
Chapter 6
Stability Criteria for Delay Differential
Equations

Beáta Krasznai

Abstract It is shown that some recent stability criteria for delay differential
equations are consequences of a well-known comparison principle for delay
differential inequalities. Our approach gives not only a unified proof, but it also
yields stronger results.
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6.1 Introduction

Recently, there has been a great interest in stability criteria for delay differential
equations arising in applications, such as compartmental systems and neural
networks. Our aim in this paper is to show that some recent stability criteria
can easily be obtained from a comparison principle for differential inequalities
whose right-hand side satisfies the quasimonotone condition. We emphasize that
our approach gives not only a unified proof of some recent stability criteria, but,
moreover, it yields stronger results.

Let R be the set of real numbers. For a positive integer n; Rn and R
n�n denote

the n-dimensional space of real column vectors and the space of n�nmatrices with
real entries, respectively. Let k � k denote any norm on R

n: The induced norm and
the logarithmic norm of a matrix A 2 R

n�n is defined by

B. Krasznai (�)
Department of Mathematics, University of Pannonia, Veszprém, Hungary
e-mail: krasznai@almos.uni-pannon.hu

F. Hartung and M. Pituk (eds.), Recent Advances in Delay Differential
and Difference Equations, Springer Proceedings in Mathematics & Statistics 94,
DOI 10.1007/978-3-319-08251-6__6, © Springer International Publishing Switzerland 2014

161

mailto:krasznai@almos.uni-pannon.hu


162 B. Krasznai

kAk D sup
0¤x2Rn

kAxk
kxk and �.A/ D lim

ı!0C
kI C ıAk � 1

ı
;

respectively, where I denotes the n � n identity matrix.
A matrix A D .aij /1�i;j�n 2 R

n�n is said to be nonnegative if aij � 0 for all
i; j D 1; : : : ; n and it is called essentially nonnegative if aij � 0 for all i ¤ j;

i; j D 1; : : : ; n:

Let x D .x1; x2; : : : ; xn/
T ; y D .y1; y2; : : : ; yn/

T 2 R
n: We write x � y

.x < y/ if xi � yi .xi < yi / for i D 1; : : : ; n: Let RnC be the cone of nonnegative
vectors in R

n; that is,

R
nC D ˚

x D .x1; x2; : : : ; xn/
T 2 R

n j xi � 0 for all i D 1; : : : ; n
�
:

Haddad and Chellaboina [3] studied the nonnegative solutions of the system

y0.t/ D Ay.t/C F.y.t � �//; (6.1)

where � > 0;A 2 R
n�n; F W R

nC ! R
nC is locally Lipschitz continuous and

F.0/ D 0:

They proved the following stability result (see [3, Theorem 3.2]).

Theorem 6.1. Suppose that A 2 R
n�n is essentially nonnegative and for some

� 2 .0;1/,

F.y/ � �y; y 2 R
nC: (6.2)

Assume also that there exist p; q 2 R
n such that p; q > 0 and

.AC �I /T p C q D 0; (6.3)

where T denotes the transpose. Then the zero equilibrium of (6.1) is asymptotically
stable with respect to nonnegative initial data.

S. Mohamad and K. Gopalsamy [5] studied the system of delay differential
equations

z0
i .t / D �˛i zi .t /C

nX

jD1
ˇij fj .zj .t//C

nX

jD1
�ij fj .zj .t � �ij //C Ii ; i D 1; : : : ; n;

(6.4)
where fi W R ! R, ˛i > 0; ˇij ; �ij ; Ii 2 R, and �ij � 0 for i; j D 1; : : : ; n:

By the method of Lyapunov functions they proved the following theorem (see [5,
Theorem 2.1]).
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Theorem 6.2. Suppose that there exist constants Ki ; ki 2 .0;1/, i D 1; : : : ; n,
such that the following conditions hold:

jfi .x/j � Ki ; x 2 R; i D 1; : : : ; n; (6.5)

jfi .x/ � fi .y/j � ki jx � yj; x; y 2 R; i D 1; : : : ; n; (6.6)

˛i > ki
Pn

jD1.jˇij j C j�ij j/; i D 1; : : : ; n: (6.7)

Then (6.4) has a unique equilibrium which is globally exponentially stable.

Consider the system of delay differential equations

z0.t/ D Az.t/C Bg.z.t � �//C J; (6.8)

where � > 0; A; B 2 R
n�n; g W R

n ! R
n is a nonlinear continuous function

and J 2 R
n. L. Idels and M. Kipnis [4] proved the following theorem (see [4,

Corollary 3.1]).

Theorem 6.3. Let z? be an equilibrium of (6.8). Suppose that g is globally Lipschitz
continuous with Lipschitz constant k > 0 satisfying

kkBk < ��.A/; (6.9)

where �.A/ is the logarithmic norm of A. Then z? is a globally attractive
equilibrium of (6.8).

In this paper, we will unify and improve all the three stability results. The
proofs will be based on a known comparison theorem for quasimonotone systems
formulated in Sect. 6.2. The new stability criteria are presented and proved in
Sect. 6.3.

6.2 Summary of Known Results

Given r � 0; let C D C.Œ�r; 0�IRn/ denote the Banach space of continuous
functions mapping the interval Œ�r; 0� into R

n with the supremum norm,

k'k WD sup
�r���0

k'.�/k; ' 2 C:

Let �; 2 C: We write � �  and � <  if the inequalities hold at each point of
Œ�r; 0�.

Consider the autonomous functional equation

x0.t/ D f .xt /; (6.10)
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where f W ˝ ! R
n; ˝ is an open subset of C , and xt 2 C is defined by

xt .�/ D x.t C �/; �r � � � 0:

We will assume that f is Lipschitz continuous on any compact subset of ˝. This
assumption guarantees that for every ' 2 ˝, there exists a unique noncontinuable
solution x of (6.10) with initial value

x0 D ': (6.11)

In the sequel, the unique solution of (6.10) and (6.11) will be denoted by x.t I'/.
For each i D 1; : : : ; n; let fi denote the i�th coordinate function of f so that

f .'/ D .f1.'/; f2.'/; : : : ; fn.'//
T ; ' 2 ˝:

We say that f satisfies the quasimonotone condition on ˝ if

�; 2 ˝; � �  , and �i .0/ D  i.0/ for some i; implying fi .�/ � fi . /:

The quasimonotone condition is the analogue of the well-known Kamke condition
for ordinary differential equations.

Our proofs will be based on the following comparison principle essentially due
to Ohta [6, Theorem 3].

Proposition 6.1. Let ˝ be an open subset of C . Suppose that f W ˝ ! R
n is

Lipschitz continuous on compact subsets of ˝and f satisfies the quasimonotone
condition on ˝. Let 0 < b � 1. Suppose that y W Œ�r; b/ ! R

n is a continuous
function satisfying the differential inequality

dC

dt
y.t/ � f .yt /; t 2 Œ0; b/; (6.12)

where
dC

dt
denotes the right-hand derivative. Assume also

y0 � ' for some ' 2 C: (6.13)

If x.t; '/ is the unique solution of (6.10) and (6.11), then

y.t/ � x.t; '/ (6.14)

for all t 2 Œ�r; b/ for which x.t; '/ is defined.
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We will apply the above comparison theorem to the linear system of differential
inequalities

dC

dt
yi .t/ �

nX

jD1
aij yj .t/C

nX

jD1
bij yj .t � �ij /; i D 1; : : : ; n; (6.15)

where aij ; bij 2 R and �ij � 0; i; j D 1; : : : ; n.
System (6.15) is a special case of (6.12) when r D maxi;jD1;:::;n �ij and f D

.f1; f2; : : : ; fn/
T is defined by

fi .�/ D
nX

jD1
aij �j .0/C

nX

jD1
bij �j .��ij / (6.16)

for � D .�1; �2; : : : ; �n/
T 2 C.Œ�r; 0�IRn/ and i D 1; 2; : : : ; n. In this case

Eq. (6.10) has the form

x0
i .t / D

nX

jD1
aij xj .t/C

nX

jD1
bij xj .t � �ij /; i D 1; 2; : : : ; n: (6.17)

It is known [7] that if f D .f1; f2; : : : ; fn/
T is given by (6.16), then f satisfies the

quasimonotone condition on ˝ if and only if

A D .aij /i;jD1;2;:::;n is essentially nonnegative (6.18)

and

B D .bij /i;jD1;2;:::;n is nonnegative. (6.19)

According to a remarkable result due to Smith [7], for linear delay differential
systems satisfying the quasimonotone condition, the exponential stability of the
zero solution is equivalent to the exponential stability of the associated system of
ordinary differential equations which is obtained by “ignoring the delay.” More
precisely, we have the following result.

Proposition 6.2. Suppose that (6.18) and (6.19) hold so that the right-hand side
of (6.17) satisfies the quasimonotone condition on C .The zero solution of (6.17)
is exponentially stable if and only if the zero solution of the ordinary differential
equation

x0 D .AC B/x (6.20)

is exponentially stable.
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Note that if (6.18) and (6.19) hold, then the coefficient matrix M D A C B of
(6.20) is essentially nonnegative. It is known [1] that in this case the exponential
stability of the zero solution of (6.20) is equivalent to the explicit condition

.�1/j det

0

B
@

m11 � � � m1j

:::

mj1 mjj

1

C
A > 0; j D 1; : : : ; n; (6.21)

where

mij D aij C bij ; i; j D 1; : : : ; n:

6.3 Stability Criteria

Theorem 6.4. Under the hypotheses of Theorem 6.1, the zero solution of (6.1) is
not only asymptotically stable, but even globally exponentially stable with respect
to nonnegative initial data.

Proof. For ' 2 C; ' � 0; let y.t/ D y.'; t/ be the unique solution of (6.1) with
initial value y0 D '. As shown in [3], y.t/ � 0 for all t � 0. This and (6.2) imply
for t � 0,

y0.t/ D Ay.t/C F.y.t � �// � Ay.t/C �y.t � �/:

Therefore y.t/ is a solution of the system of inequalities (6.15) where

bij D
�
�; if i D j;

0; if i ¤ j;
i D 1; : : : ; n:

Since A is essentially nonnegative and B D �I is nonnegative, the quasimonotone
condition holds for the right-hand side of (6.15). By the application of Proposi-
tion 6.1, we have

0 � y.t; '/ � x.t; '/; t � �r; (6.22)

where x.t; '/ is the unique solution of system (6.17) with initial value ' at zero: It
follows from [3, Theorem 3.1] that under condition (6.3) the zero solution of (6.17)
is asymptotically and hence exponentially stable. Therefore, there exist M � 1 and
˛ > 0 such that

kx.t; '/k � Mk'ke�˛t ; t � 0: (6.23)
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Since the definition of the exponential stability is independent of the norm used in
R
n; we may restrict ourselves to the `1-norm. Then (6.22) and (6.23) imply

ky.t; '/k � kx.t; '/k � Mk'ke�˛t ; t � 0:

This completes the proof. ut
Theorem 6.5. Suppose that all hypotheses of Theorem 6.2 hold except for (6.7)
which is replaced with the condition

.�1/j det

0

B
@

m11 � � � m1j

:::

mj1 mjj

1

C
A > 0; j D 1; 2; : : : ; n; (6.24)

where

mij D �˛iıij C kj .jˇij j C j�ij j/; i; j D 1; 2; : : : ; n; (6.25)

and ıij is the Kronecker symbol. Then Eq. (6.4) has a unique equilibrium which is
globally exponentially stable.

Remark 6.1. Condition (6.7) is equivalent to saying that the logarithmic norm of
M D .mij /1�i;j�n given by (6.25) induced by the l1-norm on R

n is negative (see
[2, p. 41]). While this is only a sufficient condition for the stability of matrix M
(see [2, p. 59]), condition (6.24) is not only sufficient, but it is also necessary for the
stability of M: Thus, condition (6.24) is weaker than (6.7).

Proof. The existence of an equilibrium z� D .z�
1 ; : : : ; z

�
n/
T of system (6.4) can be

proved in the same manner as in the proof of [5, Theorem 2.1]. For ' 2 C , let
z.t/ D z.t; '/ be the unique solution of (6.4) with initial value z0 D '. As shown in
[5], we have for t > 0 and i D 1; : : : ; n,

dC

dt
jzi .t / � z�

i j � �˛i jzi .t / � z�
i j C

nX

jD1
jˇij jkj jzj .t/ � z�

j j C

C
nX

jD1
j�ij jkj jzj .t � �ij / � z�

j j; (6.26)

If we let yi .t/ WD jzi .t / � z�
i j, then (6.26) can be written as

dC

dt
yi .t/ � �˛iyi .t/C

nX

jD1
jˇij jkj yj .t/C

nX

jD1
j�ij jkj yj .t � �ij /: (6.27)
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System (6.27) is a special case of (6.15) with

aij D �˛iıij C kj jˇij j; i; j D 1; 2; : : : ; n; (6.28)

and

bij D kj j�ij j; i; j D 1; 2; : : : ; n: (6.29)

Clearly, conditions (6.18) and (6.19) are satisfied. Therefore Proposition 6.1 applies
and we conclude that

0 � y.t/ � x.t;  /; t � 0; (6.30)

where y.t/ D .y1.t/; : : : ; yn.t//
T ; and x.t;  / is the unique solution of the system

x0
i .t / D �˛ixi .t/C

nX

jD1
jˇij jkj xj .t/C

nX

jD1
j�ij jkj xj .t��ij /; i D 1; 2; : : : ; n;

(6.31)
with the initial data

 .�/ D j'.�/ � z�j; � 2 Œ�r; 0�: (6.32)

As noted in Sect. 6.2, condition (6.24) implies that the zero solution of (6.31) is
exponentially stable. Therefore,

kx.t;  /k � Mk ke�˛t ; t � 0

for some M � 1 and ˛ > 0. Using the `1-norm in R
n again, the last inequality

together with (6.30) implies for t � 0,

kz.t; '/ � z�k D ky.t/k � kx.t;  /k � Mk ke�˛t D Mk' � z�ke�˛t :

This proves the global exponential stability of the equilibrium z�: ut
Theorem 6.6. Under the assumptions of Theorem 6.3, the equilibrium z? of (6.8)
is globally exponentially stable.

Proof. z.t/ D z.t; '/ be the unique solution of (6.8) with initial value z0 D ' for
' 2 C.Œ��; 0�;Rn/. Define

y.t/ D z.t/ � z�; t � ��:

From (6.8) we get for t � 0,

y0.t/ D Ay.t/C F.y.t � �//; y 2 R
n:
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where

F.y/ D BŒg.y C z�/ � g.z�/�; y 2 R
n:

Using the fact that g is globally Lipschitz continuous with Lipschitz constant k;
we get

kF.y/k � kBkkkyk; y 2 R
n: (6.33)

It is known (see [2, Chap. I]) that if y is an R
n�valued function which has a right-

hand derivative u for t D t0, then ky.t/k has a right-hand derivative for t D t0
which is equal to

lim
h!0C

ky.t0/C huk � ky.t0/k
h

:

Hence

dC

dt
ky.t/k D lim

h!0C

ky.t/C hy0.t/k � ky.t/k
h

; t � 0: (6.34)

For t � 0; we have

ky.t/C hy0.t/k � ky.t/k D k.I C hA/y.t/C hF.y.t � �//k � ky.t/k �

� kI C hAkky.t/k C hkF.y.t � �//k � ky.t/k D

D .kI C hAk � 1/ky.t/k C hkF.y.t � �//k:

From this, using (6.34), we find that

dC

dt
ky.t/k � �.A/ky.t/k C kF.y.t � �//k; t � 0:

This, combined with (6.33), implies for t � 0;

dC

dt
ky.t/k � �.A/ky.t/k C kkBkky.t � �/k; (6.35)

and

ky.t/k D k'.t/ � z�k; t 2 Œ��; 0�:
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Let x.t/ D x.t; '/ be the unique solution of the linear scalar differential equation

x0.t/ D �.A/x.t/C kkBkx.t � �/; (6.36)

with initial value

x.t/ D k'.t/ � z�k; t 2 Œ��; 0�:

By Proposition 6.1, we have

ky.t/k � x.t/; t � 0: (6.37)

In particular, x.t/ is nonnegative for t � 0: Clearly, (6.36) is a special case of (6.17)
with n D 1. Obviously, conditions (6.18) and (6.19) hold. Since condition (6.9)
implies the exponential stability of the zero solution of the ordinary differential
equation

x0 D .�.A/C kkBk/x;

by Proposition 6.2, the zero solution of (6.36) is exponentially stable. Therefore,
there exist M � 1 and ˛ > 0 such that for t � 0 and ' 2 C;

kx.t/k � Mk' � z�ke�˛t :

This and (6.37) imply that for t � 0;

kz.t/ � z�k D ky.t/k � x.t/ � Mk' � z�ke�˛t :

The proof is complete. ut
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