
Aurélien Francillon
Pankaj Rohatgi (Eds.)

 123

LN
CS

 8
41

9

12th International Conference, CARDIS 2013
Berlin, Germany, November 27–29, 2013
Revised Selected Papers

Smart Card Research and
Advanced Applications

Lecture Notes in Computer Science 8419

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7410

http://www.springer.com/series/7410

Aurélien Francillon • Pankaj Rohatgi (Eds.)

Smart Card Research
and Advanced Applications

12th International Conference, CARDIS 2013
Berlin, Germany, November 27–29, 2013
Revised Selected Papers

123

Editors
Aurélien Francillon
EURECOM
Biot
France

Pankaj Rohatgi
Cryptography Research Inc.
San Francisco, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-08301-8 ISBN 978-3-319-08302-5 (eBook)
DOI 10.1007/978-3-319-08302-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941234

LNCS Sublibrary: SL4 – Security and Cryptology

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contain the revised versions of the papers selected for presentation
at CARDIS 2013, the 12th Smart Card Research and Advanced Application Con-
ference, organized by the Chair for Security in Telecommunications (SecT), Technical
University of Berlin, and held at the Moevenpick Hotel, Berlin, Germany.

The CARDIS conference, first held in Lille, France, in 1994, will turn 20 next year.
Over these years, as smart cards became a pervasive, foundational technology for
bootstrapping security and trust, CARDIS became the foremost international con-
ference dedicated to research on all aspects of smart cards and their applications,
including hardware design, operating systems, application software, security proto-
cols, as well as physical and system security.

The conference provides an unparalleled forum for researchers from academia,
industry, testing labs, and government organizations to present and discuss exploratory
research and novel advances in this area. Its unique format allows authors to incor-
porate these discussions and feedback into the final papers that are published here.

This year, the CARDIS Program Committee reviewed 47 submissions and selected
17 papers for presentation at the conference. Each paper received at least three
reviews and all submissions by the Program Committee members received at least five
reviews. This task was performed by the 38 members of the Program Committee
members with the help of 70 external reviewers. The technical program also featured
three invited talks. The first invited speaker, Prof. Srdjan Capkun, from ETH, Zurich,
presented ‘‘Selected Topics in Wireless Physical Layer Security’’. The second invited
speaker, Dr. Mathias Wagner, Fellow and Chief Security Technologist at NXP
Semiconductors, spoke about ‘‘Security in Industry — When is Good, Good
Enough?’’. The third invited speaker, Mr. Olivier Thomas from Texplained, SARL,
spoke on the topic of ‘‘Adequate Security’’.

CARDIS 2013 owes its success to the hard work and dedication of a number of
people, and we would like to use this opportunity to thank them for their service. First
and foremost, we would like to thank the members of the Program Committee and the
external reviewers for conducting the task of evaluating and discussing the submis-
sions with professionalism and within a short and abbreviated timeline. We are very
grateful to Jean-Pierre Seifert, the general chair of CARDIS 2013, and his excellent
team including Kevin Redon, Claudia Petzsch, and Juliane Kraemer for their flawless
conference management. We are especially grateful to Kevin Redon for managing the
conference website and making our task easier. We thank the CARDIS Steering
Committee for giving us the privilege of serving as program chairs of this premier
conference, and we especially thank Prof. Jean-Jacques Quisquater for organizing and
publicizing this event and for his help and guidance throughout the process. Last, not
least, we thank all the authors who submitted papers and all the attendees who con-
tributed to the discussions and made the conference a memorable event.

November 2013 Aurélien Francillon
Pankaj Rohatgi

Organization

CARDIS 2013 was organized by the Chair for Security in Telecommunications
(SecT), Technical University of Berlin.

Executive Committee

Conference General Chair

Jean-Pierre Seifert TU Berlin and Deutsche Telekom Laboratories,
TU Berlin

Conference Program Co-chairs

Aurélien Francillon EURECOM, France
Pankaj Rohatgi Cryptography Research, USA

Conference Publicity Chair

Jean-Jacques Quisquater Université Catholique de Louvain, Belgium

Program Committee

Onur Aciicmez Samsung, USA
N. Asokan University of Helsinki, Finland
Gildas Avoine UCL, Belgium
Guillaume Barbu Oberthur, France
Christophe Clavier University of Limoges, France
Elke De Mulder Cryptography Research, USA
Hermann Drexler Giesecke & Devrient, Germany
Martin Feldhofer NXP, Austria
Nathalie Feyt Thales, France
Berndt Gammel Infineon, Germany
Michael Hauspie LIFL, France
Michael Hutter TU Graz, Austria
Kari Kostiainen ETHZ, Switzerland
Jean-Louis Lanet University of Limoges, France
Cédric Lauradoux Inria, France
Stefan Mangard Infineon Technologies, Germany
David Naccache ENS, France
Svetla Nikova K.U. Leuven, Belgium
Karsten Nohl Security Research Labs, Germany

David Oswald Ruhr University Bochum, Germany
Elisabeth Oswald University of Bristol, UK
Eric Peeters Texas Instruments, USA
Erik Poll Radboud Universiteit Nijmegen, The Netherlands
Axel Poschmann Nanyang Technological University, Singapore
Bart Preneel K.U. Leuven, Belgium
Emmanuel Prouff ANSSI, France
Matthieu Rivain CryptoExperts, France
Jean-Marc Robert ETS Montreal, Canada
Thomas Roche ANSSI, France
Ahmad-Reza Sadeghi TU Darmstadt, Germany
Jörn-Marc Schmidt TU Graz, Austria
Lex Schoonen Brightsight, The Netherlands
Sergei Skorobogatov Cambridge University, UK
François-Xavier Standaert UCL, Belgium
Frederic Stumpf Escrypt GmbH, Germany
Marc Witteman Riscure, The Netherlands

Additional Reviewers

Josep Balasch
Lejla Batina
Georg Becker
Sonia Belaid
Begül Bilgin
Rafael Boix Carpi
Guillaume Bouffard
Cees Bart Breunesse
Xavier Carpent
J.-C. Courrege
Rémy Daudigny
Fabrizio De Santis
Cécile Delerablée
François Durvaux
Jan-Erik Ekberg
Matthieu Finiasz
Wieland Fischer
Laurie Genelle
Hannes Gross

Vincent Grosso
Mike Hamburg
Christian Hanser
Annelie Heuser
Johann Heyszl
Lars Hoffmann
Dirmanto Jap
Eliane Jaulmes
Timo Kasper
Thomas Korak
Pascal Lafourcade
Andy Leiserson
Victor Lomne
Damien Marion
Mark Marson
Marcel Medwed
Bernd Meyer
Amir Moradi
Michael Muehlberghuber

Roel Peeters
Thomas Plos
François Poucheret
Mathieu Renauld
Oscar Reparaz
Gokay Saldamli
Falk Schellenberg
Peter Schwabe
Nicolas Sendrier
Dave Singelée
Raphael Spreitzer
Pawel Swierczynski
Hien Thi Thu Truong
Sébastien Valette
Vincent Verneuil
Christian Wachsmann
Carolyn Whitnall
Antoine Wurcker

VIII Organization

Sponsoring Institutions

NXP
Infineon
Cryptography Research
Oberthur Technologies
Brightsight
Gemalto

Event Support

1a Event Services Gmbh
Telekom Innovation Laboratories

Organization IX

Contents

Security Technologies - Session Chair: Benedikt Gierlichs

Evaluation of ASIC Implementation of Physical Random Number Generators
Using RS Latches . 3

Hirotaka Kokubo, Dai Yamamoto, Masahiko Takenaka, Kouichi Itoh,
and Naoya Torii

From New Technologies to New Solutions: Exploiting FRAM Memories
to Enhance Physical Security . 16

Stéphanie Kerckhof, François-Xavier Standaert, and Eric Peeters

Attacks on Masking - Session Chair: Michael Hutter

Low Entropy Masking Schemes, Revisited . 33
Vincent Grosso, François-Xavier Standaert, and Emmanuel Prouff

On the Vulnerability of Low Entropy Masking Schemes 44
Xin Ye and Thomas Eisenbarth

A Machine Learning Approach Against a Masked AES 61
Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi,
and Olivier Markowitch

Side Channel Attacks - Session Chair: François-Xavier Standaert

Clustering Algorithms for Non-profiled Single-Execution Attacks
on Exponentiations . 79

Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis,
and Georg Sigl

Optimization of Power Analysis Using Neural Network 94
Zdenek Martinasek, Jan Hajny, and Lukas Malina

Time-Frequency Analysis for Second-Order Attacks 108
Pierre Belgarric, Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger,
Nicolas Debande, Sylvain Guilley, Annelie Heuser, Zakaria Najm,
and Olivier Rioul

Software and Protocol Analysis - Session Chair: Lex Schoonen

Vulnerability Analysis of a Commercial .NET Smart Card 125
Behrang Fouladi, Konstantinos Markantonakis, and Keith Mayes

http://dx.doi.org/10.1007/978-3-319-08302-5_1
http://dx.doi.org/10.1007/978-3-319-08302-5_1
http://dx.doi.org/10.1007/978-3-319-08302-5_2
http://dx.doi.org/10.1007/978-3-319-08302-5_2
http://dx.doi.org/10.1007/978-3-319-08302-5_3
http://dx.doi.org/10.1007/978-3-319-08302-5_4
http://dx.doi.org/10.1007/978-3-319-08302-5_5
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1007/978-3-319-08302-5_6
http://dx.doi.org/10.1007/978-3-319-08302-5_7
http://dx.doi.org/10.1007/978-3-319-08302-5_8
http://dx.doi.org/10.1007/978-3-319-08302-5_9

Manipulating the Frame Information with an Underflow Attack 140
Emilie Faugeron

Formal Security Analysis and Improvement of a Hash-Based NFC
M-Coupon Protocol. 152

Ali Alshehri and Steve Schneider

Side Channel Countermeasures - Session Chair: Svetla Nikova

Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves. . . . 171
Franck Rondepierre

Efficient and First-Order DPA Resistant Implementations of KECCAK 187
Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova,
Vincent Rijmen, and Gilles Van Assche

Practical Analysis of RSA Countermeasures Against Side-Channel
Electromagnetic Attacks . 200

Guilherme Perin, Laurent Imbert, Lionel Torres, and Philippe Maurine

Side Channel and Fault Attacks - Session Chair: Berndt Gammel

The Temperature Side Channel and Heating Fault Attacks 219
Michael Hutter and Jörn-Marc Schmidt

Glitch It If You Can: Parameter Search Strategies for Successful
Fault Injection . 236

Rafael Boix Carpi, Stjepan Picek, Lejla Batina, Federico Menarini,
Domagoj Jakobovic, and Marin Golub

Efficient Template Attacks. 253
Omar Choudary and Markus G. Kuhn

Author Index . 271

XII Contents

http://dx.doi.org/10.1007/978-3-319-08302-5_10
http://dx.doi.org/10.1007/978-3-319-08302-5_11
http://dx.doi.org/10.1007/978-3-319-08302-5_11
http://dx.doi.org/10.1007/978-3-319-08302-5_12
http://dx.doi.org/10.1007/978-3-319-08302-5_13
http://dx.doi.org/10.1007/978-3-319-08302-5_14
http://dx.doi.org/10.1007/978-3-319-08302-5_14
http://dx.doi.org/10.1007/978-3-319-08302-5_15
http://dx.doi.org/10.1007/978-3-319-08302-5_16
http://dx.doi.org/10.1007/978-3-319-08302-5_16
http://dx.doi.org/10.1007/978-3-319-08302-5_17

Security Technologies - Session Chair:
Benedikt Gierlichs

Evaluation of ASIC Implementation of Physical
Random Number Generators Using RS Latches

Hirotaka Kokubo(B), Dai Yamamoto, Masahiko Takenaka,
Kouichi Itoh, and Naoya Torii

Secure Computing Lab, Fujitsu Laboratories Ltd., 4-1-1 Kamikodanaka,
Nakahara-ku, Kawasaki, Kanagawa 211-8588, Japan

{kokubo.hirotaka,yamamoto.dai,ma,ito.kouichi,torii.naoya}@jp.fujitsu.com

Abstract. Embedded devices such as smart cards and smart phones are
used for secure systems, for example automated banking machines and
electronic money. The security of an embedded device depends strongly
on secret information; cryptographic keys, nonces for authentication or
seeds for a pseudo random number generator, which is generated by a
Physical True Random Number Generator (PTRNG). If a PTRNG gen-
erates random numbers with a low entropy, the security of the embedded
device has a vulnerability because secret information may be predictable
by attackers due to the low entropy. Hence PTRNGs are required to
provide high-quality physical random numbers even in an undesirable
environment, that is, low/high temperature or supply voltage. PTRNGs
also must be small-scale and consume low power due to the limited hard-
ware resources in embedded devices.

In this paper, we fabricate and evaluate 39 PTRNGs using RS Latches
on 0.18µm ASICs. Physical random numbers were generated from the
exclusive-OR of 256 RS latches’ outputs. Our PTRNGs passed the
SP800-90B Health Tests and the AIS31 Tests while changing both tem-
perature (from −20 ◦C to 60 ◦C) and voltage (1.80V ±10%), and thus,
we were able to confirm that our PTRNGs have high-robustness against
environmental stress. The power consumption and circuit scale of our
PTRNG are 0.27mW and 984.5 gates, respectively. Our PTRNG using
RS latches is small enough to be implemented on embedded devices.

Keywords: Random number generator · RS Latch · Metastability ·
AIS31 · SP800-90B

1 Introduction

Embedded devices such as smart cards and smart phones have become wide-
spread in applications where high security is necessary, such as employee ID
cards, electronic money and online banking. These embedded devices have cryp-
tographic hardware for secure communications and identification/authentication.
Cryptographic hardware achieves high-level security by using cryptographic

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 3–15, 2014.
DOI: 10.1007/978-3-319-08302-5 1, c© Springer International Publishing Switzerland 2014

4 H. Kokubo et al.

technologies such as symmetric-key cryptography and a pseudo random num-
ber generator. One of the security aspects for these cryptographic technolo-
gies depends on random numbers. This is because the random numbers are
used for key generations for symmetric-key/public-key ciphers and seed gener-
ations for pseudo random number generators amongst other things. Random
numbers with a low randomness cause the risk of prediction of the secret key
and seed, which enables attackers to eavesdrop on communication contents and
forge signatures. Hence, the quality of random numbers affects the security of
embedded devices. Generally, random numbers are generated with physical ran-
dom number generators (PTRNGs). Embedded devices with high-level security
require PTRNGs which can generate high-quality random numbers. Addition-
ally, embedded devices such as smart card and smart phone are often exposed
to environmental changes, so attackers could intentionally lower the quality of
the random numbers by freezing embedded devices. Therefore, PTRNGs should
be able to generate high-quality random numbers regardless of the environmen-
tal changes. Moreover, PTRNGs should be able to integrate as an Large Scale
Integration (LSI) for resource-limited embedded devices.

Some of the PTRNGs that can be integrated as digital LSI have been previ-
ously proposed, but there are many problems in terms of noise, power consump-
tion, circuit scale and design cost. A PTRNG using RS latches has been proposed
as a method to solve these problems. This PTRNG has been implemented only
on FPGAs. Application specific integrated circuit (ASIC) implementation is nec-
essary for the mass production of the PTRNGs because ASIC has the advantage
of lower chip cost, lower power consumption and faster processing than FPGA. It
is unknown whether or not a PTRNG on ASIC is able to generate high-quality
random numbers. It is necessary to implement and evaluate the PTRNG on
ASIC because random numbers are affected by the characteristics of the semi-
conductor, but as yet no evaluation has been made of such a PTRNG on ASIC
and PTRNGs [1] have only been evaluated with the NIST SP800-22 randomness
statistical tests [2]. It has not been evaluated by the tests dedicated to physi-
cal random numbers, namely AIS31 [3] and SP800-90B [4]. PTRNGs should be
evaluated by these tests because the importance of PTRNGs has recently been
gathering attention, and these tests for physical random numbers will be widely
used in the future. Moreover, the robustness of PTRNG against temperature
and voltage fluctuations must be evaluated.

Our Contributions. In this paper, we implement a PTRNG using RS latches
on an ASIC based on the PTRNG on an FPGA [1]. The reason why we focus on
this latch-based PTRNG is that its design cost is small and high-quality random
numbers are expected to be generated in any environment. This paper makes
four contributions; (1) We fabricated the PTRNG on a 0.18µm CMOS ASIC.
We evaluated whether or not the PTRNG is able to generate random numbers on
this ASIC. (2) We measured the power consumption and the circuit scale of the
PTRNGs, and examined whether it can be installed in embedded devices. (3) We
evaluated the quality of random numbers generated by our PTRNGs according
to the AIS31 and SP800-90B randomness statistical tests for physical random

Evaluation of ASIC Implementation of Physical Random Number Generators 5

numbers. (4) We examined whether our PTRNGs have the robustness against
temperature and voltage fluctuations. As a result, our PTRNGs on an ASIC
were found to be small and low-power enough to be implemented on embedded
devices, and able to generate high-quality random numbers even if the environ-
ment changes, thus our PTRNGs can improve the security of embedded devices.

Organization of This Paper. This paper is organized as follows: Sect. 2 briefly
introduces some work related to our research. Section 3 gives an outline of a
PTRNG using RS Latches. Section 4 describes an ASIC implementation of the
PTRNG. In addition, we measured the power consumption of the PTRNG on
an ASIC. Section 5 evaluates the quality of the physical random numbers from
the PTRNG by using the AIS31 and SP800-90B Health Tests. Finally, Sect. 6
gives a summary of this research.

2 Related Work

Figure 1 shows various PTRNGs on LSIs which have been proposed until now.
The PTRNGs are classified into two types; analog-based one and digital-based
one. Analog-based PTRNGs are based on random noise signals such as ther-
mal noise, and they are known to be high-quality random number generators.
However, the weak point of these PTRNGs is that they are difficult to integrate
in high-density in an LSI due to the large-scale thermal sensors. Digital-based
PTRNGs are categorized by entropy sources. One is to use the jitter of oscil-
lators as an entropy source, for example ring oscillators-based PTRNGs [5].
A ring oscillator has a feedback structure composed of an odd number of NOT
gates. Random numbers are obtained from the exclusive-OR of multiple ring
oscillator outputs, and they have the robustness against temperature change.
However, the PTRNGs in this category would be not suitable for embedded
devices with limited resources because the ring oscillator has large power con-
sumption, noise, and circuit scale. The other is to use the metastability of digital
circuits. This type of PTRNG is suitable for embedded devices because of the
small scale and low-power consumption. The prototypes of this PTRNG can
generate high-quality random numbers [6–8]. However they need an additional
dynamic adjustment for the voltage or of internal elements. This adjustment
needs a dedicated full-custom circuit, which causes the large design cost at the
transistor level. Moreover, it is necessary to re-design them when implement-
ing on different CMOS technology because the PTRNGs often do not work as
expected under a different CMOS technology.

Hata et al. have proposed a PTRNG using the metastability of RS latches and
implemented it on an FPGA [1]. The design cost of this PTRNG is quite small
because it uses only digital synchronous circuits. In addition, the PTNRG can
save power consumption by stopping the clock signal inputted to the RS latches
when the random numbers generation is not required. The random numbers
from the PTRNG passes the NIST SP800-22 statistical tests [2]. For the above-
mentioned reasons, the PTRNG proposed by Hata et.al. has better properties
for embedded devices than other PTRNGs.

6 H. Kokubo et al.

Fig. 1. Variety of physical random number generators.

3 Random Number Generator Using RS Latches

This section explains the method for generating physical random numbers that
was proposed by Hata et al. in [1]. The PTRNGs that are using this method
generates physical random numbers based on the metastability of RS latches.

Figure 2 shows an RS latch. An RS latch consists of 2 NAND gates, and is
commonly used to store one bit information. When input = 0, the RS latch is
stable with output = 1. When input changes from 0 to 1, the RS latch temporar-
ily enters a metastable state, and then, it is stable with output = 0 or 1. Physical
random numbers can be obtained from output by giving input clock signals using
this behavior. Ideally, the probability of outputting 0 and 1 is equal, but this
probability is actually biased. This is because of the difference in wiring delay
between gates, or the difference of drive capability between two NAND gates.
In many cases, this RS latch generates only ‘0’ s or only ‘1’ s, so it is difficult
to generate high-quality random numbers using only one RS latch. A PTRNG
consisting of multiple RS latches and an exclusive-OR gate is proposed in [1].
This PTRNG generates random numbers from the exclusive-OR of multiple RS
latches’ outputs. This enables the PTRNG to exclude the biases and to generate
high-quality random numbers.

Problems. There are two problems in [1]. (1) This PTRNG has implemented
only on FPGAs. (2) This PTRNG has not been evaluated in various envi-
ronments. It is difficult to implement an FPGA in mass-produced embedded
devices such as smart cards due to a large power consumption and chip cost,
so ASIC implementation is necessary for mass production. The PTRNGs for
embedded devices must be able to generate high-quality physical random num-
bers in any environments. If the PTRNG generates random numbers with low

Evaluation of ASIC Implementation of Physical Random Number Generators 7

Fig. 2. RS latch

entropy due to environmental changes, the security of the embedded device is
compromised because secret information may be predictable by attackers due to
the low entropy. In general, the characteristics of a semiconductor, for example
drive capability and wire delay, are influenced by both temperature and voltage
changes. Therefore, the quality of random numbers from PTRNGs is affected
by the both changes. Hence, the robustness against to the changes should be
evaluated, but as yet it has not. In addition, the PTRNGs should be evaluated
based on the SP800-90B Health Tests published in 2012, which is introduced for
the tests of physical random number generators.

4 ASIC Implementation

We fabricate PTRNGs using RS latches on a 0.18µm CMOS ASIC (Fujitsu
CS86 series [9]). This PTRNG generates random numbers from the exclusive-
OR of 256 RS latches’ outputs. The RS latch was custom-designed on the circuit
layout so that the wire lengths between the two NAND gates are the same, and
was implemented as hard macro. Thus, the probability of the RS latch gener-
ating random numbers is expected to improve. 256 RS latches are implemented
automatically by using circuit design tools. Hence, the design cost is quite small.
The PTRNGs are assembled as DIP28 packages. Two types of the PTRNG were
fabricated, namely 20 standard PTRNGs (using CS86MN, called MN-PTRNG)
and 19 low-power-consuming PTRNGs (using CS86ML, called ML-PTRNG).

4.1 Measurement of Power Consumption and Circuit Scale

Embedded devices require low-power-consuming PTRNGs. We measured the
power and current consumption of the PTRNGs with a direct current ammeter.
According to our experimental measurements, the average power/current con-
sumption of both MN-PTRNG and ML-PTRNG ASICs is 0.27mW/0.15mA
and 0.252mW/0.14mA respectively. The current consumption of common
ASICs used for contactless smart cards is approximately 1mA [10]. The current
consumption of our PTRNG was much smaller than this value, so is practical
and useful. Additionally, we measured the circuit scale of our PTRNG. In the
following discussion, one gate is equivalent to a 2-1 NAND gate (2-bit input and
1-bit output). The PTRNG consists of 256 RS latches, a 256-1 exclusive-OR gate,

8 H. Kokubo et al.

and a 1-bit flip-flop to store a random number temporarily. Our PTRNG was
synthesized with the Design Compiler 2003.03, and the circuit scale was 984.3
gates. This circuit scale was smaller than the implementation of the PRESENT
cipher which is one of the most famous ultra-lightweight ciphers [11]. In addi-
tion, this circuit size is smaller than the circuit size of Triple DES which is one
of the most widely used in smart cards (e.g. MIFARE DESFire MF31CD40).
We achieved PTRNGs with the very small circuit scale on an ASIC.

5 Evaluation

As mentioned in Sect. 3, PTRNGs may be influenced by both temperature and
voltage fluctuations. This section evaluates whether our PTRNGs fabricated
on ASICs generate high-quality random numbers regardless of environmental
changes.

5.1 Evaluation System

Figure 3 shows our experimental system for the acquisition of random numbers.
This figure is omitted excluding important parts. It consists of two boards: a
custom-made board for the ASICs of the PTRNGs and a Spartan-3E starter kit
board with a Xilinx FPGA for controlling the PTRNGs [12]. The core voltage to
the PTRNGs was supplied by using a stabilizing power supply, which was able
to adjust the supply voltage at intervals of 0.01V. The clock signals were input
to the PTRNGs through the FPGA board. Random numbers generated by the
PTRNGs were written to a micro SD card via a block RAM of the FPGA. We
acquired not only the random numbers but also the output of each latch for our
further evaluation.

In this environment, we evaluated the random numbers generated by all of
the 39 PTRNGs while changing the temperature and voltage. The core voltage
is changed to 1.65 V (1.80 V–10 %), 1.80V (standard) and 1.95V (1.80V+10 %)
by the stabilizing power supply. The temperature was maintained at −20 ◦C,
27 ◦C, and 60 ◦C by using a constant temperature oven. Only the custom-made
board for the PTRNGs was put in the constant temperature oven. The FPGA
board was always operated at the rated voltage and room temperature. These
two boards were connected through a low/high temperature resistant cable.

5.2 Evaluation of Randomness

We acquired approximately 5.5 M bits of random numbers from each PTRNG
while changing the temperature and voltage. 351 cases of random numbers (3
temperatures × 3 voltages × 39 PTRNGs, 180 cases for MN-PTRNGs and
171 cases for ML-PTRNGs) was exhaustively evaluated according to both the
SP800-90B Health Tests and the AIS31 Tests.

The NIST SP800-22 statistical tests [2], which are well known as tests for
pseudo random numbers, had been used for physical random numbers. However,

Evaluation of ASIC Implementation of Physical Random Number Generators 9

Fig. 3. Experimental system for the acquisition of random numbers

there is SP800-90B and AIS31 which are tests dedicated to physical random
numbers now. We evaluated our PTRNGs according not to SP800-22 but to
these tests in this paper.

NIST SP800-90B Health Tests. We evaluated whether our PTRNGs could
generate high-entropy random numbers according to the repetition count test
and the adaptive proportion test defined in SP800-90B [4]. The random numbers
at various temperatures and voltages were tested as follows. A “false positive
rate”, which is the probability of ideal true random numbers failing these tests,
is set to 2−30 as recommended in SP800-90B.

[Repetition Count Test]
If the same value (0 or 1) appears consecutively c times or more in the sequence
of random numbers, the random numbers are a failure, where c = ceiling(1 +
30/min − entropy). In this paper, c is 32. min-entropy will be mentioned in
Sect. 5.3.

[Adaptive Proportion Test]
Firstly, we obtained a 1-bit value from the beginning of the random numbers as
a reference value. Secondly, we obtained one block from the succeeding random
numbers. The bit length of a block is represented by window size, and if the
reference value appears greater than cutoff times in a block, the random numbers
are failure. The size of the cutoff is defined by the false positive rate, min-entropy
and window size. This procedure was repeated until the end of the random
numbers. In our evaluations, the window size and cutoff were 64, 51 in Test
Settings I and are 4096, 2240 in Test Settings II, respectively. That is, about

10 H. Kokubo et al.

84,700 blocks are evaluated in “Test Settings I” and about 1,350 blocks are
evaluated in “Test Settings II”, in each case of random numbers. We consider
the PTRNGs pass the SP800-90B Health Tests if all blocks pass in both test
settings. This means that the PTRNGs continuously generate random numbers
with high-entropy.

Figures 4 and 5 show the rate of the PTRNGs that passed the SP800-90B
Health Tests. The horizontal axis shows the environment at various tempera-
tures and voltages. The vertical axis shows the rate of the PTRNGs that passed
the tests. In the MN-PTRNGs, all cases pass this test as shown in Fig. 4. In the
ML-PTRNGs, six cases failed the test in Fig. 5, and four cases out of the six hap-
pened when the temperature was −20 ◦C. This may be because the ML-PTRNGs
have a small number of RS latches outputting random numbers at a low tem-
perature (details are discussed in Sect. 5.4). In contrast, the MN-PTRNGs can
generate high-entropy random numbers even when the temperature and voltage
change. Hence an MN-PTRNG is more suitable for generating physical random
numbers than an ML-PTRNG.

AIS31 Tests. We evaluated the random numbers in various temperatures and
voltages according to AIS31 Tests [3]. AIS31 is an evaluation criterion for the
physical random number generators defined by BSI (i.e. the German Federal
Office for Information Security). Tests in AIS31 include various statistical tests
such as the Poker Test, the Long Run Test and the Uniform Distribution Test.
AIS31 classifies PTRNGs into two classes; P1 Class and P2 Class. PTRNGs in
P1 Class pass P1 Tests, and PTRNG in P2 Class pass P2 Tests. The PTRNGs
in the P1 Class can be used for random number generation for challenge and
response authentication. The PTRNGs in the P2 Class can be used for key and
seed generations for pseudo random number generators, which provide higher
security than PTRNGs in the P1 Class. It is desirable for PTRNGs to pass
both of the tests because PTRNGs for embedded devices are used for various
applications.

Figures 6 and 7 show the rate of PTNRGs that passed the AIS31 Tests.
The horizontal and the vertical axises are the same as Figs. 4 and 5. If the
PTRNG fails either of the P1 or P2 Tests, we regarded it as failed PTRNG.
The MN-PTRNGs pass the tests in all cases as shown in Fig. 6, so our MN-
PTRNGs have the robustness against temperature and voltage fluctuations, and
can thus be used for secure embedded systems including key generation. The ML-
PTRNGs, however, failed tests only in two cases out of 171, one of which was
the same PTRNG as the failed PTRNG in the SP800-90B Health Tests. The
next section discusses whether ML-PTRNGs are able to generate high-quality
random numbers.

Further Evaluation by Increasing the Number of Latches. We expected
that the quality of random numbers would be improved by increasing the num-
ber of implemented RS latches. This is because our PTRNGs generated random
numbers as the exclusive-OR of 256 RS latch outputs. To verify this, we regarded

Evaluation of ASIC Implementation of Physical Random Number Generators 11

 0

 20

 40

 60

 80

 100

-20° C
 1.65V

-20°C
 1.80V

-20°C
 1.95V

+
27°C

 1.65V

+
27°C

 1.80V

+
27°C

 1.95V

+
60°C

 1.65V

+
60°C

 1.80V

+
60°C

 1.95V

Pa
ss

 R
at

e(
%

)

Fig. 4. SP800-90B Pass Rate (MN)

 0

 20

 40

 60

 80

 100

-20° C
 1.65V

-20°C
 1.80V

-20°C
 1.95V

+
27°C

 1.65V

+
27°C

 1.80V

+
27°C

 1.95V

+
60°C

 1.65V

+
60 °C

 1.80V

+
60 °C

 1.95V

Pa
ss

 R
at

e(
%

)

Fig. 5. SP800-90B Pass Rate (ML)

 0

 20

 40

 60

 80

 100

-20° C
 1.65V

-20°C
 1.80V

-20°C
 1.95V

+
27°C

 1.65V

+
27°C

 1.80V

+
27°C

 1.95V

+
60° C

 1.65V

+
60°C

 1.80V

+
60°C

 1.95V

Pa
ss

 R
at

e(
%

)

Fig. 6. AIS31 Pass Rate (MN)

 0

 20

 40

 60

 80

 100

-20° C
 1.65V

-20°C
 1.80V

-20 °C
 1.95V

+
27°C

 1.65V

+
27 °C

 1.80V

+
27°C

 1.95V

+
60°C

 1.65V

+
60 °C

 1.80V

+
60 °C

 1.95V

Pa
ss

 R
at

e(
%

)

Fig. 7. AIS31 Pass Rate (ML)

the exclusive-OR of 2 actual PTRNGs outputs as random numbers obtained from
a virtual PTRNG with built-in 512 RS latches, and evaluated whether or not the
quality of the random numbers was improved. The virtual PTRNGs were gener-
ated as follows. We focused on the PTRNGs failing at least one test. If there were
even numbers of PTRNGs that failed the same test in the same environment,
the exclusive-OR of each pair was regarded as the virtual PTRNG. Otherwise,
the exclusive-OR of outputs from the failing PTRNG and the PTRNG with the
lowest min-entropy in the same test/environment was regarded as the virtual
PTRNG.

We evaluated the virtual PTRNGs according to the NIST SP800-90B Health
Tests and AIS31 Tests. As a result, all the virtual PTRNGs passed both tests.
Through this evaluation, we verify that the 256 latches are not sufficient for
the ML-PTRNGs, while the quality of random numbers could be improved by
increasing the number of RS latches. Hence we should carefully decide the num-
ber of implemented RS latches in consideration of both the quality of random
numbers and the circuit space.

12 H. Kokubo et al.

 0.99

 0.992

 0.994

 0.996

 0.998

 1

-20°C
 1.65V

-20°C
 1.80V

-20°C
 1.95V

+
27°C

 1.65V

+
27°C

 1.80V

+
27 °C

 1.95V

+
60 ° C

 1.65V

+
60 ° C

 1.80V

+
60°C

 1.95V

M
in

E
nt

ro
py

Fig. 8.MinEntropy of physical random
number generator (MN)

 0.99

 0.992

 0.994

 0.996

 0.998

 1

-20 °C
 1.65V

-20 °C
 1.80V

-20° C
 1.95V

+
27 ° C

 1.65V

+
27°C

 1.80V

+
27°C

 1.95V

+
60° C

 1.65V

+
60°C

 1.80V

+
60 °C

 1.95V

M
in

E
nt

ro
py

Fig. 9.MinEntropy of physical random
number generator (ML)

5.3 Min-Entropy Estimation

We use minimum entropy (i.e. min-entropy) as the objective criterion of random-
ness. Min-entropy is defined as the lower bound of the amount of information of a
random variable [4]. The min-entropy per bit of the ideal true random numbers is
1 because the proportion of ‘0’ s and ‘1’ s is ideally 0.5. The method of estimating
the min-entropy differs depending on whether the PTRNG is IID (Independent
and Identically Distributed). Therefore, first, we implemented a software for IID
verification tests [4], and evaluated our PTRNGs using this tests. As a result, the
MN-PTRNGs passed all 180 cases, so we performed min-entropy estimation for
IID sources (see Sect. 9.2 in [4]). In contrast, the ML-PTRNGs passed 166 out
of 171 cases. We, however, we regarded the ML-PTRNGs as IID sources because
they passed at least all tests under the normal conditions (i.e. 27 ◦C and 1.80 V).
Min-entropy estimation as a non-IID sources will be part of our future work.

Figures 8 and 9 show the results of min-entropy estimation. The middle line,
the upper line and the lower line show the average, maximum and minimum
of the min-entropy per bits in all test cases, respectively. The min-entropy is
very close to ‘1’ (i.e. ideal min-entropy) in both types of PTRNGs. Hence our
PTRNGs have a very high min-entropy regardless of the temperature or voltage.

5.4 Evaluation of Output from Each RS Latch

As mentioned previously, our PTRNGs, especially MN-PTRNGs, have the
robustness against temperature and voltage fluctuations. This section evaluates
the behavior of each RS latch in order to clarify the reason for the robustness.
We defined a “random latch” as the RS latch whose output sequence includes
at least one transition between 0 and 1, and defined a “constant latch” as the
RS latch that generates only ‘0’ s or only ‘1’ s. We focus on two evaluation axes:
the number of random latches and the quality of random numbers from each
random latch.

Evaluation of ASIC Implementation of Physical Random Number Generators 13

 0

 20

 40

 60

 80

 100

 120

-20°C
 1.65V

-20°C
 1.80V

-20°C
 1.95V

+
27 °C

 1.65V

+
27°C

 1.80V

+
27 °C

 1.95V

+
60°C

 1.65V

+
60°C

 1.80V

+
60°C

 1.95V

T
he

 N
um

be
r

of
 R

an
do

m
 L

at
ch

es

Fig. 10. Number of random latches
(MN)

 0

 20

 40

 60

 80

 100

 120

-20°C
 1.65V

-20°C
 1.80V

-20°C
 1.95V

+
27° C

 1.65V

+
27° C

 1.80V

+
27° C

 1.95V

+
60°C

 1.65V

+
60°C

 1.80V

+
60°C

 1.95V

T
he

 N
um

be
r

of
 R

an
do

m
 L

at
ch

es

Fig. 11. Number of random latches
(ML)

The Number of Random Latches. We acquired 21 K bits of output sequence
from each RS latch while changing the temperature and voltage, and evaluated
the number of random latches. In Figs. 10 and 11, the bar graphs, the upper
and lower of lines show the average, maximum and minimum of the number
of random latches in the test cases respectively. The higher temperature and
voltage, the larger average number of random latches in both types of PTRNGs,
except in some cases. At −20 ◦C and 1.65 V, the number of random latches
reaches a minimum of 20 in ML-PTRNG. In addition, there are some transitions
from constant latch to random latch whenever the environment changes. The
number of random latches in an MN-PTRNGs, whose average is approximately
40, is more stable than in an ML-PTRNG.

The Quality of Random Numbers from Each Random Latch. The qual-
ity of each random latch is one of the most important metrics for the quality of
a random number as well as the number of random latches. Thus, we evaluated
the quality of the output sequence from each random latch. We acquired approx-
imately 21 K bits of output from each RS latch and examined the proportion of
‘1’ s in the output sequence. For the ideal random latch, the proportion of ‘1’
is 50 %.

Figures 12 and 13 show the rate of the number of random latches by the pro-
portion of ‘1’ s. Here, [a,b] and (a,b) represent closed and open intervals respec-
tively. For example, [30 %, 40 %) and (60 %, 70 %] represents 30% ≤ x < 40%
and 60% < x ≤ 70%, where x is the proportion of ’1’s in the output. The
lowest part of bar graph indicating [40 %, 60 %] represents random latches out-
putting high-quality random numbers (i.e. “high-quality random latch”). There
are approximately 5 % high-quality random latches in any environment. Addi-
tionally, most random latches generate biased output.

14 H. Kokubo et al.

 0

 20

 40

 60

 80

 100

-20°C
 1.65V

-20° C
 1.80V

-20°C
 1.95V

+
27 °C

 1.65V

+
27 °C

 1.80V

+
27 °C

 1.95V

+
60 °C

 1.65V

+
60 °C

 1.80V

+
60 °C

 1.95V

ra
te

(%
)

Fig. 12. The characteristics of
random latches (MN)

 0

 20

 40

 60

 80

 100

-20°C
 1.65V

-20° C
 1.80V

-20°C
 1.95V

+
27°C

 1.65V

+
27°C

 1.80V

+
27°C

 1.95V

+
60 °C

 1.65V

+
60 °C

 1.80V

+
60 °C

 1.95V

ra
te

(%
)

[40%,60%]

[30%,40%)
 or (60%,70%]

[20%,30%)
 or (70%,80%]

[10%,20%)
 or (80%,90%]

(0%,10%)
 or (90%,100%)

Fig. 13. The characteristics of random
latches (ML)

5.5 Discussion

We consider the results of Sect. 5.4. In any environment, there are approxi-
mately 40 random latches, and approximately 5 % of all random latches are the
high-quality random latch. Hence, there is expected to be about 2 high-quality
random latches in any environment. Moreover, a number of random latches
including biased ones are expected to contribute to improve the quality of ran-
dom numbers.

As mentioned in Sect. 5.2, our PTRNGs can generate high-quality random
numbers that pass the tests for physical random number generators in any
environment. The min-entropy is stable at high level, and they can be used
effective entropy source. We validate our PTRNGs using RS latches work sta-
bly and effectively on an ASIC. Circuit scale and power consumption of our
PTRNGs are quite small. Our PTRNG generates high-quality random numbers
in even worse conditions. Hence, our PTRNG is very suitable for embedded
devices.

6 Conclusion and Future Work

In this paper, we fabricated 2 types of the PTRNGs using RS latches on ASICs,
and evaluated the robustness of the PTRNGs against temperature and volt-
age fluctuations. We validated that the PTRNG can generate random numbers
at a standard voltage and room temperature. Furthermore, we evaluated the
random numbers generated in various conditions, where the temperature was
between −20 ◦C and 60 ◦C and the voltage was between 1.65 V and 1.95 V, in
line with the AIS31 Tests [3], SP800-90B Health Tests [4], IID Verification Tests
[4] and Min-Entropy Estimation [4]. As a result, we found that all MN-PTRNGs

Evaluation of ASIC Implementation of Physical Random Number Generators 15

(the PTRNG on CS86MN with a standard power consumption) generates high-
quality random numbers which pass all of the above-mentioned tests in vari-
ous environments. Our PTRNGs also generated high-quality random numbers
continually because the min-entropy is stable at high values. Some of the ML-
PTRNGs (the PTRNG on CS86MLwith low power consumption) failed some
tests, but the quality of random numbers, however, is expected to be improved
by increasing the number of RS latches implemented. For these reasons, our
PTRNGs that use RS latches on an ASIC have the robustness against temper-
ature and voltage fluctuations. The circuit scale and the power consumption of
the PTRNGs were 984.3 gates and 0.27mW respectively. Hence our PTRNGs
were small-size and had a low power consumption, which is suitable for embed-
ded devices. Our PTRNGs are high-quality entropy sources and can be used for
various purposes such as cryptographic keys, nonces for authentication and seeds
for pseudo random number generators. Future work will include discussion on
the experiment in larger fluctuations of temperature, voltage and clock-frequency
and countermeasure against side-channel attacks.

References

1. Hata, H., Ichikawa, S.: FPGA implementation of metastability-based true random
number generator. IEICE Trans. Inf. Syst. E95–D(2), 426–436 (2012)

2. NIST, Special Publication 800-22, A Statistical Test Suite for Random and Pseudo-
random Number Generators for Cryptographic Applications (2010)

3. BSI, AIS31, Functionality classes and evaluation methodology for true (physical)
random number generators (2001)

4. NIST, Special Publication 800–90B, Recommendation for the Entropy Sources
Used for Random Bit Generation (2012)

5. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure ture random number
generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1),
109–119 (2007)

6. Bellido, M., Acosta, A., Valencia, M., Barriga, A., Huertas, J.: Simple binary ran-
dom number generator. Electron. Lett. 28(7), 617–618 (1992)

7. Kinniment, D., Chester, E.: Design of an on-chip random number generator using
metastability. In: Proceedings of the ESSCIRC 2002, vol. 4(6), pp. 595–598 (2002)

8. Tokunaga, C., Blaauw, D., Mudge, T.: True random number generator with a
metastability-based quality control. IEEE J. Solid-State Circuits 43(1), 78–84
(2008)

9. Fujitsu Semiconductor, Semicustom CMOS Standard Cell CS86 Series (2011).
http://www.fujitsu.com/downloads/MICRO/fma/pdf/e620209 CS86 ASIC.pdf

10. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless
Smart Cards and Identification, 2nd. Wiley, Chichester (2003)

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

12. Xilinx: Spartan-3E starter kit board. http://www.xilinx.com/products/
boards-and-kits/HW-SPAR3E-SK-US-G.htm

http://www.fujitsu.com/downloads/MICRO/fma/pdf/e620209_CS86_ASIC.pdf
http://www.xilinx.com/products/boards-and-kits/HW-SPAR3E-SK-US-G.htm
http://www.xilinx.com/products/boards-and-kits/HW-SPAR3E-SK-US-G.htm

From New Technologies to New Solutions

Exploiting FRAM Memories to Enhance Physical Security

Stéphanie Kerckhof1(B), François-Xavier Standaert1, and Eric Peeters2

1 ICTEAM/ELEN/Crypto Group, Université Catholique de Louvain,
Charleroi, Belgium

2 Texas Instruments, Dallas, TX, USA
{stephanie.kerckhof,fstandae}@uclouvain.be, e-peeters@ti.com

Abstract. Ferroelectric RAM (FRAM) is a promising non-volatile mem-
ory technology that is now available in low-end microcontrollers. Its main
advantages over Flash memories are faster write performances and much
larger tolerated number of write/erase cycles. These properties are prof-
itable for the efficient implementation of side-channel countermeasures
exploiting pre-computations. In this paper, we illustrate the interest of
FRAM-based microcontrollers for physically secure cryptographic hard-
ware with two case studies. First we consider a recent shuffling scheme
for the AES algorithm, exploiting randomized program memories. We
exhibit significant performance gains over previous results in an Atmel
microcontroller, thanks to the fine-grained programmability of FRAM.
Next and most importantly, we propose the first working implementa-
tion of the “masking with randomized look-up table” countermeasure,
applied to reduced versions of the block cipher LED. This implementa-
tion provides unconditional security against side-channel attacks (of all
orders!) under the assumption that pre-computations can be performed
without leakage. It also provides high security levels in cases where this
assumption is relaxed (e.g. for context or performance reasons).

1 Introduction

Providing (physical) security against side-channel attacks is a challenging task
for cryptographic designers [10]. This is especially true for low-cost embedded
devices, with strongly constrained resources. Typical examples of countermea-
sures in this context include masking [3] and shuffling [9]. But in both cases, the
concrete security levels attained by the protected implementations highly depend
on hardware assumptions, in particular the amount of noise in the measurements
which may not be sufficient, e.g. in 8-bit devices [19,20]. The performance over-
head they imply can also be significant [7,15]. As a result, such countermeasures
are usually combined in a somewhat heuristic manner, in order to ensure “prac-
tical” security against a wide enough category of adversaries [16].

In parallel to these advances, some more recent works have tried to formalize
the problem of physical security, in order to extend the guarantees of provable
security from algorithms and protocols to implementations. The main challenge

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 16–29, 2014.
DOI: 10.1007/978-3-319-08302-5 2, c© Springer International Publishing Switzerland 2014

From New Technologies to New Solutions 17

in this case is to find relevant restrictions of the adversaries. A typical example is
the one of leakage-resilient cryptography, where the assumption is that the infor-
mation leakage of a single algorithm run is bounded (see, e.g. [5] for an early refer-
ence, [17] for a recent one, and many other proposals in between). Alternatively,
another line of work is based on the assumption of secure pre-computations,
e.g. in order to prevent “continual memory attacks”, as formalized by Brakerski
et al. [2] and by Dodis et al. [4]. The one-time programs introduced at Crypto
2008 are another (extreme) way to exploit such secure pre-computations [6]:
they essentially correspond to a program that can be executed on a single input,
whose value can be specified at run time. Nevertheless, the practical relevance
of these solutions is still limited by sometimes unrealistic hardware assumptions
and (mainly), by large performance overheads.

In this paper, we start from the observation that both for practice-oriented
and theory-oriented countermeasures against side-channel analysis, the exploita-
tion of secure pre-computations is highly related to the problem of fast and
efficient non-volatile storage. In this context, a significant drawback of the main-
stream Flash memories is that write operations are slow and energy-consuming.
Furthermore, their number of tolerated write/erase cycles is also limited (from
10 k to 100 k, typically), which may prevent their frequent use for cryptographic
operations. Interestingly, the recently available Ferroelectric RAM (FRAM) pro-
vides a solution to these issues1. As a result, we investigate whether it can be
used as a technology enabler to improve the performances and security of pro-
tected implementations. For this purpose, we first consider the shuffling coun-
termeasure, and its instantiation for the AES algorithm based on randomized
program memories proposed in [20]. We show that FRAM allows significantly
improved performances in terms of pre-computation time. Next, we discuss the
application of these new memories to the Randomized Look-Up Table (RLUT)
countermeasure [18]. It can be viewed as a type of one-time program specialized
to side-channel analysis, or as a generic masking scheme that provides uncondi-
tional security against side-channel attacks of all orders (i.e. independent of the
statistical moment estimated by the adversary). We provide the first working
implementation of this solution applied to reduced versions of the block cipher
LED [8], and analyze its performances in various settings. In particular, we inves-
tigate the contexts of complete and secure pre-computations, and the tradeoffs
corresponding to partial (and partially leaking) ones. We reach performances
that are close to higher-order masking in the latter case [15], while complete and
secure pre-computations also ensures much higher security levels at practically
reachable cost. Therefore, our results suggest that FRAM is a promising solu-
tion for improving the security of low-cost tokens such as smart cards, especially
when some pre-computations can be performed in a safe environment.
1 Strictly speaking, FRAM is not a new technology as it was introduced as a high-

security alternative to Flash memories back in the early 2000 s by Fujitsu. However,
FRAM-based smart cards did not make it to mass market at that time, due to
excessive manufacturing costs and limited ability to reduce cell transistor size.

18 S. Kerckhof et al.

The rest of the paper is structured as follows. Section 2 provides the necessary
background on FRAM and discusses our security model. Section 3 contains the
implementation results of the shuffling with randomized program memory coun-
termeasure, and their comparison with the previous work from Asiacrypt 2012.
Section 4 describes the RLUT countermeasures, our proposed implementation
and the various tradeoffs it provides. Finally, conclusions are in Sect. 5.

2 Background

2.1 FRAM Microcontrollers

Standard solutions for non-volatile storage such as Flash and EEPROM usually
suffer from long programming times, as well as a high voltage required to pro-
gram bit cells with hot carrier injection or Fowler-Nordheim tunneling effect.
In addition, the charge pump overhead as well as the high current supply they
require make these technologies not ideal for applications where frequent data
logging or ultra-low-power write operations are needed (e.g. all RF applications
such as e-passport, RF Banking Card, . . .). FRAM is a promising alternative
that combines the advantages of non-volatile memories with much faster write
speed (e.g. 125 ns per 64-bit word for the 130-nm TI FRAM technology exploited
in MSP430FR devices), less power (82 uA/MHz active power in the same tech-
nology) and infinite (1015) write-erase cycle performances.

FRAM stores information through the use of a stable electric dipole found in
ferroelectric crystals (insensitive to the magnetic field). The polarization-voltage
hysteresis loops for such materials are very similar to the B-H curve of magnetic
materials. Exploiting this fact, a FRAM bit cell structure consists of a ferro-
electric capacitor containing the crystal. The capacitor is connected to a plate
line, bit lines, and a transistor switch to access it. This is also referred to as a
1T-1C memory cell mode (Fig. 1, left). By contrast, 2T-2C memory cell modes
(Fig. 1, right) would store the data as 2 opposite values in each 1T-1C cell of its

Fig. 1. FRAM bit cell modes: left: 1T-1C structure, right: 2T-2C structure.

From New Technologies to New Solutions 19

structure (similar to what is found in EEPROM for instance). Reading the data
from FRAM occurs by placing a voltage on the plate line. The idea is that for
every read operation, one tries to set the cell to a 0 state. If the voltage causes
the dipoles inside the capacitor to flip its orientation, then a large charge Q
is generated on the bit line. On the contrary, if the orientation of the dipole is
already negative prior to applying the voltage to the plate line in a read cycle,
then the dipole direction does not flip, and only a small charge Q is induced
on the bit line. The difference can be measured by a sense amplifier. An impor-
tant consequence of this description is that FRAM reads are destructive, and
therefore require a refresh process. Nevertheless, this process is automatically
completed by the controller and therefore transparent to the user.

In this paper, we used a microcontroller of the MSP430FRxxxx family from
Texas Instruments. This type of microcontrollers provides an ultra-low-power
16-bit RISC CPU, and a set of instructions performing operations on either 8
or 16 bits of data. The available non-volatile FRAM memory can have a size
of up to 64 kb (microcontrollers with 128- and 256-kilobyte capabilities are
already announced). All the developed code was made for a MSP430FR5739
microcontroller, containing 16 kb of FRAM, and was tested using the MSP-
EXP430FR5739 experimenter’s board and Code Composer Studio 5.3.

2.2 Security Model

The following sections mainly aim at demonstrating the efficiency of FRAM-
based cryptographic computations. Yet, since we consider implementations pro-
tected against side-channel attacks, it is important to say a few words about the
security model we rely on. Both for the shuffling in Sect. 3 and for the RLUT
countermeasure in Sect. 4, we can consider two alternatives:

1. Secure pre-computations. That is, the permutations used in shuffling and the
randomized program used in RLUT are pre-computed without leakage, prior
to the execution of the cryptographic algorithm. As a result, the security
of the shuffling is exactly the one analyzed at Asiacrypt 2012 [20]. And the
security of the RLUT countermeasure is unconditional: even an adversary
accessing the (identity) leakage of all the intermediate computations in the
target implementation would not recover any information about its key.

2. Leaking pre-computations. That is, the permutations used in shuffling and
the randomized program used in RLUT are computed online, and leaking
information. In this case, the security of both countermeasures is less investi-
gated, and essentially depends on how much information is leaked during pre-
computation (in fact, the same observation holds for most countermeasures
exploiting randomness, e.g. masking). Note however that the randomness used
to protect these implementations is generated on-chip, and is never output.
Hence, adversaries can only mount SPA attacks against it. As a result, we can
informally state that our implementations will remain secure in this context,
as long as one can guarantee SPA security for this part of the computation (a
similar informal separation between SPA and DPA was used to argue about
the security of fresh re-keying schemes, e.g. in [12]).

20 S. Kerckhof et al.

Note that in terms of security, the main advantage of FRAM is to make the
first model more realistic. Indeed, one could (at least theoretically) imagine to
implement a randomized program with SRAM memories. But in addition to
performances that would most likely be poor in this case, such a solution should
anyway be implemented online (hence leaking), since SRAM is volatile.

3 Improving Past Results: The Shuffling Case

Shuffling the execution order of independent operations is a possible solution to
improve security of cryptographic implementations against side-channel attacks.
The goal of shuffling is to distribute the intermediate cipher values over a given
period of time, so that an attacker will only be able to observe a chosen interme-
diate value at a particular moment in time with a certain probability. A typical
example of independent operations that can be shuffled is the SubBytes layer in
the AES. Indeed, whatever the order in which each of the 16 S-Box’s outputs is
generated, the result of the SubBytes layer will not be affected.

A previous work on shuffling, proposed 3 implementations of the AES on
an Atmel ATMega644p microcontroller [20]: a basic one with double indexing,
an optimized one with randomized execution path, and a variant with random-
ized program memory. In this paper, we focus on this third proposal, for which
FRAM technology provides significant improvements (the two first ones lead to
essentially similar performances, independent of the non-volatile memory used).
Randomizing the program memory corresponds to rewriting the code in a ran-
domized way before each algorithm run. In other words, a pre-computation phase
modifies (inside the code) which registers and memory addresses will be used
during the execution, which then remains essentially the same as an unshuf-
fled one. While promising in principle, such an instantiation of the shuffling idea
faces some limitations when implemented in Flash-based Atmel microcontrollers.
First, even when only a few bytes need to be modified, a complete memory page
must be erased and rewritten, which takes a lot of time (more or less 4.5 ms each
time a page is written or erased). Next, the memory can only be rewritten a
limited number of times (namely 10 000). Hence, FRAM-based microcontrollers
are natural candidates to relax these limitations as we now detail.

Implementing the AES algorithm with randomized program memory requires
three main functions. First, a permutation generator must be defined - we used
exactly the same implementation as proposed in [20]. Next, it is necessary to
have an AES description with well defined sets of 16 independent operations, on
which the shuffling can be applied. Although such operations are easily found for
SubBytes and AddRoundKey, their specification is more difficult for ShiftRows
and MixColumns, for which the 16 bytes are not manipulated independently.
This implies that their output cannot be stored at the same location as their
input, resulting in the need of 16 additional bytes of temporary storage. Fur-
thermore, the FRAM microcontroller we use has only 12 CPU registers, which
is not enough to store a complete AES state. Therefore, each independent oper-
ation needs to access the FRAM with absolute addressing, which is more time

From New Technologies to New Solutions 21

Table 1. AES program size (in bytes) and cycle counts in the MPS430FR5739.

Unprotected AES Code size Data size Cycle count
1076 52 5800

Shuffled AES Perm. generation 194 18 2240
Code shuffling 418 0 2751
AES execution 2404 146 8479

Total 3016 164 13470

consuming than working on registers. As for the implementations of Asiacrypt
2012, dummy key-schedule operations have also been added to the “on-the-fly”
key-schedule, in order to obtain enough independent operations for this part
of the implementation as well [20]. Eventually, the last function needed is the
one randomizing the code before execution. This randomization was achieved by
modifying the bytes of instructions referring to the cipher state’s or round key’s
memory addresses. Interestingly, since the code and the data are both stored in
the same FRAM memory, modifying some bytes of the code or some bytes of
cipher state and round key takes exactly the same amount of time.

Our implementation results are available in Table 1 (and are given for encryp-
tion only). For reference, we first implemented an unshuffled version of the
AES in the MSP430FR5739 microcontroller. Even if performance comparisons
obtained with different technologies always have to be considered with care,
it is worth noticing that it is slightly more time-consuming than Atmel ones
(e.g. the open source AES Furious requires 3546 cycles to execute [13]). This
is mainly a consequence of the limited number of registers available in FRAM
microcontrollers, leading to more frequent memory accesses. By contrast and
as expected, the pre-computation time required to shuffle the code is strongly
reduced, from 18 ms in Atmel devices to 0.19 ms (running the chip at 16 MHz),
which corresponds to a ratio of approximately 100. This is the main advantage of
our implementation. Note finally the increased data size and cycle count for exe-
cuting the AES in its shuffled version, which is essentially due to the previously
mentioned execution of dummy key-schedules. We conclude that the overhead
required to shuffle the AES algorithm based on a randomized program memory
is now in line with practical applications constraints.

4 Making New Results Possible: The RLUT Case

The previous section described how FRAM memories allow significant speedups
for shuffled implementations exploiting randomized program memories. In this
section, we show how similar ideas can be used to enable the efficient imple-
mentation of the RLUT countermeasure. For this purpose, we first recall the
intuition behind this countermeasure, then describe its application to reduced
versions of the block cipher LED, and finally discuss implementation results.

22 S. Kerckhof et al.

4.1 Description of the Countermeasure

We will focus on the protection of a single S-box that is the most challenging
part of the countermeasure. Intuitively, it is convenient to start from the first-
order Boolean masking depicted in Fig. 2. In this scheme, a random mask m is
first added to the sensitive value x which is then sent trough the combination of
a bitwise key addition ⊕ and S-box S. A correction function C is used (taking
both x ⊕ m ⊕ k and m as input) in order to produce the output mask q such
that S(x ⊕ m ⊕ k) = S(x ⊕ k) ⊕ q. Such an implementation typically gives
rise to 4 leakage points denoted as L1, L2, L3 and L4 on the figure (L2 being
the combination of two parts). It ideally guarantees that statistical moments
of order 2 will have to be estimated by an adversary in order to recover secret
information. The word “ideally” here refers to the fact that physical defaults
such as glitches can lead to exploitable information in lower-order statistical
moments [11]. For example, the leakage point L2 on the figure corresponds to
the manipulation of x⊕m⊕k leading to La2(x⊕m⊕k), and m leading to Lb2(m),
in parallel. It implies first-order exploitable information if these two parts of
the leakage function are not independent2. Boolean masking can be naturally
generalized to d shares (d = 2 in the example of Fig. 2), leading to an (ideal as
well) data complexity increase proportional to (σ2

n)d, with σ2
n the variance of the

noise in the leakage samples, as demonstrated by Chari et al. [3].
From this description, a first step towards the RLUT countermeasure is the

observation that if the master key is fixed and for n-bit S-boxes, one can replace
the computation of S(x ⊕ k) by a pre-computed table of size 2n × n (the correc-
tion function can be implemented similarly as a table of size 22n ×n). It directly
leads to the implementation of Fig. 3, which is functionally equivalent to the pre-
vious one, but where the key addition has been “included” in a key-dependent
permutations Pk(x). From the side-channel security point-of-view, it still cor-
responds to a first-order secure implementation. Next, and in order to provide
unconditional security against side-channel attacks of all orders, the main idea
is to replace the Boolean masking operation x ⊕ m by an extension to three
shares denoted as Gi(x,m) = x ⊕ m ⊕ ai, where ai is a n-bit random mask that
is pre-computed in a leakage-free environment. These operations, illustrated in
Fig. 4, can also be implemented as tables of size 22n × n, so that the shares ai

will never be manipulated during the “online” execution of the algorithm. If
the G1 (resp. G2) function is refreshed before each run of the protected imple-
mentation, it guarantees that no information can be extracted from the leakage
points (L1, L2) (resp. (L3, L4)). We additionally need G1 and G2 (i.e. their hid-
den ai shares) to be independent, in order to avoid fourth-order leakages taking
advantage of the correlation between the tables’ inputs and outputs. Eventually,
it remains to randomize the permutation Pk(x) (and the correction function C)
in order to completely hide the key, even from identity leakage functions, as
represented in Fig. 5. This way, a non-linear S-box can be computed securely.
This leads to an implementation in which the operations G1, G2, R and RC are
2 As a typical example, L2 = La

2 + Lb
2 would correspond to an ideal implementation,

while L2 = La
2 · Lb

2 would leak first-order information, as discussed in [19].

From New Technologies to New Solutions 23

Fig. 2. Boolean masking.

Fig. 3. Boolean masking with LUTs.

Fig. 4. Randomized Boolean masking with LUTs.

Fig. 5. Randomized Boolean masking with randomized LUTs.

24 S. Kerckhof et al.

Algorithm 1. Table refreshing.
- input: Pk.

1. Pick a1
R←− {0, 1}n;

2. Pick a2
R←− {0, 1}n

3. Pick a3
R←− {0, 1}n;

4. Pre-compute G1(I, J) = I ⊕ J ⊕ a1;
5. Pre-compute R(I) = Pk(I) ⊕ a2;
6. Pre-compute G2(I, J) = I ⊕ J ⊕ a3;
7. Pre-compute RC(I, J) = r(I) ⊕ pk(I ⊕ J ⊕ a1) ⊕ a3;
- output: G1,R,G2,RC.

Algorithm 2. S-box evaluation on input x.
- input: G1,R,RC.

1. Pick m
R←− {0, 1}n;

2. Compute G1(x,m);
3. Compute R(G1(x,m));
4. Compute RC(G1(x,m),m);
- output: R(G1(x,m)), RC(G1(x,m),m).

pre-computed according to Algorithm 1, and executed according to Algorithm 2.
Extending this S-box computation to a complete cipher is straightforward: we
just need independent tables for all the S-boxes. As for the linear operations,
they have to be applied independently on the two shares that are explicitly
manipulated by the leaking device, just as in standard Boolean masking.

4.2 Application to Reduced LED

The previous section suggests that the RLUT countermeasure has high memory
requirements, that strongly depend on the S-box size used in the block cipher to
protect. In particular, given a Nr-round cipher with Ns S-boxes per round, the
implementation of the RLUT countermeasure essentially requires storing:

– A table map that corresponds to all the ai shares generated during pre-
computation, with memory cost estimated as (Ns · Nr) · 2 + Ns n-bit words
(where the factor 2 corresponds to the fact that excepted for the first round,
the share a1 in Algorithm 1 is always provided by the previous round).

– A randomized program that corresponds to the tables R and RC, with memory
cost estimated as Nr · Ns tables of size 2n × n and 22n × n, respectively.

Note that operations Gi are never explicitly used during the cipher execution, but
for the first round to mask, and last round to unmask after a secure computation
is completed. Following these estimations, and as discussed in [18], it is natural
to consider a cipher with 4-bit S-boxes for this purpose. In the following, we will
consider reduced (16-bit) versions of the LED cipher illustrated in Fig. 6.

While such a cipher is naturally too small for being deployed in actual appli-
cations, we use it to refine our model for RLUT performance estimates. As will
be discussed in the next sections, scaling to larger number of rounds and block

From New Technologies to New Solutions 25

Fig. 6. Reduced version of the block cipher LED.

size (e.g. the full 64-bit LED cipher) will be possible in soon available 128-
and 256-kilobyte versions of our FRAM microcontroller. In the figure, the 4-bit
S-boxes of LED are denoted as S, and its linear diffusion layer as MixColumns.

4.3 Implementation in FRAM Microcontrollers

We now describe how to implement reduced (with up to 4 rounds) LED ciphers
within the 16 kb of FRAM available in our MSP430FR microcontroller.

The first building block required in a RLUT-masked implementation is a ran-
domness generator (needed to produce the ai values of Algorithm 1). For illustra-
tion, we used a LFSR with CRC-32 polynomial for this purpose (alternative ways
of generating randomness could of be considered, e.g. using a leakage-resilient
PRG if leaking pre-computations are considered [5,17]).

Next, the part computing the randomized program can be implemented quite
straightforwardly, following the description in Sect. 4.1. The trickiest bit was to
efficiently arrange 4-bit outputs into memory bytes, without giving any unnec-
essary information on the RLUT input values3. Using one byte to store two
consecutive RLUT outputs was rejected, since accessing one or the other value
in the byte would have led to different code behaviors, depending on the LSB bit
of the RLUT’s input. Instead, we stored the outputs coming from two different
RLUTs for the same input value in a single byte. This time, the LSB (resp.
MSB) part of one byte will be accessed when an odd (resp. even) word of the
state needs to be computed, giving no information on the word’s value itself.
Based on this strategy, the RLUTs R and RC can be generated efficiently from
the cipher key, the S-Box and the table map, that are all stored in memory.

Eventually, the last piece of code concerns the execution of the block cipher
itself. Again, the fact that the operations are performed on 4-bit words had to
be taken into account while accessing the variables or tables stored in memory.
One round of the reduced algorithm is executed by first reading the R and RC
tables’ outputs, corresponding to the cipher state and mask intermediate values.
Then, the MixColumn layer is executed on each of the shares. It is implemented
using an Xtime table, as suggested in the specifications of LED [8].

3 This has no impact on the security in case of secure pre-computation, but may
increase the information leakage in case of online randomization of the tables.

26 S. Kerckhof et al.

4.4 Results and Discussion

As described in Sect. 4.2, an estimation of the memory size required to store the
table map and randomized program of the RLUT countermeasure can be derived
from the number of rounds Nr, the number of S-Boxes per round Ns and the
S-Box bit-size n. This estimation is illustrated by the dashed line of Fig. 7, in the
case where Ns = 4, n = 4 and Nr varies from 1 to 4. A plain line representing
the actual results we obtained for our implementation is also plotted. The two
curves follow the same trend, with the offset separating them corresponding to
the code size needed to implement the cipher itself (i.e. excluding the tables for
which the memory requirements are growing with Nr - see the detailed results in
Appendix A, Table 2). Interestingly, these results suggest that for any parameters
Nr, Ns and n, the memory requirements needed to implement a block cipher
protected with the RLUT countermeasure can be quite accurately predicted. For
example, such an implementation for a full (64-bit) version of the block cipher
LED (corresponding to Nr = 32, Ns = 16 and n = 4) would roughly require a
memory size of 70 kb, and could therefore be implemented in the soon available
128-kilobyte FRAM microcontrollers.

The question of accurate predictions can also be asked for pre-computation
time: estimates for this metric were similarly provided in [18]. Namely, the time
needed to generate the RLUTs can be approximated with ((Ns.Nr).2 + Ns) +
(Ns.Nr).2n + (Ns.Nr).22n “elementary operations” (where the first term corre-
sponds to randomness generation, and the later ones correspond to the refreshing
of the R and RC tables). Our actual implementation results directly allow trans-
lating these “elementary operations” into a concrete number of clock cycles.
The results in Fig. 8 (also reported in Appendix A, Table 3) again confirm a nice
correlation with predictions. Namely, the main difference between both curves
is a factor 40, which presumably corresponds to the number of cycles needed to
perform each elementary operations. Extrapolating these results to the full (64-
bit) version of the LED block cipher suggests pre-computation time complexities

0

1000

2000

3000

4000

1 2 3 4

Number of rounds

P
ro

g
ra

m
si

ze
[b

y
te

s]

Implementation
Prediction

Fig. 7. Program size of the LED cipher protected with RLUTs.

From New Technologies to New Solutions 27

0

40 000

80 000

120 000

160 000

0

1 000

2 000

3 000

4 000

1 2 3 4

Number of rounds

C
y
cl

e
co

u
n
t

E
lem

en
ta

ry
o
p
era

tio
n
s

Implementation
Prediction

Fig. 8. Pre-computation time of the LED cipher protected with RLUTs.

around 140 000 elementary operations, corresponding to 5 600 000 cycles (i.e. an
execution time of 35 ms at 16 MHz), which would be acceptable for some appli-
cations (and is likely to be improved with technology scaling).

Eventually, it is worth noticing that time and memory complexities could
be reduced by exploiting some performance vs. security tradeoffs. A first solu-
tion would be an implementation for which only some rounds are masked with
RLUTs, while the others use standard masking schemes. For example, one could
protect only the first and last 4 rounds of (full, 64-bit) LED, i.e. 8 out of 32,
resulting in an approximate reduction of the time and memory complexities down
to 25 % of their original values. However, this solution may be risky in front of
advanced attacks such as algebraic ones, that can exploit the leakage of the mid-
dle rounds [14]. Another approach to reduce the pre-computation time consists in
refreshing only a fraction of the table map (and randomized program) after each
cipher execution, and to perform this refreshing randomly. Interestingly, such a
tradeoff would also take advantage of the non-volatile capacities of FRAM mem-
ories, since the complete randomized program could be pre-computed offline,
while only a part of it would be modified online. It is flexible since the fraction
of RLUTs modified per cipher executions could be adapted to the application
requirements. As an illustration, modifying 10 % of the RLUTs in (full, 64-bit)
LED would reduce the pre-computation time to approximately 560 000 cycles,
which is getting close to the performances of a third-order masked AES (470 000
cycles in [15]). Combining the two appraoches would of course be possible as
well, e.g. by randomizing the first- and last-round tables in priority.

5 Conclusion

Our results put forward that FRAM is a promising technology in the con-
text of side-channel resistant cryptographic hardware, since it enables the effi-
cient implementation of various countermeasures taking advantage of pre-compu-
tations. The case of RLUTs is particularly relevant to illustrate this observation.

28 S. Kerckhof et al.

Indeed, they have never been implemented so far, they will soon be applicable
to complete block ciphers, and may lead to high security levels for small embed-
ded devices, independent of hardware assumptions that may be hard to fulfill.
Important scopes for further investigations include the evaluation of the security
levels obtained in the context of partially leaking pre-computations. In particu-
lar, analyzing the online refreshing of partially randomized programs mentioned
in Sect. 4.4 would be very useful. Besides, the design of block ciphers that are
well suited to implementations with RLUTs (e.g. with light(er) non-linear layers
and strong(er) linear ones) is another interesting research avenue.

Acknowledgements. Stéphanie Kerckhof is a PhD student funded by a FRIA grant,
Belgium. François-Xavier Standaert is a research associate of the Belgian Fund for
Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the Wal-
loon region WIST program project MIPSs, by the European Commission through
the ERC project 280141 (acronym CRASH) and by the European ISEC action grant
HOME/2010/ISEC/AG/INT-011 B-CCENTRE.

A RLUT Implementation Results

See Tables 2 and 3.

Table 2. Program size of the LED cipher protected with RLUTs (in bytes).

Code size Data size Total

1 Round 1180 562 1742
2 Rounds 1180 1112 2292
3 Rounds 1180 1662 2842
4 Rounds 1180 2212 3392

Table 3. Cycle counts of the LED cipher protected with RLUTs.

Randomness generation RLUTs generation LED execution Total

1 Round 1422 41 910 404 43 736
2 Rounds 2208 83 807 642 86 657
3 Rounds 2991 125 716 883 129 590
4 Rounds 3770 167 617 1118 172 505

References

1. 51th Annual IEEE Symposium on Foundations of Computer Science FOCS 2010,
Las Vegas, Nevada, USA, pp. 23–26. IEEE Computer Society, 23–26 October 2010

2. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptography resilient to continual memory leakage.
In: FOCS [1], pp. 501–510

From New Technologies to New Solutions 29

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

4. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS [1], pp. 511–520

5. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS,
pp. 293–302. IEEE Computer Society (2008)

6. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

7. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 400–416. Springer, Heidelberg (2013)

8. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

9. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

10. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, New York (2007)

11. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

12. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: secu-
rity against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer,
Heidelberg (2010)

13. Poettering, B., Furious, R.: http://point-at-infinity.org/avraes/
14. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,

M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010)

15. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

16. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

17. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptogra-
phy under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013)

18. Standaert, F.-X., Petit, C., Veyrat-Charvillon, N.: Masking with randomized look
up tables. In: Naccache, D. (ed.) Cryphtography and Security: From Theory to
Applications. LNCS, vol. 6805, pp. 283–299. Springer, Heidelberg (2012)

19. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

20. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012)

http://point-at-infinity.org/avraes/

Attacks on Masking - Session Chair:
Michael Hutter

Low Entropy Masking Schemes, Revisited

Vincent Grosso1(B), François-Xavier Standaert1, and Emmanuel Prouff2

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

vincent.Grosso@uclouvain.be
2 ANSSI, 51 Bd de la Tour-Maubourg, 75700 Paris 07 SP, France

Abstract. Low Entropy Masking Schemes (LEMS) are a recent coun-
termeasure against side-channel attacks. They aim at reducing the ran-
domness requirements of masking schemes under certain (adversarial and
implementation) conditions. Previous works have put forward the inter-
est of this approach when such conditions are met. We complement these
investigations by analyzing LEMS against adversaries and implementa-
tions that deviate from their expected behavior, in a realistic manner.
Our conclusions are contrasted: they confirm the theoretical interest of
the countermeasure, while suggesting that its exploitation in actual prod-
ucts may be risky, because of hard(er) to control hardware assumptions.

1 Introduction

Masking is a frequently considered countermeasure against side-channel attacks.
In a masked implementation, any sensitive data is split into several shares, and
all the computations are performed on the shared values only. For this purpose,
the algorithm must be written in a way that is consistent with this representa-
tion of the sensitive data. The resulting process, usually called d-sharing scheme
when the data is split in d shares, is expected to provide improved physical
security since: (i) more “points of interest” (i.e. more dimensions in the leak-
age distribution) may have to be identified and exploited concurrently by the
adversary, and (ii) if the masking scheme is carefully implemented (i.e. if the
leakages of all the shares are independent), higher-order moments of the leakage
distribution have to be estimated to reveal key-dependent information. The lat-
ter property is known as the “d-1th-order SCA security” [4]. It has been shown
that the data complexity of a successful attack against such an implementation
increases exponentially with the number of shares (first in the restricted con-
text of single-bit DPA[3], then experimentally in more general contexts [13], and
more recently using the mutual information put forward in [12] as evaluation
metric [9]).

Quite naturally, a central condition for this SCA security guarantees to hold
is that all the shares are uniformly distributed, which implies strong random-
ness requirements in masked implementations [5]. Starting from this observa-
tion, a recent line of works - denoted as Low Entropy Masking Schemes (LEMS)
in the following- has investigated possibilities to maintain the security order

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 33–43, 2014.
DOI: 10.1007/978-3-319-08302-5 3, c© Springer International Publishing Switzerland 2014

34 V. Grosso et al.

of masked implementations with reduced randomness requirements [1,2,7,8].
LEMS can be seen as 2-sharing schemes, with the particularity that any n-bit
sensitive value x is randomized with a mask variable M chosen within a subset
(aka code) of the 2n possible masks. In this setting, preserved security orders
can be obtained with reduced randomness requirements under two important
conditions:

1. Adversarial condition. The attacks performed are only univariate, i.e. they
exploit exclusively the leakage of the masked value x ⊕ M .

2. Implementation condition. The leakage function’s deterministic part is linear
in the bits of x ⊕ M (such as, e.g. for the Hamming weight function).

These results directly raise the question whether such conditions are realistic
- i.e. whether LEMS can give rise to actual security improvements in practical
scenarios. In order to answer this question, this paper provides a systematic
evaluation of these assumptions, leading to two main results.

1. On the adversarial condition. In general, it is of course natural to consider
multivariate attacks, since the shares used in any masked implementation
have to be generated on chip, which possibly leaks information. We analyze
such bivariate attacks and show that despite the reduced number of masks,
LEMS still provide first-order security in this case (with a slight security
degradation). We further confirm that if an adversary is limited (for some
reasons) to univariate attacks, LEMS allow ensuring security orders of 2 or 3,
as previously demonstrated by Carlet et al. [2] and Nassar et al. [8].

2. On the implementation condition. We show that as soon as the leakage func-
tion’s deterministic part deviates from a purely linear one, the security guar-
antees provided by LEMS vanish, even in the univariate attack context. We
further illustrate that the security order of the countermeasure is reduced
according to the degree of the leakage function, e.g. that a quadratic leakage
function is less damaging than a cubic one, quartic one, . . . and additionally
provide an explanation of this phenomenon (see Sect. 3.2).

Summarizing, the first (adversarial) condition may not be a too big issue in prac-
tice. Given that maximum 2-share implementations are considered1, LEMS are
a theoretically relevant solution to mask under the assumption of linear leakage
functions, since it maintains the security order of univariate (resp. bivariate)
attacks to two or three (resp. one). By contrast the second (implementation)
condition seems more difficult to fulfill, since the shape of a leakage function is
typically hard to control by cryptographic designers. We conclude that despite
its theoretical interest, the deployment of LEMS in actual embedded devices
should be considered with care, and standard masking schemes are generally
safer to implement because of easier-to-verify hardware assumptions.
1 Current results in LEMS do not provide generalizations to more shares.

Low Entropy Masking Schemes, Revisited 35

2 Background

2.1 Univariate vs. Multivariate / 1st-Order vs. Higher-Order
Attacks

Let X be a sensitive variable and L = [L1, L2, . . . , Ld] be a leakage trace. A side-
channel attack typically exploits the conditional distributions Pr[X|L] in order
to recover information about X. We say that the attack is univariate if it exploits
unidimensional leakage vectors L = [L1]. We say that the attack is bivariate if it
exploits bidimensional leakage vectors L = [L1, L2]. More generally, the attack is
said to be d-variate if it exploits multidimensional leakage vectors with d samples
L = [L1, L2, . . . , Ld]. Note that finding the samples of interest in a leakage trace
is usually challenging, which may be a reason for some adversaries to restrict
themselves to univariate attacks when it is possible. Of course, leaving leakage
samples aside may only result in a loss of information, hence a suboptimal attack.

Independent of the dimensionality of the leakage distribution, the order of a
side-channel attack relates to the smallest (mixed) statistical moment that leaks
sensitive information. For this purpose, we use the following definitions:

Definition 1 (Central moment of order d). Let X be a random variable,
then the central moment of order d of X is defined by:

E((X − E(X))d),

Definition 2 (Central mixed moment of orders d1, . . . , dr). Let {Xi}ri=1

be a set of r random variables, then the central mixed moment of orders d1, . . . , dr
of {Xi}ri=1 is defined by:

E((X1 − E(X1))d1 × · · · × (Xr − E(Xr))dr).

In both definitions, E(.) denotes the expectation operator. For simplicity, we
will sometimes denote the integer value d =

∑
i di as the order of the cen-

tral mixed moment of a tuple (Xi)i=1..r. Central moments are typically used in
univariate attacks (e.g against hardware implementations, where the different
shares of a masked implementation are manipulated in parallel). Central mixed
moments are typically used in multivariate attacks (e.g. against software imple-
mentations, where the different shares of a masked implementation are processed
sequentially). Intuitively, the dimensionality of an attack has a direct impact on
its time complexity (since it determines the number of samples on which the dis-
tinguisher has to be applied). By contrast the order of an attack mainly relate
to its data complexity (since the number of measurements required to estimate
a statistical moment increases with the order of this moment) [3,9].

2.2 Low Entropy Masking Schemes

As detailed in the introduction, the main goal of LEMS is to guarantee high
security orders for masked implementations, with less randomness requirements

36 V. Grosso et al.

than traditional masking schemes. For this purpose, the mask M (which is bit-
wise added to the sensitive datum s) is chosen as part of a sub-set of the definition
set of s. Different solutions have been published in the literature. In the rest of the
paper, we will use the code proposed in [1], next referred to as C16, and to the one
proposed in [8], next referred to as C12. Both subsets are designed for 8-bit sensi-
tive values (i.e. are typically applicable to protect the registers of 8-bit devices).
Following previous analyzes, LEMS with C12 is expected to provide security
against first- and second-order attacks, while LEMS with C16 is expected to pro-
vide security against first-, second- and third-order attacks (under the adversarial
and implementation conditions stated in introduction). Codes are specified as:
C12 = {0x03, 0x18, 0x3f, 0x55, 0x60, 0x6e, 0x8c, 0xa5, 0xb2, 0xcb, 0xd6, 0xf9},
C16 = {0x10, 0x1f, 0x26, 0x29, 0x43, 0x4c, 0x75, 0x7a, 0x85, 0x8a, 0xb3, 0xbc,
0xd6, 0xd9, 0xe0, 0xef}. Both were selected amongst the lowest size set that
provides the required security order, while the first one minimizes the mutual
information metric defined in the next subsection as additional criteria.

2.3 Evaluation Framework

We will analyze the LEMS countermeasure based on the evaluation framework
introduced in [12], which holds in two main steps. First, an Information The-
oretic (IT) analysis is performed, in order to analyze the leakages independent
of the adversary exploiting them. It is aimed to capture the quality of a coun-
termeasure in a worst-case scenario. Next, a security analysis is performed, in
order to evaluate the actual data complexity required by an adversary to exploit
the available leakage (e.g. in order to turn it into a key recovery). For this
purpose, we will consider the following simulated leakages. Let s be a sensitive
value (i.e. the target of the attack), M a variable representing a word of the code
used to protect the sensitive value, and N1, N2 two normally distributed noise
variables, with mean 0 and variance σ2. We define our leakages as:

L1 = L(s ⊕ M) + N1,

L2 = L(M) + N2,

where L(.) is a polynomial in the bits of the input. In the following, we will assume
this polynomial to be the Hamming weight function (excepted in Subsect. 3.2,
where we will consider higher-degree polynomials). Furthermore, we will consider
both univariate attacks exploiting only the leakage sample L1, and bivariate
attacks exploiting L1 and L2 jointly2. This implies computing the following
information theoretic metric in the univariate case:

PI(S;L1) = H[S] −
∑

s◦S
Pr[s]

∑

l1◦L
Pr
chip

[l1|s] · log2 Pr
model

[s|l1],

2 Note that the univariate attacks considered in LEMS are different than the classical
univariate higher-order DPAs, where a combination of the two leakage samples (e.g.
their normalized product) is exploited by the adversary [10]. Any such combination
would provide leakages and successful attacks similar to the ones of a bivariate
attack, with an information loss similar to the one investigated in [13].

Low Entropy Masking Schemes, Revisited 37

and its extension to two dimensions in the bivariate case:

PI(S;L1, L2) = H[S] −
∑

s◦S
Pr[s]

∑

l1,l2◦L
Pr
chip

[l1, l2|s] · log2 Pr
model

[s|l1, l2].

Let us denote the probability density function of a Gaussian distribution taken
on input x, with mean μ (resp. mean vector µ) and variance σ2 (resp. covari-
ance matrix Σ) as N (x|μ, σ2) (resp. N (x|µ, Σ)). We will generally compute the
probabilities in these equations as follows (e.g. in the bivariate case):

Pr
model

[s|l1, l2] =
N (l1, l2|µs, Σs)∑

s∗◦S N (l1, l2|µs∗ , Σs∗)
, (1)

for unprotected implementations, and:

Pr
model

[s|l1, l2] =
∑

m∗◦C N (l1, l2|µs,m∗ , Σs,m∗)
∑

s∗◦S
∑

m∗◦C N (l1, l2|µs∗,m∗ , Σs∗,m∗)
, (2)

for masked implementations (and similarly for LEMS), with all the secrets and
masks distributed uniformly over their specified set. That is, the leakage distri-
butions conditioned on the sensitive values will be modeled as Gaussian mix-
tures, where each mode corresponds to a mask value. Following the discussion
in [11] and since we are considering simulated experiments, the probability dis-
tributions Prchip and Prmodel will be identical in most of our evaluations. This
implies that the Perceived Information (PI) will be identical to the (classical)
Mutual Information (MI) in most cases. As only exception, we will also evaluate
the information leakage of a suboptimal bivariate adversary, who models leakage
distributions conditioned on the sensitive values as single (bivariate) Gaussians,
i.e. who simplifies Eq. 2 into Eq. 1, even in the masked case. This boils down to
summarizing the second-order information in the covariance between the leak-
age samples l1 and l2. By plotting the MI/PI metrics in function of the noise
variance, we can directly obtain intuition about the order of the masking, which
simply corresponds to the slope of these curves [13].

Following the information theoretic analysis, we will apply a security analysis
and compute the success rate (as defined in [12]) of template attacks against the
target s, using Prmodel[s|l1] and Prmodel[s|l1, l2] as leakage models. This will allow
us to evaluate the data complexities of these worst-case attacks in Sect. 4.

3 Information Theoretic Analysis of LEMS

3.1 Hamming Weight Leakages

Our IT analysis of LEMS and its comparison with other masking schemes are
in Fig. 1, from which the following observations can be extracted.

Starting with the univariate case (in the left part of the figure), we first
observe that information leakage is only available if a strict subset of the 2n

possible masks is available (e.g. the curves and are stuck to zero in

38 V. Grosso et al.

10−2 10−1 100 101
10−5

10−4

10−3

10−2

10−1

100

noise variance

pe
rc
ei
ve
d
in
fo
rm

at
io
n

10−2 10−1 100 101
10−3

10−2

10−1

100

noise variance

Fig. 1. Information theoretic analysis of different masking schemes. Left: univariate
attacks. Right: bivariate attacks. The curve is for the unprotected case. The curves

are for LEMS with C12, C16 and a badly chosen code, respectively.
The curve is for masking with the full set (only non-zero in the bivariate case).
The curve is for the bivariate attack using approximated Gaussian templates (in
place of Gaussian mixtures) for masking with the full set.

this case, hence not represented in this part of the figure). We also note that a
badly chosen code (e.g. C = {0x00, 0x01, 0x02, . . . , 0x0B}) leads to first-order
univariate weaknesses for the LEMS countermeasure, as witnessed by the slope
of the curve that is parallel to the one of the unprotected implementation

. This confirms the requirement to use uniform randomness in the security
proofs of standard masking schemes, e.g. [6,9]. By contrast and as expected,
the LEMS countermeasure with codes C12 and C16 enforces second- and third-
order security against univariate side-channel attacks (i.e. curve has slope
3 and curve has slope 4). Interestingly, we also see that C12 leads to a
slightly smaller information leakage than C16 for low noise values - which is
also expected since minimizing the information leakages was considered as an
additional optimization criteria in the selection of C12 only.

Next in the bivariate case, we first observe that most attacks (i.e. using
all masks with Gaussian or Gaussian mixture modeling, and using C12 or C16)
converge towards the same slope as the noise increases. The slope of these curves
is 2 implying first-order security in all these cases The curve is again a
counter-example, because of a badly chosen code. So an important conclusion
is that the first (adversarial) condition mentioned in introduction for LEMS to
provide improved security against univariate attacks does not imply a penalty in
the security order when considering bivariate attacks. By contrast, we observe
a small security degradation for small noise values, i.e. a constant information
leakage loss between curves and , similar to the difference between
C12 and C16 in univariate attacks. Interestingly, we also observe the impact
of incorrect modeling for these small noise values. That is, when considering
Gaussian mixture leakage models - as for curve - we see a “wave” in the

Low Entropy Masking Schemes, Revisited 39

information theoretic curve that is not found when simplifying the mixtures into
a simpler Gaussian model - as for curve . This wave can be explained by
the fact that characterizing the full distribution with a Gaussian mixture allows
exploiting higher-order moments that are easy to estimate for low noise values
(and hard to estimate with more noise). By contrast, the Gaussian modeling only
exploits two statistical moments (i.e. mean vector, covariance matrix), leading to
less (and more regular) information leakage. A similar reason makes the Gaussian
modeling impossible to apply to univariate attacks against LEMS with C12 and
C16: since such attacks only leak in the third- and fourth-order moments of the
conditional leakage distributions, a Gaussian model with only two statistical
moments will not be able to characterize this information.

3.2 Polynomial Leakages

The previous subsection provided IT curves under the assumption that the
implementation constraint mentioned in introduction is fulfilled. Since such a
constraint may be difficult to verify in practice, we now investigate the conse-
quences of a leakage function deviating from purely linear. For this purpose, we
replace the previously used Hamming weight leakage function by a polynomial of
higher degree. Such a polynomial is of the form L(s) :=

∑
i aisi +

∑
i

∑
j bi,jsi ×

sj +
∑

i

∑
j

∑
k ci,j,ksi×sj ×sk, where si denotes the ith bit of the sensitive value

s, and ai, bi,j and ci,j,k are some constants. For simplicity, we will consider the
case where ∀i ai = a ∈ {0, 1}, ∀i, j bi,j = b ∈ {0, 1} and ∀i, j, k ci,j,k = c ∈ {0, 1}.

The results of our investigations in this advanced context are plotted in Fig. 2.
The main conclusion is that the security guarantee claimed by LEMS does not
hold in this case. Interestingly, we can even observe a relation between the degree

10−2 10−1 100 101
10−5

10−4

10−3

10−2

10−1

100

noise variance

pe
rc
ei
ve
d
in
fo
rm

at
io
n

Fig. 2. IT analysis for polynomial leakage functions and LEMS with C16. The curve
is for the Hamming weight leakage function. The curve is for the leakage

function with a = 0, b = 1 and c = 0. The curve is for the leakage function with
a= 0, b= 0 and c = 1. The curve is for the leakage function with a = 1, b= 1 and
c = 1. The curve is for the unprotected case in the previous subsection.

40 V. Grosso et al.

of the leakage function polynomial and the security order. Namely, the higher
the degree, the lower the order - see, e.g. curves . This relation can
be explained as follows. Say the leakage corresponding to s ⊕ M in the LEMS
countermeasure only contains information in its fourth-order moment (as for
C16). Since M is not uniform, we know that raising this leakage to the fourth
power, i.e. computing (Llin(s ⊕ M) + N1)4 will lead to first-order information,
while raising the noise to the fourth power as well. Say now the leakage function
is not linear anymore, but quartic. Then the same first-order information will
be found in samples of the form Lquart(s ⊕ M) + N1, i.e. without amplifying
the noise. More generally, if the leakage function only contains terms of a single
degree, the security order of LEMS will be divided accordingly. For example, the
curve for which L has degree 3 has slope 4/3, the curve for which L
has degree 2 has slope 4/2=2, . . . As for leakage functions with terms of various
degrees, the situation is intermediate, e.g. the curve for which L has degree
3 but contains terms of degree 1 and 2, has slope between the previous ones.

4 Security Analysis of LEMS

We now confirm the previous IT evaluations with security analyses. For this
purpose, we compute 1st-order success rates (as defined in [12]) estimated over
10000 independent experiments, in various scenarios. These results aim to trans-
late information leakages into a number of measurements to recover the key. Note
that higher-order success rates could be considered as well (to express the trade-
off between time and data complexities in side-channel attacks). However, they
do not reveal more intuition regarding the security of LEMS vs. masking.

4.1 Univariate Attacks

Our first experiments correspond to univariate template attacks with different
noise levels, and are given in Fig. 3. A preliminary observation is that, as in
the previous section, Gaussian templates are not able to exploit information in
this case (i.e. only Gaussian mixture models lead to successful key recoveries).
Next and more importantly, the two parts of the figure clearly illustrate that
the impact of estimating higher-order statistical moments in masking and LEMS
mostly reveals itself as noise increases (as already highlighted in [13]). That is, the
difference between the success rates attacking an unprotected implementation
vs. LEMS with C12 or C16 is more significant in the right part of the figure. This
confirms the information theoretic evaluations in the previous section, where the
slope of the different curves also becomes stable as noise increases.

As additional experiment, we also wanted to test the usual intuition that the
success rate of a template attack is highly correlated with the information leakage
measured with the PI estimated thanks to the same (here Gaussian mixture)
leakage model. For this purpose, it is interesting to observe that the IT curves
corresponding to LEMS with C12 and C16 intersect in the left part of Fig. 1.
Therefore, we launched template attacks against these two countermeasures,

Low Entropy Masking Schemes, Revisited 41

0 10 20 30 40

0

2

4

6

8

10

·10−1

number of queries

su
cc
es

ra
te

0 2 4 6 8

·104

0

2

4

6

8

10

·10−1

number of queries

Fig. 3. Univariate template attacks with Gaussian mixture leakage model. Left:
σ2 = 10−4. Right σ2 = 10. The curves are for LEMS with C12. The curves

are for LEMS with C16. The curves are for the unprotected implementation.

0 50 100 150 200

0

2

4

6

8

10

·10−1

number of queries

su
cc
es

ra
te

0 50 100 150 200 250

0

2

4

6

8

10

·10−1

number of queries

Fig. 4. Univariate template attacks with Gaussian mixture leakage model. Left:
σ2 = 0.4. Right σ2 = 0.5. The curves and are for LEMS with C12 and C16.

with noise variance just left (σ2 = 0.4) and right (σ2 = 0.5) of this intersection.
The results of these attacks are plotted in Fig. 4, were we indeed observe that
the success rate is slightly higher (resp. lower) when using codes C12 and C16,
depending on the noise. That is, LEMS with C16 delivers more information at
low noise levels, but has higher security order, and consequently becomes less
informative when enough noise is present in the measurements.

4.2 Bivariate Attacks

To conclude this work, we also paid attention to the efficiency of bivariate
template attacks with Gaussian mixture modeling, as reported in Fig. 5. Here,

42 V. Grosso et al.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

·10−1

number of queries

su
cc
es

ra
te

0 2,000 4,000 6,000 8,000

0

2

4

6

8

10

·10−1

number of queries

Fig. 5. Bivariate template attacks with Gaussian mixture leakage model. Left:
σ2 = 10−4. Right σ2 = 10. The curves are for LEMS with C12. The curves

are for LEMS with C16. The curves and are for masking with the full
set, using Gaussian and Gaussian mixture leakage modeling, respectively.

the most revealing feature is that, as already indicated by the information
theoretic analysis in the right part of Fig. 1, both LEMS and masking with
the full set have the same security order. As a result, the impact of noise on the
separation between the success rate curves is the opposite of the one in the pre-
vious subsection. Namely, as noise increases, these curves get closer. This effect
is particularly significant in attacks using Gaussian modeling, i.e. curves -
because it implies a significant loss of information for low noise values (see Fig. 1).
Besides, and as they all correspond to the estimation of a second-order moment
in the leakage probability distribution, the data complexity of these attacks is
naturally lower than the one when considering univariate attacks against LEMS
with C12 and C16 in Fig. 3. This eventually confirms that while LEMS indeed
provides interesting security guarantees against univariate attacks, their worst-
case security level is only obtained by analyzing bivariate ones.

5 Wrapping Up

The consequences of our analysis for LEMS are contrasted. First, while its adver-
sarial condition may not always be practically relevant, the investigations in
Sects. 3.1 and 4.2 suggest that the countermeasure remains an interesting alter-
native to mask with reduced randomness requirements, even if adversaries exploit
bivariate leakages (as there is no penalty for the security order in this case). By
contrast, the observations in Sect. 3.2 suggest that the security of LEMS is highly
dependent on the (hard to control) leakage function. In particular, the apparition
of higher-degree terms in this function directly implies an exploitable penalty in
the security order of the countermeasure.

Low Entropy Masking Schemes, Revisited 43

Acknowledgments. Work funded in parts by the European Commission through
the ERC project 280141 (acronym CRASH) and the European ISEC action grant
HOME/2010/ISEC/AG/INT-011 B-CCENTRE project. F.-X. Standaert is an asso-
ciate researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

References

1. Bhasin, F., Carlet, C., Guilley, S.: Theory of masking with codewords in hardware:
low-weight dth-order correlation-immune boolean functions. Cryptology ePrint
Archive, Report 2013/303 (2013). http://eprint.iacr.org/

2. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing of order
two. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp.
120–139. Springer, Heidelberg (2012)

3. Chari, S., Jutla, ChS, Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, p. 398. Springer, Heidelberg (1999)

4. Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher order
masking scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol.
4727, pp. 28–44. Springer, Heidelberg (2007)

5. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 400–416. Springer, Heidelberg (2013)

6. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

7. Maghrebi, H., Guilley, S., Danger, J.-L.: Leakage squeezing countermeasure against
high-order attacks. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol.
6633, pp. 208–223. Springer, Heidelberg (2011)

8. Nassar, M., Guilley, S., Danger, J.-L.: Formal analysis of the entropy / security
trade-off in first-order masking countermeasures against side-channel attacks. In:
Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp.
22–39. Springer, Heidelberg (2011)

9. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013)

10. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

11. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

12. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

13. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

http://eprint.iacr.org/

On the Vulnerability
of Low Entropy Masking Schemes

Xin Ye(B) and Thomas Eisenbarth

Worcester Polytechnic Institute, Worcester, MA, USA
{xye,teisenbarth}@wpi.edu

Abstract. Low Entropy Masking Schemes (LEMS) have been proposed
to offer a reasonable tradeoff between the good protection against side-
channel attacks offered by masking countermeasures and the high over-
head that results from their implementation. Besides the limited analysis
done in the original proposals of LEMS, their specific leakage characteris-
tics have not yet been analyzed. This work explores the leakage behavior
of these countermeasures and shows two different methods how the leak-
age can be exploited, even by generic univariate attacks. In particular,
an attack that exploits specific properties of RSM for AES as well as a
more generic attack making very little assumptions about the underly-
ing LEMS are introduced. All attacks are practically verified by applying
them to publicly available leakage samples of the RSM countermeasure.

1 Motivation

Side channel attacks such as Power and EM analysis are still a major concern
for embedded cryptographic solutions, in particular for cryptographic
smart cards. One of the earliest and most studied countermeasure techniques
is masking [4,7,20]. Masking, if done correctly, significantly increases the com-
plexity of a successful attack. Results go as far as proving the impossibility
of first-order attacks for appropriately masked implementations and leakages
covered in the corresponding assumptions. This means that the simplest and
probably most popular attacks such as classical DPA [8], CPA [3] and MIA [6]
become impractical or in many cases even infeasible.

One major drawback of masking schemes is the significant overhead needed
for their realization, especially for popular ciphers such as the AES. Compu-
tational overheads are usually significant and are due to mask processing and
other adjusted computation such as just-in-time recomputation of look-up tables,
or their redundant storage. In addition, masking schemes usually assume uni-
formly distributed random masks, i.e. a sufficiently good randomness generator
has to be implemented and queried in addition to the protected cryptographic
scheme. Hence, masking usually adds significant time and space overhead to
cryptographic implementations in both hardware and software. Motivated by
this overhead is the idea of reducing the entropy of the mask. Using fewer mask
values can reduce the number of special cases that have to be handled by the

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 44–60, 2014.
DOI: 10.1007/978-3-319-08302-5 4, c© Springer International Publishing Switzerland 2014

On the Vulnerability of Low Entropy Masking Schemes 45

implementation, allowing for a possible tradeoff between side channel resistance
and performance. While one could argue that this is a common approach in
protecting logic styles [15], only limited work has been proposed to apply low-
entropy masking at the architecture level [2,12,13]. These works claim that first-
order attacks are still prevented. However, while analysis of masking logic styles
suggests remaining leakage [17], no deeper analysis of possible weaknesses has
been performed. This work takes a first systematic step in that direction.

Contribution. In this paper we formalize low entropy masking schemes and
reveal the vulnerability of their limited protection. We propose two leakage com-
position based attacks to show how to exploit the weakened leakage even by uni-
variate adversaries. Experiments are performed on a software implementation of
Rotating Sboxes Masking (RSM) to verify the validity of the proposed attacks.

The rest of the paper is organized as follows: Sect. 2 reviews the low entropy
masking schemes and gives the adversarial model for these schemes; Sect. 3 intro-
duces the leakage distribution decomposition attack (LDDA); Sect. 4 proposes
the leaking set collision attack (LSCA); experiments are carried out in Sect. 5 to
verify LDDA and LSCA using measurements from DPA contest V4; and finally
conclusions are made in Sect. 6.

2 Background

In the following we give a detailed definition of low-entropy masking schemes
and the assumed adversarial model and show why low-entropy masking schemes
can thwart standard attacks like DPA and CPA.

2.1 Low Entropy Masking Schemes

Low entropy masking schemes (LEMS) are a countermeasure against side chan-
nel attacks (SCA). Like other masking schemes, they try to randomize the
observed leakage by applying random values to intermediate states. However,
the size of the mask alphabet is reduced, resulting in a limited extend of ran-
domization of leaking states. For example, for a LEMS protected implementation
of AES, the mask set M is a strict subset of {0, 1}8 such that the number of
applicable mask values is much smaller than 256. The Rotating SBoxes Masking
(RSM) scheme proposed in [13] is a realization of LEMS. It is a Boolean masking
scheme that uses 16 mask values uniformly at random to protect AES internal
states. In general, we denote the set of masks M = {m1,m2, ...,ms} ≤ F

n
2 . We

say a LEMS has masking entropy of log s if mask values are chosen uniformly at
random from this set. The RSM is therefore said to have 4 bits of mask entropy.
Furthermore, authors in [12] proposed a selection criterion of optimal mask val-
ues for LEMS. According to this guideline the following 16 byte values (written
in hex format) are used as the mask set in the DPA contest V4.

M = {00, 0F, 36, 39, 53, 5C, 65, 6A, 95, 9A,A3,AC,C6,C9,F0, FF}

46 X. Ye and T. Eisenbarth

The 16 chosen values form an [8, 4, 4] linear code. It is therefore not surprising
that they satisfies the self-complementary property: M = M. Namely, m ∀ M
if and only if m̄ ∀ M, where m̄ is the bitwise inversion of m.

The benefit of applying LEMS lies in the fact that it saves lots of computa-
tion when compared to a full entropy masking scheme (FEMS) where s = 2n.
The latter usually suffers from the huge amount of additional computation as a
consequence of repeated masking/de-masking for the non-linear operation of a
block cipher (e.g. Sbox in AES). One example is the Generalized Look-Up Table
countermeasure proposed in [16]. It increases the size of a single Sbox sufficiently
to make parallelized implementation of AES on FPGAs infeasible. However, with
fewer masks, the total number of necessary extra-computations can be kept at an
acceptable level or even completed from pre-computations (e.g. defining masked
sbox as look up tables). In short, LEMS enables more efficient implementation
of a masking countermeasure. Unavoidably, applying LEMS causes some loss of
protection when compared to FEMS. The natural question is how much security
has been sacrificed and whether an attacker can construct an efficient attack
to break the LEMS. Experiments in [13] show that RSM can resist univariate
attacks including first and second-order DPA and CPA. The work uses MIA
as the metric to get a quantification of 0.015 bit of information leakage in the
described experimental setup, motivating a claim that such a low amount should
be hard to exploit.

2.2 Adversarial Model

We assume an adversarial model with the following notations. Let X be the
partial input/output (i.e. knowntext) of the algorithm known to the adversary
(e.g. one byte of plaintext of encryption), k be the partial key in use, Y = fk (X)
be the sensitive algorithmic state value to be protected. Here f is the target
function which is usually a part of the algorithm. Let M = {m1, ...,ms} be
the set of masks. When M ∀ M is applied in a first-order masking scheme
MASK(·, ·), YM = MASK(Y,M) is generated internally to protect the sensitive
Y . The masked output YM is also called the leaking value (or masked state).
The observed univariate leakage σ is considered as the functional evaluation of
the leaking value YM in the leakage function L(·) as expressed in Eq. (1).

σ = L(YM) = L(MASK(fk (X) ,M)) (1)

The set of all leaking values for Y is denoted as YM = {Ym1 , ..., Yms
}. A sensitive

internal state y is protected by leaking values ymi
with equal probability because

the mask is chosen uniformly at random from M.
In sum, the knowledge of the adversary includes the input X, target function

f , and the univariate leakage σ for processing leaking values YM . Our first attack
in Sect. 3 also assumes the adversary to know the mask set M, while in our second
attack in Sect. 4 we only assume the mask set to satisfy the self-complementary
property; the attacker does not necessarily need to know the mask values.

On the Vulnerability of Low Entropy Masking Schemes 47

3 Leakage Distribution Decomposition Attack

LEMS are designed to resist low statistical order DPA/CPA attacks while main-
taining small computational overhead. The low level of leakage indicated by the
mutual information I(HW (YM);Y), as quantified in [12,13], however, does not
exclude the possibility of a univariate attack. In this section we analyze the com-
position of the leakage distribution under the protection of LEMS. We propose
a univariate attack that can correctly decompose the observed one-dimensional
distribution of leakage into several sub-distributions.

3.1 Leakage Distribution Composition

With the masking countermeasure, one algorithmic internal state Y can pro-
duce side channel leakage σ through multiple leaking values Ym1 , ..., Yms

. Con-
sequently, the conditional entropy of leakage H(σ | Y) increases, making the
classical attacks harder to succeed. According to Eq. (1) the leakage σ depends
on the knowntext X and the mask M , which are the main sources of entropy.
If the knowntext is fixed to one value X = x at a time, the leakage entropy is
lowered because only mask values are changed and LEMS only contains a small
number of masks.

We use DX=x
M◦M[σ] (or simply Dx

M[σ]) to denote the leakage distribution under
the condition that the knowntext X is fixed to x and the mask M is chosen uni-
formly at random from the mask set M. In this situation, X = x implies only
one sensitive value y = fk(x) is to be protected by the masks, which results in
the leaking set (y)M. Processing each leaking value ymi

produces leakage L(ymi
).

The respective leakage observations form a leakage sub-distribution denoted by
DX=x

M=mi
[σ] (or simply Dx

mi
[σ])1. Since the leaking set (y)M contains s leak-

ing values, the observed leakage distribution Dx
M[σ] is a composition of s sub-

distributions, namely,

Dx
M[σ] =

1
s

s∑

i=1

Dx
mi

[σ] =
1
s

s∑

i=1

D[L(ymi
)] (2)

This equality actually comes from the law of total probability, i.e.

p[σ = Σ | X = x] =
s∑

i=1

p[σ = Σ | M = mi,X = x] · Pr[M = mi]

=
1
s

s∑

i=1

p[σ = Σ | M = mi]

simply because Dx
M[σ] has the same meaning as the pmf/pdf p[σ = Σ | X = x]

and Dx
mi

[σ] the same as p[σ = Σ | M = mi,X = x].

1 The notation DX=x
M=mi

[σ] is of the same meaning of leakage distribution as D[L(ymi)].
Both describe the leakage for processing ymi . The former emphasizes leakage decom-
position and the latter focuses on connecting with estimated sub-distributions.

48 X. Ye and T. Eisenbarth

It is important to see that in LEMS the distribution Dx
M[σ] with fixed input

x is different from the overall leakage distribution D[σ] where the knowntext is
not fixed. The former is a mixture of only s sub-distributions, while the latter is
composed of all 2n sub-distributions caused by all 2n leaking values. In fact, the
proposed leakage distribution decomposition attack (LDDA) makes use of this
difference to explore the weakness of LEMS. It also indicates that the univariate
LDDA cannot be extended to attack FEMS where both Dx

M[σ] and D[σ] are
composed of 2n sub-distributions and hence not distinguishable from each other.

3.2 Procedure of Leakage Distribution Decomposition Attack

Prior to the attack, the adversary needs to estimate the sub-distributions D[L(v)]
of leakage for each leaking value v. We discuss this issue in more detail in
Sects. 3.3 and 3.4. Here the attacker is assumed to have already obtained a pre-
cise estimation of sub-distributions. We show how this idea of decomposition in
leakage distribution converts to a side channel attack. For each subkey hypoth-
esis g and each prefixed knowntext X = x, the adversary follows a three-step
procedure.

1. Find the hypothetical leaking set (ŷ)M;
2. Compute the hypothetical mixture D̂x

M[σ̂];

3. Evaluate the distance Dist(D̂x
M[σ̂]∈Dx

M[σ]) between the mixture and the
observed distribution.

More specifically, with the subkey hypothesis g for a subkey k, the adversary
computes ŷ = fg(x) and its respective masked states ŷmi

= MASK(ŷ,mi) for all
mi ∀ M. Since each hypothetical leaking value ymi

contributes as one component
D̂[L(ŷmi

)] of the leakage distribution, the adversary rebuilds the hypothetical
mixture of all the s sub-distributions as

D̂x
M[σ̂] =

1
s

s∑

i=1

D̂[L(ŷmi
)] (3)

Next, the adversary measures the similarity of the hypothetical mixture D̂x
M[σ̂]

and the observed distribution Dx
M[σ]. A distance metric Dist(D̂x

M[σ̂]∈Dx
M[σ])

is evaluated for this purpose. In general, a small value of the computed distance
metric indicates the two distributions are close to each other. A typical instan-
tiation of the distance metric is the Kolmogorov-Smirnov distance suggested
by [22,23], which is later used in our experiments.

The adversary repeats the three-step procedure for all subkey hypotheses and
all prefixed x. Her final decision for the correct subkey k is the hypothesis k∗

that results in the lowest averaged distance as in Eq. (4). The attack is successful
if k∗ = k.

k∗ = argmin
g

{
1

|X |
∑

x◦X
Dist(D̂x

M[σ̂]∈Dx
M[σ])

}

(4)

On the Vulnerability of Low Entropy Masking Schemes 49

30 35 40 45 50 55 60 65 70
0

5

10

15

20

Leakage

Fr
eq

ue
nc

y

(a)

30 35 40 45 50 55 60 65 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Leakage

P
ro

ba
bi

lit
y

D
en

si
ty

rebuild from wrong guess
rebuild from correct guess

(b)

Fig. 1. The observed leakage distribution (a) VS the hypothetical mixtures (b). The
rebuilt mixture from the correct guess has a similar shape to the observed distribution
while the mixture from the wrong guess is quite different from the observed distribution.

Please note that the LDDA does not predict each individual leaking state.
Instead, it analyzes the entire predicted leaking set. Figure 1a, b give an intuitive
idea of how the decomposition of the observed distribution works for correct and
incorrect subkey guesses.

Validity. If the subkey guess g is correct, i.e. g = k, then ŷ = fg(x) = fk(x) = y
and the prediction of leaking set is correct (ŷ)M = (y)M. Given precise estima-
tions of sub-distributions, the rebuilt mixture D̂x

M[σ̂] from Eq. (3) will be close
to the observed distribution Dx

M[σ] because

D̂x
M[σ̂] =

1
s

s∑

i=1

D̂[L(ŷmi
)] =

1
s

s∑

i=1

D[L(ymi
)] = Dx

M[σ]

However if the hypothesis is wrong, i.e. g ≥= k, then ŷ = fg (x) ≥= fk (x) = y
for most of the inputs x, hence the hypothetical leaking set (ŷ)M has a low
probability2 to be the same as the actual leaking set (y)M. It follows that with
high probability the rebuilt mixture D̂x

M[σ̂] differs significantly from the observed
Dx

M[σ] and hence their distance metric output should be large.

3.3 LDDA With Profiling

We have mentioned that the adversary should estimate the sub-distributions
before mounting the LDDA attack. This has a straightforward solution by com-
bining a profiling phase. More specifically, the profiling adversary is also assumed
to have full control of the masks during the profiling stage – she knows each mask
2 An exception is when (ŷ)M is a permutation of (y)M for some particular g and x.

Such exception occurs with small probability because the predicted leaking states
take the range of entire {0, 1}n rather than M.

50 X. Ye and T. Eisenbarth

that is applied in each invocation. This assumption is frequently used in previous
work [9,14,18]. The described attacks require at least bi-variate leakages consist-
ing of the sample for processing the mask and the sample for the masked state.
Hence, these approaches are not applicable for univariate attacks. Nevertheless,
the profiling capability allows the adversary to build univariate leakage tem-
plates for each leaking value v = MASK(fk∗(x),m) on another device that runs
the same crypto algorithm with a different but known key k′. In other words,
although the low entropy masking protection mingles different sub-distributions
D[L(v)] together to achieve confusion, the assumed profiling adversary can still
isolate each from the mixture. The isolated D[L(v)] can then serve as a sub-
distribution look up table, enabling the adversary to rebuild the hypothetical
mixture (the second step of LDDA) easily.

3.4 LDDA Without Profiling

Allowing the adversary having profiling capability is sometimes demanding. We
show that sub-distribution estimation is also feasible for adversaries who are not
granted with such privilege. This is achieved by assuming a leakage model and
estimating the expression of leakage function explicitly. For a clear illustration,
we assume the commonly accepted Hamming weight leakage model for a LEMS
protected AES. It should be mentioned that advanced techniques of non-profiling
leakage modeling such as linear regression model [5] may play a similar role if
adjusted properly. With the Hamming weight model, the leakage σ is expressed
as a linear function of the Hamming weight of the leaking states with additive
white Gaussian noise α. I.e.

σ = aHW (YM) + b + α

where the coefficients a, b are unknown constants, and the noise α ∼ N (
0, χ2

)

is mean zero and the noise level χ is also unknown. Since the sub-distributions
D[L(v)] for processing leaking value v can now be represented as N (σ; aHW (v)+
b, χ2), estimating sub-distributions is simplified to estimating the unknown para-
meters a, b, χ. Meanwhile, it is easy to see that the overall leakage distribution
D[σ] is a weighted composition of nine Gaussian curves. I.e.

D[σ] ≈
8∑

h=0

whN (σ; ah + b, χ2) (5)

where 0 ∪ wh ∪ 1 is the proportion of the normal curve N (σ; ah + b, χ2) and
∑8

h=0 wh = 1. It follows that the Hamming weight h of leaking values YM forms
a Binomial distribution and the weight parameters wh =

(
8
h

)
/28, provided that

the knowntext X is uniformly distributed. It is because xoring and SBoxing
are one-to-one mappings. They deliver the uniform distribution from X to the
sensitive Y and its masked output YM .

Finally, we solve the parameter estimation as an optimization problem. Opti-
mal choices of a, b, χ should minimize the difference between the two sides of

On the Vulnerability of Low Entropy Masking Schemes 51

Eq. (5), namely, the observed overall leakage distribution and the composition
of the parameterized sub-distributions. We set it as the objective function in
Eq. (6). Furthermore, the optimization should be associated with the restric-
tion that the statistical characteristics of the two sides should be approximately
equal as in (7). Examples of the restriction functions are the statistical moments
including Mean(D[σ]) ≈ 4a + b, Var(D[σ]) ≈ χ2 + 2a2 (derived from analysis of
variance) and etc. The optimally parameterized N (σ; aHW (v)+ b, χ2) can then
serve as a sub-distribution look up table, enabling the adversary to carry out
the LDDA.

Minimize Dist(D[σ]∈
8∑

h=0

whN (σ; ah + b, χ2)) (6)

StatChar(D[σ]) ≈ StatChar(
8∑

h=0

whN (σ; ah + b, χ2)) (7)

It should be mentioned that the non-profiling LDDA is heavily influenced
by the accuracy of leakage modeling. Large bias results in the derived sub-
distributions being significantly different from the actual leakage function and
hence reduces the efficiency or even disables the LDDA.

4 Leaking Set Collision Attack

The previously discussed LDDA follows a ‘decompose’-then-‘rebuild’ approach
to compare the distributions of leakage. We now propose a second attack named
leaking set collision attack (LSCA). It circumvents the ‘rebuild’ step and allows
adversary directly comparing related distributions and therefore gains the benefit
of avoiding the sub-distribution estimation.

4.1 Existence of Leaking Set Collisions

The approach extends side channel collision attacks [11,19] by defining collisions
between two leaking sets. Two distinct knowntexts x ≥= x′ are said to induce a
leaking set collision if the respective leaking sets are the same, i.e.

(y)M = {ym1 , ..., yms
} = {y′

m1
, ..., y′

ms
} = (y′)M

For Boolean masking schemes, the existence of leaking set collisions is a con-
sequence of the self-complementary property for the choice of the mask values
suggested in [12,13]. It indicates that if m is chosen as a possible mask value, so
should its bitwise inverse m̄ = m ⊕ 1n as explained in Sect. 2.1 (1n denotes the
all-1 bit string, e.g. 0xff for a byte). One simple choice is y′ = ȳ. Because for
any m ∀ M,

(ȳ)m = ȳ ⊕ m = y ⊕ 1n ⊕ m

= y ⊕ m̄ = ym̄ ∀ (y)M

52 X. Ye and T. Eisenbarth

This proves (ȳ)M ≤ (y)M. Similarly the other direction (ȳ)M ⊃ (y)M also holds
and hence (y)M = (ȳ)M. On the other hand, this choice y′ = ȳ identifies a
relation between the respective knowntexts x, x′ by setting fk (x′) = fk (x). It is
equivalent to

x′ = f−1
k (1n ⊕ fk (x)) (8)

It implies that the knowntext pair 〈x, x′〉 derived from Eq. (8) results in a leaking
set collision between (y)M and (y′)M.

4.2 Building a Leaking Set Collision Attack

An importance consequence of the leaking set collision is that the respective
underlying leakage distributions are identical. In fact, the set collision (y)M =
(y′)M implies the both Dx

M[σ] and Dx∗
M[σ] have the same composition of

sub-distributions.

Dx
M[σ] =

1
s

s∑

i=1

D[L (ymi
)] =

1
s

s∑

i=1

D[L
(
y′
mi

)
] = Dx∗

M[σ]

Therefore, the empirically observed leakage distributions Dx
M[σ] and Dx∗

M[σ]
should be very close to each other. We now show how to convert this into a
side channel attack against LEMS protected AES. The Sbox of the first round
is chosen as the target function. Hence, the sensitive states y, y′ are the s-box
outputs and the knowntexts x, x′ are the corresponding plaintext byte values3.
The paired relation in Eq. (8) is then instantiated as in the following pairing
equality in (9).

x′ = Pairing(x, k) = k ⊕ S−1 (0xff ⊕ S (x ⊕ k)) (9)

It indicates that the plaintext pair 〈x, x′〉 which satisfies the paring equality
forms a leaking set collision at their respective masked outputs.

The adversary, however, does not know the subkey k and cannot directly plug
in the pairing equality to derive a collision. Nevertheless, she can make subkey
hypothesis g and check for collisions just like a standard side channel attacker.
A detailed attacking procedures is shown in Algorithm 1. It firstly sorts all leak-
ages according to their respective plaintext x so that the empirical distributions
Dx

M[σ] are obtained for all possible x. The adversary then starts testing sub-
key hypotheses. With each hypothesis g, she computes the hypothetical pairing
x′ = Pairing(x, g) defined in Eq. (9). The two sets of related leakage distribu-
tions Dx

M[σ] and Dx∗
M[σ] are fetched and their similarity is measured using the

distance metric Dist(). In practice, the adversary can add up the computed dis-
tances derived from all possible collisions (line 8 of the algorithm). The decision

3 The same approach can be applied to arbitrary intermediate states, as long as they
are a non-linear function of x and k: For states y that are linear functions of x
and k, e.g. the s-box input, the key cancels out so that the knowntext pair become
independent from the key, making the conversion into an attack infeasible.

On the Vulnerability of Low Entropy Masking Schemes 53

Algorithm 1. Leaking Set Collision Attack on RSM-AES
Input: Number of traces q; Knowntexts x1, ..., xq; leakages λ1, ..., λq

Output: Subkey Decision k◦

Precomputation:
1: for x = 0 to 255 do
2: Dx

M[σ] = {λi | xi = x} � collect leakage whose knowntext is x
3: end for

Key recovery:
4: for g = 0 to 255 do
5: δg = 0
6: for x = 0 to 255 do
7: x∼ = Pairing(x, g) � compute hypothetical pairing x∼

8: δg = δg + Dist(Dx
M[σ]←Dx∗

M[σ]) � sums the distances from all pairings
9: end for

10: end for
11: k◦ = argming{δg}
12: return k◦

strategy is similar to LDDA: the adversary determines as the correct subkey
the hypothesis k∗ that results in the smallest overall distance. The attack is
successful if k∗ = k.

Validity. If the key hypothesis is correct, i.e. g = k, then the derived pair-
ing x′ = Pairing(x, g) = Pairing(x, k) is exactly the same as the true pairing
equality in Eq. (9). It follows that a leaking set collision (y)M = (y′)M is gen-
erated. Hence the compared distributions should feature a low distance metric
quantity Dist(Dx

M[σ]∈Dx∗
M[σ]). However if the subkey hypothesis is wrong, the

computation yields

y′ = S(x′ ⊕ k) = S(g ⊕ S−1(0xff ⊕ S(x ⊕ g)) ⊕ k)

It is different from ȳ = 0xff⊕S(x⊕k) for most x. Hence the resulting leaking set
(y)M has low probability to completely overlap (y′)M and the two distributions
have high probability to differ significantly.

Complexity. It should be mentioned that the roles of x and x′ of a hypothetical
pairing are symmetric for any hypothesis. That is, if x′ is a hypothetical pairing of
x satisfying x′ = Pairing(x, g), then reversely x is also a pairing of x′ satisfying
x = Pairing(x′, g). Here is a simple proof.

x′′ = Pairing(x′, g) = g ⊕ S−1(0xff ⊕ S(x′ ⊕ g))
= g ⊕ S−1(0xff ⊕ S(S−1(0xff ⊕ S(x ⊕ g))))
= g ⊕ (x ⊕ g) = x

This symmetry implies there are a total of 128 possible leaking set collisions
for all 256 knowntexts x. It suffices to make only 128 distance comparisons for

54 X. Ye and T. Eisenbarth

testing one hypothesis. Therefore the total complexity is 256 × 128 distance
computations to recover one key byte.

Comparing LSCA with LDDA. One common feature of LDDA and LSCA
is that both attacks are achieved by comparing leakage distributions. More pre-
cisely, the compared leakage distributions refer to the leakages Dx

M[σ] with some
prefixed knowntext x. It results in a lowered leakage entropy which become
exploitable by the two attacks.

There are also many differences between the two attacks. Firstly, the LDDA
compares empirically observed leakage distribution with the rebuilt hypotheti-
cal mixtures, while the LSCA compares two sets of distributions that are both
obtained empirically. Therefore, the correct subkey hypothesis in the LDDA
measures the closeness of the empirical distribution to its underlying distribu-
tion. In the LSCA it measures the closeness between two empirical distributions
that are sampled from the same underlying distribution. Secondly, the LDDA
requires sub-distribution estimations to complete the “rebuild” step, while the
LSCA avoid this. We have seen that estimating sub-distributions not only adds
some complexity or even requires profiling privilege, but is also influenced by the
accuracy of leakage modeling. Thus the LSCA does not suffer from the modeling
bias. Last but not the least, the LDDA requires the mask set M to be known
but the LSCA only requires the self-complementary property for the masking
set M. To sum up, the LDDA shows the explicit composition of leakages and
the LSCA makes use of leakage composition implicitly and is more efficient in
practice.

5 Experiments

In this section, we carry out the LDDA and LSCA described in Sects. 3 and 4.
Our experiments are performed on the measurements from DPA contest V4 [1]. It
is a software implementation of AES-256 protected by the RSM countermeasure
(cf. Sect. 2.1) and a total of 100,000 leakage measurements are provided. All
attacks are performed on a univariate leakage sample representing the leakage
of the first round AES output of SBox. Before showing our result we want to
mention as reference that [13] shows 0 success rate for DPA, CPA and VPA
based on 150,000 observations of a hardware implementation of RSM. It also
reports 0.001 to 0.012 bit of information being leaked from mutual information
analysis.

5.1 LDDA with Profiling

We firstly implemented LDDA using the template attack approach and we
assume full knowledge of the mask application during the profiling stage as
detailed in Sect. 3.3. A total of 50,000 measurements are used to build the
templates, i.e. the 256 sub-distributions D[L(v)] of leakages for processing each
possible leaking state v. The obtained sub-distributions are represented as 256

On the Vulnerability of Low Entropy Masking Schemes 55

Gaussian curves N (σ;μv, χ
2
v). Upon the completion of sub-distribution estima-

tion, another 2,000 to 16,000 measurements are used to test all 256 subkey
hypotheses using the 3-step LDDA. In particular, the rebuilt distribution from
each hypothesis is now instantiated as a Gaussian mixture,

D̂x
M[σ̂] =

1
s

∑

v◦(ŷ)M

N (σ̂;μv, χ
2
v)

resulting in a model similar to [10]. The Gaussian mixture is compared with the
observed distribution Dx

M[σ] using Kolmogorov-Smirnov (KS) distance metric.
Figure 2 shows the profiling LDDA hypothesis testing for the first subkey

byte. We can see that LDDA succeed – the correct subkey k = 108 always gives
the smallest KS distance among the 256 subkey hypotheses–whenever more than
2000 traces are used for testing. It verifies the correctness of the LDDA that only
the correct hypothesis yields a correct decomposition of the leakage distribution.
The four plots also show that the KS-distance drops when increasing the number
of testing traces. In particular, the averaged KS distance for the correct subkey

0 50 100 150 200 250
0.27

0.272

0.274

0.276

0.278

0.28

X: 108
Y: 0.2726

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(a)

0 50 100 150 200 250

0.196

0.198

0.2

0.202

0.204

0.206

X: 108
Y: 0.196

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(b)

0 50 100 150 200 250

0.134

0.136

0.138

0.14

0.142

0.144

0.146

0.148

0.15

0.152

0.154

X: 108
Y: 0.1386

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(c)

0 50 100 150 200 250
0.096

0.098

0.1

0.102

0.104

0.106

0.108

0.11

0.112

0.114

0.116

X: 108
Y: 0.09722

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(d)

Fig. 2. Profiling LDDA hypothesis testing: Kolmogrov-Smirnov distance (y-axis)
between observed leakage distribution and rebuilt Gaussian mixture from all subkey
hypotheses (x-axis) with the profiled sub-distributions. Experiments use 2,000 traces
(a); 4,000 traces (b); 8,000 traces (c); and 16,000 traces (d).

56 X. Ye and T. Eisenbarth

hypothesis drops from 0.273 all the way to 0.097. While for the wrong hypotheses,
the average drops from 0.279 to around 0.112. The reason is that the computed
distance depends on two main factors: (1) the correctness of the prediction
of the leaking set YM (the effect exploited by LDDA); and (2) the sampling
errors: viewing the observed leakage (the empirical one) as the samples from
its underlying distribution (the true one approximated during the profiling).
The law of large numbers implies that the empirical distribution of the leakage
converges to its underlying distribution when increasing the number of leakages.
Therefore, using more testing traces reduces the influence of the sampling error
and hence decreases the overall KS distance metric. As a consequence, the correct
hypothesis becomes better distinguishable from the wrong guesses.

5.2 LDDA Without Profiling

Our second group of experiments carries out the LDDA without a profiling stage
as described in Sect. 3.4. Each experiments estimate different combinations of the
required parameters in the presented optimization problem in Eqs. (6) and (7).
The guessing entropy from [21] is used for the evaluation of the attack. That
is, the subkey k is said to have guessing entropy t if the KS distance for k is
on average the t-th smallest value among all KS distances for all hypotheses.
Results are summarized in Table 1.

It can be seen from the table that the correct subkey k has very low guessing
entropy of 1 or 2 if more than 40,000 traces are used in the optimal estimation
cases. Even for the worst estimation case shown in the table, the guessing entropy
is still 33. The average estimation cases indicate that the non-profiling LDDA
enables a reasonable attack – the guessing entropy is kept at an acceptable
level–whenever more than 60,000 measurements are used.

It can be seen that the non-profiling LDDA needs much more traces to suc-
ceed comparing to the profiling LDDA. Notice that the latter serves as the closest
approximation to the real leakage function and the non-profiling LDDA here is
merely derived from a coarse modeling of the leakage function – a noised linear
transformation of the Hamming weight. The performance difference between the
two methods indicates that a more precise estimation of sub-distributions yields
better attacking performance for the non-profiling LDDA.

Table 1. Performance evaluation using Guessing Entropy (GE) for the non-profiling
LDDA. Best case is evaluated with optimal estimation of parameters; Worst case is
with non-optimal estimation.

Number of traces 20,000 40,000 60,000 80,000 100,000
GE (average case) 19.74 16.65 4.02 2.93 1.31
GE (worst case) 30 33 11 9 5
GE (best case) 9 2 2 1 1

On the Vulnerability of Low Entropy Masking Schemes 57

5.3 Experiments for Leaking Set Collision Attack

The third group of experiments mounts the LSCA described in Sect. 4. Figure 3
shows the hypothesis testing of one LSCA attack using 10,000 to 40,000 traces.
The correct subkey hypothesis k = 108 gives clear lowest KS distance metric
when more than 15,000 traces are used. The distinguishability of the correct
subkey increases with the number of traces that are used. Similar to the situation
of profiling LDDA, we can observe a drop in the magnitude of the KS distance
for the same hypothesis when the number of traces increases. The reason is still
the reduction of sampling errors by using more traces.

In addition, we use the provided 100,000 traces to run as many indepen-
dent experiments as possible for evaluating the LSCA attack. Table 2 summa-
rizes the attacking performance using guessing entropy and t-th order success
rate. It can be seen that the LSCA starts a stable success (GE = 1 and 1st
order success rate is 100 %) with more than 12288 traces, namely, 48 traces per
plaintext byte. It is interesting to see that even with a total of 8192 traces (32

0 50 100 150 200 250
0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

X: 108
Y: 0.1652

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(a)

0 50 100 150 200 250
0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

X: 108
Y: 0.1504

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(b)

0 50 100 150 200 250
0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

X: 108
Y: 0.1236

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(c)

0 50 100 150 200 250
0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

X: 108
Y: 0.08983

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(d)

Fig. 3. LSCA hypothesis testing: Kolmogrov-Smirnov distance (y-axis) between
observed leakage distributions for the pairings induced from subkey hypothesis
(x-axis). Experiments use 10,000 traces (a); 15,000 traces (b); 20,000 traces (c); and
40,000 traces (d).

58 X. Ye and T. Eisenbarth

Table 2. LSCA performance evaluation

Number of traces 4096 8192 12288 16384
Guessing entropy 34.17 5.33 1.00 1.00
1st order success rate 0 33.3 % 100.0 % 100.0 %
4th order success rate 33.3 % 66.7 % 100.0 % 100.0 %

traces per plaintext), making 4 guesses still ensures 2/3 success rate. The overall
performance is much better than the non-profiling LDDA. However, the compar-
ison with the profiling LDDA shows that the LSCA loses some success rate and
requires more traces. The possible reason is that LSCA expands the sampling
error. Since the two observed distributions Dx

M[σ] and Dx∗
M[σ] are two sampling

distributions from the same underlying distribution because of the set collision,
the distance Dist(Dx

M[σ]∈Dx∗
M[σ]) is composed of two components: the distance

from Dx
M[σ] to the underlying distribution and the distance from the underly-

ing distribution to Dx∗
M[σ]. Although the compositional effect is not necessarily

as strong as doubling the distance, it is very likely that the sampling error is
expanded in the LSCA. While the profiling LDDA only measures one sampling
error: the difference between the observed Dx

M[σ] and its underlying distribution.
No expansion of sampling error is occurred in the profiling LDDA. Nevertheless,
with the slight sacrifice of success rate, the LSCA makes the full use of leakage
similarity from the generated the leaking set collisions and therefore does not
need assuming profiling capability nor the full control of masks.

6 Conclusion

This work proposes two univariate attacks to overcome the limited protection
achieved with the low entropy masking schemes. The first attack—Leakage
Distribution Decomposition Attack (LDDA)—reveals the composition of the
observed leakage distribution. The second attack—Leaking Set Collision Attack
(LSCA)—extends the concept of side channel collision attacks and does not
rely on detailed knowledge of the leakage model or function. Both of the two
attacks compare leakage distributions and therefore they have a relatively high
requirement on the number of traces. The attacks show that studying a coun-
termeasure with resistance of the first, second or even higher order CPA/DPA
is not sufficient to guarantee the resistance to other univariate attacks.

Acknowledgments. We would like to thank the reviewers for the helpful comments.
This material is based upon work supported by the National Science Foundation under
Grant No. 1261399.

On the Vulnerability of Low Entropy Masking Schemes 59

References

1. The dpa contest v4. http://www.dpacontest.org/v4/
2. Bhasin, S., He, W., Guilley, S., Danger, J.-L.: Exploiting fpga block memories for

protected cryptographic implementations. In: 2013 8th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC) (2013)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Coron, J.-S., Goubin, L.: On boolean and arithmetic masking against differential
power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp.
231–237. Springer, Heidelberg (2000)

5. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Crypt. Eng. 1, 123–144 (2011)

6. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

7. Golic, J., Tymen, C.: Multiplicative masking and power analysis of AES. In:
Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523. Springer,
Heidelberg (2003)

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Lemke-Rust, K., Paar, C.: Analyzing side channel leakage of masked implemen-
tations with stochastic methods. In: Biskup, J., López, J. (eds.) ESORICS 2007.
LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007)

10. Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel
analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
14–27. Springer, Heidelberg (2007)

11. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010)

12. Nassar, M., Guilley, S., Danger, J.-L.: Formal analysis of the entropy/security
trade-off in first-order masking countermeasures against side-channel attacks. In:
Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp.
22–39. Springer, Heidelberg (2011)

13. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast coun-
termeasure for AES, secure against 1st and 2nd-order zero-offset scas. In: Design,
Automation Test in Europe Conference Exhibition (DATE) (2012)

14. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

15. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without
routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 172–186. Springer, Heidelberg (2005)

16. Prouff, E., Rivain, M.: A generic method for secure SBox implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2008)

17. Schaumont, P., Tiri, K.: Masking and dual-rail logic don’t add up. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 95–106. Springer,
Heidelberg (2007)

http://www.dpacontest.org/v4/

60 X. Ye and T. Eisenbarth

18. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

19. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer,
Heidelberg (2004)

20. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

21. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

22. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when
and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

23. Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov
test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)

A Machine Learning Approach
Against a Masked AES

Liran Lerman1,2(B), Stephane Fernandes Medeiros1,
Gianluca Bontempi2, and Olivier Markowitch1

1 Quality and Security of Information Systems, Département d’informatique,
Université Libre de Bruxelles, Brussel, Belgium

llerman@ulb.ac.be
2 Machine Learning Group, Département d’informatique,

Université Libre de Bruxelles, Brussel, Belgium

Abstract. Side-channel attacks challenge the security of cryptographic
devices. One of the widespread countermeasures against these attacks
is the masking approach. In 2012, Nassar et al. [21] presented a new
lightweight (low-cost) Boolean masking countermeasure to protect the
implementation of the AES block-cipher. This masking scheme repre-
sents the target algorithm of the DPAContest V4 [30]. In this article, we
present the first machine learning attack against a masking countermea-
sure, using the dataset of the DPAContest V4. We succeeded to extract
each targeted byte of the key of the masked AES with 26 traces during
the attacking phase. This number of traces represents roughly twice the
number of traces needed compared to an unmasked AES on the same
cryptographic device. Finally, we compared our proposal to a stochastic
attack and to a strategy based on template attack. We showed that an
attack based on a machine learning model reduces the number of traces
required during the attacking step with a factor two and four compared
respectively to template attack and to stochastic attack when analyzing
the same leakage information. A new strategy based on stochastic attack
reduces this number to 27.8 traces (in average) during the attack but
requires a larger execution time in our setting than a learning model.

Keywords: Side-channel attack · Masking · Profiled attack · Machine
learning · Stochastic attack · Template attack

1 Introduction

Embedded devices such as smart cards, mobile phones, and RFID tags are widely
used in our everyday lives. These devices implement cryptographic operations
allowing to secure, for example, bank transfers, buildings and cars. For this,
several cryptographic primitives can be used such as an encryption function.
During the execution of an encryption algorithm, the device processes secret
information. These secret information could be retrieved with physical attacks

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 61–75, 2014.
DOI: 10.1007/978-3-319-08302-5 5, c© Springer International Publishing Switzerland 2014

62 L. Lerman et al.

against the physical device by analyzing unintentional leakages such as the power
consumption [14], the processing time [13], the electromagnetic emanation [7] or
a combination of them [28].

In recent years the cryptographic community explored new attacks based
on machine learning models. These methods demonstrate that template attacks
(that can be considered as the strongest leakage analysis in an information theo-
retic sense [4]) overestimate the security of embedded devices in several scenarios.
Lerman et al. [15,16] compared a template attack with a binary machine learn-
ing approach, based on non-parametric methods, against cryptographic hardware
devices implementing a symmetric and an asymmetric cryptographic algorithm.
Hospodar et al. [10,11] analyzed a software implementation of a portion of a
block cipher. Their experiments support the idea that non-parametric techniques
can be competitive and sometimes better (i.e. less traces in the attacking phase)
than template attack. Heuser et al. [9] generalized this idea by analyzing multi-
class classification models in several contexts. In the same year Bartkewitz [1]
applied a multi-class machine learning model allowing to improve the attack suc-
cess with respect to the binary approach. Recently, Lerman et al. [17] proposed
a machine learning approach that takes into account the temporal dependencies
between power values. This method improves the success rate of an attack in a
low signal-to-noise ratio with respect to classification methods. In the same year,
Martinasek et al. [20] applied a neural network in order to extract one byte of
the key of AES. Their method retrieves the secret value with probability around
0.9 using only one measured power leakage.

In parallel with attacks, the embedded systems industry implements counter-
measures. They counteract side-channel attacks by inducing a leakage indepen-
dent of the secret target value. It is worth to mention that so far all the attacks
based on machine learning were applied on unprotected cryptographic devices.
It was still unclear whether the results of the previous works are still the same
in a protected environment. During the attacking phase, for a specific counter-
measure and for a specific device, open questions are: (1) How many traces are
required against a protected device with a machine learning model compared
to a strategy based on template attack or based on stochastic attack? (2) How
many traces are required by a machine learning model attacking a protected
device compared to an unprotected device? (3) What is the impact of the num-
ber of traces used in the profiling step by a machine learning model attacking
a protected device? We aim to answer these questions by proposing an origi-
nal efficient combination between a machine learning model and a non-profiled
attack. Our requirements are fast-execution, low-memory usage and high success
rate of the attack (i.e. realistic attack scenarios).

We made a detailed assessment of the proposed approach by considering
four public datasets with different number of traces during the profiling phase
and ten public datasets during the attacking phase. These traces were collected
on a smart card that implements the block-cipher AES protected by a mask-
ing scheme. All our datasets were extracted from the public dataset of the

A Machine Learning Approach Against a Masked AES 63

DPAContest V4 [30], “an initiative towards an international benchmarking ref-
erence” [30], thus allowing reproducing all our experiments.

This paper is organized as follows. Section 2 discusses non-profiled attacks,
profiled attacks and masking countermeasures. Section 3 introduces our original
attack based on a machine learning approach against a masking scheme. Section 4
illustrates the power of our proposal with several datasets. Section 5 concludes
this paper with several future works.

2 Preliminaries

2.1 Side-Channel Attack

During the execution of an encryption algorithm, the cryptographic device
processes a function f

f : M × O → F (1)
s = fO(m) (2)

called a sensitive variable [25] where O ∈ O = {O0, O1, ..., OK−1} is a key-
related information where O = {0, 1}l1 and l1 is the size of the secret value used
in f (e.g. one byte of the secret key), m ∈ M = {0, 1}l2 represents a public
information where l2 is the size of the public value used in f (e.g. one byte of
the plaintext) and F = {0, 1}l3 is the codomain of f where l3 is the size of the
output of f . The adversary targets this function during the attack.

Let

jT i =
{
j
tT i ∈ R | t ∈ [1;n]

}
(3)

be the j-th leakage information (called trace) associated to the i-th target value.
We consider the leakage information j

tT i of the device at time t depending on
the output of fOi

(m) such that

j
tT i = L(fOi

(m)) + σ (4)

where σ ∈ R is the noise following a Gaussian distribution with zero mean and
L is the leakage model

L : F → Q (5)
Q = L(fO(m)) (6)

where Q ⊂ R. Examples of models L are the Hamming weight (HW) and the
Hamming distance [19].

Non-profiled Attack
The non-profiled attack represents a common approach in order to attack a
cryptographic device. This attack estimates the output value of fO(m) for each
possible target value O. Then, the estimated leakage model L̂ transforms this

64 L. Lerman et al.

output value to allow, in fine, to compare the real and the predicted leakage
information with a distinguisher D. This paper focuses on univariate Correlation
Power Analysis (CPA) where the distinguisher represents the Pearson correlation
estimator.

Profiled Attack
Let Pr [A] be the probability of A and let Pr [A | B] be the probability of A
given B. The profiled attack strategy represents a more efficient attack by a
deeper leakage estimation. It estimates (with a set of traces called learning set)
a template Pr

[
jT i | L(fOi

(m)); Σi
]

(where Σi is the parameter of the probability
density function) for each target value during the profiling step. The learning set
is measured on a controlled device similar to the target chip. Once a template is
estimated for each target value, the adversary classifies a new trace T (measured
on the target device) during the attacking step with a profiled model A(T) that
computes the value Ô which maximizes the a posteriori probability

Ô = A(T) = arg max
O◦O

Pr [L (fO (m)) | T] (7)

= arg max
O◦O

Pr [T | L (fO (m))] × Pr [L (fO (m))]
Pr [T]

(8)

= arg max
O◦O

P̂r
[
T | L̂ (fO (m))

]
× P̂r

[
L̂ (fO (m))

]
(9)

where the apriori probabilities P̂r
[
L̂ (fO (m))

]
are estimated by the user.

Several approaches exist in order to estimate Pr [T | L (fO (m))] such as the
parametric template attack [4], the stochastic attack [27] and the non-parametric
machine learning models [10,15]. The former assumes that this probability fol-
lows a Gaussian distribution for each target value.

The stochastic attack modelizes the leakage model L at time t with a regres-
sion model th, i.e.

j
tT i = L (fOi

(m)) + σ (10)
= th (fOi

(m)) + tR (11)

= tc +
U∑

u=1

tαu gu (fOi
(m)) + tR (12)

where tR is a residual Gaussian noise at time t, {tc, tα1, tα2, ..., tαU} is the
parameter of the regression model th and {g1, g2, ..., gU} is the basis used in the
regression. Usually each function gj equals to

gj (fOi
(m)) = Bitj (fOi

(m)) (13)

where Bitj (x) returns the j-th bit of x. Then, the attacker assumes that
Pr [T | L (fOi

(m))] follows the Gaussian distribution N (h (fOi
(m)), χ) where

h(x) equals to {1h(x), 2h(x), ..., nh(x)} and χ ∈ R
n×n is the covariance matrix

of the residual term.

A Machine Learning Approach Against a Masked AES 65

The non-parametric machine learning models make no assumption on the
density distribution functions. For example Random Forest model (RF) [2] builds
a set of decision trees that classifies a trace based on a voting system. Support
Vector Machine (SVM) [5] discriminates traces associated to different target
values with hyperplanes. We refer to [1,9–11,15–17] for deeper explanations on
the parametric template attack and on the non-parametric machine learning
models.

2.2 Masking Countermeasure

Based on secret sharing, the masking countermeasure aims to reduce the unin-
tentional leakage information of a cryptographic device [3]. For this, the method
masks a public information m with d uniformly distributed random values v =
{v0, v1, ..., vd−1} ∈ Vd changing at each execution where V = {0, 1}l4 and l4 is
the size of each random value. This approach is called a masking scheme of order
d. In a theoretical point of view, the security level of a masked implementation
against side-channel attacks increases exponentially with d [3] when the amount
of noise in the traces is sufficient [29].

Potentially, an adversary can retrieve the secret information by using an
attack of order d + 1 (where the attacker considers d + 1 targets: the set of d
random mask values and a key-related information). More precisely, the (d+1)-
order non-profiled attack combines d + 1 points in each trace associated to the
mask values (e.g. points correlated to HW (fO (m ⊕ v)) and to HW (vi)). Then,
after this combination, a classical non-profiled attack is performed. However, it
turns out that the mask values still influence the result of this combination (in
a CPA context) and, as a result, an attack against a masked implementation
needs more traces than against an unmasked implementation [22].

3 Machine Learning Approach Against Masking
Countermeasure

In a secure implementation context, it is necessary that the mask values remain
secret. It is quite natural to wonder whether an adversary can retrieve informa-
tion on these secret values by analyzing the leakage information. Indeed, once
the mask values is revealed or removed, the attacker is able to execute an efficient
non-profiled or profiled attack.

In 2008, Werner Schindler [26] extended the stochastic attack to a masking
context by taking into account the mask value v in the deterministic part. The
main advantage of this approach is that we need a smaller set of measurements
during the profiling step compared to TA applied to masking [26].

Oswald et al. [22] evaluated several approaches to attack a masked imple-
mentation with a combination between TA and CPA. In the same year, Gier-
lichs et al. [8] extended these practical proposals with a theoretical analysis. The
first approach (called Templates Before Preprocessing) uses template attack to
extract the values of the estimated leakage information of the d + 1 masked

66 L. Lerman et al.

information (e.g. HW((fO (m ⊕ v)) and HW (vi)) before combining them and
to apply a CPA. The second approach (called Templates During Preprocess-
ing) forces a bias into the mask values by removing traces associated to certain
mask values. For this, the template attack extracts mask-related information and
keeps a subset of traces associated to a subset of mask values. Then a CPA on
the selected traces reveals the key. The third approach (called Templates After
Preprocessing) uses template attack to extract the unmasked sensitive value (e.g.
HW (fO (m))) and performs a CPA on the extracted unmasked sensitive value.
The last approach (called Template based DPA) performs a template attack
against the masking implementation by replacing Pr [T | L (fO (m))] in Eq. 9
with

P̂r [T | L (fO (m))] =
∑

v◦Vd

P̂r [T | L (fO (m ⊕ v)) ∧ v] × P̂r [v] (14)

As a result, we need card(Q) × card(Vd) templates (where card(x) represents
the cardinality of the set x), one for each possible combination of L (fO (m ⊕ v))
and v.

We propose a new approach that uses a machine learning approach in order:
(1) to bypass the problem of combining masks-related information that still
keeps a dependence to mask values (unlike the d-order non-profiled attack, the
Templates Before Preprocessing and the Templates After Preprocessing); (2) to
keep all traces in the attacking step (unlike the Templates During Preprocess-
ing); (3) to reduce the number of templates from |Q|×|Vd| to |Vd| (compared to
the Template based DPA) leading to several advantages. In a theoretical point
of view: (i) the number of required data increases with the number of templates
(c.f. we need one learning set per template that leads to a gigantic workload in
the profiling step [26]) and (ii) the imbalanced class problem [12] arises in the
Template based DPA according to the density distribution of L (fO (m)) (unlike
our proposal). In a practical point of view, in the case of the DPAContest V4,
the adversary has no control on the attacked device and, as a result, we (empiri-
cally) estimated that template based DPA needs a large number of measurements
in the profiling step - at least 40,000 traces each of 435,002 samples, represent-
ing more than 234 bytes of information - in order to have at least one trace
per template with probability 0.99 when the Hamming weight leakage model
is chosen. For the same problem, our proposal needs at least 200 traces (i.e. a
realistic attack scenario). In practice, we need at least 48,698 traces for template
based DPA and at least 35 for our proposal when considering the dataset of the
DPAContest V4.

We suggest to apply a profiled attack to extract the mask values before a
non-profiled attack that retrieves the secret key. Note that this approach is
generalizable to the case where a profiled attack is used to extract the secret
key. Furthermore, we assume to be in the worst case scenario where the adver-
sary knows the mask values used during the profiling phase. Our requirements
are fast-execution, low-memory usage and high success rate (i.e. realistic attack
scenarios). Efficient methods to perform profiled attacks have been proposed

A Machine Learning Approach Against a Masked AES 67

recently [1,9–11,15,16]. These methods use a machine learning model that returns
the target value after a learning (profiling) step. Concerning the non-profiled
attack, several approaches exist. One of the most efficient methods represents
the CPA that does not require any estimation probability density function. Note
that our method can be extended to other (nonlinear) distinguishers.

4 Experiments and Discussion

4.1 Target Implementation

The experiments were carried out on electromagnetic emission leakages that are
freely available on the DPAContest V4 website [30] in order to easily reproduce
the results. The target cryptographic device (an Atmel ATMega-163 smart card)
implements in software the masked block-cipher AES-256 in encryption mode
without any mode of operation. Each trace has 435, 002 samples associated to
the same secret key and measured during the first round. The masking scheme
is a variant of the “Rotating Sbox Masking” [21]; an additive Boolean masked
scheme with masked SBox. According to its authors, it has a low-cost design
and keeps performances and complexity close to the unprotected scheme (in a
hardware context) while being resistant against several side-channel attacks. The
purpose of the DPAContest is to retrieve the first 128 key bits. As we target the
first 128 key bits and since the first round of AES-128 and AES-256 are the
same, in the following we focus on AES-128.

Briefly, the masking scheme generates several mask values based on one 4-bit
random value (called offset value) for each encryption. We refer to [21,30] for
additional information on the masking scheme and on the acquisitions setup.

4.2 Experimental Results

For the sake of fairness, we compared different attacks based on the same target
value and the same dataset: each attack extracts first the offset value before
applying a CPA to find the key value. Note that an adversary targeting the
offset or the mask value leads to the same result in our case: the (Pearson)
correlation between them equals one. We suggest to target the mask value when
the setting differs.

Finding the Offset Value on Traces
Before proceeding with the quantitative analysis, we reports here a preliminary
visualization phase that allowed us to find the points that are the highest cor-
related with the secret offset. For the sake of time and memory, we computed
the Pearson correlation between each instant of 1500 traces and the offset values
(see Fig. 1). It is worth emphasizing that several instants are (significantly) cor-
related with the target value. Except in the middle of traces, the visualization
suggests that there is a high amount of information on the offset value available
in each trace. As a consequence, we should expect that the profiled model would
output the right offset value with a high probability.

68 L. Lerman et al.

Fig. 1. Correlation between offset and power values at each time in the first round of
the masked AES.

Model Selection
This section assesses and compares several classifiers that extract the secret offset
value. We considered four different types of multiclass classification models: Sup-
port Vector Machine (SVM), Random Forest (RF), Template Attack (TA) and
Stochastic Attack (SA). We used two disjoint sets: a learning set of 1500 traces
to estimate the parameters of each model and a validation set of 1500 traces to
measure their success rate in predicting the right offset value. During the feature
selection step, in each trace, we selected 50 instants that are the highest linearly
correlated with the offset value1. We did not considered other feature selection
methods (such as “Principal Component Analysis” [23] or “minimum Redun-
dancy Maximum Relevance” [24]) due to their massive memory requirements or
time consuming while our dataset contained 1500 × 435, 002 bytes > 229 bytes2.
In spite of the low feature selection complexity, we observed a high success rate
of the models.

Figures 2, 3, 4 and 5 report the success rate to predict the right offset value
as a function of the number of points (that were selected from the sorted 50
instants) used in each trace for respectively SVM, RF, TA and SA. We can
extract the following observations. First, as expected, the higher the number of
traces in the learning set (from 25% to 100% of 1500 traces), the higher the
accuracy. Secondly, the number of selected points in each trace influences the
success rate: the higher the number of features, the higher the success rates for
1 The 50 instants are sorted in descending order with respect to their correlation

coefficient in absolute value.
2 Each sample of the trace is an 8-bit value. The limit of R - the used program language

- is 231 bytes for a matrix.

A Machine Learning Approach Against a Masked AES 69

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
su

cc
es

s
ra

te

number of features per trace

Size of the learning set
100%
75%

50%
25%

Fig. 2. Support Vector Machine.

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Size of the learning set
100%
75%

50%
25%

Fig. 3. Random Forest.

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Size of the learning set
100%
75%

50%
25%

Fig. 4. Template Attack.

0 3 6 9 12 16 20 24 28 32 36 40 44 48

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

su
cc

es
s

ra
te

number of features per trace

Size of the learning set
100%
75%

50%
25%

Fig. 5. Stochastic Attack.

SVM, RF and SA. It is interesting to remark that in a small learning set context
(i.e. less than 75 % of the entire learning set) the TA reduces its success rate
when the number of features goes beyond a certain size. This is presumably due
to the ill-conditioning of the covariance matrix when the number of features is
too large. In the other hand, the success rate of the new proposal based on SA
varies only slightly in function of the size of the learning set.

Figure 6 combines the three previous plots by choosing the best size for the
learning set (i.e. 100 % of 1500 traces). The success rates of SVM, RF and SA
are similar and greater than the success rate of TA. Note that we did not select
the best meta-parameter values for SVM and RF (such as the number of trees
in the RF) but only the best number of features (from 2 to 50) to predict the
target value. The default values of the implementation of SVM [6] and RF [18]

70 L. Lerman et al.

0 3 6 9 12 16 20 24 28 32 36 40 44 48

su
cc

es
s

ra
te

number of features per trace

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Model

SVM
RF

TA
SA

Fig. 6. SVM vs RF vs TA vs SA.

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

nu
m

be
r o

f t
ra

ce
s

number of features per trace

Model
SA against a protected device

Fig. 7. Number of traces during the
attacking phase in function of the num-
ber of features.

were used3. As a consequence, we do not claim that the SVM configurations and
the RF configurations are necessarily the best one for profiled attack neither for
our experiments. However, our experiments show that a profiled attack based
on a machine learning model extracts more information on the offset value than
a strategy based on TA for the presented task.

Based on the above considerations, and in order to choose the best learning
model, we looked at the learning time and the prediction time of the offset, based
on one trace, as a function of the number of selected points (see Figs. 8 and 9)4.
TA has the lowest learning time while its prediction time increases exponen-
tially in the number of selected features. SVM has a lower learning time and a
reasonable prediction time compared to RF. As a result, in the attacking step,
we use only SVM as the machine learning model. We do not report the results
for SA as we used an unoptimized and nonpublic implementation. According to
the previous results, we selected 50 features for SVM, TA and SA leading to a
success rate of respectively 0.88, 0.66 and 0.90.

Attacking Step
During the attacking step we considered four settings targeting the Hamming
weight of the MaskedSubBytes. In the first setting, CPA extracts the secret key
on an unmasked implementation (i.e. the non-profiled attack always receives
the correct offset value). The second setting targets the masked implementation
where a SVM extracts the mask value and where a CPA searches the secret key.
In the third and fourth experiments, the SVM is changed by respectively the
3 SVM had a radial kernel with a gamma equals to the inverse of the data dimension

and a cost of 1. RF had 500 trees.
4 The experiments were executed on a MacBook Pro with 2.66 GHz Intel Core 2 Duo,

8 GB 1067MHz DDR3.

A Machine Learning Approach Against a Masked AES 71

0 3 6 9 12 16 20 24 28 32 36 40 44 48

tim
e

(in
 m

ili
−s

ec
)

number of features per trace

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Model
SVM RF TA

Fig. 8. Time to process a trace in the
learning step (in milli-sec) per number
of feature selected.

0 3 6 9 12 16 20 24 28 32 36 40 44 48

tim
e

(in
 m

ili
−s

ec
)

number of features per trace

0

5

10

15

20

25

30

35

40

Model
SVM RF TA

Fig. 9. Time to process a trace in the
attacking step (in milli-sec) per number
of feature selected.

TA and the SA. We repeated ten times each setting with a different set of traces
during the attacking phase while the learning set remains the same.

Figure 10 summarizes the number of key bytes found as a function of the
number of traces used (in average) during the non-profiling phase for each set-
ting. We found the key with 16.3 traces (with less than 5 s of execution time) for
the unmasked implementation. For the masked implementation, we extracted
the key with 26 traces (with less than 20 s of execution time) by using the SVM,
with 27.8 traces (with less than 80 s of execution time) by using the SA and with
56.4 traces (with less than 45 s of execution time) by using the TA. Figure 11
shows the minimum, the maximum and the average number of traces used to
find the key. Compared to each strategy applied on the protected device, the
SVM (combined with the CPA) leads to the closest results to an unprotected
configuration.

For the sake of completeness, we also implemented the state-of-the-art sto-
chastic attack on the masking scheme without a non-profiling step as proposed
by Werner Schindler [26]. Figure 7 shows the number of traces needed on a val-
idation set in function of the number of features used. The stochastic attack
needs more than 40 traces to find the key when the model considers more than
5 features and it reaches the minimum with 3 features. According to Fig. 10, SA
needs 107 traces in average in order to extract the 16 key bytes on a testing set
(with less than 180 s of execution time).

4.3 Discussions

The experimental results of the previous sections suggest some considerations.
First, the masking scheme proposed by the DPAContest V4 can be practically
attacked with a combination between profiled and non-profiled attacks. Our
strategy represents a combination between a SVM and a CPA that required 26
traces during the attacking step to extract the key of the implementation of a

72 L. Lerman et al.

0 10 20 30 40 50 60 70 80 90 100 110

0

2

4

6

8

10

12

14

16

nu
m

be
r o

f k
ey

 b
yt

es
 fo

un
d

number of traces in average

CPA against an unprotected device
SVM/CPA against a protected device
SA/CPA against a protected device
SA against a protected device
TA/CPA against a protected device

Fig. 10. Comparison of attacks against
unprotected and protected AES.

Minimum number of traces
Average number of traces
Maximum number of traces

0

25

50

75

100

125

150

175

200

CPA

SVM / C
PA

SA / C
PA

TA
 / C

PA
SA

nu
m

be
r o

f t
ra

ce
s

Minimum number of traces
Average number of traces
Maximum number of traces

Unprotected
device

Protected device

Fig. 11. Min., max. and average num-
ber of traces used by each attack to find
the key.

masked AES-128. In comparison, in the same device, a CPA against an unmasked
implementation required in average 16.3 traces. SVM succeeds to extract infor-
mation on the offset because the cryptographic device chooses different opera-
tions in function of this value (e.g. the choice of the masked SBox). Furthermore,
the success of the attack is related to the implementation: the device manipulates
the sixteen State bytes sequentially while they can be manipulated in parallel on
a FPGA. Moreover, the cryptographic device selects randomly only one offset
during whole of the encryption. As a result, many points in a trace relate to the
chosen offset.

The attack should be improved by increasing the number of points selected
in each trace. Indeed, Fig. 2 shows that the maximum value of the success rate
is still not reached. However, Fig. 8 shows that the learning step time increases
linearly with the number of points selected in each trace. As a result, there is a
trade off to be made between the accuracy of the model and its learning speed.

The major consideration concerns accuracy since the experimental results
show that in several settings, machine learning improves the success of attacks
with respect to a strategy based on TA or to the state-of-the-art SA. More
precisely, a machine learning model needs four times less traces than the state-
of-the-art SA on masking scheme and two times less traces than a strategy based
on TA. However, a new strategy based on SA becomes very competitive (in term
of data complexity during the attacking phase) as the machine learning model
but with a longer execution time than the machine learning model.

We submitted our best attack to the DPAContest V4 in order to have a vali-
dation of our results by a third party. According to this contest, the combination
of SVM with CPA needs 22 traces with 0.528 s to retrieve a new AES-128 key
with their computational power.

A Machine Learning Approach Against a Masked AES 73

5 Conclusion and Perspectives

In this paper we have introduced an efficient machine learning approach in order
to evaluate the security level of a masked implementation of AES. Specifically,
we have extended the results of previous related works to protected devices [1,
9–11,15–17]. The machine learning approach against a masked cryptographic
algorithm consists in attacking first the mask with a machine learning model
(i.e. a profiled attack) before targeting the secret key with for example a non-
profiled attack.

We showed that stochastic attack or a strategy based on template attack
overestimates the security level of protected device while the machine learning
approach improves significantly this estimation. The main reason of the superi-
ority of machine learning arises with the result of the multivariate Gaussianity
tests that we carried out and that reject the hypothesis that the traces follow a
Gaussian distribution in a high number of configurations. Therefore, a machine
learning model extracts more information on the secret information (than tem-
plate attack) by analyzing the same leakage information.

The complexity of the non-profiling step mainly depends on the quality of the
profiled model. The higher the success to retrieve the mask, the lower the number
of traces during the attacking phase. As a result, compared to a template attack,
a learning model improves the probability to find the true mask value from 0.66
to 0.88 that implies a reduction of the number of traces in average during the
attacking phase from 56.4 to 26. Regarding the state-of-the-art stochastic attack,
the learning model divides the number of traces during the attacking phase by
four. However, a new strategy based on stochastic attack reduces this number to
27.8 traces (in average) during the attack. In our context, the main advantage
of a machine learning approach represents its speed: 80 s of execution time for a
strategy based on SA while the machine learning model requires four times less.
In comparison, a non-profiled attack against an unmasked implementation needs
17 traces with 5 s of execution time on the same cryptographic device. Therefore,
the masked implementation increases the data complexity of the attack by two
and the time complexity by four.

The quality of the profiled attacks mainly depends on the number of points
selected on the traces. A robust feature selection method allowed to reach a high
success rate to find the mask value by the profiled model. Interesting and as
expected, the number of traces in the learning set of the machine learning model
influences the result in a masking context (the higher the better). This is due to
a reduction of the variance of the model.

We believe that our work opens up new avenues for interesting further research
works. Among them, experiments must be performed on different public datasets
of masking or hiding implementations which should be available in the DPACon-
test V4. If such experiments confirm the above results, then there are important
implications. Strategies based on template attack or stochastic attack against
countermeasures scheme may be shown to be less suitable for security level esti-
mation in the worst case scenario compared to a machine learning approach.

74 L. Lerman et al.

References

1. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic
multi-class support vector machines. In: Mangard, S. (ed.) CARDIS 2012. LNCS,
vol. 7771, pp. 263–276. Springer, Heidelberg (2013)

2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-

teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, p. 398. Springer, Heidelberg (1999)

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr, B.S., Koç, C.K.,
Paar, C. (eds.) CHES. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2002)

5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

6. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: misc
functions of the department of statistics (e1071), TU Wien, R package version 1.6
(2011)

7. Gandolfi, K., Mourtel, Ch., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 251.
Springer, Heidelberg (2001)

8. Gierlichs, B., Janussen, K.: Template attacks on masking: an interpretation. In:
Lucks, S., Sadeghi, A.-R., Wolf, C., (eds.) WEWoRC (2007)

9. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012)

10. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Crypt. Eng. 1(4), 293–
302 (2011)

11. Hospodar, G., Mulder, E.D., Gierlichs, B., Vandewalle, J., Verbauwhede, I.: Least
squares support vector machines for side-channel analysis. In: Second International
Workshop on Constructive SideChannel Analysis and Secure, pp. 99–104. Design
Center for Advanced Security Research Darmstadt (2011)

12. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Int.
Data Anal. J. 6(5), 429–449 (2002)

13. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

15. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based
on machine learning. In: Second International Workshop on Constructive Side
Channel Analysis and Secure Design, pp. 29–41. Center for Advanced Security
Research Darmstadt (2011)

16. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach
based on machine learning. Int. J. Appl. Crypt. 3(2), 97–115 (2014)

17. Lerman, L., Bontempi, G., Ben Taieb, S., Markowitch, O.: A time series approach
for profiling attack. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE
2013. LNCS, vol. 8204, pp. 75–94. Springer, Heidelberg (2013)

18. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3),
18–22 (2002)

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks- Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

A Machine Learning Approach Against a Masked AES 75

20. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radio Eng.
22(2), 586–594 (2013)

21. Nassar, M., Souissi, Y., Guilley, S., Danger, J-L.: RSM: a small and fast counter-
measure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Rosenstiel
W.,Thiele, L. (eds.) DATE, pp. 1173–1178. IEEE (2012)

22. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

23. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos.
Mag. 2(6), 559–572 (1901)

24. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. 27(8), 1226–1238 (2005)

25. Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations provably secure
against second order side channel analysis. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

26. Schindler, W.: Advanced stochastic methods in side channel analysis on block
ciphers in the presence of masking. J. Math. Crypt. 2(3), 291–310 (2008)

27. Schindler, W., Lemke, K., Paar, Ch.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

28. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

29. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

30. DPAContest V4 (2013). http://www.dpacontest.org/home/

http://www.dpacontest.org/home/

Side Channel Attacks - Session Chair:
François-Xavier Standaert

Clustering Algorithms for Non-profiled
Single-Execution Attacks on Exponentiations

Johann Heyszl1(B), Andreas Ibing2, Stefan Mangard3, Fabrizio De Santis2,4,
and Georg Sigl2

1 Fraunhofer Institute AISEC, Munich, Germany
johann.heyszl@aisec.fraunhofer.de

2 Technische Universität München, Munich, Germany
andreas.ibing@in.tum.de,
{desantis,sigl}@tum.de

3 Graz University of Technology, Graz, Austria
stefan.mangard@iaik.tugraz.at

4 Infineon Technologies AG, Munich, Germany

Abstract. Most implementations of public key cryptography employ
exponentiation algorithms. Side-channel attacks on secret exponents are
typically bound to the leakage of single executions due to cryptographic
protocols or side-channel countermeasures such as blinding. We pro-
pose for the first time, to use a well-established class of algorithms,
i.e. unsupervised cluster classification algorithms such as the k-means
algorithm to attack cryptographic exponentiations and recover secret
exponents without any prior profiling, manual tuning or leakage models.
Not requiring profiling is of significant advantage to attackers, as are
well-established algorithms. The proposed non-profiled single-execution
attack is able to exploit any available single-execution leakage and pro-
vides a straight-forward option to combine simultaneous measurements
to increase the available leakage. We present empirical results from attack-
ing an FPGA-based elliptic curve scalar multiplication using the k-means
clustering algorithm and successfully exploit location-based leakage from
high-resolution electromagnetic field measurements to achieve a low
remaining brute-force complexity of the secret exponent. A simulated
multi-channel measurement even enables an error-free recovery of the
exponent.

Keywords: Exponentiation · Side-channel attack · Non-profiled · Single-
execution · Unsupervised clustering · Simultaneous measurements · EM

1 Introduction

The main computations in public key cryptosystems are modular exponentiations
with secret exponents or elliptic curve scalar multiplications with secret scalars.

Stefan Mangard – This research has been conducted while working for Infineon
Technologies AG, Munich, Germany.

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 79–93, 2014.
DOI: 10.1007/978-3-319-08302-5 6, c© Springer International Publishing Switzerland 2014

80 J. Heyszl et al.

In both cases, the same exponentiation algorithms are employed to serially
process exponents. In DSA or ECDSA, the exponents are different for every
execution, e.g., chosen randomly as ephemeral secrets. RSA employs the same
exponent multiple times, but exponent blinding [15] is often used as a counter-
measure against side-channel analysis to use different exponents in every execu-
tion. Hence, side-channel attackers may only exploit single executions to recover
a secret exponent. To prevent conventional SPA and timing attacks [15] the
operation sequences during the serial processing of the exponents are rendered
as homogeneous as possible. Algorithms like the square-and-multiply(-always),
double-and-add(-always) or the Montgomery ladder algorithm are examples with
constant operation sequences. However, a certain amount of side-channel leakage
during single executions, i.e., single-execution leakage, about serially and inde-
pendently processed bits or digits during the exponentiation cannot be prevented
in many cases [5,14,21,24]. This may for instance be location-based leakage [12],
address bit leakage [14], or operation-dependent leakage, e.g., when square and
multiply operations can be distinguished [5].

We propose to specifically take advantage of well-established cluster classifi-
cation algorithms [9] in general and the k-means algorithm for example to exploit
any of such single-execution leakage and to recover secret exponents without any
prior profiling, manual tuning or heuristic leakage models. It is of significant
advantage for an attacker if no profiling is required because profiling can easily
be prevented by using e.g., exponent blinding in the implementation or by execut-
ing the accessible exponentiation with public inputs on a different cryptographic
engine as the private operation. Segments of the exponentiation which corre-
spond to different exponent bits or digits are classified to find similar segments
in an unsupervised way and by using algorithms from the well-researched field of
pattern classification. This is contrary to previous attempts which use individual
algorithms. An unsupervised classification equals the recovery of a secret expo-
nent. Unsupervised clustering is generally useful in side-channel analysis when
profiling information is not available and an exhaustive partitioning is compu-
tationally infeasible. The success of a correct classification of the exponent bits
depends on the amount of available leakage signal in a certain measurement.
Clustering algorithms further allow to determine posterior probabilities for clas-
sified bits. Hence, if only a part of the secret exponent is classified correctly, an
attacker may brute-force bits with low posterior probabilities first. This enables
a straight-forward approach to cope with erroneous bits and allows to signifi-
cantly reduce the secret’s entropy, thus, brute-force complexity, even if a com-
plete recovery is impossible. The only way for an attacker to gather more leakage
is to perform simultaneous measurements in multiple channels because attackers
are not able to collect measurements from repeated executions since exponents
change in every execution. Clustering algorithms allow for a straight-forward
approach to combine such simultaneous side-channel measurements.

In an empirical study, we demonstrate the proposed attack and exploit the
location-based single-execution leakage [12] of an FPGA-based implementation
of an elliptic curve scalar multiplication using the k-means clustering algorithm.

Non-profiled Single-Execution Attacks on Exponentiations 81

We employ high-resolution measurements of the electromagnetic field and select
measurement positions without prior profiling. The main result from our practi-
cal experiments is that the proposed method successfully reduces the remaining
brute-force complexity of the secret scalar to a well-acceptable level in two out
of nine cases. Additionally, we show how a combination of simultaneous mea-
surements leads to a complete recovery of the scalar in a simulated setting.

Related work is discussed in Sect. 2. We present the non-profiled cluster-
ing attack on exponentiation algorithms in Sect. 3. In Sect. 4, we describe our
practical evaluation of the attack and discuss countermeasures. Conclusions are
provided in Sect. 5.

2 Related Work

In the following, we present related work in three aspects of this contribu-
tion: other attacks on exponentiation algorithms, previous applications of cluster
analysis, and combination of measurements.

On Side-Channel Attacks on Exponentiations. Schindler and Itoh [21] present an
attack against multiple blinded executions of exponentiation algorithms assum-
ing that a single execution does not provide enough leakage. Our contribution
presents a complement rather than an alternative to Schindler and Itoh’s attack
since we propose cluster classification algorithms as a single execution attack and
means to improve the exploitation of any single-execution leakage. Walter [24]
describes a single-execution side-channel attack on m-ary (m > 2) sliding win-
dow exponentiation algorithms. He recognizes pre-computed multiplier values in
segments of the digit-wise exponentiation and uses his own algorithm to scan
through the segments in one single pass and partition them into buckets accord-
ing to their pair-wise similarity. While the main idea of our contribution is similar
to the one described by Walter, we propose to employ unsupervised cluster clas-
sification algorithms which have been thoroughly researched in other statistical
applications instead of using an individual algorithm which has not been inves-
tigated by the respective scientific community. In this way, our approach can be
extended to a wide range of exponentiation algorithms and exploit any available
kind of single-execution leakage of independent exponent bits or digits.

There are many published side-channel attacks on exponentiations based on
the correlation coefficient. Messerges et al. [19] first mention cross-correlation of
measurement segments to compare them and then perform a classification based
on manually tuned thresholds. Witteman et al. [25] present an SPA attack on
the square-and-multiply-always algorithm by cross-correlating measurements of
consecutive operations sharing the From our view, using a correlation coefficient
as a measure of similarity only incorporates linear relations while disregarding
absolute values, thus, contained information. Hence, it is only meaningful in cases
when absolute values are of different scales such as when comparing heuristic
models of power consumption to actual measurements or when comparing mea-
surements from different setups. Amiel et al. [2] and Clavier et al. [7] corre-
late heuristic leakage models from fixed multiplier values with the measurement

82 J. Heyszl et al.

to recover the exponent. Perin et al. [20] exploit bit-dependent differences in
exponentiation algorithms using measurements of electromagnetic fields. How-
ever, they require averaging of multiple measurements in their practical results,
which is infeasible in realistic circumstances. Algorithmically they simply sub-
tract exponentiation segments from each other and use manually tuned thresh-
olds to recover information. Hence, and contrary to us, all those approaches
require a manual tuning of thresholds and, in part, heuristic leakage models
as well as ad-hoc algorithms. Our approach using well-established algorithms
provides an algorithmic advantage compared to them. Furthermore, we use the
Euclidean distance instead of the correlation coefficient as a similarity metric
to incorporate the maximum amount of contained information when comparing
segments of the same measurement.

On Previous Applications of Cluster Analysis in SCA. There are previous con-
tributions which mention cluster analysis in the context of side-channel analysis.
Batina et al. [3] propose Differential Cluster Analysis (DCA) as an extension
to DPA. Instead of a difference-of-means test as in classic DPA, a cluster crite-
rion is used as statistical distinguisher. However, they do not use unsupervised
cluster classification algorithms. In [4,18], this work is extended by consider-
ing PCA. Lemke-Rust and Paar [16] propose a profiled multi-execution attack
against masked implementations of symmetric algorithms using the expectation-
maximization clustering algorithm and a training set for the estimation of the
clusters. In a profiled setting, they estimate mixture densities of clusters for
known key values and unknown mask values using multiple executions. Contrar-
ily, our approach is a non-profiled attack.

On the Combination of Measurements. A combination of simultaneous mea-
surements can generally improve the success of side-channel attacks. Agrawal
et al. [1] combine simultaneous measurements of the power consumption and elec-
tromagnetic field for profiled template attacks. Standaert and Archambeau [23]
extend this and apply Principal Component Analysis (PCA) and Fisher’s Lin-
ear Discriminant Analysis (LDA) to reduce the data dimensionality for template
attacks. They also present a simple approach to combine simultaneous measure-
ments for classic Differential Power Analysis (DPA) by treating measurements
from different channels jointly. Souissi et al. [22] and Elaabid et al. [10] extend
Correlation-based differential Power Analysis (CPA) [6] to combine simultane-
ous measurements by using products [10] or sums [22] of correlation coefficients.
Contrary to previous contributions, our approach presents a way of combining
measurements for a non-profiled single-execution attack.

3 Non-profiled Clustering to Attack Exponentiations

When attacking exponentiation algorithms used in public key cryptography, only
a single execution is available to an attacker to recover a secret exponent because
of cryptographic protocols or protection against side-channel analysis.

In the following subsections we first describe the term single-execution leak-
age and how measurement traces are segmented into samples for classification.

Non-profiled Single-Execution Attacks on Exponentiations 83

As a main part, we describe how to apply unsupervised clustering algorithms for
a non-profiled and non manually-tuned attack. For the case that the attack is
not entirely successful due to insufficient single-execution leakage, we describe an
approach to cope with classification errors to achieve low remaining brute-force
complexities nonetheless. Finally, we describe how to use multiple simultaneous
measurements to gather more leakage.

3.1 Single-Execution Side-Channel Leakage of Exponentiations

The common property of all popular exponentiation algorithms, e.g., binary,
m-ary, or sliding window exponentiations is that the computation is segmented
and performed in a loop. In every segment, the same operations are repeated to
process independent bits or digits of the exponent. (If the operations would
be different and depending on exponent bits, the implementation would be
prone to conventional SPA and timing attacks [15].) We use the case of binary
exponentiations which process the exponent bit-wise for our explanations. The
square-and-multiply-always algorithm for instance repeatedly either performs a
square-and-multiply, or a square-and-dummy-multiply operation, depending on
each processed bit. Such repeated operations share similarities for equal bits.
Depending on the implementation and included countermeasures, different side-
channels can be exploited to detect such similarities. We refer to the side-channel
information about different bits which is leaked in single executions of exponen-
tiations as single-execution side-channel leakage. Our approach is able to exploit
any kind of such single-execution leakage.

Figure 1 abstractly depicts a side-channel measurement of a timing-safe binary
exponentiation algorithm in the upper part. The observed computation consists
of a loop with multiple iterations of constant timing which correspond to single
exponent bits. The algorithm could e.g. be a square-and-multiply-always, double-
and-add-always, or Montgomery ladder algorithm. Such a side-channel measure-
ment trace vector t = (t1, ... , tl) of an exponentiation contains l measurement
values tx and covers the entire execution. Binary algorithms process n bits dur-
ing this time in total. To exploit the single-execution leakage of n independent
bits, the trace is cut into n multivariate samples ti = (t(1+(i−1) l

n), ... , t(i l
n)),

1 ≤ i ≤ n of equal length l
n where each sample then corresponds to one bit.

Figure 1 also depicts an abstract example for how a side-channel measurement

Fig. 1. Segmenting a side-channel measurement of an exponentiation into samples

84 J. Heyszl et al.

is cut into samples. The segmentation borders can e.g. be derived from visual
inspection or comparison of shifted trace parts.

3.2 Clustering of Samples Reveals the Secret without Profiling

The multivariate samples ti contain the leakage of independent, secret exponent
bits. Hence, the samples belong to one of two classes, i.e., ωA and ωB . (When
attacking m-ary, or sliding window exponentiation algorithms, m classes are
expected.) All side-channel measurements are affected by normally distributed
measurement- and switching noise. Therefore, samples within classes ωj , j ∈
{A,B} are normally distributed around means μj . The distance between these
means μj is caused by the exploited single-execution leakage. Hence, the distri-
bution of samples ti in two classes ωA and ωB can be described as p(ti|ωA) ∼
N (μA,ΣA) and p(ti|ωB) ∼ N (μB ,ΣB).

The correct partition of samples ti into classes ωA and ωB is unknown to the
attacker. The number of possible partitions equals 2n for binary exponentiations
with n bit exponents. Testing all possible partitions equals brute-forcing a secret
and is computationally infeasible for realistic exponent sizes. Template attacks
find these classifications through matching against templates which are found in
a profiling phase. Other related work use cross-correlation and manually tuned
thresholds as well as individual and ad-hoc algorithms.

However, we found that well-researched unsupervised cluster classification
algorithms such as k-means clustering [9] can be used to find partitions effec-
tively and without any manual methods or prior profiling. Hence, we propose to
use such algorithms for single-execution side-channel attacks on exponentiation
algorithms. Finding a correct partition, or classification, equals the recovery of
the secret exponent. If the correct partition is found, there are only two possibil-
ities to assign the bit values 0 and 1 to two classes ωA and ωB , hence, to recover
the secret exponent.

The choice of a clustering algorithm depends on the shape of the clusters,
hence the distribution of samples within clusters. We decided to start with a
simple model of cluster distributions and assume that all variables (dimensions)
within the multivariate samples ti are independent and exhibit equal variances
σ2 within the two classes. Hence, the distribution of both classes ωA and ωB can
be described as p(ti|ωj) ∼ N (μj , σ

2I), j ∈ {A,B}. The optimal classification
algorithm under these assumptions is the k-means clustering algorithm which is
depicted in Algorithm 1. It uses the Euclidean distance as a similarity metric
and estimates k cluster means μj , j ∈ {1, k}. In the case of binary algorithms,
k equals 2 and two classes ωA and ωB are expected.

Initially, k random samples ti are randomly selected as means and the remain-
ing samples are classified according to shortest Euclidean distance. Then, in
iterations, new means are computed within each class, and the classification
according to shortest Euclidean distance is repeated until the classification is
stable in subsequent iterations. The k-means algorithm is usually executed mul-
tiple times and the best result in terms of a sum-of-squared-error criterion is
finally selected in order to prevent the algorithm from getting stuck in local
maxima.

Non-profiled Single-Execution Attacks on Exponentiations 85

Algorithm 1. Unsupervised k-means clustering algorithm [9]
input: samples ti, 1 ≤ i ≤ n, number of clusters k
output: cluster means μj , 1 ≤ j ≤ k and classification ci ∈ [1..k], 1 ≤ i ≤ n
1: initialize by picking k random samples ti as start values for μj , 1 ≤ j ≤ k
2: repeat
3: assign samples ti to classes ci ∈ [1..k] from shortest distance to μj , 1 ≤ j ≤ k
4: compute new μ′

j as mean of all samples ti with ci = j
5: until μ′

j = μj ∀ j, assign μj new values μ′
j and repeat

Clustering algorithms essentially estimate cluster parameters to perform clas-
sifications. This estimation of clusters could be improved by using more samples
from multiple executions in a first step, even though the secret would then be
different in every execution. The actual attack would then be performed in a
second step and certainly only target a single execution.

Decorrelation and Reduction of Dimensions. If the samples derived from mea-
surements do not comply with the model which is required for the application
of k-means (described above), the results will be worse than theoretically pos-
sible. The k-means algorithm assumes statistical independence of dimensions
(variables) in the samples, thus, uncorrelated noise influences. However, subse-
quent measurement values of the power consumption possibly contain the same
switching noise influence. One way to handle this is to employ the expectation-
maximization clustering algorithm which provides more degrees of freedom in
such cases (because it also models the covariance between variables). However,
it requires a significant overhead in computation. Alternatively, if necessary, this
can be coped with by employing Principal Component Analysis (PCA) [9]. PCA
performs a projection into a lower dimensional, orthogonal space by maximizing
the variance in the samples. Hence, the remaining dimensions are uncorrelated.
(As a drawback, this is performed without regard of cluster distributions or
cluster discriminants which could possibly lead to inferior results.) PCA can
certainly also be used to reduce the amount of dimensions in the samples ti for
computational reasons.

3.3 Brute-Force Complexity to Handle Classification Errors

If a recovered exponent cannot be verified as being entirely correct, at least one
sample (bit) is misclassified by the algorithm. We propose a way to cope with
such situations. Clustering algorithms allow to derive posterior class-membership
probabilities [9] for all samples ti along with their classification. For instance
when employing the k-means clustering algorithm, samples which are classified
into class ωA and are close to the separating plane between ωA and ωB have a
low posterior probability of belonging to class ωA. An attacker may approach
misclassifications by brute-forcing samples with low posterior probabilities first.
A straight-forward approach is to iteratively consider an increasing range of sam-
ples i with the lowest posterior probabilities and brute-force their classification

86 J. Heyszl et al.

until all erroneous samples are included in this range, thus, a correct classifi-
cation is achieved. Given that m equals the final number, which the attacker
certainly does not know from the beginning, he would proceed iteratively and
increase the number of included bits i starting from 1 until m is reached. The
required brute-force complexity to handle classification errors can, thus, be given
as an upper bound by using the sum formula of a geometric series. Including the
mandatory step of brute-forcing the classes-to-bit-values assignment (A and B

to 0 and 1), this required brute-force complexity equals 2 ×
m∑

i=1

2i = 2m+1+1 − 2

for m > 0 and can be defined as 2 for m = 0 (classification entirely correct; one
out of two trial for correct class-to-bit-value assignment). This means that even
if the exponent is not recovered entirely, the entropy can be significantly reduced
which is a significant advantage over previous methods which do not provide such
a mechanism to cope with errors during an attack.

3.4 Combining Side-Channel Measurements

The success of single-execution attacks on exponentiation algorithms generally
suffers from insufficient leakage [5,21]. Countermeasures introduce superficial
noise to decrease the signal-to-noise ratio of the leakage or aim at reducing
the leakage signal directly. Averaging repeated measurements with equal input
values is a simple example for an approach to decrease such noise. But this
is not feasible if the secret changes in every execution which is the case for
most cryptographic exponentiations. Hence, simultaneous measurements are the
only way for an attacker to increase the gathered side-channel leakage. Cluster-
ing algorithms allow to combine simultaneous side-channel measurements in a
straight-forward way. This is achieved by generating multivariate samples using
values from all measurements. As an example, samples t1i from measurement 1
are combined with samples t2i from measurement 2 leading to combined samples
tcombined
i = (t1i , t

2
i). This improves the classification, if the new measurements

contain additional leakage information. Hence, we propose to improve clustering-
based single-execution attacks through combining the contained information from
multiple, simultaneous side-channel measurements.

4 Practical Evaluation

In this section, we practically demonstrate our proposed attack against an FPGA-
based ECC implementation. As a single-execution side-channel leakage, we
exploit location-based leakage [12] revealed by high-resolution measurements of
the electromagnetic field [13]. Following the principle that our attack is non-
profiled, we do not use any prior knowledge to find measurement positions with
high leakage.

Non-profiled Single-Execution Attacks on Exponentiations 87

4.1 Design-Under-Test and Measurement Setup

Our target is an implementation of an elliptic curve scalar multiplication con-
figured into a Xilinx Spartan-3 (XC3S200) FPGA. It gets affine x- and y-
coordinates of a base point P and a scalar d as input and returns affine x-
and y-coordinates of the resulting point d · P . The result is computed using the
Montgomery ladder algorithm presented by López and Dahab [17] which is a
binary exponentiation algorithm processing a 163 bit scalar bitwise in a uniform
operation sequence. This prevents timing-based single-execution leakage. The
projective coordinates of the input point are randomized [8] as a countermeasure
against differential power analysis. However, the design exhibits location-based
information leakage [12] because it uses working registers depending on the value
of the processed scalar bit and no protection mechanism against this is included.
For these reasons, the design is eligible for our attack and we exploit this single-
execution leakage using high-resolution electromagnetic field measurements.

Backside access to integrated circuit dies generally requires less practical
effort in case of plastic or smartcard packages. The plastic package on the back-
side of the FPGA was removed mechanically to enable measurements close to
the die surface. We use an inductive near-field probe with a 100µm resolution,
built-in 30 dB amplifier, and external 30 dB amplifier (both with a noise figure of
4.5 dB). The detected location-based leakage depends on the measurement posi-
tion on the surface of the die [12]. Since our attack is non-profiled, we are unable
to find a position with high leakage through prior profiling. Instead, we choose
measurement positions by geometrical means. Figure 2 shows those 9 positions
marked with circles and annotated with numbers. They are organized in an 3
by 3 array with 1.5mm distance in x- and y-direction. These geometries seem
feasible for an actual array of electromagnetic probes [22]. The dashed rectan-
gle depicts the surface of the FPGA die which measures ≈ 5000 ∗ 4000µm. We
performed the attack on those measurements.

Fig. 2. FPGA die area as dashed rectangle with array of marked measurement positions

88 J. Heyszl et al.

Furthermore, we demonstrate a combination of simultaneous measurements
to increase the leakage in a simulated setting. Since we did not have an array
probe or multiple probes at hand, we simulated this by moving one probe to the
marked positions and repeated the measurement with exactly equal processed
values. Hence, we prevent the device from changing the exponent and random
numbers during repeated executions. While this simplification is not exactly the
same as simultaneously using multiple probes, we are convinced that the results
are still conclusive.

All measurements were recorded at a sampling rate of 5GS/s and compressed
by using the sum of squared values in every clock cycle (V2s) to reduce the
amount of data and computation complexity during clustering. Through syn-
chronization of the oscilloscope and the function generator, we prevent frequency
jitter and drift in the measurements.

4.2 Clustering Individual Measurements

We performed our clustering-based attack on individual measurements. Hence,
we segmented every measurement into multivariate samples ti. Each sample
contains 551 compressed values of 551 clock cycles during which one exponent
bit is processed. Figure 3 depicts a cut-out of four consecutive samples (14 to
17) from the measurement at position 3 for illustrative purposes. The borders
of the samples are depicted as vertical dashed lines after every 551 cycles. The
exponent bit values which are processed in the segments are annotated, however,
the corresponding single-execution leakage is not clearly visible.

We attacked the individual measurements by employing the unsupervised
k-means clustering algorithm Algorithm 1 to classify the samples in two clus-
ters as described in Sect. 3.2. The runtime on a regular PC was neglegible and
in the range of seconds. We assess the quality of the result by computing the
remaining brute-force complexity required to recover the entirely correct scalar
after clustering as described in Sect. 3.3. Figure 4 depicts the resulting brute-
force complexity for every individual measurement position according to Fig. 2
and Table 1 displays them in tabular form (columns marked with ‘1’ to ‘9’).

Fig. 3. Four samples (14 to 17) from the compressed measurement at position 3

Non-profiled Single-Execution Attacks on Exponentiations 89

Fig. 4. Remaining brute-force complexity after clustering individual measurements

Table 1. Brute-force complexity after clustering single and combined measurements

Measurement positions 1 2 3 4 5 6 7 8 9 all

Brute-force complexity [bits] 165 37 70 165 165 60 51 22 165 0

As a main result of our practical study, we are able to report that in two out of
nine cases, for the measurements at position 8 and 2, the remaining brute-force
complexity (22 and 37 bits) is clearly within a practical reach. An attacker could,
thus, repeat a measurement at different positions, perform the attack including
the incremental brute-force and eventually be successful with a high probability.
This clearly demonstrates the capabilities of unsupervised cluster classification
as a non-profiled single-execution attack on exponentiation algorithms to exploit
single-execution leakage.

Positions 1, 4, 5 and 9 lead to a brute-force complexity of 165 bits which is the
maximum value (163+1+1 bits) indicating that the clustering algorithm led to
largely incorrect results. Possible reasons for this are insufficient signal-to-noise
ratios of the exploited leakage, outlier samples, or that the k-means algorithm
is insufficient since the assumed model of cluster distributions does not fit. (An
influence of one bit of some internal ALU operation for the separation of two
clusters is impossible since each sample contains many ALU operations with
different data.)

4.3 Clustering Combined Measurements

The results from clustering individual measurements lead to remaining brute-
force complexities greater than zero and in seven out of nine cases beyond limits
for practical brute-force. As a second step, we demonstrate how simultaneous
side-channel measurements can be combined to reduce the remaining brute-
force complexity, hence, improve the attack. We combined the measurements
as described in Sect. 3.4 and repeated the k-means clustering. As an important
result we report, that the classification then leads to a remaining brute-force

90 J. Heyszl et al.

Fig. 5. Visual representation of clustering results to show gain of combination

complexity of zero, denoted as ‘all ’ in Table 1. This clearly demonstrates the
advantage of combining measurements for attacking exponentiation algorithms
using unsupervised clustering algorithms.

Figure 5(a), (b) demonstrate the advantage of combining measurements in
an more illustrative way. Figure 5(a) visually represents the result after clus-
tering the single measurement at position number 1. The clustering algorithm
output two cluster means μA and μB and samples which are classified according
to a separation plane in the middle between those means (equals classification
according to shortest Euclidean distance). For the illustration of this cluster-
ing result, we projected all multivariate samples ti (multi-dimensional) onto a
line (one-dimensional) which extends through both cluster means. As such, the
resulting single values per sample are linear combinations of all vector dimen-
sions according to the weighting factors determined by the clustering result. After
this projection, the two cluster distributions become clearly observable. For the
illustration, we use the correct scalar to mark the samples according to their
proper class membership. Additionally, we estimate the two assumed Gaussian
distributions and depict two curves, denoted as class A/B density estimation.
It is obvious that the two distributions overlap in Fig. 5(a) which means that
there have been misclassifications. Many samples are across the wrong side of the
half distance between the two distributions which corresponds to the separation
plane. This leads to the high brute-force complexity reported in Table 1.

Non-profiled Single-Execution Attacks on Exponentiations 91

Figure 5(b) depicts a similar linear projection of the result after clustering
of 9 combined measurements. It can be observed clearly, that the separation of
the two classes is significantly improved by the combination of measurements
which also complies with the brute-force complexity of 0 reported in Table 1.

4.4 Countermeasures

Generally, all methods which reduce the signal-to-noise ratio of arbitrary single-
execution leakage, either by reducing the single-execution leakage signal, or
increasing the noise level, make our attack more difficult since the attacker is
limited in the number of measurements he can record simultaneously. There is
no dedicated other countermeasure except for such general ones.

Location-based single-execution leakage as it is exploited in this practical
attack can specifically be prevented by randomizing variable locations [12], by
balancing registers and their signal paths, or by locating them in an interleaved
way that they cannot be distinguished [11].

5 Conclusion

We demonstrate that unsupervised clustering algorithms are powerful for attack-
ing a wide range of exponentiation algorithms in single-execution settings and
without any prior profiling or manually tuned thresholds, which is of significant
advantage for attackers. Instead of individual ad-hoc algorithms we propose to
use well-research cluster classification algorithms. Any available single-execution
side-channel leakage can be exploited.

In a practical evaluation we successfully recover the secret scalar from an
FPGA-based ECC implementation. Individual measurements of the electromag-
netic field partly lead to sufficiently low remaining brute-force complexities.
By performing the attack including the incremental brute-force at several posi-
tions, the attacker might get successful with a realistic effort. Additionally, we
provide evidence for the advantage of combining simultaneous measurements.
This means that instead of finding specifically good measurement positions, an
attacker might simply combine leakage information from multiple simultaneous
measurements.

Acknowledgments. This work was partly funded by the German Federal Ministry
of Education and Research in the project SIBASE through grant number 01IS13020.

References

1. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel attacks. In: Walter, C.D.,
Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer,
Heidelberg (2003)

92 J. Heyszl et al.

2. Amiel, F., Feix, B., Villegas, K.: Power analysis for secret recovering and reverse
engineering of public key algorithms. In: Adams, C., Miri, A., Wiener, M. (eds.)
SAC 2007. LNCS, vol. 4876, pp. 110–125. Springer, Heidelberg (2007)

3. Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential cluster analysis. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg
(2009)

4. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA:
first results of using principal component analysis for extensive power analysis.
In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012)

5. Bauer, S.: Attacking exponent blinding in RSA without CRT. In: Schindler, W.,
Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 82–88. Springer, Heidelberg
(2012)

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

8. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

9. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-
Interscience, Hoboken (2001)

10. Elaabid, M.A., Meynard, O., Guilley, S., Danger, J.-L.: Combined side-channel
attacks. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 175–
190. Springer, Heidelberg (2011)

11. He, W., de la Torre, E., Riesgo, T.: An interleaved EPE-Immune PA-DPL struc-
ture for resisting concentrated EM side channel attacks on FPGA implementation.
In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 39–53.
Springer, Heidelberg (2012)

12. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012)

13. Heyszl, J., Merli, D., Heinz, B., De Santis, F., Sigl, G.: Strengths and limitations
of high-resolution electromagnetic field measurements for side-channel analysis.
In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 248–262. Springer,
Heidelberg (2013)

14. Itoh, K., Izu, T., Takenaka, M.: Address-bit differential power analysis of crypto-
graphic schemes OK-ECDH and OK-ECDSA. In: Kaliski, B.S., Koç, Ç.K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003)

15. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

16. Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel
analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
14–27. Springer, Heidelberg (2007)

17. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

Non-profiled Single-Execution Attacks on Exponentiations 93

18. Mavroeidis, D., Batina, L., van Laarhoven, T., Marchiori, E.: PCA, eigenvector
localization and clustering for side-channel attacks on cryptographic hardware
devices. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part I. LNCS, vol. 7523, pp. 253–268. Springer, Heidelberg (2012)

19. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999)

20. Perin, G., Torres, L., Benoit, P., Maurine, P.: Amplitude demodulation-based EM
analysis of different RSA implementations. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2012, pp. 1167–1172, Mar 2012

21. Schindler, W., Itoh, K.: Exponent blinding does not always lift (partial) SPA resis-
tance to higher-level security. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS,
vol. 6715, pp. 73–90. Springer, Heidelberg (2011)

22. Souissi, Y., Bhasin, S., Guilley, S., Nassar, M., Danger, J.-L.: Towards different
flavors of combined side channel attacks. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 245–259. Springer, Heidelberg (2012)

23. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

24. Walter, C.D.: Sliding windows succumbs to big MAC attack. In: Koç, Ç.K., Nac-
cache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

25. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-
always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

Optimization of Power Analysis
Using Neural Network

Zdenek Martinasek(B), Jan Hajny, and Lukas Malina

Department of Telecommunications, Brno University of Technology,
Technicka 12, 612 00 Brno, Czech Republic

martinasek@feec.vutbr.cz

Abstract. In power analysis, many different statistical methods and
power consumption models are used to obtain the value of a secret key
from the power traces measured. An interesting method of power analysis
based on multi-layer perceptron was presented in [1] claiming a 90 % suc-
cess rate. The theoretical and empirical success rates were determined
to be 80% and 85%, respectively, which is not sufficient enough. In
the paper, we propose and realize an optimization of this power analy-
sis method which improves the success rate to almost 100 %. The opti-
mization is based on preprocessing the measured power traces using the
calculation of the average trace and the subsequent calculation of the
difference power traces. In this way, the prepared power patterns were
used for neural network training and of course during the attack. This
optimization is computationally undemanding compared to other meth-
ods of preprocessing usually applied in power analysis, and has a great
impact on classification results. In the paper, we compare the results of
the optimized method with the original implementation. We highlight
positive and also some negative impacts of the optimization on classifi-
cation results.

Keywords: Power analysis · Neural network · Optimization ·
Preprocessing

1 Introduction

Power analysis (PA) measures and analyzes the power consumption of crypto-
graphic devices depending on their activity. It was introduced by Kocher in [2].
The goal of PA is to determine the sensitive information of cryptographic devices
from the measured power consumption and to apply the obtained information in
order to abuse the cryptographic device. There are two basic methods of power
analysis: simple PA and differential PA. The attacker tries to determine the
secret key directly from the traces measured in the simple power analysis (SPA).
In the most extreme case, this means that the attacker attempts to reveal the
key based on one single power trace. The goal of the differential power analysis
(DPA) attacks is to reveal the secret key of the cryptographic module by using

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 94–107, 2014.
DOI: 10.1007/978-3-319-08302-5 7, c© Springer International Publishing Switzerland 2014

Optimization of Power Analysis Using Neural Network 95

a large number of power traces that have been recorded while the device was
encrypting or decrypting various input data. Power analysis is widely discussed
and belongs to the most popular types of side channel analysis methods because
the attacker does not need any expensive special equipment. A detailed descrip-
tion of power analysis including side-channel sources, testbed, statistical tests
and countermeasures is summarized in the book [3].

1.1 Related Work

Simple power analysis attacks were described by Kocher in [2]. A typical example
of SPA is the attack on the implementation of the RSA (Rivest Shamir Adleman)
asymmetric cryptographic algorithm, where the difference in power consumption
between the operations of multiplication and squaring can be observed [4]. Tem-
plate based attacks are another type of SPA attack, which were introduced in [5].
Practical aspects of template attacks have been discussed in [6,7].

The concept of the DPA attack was first described also in [2] and the basic
principle was introduced on a DES algorithm using the statistical method based
on the Difference of Means. Subsequently, applicable statistical tests were dis-
cussed in [8]. An important question of the impact of preprocessing the measured
data on the effectiveness of DPA was presented in [9,10]. The application of the
correlation coefficient as a statistical method in DPA was described in [11] and
nowadays, this method is one of the most widely used. A detailed description of
the general schema on which all power analyses are based and the best known
statistical tests including the basic power simulation models are given in [3,12].

One of the first examples of digital signal processing applied to side channel
analysis can be found in [13]. Digital filtering is used to facilitate attacks based
on side channel analysis for devices such as Xilinx Field Programmable Gate
Arrays (FPGAs) [14], Radio Frequency Identification (RFID) devices [15–17]
and Cortex-M3 SoC [18].

Neural networks (NN) are used mostly in the cryptography branch to realize
key distribution [19], hash functions [20], random number generators [21], in
public-key cryptography [22], and in the exchange protocols [23] (similar to the
Diffie-Hellman protocol). The publications [24,25] dealing with the use of NN
in the side channel cryptanalysis are mostly focused on acoustic side channels,
where NN are used for the classification of captured records of buttons pressed
on a keyboard.

In the field of power analysis, the possibility of using neural networks was first
published in [26]. Naturally, this work was followed by other authors, e.g. [27–29],
who dealt with the classification of individual power prints. These works are mostly
oriented towards reverse engineering based on power print classification. The usage
of neural networks for the classification of a secret key value has been sparsely pub-
lished and tested yet. Works [30–33] dealing with this issue are based on machine
learning algorithm such as support vector machines (SVM).

An interesting method based on typical multi-layer perceptron (MLP) was
demonstrated in [1]. In this work, a neural network was used for the classification
of the AES secret key. This power analysis method uses a typical two-layer

96 Z. Martinasek et al.

perceptron (three-layer neural network if we take into consideration the input
layer) to determine the secret key value only from one power trace measured.
First classification results were really promising and this method achieved a
successful classification of 90% for the first byte of the secret key. The method
was thoroughly tested using 2560 power traces and an empirical success rate of
around 85% was determined. The theoretical success rate determined from the
results was only about 80%. Other negative characteristics were revealed during
the subsequent testing, e.g. the distribution of the maximum probability values
or the low probability value of selected key estimation.

1.2 Our Contribution

Our contribution lies in the optimization of the power analysis method described
in [1]. We minimize the above-mentioned negative characteristics of the method
implementation to increase the success rate of classification. The optimization is
based on preprocessing the power traces measured, using the calculation of the
average trace and the subsequent calculation of the difference power traces. Pre-
processed power patterns are used for the neural network training and, naturally,
during the attack phase, in the same way as described in [1]. This optimization
is computationally undemanding compared to other methods of preprocessing
usually applied in power analysis (e.g. filtering [34]) and has a great impact on
the classification results. In the paper, we compare the results of the optimized
method with the original implementation. We highlight the positive and also
some small negative impacts of the optimization on the classification results.
Both methods were verified using 2, 560 power traces corresponding to all the
values of the secret key to analyze the repeatability and feasibility of the method.
In the original paper, the cross-validation was not used to verify the neural net-
work, we decided to compare the original method implementation with the opti-
mized method, using the typical 10-fold cross-validation. In data mining and
machine learning, the 10-fold cross-validation is the most common way to verify
the model. Our contribution can be summarized in the following main points:

– optimization proposal,
– implementation of optimization,
– comparison of results,
– cross-validation of both implementations.

2 Method and Testbed Description

The following text summarizes the most important facts about the original
implementation of the power analysis method and the experimental setup. The
fundamental goal of the method is to obtain from the power trace measured the
secret key value, which is stored in the cryptographic module. In the following
text, we denote the secret key stored in the attacked cryptographic module as
Ksec, and the estimated value of secret key, which was determined using a neural

Optimization of Power Analysis Using Neural Network 97

network, as Kest. Naturally, if the method works correctly, the values Kest and
Ksec are equal at the end of the classification process. Assume that the secret
key can be expressed in bytes as Ksec = {k1, k2, . . . , kN} for 0 ≤ ki ≤ 255, where
N represents the secret key length and i each step of the method. The method
assumes sequential classification as most DPA attacks do, which means that the
classification is realized byte by byte. This power analysis determines the first
byte k1 of the secret key in the first step and the second byte k2 in the second
step, and so on. The difference between individual steps is in the division of the
power traces measured into parts corresponding to the time intervals in which
the cryptographic device works with the respective bytes of the secret key. The
method is divided into three phases:

– The first phase is the preparation of power consumption patterns, where the
attacker has to prepare the training set to train the neural network. The
attacker must know the type of the cryptographic module on which he wants
to realize the attack.

– The second phase is the preparation and training of the neural network using
the power patterns measured in the first phase.

– The third phase is the attack. The attacker measures the power consumption
of the device under attack and inserts the measured power trace to the input of
the trained neural network. The neural network assigns the probability vector
to the power consumption that contains probabilities for all key estimates.
The estimate key with the highest probability should be equal to the secret
key stored in the device under attack.

It is clear that it is not suitable to measure and classify the power trace cor-
responding to the whole cryptographic algorithm but it is better to locate some
important operations where the cryptographic module works with intermediate
result and the secret key. The AddRoundKey and SubBytes operations represent
a suitable place in the power trace of the AES algorithm.

A complete AES algorithm with a key length of 128 bits was implemented
into the cryptographic module and the synchronization was performed only for
the AddRoudnKey and SubBytes operations in the initialization phase of the
algorithm. The program allowed incrementing and decrementing the first byte
of the secret key (k1) and indicated this operation by sending the respective
value via a serial port to a computer. In [1] and in our experiment, the mea-
surements were focused on the first byte of the secret key but we claim that
this power analysis method is able to classify the whole AES secret key from
only one measured power trace. Therefore, the term secret key denotes the first
byte of the secret key in the following text. The synchronization signal and the
communication with the computer did not affect the power consumption of the
cryptographic module. The cryptographic module was represented by the PIC
8-bit microcontroller, and for the power consumption measurement we used the
CT-6 current probe and the Tektronix DPO-4032 digital oscilloscope. We used
standard operating conditions with 5V power supply.

A well known fact is that noise always poses the problem during the power
consumption measurement. We performed the experimental measurements of a

98 Z. Martinasek et al.

Fig. 1. Original power patterns. Fig. 2. Preprocessed power patterns.

Fig. 3. Detail of original patterns. Fig. 4. Detail of preprocessed patterns.

test bed made according to the information provided in [3] and we established
that the noise level was distributed according to the normal distribution with the
parameters μ = 0 mA and σ = 5 mA. Every stored power trace was calculated
as an average power trace from ten power traces measured using the digital
oscilloscope to reduce electronic noise. More information about the testbed is
given in [12,35]. Our other experiments with power analysis and implementation,
for example power consumption measurement of smart phone encrypted data,
are reported in [36,37].

3 Proposed Optimization

The optimization is based on the preprocessing of power traces measured during
the first phase of the method, where the training patterns are prepared. During
this phase, the attacker tries to obtain the training patterns of power consump-
tion for the AddRoundKey and SubBytes operations for all variants of the secret
key byte k1 (256 possible variants). Figure 1 shows the power patterns for all val-
ues of the secret key cut out from the whole power trace for the first byte, and
Fig. 3 shows a detail of the power peak at time t[n] = 6, 000. From these figures,

Optimization of Power Analysis Using Neural Network 99

it is clear that the measured power traces are greatly synchronized and divided
into several groups. These power patterns were stored and used for the neural
network training in the original method proposal and implementation [1] (it was
used three times 256 power traces for neural network training). We magnified
the differences in the power traces measured to improve the classification results.
Increased differences were achieved by employing a preprocessing process based
on the calculation of average power traces corresponding to every key value. The
main principle of preprocessing is described in the following text.

The measured power traces are functions with discrete time. We denote
the measured power traces corresponding to every secret key value as P [i, n],
where n represents the discrete time n = {0, . . . , 12000}, and i represents all
possible secret key byte values from 0 to 255. Subsequently, we can calculate an
average trace Ā using the following equation:

Ā[n] =
1

256

255∑

i=0

P [i, n]. (1)

The training patterns for the optimized implementation are calculated as a
subtraction of measured traces from the average trace and are denoted as PD:

PD[i, n] = Ā[n] − P [i, n] =
1

256

255∑

i=0

P [i, n] − P [i, n]. (2)

Figure 2 shows the resulting power patterns after preprocessing and Fig. 4 shows
the corresponding power peak detail at time t[n] = 6, 000. The resulting pat-
terns were stored and used for the neural network training in the optimized
implementation. If we compare these two sets of patterns, it is clear that after
preprocessing the patterns show the places where the power traces are different.

4 Comparison of Classification Results

The neural network was implemented and trained in Matlab using the Netlab
neural network toolbox in the same way as described in [1]. The implementation
differs only in the preprocessing of power pattern according to the optimization
proposal described in Sect. 3. To compare the suitability of optimization, we
measured once again the whole set of power traces corresponding to all the
secret key values and this set was subsequently analyzed using the created and
trained neural network. The measured traces were stored in the matrix and all
matrix rows (all power traces) were classified using the neural network. In this
manner, we obtained classification results for all possible key values and the first
notion of how successful the optimized method is when compared to the original
implementation.

The classification of all power traces gave the matrices RD of dimension
255 × 255. The row index corresponds to the value of a secret key Ksec and the
column index corresponds to the value of a key estimate Kest. In other words,

100 Z. Martinasek et al.

Table 1. Part of the resulting matrices.

Original implementation R Optimized implementation RD

... .
2 0.00% 0.00% 6.46% 0.00% . . . 0.00% 0.00% 92.86% 0.00% . . .
1 0.00% 66.42% 0.00% 0.00% . . . 0.00% 99.87% 0.00% 0.00% . . .
0 36.77% 0.00% 0.00% 0.00% . . . 98.23% 0.00% 0.00% 0.00% . . .

Ksec/Kest 0 1 2 3 . . . 0 1 2 3 . . .

the neural network assigned to every measured power trace a probability vector
for individual key estimates. Table 1 shows a really small part of the resulting
matrix RD together with the original results matrix R. From Table 1 it can
be seen that the neural network classified the power trace corresponding to
Ksec = 0 with a probability of 98.23% for the key estimate Kest = 0 and other
estimates with zero probability in the optimized implementation (we do not take
into consideration the whole output vector in this demonstration). The neural
networks classified the power trace corresponding to Ksec = 0 with a probability
of 36.77% for the key estimate Kest = 0 in the original implementation. From
this small comparison of the results obtained, we can confirm the increase in
the probability of correct key estimates. For example, probability estimates for
correct key 0 and 1 increased from 36.77% and 66.42% to 98.23% and 99.87%
respectively.

The whole matrix R of classification is shown graphically in Fig. 5 and matrix
RD is shown in Fig. 6. Each row of the matrix corresponds to the output proba-
bility vector, which is the result of power trace classification. Each column con-
tains the probability of an individual key estimate. The main goal of the method
is to have the estimate key value equal to the secret key value after classification.
In other words, the function Kest = Ksec is true. The function Kest = Ksec is
visible in both matrices but in RD it is much more distinguishable because the
correct classified probabilities consist of values between 90% and 100% and thus
the line is darker. The graphs also show the reduction of alternative variants of
classification and thus the absence of parallel lines with the function Kest = Ksec

in Fig. 6. The graphs displayed in Figs. 7 and 8 confirm this desired property.
These graphs show the classification results (output probability vectors) for five
chosen secret keys for both implementations. Appropriate probability vectors
for the chosen Ksec = 5, 41, 81, 129, 248 values are distinguished by color and
the optimized implementation is shown in Fig. 8 and original implementation in
Fig. 7. If we compare the results, for example, for the power trace Ksec = 5 of the
optimized implementation, the increase in the correct key estimate from 35% to
96% is clearly visible while other possible key estimates were fully suppressed.
This desired property, i.e. suppressing potential key estimates was confirmed
for the other three chosen secret keys (41, 81, 248). For the last chosen power
trace corresponding to the secret key 129, alternative key estimates were also
suppressed, except one, but the probability of correct key estimate increased

Optimization of Power Analysis Using Neural Network 101

Fig. 5. Graphically depicted matrix R. Fig. 6. Graphically depicted matrix
RD.

Fig. 7. Probability vector for five secret
keys of the original method.

Fig. 8. Probability vector for five secret
keys of the optimized method.

from 70% to 90%. From these results, we conclude that proposed optimization
allows a significant increase in the classification results because the probability
of correct key estimates is increased and the other possible key estimates are
suppressed.

On the other hand, a complete suppression of alternative probabilities can be
negative, because the probability of a correct key estimate was always the second
highest probability for all erroneously classified keys in the original implementa-
tion. The attacker would use this feature if it happened that the key was badly
classified at the end of the attack. If the optimization suppressed all alternative
possibilities of key estimates, similarly like in Fig. 8, the attacker would not be
able to try a second key estimate.

However, it is necessary to investigate all selected key estimates from the
tested set because during this investigation, the theoretical success rate about
80% was calculated in the original implementation. The main problem of wrongly
classified key estimations was the low value of the selected highest probability.
Figure 9 shows these selected highest probabilities of power traces corresponding
to all the values of the secret key for the original implementation. In other words,
it shows which key estimate was classified with the highest probability for a
specific power trace. The graph is displayed with two Y-axes for better clarity.

102 Z. Martinasek et al.

Fig. 9. The highest selected probabili-
ties of original implementation.

Fig. 10. The highest selected probabil-
ities of optimized implementation.

Fig. 11. Histogram of highest probabil-
ities of original implementation.

Fig. 12. Histogram of highest probabil-
ities of optimized implementation.

The X-axis represents the secret key values and the blue Y-axis shows the prob-
ability of the highest selected probability while the red Y-axis corresponds to
the chosen key estimate. The shape of the function Kest = Ksec is again clearly
visible and only a few points interrupt the linear progression. From the whole
proofing set (256 power traces measured), the neural network classified a wrong
key estimate sixteen times in the original implementation. Classification errors
occurred for key estimates with low values of the highest probability. The average
value of the highest probability which led to the wrong classification was 17%.
From these results, the theoretical border of correct classification was established
as 20%. For key estimates with a selected highest probability lower than 20%,
the probability of wrong classification is higher. Figure 9 shows that the occur-
rence of 14%, 18% and 20% probabilities is no exception. Figure 11 displays a
histogram of selected highest probabilities for the original implementation. From
the histogram, it can be seen that probabilities of up to 10% occurred twenty-
one times while the probabilities of 10–20 % occurred thirty-eight times, which
makes a total of 59 occurrences of all 256 values. The total number of keys poten-
tially predisposed to incorrect classification is about 23%, which means that the
original method theoretically works with a success rate of about 80%.

Optimization of Power Analysis Using Neural Network 103

These results obtained from the first implementation were promising but
the success rate was not sufficient. This was the main reason why we tried
an optimized implementation to increase the selected highest probabilities and
thus reduce the wrongly classified keys. Figure 10 shows the selected highest
probabilities for the optimized implementation with the course of the func-
tion Kest = Ksec is almost smooth and containing only nine wrongly classi-
fied keys. If we compare these results with the first implementation results, we
achieve a decrease in wrong classification from 16 to 9, which corresponds to an
improvement of 43%. These results clearly demonstrate the functionality and
suitability of preprocessing the power traces measured for classification using a
neural network. Nine wrongly classified key estimates correspond to 3.5% of the
power traces measured. Therefore, we can declare that the optimized method
identified the correct value of the secret key in 96.5% of cases. During repeated
tests (another training of the neural network with the identical training set), the
optimized method achieved a correct classification of 95–98 %.

Figure 12 displays a histogram of the selected highest probabilities for the
optimized implementation. From the histogram, it can be seen that probabilities
of 10% to 70% occurred only five times on average. Probabilities of 70% and
80% occurred ten times and fifteen times, respectively. The largest representa-
tion in the selected maximum probability is that of the 90% to 100% proba-
bilities, which occurred two hundred and five times. The histogram confirmed
the increase of the maximum probabilities, thus increasing the occurrence of
the 90% probability. The total number of keys potentially predisposed to wrong
classification is reduced from 20% to 5% after optimization.

5 Cross Validation

A ten-times larger set of power consumptions was measured and used for a detailed
comparison of the original and optimized method in the same manner as described
in [1]. Ten power traces were independently stored for each value of the secret key.
The set composed of 2, 560 power traces was classified using neural networks in
the same manner as described in the previous sections. The number of wrongly
classified key estimates and the overall success rate are given in Table 2. The orig-
inal method achieved a correct secret key classification in 85 % and the optimized
method achieved a correct secret key classification in 94 %. These results confirm
the previous results including the correct calculation of the theoretical success
rate and the necessity of optimization. We can state that the optimized method
achieved results that were better by 10%.

Table 2. Classification results for 2560 power traces.

Method Number of errors [−] Success rate [%]

Original implementation 378 85.23
Optimized implementation 139 94.57

104 Z. Martinasek et al.

In the original paper, the cross-validation was not used for the verification
of the neural network. We decided to compare the original method with the
optimized method using the typical 10-fold cross-validation. In data mining and
machine learning, the 10-fold cross-validation is the most common method of
model verification. Cross validation is a statistical method of evaluating and
comparing learning algorithms by dividing data into two segments: one is used
to learn or train a model and the other is used to validate the model. In typical
cross validation, the training and validation sets must cross-over in successive
rounds such that each data point has a chance of being validated against. Our
set of 2560 measured power traces consisted of 10 power traces corresponding
to every secret key value, therefore we used 9 power traces for neural network
training and one for testing in every step of validation. The results of 10-fold
cross-validation are summarized in Table 3, where err denotes the number of
wrongly classified key estimates and err denotes the average value of wrong
estimates calculated from every step of the cross-validation.

Table 3. Number of errors for 10-fold cross-validation.

Step of cross-validation 1 2 3 4 5 6 7 8 9 10 err Success rate [%]

Original implementation err[−] 10 5 12 17 8 17 13 14 7 12 11.5 95.71
Optimized implementation err[−] 0 0 0 0 1 0 1 0 0 0 0.2 99.92

The results obtained reveal that the original implementation is able to classify
the secret key with a success rate of around 95%. It is better than the assumption
stated above. This difference is caused by the size of the training set. In the
original implementation, 3 power traces for every secret key value for neural
network training and one for testing were used. In comparison with the cross-
validation, 9 power traces for neural network training and one for testing were
used. The results of cross-validation confirm the positive impact of optimization
on classification results. The optimized method is able to classify the secret key
value with almost 100% success rate.

6 Conclusion

In the paper, we presented and realized an optimization method of the power
analysis based on multi-layer perceptron. The optimization was based on pre-
processing the measured power traces using the calculation of the average trace
and the subsequent calculation of the difference power traces. These power pat-
terns were used for neural network training and, naturally, during the attack
phase. We compared the classification results of the optimized method with the
original implementation and evaluated the positive and negative impact of opti-
mization on classification results.

The proposed optimization allowed a significant improvement in the classi-
fication results because the probability of correct key estimates was increased

Optimization of Power Analysis Using Neural Network 105

and the other possible key estimates were suppressed. On the other hand, a
complete suppression of alternative probabilities can be negative because the
attacker is not able to try a second key estimate if the key estimate with the
highest probability is wrong.

In the original paper, cross-validation was not used to verify the neural net-
work and thus we compare the original method with the optimized method, using
the typical 10-fold cross-validation. The result of cross-validation confirm the
positive impact of optimization on classification result. The optimized method
is able to classify the secret key value with almost a 100% success rate.

The features of the optimized method can be summarized in the following
points:

– optimization is computationally undemanding,
– places where power traces differ can be highlighted,
– probability corresponding to correct key estimations is increased,
– probability corresponding to incorrect key estimations is suppressed,
– number of keys potentially predisposed to wrong classification is reduced,
– negative impact consists in a complete suppression of alternative probabilities.

Acknowledgments. This research work is funded by the Ministry of Industry and
Trade of the Czech Republic, project FR-TI4/647. Measurements were run on computa-
tional facilities of the SIX Research Center, registration number CZ.1.05/2.1.00/03.0072.

References

1. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2), 586–594 (2013)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

3. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York
Inc., Secaucus (2007)

4. Joye, M., Olivier, F.: Side-channel analysis. In: van Tilborg, H.C.A., Jajodia, S.
(eds.) Encyclopedia of Cryptography and Security, pp. 1198–1204. Springer, New
York (2011)

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

6. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

7. Hanley, N., Tunstall, M., Marnane, W.P.: Using templates to distinguish multipli-
cations from squaring operations. Int. J. Inf. Secur. 10(4), 255–266 (2011)

8. Coron, J.S., Naccache, D., Kocher, P.: Statistics and secret leakage. ACM Trans.
Embed. Comput. Syst. 3(3), 492–508 (2004)

9. Joye, M., Paillier, P., Schoenmakers, B.: On second-order differential power analy-
sis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005)

106 Z. Martinasek et al.

10. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

12. Martinasek, Z., Clupek, V., Krisztina, T.: General scheme of differential power
analysis. In: 2013 36th International Conference on Telecommunications and Signal
Processing (TSP), pp. 358–362 (2013)

13. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Messerges, T.S., Dabbish, E.A.,
Sloan, R.H.: Investigations of power analysis attacks on smartcards. In: USENIX
Workshop on Smartcard Technology, pp. 151–162 (1999)

14. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
Virtex-II FPGAs. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pp. 111–124. ACM, New York (2011)

15. Plos, T., Hutter, M., Feldhofer, M.: Evaluation of side-channel preprocessing
techniques on cryptographic-enabled HF and UHF RFID-Tag prototypes. In:
Dominikus, S. (ed.) Workshop on RFID Security 2008, Budapest, Hungary, pp.
114–127, 9–11 July 2008

16. Kasper, T., Oswald, D., Paar, C.: Side-channel analysis of cryptographic rfids with
analog demodulation. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol.
7055, pp. 61–77. Springer, Heidelberg (2012)

17. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

18. Barenghi, A., Pelosi, G., Teglia, Y.: Improving first order differential power attacks
through digital signal processing. In: Proceedings of the 3rd international confer-
ence on Security of information and networks, SIN ’10, pp. 124–133. ACM (2010)

19. Kim, H.M., Kang, D.J., Kim, T.H.: Flexible key distribution for scada network
using multi-agent system. In: ECSIS Symposium on Bio-inspired, Learning, and
Intelligent Systems for Security, pp. 29–34 (2007)

20. Lian, S., Sun, J., Wang, Z.: One-way hash function based on neural network. CoRR
abs/0707.4032 (2007)

21. Wang, Y.H., Shen, Z.D., Zhang, H.G.: Pseudo random number generator based on
hopfield neural network, pp. 2810–2813 (2006)

22. Liu, N., Guo, D.: Security analysis of public-key encryption scheme based on neural
networks and its implementing. In: Wang, Y., Cheung, Y., Liu, H. (eds.) CIS 2006.
LNCS (LNAI), vol. 4456, pp. 443–450. Springer, Heidelberg (2007)

23. Mislovaty, R., Perchenok, Y., Kanter, I., Kinzel, W.: Secure key-exchange protocol
with an absence of injective functions. Phys. Rev. E 66, 066102 (2002)

24. Fiona, A.H.Y.: ERG4920CM Thesis II Keyboard Acoustic Triangulation Attack.
Ph.D. thesis, Department of Information Engineering, The Chinese University of
Hong Kong (2006)

25. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
CCS ’05, pp. 373–382. ACM, New York (2005)

26. Quisquater, J.J., Samyde, D.: Automatic code recognition for smart cards using
a kohonen neural network. In: Proceedings of the 5th conference on Smart Card
Research and Advanced Application Conference, CARDIS’02, Berkeley, CA, USA,
vol. 5, p. 6–6 (2002)

Optimization of Power Analysis Using Neural Network 107

27. Kur, J., Smolka, T., Svenda, P.: Improving resiliency of java card code against
power analysis. In: Mikulaska kryptobesidka, Sbornik prispevku, pp. 29–39 (2009)

28. Martinasek, Z., Macha, T., Zeman, V.: Classifier of power side channel. In: Pro-
ceedings of NIMT2010 (September 2010)

29. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based
leakage characterization for practical security analysis of cryptographic implemen-
tations. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 169–185. Springer,
Heidelberg (2012)

30. Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic
devices using support vector machines. In: Schindler, W., Huss, S.A. (eds.)
COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012)

31. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic
multi-class support vector machines. In: Mangard, S. (ed.) CARDIS 2012. LNCS,
vol. 7771, pp. 263–276. Springer, Heidelberg (2013)

32. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293–302 (2011)

33. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based
on machine learningn. In: COSADE 2011 - Second International Workshop on
Constructive Side-Channel Analysis and Secure Design, pp. 29–41 (2011)

34. Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear trans-
forms. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 219–233. Springer,
Heidelberg (2013)

35. Martinasek, Z., Zeman, V., Sysel, P., Trasy, K.: Near electromagnetic field mea-
surement of microprocessor. Przegl. Elektrotechniczny 89(2a), 203–207 (2013)

36. Malina, L., Clupek, V., Martinasek, Z., Hajny, J., Oguchi, K., Zeman, V.: Eval-
uation of software-oriented block ciphers on smartphones. In: Danger, J.-L.,
Debbabi, M., Marion, J.-Y., Garcia-Alfaro, J., Heywood, N.Z. (eds.) FPS 2013.
LNCS, vol. 8352, pp. 353–368. Springer, Heidelberg (2014)

37. Hajny, J., Malina, L., Martinasek, Z., Tethal, O.: Performance evaluation of
primitives for privacy-enhancing cryptography on current smart-cards and smart-
phones. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S.,
Fitzgerald, W.M. (eds.) DPM 2013 and SETOP 2013. LNCS, vol. 8247, pp. 17–33.
Springer, Heidelberg (2014)

Time-Frequency Analysis
for Second-Order Attacks

Pierre Belgarric1,3, Shivam Bhasin1, Nicolas Bruneau1,4(B),
Jean-Luc Danger1,5, Nicolas Debande1,6, Sylvain Guilley1,5, Annelie Heuser1,

Zakaria Najm1, and Olivier Rioul2,7

1 TELECOM-ParisTech, Crypto Group, Paris, France
nicolas.bruneau@telecom-paristech.fr

2 TELECOM-ParisTech, Digital Communications Group, Paris, France
3 Orange Labs, Applied Cryptography Group, Issy-les-Moulineaux, France

4 STMicroelectronics, AST Division, Rousset, France
5 Secure-IC S.A.S., Rennes, France
6 SERMA ITSEF, Pessac, France

7 École Polytechnique, Palaiseau, France

Abstract. Second-order side-channel attacks are used to break first-
order masking protections. A practical reason which often limits the
efficiency of second-order attacks is the temporal localisation of the leak-
ing samples. Several pairs of leakage samples must be combined which
means high computational power. For second-order attacks, the com-
putational complexity is quadratic. At CHES ’04, Waddle and Wagner
introduced attacks with complexity O(n log2 n) on traces collected from
a hardware cryptographic implementation, where n is the window size, by
working on traces auto-correlation. Nonetheless, the two samples must
belong to the same window which is (normally) not the case for software
implementations. In this article, we introduce preprocessing tools that
improve the efficiency of bi-variate attacks (while keeping a complexity of
O(n log2 n)), even if the two samples that leak are far away one from the
other (as in software). We put forward two main improvements. Firstly,
we introduce a method to avoid losing the phase information. Next, we
empirically notice that keeping the analysis in the frequency domain can
be beneficial for the attack. We apply these attacks in practice on real
measurements, publicly available under the DPA Contest v4, to evalu-
ate the proposed techniques. An attack using a window as large as 4000
points is able to reveal the key in only 3000 traces.

Keywords: Bi-variate attacks · Zero-offset 2O-CPA · Discrete Hartley
transform · Leakage in phase

This work is partially funded by ANR/JST project SPACES: https://spaces.enst.fr/.
Nicolas Debande – This work has been conducted while Nicolas Debande was with
Morpho, Osny, France.
Annelie Heuser – Google European fellow in the field of privacy and is partially
founded by this fellowship.

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 108–122, 2014.
DOI: 10.1007/978-3-319-08302-5 8, c© Springer International Publishing Switzerland 2014

https://spaces.enst.fr/

Time-Frequency Analysis for Second-Order Attacks 109

1 Introduction

Side-Channel Attacks (SCA [1]) and corresponding protection techniques have
been a hot research topic for over a decade now. Data masking [6] is one of few
popular side-channel countermeasures, which motivates thorough investigations
of higher-order SCA as e.g., in [12,15]. The following study deals mainly with
second-order SCA which is used to break a first-order masking countermeasure. A
particular case of second-order SCA is when the two shares used by the masking
scheme are processed or leak simultaneously. In this case, Waddle and Wagner
introduced an attack at CHES ’04 [15], which consists in raising the traces to
the power two. Such an attack, a so-called zero-offset SCA, is commonly used
against hardware or parallel implementations. However, for software implemen-
tations, the two shares naturally leak at different dates or time samples. The
second-order attacks which combine two different time samples are termed bi-
variate SCA. The two different leakage samples are referred to as L(t0) and L(t1)
in the following. Despite bi-variate attacks may be powerful, a practical imple-
mentation might need a large amount of effort from the part of the attacker.
The main problem of bi-variate attacks is to find the exact temporal localization
(t0, t1) corresponding to leakages L(t0) and L(t1). Incidentally, depending on the
implementation, there might exist several such pairs.

To avoid finding the pair (t0, t1) explicitly, Waddle and Wagner introduced
a method called FFT-2DPA, which only requires to find a window in which both
leakages are included. More precisely, the attacker computes the auto-correlation
on this window, which combines the two leakages L(t0) and L(t1) multiplica-
tively. Thus, it is possible to utilize a regular zero-offset SCA on the auto-
correlation trace. The authors of [15] suggest, to compute the auto-correlation as
the inverse Fourier transform of the square modulus of the trace Fourier trans-
form of the window of size n. This way, the preprocessing time has O(n log2 n)
complexity, which is sub-quadratic.

Another category of second-order SCA are collision-based attacks. A par-
ticular case where collision attacks are efficient, is when the same mask is
reused for each substitution box (S-box) of the crypto-algorithm. There exist
two sub-categories of collision attacks: correlation-collision attacks and collision-
correlation attacks. If the unmasked input of the S-box is biased, then
correlation-collision attacks (see for instance [10]) can be applied. Otherwise,
collision-correlation attacks [2] are more suitable. However, when the masking
scheme does not reuse one mask to protect multiple unrelated sensitive variables,
collisions attacks in general are not appropriate.

Summing up, apart from FFT-2DPA, bi-variate attacks usually require the
knowledge of the samples L(t0) and L(t1). If the leakage models M0 and M1

corresponding to the leakages L(t0) and L(t1) are known, then the optimal strat-
egy consists in combining them with a centered product [12]. We denote this
attack as “2O-CPA”. Note that, if the leakage can be approximated, then a
linear-regression approach can mitigate the absence of accurate knowledge of
the models M0 and M1 [4].

110 P. Belgarric et al.

2nd AES roundMixColumnsShiftRowsSubBytesAddRoundKey
(+ Plaintext blinding) (Masked) (+ Mask correction)

(a) Raw trace

(b) Localization of leakage samples by CPA knowing the mask

L (435 ksamples)

t0 t1

(c) Approximate localization of activity “windows” not knowing the mask

xor byte 1

S-box 0

xor byte 0

S-box 1

S-box 15

xor byte 15

L0 L1

Fig. 1. Analyses on traces collected from the first round of a masked AES in software

Figure 1(a) shows the trace L of the beginning of an AES encryption on
a smartcard. We see about 3100 clock cycles (435000 time samples). It is not
possible to distinguish individual operations by visual inspection of the trace.

One way to identify the precise timing of individual operations, consists in
using a clone device, where the masks can be set to zero or are known. In this case,
several monovariate CPAs [1] can be computed to disclose the exact sample(s)
in which each operation leaks as illustrated in Fig. 1(b). Such an analysis seems
impossible, without the access to a clone device. However, without any informa-
tion on the masks, an attacker can compute the several moments or filter the
traces. Figure 1(c) plots the variance of the average of the traces computed over
each clock cycle. It clearly reveals the structure of one AES round: AddRound-
Key (16 identical operations), followed by SubBytes (16 identical operations),
ShiftRows (3 identical operations on rows — indeed, the first row is unchanged by
ShiftRows), MixColumns (4 identical operations on columns), and AddRound-
Key again (corresponding to the second round). The notations in Fig. 1 are as
follows: L0 and L1 (L0,L1 ≤ L; L(t0) ∀ L0 and L(t1) ∀ L1) are the windows
in which the shares #0 and #1 are expected to leak (they correspond to the
so-called educated guesses coined by Oswald et al. [11]); n0 and n1 are the width
of windows L0 and L1, in terms of sample count. For the sake of simplicity, we
assume n0 = n1 = n. Typically, L has few hundreds of thousand samples (e.g.,
435000 in Fig. 1), whereas n0 and n1 may vary from a few hundreds to a couple
of thousands.

Our Contributions. In this paper, we propose five practical methods to make
2O-CPA attacks feasible on first-order masking schemes. All five proposed meth-
ods are generic in nature and need no knowledge of leaking time samples. The
common feature of our attacks is to turn a bivariate leakage into a monovariate

Time-Frequency Analysis for Second-Order Attacks 111

leakage (thanks to a combination that creates a sum of weighted products), that
can be exploited by a classical zero-offset second-order attack. We base ourselves
in the role of an attacker, who has a rough estimate of the zones in L where the
leakages t0 and t1 are likely to be situated (that we call time intervals L0 and L1).
In particular, our preprocessing methods convert two leakage windows of size n
into a new window of size 2n or n, depending on the applied technique. Remark-
ably, these operations remain in complexity O(n log2 n), i.e., sub-quadratic. We
show that our methods allow faster attacks (in terms of number of queries for
the 2O-CPA to reach 80% success rate) than the generalization of FFT-2DPA
on two windows. This gain comes from two major factors:

1. The phase information is kept intact, and
2. The operation is performed in frequency domain.

As shown later, the leakage has a specific signature in terms of waveform shape,
and in our implementation, there are multiple occurrences in time of the leakage.
The representation in the frequency domain allows to regroup all these leakages,
that combine constructively because they share the same waveform. Thus, the
gain in terms of success rate is evident, since the signal is magnified at constant
noise. Besides, from a computational point of view, the attack still stays on a
linear number of points (n or 2n).

Outline of the Paper. The rest of the paper is organized as follows. Pre-
liminaries of tools related to time-frequency conversion are introduced in Sect. 2.
Section 3 describes the five proposed preprocessing techniques, using time-
frequency conversion tools. The attacks are then applied on a real masking imple-
mentation running on an 8-bit AVR smartcard (in Sect. 4). Section 5 provides
further insights into the proposed attacks and their standing as compared to the
state-of-the-art. Finally, conclusions and perspectives are drawn in Sect. 6.

2 Tools for Time-Frequency Analysis

This section provides a short background on common tools used in time-frequency
analysis, which are then used in the proposed attacks in Sect. 3.

2.1 Discrete Fourier Transform

Definition 1 (DFT). The discrete Fourier transform of a sequence Y ∀ R
n is

another sequence DFT [Y] ∀ C
n such as

DFT [Y] (f) =
1∈
n

n−1∑

t=0

Y (t) · exp (−2σıft/n) ,

where ı is one of the (square) roots of 1 in C that is different from ±1.

112 P. Belgarric et al.

Property 1 (Inverse DFT). The DFT can be inversed with the inverse DFT such
that IDFT [DFT [Y]] = Y , where IDFT [Z] (t) = 1◦

n

∑n−1
f=0 Z(f) · exp (+2σıft/n).

Definition 2 (Cross-correlation). The (circular) cross-correlation of two dis-
crete sequences X and Y of n samples is defined by

(X Σ Y)(t) =
n−1∑

t′=0

X(t∗) · Y (t∗ + t mod n).

Theorem 1 (Cross-correlation theorem). Again let X and Y be two dis-
crete sequences of n samples in time domain, then

(X Σ Y)(t) =
∈

n · IDFT
[
DFT [X] · DFT [Y]

]
,

where · denotes complex conjugation.

2.2 Discrete Hartley Transform

The application of a DFT on a sequence of real numbers results in a sequence
of complex numbers. The discrete Hartley transform [7] (DHT) was proposed
as a real-valued alternative to the DFT as DHT multiplies each real input by
cos + sin instead of cos −ı sin as in DFT:

Definition 3 (DHT). The discrete Hartley transform of a sequence Y ∀ R
n

is another sequence DHT [Y] ∀ R
n such as:

DHT [Y] (f) =
1∈
n

n−1∑

t=0

Y (t) · (cos (2σ ft/n) + sin (2σ ft/n)) .

Property 2 (Link between Fourier and Hartley transforms). The DHT of the
temporal signal Y can be obtained from the DFT by:

DHT [Y] (f) = ≥eDFT [Y] (f) − ∼DFT [Y] (f).

Reciprocally, the DFT of the signal Y can be computed from the DHT with the
formula:

DFT [Y] (f) =
1
2 (DHT [Y] (f) + DHT [Y] (−f)) − ı

2 (DHT [Y] (f) − DHT [Y] (−f)) .

Property 3 (DHT Involution). The DHT is its own inverse;
≈Y ∀ R

n,DHT [DHT [Y]] = Y . The proof is given in [7].

As such, the DHT avoids two computationally undesirable characteristics of
the DFT:

1. the inverse DHT is identical with the direct transform — it is not necessary
to keep track of +ı and −ı versions;

2. more importantly, the DHT has real rather than complex values. As a con-
sequence, in a 2O-CPA, the computation of the correlation coefficient can be
done in the frequency spectrum without any loss of information.

Time-Frequency Analysis for Second-Order Attacks 113

2.3 Fast Fourier Transform

The DFT (resp. IDFT) is directly obtainable from the FFT (resp. IFFT), that
runs in O(n log2 n) complexity [5]. The computational complexity of DHT is
also O(n log2 n), as it is simply obtained as the difference between the real and
imaginary parts of the FFT.

3 New Second-Order Attacks with Time-Frequency
Preprocessing

3.1 Why Do We Need New Attacks?

In first-order masking implementations, it is expected that each mask is reused
(at least twice). Unfortunately, as shown in Fig. 1, the distance between two leak-
ages using the same mask can be about 100000 samples. Therefore, the attacker,
in practice, needs two distinct windows where the mask is reused, assuming for
the sake of simplicity both of size n. Since the exact temporal localization of t0
and t1 corresponding to the leakages L(t0) and L(t1) is unknown to the attacker,
he would have to mount

(
n
2

)
2O-CPAs, resulting in O(n2) complexity, which can

become impractical for large n.
Another method would be to apply the approach of FFT-2DPA. However, one

window in which L(t0) and L(t1) are included would be too large (e.g., 100000
time samples), therefore to overcome this problem we straightforwardly extend
the idea of Waddle and Wagner to the case of two distinct windows L0 and L1.
In particular, we consider two different approaches to treat L0 and L1. First, we
use the concatenation:

Definition 4 (auto-corr). Let us denote L01 as the concatenation in time of
L0 and L1. Then auto-corr = (L01 Σ L01) = IDFT

[
|DFT [L01]|2

]
.

Second, if the size of the windows, L0 and L1 have equal width (i.e., n0 =
n1 = n), the attacker can compute cross-correlation between L0 and L1, which
we call x-corr.

Definition 5 (x-corr). x-corr = (L0 Σ L1) = IDFT
[
DFT [L0] · DFT [L1]

]
.

Interestingly, both auto-corr and x-corr can be computed in a complexity
O(n log2 n), owing to the cross-correlation Theorem 1. Moreover, the preprocess-
ing stage turns a bi-variate leakage into a uni-variate leakage. Indeed, the expres-
sions auto-corr(t) and x-corr(t) contain the product L(t0)·L(t1), which is exploited
by a 2O-CPA. So, the optimal prediction function is the same as in any bi-variate
2O-CPA. Thus, after the preprocessing with either auto-corr or x-corr, an attacker
can simply perform a zero-offset SCA on the resultant trace to find the secret key.

However, we noticed two essential drawbacks when using the straightforward
extension from Waddle and Wagner:

– First of all, as the DFT of the signals are processed via a modulus (See e.g.,
Definition 4), the phase information is lost.

114 P. Belgarric et al.

– Second, returning in the timing domain is less efficient than staying in the
frequency domain: indeed, as will be seen with on our practical examples
(Sect. 4), the leaks in software usually feature many peaks in time domain,
that nonetheless have a common signature in frequency domain.

3.2 New Attacks in Frequency Domain

Based on the previous definitions and observations, we introduce 5 new pre-
processing methods, which intend to capture the leakage directly in frequency
domain without transferring it back into time domain. Similar as for auto-corr
and x-corr, we divide methods into two distinct classes. The first class consists
of so-called “one window” methods, which utilizes the concatenated window L01

from two individual windows L0 and L1 resulting in an output of 2n. The second
class of methods (“two windows” methods) are capable to combine two windows
of size n into a single window also of size n.

As analysis methods we use DFT and DHT (see Definition 3 in Sect. 2). The
four resultant preprocessing techniques are summarized in Table 1.

Table 1. Variants of considered preprocessing attacks

Function \ ←name⊕ DFT [·] DHT [·]
concat-←name⊕(f) |DFT [L01] |2 DHT [L01]

2

window-←name⊕(f) |DFT [L0] · DFT [L1] | DHT [L0] · DHT [L1]

In order to reveal the secret key an attacker applies a zero-offset CPA on the
output of these preprocessing techniques and the optimal prediction function
M01, which we specify in Sect. 4.

Additionally as a “heuristic” method, we consider the max-corr attack to cope
with a complex 2O-CPA (i.e., α(· , ·) ∀ C). More precisely,

max-corr = max(|α(≥e(DFT [L01]),M01)|, |α(∼m(DFT [L01]),M01)|).
Beware that the suffix “corr” in “max-corr” refers to the Pearson correlation
coefficient “α” of the high-order CPA, and not to any auto- or cross-correlation.

Concluding, in total we proposed five new methods of the same complexity
O(n log2 n) to mount second-order attacks on a first-order masking implementa-
tion. The described methods are applied on a real masked AES implementation
running on a smartcard in the following section.

4 Experimental Validation

4.1 Software Implementation of the Protected AES

To test our methods, we use the publicly available traces of DPA contest v4 [14],
which uses a low-cost masking protection applied on AES, called Rotating S-
box Masking (RSM). RSM is a first-order countermeasure in which the S-boxes

Time-Frequency Analysis for Second-Order Attacks 115

F28 ∪ F28 are (statically) precomputed. The same mask is XORed to one
plaintext byte (T) and to some S-box output (corresponding to another plain-
text byte T ∗). In this case, collision attacks might be applicable to the design.
However, we considered an attack based on the combination of two “heteroge-
neous” leakage models. The applicable (centered) leakage models are given by:
M0 = wH(T ⊕ M) − 4 and M1 = wH(Sbox[T ∗ ⊕ K] ⊕ M) − 4, where T , T ∗, K
are respectively two bytes of the plaintext and one byte of the key, and where
wH(·) is the Hamming weight function. Thus, the prediction function M01 for
all our preprocessing methods is given by M01 = E[(M0 · M1)|T, T ∗,K].

4.2 Leakage Detection

In the following we ensure that both leakage models M0 and M1 are suitable for
our evaluation. We first perform a CPA on the traces, assuming the mask to be
a known quantity in order to identify the most leaking points and to verify our
assumed leakage models. The prediction functions knowing the mask are simply:
Mm

0 = E[M0|T,M] and Mm
1 = E[M1|T ∗,K,M].

Figure 2(a) shows the correlation between the leakage L0 and the model Mm
0

using 10000 measurements. We additionally marked the time instants when the
correct key takes the highest correlation (i.e., k∗ = max

k
α(L1,Mm

1)), which

amounts in 433 time instants over the window of 6000 points. Figure 2(b) shows
the correlations using Mm

1 , where in 94 time instants the correct key takes
the highest correlation, moreover, these instants are less spread than for the
XOR operation. Further, Fig. 3 shows the mean consumption of each class of the
highest correlation peak around the time instant ⊃3000. One can clearly detect
that the classification according to Mm

0 (resp. Mm
1) is reasonable. We therefore

maintain our models M0 and M1 capturing the XOR and the Sbox[·] operation.
The average number of traces to break the key using Mm

1 is about 15 (very low!)
for a success rate �80 %, as can be seen in Fig. 4(a).

4.3 Empirical Evaluation

First of all, we confirm that a direct application of a 1O-CPA (Brier et al. [1])
using model M0 or M1 on the whole trace L does not allow to retrieve any
key byte using 100000 traces. No preprocessing was applied on the traces before
the attack. Then, we applied a bi-variate 2O-CPA by multiplying the two most
leaking samples for models Mm

0 and Mm
1 . The success rate is given in Fig. 4(b).

About 300 traces are sufficient to break the key with probability �80 %.
For our empirical evaluation we choose 3 different sets of window sizes n:

small n = {50, 200}, medium n = {500, 2000}, large n = {4000, 6000}. So, auto-
corr, concat-dft & concat-dht are calculated on a window of size 2n, whereas
x-corr, window-dft & window-dht utilize two windows each with size n. Since only
a fixed number of measurement traces (100000) are provided by the DPA contest
v4, we were restricted in the number of retries. More precisely, for small windows
we computed the success rate using up to 2000 traces and we were therefore able

116 P. Belgarric et al.

)b()a(

Fig. 2. Correlation ρ(L0, Mm
0)/ρ(L1, Mm

1) knowing the mask M ; correlation of k∗ is
displayed in black; time instants when k∗ = max

k
ρ(L0, Mm

0)/k∗ = max
k

ρ(L1, Mm
1)

are marked with a red diamond (Color figure online)

(a) E [L0|Mm
0] (b) E [L1|Mm

1]

Fig. 3. Mean consumption conditioned by each leakage model class Mm
0 and Mm

1

(a) Prediction function = Mm
1 (b) Prediction function = M01

Fig. 4. Success rate of (a) univariate CPA attack on L(t1) knowing the mask and (b)
bi-variate 2O-CPA attack on L(t0) · L(t1) knowing (t0, t1) but ignoring the mask

Time-Frequency Analysis for Second-Order Attacks 117

Fig. 5. Success rate when using a small window size

to compute 100000/2000 = 50 retries, accordingly, for medium windows 25 retries,
and for large windows 10 retries were possible.

The success rate for a window of smaller size (n = 50 and n = 200) is shown
in Fig. 5. In both cases, auto-corr and x-corr are the most efficient preprocess-
ing methods, followed by the window-dht, concat-dft, and concat-dht, whereas
window-dft is not able to retrieve the correct key. This confirms that the pre-
processing of Waddle and Wagner is relevant when the time instants of the leak-
ages are well known a priori. However, we also note that for such small windows,
an exhaustive search of the interesting (t0, t1) is not deterrent (computationally
speaking), and would yield better success rates (recall Fig. 4(b)).

The efficiency of the attacks is changed when using a window of medium
size (see Fig. 6). The usage of x-corr seems only reasonable when the window
size is sufficiently small, whereas the efficiency of window-dft and concat-dht
increases when provided with more time instants. Interestingly, one can observe
that window-dht is more efficient when using a window size of 500 as x-corr with
smaller window size. This is an illustration that the attack manages to properly
combine constructively the plurality of leakage instants in the trace (recall the
multiple leakage peaks in Fig. 2(a) and (b)).

When increasing the window size up to n = 4000 and n = 6000 the difference
between window-dht, concat-dht, and concat-dft becomes greater. Remarkably,
even for large window sizes (two windows with each 6000 time instants), window-
dht is still able to efficiently reveal the secret key. It is about equivalent in terms
of efficiency with max-corr. Thus, this confirms that attacks remain very practical,
even though the attacker does not have a precise idea about the leakage location.

From Table 2, we can deduce that when the attacker knows the leakage sam-
ples, i.e., a small window size, x-corr is the best attack. Moving from small to
medium windows, window-dht proves to be the best attack. Finally, max-corr
seems to be the best attack for large window size. This means that max-corr is
well suited for practical cases because only a minimum assumption on the knowl-
edge of leakage samples is required, thus, the attacker is able to choose a large
window. As already underlined, another noteworthy observation from Table 2 is

118 P. Belgarric et al.

Fig. 6. Success rate when using a medium window size

Fig. 7. Success rate when using a large window size

that, x-corr takes more traces to disclose the key for a window of 200 points as
compared to window-dht for a window of 500 points.

5 Discussion

5.1 Benefits of the Proposed Attacks

Preprocessing Speed-up. Turning bi-variate into mono-variate leakage is
actually a matter of trade-off:

– the computational power is lowered while exploiting the traces (because the
research of (t0, t1) is skipped);

– at the expense of a greater noise in the estimation of the distinguisher (hence
more traces to guess the key), due to the inaccurate location of the leakages
in the window(s).

The use of our methods can be justified for software traces, that can be so
long (millions of samples) that a complexity in O(n2) is prohibitory. For instance,

Time-Frequency Analysis for Second-Order Attacks 119

Table 2. Comparison of performance of proposed methods against attack efficiency.

Window size Best attack Number of traces for SR� 0.8

50 x-corr 450
200 x-corr 750
500 window-dht 550

window-dht
2000 550

max-corr
4000 max-corr 1950
6000 max-corr 3000

with window size n = 6000, the complexity of our preprocessing (in terms of
“multiplications” count) is roughly n log2 n ⊃ 75300 or 0.0753×106, whereas an
exhaustive search of pairs (t0, t1) requires n(n−1)

2 ⊃ 18 × 106 tries. So our attack
method is very light in computation time. Now, in terms of number of traces to
break the key, our method requires about 3000 traces instead of 300 knowing
the most leaking samples, which remains reasonable.

Resilience to Traces Desynchronization. Our techniques can withstand a
global desynchronization in the acquisition of the traces. It can happen that the
traces are offset one w.r.t. the others, due to the lack of a reliable synchronization
signal. It is already known that DFT based techniques (if the phase is ignored)
can work even in this case [8]. (We do not consider here countermeasures like
dummy cycles addition [3].) So concat-dft, window-dft and max-corr resist traces
disalignment.

5.2 Explanation of the Results: Why are Attacks in Frequency
Domain More Efficient when the Window Width is Large?

When the correlation is computed on auto-corr or x-corr signals, i.e., in the time
domain, the leakage L(t0)·L(t1) is “dissimulated” into the numerous other terms
L(t) · L(t∗), for (t, t∗) �= (t0, t1). Thus, when the window becomes too large, the
signal-to-noise ratio at each point of the auto-corr/x-corr becomes very small.
Of course, when the size of the window is small, it is possible to distinguish
efficiently.

On the contrary, we see from Fig. 8 that the leakage is well localized in a
few frequencies1. Those frequencies are around 20MHz, which corresponds to
the dynamic of the CMOS logic (see the duration of the bounces in Fig. 3: it is
about 25 samples, i.e., 50 ns). The clock frequency is equal to 3.57MHz, which is
much smaller. Interestingly, the leakage is not modulated by the periodic clock
signal.
1 Three or four frequencies are especially leaky, which is much less than the tens of

leakages dates in the time domain – cf. Fig. 2.

120 P. Belgarric et al.

Few peaks at ⊃ 20 MHz

Fig. 8. Correlation coefficient on a 2O-CPA on concat-dft in frequency domain when
using n = 6000 and 10000 traces (we recall that the sampling rate is FS =
500 Msample/s)

When the window size n is large, the frequency resolution of the DFT or the
DHT is high, so it is more likely that the signal is decomposed close to the main
leaking frequencies (i.e., the 20MHz frequency value is well approximated in the
domain of the DFT/DHT — recall that frequencies are quantified, i.e., discrete
variables f ∀ FS/n × [[0, n − 1]], where FS is the sampling rate). Additionally,
there are many leaking samples in the timing window (recall Fig. 2), but the
Fourier transform manages to constructively sum them up.

5.3 Comparison with the State-of-the-Art

There are several existing methods to evaluate the resistance against second-
order attacks in the state-of-the-art. Among the most recent published methods
that can be applied to evaluate our masking scheme, we can consider a direct
2O-CPA with pointwise multiplication of L(t0) · L(t1) by using the detection
method proposed in [13]. As explained in Sect. 4.1, two heterogeneous leakage
variables that share information about the mask can be extracted from the
power traces. In our case these two leakages depend respectively on {T,M} and
{T ∗,K,M}. Formally, in a fixed chosen plaintext scenario it is possible to identify
the leakage points by searching the couples of points that maximizes the quantity:
Î (L(t);L(t∗)), where Î denotes the estimator of the mutual information.

This method, although more efficient than performing
(
n
2

)
2O-CPA, remains

of quadratic, i.e., O(n2), complexity. Besides, it cannot be applied directly to the
context of known plaintexts (random, not chosen) scenario. In [13], an extension
of this method is presented. It is possible to consider the couples of points that
maximize: Î (L(t);L(t∗);M1), where M1 is a model of the leakage. This value
is high when the variation of the leakage depends on {T,M}. In our case (DPA
contest v4), the variation of the leakage also depends on another plaintext byte
T ∗, thus this method will be less practical. This method could be extended by

Time-Frequency Analysis for Second-Order Attacks 121

using: Î (L(t);L(t∗);M0;M1). In this case, we have to consider a quadrivariate
mutual information analysis that is likely to be little efficient in the presence of
noise, and would require more traces to identify the leakage points. Our methods
(cf. Sect. 3.2) basically skip the detection step, and perform a direct 2O-CPA on
larger windows than in [15].

Among the state-of-the-art methods, Moradi and Mischke reported at CHES
’13 [9] a similar approach as [15], where the attack is performed in time basis
after point combination. In the case they report, the two leaking time samples
are close in time (a few tens of clock cycles), and the low-pass filtering of the
acquisition system mixes the two signals. The scenario of the attack is thus
the same. The difference is however that the “overlapping” of the two leaking
signals is done for free in Moradi and Mischke’s setup, whereas it is forced by
a preprocessing in our case. Indeed, in our masking scheme, the two sensitive
variables masked with the same mask M are not used consecutively.

6 Conclusions and Perspectives

We present five preprocessing techniques that turn a bi-variate attack into a
second-order zero-offset attack. Our technique applies even if the two leakage
samples to be combined are far from each other. Remarkably, the proposed
methods need only a rough estimate of the location of two windows (around t0
and t1), where the two leaks can be found purportedly. The regularity of encryp-
tion algorithms, such as the AES, facilitates the identification of the elementary
operations, like plaintext blinding and S-box calls.

In addition, we notice that our techniques have the potential to scale for
higher-order attacks. For instance, imagine d + 1 shares that are leaking at time
samples t0, t1, . . . , td. If the attacker is only able to know an approximate window
Li containing ti (i ∀ [[0, d]]), then window-dht becomes simply

∏d
i=0 DHT [Li].

The working factor of this dth-order CPA attack method is that this product,
once expanded, contains terms of the form

∏d
i=0 L(ti), which indeed combines

multiplicatively the leakage from all the shares.

References

1. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

2. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-
correlation power analysis on first order protected AES. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)

3. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

4. Dabosville, G., Doget, J., Prouff, E.: A new second-order side channel attack based
on linear regression. IEEE Trans. Comput. 62(8), 1629–1640 (2013)

122 P. Belgarric et al.

5. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). doi:10.1109/JPROC.2004.840301

6. Goubin, L., Patarin, J.: DES and differential power analysis. In: Koç, Ç.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

7. Hartley., R.V.L.: A more symmetrical Fourier analysis applied to transmission
problems. Proc. IRE 30(3), 144–150 (1942)

8. Mateos, E., Gebotys, C.H.: A new correlation frequency analysis of the side chan-
nel. In: Proceedings of the 5th Workshop on Embedded Systems Security, WESS
’10, pp. 4:1–4:8, ACM, New York (2010)

9. Moradi, A., Mischke, O.: On the simplicity of converting leakages from multivariate
to univariate. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 1–20. Springer, Heidelberg (2013)

10. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010)

11. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

12. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

13. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting time samples for multivariate
DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 155–174. Springer, Heidelberg (2012)

14. TELECOM ParisTech SEN Research Group. DPA Contest, 4th edn. (2013–2014).
http://www.DPAcontest.org/v4/

15. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

http://dx.doi.org/10.1109/JPROC.2004.840301
http://www.DPAcontest.org/v4/

Software and Protocol Analysis - Session
Chair: Lex Schoonen

Vulnerability Analysis of a Commercial
.NET Smart Card

Behrang Fouladi1(&), Konstantinos Markantonakis2,
and Keith Mayes2

1 Microsoft Security Response Center, London, UK
behrang.fouladi@microsoft.com

2 Smart Card Centre Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK

{k.markantonakis,keith.mayes}@rhul.ac.uk

Abstract. In this paper we discuss the operating system security measures of a
commercial .NET smart card for mitigating risks of malicious smart card
applications. We also investigate how these security measures relate to the card
resident binary by analysing its proprietary file format to develop a new vul-
nerability research tool for .NET card applications. This tool enables us to
modify compiled card applications for creating vulnerability research test
cases. We then present the details of the vulnerabilities in the target .NET
virtual machine (VM) which have been discovered using this tool. The vul-
nerabilities relate to potential misuse of administrator privileges, therefore, we
conclude with recommending countermeasures to be implemented in the card
manager application and .NET VM to fix those vulnerabilities.

Keywords: .NET smart card � Embedded .NET � Smart card firewall � VM
vulnerabilities � File format

1 Introduction

Modern smart cards are commonly referred to as ‘‘multi-application’’ cards, as they
are capable of storing and running more than one application. This increases user
convenience and lowers the costs of issuing and managing multiple cards for different
applications. However, such a smart card system would require more complex security
features in order to isolate execution and the data access context of on-card appli-
cations from each other. The card’s operating system should also allow secure
installation of new applications to the card without having to reissue it. There are
currently three major multi-application smart card platforms in the market that allow
the card issuers or content providers to securely load applications to the smart card
during issuance and post-issuance. These platforms are MULTOS [1], Java Card [2]
and .NET card [3].

Card applications are written in a high level programming language such as Java,
Visual Basic or C# and then the applications are compiled to an intermediary format
known as ‘‘bytecode’’. Bytecode instructions consist of a set of numeric codes, values
and references that need to be translated to machine code instructions before being

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 125–139, 2014.
DOI: 10.1007/978-3-319-08302-5_9, � Springer International Publishing Switzerland 2014

executed by the smart card CPU. The VM is responsible for loading and translating
the bytecode application to CPU instructions. The VM concept allows a card appli-
cation to be executed on different smart card CPUs without the need to re-program it
for different CPU architectures. The VM can also perform verifications and security
checks on the bytecode before the translation of the bytecode to CPU instructions in
order to prevent malicious code attacks. Finally, it can isolate different on-card
applications from each other, only allowing controlled data exchange and sharing.

The aforementioned security principles, if implemented correctly, mitigate the
risks of malicious code. However, successful attacks against smart card and desktop
computer VMs have been demonstrated which exploit the implementation vulnera-
bilities to escape the application sandbox or bypass safe memory access controls
[4, 5]. Therefore, the security of the VM and malicious bytecode threats are interesting
topics for smart card vendors and security researchers. The security of the Java Card
VM has been the subject for several researchers [6, 7], which demonstrated the
exploitation of weaknesses in bytecode verification and translation in order to gain
access to the contents of the smart card memory. However no public vulnerability
research on .NET smart card VM could be found prior to this work. We aim to
perform a detailed security evaluation of this platform to unveil possible vulnerabil-
ities and provide recommendations to address those issues.

2 The .NET Smart Card

The .NET card is widely used multi-factor authentication token in Microsoft Windows
based systems. A .NET card supplier will typically also supply a software develop-
ment kit (SDK) which integrates with Microsoft Visual Studio and enables developers
to build card applications in .NET programming languages such as C# and Visual
Basic. The .NET card VM is capable of interpreting and executing Microsoft Inter-
mediate Language (MSIL) instructions. Thus, it allows developers to write smart card
applications in any .NET programming language that can be compiled into MSIL
code. This gives the users similar flexibility and program portability to that provided
by the Java Card VM.

A notable advantage of the .NET smart card over a typical Java Card is that the
developer does not need to design and use Application Protocol Data Unit (APDU)
commands that are necessary for Java Card applications to communicate with the reader
terminal. The .NET smart card framework provides a proxy interface based on .NET
remoting technology which allows developers to call on-card application services using
TCP or HTTP as a transport protocol without having to issue and process low level APDU
commands and responses. Behind the scenes, the proxy interface converts client requests
and on-card application responses to the corresponding APDU commands as demon-
strated in Fig. 1. This research work focused on a commercially available and widely used
.NET card which from now on will simply be referred to as the target .NET card.

Since a smart card micro-chip has limited memory and processing resources, it
cannot load and run the standard .NET programs compiled by Microsoft Visual
Studio. These programs need to be converted to the target .NET Smart Card
Framework’s card resident binary format before being loaded on to the smart card.

126 B. Fouladi et al.

The details of this proprietary file format and its security implications will be dis-
cussed in Sect. 3. The card resident binaries also need to be digitally signed, so that
the card operating system can ensure their integrity and authenticity. The vendor
supplied SDK plug-in for visual studio performs both conversion and signing oper-
ations automatically after standard Visual Studio compilation.

2.1 .NET Virtual Machine Security Model

The Microsoft .NET framework security model [8] is based on two access control
mechanisms: Role Based and Evidence Based access control. The role based access
control makes authorisation decisions based on the identity and roles/groups to which
the user is assigned. The evidence based access control uses evidences associated with
application code to make authorisation decisions. In .NET framework, executable
code is maintained and managed in the form of logical units named ‘‘Assemblies’’. An
assembly forms a container for a program’s objects (classes, user-defined types,
methods and fields) and data resources such as embedded fonts, graphic files, etc. An
assembly can consist of multiple ‘‘EXE’’ and ‘‘DLL’’ files which are called ‘‘code
modules’’. As a result, it forms a deployment unit which contains all required code
modules for appropriate execution of the application while simplifying the application
installation and update. Evidences are pieces of information that identify .NET
assemblies. Some forms of evidences such as .NET Strong Names (SN) and publisher
signatures are resistant to forgery and provide a stronger form of code identification
compared to an application’s URL or hash code. Assemblies with common or similar
evidences are categorized into logical units called Code Groups. ‘‘Permission Sets’’,
which define an access type to a protected resource or the ability to perform an
operation, are then assigned to these code groups by the system administrator.

The target .NET card only supports the evidence based security mechanism with
assembly SN used as identity evidence. Assembly SN is an important concept in the
target .NET VM’s security. It also relates to a vulnerability discussed in Sect. 4. As
such, the following section describes it in more details.

2.2 Assembly Strong Name

The Microsoft .NET framework introduced the SN mechanism to generate unique
assembly identities which can be used as code authentication tokens to make security

Fig. 1. Target .NET card isolates APDU layer from the application

Vulnerability Analysis of a Commercial .NET Smart Card 127

decisions by the .NET runtime as well as ensuring the code integrity. The RSA public
key signature algorithm, which can provide data integrity and origin authentication, is
at the heart of the .NET SN mechanism. In order to bind the SN to the assembly file,
an RSA digital signature for the SHA1 hash value of the file content is computed
during the build process by using a private key. This key will only be known to the
assembly developer. The SN and RSA digital signature are then written into the
assembly file’s manifest which can later be parsed by the .NET runtime to load the
signer’s public key. This can be used to verity the assembly’s digital signature, thus
ensuring code integrity and origin identification. An assembly manifest is usually
embedded inside ‘‘.EXE’’ or ‘‘.DLL’’ files together with program code, but it can also
be stored inside a standalone file.

The Microsoft .NET framework usually uses a 128 byte RSA key to sign an
assembly which is stored inside the assembly’s manifest section. The public key is not
repeated again in the assembly’s strong name. Instead, the .NET framework uses
public key identification value called ‘‘Public Key Token’’ (PBKT) which is 8 bytes in
size and calculated by the following algorithm:

1. Use SHA-1 hash algorithm to compute the hash value of the public key. The
output is 160 bits.

2. The last 8 bytes of the generated SHA-1 hash value are used for calculating the
PBKT.

3. The sequence for these bytes are reversed, providing us with the PBKT value.

The target .NET VM also uses the above SN mechanism to sign and identify on-
card application assemblies. The SN and digital signature is embedded inside the card
resident binary file by the .NET compiler.

The digital signature verification is performed by the card’s operating system
when a new application is loaded onto the smart card. We noticed that the use of a
1024 bit RSA key and the SHA-1 algorithm are no longer recommended from a
security best practice viewpoint, however this is not the focus of this paper.

2.3 The Target .NET Card Code and Data Security

Each assembly file on the .NET smart card will have a PBKT derived from its RSA
public key, using the algorithm mentioned in Sect. 2.2. Assembly files with the same
PBKT, form code groups to which code access and file system access permissions are
assigned by the card’s administrator user. The PBKT also identifies on-card appli-
cations to each other, so every application can configure access lists to grant or deny
access to its library files by other card applications. The target .NET card docu-
mentation describes its evidence based security model as follows: ‘‘If an on-card
assembly (A1) needs to access another assembly (A2), either both assemblies must
have the same public key token, or assembly A1, whose public key token is PBKT1,
must be granted access to assembly A2 by adding public key token PBKT1 as an
attribute on assembly A2’’.

The target .NET VM creates process boundary units called ‘‘Application
Domains’’ for every on-card application, which is sometimes referred to as an

128 B. Fouladi et al.

‘‘Application Firewall’’, because it enforces strict data and code access controls
between on-card applications. Code and data from one application domain cannot be
directly accessed from within another application domain unless they are exposed via
data and code sharing API.

The .NET card applications can use two types of on-card data storage: saving data
as .NET objects inside assemblies and data storage on the card’s file system. The
application domain protects data stored inside assemblies such as remaining balance
value or PIN codes from unauthorised access by other on-card applications. The
developer does not need to configure any access lists for this purpose, as the appli-
cation domains are managed automatically by the card’s .NET VM.

In some cases, the application developers may want to store data on a card’s file
system instead of using application domain storage. For instance, an application that
requires frequent code update can store data on the file system to separate it from the
code file which may be subject to frequent change. By doing so, the application owner
does not need to worry about preserving the data before a code update. File system
storage can also facilitate data sharing between multiple on-card applications.
Applications can directly open and read/write data files without the overhead of
performing inter-domain data sharing. The file system objects are protected by evi-
dence based security model using the PBKT that were discussed in Sect. 2. Every file
or directory on the file system has two associated permissions sets: the Public and
Private Permission sets. The Public permission set defines what operations (Manage,
Write or Read) every on-card application is allowed to perform on the file or directory.
The Private permission set defines permissions assigned to individual public key
tokens. For instance, one can assign ‘‘Read’’ and ‘‘Write’’ permissions to the code
group identified with PBKT of ‘‘26272048f12bffaf’’.

3 Analysis of the Card Resident Binary Format

The target .NET card cannot load and execute original .NET assemblies that are
compiled by Microsoft Visual Studio. Those assemblies are converted to ‘‘card res-
ident binary’’ format (the target format) before being loaded to the smart card. This is
a proprietary and unpublished file format developed to allow loading and execution of
MSIL code on resource constrained devices such as smart cards. The target .NET card
vendor has developed a plug-in for Microsoft Visual Studio which parses the PE
format and .NET metadata directories of the original .NET assembly compiled by the
Microsoft .NET framework SDK and creates the equivalent card resident binary in the
target format. The resulting file should contain .NET metadata information as well as
the digital signature and SN, which were discussed in Sect. 2. Therefore, it is
important to know the structure and format of the target binary file in order to perform
an appropriate vulnerability analysis on the target .NET operating system and VM.

3.1 The Target .NET Converter

The converter plug-in for MS Visual Studio is developed using the Microsoft .NET
framework, but its MSIL code is obfuscated to make code analysis more difficult.

Vulnerability Analysis of a Commercial .NET Smart Card 129

To determine if it still feasible for an attacker to analyse the converter plug-in code
and understand the card binary compilation process, we chose to take a hybrid
approach in analysing the card binary file format via the following steps:

1. Examination of the obfuscated code of the converter plug-in in order to under-
stand the conversion process and how it operates on the original .NET assembly
metadata and code.

2. Mapping original .NET assembly metadata to the card binary file metadata by
tracing and matching the relevant .NET objects in both of them.

After analysing the converter plug-in code, we located an interesting method code
inside the ‘‘Converter’’ class. This code found and deleted two temporary files after
the conversion process was completed. The MSIL code of this method was modified
not to delete those temporary files, for further analysis. After compiling a simple on-
card application using our modified converter plug-in, two temporary files were found
in the same directory as that of the compiled application. One of the files contained the
compiled card binary, however the other was a more interesting text file (which we
will refer to as the map file) which listed all converted .NET namespaces, types,
methods and field names from the original .NET assembly and corresponding codes.
The map file contained useful information which saved lots of time during the analysis
phase (Fig. 2).

3.2 Target Binary File Format

The card binary format did not have a lot in common with the Microsoft .NET
assembly format, except the object reference and definition tables. An overview of the

Fig. 2. Example of a map file

130 B. Fouladi et al.

file structure is shown in Fig. 3. It consisted of three fixed sized headers, four object
reference tables, and three object definition tables followed by program code and RSA
signature. The reference tables include the identification code of referenced name-
space, type, method or fields and the number of times these were referenced in the
program (Fig. 4).

Finally, the target binary file ends with the RSA digital signature which has the
same size as the RSA modulus (128 bytes).

3.3 Analysis Tool Software

Analysis of the target binary format enabled us to identify and understand key
metadata information such as the digital signature header, object reference and defi-
nition tables that are used by the target .NET VM to load and prepare on-card
applications for execution. Manipulating these headers and metadata tables and
observing the modified assembly execution, would be an effective technique to dis-
cover possible vulnerabilities in the .NET smart card operating system or VM.
However, this would require custom software capable of loading compiled card
applications, allowing the user to view and modify different headers, metadata tables

Fig. 3. Target .NET card binary structure

Fig. 4. A method body definition in the target .NET card binary

Vulnerability Analysis of a Commercial .NET Smart Card 131

and code sections of the target binary and finally, re-signing the modified application
with a given RSA private key so that the modified card resident binary includes a valid
digital signature. We have developed such software which facilitates the visualization,
manipulation and re-signing of the target .NET card applications. The software tool is
written in the C# programming language and does not depend on the target .NET SDK
or converter plug-in. The user interface visualizes the structure of the loaded card
binary resident file and enables the user to navigate through each header, metadata
table or code block and view or modify the relevant data block in the hex editor. The
application automatically highlights the target binary data blocks as the user navigates
though different sections. It also decodes the referenced namespace and type codes to
the .NET namespace and type names, so that the user can easily make a rough idea
about application functionality without reading the code section. The ‘‘Tools’’ menu
has ‘‘Verify Signature’’ and ‘‘Re-Sign’’ options that allows the user to validate the
RSA digital signature of the loaded application and sign it with a different RSA key
pair.

4 .NET Smart Card Vulnerability Research

The card resident binary elements such as headers, .NET metadata tables and program
code sections are directly parsed by the target .NET VM, thus they can be used as test
vectors in order to trigger vulnerabilities in the target format parser engine or to
provide false information such as spoofed application identities to the card’s operating
system. The target .NET VM and operating system is proprietary software running in
a tamper resistant chip which protects the code even against invasive attack. There-
fore, an attacker’s strategy may be to find vulnerabilities in the card’s VM by perhaps
loading and executing manipulated card resident binaries and observing the VM’s
error codes and unexpected behaviours. This iterative testing technique of feeding
random mutations of a valid input to the target program and observing the results is
referred to as ‘‘Fuzz Testing’’ and has been used widely by security researchers for
vulnerability discovery, especially in closed-source applications or systems whose
internal structure and processes are undocumented or unknown. We decided to
attempt ‘‘Fuzz Testing’’ of the target binary format for vulnerability discovery. This
approach involved generating test cases by modifying a number of candidate sections
in the target file instead of running a mutation engine over all sections. After building
and uploading a number of test cases for both groups and observing the response from
the smart card, we chose the following two sections as test candidates:

1. Digital signature header containing the application’s PBKT. The PBKT is a
critical value, because the evidence based security model of the .NET card is built
around it.

2. Intermediate language (IL) instructions in the program code section which are
used to allocate memory buffers or read and write to those buffers. Manipulating
the arguments to those instructions could result in unauthorized access to the
smart card RAM or EEPROM content.

132 B. Fouladi et al.

The test tool software was used for modifying template target files and digitally
signing the test cases. The following sections provide the details of the vulnerabilities
that we have discovered by manipulating on-card application files.

4.1 Public Key Token Spoofing Vulnerability

We discussed the evidence based security model of .NET smart card in Sect. 2 and
explained the concept of the PBKT which was used to identify card applications to the
.NET VM and other on-card applications. The PBKT is derived from the assembly’s
RSA public key by applying a SHA-1 hash algorithm as explained in Sect. 2.2. The
RSA public key is embedded inside the signature header of the application file and
therefore the card’s VM can compute the PBKT anytime by applying the SHA-1 hash
algorithm (which is a fast cryptographic operation compared to asymmetric encryp-
tion algorithms). However, we noticed that the PBKT value was also stored in the
target file signature header along with the RSA public key parameters, and these could
be manipulated by the user before being uploaded to the smart card.

As .NET VM uses the PBKT to make security decisions such as granting or
denying an application’s access requests to file system objects, this could have critical
security implications. For instance, an application (M) which has manipulated public
key token value of PBKTM, might be able to access data files owned by another
application (A) whose public key token is PBKTA. We prepared a vulnerability test
scenario to find out if it is possible to upload card resident binaries with a modified
PBKT to the .NET smart card. This would then allow the application to bypass the
card’s evidence-based security system and access unauthorized file system resources.
This test involved the following steps:

1. The on-card application (M) was written to read a data file on the .NET smart card
which it was not authorized to access. The target .NET VM threw ‘‘Unautho-
rizedAccessException’’ and denied the file read request which was the expected
behaviour. Application (M) was digitally signed by the PrivKM and had a public
key token value of PBKTM. The data file it was trying to read, belonged to
application (A) which was previously uploaded to the card and was signed with a
different private key (PrivKA) and having the public key token of PBKTA. The
access list of the target data file did not grant read access to PBKTM which
prevented application (M) from accessing it.

2. Using the developed analysis tool software, we modified the PBKT value (8
bytes) at offset 0x52 of application (M) and change it to PBKTA. Then it was
signed by PrivKM key and saved to a new assembly file.

3. We loaded the manipulated application (M) to the .NET smart card successfully
and the content manager service did not issue any errors or warnings. At this
point, we successfully ‘‘spoofed’’ the identity of the target application (A). This
allowed us to gain access to its data file.

4. Once the manipulated application (M) was deployed on the card and executed, it
did not receive any security exceptions and was able to read the data file of
application (A). This confirmed that the target .NET VM had trusted the PBKT

Vulnerability Analysis of a Commercial .NET Smart Card 133

value embedded in the target binary to make security decisions. This value can,
however, be modified by a malicious user in order to bypass the card’s data
security system.

Malicious applications could also exploit this vulnerability to bypass the code
security system which defines code access permissions on PBKTs. For instance,
suppose that application (A) was linked to a library assembly (.DLL file) and the code
access permissions only allows code groups identified with PBKTA to execute the
library’s code. A malicious application (M) could exploit the aforementioned vul-
nerability to spoof the identity of application (A) and gain unauthorized code exe-
cution access to the target library. The root cause of this vulnerability was that the card
manager service verified the RSA digital signature of the uploaded target file, but did
not check if the PBKT value in the digital signature had been altered, by recalculating
it on the card and comparing it with the value embedded in the uploaded target binary.

We demonstrated a PBKT spoofing attack against a ‘‘Password Wallet’’ applica-
tion that was developed during our work to gain better knowledge about the target
.NET SDK and the card application development process. The Password Wallet
application demonstrates the use of the .NET smart card for secure storage of web
sites’ credentials. The user can only access the accounts by entering the correct PIN
code which is a combination of alpha-numeric and uppercase characters. The
accounts’ usernames and passwords are stored on the card in a binary file called
‘‘store.dat’’ in the form of serialized .NET objects [9]. The malicious application
‘‘GrabtheWallet’’, was signed with a different private key to the one used by the
Password Wallet and, attempted to access the accounts data file (store.dat). The
request was denied by the .NET VM and ‘‘UnauthorizedAccessException’’ was
thrown by the VM. We used our analysis tool software to change the PBKT of this
application to the Password Wallet application PBKT, and re-signed it using the same
key used for signing the GrabtheWallet.exe application. The manipulated application
was successfully loaded onto the smart card. It had the exact same size and func-
tionality, but had spoofed the PBKT of the Password Wallet application. This
application was able to gain unauthorized access to the accounts data file (store.dat) of
the password wallet application as demonstrated in the following Figs. 5, 6.

4.2 Virtual Machine Memory Corruption Issues

The metadata tables and program code section are parsed and processed by .NET VM
to load referenced objects from other assemblies, create defined objects, allocate and
initialize memory buffers and control the execution flow of the loaded program.
Therefore they can expose a large attack surface to malicious application code. The IL
code verifier examines those metadata tables and IL code sections for safe memory
access and correct program execution flow before installing the loaded application
into the card’s persistent memory. Therefore, a well implemented code verifier would
be able to counter malicious code threats effectively. However, implementation errors
such as placing unnecessary trust on data that can be manipulated by an attacker could
be exploited to cause an unsafe code to pass the verification process. We discovered

134 B. Fouladi et al.

such vulnerability in an internal routine of the target .NET base library (mscorlib.dll)
which was used for array initialization.

The RuntimeHelpers.InitializeArray method performs fast copying of static data
defined in the program code to the array objects. This method had a public access
modifier, and could be called by any on-card application. It had the following
declaration:

Fig. 5. Modifying the PBKT value using the analysis tool

Fig. 6. Unauthorized access to PasswordWallet data file

Vulnerability Analysis of a Commercial .NET Smart Card 135

public static void InitializeArray(Array array,
RuntimeFieldHandle fldHandle);

The array argument is the empty Array object which should be initialized by the data
pointed to by fldHandle. This handle value represents a field defined in the FieldDefs
metadata table of the target binary which was mentioned in Sect. 3.3. Each row of the
FieldDefs table has the following columns:

[Field id][Field modifiers][TypeRefs or BlobDefs index]

If the field modifier contains the hasRVA (Relative Virtual Address) modifier, then the
field refers to a virtual memory location. A virtual memory address is relative to the
program load base address, which is the location that the program executable file is
loaded to by the .NET VM into the RAM memory. For instance a field’s virtual
relative address could be 0x400 and the program could be loaded to the physical
memory address of 0x10000000. The physical address of the field would be
0x10000400. Usually the RVA is relative to the program base load address, but it can
also be relative to other sections’ base load addresses in the target file. In this case, the
base address was staring address of the blobs definition table. It means that the index
column will point to a row in the blobs definition table that contains the data by which
the array should be initialized. Runtime field handles can be obtained using the
ldtoken (load token) IL instruction and providing the field index number in the field
definition table. The following IL pseudo code demonstrates this instruction:

pgycttc{ >2z25.d{vg@ //create an empty byte array of
3 bytes length and push its address to the stack
nfvqmgp">3@ //convert the FieldDefs table token of
row number 1 and push the handle to the stack
ecnn"Kpkvkcnk|gCttc{ //call array initialization rou-
tine to copy data pointed by field number one to the
array

We found that the InitializeArray method did not check if the field handle passed in
the second argument points to a field with the hasRVA modifier that refers to a relative
memory address in the program’s address space. As a result, it was possible to point
the fldHandle to types without the hasRVA modifier set in order to copy the memory
content of the VM internal structures into a user defined byte array. Some limited
practical attempts to exploit this vulnerability to access smart card memory content
were not successful and resulted in damage to the smart card operating system.

We also found a second potential vulnerability in the array initialization routine
which could result in violation of the type safety of the .NET VM. The root cause of

136 B. Fouladi et al.

this vulnerability was that the InitializeArray method did not perform a security check
to ensure that the provided array argument was of a primitive type (integer, byte, char
and boolean types). Primitive types are data types that are commonly used by the
programmers and already exist in the .NET base class library where the non-primitive
types are defined by the programmer and contain memory references to the user
defined objects in the memory. The target .NET VM supports both primitive and non-
primitive type arrays. The elements of a non-primitive array are automatically ini-
tialized to null after allocation and the elements are later assigned with the memory
references to the user-defined objects. If those object references can be manipulated
by a malicious code, then it would be possible for an attacker to access arbitrary
memory locations and violate the type safety of the VM.

If the array argument supplied to the InitializeArray method was of a non-prim-
itive type such as an array of structures, then it was possible to overwrite the memory
references in that array with the arbitrary data pointed to by the fldHandle argument.
Unlike the pervious potential vulnerability in InitializeArray, exploiting this issue
didn’t result in damage to the smart card and as the code verification process was not
completed successfully, the malicious application couldn’t be loaded to the smart
card. This limited the impact of the potential vulnerability exploitation to low.

5 Countermeasures

The public key token ‘‘spoofing’’ vulnerability could be mitigated by adding the
required PBKT validation routine to the card manager service. This routine should
recompute the PBKT from the RSA public key embedded in the uploaded target
binary and compare it with the PBKT value in the digital signature header. If the
values do not match, the target file has been manipulated and must be rejected. The
vulnerabilities in the array initialization routine could be addressed by implementing
the following two security checks:

1. The field pointed to by the fldHandle argument must have the hasRVA modifier
set.

2. The array elements should not be of reference or non-primitive types.

The above security tests could be expressed using the following C pseudo-codes:

//Security checks before initializing the array
if (!(fldHHandle->type->modifier &
FIELD_MODIFIER_HAS_FIELD_RVA)) {
throw new Exception(“hkgnf"fqgu"pqv"jcxg"jcuTXC"oqfk/

hkgt#”)
}
Type type= get_array_element_type(array);
if (IS_REFERENCE_TYPE(type) || !IS_PRIMITIVE(type)) {
throw new Exception(“ecppqv"kpkvkcnk|g"cttc{"qh"tghgt/
gpeg"qt"pqp/rtkokvkxg"v{rgu”);
}

Vulnerability Analysis of a Commercial .NET Smart Card 137

The vendor has developed a fix for the PBKT spoofing vulnerability and provided
the following risk assessment: ‘‘To exploit this vulnerability, an attacker must be able
to upload his malicious application on the card, and also get knowledge of the Public
Key Token of the targeted application to prepare his malicious application first. To do
so, he must gain administrator privilege; this is quite a strong requirement. The
Administrator Key is normally set up by a Card Management System (CMS) using
strong diversification algorithms based on a Master Key securely stored in a HSM or a
smart card based controller. Also, the targeted application must use private file-system
storage for its data to be exposed. Therefore, internal (Application Domain) storage is
immune to such attack’’.

‘‘The discovered memory corruption issues in Sect. 4.2 could not be exploited to
gain unauthorised access to VM memory or execute arbitrary code and only resulted
in denial of service through damaging the card operating system. To exploit those
vulnerabilities, an attacker must be able to upload his malicious application on the
card. To do so, he must gain administrator privilege; this is quite a strong
requirement’’.

6 Conclusion

This paper records research work investigating potential security vulnerabilities in a
commercial .NET smart card product. We developed and presented a .NET card
binary analysis tool which was used to discover vulnerabilities in the .NET card VM.
The pre-publication findings from this work were shared with the .NET card vendor so
that appropriate countermeasures could be taken in a timely manner. In summary, a
demonstrable vulnerability was found in the use of public key tokens that could allow
malicious applications to have unauthorised access to files and library functions of
legitimate applications. However, an attacker would need to have administrator
privileges to exploit the vulnerability. The developed test tool can also enable the
legitimate manager of a .NET smart card to detect the PBKT spoofing attack or
decompile and analysis the card applications developed by third parties in order to
discover possible vulnerabilities or backdoors.

References

1. Multos International. Multos Technology. http://www.multos.com/technology/
2. Sun Microsystems. Java Card Technology. http://www.oracle.com/technetwork/java/

javacard/overview/index.html
3. Microsoft IT forum 2004. .NET-based Smart Cards. http://www.prnewswire.com/

news-releases/hive-minded-delivers-net-based-smart-cards-75449172.html
4. Witteman, M.: Java card security. Inf. Secur. Bull. 8, 291–298 (2003)
5. TippingPoint. Zero Day Initiative, Oracle Java IIOP Deserialization Type Confusion Remote

Code Execution Vulnerability, October 2011. http://www.zerodayinitiative.com/advisories/
ZDI-11-306/

6. Hogenboom, J., Mostowski, W.: Full Memory Read Attack on a Java Card. Department of
Computing Science, Radboud University, Nijmegen (2009)

138 B. Fouladi et al.

http://www.multos.com/technology/
http://www.oracle.com/technetwork/java/javacard/overview/index.html
http://www.oracle.com/technetwork/java/javacard/overview/index.html
http://www.prnewswire.com/news-releases/hive-minded-delivers-net-based-smart-cards-75449172.html
http://www.prnewswire.com/news-releases/hive-minded-delivers-net-based-smart-cards-75449172.html
http://www.zerodayinitiative.com/advisories/ZDI-11-306/
http://www.zerodayinitiative.com/advisories/ZDI-11-306/

7. Iguchi-Cartigny, J., Lanet, J.L.: Developing trojan applets in a smart card. J. Comput. Virol.
6(4), 343–351 (2010)

8. Microsoft. .NET Framework Security. http://msdn.microsoft.com/en-us/library/aa720329%
28v=vs.71%29.aspx

9. Microsoft. Object Serialization in the .NET Framework. http://msdn.microsoft.com/en-us/
library/ms973893.aspx

Vulnerability Analysis of a Commercial .NET Smart Card 139

http://msdn.microsoft.com/en-us/library/aa720329%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/aa720329%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/ms973893.aspx
http://msdn.microsoft.com/en-us/library/ms973893.aspx

Manipulating the Frame Information
with an Underflow Attack

Emilie Faugeron(&)

Thales Communications and Security, 18 Avenue Edouard Belin, BPI 1414
31401 Toulouse Cedex 9, France

emilie.faugeron@thalesgroup.com

Abstract. This paper presents an underflow attack performed on Java Card
platforms. This underflow is based on the dup_x instruction that can be used in
order to read and modify the current context of execution of the attacker’s
application. We first detail the theoretical and practical attack path by
describing the method that can be used to characterize the platform and exploit
the obtained information. Secondly, we show how it is possible to set up this
underflow attack in a way that makes it bypass the current concept of Byte
Code Verifier. Finally, we describe some countermeasures that can be imple-
mented to prevent this kind of attack.

Keywords: Malicious application � Underflow � Java Card Open Platform

1 Introduction

Java Card technology allows loading and executing a set of applications in a secure
way on a small device. This technology is widely used by smart card industry today
and has been proved to reach a high level of security in the common context of use,
i.e. single issuers mastering their production of Java Card platform and related
applications. Nowadays, the use of those Java Card platforms is becoming more
complex. In the field of telecommunication applications, for instance, the context is
moving to multi-applications provided by different issuers for different Java Card
platforms. Platforms refer to the combination of a secure hardware device and a secure
Operating System including the Virtual Machine, the Runtime Environment and APIs.
The concern is to check how multiple applets, loaded on a Java Card platform by
multiple actors, can be handled in a secure way and maintain the security of the
product over its whole lifecycle.

Open Java Card platforms, enabling post-issuance applet loading and induce a new
actor that is responsible of application validation. Indeed, the Verification Authority is
in charge of verifying the basic application against the platform guidance. It shall
include at least an off-card verification of the application. If the application is invalid,
it is rejected and cannot be loaded onto the targeted platform. Therefore, an attacker
has two possibilities to bypass the concept of Byte Code Verification: either devel-
oping a malicious application in a way that cannot be detected by the Off-Card
Verifier, or implementing a combined attack in order to perturb the application
behaviour during its execution using a laser or ElectroMagnetic pulse device. In the

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 140–151, 2014.
DOI: 10.1007/978-3-319-08302-5_10, � Springer International Publishing Switzerland 2014

first case, all logical attacks using application file format manipulation are to be
discarded otherwise they will be detected by the Off-Card Verifier. The attacker needs
so to identify weaknesses on the Java Card platform at JCRE (Java Card Runtime
Environment) level or at JCVM (Java Card Virtual Machine) level that could allow
performing purely software attack. It can be a weakness in the platform implemen-
tation, or a known weakness regarding Java Card platform specification as explained
in [1]. For instance, the Shareable Interface mechanism can be abused in order to
perform a type confusion attack that will not be detected by the Off-Card Verifier.

The Java Card platforms are sensitive to several types of malicious applications. It
can be address forging attacks by modifying specific CAP component [2, 3], type
confusion attacks [1, 9] or underflow attacks [8, 10]. The first and second kinds of
attacks are not relevant in that context: the first one is detected by the Off-Card
Verifier, and the second one does not allow reading and modifying the context of
execution of the application directly. On the other hand, the third one enables an
attacker to manipulate the system information.

In this paper, we are going to focus our analysis on the underflow attack that
allows manipulating the execution frame of a method associated to the current exe-
cuted application. In the first part of this work we describe the theoretical and the
practical attack path with a particular focus on the dup_x instruction that will be used
to read and modify the frame information. In the second part, we detail the means that
can be used by an attacker in order to bypass the current concept of Byte Code
Verifier. Indeed, the attack described in this paper can be performed by an attacker
without privilege. The attacker just needs to be able to develop an application. Finally,
we present the countermeasures that can be implemented by the developer to prevent
these attacks.

2 Underflow Attack: State of the Art

The underflow attack presented in this paper differs from previous works. Our
hypothesis is that the malicious application is verified by Off-Card-Verifier and it uses
a new type of potential vulnerability in the platform implementation.

To go back to previous work, the underflow attacks have been introduced in [8]
and in [10]. The thesis [10] describes underflow attacks at a high level and is focused
on countermeasures to protect a platform against such attack. The aim of an underflow
attack described in [8] is to find the position of the return address onto the stack and
then modify it in order to execute a code located inside an array. This underflow is
performed by using non-existing local variables in order to access information located
below the stack bottom. The purely software attack takes the hypothesis that there is
no bytecode verification performed on the application (off-card verification or on-card
verification).

Two different methods that can allow an attacker bypassing the Off-Card Verifi-
cation are described in [1]. The first attack method aims abusing the transaction
mechanism in order to create a type confusion. This attack is now detected by most of
the platforms and cannot be applied to underflow anymore. The second attack method

Manipulating the Frame Information with an Underflow Attack 141

aims to abuse the Shareable Interface mechanism. The goal is to create type confusion
using two definitions of interfaces, one for the Client and one for the Server. Actually,
the attack methods described in [1] only focus on type confusion.

The aim of our paper is to describe a new way of exploiting the underflow attack
despite off-card verification. Indeed, this paper describes an underflow using the
instruction dup_x that is usually not checked by on card countermeasures due to the
fact that the stack pointer is not decreasing at the end of the instruction processing
(this kind of verification is dependent of the platform implementation). The final goal
of our attack is to replace the context of the attacker’s method with the JCRE context
in order to gain access to out-of-context data to be able to dump and modify infor-
mation link to the platform or to a sensitive application.

This attack considers that the malicious application is verified by Off-Card-Ver-
ifier. Indeed, we have extended the attack described in [1] in order to create an
underflow. We have implemented two different ways of bypassing the off-card veri-
fication: (1) abusing the Shareable Interface mechanism to create an underflow, (2)
abusing the library versioning to create an underflow. All steps of the attack will be
further described in this paper.

3 Underflow Attack: Theoretical Attack Path

The aim of the underflow attack is to retrieve and modify the elements located before
the stack of the current executed method.

All the instructions that pop elements from the stack can be used in order to
perform a stack underflow attack. There are two kinds of instructions, those that lead
to a modification of the stack pointer (sp) and those that pop elements from the stack
without decreasing the stack pointer at the end of their processing. In the first case, if
the operation is performed on an empty stack, the stack pointer will be located below
the stack bottom at the end of the instruction treatment. This kind of attack can be
done, for instance, with the instruction putstatic (Fig. 1).

Local variables,
parameters, frame of
the method1

Stack of the method1

XXXX

YYYY

sp

putstatic_s

XXXX

YYYY

sp

Fig. 1. putstatic_s instruction on empty stack

142 E. Faugeron

Once the stack pointer has been corrupted, an attacker can update any information
located between the stack pointer and the stack bottom (Fig. 2):

In the second case, the stack pointer is not decreased at the end of the instruction
processing but during the processing. It is for instance the case of the instruction
dup_x. The instruction dup_x takes two parameters coded on 1 byte:

• m, the high nibble, that is in the range 1 to 4.
• n, the low nibble, that is in the range 0 to m + 4.

If n has a value different from 0, the top m words of the operand stack are
duplicated and the copied words are inserted n words down in the operand stack.
When n equals 0, the top m words are copied and placed on top of the stack [4].

Figure 3 shows the impact of a dup_x 32 on an empty stack (m is equal to 2).
This instruction can also be misused in order to update information located below

the stack bottom. In this case, the attacker needs to provide a ‘‘n’’ different from 0
(Fig. 4).

XXXX

YYYY

sp

sconst_0

0000

YYYY

sp

Fig. 2. Modification of the frame information thank to sconst_0

XXXX

YYYY

sp

dup_x 32 XXXX

YYYY

XXXX

YYYY

sp

Fig. 3. dup_x instruction in order to read data located below the stack bottom. The two short at
the top of the stack (m equal to 2) will be duplicated at the top of the stack (n equal to 0).

Manipulating the Frame Information with an Underflow Attack 143

AAAA

BBBB

XXXX

YYYY

sp

dup_x 36

AAAA

BBBB

XXXX

YYYY

AAAA

BBBB

sp

Fig. 4. dup_x instruction in order to modify data located below the stack bottom. The two
shorts on the top of the stack (m equal to 2) will be duplicated at 4 shorts down the stack top (n
equal to 4).

By using the underflow of the stack, an attacker will be able to manipulate the
following information (the order of this information depends on the platform
implementation):

• The local variables of the executed/caller method.
• The parameters of the executed/caller method.
• The frame information of the executed/caller method. This structure contains the

context of execution of the executed or of the caller method.

In most implementation, the frame is located just before the stack. An attacker will
then be able to modify the context of execution of his method.

4 Underflow Attack: Practical Attack Path

An attacker can characterize each bytecode that manipulates the stack in order to
identify those that are not subject to security verification regarding underflow attacks.
Each instruction can be invoked on an empty stack and then the platform behaviour is
analysed for each case. In this paper, we focus our analysis on the byte code dup_x.

4.1 Underflow Attack Using dup_x

Characterisation of the Underflow Data. The first step of the attack aims reading the
data located below the stack, and then to analyse and characterize each byte reading.
The dup_x instruction allows reading 8 bytes located below the stack bottom (m equal
to 4 and n equal to 0).

Depending on the platform implementation, the attacker may localize

• the frame information of the current/caller method,
• the stack number of the current/caller method,
• the stack of caller method, the number of local variables of the current/caller

method,
• the local variable of the current/caller method.

The attacker needs to characterize the frame information in order to find the
position of the context.

144 E. Faugeron

The identification of information related to the attacker’s method (stack, local
variable, system information) can be done by performing an underflow inside different
methods of the same applet. To be efficient, these methods need to have different local
variable numbers and different stack sizes. Moreover, the parameters used for each
method need to be initialized with identifiable patterns:

public void local_method1 (short foo)
{
short var1 = (short) 0xBAB1;
short var2 = (short) 0xDED1;
short var3 = (short) 0xFEF1;
short var4 = local_method2((byte)0xDE,(byte)0xED);
return;
}
public short local_method2 (byte foo, byte bar)
{
short var1 = (short) 0xBAB2;
short var2 = (short) 0xDED2;
short var3 = local_method3();
return (short)0xDDFF;
}
public short local_method3 ()
{
//Perform the underflow attack
attr1 = (short)0x3333;
return (short)0xCDCD;
}

The following dump is obtained when an attacker performs an underflow using the
instruction dup_x on an open Java Card platform:

0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2
The state of the stack is the following (Fig. 5):

0001

010C

DED2

BAB2

DEED

Stack bottom

Stack of the
local_method3

Memory dump thanks
to dup_x

Fig. 5. State of the stack after an underflow attack using dup_x instruction

Manipulating the Frame Information with an Underflow Attack 145

By analysing the dump obtained thanks to the instruction dup_x on an open Java
Card platform, we can notice that the 3rd and the 4th words correspond to the local
variables of the local_method2.

The identification of the context of execution of the attacker’s applet can be done
by loading two underflow malicious applications having different AIDs but identical
code. In this case, the two applications will have the same local definition but differ on
the context ID. As an example, the following data can be read when an attacker
performs an underflow in an internal method of his applet:

• Underflow attack with dup_x 64 instruction on an applet APP1 with a context
APP1_context:
0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2

• Underflow attack with dup_x 64 instruction on an applet APP2 with a context
APP2_context:
0x01 0x18 0x00 0x01 0xDE 0xD2 0xBA 0xB2

The first two bytes are different for the two applets: it is linked to the context of the
current executed applet. The second byte needs to be fixed to 0x00 in order to take the
JCRE context.

Exploitation of the Underflow. Once the frame information has been localized and in
particular the context of the method of the attacker, the dup_x instruction can be used
with n, different from zero, in order to modify the execution context (as described in
the Fig. 4). Indeed, this instruction allows modifying 8 bytes located below the stack
(m equal to 4 and n equal to 8).

The attacker can then update the context of his own method with the identifier of
the JCRE’s context (equal to 0x00) to gain access to the whole card content. Indeed,
there is no firewall restriction for the JCRE [5] and as long as JCRE’s context is
granted to a method then it can read and modify any defined object in memory.

The instructions baload, saload or getfield can be used in order to read specific
address in the memory. Indeed, these instructions will allow accessing different types
of objects in the memory: byte array, short array and class. An address forging
operation needs to be performed inside the application in order to be able to access to
the targeted address (push the targeted address onto the stack).

The attacker needs then to reverse the memory access process. To perform this
analysis, he can dump his application code and data in order to understand object
representation into the memory:

• package/applet/instance (AIDs, CAP components,…)
• code
• standard objects (byte array, class,…)
• sensitive objects (OwnerPIN, Keys,…)

Once the characterisation has been done, the attacker is able to identify all these
parts for other applications loaded onto the card. The instructions bastore, sastore and
putfield can then be used in order to modify all objects read in memory.

146 E. Faugeron

By targeting the code of a sensitive application, he will be able to modify it. For
instance, he can replace, directly in memory, sensitive checks by NOPs in order to
avoid security/error detections. He can also modify the code of the Owner PIN object
inside the memory by replacing the ciphered PIN representation of the sensitive
application by the ciphered PIN representation of the attacker (if the representation of
objects is not diversified by object).

4.2 Byte Code Verification

Off-Card Verifier detects classical underflow attack. Nevertheless, an attacker has
several means to bypass this verification:

• Abuse the Shareable Interface mechanism as published in [1]: we have extended
and adapted the attack described in [1] in order to create an underflow.

• Abuse the Library mechanism.
• Use combined attack as published in [6].

Abusing the Shareable Interface Mechanism. The Shareable Interface mechanism
is used to share services between applications in different contexts. An Interface is
defined and contains all methods that will be shared. A Server implements these
methods and builds the Shareable Interface Object (object instance of the class that
implement the Shareable Interface).

A Client uses these methods by obtaining the Shareable Interface Object thanks to
the method getAppletShareableInterfaceObject(AID serverAID, byte parameter).

The Shareable Interface mechanism can be abused in order to create a type
confusion attack as described in [1]. Indeed, the Client is generated using one defi-
nition of the interface I1 with a function F that take, for instance, a byte array as
parameter. The Server is generated using another definition of the interface I2 with a
function F that takes a short array as parameter. During the application validation, the
Client will be verified with I1 and the Server with I2, the verifications are done at two
different times. That’s why no error will be detected during the validation. Regarding
application installations, only the interface I2 will be loaded onto the card. During the
Client applet execution, the type confusion is created and can be exploited by the
attacker (byte array read as a short array).

This principle can be applied to the underflow attack. Indeed, the method defi-
nition will be the following for the two interfaces:

• The Client is generated using the definition of the interface I1 (the Client contains
the underflow attack exploitation part):

//creation of the Underflow onto the card

public int myShareableMethod_underflow(short S1);

//Address forging onto the card

public byte[] myShareableMethod_shortToByteArray();

public short[] myShareableMethod_shortToShortArray();

Manipulating the Frame Information with an Underflow Attack 147

public myClass myShareableMethod_shortToMyClass();

• The Server is generated using another definition of the interface I2:
//creation of the Underflow onto the card

public void myShareableMethod_underflow(short S1);

//Address forging onto the card

public short myShareableMethod_shortToByteArray ();

public short myShareableMethod_shortToShortArray ();

public short myShareableMethod_shortToMyClass ();

The function myShareableMethod_underflow is called just before performing the
underflow attack as illustrated in the following code extract:

sspush frame_1;
sspush frame_2;
myShareableMethod_underflow();//returns INT in I1
dup_x 36;//Underflow of 4 bytes

//because it returns void indeed

The instructions sspush are used to push the new value of the frame on the top of
the stack (frame_1 and frame_2). Once the underflow is performed, the dup_x
instruction allows assigning the new frame information.

Then the functions myShareableMethod_shortToByteArray, myShareableMeth-
od_shortToShortArray and myShareableMethod_shortToMyClass are used to create
address forging. The aim is to read a short as a byte array, a short array or a class
object. The short used in order to forge address is the one given as parameter of
myShareableMethod_underflow.

During the off-card verification of the Client with the Interface I1, no error will be
detected. Nevertheless, during on-card execution with the Interface I2:

1. No int will be pushed onto the stack by the method myShareableMeth-
od_underflow. The underflow will be created.

2. The underflow is exploited by the attacker: he is able to modify the current
context by the JCRE context that is equal to 0.

3. A short will be returned by myShareableMethod_shortToByteArray, myShare-
ableMethod_shortToShortArray and myShareableMethod_shortToMyClass and
will be assigned as a reference to byte array, short array and class object. The
address will be forged. The attacker will be able to access to the targeted address.

Abusing the Libray Mechanism. A Java Card platform can contain some libraries
(applications that are not applets). A library is never instantiated; it contains only
methods that can be used by other application loaded onto the card.

148 E. Faugeron

As for the Shareable Interface mechanism, an attacker can abuse the Library
mechanism. The concept of the attack path is the same. Indeed, an attacker develops a
library in two versions:

• Library L1 v1.0, this version of the library will be used for the verification of the
application:

public int myShareableMethod()
As the method myShareableMethod returns an int, the underflow attack is not
detected by the tool.

• Library L1 v1.1, this version of the library will be loaded onto the card:
public void myShareableMethod()
During the execution of the malicious application, the method myShareableMethod
that return void is called. The underflow is activated and can be exploited by the
attacker.

Creating an Underflow with Combined Attack. A combined attack [6] is a com-
bination between a logical attack and a physical attack.

A combined attack can be used to create a mutant application. A mutant appli-
cation [7] is an application that is well-formed and that becomes malicious during its
execution by injecting a fault using a laser or an electromagnetic pulse in order to
modify transiently a specific bytecode execution. Indeed, an attacker develops a well
formed applet (successfully verified by an Off-Card Verifier) that is designed such that
the modification of one byte by a NOP allows him to execute a malicious code, in our
case the underflow attack. The applet of the attacker is loaded onto the card. The
attacker then modifies the interpretation of specific instruction during the code exe-
cution using fault injection. The instruction is interpreted as a NOP and consequently,
the instruction’s parameters are not processed and are interpreted as new instructions.

A combined attack can also be performed in order to avoid on-card security checks
or to bypass on-card countermeasures. An attacker can use it in order to bypass
verification made during application loading. Indeed, the application of the attacker
uses a library L2 that declares the following method: public int myShareableMethod().
The version of the library is 2.0. The application of the attacker is well-formed and
will be verified with success. Nevertheless, the platform contains a library L1 with the
following method: public void myShareableMethod(). The version of the library onto
the card is 1.0. During the application loading, the platform will ensure that each
imported package has the same major version than the one loaded onto the card. An
attacker can perform a fault injection in order to bypass this specific security check. In
this case, the application will be loaded successfully and the underflow can be
exploited during the application execution.

5 Countermeasures

The underflow attack can be covered by organisational measures or by technical
countermeasures.

Manipulating the Frame Information with an Underflow Attack 149

5.1 Organisational Measures

The developer can add specific mandatory requirements in the guidance. Indeed,
requirements related to versioning and imported packages can be sufficient to cover
the purely software attack abusing the Shareable Interface or Library mechanism. In
such case, the attack will be detected during the application verification process by the
Verification Authority and the application will be rejected.

Nevertheless, this countermeasure does not cover combined attacks. Only tech-
nical measures can be used to cover that kind of attacks.

5.2 Technical Countermeasures

The developer can implement dedicated countermeasures onto the Java Card Virtual
Machine in order to defend against the underflow attack. Indeed, he needs to add
security checks upon the processing of each instruction that pop elements from the
stack in order to ensure that the stack pointer is valid, during and after the instruction
processing.

Nevertheless, an attacker could perform a combined attack to bypass this coun-
termeasure: the attacker develops his malicious application, loads it onto the card, and
finally performs a fault injection attack upon the execution of the application in order
to avoid the underflow countermeasure. Therefore, in order to implement an efficient
underflow countermeasure, the code must also be protected against faults injection
attacks.

6 Conclusion

Open Java Card platforms, enabling post-issuance applet loading, induce a new type
of attackers having privileges. These attackers are untrusted application developers or
application loaders that are able to choose the application that will be loaded onto the
card. In such context, the platform with its guidance needs to be protected against
malicious applications.

We have presented, in this paper, an underflow attack that exploits the dup_x
instruction in order to read and modify the current context of execution of the
attacker’s application. Once this modification is done, the attacker is able to acquire
the context of the JCRE and so to read and modify out-of-context data. This attack can
be developed in such a way that the malicious application will bypass the concept of
Byte Code Verifier. Indeed, the validation of application is done in a specific time and
the validation of the library or of the Shareable service is done at another time. This
underflow attack can also be exploited through other instructions that pop elements
from the stack. This attack has been performed with success on several Java Card
platforms.

Several solutions exist to protect the platform against this kind of attacks, either
organisational - if the guidance includes specific requirements -, or technical - if the
platform implements dedicated security checks upon instructions processing -.

150 E. Faugeron

Finally, this paper shows that the current concept of Byte Code Verification is not
sufficient to prevent all kinds of malicious applications. During a platform evaluation,
the overall malicious application attack paths need to be taken into account. A specific
care is to be applied on the platform guidance in order to ensure that it will contain all
the necessary requirements to cover logical attack path.

References

1. Mostowski, W., Poll, E.: Malicious code on java card smartcards: attacks and
countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol.
5189, pp. 1–16. Springer, Heidelberg (2008)

2. Lanet, J.L., Faugeron, E., Dessiatnikoff, A.: EMAN: Un cheval de Troie dans une carte à
Puce. Computer & Electronics Security Applications Rendez-vous (CESAR 2008), p. 198
(2008)

3. Lanet, J.L., Iguchi-Cartigny, J.: Évaluation de l’injection de code malicieux dans une Java
Card (SSTIC 09) (2009)

4. Java Card Virtual Machine Specification - Java Card Platform, Version 2.2.2, March 2006
5. Java Card Runtime Environment specification - Java Card Platform, Version 2.2.2, March

2006
6. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on java card 3.0 combining fault and logical

attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS,
vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

7. Vetillard, E., Ferrari, A.: Combined attacks and countermeasures. In: Gollmann, D., Lanet,
J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 133–147. Springer,
Heidelberg (2010)

8. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined software and hardware attacks on
the java card control flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079,
pp. 283–296. Springer, Heidelberg (2011)

9. Karsten Nohl: Rooting SIM cards. BlackHat (2013)
10. Pierre Girard thesis: Contribution à la sécurité des cartes à puce et de leur utilisation.

University of Limoges (2011)

Manipulating the Frame Information with an Underflow Attack 151

Formal Security Analysis and Improvement
of a Hash-Based NFC M-Coupon Protocol

Ali Alshehri(B) and Steve Schneider

Department of Computing, University of Surrey, Guildford GU2 7XH, UK
a.a.alshehri@surrey.ac.uk

Abstract. Near field communication (NFC) is a Radio Frequency (RF)
technology that allows data to be exchanged between devices that are in
close proximity. We formally analyse a hash based NFC mobile coupon
protocol using formal methods (Casper/FDR2). We discover a few pos-
sible attacks which break the requirements of the protocol. We propose
solutions to address these attacks based on two different threat mod-
els. In addition, we illustrate the modelling from the perspective of the
underlying theory perspective, which is beyond the knowledge required
for modelling using CasperFDR tool (black-box approach). Therefore,
this paper is a facilitating case study for a “black-box” CasperFDR user
to become a more powerful analyser.

Keywords: NFC · M-coupon · CasperFDR · Formal verification ·
Protocol security

1 Introduction

Near Field Communication (NFC) [1] is a radio frequency (RF) communication
link, which allows data to be exchanged between devices that are normally less
than 10 cm apart [2]. NFC-based mobiles are an emerging technology chang-
ing the way we communicate with objects. For instance, payments, tickets and
coupons can be exchanged just by waving the NFC-based mobile at the points
of sale.

NFC security is an important issue that has been emphasised in the litera-
ture [3,4]. Even though NFC has the advantage of a short communication link,
security measures must be considered especially with sensitive applications to
address security requirements, such as confidentiality, integrity and availability.

The NFC mobile coupon application (M-coupon) is one of the promising
and popular applications [5–8]. An M-coupon is a cryptographically secured
electronic message with some value. It requires secure issuing and cashing of
the M-coupons, otherwise it can cause huge loss and reputation damage for a
company [9].

The NFC M-coupon system has a typical scenario, see Fig. 1. All parties have
NFC capability, in order to communicate with each other. Firstly, a user scans
his NFC mobile against an NFC issuer (e.g., a smart poster or newspaper), and

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 152–167, 2014.
DOI: 10.1007/978-3-319-08302-5 11, c© Springer International Publishing Switzerland 2014

Formal Security Analysis and Improvement 153

Fig. 1. General NFC mobile coupon

an M-coupon is issued and sent to his mobile. Later, the user goes to the shop
to cash the M-coupon with the cashier. The cashier may authenticate the user
before the cashier provides the promised bonus. Only the cashier needs to have
online access, whereas the issuer and the user can both be offline. Hsiang et al.
[10] have proposed a secure hash-based M-coupon protocol which allows secure
issuing and cashing of M-coupons. They designed the protocol to address specific
M-coupon requirements.

On the other hand, designing a security protocol is a difficult task even with
strong encryption methods. Many attacks may be possible on the cryptographic
protocols just by intercepting and replaying encrypted messages between entities,
without decrypting any messages. Formal security analysis is a powerful approach
to check the security of a protocol and whether it address its requirements [11].

In this paper we use the CasperFDR approach [12] based on Communicating
Sequential Processes (CSP) [13], a formal method (state exploration) approach,
to formally analyse the NFC M-coupon protocol proposed by Hsiang et al. [10].
Our analysis found attacks against the protocol. We then provide three solutions
to address these vulnerabilities, and formally verify them with CasperFDR.

In addition, we illustrate the modelling from the underline theory angle.
Modeling protocols in CasperFDR requires only an abstract description of the
protocol and required security requirements to be checked. Then, CasperFDR
provides the result detailing whether an attack was found or not. We call this a
black-box approach as the underlying models are not shown to the user. In this
paper we consider this point that we illustrate the modeling from the underlying
theory perspective (CSP aspect). This is important to enable a black-box user
to become more powerful in protocol analysis using CasperFDR and model the
protocol and its requirements in a precise approach.

2 The Casper Approach

In our analysis we use CSP [13], with its model checker Failures Divergence
Refinement (FDR2), which is proven to be an effective method in analysing the
security of protocols [14]. However, modelling protocols in CSP is not a trivial
task. Gavin Lowe developed CasperFDR [12], a tool that allows the user to write
an abstract description of a security protocol, then the tool produces a model
in the CSP language, and directly checks it with FDR2. CasperFDR has been
used to analyse a huge number of protocols [15], which proves its capability of
finding vulnerabilities.

154 A. Alshehri and S. Schneider

CasperFDR is a formal method tool which supports symbolic protocol analy-
sis in the Dolev-Yao model [16] which assumes that no encrypted message can
be decrypted without the decryption key, thus the CasperFDR intruder model
does not perform any cryptanalysis. However, the intruder does have full control
of the network traffic, and tries to break the security protocol from what passes
on the network.

CasperFDR performs a refinement check of the protocol against its require-
ments. When refinement fails, then it provides a trace which shows how the
property fails, that corresponds to an attack. Moreover, CasperFDR manages
the Xor operation where attacks against these algebraic properties are considered
in CasperFDR.

2.1 Simple Example

Figure 2a is our demonstrating simple protocol. A two message protocol aims to
authenticate Bob to Alice:

1. Alice → Bob : {A,NA,KAB}PKB

2. Bob → Alice : {NA}KAB

Message 1 sent by Alice to Bob contains Alice identity, Nonce (number used
once) and a session key KAB, encrypted with Bob’s public key. Then, Bob sends
message 2 by encrypting the Nonce (NA) with the session key. Alice authenticates

Fig. 2. Illustrating example

Formal Security Analysis and Improvement 155

Bob based on the fact that since message 1 is encrypted by Bob’s public key, he is
the only one that can extract the session key and the nonce and send message 2.
At the end of the protocol both Alice and Bob believe the session key KAB is secret.

Analysing this protocol in CasperFDR is a straightforward procedure. Hav-
ing modelled the exchanged messages between entities, we check the claimed
authentication and secrecy using the following claims:

Agreement(Bob,Alice,[NA])

StrongSecret(Bob, KAB,[Alice])

The Agreement specification means it will check whether Bob is authenticated
to Alice and have both of them agreed on the Nonce NA. The StrongSecret
specification is checking whether the key KAB is secret between Bob and Alice.
CasperFDR will complete the remaining process for us as we explained earlier.

Nevertheless, understanding how these specifications are captured under-
neath CasperFDR is important if we want precise descriptions of how claimed
properties are modelled in a specific application, as we will see later.

Capturing authentication between Alice and Bob in the protocol is done by
utilising new events injected in the protocol as demonstrated in Fig. 2a. These
events are Running and Commit. Initially, Alice and Bob are modelled as inde-
pendent CSP processes. After message 1, Bob performs the Running event, which
means Bob starts running the protocol apparently with Alice. Then, Alice will
perform the Commit event at the end of her part of the protocol, which means
Alice has finished a run of the protocol with Bob. Alice could make sure she was
running the protocol with Bob based on the fact that if Alice reaches the Com-
mit event then Bob must have reached the Running event before. Launching
an attack relies on the possibility of the intruder, without taking Bob’s role, to
engineer a trace of the protocol in which Alice runs the Commit event without
a corresponding Running event from Bob.

For secrecy, only the Claim Secret event is used by Alice and Bob. Figure 2a
only shows when Bob performs Claim Secret event. An attack is launched if the
intruder could break this claim, by finding a trace of the protocol in which the
intruder knows a claimed secret, without taking Alice’s or Bob’s roles.

The Running, Commit and Claim Secret events can also contain more infor-
mation specific to the agreement required between the participants. They are
constructed by:

Agent.Agent.Message

For example Running.Bob.Alice.NA, which means Bob starts a run of the
protocol, apparently with Alice, using nonce NA.

The Casper analysis finds no attack on authentication, but there is an attack
on secrecy. Figure 2b illustrates how an intruder can create a session key that Bob
believes is secret with Alice. Anyone can generate message 1 since Bob’s public
key is publicly known. The intruder impersonates Alice by including Alice’s
identity. At the end of the protocol run Bob believes the session key KMB is a
secret shared with Alice. However, it is known by the intruder.

156 A. Alshehri and S. Schneider

2.2 Hierarchy of Authentication and Secrecy

CasperFDR provides different flavours of testing authentication and secrecy.
The strongest form of authentication specification is Agreement. If Alice and
Bob meet the Agreement specification, then if Bob thinks he has successfully
completed a run of the protocol with Alice, then Alice has previously been
running the protocol, agreeing on their roles in the protocol, and there is a one-
to-one relationship between Alice and Bob i.e. each run of Alice corresponds to
a unique run of Bob.

A weaker authentication specification is NonInjectiveAgreement. The differ-
ence from Agreement is that the one-to-one relationship is not required. Each
run of one participant matches a run of the other but they can overlap. For
example, two “Commit” events may correspond to the same “Running” event.

Secrecy has two forms of specification, Secret and StrongSecret. Secret tests if
the intruder could know the secret value at the end of the protocol. StrongSecret
is stronger than Secret in that, including the Secret specification, it even checks
whether the intruder is able to know the secret value without completing a full
run of the protocol.

2.3 Channels

The CasperFDR intruder cannot open encrypted message without the decryption
key, but also CasperFDR allows more restriction on the intruder’s ability on any
messages of the protocol. For example:

#Channels
1 NF NRA- NR
2 C NF NRA NR

The first line means that on message 1 the intruder neither can fake data
NF (No Fake), nor honest reascribing NRA- (changing the sender ID except
to his own ID) nor redirecting NR (changing the receiver ID). The second line
means that on message 2 the intruder neither can eavesdrop C, nor fake data,
nor reascribing nor redirecting.

By adjusting some of protocol’s channels, we can capture assumptions made
in the protocol as we will see later.

We do not restrict the ability of the intruder with respect to the wireless
aspect. Even though eavesdropping is still a major threat, the intruder would not
have that ability of communicating with the participants at the same time as in
the normal wired network e.g. the Internet. In this paper we model the protocols
in the Dolev-Yao model. If an attack occurred, we then analyse informally the
feasibility in a wireless context. If no attack is found, then it means there should
not be any attack in a weaker wireless model.

3 Protocol Security Requirements

The analysed protocol we consider in this paper intends to meet six security
requirements, as stated by the protocol designer in [10]:

Formal Security Analysis and Improvement 157

– Confidentiality: A third party should not be able to obtain the M-coupon
by eavesdropping.

– Data Integrity: An attacker should not be able to modify data during the
communication.

– Forgery Protection:
• No Unauthorized Generation: An attacker should not be able to issue

his own M-coupon.
• No Manipulation: M-coupon should not stay valid after a manipulation.

– Unauthorized Copying: An attacker should not be able to produce a valid
copy of an M-coupon and cash it in. This requirement can be divided into:
• Not Transferable: Whatever identity is presented at issuing phase should

not be changed during the protocol.
• User Authentication: In addition to Not Transferable, the identity of

the user is the one who it claims to be. The user who issued the M-coupon
must be the one who is cashing it at the cashier. This requires the cashier
to authenticate the user through some authentication methods.

This protocol only addresses the Not Transferable requirement.
– No Multiple Cash-in: An attacker should not be able to use the same

M-coupon multiple times.

3.1 Formal Definition

Figure 3 illustrates a formal definition in CasperFDR of these requirements and
the relationship between them. The formal definitions can apply to a variety of
M-coupon protocols [17].

Confidentiality requires that data representing the M-coupon in the protocol
must satisfy StrongSecret specification between the issuer and the cashier.

NonInjectiveAgreement specification includes three requirements, and layers,
of authentication between the cashier and the issuer. We are not concerned here
with repeats because that is checked directly by other means, and it may be not
required in some systems. For Forgery Protection, after identifying data repre-
senting the M-coupon, a NonInjectiveAgreement on the M-coupon between the
issuer and the cashier is required. This is violated if the cashier accepts an M-
coupon not been issued by the issuer. This implies either that the M-coupon
has been created by an attacker (i.e. Unauthorised Generation) or else that an
M-coupon generated by the issuer has been modified to another (i.e. No Manipu-
lation). Not Transferable is a stronger specification than forgery protection that
it also requires an agreement on a user identity attached to the M-coupon. The
strongest NonInjectiveAgreement specification is Data Integrity: both the cashier
and the issuer must agree on all data in the protocol.

No Multiple Cash-in requires an Agreement specification between the issuer
and the cashier. Every time the cashier accepts an M-coupon, there must be a
separate occasion where the issuer must have issued it. Hence the cashier cannot
accept an M-coupon more times than it was issued.

User Authentication is an Agreement between the user and the cashier on
some credential. Even though the M-coupon might be used many times, the user
must be authenticated each time.

158 A. Alshehri and S. Schneider

Fig. 3. Hierarchy of authentication/secrecy properties

4 Protocol Description

The M-coupon protocol of [10] uses simple hash functions, which is a computa-
tionally light cryptographic method, a suitable choice with standard RFID/NFC
tags. Figure 4 shows the messages in protocol notation.

There are four messages in this protocol. Initially, the cashier C and the issuer
I share a secret value, X and an offer. The cashier stores a table consisting of
hashes of all issuers identities, h[ID(i)].

1. U → I : ID(u)
2. I → U : M = ID(u) , V , C
3. U → C : M = ID(u) , V , C
4. C → U : BONUS

ID(i) Issuer ID
ID(u) User ID
Offer Data about the Offer
X A secret key shared between the issuer and the cashier
⊕ Exclusive or (XOR)
h[..] Hash function
V ID(u) ⊕ h[ID(i)]
C h[h[ID(i)] ⊕ X ⊕ Offer]

Fig. 4. The hash-based M-coupon protocol

Formal Security Analysis and Improvement 159

At the issuing phase, the user’s mobile U sends its identity to the issuer
(message 1). Then, the issuer produces a coupon, M (message 2), consisting of
three parts: ID(u), V (= ID(u) ⊕h[ID(i)]) and C(= h[h[ID(i)] ⊕X ⊕Offer]).

At the cashing phase, the user’s mobile sends the M-coupon to the cashier
(message 3). Then, the cashier obtains h[ID(i)] by computing ID(u) ⊕ V . The
cashier can look up ID(i) from the hash, and then find X and Offer. When
the cashier has ID(u) and Offer, it can decide if the M-coupon has been used
before, and reject it accordingly. Then, the cashier will check the validity of the
M-coupon by computing h[h[ID(i)] ⊕ X ⊕ Offer] and confirm it matches C.
The cashier stores ID(u) to prevent re-use of the coupon, and sends the Bonus
to the user.

The intention is that the Confidentiality and Data Integrity requirements
are ensured by use of the secret value X. By including the identity of the
user’s mobile and offer, Multiple Cash-in and Not Transferable can be man-
aged. Forgery Protection is addressed by the secret value X which is known only
by the cashier and the issuer.

5 Modelling

In order to capture the NFC M-coupon requirements in the protocol, we develop
a model as shown in Fig. 5. The model captures the following requirements:
Confidentiality, Forgery Protection, Not Transferable, Data Integrity and No
Multiple Cash-in. Moreover, data representing the M-coupon in the protocol are
X and Offer.

5.1 The Protocol’s Requirements

We show in the following sections what we have to write in CasperFDR to
model the protocol’s requirements of Sect. 3, then how it is captured from the
underneath CSP theory aspect, in terms of Running, Commit and Claim Secret
events. This enabling us to have formal and precise descriptions of capturing
NFC mobile coupon requirements.

Confidentiality. We model confidentiality in Casper as follows:

StrongSecret(C, X , [I])

StrongSecret(C, Offer , [I])

These secrecy specifications means the cashier C claims that X and Offer are
confidential between the cashier C and the issuer I. StrongSecret checks whether
the intruder is able to break these claims without completing the protocol.

Figure 5 illustrates the first specification, secrecy of X. When the cashier C
performs the Claim Secret.C.I.X event, it can expect X to be a secret with the
issuer I who shares the secret key X. If this is violated then the intruder can
complete a run of the protocol with the cashier without taking the issuer role
in the protocol, and learn the secret key X. A similar description for the Offer
specification.

160 A. Alshehri and S. Schneider

Forgery Protection. We model forgery protection in Casper as follows:

NonInjectiveAgreement(I,C,[X,Offer])

We identify the M-coupon with X and Offer. This states that if cashier
accepts X and Offer, then the issuer must have issued them. NonInjective means
that it is not concerned with repeats. I.e. the cashier can accept many times what
was issued once. This is violated if the cashier accepts X and Offer that have
not been issued by the issuer. This implies either that X and Offer have been
created by an attacker (i.e. Unauthorised Generation) or else that an M-coupon
generated by the issuer has been modified to another (i.e. No Manipulation).
Hence if this property holds then we have Forgery Protection: No Unauthorised
Generation and No Manipulation.

This is illustrated in Fig. 5. After the issuer completes its part of the protocol,
it performs the Running.I.C.X.Offer event, which means the issuer I starts a
running of the protocol, apparently, with the cashier C, agreeing on X and Offer.
Later, the cashier will perform the Commit.C.I.X.Offer event at the end of its
part of the protocol, which means the cashier C has finished the protocol with
the issuer I, agreeing on the X and Offer.

Unauthorized Copying (Not Transferable). We model Not Transferable
in Casper as follows:

NonInjectiveAgreement(I,C,[X,Offer,ID(u)])

This specification is similar to forgery protection specification, but also with
an agreement on a user identity. The coupon, [X, Offer], must be attached to
one user only ID(u). Both the issuer and the cashier agree on the user to use
the coupon as many times as he like, as long as the coupon has been issued by
a genuine issuer, and is being used by the intended user. An example for such
coupon is a frequent flyer coupon.

This is shown in Fig. 5. After the issuer completes its part of the protocol, it
performs the Running.I.C.X.Offer.ID(u) event, which means the issuer I starts
a running of the protocol, apparently with the cashier C, agreeing on X, Offer
and ID(u). Later, the cashier will perform the Commit.C.I.X.Offer.ID(u) event
at the end of its part of the protocol, which means the cashier C has finished
the protocol with the issuer I, agreeing on the X, Offer and ID(u).

Observe that this property is stronger than Forgery Protection. If it holds
then not only the m-coupon must be genuine, as for Forgery Protection, but it
must also have the same user.

Data Integrity. We model Data Integrity in Casper as follows:

NonInjectiveAgreement(I,C,[X,Offer,ID(u),ID(i)])

Formal Security Analysis and Improvement 161

Fig. 5. Capturing hash-based NFC M-coupon requirements

This will check the integrity of the protocol. Both the cashier and the issuer
must agree on all the information in the protocol.

No Multiple Cash-in. We model No Multiple Cash-in in Casper as follows:

Agreement(I,C,[X,Offer])

This specification states that every time the cashier accepts X and Offer,
there must be a separate occasion where the issuer must have issued them.
Hence cashier cannot accept X and Offer more times than issuer sent them.

Figure 5 illustrates a scenario where the cashier is engaging in the protocol
twice, with one issuer run. The first time the cashier runs the protocol with
the user’s mobile, and the second, illegal, time with Mallory who might be an
intruder or the user himself. The second Commit should not occur if there was
not a separate Running.

5.2 Intruder Knowledge

The analysis also requires us to define the initial knowledge of the intruder. The
intruder knows the following: the identities of himself, the user and the cashier,
and the hash function.

5.3 Assumptions

There is an assumptions made by the protocol’s designers that the client’s ID is
bound to the client’s mobile device, and therefore the client is authenticated at
issuing and cashing phases. Therefore, we analyse this protocol in two different
assumptions: as no assumption made (the Dolev-Yao model) and as the user’s
ID is bound to the mobile.

162 A. Alshehri and S. Schneider

The main goal for analysing the protocol under this assumption is that if an
attack is discovered under the Dolev-Yao model, then we should examine if the
attack still applies under the assumption made.

We blind message 1 from the intruder i.e. the intruder can not eavesdrop,
fake, re-ascribe or redirect message 1. We model this in Casper as follows:

#Channels
1 C NF NRA NR

6 Analysis

The outcome of the analysis shows no attack on Confidentiality or Forgery
Protection.

However, attacks were found on the properties of Not Transferable, Data
Integrity and No Multiple Cash-in. The main vulnerability is a simple logical
attack against the hashes of the M-coupon. The identity of the user attached to
the M-coupon can be easily extracted and changed to any identity. If we consider
the M-coupon, the identity ID(u) is not attached correctly to the M-coupon.
Anyone is able to compute the first two parts, ID(u) and V to get h[ID(i)]:

h[ID(i)] = ID(u) ⊕ V

By obtaining h[ID(i)], the intruder is able to attach any identity, such as
ID(intruder) without changing the third part C, and thus produce a new coupon
M ′:

V ′ = ID(intruder) ⊕ h[ID(i)]
M ′ = ID(intruder) , V ′ , C

Even though this analysis was under the Dolev-Yao threat model, the proper-
ties are still broken under the assumption of a bounded user ID and in a wireless
context. The attacker still could change the user identity in an eavesdropped M-
coupon to his own identity, and cash it in with the cashier. The intruder could
even know the user ID by pretending to be an issuer.

As far as the analysis is concerned, the Unauthorized Copying property can
be divided into two properties: Not Transferable and User Authentication. Not
Transferable is an agreement between the issuer and the cashier that whatever
user identity presented at issuing phase, it should not be changed during the
protocol. On the other hand, User authentication is stronger in that the identity
of the user must also be the one who it is claimed to be. I.e. it is an agree-
ment between the user and the cashier. This protocol only tries to address the
requirement of Not Transferable, which may be sufficient in the case of their
assumption or in a secure and trusted issuing phase.

Formal Security Analysis and Improvement 163

Table 1. Hash based protocol and provided solutions against intended/addressed/failed
requirements

Hash-based Enhanced Hash-based Footfall Premium

Confidentiality
√ √ √ √

Forgery protection
√ √ √ √

Data integrity x
√ √ √

No multiple cash in x
√ √ √

Not transferable x
√ √

User authentication
√

7 Suggested Solution

We suggest three solutions to address the found vulnerability: An enhanced hash-
based protocol which is a solution based on the assumption of the bounded ID
assumption. In addition, We provide two kinds of marketing-oriented M-coupon
protocols, the footfall M-coupon protocol and the premium M-coupon protocol,
both of which are analysed within the Dolev-Yao model. Table 1 summarises the
solutions provided against the properties they address.

7.1 Enhanced Hash-Based Protocol

In order to address the broken properties (Not Transferable, Data Integrity and
No Multiple Cash-in) in the original hash-based protocol, the identity of the user
must be attached correctly to the coupon. This solution must be only considered
in a secure and trusted issuing phase. The change needed is to replace C in Fig. 4
to become:

C = h[h[ID(i)],X,Offer, ID(u)]

As far as the Not Transferable property is concerned, it is only useful within
a trusted issuing phase, which is not always the case. The fact that user ID can
be faked by anyone makes combining the User Authentication property with Not
Transferable property more useful and meaningful. So, the best choice would be
to use them all: the premium protocol, or drop them all: the footfall protocol.

7.2 Marketing-Oriented Protocols Solutions

The footfall M-coupon protocol is used when the main purpose of the M-coupon
is to increase the number of people visiting the shop, regardless of whom is using
it. Conversely, the premium M-coupon protocol is used when the client has paid
for it, and only the intended user is allowed to cash it. The premium M-coupon
protocol addresses all requirements discussed in Sect. 3. The footfall M-coupon
protocol addresses the same requirements, except for Not Transferable and User
Authentication.

164 A. Alshehri and S. Schneider

Fig. 6. Suggested solution

The Footfall M-coupon Protocol. Fig. 6a shows the footfall M-coupon
protocol.

Footfall/Premium protocol notations:

ID(i) = Issuer ID.
ID(u) = User ID.
ID(c) = Cashier ID.
Offer = Data about the Offer.
X = A secret key between the issuer and the cashier.
X2 = A secret key between the user and the cashier.
Nu = User’s nonce (random number).
Nc = Cashier’s nonce.
h[] = Hash function.

There are four messages in this protocol:
1. U → I : Nu
2. I → U : M-coupon = h[ID(i), X , Offer ,Nu] , Nu, h[ID(i)]
3. U → C: M-coupon = h[ID(i) , X , Offer ,Nu] , Nu, h[ID(i)]
4. C → U : BONUS

After the user brings his mobile close to the issuer, his mobile sends a ran-
dom number Nu (message 1). Then, the Issuer sends the M-coupon to the user
(message 2). The M-coupon contains a hash of the issuer identity, the secret key
X, the promised offer and user random number. In addition, a hash of the issuer
identity is sent, and the user’s random number. Then, the user brings his mobile
near the cashier and sends the M-coupon (message 3). From the table of hashed
issuer identities, the cashier uses h[ID(i)] to find the corresponding ID(i), secret
X and the offer. The cashier can check the validity of the M-coupon. Through
the nonce Nu the cashier can manage the M-coupon that every issued M-coupon
has a unique random number. The cashier can, for example, stop using the M-
coupon after five uses. Finally, if all these conditions are satisfied, then the bonus
is given to the user (message 4).

Confidentiality, Data Integrity and Forgery Protection requirements are
ensured by use of the secret value X and offer. Multiple Cash-in can be managed

Formal Security Analysis and Improvement 165

by including the nonce. However, a stronger Multiple Cash-in is provided in the
premium M-coupon protocol.

Confidentiality-Footfall: StrongSecret(C,x,offer,[I])
Forgery Protection-Footfall: NonIAgreement(I,C,[x,offer,nu]
Data Integrity-Footfall: NonIAgreement(I,C,[x,offer,nu,I])
No Multiple Cash-in -Footfall: Agreement(I,C,[x,offer,nu])

The Premium M-coupon Protocol. The main enhancement in this protocol
is attaching an authentic user identity to the coupon. I.e. addressing Not Trans-
ferable and User Authentication. Figure 6b illustrates the premium M-coupon
protocol.

1. U → I : h[ID(u)]
2. I → U : M-coupon
3. C → U : Nc , ID(c)
4. U → C : M-coupon , ID(u) , h[Nc , X2 , ID(c) , ID(u)]
5. C → U : BONUS
M-coupon = h[ID(i) , X , Offer , h[ID(u)]] , h[ID(i)]

The user’s mobile sends a hash of his identity ID(u) to the issuer (message
1). Then, the issuer sends the M-coupon to the user (message 2). The M-coupon
contains a hash of: the issuer identity, the secret X, the offer and the hashed
user’s identity. In addition, it contains a hash of the issuer identity. At the
cashing phase, the cashier sends his identity and a nonce Nc (message 3). At
message 4, the user sends the M-coupon and the user identity, with a new hash
containing Nc, the secret value X2, the cashier identity and the user identity.

The cashier can send the bonus based on verifying the two hashes in message
4. From the table of hashed issuer identities, the cashier uses h[ID(i)] to find
the corresponding ID(i), secret X and the offer, with user identity known from
message 4, the cashier can check the validity of the M-coupon. The second hash
authenticates the user, the cashier uses ID(u) to find the corresponding secret
X2, and combines it with already known data (Nc, ID(c), ID(u)) to check the
validity of the second hash. The cashier can link the M-coupon hash with the
second one by checking that both of them include the same identity ID(u).

Confidentiality-Premium: StrongSecret(C,x,offer,x2,[I])
Forgery Protection-Premium: NonIAgreement(I,C,[x,offer]
Data Integrity-Premium: NonIAgreement(I,C,[x,offer,I,U])
No Multiple Cash-in-Premium: Agreement(I,C,[x,offer,U])
Not transfarable-Premium: NonIAgreement(I,C,[U])
User Authentecation-Premium: Agreement(U,C,[nc,x2,U])

We formally verify the security of these solutions: the Casper/FDR2 analysis
found no attacks.

166 A. Alshehri and S. Schneider

8 Conclusion

We used the formal model-checker Casper/FDR2 to examine a hash based M-
coupon protocol and check whether it meets its requirements. The outcome of the
analysis shows a simple logical attack in the hash combination of the M-coupon,
which damages many of protocol’s requirements. Solutions were provided based
on two assumptions: when the issuing phase is trusted where the intruder is
more restricted; and where the intruder has the power to claim any identity.
This paper can be considered as a case study of how a black-box analysis can
provide powerful results about NFC protocols.

Acknowledgement. This research was supported by Ministry of Higher Education
in Saudi Arabia. We thank the anonymous reviewers for their constructive comments.

References

1. ISO/IEC: Information technology - telecommunications and information exchange
between systems - near field communication - interface and protocol (NFCIP-1)
(2004)

2. Finkenzeller, K.: RFID Handbuch: Fundamentals and Applications in Contact-less
Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd
edn. John Wiley and Sons, Ltd., New York (2010)

3. Haselsteiner, E., Breitfuß, K.: Security in near field communication (NFC). In:
Proceedings of Workshop on RFID and Lightweight Crypto (RFIDSec06) (2006)

4. Mulliner, C.: Vulnerability analysis and attacks on NFC-enabled mobile phones.
In: ARES, pp. 695–700 (2009)

5. Juniper Research: Mobile coupons – ecosystem analysis and marketing channel
strategy 2011–2016. Technical report, Juniper Research (2011)

6. Clark, S.: Survey: discounts and coupons will drive adoption of
mobile payments (2011). http://www.nfcworld.com/2011/06/23/38289/
survey-discounts-and-coupons-will-drive-adoption-of-mobile-payments

7. Smart Card Alliance: Proximity mobile payments business scenarios: Research
report on stakeholder perspective. Technical report, Smart Card Alliance (2008)

8. Brown, C.: The future is NFC says coupons.com exec (2011). http://www.nfcworld.
com/2011/03/10/36399/the-future-is-nfc-says-coupons-com-exec/

9. Wolverton, T.: Disney battles coupon goof (2002). http://news.cnet.com/
2100-1017-964831.html

10. Hsiang, H.C., Shih, W.K.: Secure mcoupons scheme using nfc. In: International
Conference on Business and Information (2008)

11. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

12. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput.
Secur. 6(1–2), 53–84 (1998)

13. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

14. Ryan, P.Y.A., Schneider, S.A., Goldsmith, M., Lowe, G., Roscoe, A.W.: Modelling
and Analysis of Security Protocols. Addison-Wesley-Longman, New York (2001)

http://www.nfcworld.com/2011/06/23/38289/survey-discounts-and-coupons-will-drive-adoption-of-mobile-payments
http://www.nfcworld.com/2011/06/23/38289/survey-discounts-and-coupons-will-drive-adoption-of-mobile-payments
http://www.nfcworld.com/2011/03/10/36399/the-future-is-nfc-says-coupons-com-exec/
http://www.nfcworld.com/2011/03/10/36399/the-future-is-nfc-says-coupons-com-exec/
http://news.cnet.com/2100-1017-964831.html
http://news.cnet.com/2100-1017-964831.html

Formal Security Analysis and Improvement 167

15. Donovan, B., Norris, P., Lowe, G.: Analyzing a library of security protocols using
Casper and FDR. In: Proceedings of the Workshop on Formal Methods and Secu-
rity Protocols (1999)

16. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Trans. Inf. Theory
2(29), 198–208 (1983)

17. Alshehri, A., Schneider, S.: Formally defining NFC M-coupon requirements, with
a case study. In: International Conference for Internet Technology and Secured
Transactions, ICITST 2013 (2013). doi:10.1109/ICITST.2013.6750161, http://
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6750161&tag=1

http://dx.doi.org/10.1109/ICITST.2013.6750161
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6750161&tag=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6750161&tag=1

Side Channel Countermeasures -
Session Chair: Svetla Nikova

Revisiting Atomic Patterns for Scalar
Multiplications on Elliptic Curves

Franck Rondepierre(B)

Oberthur Technologies, Crypto Group, 420, Rue Estienne D’Orves,
92 700 Colombes, France

f.rondepierre@oberthur.com

Abstract. This paper deals with the protection of elliptic curve scalar
multiplications against side-channel analysis by using the atomicity prin-
ciple. Unlike other atomic patterns, we investigate new formulæ with
same cost for both doubling and addition. This choice is particularly
well suited to evaluate double scalar multiplications with the Straus-
Shamir trick. Thus, in situations where this trick is used to evaluate
single scalar multiplications our pattern allows an average improvement
of 40 % when compared with the most efficient atomic scalar multiplica-
tion published so far. Surprisingly, in other cases our choice remains very
efficient. Besides, we also point out a security threat when the curve para-
meter a is null and propose an even more efficient pattern in this case.

Keywords: Elliptic curves · Scalar multiplication · Straus-Shamir trick ·
Side-Channel Analysis · Atomicity

1 Introduction

The first algorithms performing public-key cryptography, such as the Rivest-
Shamir-Adleman (RSA) algorithm [27], have been published in the seventies
and remain widely used nowadays. However, current key lengths required with
these protocols are limiting their efficiency. Elliptic Curve Cryptography (ECC)
provides equivalent cryptographic primitives, but with significant improvements
in terms of speed and memory, and is now recommended by governmental orga-
nizations such as the National Institute of Standards and Technology (NIST).
The main resource-consuming operation in ECC is the computation of a scalar
multiplication [k] P for a secret scalar k and a public point P on an elliptic curve.

We hence consider the implementation on smart cards of scalar multiplica-
tions on standardized elliptic curves over Fp. In this context, side-channel resis-
tance, memory and power consumptions have to be taken into account before
designing a fast implementation.

Side-Channel Analysis (SCA) is one of the main attack used to disclose secret
data hidden in low-resource devices. SCA exploits the fact that a device leaks
information about the processed operations and data, that can be physically
measured: timing, power consumption, electromagnetic emanations, etc. Among

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 171–186, 2014.
DOI: 10.1007/978-3-319-08302-5 12, c© Springer International Publishing Switzerland 2014

172 F. Rondepierre

all kinds of SCA, the Simple Side-Channel Analysis (SSCA) [21] focuses on
detecting on a single execution trace differences of behavior depending on a
secret value. Many proposals have been made to thwart SSCA and the atomicity
principle introduced by Chevallier-Mames et al. [3] is one of the most efficient
propositions. This countermeasure has been widely studied and improved first
by P. Longa [22] and then by C. Giraud and V. Verneuil [12].

In this paper, we revisit EC formulæ in a novel way and propose correspond-
ing patterns to optimally benefit from the Straus-Shamir trick, a twice as fast
method to evaluate double scalar multiplications [u]P + [v]Q. Few ECC proto-
cols explicitly require double scalar multiplications. However as shown in [28] it
can be adapted to process single scalar multiplications [k] P which gives us an
advantage since the best implementation known so far [12] cannot take advan-
tage of this trick. Besides, when this method is not used (e.g. because of memory
constraints) our formulæ still allow the most interesting ratio between perfor-
mances and memory cost. In all cases, our implementation requires less memory
than other methods. Besides, we also point out a security flaw concerning many
implementations computing over Weierstrass curves with a = 0. Therefore, our
method outperforms existing solutions in terms of security, memory and speed
and is suited for low-resource devices.

The rest of the paper is organized as follows. In the next section we introduce
some background on elliptic curves and detail known techniques to perform
efficient scalar multiplications. Then Sect. 3 deals with the security of scalar
multiplications against SSCA. In Sect. 4 we present our formulæ which allow the
use of the most efficient scalar multiplication algorithms. Eventually we conclude
in Sect. 5.

2 Elliptic Curve Background

2.1 Definitions

An elliptic curve E over Fp, for a prime p > 3 is defined with the short Weierstrass
equation [15]:

E : y2 = x3 + ax + b, (1)

where x, y, a, b ≤ Fp and 4a3 + 27b2 ∀= 0.
With the so-called chord-and-tangent law, the set of all points on the ellip-

tic curve together with the point at infinity (denoted by O) form an abelian
group E(Fp). Excepting trivial cases, the group law requires the computation of
one inverse in Fp which is significantly more expensive than a multiplication.
Therefore we use Jacobian coordinates to represent points in order to limit the
number of inversions performed in a scalar multiplication. These coordinates use
the following equivalence class, for non all-zero triples:

(X : Y : Z) = {(σ2X,σ3Y, σZ) : σ ≤ F
◦
p}.

Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 173

In this case the short Weierstrass equation (1) becomes:

E : Y 2 = X3 + aXZ4 + bZ6 (2)

and O = (1 : 1 : 0). The opposite of (X : Y : Z) is the point (X : −Y : Z).
The sum of two points P = (Xp : Yp : Zp) and Q = (Xq : Yq : Zq) is the

point P + Q = (Xp+q : Yp+q : Zp+q) such that:

⎧
⎨

⎩

Xp+q = F 2 − E3 − 2AE2

Yp+q = F (AE2 − Xp+q) − CE3

Zp+q = ZpZqE
with

A = XpZ
2
q

B = XqZ
2
p

C = YpZ
3
q

D = YqZ
3
p

E = B − A
F = D − C

(3)

However, the addition formula is only valid under the following assumptions:
P ∀= Q, P ∀= O and Q ∀= O. Several operations in Fp are required to evaluate this
formula: squarings (denoted by S), multiplications (denoted by M), additions
and subtractions (both denoted by A). This formula requires 4S + 12M + 7A.

The double of a point P = (X : Y : Z) is the point [2]P = (X2 : Y2 : Z2)
such that:

⎧
⎨

⎩

X2 = A2 − 2C
Y2 = A(C − X2) − D
Z2 = 2Y Z

with

A = 3X2 + aZ4

B = 2Y · Y
C = 2BX
D = 2B · B

(4)

Using this formula, the evaluation of a doubling requires 4S + 6M + 9A.
The result of P +P is naturally denoted by the point [2]P and such an oper-

ation is called a doubling whereas the addition rather refers to the computation
of P + Q with P ∀= ±Q. More generally, the operation P + . . . + P where the
point P is added k times is called a scalar multiplication and is denoted by [k] P .

2.2 Efficient Scalar Multiplication Implementation

This section presents the different known tools to optimize the implementation
of an elliptic curve multiplication.

Double and Add. The scalar multiplication is efficiently computed with the so-
called Double and Add algorithm [20]. Using the EC group law, this algorithm
evaluates:

[k] P =
�−1∑

i=0

[ki]
[
2i

]
P = [k0] P + [2]

[
�−1∑

i=1

ki2i−1

]

P

where digits ki ≤ S and S is some set of integers containing 0 and 1, as presented
in [23]. The Σ digits of k can be evaluated in two ways, i.e. starting from least
significant ones (right to left) or from most significant ones (left to right), see
Algorithm 1 for the later case.

174 F. Rondepierre

Algorithm 1. Left to Right Double and Add
Input: k =

∑�−1
i=0 ki2

i, k�−1 ←= 0, ki ⊕ S, P ⊕ E
Output: R = [k] P

Precompute [m] P , √m ⊕ S\{0}
Initialize R = [k�−1] P
for i = σ − 2 downto 0 do

R = [2] R
if ki ←= 0 then

R = R + [ki] P
end if

end for

Double and Add trade-off. The scalar multiplication consists in a succession of
doublings and additions. Depending on the ratio between the number of evalu-
ated additions and the number of doublings, one formula may be favored at the
expense of the other in order to reduce the overall cost.

– First, the cost of the addition formula (3) can be reduced with some assump-
tions. Indeed, in Algorithm 1, the points [m] P are constant. Hence
Chudnovsky [4] proposed to compute Z2

[m]P and Z3
[m]P once for all, which

saves 1S + 1M per point addition. Furthermore, at the cost of one inversion
and few multiplications1 during the precomputation phase, one can choose
the representative of [m] P with Z[m]P = 1, which instead saves 1S + 4M in
(3). Besides, since there is always a doubling of R before the point addition
R+[ki] P , we propose to move the computation of Z2

r and Z3
r in the doubling

formula which also saves 1S + 1M .
– The doubling formula (4) can be speeded up [5] with the help of one extra

value W initialized with the value aZ4. In this case, A is evaluated as 3X2+W
and W2 is equal to 2DW , which gives a global cost of 2S+6M+10A. However,
in Algorithm 1, if the point R is represented as (Xr : Yr : Zr : Wr) then the
value Wr has to remain consistent when the addition R + [ki] P is performed.
Therefore Formula (3) has to update this value W : Wr+q = Wr(E2Z2

[ki]P
)2

which costs either 1S + 2M if Z[ki]P ∀= 1 or 1S + 1M .

We will now see two techniques used to change the addition/doubling ratio.

Straus-Shamir Trick. The Straus-Shamir trick [8,30] is a simple but very efficient
way of evaluating double scalar multiplications [u] P + [v]Q. The naive way
to evaluate the double multiplication performs two multiplications and adds
the results. Using two calls to Algorithm 1, this approach costs on average 2Σ
doublings and Σ additions (for random scalars u and v). However, neither [u] P
nor [v] Q are needed values. The trick consists then in building one sequence of
intermediate results directly converging to the value [u] P +[v]Q in one execution
of a Double and Add algorithm. Algorithm 2 implements such a trick which only
requires on average Σ doublings and 0.75Σ additions.
1 A trick from Montgomery [24] enables to evaluate several inverses at the cost of only

one inversion and few multiplications: 1
a

= 1
ab

· b, 1
b

= 1
ab

· a.

Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 175

This trick can also be used to improve the evaluation of [k] P if the multipli-
cation is decomposed as:

[k] P = [k0] P + [k1] ([σ]P) .

Of course, the trick has an interest when k0 and k1 have a size Σ/2 and when k0,
k1 and Q = [σ] P are available with reasonable cost. As recalled in [28], one can
take σ = 2�/2 and precompute Q when the point P is reused for many scalar
multiplications. One can remark that this trick – working only with left-to-right
scan of digits – is generalizable for multi-multiplication.

Algorithm 2. Double Scalar Multiplication using Straus-Shamir Trick
Input: u =

∑�−1
i=0 ui2

i, v =
∑�−1

i=0 vi2
i, (u�−1, v�−1) ←= (0, 0), (ui, vi) ⊕ S2, (P, Q) ⊕ E2,

P ←= ±Q
Output: R = [u] P + [v] Q

Precompute Wi,j = [i] P + [j] Q, √(i, j) ⊕ S2\{(0, 0)}
Initialize R = Wu�−1,v�−1

for i = σ − 2 downto 0 do
R = [2] R
if (ui, vi) ←= (0, 0) then

R = R + Wui,vi

end if
end for

Scalar Recoding. The previous trick allows to cut to half the number of doublings.
Independently, the number of additions can also be reduced by using windowing
and signed digit representations in order to maximize the number of null digits
of the scalar. The best signed digit representations to reduce the number of
non-zero digits are the Non-Adjacent Form (NAF) [1] for one scalar, and the
Joint Sparse Form (JSF) [28] for a couple of scalars. NAF and JSF have been
generalized to larger digit set than {0,±1} [26,29] but only NAFw+1 (which
indicates a NAF representation with window size w) fits smart card memory
constraints. Tables 1 and 2 indicate, for several cases, the definition of the set
S, the number of involved points which corresponds to a certain RAM cost, and
the average number of point addition performed per bit which also corresponds
to the ratio between additions and doublings.

Table 1. Several scalar recoding techniques and their average number of point addi-
tions per bit of k in the context of single scalar multiplication [k] P

Recoding technique None NAF NAFw=3 NAFw=4

Involved points P ±P ±P , ±3P ±P , ±3P , ±5P , ±7P
S {0, 1} {−1, 0, 1} {−3, −1, 0, 1, 3} {−7, −5, −3, −1, 0, 1, 3, 5, 7}
Point additions/bit 1/2 1/3 1/4 1/5

176 F. Rondepierre

Table 2. Several scalar recoding techniques and their average number of point addi-
tions per bit of k in the context of double scalar multiplication [u] P + [v] Q

Recoding technique None JSF

Involved points P , Q, P + Q ±P , ±Q, ±(P + Q), ±(P − Q)
S {0, 1} {−1, 0, 1}
Point additions/bit 3/4 1/2

3 Secure Scalar Multiplication Implementation

As shown in Formulæ (3) and (4) the evaluation of a doubling is different from
the evaluation of an addition: the number of each type of operation and the
number of operations in total are not the same. These differences are easily
detected via SSCA and give information on the handled scalar k. Indeed in
Algorithm 1 the addition is performed only if ki is not null, thus knowing that 2
successive doublings have been performed means that the corresponding ki was
null. If the binary representation has been used, i.e. ki ≤ S = {0, 1}, then the
knowledge of all indexes where ki is null is enough to retrieve the whole value k.
Using other scalar representation reduces the amount of information leaked but
sophisticated attacks [9] only need some bits to be successful. This section deals
with the proposed countermeasures to thwart such a leakage.

3.1 State-of-the-Art

Secure Implementation. Many algorithms have been published so far to resist
this SSCA with different strategies. A unified formula has been proposed [2] to
evaluate the sum of two points P,Q (different from O) without the restriction
P ∀= Q. The Double and Add Always [6] performs the addition whatever the
value of the digit ki. Other regular algorithms such as the Montgomery Lad-
der [2,11,18] perform a doubling and an addition for each bit but without
dummy operations which is more interesting from a security point of view.
Recent works [14,16] have investigated efficient Montgomery Ladder formulæ
with good results, but this approach cannot benefit from scalar recoding and
hence remains costly if compared with best non-secure implementations. The
principle of atomicity focuses on reaching the same security level at a closer cost
of non-secure implementations.

Atomicity Principle. The atomicity principle [3] can be seen as a refined unified
formula. Instead of having one formula valid in both situations (P = Q and
P ∀= ±Q) this countermeasure focuses on evaluating two different formulæ using
the same operations or the same flow of operations. On can notice that such an
evaluation is always possible but may induce additional dummy operations. The
tour-de-force of Chevallier-Mames et al. [3] was to propose such an evaluation at
an almost negligible cost, which is without any dummy modular multiplication.
They have split the two formulæ in a sequence of identical atomic patterns such

Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 177

Table 3. Comparing operation cost between main atomic implementations and non-
secure implementations, with 2N = A

Algorithm Pattern cost Addition cost Doubling cost

Chevallier-Mames et al. [3] M + 2A + N 16M + 40A 10M + 25A
Longa L2R [22] 2M + 3A + 2N 14M + 28A 8M + 16A
GV R2L [12] 2S + 6M + 10A 4S + 12M + 20A 2S + 6M + 10A
Non-secure R2L - 4S + 12M + 7A 2S + 6M + 10A
Non-secure L2R - 4S + 9M + 7A 2S + 6M + 10A

that ten calls of this pattern make a doubling, while sixteen calls give an addition.
Their pattern is depicted below, where the Ri’s denote some intermediate values.

⎡

⎢
⎢
⎢
⎣

R1 ∈ R2 · R3

R4 ∈ R5 + R6

R7 ∈ −R8

R9 ∈ R10 + R11

(5)

However, as shown in Table 3 such a pattern implies a lot of dummy additions
(A) and negations (N) when evaluating Formulæ (3) and (4). If the cost of one
addition or a negation is small compared to a modular multiplication it cannot
be neglected yet. Another drawback of the formula lies in the loss of squares
traded for multiplications, which implies a loss of efficiency when a dedicated
function is available to evaluate squares faster than multiplications. Therefore,
this pattern (5) has been first improved by Longa [22] and more reworked by
Giraud and Verneuil (GV) [12]. In the rest of the paper, as explained in [12],
we assume a = −3 and Chudnovsky optimization for Longa’s implementation of
Algorithm 1. The GV implementation optimizes doublings with the extra value
W but uses a right-to-left scan of digits to limit the cost of point additions.

3.2 Scalar Evaluation

The elliptic curve formulæ are not the only part to secure when considering
implementations protected with the atomicity principle. The security of the
scalar treatment is also crucial to thwart SSCA similar to the following exam-
ple. For instance, let us assume that the evaluation at round i of a doubling Di

cannot be distinguished from the evaluation of a point addition Ai (i.e. atomic
patterns have been used), let Ei denote the scalar treatment at round i, then
observing the following sequence (6) gives information on the scalar k. Indeed,
patterns corresponding to a doubling and an addition are performed between
Ei and Ei−1 which means that ki ∀= 0 while ki−1 = 0 since only a doubling is
performed between Ei−1 and Ei−2.

Di, Ei,Ai,Di−1, Ei−1,Di−2, Ei−2, . . . (6)

Hence, if the atomic pattern must be called x (resp. y) times to perform a point
addition (resp. point doubling), then a call to the scalar treatment has to be

178 F. Rondepierre

done every gcd (x, y) pattern. Besides, this scalar treatment has to implement
the atomicity principle to have the same behavior whatever the value of the
digit ki. The induced overhead required to securely evaluate the secret scalar is
generally under-estimated. Actually, this consists in the main limitation of the
atomic countermeasure when the scalar multiplication has to be implemented on
components that cannot process the scalar treatment in parallel of the pattern
evaluation. Taking x = y allows to reduce the cost of this treatment.

4 New Atomic Pattern

4.1 New Fomulæ

Up to now, improvements on atomic implementations have mainly focused on
optimizing the doubling formula. This strategy comes from the observation that
a doubling has to be computed for each bit of the scalar, while the addition is only
performed for non-zero digit. In the context of processing one scalar (e.g. Algo-
rithm 1), there is a low addition/doubling ratio which validates this strategy
(see Table 1). However this is not the case in the double scalar multiplication.

Hence, we propose hereafter to focus on improving point addition to better
match double multiplication case. The new formulæ are detailed hereafter to
ease the verification of the proposed atomic patterns. The sum of P = (X : Y :
Z : Z2 : Z3) and Q = (Xq : Yq : 1) is the point P + Q = (X3 : Y3 : Z3 : Z2

3)
such that:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X3 = F 2 − E3 − 2AE2

Y3 = F (AE2 − X3) − CE3

Z3 = ZE

Z2
3 = (Z3)2

with

A = X

B = XqZ
2

C = Y

D = YqZ
3

E = B − A

F = D − C

(7)

The subtraction P −Q is obtained by replacing F by F̄ = D +2C −C and then
Y3 = F̄ (X3 − AE2) − CE3. The double of a point P = (X : Y : Z : Z2) is the
point [2]P = (X2 : Y2 : Z2 : Z2

2 : Z3
2) such that:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X2 = A2 − 2C

Y2 = A(C − X2) − D

Z2 = 2Y Z

Z2
2 = (Z2)2

Z3
2 = (Z2)3

with

A = 3(X − IZ2)(X + IZ2)
B = 2Y · Y

C = 2BX

D = 2B · B

(8)

We introduce a new constant value I =
≥−a3−1 in order to reduce the cost

of doublings. For a random value a (i.e. a random curve) this constant I exists
with probability 0.5. However, for most standard curves (NIST [?], Brainpool [7],

Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 179

ANSSI [19]) the constant I exists and may have some particular value (e.g. I = 1
or I = 0). The case I = 0 has a special treatment in Sect. 4.3. A pattern working
for all curves is given in Appendix A. This pattern is less efficient, trading an
addition for a square, but still of interest.

Eventually we have 3S + 7M + 7A to evaluate the addition and 2S + 8M +
10A for the doubling, which means that a square has to be performed as a
modular multiplication and three dummy modular additions are required in
the addition formula in order to get a unified cost. Besides, in order to save
some memory when using NAF or JSF recodings, we benefit from the dummy
modular additions to also present a subtraction formula which avoids the storage
of opposite points.

From P = (X,Y,Z, Z2, Z3) and Q(Xq, Yq, 1), one can compute P ∈ P + Q,
P ∈ P − Q and P ∈ [2]P with the following patterns, where each pattern
requires 2S + 8M + 10A:

Addition Subtraction Doubling

R1 ⇔ Xq · Z2

R1 ⇔ R1 − X

λ ⇔ λ + λ

R2 ⇔ R1 · R1

λ ⇔ λ + λ

R3 ⇔ X · R2

R0 ⇔ Yq · Z3

λ ⇔ λ + λ

Z3 ⇔ R1 · R2

R2 ⇔ Z · R1

X3 ⇔ R3 + R3

X3 ⇔ Z3 + X3

Z2
3 ⇔ (R2)

2

R0 ⇔ R0 − Y

R1 ⇔ (R0)
2

X3 ⇔ R1 − X3

R1 ⇔ R3 − X3

R3 ⇔ R1 · R0

R0 ⇔ Y · Z3

Y3 ⇔ R3 − R0

Z3 ⇔ R2

R1 ⇔ Xq · Z2

R1 ⇔ R1 − X

Z2 ⇔ Y + Y

R2 ⇔ R1 · R1

λ ⇔ λ + λ

R3 ⇔ X · R2

R0 ⇔ Yq · Z3

R0 ⇔ Z2 + R0

Z3 ⇔ R1 · R2

R2 ⇔ Z · R1

X3 ⇔ R3 + R3

X3 ⇔ Z3 + X3

Z2
3 ⇔ (R2)

2

R0 ⇔ R0 − Y

R1 ⇔ (R0)
2

X3 ⇔ R1 − X3

R1 ⇔ X3 − R3

R3 ⇔ R1 · R0

R0 ⇔ Y · Z3

Y3 ⇔ R3 − R0

Z3 ⇔ R2

R0 ⇔ I · Z2

R1 ⇔ X − R0

R2 ⇔ Y + Y

Z2
2 ⇔ Y · R2

Y2 ⇔ Z2
2 + Z2

2

R3 ⇔ R2 · Z

R2 ⇔ Y2 · X

X2 ⇔ X + R0

R0 ⇔ R1 · X2

R1 ⇔ Z2
2 · Y2

X2 ⇔ R0 + R0

R0 ⇔ R0 + X2

X2 ⇔ (R0)
2

X2 ⇔ X2 − R2

Z2
2 ⇔ (R3)

2

X2 ⇔ X2 − R2

R2 ⇔ R2 − X2

Z3
2 ⇔ Z2

2 · R3

Y2 ⇔ R0 · R2

Y2 ⇔ Y2 − R1

Z2 ⇔ R3

In order to reduce the number of intermediate buffers Ri, the output buffers
(e.g. X3, X2) have been used as intermediate buffers which allows to use 4
intermediate buffers Ri only. Besides particular attention has been paid to allow
in-place EC operations (e.g. an overlap of buffers X and X2). However, the

180 F. Rondepierre

patterns do not contain in-place modular multiplications (R1 ∈ R1 · R2) as
discussed in [16] to limit the memory consumption.

4.2 Performances

In this section, the performances of the new pattern are compared with best
known atomic patterns for both single scalar and double scalar multiplication
cases. In order to evaluate the cost of an implementation we use the average per
bit cost. We put aside the cost of pre-computations, or post-computations since
it gives only a small advantage to the right-to-left variant. The per bit cost is
obtained with the following formula:

D + E + H · (A + E)

where D (resp. A) stands for the cost of a doubling (resp. addition), E is the
cost to treat the scalar and H is the average number of point additions per bit
of the scalar.

Theoretical Study. We combine here the cost of point addition and doubling
(see Table 3 and Sect. 4.1) with the addition/doubling ratios given in tables 1
and 2. Remark: As indicated in Table 3 we assume 2N = A. Indeed the negation
of a value v already reduced modulo p can be performed as the subtraction p−v
without the need of modular reduction.

Double Scalar Multiplication. The RAM available in the smart card context
limits the ratio H to be greater than 0.5 when using Algorithm 2. As shown in
Table 4, our pattern always offers the best performances when compared with
Longa’s pattern.
Single Scalar Multiplication. Due to smart card memory constraints, lower val-
ues for H (i.e. less than 0.5) correspond to single scalar multiplication cases. We
present in Table 5 the limit of our method encountered with our practical val-
ues (Table 9). The new solution still requires less modular additions than other
propositions but it requires more products. The ratios A/M and S/M will help
to select the solution with the best per bit cost. The cost of exponent recoding E
shall also be carefully taken into account in the case of on-the-fly scalar recoding.
Indeed, protecting this heavy scalar treatment against SSCA may be costly.

Memory Cost. The smaller the ratio point additions per bit (i.e. H), the more
buffers required in memory. Depending on the supported ECC bit lengths these

Table 4. Double scalar multiplication cost per bit

Algorithm H = 3/4 H = 1/2

Longa L2R 18.5M + 37A + 9.25E 15M + 30A + 7.5E
This paper 3.5S + 14M + 17.5A + 1.75E 3S + 12M + 15A + 1.5E

Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 181

Table 5. Single scalar multiplication cost per bit

Algorithm H = 1/4 H = 1/5

Longa L2R 11.5M + 23A + 5.75E 10.8M + 21.6A + 5.4E
GV R2L 3S + 9M + 15A + 1.5E 2.8S + 8.4M + 14A + 1.4E
This paper 2.5S + 10M + 12.5A + 1.25E 2.4S + 9.6M + 12A + 1.2E

Table 6. Number of buffers required for the scalar multiplication

Operation Recoding H GV R2L Longa L2R This paper

[u] P + [v] Q None 3/4 - 22 15
JSF 1/2 - 27 17

[k] P NAF 1/3 11 12 11
NAFw=3 1/4 14 17 13
NAFw=4 1/5 20 27 17

buffers correspond to more or less RAM. Therefore the developer selects a ratio
with regard to the desired memory cost. The new pattern has been optimized in
order to only use four intermediate registers (see Sect. 4.1) and the same results
can be obtained for the pattern of Giraud-Verneuil – and should be possible for
Longa’s pattern. If X denotes the number of extra points (see Tables 1 and 2),
an implementation using Longa’s pattern requires 12 + 5X buffers (assuming a
subtraction pattern), 11 + 3X buffers are required using GV pattern and only
11 + 2X buffers are required with the new pattern.

Practical Values. One usually considers the chip characteristics before select-
ing the best matching algorithm. In Table 7 we give measured costs of elementary
operations performed in the field Fp on our chip. We also give the relative cost
of a secured on-the-fly NAF scalar recoding. Therefore, the following table 8 con-
tains a line with E/M = 0 since we did not implement on-the-fly JSF recoding.
This choice is greatly in favor of Longa’s pattern (see Table 4) and in practice
E/M may not be negligible. If we look at the 224-bit size (considered as secured
in the midterm [13]) we see an improvement of at least 14.6% for the double
scalar multiplication case. In the single scalar multiplication case (Table 9), the
new proposition has a performance close to the Giraud-Verneuil solution. How-
ever, a fair comparison must take into account the memory cost of each algorithm
which emphasize the interest of the new pattern. Besides, the small gain/loss of
the new pattern in the single scalar multiplication case may be seen as a fair cost if
we consider that only one implementation is now required for both double scalar
multiplication and single scalar multiplication situations. Eventually, about com-
ponents with S < M , our propositions benefit from fast squares but to a lesser
extent than GV since it relatively contains less squares (see Tables 4 and 5).

In conclusion, though the new pattern is not optimal in case of low addition/
doubling ratio – i.e. when large amount ofmemory is available – and asymptotically
not optimal – i.e. when A/M ∼ 0 – it has revealed to be efficient in our context.

182 F. Rondepierre

Table 7. Characteristics of our implementation on a smart card

Bit length 160 192 224 256 320 384 512 521

A/M 0.23 0.21 0.21 0.19 0.17 0.16 0.14 0.14
E/M 0.95 0.65 0.65 0.47 0.36 0.28 0.19 0.19

Table 8. Number of equivalent modular multiplications for the double scalar multipli-
cation with S/M = 1

H ECC bit size Longa L2R This paper Gain (%)

1/2 (E/M = 0) 160 21.9 18.4 15.7
224 21.2 18.1 14.6
256 20.6 17.8 13.7
320 20.2 17.6 12.8
384 19.8 17.4 12.0
521 19.1 17.1 10.8

Table 9. Number of equivalent modular multiplications for the single scalar multipli-
cation with S/M = 1

H ECC size Longa L2R GV R2L This paper Gain over GV (%)

1/4 160 22.2 16.9 16.5 1.8
224 20.0 16.0 15.9 1.1
256 18.5 15.5 15.4 0.6
320 17.5 15.1 15.1 0.1
384 16.8 14.8 14.8 −0.2
521 15.7 14.3 14.4 −0.7

1/5 160 20.9 15.7 15.9 −0.9
224 18.7 15.0 15.3 −1.7
256 17.4 14.5 14.8 −2.3
320 16.5 14.1 14.5 −2.7
384 15.8 13.8 14.2 −3.1
521 14.8 13.4 13.9 −3.6

4.3 The Special Case a = 0

If the curve parameter a is null then a multiplication with zero is performed in the
doubling formula which may result in a security flaw. Indeed, such a product may
have a leakage distinguishable from other products. Since the addition formula
does not use this parameter a, it can hence be distinguished from a doubling. This
case a = 0 allows to only save one multiplication in efficient doubling formulas
(using an extra coordinate W or a = −3). Therefore, using Longa’s pattern
or Giraud-Verneuil pattern, one cannot benefit from this case to improve the
scalar multiplication since their atomic patterns contain several multiplications.
An improvement is possible with the pattern of Chevallier-Mames et al. but
this pattern remains costly due to the high number of dummy additions. Hence,

Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 183

Table 10. Example costs to perform a secure scalar multiplication on a 256-bit curve

Used in Multiplication/bit Memory cost Algorithm

Keygen, sign 8.9 17 Algorithm 2, this paper
10.3 27 Algorithm 2, Longa L2R

Key agreement 14.5 20 GV R2L
14.8 17 Algorithm 1, this paper

PACE 17.8 17 Algorithm 2, this paper
20.6 27 Algorithm 2, Longa L2R

a new formula is proposed here to thwart this attack and to benefit from the
possible speed improvement.

With a = 0, there are no more available modular subtractions at the begin-
ning of the doubling formula therefore the atomic pattern has to be rebuilt to
match with the addition formula. The trick used here consists in saving in mem-
ory the opposite values of the coordinates of Q: −Xq,−Yq. The point equivalent
class is also used with σ = −1 to represent P +Q = (X3 : −Y3 : −Z3). However,
no trick has been found to propose a subtraction formula.

The sum of P = (X : Y : Z : Z2 : Z3) and Q = (Xq : Yq : 1) is the point
P + Q = (X3 : Y3 : Z3). This sum is depicted in Formula (9). The double of
a point P = (X : Y : Z) is the point [2]P = (X2 : Y2 : Z2 : Z2

2 : Z3
2). The

evaluation is performed using Formula (8) with A = 3X2. The resulting pattern
only contains 9 multiplications (2S + 7M) and 8 additions which represents an
improvement of more than 10% if compared with the case a ∀= 0. It is depicted
in Table 11 in Appendix A.

⎧
⎪⎨

⎪⎩

X3 = F 2 − (2AĒ2 − Ē3)

Y3 = F̄ (AĒ2 − X3) − CĒ3

Z3 = ZĒ

with

A = X

B̄ = (−Xq)Z2

C = Y

D̄ = (−Yq)Z3

Ē = B̄ + A

F̄ = D̄ + C

(9)

5 Conclusion

In this paper a new atomic pattern has been proposed that outperforms the
implementations of most scalar multiplications used in elliptic curve cryptogra-
phy standards. Our pattern enables to securely perform double scalar multipli-
cations on curves over Fp with the Straus-Shamir trick which has not been done
before. The new pattern also turns out to be efficient for single scalar multiplica-
tion. We give hereafter in Table 10 the results obtained on our chip when using
main standard algorithms compared with the best known implementations. The
first row corresponds to the process of [k] G evaluated as [k0] G + [k1] 2�/2G.
The double scalar multiplication can also be used in the PACE [17] protocol

184 F. Rondepierre

to evaluate a point G̃. A Key Agreement requires the computation of [k] P .
Longa’s atomic pattern using Straus-Shamir trick is given for information only
as its implementation requires too much memory to be used with our com-
ponent. Hence the GV implementation was the fastest algorithm available to
perform signatures and key generations and this proposal improves it by 38.6 %.

Acknowledgements. The author is grateful to Christophe Giraud and Emmanuelle
Dottax for their valuable comments on preliminary versions of this article. Many thanks
also go to anonymous reviewers of Cardis 2013 for their advices.

A Atomic Patterns

The patterns for any value a allow to perform an addition or doubling at a cost
of 3S + 8M + 9A. These patterns implement Formulæ (9) and (4):

Table 11. Atomic patterns for the case a = 0 (left-hand side) and for any value a
(right-hand side)

Addition Doubling Addition Doubling

λ ⇔ λ + λ

R0 ⇔ (−Xq) · Z2

R1 ⇔ X + R0

R2 ⇔ (R1)
2

R0 ⇔ X · R2

R3 ⇔ Z · R1

X3 ⇔ (−Yq) · Z3

Z3 ⇔ R2 · R1

R1 ⇔ R0 + R0

R2 ⇔ Y + X3

X3 ⇔ (R2)
2

R1 ⇔ R1 − Z3

X3 ⇔ X3 − R1

R0 ⇔ R0 − X3

R1 ⇔ Y · Z3

Y3 ⇔ R0 · R2

Y3 ⇔ Y3 − R1

Z3 ⇔ R3

R0 ⇔ Y + Y

R1 ⇔ R0 · Y

Y2 ⇔ R1 + R1

R2 ⇔ (X)2

R3 ⇔ R0 · Z

Z2 ⇔ Y2 · X

R0 ⇔ R1 · Y2

Z2
2 ⇔ R3 · R3

R1 ⇔ R2 + R2

R1 ⇔ R1 + R2

X2 ⇔ (R1)
2

X2 ⇔ X2 − Z2

X2 ⇔ X2 − Z2

Z2 ⇔ Z2 − X2

Z3
2 ⇔ Z2

2 · R3

Y2 ⇔ R1 · Z2

Y2 ⇔ Y2 − R0

Z2 ⇔ R3

R0 ⇔ (Z)2

λ ⇔ λ + λ

R1 ⇔ (−Xq) · R0

R1 ⇔ X + R1

R3 ⇔ (−Yq) · R0

R2 ⇔ (R1)
2

R0 ⇔ Z · R3

R3 ⇔ Z · R1

Z3 ⇔ R1 · R2

R1 ⇔ X · R2

R2 ⇔ R1 + R1

R0 ⇔ R0 + Y

λ ⇔ λ + λ

X3 ⇔ (R0)
2

R2 ⇔ R2 − Z3

X3 ⇔ X3 − R2

R1 ⇔ R1 − X3

R2 ⇔ Y · Z3

Y3 ⇔ R0 · R1

Y3 ⇔ Y3 − R2

Z3 ⇔ R3

R0 ⇔ (Z)2

R1 ⇔ Y + Y

R2 ⇔ R1 · Y

Y2 ⇔ R2 + R2

R3 ⇔ R1 · Z

Z2 ⇔ (X)2

R1 ⇔ Y2 · R2

R2 ⇔ Y2 · X

X2 ⇔ a · R0

Y2 ⇔ X2 · R0

R0 ⇔ Z2 + Z2

X2 ⇔ R0 + Z2

R0 ⇔ X2 + Y2

X2 ⇔ (R0)
2

X2 ⇔ X2 − R2

X2 ⇔ X2 − R2

Z2 ⇔ R2 − X2

λ ⇔ λ · λ

Y2 ⇔ R0 · Z2

Y2 ⇔ Y2 − R1

Z2 ⇔ R3

Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves 185

References

1. Arno, S., Wheeler, F.: Signed digit representations of minimal Hamming weight.
IEEE Trans. Comput. 42(8), 1007–1009 (1993)

2. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Nac-
cache and Paillier [25], pp. 335–345

3. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. Cryptology ePrint Archive, Report
2003/237 (2003). http://eprint.iacr.org/

4. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers genereated by addi-
tion in formal groups and new primality and factorization tests. Adv. Appl. Math.
7, 385–434 (1986)

5. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

6. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

7. ECC Brainpool: ECC brainpool standard curves and curve gener-
ation. BSI, internet Draft v. 3, (2009). http://tools.ietf.org/html/
draft-lochter-pkix-brainpool-ecc-03

8. ElGamal, T.: A public-key cryptosystems and a signature scheme based on discret
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

9. Faugère, J.-C., Goyet, C., Renault, G.: Attacking (EC)DSA given only an implicit
hint. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 252–274.
Springer, Heidelberg (2013)

10. FIPS PUB 186–4: Digital Signature Standard. National Institute of Standards and
Technology, July 2013

11. Fischer, W., Giraud, C., Knudsen, E.W., Seifert, J.P.: Parallel scalar multiplica-
tion on general elliptic curves over Fp hedged against non-differential side-channel
attacks. Cryptology ePrint Archive, Report 2002/007, Jan 2002. http://eprint.iacr.
org/

12. Giraud, C., Verneuil, V.: Atomicity improvement for elliptic curve scalar multipli-
cation. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 80–101. Springer, Heidelberg (2010)

13. Giry, D., Bulens, P.: Keylength.com - Cryptographic Key Length Recommanda-
tion, Aug 2007. http://www.keylength.com

14. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication
on weierstraß elliptic curves from co- z arithmetic. J. Cryptol. 1(2), 161–176 (2011)

15. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography:
Professional Computing Series. Springer, New York (2003)

16. Hutter, M., Joye, M., Sierra, Y.: Memory-constrained implementations of elliptic
curve cryptography in co-Z coordinate representation. In: Nitaj, A., Pointcheval, D.
(eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 170–187. Springer, Heidelberg
(2011)

17. ISO/IEC JTC1 SC17 WG3/TF5: Supplemental Access Control for Machine Read-
able Travel Documents. International Civial Aviation Organization, Nov 2010

18. Izu, T., Takagi, T.: A fast parallel elliptic curve multiplication resistant against
side channel attacks. In: Naccache and Paillier [25], pp. 280–296

http://eprint.iacr.org/
http://tools.ietf.org/html/draft-lochter-pkix-brainpool-ecc-03
http://tools.ietf.org/html/draft-lochter-pkix-brainpool-ecc-03
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.keylength.com

186 F. Rondepierre

19. JORF n: Avis relatif aux paramètres de courbes elliptiques définis par l’État
français, Oct 2011

20. Knuth, D.: The Art of Computer Programming, vol. 2, 3rd edn. Addison Wesley,
Reading (1988)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

22. Longa, P.: Accelerating the scalar multiplication on elliptic curve cryptosystems
over prime fields. Master’s thesis, School of Information Technology and Engineer-
ing, University of Ottawa, Canada (2007)

23. Möller, B.: Improved techniques for fast exponentiation. In: Lee, P.J., Lim, C.H.
(eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)

24. Montgomery, P.: Modular multiplication without trial division. Math. Comp.
44(170), 519–521 (1985)

25. Naccache, D., Paillier, P. (eds.): PKC 2002. LNCS, vol. 2274. Springer, Heidelberg
(2002)

26. Okeya, K., Kato, H., Nogami, Y.: Width-3 joint sparse form. In: Kwak, J., Deng,
R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 67–84. Springer,
Heidelberg (2010)

27. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

28. Solinas, J.: Low-Weight Binary Representations for Pairs of Integers. Technical
report (2001). http://cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps

29. Solinas, J.A.: Efficient arithmetic on koblitz curves. Des. Codes Crypt. 19(2/3),
195–249 (2000)

30. Straus, E.G.: Addition chains of vectors (problem 5125). Am. Math. Monthly 70,
806–808 (1964)

http://cacr.uwaterloo.ca/techreports/2001/corr2001-41.ps

Efficient and First-Order DPA Resistant
Implementations of Keccak

Begül Bilgin3,4(B), Joan Daemen1, Ventzislav Nikov2, Svetla Nikova3,
Vincent Rijmen3, and Gilles Van Assche1

1 STMicroelectronics, Diegem, Belgium
2 NXP Semiconductors, Leuven, Belgium

3 ESAT/COSIC and IMinds, KU Leuven, Leuven, Belgium
4 DIES, University of Twente, Enschede, The Netherlands

begul.bilgin@esat.kuleuven.be

Abstract. In October 2012 NIST announced that the SHA-3 hash stan-
dard will be based on Keccak. Besides hashing, Keccak can be used
in many other modes, including ones operating on a secret value. Many
applications of such modes require protection against side-channel
attacks, preferably at low cost. In this paper, we present threshold imple-
mentations (TI) of Keccak with three and four shares that build further
on unprotected parallel and serial architectures. We improve upon ear-
lier TI implementations of Keccak in the sense that the latter did not
achieve uniformity of shares. In our proposals we do achieve uniformity
at the cost of an extra share in a four-share version or at the cost of
injecting a small number of fresh random bits for each computed round.
The proposed implementations are efficient and provably secure against
first-order side-channel attacks.

Keywords: Keccak · Side-channel attacks · Threshold implementa-
tion

1 Introduction

Keccak [6] is the best-known family of sponge functions. They can be used in
a wide range of modes covering the full range of symmetric cryptographic func-
tions [4]. These functions can take as argument a secret key (e.g., encryption,
Message Authentication Code (MAC) computation, authenticated encryption,
etc.) and require their internal state to remain secret for security (e.g., pseudo-
random sequence generators). Such functions are subject to side-channel attacks.

A Differential Power Analysis (DPA) attack, which is a very powerful side-
channel attack, exploits the dependencies between the instantaneous power con-
sumption of a device and the intermediate results of a cryptographic algorithm.
Since the security of cryptographic primitives inevitably relies on the fact that
an adversary does not have access to intermediate computation results, any even
partial knowledge of intermediate computation results can lead to a complete

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 187–199, 2014.
DOI: 10.1007/978-3-319-08302-5 13, c© Springer International Publishing Switzerland 2014

188 B. Bilgin et al.

breakdown of security, e.g., by revealing the key. Several countermeasures against
DPA [12] have been proposed on different levels. For example, a circuit design
approach that aims to balance the power consumption of different data values
has been proposed in [19]. Another popular method is to randomize the interme-
diate values of an algorithm by masking, namely on algorithm level [2,9], at the
gate level [10,20] or in combination with circuit design approaches [17]. Since
the amount of information that is leaked by hardware is unknown, the security
proofs are based on an idealized hardware model, resulting in requirements on
the hardware that are very expensive to meet in practice.

In a threshold implementation [14,15], the sharing can have three properties:
correctness, non-completeness and uniformity. Correctness is an obvious require-
ment which simply states that the sum of the output shares of a sharing for a
function f equals f applied to the sum of the input shares as in boolean masking.
Non-completeness states that each output share of a function is independent of
at least one input share.

When the input shares are uniformly distributed, then a correct and non-
complete sharing is provably immune to first-order DPA even in presence of
glitches [14,15]. In a sequential computation, e.g., such in a function composed
of rounds or in multi-stage implementations of S-boxes, the output shares will be
used as input in another stage of the computation. Hence, it is also interesting
to preserve the uniformity of the shares. As a first option, a sharing can be
uniform, which means that the output shares are uniform if the input shares are
uniform. As another option, uniformity of the output shares can be obtained
by the use of fresh randomness. This last option is also called re-masking and
has been done before, e.g., for the TI of AES in [13]. Eventhough re-masking
can restore the uniformity of the input shares, and with it the provable security
agasint first-order DPA, this requires fresh randomness on each round, which
may become expensive in practice.

The designers of Keccak proposed a hardware architecture that offers pro-
tection against first-order DPA [3]. They employ the threshold implementation
method with three shares, but it is not uniform and hence not provably secure
against first-order DPA.

Contribution. In Sect. 3 we propose an alternative way for re-masking
that requires less random bits than the straightforward re-masking approach
as described in [13]. In Sect. 4 we propose a sharing that uses four shares that
achieves uniformity of sharing without the introduction of fresh randomness. In
Sect. 5 we provide the area cost and the maximum frequency of our unprotected
and threshold implementations for fully parallel and slice-based architectures.
We show that the area requirement for our unprotected implementations are sig-
nificantly smaller than the previous Keccak implementations and have higher
frequency. Moreover, the threshold implementations with serial architecture can
be considered within the limits of a lightweight implementation. In addition, we
discuss a way to reduce the area cost of the threshold implementations at the
cost of extra randomness. First, we briefly recall the components of Keccak in
Sect. 2.

Efficient and First-Order DPA Resistant Implementations of Keccak 189

2 Introduction to Keccak

Keccak is a function with variable-length input and arbitrary-length output
based on the sponge construction [4]. In this construction, a b-bit permutation f
is iterated. First, the input is padded and its blocks are absorbed sequentially into
the state, with a simple XOR operation. Then, the output is squeezed from the
state block by block. The size of the blocks is denoted by r and called the bitrate.
The remaining number of bits c = b − r is called the capacity and determines
the security level of the function.

The simplest use case of a sponge function is to use it as a hash function.
However, a MAC function can be built by taking the concatenation of a secret
key and a message as input. It is also possible to use a sponge function as a
stream cipher. To this purpose, it suffices to use the secret key and a nonce as
input so that the resulting output can be used as a key stream. More modes of
use are described in [5].

Seven permutations, denoted Keccak-f [b], are defined with width b = 25w
ranging from 25 to 1600 bits, with w increasing in powers of two. The state of
Keccak-f [b] is organized as a set of 5 × 5 × w bits with (x, y, z) coordinates.
Coordinates are taken modulo 5 for x and y and modulo w for z. A row is a set
of 5 bits with given (y, z) coordinates, a column is a set of 5 bits with given (x, z)
coordinates and a lane is a set of w bits with given (x, y) coordinates. Moreover,
the set of 5 × 5 bits with given z coordinates is called a slice.

The round function of Keccak-f [b] consists of the following steps, which are
only briefly summarized here. For more details, we refer to the specifications [6].

– θ is a linear mixing layer that adds a pattern depending solely on the parity
of the columns of the state.

– ρ and π displace bits without altering their value.
– χ is a degree-2 non-linear mapping that processes each row independently. It

can be seen as the application of a translation-invariant 5-bit quadratic S-box:

a(x,y,z) ≤ a(x,y,z) + (a(x+1,y,z) + 1)a(x+2,y,z).

– ι adds a round constant.

The number of rounds in Keccak-f is determined by the width b of the
permutations. It is 12 for Keccak-f [25] and increases by two for each doubling
of the size. So Keccak-f [1600] has 24 rounds.

3 Achieving Uniformity with Limited Extra Randomness

In this section, we focus on the three-share implementation proposed in [3].
A value x is shared as (A,B,C) if x = A+B+C in F

n
2 . Seen as random variables

over Fn
2 , shares (A,B,C) are said to be uniform if and only if Pr[A+B+C = x]=1

and for any fixed values a, b ∀ F
n
2 , Pr[A = a,B = b] = 2−2n. This definition is

slightly more restrictive than the one in [14,15], as we do not consider probability
distributions over native values but only over their shared representation. As the
computation of cryptographic primitives such as Keccak is deterministic, this
restriction does not play a role here.

190 B. Bilgin et al.

3.1 The Original Three-Share TI Implementation of χ

The non-linear step of the Keccak round function is called χ. In [7] we proposed
a three-share TI implementation called χ◦. We denote the three shares by A, B
and C and the position of the bit within a row by i (to be taken modulo 5):

A◦
i ≤ χ◦

i(B,C) � Bi + (Bi+1 + 1)Bi+2 + Bi+1Ci+2 + Bi+2Ci+1,

B◦
i ≤ χ◦

i(C,A) � Ci + (Ci+1 + 1)Ci+2 + Ci+1Ai+2 + Ci+2Ai+1,

C ◦
i ≤ χ◦

i(A,B) � Ai + (Ai+1 + 1)Ai+2 + Ai+1Bi+2 + Ai+2Bi+1.

(1)

This maps a 15-bit vector (A,B,C) to a 15-bit vector (A◦, B◦, C ◦). Upon inspec-
tion, we found that this mapping is not invertible and hence not uniform [14,15].
The consequence is that even if (A,B,C) is a uniform sharing of a native value
x, (A◦, B◦, C ◦) is not a uniform sharing of χ(x).

3.2 Straightforward Injection of Fresh Random Bits

Keccak-f [1600] has 320 rows. For a three-share TI implementation, this means
the application of Eq. (1) 320 times per round.

To convert (A◦, B◦, C ◦) into a uniform sharing again, we can inject random
bits. Re-masking is based on the following lemma.

Lemma 1. Let (A,B,C) be n-bit shares (not necessarily uniform) of a fixed
native value and (X,Y,Z) be uniform m-bit shares. Let (D,E, F) be uniform
n-bit shares statistically independent of (A,B,C) and (X,Y,Z). Then, ((A +
D,X), (B + E, Y), (C + F,Z)) are uniform n + m-bit shares.

Proof. First, since A+B +C, D +E +F and X +Y +Z take a fixed value with
probability one, so does (A + B + C + D + E + F,X + Y + Z). Then, it suffices
to verify that for each fixed value a + d, x, b + e, y:

Pr[A + D = a + d,B + E = b + e,X = x, Y = y]

=
∑

d,e

Pr[D = d,E = e] Pr[A = (a + d) + d,B = (b + e) + e,X = x, Y = y]

=2−2n
∑

d,e

Pr[A = (a + d) + d,B = (b + e) + e,X = x, Y = y]

=2−2n Pr[X = x, Y = y]

=2−2(n+m).

We get a realization of χ that satisfies the uniformity property at the cost of 2
uniformly distributed random bits Pi, Si per bit of the state. The implementation
of χ becomes:

A◦
i ≤ χ◦

i(B,C) + Pi + Si,

B◦
i ≤ χ◦

i(C,A) + Pi,

C ◦
i ≤ χ◦

i(A,B) + Si,

(2)

Efficient and First-Order DPA Resistant Implementations of Keccak 191

Equation (2) can be seen as the addition of (χ◦
i(B,C), χ◦

i(C,A), χ◦
i(A,B)) and

(Pi + Si, Pi, Si). The result is uniform thanks to Lemma 1 as (Pi + Si, Pi, Si)
is a uniform sharing of the native value 0 obtained from independently drawn
random bits.

Although from a theoretical point of view this re-masking method solves the
uniformity issue raised above, the solution is not satisfactory since it requires a
RNG which generates many high-quality random bits at each clock cycle.

3.3 Less Randomness per Row

In this section we reduce the number of required fresh random bits per round
by using specific properties of χ◦.

The function χ in Keccak operates on 5-bit rows. It can be seen as a spe-
cific case of a convolutional mapping operating on an n-bit circular array with
updating function xi ≤ xi+(xi+1+1)xi+2. Next Lemma is a general result that
holds for any value n.

Lemma 2. If the input (A,B,C) to χ◦ is shared uniformly, the output truncated
to any n − 2 consecutive bits, e.g., (A◦, B◦, C ◦)0...n−3, is shared uniformly.

Proof. First, consider (A◦
n−3, B

◦
n−3, C

◦
n−3). It is the result of summing (Bn−3,

Cn−3, An−3) with bits computed from A, B and C in positions n − 2 and n − 1.
As (Bn−3, Cn−3, An−3) is a uniform sharing of xn−3 independent of input bits
in positions n − 2 and n − 1, Lemma 1 applies and hence (A◦

n−3, B
◦
n−3, C

◦
n−3) is

a uniform sharing.
Assuming (A◦, B◦, C ◦)i+1...n−3 is a uniform sharing, we can prove that (A◦, B◦,

C ◦)i...n−3 is a uniform sharing. (A◦
i, B

◦
i, C

◦
i) is the result of summing (Bi, Ci, Ai)

with bits computed from (A,B,C)i+1...i+2. As (Bi, Ci, Ai) is a uniform shar-
ing of xi and is independent of input bits in positions i + 1 and i + 2 and of
(A◦, B◦, C ◦)i+1...n−3, Lemma 1 applies and hence (A◦, B◦, C ◦)i...n−3 is a uniform
sharing. This can be extended till (A◦, B◦, C ◦)0...n−3. ∈≥
Further (cyclic) extensions to include (A◦, B◦, C ◦)n−1 or (A◦, B◦, C ◦)n−2 is not
possible as (Bn−2, Cn−2, An−2) is not independent of (A◦, B◦, C ◦)0...n−3 and
Lemma 1 no longer applies.

Lemma 2 says that the truncated output with two successive bits removed is
uniform. As a consequence, one can repair uniformity using only 4 fresh random
bits Pn−2, Pn−1, Sn−2, Sn−1. In particular, we just apply Eq. (2) with Pi = Si =
0 for i ∼ n − 2.

We would like to point out that this result can also be obtained using virtual
variables as proposed in [8]. Namely, let us consider each of the first two equa-
tions of χ as equations depending on one more variable Y and Z, respectively.
Let (Ai, Bi, Ci) be a sharing of xi and (Y1, Y2, Y1 + Y2), (Z1, Z2, Z1 + Z2) be a
(therefore virtual) sharing of Y,Z then exactly the same result is obtained as in
Lemma 2: 4 additional bits suffice to make the sharing uniform.

We decreased the number of fresh random bits per round from 10 to 4 bits
per row. However, for Keccak-f [1600] this is 320 × 4 = 1280 bits, still too
expensive in practice.

192 B. Bilgin et al.

3.4 Jointly Satisfying Uniformity

In this section we consider the uniformity at the level of the full state rather than
in the individual rows. We propose a TI implementation of χ with interaction
between the rows that achieves almost uniformity at the level of the full state,
greatly reducing the required number of fresh random bits per round.

Let us for convenience number the rows with index j = y + 5z. The idea is
to make the sharing at the output of row j + 1 uniform by using input at row
j. In straightforward way, we add (A + B,A,B) at the input of row j to the
output (A◦, B◦, C ◦) of row j + 1. This is again a straightforward application of
Lemma 1. Note that to satisfy the independence required by Lemma 1, the last
row still requires injection of four fresh random bits for achieving uniformity,
as in Eq. (2). The circuit complexity can be reduced greatly by combining this
with Lemma 2. As a matter of fact, we have to add (A+B,A,B) at the input of
row j to the output (A◦, B◦, C ◦) of row j +1 in only two successive bit positions.
Care must be taken in the bit positions used in each row so as to be able to rely
on Lemma 2.

The above reasoning points out that each row individually can become uni-
form. The key point, however, is to show that the joint application on the entire
state yields a uniform realization of χ. This is what the theorem below will show.

We denote the three shares of the whole state by (A,B,C), and a 5-bit row
of the state as (A(j), B(j), C(j)) with j ∀ Z5w. Then, the implementation of χ
becomes:

A
◦(j)
i ≤ χ◦

i(B
(j), C(j)) + A

(j−1)
i + B

(j−1)
i ,

B
◦(j)
i ≤ χ◦

i(C
(j), A(j)) + A

(j−1)
i ,

C
◦(j)
i ≤ χ◦

i(A
(j), B(j)) + B

(j−1)
i ,

(3)

if j > 0 and i ∀ {3, 4}. Otherwise, Eq. (2) applies when j = 0, and Eq. (1)
suffices for positions i ∼ 2.

Theorem 1. If the (whole state) input (A,B,C) to Eq. (3) if j > 0 and i ∀
{3, 4}, to Eq. (2) if j = 0 and i ∀ {3, 4} and to Eq. (1) if i ∼ 2, is shared
uniformly, then the (whole state) output (A◦, B◦, C ◦) is shared uniformly.

Proof. We can apply Lemma 1 recursively, with j starting at j = 5w − 1 and
going down to j = 0. Everytime, the reasoning is to show that if (A◦(j+1...5w−1),
B◦(j+1...5w−1), C ◦(j+1...5w−1)) is uniform, then it is also uniform for rows j to
5w − 1.

Following Eq. (3), the sharing (A◦(j), B◦(j), C ◦(j)) is obtained by adding
(χ◦(B(j), C(j)), χ◦(C(j), A(j)), χ◦(A(j), B(j)) and (A(j−1)+B(j−1), A(j−1), B(j−1))
for bit positions i ∀ {3, 4}. The latter expression is a uniform sharing of 0 and
independent of the rows with indexes j and higher. From Lemma 2, (χ◦(B(j),
C(j)), χ◦(C(j), A(j)), χ◦(A(j), B(j)) is already uniform when restricted to bit posi-
tions 0 to 2. The conditions of Lemma 1 are thus satisfied and (A◦(j...5w−1),
B◦(j...5w−1), C ◦(j...5w−1)) is uniform.

Efficient and First-Order DPA Resistant Implementations of Keccak 193

If j = 0, the same reasoning applies, except that bit positions i ∀ {3, 4} are
obtained as in Eq (2). ∈≥

The cost is four random bits per round, some additional XORs, registers and
extra routing. As far as randomness is concerned, this amounts to 96 bits for
the 24 rounds of Keccak-f [1600], which is small compared to the 3200 random
bits needed to represent the input state in three shares.

4 Achieving Uniformity with Four Shares

A uniform 3-share threshold implementation for χ or for any of its affine equiv-
alent is not found yet. We present a uniform sharing of χ with 4 shares. For
i = 0, 1, 2, 4, we have:

A◦
i ≤ Bi + Bi+2 + ((Bi+1 + Ci+1 + Di+1)(Bi+2 + Ci+2 + Di+2)),

B◦
i ≤ Ci + Ci+2 + (Ai+1(Ci+2 + Di+2) + Ai+2(Ci+1 + Di+1) + Ai+1Ai+2),

C ◦
i ≤ Di + Di+2 + (Ai+1Bi+2 + Ai+2Bi+1),

D◦
i ≤ Ai + Ai+2,

(4)

and for the remaining 3rd coordinate function we have:

A◦
3 ≤ B3 + B0 + C0 + D0 + ((B4 + C4 + D4)(B0 + C0 + D0)),

B◦
3 ≤ C3 + A0 + (A4(C0 + D0) + A0(C4 + D4) + A0A4),

C ◦
3 ≤ D3 + (A4B0 + A0B4),

D◦
3 ≤ A3.

(5)

We found this sharing by using Theorem 2 of [8]. Namely, we first searched
through all affine equivalent S-boxes of χ, i.e., χ◦◦ = χ(A(x)), where A(x) is
an affine permutation and we found the ones that can be shared with a direct
sharing. Next, we applied the corresponding inverse affine transformation to the
found direct sharing to generate a uniform sharing for the function χ. We chose
the one that has the smallest area over all the candidates. Therefore, this uniform
sharing (although derived and close to direct) is not a direct sharing and that is
why the shares can not be computed in a circular manner.

5 Hardware Implementations

There are several reports on different implementations of unprotected Keccak-
f that uses different platforms, architectures and libraries [1]. In this work, we
provide unprotected (plain) and threshold implementations of Keccak-f with
a round-based (parallel, Fig. 1) and a slice-based (serial, Fig. 2) architecture.
We used ModelSim to verify the correctness of our implementations and Synop-
sys with FARADAY, FSA0A-D and FSC0H-D libraries which are standard cell
libraries tailored for UMC 0.18µm and UMC 0.13µm logic processes respec-
tively to observe and compare the accurate area cost and maximum frequency

194 B. Bilgin et al.

State

λ

χ and ι

1600

out1024

absorb&rnd0inp

16001024

1600

ready&squeze

1600≈ reset

Fig. 1. Schematic of the round-based implementation of Keccak-f

inp

θ χ

R0R63 R62 R61

· · ·

ρ and π

· · ·

rcon

25

25

25
255

5

5

5

25 25

out

rnd0&absorb

∼ reset∼ reset

ready&squeezeready&squeeze

25

25

25

Fig. 2. Schematic of the slice-based implementation of Keccak-f

with the previous works. For all our designs, we also provide the results with
NANGATE 45 nm standard cell library which is free and can be used for further
comparison. The D flip-flops that take the output of a 2 × 1 MUX as input are
implemented as scan flip-flops to reduce the area.

In the following sections, we first describe the unprotected Keccak archi-
tectures. Then, we build our threshold implementations on those architectures.

5.1 Unprotected Implementations

In our parallel implementation (Fig. 1), we fixed the rate to be at most 1024
bits. The architecture of the round function Keccak-f for this implementation
is straightforward with 320 parallel instances of χ. The function θ is implemented
in a slice-based manner. Namely, the 5-bit XOR of every row in each slice (i.e.,
the column parity) Xi, where i ∀ {0, . . . , 63} is calculated in parallel [7]. For
each slice, the rotated values of Xi and Xi−1 are XORed. This new value is
concatenated five times to generate a 25-bit value which will then be XORed to
its corresponding slice. With this method, the θ function can be calculated with
a low cost. The rest of the linear layer, i.e., ρ and π, are executed on the whole
1600-bit state as a simple wiring and the output in each round is written to a
1600-bit register. Hence, one iteration of Keccak-f [1600] takes 24 clock cycles.

Efficient and First-Order DPA Resistant Implementations of Keccak 195

On the other hand, the serial implementation (Fig. 2) operates on the 25-bit
slices. It takes 25 bits in each clock cycle starting from slice 0. The input is
written to the register R63 after the implementation of θ, which takes as input
the 5-bit XOR of every row of each input slice in the mentioned clock cycle and
the previous cycle with the exception of the first slice. This is repeated for 64
cycles as the data in the registers are shifted from Ri+1 to Ri for i ∀ {0, . . . , 62}.
θ for the first slice is completed in the 64th clock cycle together with the last
slice. ρ and π are simple wirings executed on the same clock cycle as well. We can
consider this one round of 64 cycles as the initialization round. For the following
rounds, the input to θ is the output of the five χ functions executed in parallel
on the slice R0 followed by the XOR of the round constant. The output is taken
from the output of the round constant injection starting from the first clock cycle
of the 25th round. With this implementation, one iteration of Keccak-f [1600]
takes 64 × 25 = 1600 clock cycles and costs around 10 kGE in area. We should
note that it is possible to have implementations that work on 2 or 4 slices per
cycle and are faster but require larger area as a trade-off. In this paper, we focus
on a small implementation.

Both of these unprotected implementations are noticeably smaller than the
implementations reported so far which use standard cell libraries for state storage
and still provide a high frequency. On the other hand, the smallest design so far,
that is proposed in CHES’13 [16] uses RAM macros and requires more clock
cycles for one iteration. More detailed comparison for after synthesis results is
given in Table 1.

5.2 Threshold Implementations

We propose two different types of threshold implementations. In the first type, we
use as little random bits as we can. Namely, except for the initial sharing, we use
at most four bits of randomness per round. In the second type, however, we relax
this restriction on using minimum amount of randomness in order to reduce the
area. In all these versions, we assume that the input shares are provided from
an outside source, such that the sum of the shares is the unshared message.

For the first type of TI, we implement two versions as described in Sects. 3
and 4 and we use three and four shares, respectively, throughout the entire
implementations. Hence, we need respectively three and four times the registers
compared to the unprotected implementation. The linear layer is also tripled
(and quadrupled), such that each works on one share only. During the χ opera-
tions, these shares are used together as described in (3)-(5). The round constant
is inserted in one share only. In the case of the parallel three share implementa-
tion, we need 640-bit extra registers to store the re-masking masks since we need
to complete the re-masking one clock cycle later as described in Sect. 3. Also,
because of this re-masking, the output is ready one clock cycle after the last χ
operation therefore one Keccak-f takes 25 clock-cycles.

As expected, for the parallel implementations the cost of the combinational
logic exceeds the cost of the register, since there are too many instances of θ and

196 B. Bilgin et al.

Table 1. Synthesis results for different implementations of Keccak

Design Area (kGE) Rand. bit Clock Freq.
State θ χ ANDs/XORs Other TOTAL per round Cycles MHz

UMC 0.18µm standard cell library
Parallel 9.0 9.3 7.0 8.1 0.1 33.5 - 24 572
Parallel-3sh 27.2 27.8 55.4 31.4 3.5 145.3 4 25 516
Parallel-4sh 36.3 37.1 68.8 31.9 0.1 174.2 - 24 513
Serial 10.1 0.1 0.1 0.2 0.3 10.8 - 1600 555
Serial-3sh 30.4 0.4 0.8 0.7 0.8 33.1 4 1625 553
Serial-4sh 40.5 0.6 1.0 0.7 0.3 43.1 - 1600 572

UMC 0.13µm standard cell library
Parallel 8.0 8.6 6.4 7.5 0.1 30.6 - 24 855
Parallel-3sh 24.0 25.7 52.8 29.4 3.3 135.2 4 25 746
Parallel-4sh 32.0 34.2 61.6 29.7 0.1 157.6 - 24 735
Serial 10.0 0.1 0.1 0.2 0.2 10.6 - 1600 752
Serial-3sh 30.0 0.4 0.8 0.7 0.7 32.6 4 1625 820
Serial-4sh 40.0 0.5 0.9 0.7 0.3 42.4 - 1600 775

NANGATE 45 nm standard cell library
Parallel 9.0 6.4 5.6 7.0 0.1 28.1 - 24 690
Parallel-3sh 27.2 19.2 40.6 25.9 3.7 116.6 4 25 592
Parallel-4sh 36.3 25.6 48.7 28.7 0.1 139.4 - 24 588
Serial 12.2 0.1 0.1 0.2 0.2 12.8 - 1600 775
Serial-3sh 36.8 0.3 0.6 0.5 0.8 39.0 4 1625 645
Serial-4sh 49.0 0.4 0.8 0.6 0.3 51.1 - 1600 633

UMC 0.18µm standard cell library
Parallel-[18] N/A N/A N/A N/A N/A 56.7 - 25 488

STM and UMC 0.13µm standard cell library
Parallel N/A N/A N/A N/A N/A 48.0 - 24 526
Keccak team
Serial-[11] N/A N/A N/A N/A N/A 20.0 - 1200 N/A
Serial-[16]a N/A N/A N/A N/A N/A 5.9 - 15427 61
a Uses RAM macros

χ. Even though these implementations are fast, the parallel threshold implemen-
tations are quite big and can no longer be called efficient implementations, when
applied to bigger versions of Keccak.

When the serial implementations are considered, the register cost is the dom-
inant cost in the architecture whereas the θ and χ layers together is only 4 % of
the overall implementation (Table 1). Note that for the three-share implementa-
tion, we need to keep the random bits from the previous χ function to the next
(as described in Sect. 3) in every clock cycle which requires 4-bit register. Also,
for proper re-masking, we need to use an extra 10-bit register to store the values
after the χ operation which leads to a decrease of one clock cycle per round in
speed.

Efficient and First-Order DPA Resistant Implementations of Keccak 197

The threshold implementations of the serial architecture have the same size as
the unprotected parallel implementation. One can, of course, have an implemen-
tation operating on more than one slice to increase the speed with a relatively
small cost.

5.3 An Architecture with 2 Shares for the Linear Part

Working on three or four shares throughout the whole implementation leads to
a high area since the size of the state is big as a result of adopting the 1600-
bit permutation. Furthermore, the cost of the linear θ layer is very close to the
register cost as we converge to the parallel implementation (Table 1) because of
multiple XORs per bit. For this second type of threshold implementation, we
propose a way to reduce the area at the cost of extra random bits.

We can use two shares for the linear part λ of the Keccak-f . Then we face
the problem of increasing or decreasing the number of shares for the nonlinear
layer. The re-sharing from 2 to 3 shares can be done as in Fig. 3a one clock cycle
before going through the χ layer as these three new shares need to be written into
registers to avoid leakage. Note, that we do not anymore need to have a uniform
χ implementation as this re-sharing will also serve as re-masking in the input of
the nonlinear function. Therefore, we will only consider the χ implementation
with three shares and direct sharing. Moreover, reducing the number of shares
from 3 to 2 can be done by only a single XOR as shown in Fig. 3b since linear
layers do not require uniform input shares.

With this approach, we will need 1 more clock cycle per round for the round-
based architecture and 10 extra bits of randomness for each instance of the χ
function. Applying the method in a straightforward way will cost 3200 bits of
extra randomness. However it is possible to use the idea of Sect. 3 and borrow
randomness from the input of the previous instances of the χ function.

For a parallel implementation, this approach decreases the cost of the linear
layer and the ANDs and XORs only. We need to put a register between the 2-
to-3 re-sharing and the χ layer, in order to safeguard against the possibility that
some of the masks do not arrive on time. Moreover, there is the extra cost of
the XORs during the re-masking that compensates the area saved in the linear
layer. In the end, such a parallel implementation will not save area and moreover
it needs more randomness which is not preferable.

m1
a1

a2
m2

m1 ∪ m2 b3

b1

b2

(a) 2 to 3

a1

a2

a3 b2

b1

(b) 3 to 2

Fig. 3. Resharing

198 B. Bilgin et al.

For a serial architecture, this approach is more efficient. To give an example
from our slice-based implementation, we need to increase the number of shares
when we shift the data in the register R1 to the register R0 and decrease the
number of shares with the shift from R63 to R62. Even though the θ layer is still
applied on three shares, the registers from R1 to R62 only requires two instances.
Besides, the extra cost of re-masking is small since we only need to increase or
decrease the number of shares on one slice. As a result, this implementation
will require 30 % less area for the cost of four extra random bits per round and
96 extra random bits for one Keccak-f as we need 10 bits of randomness per
round.

6 Conclusions

We presented the first implementations of Keccak that satisfy the three prop-
erties of threshold implementations. At the moment, it seems that at least four
shares are required in order to be able to satisfy simultaneously correctness, non-
completeness and uniformity. Implementations with three shares require extra
random bits in each round. We showed how the amount of extra random bits can
be brought down to as little as four per round. To illustrate our work, we made
six hardware implementations and compared their merits. We have shown that
even though threshold implementations increase the area significantly, by using
a serial architecture instead of a parallel one, this increase can be compensated.

Acknowledgments. We would like to thank the anonymous reviewers for their con-
structive comments. In addition, this work has been supported in part by the Research
Council of KU Leuven (OT/13/071), B. Bilgin was partially supported by the Flem-
ish Government by the project G.0B421.13N., and V. Nikov was supported by the
European Commission (FP7) within the Tamper Resistant Sensor Node (TAMPRES)
project with the contract number 258754.

References

1. ATHENa: automated tool for hardware evaluation. http://cryptography.gmu.edu/
athena/

2. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol.
2162, pp. 309–318. Springer, Heidelberg (2001)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis
resistant implementations of Keccak. In: Second SHA-3 Candidate Conference,
August 2010

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions, January 2011

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-
pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S.
(eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)

http://cryptography.gmu.edu/athena/
http://cryptography.gmu.edu/athena/

Efficient and First-Order DPA Resistant Implementations of Keccak 199

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference,
January 2011

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak
implementation overview, September 2011

8. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of All 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

9. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

10. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

11. Kavun, E.B., Yalcin, T.: A lightweight implementation of Keccak hash function
for radio-frequency identification applications. In: Ors Yalcin, S.B. (ed.) RFIDSec
2010. LNCS, vol. 6370, pp. 258–269. Springer, Heidelberg (2010)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

13. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

14. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

15. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

16. Pessl, P., Hutter, M.: Pushing the limits of SHA-3 hardware implementations to
fit on RFID. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
126–141. Springer, Heidelberg (2013)

17. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without
routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 172–186. Springer, Heidelberg (2005)

18. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.-M., Szekely, A.:
Uniform evaluation of hardware implementations of the round-two SHA-3 candi-
dates. In: The Second SHA-3 Candidate Conference, Santa Barbara, USA, pp.
1–16, 23–24 August 2010

19. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: DATE, pp. 246–251. IEEE Computer
Society (2004)

20. Trichina, E., Korkishko, T., Lee, K.-H.: Small size, low power, side channel-immune
AES coprocessor: design and synthesis results. In: Dobbertin, H., Rijmen, V., Sowa,
A. (eds.) AES 2005. LNCS, vol. 3373, pp. 113–127. Springer, Heidelberg (2005)

Practical Analysis of RSA Countermeasures
Against Side-Channel Electromagnetic Attacks

Guilherme Perin(B), Laurent Imbert(B), Lionel Torres(B),
and Philippe Maurine(B)

LIRMM/UM2, 161 Rue Ada, 34095 Montpellier, France
{perin,laurent.imbert,lionel.torres}@lirmm.fr,

philippe.maurine@emse.fr

Abstract. This paper analyzes the robustness of RSA countermeasures
against electromagnetic analysis and collision attacks. The proposed RSA
cryptosystem uses residue number systems (RNS) for fast executions of
the modular calculi with large numbers. The parallel architecture is pro-
tected at arithmetic and algorithmic levels by using the Montgomery
Ladder and the Leak Resistant Arithmetic countermeasures. Because the
architecture can leak information through control and memory execu-
tions, the hardware RNS-RSA also relies on the randomization of RAM
accesses. Experimental results, obtained with and without randomiza-
tion of the RNS moduli sets, suggest that the RNS-based RSA with
bases randomization and secured RAM accesses is protected.

Keywords: RSA · RNS · Montgomery exponentiation · Countermea-
sures · Electromagnetic analysis

1 Introduction

Side-Channel Attacks (SCA) are a serious threat for public-key cryptosystems
and notably for the RSA [1]. These attacks aim at recovering a secret manipu-
lated by cryptographic algorithms, by analyzing various sources of side-channel
leakages (time, power consumption, electromagnetic (EM) radiations, etc.) dur-
ing their execution on a hardware device.

Countermeasures to prevent simple (SPA) and differential (DPA) power
analysis on RSA can be categorized in algorithmic and hardware countermea-
sures. The Square-and-Multiply Always [2] and the Montgomery Ladder [3]
ensure that all operations in the binary method run in a constant sequence
of operations in order to prevent SPA like attacks. To deal with DPA attacks,
the idea of algorithmic countermeasures is to randomize the message or the
exponent (private key) that are processed during the execution of a modular
exponentiation. However, most of these countermeasures do not provide suffi-
cient protection against high-order DPA attacks or sophisticated SPA-attacks
[4,21].

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 200–215, 2014.
DOI: 10.1007/978-3-319-08302-5 14, c© Springer International Publishing Switzerland 2014

Practical Analysis of RSA Countermeasures 201

Residue Number System (RNS), coupled together with SPA-protected meth-
ods, is an interesting alternative to increase the robustness at the arithmetic
level. RNS provides a natural way of masking the data and the internal
computations because all intermediate values can be represented in different RNS
bases. However, differential, correlation and collision EM attacks [5–8] remains
fully efficient if no randomization of the RNS bases are used to effectively mask
sensitive computations. This idea is the foundation of the Leak Resistant Arith-
metic (LRA) concept proposed in [9].

The RSA hardware approach proposed in this work implements different
countermeasures. To provide protection against correlation analyses and colli-
sion attacks, the design offers protection at arithmetic level by randomizing the
moduli between two sets of RNS bases, and then implies the on-the-fly calcu-
lus of the required pre-computed constants. For the modular exponentiation, the
Montgomery Ladder algorithm is considered even if other algorithms can be exe-
cuted by our co-processor. The successive modular multiplications are computed
with the RNS Montgomery algorithm [10] that needs two sets of k moduli due
to the base extension part. For this crucial operation in the Montgomery mul-
tiplication, one considers the fast approximation method [11], which is derived
from the Chinese Remainder Theorem. Moreover, hardware countermeasures
are adopted with randomization of the RAM addresses during the reading and
writing operations.

The rest of the paper is organized as follows. Section 2 give a brief state-of-
art about the use of RNS for the integration of public-key algorithms. Section 3
describes the hardware module we have designed and mapped into an FPGA.
Section 4 gives experimental results about the robustness of the RNS-RSA imple-
mented on our crypto-module. Finally, a conclusion is drawn in Sect. 5.

2 Preliminaries

2.1 Residue Number System

In the Residue Number System [12], an integer X, is represented according
to a base B = (b1, b2, ..., bk) of relatively prime integers, called moduli. The
number X in base B is thus represented by a k-tuple of positive integers ≤X∀B =
(x1, x2, . . . , xk), where xi = X mod bi, i.e. the remainder of the division of X by
the modulo bi, denoted |X|bi in the sequel. Arithmetic operations (±,×) are then
performed modulo B =

∏k
i=1 bi. To recover the original number X (modulo B),

given the residues xi, one may apply the Chinese Remainder Theorem (CRT):

|X|B =

∣
∣
∣
∣
∣

k∑

i=1

Bi|xiB
−1
i |bi

∣
∣
∣
∣
∣
B

,where Bi =
B

bi

202 G. Perin et al.

The forward conversion is a key step before starting any computation in
RNS. From the radix-2w representation of X =

∑n−1
j=0 Xj2wj , the residues xi are

obtained, for all bi ∈ B, by:

xi = |X|bi =

∣
∣
∣
∣
∣
∣

n−1∑

j=0

∣
∣Xj |2wj |bi

∣
∣
bi

∣
∣
∣
∣
∣
∣
bi

, (1)

where the constants |2wj |bi are pre-computed for all i, j to speed up the forward
conversion in RNS hardware modules by computing all residues in parallel.

2.2 RNS Montgomery Exponentiation

The core of any RSA implementation is a modular exponentiation of x, namely
xe mod N is computed and e is the private exponent. This is the operation to
be protected! To deal with timing and SPA attacks, in this work we adopted
the Montgomery Ladder exponentiation version in RNS, as given in Algorithm
1. One may observe that the computations are performed over two RNS bases
A and B.

The pre-computed terms for the modular exponentiation are B mod N and
B2 mod N in bases A and B. The operation MM(x, y,N,B,A) returns the RNS
Montgomery Multiplication result xyB−1 mod N in the two RNS bases A and B.
For this crucial operation, the recent improvement proposed in [13] was adopted
to accelerate the original method [11] by 18 %. This acceleration is provided by
rearranging the computations within the so-called base extensions (BE). In [13],
two different strategies are proposed for that operation and, in our approach,
we adopted the fast approximation method, also called as Posch-Posch method
[14]. Given xi the elements of X in base B, where xi = X mod bi for i = 1..k,
the fast approximation method ensures the existence of a certain integer λ < k,
a CRT-correction coefficient, such that:

X =

∣
∣
∣
∣
∣

k∑

i=1

Bi|xiB
−1
i |bi

∣
∣
∣
∣
∣
B

=
k∑

i=1

Bi|xiB
−1
i |bi − λ.B (2)

and λ can be calculated by:

λ =

⌊
k∑

i=1

Bi|xiB
−1
i |bi

B

⌋

=

⌊
k∑

i=1

|xiB
−1
i |bi
bi

⌋

=

⌊
1
2w

k∑

i=1

|xiB
−1
i |bi

⌋

(3)

In Eq. 3, |xiB
−1
i |bi/bi may be approximated by |xiB

−1
i |bi/2w as bi = 2w − ci,

and ci > 0. The resulting RNS Montgomery algorithm using the fast approxi-
mation base extension, with a cost of 2k + 7 single multiplications at each RNS
moduli, is shown in Algorithm 2.

The RNS Montgomery algorithm requires a set of precomputed terms in RNS
bases A and B. The term Bi,jNB−1 refers to the computation |BNB−1/bi|aj

and
Ai,j refers to the computation |A/ai|bj , for ≥i, j. The modular exponentiation
employing the Algorithm 2 ensures that Xe mod N < 2N .

Practical Analysis of RSA Countermeasures 203

Algorithm 1. RNS Montgomery Ladder Exponentiation
Data: x in A ◦ B, where A = (a1, a2, ..., ak), B = (b1, b2, ..., bk), A =

∏k
i=1 ai,

B =
∏k

i=1 bi, gcd(A,B) = 1, gcd(B,N) = 1 and e = (en−1...e1e0)2.

Result: z = xe mod N in A ◦ B
1 Pre-Computations: |B mod N |A∪B and |B2 mod N |A∪B
2 A0 = B mod N (in A ◦ B)

3 A1 = MM(x,B2 mod N,N,B,A) (in A ◦ B)
4 for i = n − 1 to 0 do
5 Aei

= MM(Aei
, Aei

, N,B,A) (in A ◦ B)

6 Aei
= MM(Aei

, Aei
, N,B,A) (in A ◦ B)

7 end
8 A0 = MM(A0, 1, N,B,A) (in A ◦ B)

Algorithm 2. RNS Montgomery Multiplication with Fast Approx. BE [13]
Data: x, y in A ◦ B, where A = (a1, a2, ..., ak), B = (b1, b2, ..., bk), A =

∏k
i=1 ai,

B =
∏k

i=1 bi, gcd(B,A) = 1, 1 ∗ x, y < N , B > 4N and A > 2N

Result: w = xyB−1 mod N (in A ◦ B)

1 Pre-Computations in A: B−1, Bi,jN.B−1 for i, j = 1..k, −B.N.B−1, A−1
j for j = 1..k

2 Pre-Computations in B: −N−1B−1
i for i = 1..k, Ai,j for i, j = 1..k, −A

3 s = |x.y|B∪A
4 ————————— Base extension 1 ——————————–

5 qbi = |si(−N−1B−1
i)|bi for i=1..k

6 f =

⌊(∑k
i=1 qbi

)
/2w
⌋

7 wai
= |siB−1 +

∑k
j=1 qbj (Bi,jNB−1) − f.B.N.B−1|ai

for i=1..k

8 ————————— Base extension 2 ——————————–

9 qi = |wai
(A−1

i)|ai
for i=1..k

10 f =

⌊(
2w−1 +

∑k
i=1 qbi

)
/2w
⌋

11 wbi
= |∑k

j=1 qjAi,j − f.A|bi for i=1..k

2.3 RNS Bases Randomization - The LRA Countermeasure

DPA attacks explore the relation between the power consumption and the inter-
nal variables to recover the bits of the private key. The leak resistant arithmetic
(LRA) countermeasure [9] provides a way for completely masking the internal
computations and then protect against differential or correlation power (or EM)
analysis at arithmetic level.

Before each modular exponentiation, the two set of bases A and B (each
of size k) are randomly selected among a set of 2k integers. In this way, an
integer w (an intermediate result in the modular exponentiation represented in
the Montgomery domain) has C2k

k ∼ 22k/
≈

πk different RNS representations
in bases A or B and it offers a high-level of randomization. These randomly
selected RNS bases are then used during the entire computation. The authors
of [9] also suggested to reinforce the robustness by selecting new bases during the
exponentiation, possibly before each MM. However, this second approach may
become much slower; it implies two additional MM each time new RNS bases
are chosen, or even four extra MM if the Montgomery Ladder is used for the

204 G. Perin et al.

Algorithm 3. RNS Montgomery Powering Ladder with LRA [9]
Data: x in A ◦ B, where A = (a1, a2, ..., ak), B = (b1, b2, ..., bk), A =

∏k
i=1 ai,

B =
∏k

i=1 bi, gcd(A,B) = 1, gcd(B,N) = 1 and e = (en−1...e1e0)2.

Result: z = xe mod N in A ◦ B
1 Pre-Computations: |AB mod N |A∪B
2 A0 = MM(1, AB mod N,N,A,B) (in A ◦ B)
3 A1 = MM(x,AB mod N,N,A,B) (in A ◦ B)
4 for i = n − 1 to 0 do
5 Aei

= MM(Aei
, Aei

, N,B,A) (in A ◦ B)

6 Aei
= MM(Aei

, Aei
, N,B,A) (in A ◦ B)

7 end
8 A0 = MM(A0, 1, N,B,A) (in A ◦ B)

exponentiation. Here, the bases randomization are performed once before each
exponentiation, using Montgomery Powering Ladder as depicted in Algorithm 3.
In the application of LRA countermeasure, the on-the-fly computation of Mont-
gomery constants B mod N and B2 mod N is solved by using the pre-computed
term AB mod N (in A ∪ B) in the two first Montgomery multiplications. Note
the order of A and B in these two first calls of MM in Algorithm 3.

The RNS Montgomery Multiplication needs pre-computed constants related
to the random choice of RNS bases A and B. These pre-computed constants
must be obtained on-the-fly before each modular exponentiation. The LRA pre-
computations necessary for the Montgomery multiplication are:

(a)
∣
∣B−1

i

∣
∣
bi

=
∣
∣
∣
∣
∏k

j=1 b−1
j

∣
∣
∣
∣
bi

=
∣
∣
∣
∣
∣
∣...

∣
∣
∣
∣b−1

0 .b−1
1

∣
∣
bi

.b−1
2

∣
∣
bi

...b−1
k

∣
∣
bi

∣
∣
∣
∣
bi

(b)
∣
∣A−1

i

∣
∣
ai

=
∣
∣
∣
∣
∏k

j=1 a−1
j

∣
∣
∣
∣
ai

=
∣
∣
∣
∣
∣
∣...

∣
∣
∣
∣a−1

0 .a−1
1

∣
∣
ai

.a−1
2

∣
∣
ai

...a−1
k

∣
∣
ai

∣
∣
∣
∣
ai

(c)
∣
∣B−1

∣
∣
ai

=
∣
∣
∣
∣
∏k

j=1 b−1
j

∣
∣
∣
∣
ai

=
∣
∣
∣
∣
∣
∣...

∣
∣
∣
∣b−1

0 .b−1
1

∣
∣
ai

.b−1
2

∣
∣
ai

...
∣
∣b−1

k

∣
∣
ai

∣
∣
∣
∣
ai

(d)
∣
∣A−1

∣
∣
bi

=
∣
∣
∣
∣
∏k

j=1 a−1
j

∣
∣
∣
∣
bi

=
∣
∣
∣
∣
∣
∣...

∣
∣
∣
∣a−1

0 .a−1
1

∣
∣
bi

.a−1
2

∣
∣
bi

...
∣
∣a−1

k

∣
∣
bi

∣
∣
∣
∣
bi

(e)
∣
∣B

∣
∣
ai

=
∣
∣
∣
∣
∏k

j=1 bj

∣
∣
∣
∣
ai

=
∣
∣
∣
∣
∣
∣...

∣
∣
∣
∣b0.b1

∣
∣
ai

.b2
∣
∣
ai

...bk
∣
∣
ai

∣
∣
∣
∣
ai

(f)
∣
∣A

∣
∣
bi

=
∣
∣
∣
∣
∏k

j=1 aj

∣
∣
∣
∣
bi

=
∣
∣
∣
∣
∣
∣...

∣
∣
∣
∣a0.a1

∣
∣
bi

.a2

∣
∣
bi

...ak

∣
∣
bi

∣
∣
∣
∣
bi

And then, we obtain:

1.
∣
∣− N−1B−1

i

∣
∣
bi

=
∣
∣− N−1∣∣.

∣
∣B−1

i

∣
∣
bi

and
∣
∣− N−1A−1

i

∣
∣
ai

=
∣
∣− N−1∣∣.

∣
∣A−1

i

∣
∣
ai

, for i = 1..k

2.
∣
∣Bi

∣
∣
aj

=
∣
∣B
∣
∣
aj

.
∣
∣b−1

i

∣
∣
aj

and
∣
∣Ai

∣
∣
bj

=
∣
∣A
∣
∣
bj

.
∣
∣a−1

i

∣
∣
bj

, for j = 1..k

3.
∣
∣BiNB−1∣∣

aj
=
∣
∣Bi

∣
∣
aj

.
∣
∣N
∣
∣
aj

.
∣
∣B−1∣∣

aj
and

∣
∣AiNA−1∣∣

bj
=
∣
∣Ai

∣
∣
bj

.
∣
∣N
∣
∣
bj

.
∣
∣A−1∣∣

bj
, for j = 1..k

4.
∣
∣− B

∣
∣
ai

=
∣
∣B
∣
∣
ai

.
∣
∣− 1

∣
∣
ai

and
∣
∣− A

∣
∣
bi

=
∣
∣A
∣
∣
bi
.
∣
∣− 1

∣
∣
bi
, for i = 1..k

5.
∣
∣ − BNB−1∣∣

ai
=
∣
∣ − B

∣
∣
ai

.
∣
∣N
∣
∣
ai

.
∣
∣B−1∣∣

ai
and

∣
∣ − ANA−1∣∣

bi
=
∣
∣ − A

∣
∣
bi
.
∣
∣N
∣
∣
bi
.
∣
∣A−1∣∣

bi
, for

i = 1..k

Practical Analysis of RSA Countermeasures 205

Then, all constants |b−1
i |bj , |a−1

i |aj
, |b−1

i |aj
, |a−1

i |bj for all i, j, | − N−1|A◦B,
|N |A◦B, | − 1|A◦B and the RNS base sets A and B should be pre-computed.

After the modular exponentiation, the result must be converted back to radix.
For the LRA countermeasure, the reverse conversion using CRT-based method
needs the on-the-fly computations of the values Bi and B in radix-2w form and it
represents a high level of complexity. In this case, it is adopted the Mixed-Radix
System (MRS) [12] for the RNS to radix conversion. The mixed-radix system is
a weighted representation of a RNS number. This method is computed in two
steps: first, the MRS representation of xi (RNS representation of X in B) is
obtained using the optimized Garner’s Algorithm [17], and all the pre-computed
values, the inverses |b−1

i |bj , are obtained independently of RNS bases random-
izations; second, the MRS result is converted to radix by applying the Horner’s
scheme, as also presented in [17]. The reverse conversion implies carry-based
arithmetic. However, the time spent for these operations is negligible compared
to the modular exponentiation.

3 Proposed and Developed Hardware

The proposed hardware computes the forward conversion (radix to RNS), the
LRA pre-computations, the modular exponentiation and the reverse conversion
(radix to RNS), using the same set of independent data-paths called RNS Units
depicted in Fig. 1. The implementation follows a similar schematic than that
proposed in [11] and improved in [16], called cox-rower architecture.

As described in Sect. 2, the required LRA pre-computations, which computes
the pre-computed constants for the Montgomery multiplication in the RNS bases
A and B, needs a set of pre-computed values. To store them, the RNS Units con-
tain dual-port RAM memories. Then, each RNS Unit contains all pre-computed
elements of all moduli of A and B. It causes an overhead in terms of memory,
however speeds-up the on-the-fly pre-computations.

The core of each RNS Unit is the arithmetic logic unit (ALU), which com-
putes the modular addition/subtraction, modular products and carry-based
arithmetic operations in the reverse conversion (CRT or MRS). To accelerate
the modular reductions, we adopted the method proposed in [15]. This solution
uses pseudo-Mersenne numbers of the form bi = 2w − ci, where ci < 2w/2, for
the chosen set of RNS moduli. Then, to compute x mod bi one first performs
the following step twice:

x ← (x mod 2w) + ci · (x/2w) (4)

Then x will be in the range of [0, 2w+1] and a final conditional subtraction
by bi returns the residual value. The coefficient ci is also an input of the ALU
block. As RNS bases randomizations (LRA) makes the RNS Units operate in
different moduli, all ci (for i = 1..2k) are stored in a ROM memory. Each RNS
Unit performs operations for one RNS channel of A and one of B; the selection of
these channels, and the respective coefficient ci, is defined by the random index
input from the control unit.

206 G. Perin et al.

FIFO

ALU

ROM

RAM M
U

X

M
U

X

M
U

X

in1

in2

in3

out

data_out

fifo_infifo_out

data_in

data_ram1

data_ram2

random_index

addr2

addr1

ci

...

bus control

FSM ROM
(key)

......
M

U
X

M
U

X

msg_in

I/O
data_out

X

+

in1 in2 in3

X

+

X

+

out

ALU

carry carry

M
U

X

carry

carry

carry carry

-

ci

f_block ...f ff
ALU

RAM

ROM

ALU
RAM

ROM

ALU
RAM

ROM

Fig. 1. RNS architecture block diagram.

The architecture also contains an adder block, called f block, for computing
the f values in the two base extensions. This block basically sums up all input
values (qB in the first base extension and q in the second base extension) and
returns the k most significant bits of this sum, named f .

The hardware countermeasure also relies on the RAM access protection.
According to the Algorithm 3 there are four registers (A0 in A, A0 in B, A1 in A
and A1 in B) for storing the intermediate values, resulting of modular multipli-
cation or squaring executions in the binary loop of the Montgomery Ladder. So,
for example, if a modular multiplication A0 = MM(A0, A1, N,B,A) is executed
when the exponent bit is 1, the reading and writing operations will be:

1. read(|A0|A,|A0|B,|A1|A,|A1|B)
2. write(|A0|A,|A0|B)

On the other hand, if a modular multiplication A1 = MM(A0, A1, N,B,A) is
executed when the exponent bit is 0, the reading and writing operations will be:

1. read(|A0|A,|A0|B,|A1|A,|A1|B)
2. write(|A1|A,|A1|B)

Note that same registers are read and different registers are written. EM analysis
based on localized EM radiations [18] or on the control and RAM leakages [20]
show that if the RAM accesses are unprotected, the private key bits can be
recovered using sophisticated SEMA or location-based EM attacks. In order to
randomize the register’s position, and consequently the addresses, where the

Practical Analysis of RSA Countermeasures 207

|A0|bi
(0)

|A0|ai
(0)

|A1|bi
(0)

|A1|ai
(0)

...
...

xxxx
|A0|ai

(1)

|A0|bi
(1)

...
...

|A0|bi
(0)

|A0|ai
(0)

|A1|bi
(0)

|A1|ai
(0)

|A1|ai
(1)

|A0|ai
(1)

|A0|bi
(1)

|A1|bi
(1)

...
...

|A1|ai
(1)

|A0|ai
(1)

|A0|bi
(1)

|A1|bi
(1)

...
...

|A0|bi
(0)

|A1|bi
(2)

|A1|ai
(2)

|A1|ai
(0)

multiplication(1)
read(A0,A1)
write(A0)

(0)

(1)

squaring(1)
read(A1,A1)
write(A1)

(0)

(1)

squaring(0)
read(A0,A0)
write(A0)

(1)

(2)

multiplication(0)
read(A0,A1)
write(A1)

(1)

(2)

exp: 1 0

(w)
(w)

(r)
(r)
(r)
(r)

(w)

(w)

(r)
(r)

(r)
(r)
(r)
(r)

|A0|bi
(0)

|A0|ai
(0)

|A1|bi
(0)

|A1|ai
(0)

(w)
(w)

(r)
(r)

...

...

j

address
space

address
space ...

address
space ...

address
space

1h + j

j
j
j
j

j
j

j

xxxx
xxxx
xxxx xxxx

xxxx

ALU
RAM

ROM

Fig. 2. RAM memory addressing randomization.

intermediate results A0 and A1 (in A and B) are stored, we propose the scheme
depicted in Fig. 2 in all RNS Units.

Considering the first modular multiplication A0 = MM(A0, A1, N,B,A).
The control reads the registers A0 and A1 (in A and B) from the RAM address
0h+j, 1h+j, 2h+j and 3h+j (indicated by ‘r’) and instead of storing the modular
multiplication result A0 (in A and B) in the same positions (0h+j and 1h+j), A0
is stored in random positions 5h+j, 6h+j, indicated by ‘w’. Since the exponent
bit ei = 1, the next operation is a modular squaring A1 = MM(A1, A1, N,B,A).
The control reads the registers A1 (in A and B) from addresses 2h+j and 3h+j
and instead of storing the result in the same position, it is placed at random
address spaces 4h+j, 7h+j. In the next modular multiplication, the registers A0
and A1 will be read from the previous random positions. With this hardware
countermeasure, the storing position of intermediate values changes during the
modular exponentiation, blurring the EM emanations. Then, the side-channel
leakage due RAM memory addressing is suppressed, because the results are
always stored in different addresses. Next section shows practical EM attacks on
both unprotected and secured RAM.

Considering k the number of RNS moduli in each of the bases A and B,
the total number of clock cycles for a Montgomery multiplication is 2k + 37.
The LRA countermeasure needs an amount of 64k + 36 clock cycles for the
pre-computations. Table 1 summarizes the number of clock cycles for the 512
bits RSA, that is able to compute the CRT-RSA 1024 bits, and the synthe-
sis results for FPGA implementation (low-cost Spartan 3E family) including
the number of kilobytes that represents the pre-computed terms pre-stored
before the exponentiation and the memory space needed during the exponen-
tiation. The results are provided for the two RSA-RNS implementations. As

208 G. Perin et al.

indicated, there is a time overhead of only 1% due to the LRA countermea-
sure. The memory (kilobytes) and the area overheads (LUTs and Slices) due
countermeasures are 92% and 3%, respectively.

4 Robustness to EM Analyses

Collision or chosen-messages pair attacks, threat modular exponentiations by
exploiting the existence of identical computations. Correlation electromagnetic
analysis (CEMA) seeks to recover the secret information by computing the corre-
lation between the EM traces and some guessed intermediate values manipulated
or not by the device according to the exponent bits.

To evaluate the relevance of the LRA and hardware countermeasures, we
first applied these attacks on an unprotected hardware design, i.e. an RNS-RSA
with fixed bases to set a robustness reference level. Then, we re-applied these
attacks on our protected implementation in order to quantify the robustness
enhancements. To generalize the notation of the acquired EM traces, we define
the following:

EM(TE ,x,e) =

{

EM(TM ,x,en−1),EM(TS ,x,en−1), ...,EM(TM ,x,e0),EM(TS ,x,e0)

}

where EM(TE ,x,e) is the set of all multiplication and squaring intervals during
a modular exponentiation with the exponent e = {en−1, en−2, ..., e1, e0}, input
message x and:

1. EM(TM ,x,ei) = EM trace of a modular multiplication (M) done during the
time window TM with the exponent bit ei;

2. EM(TS ,x,ei) = EM trace of a modular squaring (S) performed during the
time window TS with the exponent bit ei;

3. TE = time window of a full modular exponentiation.

Table 1. Cycle count and synthesis results.

RSA without protection RSA with LRA Overhead

RSA-512 Clock Cycles
LRA latency 0 1060 100 %
Radix to RNS 48 48 0 %
Mont. Expo. 78210 78210 0 %
RNS to Radix 685 (CRT) 840 (MRS) 18 %
Total 78943 80158 1 %

Synthesis Results (*FPGA Utilization)
4-Input LUTs 17124 (28 %*) 17769 (29 %*) 3 %
Slices 8717 (27 %*) 9510 (30 %*) 8 %
18 × 18 Mults 104 (100 %*) 104 (100 %*) 0 %
KB (RAM) 8.5 (5 %*) 118 (66 %*) 92 %

Practical Analysis of RSA Countermeasures 209

We also define Vem(t, x) as being the variation of the EM field at the time t
of a modular exponentiation having x as input message.

The EM traces were collected with a measurement platform composed of: an
oscilloscope (bandwidth: 2.5 GHz; sampling rate: 40 GS/s), an amplifier with a
bandwidth of 200 MHz, a 200 μm probe, a motorized stage, an FPGA Spartan-3
XC3S1600 board and a PC to control the whole measurement setup.

4.1 EM Collision Attacks

Collision attacks are SPA like attacks based on the choice of pairs of messages.
Basically, an adversary has to measure the power consumption or the EM ema-
nations during the processing of these two chosen messages by the cryptosystem.
Then, he has to apply a sliding procedure at the two collected traces to detect,
by subtraction, the occurrence of an identical computation. Such collisions typi-
cally appear during the squaring operations of modular exponentiations. Several
collision attacks have been proposed in the literature. The Doubling Attack (DA)
[6] and Yen et al.’s Attack [7] collisions are observed in squaring operations and
apply on left-to-right exponentiation algorithms. Homma et al.’s Attack [8] is a
collision that also applies to right-to-left exponentiations contrarily to the DA
and the Yen et al.’ attack. As explained in [8], it is based on a different choice
of the input messages to provoke collisions in right-to-left and left-to-right expo-
nentiation algorithms.

Because the Montgomery powering ladder algorithm is a left-to-right algo-
rithm, we did consider the Doubling Attack. Following the DA procedure, we
truncated, re-aligned and subtracted the EM traces and we confirmed the occur-
rence of the same intermediate modular squaring results. Figures 3(a) and (b)
show how to select and align traces related to the chosen messages in order to
have a reference and a target frame.

The first experiment was done on the unprotected RNS-RSA design, when
the RNS bases are always fixed. One averaged EM trace (20 trials) has been
necessary for each chosen message for identifying the occurrence of collisions
using our EM platform. Figure 3(c) shows the result of a collision analysis on
the target RSA-RNS hardware implemented without countermeasures. Note the
amplitude of the differential trace is near to zero where redundant computations
are performed (depicted as ‘region of interest’).

To illustrate the effect of our countermeasures, Fig. 3(d) shows the differen-
tial traces when DA was applied to the RNS-RSA with randomization of RNS
bases. As expected, collisions cannot be detected visually when countermeasures
are activated despite the use of average mode of the oscilloscope (20 trials). To
demonstrate the efficiency of the DA and quantify the effects of our counter-
measures, we define a collision detection criterion by plotting the evolution of
the Signal-to-Noise Ratio (SNR) with the number of trials set for the averag-
ing. According to the DA, if the exponent presents consecutive zero bits at ei

210 G. Perin et al.

MM S S M S

(b)

(b)

Reference

Target

MM S S}
} S

S

M

M

Target

Reference

(a) (b)

0 10k 20k 30k 40k 50k 60k 70k

-0.01

0

0.02

0.03

-0.02

0.01

-0.03

0 10k 20k 30k 40k 50k 60k 70k

Samples

-0.01

0

0.02

0.03

-0.02

0.01

-0.03

(c (

(d)

Fig. 3. (a) Electromagnetic traces. (b) Electromagnetic traces alignment for collision
detecting. (c) Electromagnetic collision attack on RSA without protection and (d) with
RNS bases randomizations (LRA).

0 200 400 600 800 1000
30

40

50

60

70

80

90

1
0

Pn
oi

se

Ps
ig

na
l

(
)

0 200 400 600 800 1000

(a) (b)
SNR1

SNR2

100

14

15

16

17

18

19

20

21

SNR1 SNR2

Fig. 4. SNR vs number of averaged EM traces. (a) RSA without protection. (b) RSA
with RNS bases randomizations (LRA).

and ei−1, the EM traces EM(TS ,x,ei−1) and EM(TS ,x2,ei) represent redundant
squarings (collision). The SNR was computed according to:

SNR = 20.log10
Psignal

Pnoise
= 20.log10

σ2
(EM(TS ,x,ei−1))

σ2
(EM(TS ,x,ei−1)−EM(TS ,x2,ei))

(5)

where σ2
(EM(TS ,x,ei−1))

is the variance of samples over the time window TS cor-
responding to a squaring operation and σ2

(EM(TS ,x,ei−1)−EM(TS ,x2,ei))
is the vari-

ance of the differential trace samples over the time window TS . We defined SNR1
when EM(TS ,x,ei−1) = EM(TS ,x2,ei) (collision) and SNR2 when EM(TS ,x,ei−1)
⊃= EM(TS ,x2,ei) (no collision). As shown in Fig. 4a, if a collision occurs, SNR1
is significantly bigger than SNR2 because the denominator of Eq. 5 is almost 0
(suppression of the signal by the collision; only the noise remains) even with no
averaging.

As shown in Fig. 4(b), collisions cannot be detected when randomization of
RNS bases countermeasure is activated, even when averaging over 1000 times
the two signals.

Practical Analysis of RSA Countermeasures 211

4.2 CEMA

Correlation EM Analysis (CEMA) aims at revealing the secret key K manipu-
lated by a circuit by analyzing the correlation between its EM emanations and
guesses on the secret key. The most important the correlation is, the most likely
the guess is. To apply a CEMA on an RSA the adversary should have the pos-
sibility to randomly generate the input data x of the RSA implementation to
be attacked or to observe cipher texts. At the same time, he has to measure the
variations of the EM field Vem(t, x) at time t. This done, he enters in the CEMA
procedure that starts by choosing a selection function.

Key Guess and Selection Function: in our case, the adversary, knowing that
the considered algorithm is the Montgomery Powering Ladder, may generate
8-bits guesses on the secret key, starting by the MSB. In this way, he has a
manageable set of sub-key guesses. These sub-key guesses generated, the adver-
sary computes for each guess k, the corresponding variations of the power con-
sumption at a chosen time of the course of the algorithm, using the Hamming
Weight Model W (x, k). This time typically corresponds to the computation of
an intermediate value by the algorithm that depends on the sub-key. For any
RSA, these intermediate values could be the Montgomery multiplication results.
However, for RNS-RSA, the adversary must know the set of bases A and B. If
this is not the case, he has first to perform a long and tedious CEMA on the
forward conversion (radix to RNS conversion) to recover them. In this case, the
guesses on the selection function are the values of the RNS bases itself, instead
of the private key bits as used in the classic CEMA.

Assuming known these RNS bases, the latter may now predict the power
consumption variations (and therefore the EM field variations) with the manip-
ulated data x for each key guess k. As the Montgomery multiplication results are
obtained in parallel, he has to choose one RNS channel to compute the Hamming
weight. Assuming n is the register width, the selection function follows the linear
model d(x, k) = W (x, k)−n/2. This is done for each guess of the 8-bits sub-key.
The CEMA is expected to return an estimate k̂ of the key by identifying the
guess leading to the highest correlation value during the course of the algorithm.
The correlation is computed between d(x, k) and EM trace Vem(t, x) of single
measurements as function of time t:

c(t, k) =
∑

i(d(xi, k) − d(xi, k))(Vem(t, xi) − Vem(xi, t))
√∑

i(d(xi, k) − d(xi, k))2
√∑

i(Vem(t, xi) − Vem(t, xi))2
(6)

To illustrate the effect of the RSA countermeasures against CEMA, we evalu-
ated the relation between the number of EM traces and the peak margin observed
for the correct guess of the sub-key related to incorrect ones. Figure 5(a) shows
the evolution of the peak of the correlation index c(t, k) with the number of
EM traces when the architecture performs modular exponentiations with fixed
RNS moduli. It is possible to guess the correct hypothesis after the processing
of 500 EM traces when RSA presents no countermeasures. With the LRA coun-
termeasure and secured RAM accesses, the correlation curve associated to the

212 G. Perin et al.

secret key has still drowned among the other correlation curves even after the
processing of 10 k traces.

4.3 RAM Memory Randomization

The LRA countermeasure offers a high level of randomization for the internal
variables. Collisions and CEMA attacks are defeated because the Hamming
Weight of an internal variable can not be estimated to find the secret. Con-
sidering that an RSA hardware design is usually composed by arithmetic block
(ALU), control (CPU), bus and memories (RAM, ROM), one may find some
sources of leakages. The control and memories also performs executions depend-
ing on the exponent bits, mainly regarding the values of the memory addresses.
The RAM leakages, in the case of Montgomery Ladder, will be generated by
different addressing values for reading and writing multiplication or squaring
results. Then, simple EM analysis, template attacks [22] or attacks based on
a single execution (SE) of exponentiations [4,19,21], may explore the leak-
age caused by RAM addressing in the Montgomery Ladder and others SPA-
protected exponentiation algorithms. SE attacks on exponentiation are also a
threat against classical algorithmic countermeasures like message or exponent
blinding, however they depend on the quality of the measured traces. If the
SNR is very reduced, meaning that the trace contains a big amount of noise,
the probability of recovering leaking information from a single trace is quite
low. The analyses developed here illustrate the design vulnerabilities related to
RAM access when the hardware countermeasure by addressing randomization is
disregarded.

Initially, an adversary can do as follows: considering the exponentiation is
always performed with a fixed exponent. He sends random messages x to the
device and collects an averaged EM trace representing the multiplication when
the exponent bit is 1 [EM(TM , x, 1)] and another representing the multiplication
when the exponent bit is 0 [EM(TM , x, 0)]. The adversary may then obtains the
differential trace Ediff = EM(TM , x, 0) − EM(TM , x, 1) which may reveals the
leakages of control and RAM accesses, as illustrated in Fig. 6(a). The leakage
is indicated by higher amplitudes during the RAM reading (r) and writing (w)
executions. The procedure adopted by the adversary is:

0

0.2

0.4

0.6

0.8

1

0 2k 4k 6k 8k 10k

(b)

0 2k 4k 6k 8k 10k
0

0.2

0.4

0.6

0.8

1

(a)

Fig. 5. Correlation electromagnetic attack on hardware RSA-RNS without counter-
measures and (b) with LRA countermeasure with secured RAM accesses.

Practical Analysis of RSA Countermeasures 213

0 10k 20k 30k
-8

-4

0

4

8

Samples
0 10k 20k 30k

-8

-4

0

4

8

Samples
0 10k 20k 30k

-8

-4

0

4

8

Samples
0 10k 20k 30k

-8

-4

0

4

8

Samples

(a) (b) (c (d))

r w w w w

Fig. 6. (a),(c): EM(TM , x, 1) − EM(TM , x, 0). (b),(d): EM(TS , x, 1) − EM(TS , x, 0).

1. Consider EM(TE , x, e) the trace samples of a full modular exponentiation;
2. Consider {EM(TM , x, ei) } the set of all trace samples of size TM correspond-

ing to the multiplications at the exponent bits ei;
3. Set EM(TM , x, en−1) as the referential trace, where en−1 = 1 and compute

the differential traces Ediff = EM(TM , x, en−1) − EM(TM , x, en−1−i), for
i = 0 : n − 1.

4. Differential traces Ediff with higher amplitudes (higher variance) indicates
the subtraction EM(TM , x, 1) − EM(TM , x, 0).

The same procedure can be verified in Fig. 6(b) by subtracting the EM traces
of modular squarings when the RAM addressing is not randomized. Following the
notations of Algorithm 2, the amplitudes at the first samples of the differential
traces represent the multiplications s = x.y in the two RNS bases A and B and
RAM memory is accessed in order to read the values x and y. The modular mul-
tiplication results wA and wB must also be stored in the RAM and this activity
is indicated in the differential trace by higher amplitudes representing the RAM
writing. Figure 6(c) and (d) show the differential EM trace obtained after ran-
domizing the RAM addresses. As we can see, these leakages were suppressed.

Now, if the exponent is randomized (er = e + r.φ(N)), the attack processes
single traces. Template and SE attacks assumes that for each multiplication
EM(TM , x, 0) or EM(TM , x, 1) there is at least one sampled point in time
ti for which the amplitude of EM emanations follows a normal distribution
N(μM0, σM0) for EM(TM , x, 0) and N(μM1, σM1) for EM(TM , x, 1). In an
advantageous scenario, the point ti may be accurately the amplitude of the EM
emanation during the RAM access. To justify this model, we acquired 10000
EM traces from the RSA design mapped on the FPGA, when the private key is
known. Figure 7(a) shows the histogram of the amplitude (in mV) during a fixed
point where the architecture performs memory access by writing the multipli-
cation results in the RAM. The sample points ti during memory accesses follow
a normal distribution with different means μM0, μM1 and standard deviations
σM0, σM1. Yet, Fig. 7(b) illustrates the histogram during the fixed point ti where
the architecture performs a RAM writing execution after the squarings.

With RAM addressing randomization, the same points ti for EM(TM , x, 0)
and EM(TM , x, 1) present similar distributions, meaning the SNR is reduced
and SE attacks are more difficult now. Figure 7(c) and (d) show the normal
distribution for multiplication and squaring, respectively. Note the average and
standard deviation are very close even for different exponent bits.

214 G. Perin et al.

μS0

σS0

tr

μS1

σS1

-0.06 -0.04 -0.02 0 0.02
0

100

200

300

400

500

600

-0.04 -0.02 0 0.02 0.04 0.06
0

100

200

300

400

500

600

-0.1 -0.08 -0.06 -0.04 -0.02
0

100

200

300

400

500

600

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02
0

50

100

150

200

250

300

350

400

450

500

μM0

σM0

tr

μM1

σM1

μM0

σM0

tr

μM1

σM1

μS0

σS0

tr

μS1

σS1

M(e=0)i

M(e=1)i

S(e=0)i

S(e=1)i

M(e=0)i

M(e=1)i

S(e=0)i

S(e=1)i

(a) (b) (c) (d)

Fig. 7. Histogram and normal distribution of current measurements for (a)(b) non-
randomized RAM and (c)(d) randomized RAM addressing.

5 Conclusion

In this paper, a performance and robustness evaluation of an RSA cryptocore
implemented with RNS was proposed. We evaluated countermeasures at algo-
rithmic, arithmetic and hardware levels in order to provide protection against
side-channel analysis. The Montgomery Powering Ladder exponentiation is
adopted in order to protect against simple side-channel analysis. We show that
collision-based attacks remain efficient against an RSA-RNS. To defeat sophisti-
cated SPA and collision attacks, we implemented countermeasures at arithmetic
and hardware levels, by randomizing the RNS bases and the RAM memory
addresses, respectively. The time overhead due to countermeasures is about 1%.

References

1. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and PKC. Commun. ACM 21(2), 120–126 (1978)

2. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

3. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski Jr, B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

6. Fouque, P.-A., Valette, F.: The doubling attack – why upwards is better than down-
wards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 269–280. Springer, Heidelberg (2003)

7. Yen, S.-M., Lien, W.-C., Moon, S.-J., Ha, C.J.: Power analysis by exploiting chosen
message and internal collisions – vulnerability of checking mechanism for RSA-
decryption. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715,
pp. 183–195. Springer, Heidelberg (2005)

Practical Analysis of RSA Countermeasures 215

8. Homma, N., Miyamoto, A., Aoki, T., Satoh, A., Shamir, A.: Comparative power
analysis of modular exponentiation algorithms. IEEE Trans. Comput. 59(6),
795–807 (2010)

9. Bajard, J.-C., Imbert, L., Liardet, P.-Y., Teglia, Y.: Leak resistant arithmetic.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 62–75.
Springer, Heidelberg (2004)

10. Bajard, J.-C., Didier, L-S., Kornerup, P.: An RNS montgomery modular multipli-
cation algorithm. IEEE Trans. Comput. 47(7), 766–776, 62–75 (1998)

11. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast par-
allel montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 523–538. Springer, Heidelberg (2000)

12. Omondi, A., Prekumar, B.: Reside Number Systems: Theory and Implementation.
Imperial College Press, London (2007)

13. Gandino, F., Lamberti, F., Montuschi, P., Bajard, J.-C.: A general approach for
improving RNS montgomery exponentiation using pre-processing. In: ARITH20,
pp. 195–204. IEEE Computer Society (2011)

14. Posch, K., Posch, R.: Modulo reduction in residue number systems. IEEE Trans.
Parallel Distrib. Syst. 6(5), 449–454 (1995)

15. Bajard, J.-C., Meloni, N., Plantard, T.: Efficient RNS bases for cryptography.
In: Proceedings 17th IMACS World Congress, Scientific Computation, Applied
Mathematics and Simulation, pp. 113–119 (2005)

16. Guillermin, N.: A coprocessor for secure and high speed modular arithmetic. Cryp-
tology ePrint Archive, Report 2011/354 (2011)

17. Koc, K.: A fast algorithm for mixed-radix conversion in residue arithmetic. In:
IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pp. 18–21, 2–4 October 1989

18. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012)

19. Heyszl, J., Ibing, A., Mangard, S., Santis, F., Sigl, G.: Clustering algorithms for
non-profiled single-execution attacks on exponentiations. IACR Cryptology ePrint
Archive, vol. 2013, p. 438 (2013)

20. Perin, G., Torres, L., Benoit, P., Maurine, P.: Amplitude demodulation-based EM
analysis of different RSA implementations. In: DATE, pp. 1167–1172 (2012)

21. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

22. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr, B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

Side Channel and Fault Attacks -
Session Chair: Berndt Gammel

The Temperature Side Channel and Heating
Fault Attacks

Michael Hutter1(B) and Jörn-Marc Schmidt2

1 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

Michael.Hutter@iaik.tugraz.at
2 Secunet Security Networks AG,

Mergenthalerallee 77, 65760 Eschborn, Germany
joern-marc.schmidt@secunet.com

Abstract. In this paper, we present practical results of data leakages
of CMOS devices via the temperature side channel—a side channel that
has been widely cited in literature but not well characterized yet. We
investigate the leakage of processed data by passively measuring the dis-
sipated heat of the devices. The temperature leakage is thereby linearly
correlated with the power leakage model but is limited by the physical
properties of thermal conductivity and capacitance. We further present
heating faults by operating the devices beyond their specified tempera-
ture ratings. The efficiency of this kind of attack is shown by a practical
attack on an RSA implementation. Finally, we introduce data remanence
attacks on AVR microcontrollers that exploit the Negative Bias Temper-
ature Instability (NBTI) property of internal SRAM cells. We show how
to recover parts of the internal memory and present first results on an
ATmega162. The work encourages the awareness of temperature-based
attacks that are known for years now but not well described in literature.
It also serves as a starting point for further research investigations.

Keywords: Temperature · Side channels · Fault injection · Negative
Bias Temperature Instability · AVR · Smart cards

1 Introduction

It has been known since the late 1990s that implementations of cryptographic
algorithms leak information from different side channels. The first paper that
demonstrates the exploitation of a side channel was published by P. C. Kocher [24]
in 1996. He highlighted that implementations might provide timing charac-
teristics that leak information of private keys. Attacks are therefore able to
extract the keys by simply measuring the runtime of the implemented algo-
rithm. Three years later, he introduced the power-consumption side channel

J.-M. Schmidt – This work was done while the author was with Graz University of
Technology.

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 219–235, 2014.
DOI: 10.1007/978-3-319-08302-5 15, c© Springer International Publishing Switzerland 2014

220 M. Hutter and J.-M. Schmidt

together with B. Jun and J. Jaffe in [25]. They observed that key material can
be also extracted from the power consumption of cryptographic devices. Since
then, many researchers started to investigate the properties of these leakages
on different platforms and devices. They also proposed to exploit other power-
ful side channels like electromagnetic (EM) emanation [1,13,16,31]. Up to now,
the power and the EM side-channels have been widely established and used in
academia and industry precisely because of simplicity, low-cost, and efficiency
compared to other existing side channels.

Other lesser known and rather more exotic side channels (but not necessar-
ily less powerful) are, for example, acoustic or optical emissions. Acoustic side
channels have been first introduced by A. Shamir and E. Tromer [39] in 2004.
They extended their work recently in 2013 [17] and provided a wide range of
possible acoustic attacks, e.g., on GnuPG’s RSA implementation. Heat causes
mechanical stress which produces acoustic noise. This noise contains informa-
tion about the power usage of CPUs and thus information about the processed
data. A very related attack was also presented by D. Asonov and R. Agrawal [4]
who exploited the fact that PC keyboards emanate different sounds that can
be recognized at a distance. Improvements of the latter attack were reported by
L. Zhuan et al. [43] in 2009. Optical emissions, in contrast, were investigated
by J. Ferrigno and M. Hlaváĉ [15] as well as A. Schlösser et al. [35] who tar-
geted an AES implementation. S. Skorobogatov [38] used a low-cost CCD camera
to analyze the leakage of photons emitted from SRAM, EEPROM, and Flash
memories.

The temperature side-channel has been often cited in literature [6,8,10,11,22,
23,30,36,42]. However, most of the publications only mention the existence and
possibility to exploit this channel but without providing further investigations.
In particular, H. Bar-El stated in [6] that temperature attacks on smart cards
are “never documented in the open literature to the author’s knowledge”. The
only publication that pinpoints the existence of the temperature side-channel
is due to J. Brouchier et al. [10,11] from 2009. They showed that a cooling fan
can carry information about the processed data indirectly through the dissipated
temperature of a CPU. Within an experiment, they demonstrated how to extract
bits from a secret password or possible RSA key (by assuming a low-frequency
leak of the bits though, i.e., leaking a bit per three minutes). Furthermore, they
emphasized that IP cores integrated in FPGAs might leak information to other
IP cores in the system via the temperature side channel.

There are a few more papers on active temperature attacks, i.e., attacks that
actively tamper the environmental temperature of a device (cooling or heat-
ing). Most of them demonstrate the efficiency of low-temperature attacks, e.g.,
as reported by S. Skorobogatov [40] and D. Samyde et al. [34] in 2002. They
showed that by cooling down SRAM devices up to −50 ◦C, they were able to
freeze the data and to recover the content of the memory even after seconds
after power-down (by exploiting the data retention property of SRAM cells). The
same idea was used by T. Müller et al. [29] who presented a tool called FROST1.

1 FROST stands for Forensic Recovery of Scrambled Telephones.

The Temperature Side Channel and Heating Fault Attacks 221

The tool is able to recover the RAM content of modern Android smart phones
similar to cold boot attacks on PCs [21]. High-temperature attacks, in contrast,
have been investigated by J.-J. Quisquater and D. Samyde [32] who observed
memory errors after hours of extensive heating. Similar results have been reported
by S. Govindavajhala and A. Appel [19] who were able to induce errors into mem-
ories using a 50 W spotlight clip-on lamp. By heating an IBM JVM to 100 ◦C,
they were able to inject faults with a probability of 71.4 % before their machine
crashed.

In this paper, we describe a set of temperature-related attacks on common
AVR and PIC 8-bit microcontrollers. There are three main contributions listed
in the following:

1. We first characterize the “temperature side-channel” by presenting results of
data leakages of AVR and PIC microcontrollers. We investigate the leakages
and identify the linear relationship between heat radiation and circuit activity.
It shows that the analyzed devices leak the Hamming weight of the processed
data via the (low-frequency) temperature side channel.

2. We conduct high-temperature fault attacks on AVRs by operating the devices
beyond their specified temperature ratings (>150 ◦C). A practical attack is
shown on an RSA implementation where we successfully extracted the used
private key.

3. Finally, we exploit the physical property of data remanence attacks on AVRs.
By extensive heating, constant data like the private key gets burned in mem-
ory that can be recovered even after years. We identify permanent as well as
transient NBTI degradation components and were able to fully recover 65 %
of the entire memory of an ATmega162.

The rest of the paper is structured as follows. In Sect. 2, we characterize
the temperature leakage of AVR microcontrollers. Section 3 presents results of
heating fault attacks on RSA. In Sect. 4, we describe data remanence attacks. A
discussion of the results is given in Sect. 5.

2 Temperature Leakage Characterization

In this section, we aim to characterize the temperature side channel by analyz-
ing the leakage of an 8-bit ATmega162 AVR microcontroller [5]. This family of
microcontrollers is widely used in embedded systems such as industrial automa-
tion, control, or in smart cards, e.g., integrated in the Funcard, ATmega Card,
M2, KNOT, and Titanium programmable smart cards. First, we describe the
setup to measure the temperature dissipation of these devices. Afterwards, we
characterize the side channel in terms of its physical limits and possible exploita-
tion efficiency.

2.1 The Setup to Measure the Temperature

Our setup is very similar to setups that are used to perform power-analysis
attacks. Instead of measuring the power consumption of our target device, we

222 M. Hutter and J.-M. Schmidt

Digital-
storage

oscilloscope

Oscilloscope
control

Power
Supply

DC

PC

390

AD693
Amplifier

PT100

ATmega162

26V

Fig. 1. Schematic view of the used setup to exploit the temperature side channel.

measure the dissipating temperature using a PT100 sensor element. The PT100
is a very common thermometer applied in various industry products. It mea-
sures the resistance of a platinum element having a resistance of 100Ω at 0 ◦C.
Next to the PT100, we use an AD693 amplifier (voltage to current converter)
that provides a pre-calibrated Resistance Temperature Detector (RTD) interface
allowing accurate measurements in the temperature range of 0 to +104 ◦C. In
that configuration the output current span is 4 to 20 mA which was measured by
calculating the voltage drop over a 390Ω resistor in series to the power supply.
We used a standard 1 GHz digital oscilloscope for that purpose and connected
it to a PC that runs Matlab for controlling the measurement process. Figure 1
shows the schematic of the used setup.

In order to allow an accurate characterization of the temperature leakage,
we decided to decapsulate the chip from the rear side and to measure the tem-
perature dissipation directly on the surface of the silicon substrate. Figure 2
shows the decapsulated ATmega162 and the PT100 touching the rear side of
the chip die. The PT100 has been surrounded by a thermal-conductance paste
(4–10 W/(m K)) to allow a stable and accurate sensing of the temperature. Note
that for the targeted device we had to remove the copper plate which is located
below the chip die and the plastic package as similarly done by [36,41]. Subse-
quently, we polished the substrate but we did not apply any additional thinning
procedures. This can be simply done by using a skew driver.

In general, silicon substrate has a good thermal conductivity which is much
higher than the conductivity of the surrounding die package. So it is advan-
tageous to decapsulate the chip but this is not necessarily required. We also
performed the experiments without decapsulating the chip and measured the
temperature on the surface of the package (which corresponds to a non-invasive
attack). We observed that the leakage is slightly weaker but strong enough to
obtain similar results. Figure 3 shows a picture of the overall setup including
a controller board that is used to communicate with the ATmega162 over a
serial-communication interface.

2.2 Temperature Analysis

In order to characterize the leakage of our targeted device, we measured the
temperature dissipation of various processed intermediate bytes and used a long

The Temperature Side Channel and Heating Fault Attacks 223

Fig. 2. Rear-side decapsulation of an
ATmega162 to provide direct contact
to the silicon substrate for the PT100.

Fig. 3. Side-channel measurement
setup including controller board,
ATmega162, and temperature-sensing
circuit.

acquisition window to evaluate the impact of thermal conductivity and capac-
itance. As a target operation, we made use of a MOV instruction and moved all
possible values of one input byte (i.e., 256) to 24 internal registers (the remain-
ing 8 registers are used for loop indices and other temporary data). These MOV
instructions were executed in a loop where the loop index and execution dura-
tion had been configurable by the PC. The temperature dissipation was then
measured for a period of 20 s where in the first 10 s only zero values were moved
to the registers and in the last 10 s, the current input-byte value was written to
all registers2. For each input-byte value, we measured 100 traces and averaged
them to reduce noise. Figure 4 zooms into the acquisition window showing the
most interesting 10 s during the transient phase. It shows that in the first part of
the traces, the temperature is equal for all inputs (the temperature is decreasing
because of the fast acquisition runs and the higher temperature dissipation of
previously measured traces). At the point when the actual input byte is written,
the temperature increases depending on the Hamming weight of the processed
value.

Figure 5 shows the temperature dissipation of all input-byte values at the time
right before the end of the acquisition window, i.e., after about 18 s. It clearly
shows that the temperature corresponds to the Hamming weight of the processed
intermediate values ranging from 26.6 to about 26.8 ◦C. The temperature there-
fore linearly correlates with the power model of the device which was known
and characterized using power analysis. If the circuit activity is high (meaning
if there occur many bit transitions), the dissipated temperature increases. If the
circuit activity is low due to less or no bit transitions, the temperature decreases.
This, however, holds true not only for dynamic power consumption (caused by
charging and discharging capacitances) but also for static power consumption

2 We set all registers to zero before writing of new values to guarantee the transitions
of all bits (avoiding Hamming-distance leaks).

224 M. Hutter and J.-M. Schmidt

4 6 8 10 12
26.5

26.6

26.7

26.8

26.9

27

Time [s]

M
ea

n
te

m
pe

ra
tu

re
 [

°C
]

HW=0

HW=1

HW=2

HW=3

HW=4

HW=5

HW=6

HW=7

HW=8

Fig. 4. Slow temperature increase of all
Hamming weights that are processed
by the ATmega162.

0 50 100 150 200 250

26.66

26.68

26.7

26.72

26.74

26.76

26.78

26.8

26.82

Possible values of the intermediate byte

T
em

pe
ra

tu
re

 [
°C

]

Fig. 5. The ATmega162 leaks the
Hamming weight of all 256 possible
intermediate values through the tem-
perature.

(caused through sub-threshold and leakage current). Both components cause an
averaged DC increase in temperature.

From Fig. 4 it is also observable that the temperature increases and decreases
very slowly. While the circuit activity is constantly high or low, the temperature
increases or decreases by about 0.3 ◦C over a period of 10 s. This has its reason
in the following facts. First, the temperature variation is limited by the physical
property of thermal conductivity. The heat flow from the die (causing thermal
power) to the sensing element can be seen as an RC network including resistance
and capacitances for the junction (i.e., chip die), the package/case, heat sink,
and ambient air. This RC network has the typical property that it consists of
large (thermal) capacitances that causes the network to behave like a low-pass
filter. The cut-off frequency is thereby very low (typically between some Hz
and tens of kHz [2]). This means also that high frequency leakages (>1 MHz),
which usually appear in CMOS devices, will not be easily exploitable from that
side channel because the information will be largely filtered by the RC network.
The measured temperature signal at the sensor element therefore contains all
superimposed and integrated signal components of the power consumption. As
a second reason, the used temperature sensors have a certain response time and
acquisition resolution. In our experiment, we used a PT100 that has a thermal
response time of 100 ms and a resolution of 0.01 ◦C.

It shows that the temperature side-channel has a very low bandwidth limiting
practical attacks. In the following, we discuss possible attack scenarios for low-
frequency temperature leakages:

1. An attack exploiting the temperature side-channel is possible in case the
leakage of the data is present over a period of several milliseconds or seconds.
If an application repeatedly checks a password, for example in a loop, enough
information is available even in limited frequency bands that allows low-
bandwidth attacks [10,11].

2. Many RSA implementations involve operations that take a long time, e.g.,
modular exponentiations. These operations create signals in a low frequency

The Temperature Side Channel and Heating Fault Attacks 225

band that can be revealed by low-bandwidth acoustic attacks as recently
shown by D. Genkin, A. Shamir, and E. Tromer [17]. These low-bandwidth
signals can be also extracted from the temperature side channel.

3. A very powerful attack which is not well investigated yet is the exploita-
tion of static power-consumption leakages. Most of side-channel based analy-
ses are exploiting the dynamic power-consumption which is the main con-
tributor to the total power consumption of electronic devices. With shrink-
ing CMOS technology, static leakages become more significant. Temperature
attacks exploiting the static power-consumption benefit from less strict timing
constraints because the leakage is statically available over an infinite period
of time. A. Moradi recently demonstrated successful power-analysis attacks
exploiting the static leakage of FPGAs in [28]. Other works also characterized
and exploited static leakages of CMOS devices, for example, in [18,26].

3 Exploiting Heating Faults on AVRs

In this section, we intentionally operate a target device beyond its maximum
temperature ratings in order to produce exploitable faults due to extensive heat-
ing. Each electronic device specifies a certain temperature range where the cor-
rect operation is guaranteed by the manufacturer. If these limits are exceeded
by external influences, data might get modified that is stored in memories or
processed by the CPU. Faulty cryptographic operations can then be exploited
in attacks to reveal the secret key [6,7,23,36].

In the following experiments, we used the same ATmega162 as used in the
previous experiments. To prove the practicability of our attack, we implemented
RSA, induced heating faults, and successfully extracted the private key used
during encryption of data, cf. Bellcore attack [9].

Setup and RSA Implementation. We used a low-cost laboratory heating
plate from Schott instruments (SLK 1) to heat-up and induce faults in an
ATmega162. The microcontroller has been placed directly on top of the hot-plate
surface, lying top-side down to allow a good heat transfer. The temperature of
the internal IC has then been measured by calculating the mean of two PT100
sensors to be more accurate. One PT100 has been placed on the rear side of
the ATmega162, the other PT100 has been placed directly on the surface of the
heating plate. Both PT100 are connected to an oscilloscope similar to the setup
described in the previous section. Figure 6 shows the setup.

We connected and used only six mandatory pins of the ATmega162: power
supply (VCC and ground), serial communication (RX and TX), clock signal,
and reset. For these connections, we used exposed wires to avoid any contact to
the hot plate and the melting of solder3 during long-time heat exposure. As a
controlling device, we used an FPGA board (Spartan-3) that is connected with
the measurement PC.
3 The temperature melting point of Sn63/Pb37 lead solder, which is commonly used

for electrical soldering, is 456 K (183 ◦C).

226 M. Hutter and J.-M. Schmidt

Fig. 6. Heating plate with two PT100
sensors measuring the rear-side
and front-side temperature of an
ATmega162.

150 152 154 156 158 160
0

2

4

6

8

10

Temperature [°C]

Fr
eq

ue
nc

y
of

 f
au

lt
oc

cu
rr

en
ce

Fig. 7. Distribution of fault occurrence
between 150 and 160 ◦C. Mean fault-
induction temperature is 154.4 ◦C.

We decided to target an RSA implementation that implements the Chinese
Remainder Theorem (CRT). This attack is very simple and well documented in
literature [6,9,36]. Only one single fault during the computation can reveal the
secret RSA primes p and q. The attack and evaluation of faulty computations
has been performed using Sage [33]. A description of the attack is given in
AppendixA.1.

3.1 Heating-up the Target

The used heating plate provides ten heating stages that can be adjusted manually
going up to 1,000 K, i.e., about 727 ◦C. By manual adjustment, we were able to
heat up the device under test up to 150 ◦C within about 5 min.

In a first observation, we identified that the ATmega162 does not respond
to requests anymore if the heating temperature is higher than around 160 ◦C.
Note that this is much higher than the operating temperature maximum ratings
given in the device specification [5], i.e., between −55 ◦C and +125 ◦C and it is
approximately as high as the given maximum storage temperature rating of the
device which is 150 ◦C. As a key observation, we identified that the device starts
producing faults between a certain heating window of about 152 and 158 ◦C.
During this window, the probability is high that the device outputs an incorrect
result because of an induced fault during the computation of the implemented
algorithm.

In order to quantify this behavior, we performed several measurements on
that device taking about 70 min. We performed an RSA decryption operation
every 650 ms and kept the heating temperature between 150 and 160 ◦C by man-
ually adjusting the heating plate. As a result, we got 100 faults where 31 of this
set have been exploitable, i.e., the attack revealed one of the used prime moduli.
In the other cases, the fault was induced during I/O communication or other
parts of the computation such that the difference of the faulty and a correct
signature output was coprime to the RSA modulus and thus was not factoriz-
able. In addition to these outcomes, we identified that 16 out of the 31 faulty

The Temperature Side Channel and Heating Fault Attacks 227

computations, revealed the prime modulus p and 15 revealed the prime modulus
q. Hence, the probability that a fault reveals p or q is expected to be about
50 %—a result that was expected since both p and q have the nearly the same
size and the modular exponentiation with these primes take the same amount
of time and therefore provide the same fault-induction window. Furthermore,
23 out of the 31 faulty computations have been unique and different whereas 7
faults have been repeated, i.e., the RSA decryption yielded an output that was
already obtained in a previous measurement. For the latter case, we can there-
fore assume that either some internal memory locations or internal logic parts
are more sensitive to heating than others, thus causing the same RSA outputs.
Figure 7 shows the frequency of the induced faults. Most of the faults occurred
between 152 and 158 ◦C having a mean fault-induction temperature of about
154.4 ◦C.

We made the same experiment also using other ATmega162 devices (new
once) in order to verify our results. First, it showed that the mean fault-induction
temperature for each device is slightly different and varies per device. Second, it
showed that the number of faults is different per device (e.g., we got 182 faults
within 30 min for another device) which is likely because the temperature has to
be adjusted manually in our setup and varies per measurement. But the attack
succeeded for all devices within less than 30 min.

4 Data Remanence Attacks on AVRs

In this section, we characterize the property of data remanence effects of the
internal SRAM cells of an ATmega162. It is known that data which is stored in
the same location after each power-up of a device (such as a secret key that is
loaded from program memory/flash to RAM) leaves a permanent mark that can
be recovered as, for example, detailed by P. Gutmann in [20]. He observed that
data that is stored in SRAM or DRAM for a long period of time remembers the
value when powered-up again even after years. This effect has been practically
exploited in an attack by R. Anderson and M. Kuhn [3] who were able to recover
90–95 % of a DES master key used by an old bank security module from the late
1980s. C. Cakir et al. [12] have characterized the data remanence effect on newer
65 nm CMOS RAMs which was considered to be not that efficient because of the
newer SRAM structures. However, they were able to recover about 18 % of the
entire SRAM content (in fact, 82 % have been recovered correctly out of 22 %
predictable bits).

The SRAM data remanence effect can be explained as follows. SRAM cells
that are exposed to extensive heating are subject to accelerated aging where
internal transistor parameters get changed. This effect is known under Neg-
ative Bias Temperature Instability (NBTI) and has been first observed in the
late 1960s. Since then, many researchers identified that this effect decreases para-
meters such as speed, drive current, and noise margins. In fact, NBTI occurs
when transistors are stressed with negative gate voltages at elevated tempera-
tures, e.g., during burn-in stress. Then, the (absolute) threshold voltages of the

228 M. Hutter and J.-M. Schmidt

transistors increase which change the preferred power-up state of SRAM cells.
Thus, transistors get “weaker” and tend to a certain bit value after power-up.
Note that NBTI has been basically observed for both PMOS and NMOS tran-
sistors while PMOS transistors are more affected [37].

The study of M. Ershov et al. [14] showed that there exist two NBTI degrada-
tion components: one component that remains after burn-in stress (permanent
damage), and another component (transient damage) that recovers within a cer-
tain amount of time (seconds up to days). In the following, we identify these two
degradation components in practical experiments on the ATmega162. We used
the same setup as it was used in the previous section to heat up the device.

Before we started the experiments, we determined the preferred power-up
values of the ATmega162 in order to evaluate the effect of burn-in stress. A
small program was written that allows reading and writing of SRAM content
over the serial interface. A byte array of 6,144 bits (out of the available 8,192
bits) was used for testing. After we disconnected all I/O connections from the
device for some milliseconds4, which has been accomplished with our flexible
FPGA controller board, we read out the SRAM content. This has been done
100 times to average noise. It showed that 3,101 bits (50.47 %) are powered-
up to the value one and 3,043 bits (49.53 %) are set to zero on average, i.e.,
there was almost no bias in the distributions.

4.1 Permanent Data Remanence Effects After Burn-In Stress

We programmed the internal SRAM of the ATmega162 with normally distrib-
uted random data. We set 3,072 bits to 0 and 3,072 bits to 1 at random locations5.
A first test after a power-up reset showed that the probability of guessing the bits
correctly was around 50 % as expected. After this test, we exposed the device to
extensive burn-in stress to accelerate aging effects. The stress conditions were
a high ambient temperature of about 100 ◦C and an over-voltage supply of 5.5
Volts. We applied the stress over a period of 36 h and read out the power-up
SRAM content afterwards. The read out values are then compared with the
initial values.

It showed that the number of bits that are one or zero got biased due to
NBTI degradation. There were 3,210 bits (52.24 %) set to one and 2,934 bits
(47.75 %) set to zero after the burn-in stress. Furthermore, 919 bits of the total
memory changed their state (i.e., 15 %): 405 bits moved from 1 to 0 and 514 bits
moved from 0 to 1. From these 405 bits there were 393 bits that moved to the
correct value zero (97.04 %) and 489 from 514 bits moved to the correct value
one (95.14 %).

4 We disconnected not only the power supply but also the RS232 interface and the
clock signal to guarantee that the device (and SRAM respectively) is completely
unconnected and not powered by I/O interfaces. Note also that we used hardware
relays to actually disconnect all connections.

5 We do not assume the knowledge of “preferred power-up values” before burn-in
stress to guarantee a realistic attacking scenario.

The Temperature Side Channel and Heating Fault Attacks 229

0 5 10 15 20 25 30 35
45

50

55

60

65

70

Burn−in stress time [h]

Su
cc

es
s

ra
te

 [
%

]

Predicting a "1"

Predicting a "0"

Fig. 8. Probability of predicting a
SRAM bit correctly increases from
50 % to about 65% after burn-in stress.

0 100 200 300 400
20

30

40

50

60

70

80

Burn−in stress time [seconds]

B
it

va
lu

e
pr

ob
ab

ili
ty

 [
%

]

heating cooling

"1" values
"0" values

Fig. 9. Bit-value distribution during
heating and cooling (transient data
remanence effect).

Note that in our analysis, we were only able to identify half of the unstable
SRAM cells. This is because from the set of unstable SRAM cells, statistically
only half of the bits changed to the correct value while the other half already
held the correct value. So, in our experiment, we can assume about 30 % of
unstable SRAM cells and 70 % of cells that are stable, i.e., they did not change
at least during our burn-in stress of 36 h. Now, by guessing 50 % of all stable
cells correctly and by assuming a high probability of guessing all unstable bits
correctly, we are able to successfully predict 65 % of the entire SRAM memory.
This nicely corresponds to our practical results where we achieved a success
rate of about 63 %, i.e., 3,842 bits have been predicted correctly as shown in
Fig. 8. It shows that there is a huge increase during the first 20 h. After that, the
probability keeps nearly constant. We also performed a measurement one week
after the burn-in stress and identified no changes in the success rate.

4.2 Transient Data Remanence Effects During Burn-In Stress

We also characterized the transient data remanence effect during the burn-in
stress process. For this experiment, we used a new ATmega162 and read out
the SRAM content every 4 s while the device was heated up. Figure 9 shows the
bit-value distribution during the burn-in stress and right after it. In the first
115 s, the device is heated up to 170 ◦C. After that, the heating plate was turned
off to cool down the device. Between 105 and 125 s, the device was overheated
which produced a significant jump in the probability distribution.

The experiment showed that the effect of NBTI degradation of PMOS and
NMOS transistors in SRAM cells is also observable in the transient heating
phase. The heating temporarily enforces the transistors to change the state.
Note that this effect is only transient and the cells regenerate after cooling.
The number of zero values increases during heating while the number of ones
decreases accordingly. In our experiment, 820 bits changed their state to either
0 or 1. From these 820 bits, 257 bits were the same that also changed during

230 M. Hutter and J.-M. Schmidt

the long-term burn-in stress, i.e., we could identify 31.3 % of all bits that are
apparently unstable.

How to Exploit NBTI Degradation? Many implementations of crypto-
graphic algorithms store the secret key in non-volatile memory and load it into
SRAM when needed. This key is then loaded always at the same memory loca-
tion in SRAM because the program code or hardware implementation is usually
given and not changeable. Hence, the key value gets “burned” into SRAM within
a period of time, e.g., some weeks or months. The key can then be extracted by
the following data-remanence attacks:

1. If an attacker is in possession of several implementations that store the same
secret key, the attacker can recover parts of the internal SRAM of each imple-
mentation and can then average the obtained results to reveal all bits of the
memory with high probability. This attack assumes that each implementation
reveals the content of different SRAM cells.

2. If an attacker is in possession of only one implementation (or several imple-
mentations using different keys), he/she can first apply a burn-in stress test
over several hours in order to artificially accelerate aging. As a second step,
he/she can read out the preferred SRAM content. In order to identify useful
bits, the attacker can mount a transient remanence attack to reveal unstable
SRAM cells which potentially changed their state during the burn-in stress
and which contain useful information about the secret key. All other cells are
then considered as stable in this attack and provide no useful information.
Finally, all recovered bits are used in partial-key recovery attacks.

5 Discussion and Further Research Suggestions

In the following, we discuss further research questions arisen by this work:

– The presented attacks have been performed on microcontrollers that were fab-
ricated in rather old process technologies. Further research has to be done to
evaluate the impact of thermal attacks on ICs with newer CMOS technologies.

– The temperature side channel provides a low-bandwidth characteristic. High-
frequency leakages (e.g., containing data-dependent signals in the MHz or even
GHz scale) can therefore not be directly exploited due to the low-pass filter
characteristics. However, there exist implementations that use long operations
like exponentiations in RSA that can create low-frequency signatures that are
however exploitable (as demonstrated in [17,39] using acoustic signals in the
kHz range).

– In order to validate our measurement setup, we also performed the measure-
ments using a 0Ω resistor instead of a PT100 element. This is done because
it naturally raises the question if the measured data really corresponds to the
dissipated temperature or if it is caused by other side-channel sources, e.g.,
EM modulated signals. Using the resistor, however, we were not able to iden-
tify any data-dependent signals so that we can exclude any signal interferences
or the coupling of EM signals.

The Temperature Side Channel and Heating Fault Attacks 231

– We also characterized the temperature leakage of an 8-bit PIC16F84 microcon-
troller from Microchip Technology. We obtained similar results and could iden-
tify temperature-dependent processing of data. Details are given in Appen-
dix A.2.

– Heat penetrates through different materials. Thus, the thermal conductivity of
CMOS devices might be exploited in attacks where the heat conducts through
EM shielding countermeasures (metal plates, mesh of power lines, sensors,
etc.).

– How does the temperature affect power-analysis attacks? This question has
been answered by A. Vijaykumar [42] in her master’s thesis. She evaluated
temperature variation effects on Differential Power Analysis (DPA) attacks.
By targeting KeeLoq and DES, she showed that the efficiency of DPA decreases
with increased temperature due to decreasing power variances.

– By heating or cooling CMOS devices, the characteristics not only of memory
but also of logic changes. Thermal attacks might even be used to circumvent
countermeasure implementations, e.g., by increasing/decreasing the threshold
voltages of watchdog implementations.

– The suitability of temperature attacks that indirectly exploit the leakage of
static power consumption has to be investigated in future. Static power con-
sumption is becoming more and more important as CMOS technology is
shrinking. A static leak of an intermediate value of a cryptographic imple-
mentation creates a DC offset signal in the baseband that can be exploited in
attacks that are provided with very low-bandwidth leakages from side channels
such as the temperature or acoustic sound.

Acknowledgements. The work has been supported by the European Commission
through the ICT program under contract ICT-SEC-2009-5-258754 (Tamper Resistant
Sensor Node - TAMPRES), by the Austrian Science Fund (FWF) under the grant
number TRP251-N23 (Realizing a Secure Internet of Things - ReSIT), and the Euro-
pean Cooperation in Science and Technology (COST) Action IC1204 (Trustworthy
Manufacturing and Utilization of Secure Devices - TRUDEVICE).

A Appendix

A.1 Attacking CRT-RSA Using Faults

In the following, we consider an implementation of an RSA decryption that uses
the Chinese Remainder Theorem (CRT) to speed up the computation. In our
scenario, an adversary is able to supply the card with an input that is encrypted
using textbook RSA and receives the decrypted message from the card. Further,
the adversary is able to disturb the computation of this decryption and receives
the result of this faulted computation. In order to describe how an adversary can
benefit from this scenario to factor the modulus and thus compute the secret
decryption key, we denote n = pq an RSA modulus, where p and q are two
large prime numbers. Let d be the private key and e = d−1 mod ϕ(n) the
corresponding public exponent. Furthermore, z = CRT (x, y) denotes the CRT

232 M. Hutter and J.-M. Schmidt

recombination of the value z ∈ Zn from values x, y of the subgroups Zp and Zq

where
CRT (x, y) = xcp + ycq mod n

with cp = q (q−1 mod p) and cq = p (p−1 mod q) [27].
The usage of the CRT in this scenario allows computing two exponentiations

in smaller sub-groups compared to a single exponentiations modulo n:

S ≡ CRT ((md mod p), (md mod q)) mod n.

The first fault attack that takes advantage of injecting a random fault Δ in this
scenario was presented by Boneh et al. [9]. The fault Δ causes the device to
output a value S̃ instead of S:

S̃ ≡ CRT ((m mod p)d, (m mod q)d + Δ) mod n

≡ md + Δp (p−1 mod q) mod n.

If an adversary gets hold of both a faulty S̃ and a correct signature S, the
modulus n can be easily factorized by calculating p = gcd(S̃ − S, n).

A.2 Temperature Leakage of a PIC16F84

We also investigated the leakage of a PIC16F84 microcontroller. We used the
same measurement setup as described in Sect. 2 and measured the temperature
on the decapsulated rear-side of the chip using a PT100 element. Instead of a
MOV operation, we target an ADD instruction that adds either 0x00 or 0xFF to
all internal registers that are previously initialized with zero. We measured 500
traces and averaged them to reduce noise.

Figure 10 shows the result where a zero value was written continuously over a
period of 10 s. The value 0xFF is written afterwards for another 10 s. It shows an
increase of temperature in the second half of the acquisition window. No leakage
occurs in the first half of the trace. In Fig. 11, the result is shown when 0xFF is

0 5 10 15 20
25.6

25.62

25.64

25.66

25.68

25.7

Time [s]

M
ea

n
te

m
pe

ra
tu

re
 [

C
°]

Fig. 10. Leakage of 0xFF in the sec-
ond half of the acquisition window. No
leakage during the first 10 s.

0 5 10 15 20
25.6

25.62

25.64

25.66

25.68

25.7

Time [s]

M
ea

n
te

m
pe

ra
tu

re
 [

C
°]

Fig. 11. Leakage of 0xFF in the
first half of the acquisition window.
The mean temperature decreases after-
wards.

The Temperature Side Channel and Heating Fault Attacks 233

written during the first 10 s, and zero is written afterwards. There, it shows that
the temperature slowly increases, similarly to the second half of Fig. 10. After
10 s, the temperature is decreasing again.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski Jr, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

2. Altet, J., Rubio, A., Schaub, E., Dilhaire, S., Claeys, W.: Thermal coupling in
integrated circuits: application to thermal testing. IEEE J. Solid-State Circ. 36(1),
81–91 (2001)

3. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Christianson, B., Lomas, M., Crispo, B., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998)

4. Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE Symposium on
Security and Privacy, pp. 3–11 (2004)

5. Atmel Corporation.: ATmega 162/v Datasheet (2003)
6. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s

apprentice guide to fault attacks. Cryptology ePrint Archive. Report 2004/100
(2004). http://eprint.iacr.org/

7. Barenghi, A., Bertoni, G., Parrinello, E., Pelosi, G.: Low voltage fault attacks
on the RSA cryptosystem. In: Workshop on Fault Diagnosis and Tolerance in
Cryptography - FDTC 2009, pp. 23–31, Lausanne, Switzerland, 2009. Proceedings
(2009)

8. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT
1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

10. Brouchier, J., Dabbous, N., Kean, T., Marsh, C., Naccache, D.: Thermocommuni-
cation. ePrint (2009)

11. Brouchier, J., Kean, T., Marsh, C., Naccache, D.: Temperature attacks. IEEE
Secur. Priv. 7(2), 79–82 (2009)

12. Cakir, C., Bhargava, M., Mai, K.: 6 T SRAM and 3 T DRAM data retention and
remanence characterization in 65 nm bulk CMOS. In: Custom Integrated Circuits
Conference - CICC 2012, pp. 1–4, San Jose, USA, 9–12 Sept 2012

13. Carluccio, D., Lemke, K., Paar, C.: Electromagnetic side channel analysis of a
contactless smart card: first results. In: Oswald, E. (ed.) Workshop on RFID and
Lightweight Crypto (RFIDSec05), pp. 44–51, Graz, Austria, 13–15 July 2005

14. Ershov, M., Saxena, S., Karbasi, H., Winters, S., Minehane, S., Babcock, J., Lind-
ley, R., Clifton, P., Redford, M., Shibkov, A.: Dynamic recovery of negative bias
temperature instability in p-type metal-oxide-semiconductor field-effect transis-
tors. Appl. Phys. Lett. 83(8), 1647–1649 (2003)

15. Ferrigno, J., Hlaváĉ, M.: When AES blinks: introducing optical side channel. IET
Inf. Secur. 2(3), 94–98 (2008)

16. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

http://eprint.iacr.org/

234 M. Hutter and J.-M. Schmidt

17. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. ePrint, Dec 2013

18. Giogetti, J., Scotti, G., Simonetti, A., Trifiletti, A.: Analysis of data dependence
of leakage current in CMOS cryptographic hardware. In: Proceedings of the 17th
ACM Great Lakes Symposium on VLSI, pp. 78–83, Stresa-Lago Maggiore, Italy.
ACM, 11–13 Mar 2007

19. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: Proceedings of the 2003 IEEE Symposium on Security and Privacy, pp. 154–165
(2003)

20. Gutmann, P.: Data remanence in semiconductor devices. In : USENIX 2001 -
Proceedings of the 10th Conference on USENIX Security Symposium, Washington,
DC, USA, Berkeley, CA, USA, 2001. USENIX Association, 13–17 Aug 2001

21. Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot
attacks on encryption keys. In: 17th USENIX Security Symposium, pp. 45–60, San
Jose, CA, July 2008

22. Hutter, M., Schmidt, J.-M., Plos, T.: RFID and its vulnerability to faults. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 363–379. Springer,
Heidelberg (2008)

23. Karaklaj́ıc, D., Schmidt, J.-M., Verbauwhede, I.: Hardware designers guide to fault
attacks. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
pp. 1–12 (2012)

24. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

25. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

26. Lin, L., Burleson, W.: Leakage-based differential power analysis (LDPA) on sub-
90 nm CMOS cryptosystems. In: ISCAS 2008 - IEEE International Symposium on
Circuits and Systems, pp. 252–255, Seattle, USA, 18–21 May 2008

27. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. Series on Discrete Mathematics and Its Applications. CRC Press, Boca
Raton (1997). ISBN 0-8493-8523-7. http://www.cacr.math.uwaterloo.ca/hac/

28. Moradi, A.: Side-channel leakage through static power - should we care about in
practice? ePrint, Jan 2014

29. Müller, T., Spreitzenbarth, M.: FROST. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 373–388. Springer,
Heidelberg (2013)

30. Otto, M.: Fault attacks and countermeasures. Ph.D. thesis, Universität Paderborn
(2005)

31. Quisquater, J.-J., Samyde, D.: A new tool for non-intrusive analysis of smart cards
based on electro-magnetic emissions, the SEMA and DEMA methods. Presented
at the rump session of EUROCRYPT 2000 (2000)

32. Quisquater, J.-J., Samyde, D.: Eddy current for magnetic analysis with active sen-
sor. In: Proceedings of the 3rd International Conference on Research in SmartCards
(E-Smart’02), pp. 185–194, Nice, France. UCL, Sept 2002

33. SageMath.: Sage: open source mathematics software system (2013). http://
sagemath.org

34. Samyde, D., Skorobogatov, S.P., Anderson, R.J., Quisquater, J.-J.: On a new way
to read data from memory. In: IEEE Security in Storage Workshop (SISW02), pp.
65–69. IEEE Computer Society (2002)

http://www.cacr.math.uwaterloo.ca/hac/
http://sagemath.org
http://sagemath.org

The Temperature Side Channel and Heating Fault Attacks 235

35. Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Simple photonic
emission analysis of AES. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 41–57. Springer, Heidelberg (2012)

36. Schmidt, J.-M., Hutter, M.: Optical and EM fault-attacks on CRT-based RSA:
concrete results. In: Posch, K.C., Wolkerstorfer, J. (eds.) Proceedings of Austrochip
2007, pp. 61–67, Graz, Austria. Verlag der Technischen Universität Graz, 11 Oct
2007. ISBN 978-3-902465-87-0

37. Schroder, D.K.: Negative bias temperature instability: what do we understand? J.
Microelectr. Reliab. 47(6), 841–852 (2006)

38. Skorobogatov, S.: Using optical emission analysis for estimating contribution to
power consumption. In: Fault Diagnosis and Tolerance in Cryptography (FDTC)
(2009)

39. Shamir, A., Tromer, E.: Acoustic cryptanalysis - on nosy people and
noisy machines. http://www.wisdom.weizmann.ac.il/∼tromer/acoustic/. Prelimi-
nary proof-of-concept presentation

40. Skorobogatov, S.: Low temperature data remanence in static RAM. Technical
report, University of Cambridge Computer Laboratory, June 2002

41. Skorobogatov, S.P.: Semi-invasive attacks - a new approach to hardware security
analysis. Ph.D. thesis, University of Cambridge - Computer Laboratory (2005).
http://www.cl.cam.ac.uk/TechReports/

42. Vijaykumar, A.: DPA resistance of cryptographic circuits considering temperature
and process variations. Master’s thesis, University of Cincinnati, Engineering and
Applied Science: Computer Engineering, July 2012

43. Zhuang, L., Zhou, F., Tyga, J.D.: Keyboard acoustic emanations revisited. ACM
Trans. Inf. Syst. Secur. 13(1), 373–382 (2009)

http://www.wisdom.weizmann.ac.il/~tromer/acoustic/
http://www.cl.cam.ac.uk/TechReports/

Glitch It If You Can: Parameter Search
Strategies for Successful Fault Injection

Rafael Boix Carpi1(B), Stjepan Picek2,3, Lejla Batina2, Federico Menarini1,
Domagoj Jakobovic3, and Marin Golub3

1 Riscure BV, Delft, The Netherlands
{BoixCarpi,Menarini}@riscure.com

2 Radboud University Nijmegen, Nijmegen, The Netherlands
{s.picek,lejla}@cs.ru.nl

3 Faculty of Electrical Engineering and Computing, Zagreb, Croatia
{domagoj.jakobovic,marin.golub}@fer.hr

Abstract. Fault analysis poses a serious threat to embedded security
devices, especially smart cards. In particular, modeling faults and find-
ing effective practical approaches that are also generic is considered to
be of interest for smart card industry. In this work we propose a novel
methodology to deal with a difficult question of choosing multiple para-
meters required for effective faults. To this aim, we investigate several
algorithms and find a new promising direction using evolutionary compu-
tation. Our experimental results on some of the smart cards used today
show the potential of this new approach. Our best algorithm is a tailored
search strategy especially developed for the purpose of finding the best
choice of parameters for glitching. With this approach we found some of
off-the-shelf devices, although secured against this type of attacks, still
vulnerable.

Keywords: Fault analysis · Glitches · Smart cards · Self-adaptive algo-
rithms · Evolutionary computation

1 Introduction

Since smart cards are around in our lives for the past three decades, and becoming
ever more pervasive, it seems impossible that we ever lived without them. Yet, at
the same time the threats to the security of those small devices are multiple and
cheap and at the same time effective countermeasures against various attacks
belong to the most extensively researched topics today.

In 1996 Anderson and Kuhn [1] discussed the tamper-resistance of smart
cards, and in 1999 Kömmerling and Kuhn presented a set of techniques for tam-
pering with them [2]. It became evident that the possibilities for the adversary
are numerous. In general, the techniques for tampering can be classified as passive
or active. In passive techniques some side-channel information is monitored and
there is no interference with the normal processing of the card. An example of

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 236–252, 2014.
DOI: 10.1007/978-3-319-08302-5 16, c© Springer International Publishing Switzerland 2014

Glitch It If You Can: Parameter Search Strategies 237

these passive techniques is the analysis of power consumption, as introduced by
Kocher et al. [3] or electromagnetic radiation [4]. In the case of active techniques,
the device is not only monitored but also external interferences affect the normal
behavior of the device. An example is Fault Injection (FI) and these interfer-
ences, the so-called glitches, can be of different nature: optical (laser pulses) and
electrical glitches (voltage, clock), temperature changes, electromagnetic (EM)
radiation, etc. are used to cause some malfunctioning, resulting in some cases
in secret key recovery. Fault injection techniques by glitching are typically non-
invasive techniques, in the sense that the smart card is not physically modified
(versus other invasive techniques that require hardware modifications).

A fault injection attack is considered to be successful if after exposing the
device under attack to a specially crafted external interference, the device shows
an unexpected behavior, which can be exploited by an attacker (e.g. leaking
of sensitive information, bypassing security checks, etc.). However, this exter-
nal interference has to be precisely tuned for the fault injection to succeed. As
an example, a complete characterization of a clock signal glitch requires from
the security analyst to define more than 10 parameters (related to clock sig-
nal voltage levels, time offset of the glitch, etc.). In addition, hardware designers
introduce countermeasures in their devices for preventing fault injection attacks.
Hence, finding the correct parameter setting is a highly non-deterministic process,
and countermeasures just add up to this non-determinism. As a consequence,
security analysts usually set a value range for each parameter, and leave their
fault injection setup experimenting over thousands of different parameter con-
figurations within those given ranges to be analyzed off-line afterwards.

Finding the correct parameters for a successful FI can be considered as a
search problem where one aims to find, within minimum time, the parameter
configuration or ranges of parameter values which result in a successful fault
injection. The search space, considering all possible combinations of the values
of interest for the fault injection such as voltage, timing, offset, etc., is too large
to perform an exhaustive search. For example, there are in total 8 parameters to
be set for voltage (VCC) glitching even without considering multiple glitches. As
a simple example, testing only 6 values yields 68 = 1676916 parameter combina-
tions! This is unfeasible to test in a reasonable amount of time as it would take
over 19 days assuming a quite fast rate of one measurement per second. Here,
by a measurement we mean a complete execution of the algorithm of interests
on the device including the final response (which can have several different out-
comes such as reset, stop, etc.) Considering this problem within the tasks of a
security analyst, which often has a very limited or no knowledge about the inner
design of the device (blackbox testing), setting an accurate range for the para-
meters can be quite challenging, and a bad estimation of these ranges leads to
spending a lot of time in testing parameter combinations that could have been
easily discarded upfront.

Due to all these issues and the unfeasibility of performing an exhaustive
search due to the time constraints, there is a clear need for a methodology
for parameters search that can ultimately lead to a more effective security

238 R.B. Carpi et al.

evaluation. In this work we present several possibilities for finding and tuning
the parameters keeping the assumptions on the device under attack as generic as
possible. We show several effective approaches that were tested on off-the-shelf
devices with different successes. We develop a search strategy that is especially
tailored towards a large class of devices of today using common assumptions and
defining a new model. Our best algorithm is proven to be efficient against some
state-of-the-art protected (against glitching) devices. Furthermore, a new direc-
tion based on generic algorithms is also investigated and found suitable when
less is known about the device under attack.

1.1 Related Work

The concept of fault analysis-based attacks is known in the research community
for around twenty years. Boneh, DeMillo and Lipton published an attack on RSA
about exploiting hardware faults for cryptanalysis [5,6]. The attack described,
often also called the Bellcore attack, resulted in numerous contributions in, not
just theoretical papers on attacks and countermeasures assuming that faults can
be applied, but also in more practical works showing what is really possible in
terms of inducing faults. However, the first type of papers are more common,
mainly due to the lack of proper equipment at academia. All together, there are
only a few works that address the practical issues that arise while applying these
techniques.

Kömmerling and Kuhn [2], published a paper in 1999, which is considered
to be the milestone in the context of security evaluation against fault attacks.
In this work the authors present an extensive collection of techniques for fault
injection and other tampering techniques and give hints on how to mitigate
some of them. The paper highlights the case of VCC fault injection (referred to
as glitch attacks) and emphasizes those as the ones most useful in practice.

Aumüller et al. published in 2002 one of the first practical works on fault
analysis [7], in which they describe a real-life scenario of the impact of injecting
glitches in the VCC and clock lines of an IC. They also suggest some coun-
termeasures applicable in this specific case. Approximately at the same time,
Skorobogatov and Anderson introduced optical (laser) fault injection [8], where
they describe injecting faults with a laser on a decapsulated IC. This technique
is still very successful nowadays for defeating the security of many protected
devices, but it is out of scope for this work.

Recent paper from van Woudenberg et al. [9], describes a real attack sce-
nario for an Optical Fault Injection attack. The practical problem of setting
the parameters for fault injection is introduced in their work and the authors
briefly discuss the lack of methodology to solve it as the main direction they
rely on is based on heuristics. In addition, the paper gives a nice overview of
all the practical issues that arise during a real execution of the FI attacks on
actual hardware. Similarly, the work of Balasch et al. [10] explores the effects
of glitches injected in the clock line of an IC. This work is very interesting for
identifying various effects that a glitch can cause on real hardware in terms of

Glitch It If You Can: Parameter Search Strategies 239

defining all possible outcomes of a successful fault injection. However, it has to
be noted that current smart cards usually run on an internal clock which makes
this FI technique unfeasible.

All together, our paper continues this line of research focusing on more prac-
tical problems with fault injection but it is also unique. Namely, we first focus
on the problem of finding the right set of parameters in order to optimize the
glitching effects that can be explored by the adversary. Second, we derive new
theoretical framework for this multi-parameters search and apply it on some
actual off-the-shelf smart cards. While doing this, we evaluate several search
strategies, one of which is using ideas from evolutionary computation. Our con-
tributions are specified more precisely below.

1.2 Our Contribution

Here we summarize the contributions of this work:

– We propose a new methodology to handle the difficult problem of finding the
right sets of parameters for glitching. Our methodology is based on a model
that is suitable for smart cards of today. Namely, we distinguish between two
phases for glitching, one focusing on voltage parameters and the other one on
proper timing.

– After experimenting with several approaches, we develop a new search strategy
that is time-effective and breaks some off-the-shelf devices.

– We advocate a new direction for this problem building on our first results
from the approach based on genetic algorithms.

The remainder of this paper is organized as follows: in Sect. 2 we give the
problem statement and the model we use for the experiments, in Sect. 3 we
present several search strategies and their results. Finally, in Sect. 4 we conclude
the paper and give some suggestions for future work.

2 Problem Statement

The goal is to find a search strategy for VCC FI parameters that lead to a suc-
cessful fault injection. Input of the search consists of the parameters required by
the search strategy to proceed, and an estimated initial range for every para-
meter. Search space is a set of all the possible combinations of values for every
parameter required to define the VCC FI attack. Parameters that can have real
values are considered as discrete-valued parameters sampled with the maximum
resolution of the acquisition hardware devices, and all value ranges are bounded.
The goal of the search is to get the maximum information about the behaviour of
a device with the minimum number of measurements given a black-box scenario.
Also, the goal is to find parameters that define a successful VCC FI attack in the
case that device is vulnerable to fault attacks caused by glitching. As an output
of the search, a report of the behavior of device is generated. Additionally, an
output can include a parameter combination or a set of parameter combinations

240 R.B. Carpi et al.

that lead to a successful VCC FI attack. Also, a parameter combination or a
set of parameter combinations that trigger unexpected behavior of device can
be also included although they do not lead to a successful VCC FI attack.

2.1 Model

We divide the search into two phases: in the first phase we look for the appro-
priate glitch shape (containing all the parameters that define the signal) and
in the second phase we look for the timing instant in which we have to inject
the fault. The motivation for the parameter split into two stages is obtaining a
reduction in the dimensionality (thus, complexity) of the problem. The feasibility
of this parameter splitting was experimentally tested to be possible and useful:
all TOEs covered by this research (and also TOEs outside the scope of this
research) showed a similar behavior w.r.t. glitch shape-related parameters. The
second stage search consists of a time sweep with glitch shapes (glitch length,
glitch voltage) output by the first stage search. The time range defined in the
initial search space is discretized in n time instants1. In each time instant, a
subset of the glitch shapes output by the first stage is tested. The verdicts of all
measurements are reported as the final output of the parameter search. In this
paper we give sufficient details for the first search phase only. For the second
phase one should proceed similarly.

Two parameters of interest for the first phase are glitch voltage and glitch
length. A verdict represents the class that, based on a response from the device, a
glitch has been classified to. The assumptions that allow predicting the possible
verdict of a measurement given the glitch voltage and the glitch length are as
follows:

1. There exists an upper bound for the glitch voltage, VLOW2, and if the glitch
voltage is set to this value or higher, device will just ignore the glitch (it will
interpret it as signal noise), and a NORMAL verdict will be obtained.

2. There exists a lower bound for the glitch voltage, VHIGH (see footnote 2),
and if the glitch voltage is set to this value or lower, device interprets the
glitch as a power cut or as an attempt to tamper with it, and a RESET or
MUTE verdict will be obtained.

1 In the time dimension, the response of the TOE could be different each time instant.
However, due to the presence of internal unstable clocks in TOEs Target B and
Target C, the glitch offset has been omitted in the search. The clock jitter causes
a FI time instant spread bigger than the accuracy we can obtain with the testing
equipment by setting a precise glitch offset in time (2 ns). Additionally, the model
assumes a stable operation of the TOE, and not a drastically changing power profile
over time (e.g. TOE booting) for the validity of glitch shape-related parameters in
the 2nd stage of the search.

2 Note that small glitches that are to be ignored have a length close to LLOW and
voltage close to VLOW, but the glitch voltage is typically a negative value, hence
the counter-intuitive naming convention for voltage boundaries.

Glitch It If You Can: Parameter Search Strategies 241

3. There exists a lower bound for the glitch length, LLOW, and if the glitch
length is set to this value or lower, device will just ignore the glitch, and a
NORMAL verdict will be obtained.

4. There exists an upper bound for the glitch length, LHIGH, and if the glitch
length is set to this value or higher, device interprets the glitch as a power
failure or as an attempt to tamper with it, and a RESET or MUTE verdict
will be obtained.

5. If the glitch voltage and the glitch length take values in the ranges of (VLOW,
VHIGH) and (LLOW, LHIGH) respectively, the response of device depends
also on the rest of the parameters of the glitch (both from the glitch shape
and the glitch timing).

The explanations for the possible verdict classes are given below.
Verdict from the class NORMAL will be obtained if the device response

was expected, verdicts RESET and MUTE are derived if the device responds
accordingly while performing a measurement. If the device is vulnerable to FI,
the verdicts from the class INTERESTING can be found. It points to the area
defined by the decision boundary between the plane regions corresponding to the
NORMAL and RESET/MUTE regions plus some threshold distance. If these
two regions overlap, the class INTERESTING is to be found in the intersection
of these two plane regions. (We assume here a two-dimensional space with only
the glitch length and glitch voltage parameters.) The verdict CHANGING is
found in the same area as the INTERESTING verdict. This verdict class is
assigned when two measurements with the same parameter configuration for the
glitch shape yield different verdicts. The verdict SUCCESSFUL is to be found
inside the (glitch voltage, glitch length) area which produces the INTERESTING
verdicts where can be more than one combination of parameters that yields a
SUCCESSFUL verdict.

3 Experiments and Discussion

In this section we present different search strategies and their experimental
results on several smart cards. First we give additional information about search
space settings followed by the experiments. Afterwards, we present a comparison
among different search strategies in terms of their effectiveness.

3.1 Search Space Settings and Experiment Definition

The initial search space parameters are given in Table 1.
The experiments are performed as follows:

For each tested device, several runs of each strategy for the first stage of the
search are executed. Besides the common parameters already mentioned in
Table 1, we also use the following algorithms:

242 R.B. Carpi et al.

Table 1. Search space parameters

Parameter name Parameter value

Glitch voltage [−5,−0.05] V
Glitch length [2, 150] ns
VCC voltage VCC 5 V
CLK high voltage 5 V
CLK low voltage 0 V
CLK signal frequency 1 MHz
Number of glitches Random value from [1, 10]a

aThe number of glitches was chosen as a random value
due to not observing any statistically significant change
in the TOE response w.r.t. this parameter within the
given range

– MonteCarlo search (baseline): 2048 measurements
– FastBoxing: 2 iterations (maxIter = 2), 4·4·64 = 1024 measurements per iter-

ation (n = 4, numMeas = 64), 10 000 maximum iterations
(maxIter = 10 000)

– Adaptive zoom&bound: 10 000 maximum iterations (maxIter = 10 000), 4 · 4
grid (n = 4), 1 and 3 measurements per iteration (numMeas = 1,
numMeas = 3)

– Genetic Algorithm: maximum number of generations = 20, population
size = 30, maximum number of consecutive generations without improve-
ment = 50

3.2 Experimental Results

The tests are conducted on three targets. Target A is unprotected smart card
and is therefore suitable for the training phase. Smart cards B and C are pro-
tected against several FI techniques, especially VCC FI. Since one of the possible
outcomes of a VCC FI attack is permanent malfunction of a device, multiple
samples of each card were used. For all search strategies, all samples from the
same device showed the same physical behavior w.r.t. glitch shape-related para-
meters. In this sense, the glitch shape parameters found for a device sample are
valid for all samples3 of the same device. This behavior was not observed for the
time-related parameters.

For the table listings, the following abbreviations are used:

– TestReps: number of repetitions of the test
– MeasInTest : average total number of measurements in tests, if MeasInTestT

then it includes first and the second stage.
3 For each device all samples were from the same batch, hardware revision and man-

ufacturer.

Glitch It If You Can: Parameter Search Strategies 243

– INT(M): number of measurements with a INTERESTING verdict class. The
figure is presented as the median value of all values in the tests. The choice
of the median is for reflecting the typical performance of the search strategy.

– INT(%): number of measurements with a INTERESTING verdict class per
hundred (%). This value is computed from the sum of all INTERESTING
measurements in all tests divided by the accumulated number of measure-
ments in all tests, and normalized to 100 measurements.

– SUC(M): same as INT(M) but for the SUCCESSFUL verdict class.
– SUC(%): same as INT(%) but for the SUCCESSFUL verdict class.

3.3 Monte Carlo Strategy and Results

This search strategy consists of performing measurements with randomly selected
parameter combinations within the given initial search space. The random dis-
tribution for selecting values is considered to be uniform for each parameter
present in the search space. This search strategy is considered as the baseline
search strategy. The short test runs with 3072 measurements had no SUCCESS-
FUL measurement, and only the 76800 measurement test run produced 11 SUC-
CESSFUL measurements.

Furthermore, due to the random nature of the parameter selection there is
a significant number of repeated parameter combinations (glitch length, glitch
voltage) for the glitch shape. This repetition is interesting if it is made in the
plane region that yields the INTERESTING verdict class. However, it is highly
undesired for measurements in which the device response is predictable.

3.4 FastBoxing Strategy and Results

FastBoxing algorithm is a simple, iterative algorithm devised for the automatic
setting of the parameters in the first stage of the search. The algorithm works in
the following way: search strategy assumes the boundaries for the glitch shape:
VHIGH, VLOW and LLOW, LHIGH. The search algorithm will try to find these
boundaries by doing two steps: a measurements step and a reflection step. For
each iteration, the measurement step consists of a sampling of the search space
and then it performs measurements at the sampled points. After performing the
measurements, the algorithm will start the reflection step for finding out an esti-
mate of the VHIGH, VLOW and LLOW, LHIGH boundaries. For the VLOW
boundary, all points to its right should produce the NORMAL verdict, so the
algorithm does the following. First column of points starting from the right is
analyzed. If all the points of this column belong to the NORMAL verdict class,
then the next column to its left is analyzed. If all points in the second column also
belong to the NORMAL verdict class, the algorithm estimates that the VLOW
boundary is not between those two columns. When the algorithm finds a col-
umn that contains some points belonging to NORMAL verdict and some points
belonging to RESET or MUTE classes, it estimates that the VLOW boundary
is between that column and the column to its right. Once this estimation has

244 R.B. Carpi et al.

Table 2. Results for the FastBoxing search strategy

Device TestReps MeasInTestT INT(M) SUC(M) INT(%) SUC(%)

Target A 5 3048 (2048 + 1000) 26 9 0.800 0.361
Target B 5 3048 (2048 + 1000) 0 0 0.00 0.00
Target C 1 3048 (2048 + 1000) 0 0 0.00 0.00

been done, the VLOW boundary is temporarily set to this estimation. For the
rest of the boundaries, the process is analogous.

Once the algorithm stops, the last estimation for the boundary values for
the glitch length and glitch voltage will be the output. The next search stage
will sample points inside the box bounded by the VHIGH, VLOW, LLOW and
LHIGH boundary values for its input.

In Table 2 we summarize the results of the tests for the FastBoxing strat-
egy. The second stage of the parameter search is performed with a set of 10
(glitch length, glitch voltage) parameter combinations randomly selected from
the bounded region in the OUTPUT of the FastBoxing search strategy.

In the case of the FastBoxing search for the vulnerable device Target A,
the inaccurate estimation of the INTERESTING verdict class results in poor
(glitch length, glitch voltage) parameter combination choices. This is especially
noticeable if these parameter combinations are close to the boundary values.
Because of this, the number of SUCCESSFUL measurements varies significantly
depending on the random selection of parameter combinations. As an example,
Run 2 of the test yielded 26 SUCCESSFUL measurements, whereas Run 3 of
the test yielded only 4 SUCCESSFUL measurements.

It is worth mentioning that, to focus on the search space region in which the
INTERESTING verdict class is found, the performance of the search improved
significantly. All test runs of the FastBoxing search strategy yielded INTER-
ESTING and SUCCESSFUL measurements.

3.5 Adaptive zoom&bound Strategy and Results

The Adaptive zoom&bound search strategy iteratively bounds the region that
yields the INTERESTING or CHANGING verdict classes and “zooms” inside
that bounded region. This is achieved by decreasing the distance between new
measurements in the glitch shape search space. The region bounding is performed
in an adaptive way, similar to a 2D version of a binary search. The Adaptive
zoom&bound search uses the same two-step iterative process as FastBoxing algo-
rithm, but the processing done in the reflection step is different. Reflection step
works as follows: the distance between two neighbour points is set to a pointDist
variable. The measurements are placed in a 2D plane for the glitch shape (just
for ordering them). The horizontal axis is the glitch voltage parameter, and the
vertical axis is the glitch length parameter. For each one of the available measure-
ments from the last test, all neighbours of a measurement are checked for their
verdict class. If all neighbour measurements in the 2D plane belong to the same

Glitch It If You Can: Parameter Search Strategies 245

Table 3. Results for the Adaptive zoom&bound search strategy, 1 performed VCC FI
attack per measurement

Device TestReps MeasInTestT INT(M) SUC(M) INT(%) SUC(%)

Target A 5 1198 (198 + 1000) 47 13 3.895 1.064
Target B 5 1128 (128 + 1000) 0 0 0.00 0.00

verdict, the decision boundary between verdict classes is not found between the
point and its neighbours. If a neighbour measurement in the 2D plane belongs
to a different verdict class then the boundary is estimated to be between them.
A new measurement is added for the test in the next iteration and placed at
a distance pointDist/2 between them. When all points have been analysed, a
new test has been generated with a list of measurements only in the estimated
region that produces the INTERESTING verdict class. The algorithm stops if
all measurements in the initial measurement step belong to the same class, if
no new test measurements are generated during the reflection step, or when the
distance between neighbour points has reached the maximum resolution of the
hardware devices. Once the algorithm stops, it outputs the set of glitch shape
parameters that bound the region producing the INTERESTING verdict class.

The output of the algorithm is a set of the glitch shape parameters (glitch
length, glitch voltage) of the measurements that are considered to be bounding
the region that yields the INTERESTING verdict class. The output also con-
tains the glitch shape parameters of the measurements with INTERESTING,
CHANGING and SUCCESSFUL (if any) verdict classes. The decision of which
glitch shapes should be the output is implemented by taking the measurements
produced in the last iteration of the algorithm.

In Table 3 we summarize the results for performed tests for the Adaptive
zoom&bound strategy.

The results of the Adaptive zoom&bound strategy are better than in pre-
vious search strategies. In particular, the number of measurements required for
completing the first stage of the parameter search is very low, so the search
speed is improved significantly. For the initial search space used throughout the
experiment, the optimum performance is computed as follows:

N = n · ←max(log2(rangeV/resolutionV),

log2(rangeL/resolutionL))⊕ = (4 · 4) · ←max(log2(5/0.05), log2(150/2))⊕ = 112 meas.

In the case of Target A, the search strategy has more measurements due to
the device behavior in the search space region that produces the INTEREST-
ING verdict class. Additionally, the number of INTERESTING and SUCCESS-
FUL measurements are almost four times larger than those for the FastBoxing
algorithm.

Figure 1 shows the plot for the first stage of the parameter search in the case
of the Adaptive zoom&bound strategy.

It can be seen that most of the measurements are performed near the deci-
sion boundary between verdict classes. Also, the distance between measurements

246 R.B. Carpi et al.

Fig. 1. First stage plot of explored measurements for different devices by the Adaptive
zoom&bound search strategy. Green is NORMAL, blue is RESET (A) or MUTE (B)
(Color figure online)

Fig. 2. First stage plot of two samples of Target A.

w.r.t. glitch shape parameters is very small. This allows to bound the region
producing the INTERESTING verdict class quite accurately. The Adaptive
zoom&bound search strategy also allowed to experimentally observe that the
glitch shape parameters (glitch length, glitch voltage) are the same for different
samples of the same device. Figure 2 shows the plot of the measurement classi-
fication for the first stage parameter search of two Target A samples. It can be
experimentally verified that a (glitch length, glitch voltage) glitch shape para-
meter value that leads to a SUCCESSFUL verdict in one sample also does the
same in other targets. It can be said then that the glitch shape parameters are
exportable between samples of the devices. In contrast, time-related parameters
that produce SUCCESSFUL verdicts do change between samples.

Here we also present a successful VCC FI attack on Target C. This tar-
get incorporates specific countermeasures against VCC fault injection, as indi-
cated by the manufacturer. In addition, this card has been granted the EAL4+

Glitch It If You Can: Parameter Search Strategies 247

Fig. 3. Output of the measurement classification for Target C by the Adaptive
zoom&bound search strategy, 3 repetitions per measurement. The orange color depicts
the CHANGING verdict class (Color figure online).

Table 4. Results for the Adaptive zoom&bound search strategy with Target C, 3 VCC
FI attacks performed per measurement

Device Measurements 1ststage Measurements 2ndstage INT(M) SUC(M)

Target C 812 1000 17 19

certification level of Common Criteria. This means that the device has been pre-
viously tested by an independent security evaluation lab against different attack
techniques, including VCC fault injection. The output of the first stage of the
search is depicted in Fig. 3.

We can see that due to the focus in the search space region producing the
CHANGING verdict class and the multiple attempts per measurement, the jitter
was mitigated and suitable (glitch length, glitch voltage) parameter settings
could be found. Table 4 shows the results for the performed parameter search.
As far as the authors know, this target was not known to be vulnerable to VCC
FI attack before.

3.6 Genetic Algorithm Strategy and Results

Besides using deterministic algorithms as the two examples mentioned above, it
is also possible to use heuristic algorithms. Since finding the correct parameter
setting is a non-deterministic process that can be considered as a search problem,
it is natural to try to use non-deterministic algorithms. Genetic algorithms are a

248 R.B. Carpi et al.

subclass of evolutionary algorithms where the elements of the search space S are
arrays of elementary types [11]. Since Genetic Algorithms (GAs) are typically
used as function optimization algorithms, a fitness function must be defined for
mapping the different verdict classes present in the device model to the fitness
values. In particular, the mapping currently used is: NORMAL verdict class has
value 1, RESET or MUTE verdict classes have value 2, INTERESTING verdict
class has value 8, CHANGING verdict class has value 8.5 and SUCCESSFUL
verdict class has value 10. Formally, the GA aims to find a (glitch length, glitch
voltage) tuple such that the fitness value F is maximal. To be able to use GA
on this problem, a generic GA is modified and instead of the standard operators
we use custom selection and crossover operators. The GA generates an initial
population of n random combinations of (glitch length, glitch voltage) parameter
values. Each individual of each generation is assigned its corresponding fitness
value. Each population is evolved into a new generation of the population by
means of an evolution step (iteration step). The evolution step performs the fol-
lowing tasks: in the crossover, GA takes two individuals from different verdict
classes and produces a new individual with a (glitch length, glitch voltage) para-
meter configuration between the values of the two parent individuals. To perform
the mutation step, some individuals evolve by adding to their parameter values
a random value. Finally, the algorithm preserves a certain number of individuals
with the highest fitness value in the next generation.

GA performs evolution steps until a maximum number of evolution steps
is reached, or until a specified number of generations without improvement is
reached. A modification that has been introduced into the GA is the notion of
a “good enough” fitness value. The algorithm has an internal fitness threshold
value, and all generated individuals that have a fitness value equal or higher
than the threshold value will be output by the algorithm as the OUTPUT of the
first stage of the parameter search. With the current fitness function definition, a
threshold value of 8 outputs all the measurements that had an INTERESTING,
CHANGING or SUCCESSFUL verdict class. For evolutionary algorithms test
suite we use the Evolutionary Computation Framework (ECF) [12]. ECF is a
C++ framework intended for the application of any type of the evolutionary
computation, developed at the University of Zagreb (Fig. 4).

3.7 Comparison among Different Search Strategies

In order to have an overview of the performances of the presented search strate-
gies, Tables 5 and 6 contain the best observed metrics in tests performed with
Target A (vulnerable to VCC FI) and Target C (presumably not vulnerable to
VCC FI). The configuration of the second search stage is the same for all search
strategies (except for the Monte Carlo search): 10 (glitch voltage, glitch length)
parameter combinations, 100 time instants.

For the table listings, the following abbreviations are used:
Meas 1stStage: total number of measurements in 1st stage of the parameter
search;

Glitch It If You Can: Parameter Search Strategies 249

Fig. 4. First stage plot for the measurements of the GA with the Target A.

Table 5. Metrics of the different search strategies for Target A.

Strategy Meas 1stStage SUC(%) Total I Total S Total M

Monte Carlo N/A 0.0000 19 0 3072
FastBoxing 2048 0.29526 26 9 3048
AdaptZoom 192 1.17450 56 14 1192
GA 1560 0.3125 21 8 2560

Table 6. Metrics of the different search strategies for Target B.

Strategy Meas 1stStage SUC(%) Total I Total S Total M

Monte Carlo N/A 0 0 0 3072
FastBoxing 2048 0 0 0 3048
AdaptZoom 128 0 0 0 1128
GA 6868 0 0 0 7868

SUC : ratio of SUCCESSFUL measurements versus the total number of
measurements (1st + 2nd stages), normalized to 1/100;
Total I : total number of INTERESTING measurements;
Total S : total number of SUCCESSFUL measurements;
Total M : total number of measurements (1st + 2nd stages).

Looking at the results, the best overall strategy is the Adaptive zoom&bound
search strategy. It completes the first stage of the search with the least number
of measurements and it has the best ratio of SUCCESSFUL measurements, and
produces the most INTERESTING and SUCCESSFUL measurements. The use
of information available allows to quickly direct the parameter search towards
the most promising parameter configurations.

The GA shows a promising performance, because it is able to produce a sig-
nificant number of INTERESTING and SUCCESSFUL measurements. However,

250 R.B. Carpi et al.

the performance in terms of number of measurements in the 1st stage is not very
good. This is due to a large number of generations being produced without sig-
nificant improvements. A parameter tuning on this approach should result in
a better performance of the algorithm. This parameter tuning, in combination
with the addition of new features to the algorithm, is left as future work.

Finally, it should be mentioned that the Monte Carlo search strategy has
been found to be the most inefficient search strategy. However, due to its random
nature, it is still a viable option if no restriction on the number of measurements
is imposed.

4 Conclusions and Future Work

This work deals with the so-far unexplored topic of finding the right parameters
for successful faults by glitching. We experiment with several search strategies
and find some promising methodologies that are effective against some propri-
etary smart cards with glitching countermeasures. The best method is rather
generic and shows good results against different devices. Finally, we identify
another promising direction using genetic algorithms that can be further opti-
mized as future work.

Acknowledgements. This work was supported in part by the Technology Foundation
STW (project 12624 - SIDES), The Netherlands Organization for Scientific Research
NWO (project ProFIL 628.001.007) and the ICT COST action IC1204 TRUDEVICE.

A Appendix: TOE Details

A more detailed description of the TOEs described in this paper follows:

Target A: It is a smartcard based on an ATMega163+24C256 IC, CMOS tech-
nology, hardware last revision 2003. This TOE does not have any side-channel
countermeasure nor fault-injection countermeasure. All processing of the card
is performed in software, and the card was running on an external 4 MHz clock
frequency. In particular, this target is also available from Riscure BV as the
research target “Training Card 6”. The code that was attacked was a vulnerable
PIN (Personal Identification Number) authentication mechanism is as follows:

...
for (i=0;i<4;i++) {

if (pin[i] == input[i])
digits_ok++;

}
if (digits_ok==4) //BRANCH STATEMENT == CODE UNDER ATTACK

respond_code(0x00,SW_NO_ERROR_msb,SW_NO_ERROR_lsb);
else

respond_code(0x00,0x69,0x85);
...

Glitch It If You Can: Parameter Search Strategies 251

Target B: It is a smartcard bought in 2013 from a webshop from one of the
leading manufacturers in the sector. This TOE is a protected target, and has
countermeasures against SCA and FI, such as fault injection detection logic and
light, temperature and clock sensors. The IC design is from late 2004. Addition-
ally, it has dedicated logic for cryptographic operations. More in detail, this TOE
implements the JavaCard OS 2.2.1 and GlobalPlatform 2.1.1 standard. It runs
on an internal, unstable clock at an unknown frequency. The supplied external
clock frequency was 4 MHz. The card was running exclusively on software (no
crypto hardware present in the IC was used). The Java applet loaded into the
card was a double nested loop with two counters and a checksum. The code was
similar to the following piece of code:

...

for(outerLoopCounter=0;outerLoopCounter<2;outerLoopCounter++){

checkpoint=1;

for(innerLoopCounter=0;innerLoopCounter<1000;innerLoopCounter++){

checkpoint=2;

dummyOperation1();

iterations=iterations+1;

}

checkpoint=3;

dummyOperation2();

}

sendBytesToTerminal(outerLoopCounter,innerLoopCounter,iterations,

valueFlag);

...

Target C: It is a smartcard bought in 2013 from a webshop from one of the
leading manufacturers in the sector. This TOE is a protected target, and has
the same feature set as Target B in terms of hardware and countermeasures.
This TOE implements the JavaCard OS 2.2.1 and GlobalPlatform 2.1 standard.
It was also Common Criteria certified level EAL4+ in 2008. The Java applet
loaded into the card was the same applet as described for Target B.

References

1. Anderson, R., Kuhn, M., A, E.U.S.: Tamper resistance – a cautionary note. In:
Proceedings of the Second Usenix Workshop on Electronic Commerce, pp. 1–11
(1996)

2. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard
processors. In: Proceedings of the USENIX Workshop on Smartcard Technology
on USENIX Workshop on Smartcard Technology, WOST’99, Berkeley, CA, USA,
p. 2. USENIX Association (1999)

3. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

4. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

252 R.B. Carpi et al.

5. Boneh, D., DeMillo, R., Lipton, R.: New threat model breaks crypto codes. Bellcore
85 Press Release (1996)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

7. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on
RSA with CRT: concrete results and practical countermeasures. In: Kaliski Jr, B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003)

8. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski
Jr, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12.
Springer, Heidelberg (2003)

9. van Woudenberg, J., Witteman, M., Menarini, F.: Practical optical fault injection
on secure microcontrollers. In: 2011 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pp. 91–99 (2011)

10. Balasch, J., Gierlichs, B., Verbauwhede, I.: An In-depth and Black-box charac-
terization of the effects of clock glitches on 8-bit MCUs. In: Proceedings of the
2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC ’11,
Washington, DC, USA, pp. 105–114. IEEE Computer Society (2011)

11. Weise, T.: Global Optimization Algorithms Theory and Application (2009). http://
www.it-weise.de/

12. Jakobovic, D., et al.: Evolutionary computation framework, January 2013. http://
gp.zemris.fer.hr/ecf/

http://www.it-weise.de/
http://www.it-weise.de/
http://gp.zemris.fer.hr/ecf/
http://gp.zemris.fer.hr/ecf/

Efficient Template Attacks

Omar Choudary and Markus G. Kuhn(B)

Computer Laboratory, University of Cambridge, Cambridge, UK
{omar.choudary,markus.kuhn}@cl.cam.ac.uk

Abstract. Template attacks remain a powerful side-channel technique to
eavesdrop on tamper-resistant hardware. They model the probability dis-
tribution of leaking signals and noise to guide a search for secret data val-
ues. In practice, several numerical obstacles can arise when implementing
such attacks with multivariate normal distributions. We propose
efficientmethods to avoid these.Wealso demonstrate how to achieve signif-
icant performance improvements, both in terms of information extracted
and computational cost, by pooling covariance estimates across all data
values. We provide a detailed and systematic overview of many different
options for implementing such attacks. Our experimental evaluation of all
thesemethodsbased onmeasuring the supply current of a byte-load instruc-
tion executed in an unprotected 8-bit microcontroller leads to practical
guidance for choosing an attack algorithm.

Keywords: Side-channel attacks · Template attack · Multivariate
analysis

1 Introduction

Side-channel attacks are powerful tools for inferring secret algorithms or data
(passwords, cryptographic keys, etc.) processed inside tamper-resistant hard-
ware, if an attacker can monitor some channel leaking such information out of
the device, most notably the power-supply current and unintended electromag-
netic emissions.

One of the most powerful techniques for evaluating side-channel information
is the template attack [4], which relies on a multivariate model of the side-channel
traces. While the basic algorithm is comparatively simple (Sect. 2), there are a
number of additional steps that must be performed in order to obtain a practical
and efficient implementation.

In this paper we examine several problems that can arise in the implemen-
tation of template attacks (Sect. 3), especially when using a large number of
voltage samples. We explain how to solve them in two steps: (a) using compres-
sion techniques, i.e. methods to reduce the number of samples involved, either
by throwing away most, or by projecting them into a lower-dimensional space,
using only a few linear combinations (Sect. 4); and (b) we contribute efficient
variants of the template-attack algorithm, which can avoid numerical limitations
of the standard approach, provide better results and execute faster (Sect. 5).

A. Francillon and P. Rohatgi (Eds.): CARDIS 2013, LNCS 8419, pp. 253–270, 2014.
DOI: 10.1007/978-3-319-08302-5 17, c© Springer International Publishing Switzerland 2014

254 O. Choudary and M.G. Kuhn

We evaluate all these methods in practice, against an unprotected 8-bit micro-
controller, comparing their effectiveness using the guessing entropy (Sect. 6).
We focus on gathering information about individual data values, independent
of what algorithm these are part of. Other algorithm-specific attacks that use
dependencies between different data values, e.g. to recover keys from a specific
cipher, could be implemented on top of that, but are outside the scope of this
paper. We show that PCA and LDA provide the best results overall, and that a
previous guideline of selecting at most one point per clock cycle is not optimal
in general. Based on these experiments and theoretical background, we provide
practical guidance for the choice of template-attack algorithm.

2 Template Attacks

To implement a template attack, we need physical access to a pair of identical
devices, which we refer to as the profiling and the attacked device. We wish to
infer some secret value kσ ≤ S, processed by the attacked device at some point.
For an 8-bit microcontroller, S = {0, . . . , 255} might be the set of possible byte
values manipulated by a particular machine instruction.

We assume that we determined the approximate moments of time when the
secret value kσ is manipulated and we are able to record signal traces (e.g.,
supply current or electro-magnetic waveforms) around these moments. We refer
to these traces as leakage vectors. Let {t1, . . . , tmr} be the set of time samples
and xr ≤ R

mr
be the random vector from which leakage traces are drawn.

During the profiling phase we record np leakage vectors xr
ki ≤ R

mr
from the

profiling device for each possible value k ≤ S, and combine these as row vectors
xr

ki
◦ in the leakage matrix Xr

k ≤ R
np×mr

.1

Typically, the raw leakage vectors xr
ki provided by the data acquisition device

contain a large number mr of samples (random variables), due to high sampling
rates used. Therefore, we might compress them before further processing, either
by selecting only a subset of m ∀ mr of those samples, or by applying some other
data-dimensionality reduction method (see Sect. 4). We refer to such compressed
leakage vectors as xki ≤ R

m and combine all of these as rows into the compressed
leakage matrix Xk ≤ R

np×m . (Without any such compression step, we would
have Xk = Xr

k and m = mr.)
Using Xk we can compute the template parameters x̄k ≤ R

m and Sk ≤
R

m×m for each possible value k ≤ S as

x̄k = 1
np

np∑

i=1

xki, Sk = 1
np−1

np∑

i=1

(xki − x̄k)(xki − x̄k)◦
, (1)

1 Throughout this paper x◦ is the transpose of x.

Efficient Template Attacks 255

where the sample mean x̄k and the sample unbiased2 covariance matrix Sk are
the estimates of the true mean μk and true covariance Σk. Note that a sum of

squares and cross products matrix such as
np∑

i=1

(xki − x̄k)(xki − x̄k)◦
, from (1) can

also be written as
np∑

i=1

(xki − x̄k)(xki − x̄k)◦ = X̃◦
kX̃k, (2)

where X̃k is Xk with x̄◦
k subtracted from each row.3

Side-channel leakage traces can generally be modeled well by a multivariate
normal distribution [4], which we also observed in our experiments. In this case,
the sample mean x̄k and sample covariance Sk are sufficient statistics: they
completely define the underlying distribution [10, Chap. 4]. Then the probability
density function (pdf) of a leakage vector x, given x̄k and Sk, is

f(x | x̄k,Sk) =
1

√
(2Σ)m |Sk| exp

(

−1
2
(x − x̄k)◦S−1

k (x − x̄k)
)

. (3)

In the attack phase, we try to infer the secret value kσ ≤ S processed by
the attacked device. We obtain na leakage vectors xi ≤ R

m from the attacked
device, using the same recording technique and compression method as in the
profiling phase, resulting in the leakage matrix Xk� ≤ R

na×m . Then, for each
k ≤ S, we compute a discriminant score d(k | Xk�). Finally, we try all k ≤ S on
the attacked device, in order of decreasing score (optimized brute-force search,
e.g. for a password or cryptographic key), until we find the correct kσ. Given a
trace xi from Xk�, a commonly used discriminant [8,11,14], derived from Bayes’
rule, is

d(k | xi) = f(xi | x̄k,Sk)P (k), (4)

where the denominator from Bayes’ rule is omitted, as it is the same for each
k. Assuming a uniform a-priori probability P (k) = |S|−1, applying Bayes’ rule
becomes equivalent to computing the likelihood

l(k | xi) = d(k | xi) = l(x̄k,Sk | xi) = f(xi | x̄k,Sk), (5)

where the latter can be computed from (3). However, we do not need to compute
a proper a-posteriori probability for each candidate k given a trace xi, but only
a discriminant function that allows us to sort scores and identify the most likely
candidates. Section 5 shows how the latter can be much more efficient.
2 Others [8,11,14] use 1/np rather than 1/(np − 1) in Sk, thereby computing the
maximum likelihood estimator (MLE) of Σk. In theory, the correct estimator for
Σk is the unbiased estimator with 1/(np − 1); the MLE merely maximises the joint
likelihood from the multivariate normal distribution. In practice, we found this choice
made no significant performance difference (even down to np = 10,m = 6).

3 The matrix form allows the use of fast, vectorized linear-algebra routines.

256 O. Choudary and M.G. Kuhn

3 Implementation Caveats

We now present several problems that can appear when implementing the tem-
plate attack, especially when using a large number of samples m.

3.1 Inverse of Covariance Matrix

Several authors [14,15] noted that inverting the covariance matrix Sk from (1),
as needed in (3), can cause numerical problems for large m. However, we consider
it important to explain why Sk can become singular (|Sk| ∈ 0), causing these
problems.

Since Sk is essentially the matrix product X̃◦
kX̃k (2), both Sk and X̃k have

the same rank. Therefore Sk is singular iff X̃k has dependent columns, which is
guaranteed if np < m. The constraint on X̃k to have zero-mean rows implies that
it has dependent columns even for np = m. Therefore, np > m is a necessary
condition for Sk to be non-singular. See [10, Result 3.3] for a more detailed proof.

The restriction m < np is one main reason for reducing m through com-
pression (see Sect. 4). However, it is not mandatory to compress m further than
what is needed to keep the columns of X̃k independent. Note that in practice
some samples can be highly correlated, in which case np needs to be somewhat
larger than m (e.g., np ≥ 3000 for m = 1250 with our Sect. 6 data).

If we cannot obtain np > m then we can try the covariance estimator of
Ledoit and Wolf [5], which gave us a non-singular Sk even for np < m. However,
a much better option is to use the pooled covariance matrix (see Sect. 5.2) when
possible.

3.2 Floating-Point Limitations

One practical problem with (3) is that for large m the statistical distance

(x − x̄k)◦S−1
k (x − x̄k)

can reach values that cause the subsequent exponentiation operation to overflow.
For example, in IEEE double precision, exp(x) is only safe with |x| < 710, easily
exceeded for large m.

Another problem is that for large m the determinant |Sk| can overflow. For
example, considering that |Sk| is the product of the eigenvalues of Sk, in some
of our experiments the 100 largest eigenvalues were at least 106 and multiplying
merely 52 such values again overflows the IEEE double precision format.

4 Compression Methods

A compression method can be used to reduce the length (dimensionality) of
leakage vectors from mr to m. As detailed in Sect. 3, this may be needed if we
do not have enough traces for a full rank covariance matrix or to cope with

Efficient Template Attacks 257

computational or memory restrictions. Several approaches are described in the
literature, which can be divided into two categories: (a) selecting some of the
samples based on some criteria; (b) using some linear combinations of the leakage
vectors, based on the principal components or Fisher’s linear discriminant. All
of the following techniques evaluate the differences x̄k − x̄ where

x̄ =
1

|S|
∑

k∗S
x̄k. (6)

4.1 Selection of Samples

In this method we first compute a signal-strength estimate s(t), t ≤ {t1, . . . , tmr},
and then we select a subset of m points based on this estimate.

There are several proposals for producing s(t), such as difference of means
(DOM) [4, Sect. 2.1], the sum of squared differences (SOSD) [9], the Signal to
Noise Ratio (SNR) [15] and SOST [9]. All these are similar, with the notable
difference that the first two do no take the variance of the traces into consider-
ation, while the latter two do. We show the difference between these estimates
for our experiments in Fig. 1. The methods SNR and SOST are in fact the same
if we consider the variance at each sample point to be independent of the can-
didate k, which is expected in our setting. Under this condition SNR and SOST
reduce to computing the following value used by the F-test in the Analysis of
Variance [10]:

F(t) =

(

np

∑

k∗S
(x̄k(t) − x̄(t))2

)
/
(|S| − 1)

(
∑

k∗S

np∑

i=1

(xki(t) − x̄k(t))2
)

/
(|S|(np − 1))

. (7)

1 1.5 2 2.5
clock cycles

dom
sosd
snr
std
clock

Fig. 1. Signal-strength estimates from DOM, SOSD and SNR (identical to SOST) for a
LOAD instruction processing all possible 8-bit values, along with the average standard
deviation (STD) of the traces and clock signal. We used 2000 traces per value. All
estimates are rescaled to fit into the plot, so the vertical axis (linear) has no scale.

258 O. Choudary and M.G. Kuhn

F(t) can be used to reject, at any desired significance level, the hypothesis that
the sample mean values at sample point t are equal, therefore providing a good
indication of which samples contain more information about the means.

In the second step of this compression method we need to choose m samples
based on the signal-strength estimate s. The goal is to select the smallest set of
samples that contains most of the information about our target. An accepted
guideline, by Rechberger and Oswald [7, Sect. 3.2], is to select at most one sample
per clock cycle among the samples with highest s. In Sect. 6 we evaluate several
other options, and we show that this guideline is not optimal in general.

4.2 Principal Component Analysis (PCA)

Archambeau et al. [8] proposed the following method for using PCA as a com-
pression method for template attacks. First compute the sample between groups
matrix B:

B = np

∑

k∗S
(x̄r

k − x̄r)(x̄r
k − x̄r)◦

. (8)

Next obtain the singular value decomposition (SVD) B = UDU◦, where each
column of U ≤ R

mr×mr
is an eigenvector uj of B, and D ≤ R

mr×mr
contains

the corresponding eigenvalues αj on its diagonal.4 The crucial point is that only
the first m eigenvectors [u1 . . .um] = Um are needed in order to preserve most
of the information from the mean vectors x̄r

k. Therefore we can restrict U to
Um ≤ R

mr×m . Finally, we can project the mean vectors x̄r
k and covariance

matrices Sr
k (computed with (1) on the raw traces xr

i) into the new coordinate
system defined by Um to obtain the PCA template parameters x̄k ≤ R

m and
Sk ≤ R

m×m :
x̄k = Um◦x̄r

k, Sk = Um◦Sr
kU

m. (9)

Choice of PCA Components. Archambeau et al. [8] propose to select only
those first m eigenvectors uj for which the corresponding eigenvalues αj are a
few orders of magnitude larger than the rest. This technique, also known as
elbow rule or Scree Graph [6], requires manual inspection of the eigenvalues.
Another technique, which does not require manual inspection of the eigenvalues,
is known as the Cumulative Percentage of Total Variation [6]. It selects those m
eigenvectors that retain at least fraction f of the total variance, by computing
the score

χ(m) =

∑
1≤j≤m αj

∑
1≤j≤mr αj

, 1 ∼ m ∼ mr, (10)

4 Archambeau et al. [8] show a method for computing U that is more efficient when
mr ← |S|, but in our experiments with mr = 2500 this direct approach worked well.

Efficient Template Attacks 259

and selecting the lowest m for which χ(m) > f .5 We recommend trying both
approaches, as “there is no definitive answer [to the question of how many com-
ponents to choose]” [10, Chap. 8].

Alternative Computation of PCA Templates. Even though in [11, Sect. 4.1]
the authors mention that PCA can help where computing the full covariance
matrix Sr

k is prohibitive (due to large mr), their approach still requires the
computation of Sr

k (see (9)). Also, numerical artifacts during the double matrix
multiplication in (9) can make Sk non-symmetric. One way to avoid the latter
is to use the Cholesky decomposition Sr

k = C◦C and compute

Sk = Um◦Sr
kU

m = Um◦C◦CUm = (CUm)◦(CUm) = V◦V. (11)

However, to avoid both the numerical artifacts and the computation of large
covariance matrices, we propose an alternative PCA method, based on the fol-
lowing result: given the leakage matrix Xr

k and the PCA projection matrix Um,
it can be shown [10, Eq. (2-45)] that

Sk = Cov(Xr
kU

m) = Um◦Cov(Xr
k)Um = Um◦Sr

kU
m. (12)

Therefore, instead of first computing Sr
k and then applying (9) or (11), we

can first compute the projected leakage matrix

Xk = Xr
kU

m (13)

and then compute the PCA-based template parameters using (1). We use this
method for all the results shown in Sect. 6.

4.3 Fisher’s Linear Discriminant Analysis (LDA)

Given the leakage traces xr
ki (rows of Xr

k), Fisher’s idea [2,10] was to find some
coefficients aj ≤ R

mr
that maximise the following ratio:

∑

k∗S
(ȳkj − ȳj)2

Var(yj)
=

∑

k∗S
(aj

◦(x̄r
k − x̄r))2

Var(aj
◦x)

=
aj

◦Baj

aj
◦Spooledaj

, (14)

where the linear combinations yj = aj
◦x are known as sample discriminants,

B is the treatment matrix from (8) and Spooled = 1
|S|

∑
k∗S Sr

k is the common
covariance of all groups (see also Sect. 5.2). Note the similarity between the
left hand side of (14) and (7) which is used by the F-test, SNR and SOST.
This allows us to make an interesting observation: while in the sample selection
5 In our experiments, for f = 0.95 and np < 1000 this method retained the m = 4

largest components, which correspond to the same components that we had selected
using the elbow rule. However, when np > 1000 the number of components needed
for f ⊕ 0.95 decreased to m < 4, which led to worse results of the template attack.

260 O. Choudary and M.G. Kuhn

method we first compute (7) for each sample and then select the samples with the
highest F(t), Fisher’s method finds the linear combinations of the trace samples
that maximise (14). The coefficients aj that maximise (14) are the eigenvectors
[u1 . . .umr] = U corresponding to the largest eigenvalues of S−1

pooledB.6

As with PCA, we only need to use the first m coefficients a1, . . . ,am , which
can be selected using the same rules discussed in Sect. 4.2. If we let A =
[a1 . . . am] = Um be the matrix of coefficients, we can project each leakage
matrix as:

Xk = Xr
kA = Xr

kU
m (15)

and compute the LDA-based template parameters using (1).
Several authors [11,14] have used Fisher’s LDA for template attacks, but

without mentioning two important aspects. Firstly, the condition of equal covari-
ances (known as homoscedasticity) may be important for the success of Fisher’s
LDA. Therefore, the PCA method (Sect. 4.2), which does not depend on this
condition, might be a better choice in some settings. Secondly, the coefficients
that maximise (14) can be obtained using scaled versions of Spooled

7 or different
approaches [11,14], which will result in a different scale of the coefficients aj . This
difference has a major impact on the template attack: only when we scale the
coefficients aj , such that aj

◦Spooledaj = 1, the covariance between discriminants
becomes the identity matrix [10], i.e. Sk = I. That means the sample means in
(1) suffice and we can discard the covariance matrix from the discriminant scores
in Sect. 5, which greatly reduces computation and storage requirements.

Continuing the steps that led to (15), we can compute the diagonal matrix
Q ≤ R

m×m , having the values qjj = (1
aj

′Spooledaj
)

1
2 = (1

uj
′Spooleduj

)
1
2 on its

diagonal, to obtain the scaled coefficients AQ = UmQ, and replace (15) by

Xk = Xr
kAQ = Xr

kU
mQ. (16)

An alternative approach is to compute the eigenvectors uj of S− 1
2

pooledBS− 1
2

pooled and

then obtain the coefficients aj = S− 1
2

pooleduj , which leads directly to coefficients
that satisfy aj

◦Spooledaj = 1.

5 Efficient Implementation of Template Attacks

In this section we introduce methods that avoid the problems identified in Sect. 3
and implement template attacks very efficiently.
6 There are a maximum of s = min(mr, |S| − 1) non-zero eigenvectors, as that is the

maximum number of independent linear combinations available in B.
7 Instead of Spooled we could use W = |S|(np − 1)Spooled, known as a sample within
groups matrix.

Efficient Template Attacks 261

5.1 Using the Logarithm of the Multivariate Normal Distribution

Mangard et al. [15, p. 108] suggested calculating the logarithm of (3), as in

log f(x | x̄k,Sk) = −1
2

(
log [(2Σ)m |Sk|] + (x − x̄k)◦S−1

k (x − x̄k)
)
. (17)

They then claim that “the template that leads to the smallest absolute value [of
(17)] indicates the correct [candidate]”.

The first problem with this approach is that (17) does not avoid the compu-
tation of |Sk|, which we have shown to be problematic. Therefore we propose to
compute the logarithm of the multivariate normal pdf as

log f(x | x̄k,Sk) = −m

2
log 2Σ − 1

2
log |Sk| − 1

2
(x − x̄k)◦S−1

k (x − x̄k), (18)

where we compute the logarithm of the determinant as

log |Sk| = 2
∑

cii∗diag(C)

log cii, (19)

using the Cholesky decomposition Sk = C◦C of the symmetric matrix Sk. (Since
C is triangular, its determinant is the product of its diagonal elements.)

Secondly, it is incorrect to choose the candidate k that leads to the “smallest
absolute value” of (17, 18), since the logarithm is a monotonic function and
preserves the property that the largest value corresponds to the correct k.8

We can use (18, 19), dropping the first term which is constant across all k,
to compute a discriminant score based on the log-likelihood:

dLOG(k | xi) = −1
2

log |Sk| − 1
2
(xi − x̄k)◦S−1

k (xi − x̄k) (20)

= log f(xi | x̄k,Sk) +
m

2
log 2Σ = log l(k | xi) + const.

5.2 Using a Pooled Covariance Matrix

When the leakages from different candidates k have different means but the
same covariance Σ = Σ1 = Σ2 = · · · = Σk, it is possible to pool the covariance
estimates Sk into a pooled covariance matrix [10, Sect. 6.3]

Spooled =
1

|S|(np − 1)

∑

k∗S

np∑

i=1

(xki − x̄k)(xki − x̄k)◦
, (21)

an average of the covariances Sk from (1). The great advantage of Spooled over
Sk is that it represents a much better estimator of the real covariance Σ, since
Spooled estimates the covariance using np|S| traces, while Sk uses only np. This

8 Note that a pdf, such as f from (3), unlike a probability, can be both larger or smaller
than 1 and therefore its logarithm can be both positive or negative.

262 O. Choudary and M.G. Kuhn

in turn means that the condition for a non-singular matrix (see Sect. 3.1) relaxes
to np|S| > m or np > m

|S| . Therefore the number of traces that we must obtain
for each candidate k is reduced by a factor of |S|, a great advantage in practice.
Nevertheless, the quality of the mean estimate x̄k still depends directly on np.
Also note that for Fisher’s LDA (Sect. 4.3) we need to compute the inverse of
Spooled ≤ R

mr×mr
, which requires np|S| > mr.

Several authors used Spooled with template attacks [12,16], but gave no moti-
vation for its use. We would expect the assumption of equal covariances to hold
for many side-channel applications, because Sk captures primarily information
about how noise, that is variation in the recorded traces unrelated to k, is corre-
lated across trace samples. After all, the data-dependent signal x̄k was already
subtracted. As a result, we should not expect substantial differences between
the Sk for different candidate values k, unless the targeted device contains a
mechanism by which k can modify the correlation between samples (which we
do not completely exclude).

Box’s test [3] can be used to reject the hypothesis of equal covariances,
although it can be misleading for large |S| or large m. In our experiments,
with |S| = 28, m = 6 and np = 2000, Box’s variable C ≈ Ff1,f2(ι) had the
value 2.03, which was above the rejection threshold for any realistic significance
level (e.g. Ff1,f2(0.99) = 1.045). Nevertheless, we found the different Sk to be
visually similar (viewed as bitmaps with linear colour mapping), and we consider
that our hypothesis was confirmed by the superior results from using the pooled
estimate (Sect. 6).

Using Spooled, we can discard the first two terms in (18) and use the gener-
alized statistical distance

d2M(x | x̄k,Spooled) = (x − x̄k)◦S−1
pooled(x − x̄k) ≥ 0, (22)

also known as the Mahalanobis distance [1], to compare the candidates k. The
inequality in (22) holds because the covariance matrix is positive semidefinite.
From (18, 22) we can derive the discriminant score

dMD(k | xi) = −1
2
d2M(xi | x̄k,Spooled) = dLOG(k | xi) + const., (23)

where the constant does not vary with k.

5.3 Linear Discriminant Score

When using the pooled covariance matrix Spooled we can rewrite the distance
from (22) as:

d2M(x | x̄k,Spooled) = x◦S−1
pooledx − 2x̄◦

kS
−1
pooledx + x̄◦

kS
−1
pooledx̄k, (24)

and observe that the first term is constant for all groups k so we can discard it.
That means, that we can now use the following linear discriminant score:

dLINEAR(k | xi) = x̄◦
kS

−1
pooledxi − 1

2
x̄◦

kS
−1
pooledx̄k = dMD(k | xi) + const., (25)

Efficient Template Attacks 263

which depends linearly on xi (where const. does not depend on k). Although
equivalent, the linear discriminant dLINEAR can be far more efficient to compute
than the quadratic dMD.

5.4 Combining Multiple Attack Traces

We have to combine the na individual leakage traces xi from Xk� into the final
discriminant score d(k | Xk�). We present two sound options for doing so:

Option 1: Average all the traces in Xk� (similar to the mean computation in
(1)) in order to remove as much noise as possible and then use this single mean
trace x̄k� to compute

davg(k | Xk�) = d(k | x̄k�). (26)

This option is computationally fast, requiring O(na+m2) time for any presented
discriminant, but it does not use all the information from the available attack
traces (in particular the noise).

Option 2: Compute the joint likelihood l(k | Xk�) =
∏

xi∗Xk�

l(k | xi). By

applying the logarithm to both sides we have log l(k | Xk�) =
∑

xi∗Xk�

log l(k | xi)

and we obtain the derived scores:

djoint
LOG(k | Xk�) = −na

2
log |Sk| − 1

2

∑

xi∗Xk�

(xi − x̄k)◦S−1
k (xi − x̄k), (27)

djoint
MD (k | Xk�) = −1

2

∑

xi∗Xk�

(xi − x̄k)◦S−1
k (xi − x̄k), (28)

djoint
LINEAR(k | Xk�) = x̄◦

kS
−1
pooled

(∑

xi∗Xk�

xi

)

− na

2
x̄◦

kS
−1
pooledx̄k. (29)

Given the na leakage traces xi ≤ Xk�, dLOG and dMD require time O(nam
2)

while dLINEAR only requires O(na + m2), since the operations x̄◦
kS

−1
pooled and

x̄◦
kS

−1
pooledx̄k only need to be done once, which is a great advantage in practice.

As a practical example, our evaluations of the guessing entropy (see Sect. 6) for
m = 125 and 1 ∼ na ∼ 1000 took about 3.5 days with dLOG but only 30 min
with dLINEAR.9 We note that for dLINEAR the computation time is the same
regardless of which option we use to combine the traces, and both give the same
results for the template attack.
9 MATLAB, single core CPU with 3794 MIPS.

264 O. Choudary and M.G. Kuhn

Table 1. List of compression methods evaluated in this paper.

Name Description m

DOM 1ppc DOM, 1 sample per clock at most 6–10
DOM 3ppc DOM, 3 samples per clock at most 18–30
DOM 20ppc DOM, 20 samples per clock at most 75–79
DOM allap DOM, all samples above 95th percentile of F(t) 125
PCA Fixed selection of number of principal components 4
LDA Fixed selection of number of coefficients 4

5.5 Unequal Prior Probabilities

In the previous descriptions we have assumed equal prior probabilities among the
candidates k. When this is not the case, we only need to add the term log P (k) to
the discriminant scores davg

LOG, davg
MD, davg

LINEAR, or na log P (k) to the discriminant
scores djoint

LOG, djoint
MD , djoint

LINEAR.

6 Evaluation of Methods

We evaluated the efficiency of many template-attack variants on a real hard-
ware platform, comparing all the compression methods from Table 110 and all
the implementation options from Sect. 5. We compare the commonly used high-
compression methods, such as PCA, LDA and sample selection using the guide-
line [7] of 1 sample per clock at most (1ppc), against weak compressions providing
a larger number of samples: the 3ppc, 20ppc and allap selections.11

6.1 Experimental Setup

Our target is the 8-bit CPU Atmel XMEGA 256 A3U, an easily available micro-
controller without side-channel countermeasures, mounted on our own evaluation
board to monitor the total current in all CPU ground pins via a 10Ω resistor.
We powered it from a battery via a 3.3 V regulator and supplied a 1 MHz sine
clock. We used a Tektronix TDS 7054 8-bit oscilloscope with P6243 active probe,
at 250 MS/s, with 500 MHz bandwidth in SAMPLE mode. We used the same
device for both the profiling and the attack phase, which provides a good setting
for the focus of our work.

For each candidate value k ≤ {0, . . . , 255} we recorded 3072 traces xr
ki

(i.e., 786 432 traces in total), which we divided into a training set (for the pro-
filing phase) and an evaluation set (for the attack phase). Each trace contains
10 We arbitrarily chose to use the DOM estimate, computed as the sum of absolute

differences between the mean vectors. Using SNR instead of DOM as the signal
strength estimate s(t) has provided very similar results, omitted due to lack of space.

11 The selections 1ppc, 3ppc and 20ppc provide a variable number of samples because
of the additional restriction that the selected samples must be above the highest
95th percentile of F(t), which varies with np for each clock edge.

Efficient Template Attacks 265

mr = 2500 samples, recorded while the target microcontroller executed the same
sequence of instructions loaded from the same addresses: a MOV instruction,
followed by several LOAD instructions. All the LOAD instructions require two
clock cycles to transfer a value from RAM into a register, using indirect address-
ing. In all the experiments our goal was to determine the success of the template
attacks in recovering the byte k processed by the second LOAD instruction.
All the other instructions were processing the value zero, meaning that in our
traces none of the variability should be caused by variable data in other nearby
instructions that may be processed concurrently in various pipeline stages.12

6.2 Guessing Entropy

We use the guessing entropy as the sole figure of merit to compare all methods.
It estimates the (logarithmic) cost of any optimized search following a template
attack to find the correct kσ among the values k with the highest discriminant
scores. It gives the expected number of bits of uncertainty remaining about the
target value kσ. The lower the guessing entropy, the more successful the attack
has been and the less effort remains to search for the correct kσ.

To compute the guessing entropy, we compute the score d(k | Xk�) (see
Sect. 5) for each combination of candidate value k and target value kσ, resulting
in a score matrix M ≤ R

|S|×|S| with M(kσ, k) = d(k | Xk�). Each row in M
contains the score of each candidate value k given the traces Xk� corresponding
to a given target value kσ. Next we sort each row of M, in decreasing order, to
obtain a depth matrix D ≤ N

|S|×|S| with

D(kσ, k) = position of d(k | Xk�) in the sorted row of M(kσ, ·). (30)

Finally, using the matrix D we define the guessing entropy

g = log2
1

|S|
∑

k∗S
D(k, k). (31)

Standaert et al. [13] also used this measure, but without the logarithm.

6.3 Experimental Results and Practical Guidance

We performed each attack 10 times for each combination of na, k and kσ, using a
different random selection of Xk� for each na and kσ. We plot in Figs. 2 and 3 the
averaged guessing entropy, resulting in highly reproducible graphs. The standard
deviation across all experiments is around 0.1 bits.

These results, as well as the considerations discussed earlier, allow us to
provide the following practical guidance regarding the choice of algorithm:
12 A similar approach was used by Standaert and Archambeau [11] and Oswald and

Paar [16] to report results of template attacks on (part of) the key loading stage of
a block cipher.

266 O. Choudary and M.G. Kuhn

Fig. 2. Guessing entropy remaining after template attacks, with different compressions,
for np = 200 (left) and np = 2000 (right) profiling traces, using individual covariances
Sk with dLOG (top) or a pooled covariance Spooled with dLINEAR (bottom).

1. Use Option 2 (djoint) in preference to Option 1 (davg) to combine the discrim-
inant scores for na > 1 attack traces. For na = 1 or when using Spooled, these
options are equivalent. Otherwise, as the number na of attack traces increases
and the covariance matrix is better estimated (e.g. due to a large number np

of profiling traces or small number m of variables) djoint outperforms davg for
all compression methods.

2. Try using a common covariance matrix Spooled with dLINEAR (unless dif-
ferences between individual estimates Sk are very evident, e.g. from visual
inspection). Failing a statistical test for homoscedasticity (e.g., Box’s test)
alone does not imply that using individual estimates Sk will improve the
template attack. Using individual estimates Sk prevents use of the signifi-
cantly faster and more robust discriminant dLINEAR. Then:

(a) If your target allows you to acquire a large number of traces (na > 100):
try the compression methods PCA, LDA and sample-selection with large

Efficient Template Attacks 267

Fig. 3. Guessing entropy from the methods discussed, for na = 1 (left) and na =
1000 (right), using djoint (at np √ {200, 500, 1000, 1500, 2000}, linearly interpolated).

m since they may perform differently based on the level of noise from the
profiling traces Xk.

(b) If your target allows only acquisition of a limited number of attack traces
(na < 10): use LDA. Note that in this case, as the covariance esti-
mate improves due to large |S|np, performance increases with larger m
(cf. 3ppc, 20ppc, allap). In particular, for na < 10, we see in Fig. 2 (bot-
tom) that we got more than 1 bit of data from 20ppc and allap compared
to 1ppc, which contradicts the claim [7, Sect. 3.2] that “additional [sam-
ples] in the same clock cycle do not provide additional information”. In
this setting, 20ppc and allap can outperform PCA.

3. If you cannot use the pooled covariance Spooled, then use the individual covari-
ances Sk with dLOG and use PCA as the compression method.

This guidance should work well in situations similar to our experimental
conditions. Further research is needed to also consider pipelining, where other
data in neighbour instructions can partially overlap in the side-channel.

7 Conclusions

In this paper, we have explored in detail the implementation of template attacks
based on the multivariate normal distribution, comparing different compression
methods, discriminant scores, and number of profiling and attack traces.

We explained why several numerical obstacles arise when dealing with a large
number m of variables (e.g. when retaining a large part of the leakage vectors),
and we presented efficient methods that can be used in this case, such as the
discriminant dLOG.

Based on the observation that the covariance matrices Sk of each candidate
k are similar, we explained the use of the pooled covariance estimate Spooled and
we showed how Spooled allows us to derive a linear discriminant dLINEAR which

268 O. Choudary and M.G. Kuhn

is much more efficient than dLOG. For na = 1000 attack traces and m = 125
samples, the computation of the guessing entropy remaining after the template
attacks can be reduced from 3 days (using dLOG) to 30 min (using dLINEAR).
This is a great advantage for the evaluation of template attacks, which is often
a requirement to obtain Common Criteria certification.

We applied all the methods presented in this paper on real traces from an
unprotected 8-bit microcontroller and we evaluated the results using the guessing
entropy. Using the efficient methods presented in this paper we were able to
obtain a guessing entropy close to 0, i.e. we are able to extract all 8 bits processed
by a single LOAD instruction, not just their Hamming weight.

Based on these results and theoretical arguments, we proposed a practical
guideline for the choice of algorithm when implementing template attacks.

Data and Code Availability: In the interest of reproducible research we make
available our data and associated MATLAB scripts at:

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

Acknowledgement. Omar Choudary is a recipient of the Google Europe Fellowship
in Mobile Security, and this research is supported in part by this Google Fellowship. The
opinions expressed in this paper do not represent the views of Google unless otherwise
explicitly stated.

A Evaluation Board

For our experiments, we built a custom PCB for the Atmel microcontroller
(see Fig. 4, left). This 4-layer PCB has inputs for the clock signal and supply
voltage, a USB port to communicate with a PC, and a 10Ω resistor in the
ground line for power measurements. The PCB connects all the ground pins of
the microcontroller to the same line, which leads to the measurement resistor.

Fig. 4. Left: the device used during our experiments. Right: A single example trace xr
i

from our experimental setup.

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

Efficient Template Attacks 269

B Executed Code

During all our experiments we recorded traces with 2500 samples, covering the
execution of several instructions, as shown in Fig. 4 (right). The executed instruc-
tion sequence is

5a5c: 00 00 nop ; several previous NOPs ommited in this listing
5a5e: fc 01 movw r30, r24 ; 1 clock cycle, recorded traces start here
5a60: 81 90 ld r8, Z+ ; 2 clock cycles per ld instruction
5a62: 91 90 ld r9, Z+ ; this is our target instruction (2 clock cycles)
5a64: a1 90 ld r10, Z+ ; we want to infer the data loaded in r9
5a66: b1 90 ld r11, Z+
5a68: c1 90 ld r12, Z+ ; recorded trace ends after first clock cycle of this ld

The load instructions use the Z pointer (which refers to registers r31:r30)
for indirect RAM addressing. The initial value of registers r8–r12 before the
load operations is zero. The initial value of Z before the first load instruction is
2020.

C Some Proofs

In Sect. 5.3 we rewrote (22) as (24). This is possible because

x̄◦
kS

−1
pooledx = (x̄◦

kS
−1
pooledx)

◦
= x◦S−1

pooled

◦
x̄k = x◦S−1

pooledx̄k. (32)

In Sect. 5.4 we state that dLINEAR provides the same results for both options
of combining the traces (from average trace and based on joint likelihood). This
happens because if we let ck = − 1

2 x̄
◦
kS

−1
pooledx̄k for any k, then we have

djoint
LINEAR(k | Xk�) = x̄◦

kS
−1
pooled

(∑

xi∼Xk�

xi

)

+ nack, (33)

davg
LINEAR(k | Xk�) = x̄◦

kS
−1
pooled

(
1

na

∑

xi∼Xk�

xi

)

+ ck, (34)

and therefore for any u, v ≤ S it is true that

davg
LINEAR(u | Xk�) > davg

LINEAR(v | Xk�) ⇔

x̄◦
uS−1

pooled

(
1

na

∑

xi∼Xk�

xi

)

+ cu > x̄◦
vS

−1
pooled

(
1

na

∑

xi∼Xk�

xi

)

+ cv ⇔

x̄◦
uS−1

pooled

(∑

xi∼Xk�

xi

)

+ nacu > x̄◦
vS

−1
pooled

(∑

xi∼Xk�

xi

)

+ nacv ⇔

djoint
LINEAR(u | Xk�) > djoint

LINEAR(v | Xk�).

270 O. Choudary and M.G. Kuhn

References

1. Mahalanobis, P.C.: On the generalised distance in statistics. In: Proceedings
National Institute of Science, India, vol. 2, pp. 49–55 (1936)

2. Fisher, R.A.: The statistical utilization of multiple measurements. Ann. Eugen. 8,
376–386 (1938)

3. Box, G.E.P.: Problems in the analysis of growth and wear curves. Biometrics 6,
362–389 (1950)

4. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr, B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 51–62. Springer, Heidelberg
(2003)

5. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance
matrices. J. Multivar. Anal. 88, 365–411 (2004)

6. Jolliffe, I.: Principal Component Analysis. Wiley, Chichester (2005)
7. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.

(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)
8. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks

in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

9. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

10. Johnson, R., Wichern, D.: Applied Multivariate Statistical Analysis, 6th edn. Pear-
son, Upper Saddle River (2007)

11. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

12. Batina, L., Gierlichs, B., Lemke-Rust, K.: Comparative evaluation of rank corre-
lation based DPA on an AES prototype chip. In: Wu, T.-C., Lei, C.-L., Rijmen,
V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 341–354. Springer, Heidelberg
(2008)

13. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

14. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. Trans. Comput. Sci. X 6340, 78–99 (2010)

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, 1st edn. Springer, Heidelberg (2010)

16. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

Author Index

Alshehri, Ali 152

Batina, Lejla 236
Belgarric, Pierre 108
Bhasin, Shivam 108
Bilgin, Begül 187
Bontempi, Gianluca 61
Bruneau, Nicolas 108

Carpi, Rafael Boix 236
Choudary, Omar 253

Daemen, Joan 18
Danger, Jean-Luc 108
Debande, Nicolas 108

Eisenbarth, Thomas 44

Faugeron, Emilie 140
Fouladi, Behrang 125

Golub, Marin 236
Grosso, Vincent 33
Guilley, Sylvain 108

Hajny, Jan 94
Heuser, Annelie 108
Heyszl, Johann 79
Hutter, Michael 219

Ibing, Andreas 79
Imbert, Laurent 200
Itoh, Kouichi 3

Jakobovic, Domagoj 236

Kerckhof, Stéphanie 16
Kokubo, Hirotaka 3
Kuhn, Markus G. 253

Lerman, Liran 61

Malina, Lukas 94
Mangard, Stefan 79
Markantonakis, Konstantinos 125
Markowitch, Olivier 61
Martinasek, Zdenek 94
Maurine, Philippe 200
Mayes, Keith 125
Medeiros, Stephane Fernandes 61
Menarini, Federico 236

Najm, Zakaria 108
Nikov, Ventzislav 187
Nikova, Svetla 187

Peeters, Eric 16
Perin, Guilherme 200
Picek, Stjepan 236
Prouff, Emmanuel 33

Rijmen, Vincent 187
Rioul, Olivier 108
Rondepierre, Franck 171

Schmidt, Jörn-Marc 219
Schneider, Steve 152
Sigl, Georg 79
Standaert, François-Xavier 16, 33

Takenaka, Masahiko 3
Torii, Naoya 3
Torres, Lionel 200

Van Assche, Gilles 187

Yamamoto, Dai 3
Ye, Xin 44

7

	Preface
	Organization
	Contents
	Security Technologies - Session Chair:Benedikt Gierlichs
	Evaluation of ASIC Implementation of Physical Random Number Generators Using RS Latches
	1 Introduction
	2 Related Work
	3 Random Number Generator Using RS Latches
	4 ASIC Implementation
	4.1 Measurement of Power Consumption and Circuit Scale

	5 Evaluation
	5.1 Evaluation System
	5.2 Evaluation of Randomness
	5.3 Min-Entropy Estimation
	5.4 Evaluation of Output from Each RS Latch
	5.5 Discussion

	6 Conclusion and Future Work
	References

	From New Technologies to New Solutions
	1 Introduction
	2 Background
	2.1 FRAM Microcontrollers
	2.2 Security Model

	3 Improving Past Results: The Shuffling Case
	4 Making New Results Possible: The RLUT Case
	4.1 Description of the Countermeasure
	4.2 Application to Reduced LED
	4.3 Implementation in FRAM Microcontrollers
	4.4 Results and Discussion

	5 Conclusion
	A RLUT Implementation Results
	References

	Attacks on Masking - Session Chair:Michael Hutter
	Low Entropy Masking Schemes, Revisited
	1 Introduction
	2 Background
	2.1 Univariate vs. Multivariate / 1st-Order vs. Higher-Order Attacks
	2.2 Low Entropy Masking Schemes
	2.3 Evaluation Framework

	3 Information Theoretic Analysis of LEMS
	3.1 Hamming Weight Leakages
	3.2 Polynomial Leakages

	4 Security Analysis of LEMS
	4.1 Univariate Attacks
	4.2 Bivariate Attacks

	5 Wrapping Up
	References

	On the Vulnerability of Low Entropy Masking Schemes
	1 Motivation
	2 Background
	2.1 Low Entropy Masking Schemes
	2.2 Adversarial Model

	3 Leakage Distribution Decomposition Attack
	3.1 Leakage Distribution Composition
	3.2 Procedure of Leakage Distribution Decomposition Attack
	3.3 LDDA With Profiling
	3.4 LDDA Without Profiling

	4 Leaking Set Collision Attack
	4.1 Existence of Leaking Set Collisions
	4.2 Building a Leaking Set Collision Attack

	5 Experiments
	5.1 LDDA with Profiling
	5.2 LDDA Without Profiling
	5.3 Experiments for Leaking Set Collision Attack

	6 Conclusion
	References

	A Machine Learning Approach Against a Masked AES
	1 Introduction
	2 Preliminaries
	2.1 Side-Channel Attack
	2.2 Masking Countermeasure

	3 Machine Learning Approach Against Masking Countermeasure
	4 Experiments and Discussion
	4.1 Target Implementation
	4.2 Experimental Results
	4.3 Discussions

	5 Conclusion and Perspectives
	References

	Side Channel Attacks - Session Chair:Francois-Xavier Standaert
	Clustering Algorithms for Non-profiled Single-Execution Attacks on Exponentiations
	1 Introduction
	2 Related Work
	3 Non-profiled Clustering to Attack Exponentiations
	3.1 Single-Execution Side-Channel Leakage of Exponentiations
	3.2 Clustering of Samples Reveals the Secret without Profiling
	3.3 Brute-Force Complexity to Handle Classification Errors
	3.4 Combining Side-Channel Measurements

	4 Practical Evaluation
	4.1 Design-Under-Test and Measurement Setup
	4.2 Clustering Individual Measurements
	4.3 Clustering Combined Measurements
	4.4 Countermeasures

	5 Conclusion
	References

	Optimization of Power Analysis Using Neural Network
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Method and Testbed Description
	3 Proposed Optimization
	4 Comparison of Classification Results
	5 Cross Validation
	6 Conclusion
	References

	Time-Frequency Analysis for Second-Order Attacks
	1 Introduction
	2 Tools for Time-Frequency Analysis
	2.1 Discrete Fourier Transform
	2.2 Discrete Hartley Transform
	2.3 Fast Fourier Transform

	3 New Second-Order Attacks with Time-Frequency Preprocessing
	3.1 Why Do We Need New Attacks?
	3.2 New Attacks in Frequency Domain

	4 Experimental Validation
	4.1 Software Implementation of the Protected AES
	4.2 Leakage Detection
	4.3 Empirical Evaluation

	5 Discussion
	5.1 Benefits of the Proposed Attacks
	5.2 Explanation of the Results: Why are Attacks in Frequency Domain More Efficient when the Window Width is Large?
	5.3 Comparison with the State-of-the-Art

	6 Conclusions and Perspectives
	References

	Software and Protocol Analysis - SessionChair: Lex Schoonen
	Vulnerability Analysis of a Commercial .NET Smart Card
	Abstract
	1 Introduction
	2 The .NET Smart Card
	2.1 .NET Virtual Machine Security Model
	2.2 Assembly Strong Name
	2.3 The Target .NET Card Code and Data Security

	3 Analysis of the Card Resident Binary Format
	3.1 The Target .NET Converter
	3.2 Target Binary File Format
	3.3 Analysis Tool Software

	4 .NET Smart Card Vulnerability Research
	4.1 Public Key Token Spoofing Vulnerability
	4.2 Virtual Machine Memory Corruption Issues

	5 Countermeasures
	6 Conclusion
	References

	Manipulating the Frame Information with an Underflow Attack
	Abstract
	1 Introduction
	2 Underflow Attack: State of the Art
	3 Underflow Attack: Theoretical Attack Path
	4 Underflow Attack: Practical Attack Path
	4.1 Underflow Attack Using dup_x
	4.2 Byte Code Verification

	5 Countermeasures
	5.1 Organisational Measures
	5.2 Technical Countermeasures

	6 Conclusion
	References

	Formal Security Analysis and Improvement of a Hash-Based NFC M-Coupon Protocol
	1 Introduction
	2 The Casper Approach
	2.1 Simple Example
	2.2 Hierarchy of Authentication and Secrecy
	2.3 Channels

	3 Protocol Security Requirements
	3.1 Formal Definition

	4 Protocol Description
	5 Modelling
	5.1 The Protocol's Requirements
	5.2 Intruder Knowledge
	5.3 Assumptions

	6 Analysis
	7 Suggested Solution
	7.1 Enhanced Hash-Based Protocol
	7.2 Marketing-Oriented Protocols Solutions

	8 Conclusion
	References

	Side Channel Countermeasures -Session Chair: Svetla Nikova
	Revisiting Atomic Patterns for Scalar Multiplications on Elliptic Curves
	1 Introduction
	2 Elliptic Curve Background
	2.1 Definitions
	2.2 Efficient Scalar Multiplication Implementation

	3 Secure Scalar Multiplication Implementation
	3.1 State-of-the-Art
	3.2 Scalar Evaluation

	4 New Atomic Pattern
	4.1 New Fomulæ
	4.2 Performances
	4.3 The Special Case a=0

	5 Conclusion
	A Atomic Patterns
	References

	Efficient and First-Order DPA Resistant Implementations of Keccak
	1 Introduction
	2 Introduction to Keccak
	3 Achieving Uniformity with Limited Extra Randomness
	3.1 The Original Three-Share TI Implementation of
	3.2 Straightforward Injection of Fresh Random Bits
	3.3 Less Randomness per Row
	3.4 Jointly Satisfying Uniformity

	4 Achieving Uniformity with Four Shares
	5 Hardware Implementations
	5.1 Unprotected Implementations
	5.2 Threshold Implementations
	5.3 An Architecture with 2 Shares for the Linear Part

	6 Conclusions
	References

	Practical Analysis of RSA Countermeasures Against Side-Channel Electromagnetic Attacks
	1 Introduction
	2 Preliminaries
	2.1 Residue Number System
	2.2 RNS Montgomery Exponentiation
	2.3 RNS Bases Randomization - The LRA Countermeasure

	3 Proposed and Developed Hardware
	4 Robustness to EM Analyses
	4.1 EM Collision Attacks
	4.2 CEMA
	4.3 RAM Memory Randomization

	5 Conclusion
	References

	Side Channel and Fault Attacks -Session Chair: Berndt Gammel
	The Temperature Side Channel and Heating Fault Attacks
	1 Introduction
	2 Temperature Leakage Characterization
	2.1 The Setup to Measure the Temperature
	2.2 Temperature Analysis

	3 Exploiting Heating Faults on AVRs
	3.1 Heating-up the Target

	4 Data Remanence Attacks on AVRs
	4.1 Permanent Data Remanence Effects After Burn-In Stress
	4.2 Transient Data Remanence Effects During Burn-In Stress

	5 Discussion and Further Research Suggestions
	A Appendix
	A.1 Attacking CRT-RSA Using Faults
	A.2 Temperature Leakage of a PIC16F84

	References

	Glitch It If You Can: Parameter Search Strategies for Successful Fault Injection
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Problem Statement
	2.1 Model

	3 Experiments and Discussion
	3.1 Search Space Settings and Experiment Definition
	3.2 Experimental Results
	3.3 Monte Carlo Strategy and Results
	3.4 FastBoxing Strategy and Results
	3.5 Adaptive zoom&bound Strategy and Results
	3.6 Genetic Algorithm Strategy and Results
	3.7 Comparison among Different Search Strategies

	4 Conclusions and Future Work
	A Appendix: TOE Details
	References

	Efficient Template Attacks
	1 Introduction
	2 Template Attacks
	3 Implementation Caveats
	3.1 Inverse of Covariance Matrix
	3.2 Floating-Point Limitations

	4 Compression Methods
	4.1 Selection of Samples
	4.2 Principal Component Analysis (PCA)
	4.3 Fisher's Linear Discriminant Analysis (LDA)

	5 Efficient Implementation of Template Attacks
	5.1 Using the Logarithm of the Multivariate Normal Distribution
	5.2 Using a Pooled Covariance Matrix
	5.3 Linear Discriminant Score
	5.4 Combining Multiple Attack Traces
	5.5 Unequal Prior Probabilities

	6 Evaluation of Methods
	6.1 Experimental Setup
	6.2 Guessing Entropy
	6.3 Experimental Results and Practical Guidance

	7 Conclusions
	A Evaluation Board
	B Executed Code
	C Some Proofs
	References

	Author Index

