
How to Understand Connections Based
on Big Data: From Cliques to Flexible
Granules

Ali Jalal-Kamali, M. Shahriar Hossain and Vladik Kreinovich

Abstract One of the main objectives of science and engineering is to predict the
future state of the world—and to come up with actions which will lead to the most
favorable outcome. To be able to do that, we need to have a quantitative model
describing how the values of the desired quantities change—and for that, we need
to know which factors influence this change. Usually, these factors are selected by
using traditional statistical techniques, but with the current drastic increase in the
amount of available data—known as the advent of big data—the traditional
techniques are no longer feasible. A successful semi-heuristic method has been
proposed to detect true connections in the presence of big data. However, this
method has its limitations. The first limitation is that this method is heuristic—its
main justifications are common sense and the fact that in several practical prob-
lems, this method was reasonably successful. The second limitation is that this
heuristic method is based on using ‘‘crisp’’ granules (clusters), while in reality, the
corresponding granules are flexible (‘‘fuzzy’’). In this chapter, we explain how the
known semi-heuristic method can be justified in statistical terms, and we also show
how the ideas behind this justification enable us to improve the known method by
taking granule flexibility into account.
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1 Understanding Connections Based on Big Data:
An Important Practical Problem

What are our main objectives? The role of science and engineering. We have
preferences: we want tasty food, we want a comfortable environment, we want to
stay healthy, etc. In general, we have many objectives. We are making individual
and collective decisions so as to satisfy these objectives; to be more precise, we
select actions which maximize our degree of satisfaction in these objectives.

To be able to select appropriate actions, we need to be able to predict the
consequence of different actions. Crudely speaking, this is what we usually
understand by science: we know the current state of the world, we describe what
actions we plan to perform, and we want to predict the future state of the world.

Once we can do that, we need to select a sequence of actions which will be the
most beneficial; crudely speaking, this is what we usually understand by engi-
neering. For example:

• Science predicts what happens to a rocket if we launch it in a certain direction.
• Based on these predictions, we can solve an engineering problem—find in what

direction we must launch a rocket so that it will, for example, reach the Moon.

While praising successes of science and engineering, we need to remember
that these successes are based on understanding connections. In the last several
centuries, science and engineering achieved many things—we have successfully
overcome many diseases, we drastically increases the life expectancy, we reached
the Moon. These successes are based on complex quantitative methods of modern
science and engineering.

In spite of all these successes, in some areas—such as economics—we still do
not have good predictive models. The reason is simple. In general, there are many
factors which could potentially affect the desired values. In many physics prob-
lems, we have succeeded in pinpointing a few relevant factors—and showing that
all other factors can be safely ignored. For example, the acceleration of a rocket is
determined by the forces acting on this rocket—gravity and aerodynamic resis-
tance. Once we know that the desired value depends on the few parameters, we can
use experiments to find the exact quantitative form of this dependence.

In contrast, in economics, we cannot dismiss any of the factors. As a result,
potentially, we have a function of very many variables. To describe such functions,
we need a very large number of parameters—much more parameters than the
number of data points.

In other words, to be able to build a successful quantitative model, we first need
to understand with which quantities the desired quantity is connected—and with
which it is not. In other words, understanding connections is an important pre-
requisite for successes of science and engineering.

This importance can be also illustrated on examples from medicine. For some
diseases—like cholera or malaria—originally many factors were considered: for
example, that malaria is caused by swampy air, etc. (not to count such weird
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hypothesis as witchcraft and divine punishment for sins). When many possible
factors were considered, no easy model of these illnesses existed, and no good cure
was known. Once the scientists succeeded in determining the unique factor
determining each of these diseases—the corresponding bacteria—this opened the
possibility for developing successful medicine.

In contrast, for many types of cancer, we still have too many possible factors—
viruses, pollution, stress, genetic mutations, etc. As a result, for these cancers, we
do not have a good cure.

How connections are determined now. Traditionally, connections are deter-
mined by statistical methods; see, e.g., [18]. We observe some relation between the
two processes: e.g., we observe that patients getting a certain medicine tend to
recover faster, that the two DNA samples match, etc. This may be a random
coincidence. So, in order to check whether the observed relation is statistically
significant, we compute the probability p that this observed relation can happen for
two unrelated processes. If this probability is smaller than a certain threshold p0

(called a p-value), we conclude that there is a statistically significant connection; if
the probability p is larger than p0, then we cannot make this conclusion. Usually,
practitioners take p0 = 0.05 or, sometimes, p0 = 0.01.

The connection-building task has been used in a variety of contexts: entity
networks [5, 8], image collections [6], cellular networks [2, 7], social networks [4],
and document collections [8, 9, 11]. All these research efforts focus on finding
connections between objects that are apparently disjoint. A solution to the con-
nection building task generally depends on the commonality between some
intermediaries to reach the target object. Swanson refers to the notion of neigh-
boring commonality as complementary but disjoint (CBD) structures [20],
whereby two arguments may exist separately that when considered together lead to
new insights, but the objects exhibiting these two arguments are unaware of each
other. The proposed solution to connection building in this chapter leverages a
similar principle.

Enter big data. Modern technology has led to a drastic increase in the amount
of possible observations—and in the number of parameters related to each
observation that we can measure and record. In principle, with devices like Google
Glass, we can record everything that we see—and more generally, everything that
is happening in the world. The resulting amount of data is so huge that not only a
single researcher cannot review all this data—even the existing computer algo-
rithms cannot process all this data. This phenomenon is known as big data; see,
e.g., [3, 14, 19].

Traditional methods do not work well for big data: formulation of the
problem. In the traditional statistical approach, we made few observations, so
observed connections were relatively rare. In the big data, we record so many
parameters that everything appears connected.

For example, traditionally, when we had to rely on human witnesses, the fact
that the victim and the suspect were seen together (or could be indirectly con-
nected by a convincing chain of such seen-together events) was a strong argument
for the suspect’s guilt.
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Nowadays, with numerous security cameras recording many moments of our
lives—from walking the streets to attending football games on a stadium—there
are so many pairs of people who happen to be together at the same time in the
same place simply by accident, that it is extremely difficult to separate such
random encounters from true connections.

So, for big data, we need new methods to find out which joint appearances
correspond to true connections and which do not.

Technical challenges related to the use of big data. One of the main chal-
lenges in using big data is that, as we have just mentioned, the use of big data leads
to the need for developing new data processing algorithms.

However, even in situations when we can use the traditional data processing
algorithms, the need to apply these algorithms to big data often leads to technical
challenges. For example, in many practical situations, data processing data starts
by estimating the usual statistical characteristics such as covariances etc. The usual
algorithms for computing these characteristic assume that the whole data set is
placed in the computer memory—and algorithms whose running time is quadratic
or even cubic in terms of the size of the data set are quite feasible. In contrast, for
big data, the size of the data set exceeds the computer memory’s ability—and for a
data set consisting of billions of records, quadratic-time algorithms require 1018

computational steps—which is not very realistic, even on highly parallel com-
puters; see, e.g., discussions in Sect. 3.

All this need to be taken into account when we process big data.
What we do in this chapter. Our main objective is to study how to detect true

connections based on the big data.

• We start with describing the semi-heuristic methods which have been proposed
for solving this problem, as described, e.g., in [8, 9].

• Then, we describe the limitations of the existing methods. Some of these
limitations are related to the fact that the existing methods are based on using
crisp granules (clusters), while real-life clusters are flexible (‘‘fuzzy’’); see,
e.g., [15].

• Finally, we describe how these limitations can be overcome—in particular,
how we can use flexible granules (clusters) to understand true connections
based on the big data.

Two case studies. The existing method has been tested on two big-data
situations.

First case study: intelligence analysis. The paper [8] deals with intelligence
analysis. Specifically, we have a huge database of documents. Based on these
documents, we need to detect possible true connections between adversaries. The
existing documents provide only possible relation—e.g., if two names appear in
the same document, this may be an indication that the two persons are connected.
The document may combine the name of the person with the name of the hotel
where this person stayed at a certain night—and if another document shows
another person staying at the same hotel, this may be an indication of a true
connection between them.
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The mere fact that the two names appeared in the same document does not
necessarily mean that these names are actually connected—for example, one of the
authors (V.K.) was born in the same city of St. Petersburg, Russia, as Grigory
Perelman (of the Poincaré conjecture fame), graduated from the same St. Petersburg
University, shared the same PhD advisor—but he never met Perelman in person, so
there is clearly no true direct connection. However, if there are many such con-
necting documents, it increases the probability that the two names are actually
connected—and at some point, we should be able to conclude, with a reasonable
confidence, that there is a true connection.

Second case study: biomedical publications. The paper [9] deals with bio-
medical publications. The field of biomedical research has become so specialized
that it is no longer easy for a human specialist to trace all relevant papers—or even
to find all relevant papers. Finding such relevant papers is extremely important
because in many cases, by combining the ideas presented in related papers, we can
come up with a synergistic effect of an even better cure. Here also, we have a huge
database of documents—this time, of papers. Based on these documents, we want
to find true connections between the papers.

Similar to the intelligence analysis case, we can come up with criteria of when
two papers may be connected: e.g., if they share keywords or share references, etc.
Based on this information, it is necessary to decide when the two papers are
actually connected and when the seeming connection is accidental.

2 General Case: How to Describe Available Information

General situation. In general:

• We have a large set of entities: persons, locations, organizations, dates, etc. for
the intelligence database, biomedical articles, etc.

• We also have a huge database of features: documents for the intelligence
database, biomedical terms for the publications database, etc.—which enable
us to relate some entities.

Based on this information, we have to decide which entities are actually con-
nected and which are not.

Description of the available information. In general:

• we have entities e,
• we have features f, and we have associations between entities e and features f:

for example,

– a name e is mentioned in the document f,
– a term f appears in a paper e, etc.
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For some e and f, we may have several associations—e.g., the name e is
mentioned several times in the document f, or the term f appears several times in
the paper e.

Some other notations are as follows:

• we will denote the set of all entities by E;
• we will denote the set of all features by F; and
• for each e and f, we will denote the number of associations between e and f by

ne,f.

The total number of entities is equal to jEj and the total number of features is
equal to jFj. It is also useful to describe:

• for each feature f, the set eðf Þ ¼deffe 2 E : ne;f [ 0g of all entities associated
with the feature f, and

• for each entity e, the set f ðeÞ ¼defff 2F : ne;f [ 0g of all features associated
with the entity e.

First step of the usual document analysis: describing the weight Vðe; f Þ of
the feature f for the entity e. Based on information about associations between
entities and features, we can decide which features are more important for a given
entity and which are less important.

Intuitively, the larger the number of associations between the entity and the
feature, the more confident we are that this association is meaningful—for
example, one mention of a name in a document may be accidental, but if the same
name appears several times, we become confident that this is a connection between
the name and the document.

Similarly, the fewer entities are associated with the feature, the more confident
we are that this association is meaningful. When two people are listed in the same
document, then how meaningful is this association depends on how many other
people are listed in this document. For example, if two people are listed in the
same New York City phone book, a document that lists millions of other people,
this does not mean much beyond the fact that they both live in New York City—
and is clearly not an indication that there is a special connection between these two
people. On the other hand, if two people are listed in the hotel bills issued on the
same day by the same small bed-and-breakfast hotel, then there is a high possi-
bility that they met each other—e.g., at breakfast.

Let us describe this qualitative idea in numerical terms. In situations like this,
when we have several entities associated with a feature, a reasonable idea is to use
the amount of information, i.e., the number of binary (‘‘yes’’–‘‘no’’) questions
(bits) which are needed to find the desired entity.

In general, if we know that an unknown object belongs to the set consisting of
N elements, then we can divide this set into two halves and, by asking a binary
question, find out which half the desired object belongs to. After we receive a reply
to the binary question, we know that the objects belongs to one of the corre-
sponding halves. So, after we get the reply to the first binary question, we now
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have a set with N
2 ¼ N � 2�1 elements which is known to contain the unknown

object. By asking the second binary question, we can again halve the resulting set;
so, after we get answers to two binary questions, we have a set with N

4 ¼ N � 2�2

elements which contain the unknown object. After three binary questions, we get a
set with N

8 ¼ N � 2�3 elements, etc. In general, after receiving answers to q binary
questions, we get a set of N � 2�q elements which contains the desired element.
When we reach N � 2�q ¼ 1, this means that this set consists of the single ele-
ment—i.e., that we have pinpointed the desired alternative. Thus, for the case of
N alternatives, the corresponding information (number of binary questions) can be
determined from the equation N � 2�q ¼ 1, and is, thus, equal to q ¼ log2ðNÞ.

Originally, we have jEj entities; the corresponding amount of information is
equal to log2ðjEjÞ bits. Once we know that an entity is associated with the feature f,
we thus limit ourselves to jeðf Þj entities; in this case, the corresponding amount of
information is equal to log2ðjeðf ÞjÞ bits. Thus, the very fact that the entity is
associated with the feature f enables us to reduce the number of questions by the
value

log2ðjEjÞ � log2ðjeðf ÞjÞ ¼ log2
jEj
jeðf Þj

� �
: ð1Þ

Similarly, the effect of multiple associations can be describe by counting how
many additional binary questions we can afford and still keep an association with
the desired entity. We start with ne;f mentions. Each binary question decreases this
number by half; q questions decrease this amount to ne;f � 2�q. As long as this
remaining number is C1, we still have some association. The largest number q for
which we can still get as association can thus be determined from the condition
that ne;f � 2�q ¼ 1, and is, thus, equal to q ¼ log2ðne;f Þ. To take into account the
fact that we deal with additional questions, we usually add 1, ending up with
1þ log2ðne;f Þ.

The overall importance of the feature f in entity e can be obtained if we multiply

log2
jEj
jeðf Þj

� �
by the importance factor 1þ log2ðne;f Þ, resulting in the product

Iðe; f Þ ¼defð1þ log2ðne;f ÞÞ � log2
jEj
jeðf Þj

� �
: ð2Þ

This formula is one of the versions of term frequency—inverse document fre-
quency (tf-idf) modeling; see, e.g., [12, 16].

For each entity e, we thus get the importance I(e, f) of different features f. These
values of importance are usually normalized, i.e., multiplied by a constant so that
the mean square importance is equal to 1 (this is known as cosine normalization).
As a result, we get the formula
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Vðe; f Þ ¼
ð1þ log2ðne;f ÞÞ � log2

jEj
jeðf Þj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j2f ðeÞ ð1þ log2ðne;jÞÞ � log2
jEj
jeðjÞj

� �� �2
r : ð3Þ

From weights to distance between entities. For each entity e, we have the
weights V(e, f) corresponding to different features f. Thus, as a measure of
closeness between two entities e1 and e2, we can take the distance between the
corresponding vectors ðVðe; f1Þ;Vðe; f2Þ; . . .Þ.

In the usual Euclidean distance dða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � b1Þ2 þ � � �

q
, we add the

squares of the differences. Since each value V(e, f) represents the number of bits, it
makes more sense to take the actual differences—since each difference reflects the
number of additional questions. Thus, we take

dðe1; e2Þ ¼
def
X
f2F
jVðe1; f Þ � Vðe2; f Þj: ð4Þ

This distance depends on the number of features: e.g., if, in addition to the
documents, we store their copies, the distance increases by a factor of two. To
avoid this dependence, the distance d(e1, e2) is usually normalized to the interval
[0,1]—by dividing by the largest possible value of this distance.

How can we estimate the largest possible value of this distance? In general,
when we do not know the actual values a and b of two non-negative quantities, and
we only know upper bounds a and b on these quantities, then the largest possible
value of the difference ja� bj is equal to maxða; bÞ. Indeed:

• if a� b, then ja� bj ¼ b� a� b and thus, ja� bj �maxða; bÞ;
• similarly, if b� a, then ja� bj ¼ a� b� a and thus, ja� bj �maxða; bÞ.

Thus, in both cases, we have ja� bj �maxða; bÞ.
The bound maxða; bÞ can be attained:

• if a� b, then it is attained for a ¼ 0 and b ¼ b;
• if b� a, then it is attained for a ¼ a and b = 0.

By applying this result to a ¼ Vðe1; f Þ and b ¼ Vðe2; f Þ, we conclude that for
each f, the maximum possible value of the difference

jVðe1; f Þ � Vðe2; f Þj ð5Þ

can be estimated as maxðVðe1; f Þ;Vðe2; f ÞÞ. Therefore, the largest possible value
of the sum

P
f2F jVðe1; f Þ � Vðe2; f Þj can be estimated as
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X
f2F

maxðVðe1; f Þ;Vðe2; f ÞÞ: ð6Þ

By dividing dðe1; e2Þ by this bound, we get the formula

Dðe1; e2Þ ¼
def

P
f2F jVðe1; f Þ � Vðe2; f ÞjP

f2F maxðVðe1; f Þ;Vðe2; f ÞÞ
: ð7Þ

This formula is known as the Soergel distance.
Comment. It is worth mentioning that the Soergel distance is a metric, in the

sense that it is symmetric Dðe1; e2Þ ¼ Dðe2; e1Þ and satisfies the triangle inequality
Dðe1; e3Þ�Dðe1; e2Þ þ Dðe2; e3Þ.

Resulting description. As a result of the above preliminary analysis, we rep-
resent the given information as a weighted graph:

• in this graph, nodes (vertices) represent entities, i.e., the set of all the nodes is
the set of all the entities E;

• for each two entities (nodes) e1 and e2, we know the distance Dðe1; e2Þ; in
graph terms, this distance can be represented as the weight of the edge between
e1 and e2.

3 A Known Semi-heuristic Method for Detecting True
Connections Based on Big Data: A Brief Description

Direct and indirect connections. In some cases, we have a direct connection
between the two objects—e.g., when two (or more) terrorist suspects meet together
to plot future attacks.

Sometimes, the two suspects never (or rarely) meet in person, but they are
plotting together via intermediaries—in this case, we have an indirect connection.
In this case, we have a direct connection between the first suspect and the inter-
mediary, and we have a direct connection between the intermediary and the second
suspect—and we can use these two direct connections to make a conclusion that
the two suspects are indirectly connected.

Detecting indirect connections is based on detecting direct ones. Because of
this:

• we will first describe how direct connections are detected, and then
• we will describe how detected direct connections are combined to detect

indirect connections.

From the original weighted graph to a simpler (non-weighted) one. In
general, for every two nodes e1 and e2, we know the distance Dðe1; e2Þ. The larger
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the distance, the less probable it is that the corresponding entities are actually
connected.

• When the distance is very small, there is a high probability that the entities are
connected. So, it is possible to conclude that the entities are connected if we
need to make a definite decision about the connectivity.

• When the distance is close to 1, this probability becomes very small. So, we
can conclude that the entities are not connected when a boolean decision about
the connectivity is essential.

As we increase the distance from 0 to 1, there should be a point h at which our
decision changes from ‘‘connected’’ to ‘‘not connected’’. Once this threshold value
h is determined, we can then simplify the original weighted graph into a simplified
non-weighted graph G. In this simplified graph, the nodes (entities) e1 and e2 are
connected by an edge if and only if Dðe1; e2Þ� h.

Detecting direct connections: idea. As we have mentioned, if we have an edge
between two entities e1 and e2, it is probable that there is an actual connection, but
we cannot conclude this with confidence—since the edge may be caused by
coincidence. If we also have a third entity e3, and every two of the three entities e1,
e2, and e3 have an edge, then the probability that all the three edges are accidental
is much smaller. As a result, our confidence that e1 and e2 are connected increases.
Similarly, if there is a fourth entity e4 and every two out of four entities have an
edge, the probability increases.

In general, we may have ‘ entities e1, e2,…, e‘ for which every two entities have
an edge. Such a set of nodes is known as an ‘-clique. The larger ‘, the higher our
degree of confidence that e1 and e2 are actually connected. Thus, there is a
threshold value k starting from which this confidence becomes so large that we can
confidently conclude that e1 and e2 are actually connected.

This idea leads to the following algorithm for detecting direct connections.
Detecting direct connections: resulting method. We select a distance

threshold h 2 ð0; 1Þ and an integer k. We claim that two nodes e1 and e2 are
actually directly connected in the graph G if in this graph, there is a k-clique
containing both e1 and e2.

In other words, we claim that the entities e1 and e2 are directly connected if
there exist edges e3,…,ek such that Dðei; ejÞ� h for all i; j 2 f1; 2; . . .; ‘g.

Detecting a general connection: resulting method. A natural idea is to claim
that the nodes e1 and e2 are actually connected if there is a chain of nodes c1 = e1,
c2,…, ct, ct+1 = e2 such that for every i, the nodes ci and ci+1 are actually directly
connected. This is equivalent to saying that in the graph G, there is a chain of k-
cliques G1, G2,…, Gt which connect e1 and e2 in the sense that:

• the first clique G1 contains the node e1,
• every two neighboring cliques have at least one common node, that is,

Gi \ Gi+1 6¼ [, and
• the last clique Gt contains the node e2.
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How to select parameters of the method. The method described above used
two parameters: h and k. The values h and k need to be determined empirically—
e.g., by using examples where true connections are known and finding the values h
and k for which this method reproduces these known true connections as accu-
rately as possible.

For example, for intelligence analysis [8], the values h = 0.93 and k = 6 lead
to a good outcome; see Fig. 1.

How to implement the above method: need for approximate techniques. At
first glance, the above methods can be directly translated into algorithms.

To find out whether two nodes e1 and e2 are part of a k-clique, i.e., whether
there are k - 2 nodes e3,…, ek which form a clique, we can try all possible
combinations of k - 2 nodes. If we denote, by N, the total number of nodes in the

graph G, i.e., the total number of entities, then this would require

 
N

k � 2

!
�

Nk�2 steps.
The problem with this idea is that we are dealing with big data, where the

number N of entities is already huge—for example, the US no-fly list containing
possible suspects has about a million people in it. For the value k = 6 corre-
sponding to intelligence analysis, we will need N4 computation steps. For N � 106,
this leads to N4 � 1024 computation steps—way beyond the capabilities of modern
computers.

The situation is even worse in the general case, when we look for possible
indirect connections. In this case, to check whether the given nodes e1 and e2 are
connected, a natural idea is to try all possible k-cliques containing e1, i.e., for all
possible tuples of k - 1 nodes e2; . . .; ek which, together with the given node e1,

form a k-clique. We need

 
N

k � 1

!
� Nk�1 steps, which, for k = 6 and

N � 106, requires 1030 computational steps.
How the above method is algorithmically implemented: idea. First, the

papers [8, 9] use the concept lattice algorithms to come up, for each entity e, with a
list of the closest ones. Then, for each node e and for each m, we can find a m-
neighborhood of e—i.e., the set consisting of m closest nodes.

Suppose now that we need to check whether the two nodes e1 and e2 are
connected by a chain of k-cliques. According to the above method, we need to first
find a k-clique containing the node e1. Since, as we have mentioned, there are too
many possible sets of k - 1 nodes, instead of looking for all possible nodes, we
only look for k-cliques among the m nearest nodes; thus, the value m must be
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selected in such a way that the resulting amount of possible combinations 
m

k � 1

!
does not exceed the computational ability of the available computer.

In this manner, we find one or more k-cliques containing the node e1. According
to the method, all the nodes in all these k-cliques are thus assumed to be actually
directly connected to e1. One of these nodes should start the next k-clique. How
can we select, out of these nodes, the node c2 which is the most promising to start
the new k-clique?

In order to select this node c2, let us recall that when for some k, we claim that
the existence of a k-clique confirms the existence of a true connection, in reality,
there is still a probability that the observed ‘‘connection’’ was accidental—this
probability is very small but still positive. We then conclude that two nodes related
by a chain of k-cliques are actually connected. For this conclusion to be true, all
the k-cliques must be actually connected. If only one the k-cliques is accidental—
the whole conclusion fails. Here, the probability that the conclusion is false is
equal to the probability that either the first k-clique is accidental, or that the second
k-clique is accidental, etc. The longer the chain, the higher this probability. Thus, it
is desirable to construct chains of k-cliques which are as short as possible.

Intuitively, the larger the distance between the two nodes, the longer the chains
which connect them. To be more precise, we need to take into account that different
links correspond to different distance. What we thus really want to minimize is the
overall distance, not just the overall number of steps. If we select a node e0 as the nest
step c2, then the overall chain-following distance between e1 and e2 can be estimated
as the sum of the distance from e to e0 and from e0 to e2, i.e., as Dðe1; e0Þ þ Dðe0; e2Þ.
We therefore select a node for which this sum is the smallest possible.

A similar greedy-algorithm idea can be used on the next step, etc. As a result,
we arrive at the following algorithm.

How the above method is algorithmically implemented: details. We want to
check whether the given nodes e1 and e2 are actually connected—and if so, we
want to design a chain of events c1 = e1, c2,…, ct, and ctþ1 ¼ e2 in which each ci

id directly connected to ci+1.
In the algorithm, we start with c1 = e1, and we select the nodes c2, c3,…, ct one

by one. For every i, once the node ci is selected, we find m nodes which are the
closest to ci. Out of these m nodes, we test all possible subsets of k - 1 nodes, and
for each subset, we check whether this subset, together with ci, forms a k-clique.
(To be more precise, all m elements have an edge with ci—otherwise why consider
them; thus, it is sufficient to check that the selected k - 1 nodes form a (k - 1)-
clique.) For each subset which leads to a k-clique, we record all its nodes.

• If one of the recorded nodes is e2, we are done—we have found a chain of k-
cliques between e1 and e2.

• If none of the recorded nodes coincides with e2, then out of all recorded nodes
e, we select, as the next node ci+1 in the chain, the recorded node for which the
sum Dðci; eÞ þ Dðe; e2Þ is the smallest possible.

74 A. Jalal-Kamali et al.



If, after a certain number T of steps, we do not teach e2, we conclude that e1 and
e2 are not actually connected. (This maximum number of steps T needs to be
determined empirically.)

Empirical success. In both applications—to the intelligence analysis and to the
biomedical publications—the above method has led to good results, i.e., to the
concluded connections for which the high percentage were confirmed by experts as
meaningful.

An auxiliary comment: how to gauge our confidence in the results of the
method. In general, as we have mentioned, the larger the clique size, the larger our
confidence that the nodes are actually connected.

Thus, once we have found that the given nodes e1 and e2 are connected by a
chain of k-cliques—and thus, we have concluded that e1 and e2 are actually
connected—we can gauge our degree of confidence in this conclusion by checking
whether e1 and e2 can be connected by a chain of (k + 1)-cliques, (k + 2)-cliques,
etc. In this manner, we find the largest click size ‘ for which e1 and e2 are
connected by a chain of ‘-cliques. The larger this size ‘, the more confident we are
that e1 and e2 are actually connected.

4 Limitations of the Semi-heuristic Approach

First limitation: this method is semi-heuristic. The first limitation is that this
method is semi-heuristic: its main justifications are common sense and the fact that
in several practical problems, this method was reasonably successful. It is desir-
able to provide a more formal justification for this method—ideally, a justification
which would allow us not only to make conclusions, but also to provide a rea-
sonable estimate of our degree of certainty in this conclusion.

Second limitation: need for flexible granules. The second limitation is that
the above semi-heuristic method depends on ‘‘crisp’’ granules (clusters)—namely,
k-cliques. As a result:

• If, for some nodes e1 and e2, there is a k-clique which contains both e1 and e2,
then we conclude that e1 and e2 are actually directly connected.

• If no such k-clique exists, then we conclude that e1 and e2 are not actually
directly connected.

From the intuitive viewpoint, this conclusion is too crisp. Intuitively, if we have
a subgraphs G which is ‘‘almost’’ a k-clique—i.e., a k-clique with one (or even
two) edges missing, it may not affect the conclusion. For example, for k = 6, being
a k-clique means that we have k�k�1

2 ¼ 6�5
2 ¼ 15 edges between k = 6 nodes; what if

we have only 14? There should be a threshold, but this threshold does not nec-
essary mean the threshold between a full k-clique and a graph in which one edge is
missing—maybe it is OK if two or more edges are missing?

Right now, the corresponding numerical characteristic—the size k of the largest
k-clique connecting two nodes—is too crisp:
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• This characteristic decreases rapidly (to k - 1) when we delete a single edge
from the k-clique.

• And then, when we delete one more edge between some other nodes, this
characteristic does not change at all.

It is desirable to generalize a crisp notion of an integer clique size k into a more
flexible notion of the fractional-valued ‘‘degree’’ of clique-ness (i.e., the degree of
being a granule); see, e.g., [10, 13, 21].

Similarly, for a general connectedness:

• If, for some nodes e1 and e2, there is a relating chain of k-cliques, then we
conclude that e1 and e2 are actually connected.

• If no such chain exists, then we conclude that e1 and e2 are not actually
connected.

Intuitively, if we have a sequence of subgraphs G1, G2,…, in which one of the
graphs is ‘‘almost’’ a k-clique, it may not affect the conclusion.

The above degree of certainty—the size k of the cliques—is also too crisp:

• If e1 and e2 can be related by a chain of k-cliques but cannot be related by a
chain of (k + 1)-cliques, then our degree of confidence corresponds to k.

• If e1 and e2 can be related by a chain of (k + 1)-cliques, then our degree of
confidence corresponds to the level k + 1 (or higher).

What about the situation when we have a chain of graphs G1, G2,…, Gt in
which all graphs except one are (k + 1)-cliques but the remaining one is still a
k-clique? According to the above method, we assign, to this case, the degree of
certainty k—the same as if all the graphs are k-cliques. However, intuitively, we
are almost in the case of (k + 1)-cliques, so to this ‘‘almost k + 1’’ case, we
should be able to assign the degree of confidence which is closer to k + 1.

We should also assign different degree of certainty depending on how long is
the chain of k-cliques. As we have mentioned, the longer the chain, the less
confident we are that this chain implies the actual connection. We used this
intuitive idea in designing the algorithm, but this idea is not reflected in how we
estimate our degree of confidence—whether we have a chain of length 1 or a chain
of the maximally allowed length T, we assign the same degree of confidence k to
the conclusion that the corresponding nodes e1 and e2 are actually connected. It is
desirable to assign the degree of confidence in such a way that longer chains would
indeed lead to a smaller degree of confidence.

What we plan to do. We provide an uncertainty-based theoretical statistical
framework which enables us, first, to justify the empirical clique approach and,
second, to come up with formulas describing to what degree a given subgraph is a
granule.
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5 Analysis of the Problem and the Resulting Ideas
and Formulas

Detecting direct connections based on a graph: analysis of the problem. Let us
start with the first part of the problem—detecting direct connections. We will first
analyze it in its simplified form—when we ignore the actual distances between the
nodes and we only take into account whether the corresponding distance is below
the threshold h or not. In other words, we would like to detect direct connectedness
based on a graph G.

As we have mentioned, the fact that there is an edge does not necessarily mean
that entities are actually connected; there is a probability r that the edge is acci-
dental. This probability r can be obtained, e.g., by analyzing the part of the graph
for which we already know which entities are actually connected and which are
not. If in this part of the graph, out of E edges, Ea of them correspond to actual
connections, then we can estimate r as the ratio Ea

E .
We would like to estimate the probability that the given graph G—in which

some entities are linked by an edge and some are not—describes actually con-
nected entities. Let us pick any entity e in this graph. If we already know that all
the other entities from G (i.e., the set G - {e}) are actually connected, then:

• for e to be actually connected to all these entities e0 2 G� feg,
• it is sufficient to show that e is directly connected to one of the entities

e0 2 G� feg.

Indeed, if e is actually connected to some e0 2 G� feg, then, since e0 is con-
nected to every other entity from G� feg, this would imply that e is actually
connected with all the entities from G - {e} (and thus, that all the entities from
G are indeed connected to each other).

Since at least one actual connection from e to G - {e} makes e connected to all
other entities from G - {e}, the only possibility for e to be not actually connected
to G - {e} is when all edges between e and elements of G - {e} are accidental.
In graph theory, the number of edges between a node e and all other nodes is
known as the degree of a node—and it is denoted by degðeÞ. In these terms, e is
not connected if all degðeÞ edges are accidental.

The probability that each edge is accidental is equal to r. Since we have no
reason to make any conclusion about the dependence between different edges, we
will assume that different edges correspond to independent events. If we have two
independent or more events, then the probability of them happening together is
equal to the product of the corresponding probabilities: e.g., the probability that the
coin falls heads three times in a row is the product of the three probabilities
corresponding to the three coin tosses, i.e., to 1

2 � 1
2 � 1

2 ¼ 1
8 : Thus, under the inde-

pendence assumption, the probability that all deg (e) edges are accidental is equal
to the product of degðeÞ probabilities each of which is equal to r—i.e., to rdegðeÞ.
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As a result, the probability that e is actually connected to G - {e} is equal to
1� rdegðeÞ.

All the entities from a graph G ¼ fe; e0; e00; . . .g are actually connected if each
of these entities is connected to all others, i.e., if the entity e is connected to all the
other entities, and the entity e0 is connected to all the other entities, and the entity
e00 is connected to all the other entities, etc.

• We already know the probability that the entity e is actually connected to all
other entities from the graph G: this probability is equal to

1� rdegðeÞ; ð8Þ

• similarly, we know the probability that the entity e0 is actually connected to all
other entities from the graph G: this probability is equal to

1� rdegðe0Þ; ð9Þ

• we know the probability that the entity e00 is actually connected to all other
entities from the graph G: this probability is equal to

1� rdegðe00Þ; ð10Þ

• and so forth.

It is also reasonable to assume that the corresponding events are independent.
Thus, we arrive at the following conclusion.

Detecting direct connections based on a graph: the resulting formula. For
each graph G, the probability P(G) that all entities from the graph are actually
connected is equal to the product

PðGÞ ¼
Y
e2G

1� rdegðeÞ
� �

: ð11Þ

Alternatively, we can describe the probability R(G) = 1 - P(G) that at least
some of the entities from G are not connected. This probability is equal to
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RðGÞ ¼ 1�
Y
e2G

1� rdegðeÞ
� �

: ð12Þ

As usual in statistical methods, we conclude that all the entities from the graph
G are actually connected if this product is greater than or equal to a certain
threshold P0:

PðGÞ ¼
Y
e2G

1� rdegðeÞ
� �

�P0: ð13Þ

Alternatively, this condition can be described as RðGÞ� p0, where p0 ¼
def

1� P0.
Towards a simplified approximate versions of the formula (13). Usually, the

probability r is reasonably small, and for each node e, the number of edges degðeÞ
is reasonably large; thus, the probability rdegðeÞ is small. In this case, we can
expand the expression

Q
e2G 1� rdegðeÞ� �

in Taylor series in terms of these small

quantities rdegðeÞ, and keep only linear terms in this expansion.
For two variables, we have

ð1� aÞ � ð1� bÞ ¼ 1� a� bþ a � b � 1� ðaþ bÞ: ð14Þ

For three or more variables, we similarly have

ð1� aÞ � . . . � ð1� bÞ � 1� ðaþ � � � þ bÞ: ð15Þ

Thus, we arrive at the following approximate formula.
The resulting simplified approximate versions of the formula (13). For

every graph G, the probability R(G) is approximately equal to

RðGÞ �
X
e2G

rdegðeÞ: ð16Þ

Correspondingly, for P(G) = 1 - R(G), we have

PðGÞ � 1�
X
e2G

rdegðeÞ: ð17Þ

Particular case of a k-clique. In the particular case when the graph G is a k-
clique, this graph has k nodes for each of which degðeÞ ¼ k � 1. In this case, the
formulas (13) and (14) takes the form

PðGÞ ¼ 1� rk�1
� �k

; RðGÞ ¼ 1� 1� rk�1
� �k

: ð18Þ

The simplified approximate formulas (16) and (17) take the form
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PðGÞ � k � rk�1; RðGÞ � 1� k � rk�1: ð19Þ

Resulting natural definition of a degree of clique-ness. Based on the above
formulas (13) and (18), we can define, for each graph, its ‘‘degree of clique-ness’’
as a real number k for which

PðGÞ ¼def
Y
e2G

1� rdegðeÞ
� �

¼ 1� rk�1
� �k

: ð20Þ

Comment. If we use the simplified approximate expressions for P(G), the above
equation for the degree of clique-ness k gets a simplified form:

X
e2G

rdegðeÞ ¼ k � rk�1: ð21Þ

Example. For p = 0.1, for a 6-clique C6, with k = 6, we have R(C6) = 6 9

10-5 = 0.00006. For a 5-clique C5, we have RðC5Þ ¼ 5 � 10�4 ¼ 0:0004.
If we delete an edge that links two nodes of the 6-clique, then in the resulting

graph G, we have two nodes e with degðeÞ ¼ 4 and four remaining nodes with
degðeÞ ¼ 5. Thus, for this graph G, we have RðGÞ ¼ 2 � 10�4 þ 4 � 10�5 ¼
0:00024:

While this value is larger than the value R(C6) corresponding to a 6-clique, it is
smaller than the value R(C5) corresponding to a 5-clique: RðC6Þ\RðGÞ\RðC5Þ.
Thus, for the graph G, the above-defined degree of clique-ness is in between 5 and
6—exactly as we wanted it to be.

We thus get a flexible degree of confidence. In contrast to the traditional case,
where our degree of confidence was described by a not-very-flexible integer k, now
we are allowing non-integer values as well.

• Thus, e.g., if we delete one edge in a large clique, this leads to a minor change
in P(G) and thus, to a minor change in k. In contrast, for integers, this was a
significant decrease from k to k - 1.

• Similarly, if we delete the second edge, we get a new small decrease. In
contrast, for integers, we had no change.

If we use the simplified approximate formula, we get an explicit formula
for the degree of clique-ness. The above equation for the degree of clique-ness
k is similar to the equation that describes Lambert’s W-function W(z) (see, e.g.,
[17]): namely, W(z) is defined as a value w for which z = w � ew.

This formula is similar to the formula that defines k, but it has two differences:

• first, in the formula that defines the W-function, we raise to the power w, while
here, we raise r to the power k - 1;

• second, in the formula that defines the W-function, we raise e to some power,
while here we raise p to some power.
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To reduce the above equation to this form, let us transform our formula so as to
eliminate these two differences.

First, let us reduce raising to the power k - 1 to raising to the power k. For that,

we can use the known relation rk�1 ¼ rk

r . Substituting this expression into the

equation that defines k, we get RðGÞ ¼ k � rk

r , or, equivalently, k � rk ¼ r � RðGÞ.
To reduce raising r to some power to raising e to some point, we take into

account that, by definition of the natural logarithm, the value r can be described as

elnðrÞ. Thus, rk ¼ elnðrÞ� �k¼ ek�lnðrÞ: Hence, our equation takes the form

k � ek�lnðrÞ ¼ RðGÞ � r. Here, e is raised to the power w ¼def
k � lnðrÞ, i.e., we have

rk = ew. We can explicitly describe k in terms of w, as k ¼ w
lnðrÞ. Substituting the

above expressions for rk and k in terms of w into the equation k � rk ¼ r � RðGÞ, we
conclude that w

lnðrÞ � ew ¼ RðGÞ � r, i.e., that w � ew ¼ RðGÞ � r � lnðrÞ. Thus, by

definition of the W-function, we have w ¼ WðRðGÞ � r � lnðrÞÞ, and hence, for the
desired degree of clique-ness k ¼ w

lnðrÞ, we get an explicit formula

k ¼ 1
lnðrÞ �WðRðGÞ � r � lnðrÞÞ: ð22Þ

What if we have a chain of subgraphs? In general, we have a chain of graphs
G1,…, Gt linking two entities e1 and e2. To be able to conclude that e1 and e2 are
actually connected, we need to be able to conclude:

• that the first graph G1 corresponds to the actual connection,
• that the second graph G2 corresponds to the actual connection,
• etc.

For each graph Gi, we have already estimated the probability P(Gi) that this
graph corresponds to actual connections. Similarly to the above situations, it is
reasonable to assume that the corresponding events are independent. Thus, the
probability C that e1 and e2 are actually connected—i.e., the probability that all the
graphs in the chain correspond to actual connections—can be estimated as the
product of the corresponding probabilities:

C ¼
Yt

i¼1

PðGiÞ: ð23Þ

Comment. In particular, if we take into account that PðGiÞ ¼ 1� RðGiÞ and that
the values R(Gi) are small, we can use a similar approximation as above and get an
approximate formula

C � 1�
Xt

i¼1

RðGiÞ: ð24Þ
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This enables us to gauge how our confidence that e1 and e2 are connected
decreases when the chain gets longer. In the formula (23), our degree of con-
fidence that e1 and e2 are connected is equal to the product of the probabilities
P(Gi) corresponding to all the graphs Gi in the chain relating e1 and e2. Each
multiplication by the number P(Gi) \ 1 decreases the product. The longer the
chain, the smaller the product and thus, the smaller our degree of confidence that
e1 and e2 are actually connected.

This solves one of the problems that we mentioned—that, contrary to intuition,
in the semi-heuristic approach, the degree of confidence (as described by the clique
size) does not decrease when the length of the chain increases.

6 Towards an Algorithm

How to take distance into account when estimating the probability: idea. As
we have described earlier, the existing algorithm for checking when the two nodes
are actually connected uses the distances, not just the graph. We therefore need to
extend the above probabilistic analysis so that it takes into account the actual
distances, not just whether there is an edge or not.

In the graph version, we assumed that there is a probability r that the edge
between the nodes is accidental—and does not reflect the true connection between
the nodes. Since an edge is placed when the distance is B h, we thus assign the
probability r to all distances D B h—and this value immediately jumps to 1 when
the distance exceeds h and therefore, there is no edge. The true probability should
not change that abruptly, especially since the value h has to be empirically
determined—and may thus change from situation to situation.

In other words, instead of a single probability value r, we should come up with
the value r(D) depending on the distance—and make sure that this dependence on
D is continuous, with no abrupt jumps. This function should be non-decreasing:

• when the distance increases,
• the probability that the entities are not actually connected should also increase

(or at least not decrease),

i.e., D�D0 should imply rðDÞ� rðD0Þ.
To find such a function, let us consider the situation in which a node e0 is in

between nodes e and e00, in the sense that Dðe; e0eÞ ¼ Dðe; e0Þ þ Dðe0; e00Þ, i.e., the

distance Dðe; e00Þ is equal to the sum Dþ D0, where we denoted D ¼def
Dðe; e0Þ and

D0 ¼def
Dðe0; e00Þ. By definition of the function r(D):

• the probability that the entities e and e0 are actually connected is equal to
1 - r(D);

• the probability that the entities e0 and e00 are actually connected is equal to
1 - r(D0); and
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• the probability that the entities e and e00 are actually connected is equal to 1 -

r(D + D0).

The nodes e and e00 are actually connected if both e is connected to e0 and e0 is
connected to e00. Similar to the previous parts of this chapter, it is reasonable to
assume that the corresponding events are independent. Thus, we get

1� rðDþ D0Þ ¼ ð1� rðDÞÞ � ð1� rðD0ÞÞ: ð25Þ

Thus, a non-increasing function pðDÞ ¼def
1� rðDÞ satisfies the functional

equation pðDþ D0Þ ¼ pðDÞ � pðD0Þ.
It is known (see, e.g., [1]) that all the solutions of such an equation have the

form pðDÞ ¼ expð�a � DÞ for some constant a [ 0. Thus, we arrive at the fol-
lowing conclusion.

How probability depends on the distance. The probability p(D) that two
nodes are actually connected is equal to pðDÞ ¼ expð�a � DÞ for some constant
a [ 0.

The parameter a needs to be determined empirically, based on the part of our
data for which we already know which entities are actually connected and which
are not.

The probability rðDÞ ¼ 1� pðDÞ that there is no connection between the two
nodes is therefore equal to rðDÞ ¼ 1� expð�a � DÞ.

Detecting direct connections: case when we take distances into account.
Similar to the graph case, we first compute, for each node e, the probability that all
connections from e to nodes from G - {e} are accidental. Just like in the graph
case, this probability is equal to the product of the probabilities expð�a � Dðe; e0ÞÞ
that the distance between e and e0 does not imply an actual connection. This
product is equal to

Q
e0 6¼e expða � Dðe; e0ÞÞ.

This formula can be simplified.

• First, we can easily add e0 = e to the product, since for e0 = e, we have
Dðe; e0Þ ¼ 0 and thus, the factor expð�a � Dðe; eÞÞ ¼ 1 does not change the
overall product.

• Second, we can use the fact that the product of the exponents is equal to the
exponent of the sum. As a result, we get a simplified formula

exp �a �
X
e02G

Dðe; e0Þ
 !

: ð26Þ
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Thus, the probability that e is actually connected to G - {e} is equal to

1� exp �a �
X
e02G

Dðe; e0Þ
 !

: ð27Þ

The probability P(G) that all nodes from G are actually connected can be now
estimated as the product of the probabilities corresponding to different nodes
e 2 G:

PðGÞ ¼
Y
e2G

1� exp �a �
X
e02G

Dðe; e0Þ
 ! !

: ð28Þ

Comment. In the first approximation, we get a simplified formula

PðGÞ � 1�
X
e2G

exp �a �
X
e02G

Dðe; e0Þ
 !

: ð29Þ

Towards an algorithm. We start building a chain with c1 = e1. In the original
method, we only considered k-cliques; now, we are allowing graphs which are
‘‘almost’’ cliques.

For each such graph, we can use the formula (29) to estimate the probability
P(G) that this nodes from this graph are actually connected. For each node e0 from
this graph, we probability that it is actually connected to c1 is equal to p(G) and the
probability that it is actually connected to e2 is equal to

expð�a � Dðe0; e2ÞÞ: ð30Þ

Thus, the probability that e1 and e2 are connected via e0 is equal to the product
of these two probabilities, i.e., to PðGÞ � ð1� expð�a � Dðe0; e2ÞÞÞ. As the next
node in the connecting chain, we then select the most probable connecting node e0,
i.e., the node for which this product is the largest possible.

Then, we repeat the same procedure starting with c2, etc., until we reach e2. As
a result, we arrive at the following algorithm.

7 Resulting Algorithm

Formulation of the problem: reminder. We want to check whether the given
nodes e1 and e2 are actually connected—and if yes, we want to design a chain of
events c1 = e1, c2,…, ct, and ct+1 = e2 in which each ci is directly connected to
ci+1 (and the corresponding chain of connecting graphs G1,…,Gt).

We also want to compute the probability P that the corresponding chain reflects
the actual connection.
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First preliminary step: finding the parameter a [ 0. Based on the part of the
data for which we already know which entities are actually connected and which
are not, we estimate the parameter a [ 0 for which the probability p(D) that nodes
at distance D are actually connected decreases as exp ( -a � D).

This value can be estimated, e.g., if for different values d, we estimate, among
all pairs nodes of distance approximately D, the proportion epðDÞ of pairs were
actually connected. Then, we try to find a for which, for all these values D, we
have epðDÞ � expð�a � DÞ. To estimate a, we can, e.g., take negative logarithm of
both sides, and use the Least Squares Method (see, e.g., [18]) to solve the resulting
system of approximate linear equations a � D � � lnðepðDÞÞ.

Second preliminary step: finding neighborhoods. Similar to [8, 9], use the
concept lattice algorithms to come up, for each entity e, with a list of the closest
ones. Then, for each node e and for each m, we can find a m-neighborhood of e—
i.e., the set consisting of m closest nodes. For this, we can use, e.g., an algorithm
for computing the concept lattice (as in [8, 9]).

The corresponding value m and the value k (which is used in the main part of
the algorithm) are chosen in such a way that it is computationally feasible to try all
possible subsets of B k - 1 elements out of m.

Main part of the algorithm. We start with c1 = e1. Then, we select the nodes
c2, c3,…, ct one by one.

When we reach the node ci, we estimate the probability Pi that c1 and ci are
actually connected. We start with the probability P1 = 1 (reflecting the fact that
the node e1 is clearly connected to itself).

For every i, once the node ci has been selected and the value Pi has been
computed, we find m nodes which are the closest to ci. Out of these m nodes, we
test all possible subsets of B k - 1 nodes. To each of these subsets, we add the
node ci and consider the corresponding graph G. For this graph G, we compute the
probability

PðGÞ ¼
Y
e2G

1� exp �a �
X
e02G

Dðe; e0Þ
 ! !

: ð31Þ

Then, for each point e0 2 G� fcig, we compute the product

PðGÞ � ð1� expð�a � Dðe0; e2ÞÞÞ: ð32Þ

Once we have tested all such subsets G and computed the product for all their
elements e0 2 G, we select, as the next node ci+1 in the chain, the node e0 for which
the product corresponding to this node is the largest possible. The corresponding
graph G is selected as the connecting graph Gi. We then compute
Piþ1 ¼ Pi � PðGiÞ.

• If the probability Pi+1 goes below a certain threshold P0, we conclude that e1

and e2 are not actually connected (or, to be more precise, that, based on the
available information, we cannot make such a conclusion).
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• If ciþ1 ¼ e2 and Piþ1�P0, then we conclude that the given nodes e1 and e2 are
actually connected, with degree of confidence P ¼ Piþ1.

• If ciþ1 6¼ e2 and Piþ1�P0, we continue iterations.

Experimental results. As we have mentioned earlier, this algorithm has led to
successful discovery of connections in intelligence analysis [8] and in the analysis
of biomedical publications [9]. In both cases, the algorithm, by using only the
information about joint appearance in documents, was able to uncover important
relations between the corresponding objects. The fact that in these two examples,
we were able to uncover previously known useful relations makes us believe that
this technique will enable other users to uncover relations of importance.

8 Conclusions

In many practical situations, it is important to check which entities are actually
connected and which are not. Usually, this checking is performed by using the
traditional statistical methods—but these methods cannot be applied when we have
a large amount of data points (‘‘big data’’). A semi-heuristic method was proposed
to detect actual connections in the case of big data; however this method has
limitations: first, it is justified by experimental results and requires theoretical
justification, and second, the method depends on ‘‘crisp’’ granules (cliques) to
form connections.

In this chapter, we have come up with a theoretical justification of the known
semi-heuristic method, and we have come up with a new, more flexible definition
of almost-granules. However, a lot of work is still ahead: there is still a lot of room
for improvement in how we can effectively process big data to find such almost-
granules and to compute their degree of granule-ness.
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