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Abstract This chapter presents recent developments in finding systematically con-
servation laws and nonlocal symmetries for partial differential equations. There is
a review of local symmetries, including Lie’s algorithm to find local symmetries in
evolutionary form and their applications. The Direct Method for finding local con-
servation laws is reviewed and its relationship to and extension of Noether’s theorem
are discussed. Moreover, it is shown how symmetries, including discrete symmetries
may yield additional conservation laws from known conservation laws. Systematic
procedures are presented to seek nonlocally related PDE systems for a given PDE
system with two independent variables. In particular, these procedures include the
use of conservation laws, point symmetries, and subsystems (including subsystems
arising after appropriate invertible transformations of variables) to obtain trees of
equivalent nonlocally related PDE systems. In turn, it is shown how the calculation
of point symmetries of such nonlocally related systems leads to the discovery of
nonlocal symmetries for a given PDE system. The situation of systematically con-
structing useful nonlocally related systems in multidimensions is considered. Many
illustrative examples are provided.

1 Introduction

This chapter is concerned with recent developments in finding conservation laws
(CLs) and nonlocal symmetries for partial differential equations (PDEs). It focuses
on recent research of the authors and some of the first author’s collaborators, includ-
ing Stephen Anco, Alexei Cheviakov, Temuer Chaolu, Jean-François Ganghoffer,
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Ivanova, Sukeyuki Kumei, Ian Lisle, Alex Ma, Greg Reid, Vladimir Shtelen and
Thomas Wolf. Much of the material in this chapter appears in more detail in [1, 2].

In the latter part of the 19th century, Sophus Lie initiated his studies on con-
tinuous groups of transformations (Lie groups of transformations) in order to put
order to, and thereby extend systematically, the hodgepodge of heuristic techniques
for solving ordinary differential equations (ODEs). In particular, Lie showed the
following.

• The problem of finding a Lie group of point transformations leaving invariant
a differential equation (point symmetry of a differential equation) is systematic
and reduces to solving a related linear system of determining equations for the
coefficients (infinitesimals) of its infinitesimal generator.

• A point symmetry of an ODE leads to reducing systematically the order of an
ODE (irrespective of any imposed initial conditions).

• A point symmetry of a PDE leads to finding systematically special solutions called
invariant (similarity) solutions.

• A point symmetry of a differential equation generates a one-parameter family
of solutions from any known solution of the differential equation that is not an
invariant solution.

However there were limitations to the applicability of Lie’s work.

• There were a restricted number of applications for point symmetries, especially
for PDE systems.

• Few differential equations have point symmetries.
• For PDE systems having point symmetries, the invariant solutions arising from
point symmetries normally yield only a small submanifold of the solution mani-
fold of the PDE system and hence few posed boundary value problems can be
solved.

• There was the computational difficulty of finding point symmetries.

Since the end of the 19th century there have been significant extensions of Lie’s
work on symmetries of PDEs to extend its range of applicability.

• Further applications of point symmetries have been found to include linearizations,
other mappings and solutions of boundary value problems. In particular, knowl-
edge of the point symmetries of a nonlinear PDE system (contact symmetries in the
case of a scalar PDE), allows one to determine whether the system can be mapped
invertibly to a linear system and yields a procedure to find such a mapping when
one exists [2–4]. Knowledge of the point symmetries of a linear PDE system with
variable coefficients allows one to determine whether the system can be mapped
invertibly to a linear system with constant coefficients and yields a procedure to
find such a mapping when one exists [2, 3].

• Extensions of the spaces of symmetries of a given PDE system to include
local symmetries (higher-order symmetries) as well as nonlocal symmetries
[2, 5–8].

• Extension of the applications of symmetries to include variational symmetries that
yield conservation laws for variational systems [2, 8].
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• Extension of variational symmetries to more general multipliers and resulting
conservation laws for essentially any given PDE system [2, 8–11].

• The discovery of further solutions that arise from the extension of Lie’s method
to the “nonclassical method” as well as other generalizations [2, 12, 13].

• The development of symbolic computation software to solve efficiently the
(overdetermined) linear system of symmetry and/or multiplier determining equa-
tions as well as related calculations for solving the nonlinear systems of determin-
ing equations arising when one uses the nonclassical method [14–18].

1.1 What is a Symmetry of a PDE System and How to Find One?

A symmetry (discrete or continuous) of a PDE system is any transformation of its
solution manifold into itself, i.e., a symmetry transforms (maps) any solution of a
PDE system to a solution of the same system. In particular, continuous symmetries
of a PDE system are continuous deformations of its solutions to solutions of the
same PDE system. Hence continuous symmetries are defined topologically and not
restricted to just point or local symmetries. Thus, in principle, any nontrivial PDE has
symmetries. The problem is to find and use the symmetries of a given PDE system.
Practically, to find symmetries of a given PDE system, one considers transformations,
acting locally on the variables of somefinite-dimensional space,which leave invariant
the solution manifold of the PDE system and its differential consequences. However,
these variables do not have to be restricted to just the independent and dependent
variables of the given PDE system.

Higher-order symmetries (local symmetries) arise when the solutions of the linear
determining equations for infinitesimals are allowed to depend on a finite number of
derivatives of dependent variables of the PDE system.

• Infinitesimals for a point symmetry in evolutionary form allow at most linear
dependence on first derivatives of dependent variables of a PDE system.

• Infinitesimals for a contact symmetry in evolutionary form (only exists for a scalar
PDE) allow arbitrary dependence on at most first derivatives of the dependent
variable of a scalar PDE.

In making the extension from point and contact symmetries to higher-order sym-
metries, it is essential to realize that the linear determining equations for local sym-
metries are the linearized system (Fréchet derivative) of the given PDE system that
holds for all of its solutions. Globally, point and contact symmetries act on finite-
dimensional spaces whereas higher-order symmetries act on infinite-dimensional
spaces consisting of the dependent and independent variables of a given PDE system
as well as all of their derivatives. Well-known integrable equations of mathematical
physics such as the Korteweg-de-Vries equation have an infinite number of higher-
order symmetries [19].

Another extension is to consider solutions of the determining equations where
infinitesimals have an ad-hoc dependence on nonlocal variables such as integrals of
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the dependent variables [20–23]. For some PDEs, such nonlocal symmetries can be
found formally through recursion operators that depend on inverse differentiation.
Integrable equations such as the sine-Gordon and cubic Schrödinger equations have
an infinite number of such nonlocal symmetries.

1.2 Conservation Laws

In her celebrated 1918 paper [5], Emmy Noether showed that if a DE system admits
a variational principle, then any local transformation group leaving invariant the
action integral for its Lagrangian density, i.e., a variational symmetry, yields a local
conservation law. Conversely, any local CL of a variational DE system arises from
a variational symmetry, and hence there is a direct correspondence between local
CLs and variational symmetries (Noether’s theorem).

However there are limitations in the use of Noether’s theorem.

• Its application is restricted to variational systems. In particular, a given DE system,
as written, is variational if and only if its linearized system is self-adjoint.

• One has the difficulty of finding local symmetries of the action integral. In general,
not all local symmetries of a variational DE system are variational symmetries.

• The use of Noether’s theorem to find local conservation laws is coordinate-
dependent.

The Direct Method for finding CLs allows one to find local CLs more generally
for a given DE system. A CL of a given DE system is a divergence expression that
vanishes on all solutions of the DE system. Local CLs arise from scalar products
formed by linear combinations of local CL multipliers (factors that are functions
of independent and dependent variables and their derivatives) multiplying each DE
in the system. This scalar product is annihilated by the Euler operators associated
with each of its dependent variables without restricting these variables in the scalar
product to solutions of the system of DEs, i.e., the dependent variables are replaced
by arbitrary functions of the independent variables.

If a given DE system, as written, is variational, then local CL multipliers corre-
spond to variational symmetries. In the variational situation, using theDirectMethod,
local CL multipliers satisfy a linear system of determining equations that includes
the linearizing system of the given DE system augmented by additional determining
equations that taken together correspond to the action integral being invariant under
the associated variational symmetry.

More generally, in using the Direct Method for any given DE system, the local
CL multipliers are the solutions of an easily found linear determining system that
includes the adjoint system of the linearizing DE system [1, 2, 9–11].

For any set of local CL multipliers, usually one can directly find the fluxes and
density of the corresponding local CL and, if this proves difficult, there is an integral
formula that yields them without the need of a specific functional (Lagrangian) even
in the case when the given DE system is variational [9–11].

One can compare the number of local symmetries and the number of local CLs
of a given DE system. When a DE system is variational, i.e., its linearized system
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is self-adjoint, then local CLs arise from a subset of its local symmetries and the
number of linearly independent local CLs cannot exceed the number of higher-order
symmetries. In general, this will not be the case when a system is not variational.
Here a givenDE system can havemore local conservation laws than local symmetries
as well as vice versa.

For any given DE system, a transformation group (continuous or discrete) that
leaves it invariant yields an explicit formula that maps a CL to a CL of the same
system, whether or not the given system is variational. If the transformation group
is a one-parameter Lie group of point (or contact) transformations, then in terms of
a parameter expansion a given CL can map into more than one additional CL for the
given DE system [2, 24].

1.3 Nonlocally Related Systems and Nonlocal Symmetries

Systematic procedures have been found to seek nonlocal symmetries of a given PDE
system through applying Lie’s algorithm to nonlocally related systems. In particular,
to apply symmetry methods to PDE systems, one needs to work in some specific
coordinate frame in order to perform calculations. A procedure to find symmetries
that are nonlocal and yet are local in some related coordinate frame involves embed-
ding a given PDE system in another PDE system obtained by adjoining nonlocal
variables in such a way that the resulting nonlocally related PDE system is equiva-
lent to the given system. Consequently, any local symmetry of the nonlocally related
system yields a symmetry of the given system (The converse also holds). A local
symmetry of the nonlocally related system, with the corresponding infinitesimals for
the variables of the given PDE system having an essential dependence on nonlocal
variables, yields a nonlocal symmetry of the given PDE system.

There are two known systematic ways to find such an embedding.

• Each local CL of a given PDE system yields a nonlocally related system. For each
local CL, one can introduce a potential variable(s). Here the nonlocally related
system is the given PDE system augmented by a corresponding potential system
[2, 25–27].

• Each point symmetry of a given PDE system yields a nonlocally related system.
Here, as a first step, the given PDE system naturally yields a locally related PDE
system (intermediate system) arising from the canonical coordinates of the point
symmetry. In turn, the intermediate system has a natural CL which yields a nonlo-
cally related system (inverse potential system) for the given PDE system [28, 29].
The intermediate system plays the role of a potential system for the inverse poten-
tial system.

If a local symmetry of such a nonlocally related system has an essential depen-
dence on nonlocal variables when projected to the given system, then it yields a
nonlocal symmetry of the given PDE system. It turns out that many PDE systems
have such systematically constructed nonlocal symmetries. Furthermore, one can
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find additional nonlocal symmetries of a given PDE system through seeking local
symmetries of an equivalent subsystem of the given system or one of its constructed
nonlocally related systems provided that such a subsystem is nonlocally related to
the given PDE system.

There are many applications of nonlocally related systems.

• Invariant solutions of nonlocally related systems (arising from CLs or point sym-
metries) can yield further solutions of a given PDE system.

• Since a point symmetry-based or CL-based nonlocal symmetry is a local symmetry
of a constructed nonlocally related system, it generates a one-parameter family of
solutions from any known solution (that is not an invariant solution) of such a
nonlocally related system. In turn, this yields a one-parameter family of solutions
from any known solution of the given PDE system.

• Local CLs of such nonlocally related systems can yield nonlocal CLs of a given
PDE system if their local CLmultipliers have an essential dependence on nonlocal
variables.

Still wider classes of nonlocally related systems can be constructed systematically
for a given PDE system. One can further extend embeddings through the effective use
of localCLs to systematically construct trees of nonlocally related but equivalent PDE
systems. If a given PDE system has n local CLs, then each CL yields potentials and
corresponding potential systems. From the n local CLs, one can directly construct up
to 2n−1 independent nonlocally related systems of PDEs by considering correspond-
ing potential systems individually (n singlets), in pairs (n(n − 1)/2 couplets), . . . ,
taken all together (one n-plet). Any of these systems could lead to the discovery of
new nonlocal symmetries and/or nonlocal CLs of the given PDE system or any of the
other nonlocally related systems. Such nonlocal CLs could yield further nonlocally
related systems, etc. Furthermore, subsystems of such nonlocally related systems
could yield further nonlocally related systems. Correspondingly, a tree of nonlocally
related, and equivalent, systems is constructed for a given PDE system [2, 30, 31].

The situation in the case of multidimensional PDE systems (i.e., with at least three
independent variables) is especially interesting. Here one can show that nonlocal
symmetries and nonlocal CLs arising from the CL-based approach cannot arise from
potential systems unless they are augmented by gauge constraints [2, 32, 33].

There exist many applications of such systematically constructed nonlocally
related systems that further extend the use of symmetry methods for PDE systems.

• Through such constructions, one can systematically relateEulerian andLagrangian
coordinate descriptions of gas dynamics and nonlinear elasticity. In particular, for
the Eulerian coordinate description, a subsystem of the potential system aris-
ing from conservation of mass, naturally yields the corresponding description in
Lagrangian coordinates [2, 30, 31, 34, 35].

• For a given class of PDEs with constitutive functions, one finds trees of nonlocally
related systems yielding symmetries and CLs with respect to various forms of its
constitutive functions.
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• One can systematically seek noninvertible mappings of nonlinear PDE systems to
linear PDE systems. Consequently, further nonlinear PDE systems can be mapped
into equivalent linear PDE systems beyond those obtained through invertible map-
pings [2, 27, 36].

• One can systematically extend the class of linear PDE systems with variable coef-
ficients that can be mapped into equivalent linear PDE systems with constant
coefficients through inclusion of noninvertible mappings [2, 37, 38].

The rest of this chapter is organized as follows. In Sect. 2, we review local sym-
metries, Lie’s algorithm to find local symmetries in evolutionary form, applications
of local symmetries and as examples consider the heat equation and the Kortweg-
de Vries equation. In Sect. 3, we consider the construction of conservation laws,
introduce the Direct Method and its relationship to Noether’s theorem, and show
how symmetries could yield additional CLs from known CLs. As examples, we
consider nonlinear telegraph equations, the Korteweg-de Vries equation, the Klein-
Gordon equation, and nonlinear wave equations. In Sect. 4, we present systematic
procedures to seek nonlocally related systems and nonlocal symmetries of a given
PDE system with two independent variables. We introduce conservation law and
point symmetry based methods as well as the use of subsystems to obtain trees of
equivalent nonlocally related PDE systems. As examples, we focus on nonlinear
wave equations, nonlinear telegraph equations, planar gas dynamics equations, and
nonlinear reaction diffusion equations. In Sect. 5, we consider the situation of nonlo-
cality in multidimensions. We show that if one directly applies the CL-based method
to a single CL, then it is necessary to append a gauge constraint relating potential
variables of the resulting vector potential systemwhen seeking nonlocal symmetries.
Some open problems are discussed.

2 Local Symmetries

Lie’s algorithm for seeking point symmetries can be extended to seek more general
local symmetries admitted by PDE systems. In the extension of Lie’s algorithm, one
uses differential consequences of the given PDE system, i.e., invariance of a given
PDE system is understood to include its differential consequences. Here it is impor-
tant to consider the infinitesimal generators for point symmetries in their evolutionary
form where the independent variables are themselves invariant and the action of a
group of point transformations is strictly an action on the dependent variables of the
PDE system, so that solutions are directly mapped into other solutions under the
group action. This allows one to readily extend Lie’s algorithm to seek contact sym-
metries (only existing for scalar PDEs) where now the components of infinitesimal
generators for dependent variables can depend at most on the first derivatives of the
dependent variable of a given scalar PDE (if this dependence is at most linear on the
first derivatives, then a contact symmetry is a point symmetry).
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A contact symmetry is equivalent to a point transformation acting on the space of
the given independent variables, the dependent variable and its first derivatives and,
through this, can be naturally extended to a point transformation acting on the space
of the given independent variables, the dependent variable and its derivatives to any
finite order greater than one.

Lie’s algorithm can be still further extended by allowing the infinitesimal gen-
erators in evolutionary form to depend on derivatives of dependent variables to any
finite order. This allows one to calculate symmetries that are called higher-order
symmetries. In the scalar case, contact symmetries are first-order symmetries. Oth-
erwise, higher-order symmetries are not equivalent to point transformations acting
on a finite-dimensional space including the independent variables, the dependent
variables and their derivatives to some finite order. Higher-order symmetries are
local symmetries in the sense that the components of the dependent variables in their
infinitesimal generators depend at most on a finite number of derivatives of a given
PDE system’s dependent variables so that their calculation only depends on the local
behaviour of solutions of a given PDE system.

Local symmetries include point symmetries, contact symmetries and higher-order
symmetries. Local symmetries are uniquely determined when infinitesimal genera-
tors are represented in evolutionary form.

Sophus Lie considered contact symmetries. Emmy Noether introduced the notion
of higher-order symmetries in her celebrated paper on conservation laws [5]. The
well-known infinite sequences of conservation laws of the Korteweg-de Vries (KdV)
and sine-Gordon equations are directly related to admitted infinite sequences of local
symmetries obtained through the use of recursion operators [19].

Consider a given scalar PDE of order k

R(x, t, u, ∂u, . . . , ∂ku) = 0 (1)

with independent variables (x, t) and dependent variable u(x, t); ∂ j u denotes the
j th order partial derivatives of u(x, t) appearing in the PDE (1). In evolutionary
form, the local symmetries of order p of a PDE (1), in terms of their infinitesimal
generators

η(x, t, u, ∂u, . . . , ∂ pu)
∂

∂u

are the solutions η(x, t, u, ∂u, . . . , ∂ pu) of its linearized system (Fréchet derivative)

[
∂R

∂u
η + ∂R

∂ux
Dxη + ∂R

∂ut
Dtη + ∂2R

∂ux
2 (Dx )

2η + · · ·
]

R = 0,
Dx R = 0,
Dt R = 0,

.

.

.

= 0

in terms of total derivative operators
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Dx = ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ · · ·

Dt = ∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ · · ·

and holding for all solutions u = θ(x, t) of the PDE (1) and its differential conse-
quences.

A local symmetry of order p, η(x, t, u, ∂u, . . . , ∂ pu) ∂
∂u (including its natural

extension to action on derivatives), maps any solution u = θ(x, t) of PDE (1) (that
is not an invariant solution of PDE (1)) into a one-parameter (ε) family of solutions
of PDE (1) given by the expression

u =
(
e
ε
(
η ∂

∂u +(Dx η) ∂
∂ux

+(Dt η) ∂
∂ut

+···
)
u

)∣∣∣∣
u=θ(x,t)

and is equivalent to the transformation

x∗ = x

t∗ = t

u∗ = e
ε
(
η ∂

∂u +(Dx η) ∂
∂ux

+(Dt η) ∂
∂ut

+···
)
u

= u + εη(x, t, u, ∂u, . . . , ∂ pu) + O(ε2).

If p = 1, then the first order symmetry is equivalent to the contact symmetry

x∗ = x + ε
∂η

∂ux
+ O(ε2)

t∗ = t + ε
∂η

∂ut
+ O(ε2)

u∗ = u + ε

(
ux

∂η

∂ux
+ ut

∂η

∂ut
− η

)
+ O(ε2)

u∗
x = ux + ε

(
−ux

∂η

∂u
− ∂η

∂x

)
+ O(ε2)

u∗
t = ut + ε

(
−ut

∂η

∂u
− ∂η

∂t

)
+ O(ε2).

If a first order symmetry has an infinitesimal of the form

η(x, t, u, ∂u) = ξ(x, t, u)ux + τ (x, t, u)ut − ω(x, t, u)

then it is equivalent to the point symmetry
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x∗ = x + εξ(x, t, u) + O(ε2)

t∗ = t + ετ (x, t, u) + O(ε2)

u∗ = u + εω(x, t, u) + O(ε2).

2.1 Example 1: The Heat Equation

The heat equation
R = ut − uxx = 0

has the point symmetries [12, 13]

X1 = ux
∂

∂u
, X2 = ut

∂

∂u
, X3 = (xux + 2tut )

∂

∂u

X4 = (xtux + t2ut + [ 14 x2 + 1
2 t]u)

∂

∂u

X5 = (tux + 1
2 xu)

∂

∂u
, X6 = u

∂

∂u
.

2.2 Example 2: The Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equation

R = ut + uux + uxxx = 0

has an infinite sequence of higher-order symmetries given by

(Rn)ux , n = 0, 1, 2, . . .

in terms of the recursion operator [19]

R = (Dx )
2 + 2

3u + 1
3ux (Dx )

−1.

Specifically, one obtains corresponding nonlocal symmetries

ux
∂

∂u
, (uux + uxxx )

∂

∂u

( 56u2ux + 4ux uxx + 5
3uuxxx + uxxxxx )

∂

∂u
, . . . .

For a given PDE system, local symmetries can be used to determine
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• specific invariant solutions.
• a one-parameter family of solutions from “any” known solution.
• whether it can be linearized by an invertible transformation and find the lineariza-
tion when it exists [3, 4, 21].

• whether an inverse scattering transform exists.
• whether a given linear PDE with variable coefficients can be invertibly mapped
into a linear PDEwith constant coefficients and find such a mapping when it exists
[39, 40].

3 Construction of Conservation Laws

In this section, we consider the problem of finding the local conservation laws for a
given PDE system. In particular, we present the Direct Method for the construction
of CLs. In the Direct Method one first derives the determining equations yielding the
multipliers (local CL multipliers). Following this, one finds the fluxes and densities
of corresponding local CLs. It is shown that a subset of the determining equations
for local CL multipliers includes the adjoint equations of the determining equations
yielding the local symmetries (in evolutionary form) of a given PDE system. The self-
adjoint case is especially interesting since here the given PDE system is variational
and thus the local CL multipliers are also local symmetries (the converse is false) of
the given PDE system. A comparison is made with the classical Noether theorem.
Further connections between symmetries and CLs are presented. In particular, it is
shown how a symmetry of a PDE system maps a known CL to a CL of the same
PDE system. In the case of a local symmetry it is shown that a parameter expansion
could yield more than one new CL from a known CL.

3.1 Uses of Conservation Laws

Conservation laws can yield constants of motion for any posed boundary value prob-
lem for a given PDE system. For this reason, for global convergence of an approxi-
mation scheme, it is important to preserve CLs, at least those CLs considered to be
of importance for a particular posed boundary value problem.

From knowledge of the local CL multipliers for a given nonlinear PDE system,
one can determine whether it can be mapped invertibly to a linear PDE system and
set up the equations to find such a mapping when one exists [2].

In Sect. 4, it will be shown how one can use local CLs to find nonlocally related
systems for a given PDE system. In turn, invariant solutions arising from local sym-
metries of such a nonlocally related system could yield further solutions of the given
PDE system beyond those obtained as invariant solutions arising from local symme-
try reductions.Moreover, the computation of local CLs of a nonlocally related system
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could yield nonlocal CLs of a given PDE system and to noninvertible linearizations
of nonlinear PDE systems.

3.2 Direct Method for Construction of Conservation Laws

Consider a given system R{x; u} of N PDEs of order k with n independent variables
x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x))

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (2)

A local conservation law of the PDE system (2) is an expression

DiΦ
i [u] = D1Φ

1[u] + · · · + DnΦn[u] = 0 (3)

holding for any solution of the PDE system (2). In (3), the operators Di , i = 1, . . . , n
are total derivative operators.

Definition 1 A PDE system R{x; u} (2) is totally non-degenerate if (2) and its
differential consequences have maximal rank and are locally solvable.

The proof of the following theorem appears in [11].

Theorem 1 Suppose R{x; u} (2) is a totally non-degenerate PDE system. Then for
every nontrivial local conservation law

DiΦ
i [u] = DiΦ

i (x, u, ∂u, . . . , ∂r u) = 0

of (2), there exists a set of multipliers, called local conservation law multipliers,

Λσ[U ] = Λσ(x, U, ∂U, . . . , ∂lU ), σ = 1, . . . , N

such that
DiΦ

i [U ] ≡ Λσ[U ]Rσ[U ]

holds for arbitrary U (x).

Definition 2 The Euler operator with respect to U j is the operator

EU j = ∂

∂U j
− Di

∂

∂U j
i

+ · · · + (−1)sDi1 · · ·Dis

∂

∂U j
i1···is

+ · · · .

The proofs of the following two theorems follow from direct computations.

Theorem 2 For any divergence expression DiΦ
i [U ], one has
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EU j (DiΦ
i [U ]) ≡ 0, j = 1, . . . , m.

Theorem 3 Let F[U ] = F(x, U, ∂U, . . . , ∂sU ). Then

EU j F[U ] ≡ 0, j = 1, . . . , m

holds for arbitrary U (x) if and only if

F[U ] ≡ DiΨ
i (x, U, ∂U, . . . , ∂s−1U )

for some set of functions {Ψ i (x, U, ∂U, . . . , ∂s−1U )}.

The next theorem follows directly from Theorems 2 and 3.

Theorem 4 A set of local multipliers {Λσ(x, U, ∂U, . . . , ∂lU )} yields a divergence
expression for PDE system (2) if and only if

EU j (Λσ(x, U, ∂U, . . . , ∂lU )Rσ(x, U, ∂U, . . . , ∂kU )) ≡ 0, j = 1, . . . , m
(4)

holds for arbitrary U (x).

3.2.1 Summary of Direct Method to Find Local CLs

The Direct Method to find local CLs for a given PDE system (2) can be summarized
as follows. Further details can be found in [2, 10, 11].

1. Seek multipliers of the form Λσ[U ] = Λσ(x, U, ∂U, . . . , ∂lU ) with derivatives
∂lU to some specified order l.

2. Obtain and solve the determining Eq. (4) to find the multipliers of local conser-
vation laws.

3. For each set of multipliers, find the corresponding fluxes Φ i [U ] = Φ i (x, U,

∂U, . . . , ∂r U ) satisfying the identity

Λσ[U ]Rσ[U ] ≡ DiΦ
i [U ]. (5)

4. Consequently, one obtains the local CL

DiΦ
i [u] = DiΦ

i (x, u, ∂u, . . . , ∂r u) = 0

with fluxes Φ i [u] holding for any solution of the PDE system (2).

The fluxesΦ i [U ] = Φ i (x, U, ∂U, . . . , ∂r U ) in (5) can be found in the following
ways:

• Directly manipulate the left-hand side of (5) to obtain the right-hand side diver-
gence form.
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• Treat the fluxes as unknowns in expression (5). Expand the right-hand side to set
up a linear set of PDEs for the fluxes. Solve this linear set of PDEs.

• If one is unable to perform either of the first two ways successfully, then one
can formally obtain the fluxes through use of an integral (homotopy) formula that
appears in [11].

Example 1 Nonlinear Telegraph System

Consider the nonlinear telegraph system

R1[u, v] = vt − (u2 + 1)ux − u = 0

R2[u, v] = ut − vx = 0. (6)

We seek local CL multipliers of the form

Λ1 = ξ[U, V ] = ξ(x, t, U, V ), Λ2 = ϕ[U, V ] = ϕ(x, t, U, V ) (7)

for the nonlinear telegraph system (6). In terms of the Euler operators

EU = ∂

∂U
− Dx

∂

∂Ux
− Dt

∂

∂Ut
, EV = ∂

∂V
− Dx

∂

∂Vx
− Dt

∂

∂Vt

the multipliers (7) yield a local CL of the nonlinear telegraph system (6) if and only
if the determining equations

EU (ξ[U, V ]R1[U, V ] + ϕ[U, V ]R2[U, V ]) ≡ 0

EV (ξ[U, V ]R1[U, V ] + ϕ[U, V ]R2[U, V ]) ≡ 0 (8)

hold for arbitrary differentiable functions U (x, t), V (x, t). It is straightforward to
show that the Eq. (8) hold if and only if

ϕV − ξU = 0

ϕU − (U 2 + 1)ξV = 0

ϕx − ξt − UξV = 0 (9)

(U 2 + 1)ξx − ϕt − UξU − ξ = 0.

The five linearly independent solutions [41] of the linear determining system (9) are
given by

(ξ1,ϕ1) = (0, 1), (ξ2,ϕ2) = (t, x − 1
2 t2), (ξ3,ϕ3) = (1,−t)

(ξ4,ϕ4) = (ex+ 1
2U2+V

, Uex+ 1
2U2+V

), (ξ5,ϕ5) = (ex+ 1
2U2−V

,−Uex+ 1
2U2−V

).
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Correspondingly, through manipulation, one obtains the following five local conser-
vation laws [41]

Dt u + Dx [−v] = 0

Dt [(x − 1
2 t2)u + tv] + Dx [( 12 t2 − x)v − t ( 13u3 + u)] = 0

Dt [v − tu] + Dx [tv − ( 13u3 + u)] = 0

Dt [ex+ 1
2 u2+v] + Dx [−uex+ 1

2 u2+v] = 0

Dt [ex+ 1
2 u2−v] + Dx [uex+ 1

2 u2−v] = 0.

Example 2 KdV Equation

As a second example, consider again the KdV equation [10]

R[u] = ut + uux + uxxx = 0. (10)

It is convenient to also write (10) as

ut = g[u] = −(uux + uxxx ). (11)

Due to the evolutionary form of the KdV equation (10), it follows that all local
CL multipliers are of the form Λ[U ] = Λ(t, x, U, ∂xU, . . . , ∂l

xU ), l = 1, 2, . . . .
Then EU (Λ[U ](Ut + UUx + Uxxx )) ≡ 0 if and only if

− DtΛ − UDxΛ − D3
xΛ + (Ut + UUx + Uxxx )ΛU

− Dx ((Ut + UUx + Uxxx )Λ∂x U ) + · · · (12)

+ (−1)lDl
x ((Ut + UUx + Uxxx )Λ∂l

x U ) ≡ 0.

Note that the linear determining Eq. (12) is of the form

α1 + α2Ut + α3∂xUt + · · · + αl+2∂
l
xUt ≡ 0 (13)

where in Eq. (13) each coefficient αi depends at most on t , x , U and x-derivatives of
U . Since U (x, t) is an arbitrary function in Eq. (13), it follows that each of the terms
Ut , ∂xUt , . . . , ∂l

xUt must be treated as independent variables in (13). Hence αi = 0,
i = 1, . . . , l + 2. Thus Eq. (13) splits into an overdetermined linear system of l + 2
determining equations for the local multipliers Λ(t, x, U, ∂xU, . . . , ∂l

xU ), given by

D̃tΛ + UDxΛ + D3
xΛ = 0 (14)
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l∑
k=1

(−Dx )
kΛ∂k

x U = 0 (15)

(1−(−1)q)Λ∂
q
x U +

l∑
k=q+1

k!
q!(k − q)! (−Dx )

k−qΛ∂k
x U = 0, q = 1, . . . , l−1 (16)

(1 − (−1)l)Λ∂l
x U = 0 (17)

where D̃t = ∂
∂t + g[U ] ∂

∂U + (g[U ])x
∂

∂Ux
+ · · · is the total derivative operator

restricted to the KdV equation, with g[U ] = −(UUx + Uxxx ).
Now we seek local CL multipliers of the form Λ[U ] = Λ(x, t, U ). Then the

determining Eqs. (15)–(17) are satisfied and the determining Eq. (14) becomes

(Λt + UΛx + Λxxx ) + 3ΛxxU Ux + 3ΛxUU U 2
x

+ ΛUUU U 3
x + 3ΛxU Uxx + 3ΛUU UxUxx = 0.

(18)

Equation (18) holds for arbitrary values of x , t , U , Ux and Uxx . Hence Eq. (18)
splits into six equations. Their solution yields the three local CL multipliers Λ1 = 1,
Λ2 = U , Λ3 = tU − x . In turn, after simple manipulations, these three multipliers
yield the divergence expressions

Ut + UUx + Uxxx ≡DtU + Dx (
1
2U 2 + Uxx )

U (Ut + UUx + Uxxx ) ≡Dt (
1
2U 2) + Dx (

1
3U 3 + UUxx − 1

2U 2
x )

(tU − x)(Ut + UUx + Uxxx ) ≡Dt (
1
2 tU 2 − xU )

+ Dx (− 1
2 xU 2 + tUUxx − 1

2 tU 2
x − xUxx + Ux ).

Thus the corresponding local conservation laws for the KdV Eq. (10) are given by

Dt u + Dx (
1
2u2 + uxx ) = 0

Dt (
1
2u2) + Dx (

1
3u3 + uuxx − 1

2u2
x ) = 0

Dt (
1
2 tu2 − xu) + Dx (− 1

2 xu2 + tuuxx − 1
2 tu2

x − xuxx + ux ) = 0.

One can show that there is only one additional local CL multiplier of the form
Λ[U ] = Λ(x, t, U, Ux , Uxx ), given by

Λ4 = Uxx + 1
2U 2.

Moreover, one can show that in terms of the recursion operator
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R∗[U ] = D2
x + 1

3U + 1
3D

−1
x ◦ U ◦ Dx

the KdV equation has an infinite sequence of local CL multipliers given by

Λ2n = (R∗[U ])nU, n = 1, 2, . . . .

General Expression Relating Local CL Multipliers and Solutions of Adjoint
Equations.

Consider a given PDE system (2). Let Rσ[U ] = Rσ(x, U, ∂U, . . . , ∂kU ), σ =
1, . . . , N , where U (x) = (U 1(x), . . . , U m(x)) is arbitrary and U (x) = u(x) solves
the PDE system (2).

In terms of m arbitrary functions V (x) = (V 1(x), . . . , V m(x)), the linearizing
operator L[U ] associated with the PDE system (2) is given by

Lσ
ρ [U ]V ρ ≡

[
∂Rσ[U ]

∂Uρ
+ ∂Rσ[U ]

∂Uρ
i

Di + · · · + ∂Rσ[U ]
∂Uρ

i1...ik

Di1 · · ·Dik

]
V ρ,

σ = 1, . . . , N

and, in terms of N arbitrary functions W (x) = (W1(x), . . . , WN (x)), the adjoint
operator L∗[U ] associated with the PDE system (2) is given by

L∗σ
ρ [U ]Wσ ≡ ∂Rσ[U ]

∂Uρ
Wσ − Di

(
∂Rσ[U ]

∂Uρ
i

Wσ

)
+ · · ·

+ (−1)kDi1 · · ·Dik

(
∂Rσ[U ]
∂Uρ

i1···ik

Wσ

)
, ρ = 1, . . . , m.

In particular, WσLσ
ρ [U ]V ρ − V ρL∗σ

ρ [U ]Wσ is a divergence expression.
Let

Wσ = Λσ[U ] = Λσ(x, U, ∂U, . . . , ∂lU ), σ = 1, . . . , N .

By direct calculation, in terms of Euler operators, one can show that

EUρ(Λσ[U ]Rσ[U ]) ≡ L∗σ
ρ [U ]Λσ[U ] + Fρ(R[U ]) (19)

with

Fρ(R[U ]) = ∂Λσ[U ]
∂Uρ

Rσ[U ] − Di

(
∂Λσ[U ]

∂Uρ
i

Rσ[U ]
)

+ · · ·

+ (−1)lDi1 · · ·Dil

(
∂Λσ[U ]
∂Uρ

i1···il
Rσ[U ]

)
, ρ = 1, . . . , m. (20)
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From (19), it follows that {Λσ(x, U, ∂U, . . . , ∂lU )}N
σ=1 yields a set of local

CL multipliers for the PDE system (2) if and only if the right-hand side of (19)
vanishes for arbitrary U (x). Moreover, since the expressions (20) vanish on any
solution U (x) = u(x) of R{x; u} (2), it follows that every set of local CL multipli-
ers {Λσ(x, U, ∂U, . . . , ∂lU )}N

σ=1 of the PDE system (2) must be a solution of its
adjoint system of PDEs, which is the adjoint of its linearizing system of PDEs, when
U (x) = u(x) is a solution of R{x; u} (2), i.e.,

L∗σ
ρ [u]Λσ[u] = 0, ρ = 1, . . . , m. (21)

The proof of the following theorem follows directly from expression (19).

Theorem 5 Consider a given PDE system (2). A set of functions {Λσ(x, U, ∂U, . . . ,
∂lU )}N

σ=1 yields a set of local CL multipliers for PDE system (2) if and only if the
identities

L∗σ
ρ [U ]Λσ[U ] + ∂Λσ[U ]

∂Uρ
Rσ[U ] − Di

(
∂Λσ[U ]

∂Uρ
i

Rσ[U ]
)

+ · · ·

+ (−1)lDi1 · · ·Dil

(
∂Λσ[U ]
∂Uρ

i1···il
Rσ[U ]

)
≡ 0, ρ = 1, . . . , m

hold for m arbitrary functions U (x) = (U 1(x), . . . , U m(x)) in terms of the compo-
nents {L∗σ

ρ [U ]}of the adjoint operator of the linearizing operator (Fréchet derivative)
for the given PDE system (2).

The derivation leading to Eq. (21) can be summarized in terms of the following
theorem.

Theorem 6 Consider a given PDE system (2). Suppose one has a set of local CL
multipliers {Λσ(x, U, ∂U, . . . , ∂lU )}N

σ=1 for the PDE system (2). Let {L∗σ
ρ [U ]} be

the components of the adjoint operator of the linearizing operator (Fréchet deriv-
ative) for the PDE system (2) and let U (x) = u(x) = (u1(x), . . . , um(x)) be any
solution of the PDE system (2). Then L∗σ

ρ [u]Λσ[u] = 0.

The Situation When the Linearizing Operator is Self-adjoint

Definition 3 Let L[U ], with its components Lσ
ρ [U ], be the linearizing operator asso-

ciated with a PDE system R{x; u} (2). The adjoint operator of L[U ] is L∗[U ], with
components L∗σ

ρ [U ]. L[U ] is a self-adjoint operator if and only if L[U ] ≡ L∗[U ],
i.e., Lσ

ρ [U ] ≡ L∗σ
ρ [U ], σ, ρ = 1, . . . , m.

One can show that a given PDE system, as written, has a variational formulation
if and only if its associated linearizing operator is self-adjoint [8, 42, 43].

If the linearizing operator associated with a given PDE system is self-adjoint, then
each set of local CL multipliers yields a local symmetry of the given PDE system.
In particular, one has the following theorem.
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Theorem 7 Consider a given PDE system R{x; u} (2) with N = m, i.e., the number
of dependent variables appearing in PDE system (2) is the same as the number of
equations in PDE system (2). Suppose the associated linearizing operator L[U ] for
PDE system (2) is self-adjoint. Let {Λσ(x, U, ∂U, . . . , ∂lU )}m

σ=1 be a set of local
CL multipliers for (2). Let

ησ(x, u, ∂u, . . . , ∂lu) = Λσ(x, u, ∂u, . . . , ∂lu), σ = 1, . . . , m

where U (x) = u(x) is any solution of the PDE system (2). Then

ησ(x, u, ∂u, . . . , ∂lu)
∂

∂uσ
(22)

is a local symmetry of R{x; u}.
Proof Since the hypothesis of Theorem 6 is satisfied with L[U ] = L∗[U ], from the
equations of this theorem it follows that in terms of the components of the associated
linearizing operator L[U ], one has

Lσ
ρ [u]Λσ(x, u, ∂u, . . . , ∂lu) = 0, ρ = 1, . . . , m (23)

where u = θ(x) is any solution of the given PDE system (2). But the set of Eq. (23)
is the set of determining equations for a local symmetry Λσ(x, u, ∂u, . . . , ∂lu) ∂

∂uσ

of PDE system (2). Hence (22) is a local symmetry of PDE system (2). ��
The converse of Theorem 7 is false. In particular, suppose ησ(x, u, ∂u, . . . ,

∂lu) ∂
∂uσ is a local symmetry of a PDE system R{x; u} (2) with a self-adjoint

linearizing operator L[U ]. Let Λσ(x, U, ∂U, . . . , ∂lU ) = ησ(x, U, ∂U, . . . , ∂lU ),
σ = 1, . . . , m, where U (x) = (U 1(x), . . . , U m(x)) is arbitrary. Then it does not
necessarily follow that {Λσ(x, U, ∂U, . . . , ∂lU )}m

σ=1 is a set of local CL multipliers
of R{x; u}. This can be seen as follows: In the self-adjoint case, the set of local sym-
metry determining equations is a subset of the set of local multiplier determining
equations. Here each local symmetry yields a set of local CL multipliers if and only
each solution of the set of local symmetry determining equations also solves the
remaining set of local multiplier determining equations.

To illustrate the situation, consider the following example of a nonlinear PDE
whose linearizing operator is self-adjoint but the PDE has a point symmetry that
does not yield a multiplier for a local CL

utt − u(uux )x = 0. (24)

It is easy to see that the PDE (24) has the scaling point symmetry x → αx , u → αu,
corresponding to the infinitesimal generator

X = (u − xux )
∂

∂u
· (25)
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The self-adjoint linearizing operator associated with PDE (24) is given by

L[U ] = D2
t − U 2D2

x − 2UUxDx − 2UUxx − U 2
x .

The determining equation for the local CL multipliers Λ(t, x, U, Ut , Ux ) of the
PDE (24) is an identity holding for all values of the variables t , x , U , Ut , Ux , Utt ,
Utx , Uxx , Uttt , Uttx , Utxx , Uxxx , and splits into a system of two equations consisting
of

D̃2
t Λ − U 2D2

xΛ − 2UUxDxΛ − (2UUxx + U 2
x )Λ = 0 (26)

and
2ΛU + D̃tΛUt − DxΛUt = 0 (27)

in terms of the “restricted” total derivative operator D̃t = ∂
∂t + Ut

∂
∂U + Utx

∂
∂Ux

+
g[U ] ∂

∂Ut
+ Utxx

∂
∂Uxx

+ Dt (g[U ]) ∂
∂Utt

where g[U ] = U (UUx )x .

Equation (26) is the determining equation for Λ(t, x, u, ut , ux )
∂
∂u to be a contact

symmetry of the given PDE (24). If the contact symmetry satisfies the second deter-
mining Eq. (27) then it yields a local CL multiplier Λ(t, x, U, Ut , Ux ) of PDE (24).
It is easy to check that the scaling symmetry (25) obviously satisfies the contact sym-
metry determining Eq. (26) but does not satisfy the second determining Eq. (27)when
u(x, t) is replaced by an arbitrary functionU (x, t). Hence the scaling symmetry (25)
does not yield a local conservation law of PDE (24).

3.3 Noether’s Theorem

In 1918, Emmy Noether presented her celebrated procedure (Noether’s theorem) to
find local CLs for a DE system that admits a variational principle.

When a given DE system admits a variational principle, then the extremals of
the associated action functional yield the given DE system (the Euler-Lagrange
equations). In this case, Noether showed that if a one-parameter local transformation
leaves invariant the action functional (action integral), then one obtains the fluxes of
a local CL through an explicit formula that involves the infinitesimals of the local
transformation and the Lagrangian (Lagrangian density) of the action functional.

3.3.1 Euler-Lagrange Equations

Consider a functional J [U ] in terms of n independent variables x = (x1, . . . , xn)

and m arbitrary functions U = (U 1(x), . . . , U m(x)) and their partial derivatives to
order k, defined on a domain Ω
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J [U ] =
∫
Ω

L[U ]dx =
∫
Ω

L(x, U, ∂U, . . . , ∂kU )dx . (28)

In (28), the function L[U ] = L(x, U, ∂U, . . . , ∂kU ) is called a Lagrangian and the
functional J [U ] is called an action integral.

Consider an infinitesimal change U (x) → U (x) + εv(x) where v(x) is any
function such that v(x) and its derivatives to order k − 1 vanish on the boundary
∂Ω of the domain Ω . The corresponding infinitesimal change (variation) in the
Lagrangian L[U ] is given by

δL = L(x, U + εv, ∂U + ε∂v, . . . , ∂kU + ε∂kv) − L(x, U, ∂U, . . . , ∂kU )

= ε

(
∂L[U ]
∂Ui

vi + ∂L[U ]
∂Ui

j

vi
j + · · · + ∂L[U ]

∂Ui
j1··· jk

vi
j1··· jk

)
+ O(ε2). (29)

Let

W l [U, v] = vi

(
∂L[U ]
∂Ui

l

+ · · · + (−1)k−1D j1 · · ·D jk−1

∂L[U ]
∂Ui

l j1··· jk−1

)

+ vi
j1

(
∂L[U ]
∂Ui

j1l

+ · · · + (−1)k−2D j2 · · ·D jk−1

∂L[U ]
∂Ui

j1l j2··· jk−1

)
(30)

+ · · · + vi
j1··· jk−1

∂L[U ]
∂Ui

j1 j2··· jk−1l

·

After repeatedly using integration by parts, one can show that

δL = ε(viEUi (L[U ]) + Dl W
l [U, v]) + O(ε2) (31)

where EUi is the Euler operator with respect to Ui . The corresponding variation in
the action integral J [U ] is given by

δJ = J [U + εv] − J [U ] =
∫
Ω

δLdx

= ε

∫
Ω

(viEUi (L[U ]) + Dl W
l [U, v])dx + O(ε2) (32)

= ε(

∫
Ω

viEUi (L[U ])dx +
∫

∂Ω

W l [U, v]nldσ) + O(ε2).

Hence if U (x) = u(x) extremizes the action integral J [U ], then the O(ε) term in
δJ must vanish. Thus

∫
Ω

viEui (L[u])dx = 0 for an arbitrary function v(x) defined
on the domain Ω . Hence, if U (x) = u(x) extremizes the action integral J [U ], then
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u(x) must satisfy the PDE system

Eui (L[u]) = ∂L[u]
∂ui

+ · · · + (−1)kD j1 · · ·D jk
∂L[u]

∂ui
j1··· jk

= 0, i = 1, . . . , m. (33)

The Eq. (33) are called the Euler-Lagrange equations satisfied by an extremum
U (x) = u(x) of the action integral J [U ]. Thus the following theorem has been
proved.

Theorem 8 If a smooth function U (x) = u(x) is an extremum of an action integral
(28), then u(x) satisfies the Euler-Lagrange equations (33).

3.3.2 Standard Formulation of Noether’s Theorem

Definition 4 In the standard formulation of Noether’s theorem, the action integral
(28) is invariant under the one-parameter Lie group of point transformations

(x∗)i = xi + εξi (x, U ) + O(ε2), i = 1, . . . , n

(U∗)μ = Uμ + εημ(x, U ) + O(ε2), μ = 1, . . . , m (34)

with infinitesimal generator X = ξi (x, U ) ∂
∂xi + ημ(x, U ) ∂

∂Uμ , if and only if∫
Ω∗ L[U∗]dx∗ = ∫

Ω
L[U ]dx where Ω∗ is the image of Ω under the Lie group

of point transformations (34).

The Jacobian of the one parameter Lie group of point transformations (34) is given
by J = det(Di (x∗) j ) = 1 + εDiξ

i (x, U ) + O(ε2). Then dx∗ = Jdx . Moreover,
L[U∗] = eεXL[U ] in terms of the infinitesimal generator X. Consequently, in the
standard formulation of Noether’s theorem, X is a point symmetry of J [U ] if and
only if

0 =
∫
Ω

(JeεX −1)L[U ]dx = ε

∫
Ω

(L[U ]Diξ
i (x, U )+X(k)L[U ])dx + O(ε2) (35)

holds for arbitrary U (x) where X(k) is the k-th extension (prolongation) of the infin-
itesimal generator X. Hence, if X is a point symmetry of J [U ], then the O(ε) term
in (35) must vanish. Thus L[U ]Diξ

i (x, U ) + X(k)L[U ] ≡ 0.
The one-parameter Lie group of point transformations (34) with infinitesimal gen-

erator X is equivalent to the one-parameter family of transformations in evolutionary
form given by

(x∗)i = xi , i = 1, . . . , n

(U∗)μ = Uμ + ε[ημ(x, U ) − Uμ
i ξi (x, U )] + O(ε2), μ = 1, . . . , m (36)



Some Recent Developments in Finding 23

with k-th extended infinitesimal generator X̂(k) = η̂μ[U ] ∂
∂Uμ + · · · . Under trans-

formation (36), U (x) → U (x) + εv(x) has components vμ(x) = η̂μ[U ] =
ημ(x, U ) − Uμ

i ξi (x, U ). Hence δL = εX̂(k)L[U ] + O(ε2). Thus

∫
Ω

δLdx = ε

∫
Ω

X̂(k)L[U ]dx + O(ε2). (37)

Consequently, after setting vμ(x) = η̂μ[U ] = ημ(x, U )−Uμ
i ξi (x, U ), and compar-

ing expressions (32) and (37), it follows that

X̂(k)L[U ] ≡ η̂μ[U ]EUμ(L[U ]) + Dl W
l [U, η̂[U ]]. (38)

By direct calculation, one can show the following.

Lemma 1 Let F[U ] = F(x, U, ∂U, . . . , ∂kU ) be an arbitrary function of its argu-
ments. Then, in terms of the extended infinitesimal generators X(k) and X̂(k), one has
the identity

X(k)F[U ] + F[U ]Diξ
i (x, U ) ≡ X̂(k)F[U ] + Di (F[U ]ξi (x, U )). (39)

Theorem 9 Standard formulation of Noether’s theorem. Suppose a given PDE sys-
tem is derivable from a variational principle, i.e., the given PDE system is a set of
Euler-Lagrange equations (33) whose solutions u(x) are extrema U (x) = u(x) of an
action integral J [U ] with Lagrangian L[U ]. Suppose the one-parameter Lie group
of point transformations (34) with infinitesimal generator X leaves invariant J [U ].
Then

1. The identity

η̂μ[U ]EUμ(L[U ]) ≡ −Di (ξ
i (x, U )L[U ] + W i [U, η̂[U ]]) (40)

holds for arbitrary functions U (x), i.e., {η̂[U ]}m
μ=1 is a set of local CL multipliers

of the Euler-Lagrange system (33).
2. The local conservation law

Di (ξ
i (x, u)L[u] + W i [u, η̂[u]]) = 0 (41)

holds for any solution u = θ(x) of the Euler-Lagrange system (33).

Proof Let F[U ] = L[U ] in the identity in Lemma 1. Then the identity

X̂(k)L[U ] + Di (L[U ]ξi (x, U )) ≡ 0 (42)

holds for arbitrary functions U (x). Substitution for X̂(k)L[U ] in (42) through (38)
yields the identity (40). If U (x) = u(x) solves the Euler-Lagrange system (33),
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then the left-hand-side of equation (40) vanishes. This yields the local conservation
law (41). ��

3.3.3 Extended Formulation of Noether’s Theorem

One can extend the standard formulation of Noether’s theorem to find additional
local conservation laws arising from invariance under higher-order transformations
through a generalization of Definition 4 for the invariance of an action integral J [U ].
Here the action integral J [U ] is invariant under a one-parameter family of higher-
order transformations if its integrand L[U ] is invariant to within a divergence.
Definition 5 Let X̂ = η̂μ(x, U, ∂U, . . . , ∂sU ) ∂

∂Uμ be the infinitesimal generator
of a one-parameter family of local transformations (36) in evolutionary form with
infinite extension X̂(∞). Let η̂μ[U ] = η̂μ(x, U, ∂U, . . . , ∂sU ). Here X̂ is a local
symmetry of J [U ] if and only if the identity

X̂(∞)L[U ] ≡ Di Ai [U ] (43)

holds for some set of functions Ai [U ] = Ai (x, U, ∂U, . . . , ∂r U ), i = 1, . . . , n.

Theorem 10 Extended formulation of Noether’s theorem. Suppose a given PDE
system is derivable from a variational principle, i.e., the given PDE system is a set
of Euler-Lagrange equations (33) whose solutions u(x) are extrema U (x) = u(x) of
an action integral J [U ] with Lagrangian L[U ]. Suppose X̂ = η̂μ[U ] ∂

∂Uμ is a local
symmetry of J [U ]. Then

1. The identity
η̂μ[U ]EUμ(L[U ]) ≡ Di (Ai [U ] − W i [U, η̂[U ]]) (44)

holds for arbitrary functions U (x), i.e., {η̂μ[U ]}m
μ=1 is a set of local CL multipliers

for the Euler-Lagrange system (33).
2. The local conservation law

Di (W i [u, η̂[u]] − Ai [u]) = 0 (45)

holds for any solution u = θ(x) of the Euler-Lagrange system (33).

Proof For the one-parameter family of local transformations (36) with infinitesimal
generator X̂ = η̂μ[U ] ∂

Uμ , it follows that the corresponding infinitesimal change
U (x) → U (x) + εv(x) has components vμ(x) = η̂μ[U ]. Consequently, δL =
εX̂(∞)L[U ]+ O(ε2). But δL = ε(η̂μ[U ]EUμ(L[U ])+Di (W i [U, η̂[U ]]))+ O(ε2).
Hence it immediately follows that the identity

X̂(∞)L[U ] ≡ η̂μ[U ]EUμ(L[U ]) + Di (W i [U, η̂[U ]]) (46)
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holds for arbitrary functionsU (x). Since X̂ = η̂μ[U ] ∂
Uμ is a local symmetry of J [U ],

it follows that Eq. (43) holds. Substitution for X̂(∞)L[U ] in (46) through (43) yields
the identity (44). If U (x) = u(x) solves the Euler-Lagrange system (33), then the
left-hand-side of Eq. (44) vanishes. This yields the local conservation law (45). ��

The following theorem shows that any local conservation law obtained through
the standard formulation of Noether’s theorem can be obtained through the extended
formulation of Noether’s theorem.

Theorem 11 If a local conservation law is obtained through the standard formula-
tion of Noether’s theorem, then this local conservation law can be obtained through
its extended formulation.

Proof Suppose the one-parameter Lie group of point transformations (34) with infin-
itesimal generator X yields a local CL of a given PDE system derivable from a
variational principle with Euler-Lagrange system (33). Then the identity (42) holds.
Consequently,

X̂(k)L[U ] = X̂(∞)L[U ] = Di Ai [U ] (47)

where Ai [U ] = −Di (L[U ]ξi (x, U )). But Eq. (47) is just the condition for X to be a
local symmetry of J [U ]. Consequently, one obtains the same local conservation law
from the extended formulation of Noether’s theorem. ��

3.3.4 Limitations of Noether’s Theorem

There are several limitations in usingNoether’s theorem to find the local conservation
laws of a given PDE system.

1. There is the difficulty of finding variational symmetries. To find the variational
symmetries of a given DE system arising from a variational principle, first one
determines the local symmetries X = ησ[u] ∂

∂uσ of the Euler-Lagrange equa-
tions (33). Then for each local symmetry, one checks if X leaves invariant the
Lagrangian L[U ] to within a divergence. Note that since all local conservation
laws, obtainable by Noether’s theorem, arise from local CL multipliers, one can
simply use the Direct Method to check whether a local symmetry is a variational
symmetry.

2. A given system of DEs is not variational as written. A given system of differential
equations, as written, is variational if and only if its linearized system (Fréchet
derivative) is self-adjoint. Consequently, it is necessary, but far from sufficient,
that a given system of DEs, as written, must be of even order, have the same
number of equations in the system as its number of dependent variables and be
non-dissipative to directly admit a variational principle.

3. Artifices can make a given system of DEs variational that is not variational, as
written. Such artifices include
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• The use of multipliers. As an example, the PDE

utt + H ′(ux )uxx + H(ux ) = 0 (48)

as written, does not admit a variational principle since its linearized equation
ςt t + H ′(ux )ςxx + (H ′′(ux )+ H ′(ux ))ςx = 0 is not self-adjoint. However, the
equivalent PDE ex [utt + H ′(ux )uxx + H(ux )] = 0, obtained after multiplying
PDE (48) by ex , is self-adjoint!

• The use of a contact transformation. As an example, the ODE

y′′ + 2y′ + y = 0 (49)

as written, obviously does not admit a variational principle. But the point
transformation x → X = x , y → Y = yex , maps the ODE (49) to the
variational ODE Y ′′ = 0. However, it is well-known that every second order
ODE, written in solved form, can be mapped into Y ′′ = 0 by some contact
transformation but there is no finite algorithm to find such a transformation.

• The use of a differential substitution. As an example, the KdV equation (11),
as written, obviously does not admit a variational principle since it is of odd
order. But the well-known differential substitution u = vx yields the equiva-
lent transformed KdV equation vxxxx + vxvxx + vxt = 0, that is the Euler-
Lagrange equation for an extremum V (x, t) = v(x, t) of the action integral
with Lagrangian L[V ] = 1

2 (Vxx )
2 − 1

6 (Vx )
3 − 1

2Vx Vt .

4. Noether’s theorem is coordinate-dependent. The use of Noether’s theorem to
obtain a local conservation law is coordinate-dependent since the action of a
contact transformation can transform a DE having a variational principle to one
that does not have one. On the other hand it is well-known that local conservation
laws are coordinate-independent in the sense that a contact transformation maps
a local CL of a given DE into a local CL of the transformed DE.

5. The artifice of a Lagrangian itself for finding the local CLs of a given DE system.
One should be able to expect to directly find the local conservation laws of a given
DE system without the need to find a related action integral whether or not the
given DE system is variational.

3.4 Further Comments on the Direct Method to Find Local
Conservation Laws vis-á-vis Noether’s Theorem

The Direct Method to find local CLs addresses limitations of Noether’s theorem as
follows.

1. In principle, the DirectMethod can be used to find local conservation laws for any
DE system, nomatter how it is written, whereas the direct application ofNoether’s
theorem requires the linearized system of a given DE system to be self-adjoint.
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Essentially, the Direct Method finds all local CLs of a given DE system. Note
that Noether’s theorem can only be used to find local CLs. As seen in Theorems
9 and 10, Noether’s theorem is also a multiplier method.

2. In the Direct Method, no functional is required unlike the situation for Noether’s
theorem. Local CLs are constructed directly. In the Direct Method, local CL
multipliers correspond to symmetries of a given DE system if and only if its
linearization operator is self-adjoint.

Example 1 Klein-Gordon Equation

As an example to compare the use of Noether’s theorem and the Direct Method to
find local CLs, consider the Klein-Gordon equation

utx − un = 0, n 
= 0, 1. (50)

The PDE (50) has the scaling point symmetry

x∗ = α1−n x, t∗ = t, u∗ = αu (51)

with the corresponding infinitesimal generator X = (u − (1 − n)xux )
∂
∂u . One

can show that the Klein-Gordon equation (50) is variational with action functional
J [U ] = ∫

L[U ]dtdx ; L[U ] = − 1
2UtUx + 1

n+1U n+1. We now show that the point
symmetry (51) of the PDE (50) does not yield a local CL of this PDE from the
presented three points of view.

1. Standard formulation of Noether’s theorem. Let x∗ = α1−n x , t∗ = t , U∗ = αU .
Then J [U∗] = J [αU ] = ∫

L[U∗]dt∗dx∗ = α1−n
∫

L[αU ]dtdx . But L[αU ]
= α1+n L[U ]. Hence J [U∗] = α2 J [U ] 
= J [U ] for any value of α 
= 1. Thus
the point symmetry (51) of the Klein-Gordon equation (50) yields no local CL.

2. Extended formulation of Noether’s theorem. Here, by direct calculation, one can
show that the extended infinitesimal generator X(∞) of the infinitesimal generator
X of the point symmetry (51) yields

X(∞)L[U ] = U n(U − xUx (1 − n)) − 1
2 (Ux (Ut − xUxt (1 − n)

+ Ut (Ux − xUxx (1 − n))). (52)

The right-hand side of the expression (52) does not yield a divergence. The best
way to show this is through applying the Euler operator with respect to U to the
right-hand side of (52). In particular, EU (X(∞)L[U ]) ≡ 2(Uxt +U n) 
= 0. Hence
the extended formulation of Noether’s theorem yields no local CL.

3. Application of the Direct Method. Here EU [(U −xUx (1−n))(Utx −U )] 
= 0 for
an arbitrary functionU (x, t). Hence the point symmetry (51) of theKlein-Gordon
equation (50) yields no local CL multiplier and thus no local CL.
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Example 2 Nonlinear Wave Equation

Now we use the nonlinear wave equation

utt − (c2(u)ux )x = 0 (53)

as an example to show how the Direct Method finds the fluxes for a local CL from
a known local CL multiplier. In particular, one can show that Λ[U ] = xt is a local
CL multiplier for the PDE (53). Then

xt (Utt − (c2(U )Ux )x ) = Dt (T [U ]) + Dx (X [U ]) (54)

for some functions T [U ] = T (x, t, U, Ux , Ut ), X [U ] = X (x, t, U, Ux , Ut ). Con-
sequently, the Eq. (54) becomes

xt (Utt − 2c(U )c′(U )U 2
x − c2(U )Uxx ) = Tt + TU Ut + TUt Utt + TUx Utx

+ Xx + XU Ux + XUt Utx + XUx Uxx .

(55)

Equating to zero the coefficients of Uxx , Utt , Utx , U 2
x , Ut , Ux , and the rest of

the terms in Eq. (55) straightforwardly yields the fluxes T [U ] = xtUt − xU ,
X [U ] = −xtc2(U )Ux + t

∫
c2(U )dU .

3.5 Use of Symmetries to Seek Further Conservation Laws
from a Known Conservation Law

It is now shown how any symmetry (discrete or continuous) of a given PDE system
R{x; u} (2) maps any CL of (2) into a CL of (2). Usually, no additional CL of (2) is
obtained.

A symmetry of a PDE system induces a symmetry that leaves invariant the linear
determining system for its local CL multipliers. Hence it follows that if one deter-
mines the action of a symmetry on a set of local CLmultipliers {Λσ[U ]} for a known
local CL of R{x; u} to obtain another set of local CL multipliers {Λ̂σ[U ]}, then a
priori one can determine whether an additional local CL is obtained for R{x; u}.

In particular, suppose the invertible point transformation

x = x(x̃, ũ), u = u(x̃, ũ) (56)

with its inverse transformation given by x̃ = x̃(x, u), ũ = ũ(x, u), is a symmetry
of a PDE system (2). Then corresponding to each PDE in (2), with solutions u(x)

replaced by arbitrary functions U (x), and ũ(x) replaced by Ũ (x), one has

Rα[U ] = Aα
β [Ũ ]Rβ[Ũ ] (57)
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holding for some set of functions {Aα
β [U ]}. Consequently, by direct calculation, one

can prove the following theorem. For details, see [2, 24].

Theorem 12 Under a point transformation (56), with u(x) replaced by U (x) and
ũ(x) replaced by Ũ (x), in terms of any given set of functions {Φ i [U ]}, there exists
a corresponding set of functions {Ψ i [Ũ ]} such that

J[Ũ ]DiΦ
i [U ] = D̃iΨ

i [Ũ ] (58)

where the Jacobian determinant

J[Ũ ] = D(x1, . . . , xn)

D(x̃1, . . . , x̃n)
=

∣∣∣∣∣∣∣∣∣

D̃1x1 · · · D̃1xn

· · ·
...

...
...

...

D̃n x1 D̃n xn

∣∣∣∣∣∣∣∣∣
(59)

and

Ψ i1 [Ũ ] = ±

∣∣∣∣∣∣∣∣∣

Φ1[U ] Φ2[U ] · · · Φn[U ]
D̃i2x1 · · · D̃i2xn

...
...

...
...

D̃in x1 · · · D̃in xn

∣∣∣∣∣∣∣∣∣
. (60)

By direct calculation, one can prove the following theorem with details appearing
in [24].

Theorem 13 Suppose the point transformation (56) is a symmetry of R{x; u} (2)
and {Λσ[U ]} is a set of local CL multipliers for R{x; u} with fluxes {Φ i [U ]}. Then

Λ̂β[Ũ ]Rβ[Ũ ] = D̃iΨ
i [Ũ ] (61)

where
Λ̂β[Ũ ] = J[Ũ ]Aα

β [Ũ ]Λα[U ], β = 1, . . . , N (62)

with the components of the derivatives in {Λα[U ]} expressed in terms of the prolon-
gation of the point transformation (56). In Eq. (61), the functions Ψ i [Ũ ] are yielded
by determinant (60). In Eq. (62), the functions Aα

β [Ũ ] are obtained through Eq. (57),

and the Jacobian J[Ũ ] is yielded by the determinant (59).

After replacing x̃ i by xi , Ũα by Uα, etc., in Eq. (62), one obtains the following
corollary.

Corollary 1 If {Λα[U ]} is a set of local CL multipliers for the PDE system R{x; u}
(2) that has the symmetry (56), then {Λ̂β[U ]} yields a set of local CL multipliers for
R{x; u} where {Λ̂β[U ]} is given by (62) after replacing x̃i by xi , Ũσ by Uσ , Ũσ

i

by Uσ
i , etc. The set of local CL multipliers {Λ̂β[U ]} yields a new local CL of PDE



30 G. Bluman and Z. Yang

system (2) if and only if this set is nontrivial on all solutions U = u(x) of PDE
system (2), i.e., Λ̂β[u] 
≡ cΛβ[u], β = 1, . . . , N, for some constant c.

Now suppose the symmetry (56) is a one-parameter Lie group of point transfor-
mations

x = x(x̃, Ũ ; ε) = eεX̃ x̃, U = U (x̃, Ũ ; ε) = eεX̃Ũ (63)

in terms of its infinitesimal generator (and extensions) X̃ = ξ j (x̃, Ũ ) ∂
∂ x̃ j +

ησ(x̃, Ũ ) ∂
∂Ũσ

·
If Eq. (61) holds, then fromEq. (58) and the Lie group properties of (63), it follows

that
J[U ; ε]eεX(Λσ[U ]Rσ[U ]) = DiΨ

i [U ; ε] (64)

in terms of the infinitesimal generator (and its extensions) X = ξ j (x, U ) ∂
∂x j +

ησ(x, U ) ∂
∂Uσ . Then, after expanding both sides of Eq. (64) in terms of power series

in ε, one obtains an expression of the form

∑
p

εpΛ̂σ[U ; p]Rσ[U ] =
∑

p

εpDi (
1
p!

dp

dεp Ψ i [U ; ε])
∣∣∣
ε=0

. (65)

Corresponding to the sequence of sets of local CL multipliers {Λ̂σ[U ; p]}, p = 1,
2, . . . , arising in expression (65), one obtains a sequence of local CLs

Di (
dp

dεp Ψ i [u; ε])
∣∣∣
ε=0

= 0, p = 1, 2, . . .

for PDE system (2) from its known local CL DiΦ
i [u] = 0.

Example 1 A Nonlinear Telegraph System

Consider the nonlinear telegraph PDE system

vt + (1 − 2e2u)ux − eu = 0

vx − ut = 0. (66)

The PDE system (66) has the set of local CL multipliers

Λ1 = ξ = e− 1
2 (U+t/

√
2) sin( 12 (V + (x + 2eU )/

√
2))

Λ2 = ϕ = −e− 1
2 (U+t/

√
2)

(
√
2eU sin( 12 (V + (x + 2eU )/

√
2))

+ cos( 12 (V + (x + 2eU )/
√
2)))
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and corresponding fluxes

T = −2e− 1
2 (u+t/

√
2) cos( 12 (v + (x + 2eu)/

√
2))

X = 2e− 1
2 (u+t/

√
2)

(
√
2eu cos( 12 (v + (x + 2eu)/

√
2))

− sin( 12 (v + (x + 2eu)/
√
2))).

The nonlinear telegraph PDE system (66) obviously has the discrete reflection
symmetry (t, x, u, v) = (−t̃, x̃, ũ,−ṽ) and the translational point symmetry
(t, x, u, v) = (t̃, x̃, ũ, ṽ + ε). One can show that for the above local CL of PDE
system (66), these symmetries yield three additional local CLs as follows.

1. Reflection symmetry applied to the above local CL.
2. Translation symmetry applied to the above local CL.
3. Reflection symmetry applied again to the local CL found in (2).

For further details, see [41].

Example 2 Another Nonlinear Telegraph System

Consider another nonlinear telegraph PDE system given by

vt − (sech2u)ux + tanh u = 0, vx − ut = 0. (67)

The PDE system (67) has the set of local CL multipliers

Λ1 = ξ = ex (2x + t2 − V 2 − 2 log(coshU )), Λ2 = ϕ = 2ex (V tanhU − t)

and corresponding fluxes

T = ex (2tu − 1
3v

3 + v(t2 + 2x − 2 log(cosh u)))

X = ex ((v2 − t2 − 2x + 2(1 + log(cosh u))) tanh u − 2(vt + u)).

The nonlinear telegraph PDE system (67) has the point symmetries with infinitesimal
generators given respectively by

X1 = ∂

∂t
, X2 = v

∂

∂t
+ tanh u

∂

∂x
+ ∂

∂u
+ t

∂

∂v
·

One can show that for the above local CL of PDE system (67), these two point
symmetries yield three additional local CLs as follows.

1. The O(ε), O(ε2) terms that result from applying the translation symmetry X1 to
the above local CL yield two additional local CLs.
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2. The action of the second point symmetry X2 on the additional O(ε) local CL,
obtained in (1), yields a third additional CL.

For further details, see [41].

4 Nonlocally Related Systems and Nonlocal Symmetries

Often a given PDE system has no local symmetry or no local conservation law. Even
if a given PDE system has a local symmetry, it may not be useful for the problem
at hand. The aim is to extend existing methods for finding local symmetries and
local CLs to PDE systems that are nonlocally related and equivalent to a given PDE
system in order to seek nonlocal symmetries and nonlocal CLs for a given PDE
system. Two systematic and natural ways will be presented to find such nonlocally
related systems for a given PDE system. In particular, it will be shown that for any
PDE system, each local CL as well as each point symmetry systematically yields
a nonlocally related system. Further systematic extensions for seeking additional
nonlocally related systems will also be presented.

4.1 Conservation Law-based Method to Obtain Nonlocally Related
Systems and Nonlocal Symmetries: Subsystems

Initially, we focus on the situation of a scalar PDE with two independent variables.
As will be seen, no extra complication arises for a PDE systemwith two independent
variables.But the situation for a PDEsystemwith three ormore independent variables
is more complicated as will be seen in Sect. 5.

For a local conservation law

Dt T (x, t, u, ∂u, . . . , ∂r u) + Dx X (x, t, u, ∂u, . . . , ∂r u) = 0 (68)

of a given scalar PDE

R[u] = R(x, t, u, ∂u, . . . , ∂ku) = 0 (69)

one can form an equivalent augmented potential system P given by

∂v

∂t
= X (x, t, u, ∂u, . . . , ∂r u)

∂v

∂x
= −T (x, t, u, ∂u, . . . , ∂r u) (70)

R(x, t, u, ∂u, . . . , ∂ku) = 0.
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If (u(x, t), v(x, t)) solves the potential system P , then u(x, t) solves the given
scalar PDE (69). Conversely, if u(x, t) solves the given scalar PDE (69), then there
exists a solution (u(x, t), v(x, t)) of the potential system P since the integrability
condition vxt = vt x is satisfied due to the existence of the local CL (68). But the
equivalence relationship is nonlocal and non-invertible since for any solution u(x, t)
of the given scalar PDE (69), if (u(x, t), v(x, t)) solves the potential system P , then
so does (u(x, t), v(x, t) + C) for any constant C .

Consequently, any symmetry (CL) of the given scalar PDE (69) yields a symmetry
(CL) of the equivalent potential system P . Conversely, any symmetry (CL) of the
potential system P yields a symmetry (CL) of the given scalar PDE (69).

Now suppose the equivalent potential system P has a point symmetry given by
an infinitesimal generator

ξ(x, t, u, v)
∂

∂x
+ τ (x, t, u, v)

∂

∂t
+ ω(x, t, u, v)

∂

∂u
+ ϕ(x, t, u, v)

∂

∂v
· (71)

The point symmetry (71) of the potential system P yields a nonlocal symmetry of
the given scalar PDE (69) if and only if its infinitesimal components satisfy the
relationship

(ξv)
2 + (τv)

2 + (ωv)
2 
≡ 0. (72)

Hence, through a local CL of the PDE (69), a nonlocal symmetry of (69) can be
obtained from a point symmetry (71) of the nonlocally related potential system P
given by the PDE system (70) if the components of the point symmetry (71) satisfy
the inequality (72).

The converse is also true. In particular, suppose a scalar PDE (69) has a point
symmetry given by the infinitesimal generator

α(x, t, u)
∂

∂x
+ β(x, t, u)

∂

∂t
+ γ(x, t, u)

∂

∂u
· (73)

The point symmetry (73) of the PDE (69) yields a nonlocal symmetry of the potential
system P if and only if the potential system P has no corresponding point symmetry
of the form α(x, t, u) ∂

∂x + β(x, t, u) ∂
∂t + γ(x, t, u) ∂

∂u + δ(x, t, u, v) ∂
∂v

for some
function δ(x, t, u, v).

Next, we show how to obtain further nonlocally related systems for a given PDE
system.

4.1.1 Use of n Local CLs to Obtain up to 2n − 1 Nonlocally Related Systems

Suppose there are n local CL multipliers {Λi (x, t, U, ∂U, . . . , ∂qU )}n
i=1 yielding

n independent local CLs of a given scalar PDE. Let vi be the potential variable
arising from the local CL multiplier Λi [U ]. Then one obtains n singlet potential
systems Pi , i = 1, . . . , n. Moreover, one can consider potential systems in couplets
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{
Pi , P j

}n
i, j=1 with two potential variables; in triplets

{
Pi , P j , Pk

}n
i, j,k=1 with three

potential variables; . . . ; in an n-plet
{

P1, . . . , Pn
}
with n potential variables. Conse-

quently from n local CLs of a given scalar PDE, one obtains 2n −1 distinct potential
systems!

Moreover, starting fromany one of these 2n−1potential systems, one can continue
the process. In particular, if one of these potential systems has N “local” CLs, in
principle one could obtain up to 2N − 1 further distinct potential systems. However,
not all local CLs of these 2n −1 potential systems yield additional potential systems.
In particular, one can show that if a set of local CL multipliers depends only on
independent variables (x, t) then no additional potential system is obtained. See
[2, 30, 31] for further details.

Any potential system could yield additional nonlocal symmetries or additional
nonlocal CLs for any other potential system or the “given” PDE. Furthermore, one
of the constructed potential systems could be a “given” PDE system. A more direct
way of seeing this will be presented in Sect. 5 through the symmetry-based method
for obtaining nonlocally related systems.

4.1.2 Nonlocally Related Subsystems

Definition 6 Suppose one has a given PDE system S{x, t; u1, . . . , uM } with the
indicated M dependent variables. A subsystem excluding a dependent variable, say
uM , is nonlocally related to the given system S{x, t; u1, . . . , uM } if uM cannot be
directly expressed from the equations of S{x, t; u1, . . . , uM } in terms of x , t , the
remaining dependent variables u1, . . . , uM−1, and their derivatives.

Subsystems for consideration can arise following an interchange of one or more
of the dependent and independent variables of a given system S{x, t; u1, . . . , uM }.
Consequently, for a given PDE system, one obtains a tree of nonlocally related (but
equivalent) PDE systems arising from local conservation laws and subsystems. Each
PDE system in such a tree is equivalent in the sense that the solution set for any
system in the tree can be found from the solution set for any other PDE system in the
tree through a connection formula.Due to the equivalence of the solution sets and the
nonlocal relationship between PDE systems in a tree, it follows that any coordinate-
independent method of analysis (quantitative, analytical, numerical, perturbation,
etc.) when applied to some PDE system in a tree may yield simpler computations
and/or results that cannot be obtained when the method of analysis is directly applied
to any particular PDE system in a tree. In particular, it is important to note that a
“given” system could be any system in such a tree!!

Example 1 Nonlinear Wave Equation

Suppose a given PDE U{x, t; u} is the nonlinear wave equation
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utt = (c2(u)ux )x . (74)

Directly, one obtains the singlet potential system (local CL multiplier is 1)
UV{x, t; u, v} given by

vx − ut = 0, vt − c2(u)ux = 0. (75)

Through the invertible point transformation (hodograph transformation) x = x(u, v),
t = t (u, v), the potential system UV{x, t; u, v} becomes the invertibly equivalent
PDE system XT{u, v; x, t} given by

xv − tu = 0, xu − c2(u)tv = 0. (76)

One can show that there are only three additional local CL multipliers of the form
Λ(x, t, U ) = xt , x , t for the nonlinear wave equation U{x, t; u} (74) for an arbitrary
wave speed c(u). This yields three additional singlet potential systemsUA{x, t; u, a},
UB{x, t; u, b}, and UW{x, t; u, w}, respectively given by the PDE systems

ax − x[tut − u] = 0, at − t[xc2(u)ux −
∫

c2(u)du] = 0 (77)

bx − xut = 0, bt − [xc2(u)ux −
∫

c2(u)du] = 0 (78)

and
wx − [tut − u] = 0, wt − tc2(u)ux = 0. (79)

Nonlocally related subsystems T{u, v; t} and X{u, v; x} arise from UV{x, t; u, v}
through XT{u, v; x, t} after one respectively deletes the dependent variables x and
t from XT{u, v; x, t}

tvv − c−2(u)tuu = 0 (80)

and
xvv − (c−2(u)xu)u = 0. (81)

One can show that the symmetry classifications of the PDEs (80) and (81) are
“equivalent” [25]. Hence we concentrate on T{u, v; t}. Since the PDE T{u, v; t}
(80) is linear and self-adjoint, it follows that any solution of T{u, v; t} yields a
local CL multiplier for T{u, v; t}. Four of these local CL multipliers, for an arbi-
trary wave speed c(u), are given by Λ(u, v, T ) = c2(u), uc2(u), vc2(u), uvc2(u).
These yield three additional singlet potential systems TP{u, v; t, p}, TQ{u, v; t, q},
TR{u, v; t, r}, respectively given by

pv − (utu − t) = 0, pu − uc2(u)tv = 0 (82)
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UV ⇐⇒ XT

X

TP TQ TP

T

UA UB UW

U

UAB UAW UAV UBW UBV UVW TQRTPRTPQXTRXTQXTP

UABV UABW UAVW UBVW TPQRXTQRXTPQXTPR

UABVW XTPQR

Fig. 1 A tree of nonlocally related systems for the nonlinear wave equation (74) for arbitrary wave
speed c(u)

qv − vtu = 0, qu + c2(u)(t − vtv) = 0 (83)

and
rv − v(utu − t) = 0, ru − uc2(u)(vtv − t) = 0. (84)

Consequently, one obtains the following (far from exhaustive) tree (Fig. 1) of nonlo-
cally related systems for the nonlinear wave equation U{x, t; u} (74), holding for an
arbitrary wave speed c(u).

The point symmetry classification for the nonlinear wave equation U{x, t; u}
(74) is given in [44]. The point symmetry classifications for the potential system
XT{u, v; x, t} (76) (of course, it is exactly the same as that for the potential system
UV{x, t; u, v} (75)) and the subsystem T{u, v; t} (80) is given in [25]. A partial
point symmetry classification for the potential system TP{u, v; t, p} (82) can be
adapted from results presented in [45]. The complete point symmetry classifications
for the potential systems UA{x, t; u, a} (77), UB{x, t; u, b} (78), UW{x, t; u, w}
(79), TP{u, v; t, p} (82), and TQ{u, v; t, q} (83) are given in [46]. Many nonlocal
symmetries of the nonlinear wave equation are found from each of these nonlocally
related systems in terms of specific forms of the nonlinear wave speed c(u). In par-
ticular, the following additional nonlocal symmetries of the nonlinear wave equation
U{x, t; u} (74) have been found.

For the potential systemUB{x, t; u, b} (78), setting F(u) = ∫
c2(u) du, one finds

that if F(u) satisfies the ODE

F ′′(u)

F ′(u)2
= 4F(u) + 2C1

(F(u) + C2)
2 + C3

in terms of arbitrary constants C1, C2, C3, then the potential system UB{x, t; u, b}
(78) has the point symmetry
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X = (F(u)+C1)x
∂

∂x
+b

∂

∂t
+ (F(u) + C2)

2 + C3

F ′(u)

∂

∂u
+(2C2b−(C2

2+C3)t)
∂

∂b

that is a nonlocal symmetry of the nonlinear wave equation U{x, t; u} (74).
For the potential system UW{x, t; u, w} (79), if the wave speed c(u) satisfies the

ODE
c′(u)

c(u)
= −2u + C1

u2 + C2

in terms of arbitrary constants C1, C2, then it has the point symmetry

X = w
∂

∂x
+ (u + C1)t

∂

∂t
+ (u2 + C2)

∂

∂u
− C2x

∂

∂w

that is a nonlocal symmetry of the nonlinear wave equation U{x, t; u} (74).
The potential system TP{u, v; t, p} (82), for c(u) = u−2e1/u , has the point sym-

metries

X1 = (pu − 2tv(u + 1))
∂

∂t
− 2u2v

∂

∂u
+ (u2 + e2/u)

∂

∂v
+ tu−1e2/u ∂

∂ p

X2 = t (u + 1)
∂

∂t
+ u2 ∂

∂u
− v

∂

∂v

that are both nonlocal symmetries of the nonlinear wave equation U{x, t; u} (74).
For the potential system TR{u, v; t, r} (84), new nonlocal symmetries are found

for U{x, t; u} (74) from the point symmetries of TR{u, v; t, r} when c(u) = u−4/3.
For details and a table of listed nonlocal symmetries derived from the above tree of

nonlocally related systems for the nonlinear wave equation U{x, t; u} (74), see [46].

Example 2 Nonlinear Telegraph Equation

Suppose a given PDE U{x, t; u} is the nonlinear telegraph (NLT) equation

utt − (F(u)ux )x − (G(u))x = 0. (85)

Case (a) For arbitrary F(u), G(u), one obtains two singlet potential systems
UV1{x, t; u, v1} and UV2{x, t; u, v2} respectively given by the PDE systems

v1x − ut = 0, v1t − (F(u)ux + G(u)) = 0 (86)

and
v2x − (tut − u) = 0, v2t − t (F(u)ux + G(u)) = 0. (87)



38 G. Bluman and Z. Yang

U{x, t;u}

UV1{x, t;u, v1} UV2{x, t;u, v2}

UV1V2{x, t;u, v1, v2}

Fig. 2 Tree of nonlocally related PDE systems for the NLT equation (85) for arbitrary F(u), G(u)

Case (b) For arbitrary G(u), F(u) = G ′(u), one obtains two additional singlet
potential systems UB3{x, t; u, b3} and UB4{x, t; u, b4} respectively given by the
PDE systems

b3x − ex ut = 0, b3t − ex F(u)ux = 0 (88)

and
b4x − ex (tut − u) = 0, b4t − tex F(u)ux = 0. (89)

Case (c) For arbitrary F(u), G(u) = u, in addition to the singlet potential systems
UV1{x, t; u, v1} (86) andUV2{x, t; u, v2} (87), one again obtains two further singlet
potential systems UC3{x, t; u, c3} and UC4{x, t; u, c4} respectively given by the
PDE systems

c3x − ((x − 1
2 t2)ut + tu) = 0

c3t − (x − 1
2 t2)(F(u)ux + u) +

∫
F(u)du = 0

(90)

and

c4x + ( 16 t3 − t x)ut + (x − 1
2 t2)u = 0

c4t + ( 16 t3 − t x)(F(u)ux + u) + t
∫

F(u)du = 0.
(91)

The corresponding trees of nonlocally related systems for the NLT equation are
illustrated in Figs. 2 and 3.

In the cases where F(u) and G(u) are power law functions, see [47] for tabula-
tions of nonlocal symmetries and nonlocal conservation laws for the NLT equation
U{x, t; u} (85), arising for many of the above listed nonlocally related systems.
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U

UV1 UV2 UB3 UB4

UV1V2 UV1B3 UV1B4 UV2B3 UV2B4 UB3B4

UV1V2B3 UV1V2B4 UV1B3B4 UV2B3B4

UV1V2B3B4

Fig. 3 Tree of nonlocally related PDE systems for the NLT equation (85) for arbitrary G(u),
F(u) = G ′(u)

4.1.3 Conservation Law and Symmetry Classification Problems for the NLT
Equation U{x, t; u} and its Potential System UV1{x, t; u, v1}

Now we consider symmetry and conservation law classification problems for the
NLT equation U{x, t; u} (85) and its potential system UV1{x, t; u, v1} (86). For
specific (F(u), G(u)) pairs, theCL classification problem forUV1{x, t; u, v1} yields
additional CLs and hence further potential systems for consideration [41].

Nonlocal Symmetries of U{x, t; u} Arising from Point Symmetries of UV1{x, t;
u, v1}.

The potential system UV1{x, t; u, v1} has a point symmetry corresponding to the
infinitesimal generator

X = ξ(x, t, u, v1)
∂

∂x
+ τ (x, t, u, v1)

∂

∂t
+ η(x, t, u, v1)

∂

∂u
+ ϕ(x, t, u, v1)

∂

∂v1
(92)

if and only if the coefficients of (92) satisfy the determining equations
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ξv1 − τu = 0

ηu − ϕv1 + ξx − τt = 0

G(u)[ηv1 + τx ] + ηt − ϕx = 0

ξu − F(u)τv1 = 0

ϕu − G(u)τu − F(u)ηv1 = 0

G(u)ξv1 + ξt − F(u)τx = 0

F(u)[ϕv1 − τt + ξx − ηu − 2G(u)τv1 ] − F ′(u)η = 0

G(u)[ϕv1 − τt − G(u)τv1] − F(u)ηx − G ′(u)η + ϕt = 0

(93)

for arbitrary values of x , t , u, v1.
The solution of the determining Eq. (93) appears in [48] and the resulting nonlocal

symmetries for the NLT equation U{x, t; u} (85) are summarized by the following
theorem.

Theorem 14 A point symmetry of the potential system UV1{x, t; u, v1} (86) yields
a nonlocal symmetry of the NLT equation U{x, t; u} (85) if and only if the pair of
constitutive functions (F(u), G(u)) satisfies the first order ODE system

(c3u + c4)F ′(u) − 2(c1 − c2 − G(u))F(u) = 0

(c3u + c4)G
′(u) + G2(u) − (c1 − 2c2 + c3)G(u) − c5 = 0

(94)

in terms of arbitrary constants c1, . . . , c5. For any pair (F(u), G(u)) satisfying (94),
the potential system UV1{x, t; u, v1} (86) has the point symmetry (92) with

ξ = c1x +
∫

F(u)du

τ = c2t + v1

η = c3u + c4
ϕ = c5t + (c1 − c2 + c3)v1

which is a (nonlocal) potential symmetry of the scalar NLT equation U{x, t; u} (85).

Modulo translations and scalings in u and G and scalings in F (involving 5/7
parameters), one obtains six distinct classes for (F(u), G(u)) for which the scalar
NLTequationU{x, t; u} (85) has a potential symmetry. These classes are summarized
in Table 1.

Point Symmetry Classification of the Scalar NLT Equation U{x, t; u} (85)
The NLT equation U{x, t; u} (85) has a point symmetry corresponding to the

infinitesimal generator X = ξ(x, t, u) ∂
∂x + τ (x, t, u) ∂

∂t + η(x, t, u) ∂
∂u if and only if

the determining equations
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Table 1 Classification table for potential symmetries of the NLT equation (85)

Relationship G(u) F(u)

F(u) = uβ

α G ′(u) u2α−1
u2α+1

4u2α+β−1

(u2α+1)
2

u2α+1
u2α−1

− 4u2α+β−1

(u2α−1)
2

F(u) = uβ

α G ′(u) tan(α ln u) uβ−1 sec2(α ln u)

F(u) = uβG ′(u) (ln u)−1 −uβ−1(ln u)−2

F(u) = e2βu G ′(u) tan u e2βu sec2 u
F(u) = e2βu G ′(u) tanh u e2βusech2u

coth u −e2βucsch2u
F(u) = e2βu G ′(u) u−1 −u−2e2βu

Table 2 Classes of
(F(u), G(u)) yielding
additional point symmetries
of the scalar NLT equation
U{x, t; u} (85)

G(u) F(u) Admitted additional point symmetries

eu e(α+1)u 2αx ∂
∂x + (α − 1)t ∂

∂t + 2 ∂
∂u

uα+β+1 uα 2βx ∂
∂x + (α + 2β)t ∂

∂t − 2u ∂
∂u

u−1 u−2 t ∂
∂t + u ∂

∂u , ex ∂
∂x − uex ∂

∂u
ln u uα 2(α + 1)x ∂

∂x + (α + 2)t ∂
∂t + 2u ∂

∂u
u eαu 2αx ∂

∂x + αt ∂
∂t + 2 ∂

∂u
u−3 u−4 2t ∂

∂t + u ∂
∂u , t2 ∂

∂t + tu ∂
∂u

ξu = τx = τu = ηuu = ξt = 0

2F(u)[−τt + ξx ] − F ′(u)η = 0

ηt t − F(u)ηxx − G ′(u)ηx = 0

2ηtu − τt t = 0

F(u)[2ηxu − ξxx ] + ξt t + 2F ′(u)ηx − G ′(u)[ξx − 2τt ] + G ′′(u)η = 0

are satisfied for arbitrary values of x , t , and u.
For arbitrary (F(u), G(u)), the scalar NLT equation U{x, t; u} (85) is only invari-

ant under translations in x and t . The classification of its point symmetries for specific
forms of (F(u), G(u)), modulo scalings and translations in u, is presented in Table 2.

The following theorem holds. See [48] for details.

Theorem 15 A point symmetry of the scalar NLT equation U{x, t; u} (85) yields a
point symmetry of the NLT potential system UV1{x, t; u, v1} (86) for all cases except
when (F(u), G(u)) = (u−4, u−3). In this case, its admitted point symmetry t2 ∂

∂t +
tu ∂

∂u yields a nonlocal symmetry of the NLT potential system UV1{x, t; u, v1} (86).

Local Conservation Laws of the Potential System UV1{x, t; u, v1}.
{Λ1(x, t, U, V ), Λ2(x, t, U, V )} is a set of local CL multipliers for the NLT

potential system UV1{x, t; u, v1} (86) if and only if the equations
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EU (Λ1 (Vx − Ut ) + Λ2 (Vt − (F(U )Ux + G(U ))) ≡ 0

EV (Λ1 (Vx − Ut ) + Λ2 (Vt − (F(U )Ux + G(U ))) ≡ 0
(95)

hold for arbitrary differentiable functions (U (x, t), (V (x, t)). Equations (95) yield
the system of determining equations

∂Λ2

∂V
− ∂Λ1

∂U
= 0

∂Λ2

∂U
− F(U )

∂Λ1

∂V
= 0

∂Λ2

∂x
− ∂Λ1

∂t
− G(U )

∂Λ1

∂V
= 0

F(U )
∂Λ1

∂x
− ∂Λ2

∂t
− ∂

∂U
[G(U )Λ1] = 0.

(96)

One can show that for any solution of (96), the fluxes for the corresponding local
CLs of the potential NLT system UV1{x, t; u, v1} (86) are given by

X (x, t, u, v1) = −
u∫

a

Λ1(x, t, s, b)ds −
v1∫

b

Λ2(x, t, u, s)ds

− G(a)

x∫
Λ1(s, t, a, b)ds

T (x, t, u, v1) =
u∫

a

Λ2(x, t, s, b)ds +
v1∫

b

Λ1(x, t, u, s)ds.

One can show [41] that the solution of the determining system (96) reduces to the
study of the system of two functions given by

d(U ) = G ′2F ′′′ − 3G ′G ′′F ′′ + [3G ′′2 − G ′G ′′′]F ′

h(U ) = G ′2G(4) − 4G ′G ′′G ′′′ + 3G ′′3.

Three cases arise

d(U ) 
≡ 0, h(U ) ≡ 0

d(U ) 
≡ 0, h(U ) 
≡ 0

d(U ) = h(U ) ≡ 0.

The results are summarized as follows.
When d(U ) 
≡ 0, h(U ) ≡ 0, the resulting local CL multipliers for the potential

system UV1{x, t; u, v1} are indicated in Table 3.
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Table 3 d(U ) 
≡ 0, h(U ) ≡ 0

F(U ) G(U ) Local CL multipliers

Arbitrary U (Λ1,Λ2) = (t, x − 1
2 t2), (Λ1,Λ2) = (1,−t)

Arbitrary 1/U (Λ1,Λ2) = (U, V ), (Λ1,Λ2) = (U V, 1
2 V 2 + x +

U∫
s F(s)ds)

Table 4 d(U ) 
≡ 0, h(U ) 
≡ 0

Relationship Local CL multipliers

(Λ1,Λ2) = (ϕ1,ϕ2)

γF − G ′ = α
γ (G + β)2 = e

γx+ α
γ

U∫
(G(s)+β)ds

e
√

α(βt+V )(1,
√

α
γ (G(U ) + β)),

(Λ1,Λ2) = (ϕ1,−ϕ2) = (x,−t, U,−V )

γF − G ′ = α
γ (Λ1,Λ2) = (ψ1,ψ2) = eγx+√

αt (1,
√

α
γ ),

(Λ1,Λ2) = (ψ1,−ψ2)(x,−t)
γF = G ′ (Λ1,Λ2) = eγx (t, 1

γ ), (Λ1,Λ2) = eγx (V, 1
γ G(U )),

(Λ1,Λ2) = eγx (1, 0)

When d(U ) 
≡ 0, h(U ) 
≡ 0, the resulting local CL multipliers for the potential
system UV1{x, t; u, v1} are indicated in Table 4.

When d(U ) = h(U ) ≡ 0, using symmetry analysis (substitution and invariance
of the ODE under a solvable three-parameter Lie group of point transformations),
the ODE h(U ) = 0 can be solved in terms of elementary functions (for G(U )).
Then note that F(U ) = G(U ) + const is a particular solution of the resulting
linear ODE d(U ) = 0. In turn, this leads to its general solution. Consequently, for
F(U ) = β1G2(U ) + β2G(U ) + β3, β2

2 
= 4β1β3, there are four highly nontrivial
CLs when G(U ) = U , 1/U , eU , tanhU , tanU . In the case of a “perfect square”
β2

2 = 4β1β3, there are only two local CLs. For details, see [41].
The NLT potential system UV1{x, t; u, v1} (86) is not variational. In the case of a

variational system, each set of local CL multipliers of the system must correspond to
a local symmetry of the systemwritten in evolutionary form.Hence, in the variational
situation, for any pair of constitutive functions (F(u), G(u)), the number of sets of
local CL multipliers is at most equal to the number of local symmetries. Note that
for the PDE system UV1{x, t; u, v1} (86), for many pairs of constitutive functions
(F(u), G(u)), the number of sets of local CL multipliers (which of course do not
correspond to local symmetries) exceeds the number of local symmetries.

Example 3 Planar Gas Dynamics Equations

Suppose the given PDE system is the planar gas dynamics (PGD) equations. In
the Eulerian description, the corresponding Euler PGD system E{x, t; v, p, ρ} is
given by
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ρt + (ρv)x = 0

ρ(vt + vvx ) + px = 0

ρ(pt + v px ) + B(p, ρ−1)vx = 0

(97)

where v(x, t) is the velocity of the gas, p(x, t) is the pressure, and ρ(x, t) is
the mass density of the gas. In the Eulerian system E{x, t; v, p, ρ} (97), in terms
of the entropy density S(p, ρ), the constitutive function B(p, ρ−1) is given by
B(p, ρ−1) = −ρ2Sρ/Sp.

In the Lagrangian description, in terms of Lagrange mass coordinates s = t ,
y = ∫ x

x0
ρ(ξ)dξ, the correspondingLagrange PGDsystemL{y, s; v, p, q} is given by

qs − vy = 0

vs + py = 0

ps + B(p, q)vy = 0

(98)

with q = 1/ρ.
It is now shown that the potential system framework, based on using local

CLs, yields a direct connection between the Euler system (97) and the Lagrange
system (98). As well, as a consequence, other equivalent descriptions are derived.
The Euler system E{x, t; v, p, ρ} (97) is used as the given PDE system. The first
equation of the Euler system is written as a local CL, corresponding to conservation
of mass. Through this equation, a potential variable r(x, t) is introduced and leads
to the Euler potential system G{x, t; v, p, ρ, r} given by

rx − ρ = 0

rt + ρv = 0

ρ(vt + vvx ) + px = 0

ρ(pt + v px ) + B(p, ρ−1)vx = 0.

(99)

Now consider an interchange of dependent and independent variables in G{x, t; v,

p, ρ, r} with r = y, t = s as independent variables and x , v, p, q = 1/ρ as
dependent variables to obtain the system G0{y, s; x, v, p, q}, invertibly equivalent
to G{x, t; v, p, ρ, r} (99), given by

xy − q = 0

xs − v = 0

vs + py = 0

ps + B(p, q)vy = 0.

(100)

A nonlocally related subsystem ofG0{y, s; x, v, p, q} (100) is obtained by excluding
its dependent variable x through the integrability condition xys = xsy . The resulting
subsystem is the Lagrange system L{y, s; v, p, q} (98)!
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A second CL of the Euler system E{x, t; v, p, ρ} (97) is obtained from its set of
local CL multipliers (Λ1,Λ2,Λ3) = (V, 1, 0). This yields a second potential vari-
ablew. The resulting couplet systemW{x, t; v, p, ρ, r, w} that includes the potential
variables r and w is given by the PDE system

rx − ρ = 0

rt + ρv = 0

wx + rt = 0

wt + p + vwx = 0

ρ(pt + v px ) + B(p, ρ−1)vx = 0.

(101)

The third equation of the couplet system W{x, t; v, p, ρ, r, w} (101), which is a
local CL as written, yields a third potential variable z to yield an additional potential
system Z{x, t; v, p, ρ, r, w, z} given by

rx − ρ = 0

rt + ρv = 0

zt − w = 0

zx + r = 0

wt + p + vwx = 0

ρ(pt + v px ) + B(p, ρ−1)vx = 0.

(102)

The Lagrange system L{y, s; v, p, q} (98) has a nonlocally related subsystem
obtained by excluding its dependent variable v through the integrability condition
vys = vsy . The resulting subsystem L{y, s; p, q} is given by

qss + pyy = 0, ps + B(p, q)qs = 0. (103)

The resulting tree of nonlocally related systems, including two additional subsys-
tems, is illustrated in Fig. 4.

Now treating the Lagrange system L{y, s; v, p, q} (98) as a given PDE system,
from its three sets of local CL multipliers given by (1, 0, 0), (0, 1, 0), and (y, s, 0),
one can obtain the three singlet potential systems LW1{y, s; v, p, q, w1} = G0{y,

s; x, v, p, q} (100), LW2{y, s; v, p, q, w2} and LW3{y, s; v, p, q, w3} respectively
given by

w1y − q = 0

w1s − v = 0

vs + py = 0

ps + B(p, q)vy = 0

(104)
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Z{x,t;v, p, ρ, r, w, z}

W{x,t ;v, p, ρ, r, w} Z{x,t ;v, p, ρ, w, z}

G{x,t;v, p, ρ, r} G0{y,s;x, v, p, q} W{x,t ; v, p, ρ, w}

E{x,t ; v, p, ρ} L{y,s ; v, p, q}

L{y,s ; p, q}

<=>

Fig. 4 Tree of nonlocally related PDE systems for PGD equations E{x, t; v, p, ρ} (97)

L{y,s ; p, q}

L{y,s;v, p, q}

LW1{y,s;v, p, q, w1} LW2{y,s;v, p, q, w2} LW3{y,s;v, p, q, w3}

LW1W2{y,s ; v, p, q, w1,w 2} LW1W3{y,s ;v, p, q, w1,w 3} LW2W3{y,s ;v, p, q, w2,w 3}

LW2W3{y,s; v, p, q, w1,w 2,w 3}

Fig. 5 Extension of tree of nonlocally related PDE systems for the Lagrange PGD system
L{y, s; v, p, q} (98)

qs − vy = 0

w2 y − v = 0

w2s + p = 0

ps + B(p, q)vy = 0

(105)

and

w3y − sv − yq = 0

w3s + sp − yv = 0

vs + py = 0

ps + B(p, q)vy = 0.

(106)

The extension of the tree illustrated in Fig. 4 is exhibited in Fig. 5.
Additional local CLs arise for the Lagrange system L{y, s; v, p, q} (98) when

one considers sets of local CL multipliers of the form {Λi (y, s, V, P, Q)}, i = 1,



Some Recent Developments in Finding 47

2, 3. After solving the corresponding determining equations, one can show that the
resulting sets of local CL multipliers are given by

Λ1 = αy − βP + B(P, Q)μ3 + δ

Λ2 = αs + βV + ν

Λ3 = Λ3(y, P, Q)

where α, β, ν, δ are arbitrary constants and Λ3(y, P, Q) is any solution of the PDE

∂Λ3

∂Q
− ∂

∂P
(B(P, Q)Λ3) + β = 0.

The additional local CLs that arise (for an arbitrary constitutive function B(p, q))
for the Lagrange system L{y, s; v, p, q} (98) include
• Conservation of energy ∂

∂s (
1
2v

2 + K (p, q)) + ∂
∂y (pv) = 0 where K (p, q) is any

solution of the PDE Kq − B(p, q)K p + p = 0.
• Conservation of entropy ∂

∂s S(p, q) = 0 where S(p, q) is any solution of the PDE
Sq − B(p, q)Sp = 0.

In the case of a Lagrange PGD system L{y, s; v, p, q} (98), with a generalized
polytropic equation of state given by

B(p, q) = M(p)

q
, M ′′(p) 
= 0 (107)

one can show that for localCLmultipliers restricted to dependenceon the independent
variables (y, s), still only the three exhibited singlet potential systems (104)–(106)
arise. For a generalized polytropic equation of state (107), the local symmetries
arising for L{y, s; v, p, q} (98) and its resulting singlet, doublet and triplet potential
systems that arise from the potential systems (104)–(106), as well as its subsystem
L{y, s; p, q} (103), are exhibited in [30].

The following remarks are noted.

• The exhibited extended trees of nonlocally related PDE systems hold for an arbi-
trary constitutive function B(p, q).

• Either the Euler system E{x, t; v, p, ρ} (97) or the Lagrange system L{y, s; v,

p, q} (98) can play the role of the given system in the tree.
• In a beautiful paper [49], a complete group classification with respect to the con-
stitutive function B(p, q) is given separately for the Euler and Lagrange systems
but the connections between the systems are heuristic.

• To systematically construct nonlocal symmetries of the Euler and Lagrange sys-
tems, one needs to do the group classification problem for all PDE systems in
an extended tree as well as consider other possible extended trees for specific
constitutive functions followed by appropriate point symmetry analyses.
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• For a Chaplygin gas given by B(p, q) = −p/q, one can show that the Lagrange
subsystem L{y, s; p, q} (103) has the point symmetry (which could not be exhib-
ited in [49] due to its heuristic approach) X = −y2 ∂

∂y − py ∂
∂ p + 3yq ∂

∂q that in
turn yields a nonlocal symmetry for both the Euler and Lagrange systems.

• Further extended trees arise for the PGD equations for specific constitutive
functions:

– B(p, 1/ρ) = ρ(1 + ep): Here the Euler potential system G{x, t; v, p, ρ, r}
(99) has the family of local CLs given by Dt

(
f (r)ep

1+ep

)
+Dx

(
f (r)vep

1+ep

)
= 0,

for arbitrary f (r). Such a local CL can be used to replace the fourth equation
of G{x, t; v, p, ρ, r} (99) through introduction of a potential variable c and
yields the corresponding potential system

rx − ρ = 0

rt + ρv = 0

rx (vt + vvx ) + px = 0

cx + ep f (r)/(1 + ep) = 0

ct − vep f (r)/(1 + ep) = 0.

– For a Chaplygin gas given by B(p, 1/ρ) = −pρ, the Euler potential system

G{x, t; v, p, ρ, r} (99) has the family of local CLs given by Dt

(
f (r)

p

)
+

Dx

(
f (r)v

p

)
= 0, for arbitrary f (r). Such a localCLyields the corresponding

potential system
rx − ρ = 0

rt + ρv = 0

rx (vt + vvx ) + px = 0

dx + f (r)/p = 0

dt − v f (r)/p = 0.

(108)

Here one can show that additional nonlocal symmetries arise for the Chap-
lygin gas Euler system E{x, t; v, p, ρ} (97) through the calculation of
point symmetries for the potential system (108) only when f (r) = r ,
f (r) = const. For f (r) = r , the Chaplygin gas potential system (108) has

the point symmetries XD1 =
(
− t3

6 + dt
)

∂
∂x +

(
d − t2

2

)
∂
∂v

+r t ∂
∂ p − r tρ

p
∂
∂ p

and XD2 =
(
− t2

2 + d
)

∂
∂x + −t ∂

∂v
+ r ∂

∂ p − rρ
p

∂
∂ p . The symmetry XD1 is

a nonlocal symmetry for both the Euler and Lagrange systems and conse-
quently was not able to be exhibited in [49]. On the other hand, the symmetry
XD2 is a nonlocal symmetry for the Euler system but a local symmetry for
the Lagrange system.
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4.2 Symmetry-based Method to Obtain Nonlocally Related Systems
and Nonlocal Symmetries

It is now shown that any point symmetry of a given PDE system systematically yields
an equivalent nonlocally related PDE system. To illustrate the situation, consider as
an example the nonlinear reaction diffusion equation

ut − uxx = Q(u). (109)

One can show that for any nonlinear reaction term Q(u), the PDE (109) has no local
conservation laws. Hence the CL-based method yields no nonlocally related systems
for the PDE (109). On the other hand, note that the PDE (109) is invariant under
translations in x and t .

Consider the invariance of PDE (109) under translations in x . After an interchange
of the variables x and u, the PDE (109) becomes the invertibly equivalent PDE

xt = xuu − Q(u)x3u
x2u

· (110)

Accordingly, we introduce two auxiliary dependent variables v = xu , w = xt ,
and consider the intermediate PDE system

v = xu, w = xt , w = vu − Q(u)v3

v2
· (111)

By its construction, the intermediate PDE system (111) is locally related to the given
scalar PDE (109). Now consider the subsystem (inverse potential system) of the
intermediate system (111) that is obtained by excluding x through the integrability
condition xut = xtu , namely

vt = wu, w = vu − Q(u)v3

v2
· (112)

The intermediate system (111) (and hence the given PDE (109)) is nonlocally related
to the inverse potential system (112). This follows from the intermediate system
(111) being the potential system of the PDE system (112) with the potential variable
x arising from the first equation in the inverse potential system (112), which is a local
CL as written. Moreover, excluding w from the inverse potential system (112), one
obtains the scalar PDE

vt =
(

vu − Q(u)v3

v2

)
u

(113)

which is clearly nonlocally related to the given PDE (109) since the PDE (109) has
no local CLs.
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Hence through the example of the nonlinear reaction diffusion equation (109),
one essentially sees that any point symmetry of a given PDE system naturally yields
a nonlocally related system. This will be seen more explicitly as follows.

4.2.1 Construction of a Nonlocally Related System from a Point Symmetry

Consider a given PDE system

Rσ(x, t, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N (114)

where u = (u1(x, t), . . . , um(x, t)). Suppose the PDE system (114) has a point
symmetry

X = ξ(x, t, u)
∂

∂x
+ τ (x, t, u)

∂

∂t
+ ηi (x, t, u)

∂

∂ui
· (115)

Let X (x, t, u), T (x, t, u), U 1(x, t, u), . . . , U m(x, t, u) be corresponding canonical
coordinates so that the point symmetry X of the PDE system transforms to Y = ∂

∂U1 ,
i.e., the PDE system (114) transforms invertibly to a PDE system invariant under
translations in U 1 given by

R̂σ(X, T, Û , ∂U, . . . , ∂kU ) = 0, σ = 1, . . . , N (116)

with Û = (U 2, . . . , U m), U = (U 1, . . . , U m).
Now consider the intermediate PDE system, obtained after introducing two aux-

iliary dependent variables α = U 1
T , β = U 1

X

α = U 1
T

β = U 1
X

R̃σ(X, T, Û ,α,β, ∂Û , . . . , ∂k−1α, ∂k−1β, ∂kÛ ) = 0, σ = 1, . . . , N

(117)

where R̃σ(X, T, Û ,α,β, ∂Û , . . . , ∂k−1α, ∂k−1β, ∂kÛ ) is obtained from R̂σ(X, T,

Û , ∂U, . . . , ∂kU ) after making the appropriate substitutions. By construction, the
intermediate system (117) is locally equivalent to the given PDE system (114).
Excluding the dependent variableU 1 from the intermediate system (117), one obtains
the equivalent inverse potential system

αX = βT

R̃σ(X, T, Û ,α,β, ∂Û , . . . , ∂k−1α, ∂k−1β, ∂kÛ ) = 0, σ = 1, . . . , N .
(118)

The inverse potential system (118) is nonlocally related to the given PDE system
(114) since the intermediate system (117) is the potential system for the inverse
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potential system (118) with its dependent variableU 1 playing the role of the potential
variable arising from the displayed CL of the inverse potential system (118).

Consequently, the following theorem has been proved.

Theorem 16 Any point symmetry of a PDE system (114) yields an equivalent nonlo-
cally related PDE system (inverse potential system) given by the PDE system (118).

This theorem can be extended to the situation of three or more independent vari-
ables. Here the resulting inverse potential system has curl-type CLs.

4.2.2 The Special Situation When the Given PDE is an Evolutionary Scalar
PDE

When a given PDE system (114) is an evolutionary scalar PDE, then another related
PDE system naturally arises. The situation is summarized by the following theorem
whose proof is immediately obvious.

Theorem 17 Suppose a given PDE is an evolutionary scalar PDE invariant under
a point symmetry. Without loss of generality, here the given PDE can be taken to be
of the form

ut = F(x, t, u1, . . . , uk) (119)

with ui = ∂i u
∂xi · Let β = ux . Then the scalar PDE

βt = Dx F(x, t,β, . . . ,βk−1) (120)

is a locally related subsystem of the corresponding inverse potential system resulting
from the invariance of the PDE (119) under translations in u.

Example Nonlinear Wave Equation

As an example, consider again the nonlinear wave equation (74) and its nonlocally
related potential system (75). The invariance of the potential system (75) under
translations in t and v shows that the PDE system (75) is invariant under the point
symmetry with the infinitesimal generator

X = ∂

∂v
− ∂

∂t
· (121)

Corresponding canonical coordinates are represented by the point transformation

X = x, T = u, U = t + v, V = v (122)

with the potential system (75) invariant under translations in V . The point transfor-
mation (122) maps the potential system (75) into the invertibly related PDE system
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VX UT − VT UX − 1 = 0

VT + c2(T )(UX − VX ) = 0
(123)

which is invariant under translations in U and V .
From the invariance of the PDE system (123) under translations in V , one accord-

ingly introduces auxiliary dependent variablesα(X, T ),β(X, T ) to obtain the locally
related intermediate system

α = VT

β = VX

βUT − αUX − 1 = 0

α + c2(T )(UX − β) = 0.

(124)

Excluding V from the intermediate system (124), one obtains the inverse potential
system

βT = αX

βUT − αUX − 1 = 0

α + c2(T )(UX − β) = 0.

(125)

It is straightforward to exclude the dependent variables α and β from the last two
equations of the inverse potential system (125) to obtain its locally related scalar PDE

UT T + c4(T )UX X + c2(T )[2UT X UT UX − UX X U 2
T

−UT T U 2
X − 2UT X ] + 2c(T )c′(T )[U 2

X UT − UX ] = 0. (126)

In [29], it is shown that the scalar PDE (126) is nonlocally related to the scalar
nonlinear wave equation (74) through comparison of the symmetry classifications of
these two PDEs.

When c(u) = u−2, one can show [28, 29] that the PDE (126) has the point sym-
metryU 2 ∂

∂U +T U ∂
∂T − U

T 3
∂

∂X that yields a previously unknown nonlocal symmetry
of both the nonlinear wave equation (74) and the potential system (75).

Further details and examples of the symmetry-based method to obtain nonlocally
related systems and nonlocal symmetries are presented in [28, 29].

5 Nonlocality in Multidimensions

In themultidimensional situation (n ≥ 3 independent variables), a local conservation
law for a given PDE system yields 1

2n(n − 1) potential variables. It will be shown
that a local symmetry of the resulting potential system always corresponds to a local
symmetry of the given PDE system (As we have seen, this is not the situation for
n = 2 independent variables).
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In the conservation law-based approach, to obtain nonlocal symmetries of a given
PDE system it is necessary to augment the potential system by a gauge constraint.

5.1 Divergence-type CLs and Corresponding Potential Systems

Consider a PDE system with N PDEs of order k with n ≥ 3 independent variables
x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x))

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (127)

Suppose the PDE system (127) has a divergence-type CL given by

div Φ[u] = DiΦ
i [u] ≡ DiΦ

i (x, u, ∂u, . . . , ∂r u) = 0. (128)

From Poincaré’s lemma, the local CL (128) yields 1
2n(n − 1) potential variables

v jk(x) = −vk j (x). This leads to a set of n potential equations

Φ i [u] ≡ D jv
i j , i = 1, . . . , n (129)

equivalent to the local CL (128). The corresponding potential system is the union of
the given PDE system (127) and the set of potential equations (129). This potential
system is nonlocally related and equivalent to the given PDE system (127). In turn
the potential system has the gauge freedom invariance given by the transformation

vi j → Dkw
i jk (130)

where the functions wi jk(x) are 1
6n(n − 1)(n − 2) arbitrary functions that are the

components of a totally antisymmetric tensor, i.e., the constructed potential system
has an infinite number of point symmetries (gauge symmetries) through the trans-
formation (130) in terms of the infinitesimal generator

Xgauge = Dkw
i jk(x)

∂

∂vi j
· (131)

As it stands, the potential system is underdetermined due to the gauge freedom (130).
Now assume that the given PDE system (127) is determined in the sense that it

does not have symmetries that involvearbitrary functionsofall independent variables
x = (x1, . . . , xn). In particular, suppose the potential system has a local symmetry

X = ημ(x, u, ∂u, . . . , ∂P u, v, ∂v, . . . ∂Qv)
∂

∂uμ
+ ζαβ[u, v] ∂

∂vαβ
· (132)

Then the potential system has local symmetries given by the commutator [Xgauge,

X] that project to the symmetries
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(
αi j ∂ημ

∂vi j + (Di1α
i j )

∂ημ

∂v
i j
i1

+ · · · + (Di1 · · ·DiQ αi j )
∂ημ

∂v
i j
i1···iQ

)
∂

∂uμ
(133)

of the PDE system (127) with αi j (x) = Dkw
i jk(x), and v

i j
i1···iR

= Di1 · · ·DiR αi j

denoting derivatives of vi j . In the infinitesimal generator (133),αi j (x) and each of its
derivatives are arbitrary functions of x = (x1, . . . , xn). Since the given PDE system
(127) is a determined system, it follows that the symmetry (133) is a symmetry of the
given PDE system (127) if and only if ∂ημ

∂vi j = ∂ημ

∂v
i j
i1

= · · · = ∂ημ

∂v
i j
i1···iQ

≡ 0. Thus each

local symmetry of the underdetermined potential system, arising from a divergence-
type conservation law, yields only a local symmetry of the given determined PDE
system (127).

Hence if a potential system arising from a divergence-type conservation law of a
given PDE system (127) is to be used to seek a nonlocal symmetry of the PDE system
(127) from a point symmetry of the potential system, it is necessary to augment the
potential system with auxiliary constraint equations (gauge constraints) to obtain a
determined potential system.

Definition 7 A gauge constraint has the property that the augmented potential sys-
tem is equivalent to the given PDE system (127), i.e., every solution of the augmented
potential system yields a solution of the given PDE system (127) and, conversely,
every solution of the given PDE system (127) yields a solution of the augmented
potential system.

Some examples of gauges (relating potential variables) include

• divergence (Coulomb) gauge
• spatial gauge
• Poincaré gauge
• Lorentz gauge (a form of divergence gauge)
• Cronstrom gauge (a form of Poincaré gauge).

For details on these gauges, see [32].

Example Wave Equation

As an example, consider the wave equation

utt − uxx − uyy = 0 (134)

which is already a divergence-type CL. Correspondingly, one has the vector potential
v = (v0, v1, v2) and the underdetermined potential system given by
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ut = v2x − v1y

−ux = v0y − v2t

−uy = v1t − v0x .

(135)

Now consider the equivalent augmented constrained system obtained by appending
the Lorentz gauge

v0t − v1x − v2y = 0 (136)

to the underdetermined potential system (135) to obtain the determined potential
system

ut = v2x − v1y

−ux = v0y − v2t

−uy = v1t − v0x

0 = v0t − v1x − v2y .

(137)

One can show [32] that the determined potential system (137) has six point sym-
metries that yield nonlocal symmetries as well as nonlocal CLs of the wave equation
(134). One such point symmetry is given by the infinitesimal generator

X = (yv1 − xv2 − tu)
∂

∂u
− (2tv0 + xv1 + yv2)

∂

∂v0

− (xv0 + 2tv1 − yu)
∂

∂v1
− (yv0 + 2tv2 + xu)

∂

∂v2
·

The other listed gauges yield no nonlocal symmetries from point symmetries of the
corresponding determined potential systems.

5.2 Systematic Procedures to Seek Nonlocal Symmetries
in Multidimensions

In the multidimensional situation (n ≥ 3 independent variables), four systematic
procedures (some with known examples) are presented to search for nonlocal sym-
metries of a given PDE system through seeking local symmetries of an equivalent
nonlocally related PDE system.

• Potential systems arising from divergence-type conservation laws (of degree r ;
1 < r ≤ n − 1) augmented with gauge constraints to yield a determined potential
system.

• Determinedpotential systems arising fromcurl-type conservation laws (of degree1).
• Determined nonlocally related systems arising from admitted point symmetries.
Here, each point symmetry of a given PDE system systematically yields a deter-
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mined inverse potential system connected to an intermediate system through a
curl-type conservation law of degree 1 [2, 50, 51].

• Determined nonlocally related subsystems.

In the case of three independent variables (n = 3), two types of local CLs arise.

• Degree 2 CLs (divergence-type CLs).
• Degree 1 CLs (curl-type CLs).

Potential systems arising from lower degree CLs (r < n − 1) essentially corre-
spond to particular gauge constraints for underdetermined potential systems arising
from divergence-type CLs.

Examples illustrating the types of nonlocal symmetries that can arise as described
above appear in [50, 51].

5.3 Some Open Problems in Multidimensions

There are many open problems in seeking systematically nonlocal symmetries for
multidimensional PDE systems. These include the following.

• Find examples of nonlinear PDE systems for which nonlocal symmetries arise
as local symmetries of a potential system following from divergence-type CLs
appended with gauge constraints.

• Find efficient procedures to obtain “useful” gauge constraints (eg, yielding nonlo-
cal symmetries/nonlocal CLs) for potential systems arising from divergence-type
CLs (as well as for underdetermined potential systems arising from lower-degree
CLs). Can one rule out specific families of gauges for particular classes of potential
systems?

• Find further examples of lower-degree CLs for PDE systems of physical impor-
tance. CLs of degree one (curl-type) are of particular interest since corresponding
potential systems are determined. Examples to-date suggest that lower-degree CLs
are rare and only arise when a given PDE system has a special geometrical struc-
ture. Of course, divergence-type CLs are common!

• Find examples of PDE systems of physical interest admitting point symmetries
that in turn yield nonlocal symmetries of the systems.

• Find useful subsystems and useful means of obtaining subsystems (including in
the two-dimensional case). Progress has been made in this direction [28, 29].

• Extend the work on obtaining nonlocally related systems to multidimensions for
continuum mechanics systems such as gas dynamics equations and equations of
dynamical nonlinear elasticity. A start on this has been made in [52].
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