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Abstract Nowadays, we have entered the era of big data, and we have to deal
with complex systems and massive data frequently. Facing complicated objects,
how to describe or present objects is the base to solve questions frequently. So we
suppose that a problem solving space, or a problem space for short, is described by
a triplet (X, f, C), and assume that X is a domain, R is an equivalence relation on X,
U is a topology of X, [X] is a quotient set under R. Regarding [X] as a new domain,
we have a new world to analyse and to research this object, consequently we
describe or present a question into different granule worlds, these granular worlds
are called the quotient space. Further we are able to predigest and solve a question,
i.e. we apply quotient space and granulate to represent an object. Comparing rough
set and decision-making tree, the quotient space has the stronger representation.
Not only it can represent vectors of the problem domain, different structures
between vectors, but also it can define different attribute functions and operations
etc. In this paper, we discuss the method how to represent and to partition an object
in granular worlds, and educe the relationship of different granular worlds and
confirm the degree of granule. We will prove three important theorems of different
granules, i.e. to preserve false property theorem and to preserve true property
theorem. To solve a problem in different granular worlds, the process procedure of
quotient approximate will be applied. We also supply an example of solving
problem by different granule worlds—the shortest path of a complex network. The
example indicates that to describe or present a complicated object is equal to
construct quotient space. In quotient set [X], the complexity to solve a problem is
lower than X. We have a new solution method to analysis a big data based on the
quotient space theory.
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1 Introduction

When we confront complex problems which are hard to handle them accurately,
it’s not usual to pursue the optimal solution in either systematic or precise way. On
the contrary, we reach the limited and reasonable destination step by step, in one
way or another, it means we achieve the so-called satisfactory solution. Thanks to
the multi-granularity analysis which is sketchy, from coarse to fine and more and
more accurate, we successfully avoid the difficulties on the computational com-
plexity. Just in this way, a lot of nonpolynomial questions are smoothly solved.

It is just said by Zhang in [1, 2] ‘‘One of the basic characteristics in human
problem solving is the ability to conceptualize the world at different granularities
and translate from one abstraction level to the others easily, i.e. deal with then
hierarchically.’’ Because of the differences of the point of observing an object and
the object’s further information, a complicated object can be briefed some points
that reserve the important characteristics and performances according to the
demand to analyse and solve a problem. These points are the representation of
different granule worlds.

Existing studies of granular computing typically concentrate on concrete
models and computational methods in particular contexts. They unfortunately only
reflect specific aspects of granular computing. In fact, there does not exist a formal,
precise, commonly agreed, and uncontroversial definition of what is granular
computing, nor there is a unified model. Consequently, the potential applicability
and usefulness of granular computing are not well perceived and appreciated [3].
Many methods and models of granular computing have been proposed and studied
[4–9]. The results enhance our understanding of granular computing. Granular
computing comes with a number of interesting pursuits [10–12]. The idea of
information granulation offers immediate advantages. It provides tangible benefits
in fuzzy modeling by supporting meaningful ways of striking a sound balance
between interpretability and accuracy of fuzzy models [13–16], they offer some
ways of assessing the performance of the model formed in this way.

The granule world that we define is different from the information granule (IG)
that Pawlak proposes. The information granule what is said is a kind of reflection
of limited abilities that people deal with and store information, i.e. when facing a
lot of complicated information and having the limited abilities, people need par-
tition the information into some simple information blocks according to each
characteristic and performance in order to deal with easily. The information block
is thought a granule [17–20]. Because information granules are partitioned
according to equivalence relation, this only changes the granule of domain of
problems and attributed relationship, and the space structure does not been

172 Y. Zhang et al.



changed. The representation of different granule worlds—quotient space in this
paper changes granules not only the domain and attributed relationship but also the
space structure of a problem.

In 1990, Bo Zhang and Ling Zhang firstly proposed a new theory, Quotient
Space Theory (briefly QST) [1], which was pay high attention to by domes-
tic and overseas scholars. In 1992, the monograph on QST Theory and Applica-
tions of Problem Solving [2] was published. In clear–cut classification, we use
equivalence relation for establishing our model. A natural question is whether
fuzzy equivalence relation can be used for constructing fuzzy classification model.
So we have done some research on fuzzy quotient space [21–23]. Recently, we try
to use QST to analysis complex networks and some dynamic information [24–27].

When QST contrast with Zadeh’s granule computing [28–30], it will transform
the original quotient space to fuzzy quotient space with the aid of fuzzy relation of
equivalence. Owing to the condition, we think both are similar.

In this paper, we discuss the method how to represent and to partition an object
in granular worlds, and educe the relationship of different granular worlds and
confirm the degree of granule. We will prove two important theorems of different
granules, i.e. to preserve false property theorem and to preserve true property
theorem. To solve a problem in different granular worlds, the process procedure of
quotient approximate will be applied. We also supply an example of solving
problem by different granule worlds—the shortest path of a complex network. The
example indicates that to describe or present a complicated object is equal to
construct quotient space. In quotient set [X], the complexity to solve a problem is
lower than X.

2 Quotient Space

2.1 Basic Definition

A problem solving space, or a problem space for short, is described by a triplet
(X, f, U). X denotes the problem domain, f ð�Þ indicates the attributes of domain
X or is denoted by a function f: X ? Y, U is the structure of domain X, i.e. the
relationship among elements in X. To analyse and solve the triplet (X, f, U) of a
problem implies analysis and investigation of X, f and U.

Assume that X is a domain, R is an equivalence relation on X, [X] is a quotient
set under R. Regarding [X] as a new domain, we have a new world which is coarser
than X. So a quotient space is a new world that an equivalence relation is thought a
new element and coarser than X.

Definition 2.1 A quotient space is the object representation using the quotient set
of mathematics to describe or present different granule worlds, i.e. is the method
using the quotient set as the mathematic model of different granule worlds.
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Problem representations between different granularity sizes correspond to dif-
ferent equivalence relation R or different partitions. So how to partition is the
method to construct different granule worlds. We can classify X = f-1(Y) by using
the result Y, or classify X directly. In detail there are several methods which supply
in next paragraph.

(1) Attribute-based method, namely the same attributions or similar elements are
classified.

(2) Projection-based method, consider f is multi-dimensional. Let its n attribute
components be f1, f2, …, fi, fi+1, fi+2, …, fn. X is classified with respect to
fi+1, fi+2, …, fn values, while ignoring their attribute components f1, f2, …, fi.

(3) Function-based method, a set X of elements is partitioned according to their
functions or structures.

(4) Constraint-based method, given n constraints C1, C2, …, Cn and a domain X,
we may partition X according to Ci, i = 1, 2, …, n.

In some cases, some x [ X may belong to more than one class. That is, the
classification has overlapped elements or the contour of classes are blurred. We
can introduce fuzzy logic for these cases.

Generally, we treat a problem under various grain sizes. Thus, it is necessary to
establish the relationship between the worlds at different granularities.

In the book [1, 2] Zhang has discussed the relation between X and [X] and
showed that the domains of different granularities are a complete semi-order lat-
tice. But for a problem space (X, f, U), structure U is very important. When a
domain X is discomposed, its structure will change as well. Generally, the coarser
the granularities are, the simpler the structure is, however, are there changes of the
structure after predigested?

(X, U) is a topologic space and U is a topology on X. Assume that R is an
equivalence relation on X. From R, we have a quotient set [X]. A topology [U] on
[X] induced from U is called a quotient topology, and ([X], [U]) is a quotient
topologic space. From topology, it is known that some properties of topologic
space (X, U) can be observed from its quotient space ([X], [U]). We have

Proposition 2.1 Assume that p: (X, U) ? ([X], [U]) is a continuous mapping. If
A , X is a connected set on X, then p(A) is connected set on [X].

Proposition 2.1 shows that if there is a solution path (connected) in the original
domain X, then there exists a solution path in its proper coarse-grained domain [X].
Conversely, in the coarse-grained domain, if there does not exist a solution path,
there is no solution in the original domain. These properties show that a quotient
space has the characteristic of reserving false.

(X, U) is a semi-order space or a pseudo semi-order space. In order to establish
some relations between semi-order spaces at different grain sizes, we expect to
induce a structure [U] of [X] form U of X such that ([X], [U]) is also a semi-order
space and for all x, y [ X, if x \ y then [x] \ [y]. Namely, it is desired that the
order relation is preserved invariant in grain size, or order-preserving for short. We
can follow the next steps:
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(1) transform (X, U) into some sort of topologic space.
(2) construct a quotient topologic space ([X], [U]) form (X, U).
(3) induce a semi-order from ([X], [U]) such that the original order relations are

preserved in the space.

Proposition 2.2 Suppose that R is compatible with U. If x, y [ (X, U) and x \ y,
then [x] \ [y], where [x], [y] [ (X, U).

Proof Assume that x is littler than y, define that a is equal to [x].

Assume that u(a) is any opening domain of a on [X], because p: X ? [X] is
continuous and p-1(u(a)) is not closing on X, thus x is a domain.

Because of x \ y ) y [ p-1(u(a)) ) p(y) [ u(a) ) [y] [ u(a), namely
[x] \ [y]. h

Proposition 2.2 indicates that the quotient semi-order space constructed by the
preceding approach has order-preserving.

If X is very complicated, we can introduce an equivalence relation and trans-
form X into [X]. If R is compatible with U, then induces a quotient semi-order [U]
on [X]. Thus the old question from x to y is transformed into the new question from
[x] to [y]. Because R is compatible, then p: [X, U] ? ([X], [U]) is order pre-
serving. Namely suppose that [X] is a coarse-grained level of X. If there is no
solution on some regions of [X], from Proposition 2.2, it is known that there is no
solution on the corresponding regions of X as well. Based on the principle, the
searching range will be narrowly by pruning off those areas. Since the coarse-
grained world usually is simpler than the original one, the searching efficiency will
be improved.

Generally, it is not necessary that all characteristics on (X, U) are completely
mapped onto ([X], [U]). This means that in the coarse-grained world some
information might be missed due to the abstraction. If the missing characteristics
are not interested, that does not matter very much. But the main ones must be
preserved in [X].

2.2 To Select Proper Grain-Size

Facing different researching goals, there are different quotient sets [X] from the
same object (X, f, U), and there are different quotient structures [U] on the same
quotient set. Thus how to select proper grain-size is the key to construct reasoning
[X], [U].

In really, the partition is dynamic, namely we partition a X and investigate and
research the object and extract some properties on the grain-size firstly, then
partition the X again, and so on till the problem is solved. Generally selection and
adjustment of grain-size is relation with main domanial acknowledge of the
problem. We can select and adjust grain-size by mergence and decomposition.
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By merging, we have a new equivalence relation R such that (1) R\R, (2) R is
compatible, and (3) R is maximum. That is, R may change R such that the R is
compatible and is the coarsest under the supplied condition, namely the number of
partition is the least.

By decomposing, we have a new equivalence relation R such that (1) R\R, (2)
R is compatible, (3) R is minimum. That is, R may change R such that the R is
compatible and is the finest under the supplied condition, namely the number of
partition is the biggest.

Thus if R is incompatible with U, we can adjust R by merging or decomposing
in order that R is compatible, and the compatible result is uniform in condition of
maximum or minimum.

The approach we offer for constructing quotient semi-order is the following.
First, aright-order topology UR is induced from semi-order U. Second, a quotient
topology [UR] on [X] is induced from UR. Third, a semi-order on [X] is induced
from [UR]. And if R is incompatible with U, we can adjust R by merging or
decomposing in order that R is compatible.

3 Property Preserving Ability

3.1 Falsity Preserving Principle

We have defined the relation between the domains [X] and X. For a problem space
(X, f, T), structure T is very important. When a domain X is decomposed, its
structure will change as well. Generally, it is simplified. The main point is whether
some properties (or attributes) in X that we are interested in are still preserved after
the simplification.

Proposition 3.1 Assume that R is compatible. If x; y 2 ½x� and x \ y, then interval
½x; y� ¼ fzjx\z\y; z 2 Xg � ½x�.

Proof From x \ z \ y and Proposition 2.2, we have ½x�\½z�\½y�. Since ½x� ¼
½y� ) ½x�\½z�; ½z�\½x�, from the compatibility of R, we have ½z� ¼ ½x� ) z 2 ½x� )
½x; y� � ½x�. h

Definition 3.1 (X, T) is a semi-order set. A , (X, T) is connected
, 8x; y 2 A; 9x ¼ z1; z2; . . .; zn ¼ y, such that zi and ziþ1; i ¼ 1; 2; . . .; n� 1, are
compatible.

Definition 3.2 (X, T) is a semi-order set. A , (X, T) is a semi-order closure, if
x, y [ A, and x \ y, then interval [x, y] , A.

Corollary 3.1 In assuming that R is compatible, each component of [X] must
consist of several semi-order closed, mutually incomparable, and connected sets.
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Note that sets A and B are mutually incomparable, if for 8x 2 A; y 2 B, x and
y are incomparable.

Proof [X] is divided into the union of several connected components, obviously,
these components are mutually incomparable. We’ll prove that each component is
semi-order closed below.

Assume that A is a connected component of [X]. If A is not semi-order closed,
then 9x1; x2 2 A and y 62 A such that x1\y\x2. Since R is compatible, p : X ! ½X�
is order-preserving. We have pðx1Þ\pðyÞ\pðx2Þ ) ½x�\½y�\½x� ) ½y� ¼ ½x�:

That is, y 2 ½x�. Since y 62 A, y must belong to another connected component
B of [X]. Thus, x1 2 A is comparable with y 2 B. This contradicts with that
components A and B are incomparable. h

Corollary 3.2 If X is a totally ordered set and R is compatible, then each
equivalence class of [X] must be an interval hx,yi, where interval hx,yi denotes one
of the following four intervals: ½x; y�; ½x; yÞ; ðx; y�; ðx; yÞ:

Especially, when x ¼ R1 (real number set), Corollary 3.2 still holds.
From the above corollaries, it’s known that when partitioning a semi-order set

with respect to R, only the corresponding equivalence classes satisfy some
structure as shown in above corollaries so that R is compatible. In order to
rationally partition a semi-order set, strong constraints have to be followed.

Proposition 3.2 (X, T) is a semi-order set, then ððX; TÞrÞs ¼ ðX; TÞ.
Note: ((X, T)r)s is a right semi-order set.

From the previous discussion, it concludes that a quotient semi-order set ([X],
[T]) can be induced from a semi-order set (X, T) so long as R is compatible. And
([X], [T]) has order-preserving ability.

When X is a finite semi-order set, it can be represented by a directed acyclic
network G. And x\y, there exists a directed path in G from x to y. When X is a
finite set, X can be represented by a spatial network. We present a simple method
for constructing a quotient (pseudo) semi-order on [X] below.

Given (X, T) and an equivalence relation R, we have a quotient set [X]. Define a
relation ‘‘\’’ on [X] as 8a; b 2 ½X�; 9x1 2 a; x2 2 b; x1\x2 ) a\b. Finding the
transitive closure of relation ‘‘\’’, have a pseudo semi-order [T]0 and quotient
space ([X], [T]0).

Proposition 3.3 [T]0 = [T]r]s holds, where [T]0 as defined above.

Using Proposition 3.3, when X is a finite set, the directed graph corresponding
to (pseudo) semi-order on [X] can easily be defined as follows:
8a; b 2 ½X�; a! b, 9x; y 2 X; x 2 a; y 2 b; x\y, where a! b means there
exists a directed edge between a and b. The (pseudo) semi-order corresponding to
the directed graph is just the quotient structure on [X].
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3.2 Falsity (Truth) Preserving Principle

The order-preserving ability among different grain-size worlds has an extensive
application. For example, the relation among elements of domain X is represented
by some semi-order structure. A starting point x 2 X is regarded as a premise and a
goal point y 2 X as a conclusion. Whether the directed path from point x to point
y exists corresponds to whether conclusion y can be inferred from premise x. If X is
complex, introducing a proper partition R to X, then we have [X]. A quotient
(pseudo) semi-order ½T �s on [X] can be induced. Due to the following proposition,
the original directed path finding from x to y on X is transformed into that from
[x] to [y] on [X].

Proposition 3.4 (X, T) is a semi-order set. R is an equivalence relation on X. For
x; y 2 X, if there exists a directed path from x to y on (X, T), there also exists a
directed path from [x] to [y] on [X].

The proposition shows that if the original problem (domain) in hand is too
complex, by a proper partition, the original domain is transformed into a coarse
one. If there does not exist a solution in the coarse world, then the original problem
does not have a solution as well. Since the coarse world is generally simpler than
the original one, the problem solving will be simplified.

Note that in Proposition 2.2, even R is incompatible, the order-preserving
ability still holds.

From the previous discussion, it is know that an ‘‘inference’’ can be transformed
into a spatial search from a premise to a conclusion, i.e., a path-search in a
topologic space. And if an original problem ðx; f ; TÞ is too complex, then the
problem can be transformed into its quotient space ð½X�; ½f �; ½T �Þ which generally
simpler than the original one. The order-preserving and the falsity (truth) pre-
serving ability that we will mention below clarify the main characteristics of the
multi-granular world; which provide a theoretical foundation for multi-granular
computing (inference).

Theorem 3.1 (Falsity Preserving Principle) If a problem ½A� ! ½B� on quotient
space ð½X�; ½f �; ½T �Þ has no solution, then problem A! B on its original space
ðX; f ; TÞ has no solution either. In other words, if A! B on ðX; f ; TÞ has a
solution, then ½A� ! ½B� on ð½X�; ½f �; ½T�Þ has a solution as well.

Proof If problem A! B has a solution, then A and B belong to the same (path)
connected set C of ðX; f ; TÞ. Let p : X ! ½X� be a natural projection. Since p is
continuous, pðCÞ is (path) connected on ð½X�; ½f �; ½T�Þ. pðAÞ ¼ ½A� and pðBÞ ¼ ½B�
belong to the same (path) connected set of ð½X�; ½f �; ½T �Þ. The problem ½A� ! ½B�
has a solution. h

Falsity preserving ability within a multi-granular world is unconditional but
truth preserving is conditional.
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Theorem 3.2 (Truth Preserving Principle I) A problem ½A� ! ½B� on ð½X�; ½f �; ½T�Þ
has a solution, if for ½x�; p�1ð½x�Þ is a connected set on X, problem A! B on
ðX; f ; TÞ has a solution.

Proof Since problem ½A� ! ½B� on ð½X�; ½f �; ½T�Þ has a solution, ½A� and ½B� belong
to the same connected component C. Letting D ¼ p�1ðCÞ, we prove that D is a
connected on X.

Reduction to absurdity: Assume that D is partitioned into the union of mutually
disjoint non-empty open close sets D1 and D2. For 8a 2 C; p�1ðaÞ is connected on
X, then p�1ðaÞ only belongs to one of D1 and D2. Di; i ¼ 1; 2, composes of ele-
ments of [X]. There exist C1;C2 such that D1 ¼ p�1ðC1Þ;D2 ¼ p�1ðC2Þ. Since
Di; i ¼ 1; 2; are open close sets on X and p is a natural projection, C1;C2 are non-
empty open close sets on [X]. And C1 and C2 are the partition of C, then C is non-
connected. This is a contradiction. h

Theorem 3.3 (Truth Preserving Principle II) ðX1; f1; T1Þ and ðX2; f2; T2Þ are two
quotient spaces of ðX; f ; TÞ. Ti; i ¼ 1; 2 are semi-order. ðX3; f3; T3Þ is the su-
premum space of ðX1; f1; T1Þ and ðX2; f2; T2Þ. If problems A1 ! B1 and A2 ! B2

have a solution on ðX1; f1; T1Þ and ðX2; f2; T2Þ, respectively, then problem A3 !
B3 on ðX3; f3; T3Þ have a solution, where A3 ¼ A1 \ A2; B3 ¼ B1 \ B2:

3.3 Computational Complexity Analysis

Using the falsity and truth preserving principle, the computational cost of the
multi-granular computing (or inference) can greatly be reduced. For example, by
choosing a proper quotient space and using falsity preserving principle, the part of
the space without solution can be removed for further consideration so that the
computing is accelerated. Similarly, by choosing a proper quotient space and using
the truth preserving principle I, the problem solving on the original space can be
simplified to that on its quotient space. In general, the size of the quotient space is
much smaller than that of the original one so the computational cost is reduced.
Concerning the truth preserving principle II, assume that n and m are the potentials
of X1 and X2, respectively. The potential of X3 is nm at most. Let gð�Þ be the
computational complexity. When the problem is solved on X3 directly,
gð�Þ ¼ gðnmÞ. If using the truth preserving principle II, the problem is solved on X1

and X2, separately, the computational complexity is gðnÞ þ gðmÞ. This is equiva-
lent to reducing the complexity from OðNÞ to Oðln NÞ.

Note that T3, a topology on ðX3; f3; T3Þ, is not necessarily an induced quotient
topology ½T3� of X3, generally T3\½T3�. Namely, ðX3; f3; T3Þ is only an element of
complete semi-order lattice V but U.
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4 The Hierarchical Quotient-Space Model of Complex
Networks

We have already set up the model of quotient space, and found the Theorems
3.1–3.3 which indicated the change of the main characters during the procedure of
granular computing.

In the era of big data, we are forced to confront complex big data sets. In order
to analysis these data sets, we utilize multi granular spaces based on quotient
spaces. During the process we may reduce the complexity of the data set and solve
these big data sets.

Next we present a hierarchical quotient-space model that reduces the compu-
tational complexity. We discuss the model to solve the shortest path in a complex
network. A complex network is represented by an undirected weighted graph
(X, E), where X is a set of nodes, E is a set of edges, f: E ? R+, f(e)[[0, w] is the
weight of edge e. Weight w indicates flux, bandwidth or traffic, etc., that is, the
reciprocal of distance. An optimal path is the path that connects any pair of nodes
with the maximal weight. Then, a shortest path is the path with minimal distance
(the reciprocal of weight). Let a set of weights on edges be fw1 [ w2 [
� � � [ wkg. In the following discussion, space (or graph) is denoted by (X, E), or
simply by X.

Definition 4.1 Equivalence relation RðwiÞ is defined as

x� y, 9x ¼ x1; x1; . . .; xm ¼ y; f ðxj; xjþÞ�wi; j ¼; . . .;m� 1; i ¼ 1; . . .k

Define Xi ¼ fxi
1; . . .; xi

ni
g; i ¼ 1; . . .; k as a quotient space corresponding to

RðwiÞ. Let X = X0, and x0
i be the element of X. Ranking the elements (nodes) of

quotient space Xi, we have a space denoted by Xi ¼ fxi
1; . . .; xi

ni
g; i ¼ 1; . . .; k, as

well. Obviously, ðX0;X1; . . .;XkÞ forms a sequence of hierarchical quotient spaces.
Now, the elements in space X are represented by a hierarchical encoding as
follows.

For z [ X, z is represented by a (k + 1)-dimensional integral z ¼ ðz0; z1; . . .; zkÞ.
Assume that pi : X ! Xi is a natural projection. If piðzÞ ¼ xi

t, let the ith coordinate
of z be t, i.e., zt ¼ t. It means that if z belongs to the tth element of Xi, then zi ¼ t.

For space X, define a set of its edges as E0 : e ¼ ðx0
j ; x

0
t Þ 2 E0 , f ðx0

j ; x
0
t Þ�w1.

Simply, let edge eðx0
j ; x

0
t Þ ¼ ðx0

j ; x
0
t Þ. This way, we construct (X0, E0).

For space X1, define a set of its edges as
E1 : ðx1

j ; x
1
t Þ 2 E1 , 9x0

j ; x
0
t 2 X; x0

j 2 x1
j ; x

0
t 2 x1

t ; f ðx0
j ; x

0
t Þ�w2. Edge eðx1

j ; x
1
t Þ

is represented by

eðx1
j ; x

1
t Þ ¼ fððx0

j ; p1ðx0
j ÞÞ; ðx0

t ; p1ðx0
t ÞÞÞ 8j x0

j ; x
0
t 2 X; x0

j

2 x1
j ; x

0
t 2 x1

t ; f ðx0
j ; x

0
t Þ�w2g
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Edge eðx1
j ; x

1
t Þ in space X1 is a set of edges in space X denoted by e1

jt.

Generally, for space Xi, define a set of its edges as Ei : ðxi
j; x

i
t 2 EiÞ ,

9x0
j 2 xi

j; x
0
t 2 xi

t; f ðx0
j ; x

0
t Þ�wiþ1. Edge eðxi

j; x
i
tÞ is represented by eðxi

j; x
i
tÞ ¼ ððx0

j ;

p1ðx0
j Þ; . . .; piðx0

j Þ ¼ xi
jÞ; ðx0

t ; p1ðx0
t Þ; . . .; piðx0

t Þ ¼ xi
tÞÞj8x0

j 2 xi
j; x

0
t 2 xi

t; f ðx0
j ; x

0
t Þ�

wiþ1g or denoted by ei
jt.

Finally, we construct ðXi;EiÞ; i ¼ 0; 1; . . .; k, of the quotient spaces.

Definition 4.2 8x; y 2 X;wi, x and y are called wi-connected , there exists an
edge from x to y on space X and its weight is greater than or equal to wi.

Theorem 4.1 8x ¼ ðx0; x1; x2; . . .; xkÞ; y ¼ ðy0; y1; y2; . . .; ykÞ 2 X;wi, x and y are
wi-connected , xi ¼ yi, where x ¼ ðx0; x1; . . .; xkÞ and y ¼ ðy0; y1; . . .; ykÞ are the
hierarchical codes of x and y, respectively. xi, and yi are denoted by the corre-
sponded codes of x and y in the sequence of hierarchical quotient spaces
ðX0;X1; . . .;XkÞ .

Proof Assume xi ¼ yi. From definition of xi, and yi, it’s known that x and y belong
to the same connected component on space Xi. Then pi�1ðxÞ and pi�1ðyÞare wi-
connected on space ðXi�1;Ei�1Þ. On the other hand, pi�2ðzÞ; z 2 Xi�2 is wi-1-
connected on space Xi-2. From the ‘‘truth preserving’’ property in quotient space
theory [26, 27], pi�2ðxÞ and pi�2ðyÞ are wi-connected on space Xi-2. By using the
‘‘truth preserving’’ property gradually, we have that x and y are wi-connected on
space X.

Contrarily, if x and y are wi-connected on space X, obviously, we have piðxÞ ¼
piðyÞ on space Xi, i.e., xi ¼ yi. h

For each element xi
m in space ðXi;EiÞ, construct a matrix Pi

m. Assume that
element xi

m is composed of s elements of space Xi�1. Construct an s 9 s matrix Pi
m

as follows:

Pi
mðtjÞ ¼

eðxi�1
t ; xi�1

j Þ; ðxi�1
t ; xi�1

j Þ 2 Ei�1; if ;m ¼ 1; . . .; ni;
;; otherwise:

�

Thus, the topological structure of space Xi can be represented by a set fPi
j; j ¼

1; . . .;mg of matrices.
In conclusion, the procedure for constructing the hierarchical quotient space

model of network ðX;EÞ is shown below:

(i) According to equivalence relation Rðw1Þ, the elements (nodes) of a
weighted edge graph ðX;EÞ are classified into several equivalence classes.
Based on the classification, we have a quotient space ðX1;E1Þ,
X1 ¼ fx1

1; . . .; x1
n1
g, and its corresponding matrices P1

1; . . .;P1
n1

.
(ii) According to equivalence relation Rðw2Þ, the elements (nodes) of the

quotient space ðX1;E1Þ are further classified into several equivalence
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classes. Then we have a quotient space ðX2;E2Þ, X2 ¼ fx2
1; . . .; x2

n2
g, and its

corresponding matrices P2
1; . . .;P2

n2
.

(iii) Generally, according to equivalence relation RðwiÞ, the elements (nodes) of
the space ðXi�1;Ei�1Þ are classified into several equivalence classes. We
have a quotient space ðXi;EiÞ, Xi ¼ fxi

1; . . .; xi
ni
g, and its corresponding

matrices Pi
1; . . .;Pi

ni
; 1� i� k, where k is the number of different weights

on edges.
(iv) The construction of quotient spaces will be ended until space ðXj;EjÞ,

1� j� k, has only one element or space ðXk;EkÞ is obtained.
(v) Ranking the elements of space Xi, we have a sequence of hierarchical

quotient spaces X0;X1; . . .;Xj. Each element (node) of space X has a
hierarchical code z ¼ ðz0; z1; . . .; zkÞ; z 2 X. When j\k, z ¼ ðz0; z1; . . .; zjÞ;
z 2 X.

Example 4.1 Find the hierarchical quotient-space model of network in Fig. 1.
In Fig. 1, there are 10 nodes {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and a set

w = {w1, w2, w3, w4} = {10, 5, 3, 1} of weights.
The given space ðX0;E0Þ with 10 elements (nodes):

X0 ¼ fx0
1 ¼ ð1Þ; x0

2 ¼ ð2Þ; x0
3 ¼ ð3Þ; x0

4 ¼ ð4Þ; x0
5 ¼ ð5Þ; x0

6 ¼ ð6Þ; x0
7 ¼ ð7Þ;

x0
8 ¼ ð8Þ; x0

9 ¼ ð9Þ; x0
10 ¼ ð10Þg

From equivalence relation R(10), we have a quotient space X1 with 7 nodes

X1 ¼ fx1
1 ¼ ð1; 2Þ; x1

2 ¼ ð3; 4Þ; x1
3 ¼ ð5Þ; x1

4 ¼ ð6; 9Þ; x1
5 ¼ ð7Þ;

x1
6 ¼ ð8Þ; x1

7 ¼ ð10Þg:

Its corresponding matrices are

10

101

5

3 5

5
5

3 3

1

1 3 1 1

1
10

Fig. 1 A weighted network

1
1x

1
2x

1
3x 1

4x

1
5x 1

6x
1
7x

Fig. 2 The quotient space
ðX1;E1Þ
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P1
1 ¼

1 ð1; 2Þ
1

� �
; P1

2 ¼
1 ð3; 4Þ

1

� �
; P1

4 ¼
1 ð6; 9Þ

1

� �
;

P1
3 ¼ P1

5 ¼ P1
6 ¼ P1

7 ¼ ð1Þ;

and the corresponding quotient space ðX1;E1Þ as shown in Fig. 2.
From equivalence relation R(5), we have a quotient space X2 with 3 nodes

X2 ¼ fx2
1 ¼ ð1; 2; 3; 4Þ; x2

2 ¼ ð5; 6; 9Þ; x2
3 ¼ ð7; 8; 10Þg:

Its corresponding matrices

P2
1 ¼

1 ðð2; 1Þ; ð4; 2ÞÞ
1

� �
;P2

2 ¼
1 ðð5; 3Þ; ð6; 4ÞÞ

1

� �
;

P2
3 ¼

1 0 ðð7; 5Þ; ð10; 7ÞÞ
1 ðð8; 6Þ; ð10; 7ÞÞ

1

0
B@

1
CA;

and the corresponding quotient space ðX2;E2Þ as shown in Fig. 3.
From equivalence relation R(3), we have a quotient space X1 with only one

node
x3

1 ¼ ð1; 2; 3; 4; 5; 6; 7; 8; 9; 10Þ, its corresponding matrix

P3
1 ¼

1 ðð2; 1; 1Þ; ð5; 3; 2ÞÞ ðð3; 2; 1Þ; ð7; 5; 3ÞÞ
1 ðð5; 3; 2Þ; ð8; 6; 3ÞÞjðð6; 4; 2Þ; ð7; 5; 3ÞÞ

1

0
@

1
A;

and the corresponding quotient space ðX3;E3Þ as shown in Fig. 4.
It’s noted that matrix Pi

j is anti-symmetric, i.e., if element pi
tj ¼ ða; bÞ; then

pi
jt ¼ ðb; aÞ.

2
1x

2
2x

2
3x

Fig. 3 The quotient space
ðX2;E2Þ

3
1x

Fig. 4 The quotient space
ðX3;E3Þ
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Finally, we have the hierarchical codes of each node in space ðX0;E0Þ as
follows:

1 ¼ 1; 1; 1; 1ð Þ; 2 ¼ 2; 1; 1; 1ð Þ; 3 ¼ 3; 2; 1; 1ð Þ; 4 ¼ 4; 2; 1; 1ð Þ; 5 ¼ ð5; 3; 2; 1Þ;
6 ¼ ð6; 4; 2; 1Þ; 7 ¼ 7; 5; 3; 1ð Þ; 8 ¼ ð8; 6; 3; 1Þ; 9 ¼ 9; 3; 2; 1ð Þ; 10 ¼ 10; 7; 3; 1ð Þ:

5 New Algorithm for Finding Optimal Paths

The optimal path finding procedure begins from the comparison between the last
code words in the hierarchical codes of the source node and the destination node to
look for the connected path between these two nodes. The procedure carries out
from the coarsest quotient space to the finest one gradually until the optimal path is
found.

For example, source node x ¼ ðx0; x2; . . .; xkÞ and destination node y ¼
ðy0; y1; y2; . . .; ykÞ in space ðX0;E0Þ are given. Compare the last code word xk with
yk. If xk ¼ yk, then compare xk�1 with yk�1 until xi�1 6¼ yi�1ð0� i� kÞ and xi ¼ yi

so x and y are connected in quotient space ðXi�1;Ei�1Þ and equivalent in space
ðXi;EiÞ. Thus, in order to find the connected path between x and y, it’s needed to
find the connected path between xi�1 and yi�1 in space ðXi�1;Ei�1Þ first. From Pi

xi
,

we may find a connected path eðxi�1; yi�1Þ from xi�1 to yi�1 in space ðXi�1;Ei�1Þ.
For simplicity, assume that eðxi�1; yi�1Þ ¼ ðx1; x2Þ, x1 ¼ ðx1

0; . . .; x1
i�1 ¼ xi�1Þ, and

x2 ¼ ðx2
0; . . .; x2

i�1 ¼ yi�1Þ. Inserting x1 and x2 into (x, y), we have ðx; x1; x2; yÞ.
Where the (i - 1)th coordinates of x and x1 (or x2 and y) are the same. For x and
x1, the same operation is implemented, i.e., comparing xi�2 with x1

i�2 until xj�1 6¼
x1

j�1 and xj ¼ x1
j ð0 6¼ j\i� kÞ. Finding the connected path in space ðXj�1;Ej�1Þ,

from P j
xj

, it’s known that eðxj�1; x1
j�1Þ is the connected path from x to x1. Insert

eðxj�1; x1
j�1Þ into x and x1. The process carries out until the connected path is found

on space ðX0;E0Þ. For x2 and y, compare x2
i�2 with yi�2 until x2

j0�1 6¼ yj0�1 and

x2
j0 ¼ yj0 ð0� j0\i� kÞ. Finding the connected path in space ðXj0�1;Ej0�1Þ, from Pj0

xj0
,

we know that eðx2
j0�1; yj0�1Þ is the connected path from x2 to y. Insert eðx2

j0�1; yj0�1Þ
into x2 and y. The procedure continues until the path is found in space ðX0;E0Þ.

5.1 The Optimal Path Finding Algorithm

Given x ¼ ðx1; . . .; xkÞ and y ¼ ðy1; . . .; ykÞ in space ðX0;E0Þ. Assume that
xi ¼ yi; xj 6¼ yj; j\i. Find the wi-connected edge between x and y on space X0.
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Node x is represented by x ¼ ðp0ðxÞ; p1ðxÞ; . . .; pkðxÞÞ, where pi : X ! Xi,
i ¼ 0; 1; . . .; k, and X ¼ X0. For x ¼ ðx1; . . .; xkÞ and y ¼ ðy1; . . .; ykÞ, by assuming
that xk ¼ yk, x and y are connected in space ðXk�1;Ek�1Þ and equivalent in space
ðXk;EkÞ.

(i) From Pk
xk

, in space ðXk�1;Ek�1Þ we have a path eðxk�1; yk�1Þ composed of
ak nodes from xk�1 to yk�1. Inserting the ak nodes into (x, y) in turn, we
have a sequence composed of ak þ 2 nodes. In the sequence, there is a wk-
edge connected the 2ith with the (2i + 1)th nodes but no edge between the
(2i - 1)th and the 2ith nodes, i = 1,…, ak + 1. Since the (k - 1)th
coordinates of x and y are the same, the two nodes are connected in space
ðXk�2;Ek�2Þ.

(ii) Let k / k - 1, go to step (i).
(iii) The procedure continues until the 0th coordinates of the (2i - 1)th and the

2ith nodes are the same. The sequence of the 0th coordinates is the optimal
path.

Example 5.1 Find the optimal path between node 5 and node 7 in Fig. 1.
From Example 4.1, we have a set of quotient spaces as follows: X0 ¼ fx0

1 ¼
ð1Þ; x0

2 ¼ ð2Þ; x0
3 ¼ ð3Þ; x0

4 ¼ ð4Þ; x0
5 ¼ ð5Þ; x0

6 ¼ ð6Þ; x0
7 ¼ ð7Þ; x0

8 ¼ ð8Þ; x0
9 ¼

ð9Þ; x0
10 ¼ ð10ÞgX1 ¼ fx1

1 ¼ ð1; 2Þ; x1
2 ¼ ð3; 4Þ; x1

3 ¼ ð5Þ; x1
4 ¼ ð6; 9Þ; x1

5 ¼ ð7Þ;
x1

6 ¼ ð8Þx1
7 ¼ ð10ÞgX2 ¼ fx2

1 ¼ 1; 2; 3; 4;ð Þ; x2
2 ¼ ð5; 6; 9Þ; x2

3 ¼ ð7; 8; 10Þg:X3 ¼
fx3

1 ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10ð Þg:

The hierarchical codes of the source node (node 5) and the destination node
(node 7) are x = (5, 3, 2, 1) and y = (7, 5, 3, 1), respectively, i.e., (x, y) =
((x0, x1, x2, x3), (y0, y1, y2, y3)) = ((5, 3, 2, 1), (7, 5, 3, 1)). By comparing the
code words of the hierarchical code of x with that of y, it’s known that
x3 ¼ y3 ¼ 1 but x2 6¼ y2. This means that node 5 and node 7 are connected in space
(X2, E2) and equivalent in space (X3, E3), where node 5 and 7 belong to nodes x2

2

and x2
3 in space ðX2;E2Þ, respectively. From matrix P3

1, we have an w3-edge
between nodes (5, 3, 2) and (8, 6, 3), and an w3-edge between nodes (6, 4, 2) and
(7, 5, 3) in space (X2, E2). Inserting these nodes into (x, y), then we have two paths
((5, 3, 2, 1), (5, 3, 2), (8, 6, 3), (7, 5, 3, 1)) and ((5, 3, 2, 1), (6, 4, 2), (7, 5, 3),
(7, 5, 3, 1)) from node x to y.

In path ((5, 3, 2, 1), (5, 3, 2), (8, 6, 3), (7, 5, 3, 1)), comparing node (5, 3, 2, 1)
with node (5, 3, 2), we have x2 ¼ y2 ¼ 2, x1 ¼ y1 ¼ 3, x0 ¼ y0 ¼ 5. There is a
path from node x3

1 in space (X3, E3) to node x2
2 in space (X2, E2). Comparing node

(8, 6, 3) with node (7, 5, 3, 1), since x2 ¼ y2 ¼ 3, x1 6¼ y1, nodes 8 and 7 belong to
nodes x1

6 and x1
5 in space (X1, E1), respectively. The two nodes are connected in

space ðX1;E1Þ and equivalent in space (X2, E2). From matrix P2
3, it’s known that

there is an w2-edge between nodes (8, 6) and (10, 7) and an w2-edge between
nodes (10, 7) and (7, 5) in space (X1, E1). Inserting these nodes into the sequence
above, we have a path ((5, 3, 2, 1), (5, 3, 2), (8, 6, 3), (8, 6),
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(10, 7), (10, 7), (7, 5), (7, 5, 3, 1)). Comparing node (8, 6, 3) with node (8, 6),
since x1 ¼ y1 ¼ 6, x0 ¼ y0 ¼ 8, there is a path from node x3

2 in space (X2, E2) to
node x1

6 in space (X1, E1). Nodes (10, 7) and (10, 7) belong to the same node x1
7 in

space (X1, E1). Comparing node (7, 5) with node (7, 5, 3, 1), since x1 ¼ y1 ¼ 5,
x0 ¼ y0 ¼ 7 there is a path from node x1

5 in space (X1, E1) to node x3
1 in space

(X3, E3). Finally, we have an optimal path (5, 8, 10, 7) from node 5 to node 7.
Similarly, from sequence ((5, 3, 2, 1), (6, 4, 2), (7, 5, 3), (7, 5, 3, 1)), we have

another optimal path (5, 6, 7) from node 5 to node 7.
The path finding procedure is shown in Fig. 5.

6 Experimental Results

In order to compare our algorithm (Hierarchical Quotient Space Model based
Algorithm, HQSM algorithm) with other well-known algorithms, we carried out a
set of computer simulations. The experimental environment is a java platform. The
undirected and weighted networks are generated by random network, small-world
network and scale-free network models, respectively. The edge weights are
assigned from [31, 32]. The Dijkstra, Floyd and HQSM algorithms are imple-
mented for finding the optimal path of any pair of nodes in the networks.

6.1 The Shortest Path Quality Comparison

For comparison, we replace the edge weight of networks by its reciprocal. Then,
the shortest path finding problem is transformed into that of the optimal path
finding with the minimal reciprocal sum. We choose random, small-world, and
scale-free networks with 100, 200, 300, 400, and 500 nodes as test beds. The
Dijkstra, Floyd and HQSM algorithms are implemented for finding the optimal
path of any pair of nodes in the networks. The shortest paths found by Dijkstra and
Floyd algorithms are always global minimal. The percentage of the shortest paths
found by HQSM algorithm that belong to the global minimum in relation to the
total number of the shortest paths found is shown in Tables 1, 2 and 3. The number
of hierarchical levels used in the quotient-space approach is also shown in the
same tables.

6.2 The Computational Complexity Comparison

The undirected and weighted networks with 100, 200, 300, 400 and 500 nodes
involve the three network models, i.e., the random, small-world and scale-free
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Table 1 Random networks Number of nodes Percentage Number of levels

100 94.60 6
200 95.50 6
300 97.90 6
400 92.60 6
500 97.90 6

Table 2 Small-world
networks

Number of nodes Percentage Number of levels

100 90.90 5
200 93.60 5
300 85.90 5
400 93.10 5
500 98.70 4

Table 3 Scale-free networks Number of nodes Percentage Number of levels

100 97.10 9
200 98.20 8
300 98.60 7
400 97.40 7
500 99.26 6

Table 4 Total CPU time (in seconds) in the random network

Number of nodes 100 200 300 400 500
HQSM 0.397 1.356 3.112 6.634 12.171
Dijkstra 1.719 9.797 91.141 656.391 1,002.125
Floyd 0.940 4.220 118.630 212.030 511.560

Table 5 Total CPU time (in seconds) in small-world network

Number of nodes 100 200 300 400 500
HQSM 0.640 2.403 6.659 14.33 22.262
Dijkstra 2.758 10.546 87.239 700.540 1,100.200
Floyd 0.790 4.783 132.743 230.412 498.317
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networks. The total CPU time for finding the optimal paths of each algorithm is
shown in Tables 4, 5 and 6.

The experimental results show that HQSM algorithm outperforms the Dijkstra
and Floyd algorithms greatly in saving the computational cost, especially when the
networks become larger. On the other hand, Dijkstra and Floyd algorithms need
large storage, it’s quite difficult to implement the algorithms in networks with
more than 500 nodes. In HQSM, the algorithm looks for the optimal paths from the
coarse level to the fine one via the hierarchical quotient space model. So it always
chooses the high weight edges with high priority. For example, in Fig. 5, space
(X1, E1) contains w(5)-edges (5 ? 6, 8 ? 10 ? 7) and space (X2, E2) contains
w(3)-edges (5 ? 8, 6 ? 7). HQSM looks for the optimal paths from space
(X2, E2) to space (X1, E1). Then the paths (5 ? 6?7, and 5 ? 8?10 ? 7) are
found. But Dijkstra algorithm visits nodes 2, 4, 6, 8 first, then nodes 9, 10, 7, and
finally finds the optimal path 5 ? 6?7. Floyd algorithm finds the optimal paths
between any pair of nodes by searching all nodes and edges throughout the
networks. Although HQSM algorithm can only find the quasi-optimal paths gen-
erally, the experimental results show that more than ninety percent of the shortest
paths found by HQSM algorithm is global minimal.

X3

X2 X1

X2 X1

Fig. 5 The optimal paths from node 5 to node 7

Table 6 Total CPU time (in seconds) in scale-free network

Number of nodes 100 200 300 400 500
HQSM 0.437 1.734 4.297 8.187 15.562
Dijkstra 2.045 8.236 86.431 668.400 998.354
Floyd 0.780 4.060 108.598 206.580 466.250
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7 Conclusion

In this paper, we present a quotient space representation method for problem
solving. Based on the method, a problem is represented by a triplet (X, f, T). It
enables us to describe different structures, attribute functions and operations on a
domain. Especially, it offers a tool for depicting different grain-size worlds.

When (X, T) is a topologic or a semi-order space, we discuss how to construct
the quotient topology and quotient (pseudo) semi-order on its corresponding
quotient space [X] and after the construction what kind of quotient structures that
we can have. We prove three important theorems of different granules, i.e. to
preserve false property theorem and to preserve true property theorem.

We supply an example of solving problem by different granule worlds—the
shortest path of a complex network. The example indicates that to describe or
present a complicated object is equal to construct quotient space. In quotient set
[X], the complexity to solve a problem is lower than X. So we have a new solution
method to analysis a big data based on the quotient space theory.

References

1. Zhang, B., Zhang, L.: Theory and Applications of Problem Solving. North Holland (1992)
2. Zhang, B., Zhang, L.: Theory and Applications of Problem Solving. Tsinghua University

Publisher, Beijing (1990). (in Chinese)
3. Yao, Y.Y.: Perspectives of granular computing. In: Proceedings of 2005 IEEE International

Conference on Granular Computing, vol. 1, pp. 85–90 (2005)
4. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic

Publishers, Boston (2002)
5. Dupre, J.: The Discorder of Things, Mataphysical Foundations of the Disunity of Science.

Harvard University Press, Cambridge (1993)
6. Foster, C.L.: Algorithms, Abstraction and Implementation: Levels of Detail in Cognitive

Science. Academic Press, London (1992)
7. Giunchglia, F., Walsh, T.: A theory of abstraction. Artif. Intell. 56, 323–390 (1992)
8. Hobbs, J.R.: Granularity. In: Proceedings of the 9th International Joint Conference on

Artificial Intelligence, pp. 432–435 (1985)
9. Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing.

Springer, Berlin (2003)
10. Pedrycz, W., Bargiela, A.: An optimization of allocation of information granularity in the

interpretation of data structures toward granular fuzzy clustering. IEEE Trans. Syst. Man
Cybern. B Cybern. 42(3), 582–590 (2012)

11. Pedrycz, A., Hirota, K., Pedrycz, W., Dong, F.: Granular representation and granular
computing with fuzzy sets. Fuzzy Sets Syst. 203, 17–32 (2012)

12. Pedrycz, W., Song, M.: Granular fuzzy models: a study in knowledge management in fuzzy
modeling. Int. J. Approx. Reasoning 53(7), 1061–1079 (2012)

13. Pedrycz, W., Bargiela, A.: An optimization of allocation of information granularity in the
interpretation of data structures: toward granular fuzzy clustering. IEEE Trans. Syst. Man
Cybern. B 42(3), 582–590 (2012)

14. Pedrycz, W., Homenda, W.: Building the fundamentals of granular computing: a principle of
justifiable granularity. Appl. Soft Comput. 13(10), 4209–4218 (2013)

The Property of Different Granule and Granular Methods 189



15. Chen, S.-M., Yang, M.-W., Lee, L.-W., Yang, S.-W.: Fuzzy multiple attributes group
decision-making based on ranking interval type-2 fuzzy sets. Expert Syst. Appl. 39(5),
5295–5308 (2012)

16. Chen, S.M., Randyanto, Y.: A novel similarity measure between intuitionistic fuzzy sets and
its applications. Int. J. Pattern Recognit. Artif. Intell. 27(7), 1350021-1–1350021-34 (2013)

17. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic
Publishers, Dordrecht (1991)

18. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982)
19. Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning About Data. Kluwer Academic

Publishers, Dordrecht (1991)
20. Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of

1998 IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)
21. Zhang, L., Zhang, B.: Quotient Space Theory and Granule computing. CRSSC’2003,

Chongqing, China, pp. 1–3 (2003) (in Chinese)
22. Zhang, L., Zhang, B.: Theory of fuzzy quotient space (methods of fuzzy granular computing).

J. Softw. 14(4), 770–776 (2003). (in Chinese)
23. Zhang, Y., Zhang, L., Wu, T.: The representation of different granular worlds: a quotient

space. Chin. J. Comput. 27(3), 328–333 (2004). (in Chinese)
24. Zhang, L., Zhang, B.: The analysis of system performances based on quotient space granular

computing. J. Comput. Sci. 31(10A), 6–9 (2004). (in Chinese)
25. Cheng, W., Shi, Y., Zhang, Y.: Application of quotient space theory in yield prediction.

J. Comput. Eng. Appl. 43(13), 197–199 (2007). (in Chinese)
26. He, F., Zhang, Y., Zhao, S.: The method for the optimal path of complex network based on

quotient space hierarchy model (MOCQ). In: Science Paper Online (2007). http://www.
paper.edu.cn/releasepaper/content/200712-610 (in Chinese)

27. He, F., Zhang, Y., Chen, J., Zhao, S.: Dynamic information analysis model based on quotient
space topology. In: Science Paper Online, vol 5(2), pp. 124–127 (2010) (in Chinese)

28. Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human
reasoning and fuzzy logic. Fuzzy Sets Syst. 19, 111–127 (1997)

29. Zadeh, L.A.: Fuzzy sets and information granulation. In: Gupta, M., Ragade, R.K., Yager,
R.R. (eds.) Advances in Fuzzy Set Theory and Applications. North-Holland Publishing
Company, Amsterdam (1979)

30. Zadeh, L.A.: Some reflections on soft computing, granular computing and their roles in the
conception, design and utilization of information/intelligent systems. Soft. Comput. 2, 23–25
(1998)

31. Larson, R., Odoni, A.: Shortest paths between all pairs of nodes. In: Urban Operations
Research (1981)

32. Pemmaraju, S., Skiena, S.: All-pairs shortest paths. In: Computational Discrete Mathematics:
Combinatorics and Graph Theory in Mathematica, pp 330–331. Cambridge University Press,
Cambridge (2003)

190 Y. Zhang et al.

http://www.paper.edu.cn/releasepaper/content/200712-610
http://www.paper.edu.cn/releasepaper/content/200712-610

	8 The Property of Different Granule and Granular Methods Based on Quotient Space
	Abstract
	1…Introduction
	2…Quotient Space
	2.1 Basic Definition
	2.2 To Select Proper Grain-Size

	3…Property Preserving Ability
	3.1 Falsity Preserving Principle
	3.2 Falsity (Truth) Preserving Principle
	3.3 Computational Complexity Analysis

	4…The Hierarchical Quotient-Space Model of Complex Networks
	5…New Algorithm for Finding Optimal Paths
	5.1 The Optimal Path Finding Algorithm

	6…Experimental Results
	6.1 The Shortest Path Quality Comparison
	6.2 The Computational Complexity Comparison

	7…Conclusion
	References


