZ) : λ ∈ F
∗
p}.



Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 173

In this case the short Weierstrass equation (1) becomes:

E : Y 2 = X3 + aXZ4 + bZ6 (2)

and O = (1 : 1 : 0). The opposite of (X : Y : Z) is the point (X : −Y : Z).
The sum of two points P = (Xp : Yp : Zp) and Q = (Xq : Yq : Zq) is the

point P + Q = (Xp+q : Yp+q : Zp+q) such that:

⎧
⎨

⎩

Xp+q = F 2 − E3 − 2AE2

Yp+q = F (AE2 − Xp+q) − CE3

Zp+q = ZpZqE
with

A = XpZ
2
q

B = XqZ
2
p

C = YpZ
3
q

D = YqZ
3
p

E = B − A
F = D − C

(3)

However, the addition formula is only valid under the following assumptions:
P �= Q, P �= O and Q �= O. Several operations in Fp are required to evaluate this
formula: squarings (denoted by S), multiplications (denoted by M), additions
and subtractions (both denoted by A). This formula requires 4S + 12M + 7A.

The double of a point P = (X : Y : Z) is the point [2]P = (X2 : Y2 : Z2)
such that:

⎧
⎨

⎩

X2 = A2 − 2C
Y2 = A(C − X2) − D
Z2 = 2Y Z

with

A = 3X2 + aZ4

B = 2Y · Y
C = 2BX
D = 2B · B

(4)

Using this formula, the evaluation of a doubling requires 4S + 6M + 9A.
The result of P +P is naturally denoted by the point [2]P and such an oper-

ation is called a doubling whereas the addition rather refers to the computation
of P + Q with P �= ±Q. More generally, the operation P + . . . + P where the
point P is added k times is called a scalar multiplication and is denoted by [k] P .

2.2 Efficient Scalar Multiplication Implementation

This section presents the different known tools to optimize the implementation
of an elliptic curve multiplication.

Double and Add. The scalar multiplication is efficiently computed with the so-
called Double and Add algorithm [20]. Using the EC group law, this algorithm
evaluates:

[k] P =
�−1∑

i=0

[ki]
[
2i

]
P = [k0] P + [2]

[
�−1∑

i=1

ki2i−1

]

P

where digits ki ∈ S and S is some set of integers containing 0 and 1, as presented
in [23]. The � digits of k can be evaluated in two ways, i.e. starting from least
significant ones (right to left) or from most significant ones (left to right), see
Algorithm 1 for the later case.



174 F. Rondepierre

Algorithm 1. Left to Right Double and Add
Input: k =

∑�−1
i=0 ki2

i, k�−1 �= 0, ki ∈ S, P ∈ E
Output: R = [k] P

Precompute [m] P , ∀m ∈ S\{0}
Initialize R = [k�−1] P
for i = � − 2 downto 0 do

R = [2] R
if ki �= 0 then

R = R + [ki] P
end if

end for

Double and Add trade-off. The scalar multiplication consists in a succession of
doublings and additions. Depending on the ratio between the number of evalu-
ated additions and the number of doublings, one formula may be favored at the
expense of the other in order to reduce the overall cost.

– First, the cost of the addition formula (3) can be reduced with some assump-
tions. Indeed, in Algorithm 1, the points [m] P are constant. Hence
Chudnovsky [4] proposed to compute Z2

[m]P and Z3
[m]P once for all, which

saves 1S + 1M per point addition. Furthermore, at the cost of one inversion
and few multiplications1 during the precomputation phase, one can choose
the representative of [m] P with Z[m]P = 1, which instead saves 1S + 4M in
(3). Besides, since there is always a doubling of R before the point addition
R+[ki] P , we propose to move the computation of Z2

r and Z3
r in the doubling

formula which also saves 1S + 1M .
– The doubling formula (4) can be speeded up [5] with the help of one extra

value W initialized with the value aZ4. In this case, A is evaluated as 3X2+W
and W2 is equal to 2DW , which gives a global cost of 2S+6M+10A. However,
in Algorithm 1, if the point R is represented as (Xr : Yr : Zr : Wr) then the
value Wr has to remain consistent when the addition R + [ki] P is performed.
Therefore Formula (3) has to update this value W : Wr+q = Wr(E2Z2

[ki]P
)2

which costs either 1S + 2M if Z[ki]P �= 1 or 1S + 1M .

We will now see two techniques used to change the addition/doubling ratio.

Straus-Shamir Trick. The Straus-Shamir trick [8,30] is a simple but very efficient
way of evaluating double scalar multiplications [u] P + [v]Q. The naive way
to evaluate the double multiplication performs two multiplications and adds
the results. Using two calls to Algorithm 1, this approach costs on average 2�
doublings and � additions (for random scalars u and v). However, neither [u] P
nor [v] Q are needed values. The trick consists then in building one sequence of
intermediate results directly converging to the value [u] P +[v]Q in one execution
of a Double and Add algorithm. Algorithm 2 implements such a trick which only
requires on average � doublings and 0.75� additions.
1 A trick from Montgomery [24] enables to evaluate several inverses at the cost of only

one inversion and few multiplications: 1
a

= 1
ab

· b, 1
b

= 1
ab

· a.



Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 175

This trick can also be used to improve the evaluation of [k] P if the multipli-
cation is decomposed as:

[k] P = [k0] P + [k1] ([λ]P ) .

Of course, the trick has an interest when k0 and k1 have a size �/2 and when k0,
k1 and Q = [λ] P are available with reasonable cost. As recalled in [28], one can
take λ = 2�/2 and precompute Q when the point P is reused for many scalar
multiplications. One can remark that this trick – working only with left-to-right
scan of digits – is generalizable for multi-multiplication.

Algorithm 2. Double Scalar Multiplication using Straus-Shamir Trick
Input: u =

∑�−1
i=0 ui2

i, v =
∑�−1

i=0 vi2
i, (u�−1, v�−1) �= (0, 0), (ui, vi) ∈ S2, (P, Q) ∈ E2,

P �= ±Q
Output: R = [u] P + [v] Q

Precompute Wi,j = [i] P + [j] Q, ∀(i, j) ∈ S2\{(0, 0)}
Initialize R = Wu�−1,v�−1

for i = � − 2 downto 0 do
R = [2] R
if (ui, vi) �= (0, 0) then

R = R + Wui,vi

end if
end for

Scalar Recoding. The previous trick allows to cut to half the number of doublings.
Independently, the number of additions can also be reduced by using windowing
and signed digit representations in order to maximize the number of null digits
of the scalar. The best signed digit representations to reduce the number of
non-zero digits are the Non-Adjacent Form (NAF) [1] for one scalar, and the
Joint Sparse Form (JSF) [28] for a couple of scalars. NAF and JSF have been
generalized to larger digit set than {0,±1} [26,29] but only NAFw+1 (which
indicates a NAF representation with window size w) fits smart card memory
constraints. Tables 1 and 2 indicate, for several cases, the definition of the set
S, the number of involved points which corresponds to a certain RAM cost, and
the average number of point addition performed per bit which also corresponds
to the ratio between additions and doublings.

Table 1. Several scalar recoding techniques and their average number of point addi-
tions per bit of k in the context of single scalar multiplication [k] P

Recoding technique None NAF NAFw=3 NAFw=4

Involved points P ±P ±P , ±3P ±P , ±3P , ±5P , ±7P
S {0, 1} {−1, 0, 1} {−3, −1, 0, 1, 3} {−7, −5, −3, −1, 0, 1, 3, 5, 7}
Point additions/bit 1/2 1/3 1/4 1/5



176 F. Rondepierre

Table 2. Several scalar recoding techniques and their average number of point addi-
tions per bit of k in the context of double scalar multiplication [u] P + [v] Q

Recoding technique None JSF

Involved points P , Q, P + Q ±P , ±Q, ±(P + Q), ±(P − Q)
S {0, 1} {−1, 0, 1}
Point additions/bit 3/4 1/2

3 Secure Scalar Multiplication Implementation

As shown in Formulæ (3) and (4) the evaluation of a doubling is different from
the evaluation of an addition: the number of each type of operation and the
number of operations in total are not the same. These differences are easily
detected via SSCA and give information on the handled scalar k. Indeed in
Algorithm 1 the addition is performed only if ki is not null, thus knowing that 2
successive doublings have been performed means that the corresponding ki was
null. If the binary representation has been used, i.e. ki ∈ S = {0, 1}, then the
knowledge of all indexes where ki is null is enough to retrieve the whole value k.
Using other scalar representation reduces the amount of information leaked but
sophisticated attacks [9] only need some bits to be successful. This section deals
with the proposed countermeasures to thwart such a leakage.

3.1 State-of-the-Art

Secure Implementation. Many algorithms have been published so far to resist
this SSCA with different strategies. A unified formula has been proposed [2] to
evaluate the sum of two points P,Q (different from O) without the restriction
P �= Q. The Double and Add Always [6] performs the addition whatever the
value of the digit ki. Other regular algorithms such as the Montgomery Lad-
der [2,11,18] perform a doubling and an addition for each bit but without
dummy operations which is more interesting from a security point of view.
Recent works [14,16] have investigated efficient Montgomery Ladder formulæ
with good results, but this approach cannot benefit from scalar recoding and
hence remains costly if compared with best non-secure implementations. The
principle of atomicity focuses on reaching the same security level at a closer cost
of non-secure implementations.

Atomicity Principle. The atomicity principle [3] can be seen as a refined unified
formula. Instead of having one formula valid in both situations (P = Q and
P �= ±Q) this countermeasure focuses on evaluating two different formulæ using
the same operations or the same flow of operations. On can notice that such an
evaluation is always possible but may induce additional dummy operations. The
tour-de-force of Chevallier-Mames et al. [3] was to propose such an evaluation at
an almost negligible cost, which is without any dummy modular multiplication.
They have split the two formulæ in a sequence of identical atomic patterns such



Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 177

Table 3. Comparing operation cost between main atomic implementations and non-
secure implementations, with 2N = A

Algorithm Pattern cost Addition cost Doubling cost

Chevallier-Mames et al. [3] M + 2A + N 16M + 40A 10M + 25A
Longa L2R [22] 2M + 3A + 2N 14M + 28A 8M + 16A
GV R2L [12] 2S + 6M + 10A 4S + 12M + 20A 2S + 6M + 10A
Non-secure R2L - 4S + 12M + 7A 2S + 6M + 10A
Non-secure L2R - 4S + 9M + 7A 2S + 6M + 10A

that ten calls of this pattern make a doubling, while sixteen calls give an addition.
Their pattern is depicted below, where the Ri’s denote some intermediate values.

⎡

⎢
⎢
⎢
⎣

R1 ← R2 · R3

R4 ← R5 + R6

R7 ← −R8

R9 ← R10 + R11

(5)

However, as shown in Table 3 such a pattern implies a lot of dummy additions
(A) and negations (N) when evaluating Formulæ (3) and (4). If the cost of one
addition or a negation is small compared to a modular multiplication it cannot
be neglected yet. Another drawback of the formula lies in the loss of squares
traded for multiplications, which implies a loss of efficiency when a dedicated
function is available to evaluate squares faster than multiplications. Therefore,
this pattern (5) has been first improved by Longa [22] and more reworked by
Giraud and Verneuil (GV) [12]. In the rest of the paper, as explained in [12],
we assume a = −3 and Chudnovsky optimization for Longa’s implementation of
Algorithm 1. The GV implementation optimizes doublings with the extra value
W but uses a right-to-left scan of digits to limit the cost of point additions.

3.2 Scalar Evaluation

The elliptic curve formulæ are not the only part to secure when considering
implementations protected with the atomicity principle. The security of the
scalar treatment is also crucial to thwart SSCA similar to the following exam-
ple. For instance, let us assume that the evaluation at round i of a doubling Di

cannot be distinguished from the evaluation of a point addition Ai (i.e. atomic
patterns have been used), let Ei denote the scalar treatment at round i, then
observing the following sequence (6) gives information on the scalar k. Indeed,
patterns corresponding to a doubling and an addition are performed between
Ei and Ei−1 which means that ki �= 0 while ki−1 = 0 since only a doubling is
performed between Ei−1 and Ei−2.

Di, Ei,Ai,Di−1, Ei−1,Di−2, Ei−2, . . . (6)

Hence, if the atomic pattern must be called x (resp. y) times to perform a point
addition (resp. point doubling), then a call to the scalar treatment has to be



178 F. Rondepierre

done every gcd (x, y) pattern. Besides, this scalar treatment has to implement
the atomicity principle to have the same behavior whatever the value of the
digit ki. The induced overhead required to securely evaluate the secret scalar is
generally under-estimated. Actually, this consists in the main limitation of the
atomic countermeasure when the scalar multiplication has to be implemented on
components that cannot process the scalar treatment in parallel of the pattern
evaluation. Taking x = y allows to reduce the cost of this treatment.

4 New Atomic Pattern

4.1 New Fomulæ

Up to now, improvements on atomic implementations have mainly focused on
optimizing the doubling formula. This strategy comes from the observation that
a doubling has to be computed for each bit of the scalar, while the addition is only
performed for non-zero digit. In the context of processing one scalar (e.g. Algo-
rithm 1), there is a low addition/doubling ratio which validates this strategy
(see Table 1). However this is not the case in the double scalar multiplication.

Hence, we propose hereafter to focus on improving point addition to better
match double multiplication case. The new formulæ are detailed hereafter to
ease the verification of the proposed atomic patterns. The sum of P = (X : Y :
Z : Z2 : Z3) and Q = (Xq : Yq : 1) is the point P + Q = (X3 : Y3 : Z3 : Z2

3 )
such that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X3 = F 2 − E3 − 2AE2

Y3 = F (AE2 − X3) − CE3

Z3 = ZE

Z2
3 = (Z3)2

with

A = X

B = XqZ
2

C = Y

D = YqZ
3

E = B − A

F = D − C

(7)

The subtraction P −Q is obtained by replacing F by F̄ = D +2C −C and then
Y3 = F̄ (X3 − AE2) − CE3. The double of a point P = (X : Y : Z : Z2) is the
point [2]P = (X2 : Y2 : Z2 : Z2

2 : Z3
2 ) such that:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X2 = A2 − 2C

Y2 = A(C − X2) − D

Z2 = 2Y Z

Z2
2 = (Z2)2

Z3
2 = (Z2)3

with

A = 3(X − IZ2)(X + IZ2)
B = 2Y · Y

C = 2BX

D = 2B · B

(8)

We introduce a new constant value I =
√−a3−1 in order to reduce the cost

of doublings. For a random value a (i.e. a random curve) this constant I exists
with probability 0.5. However, for most standard curves (NIST [? ], Brainpool [7],



Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 179

ANSSI [19]) the constant I exists and may have some particular value (e.g. I = 1
or I = 0). The case I = 0 has a special treatment in Sect. 4.3. A pattern working
for all curves is given in Appendix A. This pattern is less efficient, trading an
addition for a square, but still of interest.

Eventually we have 3S + 7M + 7A to evaluate the addition and 2S + 8M +
10A for the doubling, which means that a square has to be performed as a
modular multiplication and three dummy modular additions are required in
the addition formula in order to get a unified cost. Besides, in order to save
some memory when using NAF or JSF recodings, we benefit from the dummy
modular additions to also present a subtraction formula which avoids the storage
of opposite points.

From P = (X,Y,Z, Z2, Z3) and Q(Xq, Yq, 1), one can compute P ← P + Q,
P ← P − Q and P ← [2]P with the following patterns, where each pattern
requires 2S + 8M + 10A:

Addition Subtraction Doubling

R1 ← Xq · Z2

R1 ← R1 − X

� ← � + �

R2 ← R1 · R1

� ← � + �

R3 ← X · R2

R0 ← Yq · Z3

� ← � + �

Z3 ← R1 · R2

R2 ← Z · R1

X3 ← R3 + R3

X3 ← Z3 + X3

Z2
3 ← (R2)

2

R0 ← R0 − Y

R1 ← (R0)
2

X3 ← R1 − X3

R1 ← R3 − X3

R3 ← R1 · R0

R0 ← Y · Z3

Y3 ← R3 − R0

Z3 ← R2

R1 ← Xq · Z2

R1 ← R1 − X

Z2 ← Y + Y

R2 ← R1 · R1

� ← � + �

R3 ← X · R2

R0 ← Yq · Z3

R0 ← Z2 + R0

Z3 ← R1 · R2

R2 ← Z · R1

X3 ← R3 + R3

X3 ← Z3 + X3

Z2
3 ← (R2)

2

R0 ← R0 − Y

R1 ← (R0)
2

X3 ← R1 − X3

R1 ← X3 − R3

R3 ← R1 · R0

R0 ← Y · Z3

Y3 ← R3 − R0

Z3 ← R2

R0 ← I · Z2

R1 ← X − R0

R2 ← Y + Y

Z2
2 ← Y · R2

Y2 ← Z2
2 + Z2

2

R3 ← R2 · Z

R2 ← Y2 · X

X2 ← X + R0

R0 ← R1 · X2

R1 ← Z2
2 · Y2

X2 ← R0 + R0

R0 ← R0 + X2

X2 ← (R0)
2

X2 ← X2 − R2

Z2
2 ← (R3)

2

X2 ← X2 − R2

R2 ← R2 − X2

Z3
2 ← Z2

2 · R3

Y2 ← R0 · R2

Y2 ← Y2 − R1

Z2 ← R3

In order to reduce the number of intermediate buffers Ri, the output buffers
(e.g. X3, X2) have been used as intermediate buffers which allows to use 4
intermediate buffers Ri only. Besides particular attention has been paid to allow
in-place EC operations (e.g. an overlap of buffers X and X2). However, the



180 F. Rondepierre

patterns do not contain in-place modular multiplications (R1 ← R1 · R2) as
discussed in [16] to limit the memory consumption.

4.2 Performances

In this section, the performances of the new pattern are compared with best
known atomic patterns for both single scalar and double scalar multiplication
cases. In order to evaluate the cost of an implementation we use the average per
bit cost. We put aside the cost of pre-computations, or post-computations since
it gives only a small advantage to the right-to-left variant. The per bit cost is
obtained with the following formula:

D + E + H · (A + E)

where D (resp. A) stands for the cost of a doubling (resp. addition), E is the
cost to treat the scalar and H is the average number of point additions per bit
of the scalar.

Theoretical Study. We combine here the cost of point addition and doubling
(see Table 3 and Sect. 4.1) with the addition/doubling ratios given in tables 1
and 2. Remark: As indicated in Table 3 we assume 2N = A. Indeed the negation
of a value v already reduced modulo p can be performed as the subtraction p−v
without the need of modular reduction.

Double Scalar Multiplication. The RAM available in the smart card context
limits the ratio H to be greater than 0.5 when using Algorithm 2. As shown in
Table 4, our pattern always offers the best performances when compared with
Longa’s pattern.
Single Scalar Multiplication. Due to smart card memory constraints, lower val-
ues for H (i.e. less than 0.5) correspond to single scalar multiplication cases. We
present in Table 5 the limit of our method encountered with our practical val-
ues (Table 9). The new solution still requires less modular additions than other
propositions but it requires more products. The ratios A/M and S/M will help
to select the solution with the best per bit cost. The cost of exponent recoding E
shall also be carefully taken into account in the case of on-the-fly scalar recoding.
Indeed, protecting this heavy scalar treatment against SSCA may be costly.

Memory Cost. The smaller the ratio point additions per bit (i.e. H), the more
buffers required in memory. Depending on the supported ECC bit lengths these

Table 4. Double scalar multiplication cost per bit

Algorithm H = 3/4 H = 1/2

Longa L2R 18.5M + 37A + 9.25E 15M + 30A + 7.5E
This paper 3.5S + 14M + 17.5A + 1.75E 3S + 12M + 15A + 1.5E



Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 181

Table 5. Single scalar multiplication cost per bit

Algorithm H = 1/4 H = 1/5

Longa L2R 11.5M + 23A + 5.75E 10.8M + 21.6A + 5.4E
GV R2L 3S + 9M + 15A + 1.5E 2.8S + 8.4M + 14A + 1.4E
This paper 2.5S + 10M + 12.5A + 1.25E 2.4S + 9.6M + 12A + 1.2E

Table 6. Number of buffers required for the scalar multiplication

Operation Recoding H GV R2L Longa L2R This paper

[u] P + [v] Q None 3/4 - 22 15
JSF 1/2 - 27 17

[k] P NAF 1/3 11 12 11
NAFw=3 1/4 14 17 13
NAFw=4 1/5 20 27 17

buffers correspond to more or less RAM. Therefore the developer selects a ratio
with regard to the desired memory cost. The new pattern has been optimized in
order to only use four intermediate registers (see Sect. 4.1) and the same results
can be obtained for the pattern of Giraud-Verneuil – and should be possible for
Longa’s pattern. If X denotes the number of extra points (see Tables 1 and 2),
an implementation using Longa’s pattern requires 12 + 5X buffers (assuming a
subtraction pattern), 11 + 3X buffers are required using GV pattern and only
11 + 2X buffers are required with the new pattern.

Practical Values. One usually considers the chip characteristics before select-
ing the best matching algorithm. In Table 7 we give measured costs of elementary
operations performed in the field Fp on our chip. We also give the relative cost
of a secured on-the-fly NAF scalar recoding. Therefore, the following table 8 con-
tains a line with E/M = 0 since we did not implement on-the-fly JSF recoding.
This choice is greatly in favor of Longa’s pattern (see Table 4) and in practice
E/M may not be negligible. If we look at the 224-bit size (considered as secured
in the midterm [13]) we see an improvement of at least 14.6% for the double
scalar multiplication case. In the single scalar multiplication case (Table 9), the
new proposition has a performance close to the Giraud-Verneuil solution. How-
ever, a fair comparison must take into account the memory cost of each algorithm
which emphasize the interest of the new pattern. Besides, the small gain/loss of
the new pattern in the single scalar multiplication case may be seen as a fair cost if
we consider that only one implementation is now required for both double scalar
multiplication and single scalar multiplication situations. Eventually, about com-
ponents with S < M , our propositions benefit from fast squares but to a lesser
extent than GV since it relatively contains less squares (see Tables 4 and 5).

In conclusion, though the new pattern is not optimal in case of low addition/
doubling ratio – i.e. when large amount ofmemory is available – and asymptotically
not optimal – i.e. when A/M ≈ 0 – it has revealed to be efficient in our context.



182 F. Rondepierre

Table 7. Characteristics of our implementation on a smart card

Bit length 160 192 224 256 320 384 512 521

A/M 0.23 0.21 0.21 0.19 0.17 0.16 0.14 0.14
E/M 0.95 0.65 0.65 0.47 0.36 0.28 0.19 0.19

Table 8. Number of equivalent modular multiplications for the double scalar multipli-
cation with S/M = 1

H ECC bit size Longa L2R This paper Gain (%)

1/2 (E/M = 0) 160 21.9 18.4 15.7
224 21.2 18.1 14.6
256 20.6 17.8 13.7
320 20.2 17.6 12.8
384 19.8 17.4 12.0
521 19.1 17.1 10.8

Table 9. Number of equivalent modular multiplications for the single scalar multipli-
cation with S/M = 1

H ECC size Longa L2R GV R2L This paper Gain over GV (%)

1/4 160 22.2 16.9 16.5 1.8
224 20.0 16.0 15.9 1.1
256 18.5 15.5 15.4 0.6
320 17.5 15.1 15.1 0.1
384 16.8 14.8 14.8 −0.2
521 15.7 14.3 14.4 −0.7

1/5 160 20.9 15.7 15.9 −0.9
224 18.7 15.0 15.3 −1.7
256 17.4 14.5 14.8 −2.3
320 16.5 14.1 14.5 −2.7
384 15.8 13.8 14.2 −3.1
521 14.8 13.4 13.9 −3.6

4.3 The Special Case a = 0

If the curve parameter a is null then a multiplication with zero is performed in the
doubling formula which may result in a security flaw. Indeed, such a product may
have a leakage distinguishable from other products. Since the addition formula
does not use this parameter a, it can hence be distinguished from a doubling. This
case a = 0 allows to only save one multiplication in efficient doubling formulas
(using an extra coordinate W or a = −3). Therefore, using Longa’s pattern
or Giraud-Verneuil pattern, one cannot benefit from this case to improve the
scalar multiplication since their atomic patterns contain several multiplications.
An improvement is possible with the pattern of Chevallier-Mames et al. but
this pattern remains costly due to the high number of dummy additions. Hence,



Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 183

Table 10. Example costs to perform a secure scalar multiplication on a 256-bit curve

Used in Multiplication/bit Memory cost Algorithm

Keygen, sign 8.9 17 Algorithm 2, this paper
10.3 27 Algorithm 2, Longa L2R

Key agreement 14.5 20 GV R2L
14.8 17 Algorithm 1, this paper

PACE 17.8 17 Algorithm 2, this paper
20.6 27 Algorithm 2, Longa L2R

a new formula is proposed here to thwart this attack and to benefit from the
possible speed improvement.

With a = 0, there are no more available modular subtractions at the begin-
ning of the doubling formula therefore the atomic pattern has to be rebuilt to
match with the addition formula. The trick used here consists in saving in mem-
ory the opposite values of the coordinates of Q: −Xq,−Yq. The point equivalent
class is also used with λ = −1 to represent P +Q = (X3 : −Y3 : −Z3). However,
no trick has been found to propose a subtraction formula.

The sum of P = (X : Y : Z : Z2 : Z3) and Q = (Xq : Yq : 1) is the point
P + Q = (X3 : Y3 : Z3). This sum is depicted in Formula (9). The double of
a point P = (X : Y : Z) is the point [2]P = (X2 : Y2 : Z2 : Z2

2 : Z3
2 ). The

evaluation is performed using Formula (8) with A = 3X2. The resulting pattern
only contains 9 multiplications (2S + 7M) and 8 additions which represents an
improvement of more than 10% if compared with the case a �= 0. It is depicted
in Table 11 in Appendix A.

⎧
⎪⎨

⎪⎩

X3 = F 2 − (2AĒ2 − Ē3)

Y3 = F̄ (AĒ2 − X3) − CĒ3

Z3 = ZĒ

with

A = X

B̄ = (−Xq)Z2

C = Y

D̄ = (−Yq)Z3

Ē = B̄ + A

F̄ = D̄ + C

(9)

5 Conclusion

In this paper a new atomic pattern has been proposed that outperforms the
implementations of most scalar multiplications used in elliptic curve cryptogra-
phy standards. Our pattern enables to securely perform double scalar multipli-
cations on curves over Fp with the Straus-Shamir trick which has not been done
before. The new pattern also turns out to be efficient for single scalar multiplica-
tion. We give hereafter in Table 10 the results obtained on our chip when using
main standard algorithms compared with the best known implementations. The
first row corresponds to the process of [k] G evaluated as [k0] G + [k1] 2�/2G.
The double scalar multiplication can also be used in the PACE [17] protocol



184 F. Rondepierre

to evaluate a point G̃. A Key Agreement requires the computation of [k] P .
Longa’s atomic pattern using Straus-Shamir trick is given for information only
as its implementation requires too much memory to be used with our com-
ponent. Hence the GV implementation was the fastest algorithm available to
perform signatures and key generations and this proposal improves it by 38.6 %.

Acknowledgements. The author is grateful to Christophe Giraud and Emmanuelle
Dottax for their valuable comments on preliminary versions of this article. Many thanks
also go to anonymous reviewers of Cardis 2013 for their advices.

A Atomic Patterns

The patterns for any value a allow to perform an addition or doubling at a cost
of 3S + 8M + 9A. These patterns implement Formulæ (9) and (4):

Table 11. Atomic patterns for the case a = 0 (left-hand side) and for any value a
(right-hand side)

Addition Doubling Addition Doubling

� ← � + �

R0 ← (−Xq) · Z2

R1 ← X + R0

R2 ← (R1)
2

R0 ← X · R2

R3 ← Z · R1

X3 ← (−Yq) · Z3

Z3 ← R2 · R1

R1 ← R0 + R0

R2 ← Y + X3

X3 ← (R2)
2

R1 ← R1 − Z3

X3 ← X3 − R1

R0 ← R0 − X3

R1 ← Y · Z3

Y3 ← R0 · R2

Y3 ← Y3 − R1

Z3 ← R3

R0 ← Y + Y

R1 ← R0 · Y

Y2 ← R1 + R1

R2 ← (X)2

R3 ← R0 · Z

Z2 ← Y2 · X

R0 ← R1 · Y2

Z2
2 ← R3 · R3

R1 ← R2 + R2

R1 ← R1 + R2

X2 ← (R1)
2

X2 ← X2 − Z2

X2 ← X2 − Z2

Z2 ← Z2 − X2

Z3
2 ← Z2

2 · R3

Y2 ← R1 · Z2

Y2 ← Y2 − R0

Z2 ← R3

R0 ← (Z)2

� ← � + �

R1 ← (−Xq) · R0

R1 ← X + R1

R3 ← (−Yq) · R0

R2 ← (R1)
2

R0 ← Z · R3

R3 ← Z · R1

Z3 ← R1 · R2

R1 ← X · R2

R2 ← R1 + R1

R0 ← R0 + Y

� ← � + �

X3 ← (R0)
2

R2 ← R2 − Z3

X3 ← X3 − R2

R1 ← R1 − X3

R2 ← Y · Z3

Y3 ← R0 · R1

Y3 ← Y3 − R2

Z3 ← R3

R0 ← (Z)2

R1 ← Y + Y

R2 ← R1 · Y

Y2 ← R2 + R2

R3 ← R1 · Z

Z2 ← (X)2

R1 ← Y2 · R2

R2 ← Y2 · X

X2 ← a · R0

Y2 ← X2 · R0

R0 ← Z2 + Z2

X2 ← R0 + Z2

R0 ← X2 + Y2

X2 ← (R0)
2

X2 ← X2 − R2

X2 ← X2 − R2

Z2 ← R2 − X2

� ← � · �

Y2 ← R0 · Z2

Y2 ← Y2 − R1

Z2 ← R3



Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 185

References

1. Arno, S., Wheeler, F.: Signed digit representations of minimal Hamming weight.
IEEE Trans. Comput. 42(8), 1007–1009 (1993)

2. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Nac-
cache and Paillier [25], pp. 335–345

3. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. Cryptology ePrint Archive, Report
2003/237 (2003). http://eprint.iacr.org/

4. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers genereated by addi-
tion in formal groups and new primality and factorization tests. Adv. Appl. Math.
7, 385–434 (1986)

5. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

6. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

7. ECC Brainpool: ECC brainpool standard curves and curve gener-
ation. BSI, internet Draft v. 3, (2009). http://tools.ietf.org/html/
draft-lochter-pkix-brainpool-ecc-03

8. ElGamal, T.: A public-key cryptosystems and a signature scheme based on discret
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

9. Faugère, J.-C., Goyet, C., Renault, G.: Attacking (EC)DSA given only an implicit
hint. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 252–274.
Springer, Heidelberg (2013)

10. FIPS PUB 186–4: Digital Signature Standard. National Institute of Standards and
Technology, July 2013

11. Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J.P.: Parallel scalar multiplica-
tion on general elliptic curves over Fp hedged against non-differential side-channel
attacks. Cryptology ePrint Archive, Report 2002/007, Jan 2002. http://eprint.iacr.
org/

12. Giraud, C., Verneuil, V.: Atomicity improvement for elliptic curve scalar multipli-
cation. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 80–101. Springer, Heidelberg (2010)

13. Giry, D., Bulens, P.: Keylength.com - Cryptographic Key Length Recommanda-
tion, Aug 2007. http://www.keylength.com

14. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on weierstraß elliptic curves from co- z arithmetic. J. Cryptol. 1(2), 161–176 (2011)

15. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography:
Professional Computing Series. Springer, New York (2003)

16. Hutter, M., Joye, M., Sierra, Y.: Memory-constrained implementations of elliptic
curve cryptography in co-Z coordinate representation. In: Nitaj, A., Pointcheval, D.
(eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 170–187. Springer, Heidelberg
(2011)

17. ISO/IEC JTC1 SC17 WG3/TF5: Supplemental Access Control for Machine Read-
able Travel Documents. International Civial Aviation Organization, Nov 2010

18. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against
side channel attacks. In: Naccache and Paillier [25], pp. 280–296

http://eprint.iacr.org/
http://tools.ietf.org/html/draft-lochter-pkix-brainpool-ecc-03
http://tools.ietf.org/html/draft-lochter-pkix-brainpool-ecc-03
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.keylength.com


186 F. Rondepierre

19. JORF n: Avis relatif aux paramètres de courbes elliptiques définis par l’État
français, Oct 2011

20. Knuth, D.: The Art of Computer Programming, vol. 2, 3rd edn. Addison Wesley,
Reading (1988)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

22. Longa, P.: Accelerating the scalar multiplication on elliptic curve cryptosystems
over prime fields. Master’s thesis, School of Information Technology and Engineer-
ing, University of Ottawa, Canada (2007)

23. Möller, B.: Improved techniques for fast exponentiation. In: Lee, P.J., Lim, C.H.
(eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)

24. Montgomery, P.: Modular multiplication without trial division. Math. Comp.
44(170), 519–521 (1985)

25. Naccache, D., Paillier, P. (eds.): PKC 2002. LNCS, vol. 2274. Springer, Heidelberg
(2002)

26. Okeya, K., Kato, H., Nogami, Y.: Width-3 joint sparse form. In: Kwak, J., Deng,
R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 67–84. Springer,
Heidelberg (2010)

27. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

28. Solinas, J.: Low-Weight Binary Representations for Pairs of Integers. Technical
report (2001). http://cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps

29. Solinas, J.A.: Efficient arithmetic on koblitz curves. Des. Codes Crypt. 19(2/3),
195–249 (2000)

30. Straus, E.G.: Addition chains of vectors (problem 5125). Am. Math. Monthly 70,
806–808 (1964)

http://cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps

	Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves
	1 Introduction
	2 Elliptic Curve Background
	2.1 Definitions
	2.2 Efficient Scalar Multiplication Implementation

	3 Secure Scalar Multiplication Implementation
	3.1 State-of-the-Art
	3.2 Scalar Evaluation

	4 New Atomic Pattern
	4.1 New Fomulæ
	4.2 Performances
	4.3 The Special Case a=0

	5 Conclusion
	A Atomic Patterns
	References


