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Abstract In this chapter we study anti-plane shear waves propagating through a
cylindrically structured cancellous bone represented by a two-dimensional mesh of
elastic trabeculae filled by a viscous marrow. In the long-wave limit, the original
heterogeneous medium can be approximately substituted by a homogeneous one
characterized by an effective complex shear modulus. The effect of dispersion is
caused by the transmission of mechanical energy to heat due to the viscosity of
the marrow (viscoelastic damping). We derive an approximate analytical solution
using the asymptotic homogenization method; the cell problem is solved by means
of a boundary shape perturbation and a lubrication theory approaches. For short
waves, when the wavelength is comparable to the trabeculae size, the effect of
dispersion is caused by successive reflections and refractions of local waves at the
trabecula-marrow interfaces (Bloch dispersion). Decrease in the wavelength reveals
a sequence of pass and stop frequency bands, so the heterogeneous bone can act like
a discrete wave filter.
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1 Introduction

Animal and human bones are heterogeneous materials with a complicated hierar-
chical structure. Bone tissues occur in the two main forms: as a dense solid (cortical
or compact bone) and as a porous medium filled by a viscous marrow (trabecular
or cancellous bone) [17]. The basic mechanical discrepancy between these two
types consists in their relative densities measured by a volume fraction of solids.
Both types can be found in the most bones of the body. A classical example of the
macroscopic bone structure can be given by the long bones (e.g., humerus, femur,
and tibia). They include an outer shell of a dense cortical tissue surrounding an inner
core of a porous cancellous tissue.

The microstructure of cancellous bones is often described by two- or three-
dimensional mesh of interconnected rods and plates [12, 17, 21]. Despite the
obvious simplicity, such idealized models can provide a satisfactory agreement
between theoretical predictions and experimental results for the mechanical prop-
erties of real bones [10, 11, 15, 19, 25]. In the present paper, we shall deal with a
two-dimensional model of cylindrically structured cancellous bones.

Williams and Lewis [27] considered a real 2D section of a trabecular bone and
evaluated its elastic constants using the plane-strain finite elements method. The
developed approach enables one to predict mechanical properties of cylindrically
structured cancellous bones basing on the morphological measurements in the
transverse plane.

A challenging problem consists in the detection of the bone structure using non-
invasive measurements. The inverse homogenization approach (“dehomogenization
procedure”) [7] can help to derive information about the microgeometry of the bone
tissue from the magnitudes of static effective moduli. However, the static moduli
supply only limited morphological data. Much more information can be obtained
studying dynamic response of the bones. Measuring velocities and attenuation
of acoustic waves at different frequencies provide us with additional information
about the microstructure. Generally, frequency-dependent dynamic properties of the
bone may be considered as a kind of “identification portrait”, which is unique for
every sample. The larger is the explored frequency range, the more accurate is the
“portrait” that can be compiled. This should give a possibility to detect even very
small variations of the internal bone texture.

Acoustic waves propagating through cancellous bones undergo dispersion and
damping. There are two different physical effects influencing on the dynamic
properties of the bone: (i) transmission of mechanical energy to heat due to the
viscosity of the marrow (viscoelastic damping and dispersion) [16] and (ii) succes-
sive reflections and refractions of local waves at the trabecula-marrow interfaces
(Bloch dispersion) [2, 20]. From the theoretical standpoint, both effects are realized
simultaneously. However, their intensities are very frequency dependent. For many
real materials the effects of viscoelastic damping and Bloch dispersion are observed
in rather distant frequency ranges. In such a case they can be analyzed separately.

We study propagation of anti-plane shear waves through a 2D cylindrically
structured cancellous bones. In our work, we have shown what kind of dispersion
mechanism is dominant in the propagation of viscoelastic waves in the bone. This
is an important theoretical result, because it allows choosing an adequate simulation
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model for the solution of this class of problems. Namely, it is necessary to consider
Bloch dispersion and at the same time viscoelastic effects can be neglected, i.e. use
an elastic model of the media.

The input dynamic problem is formulated in Sect. 2. In Sect. 3, the long-
wave limit is considered. The solution is evaluated by means of the asymptotic
homogenization procedure, and the effect of viscoelastic damping is predicted. In
Sect. 4, the short-wave case is studied and the effect of Bloch dispersion is analyzed
by means of the plane-wave expansion method. Conclusive remarks are presented
in Sect. 5.

2 Input Dynamic Problem

We study transverse anti-plane shear waves propagating in the x1x2 plane through
a regular cancellous structure consisting of a spatially infinite elastic matrix
(trabeculae) �(1) and viscous inclusions (marrow) �(2) (Fig. 1). The governing two-
dimensional wave equation is

rx .Grxu/ D �
@2u

@t2
; (1)

where G is the complex shear modulus, � is the mass density, u is the longitudinal
displacement (in the x3 direction), and rx D e1@/@x1 C e2@/@x2, e1, e2 are the unit
Cartesian vectors.

Due to the heterogeneity of the medium, the physical properties G and � are
represented by piecewise continuous functions of co-ordinates:

G .x/ D G.a/; � .x/ D �.a/; for x 2 �.a/; x D x1e1 C x2e2: (2)

Fig. 1 Cancellous structure under consideration
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Here and in the sequel the superscript (a) denotes different components of
the structure a D 1, 2. In Eq. (2), G(1) is the real shear modulus of the elastic
matrix and G(2) is the frequency-dependent imaginary shear modulus of the marrow.
Following the linear theory of viscoelasticity, we can set G(2) D i!�(2), where ! is
the frequency of a harmonic wave and �(2) is the viscosity of the marrow.

Equation (1) can be written in the equivalent form:

G.a/r2
xxu.a/ D �.a/ @2u.a/

@t2
; (3)

˚
u.1/ D u.2/

�ˇ̌
@˝

;

�
G.1/ @u.1/

@n
D G.2/ @u.2/

@n

� ˇ̌
ˇ
ˇ
@˝

; (4)

where r2
xx D @2/@x2

1 C @/@x2
2, @/@n is the normal derivative to the contour @�. From

the physical standpoint, Eqs. (4) means the perfect bonding conditions at the
trabecula-marrow interface @�.

3 Long-Wave Approach: Asymptotic Homogenization

3.1 Two-Scale Asymptotic Procedure

We start with the case when the wavelength L is essentially larger than the internal
size l of the cancellous structure l < < L. The original heterogeneous bone can
be approximately substituted by a homogeneous one with a certain homogenized
(effective) complex shear modulus G0. Such an approach neglects local reflections
and refractions of the waves on microlevel. The effect of dispersion is caused by
the transmission of the mechanical energy of the acoustic wave to heat due to the
viscosity of the marrow.

Let us study the input boundary value problem (3), (4) by the asymptotic
homogenization method [4]. In order to separate macro- and microscale components
of the solution we introduce so-called slow x and fast y co-ordinate variables

x D x; y D "�1x; (5)

where y D y1e1 C y2e2, " D l/L is a natural small parameter, and search the displace-
ment as an asymptotic expansion

u.a/ D u0 .x/ C "u.a/
1 .x; y/ C "2u.a/

2 .x; y/ C : : : : (6)

The first term u0 of expansion (6) represents the homogenized part of the
solution; it changes slowly within the whole sample of the bone and does not
depend on the fast co-ordinates (@u0/@y1 D @u0/@y2 D 0). The next terms, u(a)

i ,
i D 1, 2, 3, : : : , provide corrections of the orders "i and describe local variations of
the displacements on microlevel.
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The differential operators read

rx D rx C "�1ry; r2
xx D r2

xx C 2"�1r2
xy C "�2r2

yy; (7)

where ry D e1@/@y1 C e2@/@y2, r2
xy D @2/(@x1@y1) C @2/(@x2@y2), r2

yy D @2/@y2
1

C @/@y2
2.

Splitting the input problems (3), (4) with respect to " leads to a recurrent sequence
of cell boundary value problems:

G.a/
�
r2

xxu.a/
i�2 C 2r2

xyu.a/
i�1 C r2

yyu.a/
i

�
D �.a/ @2u.a/

i�2

@t2
; (8)

n
u.1/

i D u.2/
i

oˇ̌
ˇ
@˝

;

(

G.1/

 
@u.1/

i�1

@n
C @u.1/

i

@m

!

D G.2/

 
@u.2/

i�1

@n
C @u.2/

i

@m

!) ˇ̌
ˇ
ˇ̌
@˝

; (9)

where i D 1, 2, 3, : : : , u(a)
� 1 D 0, @/@m is the normal derivative to the interface @�

written in fast variables.
For a spatially periodic medium, the terms u(a)

i have to satisfy the conditions of
periodicity

u.a/
i .x; y/ D u.a/

i

�
x; y C Lp

�
; (10)

and normalization
D
u.a/

i

E
D 0; (11)

where Lp D "� 1lp, lp D p1l1 C p2l2, p1, p2 D 0, ˙ 1, ˙ 2, : : : , l1, l2 are the funda-
mental translation vectors of the cancellous structure (see Fig. 1),

h�i D 1

S0

0

BB
@

“

˝
.1/
0

.�/ dy1dy2 C
“

˝
.2/
0

.�/ dy1dy2

1

CC
A (12)

is the homogenizing operator over the unit cell domain �0 D �
(1)
0 C �

(2)
0 (Fig. 2),

and S0 D L2 is the area of the unit cell in the fast co-ordinates.
Conditions (10) and (11) can be approximately replaced by zero boundary

conditions for same functions in the center and along the outer contour @�0 of the
unit cell:
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Fig. 2 Periodically repeated
unit cell

n
u.2/

i D 0
oˇ̌
ˇ
x;yD0

;
n
u.1/

i D 0
oˇ̌
ˇ
@˝0

: (13)

For 1D problems, Eq. (13) appears entirely equivalent to Eqs. (10) and (11).
For 2D problems, replacing the periodicity conditions by zero boundary conditions
increases stiffness of the system and, thus, provides an upper bound for the effective
properties. Analysis of numerical examples has shown that discrepancy between the
final solutions in both cases is not essential [1, 3], whereas utilizing approximation
(13) leads to a sufficient simplification of the cell problems.

Due to the periodicity of u(a)
i (10), Eqs. (8) and (9) can be considered within

only one distinguished unit cell. Solution of the cell problems (8), (9), (13) at i D 1
determines the term u(a)

1 . In order to find the effective modulus G0, the homogenizing
operator (12) is applied to Eq. (8) at i D 2. The terms u(a)

2 are eliminated by means
of Green’s theorem, which together with the boundary conditions (9) and the
periodicity relation (10) implies

D
G.a/

�
r2

xyu.a/
i C r2

yyu.a/
iC1

�E
D 0:

As a result, the homogenized wave equation of the order "0 is obtained:

D
G.a/

�
r2

xxu0 C r2
xyu.a/

1

�E
D ˝

�.a/
˛ @2u0

@t2
: (14)

Substituting here expressions for u(a)
1 evaluated below we shall come to a

macroscopic wave equation
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G0r2
xxu0 D �0

@2u0

@t2
; (15)

where �0 D (1 � c(2))�(1) C c(2)�(2) is the effective mass density, c(2) is the volume
fraction of the inclusions, c(2) D A/S0, A is the size of the inclusion (Fig. 2). The
effective modulus G0 can be derived after evaluation of the integrals in Eq. (14).

Below we find approximate solutions of the cell problem (8), (9), (13) and
determine the effective shear modulus G0 using a boundary shape perturbation and
lubrication theory approaches.

3.2 The Case c(2) < < 1: Boundary Shape Perturbation

If the volume fraction c(2) of the marrow inclusions is relatively small, the
square shapes of the domains �(1), �(2) can be approximately substituted by the
equal circles of radii R1, R2 so that c(2) D R2

2/R2
1 (Fig. 3). This simplification can

be considered as the first approximation of the method of the boundary shape
perturbation [1, 14].

Let us introduce in the unit cell the polar co-ordinates r2 D y2
1 C y2

2, tan � D y2/y1.
Equations (8), (9), and (13) at i D 1 read

@2u.a/
1

@r2
C 1

r

@u.a/
1

@r
C 1

r2

@2u.a/
1

@�2
D 0; (16)

Fig. 3 Simplification of the
unit cell in the case c(2) < < 1
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n
u.1/

1 D u.2/
1

oˇ̌
ˇ
rDR2

;

�
G.1/

	
@u0

@n C @u
.1/
1

@r



D G.2/

	
@u0

@n C @u
.2/
1

@r


� ˇ̌
ˇ̌
rDR2

;

(17)

n
u.2/

1 D 0
oˇ̌
ˇ
rD0

;
n
u.1/

1 D 0
oˇ̌
ˇ
rDR1

; (18)

where @/@n D cos �@/@x1 C sin �@/@x2.
Solution of the simplified cell problem (16)–(18) is

u.a/
1 D

�
C

.a/
1 r C C

.a/
2 r�1

� @u0

@n
; (19)

C
.1/
1 D

�
�.2/ � 1

�
c.2/

�.2/ C 1 � c.2/
�
�.2/ � 1

� ; C
.1/
2 D �

�
�.2/ � 1

�
R2

2

�.2/ C 1 � c.2/
�
�.2/ � 1

� ;

C
.2/
1 D �

�
�.2/ � 1

� �
1 � c.2/

�

�.2/ C 1 � c.2/
�
�.2/ � 1

� ; C
.2/
2 D 0;

where �(2) D G(2)/G(1).
Substituting expressions (19) into the homogenized equation (14), we obtain the

effective modulus G0 in the closed analytical form:

�0 D �.2/ C 1 C c.2/
�
�.2/ � 1

�

�.2/ C 1 � c.2/
�
�.2/ � 1

� ; (20)

where �0 D G0/G(1).
It should be noted that solution (20) is precisely the same as can be obtained

by the composite cylinder assemblage model and by the generalized self-consistent
scheme [8].

3.3 The Case c(2) ! 1: Lubrication Theory

In the case of densely packed marrow inclusions, when the volume fraction c(2) is
close to unit, c(2) ! 1, an asymptotic solution of the cell problem can be obtained
using as a natural small parameter the non-dimensional width ı D H/L of the trabec-
ula (Fig. 4). Let us suppose ı < < 1. Being restricted by the O(ı0) approximation,
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Fig. 4 Unit cell in the case
c(2) ! 1

for the matrix strips d˝1, d˝2, which separate neighbouring inclusions, one can
show

@2u.1/
1

@y2
1

>>
@2u.1/

1

@y2
2

for y 2 d˝1;
@2u.1/

1

@y2
1

<<
@2u.1/

1

@y2
2

for y 2 d˝2: (21)

The physical meaning of estimations (21) is that in the narrow strip d�1 the
variation of local stresses in the direction y1 is dominant and, hence, the term
@2u(1)

1 /@y2
2 can be neglected in comparison with @2u(1)

1 /@y2
1. Vice versa, in the strip

d�2, the dominant variation of the local stress field takes place in the direction
y2, so the term @2u(1)

1 /@y2
1 can be neglected in comparison with @2u(1)

1 /@y2
2. Such

a simplification is similar to the basic idea of the well-known lubrication theory,
which was used in the theory of composites for many years [8, 9].

Following estimations (21), in the O(ı0) approximation, Eq. (8) reads

G.1/

 
@2u.1/

i�2

@x2
s

C 2
@2u.1/

i�1

@xs@ys

C @2u.1/
i

@y2
s

!

D �.1/ @2u.1/
i�2

@t2
; (22)

G.2/
�
r2

xxu.2/
i�2 C 2r2

xyu.2/
i�1 C r2

yyu.2/
i

�
D �.2/ @2u.2/

i�2

@t2

Solution of the simplified cell problems (9), (13), (22) at i D 1 is

u.2/
1 D �

�
1 � p

c.2/

� �
�.2/ � 1

�

�.2/ � p
c.2/

�
�.2/ � 1

�ys

@u0

@xs

; (23)
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Fig. 5 Effective modulus in the elastic case. Solids—formula (20), dashes—formula (24). (a)
�(2) D 5. (b) �(2) D 0.2

u.1/
1 D �

p
c.2/

�
�.2/ � 1

�

�.2/ � p
c.2/

�
�.2/ � 1

�
	

L

2
� ys



@u0

@xs

at ys > 0;

u.1/
1 D

p
c.2/

�
�.2/ � 1

�

�.2/ � p
c.2/

�
�.2/ � 1

�
	

L

2
C ys



@u0

@xs

at ys < 0;

where s D 1, 2.
For the effective shear modulus we obtain

�0 D
�.2/ � p

c.2/

�
1 � p

c.2/

� �
�.2/ � 1

�

�.2/ � p
c.2/

�
�.2/ � 1

� : (24)

Numerical results, calculated by formulas (20) and (24), are very close (except
the case �(2) < 1, c(2) ! 0). This is illustrated at Fig. 5 for real values of �(2), which
correspond to elastic materials. Moreover, in the limit c(2) ! 1, the approximate
solutions (20) and (24) exhibit the same asymptotic behaviour and give identical
expansions for �0 until the order O[(1 � c)2]:

�0 D �.2/ � 1

2

�
�.2/ � 1

� �
�.2/ C 1

� �
1 � c.2/

�C O
h�

1 � c.2/
�2i

at c.2/ ! 1:

This fact reveals that for the cancellous structure under consideration, expression
(20), originally obtained for the case c(2) < < 1, provides a reasonable approxima-
tion in the whole region of the inclusions volume fraction 0 � c(2) � 1.
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3.4 Propagation of Long Waves

Let us consider a harmonic wave

u0 D U exp .�i� � x/ exp .i!t/ ; (25)

where U is the amplitude, ! is the frequency, and � D �1e1 C �2e2 is the wave
vector and the direction of propagation is determined by the angle ˛, tan ˛ D �2/�1.

Separating real �R and imaginary �I parts of the wave vector � D �R � i�I ,
expression (25) reads

u0 D U exp .��I � x/ exp .�i�R � x/ exp .i!t/ : (26)

Here �I D j�Ij is the attenuation factor and �R D j�Rj D 2� /L is the wave
number.

For the viscoelastic composite medium, the effective complex modulus G0, the
attenuation coefficient �I and the phase velocity vp D !/�R depend on the frequency
of the travelling signal. Substituting expression (26) into the macroscopic wave
equation (15), we obtain

.G0;R C iG0;I / .�I C i�R/2 D ��0!2; (27)

where G0,R, G0,I are, respectively, the real and the imaginary part of G0,
G0 D G0,R C iG0,I . Collecting in Eq. (27) the terms at 1 and i, after routine
transformations we derive

�I D �R tan .'0=2/ ; v2
p D v2

0

cos .'0=2/2
; (28)

where tan(®0) D G0,I /G0,R is the effective loss tangent and v0 D pjG0j =�0 is the
effective velocity in the elastic case.

Adopting for G0 the solution (20), we obtain

G0 D G.1/ G.1/.1�c.2//Ci!�.2/.1Cc.2//
G.1/.1Cc.2//Ci!�.2/.1�c.2//

;

tan .'0/ D 4G.1/c.2/!�.2/
h
1�.c.2//

2
ih

.G.1//
2C.!�.2//

2
i :

(29)

In the numerical examples presented below we accept some rough estimations of
the properties of the components following Bryant et al. [6], Guo [13], and Van Riet-
bergen and Huiskes [26]. The shear modulus of the trabeculae is G(1) D 3.85 � 109 Pa
and the viscosity of the marrow is �(2) D 0.15 Pa � s (at the room temperature of
20 ıC) and �(2) D 0.05 Pa � s (at the body temperature of 37 ıC). The trabeculae
volume fraction c(1) D 1 � c(2) can vary from 0.05–0.1 for aged osteoporotic bones
to 0.3–0.35 for young normal bones.
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Fig. 6 Attenuation factor of a normal bone. Solids—�(2) D 0.05 Pa � s, dashes—�(2) D 0.15 Pa � s

Dependencies of the attenuation factor �I upon the frequency ! are displayed
at Fig. 6 (normal bone, c(1) D 0.3) and Fig. 7 (osteoporotic bone, c(1) D 0.1).
The dispersion effect vanishes (i) at ! ! 0, when the deformation rate is small and
the stiffness of the marrow is negligible, and (ii) at ! ! 1, when the deformation
rate is high, so the marrow acts like a perfectly stiff medium. Decrease of the
trabeculae volume fraction c(1) leads to the intensifying of the dispersion: the
damping frequency region extends and the attenuation factor �I grows. Decrease
in temperature (i.e. increase in the marrow viscosity �(2)) leads to a reduction of
the damping frequency. In any case, for physically meaningful values of the bone
properties, the effect of viscoelastic damping can be observed starting from the
frequencies of the order 100 MHz and higher.

It should be noted that in the long-wave limit (l < < L) the cancellous structure
under consideration is transversely orthotropic. The obtained solution for anti-plane
shear waves is isotropic in the plane x1x2, so the parameters G0, ®0 do not depend
on the direction of the wave propagation. The effect of anisotropy is predicted in the
case of short waves (see Sect. 4).

4 Floquet-Bloch Approach: Plane-Wave Expansion Method

When the wavelength L is comparable to the internal size l of the cancellous
structure, the effect of dispersion is caused by successive reflections and refractions
of local waves at the trabecula-marrow interfaces. Decrease in the wavelength
reveals a sequence of pass and stop frequency bands (so-called phononic bands)
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Fig. 7 Attenuation factor of an osteoporotic bone. Solids—�(2) D 0.05 Pa � s, dashes—
�(2) D 0.15 Pa � s

[2, 20]. Thus, a heterogeneous bone can act as a discrete wave filter. If the
frequency of the signal falls within a stop band, a stationary wave is excited and the
neighbouring trabeculae vibrate in alternate directions. On macrolevel the amplitude
of the global wave attenuates exponentially, so no propagation is possible.

In order to explore such a case, let us assume the threshold of the first stop band
to be essentially lower than the viscoelastic damping frequencies. The marrow is not
involved into the shear deformation, so we can set G(2) D 0, �(2) D 0.

Following the Floquet-Bloch theorem [5], a harmonic wave propagating through
a periodic cancellous structure is represented in the form

w D F .x/ exp .i� � x/ exp .i!t/ ; (30)

where F(x) is a spatially periodic function, F(x) D F(x C lp).
We use the plane-wave expansion method [20, 23] and express the function F(x)

and the material properties G(x), �(x) as infinite Fourier series:

F .x/ D
1X

k1D�1

1X

k2D�1
Ak1k2 exp

�
i
2�

l
.k1x1 C k2x2/

�
;

G .x/ D
1X

k1D�1

1X

k2D�1
Bk1k2 exp

�
i
2�

l
.k1x1 C k2x2/

�
;

� .x/ D
1X

k1D�1

1X

k2D�1
Ck1k2 exp

�
i
2�

l
.k1x1 C k2x2/

�
;

(31)
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where

Bk1k2 D 1
l2

“

�0

G .x/ exp

�
�i

2�

l
.k1x1 C k2x2/

�
dx1dx2;

Ck1k2 D 1
l2

“

�0

� .x/ exp

�
�i

2�

l
.k1x1 C k2x2/

�
dx1dx2;

the operator
“

�0

.�/dx1dx2 denotes integration over a distinguished unit cell �0.

Substituting Ansatz (30) and expansions (31) into the wave equation (1) and
collecting the terms exp[i2� l� 1(j1x1 C j2x2)], j1, j2 D 0, ˙ 1, ˙ 2, : : : , we come to
an infinite system of linear algebraic equations for the unknown coefficients Ak1k2 :

1X

k1D�1

1X

k2D�1
Ak1k2

8
ˆ̂<

ˆ̂:
B

j1 � k1;

j2 � k2


�
2�
l

k1 C �1

� �
2�
l

j1 C �1

�C

C �
2�
l

k2 C �2

� �
2�
l

j2 C �2

�� �C
j1 � k1;

j2 � k2

!2

9
>>=

>>;
D 0:

(32)

System (32) has a nontrivial solution if and only if the determinant of the matrix
of the coefficients is zero. Equating the determinant to zero, we derive a dispersion
relation for ! and �. It should be noted that the plane-wave expansion method
does not use explicitly the bonding conditions (4), whereas they are “embedded”
implicitly into Eq. (1) and expansions (31).

To illustrate the appearance of phononic band gaps, let us rewrite Ansatz (30)
separating real �R and imaginary �I parts of the wave vector � D �R � i�I :

w D F .x/ exp .��I � x/ exp .i�R � x/ exp .i!t/ : (33)

The imaginary part �I � j�Ij represents the attenuation factor. Frequency regions
where �I ¤ 0 correspond to stop bands (signal (30) attenuates exponentially), while
regions where �I D 0 correspond to pass bands.

In numerical examples the dispersion relations are calculated approximately by
the truncation of the infinite system (32) supposing � jmax � js � jmax. The number of
the kept equations is (2jmax C 1)2. We expect that increase in jmax shall improve the
accuracy of the solution. From the physical point of view, such a truncation means
cutting off the higher frequencies.

Figure 8 displays dispersion curves for a normal bone with the following prop-
erties of the trabecular tissue: G(1) D 3.85 � 109 Pa, �(1) D 1900 kg/m3, c(1) D 0.3.
Calculations are performed at jmax D 3. The diagram consists of two (left and
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Fig. 8 Dispersion curves of a normal bone

right) parts separated by a vertical dash line. The right part displays a solution
for the orthogonal direction (˛ D 0) and the left part for the diagonal direction
(˛ D � /4) of the wave propagation. The results for the frequency ! are normalized
to !0 D v0�R D 2�v0/L. We can observe that in the long-wave case (! ! 0, l/L ! 0)
the solution is isotropic. However, with the increase in ! and decrease in L, the
cancellous structure exhibits an anisotropic behaviour.

Shaded areas at Fig. 8 indicate the threshold of the first stop bands. Let us
estimate the corresponding values !s of the frequency. We obtain !sl/(!0L) � 0.29
at ˛ D 0 and !sl/(!0L) � 0.41 at ˛ D � /4. The typical length of trabeculae is
about l � 10� 3m. Taking into account !0 D 2�v0/L, v0 D p

G0=�0, we derive
!s � 2.0 MHz at ˛ D 0 and !s � 2.8 MHz at ˛ D � /4.

5 Conclusions

For anti-plane shear waves the effect of Bloch dispersion, caused by the hetero-
geneity of cancellous bones, appears at essentially lower frequencies than the effect
of viscoelastic damping, caused by the viscosity of the marrow. Bloch dispersion
is expected to play the primary role in the processes of ultrasonic diagnostic,
which usually deals with acoustic waves in the regions 1–10 MHz. The viscoelastic
damping can be neglected until the frequency of about 100 MHz. Obtained results
may be used for the development of new methods of non-invasive testing and
diagnostic.

In the present paper, a perfectly regular arrangement of marrow inclusions is
investigated. It is clear that the microstructure of real bones is not regular. At the
same time, it has been shown in a number of studies [18, 22, 24] that regular
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structures exhibit the narrowest stop bands in comparing to disordered systems.
Thus, the obtained solutions may be treated as theoretical bounds for the stop band
thresholds that appear in randomly disordered bone tissues.
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