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Abstract. In many crowd-based applications, the interaction with per-
formers is decomposed in several tasks that, collectively, produce the
desired results. Tasks interactions give rise to arbitrarily complex work-
flows. In this paper we propose methods and tools for designing crowd-
based workflows as interacting tasks. We describe the modelling concepts
that are useful in such framework, including typical workflow patterns,
whose function is to decompose a cognitively complex task into simple
interacting tasks so that the complex task is co-operatively solved.

We then discuss how workflows and patterns are managed by Crowd-
Searcher, a system for designing, deploying and monitoring applications
on top of crowd-based systems, including social networks and crowd-
sourcing platforms. Tasks performed by humans consist of simple opera-
tions which apply to homogeneous objects; the complexity of aggregating
and interpreting task results is embodied within the framework. We show
our approach at work on a validation scenario and we report quantita-
tive findings, which highlight the effect of workflow design on the final
results.

1 Introduction

Crowd-based applications are becoming more and more widespread; their com-
mon aspect is that they deal with solving a problem by involving a vast set of
performers, who are typically extracted from a wide population (the ”crowd”).
In many cases, the problem is expressed in the form of simple questions, and the
performers provide a set of answers; a software system is in charge of organis-
ing a crowd-based computation – typically by distributing questions, collecting
responses and feedbacks, and organising them as a well-structured result of the
original problem.

Crowdsourcing systems, such as Amazon Mechanical Turk (AMT), are nat-
ural environments for deploying such applications, since they support the as-
signment to humans of simple and repeated tasks, such as translation, proofing,
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content tagging and items classification, by combining human contribution and
automatic analysis of results [1]. But a recent trend (emerging, e.g., during the
CrowdDB Workshop1), is to use many other kinds of platforms for engaging
crowds, such as proprietary community-building systems (e.g., FourSquare or
Yelp) or general-purpose social networks (e.g., Facebook or Twitter). In the
various platforms, crowds take part to social computations both for monetary
rewards and for non-monetary motivations, such as public recognition, fun, or
genuine will of sharing knowledge.

In previous work, we presented CrowdSearcher [2, 3], offering a conceptual
framework, a specification paradigm and a reactive execution control environ-
ment for designing, deploying, and monitoring applications on top of crowd-based
systems, including social networks and crowdsourcing platforms. In Crowd-
searcher, we advocate a top-down approach to application design which is inde-
pendent on the particular crowd-based system. We adopt an abstract model of
crowdsourcing activities in terms of elementary task types (such as: labelling,
liking, sorting, classifying, grouping) performed upon a data set, and then we
define a crowdsourcing task as an arbitrary composition of these task types; this
model does not introduce limitations, as arbitrary crowdsourcing tasks can al-
ways be defined by aggregating several operation types or by decomposing the
tasks into smaller granularity tasks, each one of the suitable elementary type. In
general, an application cannot be submitted to the crowd in its initial formula-
tion; transformations are required to organise and simplify the initial problem,
by structuring it into a workflow of crowd-based tasks that can be effectively per-
formed by individuals, and can be submitted and executed, possibly in parallel.
Several works [4, 5] have analysed typical crowdsourcing patterns, i.e. typical
cooperative schemes used for organising crowd-based applications.

The goal of this paper is to present a systematic approach to the design
and deployment of crowd-based applications as arbitrarily complex workflows of
elementary tasks, which emphasises the use of crowdsourcing patterns. While our
previous work was addressing the design and deployment of a single task, in this
paper we model and deploy applications consisting of arbitrarily complex task
interactions, organised as a workflow; we use either data streams or data batches
for data exchange between tasks, and illustrate that tasks can be controlled
through tight coupling or loose coupling. We also show that our model supports
the known crowd management patterns, and in particular we use our model as
a unifying framework for a systematic classification of patterns.

The paper is structured as follows. Section 2 presents related work; Section 3
introduces the task and workflowmodels and design processes. Section 4 details a
set of relevant crowdsourcing patterns. Section 5 illustrates how workflow speci-
fications are embodied within the execution control structures of Crowdsearcher,
and finally Section 6.3 discusses several experiments, showing how differences in
workflow design lead to different application results.

1 http://dbweb.enst.fr/events/dbcrowd2013/

http://dbweb.enst.fr/events/dbcrowd2013/
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2 Related Work

Many crowdsourcing startups2 and systems [6] have been proposed in the last
years. Crowd programming approaches rely on imperative programming mod-
els to specify the interaction with crowdsourcing services (e.g., see Turkit [7],
RABJ [8], Jabberwocky [9]). Several programmatic methods for human compu-
tation have been proposed [7][8][9][10], but they do not support yet the com-
plexity required by real-world, enterprise–scale applications, especially in terms
of designing and controlling complex flows of crowd activities.

Due to its flexibility and extensibility, our approach covers the expressive
power exhibited by any of the cited systems, and provides fine grained targeting
to desired application behaviour, performer profiles, and adaptive control over
the executions.

Several works studied how to involve humans in the creation and execution
of workflows, and how to codify common into modular and reusable patterns.
Process-centric workflow languages [11] define business artefacts, their trans-
formations, and interdependencies trough tasks and their dependencies. Scien-
tists and practitioners put a lot of effort in defining a rich set of control-driven
workflow patterns.3 However, this class of process specification languages: focus
mainly on control flow, often abstracting away data almost entirely; disregard
the functional and non-functional properties of the involved resources; do not
specify intra- and inter-task execution and performer controls; and provide no
explicit modelling primitives for data processing operations.

In contrast, data- driven workflows have recently become very popular, typ-
ically in domains where database are central to processes [12][13], and data
consistency and soundness is a strong requirement. Data-driven workflows treat
data as first-class citizens, emphasise the role of control intra- and inter-task
control, and ultimately served as an inspiration for our work.

Very few works studied workflow-driven approaches for crowd work. Crowd-
Lang [5] is notable exception, which supports process-driven workflow design and
execution of tasks involving human activities, and provides an executable model-
based programming language for crowd and machines. The language, however,
focuses on the modelling of coordination mechanisms and group decision pro-
cesses, and it is oblivious to the design and specification of task-specific aspects.

Several works tried to codify patterns for crowdsourcing. At task level, a great
wealth of approaches has been proposed for the problems of output agreement
[14], and performer control [15]. At workflow level, less variety can be witnessed,
but a set of very consolidated patterns emerge [7][16][4][17][18]. In Section 4 we
will provide an extensive review of the most adopted pattern in crowdsourcing,
classifying them in the light of the workflow model of Section 3.

2 E.g., CrowdFlower, Microtask, uTest.
3 http://workflowpatterns.com/

http://workflowpatterns.com/
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3 Models and Design of Crowd-Based Workflows

Although humans are capable of solving complex tasks by using their full cog-
nitive capacity, the approaches used in crowd-based computations prefer to de-
compose complex tasks into simpler tasks and then elaborate their results [16].
Following this approach, we restrict crowdsourcing tasks be to simple opera-
tions which apply to homogeneous objects; operations are simple actions (e.g.
labelling, liking, sorting, classifying, grouping, adding), while objects have an
arbitrary schema and are assumed to be either available to the application or to
be produced as effect of application execution.

3.1 Task Model

Tasks of a crowd-based application are described in terms of an abstract model,
that was initially presented in [2], and represented in Fig. 1. We assume that each
task receives as input a list of objects (e.g., photos, texts, but also arbitrarily
complex objects, all conforming to the same object type) and asks performers
to do one or more operations upon them, which belong to a predefined set of
abstract operation types. Examples of operation types are Like, for assign-
ing a preference to an item; or Classify, for assigning each item to one or more
classes. The full list of currently supported operation types is reported in [2].
Task management requires specific sets of objects to be assembled into a unit of
execution, called micro-task, that is associated with a given performer. Each
micro-task can be invited or executed on different platforms and/or commu-
nities. The relation with platform is specified through a series of platform
parameters, specific for each platform, that are needed in order retrieve the
answers of the performers (e.g., the HIT identifier on AMT). A performer may
be registered on several platforms (with different accounts) and can be part of
several communities. Micro-task execution contains some statistics (e.g., start
and end timestamps). The evaluation contains the answer of the performer for
each object, whose schema depends on the operation type.

For example, a like evaluation is a counter that registers how many performers
like the object, while a classify evaluation contains the category selected by the
performers for that object.



222 A. Bozzon et al.

3.2 Workflow Model

A crowdsourcing workflow is defined as a control structure involving two or
more interacting tasks performed by humans. Tasks have an input buffer that
collects incoming data objects, described by two parameters: 1) The task size,
i.e. the minimum number of objects (m) that allow starting a task execution;
2) The block size, i.e. the number of objects (n) consumed by each executions.

Clearly, n ≤ m, but in certain cases at least m objects must be present in the
buffer before starting an execution; in fact n can vary between 1 and the whole
buffer, when a task execution consumes all the items currently in the buffer.
Task execution can cause object removal, when objects are removed from the
buffer, or object conservation, when objects are left in the buffer, and in such
case the term new items denotes those items loaded in the buffer since the last
execution.

Tasks communicate with each other with data flows, produced by extracting
objects from existing data sources or by other tasks, as streams or batches.
Data streams occur when objects are communicated between tasks one by
one, typically in response to events which identify the completion of object’s
computations. Data batches occur when all the objects are communicated
together from one task to another, typically in response to events related to the
closing of task’s computations.

Flows can be constrained based on a condition associated with the arrow
representing the flow. The condition applies to properties of the produced objects
and allows transferring only the instances that satisfy the condition. Prior to task
execution, a data manipulator may be used to compose the objects in input
to a task, possibly by merging or joining incoming data flows.

We can represent tasks within workflows as described in Fig. 2, where each
task is equipped with an input buffer and an optional data manipulator, and
may receive data streams or data batches from other tasks. Each task consists of
micro-tasks which perform given operations upon objects of a given object type;
the parameter r indicates the number of executions that are performed for each
micro-tasks, when statically defined (default value is 1). Execution of tasks can
be performed according to intra-task patterns, as described in Section 4.

3.3 Workflow Design

Workflow design consists of designing tasks interaction; specifically, it consists
of defining the workflow schema as a directed graph whose nodes are tasks
and whose edges describe dataflows between tasks, distinguishing streams and
batches. In addition, the coupling between tasks working on the same object
type can be defined as loose or tight.

Loose coupling is recommended when two tasks act independently upon
the objects (e.g. in sequence); although it is possible that the result of one task
may have side effects on the other task, such side effects normally occur as an
exception and affect only a subset of the objects. Loosely coupled tasks have
independent control marts and monitoring rules (as described in Section 3.4).
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Tight coupling is recommended when the tasks intertwine operations upon
the same objects, whose evolution occurs as combined effect of the tasks’ evolu-
tion; tightly coupled tasks share the same control mart and monitoring rules.

Figure 3 shows a simple workflow example in the domain of movie scenes
annotation. The Position Scenes tasks asks performers to say whether a scene
appears at the beginning, middle or end of the film; it is a classification task,
one scene at a time, with 5 repetitions and acceptance of results based on an
agreement threshold of 3. Scenes in the ending part of the movies are transmitted
to the Spoiler Scenes task, which asks performers whether the scene is a spoiler
or not;4 scenes at the beginning or in the middle of the movie are transmitted
to the Order Scenes task, which asks performers to order them according to the
movie script; each micro-task orders just two scenes, by asking the performer to
select the one that comes first. The global order is then reconstructed. Given
that all scenes are communicated within the three tasks, they are considered as
tightly coupled.

3.4 Task Design

Crowdsourcing tasks are targeted to a single object type and are used in order
to perform simple operations which either apply to a single object (such as like,
tag, or classify) or require comparison between objects (such choice or score);
more complex tasks perform operations inspired by database languages, such as
select, join, sort, rank, or group by.

Task design consists of the following phases: 1)Operations design – deciding
how a task is assembled as a set of operation types; 2) Object and performer
design – defining the set of objects and performers for the task; 3) Strategy
design – Defining how a task is split into micro-tasks, and how micro-tasks are
assigned to subsets of objects and performers; 4) Control Design – Defining
the rules that enable the run-time control of objects, tasks, and performers.

For monitoring task execution, a data structure called control mart was
introduced in [3]; Control consists of four aspects:

– Object control is concerned with deciding when and how responses should
be generated for each object.

4 A spoiler is a scene that gives information about the movie’s plot and as such should
not be used in its advertisement.
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– Performer control is concerned with deciding how performers should be
dynamically selected or rejected, on the basis of their performance.

– Task control is concerned with completing a task or re-planning task exe-
cution.

The control of objects, performers and tasks is performed by active rules,
expressed according to the event-condition-action (ECA) paradigm. Each rule is
triggered by events (e) generated upon changes in the control mart or periodi-
cally; the rule’s condition (c) is a predicate that must be satisfied on order for
the action to be executed; the rule’s actions (a) change the content of the con-
trol mart. Rules properties (e.g., termination) can be been proven in the context
of a well-organised computational framework [3].

Figure 4(a) shows a sample control mart for the three tasks in the example
scenario, which we assume to be tightly connected, thus using the same data
mart. The control mart stores all the required information for controlling the
task’s evolution and is automatically defined from the task specifications. Fig-
ure 4(b) reports a simple control rule that updates the number of responses with
value “Beginning” after receiving an answer.
This rule has the following behaviour: every time a performer perform a new
evaluation on a specific object (UPDATE event on µTObjExecution), if the se-
lected answer is “Beginning” (the condition part of the rule), then it increases
the counter of the “Beginning” category for that object (Object CTRL[oid ==
New.oid] selected the correct object, then the correct property can be acessed
with the dot notation). For a deeper description of the rule grammar and struc-
ture see our previous work [3].

4 Crowdsourcing Patterns

Several patterns for crowd-based operations are defined in the literature. We
review them in light of the workflow model of Section 3. We distinguish them in
three classes and we implement them in Crowdsearcher (see Section 5):
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– Intra-Task Patterns. They are typically used for executing a complex
task by means of a collection of operations which are cognitively simpler
than the original task. Although these patterns do not appear explicitly in
the workflow, they are an essential ingredient of crowd-based computations.

– Workflow Patterns. They are used for solving a problem by involving
different tasks, which require a different cognitive approach; results of the
different tasks, once collected and elaborated, solve the original problem.

– Auxiliary Patterns. They are typically performed before or after both
intra-task and workflow patterns in order either to simplify their operations
or to improve theirs results.

4.1 Intra-Task Patterns

Intra-task patterns apply to complex operations, whose result is obtained by
composing the results of simpler operations. They focus on problems related
to the planning, assignment, and aggregation of micro tasks; they also include
quality and performer control aspects. Figure 5 describes the typical set of design
dimensions involved in the specification of a task. When the operation applies
to a large number of objects and as such cannot be mapped to a single pattern
instantiation, it is customary to put in place a splitting strategy, in order to
distribute the work, followed by an aggregation strategy, to put together results.
This is the case in many data-driven tasks stemming from traditional relational
data processing which are next reviewed.

Consensus Patterns. The most commonly used intra-task patterns aim at pro-
ducing responses by replicating the operations which apply to each object, col-
lecting multiple assessments from human workers, and then returning the answer
which is more likely to be correct. These patterns are referred to as consensus
or agreement patterns. Typical consensus patterns are: a) StaticAgreement
[3]: accepts a response when it is supported by a given number of performers.
For instance, in a tag operation we consider as valid responses all the tags that
have been added by at least 5 performers. b) MajorityVoting [19]: accepts
a response only if a given number of performers produce the same response,
given a fixed number of total executions. c) ExpectationMaximisation [20]:
adaptively alternates between estimating correct answers from task parameters
(e.g. complexity), and estimating task parameters from the estimated answers,
eventually converging to maximum-likelihood answer values.
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Join Patterns. Crowd join patterns, studied in [14], are used to build an equal-
ity relationship between matching objects in the context of crowdsourcing tasks.
We identify: a) SimpleJoin consists in defining microtasks performing a sim-
ple classification operation, where each execution contains a single pair of items
to be joined, together with the join predicate question, and two buttons (Yes,
No) for responding whether the predicate evaluates to true or false; b) One-
ToManyJoin is a simple variant that includes in the same microtask one left
object and several right candidates to be joined; c) ManyToManyJoin includes
in the same microtask several candidate pairs to be joined;

Sort Patterns. Sort patterns determine the total ordering of a set of input ob-
jects. The list includes: a) SortByGrouping [14] orders a large set of objects by
aggregating the results of the ordering of several small subsets of them. b) Sort-
ByScoring [14] asks performers to rate each item in the dataset according to a
numerical scale. c) SortByLiking [3] is a variant that simply asks the performer
to select/like the items they prefer. The mean (or sum) of the scores achieved by
each image is used to order the dataset. d) SortByPairElection [3] asks work-
ers to perform a pairwise comparison of two items and indicate which one they
like most. Then ranking algorithms calculate their ordering. e) SortByTour-
nament [18], presents to performers a tournament-like structure of sort tasks;
each tournament elect its champions that progress to the next level, eventually
converging to a final order.

Grouping Patterns. Grouping patterns are used in order to classify or clus-
tered several objects according to their properties. We distinguish:
a)GroupingByPredefinedClasses[21] occurs when workers are provided with
a set of known classes. b) GroupingByPreference [22] occurs when groups are
formed by performers, for instance by asking workers to select the items they
prefer the most, and then clustering inputs according to ranges of preferences.

Performer Control Patterns. Quality control of performers consists in decid-
ing how to engage qualified workers for a given task and how to detect malicious
or poorly performing workers. The most established patterns for performer con-
trol include: a) QualificationQuestion [23], at the beginning of a microtask,
for assessing the workers expertise and deciding whether to accept his contri-
bution or not. b) GoldStandard, [3] for both training and assessing worker’s
quality through a initial subtask whose answers are known (they belong to the so-
called gold truth. c) MajorityComparison, [3] for assessing performers’ qual-
ity against responses of the majority of other performers, when no gold truth is
available.

4.2 Auxiliary Intra-Task Patterns

The above tasks can be assisted by auxiliary operations, performed before or
after their executions, as shown in Figure 5. Pre-processing steps are in charge
of assembling, re-shaping, or filtering the input data so to ease or optimise the
main task. Post-processing steps is typically devoted to the refinement or trans-
formation of the task outputs into their final form.
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Examples of auxiliary patterns are: a) PruningPattern [14], consisting of
applying simple preconditions on input data in order to reduce the number of
evaluations to be performed. For instance, in a join task between sets of actors
(where we want to identify the same person in two sets), classifying items by
gender, so as to compared only pairs of the same gender. b) TieBreakPattern
[14], used when a sorting task produces uncertain rankings (e.g. because of ties
in the evaluated item scores); the post-processing includes an additional step
that asks for an explicit comparison of the uncertainly ordered items.

4.3 Workflow Patterns

Create Decide

Improve
Compare 
/ Verify

Find Fix

(a)

(b)

(c)

Auxiliary 
Task

Fig. 6. Template for complex task patterns

Very often, a single type of task
does not suffice to attain the de-
sired crowd business logic. For in-
stance, with open-ended multimedia
content creation and/or modification,
it is difficult to assess the quality of a
given answer, or to aggregate the out-
put of several executions. A Work-
flow Pattern is a workflow of het-
erogeneous crowdsourcing tasks with
co-ordinated goals. Several workflow
patterns defined in the literature are
next reviewed; they are comparatively
shown in Figure 6:

a) Create/Decide [16], shown in Figure 6(a), is a two-staged pattern where
first workers create various options for new content, then a second group of
workers vote for the best option. Note that the create step can include any type
of basic task. This pattern can have several variants: for instance, with a stream
data flow, the vote is typically restricted to the solutions which are produced
faster, while with a batch data flow the second task operates on all the generated
content, in order to pick the best option overall. b) Improve/Compare [7],
shown in Figure 6(b), iterates on the decide step to progressively improve the
result. In this pattern, a first pool of workers creates a first version of a content;
upon this version, a second pool of workers creates an improved version, which
is then compared, in a third task, to decide which one is the best (the original
or the improved one). The improvement/compare cycle can be repeated until
the improved solution is deemed as final. c) Find/Fix/Verify [4], shown in
Figure 6(c), further decomposes the improve step, by splitting the task of finding
potential improvements from the task of actually implementing them.

4.4 Auxiliary Workflow Patterns

Auxiliary tasks can be designed to support the creation and/or the decision
tasks. They include: a) AnswerBySuggestion [17]: given a create operations
as input, the provided solution can be achieved by asking suggestions from the
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crowd as follows. During each execution, a worker can choose one of two actions:
it can either stop and submit the most likely answer, or it can create another job
and receive another response to the task from another performer. The auxiliary
suggestion task produces content that can be used by the original worker to
complete or improve her answer. b) ReviewSpotcheck strengthens the decision
step by means of a two-staged review process: an additional quality check is
performed after the corrections and suggestions provided by the performers of
the decision step. The revision step can be performed by the same performer of
the decision step or by a different performer.

5 Workflow Execution

Starting from the declarative specification described in Sections 3 and 4, an au-
tomatic process generates task descriptors and their relations. Single tasks and
their internal strategies and patterns are transformed into executable specifica-
tion; we support all the intra-task patterns described in Section 4, through model
transformations that generate the control marts and control rules for each task
[3]. Task interactions are implemented differently depending on whether inter-
acting tasks are tightly coupled or loosely coupled.

Tightly coupled tasks share the control mart structure (and the respective
data instances), thus coordination is implemented directly on data. Each task
posts its own results and control values in the mart. Dependencies between tasks
are transformed into rules that trigger the creation of new micro-tasks and their
executions, upon production of new results by events of object or task closure.

Loosely coupled tasks have independent control marts, hence their interac-
tion is more complex. Each task produces in output events such as ClosedTask,
ClosedObject,ClosedMicrotask,ClosedExecution.We rely on an event based,
publish-subscribe mechanism, which allows tasks to be notified by other tasks
about some happening. Loosely coupled tasks do not rely on a shared data space,
therefore events carry with them all the relevant associated pieces of informa-
tion (e.g., a ClosedObject event carries the information about that object; a
ClosedTask event carries the information about the closed objects of the task).

The workflow structure dictates how tasks subscribe to events of other tasks.
Once a task is notified by an incoming event, the corresponding data is incor-
porated in its control mart by a-priori application of the data manipulation
program, specified in the data manipulator stage of the task. Then, reactive
processing takes place within the control mart of the task.

Modularity allows executability through model transformations which are sep-
arately applied to each task specification. Automatically generated rules and
mart structures can be manually refined or enriched when non-standard be-
haviour is needed.

This approach is supported by CrowdSearcher, a platform for crowd man-
agement written in JavaScript. CrowdSearcher runs on Node.js, a full-fledged
event-based system, which fits the need of our rule-based approach. Each control
rule is translated into scripts; triggering is modelled through internal platform
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Fig. 7. Flow variants for the Positioning scenario

events. Precedence between rules is implicitly obtained by defining the scripts
in the proper order. CrowdSearcher offers a cloud-based environment to trans-
parently interface with social networks and crowdsourcing platforms, according
to the task model described in Section 3.1. It features an online configuration
interface where designers build complex crowdsourcing applications through a
wizard–driven, step by step approach. A built-in Task Execution Framework
(TEF) provides support for the creation of custom task user interfaces, to be
deployed as stand-alone application, or embedded within third-party platforms
such as Amazon Mechanical Turk. Specific modules are devoted to the invita-
tion, identification, and management of performers, thus offering support for a
broad range of expert selection paradigms, from pure pull approaches of open
marketplaces, to pre-assigned execution to selected performers. Alternatives for
the implementation of operations on crowd-based systems are discussed in [2].

6 Experiments

We demonstrate various pattern-based workflow scenarios, defined using our
model and method and deployed by using Crowdsearcher as design framework
and Amazon Mechanical Turk as execution platform. We consider several scenes
taken from popular movies, and we enrich them with crowd-sourced information
regarding their position in the movie, whether the scene is a spoiler, and the
presence of given actors in each scene. In the experiments reported here we
considered the movie “The Lord of the Rings: the Fellowship of the Ring”. We
extracted 20 scenes and we created a groundtruth dataset regarding temporal
positioning and actors playing in the scenes. We compare cost and quality of
executions for different workflow configurations.

Table 1. Scenario 1 (Positioning): number of evaluated objects, microtask executions,
elapsed execution time, performers, and executions per performer (for each task and
for each scenario configuration)

Position Scenes (payed $0.01) Order Scene (payed $0.01) TOTAL
#Obj #Exe Time #Perf #Exe/Perf #Obj #Exe Time #Perf #Exe/Perf Time Cost #Perf

P1 20 147 123 16 9.19 17 252 157 14 18.00 342 3.99$ 26
P2 20 152 182 12 12.67 17 230 318 17 13.53 349 3.82$ 26
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Table 2. Scenario 2 (Actor): number of evaluated objects, microtask executions,
elapsed execution time, performers, and executions per performer (for each task and
for each scenario configuration)

Find Actors (payed $0.03) Validate Actors (payed $0.02) TOTAL
#Obj #Exe Time #Perf #Exe/Perf #Obj #Exe Time #Perf #Exe/Perf Time Cost #Perf

A1 20 100 120 18 5.56 – – – – – 120 3.00$ 18
A2 20 100 128 10 10.00 – – – – – 128 3.00$ 10
A3 20 100 123 14 7.15 20 21 154 10 2.10 159 3.42$ 20
A4 20 100 132 10 10.00 41 19 157 9 2.10 164 3.38$ 16
A5 20 100 126 13 7.69 69 60 242 17 3.53 257 4.20$ 24
A6 66 336 778 56 6.00 311 201 821 50 4.02 855 14.10$ 84

6.1 Scenario 1: Scene Positioning

The first scenario deals with extracting information about the temporal position
of scenes in the movie and whether they can be considered as as spoilers. Two
variants of the scenario have been tested, as shown in Figure 7: the task Position
Scenes classifies each scene as belonging to the beginning, middle or ending part
of the movie. If the scene belongs to the final part, we ask the crowd if it is a
spoiler (Spoile Scenes task); otherwise, we ask the crowd to order it with respect
to the other scenes in the same class (Order Scenes task).

Tasks have been configured according to the following patterns:

– Position Scene: task and microtask types are both set as Classify, using
a StaticAgreement pattern with threshold 3. Having 3 classes, a maximum
number of 7 executions grants that one class will get at least 3 selections.
Each microtask evaluates 1 scene.

– Order Scene: task type is Order, while microtask type is set as Like. Each
microtask comprises two scenes of the same class. Using a SortByLiking
pattern, we ask performers to select (Like) which scene comes first in the
movie script. A rank aggregation pattern calculates the resulting total order
upon task completion.

– Spoiler Scene: Task and microtask type both set as Like. A StaticAgreement
pattern with threshold 3 ( 2 classes, maximum 5 executions) defines the
consensus requirements. Each microtask evaluates 1 scene.

We experiment with two workflow configurations. The first (P1) defines a
batch data flow between the Position Scene and Order Scene tasks, while the
second configuration (P2) defines the same flow as stream. In both variants, the
data flow between Position Scene and Spoiler Scenes is defined as stream.

The P2 configuration features a dynamical task planning strategy for the the
Order Scenes task, where the construction of the scene pairs to be compared in
is performed every time a new object is made available by the Position Scenes
task. A conservation policy in the Order Scenes data manipulator ensures that
all the new scenes are combined with the one previously received.
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Fig. 8. Flow variants for the Actor scenario

6.2 Scenario 2: Actors

In the second scenario, we model a create/decide workflow pattern by asking
the crowd to identify the actors that take part in the movie scenes; in Find
Actors, performers indicate actors, in Validate Actor they confirm them. Tasks
are designed as follows:

– Find Actors : Task and microtask types are set as Tag. Each microtask eval-
uates one scene; each scene is evaluated five times. Depending on the con-
figuration, either no consensus pattern (A1, A3, A5) or a StaticAgreement
pattern with threshold three (A2, A4, A6) is employed.

– Validate Actors : the task is preceded by a data manipulator function that
transform the input Scene object and associated tags into a set of tuples
(Scene,Actor), which compose an object list subject to evaluation. In all
configurations, microtasks are triggered if at least one object is available in
the buffer. Note that each generated microtask features a different number of
objects, according to the number of actors tagged in the corresponding scene.
Configurations A5 and A6 features an additional MajorityVoting pattern
to establish the final actor validation.

We tested this scenario with five workflow configurations, shown in Figure 8,
and designed as follows:

– Configuration A1 performs 5 executions and for each scene collects all the
actors tagged at least once;

– Configuration A2 performs 5 executions and for each scene collects all the
actors tagged at least three times (StaticAgreement@3);

– Configuration A3 adds the validation task to A1; the validation asks one
performer to accept or reject the list of actors selected in the previous step;

– Configuration A4 adds a validation task to A3, performed as in A3;
– Configuration A5 is similar to A3, but the validation task is performed 3
times and a MajorityVoting@2 is applied for deciding whether to accept or
not the object;
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Fig. 9. Temporal distributions of closed objects

– Configuration A6 extends A5 by adding a StaticAgreement@3 on FindAc-
tors a feedback stream flow, originating from the Validate Actors task and
directed to the Find Actors task, which notifies the latter about actors that
were wrongly tagged in a scene (i.e., for which agreement on acceptance was
not reached). Misjudged scenes are then re-planned for evaluation; for each
scene, the whole process is configured to repeat until validation succeeds, or
at most 4 re-evaluations are performed.

6.3 Results

We tested the performance of the described scenarios in a set of experiments
performed on Amazon Mechanical Turk during the last week of September 2013.
Table 1 and Table 2 summarise the experiment statistics for the two scenarios,
1700 HITS for a total cost of 39$.

Streaming Vs. Batch (Scenario 1: Positioning). In the first scenario we
tested the impact on the application performance of the adoption of a stream
data flow in a crowd workflow.

Time. Figure 9(b) shows the temporal distribution of closed objects for the
P1 and P2 configurations. As expected, a stream flow (P2) allows for almost
synchronous activation of the subsequent task in the flow, while batch scenario
(P1) shows a strict sequential triggering of the second task. However, the overall
duration of the workflow is not significantly affected by the change. While the
first task of the flow behaves similarly in the two configurations, the second task
runs significantly quicker in the batch flow, thus recovering the delay due to the
sequential execution.

Quality. Table 3a shows the precision of the classification results of task Position
Scenes (note that for this first part the two configurations are exactly the same,
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it makes no sense to compare the two results). Table 3b shows a measure of
the quality of the obtained orders of scenes, i.e., Spearman’s rank correlation
coefficient of the resulting ranks from the Order Scenes task against the real
order of scenes. Both tables show that the attained quality was not significantly
influenced by the different task activation modes.

In summary, we didn’t notice a different behaviour due to streaming. One
possible reason is that in the batch configuration the entire set of assignments is
posted at once on AMT, thus becoming more prominent in terms of number of
available executions (and thus being preferred by performers, as widely studied
[1]), while in a stream execution a small number of assignments is posted on
AMT at every closing event of objects from the previous tasks.

Intra-Task Consensus Vs. Workflow Decision (Scenario 2: Actors).
The second scenario aimed at verifying the impact that different intra-task and
workflow patterns produced on the quality, execution time, and cost. We focused
in particular on different validation techniques.

Time. Figure 9(a) and (c) shows the temporal distribution of closed object for
configurations A3-A6. Configurations A1 and A2 are not reported because
they are composed of one single task and thus their temporal distribution is
not comparable. The temporal behaviour of the first and second tasks in the
flow are rather similar (in the sense that the second one immediately follows the
other). Validation is more delayed in A5 due to the MajorityVoting pattern that
postpones object close events. Configuration A6 (Figure 9(c)) is significantly
slower due to the feedback loop, which also generates a much higher cost of the
campaign, as reported in Table 1. Indeed, due to the feedback, many tasks are
executed several times before converging to validated results.

Quality. Table 4 reports the precision, recall and F-Score figures of the six
configurations. The adoption of increasingly refined validation-based solutions
(configurations A3-A4-A5) provides better results with respect to the baseline
configuration A1, and also to the intra-task agreement based solution A2; val-
idations do not have a negative impact in terms of execution times and costs.
On the other hand, the complexity of of case A6, with the introduction of feed-
back, proved counter-productive, because the validation logic harmed the per-
formance, both in monetary (much higher cost) and qualitative (lower results
quality) senses, bringing as well overhead in terms of execution time. Notice

Table 3. Scenario 1 (Positioning), configuration P1 and P2: a) Precision of the Position
Scenes classification task; b) Spearman’s rank correlation coefficient of the resulting
ranks from the Order Scenes task against the real order of scenes

(a)

Config. P Beg. P Mid. P End

P1 0.50 1 0.11

P2 0.50 0.80 0.33

(b)

Spearman Beg. Spearman Mid.

P1 0.500 0.543

P2 0.900 0.517
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Table 4. Scenario 2 (Actor): Precision, Recall, and F-score of the 6 configurations

A1 A2 A3 A4 A5 A6

Precision 0.79 1 0.92 0.99 0.95 0.89

Recall 0.98 0.87 0.97 0.90 1 0.96

F-Score 0.85 0.91 0.93 0.93 0.97 0.90

that the configuration A3 reaches the highest precision score. That’s because
the StaticAgreement strategy ensures that all the selected actors really appear
in the image, while using the crowd for the validation part can add some errors
(for instance some actors recognized in the Find Actor can be discarded in the
Validate Actors ). However note that the other configurations (A3 - A5) reach
an higher recall and F-score value, meaning an overall better quality of the final
result.

In summary, the above tests show an advantage of concentrating design ef-
forts in defining better workflows, instead of just optimising intra-task validation
mechanisms (based e.g. on majority or agreement), although overly complex con-
figurations should be avoided.

7 Conclusions

We present a comprehensive approach to the modeling, design, and pattern-
based specification of crowd-based workflows. We discuss how crowd-based tasks
communicate by means of stream-based or batch data flows, and we define the
option between loose and tight coupling. We also discuss known patterns that are
used to create crowd-based computations either within a task or between tasks
and we show how the workflow model is translated into executable specifications
which are based upon control data, reactive rules, and event-based notifications.

A set of experiments demonstrate the viability of the approach and show how
the different choices in workfllow design may impact on the cost, time and quality
of crowd-based activities.
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