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Abstract The characteristic of the fuzzy regression model is to enwrap all the
given samples. The fuzzy regression model enables us to take the possibility
interval for a granular instead of a single numerical value. This granular provides
the wider treatment for us to human-centered understanding of the latent system.
Such a granule or interval of fuzzy regression model is created by considering how
far a sample is from the central values. That means when samples are widely
scattered the size of a granular or an interval of the fuzzy model is widened. That
is, the fuzziness of the fuzzy regression model is decided by the range of sample
distribution. Therefore, outliers make the fuzzy regression model distorted. This
chapter describes the model building of fuzzy robust regression from the per-
spective of granularity by removing improper data based on genetic algorithm.
Moreover, let us build the fuzzy regression model that places the largest grade on
the central point of scattering samples.
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1 Introduction

A fuzzy regression model is categorized into two types. The first type is an interval
model based on the possibility concept and the second type is a non-interval model
based on a least squares method. An interval model has been proposed by Tanaka
[16, 17, 19] and a non-interval model has been proposed by Diamond [2, 3].

Tanaka et al. have proposed three models as an interval fuzzy regression model,
a possibility model, a necessity model and a conjunction model. A difference in
these three models is an inclusion relation between estimates Y of a fuzzy
regression model and fuzzy interval data y. The relation between a possibility
model and observed data is written as Y � y, otherwise, the relation of a necessity
model is Y � y, and the relation of a conjunction model is Y \ y 6¼ /, respec-
tively. An interval model is based on the concept of possibility theory, and this
possibility model is known as the major model of a fuzzy regression model. A
possibility model and a necessity model are referred to as an upper regression
model and a lower regression model, respectively [5].

There are some ways to obtain an interval fuzzy regression model such as a
least squares method [1, 4, 8, 12] and a linear programming (LP). This chapter, an
interval model obtained by LP.

The objective of an interval fuzzy regression model is to describe a possibility
of analyzed system, and to minimize a vagueness of a model in order to make us
interpret a system with least bias. However, a possibility model describes a pos-
sibility of a system by enclosing data, a vagueness of a model is made bigger and a
shape is made strained easily. Therefore, many possibility models have been
proposed, which describe an essence of analyzed target although it is rough. These
models have two approaches. One is to use an exponential possibility distribution
which proposed by Tanaka et al. [5, 18]. And the other is to control the relation
between a model and data, Ishibuchi and Tanaka [10], Yabuuchi and Watada [23,
26, 27] and so on have proposed.

In this chapter, the model which describes an essential possibility by controlling
the relation between a model and data is focused on.

We have proposed two models. This chapter describes model building of fuzzy
robust regression model with granule data or interval data by removing improper
data based on genetic algorithm [14, 27]. Let us call this fuzzy robust model as the
first model.

And, let us build the fuzzy regression model that places the largest grade on the
central point of scattering samples [28–31] as the other model. This model is the
second type model of fuzzy robust regression. Observed data are not real numbers
as granular possibilities by the second type model. For this reason, the second type
model has a less ill effect of irregular data than other models.

Granular concept enables us to understand a main essential target system [21]
and to deal any data such as linguistic data [24].

The remaining is organized as follows: In Sect. 2, two conventional fuzzy
regression models are introduced. In Sect. 3, an Asian environment, a relation
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between Asian economy and environment, are analyzed by a first type model of
our fuzzy robust regression. In Sect. 4, a Japanese major rivers, and a relation
between Asian economy and environment, is analyzed by a second type model of
our fuzzy robust regression.

2 Fuzzy Regression Model

A fuzzy regression model is categorized into two types, a least squares model and
an interval model. Therefore, in this section, two conventional fuzzy regression
models, a least squares model by P. Diamond and an interval model by H. Tanaka,
are introduced.

At first, a least squares fuzzy regression model by Diamond is illustrated. Then,
an interval fuzzy regression model by Tanaka is introduced, this interval model is
focused on this chapter.

2.1 Least Squares Fuzzy Regression Model

There are fuzzy regression models, a least squares model such as statistical
regression model and an interval model to describe a possibility of analyzed target.
A least squares fuzzy regression model has been proposed in order to give error
estimates in the form of residuals by Diamond [2, 3]. Therefore, this model is
focused on a linear least squares estimation for vague data.

Observed data xi; yið Þ; i ¼ 1; 2; . . .; nð Þ are triangular fuzzy numbers, where p
dimensional explanatory variables xi ¼ xL

i ; xC
i ; xU

i

� �
and a dimensional response

variable yi ¼ yL
i ; y

C
i ; y

U
i

� �
are used. Here, L, C, and U denote the lower limit, the

center, and the upper limit of a fuzzy number in this paper, respectively. We
assume x are random variables and xL

i � 0. Although a least squares fuzzy
regression model by P. Diamond has p dimensional real-valued coefficients vector
b, outputs vector Y are triangular fuzzy numbers because x are triangular fuzzy
numbers.

Then, parameters b, which give a minimal distance between y and Y, are
regression coefficients of the best fit model.

That is, the coefficient of a least squares fuzzy regression model is obtained by
minimizing the Eq. (1).

Xn

i¼1

yC
i � YC

i

� �2þ yL
i � YL

i

� �2þ yU
i � YU

i

� �2
n o

ð1Þ
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2.2 Interval Fuzzy Regression Model

As observed data should embody possibilities that a considered system has, the
measured data can be interpreted as the possibilities of the system. Therefore, a
fuzzy regression model is built in terms of the possibility and evaluates all
observed values as possibilities that the system should contain. In other words, the
fuzzy regression model aims to be built so that it could contain all observed data in
the estimated fuzzy numbers resulted from the model. Therefore, this model is
applied to many applications [11, 14, 20, 22].

The fuzzy regression equation is written as in the following:

Yj ¼ A1x1j þ � � � þ Apxpj ¼ Axj;

x1j ¼ 1; j ¼ 1; 2; . . .; n;
ð2Þ

where each regression coefficient Ai is a symmetric triangular fuzzy number Ai ¼
ai; cið Þ with center ai and width ci. In the Eq. (2), xj denotes the jth data. A various

type of a fuzzy coefficient is used, a symmetric triangular shaped fuzzy number is
used as fuzzy coefficients in this chapter.

According the extension principle,

Yj ¼ Axj ¼ a; cð Þxj ¼ axj; c xj

�� ��� �
; ð3Þ

where xj

�� �� ¼ x1j

�� ��; x2j

�� ��; . . .; xpj

�� ��� �
.

The output of fuzzy regression Eq. (2), whose coefficients are fuzzy numbers,
results in a fuzzy number.

The regression model with fuzzy coefficients can be expressed with center axj

and width c xj

�� ��. When sample yj; xj

� �
j ¼ 1; 2; . . .; nð Þ with center yj and width dj is

given as fuzzy number yj ¼ yj; dj

� �
, the inclusion relation between the model and

the data should be hold as follows:

axj þ c xj

�� ��� yj;

axj � c xj

�� ��� yj;
ð4Þ

In other words, the possibilistic regression model is built to contain all data in the
model. When the width of the model is large, the expression of its regression
equation is vague. It is better and more convenient to obtain a clear and rigid
expression. Therefore, the width of the regression should be minimized as
removing the vagueness of the model as possible. The fuzzy regression model is
formulated to minimize its width under constraints (4). This problem results in a
linear programming.

Using the notations of observed data yj; xj

� �
,
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yj ¼ yj; dj

� �
; xj ¼ x1j; x2j; . . .; xpj

� �
j ¼ 1; 2; . . .; nð Þ;

fuzzy coefficients a; cð Þ of the regression model can be mathematically written in
the following LP problem:

minimize
Pn

j¼1
c xj

�� ��

subject to
axj þ c xj

�� ��� yj

axj � c xj

�� ��� yj

c� 0 j ¼ 1; 2; . . .; nð Þ:

ð5Þ

Solving the LP problem mentioned above, we have the possibilistic regression
shown in Fig. 1. Relation (4) between the model and the data is held as shown in
Fig. 1. This fuzzy regression contains all data in its width and results in expressing
all possibilities that data embody and the considered system should have. It is
possible in the formulation of the fuzzy regression model to treat non-fuzzy data
with no width by setting width d to 0 in the above equations.

3 First Type Model of Fuzzy Robust Regression

An interval fuzzy regression model describes a possibility of analyzed system, and
the model is built so as to minimize its ambiguity, as mentioned above. However, a
vagueness of a model is made bigger and a shape is made strained easily. A fuzzy
robust regression model is one of interval fuzzy regression models, takes into
account the distortion problem of a model shape, and aims to describe an essence
of analyzed target.

It is possible to consider the data is granular, and is observed as fuzzy numbers
or real numbers. Therefore, regardless of the state of the data, a fuzzy regression

0

Fig. 1 Fuzzy regression
model
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model is intended to describe accurately the possibility of the system. Our fuzzy
robust regression model has two approaches to describe an essence of analyzed
target. The first approach employs the concept of a conjunction model to treat
granule data distorting a model shape, this model is the first type model of fuzzy
robust regression. The second approach employs a maximization the total possi-
bility grade from a model and data, this model is the second type model of fuzzy
robust regression.

3.1 Formulation of First Type Model

Irregular values are often given in real world problems. These irregular values
come from such causes as the errors of observation methods, the miss-reading of
the observed values, the miss-behavior of observation instruments, and so on. Such
data distort the expression of the possibility that the latent system should have.
Therefore, the influence of the irregular data on the system must be removed in
building a regression model or be controlled.

The concept of distance is employed to build a fuzzy robust regression model
and to remove the influence of irregular data in building the model.

Let us consider the fuzzy regression shown in Fig. 1 that expresses properly the
possibilities of the considered system. When an irregular sample denoted as �
happens to be mixed in the data, model (2) is distorted largely from the proper
figure of the possibility that the considered system should have, as shown in Fig. 2.
As illustrated in figures, such irregular data influence on the fuzzy regression
model very much. Furthermore, we should discriminate between the error and the
possibility included in the data to build a possibility model [26]. This is an
approach to build a fuzzy robust regression model by granule data or fuzzy data.

We evaluate both the error distance of data from the model and the fuzziness
derived from the system separately in terms of the concept of distance. That is, in
building the model we minimize not only the fuzziness included in the model but
also the error distance of the samples from the model. This fuzzy regression of data
with error is formulated to minimize not only its fuzzy width of the model but also
the distance of irregular samples from the model.

As a result, the error between jth sample and the possibilistic model, that is, the
distance, rj, between jth sample and the possibilistic model can be written as
follows:

rj ¼
yj � YU

j ;
0;
YL

j � yj;

8
<

:

YU
j � yj

YL
j � yj� YU

j

yj� YL
j

ð6Þ
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where YU
j and YL

j denote the upper and lower boundaries of the model, respec-
tively. Let us define the evaluation function of the fuzzy robust regression model
using a distance function (6) as follows:

J ¼
Xn

j¼1

rj þ K
Xp

i¼1

ci; ð7Þ

where constant K in the evaluation function is a positive real value that will be
decided as a parameter how much to weigh the possibility included in error data.

Let us note that the better term of the above mentioned evaluation function can
not be written only in

Pp
i¼1 ci, but also in several expressions and we should define

it according to real problems or its objective as same as in the conventional fuzzy
regression model.

Parameter K can define the property of the model and has the following
meaning. When K is taken as a small value, the model results in the conventional
fuzzy regression model because it emphasizes on minimizing the error distance
against the model rather than the width of the model. On the other hand, when K is
taken as a large value, the model results in the fuzzy regression model without
error data because it emphasizes on minimizing the width of the model rather than
the error distance against the model. When K is taken as a sufficiently large value
the model comes in as a similar model to a statistical one. Using this parameter K it
is possible to reflect in model building the knowledge which decision makers or
analyzers have obtained from experience of model building.

We cannot tell which data are normal or which are error data, irregular samples
or outliers. The fuzzy robust regression analysis discriminates whether data are
normal or irregular based on the concept of distance.

The problem to obtain the best fuzzy regression model without the influence of
error data in the possible combination of error data results in a combinatorial
optimization problem. A genetic algorithm is employed to solve this combinatorial
optimization problem.

0

Fig. 2 Fuzzy regression
model based on data with
outlier�
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As mentioned above, the approach to handle data with error was discussed.
However, when errors including in data are viewed as a fuzziness, a vagueness and
so on, this approach us to handle granule data or fuzzy data.

3.2 Elimination of Irregular Data

When n samples are given, it should be required to calculate 2n times LP problems
in constructing the above mentioned robust model. Generally, it requires the huge
numbers of combinatorial calculations to obtain a fuzzy regression model. Nev-
ertheless, the number of feasible solutions is very limited comparing with the
number of these calculations 2n.

All given samples should be treated in the sense of possibility in the fuzzy
regression model. In other words, all the given samples should be included in the
possibility that the fuzzy regression model expresses. This means that the shape of
the fuzzy regression model is determined by the samples at the marginal bound-
aries of the model. On the other hand, samples that are distributed in the inside and
central portion do not have any influence on determining the shape of the model.
Therefore, in building the fuzzy robust regression model, out of samples that are
near on the marginal boundaries, we can find irregular samples which should not
be interpreted in terms of the possibility of system. If we can eliminate such
irregular samples, the fuzzy robust model can be effectively and efficiently built. In
this paper we employ a hyperelliptic function in order to detect irregular samples
that might be on or near to the marginal boundaries.

If we can cluster some portion of samples that should be included in the
possibility of the system using a hyperelliptic function, the combinatorial calcu-
lations can be reduced into the combination of the remained samples that are not
included in the cluster. When h samples are selected out of the total n samples
using the hyperelliptic function, the combinatorial calculation can be reduced from
2n to 2h.

3.3 Analysis of Asian Economy and Environment

It is widely known that an expansion of economic activity brings about an increase
in population and energy consumption, and the increase in population and energy
consumption results in an environmental change such as a large amount of air
pollutant which influences the environment. Since vital economic activity is
pursued in Asian region, Asian region is worried about that her energy con-
sumption causes in an environmental change.

In this section, we analyze the relation between economic activity and envi-
ronmental change in the Asian region. Population, GDP and an amount of primary
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energy consumption are employed for denoting economic activity, NOx, SOx and
CO2 are employed for describing environmental influence.

A primary energy consumption used to consist of commercial energies as coal,
oil, gas and electric, but we also include plant energy in the primary energy
consumption because many developing countries always depend on plant energy
that is non-commercial energy in quit large amount.

SOx and NOx relate to global acidification and CO2 relates to the greenhouse
effect. NOx relates to the formation of photochemical smog whose main compo-
nent is ozone, ozone brings about destruction of plants and the greenhouse effect.
Therefore, we employ NOx, SOx and CO2 as objective variables in analyzing the
environment.

As being analyzed in this section seem not to have large error. On the con-
ventional fuzzy regression model, the width of the fuzzy regression is large.
Therefore, we employ our first type model of fuzzy robust regression [11, 20, 23,
26, 27] to analyze this environmental change without influence of some countries.

Data [13] are expressed in terms of a natural logarithm and are observed on
1975.

As inputs, population is denoted by X1, GDP by X2 and a primary energy
consumption by X3, as outputs, estimations of NOx by YNOx , SOx by YSOx and CO2

by YCO2 , respectively.
In this section, our purpose is to analyze the possibility of the relation between

economic activity and environment by our first type model of fuzzy robust
regression. We intend to analyze the tendency in this paper, so we do not consider
collinearity. In this analysis, we employ a regression equation as follows:

Y ¼ A0 þ A1X1 þ A2X2 þ A3X3:

At first, let us confirm statistical regression models based on a least squares
method, denoting estimations of NOx by YLS

NOx
, SOx by YLS

SOx
and CO2 by YLS

CO2
,

respectively. Then, these models are as follows:

YLS
NOx
¼ 2:539� 0:162X1 � 0:176X2 þ 1:287X3;

YLS
SOx
¼ 2:362� 0:500X1 � 0:183X2 þ 1:875X3;

YLS
CO2
¼ 6:101� 0:466X1 þ 0:150X2 þ 1:450X3:

These partial regression coefficients of three models makes us be understood
increasing in a primary energy consumption, X3, leads to an increase of envi-
ronmental factors, NOx, SOx and CO2, and a primary energy consumption is the
most influential environmental factor than other factors. However, population, X1,
and environmental factors are inversely related. In addition, growth of GDP, X2,
leads decrease of NOx and SOx, the increase in CO2.

Therefore, it was confirmed that it is possible to suppress the deterioration of
the environment by reducing a primary energy consumption.
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Next, conventional fuzzy regression models are obtained as follows:

YCM
NOx
¼ 2:810; 0:11ð Þ þ 0; 0:309ð ÞX1 þ 0; 0ð ÞX2 þ 0:922; 0ð ÞX3;

YCM
SOx
¼ 2:799; 0ð Þ þ 0; 1:064ð ÞX1 þ 0; 0ð ÞX2 þ 1:136; 0ð ÞX3;

YCM
CO2
¼ 6:657; 0ð Þ þ 0; 0:956ð ÞX1 þ 0:236; 0ð ÞX2 þ 0:171; 0ð ÞX3:

As well as statistical regression model, in fuzzy regression models, primary energy
consumption has a positive coefficients. However, the impact of primary energy
consumption is high, the other coefficients has a small value. A coefficient of GDP
is 0, in NOx model and SOx model. Therefore, we can interpret these fuzzy
regression models does not be describing the relation between the Asian envi-
ronment change and an economic activity. The system possibility between the
Asian environment and an economic activity is distorted in the conventional fuzzy
regression model. Data used in this analysis are a real-valued, it can be considered
a point in the granular sample has been observed. For data that distorting the
model, as in the conjunction model, our first type fuzzy regression model describes
the portion of the possibility data have.

Eight countries, which might distort a conventional fuzzy regression model,
should be eliminated by a hyperellipse as distorting the possibility of the system.
We analyzed objective system by using a distance function (6) to these eight
countries and enclosing the other countries. The hyperellipse of NOx is as follows:

23:389 YNOx � 4:589ð Þ2þ7:591 YNOx � 4:589ð Þ X1 � 3:171ð Þ þ � � �
� 17:116 X2 � 2:697ð Þ X3 � 2:362ð Þ þ 44:296 X3 � 2:362ð Þ2¼ 3:545;

the hyperellipse of SOx is as follows:

1:322 YSOx � 4:712ð Þ2þ1:322 YSOx � 4:712ð Þ X1 � 3:171ð Þ þ � � �
� 7:399 X2 � 2:697ð Þ X3 � 2:362ð Þ þ 10:193 X3 � 2:362ð Þ2¼ 3:226;

and the hyperellipse of CO2 is as follows:

3:183 YCO2 � 8:451ð Þ2þ2:969 YCO2 � 8:451ð Þ X1 � 3:171ð Þ þ � � �
� 5:105 X2 � 2:697ð Þ X3 � 2:362ð Þ þ 12:234 X3 � 2:362ð Þ2¼ 3:203:

On the first type model of fuzzy robust regression, the number of combinations
which eight countries are treated by possibility concept or distance concept is 28,
genetic algorithm is employed to search a fuzzy robust regression model over all
combination. We set population size to 200, crossover rate to 70 %, mutations rate
to 1 % and production rate to 90 % as parameters of the genetic algorithm. In
Table 1, a search rate of SOx model (K ¼ 1) and CO2 model (K ¼ 1) are low, and
each rate are 36 % and 46 %. The circumstance of terminations is shown in
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Table 2. It should be noted that the optimum model could not be surely obtained
because the genetic algorithm searches a model randomly based on probability.
Therefore, we search a model 50 times under the same condition. The rate of
obtaining the optimum model in the case SOx and CO2 (K ¼ 1) are lower than the
rate in the case SOx and CO2 (K ¼ 100), but the second optimum model or the
third optimum model in the case SOx and CO2 (K ¼ 1) are gotten with high
probability. The optimum, the second optimum and the third optimum model in
the case SOx and CO2 (K ¼ 1) have small deference between each fitness and
model, and we can regard each model as the same model. It is not a serious
problem that the rate of obtaining the optimum model is low because the difference
between the optimum model and the obtained model of SOx (K ¼ 1) and CO2

(K ¼ 1) is very small. The optimum model is shown in Eqs. (9), (11) and (13).

YK¼1
NOx
¼ 2:717; 0:107ð Þ þ �0:382; 0:082ð ÞX1

þ �0:290; 0:040ð ÞX2 þ 1:543; 0ð ÞX3

ð8Þ

YK¼100
NOx

¼ 2:830; 0ð Þ þ �0:363; 0:071ð ÞX1

þ �0:214; 0ð ÞX2 þ 1:475; 0ð ÞX3

ð9Þ

NOx model YK¼1
NOx

with K ¼ 1, (8), has a small width. Coefficient of X1 and X2 has a
small width, and these width are 0.082 and 0.040.

NOx model does not have a large difference between the cases K ¼ 1 and
K ¼ 100. This is common to the models of NOx, SOx and CO2, the Asian popu-
lation is scattered large. In comparison between the statistical model and the

Table 1 Searching results by genetic algorithm

K Average of terminate
generation

Average of
solution’s fitness

Average of
generates

Terminal rate of
optimum solution

NOx 1 18 0.228 838 92
100 18 8.298 854 100

SOx 1 19 0.717 928 36
100 25 26.934 903 94

CO2 1 22 0.739 955 46
100 19 12.581 954 90

Table 2 Searching rate of SOx and CO2 (K = 1) by genetic algorithm

Model SOx CO2

Fitness Terminate rate Fitness Terminate rate

Optimum 0.717176 36 0.738750 46
Second optimum 0.717177 56 0.738752 90
Third optimum 0.717178 98 0.738753 100
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optimum model (9), there is a sharpness in the coefficients of YK¼100
NOx

, a population
and GDP have a large degree of inverse proportion to NOx. In addition this, a
primary energy consumption increase lead to a large increase in NOx observation.

YK¼1
SOx
¼ 2:537; 0ð Þ þ �1:470; 0:269ð ÞX1

þ �0:583; 0:448ð ÞX2 þ 3:530; 0ð ÞX3

ð10Þ

YK¼100
SOx

¼ 1:979; 0ð Þ þ �0:578; 0:209ð ÞX1

þ 0:164; 0:000ð ÞX2 þ 1:936; 0ð ÞX3

ð11Þ

On Eqs. (10) (K ¼ 1) and (11) (K ¼ 100), the coefficient of primary energy
consumption (X3) of SOx model is a positive value with no width and the Eq. (10)
is about one third of the Eq. (11). However the coefficient of X2 (K ¼ 100) is a
positive value with almost no width and about one-third in the absolute value of it.

The difference between the model YK¼100
SOx

and the statistical model, is that the

GDP is turned to SOx observed loss in the model YK¼100
SOx

. This can be understood
subjectively.

YK¼1
CO2
¼ 6:042; 0:394ð Þ þ �1:101; 0:264ð ÞX1

þ 0:196; 0:081ð ÞX2 þ 2:162; 0ð ÞX3

ð12Þ

YK¼100
CO2

¼ 5:960; 0ð Þ þ �0:403; 0:087ð ÞX1

þ 0:349; 0ð ÞX2 þ 1:202; 0ð ÞX3

ð13Þ

CO2 model has a large different between K ¼ 1 model YK¼1
CO2

(12) and K ¼ 100

model YK¼100
CO2

(13). K ¼ 100 model has small width of a coefficient of X1 and X2.
Several countries have a different tendency on X1 and X2. The coefficient of X1 is
about one third of Eq. (12), the center of the coefficient of X2 is about half of
Eq. (12), respectively.

Difference between the model YK¼100
COx

and the statistical model, is that the GDP

is to double the amount of CO2 observed in the model YK¼100
CO2

. This can be
understood subjectively, too.

This fact, the proposed model is describing the essence of the system, realize
assent subjective. In the context of an economic activity and the environment,
eight countries distinctive rather than have been removed at the time of model
building, which was used only some of the features.

As the result of analyzing, eight countries distinctive as follows:
Japan: Japan employs a measure for the reduction of the emission of air pol-

lutants, and the Environmental Agency monitors the amount of air pollutant. Each
of NOx, SOx and CO2 are the smallest amount of the emission in Asian countries.

Indonesia: A number of farm workers is a half of all workers and agricultural
product shares a quarter of GDP. A crude oil, a natural gas and a petrochemical
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share three fourth of the export. The amount of the emission of SOx is smaller than
another countries.

Taiwan: Economy is mainly industrial to manufacture industrial products such
as electric devices. The amount of the emission of NOx is smaller than another
Asian countries.

Vietnam: Since Vietnam War has ended when data are observed, Vietnam can
not make own supply. A fossil fuel is mainly used, and the amount of the emission
of CO2 is larger than another Asian countries.

Singapore: The main industry is to make a refined product from an imported
crude oil. The amount of the emission of NOx is smaller than another Asian
country and CO2 are larger.

Nepal: Nepal is an agricultural country, and 90 % of working force are a farm
worker. The amount of the emission of NOx, SOx and CO2 are smaller than another
Asian countries.

Mongolia: Mongolia is an agricultural country based on pasturage. Mongolia is
remarkably developing an industry. The amount of the emission of SOx is smaller,
NOx and CO2 are larger than another Asian countries.

Brunei: The export is crude petroleum and natural gas. The amount of the
emission of NOx and COx are smaller than another Asian countries.

We have discussed about eight countries that locate marginal of possibility area
in case of K ¼ 100 as follows. Small amount of the emission of NOx is observed in
Japan, Taiwan, Singapore, Nepal and Brunei, on the other hand, large amount of
the emission of NOx is observed in Mongolia. Small amount of the emission of
SOx is observed in Japan, Indonesia, Nepal and Mongolia. Small amount of the
emission of CO2 is observed in Japan, Nepal and Brunei, Large amount of the
emission of CO2 is observed in Vietnam, Singapore and Mongolia. Japan is
enforcing the Environmental Pollution Prevention Act, Nepal is an agricultural
country and has small amount of the emission of pollutant because Nepal does not
have a lively industry makes pollutants (NOx, SOx and CO2). Since Mongolia is an
agricultural country, which mainly based on pasturage and is developing industry,
the result of analysis is like as above. The main industry in Singapore is to make a
refined product from an imported crude oil. Therefore, large amount of the
emission of NOx is observed in Singapore.

In Asian region, in the case that GDP and consumption of primary energy are
large value, the amount of emission of CO2 and SOx is large scale. On the other
hand, in the case that GDP are small value and consumption of primary energy are
large value, the amount of emission of NOx is large scale. Moreover, the larger
population is, the smaller the amount of the emission of CO2, SOx and NOx

becomes. Since coefficients of primary energy consumption have a large value
than another coefficients, we can understand that primary energy consumption and
emission of pollutants relate strongly with each other.

As a result of economic activity, GDP is expressed. In developing country,
GDP has concerned with manufacture industry, and manufacture industry uses
much energy that is mainly primary energy. By consuming primary energy, air
pollutants are made. A country which economic activity is developing increase in
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population, people mainly use plant energy in developing country. Therefore, a
growth of GDP brings an increase of population, and an increase of population
brings a large amount of the emission of air pollutants.

In this analysis, we employed population, GDP and primary energy con-
sumption as input parameters to analyze the economic activity and the environ-
ment of Asian region.

In this analysis, we can have understood the tendency of Asian country and the
relation between economic activity and environment by our first type model of
fuzzy robust regression.

4 Second Type Model of Fuzzy Robust Regression

In the first type model of fuzzy robust regression, the concept of a conjunction
model to treat granule data distorting a model shape and the possibility concept are
employing the other data in order to describe an essence of analyzed target. The
sum of distance between a first type model and observed values is minimized in
the concept of a conjunction model, the ambiguity of the model is minimized in
the possibility concept.

The second type model of fuzzy robust regression maximize the total possibility
grade from a model and data in order to describe the possibility distribution of
analyzed target by the model. For this reason, the center of the second type model
coincides with the center of the possibility distribution.

It is possible to obtain the model without an inclusion relation between data and
model. Model without using an inclusion relationship may describe the essence of
the system. Moreover, this model less sensitive to outliers, and a shape of this
model is less distortion.

4.1 Formulation of Second Type Model

In a interval fuzzy regression model, the possibility is represented by an interval so
that the interval includes the whole data observed from the focal system [17, 19]. It
is most characteristic that samples influence and distort the shape of the model, if
samples are separated far from the center of data [10, 26].

On the other hand, the pivotal role of the center position of the system is
emphasized in building a possibilistic regression model instead of employing an
interval to describe the possibility of a focal system. Tanaka and Guo [19] employ
exponential possibility distribution to build a model, while Inuiguchi et al. [9],
Tajima [15] and Yabuuchi and Watada [28–31] are working independently on
coinciding between the centers of possibility distribution and the center of a
possibilistic regression model.
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Yabuuchi and Watada proposed the model to describe a system possibility
using the center of a fuzzy regression model. The proposed model fits intuitive
understanding because it makes the model center and the system center coincide.

As mentioned above, our second type model of fuzzy robust regression is built
by maximizing possibility grades summation which derived from estimates of the
model and data. In other words, the model is built in order to illustrate the pos-
sibility distribution. Therefore, our second type model can be built by granule data
or fuzzy data, the model treat data as granule data or fuzzy data.

The possibility grade l yi; xið Þ of yi; xið Þ is defined using the center YiC and the
width Wi of the model.

l yi; xið Þ ¼ 1�
YC

i � yi

�� ��

Wi

Let us calculate the total sum, Z1, of possibility grades of the fuzzy regression
model as follows:

Z1 ¼
Xn

i¼1

l yi; xið Þ ¼
Xn

i¼1

1�
YC

i � yi

�� ��

Wi

� �
: ð14Þ

In this part, the model is built by maximizing Z1 defined in Eq. (14), which is the
total sum of possibility grades in the objective function of a fuzzy regression
model [6, 7]. It is explicit from Eq. (14) that the width, Wi, of the model gets larger
if one maximizes Z1. Therefore, the following function is defined to minimize the
sum, Z2, of the vagueness values Wi of the model:

Z2 ¼
Xn

i¼1

Wi:

Thus, the model is reduced to a bi-objective linear programming problem
employing these Z1 and Z2 as a multi-objective function.

But, it is easy to build a method to solve the problem using the following
weighted sum of the two objective functions as in Eq. (15):

maximize Z3 ¼ aZ1 � 1� að ÞZ2

subject to YL
i � yi� YU

i i ¼ 1; 2; . . .; nð Þ

	
: ð15Þ

where a is a weight parameter, 0� a� 1. It is possible to control the shape of the
model by changing parameter a of the objective function. Therefore, the value of
parameter a is selected heuristically and empirically by a decision maker.
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4.2 Analysis of Japanese Main Rivers

A river is created by an erosion effect of precipitation, flowing water, and so on. In
addition, topographical factors such as a diastrophism, a tectonic activity, and a
fault also build up a river. For this reason, a scale of river is illustrated by a basin
area and a drift distance. It is easy to understand that a river with a short drift
distance has a wider width and a deeper depth in case of being swollen with a big
volume of water. Also, a river may be narrower and shallower in case of a low
velocity and a low volume of the water flow.

Let us analyze the basin areas Y and the drift distances X of major rivers in
Japan [25] by a regression model.

At beginning, a statistical regression model YLS based on a least squares method
is confirmed as following:

YLS ¼ �0:12þ 1:61X:

Here, the basin areas Y and the drift distances X are used a value obtained by
logarithmic transformation and these takes a large value. Therefore, it is not
problem that the constant term has a negative value.

We employ three models which are the fuzzy regression model proposed by
Tanaka and Watada [17] and Tanaka and Guo [19], the fuzzy regression model
paying a special attention to the center of the model proposed by Tajima [15], and
our second type model of fuzzy robust regression. Therefore, the model is defined
as follows:

Y ¼ YC; YL; YU
� �

¼ a0; c0; d0ð Þ þ a1; c1; d1ð ÞX;

Let us denote fuzzy regression models proposed by Tanaka et al., Tajima, and us
by YCM , YCF , and YGR, respectively. These are written as the following three
models:

YCM ¼ 1:58; 0; 0ð Þ þ 1:27; 0:17; 0:46ð ÞX;
YCF ¼ �0:42; 0:2; 2:52ð Þ þ 1:60; 0:15; 0ð ÞX;
YGR ¼ �0:42; 0; 0ð Þ þ 1:60; 0:15; 0:58ð ÞX;

where X and Y denote the drift distance and the basin area, respectively, and the
parameter takes the value a ¼ 0:05 for the proposed model. Figures 3 and 4, 5
show YCM , YCF , and YGR, respectively. The shape of the models depends on the
objective function. In this paper, the fuzziness of the Tanaka’s model and our
model is the sum of fuzzy coefficients cþ d, which shows the width of the model.
In addition this, under the influence of the Yodogawa, the statistical model has a
little larger constant term, the regression model is slightly unnatural.
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Fig. 3 YCM on a scale of
rivers in Japan

Fig. 4 YCF on a scale of
rivers in Japan

Fig. 5 YGR on a scale of
rivers in Japan

Building Fuzzy Robust Regression Model 263



The model YCF can be formulated as follows:

minimize
Xn

i¼1

axi � c xij j � yið Þ2þ axi þ d xij j � yið Þ2
n o

maximize
Xn

i¼i

l yi; xið Þ

subject to YL
i � yi� YU

i i ¼ 1; 2; . . .; nð Þ:

Table 3 shows the characteristics of these models. The width of vagueness in
Table 3 is the summation of fuzzy coefficient cþ d. In the Tajima’s model YCF ,
the objective function is defined by using the squared distance between the model
and the observed value. This value is also shown in Table 3. These values show
the characteristics of these models.

Let us discuss the rivers in Japan. The Yodogawa in Osaka is different from other
rivers in Japan in the relation between the basin area Y and the drift distance X. The
Yodogawa has a short drift distance X but it has a large basin area Y. Therefore, the
Yodogawa is placed far from the group of other rivers. Lake Biwa is the water
source of the Yodogawa, the Yodogawa carry water to Osaka Bay. The distance
between Osaka Bay and Lake Biwa is short, relatively large tributaries are joined
with the Yodogawa. Therefore, the three model shapes look distorted.

The conventional fuzzy regression model YCM describes the system’s possi-
bility by minimizing the fuzziness included in the model (Fig. 3). Nevertheless,
the center of YCM is different from the center of possibility distribution because it
is influenced by the Yodogawa, and the slope of the regression is small. As Table 3
illustrates, the fuzziness of the model is the lowest among the three models. The
proposed model YGR shows the second lowest fuzziness behind YCM .

Let us study the central position of the model. The Tajima’s model and the
proposed model maximizing the total summation of possibility grades show the
main trend of the system, even though their graph’s slope is somewhat small.

As the Tajima’s model can minimize the distance from the samples to the upper
and lower boundaries of the model, the right side of the graph shows narrower
width because the number of samples is larger. Therefore, the model shows an
unnatural possibility.

The proposed model has a large width of possibility because of the influence of
the Yodogawa. But Table 3 shows that among the three models, the proposed
model naturally describes the system’s possibility and the graph’s slope. Although
this model is built by maximizing the sum of the possibility grade from the model

Table 3 Feature of each model

YCM YCF YGR

Sum of all grades 36.904 42.704 43.755
Fuzziness 0.626 2.667 0.731
Residual error – 344.407 –
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and data, the inclusion constraints might not fit the possibility distribution and the
model.

When the inclusion constraints related to the Yodogawa are removed as the
model includes all the samples, the following model is obtained:

YGR0 ¼ �0:98; 0; 0ð Þ þ 1:73; 0:18; 0:44ð ÞX:

Figure 6 shows this model. The sum of the possibility grades is 42.196. The
fuzziness is 0.622. By means of removing the constraints on the proposed model,
the sum of the possibility grades becomes smaller. This occurs because the width
of the model becomes narrower. The model’s construction for mitigating the
influence of outlier samples is discussed below.

4.3 Model Removed Influences of Outliers

In the previous section, we illustrated removing the inclusion constraints in order
to alleviate the influence of outlier samples. The center of the model is lower than
the center of the data distribution in Fig. 6. The outlier, the Yodogawa, is located
above the center. In this case, the outlier samples force the center of possibility
distribution to move to the opposite side.

Let us discuss this phenomenon using a simple example as shown in Fig. 7.
When we construct the membership function using samples including an outlier �,
Fig. 7a is transformed into Fig. 7b.

The center of the model moves to the right in the majority group of samples,
that is, the opposite from the outlier sample. This makes the sum of membership
grades larger than the initial state.

When we intend to build a model so that the total sum of the possibility grades
is maximized, the formation of the model is distorted. As a fuzzy regression model
defined so as to include all samples in the model and minimize the total vagueness
of the model, then the total sum of possibility grades becomes larger as the width
gets wider. The reason is because the form of the membership function is defined
so as to set lðaÞ ¼ 0 for the outlier sample �.

In order to mitigate the distortion of the membership function at the outlier
sample �, the formulation of the model is changed as is shown in Fig. 7c.

When the membership function is generated, it is possible to alleviate the
influence of outlier samples by a parallel shifting of the graph of the obtained
membership function by the step l0ðaÞ ¼ �b after solving the membership
function which has the maximum membership value 1þ b. In other words, when
considering the possibility influenced by the outlier sample � to build the mem-
bership function, the values [0, 1] are used in the membership function. That is, the
outlier sample � is placed outside of the possibility distribution because of the
nature of outlier samples.
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The slope of the straight line in the previous section was smaller than the
possibility of the system. Let us consider Fig. 8. The ellipsoid in Fig. 8 denotes the
data distribution. When outlier samples are included at left side of the upper

Fig. 6 YGR0 on a scale of
rivers in Japan

x

(a)

x

(b)

x

(c)

Fig. 7 Outlier mixed in data.
a Outlier � is not included in
data. b Outlier � is included
in data. c Removed influences
of outlier �
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ellipsoid, the fuzzy regression model rotates clockwise and the slope becomes
smaller as shown by the arrow in Fig. 8a.

On the other hand, when outlier samples are included at the right side of the
upper ellipsoid, the fuzzy regression model rotates counterclockwise and the slope
becomes larger, as shown by the arrow in Fig. 8b.

Based upon the above discussion of the fuzzy regression model leads to the
conclusion that influence of outlier samples on the maximum of the total sum of
possibility grades can be summarized as follows:

• As the grade becomes larger, the width of the model becomes wider.
• The center of the model moves to the opposite of the outlier sample’s position.

(a)

(b)

(c)

Fig. 8 Location of outlier.
a Outlier is located in the
upper left portion of the data
distribution. b Outlier is
located in the upper right
portion of the data
distribution. c Outlier is
directly above the data
distribution
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• The slope of the model’s graph is influenced by outlier samples.

When the fuzzy regression model is built by maximizing the possibility grade,
its objective is to describe the possibility of the latent system. That means that the
emphasis is on the description of the system possibility rather than the inclusion of
all the samples in the model. Therefore, it will be allowed to remove the inclusion
constraints between sample y and model Y as follows:

YL� y� YU :

When the model is constructed, outlier samples greatly influence fuzzy coefficients
as shown in Fig. 8c. Heuristically, we can employ the following objective function
under the setting l að Þj j ¼ b:

maximize Z3 ¼ a
Xn

i¼1

l yi; xið Þ � bj j � 1� að Þc
Xn

i¼1

Wi:

where a is the parameter to decide the selection between the maximization of
possibility grade and the minimization of the vagueness of the model. c is the
parameter to tune the difference between the total sum of possibility grades and the
vagueness of the model.

Let us consider an example to illustrate the proposed model. Set a ¼ 0:1, c ¼ 2
and compare cases b ¼ 0:3 and b ¼ 0:7. Fuzzy regression models YGR

b¼0:3 and

YGR
b¼0:7 are obtained as follows:

YGR
b¼0:3 ¼ �0:98; 0; 0:0ð Þ þ 1:73; 0:16; 0:45ð ÞX;

YGR
b¼0:7 ¼ �1:38; 0; 0:0ð Þ þ 1:80; 0:07; 0:36ð ÞX:

Parameter a used in the model decides which portion is emphasized between
the maximization of the total sum of the possibility grades and the minimization of
the total vagueness of the model. When a is set to larger value, the vagueness of
the obtained model becomes larger. In the numerical example, the setting of
a ¼ 0:1 and c ¼ 2 makes an obtained model well-balanced.

As b corresponds to a�cut, setting b to a larger value makes the width of the
model smaller. Figures 9 and 10 depict YGR

b¼0:3 and YGR
b¼0:7, respectively. Parameter

b adjusts the width of the model (Table 4). b ¼ 0:3 shows that the model has too
large vagueness. On the other hand, b ¼ 0:7 shows that non-outlier rivers are
placed outside of the possibility distribution. Then, we employed b ¼ 0:5 to obtain
the following model:

YGR
b¼0:5 ¼ �0:98; 0; 0:00ð Þ þ 1:73; 0:15; 0:39ð ÞX:

Even this model still shows some influence of the Yodogawa, and the possibility
distribution of samples is appropriately expressed (Fig. 11).

268 Y. Yabuuchi and J. Watada



3 4 5 6 7
2

4

6

8

10

12

14

16

Drift distance X

B
as

in
 a

re
a 

Y

Fig. 9 Improved model 1
(b ¼ 0:3)
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Fig. 10 Improved model 2
(b ¼ 0:7)

Table 4 Features of improved model

Improved model

1 2

b 0.3 0.7
Sum of all grades 42.531 38.960
Value of Obj. Func. 2.826 2.585
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5 Conclusions

In this chapter, we proposed two type models of fuzzy robust regression. The first
type model of fuzzy robust regression treats with granule data or fuzzy data after
removal of ill effects of extraordinary data by genetic algorithm. The distance
concept is an easy-to-use and feasible way for data including a vagueness, this was
confirmed by the first type model of fuzzy robust regression.

The relation between Asian economy and environment was analyzed by the first
type model. Relation between Asian economy and environment was explained by
the first type model. In this analysis, employing the distance between a conven-
tional fuzzy regression model and slightly different character countries, the rela-
tion between Asian economy and environment was explained by the first type
model.

The second type model of fuzzy robust regression illustrates the possibility of
the target system by its triangular membership function. This second model is built
in order to get the maximum degree of coincidence between a second type model
and a possibility distribution. Therefore, this second type model is not able to
handle only real-valued data but also granule data or fuzzy data.

The features of Japanese major river was analyzed by the second type model,
the basin area and the drift distance was used. The center, the upper limit and the
lower limit of the system was reveals by the second type model. And the feature of
Japanese major river was explained. Since Yodogawa has short drift distances
relative to large basin area, the possibility limits was spread. However, the
problem was solved by the approach described above. This, the feature of Japanese
major river became clear.

Finally, we can conclude our fuzzy robust regression models are able to
describe a target possibility by granule data or fuzzy data.
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Fig. 11 Optimum model
(a ¼ 0:1, b ¼ 0:5)
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