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Abstract The coming of the big data era brings the opportunities to greatly
improve the forecasting accuracy of weather phenomena. Specifically, weather
change is quite a complex process that is affected by thousands of variables. In the
traditional computational intelligence models, we have to select the features from
variables according to some fundamental assumptions, thus the correctness of
these assumptions may crucially affect the prediction accuracy. Meanwhile, the
principle of big data is to let data speaking, which means, when the volume of data
is big enough, the hidden statistical disciplines in domain data will be revealed by
the data set itself. Therefore, if massive volume of weather data is employed, we
may be able to avoid using assumptions in the models, and we have the oppor-
tunity to improve the weather prediction accepted by learning the correlations
hidden in the data. In our investigation, we employ a new computational intelli-
gence technology called stacked Auto-Encoder to simulate hourly weather data in
30 years. This method can automatically learn the features from massive volume
of data set via layer-by-layer feature granulation, and the large size of the data set
can make sure that the complex deep model does avoid the overfitting problem.
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The experimental results demonstrate that using the new represented features in
the classical model can obtain higher accuracy in time series problems.

Keywords Weather forecasting � Big data � Deep Neural Network

1 Introduction

From the beginning of human’s history, people never cease their efforts on pre-
dicting the trend of weather changes. Every step forward of weather forecasting
technology has great academic and practical significance. This is not only because
of the changes of climate that may greatly impact people’s daily life, but also the
fact that the advancing investigation of weather forecasting can reflect the progress
of human’s ability to know the earth.

Many significant research efforts are utilized to develop weather forecasting
methods including computational intelligence technologies that have been accepted
as appropriate means for weather forecasting and reported encouraging results since
1980s [6, 7, 17, 19, 21, 32]. However, the coming of the big data era brings the
opportunities to improve the forecasting accuracy of weather phenomena in
advance. Some conventional difficulties in weather forecasting tasks are expected
to be solved with big data/large volume of weather information. Specifically, for
weather forecasting tasks, the variation tendency of atmospheric phenomenon is
quite unstable and complex, therefore, thousands of related variables are changing
every second so that a small change of a certain variable may greatly affect the
weather condition [16]. Unfortunately, the number of variables which can be
handled in a certain model is limited. Especially, for computational intelligence
models, if too many variables are employed, the overfitting problem is very difficult
to be avoided with smaller number of training samples [3]. Accordingly, some
fundamental assumptions are required, and the accuracy of the forecasting results
highly depends on the correctness of initial condition of assumptions [15, 33].

The conception of ‘‘big data’’ refers to the increasing volume of the data sets
that used to analyze problems in different research domains [37]. Combined with
statistical methods and computational intelligence technologies, big data has
brought a revolution to many traditional research fields including the meteorology,
genomics, connectomics, complex physics simulations, and biological and envi-
ronmental research [30], etc. The principle of big data is to ‘‘let data speaking’’,
which means, when the volume of data is big enough, the hidden relevance in data
set will be revealed via the statistical disciplines [1, 9, 31, 38]. Therefore, if
massive weather data is employed, we may avoid using assumptions in our model,
and we have the opportunity to directly analyze the correlations hidden in the
weather data. In so doing, the generalization of the models and accuracy of the
results are expected to be improved ultimately.

390 J. N. K. Liu et al.



The true significance of the term ‘‘big data’’ not only concentrates on larger size
of the data sets, but also refers to the suitable strategy to process the obtained large
data set. Computational intelligence models, particularly Neural Networks (NNs),
are good tools to discover the statistical rules hidden in the big data sets and have
obtained some successful reputation in the previous big data applications [12, 34].
In computational intelligence field, a very prevalent conventional conception was
that shallow and simple models, e.g. Support Vector Machines (SVMs) and Single
Layer Feedforward Networks (SLFNs) can provide better performance than com-
plex and deep models, e.g. NNs with deep (multi-layer) architectures in the big data
environment [3, 35]. Meanwhile, previous NNs with multi-layer architecture have
their own inferiorities including (1) huge computational complexity; (2) a complex
NN model with too many parameters is inevitable to the overfitting problem.
Nevertheless, the studies since 2006 undertaken by Hinton [13, 14] and followed by
other researchers hold on the opposite conception: (1) NNs with deep structure may
provide a superior learning capacity [3, 18]; (2) the newest proposed Deep Neural
Network (DNN) approach, also well-known as Deep Learning (DL), employs a
so-called layer-wise unsupervised pre-training mechanism to solve the training
difficulties efficiently [5] and (3) particularly, in big data environment, despite the
number of parameters in DNN is more than that of shallow models, the overfitting
problem can also be avoided because of the huge amount of data samples [28].

Compared with simple and shallow models, NNs with deep architecture can
provide a higher learning ability. Although the back-propagation NNs with three
layers have been proved that can theoretically approximate any nonlinear functions
with arbitrary precision [10], functions that can be compactly represented by a
deep architecture might be required to handle an exponential number of compu-
tational elements (parameters) to be represented by a depth architecture. More
precisely, functions that can be compactly represented by a depth k architecture
might be requiring an exponential number of computational elements to be rep-
resented in a depth k � 1 architecture. Since the number of computational elements
one can afford depends on the number of training examples available for tuning or
selecting them, the consequences are not only computational but also statistical:
poor generalization may be expected when using an insufficiently depth archi-
tecture for representing some functions [3, 5].

The core technologies in DNN is the layer-wise unsupervised pre-training
mechanism, by such training method, the original information in the raw data can
be represented [5] or granulated [24, 25]. By such granulation, the raw data in
original feature space may be mapped into a new feature space, and the principle
for such mapping is an information granula of interesting [2]. In a larger data
environment, the significance of granulation becomes more important, we need
some approaches for mining the knowledge in big data sets. With the granulation,
the hidden relevance in the data set maybe extracted and represented layer by layer
[5, 24]. Such a feature representation may greatly improve the performance of
traditional computational intelligence models.

In our investigation, we apply a multi-layer model to predict the weather
change in the next 24 hour with a big data set. The massive data involving millions
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of weather records is provided by The Hong Kong Observatory (HKO).1 Our
training method is to use the latest proposed greedy layer-wise unsupervised pre-
training algorithm followed by a supervised fine-tuning. In detail, we choose a
revised autoencoder algorithm to build the network, the DNN is used to learn the
features from the larger volume of raw data, and we will evaluate the learned
features according to the prediction accuracy. The contribution and significance of
our investigation demonstrates that: compared with the classical models, NN with
Deep architectures can improve the prediction accuracy in weather forecasting
field; moreover, the positive results show the potential of DNN model in big data;
last but not least, DNN has won some encouraging results in research field
including Computer Vision [14], Speech Recognition [23], Natural Linguistic
Programming [4] and Bioinformation, our investigation will show that DNN also
has great potential in time series problems, especially in weather forecasting
domain [22].

This chapter is organized as follows: in Sect. 2 we will introduce some back-
ground knowledge, mainly including how to train a DNN model layer by layer.
Section 3 briefly discusses the DNN model for weather data simulation. Section 4
discusses the experiments along with some comparative analysis. The last section
gives the conclusion and future work.

2 Background Knowledge

In this section, some background knowledge is presented. Specifically, we mainly
introduce the greedy layer-wise unsupervised pre-training approach and the
stacked Auto-Encoder based DNN.

Fig. 1 A typical shallow
feedforward network with
one hidden layer

1 http://www.hko.gov.hk/contente.htm.
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2.1 Greedy Layer-Wise Unsupervised Pre-training:
Auto2encoder Granulation

The essential challenge in training a NN with deep architecture is to deal with the
strong dependencies that exist during training between the parameters across
layers [11]. In previous investigations, researchers found that simply adding layers
to a classical shallow Feedforward Network cannot overwhelm the mentioned
challenge. Figure 1 shows the architecture of the classical SLFNs and Fig. 2 gives
the earlier model of NN with multi-layer architecture.

Fig. 2 A traditional NN with
deep architecture (simply
adding extra hidden layers to
the shallow model), that
shows complex structure,
hard to train, and easily
overfitting
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Training deep architectures involves a potentially intractable non-convex
optimization problem, and there were no inadequate algorithms for training fully-
connected deep architectures until Hinton et al. introduced a learning algorithm
that greedily trains one layer at a time in 2006 [14]. Shortly after, strategies for
building deep architectures from related variants were proposed by Bengio [22]
and Ranzato [29]. They solved the training problem of DNN in two phases: for the
first phase, unsupervised pre-training, all layers are initialized using this layer-wise
unsupervised learning signal; for the second phase, fine-tuning, a global training
criterion (a prediction error, using labels in the case of a supervised task) is
minimized. Such training approach is called the greedy layer-wise unsupervised
pre-training, and DNN training with this mechanism since then has been applied
with success in many fields, which is widely known as the term ‘‘Deep Learning’’.

Several unsupervised training models have been proposed and investigated
since 2006. These models are categorized into the family of greedy layer-wise
unsupervised pre-training approaches and employed to build the deep architecture
of NN, e.g. Restricted Boltzmann Machines (RBMs), Stacked Auto-Encoder,
CNNs, etc. According to Andrew NG in 2007, the selection of different greedy
layer-wise unsupervised pre-training approaches in DNN gives little effect to the
final result [8]. Therefore, with the consideration of the attribute type of the
weather data, i.e., the collected data are all real numbers, in this investigation, we
choose the Stacked Auto-Encoder to build the deep architecture of our NN model.

The Stacked Auto-Encoder, as its name suggests, is a stacked architecture NN
that applies Auto-Encoder in each layer. In computational intelligence field, NN
means a network of neurons with different architectures (e.g., NN in Figs. 1 and 2).
A single ‘‘neuron’’ is a computational unit that taken as input vector X ¼
x1; x2; . . .; xn (and a ‘‘+1’’ intercept term), and outputs hW ;bðxÞ ¼ f ðWT xÞ ¼
f ð
P3

i¼1 Wixi þ bÞ, where f : < 7!< is called the activation function, and W is the
weight matrix that stands for the connection among different neurons in the net-
work. In most of cases, sigmoid function f ðzÞ ¼ 1

1þ expð�zÞ is chosen as the acti-

vation function. A typical Auto-Encoder tries to learn a function hw;bðxÞ � x. In
other words, it is trying to learn an approximation to the identity function, so as to
output x̂ that is similar to x. The identity function seems a typically trivial function
trying to learn; but by placing constraints on the network, such as by limiting the
number of hidden neurons, we can discover interesting structure about the data
[29], e.g., for a data set, suppose that the original samples are collected from a 100-
dimensional feature space, i.e. x 2 <100, set that there are 50 hidden neurons in the
hidden layer, based on the requirement hw;bðxÞ � x, the network is forced to learn a
compressed representation of the input. That is, given only the vector of hidden
unit activations að2Þ 2 <50, it must try to reconstruct the 100-dimensional input x.
An illustration of Auto-Encoder is shown in Fig. 3. If the inputs were completely
random, each xi comes from an I.I.D. Gaussian independent of the other features,
then this compression task would be very difficult. But if there is a certain structure
hidden in the data, for example, if some of the input features are correlated, such as
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in the feature space of time series analysis, then this algorithm will be able to
discover some of those correlations.

The loss function of Auto-Encoder is:

JðW ; bÞ ¼ 1
m

Xm

i¼1

1
2

hW ;b xðiÞ
� �

� xðiÞ
�
�
�

�
�
�

2
� �" #

þ k
2

Xnl�1

l¼1

Xsl

i¼1

Xslþ1

j¼1

W ðlÞji

� �2
ð1Þ

where m is the number of training samples. The objective of the Auto-Encoder is
to minimize Eq. (1) in order to make sure that the output hW;bðxðiÞÞ can approxi-
mate the raw data xðiÞ as far as possible. The second term in Eq. (1) is a regu-
larization term (also called a weight decay term) controlled by the weight decay
parameter k that tends to decrease the magnitude of the weights, and helps prevent
overfitting. We can minimize Eq. (1) by gradient descent to compute the con-
figuration of the network.

In some special cases, the number of hidden neurons is large (perhaps even
greater than the number of dimensions of input vectors), we can still discover
interesting structure by imposing other constraints on the network. In particular, if
we impose a sparsity constraint on the hidden neurons, then the autoencoder will
still discover interesting structure in the data, even if the number of hidden neurons
is large. To achieve this, we would like to define a q as sparsity parameter,
typically a small value close to zero. In other words, if we use ajðxÞ to denote the
activation of the jth hidden neuron when the network is given a specific input x, we
hope that the average activation q̂j ¼ 1

m

Pm
i¼1 ajðxðiÞÞ
� �

of each hidden neuron to be
close to q. Then a revised loss function is employed as:

Fig. 3 An illustration of auto-encoder algorithms. Layer L1 is the input layer, and L3 is the
output layer. Via hidden layer L2, we hope to represent the information x in layer L1, so that the
output x̂ in L3 can approximate the raw data x
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JsparseðW ; bÞ ¼ JðW ; bÞ þ b
Xn

j¼1

KL qjjq̂j

	 

; ð2Þ

where n is the number of the hidden neurons, JðW ; bÞ is defined in Eq. (1), and b
controls the weight of the sparsity penalty term. The term q̂j (implicitly) depends

on W ; b, and the last term KLðqjjq̂jÞ ¼ q log q
q̂j
þ ð1� qÞ log 1�q

1�q̂j
is the Kullback-

Leibler (KL) divergence between a Bernoulli random variable with mean q and a
Bernoulli random variable with mean q̂j.

2.2 The Deep Neural Networks and Layer by Layer
Granulations

In a stacked Auto-Encoder based DNN, for each layer, we use an Auto-encoder to
train the parameters in this layer, and then combined these layers together. Spe-
cifically, in the training process of each layer, as shown in Fig. 3, the input vectors
have to pass three layers, and the vectors in hidden layers (layer L2, and for
simplicity, we call the vectors in layer L2 as the transformed vectors of the initially
input vectors) are representations of the input vectors and can be used to recon-
struct the input vectors. Thus, in every layer of the DNN, the input of the current
layer is the output of the previous layer, then we train the input data via an Auto-
Encoder, and use the transformed vectors as the output of the current layer.
Figure 4 shows the detailed mechanism of stacked Auto-Encoder based DNN.

Observing the NN in Fig. 4, we can find that the principle of layer-wise
unsupervised pre-training based DNN is to map the raw data into a new feature
space layer by layer. For computational intelligence model, the selection of fea-
tures can greatly impact the accuracy of models. Therefore, how to select features
is one of the core and universal problems. The DNN provides us a method to learn
features instead of manually selection like we did previously. In DNN, data in raw
feature space can be mapped into a new space and regularized in each layer. Thus,
in each layer, input features can be reconstructed and new features can be gen-
erated; finally, these generated features can be applied by the model in the top
layer. In big data environment, the requirement of learning feature is more
important, and the larger size of the data can improve the quality of the generated
features and guarantee the avoidance of overfitting.

The DNN based on stacked Auto-Encoder can be also seen as a branch or an
extension of Granular Computing(GC) [26]. Information granules can be regarded
as collections of objects that exhibit some similarity in terms of their properties or
functional appearance. Actually, early in 2001, Pedrycz has already applied NN
model to process granulation problem [26]. Generally, information granules
defined in some space X can be treated as a mapping:
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A : X ! fðxÞ ð3Þ

where A is an information granule of interest, f denotes a formal framework of
information granules. From this definition, we can see that the granulation of a
universe involves grouping of similar elements into granules to form coarse-
grained views of the universe [39]. The only difference between classical GC and
the Auto-Encoder (or layer-wise unsupervised pre-training algorithms) is that, GC
is to group and reconstruct samples, but Auto-Encoder is to group and reconstruct
the feature of the samples, therefore, Deep NN based on stacked Auto-Encoder can
be considered as a branch or an extension of GC, which granulates the information
of the raw data layer by layer.

Fig. 4 A DNN with Stacked Auto-Encoder method, by which each layer is greedily pre-trained
with an unsupervised Auto-Encoder algorithm and to learn a nonlinear transformation of its input
(the output of the previous layer) that captures the main variations in its input, i.e. hW ;bðxÞ � x
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2.3 Support Vector Regression

The principle of layer-wise unsupervised pre-training based DNN is to learn the
features, therefore, we have to choose the model applied in the top layer, or output
layer to process the learned features. In our experiment, SVM is employed.

Based on the Structural Risk Minimization (SRM) principle, SVM method
seeks to minimize an upper bound of generalization error instead of the empirical
error as in other NNs. Additionally, SVM models generate the regression function
by applying a set of high-dimensional linear functions. The Support Vector
Regression (SVR) function is formulated as follows:

y ¼ w/ðxÞ þ b ð4Þ

where /ðxÞ is called the feature, which is nonlinear and mapped from the input
space <n. y is the target output value we want to estimate. The coefficients w and b
are estimated by minimizing:

R ¼ 1
2

wk k2þ 1
n

C
Xn

i¼1

Le di; yið Þ ð5Þ

where:

Leðd; yÞ ¼
d � yj j � e; d � yj j � e

0; otherwise

�

ð6Þ

Equation (5) is the risk function consisting of the empirical error and a regu-
larization term that is derived from the SRM principle. The term 1

n

Pn
i¼1 Leðdi; yiÞ

in Eq. (5) is the empirical error (risk) measured by the e-insensitive loss function

(e-insensitive tube); in the meanwhile, the term 1
2 wk k2 is the regularization term.

The constant C [ 0 is taken as the regularized constant that determines the trade-
off between the empirical error (risk) and the regularization term. Increasing the
value of C will add importance to the empirical risk in the risk function. e is called
the tube size of the loss function and it is equivalent to the accuracy approximation
placed on the training data points. Both C and e are user-prescribed parameters.

Then the slack variables f and f� which represent the distance from the real
values to the corresponding boundary values of e-insensitive tube are introduced.
With these slack variables, Eq. (5) can be transformed to the following constraint
based optimization:

Minimize:

R w; f; f�ð Þ ¼ 1
2

wwT þ C�
Xn

i¼1

fþ f�ð Þ
 !

ð7Þ
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Subject to:

w/ðxiÞ þ bi � di� eþ f�i
di � w/ðxiÞ � bi� eþ fi

fi; f
�
i � 0; i ¼ 1; 2; . . .; n

ð8Þ

Finally, by introducing the Lagrangian multipliers and maximizing the dual
function of Eq. (4), it can be changed to the following form:

R ai � a�i
	 


¼
Xn

i¼1

di ai � a�i
	 


� e
Xn

i¼1

ai � a�i
	 


� 1
2

Xn

i¼1

Xn

j¼1

ai � a�i
	 


� aj � a�j

� �
ðUðxiÞ � UðxkÞÞ

ð9Þ

with the constraints:

Xn

j¼1

ai � a�i
	 


¼ 0; 0� ai�C; 0� a�i �C; i ¼ 1; 2; . . .; n ð10Þ

where ai and a�i are Lagrangian multipliers which satisfy ai � a�i ¼ 0, the general
form of the regression estimation function can be written as:

f x; ai; a
�
i

	 

¼
Xl

i¼1

ai � a�i
	 


Kðx; xiÞ þ b ð11Þ

Kðxi � xÞ is called the kernel function. It is a symmetric function Kðxi � xÞ ¼
ðUðxiÞ � UðxÞÞ satisfying Mercer’s conditions. When the given problem is a non-
linear problem in the primal space, we may map the sample points into a high-
dimensional feature space where the linear problem can be performed. Linear,
Polynomial, Radial Basis Function (RBF) and Sigmoid are four main kernel
functions in use. As we discussed above, in most of the time series forecasting
problems, the SVR employs RBF kernel function to estimate the nonlinear
behavior of the forecasting data set because RBF kernels tend to give good per-
formance under general smoothness assumptions.

3 Weather Prediction with Deep Neural Networks

The main task of our investigation is to employ DNN based on stacked Auto-
Encoder to predict weather informations, more specifically, we hope to predict two
kinds of weather information, temperatures and wind speed, in the next few hour.
Univariate time series regression is the most fundamental and most widely applied
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model in short-term weather forecasting. Generally speaking, for a certain vari-
able, the objective of univariate time series regression is to find the relationship
between its status in a certain future time point and its status in a series of past time
points, and estimate its future status via:

vt ¼ f ðvt�1; vt�2; . . .; vt�nÞ ð12Þ

To obtain f , earlier investigations employ models such as Linear Regression,
Generalized Linear Model, Autoregressive Integrated Moving Average Mode, etc.
After the computational intelligence technologies become a hot research field,
investigators found that some intelligence technologies models, such as NNs,
SVMs, and fuzzy models could provide higher generalization on some complex,
nonlinear, and unstable domains including weather forecasting tasks.

Weather data has some particularities. More specifically, there is season-to-
season, and year-to-year variability in the trend of weather data. The cycle could
be multi-month, multi-season or multi-year, and the main difficulty of investiga-
tions is to capture all the possible cycles.

In our investigation, we will simply input the data sets into our model. The
architecture of the applied model is as the NN in Fig. 3. The input n-dimensional
vector is composed by the status in (t - 1)th, (t - 2)th,…, (t - n)th time points,
we try to use the DNN to represent these status, and employ a SVR to estimate the
status in tth time point. Since our data set is quite large, we hope the seasonal
cycles can be captured via the massive volume of data by the superior learning
ability of the multi-layer structured NN.

4 Experimental Results and Analysis

From the discussion in previous sections, we can see that the key point of
employing a DNN is to learn the features, or granulate raw data into a new feature
space via a multi-layer NN. Therefore, our experiments concentrate on the eval-
uation of the learned features: two types of weather data, with very large data sets,
are employed and simulated, and the comparison of results is conducted between
models using raw features and models with represented features.

4.1 Data Collection

The HKO has provided great support to our investigation. Based on our collab-
oration with HKO, a massive volume of high quality real weather data could be
applied in our experiment. Two types of historical weather data sets, the wind
speed data and temperature data are employed in our model. The time range of the
data sets is almost 30 year long, which covers the period from January 1, 1983 to
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December 31, 2012. In detail, the number of temperature records is more than
260,000, and the total number of records in the wind speed experiment is more
than 1,560,000.

Compared with the temperature data which has only one dimension (measured in
degree Celsius), the wind speed data has two dimensions: the polar coordinate for
the wind direction (measured in degree angle) and the speed (measured in meters
per second). Moreover, in the raw data set, for a certain time points, the direction of
the air motion is not stable, i.e. the wind direction at that time point is not fixed. Such
condition is denoted as ‘‘variable’’ in the raw data. Therefore, according to the
requirement of our algorithm, we have to do some pre-processing on the data sets.

4.2 Data Pre-processing

Compared with the temperature data which is a scalar quantity only having one
dimension (as Fig. 5), the wind speed data (in a fixed horizontal plane) is a vector
quantity that has two dimensions in the polar coordinate (as Fig. 6), i.e. the angle
to show its direction and the speed to measure the velocity in this direction: the
polar coordinate and the speed [27]. However, since our model focuses on uni-
variate time series problems, we have to transform the data set to satisfy the
model’s requirement. According to the physical significance of the two dimen-
sions, we denote the angle as h and the speed as v to obtain:

v0 ¼ cos h � v ð13Þ

where v0 is the vector components of the wind speed in 0� angle direction (as
Fig. 7). Thus, what we actually simulate is the time series of the speed component
of the air motion in 0 degree angle direction. Moreover, there are about 3 % wind
speed data with the direction valued as ‘‘variable’’, for such condition, we consider
it as a missing value in the data set and use the average value of the wind direction
in its previous time point and its next time point to replace the value ‘‘variable’’.
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Fig. 5 The distribution of temperature data in the last week of the data set
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4.3 Evaluation Criteria

Three criteria are applied in our investigation to evaluate the prediction perfor-
mance of the used models.

Normalized Mean Squared Error (NMSE) measures the deviation between the
actual values and the predicted values. The smaller the values are, the closer the
predicted values to the actual values. The formula of NMSE is:

NMSE ¼ 1= d2n
	 
Xn

i¼1

xi � x̂ið Þ2 ð14Þ

  5

  10

  15

  20 m/s

30

210

60

240

90

270

120

300

150

330

180 0

Fig. 6 The distribution of wind speed data in polar coordinate
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Fig. 7 The distribution of wind speed at a fixed direction in the last week of the data set
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where

d2 ¼ 1= n� 1ð Þ
Xn

i¼1

xi � x̂ið Þ2 ð15Þ

Directional symmetry (DS) indicates the percentage correctness of the pre-
dicted direction. The formula of DS is:

DS ¼ ð100=nÞ �
Xn

i¼1

di ð16Þ

where

di ¼
1; ðxi � xi�1Þðx̂i � x̂i�1Þ� 0
0; otherwise

�

ð17Þ

We also employ R2 value to evaluate the whole simulation ability of our model,
the R2 indicates how well our model can explain the raw data set. The R2 value of
a model is:

R2 ¼ 1� SSres

SStot
ð18Þ

where SStot ¼
Pn

i¼1 ðx̂i � xiÞ2 and SStot ¼
Pn

i¼1 ðx̂i � �xÞ2.

4.4 Experimental Results and Discussion

In our first experiment, we use a 4-layer DNN model to predict the temperature in
the next time point. More specifically, we tried to use the 7-day hourly temperature
data to forecast the temperature in the next 24 hour, The NN model is with a single
input layer, two stack-organized Auto-Encoder layers, and the top layer which
used SVR to output the prediction results. In this experiment, since the sparsity is
less considered in weather forecasting, we adjusted the value of b to a relatively
small value, and set the number of hidden nodes as 84. The experiments were
conducted in a CPU cluster with 6 Intel i7 processors with MatLab 2012a. The
experiment is based on the 10-fold cross-validation, thus in each cycle, the training
set has more than 230,000 randomly selected records, and about 26,000 samples
are selected as training set. The result is compared with classical SVR. Note that
the parameter in the classical SVR is set as same as in the top SVR layer of our
model. Table 1 and Fig. 8 give the result.

From Fig. 8 we can observe that both SVR and DNN can simulate the real data
very well after training with a big data set, the predicted results are almost coincide
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with the real data. Such an encouraging result demonstrates the advantage of big
data for univariate time series problem: the massive volume of the data set can
help us to approximate the statistical discipline with a higher accuracy.

Results shown in Table 1 demonstrate the positive role of the DNN in the
temperature simulation task. As we discussed in above, both of the two models
have the same configuration in SVR part, the only difference is that in the DNN,
we represent/granulate the raw features, and use the new features to train the SVR
in the top layer. We can see that the DNN model greatly reduces the NMSE (the
NMSE in SVR model has already been very small, but after the feature repre-
sentation/granulation, the NMSE becomes even smaller), and the higher R2 value
also proved that, with the represented features via a DNN, the SVR model in the
top layer can learn the raw data much better.

From Figs. 5 and 7, we may observe that compared with wind speed data, the
fluctuation of temperature data (in short time) is much more smooth. Therefore,
temperature simulation is not a challenging task. actually, in the training process of
our experiment, the classical SVR model takes more time than DNN. This phe-
nomenon may be attributed to two aspects: (1) the temperature data is very smooth
so that the convergence of the NN is very quick [4]; (2) the represented features
can reveal the principle of the given data set and consequently improve the per-
formance of SVR [20, 36]. Therefore, the shortening of the training time gives two
things: (1) the new feature space that reconstructed via DNN has positive effect for
time series tasks; (2) the significance of our positive results obtained in temper-
ature data set is limited.

In the second experiment, we change the data set. The wind speed data is
employed. Since the change of wind speed data is much more unstable, the

Table 1 The comparison of temperature prediction by SVR and DNN

Model NMSE DS R2

Classical SVR 2.179e-2 0.75 0.872
DNN with SVR in top layer 8.117e-3 0.79 0.915
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Fig. 8 The results of temperature prediction for the date in the last week
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simulation of wind speed data is more difficult and has more academic and
practical significance. We made some modifications on our model in the second
experiment: we added two Auto-Encoder layers in the model in order to improve
the learning ability of the network. The results are shown in Table 2 and Fig. 9.

Figure 9 shows the simulation results of the wind speed data in the last week.
From Fig. 9, we can observe that after training with a big volume of wind speed
data, the model can capture the main trend of changes, and the DNN can give a
better performance than simply using SVR. Inspecting the criteria in Table 2,
DNN can return a lower NMSE and higher R2 value. Note that the DS value is
greatly improved when the data is simulated with the DNN model, this maybe
caused by the fact that features generated via DNN may have the largest possible
variation, and such fact shows that the principle of DNN may be considered as an
advanced form of Principal Component Analysis (PCA).

Our experiments only make comparison between Classical SVR and Stacked
Auto-Encoder DNN with SVR in the top layer. Actually, some other models can
also be applied to deal with weather data related time series problem. However, the
main objective of our investigation is to attest the models’ performance with the
new represented/granulated features. The results demonstrate that compared with
the raw features, the obtained features can explain the principle of the raw data set
better. What is more, the DNN can be combined with many other models, and the
obtained features can be employed to improve the performances of most models in
computational intelligence field.

Table 2 The comparison of wind speed prediction by SVR and DNN

Model NMSE DS R2

Classical SVR 0.3721 0.72 0.851
DNN with SVR in top layer 0.2522 0.83 0.871
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Fig. 9 The results of temperature prediction for the date in the last week
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5 Conclusion and Future Work

Big data may bring revolutions to many research fields including weather fore-
casting. In this chapter, we explore an approach that using computational intelli-
gence technologies to process massive volume of data. The proposed DNN model
may granulate the features of the raw weather data layer by layer, and experi-
mental results show that the new obtained features can improve the performances
of classical computational intelligence models.

The contribution of our investigation is significant: we give an approach that
using computational intelligence method to learn features with big data, and our
experiments demonstrate that the DNN algorithm also has the potential to address
time series problems.

The main future work of our investigation is that, we will try to employ our
model on some more difficult weather data, such as rain fall data set; and more-
over, we will continue exploring the theoretical principle of computational intel-
ligence, especially, we will try to give the mathematical explanation of the DNN.
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