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Preface

On June 06–09, 2013, the EUROMECH Workshop Similarity, Symmetry and
Group Theoretical Methods in Mechanics took place in Varna, Bulgaria.

It brought together many scientists from European countries and USA, and
focused on the current state of the art in the field of similarity methods in
mechanics. The aim of this Workshop was to bring together researchers who apply
similarity and symmetry analysis to theoretical and engineering problems in both
solid and fluid mechanics, researchers who are developing significant extensions of
these methods so that they can be applied more widely, and numerical analysts
who develop and use such methods in numerical schemes.

The scientific program of the Workshop was built around main speakers who
gave an overview of the field in the form of short lecture courses delivered by

Nail H. Ibragimov—Group Analysis as a Microscope of Mathematical
Modeling,

George Bluman—Some Recent Developments in Finding Systematically Con-
servation Laws and Nonlocal Symmetries for Partial Differential Equations, and

Charles-Michel Marle—Symmetries of Hamiltonian Dynamical Systems,
Momentum Maps and Reduction.

The two organizers are deeply grateful to EUROMECH for the provided sup-
port making possible the first in this new series of scientific meetings. This
Springer volume contains lecture notes written by the principal speakers of the
Workshop which are complemented by a few shorter contributions dealing with
specific problems.

The Editors hope very much that this volume gives a modern overview of the
similarity and symmetry methods and shows applications of this active field of
research in mechanics and will serve as a reference in the years to come.

Nancy, April 2014 Jean-François Ganghoffer
Sofia Ivaïlo Mladenov
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Some Recent Developments in Finding
Systematically Conservation Laws
and Nonlocal Symmetries for Partial
Differential Equations

George Bluman and Zhengzheng Yang

Abstract This chapter presents recent developments in finding systematically con-
servation laws and nonlocal symmetries for partial differential equations. There is
a review of local symmetries, including Lie’s algorithm to find local symmetries in
evolutionary form and their applications. The Direct Method for finding local con-
servation laws is reviewed and its relationship to and extension of Noether’s theorem
are discussed. Moreover, it is shown how symmetries, including discrete symmetries
may yield additional conservation laws from known conservation laws. Systematic
procedures are presented to seek nonlocally related PDE systems for a given PDE
system with two independent variables. In particular, these procedures include the
use of conservation laws, point symmetries, and subsystems (including subsystems
arising after appropriate invertible transformations of variables) to obtain trees of
equivalent nonlocally related PDE systems. In turn, it is shown how the calculation
of point symmetries of such nonlocally related systems leads to the discovery of
nonlocal symmetries for a given PDE system. The situation of systematically con-
structing useful nonlocally related systems in multidimensions is considered. Many
illustrative examples are provided.

1 Introduction

This chapter is concerned with recent developments in finding conservation laws
(CLs) and nonlocal symmetries for partial differential equations (PDEs). It focuses
on recent research of the authors and some of the first author’s collaborators, includ-
ing Stephen Anco, Alexei Cheviakov, Temuer Chaolu, Jean-François Ganghoffer,
Nataliya

G. Bluman (B) · Z. Yang
Department of Mathematics, The University of British Columbia,
Vancouver V6T 1Z2, Canada
e-mail: bluman@math.ubc.ca

J.-F. Ganghoffer and I. Mladenov (eds.), Similarity and Symmetry Methods, Lecture Notes 1
in Applied and Computational Mechanics 73, DOI: 10.1007/978-3-319-08296-7_1,
© Springer International Publishing Switzerland 2014
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Ivanova, Sukeyuki Kumei, Ian Lisle, Alex Ma, Greg Reid, Vladimir Shtelen and
Thomas Wolf. Much of the material in this chapter appears in more detail in [1, 2].

In the latter part of the 19th century, Sophus Lie initiated his studies on con-
tinuous groups of transformations (Lie groups of transformations) in order to put
order to, and thereby extend systematically, the hodgepodge of heuristic techniques
for solving ordinary differential equations (ODEs). In particular, Lie showed the
following.

• The problem of finding a Lie group of point transformations leaving invariant
a differential equation (point symmetry of a differential equation) is systematic
and reduces to solving a related linear system of determining equations for the
coefficients (infinitesimals) of its infinitesimal generator.

• A point symmetry of an ODE leads to reducing systematically the order of an
ODE (irrespective of any imposed initial conditions).

• A point symmetry of a PDE leads to finding systematically special solutions called
invariant (similarity) solutions.

• A point symmetry of a differential equation generates a one-parameter family
of solutions from any known solution of the differential equation that is not an
invariant solution.

However there were limitations to the applicability of Lie’s work.

• There were a restricted number of applications for point symmetries, especially
for PDE systems.

• Few differential equations have point symmetries.
• For PDE systems having point symmetries, the invariant solutions arising from

point symmetries normally yield only a small submanifold of the solution mani-
fold of the PDE system and hence few posed boundary value problems can be
solved.

• There was the computational difficulty of finding point symmetries.

Since the end of the 19th century there have been significant extensions of Lie’s
work on symmetries of PDEs to extend its range of applicability.

• Further applications of point symmetries have been found to include linearizations,
other mappings and solutions of boundary value problems. In particular, knowl-
edge of the point symmetries of a nonlinear PDE system (contact symmetries in the
case of a scalar PDE), allows one to determine whether the system can be mapped
invertibly to a linear system and yields a procedure to find such a mapping when
one exists [2–4]. Knowledge of the point symmetries of a linear PDE system with
variable coefficients allows one to determine whether the system can be mapped
invertibly to a linear system with constant coefficients and yields a procedure to
find such a mapping when one exists [2, 3].

• Extensions of the spaces of symmetries of a given PDE system to include
local symmetries (higher-order symmetries) as well as nonlocal symmetries
[2, 5–8].

• Extension of the applications of symmetries to include variational symmetries that
yield conservation laws for variational systems [2, 8].



Some Recent Developments in Finding 3

• Extension of variational symmetries to more general multipliers and resulting
conservation laws for essentially any given PDE system [2, 8–11].

• The discovery of further solutions that arise from the extension of Lie’s method
to the “nonclassical method” as well as other generalizations [2, 12, 13].

• The development of symbolic computation software to solve efficiently the
(overdetermined) linear system of symmetry and/or multiplier determining equa-
tions as well as related calculations for solving the nonlinear systems of determin-
ing equations arising when one uses the nonclassical method [14–18].

1.1 What is a Symmetry of a PDE System and How to Find One?

A symmetry (discrete or continuous) of a PDE system is any transformation of its
solution manifold into itself, i.e., a symmetry transforms (maps) any solution of a
PDE system to a solution of the same system. In particular, continuous symmetries
of a PDE system are continuous deformations of its solutions to solutions of the
same PDE system. Hence continuous symmetries are defined topologically and not
restricted to just point or local symmetries. Thus, in principle, any nontrivial PDE has
symmetries. The problem is to find and use the symmetries of a given PDE system.
Practically, to find symmetries of a given PDE system, one considers transformations,
acting locally on the variables of some finite-dimensional space, which leave invariant
the solution manifold of the PDE system and its differential consequences. However,
these variables do not have to be restricted to just the independent and dependent
variables of the given PDE system.

Higher-order symmetries (local symmetries) arise when the solutions of the linear
determining equations for infinitesimals are allowed to depend on a finite number of
derivatives of dependent variables of the PDE system.

• Infinitesimals for a point symmetry in evolutionary form allow at most linear
dependence on first derivatives of dependent variables of a PDE system.

• Infinitesimals for a contact symmetry in evolutionary form (only exists for a scalar
PDE) allow arbitrary dependence on at most first derivatives of the dependent
variable of a scalar PDE.

In making the extension from point and contact symmetries to higher-order sym-
metries, it is essential to realize that the linear determining equations for local sym-
metries are the linearized system (Fréchet derivative) of the given PDE system that
holds for all of its solutions. Globally, point and contact symmetries act on finite-
dimensional spaces whereas higher-order symmetries act on infinite-dimensional
spaces consisting of the dependent and independent variables of a given PDE system
as well as all of their derivatives. Well-known integrable equations of mathematical
physics such as the Korteweg-de-Vries equation have an infinite number of higher-
order symmetries [19].

Another extension is to consider solutions of the determining equations where
infinitesimals have an ad-hoc dependence on nonlocal variables such as integrals of
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the dependent variables [20–23]. For some PDEs, such nonlocal symmetries can be
found formally through recursion operators that depend on inverse differentiation.
Integrable equations such as the sine-Gordon and cubic Schrödinger equations have
an infinite number of such nonlocal symmetries.

1.2 Conservation Laws

In her celebrated 1918 paper [5], Emmy Noether showed that if a DE system admits
a variational principle, then any local transformation group leaving invariant the
action integral for its Lagrangian density, i.e., a variational symmetry, yields a local
conservation law. Conversely, any local CL of a variational DE system arises from
a variational symmetry, and hence there is a direct correspondence between local
CLs and variational symmetries (Noether’s theorem).

However there are limitations in the use of Noether’s theorem.

• Its application is restricted to variational systems. In particular, a given DE system,
as written, is variational if and only if its linearized system is self-adjoint.

• One has the difficulty of finding local symmetries of the action integral. In general,
not all local symmetries of a variational DE system are variational symmetries.

• The use of Noether’s theorem to find local conservation laws is coordinate-
dependent.

The Direct Method for finding CLs allows one to find local CLs more generally
for a given DE system. A CL of a given DE system is a divergence expression that
vanishes on all solutions of the DE system. Local CLs arise from scalar products
formed by linear combinations of local CL multipliers (factors that are functions
of independent and dependent variables and their derivatives) multiplying each DE
in the system. This scalar product is annihilated by the Euler operators associated
with each of its dependent variables without restricting these variables in the scalar
product to solutions of the system of DEs, i.e., the dependent variables are replaced
by arbitrary functions of the independent variables.

If a given DE system, as written, is variational, then local CL multipliers corre-
spond to variational symmetries. In the variational situation, using the Direct Method,
local CL multipliers satisfy a linear system of determining equations that includes
the linearizing system of the given DE system augmented by additional determining
equations that taken together correspond to the action integral being invariant under
the associated variational symmetry.

More generally, in using the Direct Method for any given DE system, the local
CL multipliers are the solutions of an easily found linear determining system that
includes the adjoint system of the linearizing DE system [1, 2, 9–11].

For any set of local CL multipliers, usually one can directly find the fluxes and
density of the corresponding local CL and, if this proves difficult, there is an integral
formula that yields them without the need of a specific functional (Lagrangian) even
in the case when the given DE system is variational [9–11].

One can compare the number of local symmetries and the number of local CLs
of a given DE system. When a DE system is variational, i.e., its linearized system
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is self-adjoint, then local CLs arise from a subset of its local symmetries and the
number of linearly independent local CLs cannot exceed the number of higher-order
symmetries. In general, this will not be the case when a system is not variational.
Here a given DE system can have more local conservation laws than local symmetries
as well as vice versa.

For any given DE system, a transformation group (continuous or discrete) that
leaves it invariant yields an explicit formula that maps a CL to a CL of the same
system, whether or not the given system is variational. If the transformation group
is a one-parameter Lie group of point (or contact) transformations, then in terms of
a parameter expansion a given CL can map into more than one additional CL for the
given DE system [2, 24].

1.3 Nonlocally Related Systems and Nonlocal Symmetries

Systematic procedures have been found to seek nonlocal symmetries of a given PDE
system through applying Lie’s algorithm to nonlocally related systems. In particular,
to apply symmetry methods to PDE systems, one needs to work in some specific
coordinate frame in order to perform calculations. A procedure to find symmetries
that are nonlocal and yet are local in some related coordinate frame involves embed-
ding a given PDE system in another PDE system obtained by adjoining nonlocal
variables in such a way that the resulting nonlocally related PDE system is equiva-
lent to the given system. Consequently, any local symmetry of the nonlocally related
system yields a symmetry of the given system (The converse also holds). A local
symmetry of the nonlocally related system, with the corresponding infinitesimals for
the variables of the given PDE system having an essential dependence on nonlocal
variables, yields a nonlocal symmetry of the given PDE system.

There are two known systematic ways to find such an embedding.

• Each local CL of a given PDE system yields a nonlocally related system. For each
local CL, one can introduce a potential variable(s). Here the nonlocally related
system is the given PDE system augmented by a corresponding potential system
[2, 25–27].

• Each point symmetry of a given PDE system yields a nonlocally related system.
Here, as a first step, the given PDE system naturally yields a locally related PDE
system (intermediate system) arising from the canonical coordinates of the point
symmetry. In turn, the intermediate system has a natural CL which yields a nonlo-
cally related system (inverse potential system) for the given PDE system [28, 29].
The intermediate system plays the role of a potential system for the inverse poten-
tial system.

If a local symmetry of such a nonlocally related system has an essential depen-
dence on nonlocal variables when projected to the given system, then it yields a
nonlocal symmetry of the given PDE system. It turns out that many PDE systems
have such systematically constructed nonlocal symmetries. Furthermore, one can
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find additional nonlocal symmetries of a given PDE system through seeking local
symmetries of an equivalent subsystem of the given system or one of its constructed
nonlocally related systems provided that such a subsystem is nonlocally related to
the given PDE system.

There are many applications of nonlocally related systems.

• Invariant solutions of nonlocally related systems (arising from CLs or point sym-
metries) can yield further solutions of a given PDE system.

• Since a point symmetry-based or CL-based nonlocal symmetry is a local symmetry
of a constructed nonlocally related system, it generates a one-parameter family of
solutions from any known solution (that is not an invariant solution) of such a
nonlocally related system. In turn, this yields a one-parameter family of solutions
from any known solution of the given PDE system.

• Local CLs of such nonlocally related systems can yield nonlocal CLs of a given
PDE system if their local CL multipliers have an essential dependence on nonlocal
variables.

Still wider classes of nonlocally related systems can be constructed systematically
for a given PDE system. One can further extend embeddings through the effective use
of local CLs to systematically construct trees of nonlocally related but equivalent PDE
systems. If a given PDE system has n local CLs, then each CL yields potentials and
corresponding potential systems. From the n local CLs, one can directly construct up
to 2n−1 independent nonlocally related systems of PDEs by considering correspond-
ing potential systems individually (n singlets), in pairs (n(n − 1)/2 couplets), . . . ,

taken all together (one n-plet). Any of these systems could lead to the discovery of
new nonlocal symmetries and/or nonlocal CLs of the given PDE system or any of the
other nonlocally related systems. Such nonlocal CLs could yield further nonlocally
related systems, etc. Furthermore, subsystems of such nonlocally related systems
could yield further nonlocally related systems. Correspondingly, a tree of nonlocally
related, and equivalent, systems is constructed for a given PDE system [2, 30, 31].

The situation in the case of multidimensional PDE systems (i.e., with at least three
independent variables) is especially interesting. Here one can show that nonlocal
symmetries and nonlocal CLs arising from the CL-based approach cannot arise from
potential systems unless they are augmented by gauge constraints [2, 32, 33].

There exist many applications of such systematically constructed nonlocally
related systems that further extend the use of symmetry methods for PDE systems.

• Through such constructions, one can systematically relate Eulerian and Lagrangian
coordinate descriptions of gas dynamics and nonlinear elasticity. In particular, for
the Eulerian coordinate description, a subsystem of the potential system aris-
ing from conservation of mass, naturally yields the corresponding description in
Lagrangian coordinates [2, 30, 31, 34, 35].

• For a given class of PDEs with constitutive functions, one finds trees of nonlocally
related systems yielding symmetries and CLs with respect to various forms of its
constitutive functions.
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• One can systematically seek noninvertible mappings of nonlinear PDE systems to
linear PDE systems. Consequently, further nonlinear PDE systems can be mapped
into equivalent linear PDE systems beyond those obtained through invertible map-
pings [2, 27, 36].

• One can systematically extend the class of linear PDE systems with variable coef-
ficients that can be mapped into equivalent linear PDE systems with constant
coefficients through inclusion of noninvertible mappings [2, 37, 38].

The rest of this chapter is organized as follows. In Sect. 2, we review local sym-
metries, Lie’s algorithm to find local symmetries in evolutionary form, applications
of local symmetries and as examples consider the heat equation and the Kortweg-
de Vries equation. In Sect. 3, we consider the construction of conservation laws,
introduce the Direct Method and its relationship to Noether’s theorem, and show
how symmetries could yield additional CLs from known CLs. As examples, we
consider nonlinear telegraph equations, the Korteweg-de Vries equation, the Klein-
Gordon equation, and nonlinear wave equations. In Sect. 4, we present systematic
procedures to seek nonlocally related systems and nonlocal symmetries of a given
PDE system with two independent variables. We introduce conservation law and
point symmetry based methods as well as the use of subsystems to obtain trees of
equivalent nonlocally related PDE systems. As examples, we focus on nonlinear
wave equations, nonlinear telegraph equations, planar gas dynamics equations, and
nonlinear reaction diffusion equations. In Sect. 5, we consider the situation of nonlo-
cality in multidimensions. We show that if one directly applies the CL-based method
to a single CL, then it is necessary to append a gauge constraint relating potential
variables of the resulting vector potential system when seeking nonlocal symmetries.
Some open problems are discussed.

2 Local Symmetries

Lie’s algorithm for seeking point symmetries can be extended to seek more general
local symmetries admitted by PDE systems. In the extension of Lie’s algorithm, one
uses differential consequences of the given PDE system, i.e., invariance of a given
PDE system is understood to include its differential consequences. Here it is impor-
tant to consider the infinitesimal generators for point symmetries in their evolutionary
form where the independent variables are themselves invariant and the action of a
group of point transformations is strictly an action on the dependent variables of the
PDE system, so that solutions are directly mapped into other solutions under the
group action. This allows one to readily extend Lie’s algorithm to seek contact sym-
metries (only existing for scalar PDEs) where now the components of infinitesimal
generators for dependent variables can depend at most on the first derivatives of the
dependent variable of a given scalar PDE (if this dependence is at most linear on the
first derivatives, then a contact symmetry is a point symmetry).
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A contact symmetry is equivalent to a point transformation acting on the space of
the given independent variables, the dependent variable and its first derivatives and,
through this, can be naturally extended to a point transformation acting on the space
of the given independent variables, the dependent variable and its derivatives to any
finite order greater than one.

Lie’s algorithm can be still further extended by allowing the infinitesimal gen-
erators in evolutionary form to depend on derivatives of dependent variables to any
finite order. This allows one to calculate symmetries that are called higher-order
symmetries. In the scalar case, contact symmetries are first-order symmetries. Oth-
erwise, higher-order symmetries are not equivalent to point transformations acting
on a finite-dimensional space including the independent variables, the dependent
variables and their derivatives to some finite order. Higher-order symmetries are
local symmetries in the sense that the components of the dependent variables in their
infinitesimal generators depend at most on a finite number of derivatives of a given
PDE system’s dependent variables so that their calculation only depends on the local
behaviour of solutions of a given PDE system.

Local symmetries include point symmetries, contact symmetries and higher-order
symmetries. Local symmetries are uniquely determined when infinitesimal genera-
tors are represented in evolutionary form.

Sophus Lie considered contact symmetries. Emmy Noether introduced the notion
of higher-order symmetries in her celebrated paper on conservation laws [5]. The
well-known infinite sequences of conservation laws of the Korteweg-de Vries (KdV)
and sine-Gordon equations are directly related to admitted infinite sequences of local
symmetries obtained through the use of recursion operators [19].

Consider a given scalar PDE of order k

R(x, t, u, ∂u, . . . , ∂ku) = 0 (1)

with independent variables (x, t) and dependent variable u(x, t); ∂ j u denotes the
j th order partial derivatives of u(x, t) appearing in the PDE (1). In evolutionary
form, the local symmetries of order p of a PDE (1), in terms of their infinitesimal
generators

η(x, t, u, ∂u, . . . , ∂ pu)
∂

∂u

are the solutions η(x, t, u, ∂u, . . . , ∂ pu) of its linearized system (Fréchet derivative)

[
∂R

∂u
η + ∂R

∂ux
Dxη + ∂R

∂ut
Dtη + ∂2 R

∂ux
2 (Dx )

2η + · · ·
]

R = 0,
Dx R = 0,
Dt R = 0,

.

.

.

= 0

in terms of total derivative operators
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Dx = ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ · · ·

Dt = ∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ · · ·

and holding for all solutions u = θ(x, t) of the PDE (1) and its differential conse-
quences.

A local symmetry of order p, η(x, t, u, ∂u, . . . , ∂ pu) ∂
∂u (including its natural

extension to action on derivatives), maps any solution u = θ(x, t) of PDE (1) (that
is not an invariant solution of PDE (1)) into a one-parameter (ε) family of solutions
of PDE (1) given by the expression

u =
(

e
ε
(
η ∂

∂u +(Dx η) ∂
∂ux

+(Dt η) ∂
∂ut

+···
)
u

)∣∣∣∣
u=θ(x,t)

and is equivalent to the transformation

x∗ = x

t∗ = t

u∗ = e
ε
(
η ∂

∂u +(Dx η) ∂
∂ux

+(Dt η) ∂
∂ut

+···
)
u

= u + εη(x, t, u, ∂u, . . . , ∂ pu) + O(ε2).

If p = 1, then the first order symmetry is equivalent to the contact symmetry

x∗ = x + ε
∂η

∂ux
+ O(ε2)

t∗ = t + ε
∂η

∂ut
+ O(ε2)

u∗ = u + ε

(
ux

∂η

∂ux
+ ut

∂η

∂ut
− η

)
+ O(ε2)

u∗
x = ux + ε

(
−ux

∂η

∂u
− ∂η

∂x

)
+ O(ε2)

u∗
t = ut + ε

(
−ut

∂η

∂u
− ∂η

∂t

)
+ O(ε2).

If a first order symmetry has an infinitesimal of the form

η(x, t, u, ∂u) = ξ(x, t, u)ux + τ (x, t, u)ut − ω(x, t, u)

then it is equivalent to the point symmetry
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x∗ = x + εξ(x, t, u) + O(ε2)

t∗ = t + ετ (x, t, u) + O(ε2)

u∗ = u + εω(x, t, u) + O(ε2).

2.1 Example 1: The Heat Equation

The heat equation
R = ut − uxx = 0

has the point symmetries [12, 13]

X1 = ux
∂

∂u
, X2 = ut

∂

∂u
, X3 = (xux + 2tut )

∂

∂u

X4 = (xtux + t2ut + [ 1
4 x2 + 1

2 t]u)
∂

∂u

X5 = (tux + 1
2 xu)

∂

∂u
, X6 = u

∂

∂u
.

2.2 Example 2: The Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equation

R = ut + uux + uxxx = 0

has an infinite sequence of higher-order symmetries given by

(Rn)ux , n = 0, 1, 2, . . .

in terms of the recursion operator [19]

R = (Dx )
2 + 2

3 u + 1
3 ux (Dx )

−1.

Specifically, one obtains corresponding nonlocal symmetries

ux
∂

∂u
, (uux + uxxx )

∂

∂u

( 5
6 u2ux + 4ux uxx + 5

3 uuxxx + uxxxxx )
∂

∂u
, . . . .

For a given PDE system, local symmetries can be used to determine
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• specific invariant solutions.
• a one-parameter family of solutions from “any” known solution.
• whether it can be linearized by an invertible transformation and find the lineariza-

tion when it exists [3, 4, 21].
• whether an inverse scattering transform exists.
• whether a given linear PDE with variable coefficients can be invertibly mapped

into a linear PDE with constant coefficients and find such a mapping when it exists
[39, 40].

3 Construction of Conservation Laws

In this section, we consider the problem of finding the local conservation laws for a
given PDE system. In particular, we present the Direct Method for the construction
of CLs. In the Direct Method one first derives the determining equations yielding the
multipliers (local CL multipliers). Following this, one finds the fluxes and densities
of corresponding local CLs. It is shown that a subset of the determining equations
for local CL multipliers includes the adjoint equations of the determining equations
yielding the local symmetries (in evolutionary form) of a given PDE system. The self-
adjoint case is especially interesting since here the given PDE system is variational
and thus the local CL multipliers are also local symmetries (the converse is false) of
the given PDE system. A comparison is made with the classical Noether theorem.
Further connections between symmetries and CLs are presented. In particular, it is
shown how a symmetry of a PDE system maps a known CL to a CL of the same
PDE system. In the case of a local symmetry it is shown that a parameter expansion
could yield more than one new CL from a known CL.

3.1 Uses of Conservation Laws

Conservation laws can yield constants of motion for any posed boundary value prob-
lem for a given PDE system. For this reason, for global convergence of an approxi-
mation scheme, it is important to preserve CLs, at least those CLs considered to be
of importance for a particular posed boundary value problem.

From knowledge of the local CL multipliers for a given nonlinear PDE system,
one can determine whether it can be mapped invertibly to a linear PDE system and
set up the equations to find such a mapping when one exists [2].

In Sect. 4, it will be shown how one can use local CLs to find nonlocally related
systems for a given PDE system. In turn, invariant solutions arising from local sym-
metries of such a nonlocally related system could yield further solutions of the given
PDE system beyond those obtained as invariant solutions arising from local symme-
try reductions. Moreover, the computation of local CLs of a nonlocally related system
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could yield nonlocal CLs of a given PDE system and to noninvertible linearizations
of nonlinear PDE systems.

3.2 Direct Method for Construction of Conservation Laws

Consider a given system R{x; u} of N PDEs of order k with n independent variables
x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x))

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (2)

A local conservation law of the PDE system (2) is an expression

DiΦ
i [u] = D1Φ

1[u] + · · · + DnΦn[u] = 0 (3)

holding for any solution of the PDE system (2). In (3), the operators Di , i = 1, . . . , n
are total derivative operators.

Definition 1 A PDE system R{x; u} (2) is totally non-degenerate if (2) and its
differential consequences have maximal rank and are locally solvable.

The proof of the following theorem appears in [11].

Theorem 1 Suppose R{x; u} (2) is a totally non-degenerate PDE system. Then for
every nontrivial local conservation law

DiΦ
i [u] = DiΦ

i (x, u, ∂u, . . . , ∂r u) = 0

of (2), there exists a set of multipliers, called local conservation law multipliers,

Λσ[U ] = Λσ(x, U, ∂U, . . . , ∂lU ), σ = 1, . . . , N

such that
DiΦ

i [U ] ≡ Λσ[U ]Rσ[U ]

holds for arbitrary U (x).

Definition 2 The Euler operator with respect to U j is the operator

EU j = ∂

∂U j
− Di

∂

∂U j
i

+ · · · + (−1)sDi1 · · · Dis

∂

∂U j
i1···is

+ · · · .

The proofs of the following two theorems follow from direct computations.

Theorem 2 For any divergence expression DiΦ
i [U ], one has
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EU j (DiΦ
i [U ]) ≡ 0, j = 1, . . . , m.

Theorem 3 Let F[U ] = F(x, U, ∂U, . . . , ∂sU ). Then

EU j F[U ] ≡ 0, j = 1, . . . , m

holds for arbitrary U (x) if and only if

F[U ] ≡ DiΨ
i (x, U, ∂U, . . . , ∂s−1U )

for some set of functions {Ψ i (x, U, ∂U, . . . , ∂s−1U )}.

The next theorem follows directly from Theorems 2 and 3.

Theorem 4 A set of local multipliers {Λσ(x, U, ∂U, . . . , ∂lU )} yields a divergence
expression for PDE system (2) if and only if

EU j (Λσ(x, U, ∂U, . . . , ∂lU )Rσ(x, U, ∂U, . . . , ∂kU )) ≡ 0, j = 1, . . . , m
(4)

holds for arbitrary U (x).

3.2.1 Summary of Direct Method to Find Local CLs

The Direct Method to find local CLs for a given PDE system (2) can be summarized
as follows. Further details can be found in [2, 10, 11].

1. Seek multipliers of the form Λσ[U ] = Λσ(x, U, ∂U, . . . , ∂lU ) with derivatives
∂lU to some specified order l.

2. Obtain and solve the determining Eq. (4) to find the multipliers of local conser-
vation laws.

3. For each set of multipliers, find the corresponding fluxes Φ i [U ] = Φ i (x, U,

∂U, . . . , ∂r U ) satisfying the identity

Λσ[U ]Rσ[U ] ≡ DiΦ
i [U ]. (5)

4. Consequently, one obtains the local CL

DiΦ
i [u] = DiΦ

i (x, u, ∂u, . . . , ∂r u) = 0

with fluxes Φ i [u] holding for any solution of the PDE system (2).

The fluxes Φ i [U ] = Φ i (x, U, ∂U, . . . , ∂r U ) in (5) can be found in the following
ways:

• Directly manipulate the left-hand side of (5) to obtain the right-hand side diver-
gence form.
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• Treat the fluxes as unknowns in expression (5). Expand the right-hand side to set
up a linear set of PDEs for the fluxes. Solve this linear set of PDEs.

• If one is unable to perform either of the first two ways successfully, then one
can formally obtain the fluxes through use of an integral (homotopy) formula that
appears in [11].

Example 1 Nonlinear Telegraph System

Consider the nonlinear telegraph system

R1[u, v] = vt − (u2 + 1)ux − u = 0

R2[u, v] = ut − vx = 0. (6)

We seek local CL multipliers of the form

Λ1 = ξ[U, V ] = ξ(x, t, U, V ), Λ2 = ϕ[U, V ] = ϕ(x, t, U, V ) (7)

for the nonlinear telegraph system (6). In terms of the Euler operators

EU = ∂

∂U
− Dx

∂

∂Ux
− Dt

∂

∂Ut
, EV = ∂

∂V
− Dx

∂

∂Vx
− Dt

∂

∂Vt

the multipliers (7) yield a local CL of the nonlinear telegraph system (6) if and only
if the determining equations

EU (ξ[U, V ]R1[U, V ] + ϕ[U, V ]R2[U, V ]) ≡ 0

EV (ξ[U, V ]R1[U, V ] + ϕ[U, V ]R2[U, V ]) ≡ 0 (8)

hold for arbitrary differentiable functions U (x, t), V (x, t). It is straightforward to
show that the Eq. (8) hold if and only if

ϕV − ξU = 0

ϕU − (U 2 + 1)ξV = 0

ϕx − ξt − UξV = 0 (9)

(U 2 + 1)ξx − ϕt − UξU − ξ = 0.

The five linearly independent solutions [41] of the linear determining system (9) are
given by

(ξ1,ϕ1) = (0, 1), (ξ2,ϕ2) = (t, x − 1
2 t2), (ξ3,ϕ3) = (1,−t)

(ξ4,ϕ4) = (ex+ 1
2 U 2+V

, Uex+ 1
2 U 2+V

), (ξ5,ϕ5) = (ex+ 1
2 U 2−V

,−Uex+ 1
2 U 2−V

).
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Correspondingly, through manipulation, one obtains the following five local conser-
vation laws [41]

Dt u + Dx [−v] = 0

Dt [(x − 1
2 t2)u + tv] + Dx [( 1

2 t2 − x)v − t ( 1
3 u3 + u)] = 0

Dt [v − tu] + Dx [tv − ( 1
3 u3 + u)] = 0

Dt [ex+ 1
2 u2+v] + Dx [−uex+ 1

2 u2+v] = 0

Dt [ex+ 1
2 u2−v] + Dx [uex+ 1

2 u2−v] = 0.

Example 2 KdV Equation

As a second example, consider again the KdV equation [10]

R[u] = ut + uux + uxxx = 0. (10)

It is convenient to also write (10) as

ut = g[u] = −(uux + uxxx ). (11)

Due to the evolutionary form of the KdV equation (10), it follows that all local
CL multipliers are of the form Λ[U ] = Λ(t, x, U, ∂xU, . . . , ∂l

xU ), l = 1, 2, . . . .

Then EU (Λ[U ](Ut + UUx + Uxxx )) ≡ 0 if and only if

− DtΛ − UDxΛ − D3
xΛ + (Ut + UUx + Uxxx )ΛU

− Dx ((Ut + UUx + Uxxx )Λ∂x U ) + · · · (12)

+ (−1)lDl
x ((Ut + UUx + Uxxx )Λ∂l

x U ) ≡ 0.

Note that the linear determining Eq. (12) is of the form

α1 + α2Ut + α3∂xUt + · · · + αl+2∂
l
xUt ≡ 0 (13)

where in Eq. (13) each coefficient αi depends at most on t , x , U and x-derivatives of
U . Since U (x, t) is an arbitrary function in Eq. (13), it follows that each of the terms
Ut , ∂xUt , . . . , ∂l

xUt must be treated as independent variables in (13). Hence αi = 0,
i = 1, . . . , l + 2. Thus Eq. (13) splits into an overdetermined linear system of l + 2
determining equations for the local multipliers Λ(t, x, U, ∂xU, . . . , ∂l

xU ), given by

D̃tΛ + UDxΛ + D3
xΛ = 0 (14)
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l∑
k=1

(−Dx )
kΛ∂k

x U = 0 (15)

(1−(−1)q)Λ∂
q
x U +

l∑
k=q+1

k!
q!(k − q)! (−Dx )

k−qΛ∂k
x U = 0, q = 1, . . . , l−1 (16)

(1 − (−1)l)Λ∂l
x U = 0 (17)

where D̃t = ∂
∂t + g[U ] ∂

∂U + (g[U ])x
∂

∂Ux
+ · · · is the total derivative operator

restricted to the KdV equation, with g[U ] = −(UUx + Uxxx ).
Now we seek local CL multipliers of the form Λ[U ] = Λ(x, t, U ). Then the

determining Eqs. (15)–(17) are satisfied and the determining Eq. (14) becomes

(Λt + UΛx + Λxxx ) + 3ΛxxU Ux + 3ΛxUU U 2
x

+ ΛUUU U 3
x + 3ΛxU Uxx + 3ΛUU UxUxx = 0.

(18)

Equation (18) holds for arbitrary values of x , t , U , Ux and Uxx . Hence Eq. (18)
splits into six equations. Their solution yields the three local CL multipliers Λ1 = 1,
Λ2 = U , Λ3 = tU − x . In turn, after simple manipulations, these three multipliers
yield the divergence expressions

Ut + UUx + Uxxx ≡ DtU + Dx (
1
2U 2 + Uxx )

U (Ut + UUx + Uxxx ) ≡ Dt (
1
2U 2) + Dx (

1
3U 3 + UUxx − 1

2U 2
x )

(tU − x)(Ut + UUx + Uxxx ) ≡ Dt (
1
2 tU 2 − xU )

+ Dx (− 1
2 xU 2 + tUUxx − 1

2 tU 2
x − xUxx + Ux ).

Thus the corresponding local conservation laws for the KdV Eq. (10) are given by

Dt u + Dx (
1
2 u2 + uxx ) = 0

Dt (
1
2 u2) + Dx (

1
3 u3 + uuxx − 1

2 u2
x ) = 0

Dt (
1
2 tu2 − xu) + Dx (− 1

2 xu2 + tuuxx − 1
2 tu2

x − xuxx + ux ) = 0.

One can show that there is only one additional local CL multiplier of the form
Λ[U ] = Λ(x, t, U, Ux , Uxx ), given by

Λ4 = Uxx + 1
2U 2.

Moreover, one can show that in terms of the recursion operator
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R∗[U ] = D2
x + 1

3U + 1
3 D−1

x ◦ U ◦ Dx

the KdV equation has an infinite sequence of local CL multipliers given by

Λ2n = (R∗[U ])nU, n = 1, 2, . . . .

General Expression Relating Local CL Multipliers and Solutions of Adjoint
Equations.

Consider a given PDE system (2). Let Rσ[U ] = Rσ(x, U, ∂U, . . . , ∂kU ), σ =
1, . . . , N , where U (x) = (U 1(x), . . . , U m(x)) is arbitrary and U (x) = u(x) solves
the PDE system (2).

In terms of m arbitrary functions V (x) = (V 1(x), . . . , V m(x)), the linearizing
operator L[U ] associated with the PDE system (2) is given by

Lσ
ρ [U ]V ρ ≡

[
∂Rσ[U ]

∂Uρ
+ ∂Rσ[U ]

∂Uρ
i

Di + · · · + ∂Rσ[U ]
∂Uρ

i1...ik

Di1 · · · Dik

]
V ρ,

σ = 1, . . . , N

and, in terms of N arbitrary functions W (x) = (W1(x), . . . , WN (x)), the adjoint
operator L∗[U ] associated with the PDE system (2) is given by

L∗σ
ρ [U ]Wσ ≡ ∂Rσ[U ]

∂Uρ
Wσ − Di

(
∂Rσ[U ]

∂Uρ
i

Wσ

)
+ · · ·

+ (−1)kDi1 · · · Dik

(
∂Rσ[U ]
∂Uρ

i1···ik

Wσ

)
, ρ = 1, . . . , m.

In particular, WσLσ
ρ [U ]V ρ − V ρL∗σ

ρ [U ]Wσ is a divergence expression.
Let

Wσ = Λσ[U ] = Λσ(x, U, ∂U, . . . , ∂lU ), σ = 1, . . . , N .

By direct calculation, in terms of Euler operators, one can show that

EUρ(Λσ[U ]Rσ[U ]) ≡ L∗σ
ρ [U ]Λσ[U ] + Fρ(R[U ]) (19)

with

Fρ(R[U ]) = ∂Λσ[U ]
∂Uρ

Rσ[U ] − Di

(
∂Λσ[U ]

∂Uρ
i

Rσ[U ]
)

+ · · ·

+ (−1)lDi1 · · · Dil

(
∂Λσ[U ]
∂Uρ

i1···il
Rσ[U ]

)
, ρ = 1, . . . , m. (20)
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From (19), it follows that {Λσ(x, U, ∂U, . . . , ∂lU )}N
σ=1 yields a set of local

CL multipliers for the PDE system (2) if and only if the right-hand side of (19)
vanishes for arbitrary U (x). Moreover, since the expressions (20) vanish on any
solution U (x) = u(x) of R{x; u} (2), it follows that every set of local CL multipli-
ers {Λσ(x, U, ∂U, . . . , ∂lU )}N

σ=1 of the PDE system (2) must be a solution of its
adjoint system of PDEs, which is the adjoint of its linearizing system of PDEs, when
U (x) = u(x) is a solution of R{x; u} (2), i.e.,

L∗σ
ρ [u]Λσ[u] = 0, ρ = 1, . . . , m. (21)

The proof of the following theorem follows directly from expression (19).

Theorem 5 Consider a given PDE system (2). A set of functions {Λσ(x, U, ∂U, . . . ,
∂lU )}N

σ=1 yields a set of local CL multipliers for PDE system (2) if and only if the
identities

L∗σ
ρ [U ]Λσ[U ] + ∂Λσ[U ]

∂Uρ
Rσ[U ] − Di

(
∂Λσ[U ]

∂Uρ
i

Rσ[U ]
)

+ · · ·

+ (−1)lDi1 · · · Dil

(
∂Λσ[U ]
∂Uρ

i1···il
Rσ[U ]

)
≡ 0, ρ = 1, . . . , m

hold for m arbitrary functions U (x) = (U 1(x), . . . , U m(x)) in terms of the compo-
nents {L∗σ

ρ [U ]}of the adjoint operator of the linearizing operator (Fréchet derivative)
for the given PDE system (2).

The derivation leading to Eq. (21) can be summarized in terms of the following
theorem.

Theorem 6 Consider a given PDE system (2). Suppose one has a set of local CL
multipliers {Λσ(x, U, ∂U, . . . , ∂lU )}N

σ=1 for the PDE system (2). Let {L∗σ
ρ [U ]} be

the components of the adjoint operator of the linearizing operator (Fréchet deriv-
ative) for the PDE system (2) and let U (x) = u(x) = (u1(x), . . . , um(x)) be any
solution of the PDE system (2). Then L∗σ

ρ [u]Λσ[u] = 0.

The Situation When the Linearizing Operator is Self-adjoint

Definition 3 Let L[U ], with its components Lσ
ρ [U ], be the linearizing operator asso-

ciated with a PDE system R{x; u} (2). The adjoint operator of L[U ] is L∗[U ], with
components L∗σ

ρ [U ]. L[U ] is a self-adjoint operator if and only if L[U ] ≡ L∗[U ],
i.e., Lσ

ρ [U ] ≡ L∗σ
ρ [U ], σ, ρ = 1, . . . , m.

One can show that a given PDE system, as written, has a variational formulation
if and only if its associated linearizing operator is self-adjoint [8, 42, 43].

If the linearizing operator associated with a given PDE system is self-adjoint, then
each set of local CL multipliers yields a local symmetry of the given PDE system.
In particular, one has the following theorem.
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Theorem 7 Consider a given PDE system R{x; u} (2) with N = m, i.e., the number
of dependent variables appearing in PDE system (2) is the same as the number of
equations in PDE system (2). Suppose the associated linearizing operator L[U ] for
PDE system (2) is self-adjoint. Let {Λσ(x, U, ∂U, . . . , ∂lU )}m

σ=1 be a set of local
CL multipliers for (2). Let

ησ(x, u, ∂u, . . . , ∂lu) = Λσ(x, u, ∂u, . . . , ∂lu), σ = 1, . . . , m

where U (x) = u(x) is any solution of the PDE system (2). Then

ησ(x, u, ∂u, . . . , ∂lu)
∂

∂uσ
(22)

is a local symmetry of R{x; u}.
Proof Since the hypothesis of Theorem 6 is satisfied with L[U ] = L∗[U ], from the
equations of this theorem it follows that in terms of the components of the associated
linearizing operator L[U ], one has

Lσ
ρ [u]Λσ(x, u, ∂u, . . . , ∂lu) = 0, ρ = 1, . . . , m (23)

where u = θ(x) is any solution of the given PDE system (2). But the set of Eq. (23)
is the set of determining equations for a local symmetry Λσ(x, u, ∂u, . . . , ∂lu) ∂

∂uσ

of PDE system (2). Hence (22) is a local symmetry of PDE system (2). ⊕�
The converse of Theorem 7 is false. In particular, suppose ησ(x, u, ∂u, . . . ,

∂lu) ∂
∂uσ is a local symmetry of a PDE system R{x; u} (2) with a self-adjoint

linearizing operator L[U ]. Let Λσ(x, U, ∂U, . . . , ∂lU ) = ησ(x, U, ∂U, . . . , ∂lU ),
σ = 1, . . . , m, where U (x) = (U 1(x), . . . , U m(x)) is arbitrary. Then it does not
necessarily follow that {Λσ(x, U, ∂U, . . . , ∂lU )}m

σ=1 is a set of local CL multipliers
of R{x; u}. This can be seen as follows: In the self-adjoint case, the set of local sym-
metry determining equations is a subset of the set of local multiplier determining
equations. Here each local symmetry yields a set of local CL multipliers if and only
each solution of the set of local symmetry determining equations also solves the
remaining set of local multiplier determining equations.

To illustrate the situation, consider the following example of a nonlinear PDE
whose linearizing operator is self-adjoint but the PDE has a point symmetry that
does not yield a multiplier for a local CL

utt − u(uux )x = 0. (24)

It is easy to see that the PDE (24) has the scaling point symmetry x → αx , u → αu,
corresponding to the infinitesimal generator

X = (u − xux )
∂

∂u
· (25)
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The self-adjoint linearizing operator associated with PDE (24) is given by

L[U ] = D2
t − U 2D2

x − 2UUx Dx − 2UUxx − U 2
x .

The determining equation for the local CL multipliers Λ(t, x, U, Ut , Ux ) of the
PDE (24) is an identity holding for all values of the variables t , x , U , Ut , Ux , Utt ,
Utx , Uxx , Uttt , Uttx , Utxx , Uxxx , and splits into a system of two equations consisting
of

D̃2
t Λ − U 2D2

xΛ − 2UUx DxΛ − (2UUxx + U 2
x )Λ = 0 (26)

and
2ΛU + D̃tΛUt − DxΛUt = 0 (27)

in terms of the “restricted” total derivative operator D̃t = ∂
∂t + Ut

∂
∂U + Utx

∂
∂Ux

+
g[U ] ∂

∂Ut
+ Utxx

∂
∂Uxx

+ Dt (g[U ]) ∂
∂Utt

where g[U ] = U (UUx )x .

Equation (26) is the determining equation for Λ(t, x, u, ut , ux )
∂
∂u to be a contact

symmetry of the given PDE (24). If the contact symmetry satisfies the second deter-
mining Eq. (27) then it yields a local CL multiplier Λ(t, x, U, Ut , Ux ) of PDE (24).
It is easy to check that the scaling symmetry (25) obviously satisfies the contact sym-
metry determining Eq. (26) but does not satisfy the second determining Eq. (27) when
u(x, t) is replaced by an arbitrary function U (x, t). Hence the scaling symmetry (25)
does not yield a local conservation law of PDE (24).

3.3 Noether’s Theorem

In 1918, Emmy Noether presented her celebrated procedure (Noether’s theorem) to
find local CLs for a DE system that admits a variational principle.

When a given DE system admits a variational principle, then the extremals of
the associated action functional yield the given DE system (the Euler-Lagrange
equations). In this case, Noether showed that if a one-parameter local transformation
leaves invariant the action functional (action integral), then one obtains the fluxes of
a local CL through an explicit formula that involves the infinitesimals of the local
transformation and the Lagrangian (Lagrangian density) of the action functional.

3.3.1 Euler-Lagrange Equations

Consider a functional J [U ] in terms of n independent variables x = (x1, . . . , xn)

and m arbitrary functions U = (U 1(x), . . . , U m(x)) and their partial derivatives to
order k, defined on a domain Ω
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J [U ] =
∫
Ω

L[U ]dx =
∫
Ω

L(x, U, ∂U, . . . , ∂kU )dx . (28)

In (28), the function L[U ] = L(x, U, ∂U, . . . , ∂kU ) is called a Lagrangian and the
functional J [U ] is called an action integral.

Consider an infinitesimal change U (x) → U (x) + εv(x) where v(x) is any
function such that v(x) and its derivatives to order k − 1 vanish on the boundary
∂Ω of the domain Ω . The corresponding infinitesimal change (variation) in the
Lagrangian L[U ] is given by

δL = L(x, U + εv, ∂U + ε∂v, . . . , ∂kU + ε∂kv) − L(x, U, ∂U, . . . , ∂kU )

= ε

(
∂L[U ]
∂Ui

vi + ∂L[U ]
∂Ui

j

vi
j + · · · + ∂L[U ]

∂Ui
j1··· jk

vi
j1··· jk

)
+ O(ε2). (29)

Let

W l [U, v] = vi

(
∂L[U ]
∂Ui

l

+ · · · + (−1)k−1D j1 · · · D jk−1

∂L[U ]
∂Ui

l j1··· jk−1

)

+ vi
j1

(
∂L[U ]
∂Ui

j1l

+ · · · + (−1)k−2D j2 · · · D jk−1

∂L[U ]
∂Ui

j1l j2··· jk−1

)
(30)

+ · · · + vi
j1··· jk−1

∂L[U ]
∂Ui

j1 j2··· jk−1l

·

After repeatedly using integration by parts, one can show that

δL = ε(vi EUi (L[U ]) + Dl W
l [U, v]) + O(ε2) (31)

where EUi is the Euler operator with respect to Ui . The corresponding variation in
the action integral J [U ] is given by

δJ = J [U + εv] − J [U ] =
∫
Ω

δLdx

= ε

∫
Ω

(vi EUi (L[U ]) + Dl W
l [U, v])dx + O(ε2) (32)

= ε(

∫
Ω

vi EUi (L[U ])dx +
∫

∂Ω

W l [U, v]nldσ) + O(ε2).

Hence if U (x) = u(x) extremizes the action integral J [U ], then the O(ε) term in
δJ must vanish. Thus

∫
Ω

vi Eui (L[u])dx = 0 for an arbitrary function v(x) defined
on the domain Ω . Hence, if U (x) = u(x) extremizes the action integral J [U ], then
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u(x) must satisfy the PDE system

Eui (L[u]) = ∂L[u]
∂ui

+ · · · + (−1)kD j1 · · · D jk
∂L[u]

∂ui
j1··· jk

= 0, i = 1, . . . , m. (33)

The Eq. (33) are called the Euler-Lagrange equations satisfied by an extremum
U (x) = u(x) of the action integral J [U ]. Thus the following theorem has been
proved.

Theorem 8 If a smooth function U (x) = u(x) is an extremum of an action integral
(28), then u(x) satisfies the Euler-Lagrange equations (33).

3.3.2 Standard Formulation of Noether’s Theorem

Definition 4 In the standard formulation of Noether’s theorem, the action integral
(28) is invariant under the one-parameter Lie group of point transformations

(x∗)i = xi + εξi (x, U ) + O(ε2), i = 1, . . . , n

(U∗)μ = Uμ + εημ(x, U ) + O(ε2), μ = 1, . . . , m (34)

with infinitesimal generator X = ξi (x, U ) ∂
∂xi + ημ(x, U ) ∂

∂Uμ , if and only if∫
Ω∗ L[U∗]dx∗ = ∫

Ω
L[U ]dx where Ω∗ is the image of Ω under the Lie group

of point transformations (34).

The Jacobian of the one parameter Lie group of point transformations (34) is given
by J = det(Di (x∗) j ) = 1 + εDiξ

i (x, U ) + O(ε2). Then dx∗ = Jdx . Moreover,
L[U∗] = eεX L[U ] in terms of the infinitesimal generator X. Consequently, in the
standard formulation of Noether’s theorem, X is a point symmetry of J [U ] if and
only if

0 =
∫
Ω

(JeεX −1)L[U ]dx = ε

∫
Ω

(L[U ]Diξ
i (x, U )+X(k)L[U ])dx + O(ε2) (35)

holds for arbitrary U (x) where X(k) is the k-th extension (prolongation) of the infin-
itesimal generator X. Hence, if X is a point symmetry of J [U ], then the O(ε) term
in (35) must vanish. Thus L[U ]Diξ

i (x, U ) + X(k)L[U ] ≡ 0.
The one-parameter Lie group of point transformations (34) with infinitesimal gen-

erator X is equivalent to the one-parameter family of transformations in evolutionary
form given by

(x∗)i = xi , i = 1, . . . , n

(U∗)μ = Uμ + ε[ημ(x, U ) − Uμ
i ξi (x, U )] + O(ε2), μ = 1, . . . , m (36)
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with k-th extended infinitesimal generator X̂(k) = η̂μ[U ] ∂
∂Uμ + · · · . Under trans-

formation (36), U (x) → U (x) + εv(x) has components vμ(x) = η̂μ[U ] =
ημ(x, U ) − Uμ

i ξi (x, U ). Hence δL = εX̂(k)L[U ] + O(ε2). Thus

∫
Ω

δLdx = ε

∫
Ω

X̂(k)L[U ]dx + O(ε2). (37)

Consequently, after setting vμ(x) = η̂μ[U ] = ημ(x, U )−Uμ
i ξi (x, U ), and compar-

ing expressions (32) and (37), it follows that

X̂(k)L[U ] ≡ η̂μ[U ]EUμ(L[U ]) + Dl W
l [U, η̂[U ]]. (38)

By direct calculation, one can show the following.

Lemma 1 Let F[U ] = F(x, U, ∂U, . . . , ∂kU ) be an arbitrary function of its argu-
ments. Then, in terms of the extended infinitesimal generators X(k) and X̂(k), one has
the identity

X(k)F[U ] + F[U ]Diξ
i (x, U ) ≡ X̂(k)F[U ] + Di (F[U ]ξi (x, U )). (39)

Theorem 9 Standard formulation of Noether’s theorem. Suppose a given PDE sys-
tem is derivable from a variational principle, i.e., the given PDE system is a set of
Euler-Lagrange equations (33) whose solutions u(x) are extrema U (x) = u(x) of an
action integral J [U ] with Lagrangian L[U ]. Suppose the one-parameter Lie group
of point transformations (34) with infinitesimal generator X leaves invariant J [U ].
Then

1. The identity

η̂μ[U ]EUμ(L[U ]) ≡ −Di (ξ
i (x, U )L[U ] + W i [U, η̂[U ]]) (40)

holds for arbitrary functions U (x), i.e., {η̂[U ]}m
μ=1 is a set of local CL multipliers

of the Euler-Lagrange system (33).
2. The local conservation law

Di (ξ
i (x, u)L[u] + W i [u, η̂[u]]) = 0 (41)

holds for any solution u = θ(x) of the Euler-Lagrange system (33).

Proof Let F[U ] = L[U ] in the identity in Lemma 1. Then the identity

X̂(k)L[U ] + Di (L[U ]ξi (x, U )) ≡ 0 (42)

holds for arbitrary functions U (x). Substitution for X̂(k)L[U ] in (42) through (38)
yields the identity (40). If U (x) = u(x) solves the Euler-Lagrange system (33),
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then the left-hand-side of equation (40) vanishes. This yields the local conservation
law (41). ⊕�

3.3.3 Extended Formulation of Noether’s Theorem

One can extend the standard formulation of Noether’s theorem to find additional
local conservation laws arising from invariance under higher-order transformations
through a generalization of Definition 4 for the invariance of an action integral J [U ].
Here the action integral J [U ] is invariant under a one-parameter family of higher-
order transformations if its integrand L[U ] is invariant to within a divergence.

Definition 5 Let X̂ = η̂μ(x, U, ∂U, . . . , ∂sU ) ∂
∂Uμ be the infinitesimal generator

of a one-parameter family of local transformations (36) in evolutionary form with
infinite extension X̂(∞). Let η̂μ[U ] = η̂μ(x, U, ∂U, . . . , ∂sU ). Here X̂ is a local
symmetry of J [U ] if and only if the identity

X̂(∞)L[U ] ≡ Di Ai [U ] (43)

holds for some set of functions Ai [U ] = Ai (x, U, ∂U, . . . , ∂r U ), i = 1, . . . , n.

Theorem 10 Extended formulation of Noether’s theorem. Suppose a given PDE
system is derivable from a variational principle, i.e., the given PDE system is a set
of Euler-Lagrange equations (33) whose solutions u(x) are extrema U (x) = u(x) of
an action integral J [U ] with Lagrangian L[U ]. Suppose X̂ = η̂μ[U ] ∂

∂Uμ is a local
symmetry of J [U ]. Then

1. The identity
η̂μ[U ]EUμ(L[U ]) ≡ Di (Ai [U ] − W i [U, η̂[U ]]) (44)

holds for arbitrary functions U (x), i.e., {η̂μ[U ]}m
μ=1 is a set of local CL multipliers

for the Euler-Lagrange system (33).
2. The local conservation law

Di (W i [u, η̂[u]] − Ai [u]) = 0 (45)

holds for any solution u = θ(x) of the Euler-Lagrange system (33).

Proof For the one-parameter family of local transformations (36) with infinitesimal
generator X̂ = η̂μ[U ] ∂

Uμ , it follows that the corresponding infinitesimal change
U (x) → U (x) + εv(x) has components vμ(x) = η̂μ[U ]. Consequently, δL =
εX̂(∞)L[U ]+ O(ε2). But δL = ε(η̂μ[U ]EUμ(L[U ])+Di (W i [U, η̂[U ]]))+ O(ε2).
Hence it immediately follows that the identity

X̂(∞)L[U ] ≡ η̂μ[U ]EUμ(L[U ]) + Di (W i [U, η̂[U ]]) (46)
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holds for arbitrary functions U (x). Since X̂ = η̂μ[U ] ∂
Uμ is a local symmetry of J [U ],

it follows that Eq. (43) holds. Substitution for X̂(∞)L[U ] in (46) through (43) yields
the identity (44). If U (x) = u(x) solves the Euler-Lagrange system (33), then the
left-hand-side of Eq. (44) vanishes. This yields the local conservation law (45). ⊕�

The following theorem shows that any local conservation law obtained through
the standard formulation of Noether’s theorem can be obtained through the extended
formulation of Noether’s theorem.

Theorem 11 If a local conservation law is obtained through the standard formula-
tion of Noether’s theorem, then this local conservation law can be obtained through
its extended formulation.

Proof Suppose the one-parameter Lie group of point transformations (34) with infin-
itesimal generator X yields a local CL of a given PDE system derivable from a
variational principle with Euler-Lagrange system (33). Then the identity (42) holds.
Consequently,

X̂(k)L[U ] = X̂(∞)L[U ] = Di Ai [U ] (47)

where Ai [U ] = −Di (L[U ]ξi (x, U )). But Eq. (47) is just the condition for X to be a
local symmetry of J [U ]. Consequently, one obtains the same local conservation law
from the extended formulation of Noether’s theorem. ⊕�

3.3.4 Limitations of Noether’s Theorem

There are several limitations in using Noether’s theorem to find the local conservation
laws of a given PDE system.

1. There is the difficulty of finding variational symmetries. To find the variational
symmetries of a given DE system arising from a variational principle, first one
determines the local symmetries X = ησ[u] ∂

∂uσ of the Euler-Lagrange equa-
tions (33). Then for each local symmetry, one checks if X leaves invariant the
Lagrangian L[U ] to within a divergence. Note that since all local conservation
laws, obtainable by Noether’s theorem, arise from local CL multipliers, one can
simply use the Direct Method to check whether a local symmetry is a variational
symmetry.

2. A given system of DEs is not variational as written. A given system of differential
equations, as written, is variational if and only if its linearized system (Fréchet
derivative) is self-adjoint. Consequently, it is necessary, but far from sufficient,
that a given system of DEs, as written, must be of even order, have the same
number of equations in the system as its number of dependent variables and be
non-dissipative to directly admit a variational principle.

3. Artifices can make a given system of DEs variational that is not variational, as
written. Such artifices include
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• The use of multipliers. As an example, the PDE

utt + H ′(ux )uxx + H(ux ) = 0 (48)

as written, does not admit a variational principle since its linearized equation
ςt t + H ′(ux )ςxx + (H ′′(ux )+ H ′(ux ))ςx = 0 is not self-adjoint. However, the
equivalent PDE ex [utt + H ′(ux )uxx + H(ux )] = 0, obtained after multiplying
PDE (48) by ex , is self-adjoint!

• The use of a contact transformation. As an example, the ODE

y′′ + 2y′ + y = 0 (49)

as written, obviously does not admit a variational principle. But the point
transformation x → X = x , y → Y = yex , maps the ODE (49) to the
variational ODE Y ′′ = 0. However, it is well-known that every second order
ODE, written in solved form, can be mapped into Y ′′ = 0 by some contact
transformation but there is no finite algorithm to find such a transformation.

• The use of a differential substitution. As an example, the KdV equation (11),
as written, obviously does not admit a variational principle since it is of odd
order. But the well-known differential substitution u = vx yields the equiva-
lent transformed KdV equation vxxxx + vxvxx + vxt = 0, that is the Euler-
Lagrange equation for an extremum V (x, t) = v(x, t) of the action integral
with Lagrangian L[V ] = 1

2 (Vxx )
2 − 1

6 (Vx )
3 − 1

2 Vx Vt .

4. Noether’s theorem is coordinate-dependent. The use of Noether’s theorem to
obtain a local conservation law is coordinate-dependent since the action of a
contact transformation can transform a DE having a variational principle to one
that does not have one. On the other hand it is well-known that local conservation
laws are coordinate-independent in the sense that a contact transformation maps
a local CL of a given DE into a local CL of the transformed DE.

5. The artifice of a Lagrangian itself for finding the local CLs of a given DE system.
One should be able to expect to directly find the local conservation laws of a given
DE system without the need to find a related action integral whether or not the
given DE system is variational.

3.4 Further Comments on the Direct Method to Find Local
Conservation Laws vis-á-vis Noether’s Theorem

The Direct Method to find local CLs addresses limitations of Noether’s theorem as
follows.

1. In principle, the Direct Method can be used to find local conservation laws for any
DE system, no matter how it is written, whereas the direct application of Noether’s
theorem requires the linearized system of a given DE system to be self-adjoint.
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Essentially, the Direct Method finds all local CLs of a given DE system. Note
that Noether’s theorem can only be used to find local CLs. As seen in Theorems
9 and 10, Noether’s theorem is also a multiplier method.

2. In the Direct Method, no functional is required unlike the situation for Noether’s
theorem. Local CLs are constructed directly. In the Direct Method, local CL
multipliers correspond to symmetries of a given DE system if and only if its
linearization operator is self-adjoint.

Example 1 Klein-Gordon Equation

As an example to compare the use of Noether’s theorem and the Direct Method to
find local CLs, consider the Klein-Gordon equation

utx − un = 0, n 
= 0, 1. (50)

The PDE (50) has the scaling point symmetry

x∗ = α1−n x, t∗ = t, u∗ = αu (51)

with the corresponding infinitesimal generator X = (u − (1 − n)xux )
∂
∂u . One

can show that the Klein-Gordon equation (50) is variational with action functional
J [U ] = ∫

L[U ]dtdx ; L[U ] = − 1
2UtUx + 1

n+1U n+1. We now show that the point
symmetry (51) of the PDE (50) does not yield a local CL of this PDE from the
presented three points of view.

1. Standard formulation of Noether’s theorem. Let x∗ = α1−n x , t∗ = t , U∗ = αU .
Then J [U∗] = J [αU ] = ∫

L[U∗]dt∗dx∗ = α1−n
∫

L[αU ]dtdx . But L[αU ]
= α1+n L[U ]. Hence J [U∗] = α2 J [U ] 
= J [U ] for any value of α 
= 1. Thus
the point symmetry (51) of the Klein-Gordon equation (50) yields no local CL.

2. Extended formulation of Noether’s theorem. Here, by direct calculation, one can
show that the extended infinitesimal generator X(∞) of the infinitesimal generator
X of the point symmetry (51) yields

X(∞)L[U ] = U n(U − xUx (1 − n)) − 1
2 (Ux (Ut − xUxt (1 − n)

+ Ut (Ux − xUxx (1 − n))). (52)

The right-hand side of the expression (52) does not yield a divergence. The best
way to show this is through applying the Euler operator with respect to U to the
right-hand side of (52). In particular, EU (X(∞)L[U ]) ≡ 2(Uxt +U n) 
= 0. Hence
the extended formulation of Noether’s theorem yields no local CL.

3. Application of the Direct Method. Here EU [(U −xUx (1−n))(Utx −U )] 
= 0 for
an arbitrary function U (x, t). Hence the point symmetry (51) of the Klein-Gordon
equation (50) yields no local CL multiplier and thus no local CL.
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Example 2 Nonlinear Wave Equation

Now we use the nonlinear wave equation

utt − (c2(u)ux )x = 0 (53)

as an example to show how the Direct Method finds the fluxes for a local CL from
a known local CL multiplier. In particular, one can show that Λ[U ] = xt is a local
CL multiplier for the PDE (53). Then

xt (Utt − (c2(U )Ux )x ) = Dt (T [U ]) + Dx (X [U ]) (54)

for some functions T [U ] = T (x, t, U, Ux , Ut ), X [U ] = X (x, t, U, Ux , Ut ). Con-
sequently, the Eq. (54) becomes

xt (Utt − 2c(U )c′(U )U 2
x − c2(U )Uxx ) = Tt + TU Ut + TUt Utt + TUx Utx

+ Xx + XU Ux + XUt Utx + XUx Uxx .

(55)

Equating to zero the coefficients of Uxx , Utt , Utx , U 2
x , Ut , Ux , and the rest of

the terms in Eq. (55) straightforwardly yields the fluxes T [U ] = xtUt − xU ,
X [U ] = −xtc2(U )Ux + t

∫
c2(U )dU .

3.5 Use of Symmetries to Seek Further Conservation Laws
from a Known Conservation Law

It is now shown how any symmetry (discrete or continuous) of a given PDE system
R{x; u} (2) maps any CL of (2) into a CL of (2). Usually, no additional CL of (2) is
obtained.

A symmetry of a PDE system induces a symmetry that leaves invariant the linear
determining system for its local CL multipliers. Hence it follows that if one deter-
mines the action of a symmetry on a set of local CL multipliers {Λσ[U ]} for a known
local CL of R{x; u} to obtain another set of local CL multipliers {Λ̂σ[U ]}, then a
priori one can determine whether an additional local CL is obtained for R{x; u}.

In particular, suppose the invertible point transformation

x = x(x̃, ũ), u = u(x̃, ũ) (56)

with its inverse transformation given by x̃ = x̃(x, u), ũ = ũ(x, u), is a symmetry
of a PDE system (2). Then corresponding to each PDE in (2), with solutions u(x)

replaced by arbitrary functions U (x), and ũ(x) replaced by Ũ (x), one has

Rα[U ] = Aα
β [Ũ ]Rβ[Ũ ] (57)
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holding for some set of functions {Aα
β [U ]}. Consequently, by direct calculation, one

can prove the following theorem. For details, see [2, 24].

Theorem 12 Under a point transformation (56), with u(x) replaced by U (x) and
ũ(x) replaced by Ũ (x), in terms of any given set of functions {Φ i [U ]}, there exists
a corresponding set of functions {Ψ i [Ũ ]} such that

J[Ũ ]DiΦ
i [U ] = D̃iΨ

i [Ũ ] (58)

where the Jacobian determinant

J[Ũ ] = D(x1, . . . , xn)

D(x̃1, . . . , x̃n)
=

∣∣∣∣∣∣∣∣∣

D̃1x1 · · · D̃1xn

· · ·
...

...
...

...

D̃n x1 D̃n xn

∣∣∣∣∣∣∣∣∣
(59)

and

Ψ i1 [Ũ ] = ±

∣∣∣∣∣∣∣∣∣

Φ1[U ] Φ2[U ] · · · Φn[U ]
D̃i2 x1 · · · D̃i2 xn

...
...

...
...

D̃in x1 · · · D̃in xn

∣∣∣∣∣∣∣∣∣
. (60)

By direct calculation, one can prove the following theorem with details appearing
in [24].

Theorem 13 Suppose the point transformation (56) is a symmetry of R{x; u} (2)
and {Λσ[U ]} is a set of local CL multipliers for R{x; u} with fluxes {Φ i [U ]}. Then

Λ̂β[Ũ ]Rβ[Ũ ] = D̃iΨ
i [Ũ ] (61)

where
Λ̂β[Ũ ] = J[Ũ ]Aα

β [Ũ ]Λα[U ], β = 1, . . . , N (62)

with the components of the derivatives in {Λα[U ]} expressed in terms of the prolon-
gation of the point transformation (56). In Eq. (61), the functions Ψ i [Ũ ] are yielded
by determinant (60). In Eq. (62), the functions Aα

β [Ũ ] are obtained through Eq. (57),

and the Jacobian J[Ũ ] is yielded by the determinant (59).

After replacing x̃ i by xi , Ũα by Uα, etc., in Eq. (62), one obtains the following
corollary.

Corollary 1 If {Λα[U ]} is a set of local CL multipliers for the PDE system R{x; u}
(2) that has the symmetry (56), then {Λ̂β[U ]} yields a set of local CL multipliers for
R{x; u} where {Λ̂β[U ]} is given by (62) after replacing x̃i by xi , Ũσ by Uσ , Ũσ

i

by Uσ
i , etc. The set of local CL multipliers {Λ̂β[U ]} yields a new local CL of PDE
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system (2) if and only if this set is nontrivial on all solutions U = u(x) of PDE
system (2), i.e., Λ̂β[u] 
≡ cΛβ[u], β = 1, . . . , N, for some constant c.

Now suppose the symmetry (56) is a one-parameter Lie group of point transfor-
mations

x = x(x̃, Ũ ; ε) = eεX̃ x̃, U = U (x̃, Ũ ; ε) = eεX̃Ũ (63)

in terms of its infinitesimal generator (and extensions) X̃ = ξ j (x̃, Ũ ) ∂
∂ x̃ j +

ησ(x̃, Ũ ) ∂
∂Ũσ

·
If Eq. (61) holds, then from Eq. (58) and the Lie group properties of (63), it follows

that
J[U ; ε]eεX(Λσ[U ]Rσ[U ]) = DiΨ

i [U ; ε] (64)

in terms of the infinitesimal generator (and its extensions) X = ξ j (x, U ) ∂
∂x j +

ησ(x, U ) ∂
∂Uσ . Then, after expanding both sides of Eq. (64) in terms of power series

in ε, one obtains an expression of the form

∑
p

εpΛ̂σ[U ; p]Rσ[U ] =
∑

p

εpDi (
1
p!

d p

dεp Ψ i [U ; ε])
∣∣∣
ε=0

. (65)

Corresponding to the sequence of sets of local CL multipliers {Λ̂σ[U ; p]}, p = 1,
2, . . . , arising in expression (65), one obtains a sequence of local CLs

Di (
d p

dεp Ψ i [u; ε])
∣∣∣
ε=0

= 0, p = 1, 2, . . .

for PDE system (2) from its known local CL DiΦ
i [u] = 0.

Example 1 A Nonlinear Telegraph System

Consider the nonlinear telegraph PDE system

vt + (1 − 2e2u)ux − eu = 0

vx − ut = 0. (66)

The PDE system (66) has the set of local CL multipliers

Λ1 = ξ = e− 1
2 (U+t/

√
2) sin( 1

2 (V + (x + 2eU )/
√

2))

Λ2 = ϕ = −e− 1
2 (U+t/

√
2)

(
√

2eU sin( 1
2 (V + (x + 2eU )/

√
2))

+ cos( 1
2 (V + (x + 2eU )/

√
2)))
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and corresponding fluxes

T = −2e− 1
2 (u+t/

√
2) cos( 1

2 (v + (x + 2eu)/
√

2))

X = 2e− 1
2 (u+t/

√
2)

(
√

2eu cos( 1
2 (v + (x + 2eu)/

√
2))

− sin( 1
2 (v + (x + 2eu)/

√
2))).

The nonlinear telegraph PDE system (66) obviously has the discrete reflection
symmetry (t, x, u, v) = (−t̃, x̃, ũ,−ṽ) and the translational point symmetry
(t, x, u, v) = (t̃, x̃, ũ, ṽ + ε). One can show that for the above local CL of PDE
system (66), these symmetries yield three additional local CLs as follows.

1. Reflection symmetry applied to the above local CL.
2. Translation symmetry applied to the above local CL.
3. Reflection symmetry applied again to the local CL found in (2).

For further details, see [41].

Example 2 Another Nonlinear Telegraph System

Consider another nonlinear telegraph PDE system given by

vt − (sech2u)ux + tanh u = 0, vx − ut = 0. (67)

The PDE system (67) has the set of local CL multipliers

Λ1 = ξ = ex (2x + t2 − V 2 − 2 log(cosh U )), Λ2 = ϕ = 2ex (V tanh U − t)

and corresponding fluxes

T = ex (2tu − 1
3v3 + v(t2 + 2x − 2 log(cosh u)))

X = ex ((v2 − t2 − 2x + 2(1 + log(cosh u))) tanh u − 2(vt + u)).

The nonlinear telegraph PDE system (67) has the point symmetries with infinitesimal
generators given respectively by

X1 = ∂

∂t
, X2 = v

∂

∂t
+ tanh u

∂

∂x
+ ∂

∂u
+ t

∂

∂v
·

One can show that for the above local CL of PDE system (67), these two point
symmetries yield three additional local CLs as follows.

1. The O(ε), O(ε2) terms that result from applying the translation symmetry X1 to
the above local CL yield two additional local CLs.
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2. The action of the second point symmetry X2 on the additional O(ε) local CL,
obtained in (1), yields a third additional CL.

For further details, see [41].

4 Nonlocally Related Systems and Nonlocal Symmetries

Often a given PDE system has no local symmetry or no local conservation law. Even
if a given PDE system has a local symmetry, it may not be useful for the problem
at hand. The aim is to extend existing methods for finding local symmetries and
local CLs to PDE systems that are nonlocally related and equivalent to a given PDE
system in order to seek nonlocal symmetries and nonlocal CLs for a given PDE
system. Two systematic and natural ways will be presented to find such nonlocally
related systems for a given PDE system. In particular, it will be shown that for any
PDE system, each local CL as well as each point symmetry systematically yields
a nonlocally related system. Further systematic extensions for seeking additional
nonlocally related systems will also be presented.

4.1 Conservation Law-based Method to Obtain Nonlocally Related
Systems and Nonlocal Symmetries: Subsystems

Initially, we focus on the situation of a scalar PDE with two independent variables.
As will be seen, no extra complication arises for a PDE system with two independent
variables. But the situation for a PDE system with three or more independent variables
is more complicated as will be seen in Sect. 5.

For a local conservation law

Dt T (x, t, u, ∂u, . . . , ∂r u) + Dx X (x, t, u, ∂u, . . . , ∂r u) = 0 (68)

of a given scalar PDE

R[u] = R(x, t, u, ∂u, . . . , ∂ku) = 0 (69)

one can form an equivalent augmented potential system P given by

∂v

∂t
= X (x, t, u, ∂u, . . . , ∂r u)

∂v

∂x
= −T (x, t, u, ∂u, . . . , ∂r u) (70)

R(x, t, u, ∂u, . . . , ∂ku) = 0.
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If (u(x, t), v(x, t)) solves the potential system P , then u(x, t) solves the given
scalar PDE (69). Conversely, if u(x, t) solves the given scalar PDE (69), then there
exists a solution (u(x, t), v(x, t)) of the potential system P since the integrability
condition vxt = vt x is satisfied due to the existence of the local CL (68). But the
equivalence relationship is nonlocal and non-invertible since for any solution u(x, t)
of the given scalar PDE (69), if (u(x, t), v(x, t)) solves the potential system P , then
so does (u(x, t), v(x, t) + C) for any constant C .

Consequently, any symmetry (CL) of the given scalar PDE (69) yields a symmetry
(CL) of the equivalent potential system P . Conversely, any symmetry (CL) of the
potential system P yields a symmetry (CL) of the given scalar PDE (69).

Now suppose the equivalent potential system P has a point symmetry given by
an infinitesimal generator

ξ(x, t, u, v)
∂

∂x
+ τ (x, t, u, v)

∂

∂t
+ ω(x, t, u, v)

∂

∂u
+ ϕ(x, t, u, v)

∂

∂v
· (71)

The point symmetry (71) of the potential system P yields a nonlocal symmetry of
the given scalar PDE (69) if and only if its infinitesimal components satisfy the
relationship

(ξv)
2 + (τv)

2 + (ωv)
2 
≡ 0. (72)

Hence, through a local CL of the PDE (69), a nonlocal symmetry of (69) can be
obtained from a point symmetry (71) of the nonlocally related potential system P
given by the PDE system (70) if the components of the point symmetry (71) satisfy
the inequality (72).

The converse is also true. In particular, suppose a scalar PDE (69) has a point
symmetry given by the infinitesimal generator

α(x, t, u)
∂

∂x
+ β(x, t, u)

∂

∂t
+ γ(x, t, u)

∂

∂u
· (73)

The point symmetry (73) of the PDE (69) yields a nonlocal symmetry of the potential
system P if and only if the potential system P has no corresponding point symmetry
of the form α(x, t, u) ∂

∂x + β(x, t, u) ∂
∂t + γ(x, t, u) ∂

∂u + δ(x, t, u, v) ∂
∂v

for some
function δ(x, t, u, v).

Next, we show how to obtain further nonlocally related systems for a given PDE
system.

4.1.1 Use of n Local CLs to Obtain up to 2n − 1 Nonlocally Related Systems

Suppose there are n local CL multipliers {Λi (x, t, U, ∂U, . . . , ∂qU )}n
i=1 yielding

n independent local CLs of a given scalar PDE. Let vi be the potential variable
arising from the local CL multiplier Λi [U ]. Then one obtains n singlet potential
systems Pi , i = 1, . . . , n. Moreover, one can consider potential systems in couplets
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{
Pi , P j

}n
i, j=1 with two potential variables; in triplets

{
Pi , P j , Pk

}n
i, j,k=1 with three

potential variables; . . . ; in an n-plet
{

P1, . . . , Pn
}

with n potential variables. Conse-
quently from n local CLs of a given scalar PDE, one obtains 2n −1 distinct potential
systems!

Moreover, starting from any one of these 2n−1 potential systems, one can continue
the process. In particular, if one of these potential systems has N “local” CLs, in
principle one could obtain up to 2N − 1 further distinct potential systems. However,
not all local CLs of these 2n −1 potential systems yield additional potential systems.
In particular, one can show that if a set of local CL multipliers depends only on
independent variables (x, t) then no additional potential system is obtained. See
[2, 30, 31] for further details.

Any potential system could yield additional nonlocal symmetries or additional
nonlocal CLs for any other potential system or the “given” PDE. Furthermore, one
of the constructed potential systems could be a “given” PDE system. A more direct
way of seeing this will be presented in Sect. 5 through the symmetry-based method
for obtaining nonlocally related systems.

4.1.2 Nonlocally Related Subsystems

Definition 6 Suppose one has a given PDE system S{x, t; u1, . . . , uM } with the
indicated M dependent variables. A subsystem excluding a dependent variable, say
uM , is nonlocally related to the given system S{x, t; u1, . . . , uM } if uM cannot be
directly expressed from the equations of S{x, t; u1, . . . , uM } in terms of x , t , the
remaining dependent variables u1, . . . , uM−1, and their derivatives.

Subsystems for consideration can arise following an interchange of one or more
of the dependent and independent variables of a given system S{x, t; u1, . . . , uM }.
Consequently, for a given PDE system, one obtains a tree of nonlocally related (but
equivalent) PDE systems arising from local conservation laws and subsystems. Each
PDE system in such a tree is equivalent in the sense that the solution set for any
system in the tree can be found from the solution set for any other PDE system in the
tree through a connection formula. Due to the equivalence of the solution sets and the
nonlocal relationship between PDE systems in a tree, it follows that any coordinate-
independent method of analysis (quantitative, analytical, numerical, perturbation,
etc.) when applied to some PDE system in a tree may yield simpler computations
and/or results that cannot be obtained when the method of analysis is directly applied
to any particular PDE system in a tree. In particular, it is important to note that a
“given” system could be any system in such a tree!!

Example 1 Nonlinear Wave Equation

Suppose a given PDE U{x, t; u} is the nonlinear wave equation
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utt = (c2(u)ux )x . (74)

Directly, one obtains the singlet potential system (local CL multiplier is 1)
UV{x, t; u, v} given by

vx − ut = 0, vt − c2(u)ux = 0. (75)

Through the invertible point transformation (hodograph transformation) x = x(u, v),
t = t (u, v), the potential system UV{x, t; u, v} becomes the invertibly equivalent
PDE system XT{u, v; x, t} given by

xv − tu = 0, xu − c2(u)tv = 0. (76)

One can show that there are only three additional local CL multipliers of the form
Λ(x, t, U ) = xt , x , t for the nonlinear wave equation U{x, t; u} (74) for an arbitrary
wave speed c(u). This yields three additional singlet potential systems UA{x, t; u, a},
UB{x, t; u, b}, and UW{x, t; u, w}, respectively given by the PDE systems

ax − x[tut − u] = 0, at − t[xc2(u)ux −
∫

c2(u)du] = 0 (77)

bx − xut = 0, bt − [xc2(u)ux −
∫

c2(u)du] = 0 (78)

and
wx − [tut − u] = 0, wt − tc2(u)ux = 0. (79)

Nonlocally related subsystems T{u, v; t} and X{u, v; x} arise from UV{x, t; u, v}
through XT{u, v; x, t} after one respectively deletes the dependent variables x and
t from XT{u, v; x, t}

tvv − c−2(u)tuu = 0 (80)

and
xvv − (c−2(u)xu)u = 0. (81)

One can show that the symmetry classifications of the PDEs (80) and (81) are
“equivalent” [25]. Hence we concentrate on T{u, v; t}. Since the PDE T{u, v; t}
(80) is linear and self-adjoint, it follows that any solution of T{u, v; t} yields a
local CL multiplier for T{u, v; t}. Four of these local CL multipliers, for an arbi-
trary wave speed c(u), are given by Λ(u, v, T ) = c2(u), uc2(u), vc2(u), uvc2(u).
These yield three additional singlet potential systems TP{u, v; t, p}, TQ{u, v; t, q},
TR{u, v; t, r}, respectively given by

pv − (utu − t) = 0, pu − uc2(u)tv = 0 (82)
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UV ⇐⇒ XT

X

TP TQ TP

T

UA UB UW

U

UAB UAW UAV UBW UBV UVW TQRTPRTPQXTRXTQXTP

UABV UABW UAVW UBVW TPQRXTQRXTPQXTPR

UABVW XTPQR

Fig. 1 A tree of nonlocally related systems for the nonlinear wave equation (74) for arbitrary wave
speed c(u)

qv − vtu = 0, qu + c2(u)(t − vtv) = 0 (83)

and
rv − v(utu − t) = 0, ru − uc2(u)(vtv − t) = 0. (84)

Consequently, one obtains the following (far from exhaustive) tree (Fig. 1) of nonlo-
cally related systems for the nonlinear wave equation U{x, t; u} (74), holding for an
arbitrary wave speed c(u).

The point symmetry classification for the nonlinear wave equation U{x, t; u}
(74) is given in [44]. The point symmetry classifications for the potential system
XT{u, v; x, t} (76) (of course, it is exactly the same as that for the potential system
UV{x, t; u, v} (75)) and the subsystem T{u, v; t} (80) is given in [25]. A partial
point symmetry classification for the potential system TP{u, v; t, p} (82) can be
adapted from results presented in [45]. The complete point symmetry classifications
for the potential systems UA{x, t; u, a} (77), UB{x, t; u, b} (78), UW{x, t; u, w}
(79), TP{u, v; t, p} (82), and TQ{u, v; t, q} (83) are given in [46]. Many nonlocal
symmetries of the nonlinear wave equation are found from each of these nonlocally
related systems in terms of specific forms of the nonlinear wave speed c(u). In par-
ticular, the following additional nonlocal symmetries of the nonlinear wave equation
U{x, t; u} (74) have been found.

For the potential system UB{x, t; u, b} (78), setting F(u) = ∫
c2(u) du, one finds

that if F(u) satisfies the ODE

F ′′(u)

F ′(u)2 = 4F(u) + 2C1

(F(u) + C2)
2 + C3

in terms of arbitrary constants C1, C2, C3, then the potential system UB{x, t; u, b}
(78) has the point symmetry
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X = (F(u)+C1)x
∂

∂x
+b

∂

∂t
+ (F(u) + C2)

2 + C3

F ′(u)

∂

∂u
+(2C2b−(C2

2 +C3)t)
∂

∂b

that is a nonlocal symmetry of the nonlinear wave equation U{x, t; u} (74).
For the potential system UW{x, t; u, w} (79), if the wave speed c(u) satisfies the

ODE
c′(u)

c(u)
= −2u + C1

u2 + C2

in terms of arbitrary constants C1, C2, then it has the point symmetry

X = w
∂

∂x
+ (u + C1)t

∂

∂t
+ (u2 + C2)

∂

∂u
− C2x

∂

∂w

that is a nonlocal symmetry of the nonlinear wave equation U{x, t; u} (74).
The potential system TP{u, v; t, p} (82), for c(u) = u−2e1/u , has the point sym-

metries

X1 = (pu − 2tv(u + 1))
∂

∂t
− 2u2v

∂

∂u
+ (u2 + e2/u)

∂

∂v
+ tu−1e2/u ∂

∂ p

X2 = t (u + 1)
∂

∂t
+ u2 ∂

∂u
− v

∂

∂v

that are both nonlocal symmetries of the nonlinear wave equation U{x, t; u} (74).
For the potential system TR{u, v; t, r} (84), new nonlocal symmetries are found

for U{x, t; u} (74) from the point symmetries of TR{u, v; t, r} when c(u) = u−4/3.
For details and a table of listed nonlocal symmetries derived from the above tree of

nonlocally related systems for the nonlinear wave equation U{x, t; u} (74), see [46].

Example 2 Nonlinear Telegraph Equation

Suppose a given PDE U{x, t; u} is the nonlinear telegraph (NLT) equation

utt − (F(u)ux )x − (G(u))x = 0. (85)

Case (a) For arbitrary F(u), G(u), one obtains two singlet potential systems
UV1{x, t; u, v1} and UV2{x, t; u, v2} respectively given by the PDE systems

v1x − ut = 0, v1t − (F(u)ux + G(u)) = 0 (86)

and
v2x − (tut − u) = 0, v2t − t (F(u)ux + G(u)) = 0. (87)
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U{x, t;u}

UV1{x, t;u, v1} UV2{x, t;u, v2}

UV1V2{x, t;u, v1, v2}

Fig. 2 Tree of nonlocally related PDE systems for the NLT equation (85) for arbitrary F(u), G(u)

Case (b) For arbitrary G(u), F(u) = G ′(u), one obtains two additional singlet
potential systems UB3{x, t; u, b3} and UB4{x, t; u, b4} respectively given by the
PDE systems

b3x − ex ut = 0, b3t − ex F(u)ux = 0 (88)

and
b4x − ex (tut − u) = 0, b4t − tex F(u)ux = 0. (89)

Case (c) For arbitrary F(u), G(u) = u, in addition to the singlet potential systems
UV1{x, t; u, v1} (86) and UV2{x, t; u, v2} (87), one again obtains two further singlet
potential systems UC3{x, t; u, c3} and UC4{x, t; u, c4} respectively given by the
PDE systems

c3x − ((x − 1
2 t2)ut + tu) = 0

c3t − (x − 1
2 t2)(F(u)ux + u) +

∫
F(u)du = 0

(90)

and

c4x + ( 1
6 t3 − t x)ut + (x − 1

2 t2)u = 0

c4t + ( 1
6 t3 − t x)(F(u)ux + u) + t

∫
F(u)du = 0.

(91)

The corresponding trees of nonlocally related systems for the NLT equation are
illustrated in Figs. 2 and 3.

In the cases where F(u) and G(u) are power law functions, see [47] for tabula-
tions of nonlocal symmetries and nonlocal conservation laws for the NLT equation
U{x, t; u} (85), arising for many of the above listed nonlocally related systems.
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U

UV1 UV2 UB3 UB4

UV1V2 UV1B3 UV1B4 UV2B3 UV2B4 UB3B4

UV1V2B3 UV1V2B4 UV1B3B4 UV2B3B4

UV1V2B3B4

Fig. 3 Tree of nonlocally related PDE systems for the NLT equation (85) for arbitrary G(u),
F(u) = G ′(u)

4.1.3 Conservation Law and Symmetry Classification Problems for the NLT
Equation U{x, t; u} and its Potential System UV1{x, t; u, v1}

Now we consider symmetry and conservation law classification problems for the
NLT equation U{x, t; u} (85) and its potential system UV1{x, t; u, v1} (86). For
specific (F(u), G(u)) pairs, the CL classification problem for UV1{x, t; u, v1} yields
additional CLs and hence further potential systems for consideration [41].

Nonlocal Symmetries of U{x, t; u} Arising from Point Symmetries of UV1{x, t;
u, v1}.

The potential system UV1{x, t; u, v1} has a point symmetry corresponding to the
infinitesimal generator

X = ξ(x, t, u, v1)
∂

∂x
+ τ (x, t, u, v1)

∂

∂t
+ η(x, t, u, v1)

∂

∂u
+ ϕ(x, t, u, v1)

∂

∂v1
(92)

if and only if the coefficients of (92) satisfy the determining equations
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ξv1 − τu = 0

ηu − ϕv1 + ξx − τt = 0

G(u)[ηv1 + τx ] + ηt − ϕx = 0

ξu − F(u)τv1 = 0

ϕu − G(u)τu − F(u)ηv1 = 0

G(u)ξv1 + ξt − F(u)τx = 0

F(u)[ϕv1 − τt + ξx − ηu − 2G(u)τv1 ] − F ′(u)η = 0

G(u)[ϕv1 − τt − G(u)τv1] − F(u)ηx − G ′(u)η + ϕt = 0

(93)

for arbitrary values of x , t , u, v1.
The solution of the determining Eq. (93) appears in [48] and the resulting nonlocal

symmetries for the NLT equation U{x, t; u} (85) are summarized by the following
theorem.

Theorem 14 A point symmetry of the potential system UV1{x, t; u, v1} (86) yields
a nonlocal symmetry of the NLT equation U{x, t; u} (85) if and only if the pair of
constitutive functions (F(u), G(u)) satisfies the first order ODE system

(c3u + c4)F ′(u) − 2(c1 − c2 − G(u))F(u) = 0

(c3u + c4)G
′(u) + G2(u) − (c1 − 2c2 + c3)G(u) − c5 = 0

(94)

in terms of arbitrary constants c1, . . . , c5. For any pair (F(u), G(u)) satisfying (94),
the potential system UV1{x, t; u, v1} (86) has the point symmetry (92) with

ξ = c1x +
∫

F(u)du

τ = c2t + v1

η = c3u + c4

ϕ = c5t + (c1 − c2 + c3)v1

which is a (nonlocal) potential symmetry of the scalar NLT equation U{x, t; u} (85).

Modulo translations and scalings in u and G and scalings in F (involving 5/7
parameters), one obtains six distinct classes for (F(u), G(u)) for which the scalar
NLT equation U{x, t; u} (85) has a potential symmetry. These classes are summarized
in Table 1.

Point Symmetry Classification of the Scalar NLT Equation U{x, t; u} (85)

The NLT equation U{x, t; u} (85) has a point symmetry corresponding to the
infinitesimal generator X = ξ(x, t, u) ∂

∂x + τ (x, t, u) ∂
∂t + η(x, t, u) ∂

∂u if and only if
the determining equations
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Table 1 Classification table for potential symmetries of the NLT equation (85)

Relationship G(u) F(u)

F(u) = uβ

α G ′(u) u2α−1
u2α+1

4u2α+β−1

(u2α+1)
2

u2α+1
u2α−1

− 4u2α+β−1

(u2α−1)
2

F(u) = uβ

α G ′(u) tan(α ln u) uβ−1 sec2(α ln u)

F(u) = uβG ′(u) (ln u)−1 −uβ−1(ln u)−2

F(u) = e2βu G ′(u) tan u e2βu sec2 u
F(u) = e2βu G ′(u) tanh u e2βusech2u

coth u −e2βucsch2u
F(u) = e2βu G ′(u) u−1 −u−2e2βu

Table 2 Classes of
(F(u), G(u)) yielding
additional point symmetries
of the scalar NLT equation
U{x, t; u} (85)

G(u) F(u) Admitted additional point symmetries

eu e(α+1)u 2αx ∂
∂x + (α − 1)t ∂

∂t + 2 ∂
∂u

uα+β+1 uα 2βx ∂
∂x + (α + 2β)t ∂

∂t − 2u ∂
∂u

u−1 u−2 t ∂
∂t + u ∂

∂u , ex ∂
∂x − uex ∂

∂u
ln u uα 2(α + 1)x ∂

∂x + (α + 2)t ∂
∂t + 2u ∂

∂u
u eαu 2αx ∂

∂x + αt ∂
∂t + 2 ∂

∂u
u−3 u−4 2t ∂

∂t + u ∂
∂u , t2 ∂

∂t + tu ∂
∂u

ξu = τx = τu = ηuu = ξt = 0

2F(u)[−τt + ξx ] − F ′(u)η = 0

ηt t − F(u)ηxx − G ′(u)ηx = 0

2ηtu − τt t = 0

F(u)[2ηxu − ξxx ] + ξt t + 2F ′(u)ηx − G ′(u)[ξx − 2τt ] + G ′′(u)η = 0

are satisfied for arbitrary values of x , t , and u.
For arbitrary (F(u), G(u)), the scalar NLT equation U{x, t; u} (85) is only invari-

ant under translations in x and t . The classification of its point symmetries for specific
forms of (F(u), G(u)), modulo scalings and translations in u, is presented in Table 2.

The following theorem holds. See [48] for details.

Theorem 15 A point symmetry of the scalar NLT equation U{x, t; u} (85) yields a
point symmetry of the NLT potential system UV1{x, t; u, v1} (86) for all cases except
when (F(u), G(u)) = (u−4, u−3). In this case, its admitted point symmetry t2 ∂

∂t +
tu ∂

∂u yields a nonlocal symmetry of the NLT potential system UV1{x, t; u, v1} (86).

Local Conservation Laws of the Potential System UV1{x, t; u, v1}.
{Λ1(x, t, U, V ), Λ2(x, t, U, V )} is a set of local CL multipliers for the NLT

potential system UV1{x, t; u, v1} (86) if and only if the equations
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EU (Λ1 (Vx − Ut ) + Λ2 (Vt − (F(U )Ux + G(U ))) ≡ 0

EV (Λ1 (Vx − Ut ) + Λ2 (Vt − (F(U )Ux + G(U ))) ≡ 0
(95)

hold for arbitrary differentiable functions (U (x, t), (V (x, t)). Equations (95) yield
the system of determining equations

∂Λ2

∂V
− ∂Λ1

∂U
= 0

∂Λ2

∂U
− F(U )

∂Λ1

∂V
= 0

∂Λ2

∂x
− ∂Λ1

∂t
− G(U )

∂Λ1

∂V
= 0

F(U )
∂Λ1

∂x
− ∂Λ2

∂t
− ∂

∂U
[G(U )Λ1] = 0.

(96)

One can show that for any solution of (96), the fluxes for the corresponding local
CLs of the potential NLT system UV1{x, t; u, v1} (86) are given by

X (x, t, u, v1) = −
u∫

a

Λ1(x, t, s, b)ds −
v1∫

b

Λ2(x, t, u, s)ds

− G(a)

x∫
Λ1(s, t, a, b)ds

T (x, t, u, v1) =
u∫

a

Λ2(x, t, s, b)ds +
v1∫

b

Λ1(x, t, u, s)ds.

One can show [41] that the solution of the determining system (96) reduces to the
study of the system of two functions given by

d(U ) = G ′2 F ′′′ − 3G ′G ′′F ′′ + [3G ′′2 − G ′G ′′′]F ′

h(U ) = G ′2G(4) − 4G ′G ′′G ′′′ + 3G ′′3.

Three cases arise

d(U ) 
≡ 0, h(U ) ≡ 0

d(U ) 
≡ 0, h(U ) 
≡ 0

d(U ) = h(U ) ≡ 0.

The results are summarized as follows.
When d(U ) 
≡ 0, h(U ) ≡ 0, the resulting local CL multipliers for the potential

system UV1{x, t; u, v1} are indicated in Table 3.
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Table 3 d(U ) 
≡ 0, h(U ) ≡ 0

F(U ) G(U ) Local CL multipliers

Arbitrary U (Λ1,Λ2) = (t, x − 1
2 t2), (Λ1,Λ2) = (1,−t)

Arbitrary 1/U (Λ1,Λ2) = (U, V ), (Λ1,Λ2) = (U V, 1
2 V 2 + x +

U∫
s F(s)ds)

Table 4 d(U ) 
≡ 0, h(U ) 
≡ 0

Relationship Local CL multipliers

(Λ1,Λ2) = (ϕ1,ϕ2)

γF − G ′ = α
γ (G + β)2 = e

γx+ α
γ

U∫
(G(s)+β)ds

e
√

α(βt+V )(1,
√

α
γ (G(U ) + β)),

(Λ1,Λ2) = (ϕ1,−ϕ2) = (x,−t, U,−V )

γF − G ′ = α
γ (Λ1,Λ2) = (ψ1,ψ2) = eγx+√

αt (1,
√

α
γ ),

(Λ1,Λ2) = (ψ1,−ψ2)(x,−t)
γF = G ′ (Λ1,Λ2) = eγx (t, 1

γ ), (Λ1,Λ2) = eγx (V, 1
γ G(U )),

(Λ1,Λ2) = eγx (1, 0)

When d(U ) 
≡ 0, h(U ) 
≡ 0, the resulting local CL multipliers for the potential
system UV1{x, t; u, v1} are indicated in Table 4.

When d(U ) = h(U ) ≡ 0, using symmetry analysis (substitution and invariance
of the ODE under a solvable three-parameter Lie group of point transformations),
the ODE h(U ) = 0 can be solved in terms of elementary functions (for G(U )).
Then note that F(U ) = G(U ) + const is a particular solution of the resulting
linear ODE d(U ) = 0. In turn, this leads to its general solution. Consequently, for
F(U ) = β1G2(U ) + β2G(U ) + β3, β2

2 
= 4β1β3, there are four highly nontrivial
CLs when G(U ) = U , 1/U , eU , tanh U , tan U . In the case of a “perfect square”
β2

2 = 4β1β3, there are only two local CLs. For details, see [41].
The NLT potential system UV1{x, t; u, v1} (86) is not variational. In the case of a

variational system, each set of local CL multipliers of the system must correspond to
a local symmetry of the system written in evolutionary form. Hence, in the variational
situation, for any pair of constitutive functions (F(u), G(u)), the number of sets of
local CL multipliers is at most equal to the number of local symmetries. Note that
for the PDE system UV1{x, t; u, v1} (86), for many pairs of constitutive functions
(F(u), G(u)), the number of sets of local CL multipliers (which of course do not
correspond to local symmetries) exceeds the number of local symmetries.

Example 3 Planar Gas Dynamics Equations

Suppose the given PDE system is the planar gas dynamics (PGD) equations. In
the Eulerian description, the corresponding Euler PGD system E{x, t; v, p, ρ} is
given by
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ρt + (ρv)x = 0

ρ(vt + vvx ) + px = 0

ρ(pt + v px ) + B(p, ρ−1)vx = 0

(97)

where v(x, t) is the velocity of the gas, p(x, t) is the pressure, and ρ(x, t) is
the mass density of the gas. In the Eulerian system E{x, t; v, p, ρ} (97), in terms
of the entropy density S(p, ρ), the constitutive function B(p, ρ−1) is given by
B(p, ρ−1) = −ρ2Sρ/Sp.

In the Lagrangian description, in terms of Lagrange mass coordinates s = t ,
y = ∫ x

x0
ρ(ξ)dξ, the corresponding Lagrange PGD system L{y, s; v, p, q} is given by

qs − vy = 0

vs + py = 0

ps + B(p, q)vy = 0

(98)

with q = 1/ρ.
It is now shown that the potential system framework, based on using local

CLs, yields a direct connection between the Euler system (97) and the Lagrange
system (98). As well, as a consequence, other equivalent descriptions are derived.
The Euler system E{x, t; v, p, ρ} (97) is used as the given PDE system. The first
equation of the Euler system is written as a local CL, corresponding to conservation
of mass. Through this equation, a potential variable r(x, t) is introduced and leads
to the Euler potential system G{x, t; v, p, ρ, r} given by

rx − ρ = 0

rt + ρv = 0

ρ(vt + vvx ) + px = 0

ρ(pt + v px ) + B(p, ρ−1)vx = 0.

(99)

Now consider an interchange of dependent and independent variables in G{x, t; v,

p, ρ, r} with r = y, t = s as independent variables and x , v, p, q = 1/ρ as
dependent variables to obtain the system G0{y, s; x, v, p, q}, invertibly equivalent
to G{x, t; v, p, ρ, r} (99), given by

xy − q = 0

xs − v = 0

vs + py = 0

ps + B(p, q)vy = 0.

(100)

A nonlocally related subsystem of G0{y, s; x, v, p, q} (100) is obtained by excluding
its dependent variable x through the integrability condition xys = xsy . The resulting
subsystem is the Lagrange system L{y, s; v, p, q} (98)!
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A second CL of the Euler system E{x, t; v, p, ρ} (97) is obtained from its set of
local CL multipliers (Λ1,Λ2,Λ3) = (V, 1, 0). This yields a second potential vari-
able w. The resulting couplet system W{x, t; v, p, ρ, r, w} that includes the potential
variables r and w is given by the PDE system

rx − ρ = 0

rt + ρv = 0

wx + rt = 0

wt + p + vwx = 0

ρ(pt + v px ) + B(p, ρ−1)vx = 0.

(101)

The third equation of the couplet system W{x, t; v, p, ρ, r, w} (101), which is a
local CL as written, yields a third potential variable z to yield an additional potential
system Z{x, t; v, p, ρ, r, w, z} given by

rx − ρ = 0

rt + ρv = 0

zt − w = 0

zx + r = 0

wt + p + vwx = 0

ρ(pt + v px ) + B(p, ρ−1)vx = 0.

(102)

The Lagrange system L{y, s; v, p, q} (98) has a nonlocally related subsystem
obtained by excluding its dependent variable v through the integrability condition
vys = vsy . The resulting subsystem L{y, s; p, q} is given by

qss + pyy = 0, ps + B(p, q)qs = 0. (103)

The resulting tree of nonlocally related systems, including two additional subsys-
tems, is illustrated in Fig. 4.

Now treating the Lagrange system L{y, s; v, p, q} (98) as a given PDE system,
from its three sets of local CL multipliers given by (1, 0, 0), (0, 1, 0), and (y, s, 0),
one can obtain the three singlet potential systems LW1{y, s; v, p, q, w1} = G0{y,

s; x, v, p, q} (100), LW2{y, s; v, p, q, w2} and LW3{y, s; v, p, q, w3} respectively
given by

w1 y − q = 0

w1s − v = 0

vs + py = 0

ps + B(p, q)vy = 0

(104)
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Z{x,t;v, p, ρ, r, w, z}

W{x,t ;v, p, ρ, r, w} Z{x,t ;v, p, ρ, w, z}

G{x,t;v, p, ρ, r} G0{y,s;x, v, p, q} W{x,t ; v, p, ρ, w}

E{x,t ; v, p, ρ} L{y,s ; v, p, q}

L{y,s ; p, q}

<=>

Fig. 4 Tree of nonlocally related PDE systems for PGD equations E{x, t; v, p, ρ} (97)

L{y,s ; p, q}

L{y,s;v, p, q}

LW1{y,s;v, p, q, w1} LW2{y,s;v, p, q, w2} LW3{y,s;v, p, q, w3}

LW1W2{y,s ; v, p, q, w1,w 2} LW1W3{y,s ;v, p, q, w1,w 3} LW2W3{y,s ;v, p, q, w2,w 3}

LW2W3{y,s; v, p, q, w1,w 2,w 3}

Fig. 5 Extension of tree of nonlocally related PDE systems for the Lagrange PGD system
L{y, s; v, p, q} (98)

qs − vy = 0

w2 y − v = 0

w2s + p = 0

ps + B(p, q)vy = 0

(105)

and

w3 y − sv − yq = 0

w3s + sp − yv = 0

vs + py = 0

ps + B(p, q)vy = 0.

(106)

The extension of the tree illustrated in Fig. 4 is exhibited in Fig. 5.
Additional local CLs arise for the Lagrange system L{y, s; v, p, q} (98) when

one considers sets of local CL multipliers of the form {Λi (y, s, V, P, Q)}, i = 1,
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2, 3. After solving the corresponding determining equations, one can show that the
resulting sets of local CL multipliers are given by

Λ1 = αy − βP + B(P, Q)μ3 + δ

Λ2 = αs + βV + ν

Λ3 = Λ3(y, P, Q)

where α, β, ν, δ are arbitrary constants and Λ3(y, P, Q) is any solution of the PDE

∂Λ3

∂Q
− ∂

∂P
(B(P, Q)Λ3) + β = 0.

The additional local CLs that arise (for an arbitrary constitutive function B(p, q))
for the Lagrange system L{y, s; v, p, q} (98) include

• Conservation of energy ∂
∂s (

1
2v2 + K (p, q)) + ∂

∂y (pv) = 0 where K (p, q) is any
solution of the PDE Kq − B(p, q)K p + p = 0.

• Conservation of entropy ∂
∂s S(p, q) = 0 where S(p, q) is any solution of the PDE

Sq − B(p, q)Sp = 0.

In the case of a Lagrange PGD system L{y, s; v, p, q} (98), with a generalized
polytropic equation of state given by

B(p, q) = M(p)

q
, M ′′(p) 
= 0 (107)

one can show that for local CL multipliers restricted to dependence on the independent
variables (y, s), still only the three exhibited singlet potential systems (104)–(106)
arise. For a generalized polytropic equation of state (107), the local symmetries
arising for L{y, s; v, p, q} (98) and its resulting singlet, doublet and triplet potential
systems that arise from the potential systems (104)–(106), as well as its subsystem
L{y, s; p, q} (103), are exhibited in [30].

The following remarks are noted.

• The exhibited extended trees of nonlocally related PDE systems hold for an arbi-
trary constitutive function B(p, q).

• Either the Euler system E{x, t; v, p, ρ} (97) or the Lagrange system L{y, s; v,

p, q} (98) can play the role of the given system in the tree.
• In a beautiful paper [49], a complete group classification with respect to the con-

stitutive function B(p, q) is given separately for the Euler and Lagrange systems
but the connections between the systems are heuristic.

• To systematically construct nonlocal symmetries of the Euler and Lagrange sys-
tems, one needs to do the group classification problem for all PDE systems in
an extended tree as well as consider other possible extended trees for specific
constitutive functions followed by appropriate point symmetry analyses.
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• For a Chaplygin gas given by B(p, q) = −p/q, one can show that the Lagrange
subsystem L{y, s; p, q} (103) has the point symmetry (which could not be exhib-
ited in [49] due to its heuristic approach) X = −y2 ∂

∂y − py ∂
∂ p + 3yq ∂

∂q that in
turn yields a nonlocal symmetry for both the Euler and Lagrange systems.

• Further extended trees arise for the PGD equations for specific constitutive
functions:

– B(p, 1/ρ) = ρ(1 + ep): Here the Euler potential system G{x, t; v, p, ρ, r}
(99) has the family of local CLs given by Dt

(
f (r)ep

1+ep

)
+ Dx

(
f (r)vep

1+ep

)
= 0,

for arbitrary f (r). Such a local CL can be used to replace the fourth equation
of G{x, t; v, p, ρ, r} (99) through introduction of a potential variable c and
yields the corresponding potential system

rx − ρ = 0

rt + ρv = 0

rx (vt + vvx ) + px = 0

cx + ep f (r)/(1 + ep) = 0

ct − vep f (r)/(1 + ep) = 0.

– For a Chaplygin gas given by B(p, 1/ρ) = −pρ, the Euler potential system

G{x, t; v, p, ρ, r} (99) has the family of local CLs given by Dt

(
f (r)

p

)
+

Dx

(
f (r)v

p

)
= 0, for arbitrary f (r). Such a local CL yields the corresponding

potential system
rx − ρ = 0

rt + ρv = 0

rx (vt + vvx ) + px = 0

dx + f (r)/p = 0

dt − v f (r)/p = 0.

(108)

Here one can show that additional nonlocal symmetries arise for the Chap-
lygin gas Euler system E{x, t; v, p, ρ} (97) through the calculation of
point symmetries for the potential system (108) only when f (r) = r ,
f (r) = const. For f (r) = r , the Chaplygin gas potential system (108) has

the point symmetries XD1 =
(
− t3

6 + dt
)

∂
∂x +

(
d − t2

2

)
∂
∂v

+r t ∂
∂ p − r tρ

p
∂
∂ p

and XD2 =
(
− t2

2 + d
)

∂
∂x + −t ∂

∂v
+ r ∂

∂ p − rρ
p

∂
∂ p . The symmetry XD1 is

a nonlocal symmetry for both the Euler and Lagrange systems and conse-
quently was not able to be exhibited in [49]. On the other hand, the symmetry
XD2 is a nonlocal symmetry for the Euler system but a local symmetry for
the Lagrange system.
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4.2 Symmetry-based Method to Obtain Nonlocally Related Systems
and Nonlocal Symmetries

It is now shown that any point symmetry of a given PDE system systematically yields
an equivalent nonlocally related PDE system. To illustrate the situation, consider as
an example the nonlinear reaction diffusion equation

ut − uxx = Q(u). (109)

One can show that for any nonlinear reaction term Q(u), the PDE (109) has no local
conservation laws. Hence the CL-based method yields no nonlocally related systems
for the PDE (109). On the other hand, note that the PDE (109) is invariant under
translations in x and t .

Consider the invariance of PDE (109) under translations in x . After an interchange
of the variables x and u, the PDE (109) becomes the invertibly equivalent PDE

xt = xuu − Q(u)x3
u

x2
u

· (110)

Accordingly, we introduce two auxiliary dependent variables v = xu , w = xt ,
and consider the intermediate PDE system

v = xu, w = xt , w = vu − Q(u)v3

v2 · (111)

By its construction, the intermediate PDE system (111) is locally related to the given
scalar PDE (109). Now consider the subsystem (inverse potential system) of the
intermediate system (111) that is obtained by excluding x through the integrability
condition xut = xtu , namely

vt = wu, w = vu − Q(u)v3

v2 · (112)

The intermediate system (111) (and hence the given PDE (109)) is nonlocally related
to the inverse potential system (112). This follows from the intermediate system
(111) being the potential system of the PDE system (112) with the potential variable
x arising from the first equation in the inverse potential system (112), which is a local
CL as written. Moreover, excluding w from the inverse potential system (112), one
obtains the scalar PDE

vt =
(

vu − Q(u)v3

v2

)
u

(113)

which is clearly nonlocally related to the given PDE (109) since the PDE (109) has
no local CLs.
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Hence through the example of the nonlinear reaction diffusion equation (109),
one essentially sees that any point symmetry of a given PDE system naturally yields
a nonlocally related system. This will be seen more explicitly as follows.

4.2.1 Construction of a Nonlocally Related System from a Point Symmetry

Consider a given PDE system

Rσ(x, t, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N (114)

where u = (u1(x, t), . . . , um(x, t)). Suppose the PDE system (114) has a point
symmetry

X = ξ(x, t, u)
∂

∂x
+ τ (x, t, u)

∂

∂t
+ ηi (x, t, u)

∂

∂ui
· (115)

Let X (x, t, u), T (x, t, u), U 1(x, t, u), . . . , U m(x, t, u) be corresponding canonical
coordinates so that the point symmetry X of the PDE system transforms to Y = ∂

∂U 1 ,
i.e., the PDE system (114) transforms invertibly to a PDE system invariant under
translations in U 1 given by

R̂σ(X, T, Û , ∂U, . . . , ∂kU ) = 0, σ = 1, . . . , N (116)

with Û = (U 2, . . . , U m), U = (U 1, . . . , U m).
Now consider the intermediate PDE system, obtained after introducing two aux-

iliary dependent variables α = U 1
T , β = U 1

X

α = U 1
T

β = U 1
X

R̃σ(X, T, Û ,α,β, ∂Û , . . . , ∂k−1α, ∂k−1β, ∂kÛ ) = 0, σ = 1, . . . , N

(117)

where R̃σ(X, T, Û ,α,β, ∂Û , . . . , ∂k−1α, ∂k−1β, ∂kÛ ) is obtained from R̂σ(X, T,

Û , ∂U, . . . , ∂kU ) after making the appropriate substitutions. By construction, the
intermediate system (117) is locally equivalent to the given PDE system (114).
Excluding the dependent variable U 1 from the intermediate system (117), one obtains
the equivalent inverse potential system

αX = βT

R̃σ(X, T, Û ,α,β, ∂Û , . . . , ∂k−1α, ∂k−1β, ∂kÛ ) = 0, σ = 1, . . . , N .
(118)

The inverse potential system (118) is nonlocally related to the given PDE system
(114) since the intermediate system (117) is the potential system for the inverse
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potential system (118) with its dependent variable U 1 playing the role of the potential
variable arising from the displayed CL of the inverse potential system (118).

Consequently, the following theorem has been proved.

Theorem 16 Any point symmetry of a PDE system (114) yields an equivalent nonlo-
cally related PDE system (inverse potential system) given by the PDE system (118).

This theorem can be extended to the situation of three or more independent vari-
ables. Here the resulting inverse potential system has curl-type CLs.

4.2.2 The Special Situation When the Given PDE is an Evolutionary Scalar
PDE

When a given PDE system (114) is an evolutionary scalar PDE, then another related
PDE system naturally arises. The situation is summarized by the following theorem
whose proof is immediately obvious.

Theorem 17 Suppose a given PDE is an evolutionary scalar PDE invariant under
a point symmetry. Without loss of generality, here the given PDE can be taken to be
of the form

ut = F(x, t, u1, . . . , uk) (119)

with ui = ∂i u
∂xi · Let β = ux . Then the scalar PDE

βt = Dx F(x, t,β, . . . ,βk−1) (120)

is a locally related subsystem of the corresponding inverse potential system resulting
from the invariance of the PDE (119) under translations in u.

Example Nonlinear Wave Equation

As an example, consider again the nonlinear wave equation (74) and its nonlocally
related potential system (75). The invariance of the potential system (75) under
translations in t and v shows that the PDE system (75) is invariant under the point
symmetry with the infinitesimal generator

X = ∂

∂v
− ∂

∂t
· (121)

Corresponding canonical coordinates are represented by the point transformation

X = x, T = u, U = t + v, V = v (122)

with the potential system (75) invariant under translations in V . The point transfor-
mation (122) maps the potential system (75) into the invertibly related PDE system
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VX UT − VT UX − 1 = 0

VT + c2(T )(UX − VX ) = 0
(123)

which is invariant under translations in U and V .
From the invariance of the PDE system (123) under translations in V , one accord-

ingly introduces auxiliary dependent variables α(X, T ), β(X, T ) to obtain the locally
related intermediate system

α = VT

β = VX

βUT − αUX − 1 = 0

α + c2(T )(UX − β) = 0.

(124)

Excluding V from the intermediate system (124), one obtains the inverse potential
system

βT = αX

βUT − αUX − 1 = 0

α + c2(T )(UX − β) = 0.

(125)

It is straightforward to exclude the dependent variables α and β from the last two
equations of the inverse potential system (125) to obtain its locally related scalar PDE

UT T + c4(T )UX X + c2(T )[2UT X UT UX − UX X U 2
T

−UT T U 2
X − 2UT X ] + 2c(T )c′(T )[U 2

X UT − UX ] = 0. (126)

In [29], it is shown that the scalar PDE (126) is nonlocally related to the scalar
nonlinear wave equation (74) through comparison of the symmetry classifications of
these two PDEs.

When c(u) = u−2, one can show [28, 29] that the PDE (126) has the point sym-
metry U 2 ∂

∂U +T U ∂
∂T − U

T 3
∂

∂X that yields a previously unknown nonlocal symmetry
of both the nonlinear wave equation (74) and the potential system (75).

Further details and examples of the symmetry-based method to obtain nonlocally
related systems and nonlocal symmetries are presented in [28, 29].

5 Nonlocality in Multidimensions

In the multidimensional situation (n ≥ 3 independent variables), a local conservation
law for a given PDE system yields 1

2 n(n − 1) potential variables. It will be shown
that a local symmetry of the resulting potential system always corresponds to a local
symmetry of the given PDE system (As we have seen, this is not the situation for
n = 2 independent variables).
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In the conservation law-based approach, to obtain nonlocal symmetries of a given
PDE system it is necessary to augment the potential system by a gauge constraint.

5.1 Divergence-type CLs and Corresponding Potential Systems

Consider a PDE system with N PDEs of order k with n ≥ 3 independent variables
x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x))

Rσ[u] = Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (127)

Suppose the PDE system (127) has a divergence-type CL given by

div Φ[u] = DiΦ
i [u] ≡ DiΦ

i (x, u, ∂u, . . . , ∂r u) = 0. (128)

From Poincaré’s lemma, the local CL (128) yields 1
2 n(n − 1) potential variables

v jk(x) = −vk j (x). This leads to a set of n potential equations

Φ i [u] ≡ D jv
i j , i = 1, . . . , n (129)

equivalent to the local CL (128). The corresponding potential system is the union of
the given PDE system (127) and the set of potential equations (129). This potential
system is nonlocally related and equivalent to the given PDE system (127). In turn
the potential system has the gauge freedom invariance given by the transformation

vi j → Dkw
i jk (130)

where the functions wi jk(x) are 1
6 n(n − 1)(n − 2) arbitrary functions that are the

components of a totally antisymmetric tensor, i.e., the constructed potential system
has an infinite number of point symmetries (gauge symmetries) through the trans-
formation (130) in terms of the infinitesimal generator

Xgauge = Dkw
i jk(x)

∂

∂vi j
· (131)

As it stands, the potential system is underdetermined due to the gauge freedom (130).
Now assume that the given PDE system (127) is determined in the sense that it

does not have symmetries that involve arbitrary functions of all independent variables
x = (x1, . . . , xn). In particular, suppose the potential system has a local symmetry

X = ημ(x, u, ∂u, . . . , ∂P u, v, ∂v, . . . ∂Qv)
∂

∂uμ
+ ζαβ[u, v] ∂

∂vαβ
· (132)

Then the potential system has local symmetries given by the commutator [Xgauge,

X] that project to the symmetries
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(
αi j ∂ημ

∂vi j + (Di1α
i j )

∂ημ

∂v
i j
i1

+ · · · + (Di1 · · · DiQ αi j )
∂ημ

∂v
i j
i1···iQ

)
∂

∂uμ
(133)

of the PDE system (127) with αi j (x) = Dkw
i jk(x), and v

i j
i1···iR

= Di1 · · · DiR αi j

denoting derivatives of vi j . In the infinitesimal generator (133), αi j (x) and each of its
derivatives are arbitrary functions of x = (x1, . . . , xn). Since the given PDE system
(127) is a determined system, it follows that the symmetry (133) is a symmetry of the
given PDE system (127) if and only if ∂ημ

∂vi j = ∂ημ

∂v
i j
i1

= · · · = ∂ημ

∂v
i j
i1···iQ

≡ 0. Thus each

local symmetry of the underdetermined potential system, arising from a divergence-
type conservation law, yields only a local symmetry of the given determined PDE
system (127).

Hence if a potential system arising from a divergence-type conservation law of a
given PDE system (127) is to be used to seek a nonlocal symmetry of the PDE system
(127) from a point symmetry of the potential system, it is necessary to augment the
potential system with auxiliary constraint equations (gauge constraints) to obtain a
determined potential system.

Definition 7 A gauge constraint has the property that the augmented potential sys-
tem is equivalent to the given PDE system (127), i.e., every solution of the augmented
potential system yields a solution of the given PDE system (127) and, conversely,
every solution of the given PDE system (127) yields a solution of the augmented
potential system.

Some examples of gauges (relating potential variables) include

• divergence (Coulomb) gauge
• spatial gauge
• Poincaré gauge
• Lorentz gauge (a form of divergence gauge)
• Cronstrom gauge (a form of Poincaré gauge).

For details on these gauges, see [32].

Example Wave Equation

As an example, consider the wave equation

utt − uxx − uyy = 0 (134)

which is already a divergence-type CL. Correspondingly, one has the vector potential
v = (v0, v1, v2) and the underdetermined potential system given by
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ut = v2
x − v1

y

−ux = v0
y − v2

t

−uy = v1
t − v0

x .

(135)

Now consider the equivalent augmented constrained system obtained by appending
the Lorentz gauge

v0
t − v1

x − v2
y = 0 (136)

to the underdetermined potential system (135) to obtain the determined potential
system

ut = v2
x − v1

y

−ux = v0
y − v2

t

−uy = v1
t − v0

x

0 = v0
t − v1

x − v2
y .

(137)

One can show [32] that the determined potential system (137) has six point sym-
metries that yield nonlocal symmetries as well as nonlocal CLs of the wave equation
(134). One such point symmetry is given by the infinitesimal generator

X = (yv1 − xv2 − tu)
∂

∂u
− (2tv0 + xv1 + yv2)

∂

∂v0

− (xv0 + 2tv1 − yu)
∂

∂v1 − (yv0 + 2tv2 + xu)
∂

∂v2 ·

The other listed gauges yield no nonlocal symmetries from point symmetries of the
corresponding determined potential systems.

5.2 Systematic Procedures to Seek Nonlocal Symmetries
in Multidimensions

In the multidimensional situation (n ≥ 3 independent variables), four systematic
procedures (some with known examples) are presented to search for nonlocal sym-
metries of a given PDE system through seeking local symmetries of an equivalent
nonlocally related PDE system.

• Potential systems arising from divergence-type conservation laws (of degree r ;
1 < r ≤ n − 1) augmented with gauge constraints to yield a determined potential
system.

• Determined potential systems arising from curl-type conservation laws (of degree 1).
• Determined nonlocally related systems arising from admitted point symmetries.

Here, each point symmetry of a given PDE system systematically yields a deter-
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mined inverse potential system connected to an intermediate system through a
curl-type conservation law of degree 1 [2, 50, 51].

• Determined nonlocally related subsystems.

In the case of three independent variables (n = 3), two types of local CLs arise.

• Degree 2 CLs (divergence-type CLs).
• Degree 1 CLs (curl-type CLs).

Potential systems arising from lower degree CLs (r < n − 1) essentially corre-
spond to particular gauge constraints for underdetermined potential systems arising
from divergence-type CLs.

Examples illustrating the types of nonlocal symmetries that can arise as described
above appear in [50, 51].

5.3 Some Open Problems in Multidimensions

There are many open problems in seeking systematically nonlocal symmetries for
multidimensional PDE systems. These include the following.

• Find examples of nonlinear PDE systems for which nonlocal symmetries arise
as local symmetries of a potential system following from divergence-type CLs
appended with gauge constraints.

• Find efficient procedures to obtain “useful” gauge constraints (eg, yielding nonlo-
cal symmetries/nonlocal CLs) for potential systems arising from divergence-type
CLs (as well as for underdetermined potential systems arising from lower-degree
CLs). Can one rule out specific families of gauges for particular classes of potential
systems?

• Find further examples of lower-degree CLs for PDE systems of physical impor-
tance. CLs of degree one (curl-type) are of particular interest since corresponding
potential systems are determined. Examples to-date suggest that lower-degree CLs
are rare and only arise when a given PDE system has a special geometrical struc-
ture. Of course, divergence-type CLs are common!

• Find examples of PDE systems of physical interest admitting point symmetries
that in turn yield nonlocal symmetries of the systems.

• Find useful subsystems and useful means of obtaining subsystems (including in
the two-dimensional case). Progress has been made in this direction [28, 29].

• Extend the work on obtaining nonlocally related systems to multidimensions for
continuum mechanics systems such as gas dynamics equations and equations of
dynamical nonlinear elasticity. A start on this has been made in [52].
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Construction of Conservation Laws
Using Symmetries

Nail H. Ibragimov

Abstract The concept of nonlinear self-adjointness of differential equations,
introduced by the author in 2010, is discussed in detail. All linear equations and
systems are nonlinearly self-adjoint. Moreover, the class of nonlinearly self-adjoint
equations includes all nonlinear equations and systems having at least one local
conservation law. It follows, in particular, that the integrable systems possessing
infinite set of Lie-Bäcklund symmetries (higher-order tangent transformations) are
nonlinearly self-adjoint. An explicit formula for conserved vectors associated with
symmetries is provided for all nonlinearly self-adjoint differential equations and
systems. The number of equations contained in the systems under consideration can
be different from the number of dependent variables. A utilization of conservation
laws for constructing exact solutions is discussed and illustrated by computing non-
invariant solutions of the Chaplygin equations in gas dynamics.

1 Nonlinear Self-Adjointness

The concept of self-adjointness of nonlinear equations was introduced [1, 2] for
constructing conservation laws associated with symmetries of differential equations.
To extend the possibilities of the new method for constructing conservation laws the
notion of quasi self-adjointness was suggested in [3]. I introduce here the general
concept of nonlinear self-adjointness. It embraces the previous notions of self-adjoint
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and quasi self-adjoint equations and includes the linear self-adjointness as a particular
case. But the set of nonlinearly self-adjoint equations is essentially wider and con-
tains, in particular, all linear equations and nonlinear equations and systems having
at least one local conservation law, including the so-called integrable systems. The
construction of conservation laws demonstrates a practical significance of the nonlin-
ear self-adjointness. Namely, conservation laws can be associated with symmetries
for all nonlinearly self-adjoint differential equations and systems.

1.1 Preliminaries

1.1.1 Notation

We will use the following notation. The independent variables are denoted by

x = (x1, . . . , xn).

The dependent variables are
u = (u1, . . . , um).

They are used together with their first-order partial derivatives u(1)

u(1) = {uα
i }, uα

i = Di (u
α)

and higher-order derivatives u(2), . . . , u(s), . . . , where

u(2) = {uα
i j }, uα

i j = Di D j (u
α), . . .

u(s) = {uα
i1···is

}, uα
i1···is

= Di1 · · · Dis (u
α).

Here Di is the total differentiation with respect to xi

Di = ∂

∂xi
+ uα

i
∂

∂uα
+ uα

i j
∂

∂uα
j

+ · · · . (1)

A locally analytic function f (x, u, u(1), . . . , u(k)) of any finite number of the
variables x, u, u(1), u(2), . . . is called a differential function. The set of all differential
functions is denoted by A. For more details see [4, Chap. 8].
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1.1.2 Linear Self-Adjointness

Recall that the adjoint operator F∗ to a linear operator F in a Hilbert space H with
a scalar product (u, v) is defined by

(Fu, v) = (u, F∗v), u, v ≡ H. (2)

Let us consider, for the sake of simplicity, the case of one dependent variable u
and denote by H the Hilbert space of real valued functions u(x) such that u2(x) is
integrable. The scalar product is given by

(u, v) =
∫

IRn

u(x)v(x)dx .

Let F be a linear differential operator in H. Its action on the dependent variable
u is denoted by F[u]. The Definition (2) of the adjoint operator F∗ to F

(F[u], v) = (u, F∗[v])

can be written, using the divergence theorem, in the simple form

vF[u] − uF∗[v] = Di (pi ) (3)

where v is a new dependent variable, and pi are any functions of x, u, v, u(1),

v(1), . . . It is manifest from Eq. (3) that the operators F and F∗ are mutually adjoint

(
F∗)∗ = F. (4)

In other words, the adjointness of linear operators is a symmetric relation.
The linear operator F is said to be self-adjoint if F∗ = F. In this case we say that

the equation F[u] = 0 is self-adjoint. Thus, the self-adjointness of a linear equation
F[u] = 0 can be expressed by the equation

F∗[v]
∣∣∣
v=u

= F[u]. (5)

1.1.3 Adjoint Equations to Nonlinear Differential Equations

Let us consider a system of m differential equations (linear or nonlinear)

Fα

(
x, u, u(1), . . . , u(s)

) = 0, α = 1, . . . , m (6)
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with m dependent variables u = (u1, . . . , um). Equation (6) involve the partial
derivatives u(1), . . . , u(s) up to order s.

Definition 1 The adjoint equation to equation (6) are given by

F∗
α

(
x, u, v, u(1), v(1), . . . , u(s), v(s)

) = 0, α = 1, . . . , m (7)

with

F∗
α

(
x, u, v, u(1), v(1), . . . , u(s), v(s)

) = δL
δuα

(8)

where L is the formal Lagrangian for Eq. (6) defined by 1

L = vβ Fβ ◦
m∑

β=1

vβ Fβ . (9)

Here v = (v1, . . . , vm) are new dependent variables, v(1), . . . , v(s) are their deriv-
atives, e.g., v(1) = {vα

i }, vα
i = Di (v

α). We use δ/δuα for the Euler-Lagrange
operator

δ

δuα
= ∂

∂uα
+

⊕∑
s=1

(−1)s Di1 · · · Dis

∂

∂uα
i1···is

, α = 1, . . . , m

so that

δ(vβ Fβ)

δuα
= ∂(vβ Fβ)

∂uα
− Di

(
∂(vβ Fβ)

∂uα
i

)
+ Di Dk

(
∂(vβ Fβ)

∂uα
ik

)
− · · · .

The total differentiation (1) is extended to the new dependent variables

Di = ∂

∂xi
+ uα

i
∂

∂uα
+ vα

i
∂

∂vα
+ uα

i j
∂

∂uα
j

+ vα
i j

∂

∂vα
j

+ · · · . (10)

The adjointness of nonlinear equations is not a symmetric relation. In other words,
nonlinear equations, unlike the linear ones, do not obey the condition (4) of mutual
adjointness. Instead, the following equation holds

(
F∗)∗ = F̂ (11)

where F̂ is the linear approximation to F defined as follows. We use the temporary
notation F[u] for the left-hand side of Eq. (6) and consider F[u + w] by letting
w � 1. Then neglecting the nonlinear terms in w we define F̂ by the equation

1 See [2]. An approach in terms of variational principles is developed in [5].
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F[u + w] → F[u] + F̂[w]. (12)

For linear equations we have F̂ = F, and hence Eq. (11) is identical with Eq. (4).
Let us illustrate Eq. (11) by the equation

F ◦ uxy − sin u = 0. (13)

Equation (8) yields

F∗ ◦ δ

δu
[v(uxy − sin u)] = vxy − v cos u (14)

and (
F∗)∗ ◦ δ

δv
[w(vxy − v cos u)] = wxy − w cos u. (15)

Let us find F̂ by using Eq. (12). Since sin w → w, cos w → 1 when w � 1, we have

F[u + w] ◦ (u + w)xy − sin(u + w)

= uxy + wxy − sin u cos w − sin w cos u

→ uxy − sin u + wxy − w cos u

= F[u] + wxy − w cos u.

Hence, by (12) and(15), we have

F̂[w] = wxy − w cos u = (
F∗)∗ (16)

in accordance with Eq. (11).

1.1.4 The Case of One Dependent Variable

Let us consider the differential equation

F
(
x, u, u(1), . . . , u(s)

) = 0 (17)

with one dependent variable u and any number of independent variables. In this case
Definition 1 of the adjoint equation is written

F∗(x, u, v, u(1), v(1), . . . , u(s), v(s)
) = 0 (18)

where

F∗(x, u, v, u(1), v(1), . . . , u(s), v(s)
) = δ(vF)

δu
· (19)
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1.1.5 Construction of Adjoint Equations to Linear Equations

The following statement has been formulated in [1, 2].

Proposition 1 In the case of linear differential equations and systems, the adjoint
equations determined by Eq. (8) and by Eq. (3) coincide.

Proof The proof is based on the statement (see Proposition 8 in Sect. 2.1.2) that a
function Q(u, v) is a divergence, i.e., Q = Di (hi ), if and only if

δQ

δuα
= 0,

δQ

δvα
= 0, α = 1, . . . , m. (20)

Let the adjoint operator F∗ be constructed according to Eq. (3). Let us consider the
case of many dependent variables and write Eq. (3) as follows

vβ Fβ[u] = uβ F∗
β [v] + Di (pi ). (21)

Applying to (21) the variational differentiations and using Eq. (20) we obtain

δ(vβ Fβ[u])
δuα

= δβ
α F∗

β [v] ◦ F∗
α[v].

Hence, (8) coincides with F∗
α[v] given by (3).

Conversely, let F∗[v] be given by (8), i.e.,

F∗
β [v] = δ(vγ Fγ[u])

δuβ
·

Consider the expression Q defined by

Q = vβ Fβ[u] − uβ F∗
β [v] ◦ vβ Fβ[u] − uβ δ(vγ Fγ[u])

δuβ
·

Applying to the first expression for Q the variational differentiations δ/δuα we obtain

δQ

δuα
= δ(vβ Fβ[u])

δuα
− δβ

α F∗
β [v] ◦ F∗

α[v] − δβ
α F∗

β [v] = 0.

Applying δ/δvα to the second expression for Q we obtain

δQ

δvα
= δβ

α Fβ[u] − δ

δvα

⎧
uβ δ(vγ Fγ[u])

δuβ

⎪
◦ Fα[u] − δ

δvα

⎧
uβ δ(vγ Fγ[u])

δuβ

⎪
·
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The reckoning shows that

δ

δvα

⎧
uβ δ(vγ Fγ[u])

δuβ

⎪
= Fα[u]. (22)

Thus Q solves Eq. (20) and hence Eq. (21) is satisfied. This completes the proof.

Remark 1 Let us discuss the proof of Eq. (22) in the case of a second-order linear
operator for one dependent variable

F[u] = ai j (x)ui j + bi (x)ui + c(x)u.

Then we have

u
δ(vF[u])

δu
= u

⎨
cv − vDi (b

i ) + vDi D j (a
i j ) − bivi + 2vi D j (a

i j ) + ai jvi j

⎩
.

Whence, after simple calculations we obtain

δ

δv

⎧
u

δ(vF[u])
δu

⎪
=
⎨
cu + bi ui + ai j ui j

⎩

+
{

Di D j (a
i j u) − Di (a

i j u j ) − Di [u D j (a
i j )]
}

and, noting that the expression in the braces vanishes, arrive at Eq. (22).

Let us illustrate Proposition 1 by the following simple example.

Example 1 Consider the heat equation

F[u] ◦ ut − uxx = 0 (23)

and construct the adjoint operator to the linear operator

F = Dt − D2
x (24)

by using Eq. (3). Noting that due to

vut = Dt (uv) − uvt

vuxx = Dx (vux ) − vx ux = Dx (vux − uvx ) + uvxx

we have

vF[u] ◦ v(ut − uxx ) = u(−vt − vxx ) + Dt (uv) + Dx (uvx − vux ).

Hence
vF[u] − u(−vt − vxx ) = Dt (uv) + Dx (uvx − vux ).
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Therefore, denoting t = x1, x = x2, we obtain Eq. (3) with F∗[v] = −vt −vxx and
p1 = uv, p2 = uvx − vux . Thus, the adjoint operator to the linear operator (24) is

F∗ = −Dt − D2
x (25)

and the adjoint equation to the heat Eq. (23) is written −vt − vxx = 0, or

vt + vxx = 0. (26)

The derivation of the adjoint Eq. (26) and the adjoint operator (25) by the definition
(19) is much simpler. Indeed, we have

F∗ = δ(vut − vuxx )

δu
= −Dt (v) − D2

x (v) = −(vt + vxx ).

1.1.6 Self-Adjointness and Quasi Self-Adjointness

Recall that a linear differential operator F is called a self-adjoint operator if it is
identical with its adjoint operator, F = F∗. Then the equation F[u] = 0 is also
said to be self-adjoint. Thus, the self-adjointness of a linear differential equation
F[u] = 0 means that the adjoint equation F∗[v] = 0 coincides with F[u] = 0 upon
the substitution v = u. This property has been extended to nonlinear equations in
[2]. It will be called here the strict self-adjointness and defined as follows.

Definition 2 We say that the differential equation (17) is strictly self-adjoint if the
adjoint Eq. (18) becomes equivalent to the original Eq. (17) upon the substitution

v = u. (27)

It means that the equation

F∗(x, u, u, . . . , u(s), u(s)
) = λ F

(
x, u, . . . , u(s)

)
(28)

holds with a certain (in general, variable) coefficient λ.

Example 2 The Korteweg-de Vries (KdV) equation

ut = uxxx + uux

is strictly self-adjoint [1]. Indeed, its adjoint Eq. (18) has the form

vt = vxxx + uvx

and coincides with the KdV equation upon the substitution (27).



Construction of Conservation Laws Using Symmetries 69

In the case of linear equations the strict self-adjointness is identical with the usual
self-adjointness of linear equations.

Example 3 Consider the linear equation

utt + a(x)uxx + b(x)ux + c(x)u = 0. (29)

According to Eqs. (18) and (19), the adjoint equation to equation (29) is

δ

δu
{v[utt + a(x)uxx + b(x)ux + c(x)u]} ◦ D2

t (v) + D2
x (av) − Dx (bv) + cv = 0.

Upon substituting v = u and performing the differentiations it becomes

utt + auxx + (2a∞ − b)ux + (a∞∞ − b∞ + c)u = 0. (30)

According to Definition 2, Eq. (29) is strictly self-adjoint if Eq. (30) coincides with
Eq. (29). This is possible if

b(x) = a∞(x). (31)

Definition 2 is too restrictive. Moreover, it is inconvenient in the case of systems
with several dependent variables u = (u1, . . . , um) because in this case Eq. (27) is
not uniquely determined as it is clear from the following example.

Example 4 Let us consider the system of two equations

u1
y + u2u2

x − u2
t = 0, u2

y − u1
x = 0 (32)

with two dependent variables, u = (u1, u2), and three independent variables t, x, y.

Using the formal Lagrangian (9)

L = v1(u1
y + u2u2

x − u2
t ) + v2(u2

y − u1
x )

and Eq. (8) we write the adjoint Eq. (7), changing their sign, in the form

v2
y + u2v1

x − v1
t = 0, v1

y − v2
x = 0. (33)

If we use here the substitution (27), v = u with v = (v1, v2), i.e., let

v1 = u1, v2 = u2

then the adjoint system (33) becomes

u2
y + u2u1

x − u1
t = 0, u1

y − u2
x = 0
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which is not connected with the system (32) by the equivalence relation (28). But if
we set

v1 = u2, v2 = u1

the adjoint system (33) coincides with the original system (32).

The concept of quasi self-adjointness generalizes Definition 2 and is more con-
venient for dealing with systems (6). This concept was formulated in [3] as follows.
The system (6) is quasi self-adjoint if the adjoint system (7) becomes equivalent to
the original system (6) upon a substitution

v = ϕ(u) (34)

such that its derivative does not vanish in a certain domain of u

ϕ∞(u) 	= 0, where ϕ∞(u) =
∣∣∣∣∣∣∂ϕα(u)

∂uβ

∣∣∣∣∣∣. (35)

Remark 2 The substitution (34) defines a mapping

vα = ϕα(u), α = 1, . . . , m

from the m-dimensional space of variables u = (u1, . . . , um) into the m-dimensional
space of variables v = (v1, . . . , vm). It is assumed that this mapping is continuously
differentiable. The condition (35) guarantees that it is invertible, and hence Eqs. (7)
and (6) are equivalent. The equivalence means that the following equations hold with
certain coefficients λ

β
α

F∗
α

(
x, u,ϕ, . . . , u(s),ϕ(s)

) = λβ
α Fβ

(
x, u, . . . , u(s)

)
, α = 1, . . . , m (36)

where

ϕ = {ϕα(u)}, ϕ(σ) = {Di1 · · · Diσ

(
ϕα(u)

)}, σ = 1, . . . , s. (37)

It can be shown that the matrix ‖λβ
α‖ is invertible due to the condition (35).

Example 5 The quasi self-adjointness of nonlinear wave equations of the form

utt − uxx = f (t, x, u, ut , ux )

is investigated in [6]. The results of the paper [6] show that, e.g., the equation

utt − uxx + u2
t − u2

x = 0 (38)
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is quasi self-adjoint and that in this case the substitution (34) has the form

v = eu . (39)

Indeed, the adjoint equation to equation (38) is written

vt t − vxx − 2vutt − 2utvt + 2vuxx + 2uxvx = 0. (40)

After the substitution (39) the left-hand side of Eq. (40) takes the form(36)

vt t − vxx − 2vutt − 2utvt + 2vuxx + 2uxvx = −eu[utt − uxx + u2
t − u2

x ]. (41)

It is manifest from Eq. (41) that v given by (39) solves the adjoint Eq. (40) if one
replaces u by any solution of Eq. (38).

In constructing conservation laws one can relax the condition (35). Therefore I
generalize the previous definition of quasi self-adjointness as follows.

Definition 3 The system (6) is said to be quasi self-adjoint if the adjoint Eq. (7) are
satisfied for all solutions u of the original system (6) upon a substitution

vα = ϕα(u), α = 1, . . . , m (42)

such that

ϕ(u) 	= 0. (43)

In other words, the Eq. (36) hold after the substitution (42), where not all ϕα(u)

vanish simultaneously.

Remark 3 The condition (43), unlike (35), does not guarantee the equivalence of
Eqs. (7) and (6) because the matrix ‖λβ

α‖ may be singular.

Example 6 It is well known that the linear heat Eq. (23) is not self-adjoint (not strictly
self-adjoint in the sense of Definition 2). It is clear from Eqs. (23) and (26). Let us
test Eq. (23) for quasi self-adjointness. Letting v = ϕ(u), we obtain

vt = ϕ∞ut , vx = ϕ∞ux , vxx = ϕ∞uxx + ϕ∞∞u2
x

and the condition (36) is written

ϕ∞(u)[ut + uxx ] + ϕ∞∞(u)u2
x = λ[ut − uxx ].

Whence, comparing the coefficients of ut in both sides, we obtain λ = ϕ∞(u). Then
the above equation becomes
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ϕ∞(u)[ut + uxx ] + ϕ∞∞(u)u2
x = ϕ∞(u)[ut − uxx ].

This equation yields that ϕ∞(u) = 0. Hence, Eq. (23) is quasi self-adjoint with the
substitution v = C, where C is any non-vanishing constant. This substitution does
not satisfy the condition (35).

Example 7 Let us consider the Fornberg-Whitham equation [7]

ut − utxx − uuxxx − 3ux uxx + uux + ux = 0. (44)

Equations (18) and (19) give the following adjoint equation

F∗ ◦ −vt + vt xx + uvxxx − uvx − vx = 0. (45)

It is manifest from the Eqs. (44) and (45) that the Fornberg-Whitham equation is
not strictly self-adjoint. Let us test it for quasi self-adjointness. Inserting in (45) the
substitution v = ϕ(u) and its derivatives

vt = ϕ∞ut , vx = ϕ∞ux , vxx = ϕ∞uxx + ϕ∞∞u2
x , vt x = ϕ∞utx + ϕ∞∞ut ux , . . .

then writing the condition (36) and comparing the coefficients for ut , utx , uxx , . . .

one can verify that ϕ∞(u) = 0. Hence, Eq. (44) is quasi self-adjoint but does not
satisfy the condition (35).

1.2 Strict Self-Adjointness Via Multipliers

It is commonly known that numerous linear equations used in practice, e.g.,
linear evolution equations, are not self-adjoint in the classical meaning of the self-
adjointness. Likewise, useful nonlinear equations such as the nonlinear heat equation,
the Burgers equation, etc. are not strictly self-adjoint. We will see here that these and
many other equations can be rewritten in a strictly self-adjoint equivalent form by
using multipliers. The general discussion of this approach will be given in Sect. 1.3.7.

1.2.1 Motivating Examples

Example 8 Let us consider the following second-order nonlinear equation

uxx + f (u)ux − ut = 0. (46)

Its adjoint Eq. (18) is written

vxx − f (u)vx + vt = 0. (47)
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It is manifest that the substitution v = u does not map Eq. (47) into Eq. (46). Hence
Eq. (46) is not strictly self-adjoint.

Let us clarify if Eq. (46) can be written in an equivalent form

μ(u)[uxx + f (u)ux − ut ] = 0 (48)

with a certain multiplier μ(u) 	= 0 so that Eq. (48) is strictly self-adjoint. The formal
Lagrangian for Eq. (48) is

L = vμ(u)[uxx + f (u)ux − ut ].

We have

δL
δu

= D2
x [μ(u)v] − Dx [μ(u) f (u)v] + Dt [μ(u)v]

+ μ∞(u)v[uxx + f (u)ux − ut ] + μ(u) f ∞(u)vux

whence, upon performing the differentiations

δL
δu

= μvxx + 2μ∞vuxx + 2μ∞uxvx + μ∞∞vu2
x − μ f vx + μvt .

The strict self-adjointness requires that

δL
δu

∣∣∣∣
v=u

= λ[uxx + f (u)ux − ut ].

This provides the following equation for the unknown multiplier μ(u)

(μ + 2uμ∞)uxx + (2μ∞ + uμ∞∞)u2
x − μ f ux + μut = λ[uxx + f (u)ux − ut ]. (49)

Since the right side of Eq. (49) does not contain u2
x we should have 2μ∞ + uμ∞∞ = 0,

whence μ = C1u−1 + C2. Furthermore, comparing the coefficients of ut in both
sides of Eq. (49) we obtain λ = −μ. Now Eq. (49) takes the form

(C2 − C1u−1)uxx − (C1u−1 + C2) f ux = −(C1u−1 + C2)[uxx + f (u)ux ]

and yields C2 = 0. Thus, μ = C1u−1. We can let C1 = −1 and formulate the result.

Proposition 2 Equation (46) becomes strictly self-adjoint if we rewrite it in the form

1

u
[ut − uxx − f (u)ux ] = 0. (50)
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Example 9 One can verify that the n-th order nonlinear evolution equation

∂u

∂t
− f (u)

∂nu

∂xn
= 0, f (u) 	= 0 (51)

with one spatial variable x is not strictly self-adjoint. The following statement shows
that it becomes strictly self-adjoint after using an appropriate multiplier.

Proposition 3 Equation (51) becomes strictly self-adjoint upon rewriting it in the
following equivalent form

1

u f (u)

⎧
∂u

∂t
− f (u)

∂nu

∂xn

⎪
= 0. (52)

Proof Multiplying Eq. (51) by μ(u) and taking the formal Lagrangian

L = vμ(u)[ut − f (u)un]

where un = Dn
x (u), we have

δL
δu

= −Dt [μ(u)v] − Dn
x [μ(u) f (u)v] + vμ∞(u)ut − v[μ(u) f (u)]∞un .

Noting that −Dt [μ(u)v] + vμ∞(u)ut = −μ(u)vt and letting v = u we obtain

δL
δu

∣∣∣∣
v=u

= −μ(u)ut − Dn
x [μ(u) f (u)u] − [μ(u) f (u)]∞uun .

If we take μ(u) = [u f (u)]−1, then μ(u) f (u)u = 1, μ(u) f (u) = u−1, and hence

δL
δu

∣∣∣∣
v=u

= − 1

u f (u)
[ut − f (u)un].

Thus, Eq. (52) satisfies the strict self-adjointness condition (28) with λ = −1. √≥

1.2.2 Linear Heat Equation

Taking in (50) f (u) = 0, we rewrite the classical linear heat equation ut = uxx in
the following strictly self-adjoint form

1

u
[ut − uxx ] = 0. (53)

This result can be extended to the heat equation
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ut − Δu = 0 (54)

where Δu is the Laplacian with n variables x = (x1, . . . , xn). Namely, the strictly
self-adjoint form of Eq. (54) is

1

u
[ut − Δu] = 0. (55)

Indeed, the formal Lagrangian (9) for Eq. (55) has the form

L = v

u
[ut − Δu].

Substituting it in (19) we obtain

F∗ = −Dt

(v

u

)
− Δ

(v

u

)
− v

u2 [ut − Δu].

Upon letting v = u it becomes

F∗ = − 1

u
[ut − Δu].

Hence, Eq. (55) satisfies the condition (28) with λ = −1.

1.2.3 Nonlinear Heat Equation

Consider the nonlinear heat equation ut − Dx (k(u)ux ) = 0, or

ut − k(u)uxx − k∞(u)u2
x = 0. (56)

Its adjoint equation has the form

vt + k(u)vxx = 0.

Therefore it is obvious that (56) does not satisfy Definition 2. But it becomes strictly
self-adjoint if we rewrite it in the form

1

u

⎨
ut − k(u)uxx − k∞(u)u2

x

⎩
= 0. (57)

Indeed, the formal Lagrangian (9) for Eq. (57) is written

L = v

u

⎨
ut − k(u)uxx − k∞(u)u2

x

⎩
.
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Substituting it in (19) we obtain

F∗ = −Dt

(v

u

)
− D2

x

(v

u
k(u)

)
+ 2Dx

(v

u
k∞(u)ux

)

− v

u
k∞(u)uxx − v

u
k∞∞(u)u2

x − v

u2

⎨
ut − k(u)uxx − k∞(u)u2

x

⎩
.

Letting here v = u we have

F∗ = − 1

u

⎨
ut − k(u)uxx − k∞(u)u2

x

⎩
.

Hence, Eq. (55) satisfies the strict self-adjointness condition (28) with λ = −1.

1.2.4 The Burgers Equation

Taking in (50) f (u) = u we obtain the strictly self-adjoint form

1

u
[ut − uxx ] − ux = 0 (58)

of the Burgers equation ut = uxx + uux .

1.2.5 Heat Conduction in Solid Hydrogen

According to [8], the heat conduction in solid crystalline molecular hydrogen at low
pressures is governed by the nonlinear equation (up-to positive constant coefficient)

ut = u2Δu. (59)

It is derived from the Fourier equation

ρ c∗
∂T

∂t
= ≤ · (k ≤T )

using the empirical information that the density ρ at low pressures has a constant
value, whereas the specific heat c∗ and the thermal conductivity k have the estimations

c∗ ∼= T 3, k ∼= T 3
(

1 + T 4
)−2

.



Construction of Conservation Laws Using Symmetries 77

It is also shown in [8] that the one-dimensional Eq. (59)

ut = u2uxx (60)

is related to the linear heat equation by a non-point transformation (Eq. (5) in [8]).
A similar relation was found in [9] for another representation of Eq. (60). The non-
point transformation of Eq. (60) to the linear heat equation

ws = wξξ (61)

is written in [10] as the differential substitution

t = s, x = w, u = wξ . (62)

It is also demonstrated in [10], Sect. 20, that Eq. (60) is the unique equation with
nontrivial Lie-Bäcklund symmetries among the equations of the form

ut = f (u) + h(u, ux ), f ∞(u) 	= 0.

The connection between Eq. (60) and the heat equation is treated in [11] as a recip-
rocal transformation [11]. It is shown in [12] that this connection, together with
its extensions, allows to solve certain moving boundary problems in nonlinear heat
conduction.

Our Example 9 from Sect. 1.2.1 reveals one more remarkable property of Eq. (60).
Namely, taking n = 2 and f (u) = u2 in Eq. (52) we see that Eq. (60) becomes strictly
self-adjoint if we rewrite it in the form

ut

u3 = uxx

u
· (63)

1.2.6 Harry Dym Equation

Taking in Example 9 from Sect. 1.2.1 n = 3 and f (u) = u3 we see that the Harry
Dym equation

ut − u3uxxx = 0 (64)

becomes strictly self-adjoint upon rewriting it in the form

ut

u4 − uxxx

u
= 0.
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1.2.7 Kompaneets Equation

The equations considered in Sects. 1.2.1–1.2.6 are quasi self-adjoint. For example,
for Eq. (51) we have

F∗ = −vt − Dn
x ( f (u)v) − v f ∞(u)un

whence making the substitution

v = 1

f (u)

we obtain

F∗ = f ∞

f 2 ut − f ∞

f
un = f ∞

f 2 [ut − f (u) un].

Hence, Eq. (51) is quasi self-adjoint.

Example 10 The Kompaneets equation

ut = 1

x2 Dx

⎨
x4(ux + u + u2)

⎩
(65)

provides an example of an equation that is not quasi self-adjoint. Indeed, Eq. (65)
has the formal Lagrangian

L = v[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)].

The calculation yields the following adjoint equation to (65)

δL
δu

◦ vt + x2vxx − x2(1 + 2u)vx + 2(x + 2xu − 1)v = 0. (66)

Letting v = ϕ(u) one obtains

δL
δu

∣∣∣∣
v=ϕ(u)

= ϕ∞(u)ut + x2uxx − x2(1 + 2u)ux ]

+ ϕ∞∞(u)x2u2
x + 2(x + 2xu − 1)ϕ(u).

Writing the quasi self-adjointness condition (36) in the form

δL
δu

∣∣∣∣
v=ϕ(u)

= λ[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)]

and comparing the coefficients for ut in both sides one obtains λ = −ϕ∞(u), so that
the quasi self-adjointness condition takes the form
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ϕ∞(u)[ut + x2uxx − x2(1 + 2u)ux ] + ϕ∞∞(u)x2u2
x + 2(x + 2xu − 1)ϕ(u)

= ϕ∞(u)[ut − x2uxx − (x2 + 4x + 2x2u)ux − 4x(u + u2)].

Comparing the coefficients for uxx in both sides we obtain ϕ∞(u) = 0. Then the
above equation becomes (x + 2xu − 1)ϕ(u) = 0 and yields ϕ(u) = 0. Hence
the Kompaneets equation is not quasi self-adjoint because the condition (43) is not
satisfied.

But we can rewrite Eq. (65) in the strictly self-adjoint form by using a more general
multiplier than above, namely, the multiplier

μ = x2

u
· (67)

Indeed, upon multiplying by this μ Eq. (65) is written

x2

u
ut = 1

u
Dx

⎨
x4(ux + u + u2)

⎩
.

Its formal Lagrangian

L = v

u

{
−x2ut + Dx

⎨
x4(ux + u + u2)

⎩}

satisfies the strict self-adjointness condition (28) with λ = −1

δL
δu

∣∣∣∣
v=u

= − 1

u

{
−x2ut + Dx

⎨
x4(ux + u + u2)

⎩}
.

Remark 4 Note that v = x2 solves Eq. (66) for any u. The connection of this solution
with the multiplier (67) is discussed in Sect. 1.3.7. See also Sect. 1.4.

1.3 General Concept of Nonlinear Self-Adjointness

Motivated by the examples discussed in Sects. 1.1 and 1.2 as well as other similar
examples, I have suggested in [13] the general concept of nonlinear self-adjointness
of systems consisting of any number of equations with m dependent variables. This
concept encapsulates Definition 2 of strict self-adjointness and Definition 3 of quasi
self-adjointness. The new concept has two different features. They are expressed
below by two different but equivalent definitions.
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1.3.1 Two Definitions and Their Equivalence

Definition 4 The system of m differential equations (compare with Eq. 6)

Fᾱ

(
x, u, u(1), . . . , u(s)

) = 0, ᾱ = 1, . . . , m (68)

with m dependent variables u = (u1, . . . , um) is said to be nonlinearly self-adjoint
if the adjoint equations

F∗
α

(
x, u, v, u(1), v(1), . . . , u(s), v(s)

) ◦ δ(vβ̄ Fβ̄)

δuα
= 0, α = 1, . . . , m (69)

are satisfied for all solutions u of the original system (68) upon a substitution

vᾱ = ϕᾱ(x, u), ᾱ = 1, . . . , m (70)

such that
ϕ(x, u) 	= 0. (71)

In other words, the following equations hold

F∗
α

(
x, u,ϕ(x, u), . . . , u(s),ϕ(s)

) = λβ̄
α Fβ̄

(
x, u, . . . , u(s)

)
, α = 1, . . . , m (72)

where λ
β̄
α are undetermined coefficients, and ϕ(σ) are derivatives of (70)

ϕ(σ) = {Di1 · · · Diσ

(
ϕᾱ(x, u)

)}, σ = 1, . . . , s.

Here v and ϕ are the m-dimensional vectors

v = (v1, . . . , vm), ϕ = (ϕ1, . . . ,ϕm)

and Eq. (71) means that not all components ϕᾱ(x, u) of ϕ vanish simultaneously.

Remark 5 If the system (68) is over-determined, i.e., m > m, then the adjoint system
(69) is sub-definite since it contains m < m equations for m new dependent variables
v. Vise versa, if m < m, then the system (68) is sub-definite and the adjoint system
(69) is over-determined.

Remark 6 The adjoint system (69), upon substituting there any solution u(x) of
Eq. (68), becomes a linear homogeneous system for the new dependent variables vᾱ.

The essence of Eq. (72) is that for the self-adjoint system (68) there exist functions
(70) that provide a non-trivial (not identically zero) solution to the adjoint system
(69) for all solutions of the original system (68). This property can be taken as the
following alternative definition of the nonlinear self-adjointness.
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Definition 5 The system (68) is nonlinearly self-adjoint if there exist functions vᾱ

given by (70) that solve the adjoint system (69) for all solutions u(x) of Eq. (68) and
satisfy the condition (71).

Proposition 4 The above two definitions are equivalent.

Proof Let the system (68) be nonlinearly self-adjoint by Definition 4. Then, accord-
ing to Remark 6, the system (68) satisfies the condition of Definition 5.

Conversely, let the system (68) be nonlinearly self-adjoint by Definition 5.
Namely, let the functions vᾱ given by (70) and satisfying the condition (71) solve
the adjoint system (69) for all solutions u(x) of Eq. (68). This is possible if and only
if Eq. (72) hold. Then the system (68) is nonlinearly self-adjoint by Definition 4. √≥
Example 11 It has been mentioned in Example 2 that the KdV equation

ut = uxxx + uux (73)

is strictly self-adjoint. In terms of Definition 5 it means that v = u solves the adjoint
equation

vt = vxxx + uvx (74)

for all solutions of the KdV Eq. (73). One can verify that the general substitution of
the form (70), v = ϕ(t, x, u), satisfying Eq. (72) is given by

v = A1 + A2u + A3(x + tu) (75)

where A1, A2, A3 are arbitrary constants. One can also check that v given by Eq. (75)
solves the adjoint Eq. (74) for all solutions u of the KdV equation. The solution
v = x + tu is an invariant of the Galilean transformation of the KdV equation
and appears in different approaches (see [10, Sect. 22.5] and [14]). Thus, the KdV
equation is nonlinearly self-adjoint with the substitution (75).

Proposition 5 Any linear equation is nonlinearly self-adjoint.

Proof This property is the direct consequence of Definition 5 because the adjoint
equation F∗[v] = 0 to a linear equation F[u] = 0 does not involve the variable u. √≥

1.3.2 Remark on Differential Substitutions

One can further extend the concept of self-adjointness by replacing the point-wise
substitution (70) with differential substitutions of the form

vᾱ = ϕᾱ(x, u, u(1), . . . , u(r)), ᾱ = 1, . . . , m. (76)

Then Eq. (72) will be written, e.g., in the case r = 1, as follows
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F∗
α

(
x, u,ϕ, . . . , u(s),ϕ(s)

) = λβ̄
α Fβ̄ + λ j β̄

α D j (Fβ̄). (77)

Example 12 The reckoning shows that the equation

uxy = sin u (78)

is not self-adjoint via a point-wise substitution v = ϕ(x, y, u), but it is self-adjoint
in the sense of Definition 4 with the following differential substitution

v = ϕ(x, y, ux , uy) ◦ A1[xux − yuy] + A2ux + A3uy (79)

where A1, A2, A3 are arbitrary constants. The adjoint equation to equation (78) is

vxy − v cos u = 0

and the self-adjointness condition (77) with the function ϕ given by (79) is satisfied
in the form

ϕxy − ϕ cos u = (A1x + A2)Dx (uxy − sin u)

+ (A3 − A1 y)Dy(uxy − sin u). (80)

1.3.3 Nonlinear Heat Equation

One-Dimensional Case

Let us apply the new viewpoint to the nonlinear heat Eq. (56), ut = (k(u)ux )x ,

discussed in Sect. 1.2.3. We will take it in the expanded form

ut − k(u)uxx − k∞(u)u2
x = 0, k(u) 	= 0. (81)

The adjoint Eqs. (18) to (81) is

vt + k(u)vxx = 0. (82)

We take the substitution (70) written together with the necessary derivatives

v = ϕ(t, x, u)

vt = ϕuut + ϕt , vx = ϕuux + ϕx (83)

vxx = ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx

and arrive at the following self-adjointness condition (72)
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ϕuut + ϕt + k(u)[ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx ]

= λ[ut − k(u)uxx − k∞(u)u2
x ]. (84)

The comparison of the coefficients of ut in both sides of Eq. (84) yields λ = ϕu .

Then, comparing the terms with uxx we see that ϕu = 0. Hence Eq. (84) reduces to

ϕt + k(u)ϕxx = 0 (85)

and yields ϕt = 0, ϕxx = 0, whence ϕ = C1x + C2, where C1, C2 = const. We
have demonstrated that Eq. (81) is nonlinearly self-adjoint by Definition 4 and that
the substitution (70) has the form

v = C1 x + C2. (86)

The same result can be easily obtained by using Definition 5. We look for the
solution of the adjoint Eq. (82) in the form v = ϕ(t, x). Then Eq. (82) has the
form (85). Since it should be satisfied for all solutions u of Eq. (81), we obtain
ϕt = 0, ϕxx = 0, and hence Eq. (86).

Multi-dimensional Case

The similar analysis can be applied to the nonlinear heat equation with several vari-
ables x = (x1, . . . , xn)

ut = ≤ · (k(u)≤u) (87)

or
ut − k(u)Δu − k∞(u)|≤u|2 = 0. (88)

The reckoning shows that the adjoint Eqs. (18) to (88) is written

vt + k(u)Δv = 0. (89)

It is easy to verify the nonlinear elf-adjointness by Definition 5. Namely, searching
for the solution of the adjoint Eq. (89) in the form v = ϕ(t, x1, . . . , xn), one obtains

ϕt + k(u)Δϕ = 0

whence
ϕt = 0, Δϕ = 0.

We conclude that Eq. (88) is self-adjoint and that the substitution (70) is given by

v = ϕ(x1, . . . , xn) (90)

where ϕ(x1, . . . , xn) is any solution of the n-dimensional Laplace equation Δϕ = 0.
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1.3.4 Anisotropic Nonlinear Diffusion Equation

Two-Dimensional Case

Consider the diffusion equation

ut = ( f (u)ux )x + (g(u)uy)y (91)

in an anisotropic two-dimensional medium (see [15–17], vol. 1, Sect. 10.8) with
arbitrary functions f (u) and g(u). The adjoint equation is

vt + f (u)vxx + g(u)vyy = 0. (92)

Using Definition 5 we obtain the following equations for nonlinear self-adjointness
of Eq. (91)

ϕt = 0, ϕxx = 0, ϕyy = 0. (93)

Integrating equations (93) we obtain the following substitution (70)

v = C1 xy + C2 x + C3 y + C4. (94)

Three-Dimensional Case

The three-dimensional anisotropic nonlinear diffusion equation has the following
form (see [15–17], vol. 1, Sect. 10.9)

ut = ( f (u)ux )x + (g(u)uy)y + (h(u)uz)z . (95)

Its adjoint equation is

vt + f (u)vxx + g(u)vyy + h(u)vzz = 0. (96)

Equation (95) is nonlinearly self-adjoint. In this case the substitution (94) is
replaced by

v = C1 xyz + C2 xy + C3 xz + C4 yz + C5 x + C6 y + C7 z + C8. (97)
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1.3.5 Nonlinear Wave Equations

One-Dimensional Case

Consider the following one-dimensional nonlinear wave equation

utt = (k(u)ux )x , k(u) 	= 0 (98)

or in the expanded form

utt − k(u)uxx − k∞(u)u2
x = 0. (99)

The adjoint Eqs. (18) to (98) is written

vt t − k(u)vxx = 0. (100)

Proceeding as in One-Dimensional Case or applying Definition 5 to Eqs. (99) and
(100) by letting v = ϕ(t, x), we obtain the following equations that guarantee the
nonlinear self-adjointness of Eq. (98)

ϕt t = 0, ϕxx = 0. (101)

Integrating equation (101) we obtain the following substitution

v = C1 t x + C2 t + C3 x + C4. (102)

Multi-Dimensional Case

The multi-dimensional version of Eq. (98) with x = (x1, . . . , xν) is written

utt = ≤ · (k(u)≤u) (103)

or
utt − k(u)Δu − k∞(u)|≤u|2 = 0. (104)

The adjoint equation is
vt t − k(u)Δv = 0. (105)

Using Definition 5 and searching the solution of the adjoint Eq. (105) in the form
v = ϕ(t, x1, . . . , xν), we obtain the equations

ϕt t = 0, Δϕ = 0.

Solving them we arrive at the following substitution (70)
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v = a(x)t + b(x) (106)

where a(x) and b(x) solve the ν-dimensional Laplace equation

Δa(x1, . . . , xν) = 0, Δb(x1, . . . , xν) = 0.

Hence Eq. (103) is nonlinearly self-adjoint.

Nonlinear Vibration of Membranes

Vibrations of a uniform membrane whose tension varies during deformations are
described by the following Lagrangian

L = 1

2

⎨
u2

t − k(u)
(

u2
x + u2

y

)⎩
, k∞(u) 	= 0. (107)

The corresponding Euler-Lagrange equation

∂L

∂u
− Dt

(
∂L

∂ut

)
− Dx

(
∂L

∂ux

)
− Dy

(
∂L

∂uy

)
= 0

provides the nonlinear wave equation

utt = k(u) (uxx + uyy) + 1

2
k∞(u)(u2

x + u2
y). (108)

Note that Eq. (108) differs from the two-dimensional nonlinear wave Eq. (104) by
the coefficient 1/2. Let us find out if this difference affects self-adjointness.

By applying (69) to the formal Lagrangian of Eq. (108) we obtain

F∗ = vt t − k(u) (vxx + vyy) − k∞(u)(uxvx + uyvy + vuxx + vuyy)

− v

2
k∞∞(u)(u2

x + u2
y).

We take the substitution (70) together with the necessary derivatives (see Eq. 83)

v = ϕ(t, x, y, u), vt = ϕuut + ϕt

vx = ϕuux + ϕx , vy = ϕuuy + ϕy

vxx = ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx (109)

vyy = ϕuuyy + ϕuuu2
y + 2ϕyuuy + ϕyy

vt t = ϕuutt + ϕuuu2
t + 2ϕtuut + ϕt t

and substitute the expressions (109) in the self-adjointness condition (72)
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F∗∣∣
v=ϕ

= λ[utt − k(u) (uxx + uyy) − 1

2
k∞(u)(u2

x + u2
y)].

Comparing the coefficients of utt we obtain λ = ϕu . Then we compare the coeffi-
cients of uxx and obtain ϕ k∞(u) = 0. This equation yields ϕ = 0 because k∞(u) 	= 0.

Thus, the condition (71) is not satisfied for the point-wise substitution (70). Fur-
ther investigation of Eq. (108) for the nonlinear self-adjointness requires differential
substitutions.

1.3.6 Anisotropic Nonlinear Wave Equation

Two-Dimensional Case

The two-dimensional anisotropic nonlinear wave equation is (see [15–17, vol. 1,
Sect. 12.6])

utt = ( f (u)ux )x + (g(u)uy)y . (110)

Its adjoint equation has the form

vt t − f (u)vxx − g(u)vyy = 0. (111)

Proceeding as in Sect. 1.3.4 we obtain the following equations that guarantee the
self-adjointness of Eq. (110)

ϕt t = 0, ϕxx = 0, ϕyy = 0. (112)

Integrating equation (112) we obtain the following substitution (70)

v = C1 t xy + C2 t x + C3 t y + C4 xy + C5 t + C6 x + C7 y + C8. (113)

Remark 7 I provide here detailed calculations in integrating Eq. (112). The general
solution to the linear second-order equation ϕt t = 0 is given by

ϕ = A(x, y)t + B(x, y) (114)

with arbitrary functions A(x, y) and B(x, y). Substituting this expression for ϕ in
the second and third Eq. (112) and splitting with respect to t we obtain the following
equations for A(x, y) and B(x, y)

Axx = 0, Ayy = 0, Bxx = 0, Byy = 0.
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Substituting the general solution

A = a1(y)x + a2(y)

of the equation Axx = 0 in the equation Ayy = 0 and splitting with respect to x, we
obtain a∞∞

1 = 0, a∞∞
2 = 0, whence

a1 = c11 y + c12, a2 = c21 y + c22

where c11, . . . , c22 are arbitrary constants. Substituting these in the above expression
for A we obtain

A = c11xy + c12x + c21 y + c22.

Proceeding likewise with the equations for B(x, y), we have

B = d11xy + d12x + d21 y + d22

with arbitrary constant coefficients d11, . . . , d22. Finally, we substitute the resulting
A and B in the expression (114) for ϕ and, changing the notation, arrive at (113).

Three-Dimensional Case

The three-dimensional anisotropic nonlinear wave equation

utt = ( f (u)ux )x + (g(u)uy)y + (h(u)uz)z (115)

has the following adjoint equation

vt t − f (u)vxx − g(u)vyy − h(u)vzz = 0. (116)

In this case Eq. (112) are replaced by

ϕt t = 0, ϕxx = 0, ϕyy, ϕzz = 0

and yield the following substitution (70)

v = C1t xyz + C2t xy + C3t xz + C4t yz + C5t x + C6t y + C7t z

+ C8xy + C9xz + C10 yz + C11t + C12x + C13 y + C14z + C15. (117)

1.3.7 From Nonlinear to Strict Self-Adjointness

The approach of this section is not used for constructing conservation laws. But it
may be useful for other applications of the nonlinear self-adjointness.
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Theorem 1 The differential equation (17)

F
(
x, u, u(1), . . . , u(s)

) = 0 (118)

is nonlinearly self-adjoint (Definition 4) if and only if it becomes strictly self-adjoint
(Definition 2) upon rewriting in the equivalent form

μ(x, u)F
(
x, u, u(1), . . . , u(s)

) = 0, μ(x, u) 	= 0 (119)

with an appropriate multiplier μ(x, u).

Proof We will write the condition (72) for nonlinear self-adjointness of Eq. (118) in
the form

δ(vF)

δu

∣∣∣∣
v=ϕ(x,u)

= λ(x, u)F
(
x, u, u(1), . . . , u(s)

)
. (120)

Furthermore, invoking that the Eqs. (119) and (118) are equivalent, we will write the
condition (28) for strict self-adjointness of Eq. (119) in the form

δ(wμF)

δu

∣∣∣∣
w=u

= λ̃(x, u)F
(
x, u, u(1), . . . , u(s)

)
. (121)

Since w is a dependent variable and μ = μ(x, u) is a certain function of x, u, the
variational derivative in the left-hand side of (121) can be written as follows

δ(wμF)

δu
= w

∂μ

∂u
F + μw

∂F

∂u
− Di

(
μw

∂F

∂ui

)
+ Di D j

(
μw

∂F

∂ui j

)
− · · ·

= w
∂μ

∂u
F + δ(vF)

δu

where v is the new dependent variable instead of w defined by the formula

v = μ(x, u)w. (122)

Now the left side of Eq. (121) is written

δ(wμF)

δu

∣∣∣∣
w=u

= u
∂μ

∂u
F + δ(vF)

δu

∣∣∣∣
v=uμ(x,u)

· (123)

Let us assume that Eq. (118) is nonlinearly self-adjoint. Then Eq. (120) holds with a
certain given function ϕ(x, u). Therefore, we take the multiplier

μ(x, u) = ϕ(x, u)

u
(124)
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and reduce Eq. (123) to the following form

δ(wμF)

δu

∣∣∣∣
w=u

=
(

λ + ∂ϕ

∂u
− ϕ

u

)
F.

This proves that Eq. (121) holds with

λ̃ = ∂ϕ

∂u
− ϕ

u
+ λ.

Hence, Eq. (119) with the multiplier μ given by (124) is strictly self-adjoint.
Let us assume now that Eq. (119) with a certain multiplier μ(x, u) is strictly

self-adjoint. Then Eq. (121) holds. Therefore, if we take the function ϕ defined by
(see 124)

ϕ(x, u) = uμ(x, u) (125)

Equation (123) yields

δ(vF)

δu

∣∣∣∣
v=ϕ(x,u)

=
(

λ̃ − u
∂μ

∂u

)
F.

It follows that Eq. (120) holds with

λ = λ̃ − u
∂μ

∂u
·

We conclude that Eq. (118) is nonlinearly self-adjoint, thus completing the proof. √≥
Example 13 The multiplier (67) used in Example 10 and the function ϕ = x2 that
provides a solution of the adjoint Eq. (66) to the Kompaneets equation are related by
Eq. (125).

Example 14 Let us consider the one-dimensional nonlinear wave Eq. (99),

utt − k(u)uxx − k∞(u)u2
x = 0.

If we substitute in (124) the function ϕ given by the right-hand side of (102) we
will obtain the multiplier that maps Eq. (99) into the strictly self-adjoint equivalent
form. For example, taking (102) with C1 = C3 = C4 = 0, C2 = 1 we obtain the
multiplier

μ = t

u
·

The corresponding equivalent equation to equation (99) has the formal Lagrangian

L = tv

u
[utt − k(u)uxx − k∞(u)u2

x ].
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We have

δL
δu

= D2
t

(
tv

u

)
− tv

u2 utt − D2
x

(
tv

u
k(u)

)
− tv

u
k∞(u)uxx + tv

u2 k(u)uxx

+ 2Dx

(
tv

u
k∞(u)ux

)
− tv

u
k∞∞(u)u2

x + tv

u2 k∞(u)u2
x .

Letting here v = u we see that the strict self-adjointness condition is satisfied in the
following form

δL
δu

∣∣∣∣
v=u

= − t

u
[utt − k(u)uxx − k∞(u)u2

x ].

1.4 Generalized Kompaneets Equation

1.4.1 Introduction

The equation

∂n

∂t
= 1

x2

∂

∂x

⎧
x4
(

∂n

∂x
+ n + n2

)⎪
(126)

known as the Kompaneets equation or the photon diffusion equation, was derived
independently by Kompaneets2 [18] and Weymann [19]. They take as a starting
point the kinetic equations for the distribution function of a photon gas3 and arrive,
at certain idealized conditions, at Eq. (126). This equation provides a mathematical
model for describing the time development of the energy spectrum of a low energy
homogeneous photon gas interacting with a rarefied electron gas via the Compton
scattering. Here n is the density of the photon gas (photon number density), t is time
and x is connected with the photon frequency ν by the formula

x = hν

kTe
(127)

where h is Planck’s constant and kTe is the electron temperature with the standard
notation k for Boltzmann’s constant. According to this notation, hν has the meaning
of the photon energy. The nonrelativistic approximation is used, i.e., it is assumed
that the electron temperatures satisfy the condition kTe � mc2, where m is the

2 He mentions in his paper that the work has been done in 1950 and published in Report # 336 of
the Institute of Chemical Physics of the USSR Academy of Sciences.
3 Weymann uses Dreicer’s kinetic equation [20] for a photon gas interacting with a plasma which
is slightly different from the equation used by Kompaneets.
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electron mass and c is the light velocity. The term low energy photon gas means that
hν � mc2.

The question arises if the idealized conditions assumed in deriving Eq. (126) may
be satisfied in the real world. For discussions of theoretical and observational evi-
dences for such possibility in astrophysical environments, for example in intergalactic
gas, see e.g., [21, 22] and the references therein. See also the recent publication [23].

1.4.2 Discussion of Self-Adjointness of the Kompaneets Equation

For unifying the notation, the dependent variable n in Eq. (126) will be denoted by
u and Eq. (126) will be written further in the form

ut = 1

x2 Dx
[
x4(ux + u + u2)

]
. (128)

Writing it in the expanded form

ut = x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2) (129)

we have the following formal Lagrangian for Eq. (128)

L = v[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)].

Working out the variational derivative of this formal Lagrangian

δL
δu

= Dt (v) + D2
x (x2v) − Dx [(x2 + 4x + 2x2u)v] + 2x2vux + 4x(1 + 2u)v

we obtain the adjoint equation to equation (128)

δL
δu

◦ vt + x2vxx − x2(1 + 2u)vx + 2(x + 2xu − 1)v = 0. (130)

If v = ϕ(u), then

vt = ϕ∞(u)ut , vx = ϕ∞(u)ux , vxx = ϕ∞(u)uxx + ϕ∞∞(u)u2
x .

It follows that the quasi self-adjointness condition (36)

δL
δu

∣∣∣∣
v=ϕ(u)

= λ[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)]

is not satisfied.
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Let us check if this condition is satisfied in the more general form (72)

δL
δu

∣∣∣∣
v=ϕ(t,x,u)

= λ[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)]. (131)

In this case

vt = Dt [ϕ(t, x, u)] = ϕuut + ϕt

vx = Dx [ϕ(t, x, u)] = ϕuux + ϕx (132)

vxx = Dx (vx ) = ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx .

Inserting (132) in the expression for the variational derivative given by (130) and
singling out in Eq. (131) the terms containing ut and uxx , we obtain the following
equation

ϕu[ut + x2uxx ] = λ[−ut + x2uxx ].

Since this equation should be satisfied identically in ut and uxx , it yields λ = ϕu = 0.

Hence ϕ = ϕ(t, x) and Eq. (131) becomes

ϕt + x2ϕxx − x2(1 + 2u)ϕx + 2(x + 2xu − 1)ϕ = 0. (133)

This equation should be satisfied identically in t, x and u. Therefore we nullify the
coefficient for u and obtain

xϕx − 2ϕ = 0

whence
ϕ(t, x) = c(t)x2.

Substitution in Eq. (133) yields c∞(t) = 0. Hence, v = ϕ(t, x) = Cx2 with arbitrary
constant C. Since λ = 0 in (131) and the adjoint Eq. (130) is linear and homogeneous
in v, one can let C = 1. Thus, we have demonstrated the following statement.

Proposition 6 The adjoint Eq. (130) has the solution

v = x2 (134)

for any solution u of Eq. (128). In another words, the Kompaneets Eq. (128) is non-
linearly self-adjoint with the substitution (70) given by (134).

Remark 8 The substitution (134) does not depend on u. The question arises on
existence of a substitution v = ϕ(t, x, u) involving u if we rewrite Eq. (128) in an
equivalent form
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α(t, x, u)[−ut + x2uxx + (x2 + 4x + 2x2u)ux + 4x(u + u2)] = 0 (129∞)

with an appropriate multiplier α 	= 0. This question is investigated in next section
for a more general model.

1.4.3 The Generalized Model

In the original derivation of Eq. (126) the following more general equation appears
accidentally (see [18], Eqs. (9), (10) and their discussion)

∂n

∂t
= 1

g(x)

∂

∂x

⎧
g2(x)

(
∂n

∂x
+ f (n)

)⎪
(135)

with undetermined functions f (u) and g(x). Then, using a physical reasoning,
Kompaneets takes f (u) = n(1 + n) and g(x) = x2. This choice restricts the sym-
metry properties of the model significantly. Namely, Eq. (126) has only the time-
translational symmetry with the generator

X = ∂

∂t
· (136)

The symmetry (136) provides only one invariant solution, namely the stationary
solution n = n(x) defined by the Riccati equation

dn

dx
+ n2 + n = C

x4 ·

The generalized model (135) can be used for extensions of symmetry properties via
the methods of preliminary group classification [24, 25]. In this way, exact solutions
known for particular approximations to the Kompaneets equation can be obtained.
This may also lead to new approximations of the solutions by taking into account
various inevitable perturbations of the idealized situation assumed in the Kompaneets
model (126).

So, we will take with minor changes in notation the generalized model (135)

ut = 1

h(x)
Dx
{
h2(x)[ux + f (u)]}, h∞(x) 	= 0. (137)

It is written in the expanded form as follows

ut = h(x)
(
uxx + f ∞(u)ux

)+ 2h∞(x)
(
ux + f (u)

)
. (138)

We will write Eq. (138) in the equivalent form similar to (129∞)

α(t, x, u)
[− ut + h(x)

(
uxx + f ∞(u)ux

)+ 2h∞(x)
(
ux + f (u)

)] = 0 (139)
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where α 	= 0. This provides the following formal Lagrangian

L = v α(t, x, u)
[− ut + h(x)

(
uxx + f ∞(u)ux

)+ 2h∞(x)
(
ux + f (u)

)]
(140)

where v is a new dependent variable. For this Lagrangian, we have

δL
δu

= Dt (vα) + D2
x [h(x)vα] − Dx [h(x) f ∞(u)vα + 2h∞(x)vα]

+ h(x) f ∞∞(u) v α ux + 2h∞(x) f ∞(u)vα

+ vαu
[− ut + h(x)

(
uxx + f ∞(u)ux

)+ 2h∞(x)
(
ux + f (u)

)]
.

The reckoning shows that

δL
δu

= Dt (vα) + h D2
x (vα) − h f ∞Dx (vα) + (h∞ f ∞ − h∞∞)vα

+ vαu
[− ut + (uxx + f ∞ux )h + 2(ux + f )h∞]. (141)

Now we write the condition for the self-adjointness of Eq. (138) in the form

δL
δu

∣∣∣
v=ϕ(t,x,u)

= λ
[− ut + (uxx + f ∞ux )h + 2(ux + f )h∞] (142)

with an undetermined coefficient λ. Substituting (141) in (142) we have

Dt (ϕα) + h D2
x (ϕα) − h f ∞ Dx (ϕα) + (h∞ f ∞ − h∞∞)ϕα

+ ϕαu
[− ut + (uxx + f ∞ux )h + 2(ux + f )h∞] (143)

= λ
[− ut + (uxx + f ∞ux )h + 2(ux + f )h∞].

Here ϕ = ϕ(t, x, u), α = α(t, x, u) and consequently (see (132))

Dt (ϕα) = (ϕα)u ut + (ϕα)t

Dx (ϕα) = (ϕα)u ux + (ϕα)x (144)

D2
x (ϕα) = (ϕα)u uxx + (ϕα)uu u2

x + 2(ϕα)xu ux + (ϕα)xx .

We substitute (141) in Eq. (143), equate the coefficients for ut in both sides of the
resulting equation and obtain (ϕα)u − ϕαu = −λ. Hence

λ = −αϕu .

Using this expression for λ and equating the coefficients for huxx in both sides of
Eq. (143) we get (ϕα)u + ϕαu = −αϕu . It follows that (ϕα)u = 0 and hence

αϕ = k(t, x).
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Now Eq. (143) becomes

kt + h(x)kxx − h∞∞(x)k + f ∞(u)[h∞(x)k − h(x)kx ] = 0.

If f ∞∞(u) 	= 0, the above equation splits into two equations

h∞(x)k − h(x)kx = 0, kt + h(x)kxx − h∞∞(x)k.

The first of these equations yields k(t, x) = c(t)h(x), and then the second equation
shows that c∞(t) = 0. Hence, k = C h(x) with C = const. Letting C = 1, we have

αϕ = h(x). (145)

Equation (145) can be satisfied by taking, e.g.,

α = h(x)

u
, ϕ = u. (146)

Thus, we have proved the following statement.

Proposition 7 Equation (137) written in the equivalent form

h(x)

u
ut = 1

u
Dx
{
h2(x)[ux + f (u)]} (147)

is strictly self-adjoint. In another words, the adjoint equation to equation (147)
coincides with (147) upon the substitution

v = u. (148)

In particular, let us verify by direct calculations that the original Eq. (128) becomes
strictly self-adjoint if we rewrite it in the equivalent form

x2

u
ut = 1

u
Dx
[
x4(ux + u + u2)

]
. (149)

Equation (149) reads

− x2

u
ut + x4

u
uxx +

⎨
(x4 + 4x3)

1

u
+ 2x4

⎩
ux + 4x3(1 + u) = 0 (150)

and has the formal Lagrangian

L = −x2 v

u
ut + x4 v

u
uxx +

⎨
(x4 + 4x3)

v

u
+ 2x4v

⎩
ux + 4x3(v + uv).
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Accordingly, the adjoint equation to equation (150) is written

Dt

(
x2 v

u

)
+ D2

x

(
x4 v

u

)
− Dx

⎨
(x4 + 4x3)

v

u
+ 2x4v

⎩

+ x2 v

u2 ut − x4 v

u2 uxx − (x4 + 4x3)
v

u2 ux + 4x3v = 0.

Letting here v = u one has v/u = 1 and after simple calculations arrives at Eq. (150).

1.5 Quasi Self-Adjoint Reaction-Diffusion Models

Let us consider the one-dimensional reaction-diffusion model described by the fol-
lowing system (see e.g., [26])

∂u

∂t
= f (u, v) + A

∂2u

∂x2 + ∂

∂x

(
φ(u, v)

∂v

∂x

)

∂v

∂t
= g(u, v) + B

∂2v

∂x2 + ∂

∂x

(
ψ(u, v)

∂u

∂x

)
. (151)

It is convenient to write Eq. (151) in the form

Dt (u) = AD2
x (u) + Dx [φ(u, v)Dx (v)] + f (u, v)

Dt (v) = B D2
x (v) + Dx [ψ(u, u)Dx (u)] + g(u, v). (152)

The total differentiations have the form

Dt = ∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ utt

∂

∂ut
+ utx

∂

∂ux
+ vt t

∂

∂vt
+ vt x

∂

∂vx
+ · · ·

Dx = ∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ vt x

∂

∂vt
+ vxx

∂

∂vx
+ · · ·

(153)

and Eq. (152) are written

ut = Auxx + φvxx + [φuux + φvvx ] vx + f

vt = Bvxx + ψuxx + [ψuux + ψvvx ] ux + g. (154)

The formal Lagrangian for the system (154) is

L = z(Auxx − ut + φvxx + φuuxvx + φvv
2
x + f )

+ w(Bvxx − vt + ψuxx + ψuu2
x + ψvuxvx + g) (155)
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where z and w are new dependent variables. Equation (8) are written

F∗
1 = δL

δu
= D2

x

(
∂L

∂uxx

)
− Dt

(
∂L
∂ut

)
− Dx

(
∂L
∂ux

)
+ ∂L

∂u

F∗
2 = δL

δv
= D2

x

(
∂L

∂vxx

)
− Dt

(
∂L
∂vt

)
− Dx

(
∂L
∂vx

)
+ ∂L

∂v
·

Substituting here the expression (155) for L we obtain after simple calculations the
following adjoint Eq. (69) to the system (154)

Azxx + zt + ψvvxwx − φuvx zx + ψwxx + z fu + wgu = 0 (156)

Bwxx + wt + φuux zx − ψvuxwx + φzxx + z fv + wgv = 0. (157)

Let us investigate the system (154) for quasi self-adjointness (Definition 3). We
write the left-hand sides of Eqs. (156) and (157) as linear combinations of the left-
hand sides of Eq. (154)

Azxx + zt + ψvvxwx − φuvx zx + ψwxx + z fu + wgu

= (Auxx − ut + φvxx + φuuxvx + φvv
2
x + f )P (158)

+ (Bvxx − vt + ψuxx + ψuu2
x + ψvuxvx + g)Q

Bwxx + wt + φuux zx − ψvuxwx + φzxx + z fv + wgv

= (Auxx − ut + φvxx + φuuxvx + φvv
2
x + f )M (159)

+ (Bvxx − vt + ψuxx + ψuu2
x + ψvuxvx + g)N

where P, Q, M and N are undetermined coefficients. We write the substitution (42)
in the form

z = Z(u, v), w = W (u, v) (160)

and insert in the left-hand sides of Eqs. (158) and (159) these expressions for z, w
together with their derivatives

zt = Zuut + Zvvt , zx = Zuux + Zvvx

zxx = Zuuxx + Zvvxx + Zuuu2
x + 2Zuvuxvx + Zvvv

2
x

wt = Wuut + Wvvt , wx = Wuux + Wvvx

wxx = Wuuxx + Wvvxx + Wuuu2
x + 2Wuvuxvx + Wvvv

2
x .
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Equating the coefficients in front of ut and vt in both sides of Eqs. (158) and (159)
we obtain

P = −Zu, Q = −Zv, N = −Wv, M = −Wu . (161)

Now we calculate the coefficients for uxx and vxx , take into account Eq. (161) and
arrive at the following system of equations

2AZu + ψZv + ψWu = 0, (A + B)Zv + φZu + ψWv = 0

2BWv + φZv + ψWu = 0, (A + B)Wu + φZu + ψWv = 0. (162)

Equation (162) provide a linear homogeneous algebraic equations for the quantities

Zu, Zv, Wu, Wu

with the matrix ⎛
⎜⎜⎝

2A ψ ψ 0
φ A + B 0 ψ
0 φ φ 2B
φ 0 A + B ψ

⎞
⎟⎟⎠ .

This matrix has an inverse because its determinant is equal to

4(A + B)2(φψ − AB)

which does not vanish in the case of arbitrary A, B,φ and ψ. Hence, Eq. (162) yield

Zu = Zv = Wu = Wu = 0. (163)

It follows that Z(u, v) = C1, W (u, v) = C2. Thus, the substitution (42) has the
form

z = C1, w = C2 (164)

with arbitrary constants C1, C2. Then Eqs. (158) and (159) become

(C1 f + C2g)u = 0, (C1 f + C2g)v = 0

and yield
f̃ + g̃ = C,

where f̃ = C1 f, g̃ = C2g, and C = const. Since f̃ and g̃, along with f and g, are
arbitrary functions, we can omit the “tilde” and write

f + g = C. (165)



100 N. H. Ibragimov

Equation (165) provides the necessary and sufficient condition for the quasi self-
adjointness of the system (151). Thus, we have proved the following statement.

Theorem 2 The system (151) is quasi self-adjoint if and only if it has the form

∂u

∂t
= f (u, v) + A

∂2u

∂x2 + ∂

∂x

(
φ(u, v)

∂v

∂x

)

∂v

∂t
= C − f (u, v) + B

∂2v

∂x2 + ∂

∂x

(
ψ(u, v)

∂u

∂x

)
(166)

where φ(u, v), ψ(u, v), f (u, v) are arbitrary functions and A, B, C are arbitrary
constants. The substitution (42) is given by (164).

Remark 9 If we replace (160) by the general substitution (70), i.e., take

z = Z(t, x, u, v), w = W (t, x, u, v) (167)

then Eq. (164) will be replaced by

z = Z(t, x), w = W (t, x) (168)

with functions Z(t, x), W (t, x) satisfying the following equations

(ψvW − φu Z)x = 0 (169)

AZxx + Zt + ψWxx + ( f Z + gW )u = 0

BWxx + Wt + φZxx + ( f Z + gW )v = 0. (170)

1.6 A Model of an Irrigation System

Let us consider the second-order nonlinear partial differential equation

C(ψ)ψt = [K (ψ)ψx ]x + [K (ψ) (ψz − 1)
]

z − S(ψ). (171)

It serves as a mathematical model for investigating certain irrigation systems (see
[15–17], vol. 2, Sect. 9.8 and references therein). The dependent variable ψ denotes
the soil moisture pressure head, C(ψ) is the specific water capacity, K (ψ) is the
unsaturated hydraulic conductivity, S(ψ) is a source term. The independent variables
are the time t, the horizontal axis x and the vertical axis z which is taken to be positive
downward.
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The adjoint equation (69) to equation (171) has the form

C(ψ)vt + K (ψ)
[
vxx + vzz

]+ K ∞(ψ)vz − S ∞(ψ)v = 0. (172)

It follows from (172) that Eq. (171) is not nonlinearly self-adjoint if C(ψ), K (ψ)

and S(ψ) are arbitrary functions. Indeed, using Definition 5 of the nonlinear
self-adjointness and nullifying in (172) the term with S ∞(ψ) we obtain v = 0. Hence,
the condition (71) of the nonlinear self-adjointness is not satisfied.

However, Eq. (171) can be nonlinearly self-adjoint if there are certain relations
between the functions C(ψ), K (ψ) and S(ψ). For example, let us suppose that the
specific water capacity C(ψ) and the hydraulic conductivity K (ψ) are arbitrary, but
the source term S(ψ) is related with C(ψ) by the equation

S ∞(ψ) = aC(ψ), a = const. (173)

Then Eq. (172) becomes C(ψ)[vt − av] + K (ψ)
[
vxx + vzz

] + K ∞(ψ)vz = 0 and
yields

vz = 0, vxx = 0, vt − av = 0. (174)

We solve the first two Eq. (174) and obtain

v = p(t)x + q(t).

We substitute this in the third Eq. (174)

[p∞(t) − ap(t)]x + q ∞(t) − aq(t) = 0

split it with respect to x and obtain p∞(t) − ap(t) = 0, q ∞(t) − aq(t) = 0 whence

p(t) = beat , q(t) = leat , b, l = const.

Thus, Eq. (171) satisfying the condition Eq. (173) is nonlinearly self-adjoint, and the
substitution (70) has the form

v = (bx + l)eat . (175)

One can obtain various nonlinearly self-adjoint equations (171) by considering
other relations between C(ψ), K (ψ) and S(ψ) different from (173).



102 N. H. Ibragimov

1.7 Krichever–Novikov Equation

Let us consider the Krichever-Novikov equation [27] written in the form

F ◦ ut − uxxx + 3

2

u2
xx

ux
− P(u)

ux
= 0 (176)

where P(u) a polynomial of degree four with distinct roots. The nonlinear self-
adjointness of this equation has been investigated recently in [28]. Namely, it is
shown that Eq. (176) satisfies the nonlinear self-adjointness condition in the form

F∗∣∣
v=ϕ

= μ0 F + μ1 Dx (F) + μ2 D2
x (F) + μ3 D3

x (F) + μ4 D4
x (F) (177)

with

μ0 = 2
uxx

u4
x

P ∞(u) − 1

u2
x

P ∞∞(u)

μ1 = 2
uxxxx

u3
x

− 12
uxxx uxx

u4
x

+ 12
u3

xx

u5
x

+ 2

u3
x

P ∞(u) − 8
uxx

u5
x

P(u)

μ2 = 4
uxxx

u3
x

− 9
u2

xx

u4
x

+ 2

u4
x

P(u), μ3 = 4
uxx

u3
x

, μ4 = − 1

u2
x

where v = ϕ is the differential substitution (76) with the following ϕ

ϕ = uxxxx

u2
x

+ 3
u3

xx

u4
x

− 4
uxx uxxx

u3
x

− 2
P(u)uxx

u4
x

+ P ∞(u)

u2
x

· (178)

2 Construction of Conservation Laws Using Symmetries

The well-known Noether’s theorem [29] states that if a variational integral is invariant
with respect to a one-parameter group of transformations then a certain formula
(see further Theorem 3) provides a conservation law for the corresponding Euler-
Lagrange equation. Thus, according to Noether’s theorem, the invariance of the
variational integral is a sufficient condition for existence of the conservation law.
It has been proved in [30] that the necessary and sufficient condition for existence
of this conservation law is the invariance of the extremal values (the values on the
solutions of the Euler-Lagrange equations) of the variational integral. The result
extends to multi-parameter symmetry groups.

The new approach based on the concept of nonlinear self-adjointness allows to
extend a connection between symmetries and conservation laws significantly.



Construction of Conservation Laws Using Symmetries 103

2.1 Discussion of the Operator Identity

2.1.1 Operator Identity and Alternative Proof
of Noether’s Theorem

Let us discuss some consequences of the operator identity4

X + Di (ξ
i ) = W α δ

δuα
+ Di Ni . (179)

Here

X = ξi ∂

∂xi
+ ηα ∂

∂uα
+ ζα

i
∂

∂uα
i

+ ζα
i1i2

∂

∂uα
i1i2

+ · · · (180)

W α = ηα − ξ j uα
j , α = 1, . . . , m (181)

δ

δuα
= ∂

∂uα
+

⊕∑
s=1

(−1)s Di1 · · · Dis

∂

∂uα
i1···is

, α = 1, . . . , m (182)

and

Ni = ξi + W α δ

δuα
i

+
⊕∑

s=1

Di1 · · · Dis (W α)
δ

δuα
i i1···is

, i = 1, . . . , n (183)

where the Euler-Lagrange operators with respect to derivatives of uα are obtained
from (182) by replacing uα by the corresponding derivatives, e.g.,

δ

δuα
i

= ∂

∂uα
i

+
⊕∑

s=1

(−1)s D j1 · · · D js
∂

∂uα
i j1··· js

· (184)

The coefficients ξi , ηα in (180) are arbitrary differential functions (see Sect. 1.1.1)
and the other coefficients are determined by the prolongation formulae

ζα
i = Di (W α) + ξ j uα

i j , ζα
i1i2

= Di1 Di2(W α) + ξ j uα
j i1i2

, . . . . (185)

The derivation of Eq. (179) is essentially based on Eq. (185).

Remark 10 If we write the operator (180) in the equivalent canonical form5

4 The operator identity (179) was called in [31] the Noether identity and used for simplifying the
proof of Noether’s theorem. A simple proof of the identity (179) can be found in [32] where Eq. (179)
is written as Eq. (19).
5 One can verify that if one uses the canonical form of the operator X, then the operator identity
(179) becomes identical with Eqs. (3), (6) in Noether’s paper [29] except for the notation. Noether
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X = W α ∂

∂uα
+ ζα

i
∂

∂uα
i

+ ζα
i1i2

∂

∂uα
i1i2

+ · · · (186)

then the prolongation formulae (185) become simpler

ζα
i = Di (W α), ζα

i1i2
= Di1 Di2(W α), . . . . (187)

The original proof of Noether’s theorem [29] is based on the calculus of variations.
An alternative proof of this theorem has been given in [31] (see also [4, 10]). Let us
outline the latter proof based on the identity (179).

We consider the Euler-Lagrange equations

δL
δuα

= 0, α = 1, . . . , m. (188)

If we assume that the operator (180) is admitted by Eq. (188) and that the variational
integral

∫
L(x, u, u(1), . . .)dx

is invariant under the transformations of the group with the generator X then the
following equation holds

X (L) + Di (ξ
i )L = 0. (189)

Therefore, if we act on L by both sides of the identity (179)

X (L) + Di (ξ
i )L = W α δL

δuα
+ Di [Ni (L)]

and take into account Eqs. (188) and (189), we see that the vector with the components

Ci = Ni (L), i = 1, . . . , n (190)

satisfies the conservation equation

Di (C
i )

∣∣∣
(188)

= 0. (191)

For practical applications, when we deal with law order Lagrangians L, it is con-
venient to restrict the operator (183) on the derivatives involved in L and write the
expressions (190) in the expanded form

(Footnote 5 continued)
comments that in the case of the first-order Lagrangians her Eq. (3) is identical with the central
equation of Lagrange (Eqs. (4) and (5) in [29]).
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Ci = ξiL + W α

[
∂L
∂uα

i
− D j

(
∂L
∂uα

i j

)
+ D j Dk

(
∂L

∂uα
i jk

)
− · · ·

⎫
(192)

+ D j
(
W α

) [ ∂L
∂uα

i j
− Dk

(
∂L

∂uα
i jk

)
+ · · ·

⎫
+ D j Dk

(
W α

) [ ∂L
∂uα

i jk
− · · ·

⎫
.

Thus, Noether’s theorem can be formulated as follows.

Theorem 3 If the operator (180) is admitted by Eq. (188) and satisfies the condition
(189) of the invariance of the variational integral, then the vector (192) constructed
by Eq. (192) satisfies the conservation law (191).

Remark 11 The identity (179) is valid also in the case when the coefficients ξi , ηα of
the operator X involve not only the local variables x, u, u(1), u(2), . . . but also nonlo-
cal variables (see Sect. 2.5.6). Accordingly, the formula (192) associates conserved
vectors with nonlocal symmetries as well.

Remark 12 If the invariance condition (189) is replaced by the divergence condition

X (L) + Di (ξ
i )L = Di (Bi )

then the identity (179) leads to the conservation law (191) where the conserved vector
(190) is replaced with

Ci = Ni (L) − Bi , i = 1, . . . , n. (193)

2.1.2 Test for Total derivative and for Divergence

I recall here the well-known necessary and sufficient condition for a differential
function to be divergence, or total derivative in the case of one independent variable.

One can easily derive from the Definition (1) of the total differentiation Di the
following lemmas (see also [4], Sect. 8.4.1).

Lemma 1 The following infinite series of equations hold

∂

∂uα
Di = Di

∂

∂uα

D j
∂

∂uα
j

Di = Di
∂

∂uα
+ Di D j

∂

∂uα
j

D j Dk
∂

∂uα
jk

Di = Di Dk
∂

∂uα
k

+ Di D j Dk
∂

∂uα
jk

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
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Lemma 2 The following operator identity holds for every i and α

δ

δuα
Di = 0.

Proof Using Lemma 1 and manipulating with summation indices we obtain

δ

δuα
Di =

(
∂

∂uα
− D j

∂

∂uα
j

+ D j Dk
∂

∂uα
jk

− D j Dk Dl
∂

∂uα
jkl

+ · · ·
)

Di

= ∂

∂uα
Di − Di

∂

∂uα
− Di D j

∂

∂uα
j

+ Di Dk
∂

∂uα
k

+ Di D j Dk
∂

∂uα
jk

− Di Dk Dl
∂

∂uα
kl

− · · · = 0. √≥
Proposition 8 A differential function f (x, u, u(1), . . . , u(s)) ≡ A is divergence

f = Di (h
i ), hi (x, u, . . . , u(s−1)) ≡ A (194)

if and only if the following equations hold identically in x, u, u(1), . . .

δ f

δuα
= 0, α = 1, . . . , m. (195)

The statement that the relation (194) implies (195) follows immediately from
Lemma 2. For the proof of the inverse statement that (195) implies (194), see [33],
Chap. 4, Sect. 3.5, and [32]. See also [4], Sect. 8.4.1.

We will use Proposition 8 also in the particular case of one independent variable
x and one dependent variable u = y. Then it is formulated as follows.

Proposition 9 A differential function f (x, y, y∞, . . . , y(s)) ≡ A is the total deriva-
tive

f = Dx (g), g(x, y, y∞, . . . , y(s−1)) ≡ A (196)

if and only if the following equation holds identically in x, y, y∞, . . .

δ f

δy
= 0. (197)

Here δ f /δy is the Euler-Lagrange operator (184)

δ

δy
= ∂

∂y
− Dx

∂

∂y∞ + D2
x

∂

∂y∞∞ − D3
x

∂

∂y∞∞∞ + · · · . (198)
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2.1.3 Adjoint Equation to Linear ODE

Let us consider an arbitrary sth-order linear ordinary differential operator

L[y] = a0 y(s) + a1 y(s−1) + · · · + as−2 y∞∞ + as−1 y∞ + as y (199)

where ai = ai (x). We know from Sect. 1.1.5 that the adjoint operator to (199) can be
calculated by using Eq. (8). I give here the independent proof based on the operator
identity (179).

Proposition 10 The adjoint operator to (199) can be calculated by the formula

L∗[z] = δ(zL[y])
δy

· (200)

Proof Let

X = w
∂

∂y
+ w∞ ∂

∂y∞ + w∞∞ ∂

∂y∞∞ + · · · (201)

be the operator (186) with one independent variable x and one dependent variable
u = y, where the prolongation formulae (187) are written using the notation

w∞ = Dx (w), w∞∞ = D2
x (w), . . . . (202)

In this notation the operator (183) is written

N = w
δ

δy∞ + w∞ δ

δy∞∞ + w∞∞ δ

δy∞∞∞ + · · · .

Having in mind its application to the differential function L[y] given by (199) we
consider the following restricted form of N

N = w
δ

δy∞ + w∞ δ

δy∞∞ + · · · + w(s−1) δ

δy(s)
· (203)

The identity (179) has the form

X = w
δ

δy
+ DxN . (204)

We act by both sides of this identity on zL[y], where z is a new dependent variable:

X (zL[y]) = w
δ(zL[y])

δy
+ DxN(zL[y]) . (205)

Since the operator (201) does not act on the variables x and z, we have
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X (zL[y]) = zX (L[y]). (206)

Furthermore we note that
X (L[y]) = L[w]. (207)

Inserting (206) and (207) in Eq. (205) we obtain

zL[w] − w
δ(zL[y])

δy
= Dx (Ψ ) (208)

where Ψ is a quadratic form Ψ = Ψ [w, z] defined by

Ψ = N(zL[y]). (209)

After replacing w with y Eq. (208) coincides with Eq. (3) for the adjoint operator

zL[y] − yL∗[z] = Dx (ψ) (210)

where L∗[z] is given by the formula (200) and ψ = ψ[y, z] is defined by

ψ[y, z] = Ψ [w, z]∣∣
w=y ◦ N(zL[y])∣∣

w=y . (211)
√≥

Remark 13 Let us find the explicit formula for ψ in Eq. (210) We write the operator
N given by Eq. (203) in the expanded form

N = w

⎧
∂

∂y∞ − Dx
∂

∂y∞∞ + · · · + (−Dx )
s−1 ∂

∂y(s)

⎪

+ w∞
⎧

∂

∂y∞∞ − Dx
∂

∂y∞∞∞ + · · · + (−Dx )
s−2 ∂

∂y(s)

⎪

+ w(s−2)

⎧
∂

∂y(s−1)
− Dx

∂

∂y(s)

⎪
+ w(s−1) δ

δy(s)

act on zL[y] written in the form

zL[y] = as yz + as−1 y∞z + as−2 y∞∞z + · · · + a1 y(s−1)z + a0 y(s)z

and obtain Ψ. We replace w with y in Ψ = Ψ [w, z] and ψ = ψ[y, z]

ψ[y, z] = y
⎨
as−1 z − (as−2 z)∞ + · · · + (−1)s−1(a0 z)(s−1)

⎩

+ y∞ ⎨as−2 z − (as−3 z)∞ + · · · + (−1)s−2(a0 z)(s−2)
⎩

(212)

+ y(s−2)
[
a1 z − (a0 z)∞

]+ y(s−1) a0 z.
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The expression (212) is obtained in the classical literature using integration by
parts (see e.g., [34, Chap. 5, Sect. 4, Eq. (31∞)]).

2.1.4 Conservation Laws and Integrating Factors
for Linear ODEs

Consider an sth-order homogeneous linear ordinary differential equation

L[y] = 0 (213)

where L[y] is the operator defined by Eq. (199). If L[y] is a total derivative

L[y] = Dx

(
ψ(x, y, y∞, . . . , y(s−1))

)
(214)

the Eq. (213) can be written as a conservation law

Dx

(
ψ(x, y, y∞, . . . , y(s−1))

)
= 0

whence upon integration one obtains a linear equation of order s − 1

ψ(x, y, y∞, . . . , y(s−1)) = C1. (215)

We can also reduce the order of the non-homogeneous equation

L[y] = f (x) (216)

by rewriting it in the conservation form

Dx

⎧
ψ(x, y, y∞, . . . , y(s−1)) −

∫
f (x)dx

⎪
= 0. (217)

Integrating it once we obtain the non-homogeneous linear equation of order s − 1

ψ(x, y, y∞, . . . , y(s−1)) = C1 +
∫

f (x)dx .

Example 15 Consider the second-order equation

y∞∞ + y∞ sin x + y cos x = 0.

We have
y∞∞ + y∞ sin x + y cos x = Dx (y∞ + y sin x).
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Therefore the second-order equation in question reduces to the first-order equation

y∞ + y sin x = C1.

Integrating the latter equation we obtain the general solution

y =
⎧

C2 + C1

∫
e− cos x dx

⎪
ecos x

to our second-order equation. Dealing likewise with the non-homogeneous equation

y∞∞ + y∞ sin x + y cos x = 2x

we obtain its general solution

y =
⎧

C2 +
∫ (

C1 + x2
)

e− cos x dx

⎪
ecos x .

If L[y] in Eq. (213) is not a total derivative, one can find an appropriate factor
φ(x) 	= 0, called an integrating factor, such that φ(x)L[y] becomes a total derivative

φ(x)L[y] = Dx

(
ψ(x, y, y∞, . . . , y(s−1))

)
. (218)

A connection between integrating factors and the adjoint equations for linear equa-
tions is well known in the classical literature (see e.g., [34], Chap. 5, Sect. 4). Propo-
sition 9 gives a simple way to establish this connection and prove the following
statement.

Proposition 11 A function φ(x) is an integrating factor for Eq. (213) if and only if

z = φ(x), φ(x) 	= 0 (219)

is a solution of the adjoint equation 6 to Eq. (213)

L∗[z] = 0. (220)

Knowledge of a solution (219) to the adjoint equation (220) allows to reduce the
order of Eq. (213) by integrating Eq. (218)

ψ(x, y, y∞, . . . , y(s−1)) = C1. (221)

Here C1 is an arbitrary constants and ψ defined according to Eqs. (209) and
(210), i.e.,

ψ = N(zL[y])∣∣
w=y . (222)

6 This statement is applicable to nonlinear ODEs as well, see [35].
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Proof If (219) is a solution of the adjoint Eq. (220), we substitute it in Eq. (210) and
arrive at Eq. (218). Hence φ(x) is an integrating factor for Eq. (213). Conversely, if
φ(x) is an integrating factor for Eq. (213), then Eq. (218) is satisfied. Now Proposition
9 yields

δ(φ(x)L[y])
δy

= 0.

Hence (219) is a solution of the adjoint Eq. (220). Finally, Eq. (222) follows from
(210). √≥
Example 16 Let us apply the above approach to the first-order equation

y∞ + P(x)y = Q(x). (223)

Here L[y] = y∞ + P(x)y. The adjoint Eq. (220) is written

z∞ − P(x)z = 0.

Solving it we obtain the integrating factor

z = e
⎬

P(x)dx .

Therefore we rewrite Eq. (223) in the equivalent form

[
y∞ + P(x)y

]
e
⎬

P(x)dx = Q(x)e
⎬

P(x)dx (224)

and compute the function Ψ given by Eq. (209)

Ψ = N(zL[y]) = w
∂

∂y∞ [z(y∞ + P(x)y)] = wz = we
⎬

P(x)dx .

Equation (222) yields
ψ = ye

⎬
P(x)dx . (225)

Now we can take (224) instead of Eq. (216) and write it in the form (217) with ψ
given by (225). Then we obtain

Dx

⎧
ye
⎬

P(x)dx −
∫

Q(x)e
⎬

P(x)dx dx

⎪
= 0

whence

ye
⎬

P(x)dx = C1 +
∫

Q(x)e
⎬

P(x)dx dx .
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Solving the latter equation for y we obtain the general solution of Eq. (223)

y =
⎧

C1 +
∫

Q(x)e
⎬

P(x)dx dx

⎪
e− ⎬ P(x)dx . (226)

Example 17 Let us consider the second-order homogeneous equation

y∞∞ + sin x

x2 y∞ +
(

cos x

x2 − sin x

x3

)
y = 0. (227)

Its left-hand side does not satisfy the total derivative condition (197) because

δ

δy

⎧
y∞∞ + sin x

x2 y∞ +
(

cos x

x2 − sin x

x3

)
y

⎪
= sin x

x2 ·

Therefore we will apply Proposition 11. The adjoint equation to equation (227) is
written

z∞∞ − sin x

x2 z∞ + sin x

x3 z = 0.

We take its obvious solution z = x, substitute it in Eq. (209) and using (211) find

Ψ = N
⎧

xy∞∞ + sin x

x
y∞ +

(
cos x

x
− sin x

x2

)
y

⎪
= sin x

x
w − w + xw∞.

Therefore Eq. (221) is written

xy∞ +
(

sin x

x
− 1

)
y = C1.

Integrating this first-order linear equation we obtain the general solution of Eq. (227)

y =
(

C2 + C1

∫
1

x2 e
⎬ sin x

x2 dx dx

)
xe− ⎬ sin x

x2 dx
. (228)

2.1.5 Application of the Operator Identity to Linear PDEs

Using the operator identity (179) one can easily extend the Eqs. (210) and (211) for
linear ODEs to linear partial differential equations and systems. Let us consider the
second-order linear operator

L[u] = ai j (x)ui j + bi (x)ui + c(x)u (229)
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considered in Sect. 1.1.5, Remark 1. The adjoint operator is

L∗[v] ◦ δ(vF[u])
δu

= Di D j (a
i jv) − Di (b

iv) + cv. (230)

Let us take the operator identity (179)

X = W
δ

δu
+ Di Ni (231)

where X is the operator (186) with one dependent variable u

X = W
∂

∂u
+ Wi

∂

∂ui
+ Wi j

∂

∂ui j

and Ni are the operators (183)

Ni = W
δ

δui
+ W j

δ

δui j
= W

⎧
∂

∂ui
− D j

∂

∂ui j

⎪
+ W j

∂

∂ui j
·

We use above the notation Wi = Di (W ), Wi j = Di D j (W ). Now we proceed as in
Sect. 2.1.3. Namely, we act on vL[u] by both sides of the identity (231)

X (vL[u]) = W
δ(vL[u])

δu
+ Di Ni (vL[u])

take into account that X does not act on the variables xi , v, and that X (L[u])
= L[W ], use Eq. (230) and obtain

vL[W ]) − W L∗[v] = Di Ni (vL[u]).

Letting here W = u we arrive at the following generalization of Eq. (210)

vL[u] − uL∗[v] = Di (ψ
i ) (232)

where ψi are defined as in (211) and (212)

ψi = Ni (vL[u])∣∣W=u ◦ ai j (x)[vui − uvi ] + [bi (x) − Di
(
ai j (x)

)]uv. (233)

Equation (232) with ψi given by (233) is called Lagrange’s identity (see [36], p. 80).
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2.1.6 Application of the Operator Identity to Nonlinear
Equations

Let us apply the constructions of Sect. 2.1.5 to nonlinear equation (6)

Fα

(
x, u, u(1), . . . , u(s)

) = 0, α = 1, . . . , m. (234)

We write the operator (186) in the form

X = W α ∂

∂uα
+ W α

i
∂

∂uα
i

+ W α
i j

∂

∂uα
i j

+ · · ·

where W α
i = Di (W α), W α

i j = Di D j (W α), . . . . Then the operator (183) is written

Ni = W α
j

δ

δuα
i

+ W α δ

δuα
i j

+ · · · .

We act on vβ Fβ by both sides of the operator identity (179)

X = W α δ

δuα
+ Di Ni

denote by F∗
α[v] the adjoint operator defined by Eq. (8) and obtain

vβ F̂β[W ] − W αF∗
α[v] = Di (Ψ

i ) (235)

where
Ψ i = Ni (vβ Fβ)

and F̂β[W ] is the linear approximation to Fβ defined by (see also Sect. 1.1.3)

F̂β[W ] = X (Fβ) ◦ W α ∂Fβ

∂uα
+ W α

i
∂Fβ

∂uα
i

+ W α
i j

∂Fβ

∂uα
i j

+ · · · .

Remark 14 Equation (235) shows that F∗
α[v] = F̂∗

β [W ], i.e., the adjoint operator

F∗
α to nonlinear equation (234) is the usual adjoint operator F̂∗

β to the linear operator

F̂β[W ] (see also [37]). But the linear self-adjointness of F̂β[W ] is not identical
with the nonlinear self-adjointness of Eq. (234). For example, the KdV equation
F ◦ ut − uxxx − uux = 0 is nonlinearly self-adjoint (see Example 2 in Sect. 1.1.6).
But its linear approximation F̂[W ] = Wt − Wxxx −uWx − W ux is not a self-adjoint
linear operator. Moreover, all linear equations are nonlinearly self-adjoint.
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2.2 Conservation Laws: Generalities and Explicit Formula

2.2.1 Preliminaries

Let us consider a system of m differential equations

Fᾱ

(
x, u, u(1), . . . , u(s)

) = 0, ᾱ = 1, . . . , m (236)

with m dependent variables u1, . . . , um and n independent variables x1, . . . , xn .

A conservation law for Eq. (236) is written

⎨
Di (C

i )
⎩
(236)

= 0. (237)

The subscript |(236) means that the left-hand side of (237) is restricted on the solutions
of Eq. (236). In practical calculations this restriction can be achieved by solving
Eq. (236) with respect to certain derivatives of u and eliminating these derivatives
from the left-hand side of (237). For example, if (236) is an evolution equation

ut = Φ(t, x, u, ux , uxx )

the restriction |(236) can be understood as the elimination of ut . The n-dimensional
vector

C = (C1, . . . , Cn) (238)

satisfying Eq. (237) is called a conserved vector for the system (236). If its com-
ponents are functions Ci = Ci (x, u, u(1), . . .) of x, u and derivatives u(1), . . . of a
finite order, the conserved vector (238) is called a local conserved vector.

Since the conservation equation (237) is linear with respect to Ci , any linear com-
bination with constant coefficients of a finite number of conserved vectors is again
a conserved vector. It is obvious that if the divergence of a vector (238) vanishes
identically, it is a conserved vector for any system of differential equations. This
is a trivial conserved vectors for all differential equations. Another type of trivial
conserved vectors for Eq. (236) are provided by those vectors whose components Ci

vanish on the solutions of the system (236). One ignores both types of trivial con-
served vectors. In other words, conserved vectors (238) are simplified by considering
them up to addition of these trivial conserved vectors.

The following less trivial operation with conserved vectors is particularly useful
in practice. Let

C1
∣∣
(236)

= ⎭C1 + D2(H2) + · · · + Dn(Hn) (239)

the conserved vector (238) can be replaced with the equivalent conserved vector
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⎭C = (⎭C1, C̃2, . . . , ⎭Cn) = 0 (240)

with the components

⎭C1, ⎭C2 = C2 + D1(H2), , . . . , ⎭Cn = Cn + D1(Hn). (241)

The passage from (238) to the vector (240) is based on the commutativity of the total
differentiations. Namely, we have

D1 D2(H2) = D2 Dt (H2), D1 Dn(Hn) = Dn Dt (Hn)

and therefore the conservation Eq. (237) for the vector (238) is equivalent to the
conservation equation

⎨
Di (⎭Ci )

⎩
(236)

= 0

for the vector (240). If n ≥ 3, the simplification (241) of the conserved vector can
be iterated: if ⎭C2 contains the terms

D3(⎭H3) + · · · + Dn(⎭Hn)

one can subtract them from ⎭C2 and add to ⎭C3, . . . , ⎭Cn the corresponding terms

D2(⎭H3), . . . , D2(⎭Hn).

Note that the conservation law (237) for equations (236) can be written in the
form

Di (C
i ) = μᾱFᾱ

(
x, u, u(1), . . . , u(s)

)
(242)

with undetermined coefficients μᾱ = μᾱ(x, u, u(1), . . .) depending on a finite num-
ber of variables x, u, u(1), . . . . If Ci depend on higher-order derivatives, Eq. (242)
is replaced with

Di (C
i ) = μᾱFᾱ + μi ᾱ Di

(
Fᾱ

)+ μi j ᾱ Di D j
(
Fᾱ

)+ · · · . (243)

It is manifest from Eq. (242) or Eq. (243) that the total differentiations of a con-
served vector (238) provide again conserved vectors. Therefore, e.g., the vector

D1(C) = (
D1(C

1), . . . , D1(C
n)
)

(244)

obtained from the known vector (238) is not considered as a new conserved vector.
If one of the independent variables is time, e.g., x1 = t, then the conservation

Eq. (237) is often written, using the divergence theorem, in the integral form
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d

dt

∫
IRn−1

C1 dx2 · · · dxn = 0. (245)

But the differential form (237) of conservation laws carries, in general, more infor-
mation than the integral form (245). Using the integral form (245) one may even lose
some nontrivial conservation laws. As an example, consider the two-dimensional
Boussinesq equations

Δψt − gρx − f vz = ψxΔψz − ψzΔψx

vt + f ψz = ψxvz − ψzvx (246)

ρt + N 2

g
ψx = ψxρz − ψzρx

used in geophysical fluid dynamics for investigating uniformly stratified incompress-
ible fluid flows in the ocean. Here Δ is the two-dimensional Laplacian

Δ = ∂2

∂x2 + ∂2

∂z2

and ψ is the stream function so that the x, z- components u, w of the velocity (u, v, w)

of the fluid are given by
u = ψz, w = −ψx . (247)

Equation (246) involve the physical constants: g is the gravitational acceleration, f
is the Coriolis parameter, and N is responsible for the density stratification of the
fluid. Each equation of the system (246) has the conservation form (237), namely

Dt (Δψ) + Dx (−gρ + ψzΔψ) + Dz(− f v − ψxΔψ) = 0

Dt (v) + Dx (vψz) + Dz( f ψ − vψx ) = 0 (248)

Dt (ρ) + Dx

(
N 2

g
ψ + ρψz

)
+ Dz(−ρψx ) = 0.

In the integral form (245) these conservation laws are written

d

dt

∫ ∫
Δψdxdz = 0,

d

dt

∫ ∫
vdxdz = 0,

d

dt

∫ ∫
ρdxdz = 0. (249)

We can rewrite the differential conservation equations (248) in an equivalent form
by using the operations (239)–(241) of the conserved vectors. Namely, let us apply
these operations to the first Eq. (248), i.e., to the conserved vector

C1 = Δψ, C2 = −gρ + ψzΔψ, C3 = − f v − ψxΔψ. (250)

Noting that
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C1 = Dx (ψx ) + Dz(ψz)

and using the operations (239)–(241) we transform the vector (250) to the form

⎭C1 = 0, ⎭C2 = −gρ + ψt x + ψzΔψ, ⎭C3 = − f v + ψt z − ψxΔψ. (251)

The integral conservation equation (245) for the vector in (251) is trivial, 0 = 0.

Thus, after the transformation of the conserved vector (250) to the equivalent form
(251) we have lost the first integral conservation law in (249). But it does not mean
that the conserved vector (251) has no physical significance. Indeed, if we write the
differential conservation equation with the vector (251), we again obtain the first
equation of the system (246)

Dx (⎭C2) + Dz(⎭C3) = Δψt − gρx − f vz − ψxΔψz + ψzΔψx .

Let us assume that Eq. (236) have a nontrivial local conserved vector satisfying
Eq. (242). Then not all μβ̄ vanish simultaneously due to non-triviality of the con-
served vector. Furthermore, since μβ̄ Fβ̄ depends on x, u and a finite number of
derivatives u(1), u(2), . . . (i.e., it is a differential function) and has a divergence form,
the following equations hold (for a detailed discussion see [4], Sect. 8.4.1)

δ

δα

⎨
μβ̄ Fβ̄

(
x, u, u(1), . . . , u(s)

)⎩ = 0, α = 1, . . . , m. (252)

Note that Eq. (252) are identical with Eq. (69) where the differential substitution
(76) is made with ϕᾱ = μᾱ. Hence, the system (236) is nonlinearly self-adjoint. I
formulate this simple observation as a theorem since it is useful in applications (see
Sect. 2.5).

Theorem 4 Any system of differential equation (236) having a nontrivial local con-
served vector satisfying Eq. (242) is nonlinearly self-adjoint.

2.2.2 Explicit Formula for Conserved Vectors

Using Definition 4 of nonlinear self-adjointness and the theorem on conservation laws
proved in [1] by using the operator identity (179), we obtain the explicit formula for
constructing conservation laws associated with symmetries of any nonlinearly self-
adjoint system of equations. The method is applicable independently on the number
of equations in the system and the number of dependent variables. The result is as
follows.

Theorem 5 Let the system of differential equation (236) be nonlinearly self-adjoint.
Specifically, let the adjoint system (69)–(236) be satisfied for all solutions of Eq. (236)
upon a substitution (70)
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vᾱ = ϕᾱ(x, u), ᾱ = 1, . . . , m. (253)

Then any Lie point, contact or Lie-Bäcklund symmetry

X = ξi (x, u, u(1), . . .)
∂

∂xi
+ ηα(x, u, u(1), . . .)

∂

∂uα
(254)

as well as a nonlocal symmetry of Eq. (236) leads to a conservation law (237) con-
structed by the following formula

Ci = ξiL + W α

[
∂L
∂uα

i
− D j

(
∂L
∂uα

i j

)
+ D j Dk

(
∂L

∂uα
i jk

)
− · · ·

⎫
(255)

+ D j
(
W α

) [ ∂L
∂uα

i j
− Dk

(
∂L

∂uα
i jk

)
+ · · ·

⎫
+ D j Dk

(
W α

) [ ∂L
∂uα

i jk
− · · ·

⎫

where

W α = ηα − ξ j uα
j (256)

and L is the formal Lagrangian for the system (236)

L = vβ̄ Fβ̄ . (257)

In (255) the formal Lagrangian L should be written in the symmetric form with
respect to all mixed derivatives uα

i j , uα
i jk, . . . and the “non-physical variables” vᾱ

should be eliminated via Eq. (253).

One can omit in (255) the term ξiL when it is convenient. This term provides a
trivial conserved vector mentioned in Sect. 2.2.1 because L vanishes on the solutions
of Eq. (236). Thus, the conserved vector (255) can be taken in the following form

Ci = W α

[
∂L
∂uα

i
− D j

(
∂L
∂uα

i j

)
+ D j Dk

(
∂L

∂uα
i jk

)
− · · ·

⎫
(258)

+ D j
(
W α

) [ ∂L
∂uα

i j
− Dk

(
∂L

∂uα
i jk

)
+ · · ·

⎫
+ D j Dk

(
W α

) [ ∂L
∂uα

i jk
− · · ·

⎫
.

Remark 15 One can use Eq. (258) for constructing conserved vectors even if the sys-
tem (236) is not self-adjoint, in particular, if one cannot find explicit formulae (253)
or (76) for point or differential substitutions, respectively. The resulting conserved
vectors will be nonlocal in the sense that they involve the variables v connected with
the physical variables u via differential equations, namely, adjoint equations to (236).
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Remark 16 Theorem 5, unlike Nother’s theorem 3, does not require additional
restrictions such as the invariance condition (189) or the divergence condition men-
tioned in Remark 12.

2.3 A Nonlinearly Self-Adjoint Irrigation System

Let us apply Theorem 5 to Eq. (171) satisfying the condition (173)

C(ψ)ψt = [K (ψ)ψx ]x + [K (ψ) (ψz − 1)
]

z − S(ψ) (259)

S ∞(ψ) = aC(ψ), a = const. (260)

The formal Lagrangian (257) for Eq. (259) has the form

L =
⎨
−C(ψ)ψt + K (ψ)(ψxx + ψzz) + K ∞(ψ)(ψ2

x + ψ2
z − ψz) − S(ψ)

⎩
v. (261)

We will use the substitution (175) of the particular form

v = eat . (262)

Denoting t = x1, x = x2, z = x3 we write the conservation equation (237) in the
form

Dt (C
1) + Dx (C

2) + Dz(C
3) = 0. (263)

This equation should be satisfied on the solutions of Eq. (259).
The formal Lagrangian (261) does not contain derivatives of order higher than

two. Therefore in our case Eq. (258) take the simple form

Ci = W

⎧
∂L
∂ψi

− D j

(
∂L
∂ψi j

)⎪
+ D j (W )

∂L
∂ψi j

(264)

and yield

C1 = W
∂L
∂ψt

C2 = W

⎧
∂L
∂ψx

− Dx

(
∂L

∂ψxx

)⎪
+ Dx (W )

∂L
∂ψxx

C3 = W

⎧
∂L
∂ψz

− Dz

(
∂L

∂ψzz

)⎪
+ Dz(W )

∂L
∂ψzz

·

Substituting here the expression (261) for L we obtain
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C1 = −WC(ψ)v

C2 = W [2K ∞(ψ)vψx − Dx (K (ψ)v)] + Dx (W )K (ψ)v

C3 = W [K ∞(ψ)v(2ψz − 1) − Dz(K (ψ)v)] + Dz(W )K (ψ)v

where v should be eliminated by means of the substitution (262). So, we have

C1 = −WC(ψ)eat

C2 = [W K ∞(ψ)ψx + Dx (W )K (ψ)]eat (265)

C3 = [W K ∞(ψ)(ψz − 1) + Dz(W )K (ψ)]eat .

Since Eq. (259) does not explicitly involve the independent variables t, x, z, it
is invariant under the translations of these variables. Let us construct the conserved
vector (265) corresponding to the time translation group with the generator

X = ∂

∂t
· (266)

For this operator Eq. (256) yields

W = −ψt . (267)

Substituting (267) in Eq. (265) we obtain

C1 = C(ψ)ψt e
at

C2 = −[K ∞(ψ)ψtψx + K (ψ)ψt x ]eat (268)

C3 = −[K ∞(ψ)ψt (ψz − 1) + K (ψ)ψt z]eat .

Now we replace in C1 the term C(ψ)ψt by the right-hand side of Eq. (259) to obtain

C1 = −S(ψ)eat + Dx
(
K (ψ)ψx eat)+ Dz

(
K (ψ)(ψz − 1)eat) .

When we substitute this expression in the conservation Eq. (263), we can write

Dt
(
Dx
(
K (ψ)ψx eat)) = Dx

(
Dt
(
K (ψ)ψx eat)) .

Therefore we can transfer the terms Dx (. . .) and Dz(. . .) from C1 to C2 and C3,

respectively (see 241). Thus, we rewrite the vector (268), changing its sign, as follows

C1 = S(ψ)eat

C2 = [K ∞(ψ)ψtψx + K (ψ)ψt x ]eat − Dt
(
K (ψ)ψx eat)

C3 = [K ∞(ψ)ψt (ψz − 1) + K (ψ)ψt z]eat − Dt
(
K (ψ)(ψz − 1)eat) .
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Working out the differentiation Dt in the last terms of C2 and C3 we finally arrive
at the following vector

C1 = S(ψ)eat , C2 = aK (ψ)ψx eat , C3 = aK (ψ)(ψz − 1)eat . (269)

The reckoning shows that the vector (269) satisfies the conservation equation (263)
due to the condition (260). Note that C1 is the density of the conserved vector (269).

The use of the general substitution (175) instead of its particular case (262) leads
to the conserved vector with the density

C1 = S(ψ)(bx + l)eat .

This approach opens a new possibility to find a variety of conservation laws for
the irrigation model (171) by considering other self-adjoint cases of the model and
using the extensions of symmetry Lie algebras (see [15–17], vol. 2, Sect. 9.8).

2.4 Utilization of Differential Substitutions

2.4.1 Equation ux y = sin u

We return to Sect. 1.3.2 and calculate the conservation laws for Eq. (78)

uxy = sin u (270)

using the differential substitution (79)

v = A1[xux − yuy] + A2ux + A3uy (271)

and the admitted three-dimensional Lie algebra with the basis

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = x

∂

∂x
− y

∂

∂y
· (272)

The conservation equation for Eq. (270) will be written in the form

Dx (C
1) + Dy(C

2) = 0.

We write the formal Lagrangian for Eq. (270) in the symmetric form

L =
(

1

2
uxy + 1

2
uyx − sin u

)
v. (273)
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Equation (258) yield

C1 = 1

2
Dy(W )v − 1

2
Wvy, C2 = 1

2
Dx (W )v − 1

2
Wvx (274)

where we have to eliminate the variable v via the differential substitution (271).
Substituting in (274) W = −ux corresponding to the operator X1 from (272),

replacing v with (271) and uxy with sin u, then transferring the terms of the form
Dy(. . .) from C1 to C2 (see the simplification (241)) we obtain

C1 = A1 cos u, C2 = 1

2
A1u2

x .

We let A1 = 1 and conclude that the application of Theorem 5 to the symmetry X1
yields the conserved vector

C1 = cos u, C2 = 1

2
u2

x · (275)

The similar calculations with the operator X2 from (272) lead to the conserved vector

C1 = 1

2
u2

y , C2 = cos u. (276)

The third symmetry, X3 from (272), does not lead to a new conserved vector. Indeed,
in this case W = yuy − xux . Substituting it in the first formula (274) we obtain after
simple calculations

C1 = 1

2
A3u2

y − A2 cos u + Dy

⎧
(A2 y + A3x)

(
1

2
ux uy + cos u

)⎪
.

Hence, upon transferring the term Dy(. . .) from C1 to C2 the resulting C1 will be a
linear combination with constant coefficients of the components C1 of the conserved
vectors (275) and (276). The same will be true for C2. Therefore the conserved vector
provided by the symmetry X3 will be a linear combination with constant coefficients
of the conserved vectors (275) and (276).

One can also use the Noether theorem because Eq. (270) has the classical
Lagrangian, namely

L = −1

2
ux uy + cos u. (277)

Then the symmetries X1 and X2 provide again the conserved vectors (275) and (276),
respectively. But now we obtain one more conserved vector using X3, namely

C1 = x cos u − y

2
u2

y , C2 = x

2
u2

x − y cos u. (278)
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2.4.2 Short Pulse Equation

The differential equation (up to notation and appropriate scaling the physical
variables)

Dt Dx (u) = u + 1

6
D2

x (u
3) (279)

was suggested in [38] (see there Eq. (11), also [39]) as a mathematical model for
the propagation of ultra-short light pulses in media with nonlinearities, e.g., in silica
fibers. The mathematical model is derived in [38] by considering the propagation
of linearly polarized light in a one-dimensional medium and assuming that the light
propagates in the infrared range. The final step in construction of the model is based
on the method of multiple scales.

Equation (279) is connected with Eq. (270) by a non-point transformation which
is constructed in [40] as a chain of differential substitutions (given also in [39] by
Eq. (2)). Using this connection, an exact solitary wave solution (a pulse solution) to
Eq. (279) is constructed in [39]. One can also find in [40] a Lax pair and a recursion
operator for Eq. (279).

Note that Eq. (279) does not have a conservation form. I will find a conservation
law of equation (279) thus showing that it can be rewritten in a conservation form.
A significance of this possibility is commonly known and is not discussed here.

We write the short pulse Eq. (279) in the expanded form

uxt = u + 1

2
u2uxx + uu2

x (280)

so that the formal Lagrangian is written

L = v

⎧
uxt − u − 1

2
u2uxx − uu2

x

⎪
. (281)

Substituting (281) in (69) we obtain the following adjoint equation to equation (280)

vxt = v + 1

2
u2vxx . (282)

We first demonstrate the following statement.

Proposition 12 Equation (279) is not nonlinearly self-adjoint with a substitution

v = ϕ(t, x, u) (283)

but it is nonlinearly self-adjoint with the differential substitution

v = ut − 1

2
u2ux . (284)
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Proof We write the nonlinear self-adjointness condition (72)
⎧
vxt − v − 1

2
u2vxx

⎪
(283)

= λ[uxt − u − 1

2
u2uxx − uu2

x ]

substitute here the expression (283) for v and its derivatives

vxx = ϕuuxx + ϕuuu2
x + 2ϕxuux + ϕxx

vxt = ϕuuxt + ϕuuux ut + ϕxuut + ϕtuux + ϕxt (285)

and first obtain λ = ϕu by comparing the terms with the second-order derivatives of
u. This reduces the nonlinear self-adjointness condition to the following equation

ϕuuux ut + ϕxuut + ϕtuux + ϕxt − ϕ + ϕxx )

− 1

2
u2(ϕuuu2

x + 2ϕxuux = −ϕu[u + uu2
x ]. (286)

The terms with ut in Eq. (286) yield ϕuu = ϕxu = 0. Then we take the term with u2
x

and obtain ϕu = 0. Hence
ϕ = a(t, x).

Now Eq. (286) gives axx = 0, axt − a = 0, whence a = 0. Thus

ϕ = 0

i.e., the substitution (283) is trivial. This proves the first part of Proposition 12. Its
second part is proved by similar calculations with the substitution

v = ϕ(t, x, u, ux , ut ). √≥

I will not reproduce these rather lengthy calculations, but instead we will verify that
the substitution (284) maps any solution of Eq. (270) into a solution of the adjoint
Eq. (282). First we calculate

vx = uxt − 1

2
u2uxx − uu2

x

and see that on the solutions of Eq. (270) we have vx = u. Now we calculate other
derivatives and verify that on the solutions of Eq. (270) the following equations hold

vx = u, vt = utt − 1

2
u2uxt − uux ut , vxt = ut , vxx = ux . (287)



126 N. H. Ibragimov

It is easily seen that Eq. (282) is satisfied. Namely, using (284) and (287) we have

vxt − v − 1

2
u2vxx = ut −

(
ut − 1

2
u2ux

)
− 1

2
u2ux = 0.

The maximal Lie algebra of point symmetries of Eq. (279) is the three-dimensional
algebra spanned by the operators

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = u

∂

∂u
+ x

∂

∂x
− t

∂

∂t
· (288)

Let us construct the conservation laws

Dt (C
1) + Dx (C

2) = 0 (289)

for the basis operators (288).
Since the formal Lagrangian (281) does not contain derivatives of order higher

than two, Eq. (258) are written (see 264)

Ci = W

⎧
∂L
∂ui

− D j

(
∂L
∂ui j

)⎪
+ D j (W )

∂L
∂ui j

·

In our case we have

C1 = − W Dx

(
∂L
∂utx

)
+ Dx (W )

∂L
∂utx

C2 =W

⎧
∂L
∂ux

− Dt

(
∂L
∂uxt

)
− Dx

(
∂L

∂uxx

)⎪
(290)

+ Dt (W )
∂L
∂uxt

+ Dx (W )
∂L

∂uxx
·

Substituting in (290) the expression (281) for L written in the symmetric form

L = v

⎧
1

2
utx + 1

2
uxt − u − 1

2
u2uxx − uu2

x

⎪
(291)

we obtain

C1 = −1

2
Wvx + 1

2
vDx (W )

C2 = −W
⎨
uvux + 1

2
vt − 1

2
u2vx

⎩
+ 1

2
vDt (W ) − 1

2
u2vDx (W ). (292)

Since v should be eliminated via the differential substitution (284), we further sim-
plify this vector by replacing vx with u according to the first Eq. (287) and obtain
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C1 = −1

2
W u + 1

2
vDx (W )

C2 = −W
⎨
uvux + 1

2
vt − 1

2
u3
⎩

+ 1

2
vDt (W ) − 1

2
u2vDx (W ) (293)

where v and vt should be replaced with their values given in Eqs. (284) and (287).
Let us construct the conserved vectors using the symmetries (288). Their com-

mutators are

[X1, X3] = −X1, [X2, X3] = X2.

Hence, according to [10], Sect. 22.4, the operator X3 plays a distinguished role.
Namely, the conserved vectors associated with X1 and X2 can be obtained from the
conserved vector provided by X3 using the adjoint actions of the operators X1 and
X2, respectively. Therefore we start with X3. Substituting in (293) the expression

W = u + tut − xux

corresponding to the symmetry X3, eliminating the terms of the form Dx (A) from
C1 and adding them to C2 in the form Dt (A) according to the simplification (241),
we obtain after routine calculations the following conserved vector

C1 = u2, C2 = u2ux ut − u2
t − 1

4
u4 − 1

4
u4u2

x . (294)

The conservation Eq. (289) for the vector (294) holds in the form

Dt (C
1) + Dx (C

2) = 2
(

ut − 1

2
u2ux

)(
u + 1

2
u2uxx + uu2

x − uxt

)
. (295)

Let us turn now to the operators X1 and X2 from (288). To simplify the calculations
it is useful to modify Eq. (293) as follows. Noting that

vDx (W ) = Dx (vW ) − Wvx

we rewrite the vector (292) in the form

C1 = −Wvx , C2 = −W
⎨
uvux − 1

2
u2vx

⎩
+ vDt (W ) − 1

2
u2vDx (W ).

Then (293) is replaced with

C1 = −uW

C2 = −W
⎨
uvux − 1

2
u3
⎩

+ vDt (W ) − 1

2
u2vDx (W ). (296)
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Substituting in the first formula (296) to expression W = −ut corresponding the
operator X1 we obtain C1 = uut . This is the time derivative of C1 from (294).
Hence the symmetry X1 leads to a trivial conserved vector obtained from the vector
(294) by the differentiation Dt , in accordance with [10]. Likewise, it is manifest
from (296) that the operator X2 leads to a trivial conserved vector obtained from the
conserved vector (294) by the differentiation Dx . Thus we have demonstrated the
following statement.

Proposition 13 The Lie point symmetries (288) of Eq. (280) yield one non-trivial
conserved vector (294). Accordingly, the short pulse Eq. (280) can be written in the
following conservation form

Dt

(
u2
)

+ Dx

(
u2ux ut − u2

t − 1

4
u4 − 1

4
u4u2

x

)
= 0. (297)

2.5 Gas Dynamics

2.5.1 Classical Symmetries and Conservation Laws

Let us consider the polytropic gasdynamic equations

vt + (v · ≤)v + 1

ρ
≤ p = 0

ρt + v · ≤ρ + ρ≤ · v = 0 (298)

pt + v · ≤ p + γ p≤ · v = 0

where γ is a constant known as the polytropic (or adiabatic) exponent. The indepen-
dent variables are the time and the space coordinates

t, x = (x1, . . . , xn), n ∩ 3. (299)

The dependent variables are the velocity, the density and the pressure

v = (v1, . . . , vn), ρ, p. (300)

Equation (298) with arbitrary γ have the Lie algebra of point symmetries spanned by

X0 = ∂

∂t
, Xi = ∂

∂xi
, Y0 = t

∂

∂t
+ xi ∂

∂xi
, Yi = t

∂

∂xi
+ ∂

∂vi

Xi j = x j ∂

∂xi
− xi ∂

∂x j
+ v j ∂

∂vi
− vi ∂

∂v j
, i < j (301)

Z0 = ρ
∂

∂ρ
+ p

∂

∂ p
, Z1 = t

∂

∂t
− vi ∂

∂vi
+ 2ρ

∂

∂ρ
, i, j = 1, . . . , n
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and the following classical conservation laws

d

dt

∫
Ω(t)

ρdω = 0 − Conservation of mass

d

dt

∫
Ω(t)

(
1

2
ρ|v|2 + p

γ − 1

)
dω = −

∫
S(t)

p v · νd S − Energy

d

dt

∫
Ω(t)

ρvdω = −
∫

S(t)

p νdS − Momentum

d

dt

∫
Ω(t)

ρ(x × v)dω = −
∫

S(t)

p(x × ν)dS − Angular momentum

d

dt

∫
Ω(t)

ρ(tv − x)dω = −
∫

S(t)

tp νdS − Center-of-mass.

The conservation laws are written in the integral form by using the standard symbols

Ω(t) − arbitrary n-dimensional volume, moving with fluid
S(t) − boundary of the volume Ω(t)
ν − unit (outer) normal vector to the surface S(t).

If we write the above conservation laws in the general form

d

dt

∫
Ω(t)

T dω = −
∫

S(t)

(χ · ν)dS (302)

then the differential form of these conservation laws will be

Dt (T ) + ≤ · (χ + T v) = 0. (303)

2.5.2 Adjoint Equations and Self-Adjointness When n = 1

Theorem 4 from Sect. 2.2.1 shows that the system of gasdynamic Eq. (298) is non-
linearly self-adjoint. Let us illustrate this statement in the one-dimensional case

vt + vvx + 1

ρ
px = 0, ρt + vρx + ρvx = 0, pt + vpx + γ pvx = 0. (304)

We write the formal Lagrangian in the form

L = U
(
vt + vvx + 1

ρ
px

)
+ R(ρt + vρx + ρvx ) + P(pt + vpx + γ pvx ) (305)
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and obtain the following adjoint system for the new dependent variables U, R, P

δL
δv

◦ −Ut − vUx − ρRx + (1 − γ)Ppx − γ pPx = 0

δL
δρ

◦ −Rt − vRx − 1

ρ2 U px = 0 (306)

δL
δ p

◦ −Pt − 1

ρ
Ux + 1

ρ2 Uρx + (γ − 1)Pvx − vPx = 0.

Let us take, e.g., the conservation of energy from Sect. 2.2.1. Then we have

T = 1

2
ρv2 + p

γ − 1
, χ = pv

and using the differential form (303) of the energy conservation we obtain following
the Eq. (242)

Dt

(
1

2
ρv2 + p

γ − 1

)
+ Dx

(
1

2
ρv3 + γ

γ − 1
pv

)

= ρv
(
vt + vvx + 1

ρ
px

)
+ v2

2
(ρt + vρx + ρvx ) + 1

γ − 1
(pt + vpx + γ pvx ).

(307)

Hence, the adjoint Eq. (306) are satisfied for all solutions of the gasdynamic Eq. (298)
upon the substitution

U = ρv, R = v2

2
, P = 1

γ − 1
· (308)

This conclusion can be easily verified by the direct substitution of (308) in the adjoint
system (306). Namely, we have

δL
δv

∣∣∣∣
(308)

= −ρ
(
vt + vvx + 1

ρ
px

)
− v(ρt + vρx + ρvx )

δL
δρ

∣∣∣∣
(308)

= −v
(
vt + vvx + 1

ρ
px

)
(309)

δL
δ p

∣∣∣∣
(308

= 0.
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2.5.3 Adjoint System to Equations (298) with n ≥ 2

For gasdynamic Eq. (298) with two and three space variables xi the formal Lagrangian
(305) is replaced by

L = U ·
(

vt + (v · ≤)v + 1

ρ
≤ p
)

+ R(ρt + v · ≤ρ + ρ≤ · v)

+ P(pt + v · ≤ p + γ p≤ · v) (310)

where the vector U = (U 1, . . . , U n) and the scalars R, P are new dependent vari-
ables. Using this formal Lagrangian, we obtain the following adjoint system instead
of (306)

δL
δv

◦ − Ut − (v · ≤)U + (U · ≤)v − (≤ · v)U

− ρ≤ R + (1 − γ)P≤ p − γ p≤ P = 0

δL
δρ

◦ − Rt − v · ≤ R − 1

ρ2 U · ≤ p = 0 (311)

δL
δ p

◦ − Pt − 1

ρ
(≤ · U) + 1

ρ2 U · ≤ρ + (γ − 1)P(≤ · v) − v · ≤ P = 0.

The nonlinear self-adjointness of the system (298) can be demonstrated as in the
one-dimensional case discussed in Sect. 2.5.2.

2.5.4 Application to Nonlocal Symmetries of the Chaplygin Gas

The Chaplygin gas is described by the one-dimensional gasdynamic Eq. (304) with
γ = −1, i.e.,

vt + vvx + 1

ρ
px = 0, ρt + vρx + ρvx = 0, pt + vpx − pvx = 0. (312)

Equation (312) have the same maximal Lie algebra of Lie point symmetries as
Eq. (304) with arbitrary γ. This algebra is spanned by the symmetries (301) in the
one-dimensional case, namely

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂x
+ ∂

∂v
, X4 = t

∂

∂t
+ x

∂

∂x

X5 = ρ
∂

∂ρ
+ p

∂

∂ p
, X6 = t

∂

∂t
− v

∂

∂v
+ 2ρ

∂

∂ρ
· (313)
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But the Chaplygin gas has more symmetries than an arbitrary one-dimensional poly-
tropic gas upon rewriting it in Lagrange’s variables obtained by replacing x and ρ
with τ and q, respectively, obtained by the following nonlocal transformation

τ =
∫

ρdx, q = 1

ρ
· (314)

Then the system (312) becomes

qt − vτ = 0, vt + pτ = 0, pt − p

q
vτ = 0 (315)

and admits the 8-dimensional Lie algebra with the basis

Y1 = ∂

∂t
, Y2 = ∂

∂τ
, Y3 = ∂

∂v
, Y4 = t

∂

∂t
+ τ

∂

∂τ

Y5 = τ
∂

∂τ
+ p

∂

∂ p
− q

∂

∂q
, Y6 = v

∂

∂v
+ p

∂

∂ p
+ q

∂

∂q
(316)

Y7 = ∂

∂ p
+ q

p

∂

∂q
, Y8 = t

∂

∂v
− y

∂

∂ p
− yq

p

∂

∂q
·

It is shown in [24] that the operators Y7, Y8 from (316) lead to the following nonlocal
symmetries for Eq. (312)

X7 = σ
∂

∂x
− ∂

∂ p
+ ρ

p

∂

∂ρ

X8 =
(

t2

2
+ s

)
∂

∂x
+ t

∂

∂v
− τ

∂

∂ p
+ ρ τ

p

∂

∂ρ
(317)

where τ , s,σ are the following nonlocal variables

τ =
∫

ρdx, s = −
∫

τ

p
dx, σ = −

∫
dx

p
· (318)

They can be equivalently defined by the compatible over-determined systems

τx = ρ, τt + vτx = 0

sx = − τ

p
, st + vsx = 0 (319)

σx = − 1

p
, σt + vσx = 0

or
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τx = ρ, τt = −vρ

sx = − τ

p
, st = vτ

p
(320)

σx = − 1

p
, σt = v

p
·

Let us verify that the operator X7 is admitted by Eq. (312). Its first prolongation
is obtained by applying the usual prolongation procedure and eliminating the partial
derivatives σx and σt via Eq. (320). It has the form

X7 = σ
∂

∂x
− ∂

∂ p
+ ρ

p

∂

∂ρ
− vvx

p

∂

∂vt
+ vx

p

∂

∂vx
− vpx

p

∂

∂ pt
+ px

p

∂

∂ px

+
(

ρt

p
− ρpt

p2 − vρx

p

)
∂

∂ρt
+
(

2
ρx

p
− ρpx

p2

)
∂

∂ρx
· (321)

The calculation shows that the invariance condition is satisfied in the following form:

X7

(
vt + vvx + 1

ρ
px

)
= 0

X7(ρt + vρx + ρvx ) = 1

p
(ρt + vρx + ρvx ) − ρ

p2 (pt + vpx − pvx )

X7(pt + vpx − pvx ) = 0.

One can verify likewise that the invariance test for the operator X8 is satisfied in the
following form

X8(vt + vvx + 1

ρ
px ) = 0

X8(ρt + vρx + ρvx ) = τ

p
(ρt + vρx + ρvx ) − ρτ

p2 (pt + vpx − pvx )

X8(pt + vpx − pvx ) = 0.

The operators Y1, . . . , Y6 from (316) do not add to the operators (313) new sym-
metries of the system (312).

Thus, the Chaplygin gas described by Eq. (312) admits the eight-dimensional
vector space spanned by the operators (313) and (317). However this vector space
is not a Lie algebra. Namely, the commutators of the dilation generators X4, X5, X6
from (313) with the operators (317) are not linear combinations of the operators (313)
and (317) with constants coefficients. The reason is that the operators X4, X5, X6
are not admitted by the differential equation (319) for the nonlocal variables τ , s,σ.

Therefore I will extend the action of the dilation generators to τ , s,σ so that the
extended operators will be admitted by Eq. (319).
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Let us take the operator X4. We write it in the extended form

X ∞
4 = t

∂

∂t
+ x

∂

∂x
+ α

∂

∂τ
+ β

∂

∂s
+ μ

∂

∂σ

where α,β,μ are unknown functions of t, x, v, ρ, p, τ , s,σ. Then we make the
prolongation of X ∞

4 to the first-order partial derivatives of the nonlocal variables with
respect to t and x by treating τ , s,σ as new dependent variables and obtain

X ∞
4 = t

∂

∂t
+ x

∂

∂x
+ α

∂

∂τ
+ β

∂

∂s
+ μ

∂

∂σ

+ [Dt (α) − τt ] ∂

∂τt
+ [Dx (α) − τx ] ∂

∂τx

+ [Dt (β) − st ] ∂

∂st
+ [Dx (β) − sx ] ∂

∂sx

+ [Dt (μ) − σt ] ∂

∂σt
+ [Dx (μ) − σx ] ∂

∂σx
·

Now we require the invariance of the Eq. (319)

X ∞
4(τx − ρ) = 0, X ∞

4(τt + vτx ) = 0

X ∞
4

(
sx + τ

p

)
= 0, X ∞

4(st + vsx ) = 0 (322)

X ∞
4

(
σx + 1

p

)
= 0, X ∞

4(σt + vσx ) = 0.

As usual, Eq. (322) should be satisfied on the solutions of Eq. (319). Let us solve the
equations X ∞

4(τx − ρ) = 0, X ∞
4(τt + vτx ) = 0. They are written

[Dx (α) − τx ](319) = 0, [Dt (α) − τt + v (Dx (α) − τx )](319) = 0. (323)

Since τx = Dx (α), the first equation in (323) is satisfied if we take

α = τ .

With this α the second equation in (323) is also satisfied because τt + vτx = 0. Now
the first equation in the second line of Eq. (322) becomes

⎧
Dx (β) − sx + τ

p

⎪
(319)

= Dx (β) − 2sx = 0

and yields
β = 2s.
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Table 1 The structure of the Lie algebra L8

X1 X2 X3 X ∞
4 X ∞

5 X ∞
6 X7 X8

X1 0 0 X2 X1 0 X1 0 X3

X2 0 0 0 X2 0 0 0 0
X3 −X2 0 0 0 0 −X3 0 0
X ∞

4 −X1 −X2 0 0 0 0 0 X8

X ∞
5 0 0 0 0 0 0 −X7 0

X ∞
6 −X1 0 X3 0 0 0 0 2X8

X7 0 0 0 0 X7 0 0 0
X8 −X3 0 0 −X8 0 −2X8 0 0

The second equation in the second line of Eq. (322) is also satisfied with this β.

Applying the same approach to the third line of Eq. (322) we obtain

μ = σ.

After similar calculations with X5 and X6 we obtain the following extensions of
the dilation generators

X ∞
4 = t

∂

∂t
+ x

∂

∂x
+ τ

∂

∂τ
+ 2s

∂

∂s
+ σ

∂

∂σ

X ∞
5 = ρ

∂

∂ρ
+ p

∂

∂ p
+ τ

∂

∂τ
− σ

∂

∂σ
(324)

X ∞
6 = t

∂

∂t
− v

∂

∂v
+ 2ρ

∂

∂ρ
+ 2τ

∂

∂τ
+ 2s

∂

∂s
·

The operators (317) and (324) together with the operators X1, X2, X3 from (313)
span the eight-dimensional Lie algebra L8 admitted by Eqs. (312) and (319). The
algebra L8 has the following commutator Table 1.

Let us apply Theorem 5 to the nonlocal symmetries (317) of the Chaplygin gas.
The formal Lagrangian (305) for Eq. (312) has the form

L = U
(
vt + vvx + 1

ρ
px

)
+ R(ρt + vρx + ρvx ) + P(pt + vpx − pvx ). (325)

Accordingly, the adjoint system (306) for the Chaplygin gas is written

δL
δv

◦ −Ut − vUx − ρRx + 2Ppx + pPx = 0

δL
δρ

◦ −Rt − vRx − 1

ρ2 U px = 0 (326)

δL
δ p

◦ −Pt − 1

ρ
Ux + 1

ρ2 Uρx − 2Pvx − vPx = 0.
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Let us proceed as in Sect. 2.5.2. Namely, let us first construct solutions to the adjoint
system (326) by using the known conservation laws given in Sect. 2.2.1. Since the
one-dimensional equation does not have the conservation of angular momentum, we
use the conservation of mass, energy, momentum and center-of-mass and obtain the
respective differential conservation equations (see the derivation of Eq. (307))

Dt (ρ) + Dx (ρv) = ρt + vρx + ρvx (327)

Dt (ρv2 − p) + Dx (pv + ρv3) = 2ρv
(
vt + vvx + 1

ρ
px

)

+ v2(ρt + vρx + ρvx ) − (pt + vpx − pvx ) (328)

Dt (ρv) + Dx (p + ρv2) = ρ
(
vt + vvx + 1

ρ
px

)

+ v(ρt + vρx + ρvx ) (329)

Dt (tρv − xρ) + Dx (tp + tρv2 − xρv)

= tρ
(
vt + vvx + 1

ρ
px

)
+ (tv − x)(ρt + vρx + ρvx ). (330)

Equations (327)–(330) give the following solutions to the system of the adjoint
equation (326)

U = 0, R = 1, P = 0 (331)

U = 2ρv, R = v2, P = −1 (332)

U = ρ, R = v, P = 0 (333)

U = tρ, R = tv − x, P = 0. (334)

The formal Lagrangian (325) contains the derivatives only of the first order. There-
fore Eq. (258) for calculating the conserved vectors take the simple form

Ci = W α ∂L
∂uα

i
, i = 1, 2. (335)

We denote

t = x1, x = x2, v = u1, ρ = u2, p = u3.

In this notation conservation Eq. (237) will be written in the form

⎨
Dt (C

1) + Dx (C
2)
⎩
(312)

= 0. (336)
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Writing (335) in the form

C1 = W 1 ∂L
∂vt

+ W 2 ∂L
∂ρt

+ W 3 ∂L
∂ pt

C2 = W 1 ∂L
∂vx

+ W 2 ∂L
∂ρx

+ W 3 ∂L
∂ px

and substituting the expression (325) for L we obtain the following final expressions
for computing the components of conserved vectors

C1 = U W 1 + RW 2 + PW 3 (337)

C2 = (vU + ρR − pP)W 1 + vRW 2 +
(

1

ρ
U + vP

)
W 3 (338)

where
W α = ηα − ξi uα

i , α = 1, 2, 3. (339)

We will apply Eqs. (337) and (338) to the nonlocal symmetries (317). First we
write the expressions (339) for the operator X7 from (317)

W 1 = −σvx , W 2 = ρ

p
− σρx , W 3 = −(1 + σ px ). (340)

Then we substitute (340) in (337) and (338) and obtain four conserved vectors by
replacing U, R, P with each of four different solutions (331)–(334) of the adjoint
system (326). Some of these conserved vectors may be trivial. We select only the
nontrivial ones.

Let us calculate the conserved vector obtained by eliminating U, R, P by using
the solution (331), U = 0, R = 1, P = 0. In this case (337) and (338) and (340)
yield

C1 = W 2 = ρ

p
− σρx (341)

C2 = ρW 1 + vW 2 = −σρvx + ρ

p
v − σvρx .

We write
−σρx = −Dx (σρ) + ρσx

replace σx with −1/p according to Eq. (319) and obtain

C1 = −Dx (σρ).
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Therefore application of the operations (239)–(241) yields ⎭C1 = 0 and

⎭C2 = −σρvx + ρ

p
v − σvρx − Dt (σρ)

= −σρvx + ρ

p
v − σvρx − σρt − σtρ

= −σ(ρt + vρx + ρvx ).

We have replaced σt with v/p according to Eq. (320). The above expression for ⎭C2

vanishes on Eq. (312). Hence, the conserved vector (341) is trivial.
Utilization of the solutions (332) and (333) also leads to trivial conserved vectors

only. Finally, using the solution (334)

U = tρ, R = tv − x, P = 0

we obtain, upon simplifying by using the operations (239)–(241), the following
nontrivial conserved vector

C1 = σρ, C2 = σρv + t. (342)

The conservation Eq. (336) is satisfied in the following form

Dt (C
1) + Dx (C

2) = σ(ρt + vρx + ρvx ). (343)

Note that we can write C2 in (342) without t since it adds only the trivial conserved
vector with the components C1 = 0, C2 = t. Thus, removing t in (342) and using
the definition of σ given in (318) we formulate the result.

Proposition 14 The nonlocal symmetry X7 of the Chaplygin gas gives the following
nonlocal conserved vector

C1 = −ρ

∫
dx

p
, C2 = −ρv

∫
dx

p
· (344)

Mow we use the operator X8 from (317). In this case

W 1 = t −
(

t2

2
+ s

)
vx

W 2 = ρτ

p
−
(

t2

2
+ s

)
ρx (345)

W 3 = −τ −
(

t2

2
+ s

)
px .
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Substituting in (337) and (338) the expressions (345) and the solution (331) of
the adjoint system, i.e., letting U = 0, R = 1, P = 0, we obtain

C1 = W 2 = ρτ

p
−
(

t2

2
+ s

)
ρx

C2 = ρW 1 + vW 2 = tρ + ρvτ

p
−
(

t2

2
+ s

)
(ρvx + vρx ).

Noting that

−
(

t2

2
+ s

)
ρx = −ρτ

p
− Dx

(
t2

2
ρ + ρs

)

we reduce the above vector to the trivial conserved vector ⎭C1 = 0, ⎭C2 = 0.

Taking the solution (332) of the adjoint system, i.e., letting

U = 2ρv, R = v2, P = −1

we obtain

C1 = 2ρvW 1 + v2W 2 − W 3

= 2tρv + ρτv2

p
+ τ −

(
t2

2
+ s

)
Dx

(
ρv2 − p

)

C2 = (3ρv2 + p)W 1 + v3W 2 + vW 3

= t (3ρv2 + p) + ρτv3

p
− vτ

−
(

t2

2
+ s

)
(3ρv2vx + v3ρx + pvx + vpx ).

Then, upon rewriting C1 in the form

C1 = 2tρv + 2τ − Dx

⎧(
t2

2
+ s

)
(ρv2 − p)

⎪

and applying the operations (239)–(241) we arrive at the following conserved vector

C1 = tρv + τ , C2 = t (ρv2 + p). (346)

The conservation Eq. (336) is satisfied for (346) in the following form

Dt (C
1) + Dx (C

2) = tρ

(
vt + vvx + 1

ρ
px

)
+ tv(ρt + vρx + ρvx ). (347)
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Taking the solution (333) of the adjoint system, i.e., letting

U = ρ, R = v, P = 0

we obtain

C1 = ρW 1 + vW 2, C2 = 2ρvW 1 + v2W 2 + W 3.

Substituting the expressions (345) for W 1, W 2, W 3 and simplifying as in the previous
case we obtain the conserved vector

C1 = tρ, C2 = tρv − τ . (348)

The conservation Eq. (336) is satisfied for (346) in the following form

Dt (C
1) + Dx (C

2) = t (ρt + vρx + ρvx ). (349)

Finally, we take the solution (334), U = tρ, R = tv − x, P = 0, and obtain

C1 = tρW 1 + (tv − x)W 2, C2(2tρv − xρ)W 1 + (tv2 − xv)W 2 + tW 3.

Simplifying as above, we arrive at the conserved vector

C1 =
(

t2

2
− s

)
ρ, C2 =

(
t2

2
− s

)
ρv − tτ . (350)

The conservation Eq. (336) is satisfied for (346) in the following form

Dt (C
1) + Dx (C

2) =
(

t2

2
− s

)
(ρt + vρx + ρvx ). (351)

Substituting in the conserved vectors (346), (348) and (350) the definition (318)
of the nonlocal variables we formulate the result.

Proposition 15 The nonlocal symmetry X8 of the Chaplygin gas gives the following
nonlocal conserved vectors

C1 = tρv +
∫

ρdx, C2 = t (ρv2 + p) (352)

C1 = tρ, C2 = tρv −
∫

ρdx (353)
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C1 =
⎧

t2

2
+
∫

1

p

(∫
ρdx

)
dx

⎪
ρ

C2 =
⎧

t2

2
+
∫

1

p

(∫
ρdx

)
dx

⎪
ρv − t

∫
ρdx . (354)

Theorem 6 Application of Theorem 5 to two nonlocal symmetries (317) gives four
nonlocal conservation laws (344) and (352)–(354) for the Chaplygin gas (312).

2.5.5 Steady Two-Dimensional Gas Flow

Consider the steady two-dimensional equations of gasdynamics

(ρu)x + (ρv)y = 0, usx + vsy = 0

px + ρ(uux + vuy) = 0, py + ρ(uvx + vvy) = 0 (355)

where s denotes the specific entropy. It is shown in [41] that the Bateman-type
reciprocal transformations provide the following nonlocal symmetry of equations
(355)

X = α
∂

∂x
+ σ

∂

∂y
− p2 ∂

∂ p
− pu

∂

∂u
− pv

∂

∂v
− (u2 + v2)ρ2 ∂

∂ρ

where α and σ are nonlocal variables determined by the equations

αx = p + ρv2, αy = −ρuv

and
σx = −ρuv, σy = p + ρu2

respectively. Using this nonlocal symmetry and the nonlinear self-adjointness of the
system (355), the following nonlocal conserved vector is constructed in [41]

C1 = ρpu + u(u2 + v2)ρ2 + α(ρu)x + σ(ρu)y

C2 = ρpv + v(u2 + v2)ρ2 + α(ρv)x + σ(ρv)y . (356)

The vector (356) satisfies the conservation law in the following form

Dx (C
1) + Dy(C

2) = 2[p + ρ(u2 + v2)][(ρu)x + (ρv)y]
+ρu[px + ρ(uux + vuy)] + ρv[py + ρ(uvx + vvy)]
+α[(ρu)x + (ρv)y]x + σ[(ρu)x + (ρv)y]y

and the nonlocal conservation law that this symmetry
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2.5.6 The Operator Identity for Nonlocal Symmetries

Example 18 Let us verify that the operator identity (179) is satisfied for the non-
local symmetry X7 of the Chaplygin gas. To this end, we have to verify that the
coefficients of

∂

∂v
,

∂

∂ρ
,

∂

∂ p
,

∂

∂vt
,

∂

∂vx
,

∂

∂ρt
,

∂

∂ρx
,

∂

∂ pt
,

∂

∂ px
(357)

in both sides of (179) are equal. Using the first prolongation (321) of X7 and the
definition of the nonlocal variable σ given in Eq. (320) we see that the left-hand side
of the identity (179) is written

X7 + Di (ξ
i ) = σ

∂

∂x
− ∂

∂ p
+ ρ

p

∂

∂ρ
− vvx

p

∂

∂vt
+ vx

p

∂

∂vx
− vpx

p

∂

∂ pt

+ px

p

∂

∂ px
+
(

ρt

p
− ρpt

p2 − vρx

p

)
∂

∂ρt
+
(

2
ρx

p
− ρpx

p2

)
∂

∂ρx
− 1

p
· (358)

Then we use the expressions (340) of W α for the operator X7, substitute them in the
definition (183) of Ni and obtain in our approximation

N1 = −σvx
∂

∂vt
+
(

ρ

p
− σρx

)
∂

∂ρt
− (1 + σ px )

∂

∂ pt

N2 = σ − σvx
∂

∂vx
+
(

ρ

p
− σρx

)
∂

∂ρx
− (1 + σ px )

∂

∂ pt
·

Now the right-hand side of (179) is written

W 1 δ

δv
+ W 2 δ

δρ
+ W 3 δ

δ p
+ Dt N1 + DxN2

= −σvx

⎧
∂

∂v
− Dt

∂

∂vt
− Dt

∂

∂vx

⎪

+
(

ρ

p
− σρx

)⎧
∂

∂ρ
− Dt

∂

∂ρt
− Dx

∂

∂ρx

⎪

− (1 + σ px )

⎧
∂

∂ p
− Dt

∂

∂ pt
− Dx

∂

∂ px

⎪
(359)

+ Dt

⎧
−σvx

∂

∂vt
+
(

ρ

p
− σρx

)
∂

∂ρt
− (1 + σ px )

∂

∂ pt

⎪

+ Dx

⎧
σ − σvx

∂

∂vx
+
(

ρ

p
− σρx

)
∂

∂ρx
− (1 + σ px )

∂

∂ pt

⎪
·

Making the changes in two last lines of Eq. (359) such as
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Dt

⎧
−σvx

∂

∂vt

⎪
= −σvx Dt

∂

∂vt
− Dt (σvx )

∂

∂vt

= −σvx Dt
∂

∂vt
−
(

v

p
vx + σvt x

)
∂

∂vt

one can see that the coefficients of the differentiations (357) in (358) and (359)
coincide. Inspection of the coefficients of the differentiations in higher derivatives
vt t , vt x , vxx , . . . requires the higher-order prolongations of the operator X7.

Exercise 7 Verify that the operator identity (179) is satisfied in the same approxi-
mation as in Example 18 for the nonlocal symmetry operator X8 from (317).

2.6 Comparison With the “Direct Method”

2.6.1 General Discussion

Theorem 5 allows to construct conservation laws for equations with known symme-
tries simply by substituting in Eq. (258) the expressions W α andL given by Eqs. (256)
and (256), respectively.

The “direct method” means the determination of the conserved vectors (238)
by solving Eq. (237) for Ci . Upon restricting the highest order of derivatives of u
involved in Ci , Eq. (237) splits into several equations. If one can solve the resulting
system, one obtains the desired conserved vectors. Existence of symmetries is not
required.

To the best of my knowledge, the direct method was used for the first time in 1798
by Laplace [42]. He applied the method to Kepler’s problem in celestial mechanics
and found a new vector-valued conserved quantity (see [42], Book II, Chap. III,
equations (P)) known as Laplace’s vector.

The application of the direct method to the gasdynamic Eq. (298) allowed to
demonstrate in [43] that all conservation laws involving only the independent and
dependent variables (299) and (300) were provided by the classical conservation
laws (mass, energy, momentum, angular momentum and center-of-mass) given in
Sect. 2.5.1 and the following two special conservation laws

d

dt

∫
Ω(t)

{
t (ρ|v|2 + np) − ρ x · v

}
dω = −

∫
S(t)

p (2tv − x) · νdS

d

dt

∫
Ω(t)

{
t2(ρ|v|2 + np) − ρx · (2tv − x

}
dω = −

∫
S(t)

2tp (tv − x) · νdS

that were found in [44] in the case γ = (n + 2)/n by using the symmetry ideas.
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All local conservation laws for the heat equation ut − uxx = 0 have been found
by the direct method in [45] (see [15–17, vol. 1, Sect. 10.1] and [46]). Namely it has
been shown by considering the conservation equations of the form

Dt [τ (t, x, u, ux , uxx , . . .)] + Dx [ψ(t, x, u, ux , uxx , . . .)] = 0

that all such conservation laws are given by

Dt [ϕ(t, x)u] + Dx [uϕx (t, x) − ϕ(t, x)ux ] = 0

where v = ϕ(t, x) is an arbitrary solution of the adjoint equation vt + vxx = 0
to the heat equation. Similar result can be obtained by applying Theorem 5 for any
linear equation, e.g., for the heat equation ut − Δu = 0 with any number of spatial
variables x = (x1, . . . , xn). Namely, applying formula (258) to the scaling symmetry
X = u∂/∂u we obtain the conservation law

Dt [ϕ(t, x)u] + ≤ · [u≤ϕ(t, x) − ϕ(t, x)≤u] = 0

where v = ϕ(t, x) is an arbitrary solution of the adjoint equation vt + Δv = 0 to
the heat equation. This conservation law embraces the conservation laws associated
with all other symmetries of the heat equation.

Various mathematical models for describing the geological process of segregation
and migration of large volumes of molten rock were proposed in the geophysical
literature (see the papers [47–51] and the references therein). One of them is known
as the generalized magma equation and has the form

ut + Dz
[
un − un Dz

(
u−mut

)] = 0, n, m = const. (360)

It is accepted as a reasonable mathematical model for describing melt migration
through the Earth’s mantle. Several conservation laws for this model have been
calculated by the direct method in [47, 48] and interpreted from symmetry point of
view in [49]. It is shown in [52] that Eq. (360) is quasi self-adjoint with the substitution
(34) given by v = u1−n−m if m + n 	= 1 and v = ln |u| if m + n = 1. These
substitutions show that Eq. (360) is strictly self-adjoint (Definition 2) if m + n = 0.

Using the quasi self-adjointness, the conservation laws are easily computed in [52].
Some simplification of the direct method was suggested in [37]. Namely, one

writes the conservation equation in the form (242)

Di (C
i ) = μᾱFᾱ

(
x, u, u(1), . . . , u(s)

)
(361)

and first finds the undetermined coefficients μᾱ by satisfying the integrability con-
dition of Eq. (361), i.e., by solving the equations (see Proposition 8 in Sect. 2.1.2)

δ

δuα

⎨
μβ̄(x, u, u(1), . . .) Fβ̄

(
x, u, u(1), . . . , u(s)

)⎩ = 0, α = 1, . . . , m. (362)
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Then, for each solution μᾱ of Eq. (362), the components Ci of the corresponding con-
served vector are computed from Eq. (361). In simple situations Ci can be detected
merely by looking at the right-had side of Eq. (361), see further Example 19.

Remark 17 Note that Eq. (362) should be satisfied on the solutions of Eq. (236).
Then the left-hand side of (362) can be written as

F∗
α

(
x, u, v, . . . , u(s), v(s)

)∣∣∣
v=μ(x,u,u(1),...)

with F∗
α defined by Eq. (69).

The reader can find a detailed discussion of the direct method in the recent book
[14]. I will compare two methods by considering few examples and exercises.

2.6.2 Examples and Exercises

Example 19 (See [14, Sect. 1.3]). Let us consider the KdV Eq. (73)

ut = uxxx + uux (73)

and write the condition (362) for μ = μ(t, x, u). We have

δ

δu
[μ(t, x, u)(ut − uxxx − uux )]

= −Dt (μ) + D3
x (μ) + Dx (uμ) − μux + (ut − uxxx − uux )

∂μ

∂u

= −Dt (μ) + D3
x (μ) + u Dx (μ) + (ut − uxxx − uux )

∂μ

∂u
·

In accordance with Remark 17, we consider this expression on the solutions of the
KdV equation and see that Eq. (362) coincides with the adjoint Eqs. (73) and (74)

Dt (μ) = D3
x (μ) + u Dx (μ). (363)

Its solution is given in Example 11 and has the form (75)

μ = A1 + A2u + A3(x + tu), A1, A2, A3 = const.

Thus, we have the following three linearly independent solutions of Eq. (363)

μ1 = 1, μ2 = u, μ3 = (x + tu).

and the corresponding three Eq. (361)
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Dt (C
1) + Dx (C

2) = ut − uxxx − uux (364)

Dt (C
1) + Dx (C

2) = u(ut − uxxx − uux ) (365)

Dt (C
1) + Dx (C

2) = (x + tu)(ut − uxxx − uux ). (366)

In this simple example the components C1, C2 of the conserved vector can be
easily seen from the right-hand sides of Eqs. (364)–(366). In the case of (364) and
(365) it is obvious. Therefore let us consider the right-hand side of Eq. (366). We see
that

(x + tu)ut = Dt

(
xu + 1

2
tu2
)

− 1

2
u2

−(x + tu)uux = −Dx

(
1

2
xu2 + 1

3
tu3
)

+ 1

2
u2

−(x + tu)uxxx = −Dx (xuxx + tuuxx ) + uxx + tux uxx

= Dx

(
ux + 1

2
tu2

x − xuxx − tuuxx

)
.

Hence, the right-hand side of Eq. (366) can be written in the divergence form

(x + tu)(ut − uxxx − uux )

= Dt

(
t
u2

2
+ xu

)
+ Dx

⎧
ux + t

(
u2

x

2
− uuxx − u3

3

)
− x

(
u2

2
+ uxx

)⎪
.

The expressions under Dt (· · · ) and Dx (· · · ) give C1 and C2, respectively, in (366).
Note that the corresponding conservation law

Dt

(
t
u2

2
+ xu

)
+ Dx

⎧
ux + t

(
u2

x

2
− uuxx − u3

3

)
− x

(
u2

2
+ uxx

)⎪
= 0 (367)

was derived from the Galilean invariance of the KdV equation (see [10, Sect. 22.5])
and by the direct method (see [14, Sect. 1.3.5]).

The similar treatment of the right-hand sides of the Eqs. (364) and (365) leads to
Eq. (73) and to the conservation law

Dt (u
2) + Dx

(
u2

x − 2uuxx − 2

3
u3
)

= 0 (368)

respectively. Theorem 5 associates the conservation law (368) with the scaling sym-
metry of the KdV equation.

Exercise 8 Apply the direct method to the short pulse Eq. (280) using the differential
substitution (284). In this case Eq. (361) is written
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Dt (C
1) + Dx (C

2) = ut uxt − 1

2
u2ux uxt

−
(

u + 1

2
u2uxx + uu2

x

)
ut + 1

2
u3ux + 1

4
u4ux uxx + 1

2
u3u3

x . (369)

Exercise 9 Consider the Boussinesq Eq. (246). Taking its formal Lagrangian

L = ω
[
Δψt − gρx − f vz − ψxΔψz + ψzΔψx

]
+ μ

[
vt + f ψz − ψxvz + ψzvx

]+ r
⎨
ρt + (N 2/g)ψx − ψxρz + ψzρx

⎩

where ω,μ, r are new dependent variables, we obtain the adjoint system to Eq. (246)

δL
δψ

= 0,
δL
δv

= 0,
δL
δρ

= 0. (370)

It is shown in [53] that the system (246) is self-adjoint. Namely, the substitution

ω = ψ, μ = −v, r = −(g2/N 2) ρ (371)

maps the adjoint system (370) into the system (246). Using the so eatablished self-
adjointness, nontrivial conservation laws were constructed via Theorem 5. Apply
the direct method to the system (246). Note that knowledge of the substitution (371)
gives the following Eq. (361)

Dt (C
1) + Dx (C

2) + Dz(C
3) = ψ

[
ψt xx + ψt zz − gρx − f vz

− ψx
(
ψzxx + ψzzz

)+ ψz
(
ψxxx + ψxzz

)]− v
[
vt + f ψz − ψxvz + ψzvx

]
(372)

− g2

N 2 ρ
⎨
ρt + N 2

g
ψx − ψxρz + ψzρx

⎩
.

Example 20 Let us consider the conservation Eq. (343)

Dt (C
1) + Dx (C

2) = σ(ρt + vρx + ρvx )

where σ is connected with the velocity v and the pressure p of the Chaplygin gas by
Eq. (319)

σx = − 1

p
, σt + vσx = 0.

In this example Eq. (362) are not satisfied. Indeed, we have



148 N. H. Ibragimov

δ

δv
[σ(ρt + vρx + ρvx )] = σρx − Dx (σρ) = −ρσ = ρ

∫
dx

p
	= 0

δ

δρ
[σ(ρt + vρx + ρvx )] = σt − Dx (σv) + σvx = −(σt + vσx ) = 0

δ

δ p
[σ(ρt + vρx + ρvx )] = 0.

Example 21 Let us consider the conservation Eq. (347)

Dt (C
1) + Dx (C

2) = tρ

(
vt + vvx + 1

ρ
px

)
+ tv(ρt + vρx + ρvx ).

Here Eq. (362) are not satisfied. Namely, writing

tρ

(
vt + vvx + 1

ρ
px

)
+ tv(ρt + vρx + ρvx )

= tρvt + 2tρvvx + tpx + tvρt + tv2ρx

we obtain

δ

δv

⎨
tρvt + 2tρvvx + tpx + tvρt + tv2ρx

⎩
= −ρ

δ

δρ

⎨
tρvt + 2tρvvx + tpx + tvρt + tv2ρx

⎩
= −v

δ

δ p

⎨
tρvt + 2tρvvx + tpx + tvρt + tv2ρx

⎩
= 0.

Exercise 10 Check if Eq. (362) are satisfied for the conservation Eqs. (349) and
(351).

3 Utilization of Conservation Laws for Constructing
Solutions of PDEs

In this part we will discuss a method for constructing exact solutions for systems
of nonlinear partial differential equations. The method is based on knowledge of
conservation laws of the equations under consideration and therefore it is called the
method of conservation laws.

Application of the method to the Chaplygin gas allowed to construct new solutions
containing several arbitrary parameters. One can verify that these solutions cannot
be obtained as group invariant solutions.
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3.1 General Discussion of the Method

As mentioned in Sect. 2.1.4, one can integrate or reduce the order of linear ordinary
differential equations by rewriting them in a conservation form (217). Likewise one
can integrate or reduce the order of a nonlinear ordinary differential equation as well
as a system of ordinary differential equations using their conservation laws. Namely,
a conservation law

Dx

(
ψ(x, y, y∞, . . . , y(s−1))

)
= 0 (373)

for a nonlinear ordinary differential equation

F(x, y, y∞, . . . , y(s)) = 0 (374)

yields the first integral
ψ(x, y, y∞, . . . , y(s−1)) = C1. (375)

We will discuss now an extension of this idea to partial differential equations.
Namely, we will apply conservation laws for constructing particular exact solutions of
systems of partial differential equations. Detailed calculations are given in examples
considered in the next sections.

Let us assume that the system (236)

Fᾱ

(
x, u, u(1), . . . , u(s)

) = 0, ᾱ = 1, . . . , m (376)

has a conservation law (237)

⎨
Di (C

i )
⎩
(376)

= 0 (377)

with a known conserved vector

C =
(

C1, . . . , Cn
)

(378)

where
Ci = Ci (x, u, u(1), . . .

)
, i = 1, . . . , n.

We write the conservation Eq. (377) in the form (361)

Di (C
i ) = μᾱFᾱ

(
x, u, u(1), . . . , u(s)

)
. (379)

For a given conserved vector (378) the coefficients μᾱ in Eq. (379) are known
functions μᾱ = μᾱ(x, u, u(1), . . .).
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We will construct particular solutions of the system (376) by requiring that on
these solutions the vector (378) reduces to the following trivial conserved vector

C =
(

C1(x2, . . . , xn), , . . . , Cn(x1, . . . , xn−1)
)

. (380)

In other words, we look for particular solutions of the system (376) by adding to
Eq. (376) the differential constraints

C1 (x, u, u(1), . . .
) = h1(x2, x3, . . . , xn)

C2 (x, u, u(1), . . .
) = h2(x1, x3, . . . , xn)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (381)

Cn (x, u, u(1), . . .
) = hn(x1, . . . , xn−1)

where Ci
(
x, u, u(1), . . .

)
are the components of the known conserved vector (378).

Due to the constraints (381), the left-hand side of Eq. (379) vanishes identically.
Hence the number of equations in the system (376) will be reduced by one.

The differential constraints (381) can be equivalently written as follows

D1

⎨
C1 (x, u, u(1), . . .

)⎩ = 0

D2

⎨
C2 (x, u, u(1), . . .

)⎩ = 0

· · · · · · · · · · · · · · · · · · · · · · · · · (382)

Dn
[
Cn (x, u, u(1), . . .

)] = 0.

Remark 18 The overdetermined system of m + n Eqs. (376) and (382) reduces to
m + n − 1 equations due to the conservation law (377).

3.2 Application to the Chaplygin Gas

3.2.1 Detailed Discussion of One Case

Let us apply the method to the Chaplygin gas equations (312)

vt + vvx + 1

ρ
px = 0

ρt + vρx + ρvx = 0 (383)

pt + vpx − pvx = 0.
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We will construct a particular solution of the system (383) using the simplest
conservation law (327)

Dt (ρ) + Dx (ρv) = ρt + vρx + ρvx . (384)

The conservation Eq. (384) is written in the form (379) with the following conserved
vector (378)

C1 = ρ, C2 = ρv. (385)

The differential constraints (381) are written as follows

ρ = g(x), ρv = h(t). (386)

Thus we look for solutions of the form

ρ = g(x), v = h(t)

g(x)
· (387)

The functions (387) solve the second equation in (383) because the conservation law
(384) coincides with the second Eq. (383) (see Remark 18). Therefore it remains to
substitute (387) in the first and third equations of the system (383). The result of this
substitution can be solved for the derivatives of p

px = −h∞ + h2g∞

g2 , pt = −hg∞

g2 p + hh∞

g
− h3g∞

g3 · (388)

The compatibility condition pxt = ptx of the system (388) gives the equation

(
g∞∞ − 2

g∞2

g

)
p = g2 h∞∞

h
− 2g∞h∞ − h2 g∞∞

g
+ 2h2 g∞2

g2 · (389)

For illustration purposes I will simplify further calculations by considering the par-
ticular case when the coefficient in front of p in Eq. (389) vanishes

g∞∞ − 2
g∞2

g
= 0. (390)

The solution of Eq. (390) is

g(x) = 1

ax + b
, a, b = const. (391)

Substituting (391) in Eq. (389) we obtain

h∞∞ + 2ahh∞ = 0 (392)
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whence

h(t) = k tan(c − akt) (393)

if a 	= 0, and
h(t) = A t + B (394)

if a = 0.

If the constant a in (391) does not vanish, we substitute (391) and (393) in
Eq. (388), integrate them and obtain

p = k2(ax + b) + Q cos(c − akt), Q = const. (395)

In the case a = 0 the similar calculations yield

p = −Ax + b

2
A2t2 + ABbt + Q, Q = const. (396)

Thus, using the conservation law (384) we have arrived at the solutions

ρ = 1

ax + b
v = k(ax + b) tan(c − akt) (397)

p = k2(ax + b) + Q cos(c − akt)

and

ρ = 1

b
v = b(A t + B) (398)

p = −Ax + b

2
A2t2 + ABbt + Q.

3.2.2 Differential Constraints Provided by Other Conserved
Vectors

The conservation laws (328) and (330) give the following differential constraints
(381)

ρv2 − p = g(x), pv + ρv3 = h(t) (399)

ρv = g(x), p + ρv2 = h(t) (400)

tρv − xρ = g(x), tp + tρv2 − xρv = h(t). (401)
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The nonlocal conserved vectors (346), (348) and (350) lead to the following
differential constraints (381)

tρv + τ = g(x), p + ρv2 = h(t) (402)

tρ = g(x), tρv − τ = h(t) (403)(
t2

2
− s

)
ρ = g(x),

(
t2

2
− s

)
ρv − tτ = h(t). (404)

The constraints (402) are not essentially different from the constraints (400). It is
manifest if we write them in the form (382).

3.3 Application to Nonlinear Equation Describing
an Irrigation System

The method of Sect. 3.1 can be used for constructing particular solutions not only of
a system, but of a single partial differential equations as well.

Let us consider the nonlinear Eq. (171)

C(ψ)ψt = [K (ψ)ψx ]x + [K (ψ) (ψz − 1)
]

z − S(ψ) (405)

satisfying the nonlinear self-adjointness condition (173)

S ∞(ψ) = aC(ψ), a = const. (406)

and apply the method of Sect. 3.1 to the conserved vector (269)

C1 = S(ψ)eat , C2 = aK (ψ)ψx eat , C3 = aK (ψ)(ψz − 1)eat . (407)

The conditions (381) are written

S(ψ)eat = f (x, z), aK (ψ)ψx eat = g(t, z), aK (ψ)(ψz − 1)eat = h(t, x).

These conditions mean that the left-hand sides of the first, second and third equation
do not depend on t, x and z, respectively. Therefore they can be equivalently written
as the following differential constraints (see Eq. 382)

aS(ψ) + S∞(ψ)ψt = 0, [K (ψ)ψx ]x = 0,
[
K (ψ) (ψz − 1)

]
z = 0. (408)

The constraints (408) reduce Eqs. (405) and (406). Hence, the particular solutions of
Eq. (405) provided by the conserved vector (407) are described by the system
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aC(ψ) − S ∞(ψ) = 0, aS(ψ) + S∞(ψ)ψt = 0

[K (ψ)ψx ]x = 0,
[
K (ψ) (ψz − 1)

]
z = 0. (409)

4 Approximate Self-Adjointness and Approximate Conservation
Laws

The methods developed in this paper can be extended to differential equations with a
small parameter in order to construct approximate conservation laws using approxi-
mate symmetries. I will illustrate this possibility by examples. The reader interested
in approximate symmetries can find enough material in [15–17], vol. 3, Chaps. 2
and 9.

4.1 The Van Der Pol Equation

The van der Pol equation has the form

F ◦ y∞∞ + y + ε(y∞3 − y∞) = 0, ε = const. 	= 0. (410)

4.1.1 Approximately Adjoint Equation

We have

δ

δy

{
z
⎨

y∞∞ + y + ε
(

y∞3 − y∞)⎩} = z∞∞ + z + εDx

(
z − 3zy∞2) .

Thus, the adjoint equation to the van der Pol equation is

F∗ ◦ z∞∞ + z + ε
(

z∞ − 3z∞y∞2 − 6zy∞y∞∞) = 0.

We eliminate here y∞∞ by using Eq. (410), consider ε as a small parameter and
write F∗ in the first order of precision with respect to ε. In other words, we write

y∞∞ → −y. (411)

Then we obtain the following approximately adjoint equation to equation (410)

F∗ ◦ z∞∞ + z + ε
(

z∞ − 3z∞y∞2 + 6zyy∞) = 0. (412)
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4.1.2 Approximate Self-Adjointness

Let us investigate Eq. (410) for approximate self-adjointness. Specifically, I will
call Eq. (410) approximately self-adjoint if there exists a non-trivial (not vanishing
identically) approximate substitution

z → f (x, y, y∞) + εg(x, y, y∞) (413)

such that F given by Eq. (410) and F∗ defined by Eq. (412) approximately satisfy the
condition (72) of nonlinear self-adjointness. In other words, the following equation
is satisfied in the first-order of precision in ε

F∗∣∣
z= f +εg

= λF. (414)

Note, that the unperturbed equation y∞∞+y = 0 is nonlinearly self-adjoint. Namely
it coincides with the adjoint equation z∞∞ + z = 0 upon the substitution

z = αy + β cos x + γ sin x, α,β, γ = const. (415)

Therefore we will consider the substitution (413) of the following restricted form

z → f (x, y) + εg(x, y, y∞). (416)

In differentiating g(x, y, y∞) we will use Eq. (411) because we make out calcula-
tions in the first order of precision with respect to ε. Then we obtain

z∞ = Dx ( f ) + εDx (g)
∣∣
y∞∞=−y ◦ fx + y∞ fy + ε(gx + y∞gy − ygy∞)

z∞∞ = D2
x ( f ) + εD2

x (g)
∣∣
y∞∞=−y ◦ fxx + 2y∞ fxy + y∞2 fyy + y∞∞ fy

+ ε(gxx + 2y∞gxy − 2ygxy∞ + y∞2gyy (417)

− 2yy∞gyy∞ + y2gy∞ y∞ − ygy − y∞gy∞).

Substituting (417) in (412) and solving Eq. (414) with ε = 0 we see that f is
given by Eq. (415). Then λ = C and the terms with ε in Eq. (414) give the following
second-order linear partial differential equation for g(x, y, y∞)

g + D2
x (g)

∣∣
y∞∞=−y = α

(
4y∞3 − 6y2 y∞ − 2y∞)

+ β
(

sin x − 3y∞2 sin x − 6yy∞ cos x
)

+ γ
(

3y∞2 cos x − cos x − 6yy∞ sin x
)

. (418)
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The standard existence theorem guarantees that Eq. (418) has a solution. It is
manifest that the solution does not vanish because g = 0 does not satisfy Eq. (418).
We conclude that the van der Pol equation (410) with a small parameter ε is
approximately self-adjoint. The substitution (416) satisfying the approximate self-
adjointness condition (414) has the form

z → αy + β cos x + γ sin x + εg(x, y, y∞) (419)

where α, β, γ are arbitrary constants and g(x, y, y∞) solves Eq. (418).

4.1.3 Exact and Approximate Symmetries

If ε is treated as an arbitrary constant, Eq. (410) has only one point symmetry, namely
the one-parameter group of translations of the independent variable x . We will write
the generator X1 = ∂/∂x of this group in the form (186)

X1 = y∞ ∂

∂y
· (420)

If ε is a small parameter, then Eq. (410) has, along with the exact symmetry (420),
the following 7 approximate symmetries ([15–17], vol. 3, Sect. 9.1.3.3)

X2 =
{

4y − ε
⎨

y2 y∞ + 3xy
(

y2 + y∞2)⎩} ∂

∂y

X3 =
{

8 cos x + ε
⎨(

4 − 3y∞2 − 9y2
)

x cos x + 3(xy2)∞ sin x
⎩} ∂

∂y

X4 =
{

8 sin x + ε
⎨(

4 − 3y∞2 − 9y2
)

x sin x − 3(xy2)∞ cos x
⎩} ∂

∂y

X5 = {
24y2 cos x − 24yy∞ sin x + ε

[(
12yy∞ + 9yy∞3 + 9y3 y∞)x sin x

+ (12y2 − 9y2 y∞2 − 6y4) sin x − (12y2 − 9y2 y∞2 − 9y4)x cos x

− 3y3 y∞ cos x
]} ∂

∂y
(421)

X6 = {
24y2 sin x + 24yy∞ cos x − ε

[(
12yy∞ + 9yy∞3 + 9y3 y∞)x cos x

+ (12y2 − 9y2 y∞2 − 6y4) cos x + (12y2 + 9y2 y∞2 + 9y4)x sin x

+ 3y3 y∞ sin x
]} ∂

∂y

X7 = {
4y cos 2x − 4y∞ sin 2x + ε

[
3
(
yy∞2 − y3)x cos 2x

− 3y2 y∞ cos 2x + 6y2 y∞x sin 2x + 2(y − y3) sin 2x
]} ∂

∂y

X8 = {
4y sin 2x + 4y∞ cos 2x − ε

[
3
(
y3 − yy∞2)x sin 2x
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+ 3y2 y∞ sin 2x + 6y2 y∞x cos 2x + 2(y − y3) cos 2x
]} ∂

∂y
·

4.1.4 Approximate Conservation Laws

We can construct now approximate conserved quantities for the van der Pol equation
using the formula (258) and the approximate substitution (419). Inserting in (258)
the formal Lagrangian

L = z
⎨

y∞∞ + y + ε
(

y∞3 − y∞)⎩

we obtain

C = W
⎨
−z∞ + ε

(
3y∞2z − z

)⎩
+ W ∞z. (422)

Let us calculate the conserved quantity (422) for the operator X1 given by
Eq. (420). In this case W = y∞, W ∞ = y∞∞, and therefore (422) has the form

C = −y∞z∞ + ε
(

3y∞3 − y∞) z + y∞∞z.

We eliminate here y∞∞ via Eq. (410), use the approximate substitution (419) and obtain
(in the first order of precision with respect to ε) the following approximate conserved
quantity

C = − α
(

y2 + y∞2)+ β
(
y∞ sin x − y cos x

)− γ
(
y∞ cos x + y sin x

)

+ ε
(

2αyy∞3 + 2βy∞3 cos x + 2γy∞3 sin x − yg − y∞ Dx (g)
∣∣
y∞∞=−y

)
. (423)

Differentiating it and using the Eqs. (410) and (411) we obtain

Dx (C) =εy∞⎨α (4y∞3 − 6y2 y∞ − 2y∞)+ β
(

sin x − 3y∞2 sin x − 6yy∞ cos x
)

+ γ
(

3y∞2 cos x − cos x − 6yy∞ sin x
)

− g − D2
x (g)

∣∣
y∞∞=−y

⎩
+o(ε)

(424)

where o(ε) denotes the higher-order terms in ε. The Eqs. (418) and (424) show that
the quantity (423) satisfies the approximate conservation law

Dx (C)
∣∣
(410)

→ 0. (425)
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Let us consider the operator X2 from (421). In this case we have

W = 4y − ε
⎨

y2 y∞ + 3xy
(

y2 + y∞2)⎩

W ∞ → 4y∞ − ε
⎨
2y3 + 5yy∞2 + 3x

(
y2 y∞ + y∞3)⎩ . (426)

Proceeding as above we obtain the following approximate conserved quantity

C = 4y∞(β cos x + γ sin x) − 4y(γ cos x − β sin x)

+ ε
{

2αy2
(

4y∞2 − y2 − 2
)

+ 4y∞g − 4y Dx (g)
∣∣
y∞∞=−y

+
⎨
7yy∞2 − 3xy∞(y2 + y∞2) − 2y3 − 4y

⎩
(β cos x + γ sin x) (427)

+
⎨

y2 y∞ + 3xy(y2 + y∞2)
⎩
(γ cos x − β sin x)

}
.

The calculation shows that the quantity (427) satisfies the approximate conservation
law (425) in the following form

Dx (C) = 4(β cos x + γ sin x)
⎨

y∞∞ + y + ε
(

y∞3 − y∞)⎩ (428)

+ 4εy
⎨
α
(

4y∞3 − 6y2 y∞ − 2y∞)+β
(

sin x − 3y∞2 sin x − 6yy∞ cos x
)

+ γ
(

3y∞2 cos x − cos x − 6yy∞ sin x
)

− g − D2
x (g)

∣∣
y∞∞=−y

⎩
+ o(ε).

Continuing this procedure, one can construct approximate conservation laws for
the remaining approximate symmetries (421).

4.2 Perturbed KdV Equation

Let us consider again the KdV equation (73)

ut = uxxx + uux

and the following perturbed equation

F ◦ ut − uxxx − uux − εu = 0. (429)

We will follow the procedure described in Sect. 4.1.
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4.2.1 Approximately Adjoint Equation

Let us write the formal Lagrangian for Eq. (429) in the form

L = v [−ut + uxxx + uux + εu] . (430)

Then

δL
δu

= vt − vxxx − Dx (uv) + vux + εv = vt − vxxx − uvx + εv.

Hence, the approximately adjoint equation to equation (429) has the form

F∗ ◦ vt − vxxx − uvx + εv = 0. (431)

4.2.2 Approximate Self-Adjointness

As mentioned in Sect. 1.3.1, Example 11, the KdV Eq. (73) is nonlinearly self-adjoint
with the substitution (75)

v = A1 + A2u + A3(x + tu). (75)

Therefore in the case of the perturbed Eq. (429) we look for the substitution

v = φ(t, x, u) + εψ(t, x, u)

satisfying the nonlinear self-adjointness condition

F∗∣∣
v=φ+εψ

= λF (432)

in the first-order of precision in ε, in the following form

v = A1 + A2u + A3(x + tu) + εψ(t, x, u). (433)

When we substitute the expression (433) in the definition (431) of F∗, the terms
without ε in Eq. (432) disappear by construction of the substitution (75) and give
λ = A2 + A3t. Then we write Eq. (432), rearranging the terms, in the form

εψu[ut − uxxx − uux ] − 3εuxx [uxψuu + ψxu]
− εux [u2

xψuuu + 3uxψxuu + 3ψxxu] + ε[ψt − ψxxx − uψx

+ A1 + A2u + A3(x + tu)] = −ε(A2 + A3t)u. (434)
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In view Eq. (429), the first term in the first line of Eq. (434) is written ε2uψu . Hence,
this term vanishes in our approximation. The terms with uxx in the first line of
Eq. (434) yield

ψuu = 0, ψxu = 0

whence

ψ = f (t)u + g(t, x).

The third bracket in the first line of Eq. (434) vanishes, and Eq. (434) becomes

[ f ∞(t) − gx (t, x)]u + gt (t, x) − gxxx (t, x) + 2[A2 + A3t]u + A1 + A3x = 0.

After rather simple calculations we solve this equation and obtain

g(t, x) = A4 − A1t + (A5 + 2A2 − A3t)x, f (t) = A6 + A5t − 3

2
A3t2.

We conclude that the perturbed KdV equation (429) is approximately self-adjoint.
The approximate substitution (433) has the following form

v → A1 + A2u + A3(x + tu) (435)

+ ε

⎧(
A6 + A5t − 3

2
A3t2

)
u + A4 − A1t + (A5 + 2A2 − A3t)x

⎪
.

4.2.3 Approximate Symmetries

Recall that the Lie algebra of point symmetries of the KdV equation (73) is spanned
by the following operators

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂x
− ∂

∂u

X4 = 3t
∂

∂t
+ x

∂

∂x
− 2u

∂

∂u
· (436)

Following the method for calculating approximate symmetries and using the ter-
minology presented in [15–17], vol. 3, Chap. 2, we can prove that all symmetries
(436) are stable. Namely the perturbed equation (429) inherits the symmetries (436)
of the KdV equation in the form of the following approximate symmetries
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X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂x
− ∂

∂u
+ ε

(
1

2
t2 ∂

∂x
− t

∂

∂u

)

X4 = 3t
∂

∂t
+ x

∂

∂x
− 2u

∂

∂u
− ε

⎧
9

2
t2 ∂

∂t
+ 3t x

∂

∂x
− (6tu + 3x)

∂

∂u

⎪
· (437)

4.2.4 Approximate Conservation Laws

We can construct now the approximate conservation laws

⎨
Dt (C

1) + Dx (C
2)
⎩
(429)

→ 0 (438)

for the perturbed KdV equation (429) using its approximate symmetries (437), the
general formula (258) and the approximate substitution (435). Inserting in (258) the
formal Lagrangian (430) we obtain

C1 = −Wv, C2 = W [uv + vxx ] − vx Dx (W ) + vD2
x (W ). (439)

I will calculate here the conserved vector (439) for the operator X4 from (437).
In this case we have

W = −2u − 3tut − xux + ε

(
6tu + 3x + 9

2
t2ut + 3t xux

)
. (440)

We further simplify the calculations by taking the particular substitution (435) with
A2 = 1, A1 = A3 = · · · = A6 = 0. Then

v = u + 2εx . (441)

Substituting (440) and (441) in the first component of the vector (439) and then
eliminating ut via Eq. (429) we obtain

C1 → (2u + 3tut + xux )(u + 2εx) − ε
(

6tu + 3x + 9

2
t2ut + 3t xux

)
u

= 2u2 + 3tuuxxx + 3tu2ux + xuux + ε
(

xu + 6t xuxxx + 3t xuux

+ 2x2ux − 3tu2 − 9

2
t2uuxxx − 9

2
t2u2ux

)
.

Upon singling out the total derivatives in x, it is written

C1 → 3

2
u2 − 3ε

(
xu + 3

2
tu2
)

+ Dx

⎨1

2
xu2 + tu3 − 3

2
tu2

x + 3tuuxx (442)

+ ε
(

2x2u + 3

2
t xu2 − 3

2
t2u3 − 6tux + 6t xuxx + 9

4
t2u2

x − 9

2
t2uuxx

)⎩
.
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Then we substitute (440) and (441) in the second component of the vector (423),
transfer the term Dx (. . .) from C1 to C2, multiply the resulting vector (C1, C2) by
2/3 and arrive at the following vector

C1 = u2 − 2ε
⎨
xu + 3

2
tu2
⎩

C2 = u2
x − 2

3
u3 − 2uuxx + ε

⎨
xu2 − 2ux + 2xuxx + 2tu3 − 3tu2

x + 6tuuxx

⎩
.

(443)

The approximate conservation law (438) for the vector (443) is satisfied in the fol-
lowing form

Dt (C
1) + Dx (C

2) = 2u(ut − uxxx − uux − εu)

− 2ε(x + 3tu)(ut − uxxx − uux ) + o(ε).
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Symbolic Computation of Nonlocal Symmetries
and Nonlocal Conservation Laws
of Partial Differential Equations
Using the GeM Package for Maple

Alexei F. Cheviakov

Abstract The use of the symbolic software package GeM for Maple is illustrated
with examples of computation of nonlocal symmetries and nonlocal conservation
laws of nonlinear partial differential equations. In the considered examples, the
nonlocal symmetries and conservation laws arise as local symmetries and conserva-
tion laws of potential systems. FullMaple code with detailed comments is presented.
Examples of automated symmetry and conservation law classification are included.

1 Introduction

The majority of contemporary mathematical models involving partial and ordinary
differential equations (PDE, ODE) are essentially nonlinear. The analysis of such
models often proceeds using approximate, numerical, and/or problem-specific meth-
ods. In particular, the efficiency and precision of numerical solutions is commonly
restricted by nonlinear effects, which limit mesh sizes and boost computation times,
as well as by extra large data structures arising in discretizations of multi-dimensional
problems.

Methods based on the framework of symmetry and conservation law analysis can
be systematically applied to wide classes of PDE and ODE models. This research
area, pioneered by Sophus Lie and Emmy Noether, has been recently developed
in various directions, having become a set of interrelated methods that can provide
essential analytical information about the underlying equations. For further details,
an interested reader is referred to [6, 9, 10, 15, 26, 33].

For ODEs, seeking conservation laws is equivalent to seeking integrating
factors; conserved quantities (first integrals) lead to the reduction of order. Conser-
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vation laws (divergence forms) of governing PDEs yield local densities conserved
by the process, as well as global conserved quantities under appropriate boundary
conditions. Local conservation laws of PDEs are also used in existence,
uniqueness and stability analysis (e.g., [4, 27, 31]). An important application area
of local conservation laws of PDE systems is numerical simulation. Many modern
numerical methods, such as finite volume, finite element, discontinuous Galerkin
methods, etc., (see, e.g., [25, 28, 29]) rely on the divergence forms of the given
equations.

Local symmetries of ODEs lead to the reduction of order, and can be used
for the construction of particular symmetry-invariant solutions (see, e.g., [7, 12]).
Depending on the structure of the symmetry Lie algebra, the knowledge of an
r -parameter Lie group of point symmetries of an ODE can lead to the reduction
of order by up to r .

One of the most important applications of local symmetries to nonlinear PDEs
is the construction of exact solutions. This includes obtaining new solutions from
known ones through the symmetry mapping, and the construction of symmetry-
invariant solutions, in particular, physically important traveling wave and self-similar
solutions. Additional exact solutions can be obtained using nonlocal symmetries,
when they are known. Multiple examples can be found in [10] and references therein.

If a PDE system has an infinite set of local symmetries and/or local conservation
laws involving arbitrary functions, it can sometimes be mapped into a linear PDE
system by an invertible transformation [3, 13]. Similarly, infinite families of nonlocal
symmetries and/or nonlocal conservation laws admitted by a PDE system may be
used to construct respective non-invertible mappings [10, 14]. An infinite countable
set of local conservation laws may be associated with integrability.

An important application of local conservation laws is the construction of
potential systems, nonlocally related to a given one, through the introduction of
nonlocal potential variables. Other types of nonlocally related systems, in particular,
nonlocally related subsystems, can also arise. The resulting framework of nonlocally
related PDE systems [8, 10, 11] has been successfully used in multiple applications,
yielding nonlocal symmetries and conservation laws, nonlocal linearizations, and
new classes of exact solutions of various PDE systems (see, e.g., [10] and references
therein).

The systematic computation of symmetries and conservation laws of PDE
systems, especially symmetry and conservation law classifications and case split-
ting for systems involving arbitrary functions or constant parameters, may present a
significant computational challenge. Indeed, systems of symmetry and conservation
law determining equations can involve thousands of linear PDEs. Symbolic com-
putation software is routinely used to carry out such computations. A number of
symbolic software packages have been written for local symmetry and conservation
law computations in various computer algebra systems. In the current paper, the
use of GeM package for Maple, developed by the author, is discussed ([22–24]).
The current version 32.02 of the GeM package has been tested to work with Maple
versions 14–18.
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The present contribution is devoted to practical aspects of computation of
nonlocal symmetries and nonlocal conservation laws of nonlinear PDEs. After
the general introduction and definitions of Sect. 2, in Sect. 3, we present basic
detailed examples of the use of GeM package to compute nonlocal symmetries
and nonlocal conservation laws of nonlinear PDEs through the local symmetry and
conservation law computations applied to potential systems. In particular, a nonlocal
symmetry for a specific nonlinear wave equation is derived; nonlocal symmetries of
a class of nonlinear telegraph equations are classified; nonlocal conservation laws
are sought for a class of diffusion-convection equations.

The paper is concluded with Sect. 4 containing a discussion and further remarks.

2 Nonlocal Symmetries and Nonlocal Conservation Laws

Consider a system R{x; u} of N differential equations of order k, with n independent
variables x = (x1, . . . , xn) and m dependent variables u(x) = (u1(x), . . . , um(x)),
given by

Rσ[u] ∗ Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (1)

Here and below, the notation f [u] denotes a differential function depending on x , u
and the derivatives of u up to some finite order,

∂u ∗ ∂1u =
(

u1
1(x), . . . , u1

n(x), . . . , um
1 (x), . . . , um

n (x)
)

denotes the set of all first-order partial derivatives, and

∂ pu =
{

uμ
i1...i p

; μ = 1, . . . , m; i1, . . . , i p = 1, . . . , n
}

=
{

∂ puμ(x)

∂xi1 . . . ∂xi p
; μ = 1, . . . , m; i1, . . . , i p = 1, . . . , n

}

denote higher-order derivatives. Summation in any pair of repeated indices is assumed
below. Subscripts are used to denote partial derivatives: ux ∗ ∂u/∂x , etc.

2.1 Lie Point Symmetries

Consider a one-parameter Lie group of point transformations

(x≡)i = f i (x, u; ε) = xi + εξi (x, u) + O(ε2), i = 1, . . . , n

(u≡)μ = gμ(x, u; ε) = uμ + εημ(x, u) + O(ε2), μ = 1, . . . , m
(2)
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with the corresponding infinitesimal generator

X = ξi (x, u)
∂

∂xi
+ ημ(x, u)

∂

∂uμ
· (3)

Definition 1 The one-parameter Lie group of point transformations (2) leaves the
DE system (1) invariant if it maps any family of solution surfaces u = u(x) of the
DE system (1) into another family of solution surfaces u≡ = u≡(x≡) of DE system
(1). In this case, the transformation (2) are referred to as a point symmetry of the DE
system (1).

The Lie’s algorithm for finding the point symmetries of a DE system (1) written
in a solved form in terms of a set of leading derivatives is based on the following
theorem (for details, see, e.g., [10, 15, 33]).

Theorem 1 Let (3) be the infinitesimal generator of a one-parameter Lie group of
point transformations (2), and X(k) its kth extension. Then the transformation (2) is
a point symmetry of the DE system (1) if and only if for each α = 1, . . . , N

X(k) Rα(x, u, ∂u, . . . , ∂ku) = 0 (4)

when

Rσ(x, u, ∂u, . . . , ∂ku) = 0, σ = 1, . . . , N . (5)

In (4), it is assumed that (5) and the differential consequences of (5) are taken into
account.

Other types of local symmetries, including contact and higher-order symmetries,
can be computed in a similar manner, when they exist. For such extensions, the
symmetry components may depend on derivatives (e.g., [10, 15, 33]).

Remark 1 It is important to mention that some PDE systems have an infinite number
of local symmetries, with symmetry components involving arbitrary functions of one
or more variables. In particular, linear PDEs always admit “trivial” symmetries

X◦ = σμ ∂

∂uμ

where a set of functions σ(x) = (σ1(x), . . . ,σm(x)) is an arbitrary solution of the
homogeneous version of the given linear equations.

Conversely, if a given PDE system has a sufficiently large infinite set of local
symmetries, it can be mapped into a linear system with a point transformation. For
details on necessary and sufficient conditions for the existence of such mappings,
see [5, 10, 13].

In practical symmetry computations for linear PDEs, the presence of the
“trivial” infinite-dimensional symmetry groups poses certain difficulties; for details
and techniques of such computations, see [24].
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2.2 Local Conservation Laws

Definition 2 A local divergence-type conservation law of a PDE system (1) is a
divergence expression of the form

DiΦ
i (x, u, ∂u, . . . , ∂r u) = 0 (6)

in terms of total derivative operators

Di = ∂

∂xi
+ uμ

i
∂

∂uμ
+ uμ

i i1

∂

∂uμ
i1

+ uμ
i i1i2

∂

∂uμ
i1i2

+ · · · (7)

holding on solutions of (1).

In the 1+1-dimensional situation, with x = (x, t), the conservation law (6) has the
form

DtΛ + DxΨ = 0 (8)

where the density Λ and the spatial flux Ψ can depend on independent and dependent
variables of the given equations, as well as their derivatives.

Remark 2 In practice, one is interested in finding sets of non-trivial, non-equivalent,
linearly independent conservation laws. A trivial conservation law of a normal PDE
system is a divergence expression that vanishes identically, or if its density and fluxes
vanish on solutions of the given PDE system. For further details, see, e.g., [10, 33].

Local conservation laws (6), (8) are systematically sought by applying the direct
conservation law construction method [2]. The method consists in finding sets
of multipliers {Ωσ[U ]}N

σ=1 = {Ωσ(x, U, ∂U, . . . , ∂ΣU )}N
σ=1, depending on some

prescribed independent and dependent variables and possibly their derivatives to
some finite order Σ, which, taken in linear combinations with the given PDEs, yield
a divergence expression

Ωσ[U ]Rσ[U ] ∗ DiΦ
i [U ] (9)

holding for arbitrary functions U . Then on solutions U = u(x) of the PDE system
(1), one has a local conservation law

℘σ[u]Rσ[u] = DiΦ
i [u] = 0. (10)

Determining equations for the multipliers are obtained from the fact that an
expression F(U ) is annihilated by Euler operators

EU j = ∂
∂U j − Di

∂

∂U j
i

+ · · · + (−1)sDi1 . . . Dis
∂

∂U j
i1 ...is

+ · · ·
i, iq = 1, . . . , n, j = 1, . . . , m

(11)



170 A. F. Cheviakov

if and only if F(U ) is a divergence expression (e.g., [10, 33]). Hence the local
conservation law multiplier determining equations are given by

EU j

(
℘σ[U ]Rσ[U ]) = 0, j = 1, . . . , m. (12)

After the linear equations (12) are solved for the multipliers {℘σ[U ]}N
σ=1, the

conservation law fluxes and/or density is calculated using (9) (see, e.g., [23]).

Remark 3 Some PDE systems admit an infinite number of independent local con-
servation laws. In such cases, multipliers may involve arbitrary functions of one or
several variables. This happens for both nonlinear and linear PDEs. In particular, lin-
ear PDEs always admit an infinite number of conservation laws; the corresponding
conservation law multipliers are solutions of a linear system of PDEs adjoint to the
given linear system (see, e.g., [5, 10]).

When a given PDE system admits a sufficiently large infinite set of local conser-
vation laws, it can be mapped into a linear system with a point transformation, see
[3, 10].

Remark 4 Local variational symmetries and local conservation laws of self-adjoint
(variational) PDEs are related through the Noether’s theorem. For non-variational
PDE systems, this relation generally does not hold. The direct conservation law con-
struction method described above is applicable to both variational and non-variational
PDE systems [9, 10, 17, 33].

2.3 Nonlocally Related PDE Systems

Consider a PDE system R{x, t; u} with two independent variables (x, t) and m
dependent variables u = (u1, . . . , um) given by

Rσ[u] = Rσ(x, t, u, ∂u, ∂2u, . . . , ∂lu) = 0, σ = 1, . . . , s. (13)

Suppose that the PDE system (13) has one or more nontrivial conservation laws
(8). For each such conservation law, one can introduce a potential variable v satisfying

vx = β[u], vt = −ε[u]. (14)

The potential variable v is a nonlocal variable of the PDE system (13), i.e., v cannot
be expressed as a local function of the variables in the PDE system (13) and their
derivatives [10].

A potential system is obtained by appending one or more sets of potential equations
(14) to the given PDE system (13). We denote a potential system involving q potential
variables by S{x, t; u, v}, v = (v1, ..., vq).
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Remark 5 In the case of PDE systems involving n ⊕ 3 independent variables,
the application of divergence-type local conservation laws to the construction of
potential systems is less straightforward. In particular, the corresponding potential
system is underdetermined. Overdetermined potential systems cannot yield nonlocal
symmetries [1], but can yield nonlocal conservation laws [1, 21]. The gauge freedom
may be eliminated using a gauge constraint, however, finding an“optimal” gauge for
a specific PDE system—conservation law pair remains an open problem.

2.4 Nonlocal Symmetries and Nonlocal Conservation Laws

Consider a given PDE system R{x, t; u} (13) and its potential system S{x, t; u, v}
involving a single potential variable: (13), (14). Point symmetries of the potential
system S{x, t; u, v} are given by infinitesimal generators

X = ξx (x, t, u, v)
∂

∂x
+ξt (x, t, u, v)

∂

∂t
+

m∑
i=1

ηui
(x, t, u, v)

∂

∂ui
+ηv(x, t, u, v)

∂

∂v
·

(15)

Definition 3 A generator (15) corresponds to a nonlocal symmetry of the given PDE
system R{x, t; u} (13) if it does not yield a local symmetry of (13) when projected
on the space of its variables.

The criterion for the symmetry (15) to be a nonlocal symmetry of the system
R{x, t; u} (13) is provided by the following theorem (e.g, [10, 15, 16]).

Theorem 2 The point symmetry (15) of the potential system S{x, t; u, v} yields
a nonlocal symmetry (potential symmetry) of the given PDE system (13) if and
only if one or more of the infinitesimals (ξx (x, t, u, v), ξt (x, t, u, v), ηu1

(x, t, u, v),

. . . , ηum
(x, t, u, v)) depend explicitly on the potential variable v, i.e.,

(
∂ξx

∂v

)2

+
(

∂ξt

∂v

)2

+
m∑

i=1

(
∂ηui

∂v

)2

> 0.

Remark 6 Nonlocal symmetries can also arise from nonlocally related subsystems
obtained by differential exclusions of dependent variables, and from other PDE sys-
tems in the trees of nonlocally related PDE systems. For details, examples, and
applications, see [10] and references therein.

Now consider a local conservation law

Dtβ[u, v] + Dxε[u, v] = 0 (16)

of the potential system S{x, t; u, v}.
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Definition 4 A nontrivial local conservation law (16) of the potential system
S{x, t; u, v} is called a nonlocal conservation law of the given PDE system R{x, t; u}
if it is not equivalent to any linear combination of local conservation laws of R{x, t; u}
and trivial conservation laws, i.e., the flux and/or density in (16) have an essential
dependence on the components of the potential variable v.

The following fundamental theorem [11, 32] holds.

Theorem 3 Each conservation law of any potential system S{x, t; u, v}, arising
from multipliers that do not essentially depend on the potential variable v, is equiv-
alent to a local conservation law of the given system R{x, t; u} (13).

It follows that in order to construct nonlocal conservation laws of the original system
using the direct method, one must consider multipliers that essentially involve poten-
tial variable(s). A similar theorem holds for equations with three or more independent
variables [10].

The procedure of construction of an extended tree of nonlocally related PDE
systems, starting from a given PDE system (13), is presented in [8, 10, 11]. It is based
on the systematic construction, or a given system (13) on local conservation laws,
potential systems, further local and nonlocal conservation laws, further potential
systems, subsystems, and so on. Similar constructs in multi-dimensions are discussed
in [10, 20, 21].

Remark 7 It is important to note that in practice, nonlocal symmetries and nonlocal
conservation laws usually arise in classifications when given systems involve arbi-
trary (constitutive) functions or constant parameters, for special cases of those con-
stitutive functions/parameters. Many examples of such classifications can be found
in [10].

Remark 8 Similarly to local symmetries and conservation laws, infinite sets of non-
local symmetries and conservation laws can lead to a linearization by a nonlocal
transformation (e.g., [10, 14]). For example, this is the case for all 1+1-dimensional
nonlinear wave equations utt = (c2(u)ux )x , whose basic potential system is lineariz-
able by a hodograph transformation, and for the specific instances of the nonlinear
telegraph equation considered in Sect. 3.2 below.

3 Symbolic Computations of Nonlocal Symmetries
and Nonlocal Conservation Laws

3.1 Example 1: Local and Nonlocal Symmetry Analysis
of a Nonlinear Wave Equation

Consider a nonlinear wave equation on u = u(x, t), denoted by R{x, t; u}

utt = (c2(u)ux )x . (17)
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For simplicity, we restrict to a specific case

c2(u) = 1

u2 + 1
· (18)

for which nonlocal symmetries are known to arise (see, e.g., [10], Sec. 4.2.2).
(A) Point symmetries. We start from point symmetry analysis of the wave equation
(17) with (18). The command sequence for the GeM package, version 32.02, and the
output proceeds as follows.

All variables are cleared GeM package is initialized with the command

restart; read("d:/gem32_02.mpl"):

Independent and dependent variables are put together, for convenience, by commands

ind:=x,t; all_dep:=U(ind);

In the absence of arbitrary constants and/or functions in the given equation, the
variables are declared as follows:

gem_decl_vars(indeps=[ind], deps=[all_dep]);

The wave speed is defined by

c(U(ind)):=1/(U(ind)̂ 2+1);

and the given PDE is further defined, in the solved form, as follows:

gem_decl_eqs([diff(U(ind),t,t)=diff(c(U(ind))̂ 2*diff(U(ind),x),x)],

solve_for=[diff(U(ind),t,t)]);

The split system of linear symmetry determining equations, where the symmetry
components depend on all independent and dependent variables, is generated by the
function

det_eqs:=gem_symm_det_eqs([ind, all_dep]):

yielding 16 determining equations. A variable containing the unknown symmetry

components will be needed for the further computations. It is initialized using the
function

sym_components:=gem_symm_components();

The output value is

sym_components := [xi_t(x, t, U), xi_x(x, t, U), eta_U(x, t, U)]

where the three quantities correspond to the symmetry components for t, x, u
respectively.

http://dx.doi.org/10.1007/978-3-319-08296-7_4
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The simplification and differential elimination of redundant determining
equations is obtained by calling the Maple rifsimp routine, as follows

symm_det_eqs:=DEtools[rifsimp](det_eqs, sym_components, mindim=1);

The mindim=1 option will force rifsimp to output the dimension of the solution
space, i.e., the number of independent point symmetries of the PDE (17). In this case,
the returned dimension is three. The system of 16 determining equations is reduced
to seven equations and is stored in symm_det_eqs[Solved]. The final solution
is performed using the standard Maple pdsolve routine,

symm_sol:=pdsolve(symm_det_eqs[Solved],sym_components);

returning

symm_sol :=eta_U(x, t, U) = 0, xi_t(x, t, U) = _C1*t+_C3, xi_x(x, t, U)=_C1*x+_C2

This final solution involves three arbitrary constants _C1, _C2, _C3, which agrees
with the dimension of the solution space returned by rifsimp.

Finally, the three independent symmetry generators are output using the command

gem_output_symm(symm_sol);

which yields the canonical forms of the point symmetries of the PDE (17) with the
wave speed (18)

X1 = ∂

∂t
, X2 = ∂

∂x
, X3 = t

∂

∂t
+ x

∂

∂x
·

The equation is thus invariant under t− and x− translations and a scaling.
(B) A nonlocal symmetry computation. For an arbitrary c(u), the PDE (17) has
four zeroth-order conservation laws with multipliers ℘ = 1, t, xt, x . In this example,
we use the second one. The conservation law is given by

Dt (tut − u) − Dx (tc
2(u)ux ) = 0

and the resulting potential system S{x, t; u, w} is

wx = tut − u, wt = tc2(u)ux . (19)

We study local symmetries of (19) to seek nonlocal symmetries of the PDE (17)
with the wave speed (18). The program proceeds in a fashion similar to the above
example.

restart; read("d:/gem32_02.mpl"):

ind:=x,t; all_dep:=U(ind),W(ind);
gem_decl_vars(indeps=[ind], deps=[all_dep]);

c(U(ind)):=1/(U(ind)̂ 2+1);
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gem_decl_eqs([diff(W(ind),x)=t*diff(U(ind),t)-U(ind),
diff(W(ind),t)=t*c(U(ind))̂ 2*diff(U(ind),x)],
solve_for=[diff(W(ind),x),diff(W(ind),t)]);

det_eqs:=gem_symm_det_eqs([ind, all_dep]):

sym_components:=gem_symm_components();
symm_det_eqs:=DEtools[rifsimp](det_eqs, sym_components, mindim=1);

symm_sol:=pdsolve(symm_det_eqs[Solved],sym_components);
gem_output_symm(symm_sol);

Here the dimension of the solution space is four and the output contains four sym-
metry generators

Y1 = ∂

∂w
, Y2 = ∂

∂x
, Y3 = t

∂

∂t
+ x

∂

∂x
+ w

∂

∂w

Y4 = tu
∂

∂t
+ w

∂

∂x
+ (u2 + 1)

∂

∂w
− x

∂

∂w
·

The symmetry Y4 yields a nonlocal symmetry of the given nonlinear wave equation
(17), since the component ξx = w involves the potential variable (cf. Definition 3).

3.2 Example 2: A Potential Symmetry Classification for the
Nonlinear Telegraph Equation

Let R{x, t; u} denote the nonlinear telegraph equation with the unknown function
u = u(x, t), given by

utt = (F(u)ux )x + (G(u))x . (20)

The complete point symmetry classification of the PDE (20) with respect to the
constitutive functions F(u) and G(u) can be found in Ref. [30].

The PDE (20) is a conservation law as it stands, hence one can introduce a potential
v(x, t) to obtain a potential system

ut = vx , vt = F(u)ux + G(u). (21)

The point symmetry classification of the PDE system (21) has been performed in [18].
In particular, it has been shown that in the cases F(u) = u−2, G(u) = u−1, and F(u)

arbitrary, G(u) = const, the potential system (21) has an infinite number of point
symmetries (nonlocal symmetries of the PDE (20)), and moreover, is linearizable by
a point transformation. (Thus the corresponding NLT equations (20) are linearizable
by a nonlocal transformation).
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The first equation of the system (21) is also a conservation law. Introducing a
second potential w accordingly, one has a potential system S{x, t; u, v, w} for three
dependent variables u(x, t), v(x, t), w(x, t), given by three PDEs

wt = v, wx = u, vt = F(u)ux + G(u). (22)

In our computations, for the simplicity of presentation, we will be avoiding detailed
calculations for the linearization cases, since they yield infinite sets of symmetries.

For the current example, we are interested in finding point symmetries of the
potential system S{x, t; u, v, w} (22) that correspond to nonlocal symmetries of
the original PDE (20). For brevity, we will restrict ourselves to the case of power
nonlinearities,

F(u) = uα, G(u) = uβ . (23)

The classification will thus be performed with respect to two constitutive parameters
α �= 0, β �= 0. (For the complete classification, see [10], Sect. 4.2.)

Point symmetry generators of the potential system S{x, t; u, v, w} (22) are of
the form

Z = ξ(x, t, u, v, w)
∂

∂x
+ τ (x, t, u, v, w)

∂

∂t
+ ηu(x, t, u, v, w)

∂

∂u

+ ηv(x, t, u, v, w)
∂

∂v
+ ηw(x, t, u, v, w)

∂

∂w
·

(24)

In order to find symmetries (24) that correspond to nonlocal symmetries of the given
PDE (20), one requires that at least one of the following six conditions is satisfied

∂ξt

∂v
�= 0,

∂ξt

∂w
�= 0,

∂ξx

∂v
�= 0

∂ξx

∂w
�= 0,

∂ηu

∂v
�= 0,

∂ηu

∂w
�= 0.

(25)

The Maple code for the symmetry classification proceeds as follows.

restart; read("d:/gem32_02.mpl"):

ind:=x,t; all_dep:=U(ind),V(ind),W(ind);

gem_decl_vars(indeps=[ind], deps=[all_dep],

freeconst=[],freefunc=[F(U(ind)),G(U(ind))]);

Here F(u) and G(u) are defined as arbitrary functions. It is important to do so even
though we are going to consider only power nonlinearities. The reason is that in order
to do the case splitting and simplification of the determining equations, the Maple

http://dx.doi.org/10.1007/978-3-319-08296-7_4
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function rifsimp is used; the latter can only handle polynomial nonlinearities.
Hence the code will proceed as follows

• Generate symmetry determining equations treating the nonlinear functions as
arbitrary (free) at the initial stage.

• In order to use the desired form of the “arbitrary functions”, employ the Maple
dpolyform function. This function converts a specified condition into the differ-
ential polynomial form. An analogous operation can be performed by hand. E.g.,
if we need to have H(u) = Aeku , A, k = const, the linear ODE and conditions
on H(u) can be

dH(u)

du
= k H(u), k �= 0, H(u) �= 0.

• When case splitting with rifsimp is performed, the system of determining
equations should be appended with the conditions defining the arbitrary functions.

The same approach should be used for any nonlinearities, including logarithms,
exponents, trigonometric functions, etc.

In our case, the conditions of F(u) and G(u) being power nonlinearities (23) can
be generated as follows. (We note that in the determining equations inGeM, dependent
variables of the given equations are treated as simple variables, not functions; hence
in the determining equations, F(U) not F(U(ind)) should be used.)

cond_FG_powers:={F(U)=Uˆn, G(U)=Uˆm};
cond_F_G:=PDEtools[dpolyform](cond_FG_powers,no_Fn);

cond_F_G_full:=convert(cond_F_G,list)[1][], F(U)<>0, G(U)<>0,

m<>0, n<>0;

The resulting set of conditions is given by a Maple set-type variable

cond_F_G_full := {diff(F(U), U) = F(U)*n/U, diff(G(U), U) = G(U)*m/U,

m<>0, n<>0, F(U) <> 0, G(U) <> 0 }

The equations are declared as follows.

gem_decl_eqs([diff(W(x,t),t)=V(x,t),

diff(W(x,t),x)=U(x,t),

diff(V(x,t),t)=F(U(x,t))*diff(U(x,t),x) +G(U(x,t))],

solve_for=[diff(W(x,t),t), diff(W(x,t),x),

diff(V(x,t),t)]);

Then the symmetry determining equations are generated and a variable of
symmetry components is initialized

det_eqs:=gem_symm_det_eqs([ind, all_dep]):
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sym_components:=gem_symm_components();

The next step is to unite the determining equations and the conditions
cond_F_G_full on the functions F(u) and G(u) to be power nonlinearities.
A set union is used:

det_eqs:=det_eqs union cond_F_G_full:

We now perform six rounds the symmetry classification and case splitting, using,
one by one, the conditions (25) for the symmetry to be essentially nonlocal. For the
classification, it is essential to use the casesplit option in the call to rifsimp.

Round 1: ∂ξt/∂v �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union diff{xi_t(x, t, U, V, W),V)<>0},

sym_components, mindim=1, casesplit);

The result contains only one case, with m = −1, n = −2, with the solution space
of dimension = ◦. As remarked above, we will not go into detailed computations
for this linearization case.

Round 2: ∂ξt/∂w �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(xi_t(x, t, U, V, W),W)<>0},

sym_components, mindim=1, casesplit);

This computation yields two cases: the linearization case m = −1, n = −2 and
another case m = 3, n = 2. (A case tree with pivots may be plotted using the
command DEtools[caseplot](symm_det_eqs,pivots);).

Let us compute all symmetries for the case m = 3, n = 2. The solution space
dimension (number of linearly independent symmetries) is equal to six. To obtain a
general symmetry generator, one uses the following commands.

symm_sol:=pdsolve(

subs({m=3,n=2,F(U)=A*Uˆ2,G(U)=B*Uˆ3}
symm_det_eqs[1][Solved]), sym_components);

The six symmetries can be output separately using

gem_output_symm(symm_sol);

The resulting set of symmetries is given by

Z1 = ∂

∂x
, Z2 = ∂

∂t
, Z3 = ∂

∂w
, Z4 = t

∂

∂w
+ ∂

∂v
+ w

∂

∂w
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Z5 = t
∂

∂t
− u

∂

∂u
− 2v

∂

∂v
− w

∂

∂w

Z6 = (Au + Bw)
∂

∂t
+ Av

∂

∂x
− Buv

∂

∂u
− Bv2 ∂

∂v
+ Auv

∂

∂w
·

The symmetry Z6 yields the nonlocal symmetry of the original NLT equation (20).
Round 3: ∂ξx/∂v �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(xi_x(x, t, U, V, W),V)<>0},

sym_components, mindim=1, casesplit);

This computation results in the same two cases: m = −1, n = −2 and m = 3,

n = 2, no new symmetries arise.
Round 4: ∂ξx/∂w �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(xi_x(x, t, U,V,W),W)<>0},

sym_components, mindim=1, casesplit);

The output of the above command is

symm_det_eqs := table([status = "system is inconsistent"])

which means that there are no point symmetries (24) of the potential system
S{x, t; u, v, w} (22) that satisfy ∂ξx/∂w �= 0.
Round 5: ∂ηu/∂v �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(eta_U(x, t, U, V, W),V)<>0},

sym_components, mindim=1, casesplit);

The computation again yields the same two cases: m = −1, n = −2 and m = 3,

n = 2.
Round 6: ∂ηu/∂w �= 0.

symm_det_eqs:=DEtools[rifsimp](det_eqs

union {diff(eta_U(x, t, U, V, W),W)<>0},

sym_components, mindim=1, casesplit);

The result of this computations is the same as for Round 4 above: no point symmetries
of the potential system S{x, t; u, v, w} (22) satisfying ∂ηu/∂w �= 0 exist.
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3.3 Example 3: A Nonlocal Conservation Law Classification
for the Nonlinear Telegraph Equation

Consider a class of diffusion-convection equations R{x, t; u} of the form

ut = (A(u)ux )x + (B(u))x (26)

where A(u) and B(u) are arbitrary constitutive functions, and A(u) �= 0. The break
linear case A = 1, B = const is excluded. The complete classification of linearly
independent local conservation laws for (26) yields the following results [34].

1. For arbitrary A(u), B(u), the only local conservation law of (26) is given by

Dt (u) − Dx

(
A(u)ux + B(u)

)
= 0. (27)

2. For arbitrary A(u), and B(u) = 0, there are two local conservation laws of (26).
3. For arbitrary A(u), and B(u) = A(u), the PDE (26) has four local conservation

laws.

We employ the conservation law (27) to construct the potential system S{x, t; u, v}

vx = u, vt = A(u)ux + B(u). (28)

We wish to perform the local conservation law classification of the potential
system (28) and find conservation laws that yield nonlocal conservation laws of the
given PDE (26).

Here we restrict to zeroth-order multipliers ℘1(x, t, U, V ), ℘2(x, t, U, V ). More-
over, for simplicity of computation, we specify

A(u) := u4

and perform the nonlocal conservation law classification with respect to the remaining
arbitrary function B(u). The full Maple program for the computation is given below.

First, the package is initialized, and variables and the free function B(u) are
declared.

restart; read("d:/gem32_02.mpl"):

ind:=x,t; all_dep:=U(ind),V(ind);

gem_decl_vars(indeps=[ind], deps=[all_dep],freefunc=[B(U(ind))]);

Second, the function A(u) is specialized, and the PDEs (28) are declared.

A(U(ind)):= (U(ind)̂ 4);
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gem_decl_eqs([diff(V(ind),x)=U(ind),

diff(V(ind),t)=A(U(ind))*diff(U(ind),x) + B(U(ind))],

solve_for=[diff(V(ind),x),diff(V(ind),t)]);

The conservation law determining equations are obtained, in the split form, by
calling the functon

det_eqs:=gem_conslaw_det_eqs([ind, all_dep]):

where the list in [...] determines the dependence of the multipliers. This yields 6
determining equations.

The multiplier variables are accessed by calling

CL_multipliers:=gem_conslaw_multipliers();

Further, we perform the case splitting, assuming that B(u) �= 0, and seeking
conservation laws where at least one multiplier essentially involves the potential v

(cf. Theorem 3).
Round 1: ∂℘1/∂V �= 0. Here one has

simplified_eqs:=DEtools[rifsimp]( {det_eqs[]} union {B(U)<>0}

union {diff(Lambda1(x, t, U, V),V)<>0},

CL_multipliers, casesplit, mindim=1);

The only nontrivial case returned has dimension one, i.e., it yields a single con-
servation law of the required type. The condition on the function B(u) within
simplified_eqs[Solved] is

diff(B(U), U, U, U, U) = (6*(diff(B(U), U, U, U))*U−12*(diff(B(U), U, U)))/Uˆ 2

Using dsolve, one readily finds that B(U ) must have the form

B(U ) = M1U 6 + M2U 5 + M3U + M4, M1, . . . , M4 = const.

For the subsequent computations, it is more straightforward to initialize the func-
tion B(U ) to the above expression, and then again perform the simplification of
determining equations

B(U):=M1*Uˆ6+M2*Uˆ5+M3*U+M4;

simplified_eqs:=DEtools[rifsimp](det_eqs, CL_multipliers, mindim=1);

One then solves for the multipliers

multipliers_sol:=pdsolve(simplified_eqs[Solved], CL_multipliers);

to obtain
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multipliers_sol :=

{Lambda1(x, t, U, V) = -_C1*exp(−(5*(M1*M4-M2*M3))*t)*exp(5*M1*V)

*exp(5*M2*x)*(M1*Uˆ5+M3)

Lambda2(x, t, U, V) =_C1*exp(-(5*(M1*M4-M2*M3))*t)

*exp(5*M1*V)*exp(5*M2*x)}

Here _C1 is the only arbitrary constant, so indeed, one conservation law is obtained.
In the regular form

℘1(x, t, U, V ) = −C1(M1U 5 + M3)e5(M2x+M1V +(M2 M3−M1 M4)t)

℘2(x, t, U, V ) = C1e5(M2x+M1V +(M2 M3−M1 M4)t).
(29)

Finally, the conservation law density and flux are computed using the function

gem_get_CL_fluxes(multipliers_sol);

(Other flux computation methods are available; see [10, 23].)
The newly computed conservation law is given by

Dt e5(M2x+M1v+(M2 M3−M1 M4)t)

−Dx
(
(M1u5 + M3)e5(M2x+M1v+(M2 M3−M1 M4)t)

) = 0.
(30)

This is a nonlocal conservation law of the diffusion-convection PDE (26) since it
is not equivalent to any of its local conservation laws [10, 34].

Round 2: ∂℘2/∂V �= 0. For this case, one obtains exactly the same result, i.e.,
a single pair of potential-dependent multipliers (29). Indeed, both multipliers there
have a similar exponential dependence on v.

4 Discussion

The symbolic software package GeM for Maple, in conjunction with standard
Maple routines like rifsimp and dsolve/pdsolve, offers convenient ways
to compute symmetries and conservation laws of systems of differential equations,
and importantly, perform symmetry and conservation law classifications with respect
to arbitrary functions and parameters.

Such computations can be applied to potential systems, as shown in Sect. 3.1
where local symmetry analysis of a potential system for a nonlinear wave equation
was used to compute a nonlocal symmetry of that equation.

It is rather straightforward, by appending extra conditions, to restrict the compu-
tations to seek specifically nonlocal symmetries or new (local or nonlocal) conser-
vation laws arising as local ones for the potential system. In Sect. 3.2, the nonlinear
telegraph equation (20) and its potential system (22) involving two potential variables



Symbolic Computation of Nonlocal Symmetries and Nonlocal Conservation Laws 183

were considered. By using the conditions (25) in symbolic symmetry computations
for the potential system, the two cases of power nonlinearities m = −1, n = −2 and
m = 3, n = 2 were isolated, for which nonlocal symmetries of the original equation
arise.

In symmetry and conservation law computations in Maple that use rifsimp,
nonlinearities have to be restricted to differential polynomial ones. Hence if a given
DE system contains nonlinearities of other types, one has to recast the nonlinear
functions into “arbitrary” functions that satisfy additional linear or differential poly-
nomial equations. An example for power nonlinearities was presented in Sect. 3.2.

In cases when a PDE system under consideration has an infinite set of symmetries
and/or conservation laws, the rifsimp routine returns dimension = ◦ for each
such case. It is important to exercise care in the analysis of determining equations in
the rifsimp output in such situations. In particular, Maple pdsolve may return
incomplete results.

For PDE systems involving n ⊕ 3 independent variables, computations generally
proceed the same way. Many specific aspects of construction of nonlocally related
systems and nonlocal symmetry and conservation law computations were discussed
in [10, 20, 21].

In terms of the further development of symbolic software for nonlocal and local
symmetry/conservation law analysis and classification, the future research directions
will naturally include the detailed development of more examples, and the automation
of case-by-case consideration in the classifications.
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Symmetries of Hamiltonian Systems
on Symplectic and Poisson Manifolds

Charles-Michel Marle

Abstract This text presents some basic notions in symplectic geometry, Poisson
geometry, Hamiltonian systems, Lie algebras and Lie groups actions on symplectic
or Poisson manifolds, momentum maps and their use for the reduction of Hamiltonian
systems. It should be accessible to readers with a general knowledge of basic notions
in differential geometry. Full proofs of many results are provided.

1 Introduction

This text presents some basic notions in symplectic geometry, Poisson geometry,
Hamiltonian systems, Lie algebras and Lie groups actions on symplectic or Poisson
manifolds, momentum maps and their use for the reduction of Hamiltonian systems.
It should be accessible to readers with a general knowledge of basic notions in
differential geometry. Full proofs of many results are provided.

1.1 Contents of the Paper

Symplectic and Poisson manifolds are defined in Sects. 2 and 3, where their basic
properties are given, often with detailed proofs. Darboux theorem and the main
results about the local structure of Poisson manifolds, however, are given without
proof. Actions of a Lie group or of a Lie algebra on a smooth manifold and, when
this manifold is endowed with a symplectic or a Poisson structure, symplectic, Pois-
son and Hamiltonian actions are introduced in Sect. 4. For Hamiltonian actions of a
Lie group on a connected symplectic manifold, the equivariance of the momentum
map with respect to an affine action of the group on the dual of its Lie algebra is
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proven, and the notion of symplectic cocycle is introduced. We prove (4.2.13) that
given a Lie algebra symplectic cocycle, there exists on the associated connected and
simply connected Lie group a unique corresponding Lie group symplectic cocycle.
The Hamiltonian actions of a Lie group on its cotangent bundle obtained by lift-
ing the actions of the group on itself by translations on the left and on the right
are fully discussed in Sect. 4.5. We prove that there exists a two-parameter family
of deformations of these actions into a pair of mutually symplectically orthogo-
nal Hamiltonian actions whose momentum maps are equivariant with respect to an
affine action involving any given Lie group symplectic cocycle (4.5.4). The use of
first integrals and, more generally, of momentum maps for the resolution of Hamil-
tonian dynamical systems, is discussed in Sect. 5. For a system whose Hamiltonian is
invariant under a Hamiltonian Lie algebra action, the Marsden–Weinstein reduction
procedure can be used: through the use of Noether’s theorem, this procedure leads
to a reduced symplectic manifold on which a reduced Hamiltonian system can be
solved in a first step. Another way of using the symmetries of the system rests on
the use of the Euler–Poincaré equation. This equation can be written for classical
Lagrangian mechanical systems when there exists a locally transitive Lie algebra
action on their configuration space, or for the corresponding Hamiltonian systems
when the Lagrangian is hyper-regular. However, the Euler–Poincaré equation does
not always lead to a reduction of the system: such a reduction occurs mainly when
the Hamiltonian can be expressed as the momentum map composed with a smooth
function defined on the dual of the Lie algebra; the Euler–Poincaré equation is then
equivalent to the Hamilton equation written on the dual of the Lie algebra. Finally in
Sect. 6 three classical examples are considered: the spherical pendulum, the motion
of a rigid body around a fixed point and the Kepler problem. For each example the
Euler–Poincaré equation is derived (for the Kepler problem a transitive Lie algebra
action is obtained by adding the Lie algebra of the group of positive homotheties
to the Lie algebra of the group of rotations around the attractive centre), the first
integrals linked to symmetries are given. In this Section, the classical concepts of
vector calculus on an Euclidean three-dimensional vector space (scalar, vector and
mixed products) are used and their interpretation in terms of concepts such as the
adjoint or coadjoint action of the group of rotations are explained.

1.2 Further Reading

Of course this text is just an introduction. Several important parts of the theory of
Hamiltonian systems are not discussed here, for example completely integrable sys-
tems (although the three examples presented belong to that class of systems), action-
angle coordinates, monodromy, singular reduction, the Kolmogorov-Arnold-Moser
theorem, symplectic methods in Hydrodynamics, ... To extend his knowledge of the
subject, the reader can consult the books by Abraham and Marsden [1], Arnold [2],
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Arnold and Khesin [3], Iglesias-Zemmour [4], Camille Laurent-Gengoux, Pichereau
and Vanhaecke [5], Yvette Kosmann-Schwarzbach (editor) [6] on both the scientific
and historical aspects of the development of modern Poisson geometry, Vaisman [7].

1.3 Notations

Our notations are those which today are generally used in differential geometry. For
example, the tangent and the cotangent bundles to a smooth n-dimensional manifold
M are denoted, respectively, by TM and by T∗M, and their canonical projections on
M by ∂M : TM ≡ M and by ηM : T∗M ≡ M. The space of differential forms
of degree p, i.e. the space of smooth sections of

∧p
(T∗M), the p-th exterior power

of the cotangent bundle, is denoted by Φp(M). Similarly the space of multivectors
of degree p, i.e. the space of smooth sections of

∧p
(TM), the p-th exterior power

of the tangent bundle, is denoted by Ap(M). By convention Φp(M) = Ap(M) = 0
for p < 0 or p > n, and Φ0(M) = A0(M) = C◦(M,R). The exterior algebras of
differential forms and of multivectors are, respectively, Φ(M) = ⊕n

p=0Φ
p(M) and

A(M) = ⊕n
p=0Ap(M). Their main properties are briefly recalled in Sect. 3.2.

When f : M ≡ N is a smooth map between two smooth manifolds M and N ,
the natural lift of f to the tangent bundles is denoted by Tf : TM ≡ TN . The same
notation Tf : ∧p TM ≡ ∧p TN is used to denote its natural prolongation to the p-th
exterior power of TM. The pull-back by f of a smooth differential form θ ∈ Φ(N)

is denoted by f ∗θ.
When f : M ≡ N is a smooth diffeomorphism, the push-forward f∗X of a smooth

vector field X ∈ A1(M) is the vector field f∗X ∈ A1(N) defined by

f∗X(y) = Tf
(

X
(
f −1(y)

))
, y ∈ N .

Similarly, the pull-back of a smooth vector field Y ∈ A1(N) is the vector field
f ∗Y ∈ A1(M) defined by

f ∗Y(x) = Tf −1
(

Y
(
f (x)

))
, x ∈ M.

The same notation is used for the push-forward of any smooth tensor field on M and
the pull-back of any smooth tensor field on N .

2 Symplectic Manifolds

2.1 Definition and Elementary Properties

Definition 2.1.1 A symplectic form on a smooth manifold M is a bilinear skew-
symmetric differential form ε on that manifold which satisfies the following two
properties:
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• the form ε is closed; it means that its exterior differential dε vanishes: dε = 0;
• the rank of ε is everywhere equal to the dimension of M; it means that for each

point x ∈ M and each vector v ∈ TxM, v →= 0, there exists another vector w ∈ TxM
such that ε(x)(v,w) →= 0.

Equipped with the symplectic form ε, the manifold M is called a symplectic manifold
and denoted (M,ε). One says also that ε determines a symplectic structure on the
manifold M.

2.1.1 Elementary Properties of Symplectic Manifolds

Let (M,ε) be a symplectic manifold.
1. For each x ∈ M and each v ∈ TxM we denote by i(v)ε : TxM ≡ R the map
w ∞≡ ε(x)(v,w); it is a linear form on the vector space TxM, in other words an
element of the cotangent space T∗

x M. Saying that the rank of ε is everywhere equal
to the dimension of M amounts to say that the map v ∞≡ i(v)ε is an isomorphism of
the tangent bundle TM onto the cotangent bundle T∗M.
2. Let V be a finite-dimensional vector space, and ξ : V × V ≡ R be a skew-
symmetric bilinear form. As above, v ∞≡ i(v)ξ is a linear map defined on V , with
values in its dual space V∗. The rank of ξ is the dimension of the image of that map.
An easy result in linear algebra is that the rank of a skew-symmetric bilinear form is
always an even integer. When (M,ε) is a symplectic manifold, for each x ∈ M that
result can be applied to the bilinear form ε(x) : TxM × TxM ≡ R, and we see that
the dimension of M must be an even integer 2n.
3. The Darboux theorem, due to the French mathematician Gaston Darboux (1842–
1917), states that in a 2n-dimensional symplectic manifold (M,ε) any point has a
neighbourhood on which there exists local coordinates (x1, ..., x2n) in which the
(2n) × (2n)-matrix (εi j) (1 ≤ i, j ≤ 2n) of components of ε is a constant, skew-
symmetric invertible matrix. We recall that

εi j = ε

(
τ

τxi
,

τ

τxj

)
.

These local coordinates can even be chosen in such a way that

εij =

⎧⎪⎨
⎪⎩

1 if i − j = n,

−1 if i − j = −n,

0 if |i − j| →= n,

1 ≤ i, j ≤ 2n.

Local coordinates which satisfy this property are called Darboux local coordinates.
4. On the 2n-dimensional symplectic manifold (M,ε), the 2n-form εn (the n-th
exterior power of ε) is a volume form (it means that it is everywhere →= 0). Therefore
a symplectic manifold always is orientable.
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2.2 Examples of Symplectic Manifolds

2.2.1 Surfaces

A smooth orientable surface embedded in an Euclidean 3-dimensional affine space,
endowed with the area form determined by the Euclidean metric, is a symplectic
manifold.

More generally, any 2-dimensional orientable manifold, equipped with a nowhere
vanishing area form, is a symplectic manifold.

2.2.2 Symplectic Vector Spaces

A symplectic vector space is a finite-dimensional real vector space E equipped with
a skew-symmetric bilinear form ε : E ×E ≡ R of rank equal to the dimension of E;
therefore dim E is an even integer 2n. Considered as a constant differential two-form
on E, ξ is symplectic, which allows us to consider (E, ξ) as a symplectic manifold.

The canonical example of a symplectic vector space is the following. Let V be
a real n-dimensional vector space and let V∗ be its dual space. There exists on the
direct sum V ⊕ V∗ a natural skew-symmetric bilinear form

ξ
(
(x1, ω1), (x2, ω2)

) = 〈ω1, x2√ − 〈ω2, x1√.

The rank of ξ being 2n, (V ⊕ V∗, ξ) is a symplectic vector space.
Conversely, any 2n-dimensional symplectic vector space (E,ε) can be identified

with the direct sum of any of its n-dimensional vector subspaces V such that the
symplectic form ε vanishes identically on V × V , with its dual space V∗. In this
identification, the symplectic form ε on E becomes identified with the above-defined
symplectic form ξ on V ⊕ V∗.

2.2.3 Cotangent Bundles

Let N be a smooth n-dimensional manifold. With the notations of Sect. 1.3 for the
canonical projections of tangent or cotangent bundles onto their base manifold and
for prolongation to vectors of a smooth map, we recall that the diagram

T (T ∗N)
TπN

TN

T ∗N

τT∗N

πN
N

τN

is commutative. For each w ∈ T(T∗N), we can therefore write

ξN (w) = 〈
∂T∗N (w), TηN (w)

〉
.
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This formula defines a differential 1-form ξN on the manifold T∗N , called the Liou-
ville 1-form. Its exterior differential dξN is a symplectic form, called the canonical
symplectic form on the cotangent bundle T∗N .

Let (x1, ..., xn) be a system of local coordinates on N , (x1, ..., xn, p1, ..., pn) be
the corresponding system of local coordinates on T∗N . The local expressions of the
Liouville form ξN and of its exterior differential dξN are

ξN =
n∑

i=1

pidxi , dξN =
n∑

i=1

dpi ≥ dxi .

We see that (x1, ..., xn, p1, ..., pn) is a system of Darboux local coordinates. Therefore
any symplectic manifold is locally isomorphic to a cotangent bundle.

2.2.4 The Complex Plane

The complex plane C is naturally endowed with a Hermitian form

ξ(z1, z2) = z1z2 , z1and z2 ∈ C ,

where z2 is the conjugate of the complex number z2. Let us write z1 = x1 + iy1,
z2 = x2 + iy2, where x1, y1, x2, y2 are real, and separate the real and imaginary
parts of ξ(z1, z2). We get

ξ(z1, z2) = (x1x2 + y1y2) + i(y1x2 − y2x1).

The complex planeC has an underlying structure of real, 2-dimensional vector space,
which can be identified with R

2, each complex number z = x + iy ∈ C being
identified with (x, y) ∈ R

2. The real and imaginary parts of the Hermitian form ξ on
C are, respectively, the Euclidean scalar product g and the symplectic form ε on R

2

such that

ξ(z1, z2) = (x1x2 + y1y2) + i(y1x2 − y2x1)

= g
(
(x1, y1), (x2, y2)

)+ iε
(
(x1, y1), (x2, y2)) .

2.2.5 Kähler Manifolds

More generally, a n-dimensional Kähler manifold (i.e. a complex manifold of com-
plex dimension n endowed with a Hermitian form whose imaginary part is a closed
two-form), when considered as a real 2n-dimensional manifold, is automatically
endowed with a Riemannian metric and a symplectic form given, respectively, by
the real and the imaginary parts of the Hermitian form.
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Conversely, it is not always possible to endow a symplectic manifold with a
complex structure and a Hermitian form of which the given symplectic form is the
imaginary part. However, it is always possible to define, on a symplectic manifold,
an almost complex structure and an almost complex 2-form with which the properties
of the symplectic manifold become similar to those of a Kähler manifold (but with
change of chart functions which are not holomorphic functions). This possibility was
used by Gromov [8] in his theory of pseudo-holomorphic curves.

2.3 Remarkable Submanifolds of a Symplectic Manifold

Definitions 2.3.1 Let (V ,ε) be a symplectic vector space, and W be a vector sub-
space of V . The symplectic orthogonal of W is the vector subspace

orth W = { v ∈ V ; ε(v,w) = 0 for all w ∈ W } .

The vector subspace W is said to be

• isotropic if W ≤ orth W ,
• coisotropic if W ∼ orth w,
• Lagrangian if W = orth W ,
• symplectic if W ⊕ orth W = V .

2.3.1 Properties of Symplectic Orthogonality

The properties stated below are easily consequences of the above definitions
1. For any vector subspace W of the symplectic vector space (W ,ε), we have
orth(orth W) = W .
2. Let dim V = 2n. For any vector subspace W of V , we have dim(orth W) =
dim V − dim W = 2n − dim W . Therefore, if W is isotropic, dim W ≤ n; if W is
coisotropic, dim W ≥ n; and if W is Lagrangian, dim W = n.
3. Let W be an isotropic vector subspace of V . The restriction to W × W of the
symplectic form ε vanishes identically. Conversely, if W is a vector subspace such
that the restriction of ε to W × W vanishes identically, W is isotropic.
4. A Lagrangian vector subspace of V is an isotropic subspace whose dimension is
the highest possible, equal to half the dimension of V .
5. Let W be a symplectic vector subspace of V . Since W ∩ orth W = {0}, the rank
of the restriction to W × W of the form ε is equal to dim W ; therefore dim W is even
and, equipped with the restriction of ε, W is a symplectic vector space. Conversely
if, when equipped with the restriction of ε, a vector subspace W of V is a symplectic
vector space, we have W ⊕ orth W = V , and W is a symplectic vector subspace of
V in the sense of the above definition.
6. A vector subspace W of V is symplectic if and only if orth W is symplectic.
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Definitions 2.3.2 Let (M,ε) be a symplectic manifold. For each x ∈ M, ((TxM,

ε(x)) is a symplectic vector space. A submanifold N of M is said to be

• isotropic if for each x ∈ N , TxN is an isotropic vector subspace of the symplectic
vector space

(
TxM,ε(x)

)
,

• coisotropic if for each x ∈ N , TxN is a coisotropic vector subspace of
(
TxM,ε(x)

)
,

• Lagrangian if for each x ∈ N , TxN is a Lagrangian vector subspace of
(
TxM,ε(x)

)
,

• symplectic if for each x ∈ N , TxN is a symplectic vector subspace of
(
TxM,ε(x)

)
.

2.4 Hamiltonian Vector Fields on a Symplectic Manifold

Let (M,ε) be a symplectic manifold. We have seen that the map which associates
to each vector v ∈ TM the covector i(v)ε is an isomorphism from TM onto T∗M.
So, for any given differential one-form θ, there exists a unique vector field X such
that i(X)ε = θ. We are therefore allowed to state the following definitions.

Definitions 2.4.1 Let (M,ε) be a symplectic manifold and f : M ≡ R be a smooth
function. The vector field Xf which satisfies

i(Xf )ε = −df

is called the Hamiltonian vector field associated to f . The function f is called a
Hamiltonian for the Hamiltonian vector field Xf .

A vector field X on M such that the one-form i(X)ε is closed,

di(X)ε = 0 ,

is said to be locally Hamiltonian.

Remarks 2.4.2 The function f is not the unique Hamiltonian of the Hamiltonian
vector field Xf : any function g such that i(Xf )ε = −dg is another Hamiltonian for
Xf . Given a Hamiltonian f of Xf , a function g is another Hamiltonian for Xf if and
only if d(f − g) = 0, or in other words if and only if f − g keeps a constant value on
each connected component of M

Of course, a Hamiltonian vector field is locally Hamiltonian. The converse is not
true when the cohomology space H1(M,R) is not trivial.

Proposition 2.4.3 On a symplectic manifold (M,ε), a vector field X is locally
Hamiltonian if and only if the Lie derivative L(X)ε of the symplectic form ε with
respect to X vanishes:

L(X)ε = 0 .

The bracket [X, Y ] of two locally Hamiltonian vector fields X and Y is Hamil-
tonian, and has as a Hamiltonian the function ε(X, Y).
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Proof The well known formula which relates the exterior differential d, the interior
product i(X) and the Lie derivative L(X) with respect to the vector field X

L(X) = i(X)d + di(X)

proves that when X is a vector field on a symplectic manifold (M,ε)

L(X)ε = di(X)ε ,

since d ε = 0. Therefore i(X)ε is closed if and only if L(X)ε = 0.
Let X and Y be two locally Hamiltonian vector fields. We have

i
([X, Y ])ε = L(X)i(Y)ε − i(Y)L(X)ε

= L(X)i(Y)ε

= (
i(X)d + d i(X)

)
i(Y)ε

= d i(X)i(Y)ε

= −d
(
ε(X, Y)

)
,

which proves that ε(X, Y) is a Hamiltonian for [X, Y ]. �

2.4.1 Expression in a System of Darboux Local Coordinates

Let (x1, ..., x2n) be a system of Darboux local coordinates. The symplectic form ε
can be locally writen as

ε =
n∑

i=1

d xn+i ≥ d xi ,

so we see that the Hamiltonian vector field Xf associated to a smooth function f can
be locally written as

Xf =
n∑

i=1

τf

τxn+i

τ

τxi
− τf

τxi

τ

τxn+i
.

A smooth curve σ drawn in M parametrized by the real variable t is said to be a
solution of the differential equation determined by Xf , or an integral curve of Xf , if
it satisfies the equation, called the Hamilton equation for the Hamiltonian f ,

dσ(t)

dt
= Xf

(
σ(t)

)
.

Its local expression in the considered system of Darboux local coordinates is
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{
dxi

dt = τf
τxn+i ,

dxn+i

dt = − τf
τxi ,

(1 ≤ i ≤ n).

Definition 2.4.4 Let Λ:N ≡ N be a diffeomorphism of a smooth manifold N onto
itself. The canonical lift of Λ to the cotangent bundle is the transpose of the vector
bundles isomorphism T(Λ−1) = (TΛ)−1:TN ≡ TN . In other words, denoting by
Λ̂ the canonical lift of Λ to the cotangent bundle, we have for all x ∈ N , ϕ ∈ T∗

x N
and v ∈ TΛ(x)N , 〈

Λ̂(ϕ), v
〉 = 〈

ϕ, (TΛ)−1(v)
〉
.

Remark 2.4.5 With the notations of Definition 2.4.4, we have ηN ⊗ Λ̂ = Λ ⊗ ηN .

2.4.2 The Flow of a Vector Field

Let X be a smooth vector field on a smooth manifold M. We recall that the reduced
flow of X is the map Λ, defined on an open subset Φ of R× M and taking its values
in M, such that for each x ∈ M the parametrized curve t ∞≡ σ(t) = Λ(t, x) is the
maximal integral curve of the differential equation

dσ(t)

dt
= X

(
σ(t))

which satisfies σ(0) = x. For each t ∈ R, the set Dt = {x ∈ M; (t, x) ∈ Φ} is an
open subset of M and when Dt is not empty the map x ∞≡ Λt(x) = Λ(t, x) is a
diffeomorphism of Dt onto D−t .

Definitions 2.4.6 Let N be a smooth manifold, TN and T∗N be its tangent and
cotangent bundles, ∂N : TN ≡ N and ηN : T∗N ≡ N be their canonical projections.
Let X be a smooth vector field on N and {ΛX

t ; t ∈ R} be its reduced flow.

1. The canonical lift of X to the tangent bundle TN is the unique vector field X on
TM whose reduced flow {ΛX

t ; t ∈ R} is the prolongation to vectors of the reduced
flow of X. In other words, for each t ∈ R,

ΛX
t = TΛX

t ,

therefore, for each v ∈ TN ,

X(v) = d

dt

(
TΛX

t (v)
) ∣∣

t=0 .

2. The canonical lift of X to the cotangent bundle T∗N is the unique vector field X̂
on T∗M whose reduced flow {Λ X̂

t ; t ∈ R} is the lift to the cotangent bundle of the
reduced flow {ΛX

t ; t ∈ R} of X. In other words, for each t ∈ R,
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Λ X̂
t = Λ̂X

t ,

therefore, for each ϕ ∈ T∗N ,

X̂(ϕ) = d

dt

(
Λ̂X

t (ϕ)
) ∣∣

t=0 .

Remark 2.4.7 Let X be a smooth vector field defined on a smooth manifold N . Its
canonical lift X to the tangent bundle TN (2.4.6) is related to the prolongation to
vectors TX : TN ≡ T(TN) by the formula

X = αN ⊗ TX ,

where αN : T(TN) ≡ T(TN) is the canonical involution of the tangent bundle to
TN (see [9]).

Proposition 2.4.8 Let Λ : N ≡ N be a diffeomorphism of a smooth manifold N
onto itself and Λ̂ : T∗N ≡ T∗N the canonical lift of Λ to the cotangent bundle. Let
ξN be the Liouville form on T∗N. We have

Λ̂∗ξN = ξN .

Let X be a smooth vector field on N, and X̂ be the canonical lift of X to the
cotangent bundle. We have

L(X̂)(ξN ) = 0 .

Proof Let ϕ ∈ T∗N and v ∈ Tϕ(T∗N). We have

Λ̂∗ξN (v) = ξN
(
TΛ̂(v)

) = 〈
∂T∗N ⊗ TΛ̂(v), TηN ⊗ TΛ̂(v)

〉
.

But ∂T∗N ⊗ TΛ̂ = Λ̂ ⊗ ∂T∗N and TηN ⊗ TΛ̂ = T(ηN ⊗ Λ̂) = T(Λ ⊗ ηN ). Therefore

Λ̂∗ξN (v) = 〈
Λ̂ ⊗ ∂T∗N (v), T(Λ ⊗ ηN )(v)

〉 = 〈
∂T∗N (v), TηN (v)

〉 = ξN (v)

since Λ̂ = (TΛ−1)T . Now let X be a smooth vector field on N , {ΛX
t ; t ∈ R} be its

reduced flow, and X̂ be the canonical lift of X to the cotangent bundle. We know that
the reduced flow of X̂ is {Λ̂X

t ; t ∈ R}, so we can write

L(X̂)ξN = d

dt

(
Λ̂X

t
∗
ξN
) ∣∣

t=0 .

Since Λ̂X
t

∗
ξN = ξN does not depend on t, L(X̂)ξN = 0. �

The following Proposition, which presents an important example of Hamiltonian
vector field on a cotangent bundle, will be used when we will consider Hamiltonian
actions of a Lie group on its cotangent bundle.
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Proposition 2.4.9 Let N be a smooth manifold, T∗N be its cotangent bundle, ξN be
the Liouville form and dξN be the canonical symplectic form on T∗N. Let X be a
smooth vector field on N and fX : T∗N ≡ R be the smooth function defined by

fX(ϕ) =
〈
ϕ, X

(
ηN (ϕ)

)⎛
, ϕ ∈ T∗N .

On the symplectic manifold (T∗N, dξN ), the vector field X̂, canonical lift to T∗N
of the vector field X on N in the sense defined above (2.4.6), is a Hamiltonian field
which has the function fX as a Hamiltonian. In other words

i(X̂)dξN = −dfX .

Moreover,
fX = i(X̂)ξN .

Proof We have seen (Proposition 2.4.8) that L(X̂)ξN = 0. Therefore

i(X̂)dξN = L(X̂)ξN − di(X̂)ξN = −di(X̂)ξN ,

which proves that X̂ is Hamiltonian and admits i(X̂)ξN as Hamiltonian. For each
ϕ ∈ T∗N

i(X̂)ξN (ϕ) = ξN (X̂)(ϕ) =
〈
ϕ, TηN

(
X̂(ϕ)

)⎛ =
〈
ϕ, X

(
ηN (ϕ)

)⎛ = fX(ϕ) . �

2.5 The Poisson Bracket

Definition 2.5.1 The Poisson bracket of an ordered pair (f , g) of smooth functions
defined on the symplectic manifold (M,ε) is the smooth function {f , g} defined by
the equivalent formulae

{f , g} = i(Xf ) dg = −i(Xg) df = ε(Xf , Xg) ,

where Xf and Xg are the Hamiltonian vector fields on M with, respectively, the
functions f and g as Hamiltonian.

Lemma 2.5.2 Let (M,ε) be a symplectic manifold, let f and g be two smooth
functions on M and let Xf and Xg be the associated Hamiltonian vector fields. The
bracket [Xf , Xg] is a Hamiltonian vector field which admits {f , g} as Hamiltonian.

Proof This result is an immediate consequence of Proposition 2.4.3. �
Proposition 2.5.3 Let (M,ε) be a symplectic manifold. The Poisson bracket is a
bilinear composition law on the space C◦(M,R) of smooth functions on M, which
satisfies the following properties.
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1. It is skew-symmetric: {g, f } = −{f , g}.
2. It satisfies the Leibniz identity with respect to the ordinary product of functions:

{f , gh} = {f , g}h + g{f , h} .

3. It satisfies the Jacobi identity, which is a kind of Leibniz identity with respect to
the Poisson bracket itself:

⎜
f , {g, h}⎝ = ⎜{f , g}, h

⎝+ ⎜
g, {f , h}⎝ ,

which can also be written, when the skew-symmetry of the Poisson bracket is taken
into account, ⎜{f , g}, h

⎝+ ⎜{g, h}, f
⎝+ ⎜{h, f }, g⎝ = 0 .

Proof The proofs of Properties (i) and (ii) are very easy and left to the reader. Let us
proove Property (iii).

We have

⎜{f , g}, h
⎝ = ε(X{f ,g}, Xh) = −i(X{f ,g})i(Xh)ε = i(X{f ,g})dh .

By Lemma 2.5.2, X{f ,g} = [Xf , Xg] so we have

⎜{f , g}, h
⎝ = i

([Xf , Xg]
)
dh = L([Xf , Xg]

)
h .

We also have

⎜{g, h}, f
⎝ = −L(Xf ) ⊗ L(Xg)h ,

⎜{h, f }, g⎝ = L(Xg) ⊗ L(Xf )h .

Taking the sum of these three terms, and taking into account the identity

L([Xf , Xg]
) = L(Xf ) ⊗ L(Xg) − L(Xg) ⊗ L(Xf ) ,

we see that the Jacobi identity is satisfied. �

Remarks 2.5.4 1. In a system of Darboux local coordinates (x1, ..., x2n), the Pois-
son bracket can be written

{f , g} =
n∑

i=1

(
τf

τxn+i

τg

τxi
− τf

τxi

τg

τxn+i

)
.

2. Let H be a smooth function on the symplectic manifold (M,ε), and XH be the
associaled Hamiltonian vector field. By using the Poisson bracket, one can write in a
very concise way the Hamilton equation for XH . Let t ∞≡ σ(t) be any integral curve
of XH . Then for any smooth function f : M ≡ R



198 C.-M. Marle

df
(
σ(t)

)
dt

= {H, f }(σ(t)
)
.

By successively taking for f the coordinate functions x1, ..., x2n of a system of
Darboux local coordinates, we recover the equations

{
dxi

dt = τH
τxn+i ,

dxn+i

dt = −τH
τxi ,

(1 ≤ i ≤ n) .

3 Poisson Manifolds

3.1 The Inception of Poisson Manifolds

Around the middle of the XX-th century, several scientists felt the need of a frame
in which Hamiltonian differential equations could be considered, more general than
that of symplectic manifolds. Paul Dirac for example proposed such a frame in his
famous 1950 paper Generalized Hamiltonian dynamics [10, 11].

In many applications in which, starting from a symplectic manifold, another man-
ifold is built by a combination of processes (products, quotients, restriction to a
submanifold, ...), there exists on that manifold a structure, more general than a sym-
plectic structure, with which a vector field can be associated to each smooth function,
and the bracket of two smooth functions can be defined. It was also known that on
a (odd-dimensional) contact manifold one can define the bracket of two smooth
functions.

Several generalizations of symplectic manifolds were defined and investigated
by André Lichnerowicz during the years 1975–1980. He gave several names to
these generalizations: canonical, Poisson, Jacobi and locally conformally symplectic
manifolds [12, 13].

In 1976 Alexander Kirillov published a paper entitled Local Lie algebras [14] in
which he determined all the possible structures on a manifold allowing the definition
of a bracket with which the space of smooth functions becomes a local Lie algebra.
Local means that the value taken by the bracket of two smooth functions at each point
only depends of the values taken by these functions on an arbitrarily small neigh-
bourhood of that point. The only such structures are those called by Lichnerowicz
Poisson structures, Jacobi structures and locally conformally symplectic structures.

In what follows we will mainly consider Poisson manifolds.
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3.2 Definition and Structure of Poisson Manifolds

Definition 3.2.1 A Poisson structure on a smooth manifold M is the structure deter-
mined by a bilinear, skew-symmetric composition law on the space of smooth func-
tions, called the Poisson bracket and denoted by (f , g) ∞≡ {f , g}, satisfying the
Leibniz identity

{f , gh} = {f , g}h + g{f , h}

and the Jacobi identity

⎜{f , g}, h
⎝+ ⎜{g, h}, f

⎝+ ⎜{h, f }, g⎝ = 0 .

A manifold endowed with a Poisson structure is called a Poisson manifold.

Proposition 3.2.2 On a Poisson manifold M, there exists a unique smooth bivector
field Ψ, called the Poisson bivector field of M, such that for any pair (f , g) of smooth
functions defined on M, the Poisson bracket {f , g} is given by the formula

{f , g} = Ψ(df , dg) .

Proof The existence, uniqueness and skew-symmetry of Ψ are easy consequences
of the Leibniz identity and of the skew-symmetry of the Poisson bracket. It does not
depend on the Jacobi identity. �

Remark 3.2.3 The Poisson bivector field Ψ determines the Poisson structure of M,
since it allows the calculation of the Poisson bracket of any pair of smooth functions.
For this reason a Poisson manifold M is often denoted by (M,Ψ).

Definition 3.2.4 Let (M,Ψ) be a Poisson manifold. We denote by ΨΩ : T∗M ≡ TM
the vector bundle homomorphism such that, for each x ∈ M and each θ ∈ T∗

x M,
ΨΩ(θ) is the unique element in TxM such that, for any ρ ∈ T∗

x M,

〈
ρ,ΨΩ(θ)

〉 = Ψ(θ,ρ) .

The subset C = ΨΩ(T∗M) of the tangent bundle TM is called the characteristic field
of the Poisson manifold (M,Ψ).

The following theorem, due to Alan Weinstein [15, 16], proves that, loosely
speaking, a Poisson manifold is the disjoint union of symplectic manifolds, arranged
in such a way that the union is endowed with a differentiable structure.

Theorem 3.2.5 Let (M,Ψ) be a Poisson manifold. Its characteristic field C is a
completely integrable generalized distribution on M. It means that M is the disjoint
union of immersed connected submanifolds, called the symplectic leaves of (M,Ψ),
with the following properties: a leaf S is such that, for each x ∈ S, TxS = TxM ∩ C;
moreover, S is maximal in the sense that any immersed connected submanifold S′
containing S and such that for each x ∈ S′, TxS′ = TxM ∩ C, is equal to S.
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Moreover, the Poisson structure of M determines, on each leaf S, a symplectic
form εS, such that the restriction to S of the Poisson bracket of two smooth functions
defined on M only depends on the restrictions of these functions to S, and can be
calculated as the Poisson bracket of these restrictions, using the symplectic form εS.

The reader may look at [15, 16] or at [17] for a proof of this theorem.

3.2.1 The Schouten–Nijenhuis Bracket

Let M be a smooth n-dimensional manifold. We recall that the exterior algebra Φ(M)

of differential forms on M is endowed with an associative composition law, the
exterior product, which associates to a pair (ξ, ω), with ξ ∈ Φp(M) and ω ∈ Φq(M)

the form ξ ≥ ω ∈ Φp+q(M), with the following properties.
1. When p = 0, ξ ∈ Φ0(M) ≡ C◦(M,R); the exterior product ξ ≥ ω is the usual
product ξω of the differential form ω of degree q by the function ξ.
2. The exterior product satisfies

ω ≥ ξ = (−1)pqξ ≥ ω .

3. When p ≥ 1 and q ≥ 1, ξ ≥ ω evaluated on the p + q vector fields vi ∈ A1(M)

(1 ≤ i ≤ p + q) is expressed as

ξ ≥ ω(v1, ..., vp+q) =
∑

δ∈S(p,q)

ς(δ)ξ(vδ(1), ..., vδ(p))ω(vδ(p+1), ..., vδ(p+q)) .

We have denoted by S(p,q) the set of permutations δ of { 1, ..., p + q } which satisfy

δ(1) < δ(2) < · · · < δ(p) and δ(p + 1) < δ(p + 2) < · · · < δ(p + q) ,

and set

β(δ) =
{

1 if δ is even,

−1 if δ is odd.

The exterior algebra Φ(M) is endowed with a linear map d : Φ(M) ≡ Φ(M)

called the exterior differential, with the following properties.
1. The exterior differential d is a graded map of degree 1, which means that
d
(
Φp(M)

) ≤ Φp+1(M).
2. It is a derivation of the exterior algebra Φ(M), which means that when ξ ∈ Φp(M)

and ω ∈ Φq(M),
d(ξ ≥ ω) = (dξ) ≥ ω + (−1)pξ ≥ dω .

3. It satisfies
d ⊗ d = 0 .
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Similarly, the exterior algebra A(M) of smooth multivector fields on M is endowed
with an associative composition law, the exterior product, which associates to a pair
(P, Q), with P ∈ Ap(M) and Q ∈ Aq(M), the multivector field P ≥ Q ∈ Ap+q(M). It
is defined by the formulae given above for the exterior product of differential forms,
the only change being the exchange of the roles of Φp(M) and Ap(M). Its properties
are essentially the same as those of the exterior product of differential forms.

There is a natural pairing of elements of same degree in A(M) and in Φ(M). It
is first defined for decomposable elements: let ξ = ξ1 ≥ · · · ≥ ξp ∈ Φp(M) and
P = X1 ≥ · · · ≥ Xp ∈ Ap(M). We set

〈ξ, P√ = det
(〈ξi, Xj√

)
.

Then this pairing can be uniquely extended to Φp(M) × Ap(M) by bilinearity.
With any P ∈ Ap(M) we can associate a graded endomorphism i(P) of the exterior

algebra of differential forms Φ(M), of degree −p, which means that when ξ ∈
Φq(M), i(P)ξ ∈ Φq−p(M). This endomorphism, which extends to multivector fields
the interior product of forms with a vector field, is determined by the formula, in
which P ∈ Ap(M), ξ ∈ Φq(M) and R ∈ Aq−p(M),

〈
i(P)ξ, R

〉 = (−1)(p−1)p/2〈ξ, P ≥ Q√ .

Besides the exterior product, there exists on the graded vector space A(M) of multi-
vector fields another bilinear composition law, which naturally extends to multivector
fields the Lie bracket of vector fields. It associates to P ∈ Ap(M) and Q ∈ Aq(M) an
element denoted [P, Q] ∈ Ap+q−1(M), called the Schouten-Nijenhuis bracket of P
and Q. The Schouten-Nijenhuis bracket [P, Q] is defined by the following formula,
which gives the expression of the corresponding graded endomorphism of Φ(M),

i
([P, Q]) =

⎞⎟
i(P), d

⎠
, i(Q)

]
.

The brackets in the right hand side of this formula are the graded commutators
of graded endomorphisms of Φ(M). Let us recall that if E1 and E2 are graded
endomorphisms of Φ(M) of degrees e1 and e2 respectively, their graded commutator
is

[E1, E2] = E1 ⊗ E2 − (−1)e1e2 E2 ⊗ E1 .

The following properties of the Schouten-Nijenhuis bracket can be deduced from
the above formulae.
1. For f and g ∈ A0(M) = C◦(M,R), [f , g] = 0.
2. For a vector field V ∈ A1(M), q ∈ Z and Q ∈ Aq(M), the Schouten-Nijenhuis

bracket [V , Q] is the Lie derivative L(V)(Q).
3. For two vector fields V and W ∈ A1(M, E), the Schouten-Nijenhuis bracket

[V , W ] is the usual Lie bracket of these vector fields.
4. For all p and q ∈ Z, P ∈ Ap(M), Q ∈ Aq(M),
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[P, Q] = −(−1)(p−1)(q−1)[Q, P] .

5. Let p ∈ Z, P ∈ Ap(M). The map Q ∞≡ [P, Q] is a derivation of degree p − 1 of
the graded exterior algebra A(M). In other words, for q1 and q2 ∈ Z, Q1 ∈ Aq1(M)

and Q2 ∈ Aq2(M),

[P, Q1 ≥ Q2] = [P, Q1] ≥ Q2 + (−1)(p−1)q1Q1 ≥ [P, Q2] .

6. Let p, q and r ∈ Z, P ∈ Ap(M), Q ∈ Aq(M) and R ∈ Ar(M). The Schouten-
Nijenhuis bracket satisfies the graded Jacobi identity

(−1)(p−1)(r−1)
⎟[P, Q], R

⎠+ (−1)(q−1)(p−1)
⎟[Q, R], P

⎠
+ (−1)(r−1)(q−1)

⎟[R, P], Q
⎠

= 0 .

For more information about the Schouten-Nijenhuis bracket, the reader may look at
[18] or [19].

Proposition 3.2.6 Let Ψ be a smooth bivector field on a smooth manifold M. Then
Ψ is a Poisson bivector field (and (M,Ψ) is a Poisson manifold) if and only if
[Ψ,Ψ] = 0.

Proof We define the vector bundle homomorphism ΨΩ : T∗M ≡ TM by setting, for
all x ∈ M, θ and ρ ∈ T∗

x M,

〈
ρ,ΨΩ(θ)

〉 = Ψ(θ,ρ) .

For any pair (f , g) of smooth functions we set

Xf = ΨΩ(df ) , {f , g} = i(Xf )(dg) = Ψ(df , dg) .

This bracket is a bilinear skew-symmetric composition law on C◦(M,R) which
satisfies the Leibniz identity. Therefore Ψ is a Poisson bivector field if and only if
the above defined bracket of functions satisfies the Jacobi identity.

Let f , g and h be three smooth functions on M. We easily see that Xf and {f , g}
can be expressed in terms of the Schouten-Nijenhuis bracket. Indeed we have

Xf = −[Ψ, f ] = −[f ,Ψ] , {f , g} = ⎟[Ψ, f ], g⎠ .
Therefore ⎜{f , g}, h

⎝ =
[⎞

Ψ,
⎟[Ψ, f ], g⎠], h

]
.
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By using the graded Jacobi identity satisfied by Schouten-Nijenhuis bracket, we see
that ⎞

Ψ,
⎟[Ψ, f ], g⎠] = −⎟[g,Ψ], [f ,Ψ]⎠+ 2

⎞⎟[Ψ,Ψ], f
⎠
, g
]
.

Using the equalities Xf = −[Ψ, f ] = −[f ,Ψ] and Xg = −[Ψ, g] = −[g,Ψ] we
obtain

⎜{f , g}, h
⎝ = ⎟[Xf , Xg], h

⎠+ 2

[⎞⎟[Ψ,Ψ], f
⎠
, g
]
, h

]

= L([Xf , Xg]
)
h + 2

[⎞⎟[Ψ,Ψ], f
⎠
, g
]
, h

]
.

On the other hand, we have

⎜{g, h}, f
⎝ = −L(Xf ) ⊗ L(Xg)h ,

⎜{h, f }, g⎝ = L(Xg) ⊗ L(Xf )h .

Taking into account the equality

L([Xf , Xg]
) = L(Xf ) ⊗ L(Xg) − L(Xg) ⊗ L(Xf )

we obtain

⎜{f , g}, h
⎝+ ⎜{g, h}, f

⎝+ ⎜{h, f }, g⎝ = 2

[⎞⎟[Ψ,Ψ], f
⎠
, g
]
, h

]
.

By using the formula which defines the Schouten-Nijenhuis bracket, we check that
for any P ∈ A3(M) ⎞⎟[P, f ], g⎠, h

]
= P(df , dg, dh) .

Therefore

⎜{f , g}, h
⎝+ ⎜{g, h}, f

⎝+ ⎜{h, f }, g⎝ = 2[Ψ,Ψ](df , dg, dh) ,

so Ψ is a Poisson bivector field if and only if [Ψ,Ψ] = 0. �

3.3 Some Properties of Poisson Manifolds

Definitions 3.3.1 Let (M,Ψ) be a Poisson manifold.
1. The Hamiltonian vector field associated to a smooth function f ∈ C◦(M,R) is
the vector field Xf on M defined by

Xf = ΨΩ(df ) .
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The function f is called a Hamiltonian for the Hamiltonian vector field Xf .
2. A Poisson vector field is a vector field X which satisfies

L(X)Ψ = 0 .

Example 3.3.2 On a symplectic manifold (M,ε) we have defined the Poisson
bracket of smooth functions. That bracket endows M with a Poisson structure, said
to be associated to its symplectic structure. The Poisson bivector field Ψ is related
to the symplectic form ε by

Ψ(df , dg) = ε(Xf , Xg) , f and g ∈ C◦(M,R) .

The map ΨΩ : T∗M ≡ TM such that, for any x ∈ M, θ and ρ ∈ T∗
x M,

〈
ρ,ΨΩ(θ) = Ψ(θ,ρ)

is therefore the inverse of the map εΣ : TM ≡ T∗M such that, for any x ∈ M, v and
w ∈ TxM, 〈

εΣ(v),w
〉 = −〈i(v)ε,w

〉 = ε(w, v) .

Hamiltonian vector fields for the symplectic structure of M coincide with Hamil-
tonian vector fields for its Poisson structure. The Poisson vector fields on the sym-
plectic manifold (M,ε) are the locally Hamiltonian vector fields. However, on a
general Poisson manifold, Poisson vector fields are more general than locally Hamil-
tonian vector fields: even restricted to an arbitrary small neighbourhood of a point,
a Poisson vector field may not be Hamiltonian.

Remarks 3.3.3 1. Another way in which the Hamiltonian vector field Xf associated
to a smooth function f can be defined is by saying that, for any other smooth function
g on the Poisson manifold (M,Ψ),

i(Xf )(dg) = {f , g} .

2. A smooth function g defined on the Poisson manifold (M,Ψ) is said to be a
Casimir if for any other smooth function h, we have {g, h} = 0. In other words, a
Casimir is a smooth function g whose associated Hamiltonian vector field is Xg = 0.
On a general Poisson manifold, there may exist Casimirs other than the locally
constant functions.
3. A smooth vector field X on the Poisson manifold (M,Ψ) is a Poisson vector
field if and only if, for any pair (f , g) of smooth functions,

L(X)
({f , g}) = ⎜L(X)f , g

⎝+ ⎜
f ,L(X)g

⎝
.
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Indeed we have

L(X)
({f , g}) = L(X)

(
Ψ(df , dg)

)
= (L(X(Ψ)

)
(df , dg) + Ψ

(L(X)(df ), dg
)+ Ψ

(
df ,L(X)(dg)

)
= (L(X)(Ψ)

)
(df , dg) + ⎜L(X)f , g

⎝+ ⎜
f ,L(X)g

⎝
.

3. Any Hamiltonian vector field Xf is a Poisson vector field. Indeed, if f is a
Hamiltonian for Xf , g and h two other smooth functions,we have according to the
Jacobi identity

L(Xf )
({g, h}) = ⎜

f , {g, h}⎝ = ⎜{f , g}, h
⎝+ ⎜

g, {f , h}⎝
= ⎜L(Xf )g, h

⎝+ ⎜
g,L(Xf )h

⎝
.

4. Since the characteristic field of the Poisson manifold (M,Ψ) is generated by the
Hamiltonian vector fields, any Hamiltonian vector field is everywhere tangent to the
symplectic foliation. A Poisson vector field may not be tangent to that foliation.

Proposition 3.3.4 Let (M,Ψ) be a Poisson manifold, H ∈ C◦(M,R) be a smooth
function and XH = ΨΩ(dH) ∈ A1(M) be the associated Hamiltonian vector field. A
smooth function g ∈ C◦(M,R) keeps a constant value on each integral curve of XH

if and only if {H, g} = 0 identically. Such a function g is said to be a first integral of
XH.

A specially important first integral of XH, called the energy first integral, is the
Hamiltonian H.

Proof Let σ : I ≡ M be an integral curve of XH , defined on an open interval I of
R. For each t ∈ I

dσ(t)

dt
= XH

(
σ(t)

)
.

The function g ⊗ σ is smooth and satisfies

d(g ⊗ σ)(t)

dt
= i(XH)(dg)

(
σ(t)

) = {H, g}(σ(t)
)
.

Since I is connected, g ⊗ σ keeps a constant value if and only if, for each t ∈ I ,
d(g ⊗ σ)(t)

dt
= 0, and the above equality proves that such is the case if and only

if {H, g}(σ(t)
) = 0. The indicated result follows from the fact that for any point

x ∈ M, there exists an integral curve σ : I ≡ M of XH and an element t in I such
that σ(t) = x.

The skew-symmetry of the Poisson bracket implies {H, H} = 0, therefore the
Hamiltonian H is a first integral of XH . �

Remark 3.3.5 Some Hamiltonian mechanical systems encountered in Mechanics,
defined on a Poisson manifold (M,Ψ), have as Hamiltonian a smooth function H



206 C.-M. Marle

defined on R × M rather than on the manifold M. Such a function H is said to be a
time-dependent Hamiltonian. The associated Hamiltonian vector field XH is no more
an ordinary vector field on M, i.e. a smooth map M ≡ TM wich associates to each
x ∈ M an element in TxM, but rather a time-dependent vector field, i.e. a smooth
map XH : R× M ≡ TM such that, for each t ∈ R and each x ∈ M XH(t, x) ∈ TxM.
For each fixed value of t ∈ R, the map x ∞≡ XH(t, x) is the Hamiltonian vector field
on M whose Hamiltonian is the function Ht : M ≡ R, defined by

Ht(x) = H(t, x) , x ∈ M .

Therefore
XH(t, x) = ΨΩ

(
dHt

)
(x) , x ∈ M , t ∈ R .

A smooth parametrized curve σ : I ≡ M, defined on an open interval I of R, is an
integral curve of the time-dependent vector field XH if for each t ∈ I it satisfies the
non-autonomous differential equation

dσ(t)

dt
= XH

(
t,σ(t)

)
.

The time-dependent Hamiltonian H : R × M ≡ R is no more a first integral of XH

since, for each integral curve σ : I ≡ M of XH and each t ∈ I ,

d(H ⊗ σ)(t)

dt
= τH

(
t,σ(t)

)
τt

.

Proposition 3.3.6 Let (M1,Ψ1) and (M2,Ψ2) be two Poisson manifolds and let
σ : M1 ≡ M2 be a smooth map. The following properties are equivalent.

1. For any pair (f , g) of smooth functions defined on M2

{σ∗f ,σ∗g}M1 = σ∗{f , g}M2 .

2. For any smooth function f ∈ C◦(M2,R) the Hamiltonian vector fields Ψ
Ω
2(df )

on M2 and Ψ
Ω
1

(
d(f ⊗ σ)

)
on M1 are σ-compatible, which means that for each

x ∈ M1

Txσ
(
Ψ

Ω
1

(
d(f ⊗ σ)(x)

)) = Ψ
Ω
2

(
df
(
σ(x)

))
.

3. The bivector fields Ψ1 on M1 and Ψ2 on M2 are σ-compatible, which means that
for each x ∈ M1

Txσ
(
Ψ1(x)

) = Ψ2
(
σ(x)

)
.

A map σ : M1 ≡ M2 which satisfies these equivalent properties is called a
Poisson map.
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Proof Let f and g be two smooth functions defined on M2. For each x ∈ M1, we
have

{σ∗f ,σ∗g}M1(x) = {f ⊗ σ, g ⊗ σ}(x) = Ψ1(x)
(
d(f ⊗ σ)(x), d(g ⊗ σ)(x)

)
=
〈
d(g ⊗ σ)(x),ΨΩ

1

(
d(f ⊗ σ(x))

)⎛
.

We have also

σ∗{f , g}M2(x) = {f , g}M2

(
σ(x)

)
=
〈
dg
(
σ(x)

)
,Ψ∗

2

(
df
(
σ(x)

))⎛
.

These formulae show that Properties 1 and 2 are equivalent.
We recall that Txσ

(
Ψ1(x)

)
is, by its very definition, the bivector at σ(x) ∈ M2

such that, for any pair (f , g) of smooth functions on M2

Txσ
(
Ψ1(x)

)(
df
(
σ(x)

)
, dg

(
σ(x)

)) = Ψ1
(
d(f ⊗ σ)(x), d(g ⊗ σ)(x)

)
.

The above equalities therefore prove that Properties 2 and 3 are equivalent. �
Poisson manifolds often appear as quotients of symplectic manifolds, as indicated

by the following Proposition, due to Paulette Libermann [20].

Proposition 3.3.7 Let (M,ε) be a symplectic manifold and let σ : M ≡ P be a
surjective submersion of M onto a smooth manifold P whose fibres are connected
(it means that for each y ∈ P, σ−1(y) is connected). The following properties are
equivalent.

1. On the manifold M, the distribution orth(ker Tσ) is integrable.
2. For any pair (f , g) of smooth functions defined on P, the Poisson bracket {f ⊗

σ, g ⊗ σ} is constant on each fibre σ−1(y) of the submersion σ (with y ∈ P).

When these two equivalent properties are satisfied, there exists on P a unique
Poisson structure for which σ : M ≡ P is a Poisson map (the manifold M being
endowed with the Poisson structure associated to its symplectic structure).

Proof On the manifold M, ker Tσ is a an integrable distribution of rank dim M −
dim P whose integral submanifolds are the fibres of the submersion σ. Its symplectic
orthog(onal orth(ker Tσ) is therefore a distribution of rank dim P. Let f and g be
two smooth functions defined on M2. On M1, the Hamiltonian vector fields Xf ⊗σ and
Xg⊗σ take their values in orth(ker Tσ). We have

[Xf ⊗σ, Xg⊗σ] = X{f ⊗σ,g⊗σ} .

Therefore [Xf ⊗σ, Xg⊗σ] takes its values in orth(ker Tσ) if and only if the function
{f ⊗ σ, g ⊗ σ} is constant on each fibre σ−1(y) of the submersion σ. The equivalence
of Properties 1 and 2 easily follows.
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Let us now assume that the equivalent properties 1 and 2 are satisfied. Since the
map σ : M ≡ P is a submersion with connected fibres, the map which associates to
each function f ∈ C◦(M2,R) the function f ⊗ σ is an isomorphism of C◦(M2,R)

onto the subspace of C◦(M1,R) made by smooth functions which are constant on
each fibre of σ. The existence and unicity of a Poisson structure on M2 for which σ
is a Poisson map follows. �

Remark 3.3.8 Poisson manifolds obtained as quotients of symplectic manifolds
often come by pairs. Let us assume indeed that (M,ε) is a symplectic manifold
and that the above Proposition can be applied to a smooth surjective submersion
with connected fibres σ : M ≡ P, and defines a Poisson structure on P for which σ
is a Poisson map. Since orth(ker Tσ) is integrable, it defines a foliation of M, which
is said to be simple when the set of leaves Q of that foliation has a smooth manifold
structure such that the map γ : M ≡ Q, which associates to each point in M the
leaf through this point, is a submersion. Then the maps σ : M ≡ P and γ : M ≡ Q
play similar parts, so there exists on Q a unique Poisson structure for which γ is a
Poisson map. Alan Weinstein [15, 16] has determined the links which exist between
the local structures of the two Poisson manifolds P and Q at corresponding points
(that means, at points which are the images of the same point in M by the maps σ
and γ).

Several kinds of remarkable submanifolds of a Poisson manifold can be defined
[15, 16]. The most important are the coisotropic submanifolds, defined below.

Definition 3.3.9 A submanifold N of a Poisson manifold (M,Ψ) is said to be
coisotropic if for any point x ∈ N and any pair (f , g) of smooth functions defined on
a neighbourhood U of x in M whose restrictions to U ∩ N are constants, the Poisson
bracket {f , g} vanishes on U ∩ N .

3.4 Examples of Poisson Manifolds

3.4.1 Symplectic Manifolds

We have seen above that any symplectic manifold is a Poisson manifold.

3.4.2 Dual Spaces of Finite-Dimensional Lie algebras

Let G be a finite-dimensional Lie algebra, and G∗ its dual space. The Lie algebra G
can be considered as the dual of G∗, that means as the space of linear functions on
G∗, and the bracket of the Lie algebra G is a composition law on this space of linear
functions. This composition law can be extended to the space C◦(G∗,R) by setting

{f , g}(x) =
〈
x,
⎟
df (x), dg(x)

⎠⎛
, f and g ∈ C◦(G∗,R) , x ∈ G∗ .
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This bracket on C◦(G∗,R) defines a Poisson structure on G∗, called its canonical
Poisson structure. It implicitly appears in the works of Sophus Lie, and was redis-
covered by Kirillov [21], Kostant [22] and Jean-Marie Souriau [23]. Its existence
can be seen as an application of Proposition 3.3.7. Let indeed G be the connected
and simply connected Lie group whose Lie algebra is G. We know that the cotangent
bundle T∗G has a canonical symplectic structure. One can check easily that for this
symplectic structure, the Poisson bracket of two smooth functions defined on T∗G
and invariant with respect to the lift to T∗G of the action of G on itself by left transla-
tions, is too invariant with respect to that action. Application of Proposition 3.3.7, the
submersion σ : T∗G ≡ G∗ being the left translation which, for each g ∈ G, maps
T∗

g G onto T∗
e G ≡ G∗, yields the above defined Poisson structure on G∗. If instead of

translations on the left, we use translation on the right, we obtain on G∗ the opposite
Poisson structure. This illustrates Remark 3.3.8, since, as we will see later, each one
of the tangent spaces at a point ϕ ∈ T∗G to the orbits of that point by the lifts to
T∗G of the actions of G on itself by translations on the left and on the right, is the
symplectic orthogonal of the other.

The symplectic leaves of G∗ equipped with the above defined Poisson structure
are the coadjoint orbits.

3.4.3 Symplectic Cocycles

A symplectic cocycle of the Lie algebra G is a skew-symmetric bilinear map ⎫℘ :
G × G ≡ R which satisfies

⎫℘([X, Y ], Z
)+ ⎫℘([Y , Z], X

)+ ⎫℘([Z, X], Y
) = 0 .

The above defined canonical Poisson structure on G∗ can be modified by means of a
symplectic cocycle ⎫℘ by defining the new bracket (see for example [17])

{f , g}⎫℘(x) =
〈
x,
⎟
df (x), dg(x)

⎠⎛− ⎫℘(df (x), dg(x)) ,

where f and g ∈ C◦(G∗,R), x ∈ G∗. This Poisson structure is called the modified
canonical Poisson structure by means of the symplectic cocycle ⎫℘ . We will see in
Sect. 4.5 that the symplectic leaves of G∗ equipped with this Poisson structure are the
orbits of an affine action whose linear part is the coadjoint action, with an additional
term determined by ⎫℘ .

4 Symplectic, Poisson and Hamiltonian Actions

4.1 Actions on a Smooth Manifold

Let us first recall some definitions and facts about actions of a Lie algebra or of a Lie
group on a smooth manifold.
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Definition 4.1.1 An action on the left (resp. an action on the right) of a Lie group
G on a smooth manifold M is a smooth map Λ : G × M ≡ M (respectively,
β : M × G ≡ M) such that, for any x ∈ M, g1 and g2 ∈ G, e ∈ G being the neutral
element,

• for an action on the left

Λ
(
g1, Λ(g2, x)

) = Λ(g1g2, x) , Λ(e, x) = x ,

• for an action on the right

β
(
β(x, g1), g2

) = β(x, g1g2) , β(x, e) = x .

4.1.1 Consequences

Let Λ : G × M ≡ M be an action on the left of the Lie group G on the smooth
manifold M. For each g ∈ G, we denote by Λg : M ≡ M the map

Λg(x) = Λ(g, x) .

The map g ∞≡ Λg is a groups homomorphism of G into the group of smooth diffeo-
morphisms of M. In other words, for each g ∈ G, Λg is a diffeomorphism of M, and
we have

Λg ⊗ Λh = Λgh , (Λg)
−1 = Λg−1 , g and h ∈ G .

Similarly, let β : M × G ≡ M be an action on the right of the Lie group G on the
smooth manifold M. For each g ∈ G, we denote by βg : M ≡ M the map

βg(x) = β(x, g) .

The map g ∞≡ βg is a groups anti-homomorphism of G into the group of smooth
diffeomorphisms of M. In other words, for each g ∈ G, βg is a diffeomorphism of
M, and we have

βg ⊗ βh = βhg , (βg)
−1 = βg−1 , g and h ∈ G .

Definition 4.1.2 Let Λ : G × M ≡ M be an action on the left (resp. let β :
M × G ≡ M be an action of the right) of the Lie group G on the smooth manifold
M. With each element X ∈ G ≡ TeG (the tangent space to the Lie group G at the
neutral element) we associate the vector field XM on M defined by
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XM(x) =

⎧⎪⎪⎨
⎪⎪⎩

dΛ
(
exp(sX), x

)
ds

∣∣∣
s=0

if Λ is an action on the left,

dβ
(
x, exp(sX)

)
ds

∣∣∣
s=0

if β is an action on the right.

The vector field XM is called the fundamental vector field on M associated to X.

Definition 4.1.3 An action of a Lie algebra G on a smooth manifold M is a Lie
algebras homomorphism σ of G into the Lie algebra A1(M) of smooth vector fields
on M (with the Lie bracket of vector fields as composition law). In other words, it is
a linear map σ : G ≡ A1(M) such that for each pair (X, Y) ∈ G × G,

σ
([X, Y ]) = ⎟

σ(X),σ(Y)
⎠
.

Remark 4.1.4 Let G be a Lie group. There are two natural ways in which the tangent
space TeG ≡ G to the Lie group G at the neutral element e can be endowed with a
Lie algebra structure.

In the first way, we associate with each element X ∈ TeG the left invariant vector
field XL on G such that XL(e) = X; its value at a point g ∈ G is XL(g) = TLg(X),
where Lg : G ≡ G is the map h ∞≡ Lg(h) = gh. We observe that for any pair (X, Y)

of elements in G the Lie bracket [XL, YL] of the vector fields XL and YL on G is left
invariant, and we define the bracket [X, Y ] by setting [X, Y ] = [XL, YL](e). This Lie
algebra structure on G ≡ TeG will be called the Lie algebra structure of left invariant
vector fields on G.

In the second way, we choose the right invariant vector fields on G XR and
YR, instead of the left invariant vector fields XL and YL . Since [XR, YR](e) =
−[XL, YL](e), the Lie algebra structure on G ≡ TeG obtained in this way, called
the Lie algebra structure of right invariant vector fields, is the opposite of that of left
invariant vector fields. We have therefore on TeG two opposite Lie algebras struc-
tures, both equally natural. Fortunately, the choice of one rather than the other as
the Lie algebra G of G does not matter because the map X ∞≡ −X is a Lie algebras
isomorphism between these two structures.

Proposition 4.1.5 Let Λ : G × M ≡ M be an action on the left (resp. let β :
M × G ≡ M be an action on the right) of a Lie group G on a smooth manifold M.
We endow G ≡ TeG with the Lie algebra structure of right invariant vector fields on
G (resp, with the Lie algebra structure of left invariant vector fields on G). The map
σ : G ≡ A1(M) (resp. γ : G ≡ A1(M)) which associates to each element X of the
Lie algebra G of G the corresponding fundamental vector field XM, is an action of
the Lie algebra G on the manifold M. This Lie algebra action is said to be associated
to the Lie group action Λ (resp. β).

Proof Let us look at an action on the left Λ. Let x ∈ M, and let Λx : G ≡ M be the
map g ∞≡ Λx(g) = Λ(g, x).For any X ∈ TeG and g ∈ G, we have
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XM
(
Λ(g, x)

) = d

ds
Λ
(
exp(sX),Λ(g, x)

) ∣∣
s=0=

d

ds
Λ
(
exp(sX)g, x

) ∣∣
s=0

= d

ds
Λ
(

Rg

(
exp(sX)

)
, x
) ∣∣∣

s=0
= TΛx ⊗ TRg(X) .

We see that for each X ∈ TxG, the right invariant vector field XR on G and the
fundamental vector field XM on M are compatible with respect to the map Λx : G ≡
M. Therefore for any pair (X, Y) of elements in TeG, we have [X, Y ]M = [XM , YM ].
In other words the map X ∞≡ XM is an action of the Lie algebra G = TeG (equipped
with the Lie algebra structure of right invariant vector fields on G) on the manifold
M.

For an action on the right β, the proof is similar,G = TeG being this time endowed
with the Lie algebra structure of left invariant vector fields on G. �

Proposition 4.1.6 Let Λ : G × M ≡ M be an action on the left (resp. let β :
M × G ≡ M be an action on the right) of a Lie group G on a smooth manifold
M. Let XM be the fundamental vector field associated to an element X ∈ G. For
any g ∈ G, the direct image (Λg)∗(XM) (resp. (βg)∗(XM)) of the vector field XM by
the diffeomorphism Λg : M ≡ M (resp. βg : M ≡ M) is the fundamnetal vector
field (Adg X)M associated to Adg X (resp. the fundamental vector field (Adg−1 X)M

associated to Adg−1 X).

Proof For each x ∈ M

(Λg)∗(XM)(x) = TΛg

(
XM
(
Λ(g−1, x)

))

= TΛg

(
d

ds
Λ
(
exp(sX)g−1, x

) ∣∣
s=0

)

= d

ds

(
Λ
(
g exp(sX)g−1, x

)) ∣∣∣
s=0

= (Adg X)M(x) ,

since g exp(sX)g−1 = exp(Adg X). The proof for the action on the right β

is similar. �

4.2 Linear and Affine Representations

In this section, after recalling some results about linear and affine transformation
groups, we discuss linear and affine representations of a Lie group or of a Lie algebra
in a finite-dimensional vector space, which can be seen as special examples of actions.

4.2.1 Linear and Affine Transformation Groups and Their Lie Algebras

Let E be a finite-dimensional vector space. The set of linear isomorphisms l : E ≡ E
will be denoted by GL(E). We recall that equipped with the composition of maps
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(l1, l2) ∞≡ l1 ⊗ l2

as a composition law, GL(E) is a Lie group whose dimension is (dim E)2. Its Lie
algebra, which will be denoted by gl(E), is the setL(E, E) of linear maps f : E ≡ E,
with the commutator

(f1, f2) ∞≡ [f1, f2] = f1 ⊗ f2 − f2 ⊗ f1

as a composition law.
A map a : E ≡ E is called an affine map if it can be written as

a(x) = l(x) + c , x ∈ E ,

the map l : E ≡ E being linear, and c ∈ E being a constant. The affine map a is
invertible if and only if its linear part l is invertible, in other words if and only if
l ∈ GL(E); when this condition is satisfied, its inverse is

a−1(y) = l−1(y − c) , y ∈ E .

By identifying the invertible affine map a with the pair (l, c), with l ∈ GL(E) and
c ∈ E, the set of invertible affine maps of E onto itself becomes identified with
GL(E) × E. The composition law and the inverse map on this product (which is
called the semi-direct product of GL(E) with E) are

(l1, c1), (l2, c2) ∞≡ (
(
l1 ⊗ l2, l1(c2) + c1)

)
, (l, c)−1 = (

l−1,−l−1(c)
)
.

The semi-direct product Aff(E) = GL(E) × E is a Lie group whose dimension is
(dim E)2 + dim E; its Lie algebra is the product aff(E) = L(E, E) × E, with the
composition law

(
(f1, d1), (f2, d2)

) ∞≡ ⎟
(f1, d1), (f2, d2)

⎠ = (
f1 ⊗ f2 − f2 ⊗ f1, f1(d2) − f2(d1)

)
.

The adjoint representation is given by the formula

Ad(l,c)
(
(f , d)

) = (
l ⊗ f ⊗ l−1, l(d) − l ⊗ f ⊗ l−1(d)

)
.

Remark 4.2.1 The finite-dimensional vector space E can be considered as a smooth
manifold on which E itself transitively acts by translations. That action determines
a natural trivialization of the tangent bundle TE, the tangent space TxE at each point
x ∈ E being identified with E. An element a ∈ aff(E), in other words an affine map
a : E ≡ E, can therefore be considered as the vector field on E whose value, at
each x ∈ E, is a(x) ∈ TxE ≡ E. A question naturally arises: how the bracket of
two elements a1 and a2 ∈ aff(E), for the Lie algebra structure of aff(E) defined
in Sect. 4.2, compares with the bracket of these two elements when considered as
vector fields on E? An easy calculation in local coordinates shows that the bracket
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[a1, a2] defined in Sect. 4.2 is the opposite of the bracket of these two elements when
considered as vector fields on E. Remark 4.2.7 below will explain the reason of that
change of sign.

Definitions 4.2.2 Let G be a Lie group, G a Lie algebra and E a finite-dimensional
vector space.
1. A linear representation (respectively, an affine representation) of the Lie group
G in the vector space E is a Lie groups homomorphism R : G ≡ GL(E) of G in the
Lie group GL(E) of linear transformations of E (respectively, a Lie groups homo-
morphism A : G ≡ Aff(E) of G in the Lie group Aff(E) of affine transformations
of E).
2. A linear representation (respectively, an affine representation) of the Lie algebra
G in the vector space E is a Lie algebras homomorphism r : G ≡ gl(E) of the Lie
algebra G in the Lie algebra gl(E) of the group of linear transformations of E (resp, a
Lie algebras homomorphism a : G ≡ aff(E) of the Lie algebra G in the Lie algebra
aff(E) of the group of affine transformations of E).

Examples 4.2.3 Let G be a Lie group. The adjoint representation of G is the linear
representation of G in its Lie algebra G which associates, to each g ∈ G, the linear
isomorphism Adg ∈ GL(G)

Adg(X) = TLg ⊗ TRg−1(X) , (X ∈ G) .

The coadjoint representation of G is the contragredient of the adjoint representation.
It associates to each g ∈ G the linear isomorphism Ad∗

g−1 ∈ GL(G∗), which satisfies,

for each ω ∈ G∗ and X ∈ G,

〈
Ad∗

g−1(ω), X
〉 = 〈

ω, Adg−1(X)
〉
.

The adjoint representation of the Lie algebra G is the linear representation of G into
itself which associates, to each X ∈ G, the linear map adX ∈ gl(G)

adX(Y) = [X, Y ] , (Y ∈ G) .

The coadjoint representation of the Lie algebra G is the contragredient of the adjoint
representation. It associates, to each X ∈ G, the linear map ad∗−X ∈ gl(G∗) which
satisfies, for each ω ∈ G∗ and X ∈ G,

〈
ad∗−X ω, Y

〉 = 〈
ω, [−X, Y ]〉 .

The adjoint representation (respectively, the coadjoint representation) of G is the
Lie algebra representation associated to the adjoint representation (respectively, the
coadjoint representation) of the Lie group G, in the sense recalled below in the proof
of Proposition 4.2.6.
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Proposition 4.2.4 Let G be a Lie group and E a finite-dimensional vector space. A
map A : G ≡ Aff(E) always can be written as

A(g)(x) = R(g)(x) + ψ(g) , with g ∈ G , x ∈ E ,

where the maps R : G ≡ GL(E) and ψ : G ≡ E are determined by A. The map A
is an affine representation of G in E if and only if the following two properties are
satisfied:

• R : G ≡ GL(E) is a linear representation of G in the vector space E,
• the map ψ : G ≡ E is a one-cocycle of G with values in E, for the linear

representation R; it means that ψ is a smooth map which satisfies, for all g and
h ∈ G,

ψ(gh) = R(g)
(
ψ(h)

)+ ψ(g) .

When these two properties are satisfied, the linear representation R is called
the linear part of the affine representation A, and ψ is called the one-cocycle of G
associated to the affine representation A.

Proof Since Aff(E) = GL(E) × E, for each g ∈ G and x ∈ E, we have

A(g)(x) = R(g)(x) + ψ(g) ,

where the maps R : G ≡ GL(E) and ψ : G ≡ E are determined by A. By comparing
A(gh) and A(g)⊗A(h), for g and h ∈ G, using the composition law of Aff(E) recalled
in Sect. 4.2, we easily check that A is an affine representation, which means that it is
smooth and satisfies, for all g and h ∈ G, A(gh) = A(g) ⊗ A(h), and A(e) = idE , if
and only if the two above stated properties are satisfied. �

For linear and affine representations of a Lie algebra, we have the following
infinitesimal analogue of Proposition 4.2.4.

Proposition 4.2.5 Let G be a Lie algebra and E a finite-dimensional vector space.
A linear map a : G ≡ aff(E) always can be written as

a(X)(x) = r(X)(x) + ℘(X) , with X ∈ G , x ∈ E ,

where the linear maps r : G ≡ gl(E) and ℘ : G ≡ E are determined by a. The map
a is an affine representation of G in E if and only if the following two properties are
satisfied:

• r : G ≡ gl(E) is a linear representation of the Lie algebra G in the vector space
E,

• the linear map ℘ : G ≡ E is a one-cocycle of G with values in E, for the linear
representation r; it means that ℘ satisfies, for all X and Y ∈ G,

℘
([X, Y ]) = r(X)

(
℘(Y)

)− r(Y)
(
℘(X)

)
.
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When these two properties are satisfied, the linear representation r is called
the linear part of the affine representation a, and ℘ is called the one-cocycle of G
associated to the affine representation a.

Proof Since aff(E) = gl(E) × E = L(E, E) × E, for each X ∈ G and x ∈ E, we
have

a(X)(x) = r(X)(x) + ℘(X) ,

where the linear maps r : G ≡ gl(E) = L(E, E) and ℘ : G ≡ E are deter-
mined by a. By comparing a

([X, Y ]) and
⎟
a(X), a(Y)

⎠
, for X and Y ∈ G, using

the expression of the bracket of aff(E) recalled in Sect. 4.2, we easily check that
A is an affine representation, which means that it is smooth and satisfies, for all
X and Y ∈ G, a

([X, Y ]) = ⎟
a(X), a(Y)

⎠
if and only if the two above stated

properties are satisfied. �

Proposition 4.2.6 Let A : G ≡ Aff(E) be an affine representation of a Lie group G
in a finite-dimensional vector space E, and G be the Lie algebra of G. Let R : G ≡
GL(E) and ψ : G ≡ E be, respectively, the linear part and the associated cocycle
of the affine representation A. Let a : G ≡ aff(E) be the affine representation
of the Lie algebra G associated (in the sense recalled below in the proof) to the
affine representation A : G ≡ Aff(E) of the Lie group G. The linear part of a
is the linear representation r : G ≡ gl(E) associated to the linear representation
R : G ≡ GL(E), and the associated cocycle ℘ : G ≡ E is related to the one-cocycle
ψ : G ≡ E by

℘(X) = Teψ
(
X(e)

)
, (X ∈ G) .

Proof We recall that when we have a Lie groups homomorphism A : G ≡ H of a
Lie group G into another Lie group H, the associated Lie algebras homomorphism
a : G ≡ H of Lie algebras associates, to each X ∈ G (seen as the space of left-
invariant vector fields on G) the left-invariant vector field a(X) on H whose value at
the neutral element is TeA

(
X(e)

)
. Let X ∈ G. For each t ∈ R and x ∈ E, we have

A
(
exp(tX)

)
(x) = R

(
exp(tX)

)
(x) + ψ

(
exp(tX)

)
.

By taking the derivative of both sides of this equality with respect to t, then setting
t = 0, we get

a(X)(x) = r(X)(x) + Teψ(X) .

Therefore the affine representation a has r as linear part and ℘ = Teψ as associated
one-cocycle. �

Remark 4.2.7 Let A : G ≡ Aff(E) be an affine representation of a Lie group G in
a finite-dimensional vector space E. The map⎫A : G × E ≡ E,

⎫A(g, x) = A(g)(x) , g ∈ G , x ∈ E ,
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is an action on the left of G on E. Proposition 4.2.6 shows that a : G ≡ aff(E) is a
Lie algebras homomorphism, the Lie algebra structure of aff(E) being the structure
defined in Sect. 4.2. For each X ∈ G, the element a(X) ∈ aff(E), when considered
as an affine vector field on E, is the fundamental vector field associated to X, for the
action on the left⎫A of G on E. We have seen (4.1.5) that for an action on the left of G
on E, the map which associates to each X ∈ G the corresponding fundamental vector
field on E is a Lie algebras homomorphism of the Lie algebra of right invariant vector
fields on G into the Lie algebra of smooth vector fields on E. This explains why, as
was observed in 4.2.1, the Lie algebra structure of aff(E) defined in Sect. 4.2 is the
opposite of the Lie algebra structure which exists on the space of affine vector fields
on E. Of course, this remark is also valid for a linear representation R : G ≡ GL(E),
since GL(E) is a Lie subgroup of Aff(E).

Definitions 4.2.8
1. Let R : G ≡ GL(E) be a linear representation of a Lie group G in a finite-

dimensional vector space E. A one-coboundary of G with values in E, for the linear
representation R, is a map ψ : G ≡ E which can be expressed as

ψ(g) = R(g)(c) − c , (g ∈ G) ,

where c is a fixed element in E.
2. Ler r : G ≡ gl(E) be a linear representation of a Lie algebra G in a finite-

dimensional vector space E. A one-coboundary of G with values in E, for the linear
representation r, is a linear map ℘ : G ≡ E which can be expressed as

℘(X) = r(X)(c) , (X ∈ G) ,

where c is a fixed element in E.

Remark 4.2.9 The reader will easily check the following properties. A one-
coboundary of a Lie group G with values in a finite-dimensional vector space E
for a linear representation R : G ≡ GL(E), automatically is a one-cocycle in the
sense of 4.2.4. Similarly, a one-coboundary of a Lie algebra G with values in E for
the linear representation r : G ≡ gl(E), automatically is a one-cocycle of G in the
sense of 4.2.5. When a Lie group one-cocycle ψ : G ≡ E is in fact a one-coboundary,
the associated Lie algebra one-cocycle ℘ = Teψ is a Lie algebra one-coboundary.

Proposition 4.2.10 Let A : G ≡ Aff(E) be an affine representation of a Lie group
G in a finite-dimensional vector space E, R : G ≡ GL(E) be its linear part and
ψ : G ≡ E be the associated Lie group one-cocycle. The following properties are
equivalent.

1. There exists an element c ∈ E such that, for all g ∈ G and x ∈ E,

A(g)(x) = R(g)(x + c) − c .
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2. The one-cocycle ψ : G ≡ E is in fact a 1-coboudary, whose expression is

ψ(g) = R(g)(c) − c .

Proof Since for each g ∈ G R(g) is linear, Property 1 can be written

A(g)(x) = R(g)(x) + (
R(g)(c) − c

)
.

Therefore Property 1 is true if and only if ψ(g) = R(g)(c) − c, in other words if and
only if Property 2 is true. �

The following Proposition is the infinitesimal analogue, for affine representations
of a Lie algebra, of Proposition 4.2.10.

Proposition 4.2.11 Let a : G ≡ aff(E) be an affine representation of a Lie algebra
G in a finite-dimensional vector space E, r : G ≡ gl(E) be its linear part and
℘ : G ≡ E be the associated Lie algebra one-cocycle. The following properties are
equivalent.

1. There exists an element c ∈ E such that, for all X ∈ G and x ∈ E,

a(X)(x) = r(X)(x + c) .

2. The one-cocycle ℘ : G ≡ E is in fact a 1-coboudary, whose expression is

℘(X) = r(X)(c) .

Proof Since for each X ∈ G r(X) is linear, Property (i) can be written

a(X)(x) = r(X)(x) + r(X)(c) .

Therefore Property 1 is true if and only if ℘(X) = r(X)(c), in other words if and
only if Property 2 is true. �

Remark 4.2.12 Let us say that an affine representation A : G ≡ Aff(E) of a Lie
group G in a finite-dimensional vector space E is equivalent to its linear part R :
G ≡ GL(E) if there exists a translation T : E ≡ E such that, for all g ∈ G and
x ∈ E,

A(g)(x) = T−1 ⊗ R(g) ⊗ T(x) .

Proposition 4.2.10 expresses the fact that the affine representation A is equivalent to
its linear part R if and only if its associated Lie group cocycle ψ is a one-coboundary.
The reader will easily formulate a similar interpretation of Proposition 4.2.11.

Proposition 4.2.13 Let G be a connected and simply connected Lie group, R : G ≡
GL(E) be a linear representation of G in a finite-dimensional vector space E, and
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r : G ≡ gl(E) be the associated linear representation of its Lie algebra G. For
any one-cocycle ℘ : G ≡ E of the Lie algebra G for the linear representation
r, there exists a unique one-cocycle ψ : G ≡ E of the Lie group G for the linear
representation R such that ℘ = Teψ, in other words, which has ℘ as associated Lie
algebra one-cocycle. The Lie group one-cocycle ψ is a Lie group one-coboundary if
and only if the Lie algrebra one-cocycle ℘ is a Lie algebra one-coboundary.

Proof If ψ : G ≡ E is a Lie group one-cocycle such that Teψ = ℘ we have, for any
g ∈ G and X ∈ G,

ψ
(
g exp(tX)

) = ψ(g) + R(g)
(
ψ
(
exp(tX)

))
.

By taking the derivative of both sides of this equality with respect to t, then setting
t = 0, we see that

Tgψ
(
TLg(X)

) = R(g)
(
℘(x)

)
,

which proves that if it exists, the Lie group one-cocycle ψ such that Teψ = ℘ is
unique.

For each g ∈ G let ξ(g) : TgG ≡ E be the map

ξ(g)(X) = R(g) ⊗ ℘ ⊗ TLg−1(X) , X ∈ TgG .

The map ξ is an E-valued differential one-form on G. Let us calculate its exterior
differential dξ, which is an E-valued differential two-form on G (if the reader does
not feel at ease with E-valued differential forms on G, he can consider separately the
components of ξ in a basis of E, which are ordinary real-valued one-forms). Let X
and Y be two left-invariant vector fields on G. We have, for each g ∈ G,

dξ(g)
(
X(g), Y(g)

) = L(X)
(〈ξ, Y√(g)

)− L(Y)
(〈ξ, X√(g)

)− 〈
ξ, [X, Y ]〉(g) .

But
〈ξ, Y√(g) = R(g) ⊗ ℘(Y) , 〈ξ, X√(g) = R(g) ⊗ ℘(X) ,

therefore

L(X)
(〈ξ, Y√(g)

) = d

dt

(
R
(
g exp(tX)

) ⊗ ℘(Y)
) ∣∣∣

t=0
= R(g) ⊗ r(X) ⊗ ℘(Y) .

Similarly
L(Y)

(〈ξ, X√(g)
) = R(g) ⊗ r(Y) ⊗ ℘(X) ,

and 〈
ξ, [X, Y ]〉(g) = R(g) ⊗ ℘

([X, Y ]) ,
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Since the condition which expresses that ℘ is a Lie algebra one-cocycle for the linear
representation r asserts that

r(X) ⊗ ℘(Y) − r(Y) ⊗ ℘(X) − ℘
([X, Y ]) = 0 ,

we conclude that the one-form ξ is closed, i.e. satisfies dξ = 0. Since G is assumed to
be simply connected, the one-form ξ is exact, and since G is assumed to be connected,
for any g in G, there exists a smooth parametrized curve ν : [0, T ] ≡ G such that
ν(0) = e and ν(T) = g. Let us set

ψ(g) =
T⎬

0

ξ

(
dν(t)

dt

)
dt .

Since ξ is exact, the right hand side of the above equality only depends on the end
points ν(0) = e and ν(T) = g of the parametrized curve ν, which allows us to define
ψ(g) by that equality. So defined, ν : G ≡ E is a smooth map. Its very definition
shows that Teψ = ℘ . If g and h are two elements in G, let ν : [0, T2] ≡ G be
a smooth parametrized curve such that 0 < T1 < T2, ν(0) = e, ν(T1) = g and
ν(t2) = gh. We have

ψ(gh) =
T2⎬

0

ξ

(
dν(t)

dt

)
dt =

T1⎬
0

ξ

(
dν(t)

dt

)
dt +

T2⎬
T1

ξ

(
dν(t)

dt

)
dt .

Observe that
T2⎬

0

ξ

(
dν(t)

dt

)
dt = ψ(g)

and that

T2⎬
T1

ξ

(
dν(t)

dt

)
dt = R(g) ⊗

T2⎬
T1

ξ

⎭
d
(
Lg−1 ⊗ ν(t)

)
dt

)
dt = R(g)

(
ψ(h)

)
,

which proves that ψ is a Lie group one-cocycle.
We already know that if ψ is a Lie group one-coboundary, ℘ = Teψ is a Lie algebra

coboundary. Conversely let us assume that ℘ is a Lie algebra one-coboundary. We
have, for each X ∈ G,

℘(X) = r(X)(c) ,

where c is a fixed element in E. Let g ∈ G and let ν : [0, T ] ≡ G be a smooth
parametrized curve in G such that ν(0) = e and ν(T) = g. We have
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ψ(g) =
T⎬

0

ξ

(
dν(t)

dt

)
dt =

t⎬
0

R
(
ν(t)

) ⊗ r

(
TL(

ν(t)
)−1

dν(t)

dt

)
(c) dt .

But by taking the derivative with respect to t of the two sides of the equality

R
(
g exp(tX)

) = R(g) ⊗ R
(
exp(tX)

)

and then setting t = 0, we see that

d

dt
R
(
ν(t)

) = R
(
ν(t)

) ⊗ r

(
TL(

ν(t)
)−1

dν(t)

dt

)
.

Therefore ψ is a Lie group one-coboundary since we have

ψ(g) =
T⎬

0

dR
(
ν(t)

)
dt

(c) dt = R(g)(c) − R(e)(c) = R(g)(c) − c . �

4.3 Poisson, Symplectic and Hamiltonian Actions

Definitions 4.3.1
1. An action σ of a Lie algebra G on a Poisson manifold (M,Ψ) is called a Poisson
action if for any X ∈ G the corresponding vector field σ(X) is a Poisson vector field.
When the Poisson manifold is in fact a symplectic manifold (M,ε), Poisson vector
fields on M are locally Hamiltonian vector fields and a Poisson action is called a
symplectic action.
2. An action Λ (either on the left or on the right) of a Lie group G on a Poisson

manifold (M,Ψ) is called a Poisson action when for each g ∈ G,

(Λg)∗Ψ = Ψ .

When the Poisson manifold (M,Ψ) is in fact a symplectic manifold (M,ε), a Poisson
action is called a symplectic action; the fibre bundles isomorphism ΨΩ : T∗M ≡ TM
being the inverse of εΣ : TM ≡ T∗M, we also can say that an action Λ of a Lie
group G on a symplectic manifold (M,ε) is called a symplectic action when for each
g ∈ G,

(Λg)
∗ε = ε .

Proposition 4.3.2 We assume that G is a connected Lie group which acts by an
action Λ, either on the left or on the right, on a Poisson manifold (M,Ψ), in such a
way that the corresponding action of its Lie algebra G is a Poisson action. Then the
action Λ itself is a Poisson action.
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Proof Let X ∈ G. For each x ∈ M, the parametrized curve s ∞≡ Λexp(sX)(x) is the
integral curve of the fundamental vector field XM which takes the value x for s = 0.
In other words, the reduced flow of the vector field XM is the map, defined on R× M
and taking its values in M,

(s, x) ∞≡ Λexp(sX)(x) .

According to a formula which relates inverse images of multivectors or differential
forms with respect to the flow of a vector field, with their Lie derivatives with respect
to that vector field (see for example [17], Appendix 1, Sect. 3.4, page 351), for any
s0 ∈ R

d

ds

((
(Λexp(sX))

∗(Ψ)
)
(x)
) ∣∣∣

s=s0
=
(
(Λexp(s0X))

∗(L(XM)Ψ
))

(x) = 0 ,

since L(XM)Ψ = 0. Therefore for any s ∈ R,

(Λexp(sX))
∗Ψ = (Λexp(−sX))∗Ψ = Ψ .

The Lie group G being connected, any g ∈ G is the product of a finite number of
exponentials, so (Λg)∗Ψ = Ψ. �

4.3.1 Other Characterizations of Poisson Actions

Let Λ be an action, either on the left or on the right, of a Lie group G on a Poisson
manifold (M,Ψ). The reader will easily prove that the following properties are
equivalent. Therefore any of these properties can be used as the definition of a Poisson
action.

1. For each g ∈ G,
(Λg)∗Ψ = Ψ .

2. For each g ∈ G and f ∈ C◦(M,R),

(Λg)∗(Xf ) = X(Λg)∗(f ) .

3. For each g ∈ G, Λg : M ≡ M is a Poisson map, which means that for each pair
(f1, f2) of smooth functions on M,

⎜
(Λg)

∗f1, (Λg)
∗f2
⎝ = (Λg)

∗({f1, f2}
) ;

4. In the special case when the Poisson manifold (M,Ψ) is in fact a symplectic
manifold (M,ε), for each g ∈ G,

(Λg)
∗ε = ε .
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The reader will easily prove that when these equivalent properties are satisfied,
the action of the Lie algebra G of G which associates, to each X ∈ G, the fundamental
vector field XM on M, is a Poisson action.

Definitions 4.3.3
1. An action σ of a Lie algebra G on a Poisson manifold (M,Ψ) is called a

Hamiltonian action if for every X ∈ G the corresponding vector field σ(X) is a
Hamiltonian vector field on M.
2. An action Λ (either on the left or on the right) of a Lie group G on a Poisson

manifold (M,Ψ) is called a Hamiltonian action if it is a Poisson action (or a symplec-
tic action when the Poisson manifold (M,Ψ) is in fact a symplectic manifold(M,ε))
and if, in addition, the associated action σ of its Lie algebra is a Hamiltonian action.

Remarks 4.3.4
1. A Hamiltonian action of a Lie algebra on a Poisson manifold is automatically

a Poisson action.
2. An action Λ of a connected Lie group G on a Poisson manifold such that the

corresponding action of its Lie algebra is Hamiltonian, automatially is a Hamiltonian
action.
3. Very often, Hamiltonian actions of a Lie algebra (or of a Lie group) on the

cotangent bundle T∗N to a smooth manifold N encountered in applications come
from an action of this Lie algebra (or of this Lie group) on the manifold N itself.
Proposition 4.3.5 explains how an action on N can be lifted to T∗N into a Hamiltonian
action.

Proposition 4.3.5 Let σ : G ≡ A1(N) be an action of a finite-dimensional Lie
algebraG on a smooth manifold N. Let σ̂ : G ≡ A1(T∗N) be the map wich associates
to each X ∈ G the canonical lift to T∗N of the vector field σ(X) on N (2.4.6). The map
σ̂ is a Hamiltonian action of G on (T∗N, dξN ) (where ξN is the Liouville form and
dξN the canonical symplectic form on T∗N). For each X ∈ G, the smooth function
fX : T∗N ≡ R

fX(ϕ) =
〈
ϕ,σ(X)

(
ηN (ϕ)

)⎛ = i
(
σ̂(X)

)
ξN (ϕ) , ϕ ∈ T∗N ,

is a Hamiltonian for the vector field σ̂(X). Moreover, for each pair (X, Y) of elements
in G,

{fX , fY } = f[X,Y ] .

Proof Proposition 2.4.9 proves that for each X ∈ G the vector field σ̂(X) is Hamil-
tonian and admits the function fX as Hamiltonian. This Proposition also shows that
fX is given by the two equivalent expressions

fX(ϕ) =
〈
ϕ,σ(X)

(
ηN (ϕ)

)⎛ = i
(
σ̂(X)

)
ξN (ϕ) , ϕ ∈ T∗N .

Let (X, Y) be a pair of elements in G. Since the vector fields σ̂(X) and σ̂(Y) admit
fX and fY as Hamiltonians, Lemma 2.5.2 shows that

⎟
σ̂(X), σ̂(Y)

⎠
admits {fX , fY } as
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Hamiltonian. We have

{fX , fY } = L(σ̂(X)
)
fY = L(σ̂(X)

) ⊗ i
(
σ̂(Y)

)
ξN = i

⎞
σ̂(X), σ̂(Y)

]
ξN

since, using 2.4.8, we see that L(σ̂(X)
)
ξN = 0. Therefore, for each ϕ ∈ T∗N ,

{fX , fY }(ϕ) =
〈
ϕ, TηN

([σ̂(X), σ̂(Y)](ϕ))⎛ = 〈
ϕ, [X, Y ] ⊗ ηN (ϕ)

〉 = f[X,Y ](ϕ)

since TηN
([σ̂(X), σ̂(Y)](ϕ)) = [X, Y ] ⊗ ηN (ϕ). Since {fX , fY } = f[X,Y ], the corre-

sponding Hamiltonian vector fields
⎟
σ̂(X), σ̂(Y)

⎠
and σ̂

([X, Y ]) are equal. In other
words, σ̂ is a Lie algebra action of G on (T∗N, dξN ). �
Proposition 4.3.6 Let σ be a Hamiltonian action of a Lie algebra G on a Poisson
manifold (M,Ψ). Let G∗ be the dual space of G. There exists a smooth map J : M ≡
G∗ such that for each X ∈ G the corresponding Hamiltonian vector field XM has the
function JX : M ≡ R, defined by

JX(x) = 〈
J(x), X

〉
, with x ∈ M ,

as Hamiltonian.
Such a map J : M ≡ G∗ is called a momentum map for the Hamiltonian Lie

algebra action σ. When σ is the Lie algebra action associated to a Hamiltonian
action Λ of a Lie group G on the Poisson manifold (M,Ψ), J is called a momentum
map for the Hamiltonian Lie group action Λ.

Proof Let (e1, ..., ep) be a basis of the Lie algebra G and (ς1, ..., ςp) be the dual basis
of G∗. Since σ is Hamiltonian, for each i (1 ≤ i ≤ p) there exists a Hamiltonian
Jei : M ≡ R for the Hamiltonian vector field σ(ei). The map J : M ≡ G defined by

J(x) =
p∑

i=1

Jeiς
i , x ∈ M ,

is a momentum map for σ.

The momentum map was introduced by Souriau [23] and, in the Lagrangian
formalism, by Smale [24, 25]. �

4.4 Some Properties of Momentum Maps

Proposition 4.4.1 Let σ be a Hamiltonian action of a Lie algebra G on a Poisson
manifold (M,Ψ), and J : M ≡ G∗ be a momentum map for that action. For any
pair (X, Y) ∈ G × G, the smooth function ⎫℘(X, Y) : M ≡ R defined by

⎫℘(X, Y) = {JX , JY } − J[X,Y ]
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is a Casimir of the Poisson algebra C◦(M,R), which satisfies, for all X, Y and
Z ∈ G, ⎫℘([X, Y ], Z

)+ ⎫℘([Y , Z], X
)+ ⎫℘([Z, X], Y

) = 0 . (1)

When the Poisson manifold (M,Ψ) is in fact a connected symplectic manifold
(M,ε), for any pair (X, Y) ∈ G ×G the function ⎫℘(X, Y) is constant on M, and the
map ⎫℘ : G × G ≡ R is a skew-symmetric bilinear form, which satisfies the above
identity (1).

Proof Since JX and JY are Hamiltonians for the Hamiltonian vector fields σ(X)

and σ(Y), the Poisson bracket {JX , JY } is a Hamiltonian for
⎟
σ(X),σ(Y)]. Since

σ : G ≡ A1(M) is a Lie algebras homomorphism,
⎟
σ(X),σ(Y)] = σ

([X, Y ]), and
J[X,Y ] is a Hamiltonian for this vector field. We have two different Hamiltonians for
the same Hamiltonian vector field. Their difference ⎫℘(X, Y) is therefore a Casimir
of the Poisson algebra C◦(M,R).

Let X, Y and Z be three elements in G. We have

⎫℘([X, Y ], Z
) = {J[X,Y ], JZ } − J⎟[X,Y ],Z

⎠
= ⎜{JX , JY } − ⎫℘(X, Y), JZ

⎝− J⎟[X,Y ],Z
⎠

= ⎜{JX , JY }, JZ
⎝− J⎟[X,Y ],Z

⎠

since ⎫℘(X, Y) is a Casimir of the Poisson algebra C◦(M,R). Similarly

⎫℘([Y , Z], X
) = ⎜{JY , JZ }, JX

⎝− J⎟[Y ,Z],X
⎠ ,

⎫℘([Z, X], Y
) = ⎜{JZ , JX}, JY

⎝− J⎟[Z,X],Y
⎠ .

Adding these three terms and using the fact that the Poisson bracket of functions
and the bracket in the Lie algebra G both satisfy the Jacobi identity, we see that ⎫℘
satisfies (1).

When (M,Ψ) is in fact a connected symplectic manifold (M,ε), the only Casimirs
of the Poisson algebra C◦(M,R) are the constants, and ⎫℘ becomes a bilinear skew-
symmetric form on G. �

Definition 4.4.2 Under the assumptions of Proposition 4.4.1, the skew-symmetric
bilinear map ⎫℘ , defined on G × G and taking its values in the space of Casimirs of
the Poisson algebra C◦(M,R) (real-valued when the Poisson manifold (M,Ψ) is
in fact a connected symplectic manifold (M,ε)), is called the symplectic cocycle of
the Lie algebra G associated to the momentum map J .

Remark 4.4.3 Under the assumptions of Proposition 4.4.1, let us assume in addi-
tion that the Poisson manifold (M,Ψ) is in fact a connected symplectic manifold
(M,ε). The symplectic cocycle ⎫℘ is then a real-valued skew-symmetric bilinear
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form on G. Therefore it is a symplectic cocycle in the sense of Sect. 3.4. Two different
interpretations of this cocycle can be given.

1. Let ℘ : G ≡ G∗ be the map such that, for all X and Y ∈ G
〈
℘(X), Y

〉 = ⎫℘(X, Y) .

Written for ℘ , Eq. (1) of 4.4.1 becomes

℘
([X, Y ]) = ad∗−X

(
℘(Y)

)− ad∗−Y

(
℘(X)

)
, X and Y ∈ G .

The map ℘ is therefore the one-cocycle of the Lie algebra G with values in G∗,
for the coadjoint representation (4.2.3) X ∞≡ ad∗−X of G, associated to the affine
action of G on its dual

a℘(X)(ω) = ad∗−X(ω) + ℘(X) , X ∈ G , ω ∈ G∗ ,

in the sense of 4.2.5. The reader is referred to the book [26] for a more thorough
discussion of the cohomology theories of Lie groups and Lie algebras.

2. Let G be a Lie group whose Lie algebra is G. The skew-symmetric bilinear form⎫℘ on G = TeG can be extended, either by left translations or by right translations,
into a left invariant (or a right invariant) closed differential two-form on G, since
the identity (1) of 4.4.1 means that its exterior differential d⎫℘ vanishes. In other
words, ⎫℘ is a 2-cocycle for the restriction of the de Rham cohomology of G to
left (or right) invariant differential forms.

Proposition 4.4.4 Let σ : G ≡ A1(N) be an action of a finite-dimensional Lie
algebra G on a smooth manifold N, and let σ̂ : G ≡ A1(T∗N) be the Hamiltonian
action of G on (T∗N, dξN ) introduced in Proposition4.3.5. The map J : T∗N ≡ G∗
defined by 〈

J(ϕ), X
〉 = i

(
σ̂(X)

)
ξN (ϕ) , X ∈ G , ϕ ∈ T∗N ,

is a momentum map for the action σ̂ which satisfies, for all X and Y ∈ G,

⎜
JX , JY

⎝ = J[X,Y ] .

In other words, the symplectic cocycle of G associated to J, in the sense of 4.4.2,
identically vanishes.

Proof These properties immediately follow from 4.3.5. �
Theorem 4.4.5 (First Emmy Noether’s theorem in Hamiltonian form) Let σ be
a Hamiltonian action of a Lie algebra G on a Poisson manifold (M,Ψ), J : M ≡ G∗
be a momentum map for σ and H : M ≡ R be a smooth Hamiltonian. If the action
σ leaves H invariant, that means if

L(σ(X)
)
H = 0 for any X ∈ G ,
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the momentum map J is a G∗-valued first integral (3.3.4) of the Hamiltonian vector
field ΨΩ(dH), which means that it keeps a constant value along each integral curve
of that vector field.

Proof For any X ∈ G, let JX : M ≡ R be the function x ∞≡ 〈
J(x), X

〉
. Let t ∞≡ γ(t)

be an integral curve of the Hamiltonian vector field ΨΩ(dH). We have

d

dt

(
JX
(
γ(t)

)) = L(ΨΩ(dH)
)(

JX
)(

γ(t)
) = Ψ

(
dH, dJX

)
(γ(t))

= −L
(
ΨΩ
(
dJX

))
H = −L(σ(X)

)
H = 0 .

Therefore, for any X ∈ G, the derivative of 〈J, X√(γ(t)
)

with respect to the parameter
t of the parametrized curve t ∞≡ γ(t) vanishes identically, which means that J keeps
a constant value along that curve. �

The reader will find in the book by Yvette Kosmann-Schwarzbach [27] a very
nice exposition of the history and scientific applications of the Noether’s theorems.

Proposition 4.4.6 Let σ be a Hamiltonian action of a Lie algebra G on a Poisson
manifold (M,Ψ) and J : M ≡ G∗ be a momentum map for that action. Let S be a
symplectic leaf of (M,Ψ) and εS be its symplectic form.
1. For each x ∈ S, in the symplectic vector space

(
TxS,εS(x)

)
, each of the

two vector subspaces TxS ∩ ker(TxJ) and
⎜
σ(X)(x) ; X ∈ G } is the symplectic

orthogonal of the other.
2. For each x ∈ S, TxJ(TxS) is the annihilator of the isotropy subalgebra Gx =⎜
X ∈ G;ζ(X)(x) = 0

⎝
of x.

Proof Let v ∈ TxS. For each X ∈ G we have

εS
(
v,σ(X)(x)

) = 〈
d〈J, X√(x), v〉 = 〈

TxJ(v), X
〉
.

Therefore a vector v ∈ TxS belongs to orth
⎜
σ(X)(x) ; X ∈ G } if and only

if TxJ(v) = 0. In other words, in the symplectic vector space
(
TxS,εS(x)

)
,

TxS ∩ ker(TxJ) is the symplectic orthogonal of
⎜
σ(X)(x) ; X ∈ G }. Of course,

conversely
⎜
σ(X)(x) ; X ∈ G } is the symplectic orthogonal of TxS ∩ ker(TxJ).

The same formula shows that
〈
TxJ(v), X

〉 = 0 for all v ∈ TxS if and only if
X ∈ Gx . �

Remark 4.4.7 Under the assumptions of 4.4.6, when σ is the Lie algebra action asso-
ciated to a Hamiltonian action Λ of a Lie group G, the vector space

⎜
σ(X)(x) ; X ∈ G }

is the space tangent at x to the G-orbit of this point.

Corollary 4.4.8 Let σ be a Hamiltonian action of a Lie algebra G on a symplectic
manifold (M,ε) and J : M ≡ G∗ be a momentum map for that action.
1. For each x ∈ M, in the symplectic vector space

(
TxM,ε(x)

)
each of the two

vector subspaces ker(TxJ) and
⎜
σ(X)(x) ; X ∈ G } is the symplectic orthogonal of

the other.
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2. For each x ∈ M, TxJ(TxM) is the annihilator of the isotropy subalgebra
Gx = {X ∈ G;σ(X)(x) = 0} of x.

Proof These assertions both follow immediately from 4.4.6 since the symplectic
leaves of (M,ε) are its connected components. �
Proposition 4.4.9 Let Λ be a Hamiltonian action of a Lie group G on a connected
symplectic manifold (M,ε) and J : M ≡ G∗ be a momentum map for that action.
There exists a unique action A of the Lie group G on the dual G∗ of its Lie algebra
for which the momentum map J is equivariant, that means satisfies for each x ∈ M
and g ∈ G

J
(
Λg(x)

) = Ag

(
J(x)

)
.

The action A is an action on the left (respectively, on the right) if Λ is an action on
the left (respectively, on the right), and its expression is

{
A(g, ϕ) = Ad∗

g−1(ϕ) + ψ(g) if Λ is an action on the left,

A(ϕ, g) = Ad∗
g(ϕ) − ψ(g−1) if Λ is an action on the right,

g ∈ G , ϕ ∈ G∗ .

The map ψ : G ≡ G∗ is called the symplectic cocycle of the Lie group G associated
to the momentum map J.

Proof Let us first assume that Λ is an action on the left. For each X ∈ G the associated
fundamental vector field XM is Hamiltonian and the function JX : M ≡ R defined
by

JX(x) = 〈
J(x), X

〉
, x ∈ M ,

is a Hamiltonian for XM . We know by the characterizations Sect. 4.3 of Poisson
actions that (Λg−1)∗(XM), the direct image of XM by the diffeomorphism Λg−1 , is
a Hamiltonian vector field for which the function JX ⊗ Λg is a Hamiltonian. Propo-
sition 4.1.6 shows that (Λg−1)∗(XM) is the fundamental vector field associated to
Adg−1(X), therefore has the function

x ∞≡ 〈
J(x), Adg−1(X)

〉 = 〈
Ad∗

g−1 ⊗J(x), X
〉

as a Hamiltonian. The difference between these two Hamiltonians for the same
Hamiltonian vector field is a constant since M is assumed to be connected. Therefore
the expression 〈

J ⊗ Λg(x) − Ad∗
g−1 ⊗J(x), X

〉

does not depend on x ∈ M, and depends linearly on X ∈ G (and of course smoothly
depends on g ∈ G). We can therefore define a smooth map ψ : G ≡ G∗ by setting

ψ(g) = J ⊗ Λg − Ad∗
g−1 ⊗J , g ∈ G .

It follows that the map a : G × G∗ ≡ G∗,
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a(g, ϕ) = Ad∗
g−1(ϕ) + ψ(g)

is an action on the left of the Lie group G on the dual G∗ of its Lie algebra, which
renders the momentum map J equivariant.

The case when Λ is an action on the right easily follows by observing that (g, x) ∞≡
Λ(x, g−1) is a Hamiltonian action on the left whose momentum map is the opposite
of that of Λ. �

Proposition 4.4.10 Under the same assumptions as those of Proposition4.4.9, the
map ψ : G ≡ G∗ satisfies, for all g and h ∈ G,

ψ(gh) = ψ(g) + Ad∗
g−1

(
ψ(h)

)
.

Proof In Proposition 4.4.9, the cocycle ψ introduced for an action on the right β :
M×G ≡ M was the cocycle of the corresponding action on the left Λ : G × M ≡ M
defined by Λ(g, x) = β(x, g−1). We can therefore consider only the case when Λ

is an action on the left.
Let g and h ∈ G. We have

ψ(gh) = J
(
Λ(gh, x)

)− Ad∗
(gh)−1 J(x)

= J
(
Λ
(
g, Λ(h, x)

))− Ad∗
g−1 ⊗ Ad∗

h−1 J(x)

= ψ(g) + Ad∗
g−1

(
J
(
Λ(h, x)

)− Ad∗
h−1 J(x)

)
= ψ(g) + Ad∗

g−1 ψ(h) . �

Proposition 4.4.11 Let Λ be a Hamiltonian action of a Lie group G on a connected
symplectic manifold (M,ε) and J : M ≡ G∗ be a momentum map for that action.
The symplectic cocycle ψ : G ≡ G∗ of the Lie group G introduced in Proposi-
tion4.4.9 and the symplectic cocycle ℘ : G ≡ G∗ of its Lie algebra G introduced in
Definition4.4.2 and Remark 4.4.3 are related by

℘ = Teψ ,

where e is the neutral element of G, the Lie algebra G being identified with TeG and
the tangent space at G∗ at its origin being identified with G∗. Moreover J is a Poisson
map when G∗ is endowed with

• its canonical Poisson structure modified by the symplectic cocycle ℘ (defined in
Sect.3.4) if Λ is an action on the right,

• the opposite of this Poisson structure if Λ is an action on the left.

Proof As in the proof of Proposition 4.4.10, we have only to consider the case when
Λ is an action on the left. The map which associates to each X ∈ G the fundamental
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vector field XM is a Lie algebras homomorphism when G is endowed with the Lie
algebra structure of right invariant vector fields on the Lie group G. We will follow
here the more common convention, in which G is endowed with the Lie algebra
structure of left invariant vector fields on G. With this convention the map X ∞≡ XM

is a Lie algebras antihomomorphism and we must change a sign in the definition of⎫℘ given in Proposition 4.4.1 and take

⎫℘(X, Y) = 〈
℘(X), Y

〉 = {JX , JY } + J[X,Y ] , X and Y ∈ G .

We have, for any x ∈ M,

{JX , JY }(x) = ε(XM , YM)(x) = i(XM)d
(〈J, Y√)(x)

= d

dt

〈
J
(
Λ(exp(tX), x

)
, Y
⎛∣∣∣

t=0

= d

dt

〈
Ad∗

exp(−tX) J(x) + ψ
(
exp(tX)

)
, Y
⎛∣∣∣

t=0

= 〈
J(x),−[X, Y ]〉+ 〈

Teψ(X), Y
〉

= −J[X,Y ](x) + 〈
Teψ(X), Y

〉
.

We see that ℘ = Teψ. Moreover, the elements X and Y in G can be considered as
linear functions on G∗. Their Poisson bracket, when G∗ is equipped with its canonical
Poisson structure modified by ⎫℘ , is

{X, Y}⎫℘(ϕ) = 〈
ϕ, [X, Y ]〉− ⎫℘(X, Y) .

The formula {JX , JY }(x) = −J[X,Y ](x) + ⎫℘(X, Y) can be read as

{X ⊗ J, Y ⊗ J}(x) = −{X, Y}⎫℘ ⊗ J(x) .

Since the value taken at a point by the Poisson bracket of two functions only depends
on the values of the differentials of these two functions at that point, this result
proves that J is a Poisson map when G∗ is equipped with the opposite of the Poisson
bracket { , }⎫℘ . �

Remarks 4.4.12 Let Λ be a Hamiltonian action on the left of a Lie group G on a
connected symplectic manifold (M,ε), J : M ≡ G∗ be a momentum map for that
action and ψ : G ≡ G∗ be the symplectic cocycle of the Lie group G introduced in
Proposition 4.4.9.
1. The symplectic cocycle ψ : G ≡ G∗ is the Lie group one-cocycle with values in
G∗, for the coadjoint representation, associated to the affine representation A : G ≡
Aff(G∗),
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A(g)(ω) = Ad∗
g−1(ω) + ψ(g) , ω ∈ G∗ ,

in the sense of 4.2.4.
2. If instead of J we take for momentum map

J ′(x) = J(x) − c , x ∈ M ,

where c ∈ G∗ is constant, the symplectic cocycle ψ is replaced by

ψ′(g) = ψ(g) + Ad∗
g−1(c) − c .

The map ψ′ − ψ is a one-coboundary of G with values in G∗ for the coadjoint repre-
sentation (4.2.8). Therefore the cohomology class of the symplectic cocycle ψ only
depends on the Hamiltonian action Λ, not on the choice of its momentum map J . This
property is used by Souriau ([23], chapter III, p. 153) to offer a very nice cohomologi-
cal interpretation of the total mass of a classical (non-relativistic) isolated mechanical
system. He proves that the space of all possible motions of the system is a symplectic
manifold on which the Galilean group acts by a Hamiltonian action. The dimension
of the symplectic cohomology space of the Galilean group (the quotient of the space
of symplectic one-cocycles by the space of symplectic one-coboundaries) is equal
to 1. The cohomology class of the symplectic cocycle associated to a momentum
map of the action of the Galilean group on the space of motions of the system is
interpreted as the total mass of the system.

4.4.1 Other Properties of the Momentum Map

The momentum map has several other very remarkable properties. Atiyah [28],
Guillemin and Sternberg [29, 30] have shown that the image of the momentum map
of a Hamiltonian action of a torus on a compact symplectic manifold is a convex
polytope. Kirwan [31] adapted this result when the torus is replaced by any compact
Lie group. Delzant [32] has shown that the convex polytope which is the image of
a Hamiltonian action of a torus on a compact symplectic manifold determines this
manifold.

4.5 Actions of a Lie Group on Its Cotangent Bundle

In this section G is a Lie group, G is its Lie algebra and G∗ is the dual space of G.
The Liouville one-form on T∗G is denoted by ξG.

The group composition law m : G × G ≡ G, m(g, h) = gh, can be seen as an
action of G on itself either on the left, or on the right. For each g ∈ G we will denote
by Lg : G ≡ G and Rg : G ≡ G the diffeomorphisms

Lg(h) = gh , Rg(h) = hg , h ∈ G .
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called, respectively, the left translation and the right translation of G by g.

Definitions 4.5.1 The canonical lifts to the tangent bundle TG of the actions of G
on itself by left translations (respectively, by right translations) are, repectively, the
maps L : G × TG ≡ TG and R : TG × G ≡ TG

L(g, v) = TLg(v) , R(v, g) = TRg(v) , g ∈ G , v ∈ TG .

The canonical lifts to the cotangent bundle T∗G of the actions of G on itself by
left translations (respectively, by right translations) are, respectively, the maps L̂ :
G × T∗G ≡ T∗G and R̂ : T∗G × G ≡ T∗G

L̂(g, ϕ) = (
TLg−1

)T
(ϕ) , R̂(ϕ, g) = (

TRg−1
)T

(ϕ) , g ∈ G , ϕ ∈ T∗G .

We have denoted by
(
TLg−1

)T and
(
TRg−1

)T the transposes of the vector bundles
morphisms TLg−1 and TRg−1 , respectively.

Proposition 4.5.2 The canonical lifts to the tangent bundle and to the cotangent
bundle of the actions of the Lie group G on itself by left translations (respectively,
by right translations) are actions on the left (respectively, on the right) of G on its
tangent bundle and on its cotangent bundle, which project onto the actions of G on
itself by left translations (respectively, by right translations). It means that for all
g ∈ G and v ∈ TG

∂G
(
L(g, v)

) = Lg

(
∂G(v)

)
, ∂G

(
R(v, g)

) = Rg

(
∂G(v)

)
,

and that for all g ∈ G and ϕ ∈ T∗G

ηG
(̂
L(g, ϕ)

) = Lg

(
ηG(ϕ)

)
, ηG

(̂
R(ϕ, g)

) = Rg

(
ηG(ϕ)

)
.

Proof It is an easy verification that the properties of actions are indeed satisfied by
the maps L, R, L̂ and R̂, which is left to the reader. �

Theorem 4.5.3 The canonical lifts to the cotangent bundle L̂ and R̂ of the actions
of the Lie group G on itself by translations on the left and on the right are two
Hamiltonian actions of G on the symplectic manifold (T∗G, dξG). The maps JL :
T∗G ≡ G∗ and JR : T∗G ≡ G∗ defined, for each ϕ ∈ T∗G, by

JL(ϕ) = R̂
(
ϕ,ηG(ϕ)−1) , JR(ϕ) = L̂

(
ηG(ϕ)−1, ϕ

)

are momentum maps for the actions L̂ and R̂, respectively.
Moreover, the map JL is constant on each orbit of the action R̂, the map JR is

constant on each orbit of the action L̂ and for each ϕ ∈ T∗G each of the tangent
spaces at ϕ to the orbits L̂(G, ϕ) and R̂(ϕ, G) is the symplectic orthogonal of the
other. The maps JL : T∗G ≡ G∗ and JR : T∗G ≡ G∗ are Poisson maps when
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T∗G is equipped with the Poisson structure associated to its canonical symplectic
structure and when G∗ is equipped, respectively, with its canonical Poisson structure
(Sect.3.4) and with the opposite of its canonical Poisson structure.

Proof For each X ∈ G, let XL
G and XR

G be the fundamental vector fields on G associated
to X for the actions of G on itself, respectively by left and by right translations.
Similarly, let XL

T∗G and XR
T∗G be the fundamental vector fields on T∗G associated to

X for the actions L̂ and R̂ of G on T∗G defined in 4.5.1. The reduced flows of XL and
of XR are the maps

ΛXL
(t, g) = exp(tX)g , ΛXR

(t, g) = g exp(tX) , t ∈ R , g ∈ G .

Therefore
XL(g) = TRg(X) , XR(g) = TLg(X) , g ∈ G ,

and we see that the fundamental vector fields XL
T∗G and XR

T∗G on T∗G are the canonical
lifts to the cotangent bundle of the vector fields XL

G and XR
G on the Lie group G.

Proposition 2.4.9 proves that XL
T∗G and XR

T∗G are Hamiltonian vector fields which
admit as Hamiltonians, respectively, the maps

JL
X(ϕ) =

〈
ϕ, XL

G

(
ηG(ϕ)

)⎛
, JR

X (ϕ) =
〈
ϕ, XR

G

(
ηG(ϕ)

)⎛
, ϕ ∈ T∗G .

Replacing XL
G and XR

G by their expressions given above and using the definitions of
R̂ and L̂, we easily get the stated expressions for JL and JR. These expressions prove
that JL is constant on each orbit of the action R̂, and that JR is constant on each orbit
of the action L̂.

The actions L̂ and R̂ being free, each of their orbits is a smooth submanifold of
T∗G of dimension dim G. The ranks of the maps JL and JR are everywhere equal to
dim G since their restrictions to each fibre of T∗G is a diffeomorphism of that fibre
onto G∗. Therefore, for each ϕ ∈ T∗G,

ker TϕJL = Tϕ

(̂
R(ϕ, G)

)
, ker TϕJR = Tϕ

(̂
L(ϕ, G)

)
.

Corollary 4.4.8 proves that for each ϕ ∈ T∗G each of the two vector subspaces of
Tϕ(T∗G):

Tϕ

(̂
L(G, ϕ)

)
and Tϕ

(̂
R(ϕ, G)

)

is the symplectic orthogonal of the other.
Finally, the fact that JL and JR are Poisson maps whenG is equipped with its canon-

ical Poisson structure or its opposite is an easy consequence of Proposition 3.3.7. �

In [17], Chapter IV, Sect. 4, we proposed a generalization of Proposition 4.5.3
taking into account a symplectic cocycle ψ : G ≡ G∗ in which the action L̂ :
G × T∗G ≡ T∗G remained unchanged while the action R̂ : T∗G × G ≡ T∗G was
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modified. Below we propose a more general and more symmetrical generalization.
The symplectic form on T∗G will be the sum of its canonical symplectic form dξG

and of the pull-back by the canonical projection ηG : T∗G ≡ G of a suitable
closed two-form on G, deduced from ψ. The actions L̂ : G × T∗G ≡ T∗G and
R̂ : T∗G × G ≡ T∗G will be modified in the following way: for each g ∈ G, the
map L̂g : T∗G ≡ T∗G will be composed with a translation in the fibres of T∗G,
determined by addition of a right-invariant one-form on G depending of the element
g ∈ G, deduced from ψ; similarly, the map R̂g : T∗G ≡ T∗G will be composed with
a translation in the fibres of T∗G, determined by addition of a left-invariant one-form
on G depending of the element g ∈ G, deduced from ψ. As the reader will see, it is
possible to modify the action L̂ and to keep R̂ unchanged, or to modify the action
R̂ and to keep L̂ unchanged; in the first case, the momentum map JL : T∗G ≡ G∗
remains unchanged, while JR : T∗G ≡ G∗ must be modified; in the second case,
it is JR : T∗G ≡ G∗ which remains unchanged while JL : T∗G ≡ G∗ must be
modified. It is even possible to simultaneously modify both the actions L̂ and R̂; then
we get a pair of actions of G on T∗G depending on two real parameters.

Theorem 4.5.4 Let G be a Lie group, ψ : G ≡ G∗ be a symplectic cocycle of G,
℘ = Teψ : G ≡ G∗ be the associated symplectic cocycle of its Lie algebra G,
and ⎫℘ : G × G ≡ R be the skew-symmetric bilinear form ⎫℘(X, Y) = 〈

℘(X), Y
〉
.

Let ⎫℘L and ⎫℘R be the differential two-forms on G, respectively left-invariant and
right-invariant, whose value at the neutral element is ⎫℘ . The differential two-form
on T∗G

εT∗G = dξG + η∗
G(λL⎫℘L − λR⎫℘R) ,

where λL and λR are real constants and where ξG is the Liouville form on T∗G, is a
symplectic form on T∗G. The formulae, in which g ∈ G, ϕ ∈ T∗G,

ΛL(g, ϕ) = L̂g(ϕ) + λRR̂gηG(ϕ)

(
ψ(g)

)
,

ΛR(ϕ, g) = R̂g(ϕ) + λLL̂ηG(ϕ)g

(
ψ(g−1)

)

define two Hamiltonian actions ΛL : G × T∗G ≡ T∗G and ΛR : T∗G × G ≡ T∗G
of G on the symplectic manifold (T∗G,εT∗G), respectively on the left and on the
right. The maps JL,λL : T∗G ≡ G∗ and JR,λR : T∗G ≡ G∗ defined, for each
ϕ ∈ T∗G, by

JL,λL (ϕ) = R̂(
ηG(ϕ)

)−1(ϕ) + λLψ
(
ηG(ϕ)) ,

JR,λR(ϕ) = L̂(
ηG(ϕ)

)−1(ϕ) + λRψ
((

ηG(ϕ)
)−1

)

are momentum maps for the actions ΛL and ΛR, respectively.
Moreover, the map JL,λL is constant on each orbit of the action ΛR, the map

JR,λR is constant on each orbit of the action ΛL and for each ϕ ∈ T∗G each of the
tangent spaces at ϕ to the orbits ΛL(G, ϕ) and ΛR(ϕ, G) is the symplectic orthogonal
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of the other (with respect to the symplectic form εT∗G). The maps JL,λL : T∗G ≡
G∗ and JR,λR : T∗G ≡ G∗ are Poisson maps when T∗G is equipped with the
Poisson structure associated to the symplectic form εT∗G and when G∗ is equipped,
respectively, with its canonical Poisson structure modified by the cocycle (λL +λR)⎫℘
(Sect.3.4)

{f , g}(λL+λR)⎫℘(ω) =
〈
ω,
⎟
df (ω), dg(ω)

⎠⎛− (λL + λR)⎫℘(df (ω), dg(ω)
)

and with the opposite of this Poisson structure.

Proof The sum of the canonical symplectic form on T∗G with the pull-back of any
closed two-form on G always is nondegenerate, therefore symplectic. So εT∗G is
symplectic. For g and h ∈ G, ϕ ∈ T∗G, let us calculate

ΛL(g, ΛL(h, ϕ)
)− ΛL(gh, ϕ) and ΛR(ΛR(ϕ, g), h

)− ΛR(ϕ, gh) .

We get

ΛL(g, ΛL(h, ϕ)
)− ΛL(gh, ϕ) = λRR̂ghηG(ϕ)

(
Ad∗

g−1

(
ψ(h)

)+ ψ(g) − ψ(gh)
)

= 0

since ψ is a one-cocycle. The map ΛL is therefore an action on the left of G on T∗G.
Similarly

ΛR(ΛR(ϕ, g), h
)− ΛR(ϕ, gh) = λLL̂ηG(ϕ)gh

(
Ad∗

h ψ(g−1) + ψ(h−1) − ψ(h−1g−1)
)

= 0

for the same reason. The map ΛR is therefore an action on the right of G on T∗G.
Let X ∈ G and ϕ = T∗G. By calculating the derivative with respect to t of

ΛL
(
exp(tX), ϕ

)
and of ΛR

(
ϕ, exp(tX)

)
, then setting t = 0, we get the following

expressions for the fundamental vector fields on T∗G associated to the actions ΛL

and ΛR:

XL,λR
T∗G (ϕ) = XL

T∗G(ϕ) + λRTR̂ηG(ϕ)℘(X) ,

XR,λL
T∗G (ϕ) = XR

T∗G(ϕ) − λLTL̂ηG(ϕ)℘(X) ,

the vector fields XL
T∗G and XR

T∗G being, as in the proof of Theorem 4.5.3, the canonical
lifts to T∗G of the fundamental vector fields XL and XR on G, for the actions of G on
itself by translations on the left and on the right, respectively. Using these expressions,
we easily check that
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i(XL,λR
T∗G )εT∗G = −dJL,λL

X , i(XR,λL
T∗G )εT∗G = −dJR,λR

X ,

which means that the actions ΛL and ΛR are Hamiltonian and have, respectively,
JL,λL and JR,λR as momentum maps.

The facts that JR,λR is constant on each orbit of ΛL and that JL,λL is constant on
each orbit of ΛR directly follow from the expressions of ΛL , ΛR, JL,λL and JR,λR .

Finally, let X and Y ∈ G. When considered as linear functions on G∗, their
Poisson bracket for the Poisson structure on G∗ for which JL,λL is a Poisson map
is easily determined by calculating the Poisson bracket {JL,λL ⊗ X, JL,λL ⊗ Y} =
{JL,λL

X , JL,λL
Y }, for the Poisson structure on T∗G associated to the symplectic form

εT∗G. This calculation fully determines the Poisson structure on G∗ for which JL,λL

is a Poisson map, and proves that it is indeed the canonical Poisson structure on T∗G
modified by the symplectic cocycle (λL + λR)⎫℘ , in the sense of Sect. 3.4. A similar
calculation shows that JR,λR is a Poisson map when G∗ is equipped with the opposite
Poisson structure. �
Proposition 4.5.5 Under the assumptions and with the notations of 4.5.4, the
momentum map JL,λL : T∗G ≡ G∗ is equivariant when G acts on the left on
T∗G by the action ΛL and on G∗ by the action

(g, ω) ∞≡ Ad∗
g−1(ω) + ψ(g) , (g, ω) ∈ G × G∗ .

Similarly, the momentum map JR,λR : T∗G ≡ G∗ is equivariant when G acts on the
right on T∗G by the action ΛR and on G∗ by the action

(ω, g) ∞≡ Ad∗
g(ω) + ψ(g−1) , (ω, g) ∈ G∗ × G .

Proof Let g ∈ G and ϕ ∈ T∗G. Using the expressions of JL,λL and of ΛL , we obtain

JL,λL
(
ΛL(g, ϕ)

) = Ad∗
g−1

(
JL,λL (ϕ)

)+ (λL + λR)ψ(g) ,

JR,λR
(
ΛR(ϕ, g)

) = Ad∗
g

(
JR,λR(ϕ)

)+ (λL + λR)ψ(g−1) ,

which proves that JL,λL and JR,λR are equivariant with respect to the indicated actions,
respectively on the left and on the right, of G on T∗G and on G∗. �

5 Reduction of Hamiltonian Systems with Symmetries

Very early, many scientists (Lagrange, Jacobi, Poincaré, ...) used first integrals to
facilitate the determination of integral curves of Hamiltonian systems. It was observed
that the knowledge of one real-valued first integral often allows the reduction by two
units of the dimension of the phase space in which solutions are searched for.
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Sniatycki and Tulczyjew [33] and, when first integrals come from the momentum
map of a Lie group action, Meyer [34], Marsden and Weinstein [35], developed a
geometric presentation of this reduction procedure, widely known now under the
name “Marsden–Weinstein reduction”.

Another way in which symmetries of a Hamiltonian system can be used to facilitate
the determination of its integral curves was discovered around 1750 by Leonard Euler
(1707–1783) when he derived the equations of motion of a rigid body around a fixed
point. In a short Note published in 1901 [36], Henri Poincaré formalized and gener-
alized this reduction procedure, often called today, rather improperly, “Lagrangian
reduction” while the equations obtained by its application are called the “Euler–
Poincaré equations” [37, 38].

We present in the following sections these two reduction procedures.

5.1 The Marsden–Weinstein Reduction Procedure

Theorem 5.1.1 Let (M,ε) be a connected symplectic manifold on which a Lie
group G acts by a Hamiltonian action Λ, with a momentum map J : M ≡ G∗. Let
ϕ ∈ J(M) ≤ G∗ be a possible value of J. The subset Gϕ of elements g ∈ G such that
Λg

(
J−1(ϕ)

) = J−1(ϕ) is a closed Lie subgroup of G.
If in addition ϕ is a weakly regular value of J in the sense of Bott [39], J−1(ϕ)

is a submanifold of M on which Gϕ acts, by the action Λ restricted to Gϕ and to
J−1(ϕ), in such a way that all orbits are of the same dimension. For each x ∈ J−1(ϕ)
the kernel of the two-form induced by ε on J−1(ϕ) is the space tangent at this point
to its Gϕ-orbit. Let Mϕ = J−1(ϕ)/Gϕ be the set of all these orbits. When Mϕ has a
smooth manifold structure for which the canonical projection ηϕ : J−1(ϕ) ≡ Mϕ is
a submersion, there exists on Mϕ a unique symplectic form εϕ such that η∗

ϕ εϕ is the

two-form induced on J−1(ϕ) by ε. The symplectic manifold (Mϕ,εϕ) is called the
reduced symplectic manifold (in the sense of Marsden an Weinstein) for the value ϕ
of the momentum map.

Proof Proposition 4.4.9 shows that there exists an affine action a of G onG∗ for which
the momentum map J is equivariant. The subset Gϕ of G is therefore the isotropy
subgroup of ϕ for the action a, which proves that it is indeed a closed subgroup of G.
A well known theorem due to Élie Cartan allows us to state that Gϕ is a Lie subgroup
of G.

When ϕ is a weakly regular value of J , J−1(ϕ) is a submanifold of M and, for each
x ∈ J−1(ϕ), the tangent space at x to this submanifold is ker TxJ (it is the definition
of a weakly regular value in the sense of Bott). Let N = J−1(ϕ) and let iN : N ≡ M
be the canonical injection. For all x ∈ N , the vector spaces ker TxJ all are of the
same dimension dim N , and dim

(
TxJ(TxM)

) = dim M − dim N . Corollary 4.4.8
shows that TxJ

(
TxM

)
is the annihilator of Gx . Therefore for all x ∈ N the isotropy

subalgebras Gx are of the same dimension dim G − dim M + dim N . The Gϕ-orbits
of all points x ∈ N are all of the same dimension dim Gϕ − dim Gx .
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Corollary 4.4.8 also shows that orth(ker TxJ) = orth(TxN) = Tx
(
Λ(G, x)

)
.

Therefore, for each x ∈ N ,

ker(i∗Nε)(x) = TxN ∩ orth(TxN) = TxN ∩ Tx
(
Λ(G, x)

) = Tx
(
Λ(Gϕ, x)

)
.

It is indeed the space tangent at this point to its Gϕ-orbit. When Mϕ = N/Gϕ has
a smooth manifold structure such that the canonical projection ηϕ : N ≡ Mϕ is a
submersion, for each x ∈ N the kernel of Txηϕ is ker(i∗Nε)(x), and the existence on
Mϕ of a symplectic form εϕ such that η∗

ϕ (εϕ) = i∗Nε easily follows. �

Proposition 5.1.2 The assumptions made here are the strongest of those made in
Theorem5.1.1: the set J−1(ϕ)/Gϕ has a smooth manifold structure such that the
canonical projection ηϕ : J−1(ϕ)/Gϕ is a submersion. Let H : M ≡ R be a smooth
Hamiltonian, invariant under the action Λ. There exists an unique smooth function
Hϕ : Mϕ ≡ R such that Hϕ ⊗ ηϕ is equal to the restriction of H to J−1(ϕ). Each
integral curve t ∞≡ σ(t) of the Hamiltonian vector field XH which meets J−1(ϕ) is
entirely contained in J−1(ϕ), and in the reduced symplectic manifold (Mϕ,εϕ) the
parametrized curve t ∞≡ ηϕ ⊗ σ(t) is an integral curve of XHϕ .

Proof As in the proof of Theorem 5.1.1, we set N = J−1(ϕ) and denote by iN : N ≡
M the canonical injection. Let εN = i∗Nε. Since H is invariant under the action Λ, it
keeps a constant value on each orbit of Gϕ contained in N , so there exists on Mϕ an
unique function Hϕ such that Hϕ ⊗ ηϕ = H ⊗ iN . The projection ηϕ being a surjective
submersion, Hϕ is smooth. Noether’s theorem (4.4.5) proves that the momentum map
J remains constant on each integral curve of the Hamiltonian vector field XH . So if
one of these integral curves meets N it is entirely contained in N , and we see that the
Hamiltonian vector field XH is tangent to N . We have, for each x ∈ N ,

η∗
ϕ

(
i
(

Txηϕ

(
XH(x)

))
εϕ

(
ηϕ(x)

)) = i
(
XH(x)

)(
i∗Nε(x)

)= −d(i∗N H)(x)

= −η∗
ϕ

(
dHϕ

)
(x) = η∗

ϕ

(
i(XHϕ )εϕ

)
(x) .

Since ηϕ is a submersion and εϕ a non-degenerate two-form, this implies that for
each x ∈ N , Txηϕ

(
XH(x)

) = XHϕ

(
ηϕ(x)

)
. The restriction of XH to N and XHϕ are

therefore two vector fields compatible with respect to the map ηϕ : N ≡ Mϕ , which
implies the stated result. �

Remark 5.1.3 Theorem 5.1.1 and Proposition 5.1.2 still hold when instead of the Lie
group action Λ we have an action σ of a finite-dimensional Lie algebra. The proof
of the fact that the Gϕ-orbits in J−1(ϕ) all are of the same dimension can easily be
adapted to prove that for all x ∈ J−1(ϕ), the vector spaces {σ(X)(x); X ∈ Gϕ} all are
of the same dimension and determine a foliation of J−1(ϕ). We have then only to
replace the Gϕ-orbits by the leaves of this foliation.
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5.1.1 Use of the Marsden–Weinstein Reduction Procedure

Theorem 5.1.1 and Proposition 5.1.2 are used to determine the integral curves of the
Hamiltonian vector field XH contained in J−1(ϕ) in two steps:

• their projections on Mϕ are first determined: they are integral curves of the Hamil-
tonian vector field XHϕ ; this step is often much easier than the full determination of
the integral curves of XH , since the dimension of the reduced symplectic manifold
Mϕ is smaller than the dimension of M;

• then these curves themselves are determined; this second step, called reconstruc-
tion, involves the resolution of a differential equation on the Lie group Gϕ .

Many scientists (T. Ratiu, R. Cushman, J. Sniatycki, L. Bates, J.-P. Ortega, ...)
generalized this reduction procedure in several ways: when M is a Poisson manifold
instead of a symplectic manifold, when ϕ is not a weakly regular value of J , ... The
reader will find more results on the subject in the recent book Momentum maps and
Hamiltonian reduction by Ortega and Ratiu [40].

Reduced symplectic manifolds occur in many applications other than the deter-
mination of integral curves of Hamiltonian systems. The reader will find such appli-
cations in the book Symplectic techniques in Physics by Guillemin and Sternberg
[41] and in the papers on the phase space of a particle in a Yang-Mills field [42, 43].

5.2 The Euler–Poincaré Equation

In his Note [36], Henri Poincaré writes the equations of motion of a Lagrangian
mechanical system when a finite-dimensional Lie algebra acts on its configuration
space by a locally transitive action. Below we adapt his results to the Hamiltonian
formalism.

Proposition 5.2.1 LetG be a finite-dimensional Lie algebra which acts, by an action
σ : G ≡ A1(N), on a smooth manifold N. The action σ is assumed to be locally
transitive, which means that for each x ∈ N,

⎜
σ(X)(x) ; X ∈ G⎝ = TxN. Let σ̂ :

G ≡ A1(T∗N) be the Hamiltonian action of G on (T∗N, dξN ) which associates, to
each X ∈ G, the canonical lift to T∗N of the vector field σ(X) on N (4.3.5), and let
J : T∗N ≡ G∗ be the momentum map of σ̂ given by the formula (4.4.4)

〈
J(ϕ), X

〉 = i
(
σ̂(X)

)
ξN (ϕ) , X ∈ G , ϕ ∈ T∗N .

Let H : T∗N ≡ R be a smooth Hamiltonian, which comes from a hyper-regular
Lagrangian L : TN ≡ R (hyper-regular means that the associated Legendre map
L : TN ≡ T∗Nis a diffeomorphism). Let γ : I ≡ T∗N be an integral curve of
the Hamiltonian vector field XH defined on an open interval I and V : I ≡ G be a
smooth parametrized curve in G which satisfies, for each t ∈ I,
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σ
(
V(t)

)(
ηN ⊗ γ(t)

) = d
(
ηN ⊗ γ(t)

)
dt

. (1)

The curve J ⊗ γ : I ≡ G∗, obtained by composition with J of the integral curve γ of
the Hamiltonian vector field XH, satisfies the differential equation in G∗

(
d

dt
− ad∗

V(t)

) (
J ⊗ γ(t)

) = J
(

d1L
(
ηN ⊗ γ(t), V(t)

))
. (2)

We have denoted by L : N × G ≡ R the map

(x, X) ∞≡ L(x, X) = L
(
σ(X)(x)

)
, x ∈ N , X ∈ G ,

and by d1L : N × G ≡ T∗N the partial differential of L with respect to its first
variable.

Equation (2) is called the Euler–Poincaré equation, while Eq. (1) is called the
compatibility condition.

Proof For each ϕ ∈ T∗N and each X ∈ G
〈
J(ϕ), X

〉 = σ(X)
(
ηN (ϕ)

)
,

therefore 〈 d

dt

(
J ⊗ γ(t)

)
, X
⎛
= d

dt

〈
γ(t),σ(X)

(
ηN ⊗ γ(t)

)⎛
.

Let (x1, ..., xn) be local coordinates on N , and (x1, ..., xn, p1, ..., pn) be the associated
local coordinates on T∗N . The smooth curves γ and ηN ⊗ γ can be expressed as

t ∞≡ (
yi(t),�i(t)

)
and t ∞≡ (

yi(t)
)
, (1 ≤ i ≤ n) ,

so we can write

〈 d

dt

(
J ⊗ γ(t)

)
, X
⎛
= d

dt

⎭
n∑

i=1

�i(t)
(
σ(X)

)i(
y1(t), ..., yn(t)

))
.

We have denoted by
(
σ(X)

)i
(x1, ..., xn) the value of the i-th component of the vector

field σ(X), expressed as a function of the local coordinates xi (1 ≤ i ≤ n).
The compatibility condition (1) becomes

dyk(t)

dt
=
(
σ
(
V(t)

))k(
y1(t), ..., yn(t)

)
.

In what follows we write yi for yi(t), �i for �i(t), (y) for
(
y1(t), ..., yn(t)

)
and (y,�)

for
(
y1(t), ..., yn(t),�1(t),�n(t)

)
. We have
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〈 d

dt

(
J ⊗ γ(t)

)
, X
⎛
=

n∑
i=1

d�i

dt

(
σ(X)

)i
(y)

+
(n,n)∑

(i,k)=(1,1)

�i
τ
(
σ(X)

)i
(y)

τxk

(
σ
(
V(t)

))k
(y) .

By using the local expression of the bracket of vector fields

⎞
σ
(
V(t)

)
,σ(X)

]i
(x) =

n∑
k=1

(
σ
(
V(t)

))k
(x)

τ
(
σ(X)

)i
(x)

τxk

−
n∑

k=1

(
σ(X)

)k
(x)

τ
(
σ
(
V(t)

))i
(x)

τxk

and taking into account the fact that, σ being a Lie algebras homomorphism,

⎞
σ
(
V(t)

)
,σ(X)

]
= σ

(⎟
V(t), X]

)
,

we get

〈 d

dt

(
J ⊗ γ(t)

)
, X
⎛
=
〈
γ(t),σ

(⎟
V(t), X

⎠)⎛

+
n∑

i=1

(
σ(X)

)i
(y)

(
d�i

dt
+

n∑
k=1

�k

τ
(
σ
(
V(t)

))k
(y)

τxi

)
.

The first term in the right hand side can be written

〈
γ(t),σ

(⎟
V(t), X

⎠)⎛ =
〈
J ⊗ γ(t),

⎟
V(t), X

⎠⎛ =
〈
ad∗

V(t)

(
J ⊗ γ(t)

)
, X
⎛
.

For all (x, X) ∈ N × G we have

L(x, X) = L
(
σ(X)(x)

)
.

For any point x ∈ N and any vector w ∈ TxN , there exists a smooth curve s ∞≡ z(s)

in N such that z(0) = x and
dz(s)

ds

∣∣
s=0= w. We easily obtain

〈
d1L

(
x, V(t)

)
,w
⎛

by taking the derivative of L
(
x(s), V(t)

)
with respect to s (t remaining fixed), then

making s = 0. We obtain
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〈
d1L

(
x, V(t)

)
,w
⎛
=

n∑
i=1

wi
(

τL(x, v)

τxi
+

n∑
k=1

τL(x, v)

τvk

τ
(
σ
(
V(t)

))k
(x)

τxi

)
.

Let us set x = ηN ⊗ γ(t), w = σ(X)
(
ηN ⊗ γ(t)

)
. We observe that

〈
d1L

(
ηN ⊗ γ(t), V(t)

)
,σ(X)

(
ηN ⊗ γ(t)

)⎛ =
〈
J
(

d1L
(
ηN ⊗ γ(t), V(t)

))
, X
⎛
.

Now we take into account the well known relations which exist between the partial
derivatives of the Lagrangian and of the Hamiltonian expressed in local coordinates

τL(x, v)

τxi
= −τH(x, p)

τxi
= d�i

dt
,

τL(x, v)

τvk
= �k ,

and we obtain

〈
J
(

d1L
(
ηN ⊗ γ(t), V(t)

))
, X
⎛
=

n∑
i=1

(
σ(X)

)i
(y)

(
d�i

dt
+

n∑
k=1

�k

τ
(
σ
(
V(t)

))k
(y)

τxi

)
.

Since X can be any element in G, the Euler–Poincaré equation follows. �

Remark 5.2.2 The assumptions made by Poincaré in [36] are less restrictive than
those made in 5.2.1: he uses the Lagrangian formalism for a smooth Lagrangian
L : TN ≡ R which is not assumed to be hyper-regular. The associated Legendre
map L : TN ≡ T∗N still exists as a smooth map (it is the vertical differential of L,
see for example [44]), but may not be a diffeomorphism. Of course the momentum
map J : T∗N ≡ G∗ still exists and can be used, together with the Legendre map,
to express Poincaré’s results intrinsically [45], independently of any choice of local
coordinates. Poincaré proves that if a smooth parametrized curve ν : [t0, t1] ≡ N is
an extremal of the action functional

I(ν) =
t1⎬

t0

L

(
dν(t)

dt

)
dt

for infinitesimal variations of ν with fixed end points, and if V : [t0, t1] ≡ G is a
smooth parametrized curve which satisfies, for each t ∈ [t0, t1], the compatibility
condition

σ
(
V(t)

)(
ν(t)

) = d
(
ν(t)

)
dt

, (1)



Symmetries of Hamiltonian Systems on Symplectic and Poisson Manifolds 243

the parametrized curve t ∞≡ J ⊗ L ⊗ dν(t)

dt
satisfies the Euler–Poincaré equation

(
d

dt
− ad∗

V(t)

)(
J ⊗ L ⊗ dν(t)

dt

)
= J

(
d1L

(
ν(t), V(t)

))
. (2)

The Euler–Poincaré equation can be written under a slightly different form in which,
instead of the Legendre map L : TN ≡ T∗N , the partial differential d2L : N ×G ≡
G∗ of the map L : N × G ≡ R with respect to its second variable is used. We have
indeed, for all x ∈ N and X ∈ G,

d2L(x, X) = J ⊗ L(σ(X)(x)
)
,

which allows to write the Euler–Poincaré equation under the form

(
d

dt
− ad∗

V(t)

)(
d2L

(
ν(t), V(t)

)) = J
(

d1L
(
ν(t), V(t)

))
. (3)

5.2.1 Use of the Euler–Poincaré Equation for Reduction

Poincaré observes in his Note [36] that the Euler–Poincaré equation can be useful
mainly when its right hand side vanishes and when it reduces to an autonomous
differential equation on G∗ for the parametrized curve t ∞≡ J ⊗ γ(t). We will see
in Sect. 6.4 that the first condition is satisfied when the Hamiltonian system under
consideration describes the motion of a rigid body around a fixed point in the absence
of external forces (Euler–Poinsot problem). The second condition generally is not
satisfied, since the Euler–Poincaré equation involves the parametrized curve t ∞≡
V(t) in G, whose dependence on J ⊗ γ(t) is complicated.

This simplification occurs when there exists a smooth function h : G∗ ≡ R such
that

H = h ⊗ J ,

which implies that H is constant on each level set of J . Then it can be shown that the
Euler–Poincaré equation becomes the Hamilton equation on G∗ for the Hamiltonian
h and its canonical Poisson structure.

If we assume that the manifold N is a Lie group G and that the action σ : G ≡
A1(G) of its Lie algebra is the action associated to the action of G on itself by trans-
lations on the left (respectively, on the right), σ̂ is the Lie algebra action associated
to the canonical lift to T∗G of the canonical action of G on itself by translations on
the left (respectively, on the right). The conditions under which the Euler–Poincaré
equation can be used for reduction are exactly the same as those under which the
Marsden–Weinstein reduction method can be applied, but for the canonical lift to
T∗G of the action of G on itself by translations on the right (respectively, on the left).
Moreover, applications of these two reduction methods lead to essentially the same
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equations: the only difference is that the Euler–Poincaré reduction method leads to
a differential equation on G∗, while the Marsden–Weinstein reduction method leads,
for each value of the momentum map, to the same differential equation restricted to
a coadjoint orbit of G∗. The reader will find the proof of these assertions in [45, 46].

6 Examples of Hamiltonian Dynamical Systems

We present in this section three classical examples of Hamiltonian dynamical systems
in which the previously discussed concepts (symmetry groups, momentum maps and
first integrals, reduction methods) are illustrated. The configuration space of the first
system (the spherical pendulum) is a sphere embedded in physical space; each point
of the sphere is a possible position of a material point which moves on that sphere.
The third example (the Kepler problem) deals with the motion of a material point in
the acceleration field created by an attracting centre; the configuration space is the
physical space minus one point (the attractive centre). In the second example (the
motion of a rigid body around a fixed point) the configuration space is a little more
complicated: it is the set of all maps which send the material body onto one of its
possible positions in space.

6.1 The Mathematical Description of Space and Time

The framework in which the motions of material bodies occur is the physical space-
time. It will be mathematically described here as it is usually done in classical
(non-relativistic) Mechanics. In a Galilean reference frame, once units of length
and of time are chosen, the physical space and the physical time are mathematically
described by affine Euclidean spaces E and T , respectively three-dimensional and
one-dimensional. We will consider E and T as oriented: T has a natural orientation
(towards the future), while by convention, an arbitrary orientation of E is chosen.
The choice of a particular element of T as origin will allow us to identify T with the
real line R.

In the three examples treated below there exists a privileged element of E (the
centre of the sphere, the fixed point and the attractive centre, respectively in the first,
second and third examples) which will be taken as origin. The space E will therefore
be considered as an Euclidean three-dimensional vector space. For the same reason
the abstract space S of material points used in the second example will be considered
too as an Euclidean three-dimensional vector space.

In our three examples, the configuration space of the system will be denoted by N :
therefore in the first example N is the sphere embedded in E centered on the origin
on which the material point is moving; in the third example N = E\{O}, where O is
the attractive centre; and we will see that in the second example, N = Isom(S, E) is
the space of orientation preserving linear isometries of an abstract three-dimensional
Euclidean vector space S (the space of material points) onto the physical space E.
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6.2 Vector Calculus in a Three-dimensional Oriented Euclidean
Vector Space

The group SO(E) of orientation preserving linear isometries of E, isomorphic to
SO(3), acts on the space E, and so does its Lie algebra so(E), isomorphic to so(3),
by the associated action. The Euclidean vector space E being three-dimensional and
oriented, there exists an isomorphism of so(E) onto the space E itself widely used in
elementary vector calculus, in which an element X ∈ so(E), which is a linear map

E ≡ E represented, in some orthonormal positively oriented basis (
−≡
e 1,

−≡
e 2,

−≡
e 3)

of E, by the skew-symmetric 3 × 3-matrix


 0 −c b

c 0 −a
−b a 0




is identified with the vector
−≡
X = a

−≡
e 1 + b

−≡
e 2 + c

−≡
e 3. With this identification,

the bracket in so(E), in other words the map (X, Y) ∞≡ [X, Y ] = X ⊗ Y − Y ⊗ X,

corresponds to the vector product (
−≡
X ,

−≡
Y ) ∞≡ −≡

X × −≡
Y . Expressed in terms of the

vector product, the Jacobi identity becomes

−≡
X × (

−≡
Y × −≡

Z ) + −≡
Y × (

−≡
Z × −≡

X ) + −≡
Z × (

−≡
X × −≡

Y ) = 0 . (1)

Let us recall another very useful formula which expresses, in terms of the scalar
and vector products, the ad-invariance of the pairing between so(E) and its dual by

means of the scalar product. For any triple (
−≡
u ,

−≡
v ,

−≡
w ) ∈ E × E × E, we have

−≡
u .(

−≡
v × −≡

w ) = −≡
v .(

−≡
w × −≡

u ) = −≡
w .(

−≡
u × −≡

v ) . (2)

The map (
−≡
u ,

−≡
v ,

−≡
w ) ∞≡ −≡

u .(
−≡
v ×−≡

w ) is therefore a skew-symmetric trilinear form
on E sometimes called the mixed product.

The dual E∗ of E will be identified with E, with the scalar product (
−≡
u ,

−≡
v ) ∞≡−≡

u .
−≡
v as pairing by duality. The tangent and cotangent bundles TE and T∗E will

therefore both be identified with E × E, the canonical projections ∂E : TE ≡ E
and ηE : T∗E ≡ E both being the projection of E × E onto its first factor. The Lie

algebra action of so(E) on E associates, to each
−≡
X ∈ so(E) ≡ E, the vector field−≡

XE on E whose value at an element
−≡
x ∈ E is

−≡
XE(

−≡
x ) = (

−≡
x ,

−≡
X × −≡

x ) . (3)

Since we have identified so(E) with E, its dual space so(E)∗ is identified with E∗,
which we have identified with E by means of the scalar product. Therefore so(E)∗
too will be identified with E.
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The canonical lift to the cotangent bundle of the action of SO(E) on E is a
Hamiltonian action (4.3.5) whose momentum map JE : T∗E ≡ E × E ≡ so(E)∗ ≡
E can easily be expressed in terms of the vector product. Indeed the map JE must

satisfy, for each
−≡
X ∈ so(E) ≡ E and each (

−≡
x ,

−≡
p ) ∈ T∗E ≡ E × E,

〈
JE(

−≡
x ,

−≡
p ), X

〉 = 〈
(
−≡
x ,

−≡
p ),

−≡
XE(

−≡
x )
〉 = −≡

p .(
−≡
X × −≡

x ) = −≡
X .(

−≡
x × −≡

p ) ,

the last equality being obtained by using the above formula ((2)). We therefore see
that

JE(
−≡
x ,

−≡
p ) = −≡

x × −≡
p . (4)

Expressed in terms of the vector product, the adjoint and coadjoint actions become

ad−≡
X

−≡
Y = −≡

X × −≡
Y , ad∗−≡

X

−≡
ϕ = −−≡

X × −≡
ϕ = −≡

ϕ × −≡
X , (5)

where
−≡
X and

−≡
Y ∈ so(E) ≡ E and

−≡
ϕ ∈ so(E)∗ ≡ E.

Of course all the above properties hold for the three-dimensional Euclidean
oriented vector space S of material points which is used in the second example,
for the group SO(S) of its linear orientation preserving isometries and for its Lie
algebra so(S).

6.3 The Spherical Pendulum

6.3.1 Mathematical Description of the Problem

Let us consider a heavy material point of mass m constrained, by an ideal constraint,
on the surface of a sphere N of centre O and radius R embedded in the physical
space E. Since the action of SO(E) on E maps N onto itself, SO(E) acts on N on the
left, and so does its Lie algebra so(E) by the associated action, which is locally (and

globally) transitive. The configuration space N is the set of vectors
−≡
x ∈ E which

satisfy
−≡
x .

−≡
x = R2 and its tangent bundle TN is the subset of TE ≡ E × E of pairs

(
−≡
x ,

−≡
v ) of vectors which satisfy

−≡
x .

−≡
x = R2 ,

−≡
x .

−≡
v = 0 .

We assume that the material point is submitted to a constant acceleration field
−≡
g

(which, in most applications, will be the vertical gravity field directed downwards).
The Lagrangian of the system is

L(
−≡
x ,

−≡
v ) = m‖−≡v ‖2

2
+ m

−≡
g .

−≡
x .
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The Legendre map L : TN ≡ T∗N is expressed as

L(
−≡
x ,

−≡
v ) = (

−≡
x ,

−≡
p ) with

−≡
p = m

−≡
v .

The Hamiltonian of the system is therefore

H(
−≡
x ,

−≡
p ) = ‖−≡p ‖2

2m
− m

−≡
g .

−≡
x .

The momentum map JE of the canonical lift to the cotangent bundle of the Lie
algebra action σ, expressed in terms of the vector product, is given by Formula (4)
in Sect. 6.2.

6.3.2 The Euler–Poincaré Equation

The map ⎫σ : N ×so(E) ≡ TN defined by ⎫σ(
−≡
x ,

−≡
X ) = −≡

XN (
−≡
x ), expressed, in terms

of the vector product, is ⎫σ(
−≡
x ,

−≡
X ) = (

−≡
x ,

−≡
X ×−≡

x ). Using Formula (2) of Sect. 6.2,
we easily obtain the expression of L = L ⊗ ⎫σ : N × so(E) ≡ R:

L(
−≡
x ,

−≡
X ) = mR2

2

⎭
‖−≡X ‖2 − (

−≡
X .

−≡
x )2

R2

)
+ m

−≡
g .

−≡
x .

The partial differentials of L with respect to its first and second variables are

d1L(
−≡
x ,

−≡
X ) =

(−≡
x , m

(−≡
g − (

−≡
X .

−≡
x )

−≡
X + (

−≡
x .

−≡
X )2 − −≡

g .
−≡
x

R2

−≡
x
))

,

d2L(
−≡
x ,

−≡
X ) = m

(
R2−≡X − (

−≡
X .

−≡
x )

−≡
x
)
.

Let t ∞≡ −≡
x (t) be a smooth curve in N , parametrized by the time t, solution of the

Euler–Lagrange equation for the Lagrangian L. The compatibility condition (1) of
5.2.2 becomes, for a smooth map t ∞≡ V(t) in so(E),

d
−≡
x (t)

dt
= −≡

V (t) × −≡
x (t) ,

and the Euler–Poincaré equation (3) of 5.2.2 is

d

dt

(
mR2−≡V (t) − m

(−≡
x (t).

−≡
V (t)

)−≡
x (t)

)
= m

−≡
x (t) × −≡

g .
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This equation can easily be obtained by much more elementary methods: it expresses
the fact that the time derivative of the angular momentum at the origin is equal to
the moment at that point of the gravity force (since the moment at the origin of the
constraint force which binds the material point to the surface of the sphere vanishes).

The Euler–Poincaré equation allows a reduction of the problem if and only if its

right hand side vanishes, which occurs if and only if
−≡
g = 0. When that condition is

satisfied, it can be written as

m
d

dt

⎭
−≡
x (t) × d

−≡
x (t)

dt

)
= 0 ,

which implies that the material point moves on a great circle of the sphere N , in the

plane through its centre orthogonal to the constant vector
−≡
x (t)× d

−≡
x (t)

dt
. Using the

conservation of energy H, we see that ‖−≡v )‖ remains constant during the motion.

6.3.3 Reduction by the Use of First Integrals

Equation (4) of Sect. 6.2 shows that the map

J(
−≡
x ,

−≡
p ) = −≡

x × −≡
p , with (

−≡
x ,

−≡
p ) ∈ T∗N ≡ N × E ,

is a momentum map for the canonical lift to T∗N of the action of SO(E) on N . When−≡
g →= 0 that action does not leave invariant the Hamiltonian H, but its restriction to

the subgroup G1 of rotations around the vertical line through the centre of the sphere
N does leave H invariant. The Lie algebra of G1 and its dual being identified with
R, the momentum map of this restricted action is

J1(
−≡
x ,

−≡
p ) = −≡

e g.(
−≡
x × −≡

p )

where
−≡
eg is the unit vector such that

−≡
g = g

−≡
eg , with g > 0. The only singular

value of J1 is 0. It is reached when the three vectors
−≡
x ,

−≡
p and

−≡
eg lie in the same

vertical plane. Therefore, for any ω →= 0, J−1
1 (ω) is a three-dimensional submanifold

of T∗N which does not contain T∗
R
−≡
e g

N∪T∗
−R

−≡
e g

N and which remains invariant under

the action of G1. The set of orbits of this action is the Marsden–Weinstein reduced
symplectic manifold for the value ω of the momentum map. On this two-dimensional
reduced symplectic manifold all the integral curves of the Hamiltonian vector field
associated to the reduced Hamiltonian Hω are periodic.
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6.4 The Motion of a Rigid Body Around a Fixed Point

6.4.1 Mathematical Description of the Problem

We consider the motion of a rigid body containing at least three non-aligned material
points. A configuration of the body in space is mathematically represented by an
affine, isometric and orientation preserving map defined on an abstract Euclidean
three-dimensional oriented affine space S (called the space of material points), with
values in E, the three-dimensional Euclidean oriented affine space which mathemati-
cally describes the physical space. When the configuration of the body is represented
by the map x : S ≡ E, the position in space of the material point of the body repre-
sented by z ∈ S is x(z).

We assume that one geometric point of the rigid body is constrained, by an ideal
constraint, to keep a fixed position in the physical space. By using this fixed point
as origin, both for S and for E, we can now consider these spaces as vector spaces.
Each configuration of the body in space is therefore represented by a linear isometry.
The set N of all possible configurations of the material body in space is therefore
Isom(S, E), the set of linear orientation-preserving isometries of S onto E.

The Lie groups SO(S) and SO(E) of linear orientation-preserving isometries,
respectively of S and of E, both isomorphic to SO(3), act on N , respectively on the
left and on the right, by the two commuting actions ΛS and ΛE

ΛS(x, gS) = x ⊗ gS , ΛE(gE, x) = gE ⊗ x , gE ∈ SO(E) , gS ∈ SO(S) , x ∈ N .

The values at x ∈ N of the fundamental vector fields on N associated to X ∈ so(S)

and Y ∈ so(E) are

XN (x) = d
(
x ⊗ exp(sX)

)
ds

∣∣∣
s=0

, YN (x) = d(exp(sY) ⊗ x)

ds

∣∣∣
s=0

.

The Lie algebra actions σS : so(S) ≡ A1(N) and σE : so(E) ≡ A1(N) associated
to the Lie group actions ΛS and ΛE are, respectively, the maps

σS(X) = XN , σE(Y) = YN , X ∈ so(S) , Y ∈ so(E) .

One should be careful with signs: since ΛS is an action of SO(S) on the right,
the bracket of elements in the Lie algebra so(S) for which σS is a Lie algebras
homomorphism is the bracket of left-invariant vector fields on the Lie group SO(S);
similarly, since ΛE is an action of SO(E) on the left, the bracket of elements in the
Lie algebra so(E) for which σE is a Lie algebras homomorphism is the bracket of
right-invariant vector fields on the Lie group SO(E).

Let ⎫σS : N × so(S) ≡ TN and ⎫σE : N × so(E) ≡ TN be the vector bundles
isomorphisms
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⎫σS(x, X) = σS(X)(x) , ⎫σE(x, Y) = σE(Y)(x) .

Let ΦS : TN ≡ so(S) and ΦE : TN ≡ so(E) be the vector bundles maps (so(S) and
so(E) being considered as trivial vector bundles over a base reduced to a singleton)

ΦS(v) = ηso(S) ⊗ ⎫σ−1
S (v) , ΦE(v) = ηso(E) ⊗ ⎫σ−1

E (v) , v ∈ TN ,

where ηso(S) : N × so(S) ≡ so(S) and ηso(E) : N × so(E) ≡ so(E) are the
projections of these two products on their respective second factor.

A motion of the rigid body during a time interval [t0, t1] is mathematically
described by a smooth parametrized curve ν : [t0, t1] ≡ N . In his beauti-
ful paper [47], Vladimir Arnold clearly explained the physical meaning, for each

t ∈ [t0, t1], of
dν(t)

dt
, ΦS

(
dν(t)

dt

)
and ΦE

(
dν(t)

dt

)
:

• dν(t)

dt
∈ Tν(t)N is the value, at time t, of the true angular velocity of the body,

• ΦS

(
dν(t)

dt

)
is the value, at time t, of the angular velocity of the body seen by an

observer bound to the moving body and moving with it,

• and ΦE

(
dν(t)

dt

)
is the value, at time t, of the angular velocity of the body seen by

an observer bound to the Galilean reference frame in which the motion is studied
and at rest with respect to that reference frame.

The following comments may be useful to explain Arnold’s assertions. To shorten

the notations, let us state, for some time t ∈ [t0, t1], x = ν(t) ∈ N , v = dν(t)

dt
∈ TxN ,

X = ΦS(v) ∈ so(S) and Y = ΦE(v) ∈ so(E). We have

⎫σS(x, X) = ⎫σE(s, Y) = v .

Let z ∈ S be some material point of the moving body. Its position at time t is x(z) ∈ E

and its velocity is
d

dt

(
ν(t)(z)

) ∈ Tx(z)E. It depends only of v = dν(t)

dt
∈ TxN ,

not of the whole curve ν. We can therefore replace ν by the parametrized curve
s ∞≡ exp(sY) ⊗ x, since we have

d
(
exp(sY) ⊗ x)

ds

∣∣∣
s=0

= YN (x) = v .

Therefore the velocity at time t of the material point z ∈ S is

d
(
exp(sY) ⊗ x(z)

)
ds

∣∣∣
s=0

= YE
(
x(z)

) = (−≡
x (z),

−≡
Y × −≡

x (z)) ∈ TE ≡ E × E ,



Symmetries of Hamiltonian Systems on Symplectic and Poisson Manifolds 251

where we have denoted by YE the fundamental vector field on E associated to Y ∈
so(E)for the action ΛE , and used Formula (3) of Sect. 6.2. This proves that the
fundamental vector field YE is the velocity field of the rigid body as it appears in
space E at time t, and explains why Arnold calls Y the angular velocity of the body
seen by an observer bound to the Galilean frame in which the motion is studied.

Since
dν(t)

dt
= d

(
x ⊗ exp(sX)

)
ds

∣∣∣
s=0

, the value at x(z) ∈ E of the fundamental

vector field YE is also given by
d
(
x ⊗ exp(sX)(z)

)
ds

∣∣∣
s=0

. The pull-back x∗(YE) by the

isomorphism x : S ≡ E of the fundamental vector field YE , i.e. of the velocity field
of the moving body in space E at time t, is the vector field on S whose value at z ∈ S
is

x∗(YE)(z) = d
(
exp(sX)(z)

)
ds

∣∣∣
s=0

= XS(z) = (
−≡
z ,

−≡
X × −≡

z ) ∈ TS ≡ S × S ,

where we have again used Formula (3) of Sect. 6.2. The pull-back x∗(YE) of the
velocity field of the moving body in space E at time t, by the isomorphism x : S ≡ E,
is therefore the fundamental vector field XS associated to X ∈ so(S), for the action
ΛS . That explains why Arnold calls X the angular velocity of the body seen by an
observer bound to the moving body.

The above observations prove that for any x ∈ N and v ∈ TxN ,

x
(−≡
ΦS(v)

) = −≡
ΦE(v) , (1)

the arrows over ΦS(v) ∈ so(S) and ΦE(v) ∈ so(E) indicating that they are here
considered as vectors in S and in E, respectively.

When the true angular velocity of the body is v ∈ TN , its kinetic energy is

T(v) = 1

2
I
(
ΦS(v),ΦS(v)

)
,

where I : so(S) × so(S) ≡ R is a symmetric, positive definite bilinear form which
describes the inertia properties of the body. The assumed rigidity of the body is
mathematically described by the fact that the bilinear form I does not depend on
time, nor on the configuration ∂N (v) of the body. Let us set, for each pair (v,w) of
vectors in TN such that ∂N (v) = ∂N (w),

⎫T(v,w) = 1

2
I
(
ΦS(v),ΦS(w)

)
, so we can write T(v) = ⎫T(v, v) .

The symmetric bilinear form⎫T is a Riemannian metric on the manifold N . Let us
consider the effects on ⎫T of the canonical lifts to TN of the actions ΛE and ΛS on
the manifold N . For each gE in SO(E), gS ∈ SO(S), we denote by ΛE gE : N ≡ N
and by ΛS gS : N ≡ N the diffeomorphisms
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ΛE gE (x) = ΛE(gE, x) = gE ⊗ x , ΛS gS (x) = ΛS(x, gS) = x ⊗ gS , x ∈ N .

For each v ∈ TN , with ∂N (v) = x ∈ N , we have of course

⎫σS
(
x,ΦS(v)

) = v .

Since the actions ΛE and ΛS commute we have, for any gE ∈ SO(E), v ∈ TN , t ∈ R

and x = ∂N (v) ∈ N ,

ΛE

(
gE, x ⊗ exp

(
tΦS(v)

)) = gE ⊗ x ⊗ exp
(
tΦS(v)

) = ΛS

(
gE ⊗ x, exp

(
tΦS(v)

))
.

By taking the derivative with respect to t, then setting t = 0, we get

TΛE gE (v) = ⎫σS
(
gE ⊗ x,ΦS(v)

)
,

which means that
ΦS
(
TΛE gE (v)

) = ΦS(v) .

The Riemannian metric ⎫T therefore satisfies, for each gE ∈ SO(E) and each pair
(v,w) of vectors in TN which satisfy ∂N (v) = ∂N (w),

⎫T(TΛE gE (v), TΛE gE (w)
) = ⎫T(v,w) .

This result means that the Riemannian metric⎫T remains invariant under the canonical
lift to TN of the action ΛE .

A similar calculation, in which gE ∈ SO(E) is replaced by gS ∈ SO(S), proves
that, for each v ∈ TN ,

ΦS
(
TΛS gS (v)

) = Adg−1
S

(
ΦS(v)

)
,

so we have, for v and w ∈ TN satisfying ∂N (v) = ∂N (w),

⎫T(TΛSgS (v), TΛSgS (w)
) = 1

2
I
(
Adg−1

S
⊗ΦS(v), Adg−1

S
⊗ΦS(w)

)
.

For a general rigid body, the kinetic energy T and the Riemannian metric ⎫T do not
remain invariant under the canonical lift to TN of the action ΛS . However, let us
define an action on the left of GS on the vector space of bilinear forms forms on
so(S) by setting, for each such bilinear form B and each gS ∈ GS

(gS.B)(XS, YS) = B
(
Adg−1

S
(XS), Adg−1

S
(YS)

)
, XS and YS ∈ so(S) .

We see that the kinetic energy T and the Riemannian metric⎫T remain invariant under
the action of an element gS ∈ GS if and only if gS.I = I , i.e. if and only if gS is an
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element of the isotropy subgroup if I for the above defined action of GS on the space
of bilinear forms on so(S). This happens, for example, when the body has a symmetry
axis, the isotropy subgroup of I being the group of rotations around that axis.

When the configuration of the body is x ∈ N , its potential energy is

U(x) = −〈P, x(
−≡
a )
〉
,

where
−≡
a ∈ S is the vector whose origin is the fixed point OS and extremity the

centre of mass of the body, and P ∈ E∗ is the gravity force. Since E is identified with
its dual E∗, the pairing by duality being the scalar product, P can be seen as a fixed

vertical vector
−≡
P ∈ E directed downwards, equal to the weight of the body (product

of its mass with the gravity acceleration), and the potential energy can be written

U(x) = −−≡
P .x(

−≡
a ) = −x−1(

−≡
P ).

−≡
a .

We used the fact that the transpose xT : E∗ ≡ S∗ of the orthogonal linear map
x : S ≡ E is expressed, when S and E are identified with their dual spaces by means
of the scalar product, as x−1 : E ≡ S.

When either
−≡
a = 0 or

−≡
P = 0 the potential energy vanishes, therefore remains

invariant under the actions ΛE of GE and ΛS of GS on the manifold N . When both−≡
a →= 0 and

−≡
P →= 0, the above formulae show that the potential energy remains

invariant by the action of an element gE ∈ SO(E) if and only if gE(
−≡
P ) = −≡

P , which

means if and only if gE is an element of the isotropy group of
−≡
P for the natural

action of GE on E. This isotropy subgroup is the group of rotations of E around the
vertical straight line through the fixed point. Similarly, the potential energy remains

invariant by the action of an element gS ∈ SO(S) if and only if gS(
−≡
a ) = −≡

a , which

means if and only if gS is an element of the isotropy group of
−≡
a for the natural action

of GS on S. This isotropy subgroup is the group of rotations of S around the straight
line which joins the fixed point and the centre of mass of the body.

The motion of the rigid body can be mathematically described by a Lagrangian
system whose Lagrangian L : TN ≡ R is given, for v ∈ TN , by

L(v) = ⎫T(v, v) + −≡
P .∂N (v)(

−≡
a ) = ⎫T(v, v) + (

∂N (v)
)−1

(
−≡
P ).

−≡
a .

We denote by⎫TΣ : TN ≡ T∗N the map determined by the equality, in which v and
w ∈ TN satisfy ∂N (v) = ∂N (w),

〈⎫TΣ(v),w
〉 = ⎫T(v,w) .

The Legendre map L : TN ≡ T∗N determined by the Lagrangian L is

L = 2⎫TΣ .
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Its linearity and the positive definiteness of I ensure that it is a vector bundles
isomorphism. The motion of the rigid body can therefore be described by a Hamil-
tonian system whose Hamiltonian H : T∗N ≡ R is given, for p ∈ T∗N , by

H(p) = 1

4

〈
p, (⎫TΣ)−1(p)

〉− −≡
P .ηN (p)(

−≡
a ) = 1

4

〈
p, (⎫TΣ)−1(p)

〉− (
ηN (p)

)−1
(
−≡
P ).

−≡
a .

6.4.2 The Hamiltonian in Terms of Momentum Maps

Let x ∈ N be fixed. The maps

ΦSx = ΦS
∣∣
TxN : TxN ≡ so(S) and ΦEx = ΦE

∣∣
TxN : TxN ≡ so(E)

are vector spaces isomorphisms. Their transpose

ΦT
Sx : so(S)∗ ≡ T∗

x N and ΦT
Ex : so(E)∗ ≡ T∗

x N

are too vector spaces isomorphisms. Their inverses are closely linked to the momen-
tum maps JS : T∗N ≡ so(S)∗ and JE : T∗N ≡ so(E)∗ of the canonical lifts to T∗N
of the actions ΛS of GS and ΛE of GE , respectively, on the manifold N . We have
indeed, for any x ∈ N ,

JS
∣∣
T∗

x N= (ΦT
Sx)

−1 , JE
∣∣
T∗

x N= (ΦT
Ex)

−1 .

As above, let x ∈ E be fixed and let v and w ∈ TxN . The Legendre map L : TN ≡
T∗N satisfies

〈L(v),w
〉 = 1

2

d

ds
I
(
ΦS(v + sw),ΦS(v + sw)

) ∣∣
s=0

= I
(
ΦS(v),ΦS(w)

)
= 〈

IΣ ⊗ ΦS(v),ΦS(w)
〉

= 〈
ΦT

Sx ⊗ IΣ ⊗ ΦS(v),w
〉
,

where IΣ : so(S) ≡ so(S)∗ is the map defined by

〈
IΣ(XS), YS

〉 = I(XS, YS) , XS and YS ∈ so(S) .

So we can write
L ∣∣TxN= ΦT

Sx ⊗ IΣ ⊗ ΦS
∣∣
TxN ,

which shows that the momentum map JS composed with the Legendre map L has
the very simple expression

JS ⊗ L = IΣ ⊗ ΦS .
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The momentum map JE composed withLhas a slightly more complicated expression,
valid for each x ∈ N ,

JE ⊗ L ∣∣TxN= (ΦT
Ex)

−1 ⊗ ΦT
Sx ⊗ IΣ ⊗ ΦS

∣∣
TxM .

Let I∗ : so(S)∗ × so(S)∗ ≡ R be the symmetric, positive definite bilinear form on
G∗

I∗(ϕ, ξ) = I
(
(IΣ)−1(ϕ), (IΣ)−1(ξ)

) = 〈
ϕ, (IΣ)−1(ξ)

〉 = 〈
ξ, (IΣ)−1(ϕ)

〉
.

The above expression of JS ⊗L and the bilinear form I∗ allow us to write the Hamil-
tonian H as

H(p) = 1

2
I∗(JS(p), JS(p)

)− ηN (p)−1(
−≡
P ).

−≡
a , p ∈ T∗N .

Although the kinetic energy remains invariant under the canonical lift to T∗N of
the action ΛE , the expression of H in terms of the other momentum map JE is too
complicated to be useful.

6.4.3 The Euler–Poincaré Equation

We use the vector bundles isomorphism ⎫σS : N × so(S) ≡ TN to derive the Euler–
Poincaré equation. The map L = L ⊗ ⎫σS : N × so(S) ≡ R is

L(x, X) = 1

2
I(X, X) + −≡

P .x(
−≡
a ) , X ∈ so(S) , x ∈ N .

Its partial differential d2L with respect to its second variable is

d2L(x, X) = IΣ(X) ∈ so(S)∗ ≡ S .

A calculation similar to those of Sect. 6.4 leads to the following expression of JS

composed with the partial differential of L with respect to its first variable:

JS ⊗ d1L(x, X) = −≡
a × x−1(

−≡
P ) ∈ so(S)∗ ≡ S .

Let t ∞≡ x(t) be a smooth curve in N solution of the Euler–Lagrange equation for the
Lagrangian L, and t ∞≡ X(t) a smooth curve in so(S) which satisfies the compatibility
condition (1) of 5.2.2

dx(t)

dt
= ⎫σS

(
x(t), X(t)

)
. (1)
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The Euler–Poincaré equation (3) of 5.2.2, satisfied by the smooth curve t ∞≡(
x(t), X(t)

)
in N × so(S), is

(
d

dt
− ad∗

X(t)

)(
IΣ
(
X(t)

)) = −≡
a × x−1(

−≡
P ) .

Using the expression of ad∗ given by Formula (4) of Sect. 6.2, we can write the
Euler–Poincaré equation as

d

dt
IΣ
(−≡

X (t)
)− IΣ

(−≡
X (t)

)× −≡
X (t) = −≡

a × −≡
PS(t) , (2)

where we have set
−≡
PS(t) = x(t)−1(

−≡
P ). The physical meaning of the quantities which

appear in this equation is the following:
−≡
X (t) is the angular velocity, IΣ

(−≡
X (t)

)
the

angular momentum and
−≡
PS(t) the weight of the moving body, all three a time t and

seen by an observer bound to the body, therefore considered as vectors in S. We
recognize the classical Euler equation for the motion of a rigid body around a fixed
point.

Of course x(t)
(−≡
PS(t)

) = −≡
P is a constant vector in E, therefore

d
(

x(t)
(−≡
PS(t)

))
dt

= dx(t)

dt

(−≡
PS(t)

)+ x(t)

⎭
d
−≡
PS(t)

dt

)
= 0 .

The first term in the right hand side,
dx(t)

dt

(−≡
PS(t)

)
, is the value at

−≡
P ∈ E of the

velocity field in E of the moving body. Therefore

dx(t)

dt

(−≡
PS(t)

) = −≡
ΦE(v) × −≡

P , with v = dx(t)

dt
∈ Tx(t)N .

Therefore we have

d
−≡
PS(t)

dt
= −x(t)−1

(−≡
ΦE(v) × −≡

P
)

= −−≡
X (t) × −≡

PS(t) ,

since, by Formula (1) of Sect. 6.4, x(t)−1
(−≡
ΦE(v)

) = −≡
ΦS(v) = −≡

X (t). The compat-
ibility condition and the Euler–Poincaré equation (Eqs. (1) and (2) of this Section)
have lead us to the differential equation on S × S, for the unknown parametrized

curve t ∞≡ (−≡
X (t),

−≡
PS(t)

)
,

⎧⎨
⎩

dIΣ
(−≡

X (t)
)

dt = IΣ
(−≡

X (t)
)× −≡

X (t) + −≡
a × −≡

PS(t) ,

d
−≡
PS(t)
dt = −−≡

X (t) × −≡
PS(t) .

(3)
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When the right hand side of Eq. (2) vanishes, which occurs when the fixed point is

the centre of mass of the body (
−≡
a = 0) or when there is no gravity field (

−≡
P = 0), the

Euler–Poincaré equation yields an important reduction, since the first equation of (3)
becomes an autonomous differential equation on the three-dimensional vector space

S for the smooth curve t ∞≡ IΣ
(−≡
XS(t)

)
, while the Euler–Lagrange equation or the

Hamilton equation live on the six-dimensional manifolds TN or T∗N , respectively.
Under these assumptions, the study of all possible motions of the rigid body is known
in Mechanics as the Euler–Poinsot problem. The reader will find in [48] a very nice
and thorough geometric presentation of the phase portrait of this problem.

When
−≡
a →= 0 and

−≡
P →= 0, the first equation of (3) is no more autonomous: one

has to solve (3) on the six-dimensional vector space S × S. The use of the Euler–
Poincaré equation does not allow a reduction of the dimension of the phase space,
but (3) may be easier to solve than the Euler–Lagrange equation or the Hamilton
equation, because it lives on a vector space instead of on the tangent or cotangent
bundle to a manifold.

6.4.4 Use of the Lie Algebra of Euclidean Displacements

As explained for example in Theorem 4.1 of [46] or in Proposition 13 and Example 14
of [45], there exists a Hamiltonian action on T∗N of the semi-direct product GS × S,
(the group of Euclidean displacements, generated by rotations and translations, of
the Euclidean affine space S) which extends the canonical lift to T∗N of the action
ΛS , such that the Hamiltonian H can be expressed as composed of the momentum
map of that action with a smooth function h : so(S)∗ × S∗ ≡ R. We briefly explain
below the construction of that action.

For each
−≡
b ∈ S, let f−≡

b
: N ≡ R be the smooth function

f−≡
b
(x) = 〈

xT (P),
−≡
b
〉 = −≡

b .x−1(
−≡
P ) , x ∈ N .

The map β : T∗N × S ≡ T∗N defined by

β(p,
−≡
b ) = p − df−≡

b
⊗ ηN (p) , p ∈ T∗N ,

−≡
b ∈ S ,

is a Hamiltonian action of S on the symplectic manifold (T∗N, dξN ): the Lie algebra
of S can indeed be identified with S, the exponential map becoming the identity of S,

and for each
−≡
b ∈ S, the vector field on T∗N whose flow is the one-parameter group

of transformations of T∗N
{

p ∞≡ p − tdf−≡
b

(
ηN (p)

) ; t ∈ R

}

is Hamiltonian an admits as Hamiltonian the function

p ∞≡ f−≡
b

⊗ ηN (p) == −≡
b .ηN (p)−1(

−≡
P ) , p ∈ T∗N .
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This formula proves that β is a Hamiltonian action which admits

Jβ : T∗N ≡ S∗ ≡ S , Jβ(p) = ηN (p)−1(
−≡
P )

as a momentum map. Gluing together β with the canonical lift Λ̂S of ΛS to the
cotangent bundle, we obtain a Hamiltonian action on the right ε of the semi-direct
product GS × S on the symplectic manifold (T∗N, dξN ):

ε
(
p, (gS,

−≡
b )
) = β(Λ̂S(p, gS),

−≡
b )

with (JS, Jγ) : T∗N ≡ so(S)∗ × S∗ ≡ S × S as a momentum map. The function
h : so(S)∗ × S∗ ≡ S × S ≡ R

h(
−≡
ξ ,

−≡
ω ) = 1

2
I∗(−≡ξ ,

−≡
ξ ) − −≡

ω
−≡
ξ

is such that the Hamiltonian H : T∗N ≡ R can be written as H = h ⊗ (JS, Jβ), and
Eq. (3) of Sect. 6.4 is the Hamilton equation on so(S)∗ × S∗ ≡ S ×S (endowed with
its canonical Poisson structure) for the Hamiltonian h. This result is in agreement
with the fact that (JS, Jβ) is an ad∗-invariant Poisson map (4.4.11).

6.4.5 Reduction by the Use of First Integrals

The effects on the kinetic and potential energies of the Hamiltonian actions Λ̂E and Λ̂S

were discussed in Sect. 6.4. When
−≡
a →= 0 and

−≡
P →= 0, the Hamiltonian H remains

invariant under the restriction of the action Λ̂E to the subgroup of rotations around the
vertical axis through the fixed point. The corresponding momentum map, which is the
orthogonal projection of the momentum map JE on the vertical direction, is therefore
a first integral. Another first integral is the total energy, i.e. the Hamiltonian H itself.
For a general rigid body, no other independent first integrals are known. However,
in two special cases of particular rigid bodies, there exists another independent first
integral.

The first case, known as the Euler–Lagrange problem in Mechanics, is when
the straight line which joins the fixed point and the centre of mass of the body
is an axis of symmetry for the inertia properties of the body. The Hamiltonian H
remains then invariant under the restriction of the action Λ̂S to the subgroup of
SO(S) of rotations around this straight line. The corresponding momentum map is
the orthogonal projection of the momentum map JS on the direction of the symmetry
axis.

The second case, discovered by the Russian mathematician Sonya Kovalevskaya
(1850–1891) [49] is when two of the principal moments of inertia of the body are
equal to twice the third and when the centre of mass of the body lies in the plane of the
two equal moments of inertia. The explanation of the existence, in this very special
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case, of an additional integral is much more complicated than that of the existence of
an additional integral for the Euler–Lagrange problem, and involves mathematical
tools which are not discussed in the present paper. The reader is referred to the book
by Audin [50] for a discussion of these tools and to the beautiful other book by the
same author [51] for a very moving presentation of the life of Sonya Kovalevskaya.

When
−≡
a = 0 or

−≡
P = 0 (the Euler–Poinsot problem) the Hamiltonian H remains

invariant under the action Λ̂E of the full group SO(E), so the corresponding momen-
tum map JE is (as already seen in Sect. 6.4) a (vector valued) first integral.

6.5 The Kepler Problem

6.5.1 Mathematical Description of the Problem

We consider the motion in space of a material point of mass m submitted to the
gravitational field created by an attractive centre O. Taking O as origin allows us to
consider E as a vector Euclidean three-dimensional oriented space. The configuration
space, i.e. the set of all possible positions of the material point, is N = E\{O}. The
tangent bundle TN and the cotangent bundle T∗N will both be identified with N ×E.

An element of TN is therefore a pair (
−≡
x ,

−≡
v ) ∈ E × E satisfying

−≡
x →= 0. Similarly

an element of T∗N is a pair (
−≡
x ,

−≡
p ) ∈ E × E satisfying

−≡
x →= 0.

The kinetic energy T : TN ≡ N × E ≡ R and the potential energy U : N ≡ R

are

T(
−≡
x ,

−≡
v ) = 1

2
m‖−≡v ‖2 , U(

−≡
x ) = mk

‖−≡x ‖
.

The Lagrangian L : TN ≡ N × E ≡ R of the Kepler problem is therefore

L(
−≡
x ,

−≡
v ) = 1

2
m‖−≡v ‖2 + mk

‖−≡x ‖
.

The Legendre map L : TN ≡ N × E ≡ T∗N ≡ N × E is

L(
−≡
x ,

−≡
v ) = (

−≡
x ,

−≡
p ) , with

−≡
p = m

−≡
v .

The Kepler problem can therefore be mathematically formulated as a Hamiltonian
dynamical system on T∗N ≡ N × E, with the Hamiltonian

H(
−≡
x ,

−≡
p ) = 1

2m
‖−≡p ‖2 − mk

‖−≡x ‖
.
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The natural action ΛE of SO(E) on E leaves invariant N = E\{O}, therefore is an
action of SO(E) on N . With the identifications of TN and T∗N with N ×E which we
have made, the canonical lifts ΛE and Λ̂E of that action to the tangent and cotangent
bundles, respectively, are expressed as

ΛE
(
gE, (

−≡
x ,

−≡
v )
) = (

gE(
−≡
x ), gE(

−≡
v )
)
, Λ̂E

(
gE, (

−≡
x ,

−≡
p )
) = (

gE(
−≡
x ), gE(

−≡
p )
)
.

Since the norm of a vector in E remains invariant under the action ΛE , the Lagrangian
L and the Hamiltonian H remain invariant under the actions ΛE and Λ̂E , respec-
tively. The action Λ̂E is Hamiltonian, and we know (Formula (4) of Sect. 6.2) that
its momentum map JE : T∗N ≡ N × E ≡ so(E)∗ ≡ E is

JE(
−≡
x ,

−≡
p ) = −≡

x × −≡
p .

The map JE is the angular momentum of the moving material point with respect to
the attractive centre. Noether’s theorem (4.4.5) shows that it is a first integral of the
Kepler problem. Another first integral of the Kepler problem is the total energy H,
as shown by 3.3.4.

6.5.2 The Euler–Poincaré Equation

The Lie group SO(E) does not act transitively on N by the action ΛE , since the
orbits of this action are spheres centered on O. However, extending this action by
homotheties of strictly positive ratio, we obtain a transitive action on N of the direct
product SO(E)×]0,+◦[

βE
(
(gE, r),

−≡
x
) = rgE(

−≡
x ) , gE ∈ SO(E) , r ∈ ]0,+◦[ ,

−≡
x ∈ N .

Let γE : so(E)×R ≡ A1(N) be the associated action of the Lie algebra so(E)×R.

The map ⎫γE : N × (
so(E) × R

) ≡ TN , ⎫γE
(−≡

x , (
−≡
X ,λ)

) = γE(
−≡
X ,λ)(

−≡
x ), can be

written, with the identifications of so(E) with E and of TN with N × E,

⎫γE
(−≡

x , (
−≡
X ,λ)

) = (−≡
x ,

−≡
X × −≡

x + λ
−≡
x ) .

The function L = L ⊗ ⎫γE is therefore

L
(−≡

x , (
−≡
X ,λ)

) = 1

2
m‖−≡x ‖2(‖−≡X ‖2 + λ2)− 1

2
m(

−≡
X .

−≡
x )2 + mk

‖−≡x ‖
.

Its partial differentials d1L and d2L with respect to its first variable
−≡
x and to its

second variable (
−≡
X ,λ) are, with the identifications of E∗ and

(
so(E) × R)∗ with,

respectively, E and E × R,
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d1L
(−≡

x , (
−≡
X ,λ)

) =
⎭

m(‖−≡X ‖2 + λ2) − mk

‖−≡x ‖3

)
−≡
x − m(

−≡
X .

−≡
x )

−≡
X ,

d2L
(−≡

x , (
−≡
X ,λ)

) = (
m‖−≡x ‖2−≡X − m(

−≡
X .

−≡
x )

−≡
x , m‖−≡x ‖2λ

)
.

The canonical lift β̂E of βE to the cotangent bundle is a Hamiltonian action, whose
momentum map (JE, KE) : T∗N ≡ so(E)∗×R has JE as first component. Its second
component is

KE(
−≡
x ,

−≡
p ) = −≡

x .
−≡
p .

Let t ∞≡ −≡
x (t) be a smooth curve in N , parametrized by the time t, solution of the

Euler–Lagrange equation for the Lagrangian L. The compatibility condition (1) of

5.2.2, for a smooth map t ∞≡ (−≡
X (t),λ(t)

)
in so(E) × R, can be written as

d
−≡
x (t)

dt
= −≡

X (t) × −≡
x (t) + λ(t)

−≡
x (t) . (1)

This equation does not involve the component of
−≡
X (t) parallel to

−≡
x (t), since the

vector product of this component with
−≡
x (t) vanishes.

The Euler–Poincaré equation (3) of 5.2.2 has now two components, on so(E)∗
and on R

∗ identified, respectively, with E and with R. With the above expressions
of d1L, d2L, JE and KE , we obtain for its first component

d

dt

⎭
m‖−≡x (t)‖2

⎭
−≡
x (t) −

−≡
x (t).

−≡
x (t)

‖−≡x ‖2

−≡
x (t)

))

= m
(−≡

x (t).
−≡
x (t)

)−≡
x (t) × −≡

x (t) − m
(−≡

x (t).
−≡
x (t)

)
ad∗−≡

x (t)

−≡
x (t) = 0 ,

where we have used Formula (4) of 6.2. Its second component is

d

dt

(
m‖−≡x (t)‖2λ

) = m

⎭
‖−≡x (t)‖2 + λ2 −

(−≡
x (t).

−≡
x (t)

)2
‖−≡x ‖2

)
‖−≡x (t)‖2 − mk

‖−≡x (t)‖
.

The vector
−≡
X (t) is the sum of two components

−≡
X1(t) orthogonal to

−≡
x (t) and

−≡
X2(t)

parallel to
−≡
x (t). Since

−≡
X1(t) = −≡

X (t) −
−≡
X (t).

−≡
x (t)

‖−≡x (t)‖2

−≡
x (t) ,

the two components of the Euler–Poincaré equation become
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⎧⎪⎪⎨
⎪⎪⎩

d

dt

(
m‖−≡x (t)‖2−≡X1(t)

) = 0 ,

d

dt

(
m‖−≡x (t)‖2λ

) = m
(
‖−≡X1(t)‖2 + λ2

)
‖−≡x (t)‖2 − mk

‖−≡x (t)‖
.

The first equation expresses the fact that JE is a first integral of the Kepler problem,
since we have

m‖−≡x (t)‖2−≡X1(t) = −≡
x (t) × −≡

p (t) = JE
(−≡

x (t),
−≡
p (t)

)
.

Similarly, the second equation can be written

d

dt

(−≡
p (t).

−≡
x (t)

) = ‖−≡p (t)‖2

m
− km

‖−≡x ‖
,

which is a direct consequence of Hamilton’s equations for the Hamiltonian H of the
Kepler problem.

Neither the Euler–Poincaré equation nor the compatibility condition involve the

component
−≡
X2(t) of

−≡
X (t) parallel to

−≡
x (t). This illustrates the fact that the system

made by these equations is underdetermined when the dimension of the Lie algebra
which acts on the configuration space is strictly larger than the dimension of this
space.

6.5.3 Hamilton’s Method of Solving the Kepler Problem

The Hamiltonian H of the Kepler problem remains invariant under the canonical lift to
T∗N of the action of SO(E). Noether’s theorem (4.4.5) shows that the corresponding
momentum map JE is a first integral. Of course the total energy, i.e. the Hamiltonian
H, is too a first integral (3.3.4). Following the method due to Hamilton [52], we
explain below how the three Kepler laws can easily be deduced from the first integrals
JE and H.

Let us assume that at a particular time t0,
−≡
x (t0) and

−≡
p (t0) are not collinear. The

vector
−≡
Φ = JE

(−≡
x (t),

−≡
p (t)

) = −≡
x (t)×−≡

p (t) does not depend on t since JE is a first

integral, and is →= 0 since for t = t0,
−≡
x (t) and

−≡
p (t) are not collinear. We choose an

orthonormal positively oriented basis (
−≡
ex ,

−≡
ey ,

−≡
ez ) of E such that

−≡
Φ = Φ

−≡
ez , with

Φ > 0. The vectors
−≡
x (t) and

−≡
p (t) remain for all times in the two-dimensional

vector subspace F spanned by (
−≡
ex ,

−≡
ey ). Let ψ(t) be the polar angle made by

−≡
x (t)

with
−≡
ex . We have
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−≡
x (t) = r(t) cos ψ(t)

−≡
ex + r(t) sin ψ(t)

−≡
ey ,

−≡
p (t) = m

(
dr(t)

dt
cos ψ(t) − r(t)

dψ(t)

dt
sin ψ(t)

)−≡
ex

+ m

(
dr(t)

dt
sin ψ(t) + r(t)

dψ(t)

dt
cos ψ(t)

)−≡
ey

−≡
Φ = mr2 dψ(t)

dt

−≡
ez .

Therefore

mr2 dψ

dt
= Φ = Constant .

This is the second Kepler law, also called law of areas, since
Φ

2m
is the area swept

by the straight line segment joining the moving material point to the attractive centre
during an unit time. Since t ∞≡ ψ(t) is a strictly increasing function whose deriva-
tive never vanishes, we can take ψ instead of time t as independent variable. Using
Hamilton’s equation (or Newton’s equation), we can write

d
−≡
p (ψ)

dψ
= d

−≡
p (t)

dt

dt

dψ
= mr(ψ)2

Φ

(
− mk

r(ψ)3

−≡
x (ψ)

)
= −m2k

Φ
(cos ψ

−≡
ex + sin ψ

−≡
ey ) .

This ordinary differential equation for the unknown
−≡
p (ψ), which no more involves−≡

x (ψ), can be readily integrated:

−≡
p (ψ) = m2k

Φ
(− sin ψ

−≡
ex + cos ψ

−≡
ey ) + −≡

c ,

where
−≡
c is a (vector) integrating constant. We will choose

−≡
ey such that

−≡
c = c

−≡
ey ,

where c is a numeric constant which satisfy c ≥ 0.
With O as origin let us draw two vectors in the plane xOy, the first one (constant)

being equal to
−≡
c , and the second one (which varies with ψ) equal to

−≡
p . The end

point of that second vector moves on a circle whose centre is the end point of the

vector equal to
−≡
c , and whose radius is R = m2k

Φ
. The part of this circle swept by

the end point of this second vector is (up to multiplication by m) the hodograph of
the Kepler problem. A short calculation leads to the following very simple relation
between the energy H of a motion, the radius R of its hodograph and the distance c
from the attracting centre O to the centre of the hodograph:

2mH = c2 − R2 .
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The right-hand side c2 − R2 is the power1 of O with respect to the hodograph.

We also obtain r = ‖−≡x ‖ as a function of ψ

r(ψ) = Φ2

m2k + Φc cos ψ
= Ψ

1 + ς cos ψ
, with Ψ = Φ2

m2k
, ς = Φc

m2k
.

It is the polar equation of a conic section with O as focus point and ς as eccentricity.
This conic section (or, when ς > 1, the arc of this conic swept by the moving material
point) is the orbit in E of the moving material point. This result is the first Kepler
law.

The modulus Φ of the angular momentum, the total energy H and the eccentricity
ς satisfy

ς2 − 1 = 2Φ2H

m3k2 .

This formula shows that the orbit in E of the moving material point is an ellipse
(0 ≤ ς < 1) if H < 0, a parabola (ς = 1) if E = 0 and a connected component of a
hyperbola (ς > 1) if H > 0.

When H < 0, the orbit in E of the moving point is an ellipse and its motion is
periodic. The period T is easily obtained by writing that the area swept in a time T
by the straight line segment which joins the moving point to the attractive centre is
the area A delimited by the orbit:

T = 2mA

Φ
= 2ηma2

√
1 − ς2

Φ

where a is the length of the half major axis of the orbit. By using the formula

Φ2 = m2ka
√

1 − ς2

we obtain

T2 = 4η2

k
a3 .

We conclude that the square of the period is proportional to the third power of the
length of the half major axis. This result is the third Kepler law.

Hamilton’s method of solving the Kepler problem is much easier than the
Marsden–Weinstein reduction procedure, to which it is only very loosely related. A

non-zero vector
−≡
Φ is a regular value of JE , so J−1

E (
−≡
Φ ) is a smooth three-dimensional

submanifold of T∗N : it is the set of pairs of vectors (
−≡
x ,

−≡
p ) ∈ F × F such that

1 In plane Euclidean geometry, the power of a point O with respect to a circle C is the real number−≡
OA.

−≡
OB, where A and B are the two intersection points of C with a straight line D through O. That

number does not depend on D and is equal to ‖−≡OC‖2 −R2, where C is the centre and R the radius
of C.
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−≡
x × −≡

p = −≡
Φ , where F is the two-dimensional vector subspace of E orthogonal

to
−≡
Φ . This submanifold remains invariant under the action on T∗N of the one-

dimensional subgroup of SO(E), isomorphic to the circle S1, of rotations around the

straight line through O parallel to
−≡
Φ . The reduced Marsden–Weinstein symplectic

manifold is the set of orbits of this action. It is isomorphic to the open half-plane⎜
(r,λ) ∈ R

2; r > 0
⎝
, and the projection of J−1(

−≡
Φ ) onto the reduced symplectic

manifold is the map (
−≡
x ,

−≡
p ) ∞≡ (r,λ), with r = ‖−≡x ‖, λ = −≡

x .
−≡
p . The reduced

symplectic form and Hamiltonian are, respectively,

ε−≡
Φ

= 1

r
dλ ≥ dr , H−≡

Φ
= m(Φ2 + λ2)

2r2 − mk

r
.

Instead of using this reduced symplectic manifold and this reduced Hamiltonian,
Hamilton’s method uses a clever choice of independent and dependent variables on

J−1
E (

−≡
Φ ) which leads to an easy to solve autonomous differential equation for

−≡
p as a

function of the polar angle ψ of
−≡
x . It is successful essentially because the hodograph

of the Kepler problem is a circle (or, when H ≥ 0, a part of a circle).

6.5.4 The Eccentricity Vector

There exists still another vector valued first integral
−≡
ς of the Kepler problem called

the eccentricity vector, discovered by Jakob Hermann (1678–1753) three centuries
ago [53, 54], often improperly called the Laplace vector or the Ruge-Lenz vector,
whose expression is

−≡
ς = −

−≡
x

‖−≡x ‖
+

−≡
p × (

−≡
x × −≡

p )

m2k
=
⎭

‖−≡p ‖2

m2k
− 1

‖−≡x ‖

)
−≡
x −

−≡
p .

−≡
x

m2k

−≡
p .

For each motion of the moving material point, the eccentricity vector
−≡
ς is a dimen-

sionless vector parallel to the straight line segment which joins the attractive centre
O to the perihelion of the orbit (i.e. the point of the orbit which is the nearest to
the attractive centre), of length numerically equal to the eccentricity ς of the orbit.

When the orbit is a circle, the perihelion is undetermined and
−≡
ς = 0. We briefly

explain below the group theoretical origin of the eccentricity vector. A more detailed
explanation can be found for example in [55]. Many other interesting results about
the Kepler problem can be found in the excellent books [48, 56–59].

Motions t ∞≡ (
−≡
x (t),

−≡
p (t)) of the Kepler problem in which

−≡
x (t) and

−≡
p (t) are

parallel are not defined for all values of the time t: the curves drawn in E by the vectors−≡
x (t) and

−≡
p (t) both are supported by the same straigh line through the attractive

centre O, so the motion finishes, or begins, at a finite time, when
−≡
x (t) reaches 0, i.e.

when the moving point collides with the attractive centre or is expelled by it. When
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t tends towards that final (or initial) instant, ‖−≡p (t)‖ tends towards +◦. This fact
complicates the study of the global topological properties of the set of all possible
motions of the Kepler problem.

For any motion t ∞≡ (
−≡
x (t),

−≡
p (t)), the curves drawn in E by the vectors

−≡
x (t)

and
−≡
p (t) are, respectively, the orbit and the hodograph of the motion. The exchange

(
−≡
x ,

−≡
p ) ∞≡ (

−≡
p ,

−≡
x ) is an anti-symplectic map, which allows us, at the price of a

change of sign of the symplectic form, to consider the curve drawn by
−≡
p (t) as the

orbit of some Hamiltonian dynamical system and the curve drawn by
−≡
x (t) as the

corresponding hodograph. This remark offers a way of studying the global properties

of the set of all possible motions: for a motion t ∞≡ (
−≡
x (t),

−≡
p (t)) which starts or

ends at finite instant by a collision with the attractive centre or an ejection by that

point, the curve drawn by
−≡
p (t), now considered as an orbit rather than a hodograph,

goes to infininy when t tends towards this limit instant. By a inverse stereographic
projection, E can be mapped on a three-dimensional sphere Q minus a point (the

pole of the stereographic projection), and the curve drawn by
−≡
p (t) is mapped onto a

curve which tends towards the pole P of the stereographic projection. The canonical
prolongation of the inverse stereographic projection to the cotangent bundles allows
us to map the phase space of the Kepler problem onto the open subset of T∗Q
complementary to the fibre T∗

PQ over the pole of the stereographic projection. On
T∗Q, motions which reach T∗

PQ can be prolongated and no more appear as starting,
or ending, at a finite instant of time. This idea, due to Fock [60] who applied it to
the study of the hydrogen atom in quantum mechanics, was used by Moser [61] for
the regularization of the Kepler problem for negative values of the Hamioltonian
H. Györgyi [62, 63] used a similar idea. Since the inverse stereographic projection

maps circles onto circles, the image of
−≡
p (t) draws a circle on the three-dimensional

sphere Q and, for a particular value of the total energy H, this circle is a great circle,
i.e. a geodesic of Q. Györgyi [62, 63] proved that the cylindrical projection onto E of
these great circles are ellipses centered on O whose eccentricity is the same as those

of the orbits drawn on E by the corresponding vector
−≡
x (t). The group SO(4) acts on

the three-dimensional sphere Q and, by the canonical lift to the cotangent bundle, on
T∗Q by a Hamiltonian action. The transformed Hamiltonian is not really invariant
under that action and some more work (a reparametrization of time) is still needed,

but finally Noether’s theorem can be used. The eccentricity vector
−≡
ς is (modulo the

identification of the phase space of the Kepler problem with an open subset of T∗Q)
the momentum map of that action, which explains why it is a first integral.

For motions with a positive value of the total energy, there exists a similar construc-
tion in which instead of a three-dimensional sphere, Q is a two-sheeted revolution
three-dimensional hyperboloid. The symmetry group is the Lorentz group SO(3, 1);

the eccentricity vector
−≡
ς still is the momentum map of its action on T∗Q [64, 65].

For a motion with a zero value of H, the circle drawn in E by the vector
−≡
p (t) contains

the attractive centre O, so an inversion with O as pole transforms this circle into a
straight line, i.e. a geodesic of E. The symmetry group is then the group of Euclidean
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displacements in E (generated by rotations and translations); the eccentricity vector−≡
ς still is the momentum map of its action on T∗E.

Ligon and Schaaf [66] used these results to construct a global symplectic diffeo-
morphism of the phase space of the Kepler problem (for negative values of H) onto an
open subset of the cotangent bundle to a three-dimensional sphere. Györgyi had done
that earlier [62, 63] but it seems that his work was not known by mathematicians.
Later several other authors pursued these studies [67, 68].

Souriau [69] used a totally different approach. He built the regularized manifold
of motions of the Kepler problem in a single step, for all values of the energy, by suc-
cessive derivations of the equations of motion and analytic prolongation, calculated
its symplectic form and directly determined its symmetry groups. The eccentric-
ity vector appears again as a momentum map for the Hamiltonian actions of these
groups.
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Symmetries in Mechanics: From Field
Theories to Master Responses in the
Constitutive Modeling of Materials

Jean-François Ganghoffer

Abstract This chapter is concerned with the role of continuous symmetries in field
theories in a broad sense and in particular in continuum mechanics. In the first part,
we present in a synthetic and self-contained manner the formalism of classical and
quantum field theory, focusing on the essential role of symmetries in connection
with the Lagrangian and Hamitonian formalism. The second part highlights the
importance of symmetries in continuum mechanics and mechanics of materials.
Especially, a novel rational methology for constructing constitutive models of viscous
materials combining Lie symmetries with experimental data is presented.

1 Introduction

This chapter is concerned with the role of continuous symmetries in field theories
in a broad sense and in particular in continuum mechanics. In classical mechanics,
interactions between particles are supposed to occur instantaneously, and the space-
time, conceived as the frame of evolution of all physical phenomena, is Newtonian, so
that the time is absolute. Those interactions are described by adding to the Lagrangian,
only function of the particles position (and not of velocity), a supplementary term
coined interaction potential. The picture is completely different in field theory, due to
the finite speed of propagation of interactions evidenced by Michelson and Morley
experiment, leading to special relativity: the forces acting at a given moment on
any particle are not defined by the position of these particles at the same instant. A
finite duration of the propagation is thus required so that the change of position of
a given particle produces some effect on the other particles. In order to account for
this modification, one introduces the concept of field: to the idea of an action of a
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particle on another particle, one substitutes the idea that it generates a field. Any
particle influenced by the field will be submitted to a force: the particle thereby
interacts with the field, which becomes an intrinsic reality having its own degrees
of freedom. Field theory is constructed—in both the classical and quantum cases—
from the symmetry transformations acting either on external degrees of freedom
(space-time coordinates), or on internal d.o.f., referring in this last situation to gauge
symmetries. Those symmetries reflect in the form taken by the total Lagrangian,
sum of the Lagrangian of matter fields and of the Lagrangian of the interaction
fields. The existence and properties of the interaction particles- called bosons -are
deduced from symmetry requirements, and particularly the localization of the global
gauge symmetry condition. The experimental validation of the existence of gauge
bosons (which sometimes comes after the funding theory) explains the competition
to develop high energy collisionners.

The principal goal of this chapter is to present in a synthetic and self-contained
manner the formalism of field theory, focusing on the essential role of symmetries.
The first part will be devoted to a synthetic exposition of classical and quantum
field theories, and it will take the form of a course; the second part will highlight
the importance of symmetries in continuum mechanics and mechanics of materials.
Especially, we shall expose a novel approach of constructing constitutive models for
various materials combining Lie symmetries with experimental data.

Regarding notations, vectors and tensors are represented either using the arrow
notation (for the 3-vector part of four-vectors), or and more often using boldface

symbols. The partial derivative is either denoted explicitly, as for instance
∂ f

∂a
, or

with the short hand notation ∂a f . The nabla operator ∗ is associated to the spatial
gradient of a function of the spatial coordinates and time. The shortcuts l.h.s. and
r.h.s. will be used for left-hand side and right-hand side respectively.

2 Lagrangian Formulation of Classical Mechanics

The Lagrangian formulation of the laws of physics trace back to about 1790, and
is frequently used in classical mechanics to write the equations of motion from a
least action principle. As a generalization, a large number of physical laws have
been derived from a Lagrangian formulation, allowing a non mechanistic reading
of classical mechanics, and highlighting the symmetry properties. It allows further-
more the description of elementary phenomena (interacting particles) and it pro-
vides the linkage with quantum mechanics thanks to Hamiltonian formalism. The
notion of symmetry reveals as a fundamental scientific concept that has invaded
many scientific disciplines, from biology up to mathematics. Independently from
its aesthetic attraction, the symmetry intrinsically contained in physical systems
allows a concise description of both their invariance properties (geometrical, tempo-
ral, or under a given transformation of a set of relevant variables) and a systematic
prediction of the various phenomena susceptible to occur in these systems. This
in turn allows a classification of physical systems in terms of their symmetries,
which clearly analogies and contributes to a unifying view of their behavior. The



Symmetries in Mechanics: From Field Theories to Master Responses 273

symmetry properties of new physical quantities have been investigated historically,
in order to account for all invariance properties: scale transformations, time, parity
and charge inversions, gauge symmetries, dynamical symmetries. Generalizing the
discrete symmetries in use for the classification of crystals, the notion of continuous
symmetries coined Lie symmetries to remind their main promotor (Sophus Lie), were
developed by [1], followed by Noether [2], who evidenced the relationship between
conservation laws (of energy, momentum,...) and associated Lie symmetries. The
various field theories built in the twentieth century abundantly involve Lie symme-
tries in their construct, being especially reflected in the form taken by the Lagrangian
function.

2.1 Dynamical Equations of Motion

The basic idea is to represent a system depending on N d.o.f. (a short cut for degrees of
freedom that will be employed here and in the sequel) by a point or a vector made of N
generalized coordinates {qη} in a N dimensional space called the configuration space.
The consideration of the velocities, quantities {q̇η}, leads to the 2N dimensional phase
space. The Hamilton principle of least action consists in determining the trajectory
of a given system in phase space from a variational formulation (the initial state and
forces being known). The system is characterized by a functional called Lagrangian
function

L [qη, q̇η, t]

depending on the generalized coordinates and velocities, and possibly on time (these
arguments are indicated with a bracket notation) wich is a scalar valued function
condensing all information on the dynamic evolution of the considered system.
When classical mechanics is of concern, L [qη, q̇η, t] is a temporal density, which
when integrated over time (from an initial time t1 up to a final time t2) leads to
Hamilton-Jacobi action

S [qη] =
t2∫

t1

L [qη, q̇η, t]dt.

The isochronal variation (at fixed time) of the action writes

θ [qη] =
t2∫

t1

{
∂L

∂qη
θqη + ∂L

∂q̇η
θq̇η

}
dt

≡
t2∫

t1

{
∂L

∂qη
− d

dt

(
∂L

∂q̇η

)}
θqηdt +

[
∂L

∂q̇η
θqη

]t2

t1
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and leads as a necessary condition to the Euler-Lagrange equations

θS
⎧
qη

⎪= 0, η ◦ {1, 2, ..., N } ⊕ ∂L

∂qη
− d

dt

(
∂L

∂q̇η

)
= 0

consisting of a set of N second order O DE’s providing the dynamical path of evolu-
tion of the system of N particles provided a set of 2N independent initial conditions
for the generalized coordinates and velocities have been prescribed. The virtual (vir-
tual in the sense of mathematical variations from the actual trajectory; those variations
lead to new virtual trajectories that only have to respect the end conditions) varia-
tions θqη, θq̇η are considered as mutually independent and performed at fixed time,
so one should in order to be accurate write those variations θt qη, θt q̇η, the subscript
indicating that time is held fixed during the variation, a similar notion for fields will
be encountered later on. Previous equations are the Newton equations of classical
dynamics.

An equivalent formulation is obtained by introducing the Hamiltonian, another
scalar valued function of an alternative set of variables, the generalized coordinates
and the N canonical momenta, defined as

pη := ∂L

∂q̇η
→ H [qη, pη, t] := pηq̇η − L [qη, q̇η, t] .

In this new system of coordinates {qη, pη}, Jacobi action writes

S [qη] :=
t2∫

t1

{pηq̇η − L}dt.

The Hamiltonian is elaborated as a Legendre transformation of the Lagrangian den-
sity; it can be expressed in terms of the coordinates

⎨
q j , p j , t

⎩
in the phase space as

H = H
⎨
q j , p j , t

⎩ = p j q̇ j
⎨
q j , p j , t

⎩− L
⎨
q j , q̇ j

⎨
q j , p j , t

⎩
, t
⎩
.

Hamilton equations then easily follow from the expression of the differential of
H
⎨
q j , p j , t

⎩
, as

q j = ∂H

∂ p j
, p j = −∂H

∂q j
,

∂L

∂t
= −∂H

∂t

which is interpreted as the equality between the variation of momentum and a force,
quantity ∂L/∂qη. Since the Hamiltonian is obtained by a substitution of the general-
ized velocities in the Lagrangian by the canonical momenta, both functions contain
the same information but in different sets of variables.

Similarly, the dynamical evolution of the system is obtained as the unique solu-
tion of this set of 2N dynamical equations together with initial conditions for the
generalized coordinates and momenta.
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The interest of Hamilton formalism is the search for first integrals of motion using
Poisson’s bracket: for two functions f (qη, pη, t) and g(qη, pη, t), their Poisson’s
bracket is defined as (implicit summation over repeated indices is done)

[ f, g] := ∂ f

∂ pη
· ∂g

∂qη
− ∂ f

∂qη
· ∂g

∂ pη
·

This expression leads to the time derivative of any function
f (qη = qη(t), pη = pη(t), t) as

d f

dt
= ∂ f

∂t
+ [H, f ].

As a corollary, if f does not explicitly depend on time, one can characterize f as a
first integral of motion in terms of the necessary and sufficient condition

[H, f ] = 0.

Observe further that the Poisson’s bracket of two first integrals is also a first integral;
this property may be used recursively to produce new first integrals. Let mention the
particular cases

[pη, qε] = θηε, [qη, qε] = 0 = [pη, pε].

2.2 Noether’s Theorem for Discrete Systems

Conserved quantities play an important role in the analysis of dynamical systems,
since they allow solving dynamical problems more easily and they highlight invari-
ance properties of the system. For an isolated Newtonian system, there exists ten basic
external conserved quantities, resulting from the invariance of the laws of physics w.r.
to the Galilean symmetry transformations. There is a systematic procedure to find
such symmetries for both discrete and continuous systems; we shall here consider
this procedure for discrete dynamical systems. Noting that the dynamics of a system
is independent of the choice of the generalized coordinates, general transformations
of the generalized coordinates (called canonical transformations) are of the form

t → t = t (t) , q → q = q (q(t), t)

called point transformations. Examples include translations, rotations, boosts, and
reflections which define the whole set of Galilean transformations. Here, q denotes
a vector with N components as in previous subsection. Similar notions prevail for
continuous (Lie symmetries) symmetries, as exposed in the contributions of N. Ibrag-
imov and G. Bluman in this volume.



276 J.-F. Ganghoffer

Requiring that the action built from the Lagrangian density L (q, q̇, t), the integral

S [q] =
t f∫

ti

L (q, q̇, t) dt

remains invariant under previous transformations, one can easily show [3] that the
transformed Lagrangian density is related to the initial density by

L
⎨
q, ˙̄q, t

⎩ = ∂t

∂t
L (q, q̇, t)

with ∂t/∂t the inverse of the Jacobian of the transformation of times. Since the
Jacobian equals unity for Galilean transformations, the Lagrangian is then a Galilean
invariant (for isolated systems). The Euler-Lagrange equations take a new form after
the transformation, so they describe the dynamics in the new generalized coordinates,
traducing the canonical invariance of the Euler-Lagrange equations. In order for
the transformation to be a symmetry, one must require some form invariance. For
invariant Lagrangians, satisfying the condition L (q, q̇, t) = L (q, q̇, t), equations
of motion will have the same form, so the transformation is a symmetry. This entails
that the infinitesimal change of L under infinitesimal changes Δt,Δq shall satisfy
the condition [3]

∂ (ΔL)

∂t
+ ΔL = 0,ΔL = dL

dt
Δt =

{
∂L

∂t
+ ∂L

∂q
q̇ + d

dt

∂L

∂q̇
q̈

}
Δt.

In a more general situation, a covariant Lagrangian is one that differs from the
original one by a divergence, that is the total time derivative of a scalar function
F (q, t), namely

L (q, q̇, t) = L (q, q̇, t) + ∂F (q, t)

∂t
·

For such Lagrangians, the equations of motion (Euler-Lagrange equations) will take
the same form. Let then express the general variation of the action integral under a
transformation acting on both the independent (time) and dependent variables,

t → t (t) = t + θt (t) , q → q
⎨
t
⎩ = q(t) + θq(t) .

We shall distinguish the variation denoted by θ for a symmetry transformation from
the more general variaion Δ (not necessarily associated to a symmetry). Note that
in this case, it holds that θq̇(t) →= d

dt (θq(t)). The variation of the action integral,

quantity θS [q] := ∫ t f

t i
L
⎨
q, ˙̄q, t

⎩
dt −∫ t f

ti
L (q, q̇, t) dt can be evaluated as the sum

of a surface term and a volume term [3], viz
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θS [q] :=
[

p jθq j − Hθt
]t f

ti
+

t f∫
t i

E L j ⎨θq j − q̇ jθt
⎩

dt

introducing therein the Euler derivative (or Euler operator acting on the Lagrangian)

E L j := ∂L

∂q j
− d

dt

(
∂L

∂q̇ j

)
.

This leads to Hamilton’s modified principle of varied action. Obviously, when the
independent variable is not varied, one recovers the Euler equations (and there is no
boundary term).

We are now in a position to examine the conditions to be satisfied by the Lagrangian
so that the transformation is a symmetry of the Euler-Lagrange equations, meaning
that they leave unchanged those equations; as written before, such symmetries must
satisfy the condition

L
⎨
q, ˙̄q, t

⎩ = ∂t

∂t
L (q, q̇, t)

or the alternative condition

L (q, q̇, t) = L (q, q̇, t) + dF (q, t)

dt
·

One can show that an equivalent writing of the covariance condition for the
Lagrangian would read [3]

∂ (Δt)

∂t
+ ΔL = −d (ΔF)

dt
·

Writing this last condition with the arguments
⎨
q, ˙̄q, t

⎩
, and inserting the result

into the variation of the action gives

ΔS = −
t f∫

ti

dt
dF (q, t)

dt
·

Using next the previously calculated general variation θS [q], but with more specific
variations (Δt,Δq (t)) leads after subtraction from previous expression of ΔS to the
equation

d

dt

[
p jΔq j − HΔt + ΔF

]t f

ti
+
(

∂L

∂q
− d

dt

(
∂L

∂q̇

))
(Δq − q̇Δt) = 0.
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Note that we have not yet used the equations of motion, so that this condition also
holds on virtual paths of the dynamical system (those paths have a crucial importance
in quantum mechanics). The previous equation results from demanding that the action
being covariant, namely it is built from a covariant Lagrangian; note that an invariant
Lagrangian corresponds to the special case ΔF = 0.

We next suppose that the system has a Lie group of transformations, depending
on a finite number of p parameters μi , i = 1 . . . p, not depending on time; this entails
the variation of the generalized coordinates and time as

Δt = ∂Δt (t)

∂Δμi
Δμi , Δq j = ∂q j (t)

∂Δμi
Δμi , j = 1 . . . p.

Introducing those variations into the previous condition leads to
{

dQi

dt
+ ∂L

∂q j
− d

dt

(
∂L

∂q̇ j

)(
∂q j (t)

∂Δμi
− q̇ j

∂Δt (t)

∂Δμi

)}
Δμi = 0

with the Noether charge Qi defined as

Qi = p j ∂q j (t)

∂Δμi
− H

∂Δt (t)

∂Δμi
+ ∂ΔF

∂Δμi
·

Due to the independence of parameters μi , we deduce the expression of the total
derivative

dQi

dt
= −

(
∂L

∂q j
− d

dt

(
∂L

∂q̇ j

))(
∂q j (t)

∂Δμi
− q̇ j

∂Δt (t)

∂Δμi

)

= −E L j
(

∂q j (t)

∂Δμi
− q̇ j

∂Δt (t)

∂Δμi

)
.

Thus, for any symmetry of a dynamical system, there corresponds a quantity Qi ,
called the charge, the total derivative of which is a linear combination of the Euler
derivatives; note that this result is true for any path q (t) in configuration space.
Previous equations were published by Hamel (1904) and Hergoltz (1911) in the
context of relativity theory, and were obtained as conservation theorems by E. Noether
and Klein in 1908, and by Bessel-Hagen in 1921; they are generally referred to as
the Noether relations. Noethers̃ theorem then states that on the path of motion (the
Euler operator vanishes), the charge is conserved,

dQi

dt
= 0 ∞ Qi = Cte.

Thereby, p integral of motions have been obtained, corresponding to the p symmetry
transformations. This theorem is not valid in the quantum case, thus it deserves the
name of weak conservation law, in contrast to local gauge invariance (to be developed
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later), a symmetry valid off the path. The Noether theorem will be extended to fields
in forthcoming sections of this chapter.

2.3 Construction of the Lagrangian: Role of Symmetries

The form taken by the Lagrangian can be restricted by symmetry considerations;
we call symmetry in a broad sense in field theory, any operation leaving the action
invariant; those transformations are called variational symmetries, [4, 5]. Let consider
as an example a scaling transformation acting on the spatial coordinates

x → ξx

with ξ a constant parameter. In order to find the transformation law of the field
τ, of the form τ → T (τ) , let express the fact that τ and T (τ) measure the same
information at the same position T (τ(ξx)) = τ(x), leading to the transformation law
for the field T (τ)(x) = τ(x/ξ) . When equations of motion have the same form, their
solution are also identical; hence, one searches for transformations of the Lagrangian
leaving the Euler equations unchanged. Two viewpoints can be considered a priori,
called the passive and the active viewpoints, as explained next.

In the passive point of view, two observers O and O ′ use different rules to measure
positions in their own referentials: O attributes coordinates x to the system, while
O ′ attributes another set of coordinates x1. Each observer evaluates the action in its
own referential as

S [qη] :=
t2∫

t1

L (qη, q̇η, t)dt.

A sufficient condition for the transformation

O → O ′

to achieve a symmetry transformation is the Lagrangian being defined up to the
addition of the derivative of an arbitrary function with respect to time, viz

L (x, ẋ) = L (x, ẋ) + dK
⎨
x′⎩

dt
·

In the active viewpoint, there is only one observer, and the transformation x → x′
is done in the referential linked to the observer, this second point of view is better
adapted to continuous symmetries involving (continuous) parameters. A sufficient
condition of x → x′ being a symmetry is then that the action be equal in both
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coordinate systems, so that an extremum of the first action is also extremum of the
second action, this is the case when S

⎧
x′⎪ = S [x] + dK

dt ·
In a Galilean referential (this defines a class of referentials in relative motion

at uniform velocity), considering a uniform time (Newtonian absolute time) and a
homogeneous (properties are the same whatever the position x in physical space,
considered as a specific configuration space) isotropic (properties are the same in all
directions) space, it holds as a consequence the conditions

∂L

∂t
= 0 = ∂L

∂x
⊕ L (x, ẋ, t) = ηẋ2 + ε.

This holds true in fact for any generalized coordinate, thus one can write more
generally L (q, q̇, t) = ηq̇2 + ε.

Application of the Euler equations to this Lagrangian independent of q (hence
the absence of forces) then leads to

∂L

∂q
= 0 ⊕ d

dt

(
∂L

∂q̇

)
= 0 ⊕ ∂L

∂q̇
= Cte ⊕ q̇ = Cte

leading to the law of inertia: a free particle moves with a constant velocity in any
Galilean referential (note that the rest state is nothing but a particular case of a
motion at nil velocity). Since now the Euler equations do not change if one rescales
the Lagrangian by a multiplicative factor, one may adopt the kinetic energy for the
free particle as a Lagrangian L (q, q̇, t) = 1

2 mq̇2.

Interactions of the system of material points will be described by adding a potential
energy contribution V (q) for each particle, thus the Lagrangian

L (q, q̇, t) = 1

2
mq̇2 − V (q) .

As an illustration, for the specific choice q ≡ x , the stationnarity condition of Jacobi
action

S [x] :=
t2∫

t1

{
1

2
mẋ2 − V (x)

}
dt

leads to Newton’s equations of motion

θS [qη] = 0 ⊕ mẍ = −∂V

∂x
≡ f.

In a general setting, the least action principle in classical mechanics is fully equivalent
to the laws of mechanics, which are rooted in three conservation laws: conservation of
linear and angular momentum, and conservation of energy. We will prove that these
laws result from symmetries of the physical system incorporated into the Lagrangian
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Table 1 Condensed form of Noether’s theorem in classical mechanics

Non observable Symmetry Conservation law
Absolute origin of time Temporal translation Energy
Absolute origin of space Spatial translation Linear Momentum
Privileged direction Rotation Angular momentum

formulation, and associated to the non observability of certain quantities. The articu-
lation between conservation laws, symmetries, and relativity principles (the absolute
values of certain quantities are not measurable or observable) is encapsulated into

Noether’s theorem: on the real trajectory of a dynamical system, a quantity is con-
served for each symmetry (discrete or continuous). The measurement of observable
physical quantities implies their invariance by a change of experimental conditions:
this relativity principle entails conservation laws; the non observable quantities are
then not measurable.

The following Table 1 summarizes the quantity being conserved in classical
mechanics for each symmetry, and the associated non observable quantity. The proof
of Noether’s theorem is given for instance for the case of conservation of angular
momentum: let consider the transformation x 
→ x+θωx√a generating the following
variation of the Lagrangian

θL = ∂L

∂x
· θx + ∂L

∂ẋ
· ∂ẋ ≡ θx ·

[
∂L

∂x
− d

dt

∂L

∂ẋ

]
+ d

dt

(
θx · ∂L

∂ẋ

)

wherein the last equality follows after elementary calculations. Assuming rotation
is a symmetry, the function in the total derivative leads to a variation of the action,
hence the total derivative has to vanish: this leads to

d

dt

(
θx · ∂L

∂ẋ

)
= 0

with θx = θωx √ a, ∂L
∂x = mẋ, [x √ a] · ẋ = −a · x √ ẋ, thus

∂

∂t
(x √ ẋ) = 0

which is the conservation of angular momentum.
A corollary is the incompatibility between different physical quantities associated

to each line of previous Table, for instance conservation of energy is associated with
the non observable nature of absolute time; this can be formulated as the classical
limit when Planck constant vanishes within a continuum viewpoint

ΔE · Δt = h → 0.
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Similar relations written as the well-known Heisenberg inequalities hold in quantum
mechanics (Planck constant defines the lowest attainable scale of energy, which is
quantified).

The laws of motion now follow from the Lagrangian formulation; conservation
laws follow from symmetries, as one shall prove in the case of energy: this results
from the absence of an absolute origin of time, thus

∂ (qi , q̇i , t)

∂t
= 0 ⊕ dL

dt
=
(

∂L

∂qi

∂qi

∂t
+ ∂L

∂q̇i

∂q̇i

∂t

)
= ṗi q̇i + pi q̈i = d

dt
(pi q̇i )

using the definition of momentum and the Euler equations; hence, one obtains

d

dt
(L − pi q̇i ) = 0 ⊕ dH

dt
= 0 ⊕ E := L − pi q̇i = Cte

which is nothing else than the conservation of energy. We have thus shown that
energy conservation is equivalent to absolute time being non observable.

The construction of the Lagrangian (classical case) relies on symmetries that do
restrict its form; we shall consider the following postulate [6]:

• Homogeneity of time:
∂L

∂t
= 0;

• Absence of privileged direction: L(|v|) → L(v2). This specifies only the depen-
dency of the Lagrangian upon velocity, but does not say anything as to other
dependencies;

• Invariance under the transformations of Galilee group:
∂L

∂q
= 0. This means that

equations have to be independent of the selected referential, leading to the form
L(v2) = Cv2;

• Invariance of the equations of motion when the Lagrangian is scaled by an arbitrary
constant: C = m/2 ⊕ L = mv2/2.
Note that a physical theory can be formulated either in causal form (force is the
cause of the motion, as expressed by the differential equations of motion), or in
weak form, as encapsulated in the Lagrangian (and Hamiltonian) formulations,
both based on extremum principles.

2.4 Lagrangian Formulation in Special and
General Relativity

ln special relativity, the Lagrangian is required to be invariant with respect to the
transformations of Poincaré group, which conserve the square of the distance in
Minkoswki space-the metric has signature (−1, −1, −1, +1)
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ds2 = −(dx2
1 + dx2

2 + dx2
3 ) + c2dt2.

Such transformations are for this reason called isometries (they define the isometry
group of Minkowski space), and they include the set of rotations, translations and so-
called boosts (the specific form of those last transformations will be written later on).

Greek indices that shall appear in the sequel vary from 0 to 3; for any four-vector,
the first index 0 denotes the time component, while the next indices {1,2,3 } indicate
the spatial components.

The Jacobi action formally writes in terms of the velocity field v

S =
t2∫

t1

L(v)dt.

The relativistic Lagrangian density L(v) therein has been given previously from sym-
metry arguments. Let consider the proper time t0, related to time by
dt0 = (1 − v2/c2)1/2 dt ≡ γdt inserted this relation into the action gives

S =
t2∫

t1

L(v)

(1 − v2/c2)1/2 dt0.

Since dt0 is a scalar invariant, it means that the integrand therein, quantity L(v)/

(1 − v2/c2)1/2, has to be a true scalar, say K , hence S = ∫ t2
t1

K (1 − v2/c2)1/2dt0

The classical limit (obtained when c → ≥) delivers L(v) = 1

2
mv2. One can also

expand the relativistic Lagrangian for velocities much smaller than the speed of
light as

L ≤= K − Kv2/c2 = 1

2
mv2 = K = −mc2 = S = −mc2

t2∫
t1

(1 − v2/c2)1/2dt

The infinitesimal distance element can further be written

ds2 = c2dt2 − v2dt2 = c(1 − v2/c2)1/2dt.

which entails the following action having a quite simple form

S = −mc

t2∫
t1

ds.

This expression shows that the action is simply the length of the path between the
initial and final times (up to a scaling by a constant quantity). A simple calculation
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shows that the stationnarity of S leads to the law of inertia, that is a free particle
moves at constant velocity

duσ

ds
= 0.

In order to be complete, let mention that the Lorentz transformation of two referentials
in uniform translation along the first axis x1 is obtained by the postulate (coming
from an experimental fact) that the speed of light is absolute, and given by the boost
along x1

x1
0 = x0chτ + x1shτ, x1

1 = x0shτ + x1chτ

x0 = ct, ε = v/c, chτ = (1 − ε2)−1/2, thτ = ε.

It is worthwhile mentioning that those relations are precisely obtained by the require-
ment that the distance element ds be the same for two observers located in two
referentials in uniform translation with respect to each other. Special relativity is
associated to an invariance of the action under the transformations of Lorentz group;
general relativity applies a similar covariance principle, but requiring now that the
previous action built from the path length is invariant under an arbitrary change of
coordinates

xμ → x
′μ = xμ + ϕμ(x).

This general gauge invariance of G R (short cut for general relativity to be used in
the sequel) is associated to the idea that all reference systems are equivalent for
the description of the laws of nature; the equations obtained from this principle are
said to be covariant. The core idea in general relativity is that the metric field gμv

characterizing the geometry of space plays the role of a gravitation field (the square
of the infinitesimal element writes ds2 = gμvdxμdxv); thus it is the energy and mass
content of space (both incorporated into the energy momentum tensor) that in turn
determine the metric, and thus the geometrical structure of space-time.

The gauge invariance in G R is associated to the idea that a gravitation field is
locally equivalent (thus it can be compensated, and there is no way for the observer
in a falling lift to decide whether he is submitted to a gravitational field or to an
acceleration) to an accelerated referential; this follows from the identity of two masses
in the relations

f = miγ, f = m pg ⊕ γ = m p

mi
g

a result of the observation made by the Greek scientist Eötvös around 1885.
As shall appear later on, the fundamental difference between G R and (relativistic)

electromagnetism is that the equations of motion are deduced from the field equation
in the former situation, whereas one has to add a field-particle interaction term to
get the equations of motion in the latter situation (Lorentz force is not included in
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Fig. 1 Parallel transport of a
vector field along a path, cf.
[7]

Maxwell equations). For this reason, G R can be considered a pure field theory, with
the physical field identical to the metric of space.

The equations of motion for a particle in the framework of G R is obtained by
considering a general metric gμv, such that the infinitesimal line element writes

ds2 = gμvdxμdxv.

This entails the following form of the action of the single particle in which the
Lagrangian density is the kinetic energy of the particle evolving in a space with
metric gμv, viz

S = 1

2
m

t2∫
t1

dαgμv(x(α ))
dxμ

dα

dxv

dα
·

The Euler equations for a free particle evolving on a geodesic are the equations of
motion

Du j

Ds
= 0 = d2x j

ds2 + Γ
j

r t
dxr

ds

dxt

ds
= 0

with the Christoffel symbols Γ
j

r t expressing an affine connection (notion of paral-
lelism on a non euclidean manifold), and depending upon the first order derivatives
of the metric coefficients

Γ m
ik = gmjΓik, j , Γi j,1 = 1

2
(
∂g1i

∂x j
+ ∂g1 j

∂xi
− ∂gi j

∂x1 ).

The covariant derivative Du j/Ds built from Christoffel symbols replaces the ordi-
nary derivative; the covariant derivative of a vector remains a vector, allowing a
comparison of vectors attached to different vector spaces. The parallel transport of
a vector field along a path is shown on Fig. 1, with V (P → Q) the vector resulting
from the parallel transport of V (P) along the curve to point O , see Fig. 1.

Since vectors V (Q) and V (P → Q) are expressed at the same point, and thus
belong to the same vector space, it makes sense to define the covariant derivative
along a path parameterized by scalar ξ as
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DV

Dξ
:= lim

θξ→0

V (Q) − V (P → Q)

θξ
≡ Γ μ

vo(P)V v(P)
dxo

dξ
·

Thus, the role played by the Christoffel symbolsΓ
μ
vo(P)defining the affine connection

gives a sense to the notion of parallelism of two vectors at different points of a non
euclidean manifold (it means to define parallel transport of a vector along a curve).

In the previous geodesic, the contribution due to the affine connection, term

Γ
j

r t
dxr

ds

dxt

ds
, has the meaning of a force.

It is important to note that the structure of space-time changes radically in spe-
cial and general relativity in comparison to classical mechanics: space and time are
uncoupled in classical mechanics (Newtonian absolute time prevails), so that the
Galilean spacetime is a simple direct product of space and time; time and space
are linked in relativity theories, so that the length of any path becomes measurable
thanks to Lorentz metric. The mathematical structure needed to accommodate such
imbrications of time and space is a fiber bundle, with the base being time and 3D
space defining the bundle over each instant. ln G R, space-time itself has no intrinsic
reality, and its structure adapts to the energy content so that the laws of physics keep
the same form.

3 Field Theory

Before dwelling into the Lagrangian formulation of field theories in relation to sym-
metries and in order to set the stage, it is worthwhile recalling the concept of field.
The simplest definition of a field is that of a region of space in which any point has
certain properties depending upon its position and time. By extension, a field theory
is any theory involving properties of space in order to describe interactions between
material points. While analytical mechanics deals with the motion of discrete entities
(the so-called particles), space and time become continuous in field theories, which
describe forces having a continuous and smooth variation in both space and time.
Note that field theory is incompatible with the existence of vacuum, and space, the
arena of events in field theory, is endowed with physical attributes; the concept of field
illustrate the rupture between a discontinuous (matter is punctual) and a continuous
viewpoint (continuous space-time).

3.1 A Short Historical Vignette

From a historical perspective, Aristotle may be considered as the first philosopher of
nature who imagined a field theory describing the impossibility of remote actions.
According to his views, the characteristics of the locus dictate the natural motion
of objects (theory of natural motion): the four basic elements (earth water, fire,
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air) migrate towards their natural place in his model of imbricated spherical shells
centered on the earth. This faculty of space to attract objects on those spherical
shells conceived by Aristotle differs from the modern classical theories of electric
potentials, which only appear provided a charged body exists: space is passive in
the Greek time, whereas it is active in modern physics. Much later, Descartes lays
down the foundations of the first modern theory of continuous media, considering
that space itself if a substance (matter) with a certain extent made of incompressible
corpuscles of different sizes, in relative motion. All physical actions due to the
impacts and pressures exerted by those corpuscles generate whirlwinds, inducing in
turn an instantaneous displacement of light from point to point; this viewpoint will
be frowned on by the subsequent theories. Nevertheless, Descartes provided a model
of a mathematical theory of motion in fluids and in elastic solids (first developments
were made later on by Euler and Bernoulli) which is a basis of the future field theories.
Newton conceived in the Principia (1687) the gravitation theory, based on the idea
of a remote interaction of masses; he was a source of inspiration for Faraday (1852),
and gravitation became the paradigm for remote action. Faraday took inspiration
in the works of Ruggiero Giuseppe Boscovich (Theorica Philosophiae Naturalis
1758): matter is composed of punctual masses surrounded by zones of attractive
and repulsive forces. He was thereby trying to unify the explanations of mechanical,
electrical, magnetic and chemical phenomena; mass exists in discrete form whereas
forces are continuous. Faraday reversed this interpretation, considering that what is
called matter is actually punctual atoms and forces, based on the belief that matter fills
entire space where gravitation is acting. The line forces of the electrical and magnetic
fields correspond to real modifications of the empty space located inbetween the
charged bodies. The medium in which the field is acting is real (endowed with
physical properties) without resembling ordinary matter.

Later on, the theories of ether shall rely on the mathematical foundations of contin-
uous elastic media, whereby light propagates similar to a wave. James Clerc Maxwell
developed the mathematical representation of Faraday line forces, and extends those
ideas to the electromagnetic field (1860). He postulated the existence of ether, a quite
complex medium, equipped with the mechanical properties of matter. At this stage,
the matter conceived by Descartes and Newton (mass and motion) is replaced by
energy, viewed as a specific substance of the field. This conception was then rein-
forced by Heinrich Hertz, who discovered the propagation of electromagnetic waves
at the speed of light, thereby providing a confirmation of the unification of optics
with electromagnetism done earlier on by Maxwell: Hertz proved the presence of
energy in the field, propagating between the source and the receptor. The model of
ether shall be abandoned with the advent of relativistic theories, and Michelson and
Morley experiment.

The simplest way to translate the idea that physical systems mutually interact is to
imagine that each system emits some kind of messenger which acts on other systems
when reaching them; let then call field such a messenger, which then shall exist and be
specific for each type of interaction (electromagnetic, nuclear, gravitational,. . .). A
field is then the vehicle of an interaction, propagating at a finite speed; this implies that
the forces acting at a given instant on a system are not defined by the state of sources
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(the other systems) at the same instant, since there is some delay before the effect of
the forces or interactions manifest themselves. The concept of field is quite operative
in the situation of electromagnetism, which requires special relativity. To the contrary,
gravitation involves different concepts based on a modification of the structure of
space-time due to the presence of objects. This is the fundamental idea at the origin
of general relativity, which is the first occurrence of a geometrization of forces in
modern physics: an inhabited space has a different geometrical structure (curvature)
compared to empty space, and the local geometrical structure of space guides the
evolution of the system instead of distant interactions. Note that this is consistent
with Newtonian gravitation theory being non relativistic due to the instantaneous
effect of test masses on other masses (hence, no field propagates here).

3.2 Field Function and Field Equations: Analogies
with Classical Mechanics

The field is given all the attributes that usually pertain to a classical physical system,
such as velocity, energy, linear and angular momentum, spin, eventually mass and
charge. One difference in the vocabulary but also in the concept in comparison with
classical mechanics is the fundamental equation satisfied by the field called the field
equation, and not the equation of motion: the field occupies indeed all space at
each instant, so that one does not have to bother about the position of the field, but
rather what its value is at any point and any instant. The generalized coordinates of
analytical mechanics (in finite number) are now replaced by a continuous function
of space and time, called the field function τ(r, t), with r the 3-vector of spatial
coordinates, and t the time. Spatial and time coordinates are usually condensed into
the four-vector x = {xμ}. One considers in general such functions which together
with their first order derivatives attenuate with the distance (they vanish at infinity). To
each interaction, one associates a specific field function, of appropriate mathematical
nature (scalar, vectorial, tensorial, spinorial, . . .).

Similar to the quantification of material systems, one may also quantify the fields
themselves to highlight pseudo-particles, also called quanta of the field, which have
similar attributes as the particles (mass, charge, spin, . . .). The following rule can be
proven: if there are N independent components of the field function, and if s is the spin
of the associated quantum, then N = 2s + 1. For instance, a scalar field corresponds
to zero spin; a Dirac spinor with two components corresponds to particles having
spin 1/2, and a quantum with spin unity (the photon) requires a vectorial field with
3 components.

The field equation is conveniently given from a Lagrangian density (per unit
volume and time), a scalar valued function of the field, vector τ(r, t) ≡ {τk(r, t)}
and its first order spatial partial derivatives, the set of functions {∂τk

∂xμ
}, viz
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L = L(τk, ∂iτk) → I =
∫
v

t2∫
t1

Ld4 X ≡
∫
x

Ld4 X.

The action integral is here the integral of the Lagrangian density over space and time;
the integral over space and time has been conveniently expressed over the space-time
set X = V × [t1, t2].

The transition from analytical mechanics to field theory involves going from the
description of discrete system to that of a continuum, which is next described [8]. For
a chain of N equidistant material points aligned along the axis Ox, and each moving
parallel to the vertical direction Oy, the kinetic energy of the set of particles writes

Tn = 1

2
mv2

n → K =
N∑

n=1

Tn

so that the overall kinetic energy K can be defined. The differential of K is easily
evaluated as

dK =
N∑

n=1

mvndvn.

We now increase the particle number and their mutual distance, keeping a constant
density of particles per unit length, ratio μ = m/a, and total length 1 = Na. Previous
formula become

T (x) = 1

2
μv2(x) → K =

1∫
0

T (x)dx .

The discrete index has been replaced by the continuous variable x . The differential
of the kinetic energy can now be expressed as

θK =
1∫

0

dx
∂K

∂v (x)
θv (x) =

1∫
0

dx
∂K

∂v (x)
θv (x) =

1∫
0

dxμv (x) θv (x)

involving the functional derivative ∂K/∂v (x) of the kinetic energy with respect to
v(x) : this derivative indicates how the functional K changes when v(x) varies by
θv (x) in the small interval [x, x+ dx ]. The notion of functional derivative is useful
each time a law of physics is formulated by a variational principle: for an action of
the form
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S =
t2∫

t1

dt L
⎨
x j (t) , ẋ j (t) , t

⎩
dt

the Euler equations can be expressed into the form

θS =
t2∫

t1

∂S

∂x j (t)
θx j (t) ≡ 0, θx j (t) ⊕ ∂S

∂x j (t)
= 0.

The last equation is nothing else than the Lagrange equation relative to x j , according
to previous developments, we have replaced the generalized coordinates qη by the x j .

θS =
t2∫

t1

{
∂L

∂x j
− d

dt

(
∂L

∂ ẋ j

)}
θx j dt+

[
∂L

∂ ẋ j
θx j

]t2

t1

≡
t2∫

t1

{
∂L

∂x j
− d

dt

(
∂L

∂ ẋ j

)}
θx j dt.

Identifying the two variations leads to the functional derivative of the action

∂S

∂x j (t)
=
{

∂L

∂x j (t)
− d

dt

(
∂L

∂ ẋ j

)}
= 0.

We now turn to a dynamical system for which the Lagrangian becomes itself a
functional of the form

L =
∫

d3 X L̃
⎨

A j , Ȧ j , ∂i A j
⎩
.

Note that the arguments A j , Ȧ j therein are independent, but not A j and ∂i A j ,
since the knowledge of the first determines the second one. The differential of the
Lagrangian is evaluated using the functional derivative as

θL =
∫

d3 X

{
∂L

∂ A j
θA j + ∂L

∂ A j
θ Ȧ j

}

with the identification of the functional derivatives therein that easily follows as

∂L

∂ A j
≡ ∂ L̃

∂ A j
− ∂i

(
∂ L̃

∂
⎨
∂i A j

⎩
)

,
∂L

∂ Ȧ j
≡ ∂ L̃

∂ Ȧ j
·



Symmetries in Mechanics: From Field Theories to Master Responses 291

For a continuous system, the action is a functional of the A j , elaborated as

S =
t2∫

t1

dt L(t) =
t2∫

t1

dt
∫

d3 X L̃
⎨

A j , Ȧ j , ∂i A j
⎩

→ θS =
t2∫

t1

dt
∫

d3 X
∂S

∂ A j
θA j .

The least action principle, equation ∂S
∂ A j

= 0, can be made more explicit

θS =
t2∫

t1

dtθL(t) =
t2∫

t1

dt
∫

d3 X

{
∂L

∂ A j
− d

dt

∂L

∂ Ȧ j

}
θA j

⊕ ∂S

∂ A j
= ∂L

∂ A j
− d

dt

∂L

∂ Ȧ j
= 0.

The use of the functional derivatives leads to field equations that are formally identical
to the discrete case. The Hamilton equations of motion for a field shall also take a
similar form: let first define the momentum of the field and the Hamiltonian

Π j := ∂L

∂ Ȧ j
→ H :=

∫
d3 X

⎨
Π j Ȧ j − L

⎩
.

An easy calculation of the variation of H using the functional derivative and the
definition of H leads to the Hamilton equations

Π̇ j = − ∂H

∂ A j
, Ȧ j := ∂H

∂Π j
·

The field equations are obtained from the stationnarity of S, considering that L
vanishes at infinity and at initial and final times (hence the boundary terms vanish):
a simple calculation leads to the variation

θ I =
∫

x

(
∂L

∂Ψk
−
∑

i

∂μ

(
∂L

∂μ (∂Ψk)

))
∂Ψkd4 X +

∫
Σ

∂L

∂ (∂μΨk)
θΨkdΣ

involving a volume integral (the spacetime volume is denoted X) and a surface
integral written over the boundary Σ = ∂X . Due to the conditions chosen for the
variation of the field (the field itself is supposed to vanish at infinity), the boundary
integral vanishes, thus it remains as a necessary stationnarity condition
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θ I = 0 ⊕ ∂L

∂Ψk
−
∑

i

∂L

∂ (∂Ψk)
= 0.

This defines a set of N second order differential equations (as many equations as
field components), called the field equation for the free field.

3.3 Field Equations and Noether Currents

The fields shall here in and the sequel be denoted collectively as the vector
τ = τ (x) = ⎛τ j (x)

⎜
j=1..d , with the components therein being the continuous ana-

logues of the generalized coordinates
⎛
q j
⎜

in a discrete description, see Section 2. The
action functional is here also built from a Lagrangian density in space, L

⎨
τ, ∂μτ

⎩
,

a function of the field and their 4D gradient (in time and space), so that

S =
∫
D

d4x L
⎨
τ, ∂μτ

⎩

with D a compact region of space-time. The Lagrangian density is non singular

provided det
⎝

∂2 L
∂0τ j ∂0τk

⎞
→= 0. Noether theorem is established next in a manner

similar to classical mechanics, as previously exposed: the independent and dependent
variables are transformed according to

x 
→ x + θx (x) , τ 
→ τ + θτ (x) .

One deduces
θτ = θtτ + θx.∂τ, θ∂μτ = θt∂μτ + θx.∂∂μτ

with θtτ the variation taken at fixed time, and where the notation ∂τ stands for the
4D gradient. The volume of integration varies as

θ
⎝

d4x
⎞

= d4x .θx (x) .

This entails the following general variation of the action integral

θS =
∫ A f

Ai

d4x

⎟(
θμ
.σ L − ∂L

∂
⎨
∂μτ

⎩∂στ

)
θxσ + ∂L

∂
⎨
∂μτ

⎩θτ

+
(

∂L

∂τ
− ∂μ

(
∂L

∂
⎨
∂μτ

⎩
))

(θτ − θx .∂τ)

⎠
.

From this, application of Hamilton principle leads to the Euler-Lagrange equations
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∂L

∂τ
− ∂μ

(
∂L

∂
⎨
∂μτ

⎩
)

= 0.

For a Lie symmetry transformation (Δxμ,Δτ), with Lie group parameters
{μi }i=1...p, we obtain the identity (in a manner similar as for the previous discrete
situation)

∂μ jμi +
(

∂L

∂τ
− ∂μ

(
∂L

∂
⎨
∂μτ

⎩
))(

∂Δτ

∂Δμi
− ∂Δxμ

∂Δμi
∂μτ

)
= 0, i = 1 . . . p

The Noether currents jμi therein are elaborated as

jμi =
(

∂L

∂
⎨
∂μτ

⎩∂στ − θμ
.σ L

)
∂Δxμ

∂Δμi
− ∂L

∂
⎨
∂μτ

⎩ ∂Δτ

∂Δμi
− ∂ (ΔΛμ)

∂Δμi
, i = 1 . . . p

The variations of the arbitrary function Λμ = Λμ (xμ) intervene in the covariant
Lagrangians that are not invariant, so that

∂. (Δx) + ΔL = −∂. (ΔΛ)

The symbol ∂ therein denotes the nabla operator, so ∂.Δx is the divergence of the
quadri-vector x. On the stationary path on which Euler equations are satisfied, the
Noether currents satisfy the continuity equation

∂μ jμi , i = 1 . . . p.

Integrating over a spacelike surface A gives the conserved Noether charge

Qi :=
∫
A

dA jμi .

One can check that in the specific case of translations, xμ 
→ xμ + aμ, with aμ

constants, so that Δxμ = aμ and for fixed fields, thus Δτ = 0, Noether theorem
leads in the case of invariant Lagrangians

ΔΛ ≡ 0

to the conservation of the canonical energy momentum tensor

T μσ := −c

(
∂L

∂
⎨
∂μτ

⎩∂στ − θμ
.σ L

)
→ ∂μT μσ = 0.



294 J.-F. Ganghoffer

The conserved 4-momenutm is defined as the integral of the energy-momentum
tensor over any space-like surface (cross section of a 4D volume at fixed time), so
that

pμ = 1

c

∫
A

dAT μσ .

The covariant momentum densities are further defined as

ρμ = ⎨ρ0 ρk
⎩ → ρμ := ∂L

∂
⎨
∂μτ

⎩ ·

It is to be noticed that the Hamiltonian density of the field is the pure time-like
component of the energy momentum tensor, so that

H := T 00.

We shall next extend those notions from a slightly different perspective in order to
fully characterize a field and give it all attributes a discrete mechanical system has,
such as 4-momentum, energy, kinetic moment, spin.

3.4 Noether’s Theorem and Conservation Laws

Recall that for a material system, the symmetries imposed to the system (spatial
translation, temporal translation and rotation) are reflected in the form taken by its
Lagrangian; those symmetries lead to conserved quantities (respectively conserva-
tion of linear momentum, energy and angular momentum). Similarly, requiring the
invariance of physics of the field, in terms of the action integral, with respect to the
same continuous transformations, leads to the identification of conserved quantities
such as energy, linear and angular momentum for the field. Since we deal with con-
tinuous transformations (corresponding to Lie groups), we can equivalently restrict
ourselves to infinitesimal transformations. Although it may be represented as a col-
umn vector, the spatial coordinate will be denoted as a scalar (without boldface). Let
then consider an infinitesimal change of referential

Xi → Xi + θXi , Ψ (X) → Ψ ′ ⎨X ′⎩ = Ψ (X) + θΨ (X) .

The local variation θτ(X) therein compares the fields τ(X), τ
′
(X′) at two different

points; one next elaborates the proper variation of the field (local variation of the
field) as the difference of τ evaluated at the same point

θτ(X) := τ′(X) − τ(X).
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Fig. 2 Proper variation of a field, cf. [9]

A first order Taylor expansion then leads to

τ′(X′) = τ′(X) + ∂τ
′
(X)

∂Xi
θXi .

This results in the expression

Ψ ′ ⎨X ′⎩ = Ψ (X) + θ̄Ψ + ∂Ψ (X)

∂Xi
θXi + ∂

⎨
θ̄Ψ
⎩
(X)

∂Xi
θXi ≡ Ψ (X) + θΨ (X) .

Observe that the term
∂
⎨
θ̄Ψ
⎩
(X)

∂Xi
θXi is a second order contribution. The last identity

allows identifying the proper variation of the field as

θ̄Ψ = θΨ − ∂Ψ (X)

∂Xi
θXi

see Fig. 2.
The invariance of the action integral under a change of referential leads to

0 = θ I =
∫
V

t2∫
t1

L
⎨
Ψ + θ̄Ψ, ∂iΨ + θ̄∂iΨ

⎩
d4 X ′ −

∫
V

t2∫
t1

L (Ψ, ∂iΨ )d4 X

involving the proper variations of the field and its first order spatial derivatives. The
Lagrangian function has to be invariant under space and time translations, thus it
does not explicitly depend on the coordinates.

The Jacobean in the first integral of last equality is evaluated at first order as
J = 1 + ∂iθXi + o(θXi ). We can further expand the first Lagrangian density as
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L
⎨
Ψ + θ̄Ψ, ∂iΨ + θ̄∂iΨ

⎩ ≤= L (Ψ, ∂iΨ ) + ∂L

∂Ψ
· θ̄Ψ + ∂L

∂ (∂iΨ )
· θ̄∂iΨ.

Accounting for the relations

θ̄∂iΨ = ∂i θ̄Ψ

and

∂L

∂ (∂iΨ )
· ∂i
⎨
θ̄Ψ
⎩ = ∂i

(
∂L

∂ (∂iΨ )
· θ̄Ψ

)
− ∂i

∂L

∂ (∂iΨ )
· θ̄Ψ

then leads to the variation

θ I =
∫
V

t2∫
t1

∑
i

∂i

{(
Lθi j − ∂L

∂ (∂iΨ )
∂ jΨ

)
θX j + ∂L

∂ (∂iΨ )
· θΨ

}
d4 X = 0.

The last equality can be written more compactly into the form (the symbol � denotes
the quadrivergence or d’Alembertian)

∂i fi = 0 ∼ � f = 0

with

fi :=
∑

j

(
Lθi j − ∂L

∂ (∂iΨ )
∂ jΨ

)
θX j + ∂L

∂ (∂iΨ )
· θΨ ≡

∑
j

Ti jθX j + ∂L

∂ (∂iΨ )
· θΨ .

Previous conservation equation (the quadrivergence of the force like quadrivector f
vanishes) highlights the contribution of the celebrated energy-momentum tensor of
the field, the second order tensor with components

Ti j = Lθi j − ∂L

∂ (∂iΨ )
∂ jΨ.

The previous variation of the action includes a contribution due to the variation of
the field and a variation of the independent variable X, acted upon by tensor T .
Integrating previous conservation law onto the infinite 3D-volume and isolating the
spatial and time-like force components therein leads to

f =
⎝

f̄ , f 4
⎞

, ∂i fi = 0 → div f̄ + ∂ f4

∂t
= 0 ⊕

∫
V3

div f̄ dV + d

dt

∫
V3

f4 dV .

Green’s formula implies the vanishing of the first integral, hence one arrives at the
conservation law



Symmetries in Mechanics: From Field Theories to Master Responses 297

Fig. 3 Invariance by translation, cf. [9]

F :=
∫
V3

f4 dV ≡


∑

j

T4 jθX j+ ∂L

∂ (∂4Ψ )
· θΨ

⎫⎬
⎭ dV = Cte

traducing Noether’s theorem [10]: any invariance of physics by a continuous trans-
formation leads to the conservation of a physical quantity.

Note that one is led to generalize Noether’s theorem in the quantum domain by
including non continuous transformations (discrete symmetries such as inversions).

The postulate of homogeneity of the four-space leads to the invariance of physics
under spatio-temporal translation by the infinitesimal vector: the transformation in
Fig. 3, i.e.,

X → X ′ = X + a ⊕ θX j = a j

results in

Ψ ′ ⎨X ′⎩ = Ψ (X) ⊕ θΨ = 0.

An immediate application of previous general conservation law and the consid-
eration of the arbitrariness of the constants a j lead to

Pj :=
∫

v3

T4 j dV = Cte

traducing the conservation of the 4-momentum. One can accordingly rewrite the
conservation law in the form

∑
i

∂i fi = 0 →
∑

j

∂ j T4 j = 0

One identifies in previous identity the 3-momentum with components

Pμ :=
∫

V≥=V

T4μdV = −
∫

V≥=V

∂L

∂ (∂4Ψ )
∂μΨ dV → P = −

∫
V≥=V

∂L

∂ (∂4Ψ )
∗Ψ dV
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involving the quantity

Π (X) := ∂L

∂ (∂4Ψ )

called the field function, playing a role similar to the momentum in analytical mechan-
ics. Accordingly, the momentum of a field is defined as the 3-vector built from the
volumetric density

P (X) := −Π (X) ∇Ψ (X) → P = −
∫

V≥=V 3

Π (X) ∇Ψ (X) dV .

The energy of the field is defined as the remaining time-like component

P4 = W :=
∫

V≥=V3

T44dV =
∫

V≥=V3

{−L + Π (X) ∂4Ψ } dV .

The density of energy, the scalar

H := Π (X) ∂4Ψ − L

plays a role similar to the Hamiltonian in classical mechanics.
We next define the kinetic moment of a field, vector L and its spin I: this last vector

does not depend on the choice of an origin of space, and it represents an intrinsic
property of the field. Contrary to this, the total moment of the field, vector I, is a
conserved quantity depending upon the selected origin of space; it vanishes for a
central field. For a scalar field, the operators Iμ vanish, hence the spin is nil (only one
component for the field). The field τ may be complex valued, but the Lagrangian
density L is real, thus it contains only combinations of the type τ∗τ (with τ∗ the
complex conjugate of τ), which means that L is invariant under the transformation
τ → τ′ = eiητ, called a gauge transformation of the first kind. When parameter η
is constant, one can approximate previous finite transformation by the expansion

τ′ ≤= (1 + iη)τ → θτ = iητ, θτ∗ = −iητ∗

Noether’s theorem then leads to the force

fi = ∂L

∂ (∂iτ)
.τ − ∂L

∂ (∂iτ∗)
.τ∗

The associated four-vector is characterized by the current density

ji = ∂L

∂ (∂iτ)
.τ − τ∗. ∂L

∂ (∂iτ∗)
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Fig. 4 Rotation of the refer-
ential, cf. [9]

and it satisfies the conservation of the field charge defined as the integral of the
temporal component of the current

Q :=
∫
v3

j0(X)dV =
∫
v3

{Π(X).τ(X) − τ∗(X).Π∗(X)}dV .

In order to highlight the conservation of the total moment of the field and considering
a specific rotation, we perform an infinitesimal rotation of axis X3 and angle δ, a
small parameter (see Fig. 4).

hence the variation of coordinates

X ′
1 = X1 cos δ − X2 sin δ ≤= X1 − δX2 ⊕ θX1 = −δX2

X ′
2 = X1 sin δ − X2 cos δ ≤= X2 − δX1 ⊕ θX2 = −δX1

X ′
3 = X3 ⊕ θX3 = 0.

This transformation leads to θΨ = I3 with I3 the infinitesimal generator of the
rotation, which depends on the field τ. For an isotropic space, we then obtain the
conserved integral quantity

∫
v3

{ςΠ(X)I3τ(X) + T41θX1 + T41θX1 + T42θX2}dV = Cte.

We can rewrite previous conservation law as

∫
v3

Π(X)I3τ(X)dV −
∫
v3

{Π(X).(X1∂2τ − X2∂1τ)}dV = Cte

in which the quantity (X1∂2τ − X2∂1τ) is recognized as the third component of the
vectorial product r × ∗Ψ .

This highlights the angular moment of the field identified as the vector

L :=
∫
V3

r × ddV
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with

p := −Π (X) .∗Ψ .

The invariance by rotation around the third axis then entails the conservation of the
third component

J3 :=
∫
V3

I3dV +
∫
V3

Π (X) I.Ψ (X) dV

with I := (I1 I2 I3) the set of three infinitesimal generators of rotations in 3D space.
In a general case, the invariance by rotation thus leads to the conservation of the total
momentum, sum of the angular momentum of the field, vector L, and of the spin,
vector S, with

S :=
∫
V3

Π (X)I.Ψ (X) dV .

We shall further distinguish external symmetries, namely symmetry transformations
acting on the space time coordinates from internal (or gauge) symmetries, acting
on internal degrees of freedom. The space-time coordinate vector x = {xμ} =
{ct, x, y, z} may be transformed by a linear mapping L , thus defining the new coor-
dinates x′ = ⎛x ′μ⎜, such that x′ = L .x+a, LT βL = β, where β is Minkowski metric.
Transformations of this kind define the full Poincaré group of transformations; the
full Lorentz group is obtained as a specific case for a = 0 and L satisfying previous
equation.

4 Lagrangian Formulation of Electromagnetism
and Relativity Theories

We herewith adopt the viewpoint of symmetries inherently contained in the form of
the Lagrangian density: the fields and the Lagrangian will be introduced for several
field theories without so much physical justification, as it is not the goal and viewpoint
of this chapter to explain the physical content of the theories, but rather to illustrate the
powerfulness of symmetries in the construction of field theories [11]. As previously
mentioned, those theories can be classified according to the spin, which determines
the number of independent components of the field.

• A massive scalar field (zero spin) can be defined by a real function of the
space-time coordinates, γ

⎨
xμ

⎩
, and a Lagrangian density

L = 1

2
(∂μγ∂μγ − m2γ)
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The Euler-Lagrange equations lead to Klein-Gordon equation for a free massive
scalar field

⎝
� + m2

⎞
γ = 0

with � the d’Alembertien. Considering an interaction with an external potential
J (x, t) γ (x, t) = V (x, t) leads to the new Lagrangian density

L = 1

2

⎝
∂μ∂μγ − m2γ

⎞
− Jγ

It results in the modified Klein-Gordon equation evidencing the current J as a
source term:

⎝
� + m2

⎞
γ = J

• The free behavior of fermions (spin is 1/2) such as electrons is described by a
four-spinor τ, with the Lagrangian (involving τ and its complex conjugate τ)

L f = Ψ̄
⎨
iψμ∂μΨ − m

⎩
Ψ

with ψμ the 4×4 Dirac matrix built from Pauli matrices; it entails the Dirac equation

(iψμ∂μ − m)τ = 0

• The electromagnetic field is a massless vectorial field characterized by the vector
potential A = (γ, A), and the Faraday tensor

Fμv := ∂μ Av − ∂v Aμ → Fμσ =




0 −E1 −E2 −E3
E1 0 −B3 B2
E2 B3 0 −B1
E3 −B2 B1 0


 .

The metric tensor relates the covariant to the contravariant components of any tensor;
for instance, the components of Faraday tensor are related by
Fηε = βαηβ0ε Fα0 in Minkowski space-time.

The electric and magnetic fields, vectors E, B are not determined in a unique way,
since any gauge transformation of the form

A′ = A + ∗ν, ζ′ = ζ + ∂tν

with ν an arbitrary scalar function of coordinates, leaves the fields E, B invariant,
due to the relations

E = −∗ζ + −∂t A, B = ∗ √ A.
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In order to remove the gauge freedom, a certain number of gauge conditions have
been proposed, amongst which the Lorentz gauge and the Coulomb gauge (a subcase
of Lorentz gauge) are the most popular. The Lorentz gauge, equation

∂tζ + ∗.A = 0 ∞ ∂μ Aμ = 0

is further compatible with the conservation of the electric current, identity
∂tρ + ∗.j = 0 involving the density of charge ρ and the current j = σE (σ is
the conductivity). Previous definition of Faraday tensor leads to the first group of
Maxwell equations

∂μFξψ + ∂ξFψμ + ∂ψ Fμξ = 0 ∞
∣∣∣∣∂t B + rotE = 0
divB = 0.

The Lagrangian density of the electromagnetic field in presence of sources described
by the current Jμ ≡ eτψμτ write together with the action

Le (Aμ, ∂μ Av) = − 1

16ρ
Fμv Fμv − Jμ Aμ

≡ Lem + L int → Se[Aμ] :=
∫

v

Le(Aμ, ∂μ Av)d
4 X.

The first term on the r.h.s. has the physical significance of the density of electromag-
netic energy, with

Lem = − 1

16ρ
Fμv Fμv ≡ 1

8ρμ

(
E2

c2 − B2
)

while the second Lagrangian Lmt describes the interaction between the field and
the sources (particles). This Lagrangian leads to the Euler equations (note that the
Lagrangian of matter does not play a role, since the variation is taken versus the
potentials Aμ)

θSe
⎧
Aμ

⎪ = 0 ⊕ ∂ψ Fμψ + 4ρJμ = 0

identified to the second group od Maxwell equations when Lorentz gauge is imposed

�Aμ = Jμ ∞
∣∣∣∣∗.D = 4ρρ
rotH = 4ρj + ∂t D.

One has to add to the field equations the expression of the Lorentz force exerted on a
charged particle (with electrical charge e), given in vectorial and tensorial format as

F = e (E + v √ B) ∞ fσ = Fμσ Jμ.
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The equation of motion of a charged and massive particle is then obtained as the
Euler equation traducing the equality of the Lorentz force with the derivative of the
4-momentum with respect to the proper time,

d pv

dα
:= m

duv

dα
= f v

involving the 4-velocity vector

uσ =
⎝

u0, ui
⎞

=
⎝
ψ, ψvi

⎞
, ψ =

⎝
1 − v2/c2

⎞1/2
.

The energy momentum tensor of the electromagnetic field in the absence of charge
(tensor of the pure field) is conserved

T v
μ = ∂Lem

∂(∂v Aε)
∂v Aε − θv

μLem ≡ 1

4ρ
(Fμ

o Fvo − 1

4
βμv F0ξF0ξ) → ∂ψT ψ

v = 0.

The Hamiltonian is elaborated from the Lagrangian density, introducing the conju-
gated moments, and leading to Hamilton equations for the field as

Πμ := ∂Le

∂ Ȧμ
→ He

⎨
Aμ,Πμ

⎩ := Πμ Ȧμ − Le → Ȧμ = ∂He

∂Πμ

Π̇μ = ∂He

∂ Aμ
− ∂η

(
∂He

∂
⎨
∂η Aμ

⎩
)

.

Coming back to the comparison between electromagnetism and relativity, the deter-
mination of the field equations follows similar principles:

• The equations of motion are obtained considering that the field is given, hence

θS(field) ≡ 0 → θS(particle) + θS(interaction) ≡ 0.

The variation of the Lagrangian densities is here done with respect to the coordinates.
• The field equations are obtained considering that the motion of charges (parti-

cles) is given, thus

θS(matter) ≡ 0 → θS(field) + θS(interaction) ≡ 0.

Now, the variation of the Lagrangian densities is performed with respect to the
potentials (internal d.o.f.) viewed as generalized coordinates.

This can be illustrated in the case of G R by the derivation of Einstein equation
from the action integral, sum of the action integral of energy and that of geometry,
respectively integrals
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Se = 1

c

∫ ∩−gLed4x, Sg = ψ

∫ ∩−gRd4x .

The Lagrangian density for energy (including matter and the electromagnetic field),
quantity Le = Le(gμv, ∂ξgμv), is a scalar built from the metric tensor and its first
order derivatives. The geometrical Lagrangian density is selected as the scalar curva-
ture R = gik Rik , built from the second order partial derivatives of the metric tensor,

and := − 1

2νc
, with ν = 2ρG

c4 Einstein coefficient. The geometrical action is then

Sg :=
∫ ∩−gRd4x .

One then obtains the Euler equations

θ (Se + Sg) = 0 = Ri j − 1

2
gi j R = νTi j

involving the Ricci second order curvature tensor R and the energy-momentum tensor
T with components

Ti j = 1

2
∩−g

{
∂
⎨∩−gLe

⎩
∂gi j

− ∂k

(
∂
⎨∩−gLe

⎩
∂
⎨
∂kgi j

⎩
)}

.

The obtained field equations link the energy momentum tensor to curvature, reflecting
the idea that mass and energy induce a modification of the geometrical structure of
space-time.

Note that when deriving the Euler equations, we have assumed that the boundary
term

∫
∂V =Σ

∂L

∂ (∂μζ)
θζdΣ

resulting from integration by parts vanishes, considering nil variations of the field
on the boundary Σ of the 4-volume V .

To summarize, gravitational forces essentially arise from the communication
between different points of space-time; this communication is done from a technical
and operative viewpoint by the affine connection, which defines parallel transport.
ln a metric space, the coefficients of the connection are expressible versus the met-
ric coefficients, and they lead to gravitational forces. It will appear in subsequent
developments that all forces arise essentially in this way; anticipating next section,
consider a particle described by the complex wave function ζ(x) = ζ1(x)+iζ2(x). It
is clear that the phase of ζ(x) is not observable; this implies the absence of privileged
orientation in the (ζ1,ζ2) plane (considered as an internal space), and it requires a
rule for comparing the orientation of the wave function at different points in this
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plane. Similar to the concept of covariant derivative, we need a rule to construct the
wave function ζ(x1 → x2) resulting from the transport of ζ(x) from x1 to x2, in
order to give a physical meaning to the phase variation θζ = ζ(x2) − ζ(x1 → x2) ,
we introduce connection coefficients Γi jμ, such that

ζi (x → x + Δx) = ζi (x) − Γi jμ(x)ζ j (x)Δxμ

and further require that the amplitude ofζ(x) remains unchanged during the transport.
A connection satisfying those conditions then must be antisymmetric, of the form

Γi jμ(x) = −ξςi j Aμ(x)

wherein Aμ(x) is the electromagnetic 4-potential vector, and ςi j the 2D Levi-Civita
symbol.

4.1 Symmetry Principles in Continuum Mechanics: Material
Frame Indifference, Material Symmetries and Eshelbian
Mechanics

Symmetry requirements form a cornerstone in continuum mechanics. One may clas-
sify such symmetries as material symmetries (acting in the reference configuration,
they determine what is called the material symmetry group of a given material), and
spatial symmetries, which have to be universally satisfied by any theory of finite
deformation, and are usually referred to as material frame indifference. Following
an early work [12], [13] was one of the few researchers to brought further the idea of
general point transformations of both the Lagrangian coordinates and of the fields,
thereby extending the concept of material symmetries described by a mere change
of the reference configuration. Those generalized coordinate transformations are
invariance properties in the sense that they are compatible with the Galilean invari-
ance of the strain energy density function, namely, the material frame indifference
is preserved. Going one step further, one may suspect in addition to material frame
indifference (a postulate valid independently of the physical problem) the existence
of hidden symmetries in the space of control and internal variables, which can be
computed from the set of governing equations for a specific problem. In the context
of continuum solids mechanics, Lie groups have been applied to solve the Navier
and the Lame equations ([14–16]), or, in a similar spirit and extending this view
to dissipation, to partially solve the ideal plasticity equation ([17–19]). The con-
cept of nonlocal symmetries allows to construct novel BVP in continuum mechanics
(and group invariant solutions), involving potential variables, thereby extending the
classical picture relying on the traditional Lagrangian and Eulerian viewpoints, [4,
20–24].
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Symmetry methods can also be successfully applied to media presenting internal
length effects expressed by generalized continuum models; for instance, the sym-
metry analysis of nonlocal elasticity model has already been done in the literature,
in [25] and [26]. When the nonlocality is decribed by higher order gradients of the
internal variables, such as in the recent contribution of [27], the symmetry generators
shall include the prolongation of the vector field associated to higher order gradi-
ents of the variables. The Lie symmetries of finite strain perfectly plastic equations
were computed in [28] and numerical schemes preserving group properties were
accordingly developed, having the advantage of satisfying the consistency condition
exactly. The issue of symmetries is not only important from a theoretical and consti-
tutive point of view, but it also has an impact as to computational issues. Numerical
schemes which preserve symmetry and utilize some induced conservation laws have
long term stability and are endowed with improved efficiency and stability.

As shown previously, the field of Eshelbian Mechanics (in the honour of the works
of Eshelby [29]), otherwise coined Configurational Mechanics, relies on translational
symmetries in the so-called material space, for the writing of the field equations in
terms of Eshelby stresses [30, 31]. Those symmetries extended to rotations and
dilatations have been intensively used to construct the well known J-integrals [32];
further conservation laws in 2D nonlinear elastodynamics have been proposed in
[18], also leading to path-independent integrals when written in integral form (due to
their divergential form). The fundamental postulates in continuum mechanics valid
irrespective of the form of the constitutive law of the considered material (usually
based on experimental data, thus of an approximate nature) can be summarized as
follows [6]:

• Principle of determinism for the stress: the stress response within a continuum
body is completely determined by the history of its motion;

• Principle of local action: the stress at a given material point only depends on the
state of motion in a small neighborhood of that point;

• Principle of material objectivity: this principle also coined material frame-
indifference enunciates that constitutive equations must be independent of the
observer. It leads to the same stress measure for two observers in relative motion
with respect to each other; for a tensor valued function of a tensor argument such
as the Cauchy stress in elasticity, σ (F), this principle expresses as the transfor-
mation rule for the stress response under an arbitrary rotation of the deformed
configuration, in the form
σ (Q.F) = Q.σ (F) .QT .

• Principle of material symmetry: the symmetry properties of a given material can
be traduced by a material symmetry group acting in the reference configuration
(those transformations act in referential coordinates), and they influence the stress
response according to certain rules.

The combination of material symmetries with the principle of material objectivity
highlights the role of isotropic tensor functions when expressing constitutive laws.
For a symmetry transformation g that belongs to the material symmetry group of an
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hyperelastic material with strain energy function W (F), with F the transformation
gradient, it holds that

W (F.g) = W (F) .

When the constitutive law is non dissipative, one may formulate the equilibrium as
an extremum principle, and Noether’s theorem then articulates the functional invari-
ance (under symmetry transformations) called variational symmetries, conservation
laws and the non observability of certain quantities. Let consider an action integral
S := ∫

Ω

L (X,γ,∗γ) dΩ built from a Lagrangian density per unit volume

L (X,γ,∗γ) = W (X,γ,∗γ)

denoting by X the independent variables associated to the parameterization, and γ =
γ (X, t) the dependent variables identified to the fields. The Lagrangian identified in
continuum mechanics to a strain energy density function is here chosen to depend at
most on the first order gradient of the field, and will explicitly not depend on X, so
that

L (X,γ,∗γ) = W (γ,∗γ) .

The general variation of the action integral under an arbitrary Lie group of transfor-
mations acting on both the dependent and independent variables expresses as

θS = μ

∫
Ω

(
∂W

∂γk
− Di

∂W

∂γk,i

) ⎨
ζk − ϕ jγk, j

⎩
dΩ

+ μ

∫
∂Ω

(
Wϕi + ⎨ζk − γk, jϕ j

⎩ ∂W

∂γk,i

)
ni d (∂Ω)

wherein the components of the vector field generator of the Lie group are denoted
(ϕ,ζ) ≡ μ (θX, θγ), with μ the group (small) parameter. One may observe that the
contribution
∫

∂Ω

(
Wϕi − γk, jϕ j

∂W

∂γk,i

)
ni d (∂Ω) ≡ μ

∫
∂Ω

(
W I − ∗T γ.

∂W

∗’

)
.θXd (∂Ω)

of the previous boundary integral traduces the domain variation (this term only
involves the variation θX), and it highlights the Eshelby energy momentum tensor

Σ := LI − ∗T γ · ∂L

∗γ
·

The first integral on the right hand side has an integrant involving the characteristic
Qk ≡ ζk −ϕ j uk, j , as a factor of the Euler operator applied to the Lagrangian density.
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Previous variation can be rewritten in a more compact differential form a ła Cartan
L Xω = iX dω + d (iXω) allowing a more compact writing of Noether’s theorem:
under the condition of vanishing of the Lie derivative of the one form ω = Ldt , that
is L Xω = 0 (invariance of

∫
Ω

ω ≡ ∫
Ω

W dXdtby the group generated by X) and
iX dω = 0 (Euler equations are satisfied as a necessary optimality condition θS = 0),
the following conservation law (since it appears in divergence form) is satisfied

Div

(
Wϕi + ⎨ζk − γk, jϕ j

⎩ ∂W

∂γk,i

)
= 0.

As a specific case, for a purely horizontal variation (the fields are fixed, only parame-
terization is varied by translation, θγ ≡ 0 → ζ = 0, one recovers the conservation
law of Eshelby stress in the absence of dynamical effects

Div

(
Wθi j − γk, j

∂W

∂γk,i

)
ϕ j = 0

→ Di

(
Wθi j − γk, j

∂W

∂γk,i

)
θX j = 0, θX j → DivΣ = 0

where Di is the total derivative with respect to Xi . This conservation law is associ-
ated to the non existence of an absolute origin of space for a homogeneous body; it
is a generalization to the continuum theory of the conservation of momentum pre-
viously obtained in analytical mechanics. The integration of previous conservation
law around the tip of a crack leads by construction to a path-independent integral
representing the energy release rate.

The translational invariance with respect to the field itself, more precisely the
invariance of the strain energy function under the transformation γ → γ + c with
c ◦ R

3 an arbitrary constant (γ is here a vector in 3D euclidean space), leads

to Di

⎝
∂W

∂γk,i

⎞
= 0, k = 1 . . . 3. Those equations are nothing else than the Euler-

Lagrange equations of the functional built from W. Further conservation laws result
from the postulate of invariance with respect to (continuous) rotations and expansions
of the material coordinates: for a isotropic material, the invariance of L under the
material symmetry group X 
→ Q.X, Q ◦ SO(3), the group of finite rotations
acting on the material coordinates, the condition W (∗γ.Q) = W (∗γ) leads to the
3 conservation laws

Di

(⎨
X jγp,k − Xkγp, j

⎩ ∂W

∂γp,i
+ ⎨θi j Xk − θik X j

⎩
W

)
= 0, p = 1 . . . 3

associated to the infinitesimal generator

Xk
∂

∂X j
− X j

∂

∂Xk
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for rotations. The principle of material indifference specialized to rotations acting
now in the space of the field, associated to the infinitesimal generator

γk
∂

∂γ j
− γ j

∂

∂γk

leads to the conservation law of angular momentum

Di

(
γp

∂W

∂γq,i
− γq

∂W

∂γp,i

)
= 0, p, q = 1 . . . 3.

The scaling group (X,γ) 
→ ⎨
ξX,ξ(n−3)/nγ

⎩
,ξ> 0, is a variational symmetry with

associated infinitesimal generator

Xk
∂

∂X j
+ n − p

n
γ j

∂

∂γk

leading to the conservation law

Di

(
(n − p)

n
γp

∂W

∂γp,i
+ Xi W − X jγp, j

∂W

∂γp,i

)
= 0.

Note that an individual scaling of X or γ leads to a symmetry of the Euler-Lagrange
equations, but not to a variational symmetry. Recall that a variational symmetry group
of a functional is also a symmetry group of the Euler-Lagrange equations, but the
converse is false, as previous situation shows.

The previous conservation laws when written in integral form lead to the well-
known path-integral integrals in fracture mechanics, used to characterize the stress
singularity close to the crack tip by performing integration far from the singularity.

5 Lagrangian Formulation and Internal Symmetries:
Gauge Theories

The expression of the Lagrangian reflects the laws of physics, amongst which sym-
metries play a prominent role, as previous section has shown. Since a physical system
evolves in space-time but also includes internal d.o.f., such symmetries can be clas-
sified into two categories [11, 33]:

• External symmetries acting on the space-time coordinates of the scene of events.
• Internal symmetries acting on internal parameters, such as potentials, charges, the

wave function; such internal symmetries are also coined gauge symmetries.

Both external and internal symmetries leave invariant the laws of physics, and
as such constitute an extension of the geometrical interpretation of general rela-
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Fig. 5 Parallel transport of a vector field along a path, cf. [33]

tivity to all fundamental interactions, of a quantum nature. Recall that a concept
common to special and general relativity is the absence of absolute referential. ln
special relativity, the class of equivalent referentials is defined by Poincaré group
of transformations; all referentials in this class can be located at arbitrary distances
from each other, so that the symmetry transformations induced by Poincaré group
are global. The picture is different in RG, since the postulated equivalence between
the gravitation field and the inertial frame is valid only locally (the orientation of
the gravitation field varies from point to point), thus the inertial referential equipped
with the metric field g is only locally defined (where g is uniform): RG is thus a local
theory. This comparison hints at the key idea of Weyl’s gauge theory (1919), which
was the first historical attempt to generalize the idea that the effect of the gravitation
field can be described by a connection giving the relative orientation of frames in
space-time. Weyl then advanced the idea that the norm of any vector associated to a
physical quantity should not have an absolute magnitude, but instead would depend
on its position in space-time.

The set of all transformations associated to internal symmetries form a Lie group,
acting on internal d.o.f.; those internal d.o.f. f belong to the fiber at each point of
the base, as pictured on Fig. 5.

In the sequel, the wave function will be represented without the boldface notation
pertaining to vector-like quantities, since it may have different representations (vec-
torial, spinorial, matricial, …). In electrodynamics, the fibers consist of the phases
of the wave function, and each fiber can be conceived as a copy of the unit circle in
the complex plane. The angle θ(x) ◦ [O, 2ρ] specifies a transformation of the phase
ζ(x) into

ζ (x) := eiθ(x) |ζ (x)|
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The set of all transformations parameterized by the angle Θ(x) constitutes a Lie
group; it is further clear that a global change of the phase of ζ(x) by a uniform factor
eiΘ , with Θ = Cte, will not change the field equations. Such an invariance of the
field equations (or of the action integra) by an internal symmetry is called gauge
invariance.

Gauge theories rely on a construction of the Lagrangian in the space of internal
d.o.f. being gauge invariant (in addition to being invariant with respect to external
symmetries); the gauge transformation will be specified by the global action of a Lie
group of transformations, and the gauge invariance shall specify the form taken by the
Lagrangian function. The wording global means that the Lie group parameters are ini-
tially not depending on space or time. For a given interaction (weak, electromagnetic,
. . .), the dimension of the Lie group determines the number of interaction particles
mediating the interaction; those particles are called gauge bosons (recall that mat-
ter particles are defined as fermions). The geometrical interpretation of local gauge
invariance is the freedom given to any observer located in the base space to choose the
base of the internal space (the fiber above each point). Note the recent applications of
gauge invariance in the field of elastodynamics [23]. We shall next show how gauge
theories are built, considering as a specific case quantum electrodynamics (QED in
short), describing the interactions of fermions with the electromagnetic field.

5.1 Gauge Invariance and Noether’s Theorem: Case of QED

We adopt a sequel a system of units in which the speed of light is unity. We focus on the
Dirac equation satisfied by a fermion (the spin is 1/2), the origin of which is recalled:
the linearized relativistic energy writes E = p.v − L , with L = −m(1 − v2)1/2,
hence

E = p.v + (1 − v2)m.

One then admits the existence of a Hamiltonian having the same form

H = η.p + εm

with (η,ε) matrices. The eigenvalue problem for the linearized Hamiltonian writes

Hτ = Eτ → (η.p + εm)τ = Eτ.

According to the correspondence principle, one replaces energy and momentum by
the differential operators

E → i–h∂/∂t, pi → −i–h∂/∂xi .

Previous equation then rewrites
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i∂tτ = (η.p + εm)τ.

This becomes with the matrices η = (ημ)μ=0,1,2,3 the equation

i(∂0 + ηk∂k)τ − mετ = 0.

Multiplying previous equation from the left by ε and introducing the quantities
ψ0 = ε, ψi = εηi results in previously written Dirac equation. The coefficients
(η,ε) are obtained by applying the energy operator E to the equation

(η.p + εm)τ = Eτ

expanding the left-hand side and identifying the right hand side with (p2 + m2)τ,
from which it is found that matrices (ημ)μ=0,1,2,3 and ε are traceless, and have real
eigenvalues equal to ±1, with an equal number of + 1 an −1.

In Dirac equation, matrices (μ) satisfy the condition

{ψμ, ψv} := ψμψv + ψvψμ = 2βμv I, ψ0 = ε =
(

I 0
0 −I

)
, ψk =

(
0 σk

−σk 0

)

with I the second order identity tensor, and σk Pauli matrices. The column four-
vector τ = {τ1,τ2,τ3,τ4}t has an hermitic conjugate given by the row vector
τ+ = ⎨τ∗

1 τ∗
2 τ∗

3 τ∗
4

⎩
.

Let then introduce the complex conjugate

Ψ̄ = τ+ψ0 = ⎨τ∗
1 τ∗

2 τ∗
3 τ∗

4

⎩ ( I 0
0 −I

)
= τ+ = ⎨τ∗

1 τ∗
2 τ∗

3 τ∗
4

⎩
.

The adjoint Dirac equation is obtained as follows: let start by taking the hermitic
conjugate of

i∂tτ = η(−i∗τ) + mετ

Hence (with ε+ = ε)

−i∂tτ
+= i∗τ+η + mτ+ε.

Multiplying previous equation to the right by ψ0 = ε, with
⎨
ψ0
⎩2 = I delivers

−i∂t τ̄ = i∗τ̄ψ + mτ̄.

Finally, the adjoint Dirac equation writes

i∂μτμ + mτ = 0.
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The Lagrangian is then constructed based on both the Dirac equation and its adjoint
as

L = iτ̄ψμ∂μτ̄ − mτ̄τ = iτ̄∂τ − mτ̄τ = −τ̄
⎝

i∂ − m
⎞

τ = −τ̄
⎝

i∂ + m
⎞

τ

introducing therein the new derivative ∂̄ := ψμ∂μ, and the left and right arrows
indicating on which side the operator is acting. It is easy to verify that the stationarity
of L with respect to τ̄ and τ leads respectively to Dirac equation and to its adjoint.
The probability density is defined as the scalar

j̇k (x) = τ̄ (x) ψkτ (x)

wherein the last relation follows from the identity (ψ0)2 = I . Similarly, the density
of current probability is elaborated as

jk(x) = τ(x)kτ(x).

Multiplying Dirac equation from the left by τ̄ and its adjoint from the right by τ,
and summing up both relations rescaled by the charge of electron, we arrive at the
conservation law of the electric current

∂μ(ejμ(x)) = 0

The density of electric charge therein is the temporal component eτ+(x)τ(x) .
The conservation of the electric current can be deduced from a global gauge

invariance of the Lagrangian, following the transformation

τi (x) → τ′
i − exp

⎨−iΛTi j
⎩
τ j (x)

with Λ a constant parameter, and Ti j a constant matrix. A Taylor expansion of
previous transformation at first order gives the variation

τ
′
i (x) − τi (x) = θτi (x) = −iΛTi jτ j (x).

This leads to the variation of the Lagrangian

θL = ∂L

θτi
θτi + ∂L

∂(∂μτi )
θ(∂μτi ) = ∂μ(

∂L

∂(∂μτi )
θτi ) − (∂μ(

∂L

∂(∂μτi )
) − ∂L

∂(∂μτi )
)θτi .

The last contribution vanishes for the optimal trajectory (when Dirac equation is
satisfied), thus we get the conservation law
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θL = 0 ⊕ ∂μ(−i
∂L

∂(∂μτi )
Ti jτ j ) = ∂μ jμ = 0

of the electric 4-current, illustrating Noether’s theorem.
The Dirac Lagrangian is invariant under the global gauge transformation (when

Λ is uniform); since previous result is valid for any constant matrix of coeffi-
cients Ti j , the specific choice Ti j = θi j leads to the expression of the current
jμ(x) = τ(x)μτ(x) obtained previously.

A stronger condition of local gauge invariance is next required, letting the group
parameter depend upon the coordinates, viz Λ = Λ(x), selecting Ti j = qθi j , with q
an electric charge, hence resulting in the transformations

τi (x) → τ1
i (x) = exp(−iqΛ(x)Ti j )τ j (x)

A straightforward calculation then leads to the modified Lagrangian

L ′ = L + qτψμτ∂μΛ = L + qμ∂μΛ

One next introduces the covariant derivative

Dμ = ∂μ + iq Aμ

with Aμ the gauge field responsible for the interaction between fermions and the
electromagnetic field. The Lagrangian is then invariant under the previous Lie group
transformation

L F = L − q jμ Aμ ≡ Ψ̄
⎨
iD − m

⎩
τ → L F

′ = L F

involving the new covariant derivative

D := ψμ Dμ

The Lagrangian of fermions L F is accordingly invariant under a local gauge transfor-
mations, provided the partial derivative ∂μ is replaced by the covariant derivative Dμ;
the field Aμ is coined a compensating field or a gauge field, which allows localizing
the initially global gauge transformation. The Lagrangian of the developed theory,
called quantum electrodynamics (it is a relativistic theory) then writes as the sum of
the Lagrangian of matter (fermions) and of the free electromagnetic field

L QE D = L F + Le = L F − 1

4
Fμv Fμv.

Note that since the Lagrangian L F does not include a kinetic term quadratic in the
field Aμ, we deduce that the photon—the vehicle of electromagnetic interactions—is
massless.
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5.2 Generalization to all Fundamental Interactions

Fundamental interactions are described by the action of Lie groups with p continuous
parameters (Θa)a=1...p, thereby defining transformations of the form V = eiΘa Ta ,
with the Hermitian matrices Ta satisfying the following commutation relations of
the Lie algebra of the group

[Ta, Tb] = iCabcTc

for certain group structures set of constants Cabc. The matrices (Ta)a=1...p constitute
a N dimensional representation of the Lie algebra of the group.

The column vector ζ = (ζ1,ζ2, . . . ,ζN )t with N components, transforms
according to

ζ (x) → ζ′ (x) = V [ζ (x)] → ζr
′ (x) = Vrsζs (x) .

Under an infinitesimal transformation, one has the transformation relation of the field

ζ(x) → ζr ′(x) = ζr (x) + iΘa(Ta)rsζs(x)

inducing the following transformation of the Lagrangian density

θL = ∂μ(
∂L

∂(∂μτi )
θζs) = −Θa∂μ(

∂L

∂(∂μτi )
(Ta)rsζs) ≡ −Θa∂μ jμa (x)

with the quadricurrent jμa (x) being conserved

jμa (x) = −i
∂L

∂(∂μτi )
(Ta)rs(|)S → ∂μ jμa = 0.

Accordingly, the invariance of the Lagrangian imposes the conservation of the current
and of the charges, quantities

Qa :=
∫

jμa (x, t) d3x .

The charges can be rewritten in terms of the conjugated field momentum

Πr := ∂L

∂ζr
·

The existing interactions in field theories can be classified according to the structure
of their associated Lie groups: U(1), the group of unimodular matrices (complex
numbers of modulus unity) for quantum electrodynamics, with one generator; the
interaction particle (gauge boson) is the photon, the existence of which is deduced
from the localization of the gauge invariance;
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SU(2), the special unitary group of order 2, group of 2 × 2 matrices with unit
determinant, describing weak interactions, having 3 generators W +, W −, Z0;

SU(3), the special unitary group of order 3, for quantum chromodynamics (QED
in short), describing interactions between quarks, and having 8 generators called
gluons.

QED is a quantum relativistic theory, Abelian (the group generators commute with
each other, since there is only one generator); this is not the case of weak interactions
(the Lie group is non Abelian), the Lie algebra of which is characterized by Pauli
matrices α satisfying the commutation relations

[α A, α B] = 2iC ABCαc

with A,B, C ◦ {1, 2, 3}, α1 =
(

0 1
−1 0

)
, α2 =

(
0 i

−i 0

)
, α3 =

(
1 0
0 −1

)
, and

C ABC the group structure constants. The gauge transformation acts on a doublet of

scalar fields γ = according to γ → γ1 = exp(− i

2
αAηA)γ, with ηA the group

parameters.
The gauge transformation is non Abelian: due to the approximation

exp(− i

2
αAηA) ≤= 1 − i

2
αAηA

the product of two successive transformations,

γηε = exp(− i

2
αAηA) exp(− i

2
αBγB)γ

leads to

γηε − γεη = −1

4
[αA, αB]ηAηBγ = −iηAηBCABC

α c

2
γ.

When the group parameters depend on coordinates, viz ηA = ηA(x), the
gauge transformation is local. Let then introduce the three gauge fields AN

μ for

N = 1, 2, 3, and define Aμ := 1

2
αN AN

μ . The Lagrangian of the field is then con-

structed as

L M = (Dμγ+)(Dμγ) − V γ+γ

with Dμ = ∂μ + igAμ the covariant derivative, such that the covariant derivative
transforms as D†

μγ1 = U(Dμγ), with U a transformation of the group and g a
constant, called the gyromagnetic factor. The gauge field tensor is then defined as

Fμv = 1

2
αN F N

μv; F N
μv = ∂μ AN

v − ∂v AN
μ − gςN P Q AP

μ AQ
v
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and further rewritten as

Fμv = ∂μ Aμ − ∂v Av + ig[Aμ, Av] = − i

g
[Dμ, Dv]

The Lagrangian of the field is then written in a form similar to electromagnetism,
that is

L Field = −1

4
Fμv Fμv

with Fμv satisfying the conservation law DμFμv = 0.
The gauge fields appearing due to the requirement of localization of the (global)

gauge invariance correspond to forces and gauge bosons, the particles mediating the
interaction. The phase change of the wave function is treated as gauge invariance;
a similar procedure holds for other interactions: the change of color in QCD (quan-
tum chromodynamics), and the change of a charged lepton in its neutrino in weak
interactions. The nature of the interactions between different fields is uniquely deter-
mined by postulating the local gauge invariance. This amounts to the freedom of any
observer to choose at any point of the configuration space (the base in the introduced
fiber bundle) the basis of the internal space containing the internal d.o.f. This can be
translated in mathematical terms as the decomposition of the Hilbert space for the
system H into a direct product of the type H = Hext ⊗ Hint, with Hext the set of
square integrable functions and Hint a finite dimensional vector space of the internal
d.o.f’s. The wave function takes locally the form

τ(x) = τk(x)Xk(x), τk(x) ◦ Hext, τk(x) ◦ Hint

Two observers located at different points X1 and X2 must be able to compare their
observations: one way to do this is to make a parallel transport from X1 to X2, such
that

Dμν = 0

The covariant derivative Dμ is built as Dμ = ∂μ − iAA
μ TA, involving the generators

of the Lie algebra, quantites TA, and the constant AA
μ .

The articulation of symmetry groups, associated conservation laws and existence
of non observable quantities is summarized in Table 2, including both classical and
quantum mechanics as well as statistical mechanics. The dimension of the Lie group
determines the number of interaction particles.

6 Scale Invariance in Physics

Spatial and temporal fluctuations appear on a wide spectrum of scales and scale
invariance and concern numerous areas, not only the physics of critical points in mag-
netic systems and simple fluids; let mention soft matter (polymers, liquid crystals),
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Table 2 Noether’s theorem in classical and quantum mechanics

Non observable Symmetry Conservation law

Absolute spatial position Space translation Linear momentum
Absolute time Time translation Energy
Absolute spatial direction Rotation Angular momentum

Absolute velocity Lorentz Transformation
Generators of Lorentz
group

Difference between identical
particles

Permutation of identical
particles

Fermi-Dirac or Bose-
Einstein statistics

Absolute right or left Inversion X → −X Parity

Absolute sign of the charge
Particles transformed into
their antiparticles

Charge conjugation

Absolute phase of a charge
matter field

Change of phase
Electrical charge,
generators in U(1)

Difference between coherent
mixtures of colored quarks

Change of color
Color generator, belong
to group SU (3 )

Difference between coherent
mixtures of charged leptons
and neutrinos

Transformation of a
lepton in its neutrino

Weak isospin generators,
belong to group SU (2)

systems outside equilibrium (growth, aggregation, fracture, coalescence), critical
self-organized systems, turbulence, fractals, complex dynamical systems (economy,
biology, astrophysics). The development of the concept of renormalization group in
quantum field theory and its applications to statistical physics from the early 1970
has profoundly modified modern physics [34]. It allows to understand that quantum
theories depend upon the energy scale of the phenomena they try to describe (or the
spatial and temporal resolution), and the concept of renormalization emerged as a
criterion to judge the consistency of the proposed quantum theories.

6.1 Renormalization Group

We briefly summarize the formulation of the renormalization group conceived ini-
tially by K. Wilson [34, 35]. We consider in order to simplify the presentation a
system with a continuous order parameter (a field) ζ and linear scale transforma-
tions of the fields. The model is defined on a square lattice Λ in dimension D, the
d.o.f. are the classical fields ζi attached to the sites i of the network, with the ζi being
continuous real variables with a measure D[ζ] =

∏
i

dζi . The possible constraints

on those variables (for instance |ζi | = 1 for Ising model of spins) are incorporated
into the microscopic Hamiltonian H . The dynamics of the system is given by a local
microscopic Hamiltonian H [ζ] -having the sense of energy –expressed as a sum of
local observables Oη of the ζi and their derivatives evaluated at site i (the gradients
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Fig. 6 The three steps of an elementary transformation of the renormalization group, cf. [34]

are replaced by finite differences)

H [ζ] =
∫

dD ×
∑
η

κηOη = ηD
∑
i◦Λ

κηOη [ζi ,∗ζi , ...].

The coefficients κη are the coupling constants of the model, including parameters
such as temperature. The partition function of the network model writes

Z =
∑

e−H [ζ] =
∫ ∏

i◦Λ

dζi e
−H [ζ].

We assume to be sufficiently close to a critical point so that the correlation length ϕ
is large

ϕ � a.

The transformations of the renormalization group then allow to analyze the system
at intermediate scales

a � 1 � ϕ.

This is done according to the three following steps pictured in Fig. 6:
1. Decimation and bloc variables: in order to analyze the average dynamics of the

spins in a region of finite size, the initial network is divided into blocks b of size B
(square of B D sites). The average field on block b is defined by the average of the
spins on the same block

ζ̃b := 1

B D

∑
i◦b

ζi

and B is the scale factor in this decimation procedure.
2. Effective Hamiltonian for the block variables: one performs an averaging over

the fluctuations of spins inside the blocks in order to arrive at an effective Hamiltonian
Heff [ζ̃b] for the block variables ζ̃b attached to the size of network Λ̃ with elementary
mesh size ã = Ba
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∑
e
−Heff

[
ζ̃b

]
=
∫ ∏

i◦Λ

dζiθ

(
ζ̃b − 1

B D

∑
i◦b

ζi

)∑
e
−H

[
ζ̃b

]

and the partition function is defined as

Z =
∫ ∏

b◦Λ

dζ̃be
−Heff

[
ζ̃b

]
.

3. The third step consists in comparing previous effective Hamiltonian describing
the dynamics of blocks at scale

ã = Ba

with the initial Hamiltonian (that describes the dynamics at the scale a of the net-
work), by a scale change in order to obtain renormalized quantities. One first rescales
distances

x → x ′ = x/B

so that the new network Λ̃ of mesh size ã = Ba becomes again the initial network
Λ with mesh size a:

Λ̃ → Λ′ = Λ, b ◦ Λ̃ → i ′ ◦ Λ′ = Λ.

One then performs an adapted scale change on the field of the form

ζb = −B−Δζ′
i

with a factor Δ adjusted so that the renormalized Hamiltonian (after this scaling) for
the ζ′

i , scalar H
⎧
ζ′

i
⎪
, defined by the equality

dζ̃be
−Heff

[
ζ̃b

]
= dζ′

i e
−H ′

[
ζ̃′

i

]

resembles as much as possible the initial Hamiltonian H [ζi ]. Since the physics did
not change during renormalization, relations exist between the observables of the
initial system and the system described by the renormalized Hamiltonian.

The partition functions of both systems are identical

Z =
∫

dζe−H [ζ] =
∫

dζ′e−H ′[ζ]′ .

The correlation functions of the initial and renormalized systems are related by simple
relations
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〈ζ (x)∪H = 〈ζi ∪H =
〈
ζ̃b

〉
Hef f

= B−Δ〈ζ (x/B)∪H ′ .

For the two-points functions, as long as

|i1 − i2| � B, i1 ◦ b1, i2 ◦ b2

it holds that

〈ζ (x1)ζ (x2)∪H = B−2Δ〈ζ (x1/B)ζ (x2/B)∪H ′ .

Similar equalities hold for the K points functions.
The long distance properties of a system (typically the correlation length) are

determined through the iteration of the renormalization procedure: in order to reach
a length l starting from the microscopic length of the lattice a, one has to perform a
scale transformation by a factor S = 1/a, thus it has to be iterated N = log S/ log B
time to reach a renormalized Hamiltonian Hs . The properties of the initial system at
large scales x ≤ l are then equivalent to the short distance properties

x ′ ≤ a = 1/S

of the renormalized system, which is a priori more simple to analyze.
The iterated transformations give a flow in the space of Hamiltonians, of the form

H → H ′ → H ′′ → H ′′′ → . . . → H (N−1) → H (N ) = HS .

from the initial Hamiltonian H to the renormalized one Hs , versus the scaling factor
S = B N . One performs in parallel a series of scaling transformations of the fields

ζ(x) → B−Δζ†(x1) → B−Δ−Δ†
ζ††(x ll) → . . . → B−(Δ+Δ†+...+Δ(N−1∪∪ζ(N ∪

leading to a renormalized field ζs linked to the initial field ζ by a multiplicative
renormalization factor Z(S)

ζs(xs) = ζ(N ∪(xs) = Zsζ(x), xs = x/S, Z(S) = Zs = BΔ+Δ†+...+Δ(N−1∪
.

Let then note Rs the transformation of the Hamiltonian corresponding to the scale
factor S

H
RS→ HS .

These transformations form a multiplicative semi-group

RS2 ◦ RS1 = RS2 RS1
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which is thus logarithmic in the scale factor S (playing the role of a discrete time in
the scaling transformations), thus

s = log S = NΔs

with time increment Δs = log B. The set of all such transformations in the space of
Hamiltonians forms the renormalization group. The action of the group on observable
is the same as in the decimation step: denoting Z H (L) the partition function for the
initial system of size L , one has

Z H (SL) = Z HS (L).

For the correlation functions, it holds that

〈ζ(Sx1) . . . ζ(SxK )∪H = Z(S)−K 〈ζs(x1) . . . ζs(xK )∪HS .

This results in the important relation between the correlation lengths ϕ of the initial
and renormalized systems

ϕH = SϕHs .

Let consider to be more specific Hamiltonian of the form

H [ζ] =
∑
i◦Λ

∑
η

K ηOη[ζi ]

with Oη local operators in the fields, of the general form

Oη[ζi ] = ∗n1ζi∗n1ζi . . . ∗nk ζi

and with ∗ the finite difference operator on the network

∗μζi = ζi+e − ζi .

Examples of such operators include the following terms

Oη[ζi ] = 1,ζ,ζ2,ζ4,ζ6, (∗ζ)2, (∗ζ)4, (Δζ)2.

The κη are the coupling constants, also called external fields associated to the oper-
ators; they represent coordinates in the space of Hamiltonians. The renormalization
group then acts in the space of couplings according to

κ
RS→ κ (S) = K (κ, s = log S) .
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Such transformations are continuous in the couplings κ; since they form an additive
semi-group in the variable s = log S, it holds that

K (K (κ, s1), s2) = K (κ, s1 + s2).

In practical situations, one has to reduce the space of Hamiltonians to a subspace
involving a finite number of couplings (coupling parameters). When the number of
iterations become very large, N � 1, one may consider the scale parameter S as
a continuous parameter, this is justified in the vicinity of fixed points of the group,
where the speed of the flow is small. ln this case, iterations of the renormalization
group take the form of flow equations generated by a vector in the space of couplings.
Indeed, the transformations of the renormalization group write in differential form
as

S
∂

∂S
K η(S) = W η(κ(S))

with Wilson functions given by

W η(κ) = κη − κη

log B
= K η(κ,Δs) − κ

Δs
= lim

s→1

κη
s − κη

log S
·

The flow equations then take the form

∂

∂s
κ(S) = S

∂

∂S
κ(S) = W (κ(S)).

Wilson functions W η are the components of a vector field W in the space of couplings,
which generates the flow of the renormalization group. Similarly, the renormalization
factor Z(S) of the fields present in the correlation functions obeys the equation

S
∂

∂S
log[Z(S)] = Δ(κ(S)).

The function Δ(κ) is called the scale dimension of the field ζ, denoted Δζ; it is in
general dependent on the couplings κ.

The fact that the transformations of the renormalization group derive from a flow
implies that Wilson functions are transformed as contravariant vectors under a change
of the coordinate system κ → κ̃ in the space of Hamiltonians, Fig. 7.

κη → κ̃η, W̃ η (κ̃) = ∂κ̃η

∂κ̃ε
W ε (κ) .

The dimension of the field transforms like a scalar

Δγ → Δ̃γ = Δγ.
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Fig. 7 Continuous flow in the space of couplings, cf. [34]

The field itself ζ is an operator associated to the coupling h (external field) added to
the microscopic Hamiltonian

H [ζ] → H [ζ] − θH [ζ] , θH [ζ] = h
∫

dDxζ (x) = aD
∑
i◦Λ

hζi .

In an elementary step of the renormalization procedure, such a term transforms as

∑
i◦Λ

hζi =
∑
b◦Λ

h B Dζ̃b =
∑
i ′◦Λ

h B D−Δζi .

Hence, the coupling is renormalized as

h → h′ = B D−Δh.

Iterating to obtain a rescaling by a scale factor S, the coupling h thus transforms as

h → h(S) = SD Z(S)−1h

and the Wilson function associated to h is simply

W η(κ) = S
∂

∂S
h(S) = (D − Δ(κ))h.

The dimension of the field Δζ is thus simply related to the flow of the coupling
constant h (the external field) by

W h = (D − Δζ)h.

6.2 Example: Ginsburg-Landau-Wilson Theory

Landau approach (1937) was developed in the context of phase transitions between
different states of matter (magnetic to paramagnetic, liquid-gas, supraconductor to
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Fig. 8 Phase diagram temperature-magnetization (left) and temperature-field (right), cf. [34]

conductor, metal-insulating, . . .). The states on either side of the transition line are
characterized by their symmetry. For instance, water is a more symmetrical phase
in comparison to ice, since it has rotational and translation symmetry with arbitrary
parameters, whereas ice is a network with a six fold symmetry axis. We exemplify
the description of critical phenomena by the classical example of the ferromagnetic-
paramagnetic transition in magnetic materials close to the Curie point. There exists
in these materials a spontaneous global magnetization at low temperature under the
action of an external magnetic field, Fig. 8.

The critical point separates two thermodynamic phases having different symme-
tries: above the critical temperature (T > Tc), the Curie temperature, the material is
invariant under a sign change of the magnetization M → −M (paramagnetic phase);
below Tc, this symmetry is spontaneously broken (ferromagnetic phase).

Magnetization is here the order parameter of the transition; it is defined from the
partial derivative of the free energy F

−M = 1

V

∂F

∂B

with V the system volume, and B the applied magnetic field. In order to describe the
state of a system (e.g. magnetization), one introduces an order parameter M consid-
ered as a field, for instance a vector depending on position, so that M ≡ M(x) . In
the magnetic state, one component of M is non zero, whereas all components vanish
in the paramagnetic state; let denote Mz this component. Restricting to continuous
transitions (second order phase transitions), the order parameter is continuous during
the transition; below a critical temperature Tc, Mz is non zero, and it becomes zero
above Tc

lim
T →TC

Mz(T ) = 0.

An important feature of a continuous transition is the existence of important thermo-
dynamic fluctuations occurring on large spatial and temporal scales, which entails
singularities in the thermodynamic quantities (they verify scaling laws versus the
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difference |T − Tc|). The correlations are measured by the spatial correlations
of the variation of the local magnetization m around the average magnetization

M := 1

V
〈
∫

dxm(x)∪ = 〈m∪, quantified by the two points correlation function

G(x, y) = 〈Δm(x)Δm(y)∪ = 〈m(x)m(y)} − 〈m(x)}〈m(y)∪.

This function measures the correlations between the fluctuations of m at points x
and y. For large distances G(x, y) decreases exponentially with distance

G(x, y) ∝ exp(−|x − y|/ϕ), |x − y| → ≥

with ϕ the correlation length for the fluctuation of magnetization. Far from the critical
point, ϕ is small, but it becomes very large close to the critical point where it diverges;
this divergence reflects the presence of critical fluctuations: the system becomes scale
invariant at the critical point. This divergence is translated into the relation

ϕ ∝ |T − Tc|−σ

with σ the critical exponent of the correlation length. The mean field theory predicts
the value σ = 1/2.

Thermodynamic fluctuations are present at all spatial and time scales close to the
critical point; the correlation functions take universal forms depending only upon the
ratio of distances to correlation lengths; for instance, the correlation length behaves
as

G(x, y, ; T ) ∝ H(|x − y|/ϕ(T ))

with H a universal scaling function (independent of the considered physical system).
Landau made the assumption that the thermodynamic potentials are analytic func-

tions of the order parameter; if temperature and pressure are the controlled parame-
ters, M is determined from the condition of vanishing functional derivative

θG

θM (x)
= 0

since enthalpy G = G[M(x)] is a functional of the order parameter.
Landau assumes for small values of M a power expansion of G. In a first scheme,

one may assume such an expansion involving only even powers

G = G0 + a(T, p)M2 + u(T, p)M4

so that enthalpy is invariant under a change of sign of M. The state minimizing
enthalpy is thus degenerated and the symmetry of funtion G = G(M) reflects the
symmetry of the system. lf now G = G(M) includes an odd power of M , viz
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G = G0 + a(T, p)M2 + b(T, p)M3 + u(T, p)M4

so that G = G(M) no more has the symmetry M → −M . This second situation is
characteristic of first order transitions for which the order parameter experiences a
jump during the transition. Considering now a second order (continuous) transition,
G(M) has two minima according to the sign of coefficient a(T, p)

– lf a > 0, then M = 0 is the only minimum and the state is paramagnetic.
– lf a < 0, G(M) has two minima separated by a maximum at M = 0, given by

M± = ±(− a

2u
)1/2, which has to vanish at T = Tc , thus one may select

a(T, p) = a2(T − Tc), a2 > 0

leading in turn to

M(T ) = 0 if T > Tc and M(T ) =
⎝ a2

2u

⎞1/2
(Tc − T )1/2 i f T < Tc.

This Landau type energy can be generalized to account for spatial variations of the
order parameter, thus defining enthalpy through a spatial density depending upon
gradient terms of M , as

G =
∫

Ω

dxG̃ =
∫

Ω

dx
[ c

2
(∗M)2 + a2(T − Tc)

2 M(x)2 + uM(x)4
]
.

Coming back to an Hamiltonian depending on the field labeled ζ in initial develop-
ments of this section,

H [ζ] =
∫

Ω

dDx

[
1

2
(∗ζ)2 + r0

2
ζ2 + u0

4
ζ4 − h0ζ

]

with r0 playing the role of temperature, the two first steps (decimation and determi-
nation of the effective Hamiltonian) are trivial, since the field does not fluctuate in a
block, thus

ζ̃ (x) = ζ (x) .

Next, the change of scale
x = Bx ′, ζ̃ = B−Δζ

gives the renormalized Hamitonian

H ′[ζ] =
∫

Ω

dDx1[ B D−2−2Δ

2
(∗ζ′)2 + B D−2Δr0

2
ζ′ + B D−4Δu0

4
ζ′ − B D−Δh0ζ

′].
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In order to find a Hamiltonian of the same form as the initial Hamiltonian, the field
dimension Δ must accordingly be

Δ = D − 2

2
·

The flow of the renormalization group in the space of couplings writes

r0 → rs = S2r0, u0 → us = S4−Du0, h0 → hs = S
D+2

2 r0

corresponding to the dimensions of the field and of the couplings

[ζ] = D − 2

2
, [r ] = 2, [u] = 4 − D, [h] = D + 2

2
·

6.3 Symmetry Breaking

Symmetry breaking can be categorized into either explicit symmetry breaking,
whereby terms included into the Lagrangian do not respect the symmetry, or spon-
taneous symmetry breaking: it is a mode of symmetry breaking in physical systems,
where the underlying laws are invariant under a symmetry transformation, but the
system as a whole changes under such transformations. A system in an initially
symmetrical state ends up in an asymmetrical state. It thus describes systems where
the equations of motion or the Lagrangian obey certain symmetries, but the lowest
energy solutions do not exhibit that symmetry. Most phases of matter can be under-
stood through the prism of spontaneous symmetry- breaking. For example, crystals
are periodic arrays of atoms that are not invariant under all translations (only under a
small sub-set of translations by a lattice vector). Magnets have north and south poles
that are oriented in a specific direction, breaking rotational symmetry. Other examples
of symmetry-breaking phases of matter are nematic phases of liquid crystals, charge-
and spin-density waves, superfluids. The strong, weak, and electromagnetic forces
can all be understood as arising from gauge symmetries. The Higgs mechanism, the
spontaneous-symmetry breaking of gauge symmetries, is an important component
in understanding the superconductivity of metals and the origin of particle masses
in the standard model of particle-physics. Spontaneous symmetry breaking can be
best illustrated relying on Goldstone model: we consider a scalar massless field Φ

(a complex field) and the Lagrangian

L = ∂μΦ+∂μΦ − V (Φ+Φ)

which is clearly invariant under the global gauge transformation

Φ → Φ ′ = exp(iΛ)Φ.
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We further choose the following form of the potential

ρV (Φ+Φ) ≡ V (ρ) = μ2ρ + hρ2, ρ := Φ+Φ, h > 0.

For μ2 > 0, V (p) is a symmetrical potential having a minimum at the origin. For

μ2 < 0, V (ρ) has a minimum for a non zero value of ρ given by ρm = −μ2

2h
> 0;

this corresponds to a circle in the complex plane. The Euler equation writes

(μ2 + 2hΦ+Φ)Φ = 0.

The value Φ = 0 is a trivial solution corresponding to an unstable point for μ2 < 0,

each value of Φ such that Φ+Φ = −μ2

2h
> 0 → Φ = (

−μ2

2h
)1/2eiε gives a minimum

of the potential. Last relation implies that the Hamiltonian density

H = μ2ρ + hρ2 = μ2|Φ|2 + h|Φ|4

has a minimum for
∂H

∂ρ
= 0 ⊕ ρ = (

−μ2

2h
)(1/2) ≡ ρmin .

Previous solution thus corresponds to a minimum of H , given by

Φmin = 〈0|Φ|0∪ = (
−μ2

2h
)1/2eiε ≡ v∩

2
eiε .

After the global gauge transformation, this minimum becomes

〈
0
∣∣Φ ′ |0 〉 = eiΛ 〈0 |Φ |0 ∪ →= 〈0 |Φ |0 ∪ .

The minimum has thus broken the initial symmetry.

Since the phase ε is arbitrary, let fix it to zero, thus ΦI mn = 〈0|Φ|0∪ = v∩
2

,

and redefine the scalar complex field Φ = Φmln + (Φ1 + iΦ2)/Ψ 2, with Φ1, Φ2
real fields. Inserting this decomposition into the equation of motion delivers the two
coupled equations

(∂μ∂μ − 2μ2)Φ1 = −h(3Φ2
1 + Φ2

2 + Φ3
1 + Φ1Φ

2
2 )

∂μ∂μΦ2 = −h(2Φ1Φ2 + Φ2
1Φ2 + Φ3

2 ).

It thus appear that field Φ1 has acquired a mass m2
1 = −2μ2, whereas the field

Φ2 has no mass. The spontaneous breaking of the global symmetry has evidenced
the existence of massless particles, called Goldstone bosons, and has generated a
massive field. For the electroweak model, a component of the Higgs field provides
the order parameter breaking the electroweak gauge symmetry to the electromagnetic
gauge symmetry. Let consider to illustrate this the Abelian electromagnetic field; the
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Lagrangian writes

L = −Fμσ Fμσ + (Dμγ+)(Dμγ) − V (γ+γ)

with the covariant derivative therein Dμ = ∂μ − ieAμ, and Higgs potential

V (γ+γ) = μ2γ+γ + h(γ+γ)2, h > 0, μ2 < 0.

The local gauge transformation γ → γ
′ = exp(iη(x))γ leaves previous Lagrangian

invariant. Let search as previously the solutions of the equation of motion for fields
γ corresponding to the minimum of energy.

γ+γ = −μ2

2h
> 0

so that the minimum of H is obtained for γmm = 〈0|γ|0∪ =
(−μ2

2h

)1/2

.

As before, we choose the fundamental state such that

〈0|γ1|0∪ = v, 〈0|γ2|0∪ = 0, 〈0|γ|0∪ = v/
∩

2

and the gauge η(x) such that

γ1 = 1∩
2
(v + γ1), γ2 = 0

A′
μ = Bμ, Bμv = ∂μBv − ∂v Bμ

The Lagrangian density can then be decomposed using these new terms into

L = − 1

4
Bμv Bμv + 1

2
[∂μγ1∂μγ1 + e2 Bμ Bμ(v + γ1)

2] − μ2

2
(v + γ1)

2 − h

4
(v + γ1)

4

≡ − 1

4
Bμv Bμv + 1

2
e2v2 Bμ Bμ + ve2 Bμ Bμγ1 + 1

2
e2 Bμ Bμγ2

1

+ 1

2
[∂μγ1∂μγ1 + 2μ2γ2

1] + μ2

v
γ3

1 + μ2

4v2 γ4
1 − 1

4
v2μ2

The Lagrangian is decomposed into contributions (from the second line) which have
the following meaning:

• second line: interaction of the massive vectorial field Bμ, with mass |ev|;
• third line: interaction of the massive vectorial field Bμ with the scalar field γ1 with

the coupling constants ve2 and e2/2;
• fourth line: massive scalar field transported by Higgs bosons of mass

√−2μ2;

• fifth line: self interaction of the scalar field γ1, up to the constant term −1

4
v2μ2.
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The Goldstone boson has here been absorbed by the vectorial massive boson Bμ.
The system has initially four d.o.f., two for the scalar fields ζ1,ζ2, and two for the
massless vector field Aμ, which become after symmetry breaking three d.o.f. linked
to Bμ, and one for γ1.

In the standard model of particle physics, spontaneous symmetry breaking of the
SU(2) × U(1) gauge-symmetry associated with the electro-weak force generates
masses for several particles, and separates the electromagnetic and weak forces.
Bosons W and Z are the elementary particles that mediate the weak interaction,
while the photon mediates the electromagnetic interaction. At energies much greater
than 100 GeV , all these particles behave in a similar manner. The Weinberg-Salam
theory predicts that, at lower energies, this symmetry is broken so that the photon
and the massive W and Z bosons emerge.

Other examples of symmetry breaking in diverse fields such as physics, biology,
mechanics, include:

• the laws of motion for a solid, which are invariant under the full Euclidean group,
but the solid itself spontaneously breaks this group down to a space group. Here,
the displacement and orientation are the order parameters.

• General relativity has a Lorentz symmetry, but in Friedman-Lemaitre-Robertson-
Walker cosmological models, the mean four-velocity field defined by averaging
over the velocities of the galaxies acts as an order parameter breaking this sym-
metry.

• In superconductors, there is a condensed-matter collective field Ψ , which acts as
the order parameter breaking the electromagnetic gauge symmetry.

• Take a thin cylindrical plastic rod and push both ends together. Before buckling,
the system is symmetric under rotation, and so visibly cylindrically symmetric.
But after buckling, it looks asymmetric, so buckling has broken the symmetry by
forcing the system to select one post- buckled state.

• In biology, there exists at least one asymmetric carbon atom in the molecules
being the ‘bricks of life’ (nucleotides, amino acids), leading to the homochirality
of biomolecules: amino acids are left-handed (levorotary compound), whereas
nucleotides are right-handed (dextrorotary compound). Such chiral molecules are
non-superposable with their mirror image. Two possible explanations have been
advanced for this asymmetry: an amplification of random fluctuations by some
self-catalytic process, or a more fundamental dissymmetry of universe. ln line with
this second scheme, let mention the violation of the parity of weak interactions:
electrons (matter) who dominate over positrons are left-handed, whereas positrons
are right-handed.

• Irreversible processes have a dual role, since they destroy order close to equi-
librium, but generate order far from equilibrium. This transition towards orga-
nized states in non equilibrium situations is due to the generation of order by an
amplification of fluctuations and percolation phenomena, generating the so-called
dissipative structures, as exemplified by crystals [36].
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7 Symmetry Methods in Continuum Mechanics of Materials

The main problematic of continuum mechanics applied to material modeling is to find
objective tensorial functionals (traducing the invariance of the material’s response
under the group of rotations) and invariant under the action of the material symmetry
group (discrete symmetries), as mentioned in [37] or [38]. For dissipative materials,
the non-equilibrium thermodynamics based on thermodynamic potentials, essen-
tially the free energy for writing the state law and dissipation potentials to express
the evolution laws of internal variables, is the natural framework for the writing of
the constitutive laws, [39]. It is accordingly natural that those potentials reflect the
symmetry properties of any material. The analysis of the Lie symmetries of consti-
tutive laws for dissipative materials written within a thermoydnamical framework
of relaxation have been proposed in [40]; especially, a Lagrangian formulation of
the state laws and the kinetic equations for the internal variables has been achieved.
Both the local and variational symmetries of the constitutive laws have been deter-
mined, and have been shown to deliver the same Lie groups; they further lead to the
construction of master responses for viscoelastic or viscoplastic materials, [41, 42].

The potentialities of Lie symmetries have not been so much explored in the field
of mechanics of materials. Lie groups appear in fact as a predictive and systematic
methodology to obtain general invariance properties of materials: from the knowl-
edge of the constitutive law of a given material, Lie symmetries prove able to predict
its response under various control conditions, that is when parameters of the constitu-
tive law such as temperature, strain rate do change. Lie groups have been considered
as a tool to analyze the experimental behaviour of materials and to model their
mechanical response in [43], a pioneering contribution at the crossing of material
constitutive modelling and symmetry analysis. The authors develop more specifi-
cally a methodology to model the mechanical behaviour of an acrylic stick at high
strain rates, which however has a wide range of potential applications for different
classes of materials.

7.1 Classification of Approaches: The Direct and
Inverse Methods

The methodology basing on Lie groups can follow three interrelated routes [44]:

• The Direct Method (abbreviation DM) aims at finding the symmetries associated
to the constitutive law of a given material. This methodology has been followed
historically by several authors in the literature, see e.g. [45–47]. In continuum
solid mechanics, the method is especially promising for dissipative materials. The
invariants associated with those symmetries may then be computed and used in a
practical way to synthesize the material’s response into master curves traducing
invariance relations in a graphical manner, and revealing the variation of the mate-
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rial’s response when some control parameters (such as temperature or strain rate)
vary;

• The Extended Direct Method (abbreviated as EDM) is an extension of the direct
problem, and consists of finding and classifying the symmetries in a given BVP
involving some initially unspecified constitutive functions (and also possibly load-
ing functions). Invariants can be constructed from the obtained symmetries; con-
sideration of nonlocal variables leads further to additional symmetries and invari-
ants, and to more general formulations in Continuum Mechanics, as exemplified
in nonlinear elasticity [20];

• The Inverse Method (abbreviated as IM) relies on experimental data of mechani-
cal tests to construct the constitutive law of a given material in terms of initially
unknown constitutive functions, the form of which is determined by Lie symme-
tries. One may here view those symmetries as an interpolation method to link
experimental data, but our belief is that they have a more profound meaning high-
lighting the symmetry structure of the constitutive equations. This is especially true
when the constitutive behavior is expressed in terms of thermodynamic potentials,
under the umbrella of irreversible thermodynamics. A feedback from the inverse
method to the direct method clearly exists: once a possible material constitutive
law has been constructed, the material’s response can be predicted outside the
range of variation of the control variables involved in the measurements and for
varying experimental conditions, thereby using the Lie symmetries inherent to the
obtained constitutive law as an extrapolation technique.

This methodology exploiting Lie symmetries can be potentially applied to a wide
class of materials—including polymers, metals, ceramics, metallic and polymeric
foams—and constitutive laws, such as nonlinear elasticity, viscoelasticity and vis-
coplasticity. The DM algorithm is summarized in the diagram of Fig. 9.

The algorithm of the DM can be extended to a class of constitutive equations: if
a general class of behaviors is considered, written in terms of generic functions, the
search of the associated Lie groups allows a classification of symmetries depend-
ing on the mathematical structure of these functions. It may result in (i) a synthetic
calculation of master curves belonging to the same “family”, and (ii) the prediction
of master curves in a broader constitutive framework (e.g. non-linear elasticity, vis-
coplasticity, etc...). The algorithm of this Extended Direct Method has been recently
applied to the case of non-linear elastodynamics in [20, 48] and, in the same manner,
to the case of non-local elasticity in [49].

A novel and rational approach based on Lie analysis is next exposed, to investi-
gate the mechanical behaviour of materials presenting experimental master curves,
relying on several works of the author of this chapter with collaborators, [40–44,
50]. This approach provides a priori ways of formulating constitutive laws from
data and the possibility of predicting new master curves and material charts. Invari-
ance relations—together with master curves, which are their graphical counterpart—
are currently used in experimental rheology to synthesize the constitutive response
of various materials submitted to mechanical or thermal solicitations. By “master
curve”, we mean a graphical superposition of different experimental curves based
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Fig. 9 Diagram associated with the Direct Method, cf. [44]

on some geometrical mapping. For instance, the so-called time-temperature equiva-
lence principle stating an equivalence between the effect of time and of temperature,
as proposed originally by Williams, Landel and Ferry (giving rise to the so-called
WLF model), reveals the possibility of plotting a unique master curve from several
isothermal mechanical responses. Despite the high practical interest of these rela-
tionships, the mathematical background for the prediction of the invariance relations
and the associated master curves has not yet been fully developed in the literature to
our knowledge.

More precisely, for different plots representing the logarithm of the isothermal
creep compliance J (t, T )—ratio of the Henky strain δ(t) to the Cauchy stress σ(t) at
a given time t and temperature T versus the logarithm of time log t , a unique curve
C can be obtained by shifting the different isothermal responses (curves) along the
log t axis, as pictured in Fig. 10.

The resulting curve C is called the master curve, but the same expression can
also refer to the geometrical mapping allowing the construction of C (a horizontal
translation in the present case). It is relevant to associate a Lie symmetry to any
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Fig. 10 Example of master curve obtained from creep tests on polymers (nylon 6/6, slightly adapted
from [51])

master curve (and conversely), since the master curve is (beyond the geometrical
nature of the mapping) by construction governed by three principles closely related
to the three basic axioms of the Lie groups theory. Denoting by CT the isothermal
plot of log J (t, T ) versus log t at a given temperature T , we have indeed:

• any creep compliance curve CT is obtained by a nil translation along the log t
axis; this particular translation is nothing but the identity application, the neutral
element of translations (in the sense of composition).

• if CT ′ is obtained from CT by a translation of μ along the log t axis, then CT is
obtained by shifting CT ′ of—μ along the same axis. This property is a reflexivity
property.

• if CT ′′ is obtained from CT ′ by a translation of μ′ along the log t axis, and if CT ′
is obtained from CT by a translation of μ, then CT ′′ can be obtained by translating
CT of μ′ + μ (transitivity property).

The scalar μ represents the Lie group parameter, allowing a continuous mapping
from one curve to another; it represents the length of the translation vector. In a
more general case, the geometrical mapping leading to a master curve may be more
elaborated than a mere translation: the group parameter μ may represent a rotation
angle, or eμ may represent the ratio of a homothetic transformation.

The general notion of invariant (and their combination) associated to Lie groups
provides a relevant fundation to investigate constitutive equations in accordance
with the observed symmetries. The general methodology splits into three main steps
exposed in a synthetic form in the sequel, with more details provided in [44, 50]:

• Formulation of Lie symmetries from measurements. The construction of consti-
tutive equations linking a set of observable variables
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u = {u1, u2, · · · , un} to a set of parameters p = {p1, p2, · · · , pm} relies on the
analysis of experimental data and the finding of suitable functions or functionals
linking those data. In terms of vocabulary, observable variables and parameters
differ in the sense that parameters are quantities being controlled during the test,
contrary to observable variables. From a physical point of view, parameters define
the loading, while observable variables characterize the mechanical response. For
instance, for a uniaxial compression test, we can select u1 = σ as the uniaxial
Cauchy stress, while the controlled strain rate p1 = δ̇ or the controlled room
temperature p2 = T are parameters, as well as time p3 = t , since there is no
aboslute origin of time. We will focus on the existence of parametric applications
Gobs

i (μ, u, p) (the superscript “obs” stands for “observed”), i = 1, · · · , q, defined
as follows

P × U ×R
Gobs

i−−→ P × U ,
⎧

p, u,μ
⎪→ ⎧

p̄, ū
⎪ = ⎧Φ p( p, u,μ),Φu( p, u,μ)

⎪
(1)

with Φ p = {Φ p1, . . . , Φ pm }, Φu = {Φu1 , . . . , Φun }, μ the parameter, and such
that there exists a subset of the experimental data which is “approximatively trans-
formed” into another subset of experimental data. We assume that the applications
Gobs

i (μ, u, p) satisfy the three axioms of a Lie group. A generator vobs
i is then

associated with the Lie group Gobs
i , defined by

vobs
i =

m∑
k=1

∂Φ pk

∂μ

∣∣∣∣
μ=0

∂

∂ pk
+

n∑
k=1

∂Φuk

∂μ

∣∣∣∣
μ=0

∂

∂uk
, i = 1, · · · , q. (2)

At this stage, we have considered q observed symmetries vobs
i , i = 1, · · · , q. The

previously-built observed symmetries are next applied to the (currently unknown)
postulated constitutive equations, written as a set of partial differential equations
(PDE) written in the general form

Δ = {Δi = 0 ; i = 1 . . . n} (3)

in which the constitutive model Δi may depend on p and all the derivatives of u
(including quantities u themselves). We assume that there are as many equations as
observables, hence the index i varies from 1 to n in (3). Equation (3) hides unknown
constitutive functions of the variables, which shall be identified by applying the
symmetry conditions (see e.g. [43]), and making some assumption relative to the
mathematical structure of equation (3) according to the considered constitutive
framework (e.g. hyperelasticity, viscoelasticity, viscoplasticity). The symmetry
conditions write
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pr()vobs
k Δ1 = 0 whenever Δ1 = 0, k ◦ K1 (4)

pr()vobs
k Δ2 = 0 whenever Δ2 = 0, k ◦ K2

· · ·
pr()vobs

k Δn = 0 whenever Δn = 0, k ◦ Kn

in which pr(κ)vobs
k or pr()vobs

k stand for the κ-th order prolongation — pr()vobs
k is

used if the order κ is not prescribed—of the vector field vobs
k .

• Constitutive equations in terms of invariants For the purpose of clarifying the math-
ematical expression of the (unknown) constitutive equations, one next calculates
the invariants of the generators vobs

k and find suitable combinations of them that
fit the experimental data. Let accordingly consider vobs as any vector field given
by (2) and rewritten as:

vobs =
m∑

k=1

ζpk
∂

∂ pk
+

n∑
k=1

ζuk
∂

∂uk
(5)

with

ζpk = ∂Φ pk

∂μ

∣∣∣∣
μ=0

, ζuk = ∂Φuk

∂μ

∣∣∣∣
μ=0

. (6)

If vobs has s non vanishing components amongst φ p and φu, it then has s − 1
invariants I1, I2, · · · , Is−1 given by the solution of the characteristic system

d p j

ζp j
= dui

ζui
· (7)

It is straightforward to show that any function f (I1, I2, · · · , Is−1) of the invariants
is also invariant under vobs, since

vobs[ f (I1, .., Is−1)] =
m∑

k=1

ζpk
∂ f

∂ pk
+

n∑
k=1

ζuk
∂ f

∂uk

=
m∑

k=1

ζpk

s−1∑
l=1

∂ f

∂ Il

∂ Il

∂ pk
+

n∑
k=1

ζuk

s−1∑
l=1

∂ f

∂ Il

∂ Il

∂uk
(8)

=
s−1∑
l=1

∂ f

∂ Il

⎟
m∑

k=1

ζpk
∂ Il

∂ pk
+

n∑
k=1

ζuk
∂ Il

∂uk

⎠

︸ ︷︷ ︸
vobs(Il )=0

= 0.

Hence, the constitutive equation Δi can be expressed by combining the invariants
I1, I2, ...Is−1, provided it fits the experimental data.
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• Computation of the Lie algebra and predictions
This third step consists in a complete Lie analysis of Δ: for each Δi , one computes
the Lie algebra

Ai = {v1
i , v

2
i , · · · , v

ni
i } (9)

containing the ni vector fields that can generate (by linear combination) any Lie
symmetry of Δi . Obviously, the vector fields vobs

k , k ◦ Ki , have to be generated
by the vector fields (9), that is

vobs
k (k ◦ Ki ), α ◦ R

ni such that vobs
k =

ni∑
j=1

η jv
j
i . (10)

Among the set of all combinations of v
j
i , we can focus on vector fields for which

(i) the component of a given observable u j vanishes and (ii) the other components
do not depend on u j

v =
m∑

k=1

ζpk ( p, u− j )
∂

∂ pk
+

n∑
k=1,k →= j

ζuk ( p, u− j )
∂

∂uk
(11)

with u− j = {u1, . . . , u j−1, u j+1, . . . , un}. The flow of such a vector field takes
the particular form

p̄ = p̄( p, u− j ,μ), ū− j = ū− j ( p, u− j ,μ), ū j = u j . (12)

Hence, eliminating the parameter μ allows a priori to determine the equations of
the “iso-u j ” curves in the space P × U− j , with

U− j = U1 × · · · U j−1 × U j+1 · · · × Un . (13)

This kind of chart allows to extrapolate experimental data when the value of some
parameter pk cannot be reached in the experimental setting. The three steps of
the Inverse Method are condensed into the diagram of Fig. 11. Since the results
induced by the Lie algebra have to be validated by experiments, this step is a phase
of prediction and validation.

8 Invariance Relations for the Creep and breakRupture
Behavior of 9Cr1Mo

High temperature creep of metallic alloys is an important field of application of
invariance relations, especially due to industrial aspects. The Larson-Miller and the
Dorn models are two well-knonw invariance relations [52] that allow to extrapolate
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Fig. 11 Diagram associated with the Inverse Method, [44]

experimental data at different temperatures, assuming that the microstructure of the
material remains stable during the creep test. The most widespread creep invariants
are shown in Table 3.

The two main objectives of this kind of investigation are either the determination
of the time needed to reach a given strain for fixed stress and temperature, or the
estimation of the time leading to rupture, in the same controlled conditions. We
focus on the creep behaviour of the 9Cr1Mo martensitic stainless steel, also known
for its good thermal-fatigue strength and oxydation resistance [53]. This section
condensates the methodology and results expressed in [50].
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Table 3 Some creep invariants encountered in the literature

Authors Invariant(s)

Larson & Miller T (log t + log B2)

Dorn B1
T − log t

Monkman-Grant log tR + m log δ̇min

Modified Monkman-Grant log
⎝

tR
δR

⎞
+ m′ log δ̇min

Fig. 12 Experimental stress versus rupture at different temperatrure, from [54]

8.1 Master Curves for Creep and Rupture

Isothermal rupture curves at different temperatures have been measured; they are
represented in the logarithmic plane on Fig. 12.

Focusing on “simple” geometrical mappings such as translations or homothetic
mappings, a master curve can be obtained by shifting the curves along the log tR and
log σ axis, as shown in Fig. 13.

It means that one then looks for the following geometrical mapping

T̄ = T + μ, log t̄R = a1(μ) + log tR, log σ̄ = b1(μ) + log σ (14)

with a1(μ) and b1(μ) shift factors along the log tR and log σ axis respectively.
If the (arbitrary) chosen value of T̄ is 748 K, then a1(μ) and b1(μ) correspond to
the shift required to move the curve at T to make it coincide with those at T̄ , if μ
is defined by T̄ = T + μ. If we assume that Eq. (14) define a Lie group, then the
fullfilment of the three Lie group axioms leads to the following conditions to be
satisfied by functions a1(μ) and b1(μ):
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Fig. 13 Experimental master curve at the reference temperature T̄ = 748 K obtained by shifting
the curves of Fig. 12 along the log tR and log σ axis, [50]
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Fig. 14 Linear fits of the shift factors a1(μ) and b1(μ), [50]

a1(0) = 0, a1(−μ) = −a1(μ), a1(μ1 + μ2) = a1(μ1) + a1(μ2)

b1(0) = 0, b1(−μ) = −b1(μ), b1(μ1 + μ2) = b1(μ1) + b1(μ2) (15)

for all μ, μ1, μ2 in R. It results from Eq. (15), the linearity of a1(μ) and b1(μ) with
respect to μ the expressions

a1(μ) = ημ, b1(μ) = εμ (16)

where η and ε are true constants.
These last relations fully agree with the experimental values of the shift factors,

since the linear fits of a1(μ) and b1(μ) pictured in Fig. 14 exhibit good correlations.
The two fits give the following values of the coefficients
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Fig. 15 Experimental stress
versus time responses at dif-
ferent strain levels in the log-
arithmic plane (T = 773 K),
from [54]
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η = −0.0403636, ε = −0.00584727. (17)

Inserting (16) into (14) leads to the following experimental Lie group

Gobs
1 : T̄ = T + μ, t̄R = eημtR, σ̄ = eεμσ (18)

mapping an experimental curve into another one in the range of the explored
values of T , but its validity is presently assumed for all T between the extremal
values 748 K and 923 K. The components of the generator vobs

1 associated with Gobs
1

are given by the derivation of equations (18) with respect to μ at μ = 0, viz

vobs
1 = η tR

∂

∂tR
+ ε σ

∂

∂σ
+ ∂

∂T
· (19)

The Lie group generated by this vector field allows to shift all rupture responses
in the stress-rupture time plane to the response obtained for a chosen reference
temperature; the curve associated with this response is called the master curve.

A similar strategy can be applied to the the “isostrain” creep curves in the loga-
rithmic plane log σ versus log t presented in Fig. 15.

Proceeding in the same manner, a second Lie group Gobs
2 is obtained

Gobs
2 : δ̄ = eμδ, t̄ = eψμt, σ̄ = eθμσ (20)

with a generator vobs
2 of Gobs

2 given by

vobs
2 = ψ t

∂

∂t
+ θσ

∂

∂σ
+ δ

∂

∂δ
· (21)
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The prolongations of the previously obtained vector fields vobs
1 and vobs

2 are com-
puted with the prolongation formulae [5]

pr(1)vobs
1 = ηtR

∂

∂tR
+ εσ

∂

∂σ
+ ∂

∂T
(22)

pr(1)vobs
2 = ψt

∂

∂t
+ θσ

∂

∂σ
+ δ

∂

∂δ
+ δ̇(1 − ψ)

∂

∂δ̇
·

Based on the general methodology exposed previously, we search a set of con-
stitutive equations able to capture the creep behaviour of the material. The set of
constitutive equations is split into two relations revealing two different physical
informations: the first relation expresses the time to rupture tR versus the loading
parameters (T and σ in the present case), while the second one gives the evolution
of the strain rate δ̇ as a function of t , σ, δ, and T

Δ1 = tR − f (σ, T ) = 0 (23)

Δ2 = δ̇ − h(t,σ, δ, T ) = 0. (24)

with h and f therein unknown functions that will be further determined. It seems
reasonable to apply the symmetry condition vobs

1 to Δ1 and vobs
2 to Δ2. Indeed, the

generator vobs
1 (vobs

2 respectively) has been built by only considering rupture curves
(creep curves respectively). The satisfaction of those symmetry conditions indicates
that the constitutive law (creep and rupture) remains valid when the considered
parameter changes. The set of symmetry conditions finally writes

pr(1)vobs
1 Δ1 = 0, wheneverΔ1 = 0 (25)

pr(1)vobs
2 Δ2 = 0, wheneverΔ2 = 0 (26)

and is associated with the sets K1 = {1} and K2 = {2}. The next step consists in
writing the constitutive models in terms of invariants.

8.2 Formulation of the Constitutive Equations for Creep and
Rupture

Since m1 = 1 and m2 = 1, one can apply the two methodologies described pre-
viously, and consider more specifically a combination of invariants, in the spirit
of extrapolation methods of the literature, [52]. One accordingly search two new
functions Σ1(I1, I2) and Σ2(J1, J2, J3) such that

Σ1(I1, I2) = 0 ∞ Δ1 = 0 (27)

Σ2(J1, J2, J3) = 0 ∞ Δ2 = 0 (28)
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Fig. 16 Experimental responses log(tR) versus 1/T at different stress levels (computed from data
presented in [54]), [50]

with I1, I2 the invariants of vobs
1 given by the solution of the system (7)

dtR

ηtR
= dσ

εσ
= dT (29)

and J1, J2, J3 the invariants of vobs
2 solution of the same characteristic system

dt

ψt
= dσ

θσ
= dδ

δ
= dδ̇

(1 − ψ)δ̇
· (30)

Solving (29) and (30) delivers the following rupture invariants

I1 = log tR − ηT, I2 = log σ − εT (31)

and creep invariants

J1 = log t − ψ log δ, J2 = log σ − θ log δ, J3 = log δ̇ − (1 − ψ) log δ. (32)

Considering now rupture, the experimental representation of log(tR) versus 1/T
pictured in Fig. 16 suggests to propose a relation of the form

Σ1(I1, I2) = K1

I2
+ K2 I1 + K3 I2 = 0 (33)

with K1, K2, K3 constants, which warrants a hyperbolic dependence with respect
to T . Equation (33) leads to
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log tR = a

log σ − εT
+ b log σ + (η − bε)T (34)

with a = −K1/K2 and b = −K3/K2 new constants. The validation of equation
(34) is pictured in Fig. 17, in which a good agreement with the experimental data
presented in [54] is observed (the coefficients a and b are adjusted).

As to the creep strain rate, we introduce in accordance with the “convenient creep
laws” of [54] the power function

Σ2(J1, J2, J3) = eJ3 − AecJ1 ed J2 = δ̇δ−(1−ψ) − Atcδ−cψσdδ−dθ = 0 (35)

with A, c and d constants, leading to

δ̇ = Atcσdδ1−ψ−cψ−dθ. (36)

Denoting by δ(t = 0,σ, T ) = δ0(σ, T ) the initial strain δ and introducing the
exponent σ = ψ + cψ + dθ, the resolution of Eq. (36) allows writing

δ(t) = (1 + c)−1/σ
[
(1 + c)δ0(σ, T )σ + Aσtc+1σd

]1/σ
. (37)

If the temperature T and the strain δ are assigned constant values, and assuming that
the initial strain obeys a Hookean relation

δ0(σ, T ) = σ

E(T )
(38)

with E(T ) the Young modulus at T , then the “isostrain” curves may be obtained by
expressing the time t (σ) from equation (37), viz
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t (σ) =
[
(c + 1)(δσ − σσ E(T )−σ)

Aσσd

]1/(1+c)

. (39)

The model log σ versus log t is validated by the comparison of the inverse func-
tional dependence σ(t) numerically calculated from equation (39) with experimental
data, both pictured in Fig. 18.

The coefficients E(T ), A and c, d are here adjusted so that a good agreement is
obtained.

The Fig. 19 represents the creep curves at different stress levels as predicted
by the present model. The following constitutive equations have been obtained as
representative of the creep and rupture behaviours of the considered 9Cr1Mo stainless
steel
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Table 4 Commutator table of the Lie algebra of Eq. (40)

v1
2 v2

2 v3
2 v4

2

v1
2 0 0 (c + 1)v1

2 2(c + 1)v1
2

v2
2 0 0 (c + 1)v2

2 (c + 1)v2
2

v3
2 −(c + 1)v1

2 −(c + 1)v2
2 0 0

v4
2 −2(c + 1)v1

2 −(c + 1)v2
2 0 0

δ̇ = Atcσdδ1−ψ−cψ−dθ if t ≤ tR (40)

tR = σbe
a

log σ−εT +(η−bε)T (41)

Those forms of the constitutive laws are compatible with the observed master
curves. The Lie algebra of the formulated creep and rupture constitutive models can
lastly be derived.

8.2.1 Lie Algebra of the Creep and Rupture Models

The Lie algebra of the creep model is computed according to the methodology
described in [5]; it contains 4 generators vi

2, i = 1, . . . , 4, with prolongations given
by

pr(1)v1
2 = σd t−c ∂

∂t
+ cδ̇σd t−c−1 ∂

∂δ̇
(42)

pr(1)v2
2 = σdδ1−σ ∂

∂δ
+ (1 − σ)σdδ−σ δ̇

∂

∂δ̇
(43)

pr(1)v3
2 = t

∂

∂t
+
(

c + 1

σ

)
δ

∂

∂δ
+
(

c + 1 − σ

σ

)
δ̇

∂

∂δ̇
(44)

pr(1)v4
2 = t

∂

∂t
−
(

c + 1

d

)
σ

∂

∂σ
− δ̇

∂

∂δ̇
(45)

with σ = ψ + cψ + dθ. The commutation table of this Lie algebra is given in
Table 4.

The Lie algebra of the rupture model equation (40) has two generators vi
1, i = 1, 2,

given by

v1
1 = tR

(
b (log σ − εT )2 − a

log σ − εT

)
∂

∂tR
+ σ(log σ − εT )

∂

∂σ
(46)

v2
1 = tR

(
(η − bε) (log σ − εT )2 + aε

log σ − εT

)
∂

∂tR
+ (log σ − εT )

∂

∂T
· (47)

Its commutator table is given in Table 5.
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Table 5 Commutator table of the Lie algebra of Eq. (40)

v1
1 v2

1

v1
1 0 εv1

1 + v2
1

v2
1 −εv1

1 − v2
1 0

Fig. 20 Predicted “iso-tR”
curves given by the numerical
solution of Eqs. (49) and (50),
[50]
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Denoting by ζ1,tR and ζ2,tR the component in tR of v1
1 and v2

1 respectively, then
the following local combination

v = ζ2,tR v1
1 − ζ1,tR v2

1

tR
= σ

[
aε + (η − bε)(log σ − εT )2

] ∂

∂σ

+
⎝

a − b(log σ − εT )2
⎞ ∂

∂T
(48)

is a symmetry of Eq. (40), with no component in tR and without any dependency of
the components σ and T on tR . Consequently, v takes the form of Eq. (11), and the
flow of this vector field is given by the solution of the system of differential equations

dσ̄

dμ
= σ̄

[
aε + (η − bε)(log σ̄ − εT̄ )2

]
(49)

dT̄

dμ
= a − b(log σ̄ − εT̄ )2 (50)

with initial conditions
σ̄(0) = σ, T̄ (0) = T (51)

and the equality t̄R = tR . Hence, the numerical solution of (49) and (50) provides a
parametric representation (T (μ),σ(μ)) of the “iso-tR” curves in the (T,σ) plane, as
shown in Fig. 20.
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This kind of theoretical chart is of high practical interest, since it allows to extrap-
olate the rupture time of a specimen at any stress level or any temperature, provided
the rupture time is known for a given value of σ and T .

8.3 Some Open Problems in Continuum Mechanics and
Mechanics of Materials

There are many open problems and perspectives of applications of symmetry methods
in continuum mechanics; these include the following:

• Find closed form solutions and invariance relations for wave propagation problems
in hyperelastic solids. This is especially important in the context of soft biological
tissues, for which one has additionnaly to incorporate the material anisotropy due
to the presence of populations of fibers.

• Find invariance relations for BVP’s involving materials having a complex rheo-
logical behavior, including time-dependence, and non linear stress-strain relations.
This has been exemplified in the present contribution in the case of creep of met-
talic alloys, and has to be extended to polymers. One then has to find efficient
algorithms to construct invariance relations between the (many) variables and
parameters involved in the constitutive law.

• Clarify the fundamental significance of the symmmetries computed for materials
having a complex rheological behavior. Especially, the symmetries inherent to the
thermodynamic potentials involved in the construction of the constitutive laws have
to be evidenced, and their significance clarified. Such an interpretation will further
nicely fit within the rational framework of continuum mechanics, which relies on
symmetry arguments for its construction (including material frame indifference).

• Find approximate symmetries for materials and systems endowed with an uncer-
tainty in their behavior, for instance a statistical variability in their material prop-
erties, requiring the use of stochastic models. This is especially important in mod-
elling the response of soft biological tissues.
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Symmetries and Some Special Solutions
of the Helfrich Model

Vladimir I. Pulov, Mariana Ts. Hadzhilazova and Ivaïlo M. Mladenov

Abstract The goal of this chapter is to present the results of the Lie group analysis in
application to the Helfrich spontaneous curvature model. Special attention is paid to
the translationally invariant solutions and the corresponding cylindrical equilibrium
shapes. Graphs of closed diretrices of the obtained cylindrical surfaces in fixed and
moving reference frame are presented.

1 Introduction

The Helfrich model (also known as the spontaneous curvature model) describes
equilibrium shapes of fluid membranes—elastic membranous systems formed in
aqueous solutions, such as biological membranes, soap bubbles, etc. [1, 2]. The gov-
erning equation of the Helfrich model is the Helfrich equation. In Mongé represen-
tation the Helfrich equation is a fourth order nonlinear partial differential equation.
By using conformal coordinates and new dependent variables the Helfrich equation
is transformed to a system of four nonlinear partial differential equations of second
order of the derivatives [3, 4] (Sect. 2). We name this system the Helfrich system.
Our main objective in this chapter is to present the results of the Lie symmetry
group analysis in application to the Helfrich system of differential equations. By
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creating and solving the so called determining system of equations [5] we obtain the
Lie symmetry algebra (respectively the Lie symmetry group) of the Helfrich system
(Sect. 3). It is shown in [3] that all one-dimensional Lie subalgebras of the general
Lie symmetry algebra of the Helfrich system are equivalent to each other under the
group of inner automorphisms. Based on this knowledge we apply a Lie symmetry
group reduction technique [5] to obtain a translationally invariant solution and the
corresponding cylindrical equilibrium shapes of the Helfrich model (Sects. 4 and 5).
The solution and the directrices of the cylindrical surfaces are expressed by the Weier-
strassian functions. Plots of graphs of closed diretrices for some of the surfaces in
fixed and moving reference frame are presented.

2 The Helfrich Model

In the Helfrich model the fluid membrane is described as a smooth surface S in the
Euclidean spaceR3 with the mean and the Gaussian curvatures H and K , respectively.
The equilibrium shapes of the membrane is determined by solving the Helfrich
equation [6]

ΔH + 2(H2 + IhH − K )(H − Ih) − 2λH

k
+ p

k
= 0. (1)

The above equation is (a coordinate free) Euler-Lagrange equation for the minimum
of the free elastic energy

F = k
∫
S

(H − Ih)2dS + k̄
∫
S

K dS (2)

obtained under the constraints of fixed enclosed volume and surface area of the
membrane. The free energy F is the bending energy due to the curvatures H and
K through the two elastic moduli of the membrane – the bending and the Gaussian
rigidities k and k̄, respectively and the parameter Ih is the so-called spontaneous
mean curvature. Other physical characteristics involved are the tensile stress λ, the
osmotic pressure p and Δ is the Laplace-Beltrami operator on S.

We are interested in immersed surfaces in the Euclidean space that satisfy the
Helfrich equation (1). The necessary and sufficient condition for the immersed sur-
face to exist is that the coefficients of its first and second fundamental form satisfy
the so called Gauss-Codazzi-Mainardi integrability equations [7]. For this reason,
when looking for the equilibrium surfaces of the Helfrich model, the Eq. (1) has to
be solved together with the Gauss-Codazzi-Mainardi equations. The system of dif-
ferential equations formed thereby is named the Helfrich system and its solutions –
the Helfrich surfaces.

Given some local coordinates on the surface S, the Helfrich system takes the form
of a system of nonlinear partial differential equations. The number of equations and
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the order of the derivatives being involved depend on the coordinates that have been
specified. In our work we introduce the conformal coordinates (x, y), defined by the
metric (conformal metric) on S

ds2 = 4q2ϕ2(dx2 + dy2) (3)

and the matrix of the second fundamental form

b =
(

θ ω
ω 8q2ϕ(1 + Ihϕ) − θ

)
(4)

depending on four unknown functions

q = q(x, y), ϕ = ϕ(x, y), θ = θ(x, y), ω = ω(x, y).

Under this choice of the variables the Helfrich system is recast into a system of four
second order partial differential equations [3, 4, 8]

q2(ϕxx + ϕyy) + 2qϕ(qxx + qyy)

−2ϕ(q2
x + q2

y ) + q4(8ϕ + α2ϕ
2 + α3ϕ

3 + α4ϕ
4) = 0

θy − ωx − (8 + α2

3
ϕ)q(ϕqy + qϕy) = 0

(5)
ωy + θx − α2

3
qϕ(ϕqx + qϕx ) − 8qϕqx = 0

4q2ϕ(ϕxx + ϕyy) + 4qϕ2(qxx + qyy)

−4ϕ2(q2
x + q2

y ) − 4q2(ϕ2
x + ϕ2

y) − ω2 − θ2 + (8 + α2

3
ϕ)q2ϕθ = 0

where α2 = 24Ih, α3 = 8(2Ih2 − λ
k ) and α4 = 4p

k − 8λIh
k are phenomenological

constants, and ϕx = ∂ϕ/∂x , etc. denote partial derivatives. In comparison with the
fourth order nonlinear partial differential equation in the Mongé representation of the
Helfrich equation (see e.g. [9]), the system of differential equations (5) is a simpler
version of the Helfrich model.

In the conformal metric coordinates, defined by (3) and (4), the mean H and the
Gaussian K curvatures take the form

H = 1

ϕ
+ Ih (6)

K = 1

4q4ϕ4 [ϕ2(q2
x + q2

y ) + q2(ϕ2
x+ϕ2

y) − qϕ2(qxx + qyy) − q2ϕ(ϕxx + ϕyy)].

The latter is obtained by using the Brioschi formula
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K = −Δ log(2qϕ) (7)

by making use of the respective Laplace-Beltrami operator

Δ = 1

4q2ϕ2

(
∂2

∂x2 + ∂2

∂y2

)
.

In this setting the functional (2) reads

F = 4k
∫∫

q2dxdy + k̄
∫∫

8q2ϕθ(1 + Ihϕ) − θ2 − ω2

4q2ϕ2 dxdy

and this is an obvious manifestation of the fact that the squared function q plays the
role of a free elastic energy density due to the mean curvature H of the membrane
(cf. [3, 4]).

3 The Determining System and Symmetries

A symmetry of a given system of differential equations is a transformation of the
independent and dependent variables that leaves the system invariant. The deter-
mining system is a system of partial differential equations used for finding the Lie
group of symmetries (Lie symmetry group) of the considered system of differential
equations [5].

In the case of the Helfrich system (5) the one-parameter Lie group of symmetry
transformations has the form

x̃ i = Φ i (x, u, ε), Φ i |ε=0 = xi , i = 1, 2

ũα = Ψ α(x, u, ε), Ψ α|ε=0 = uα, α = 1, 2, 3, 4

where ε (ε ∗ I ≡ R, 0 ∗ I ) is the group parameter. The vectors x = (x1, x2) and
u = (u1, u2, u3, u4) denote the independent and the dependent variables, respec-
tively: x1 = x , x2 = y, u1 = q, u2 = ϕ, u3 = θ, u4 = ω. The functions Φ i (x, u, ε)
and Ψ α(x, u, ε) are found by solving the Lie equations [5]

dΦ i

dε
= ξi (Φ,Ψ ), Φ i |ε=0 = xi , i = 1, 2

dΨ α

dε
= ηα(Φ,Ψ ), Ψ α|ε=0 = uα, α = 1, 2, 3, 4

where ξi (x, u) and ηα(x, u) are the coefficients of the Lie group generator
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X =
2∑

i=1

ξi (x, u)
∂

∂xi
+

4∑
α=1

ηα(x, u)
∂

∂uα
·

The coordinates of the vectors Φ and Ψ are Φ i and Ψ α, respectively. The set of
all Lie group generators constitute a Lie algebra – the Lie symmetry algebra of the
Lie symmetry group. In order to find the Lie symmetry algebra one has to solve the
determining system of equations.

The determining system is a linear homogeneous system of partial differential
equations for the coefficient functions ξi (x, u) and ηα(x, u) of the Lie group genera-
tor. For most of the important physical applications the determining system consists
of hundreds of equations. Creating and solving of such a large system of differen-
tial equations, though algorithmically straightforward, may cause serious technical
difficulties. In order to cope with the great number of tedious calculations we take
advantage of the specially developed Mathematica package LieSymm-PDE [10]. By
applying the LieSymm-PDE package to the considered Helfrich system (5), we have
obtained a determining system of 206 first and second order partial differential equa-
tions. All these equations have the general form

∑
k

μk(u
1) j (u2)l(u3)m(u4)n fk(x, u) = 0, j, l, m, n = 0, 1, . . . , 7

where μk are real constants and fk(x, u) are either one of the functions ξi (x, u),
ηα(x, u) or their first, or second order derivatives. Thirty five equations are with
more than 10 addends (expressions of the above form), six are with more than 20
addends. The largest are two equations with 43 and 44 addends. Many of these equa-
tions are equivalent to each other or functionally dependent, which means that the
determining system is overdetermined. Nevertheless, manipulation of so many equa-
tions without making errors is quite boring and time consuming. With the aid of the
LieSymm-PDE facilities for solving determining systems we managed to do all sym-
bolic calculations automatically, eluding the tedious substitutions, transformations
and other technicalities, which otherwise we should had made by hand.

We started up the solving process by invoking the LieSymm-PDE iterative func-
tion for solving some predetermined types of equations with known solutions. If
LieSymm-PDE identifies such an equation, its solution is substituted for the respec-
tive variable in the remainder part of the equations. In this way the determining
system of the Helfrich model has been reduced to 29 partial differential equations
for six unknown functions of the form

ξ1 = h(x, y), η1 = v(x, y, q,ϕ), η3 = g(x, y, q,ϕ, θ,ω)

ξ2 = r(x, y), η2 = w(x, y, q,ϕ), η4 = ρ(x, y, q,ϕ, θ,ω)

where h(x, y) and r(x, y) satisfy the Cauchy-Riemann conditions
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∂h

∂y
= − ∂r

∂x
,

∂h

∂x
= ∂r

∂y
· (8)

We proceeded with applying the LieSymm-PDE package in an interactive mode
feeding back the program with the solutions we had found. After seven interactive
cycles two of the coefficient functions changed their form to

η1 = qσ(x, y), η2 = −Cϕ

(C ∗ R) and the determining system reduced to the 10 equations below

qϕ(24 + α2ϕ)ρθ + 3ρq = 0

24q2rx + α2q2ϕρθ + 3ρϕ = 0

q2ϕ(24 + α2ϕ)σx − 3gx − 3ρy = 0

q2ϕ(24 + α2ϕ)σy − 3gy + 3ρx = 0

24q2rx − q2(24 + α2ϕ)ρθ − 3ρϕ = 0

3gϕ + α2q2ϕρω − 2α2q2ϕσ + 2α2Cq2ϕ = 0

3gϕ + q2(24 + α2ϕ)ρω − 2q2(24 + α2ϕ)σ + 2Cq2(12 + α2ϕ) = 0

3gq + qϕ(24 + α2ϕ)ρω − 2qϕ(24 + α2ϕ)σ + 2Cqϕ(12 + α2ϕ) = 0

2σxx + 2σyy + 2q2(8 + α2ϕ + α3ϕ
2 + α4ϕ

3)ry

+ 2q2(8 + α2ϕ + α3ϕ
2 + α4ϕ

3)σ − Cq2ϕ(α2 + 2α3ϕ + 3α4ϕ
2) = 0

2(α2q2ϕ2θ − 6α2q4ϕ3 − 6α3q4ϕ4 − 6α4q4ϕ5 − 48q4ϕ2

+ 24q2ϕθ − 3θ2 − 3ω2)ry + (α2q2ϕ2 + 24q2ϕ − 6θ)g − 6ωρ

− 6(2α2q4ϕ3 + 2α3q4ϕ4 + 2α4q4ϕ5 + 16q4ϕ2 − θ2 − ω2)σ

+ 6Cq4ϕ3(α2 + 2α3ϕ + 3α4ϕ
2) + 6C(4q2ϕθ − θ2 − ω2) = 0.

Continuing in the same manner of solving we have obtained the solution of the
determining system, arriving at the Lie symmetry algebra of the Helfrich system for
the two distinguished cases (compare with [3])

Case 1. |α2| + |α3| + |α4| ◦= 0

X I(ξ1, ξ2) = ξ1∂x + ξ2∂y − qξ1
x∂q − 2(θξ1

x + ωξ2
x )∂θ

−2

[
ωξ1

x −
(

θ − 4q2ϕ − α2q2ϕ2

6

)
ξ2

x

]
∂ω

Case 2. α2 = α3 = α4 = 0
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X II(ξ1, ξ2) = X1(ξ
1, ξ2) + cX2, c ∗ R

X1(ξ
1, ξ2) = ξ1∂x + ξ2∂y − qξ1

x∂q − 2(θξ1
x + ωξ2

x )∂θ

− 2
[
ωξ1

x −
(
θ − 4q2ϕ

)
ξ2

x

]
∂ω

X2 = ϕ∂ϕ + θ∂θ + ω∂ω

where ξ1 = h(x, y), ξ2 = r(x, y) are arbitrary real-valued harmonic functions
satisfying the Cauchy-Riemann conditions (8) and ∂x ⊕ ∂/∂x , etc.

The full sets of group generators X I(ξ1, ξ2) and X II(ξ1, ξ2) constitute two sym-
metry Lie algebras L I and L II for each one of the considered cases. The Lie algebras
L I and L II are infinite dimensional with the commutator operator defined by

[X (ξ1, ξ2), X ( ξ̂
1
, ξ̂

2
)] = X (Ξ1, Ξ2)

where

Ξ1 = ξ1 ξ̂
1
x − ξ2 ξ̂

2
x − ξ̂

1
ξ1

x + ξ̂
2
ξ2

x , Ξ2 = ξ2 ξ̂
1
x + ξ1 ξ̂

2
x − ξ̂

2
ξ1

x − ξ̂
1
ξ2

x

(X equals X I or X II respectively).

4 A Group-Invariant Solution

Under the action of the symmetry group each solution of the considered system of
differential equations is transformed also into a solution of the system. The group-
invariant solutions are the fixed points of this action. Any group-invariant solution
can be obtained by applying a group reduction technique based on constructing
and solving of the so-called reduced system of differential equations [5]. It is of
great practical importance that in comparison with the original system the reduced
system of equations has fewer independent variables. Particularly, if the number of
the group parameters is one less the number of the independent variables, then the
initially given system of partial differential equations is reduced to a much simpler
system of ordinary differential equations.

As it is shown in [3], all the group-invariant solutions of the Helfrich system (5),
related to the one-parameter Lie symmetry subgroups of the general Lie symmetry
group, are equivalent (conjugate) to each other in a sense that the related subalgebras
are pairwise conjugate under the group of the adjoint representations [5]. Hence, it
suffices to consider one representative of the conjugacy class of the one-parameter
group-invariant solutions from which every other such solution can be derived by
acting with a transformation of the symmetry group.

In this chapter we look for a group-invariant solution of the Helfrich system (5),
related to the subalgebra of the general symmetry Lie algebra L I (respectively L II)
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spanned by the group generator X I(1, 0) ⊕ ∂x , i.e., a solution invariant under
the translations of the variable x . The symmetry reduction procedure leads to the
invariant solution of the form [3]

q = q(y), ϕ = ϕ(y), θ = θ(y), ω(y) = α5 ⊕ const

and the reduced system of ordinary differential equations

q2ϕyy + 2qϕqyy − 2ϕq2
y + q4(8ϕ + α2ϕ

2 + α3ϕ
3 + α4ϕ

4) = 0

θy − q(8 + α2

3
ϕ)(ϕqy + qϕy) = 0 (9)

4qϕ2qyy + 4ϕq2ϕyy − 4ϕ2q2
y − 4q2ϕ2

y − α2
5 − θ2 + q2ϕθ(8 + α2

3
ϕ) = 0.

By imposing the relation

q(y) = 1

ϕ(y)
(10)

from equations (9) we obtain the system

θ(y) = 0, ω(y) = 0 (11)

∫
(C1ϕ

4 − 2α4ϕ
3 − α3ϕ

2 − 2

3
α2ϕ − 4)−1/2dϕ = y + C2 (12)

in which C1, C2 are integration constants. The latter integral can be expressed in
terms of elliptic functions [11] (and in some special cases in elementary functions),
which means that we have arrived at a group-invariant solution of the Helfrich system
given by the Eqs. (10)–(12).

Now, we proceed with the introduction of new variables that will return us to the
original geometrical considerations. As it follows from the Brioschi formula (7), the
Gaussian curvature K of the Helfrich surfaces corresponding to the above solution
vanishes

K = 0

which implies the existence of cylindrical Helfrich surfaces S, having as directrices
plane curves Γ (Fig. 1), whose curvature κ(s) = 2H(s) is parametrized by the
arclength s = 2y according to the conformal metric (3). By passing to the new
variables (s,κ(s)) in (12), via the expression (6) for H , the equation for the curvature
κ(s) takes the form

κ(s) = a + f ′(a)

4

(
℘(

s

2
+ C2) − f ′′(a)

24

)−1

(13)
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Fig. 1 Geometry of a plane curve

where ℘(s) ⊕ ℘(s; g2, g3) is the Weierstrassian elliptic function [11] and a is an
arbitrary root of the polynomial

f (t) = −t4 + 2μt2 + 4νt + 8E .

The parameters

g2 = μ2

3
− 8E, g3 = ν2 − μ3

27
− 8μE

3

are the invariants of ℘(s) with μ = 4(Ih2 + λ
k ), E = 4Ih

k (p − λIh) − 2Ih4 + C1
2 ,

ν = − 4p
k , and f ′(a) ⊕ d f (t)/dt|t=a , . . .. As a result we obtain a special type of

cylindrical Helfrich surfaces S with directrices Γ , defined by their intrinsic equation
(13) in terms of the Weierstrassian ℘-function.

5 Cylindrical Helfrich Surfaces

Given the intrinsic equation κ = κ(s) of a plane curve Γ , it is possible to recover (up
to a rigid motion) the position vector of the curve x(s) = (x̃(s), z̃(s)) in the plane
R

2 in a standard manner by calculating the quadratures [7]

x̃(s) =
∫

cos ψ(s)ds, z̃(s) =
∫

sin ψ(s)ds (14)

where ψ(s) is the slope angle of Γ (Fig. 1), expressed by the formula
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ψ(s) =
∫

κ(s)ds. (15)

In the following we will confine ourselves to the case ν ◦= 0. For the directrices of
the Helfrich cylindrical surfaces with intrinsic equation (13) the integration in (14),
for ν ◦= 0, can be avoided (cf [12] and references cited therein), which is a specific
consequence of the fact that the curvature function (13) satisfies the equation

2
d2κ(s)

ds2 + κ3(s) − μκ(s) − ν = 0.

As a result the Cartesian coordinates of the position vector x(s) = (x̃(s), z̃(s))
take the form [12]

x̃(s) = 2

ν

dκ(s)

ds
cos ψ(s) + κ2(s) − μ

ν
sin ψ(s)

(16)

z̃(s) = 2

ν

dκ(s)

ds
sin ψ(s) − κ2(s) − μ

ν
cos ψ(s)

where the slope angle ψ(s) is expressed explicitly, via the quadrature (15), in terms
of the Weierstrassian function ℘(s), and its integrals σ(s) and ζ(s) [11]

ψ(s) = as + f ′(a)

2℘′(s̊)

[
sζ(s̊) + ln

σ( s
2 − s̊)

σ( s
2 + s̊)

]
.

Here s̊ is defined by the equation ℘(s̊) = f ′′(a)
24 (C2 = 0).

Taken with respect to the moving reference frame (t(s), n(s)), built up by the
tangent t(s) = (dx̃/ds, dz̃/ds) and the normal n(s) = (−dz̃/ds, dx̃/ds) vectors to
the curve (Fig. 1), the coordinates (ξ̃(s), η̃(s)) of the position vector

x(s) = ξ̃(s)t(s) + η̃(s)n(s)

have the form (compare with (16)) and are depicted via the curves in the second row
in Figs. 2 and 3

ξ̃(s) = 2

ν

dκ(s)

ds
, η̃(s) = −κ2(s) − μ

ν
·

Several graphs of closed directrices of the so obtained cylindrical Helfrich sur-
faces, defined by (x̃, z̃) and (ξ̃, η̃) in the respective fixed and moving reference frame
for different values of the parameters ν, μ, E and a, are presented in Figs. 2 and 3.
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Fig. 2 Closed directrices with self-intersections in the fixed (top) and the moving (bottom) reference
frame

Fig. 3 Closed directrices without self-intersections in the fixed (top) and the moving (bottom)
reference frame

6 Conclusion

The results presented in this chapter are obtained by an application of the Lie group
analysis to the Helfrich model of the shapes of the biological membranes. The Hel-
frich model is considered in conformal metric representation. The Lie group analysis
has been carried out by the help of the program LieSymm-PDE within the computer
system Mathematica�. The determining system of equations for the admissible
group of point symmetry transformations has been created. The determining system
consists of 206 first and second order partial differential equations. With the help
of the program LieSymm-PDE the determining system has been solved in explicit
form. Its solution constitutes an infinite dimensional Lie algebra of symmetries of the
Helfrich model. Based on this a group reduction method for finding group-invariant
solutions has been applied and a solution of the Helfrich system has been obtained.
The Helfrich surfaces corresponding to this solution are generalized cylinders whose
directrices are plane curves with curvatures expressed by the Weierstrassian func-
tions. Plots of several graphs of the directrices of some of these cylindrical surfaces
in fixed and moving reference frame are presented.
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Lie Group Analysis of the Willmore
and Membrane Shape Equations

Vassil M. Vassilev, Petar A. Djondjorov and Ivaïlo M. Mladenov

Abstract The present paper is concerned with the geometric Lie symmetry groups
of the Willmore and shape equations—the Euler-Lagrange equations associated with
the Willmore and Helfrich functionals. The ten-parameter group of special conformal
transformations in the three-dimensional Euclidean space, which in known to be the
symmetry group of the Willmore functional, is recognized as the largest group of
geometric transformations admitted by these equations in Monge representation.
The conserved currents of ten linearly independent conservation laws, which corre-
spond to the variational symmetries of the Willmore equation and hold on its smooth
solutions, are derived. The shape equation is found to admit only a six-parameter sub-
group of the aforementioned ten-parameter group. Each symmetry admitted by the
shape equation is its variational symmetry as well and the corresponding conserved
currents are obtained.

1 Introduction

A wide variety of objects exhibit elastic behaviour in ordinary operation, and “thin”
or “thin-walled” ones are of special interest concerning various human activities. In
many cases their equilibrium shapes are formed due to bending. The problem for
determination of the equilibrium shapes of such objects (bars, rods, archs, rings,
pipes, baloons, etc.) is usually reduced to analysis of geometric objects—curves and
surfaces [6]. Such an analysis is based on two concepts—extrema of the curvature
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and symmetry of the shape. Obtaining the curvature of such geometric objects it
is possible to determine the stresses [13] and even the parametric equations of the
curve/surface in some cases (see, e.g., [5, 27]).

To the best of our knowledge, the first model in this field was suggested by Daniel
Bernoulli (see [1]) for plane curves and it states that the shapes of each such curve
L are extrema of the functional

B =
∫
L

κ2ds

where κ is the curvature of the curve L. It took more that 50 years until Siméon
Denis Poisson [20] and a bit later Marie-Sophie Germain proposed a similar idea
concerning surfaces, namely the equilibrium shapes of an elastic surface are extrema
of the total squared mean curvature of this surface (see, e.g. [8])

W =
∫
S

H2dA (1)

where H is the mean curvature of the surface S. The Euler-Lagrange equation for
this functional reads

ΔH + 2(H2 − K )H = 0 (2)

in which Δ is the Laplace-Beltrami operator on the surface S and K is the Gaussian
curvature of S.

According to Thomsen [23], W. Schadow was the first who had derived Eq. (2) in
1922 as the Euler-Lagrange equation for the variational problem

∫
S

(
1

R1
− 1

R2

)2

dA (3)

where 1/R1 and 1/R2 are the two principal curvatures of the surface S. This varia-
tional problem is studied in Thomsen’s thesis in 1923 (see [23]), where a reference to
the aforementioned (and probably unpublished) result by Schadow was given. Actu-
ally, the Lagrangian densities of the functionals (1) and (3) are proportional up to the
divergence term 2K and that is why they lead to the same Euler-Lagrange equation.

However, these results remain unnoticed and when Thomas Willmore [29] sug-
gested again the functional (1) in 1965, it along with the Eq. (2) were named after
him. Thus, surfaces providing extremum to the functional (1) are now referred to as
Willmore surfaces.

The study of the extrema of functional (1), i.e. the Willmore surfaces, turned out
to be of great importance not only for differential geometry (in connection with the
Willmore problem and conformal geometry) but also for the 2D string theory and
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2D gravity based on the Polyakov integral over surfaces (see [21]). In these theories,
the functional (1) is known as the Polyakov’s extrinsic action. The properties of the
Polyakov’s extrinsic action as well as various generalizations, such as the Polyakov-
Kleinert rigid string action [11, 22]

A =
∫
S

(
αH2 + γ

)
dA, α, γ − constant (4)

for instance, have been studied in a number of papers (see the review article [7]).
The functional (1) has found application in biophysics too. In Helfrich theory [9],

the bending energy of a homogeneous vesicle membrane is assumed to be given by
the functional

Fc = k
∫
S

H2dA + k̄
∫
S

K dA

where k and k̄ are real constants representing the bending and Gaussian rigidity of
the membrane. The equilibrium shape of the vesicle is supposed to be determined
by an extremum of the Helfrich curvature free energy (shape energy)

F = k
∫
S

(H − Ih)2 dA + k̄
∫
S

K dA + λ

∫
S

dA + Δp
∫

dV (5)

where dV is the volume element, Ih, λ and Δp are real constants and denote
the so-called spontaneous curvature, tensile stress and osmotic pressure difference
between the outer and inner media. The corresponding Euler-Lagrange equation

kΔH + 2k (H − Ih) (H2 − K ) − 2k (H − Ih)2 H − 2λH + Δp = 0 (6)

(derived in [15, 16]) is referred to as the Helfrich’s membrane shape equation.
There is a vast amount of papers in which the extrema of functionals (1) and (5),

i.e., the solutions of Eqs. (2) and (6) are studied (see, e.g., [12, 17, 18, 24, 25] and
the references therein). However, the determined exact solutions of these equations
are quite a few and all of them rely on an assumption of a certain symmetry of the
equilibrium shape. This observation is a good motivation to study Eqs. (2) and (6)
applying Lie group analysis (details on this approach can be found in [10, 14, 19])
in order to determine all symmetries of these equations. The aim of this paper is to
summarize the achievements of the authors in Lie group analysis of Eqs. (2) and (6)
in Monge representation and thus to provide a ground knowledge for determination
of their group-invariant solutions.
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2 Willmore and Shape Equations in Monge Representation

Let (x1, x2, x3) be a fixed right-handed rectangular Cartesian coordinate system in
the three-dimensional Euclidean space R3 in which a surface S is immersed, and let
this surface be given by the equation

S : x3 = w(x1, x2), (x1, x2) ∗ Ω ≡ R
2 (7)

where w : R
2 ◦ R is a single-valued and smooth function possessing as many

derivatives as may be required on the domain Ω . Let us take x1, x2 to serve as
Gaussian coordinates on the surface S. Then, relative to this coordinate system, the
components of the first fundamental tensor gαβ , the second fundamental tensor bαβ ,
and the alternating tensor εαβ of S are given by the expressions

gαβ = δαβ + wαwβ, bαβ = g−1/2wαβ, εαβ = g−1/2eαβ (8)

where

g = det(gαβ) = 1 + (w1)
2 + (w2)

2 (9)

δαβ is the Kronecker delta symbol and eαβ is the alternating symbol. The contravariant
components gαβ of the first fundamental tensor read

gαβ = g−1δαβ + εαμεβνwμwν = g−1 (
δαβ + eαμeβνwμwν

)
. (10)

Here and in what follows: Greek indices have the range 1, 2, and the usual summation
convention over a repeated index is employed, wα1...αk (k = 1, 2, . . .) denote the kth
order partial derivatives of the function w with respect to the variables x1 and x2, i.e.,

wα1α2...αk = ∂ kw

∂xα1 . . . ∂xαk
, k = 1, 2, . . .

The mean curvature H of the surface S and its Gaussian curvature K are given
as follows

H = 1

2
gαβbαβ, K = 1

2
εαμεβνbαβbμν (11)

that is

H = 1

2
g−3/2 (

δαβwαβ + eαμeβνwαβwμwν

)
, K = 1

2
g−2eαμeβνwαβwμν.

(12)
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In the above Monge representation the Willmore functional (1) reads

W =
∫ ∫

Ω

1

4
g−5/2 (

δαβwαβ + eαμeβνwαβwμwν

)2
dx1dx2. (13)

The application of the Euler operator

E = ∂

∂ w
− Dμ

∂

∂ wμ

+ DμDν

∂

∂ wμν

− · · ·

where

Dα = ∂

∂ xα
+ wα

∂

∂ w
+ wαμ

∂

∂ wμ

+ wαμν

∂

∂ wμν

+ wαμνσ

∂

∂ wμνσ

+ · · ·

denote the total derivative operators, on the Lagrangian density

L = H2g1/2 = 1

4
g−5/2 (

δαβwαβ + eαμeβνwαβwμwν

)2
(14)

of the Willmore functional leads, after taking into account expressions (8), (9), (10)
and (12), to the expression

E(L) = ΔH + 2(H2 − K )H.

Actually, in Monge representation, the Willmore equation E(L) = 0 is to be regarded
as a fourth-order partial differential equation in two independent variables x1, x2 and
one dependent variable w—the displacement field. This equation belongs to the class
of equations of the form

E ⊕ 1

2
g−1/2gαβgμνwαβμν + Φ (x1, x2, w,w1, . . . , w222) = 0 (15)

where Φ (x1, x2, w,w1, . . . , w222) is a differential function depending on the inde-
pendent and dependent variables and the derivatives of the dependent variable up to
third order. Indeed, using expressions (8), (9), (10), (12) and the well-known formula

Δ = g−1/2 ∂

∂xα

(
g1/2gαβ ∂

∂xβ

)
= gαβ ∂2

∂xα∂xβ
+ g−1/2 ∂

∂xα

(
g1/2gαβ

) ∂

∂xβ

one can represent the Willmore equation (2) in the form (15). The same procedure can
be applied to the functional (5) and Eq. (6). Omitting the lengthy but straightforward
computations, this equation is found to belong also to the class (15) with a certain
differential function Φ(x1, x2, w, w1, . . . , w222).
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3 Lie Group Analysis of the Willmore Equation

3.1 Symmetry Groups

The main objective of the present Section is to establish, following [10, 14, 19], the
invariance properties of the Willmore equation (2) relative to local one-parameter Lie
groups of local point transformations acting on open subsets of the three-dimensional
Euclidean space R

3, with coordinates (x1, x2, w), representing the involved inde-
pendent and dependent variables x1, x2 and w, respectively. For that purpose Lie
infinitesimal technique is used and the results obtained are expressed in terms of the
infinitesimal generators (operators) of the respective groups. In the present case, the
latter are vector fields on R

3 of the form

v = ξμ ∂

∂xμ
+ η

∂

∂w
(16)

where ξμ and η are functions of the variables x1, x2 and w.
The infinitesimal criterion of invariance

pr(4)v (E) = 0 whenever E = 0 (17)

where pr(n)v denotes the nth prolongation of the vector field v (see [14]), leads,
through the standard computational procedure (see, e.g. [14] or [19]), to the
following result:

Proposition 1 The ten-parameter Lie group GSCT of special conformal transfor-
mations in R

3 (whose basic generators v j , j = 1, . . . , 10, their characteristics,
commutators and the corresponding finite transformations are given in Tables1,
2, 3) is the largest group of geometric transformations of the involved independent
and dependent variables that a generic equation of form (15) could admit.

Let us denote by L SCT the Lie algebra corresponding to the group GSCT , i.e. L SCT

is the ten-dimensional Lie algebra spanned by the vector fields v j , j = 1 . . . 10. Actu-
ally, the group GSCT is a representation of the Lie group O (4, 1) in the vector space
R

3, which corresponds to the action of O (4, 1) on R
3 determined by the represen-

tation L SCT of its Lie algebra O (4, 1) in R
3.

Proposition 2 In Monge representation, the Willmore equation (2) admits all the
transformations of the group GSCT .

3.2 Conservation Laws

A particular interest exists for the variational symmetries of Eq. (2)—the Lie groups
generated by the so-called infinitesimal divergence symmetries (see Definition 4.33 in
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Table 1 Generators and characteristics of the group of special conformal transformations in R
3

Generators Characteristics

Translations
v1 = ∂

∂x1 Q1 = −w1

v2 = ∂
∂x2 Q2 = −w2

v3 = ∂
∂w

Q3 = 1
Rotations
v4 = −x2 ∂

∂x1 + x1 ∂
∂x2 Q4 = x2w1 − x1w2

v5 = −w ∂
∂x1 + x1 ∂

∂w
Q5 = x1 + ww1

v6 = −w ∂
∂x2 + x2 ∂

∂w
Q6 = x2 + ww2

Dilatation
v7 = x1 ∂

∂x1 + x2 ∂
∂x2 + w ∂

∂w
Q7 = w − x1w1 − x2w2

Inversions
v8 = χ1 ∂

∂x1 + 2x1x2 ∂
∂x2 + 2x1w ∂

∂w
Q8 = 2x1w − χ1w1 − 2x1x2w2

v9 = 2x2x1 ∂
∂x1 + χ2 ∂

∂x2 + 2x2w ∂
∂w

Q9 = 2x2w − 2x1x2w1 − χ2w2

v10 = 2x1w ∂
∂x1 + 2x2w ∂

∂x2 + χ3 ∂
∂w

Q10 = χ3 − 2x1ww1 − 2x2ww2

Here, the following notation is used: χ1 = (x1)2 − (x2)2 − w2, χ2 = (x2)2 − (x1)2 − w2 and
χ3 = w2 − (x2)2 − (x1)2

Table 2 Commutator table of the generators. Here, the entry in row i and column j represents the
commutator

[
vi , v j

]
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v1 0 0 0 v2 v3 0 v1 2v7 −2v4 −2v5

v2 0 0 0 −v1 0 v3 v2 2v4 2v7 −2v6

v3 0 0 0 0 −v1 −v2 v3 2v5 2v6 2v7

v4 −v2 v1 0 0 −v6 v5 0 −v9 v8 0
v5 −v3 0 v1 v6 0 −v4 0 −v10 0 v8

v6 0 −v3 v2 −v5 v4 0 0 0 −v10 v9

v7 −v1 −v2 −v3 0 0 0 0 v8 v9 v10

v8 −2v7 −2v4 −2v5 v9 v10 0 −v8 0 0 0
v9 2v4 −2v7 −2v6 −v8 0 v10 −v9 0 0 0
v10 2v5 2v6 −2v7 0 −v8 −v9 −v10 0 0 0

[14]) of any variational functional with (2) as the associated Euler-Lagrange equation.
Note that if two functionals lead to the same Euler-Lagrange equation, then they have
the same collection of infinitesimal divergence symmetries. This interest is motivated
by the fact that, in virtue of the Bessel-Hagen’s extension of Noether’s theorem, each
variational symmetry of a given self-adjoint equation corresponds to a conservation
law admitted by the smooth solutions of the equation. Thus, if a vector field v of
form (16) is found to generate a variational symmetry of Eq. (2), then Bessel-Hagen’s
extension of Noether’s theorem implies the existence of a conserved current, which,
in the present case, is a couple of differential functions Pα such that
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Table 3 Finite transformations. Here, the entries in the “finite transformation” column give the
transformed points exp

(
ε j v j

) (
x1, x2, w

)
and χ = (

r2 + w2
)

Groups Finite Transformations

G (v1)
(
x1 + ε1, x2, w

)
G (v2)

(
x1, x2 + ε2, w

)
G (v3)

(
x1, x2, w + ε3

)
G (v4)

(
x1 cos ε4 − x2 sin ε4, x2 cos ε4 + x1 sin ε4, w

)
G (v5)

(
x1 cos ε5 − w sin ε5, x2, w cos ε5 + x1 sin ε5

)
G (v6)

(
x1, x2 cos ε6 − w sin ε6, w cos ε6 + x2 sin ε6

)
G (v7)

(
eε7 x1, eε7 x2, eε7w

)
G (v8) (

x1−ε8(r2+w2)

1−2ε8x1+ε2
8(r2+w2)

, x2

1−2ε8x1+ε2
8(r2+w2)

, w

1−2ε8x1+ε2
8(r2+w2)

)

G (v9) ( x1

1−2ε9x2+ε2
9(r2+w2)

,
x2−ε9(r2+w2)

1−2ε9x2+ε2
9(r2+w2)

, w

1−2ε9x2+ε2
9(r2+w2)

)

G (v10) ( x1

1−2ε10w+ε2
10(r2+w2)

, x2

1−2ε10w+ε2
10(r2+w2)

,
w−ε10(r2+w2)

1−2ε10w+ε2
10(r2+w2)

)

Dα Pα = QE(L) (18)

where Q is the characteristic of the vector field v. By definition

Q = η − wμξμ. (19)

The total divergence of the conserved current Pα vanishes on the smooth solutions
of Eq. (2) and so we have the conservation law

Dα Pα = 0 (20)

(18) being its expression in characteristic form, and Q—its characteristic.
To derive the conservation laws of the foregoing type, one can proceed by first

determining the variational symmetries of the equation considered on the ground of
the invariance criterion

pr(2)v (L) + (
Dμξμ

)
L = DμBμ

where Bα are certain differential functions. Then using their characteristics (19)
to find, from equality (18), explicit expressions for the corresponding conserved
currents Pα .

It is well-known (see [30]), that the Willmore functional (1) is invariant under the
conformal transformations of a closed surface S. This follows from the invariance
of the functional

∫
S

(
H2 − K

)
dA (21)
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under the group of conformal transformations (see [2, 28]) and the Gauss-Bonnet
theorem which states that the area-integral over the Gaussian curvature is a
topological invariant.

All vector fields v j , j = 1, . . . , 10 are variational symmetries of the Willmore
equation (2) and hence, ten linearly independent conservation laws

Dα Pα
j = 0, j = 1, . . . , 10

exist that hold on its smooth solutions. The corresponding conserved currents are

Pα
j = Nα

j L , j = 1, . . . , 7

Pα
8 = Nα

8 L − Qα1

Pα
9 = Nα

9 L − Qα2

Pα
10 = Nα

10 L + 2√
g
δαμwμ

where

Nα
j = ξα

j − 1

2
Q j Dμ

∂

∂wαμ

− 1

2
Q j Dμ

∂

∂wμα

+ 1

2

(
DμQ j

) ∂

∂wαμ

+ 1

2

(
DμQ j

) ∂

∂wμα

are the so-called Noether operators (cf. [10]), corresponding to the vector fields v j

with characteristics Q j , j = 1, . . . , 10, and

Qαβ = − 2√
g

eαμeβνgμν.

Note that

H = Dα

(
1

2
√
g
δαμwμ

)
, 4Hδαμwμ = DμQαμ.

4 Lie Group Analysis of the Membrane Shape Equation

One of the principle results in Sect. 3 is that the ten-parameter Lie group of special
conformal transformations in R

3 is the largest group of geometric (point) transfor-
mations of the involved independent and dependent variables that a generic equation
of the form (15) could admit. Using this result one can easily ascertain by inspection
that the symmetry group of the membrane shape equation (6) is restricted to the group
of motions in R

3 whose basic generators v j ( j = 1 . . . 6) and their characteristics
Q j are given in Table 4.
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Table 4 Generators and
characteristics of the group of
motions in R

3

Generators Characteristics

Translations
v1 = ∂

∂x1 Q1 = −w1

v2 = ∂
∂x2 Q2 = −w2

v3 = ∂
∂w

Q3 = 1
Rotations
v4 = −x2 ∂

∂x1 + x1 ∂
∂x2 Q4 = x2w1 − x1w2

v5 = −w ∂
∂x1 + x1 ∂

∂w
Q5 = x1 + ww1

v6 = −w ∂
∂x2 + x2 ∂

∂w
Q6 = x2 + ww2

All vector fields v j ( j = 1, . . . , 6) are variational symmetries of the membrane
shape equation (6) and hence, in virtue of Noether’s theorem, six linearly independent
conservation laws

Dα Pα
j = Q j E(L), α = 1, 2, j = 1, . . . , 6

exist that hold on the smooth solutions of this equation. The respective conserved
currents Pα

j are

Pα
j = Nα

j L .

5 Concluding Remarks

It should be noted that de Matteis and co-authors [3, 4] also studied the symmetry
properties of Eq. (2) and (6), but following a different approach to the problem.
Actually, they construct a system of four second and first order nonlinear differential
equations on the basis of Eq. (2) or (6) and Gauss-Codazzi-Mainardi equations of the
surface and apply Lie group analysis to that system. It is established in [4] that some
of the symmetry groups determined therein could be transformed to the first seven
symmetries, presented in Table 1. It seems that the other symmetry groups obtained
in [3, 4] can be interpreted as generalized symmetries of the Willmore equation
(2) in Monge representation, but this matter will be clarified elsewhere. Recalling
our comments concerning the invariance of the Willmore functional in subsection
3.2 it has been clear since 1973 that each symmetry generated by the vector fields
presented in Table 1 is a variational symmetry of the Willmore equation (2). Thus,
what is found in the sequent papers concerning the symmetries of this equation is
that the vector fields in Table 1 are the generators of the largest point symmetry group
admitted by the Willmore equation.

In closing, it is worth noting a result in [26] that each vector field v ∗ L SCT can be
mapped by a suitable inner automorphism (adjoint map) of the algebra L SCT to one
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of the following representatives of conjugacy classes of one-dimensional subalgebras
of this algebra

→v1∞ , →v4∞ , →v4 ± v3∞ , →v7∞ , →v10∞
→v7 + a1v4∞ , →v10 + a3v4∞ , →v7 + a2v4 ± v1∞ (22)

→v10 + a4v4 ± v3∞ , →v10 + a5v4 + a6v3 ± v1∞

where a1, . . . , a6 are real numbers. Thus, these vector fields constitute an optimal
system of one-dimensional subalgebras and the essentially different group-invariant
solutions depending on one independent variable correspond to the symmetry groups
generated by the vector fields (22). In parametric representation de Mateis and Manno
proved in [4] that the optimal system of one-dimensional subalgebras consists of one
representative and that there do not exist solutions of their equations invariant with
respect to two-dimensional subalgebras.
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