Chapter 6
Stability Criteria for Delay Differential
Equations

Beata Krasznai

Abstract It is shown that some recent stability criteria for delay differential
equations are consequences of a well-known comparison principle for delay
differential inequalities. Our approach gives not only a unified proof, but it also
yields stronger results.

Keywords Delay differential equation e Stability criteria ¢ Comparison
principle * Quasimonotone

6.1 Introduction

Recently, there has been a great interest in stability criteria for delay differential
equations arising in applications, such as compartmental systems and neural
networks. Our aim in this paper is to show that some recent stability criteria
can easily be obtained from a comparison principle for differential inequalities
whose right-hand side satisfies the quasimonotone condition. We emphasize that
our approach gives not only a unified proof of some recent stability criteria, but,
moreover, it yields stronger results.

Let R be the set of real numbers. For a positive integer n, R” and R"*" denote
the n-dimensional space of real column vectors and the space of n X n matrices with
real entries, respectively. Let || - || denote any norm on R". The induced norm and
the logarithmic norm of a matrix A € R"*" is defined by

B. Krasznai (<)
Department of Mathematics, University of Pannonia, Veszprém, Hungary
e-mail: krasznai @almos.uni-pannon.hu

F. Hartung and M. Pituk (eds.), Recent Advances in Delay Differential 161
and Difference Equations, Springer Proceedings in Mathematics & Statistics 94,
DOI 10.1007/978-3-319-08251-6_6, © Springer International Publishing Switzerland 2014


mailto:krasznai@almos.uni-pannon.hu

162 B. Krasznai

A I+64] -1
|A|l = sup M and wu(A) = lim w,
o#xerr x|l §—0+ )

respectively, where I denotes the n x n identity matrix.
A matrix A = (aij)1<i,j<n € R™" is said to be nonnegative if a;; > 0 for all

i,j = 1,...,n and it is called essentially nonnegative it a;; > 0 for all i # j,
i,j=1,...,n.

Let x = (xl,xz,...,xn)T,y = (yl,yz,...,yn)T € R". We write x < y
(x <y)ifx; < yi (x; < y;)fori =1,...,n. Let R’ be the cone of nonnegative

vectors in R”, that is,
Ry ={x=(x;,x2,....x,)" €R"|x; >0 forall i =1,...,n}.
Haddad and Chellaboina [3] studied the nonnegative solutions of the system

Y1) =Ay(t) + F(y(t — 1)), (6.1)

where 7 > 0,4 € R, F : R, — R/, is locally Lipschitz continuous and
F(0)=0.
They proved the following stability result (see [3, Theorem 3.2]).

Theorem 6.1. Suppose that A € R"™" is essentially nonnegative and for some
y € (0,00),
F(y)=yy. yeRL. (6.2)
Assume also that there exist p,q € R" such that p,q > 0 and
A+yD'p+q=0, (6.3)
where T denotes the transpose. Then the zero equilibrium of (6.1) is asymptotically

stable with respect to nonnegative initial data.

S. Mohamad and K. Gopalsamy [5] studied the system of delay differential
equations

) =—aiz )+ Y By fi;O)+ Y vij fiG =)+ L i=1....n,
j=1 j=1
(6.4)

where f; 1R —>R,a; >0,8;,y;;.1; e R,andr;; > 0fori,j =1,...,n.

By the method of Lyapunov functions they proved the following theorem (see [5,
Theorem 2.1]).
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Theorem 6.2. Suppose that there exist constants K;, k; € (0,00),i = 1,...,n,
such that the following conditions hold:

i) <K;, xeR, i=1,...,n, (6.5)
i) = i <kilx—yl, x,yeR, i=1,...,n, (6.6)
ar > ki 3 (Bl + v, i=1.. 0. (6.7)

Then (6.4) has a unique equilibrium which is globally exponentially stable.

Consider the system of delay differential equations

7(t) = Az(t) + Bg(z(t — 1)) + J, (6.8)

where t > 0, A, B € R, g : R" — R” is a nonlinear continuous function
and J € R”". L. Idels and M. Kipnis [4] proved the following theorem (see [4,
Corollary 3.1]).

Theorem 6.3. Let 7* be an equilibrium of (6.8). Suppose that g is globally Lipschitz
continuous with Lipschitz constant k > 0 satisfying

kI[B| < —p(A), (6.9)
where w(A) is the logarithmic norm of A. Then z* is a globally attractive
equilibrium of (6.8).

In this paper, we will unify and improve all the three stability results. The
proofs will be based on a known comparison theorem for quasimonotone systems
formulated in Sect. 6.2. The new stability criteria are presented and proved in
Sect. 6.3.

6.2 Summary of Known Results

Given r > 0, let C = C([—r,0];R") denote the Banach space of continuous
functions mapping the interval [—r, 0] into R” with the supremum norm,

el := sup [lp@)].  ¢ecC.

—r<6<0
Let ¢,y € C. We write ¢ < ¢ and ¢ <  if the inequalities hold at each point of

[—r,0].
Consider the autonomous functional equation

x'(1) = f(x). (6.10)



164 B. Krasznai

where f : 2 — R", 2 is an open subset of C, and x; € C is defined by
x(0) =x(t +0), —-r<6<0.

We will assume that f is Lipschitz continuous on any compact subset of §2. This
assumption guarantees that for every ¢ € 2, there exists a unique noncontinuable
solution x of (6.10) with initial value

X0 = ¢. 6.11)

In the sequel, the unique solution of (6.10) and (6.11) will be denoted by x (¢; ¢).
Foreachi = 1,...,n, let f; denote the i —th coordinate function of f so that

(@)= (/i@ L@, @), pef.
We say that f satisfies the quasimonotone condition on 2 if
¢, € 2, ¢ <y, and ¢; (0) = ¥;(0) for some i, implying f;(¢) < fi (V).

The quasimonotone condition is the analogue of the well-known Kamke condition
for ordinary differential equations.

Our proofs will be based on the following comparison principle essentially due
to Ohta [6, Theorem 3].

Proposition 6.1. Let §2 be an open subset of C. Suppose that f : 2 — R" is
Lipschitz continuous on compact subsets of 2and f satisfies the quasimonotone
condition on 2. Let 0 < b < oo. Suppose that y : [—r,b) — R" is a continuous
function satisfying the differential inequality

d+
Ey(t) < f()., tel0,b), (6.12)

+
where T denotes the right-hand derivative. Assume also

Vo< ¢ for some ¢ € C. (6.13)
If x (¢, @) is the unique solution of (6.10) and (6.11), then

y(t) = x(t,9) (6.14)

forallt € [—r,b) for which x(t, @) is defined.
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We will apply the above comparison theorem to the linear system of differential
inequalities

d+ n n '
in(t)5Zaifyf(t)—i_zbifyf(t_f’f)’ i=1,...,n, (6.15)
Jj=1

j=1
Whereaij, bl'j € R and Tij = 0, i,j = 1,...,n.
System (6.15) is a special case of (6.12) when r = max; j=_ , 7;j and f =
(fi, for ..., f)T is defined by
fi(@) = aijd;(0) + Y bij;(—7;) (6.16)

j=1 j=l1

for ¢ = (¢p1.¢2.....¢,)7 € C([-r,0]:R") and i = 1,2,...,n. In this case
Eq. (6.10) has the form

.X’{(l‘)=Zdinj(t)+Zbinj(t—Tij), I = 1,2,...,7’[. (617)

Jj=1 Jj=1

It is known [7] that if = (fi, f»,..., f,)T is given by (6.16), then f satisfies the
quasimonotone condition on £2 if and only if

A = (ajj)i j=12,..n is essentially nonnegative (6.18)
and
B = (bij)i j=12...n is nonnegative. (6.19)

According to a remarkable result due to Smith [7], for linear delay differential
systems satisfying the quasimonotone condition, the exponential stability of the
zero solution is equivalent to the exponential stability of the associated system of
ordinary differential equations which is obtained by “ignoring the delay.” More
precisely, we have the following result.

Proposition 6.2. Suppose that (6.18) and (6.19) hold so that the right-hand side
of (6.17) satisfies the quasimonotone condition on C.The zero solution of (6.17)
is exponentially stable if and only if the zero solution of the ordinary differential
equation

x'=(A+ B)x (6.20)

is exponentially stable.
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Note that if (6.18) and (6.19) hold, then the coefficient matrix M = A + B of
(6.20) is essentially nonnegative. It is known [1] that in this case the exponential
stability of the zero solution of (6.20) is equivalent to the explicit condition

miyy - My
(—1)/ det| : > 0, j=1,...,n, (6.21)

m i mgj
where

m,-j =aij+bij, i,j:l,...,n.

6.3 Stability Criteria

Theorem 6.4. Under the hypotheses of Theorem 6.1, the zero solution of (6.1) is
not only asymptotically stable, but even globally exponentially stable with respect
to nonnegative initial data.

Proof. Forp € C, ¢ > 0,1let y(t) = y(¢,t) be the unique solution of (6.1) with
initial value yp = ¢. As shown in [3], y(¢) > 0 for all # > 0. This and (6.2) imply
fort >0,

V(1) = Ay(1) + F(y(t — 1)) < Ay (1) + yy(t — 7).

Therefore y () is a solution of the system of inequalities (6.15) where
b=V ifi = j,

Yoo, ifi #

Since A is essentially nonnegative and B = y[ is nonnegative, the quasimonotone

condition holds for the right-hand side of (6.15). By the application of Proposi-
tion 6.1, we have

0<y(t,¢) <x(9), t=>-r, (6.22)

where x (¢, ¢) is the unique solution of system (6.17) with initial value ¢ at zero. It
follows from [3, Theorem 3.1] that under condition (6.3) the zero solution of (6.17)
is asymptotically and hence exponentially stable. Therefore, there exist M > 1 and
o > 0 such that

[x@ o)l < Mele™, t>0. (6.23)
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Since the definition of the exponential stability is independent of the norm used in
R”, we may restrict ourselves to the £;-norm. Then (6.22) and (6.23) imply

Iy o)ll < lIx@t. o)l < Mlgle™.,  t=0.

This completes the proof. O

Theorem 6.5. Suppose that all hypotheses of Theorem 6.2 hold except for (6.7)
which is replaced with the condition

myy - my;
(=1)/ det| : > 0, j=12...,n, (6.24)
mj o mjj
where
mi; = —0;8;; +k;(|Bij| + 1yij 1), i,j=12,....n, (6.25)

and §;j is the Kronecker symbol. Then Eq. (6.4) has a unique equilibrium which is
globally exponentially stable.

Remark 6.1. Condition (6.7) is equivalent to saying that the logarithmic norm of
M = (m;j)1<i j<n given by (6.25) induced by the /.-norm on R” is negative (see
[2, p. 41]). While this is only a sufficient condition for the stability of matrix M
(see [2, p. 59]), condition (6.24) is not only sufficient, but it is also necessary for the
stability of M. Thus, condition (6.24) is weaker than (6.7).

Proof. The existence of an equilibrium z* = (z},...,z")T of system (6.4) can be
proved in the same manner as in the proof of [5, Theorem 2.1]. For ¢ € C, let
z(t) = z(t, ) be the unique solution of (6.4) with initial value zo = ¢. As shown in
[5], we have fort > 0Oandi =1,...,n,

d+ * . *
16O =21 = —aila @ =g 1+ Y By lkjle; () = 25| +
j=1

n
+ D lyiglkslz; (¢ =) = 251, (6.26)
=1
If we let y; (t) := |z; (¢) — z'|, then (6.26) can be written as

d+ n n
ayi(t) < —oyi(t) + Z |Bijlk;jy;(t) + Z yijlkjy; (@ —Tij). (6.27)

j=1 Jj=1
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System (6.27) is a special case of (6.15) with
aijj = —; 8 + kjlBijl. i,j=12,....n, (6.28)
and
by =kjlyyl,  i,j=12,....n. (6.29)

Clearly, conditions (6.18) and (6.19) are satisfied. Therefore Proposition 6.1 applies
and we conclude that

0<y@) =x(,v), t >0, (6.30)
where y(¢) = (y1(2), ..., y.(*))T, and x (¢, ) is the unique solution of the system
n n
x/,-(t) = —aixi(t)+z |,3ij|ij]'([)+z |Vij|ijj([_fij)a i = 1,2, R (8
j=1 j=I

(6.31)
with the initial data

v (0) = |p0) —z¥|. 0 € [-r,0]. (6.32)

As noted in Sect. 6.2, condition (6.24) implies that the zero solution of (6.31) is
exponentially stable. Therefore,

x(@, ¥)| < M|ylle™, t>0

for some M > 1 and @ > 0. Using the £;-norm in R” again, the last inequality
together with (6.30) implies for ¢ > 0,

Izt @) =" =yl = Ix@. )l < Mlylle™ = Mo —*e™™.

This proves the global exponential stability of the equilibrium z*. O

Theorem 6.6. Under the assumptions of Theorem 6.3, the equilibrium z* of (6.8)
is globally exponentially stable.

Proof. z(t) = z(t, ¢) be the unique solution of (6.8) with initial value zo = ¢ for
¢ € C([-t,0],R"). Define

yit)y=z20t)-z", t>-t
From (6.8) we get for t > 0,

y'(1) = Ay (1) + F(y(r — 1)), y €R".
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where

F(y) = Blg(y +z%) — g(@")]. y e R".

Using the fact that g is globally Lipschitz continuous with Lipschitz constant k,
we get

IFWI = IBllklyll,  yeR" (6.33)

It is known (see [2, Chap. I]) that if y is an R” —valued function which has a right-
hand derivative u for t = ty, then ||y(¢)| has a right-hand derivative for t = £
which is equal to

I @0) + hul = Iy

T
h—lf(?Jr h
Hence
d+ )+ hy' @) — ||y
T yol = tim y(@) + hy (O] IIy()II’ ‘>0, 634)
dr h—0t h

Fort > 0, we have

ly@) +hy' Ol = lyOll = I + hA)y @) + hF(y =)l = yOl <
= I +hA[llyOl + I FGE =)= llyOl =
= (1 +hA[ = DIyOll + Al F(y(r = ).

From this, using (6.34), we find that

d+
d—tlly(t)II =pu@DlyOl+IIFy@E =l 1=0.

This, combined with (6.33), implies for ¢ > 0,

d+
Elly(t)ll < pAlyOI + kI Bllly@E — o, (6.35)
and

lyOl = ll@) —2*ll. ¢ €[-7.0].
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Let x(¢t) = x (¢, ¢) be the unique solution of the linear scalar differential equation

xX'(t) = p(A)x (@) + k|| Bllx(t — ), (6.36)
with initial value

x(t) = lle@®) ="t €[-7.0]
By Proposition 6.1, we have
lyOl < x@), =0 (6.37)

In particular, x (¢) is nonnegative for t > 0. Clearly, (6.36) is a special case of (6.17)
with n = 1. Obviously, conditions (6.18) and (6.19) hold. Since condition (6.9)
implies the exponential stability of the zero solution of the ordinary differential
equation

x' = (u(A) + k| Bl)x,

by Proposition 6.2, the zero solution of (6.36) is exponentially stable. Therefore,
there exist M > 1 and @ > O such that for > Oand ¢ € C,

lx@®l < Ml —2*[le™".
This and (6.37) imply that for > 0,
lz@@) = 2"l = [yl < x(t) < Mg —2"e™".
The proof is complete. O
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