
Unified Framework for Construction
of Rule Based Classification Systems

Han Liu, Alexander Gegov and Frederic Stahl

Abstract Automatic generation of classification rules has been an increasingly
popular technique in commercial applications such as Big Data analytics, rule
based expert systems and decision making systems. However, a principal problem
that arises with most methods for generation of classification rules is the overfitting
of training data. When Big Data is dealt with, this may result in the generation of a
large number of complex rules. This may not only increase computational cost but
also lower the accuracy in predicting further unseen instances. This has led to the
necessity of developing pruning methods for the simplification of rules. In addi-
tion, classification rules are used further to make predictions after the completion
of their generation. As efficiency is concerned, it is expected to find the first rule
that fires as soon as possible by searching through a rule set. Thus a suitable
structure is required to represent the rule set effectively. In this chapter, the authors
introduce a unified framework for construction of rule based classification systems
consisting of three operations on Big Data: rule generation, rule simplification and
rule representation. The authors also review some existing methods and techniques
used for each of the three operations and highlight their limitations. They introduce
some novel methods and techniques developed by them recently. These methods
and techniques are also discussed in comparison to existing ones with respect to
efficient processing of Big Data.

H. Liu (&) � A. Gegov
School of Computing, University of Portsmouth, Buckingham Building,
Lion Terrace, Portsmouth PO1 3HE, UK
e-mail: han.liu@port.ac.uk

A. Gegov
e-mail: alexander.gegov@port.ac.uk

F. Stahl
School of Systems Engineering, University of Reading, White Knights, 225
Reading RG6 6AY, UK
e-mail: f.t.stahl@reading.ac.uk

W. Pedrycz and S.-M. Chen (eds.), Information Granularity, Big Data,
and Computational Intelligence, Studies in Big Data 8,
DOI: 10.1007/978-3-319-08254-7_10,
� Springer International Publishing Switzerland 2015

209

Keywords Data mining � Machine learning � Rule based systems � Rule based
classification � Information granularity � Big data � Computational intelligence

1 Introduction

Automatic induction of classification rules has been increasingly popular in
commercial applications such as Big Data analytics, rule based expert systems and
predictive decision making systems. The methods of classification rule generation
can be divided into two categories: ‘divide and conquer’ and ‘separate and conquer’.
The former is also known as Top-Down Induction of Decision Trees (TDIDT) [1],
which generates classification rules in the intermediate form of a decision tree such as
ID3 [1], C4.5 and C5.0. The latter is also known as covering approach [2], which
generates if-then rules directly from training instances such as Prism [3]. A series of
experiments have shown that Prism achieves a similar level of accuracy compared
with TDIDT and can even outperform TDIDT in some cases [4].

However, a principal problem [5] that arises with most methods for generation
of classification rules is the overfitting of training data. When the training data is
large, this may result in the generation of a large number of complex rules. This
may not only increase computational cost but also lower the accuracy in predicting
further unseen instances. This has motivated the development of pruning algo-
rithms with respect to the reduction of overfitting. Pruning methods can be sub-
divided into two categories—pre-pruning [6], which truncates rules during rule
generation, and post-pruning [6], which generates a whole set of rules and then
remove a number of rules and rule terms, by using statistical or other tests [5]. A
family of pruning algorithms are based on J-measure [7] used as information
theoretic means of quantifying the theoretical information content of a rule. This is
based on a working hypothesis [8] that rules with high information content (value
of J-measure) are likely to have a high level of predictive accuracy. Two existing
J-measure based pruning algorithms are J-pruning [5] and Jmax-pruning [9, 10],
which have been successfully applied to Prism for the reduction of overfitting.

The main objective in prediction stage is to find the first rule that fires by
searching through a rule set. As efficiency is concerned, a suitable structure is
required to effectively represent a rule set that is generated by learning from Big
Data. The existing rule representations include tree and list. Tree representation is
mainly used to represent rule sets generated by ‘divide and conquer’ approach in
the form of decision trees. It has root and internal nodes representing attributes and
leaf nodes representing classifications as well as branches representing attribute
values. On the other hand, list representation is commonly used to represent rules
generated by ‘separate and conquer’ approach in the form of ‘if-then’ rules.

As the relevance of above operations, the authors have recently developed a
unified framework consisting of these operations for the construction of rule based
classification systems. On the other hand, it is stated in [11] that ‘‘Big Data is a

210 H. Liu et al.

popular term used to describe the exponential growth and availability of data, both
structured and unstructured. And Big Data may be as important to business—and
society—as the Internet has become.’’ This is due to the following reasons [11]:

• More data may lead to more accurate analyses.
• More accurate analyses may lead to more confident decision making.
• Better decisions can mean greater operational efficiencies, cost reductions and

reduced risk.

IBM defines that Big Data is characterised by four Vs [12]:

• Volume—terabytes, petabytes, or more
• Velocity—data in motion or streaming data
• Variety—structured and unstructured data of all types—text, sensor data,

audio, video, click streams, log files and more
• Veracity—the degree to which data can be trusted

Therefore, this chapter aims to introduce a framework for construction of rule
based classification systems particularly on Big Data and to review some existing
methods and techniques involved in each of the three operations namely genera-
tion, simplification and representation highlighting their limitations. The chapter
also introduces some novel methods and techniques that are based on information
theory and that may overcome the limitations of those methods reviewed with
respect to effective and efficient processing of Big Data.

The rest of the chapter is organized as follows. Section 2 reviews Prism
algorithm and identifies its limitations with respect to rule generation. It also
discusses in what way J-pruning and Jmax-pruning help Prism and other rule based
classifiers overcome overfitting with respect to rule simplification and the effi-
ciency that list and tree representation achieve at prediction stage. Section 3
introduces three novel methods and techniques developed by the authors in their
more recent research. It includes Information Entropy Based Rule Generation
(IEBRG), Jmid-pruning and networked rule representation. The methods and
techniques are discussed further in comparison to existing ones with respect to
effective and efficient processing of Big Data in Sect. 4. Section 5 summarises the
completed work reflecting the potential use to real world problems and highlights
further directions.

2 Related Work

As mentioned in Sect. 1, a unified framework for the construction of rule based
classification systems involves three operations: rule generation, rule simplifica-
tion and rule representation. In this section, Prism is selected as a representative
for the methods of classification rules generation with the reason that Prism is
more noise-tolerant and achieves a higher predictive accuracy comparing to
decision trees in some special cases but also can perform similar accuracy to

Unified Framework for Construction of Rule Based Classification Systems 211

decision trees in most cases. Furthermore, J-pruning and Jmax-pruning are
reviewed because only the two existing pruning methods have been applied to
Prism for rule simplification. In addition, rules that are generated by ‘divide and
conquer’ approach are automatically represented in the form of decision trees and
rules generated by ‘separate and conquer’ approach are directly represented by a
linear list in the form of ‘if-then’ rules. However, they both have their limitations
as criticised in [3] and identified by the authors respectively. These methods and
techniques are described in the following subsections highlighting the limitations
of them to show the motivation for the development of those novel methods and
techniques which are further presented in Sect. 3.

2.1 Prism Method

The Prism method was introduced by Cendrowska in [3] and the basic procedure
of the underlying Prism algorithm is illustrated in Fig. 1. This algorithm is pri-
marily aimed at avoiding the generation of complex rules with many redundant
terms [5] such as the ‘replicated subtree problem’ [3] that arises with decision trees
as illustrated in Fig. 2.

The original Prism algorithm cannot directly handle continuous attributes as it
is based on the assumption that all attributes in a training set are categorical. When
continuous attributes are actually present in a dataset, these attributes should
be discretized by preprocessing the dataset prior to generating classification rules
[6, 9, 10]. In addition, Bramer’s Inducer Software handles continuous attributes as
described in [6, 9, 10] and in Sect. 3.

On the other hand, the original Prism algorithm does not take clashes into
account, i.e. a set of instances in a subset of a training set that are identical apart
from being assigned to different classes but cannot be separated further [6, 10].
However, the Inducer Software implementation [13] of Prism can handle clashes
and the strategy of handling a clash is illustrated in Fig. 3.

Another problem that arises with Prism is tie-breaking, i.e. if there are two or
more attribute-value pairs which have equal highest probability in a subset (see
step 3 in Fig. 1). The original Prism algorithm makes an arbitrary choice in step 4
as illustrated in Fig. 1 whereas the Inducer Software makes the choice using the
highest total target class frequency [6].

In addition, Bramer pointed out that the original Prism algorithm always deletes
instances covered by those rules generated so far and then restores the training set
to its original size after the completion of rule generation for class i and before the
start for class i + 1. This undoubtedly increases the number of iterations resulting
in high computational cost [14] when the training data is very large. For the
purpose of increasing the computational efficiency, a modified version of Prism,
called PrismTCS, was developed by Bramer [15]. PrismTCS always chooses the
minority class as the target class pre-assigned to a rule being generated as its
consequence. Besides this, it does not reset the dataset to its original state and

212 H. Liu et al.

Execute the following steps for each classification (class= i) in turn and on the
original training data S:
1. S’=S.
2. Remove all instances from S’ that are covered from the rules induced so far. If
S’ is empty then stop inducing further rules
3. Calculate the conditional probability from S’ for class=i for each attribute-
value pair.
4. Select the attribute-value pair that covers class= i with the highest probability
and remove all instances from S’ that comprise the selected attribute-value pair
5. Repeat 3 and 4 until a subset is reached that only covers instances of class= i
in S’. The induced rule is then the conjunction of all the attribute-value pairs
selected.
Repeat 1-5 until all instances of class i have been removed

*For each rule, no one attribute can be selected twice during rule generation

Fig. 1 Basic prism algorithm [6]

Fig. 2 Cendrowska’s replicated subtree example [9, 10, 19]

If a clash occurs while generating rules for class i:
1. Determine the majority class for the subset of instances in the clash set.
2. If this majority class is target class i, then compute the induced rule by assigning all
instances in the clash set to target class i. If it is not, discard the whole rule.
3. If the induced rule is discarded, then all instances that match the target class
should be deleted from the training set before the start of the next rule induction.
If the rule is kept, then all instances in the clash set should be deleted from the
training data.

Fig. 3 Dealing with clashes in Prism

Unified Framework for Construction of Rule Based Classification Systems 213

introduces an order to each rule according to its importance [9, 10, 14]. Therefore,
PrismTCS is not only faster in generating rules compared with the original Prism,
but also provides a similar level of classification accuracy [9, 10, 15].

Prism algorithm also has some disadvantages. One of them is that the original
version of Prism may generate a rule set which may result in a classification
confliction in predicting unseen instances. This can be illustrated by the example
below:

Rule 1: If x = 1 and y = 1 then class = a
Rule 2: If z = 1 then class = b

What should the classification be for an instance with x = 1, y = 1 and z = 1?
One rule gives class a, the other one gives class b. We need a method to choose
only one classification to classify the unseen instance [6]. Such a method is known
as a conflict resolution strategy. Bramer mentioned in [6] that Prism uses the ‘take
the first rule that fires’ strategy in dealing with the conflict problem and therefore it
is required to generate the most important rules first. However, the original Prism
cannot actually introduce an order to a rule according to its importance as each of
those rules with a different target class is independent from each other. As men-
tioned above, this version of Prism would restore the training set to its original size
after the completion of rule generation for class i and before the start for class
i + 1. This indicates the rule generation for each class may be done in parallel so
the algorithm cannot directly rank the importance among rules. Thus the ‘take the
first rule that fires’ strategy may not deal with the classification confliction well.
The PrismTCS does not restore dataset to its original state unlike original Prism
and thus can introduce the order to a rule for its importance. This problem is
partially resolved but PrismTCS may potentially lead to underfitting of a rule set.
PrismTCS always chooses the minority class in the current training set as the target
class of the rule being generated. Since the training set is never restored to its
original size as mentioned above, it can be proven that one class could always be
selected as target class until all instances of this class have been deleted from the
training set because the instances of this minority class covered by the current rule
generated should be removed prior to generating the next rule. This case may
result in that the majority class in the training set may not be necessarily selected
as target class to generate a list of rules until the termination of the whole gen-
eration process. In this case, there is not even a single rule having the majority
class as its consequence (right hand side of this rule). In some implementations,
this problem has been partially solved by assigning a default class (usually
majority class) in predicting unseen instances when there is not a single rule that
can cover this instance. However, this should be based on the assumption that the
training set is complete. Otherwise, the rule set may still underfit on training set as
the conditions of classifying instances to the other classes are probably not strong
enough. On the other hand, if a clash occurs, both the original Prism and Pris-
mTCS would prefer to discard the whole rule rather than to assign the majority
class, which is higher in importance, to the rule. As mentioned above, Prism may
generally generate more general and less rules than a decision tree. One reason is

214 H. Liu et al.

potentially due to discarding rules. In addition, the clash may happen in two
principal ways as follows:

1. One of the instances has at least one incorrect record for its attribute values or
its classification [5].

2. The clash set has both (or all) instances correctly recorded but it is impossible
to discriminate between (or among) them on the basis of the attributes recorded
and thus it may be required to examine further values of attributes [6].

When there is noise present in datasets, Prism may be more robust than decision
trees as mentioned above. However, if the reason that a clash occurs is not due to
noise and the training set covers a large amount of data, then it may result in
serious underfitting of the rule set by discarding rules as it will leave many unseen
instances unclassified at prediction stage. The fact that Prism would decide to
discard the rules in some cases is probably because it uses the so-called ‘from
effect to cause’ approach. As mentioned above, each rule being generated should
be pre-assigned a target class and then the conditions should be searched by adding
terms (antecedents) until the adequacy conditions are met. Sometimes, it may not
necessarily receive adequacy conditions even after all attributes have been
examined. This indicates the current rule covers a clash set that contains instances
of more than one class. If the target class is not the majority class, this indicates the
search of causes is not successful so the algorithm decides to give up by discarding
the incomplete rule and deleting all those instances that match the target class in
order to avoid the same case to happen all over again [9, 10]. This actually not only
increases the irrelevant computation cost but also results in underfitting of the rule
set.

These limitations have motivated the development of a new method for the
generation of classification rules which is further introduced in Sect. 3.1.

2.2 J-Pruning and Jmax-Pruning

As mentioned in Sect. 1, both J-pruning and Jmax-pruning are based on J-measure
which was introduced by Smyth and Goodman [7] who justified the use of the J-
measure as an information theoretic means of quantifying the theoretical infor-
mation content of a rule.

According to the notation of [7], given a rule of the form IF Y = y THEN
X = x can be measured in bits and is denoted by J(X, Y = y).

J X; Y ¼ yð Þ ¼ p yð Þ � j X; Y ¼ yð Þ ð1Þ

J(X; Y = y) is essentially a product of two terms as follows:

• p(y), the probability that the left hand side of the rule (hypothesis) will occur.

Unified Framework for Construction of Rule Based Classification Systems 215

• j(X; Y = y), which is called the j-measure (with a lower case j) and measures
the goodness-of-fit of a rule.

The j-measure, also known as the cross-entropy, is defined as:

j X; Y ¼ yð Þ ¼ p xjyð Þ � log2 p xjyð Þ=p xð Þð Þ þ 1� p xjyð Þð Þ
� log2 1� p xjyð Þð Þ= 1� p xð Þð Þð Þ ð2Þ

The value of cross-entropy depends upon two values [6]:

• p(x): the probability that the consequence (right hand side) of the rule will be
matched if there is no other information given. This is known as a priori
probability of the rule consequence.

• p(x|y): the probability that the consequence of the rule is matched if the given
antecedents are satisfied. This is also read as a posterior probability of x given y.

Bramer mentioned in [5, 6] that the J-measure has two very helpful properties
related to upper bounds as follows:

• It can be shown that J(X; Y = y) B p(y) � log2 (1/p(y)). The maximum point of
this expression can be found at p(y) = 1/e. This can derive a maximum value,
is (log2 (e)�(1/e)), i.e. approximately 0.5307 bits.

• More importantly, it can be proven that the value of the J-measure is never
higher than the upper bound value illustrated in Eq. (3) whenever a rule is
specialised by adding further terms to its left hand side.

Jmax ¼ p yð Þ �max p xjyð Þ � log2 1=p xð Þð Þ; 1� p xjyð Þð Þ � log2 1=1� p xð Þð Þf g
ð3Þ

Thus, there are no theoretical benefits to be gained by adding further terms to a
rule when the value of the J-measure of this rule is equal to its corresponding
Jmax-value. The application of Jmax is illustrated in Sect. 3.2.

When a rule is being generated, the J-value (value of J-measure) may increase or
decrease after specialising the rule by adding a new term. Both pruning algorithms
(J-pruning and Jmax-pruning) expect to find the global maximum of J-value for the
rule. Each rule has a complexity degree which is the number of terms. The increase
of complexity degree may lead the J-value of this rule to increase or decrease. The
aim of pruning algorithms is to find the complexity degree corresponding to the
global maximum of J-value as illustrated in Fig. 4 using a fictitious example.

However, the two pruning algorithms mentioned above search the global
maximum of J-value with different strategies:

• J-pruning: monitor the change pattern of J-value and stop rule generation once
it goes down. i.e. it will stop rule generation when complexity degree is X1 as
illustrated in Fig. 4 because the J-value is going to decrease afterwards. The
final rule generated is with the complexity degree X1 (having the first X1 rule
terms).

216 H. Liu et al.

• Jmax-pruning: monitor and record the highest J-value observed so far until the
completion of rule’s generation. i.e. it will stop rule generation when the
complexity is X3 as illustrated in Fig. 4 and reduce the complexity degree
subsequently until the degree is X2 by removing those rule terms afterwards.
The final rule is with the complexity degree X2.

J-pruning is a pre-pruning method because the pruning action is taken during
rule generation. It was developed by Bramer [5] and its basic idea is illustrated in
Algorithm 1.

Algorithm 1 J-pruning for Prism algorithms

Rule r = new Rule;
Boolean rule_Incomplete = true;
Do While (rule_Incomplete){

Term t = generate new term;
compute J_value of r if appending t;
IF(r.current_J_value > J_value){

do not append t to r;
invoke clash handling for r;
rule_Incomplete = false;

}ELSE{
r.current_J_value = J_value;
append t to r;

 }
}

J-pruning achieves relatively good results as indicated in [5]. However, Stahl
and Bramer pointed out in [9, 10] that J-pruning does not exploit the J-measure to
its full potential. This is because this method immediately stops the generation
process as soon as the J-measure goes down after a new term is added to the rule as
illustrated in Fig. 4. In fact, it is theoretically possible that the J-measure may go
down and go up again after further terms are added to the rule. This indicates the
pruning action may be taken too early. The fact that J-pruning may achieve rel-
atively good results could be explained by the assumption that it does not happen
very often that the J-value goes down and then goes up again. A possible case is
that there is only one local maximum of J-value as illustrated in Fig. 5. It also

J-
va

lu
e

X1 X2 X3

Complexity degree

Fig. 4 Relationship between
complexity degree and
J-value (case 1)

Unified Framework for Construction of Rule Based Classification Systems 217

indicates that J-pruning may even result in underfitting due to over-generalised
rules. This is because the pruning action may be taken too early resulting in too
general rules being generated. This motivated the development of a new pruning
method, called Jmax-pruning, which was proposed by one of the authors of this
chapter [9, 10], in order to exploit the J-measure to its full potential.

Jmax-pruning can be seen as a hybrid between pre-pruning and post-pruning.
With regard to each generated rule, each individual rule is actually post-pruned
after the completion of the generation for that rule. However, with respect to the
whole classifier (whole rule set) it is a pre-pruning approach as there is no further
pruning required after all rules have been induced.

The basic idea of Jmax-pruning is illustrated in Algorithm 2.
Algorithm 2 Jmax-pruning for Prism algorithms

Rule r = new Rule;
Boolean rule_Incomplete = true;
term_index = 0;
Do While (rule_Incomplete){
Term t = generate new term;
term_index++;
append t to r;
compute J_value of r;
IF(J_value > best_J_Value){

best_J_Value = J_Value;
best_term_index = term_index;

}
IF(No more rule terms can be induced){

cut r back to rule best_term_index;
invoke clash handling for r;
rule_Incomplete = false;

}
}

A series of experiments have shown that Jmax-pruning outperforms J-pruning in
some cases [9, 10] when there are more than one local maximum and the first one
is not the global maximum as illustrated in Fig. 4. However, it performs the same

J-
va

lu
e

Complexity degree

Fig. 5 Relationship between
complexity degree and J-
value (case 2)

218 H. Liu et al.

as J-pruning in other cases [9, 10] when there is only one local maximum as
illustrated in Fig. 5 or the first one of local maxima is also the global maximum.

However, Jmax-pruning may be computationally relatively expensive as each
rule generated by this method is post-pruned. The pruning action could be taken
earlier during the rule generation and thus speed up the rule generation when Big
Data is used for training. This could be achieved by making use of the Jmax value
as introduced above.

On the other hand, a special case may need to be taken into account when Prism
is used as the classifier. This case is referred to as tie-breaking which is if there is
more than one global maximum for the J-value during rule generation as illustrated
in Fig. 6.

As mentioned in Sect. 2.1, Prism prefers to discard a rule rather than assign it to
a majority class when a clash occurs. Therefore, it may even lead to underfitting of
the induced rule set if a pruning method attempts to reduce the overfitting by
pruning rules but unfortunately results in discarding rules. If this case is taken into
account, it is worth to determine properly which one of the global maximum points
to be chosen as the start point of pruning in order to avoid over-discarding rules. In
other words, according to Fig. 6, it needs to determine to choose either X1 or X2 as
the start point for removing all rule terms afterwards.

With regards to this issue, Jmax-pruning always chooses to take X1 (the first
global maximum point) as the start point of pruning and to remove all rule terms
generated afterwards. It may potentially lead to underfitting as it is possible that
the rule is being discarded after handling a clash if X1 is chosen but is being kept
otherwise. In addition, another type of tie-breaking may arise with the case as
illustrated below:

Let the current rule’s last added rule term be denoted ti, and the previously
added rule term be denoted ti-1. Then a tie break happens if J-value at ti is less than
that at ti-1 and Jmax-value at ti equals J-value at ti-1. It is also illustrated by an
example (Rule 1) below.

J-
va

lu
e

Complexity degree

X1
X2

Fig. 6 Relationship between
complexity degree and J-
value (case 3)

Unified Framework for Construction of Rule Based Classification Systems 219

Rule 1: If x = 1 and y = 1 and z = 1 then class = 1;
After adding first term:
If x = 1 then class = 1; (J = 0.33, Jmax = 0.55)
After adding second term:
If x = 1 and y = 1 then class = 1; (J = 0.21; Jmax = 0.33)

However, the two cases about tie-breaking mentioned above are not very likely
to happen. As the basis of above descriptions about limitations of J-pruning and
Jmax-pruning, it has motivated the development of a new pruning algorithm to
overcome the limitations of J-pruning and Jmax-pruning with respects to under-
fitting and computational efficiency. The new pruning algorithm is further intro-
duced in Sect. 3.2.

2.3 Decision Tree and Linear List Representation

As mentioned in Sect. 1, decision tree is an automatic representation for classi-
fication rules generated by ‘divide and conquer’ approach. However, the repre-
sentation has been criticized by Cendrowska and identified as a major cause of
overfitting in [3] as illustrated in Fig. 2. It was also pointed in [16] that it is
required to examine the whole tree in order to extract rules about a single clas-
sification in the worst case. This drawback on representation has made it difficult
to manipulate for expert systems. It has thus motivated the direct use of ‘if then’
rules represented by a linear list structure. However, simulation in this represen-
tation is run in linear search with the time complexity O (n) while the total number
of rule terms is used as the input size (n). This is because list representation works
in linear search by going through rule by rule in an outer loop; and by going
through term by term for each rule in an inner loop. It implies it may have to go
through the whole rule set to find the first rule that fires in the worst case. This may
lead to huge computational costs when the representation is used to represent a
rule set generated by learning from Big Data.

As the basis of above description about limitations of tree and list representa-
tion, it has motivated the development of a new representation of classification
rules which performs a level of efficiency higher than linear time in time com-
plexity. This new representation is further described in Sect. 3.3.

3 Novel Methods and Techniques

Section 2 has reviewed a representative rule generation method called Prism, two
J-measure based pruning algorithms namely J-pruning and Jmax-pruning and two
types of representation of classification rules namely tree and list. It has also
highlighted their limitations so this section explores a novel rule generation

220 H. Liu et al.

method called Information Entropy Based Rule Generation (IEBRG); a novel
J-measure based pruning algorithm called Jmid-pruning and a novel representation
of classification rules called Rule Based Classification Networks.

3.1 Information Entropy Based Rule Generation

Information Entropy Based Rule Generation is a method of classification rules
generation following ‘separate and conquer’ approach and has been recently
developed in [17]. This method tends to avoid underfitting and redundant com-
putational efforts.

3.1.1 Essence

This method is attribute-value-oriented like Prism but it uses the ‘from cause to
effect’ approach. In other words, it does not have a target class pre-assigned to the
rule being generated. The main difference with respect to Prism is that IEBRG
focuses mainly on minimising the uncertainty for each rule being generated no
matter what the target class is. A popular technique used to measure the uncer-
tainty is information entropy introduced by Shannon in [18]. The basic idea of
IEBRG is illustrated in Fig. 7.

3.1.2 Justification

As mentioned in Sect. 2.1, all versions of Prism need to have a target class pre-
assigned to the rule being generated. In addition, an attribute might be not relevant
to each particular classification and sometimes only one value of an attribute is
relevant [16]. Therefore, the Prism method chooses to pay more attention to the
relationship between attribute-value pair and a particular class. However, the class

 1. Calculate the conditional entropy of each attribute-value pair in the
current subset

2. Select the attribute-value pair with the smallest entropy to spilt on, i.e.
remove all other instances that do not comprise the attribute-value pair.

3. Repeat step 1 and 2 until the current subset contains only instances of
one class (the entropy of the resulting subset is zero).

4. Remove all instances covered by this rule.
Repeat 1-4 until there are no instances remaining in the training set.

* For each rule, no one attribute can be selected more than once during

generation.

Fig. 7 IEBRG algorithm

Unified Framework for Construction of Rule Based Classification Systems 221

to which the attribute-value pair is highly relevant is probably unknown, as can be
seen from the example in Table 1 below with reference to the lens 24 dataset
reconstructed by Bramer in [6]. This dataset shows that P (clas-
s = 3|tears = 1) = 1 illustrated by the frequency table for attribute ‘‘tears’’. The
best rule generated first would be ‘‘if tears = 1 then class = 3’’.

This indicates that the attribute-value ‘‘tears = 1’’ is only relevant to class 3.
However, this is actually not known before the rule generation. According to
PrismTCS strategy, the first rule being generated would select ‘‘class = 1’’ as target
class as it is the minority class (Frequency = 4). Original Prism may select class 1
as well because it is in a smaller index. As described in [6], the first rule generated
by Original Prism is ‘‘if astig = 2 and tears = 2 and age = 1 then class = 1’’. It
indicates the computational efficiency is slightly worse than expected and the
resulting rule is more complex. When Big Data is used for training, the Prism
method may be even likely to generate an incomplete rule covering a clash set as
mentioned in Sect. 2.1 if the target class assigned is not a good fit to some of those
attribute-value pairs in the current training set. Then the whole rule may be dis-
carded resulting in underfitting and redundant computational effort.

In order to find a better strategy for reducing the computational cost, the authors
proposed the method in [17]. In this technique, the first iteration of the rule
generation process for the ‘‘lens 24’’ dataset can make the resulting subset’s
entropy reach 0. Thus the first rule generation is complete and its rule is repre-
sented by ‘‘if tears = 1 then class = 3’’.

In comparison to the Prism family, this algorithm may reduce significantly the
computational cost when Big Data is being dealt with. In addition, in contrast to
Prism, the IEBRG method deals with clashes (introduced in Sect. 3.1.3) by
assigning a majority class in the clash set to the current rule. This may potentially
reduce the underfiting of rule set thus reducing the number of unclassified
instances although it may increase the number of misclassified instances. On the
other hand, the IEBRG may also have the potential to avoid occurring clashes
better compared with Prism.

3.1.3 Dealing with Clashes

There are two principal ways of dealing with clashes mentioned in [6] as follows:

1. Majority voting: to assign the most common classification of the instances in
the clash set to the current rule.

Table 1 Lens 24 dataset
example

Class label Tears = 1 Tears = 2

Class = 1 0 4
Class = 2 0 5
Class = 3 12 3
Total 12 12

222 H. Liu et al.

2. Discarding: to discard the whole rule currently being generated

In [17], the authors choose ‘majority voting’ as the strategy of dealing with this
problem as the objective of [17] is mainly to validate this method and to find its
potential in improving accuracy and computation efficiency as much as possible.

3.1.4 Dealing with Tie-Breaking on Conditional Entropy and Conflict

The tie-breaking problem on conditional entropy is solved by deciding which
attribute-value pair is to be selected to split the current subset when there are two
or more attribute-value pairs that equally well match the selection condition. In the
IEBRG method, this problem may occur when two or more attribute-value pairs
have the same smallest entropy value. The strategy is the same as the one applied
to Prism by taking the one with the highest total frequency as introduced by
Bramer [6].

The classification conflict problem may occur to modular classification rule
generator such as Prism. Similarly, the IEBRG may also face this problem. The
authors choose the ‘take the first rule that fires’ strategy which is already men-
tioned in Sect. 2.3 because this method may potentially generate the most
important rules first. Consider the example below:

• Rule 1: if x = 1 and y = 1 then class = 1;
• Rule 2: if x = 1 then class = 2;

This seems as if there is a conflict problem but the two rules can be ordered as
rule 1 is more important. In other words, the second rule can be represented in the
following way:

Rule 2: if x = 1 and y 6¼ 1 then class = 2;
This may indicate that after the first rule has been generated, all instances

covered by the rule have been deleted from training set; then the two conditions
‘x = 1’ and ‘y = 1’ cannot be met simultaneously any more. Thus the first rule is
more important than the second one.

3.2 Jmid-Pruning

The authors have recently mentioned in [19] that neither J-pruning nor Jmax-
pruning exploit the J-measure to its full potential and they may lead to underfitting.
In addition, Jmax-pruning is computationally relatively expensive. Therefore, the
authors developed a novel pruning algorithm that avoids underfitting and unnec-
essary rule term inductions while at the same time rules are being pruned for
reducing overfitting [19].

Unified Framework for Construction of Rule Based Classification Systems 223

3.2.1 Essence

The Jmid-pruning is a modified version of the J-measure based pruning algorithm
Jmax-pruning. It not only monitors and records the highest J-value observed so far
but also measures the potentially highest J-value that may be achieved eventually
by making use of the Jmax value highlighted in Sect. 2.2 in comparison to Jmax-
pruning. The basic concept of this algorithm is illustrated in Algorithm 3.

Algorithm 3 Jmid-pruning for Prism algorithms

Rule r = new Rule;
Boolean rule_Incomplete = true;
term_index = 0;
Do While (rule_Incomplete){
Term t = generate new term;
term_index++;
append t to r;
compute J_value of r;
IF(J_value > best_J_Value){

best_J_Value = J_Value;
best_term_index = term_index;

 record current_marjority_class;

compute Jmax_value of r;
IF(best_J_value> Jmax_value){

do not append t to r;
cut r back to rule best_term_index;

invoke clash handling for r;
rule_Incomplete = false;

} ELSE{
append t to r;

}
IF(No more rule terms can be induced){
cut r back to rule best_term_index;
invoke clash handling for r;
rule_Incomplete = false;

}

}

}

3.2.2 Justification

The Jmid-pruning aims to avoid underfitting and unnecessary computational effort
especially when Big Data is used for training. In fact, J-pruning and Jmax-pruning
do not actually make use of Jmax value to measure the potential search space of
gaining benefits.

Let us consider an example [8] using the lense24 dataset. There is a rule
generated as follows:

224 H. Liu et al.

If tears = 2 and astig = 1 and age = 3 and specRx = 1 then class = 3;
After adding the four terms subsequently, the corresponding J and Jmax values

change in the trend as follows:
If tears = 2 then class = 3; (J = 0.210, Jmax = 0.531)
If tears = 2 and astig = 1 then class = 3; (J = 0.161, Jmax = 0.295)
If tears = 2 and astig = 1 and age = 3 then class = 3; (J = 0.004,

Jmax = 0.059)
If tears = 2 and astig = 1 and age = 3 and specRx = 1 then class = 3;

(J = 0.028, Jmax = 0.028)
In this example, all of the three algorithms would provide the same simplified

rule that is: if tears = 2 then class = 3; this is because the highest J-value has been
given after adding the first term (tears = 2). However, the computational effi-
ciency would be different in the three methods. J-pruning would decide to stop the
generation after the second term (astig = 1) is added as the J-value goes down
after the second term (astig = 1) is added. In contrast, Jmax-pruning would stop
when the rule is complete. In other words, the generation would be stopped after
the fourth (last) term is added and then the terms (astig = 1, age = 3 and spec-
Rx = 1) will be removed. In addition, Jmid-pruning would decide to stop the
generation after the third term is added as the value of Jmax (0.295) is still higher
than the J-value (0.210) given after the first term (tears = 2) is added although its
corresponding J-value (0.161) decreases; however, the generation should be
stopped after the third term (age = 3) is added as both J (0.004) and Jmax (0.059)
values are lower than the J-value (0.161) computed after the second term
(astig = 1) is added although the J-value could still increase up to 0.059.

On the basis of the description above, J-pruning would be the most efficient and
Jmid-pruning is more efficient than Jmax-pruning. However, it seems J-pruning
may prune rules too early when the training data is large as mentioned in Sect. 2.2.
For example, one of the rules [9, 10] generated from the Soybean dataset [20] is:

If temp = norm and same-lst-sev-yrs = whole-field and crop-hist = same-lst-
two-yrs then class = frog-eye-leaf-spot;

First term:
If temp = norm then class = frog-eye-leaf-spot; (J = 0.00113, Jmax =

0.02315)
Second term:
If temp = norm and same-lst-sev-yrs = whole-field then class = frog-eye-

leaf-spot; (J = 0.00032, Jmax = 0.01157)
Third term:
If temp = norm and same-lst-sev-yrs = whole-field and crop-hist = same-lst-

two-yrs then class = frog-eye-leaf-spot; (J = 0.00578, Jmax = 0.00578)
In this case, both Jmax-pruning and Jmid-pruning would normally stop the

generation when the rule is complete and take the complete rule: If temp = norm
and same-lst-sev-yrs = whole-field and crop-hist = same-lst-two-yrs then
class = frog-eye-leaf-spot; as the final rule with the highest J-value (0.00578). In

Unified Framework for Construction of Rule Based Classification Systems 225

contrast, J-pruning would stop the generation after the second term (same-lst-sev-
yrs = whole-field) is added and take the rule: If temp = norm then class = frog-
eye-leaf-spot; as the final rule with a lower J-value (0.00113 instead of 0.00578).

The other potential advantage of Jmid-pruning in comparison with Jmax-
pruning is that Jmid-pruning may get more rules not being discarded later when
tie-breaking on J-value happens as mentioned in Sect. 2.2. In this way, Jmid-
pruning is better in avoiding underfitting of rule sets.

3.3 Rule Based Classification Networks

As mentioned in Sect. 2.3, both tree and list representations have their individual
limitations. The authors have recently developed a networked representation of
classification rules called rule based classification networks.

3.3.1 Essence

Let us see a set of rules based on Boolean logic below:

If x1 = 0 and x2 = 0 then class = 0;
If x1 = 0 and x2 = 1 then class = 0;
If x1 = 1 and x2 = 0 then class = 0;
If x1 = 1 and x2 = 1 then class = 1;

The corresponding networked representation is illustrated in Fig. 8. In this
representation, x1 = 1 and x2 = 1 are supposed to be the two inputs respectively
for simulation (prediction). Thus both ‘x1’ and ‘x2’ layers get green node labelled
1 and red node labelled 0 because each node in the layer x1 represents a value of
attribute x1 and so does each node in layer x2. In addition, the two digits labelled
to each of the connections between the nodes in layer x1 and x2 represent the
index of rule and rule term respectively. In other words, the two digits ‘11’ as
illustrated below indicates it is for the first rule and the first term of the rule. It can
be seen from the list of rules above that the first term of the first rule is ‘x1 = 0’.
However, the input value of x1 is 1 so the connection is coloured red as this
condition is not met. In contrast, the connections labelled ‘31’ and ‘41’ respec-
tively are both coloured green as the condition ‘x1 = 1’ is met. The same principle
is also applied to the connections between the nodes in layer ‘x2’ and ‘Rule Index’.
As the two inputs are ‘x1 = 1 and ‘x2 = 1’, the connections ‘31’, ‘41’ and ‘42’
are coloured green and the node labelled 3 is green in the layer ‘Rule Index’ as
well as the output is 1 in the layer ‘Class’.

226 H. Liu et al.

3.3.2 Justification

For Rule Based Classification Networks, simulation process is run by going
through rule terms in divide and conquer search (i.e. only going through those
terms that fire). The total number of terms is used as the input size of data (n) as
same as used in linear list representation and thus the efficiency is O (log (n)). As
can be seen from Fig. 8, it only takes three steps (going through connections ‘31’,
‘41’ and ‘42’) to find the first rule that fires (the rule index is 3). This is because the
input value of x1 is 1 and thus the connections ‘11’ and ‘21’ can be ignored. In the
second layer, it is only concerned with connection ‘42’ as the input value of x2 is 1
and thus ‘the connections ‘12’ and ‘32’ can be ignored. In addition, the connection
‘22’ is ignored as well because the connection ‘21’ is already discarded and thus it
is not worth to go through the connection ‘22’ any more. As the basis of above
descriptions, it indicates that it is not necessary to examine the whole network in
order to find the rules that fire. In practice, it may significantly speed up the
process of simulation when the corresponding rule set is generated by learning
from Big Data.

4 Comparative Validation and Discussion

The authors have recently validated experimentally IEBRG against Prism [17] and
Jmid-pruning against J-pruning and Jmax-pruning [19] in terms of classification
accuracy and computational efficiency. They have also theoretically validated Rule
Based Classification Networks against decision tree and linear list representations
in terms of time complexity. With regards to classification accuracy, the authors
use cross validation and check the overall accuracy, i.e. the proportion of correct
classifications. With regards to computational efficiency in training stage, the
authors check the number of rules and the average number of rule terms in order to
reflect approximately the total number of iterations conducted during training
stage. If a method generates more general and fewer rules, it indicates that the

Fig. 8 Rule based
classification networks

Unified Framework for Construction of Rule Based Classification Systems 227

method needs less number of iterations and thus is more efficient in theory. In
addition, the authors also check the time complexity using BigO notation to
measure the computational efficiency in testing stage. If the complexity is lower, it
indicates that the representation may make the predication on unseen instances
perform more efficiently. For example, linear time is worse than logarithmic time
in computational efficiency.

With regards to IEBRG, the authors conducted experiments on 10 datasets
available from UCI repository [20]; they are Vote, Weather, Contact-lenses,
Lense24, Breast-cancer, Nurse, Car, Lung-cancer, Kr-vs-kp and Iris. The experi-
mental results show that IEBRG algorithm outperforms Prism in both accuracy
and efficiency in most cases. In the classification accuracy, IEBRG performs a bit
worse than Prism in one case (on Vote dataset) only. However, it even slightly
outperforms Prism in three cases (on Nurse, Iris and Kr-vs-kp). In the computa-
tional efficiency, IEBRG generates more general and fewer rules in most cases. In
three cases (on Lung-cancer, Nurse and Car datasets), IEBRG generates more rules
than Prism. However, Prism discarded large number of rules in two of these cases
(on Nurse and Car datasets). Therefore, it still shows Prism is computationally
more expensive than IEBRG as discarded rules also need to conduct computation
for their generation although they are eventually discarded.

With regards to Jmid-pruning, the authors conducted experiments on 10 UCI
datasets namely, Vote, Weather, Contact-lenses, Lense24, Breast-cancer, Car,
Lung-cancer, Iris, Segment and ionosphere. The experimental results show Jmid-
pruning leads PrismTCS to perform a similar level of classification accuracy in
comparison with J-pruning and Jmax-pruning in most cases but outperforms the
two algorithms in some cases. With regards to efficiency, PrismTCS with Jmid-
pruning may generate a rule set with similar level of rule complexity or even fewer
but more general rules in comparison with J-pruning and Jmax-pruning. However,
Jmid-pruning may perform better compared with Jmax-pruning in terms of com-
putational efficiency. It can be seen by looking at the number of backward steps
that Jmid-pruning needs a smaller number of iterations than Jmax-pruning to make
Prism stop generating rules. Therefore, Jmid-pruning seems likely to be compu-
tationally more efficient when training data is very large.

With regards to Rule Based Classification Networks, the authors validated the
representation theoretically using BigO notation. As mentioned above, the network
representation could achieve that simulation process is run in divide and conquer
search and the efficiency is O (log (n)). In contrast, list representation could only
achieve a linear search process for the same purpose and the efficiency is O (n).
For the purpose of predictive modelling, the network representation may con-
tribute as many quicker decisions as possible in prediction stage in expert systems.
The difference to listed rule representation in the efficiency can be significant when
Big Data is used to generate a rule set.

As mentioned above, the authors’ recent research is mainly concerned with
accuracy and efficiency. The veracity is a measure of reliability leading to more
accurate analyses and confident decision making as mentioned in Sect. 1. How-
ever, the accuracy can indicate the uncertainty existed in a model built based on a

228 H. Liu et al.

dataset. In addition, a data set may contain missing values or noise (incorrect
records). Different strategies in dealing with the issues may lead to different
predictive accuracy. In classification area, each algorithm may perform a particular
level of tolerance to the presence of missing values or noise. As the basis of above
descriptions, veracity is subject to data based modelling techniques in the authors’
research. The higher level of predictive accuracy is more likely to introduce the
higher degree to which the data can be trusted. In detail, rule generation method
can provide a level of predictive accuracy and pruning algorithms may help
improve the accuracy.

On the other hand, volume is a measure of data scalability leading to a par-
ticular level of computational efficiency. The data scalability could be reflected by
its dimensionality, average number of attribute values and the number of instances.
In the authors’ research, pruning algorithms may speed up the process of mod-
elling. The proper selection of model representations may speed up the process of
simulation. Besides, the dimensionality issue can be resolved by using feature
selection techniques such as entropy [18] and information gain [6] which are both
based on information theory pre-measuring uncertainty present on data. In other
words, it aims to remove those irrelevant attributes. When a dataset contains a
large number of instances, it is possibly required to take advantage of sampling
methods to choose those most representative instances. However, the authors have
not yet taken feature selection and sampling into use in their current research but
will do so further when large scale data is used.

5 Conclusions

This chapter has summarised the authors’ more recent research in the area of rule
based classification including generation, simplification and representation of
classification rules. The authors have also introduced a unified framework for the
construction of rule based classification systems by merging the three operations
mentioned above systematically. The potential contribution to effective and effi-
cient processing of Big Data has been discussed in the terms of volume and
veracity. However, those validations are made theoretically or experimentally on
some relatively small data in classification accuracy and computational efficiency.
Therefore, the authors will further extend the validations onto large scale datasets
and evaluate the novel methods more empirically in the concern of Big Data. They
will also incorporate ensemble learning concepts and feature selection techniques
with respects to the improvement of accuracy and efficiency in order to overcome
the limitations that arise when Big Data is present and to make the approach more
computationally intelligent.

Unified Framework for Construction of Rule Based Classification Systems 229

References

1. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufman, Los Altos (1993)
2. Michalski, R.S.: On the quasi-minimal solution of the general covering problem. In:

Proceedings of the Fifth International Symposium on Information Processing, Bled,
Yugoslavia, pp. 125–128 (1969)

3. Cendrowska, J.: PRISM: an algorithm for inducing modular rules. Int. J. Man Mach. Stud. 27,
349–370 (1987)

4. Bramer, M.A.: Automatic Induction of Classification Rules from Examples Using N-Prism,
Research and Development in Intelligent Systems, vol. XVI, pp. 99–121. Springer,
Cambridge (2000)

5. Bramer, M.A.: Using J-pruning to reduce overfitting of classification rules in noisy domains.
In: Proceedings of 13th International Conference on Database and Expert Systems
Applications—DEXA 2002, Aix-en-Provence, France, 2–6 Sept 2002

6. Bramer, M.A.: Principles of Data Mining. Springer, London (2007)
7. Smyth, P., Goodman, R.M.: Rule induction using information theory. In: Piatetsky-Shapiro,

G., Frawley, W.J. (eds.) Knowledge Discovery in Databases, pp. 159–176. AAAI Press,
California (1991)

8. Bramer, M.A.: Using J-pruning to reduce overfitting in classification trees. In: Research and
Development in Intelligent Systems, vol. XVIII, pp. 25–38. Springer, Berlin (2002)

9. Stahl, F., Bramer, M.A.: Jmax-pruning: a facility for the information theoretic pruning of
modular classification rules. Knowl. Based Syst. 29, 12–19 (2012)

10. Stahl, F., Bramer, M.A.: Induction of modular classification rules: using Jmax-pruning. In:
Thirtieth SGAI International Conference on Innovative Techniques and Applications of
Artificial Intelligence, Cambridge, 14–16 Dec 2011

11. What is big data? http://www.sas.com/big-data/. 7 Dec 2013
12. Master data management for big data. http://www-01.ibm.com/software/data/infosphere/

mdm-big-data/. 7 Dec 2013
13. Bramer, M.A.: Inducer: a public domain workbench for data mining. Int. J. Syst. Sci. 36(14),

909–919 (2005)
14. Stahl, F., Bramer, M.A.: Computationally efficient induction of classification rules with the

PMCRI and J-PMCRI frameworks. Knowl.-Based Syst. 35, 49–63 (2012)
15. Bramer, M.A.: An information-theoretic approach to the pre-pruning of classification rules.

In: Musen, M., Neumann, B., Studer, R. (eds.) Intelligent Information Processing,
pp. 201–212. Kluwer, Dordrecht (2002)

16. Deng, X.: A covering-based algorithm for classification: PRISM. CS831: Knowledge
discover in databases (2012)

17. Liu, H., Gegov, A.: Induction of modular classification rules by Information Entropy Based
Rule Generation. In: V. Sgurev, R. Yager, J. Kacprzyk (Eds.) Innovative issues in intelligent
systems. Springer, Berlin (in print)

18. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423
(1948). Fonn

19. Liu, H., Gegov, A., Stahl, F.: J-measure based hybrid pruning for complexity reduction in
classification rules. WSEAS Trans. Syst. 12(9), 433–446 (2013)

20. Bache, K., Lichman, M.: UCI Machine learning repository. http://archive.ics.uci.edu/ml.
Irvine, CA: University of California, School of Information and Computer Science, 2013

230 H. Liu et al.

http://www.sas.com/big-data/
http://www-01.ibm.com/software/data/infosphere/mdm-big-data/
http://www-01.ibm.com/software/data/infosphere/mdm-big-data/
http://archive.ics.uci.edu/ml

	10 Unified Framework for Construction of Rule Based Classification Systems
	Abstract
	1…Introduction
	2…Related Work
	2.1 Prism Method
	2.2 J-Pruning and Jmax-Pruning
	2.3 Decision Tree and Linear List Representation

	3…Novel Methods and Techniques
	3.1 Information Entropy Based Rule Generation
	3.1.1 Essence
	3.1.2 Justification
	3.1.3 Dealing with Clashes
	3.1.4 Dealing with Tie-Breaking on Conditional Entropy and Conflict

	3.2 Jmid-Pruning
	3.2.1 Essence
	3.2.2 Justification

	3.3 Rule Based Classification Networks
	3.3.1 Essence
	3.3.2 Justification

	4…Comparative Validation and Discussion
	5…Conclusions
	References

