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Abstract Currently, Big Data is one of the common scenario which cannot be
avoided. The presence of the voluminous amount of unstructured and semi-
structured data would take too much time and cost too much money to load into a
relational database for analysis purpose. Beside that, regression models are well
known and widely used as one of the important categories of models in system
modeling. This chapter shows an extended version of fuzzy regression concept in
order to handle real-time data analysis of information granules. An ultimate
objective of this study is to develop a hybrid of a genetically-guided clustering
algorithm called genetic algorithm-based Fuzzy C-Means (GAFCM) and a convex
hull-based regression approach, which is regarded as a potential solution to the
formation of information granules. It is shown that a setting of Granular Com-
puting with the proposed approach, helps to reduce the computing time, especially
in case of real-time data analysis, as well as an overall computational complexity.
Additionally, the proposed approach shows an efficient real-time processing of
information granules regression analysis based on the convex hull approach in
which a Beneath-Beyond algorithm is employed to design sub-convex hulls as
well as a main convex hull structure. In the proposed design setting, it was
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emphasized a pivotal role of the convex hull approach or more specifically the
Beneath-Beyond algorithm, which becomes crucial in alleviating limitations of
linear programming manifesting in system modeling.

Keywords Granular computing � Fuzzy regression analysis � Information gran-
ules � Fuzzy C-means � Convex hulls � Convex hull � Beneath-beyond algorithm

1 Introduction

Nowadays, a significant growth of interest in Granular Computing (GrC) is regarded
as a promising vehicle supporting the design, analysis and processing of informa-
tion granules [1]. With regard of all processing faculties, information granules are
collections of entities (elements), usually originating at the numeric level, which are
arranged together due to their similarity, functional adjacency and in distinguish-
ability or alike [1]. Given the similarity function to quantify the closeness between
the samples, these data are clustered into certain granules, categories or classes [2].
The process of forming information granules is referred as information granulation.

GrC has begun to play important roles in bioinformatics, pattern recognition,
security, high-performance computing and others in terms of efficiency, effec-
tiveness, robustness as well as a structural representation of uncertainty [2].
Therefore, the need for sophisticated Intelligent Data Analysis (IDA) tools
becomes highly justifiable when dealing with this type of information.

The above statement supported with the amount of data generated by social
media, transactions, public and corporate entities, whose amount is scaled faster
than computer resources allow (Big Data scenario). Add to that challenge, the
volume of data is generated by Internet of Thing (IoT) such like smartphones,
tablets, PCs or smart glasses; it becomes clear that traditional solutions of data
storage and processing could hardly be applied to ingest, validate and analyze
these volumes of data [3].

Accordingly, the developed method discussed here exhibits sound performance
as far as computing time and an overall computation complexity are concerned.
Fuzzy C-Means (FCM) clustering algorithm, introduced by Dunn in 1973 [4] and
generalized by Bezdek in 1981, becomes one of the commonly used techniques of
GrC when it comes to the formation of information granules [5, 6]. There has been
a great deal of improvements and extensions of this clustering technique. One can
refer here to the genetically-guided clustering algorithm called Genetic Algorithm-
FCM (GA-FCM) and proposed by Hall et al. [4]. It has been shown that the
GA-FCM algorithm can successfully alleviate the difficulties of choosing a
suitable initialization of the FCM method. On the other hand, Ramli et al. proposed
a real-time fuzzy regression model incorporating a convex hull method, specifi-
cally a Beneath-Beyond algorithm [7]. They have deployed a convex hull
approach useful in the realization of data analysis in a dynamic data environment.
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Associated with these two highlighted models (fuzzy regression and fuzzy
clustering), the main objective of this study is to propose an enhancement of the
fuzzy regression analysis for the purpose of analysis of information granules. From
the IDA perspective, this research intends to augment the model that Bezdek given
originally proposed by including the Ramli et al.’s approach. It will be shown that
such a hybrid combination is capable of supporting real-time granular based fuzzy
regression analysis.

In general, the proposed approach helps perform real time fuzzy regression
analysis realized in presence of information granules. The proposed approach
comprises four main phases. First, the use of GA-FCM clustering algorithm gran-
ulates the entire data set into a limited number of chunks-information granules. The
second phase consists of constructing sub-convex hull polygons for the already
formed information granules. Therefore, the number of constructed convex hulls
should be similar to the number of identified information granules. Next, main
convex hull is constructed by considering all sub convex hulls. Moreover, the main
convex hull will utilize the outside vertices which were selected from the con-
structed sub-convex hulls. Finally, in the last phase, the selected vertices of the main
constructed convex hull, which covers all sub-convex hull (or identified in-forma-
tion granules), are used to build a fuzzy regressions model. To illustrate the effi-
ciency and effectiveness of the proposed method, a numeric example is presented.

This chapter is structured as follows. Section 2 serves as a concise and focused
review of the fundamental principles of real-time data analysis, GrC as well as GA-
FCM. Furthermore, this section also highlighted a review on convex hull approach;
affine, supporting hyperplane as well as Beneath-Beyond algorithm. Additionally,
some essentials of fuzzy linear regression augmented by the convex hull approach
have been discussed. Section 3 discusses a processing flow of the proposed approach
yielding real time granular based fuzzy regression models. Section 4 is devoted to a
numerical experiment. Finally, Sect. 5 presents some concluding remarks.

2 Some Related Studies

Through this section, several fundamental issues to be used throughout the study
are investigated.

2.1 Recall of Real-Time Data Analysis Processing

Essentially, real-time data analysis refers to studies where data revisions (updates,
successive data accumulation) or data release timing is important to a significant
degree. The most important properties of real-time data analysis are dynamic
analysis and reporting, based on data entered into a system in a short interval
before the actual time of the usage of the results [8].
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An important notion in real-time systems is event, that is, any occurrence that
results in a change in the sequential flow of program execution. Related to this
situation, the time between the presentation of a set of inputs and the appearance of
all the associated outputs (results) is called the response time [9, 10]. In addition,
the shortest response time is an important design requirement.

2.2 Brief Review on Granular Information

Granular Computing (GrC) is a general computing paradigm that effectively deals
with designing and processing information granules. The underlying formalism
relies on a way in which information granules are represented; here it may con-
sider set theory, fuzzy sets, rough sets, to name a few of the available alternatives
[1]. In addition, GrC focuses on a paradigm of representing and processing
information in a multiple level architecture. Furthermore, GrC can be viewed as a
structured combination of algorithmic and non-algorithmic aspects of information
processing [5].

Generally, GrC is a twofold process and includes granulation and computation,
where the former transforms the problem domain to the one with granules,
whereas the latter processes these granules to solve the problem [11]. Granulation
of information is an intuitively appealing concept and appears almost everywhere
under different names, such as chucking, clustering, partitioning, division or
decomposition [12]. Moreover, the process of granulation and the nature of
information granules imply certain formalism that seems to be the most suited to
capture the problem at hand. Therefore, to deal with the high computational cost
which might be caused by a huge size of information granule patterns, it was noted
that FCM algorithm which is one of commonly selected approaches to data
clustering implementation procedure.

In general, the problem of clustering is that of finding a partition that captures the
similarity among data objects by grouping them accordingly in the partition (or
cluster). Data objects within a group or cluster should be similar; data objects coming
from different groups should be dissimilar. In this context, FCM arises as a way of
formation of information granules represented by fuzzy sets [5]. Clustering approach
as well as the FCM clustering algorithm have been discussed in this section.

Clustering is a process of grouping a data set in a way that the similarity
between data within same cluster is maximized while the similarity of data
between different clusters is minimized [13]. It classifies a set of observations into
two or more mutually exclusive unknown groups based on combinations of many
variables. Its aim is to construct groups in such a way that the profiles of objects in
the same groups are relatively homogeneous whereas the profiles of objects in
different groups are relatively heterogeneous [13].

FCM is a method of clustering which allows any data to belong to two or more
clusters with some degrees of membership. Initially, consider a data set composed
of n vectors X ¼ fx1; x2; . . .; xng to be clustered into c clusters or groups. Each of
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xk 2 <K ; k ¼ 1; 2; . . .; n is a feature vector consisting of K real-valued measure-
ments describing the features of the objects. A fuzzy c-partition of the given data
set is the fuzzy partition matric U ¼ ½lik�; i ¼ 1; 2; . . .; c and k ¼ 1; 2; . . .; n such
that

0� lik� 1; for 1� i� c; 1� k� n

0�
Pn

k¼1
lik � n; for 1� i� c

Pc

i¼1
lik ¼ 1; for 1� k� n

ð1Þ

where lik is the membership of feature vector xk to cluster ci. Furthermore, fuzzy
cluster of the objects can be represented by a membership matrix called fuzzy
partition. The set of all c� n non-degenerate constrained fuzzy partition matrices
denoted by Mfcn which is defined as

Mfcn ¼ U 2 <c�n
Pc

i¼1
¼ 1; 0\

Pn

k¼1
Uik\n;Uik 2 ½0; 1�

�
�
�
� ; 1� i� c; 1� k� n

� �

:

ð2Þ

Moreover, the FCM algorithm minimizes the following objective function

Jm U;Vð Þ ¼
Xc

i¼1

Xn

k¼1

likð ÞmD2
ik vi; xkð Þ ð3Þ

where U 2 Mfcn is a fuzzy partition matrix, V ¼ ðv1; v2; . . .; vcÞ is a collection of
cluster centers (prototypes). vi 2 <K8i and Dikðvi; xkÞ is a distance between xk and
the ith prototype while m is a fuzzification coefficient, m [ 1.

The FCM optimizes (3) by iteratively updating the prototypes and the partition
matrix. More specifically, some values of c, m and e (termination condition—a
small positive constant) have been chosen, then generate a random fuzzy partition
matrix U0 and set an iteration index to zero, t ¼ 0. An iterative process is orga-

nized as follows. Given the membership value lðtÞik , the cluster centers v
ðtÞ
i ði ¼

1; . . .; cÞ are calculated by

v
ðtÞ
i ¼

Pn
k¼1 lðtÞik

� �m
xk

Pn
k¼1 lðtÞik

� �m ð4Þ

Given the new cluster centers v
ðtÞ
i the membership values of the partition matrix

lðtÞik are updated as
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ltþ1
ik ¼

Xc

j¼1

xk � v
ðtÞ
i

�
�
�

�
�
�

xk � v
ðtÞ
j

�
�
�

�
�
�
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2
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6
4

3
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5

�1

ð5Þ

This process terminates when jUðtþ1Þ � UðtÞj � e, or some predefined number of
iterations has been reached [14]. In the following sub section, an enhancement of
the FCM algorithm called GA-FCM is investigated.

2.3 Genetically-Guided Clustering Algorithm

There are several studies employed genetic algorithm based clustering technique in
order to solve various types of problems [15–18]. More specifically, GA technique
to determine the prototypes of the clusters located in the Euclidean space <K has
been exploited. At each generation, a new set of prototypes is created through the
process of selecting individuals according to their level of fitness. In the sequel
they are affected by running genetic operators [16, 18]. This process leads to the
evolution of population of individuals that become more suitable given the cor-
responding values of the fitness function.

There are a number of research studies that have been completed which uti-
lizing the advantages of GA-enhanced FCM. Genetically guided clustering algo-
rithm proposed by Hall et al. was focused here. Based on [4], in any generation,
element i of the population is Vi, a c� s matrix of cluster centers (prototypes). The
initial population of size P is constructed by a random assignment of real numbers
to each of the s features of the c centers of the clusters. The initial values are
constrained to be in the range (determined from the data set) of the feature to
which they are assigned.

In addition, as V’s will be used within the GA, it is necessary to reformulate the
objective function for FCM for optimization purposes. Expression (3) can be
expressed in terms of distances from the prototypes (as done in the FCM method).
Specifically, for m [ 1 as long as Djkðvj; xkÞ[ 0 8 j; k, it have

lik ¼ 1

,
Xc

j¼1

Dikðvi; xkÞ
Djkðvj; xkÞ

� 	 2
m�1

for 1� i� c; 1� k� n: ð6Þ

Now, Eq. (6) was substituted into Eq. (2). This gives rise to the FCM functional
reformulated as follows

RmðVÞ ¼
Xn

k¼1

Xc

i¼1

D1=ð1�mÞ
ik

 !1�m

: ð7Þ
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which is concentrated on optimizing Rm with a genetically-guided algorithm
(GGA) technique [4]. Additionally, Hathaway and Bezdek (1995) highlighted that
have shown that local ðVÞ minimizers of Rm and also ðUÞ at expression (3) will
produces local minimizers of Jm and, on the other hands, the V part of local
minimizers of Jm acquiesce local minimizers of Rm [4].

Furthermore, there are a number of genetic operators, which relate to the GA-
based clustering algorithm including Selection which consist of selecting parents
for reproduction, performing Crossover with the parents and applying Mutation to
the bits of the children [4]. Binary gray code representations where any two
adjacent numbers are one bit different has been selected on this genetically-guided
algorithm (GGA) approach and this encoding able to yields faster convergence and
improve performance over a straightforward binary encoding [4].

The complete process of the GGA [4] is outlined as follows.

GGA1: Choose m, c, and Dik.
GGA2: Randomly initialize P sets of c cluster centers. Confine the initial values

within the space defined by the data to be clustered.
GGA3: Calculate Rm by using (7) for each population member and apply modified

objective function R0mðVÞ ¼ RmðVÞ þ b� RmðVÞ where b 2 ½0; c� is the
number of empty clusters.

GGA4: Convert population members to binary equivalents (using the Gray code).
GGA5: For i = 1 to number of generations, Do

(i) Used k-fold tournament selection (default k = 1) to select P/2
parent pairs for reproduction.

(ii) Complete a two-point crossover and bitwise mutation for each
feature of the parent pairs.

(iii) Calculate Rm by using (7) for each population member and apply
modified objective function R0mðVÞ ¼ RmðVÞ þ b� RmðVÞ where
b [ [0, c] is the number of empty clusters.

(iv) Create a new generation of size P, which is selected from the two
best members of the previous generation and the best children that
are generated by using crossover and mutation.

GGA6: Provide the cluster centers to the terminal population with the smallest R0m
value and report R0m.

2.4 A Brief Review of a Convex Hull Approach

The convex hull is the fundamental construct of mathematics and computational
geometry. It is useful as a building block for a plethora of applications including
collision detection in video games, visual pattern matching, mapping and path
determination [19]. In what follows, a detailed description of this approach was
presented.
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2.4.1 Affine, Convex Hull Definition and Supporting Hyperplane

The affine hull of set S in Euclidean space <K is the smallest affine set contained in
S, or equivalently the intersection of all the affine sets containing S. Here, an affine
set is defined as the translation of a vector subspace. The affine hull aff ðSÞ of S is
the set of all the affine combinations of elements of S, namely

aff ðSÞ ¼
XK

j¼1

ajxj xj 2 S; aj ¼ <;
�
� aj� 0;

XK

j¼1

aj ¼ 1

( )

: ð8Þ

The convex hull of set S of points hullðSÞ is defined to be a minimal convex set
containing S. A point P 2 S is an extreme point of S if 62 hullðS� PÞ. In general, if
S is finite, then hullðSÞ is a convex polygon, and the extreme points of S are the
corners of this polygon. The edges of this polygon are referred to as the edges of
the hullðSÞ.

A supporting hyperplane is a another geometric concept. A hyperplane divides
a space into two half-spaces. A hyperplane is said to support a set S in Euclidean
space <K if it meets the following conditions:

• S is entirely contained in one of the two closed half-spaces of the hyperplane,
and

• S has at least one point on the hyperplane.

In addition, if the dimension of the supporting line is higher than three, the
related relationship can be written down as

S ¼ x 2 <K
XK

j¼1

ajxj ¼ b

�
�
�
�
�

 !

ð9Þ

where a ¼ ½a1; . . .; aK � denotes a unit vector, x ¼ ½x1; . . .; xK � is an arbitrary point
and b assumes any arbitrary real value.

Sþ ¼ x 2 <K
XK

j¼1

ajxj� b

�
�
�
�
�

 !

ð10Þ

S� ¼ x 2 <K
XK

j¼1

ajxj� b

�
�
�
�
�

 !

ð11Þ

In case when the following conditions are satisfied

S
\

P 6¼ / and P � Sþ or P � S�; ð12Þ

it say that the supporting hyperplane S supports set P.
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Using this definition, the reformulation of a convex hull called convðPÞ, can be
expressed as follows:

convðPÞ ¼
\

Sþ:uppersupportinghyperplane

Sþ ð13Þ

convðPÞ ¼
\

S�:lowersupportinghyperplane

S� ð14Þ

2.4.2 Beneath-Beyond Algorithm

This algorithm incrementally builds up the convex hull by keeping track of the
current convex hull, Pi using an incidence graph. The Beneath-Beyond algorithm
consists of the following steps [20]:

Step 1: Select and sort points along one direction, say x1. Let s ¼
P0;P1; . . .;Pn�1 be input points after sorting. Process the points in an
increasing order.

Step 2: Take the first n points, which define a facet as the initial hull.
Step 3: Let Pi be the point to be added to the hull at the ith stage. Let Pi ¼

convðP0;P1; . . .;Pi�1Þ be the convex hull polytope built so far. This step
includes two kinds of hull updates:

(a) A pyramidal update is done when Pi 62 aff ðP0;P1; . . .;Pi�1Þ—
when Pi is not on the hyperplane defined by the current hull. A
pyramidal update consists of adding a new node representing Pi to
the incidence graph and connecting this node to all existing hull
vertices by new edges.

(b) A non-pyramidal update is done when the above condition is not
met, i.e. Pi is in the affine subspace defined by the current convex
hull. In this case, faces that are visible from Pi are removed and
new facets are created.

2.5 A Convex Hull-Based Regression

In regression, deviations between observed and estimated values are assumed to be
due to the random errors. Regression analysis is one of commonly encountered
approaches in describing relationships among the analyzed data. The regression
models explain dependencies between independent and dependent variables. The
variables, which are used to explain the other variable(s) are called explanatory
ones [21, 22].

Information Granules Problem 47



Although conventional regression has been applied to various applications,
problems may arise when they were encountered vague relationships between
input and output variables in which cases there assumptions made for regression
models are not valid any longer. This situation becomes a major reason behind a
lack of relevance of regression models [23].

Recall that a standard numeric linear regression model comes in the following
form:

Y ¼ A0 þ A1x1 þ � � � þ AKxK : ð15Þ

As an interesting and useful extension, Tanaka et al. introduced an enhance-
ment of the regression model by accommodating fuzzy sets thus giving rise to the
term of fuzzy regression or possibilistic regression [24]. The models of this cat-
egory reflect the fuzzy set based nature of relationships between the dependent and
independent variables. The upper and lower regression boundaries in the fuzzy
regression are used to quantify the fuzzy distribution of the output values.

As an alternative to the fuzzy specification, an inexact relationship among those
dependent and independent variables can be represented via fuzzy linear regres-
sion expressed in the following form:

~Y ¼ ~A0x0 þ ~A1x1 þ � � � þ ~AKxK ¼ ~Axt ð16Þ

where x ¼ ½x0; x1; . . .; xK � is a vector of independent variables with x0 ¼ 1; ~A ¼
½~A0; ~A1; . . .; ~AK � is a vector of fuzzy coefficients represented in the form of sym-
metric triangular fuzzy numbers and denoted by ~Aj ¼ ðaj; cjÞ with membership
function described as follows:

u~AðajÞ ¼
1� jaj�ajj

cj
; cj 6¼ 0; aj � cj� aj� aj þ cj;

1; cj ¼ 0; aj ¼ aj;
0; otherwise;

8
<

:
ð17Þ

where aj and cj are the central value and the spread of the triangular fuzzy number,
respectively.

From the computational perspective, the estimation of the membership func-
tions of the fuzzy parameters of the regression is associated with a certain problem
of Linear Programming (LP) [21].

Given the notation used above, Eq. (16) can be rewritten as follows

~Yi ¼ ða0; c0Þ þ ða1; c1Þx1 þ ða2; c2Þx2 þ � � � þ ðaK ; cKÞxK : ð18Þ

where aj and cjðj ¼ 1; 2; . . .;KÞ are the center and the spread of the predicted

interval of ~Aj, respectively.
The weakness of the implementation of the multidimensional fuzzy linear

regression can be alleviated by incorporating the convex hull approach [7, 25].
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In the introduced modification, the construction of vertices of the convex hull
becomes realized in real-time by using related points (convex points) of the graph.
Furthermore, Ramli et al. stated that the real-time implementation of the method
has to deal with a large number of samples (data). Therefore, each particular
analyzed sample stands for a convex point and is possibly selected as a convex hull
vertex. Some edges connecting the vertices need to be re-constructed as well [26].

Let us recall that the main purpose of fuzzy linear regression is to form the
upper and lower bounds of the linear regression model. Both the upper line YU and
lower line YL of the fuzzy linear regression are expressed in the form:

YU ¼ A0 þ A1x1 þ � � � þ AKxKf gU : Axt
i


 �U¼ axt
i þ c xt

i

�
�
�
� ð19Þ

YL ¼ fA0 þ A1x1 þ � � � þ AKxKgL : fAxt
ig

L ¼ axt
i � cjxt

ij ð20Þ

By using Eqs. (19) and (20), the problem was converted to a general fuzzy
regression that is similar to the one shown below:

1. Evaluation (objective) function

min
a;c

Xn

i¼1

XK

j¼2

cjjPijj: ð21Þ

2. Constraints

Pi1 2 Yi ,

Pi1� a0 þ c0 þ
PK

j¼2
ajPij þ

PK

j¼2
cjjPijj

Pi1� a0 � c0 þ
PK

j¼2
ajPij �

PK

j¼2
cjjPijj

ði ¼ 1; . . .; nÞ:

8
>>>>><

>>>>>:

ð22Þ

The above expression can be further rewritten as follows:

YU ¼ fYU
i i ¼ 1; . . .; nj g

YL ¼ fYL
i i ¼ 1; . . .; nj g

ð23Þ

Here also arrive at the following simple relations for Pi1

Pi1� YU
i ; Pi1� YL

i ði ¼ 1; . . .; nÞ ð24Þ

It is well known that any discrete topology is a topology which is formed by a
collection of subsets of a topological space v and the discrete metric q on v is
defined as
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qðx; yÞ 1 if x 6¼ y
0 if x ¼ y

ð25Þ

for any x; y 2 X. In this case, ðX; qÞ is called a discrete metric space or a space of
isolated points. According to the definition of discrete topology, expression (24) is
rewritten as follows:

SðYUÞ ¼
XK

j¼1

fYjPijgU � 0

SðYLÞ ¼
XK

j¼1

fYjPijgL� 0

ð26Þ

where assume that Pi1 ¼ 1.
This formula corresponds with the definition of the support hyperplane. Under

the consideration of the range of

S
\

P 6¼ / and P � Sþ or P � S�; ð27Þ

the following relationship is valid:

\
SðYUÞ ¼

\
SðYLÞ: ð28Þ

This is explained by the fact that regression formula YU and YL are formed by
vertices of a convex hull. Therefore, it is apparent that the constructed convex hull
polygon or more specifically, its vertices clearly define the discussed constraints of
fuzzy mathematical programming, becomes more reliable as well as significant for
the subsequent processes.

Recall that the convex hull of a set S of points while hullðSÞ is defined to be a
minimum convex set containing S. A point P 2 S is an extreme point of S if
P 62 hullðS� PÞ. Hence P denotes the set of points (input samples) and PC is the
set of vertices of the convex hull where PC 2 P. Therefore, the convex hull has to
satisfy the following relationship:

convðPÞ ¼ convðPCÞ ð29Þ

Introduce here the following set

PC ¼ fxCl 2 <K l ¼ 1; . . .;mj g 	 P ð30Þ

where m is the number of vertices of the convex hull. Plugging this relationship
into (22), at the following constraints was arrived.
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Pi1 2 Yi ,

Pi1� a0 þ c0 þ
PK

j¼2
ajPij þ

PK

j¼2
cjjPijj

Pi1� a0 � c0 þ
PK

j¼2
ajPij �

PK

j¼2
cjjPijj

ði ¼ 1; . . .;mÞ:

8
>>>>><

>>>>>:

ð31Þ

In virtue of Eq. (31), the constraints of the LP of the fuzzy linear regression can be
written in the following manner:

yi 2 Yi ,
yi� axt

i þ cjxt
ij

yi� axt
i � cjxt

ij
ði ¼ 1; . . .;mÞ:

8
<

:
ð32Þ

Moreover, in order to form a suitable regression model based on the constructed
convex hull, the connected vertex points are used as the constraints in the LP
formulation of the fuzzy linear regression. Considering this process, the use of the
limited number of selected vertices contributes to the minimized computing
complexity associated with the model [1].

3 A Real-Time Granular Based Fuzzy Regression Models
with a Convex Hull Implementation

In general, there are four major components of this proposed approach includes
genetically-guided clustering, sub-convex hull construction process, main convex
hull construction process and fuzzy regression solution. The description of related
components is shown in Table 1.

Furthermore, Fig. 1 shows the synopsis of the entire processes where there are
examples of four clustered sample of data (clustered feature vectors). In addition,
this clustered feature vectors were representing information granules. Sub-convex
hull were built for each of clustered feature vectors and based on Fig. 1, con-
structed of sub-convex hulls are clearly defined. Consequently, highlighted also a
main convex hull which was constructed depending on initially build of sub-
convex hulls. Therefore, this solution will covers entire clustered samples of data
or in other words, this proposed approach might consider for producing optimum
regression results.

In order to make clearly understand of the proposed approach, the flow of the
overall processing is presented, see Fig. 2. Some selected samples of granular data
were load into the system. Then, GA-FCM is used for assigning relevance number of
granules. Additionally, GA-FCM has been selected in this process because the ability
to clearly define as well as separate the raw samples into associated granule. Even
though GA-FCM could be required some additional processing time comparing with
conventional FCM, the accurate result of produced classes are achievable.
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The following process involving convex hull construction where Beneath-
Beyond algorithm has been selected here. During this process, the outer points of
each constructed granule is completely identified. The selected outer points were
connected each other for producing particular edges. The combination of connected
edges will produce a convex hull polygon. In this situation, the produced convex hull

Table 1 A description of the main components of the proposed approach

No. Component Involved
algorithm/
processes

Description

1. Genetically-
guided
clustering

GA-FCM
algorithm

The used of GA-FCM algorithm for identify
appropriate clusters which were representing
information granules

2. Sub convex hull
construction

Beneath-Beyond
algorithm

Build a sub convex hull polygon for each identified
cluster. This process will be repeated until all
identified clusters achieved. The number of
constructed convex hull should be same with
constructed clusters

3. Convex hull
construction

Beneath-Beyond
algorithm

Build a convex hull polygon, which covers the whole
constructed sub convex hull polygon

4. Fuzzy
regression
solution

LP formulation
for fuzzy

Used convex hull vertices in LP formulation of
regression formulation fuzzy regression for
producing optimal models

Fig. 1 An illustration of constructed sub-clusters and a main cluster
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categorized as sub-convex hull. Furthermore, these sub-processes will be iterated
until desired point of data are classified under appropriate information granules.

The next sub-process is focusing on construction of main convex hull. This task
will concentrate on finding the outer points which representing vertices of con-
structed sub-convex hulls by taking account of whole constructed sub-convex hull
as once.

In the end, the final step consists of finding an optimal fuzzy regression model
with utilization of main convex hull points or vertices. At this point, an optimal

Fig. 2 A general flow of processing
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fuzzy regression models will be produced and process will be also terminated if the
final group of data samples is fully arrived into the proposed approach and
completely processed.

As a summarization of this part, some iterations of the overall procedure
considering that more data become available in the future being completed. Say,
new samples are provided within a certain time interval, e.g., they could be arrived
every 10 s. Related to the comments made above, it becomes apparent that the
quality of granular based fuzzy regression model can be improved by the hybrid
combination of GA-FCM algorithm with convex hull-based fuzzy regression
approach. The quality refers to the computing time as well as the overall com-
putational complexity.

All in all, it do not have to consider the complete feature vectors for building
regression models; just utilize the selected vertices, which are used for the con-
struction of the convex hull. As mentioned earlier, these selected vertices come
from a sub-convex hull, which represents appropriate information granules..

Therefore, this situation will lead to the decrease of the computation load. On
the other hand, related to the computational complexity factor for the subsequent
iteration, it will only consider the newly added samples of data together with the
selected vertices of the previous convex hull (main constructed convex hull
polygon). For that reason, this computing scenario will reduce the computational
complexity because of the lower number of the feature vectors used in the sub-
sequent processing of regression models.

4 A Numerical Example and Performance Analysis

A simple numerical example presented here, quantifies the efficiency of the pro-
posed approach in the implementation of real-time granular based fuzzy
regression.

As a guidance of this simulation example, Fig. 3 shows an illustration of a real-
time reconstruction of a fuzzy classification analysis that involves a dynamic
record/database. For instance, each of the iterations may have had the same
amount of newly arrived data. As mentioned earlier, the amount of data increased
as time progressed. Note that the initial group of samples was taken as the input for
the first iteration process. It can see here the increase in the volume of data with the
real-time arrival of new data.

Before going further into this precious section, affirmed here that, computer
specification which has been used to perform the whole processes. The specifi-
cations of machine are; a personal notebook PC with Intel(R) Pentium CORE(TM)
Duo 2 CPU (2.00 GHz) processors combined with 2 GB DDR2 type of RAM.
Moreover, Windows Vista Business Edition (32 bit) was an operating system
installed into this machine.

Based on Fig. 3, assume that an initial group of samples consists of 100 data of
the well-known Iris data set [27]. Considering a distribution of these data,
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constructed sub-convex hull polygons, which become the boundary of each
identified cluster (or information granule) were successfully completed, see Fig. 4.

Referring to the figure highlighted (Fig. 4), there are 3 constructed sub-convex
hulls called cl1, cl2 and cl3. Table 2 covers the details of all clusters.

Next, a main convex hull which covers those sub-convex hulls has been con-
structed and among 22 of total selected clustered feature vectors (or loci points) as
stated in Table 2, only 11 points were selected as convex hull vertices, see Fig. 5.
In addition, these selected vertices are located as the outside points of the con-
structed clusters. By solving the associated LP problem that considered these
selected vertices as a part of the constraint portion standing in the problem, we
obtained the optimal regression coefficients, see below. In addition, h = 0.05 has
been selected to express goodness of fit or compatibility of data and the regression
model

y ¼ ð2:071; 0:163Þ þ ð0:612; 0:096ÞC1þ ð0:639; 0:075ÞC2� ð0:412; 0:000ÞC3

Fig. 3 An illustration of an
increasing record/database
along with time consumption

Fig. 4 Obtained clusters and
constructed sub convex hulls
for initial samples of data
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where
C1 input variable for Sepal Length,
C2 input variable for Sepal Width, and
C3 input variable for Petal Length,

with
Constant value = 2.071, spread = 0.163,
Coefficient of Sepal Length = 0.612, spread = 0.096,
Coefficient of Sepal Width = 0.639, spread = 0.075, and
Coefficient of Petal Length = 0.412, spread = 0.000.

To deal with a real-time scenario, a group of samples taken from the same data
set, which consists of 50 patterns has been added into previously selected patterns.
In this case, assume that an iteration process has been completed. Table 3 shows
the details of each sub-convex hull for initial group together with newly added data
samples and Fig. 6 illustrate this related outcome.

Table 2 Details of the obtained cluster along with the number of selected vertices for initial
group of data samples

No. Obtained clusters Selected vertices

1. Cluster 1 (cl1) 9
2. Cluster 2 (cl2) 7
3. Cluster 3 (cl3) 6

Fig. 5 Constructed of main convex hulls for initial samples of data
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The total number of selected vertices for this newly data volume is 26 and out
of them, the main constructed convex hull only used 10 vertices, refer to Table 3.
Finally, the obtained fuzzy regression model comes in the form;

y ¼ ð1:855; 0:173Þ þ ð0:651; 0:102ÞC1þ ð0:709; 0:095ÞC2� ð0:556; 0:000ÞC3

where
C1 input variable for Sepal Length,
C2 input variable for Sepal Width, and
C3 input variable for Petal Length,

with
Constant value = 1.855, spread = 0.173,
Coefficient of Sepal Length = 0.651, spread = 0.102,
Coefficient of Sepal Width = 0.7099, spread = 0.095, and
Coefficient of Petal Length = 0.556, spread = 0.000,
while Fig. 7 shows the clustered feature vectors.

As early stated in the initial part of this research, one of main contribution
towards this research is related with processing time factor. Consequently, the
details of recoded time-length can be found in Table 4. In addition, this table also

Table 3 Detailed description of the clusters and the number of selected vertices for initial group
together with newly added data samples

No. Obtained clusters Selected vertices

1. Cluster 1 (cl1) 9
2. Cluster 2 (cl2) 10
3. Cluster 3 (cl3) 7

Fig. 6 Obtained clusters and
constructed sub convex hulls
for initial together with the
newly added samples of data
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shows some related time instance which purposely for producing appropriate fuzzy
regression models for identified information granules base on several conventional
approaches. In this situation, the same samples of data were used while FCM as
well as GA-FCM (both purposely for obtaining information granules class)
together with conventional regression approach have been implemented
accordingly.

It can see here, time-length recorded for initial samples of data (first cycle) is
only 00.28 s and for the second following cycle is only needs 00.09 s additional
time-length which becomes 00.37 s in total. Comparing with both combination of
FCM with conventional fuzzy regression as well as GA-FCM with conventional
fuzzy regression, notice that, the proposed approach looks more significant
especially in term of time consumption. In addition, both of these combinations

Fig. 7 Construction of main convex hulls for initial configuration together with newly added
samples of data

Table 4 Granules-based fuzzy regression performance: details

Approach Cycle
(Iteration)

Selected feature
vectors*

Time-length
(s)

FCM classification with conventional
regression

1st cycle (22) [22] 01.42
2nd cycle (26) [26] 02.05

GA-FCM classification with conventional
regression

1st cycle (22) [22] 01.63
2nd cycle (26) [26] 02.24

Proposed of granular-based fuzzy regression
approach

1st cycle (22) [11] 00.28
2nd cycle (26) [10] 00.37

*(Total number of vertices—sub convex hull), [Total number of vertices—main convex hull];
()- Represents equation; []- Represents reference
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approach are likely not too much different particularly related to the time
expenditure point of view and it can be realized here, that although some number
of data samples are added together with initial group of data samples, the overall
time consumption as well as computational complexity can be extremely
decreased.

As previously discussed in the early portion of this section, the proposed
approach can shorten overall time length due to the reused of produced sub as well
as main convex hull polygon. Shown here also, deployment of FCM and GA-FCM
with conventional regression approach, as tabled results, both of these combination
have to consider all analyzed data for the first cycle and reconsider them again plus
with newly arrived data for the second cycle, see Table 4. This situation requires
additional time-length and computational complexity might be increased.

On the other hand, focusing to the accuracy factor of the produced regression
models employing the proposed approach, noticed that those constructed models
are likely similar comparing with the models which was generated through utili-
zation of both FCM as well as GA-FCM classification approach combined with
conventional regression approach. Additionally, the differences range of desire
constant, coefficient and spread values are between 0.006. Therefore, it can be
concluded that, the precision level of obtained fuzzy regression models with the
use of the proposed approach is greatly accepted.

In summary, it can be highlighted here that, the proposed of granular-based
fuzzy regression reaches the best performance for real-time data processing.

5 Conclusion and Future Works

In this chapter, an enhancement of the IDA tool of fuzzy regression completed in
the presence of information granules have been proposed. Generally, the proposed
approach first constructs a limited number of information granules and afterwards
the resulting granules are processed by running the convex hull-based regression
[6]. In this way, it have realized a new idea of real-time granular based fuzzy
regression models being viewed as a modeling alternative to deal with real-world
regression problems.

It is shown that information granules are formed as a result of running the
genetic version of the FCM called GA-FCM algorithm [3]. Basically, there are two
parts of related process, which utilize the convex hull approach or specifically
Beneath-Beyond algorithm; constructing sub-convex hull for each identified
clusters (or information granules) and building a main convex hull polygon which
covers all constructed sub-convex hulls. In other word, the main convex hull is
completed depending upon the outer plots of the constructed clusters (or infor-
mation granules). Additionally, the sequential flow of processing was carried out
to deal with dynamically increasing size of the data.

Based on the experimental developments, one could note that, this approach
becomes a suitable design alternative especially when solving real-time fuzzy
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regression problems with information granules. It works efficiently for real-time
data analysis given the reduced processing time as well as the associated com-
putational complexity.

This proposed approach can be applied to real-time fuzzy regression problems
in large-scale systems present in real-world scenario especially involving granular
computing situation. In addition, each of the implemented phases, especially GA-
FCM process and both sub and main convex hull construction processes have their
own features in facing with dynamically changes of samples volume within a
certain time interval. As a result, this enhancement (or hybrid combination) pro-
vides an efficient platform for regression purposes. Although in this paper it dealt
with small data sets (and this was done for illustrative purposes), it is worth noting
that method scales up quite easily.

In further studies, it plan to expand the proposed approach by incorporating
some other technologies of soft computing and swarm intelligence techniques such
particle swarm optimization (PSO) or ant colony optimization (ACO).
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