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Abstract The purpose of the present work is to show that an adequate basis
for understanding the essentially nonlinear phenomena must also be essentially
nonlinear but still simple enough to play the role of a basis. It is shown that such
types of “elementary” nonlinear models can be revealed by tracking the hidden links
between analytical tools of analyses and subgroups of the rigid-body motions or,
in other terms, rigid Euclidean transformation. While the subgroup of rotations is
linked with linear and weakly nonlinear vibrations, the translations with reflections
can be viewed as a geometrical core of the strongly nonlinear dynamics associated
with the so-called vibro-impact behaviors. It is shown that the corresponding
analytical approach develops through non-smooth temporal substitutions generated
by the impact models.

1 Introduction

This work is motivated by the intent to introduce a unified physical basis for analyz-
ing vibrations of essentially unharmonic, non-smooth, or maybe discontinuous time
shapes. Transitions to non-smooth limits can make investigations especially difficult
due to the fact that the dynamic methods were originally developed within the
paradigm of smooth motions based on the classical theory of differential equations.
From the physical standpoint, such way is natural for modeling the low-energy
motions. Although the impact dynamics has also quite a long prehistory, non-
smooth behaviors are often viewed as an exemption rather than a rule. Notice that
the classical theory of differential equations usually avoids non-differentiable and
discontinuous functions. Presently, however, many theoretical and applied areas
are dealing with the high-energy phenomena accompanied by strongly nonlinear
spatiotemporal behaviors making the classical smooth methods difficult to apply.
For instance, such phenomena are considered in engineering analyses of dynamical
systems under constraint conditions, friction-induced vibrations, structural damages
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due to cracks, liquid sloshing impacts, etc. Similarly to the well-known analogy
between mechanical and electrical harmonic oscillators, the so-called Schmitt
trigger circuits generate non-smooth signals whose temporal shapes resemble the
mechanical vibro-impact processes. In many such cases, it is still possible to adapt
different smooth methods of the dynamic analyses through strongly nonlinear
algebraic manipulations with state vectors or by splitting the phase space into
multiple “smooth domains.” As a result, formulations are often reduced to the
discrete mappings in a wide range of the dynamics from periodic to stochastic.
It will be shown that a complementary analytical tool can be built on generating
models developing essentially unharmonic behaviors as their inherent properties.
For instance, the methodology presented in this work employs elementary impact
systems as a physical basis for describing different types of unharmonic processes.
This is implemented through the non-smooth time substitutions introduced origi-
nally for strongly nonlinear but smooth models [5]. Besides, as was shown in [4],
such methodology reveals explicit links between the impact dynamics and the
algebra of hyperbolic numbers analogously to the link between harmonic vibrations
and conventional (elliptic) complex analyses.

2 Physical and Mathematical Principles

2.1 Linear and Elementary Nonlinear Phenomena

Although the notion of linearity is quite clear in terms of mathematical formulations,
the attempt to directly associate the mathematical definition with physical phenom-
ena faces ambiguities due to the fact that the differential equations of motion for
the same model may appear to be either linear or nonlinear if switching between
different types of coordinates. For instance, a mechanical system, which is linear
in Cartesian coordinates, becomes nonlinear in polar coordinates. Nevertheless,
recognizing the unique role of Cartesian coordinates, it was suggested to define
a mechanical system as linear if the corresponding differential equations of motion
are linear in Cartesian coordinates.1 The purpose of this subsection is to determine
the most elementary dynamic phenomena that can already be qualified as essentially
nonlinear. For that reason, it is convenient to consider the linear situation first, for
instance, on a typical mass-spring model; see Fig. 1a, where all the springs are
assumed to be linearly elastic. The corresponding position vector is represented in
the following complex form:

q D A1 exp .i!1t C '1/ C A2 exp .i!2t C '2/ (1)

where Ak are constant complex vectors and !k and ®k (k D 1, 2) are the modal
frequencies and initial phases.

1This definition was suggested by V. Zhuravlev (private communication, Moscow, 1989).
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Fig. 1 Vibration of the linearly elastic system (a) is represented by the rigid-body rotations (b);
the impact oscillator; (c) is associated with the rigid-body translation and reflection (d)

The fragment (b) in Fig. 1 shows another mechanical system whose dynamics is
described by the same expression (1), if the system’s position is identified by the
two points fixed at the edges of the discs. Therefore, the one-dimensional dynamics
generated by linearly elastic restoring forces can be represented by the rigid-body
rotations. In other words, the linearly elastic forces are effectively eliminated by
increasing the dimension of space. To some extent, such simple observation provides
an explanation why the sine and cosine waves possess so convenient mathematical
properties. Namely these harmonic functions represent the subgroup of elementary
rigid-body motions, such as rotation. Furthermore, the link between the two models,
(a) and (b), in Fig. 1, enables one to associate the linearity with the subgroup of
rotations.

Apparently, the rotations do not cover all the rigid-body motions – rigid
Euclidean transformations. These include also translations and reflections. The
translation itself seems to have a little physical content. However, combinations
of translation and reflection appear to be more interesting as shown in Fig. 1c, d
through the corresponding mechanical representations. In particular, the fragment
(c) shows a typical impact oscillator, whereas the fragment (d) illustrates a single
reflection case, which can be viewed as the most elementary nonlinear phenomenon.

2.2 Impact Models and Non-smooth Temporal Substitutions

Based on the class of linear generating models, whose typical representative is
shown in Fig. 1a, the quasi-harmonic methods for nonlinear vibration theory are
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Fig. 2 Different versions of non-smooth temporal substitutions generated by the impact models

well developed and widely used. In contrast, using the models associated with
the translation-reflection, as those shown in Fig. 1c, d, is less common. Despite
of being geometrically simple, such models are not described within the classical
theory of differential equations due to the presence of discontinuities in the dynamic
states. This fact essentially complicates any direct use of the impact models as
a basis for building asymptotic or iterative procedures. It is shown, however, that
appropriate preliminary adaptations of the differential equations of motion can be
conducted through the non-smooth time substitutions listed in the third column
of Fig. 2. In particular, the first row explains how such type of substitutions
is introduced. Namely, the basic function s D jt � aj is the model’s coordinate,
which can be interpreted as an eigentime of the system provided that nothing
else happens except the translation and reflection under consideration. The goal
is to introduce a new temporal argument, say s, in order to obtain the differential
equation of motion for the model, which is shown on the left of first row in Fig. 2.
Apparently, the substitution t ! s cannot work directly since no inversion t D t(s)
does exist on the entire time domain. Nevertheless, the following generalization
holds t D t .s; Ps/; see the first row on its right in Fig. 2 for details. In particular, this
inversion appears to have the specific algebraic structure of hyperbolic numbers
with the basis f1; Psg. In contrast to the conventional elliptic complex numbers,
the unipotent Ps, if squared, gives the positive sign, namely, Ps2 D 1. Interestingly
enough, the hyperbolic numbers have been known for about one and a half century
as abstract algebraic elements with no relation to the nonlinear dynamics or non-
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Fig. 3 The “oscillating time”
£ changes its direction
whenever a system makes a
U-turn, while the original
physical time t runs to infinity
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smooth functions (http://en.wikipedia.org/wiki/Split-complex_number). Moreover,
such numbers have been reintroduced multiple times under different names; see [1]
for an explanation of this fact and further details. In the present case, the hyperbolic
structures are generated by the non-smooth temporal arguments of impact systems,
while the unipotent Ps possesses a clear physical interpretation as the normalized
velocity of impact system. Different applications to the vibration problems are based
on the periodic version illustrated by the second row of Fig. 2. In particular, the
equation on the right of the row means that during one period, the time argument is
expressed through the dynamic states of impact oscillator in the form of hyperbolic
number with the unipotent P� [4, 5]. This statement therefore applies to any periodic
process. Figure 3 provides a geometrical interpretation of the “oscillating time” �

for the particular case of periodic process described by the even function x(t) with
respect to the quarter of period, t D a.

Finally, in the third row of Fig. 2, the original time argument is structurised to
match the one-dimensional dynamics of rigid-body chain of identical particles. The
continuous “global” time is associated with the propagation of linear momentum,
whereas a sequence of non-smooth “local” time arguments describes the behavior
of individual physical particles. Such an idea helps to incorporate the temporal
symmetries of the dynamics into the differential equations of motion in many other
cases of regular or irregular sequences of internal impacts or external pulses. Since
the local times are bounded, a wider range of analytical tools becomes applicable.

2.3 Different Asymptotic Approaches to the Vibration Theory

Figure 4 provides further illustration for logical links between two alternative
approaches to the vibration problems. Interestingly enough, the illustration is possi-
ble within the same one-degree-of-freedom model, which is shown at the first row
of Fig. 4. Note that the oscillators with power-form characteristics were considered
for quite a long time. For instance, Lyapunov obtained such oscillators while
investigating degenerated cases of the dynamic stability problems [2]. Besides,
he introduced a couple of special functions, cs and sn, in order to invert the

http://en.wikipedia.org/wiki/Split-complex_number
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Fig. 4 Two alternative approaches to the vibration theory based on the harmonic and impact limits

corresponding quadratures. This relatively simple model nevertheless depicts the
gradual transition from linear to strongly nonlinear dynamics as the exponent n
runs from unity to infinity. Notably, all the temporal mode shapes of the oscillator
are described by the special functions cs and sn, except the two boundaries of the
interval 1 � n < 1. Both boundaries represent simple asymptotic limits described
within the class of elementary functions.

Consider first the limit of harmonic oscillator (n D 1), generating the sine and
cosine waves; see the left of the second row. The widely known convenience of
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using this couple of functions can be explained by their links to the elementary
rigid-body motions, namely the subgroup of rotations. The algebra of conventional
(elliptic) complex numbers with the corresponding complex plane representation
can be viewed as a next hierarchic step here due to the well-known Euler formula.
Finally, taking the linear combination of harmonic waves with different frequencies
and keeping in mind the idea of parameter variations lead the area of harmonic and
quasi-harmonic analyses of vibrating systems. Such tools therefore represent the
dynamic processes as a combination of the elementary rigid-body rotations with
different angular speeds.

Let us consider now the limit n ! 1, when the restoring force vanishes inside
the interval � 1 < x < 1 but becomes infinitely large as the system reaches the
potential barriers at x D ˙ 1. The physical meaning of this limit is introduced at
the top of the right column in Fig. 4. Despite of the strong (impact) nonlinearity, the
limiting oscillator is also described by quite simple elementary functions such as the
triangular sine and rectangular cosine, say � and P� . These two non-smooth functions
are associated with another subgroup of the rigid-body motions, namely translation
and reflection. Therefore, analogously to the case n D 1, the upper limit n D 1 can
play the same fundamental role by generating a hierarchy of tools as listed in the
right column of Fig. 4.

3 Further Mathematical Properties and Examples

This section describes the basic mathematical properties of the non-smooth temporal
substitutions introduced in Fig. 2. These properties are used then for derivations in
different illustrating examples.

3.1 Mathematical Properties

Consider first the single reflection case; see the first row of Fig. 2. Algebraic,
differential, and integral properties are as follows:

• Isomorphism with 2 � 2 symmetric matrixes:

t 2 D .a C s Ps/2 D a2 C s2 C 2as Ps

bt
2 D

�

a s

s a

�2

D
�

a2 C s2 2as

2as a2 C s2

�

• Functional linearity holds for any function x(t):

x.t/ D x .a C s Ps/ D X.s/ C Y.s/Ps (2)
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X.s/ D 1
2

Œx. a C s /Cx. a � s /�

Y.s/ D 1
2

Œx. a C s /�x. a � s /�

For instance, exp.t/ D exp.a/.cosh s C Ps sinh s/

• Division is conditioned to exclude the possibility of zero denominators:

t�1 D .a � s Ps/

.a C s Ps/ .a � s Ps/
D a � s Ps

a2 � s2
D a

a2 � s2
� s

a2 � s2
Ps

.s ¤ jaj/

• Sequential differentiation remains in the algebra of hyperbolic numbers under
the smoothness conditions at s D 0:

d

dt
ŒX.s/ C Y . s /Ps� D Y 0.s/ C X 0.s/Ps

if Y.0/ D 0
(3)

d 2

dt2
ŒX.s/ C Y . s /Ps� D X 00.s/ C Y 00.s/Ps

if Y.0/ D 0; X 0.0/ D 0

• Integration remains in the algebra of hyperbolic numbers:

Z

ŒX .s.t// C Y .s.t// Ps.t/�dt

D
2

4

s
Z

0

Y.z/d z C C

3

5 C
2

4

s
Z

0

X.z/d z

3

5Ps

3.2 Sample Solution Procedure for the s-Case

Let us consider the following initial value problem:

Px C �x D 2pı .t � a/ � p Rs
x.0/ D 0

s D jt � aj
(4)
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Introducing the new temporal argument, t ! s, generates the following substitu-
tion for the unknown function: x.t/ D X.s/ C Y.s/Ps. As a result, the differential
equation takes the form

Y 0 C �X
„ ƒ‚ …

regular

C �

X 0 C �Y
� Ps

„ ƒ‚ …

step�wise discont:

C .Y � p/ Rs
„ ƒ‚ …

singular term

D 0 (5)

Equating separately the terms of different levels of singularity in (5) to zero leads
to the following boundary value problem with no singular terms:

8

<

:

Y 0 C �X D 0

X 0 C �Y D 0

p � Y.0/ D 0

(6)

The initial condition in (4) yields

X.a/ � Y.a/ D 0 (7)

The boundary value problem (6) and (7) is easy to solve in few steps. Then the
corresponding solution of the original initial value problem (4) is obtained in the
closed-form x.t/ D p exp .��s/ .1 C Ps/; see Fig. 5 for illustration.

3.3 Properties and Sample Solution for the �-Case

Algebraic and differential properties of the periodic � -version, which is shown in the
second row of Fig. 2, are similar to those listed in Sect. 3.1. Note that, although the
analytical definitions for the basic functions � and P� look more complicated in this
case, there is no need for memorizing them. What is necessary for solving problems
is the following properties:

Fig. 5 Solution of problem
(4) under the following
parameters: P D 1.0; a D 1.0;
� D 1.0
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t
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P� D e; e2 D 1; Pe ¤ 0 () � D ˙1 (8)

The third relationship in (8) means that whenever £ reaches its amplitude values,
a ı-spike occurs from the following series:

Pe.t/ D 2

1
X

kD�1
Œı .t C 1 � 4k/ � ı .t � 1 � 4k/�

In other words, the present situation is quite similar to analytical manipulations
with the conventional trigonometric functions using only the function properties
with no involvement of their definitions. In order to illustrate the manipulations, let
us consider the overdamped oscillator under the rectangular cosine loading:

Px C �x D pe.t/ (9)

The unknown periodic solution is represented in the form [4]

x D X .�/ C Y .�/ P� (10)

Substituting (10) in (9) and taking into account properties (8) gives

Y 0 C �X
„ ƒ‚ …

regular

C �

X 0 C �Y � p
�

e
„ ƒ‚ …

step�wise discont:

C Y Pe
„ƒ‚…

singular

D 0 (11)

Equating separately to zero the terms of different levels of singularity gives the
autonomous boundary value problem with no discontinuities:

8

<

:

X 0 C �Y D p

Y 0 C �X D 0

Y .˙1/ D 0

(12)

Substituting solution of the boundary value problem (12) in (10) gives finally the
periodic closed-form solution of the original equation (9); see Fig. 6 for illustration:

x D p

�

�

sinh.��/

cosh�
C

�

1 � cosh .��/

cosh �

�

e

	

(13)

Obviously, (9) can be also solved by means of either Fourier series or Laplace
transforms or directly by matching different pieces of solution under periodicity
conditions. However, using the Fourier series, for instance, requires a very large
number of terms near the non-smoothness points as shown in Fig. 6.
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Fig. 6 Solution (13) for two
different magnitudes of the
parameter: � D 1.0 – solid
line, larger amplitude;
� D 5.0 – thin line, smaller
amplitude
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4 Conclusions

This paper outlines the basic principles of non-smooth temporal substitutions and
gives exactly solvable illustrating examples. Note that the transition to non-smooth
temporal argument should be viewed as a preliminary stage of analyses. Such stage
of transformation incorporates the specifics of external loading or/and inherent
properties of a physical system into the new equations. As a result, a much wider
range of analytical and numerical methods becomes possible to apply. This is due
to the fact that the new temporal arguments vary within narrower domains and
automatically capture the major temporal symmetries of the dynamics, such as
periodicity and reflections. The corresponding analytical algorithms and solutions
for different strongly nonlinear oscillators can be found in the reference [4]. The
typical form of such solutions is power series with respect to the triangular sine
� ; see row 5 in Fig. 4 for explanation. Note that direct power series expansions
with respect to the original time t usually make little sense for vibration problems
due to the loss of periodicity. The amplitude and frequency modulated motions can
be analyzed by adding a slow time argument to representation (10) and then using
the idea of two variables or multiple-scale expansions. Let us mention also a new
area of applications, which is being developed due to an interesting observation
that the temporal mode shapes of the phase variable, describing the 1:1 resonance
energy exchange between weakly nonlinear oscillators, resemble the dynamic states
of impact oscillator [3]. In particular, it was found that such “impacts” take place
when the entire energy is involved into the exchange process.

Finally, let us summarize the revealed links between specific cases of the
Euclidean rigid transformations, the induced algebraic structures, and linear and
nonlinear dynamics. The class of rigid transformations T of an arbitrary vector r is
described by the expression T(r) D Ar C b, where A and b are the orthogonal matrix
and a constant translation vector, respectively. Then the abovementioned logical
links are illustrated by the table, which can be viewed as an extension of Fig. 4:
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det .A/ D
8

<

:

C1 () Rotation () i 2 D �1 Elliptic numbers () Linear dynamics
0 () Singular case () i 2 D 0 Parabolic numbers () ‹

� 1 () Reflection () i 2 D C1 Hyperbolic numbers () Nonlinear dynamics

where the singular case generates an open question.
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