
Sven Casteleyn
Gustavo Rossi
Marco Winckler (Eds.)

 123

LN
CS

 8
54

1

14th International Conference, ICWE 2014
Toulouse, France, July 1–4, 2014
Proceedings

Web Engineering

Lecture Notes in Computer Science 8541
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Sven Casteleyn Gustavo Rossi
Marco Winckler (Eds.)

Web Engineering
14th International Conference, ICWE 2014
Toulouse, France, July 1-4, 2014
Proceedings

13

Volume Editors

Sven Casteleyn
INIT – Universitat Jaume I
Av. de Vicent Sos Baynat, s/n 12071, Castelló de la Plana, Spain
E-mail: sven.casteleyn@uji.es

Gustavo Rossi
Lifia – Universidad de La Plata
calle 50 y 115, La Plata, Prov. Buenos Aires, Argentina
E-mail: gustavo@lifia.info.unlp.edu.ar

Marco Winckler
ICS-IRIT – Université Paul Sabatier
118 route de Narbonne, 31062 Toulouse Cedex, France
E-mail: winckler@irit.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-08244-8 e-ISBN 978-3-319-08245-5
DOI 10.1007/978-3-319-08245-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941113

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

The Web plays an important role in every aspect of contemporary societies and
of everyday life, i.e., in business, education, entertainment, health, and other
critical activities. Web engineering, as a sub-discipline of software engineering,
seeks to improve software development for this pervasive, ever-evolving platform,
and strives to develop and uncover novel and cost-effective processes, models,
methods, and methodologies to support rich, user-friendly, and accessible inter-
actions between people, software, and things.

This volume collects the research articles, late-breaking results, tool demon-
strations, posters, tutorials, and keynote speeches presented at the 14th Interna-
tional Conference on Web Engineering (ICWE 2014), held in Toulouse, France,
during July 1–4, 2014.

ICWE is the flagship conference for the Web engineering community. Previous
editions of ICWE took place at Aalborg, Denmark (2013), Berlin, Germany
(2012), Paphos, Cyprus (2011), Vienna, Austria (2010), San Sebastian, Spain
(2009), Yorktown Heights, NY, USA (2008), Como, Italy (2007), Palo Alto,
CA, USA (2006), Sydney, Australia (2005), Munich, Germany (2004), Oviedo,
Spain (2003), Santa Fé, Argentina (2002), and Cáceres, Spain (2001). The 2014
edition of ICWE was centered around the theme of “Engineering the Web for
Users, Developers and the Crowd,” hereby highlighting the importance of all
the different people that, somehow, participate in the development process of
interactive Web applications and, ultimately, becomes the actors and the main
users of the best practices and results of the research performed in the domain
of Web engineering.

ICWE 2014 featured six research tracks, namely: Cross-Media and Mobile
Web Applications, HCI and the Web, Modeling and Engineering Web Applica-
tions, Quality Aspects of Web Applications, Social Web Applications and Web
Applications Composition and Mashups that aimed to focus expertise and create
a strong identity for the Web engineering community.

ICWE 2014 was endorsed by the International World Wide Web Conferences
Steering Committee (IW3C2), the International Society for Web Engineering
(ISWE), the Special Interests Groups on the Web (SIG Web) and Human-
Computer Interaction (SIGCHI) of the Association for Computing Machinery
(ACM), who provided the in-cooperation agreement to the conference.

ICWE 2014 attracted 100 submissions distributed over the six research tracks.
Each paper was assessed by at least three members of an international panel of
experts. The Program Committee accepted 20 contributions as full research pa-
pers and 13 late-breaking result papers. Additionally, ICWE 2014 welcomed
15 contributions in the form of posters and/or demonstrations, and four con-
tributions to the PhD symposium where young research in the field of Web
engineering could benefit from the advice and guidance of experts in the field.

VI Foreword

Continuing with a healthy tradition of the ICWE conference series, three tutori-
als on cutting-edge topics on the field of Web engineering were presented, cover-
ing the following topics: Interaction Flow Modeling Language (IFML), Mashups
and Web of Things. Moreover, three workshops were selected to be co-located
at ICWE 2014.

This high-quality program would not have been possible without the help of
many people that assisted the Organizing and Program Committees. We would
like to thanks Marc Najork (Google) and Ricardo Baeza-Yates (Yahoo research),
our keynote speakers, who accepted to give an inspiring speech at ICWE 2014,
of which a written record is included in these proceedings. Many thanks to
the Steering Committee liaisons Daniel Schwabe and Marco Brambilla for their
advice and moral support to the organization of ICWE 2014 in Toulouse. Our
sincere thanks also go out to the local organizer David Navarre, whose support
was essential in hosting this conference at the University Toulouse Capitole as
well as to Marlène Giamporcaro and Marie-Anne Laplaine, who oversaw all the
logistic operations. We also thank Michael Krug and Martin Gaedke for the
logistics required for hosting the conference website. Moreover, we address our
final thanks to all the authors who submitted their scientific work to ICWE
2014, and especially to the presenters who took the time to come to Toulouse
and discuss their work with their peers.

May 2014 Sven Casteleyn
Gustavo Rossi

Marco Winckler

Organization

Technical Committee

General Chair

Marco Winckler ICS-IRIT, Université Paul Sabatier, France

Program Chairs

Sven Casteleyn Universitat Jaume I, Castellón, Spain
Gustavo Rossi UNLP, Argentina

Track Chairs

Cross-Media and Mobile Web Applications

Niels Olof Bouvin Aarhus University, Denmark
In-young Ko Korea Advanced Institute of Science and

Technology, South Korea

HCI and the Web

Jose Antonio Gallud Universidad de Castilla La Mancha, Spain
Fabio Paternò C.N.R.-ISTI, Italy

Modeling and Engineering Web Applications

Marco Brambilla Politecnico di Milano, Italy
Manuel Wimmer Vienna University of Technology, Austria

Quality Aspects of Web Applications

Silvia Abrahão Universidad Politecnica de Valencia, Spain
Filomena Ferrucci Università di Salerno, Italy

Social Web Applications

Maria Bielikova Slovak University of Technology in Bratislava,
Slovakia

Flavius Frasincar Erasmus University Rotterdam,
The Netherlands

VIII Organization

Web Applications Composition and Mashups

Cesare Pautasso University of Lugano, Switzerland
Takehiro Tokuda Tokyo Institute of Technology, Japan

Tutorials Chairs

Luis Olsina Universidad National de la Pampa, Argentina
Oscar Pastor Universidad Politecnica de Valencia, Spain

Workshops Chair

Santiago Meliá University of Alicante, Spain

Demos AND Posters

Jordi Cabot Inria/École des Mines de Nantes, France
Michael Nebeling ETH, Switzerland

PHD Symposium Chairs

Cinzia Cappiello Politecnico di Milano, Italy
Martin Gaedke Technische Universität Chemnitz, Germany

Program Committee

Cross-Media and Mobile Web Applications

Wei Chen Agricultural Information Institute,
Chinese Academy of Agricultural Sciences,
China

Antonella De Angeli University of Manchester, UK
Volker Gruhn Universität Duisburg-Essen, Germany
Célia Martinie ICS-IRIT, Université Paul Sabatier, France
George Pallis University of Cyprus, Cyprus
Fabio Paternò ISTI-CNR, Pisa, Italy
Benjamin Satzger Microsoft, USA
Quan Z. Sheng University of Adelaide, Australia
Beat Signer Vrije Universiteit Brussel, Belgium
Giovanni Toffetti Carughi IBM Research Haifa, Israel
William Van Woensel Dalhousie University, Canada
Marco Winckler ICS-IRIT, Université Paul Sabatier, France

Organization IX

HCI and the Web

Julio Abascal University of the Basque Country, Spain
Simone Barbosa Pontificia Universidade Catolica do Rio de

Janeiro, Brazil
Giorgio Brajnik University of Udine, Italy
Carlos Duarte University of Lisbon, Portugal
Cristina Gena University of Turin, Italy
Luis Leiva Universitat Politècnica de València, Spain
Maria Lozano University of Castilla-la Mancha, Spain
Maristella Matera Politecnico di Milano, Italy
Michael Nebeling ETH Zurich, Switzerland
Victor Penichet University of Castilla-La Mancha, Spain
Carmen Santoro CNR-ISTI, Italy
Markel Vigo University of Manchester, UK
Marco Winckler ICS-IRIT, Université Paul Sabatier, France

Modeling and Engineering Web Applications

Luciano Baresi Politecnico di Milano, Italy
Devis Bianchini University of Brescia, Italy
Hubert Baumeister Technical University of Denmark, Denmark
Alessandro Bozzon Politecnico di Milano, Italy

Jordi Cabot IInria École des Mines de Nantes, Italy
Richard Chbeir LE2I-CNRS, France
Florian Daniel University of Trento, Italy
Oscar Diaz University of the Basque Country, Spain
Schahram Dustdar Vienna University of Technology, Austria
Jutta Eckstein IT communication, Germany
Marina Egea Atos Research & Innovation Department, Spain
Flavius Frasincar Erasmus University Rotterdam,

The Netherlands
Piero Fraternali Politecnico di Milano, Italy
Irene Garrigós University of Alicante, Spain
Michael Grossniklaus University of Konstanz, Germany
Guy-Vincent Jourdan University of Ottawa, Canada
Gerti Kappel Vienna University of Technology, Austria
Alexander Knapp Universität Augsburg, Germany
Frank Leymann University of Stuttgart, Germany
Maristella Matera Politecnico di Milano, Italy
Santiago Melia University of Alicante, Spain
Oscar Pastor Universidad Politecnica de Valencia, Spain
Vicente Pelechano Universidad Politecnica de Valencia, Spain
Alfonso Pierantonio University of L’Aquila, Italy
Werner Retschitzegger Johannes Kepler University of Linz, Austria

X Organization

Fernando Sánchez Universidad de Extremadura, Spain
Daniel Schwabe PUC Rio, Brazil
Antonio Vallecillo University of Málaga, Spain
Agustin Yague Universidad Politecnica de Madrid, Spain
Gefei Zhang arvato systems, Germany
Jürgen Ziegler University of Duisburg-Essen, Germany

Quality Aspects of Web Applications

Joao Araujo Universidade Nova de Lisboa, Portugal
Rami Bahsoon University of Birmingham, UK
Michela Bertolotto University College Dublin, Ireland
Davide Bolchini Indiana University, USA
Giorgio Brajnik University of Udine, Italy
Cinzia Cappiello Politecnico di Milano, Italy
Schahram Dustdar TU Wien, Austria
Carmine Gravino University of Salerno, Italy
Emilio Insfran Universitat Politècnica de València

(DSIC-UPV), Spain
Tahar Kechadi University College Dublin, Ireland
Nora Koch Ludwig Maximilians University of Munich,

Germany
Grace Lewis Carnegie Mellon Software Engineering

Institute, USA
Maristella Matera Politecnico di Milano, Italy
Emilia Mendes Blekinge Institute of Technology, Sweden
Ali Mesbah University of British Columbia, Canada
Luis Olsina GIDIS Web, Engineering School, UNLPam,

Argentina
Federica Sarro University College, London, UK
Giovanni Toffetti Carughi University of Lugano, Switzerland
Giuliana Vitiello University of Salerno, Italy
Michael Weiss Carleton University, Canada
Coral Calero Universidad de Castilla-La Mancha, Spain
Arie van Deursen Delft University of Technology,

The Netherlands
Vahid Garousi University of Calgary, Canada
Jean Vanderdonckt Université Catholique de Louvain, Belgium
Cristina Cachero Universidad de Alicante, Spain

Social Web Applications

Witold Abramowicz Poznan University of Economics, Poland
Ioannis Anagnostopoulos University of Thessaly, Greece
Marco Brambilla Politecnico di Milano, Italy

Organization XI

Richard Chbeir Le2i - CNRS, France
Alexandra Cristea University of Warwick, UK
Oscar Diaz University of the Basque Country, Spain
Stefan Dietze L3S Research Center, Germany
Roberto De Virgilio Università di Roma Tre, Italy
Vania Dimitrova University of Leeds, UK
Martin Gaedke Chemnitz University of Technology, Germany
Geert-Jan Houben Delft University of Technology,

The Netherlands
Zakaria Maamar Zayed University, UAE
Jose Palazzo Moreira

de Oliveira UFRGS, Brazil
Jan Paralic Technical University in Kosice, Slovakia
Oscar Pastor Valencia University of Technology, Spain
Davide Rossi University of Bologna, Italy
Daniel Schwabe PUC Rio, Brazil
Markus Strohmaier University of Koblenz-Landau, Germany
Julita Vassileva University of Saskatchewan, Canada
Erik Wilde UC Berkeley, USA
Guandong Xu University of Technology Sydney, Australia
Jaroslav Zendulka Brno University of Technology, Czech Republic

Web Applications Composition and Mashups

Saeed Aghaee University of Lugano, Switzerland
Christoph Bussler MercedSystems, Inc., USA
Florian Daniel University of Trento, Italy
Oscar Diaz University of the Basque Country, Spain
Hao Han Kanagawa University, Japan
Gregor Hohpe Google, Inc.
Geert-Jan Houben Delft University of Technology,

The Netherlands
Peep Küngas University of Tartu, Estonia
Maristella Matera Politecnico di Milano, Italy
Moira Norrie ETH Zurich, Switzerland
Tomas Vitvar Czech Technical University of Prague,

Czech Repuclic
Eric Wohlstadter University of British Columbia, Canada
Christian Zirpins Karlsruhe Institute of Technology, Germany

Additional Reviewers

Saba Alimadadi
Cristóbal Arellano
Marcos Baez

Michele Bianchi
Hugo Brunelière
Dimoklis Despotakis

XII Organization

Milan Dojchinovski
Martin Fleck
Ujwal Gadiraju
Florian Geigl
Ujwal Gadiraju
Javier Luis Canovas Izquierdo
Oliver Kopp
Philip Langer
Fangfang Li
Xin Li
Jacek Mayszko
Esteban Robles Luna

Juan Carlos Preciado
Peter Purgathofer
Monica Sebillo
Simon Steyskal
Victoria Torres
Pedro Valderas
Karolina Vukojevic-Haupt
Jozef Wagner
Sebastian Wagner
Simon Walk

Local Organizing Committee

Local Chairs

David Navarre ICS-IRIT, University of Toulouse Capitole,
France

Célia Martinie ICS-IRIT, Paul Sabatier University, France

Operations

Marlène Giamporcaro INP-Toulouse, France
Marie-Anne Laplaine INP-Toulouse, France
Nadine Ortega University of Toulouse 1, France

ICWE Steering Committee Liaisons

Marco Brambilla Politecnico di Milano, Italy
Daniel Schwabe PUC-Rio, Brazil

Acknowledgments

The conference chairs and conference organizers would like to thank our spon-
sors:

Organization XIII

Sponsors

Institute of Research in Informatics of Toulouse (IRIT)
interaction-design.org
University of Toulouse Capitole (Toulouse I)
Paul Sabatier University (Toulouse III)
Institut Nationale Polytechnique de Toulouse (INP)

Scientific Sponsors

ACM In-Cooperation with Special Interests Groups SIGCHI and SIGWEB

International Society for Web Engineering (ISWE)

International World Wide Web Conferences Steering Committee (IW3C2)

Table of Contents

Research Papers

A Platform for Web Augmentation Requirements Specification 1
Diego Firmenich, Sergio Firmenich, José Mat́ıas Rivero, and
Leandro Antonelli

An Empirical Study on Categorizing User Input Parameters for User
Inputs Reuse . 21

Shaohua Wang, Ying Zou, Bipin Upadhyaya, Iman Keivanloo, and
Joanna Ng

Analysis and Evaluation of Web Application Performance Enhancement
Techniques . 40

Igor Jugo, Dragutin Kermek, and Ana Meštrović

CRAWL·E: Distributed Skill Endorsements in Expert Finding 57
Sebastian Heil, Stefan Wild, and Martin Gaedke

Cross Publishing 2.0: Letting Users Define Their Sharing Practices on
Top of YQL . 76

Jon Iturrioz, Iker Azpeitia, and Oscar Dı́az

Ensuring Web Interface Quality through Usability-Based Split
Testing . 93

Maximilian Speicher, Andreas Both, and Martin Gaedke

Evaluating Mobileapp Usability: A Holistic Quality Approach 111
Luis Olsina, Lucas Santos, and Philip Lew

Finding Implicit Features in Consumer Reviews for Sentiment
Analysis . 130

Kim Schouten and Flavius Frasincar

From Choreographed to Hybrid User Interface Mashups:
A Generic Transformation Approach . 145

Alexey Tschudnowsky, Stefan Pietschmann, Matthias Niederhausen,
Michael Hertel, and Martin Gaedke

Identifying Patterns in Eyetracking Scanpaths in Terms of Visual
Elements of Web Pages . 163

Sukru Eraslan, Yeliz Yesilada, and Simon Harper

Identifying Root Causes of Web Performance Degradation Using
Changepoint Analysis . 181

Jürgen Cito, Dritan Suljoti, Philipp Leitner, and Schahram Dustdar

XVI Table of Contents

Indexing Rich Internet Applications Using Components-Based
Crawling . 200

Ali Moosavi, Salman Hooshmand, Sara Baghbanzadeh,
Guy-Vincent Jourdan, Gregor V. Bochmann, and Iosif Viorel Onut

Pattern-Based Specification of Crowdsourcing Applications 218
Alessandro Bozzon, Marco Brambilla, Stefano Ceri,
Andrea Mauri, and Riccardo Volonterio

SmartComposition: A Component-Based Approach for Creating
Multi-screen Mashups . 236

Michael Krug, Fabian Wiedemann, and Martin Gaedke

SSUP – A URL-Based Method to Entity-Page Discovery 254
Edimar Manica, Renata Galante, and Carina F. Dorneles

StreamMyRelevance! Prediction of Result Relevance from Real-Time
Interactions and Its Application to Hotel Search . 272

Maximilian Speicher, Sebastian Nuck, Andreas Both, and
Martin Gaedke

The Forgotten Many? A Survey of Modern Web Development
Practices . 290

Moira C. Norrie, Linda Di Geronimo, Alfonso Murolo, and
Michael Nebeling

Using Path-Dependent Types to Build Type Safe JavaScript Foreign
Function Interfaces . 308

Julien Richard-Foy, Olivier Barais, and Jean-Marc Jézéquel

Visual vs. DOM-Based Web Locators: An Empirical Study 322
Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella

Widget Classification with Applications to Web Accessibility 341
Valentyn Melnyk, Vikas Ashok, Yury Puzis, Andrii Soviak,
Yevgen Borodin, and I.V. Ramakrishnan

Late Breaking Results

(De-)Composing Web Augmenters . 359
Sergio Firmenich, Irene Garrigós, and Manuel Wimmer

An Exploratory Study on the Relation between User Interface
Complexity and the Perceived Quality . 370

Seyyed Ehsan Salamati Taba, Iman Keivanloo, Ying Zou,
Joanna Ng, and Tinny Ng

Beyond Responsive Design: Adaptation to Touch and Multitouch 380
Michael Nebeling and Moira C. Norrie

Table of Contents XVII

Composing JSON-Based Web APIs . 390
Javier Luis Cánovas Izquierdo and Jordi Cabot

Design Criteria for Web Applications Adapted to Emotions 400
Giulio Mori, Fabio Paternó, and Ferdinando Furci

Driving Global Team Formation in Social Networks to Obtain
Diversity . 410

Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo,
Antonino Nocera, and Domenico Ursino

Effectiveness of Incorporating Follow Relation into Searching for
Twitter Users to Follow . 420

Tomoya Noro and Takehiro Tokuda

Improving the Scalability of Web Applications with Runtime
Transformations . 430

Esteban Robles Luna, José Mat́ıas Rivero, Matias Urbieta, and
Jordi Cabot

Multi Matchmaking Approach for Semantic Web Services Selection
Based on Fuzzy Inference . 440

Zahira Chouiref, Karim Benouaret, Allel Hadjali, and
Abdelkader Belkhir

Semantic Mediation Techniques for Composite Web Applications 450
Carsten Radeck, Gregor Blichmann, Oliver Mroß, and Klaus Meißner

Standard-Based Integration of W3C and GeoSpatial Services: Quality
Challenges . 460

Michela Bertolotto, Pasquale Di Giovanni, Monica Sebillo, and
Giuliana Vitiello

Tamper-Evident User Profiles for WebID-Based Social Networks 470
Stefan Wild, Falko Braune, Dominik Pretzsch,
Michel Rienäcker, and Martin Gaedke

X-Themes: Supporting Design-by-Example . 480
Moira C. Norrie, Michael Nebeling, Linda Di Geronimo, and
Alfonso Murolo

Demos/Posters

A Tool for Detecting Bad Usability Smells in an Automatic Way 490
Julián Grigera, Alejandra Garrido, and José Mat́ıas Rivero

XVIII Table of Contents

An Extensible, Model-Driven and End-User Centric Approach for API
Building . 494

José Mat́ıas Rivero, Sebastian Heil, Julián Grigera,
Esteban Robles Luna, and Martin Gaedke

Building Bridges between Diverse Identity Concepts Using WebID 498
Michel Rienäcker, Stefan Wild, and Martin Gaedke

Cross-Browser Testing in Browserbite . 503
Tõnis Saar, Marlon Dumas, Marti Kaljuve, and Nataliia Semenenko

DireWolf Goes Pack Hunting: A Peer-to-Peer Approach for Secure Low
Latency Widget Distribution Using WebRTC . 507

István Koren, Jens Bavendiek, and Ralf Klamma

Easing Access for Novice Users in Multi-screen Mashups by Rule-Based
Adaption . 511

Philipp Oehme, Fabian Wiedemann, Michael Krug, and
Martin Gaedke

Interactive Scalable Lectures with ASQ . 515
Vasileios Triglianos and Cesare Pautasso

LiquidML: A Model Based Environment for Developing High Scalable
Web Applications . 519

Esteban Robles Luna, José Mat́ıas Rivero, and Matias Urbieta

Managing and Monitoring Elastic Cloud Applications 523
Demetris Trihinas, Chrystalla Sofokleous, Nicholas Loulloudes,
Athanasios Foudoulis, George Pallis, and Marios D. Dikaiakos

MAPMOLTY: A Web Tool for Discovering Place Loyalty Based on
Mobile Crowdsource Data . 528

Vinicius Monterio de Lira, Salvatore Rinzivillo,
Valeria Cesario Times, Chiara Renso, and Patricia Tedesco

Paving the Path to Content-Centric and Device-Agnostic Web
Design . 532

Maximilian Speicher

Twiagle: A Tool for Engineering Applications Based on Instant
Messaging over Twitter . 536

Ángel Mora Segura, Juan de Lara, and Jesús Sánchez Cuadrado

Using Linked Data for Modeling Secure Distributed Web Applications
and Services . 540

Falko Braune, Stefan Wild, and Martin Gaedke

WaPPU: Usability-Based A/B Testing . 545
Maximilian Speicher, Andreas Both, and Martin Gaedke

Table of Contents XIX

Webification of Software Development: User Feedback for Developer’s
Modeling . 550

Eduard Kuric and Mária Bieliková

PhD Symposium

Comparing Methods of Trend Assessment . 554
Radek Malinský and Ivan Jeĺınek

Exploiting Different Bioinformatics Resources for Enhancing Content
Recommendations . 558

Abdullah Almuhaimeed and Maria Fasli

Methodologies for the Development of Crowd and Social-Based
Applications . 562

Andrea Mauri

Using Semantic Techniques to Improve Service Composition by End
Users . 567

Giuseppe Desolda

Keynotes

Social Search . 571
Marc Najork

Wisdom of Crowds or Wisdom of a Few? . 573
Ricardo Baeza-Yates

Tutorials

IFML: Building the Front-End of Web and Mobile Applications with
OMG’s Interaction Flow Modeling Language . 575

Marco Brambilla

Mashups: A Journey from Concepts and Models to the Quality of
Applications . 577

Cinzia Cappiello, Florian Daniel, and Maristella Matera

Web of Things: Concepts, Technologies and Applications for Connecting
Physical Objects to the Web . 579

Iker Larizgoitia, Dominique Guinard, and Vlad Trifa

XX Table of Contents

Workshop

Distributed User Interfaces and Multimodal Interaction 581
Maŕıa D. Lozano, Jose A. Gallud, Vı́ctor M.R. Penichet,
Ricardo Tesoriero, Jean Vanderdonckt, Habib Fardoun, and
Abdulfattah S. Mashat

Author Index . 583

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 1–20, 2014.
© Springer International Publishing Switzerland 2014

A Platform for Web Augmentation
Requirements Specification

Diego Firmenich1,3, Sergio Firmenich1,2, José Matías Rivero1,2,
and Leandro Antonelli1

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata
2 CONICET, Argentina

{sergio.firmenich,mrivero,lanto}@lifia.info.unlp.edu.ar
3 Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco

dfirmenich@tw.unp.edu.ar

Abstract. Web augmentation has emerged as a technique for customizing Web
applications beyond the personalization mechanisms natively included in them.
This technique usually manipulates existing Web sites on the client-side via
scripts (commonly referred as userscripts) that can change its presentation and
behavior. Large communities have surfaced around this technique and two main
roles have been established. On the one hand there are userscripters, users with
programming skills who create new scripts and share them with the community.
On the other hand, there are users who download and install in their own Web
Browsers some of those scripts that satisfy their customization requirements,
adding features that the applications do not support out-of-the-box. It means
that Web augmentation requirements are not formally specified and they are
decided according to particular userscripters needs. In this paper we propose
CrowdMock, a platform for managing requirements and scripts. The platform
allows users to perform two activities: (i) specify their own scripts requirements
by augmenting Web sites with high-fidelity mockups and (ii) upload these
requirements into an online repository. Then, the platform allows the whole
community (users and userscripters) to collaborate improving the definition of
the augmentation requirements and building a concrete script that implements
them. Two main tools have been developed and evaluated in this context. A
client-side plugin called MockPlug used for augmenting Web sites with UI
prototype widgets and UserRequirements, a repository enabling sharing and
managing the requirements.

1 Introduction

Nowadays, the Web is a really complex platform used for a great variety of goals.
This advanced use of the Web is possible because of the evolution of its supporting
technology and the continuous and massive demands from users that enforces and
accelerates its rapid evolution. The Web has not evolved only in terms of technical
possibilities but also in terms of supporting an increasing number and types of users
too. The same crowd of users has evolved in parallel with the Web itself and the user
expectations in terms of what the applications provide to them are very demanding
nowadays. Even more, users have found ways to satisfy their own requirements when

2 D. Firmenich et al.

they are not taken into account by Web applications developers. It is not casual that
several Web augmentation [5] tools have gone emerging in this context. These tools
pursue the goal of modifying existing Web sites with specific content or functionality
that were not originally supported. The crowd of users continuously builds a lot of
such as tools (distributed within the community as browsers plugins, scripts, etc.). It is
clear that users are interested in using the Web in the way they prefer and they have
evolved to know how to achieve it. Even in the academy there is a dizzying trend in
the area of end-user programming [11]. The reason is that (1) part of the crowd of
users may deal with different kinds of development tools, and (2) part of the crowd of
users want to utilize these tools in order to satisfy a particular need/requirement.

Although several tools such as Platypus1 allow users to perform the adaptation of
Web pages directly by following the idea of “what you see is what you get”, these
kinds of tools have some limitations regarding what can be expressed and done. Thus,
some Web augmentation requirements could not be addressed with them, and these
have to be tackled with other kind of script, which require of advance programming
skills to be developed. In this sense, we think that prototyping could be also a solution
in the context of Web augmentation requirements, and augmenting Web pages with
the prototypes is really a straightway for telling others what a user wants.

In addition, users are more familiarized in dealing with software products, which is
partially proven by new agile development methodologies like Scrum [19] that center
the development in tackling user needs by prioritizing requirements considering its
business value. The main purpose of such processes is providing valuable
functionality as early as possible giving a more active role to the stakeholders to
assess that the implemented application is what they need and expect. It is usual to
ask users for defining a requirement by using one of several techniques such as
mockups [20][6] or User Stories [4], which are completely understandable by users.
Since agile methodologies try to include stakeholders (including users) as much as
possible in the development process, their processes usually are compatible with
User-Centered Design (UCD) approaches. Among the most common requirements
artifacts used in UCD, low-fidelity prototypes (informally known as mockups) are the
most used [9]. Mockups are more suitable than textual requirements artifacts because
they are a shared language between development team (including developers and
analysts) and users [14], avoiding domain-related jargon that may lead to faults in
delivered software artifacts originated by requirements misunderstandings. In
addition, mockups have been proposed as a successful tool to capture and register
fluid requirements [17] – those that are usually expressed orally or informally and are
an implicit (and usually lost) part of the elicitation process. However, they are rarely
used in an isolated way, being usually combined with User Stories [4] or Use Cases
[13][8]. Finally, UI Mockups have the advantage of being simple since stakeholders
can build these by themselves using popular and emergent tools like Balsamiq2 or
Pencil3.

1 https://addons.mozilla.org/es/firefox/addon/platypus/
2 http://balsamiq.com
3 http://pencil.evolus.vn/

 A Platform for Web Augmentation Requirements Specification 3

Most of the development approaches regarding using mockup are centered on
applications in which the number and type of end-users are predictable. However, this
is not true for massive Web applications, since the crowds that use them are not only
less predictable in quantity and type, but also are changing and evolving all the time.
In order to satisfy as many users as possible, the application should be customized for
each user. Although the mechanism of adaptation and personalization of Web
applications, the so-called adaptive Web [2], have also evolved (for instance, complex
user models [7] have been proposed and assessed), it is really hard to give adaptation
mechanisms that contemplate the requirements of all the users.

In this context, two trends with two main goals have emerged. On the one hand,
well-known mash-ups [23] approaches have surfaced for integrating existing Web
content and services. On the other hand, a technique called Web augmentation [5] has
emerged in order to allow users to customize both content and functionalities of Web
pages modifying their DOMs on the client-side. Both approaches have communities
that serve as a proof of how important is for the users to improve their Web
experiences. An example of the former is Yahoo Pipes [22], a mash-up tool broadly
utilized for combing services over the Web that has a big active community [3].
Regarding Web augmentation, the userscripts.org [21] community represents an
emblematic example. This community has created thousand of scripts that run over
the client for modifying the visited Web sites. Some scripts have been installed for
end users over one hundred thousand times.

In both communities we observed two different user groups: (1) the crowd of users
(at least part of them) want to personalize the Web applications they use and, (2) the
part of this crowd can develop software artifacts for such purpose. Our main concern
is to facilitate how these communities currently work. In the design of Web
applications from scratch, different stakeholders participate on the definition of the
functionality. This can be done since part of these reduced and well-known set of
stakeholders directly express their requirements. There is an explicit delegation. On
the contrary, most of the open communities that intend to introduce custom
enhancements to existing Web sites work usually in the opposite way: a user from the
crowd with programming skills develops an artifact with some features that may be
useful to other users. If the artifact is good enough and responds to a common
requirement, then, it will possibly be installed for many other users of the crowd.

In some cases both user and userscripters work together by asking new
requirements and implementing them (correspondently) in two ways: (1) asking for
new scripts in the community forums or (2) asking scripts improvements in the
script’s discussion Web page. In this work we aim to create new communication
mechanisms for improve both the process and how resultant scripts match user
requirements. The main motivation behind the approach presented here relies in the
fact that, besides informal forums, the community has no clear ways to communicate
to those users with development skills in the crowd, which are the augmentation
requirements desired.

4 D. Firmenich et al.

In this paper we propose to rely in mechanisms used on agile methodologies, such
as User Stories or mockups, to empower users with tools for specifying their
enhancements requirements over existing Web applications. The novelty of the
approach is the usage of Web augmentation techniques: with our approach, a user can
augment a Web page with those widgets that are relevant for describing his
requirement. Then, our approach allows sharing the augmentation requirement so
other users and userscripters may reproduce the same augmentation in their own Web
browsers in order to understand that user’s needs in a more detailed and formal way.

The paper is organized as follows. Section 2 introduces our approach. Section 3
presents the tools, and section 4 shows the results of an evaluation made with end-
users. The state of the art is tackled in section 5. Finally, section 6 gives some
concluding remarks and further works.

2 The Approach

We present a novel approach for UI prototyping based on Web augmentation. In this
work, Web augmentation is used as the technique for defining requirements while
Web augmentation communities are taken as the source of both requirements and
scripts for these requirements.

Our goal is to improve the communication between users and userscripters. The
essence of the approach can be described through the following example: let’s
consider that a user is navigating a common video streaming Web site like YouTube.
When he searches for videos, he realizes that additional information in the results
screen will be helpful for him in order to decide which video to watch. For instance,
he would like to see the amount of likes/dislikes and also further information about
video’s audio quality, resolution, etc. Consider that the user knows how to install and
run GreaseMonkey scripts to augment Web sites, but he does not how to develop one
of such scripts. If there were no scripts satisfying his concrete expectations, he would
like to have a way to communicate to GreaseMonkey scripters his requirements. This
communication should be as concrete and clear as possible. Currently, userscripting
communities like userscripts.org rely on textual messages interchanges as the solely
artifacts to let users and userscripters collaborate. The presented approach proposes to
help the end-users and userscripters collaboration through:

• Linking users requirements with userscripters who can implement the
requirements.

• Using a concrete language for defining those requirements. The language
must be understood by both developers and users and must be formal enough
to describe the requirement in terms of UI components and features.

• Managing and evolving the requirements in a well-defined process.

Our approach follows the general schema shown in Figure 1. The main goal is that
any user can specify the visual components related to a particular requirement by
augmenting the target Web page with mockups.

 A Platform for Web Augmentation Requirements Specification 5

Fig. 1. Overview of the approach

Once the requirement is concretely defined (which is expressed through a model
that will be introduced later); it can be uploaded into an online repository, which
makes it accessible by the community to reproduce and enhance this. In this context,
to reproduce means that any other user can augment the target Web page in the same
way the user that specified the requirement did, in order to watch in detail which the
required UI alterations are.

The community (i.e. users and userscripters) may colaborate in the refinement of a
requirement in the repository. If a user is not capable to define the requirement with
the required level of detail, another user who wants to colaborate (for example, having
the same requirement) can enrich the definition. Every change is validated by the
requirement’s owner. When a stable version of the requirements is met, a userscripter
may create the script that implements it, and then upload it into the repository. At this
point, users can install and use the script, contributing with its testing.

Therefore, our approach empowers users with:

• Mechanisms for defining their requirements over existing Web pages.
• Mechanisms for managing and publishing their requirements.
• Mechanisms for proposing and bringing solutions to users, who can evaluate

these solutions and eventually start the cycle again.

The main purpose of our approach, called CrowdMock, relies on allowing the
crowd of users to plug high-fidelity mockups into existing Web pages. Thus, the
approach involves two main contributions. On the one hand, we designed a
metamodel (the MockPlug metamodel) for describing how high-fidelity mockups are
woven into existing Web sites via Web augmentation. On the other hand, to support
our approach technologically we developed a client-side tool for weaving
augmentation models (called MockPlug) and a server-side platform for managing
them collaboratively (called UserRequirements). MockPlug is a tool designed for
allowing end-users to plug mockups on existing Web pages to specify their

6 D. Firmenich et al.

augmentation requirements and them in a concrete, formal model. With MockPlug,
users may create, update, and reproduce requirements. UserRequirements is a
platform deployed as a Web application4 and also integrated with MockPlug, for
allowing end-users to share their augmentation requirements and asking for scripts
that implement them. This also contemplates the evolution of the requirement and the
evaluation of a particular solution allowing collaboration, traceability, and validation.

Web augmentation operates over existing Web sites, usually by manipulating their
DOM5. If we want to augment a DOM with new widgets, we have to specify how
those new widgets are woven into the existing DOM. With this in mind, we defined
the MockPlug metamodel, which specifies, which kinds of augmentation (widgets and
their properties) are possible within our approach and also how these are materialized
for a particular Web page’s DOM. Within MockPlug metamodel, which is depicted in
Figure 2, both the name and the URL of the augmented Web site compose a
requirement. The specification of new widgets relevant for the requirement (Widgets)
may be defined in the model. Widgets can be simple (SimpleWidgets, atomic and
self-represented) or composite (CompositeWidgets, acting as a container of another
set of Widgets), but all of them have several characteristics in common:

• Every Widget belonging to a MockPlug model has both a type and
properties.

• A Widget is prepared to respond to several events, such as mouseover or
click.

• A Widget can react to an event with predefined operations.

A Widget has information related to how and where it was inserted into the DOM
tree. Note that, each widget has an insertion strategy associated (float, leftElement,
rightElement, afterElement, beforeElement, etc.).

It is worth mentioning the importance of the property url in a MockPlug model,
since this is the property that defines which Web site (o set of Web sites when using a
regular expression) the model is augmenting.

Fig. 2. MockPlug metamodel

4 See a live demo of our approach on: http://www.userrequirements.org
5 http://www.w3.org/DOM/

 A Platform for Web Augmentation Requirements Specification 7

3 Tools for Web Augmentation Requirements Management

In this section we introduce the technical details behind the aforementioned
MockPlug and UserRequirements implementation.

3.1 MockPlug

We considered two issues in order to empower users with mechanisms for defining
their own requirements, (1) the supporting tool for such purpose has to be easy to use
and (2) specifying a new requirement should not require too much effort and high
technical knowledge. We developed MockPlug with this in mind. MockPlug is a
Firefox extension that allows end-users to specify requirements by manipulating high-
fidelity mockups over their Web sites that they want to augment. For each MockPlug
requirement, a User Story is also defined.

From MockPlug’s point of view, a requirement represents a set of modifications
made over an existing Web site expressed in terms of the aforementioned metamodel.
Thus, every requirement expressed in our approach has a MockPlug model associated,
and the changes are expressed by adding widgets. From the user’s point of view, these
have a visual style like hand-drawn mockups similar to mockup tools like Pencil or
Balsamiq. However, they are represented at runtime as ordinary DOM elements. In
order to refine his requirements visually, a user may drag&drop widgets over the
existing Web page, like it is shown in Figure 3. This figure depicts how the user can
add a new button over the existing IMDB Web site. On the top of Figure 4, the button
already added over the existing Web page is shown and the widget editor is shown at
the bottom.

3.1.1 Widgets
The tool considers three kinds of widgets: predefined widgets, packetized widgets and
collected widgets, which are described below.

Predefined Widgets
We have defined an initial set of predefined widgets (Figure 5), which are grouped in
categories as Table 1 describes. Different properties may be set for each kind of
predefined widget. For instance, the widget Button has the properties name, title and
label; while a menu list has the name and a collection of options. Figure 5 shows how
the predefined widgets are listed in the MockPlug Panel.

Pocketized Widgets
In order to allow users to easily specify integration requirements we created a
functionality called Pocket. The Pocket (depicted in Figure 6) allows users to collect
existing UI components as widgets. Its name comes from its provided functionality,
which consists in allowing collecting and storing any part of an existing Web page
and then place it as a new widget in other Web applications or pages. As an example,
Figure 6 shows three already collected widgets (one collected from YouTube and two

8 D. Firmenich et al.

collected from IMDB) that could be added in any other Web application in order to
define some requirement of integration between these applications. The user must
drag&drop the widget that had collected in the same way it did with predefined
widgets, having the same tool aid and insertion strategies to apply. Pocketized
widgets can be added as static screenshots of the original DOM or as real DOM
elements. However, so far the tool does not guarantee the correct behavior defined
with JavaScript routines taken from the original Web page from where the packetized
widget was collected.

Fig. 3. MockPlug main panel Fig. 4. Widget added and
widget editor

Table 1. Predefined widgets

Category Goal Examples
Form
Widgets

Specify requirements that involve some
kind of information gathering.

Button, text input,
text area, select menu

Content
Widgets

Specify requirements focused on non-
editable contents

Lists, images, text,
anchors

Annotation
Widgets

Empower users with mechanisms for
describing textually, some expected
behavior, presentation or content

Post-its notes, bubble
comments

The user may add both predefined and pocket widgets in the DOM by using an
insertion strategy. This function provides an interactive highlighting of existing
elements in the DOM in order to help the user.

 A Platform for Web Augmentation Requirements Specification 9

 YouTube

 Widget

Fig. 5. Predefined Widgets panel Fig. 6. Pocket panel

Collected Widgets
Although the Pocket allows users to specify some requirements of integration and
also to reuse existing UI components, sometimes it could be useful to convert an
existing DOM element into widgets in order to refine it. This can be accomplished
using the collected widgets functionality provided by the tool. A collected widget is a
widget that has been created or imported from an existing DOM element in order to
manipulate it. For example, let’s assume that the user wishes to indicate that a new
column should be displayed in an existing table. Then, the user can convert the
existing table into a new widget with the final goal of editing its contents and
columns, as it is shown in Figure 7. In this case, the user collected the table containing
the 250 top movies from IMDB.com.

The ability of converting existing DOM elements into widgets, also gives the
possibility of removing useless items from the target web site. Since the DOM
element is converted into a widget, it could be also moved to another part of the Web
page. Moreover, converting previously existing DOM elements into widgets makes
possible to use them as a target or reference in actions define for other widgets. For
example, the user might want to add a button to show/hide a particular element of the
website on which the requirement is made.

It is worth noting that collecting a DOM element with the goal of creating a collected
widget is not the same that putting a widget into the Pocket. While the first one
associates the underlying DOM element as a widget in the MockPlug requirements
model, the second ones can be used as a sort of clipboard for moving UI pieces among
Web applications.

10 D. Firmenich et al.

Fig. 7. Edition of collected Widget

3.1.2 Widgets Management
The widgets added with MockPlug are clearly distinguishable from the rest of the
elements found in the website. However, MockPlug makes it possible to copy styles
from existing DOM elements to a Widget in order to emulate an existing page style.
In the example from Figure 8, the user has added a button (predefined widget) called
“Button text”, which is actually a DOM element (as any widget) and which with the
user can interact. Different operations commonly found in mockup tools can be
applied through the widget contextual toolbar (shown when the widget is selected),
such as cloning, removing, moving, annotating, property editing, among others.

3.1.3 Code Generation
User requirements are abstracted with the MockPlug metamodel and their instances
may be processed in order to generate code through MockPlug code generators as in
well-known Model-Driven approaches [10]. The code generation capabilities in
MockPlug make it possible to generate a first code stub implementing basic and
repetitive features of the augmentation requirement, thus reducing the workload for
the userscripter who wants to write a script to satisfy it. The code generator has been
included by default with MockPlug and currently it is focused on obtaining
GreaseMonkey scripts.

3.2 Requirements Repository

In addition to MockPlug, we have implemented UserRequirements, a repository with
social features with two main purposes: (1) allowing users to collaborate in the
definition and the evolution of augmentation requirements and (2) enabling
userscripters to describe and reproduce the requirements in order to develop the
corresponding script. A requirement in our repository is defined by two components
in our repository:

 A Platform for Web Augmentation Requirements Specification 11

• A User Story (US), which highlights the core concerns of the requirement
from a particular user role pursuing some goal in the business [4].

• A MockPlug model, which is the UI prototype for answering to the US. A
MockPlug model is associated with only one US, but one US can be
referenced in multiple MockPlug models.

Fig. 8. Widget contextual menu

Open in MockPlug:

Model’s Widgets:

Fig. 9. Requirement view in UR Fig. 10. UI details

Figure 9 and 10 shows a screenshot of how a requirement is described in the

repository. It includes information about who created the requirement, over which
Web site it was defined, its US, and a screenshot of how the target Web site was
augmented with new widgets by using MockPlug.

12 D. Firmenich et al.

It is really important to allow developers to reproduce and watch the resulting
augmented mockup in action. This functionality is provided by the button labeled
MockPlug it (see Figure 10). When the user clicks this button, a new tab is opened in
order to load the target Web site and augment it with the MockPlug model built
interactively using the MockPlug tool. Others users can collaborate by evolving the
definition of that requirement using the tool.

The integration between the social repository and MockPlug tool is essential for
our approach. We show how the user can add his current requirement in the repository
on the left of Figure 11. To add a new requirement, the user has to define the User
Story plus a general description of it. Finally, the requirement (formed by the US and
the MockPlug model) is uploaded to the repository by clicking the Save button.

Fig. 11. Integration between MockPlug and UserRequirements

We depict how a user may choose from the menu between his already existing
models in the repository on the right in the same figure. When a model is selected, all
the widgets involved in that model are listed at the bottom from the same panel. The
user also may choose to open the MockPlug model, whose action will render it in
a new tab. The difference between pre-open (just for listing its widgets) and open a
model (which actually renders it) was meant on purpose, because by pre-opening a
model the user can reuse widgets defined on the model that is being defined.

For conciseness reasons we can not explain it deeply, but it is important to know
that UserRequirements make it possible to “branch” and “vote” the requirements
models. In this way the community may reach a personalization level of the
requirement that fulfills the expectations of the majority while someone other person
of the community may create a new branch of one model in order to specify further
requirements.

 A Platform for Web Augmentation Requirements Specification 13

4 Evaluation

This section describes a preliminary evaluation of the CrowdMock approach and its
supporting tools. We have performed a controlled experiment focused on assessing
the effectiveness achieved by experienced users when specifying requirements on
existing Web applications. The experiment compared the process of specifying
requirements using the proposed approach against using existing approaches. Our
hypothesis was:

Defining augmentation requirements with CrowdMock produces better
specifications than using traditional user-oriented methods (such as user
stories, mockups, etc.), and consequently, CrowdMock improves the
understandability of the requirements.

4.1 Protocol and Participants

The experiment was organized into two phases: (1) defining a requirement using well-
known techniques (e.g. user stories, mockups, etc...) and (2) defining requirements
using MockPlug. The requirements had to be defined over well-known existing Web
applications: IMDB6 and YouTube7; and they had to be based on one of the following
features. The features for IMDB were:

• R1.1: Filter the list of 250 best movies
• R1.2: Add some information to the 250 best movies list.
• R1.3: Change the layout and/or content of a movie’s page based on the

following issues:
o Move elements of the page.
o Remove elements from the page
o Add new widgets into the page (button, input box, menu, etc.)
o Add contents related to the movie from another IMDB page.

The features for YouTube:
• R2.1: Add information in the search results about the videos.
• R2.2: Idem to R1.3 focusing on a YouTube video’s Web page.

Participants had to choose 2 features in each phase. Thus, each participant
specified 4 requirements. Since 8 subjects participated in the experiment, a total of 32
requirements were specified. Half of them (16 requirements) had to be defined with
the participants’ preferred requirements artifacts and elicitation techniques, and the
other 16 requirements had to be defined using MockPlug. All the 32 requirements
were implemented by means of GreaseMonkey scripts, which were developed by a
specific team at LIFIA.

6 Internet Movie Data Base - http://imdb.com; last accessed 4-Feb-2014.
7 YouTube – http://youtube.com; last accessed 4-Feb-2014.

14 D. Firmenich et al.

The whole experiment was organized as follows:

1. First phase:
a. A first face-to-face meeting with participants was organized for presenting

the experiment and explaining the tasks. Before this meeting, participants
had been introduced in the use of US as well as in user interface mockup
building techniques and tools. In this meeting the definition of two
requirements choosing one specific technique and one or more
requirements artifacts was exemplified.

b. Participants had 3 days to write two requirements. Then, they had to send
their specifications (including the requirements artifacts) and an activity
diary where they registered all their work and the time spent on it.

c. When all the requirements were collected, developers had 2 days to create
the 16 GreaseMonkey scripts. Both 2 scripts implementing the
requirements were sent to every participant.

d. Participants had 2 days for installing, using and evaluating both scripts and
filling in two questionnaires:

i. Questionnaire A, oriented to measure and describe the difficulty
perceived during the specification of the requirements.

ii. Questionnaire B: oriented to measure and describe how well the
script satisfied his expectations.

2. Second phase:
a. Another face-to-face meeting was organized for presenting both the new

tasks to be accomplished and the tools involved in this phase:
i. The UserRequirements (UR) application (i.e., the requirements

repository) was introduced. Participants were asked to create a user
account on the platform in order to start specifying requirements
through it.

ii. MockPlug was also explained and participants learned about how to
upload the requirement from MockPlug to UR.

iii. The second evaluation task was presented. It consisted in defining
two requirements using MockPlug and UR. Participants had to
choose only requirements not chosen in the first phase.

b. Participants had 3 days to define the requirements and then upload them to
the repository. Then, they had to send separately a document including the
activity diary.

c. With every requirement uploaded to UR by participants, the developers
received a notification. Again, developers had 2 days to create the 16
GreaseMonkey scripts. When all the requirements were uploaded, instead
of sending the scripts personally, developers uploaded the script for each
requirement into UR and participants received the corresponding
notification.

d. Participants had 2 days for downloading and using both scripts. After that,
they were asked to filling in the same two questionnaires (A and B). Also,
they were asked to fill in another SUS [1] questionnaire for evaluating the
usability of our tools.

 A Platform for Web Augmentation Requirements Specification 15

Following a within subjects design, a total of 8 participants were involved in this
evaluation. All participants were professionals on computer science from a post-
graduate course on Web Engineering; 4 female and 4 male and aged between 24 and
60. It is important to mention that the 8 participants were instructed (before the
experiment) in the installation and use of GreaseMonkey scripts.

4.2 Results

This section describes the results of the experiment. First, we describe the
requirements specified by every participant in Table 2. Afterwards, we present the
analysis.

4.2.1 First Phase
Table 2 shows depicted with “X” the requirements selected in the first phase for each
participant. The average time for defining each requirement was 92.5 minutes (SD =
62.12 minutes). The techniques used were mockups (traditional ones), User Stories
and some more textual description.

The difficulty perceived when specifying each requirement ranged from “normal”
to “very easy”. Most of the requirement specifications (11) were considered as a
“normal” task in terms of difficulty (68.75%) in a scale from 1 to 5 (where 1=”very
easy”, 2=”easy”, 3=”normal”, 4=”difficult”, 5=”very difficult”). This task was
considered “easy” for 4 requirements (25%), and “very easy” only for 1 (6.25%).

Table 2. Requirements selected by each participant (X = First Phase, O = Second phase)

 R1.1 R1.2 R1.3 R2.1 R2.2
Participant 1 X X O O
Participant 2 O O X X
Participant 3 O O X X
Participant 4 X X O O
Participant 5 X O O X
Participant 6 X O O X
Participant 7 O X X O
Participant 8 X O X O

Fig. 12. Phase 1 results

16 D. Firmenich et al.

After receiving all the augmentation requirements specifications, we implemented
them and sent the scripts to every participant. They had to download, install and use
these scripts in order to evaluate them. The results are shown in Figure 12.

4.2.2 Second Phase Results
Requirements chosen for the second phase of the experiment are depicted with “O” in
Table 2. As commented previously, participants had to use MockPlug and
UserRequirements in this phase. Defining a new requirement took in average 86.56
minutes (SD = 66.35). However, the difficulty perceived in the specification of each
requirement had a wide range. The difficulty of the specification task was considerer
“normal” (25%) in 4 requirements. Another 25% were considered “difficult” while
“very difficult” was used in one requirement (6.25%). Other 37.5% (6 requirements)
were qualified as “easy”. Finally, 1 requirement specification was considered “very
easy”.

We believe the reasons were: (1) people were not experienced in the use of Web
augmentation tools and (2) some incompatibilities between participants’ Firefox
extension version and our plug-in. This was finally confirmed by the SUS
questionnaire. MockPlug scored 74.9, which is an improvable result regarding the
usability of the tool.

Despite of these contingencies, we observed that participants were more satisfied
regarding the implementation of their requirements when using MockPlug. It would
indicate that the scripts in this phase were closer to user expectations than those
developed for the first one. This information is depicted in Figure 13.

Fig. 13. Phase 2 (CrowdMock) results

4.2.3 Discussion
The results of the controlled experiment showed that when users freely choose the
specification technique only 18.75% of the requirements were totally satisfied and
56.25% were partially specified. The remaining 25% of the scripts did not satisfy
absolutely user requirements.

In the second phase, by contrast, 56.25% scripts fulfilled user’s expectations, while
37.5% satisfied them partially. Because one of the scripts was not able to be executed,
just one requirement (6.25%) was not satisfied.

Our tools were not well known by the participants, who reported several usability
issues that are reflected in the difficulty they perceived during the task of specifying a

 A Platform for Web Augmentation Requirements Specification 17

requirement with MockPlug. In spite of these problems, our approach allowed to
participants to be more satisfied. We think that this difference is due to: (1) aid
provided by mockup for focusing on specific elements (UI widgets) which resulted in
more concrete and clearer specifications for scripters, (2) the possibility of
manipulating existing UI components easily, and (3) the possibility of defining
behavior for each widget without programming knowledge.

Another additional benefit of using our approach was related to the development
process of the scripts. By using MockPlug and MockPlug models, some code could be
generated automatically, at least what is related to the fact of creating new widgets
and get the existing DOM elements from the target Web page that were manipulated.

5 Related Works

In this section we compare our approach with two kinds of works. First, we analyse
other mechanisms and tools to specify UI prototypes. On the other hand, we review
some approaches to elicit requirements in the context large crowd of users.

Using UI mockups as a requirement elicitation technique is a growing trend that
can be appreciated just observing the amount of different Web and desktop-based
prototyping tools like Balsamiq and Mockingbird8 that appeared during the last years.
Statistical studies have proven that mockups use can improve the whole development
process in comparison to use other requirements artefacts [15]. Mockups use has been
introduced in different and heterogeneous approaches and methodologies. On the one
hand, they have been included in traditional, code-based Agile settings as an essential
requirement artifact [20] [6]. On the other hand, they have been used as formal
specifications in different Model-Driven Development approaches like MockupDD
[16], ranging from interaction requirements to data intensive Web Applications
modelling. In this work we propose to specify augmentation changes using (among
other techniques) mockup-style widgets. Also, MockPlug combines mockup-style
augmentation techniques with well known annotations capabilities of common
mockup tooling, that also can be used as formal specifications in the future as in [14].

There are new works on collaboration in requirements elicitation. Some authors
have used social networks to support requirements elicitation in large-scale systems
with many stakeholders [18]. They have used collaborative filtering techniques in
order to obtain the most important and significant requirements from a huge number
of stakeholders. A more formal and process-centered approach is proposed in [12].
However, we consider that none of the approaches provide a mechanism to
collaboratively elicit, describe and validate requirements by using prototype definition
for large-scale systems with a large number of stakeholders. The aforementioned
works are limited to eliciting narrative requirements. We propose to define requirements
by specifying high-fidelity prototypes that are later managed collaboratively from a
common repository.

8 http://gomockingbird.com

18 D. Firmenich et al.

The ability of creating, validating and evolving prototypes collaboratively just by
dragging and dropping widgets over existing Web sites, may allow stakeholders to
express their needs in more accurate way, beyond textual descriptions [1]. In the
particular context of Web augmentation communities, by improving communication
between users and userscripters, we ensure that user requirements are correctly
understood before future development of the concrete scripts. In this way, our
integrated platform aims to reduce users’ efforts when defining their requirements and
upload them to the repository where, at the same time, it enables whole the
community to improve them iteratively.

In the context of Web augmentation for annotations, there are also many tools to share
user’s annotations – for instance, Appotate9 or Diigo10. These kinds of tools allow users
to share annotations across the web, although these are very useful to share and highlight
ideas, annotations are not enough to define complex augmentation requirements.

By using traditional mockups tools users can create their own prototypes, but
usually have to start from scratch and widgets are not linked to the Web site where the
requirement surfaces. This simple fact would demand much effort from scratch (in
order to give some context to the augmentation requirement). Besides that, Web
augmentation requirements could be extremely related to existing UI components, and
desirably, the prototype should show how these existing components interact with the
new widgets. Our approach enables users to quickly define high-fidelity prototypes
related to the augmentation requirement, manipulating the same Web page that is
going to be transformed by a script in real time. Our MockPlug metamodel makes it
possible to share and reproduce these prototypes, but additionally, it also makes
possible to process a prototype in order to generate a first script template based on
those manipulated widgets.

6 Conclusions and Future Work

It is very complex to gather requirements from a crowd of users for widely used Web
applications. In this work we have presented a methodology and its implementation
for gathering requirements in the context of Web augmentation communities. Our
approach is inspired in agile methodologies were users have an active role. We found
that using high-fidelity mockups is very useful for specifying Web augmentation
requirements using the running Web page as a foundation for specifying them
graphically. With CrowdMock, users may define their own requirements and share
them with the community, who can reproduce, edit and evolve them collaboratively.
CrowdMock and its tools have been evaluated obtaining some benefits in comparison
with traditional approaches. By using the proposed high-fidelity mockups that run
over existing Web pages, we agilize the definition process since it is not necessary to
construct an abstract conceptualization from existing UI. Users know what they want
from Web applications and we try to give them the tools and mechanisms for
naturally expressing their requirements.

9 http://appotate.com

10 https://www.diigo.com

 A Platform for Web Augmentation Requirements Specification 19

We described the details of an evaluation of CrowdMock approach, which showed
some positive results in Web augmentation requirements gathering and also some
usability issues in the MockPlug tool that we are currently addressing. Integration
between MockPlug and UserRequirements is also being improved. Additionally, we
have an ongoing work on the server-side application (UserRequirements), which is
being enhanced to support better collaboration mechanisms.

Another interesting further work path includes testing support and better code
generation. We are planning to automate test for userscripts. Code generation is
currently made without considering good userscripters practices and patterns; thus,
the generated code may be not be easy to understand or manually adapt by
userscripters. Thus, we are working on improvements our MockPlug code generators
API in order to allow userscripters to develop their own code generators, which are a
particular type of MockPlug plug-ins.

Although we are focused on Web augmentation requirements, our approach could
also be useful for projects intended to build software products from scratch instead of
augment existing ones. Thus, we are planning to improve the expressiveness of our
metamodel, extending the tool with new kind of widgets and finally improve the
server-side repository with features related to general developer support.

References

1. Brooke, J.: SUS: A ‘quick and dirty’ usability scale. In: Usability Evaluation in Industry,
pp. 189–194. Taylor and Francis, London (1996)

2. Brusilovsky, P., Kobsa, A., Nejdl, W.: The Adaptive Web (2008)
3. Cameron Jones, M., Churchill, E.: Conversations in Developer Communities: a

Preliminary Analysis of the Yahoo! Pipes Community. In: Proceedings of the Fourth
International Conference on Communities and Technologies, pp. 195–204. ACM (2009)

4. Cohn, M.: User stories applied: for agile software development, p. 268. Addison-Wesley
(2004)

5. Díaz, O.: Understanding Web augmentation. In: Grossniklaus, M., Wimmer, M. (eds.)
ICWE Workshops 2012. LNCS, vol. 7703, pp. 79–80. Springer, Heidelberg (2012)

6. Ferreira, F., Noble, J., Biddle, R.: Agile Development Iterations and UI Design. In:
Proceedings of AGILE 2007 Conference, pp. 50–58 (2007)

7. Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User Profiles for Personalized
Information Access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007.
LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007)

8. Homrighausen, A., Six, H., Winter, M.: Round-Trip Prototyping Based on Integrated
Functional and User Interface Requirements Specifications. Requir. Eng. 7(1), 34–45
(2002)

9. Hussain, Z., Slany, W., Holzinger, A.: Current state of agile user-centered design: A
survey. In: Holzinger, A., Miesenberger, K. (eds.) USAB 2009. LNCS, vol. 5889, pp. 416–
427. Springer, Heidelberg (2009)

10. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Generation.
Wiley-IEEE Computer Society (2008)

20 D. Firmenich et al.

11. Ko, A., Abraham, R., Beckwith, L., Blcakwell, A., Burnett, M., Erwig, M., Scaffidi, C.,
Lawrance, J., Lieberman, H., Myers, B., Rosson, M., Rothermel, G., Shaw, M.,
Wiedenbeck, S.: The State of the Art in End-User Software Engineering. ACM Computing
Surveys, 1–44 (2011)

12. Konaté, J., El Kader Sahraoui, A., Kolfschoten, G.: Collaborative Requirements
Elicitation: A Process-Centred Approach. Group Decision and Negotiation Journal (2013)

13. Kulak, D., Guiney, E.: Use cases: requirements in context. Addison-Wesley (2004)
14. Mukasa, K., Kaindl, H.: An Integration of Requirements and User Interface Specifications.

In: Proceedings of 6th IEEE International Requirements Engineering Conference, pp. 327–
328 (2008)

15. Ricca, F., Scanniello, G., Torchiano, M., Reggio, G., Astesiano, E.: On the effectiveness of
screen mockups in requirements engineering. In: Proceedings of ACM-IEEE Int. Symp.
Empir. Softw. Eng. Meas. ACM Press, New York (2010)

16. Rivero, J.M., Rossi, G.: MockupDD: Facilitating Agile Support for Model-Driven Web
Engineering. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS,
vol. 8295, pp. 325–329. Springer, Heidelberg (2013)

17. Schneider, K.: Generating fast feedback in requirements elicitation. In: Proceedings of the
13th International Working Conference on Requirements Engineering: Foundation for
Software Quality, pp. 160–174 (2007)

18. Lim, S.L., Finkelstein, A.: StakeRare: Using Social Networks and Collaborative Filtering
for Large-Scale Requirements Elicitation. IEEE Transactions on Software
Engineering 38(3), 707–735

19. Sutherland, J., Schwaber, K.: The Scrum Papers: Nuts, Bolts, and Origins of an Agile Process,
http://assets.scrumfoundation.com/downloads/2/
scrumpapers.pdf?1285932052 (accessed: February 16, 2014)

20. Ton, H.: A Strategy for Balancing Business Value and Story Size. In: Proceedings of
AGILE 2007 Conference, pp. 279–284 (2007)

21. UserScripts, http://userscripts.org (accessed: February 16, 2014)
22. Yahoo Pipes, http://pipes.yahoo.com/pipes/ (accessed: February 16, 2014)
23. Yu, J., Benatallah, B., Casati, F., Florian, D.: Understanding mashup development. IEEE

Internet Computing 12(5), 44–52 (2008)

An Empirical Study on Categorizing User Input
Parameters for User Inputs Reuse

Shaohua Wang1, Ying Zou2, Bipin Upadhyaya2, Iman Keivanloo2,
and Joanna Ng3

1 School of Computing, Queen’s University, Kingston, Ontario, Canada
shaohua@cs.queensu.ca

2 Electrical and Computer Engineering, Queen’s University, Kingston, Canada
{ying.zou,bipin.upadhyaya,iman.keivanloo}@queensu.ca

3 CAS Research, IBM Canada Software Laboratory, Markham, Ontario, Canada
jwng@ca.ibm.com

Abstract. End-users often have to enter the same information to
various services (e.g., websites and mobile applications) repetitively. To
save end-users from typing redundant information, it becomes more con-
venient for an end-user if the previous inputs of the end-user can be
pre-filled to applications based on end-user’s contexts. The existing pre-
filling approaches have poor accuracy of pre-filling information, and only
provide limited support of reusing user inputs within one application
and propagating the inputs across different applications. The existing
approaches do not distinguish parameters, however different user input
parameters can have very varied natures. Some parameters should be
pre-filled and some should not. In this paper, we propose an ontology
model to express the common parameters and the relations among them
and an approach using the ontology model to address the shortcomings
of the existing pre-filling techniques. The basis of our approach is to cat-
egorize the input parameters based on their characteristics. We propose
categories for user inputs parameters to explore the types of parame-
ters suitable for pre-filling. Our empirical study shows that the proposed
categories successfully cover all the parameters in a representative cor-
pus. The proposed approach achieves an average precision of 75% and an
average recall of 45% on the category identification for parameters. Com-
pared with a baseline approach, our approach can improve the existing
pre-filling approach, i.e., 19% improvement on precision on average.

Keywords: User Input Parameters Categories, User Inputs Reuse,
Auto-filling, Ontology, Web Forms.

1 Introduction

Web is becoming an essential part of our daily life. Various on-line services
(e.g., web services and mobile applications) allow end-users to conduct different
web tasks, such as on-line shopping and holiday trip planning. These services
require end-users to provide data to interact with them and some of the data

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 21–39, 2014.
c© Springer International Publishing Switzerland 2014

22 S. Wang et al.

provided by end-users are usually repetitive. For example the AVIS1, a car rental
website, and the Homes 2, a real estate website, require end-users to enter their
personal information such as First Name and Last Name illustrated in Figure 1
and Figure 2. It could be a cumbersome and annoying process for an end-user,
especially a smartphone end-user, to fill the same information into web forms
with multiple input fields repeatedly. Therefore information pre-filling becomes
critical to save end-users from this cumbersome process. Rukzio et al. [1] found
that end-users are four times faster on smartphones when they just have to
correct pre-filled form entries compared to entering the information from scratch.
A web form within web or mobile applications usually consists of a set of input
fields assigned with a label, for example the input field Contact Phone Number
in Figure 1. The label of this input field is “Contact Phone Number”, the type
of this input field is text field. Throughout this paper, we consider an input field
as a user input parameter and an end-user input (i.e., a piece of information) as
the value which can be filled into an input field.

Fig. 1. A sample screen shot of a web form requiring user’s personal information to
reserve a car

Fig. 2. A sample screen shot of a web form requiring user’s personal information to
sign up the website

Recently, several industrial tools and academic approaches have been devel-
oped to pre-fill user inputs into web forms automatically. Web browsers usually

1 http://www.avis.ca/car-rental/avisHome/home.ac
2 http://www.homes.com/

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 23

provide web form Auto-filling tools, such as Firefox form auto-filling Addon [2]
and Chrome form auto-filling tool [3] to help users fill in forms. In general, the
auto-filling tools record the values entered by a user for specific input fields
pre-configured by the tools in a given form. Then, they identify the input fields
which are identical or similar to the pre-configured input fields by string match-
ing, and fill the entered values into the identified inputs fields when the users
visit websites. Since such approaches are error-prone, they allow end-users to
modify the values. Recently, a few academic studies such as [4][5][6][7] proposed
several approaches to help end-users. Hartman et al. [4] propose a context-aware
approach using user’s contextual information to fill in web forms. Toda et al. [5]
propose a probabilistic approach using the information extracted from data-rich
text as the input source to fill values to web forms. Wang et al. [6] propose an
approach using the relations between similar input parameters to fill values to
web forms. Araujo et al. [7] extract the semantic of concepts behind the web
form fields and use the relations of concepts to fill in web forms. However, all
these tools and approaches suffer from two main drawbacks:

– Poor accuracy of pre-filling values to input parameters of web
forms or applications. The pre-filled information can be out of date and
out of context. The user often has to modify the pre-filled values passively.
With the rapid growth of the population of mobile application users, it is
even more frustrating for mobile application users to modify the pre-filled
values due to the restrictions in screen size and typing. Accurate pre-filling
values becomes a critical step to enhance the user experience.

– Limited support of reusing user inputs within an application and
propagating them across different applications. The existing methods
can only reuse a few types of user inputs within an application or across
different applications. For example an end-user is planning a holiday trip
from Toronto to Miami, he or she could conduct two tasks of searching for
cheap flight tickets and cheap transportation from airport to hotel. The end-
user needs browse different websites to find the most appropriate solution for
him or her. During the process of conducting these two tasks, the similar or
identical input parameters from different websites or within a website, such
as departure and return cities, should be linked together, and reuse user
inputs among them. In this scenario, for example, Chrome form auto-filling
tool [3] cannot help the end-users, since it can only reuse basic personal
information such as credit card information and addresses.

The existing tools and approaches treat all the user input parameters equally,
and the matching mechanism of existing approaches is only based on the string
matching or semantic similarity calculation of field names. If a match is iden-
tified, the existing approaches pre-fill a value to an input parameter. However
different user input parameters can have very varied natures. For example, the
coupon number is only valid for a single purchase, therefore may not be suit-
able for pre-filling. The input fields for departure and destination cities from a
flight booking website should not be pre-filled with previous user inputs without
knowing user’s context, the end-user’s name can be pre-filled, since the end-user’s
name does not change in most cases.

24 S. Wang et al.

It is crucial to improve the accuracy of automatic value pre-filling by under-
standing the characteristics of different user input parameters. In this paper,
we propose an ontology model for expressing common parameters and approach
based on the proposed ontology model to automatically identify a category for
an input parameter. We conducted two empirical studies. The first empirical
study was served as an initial empirical investigation to explore the character-
istics of user input parameters. The first empirical study was conducted on 30
popular websites and 30 Android mobile applications from Google Play Android
Market 3. Based on the results of our first study, we identify and propose four
categories for input parameters from web and mobile applications. The proposed
categories offer a new view for understanding input parameters and provide tool
developers guidelines to identify pre-fillable input parameters and the necessary
conditions for pre-filling. To the best of our knowledge, we are the first to propose
categories for input parameters to explore the characteristics of user input pa-
rameters. We conducted the second empirical study to verify the effectiveness of
proposed categories and approach for category identification. The second study
was conducted on 50 websites from three domains and 100 mobile applications
from five different categories in Google Play Android Market.

The major contributions of our paper are listed as follows:

– We propose four categories of user input parameters to capture the nature of
different user input parameters through an empirical investigation. For pre-
filling, each category of parameters should be collected, analyzed and reused
differently. The results of our empirical study show that our categories are
effective to cover all the input parameters in a representative corpus.

– We propose an ontology model to express the common parameters and the
relations among them. Moreover, we use the proposed ontology model to
carry the category information for input parameters. We propose a WordNet-
based approach that automatically updates the core ontology for unseen
parameters from new applications. The results of our empirical study show
that our approach obtains a precision of 88% and a recall of 64% on updating
the ontology to include the unseen parameters on average.

– We propose an ontology-based approach to identify a category for input pa-
rameters automatically. On average, our approach for category identification
can achieve a precision of 90.5% and a recall of 72.5% on the identification
of a category for parameters on average.

– We test the effectiveness of our proposed categories on improving the existing
approaches. We build a baseline approach which does not distinguish the
different characteristics of input parameters, and incorporate our proposed
categories with the baseline approach to form a category-enabled approach.
We compare two approaches through an empirical experiment. The results
show that our approach can improve the baseline approach significantly, i.e.,
on average 19% in terms of precision.

The rest of the paper is organized as follows. Section2 describes the user inter-
faces of web and mobile applications. Section 3 presents our proposed approach

3 https://play.google.com/store?hl=en

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 25

for categorizing input parameters. Section 4 introduces the empirical studies. Sec-
tion 5 discusses the threats to validity. Section 6 summarizes the related literature.
Finally, section 7 concludes the paper and outlines some avenues for future work.

2 Web and Mobile Application User Interface

In this paper, we study the user input parameters from the user interfaces of
web applications and mobile applications.

Web pages are mainly built with HTML and Cascading Style Sheets (CSS),
and can be converted into an HTML DOM tree 4. A Web form is defined by an
HTML FORM tag <form> and the closing tag </form>. A web form usually
consists of a set of input elements, such as the text fields in Figure 2, to capture
user information. An input element is defined by an HTML INPUT tag <input>
specifying an input field where the user can enter data. The input element can
contain several attributes, such as name specifying the name of an <input>
element, type defining the type <input> to display (e.g., displayed as a button
or checkbox) and value stating the value of an <input> element. An <input>
element can be associated with a human-readable label, such as First Name.
This information can be accessible by parsing HTML source code.

There are three types of mobile applications:

– Native Apps: The native apps are developed specifically for one platform
such as Android5, and can access all the device features such as camera.

– Web Apps: The web apps are developed using standard Web technologies
such as Javascript. They are really websites having look and feel like native
apps. They are accessed through a web browser on mobile devices.

– Hybrid Apps: The hybrid apps are developed by embedding HTML5 apps
inside a thin native container.

An Android application is encapsulated as an Android application package file
(APK) 6. An APK file can be decoded into a nearly original form which contains
resources such as source code (e.g., Java) and user interface layout templates in
XML files that define a user interface page or a user interface component if it
is not a HTML5 application. In this study, we only study the native mobile
applications because the user interface templates in XML files can be obtained
by decoding APK files.

3 Our Proposed Approach for Categorizing User Input
Parameters

In this section, we first present an ontology model for expressing common user
input parameters and their relations. Second, we propose an automatic approach
for updating the ontology. Third, we propose an ontology-based approach for
categorizing input parameters.

4 http://www.w3schools.com/htmldom/dom nodes.asp
5 http://www.android.com/
6 http://en.wikipedia.org/wiki/APK (file format)

26 S. Wang et al.

3.1 An Ontology Definition Model

In this study, we build an ontology to capture the common user input param-
eters and the five relations among parameters. Figure 3 illustrates the main
components of ontology definition model and their relations.

Ontology

Attribute Relation
Use0…* 1

has

Equivatence SuperPart-ofKind-of Co-existence

Entity

Fig. 3. Components of ontology definition model

Fig. 4. An example of 4 user inputs parameters: City, Zip Code, Home and Cell

The components are listed as follows:

– Entity: is an input parameter from a website or mobile application, or a
concept description of a group of resources with similar characteristics.

– Attribute: is a property that a parameter can have. There are four attributes:
• Category. The category defines the category information of a parameter.
• Label. The category stores the Label (i.e., a human-readable description)
of an input field from websites or mobile applications.

• Coding Information. The category stores the HTML coding information
(i.e., websites) or XML templates (i.e., mobile applications).

• Concepts. The category stores the concepts related to the parameter.
– Relation: defines various ways that entities can be related to one another.

The five relations are listed as follows:
• Equivalence. Two entities have the same concept such as Zip Code and
Postal Code.

• Kind-of. One entity is a kind-of another one. For example, Home (i.e.,
home phone) is a kind of Telephone Details illustrated in Figure 4.

• Part-of. One entity is a part-of another one, such as Zip Code and Ad-
dress Details illustrated in Figure 4.

• Super. One entity is a super of another. The super relation is the inverse
of the Kind-of relation. For example, Telephone Details is a super of
Home (i.e., home phone) illustrated in Figure 4.

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 27

• Co-existence. Two entities are both a part-of an entity and they are not
in the relation of equivalence, such as City and Zip Code illustrated in
Figure 4.

Usually the user input parameters are terminal concepts [8], such as Phone
Number and Price, which have no sub-concepts. During the process of ontology
creation, we use the UI structure and semantic meanings of the parameters to
identify the relations. If two input elements have the same parent node in an
HTML DOM tree, their relation is co-existence, and the relation between the two
input parameters and their parent HTML DOM node is part-of. For example,
the user input parameters City and Zip Code co-exist and they have a part-of
relation with Address Details in Figure 4. Figure 5 shows the visualization of
the ontology that is built based on the example in Figure 4.

Fig. 5. An example ontology of personal details containing four user inputs parameters:
City, Zip Code, Home and Cell

3.2 Our Approach of Updating Ontology

Once the initial ontology based on the proposed ontology model (Section 3.1) is
established, an automatic approach for updating the ontology is required to add
a new parameter into the ontology. We use WordNet [9], a large lexical database
for English and containing semantic relations between words, to identify the
relations between the new parameter and the existing ones in the ontology.
The following relations of words defined in WordNet are used to identify our 5
relations:

1. If two words have the same synsets, they have a same semantic meaning, we
convert it to Equivalence relation.

2. Hypernym shows a kind-of relation. For example, car is a hypernym of
vehicle. We convert it to a kind-of relation.

3. Meronym represents a part-whole relation. We convert it to a part-of rela-
tion.

4. Hyponym defines that a word is a super name of another. We convert it to
super relation. Hyponym is the inverse of hypernym meaning that a concept
is a super name of another. For example, vehicle is a hyponym of car.

5. We use the part-of relation to identify the co-existence relation. If a word
with another word both have a part-of relation with a same word, this word
and the other word have co-existence relation.

28 S. Wang et al.

3.3 Our Approach for Category Identification

It is important for a pre-filling approach to know the category of a user input pa-
rameter automatically. In this section, we introduce our ontology-based approach
for identifying a category of an input parameter in details. Our approach uses
the proposed ontology definition model proposed in Section 3.1. Our approach
uses two strategies which are listed as follows:
– Concept-based Strategy. This strategy relies on an ontology of user input

parameters to identify a category for a user input parameter automatically.
If two input parameters have the same concepts, these two input parameters
belong to the same category.

– UI-based Strategy. This strategy relies on the design of the UI layouts. We
consider two user input parameters are the nearest neighbours to each other
if their input fields are contained in the same parent UI component. Figure
4 shows an example of 4 user input parameters: City, Zip Code, Home and
Cell. The City and Zip Code are the nearest neighbours to each other since
they have the same parent UI node which has a label Address Details. We
assume that if all the neighbours of a user input have been categorized and
belong to the same category, there exists a high chance that they belong to
the same category.

Given an ontology having a set of parameters, which is denoted as O = <
PO
1 , . . . , PO

n >, where n is the number of parameters, and an input parameter
P , our approach uses the following steps to identify a category for P :
– Step 1. We use WordNet synsets to retrieve synonyms of the concepts of the

parameter P to expand the concept pool (i.e., a bag of words) of P and the
concept pool of each PO

i , where 1 ≤ i ≤ n.
– Step 2. We identify the PO

j (where 1 ≤ j ≤ n) whose concept pool has the
concepts which are the synonyms of (or identical to) any concepts in the
concept pool of P (i.e., having the same semantic meaning).

– Step 3. If multiple parameters in the ontology are identified for P in Step
2, we choose the parameter sharing the most common concepts with the
concept pool of P as the identical parameter to P . We assign the category
of the chosen parameter to P

– Step 4. If no parameter is identified in Step 2, we apply the UI-strategy on
the given ontology O and input parameter P . We identify the neighbors of P
from its UI and repeat Step 1-3 to identify a category for every neighbor. If
any neighbor of P cannot be categorized (i.e., no parameters in the ontology
have the same concepts as the neighbor does) or the neighbors of P have
different categories, we cannot categorize P . If all the neighbors of P belong
to a same category, we assign this category to input parameter P .

4 Empirical Study

In this study, we conduct two studies on different datasets. The first study is
designed to study the different characteristics of parameters and propose cate-
gories for input parameters. The second empirical study is designed to evaluate
the effectiveness of the proposed categories and the approach for categorizing
input parameters.

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 29

4.1 First Empirical Study

We conduct an initial study to understand the nature of user input parame-
ters and categorize the parameters. Understanding the different characteristics
of parameters of different categories can help analyze, process and pre-fill the
parameters differently to improve the accuracy of pre-filling. In this section, we
introduce the study setup, the analysis method and the findings of our empirical
investigation.

4.1.1 Data Collection and Processing
The study is conducted on 30 websites (i.e., 15 shopping websites and 15 travel
planning websites) and 30 mobile applications (i.e., 15 shopping apps and 15
travel apps). We collect the user input parameters from web and mobile appli-
cations in different ways.

Fig. 6. A sample screen shot of source code of an input field

Collecting input parameters from websites: First, we manually visit the website
to bypass the login step. Second, we use Inspect Element7 of Google Chrome8

to collect the following information of a user input parameter:

– Label: The value of the label (i.e., the descriptive text shown to users).
– Attributes: The values of the attributes of the input element such as id

and name. For example, Figure 6 shows the source code of the input field
First Name in Figure 1.

Collecting input parameters from mobile applications: Instead of running each
mobile application, we use Android-apktool 9, a tool for reverse engineering
Android APK files, to decode resources in APKs to readable format. We build a
tool to extract the information of a form from UI layout XML files if exist, then
collect the information related to a user input parameter in the same way as we
collect from websites.

Data cleaning: The extracted information need to be cleaned for further pro-
cessing. For example, the extracted information for the input parameter First
Name in Figure 1 is {First Name, resForm.firstName.value, FirstName, text}
need to be cleaned. We remove the duplicated phrases and programming expres-
sions. For the given example above, the output after cleaning is {First Name,
res, Form, value, text}.
7 https://developers.google.com/chrome-developer-tools/docs/elements
8 https://www.google.com/intl/en/chrome/browser/
9 https://code.google.com/p/android-apktool/

30 S. Wang et al.

Data processing: We manually process the information of parameters as follows:
First, we identify the concepts from the information of a user input parameter.
A concept is a semantic notion or a keyword for describing a subject (e.g.,
“taxi” and “city”). Second, the parameters having the same concepts or same
semantical meanings are merged and considered as one parameter which we save
all the unique concepts for. For example, two input parameters from two different
flight searching websites, one with the label Departure and the other one with
the label Leave should be merged and considered as one parameter having two
concept words Departure and Leave.

4.1.2 Results of First Empirical Study
We collected 76 and 32 unique user input parameters from websites and mobile
applications respectively. Due to the fact that the user input parameters are
repeated among different applications, we observe that the number of unique
parameters identified decreases with the increase of the number of applications
studied. The 76 parameters extracted from the websites (i.e., shopping and
travel) contain all the 32 parameters from mobile applications from the same
domains. This is due to the fact that mobile applications usually are the simpli-
fied versions of corresponding websites.

After studied the user input parameters, we found that input parameters can
be categorized into four categories. The four categories are listed as follows:

– Volatile Parameters: This type of parameters have no change of state. They
can be further categorized into two sub-categories:

• One-Time Parameters: The values of this type of parameters are valid
for one interaction, such as coupon number. This type of parameters
should not be used for pre-filling at all.

• Service-Specific Parameters: The values of this type of parameters can
only be used for a specific service (e.g., a website or a mobile application).
For example, Member ID of the BESTBUY Reward Zone10 in Canada
can only be used for “Sign In” function or “Account Set Up” function
of reward service. When end-users receive a membership card, they need
enter the Member ID to set up an account in BESTBUY Reward Zone.
This type of parameters can be pre-filled, however the parameters cannot
be reused by different services.

– Short-time Parameters: The values of this type of parameters change with
high frequency. For example during the course of conducting an on-line
clothes shopping, an end-user may use the different colors as the search
criteria to find the best suitable clothes from different services for the user,
during a short period of time, the value of the color can be pre-filled. This
type of parameters can be pre-filled and reused by different services, however
it is extremely hard to pre-fill this type of parameters unless some conditions
are met. For example, in the above example of searching clothes, the value
of the color should be pre-filled only if the end-user has not switched to a
new task.

10 https://www.bestbuyrewardzone.ca/

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 31

– Persistent Parameters: The values of this type of parameters do not change
over a long period of time. For example, the gender of the end-user and
permanent home address. This type of parameters are suitable for pre-filling
and being reused across different services.

– Context-aware Parameters: There exist some user input parameters which
are context-dependent, such as the user’s location and current local time.
This type of parameters can be pre-filled based on user’s contextual infor-
mation. The value of a context-aware parameter can be obtained from two
types of data sources:
• Direct Data Sources. The context data is directly available and accessible
with little computation, such as entries in Google calender, time from
mobile phone clock, “my” To-do lists from task manager and a friend’s
preferences on Facebook.

• Analyzed Data Sources.With the accumulation of user history, additional
contextual data can be mined from history data such as user behaviors.
For example, a user always books a round-trip business class flight ticket
from Toronto to Los Angeles for business trips and a round-trip economic
class flight ticket from Toronto to Vancouver for personal trips.

In this paper, we consider only the user input parameters whose values can
be obtained directly from available sources.

4.2 Second Empirical Study

The goals of the second empirical study are to: 1) examine the representativeness
of the proposed categories of parameters; 2) validate the effectiveness of the
approach of updating ontology; 3) test the effectiveness of the proposed approach
for category identification; 4) validate the effectiveness of our proposed categories
on improving existing approaches of pre-filling values to web forms.

4.2.1 Data Collection and Processing
We conduct our second empirical study on 45 websites from three different do-
mains: Finance, Healthcare and Sports (i.e., 15 websites from each domain) and
100 Android mobile Applications from five different categories: Cards& Casino,
Personalization, Photography, Social and Weather in Google Play Market (i.e.,
20 applications from each studied category). The studied websites and mobile
applications are different from the ones studied in our first empirical study. We
use the same approach as discussed in section 4.1.1 to collect user input param-
eters from web and mobile applications. In total, there are 146 and 68 unique
user input parameters from web and mobile applications respectively.

4.2.2 Research Questions
We presents four research questions. For each research question, we discuss the
motivation of the research question, analysis approach and the corresponding
findings.

32 S. Wang et al.

RQ1. Are the proposed categories of parameters sufficient to cover
the different types of user input parameters?

Motivation. The existing tools and approaches do not distinguish the charac-
teristics of user input parameters. The parameters are processed equally. There-
fore the lack of knowledge on the user input parameters negatively impacts the
accuracy of pre-filling approaches, and is the main reason for limited support
of reusing parameters within one application or across multiple applications.
Categorizing the users input parameters can help us in understanding the dif-
ferent characteristics of parameters. Each category of parameters has its unique
characteristics which need to be fully understood.

In Section 4.1, we identified 4 categories for user input parameters via a man-
ual empirical study. In this research question, we validate the proposed categories
to see if they can explain the further unseen user input parameters collected in
the empirical study.

S

S

NE

EEEE

Context-aware?

No

Yes

Short-time?

Yes

No

Persistent? Volatile?

No

Yes Yes

N
No

:Start :End and Can be Categorized :Not Categorized

Fig. 7. The decision tree for the judgment process

Analysis Approach. To answer this question, we study the user input param-
eters collected from the 45 websites and 100 mobile apps. For each user input
parameter, we manually process it to see whether a user input parameter be-
longs to any category or not. The judgment process is based on a decision tree
as shown in Figure 7. When we process a parameter, we first decide whether
it is a context-aware parameter or not. If no, we further decide whether the
parameter can be categorized as a short-time parameter or not. If no, then we
decide whether the parameter is a persistent parameter or not. If no, finally we
decide whether the parameter is a volatile parameter or not. If it is still a no,
the parameter cannot be categorized by using our proposed categories of input
parameters.

Fig. 8. The percentage of each category

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 33

Results. Figure 8 shows that all of the unseen user inputs parameters can be
categorized into our proposed categories and there is no ”not Categorized”. More
specifically, 43% of the parameters are short-time and only 3% of the parameters
are volatile parameters. The results suggest that our categories are enough to
describe all the unique user input parameters in our empirical study.

RQ2. Is the proposed approach for updating ontology effective?

Motivation. Usually the ontologies are created manually by web filling tool
builders or contributors from the communities of knowledge sharing. It is helpful
to have an automatic approach to update and expand the ontologies. We test
the effectiveness of the WordNet-based approach of updating ontology proposed
in Section 3.2.

Analysis Approach. We conduct two experiments to answer this question. In
the first experiment, our approach for updating ontology uses the input param-
eters from one domain of applications to update the ontology to include the
parameters from other domains of applications. In the second experiment, our
approach for updating ontology uses the parameters from one domain of appli-
cations to update the ontology to include the parameters from the same domain
of applications.

To conduct experiment 1, we construct an ontology11, denoted as OInitial,
using the 76 user inputs parameters from the first empirical study (Section 4.1).
Second, we use the ontology OInitial as the existing ontology to include the pa-
rameters of 146 parameters from web applications and 68 parameters frommobile
applications (Section 4.2.1). Third, we compute the precision and the recall of
the approach using Equation (1) and Equation (2) respectively. The precision
metric measures the fraction of retrieved user input parameters that are placed
in the correct place (i.e., having the right relations with other parameters), while
the recall value measures the fraction of correct user input parameters that are
retrieved.

precision =
|{correct Parameters}⋂{retrieved Parameters}|

|{retrieved Parameters}| (1)

recall =
|{correct Paras}⋂{retrieved Paras}|

|{correct Paras}| (2)

The goal of experiment 2 is to see whether we can obtain a better result if we
build a domain dependent ontology for each domain in our empirical study. To
conduct experiment 2, we conduct the following steps on the 45 websites:

1. randomly select 5 of 15 Finance websites and construct the domain spe-
cific ontology for the user input parameters in Finance using the user input
parameters from the selected websites.

2. use the domain dependent ontology of parameters in Finance as an existing
ontology and perform a manual updating on the existing ontology to include
the user input parameters from the rest of 10 Finance websites.

11 https://dl.dropboxusercontent.com/u/42298856/icwe2014.html

34 S. Wang et al.

3. apply the automatic ontology updating approach on the parameters from
the rest of 10 Finance websites to verify its performance.

We replicate the previous steps on 15 Health Care websites and 15 Sports web-
sites. We conduct our analysis on mobile applications in the same way as we do
on websites, the only difference is that we randomly select 5 mobile applications
from each domain. We compute the precision and the recall of the approach
using Equation (1) and Equation (2) respectively.

Table 1. Results of our approach for updating ontology using domain-specific ontology

Type Domain Precision(%) Recall(%)
website Finance 83 66
website Health Care 78 69
website Sports 95 65
mobile Cards&Casino 92 74
mobile Personalization 87 48
mobile Photography 90 62
mobile Social 85 42
mobile Weather 97 85

Results. In the experiment 1, our approach for updating existing ontology ob-
tains a precision of 74% and a recall of 42% on websites, and a precision of 82%
and a recall of 30% on mobile applications. We further investigate our results to
gain further insights regarding the low recalls. We found that 35 of 146 website
user input parameters and 25 of 68 mobile applications user input parameters
can be found in the ontology constructed using the input parameters collected
during the initial empirical investigation. The low recalls indicate that it is hard
to use one general ontology as the existing ontology to include the parameters
from other domains automatically, although the precisions are considerably high.

In experiment 2, Table 1 shows that our approach for updating ontology
obtain a precision of 85% and a recall of 67% on websites, and a precision of
90% and a recall of 62% on mobile applications. The results of our approach in
experiment 1 can be improved by using the domain-specific ontology as the
existing ontology. On average, the approach can be improved by 11% in terms
of precision and 25% in terms of recall on websites, and 8% in terms of precision
and 32% in terms of recall on mobile applications.

RQ3. Is our approach of category identification effective?

Motivation. After showing the representativeness of our categories for input
parameters, we propose an ontology-based approach to identify a category for an
input parameter. In this section, we investigate the effectiveness of our approach
for identifying a category for an input parameter.

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 35

Analysis Approach. To assess the performance of the proposed approach, we
proceed as follows:

1. We use the domain-specific ontologies constructed in RQ2 as the training
ontologies.

2. We categorize the parameters in ontologies by assigning a category to each
parameter.

3. We locate the nearest neighbours for the input parameters which are not in
the training ontologies.

4. We apply our approach on the parameters in Step 3

We compute the precision and the recall of the approaches using Equation
(1) and Equation (2) respectively. The precision metric measures the fraction
of retrieved user input parameter that are categorized correctly, while the recall
value measures the fraction of correct user input parameters that are retrieved.

Table 2. Results of our approach of category identification

Type Domain Precision(%) Recall(%)
website Finance 90 79
website Health Care 92 82
website Sports 89 70
mobile Cards&Casino 90 78
mobile Personalization 91 58
mobile Photography 95 62
mobile Social 77 55
mobile Weather 100 88

Results. Table 2 shows the precision and recall values of our approach to iden-
tify a category for input parameters. On average, our approach can achieve a
precision of 90% and a recall of 77% on websites, and a precision of 91% and
a recall of 68% on mobile applications. Our approach works well on the input
parameters from mobile applications in the domain of weather, because usually
the weather mobile apps relatively have fewer number of input parameters and
very similar functionalities.

RQ4. Can the proposed categories improve the performance of pre-
filling?

Motivation. The existing pre-filling approaches (e.g., [7][14]) treat all the input
parameters equally. They do not take into consideration the characteristics of
input parameters. These approaches are usually based on the string matching or
semantic similarity calculation between the user inputs and the labels of input
parameters (e.g., input fields). Essentially they fill a value to an input field as
long as a match between a user input and an input field is identified, however
the value required by the input parameter may not be suitable for pre-filling due
to curtain conditions as mentioned in Section 4.1.2. In this research question, we

36 S. Wang et al.

evaluate the effectiveness of our categories on improving the existing techniques
of reusing user inputs.

Analysis Approach. To answer this question, we build a baseline approach
which adopts the approach in [7]. The baseline approach [7] pre-fills values to
input parameters based on the semantic similarity between user inputs and tex-
tual information (e.g., words mined from labels and the attributes of HTML
DOM elements defining the input parameters in the user interface) of input pa-
rameters. The baseline approach calculates the similarity between user inputs
and labels of input parameters using WordNet [9]. The stopword removal, word
stemming and non-English words removal are conducted on the textual informa-
tion of input parameters to identify meaningful words. Then, WordNet is used
to expand each word with synsets (i.e., a set of words or collation synonyms) to
retrieve synonyms of the found terms.

We build our approach by enriching the baseline approach with the proposed
categories for input parameters (Baseline + Categories). We evaluate the im-
provement of applying our categories with the baseline approach. Our approach
use the ontology-based approach proposed in Section 3.3 to identify a category
for an input parameter to see whether the input parameter is suitable for pre-
filling or not. If the input parameter is suitable for being pre-filled, our approach
pre-fills an input parameter. We compute precision using Equation (1) and recall
using Equation (2) to measure the improvement. The precision metric measures
the fraction of retrieved user input parameters that are pre-filled correctly, while
the recall value measures the fraction of correct user input parameters that are
retrieved.

To pre-fill input parameters using the user previous inputs, we collect user
inputs through our input collector [6] which modifies the Sahi12 tool to track
the user’s Web activities. The first author of this paper used the tool to track
his inputs on web forms from three domains: Finance, Health and Sports. We
apply both the baseline approach and our approach on the 45 websites.

Table 3. Results of the evaluations of our categories on improving the baseline ap-
proach of filling input parameters

Domain
Baseline Baseline+Categories
Precision(%) Recall(%) Precision(%) Recall(%)

Finance 50 34 64 36
Health 41 22 67 30
Sports 36 16 53 20

Results. Table 3 shows that our approach incorporating categories of input
parameters can improve the baseline approach on average 19% in terms of pre-
cision. We further inspect the results and found that our approach can reduce
the number of wrong filled values compared with the baseline approach. Some of

12 http://sahi.co.in/

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 37

the wrong filled values should not be pre-filled to the input parameters in the
fist place.

5 Threats to Validity

This section discusses the threats to validity of our study following the guidelines
for case study research [10].

Construct validity threats concern the relation between theory and obser-
vation. In this study, the construct validity threats are mainly from the hu-
man judgment in categorizing the parameters and ontology construction. We set
guidelines before we conduct manual study and we paid attention not to vio-
late any guidelines to avoid the big fluctuation of results with the change of the
experiment conductor.

Reliability validity threats concern the possibility of replicating this study. We
attempt to provide all the necessary details to replicate our study. The websites
and mobile apps we used are publicly accessible13.

6 Related Work

In this section, we summarize the related work on form auto-filling approaches.
Several industrial tools have been developed to help users fill in the Web forms.

Web browsing softwares provide Web form Auto-filling tools (e.g., Firefox form
auto-filling addon [2] and Chrome form auto-filling tool [3]) to help users fill in
forms. RoboForm [11] is specialized in password management and provides form
auto-filling function. Lastpass [12] is an on-line password manager and form filler.
1Password [13] is a password manager integrating directly into web browsers to
automatically log the user into websites and fill in forms. These three tools store
user’s information in central space, and automatically fills in the fields with the
saved credentials once the user revisit the page.

Some studies (e.g.,Winckler et al. [14] Bownik et al. [15] Wang et al. [16])
explore the use of semantic web for developing data binding schemas. The data
binding schemas are essential techniques helping connect user interface elements
with data objects of applications. This technology needs an ontology to per-
form the data integration. Instead of focusing on custom ontology, some binding
schemas rely on the emergence of open standard data types, such as Microfor-
mats [17] and Micodata [18]. Winckler et al. [14] explore the effectiveness of the
data schemas and the interaction techniques supporting the data exchange be-
tween personal information and web forms. Wang et al. [6] propose an intelligent
framework to identify similar user input fields among different web applications
by clustering them into different semantic groups. Araujo et. al [7] propose a
concept-based approach, using the semantic of concepts behind the web form
fields, for automatically filling out web forms. Some studies (e.g., [19]) require
apriori ([20]) tagging of websites, or a manually crafted list that includes the la-
bels or names of input element to describe a semantic concept. These approaches

13 https://dl.dropboxusercontent.com/u/42298856/icwe2014.html

38 S. Wang et al.

can only be applicable to a specific domain or need explicit advice from the user.
Hartman and Muhlhauser [4] present a novel mapping process for matching con-
textual data with UI element. Their method can deal with dynamic contextual
information like calendar entries.

All the above approaches do not identify the variety of input parameters and
treat input parameters equally by attempting to fill them into input parameters.
They do not take into consideration the meaning of input parameters. In this
study, we study the nature of input parameters and try to understand them
from the end-user’s point of view, not just by the similarity between the user
inputs and the input parameters. Our study shows that taking into consideration
that characteristics of input parameters via the identified categories significantly
improves the performance of pre-filling.

7 Conclusion and Future Work

Reusing user inputs efficiently and accurately is critical to save end-users from
repetitive data entry tasks. In this paper, we study the distinct characteristics of
user input parameters through an empirical investigation. We propose four cate-
gories, Volatile, Short-time, Persistent and Context-aware, for input parameters.
The proposed categories help pre-filling tool builders understand that which type
of parameters should be pre-filled and which ones should not.

In this paper, we propose an ontology model to express the common param-
eters and the relations among them. In addition, we propose a WordNet-based
approach to update the ontology to include the unseen parameters automatically.
We also propose an approach to categorize user input parameters automatically.
Our approach for category identification uses the proposed ontology model to
carry the category information.

Through an empirical study, the results show that our proposed categories
are effective to explain the unseen parameters. Our approach for updating on-
tology obtains a precision of 88% and a recall of 64% on updating the ontology
to include unseen parameters on average. On average, our approach of category
identification achieves a precision of 90.5% and a recall of 72.5% on the identifi-
cation of a category for parameters on average. Moreover, the empirical results
show that our categories can improve the precision of a baseline approach which
does not distinguish different characteristics of parameters by 19%. Our pro-
posed categories of input parameters can be the guidelines for pre-filling tool
builders and our ontologies can be consumed by existing tools.

In the future, we plan to expand our definition of categories for input param-
eters by considering the scenarios of pre-filling web forms by multiple end-users.
We plan to recruit end-users to conduct user case study on our approach.

Acknowledgments. We would like to thank all the IBM researchers at IBM
Toronto Laboratory CAS research for their valuable feedback to this research.
This research is partially supported by IBMCanada Centers for Advance Studies.

An Empirical Study on Categorizing Input Parameters for User Inputs Reuse 39

References

1. Rukzio, E., Noda, C., De Luca, A., Hamard, J., Coskun, F.: Automatic form filling
on mobile devices. Pervasive Mobile Computing 4(2), 161–181 (2008)

2. Mozilla Firefox Add-on Autofill Forms, https://addons.mozilla.org/en-US/
firefox/addon/autofill-forms/?src=ss (last accessed on February 4, 2014)

3. Google Chrome Autofill forms,
https://support.google.com/chrome/answer/142893?hl=en

(last accesed on February 4, 2014)
4. Hartman, M., Muhlhauser, M.: Context-Aware Form Filling for Web Applications.

In: IEEE International Conference on Semantic Computing, ICSC 2009, pp. 221-
228 (2009)

5. Toda, G., Cortez, E., Silva, A., Moura, E.: A Probabilistic Approach for Automat-
ically Filling Form-Based Web Interfaces. In: The 37th International Conference
on Very Large Data Base, Seattle, Washington, August 29-September 3 (2011)

6. Wang, S., Zou, Y., Upadhyaya, B., Ng, J.: An Intelligent Framework for Auto-
filling Web Forms from Different Web Applications. In: 1st International Workshop
on Personalized Web Tasking, Co-located with IEEE 20th ICWS, Santa Clara
Marriott, California, USA, June 27 (2013)

7. Araujo, S., Gao, Q., Leonardi, E., Houben, G.-J.: Carbon: domain-independent
automatic web form filling. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G.
(eds.) ICWE 2010. LNCS, vol. 6189, pp. 292–306. Springer, Heidelberg (2010)

8. Xiao, H., Zou, Y., Tang, R., Ng, J., Nigul, L.: An Automatic Approach for
Ontology-Driven Service Composition. In: Proc. IEEE International Conference
on Service-Oriented Computing and Applications, Taipei, Taiwan, December 14-
15 (2009)

9. WordNet, http://wordnet.princeton.edu/ (last accessed on March 25, 2013)
10. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. SAGE Publications

(2002)
11. RoboForm, http://www.roboform.com/ (last accessed on March 25, 2013)
12. LastPass, http://www.lastpass.com/ (last accessed on March 25, 2013)
13. 1Password, https://agilebits.com/ (last accessed on March 25, 2013)
14. Winckler, M., Gaits, V., Vo, D., Firmenich, S., Rossi, G.: An Approach and Tool

Support for Assisting Users to Fill-in Web Forms with Personal Information. In:
Proceedings of the 29th ACM International Conference on Design of Communica-
tion, SIGDOC 2011, October 3-5, pp. 195–202 (2011)

15. Bownik, L., Gorka, W., Piasecki, A.: Assisted Form Filling. Engineering the Com-
puter Science and IT, vol. 4. InTech (October 2009) ISBN 978-953-307-012-4

16. Wang, Y., Peng, T., Zuo, W., Li, R.: Automatic Filling Forms of Deep Web Entries
Based on Ontology. In: Proceedings of the 2009, International Conference on Web
Information Systems and Mining (WISM 2009), Washington, DC, USA, pp. 376–
380 (2009)

17. Khare, R.: Microformats: The Next (Small) Thing on the Semantic Web? IEEE
Internet Computing 10(1), 68–75 (2006)

18. Hickson, I.: HTML Microdata, http://www.w3.org/TR/microdata (last accessed
on March 25, 2013)

19. Stylos, J., Myers, B.A., Faulring, A.: Citrine: providing intelligent copy-and-paste.
In: Proceedings of UIST, pp. 185–188 (2004)

20. Apriori, http://en.wikipedia.org/wiki/Apriori_algorithm (last accessed on
March 25, 2013)

https://addons.mozilla.org/en-US/firefox/addon/autofill-forms/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/autofill-forms/?src=ss
https://support.google.com/chrome/answer/142893?hl=en
http://wordnet.princeton.edu/
http://www.roboform.com/
http://www.lastpass.com/
https://agilebits.com/
http://www.w3.org/TR/microdata
http://en.wikipedia.org/wiki/Apriori_algorithm

Analysis and Evaluation of Web Application

Performance Enhancement Techniques

Igor Jugo1, Dragutin Kermek2, and Ana Meštrović1

1 Department of Informatics, University of Rijeka,
Radmile Matejčić 2, 51000 Rijeka, Croatia

{ijugo,amestrovic}@inf.uniri.hr

http://www.inf.uniri.hr
2 Faculty of Organization and Informatics, University of Zagreb,

Pavlinska 2, 42000 Varazdin, Croatia
dkermek@foi.hr

http://www.foi.unizg.hr

Abstract. Performance is one of the key factors of web application suc-
cess. Nowadays, users expect constant availability and immediate re-
sponse following their actions. To meet those expectations, many new
performance enhancement techniques have been created. We have identi-
fied almost twenty such techniques with various levels of implementation
complexity. Each technique enhances one or more tiers of the applica-
tion. Our goal was to measure the efficiency and effectiveness of such
techniques when applied to finished products (we used three popular
open source applications). We argue that it is possible to significantly
enhance the performance of web applications by using even a small set
of performance enhancement techniques. In this paper we analyse these
techniques, describe our approach to testing and measuring their perfor-
mance and present our results. Finally, we calculate the overall efficiency
of each technique using weights given to each of the measured perfor-
mance indicators, including the technique implementation time.

Keywords: Web application, performance, enhancement, techniques.

1 Introduction

Web applications (WAs) have become ubiquitous allowing anyone, even with only
basic IT knowledge, to start an online business using a free and open sourced
WA or a commercial one. There are three basic factors that have led to great
importance of their performance today. First, the spread of broadband Internet
connections has changed visitors expectations and tolerance to waiting for the
application to respond, lowering the expected time to 1 or 2 seconds. The second
factor is the increasing workload generated by the constantly growing number of
Internet users. The third factor is the new usage paradigm (user content creation
= write-intensive applications) that has been put forth by Web 2.0. All this has
increased the pressure on performance of web applications. Our research had
the following objectives: a) make a systematic overview of various techniques

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 40–56, 2014.
c© Springer International Publishing Switzerland 2014

http://www.inf.uniri.hr
http://www.foi.unizg.hr

Analysis and Evaluation of Web Application Performance 41

for enhancing WA performance, b) experimentally test, measure and evaluate
the effectiveness of each technique, and c) measure the effect of these techniques
on WA quality characteristics. The hypotheses we set were: a) it is possible to
significantly increase application performance on the same hardware basis, in-
dependently of its category (type), by using even a small subset of performance
enhancement techniques and b) implementation of performance enhancement
techniques has a positive effect on the quality characteristics of such applica-
tions (efficiency, availability, reliability). The first hypothesis will be confirmed
by achieving a 30% or more increase in throughput, while keeping the 90% of
response times under 2 seconds and the average CPU usage under 70%. The
second hypothesis will be confirmed by achieving a 10% or more decrease in
average CPU usage, while still enhancing the throughput for at least 30%. In
order to confirm our hypotheses experimentally, we selected three well known
open source applications of different categories. The applications that we selected
were: a) Joomla content management system (marked APP1 in this paper), b)
PhpBB online community system (APP2) and c) OsCommerce e-commerce sys-
tem (APP3). We have selected these applications because they have been under
development for a long period of time; they are the solution of choice for many
successful web companies and are used by millions of users every day.

The paper is organized into six sections. Section Two describes the theoretical
foundation of this research and situates the work in the area. Section Three
presents some motivations for performance enhancement of web applications,
possible approaches and an overview of our analysis of performance enhancement
techniques. In Section Four we present our experiment and discuss the results.
In Section Five we calculate the effectiveness of each technique which suggest
implications for the problem of performance enhancement technique selection in
relation to the type and workload of WA whose performance we are trying to
enhance. Finally, Section Six draws conclusions and suggests further work.

2 Background

There are three basic approaches to enhancing performance of WAs. While
caching and prefetching are well known from other areas of computing, response
time and size minimization is a relatively new approach developed by some of
the most visited applications on the World Wide Web (Web) today. In this sec-
tion we will point out some of the most important work within these approaches.
Caching is one of the oldest methods of performance enhancement used in various
information systems. In the area of web application development, caching has
been analyzed in [18], [14], [5], [2] and [24], while various caching strategies have
been analyzed in [25]. Another expanding area of performance enhancement is
prefetching, i.e. preparing and/or sending data that is most likely to be requested
after the last request. Domenech analyzed the performance of various prefetch-
ing algorithms in [8] and created prefetching algorithms with better prediction
results in [7]. One of the crucial elements of prefetching is the prediction on
which content will be requested next. Prediction is usually based on the analysis

42 I. Jugo, D. Kermek, and A. Meštrović

and modeling of user behavior as described [9], or by extracting usage patterns
from web server logs, which has been done in [16] and in [11]. Adding a time
component to better determine the optimal time for prefetching web objects was
suggested in [15]. The latest approach is response time and size minimization.
This approach is based on the experiences and methods developed by profes-
sionals that constructed some of the most popular applications on the Internet
today, such as like Yahoo.com [26] and Flickr.com [10]. As said earlier Web 2.0
and AJAX have caused a paradigm shift in WA usage, which also brought on
a change in the nature of WA workload. This was analyzed in [21],[20] and in
[19]. Throughout 2009 and 2010, authors have studied the possibilities for the
overall application performance enhancement [22], [6]. In this paper we analyze
techniques based on all the mentioned approaches and measure their effect on
the performance of WAs.

3 Performance of Web Applications

The quality, and with that, the performance of WAs is primarily defined by
the quality of its architecture. Badly planned elements of application architec-
ture can limit or completely block (by becoming a bottleneck) the expected or
needed levels of performance. With the new focus on the importance of appli-
cation performance, production teams have begun to implement performance
risk management in all phases of its lifecycle. According to the Aberdeen group
research [1], companies that have adopted performance management in the form
of the ”Pressures, Actions, Capabilities, Enablers” (PACE) model have seen a
106% increase in availability, 11.4 times better response times and 85% problem
solving rate before the problem becomes obvious to their users. However, there
are already many WAs used worldwide, and with the rise in the number of users,
their performance has to be enhanced to meet the desired service levels. The mo-
tivation for performance enhancement usually comes from three main directions:
a) the desire to increase the number of users or profit, b) expected and planned
peak workload periods and c) performance enhancement based on a business
plan, or inspired by a real or expected (projected) performance problem with
a goal of ensuring availability and efficiency under increased workload. Perfor-
mance enhancement is always a tradeoff between the number of opposing factors
like hardware and working hours investment limits, desired response times and
throughput values, etc. In our research we had to balance between two limiting
factors (response time and CPU usage) while trying to maximize a third one
(throughput).

These factors can be visualized as given in Figure 1. The X axis shows the
response time, with a maximum value of eight seconds, which was considered by
some authors to be the limit of tolerable waiting time a few years ago. We believe
that today, this limit for an average user is much lower so we have set the average
response time for 90% of requests to 2 seconds. The Z axis displays the average
CPU usage during load tests. The usage limit here has been set to 70% accord-
ing to some best practices in the hardware industry (constant usage over 70%

Analysis and Evaluation of Web Application Performance 43

Fig. 1. Performance enhancement area

significantly raises malfunction probability and shortens the Mean Time Between
Failure (MTBF), along with the Total Cost of Ownership (TCO)). In this way,
we have set the margins of an area within which we can try to achieve the highest
possible throughput (Y axis) by implementing various performance enhancement
techniques.

Performance enhancement requires a complete team of experts from all fields
of WA development - from front-end (HTML, CSS, JavaScript) to back-end
(database design, SQL queries, DBMS configuration and administration) in or-
der to plan and implement performance enhancement techniques, as well as verify
changes through benchmarking. Such teams must also check the performance of
application architecture at each level, as some techniques may have hidden ef-
fects that can propagate throughout the application and even cause a decrease
in the performance at another level. Some techniques require additional services
that must be installed on the server. This increases the complexity of applica-
tion architecture and increases CPU and memory usage (if additional services
are running on the same server), which has to be taken into account when doing
post-implementation load testing. When trying to enhance the performance of
a WA, a starting approach can be general systems theory that considers the
application to be a black box with a large number of requests per second as
input, and a large number of responses per second as output. When we start to
decompose the black box into subsystems, we identify the ones that spend most
of the time needed to generate responses. If one subsystem takes 80% of this
time, then our choice is to try to enhance the performance of that subsystem,
instead of another subsystem that spends just 5% of the time. After enhancing
performance of one subsystem, another becomes the primary bottleneck. It is an
iterative process of defining quantitative parameters that define the acceptable
behavior of the system, benchmarking, identifying of bottlenecks, modifying, and

44 I. Jugo, D. Kermek, and A. Meštrović

benchmarking again. Performance measuring is a process of developing measur-
able indicators that can be systematically tracked for supervising advances in
service level goal fulfillment. With WAs, there is usually a discrepancy between
the required or expected, and real performance results. Performance levels can
address quality, quantity, time or service price. There are two basic approaches
to performance measuring: benchmarking and profiling. While benchmarking an-
swers the question how well the application works, profiling answers the question
why does the application have such performance. In this research we have used
both approaches to measure the overall performance, as well as to profile the
response time structure of individual requests. There are dozens of parameters
that can be measured while benchmarking a production or a staging version
of an application, which are selected based on identified bottleneck or perfor-
mance enhancement goals. It is usually not possible to test the application in
production environment, so we use test versions, or test part(s) of a cluster, and
use an artificial workload. Workload modeling is a very important part of the
performance benchmarking process. To achieve the correct measurements, the
artificial workload must mirror the sample of the real workload, i.e., live users
of the application. This can be achieved using different data sources: real time
user observations, planned interactions or log file analysis. Test workload im-
plementation must be as realistic as possible; otherwise, incorrect data may be
collected and wrong decisions could be made.

Peformance Enhancement Techniques. Over the years of Web development
and research, many different performance enhancement techniques (some more,
some less complex to implement) have been proposed and used in practice. As the
nature and complexity of the content offered online have changed [23], so have
the techniques for performance enhancement. During our preliminary research
of this subject we have identified many different techniques aimed at enhancing
the performance of multi-tier web application architecture. Some of them are
now obsolete; some are effective only with highly distributed systems; others are
effective only at most extreme workloads where even 1kB makes a difference;
etc. In our research we have analyzed those techniques that are currently most
widely used and can be implemented on most WAs in use today - 19 techniques
in total (as shown in Table 1). These techniques have been analyzed in the fol-
lowing manner: we defined the objective of each technique and the way in which
it tries to achieve its objective, described the implementation process and gave
an estimate of duration. Selected techniques have been sorted by the tier of WA
architecture that they affect. As expected, the lowest number of techniques affect
the business logic tier of application architecture. Although the business logic
of an application can cause the bottleneck effect, it is by far the most expen-
sive and complex problem to resolve which cannot be done by any enhancement
technique. If the business logic of the application appears to be the causing the
bottleneck, that is an indication of bad architecture decisions or implementation.
When functioning normally, code execution takes from 5-15% of total response

Analysis and Evaluation of Web Application Performance 45

Table 1. List of analyzed techniques

No code changes required Code changes required

T1 Caching objects using HTTP expires T2 Reducing number of HTTP requests
Compressing textual content Positioning of HTML content objects
JavaScript minification and obfuscation Reducing number of DNS requests
Reducing size of graphical objects Managing redirects
RDBMS conguration tuning Delayed content download

T3 Caching of interpreted PHP scripts Enhancing performance of core logic
Standalone PHP application server T4 Caching query results (Memcache)
Choice of web server Query and database optimization

T5 Web server conguration tuning Using stored procedures
T6 Caching pages using a proxy server

(round trip) time and as such it is not a particularly fruitful subsystem for
performance enhancement. According to [26], most of the response time is spent
on content delivery (up to 80%) and query execution (database lag), so most of
the analyzed techniques try to enhance the performance of these subsystems.

All the techniques displayed in Table 1 have been analyzed in detail. Due to
the limited scope of this paper, we omit a detailed analysis which can be found
in [13]. The analysis consists of 6 properties: 1) Tier - of the WA architecture
affected by the technique, 2) Idea - basic explanation of how the technique in-
creases performance, 3) Implementation - how is the technique implemented, 4)
Time - how long it took us (on average if not stated differently) to implement
this technique in the three applications used in this research. Implementation
time for these techniques will vary with respect to the size and complexity of
the application (e.g. amount of code, number of servers), 5) Expected results
- performance characteristics the technique affects and 6) Verification - how is
the performance gain measured. For the experimental part of our research we
have selected six techniques with various degrees of complexity and implemen-
tation time. Those techniques have been selected based on the assumption that
they will have the highest impact on the overall performance of WAs that have
been used in this research. A list of analyzed techniques, as well as those that
have been selected for experimental testing, can be seen in Table 1. Techniques
selected for the experimental part of our research are labeled with T1-T6.

4 Performance Testing and Analysis

In the experimental part of our research we used three open-source WAs of dif-
ferent types/categories: portal (Joomla), community (PhpBB), and e-commerce
(OsCommerce) to implement and test the effectiveness of performance enhance-
ment techniques.

46 I. Jugo, D. Kermek, and A. Meštrović

Fig. 2. Workload model for APP2 (Forum)

4.1 Preparation Phase

The first step of the research was to develop a realistic workload model (for
all three applications) that will be used in all performance tests. Test work-
loads were modeled using various approaches: server log analysis (requires shell
scripting to extract usage patterns), planned interactions (set by probability or

Analysis and Evaluation of Web Application Performance 47

importance, e.g. product browsing in an e-commerce application has the highest
probability) and real user auditing. More about these approaches can be found
in [17]. Figure 2 displays the workload model developed for load testing APP2.
All actions (HTTP requests) on the baseline will be executed each time the test
is performed, while others have a probability indicated on the connecting lines.
The test can be described in the following way: all users start at the home page,
most of them log on to the system, while some register and some (10%) will
remain as guests. About 40% of users will use the search option. Visitors then
look at one of the three popular pages (members list, who’s online and a users
profile). Then they look at three forums (two of them are most popular while
the third one is randomly selected) and look at one topic inside those forums.
When accessing the topic page some users start at the first post, others go di-
rectly to the last page and some select one of the pages of the topic. A third
of the visitors will post a message to the forum. Finally, they will go back to
the home page (check that there are no more new posts) and leave the page.
Workload models for other applications were developed in a similar fashion (ie.
most popular articles on the portal, featured products in the webshop). To im-
plement workload models and perform load tests the JMeter [3] tool was used.
With complex test models we simulated many requests from the individual user
which were randomized by timers (simulating pauses for reading, thinking and
form submissions) and random branching (between sets of actions). To ensure
randomization of URL requests, test data sources (TXT files) were prepared
from the real WA databases. These TXT files are constructed by selecting a
subset of primary key identifiers from the real application database and written
in a tab delimited format. JMeter then reads one line from the TXT file for test
run and adds identifiers to the generated HTTP requests (links). In this way we
can simulate the behavior of real users (reading about products, commenting

Fig. 3. JMeter aggregate graph

48 I. Jugo, D. Kermek, and A. Meštrović

products, adding products to cart, making purchases, etc.). After the workload
models were designed and implemented we tested them and verified that they
executed correctly (reading identifiers from TXT files, adding them to HTTP
requests, all response codes 200, database inserts correct, etc.). After the work-
load models were developed and implemented as load tests in JMeter we had to
find a way to log data about hardware utilization during the tests. We decided
to use Linux command line tool vmstat which proved to provide enough data
on a fine enough time scale with a small enough footprint on server CPU us-
age. The next step was preparing data visualizations for the analysis phase. The
first visualization was done by JMeter. After performing a test, JMeter displays
data about each performed request, such as response time and server response,
and calculates throughput and average response times. JMeter then offers to
generate various visualizations based on this data. In relation to our first mea-
suring constraint (90% of all requests under 2 seconds) we chose to generate an
aggregate graph (shown in Figure 3) that displays average response times for
each HTTP request (link) defined in the workload model. We have also used
Httpload [12] and ab [4] for fast tests and to verify the results recorded by
JMeter. The second visualization was done after the collected hardware utiliza-
tion data was processed using an awk script (to remove unnecessary columns
and calculate column averages) and handed over to a gnuplot script we devel-
oped for this research. Figure 4 demonstrates the output of our gnuplot script.
Duration of the test is shown on the X axis in each chart. This visualization

Fig. 4. Hardware utilization visualization (vmstat >awk >gnuplot)

Analysis and Evaluation of Web Application Performance 49

consists of six charts representing various hardware utilization metrics received
from vmstat. Some charts contain two data series. The top most graph on the
left hand side displays the number of processes waiting during the test (lower
number of processes waiting means lower response time), middle-left displays the
amount of free memory, and bottom-left the amount of memory used for cache
(more data in the cache means lower response time and higher throughput).
The top right hand side graph displays the number of writes on the disc (the
more files are cached, the less time is spent fetching data from the hard drive,
resulting in lower response time, higher throughput and lower CPU usage). The
middle-right graph contains two data sets: the number of interrupts and the
number of context switches (the higher these values are, the higher CPU usage
is, which results in higher response time and lower throughput). The bottom-
right graph displays CPU usage during the test and 2 lines: one is the 70% limit
set as one of the two main constraints, and the other is the calculated average
of CPU usage during the test. The calculated average for the duration of the
test had to be less than or equal to 70%. We increased the load on the test
server by increasing the number of simulated users in JMeter test plans, until
we came as close as possible to one or both limiting factors. Then we performed
the three official tests (following the procedure described the following section).
All tests were performed in an isolated LAN consisting of a load generator PC,
a 100Mbit passive switch and the testbed PC. The testbed PC had the following
hardware configuration: Asus IntelG43 Chipset, CPU: Intel Core2Duo 2.5Ghz,
1MB Cache, RAM 4GB DDR2, HDD WD 250GB SATA, OS Debian Linux.
Network bandwidth was not a bottleneck in any of the preparation tests so we
did not measure network usage.

4.2 Testing Phase

Before starting load tests we analyzed each application (file structure, number
of files included per request, number of graphical objects, measured individual
request response time). An important measure was the number of SQL queries
performed per request. While the first two applications performed 28 and 27
queries, the third one did 83, which was a probable bottleneck. The testing phase
consisted of 3 stages. First, we measured the initial performance of all three ap-
plications (after installation, using a test data set). Second, we implemented one
of the selected performance enhancement techniques and repeated the measure-
ment to determine the effect of the technique on performance (we performed this
test 3 times). Then the application was restored to its initial state. This pro-
cess was repeated for each technique. Third, we implemented all of the selected
techniques to all three WAs and made the final performance measurement to
determine final performance enhancement achieved using these techniques. In
total we performed over 200 load tests. When doing performance testing, ensur-
ing equal conditions in order to achieve the correctness of the acquired data is
obligatory and was integrated in our testing procedure:

50 I. Jugo, D. Kermek, and A. Meštrović

For APP1, APP2, APP3

For Technique T1 - Tn

Implement technique Tn

Run multiple tests until as close as possible to two

limiting factors // increment number of simulated users

Reset()

Restart server (clear memory, cache, etc.)

Run a warm-up test (prime caches)

Repeat 3 times

Run test and gather data (JMeter, vmstat)

Reset()

Remove implementation of technique Tn

Reset()

Reset database to initial state (remove inserts from the

previous test)

Reset server logs

We have performed each test three times for each implemented technique in order
to get a more robust measurement and reduce the possibility of errors. Aver-
age values have been calculated from these measurements and are displayed in
Table 2. Before starting our measurements, we set the throughput as the key
performance indicator. Our goal was to enhance it using various performance
enhancement techniques. The limiting factors were: a) average response
time for the 90% of requests had to be less than 2 seconds and b)
average CPU utilization had to be kept below 70%. First, we present
the results obtained from the initial testing, then the results for each technique,
and, lastly, the final testing results. These results display only the values of the
aforementioned key performance characteristics. During each benchmark we col-
lected data for 10 performance indicators which will be taken into consideration
later. Second, we display the overall results that confirm our hypotheses. Third,
we take into consideration all the data obtained from benchmarking and add
weights to each performance indicator in order to define the effectiveness of each
technique.

4.3 Results

The summary of our measurements is presented in Table 2. Let us first explain
the structure of the Table. The markings in the first column are: B (for Be-
ginning) - this row displays data about the initial performance of un-altered
applications (after installation); T1-T6 (for Technique) - these rows display data
about performance after each of the techniques was implemented individually; F
(for Final) displays data about the performance of applications after all six tech-
niques were implemented and finally C (for Comparison) displays data about the
performance of applications under the same workload used in the B row. For each
application there are three columns: The Response time (in miliseconds) is given

Analysis and Evaluation of Web Application Performance 51

Table 2. Overall load testing results

- APP1 Portal - APP2 Forum - APP3 Webshop

RT T U RT T U RT T U
(ms) (R/s) (%) (ms) (R/s) (%) (ms) (R/s) (%)

B 834 8,3 69 791 15,2 66 794 24 66
T1 1025 8,3 68 661 16,8 67 794 24 66
T2 816 8,4 67 789 16,4 67 857 27 67
T3 793 14,4 68 815 32,3 69 1218 35 67
T4 858 13,5 68 958 16,8 69 993 25 67
T5 823 8,6 67 527 15,8 66 726 25 69
T6 958 8,4 69 954 17 70 1670 25 66
F 614 24,9 68 671 38,5 68 1740 35 64
C 91 8,5 21 58 16 23 442 24,1 48

LEGEND: RT= Response time, T = Throughput, U = Utilization, ms =
miliseconds, R/s = Requests per second, CPU = average percent of CPU
utilisation (measured by vmstat).

in the first column, the Throughput (in requests/second) in the second, and the
CPU utilization (average, in %) in the third column. Although some techniques
appear to increase the average response time and do not increase the overall
throughput, they have a positive effect on other performance indicators that
were measured and will be discussed later on. Furthermore, the first technique
reduces individual response time which is not visible here, but can be observed
in individual response profiling using YSlow (a Firefox profiling add-on). It can
be seen that PHP script caching using APC (T3) clearly has the biggest im-
pact on the performance of all tested applications. Storing SQL query data in
memory cache using Memcache (T4) follows closely being the second most ef-
fective with two of three applications. We can also see that different techniques
have different effects on each application. The comparison row (C) demonstrates
the performance of applications under the same beginning workload, which was
the highest possible before the implementation of all performance enhancement
techniques. This data shows how the application would perform under normal
daily workload, after its performance has been enhanced using the 6 mentioned
techniques. In this row we can see that the throughput value has decreased sig-
nificantly. This is caused by the fact that JMeter uses the number of simulated
users/second (which is one of the arguments used when starting the load test)
to calculate throughput. To make the comparison we had to use the load that
was used to make the initial performance measurement for the WAs in their
original (un-enhanced) state. Therefore, the number of simulated users/second
was much smaller than it was for the final versions of WAs with all 6 techniques
implemented. The result of final load testing also demonstrates that combining
all of the techniques has a cumulative effect, because the maximum throughput
for APP1 and APP2 is higher than the contribution of any individual technique.
This was expected based on the effect of performance enhancement techniques

52 I. Jugo, D. Kermek, and A. Meštrović

Fig. 5. Final performance enhancement results

on other performance indicators we observed (which will be described in the fol-
lowing section). This was not the case with APP3, whose maximum throughput
was limited by database lag (due to the large number of database queries per
request (an architectural problem)). To visualize the performance improvements
we chose three key indicators - response time, throughput measured by num-
ber of requests/second (displayed in Column ”T” in Table 2) and throughput
measured by the number of users/second (not displayed in Table 2, but mea-
sured along with other indicators listed in Table 3). The differences between the
values of these indicators in the first(B) and final (F) measurements are given
in Figure 5 (a), (b) and c) respectively. The average response time for APP1
and APP2 was reduced even with a much higher workload while the throughput
was increased by almost three times. For APP3, our hypothesis was confirmed
(we achieved a 30% increase in throughput) but due to the very large number
of database queries performed for each request, the increase in throughput was
almost 2 times smaller than with APP1 and APP2. The increase in response
time is caused by the same problem but within the limit of 2 seconds average
for 90% of requests.

5 Calculating Technique Effectiveness

Although the results obtained show that it is possible to significantly enhance the
performance of various types of WAs by using just a small subset of performance
enhancement techniques, we were interested in defining an overall ”quality indi-
cator” of used techniques for each application type, and checking whether they
appear in the same order with all WAs. This would mean that there is a uniform
top list of techniques that can be implemented on any web application. To pre-
cisely determine the efficiency and effectiveness of a technique, we took all the
recorded indicators into consideration. The full list of indicators whose values
have been recorded during testing is displayed in Table 3. The most important
indicator (after the three previously mentioned) is the time needed to implement
the technique, which we recorded for each technique. Each indicator is given a

Analysis and Evaluation of Web Application Performance 53

Table 3. List of indicators with appointed weights

No Name Weight Proportional Acquired from

1 Response time 5 Inversely JMeter
2 Throughput (requests/sec) 5 Directly JMeter
3 Throughput (users/sec) 5 Directly JMeter
4 Utilization (cpu) 2 Inversely vmstat
5 Processes waiting 4 Inversely vmstat
6 RAM usage 2 Directly vmstat
7 Cache mem. usage 3 Directly vmstat
8 Disc usage (writes) 3 Inversely vmstat
9 Context switches 4 Inversely vmstat
10 Implementation time 5 Inversely Measured / Estimated

weight (range 1-5), marking its importance in the overall performance gains. The
weights were given according to our perception of each indicators importance in
the overall performance enhancement. The column titled ”Proportional” indi-
cates whether the measured indicator is directly or inversely proportional to the
technique effectiveness. Directly proportional means the higher the measured
value, the better, while inversely proportional means the lower the value, the
better, e.g. an increase of requests per second is directly proportional while the
implementation time is inversely proportional. We measured the time needed for
one developer to implement the technique (change server configuration, change
application configuration, change code of the application) in each application. To
determine the ”quality indicator” of a technique we used the following procedure
and equations.

For each WA (APP1, APP2, APP3)

For each technique (T1-T6)

For each of 10 performance indicators

Calculate the effect E of indicator n using the value of

indicator Vn in relation to the indicators maximum value change

(Cnmax) and minimum indicators value change (Cnmin). Depending on

whether the indicator is inversely proportional or directly

proportional formulas (1) or (2) are used (respectively)

En = Cnmax − Vn/Cnmax − Cnmin . (1)

En = Vn − Cnmin/Cnmax − Cnmin . (2)

Calculate indicator weight using (3)

Wi = Wn/Wmax . (3)

54 I. Jugo, D. Kermek, and A. Meštrović

Sum up to get the technique efficiency using (4)

∑
Ti =

10∑
i=1

Wi ∗ Ei . (4)

In this way, we calculated the top list of performance enhancement techniques
with respect to type/category of the WA. The results are displayed in Table
4. Technique 1 (Reducing number of HTTP requests) was not implemented on
APP 3 (marked ”N/A” in Table 4.) because there were not enough graphical
objects that could have been merged into a single larger one. It is clear that
the order (ranking) of techniques is different for each type of application. A few
important conclusions can be made from these calculations and will be used as
problem guidelines in our future work. First, we don’t have a framework that
defines which techniques to use for each type of WA. It is clear that the subset
of techniques to be used for performance enhancement must be tailored to the
specific application. Secondly, there are a number of factors that influence the
decisions about the techniques to be used such as: the goals of performance
enhancement (what aspect of performance are we trying to enhance), the type
of content the WA delivers (e.g. text, graphic objects, large files, video, etc.) and
the specific workload. In our future work we will repeat these measurements on
a larger number of (various types of) WAs and try to develop and verify such
a framework for identifying a subset of techniques that yields the best results
based on these factors.

Table 4. Overall ranking of performance enhancement techniques effectiveness

No Technque APP1 APP2 APP3

1 Reducing number of HTTP requests 5 3 N/A
2 Caching objects using HTTP Expires 3 1 3
3 Caching of interpreted PHP scripts (APC) 2 2 1
4 Caching query results (memcache) 1 6 4
5 Web server conguration tuning 6 5 4
6 Caching objects using proxy server (Squid) 4 6 2

6 Conclusion

Static websites are rapidly being replaced by web applications, and the ever in-
creasing number of Internet users demands more and more functionality while
expecting lower and lower response time. Web 2.0 has brought about a paradigm
shift which changed the structure of workload, moving it from read-intensive to
write-intensive. Therefore, the performance of WAs has become one of the focal
points of interest of both scientists and professionals in this field. The goal of
performance enhancement has to be set before any of the techniques are im-
plemented or tests performed. This goal depends on the problem perceived in

Analysis and Evaluation of Web Application Performance 55

the performance of an application and can be aimed at any aspect of its perfor-
mance (e.g. minimizing CPU or memory usage). In this research, our goal was
to maximize throughput and lower response time of different finished systems
(web applications) on the same hardware basis. Performance measurement itself
is a complex process that requires careful monitoring of the real workload, iden-
tification of bottlenecks, planning and modelling test workloads, identifying key
characteristics, goals, technical knowledge on all elements of the content creation
and delivery system, etc. We have proved that it is possible, in a controlled en-
vironment at least, to significantly enhance the performance of WAs using just
a small set of performance enhancement techniques with a total implementa-
tion time ranging from 10 to 50 working hours for applications running on one
multiple-role (e.g. web, proxy, application) server. We found that the results of
each technique vary from application to application and that further research is
needed to develop a generalised framework that would take into consideration
all the factors mentioned above (goals, content type, system architecture, etc.)
and suggest what techniques would be best suitable for a selected application.

References

1. Aberdeen Group: Application Performance Management,
http://www.aberdeen.com/Aberdeen-Library/5807/

RA-application-performance-management.aspx

2. Amza, C., Soundararajan, G., Cecchet, E.: Transparent Caching with strong con-
sistency in dynamic content web sites. ICS Boston (2005)

3. Apache JMeter, http://jakarta.apache.org/jmeter

4. ApacheBenchmarkTool,http://httpd.apache.org/docs/2.0/programs/ab.html
5. Bahn, H.: Web cache management based on the expected cost of web objects.

Information and Software Technology 47, 609–621 (2005)

6. Bogardi-Meszoly, A., Levendovszky, T.: A novel algorithm for performance predic-
tion of web-based software system. Performance Evaluation 68, 45–57 (2011)

7. Domenech, J., Pont, A., Sahuquillo, J., Gil, J.A.: A user-focused evaluation of
web prefetching algorithms. Journal of Computer Communications 30, 2213–2224
(2007)

8. Domenech, J., Pont, A., Sahuquillo, J., Gil, J.A.: Web prefetching performance
metrics: a survey. Performance Evaluation 63, 988–1004 (2006)

9. Georgakis, H.: User behavior modeling and content based speculative web page
prefetching. Data and Knowledge Engineering 59, 770–788 (2006)

10. Henderson, C.: Building Scalable Web Sites. OReilly, Sebastopol (2006)
11. Huang, Y., Hsu, J.: Mining web logs to improve hit ratios of prefetching and

caching. Knowledge-Based Systems 21, 149–169 (2008)

12. Http Load Tool, http://www.acme.com/software/httpload/

13. Jugo, I.: Analysis and evaluation of techniques for web application performance
enhancement, Master of Science Thesis, in Croatian (2010)

14. Khayari, R.: Design and evaluation of web proxies by leveraging self- similarity of
web traffic. Computer Networks 50, 1952–1973 (2006)

15. Lam, K., Ngan, C.: Temporal prefetching of dynamic web pages. Information Sys-
tems 31, 149–169 (2006)

http://www.aberdeen.com/Aberdeen-Library/5807/RA-application-performance-management.aspx
http://www.aberdeen.com/Aberdeen-Library/5807/RA-application-performance-management.aspx
http://jakarta.apache.org/jmeter
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.acme.com/software/httpload/

56 I. Jugo, D. Kermek, and A. Meštrović

16. Liu, H., Keelj, V.: Combined mining of Web server logs and web contents for
classifying user navigation patterns and predicting users future requests. Data and
Knowledge Engineering 61, 304–330 (2007)

17. Meier, J.D., Farre, C., Banside, P., Barber, S., Rea, D.: Performance Testing Guid-
ance for Web Applications. Microsoft Press, Redmond (2007)

18. Na, Y.J., Leem, C.S., Ko, I.S.: ACASH: an adaptive web caching method based
on the heterogenity of web object and reference characteristics. Information Sci-
ences 176, 1695–1711 (2006)

19. Nagpurkar, P., et al.: Workload characterization of selected J2EE-based Web 2.0
applications. In: 4th International Symposium on Workload Characterization, pp.
109–118. IEEE Press, Seattle (2008)

20. Ohara, M., Nagpurkar, P., Ueda, Y., Ishizaki, K.: The Data-centricity of Web 2.0
Workloads and its impact on server performance. In: IEEE International Sympo-
sium on Performance Analysis of Systems and Software, pp. 133–142. IEEE Press,
Bostin (2009)

21. Pea-Ortiz, R., Sahuquillo, J., Pont, A., Gil, J.A.: Dweb model: Representing Web
2.0 dynamism. Computer Communications 32, 1118–1128 (2009)

22. Ravi, J., Yu, Z., Shi, W.: A survey on dynamic Web content generation and delivery
techniques. Network and Computer Applications 32, 943–960 (2009)

23. Sadre, R., Haverkort, B.R.: Changes in the web from 2000 to 2007. In: De Turck,
F., Kellerer, W., Kormentzas, G. (eds.) DSOM 2008. LNCS, vol. 5273, pp. 136–148.
Springer, Heidelberg (2008)

24. Sajeev, G., Sebastian, M.: Analyzing the Long Range Dependence and Object
Popularity in Evaluating the Performance of Web Caching. Information Technology
and Web Engineering 4(3), 25–37 (2009)

25. Sivasubramanian, S., Pierre, G., van Steen, M., Alonso, G.: Analysis of Caching
and Replication Strategies for Web Applications. Internet Computing 11(1), 60–66
(2007)

26. Souders, S.: High Performance Web Sites. O’Reilly, Sebastopol (2007)

CRAWL·E: Distributed Skill Endorsements

in Expert Finding

Sebastian Heil, Stefan Wild, and Martin Gaedke

Technische Universität Chemnitz, Germany
firstname.lastname@informatik.tu-chemnitz.de

Abstract. Finding suitable workers for specific functions largely relies
on human assessment. In web-scale environments this assessment exceeds
human capability. Thus we introduced the CRAWL approach for Adap-
tive Case Management (ACM) in previous work. For finding experts in
distributed social networks, CRAWL leverages various Web technologies.
It supports knowledge workers in handling collaborative, emergent and
unpredictable types of work. To recommend eligible workers, CRAWL
utilizes Linked Open Data, enriched WebID-based user profiles and in-
formation gathered from ACM case descriptions. By matching case re-
quirements against profiles, it retrieves a ranked list of contributors. Yet
it only takes statements people made about themselves into account. We
propose the CRAWL·E approach to exploit the knowledge of people about
people available within social networks. We demonstrate the recommen-
dation process for by prototypical implementation using a WebID-based
distributed social network.

Keywords: Endorsements, Expert Finding, Linked Data, ACM,WebID.

1 Introduction

Knowledge work constitutes an ever increasing share of today’s work. The nature
of this type of work is collaborative, emergent, unpredictable and goal-oriented.
It relies on knowledge and experience [17]. Traditional process-oriented Business
Process Management (BPM) is not well applicable to areas with a high degree
of knowledge work [21]. Addressing this issue, non-workflow approaches [5], in
particular Adaptive Case Management (ACM), gain more relevance [8].

ACM systems assist knowledge workers. They provide the infrastructure to
handle dynamic processes in a goal-oriented way. Traditional BPM solutions
feature a-priori processes modeling. Contrary to them, ACM systems enable
adaptivity to unpredictable conditions. Uniting modeling and execution phases
contributes accomplishing this adaptivity. A case represents an instance of an un-
predictable process and aggregates all relevant data. For adapting it to emergent
processes, case owners can add ad-hoc goals. There are cases where persons cur-
rently involved cannot achieve all goals. In these cases it is necessary to identify
suitable experts based on the skills and experience required for that particular
part of work.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 57–75, 2014.
c© Springer International Publishing Switzerland 2014

58 S. Heil, S. Wild, and M. Gaedke

The nature of knowledge work often implies cross-enterprise collaboration. It
necessitates access to information about the persons involved, e.g., CV and con-
tact data. It is unlikely that all potential collaborators use the same social net-
work platform for storing personal information. Cross-platform relationships are
hard to follow. Such “walled gardens” [1] would complicate expert finding. Dis-
tributed social networks are well-suited for the knowledge work domain. Compa-
nies or knowledge workers can host their own profiles. The profile can include work
experience and skill information. Interlinking these distributed profiles establishes
a social network. Such social network could overcome the data silo characteristic
of walled gardens. This would enable crawling the network to identify experts.

Finding suitable workers for specific functions largely relies on human assess-
ment. Assessors have to make their decisions depending on the requirements at
hand. This decision making requires knowledge of potential contributors and
their experience. The selection complexity increases with the amount of eligible
contributors and work requirements. Human assignment does not scale well, es-
pecially not with web-scale processes [12]. Often work is assigned to workers who
are not the most suitable experts available. This can cause mediocre outcomes
and longer times to completion. Dealing with this problem requires software
support for finding and addressing knowledge workers to contribute to cases.

In [15] we introduced CRAWL, an approach for Collaborative Adaptive Case
Management. It leverages various Web technologies to automatically identify
experts for contributing to an ACM case. CRAWL recommends a set of eligible
workers. It uses Linked Open Data, enriched WebID-based user profiles and
information gathered from project or case descriptions. We created a vocabulary
to express the skills available and the skills required. It extends user profiles
in WebID-based distributed social networks and case descriptions. CRAWL’s
semantic recommendation method retrieves a ranked list of suitable contributors
whose worker profiles match the case requirements.

Problem. The skill information about a person is limited to the expressive
power and will of this particular person. As a consequence, CRAWL only takes
statements people made about themselves into account. Such statements, how-
ever, might be unspecific, exaggerated or even wrong. This affects the expert
finding process and makes the assessor’s task more difficult and time-consuming.

There are three possible kinds of statements about skills, as shown in Figure 1.
The most basic form are skill self-claims, statements by someone claiming that he
himself has a certain skill. Skill assignments, on the other hand, are statements
by someone claiming that someone else has a certain skill. Statement claimed
by someone for himself and confirmed by someone else are skill affirmations. We
refer to these three kinds of skill statements together as skill endorsements.

With knowledge work increasingly becoming an important and widespread
part of work [9] and ACM evolving as an approach addressing this type of work,
we are convinced that enabling knowledge workers to find the right collabora-
tors to contribute to multi-disciplinary cases impacts the performance of future
enterprises [5]. The value add by skill endorsements will trigger a demand to
incorporate them into distributed worker profiles and expert finding algorithms.

CRAWL·E: Distributed Skill Endorsements in Expert Finding 59

Skill
Self-Claims

Skill
Affirmations

Skill
Assignments

Fig. 1. Three kinds of skill endorsements

Overall Objective. To exploit the knowledge of people about people available
within social networks, we aim at integrating skill assignments and skill affirma-
tions in addition to skill self-claims into the distributed expert finding process.

Contributions. To contribute to the overall objective, we must achieve the
following objectives to fully use skill endorsements in distributed social networks:

1. To enable expert finding in distributed social networks
2. To increase credibility of skill self-claims
3. To allow assigning skills the endorsee did not consider
4. To prevent unwanted skill endorsements
5. To express skill endorsements in distributed user profiles
6. To incorporate skill endorsements in distributed expert finding
7. To facilitate a differentiated consideration of skill endorsements

The paper is organized as follows: Section 2 illustrates the necessary objec-
tives in order to achieve the overall objective. The background is provided in
Section 3. We present the CRAWL·E approach in Section 4. Section 5 evalu-
ates the approach. We discuss work related to ours in Section 6 and conclude
the paper in Section 7.

2 Objectives of Distributed Expert Finding

This section describes the objectives in greater details. To illustrate the need for
achieving each objective, we use different personae. All of them are knowledge-
workers and members of a distributed social network. They have a different
character and pursue different goals. Figure 2 shows the corresponding social
graph. Black solid arrows indicate knows-relationships, blue dotted arrows sym-
bolize endorsements. The personae are characterized in the following:

Alice wants to record her skills. She likes to include all skills from her cur-
rent job, past jobs and education. Alice intends to record them in a way others
can easily access them. She does not want to spend too much effort in achiev-
ing this goal.

Bob is a co-worker of Alice. He knows Alice very well because he worked
together with her in many projects. Bob trusts Alice and Alice trusts him.

Casey is a case owner who wants to find and recruit the best persons for a job.

60 S. Heil, S. Wild, and M. Gaedke

knows

...

Alice

Bob

knows

Mallory

CharlieCasey

knows

knows

claims
C#

knows

knows

Fig. 2. Social Graph with Endorsements

Charlie is another co-worker of Alice. Compared to Bob, he is not that close
to Alice. Charlie worked together with Alice in only one project long time ago.

Mallory is a bad guy. He dislikes Alice and wants to damage Alice’s reputation.
Having described the personae that are used throughout this paper, we con-

tinue with outlining the objectives.

Objective 1: To enable expert finding in distributed social networks.
Interoperability, compatibility, and portability of skill information is no issue in
conventional centralized social networks like LinkedIn. Expert finding benefits
from the (virtually) monolithic data layer of such social networks. By contrast,
this does not exist in distributed social networks which are formed by interlinked,
distributed profiles1. Therefore, skill endorsements in profiles are also inherently
distributed over the network. This requires to ensure discovery, comparability
and description of skills across organization boundaries. Each skill endorsement
needs to be described properly to facilitate comprehension and avoid misun-
derstandings. To allow adding further skill information, both skill set and skill
descriptions need to be accessible, extensible and linkable. So, persons can easily
refer to descriptions of the skill endorsements they made. When Alice claims she
has a skill, this endorsement must be associated to the person making the claim
i.e., to her. This is necessary because information a person produces, belongs to
her. To persist skill endorsements associated to the person stating them, they
need to be stored and connected with the person’s identity. This enables persons
and machines to detect skill endorsements, provided that relevant data is acces-
sible in an easy-to-process manner. To achieve this objective, we need to deliver
1) an extensible description for each skill, 2) a way to attach all kinds of skill
endorsements to persons, 3) a place to store each person’s skill endorsements,
and 4) a procedure to find experts in distributed social networks based on skills.

Objective 2: To increase credibility of skill self-claims. Skill self-claims
are the most basic form of skill endorsements. Persons can use them to declare

1 Distributed profiles are documents, which are accessible from different URLs and
hosted on different servers, referencing each other. They describe persons.

CRAWL·E: Distributed Skill Endorsements in Expert Finding 61

that they have a certain skill set. So, Alice can claim she has a specific skill
like C# programming. To increase the credibility of self-claimed skills, other
persons should be enabled to affirm them. Skill affirmations allow persons to
testify that someone they know has a specific skill. This affirmation may be
based on past collaboration where certain skills were involved and demonstrated.
For example, Bob can affirm Alice’s C# skill because he worked with her on a
project requiring this particular skill. In endorsing someone’s skill, the endorser
uses his own reputation to give more weight to the endorsee’s claimed skill. This
contributes to increasing the credibility of claimed skills. Achieving this objective
requires delivering a procedure that allows persons to affirm self-claimed skills.

Objective 3: To allow assigning skills the endorsee did not consider.
In many respects skill assignments are similar to skill affirmations. A skill as-
signment suggests a person, like Alice, to claim a skill she has not considered so
far. As an example, Bob knows Alice very well. So, he might assign Alice the
HTML skill she did not think of. While skill affirmations rely on prior skill self-
claims, skill assignments do not. For achieving this objective, we need to deliver
a procedure that allows persons to assign skills that have not been self-claimed
beforehand.

Objective 4: To prevent unwanted skill endorsements. Centralized social
networks can easily incorporate the concept of skill affirmations and skill assign-
ments. They form a single point of truth. The skill endorsements are part of the
database of the networking platform. Unless integrity of the data stock has been
violated, it is impossible for Mallory to claim negative skills upon Alice. That
is, the endorsee needs to self-claim skills beforehand or confirm an assignment.

Adopting this policy to distributed social networks without a central data base
is more complicated. First, we must avoid maliciously negative affirmations and
assignments. Otherwise, Mallory could affirm negative skills to damage the Al-
ice’s reputation by publicly claiming Alice has an “incompetence” skill. Second,
persons might be found by expert finding systems due to outdated affirmations
of skills they deliberately removed from their profiles. For example, an engineer
who has been working for arms industry but now decided against this branch
removes corresponding skills from his profile. Distributed expert finding should
not consider outdated skill endorsements. Therefore, we need to strive for an
agreement between the endorser and the endorsee. As a side effect, this would
also contribute to increasing the credibility of skill claims.

Objective 5: To express skill endorsements in distributed user profiles.
When Alice claims she has a certain skill set, this information must be recogniz-
able by all authorized members of the distributed social network. The same holds
true, when Bob endorses a skill of Alice or when Charlie makes a skill assign-
ment. All three kinds of skill endorsements differ in who is claiming which skill for
whom. Thus, each skill endorsement consists of three basic elements: endorser,
skill and endorsee. So, a vocabulary able to express such triples in a unified and
linkable manner would allow covering all kinds of skill endorsements. Associating

62 S. Heil, S. Wild, and M. Gaedke

and storing skill endorsements with the person claiming them, as suggested in
Objective 1, requires delivering a vocabulary for specifying skill endorsements.

Objective 6: To incorporate skill endorsements in distributed expert
finding. Achieving Objective 1 fulfills the basic requirements to incorporate skill
endorsements in distributed expert finding. The expert finder needs to compare
all skill endorsements associated to a candidate with the skills required for a
task. For determining a person’s suitability for a case, distributed expert finding
must consider all kinds of skill endorsements. This assists Casey in deciding
about assigning a task to Alice, Bob etc.. To achieve this objective, we need to
deliver 1) a method to compare skill endorsements with case requirements and
2) a ranked list of experts fitting to the case requirements.

Objective 7: To facilitate a differentiated consideration of skill en-
dorsements. Case owners benefit from an extensive knowledge about a candi-
date’s suitability for a case. Taking all kinds of skill endorsements into account
would enable Casey to gain a rich picture of each candidate’s capabilities. De-
pending on the quantity and quality of a personal social network, the number
of skill endorsements differs from person to person. For example, Alice’s many
social connections also entail many skill affirmations and assignments. The num-
ber of skill endorsements could be one criterion for Casey. She knows, however,
that this would discriminate persons who have fewer or less diligent social con-
nections.

Distributed expert finding could address such issues by statically weighting
each kind of skill endorsement differently. This would, however, reduce adapt-
ability of expert finding and favor persons who share similar characteristics. To
preserve customizability, distributed expert finding has to enable adaptably fac-
toring in all kinds of skill endorsements. So, Casey could weight skill self-claims
more than skill affirmations or assignments. This is in line with Objectives 2
to 4.

3 Expert Finding with CRAWL

In this section we describe how CRAWL [15] assists expert finding in distributed
social networks. The scenario shown in Figure 3 demonstrates our approach.
Casey works as a second-level-support worker for a software development com-
pany. A key customer reports a bug in a software product developed by the
company. Casey is responsible for the handling of this support case. She uses
an ACM system to assist her work. As she investigates the problem, she de-
fines several goals and asks experts from the third-level-support department to
contribute. At some point during the analysis of the bug, a detailed profiling
is required to rule out concurrency issues. However, there is no expert on this
topic available. To assist Casey in finding a person with the required expertise,
CRAWL facilitates the following workflow (cf. numbers in Figure 3):

CRAWL·E: Distributed Skill Endorsements in Expert Finding 63

CRAWL

requires:
C#
Profiling

requires:

Goal3Case

Goal1

Goal2✔ Goal3

1
2 3 4

56

7

1.

2.

Fig. 3. CRAWL Overview

1. Casey adds a corresponding goal to the case.
2. Casey defines requirements (e.g., C# and Profiling).
3. Casey starts CRAWL.
4. CRAWL traverses Casey’s social graph.
5. CRAWL generates a list of eligible workers.
6. Casey selects the most suitable candidates.
7. Casey asks them for contribution to the goal.

Finding suitable workers requires a traversal of the requestor’s social graph.
This graph is established by foaf:knows connections in WebID profiles. WebID
profiles are essential artifacts of the WebID identification approach. They con-
tain an identity owner’s personal data described in a machine-readable way using
Linked Data. For this, WebID relies on several RDF-vocabularies such as FOAF.
With WebID, users are enabled to globally authenticate themselves, connect to
each other, manage their profile data at a self-defined place and specify cus-
tomized views [23]. Users can rely on WebID identity providers for creating new
WebID identities and managing their WebID profile data [24].

The traversal algorithm is implemented as a depth-limited breadth-first search.
It dequeues a WebID URI identifying a person, retrieves the corresponding
WebID profile, calculates the rating R, marks the WebID URI as visited and
adds all unvisited WebID URIs referenced via foaf:knows and their depth value
to the queue. The initial queue consists of the WebID URIs of the persons al-
ready involved in the case. A maximum depth is used due to the exponentially
rising number of nodes in a social graph with increasing depth [13]. CRAWL
allows for additional limits like the number of suitable candidates rated above
a certain threshold. Following the rating, the WebID profile graph of the candi-
dates is added to a triplestore. A statement containing the calculated rating is
asserted into the graph. The final ordered list of rated candidates results from
executing the SPARQL query shown in Listing 1.1 on the triplestore.

Sequential traversal of WebID profiles and rating calculation have a huge
impact on performance due to the distributed nature of profiles. We addressed
this issue by concurrency and caching of user profiles and skill descriptions [15].

64 S. Heil, S. Wild, and M. Gaedke

1 SELECT ? candidate ? r a t i n g
2 WHERE { ? candidate a f o a f : Person .
3 ? candidate vsrcm : r a t i n g ? r a t i n g .
4 FILTER(? r a t i n g > ?minRating)}
5 ORDERBY DESC(? r a t i n g)

Listing 1.1. SPARQL query for candidates

Having retrieved and rated a subset of the social graph, CRAWL presents a
list of recommended candidates and contact information to the person initiating
the search. This step allows for later extension to enable applying constraint cri-
teria, e.g., filter candidates from a specific company or within the same country.
CRAWL demonstrates the basic concept of expert finding in distributed social
networks leveraging knowledge from profiles, case descriptions and Linked Open
Data (LOD) [15]. Therefore it addresses Objective 1. Yet, it does not consider
knowledge of people about people such as skill assignments and skill affirmations.

4 CRAWL·E: Extending CRAWL with Endorsements

In order to addresses all objectives from Section 1, we propose CRAWL·E which
extends CRAWL with endorsements. The first part of this section introduces a
vocabulary to express skill endorsements. Part two explains the expert finding
algorithm and the integration of endorsements in the candidate rating.

4.1 Integrating Skill Endorsements in Distributed Profiles

In [15] we introduced a vocabulary to add skill self-claims to WebID profiles.
Linked Data provides CRAWL with a large knowledge base for concepts describ-
ing skills. CRAWL references this data to describe existing experience for persons
and experience required to achieve a case goal or contribute to it. In a WebID
profile, the RDF property vsrcm:experiencedIn connects a foaf:Person with
a URI which represents this person’s experience in something. For referring to
the actual skills URIs are used to reference concepts which are available as db-
pedia2 resources. With dbpedia being a central element of the linked open data
cloud, this intends to increase the degree of reusability and extensibility of skill
data.

To express endorsements, we reuse this vocabulary as seen in Listing 1.2. The
important aspect to note is the distributed nature of profiles. An endorser has
no write access to foreign endorsees’ profiles.

As there is no specific platform or protocol defined for adding statements to
WebID profiles, skill assignments have to be expressed in the endorser’s own pro-
file. Leveraging the RDF data model and FOAF vocabulary, CRAWL·E enables
persons to add skill assignments to their WebID profiles. These skill assignments

2 http://dbpedia.org/

http://dbpedia.org/

CRAWL·E: Distributed Skill Endorsements in Expert Finding 65

1 @p r e f i x endor se r : <http :// company . org />.
2 @p r e f i x endorsee : <http :// m in i s o f t . ru />.
3
4 <endor se r : bob> a f o a f : PersonalProf i l eDocument ;
5 f o a f : primaryTopic <endor se r : bob#me>;
6 f o a f : t i t l e ”Bob Endorser ’ s WebID p r o f i l e ” .
7
8 <endor se r : bob#me> a f o a f : Person ;
9 f o a f : name ”Bob Endorser ” ;

10 f o a f : knows <endorsee : a l i c e#me>;
11 c e r t : key [a c e r t : RSAPublicKey ;
12 c e r t : exponent 65537 ;
13 c e r t : modulus ”1234 . . . ” ˆ ˆ xsd : hexBinary] .
14
15 <endorsee : a l i c e#me> vsrcm : exper i enced In <dbp : Linux>,
16 <dbp : Mysql>.

Listing 1.2. Skill assignment in endorser’s WebID profile

Fig. 4. Skill definition in Sociddea

66 S. Heil, S. Wild, and M. Gaedke

reference the WebID URI of the endorsee who is connected to the endorser via
foaf:knows.

Supporting users in specifying their expertise and case requirements, we ex-
emplarily extended the user interfaces of Sociddea and VSRCM [15] to allow
specifying skills using regular English words. We use prefix search of dbpedia
lookup service to match user input against dbpedia resources. A list of skills is
updated live as the user is typing. This is illustrated in Figure 4.

4.2 Extending Distributed Expert Finding to Leverage Skill
Endorsements

This section describes how CRAWL·E incorporates endorsements in candidate
rating. Figure 5 shows the traversal, rating and candidate recommendation which
form steps 4 and 5 in Figure 3. The required skills sr0, sr1, sr2 of Goal3 and
Casey’s social graph are the input. In this example, Casey knows B and C. B
and C know D, C knows E. CRAWL·E has already rated B with R(B) = 15, C
with R(C) = 0 and D with R(D) = 10. To get the rating of E, the similarities
between required skills and existing skills are calculated using linked open data.
For a proof-of-concept, we use a prototypical rating function adapted from [16].

According to Objective 5, a skill endorsement is a triple (p1, p2, s) of endorser
p1, endorsee p2 and skill s. A self-claimed skill can be represented as (p, p, s):
by an endorsement with identical endorser and endorsee. A candidate c is de-
scribed by E, the set of all endorsements regarding c in c’s social graph as in
Equation (1).

E = {(p1, p2, s)|p2 = c} (1)

SS is the set of self-claimed skills by the candidate, SO is the set of skills endorsed
(assigned) by others and SB is the set of skills claimed by the candidate and
affirmed by others (both) (also cf. to Figure 1).

SPARQL

required:
sr0,sr1,sr2

requiiired

Goal3

Rating

LOD

B

C

D

E

R(B)=15

R(C)=0

R(D)=10

Candidates

(B,15)
(C,0)
(D,10)

1. (E,20)
2. (B,15)
3. (D,10)

Fig. 5. Traversal, rating and recommendation

CRAWL·E: Distributed Skill Endorsements in Expert Finding 67

SS = {s|∃(c, c, s) ∈ E} (2a)

SO = {s|∃(p1, c, s) ∈ E, p1 �= c} (2b)

SB = SS ∩ SO (2c)

S = {s|∃(p1, c, s) ∈ E} = SS ∪ SO (2d)

CRAWL·E compares the set of required skills SR to the set of skills S of each
candidate as defined in Equation (2d). Both skill sets are represented by sets of
dbpedia URIs. The similarity sim(s1, s2) between two skills distinguishes differ-
ent concept matches:

1. Exact Concept Match - URIs are identical (s1 = s2)
2. SameConceptAsMatch -URIs connected via owl:sameAs (s1owl:sameAs s2)
3. Related Concept Match - URIs connected via dbprop: paradigm,

dcterms:subject, skos:narrower etc.

This forms the similarity function in Equation (3).

sim(s1, s2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ1 if Exact Concept Match

σ2 if Same Concept As Match

σ3 if Related Concept Match

0 else

(3)

These concept match types can easily be extended to facilitate an adapted rating.
The basic idea is that each type yields a different similarity rating. For the
moment, we use these values: σ1 = 10 for 1), σ2 = 9 for 2) and σ3 = 5 for 3).

Per candidate, for each combination of a required skill sr ∈ SR and a candidate
skill sc ∈ S, the similarity sim(sr, sc) is computed according to Equation (3).
As seen in Equation (5), to calculate the candidate rating R in CRAWL, only
the skill with maximum similarity per required skill (from function m : SR → S
in eq. (4)) is considered. [15]

m(sr) = sc ⇔ sim(sr, sc) = max
s∈S

sim(sr, s) (4)

RCRAWL(c) =
∑

sr∈SR

sim(sr,m(sr)) (5)

In CRAWL·E, an affirmed skill is given higher influence compared to a self-
claimed skill. To accomodate this influence, we introduce the endorsement factor
ε as defined in Equation (7). Our updated CRAWL·E rating function is shown
in Equation (6).

RCRAWL·E(c) =
∑

sr∈SR

sim(sr,m(sr)) · ε(m(sr)) (6)

Let c be a candidate with the set of endorsements E. The set of all endorsements
of the candidate skill sc is defined by Esc = {(p1, p2, s) ∈ E|s = sc} ⊆ E.
With this, we define the endorsement factor using the skill sets defined in 2

68 S. Heil, S. Wild, and M. Gaedke

ε(sc) =

⎧⎪⎨⎪⎩
1 if sc ∈ SS \ SB

α
√|Esc | if sc ∈ SB

β
√|Esc | if sc ∈ S0 \ SB

(7)

This factor distinguishes between the three types of skills: Self-claimed-only skills
- from SS \ SB, skills that have been claimed by the candidate and endorsed by
others - from SB - and skills that have only been endorsed by others but are not
stated in the candidate’s profile - from SO \ SB. It yields 1 for a candidate skill
without endorsements, i.e., no additional influence is given to self-acclaimed
skills. Parameters α and β allow for adaption, currently we use α = 1.5 and

β = 2. To ignore unilateral skill assignments one can set β
!
= 0.

The endorsement factor ε increases with the number of endorsements. How-
ever, the higher the number of endorsements, the slower the factor increases.
This is to avoid overrating candidates with very high endorsement counts. Other
function types such as a mirrored 1/x function are possible, too. We decided in
favor of the square root function type, because it does not converge against a
limit as there is no theoretical foundation to reason the limit. When the rating
is finished, recommended candidates can be listed as in Figure 6.

Fig. 6. Candidate recommendation in VSRCM

5 Evaluation

This section discusses the evaluation of our approach. We claim that CRAWL·E
achieved the overall objective stated in Section 1 by considering all three kinds
of skill endorsements for expert finding in distributed social networks. To prove
this claim, we first outline the evaluation setup and then discuss our findings.

CRAWL·E: Distributed Skill Endorsements in Expert Finding 69

5.1 Evaluation Setup

To evaluate the extent to which CRAWL·E’s objectives have been achieved, we
chose the objective-based evaluation method. Event though a field experiment
or a case study would allow for a profound review also, CRAWL·E’s results
highly depend on the underlying distributed social network. There are various
characteristics to be considered, including total and average amount of social
connections and of each kind of skill endorsements, richness of user profile data,
and level of networking. While a prototypical implementation of CRAWL·E is
publicly available, the adoption3 by users has not yet reached a certain level. Such
adoption is, however, required for conducting a field experiment and gaining both
extensive and reliable evaluation results. Yet, we are convinced that enabling
knowledge workers to find the right collaborators impacts the performance of
future enterprises [5]. Thus, the value add by skill endorsements will soon trigger
a demand to incorporate them into distributed worker profiles and expert finding.

An objective-based study is the most prevalent approach in program evalua-
tion and is applicable to be performed internally by program developers [20]. As
Stufflebeam describes, the “objectives-based approach is especially applicable in
assessing tightly focused projects that have clear, supportable objectives” and
that “such studies can be strengthened by judging project objectives against the
intended beneficiaries’ assessed needs, searching for side effects, and studying
the process as well as the outcomes”. For devising CRAWL we already defined
objectives in Section 2. They are well-suited to be reused as evaluation criteria
in this objective-based study. We incorporate the information collected during
development and application of CRAWL and CRAWL·E, cf. Heil et al. in [15],
to determine how well each operational objective was achieved. After outlining
the evaluation setup, we discuss the findings for each objective in the following.

5.2 Discussion of Findings

To enable expert finding in distributed social networks, we follow the idea of find-
ing suitable experts to invite. We think that searching for experts by utilizing
personal social graphs is more beneficial compared to the open call approach dis-
cussed in Crowdsourcing research. Case owners intending to delegate tasks know
their social network. So, they know whether a candidate fits the task description.
CRAWL·E allows describing skills associated persons and requirements associ-
ated to cases. Rather than building our own database to manage skills and skill
descriptions as typical for centralized social networks, our approach relies on the
collective knowledge of dbpedia. In CRAWL·E, linking to a dbpedia resource
refers either to a skill or to a requirement. Unlike related work, we do not want
to restrict the number of options for skills and requirements. The availability of
a description for a referred concept is not just a requirement in our approach,
but also a good practice in general. dbpedia is a central part of the Linked

3 With regard to the quantity of skill self-claims, skill affirmations and skill assign-
ments per user and in total, and the use of the skill endorsement vocabulary in
general.

70 S. Heil, S. Wild, and M. Gaedke

Open Data cloud. So, resources are machine-readable through RDF and highly
connected to each other. This allows for classification and association. The set
of resources as well as each resource as such is extensible and maintained by a
large community. When attaching skills to persons, we benefit from skills that
are both referenced and identified by URIs. Similar to a skill URI pointing to a
skill description, we use a WebID URI to refer to a person. Contrary to creating
separate resources for storing each person’s skill endorsements, we embedded
them in machine-readable WebID profiles. As all skill endorsements a person,
like Bob, issues belong to him, they also remain in his profile. With all concepts
described using RDF, discovery and query become possible through interlink-
age with URIs and retrieval using SPARQL. Thus, we delivered all four results
necessary for achieving this objective.

To increase credibility of skill self-claims, we introduced the concept of skill
affirmations. With a skill self-claim, a person describes that he possesses this
skill. The credibility of skills self-claimed by a person, however, depends on
the level of trust in this person. A skill self-claim which has been endorsed by
someone else gains credibility depending on the trust in the endorsing person.
In CRAWL·E, we assume that the more persons have endorsed a person for a
particular skill, the more likely is this person to really possess the skill. Thus,
the higher endorsed a certain skill self-claim is, the more influence it has on the
candidate ranking.

To allow assigning skills the endorsee did not consider, our approach enables
endorsers to claim skills a person has, without the person having to self-claim
those skills beforehand. That is, it is not required for an endorsee to state such
skills in their own WebID profiles. This is useful for instance to provide a more
complete skill profile that includes information which the described person did
not think of. Skill assignments available in distributed social networks can be
exploited for various purposes including requests for adding assigned skills to
own user profiles. While the increased expressiveness by skill assignments allowed
achieving this objective, it comes at the cost of loosing control about what is
being endorsed. We addressed this issue as explained in the following paragraph.

To prevent unwanted skill endorsements, we imposed the requirement that en-
dorser and endorsee are bilaterally connected. This indicates that both persons
deliberately know each other and, hence, accept each other’s opinion. As an ex-
ample, Charlie assigned a certain skill, like COBOL programming, to Alice some
time ago. She followed Charlie’s suggestion and claims this skill herself. So, Char-
lie’s assignment became an affirmation. Alice was also endorsed by other persons
for this skill, i.e., Bob or even Mallory. Today, she is not that interested in this
topic anymore. Therefore, Alice does not want to be found for this skill. She re-
moves her self-claimed COBOL skill. Thus, all affirmations become assignments.
By excludingMallory fromher social network, all his affirmations and assignments
are going to be ignored in CRAWL·E. That is, affirming or assigning a skill neces-
sitates that both the endorsee and the endorser know each other. In addition to
this approach, we enable avoiding malicious and outdated skill endorsements by

CRAWL·E: Distributed Skill Endorsements in Expert Finding 71

1) simply removing corresponding skill self-claims the endorsee made in his profile
and 2) appropriate consideration within distributed expert finding.

To express skill endorsements in distributed user profiles, we had to find an
alternative to what is known from centralized social networks. There, Bob can
endorse Alice for a skill she did not think of and the platform triggers a no-
tification to Alice. The endorsed skill will not be added to her profile unless
she approves of it. This is not possible with distributed social networks. Alice’
and Bob’s WebID profiles are documents typically hosted on different servers,
and identified and retrievable by URIs. There is no platform to trigger a no-
tification to Alice let alone to allow Bob writing to her profile. Objectives 2
and 3 are inherently adverse to Objective 4 because there is no standard means
of asking approval. We therefore delivered an RDF vocabulary to specify skill
endorsements using only one RDF triple per skill definition, no matter if it is
a skill self-claim, affirmation or assignment. Associating endorser, endorsee and
endorsed skill, and storing the triple within the endorser’s WebID profile al-
lows for expressing all three kinds of skill endorsements. Due to RDF’s flexible
and extensible nature, skill endorsements can be attached to the endorser (for
self-claims) or to one of his social connections expressed via foaf:knows (for
affirmations and assignments).

To incorporate skill endorsements in distributed expert finding, CRAWL·E
queries personal social networks for skill information, retrieves and processes
the skill endorsements, and compares them with the case requirements before
showing them a ranked list of suited candidates. Our approach hereby involves
how we have addressed Objective 5 for query and retrieval, and Objectives 2 to 4
for comparing and ranking. As manual assessment by crawling personal social
networks is time-consuming, our approach assists case owners in their recruit-
ment tasks, but also leaves the final assessment decision to them. While CRAWL
only considers self-claimed skills for the candidate recommendation, CRAWL·E
also takes skill affirmations and assignments into account. However, all skill en-
dorsements made by persons not knowing each other are ignored in this process.
For comparing case requirements with all three kinds of skill endorsements, our
approach computes the similarity between both concepts. Although CRAWL·E
differentiates exact from similar or related concepts via different weights, finding
precise and profound weights requires further empirical evaluation.

To facilitate a differentiated consideration of skill endorsements, we developed
CRAWL·E in a parametrized way which allows to choose whether to include
foreign endorsed skills or to operate on confirmationary endorsements only. By
employing our approach, case owners can adjust the influence of unilaterally
endorsed statements, i.e., which value a statement is given that potentially many
others claim upon a person but which this person does not claim himself. To
reduce the effect of unusually many skill endorsements per person through a
large amount of diligent social connections, we introduced a function for only
partially factoring in large accumulations of skill affirmations and assignments.
Considering Equation (7), CRAWL·E facilitates fine-tuning and even excluding
the impact skill affirmations and skill assignments have on distributed expert

72 S. Heil, S. Wild, and M. Gaedke

finding. Users can align the rating with their individual needs and preferences.
Finding a more exact function type and evidenced-based default values for the
parameters requires a larger empirical evaluation to be conduct in future work.

6 Related Work

Expert Finding has long been a research interest. For example, Becerra-Fernandez
provides an overviewonWeb-based expert finding approaches in [3]. Like [2], many
of them are based on information retrieval techniques. To achieve expert find-
ing, they analyze document topics and connect them to the document authors.
Perugini et al. surveys expert finding systems with a focus on social context in-
cluding communication and blogs [19]. Particularly for the research domain, there
are several approaches, e.g., by Xu et al. [25] or by Uddin et al. [22].

The approach described by Xu et al. in [25] is similar to CRAWL·E in that
it unites social graphs with skill relationship semantics. To achieve this, net-
work analysis on interlinked concept (expertise) and research (social) layer is
employed. While this approach also considers hierarchical and correlation rela-
tionships in the expertise layer, tacit knowledge is used. CRAWL·E uses explicit
knowledge from profiles and Linked Open Data, whereas [25, 2] extract informa-
tion from unstructured text sources, [25] supported by WordNet. This works well
in a specific domain like research, because characteristics of the domain can be
exploited. For instance, citations and co-authorship can be analysed from pub-
lications [25].

By contrast, CRAWL·E is a generic approach not limited to a specific domain.
None of the above approaches works in distributed social networks, nor do they
explicitly consider endorsements.

In [6], Bozzon et al. present an expert finding method based on user’s activ-
ities in centralized social networks like Facebook, Twitter etc. It analyzes social
resources directly related (e.g. tweets, likes) or indirectly related (e.g. posts of
liked pages) to persons. This approach employs text analysis: entity recognition
for skills is performed on the resources, they are identified with Wikipedia URIs.
CRAWL·E by contrast targets distributed social networks, uses explicit expertise
information, supports skill endorsements and leverages linked data.

In spite of their benefits, skill endorsements have not yet gained much atten-
tion in research. Platforms like LinkedIn4 and ResearchGate5 have successfully
included them. Within the first six month, more than 2 billion endorsements
were created on LinkedIn allowing for interesting analysis [14]. Donston-Miller
states in [10] that endorsements provide a streamlined version of a resume and
can reduce the risk of hiring new personnel. Also quality aspects should be con-
sidered in addition to mere quantity (endorsement count) measures. Doyle also
mentions in [11] the problem of unwanted endorsements and argues that getting
the “right” endorsements is important. While Berk suspects that LinkedIn is us-
ing endorsement data in its secret search algorithm [4], there is not much public

4 http://www.linkedin.com/
5 http://www.researchgate.net/

http://www.linkedin.com/
http://www.researchgate.net/

CRAWL·E: Distributed Skill Endorsements in Expert Finding 73

information available about skill endorsements in expert finding. Even if current
platforms are internally implementing this, the major difference to CRAWL·E
is the central nature of these social networks.

Pérez-Rosés et al. presents in [18] an approach which combines social graphs
with skill endorsements. It uses an undirected social graph and a directed
endorsement graph per skill. Skill relationships like correlation or implied skills
are considered. The PageRank algorithm is applied to a deduced graph. Its de-
duction matrix is similar to the similarity matrix in CRAWL·E. However, the def-
inition of the deduction matrix is an open problem whereas we get the values of
the matrix leveraging Linked Open Data. Friendship-like bilateral relationships
between social network members are assumed, while the foaf:knows semantics
employed in CRAWL·E allows for unilateral relationships. Unlike CRAWL·E,
this work focuses on social graph analysis, lacks a complete expert finding work-
flow, and does not support distributed social networks.

Our approach is an application of the social routing principle [12] to the ACM
domain. Unlike task delegation through an open call known from Crowdsourc-
ing research [7], we follow the idea of inviting suitable experts to contribute
to a case by utilizing social graphs. The conceptual routing table described by
Dustdar and Gaedke is formed by foaf:knows statements and contact info in
WebID profiles.

7 Conclusions and Future Work

In this work, we presented the CRAWL·E approach leveraging distributed en-
dorsements for finding eligible workers to contribute to ACM cases. It comprises
a vocabulary for skill endorsements in WebID profiles, a method for traversing
distributed social networks based on foaf:knows relationships and an adaptable
rating function for WebID profiles. We demonstrated CRAWL by implementa-
tion based on the WebID identity provider and management platform Sociddea
and the case management system VSRCM.

Our future research interest will be to consider not only endorsement quantity,
but also quality. If a renowned expert endorses someone else for his very own
field, his endorsement should be given more weight compared to endorsements
of less renowned persons. This needs considering the endorsements of the en-
dorsers in addition to the endorsements of the candidate to rate. Empirical data
and machine learning can be used to provide adapted parameters. Providing
Distributed Expert Finding as a Service is desirable to enable easy integration
in other systems. For this, an endpoint structure and protocol must be defined.

References

[1] Appelquist, D., et al.: A Standards-based, Open and Privacy-aware Social Web:
W3C Incubator Group Report. Tech. rep., W3C (2010)

[2] Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in en-
terprise corpora. In: Proceedings of the 29th Annual International ACM SIGIR
Conference, pp. 43–50. ACM, New York (2006)

74 S. Heil, S. Wild, and M. Gaedke

[3] Becerra-Fernandez, I.: Searching for experts on theWeb: A review of contemporary
expertise locator systems. ACM TOIT 6(4), 333–355 (2006)

[4] Berk, R.A.: Linkedin Triology: Part 3. Top 20 Sources for Connections and How to
Add Recommendations. The Journal of Faculty Development 28(2), 1–13 (2014)

[5] Bider, I., Johannesson, P., Perjons, E.: Do workflow-based systems satisfy the
demands of the agile enterprise of the future? In: La Rosa, M., Soffer, P. (eds.)
BPM Workshops 2012. LNBIP, vol. 132, pp. 59–64. Springer, Heidelberg (2013)

[6] Bozzon, A.,et al.: Choosing the Right Crowd: Expert Finding in Social Networks
Categories and Subject Descriptors. In: Proceedings of the 16th International Con-
ference on Extending Database Technology, New York, NY, USA, pp. 637–348
(2013)

[7] Brabham, D.C.: Crowdsourcing as a Model for Problem Solving: An Introduction
and Cases. Convergence: The International Journal of Research into New Media
Technologies 14(1), 75–90 (2008)

[8] Clair, C.L., Miers, D.: The Forrester WaveTM: Dynamic Case Management, Q1
2011. Tech. rep., Forrester Research (2011)

[9] Davenport, T.H.: Rethinking knowledge work: A strategic approach. McKinsey
Quarterly (2011)

[10] Donston-Miller, D.: What LinkedIn Endorsements Mean To You (2012),
http://www.informationweek.com/infrastructure/networking/

what-linkedin-endorsements-mean-to-you/d/d-id/1106795
[11] Doyle, A.: How To Use LinkedIn Endorsements (2012),

http://jobsearch.about.com/od/linkedin/qt/linkedin-endorsements.htm
[12] Dustdar, S., Gaedke, M.: The social routing principle. IEEE Internet Comput-

ing 15(4), 80–83 (2011)
[13] Goel, S., Muhamad, R., Watts, D.: Social search in “small-world” experiments.

In: Proceedings of the 18th International Conference on World Wide Web, WWW
2009, pp. 701–710. ACM, New York (2009)

[14] Gupta, S.: Geographic trends in skills using LinkedIn’s Endorsement feature
(2013), http://engineering.linkedin.com/endorsements/
geographic-trends-skills-using-linkedins-endorsement-feature

[15] Heil, S., et al.: Collaborative Adaptive Case Management with Linked Data. To
appear in WWW 2014 Companion: Proceedings of the 23rd International Confer-
ence on World Wide Web Companion, Seoul, Korea (2014)

[16] Lv, H., Zhu, B.: Skill ontology-based semantic model and its matching algorithm.
In: CAIDCD 2006, pp. 1–4. IEEE (2006)

[17] Mundbrod, N., Kolb, J., Reichert, M.: Towards a system support of collaborative
knowledge work. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP,
vol. 132, pp. 31–42. Springer, Heidelberg (2013)

[18] Pérez-Rosés, H., Sebé, F., Ribó, J.M.: Endorsement Deduction and Ranking in
Social Networks. In: 7th GraphMasters Workshop, Lleida, Spain (2013)

[19] Perugini, S., Goncalves, M.A., Fox, E.A.: A connection-centric survey of recom-
mender systems research. Journal of Intelligent Information Systems 23(2), 107–
143 (2004)

[20] Stufflebeam, D.: Evaluation Models. New Directions for Evaluation 2001(89), 7–98
(2001)

[21] Swenson, K.D.: Position: BPMN Is Incompatible with ACM. In: La Rosa, M.,
Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 55–58. Springer,
Heidelberg (2013)

[22] Uddin, M.N., Duong, T.H., Oh, K.-j., Jo, G.-S.: An ontology based model for ex-
perts search and ranking. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS
2011, Part II. LNCS, vol. 6592, pp. 150–160. Springer, Heidelberg (2011)

http://www.informationweek.com/infrastructure/networking/what-linkedin-endorsements-mean-to-you/d/d-id/1106795
http://www.informationweek.com/infrastructure/networking/what-linkedin-endorsements-mean-to-you/d/d-id/1106795
http://jobsearch.about.com/od/linkedin/qt/linkedin-endorsements.htm
http://engineering.linkedin.com/endorsements/geographic-trends-skills-using-linkedins-endorsement-feature
http://engineering.linkedin.com/endorsements/geographic-trends-skills-using-linkedins-endorsement-feature

CRAWL·E: Distributed Skill Endorsements in Expert Finding 75

[23] Wild, S., Chudnovskyy, O., Heil, S., Gaedke, M.: Customized Views on Profiles in
WebID-Based Distributed Social Networks. In: Daniel, F., Dolog, P., Li, Q. (eds.)
ICWE 2013. LNCS, vol. 7977, pp. 498–501. Springer, Heidelberg (2013)

[24] Wild, S., Chudnovskyy, O., Heil, S., Gaedke, M.: Protecting User Profile Data
in WebID-Based Social Networks Through Fine-Grained Filtering. In: Sheng,
Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS, vol. 8295, pp. 269–280.
Springer, Heidelberg (2013)

[25] Xu, Y., et al.: Combining social network and semantic concept analysis for per-
sonalized academic researcher recommendation. Decision Support Systems 54(1),
564–573 (2012)

Cross Publishing 2.0: Letting Users Define
Their Sharing Practices on Top of YQL

Jon Iturrioz, Iker Azpeitia, and Oscar Díaz

ONEKIN Group, University of the Basque Country, San Sebastián, Spain
{jon.iturrioz,iker.azpeitia,oscar.diaz}@ehu.es

Abstract. One of Web2.0 hallmarks is the empowerment of users in
the transit from consumers to producers. So far, the focus has been on
content: text, video or pictures on the Web has increasingly a layman’s
origin. This paper looks at another Web functionality, cross publishing,
whereby items in one website might also impact on sister websites. The
Like and ShareThis buttons are forerunners of this tendency whereby
websites strive to influence and be influenced by the actions of their
users in the websphere (e.g. clicking on Like in site A impacts a dif-
ferent site B, i.e. Facebook). This brings cross publishing into the users’
hands but in a “canned” way, i.e. the ’what’ (i.e. the resource) and the
’whom’ (the addressee website) is set by the hosting website. However,
this built-in focus does not preclude the need for a ’do-it-yourself’ ap-
proach where users themselves are empowered to define their cross pub-
lishing strategies. The goal is to turn cross publishing into a crosscut,
i.e. an ubiquitous, website-agnostic, do-it-yourself service. This vision
is confronted with two main challenges: website application program-
ming interface (API) heterogeneity and finding appropriate metaphors
that shield users from the technical complexities while evoking familiar
mental models. This work introduces Trygger, a plugin for Firefox that
permits to define cross publishing rules on top of the Yahoo Query Lan-
guage (YQL) console. We capitalize on YQL to hide API complexity, and
envision cross publishing as triggers upon the YQL’s virtual database.
Using SQL-like syntax, Trygger permits YQL users to specify custom
cross publishing strategies.

Keywords: Data sharing, YQL, triggers, cross publishing, web service.

1 Introduction

People interaction on the Web has drastically evolved in the last few years.
From business-to-consumer (B2C) interactions, the Web is now a major means
for direct person-to-person interaction through social-media websites (hereafter
referred to as “websites”). Facebook, WordPress, Wikipedia showcase this new
crop of media where content is provided for and by end users. As the new con-
tent providers, end users are also amenable to define their own cross publishing
strategies. Traditionally, cross publishing means allowing content items in one
website to also appear in sister websites where the sharing strategies are set by

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 76–92, 2014.
c© Springer International Publishing Switzerland 2014

Cross Publishing 2.0: Letting Users Define Their Sharing Practices 77

the web masters. However, when the source of the content is the user (like in
social-media websites), cross publishing should also be made 2.0, i.e. amenable
to be defined by the end user. A first step is the Like and ShareThis buttons
which let users enact cross publishing whereby the website hosting the button
(e.g. pictures in Flickr) also impacts the content of a sister website (e.g. Flickr
provides sharing for Facebook, Twitter and Tumblr). The enactment is up to
the user. However, the ’what’ (i.e. the resource) and ’to whom’ (the addressee
website) are still built-in.

Current mechanisms for cross publishing (e.g. the Like button) might fall short
in some scenarios. First, minority websites will be rarely offered “ShareThis”
links within main players’ websites like Twitter or Youtube. Second, sharing
might be conducted in a routinary way (e.g. every time I upload a presentation
in Slideshare, communicate it to my followers in Twitter). Rather than forcing
users to click the Twitter icon when in Slideshare, this situation can be autom-
atized through a “sharing rule”. Third, the rationales behind sharing are not
explicit but kept in the user’s mind. Sharing might be dictated by some resource
characterization that could be captured through a “sharing rule” (e.g. create a
task in my ToDo account when I tag a bookmark in Delicious with “toread”).

In a previous approach [10], we provide the infrastructure for web masters to
define cross publishing. However, as the previous scenarios highlight, it is difficult
for a webmaster (e.g. the Flickr ’s one) to foresee the different settings in which its
resources will need to be shared and talked about (using tweets, posts, articles,
etc.). This calls for cross publishing to become a crosscut website-agnostic end-
user service. Web2.0 demonstrates that end users are ready [7] and willing to
adapt their Web experience, if only the tools become available that make it
sufficiently easy to do so (e.g. [6]). Cross publishing should not be an exception.

This work aims at ascertaining to which extend this vision is feasible both
technically and humanly. From a technical perspective, we develop Trygger , a
Firefox plugin, that allows to define sharing rules as services over websites. The
human factor is being considered by conceiving websites as database tables where
sharing is realized as database-like triggers over these tables. By taping on a
familiar representation (the relational model), our hope is to easy adoption. As an
example, consider Twitter and Facebook as hosting a table of “tweets” and “wall
posts”, respectively. Users can be interested in publishing into their Facebook
wall, tweets from their colleagues that contain the hashtag #ICWE2014. The
Trygger expression will look something like: ON INSERT a new tweet LIKE
“%#ICWE2014%” DO INSERT a message (tweet permalink) INTO my wall.
This is the vision Trygger strives to accomplish. Compared with related work,
the distinctive aspects of this approach include:

– Cross publishing is conceived as a crosscut service. We regard cross publish-
ing as an idiosyncratic, traversal activity to be conducted in the cloud but
managed locally. Users can define their own sharing rules, not being limited
to those hardwired into the websites.

78 J. Iturrioz, I. Azpeitia, and O. Díaz

– Cross publishing is specified as triggers (Section 3 & 4). A familiar SQL-like
syntax is offered from expressing sharing rules. We heavily rely on Yahoo
Query Language (YQL) [13]. YQL provides a database vision of websites’
APIs. Trygger extends this vision by providing a trigger-like mechanism for
sharing over disparate websites.

– Cross publishing is implemented via a reactive architecture (Section 5). We
provide a loosely coupled architecture for distributed trigger management.
The implementation relies on existing standards and protocols, and it is
entirely HTTP -based.

Trygger is fully realized as a Firefox plugin. This plugin, the working examples
and a brief installation guide can be downloaded from http://www.onekin.org
/trygger/

2 A Brief on YQL

A tenant of current Web development is the release of data through accessible
APIs. The problem is that APIs are as heterogeneous as the applications they
support. As a practitioner of the Programmable Web puts it “the main difficulty
with APIs in general is that they require the developer to create and remember
a number of cryptic URLs via which certain data can be retrieved from the
API”1. Yahoo Query Language (YQL) tries to address this by converting API
calls into SQL-like commands, which are somewhat more human readable. Figure
1 (1) illustrates YQL’s SELECT to access the Slideshare API but now conceived
as the table slideshare.slideshows. To realize this metaphor, YQL offers both a
service and a language.

YQL Language. So far, YQL offers SELECT, INSERT and DELETE state-
ments that, behind the curtains, invoke the corresponding API methods. YQL
alleviates programmers from details concerning parameter passing, credential
handling or implicit iterations (for joins). The mapping from the YQL syntax to
API requests is achieved through the so-called “Open Data Tables” (ODT).
ODTs hold all the intricacies of the underlying APIs. It is worth noticing that this
sample query (Figure 1 (1)) actually conducts three API requests, one for each
user (’cheilmann’, ’ydn’, ’jonathantrevor’). YQL conceals these interactions, en-
acts the three requests, combines the outputs, and filters out those results based
on the query parameters. In this way, YQL off-loads processing that program-
mers would normally do on the client/server side to the YQL engine.

YQL Service. This is realized through the YQL console2. The console permits
to preview the query, and obtain the REST query counterpart. This query that
can then be bookmarked or included in the programs. This interface contains
the following main sections (see Figure 1): (1) the YQL statement section is

1 http://blog.programmableweb.com/2012/02/08/
like-yql-try-it-with-the-programmableweb-api/

2 http://developer.yahoo.com/yql/console/

http://blog.programmableweb.com/2012/02/08/like-yql-try-it-with-the-programmableweb-api/
http://blog.programmableweb.com/2012/02/08/like-yql-try-it-with-the-programmableweb-api/

Cross Publishing 2.0: Letting Users Define Their Sharing Practices 79

Fig. 1. YQL console

where YQL queries are edited, (2) the results section displays the output of
the query, once the source Web service was enacted, (3) the REST query section
provides the URL for YQL queries, (4) the queries section gives access to queries
previously entered, and (5) the data tables section lists all the APIs that can be
accessed using YQL.

The bottom line is that SQL-like syntax becomes the means to simplify Web
development based on open APIs. Open APIs are the enablers of cross publish-
ing. Therefore, and akin to YQL’s teachings, we aim at making cross publishing
scripts look like the development of DB scripts. We build upon the similitude of
SQL’s triggers and cross publishing as for keeping in sync data repositories, let
these be database tables or website silos, respectively. Details follow.

3 Cross Publishing Scripts: The Notion of Trygger

Supporting cross publishing as a service implies the monitoring of a website
account so that actions on this account ripple to other accounts. This can be
described as event-condition-action rules. Rules permit to enact small pieces of
code (’DO’) when some update operation is conducted (’ON’) provided some
condition is met (’WHEN’). An example follows:

ON a new tweet is uploaded in account (’Twitter’, ’oscar’)
WHEN new tweet.status LIKE “%ICWE2014%”
DO create a wall post in account (’Facebook’, ’iker’)

Akin to the YQL metaphor, we use SQL-like syntax for triggers to specify cross
publishing rules (hereafter referred to as “tryggers”). The whole idea is to tap into
the existing ODT repository. Indeed, most of the ODT tables used throughout
the paper were provided by the YQL community. Even so, YQL permits ODTs
external to the system to be operated upon through the USE clause. This clause

80 J. Iturrioz, I. Azpeitia, and O. Díaz

just provides the URL that holds the ODT definition. From then on, no difference
exists in handling ODTs kept outside YQL boundaries. Similarly, the ENV clause
offers a way to access hidden data (see section 5). Figure 2 outlines the trygger
syntax. Next paragraphs address each of the trygger clauses.

Fig. 2. Trygger ’s syntax. Tryggers are based on YQL’s ODT tables.

The Event. In SQL, events are risen by insertions, deletions or updates upon
database tables. Since YQL’s ODT handle both insertions and deletions, it could
be possible to define trygger events upon YQL operations. Notice however, that
YQL is just another client built on top of somewhere else’s APIs. These APIs
can be accessed by other clients, and hence, “the tables” can be changed by ap-
plications other than YQL. Monitoring only YQL operations would make these
other changes go unnoticed. Therefore, the only way to be aware of insertions is
by change monitoring. Hence, the trygger event is “after_select_changes” which
happens when two consecutive pollings incrementally differ. No “statement” tryg-
gers are supported. Only “for each row”, i.e. each new tuple causes the enactment
of the trygger. The event payload refers to this new tuple, kept in the system
variable NEW.

The Condition. In SQL, conditions check the event payload, i.e. the new/old
tuple being inserted/deleted. Likewise, tryggers can check conditions in the new
“ODT tuples” being inserted. Each new tuple causes the enactment of the trigger
only if the conditions are satisfied.

The Action. SQL actions stand for procedures that are stored in the database.
Procedures can be atomic (i.e. a single statement) or full-fledged programs (de-
scribed using e.g. PL/SQL or Java). Back to Trygger, actions can be either
atomic or composed. Atomic actions comprise a single statement, specifically,
any “insert/update/delete” statement defined upon an ODT table. Action pa-
rameters can refer to either constants or NEW. However, single-statement actions
fall short in numerous scenarios, namely: when payload parameters need some
processing before being consumed; when data kept in other ODT tables is to
be retrieved; when more than one ODT table needs to be changed3. This leads
to composed actions, i.e. programs. Akin to YQL, the programming language is
JavaScript. Trygger ’s JavaScript permits both YQL actions and access to the
3 Action statements are enacted as independent entities. So far, Trygger does not

support transaction-like mechanisms.

Cross Publishing 2.0: Letting Users Define Their Sharing Practices 81

Fig. 3. A) Twitter2Facebook trygger. NEW refers to the ODT tuple being inserted
since the last time the twitter.search table was pulled. B) Arxiv2Instapaper trygger.

system variable NEW. Next section illustrates this syntax throughout different
examples4.

4 Trygger at Work

Cross Publishing from Twitter to Facebook . Facebook launched Selec-
tiveTwitter5 whereby tweets ending in the hashtag #fb are directly propagated
to the user’s Facebook status. This application can be conceptually described as
a cross publishing rule: “on introducing a tweet that contains #fb, do update
my Facebook wall”. Facebook developers were forced to provide a generic hash-
tag (i.e. #fb) to accommodate no matter the user. However, users can certainly
be interested in monitoring domain-specific hashtags. For instance, when in a
conference (identified through a hashtag, e.g. #ICWE2014), users might be in-
terested in tracking tweets referring to #ICWE2014 from the Twitter accounts
of some attendees. Unlike the #fb case, this approach does not force the user’s
colleagues to introduce the #fb hashtag but a tag that might already exist. It
is also domain-specific as for attaching distinct sharing behaviour to different
hashtags. Figure 3-A provides a trygger that supports domain-specific hashtag
tracking. We resort to two ODT tables, “twitter.search” and “facebook.setStatus”
that support selections and insertions on Twitter and Facebook, respectively.

This rule is triggered if the delta of two consecutive selects on twitter.search
is not empty. This ODT table includes two columns: “q” and “text” that keep
the username of the Twitter account and the tweet message, respectively.

4 Used ODT’s can be consulted at http://github.com/yql/yql-tables or in the
YQL console.

5 http://www.facebook.com/selectivetwitter. To date, this enhancement obtains
3.6 out of 5 review summary based on 2,666 reviews.

82 J. Iturrioz, I. Azpeitia, and O. Díaz

The trygger conditions checks first whether “q” holds either “from:iturrioz” or
“from:oscaronekin”, and second, if the “text” contains the string “#ICWE2014 ”.
If met, the trygger ’s action results in a new tuple being inserted into the face-
book.setStatus table. The newly created tuple (i.e. uid, status, access_token) is
obtained from the NEW variable and the credentials for the Facebook account.

Cross Publishing from Arxiv to Instapaper. Arxiv6 is an online archive
for electronic preprints of scientific papers. Instapaper7 is a neat tool to save web
pages for later reading. In this example, the trygger will monitor new preprints
in Arxiv published in any “Springer” journal that contains “YQL” in the ti-
tle. On detecting such preprints, the trygger will create a new entry in the
Instapaper account of “oscaronekin”. This example involves two ODT tables:
arxiv.search and instapaper.unread (see Figure 3-B). The former includes two
columns, i.e. search_query and journal_ref that hold the title and the journal
of the manuscript respectively.

On adding a new preprint in arxiv.search, the trygger checks whether the
search expression is “ti:YQL” and the manuscript venue contains “Springer ”. The
interesting part is the trygger ’s action. The action constructs a tuple out of NEW.
Since “NEW.atom” holds an XML document, its content can be obtained using
E4X dot 8. To avoid clumsy expressions, an XMLNAMESPACES declaration is
introduced (so does SQL).

5 Trygger Architecture

YQL console is a tester of third parties’ APIs. This implies to use credentials
(passwords, API keys,...) on the statements. Tryggers are composed of YQL
statements, hence the credentials would be exposed to the Trygger service. This
could prevent users from creating tryggers. However, Trygger does not analyze
or decompose the statements in a trygger, the event part and the action part of a
trygger are used as black boxes. Even though, users are able to hide credentials
using the storage capabilities offered by YQL9. YQL allows to set up key values
for use within ODTs and to storage keys outside of the YQL statements including
them on environment files. In these way, users are in control of their credentials
and manage them directly on the YQL console (see Figure 4). As an example,
let’s analyze the action part of the trygger on Figure 3-A. The credential (i.e.
access_token) is explicitly shown (254|2.AQY00514|FbS4U_w). The SET key-
word on the YQL language binds a key with a value. So, the SET access_token =
"254|2.AQY00514|FbS4U_w" ON facebook.setStatus instruction establish that
the 254|2.AQY00514|FbS4U_w value is assigned to the access_token field each
6 http://arxiv.org/
7 http://www.instapaper.com/
8 ECMAScript for XML (E4X) is a programming language extension that adds native

XML support to ECMAScript.
http://en.wikipedia.org/wiki/ECMAScript_for_XML

9 See http://developer.yahoo.com/yql/guide/yql-setting-key-values.html for
more information.

Cross Publishing 2.0: Letting Users Define Their Sharing Practices 83

time the facebook.setStatus table is invoked. The SET instruction should be hid-
den in an environment file through the YQL console. The response is a public
key (e.g store://kgnRBearlKjAI4rBdRntdf) to use the hidden data in the en-
vironment file. Therefore the action part on our working trygger is simplified
as:

ENV ’store://kgnRBearlKjAI4rBdRntdf’;
INSERT INTO facebook.setStatus (uid, status)
VALUES ("689274514", NEW.results.text.*);

This grounds Trygger to be supported using a client-side architecture, i.e. as
a browser extension. Since Trygger ’s first audience is the YQL community, the
Trygger extension should be tightly integrated with the YQL console (not to be
confused with the YQL system). That is, users should define tryggers using the
same console they are accustomed to setting YQL requests: i.e. the YQL website.
This implies the Trygger extension to be locally supported as an HTML wrapper
upon the YQL website. To this end, we superimpose on the YQL console, GUI
elements (e.g. buttons and panels) for trygger management. Interacting with
these GUI elements will enact the services of server-side components that reside
on the cloud, completely detached from the YQL system.

Database triggers are kept in the catalogue of the Database Management
System (DBMS). YQL mimics the role of the DBMS as the container of ODT
tables. This seems to suggest for tryggers to be held within the boundaries of
YQL. However, some differences between YQL and DBMS advice a closer look.
DBMSs are the only custodian of their data. Hence, DBMSs also act as event
detectors since any table operations must go through the DBMS. By contrast,
YQL is just another client built on top of somewhere else’s data. This data can
be updated by agents other than YQL. Therefore, the event detector can not
stop at the ODT table but go down to the website. These observations unfold
two divergent requirements. On one hand, we aim at a seamless integration with
YQL so that users feel a unique experience. On the other hand, we require
separate trygger management to detect events on monitored sites.

5.1 Deployment

The main components on the Trygger system complementing the YQL system
are these (see Figure 4):

1. The Trygger console. It is a Web wrapper built on top of the YQL console.
Implementation wise, this is achieved using Greasemonkey10, a weaver that
permits locally executed scripts to modify web pages on the fly. The wrapper
provides local management for tryggers, i.e. creation, verification, deletion,
enabling and disabling. Although the tryggers are send to the Trygger service
a local copy is storage for rapid accessing and backing up.

10 http://www.greasespot.net/

84 J. Iturrioz, I. Azpeitia, and O. Díaz

Fig. 4. Deployment diagram. In yellow color Trygger components, in green color YQL
components and in pink color websites on the Internet

2. The Mars Engine. Tryggers are realized as Event Condition Action (ECA)
rules. The MARS framework running into the Trygger service’s machine is
used as the rule engine [2]. Its functions include (see Figure 5): ECA rule
registration (ECA engine), event occurrence signaling (Event Engine) and
rule firing (i.e. rule’s action enactment) (Action Engine). MARS provides the
general framework for supporting ECA rules in a distributed environment.
However, both events and actions are domain specific. Their realization and
definition need to be externalized from MARS into so-called brokers.

3. The Trygger Brokers. The brokers are deployed in the Trygger service’s
machine. Two brokers are introduced (see Figure 5). The Event Broker
monitors and generates events. So far, only one type of event is handled:
changes in ODT table. Hence, the way to detect a change is by periodically
polling the underlying website. For this purpose, we use the PubSubHubbub
protocol [8]. On receiving the signal from the PubSub hub, the Event Bro-
ker generates an event occurrence for each NEW change. On event signaling,
the MARS engine triggers the associated rules. Rule triggering is conducted
through the Action Broker.

4. The PubSub hub. The PubSubHubbub service manages subscriptions to
RSS data sources. The subscriber (i.e. the Event Broker) provides the pub-
lisher’s feed URL (i.e. the YQL REST call to a ODT table) to be monitored
as well as a callback URL to be called when the feed is updated. The hub

Cross Publishing 2.0: Letting Users Define Their Sharing Practices 85

periodically polls the feed for new updates. On the feed being updated, the
hub is noticed. This in turn propagates the feed to the subscriber callback
endpoint: the Event Broker. There are some online PubSubHubbub services
available on the Internet, for example, Google PubSubHubbub Hub11 or Su-
perfeedr12. However, we opt for deploy a dedicated service on the Google
App Engine since the source code is freely downloadable13.

5. The Trygger ODTs. They act as mediators from MARS to YQL (i.e. the
JSinterpreter ODT shown in the Figure 5) and from YQL to PubSub
hub (i.e. the RSS-izator ODT shown in the Figure 5)14. The former is
a JavaScript snippet that knows how to process the code of the the rule’s
action part. The Trygger Action Broker requests this service providing as
parameters the action code and the event occurrence. As for the RSS-izator,
it resolves the format mismatch between the RSS required by the PubSub
hub and the XML returned by YQL. The trygger ODTs reside into the YQL’s
repository.

These components are already available in the cloud except the Greasemonkey
wrapper. The wrapper needs to be locally installed as a Firefox plugin available
at http://www.onekin.org/trygger. Next subsections outline how these compo-
nents interact to support the main trygger life cycle stages: edition, verification,
creation and enactment.

5.2 Interaction

The trygger definition and execution follows four steps:

TryggerEdition. Tryggers are edited through the YQL console (see Figure 6).
This console (1) detects the specification of a trygger in the YQL statement in-
put box, and if this is the case, (2) provides a hyperlink for creating the trygger
which is stored locally. So-stored tryggers can latter by managed through the new
TRYGGER ALIASES tab (3). This tab displays a list of the locally kept tryggers
together with icons for deletion, enabling/disabling and reading the log (4).

Trygger Verification. Once edited, the trygger can be verified by clicking the
“test” button (5). So far, Trygger verification comprises: (1) Trygger syntax,
(2) checking for the triggering ODT to hold a <select> tag (this is needed for
monitoring).

Trygger Creation. Once the trygger is satisfactory verified, the “Create Tryg-
ger Alias” link is activated. Besides making the trygger locally available, trygger
creation involves the generation of a MARS rule [3]. The so-generated rule is

11 https://pubsubhubbub.appspot.com/
12 http://pubsubhubbub.superfeedr.com/
13 http://onekinpush.appspot.com/
14 These ODT tables are available for inspection at

https://github.com/yql/yql-tables/blob/master/trygger/JSinterpreter.xml
and .../RSS-izator.xml

86 J. Iturrioz, I. Azpeitia, and O. Díaz

Fig. 5. Interaction diagram among Trygger components: trygger creation (continuous
line) and trygger enactment (dotted line) propagating the NEW event occurrence

next registered in MARS (see Figure 5, continuous line). As a result, MARS
requests the Event Engine to register the rule’s (1.3) who sends the event spec-
ification to this listener (1.4). This listener is realized by creating a hub in a
PubSubHubbub server (1.5). This server periodically polls the triggering website
by issuing the YQL SELECT query that is obtained from the rule’s event (1.6).

Trygger Enactment. The hub detects an incremental change at the next
polling time in terms of feeds (2.1 in Figure 5, dotted line). Next, it sends to
the Trygger Event Broker the updated feed (2.2). The broker creates an event
occurrence from the feed, and signals this happening to the Event Engine (2.3).
The event engine forwards the occurrence to the ECA Engine (2.4). The ECA
Engine retrieves those rules that match the type of new event occurrence, checks
their condition and if met, fires the rules in parallel. Rule firing, i.e. enacting
rule’s action, is conducted through the Action Engine (2.5). The Action Engine
forwards the petition to the domain-specific broker that knows how to handle the
statements of the rule’s action, i.e. the Trygger Action Broker (2.6) which is re-
alized as the JSinterpreter ODT (2.7). The JSinterpreter processes the trygger ’s
action which can in turn, contain insertion or selection on other ODT tables.

6 Validation

ISO-9126 [5] provides a framework to evaluate quality in use. This section pro-
vides a preliminary evaluation of Trygger along the ISO-9126’s quality-in-use
dimensions. We evaluate usability along three aspects:

Cross Publishing 2.0: Letting Users Define Their Sharing Practices 87

Fig. 6. YQL console wrapped for trygger management

– Effectiveness, which is the capability of the software product to enable users
to achieve specified goals with accuracy and completeness. Indicators of effec-
tiveness include quality of solution and error rates. The “quality of solution”
is used as the primary indicator of effectiveness, i.e. a measure of the outcome
of the user’s interaction with the system.

– Productivity, which is the relation between the capability of the software
product to enable users to expend appropriate amounts of resources in re-
lation to the effectiveness. Indicators of efficiency include task completion
time and learning time. In this study, we use “task completion time” as the
primary indicator of productivity.

– Satisfaction, which is the users’ comfort with and positive attitudes toward
the use of the system. Users’ satisfaction can be measured by attitude rating
scales such as SUMI [11]. In this study, we use “preference” as the primary
indicator of satisfaction.

6.1 Research Method

Setting. In order to eliminate differences in the perception of Trygger due to
hardware or bandwidth differences, the study was conducted in a Faculty lab-
oratory. All participants used computers with the same features and a clean
installation of Firefox 12.0.
Subjects. The experiment was conducted among 12 graduate students applying
in a Master in Web Engineering. They satisfactorily passed a 10 hour course in
Web Programmable issues, where they worked with YQL. They had accounts
in Twitter and Facebook, and a 92% access social networks on a daily basis
while 41% tweet with a weekly frequency. They know about SlideShare, Arxiv
and Instapaper and they were familiarized with the notion of database triggers.
Six students knew the existence of Greasemonkey but only two had previously
installed Greasemonkey scripts.
Procedure. Before starting, a 30’ talk with some practical examples of the
Trygger syntax and the main functions of the Trygger console were given.

88 J. Iturrioz, I. Azpeitia, and O. Díaz

Initially, the participants installed the Greasemonkey extension and the Trygger
plug-in. Once the framework was deployed, subjects were faced with the creation
of the tryggers whose outputs correspond to those in Figure 3. In order to mea-
sure productivity, participants had to annotate the start time and the finishing
time. Finally, the subjects were directed to a GoogleDocs questionnaire to gather
their opinion about Trygger.
Instrument. An online questionnaire served to gather users’ experience using
Trygger. It consisted of four parts, one to collect the participants’ background
and one for each of the quality-in-use dimensions. In order to evaluate effective-
ness, the questionnaire contained the proposed tasks so that participants could
indicate if they had performed them and the main problems encountered, while
productivity was measured using the minutes taken in such tasks. Satisfaction
was measured using 10 questions, using a 5-point Likert scale (1=completely
disagree, 5=completely agree).

6.2 Results

Effectiveness. 10 students completed the first trygger without additional help.
Two had problems with the Trygger grammar. This makes us think that the
basic Trygger syntax is intuitive enough. However, only 6 students completed
the second trygger. All the participants managed to write the main structure of
the trygger, but they had problems in dealing with namespaces and correctly
identifying the path expressions that obtained the values of the action out of the
event occurrence (e.g. NEW.atom:entry.atom.title.*).

Productivity. Installation of the Greasemonkey and the Trygger plugs-in took
on average 15’. We appreciated a considerable dispersion on the time involved in
trygger specification. The first trygger involved 4’ on average while the second
took 12’ on average. Rationales rest on the same issued previously mentioned:
the difficulty in copying with namespaces and Path expressions.

Satisfaction. We evaluated satisfaction for two concerns: the Trygger console,
and the Trygger syntax. According to the results (see Figure 7), the Trygger
console was in general considered quite supportive. One exception was error
messages. Users did not find useful the messages generated by Trygger (see
next section). As for the Trygger syntax, users found easy to equate the Trygger
syntax to the syntax of triggers in SQL. This “semantic anchoring” might explain
the perception of tryggers being easy to specify. However, subjects were very
critical with the specification of the trygger ’s action. This is mainly due to the
action taken its parameters from NEW. This variable is populated out of an
ODT query. This query is based on an ODT table, but the query results are
dynamically constructed, i.e. the shape of the output cannot be inferred from
the shape of the input ODT. Therefore, users need first to enact the query and
look at the output before specifying the trygger ’s action. This certainly is a main
stumbling block.

Cross Publishing 2.0: Letting Users Define Their Sharing Practices 89

7 Discussion

Trygger rises different non-functional issues as for usability, extensibility, scala-
bility and reliability. This section discusses these concerns.

Usability (i.e. the ability to easily use Trygger). From the aforementioned eval-
uation, two weaknesses can be identified: the difficulty in describing the trygger ’s
action (the last question of the questionnaire) and the limited information pro-
vided by the Trygger engine (question 4 of the questionnaire). The former advices
from the introduction of enhanced interfaces that traces the trygger’s enactment,
basically, event signaling and action enactment. Debuggers are needed that show
the trace of both operations so that users will notice the existence of a mismatch
between the returned event occurrence, and the path expressions used to extract
the values for the action. This moves us to the second problem: the limitations of
the error messages in Trygger. So far, the Trygger engine does not have its own
error messages. Rather, it propagates YQL message to the console. But YQL
is about simple YQL statements whereas a trygger can be regarded as a com-
pound: a query (the trygger ’s event) + an update (the trygger ’s action). This
means that a perfectly valid query and a perfectly valid update might deliver a
wrong trygger. A Trygger-specific error module is needed.

Extensibility (i.e. ability to define tryggers no matter the social website). Tryg-
ger relies upon ODT tables. Yahoo manages an ODT repository which is open to
the community15. At the time of this writing, above 11054 APIs are documented
at http://www.programmableweb.com/. Out of this number, 194 have been made
YQL accessible by the community. We tap into the YQL community to keep the
ODT repository updated with new comers.

Scalability. Trygger processing is highly parallelized. We rely on MARS archi-
tecture for this purpose. Besides communication, the polling frequency of the
hub also introduces some latency in the process. However, we envision Trygger
not to be used for time-critical scenarios but rather Web2.0 scenarios where a
5-hour latency between the rising of the event and the enactment of the action
is acceptable. Finally, Trygger is an agent acting on third-party APIs. Some
APIs limit the number of calls per day. Since all calls are made on behalf of
Trygger, this could be a problem for popular sites. Notice however that popular
APIs (e.g. Twitter) have a reasonable allowance threshold (around three calls
per minute16).

Reliability. Reliability is manifold. First, response time. This is not an issue
since our scenarios are not time critical. Second, recoverability. We rely on MARS
for providing storage of rules. In addition, the Trygger console keeps a copy of
tryggers as well. This permits to re-create the rule in MARS from the copy kept
locally in the Trygger installation. Third, safety, specifically about user creden-
tials. We illustrate this scenario for the Twitter2Facebook trygger (see Figure 3-

15 http://www.datatables.org/
16 https://dev.twitter.com/docs/rate-limiting

90 J. Iturrioz, I. Azpeitia, and O. Díaz

Fig. 7. Questionnaire to assess Trygger usability. Likert scale is used from Strongly
agree (5) to Strongly disagree (1).

A) where Facebook credentials were required. Credentials are captured as ODT
columns (i.e. access_token). This is commonly realized through OAuth17, an
open standard for authorization that allows users to share their private resources
through API access without having to hand out their credentials, typically user-
name and password.

8 Related Work

Traditionally, cross publishing address two main challenges. First, crossing the
border among different media (e.g., print, Web, and TV) [17][16]. Cross media
can be defined as any content (news, music, text, and images) published in mul-
tiple media. Multiple media indicates that the same content is delivered to end
users in more than one medium. The second challenge is to leverage hyperlink-
like mechanisms to expand besides HTML pages to other media (i.e. hyper-
media). For instance, in [14] the iServer framework is introduced as a generic
link management and extensible integration platform that push the boundaries
of hyperlinks to paper documents. This work introduces a third challenge akin
to the Web 2.0: empowering end-users for defining their own cross publishing
strategies. Cross publishing 2.0 admits different variations based on the expres-
siveness of the strategy (i.e. the criteria for selection, and the associated reac-
tions). Trygger provides a push approach to tracking ODT-described resources,
and proactively responds by enacting an YQL-powered action. Next paragraphs
introduce other solutions.

In [12], the focus is on tracking tweets. Rather than using hashtags, the se-
lection criteria to determine tweets of interest is described through an Resource
Description Framework (RDF) query. This implies that tweets need first to be

17 http://oauth.net/

Cross Publishing 2.0: Letting Users Define Their Sharing Practices 91

automatically annotated along a pre-set list of ontologies. The RDF query is then
addressed along the so-annotated tweets. The reaction is limited to the publica-
tions of the tweets meeting the RDF query. The architecture also relies on PuSH
hubs. On the other hand, ReactiveTags [9] tracks tagging sites’ annotations with
specific tags (the so-called reactive tags). Unlike Mendes et al., ReactiveTags
tracks multiple target sites where the selection and impact criteria are defined
semantically in terms of Semantically-Interlinked Online Communities [4] Items.
The data is tracked on the target through the API mechanism.

The Social RSS [1] Facebook ’s app links RSS sources to a user’s Facebook
account. The app is a feed reader that monitors RSS sources and next, publishes
each new feed in the user’s wall. Reactions are limited to publishing feeds in
Facebook walls.

Another reactive system for RSS tracking is “Atomate It” [15]. Both the crite-
ria and the reactions are similar to those of Trygger. The difference stems from
the architecture. “Atomate It” distinguishes two stages. First, RSS feeds are
loaded. Second, condition-action rules (rather than ECA rules) are run over the
previously stored feeds. The tool is aimed at end users so graphical assistance
is provided. The downside is expressivity. Complex rules can not be defined,
and extending either the RSS providers or the action list involves considerable
programming. Similarly, Ifttt18 permits users create cross publishing rules using
a very intuitive interface, offering a place where users can comment and share
their Ifttt rules. However, simplicity comes at the expense of customizability. Ifttt
fixes the way the information is transformed between the two involved services
(a.k.a. channels) while also canning the websites that can act as channels.

Which approach is better? Design choices are subject to tradeoffs between fac-
tors that will value some attributes while penalizing others. This in turn is influ-
enced by the target audience and the target websites. The work by Mendes et al.
focuses on Twitter and RDF as main technological platforms. “Atomate It” and
Ifttt are opened to a larger though fixed set of websites. Their efforts favour easy
production by trading expressiveness for learnability. Trygger explores a different
scenario by taping into an existing community (YQL). While other approaches
depart from raw open APIs (or their RSS counterparts), Trygger sits at a higher
abstraction layer by starting from ODT tables. Not only does ODT simplifies the
development of Trygger, it also provides a community that, on expanding YQL, is
also extending the scope of Trygger. In addition, Trygger expressiveness attempts
to find a compromise by using SQL-like syntax while leaving a backdoor for per-
mitting the use of JavaScript to express more complex reactions.

9 Conclusion

The increasing number of resources kept in the Web together with the growing-up
of digital natives make us hypothesize a need for sophisticated cross publishing
capabilities. This paper advocates for an ubiquitous, platform-agnostic, do-it-
yourself approach to cross publishing. This vision is borne out in Trygger, a
18 http://ifttt.com

92 J. Iturrioz, I. Azpeitia, and O. Díaz

Firefox plugin that works on top of the YQL console. Capitalizing on YQL,
Trygger permits to express cross publishing as SQL-like triggers. Next follow-on
includes to come up with more elaborate Graphical User Interfaces that open
Trygger to a wider, less technical, audience.

References

1. Social RSS homepage (2013), http://apps.facebook.com/social-rss/
2. Alferes, J., Amador, R., Behrends, E., Fritzen, O., May, W., Schenk, F.: Pre-

standardization of the language. Technical report i5-d10. Technical report (2008),
http://www.rewerse.net/deliverables/m48/i5-d10.pdf

3. Alferes, J., Amador, R., May, W.: A general language for evolution and reactivity in
the semantic web. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703,
pp. 101–115. Springer, Heidelberg (2005)

4. Bojars, U., Breslin, J.G.: SIOC core ontology specification (2007),
http://rdfs.org/sioc/spec/

5. Davis, I., Vitiello Jr., E.: ISO 9241-11. Ergonomic requirements for office work with
visual displays terminals(vdts) (1998)

6. Díaz, O., Arellano, C., Azanza, M.: A language for end-user web augmenta-
tion: Caring for producers and consumers alike. ACM Transactions on the Web
(TWEB) 7(2), 9 (2013)

7. Fischer, G.: End-user development and meta-design: Foundations for cultures of
participation. In: Pipek, V., Rosson, M.B., de Ruyter, B., Wulf, V. (eds.) IS-EUD
2009. LNCS, vol. 5435, pp. 3–14. Springer, Heidelberg (2009)

8. Fitzpatrick, B., Slatkin, B., Atkins, M.: Pubsubhubbub homepage,
http://pubsubhubbub.googlecode.com/

9. Iturrioz, J., Díaz, O., Azpeitia, I.: Reactive tags: Associating behaviour to pre-
scriptive tags. In: Proceedings of the 22nd ACM Conference on Hypertext and
Hypermedia, HT 2011. ACM (2011)

10. Iturrioz, J., Díaz, O., Azpeitia, I.: Generalizing the “like” button: empowering web-
sites with monitoring capabilities. In: ACM (ed.) 29th Symposium On Applied
Computing (volume to be published, 2014)

11. Kirakowski, J., Corbett, M.: SUMI: The software usability measurement inventory.
Journal of Educational Technology 24(3), 210–212 (1993)

12. Mendes, P.N., Passant, A., Kapanipathi, P., Sheth, A.P.: Linked open social signals.
In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, Washington, DC, USA, vol. 01, pp.
224–231 (2010)

13. Yahoo! Developer Network. Yahoo query language (YQL) guide (2011),
http://developer.yahoo.com/yql/guide/yql_set.pdf

14. Norrie, M.C., Signer, B.: Information server for highly-connected cross-media pub-
lishing. Information Systems 30(7), 526–542 (2003)

15. VanKleek, M., Moore, B., Karger, D.R., André, P., Schraefel, M.C.: Atomate it!
end-user context-sensitive automation using heterogeneous information sources on
the web. In: Proceedings of the 19th International Conference on World Wide Web,
New York, NY, USA, pp. 951–960 (2010)

16. Veglis, A.: Comparison of alternative channels in cross media publishing. Publishing
Research Quarterly 24(2), 111–123 (2008)

17. Veglis, A.A.: Modeling cross media publishing. In: The Third International Con-
ference on Internet and Web Applications and Services, pp. 267–272 (2008)

http://apps.facebook.com/social-rss/
http://www.rewerse.net/deliverables/m48/i5-d10.pdf
http://rdfs.org/sioc/spec/
http://pubsubhubbub.googlecode.com/
http://developer.yahoo.com/yql/guide/yql_set.pdf

Ensuring Web Interface Quality through

Usability-Based Split Testing

Maximilian Speicher1,2, Andreas Both2, and Martin Gaedke1

1 Chemnitz University of Technology, 09111 Chemnitz, Germany
maximilian.speicher@s2013.tu-chemnitz.de,
martin.gaedke@informatik.tu-chemnitz.de

2 R&D, Unister GmbH, 04109 Leipzig, Germany
{maximilian.speicher,andreas.both}@unister.de

Abstract. Usability is a crucial quality aspect of web applications, as
it guarantees customer satisfaction and loyalty. Yet, effective approaches
to usability evaluation are only applied at very slow iteration cycles in
today’s industry. In contrast, conversion-based split testing seems more
attractive to e-commerce companies due to its more efficient and easy-
to-deploy nature. We introduce Usability-based Split Testing as an alter-
native to the above approaches for ensuring web interface quality, along
with a corresponding tool called WaPPU. By design, our novel method
yields better effectiveness than using conversions at higher efficiency than
traditional evaluation methods. To achieve this, we build upon the con-
cept of split testing but leverage user interactions for deriving quantitative
metrics of usability. From these interactions, we can also learn models for
predicting usability in the absence of explicit user feedback. We have ap-
plied our approach in a split test of a real-world search engine interface.
Results show that we are able to effectively detect even subtle differences
in usability. Moreover, WaPPU can learn usability models of reasonable
prediction quality, from which we also derived interaction-based heuristics
that can be instantly applied to search engine results pages.

Keywords: Usability, Metrics, Heuristics, Interaction Tracking, Search
Engines, Interfaces, Context-Awareness.

1 Introduction

In e-commerce, the usability of a web interface is a crucial factor for ensuring cus-
tomer satisfaction and loyalty [18]. In fact, Sauro [18] states that “[p]erceptions
of usability explain around 1/3 of the changes in customer loyalty.” Yet, when
it comes to interface evaluation, there is too much emphasis on so-called conver-
sions in today’s industry. A conversion is, e.g., a submitted registration form or
a completed checkout process. While such metrics can be tracked very precisely,
they lack information about the actual usability of the involved interface. For
example, a checkout process might be completed accidentally due to wrongly la-
beled buttons. Nielsen [17] even states that a greater number of conversions can

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 93–110, 2014.
c© Springer International Publishing Switzerland 2014

94 M. Speicher, A. Both, and M. Gaedke

be contradictory to good usability. In the following, we illustrate this challenge
by introducing a typical example scenario.

Scenario. A large e-commerce company runs several successful travel search
engines. For continuous optimization, about 10 split tests are carried out per
live website and week. That is, slightly different versions of the same interface
are deployed online. Then, the one gaining the most conversions is chosen after a
predefined test period. The main stakeholder, who studied business administra-
tion and founded the company, prefers the usage of Google Analytics1 or similar
tools due to their precise and easy-to-understand metrics. Yet, the split testing
division would like to gain deeper insights into users’ behavior since they know
that conversions do not represent usability. Thus, they regularly request more
elaborate usability evaluations, such as expert inspections for assessing the inter-
faces. The stakeholder, however, approves these only for novel websites or major
redesigns of an existing one. To him, such methods—although he knows they are
highly effective2—appear to be overly costly and time-consuming. Conversion-
based split testing seems more attractive from the company’s point of view and
is the prime method applied for optimization.

Requirements. The situation just described is a common shortcoming in to-
day’s e-commerce industry, which is working at increasingly fast iteration cycles.
This leads to many interfaces having a suboptimal usability and potentially deter-
ring novel customers. Thus, we formulate three requirements for a novel usability
testing approach that would be feasible for everyday use in industry and support
a short time-to-market:

(R1) Effectiveness A novel approach must be more effective than conversion-
based split testing w.r.t. determining the usability of an interface.

(R2) Efficiency A novel approach must ensure that evaluations are carried out
with minimal effort for both, developers and users. Particularly, deployment
and integration must be easier compared to established methods such as
expert inspections or controlled lab studies.

(R3) Precision A novel approach must deliver precise yet easy-to-understand
metrics to be able to compete with conversion-based split testing. That is,
it must be possible to make statements like “Interface A has a usability of
99% and Interface B has a usability of 42%. Thus, ‘A’ should be preferred.”

A solution to the above is to derive usability directly from interactions of real
users, such as proposed by [21]. However, they conclude that user intention and
even small deviations in the low-level structures of similar webpages influence
interactions considerably. This makes it difficult to train an adequate usability
model M that predicts usability U from interactions I only: M(I) = U . Still,
the described approach yields great potential.

We consider the pragmatic definition of usability as presented in [20], which
is based on ISO 9241-11. Using a corresponding instrument specifically designed

1 http://www.google.com/analytics/ (2014-02-01).
2 For example, [16] state that only five evaluators can find up to 90% of the usability
problems in an interface.

http://www.google.com/analytics/

Ensuring Web Interface Quality through Usability-Based Split Testing 95

Fig. 1. Web Interface Usability Evaluation: the competing approaches (rough overview)

for correlation with client-side interactions [20], we propose a general approach
to Usability-based Split Testing rather than considering conversions. To achieve
this, we provide WaPPU—a tool that caters for (a) user interaction tracking,
(b) collecting usability judgments from real users, (c) training usability models
and (d) correlation of the obtained data. By design, the concept of Usability-
based Split Testing enables developers to ensure the quality of a web application
w.r.t. its interface usability at higher effectiveness than conversion-based split
testing and higher efficiency than traditional approaches to usability evaluation
(Fig. 1).

Making use of WaPPU (“Was that Page P leasant to U se?”) we performed
a usability-based split test of a real-world search engine results page (SERP).
We paid specific attention to user intention and differences in low-level page
structure to overcome the problems pointed out in [21]. From the study results,
we derived interaction-based usability models and quantitative heuristic rules
for SERPs. These can be instantly applied to user interactions collected on a
SERP for a reasonable approximation of usability at very high efficiency.

In the following section, we give an overview of related work and describe
the initial user study motivating our novel approach. Subsequently, we explain
the concept of Usability-based Split Testing (Sec. 3) and the corresponding tool
WaPPU (Sec. 4). The evaluation involving two web interfaces of a real-world
search engine are presented in Section 5, followed by our findings (Sec. 6). Cur-
rent limitations of our approach and potential future work are discussed in Sec-
tion 7 before giving concluding remarks in Section 8.

2 Related Work

Our research is related to a wide variety of existing work. In particular, we are
going to refer to automatic and metrics-based approaches to usability evaluation
that are partly based on user interaction analysis. We also present an earlier
study on the feasibility of quantitative interaction-based usability evaluation.

2.1 Automatic Approaches to Usability Evaluation

User Interaction Analysis. Atterer et al. [1] present a tool for client-side
user interaction tracking. After having collected information about cursor be-
havior, keyboard strokes or dwell time, one can use these events to visualize a

96 M. Speicher, A. Both, and M. Gaedke

users interactions on a webpage. From these, the authors aim to infer implicit
interactions, such as hesitation before filling in an input field [1]. This is a useful
tool for facilitating more automatic usability tests and provides developers with
valuable information. m-pathy3 is a commercial tool for qualitative user behavior
inspection that follows the concept described by [1]. The tool features additional
metrics that are, however, in analogy to conversion-based split testing, e.g., the
number of checkout processes and similar.

Web Usability Probe [2] is a more sophisticated tool also allowing for auto-
matic remote usability testing. It is possible to define optimal logs for given tasks,
which are then compared to the client-side logs actually produced by the user.
De Vasconcelos and Baldochi Jr. [4] follow a similar approach that compares
users’ interactions against pre-defined patterns.

In contrast to our novel approach, all of the above methods—although as well
aiming at usability improvement—have different focuses. None derives quantita-
tive statements about usability from the observed interactions, which would
enable direct comparison of interfaces. Rather, interpretation of the delivered qual-
itative information is largely up to a developer or dedicated usability evaluator.

Navalpakkam and Churchill [12] investigate the possibility to infer the user
experience of a web interface from mouse movements. In a user study, they find
that certain features of interaction (e.g., hovers, arrival time at an element) can
be used to predict reading experience and user distraction with reasonable accu-
racy. Yet, they investigate only these specific aspects. Particularly, the authors
do not focus on providing interaction-based measures of usability or user expe-
rience for quantitative comparison of interfaces.

Website Checking. Tools such as AChecker [6] and NAUTICUS [3] aim at au-
tomatic checking of websites according to certain criteria and heuristics. While
the first specifically focuses on web accessibility, the second tool also takes into
account usability improvements for visually impaired users. Both tools are par-
ticularly able to automatically suggest improvements regarding the investigated
interfaces. Yet, they only consider static criteria concerned with structure and
content of a website rather than actual users’ interactions.

A/B Testing. AttrakDiff 4 is a tool that enables A/B testing of e-commerce
products for user experience optimization. That is, based on a dedicated instru-
ment, the hedonic as well as pragmatic quality of the products are compared
[11]. While this may seem very similar to our proposed approach, it has to be
noted that the aim of AttrakDiff is different from Usability-based Split Testing.
Particularly, the tool leverages questionnaire-based remote asynchronous evalua-
tion rather than focusing on user interactions. Also, qualitative, two-dimensional
statements about user experience are derived, which has to be clearly distin-
guished from usability and quantitative metrics thereof.

3 http://www.m-pathy.com/cms/ (2014-02-24).
4 http://attrakdiff.de/ (2014-02-24).

http://www.m-pathy.com/cms/
http://attrakdiff.de/

Ensuring Web Interface Quality through Usability-Based Split Testing 97

2.2 Metrics-Based Approaches to Usability Evaluation

Contrary to the above approaches, Nebeling et al. [14] take a step into the direc-
tion of providing quantitative metrics for webpage evaluation. Their tool analyzes
a set of spatial and layout aspects, such as small text ratio or media–content ra-
tio. These metrics are static (i.e., purely based on the structure of the HTML
document) and specifically aimed at large-screen contexts. In contrast, our goal
is to provide usability-in-use metrics based on users’ dynamic interactions with
the webpage.

W3Touch [15] is a metrics-based approach to adaptation of webpages for touch
devices. This means certain metrics of a website, e.g., average zoom, are deter-
mined from user interactions on a per-component basis. Components with values
above a certain threshold are then assumed to be “critical” and adapted accord-
ing to rules defined by the developer. This is a very promising approach that
is, however, specifically aimed at touch devices. Moreover, the webpage metrics
that identify potentially critical parts of a webpage are not transferred into more
precise statements about usability.

2.3 Motivating Study

In the following, we address earlier work of the authors of this paper [21] that
motivates the concept of Usability-based Split Testing.

In [21], we have tried to solve the already described conflict between tradi-
tional usability evaluations and conversion-based split testing by learning usabil-
ity models from user interactions. For this, we have collected user interaction
data on four similarly structured online news articles. Study participants had to
answer a specific question about their assigned article. However, only two of the
articles contained an appropriate answer. Once they found the answer or were
absolutely sure the article did not contain it, participants had to indicate they
finished their task and rate the web interface of the article based on the novel
Inuit usability instrument [20]. Inuit contains seven items designed for mean-
ingful correlation with client-side interactions (e.g., , “cursor speed positively
correlates with confusion”) from which an overall usability score can be derived.

All articles featured a single text column with a larger image on top and a
sidebar which contained additional information and/or hyperlinks. Two articles
featured a short text (∼1 page) while the remaining two featured a longer text
(≥2 pages). Moreover, two of the articles featured images within or close to the
text column. Still, the high-level structures of the articles were similar. The lower-
level differences were chosen by purpose to provoke differences in user behavior
and usability judgments. Also, by providing an answer to the participant’s task in
only two of the four articles, we have simulated different user intentions according
to [8]. That is, participants who could find an answer acted like fact finders while
the remaining participants behaved like information gatherers.

We used a dedicated jQuery plug-in to track a set of well-defined interactions
(e.g., clicks, hovers, scrolling distance etc.). These interactions were recorded
separately for: (1) the whole page; (2) a manually annotated area of interest, i.e.,

98 M. Speicher, A. Both, and M. Gaedke

the article text; (3) all text elements; (4) all media elements; (5) text elements
within the area of interest; and (6) media elements within the area of interest.

To give a representative example, the interaction feature hoverTimetext de-
scribes the aggregated time the user spent hovering text elements anywhere on
the page. Furthermore, all interaction feature values were normalized using ap-
propriate page-specific measures. For example, the page dwell time was divided
by the length of the article text to ensure comparability across the four webpages.

The main hypothesis investigated in the study was whether it is possible to
learn a common usability model from similarly structured webpages. Such a model
should be able to also predict the usability of a webpage which did not contribute
training data, as long as its structure is similar to a certain degree. However,
when we correlated the collected interactions and usability judgments, we found
huge differences between the four news articles. In fact, there was no interac-
tion feature that showed a considerable correlation with usability for all four
investigated webpages.

Fig. 2. Concept of a general framework for providing interaction-based usability models

This result indicates that user behavior depends on low-level webpage struc-
ture and intention more strongly than assumed, i.e., interactions are a function
of usability, structure and intention.

Thus, we concluded that a general framework for interaction-based usability
evaluation requires additional preprocessing steps: (1) structure-based clustering
of webpages; (2) determining user intention, e.g., following the approach proposed
by [8]; and (3) providing a common usability model per cluster and intention.

That is, for X types of user intention, a corresponding framework would have
to provide X usability models per webpage cluster (Fig. 2). For example, as-
sume a cluster contains all blogs using the same WordPress template. Then one
would have to train different models for users just browsing around and users
looking for a certain piece of information since these two intentions cause con-
siderable differences in behavior. In the remainder of this paper, we address how
to derive appropriate usability models and heuristics w.r.t. the requirements just
described.

Ensuring Web Interface Quality through Usability-Based Split Testing 99

3 Usability-Based Split Testing

We propose Usability-based Split Testing, which is a feasible trade-off between
effectiveness and efficiency, as an alternative to established approaches (Fig. 1).
That is, we aim at significantly better predictions of usability than can be done
using conversions. Besides, we want to be more efficient than established methods
of usability evaluation. To achieve this, we have designed a two-step process:

1. Track user behavior on the interfaces of a split test—i.e., the interfaces-
under-test—and apply the resulting interaction metrics to heuristic rules
for usability evaluation, e.g., “a higher cursor speed indicates more confu-
sion”. Test whether the difference between the interfaces is significant.

2. If the result is not significant, more specific information is required. Thus,
add a usability questionnaire to one of the interfaces. From the answers and
the tracked interactions, learn more specific usability models that can be
applied to the remaining interfaces for predictions of usability.

For realizing these steps and meeting requirements (R1)–(R3), as described
in Section 1, our novel approach follows a set of well-defined principles that will
be introduced in the following.

3.1 Component-Based Interaction Tracking

The major goal of our approach is to overcome the problems regarding inter-
actions and low-level page structure, as described in Section 2.3. During the
study motivating this paper, interaction feature values were calculated on a
very fine-grained basis. Particularly, interactions on any text or media element
were considered for analysis, no matter how tiny or unimportant. This means
that removing some minor elements from a webpage—such as text snippets in a
sidebar—would already impact the values of interaction features. Also, only nor-
malized absolute values were considered, rather than paying attention to relative
distributions of interactions across the webpage.

To address this issue of interactions being highly dependent on low-level struc-
ture, we follow a component-based approach. For this, an interface-under-test, i.e.,
a single webpage, is divided into higher-level components such as the whole navi-
gation bar rather than considering individual links. This approach partly follows
the concepts of areas of interest [7] and critical components [15]. The rest of
the webpage is treated as a separate, remaining component while the lower-level
structure within a component is considered a black box. It is also possible to
apply this to components in the context of other approaches, e.g., the WebCom-
position approach [5]. Since we intend to track interactions on a per-component
basis, in this way small changes to the lower-level structure—e.g., removing mi-
nor text snippets—do not have an impact on feature values. Usability models
learned from such component-based interactions can then be applied to different
webpages as long as the large-scale structure remains the same.

100 M. Speicher, A. Both, and M. Gaedke

3.2 Interaction-Based Heuristic Rules for Usability Evaluation

Interactions tracked in the context of a usability-based split test can be easily ap-
plied to pre-defined heuristic rules. To give just one example, assume a rule stating
that higher cursor speed positively correlates with user confusion. Then, if the users
of one interface-under-test produce significantly lower cursor speeds than users of
another, this is a clear indicator of less confusion. By design, this variant of our
approach is as efficient as conversion-based split testing (R2). That is, it can be
very quickly deployed on online webpages and does not bother the user with re-
quests for explicit feedback. Moreover, the collected interaction-based metrics are
precise and easily interpretable using the given heuristic rules (R3).

A drawback of this variant is the fact that the rules used need to be deter-
mined in a different setting of the same context (i.e., similar high-level structure,
similar user intention) first. That is, a dedicated training phase is required, e.g.,
a controlled user study during which explicit usability judgments are correlated
with interactions. Since the applied heuristic rules originate from a different
setting, they cannot be a perfect measure of usability for the interfaces-under-
test. Rather, they can only give reasonable approximations, but still provide
more insights into users’ actual behavior than conversions (R1). However, if this
approach fails to deliver significant results, one needs to obtain more precise
information for predicting usability by leveraging corresponding models.

3.3 Leveraging Usability Models

The second variant of our Usability-based Split Testing approach uses models for
predicting usability. For this, one interface-under-test is chosen to deliver train-
ing data. That is, users of the interface are presented with a questionnaire asking
for explicit, quantitative judgments of usability. This questionnaire is based on
Inuit [20], an instrument describing usability by a set of only seven items: in-
formativeness, understandability, confusion, distraction, readability, information
density and accessibility. In this way, the number of questions a user has to an-
swer is kept to a minimum [20]. The items have also been specifically designed
for meaningful correlation with client-side user behavior [20]. Together with the
collected interactions, explicit judgments are then used for training appropriate
models based on existing machine learning classifiers. Since the interfaces-under-
test all feature the same high-level structure—in accordance with component-
based interaction tracking—these models can be applied to the interactions of
the remaining interfaces for predictions of usability.

This variant of our approach cannot reach the same efficiency as conversion-
based split testing since parts of the users are faced with requests for explicit
feedback. Yet, by design, it is more efficient than traditional methods such as
remote asynchronous user studies (R2). Given the minimum of two interfaces-
under-test, only 50% of our users are presented with questionnaires, compared
to 100% of the participants in a controlled user study. Moreover, our approach
can be easily applied to online web interfaces. It does not require a cumbersome
study set-up since we rely on interactions and judgments of real users only.

Ensuring Web Interface Quality through Usability-Based Split Testing 101

In comparison to conversions or heuristic rules, models provide considerably
more precise insights into users’ behavior and its connection to usability (R1).
Also, questionnaires and models deliver an easily interpretable set of quantitative
metrics in terms different usability aspects (informativeness, understandability
etc.) for comparing interface performance (R3).

4 The WaPPU Tool

To provide a ready-to-use framework for Usability-based Split Testing, we have
designed a novel context-aware tool called WaPPU.The tool caters for the whole
process from interaction tracking to deriving correlations and learning usability
models. Based on the principles of Usability-based Split Testing, we have im-
plemented WaPPU in terms of a central split testing service. This service has
been realized using node.js5. Split testing projects are created in the WaPPU
dashboard (Fig. 3), which provides the developer with ready-to-use JavaScript
snippets that simply have to be included in the different interfaces-under-test.
The only other thing required for deployment of the split test is a client-side
jQuery plug-in for component-based interaction tracking. The overall architec-
ture of WaPPU can be seen in Figure 3. The current implementation supports
at most two interfaces per split test, i.e., only A/B testing is supported.

Fig. 3. Architecture of WaPPU

Interaction Tracking. Our tool tracks a total of 27 well-defined user inter-
action features, of which the most expressive ones are shown in Table 1. They
have been derived from existing research [7,12,15,19] as well as video analyses
of real search engine users. The features are tracked for each component defined
by the developer, except for features annotated with an asterisk, which cannot
be applied to individual components. Moreover, each feature is tracked for the

5 http://nodejs.org/ (2014-02-21).

http://nodejs.org/

102 M. Speicher, A. Both, and M. Gaedke

Table 1. Selection of interaction features tracked by WaPPU (∗ = whole page feature
only). The complete list can be found in our online appendix [22].

label description source

charsTyped # characters typed
cursorMoveTime time the mouse cursor spends moving [19]
cursorSpeed cursorTrail divided by cursorMoveTime [7,19]
cursorSpeedX cursor speed in X direction [7]
cursorStops # cursor stops [7]
cursorTrail length of cursor trail [7,19]
hovers # hovers [19]
hoverTime total time spent hovering the component [19]
pageDwellTime∗ time elapsed between loading and leaving the page [7]
scrollDirChanges∗ # changes in scrolling direction [15]
scrollMaxY ∗ maximum scrolling distance from top [7]
scrollPixelAmount∗ total amount of scrolling (in pixels) [7]
textSelections # text selections
textSelectionLength total length of all text selections

whole web interface, which gives an additional implicit component. This gives
us the chance to derive the relative distribution of features across the page, e.g.,
“25% of the total cursor trail lie in the navigation component”. If a developer
defines x components in their web interface and specifies that all features shall
be considered, WaPPU tracks a total of 20(x+ 1) + 7 features during the split
test (7 features are applied to the whole page instead of components).

Usability Judgments. WaPPU offers the option to automatically show a ques-
tionnaire when users leave an interface-under-test, in case they have agreed to
contribute training data. This questionnaire contains the seven usability items of
Inuit [20], each formulated as a question and to be answered based on a 3-point
Likert scale. Since the value of an item is thus either −1, 0 or +1, we get an
overall usability value that lies between −7 and +7. These values are what we
refer to as quantitative measures/metrics of (aspects of) usability in the remain-
der of this paper. The questionnaire can be shown on either none, one or all of
the interfaces-under-test in a split test. If no interface features a questionnaire,
the functionality of WaPPU is reduced to collecting interactions only, i.e., for
use with usability heuristics (cf. Sec. 3.2).

If it is featured on one interface, WaPPU automatically learns seven models—
one per usability item—based on the users’ answers. These models are associ-
ated with the corresponding split testing project and stored in WaPPU’s central
repository (Fig. 3). They are automatically applied to the remaining interfaces
for model-based usability prediction (cf. Sec. 3.3). The current implementation of

Ensuring Web Interface Quality through Usability-Based Split Testing 103

WaPPU uses the updateable version of the Näıve Bayes classifier6 provided by
the WEKA API [10].

Finally, in case all interfaces feature the questionnaire, the developer receives
the most precise data possible. This case requires no models and is particularly
useful for remote asynchronous user studies from which one can derive heuristic
rules for usability evaluation (cf. Sec. 3.2). It is not intended for evaluation of
online interfaces since the amount of questionnaires shown to real users should
be minimized.

Context-Awareness. The context of a user is automatically determined by
WaPPU and all collected interactions and usability judgments are annotated
accordingly. In this way, it is possible to integrate context into a usability
model since different contexts trigger different user behaviors. Currently, we
consider two aspects that to a high degree influence a user’s interactions:
ad blockers and screen size. That is, the context determined by our tool is
a tuple (adBlock , screenSize) with adBlock ∈ {true, false} and screenSize ∈
{small , standard ,HD , fullHD}. For this, we refer to the most common screen
sizes and define: small < 1024 × 768 ≤ standard < 1360 × 768 ≤ HD <
1920× 1080 ≤ fullHD .7

Small-screen and touch devices are not supported in the current version of
WaPPU. They are detected using the MobileESP library8 and corresponding
data are ignored.

5 Evaluation

We have engaged the novel concept of Usability-based Split Testing for evaluating
the interface of a real-world web search, which is currently a closed beta version
and developed by the R&D department of Unister GmbH. For this, we have re-
designed the standard search engine results page (SERP) and put both the old
and redesigned versions of the interface into an A/B test using WaPPU. Accord-
ing to component-based interaction tracking as one principle of Usability-based
Split Testing (cf. Sec. 3.1), we have defined two high-level components within the
SERPs: the container element containing all search results (#serpResults) and
the container element containing the search box (#searchForm). From this split
test, we have obtained (a) an evaluation of the two SERPs, (b) corresponding
usability models and (c) a set of interaction-based heuristics for general use with
SERPs of the same high-level structure. Results suggest that our approach can
effectively detect differences in interface usability and train models of reasonable
quality despite a rather limited set of data.

The following describes the research method for evaluating the approach, the
concrete test scenario, and presents the evaluation results. Datasets for repro-
ducing results and detailed figures can be found in our online appendix [22].

6 http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/

NaiveBayesUpdateable.html (2013-10-07).
7 Cf. http://en.wikipedia.org/wiki/Display_resolution (2014-02-12).
8 http://blog.mobileesp.com/ (2014-02-12).

http://en.wikipedia.org/wiki/Display_resolution
http://blog.mobileesp.com/

104 M. Speicher, A. Both, and M. Gaedke

Fig. 4. Search result from the original SERP (left) vs. search result from the novel
SERP redesigned by three usability experts (right)

5.1 Method

The evaluation was carried out as a remote asynchronous user study whose
workflow oriented at [13]. Participants were recruited via internal mailing lists of
the cooperating company. Since user intention considerably affects interactions
(cf. Sec. 2.3), we intended to minimze fluctuations in this respect. Thus, we
definined a semi-structured task to simulate that all participants act according
to a common intention, i.e., “Find a birthday present for a good friend that
does not cost more than 50 Euros.” We assumed that the vast majority of users
would not immediately have an adequate present in mind and thus behave like
information gatherers [8]. Additionally, in order to reduce context to different
screen sizes only, participants were instructed to disable any ad blockers.

Each participant was randomly presented with one of the two SERP inter-
faces for completing their task. Before leaving a results page, they had to rate
its usability using the Inuit questionnaire displayed by WaPPU. That is, we
used a configuration of WaPPU which triggers a questionnaire in both inter-
faces in the A/B test. Since a user might trigger several searches and thus view
several different SERPs, they potentially had to answer the questionnaire more
than one time during the study. This means that one study participant could
produce several datasets, each containing interactions and usability judgments.
Answering one questionnaire per results page is necessary since different searches
lead to different results, which influences usability items such as informativeness
and information density. Participants were instructed to click a “finish study”
button, once they found an adequate present. Clicking the button redirected to
a final questionnaire asking for demographic information.

5.2 Interface Redesign

The web search’s standard SERP interface was redesigned by three experts in
order to increase its usability. The redesign was carried out according to estab-
lished guidelines as well as the experts’ own experiences with interface design
and usability evaluations. One of the experts was a graphic designer and one was
an interaction designer holding an according Master’s degree, both with several
years of experience in industry. The third expert was a PhD student with focus
on human-computer interaction.

Some representative points concerning the redesign were: (a) better visual
separation of results, (b) more whitespace, (c) giving text more space in terms
of a greater line height, (d) aligning text and image elements more consistently,

Ensuring Web Interface Quality through Usability-Based Split Testing 105

(e) removing unnecessary comment and social media buttons and (f) reducing
the amount of advertisements. Although the changes were rather subtle, we
particularly assumed less confusion and distraction as well as better readability
and information density. A visual comparison of exemplary search results from
the two interfaces can be found in Fig. 4.

5.3 Results

We recruited 81 unique participants who contributed 198 individual datasets,
i.e., they triggered 198 searches/SERPs. 17 of the participants were familiar
with the investigated web search (i.e., they had used it before); 37 answered
the final questionnaire (23 male). In general, participants stated they privately
surf the internet for 2–3 hours per day, mostly for social networking (N=23)
and reading news (N=22). The mostly used search engine is Google (N=35),
in general several times a day (N=34) and usually for knowledge (N=31) and
product search (N=21). On average, participants were 31.08 years old (σ=5.28).

During the study, we registered two different contexts:HD (N=46) and full HD
(N=35). One participant was excluded from the analysis, because they delivered
invalid data. For our evaluation, we additonally distinguish between users who
were not familiar and users who were familiar with the web search since they
produced considerably different results.

Interface Evaluation. First, we have a look at the usability evaluations of
the two SERP interfaces w.r.t. the questionnaires filled out by the participants.
That is, we investigate whether our approach was able to detect the difference
in usability originating from the experts’ interface redesign. For this, we have
carried out four analyses regarding the two contexts HD and full HD as well as
familiarity with the investigated web search.

The largest amount of datasets (89) was produced by users with HD screens
who were not familiar with the web search. Participants also not familiar with
the interface, but using full HD screens contributed 52 datasets. This makes a
total of 141 datasets from novel users. In contrast, participants who were familiar
with the web search contributed 47 datasets (30 HD, 17 full HD).

As is apparent from Table 2, the largest group of users (HD/not familiar)
found the redesigned SERP to be significantly9 better regarding the aggre-
gated usability (i.e., the sum of all individual items; μ=2.45, σ=2.46). Moreover,
the new interface performed significantly better concerning distraction (μ=0.62,
σ=0.62) and information density (μ=0.43, σ=0.67). This matches our assump-
tions based on the experts’ redesign. In general, the new SERP performs better
regarding all usability items, although not always statistically significant.

In contrast, analysis of HD screen users familiar with the web search did not
show a significant overall difference between the two SERPs. Yet, they judged
the old interface to be significantly better concerning the individual item con-
fusion (μ=0.69, σ=0.48). On average, it was also judged to be less distracting

9 All tests of significance were carried out using the Mann–Whitney U test (α=0.05),
which is particularly suitable for non-normally distributed independent samples.

106 M. Speicher, A. Both, and M. Gaedke

Table 2. Evaluations by participants not familiar with the web search who used an
HD screen (A = old interface, B = new interface)

A (N=47) B (N=42)
usability item μ σ μ σ significance

informativeness -0.17 0.84 -0.02 0.84 —
understandability 0.34 0.70 0.45 0.67 —
confusion 0.30 0.78 0.38 0.70 —
distraction 0.36 0.74 0.62 0.62 p<0.05, W=798.5
readability 0.45 0.65 0.52 0.71 —
information density 0.04 0.69 0.43 0.67 p<0.01, W=692
accessibility 0.06 0.67 0.07 0.75 —

usability 1.38 2.96 2.45 2.46 p<0.05, W=782

(μ=0.85, σ=0.38) and have better readability (μ=0.62, σ=0.51) and accessibil-
ity (μ=0.38, σ=0.65). This finding is contrary to our assumptions. Rather, it
indicates that users get accustomed to suboptimal interfaces and seem to be
confused by changes even if they yield better usability from a more objective
point of view.

Concerning the context full HD/not familiar, our analysis shows no signifi-
cant differences between the two interfaces. However, results suggest that the
usability of the old interface is better on average. Contrary, the redesigned
SERP on average indicates better performance regarding information density
(μ=0.19, σ=0.83) and confusion (μ=0.06, σ=0.85). Finally, full HD users who
were familiar with the web search saw the biggest difference between the two
interfaces. They judged the new SERP to be significantly better concerning
distraction (μ=0.80, σ=0.42), readability (μ=0.60, σ=0.52), information den-
sity (μ=0.10, σ=0.57), accessibility (μ=0.50, σ=0.71) and aggregated usabil-
ity (μ=2.60, σ=2.41). However, this context contained the smallest number of
datasets (17) and therefore cannot be considered to be representative.

Usability Models. Based on the most representative dataset (Tab. 2) we have
trained and tested Random Forest10 classifiers for predicting usability across
interfaces. This is in analogy to WaPPU’s functionality of providing the ques-
tionnaire only in one interface and guessing the usability of the second inter-
face from automatically learned models. Particularly, we intend to investigate
whether component-based interaction tracking (cf. Sec. 3.1) is feasible for pre-
dicting the usability of a different webpage that did not contribute training data.
For this, we take interaction data and usability judgments from the old SERP
and train models from these—one for each Inuit usability item. The interaction
data from the redesigned SERP are used as the test set for these models.

In a first step, we have selected the most expressive interaction features for
each model. This has been done using Correlation-based Feature Subset Selection

10 http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/

RandomForest.html (2014-03-23).

Ensuring Web Interface Quality through Usability-Based Split Testing 107

[9] in combination with best-first search. That is, we have selected “[s]ubsets of
features that are highly correlated with the class [to be predicted] while having
low intercorrelation”11. Both functions are provided by the WEKA API [10].
Subsequently, we have trained the models based on the selected features and
used our test set to evaluate them.

In general, the quality of the trained models was reasonably good. We obtained
the most precise predictions for the item distraction (F-measure = 0.518), which
was also one of the significant items for the considered context. In contrast, the
item readability yielded the least precise predictions (F-measure = 0.296). The
amount of training and test data was rather small for the investigated context
(47 and 42 data sets, respectively). Thus, we assume better prediction quality
with a larger amount of real-world users since correlations would then become
more homogeneous, as has been observed in [19]. The precise results of the model
evaluation can be found in our online appendix [22].

6 Key Findings of the User Study

The results from the largest and most representative group of participants
HD/not familiar (Tab. 2) confirm that our approach is able to effectively detect
differences in the usability of two versions of the same interface. We moreover
found that users get used to interfaces and thus become less receptive to adjust-
ments, even if these aim at better usability. What remains to be investigated are
the differences between judgments from HD and full HD users. In particular, it
requires deeper insights into users’ actual behavior to understand why users fa-
miliar with the investigated web search produced very contradictory evaluations
when differentiating between screen resolutions.

The usability models trained from our data underpin that the component-
based tracking approach can reduce variations in users’ interactions, which are
caused by differences in lower-level structure. This was a major problem during
the motivating study (cf. Sec. 2.3). Results suggest that WaPPU is able to predict
interface usability based on adequate models with reasonable effectiveness.

Based on the feature selection process for learning usability models and Pear-
son’s correlations r, we have additionally derived heuristic rules for SERPs, which
are summarized in Figure 5. Regarding the dataset these rules are based on, their
validity is theoretically restricted to HD screen users. Still, they can be applied
to any SERP—as long as it is of similar structure and has the same components
defined as the SERPs investigated in our evaluation—since many of the included
features (e.g., page dwell time) do not strongly depend on screen resolution. To
give just one example, a developer could monitor interactions on two SERPs. If
page dwell time and maximum scrolling distance are significantly lower on one
SERP, this is a clear signal for better information density. Yet, results must
be interpreted with caution, as we have only investigated the user type infor-
mation gatherer in our study. If it is not possible to obtain significant results

11 http://weka.sourceforge.net/doc.dev/weka/attributeSelection/

CfsSubsetEval.html (2014-02-20).

108 M. Speicher, A. Both, and M. Gaedke

– Better informativeness is indicated by
• a lower absolute cursor speed on the search box (r=-0.21);
• a higher relative amount of hovers on the search results (r=0.40).

– Better understandability is indicated by
• a lower absolute cursor speed on the search box (r=-0.46);
• a higher relative amount of hovers on the search results (r=0.24).

– Less confusion is indicated by
• a lower relative cursor speed (X axis) on the search box (r=-0.49);
• a lower absolute maximum scrolling distance from top (r=-0.44);
• a lower absolute amount of scrolling (in pixels) (r=-0.33).

– Less distraction is indicated by
• a lower absolute amount of cursor stops (r=-0.26);
• a smaller absolute length of the cursor trail (r=-0.25).

– Better readability is indicated by
• a lower absolute page dwell time (r=-0.21);
• a smaller absolute amount of text selections (r=-0.27);
• a smaller absolute length of text selections (r=-0.39).

– Better information density is indicated by
• a lower absolute page dwell time on the search box (r=-0.11);
• a lower absolute maximum scrolling distance from top (r=-0.27).

– Better accessibility is indicated by
• a lower absolute amount of characters typed into the search box (r=-0.27);
• a lower absolute amount of changes in scrolling direction (r=-0.31).

Fig. 5. Heuristic rules for usability evaluation of SERPs, as derived from our user study

from the heuristics, one must switch to a more effective method—e.g., leveraging
specifically trained models, as described earlier.

7 Limitations and Future Work

We are aware of the fact that usability is a hard-to-grasp concept that is difficult
to measure in an objective manner—if possible at all. However, our approach is
able to yield reasonable approximations of usability in a quantitative and easy-
to-understand form. This is particularly valuable in today’s IT industry with its
short time-to-market. If existing conversion-based analyses are augmented with
Usability-based Split Testing, it will be possible to detect major shortcomings
in web interfaces without having to carry out costly and/or time-consuming
evaluations (yet, our approach only detects differences between interfaces-under-
test and does not directly drive adequate changes for better usability). If results
delivered by our method are not significant, it is still possible to apply such
evaluations, which are more effective yet less efficient. However, we intend to
minimize the need for the latter.

As has been pointed out earlier (cf. Sec. 2.3), a user’s intention has consider-
able impact on their behavior. However, we have not yet considered intention as a
factor in the design of our Usability-based Split Testing tool WaPPU. Rather, we

Ensuring Web Interface Quality through Usability-Based Split Testing 109

modeled the user study for our evaluation in such a way that all users had to
behave the same. Currently, we are investigating how intention can be derived
from the interaction features tracked by WaPPU. According to [8], features such
as the page dwell time can indicate user behavior. In future versions of WaPPU,
we intend to add an extra question to the questionnaire asking for the user’s in-
tention. In this way, we can train an additional model for determining intention
before applying adequate usability models or heuristics.

The current version of WaPPU is restricted to processing mouse and keyboard
input. Yet, small-screen touch devices are gaining more and more popularity.
Therefore, a major part of our future work will be to transfer Usability-based
Split Testing into the context of touch devices. It will be particularly interesting
to investigate how the different set of interaction features (e.g., missing cursor
trail, new zooming interaction) affects usability prediction quality. First steps
into this direction have already been taken by Nebeling et al. [15].

Finally, we intend to integrate our approach into the WebComposition process
model [5] for enabling continuous evaluation of evolving widget-based interfaces.

8 Conclusions

This paper has presented Usability-based Split Testing—a novel method for en-
suring web inferface quality based on quantitative metrics and user interactions.
We have also introduced a corresponding A/B testing tool called WaPPU. Our
approach intends to determine the usability of an interface more effectively than
conversion-based methods while being more efficient than traditional approaches
like expert inspections or controlled lab studies. To realize this, our method de-
termines usability based on users’ interactions. That is, we track interactions and
apply them to either pre-defined heuristic rules or models trained with the help
of users who answered an additional questionnaire. In this way, we obtain quan-
titative approximations of usability for empirically comparing web interfaces.

In a user study with 81 participants, we have applied our approach to the
standard version and a redesigned version of a real-world SERP. Results show
that our tool is able to detect the predicted differences in usability at a statis-
tically significant level. Moreover, we were able to train usability models with
reasonable prediction quality. Additionally, a set of key usability heuristics for
SERPs could be derived based on user interactions. The study findings underpin
the feasibility of the proposed approach.

Future work includes transferring the approach into the context of touch de-
vices. Moreover, future versions of WaPPU shall be able to determine a user’s
intention before selecting appropriate usability heuristics and models.

Acknowledgments. We thank Robert Frankenstein, Björn
Freiberg, Viet Nguyen, Thomas Stangneth and Katja Zatin-
schikow for helping with design and implementation of the
user study. This work has been supported by the ESF and the Free State of
Saxony.

110 M. Speicher, A. Both, and M. Gaedke

References

1. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the Users Every Move – User Ac-
tivity Tracking for Website Usability Evaluation and Implicit Interaction. In: Proc.
WWW (2006)

2. Carta, T., Paternò, F., de Santana, V.F.: Web Usability Probe: A Tool for Sup-
porting Remote Usability Evaluation of Web Sites. In: Campos, P., Graham, N.,
Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV.
LNCS, vol. 6949, pp. 349–357. Springer, Heidelberg (2011)

3. Correani, F., Leporini, B., Patern, F.: Automatic Inspection-based Support for
Obtaining Usable Web Sites for Vision-Impaired Users. UAIS 5(1) (2006)

4. de Vasconcelos, L.G., Baldochi Jr., L.A.: Towards an Automatic Evaluation of Web
Applications. In: Proc. SAC (2012)

5. Gaedke, M., Gräf, G.: Development and Evolution of Web-Applications using the
WebComposition Process Model. In: WWW9-WebE Workshop, Amsterdam (2000)

6. Gay, G.R., Li, C.Q.: AChecker: Open, Interactive, Customizable, Web Accessibility
Checking. In: Proc. W4A (2010)

7. Guo, Q., Agichtein, E.: Beyond Dwell Time: Estimating Document Relevance from
Cursor Movements and other Post-click Searcher Behavior. In: Proc. WWW (2012)

8. Gutschmidt, A.: Classification of User Tasks by the User Behavior. PhD thesis,
University of Rostock (2012)

9. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato (1998)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11(1) (2009)

11. Hassenzahl, M.: Hedonic, emotional and experiential perspectives on product qual-
ity. In: Ghaoui, C. (ed.) Encyclopedia of Human Computer Interaction, pp. 266–272.
IGI Global (2006)

12. Navalpakkam, V., Churchill, E.F.: Mouse Tracking: Measuring and Predicting
Users’ Experience of Web-based Content. In: Proc. CHI (2012)

13. Nebeling, M., Speicher, M., Norrie, M.C.: CrowdStudy: General Toolkit for Crowd-
sourced Evaluation of Web Interfaces. In: Proc. EICS (2013)

14. Nebeling, M., Matulic, F., Norrie, M.C.: Metrics for the Evaluation of News Site
Content Layout in Large-Screen Contexts. In: Proc. CHI (2011)

15. Nebeling, M., Speicher, M., Norrie, M.C.: W3Touch: Metrics-based Web Page
Adaptation for Touch. In: Proc. CHI (2013)

16. Nielsen, J., Molich, R.: Heuristic Evaluation of User Interfaces. In: Proc. CHI (1990)
17. Nielsen, J.: Putting A/B Testing in Its Place,

http://www.nngroup.com/articles/putting-ab-testing-in-its-place/

18. Sauro, J.: Does Better Usability Increase Customer Loyalty?
http://www.measuringusability.com/usability-loyalty.php

19. Speicher, M., Both, A., Gaedke, M.: TellMyRelevance! Predicting the Relevance of
Web Search Results from Cursor Interactions. In: Proc. CIKM (2013)

20. Speicher, M., Both, A., Gaedke, M.: Towards Metric-based Usability Evaluation of
Online Web Interfaces. In: Mensch & Computer Workshopband (2013)

21. Speicher, M., Both, A., Gaedke, M.: Was that Webpage Pleasant to Use? Predicting
Usability Quantitatively from Interactions. In: Sheng, Q.Z., Kjeldskov, J. (eds.)
ICWE Workshops 2013. LNCS, vol. 8295, pp. 335–339. Springer, Heidelberg (2013)

22. WaPPU Online Appendix, http://vsr.informatik.tu-chemnitz.de/demo/WaPPU

http://www.nngroup.com/articles/putting-ab-testing-in-its-place/
http://www.measuringusability.com/usability-loyalty.php
http://vsr.informatik.tu-chemnitz.de/demo/WaPPU

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 111–129, 2014.
© Springer International Publishing Switzerland 2014

Evaluating Mobileapp Usability:
A Holistic Quality Approach

Luis Olsina1, Lucas Santos1, and Philip Lew2

1 GIDIS, Web Engineering School at Universidad Nacional de La Pampa, Argentina
2 School of Computer Science and Engineering, Beihang University, China

olsinal@ing.unlpam.edu.ar, santos.ls@live.com,
philiplew@gmail.com

Abstract. As newer-generation smartphones enhance functionalities,
interactions and services become more complex, leading to usability issues that
are increasingly critical and challenging. Also mobile apps have several
particular features that pose challenges evaluating their usability using current
quality models, usability views, and their relations with target and context
entities. With respect to the current literature, usability, actual usability, and
user experience are poorly related to target entities (e.g. system and system in
use) and context entities, to quality views (e.g. external quality and quality in
use), in addition to measurement and evaluation building blocks. In this paper,
we propose a holistic quality approach for evaluating usability and user
experience of mobile apps. Practical use of our strategy is demonstrated through
evaluation for the Facebook mobile app from the system usability viewpoint.
Ultimately, a usability evaluation strategy should help designers to understand
usability problems effectively and produce better design solutions so we
analyze in the context of the framework’s applicability toward this goal.

Keywords: Mobile app, Quality model, Usability, User Experience, Evaluation.

1 Introduction

Nowadays, for mobile apps, more robust network infrastructures and smarter mobile
devices have led to increased functionality, integration and interactivity thereby
warranting special attention in understanding their differences from apps on other
platforms from the usability and user experience (UX) point of view because user
requirements, expectations, and behavior can be somewhat different with the mobile
platform. For instance, the quality design of Operability from a system viewpoint has
a much different and greater influence for mobileapp Usability and UX due to the size
of the screen and context of the user. Attributes such as button size, placement, color
visibility, and widget usage have, for example, a much greater impact on task
completion rates and task error rates [1, 5, 16] than for desktop platforms.

Nielsen et al. [16] indicate in recent mobile phone studies that usability varies by
device category, which is mainly differentiated by screen size such as regular
cellphones with small screen; smartphones with midsize screen and full A-Z keypad;

112 L. Olsina, L. Santos, and P. Lew

and full-screen smartphones with a nearly device-sized touch screen. Authors state
that regular cellphones "offer horrible usability, enabling only minimal interaction
with websites" (i.e. mobile webapps); and conclude "unsurprisingly, the bigger the
screen, the better the user experience when accessing websites". This is supported by
authors across several user testing studies from 2009 to 2012, in which the average
success rate metric (which measures the percentage of users who were able to
accomplish the proposed mobileapp tasks) rated for each mobile device category
44%, 55% and 74% respectively.

Despite these findings, the reader can ask him/herself what do "horrible usability"
and "better UX" mean? What is the relationship between Usability and UX? Are they
synonym concepts? Evaluating the success rate of users completing tasks correctly (as
a performance indicator of effectiveness) is directly related to UX? If users are highly
effective in completing tasks but they are unsatisfied due to perceived low app
usefulness, then does UX score still high? Does UX depend on app Usability only or
also from other characteristics such as Functional and Information Quality, Security,
Reliability, and Efficiency? Is UX a quality characteristic of the system (e.g. a mobile
app) or of an app in use? And, what about Usability?

Looking for the answers to these questions, we examined the current literature and
found that Usability, Actual Usability (in-use) and UX are poorly linked to target
entities (e.g. system and system in use) and context entities (e.g. device, environment,
user, etc.), in addition to quality views (e.g. external quality and quality in use) and
their quality models. Regarding quality models, ISO 25010 [9] outlines a flexible
model with product/system quality –also known as internal and external quality (EQ)-
and system-in-use quality –also referred to as quality in use (QinU). System quality
consists of those characteristics and attributes that can be evaluated with the app in
execution state both in testing and in operative stages; while system-in-use quality
consists of characteristics and attributes as evaluated by end users when actually
executing app tasks in a real context of use. ISO 25010 also delineates a relationship
between the two quality views whereby system quality ‘influences’ system-in-use
quality and system-in-use quality is determined by (‘depends on’) system quality.
Usability is a system quality characteristic, while Effectiveness, Efficiency and
Satisfaction are QinU characteristics. However, Actual Usability and UX, as
experienced by the end user are missing concepts in the quoted standard.

From the QinU viewpoint, Hassenzahl [7] characterizes a user’s goals into
pragmatic, do goals and hedonic, be goals and categorizes system-in-use quality to be
perceived in two dimensions, pragmatic and hedonic. Pragmatic quality refers to the
system's perceived ability to support the achievement of tasks and focuses on the
system’s actual usability in completing tasks that are the ‘do-goals’ of the user.
Hedonic quality refers to the system's perceived ability to support the user’s
achievement of ‘be-goals’, such as being happy, or satisfied with a focus on self.

Based on ISO 25010 among other works, such as [2, 7], we have developed 2Q2U
(Quality, Quality in use, actual Usability and User experience) v2.0 [17], which ties
together all of these quality concepts by relating system quality characteristics with
Actual Usability and UX. Using the 2Q2U quality framework and a tailored strategy,
evaluators can instantiate the quality characteristics to evaluate and conduct a

 Evaluating Mobileapp Usability: A Holistic Quality Approach 113

systematic evaluation using the ‘depends’ and ‘influences’ relationships [14]. Besides
in [12], we have addressed relevant features of mobile apps with regard to Usability
and UX in the light of 2Q2U v2.0 quality models, but a global scheme which links
main relationships among mobile target and context entities, quality views,
characteristics and measurable properties were left for future endeavors.

Therefore, the major contributions of this research are: i) Represent relevant Usability
and UX features of mobile apps with regard to system, system-in-use and context
entities; ii) Analyze Usability and UX relationships, as well characteristics and attributes
for mobile apps in the light of a conceptual framework and evaluation strategy; and iii)
Illustrate an evaluation study for Facebook mobile app from the system usability
viewpoint, showing the potential positive impact in designing quality interfaces. Lastly,
we hope most of the above raised issues will be answered after reading this work.

Following this introduction, Section 2 describes a global scheme which links main
relationships among mobile target and context entities, quality views, characteristics
and measurable properties, measurement, and evaluation building blocks, with a focus
on Usability and UX. Section 3, outlines our conceptual framework and evaluation
approach which give support to the above building blocks. Section 4 demonstrates the
practical use of our quality framework and evaluation strategy through the Facebook's
mobileapp usability case study. Section 5 describes related work and, finally, Section
6 draws our main conclusions and outlines future work.

2 Featuring Mobileapp Usability and UX

For mobile phones, Usability and UX become crucial because users interact with apps
–both native mobile apps and mobile webapps- in different contexts using devices
with reduced display real estate. In particular the user’s activity at the time of usage,
location, and daytime, amongst other influencing factors such as user profile and
network performance have an actual impact on the quality of the user’s experience.

This section examines several features relevant for understanding and evaluating
Usability and UX for mobile apps. To do this, Fig. 1 depicts the main building blocks
which link some relationships among: i) entity categories, quality views/characteristics,
and measurable properties (green/orange boxes); ii) measurement (light-blue box); and
iii) evaluation (pink box). Next, we examine particularly i) features which allow better
understanding non-functional requirements to further specify Usability and UX
attributes for interface-, task-, and perception-based evaluations. First, we give a
summary followed by deeper discussion.

The 'entity' label in the upper box represents the potential target entity category to
be evaluated. It is defined as the "object category that is to be characterized by
measuring its attributes", while an attribute is "a measurable physical or abstract
property of an entity category" [18]. There are two instances of (super) categories for
target entities that are of interest for evaluating Usability and UX, viz. product/system
and system in use. In turn, an entity category can aggregate sub-entities, e.g., a mobile
app is composed of basic and advanced GUI objects from the interface standpoint, as
shown in Fig. 1. Moreover, lower level entities can be identified for GUI objects like

114 L. Olsina, L. Santos, and P. Lew

button, menu, widget, etc. Another label in the upper box is 'context' which is defined
as "a special kind of entity representing the state of the situation of a target entity
category, which is relevant for a particular information need". So, system in use is
characterized by a context-in-use entity (upper-right orange box) which in turn can
aggregate environment, user and task contextual sub-entities.

Fig. 1. Global scheme which links the main relationships among mobile Target and Context
Entities, Quality Focuses, Measurable Properties, Measurement, and Evaluation building
blocks. Note that the two lower-level Product/System sub-entity categories are just addressed
for the Usability characteristic, which deals with user interface-oriented evaluation issues –PUI/
GUI stands for Physical/Graphical User Interface.

On the other hand, an entity (category) and their sub-entities cannot be measured and
evaluated directly but only by means of the associated measurable properties, i.e.
attributes and context properties accordingly (see Fig. 1). Quality models can be the
focus for different entities, and usually specify product/system or system-in-use quality
requirements regarding main characteristics that can be further subdivided into sub-
characteristics, which combine attributes. Product/system quality requirements are
modeled by the EQ focus (view), which includes higher-level characteristics such as
Usability, Security, Functional Quality, etc. Instead, system-in-use quality requirements
are modeled by the QinU view, which include higher-level characteristics such as
Actual UX, Satisfaction and Actual Usability.

 Evaluating Mobileapp Usability: A Holistic Quality Approach 115

Lastly, looking at the entity building block relationships, we see the ‘uses’ and
‘characterized by’ relations. Also between EQ and QinU views, we observe that system
quality ‘influences’ system-in-use quality or system-in-use quality ‘depends on’ system
quality. Note that for instantiated EQ and QinU models these relationships can be
explored in light of concrete entity attributes by performing evaluations. For instance,
using an evaluation strategy we can explore relationships between system quality and
system-in-use quality attributes that may contribute to usage improvements. Regarding
the above global scheme, in the next three sub-sections we closely examine the features
of mobileapp Usability, UX, and context.

2.1 Featuring Mobileapp Usability

Usability is a characteristic for a system from the EQ viewpoint. It is one out of eight
EQ characteristics in 2Q2U v2.0 (see [17] for quality models details). We define
Usability as the "degree to which the product or system has attributes that enable it to
be understood, learned, operated, error protected, attractive and accessible to the
user, when used under specified conditions". (Note this definition is very close to that
in ISO 9126-1 [11] rather than to [9], as we discuss in related work).

Examining the first part of the above definition, products are entities at early
phases of a software life cycle (e.g., textual or graphical documents, etc.); while
systems are executable software products (e.g. a mobile app in a testing or operative
stage), which could include hardware and software together. Examining the second
part of the above definition, we observe that the system (particularly, interface-related
objects of the app) has attributes that enable the user to interact considering certain
factors. These are the Usability sub-characteristics which can be evaluated through
Understandability, Learnability, Operability, User error protection, UI aesthetics and
Accessibility. Table 1 shows the Usability sub-characteristics and attributes
definitions used in the Facebook evaluation study, in Section 4.

Recalling that characteristics and sub-characteristics combine attributes which are
associated to entities (see Fig. 1) some typical mobileapp sub-entities that should be
considered for Usability design and evaluation are entry fields and widgets, menus,
carousels, breadcrumb path, amongst others. Entity sub-categories specific for
Usability evaluation can be physical and graphical user interface (PUI/GUI) objects
[6], and task-based GUI objects. A possible categorization for GUI objects can be
basic or advanced objects (similar to that described in [8]).

All definitions for sub-characteristics and attributes in Table 1 include to a great
extent the referred target sub-entity. For instance, the Visibility (1.3.2 coded) sub-
characteristic is defined as "degree to which the application enables ease of operation
through controls and text which can be seen and discerned by the user in order to
take appropriate actions", and one combined attribute viz. Brightness difference
appropriateness (1.3.2.1.1) is defined as "degree to which the foreground color of the
GUI object (e.g. text, control, etc.) compared to the background color provide
appropriate brightness difference". Actually, many attributes can determine whether
or not the application is easily visible to the user. Depending on the context, different
text colors and backgrounds can have a positive or negative impact. Remember that

116 L. Olsina, L. Santos, and P. Lew

mobile users want to glance quickly and understand and operate almost immediately
and there may be glare on their screen if they are outdoors. Also this means that
appropriate usage of control/text colors (and size) can greatly impact the user’s speed
of comprehension and therefore, operational effectiveness and efficiency.

In addition to Usability, characteristics to evaluate other mobileapp EQ aspects are
Security, Functional and Information Quality, etc. in which the target sub-entities
should be defined accordingly, at least to the system lower layers.

Table 1. Definition of EQ/Usability sub-characteristics and attributes –in italic

Characteristic/Attribute 2Q2U v2.0 Definition
1 Usability Degree to which the product or system has attributes that enable it to

be understood, learned, operated, error protected, attractive and
accessible to the user, when used under specified conditions.

1.1 Understandability
(synonym Appropriateness
Recognizability)

Degree to which users can recognize whether a product or system is
appropriate for their needs. Note: Same ISO 25010 definition.

1.1.1 Familiarity Degree to which the user understand what the application, system's
functions or tasks are about, and their functionality almost instantly,
mainly from initial impressions

1.1.1.1 Global organization
scheme understandability

Degree to which the application scheme or layout is consistent and
adheres to either de facto or industry standard to enable users to
instantly understand its function and content.

1.1.1.2 Control icon ease to
be recognized

Degree to which the representation of the control icon follows or
adheres to an international standard or agreed convention.

1.1.1.2.1 Main control icon
ease to be recognized

Degree to which the representation of the main controls icons follows
or adheres to an international standard or agreed convention.

1.1.1.2.2 Contextual control
icon ease to be recognized

Degree to which the representation of the contextual controls icons
follows or adheres to an international standard or agreed convention.

1.1.1.3 Foreign language
support

Degree to which the application functions, controls and content has
multi-language support enabling user to change his/her language of
preference.

1.2 Learnability Degree to which the product or system enables users to learn its app.
1.2.1 Feedback Suitability Degree to which mechanisms and information regarding the success,

failure or awareness of actions is provided to users to help them
interact with the application.

1.2.1.1 Current location
feedback appropriateness

Degree to which users are made aware of where they are at the current
location by an appropriate mechanism.

1.2.1.2 Alert notification
feedback appropriateness

Degree to which users are made aware of new triggered alerts that they
are involved by an appropriate mechanism.

1.2.1.3 Error message
appropriateness

Degree to which meaningful error messages are provided upon invalid
operation so that users know what they did wrong, what information
was missing, or what other options are available.

1.2.2 Helpfulness Degree to which the software product provides help that is easy to
find, comprehensive and effective when users need assistance

1.2.2.1 Context-sensitive help
appropriateness

Degree to which the application provides context sensitive help
depending on the user profile and goal, and current interaction.

1.2.2.2 First-time visitor help
appropriateness

Degree to which the application provides an appropriate mechanism
(e.g. a guided tour, etc) to help beginner users to understand the main
tasks that they can do.

1.3 Operability Degree to which a product or system has attributes that make it easy
to operate and control. Note: Same ISO 25010 definition

1.3.1 Data Entry Ease Degree to which mechanisms are provided which make entering data
as easy and as accurate as possible.

 Evaluating Mobileapp Usability: A Holistic Quality Approach 117

Table 1. (Continued)

1.3.1.1 Defaults Degree to which the application provides support for default data.
1.3.1.2 Mandatory entry Degree to which the application provides support for mandatory data

entry.
1.3.1.3 Widget entry
appropriateness

Degree to which the application provides the appropriate type of entry
mechanism in order to reduce the effort required.

1.3.2 Visibility (synonym
Optical Legibility)

Degree to which the application enables ease of operation through
controls and text that can be seen and discerned by the user in order to
take appropriate actions.

1.3.2.1 Color visibility
appropriateness

Degree to which the main GUI object (e.g. text, control, etc.) color
compared to the background color provide sufficient contrast and
ultimately appropriate visibility.

1.3.2.1.1 Brightness
difference appropriateness

Degree to which the foreground color of the GUI object (e.g. text,
control, etc.) compared to the background color provide appropriate
brightness difference.

1.3.2.1.2 Color difference
appropriateness

Degree to which the foreground text or control color compared to the
background color provide appropriate color difference.

1.3.2.2 GUI object size
appropriateness

Degree to which the size of GUI objects (e.g. text, buttons, and
controls in general) are appropriate in order to enable users to easily
identify and operate them.

1.3.2.2.1 Control (widget)
size appropriateness

Degree to which the size of GUI controls are appropriate in order to
enable users to easily identify and operate them.

1.3.2.2.2 Text size
appropriateness

Degree to which text sizes and font types are appropriate to enable
users to easily determine and understand their meaning.

1.3.3 Consistency Degree to which users can operate the task controls and actions in a
consistent and coherent way even in different contexts and platforms.

1.3.3.1 Permanence of
controls

Degree to which main and contextual controls are consistently
available for users in all appropriate screens or pages.

1.3.3.1.1 Permanence of
main controls

Degree to which main controls are consistently available for users in
all appropriate screens or pages.

1.3.3.1.2 Permanence of
contextual controls

Degree to which contextual controls are consistently available for
users in all appropriate screens or pages.

1.3.3.2 Stability of controls Degree to which main controls are in the same location (placement)
and order in all appropriate screens.

1.4 User Error Protection Degree to which a product or system protects and prevents users
against making errors and provides support to error tolerance.

1.4.1 Error Management Degree to which users can avoid and recover from errors easily.
1.4.1.1 Error prevention Degree to which mechanisms are provided to prevent mistakes.
1.4.1.2 Error recovery Degree to which the application provides support for error recovery.
1.5 UI Aesthetics (synonym
Attractiveness)

Degree to which the UI enables pleasing and satisfying interaction for
the user. Note: Same ISO 25010 definition.

1.5.1 UI Style Uniformity Degree to which the UI provides consistency in style and meaning.
1.5.1.1 Text color style
uniformity

Degree to which text colors are used consistently throughout the UI
with the same meaning and purpose.

1.5.1.2 Aesthetic harmony Degree to which the UI shows and maintains an aesthetic harmony
regarding the usage and combination of colors, texts, images, controls
and layouts throughout the whole application.

118 L. Olsina, L. Santos, and P. Lew

Table 2. Definition of QinU (sub-)characteristics absent in [9] or were rephrased in 2Q2U v2.0

Characteristic/Sub-characteristic Definition ISO 25010 QinU Definition
Actual User Experience: Degree to which a system in
use enable specified users to meet their needs to achieve
specific goals with satisfaction, actual usability, and
freedom from risk in specified contexts of use

Note: Absent characteristic in ISO 25010,
but similar definition to QinU in this
standard

Actual Usability (synonym Usability in use):Degree to
which specified users can achieve specified goals with
effectiveness, efficiency, learnability in use, and without
communicability breakdowns in specified contexts of use

Note: Absent characteristic, but similar
concept (i.e. usability in use) was in the
ISO 25010 draft, and in [2]

Effectiveness: Degree to which specified users can
achieve specified goals with accuracy and completeness
in specified contexts of use

Effectiveness: Accuracy and completeness
with which users achieve specified goals

Efficiency (in use): Degree to which specified users
expend appropriate amounts of resources in relation to the
effectiveness achieved in specified contexts of use

Efficiency: Resources expended in
relation to the accuracy and completeness
with which users achieve goals

Learnability (in use): Degree to which specified users
can learn efficiently and effectively while achieving
specified goals in specified contexts of use

Note: Absent characteristic

Sense of Community: Degree to which a user is satisfied
when meeting, collaborating and communicating with
other users with similar interest and needs

Note: Absent characteristic

As we depict in the next sub-section, UX is a broader concept that depends not
only on Usability but also on other system characteristics such as Functional and
Information Quality, Security, Reliability, Efficiency, and contexts of use as well.

2.2 Featuring Mobileapp UX

Fig. 1 shows UX as the higher-level characteristic for QinU evaluations. The QinU
view characterizes the impact that the system in use (e.g. a mobile app) has on actual
users in real contexts of use, i.e., while users perform application tasks in a real
environment. Actual UX is defined in Table 2, as "degree to which a system in use
enable specified users to meet their needs to achieve specific goals with satisfaction,
actual usability, and freedom from risk in specified contexts of use".

UX is determined by the satisfaction of the user’s be goals (hedonic), and do goals
(pragmatic) as noted by Hassenzahl [7]. Moreover, do-goals relate to the user being
able to accomplish what they want with Effectiveness and Efficiency (i.e. Actual
Usability or Usability in use), while be-goals relate to the user’s satisfaction.
Satisfaction in [9] includes those subjective, perception-oriented sub-characteristics
including Usefulness, Trust, Pleasure, and Comfort -also Sense of Community in [17].

Ultimately, Usability deals with the specification and evaluation of interface-based
sub-characteristics and attributes of a system, while Actual Usability deals with the
specification and evaluation of task-based sub-characteristics and attributes of an app
in use, and Satisfaction with perception-based sub-characteristics and attributes.
Recalling that sub-characteristics combine attributes which are associated to entities,
we have considered in Fig. 1 two typical app-in-use target sub-entities, namely: Task-
based and Perception-based App in-use. The Task-based App-in-use sub-entity can be
evaluated using Effectiveness, Efficiency and Learnability in-use attributes. In [14],

 Evaluating Mobileapp Usability: A Holistic Quality Approach 119

for the JIRA webapp in-use, we evaluated the "Entering a new defect" task performed
by 50 beginner tester users, in which for example Effectiveness combined three
attributes such as Sub-task correctness, Sub-task completeness and Task
successfulness. (Note that Task successfulness attribute was measured in a similar
way that the Average success rate used by Nielsen et al. [16]). On the other hand, the
Perception-based App-in-use sub-entity can be measured and evaluated using
Satisfaction sub-characteristics and attributes that can be included in questionnaire
items as in [13], or evaluated through other methods such as observation.

As a final remark, mobileapp selected tasks should be evaluated with respect to
real users performing real tasks. This issue includes several key design concerns that
have significant impact on the Effectiveness and Efficiency of the final user. For
example, task workflows need to be designed with the most common tasks in mind
that would be suited to mobile usage. Because of the context of use of a mobile user,
and the mobile user’s limited attention span, the choice of tasks, task workflow and
length are extremely important for this limited task set. If task workflows are not
designed to be short, there is a higher probability of user error and a lower rate of
completion –see Effectiveness definition in Table 2. Workflows therefore need to be
compressed by combining several steps into one through careful task definition,
evaluation and analysis. Reduced workflows, in turn, reduce task times and increase
Efficiency (see definition in Table 2) while, at the same time, reducing error rates and
error rate reduction is extremely critical for users with short attention spans. If you are
driving and executing a task and get an error, do you continue trying?

2.3 Featuring Mobileapp Context

As mentioned above, the Context entity (category) is a special kind of entity
representing the state of the situation of a target entity to be assessed, which is relevant
for a particular measurement and evaluation (M&E) information need. Context for a
given QinU M&E project is particularly important –i.e. a must-, as instantiation of QinU
requirements must be done consistently and in the same context so that evaluations and
improvements can be accurately assessed and compared. But also context is important
regarding the EQ view, as we describe in Section 4. (Note that in order to reduce clutter
in Fig 1, we did not draw an upper-left orange box for product/system context). For
instance, system in use is characterized by a context-in-use entity, which in turn can
aggregate environment, user and task sub-entities, while a product/system context (for
idem target entity), can be characterized by sub-entities such as device (hardware),
software, etc.

As commented in [12], the context of a mobileapp user is much different than a
traditional desktop webapp user not only due to the size of the screen but also to other
situations that influence the user’s environment and therefore its behavior. In
particular the user’s activity at the time of usage, location, amongst other influencing
factors such as user profile have actual impact on the quality of the user’s experience.

Some a few of these factors considering context sub-entities and properties
include: i) Activity: What users are doing at the time of usage have a significant
influence on the user’s attention span; e.g. if they are driving, then they have a very

120 L. Olsina, L. Santos, and P. Lew

short attention span, maybe 1 second, versus if they are in the middle of a
conversation, perhaps they have an attention span of 3 seconds; ii) Day/time of day:
The day and time can impact what a user is doing, and the level of natural light.
Unlike desktop apps which are typically accessed indoors, the usage of mobile apps is
particularly sensitive to this contextual factor influencing visibility; ii) Location: The
location of the user influences many elements; e.g. indoors, outdoors, in a car or in an
elevator, all of which can also be related to the user activity; iii) Network
performance: Obviously the speed at which an app uploads and downloads data is
going to have a great impact because of the decreased attention span; iv) User profile:
The increasing complexity of software combined with an aging user demographic has
an interesting effect on the usability of mobile apps. For aging users, usually their
close range vision capability has diminished along with their dexterity. On the other
hand, apps have become complex, and therefore function and content simplicity and
understandability are also critical and influenced by the particular user group. Not
only are there more aging users, there are also more younger users as children these
days begin using computing devices as toddlers; v) Device: The size and type of the
device and its physical features influence what the user can see (or not see) as well as
the placement and number of controls and widgets in reduced real-estate displays.

This shortage of resources and particular contexts of use all impact on the UX.
Lastly, context properties are not part of the EQ or QinU models, but should be
recorded accordingly for characterizing the situation of the target entities at hand.

3 Conceptual Framework and Evaluation Approach

3.1 M&E Conceptual Framework

At this point, it is worth mentioning that the main building blocks depicted in Fig. 1
are grounded in a M&E conceptual framework. We have built –as part of evaluation
strategies- the C-INCAMI (Contextual-Information Need, Concept model, Attribute,
Metric and Indicator) conceptual framework [18], which is structured in six
components, namely: (a) Measurement and Evaluation Project; (b) Non-functional
Requirements; (c) Context; (d) Measurement; (e) Evaluation; and (f) Analysis and
Recommendation. Each component contains key terms and relationships. Fig 2
shows, for illustration purpose, the (b), (c), and (d) components whose colors match
those green/orange/light-blue boxes of Fig. 1.

In fact, the different labels in Fig 1 are mostly instances of the concepts, properties,
and relationships included in the C-INCAMI conceptual framework. For instance
"System" and "System in Use" in Fig. 1 are two instances of the Entity Category term;
specifically, each string is the value of the name field in Fig. 2. Since an entity
category can have sub-entity categories, "Basic/Advanced GUI object", "Menu", etc.
are instances of sub-entity categories. Entity term represents a concrete object; for
example, "Facebook mobile app" is the entity name that belongs to the "System"
category regarding the EQ focus.

 Evaluating Mobileapp Usability: A Holistic Quality Approach 121

Fig. 2. C-INCAMI Nonfunctional Requirements, Context, and Measurement components

Therefore, the requirements component specifies the Information Need for a M&E
project, i.e., the purpose (e.g. "understand", "improve") and the user Viewpoint (e.g.
"final user", "developer"). In turn, it focuses on a Calculable Concept (i.e.
characteristics whose names are for example "External Quality", "User Experience",
etc.) and specifies the Entity Category to be evaluated. On the other hand, a calculable
concept and its sub-concepts (e.g. "Usability") can be represented by a Concept
Model (e.g. an "EQ model") where the leaves of an instantiated quality model are
Attributes which are associated with a target entity. Table 1 specifies the requirements
tree for "Usability", which contains the names and definitions for the selected sub-
characteristics and attributes used in the Facebook mobileapp evaluation.

The context component (in Fig. 2) shows explicitly that Context is a special kind of
Entity Category. Context represents the state of the situation of a target entity, which
is relevant for a particular information need. To describe the context sub-entities (e.g.
"Environment", "Device", etc.) Context Properties are used, which are also attributes.
Additionally, attributes –as measurable properties- can be quantified by metrics and
interpreted by indicators.

Metric is a key term in the measurement component in Fig 2 (see also Fig. 1). This
component allows specifying Direct and Indirect Metrics used by Direct and Indirect
Measurement tasks which produce Measures. A metric is "the defined measurement
or calculation procedure and the scale". So a metric represents the how, that is to say,
the method that should be assigned to the steps of a measurement task (the what).
Lastly, a Measure is the number or category assigned to an attribute by making a
measurement upon a concrete entity. In order to illustrate the added value of a well-
defined measurement component, Table 3 shows the derived template for indirect and
direct metric specifications to the "Permanence of main controls" attribute. The
"Operability" sub-characteristic combines this attribute that is coded 1.3.3.1.1 in Table
1. Additionally, the screenshot in Fig. 3.b shows the concrete sub-entity named "Main
controls bar" that can be further measured.

122 L. Olsina, L. Santos, and P. Lew

Table 3. Indirect and direct metric specifications to the Permanence of main controls attribute

Target Entity Category: Name: System; Sub-Entity Category: Name: Smartphone mobile app;
Concrete Entity: Name: Facebook app; Version: 3.8; Sub-Entity Description: Set of Screens of the
Facebook app where the Main controls bar is (or should be) containing the set of Main controls (Buttons)

Attribute: Name: Permanence of main controls; Code: 1.3.3.1.1 in Table 1
Definition: Degree to which main controls are consistently available for users in all appropriate screens or
pages; Objective: To determine the degree to which the main controls are present in all appropriate
screens.

Indirect Metric: Name: Ratio of Main Controls Permanence (%MCP); Objective: To determine the
percentage of permanence for controls from the set of main controls in the application selected screens;
 Author: Santos L.; Version: 1.0;

Calculation Procedure: Formula: %MCP ∑ ∑ MCPL 100; for i=1 to m and j=1 to n, where m is

the number of application main controls and n is the number of application selected screens; with m, n > 0
Numerical Scale: Representation: Continuous; Value Type: Real; Scale Type: Ratio;
Unit Name: Percentage; Acronym: %
Related Metrics: Main control permanence level (MCPL)

Related Direct Metric: Name: Main Control Permanence Level (MCPL); Objective: To determine the
permanence level of a selected control in a given application screen; Author: Santos L.; Version: 1.0;
Measurement Procedure: Type: Objective; Specification: The expert inspects the main controls bar in a
given screen in order to determine whether the button is available or not, using the 0 or 1 allowed values.
Where 0 means the main button is absent in the screen, and 1 means the main button is present in the
screen;
Numerical Scale: Representation: Discrete; Value Type: Integer; Scale Type: Absolute;
Unit: Name Control

3.2 Evaluation Approach and Strategies

This sub-section gives a summary of our generic evaluation approach, which is made
up of a quality modeling framework and M&E strategies, where a concrete strategy
should be selected for purposefully instantiating quality models, processes, and
performing evaluations for a concrete project information need. Particularly, the
generic evaluation approach relies on two pillars, namely: i) a quality modeling
framework –where 2Q2U v2.0 is a subset [17], which includes the EQ and QinU
views and the ‘depends’ and ‘influences’ relationships between them; and ii) M&E
strategies, which in turn are based on three principles viz. a M&E conceptual
framework (as introduced in the previous sub-section), process view specifications,
and method specifications.

So far, we have developed two integrated strategies which include these three
principles, namely: GOCAME (Goal-Oriented Context-Aware Measurement and
Evaluation) [17, 18], and SIQinU (Strategy for understanding and Improving Quality
in Use) [14]. GOCAME is a multi-purpose strategy that follows a goal-oriented and
context-based approach in defining and performing M&E projects. GOCAME is a
multi-purpose strategy because it can be used to evaluate (e.g. “understand”,
“improve”, etc.) quality not only for product, system and system-in-use entities but
also for others such as resource, by using their instantiated quality models and tailored
process accordingly. However, GOCAME does not incorporate the QinU/EQ/QinU

 Evaluating Mobileapp Usability: A Holistic Quality Approach 123

relationships and improvement cycles as in SIQinU. Rather it can be used to
understand the current or future situation, as an evaluation snapshot, of concrete
entities. On the other hand, SIQinU is a specific-purpose strategy, which has specific
processes, methods and change procedures that are not specified in GOCAME.
Ultimately, given the target information need and objective, we can select the specific
strategy and its tailored processes and methods in order to fulfill that specific goal.

For example, GOCAME has a well-defined M&E process specification, which is
composed of six generic activities, namely: (A1) Define Non-functional Requirements;
(A2) Design the Measurement; (A3) Implement the Measurement; (A4) Design the
Evaluation; (A5) Implement the Evaluation; and (A6) Analyze and Recommend. Each
activity can be accordingly tailored for a specific quality focus regarding the
information need, e.g. if the focus is on EQ then A1 is named Define Non-functional
Requirements for EQ, and so on. Instead, if the focus is on QinU then A1 is named
Define Non-functional Requirements for QinU, and so forth. Note that in our process
specifications each activity is not atomic, so it should be decomposed into tasks.

Lastly, the strategies' activities are supported by different method specifications.
Since the M&E strategies rely on the quality modeling framework which is made up of
quality models, inspection of characteristics and attributes is the basic method
category. Attributes are supported by metric and elementary indicator method
specifications, while quality models are calculated using different indicator
aggregation methods such as LSP (Logic Scoring of Preference) [4], which is a
weighted multi-criteria aggregation method. However, user testing and inquiry method
categories can be used –mainly for QinU- meanwhile attributes of Efficiency,
Effectiveness, Learnability in use and Satisfaction can be derived from task usage log
files, questionnaire items, etc., as we did in [13, 14]. For planning and performing
changes traditional methods and techniques such as refactoring, re-structuring, re-
parameterization, among others can be used as well. The next section demonstrates a
practical use of our quality framework and GOCAME strategy through excerpts of our
Facebook's mobileapp Usability evaluation study.

4 Usability Evaluation for the Facebook Mobile App

The abovementioned A1 activity named Define Non-functional Requirements for EQ
has a specific goal or problem as input and a nonfunctional specification document as
output. A1 consists of: Establish EQ Information Need (A1.1), Select an EQ Model
(A1.2), and Specify (System) Context (A1.3) sub-activities [17].

Considering A1.1, the purpose of the information need is to "understand" the
current EQ satisfaction level achieved, particularly by evaluating the "Usability"
strengths and weaknesses from the "final user" viewpoint. "Facebook mobile app" is
the concrete entity whose sub-entities for the Usability focus are related to basic-,
advanced- and task-based GUI objects (recall Fig. 1). For example, in the Fig. 3.b
screenshot the "Main controls bar" contains a set of main controls or "Buttons".

For the given focus, the A1.2 sub-activity allows selecting from a repository the sub-
characteristics and attributes to be included. Table 1 documents the resulting
requirements tree, which includes "Understandability" (1.1), "Learnability"
(1.2), "Operability" (1.3), "User error protection" (1.4), and "Aesthetics" (1.5)

124 L. Olsina, L. Santos, and P. Lew

sub-characteristics. For example, "Operability" includes in turn sub-characteristics such
as "Visibility" (1.3.2), "Consistency" (1.3.3), etc., which combine attributes associated
to the entities. Particularly, "Color visibility appropriateness" (1.3.2.1) combines two
attributes associated to "Color/Text" objects (see Fig.3.a); while "Permanence of
controls" (1.3.3.1) combines two attributes associated to "Main controls bar" and
"Contextual control" objects (Fig.3.a and b). For instance, the "Permanence of main
controls" attribute (1.3.3.1.1) is defined in Table 1 as "degree to which main controls
are consistently available for users in all appropriate screens or pages". Note that in the
main controls bar of the three shown screenshots all buttons are not always available, so
the measured value will be produced in the A3 (Implement the EQ Measurement)
activity, using the appropriate metric from Table 3.

Fig. 3. Three Facebook screenshots: a) Contextual control and Color/Text objects are
highlighted; b) The Main controls bar, and the chat Button, which is not available in the other
two screenshots; and c) A typical date widget used when create event task is performed

Lastly, the A1.3 sub-activity deals with the selection of context properties (and
further values) like "mobile device type" (e.g. tablet, mobile phone); "mobilephone
generation" (e.g. regular cellphone, mid-sized smartphone, full-sized smartphone [16]);
"mobilephone device brand-model"; "target mobileapp type" (e.g. native mobile app,
mobile webapp), among many others, recalling that context is a special kind of entity
related to the entity category to be evaluated, as mentioned in sub-section 2.3.

Once the information need, EQ requirements, and context specifications were
yielded, the next A2 activity, Design the EQ Measurement, consists of selecting the
meaningful metrics from a repository to quantify the 23 measurable attributes. One
direct or indirect metric should be assigned per each attribute of the requirements tree
respectively. For example, the "Ratio of Main Controls Permanence" (%MCP) indirect
metric whose objective is "to determine the percentage of permanence for controls
from the set of main controls in the application selected screens" was chosen to
quantify the 1.3.3.1.1 attribute, as shown in Table 3. While an indirect metric has a

 Evaluating Mobileapp Usability: A Holistic Quality Approach 125

calculation procedure for its formula specification, a direct metric has a measurement
procedure. %MCP includes a related direct metric where the measurement procedure
indicates "the expert inspects the main controls bar in a given screen in order to
determine whether the button is available or not, using the 0 or 1 allowed values.
Where 0 means the main button is absent in the screen, and 1 means the main button is
present in the screen". In summary, 48 metrics were designed for this study taking into
account direct, indirect and related metrics for the latter.

The A3 activity produces the measures for all metrics at given moments in time as
well the linked data to concrete object references and parameters. Data collection for
metrics on the Facebook app (ver.3.8 for Android) were performed from Dec 26-28,
2013. The measure for %MCP gave 54.9% of permanence of main controls, regarding
that 5 main buttons should be placed in the main controls bar in 35 appropriate screens
(out of 38 app screens). Looking at Fig 3, we can observe for example that the "chat"
button is absent in screens a) and c), so if the end user wants to trigger this action on
those screens, he/she needs to perform more clicks than needed to initiate the task.

Table 4. Excerpt of Usability sub-characteristics and attributes from Table 1. Only Operability
sub-characteristics and attributes are fully shown with Elementary Indicator values (2nd
column); the 3rd column shows Partial/Global Indicator values, which are all in % scale unit.

1 Usability 60.5
1.1 Understandability 76.1
1.2 Learnability 59.7
1.3 Operability 80.7

1.3.1 Data Entry Ease 90
1.3.1.1 Defaults 100
1.3.1.2 Mandatory entry 50
1.3.1.3 Widget appropriateness 100

1.3.2 Visibility (synonym Optical Legibility) 81.5
1.3.2.1 Color visibility appropriateness 100

1.3.2.1.1 Brightness difference appropriateness 100
1.3.2.1.2 Color difference appropriateness 100

1.3.2.2 GUI object size appropriateness 63
1.3.2.2.1 Control (widget) size appropriateness 100
1.3.2.2.2 Text size appropriateness 42.1

1.3.3 Consistency 75.5
1.3.3.1 Permanence of controls 57.3

1.3.3.1.1 Permanence of main controls 54.9
1.3.3.1.2 Permanence of contextual controls 67.4

1.3.3.2 Stability of controls 95.5
1.4 User Error Protection 8.4
1.5 UI Aesthetics 80.8

Once metrics were selected for quantifying all attributes, then A4 can be performed,

which deals with designing the EQ evaluation. For space reasons, we did not describe
the evaluation component in sub-section 3.1, but a key concept is Indicator, as shown
in Fig. 1. While an elementary indicator evaluates the satisfaction level met for an
elementary requirement, i.e., an attribute of the requirements tree, a partial/global
indicator evaluates the satisfaction level achieved for partial (sub-characteristic) and

126 L. Olsina, L. Santos, and P. Lew

global (characteristic) requirements represented in the quality model. Therefore, a new
scale transformation and decision criteria (in terms of acceptability levels and ranges)
are defined. In this study, we used three acceptability ranges in a percentage scale: a
value within 60-80 (a marginal –yellow- range) indicates a need for improvement
actions; a value within 0-60 (an unsatisfactory –red- range) means change actions must
take place with high priority; and a score within 80-100 indicates a satisfactory level –
green- for the analyzed attribute or characteristic.

Details of elementary and global evaluation, as well as the LSP model used in this
study to calculate indicators (A5 activity) can be referred elsewhere [18]. Table 4
shows the elementary and partial indicators’ values for "Operability", and only partial
and global indicators’ values for the other sub-characteristics in addition to the
acceptability levels achieved.

Finally, GOCAME projects record all data, metadata and information coming from
metrics and indicators as well as the quality model and context specifications and
values. The Analyze and Recommend (A6) activity produces a recommendation
document, which can facilitate planning actions for further improvement.

Based on indicator results shown in the 3rd column of Table 4, we can observe that
the Usability characteristic in the Facebook app reached a marginal acceptability level
(60.5%), which means a need for improvement actions. Taking into account its sub-
characteristics viz. Understandability (1.1), Learnability (1.2) and User Error
Protection (1.4) reached a marginal and unsatisfactory acceptability levels respectively.
Therefore some of their elementary indicators are performing weakly and surely need
recommendations for attribute changes.

On the other hand, Operability (1.3) met the satisfactory level of 80.7%. However,
this does not imply that there are no weakly performing attributes for Operability.
While Color Visibility Appropriateness (1.3.2.1) scored 100 in its two attributes,
Permanence of Controls (1.3.3.1) scored in its two attributes, 54.9 and 67.4
respectively (see 2nd column), so a recommendation for further improvement can be
made. For understanding the reasons and planning change actions, the metric
specification and the measured values are central in GOCAME for these endeavors.
%MCP metric allowed (in A3) to store per each main button its availability in each
corresponding app screen in which must stay. So evaluators can easily understand, for
instance, where the "chat" button is absent, and so for each button of the main controls
bar. Also, the tailored strategy may help designers to understand and act on (system)
usability problems effectively to produce better design solutions as well.

Finally, as the reader can surmise the metric design specification helps not only
planning the change action, but also gauging (predicting) the improvement gain once
the action is performed. Ultimately, if we add a new activity to the six described
GOCAME activities (as we did it in fact previously with SIQinU), e.g. (A7) Plan and
Perform Improvement Actions, then the A3, A5 and A6 can be fully reused for re-
evaluation and analysis of the improvement gain with regard to the previous app
version. Note that changes should be made on the app entity not on the app in use.

5 Related Work and Discussion

As commented previously, in the state-of-the-art literature, Usability, Actual Usability
and UX features are very often poorly linked to target entities (e.g. system and system

 Evaluating Mobileapp Usability: A Holistic Quality Approach 127

in use) and context entities (e.g. device, environment, user, etc.), in addition to EQ
and QinU views and their relationships. Bevan [3] states that international standards
for Usability should be more widely used because one of their main purposes is to
impose consistency, compatibility, and safety. Usability has also been integrated into
standards for software quality and evaluation; e.g. ISO 25010 (which supersedes to
ISO 9126-1 [11]) provides a comprehensive structure for the role of Usability as part
of system quality as well a broader concept of QinU increasing the business relevance
of usability in many situations. Besides, author indicates that referring to the
terminology from the field of software quality, it can be said that UX is more related
to the concept of QinU, whereas Usability more to EQ.

From our viewpoint, one of the strengths in ISO 25010 is not only the quality
models and included characteristics but also the two quality views and relationship
whereby system quality ‘influences’ system-in-use quality and system-in-use quality
‘depends on’ system quality. However, some weaknesses we point out are: UX is still
an absent characteristic in ISO; there exists a dual Usability definition which blurs
system Usability with QinU meanings (i.e. Usability is defined in [9] as "degree to
which a product or system can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context of use", while
QinU as "degree to which a product or system can be used by specific users to meet
their needs to achieve specific goals with effectiveness, efficiency, freedom from risk
and satisfaction in specific contexts of use") so, we consider the Usability definition
given in [11] (adapted in Table 1) is closer to the intended aim; and, the Context
coverage characteristic included in the [9] QinU model, which can be represented
independently of quality models, as shown in previous sections and in [17].
Therefore, in order to bridge this gap, we have developed the 2Q2U v2.0 quality
modeling framework, considering also contributions such as [2, 7], amongst others.

On the other hand, in the Apple [1] and Google [5] design and user interface
guidelines, the relationship between mobileapp entities with Usability and UX
concepts is not definitively explicit in models, nor is it represented in the Usability
works in [16], nor in other quality-related research such as [15, 19]. For instance,
Nielsen et al. list out in [16] many features and checklists of mobile apps in that
would be desired or needed in certain contexts of use but do not use quality views and
modeling approaches. Therefore, the capability for consistent application using a
conceptual framework and strategies to systematically apply concepts and evaluate
and improve a mobile app is rather limited. (Recall the raised issues in Section 1).

Lastly, a holistic approach similar to ours for evaluating the Usability of
mobilephones in an analytical way is documented in [8], which is based on a multi-
level, hierarchical model of Usability factors. These factors related to views and
entities are collectively measured to give a single score with the use of checklists.
Moreover, the conceptual framework and strategy involves a hierarchical model of
usability factors, four sets of checklists, a quantification method, and an evaluation
process. The conceptual framework for usability indicators [6] is based on the ISO
15939 [10] measurement model, which its terms are structured in a glossary.
Conversely, we developed an ontology [18] for the C-INCAMI M&E components
(recall Fig. 2) where [10] was one of the used sources. Consequently, from

128 L. Olsina, L. Santos, and P. Lew

components we derive metric an indicator metadata in templates (as in Table 3) that
allows consistency and repetitively among projects and analysis of data. As added
value, a well-designed metric helps not only to yield measures but also to plan change
actions on the product/system attribute or capability. Finally, the process in the [8]
strategy is poorly specified compared to that in GOCAME or SIQinU [14] strategies.

6 Conclusions

As the contributions mentioned in the Introduction Section, firstly, we have
characterized and represented relevant Usability and UX features of mobile apps with
regard to system, system-in-use and context entities. Secondly, we have analyzed
Usability, Actual Usability and UX relationships regarding also EQ and QinU views,
as well as specific Usability sub-characteristics and attributes for mobile apps in the
light of a holistic evaluation approach. This evaluation approach is made up of a
quality modeling framework (where 2Q2U is a subset) and M&E strategies, which in
turn are based on three principles namely: a M&E conceptual framework (i.e. the C-
INCAMI conceptual framework which is rooted in ontologies), process view
specifications, and method specifications. So given the target information need, we
can select the specific strategy and its tailored processes and methods in order to
fulfill that specific purpose aimed at performing evaluations, analysis and
recommendations. To this, we illustrated an evaluation study for the Facebook mobile
app from the system Usability viewpoint, using the GOCAME strategy.

Of course, the Facebook study was made on the basis of a proof of concept as a
typical social network app. But if we could have had control of the source code
obviously GOCAME can be tailored to support change actions based on
recommendations for improvement on weak performing indicators and re-evaluation
of the new app version. An app with design features that jeopardize Effectiveness,
Efficiency, Safety or Satisfaction (i.e. the do and be UX goals) can potentiate risks
that it will not meet its business objectives. Evaluating these high level non-functional
requirements such as Satisfaction, Actual Usability may feed back into detailed
Usability, Functional and Information Quality, Security, etc. attributes and design
requirements to maximize the quality of the user’s experience and to minimize the
likelihood of adverse consequences. Hence, our holistic evaluation approach can give
support by means of specific strategies –as SIQinU- to the QinU/EQ/QinU
improvement cycles. Ongoing research focuses on further utilizing our evaluation
approach for QinU/EQ/QinU cycles for improving the design of mobile apps.

References

1. Apple iOS Human Interface Guidelines (2014), http://developer.apple.com/
library/ios#documentation/UserExperience/Conceptual/
MobileHIG/Introduction/Introduction.html (retrieved by January)

2. Bevan, N.: Extending Quality in Use to provide a Framework for Usability Measurement.
In: Kurosu, M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 13–22. Springer, Heidelberg (2009)

 Evaluating Mobileapp Usability: A Holistic Quality Approach 129

3. Bevan, N.: International Standards for Usability Should Be More Widely Used. Journal of
Usability Studies 4(3), 106–113 (2009)

4. Dujmovic, J.: Continuous Preference Logic for System Evaluation. IEEE Transactions on
Fuzzy Systems 15(6), 1082–1099 (2007)

5. Google User Interface Guidelines (2014), http://developer.android.com/
guide/practices/ui_guidelines/index.html (retrieved by January)

6. Ham, D.-H., Heo, J., Fossick, P., Wong, W., Park, S., Song, C., Bradley, M.: Model-based
Approaches to Quantifying the Usability of Mobile Phones. In: Jacko, J.A. (ed.) HCI 2007.
LNCS, vol. 4551, pp. 288–297. Springer, Heidelberg (2007)

7. Hassenzahl, M.: User Experience: Towards an experiential perspective on product quality.
In: 20th Int’l Conference of the Assoc. Francophone d’IHM, vol. 339, pp. 11–15 (2008)

8. Heo, J., Ham, D.-H., Park, S., Song, C., Chul, W.: A framework for evaluating the
usability of mobile phones based on multi-level, hierarchical model of usability factors.
Interacting with Computers 21(4), 263–275 (2009)

9. ISO/IEC 25010: Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models (2011)

10. ISO/IEC 15939: Software Engineering - Software Measurement Process (2002)
11. ISO/IEC 9126-1: Software Engineering - Product Quality - Part 1: Quality Model (2001)
12. Lew, P., Olsina, L.: Relating User Experience with MobileApp Quality Evaluation and

Design. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS, vol. 8295,
pp. 253–268. Springer, Heidelberg (2013)

13. Lew, P., Qanber, A.M., Rafique, I., Wang, X., Olsina, L.: Using Web Quality Models and
Questionnaires for Web Applications Evaluation. In: IEEE Proc., QUATIC, pp. 20–29
(2012)

14. Lew, P., Olsina, L., Becker, P., Zhang, L.: An Integrated Strategy to Systematically
Understand and Manage Quality in Use for Web Applications. Requirements Engineering
Journal 17(4), 299–330 (2012)

15. Nayebi, F., Desharnais, J.-M., Abran, A.: The state of the art of mobile application
usability evaluation. In: 25th IEEE Canadian Conference on Electrical Computer
Engineering, pp. 1–4 (2012)

16. Nielsen, J., Budiu, R.: Mobile Usability. New Riders, Berkeley (2012)
17. Olsina, L., Lew, P., Dieser, A., Rivera, B.: Updating Quality Models for Evaluating New

Generation Web Applications. In: Abrahão, S., Cachero, C., Cappiello, C., Matera, M.
(eds.) Journal of Web Engineering, Special Issue: Quality in New Generation Web
Applications, vol. 11(3), pp. 209–246. Rinton Press, USA (2012)

18. Olsina, L., Papa, F., Molina, H.: How to Measure and Evaluate Web Applications in a
Consistent Way. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:
Modeling and Implementing Web Applications. HCIS, pp. 385–420. Springer (2008)

19. Sohn, T., Li, K.A., Griswold, W.G., Holland, J.: A diary study of mobile information
needs. In: ACM, Conference CHI 2008, Florence, Italy, pp. 433–442 (2008)

Finding Implicit Features in Consumer Reviews

for Sentiment Analysis

Kim Schouten and Flavius Frasincar

Erasmus University Rotterdam
P.O. Box 1738, NL-3000 DR
Rotterdam, The Netherlands

{schouten,frasincar}@ese.eur.nl

Abstract. With the explosion of e-commerce shopping, customer re-
views on the Web have become essential in the decision making pro-
cess for consumers. Much of the research in this field focuses on explicit
feature extraction and sentiment extraction. However, implicit feature
extraction is a relatively new research field. Whereas previous works fo-
cused on finding the correct implicit feature in a sentence, given the
fact that one is known to be present, this research aims at finding the
right implicit feature without this pre-knowledge. Potential implicit fea-
tures are assigned a score based on their co-occurrence frequencies with
the words of a sentence, with the highest-scoring one being assigned to
that sentence. To distinguish between sentences that have an implicit
feature and the ones that do not, a threshold parameter is introduced,
filtering out potential features whose score is too low. Using restaurant
reviews and product reviews, the threshold-based approach improves the
F1-measure by 3.6 and 8.7 percentage points, respectively.

1 Introduction

With the explosion of online shopping at e-commerce companies like Amazon
(US), Bol (NL), Alibaba (CN), etc., the use of consumer product reviews has
become instrumental in the decision making process of consumers. In fact, po-
tential consumers trust reviews from other consumers more than information on
the vendor’s website [1]. As a result, the number of reviews for a single product
can be quite high, especially for a popular product. When a consumer is inter-
ested in the overall sentiment of a product, (s)he must first read through many
of the reviews to come to a conclusion. Since reading through these reviews is
a tedious process, this may hinder decision making. Therefore an efficient way
of displaying the overall sentiment of a product based on costumer reviews is
desirable.

Much of the current research in the analysis of product reviews is concerned
with classifying the overall sentiment for a certain product. To better describe the
overall sentiment of a product, it is useful to look at the sentiment per product
aspect, from now on referred to as a feature. Sentiment classification per feature
can be difficult as a customer review does not have a standard structure and may

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 130–144, 2014.
c© Springer International Publishing Switzerland 2014

Finding Implicit Features in Consumer Reviews for Sentiment Analysis 131

include spelling errors and synonyms for product features. Although a consumer
might explicitly mention a feature for a product, many of the important features
are mentioned implicitly as well. For example:

“The battery of this phone is quite good.”
“The phone lasts all day.”

In the first sentence, the battery is explicitly mentioned and the second one
refers to the battery lasting all day. Notice that while in the second sentence
the battery is not explicitly mentioned, we can infer that the comment is about
the battery. This inference is based on the other words in the sentence that
direct the reader towards the actual feature being described. This mapping from
words in the sentence to the implied feature must be shared between writer and
reader of a text in order for the reader to understand what the writer meant to
imply. Because of this, it is usually a small group of well-known, coarse-grained
features that is used implicitly. Examples include generic features like price,
size, weight, etc., or very important product-specific features like the already
mentioned battery, sound quality, ease of use, etc. Since it is this class of features
that is often implied, it is important to include them in any sentiment analysis
application, as they represent key features for consumers.

This research presents a method to both determine whether an implicit feature
is present in a sentence, and if so, which one it is. After describing some of the
related work that inspired this research, the method will be presented. Then,
the two data sets that are used in the experiments are discussed, followed by
the evaluation of the proposed method. This will lead to the conclusions and
suggestions for future work in the last section.

2 Related Work

While many methods have been proposed to find features for the task of aspect-
level sentiment analysis, most of them focus on explicit features only. This is
logical, given that the vast majority of the features in consumer reviews is men-
tioned explicitly. However, as discussed in the previous section, it is often the
important features that are mentioned implicitly. Alas, only few works focus on
this task. One of the first to address the problem of detecting implicit features
is [8]. An interesting solution is presented in the form of semantic association
analysis based on Pointwise Mutual Information. However, since no quantitative
results are given, it is impossible to know how well this method performs.

In [5], a method based on co-occurrence Association Rule Mining is proposed.
It is making use of the co-occurrence counts between opinion words and explicit
features. The latter can be extracted from labeled data, or can be provided by an
existing method that finds explicit features. Association rule mining is used to
create a mapping from the opinion words to possible features. The opinion word
then functions as the antecedent and the feature as the consequent in the rules
that are found. When an opinion word is encountered without a linked feature,
the list of rules is checked to see which feature is most likely implied by that

132 K. Schouten and F. Frasincar

opinion word. On a custom set of Chinese mobile phone reviews, this method is
reported to yield an F1-measure of 74%.

Similar to [5], the same idea of association rule mining is used in [9]. With
association rule mining being used to find a set of basic rules, three possible
ways of extending the set of rules are investigated: adding substring rules, adding
dependency rules, and adding constrained topic model rules. Especially the latter
turned out to be a successful way of improving the results. By constraining the
topic model (e.g., Latent Dirichlet Allocation [2] in this case), to include one of
the feature words and build the topic around that word, meaningful clusters are
generated. Thus, a different way of finding co-occurrences between features and
other words in the text is used, and it is reported that this complements the
association rule mining method. The best reported result is an F1-measure of
75.51% on a Chinese data set of mobile phone reviews.

Instead of using annotated explicit features, [10] uses the idea of double prop-
agation [7] to find a set of explicit words and a set of opinion words. An advan-
tage is that the found explicit features are already linked to appropriate opinion
words. Then a co-occurrence matrix is created, not between only opinion words
and explicit features, but between the words in the sentences and the found
explicit features. In this way, the right implicit feature is chosen, not based on
just the opinion words in the sentence, but based on all words in the sentence.
The opinion words in the sentence are used to constrain the number of possi-
ble features from which the right one must be chosen: only features that have
co-occurred with the encountered opinion word before, are eligible to be chosen.

In the previously introduced method, for each eligible explicit feature, a score
is computed that represents the average conditional probability of a feature being
implied, given the set of words in the sentence. The feature with the highest score
is chosen as the implicit feature for this sentence. This method is reported to yield
an F1-measure of 0.80 and 0.79 on a Chinese corpus of mobile phone reviews, and
a Chinese collection of clothes reviews, respectively. Like [9], it uses all words to
find implicit features instead of only opinion words as in [5], and, apart from a
small seed set of opinion words, it operates completely unsupervised.

However, there are several drawbacks that are apparent, both in [5], [9], and
in [10]. The first problem is that only features that have been found as explicit
features somewhere in the corpus can be chosen as implicit features. This assumes
that the same features are present in reviews, both explicitly and implicitly. How-
ever, as we have discussed before, well-known or important features are implied
more often than features that are less important or less described. Furthermore,
by counting the co-occurrence frequencies between a feature that is mentioned
explicitly and the words in the sentence, it is assumed that when the feature is
used implicitly, the same sentential context is present. We argue, however, that
this is not necessarily the case. For example, when saying that ‘this phone is
too expensive’, the word ‘expensive’ prevents the word ‘price’ from being used.
Either one uses the word ‘expensive’, or one uses the word ‘price’. Because of
that, there is no real co-occurrence between ‘expensive’ and ‘price’, even though
the first definitely points to the latter as its implicit feature.

Finding Implicit Features in Consumer Reviews for Sentiment Analysis 133

3 Method

In this section the issues discussed in the previous section are addressed and
an algorithm is presented that improves upon previous work in the given, more
realistic, scenario. This scenario entails the following:

– Sentences can have both explicit and implicit features;
– Sentences can have zero or more implicit features;
– Implicit features do not have to appear explicitly as well;
– The sentential context of explicit features does not have to be the same as

the sentential context for implicit features.

The algorithm first scans the training data and constructs a list F of all unique
implicit features, a list O of all unique lemmas (i.e., the syntactic root form of a
word) and their frequencies, and a matrix C to store all co-occurrences between
annotated implicit features and the words in a sentence. Hence, matrix C has
dimensions |F | x |O|.

When F , O, and C have been constructed, processing the test data goes as
follows. For each potential implicit feature fi, a score is computed that is the
sum of the co-occurrence of each word in the sentence divided by the frequency
of that word:

scorefi =
1

v

v∑
j=1

ci,j
oj

, (1)

where v is the number of words, fi is the ith feature in F for which the score
is computed, j represents the jth word in the sentence, ci,j is the co-occurrence
frequency of feature i and lemma j in C, and oj is the frequency of lemma o in
O. Subsequently, for each sentence the highest scoring feature is chosen.

However, since there are many sentences without any implicit feature, a
threshold is added, such that the highest scoring feature must exceed the thresh-
old in order to be chosen. If the computed score does not exceed the threshold,
the considered implicit feature is not assigned to that sentence. The pseudocode
for the whole process is shown in Alg. 1, where the training process is shown
(i.e., constructing co-occurrence matrix C and lists O and F), and in Alg. 2,
where the processing of new sentences using the trained algorithm is shown.

The optimal threshold is computed based on the training data only, and con-
sists of a simple linear search. A range of values is manually defined, all of them
which are then tested consequently. The values ranged from 0 to 1, with a step
size of 0.001. The best performing threshold is then used when evaluating on the
test data. Since there is only one parameter to train and the range of possible
values is rather limited, more advanced machine learning techniques were not
deemed necessary to arrive at a good threshold value.

A limitation of this method is the fact that it will choose at most one implicit
feature for each sentence. Both of our data sets, as can be seen in the next sec-
tion, contain sentences that have more than one implicit feature. In these cases,
chances are higher that the chosen implicit feature is in the golden standard,

134 K. Schouten and F. Frasincar

Algorithm 1. Training the algorithm with annotated data

Initialize list of unique word lemmas with frequencies O
Initialize list of unique implicit features F
Initialize co-occurrence matrix C
for sentence s ∈ training data do

for word w ∈ s do
if ¬(w ∈ O) then

add w to O
end if
O(w) = O(w) + 1

end for
for implicit feature f ∈ s do

if ¬(f ∈ F) then
add f to F

end if
for word w ∈ s do

if ¬((w, f) ∈ C) then
add (w, f) to C

end if
C(w, f) = C(w, f) + 1

end for
end for
Determine optimal threshold.

end for

Algorithm 2. Executing the algorithm to process new sentences

for sentence s ∈ test data do
currentBestFeature = empty
scoreOfCurrentBestFeature = 0
for feature f ∈ F do

score = 0
for word w ∈ s do

score = score+ C(w, f)/O(w)
end for
if score > scoreOfCurrentBestFeature then

currentBestFeature = f
scoreOfCurrentBestFeature = score

end if
end for
if scoreOfCurrentBestFeature > threshold then

Assign currentBestFeature to s as its implicit feature
end if

end for

Finding Implicit Features in Consumer Reviews for Sentiment Analysis 135

but all features beyond the first will be missed by the algorithm. Another lim-
itation is the obvious need for labeled data. Since this method is trained, not
on explicit features, which can be determined by some other method, but on
annotated implicit features, a sufficient amount of annotated data is required
for our method to work properly.

4 Data Analysis

This section presents an overview of the two data sets that are used to train and
evaluate the proposed method and its variants. The first data set is a collection
of product reviews [6], where both explicit and implicit features are labeled.
The second data set consists of restaurant reviews [4], where explicit aspects
are labeled, as well as implicit aspect categories. Each sentence can have zero
or more of these coarse-grained aspect categories. The restaurant set features
five different aspect categories: ‘food’, ‘service’, ‘ambience’, ‘price’, and ‘anec-
dotes/miscellaneous’. Since these aspects are implied by the sentence instead of
being referred to explicitly, they function as implicit features as well. However,
since there are only five options to choose from, it is much easier to obtain good
performance on the restaurant set compared to the product set, where there
are many different implicit features. Because of this, results for both data sets
are not directly comparable. Even so, it is interesting to see how the proposed
method performs on different data.

4.1 Product Reviews

The collection of product reviews are extracted from amazon.com, covering five
different products: Apex AD2600 Progressive-scan DVD player, Canon G3, Cre-
ative Labs Nomad Jukebox Zen Xtra 40GB, Nikon Coolpix 4300, and Nokia
6610. Because the primary purpose of this data set is to perform aspect-level
sentiment analysis, it is the case that features are only labeled as a feature when
an opinion is expressed about that feature in the same sentence. In the example
below, both sentences have a feature ‘camera’, but only in the second sentence
is ‘camera’ labeled as a feature since only in the second sentence it is associated
with a sentiment word.

“I took a picture with my phone’s camera.”
“The camera on this phone takes great pictures.”

Because the product data set contains a lot of different, but sometimes sim-
ilar, features, a manual clustering step has been performed. This makes the set
of features more uniform and reduces unnecessary differences between similar
features. It also removes some misspellings that were present in the data set. In
total, the number of unique implicit features is reduced from 47 to 25.

136 K. Schouten and F. Frasincar

As can be seen in Fig. 1, there are not many sentences with an implicit feature.
This only stresses the need for a good selection criterion to distinguish the ones
with an implicit feature from the ones that do not have one. There is also a small
number of sentences (0.2%) that have two implicit features. Since the algorithm
will only choose zero or one implicit feature for each sentence, this can potentially
impact performance in a negative way. The second implicit feature will always be
missed, leading to a lower recall. This is however slightly mitigated by the fact
that it is easier to pick a correct feature, as it is checked against both annotated
features in the sentence.

Fig. 1. Distribution of sentences in the product review data set, according to the
number of implicit features they contain

Fig. 2. Frequencies for all 25 unique feature clusters in the product review data set

In Fig. 2, the frequency distribution of the set of implicit features is given.
Frequency is measured as the number of sentences a certain implicit feature

Finding Implicit Features in Consumer Reviews for Sentiment Analysis 137

appears in. As can be seen, there are quite a few implicit features which appear
in only a couple of sentences. Fifteen out of the 25 feature appear in less than
5 sentences, with eight features occurring in only one sentence. This makes it
extremely difficult to learn a classifier that is able to find these features. In case
of the features that appear only once, it is completely impossible to devise a
classifier, since they cannot both appear in the test and in the training set.

4.2 Restaurant Reviews

Compared to the product reviews, the restaurant review data set has clearly
different statistical characteristics, as shown in Fig. 3. Where the product review
set has only a few sentences that contain an implicit feature, in the restaurant set,
all of them have an aspect category, which we will regard as an implicit feature
in this research. The much bigger size, together with the already mentioned fact
that there are only five different implicit features in this data set, makes for a
much easier task. To measure the influence of the threshold parameter, the fifth
category of ‘anecdotes/miscellaneous’ is removed from the data set. Since this
category does not really describe a concrete implicit feature, removing it leaves
us with sentences that do not have any implicit feature, allowing the performance
of the threshold to be assessed on this data as well.

Compared to the product reviews data set, the frequency distribution of the
implicit features in the restaurant reviews set, shown in Fig. 4 is more balanced.
Every features has at least a couple of hundred sentences in which it is appearing.
The one outlier is the ‘food’ category, which appears twice as much as the second
largest feature which is ‘service’. Still, the difference between the feature that
appears the most (‘food’) and the one that appears the least (‘price’) is only
a factor of three, whereas for the product features, this would be much higher
(i.e., around 30).

5 Evaluation

All evaluations are performed using 10-fold cross-evaluation. Each tenth of the
data set is used to evaluate an instance of the algorithm that is trained on the
other 90% of the data. Both the co-occurrence frequencies and the threshold
parameter are determined based on the training data only. When evaluating the
algorithm’s output, the following definitions are used:

– truePositives are the features that have been correctly identified by the
algorithm;

– falsePositives are those features that have been annotated by the algo-
rithm, that are not present in the golden standard;

– falseNegatives are those features that are present in the golden standard,
but that have not been annotated by the algorithm;

– trueNegatives are features that are not present in the golden standard, and
are correctly not annotated by the algorithm.

138 K. Schouten and F. Frasincar

Fig. 3. Distribution of sentences in the restaurant review data set, according to the
number of implicit features they contain

Fig. 4. Frequencies for all 4 unique features in the restaurant review data set

When evaluating, a feature always has to be the same one as in the golden
feature to count as a true positive. Simply stating that there is some implicit
feature in a sentence, which might be true, is not enough. In order to count
as a true positive, it has to be the right implicit feature. From this follows
that, given a sentence with only one annotated implicit feature and one golden
implicit feature, when the algorithm correctly identifies that a sentence contains
an implicit feature, but it chooses the wrong one, the wrongly assigned feature
will count as a false positive and the annotated one will count as a false negative.
As such, both precision and recall will be lower. In general the algorithm can
make three kinds of mistakes:

Finding Implicit Features in Consumer Reviews for Sentiment Analysis 139

– State that a sentence contains an implicit feature, while actually it does not:
precision will be lower;

– State that a sentence does not contain an implicit feature, while actually it
does: recall will be lower;

– Correctly stating that a sentence contains an implicit feature, but picking
the wrong one: both precision and recall will be lower.

Because of the ten-fold cross-validation, the reported scores are computed
on the sum of the ten confusion matrices (i.e., derived from the ten folds). For
example, precision would be computed as:

precision =

∑10
fold=1 truePositivesfold∑10

fold=1 truePositivesfold + falsePositivesfold
. (2)

Recall is computed in a similar way, leaving the F1-measure, being the har-
monic mean of precision and recall, to be computed as usual. In the end, each
sentence will be processed exactly once, but will be used nine times as training
instance.

The proposed algorithm is tested both with and without the proposed thresh-
old, to assess the benefit of training such a threshold. Furthermore, both versions
are evaluated using a Part-of-Speech filter. The latter is used to filter out words
in the co-occurrence matrix that may not be useful to find implicit features. Be-
sides evaluating using all words (i.e., including stopwords), both algorithms are
evaluated using an exhaustive combination of four word groups, namely nouns,
verbs, adjectives, and adverbs.

Since the algorithm without a threshold will generally choose some implicit
feature for every sentence, any trained threshold is expected to surpass that
score. To provide more insight in this problem, a maximum score is also provided.
This maximum score is computed by filtering out all sentences without any
implicit feature and then letting the algorithm simply pick the most appropriate
feature. This situation reflects a perfect threshold that is always able to make the
distinction between the presence or absence of an implicit feature. Obviously, in
reality, the trained threshold does not come close to this ideal performance, but
including this ideal line allows the separation of errors due to threshold problems
from errors due to not picking the right feature. The latter is an intrinsic problem
of the algorithm, not of the threshold. With this in mind, one can see that the
gap between the ideal line and the bars represents errors that can be attributed
to the threshold, while the gap between 100% performance and the ideal line
represents errors that can be attributed to the method of using co-occurrence
frequencies to find the right feature.

The results on the product review data set are presented in Fig. 5, whereas
the results on the restaurant review data set are presented in Fig. 6. In each
graph there are two grouped bars for each Part-of-Speech filter, where the first
bar shows the performance without a threshold and the second bar the perfor-
mance with the trained threshold. The line above the bars represents the ideal,
or maximum possible, performance with respect to the threshold, as discussed

140 K. Schouten and F. Frasincar

above. There are 16 different Part-of-Speech filters shown in both graphs. The
first all, simply means that all words, including stopwords, are used in the co-
occurrence matrix. The other fifteen filters only allow words of the types that
are mentioned, where NN stands for nouns, VB stands for verbs, JJ stands for
adjectives, and RB stands for adverbs.

Fig. 5. The performance on the product review data set in F1-measure for the various
PoS-filters

For the product set, it is beneficial to keep as many words as possible, some-
thing that is probably caused by the small size of the data set. However, removing
stopwords results in a slightly higher performance: the NN+VB+JJ+RB filter scores
highest. Looking at the four individual categories, it is clear that adjectives are

Fig. 6. The performance on the restaurant review data set in F1-measure for the various
PoS-filters

Finding Implicit Features in Consumer Reviews for Sentiment Analysis 141

Fig. 7. The precision-recall trade-off on the product review data set, when manipulat-
ing the threshold variable (using the NN+VB+JJ+RB filter)

Fig. 8. The precision-recall trade-off on the restaurant review data set, when manipu-
lating the threshold variable (using the NN+JJ filter)

most important to find implicit features. For the restaurant set, the situation
is a bit different. Here, nouns are the most important word group, followed by
adjectives. Because of its larger size, it is possible to remove verbs and adverbs
without any detrimental effects. Hence, the NN+JJ filter yields the best perfor-
mance.

Another observation we can draw from comparing Fig. 5 and Fig. 6 is that the
restaurant set is in general much easier for the algorithm to process. Not only
are the ideal performances higher on the restaurant set, also the gap between
the ideal and the realized performance is smaller. The most likely reason for this

142 K. Schouten and F. Frasincar

Table 1. Comparison of results with Zhang & Zhu [10], with and without the proposed
threshold. Reported scores are F1-measures for the best scoring Part-of-Speech filter.
Differences between scores are expressed in percentage points (pp.), the arithmetic
difference between two percentages.

product review data set

method no threshold trained threshold difference

Zhang & Zhu 1.2% (all) 1.4% (NN+VB+JJ+RB) +0.2 pp.

proposed method 4.2% (JJ) 12.9% (NN+VB+JJ+RB) +8.7 pp.

difference +3 pp. +11.5 pp.

restaurant review data set

method no threshold trained threshold difference

Zhang & Zhu 31.5% (all) 32.4% (all) +0.9 pp.

proposed method 59.7% (NN+JJ) 63.3% (NN+JJ) +3.6 pp.

difference +28.2 pp. 31.1 pp.

difference is the fact that in the restaurant set there are roughly 2000 sentences
that contain at least one of the four possible implicit features, whereas in the
product set, there are 140 sentences that contain at least one of 25 possible
implicit features. Not only does this render the task of picking the right feature
more difficult, it also increases the complexity of judging whether a sentence
contains one of these features.

The fact that the vast majority of the product set has no implicit feature at all
makes the utilization of a threshold all the more important. This is in contrast
to the restaurant set, where two-thirds of the sentences have an implicit feature.
Again, this is shown clearly in Fig 5 and Fig 6: the relative improvement of the
threshold is much higher for the product data than the restaurant data.

In Fig. 7 and Fig. 8, the precision-recall trade-off is shown for the best scoring
Part-of-Speech filter. The restaurant set yields a well-defined curve, which is
to be expected due to the large quantity of available data. Note that as in all
other graphs, two tasks are being evaluated: determine whether or not there is
an implicit feature in a sentence, and if so, determine which one it is. This is the
reason that, even with a threshold of zero, the recall will not be 100%: while it
does state that every sentence will have an implicit feature, it still has to pick
the right one in order to avoid a lower recall (and precision for that matter).

A comparison with the method of Zhang & Zhu [10] is given in Table 1. To
increase comparability, both methods are tested with all sixteen possible Part-
of-Speech filters (only the best one is reported). To be fair, the original method is
also tested with a threshold added, using the same procedure as for the proposed
method, even though this contributes little to its performance.

Interestingly, the effect of the threshold is bigger on the product set compared
to the restaurant set. This might point to the fact that training this parameter
can partly mitigate the negative effect of having a small data set. Consequently,

Finding Implicit Features in Consumer Reviews for Sentiment Analysis 143

when the data set is larger, the algorithm on its own already performs quite well,
leaving less room for improvement by other methods, like adding a threshold.

6 Conclusion

Based on the diagnosed shortcomings in previous work, we proposed a method
that directly maps between implicit features and words in a sentence. While the
method effectively becomes a supervised one, it is not flawed in its assumptions
as previous work, and performance is reported to increase on the two used data
sets. Furthermore, a more realistic scenario is implemented wherein the proposed
method not only has to determine the right implicit feature, but also whether
one is actually present or not.

The proposed algorithm shows a clear improvement with respect to an exist-
ing algorithm on the two data sets considered, as it is better in distinguishing
between sentences that have an implicit feature and the ones that do not. Both
for product reviews and restaurant reviews, the same general improvement is ob-
served when implementing this threshold, even though the actual performance
differs much between the two data sets.

Analysis of the performance of the algorithm in relation to the characteristics
of the two data sets clearly shows that having less data, but more unique implicit
features to detect severely decreases performance. While the proposed algorithm
is much better in dealing with this lack of data, the results for that particular
data set are still too low to be useful in practice. On the set of restaurant
reviews, being of adequate size and having only four unique implicit features, the
proposed algorithm yields promising results. Adding a threshold further boosts
the performance by another 3 percentage points, which is highly desirable for
this kind of user generated content.

A primary suggestion for future work is to learn a threshold for each individual
implicit feature, instead of one general threshold that applies to all implicit
features. We hypothesize that because some features are used more often in
an implicit way than others, and the sentential context differs from feature to
feature as well, it makes sense to learn a different threshold for each unique
implicit feature.

Also interesting could be to adjust the algorithm to be able to choose more
than one implicit feature. Especially on the restaurant set, where about 14%
of the sentences have more than one implicit feature, performance could be
improved. Possible ways of doing this include choosing all features whose score
exceeds the threshold, or employ a classifier that determines how many implicit
features are likely to be present. The latter could also be investigated as a possible
alternative for the threshold.

Last, a move from word based methods, like this one, toward concept-based
methods, as advocated in [3], would be interesting as well. For example, cases
like:

144 K. Schouten and F. Frasincar

“This phone doesn’t fit in my pocket.”

is very hard to process based on words alone. It is probably feasible to determine
that the implicit feature here is ‘size’, if enough training data is at hand, but
determining that this sentence represents a negative sentiment, since mobile
phones are supposed to fit in ones pocket, seems extremely hard for word-based
methods. While concept level methods are still in their infancy, they might be up
to this challenge, since common sense knowledge, world knowledge, and domain
knowledge are integrated in such an approach.

Acknowledgments. The authors are partially supported by the Dutch na-
tional program COMMIT. We also would like to thank Andrew Hagens, Gino
Mangnoesing, Lotte Snoek, and Arno de Wolf for their contributions to this
research.

References

1. Bickart, B., Schindler, R.M.: Internet Forums as Influential Sources of Consumer
Information. Journal of Interactive Marketing 15, 31–40 (2001)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

3. Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New Avenues in Opinion Mining
and Sentiment Analysis. IEEE Intelligent Systems 28, 15–21 (2013)

4. Ganu, G., Elhadad, N., Marian, A.: Beyond the Stars: Improving Rating Predic-
tions using Review Content. In: Proceedings of the 12th International Workshop
on the Web and Databases, WebDB 2009 (2009)

5. Hai, Z., Chang, K., Kim, J.: Implicit Feature Identification via Co-occurrence
Association Rule Mining. In: Gelbukh, A.F. (ed.) CICLing 2011, Part I. LNCS,
vol. 6608, pp. 393–404. Springer, Heidelberg (2011)

6. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: Proceedings of
10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2004), pp. 168–177. ACM (2004)

7. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion Word Expansion and Target Extraction
through Double Propagation. Computational Linguistics 37, 9–27 (2011)

8. Su, Q., Xu, X., Guo, H., Guo, Z., Wu, X., Zhang, X., Swen, B., Su, Z.: Hidden
Sentiment Association in Chinese Web Opinion Mining. In: Proceedings of the 17th
International Conference on World Wide Web (WWW 2008), pp. 959–968. ACM
(2008)

9. Wang, W., Xu, H., Wan, W.: Implicit Feature Identification via Hybrid Association
Rule Mining. Expert Systems with Applications 40, 3518–3531 (2013)

10. Zhang, Y., Zhu, W.: Extracting Implicit Features in Online Customer Reviews
for Opinion Mining. In: Proceedings of the 22nd International Conference on
World Wide Web Companion (WWW 2013 Companion), pp. 103–104. Interna-
tional World Wide Web Conferences Steering Committee (2013)

From Choreographed to Hybrid User Interface

Mashups: A Generic Transformation Approach

Alexey Tschudnowsky1, Stefan Pietschmann2, Matthias Niederhausen2,
Michael Hertel1, and Martin Gaedke1

1 Technische Universität Chemnitz, Germany
{alexey.tschudnowsky,michael.hertel,gaedke}@informatik.tu-chemnitz.de

2 T-Systems MMS, Germany
{stefan.pietschmann,matthias.niederhausen}@tu-dresden.de

Abstract. Inter-widget communication (IWC) becomes an increasingly
important topic in the field of user interface mashups. Recent research
has focused on so-called choreographed IWC approaches that enable self-
organization of the aggregated components based on their messaging ca-
pabilities. Though a manual configuration of communication paths is
not required anymore, such solutions bear several problems related to
awareness and control of the emerging message flow. This paper presents
a systematic approach to tackle these problems in the context of hybrid
user interface mashups. We show how users can be made aware of the
emerged IWC configuration and how they can adjust it to their needs.
A reference architecture for development of hybrid mashup platforms, is
derived and one implementation based on the publish-subscribe choreog-
raphy model is given. We report on the results of a first user study and
outline directions for the future research.

Keywords: inter-widget communication, user interface mashup, wid-
gets, end-user development.

1 Introduction

User interface (UI) mashups have become a popular approach for end-user de-
velopment. Based on autonomous but cooperative visual components called
widgets, they promise to significantly lower the barrier for Web application devel-
opment [2,19,10]. The development process of UI mashups usually implies three
steps: First, finding appropriate widgets for composition; Second, placement and
configuration of widgets on a common canvas; and finally, configuration of the
cooperative behaviour by means of inter-widget communication (IWC). IWC
hereby refers to the process of exchanging data between widgets and can be
used to synchronize internal states of the aggregated components.

The IWC behaviour of a mashup can be defined either explicitly by a mashup
designer (orchestrated mashups), emerge from the capabilities of the integrated
components (choreographed mashups) or be defined by a combination of both
(hybrid mashups) [22]. While orchestrated approaches aim at providing flexibil-
ity during mashup development by enabling designers to define the desired data

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 145–162, 2014.
c© Springer International Publishing Switzerland 2014

146 A. Tschudnowsky et al.

flow manually, choreographed and hybrid solutions focus on keeping the de-
velopment process lean and fast. In choreographed solutions, widgets “decide”
autonomously on how to communicate and with whom. Hybrid mashups behave
as choreographed ones, but provide additional means to restrict the emerging
communication. EDYRA [19], DashMash [3] or EzWeb [13] are some approaches
that exemplify orchestrated mashups. Using the ”wiring” metaphor, they enable
mashup designers to connect ”inputs” and ”outputs” of components and, thus,
specify data flow in a mashup. The target group of such platforms are skilled
users and hobby developers, who are experienced with the concepts of operations,
input/output parameters and data structures. OMELETTE [4], ROLE [10] and
Open Application [8] projects follow the choreographed approach. Widgets com-
municate without a prior configuration - using the publish-subscribe messaging
pattern each widget decides autonomously on which messages to send and which
messages to receive. Chrooma+ [12] is an example of a hybrid platform. While
widgets publish and subscribe for messages on their own, a mashup designer is
still able to ”isolate” one or more widgets from their environment. The target
group of choreographed and hybrid platforms are end-users, who have little to
no programming skills but are experts in their corresponding business domains.

Though choreographed and hybrid mashups are considered to be more ”end-
user-friendly”[8], they also pose some challenges with regard to awareness and
control of what is happening in a mashup [21,8]. The major awareness problem
caused by implicitly defined IWC is that users do not know which pairs of widgets
could and which actually do communicate. Users have to learn the data and
control flows as they use and explore the mashup. While in general this may
merely frustrate users, such ”exploratory” interaction can also accidentally affect
live data, causing undesired side effects. The major control problem is that,
being defined implicitly and not as first-level concepts, communication paths
cannot be blocked, modified or added directly by end-users. Possible reasons
for intervention are, e.g., untrusted widgets or unexpected or undesired state
synchronisations. A detailed analysis of these and other problems related to
awareness and control in UI mashups can be found in our prior work in [5].

This paper presents an approach for systematic development of hybrid mashup
platforms with IWC awareness and control in mind. The goal is to support end-
user development of UI mashups by combining advantages of choreographed and
orchestrated mashup platforms - self-emerging IWC with flexible visualization
and tailoring facilities. In summary, the contributions of this paper are as follows:

– A generic IWC model including corresponding visualization and tailoring
mechanisms. The model and mechanisms are used to communicate IWC
behaviour to end-users and facilitate its configuration.

– A reference architecture for hybrid mashup platforms. The architecture en-
ables systematic development of hybrid mashup platforms - both from scratch
and by extension of existing choreographed ones.

– Evaluation of the proposed concepts with end-users. Experiments with 27
end-users assessed the efficiency and usability of the proposed mechanisms.

From Choreographed to Hybrid User Interface Mashups 147

The rest of the paper is structured as follows. Section 2 gives a background on
choreographed UI mashups and presents the steps required for systematic devel-
opment of hybrid mashup platforms. Section 3 demonstrates one implementation
of the proposed architecture for the publish-subscribe choreography strategy. An
evaluation of the proposed awareness and control facilities is given in section 4.
Finally, section 6 concludes the paper and derives directions for future research.

2 From Choreographed to Hybrid UI Mashups

The section presents a systematic approach to build hybrid mashup platforms.
As the working principle of hybrid mashups is close to choreographed ones, the
idea is to leverage existing choreographed platforms and to extend them with
the missing visualization and tailoring functionality. The approach can also be
used to build hybrid platforms from scratch.

In the following, different types of choreographed mashups with regard to
utilized IWC models are presented. Afterwards, a unified communication model
for visualization and tailoring of data flow is described. Based on the model,
several awareness and control mechanisms are proposed. Finally, a reference
architecture to support these mechanisms is given.

2.1 Choreographed UI Mashups

Choreographed UI mashups do not require mashup designers to specify data
flow in a mashup. Instead, communication emerges in a self-organizing fashion
depending on the messaging capabilities of widgets. Technically, different IWC
strategies exist to enable ”self-organization” of autonomous but cooperative com-
ponents: message passing, publish-subscribe, remote procedure calls (RPC) and
shared memory[24]. Message passing considers widgets as senders and recipients
of structured application-specific data. Delivery can take place in uni-, multi- or
broadcast fashion. RPC solutions enable widgets to offer operations, which can
be invoked by others in synchronous or asynchronous way. Discovery of available
operations happens either at widget design-time or at run-time, e.g., by means
of centralized widget registries. In publish-subscribe systems, widgets emit and
receive messages on different channels, also called ”topics”. The decision, which
channels to publish or subscribe on, is met by widgets autonomously without
intervention of a mashup designer. Finally, shared memory solutions enable wid-
gets to read and to write to a common data space and, thus, autonomously
exchange data among each other. Independently of the concrete communication
model, widgets can communicate either directly or by means of the platform
middleware. Platform-mediated communication enables loose coupling of ag-
gregated components as well as additional services such as traffic monitoring
and management. As to the authors’ knowledge, all of the current UI mashups
make use of platform middleware to implement IWC. The presented strategies

148 A. Tschudnowsky et al.

offer techniques for implementation of self-organizing widget compositions. User
awareness and control are out of their scope and thus require additional engi-
neering on the side of the mashup development/execution platform.

2.2 Communication Model

The goal of the unified communication model presented here is to provide a
common data structure for visualization and control mechanisms. The assump-
tion for the definition of the model is that – from an end-users’ point of view –
widgets communicate in pairs by means of unidirectional message transfers. In
terms of a concrete choreography model, messages have different semantics, e. g.,
invocation of a remote procedure or publication/subscription to some topic. Re-
gardless of the model, the user-perceived result is that one widget receives data
from another one. These considerations build a basis for the unified communi-
cation model described by the following data structure:

The unified communication model M is a graph G = (V,E) with

– V = {v|v = (id, s)} set of vertices with identifier id and state
s ∈ {ENABLED, ISOLATED}. Each vertex corresponds to exactly one
widget in a mashup.

– E = {e|e = (v1, v2, s, t)} set of edges corresponding to possible commu-
nication paths between widgets corresponding to v1, v2 ∈ V with state
s ∈ {ENABLED,BLOCKED} and with label t.

For all of the presented choreography models it is possible to define an algo-
rithm which yields a unified communication model M . Section 3.2 presents one
possible algorithm for publish-subscribe-based choreography models.

A data flow restricted by the unified model M takes place as follows:

– A widget corresponding to the vertex v is allowed to emit or receive messages
only if the state s of the vertex v is ENABLED.

– A message m from a widget corresponding to v1 is allowed to be delivered
to a widget corresponding to v2 only if ∃e ∈ E : e = (v1, v2, ENABLED, t).

– The data flow takes place according to the utilized choreography strategy if
none of the above restrictions apply.

2.3 Visualization and Tailoring Facilities

The following visualization and tailoring facilities are proposed to make mashup
designers aware of the data flow in a UI mashup and to enable them to adjust
it:

– States s ∈ {ENABLED, ISOLATED} of vertices are visualized using bor-
ders of different color and type around the corresponding widgets.

– Potential communication paths e = (v1, v2, s, t) ∈ E are visualized using ar-
rows between widgets corresponding to v1 and v2. The arrow style indicates
the state of the communication path s ∈ {ENABLED,BLOCKED}. An-
notation t is displayed above the corresponding arrow to provide additional
information on the communication path.

From Choreographed to Hybrid User Interface Mashups 149

– Flashing icons on widget borders show which widgets corresponding to v1
and v2 are currently communicating along a communication path e = (v1, v2,
s, t) ∈ E.

– For every vertex v, visualization of its state s ∈ {ENABLED, ISOLATED}
and in-/outgoing edges e = (v, ∗) ∈ E can be turned on or off to avoid cog-
nitive overload in case of strong connectivity.

– For every vertex v, its state s ∈ {ENABLED, ISOLATED} can be toggled
using corresponding user interface controls.

– For each edge e = (v1, v2), its state s ∈ {ENABLED,BLOCKED} can be
toggled by clicking on the corresponding arrows.

2.4 Reference Architecture

The reference architecture (cf. Figure 1) acts as a blueprint for the develop-
ment of awareness- and control-enabled hybrid mashup platforms. Some of the
platform components (such as the Awareness and Control Module and the Com-
munication Model) are independent of a chosen choreography model, whereas
others (Widget and Mashup Descriptors, Model Importer, Model Exporter and
Message Broker) are choreography-model-specific.

Fig. 1. Reference architecture for implementation of hybrid UI mashups. * - imple-
mentation can be shared between platforms with different choreography strategies.

The components of the reference architecture provide resources and services
required for UI mashup development. Widget Descriptors describe IWC capa-
bilities and default configuration parameters of installed widgets. Mashup lay-
out, aggregated widget instances, user preferences and IWC configuration are

150 A. Tschudnowsky et al.

specified by the Mashup Descriptor. All artefacts are dependent on the selected
choreography model, but can be used by the Model Importer to derive a unified
Communication Model. The Awareness and Control Module displays the model
in the composition canvas according to the rules described in 2.3. It is also
responsible for updating the Communication Model upon changes triggered by
users, e. g., changing state of an edge upon clicks on the corresponding arrow.
The Message Broker is the platform’s communication middleware. Its goal is,
first, to provide messaging functionality according to the rules of the underlying
choreography approach and, second, to assure that restrictions of the unified
Communication Model such as isolated widgets or blocked communication paths
are respected. The Awareness and Control Module gets notified about activities
within the Message Broker and displays activated or blocked communication
paths to mashup users.

In the following, we present one example implementation of the reference ar-
chitecture. It reuses an existing publish-subscribe-based UI mashup platform and
extends it towards the missing awareness and control functionality. We selected
a platform based on the publish-subscribe strategy because of the wide use of
this approach in current choreography platforms.

3 Hybrid Mashups Based on Publish-Subscribe
Choreography Model

Publish-subscribe-based IWC is a part of many choreographed UI mashup plat-
forms [4,12,10]. Frameworks like OpenAjaxHub1 or AmplifyJS2 simplify the in-
tegration of the corresponding infrastructure into Web-based applications. The
underlying communication strategy is, however, always the same and can be
formalized as follows:

Let m = (W,T) be a widget mashup with

– Reference ontology T = {tn : tn = (namen, TY PEn)} being a set of concepts
and associated message types TY PEn = {valuen}

– Widget set W = {wj : wj = (idj , PUBj, SUBj)} with unique identifier
idj , set of publications PUBj = {pjl : pjl ∈ T } and set of subscriptions
SUBj = {sjk : sjk ∈ T }

Let a = (wsender, t, data) with wsender ∈ W, t ∈ wsender.PUB, data ∈
t.TY PE be a message emitted by a widget wsender. The message a is delivered
to all widgets wi ∈ W : t ∈ wi.SUB.

The following implementation of a publish-subscribe-based hybrid mashup
platform is based on two open-source projects - Apache Wookie3 and Apache
Rave4. Apache Wookie is a widget container for hosting W3C widgets5, which are

1 http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification
2 http://amplifyjs.com
3 http://wookie.apache.org
4 http://rave.apache.org
5 http://www.w3.org/TR/widgets

http://www.openajax.org/member/wiki/OpenAjax_Hub_2.0_Specification
http://amplifyjs.com
http://wookie.apache.org
http://rave.apache.org
http://www.w3.org/TR/widgets

From Choreographed to Hybrid User Interface Mashups 151

stand-aloneWeb applications packaged for distribution on the Web. Apache Rave
is a widget mashup environment, which enables aggregation of both W3C and
OpenSocial6 widgets on one canvas and provides a publish-subscribe messaging
infrastructure for communication between the widgets. In the following, those
parts of the projects are described in detail, which were extended towards the
reference architecture.

3.1 Widget Descriptors

According to the W3C specification, widget metadata contains only basic in-
formation on the packaged application such as title, description, author, license
etc. Currently there is no standard way to describe widget communication capa-
bilities. However, this is essential for the proposed awareness and control mech-
anisms (cf. section 2.2). Therefore, an extension of the W3C metadata file is
proposed to describe publications and subscriptions of widgets together with
used topics. Listing 1.1 shows the proposed extension for a fictitious Contacts
widget, which maintains a list of structured contact entries. An incoming phone
number (topic http://example.org/phoneNumber) causes the widget to filter the
list towards a contact with the passed number. If a contact is selected by user, its
complete data is published on the http://example.org/contact topic. The schema
of the involved messages is given in the oa:topics section. Both Apache Wookie
and Rave were extended to support the extended widget metadata.

Listing 1.1. Extension of the W3C metadata file

<feature name=”http://www.openajax.org/hub”
xmlns:oa=”http://www.openajax.org/hub”>

<!−− Declaration of topics −−>
<oa:topics>
<oa:topic oa:name=”http://example.org/contact”>
<oa:schema oa:schemaType=”JSON”>
<![CDATA[
{”description”:”A person”,
”type”:”object”,
”properties”:{
”name”:{”type”:”string”},
”age” :{
”type”:”integer”,
”maximum”:125 }

}}]]>
</oa:schema>

</oa:topic>

<oa:topic oa:name=”http://example.org/phoneNumber”>

6 https://developers.google.com/gadgets/docs/dev_guide?csw=1

https://developers.google.com/gadgets/docs/dev_guide?csw=1

152 A. Tschudnowsky et al.

<oa:schema oa:schemaType=”XML” oa:simpleType=”xs:string”/>
</oa:topic>

<oa:topic ...>
</oa:topics>

<!−− Declaration of publications −−>
<oa:publications>

<oa:publication oa:topicRef=”http://example.org/contact”/>
<oa:publication ...>

</oa:publications>

<!−− Declaration of subscribtions −−>
<oa:subscriptions>
<oa:subscription oa:topicRef=”http://example.org/phoneNumber”/>

<oa:subscription ...>
</oa:subscriptions>

</feature>

3.2 Model Importer

The module has been added to Apache Rave and is responsible for construction
of the Communication Model based on Widget Descriptors andMashup Descrip-
tors. The construction of the model for publish-subscribe-based UI mashups is
specified by the Algorithm 1.

Algorithm 1. Creating a Unified Communication Model for Publish-
Subscribe-based UI Mashups

Input : Publish-subscribe-based UI mashup m = (W,T) as defined above
Output: Communication model G = (V,E) as defined in section 2.2
1. Set V = ∅, E = ∅
2. For each widget wi ∈ W , create a new vertex vi and set V = V ∪ vi
3. For each pair of widgets (wi, wj) and for each pik ∈ wi.PUB : pik ∈ wj .SUB,

create a new edge eik = (vi, vj , ENABLED, pik) and set E = E ∪ eik
4. Return G = (V,E)

The resulting communication model reflects potential message flows in a
publish-subscribe-based UI mashup. By default, all communication paths and
widgets are in the ENABLED state.

From Choreographed to Hybrid User Interface Mashups 153

3.3 Awareness and Control Module

The Awareness and Control Module weaves the Communication Model into the
composition canvas and updates it, based on user actions such as widget isola-
tions or path blockades. It also highlights communicating partners according to
notifications from the Message Broker. Visualization of the model takes place
as proposed in Section 2.3 and is implemented using the jsPlumb7 JavaScript
drawing library (cf. Figure 2).

Fig. 2. Awareness and Control Mechanisms integrated into Apache Rave

3.4 Message Broker

The Message Broker is an existing component in the Apache Rave platform
and is implemented using the OpenAjaxHub framework. It is responsible for
routing messages between widgets according to the publish-subscribe strategy as
specified above. The component has been extended to take the Communication
Model into account while routing messages. The routing algorithm was refined
as follows: a message a = (wsender, t, data) from widget wsender is allowed to
be delivered to ∀wi ∈ W : t ∈ wi.SUB if and only if vwsender.s = ENABLED∧
vwi .s = ENABLED ∧ e.s = ENABLED : e = (vwsender , vwi).

7 http://jsplumbtoolkit.com/

154 A. Tschudnowsky et al.

3.5 Model Exporter

The Model Exporter component enables serialization of the current communi-
cation model and its integration into the platform-specific Mashup Descriptor.
Apache Rave makes use of the OMDL8 format to describe the configuration
of UI mashups. However, the current specification doesn’t provide any means
to include IWC configuration into the mashup specification. Thus, we propose
to extend OMDL documents with missing information on the Communication
Model. An example of an extended Mashup Descriptor in OMDL format is given
in Listing 1.2. The goal of the described mashup is to provide aggregated infor-
mation on emergency incidents during natural disasters such as in case of flood.
The mashup aggregates four widgets and defines IWC restrictions for the cur-
rent composition. One of the widgets (flood graph) is completely isolated. Such
configuration is useful to fix view of a widget and to avoid refreshes caused by
changes others. Communication between the map widget and the contacts wid-
get is forbidden only for the topic http://example.org/phoneNumber. It results
in the behavior, that no marker selection in the map will refresh the contacts
widget, while activities in other widgets may do.

Listing 1.2. OMDL mashup description and proposed extension

<workspace xmlns=”http://omdl.org/”
xmlns:oa=”http://www.openajax.org/hub”>

<identifier>http://example.org/mashup/379</identifier>
<title>Dresden Flood</title>
<description></description>
<creator>Alexey</creator>
<date>2013−06−18T14:39:58+0200</date>
<layout>THREE COLUMNS</layout>

<app id=”http://example.org/incidentMap−1”>
<link href=”http://example.org/s/incidentsMap.wgt”
type=”application/widget” rel=”source”/>
<position>LEFT TOP</position>

</app>

<app id=”http://example.org/contacts−1”>
<link href=”http://example.org/s/contacts.wgt”
type=”application/widget” rel=”source”/>
<position>LEFT MIDDLE</position>

</app>

<app id=”http://example.org/floodGraph−1”>
<link href=”http://example.org/s/floodGraph.wgt”
type=”application/widget” rel=”source”/>

8 http://omdl.org

From Choreographed to Hybrid User Interface Mashups 155

<position>RIGHT TOP</position>
</app>

<app id=”http://example.org/floodGraph−2”>
<link href=”http://example.org/s/floodGraph.wgt”
type=”application/widget” rel=”source”/>
<position>RIGHT MIDDLE</position>

</app>

<!−− Proposed extension specifying mashup IWC behaviour −−>

<!−− Isolate a widget completely −−>
<oa:pubsub−restriction
oa:source=”∗”
oa:target=”http://example.org/floodGraph−1”
oa:topicRef=”∗”/>

<oa:pubsub−restriction
oa:source=”http://example.org/floodGraph−1”
oa:target=”∗”
oa:topicRef=”∗”/>

<!−− Forbid two widgets to communicate over the specified topic −−>
<oa:pubsub−restriction
oa:source=”http://example.org/incidentMap−1”
oa:target=”http://example.org/contacts−1”
oa:topicRef=”http://example.org/phoneNumber”/>

</workspace>

This section presented an implementation of the reference architecture for the
publish-subscribe choreography strategy. Application of the approach to other
strategies requires to implement strategy-specific Model Importer, Model Ex-
porter and Message Broker components. The Awareness and Control Module
and Communication Model, however, can be reused across different platforms
with minor adaptations.

4 Evaluation

To evaluate the presented approach in practice, we explored the following three
hypotheses:

1. Users solve tasks that require IWC faster if awareness and control mecha-
nisms are used. The intent was to check if the proposed mechanisms increase
efficiency of end-users while working with UI mashups. The hypothesis was
considered to be approved if the time needed to complete a given task with
activated awareness and control facilities was lower than without them.

156 A. Tschudnowsky et al.

2. Users find out easier, which widgets are connected, if IWC is visualized. The
intent was to check if the awareness mechanisms help users to spot, under-
stand, and make use of the connections between widgets. The hypothesis
was considered to be approved if average assessment on the ease of finding
connections between widgets was higher with awareness facilities than with-
out. The hypothesis was checked with two different types of widgets being
employed: one group had mostly static content, while the other included an-
imated changes. The rationale was that animated changes in widgets them-
selves might be sufficient on their own to identify communication partners,
thereby making additional awareness mechanisms unnecessary.

3. Users find the proposed control mechanisms easy to use. The intent was to
check if users felt comfortable with the proposed tailoring facilities. The
approval condition was that more than 60% of participants agree or strongly
agree that control facilities are easy to use.

To test the introduced hypotheses we applied the laboratory experiment
methodology. Overall, 27 participants took part in the user study. Almost 90%
of participants had no programming skills but were experts in the domain of
marketing and telecommunication. The majority of users (74%) had an under-
standing of the term ”widget”, which was mostly related to mobile devices and
the ”Windows Vista Sidebar”. Only 4 out of 27 users had ever configured a por-
tal UI (mostly intranet portal) on their own, e. g., by repositioning of widgets
and changing the colour scheme.

For each of the 27 participants, the evaluation procedure took about one hour
and involved the following steps: Before the task execution, participants filled in a
pre-evaluation questionnaire to judge their skill levels. Based on the results, they
were evenly distributed over test and control groups. After that, users were given
an introduction on the widget mashup platform, its purpose, concepts (mashups,
widgets, etc.) and core functionalities. Following the introduction, users had the
chance to explore and try out different aspects of the portal as they liked. After
then, participants were asked to complete three tasks targeting different aspects
of the system. The completion time was measured for each group and for each
task. In a standardized post-questionnaire, users could express their subjective
opinions on the introduced facilities. The study used a two-tailed t test, with a
significance level of 95

Awareness Facilities. In the first experiment, users were asked to play a game
on a dedicated mashup, called ”Easter Egg Hunt” (cf. Figure 3, left). The goal of
the game was to find the Easter egg in each of the nine visible widgets. Only one
egg was visible at a time. Upon clicking it, the egg would disappear and appear
in another widget. Thus, users quickly had to find the corresponding widget and
the egg inside. For the test group, visualization of communicating widget pairs
was enabled, so that outgoing and incoming data were displayed in the widget
header. Thereby, the data flow could be perceived by users and, ideally, they
could deduce where to look next. The control group accomplished the task with-
out IWC visualization. The experiment was conducted in two different setups:

From Choreographed to Hybrid User Interface Mashups 157

Fig. 3. Evaluation mashups for testing end-user efficiency with awareness (left) and
control (right) facilities

for animated content (the egg would “fall” into place) and static content (the egg
would just appear). The time required for completion of the task was measured.

Control Facilities. In the second experiment, participants had to solve a com-
parison task using two widgets (cf. Figure 3, right). One widget gave an overview
of flat offers in a selected city and the other one showed details of the offer. The
task was to find the cheapest flat in one city and then a comparable one in an-
other city. While the control group used the default setting with one ”overview”
and one ”detail” widget, the test group was provided with two ”detail” widgets,
one of which they could isolate from communication to simplify the comparison.
Once isolation was enabled for a detail widget, it would “freeze”, so that new
details could be loaded in the second widget and easily be compared to the first
one. The time required for completion of the task was measured.

4.1 Results

Time measurements and evaluation of the post-questionnaire results yielded the
following findings:

Hypotheses 1: End-User Efficiency. The results indicate a possible advan-
tage of IWC visualization for widgets with mostly static content, i. e., whenever
changes due to IWC are rather subtle as opposed to animations (cf. Figure 4,
left). However, this difference is not statistically significant. When changes were
animated by widgets, the average task completion times in test and control
groups were roughly the same. Statistically, the test group was 18% slower than
the control group (95% confidence), revealing a possible distraction of users due
to the visualization.

This can be partly attributed to the overlapping of indicator flashes for fast
users. The indicators were still flashing from their last interaction, when data was
published by a new widget. This confused several users, who expected updated
data, i. e., the egg, to appear in those widgets. The hypothesis for the awareness
mechanisms is, thus, considered to be not approved.

158 A. Tschudnowsky et al.

Fig. 4. Impact of awareness (left) and control (right) facilities on end-user efficiency

The control mechanisms for IWC, namely the possibility to isolate widgets,
gave users a slight benefit when solving the flat comparison task (cf. Figure 4,
right). As the time advantage is not significant, this hypothesis is also considered
to be not approved.

Hypotheses 2: Usability of the Awareness Mechanisms. According to
user ratings (cf. Figure 5, left), IWC visualization does not help users in subtly
suggesting “where to look next” and thus understanding which widget are com-
municating. For users in the test group, it made no difference whether changes
in widgets were animated or not. In contrast, users from the control group ob-
viously found it easier to “follow the egg” if the changes were animated, since
those were easier to spot in their peripheral field of vision. Thus, for mostly static
widgets IWC visualization seems to compensate the missing IWC indicator and
to facilitate the recognition of communicating parties.

In the light of the above results, the hypothesis is considered to be approved
for widgets with mostly static content and not approved for widgets with ani-
mated changes. Based on this fact, we can derive a guideline for widget developers
to animate changes triggered by IWC in order to improve usability of the future
mashups.

Fig. 5. Usability of the proposed awareness (left) and control (right) facilities

From Choreographed to Hybrid User Interface Mashups 159

Hypotheses 3: Usability of the Control Mechanisms. IWC control mecha-
nisms got very positive response. 64% of users found them easy to use (cf. Figure
5, right). The controls for this feature, namely the integration with the widget
menu, were also rated positively. The hypothesis is considered to be approved.

In the post-questionnaire, the vast majority of the participants described the
visualization and control facilities as helpful and easy to use. Users recommended
making the IWC visualization optional and as such less subtle. One suggestion
was to enable/disable visualization per widget by clicking the indicators directly.
Furthermore, they suggested using a more noticeable colour scheme for indicating
communication partners. It was proposed to investigate if a distinction between
incoming/outgoing data is necessary to be visualized, or rather one indicator
for taking part in data exchange is enough, e. g., a cogwheel. Finally, some par-
ticipants suggested IWC controls, e. g., “Isolation”/”Pinning”, to be accessible
from the widget header bar.

5 Related Work

The need for appropriate awareness and control facilities in choreographed user
interface mashups has been recognized by a number of research projects and
initiatives [8,21]. As for authors’ knowledge, the only hybrid mashup platform
proposed at the moment is Chrooma+ [12], whereas only spare configuration
of widget IWC behaviour is possible. In [21], Wilson proposes several ideas to
tackle awareness and control challenges in UI mashups. Our work continues the
research on this field and proposes actual solutions as well as corresponding
architectural components.

The problem of visualizing and controlling interactions between autonomous
entities is also tackled in other research areas. For example, in the field of self-
organizing multi-agent systems, much research has been performed on the visu-
alization of agent interactions. Typical strategies are, e.g., either to draw a graph
of interactions in a whole system [1,6] or to highlight relationships between single
agents and their environment.[14,17,15]. In [20], the authors propose to draw a
causality graph to visualize message exchange in a multi-agent system. Though
awareness of relationships in a multi-agent system can be increased with their
approach, an a priori simulation and an event log are needed for the system to
work. For mashups that employ cost-causing widgets (e.g., with telecommunica-
tion functionality), an a priori simulation might be undesirable.

An approach similar to the presented one is given in [16]. The authors propose
a set of tools with different perspectives for monitoring and debugging of multi-
agent systems. Relationships between agents and possible interactions are shown
in the so-called ”society tool”. A requirement for the tool is that agents expose
their partial knowledge about the outer world and communication capabilities
to the tool, which then visualizes them in a graph fashion. Several controlling
tools enable modification of agent states and configuration of their reactions
on incoming messages. Though fine-grained exploration and adaptation of the
system is possible, the target group of the approach are skilled developers.

160 A. Tschudnowsky et al.

In the field of natural programming environments, a common practice is to
use natural language and question-answering games to explore a system. The
WhyLine tool [11] applies natural language to enable unskilled developers to
debug their algorithms. Using menus and pictograms of objects involved into an
algorithm, developers can construct ”why did” and ”why did not” questions in
order to explore system behaviour. A user study revealed that the participants
were more efficient with this system than with traditional debugging tools. The
approach is applied for explanation of static information and recorded event log.
However, it doesn’t foresee any means for visualization of active data transfer as
it is required for IWC scenarios.

Similar research on control facilities in the context of loosely coupled com-
municating components can be found among visual programming tools. Lego-
Mindstorms products9 based on LabVIEW 10 enable unskilled developers to
design their algorithms in a graphical way. Different boxes representing robot
functionalities like move, rotate or stop can be connected with each other and
controlled using loops or branches. The tool applies the ”wiring” metaphor to
connect inputs and outputs of the components, which makes the approach flexi-
ble and extensible. Many mashup platforms have adopted the ”wiring” technique
to enable their users to define data flow in compositions [9,23] and have shown
its suitability in the context of end-user development [7]. However, the direct
adoption of the technique to choreographed UI mashups is impossible due to
the self-organizing nature of the aggregated widgets. The awareness and control
facilities in this paper are inspired by the ”wiring” approach and apply it to
enable visualization and tailoring of the unified communication model.

6 Conclusions and Outlook

Missing understanding of inter-widget dependencies and lack of IWC control
facilities can significantly impact usability and user experience within chore-
ographed UI mashups. This paper presented an approach to systematically de-
velop hybrid mashups with integrated IWC awareness and control mechanisms.
The resulting solutions differ from the current state of the art in that they both
enable self-emerging (”automatic” from end-users’ point of view) IWC and keep
users in control of how widgets communicate at the same time. The proposed
reference architecture can be used as a guidance to build UI mashup platforms
either from scratch or by extension of existing choreographed ones. One imple-
mentation of the reference architecture has been demonstrated in the context of
an existing UI mashup platform based on publish-subscribe IWC strategy. The
implementation is easily portable to other communication models such as RPC
or shared memory.

A user study with 27 participants confirmed usability of the proposed con-
trol mechanisms and helped to discover shortcomings in the awareness ones.

9 http://education.lego.com/en-us/preschool-and-school/

secondary/mindstorms-education-ev3
10 http://www.ni.com/labview

http://education.lego.com/en-us/preschool-and-school/secondary/mindstorms-education-ev3
http://education.lego.com/en-us/preschool-and-school/secondary/mindstorms-education-ev3
http://www.ni.com/labview

From Choreographed to Hybrid User Interface Mashups 161

The drawn consequence for the future work is therefore to explore alternative
non-ambiguous visualization techniques (e. g., flashing arrows instead of blinking
icons) and to make the control mechanisms more prominent (e. g., by making
the isolation icons accessible from the composition canvas). Finally, explanation
of data being transferred between widgets has not been tackled sufficiently so
far. The challenge here is to present the technical data (such as message syntax
and semantic) in end-user-friendly way. Use of dedicated widget annotations or
semantically enriched messages (as proposed in [18]) should be explored in the
future.

Online Demonstration. A demonstration of the proposed awareness and con-
trol facilities integrated into Apache Rave and Apache Wookie projects is avail-
able at http://vsr.cs.tu-chemnitz.de/demo/hybrid-ui-mashups.

Acknowledgement. This work was supported by the European Commission
(project OMELETTE, contract 257635). The authors thank Vadim Chepegin
and TIE Kinetix b.v. for their contributions to the user study.

References

1. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A White Paper. EXP in
Search of Innovation 3(3), 6–19 (2003)

2. Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M.: Enabling end user de-
velopment through mashups: Requirements, abstractions and innovation toolkits.
In: Piccinno, A. (ed.) IS-EUD 2011. LNCS, vol. 6654, pp. 9–24. Springer, Heidel-
berg (2011)

3. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: DashMash: A mashup environment for end user development. In: Auer, S.,
Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166.
Springer, Heidelberg (2011)

4. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Ignacio, J.: End-User-
Oriented Telco Mashups: The OMELETTE Approach. In: WWW 2012 Companion
Volume, pp. 235–238 (2012)

5. Chudnovskyy, O., Pietschmann, S., Niederhausen, M., Chepegin, V., Griffiths, D.,
Gaedke, M.: Awareness and control for inter-widget communication: Challenges
and solutions. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977,
pp. 114–122. Springer, Heidelberg (2013)

6. Collis, J.C., Ndumu, D.T., Nwana, H.S., Lee, L.C.: The zeus agent building tool-
kit. BT Technology Journal 16(3), 60–68 (1998)

7. Imran, M., Soi, S., Kling, F., Daniel, F., Casati, F., Marchese, M.: On the sys-
tematic development of domain-specific mashup tools for end users. In: Brambilla,
M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 291–298.
Springer, Heidelberg (2012)

8. Isaksson, E., Palmer, M.: Usability and inter-widget communication in PLEs. In:
Proceedings of the 3rd Workshop on Mashup Personal Learning Environments
(2010)

9. JackBe. Presto Wires, http://www.jackbe.com/products/wires.php

http://vsr.cs.tu-chemnitz.de/demo/hybrid-ui-mashups
http://www.jackbe.com/products/wires.php

162 A. Tschudnowsky et al.

10. Kirschenmann, U., Scheffel, M., Friedrich, M., Niemann, K., Wolpers, M.: Demands
of modern pLEs and the ROLE approach. In: Wolpers, M., Kirschner, P.A., Schef-
fel, M., Lindstaedt, S., Dimitrova, V. (eds.) EC-TEL 2010. LNCS, vol. 6383, pp.
167–182. Springer, Heidelberg (2010)

11. Ko, A.J., Myers, B.A.: Designing the whyline: a debugging interface for asking
questions about program behavior. In: Proceedings of the SIGCHI Conf. on Human
Factors in Computing Systems, vol. 6, pp. 151–158 (2004)

12. Krug, M., Wiedemann, F., Gaedke, M.: Enhancing media enrichment by semantic
extraction. In: Proceedings of the 23nd International Conference on World Wide
Web Companion, WWW 2014 Companion (to appear, 2014)

13. Lizcano, D., Soriano, J., Reyes, M., Hierro, J.J.: Ezweb/fast: Reporting on a suc-
cessful mashup-based solution for developing and deploying composite applications
in the upcoming ubiquitous soa. In: Proceedings of the 2nd Intl. Conf. on Mobile
Ubiquitous Computing Systems, Services and Technologies, pp. 488–495. IEEE
(September 2008)

14. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent
simulation environment. Simulation 81(7), 517–527 (2005)

15. Minar, N., Burkhart, R., Langton, C.: The swarm simulation system: A toolkit for
building multi-agent simulations. Technical report (1996)

16. Ndumu, D.T., Nwana, H.S., Lee, L.C., Collis, J.C.: Visualising and debugging
distributed multi-agent systems. In: Proceedings of the Third Annual Conference
on Autonomous Agents, AGENTS 1999, pp. 326–333. ACM, New York (1999)

17. North, M.J., Howe, T.R., Collier, N.T., Vos, J.R.: The Repast Simphony run-
time system. In: Proceedings of the Agent 2005 Conference on Generative Social
Processes, Models, and Mechanisms, ANL/DIS-06-1, co-sponsored by Argonne Na-
tional Laboratory and The University of Chicago (2005)

18. Radeck, C., Blichmann, G., Meißner, K.: CapView – functionality-aware visual
mashup development for non-programmers. In: Daniel, F., Dolog, P., Li, Q. (eds.)
ICWE 2013. LNCS, vol. 7977, pp. 140–155. Springer, Heidelberg (2013)

19. Rümpel, A., Radeck, C., Blichmann, G., Lorz, A., Meißner, K.: Towards do-it-
yourself development of composite web applications. In: Proceedings of Interna-
tional Conference on Internet Technologies & Society 2011, pp. 330–332 (2011)

20. Vigueras, G., Botia, J.A.: Tracking causality by visualization of multi-agent inter-
actions using causality graphs. In: Dastani, M., El Fallah Seghrouchni, A., Ricci, A.,
Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908, pp. 190–204. Springer,
Heidelberg (2008)

21. Wilson, S.: Design challenges for user-interface mashups user control and usability
in inter-widget communications (2012)

22. Wilson, S., Daniel, F., Jugel, U., Soi, S.: Orchestrated user interface mashups using
W3C widgets. In: Harth, A., Koch, N. (eds.) ICWE 2011. LNCS, vol. 7059, pp.
49–61. Springer, Heidelberg (2012)

23. Yahoo! Yahoo! Pipes, http://pipes.yahoo.com/
24. Zuzak, I., Ivankovic, M., Budiselic, I.: A classification framework for web browser

cross-context communication. CoRR, abs/1108.4770 (2011)

http://pipes.yahoo.com/

Identifying Patterns in Eyetracking Scanpaths in Terms
of Visual Elements of Web Pages

Sukru Eraslan1,2, Yeliz Yesilada1, and Simon Harper2

1 Middle East Technical University, Northern Cyprus Campus, Guzelyurt, Mersin 10, Turkey
{seraslan,yyeliz}@metu.edu.tr

2 University of Manchester, School of Computer Science, United Kingdom
sukru.eraslan@postgrad.manchester.ac.uk,

simon.harper@manchester.ac.uk

Abstract. Web pages are typically decorated with different kinds of visual ele-
ments that help sighted people complete their tasks. Unfortunately, this is not the
case for people accessing web pages in constraint environments such as visually
disabled or small screen device users. In our previous work, we show that tracking
the eye movements of sighted users provide good understanding of how people
use these visual elements. We also show that people’s experience in constraint
environments can be improved by reengineering web pages by using these visual
elements. However, in order to reengineer web pages based on eyetracking, we
first need to aggregate, analyse and understand how a group of people’s eyetrack-
ing data can be combined to create a common scanpath (namely, eye movement
sequence) in terms of visual elements. This paper presents an algorithm that aims
to achieve this. This algorithm was developed iteratively and experimentally eval-
uated with an eyetracking study. This study shows that the proposed algorithm is
able to identify patterns in eyetracking scanpaths and it is fairly scalable. This
study also shows that this algorithm can be improved by considering different
techniques for pre-processing the data, by addressing the drawbacks of using
the hierarchical structure and by taking into account the underlying cognitive
processes.

Keywords: eyetracking, scanpaths, commonality, transcoding, reengineering.

1 Introduction

Web pages mainly consist of different kinds of visual elements, such as menu, logo and
hyperlinks. These visual elements help sighted people complete their tasks, but unfortu-
nately small screen device users and disabled users cannot benefit from these elements.
When people access web pages with small screen devices, they typically experience
many difficulties [1]. For example, on small screen devices, only some parts of web
pages are accessible or the complete web page is available with very small text size.
Hence, they may need to scroll or zoom a lot which can be annoying. Moreover, they
may need more time and effort to find their targets. Similarly, web experience can be
challenging for visually disabled users who typically use screen readers to access the
web [2]. Since screen readers follow the source code of web pages, visually disabled
users have to listen to unnecessary clutter to get to the main content [3].

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 163–180, 2014.
c© Springer International Publishing Switzerland 2014

164 S. Eraslan, Y. Yesilada, and S. Harper

Fig. 1. A scanpath on a segmented web page

In our previous work, we show that reengineering web pages by using the visual
elements can improve the user experience in constraint environments [4]. However,
identifying visual elements and their role is the key for such reengineering process. To
automatically process a web page and identify these elements, in our previous work
we have extended and improved the Vision Based Page Segmentation (VIPS) algo-
rithm [5,6]. This extended algorithm automatically discovers visual elements and relates
them to the underlying source code. It allows direct access to these visual elements via
XPath. However, this algorithm does not provide any information on how these visual
elements are used. In our previous work, we also show that tracking the eye movements
of sighted users provide good understanding of how they are used [2]. Eyes make quick
movements which are called saccades. Between saccades, eyes make fixations where
they become relatively stationary. Both fixations and saccades create scanpaths which
are eye movement sequences [7]. Fig. 1 shows how a web page is segmented and illus-
trates a scanpath on a segmented web page. The circles represent fixations where the
larger circles represent longer fixations. The numbers in the circles show the sequence.
Also, the lines between circles are saccades.

In order to be able to use eyetracking data for reengineering web pages, this pa-
per presents an algorithm called “eMine scanpath algorithm”1. This algorithm analyses
and aggregates a group of people’s eyetracking data to create a common scanpath in
terms of visual elements of web pages (Section 3). Web pages are first automatically
segmented into visual elements with the extended and improved version of the VIPS
algorithm [6,5]. Eyetracking data is then exported and related to these visual elements.
This creates individual scanpaths of users in terms of visual elements. These individual

1 http://emine.ncc.metu.edu.tr/

http://emine.ncc.metu.edu.tr/

Identifying Patterns in Eyetracking Scanpaths 165

scanpaths are then used by eMine scanpath algorithm to create a common scanpath. eM-
ine scanpath algorithm was iteratively developed with the existing eyetracking data and
our preliminary evaluation of this algorithm with the existing data was promising [8].
But in order to experientially evaluate validity and scalability of this algorithm, we con-
ducted a new eyetracking study with 40 participants (Section 4). This study illustrates
that eMine scanpath algorithm is able to identify a common scanpath in terms of visual
elements of web pages and it is fairly scalable (Section 5 and Section 6). It has also
revealed some weaknesses which can be improved in the future (Section 7).

2 Related Work

Eyetracking scanpaths have been analysed with different methods for different
purposes. These methods typically use string representations of scanpaths which are
generated using the sequence of Areas of Interest (AoIs) [9]. For example, the string
representation of the scanpath in Fig. 1 is generated as CCDBEBAA. Different ways
can be used to generate these AoIs such as using a grid layout directly [9] or the fix-
ations’ distribution over web pages [10]. However, these existing approaches typically
treat a web page as an image to identify these AoIs which means these scanpaths cannot
be used to process web pages. In order to address this, our previous work automatically
segments a web page and each segment becomes an AoI [5,6]. This allows relating AoIs
with the underlying source code which is important for being able to process web pages
by using the eyetracking data.

The Levenshtein Distance (String-Edit) algorithm has commonly been used to anal-
yse scanpaths [11,9]. This algorithm calculates the dissimilarity between the string rep-
resentations of two scanpaths by transforming one to another with a minimum number
of operations (insertion, deletion and substitution). For example, the dissimilarity be-
tween XYCZ and XYSZ is calculated as 1 (one) by the String-Edit algorithm because
the substitution C with S is sufficient to transform one to another. Although the String-
edit algorithm can be used to categorise scanpaths [12] and investigate differences be-
tween the behaviours of people on web pages [11], the algorithm itself is not able to
identify a common scanpath for multiple scanpaths.

Transition Matrix is one of the methods which use multiple scanpaths to create a
matrix [12]. This matrix allows identifying the possible next and previous AoI of the
particular AoI. However, when this method is considered for identifying a common
scanpath, some considerable problems arise, such as What is the start and end point of
the common scanpath? Which probabilities should be considered?

To address these problems, some other methods can be considered. For example, the
Shortest Common Supersequence method has been mentioned in literature to identify
a common scanpath for multiple people but it has considerable weaknesses [13]. For
example, it identifies XABCDEZ as a common scanpath for the individual scanpaths
XAT, XBZ, XCZ, XDZ and XEZ. As can be easily recognised, the common scanpath
is not supported by the individual scanpaths, for instance, the common scanpath has E
which is included by only one individual scanpath (XEZ). Furthermore, the common
scanpath is quite longer compared to the individual scanpaths.

166 S. Eraslan, Y. Yesilada, and S. Harper

Some methods, such as T-Pattern [14] and eyePatterns’s Discover Patterns [12], have
been proposed to detect subpatterns in eyetracking scanpaths. However, eyePatterns’s
Discover Patterns method [12] is not tolerant of extra items in scanpaths. For instance,
XYZ can be detected as a subpattern for XYZ and WXYZ but it cannot be detected
for XYZ and WXUYZ because of the extra item U. This shows that this method is
reductionist which means it is likely to produce unacceptable short scanpaths.

The Multiple Sequence Alignment method was proposed to identify a common scan-
path but this method was not validated [15]. Moreover, the Dotplots-based algorithm
was proposed to identify a common scanpath for multiple people [16]. This algorithm
creates a hierarchical structure by combining a pair of scanpaths with the Dotplots al-
gorithm. The individual scanpaths are located at leafs whereas the common scanpath
is located at the root. Some statistical methods have been applied to address the reduc-
tionist approach of the Dotplots algorithm [16].

We are interested in common patterns in eyetracking data instead of individual pat-
terns to be able to reengineer web pages. However, as can be seen above, there is not
much research in identifying common scanpaths and the existing ones are likely to
produce unacceptable short common scanpaths. In this paper, we present our eMine
scanpath algorithm to address the limitations of these existing approaches, especially
the problem of being reductionist.

3 eMine Scanpath Algorithm

Algorithm 1 shows our proposed eMine scanpath algorithm [8] which takes a list of
scanpaths and returns a scanpath which is common in all the given scanpaths. If there
is only one scanpath, it returns that one as the common scanpath, if there is more than
one scanpath, then it tries to find the most similar two scanpaths in the list by using
the String-edit algorithm [11]. It then removes these two scanpaths from the list of
scanpaths and introduces their common scanpath produced by the Longest Common
Subsequence method [17] to the list of scanpaths. This continues until there is only one
scanpath.

Algorithm 1. Find common scanpath
Input: Scanpath List
Output: Scanpath
1: if the size of Scanpath List is equal to 1 then
2: return the scanpath in Scanpath List
3: end if
4: while the size of Scanpath List is not equal to 1 do
5: Find the two most similar scanpaths in Scanpath List with the String-edit algorithm
6: Find the common scanpath by using the Longest Common Subsequence method
7: Remove the similar scanpaths from the Scanpath List
8: Add the common scanpath to the Scanpath List
9: end while

10: return the scanpath in Scanpath List

Identifying Patterns in Eyetracking Scanpaths 167

Fig. 2. System architecture where ‘...’ shows the input parts, ‘ ’ represents intermediate parts,
‘ ’ illustrates the functional parts and ‘=’ is used for the output part

3.1 System Architecture and Implementation

eMine scanpath algorithm was integrated with the extended and improved version of
the VIPS algorithm [6,5]. Fig. 2 illustrates the system architecture which consists of
the following parts: two input parts (web page and eyetracking data), three functional
parts (web page AoI identification, an application to create string representations of
scanpaths, eMine scanpath algorithm), two intermediate parts which are created as an
output of one functional part and used as an input for another functional part (web page
AoIs, string representations of scanpaths) and one output part (common scanpath). The
functional parts are explained below.

Web Page AoI Identification. A web page is used as an input for the web page AoI
identification part. This part creates AoIs automatically by using the extended and
improved version of the VIPS algorithm [6,5]. Even though, the extended VIPS
was used, it would be easily replaced by an alternative method of AoI identification
approach. These AoIs represent visual elements of web pages.

An Application to Create String Representations of Scanpaths. The automatically
generated web page AoIs and eyetracking data, provided by eyetracking software,
are then used by an application to create string representations of scanpaths.

eMine Scanpath Algorithm. Once the string representations are created, our scanpath
algorithm is applied to them to produce a common scanpath in terms of AoIs.

eMine scanpath algorithm2 was implemented on the Accessibility Tools Framework
(ACTF)3 which is an open-source Eclipse project.

2 http://emine.ncc.metu.edu.tr/software.html
3 http://www.eclipse.org/actf/

http://emine.ncc.metu.edu.tr/software.html
http://www.eclipse.org/actf/

168 S. Eraslan, Y. Yesilada, and S. Harper

4 An Eyetracking Study

In order to experimentally evaluate validity and scalability of eMine scanpath algorithm,
we conducted an eyetracking study. This study aims to investigate the following two
research questions:

1. Validity: The aim is to investigate whether or not eMine scanpath algorithm can
successfully identify common scanpaths in terms of visual elements of web pages.
Thus, we ask “Can eMine algorithm identify common scanpaths in terms of visual
elements of web pages?”.

2. Scalability: We would like to investigate whether or not eMine scanpath algorithm
works well for different numbers of participants on different web pages. Hence,
the research question here is “How does the number of individual scanpaths affect
common scanpaths?”.

4.1 Equipment

Participants sat in front of a 17” monitor with a built-in TOBII T60 eye tracker with
screen resolution 1280 x 1024. The web pages were on a HP ELiteBook 8530p laptop
and these web pages were shown to the participants using the eye tracker’s screen.
Tobii Studio eye gaze analysis software was used to record the data. Eyetracking data
was also stored on that laptop, too. The collected eyetracking data were analysed on a
17” monitor with the screen resolution 1280 x 1024.

4.2 Materials

Six web pages were randomly selected from a group of pages that were used in our pre-
vious study. That study focused on evaluating the extended and improved version of the
VIPS algorithm and to have continuity in our studies we used same set of pages [6,5].
These web pages were categorised based on their complexity, which were low, medium
and high [6,5,18]. Two web pages were chosen randomly from each level of com-
plexity for our study. These pages with their complexity levels are as follow: Apple
(Low), Babylon (Low), AVG (Medium), Yahoo (Medium), Godaddy (High) and BBC
(High). Since the 5th segmentation granularity level was found as the most successful
level with approximately 74% user satisfaction, we decided to use the 5th level for our
experiments [6,5]. The segmented web pages can be seen in Fig. 3, 4, 5, 6, 7 and 8.

4.3 Procedure

This eyetracking study consists of the following three parts.
Introduction: The participants read the information sheet and signed the consent

form. Next, they filled in the short questionnaire which was for the purpose of col-
lecting basic demographic information of participants, which are gender, age groups
and education level. The participants were also asked to rank their web page usage for
the six web pages with 1 (Daily), 2 (Weekly), 3 (Monthly), 4 (Less than once a month)
or 5 (Never).

Identifying Patterns in Eyetracking Scanpaths 169

Main Part: The participants sat in front of the eye tracker which calibrated to their
gaze. They then viewed all of the six web pages twice, one view for searching (maxi-
mum 120 seconds) and one view for browsing in a random order. For browsing tasks,
the participants were given 30 seconds as used in other studies [19]. The searching and
browsing tasks are shown in Table 1. The researcher was responsible to check if the
participants complete the tasks successfully and take notes if necessary.

Conclusion: At the end, the participants were asked to redraw three web pages from
three different complexity levels.

4.4 User Tasks

User tasks are categorised into two groups for this study: searching and browsing. In
the literature, many studies were conducted to categorise user tasks on the web [20].
G. Marchionini Search Activities Model is one of the most popular models in this
field [20]. It consists of three groups which are lookup, learn and investigate [20]. Our
searching category is related to fact finding which is associated with the lookup group
whereas our browsing category is related to serendipitous browsing which is associated
with the investigation group. The tasks which are defined for the six web pages are
listed in Table 1.

We designed the system to ensure that half of the participants complete searching
tasks firstly and then complete browsing tasks. Other half completed browsing task
firstly and then completed searching tasks. The reason is to prevent familiarity effects
on eye movements which can be caused by the user tasks.

4.5 Participants

The majority of the participants comprised students, along with some academic and ad-
ministrative staff at Middle East Technical University Northern Cyprus Campus and the
University of Manchester. Twenty male and twenty female volunteers participated. One
male participant changed his body position during the study, so the eye tracker could
not record his eye movements. Another male participant had no successful eye cali-
bration. Unfortunately, these two participants were excluded from the study. Therefore,
the eyetracking data of 18 males and 20 females were used to evaluate eMine scanpath
algorithm.

All of the participants use the web daily. Most of the participants (18 participants) are
aged between 18 and 24 years old, then 25-34 group (14 participants) and 35-54 group
(6 participants). Moreover, 14 participants completed their high/secondary schools,
6 participants have a bachelor’s degree, 9 participants have a master’s degree and 9
participants completed their doctorate degrees.

5 Results

In this section, we present the major findings of this study in terms of the two research
questions presented in Section 4.

170 S. Eraslan, Y. Yesilada, and S. Harper

Table 1. Tasks used in the eyetracking study

Apple
Browsing 1. Can you scan the web page if you find something interesting for you?

Searching
1. Can you locate a link which allows watching the TV ads relating to iPad mini?
2. Can you locate a link labelled iPad on the main menu?

Babylon
Browsing 1. Can you scan the web page if you find something interesting for you?

Searching
1. Can you locate a link you can download the free version of Babylon?
2. Can you find and read the names of other products of Babylon?

Yahoo
Browsing 1. Can you scan the web page if you find something interesting for you?

Searching
1. Can you read the titles of the main headlines which have smaller images?
2. Can you read the first item under News title?

AVG
Browsing 1. Can you scan the web page if you find something interesting for you?

Searching
1. Can you locate a link which you can download a free trial of AVG Internet Secu-
rity 2013?
2. Can you locate a link which allows you to download AVG Antivirus FREE 2013?

GoDaddy
Browsing 1. Can you scan the web page if you find something interesting for you?

Searching
1. Can you find a telephone number for technical support and read it?
2. Can you locate a text box where you can search a new domain?

BBC
Browsing 1. Can you scan the web page if you find something interesting for you?

Searching
1. Can you read the first item of Sport News?
2. Can you locate the table that shows market data under Business title?

5.1 Validity

“Can eMine scanpath algorithm identify common scanpaths in terms of visual elements
of web pages?”

The participants were asked to complete some searching tasks on web pages, there-
fore we are expecting to see that the common scanpath supports those tasks. We used
eMine scanpath algorithm to identify a common scanpath for each of the six web pages.
Some participants could not complete the searching tasks successfully and/or had cali-
bration problems. These participants were defined as unsuccessful participants and ex-
cluded from the study. The success rates in completing searching tasks are as follow:
Apple: 81.58 %, Babylon: 94.74 %, AVG: 94.74 %, Yahoo: 84.21 %, Godaddy: 73.68 %
and BBC: 100 %. These values are calculated by dividing the number of the successful
participants by the total number of the participants on the page.

Table 2 shows the common scanpaths and the abstracted common scanpaths pro-
duced by eMine scanpath algorithm for the web pages where ‘P’ represents the number
of successful participants. In order to have abstracted common scanpaths, their string
representations are simplified by abstracting consecutive repetitions [21,22]. For in-
stance, MMPPQRSS becomes MPQRS.

Identifying Patterns in Eyetracking Scanpaths 171

Table 2. The common scanpaths produced by eMine scanpath algorithm for the web pages

Page Name P Common Scanpath Abstracted Common
Scanpath

Apple 31 EEB EB
Babylon 36 MMPPQRSS MPQRS
AVG 36 GGGGGGGGGGGGGGGIIIIIIIII GI
Yahoo 32 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I
Godaddy 28 OOOOMMMMMM OM
BBC 38 RNNNNN RN

On the Apple web page, 31 out of 38 participants were successful. On this page,
the participants were asked to locate a link which allows watching the TV ads relating
to iPad mini and then locate a main menu item iPad. EB is identified as a common
scanpath for these participants. Since E is associated with the first part and B is related
to the second part of the searching task, this common scanpath completely supports the
searching task. Fig. 3 shows this common scanpath on the Apple web page.

Fig. 3. Common scanpath on the Apple web page

On the Babylon web page, only 2 participants out of 38 were not successful. On
this page, the participants were requested to locate a link which allows downloading

172 S. Eraslan, Y. Yesilada, and S. Harper

a free version of Babylon and then read the names of other products of Babylon. The
common scanpath for the 36 participants was identified as MPQRS shown in Fig. 4. M
is related with a free version of Babylon whereas P, Q, R and S are associated with four
other products of Babylon. Therefore, the common scanpath thoroughly supports the
searching task.

Fig. 4. Common scanpath on the Babylon web page

Similar to the Babylon web page, only 2 participants were unsuccessful on the AVG
web page. The searching task here was locating a link which allows downloading a free
trial of AVG Internet Security 2013 and then locating a link which allows downloading
AVG Antivirus FREE 2013. The common scanpath was produced as GI where G has
a link to download a free trial of AVG Internet Security 2013 and I contains a link
to download AVG Antivirus FREE 2013. Therefore, the common scanpath, shown in
Fig. 5, entirely supports the searching task.

For the Yahoo web page, 6 participants could not be successful. The participants
required to read the titles of the main headlines which have smaller images and then
read the first item under News title. Since only I is produced as a common scanpath
on this web page and I contains both parts of the task, the common scanpath nicely
supports the searching task, too. Fig. 6 shows this common scanpath.

Since 28 out of 38 participants were successful, 10 participants were excluded for the
Godaddy web page. The successful participants read the telephone number for technical
support and then located a text box where they can search for a new domain. eMine
scanpath algorithm produced OM as a common scanpath shown in Fig. 7. Since M

Identifying Patterns in Eyetracking Scanpaths 173

Fig. 5. Common scanpath on the AVG web page

Fig. 6. Common scanpath on the Yahoo web page

174 S. Eraslan, Y. Yesilada, and S. Harper

Fig. 7. Common scanpath on the Godaddy web page

Fig. 8. Common scanpath on the BBC web page

Identifying Patterns in Eyetracking Scanpaths 175

contains the text box and there is no AoI in the scanpath which is related with the
telephone number, the common scanpath partially supports the searching task on the
Godaddy web page.

On the BBC web page, all participants completed the searching task successfully.
The participants were asked to read the first item of the sports news and then locate a
table which shows the market data. Therefore, the participants needed to locate R and
then N. As the common scanpath RN is produced, it supports the searching task very
well. Fig. 8 illustrates this common scanpath on the BBC web page.

To sum up, the common scanpaths on the Apple, Babylon, AVG, Yahoo and BBC
web pages completely support the searching tasks whereas the common scanpath on the
Godaddy web page partially supports the searching task.

5.2 Scalability

“How does the number of individual scanpaths affect common scanpaths?”

In order to test whether or not eMine scanpath algorithm works well with different
numbers of individual scanpaths, we tested the algorithm with different numbers of in-
dividual participants. The participants were selected randomly from all of the successful
participants. Table 3 illustrates the common scanpaths in terms of AoIs on the different
web pages for 10, 20, 30 and 30+ participants while browsing and searching.

Table 3. The common scanpaths on the different web pages for 10, 20, 30 and 30+ participants
while browsing and searching where ‘-’ means that there was no sufficient number of successful
participants and ‘—–’ means that no common scanpath was detected

Task Page Name P=10 P=20 P=30 P=30+

B
ro

w
si

ng

Apple IF F F F
Babylon MS M M M
AVG GIG G G G
Yahoo IJI I I I
Godaddy O O O O
BBC LP LP P —–

S
ea

rc
hi

ng

Apple EB EB EB EB
Babylon MPQRS MPQRS MPQRS MPQRS
AVG IGI GI GI GI
Yahoo I I I I
Godaddy OM OM - -
BBC LPRN RN RN RN

In order to see how the common scanpaths are affected when the number of par-
ticipants increases, we calculated the similarities between the scanpaths which were
produced for 10, 20, 30 and 30+ participants. To calculate the similarity between two
common scanpaths the String-edit distance between two common scanpaths is divided
by the length of the longer common scanpath to have a normalised score [23]. The pur-
pose of a normalised score is to prevent any inconsistencies in similarities caused by

176 S. Eraslan, Y. Yesilada, and S. Harper

different lengths [23,24]. Finally, the normalised score is subtracted from 1 [23]. For
example, the common scanpath for 10 participants is LPRN and the common scanpath
for 20 participants is RN on the BBC web page for the searching task. The String-edit
distance is calculated as 2 between two scanpaths. After that, since the length of the
longer scanpath (LPRN) is equal to 4, this distance is divided by 4. As a result, the
normalised score is equal to 0.5. To calculate the similarity 0.5 is subtracted from 1, so
the similarity between the two common scanpaths is equal to 0.5 (50 %). Table 4 shows
these similarities between the common scanpaths for the searching task on the BBC
web page whereas Table 5 illustrates the similarities between the common scanpaths
for the browsing task on the Yahoo web page as examples.

Table 4. The similarities between the common scanpaths on the BBC web page for 10, 20, 30
and 30+ participants while searching

BBC
Searching

P = 10 P = 20 P = 30 P = 30+

P = 10 — 50 50 50
P = 20 50 — 100 100
P = 30 50 100 — 100

P = 30+ 50 100 100 —

Table 5. The similarities between the common scanpaths on the Yahoo web page for 10, 20, 30
and 30+ participants while browsing

Yahoo
Searching

P = 10 P = 20 P = 30 P = 30+

P = 10 — 33.3 33.3 33.3
P = 20 33.3 — 100 100
P = 30 33.3 100 — 100

P = 30+ 33.3 100 100 —

For both the browsing and searching tasks, we calculated the average similarity be-
tween the common scanpaths on each web page. To calculate these average similarities
we divided the sum of the similarities between the scanpaths for 10, 20, 30 and 30+ par-
ticipants by the total number of the similarities. In addition, we calculated the average
similarity for both the browsing and searching tasks. Since each web page typically has
four scanpaths (for 10, 20, 30 and 30+ participants), we determined their weights based
on the number of scanpaths. All of the pages’ weights are set to 4, except the Godaddy
page because of the searching task. The Godaddy page has one common scanpath for
10 participants and one common scanpath for 20 participants, therefore its weight is set
to 2. When the average is calculated, we multiplied the value with its weight to find
the weighted value. After that, we found the sum of the weighted value and divided it
by the sum of the weights. It was found that the average similarity for searching tasks
(92.42%) is higher than the average similarity for the browsing task (69.44 %).

Identifying Patterns in Eyetracking Scanpaths 177

Table 6. The average of the similarities between the common scanpaths on each web page for 10,
20, 30 and 30+ participants

Page Name Task Average Similarity
for Each Page

Apple Browsing 75
Babylon Browsing 75
AVG Browsing 66.65
Yahoo Browsing 66.65
Godaddy Browsing 100
BBC Browsing 33.33
Average Similarity for the 6 Pages Browsing 69.44
Apple Searching 100
Babylon Searching 100
AVG Searching 83.3
Yahoo Searching 100
Godaddy Searching 100
BBC Searching 75
Average Similarity for the 6 Pages Searching 92.42

6 Discussion

The eMine scanpath algorithm was experimentally evaluated with an eyetracking study
and this study illustrates that the algorithm is able to successfully identify common
scanpaths in terms of visual elements of web pages and it is fairly scalable.

The searching tasks completed by the participants on the given pages were used to
validate eMine scanpath algorithm. We expected that the common scanpaths should
support these searching tasks. For instance, on the Babylon web page, the participants
were asked to locate the link which allows downloading the free version of Babylon
(related to AoI M) and then read the names of other products of Babylon (related to
AoIs P, Q, R and S). Therefore, we expected that the common scanpath on the Babylon
web page should involve at least MPQRS for the searching tasks.

The results in Section 5.1 show that the common scanpaths produced by eMine scan-
path algorithm completely support these tasks, except the common scanpath on the Go-
daddy page. On that page, the participants were asked to read a telephone number for
technical support and locate the text box where they can search for a new domain. The
common scanpath involves the AoI for the text box but does not include the AoI for the
telephone number. Thus, it partially supports the searching task. There may be various
reasons: (1) The participants might make a very few fixations on that AoI (2) Some
participants might find the telephone number directly whereas some of them looked at
many AoIs to find the telephone number. Therefore, it would be good to pre-process
eyetracking data in depth to investigate the individual differences and their reasons.

Some other methods could also be used to validate eMine scanpath algorithm. One
might consider calculating the similarities between the individual scanpaths and the
common scanpath. Besides, the AoIs appeared in all individual scanpaths might be
detected and then one part of the validation process could be done by using these AoIs.

178 S. Eraslan, Y. Yesilada, and S. Harper

The scalability of eMine scanpath algorithm was tested by using the different num-
bers of individual scanpaths as mentioned in Section 5.2. As expected, we can see that
the algorithm is more scalable with the searching tasks because the participants were
asked to complete some specific searching tasks. The average similarity is equal to
92.42 % between the common scanpaths which were produced with the different num-
ber of scanpaths for the searching tasks. However, the average similarity is equal to
69.44 % for the browsing tasks. Based on these values we can suggest that our algo-
rithm is fairly scalable, especially in searching tasks.

There are some differences between scanpaths, such as producing LPRN for 10 par-
ticipants and RN for 30+ participants on the BBC page. It is caused by using the hi-
erarchical structure. As mentioned in Section 3, eMine scanpath algorithm uses a hier-
archical structure while identifying common scanpaths. It selects the two most similar
scanpaths from the list and finds their longest common subsequence. It is iteratively
repeated until a single scanpath left. Because of the hierarchical structure, some infor-
mation in intermediate levels can be lost because of combining two scanpaths.

Assume that there are three sequences: S1: GATACCAT S2: CTAAAGTC and S3:
GCTATTGCG [17]. S1 and S2 can be aligned firstly and then S1’= - - A - A - - A - - -
can obtained [17]. Following this, S1’ and S3 can be aligned and then S3’= - - - A - - - - -
- - - can be obtained [17]. This example clearly illustrates that the hierarchical structure
can make the method reductionist. Here, all of the three scanpaths have G and T in
different locations but G and T do not exist at the end. This may cause some differences
in common scanpaths. Because of this reason, eMine scanpath algorithm was not able to
identify any common scanpath on the BBC page for the browsing task. When a number
of individual scanpaths is increased, the different most similar scanpath pairs can be
generated and this may affect common scanpaths. Although eMINE scanpath algorithm
has some drawbacks because of the hierarchical structure, it still partly addresses the
reductionist problem of the other existing approaches (See Section 2).

To address the drawbacks of using the hierarchical structure a constraint might be
created to prevent losing the AoIs appeared in all individual scanpaths in intermediate
levels. Alternatively, some statistical approaches can be used to sort these AoIs and then
create a common scanpath for multiple people.

7 Concluding Remarks and Future Work

This paper presents an algorithm and its evaluation that identifies common scanpaths
in terms of visual elements of web pages. These visual elements are first automati-
cally generated with the extended and improved version of the VIPS algorithm [6,5].
Eyetracking data is then related to these visual elements and individual scanpaths are
created in terms of these visual elements. This algorithm then uses these individual
scanpaths and generates a common scanpath in terms of these visual elements. This
common scanpath can be used for reengineering web pages to improve the user experi-
ence in constraint environments.

To our knowledge, there is no work on correlating scanpaths with visual elements of
web pages and the underlying source code, and this work is novel from that perspec-
tive [6,5]. This paper also shows how the validity and scalability of eMine scanpath

Identifying Patterns in Eyetracking Scanpaths 179

algorithm was demonstrated with an eyetracking study. The results clearly show that
this algorithm is able to identify common scanpaths in terms of visual elements of web
pages and it is fairly stable. This algorithm aims to address the reductionist problem that
the other existing work has, but the results show that there is still room for improvement.

The eyetracking study also suggests some directions for future work. It indicates
that the individual differences can affect the identification of patterns in eyetracking
scanpaths. Thus, eyetracking data should be pre-processed to investigate the individual
differences and their reasons. Since an eye tracker collects a large amount of data, pre-
processing is also required to eliminate noisy data. It is important because noisy data
are likely to decrease the commonality in scanpaths. Another benefit of pre-processing
is to identify outliers which are potential to decrease the commonality, too.

Finally, as with the existing scanpath methods, eMine scanpath algorithm also tends
to ignore the complexities of the underlying cognitive processes. However, when people
follow a path to complete their tasks on web pages, there may be some reasons that
affect their decisions. Underlying cognitive processes can be taken into account while
identifying common scanpaths.

Acknowledgments. The project is supported by the Scientific and Technological Re-
search Council of Turkey (TÜBİTAK) with the grant number 109E251. As such the
authors would like to thank to TÜBİTAK for their continued support. We would also
like to thank our participants for their time and effort.

References

1. W3C WAI Research and Development Working Group (RDWG): Research Report on Mobile
Web Accessibility. In: Harper, S., Thiessen, P., Yesilada, Y., (eds.): W3C WAI Symposium on
Mobile Web Accessibility. W3C WAI Research and Development Working Group (RDWG)
Notes. First public working draft edn. W3C Web Accessibility Initiative (WAI) (December
2012)

2. Yesilada, Y., Jay, C., Stevens, R., Harper, S.: Validating the Use and Role of Visual Ele-
ments of Web Pages in Navigation with an Eye-tracking Study. In: The 17th international
Conference on World Wide Web, WWW 2008, pp. 11–20. ACM, New York (2008)

3. Yesilada, Y., Stevens, R., Harper, S., Goble, C.: Evaluating DANTE: Semantic Transcoding
for Visually Disabled Users. ACM Trans. Comput.-Hum. Interact. 14(3), 14 (2007)

4. Brown, A., Jay, C., Harper, S.: Audio access to calendars. In: W4A 2010, pp. 1–10. ACM,
New York (2010)

5. Akpınar, M.E., Yesilada, Y.: Heuristic Role Detection of Visual Elements of Web Pages. In:
Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 123–131. Springer,
Heidelberg (2013)

6. Akpınar, M.E., Yesilada, Y.: Vision Based Page Segmentation Algorithm: Extended and
Perceived Success. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS,
vol. 8295, pp. 238–252. Springer, Heidelberg (2013)

7. Poole, A., Ball, L.J.: Eye tracking in human-computer interaction and usability research:
Current status and future Prospects. In: Ghaoui, C. (ed.) Encyclopedia of Human-Computer
Interaction. Idea Group, Inc., Pennsylvania (2005)

8. Yesilada, Y., Harper, S., Eraslan, S.: Experiential transcoding: An EyeTracking approach. In:
W4A 2013, p. 30. ACM (2013)

180 S. Eraslan, Y. Yesilada, and S. Harper

9. Takeuchi, H., Habuchi, Y.: A quantitative method for analyzing scan path data obtained by
eye tracker. In: CIDM 2007, April 1-5, pp. 283–286 (2007)

10. Santella, A., DeCarlo, D.: Robust clustering of eye movement recordings for quantification
of visual interest. In: ETRA 2004, pp. 27–34. ACM, New York (2004)

11. Josephson, S., Holmes, M.E.: Visual attention to repeated internet images: testing the scan-
path theory on the world wide web. In: ETRA 2002, pp. 43–49. ACM, NY (2002)

12. West, J.M., Haake, A.R., Rozanski, E.P., Karn, K.S.: EyePatterns: software for identifying
patterns and similarities across fixation sequences. In: ETRA 2006, pp. 149–154. ACM, New
York (2006)

13. Räihä, K.-J.: Some applications of string algorithms in human-computer interaction. In: Elo-
maa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060, pp.
196–209. Springer, Heidelberg (2010)

14. Mast, M., Burmeister, M.: Exposing repetitive scanning in eye movement sequences with
t-pattern detection. In: IADIS IHCI 2011, Rome, Italy, pp. 137–145 (2011)

15. Hembrooke, H., Feusner, M., Gay, G.: Averaging scan patterns and what they can tell us. In:
ETRA 2006, p. 41. ACM, New York (2006)

16. Goldberg, J.H., Helfman, J.I.: Scanpath clustering and aggregation. In: ETRA 2010, pp. 227–
234. ACM, New York (2010)

17. Chiang, C.H.: A Genetic Algorithm for the Longest Common Subsequence of Multiple Se-
quences. Master’s thesis, National Sun Yat-sen University (2009)

18. Michailidou, E.: ViCRAM: Visual Complexity Rankings and Accessibility Metrics. PhD
thesis, University of Manchester (2010)

19. Jay, C., Brown, A.: User Review Document: Results of Initial Sighted and Visually Disabled
User Investigations. Technical report, University of Manchester (2008)

20. Marchionini, G.: Exploratory Search: From Finding to Understanding. Commun.
ACM 49(4), 41–46 (2006)

21. Brandt, S.A., Stark, L.W.: Spontaneous Eye Movements During Visual Imagery Reflect the
Content of the Visual Scene. J. Cognitive Neuroscience 9(1), 27–38 (1997)

22. Jarodzka, H., Holmqvist, K., Nyström, M.: A Vector-based, Multidimensional Scanpath Sim-
ilarity Measure. In: ETRA 2010, pp. 211–218. ACM, New York (2010)

23. Foulsham, T., Underwood, G.: What can Saliency Models Predict about Eye Movements?
Spatial and Sequential Aspects of Fixations during Encoding and Recognition. Journal of
Vision 8(2), 1–17 (2008)

24. Cristino, F., Mathot, S., Theeuwes, J., Gilchrist, I.D.: Scanmatch: a novel method for com-
paring fixation sequences. Behavior Research Methods 42(3), 692–700 (2010)

Identifying Root Causes of Web Performance

Degradation Using Changepoint Analysis

Jürgen Cito1, Dritan Suljoti2, Philipp Leitner1, and Schahram Dustdar3

1 s.e.a.l. – Software Evolution & Architecture Lab, University of Zurich, Switzerland
{cito,leitner}@ifi.uzh.ch

2 Catchpoint Systems, Inc., New York, USA
drit@catchpoint.com

3 Distributed Systems Group, Vienna University of Technology, Austria
dustdar@dsg.tuwien.ac.at

Abstract. The large scale of the Internet has offered unique economic
opportunities, that in turn introduce overwhelming challenges for devel-
opment and operations to provide reliable and fast services in order to
meet the high demands on the performance of online services. In this
paper, we investigate how performance engineers can identify three dif-
ferent classes of externally-visible performance problems (global delays,
partial delays, periodic delays) from concrete traces. We develop a simu-
lation model based on a taxonomy of root causes in server performance
degradation. Within an experimental setup, we obtain results through
synthetic monitoring of a target Web service, and observe changes in Web
performance over time through exploratory visual analysis and change-
point detection. Finally, we interpret our findings and discuss various
challenges and pitfalls.

1 Introduction

The large scale of the Internet has offered unique economic opportunities by en-
abling the ability to reach a tremendous, global user base for businesses and in-
dividuals alike. The great success and opportunities also open up overwhelming
challenges due to the drastic growth and increasing complexity of the Internet
in the last decade. The main challenge for development and operations is to pro-
vide reliable and fast service, despite of fast growth in both traffic and frequency
of requests. When it comes to speed, Internet users have high demands on the
performance of online services. Research has shown that nowadays 47% of online
consumers expect load times of two seconds or less [7,14,21]. With the growth of
the Internet and its user base, the underlying infrastructure has drastically trans-
formed from single server systems to heterogeneous, distributed systems. Thus,
the end performance depends on diverse factors in different levels of server sys-
tems, networks and infrastructure, which makes providing a satisfying end-user
experience and QoS (Quality of Service) a challenge for large scale Internet appli-
cations. Generally, providing a consistent QoS requires continually collecting data
on Web performance on the Web service provider side, in order to observe and
track changes in desired metrics, e.g., service response time. Reasons to observe

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 181–199, 2014.
c© Springer International Publishing Switzerland 2014

182 J. Cito et al.

these changes are different in their nature, and range from detecting anomalies,
identifying patterns, ensuring service reliability, measuring performance changes
after new software releases, or discovering performance degradation.

Early detection and resolution of root causes of performance degradations can
be achieved through monitoring of various components of the system. Monitoring
can be classified as either active or passive monitoring, and, orthogonally, as exter-
nal or internal. In active monitoring, monitoring agents are actively trying to con-
nect to the target system in order to collect performance data, whether the system
is accessed by real end-users or not. Passive monitoring, on the other hand, only
collects measurements if the system is actively used. Internal and external moni-
toring differentiate in whether the measurements are obtained in systems within
the organization’s data center or through end-to-end monitoring over the network
outside the data center. This has ramifications in terms of what the level of detail
of monitoring data that is available. In our experiments, we make use of active,
external monitoring, which provides a way of capturing an end user perspective
and enables the detection of issues before they affect real users [17].

Whatever the reason to observe changes may be, the measurements are only
useful when we know how to properly analyze them and turn our data into
informed decisions. The main contribution of this paper is a model for under-
standing performance data via analyzing how common underlying root causes of
Web performance issues manifest themselves in data gathered through external,
active monitoring. We introduce a taxonomy of root causes in server performance
degradations, which serves as the basis for our experiments. Furthermore, we de-
scribe the methods and steps we take to obtain our results and explain how the
results will be examined and discussed. Following this, we will outline the design
of the simulations that will be conducted, as well as the physical experimental
setup enabling the simulations. We conclude by providing interpretation of the
simulation based results, explaining how we can derive certain conclusions based
on exploratory visual analysis and statistical changepoint analysis.

2 Root Causes of Server Performance Degradation

In general, if we consider performance and computation power of a system, we
must consider resources that enable computation. These are usually hardware
resources, such as processors, memory, disk I/O, and network bandwidth. We
also need to consider the ways and methods these resources are allocated and uti-
lized. The demand on resources of a computer system increases as the workload
for the application of interest increases. When the demand of the application is
greater than the resources that can be supplied by the underlying system, the
system has hit its resource constraints. This means the maximum workload of
the application has been reached and, typically, the time taken for each request
to the application will increase. In case of extreme oversaturation, the system
stops reacting entirely. For Web applications and Web services, this translates
into poor response times or (temporary) unavailability. A delay in performance
as observed through active monitoring can be defined as a negative change in re-
sponse time at a certain point in time t. This means we look at two observations

Identifying Root Causes of Web Performance Degradation 183

of response times xt and xt+1 where λ = |xt − xt+1| > c and c denotes a certain
threshold accounting for possible volatility. In the following, this simplified no-
tion of performance delays λ over a threshold c will be used in the description
of the elements of the taxonomy.

The underlying causes of performance degradations in Web application and
Web service backends are diverse. They differ significantly in the way they man-
ifest themselves in performance data gathered through active monitoring. We
propose a simple taxonomy of root causes in Web performance degradation.
First, we divide a possible root cause in three main categories, which can be
determined through external monitoring: global delay, partial delay, and periodic
delay. Further classifications and proper assignment to the main categories in
the taxonomy have been derived together with domain experts in the area of
Web performance monitoring and optimization. In the following, we provide a
brief explanation of the general causes of performance delays in computer sys-
tems. We then classify the main categories of our taxonomy by grouping the
root causes by the distinguishable effect they have. The taxonomy is depicted in
Figure 1, and explained in more detail the following. Note that this taxonomy
does by no means raise the claim of completeness. It is rather an attempt to give
an overview of common pitfalls that cause slowness in performance.

Fig. 1. Taxonomy of Root Causes in Server Performance Degradation

184 J. Cito et al.

2.1 Global Delay

A global delay means that a change in a new deployment or release of the
backend system introduced a significant difference in response time λ, which
is higher than a defined threshold c on all incoming requests. We distinguish
between global delays that are caused through resource contention and code or
configuration issues. Global delays caused by resource contention include, for
instance, delays due to a bottleneck in disk I/O. In this case, the flow of data
from the disk to the application (e.g., via a database query) is contended. This
means the query takes longer to perform and return data which causes an overall
performance delay. Global delays caused by problems in the application code
can for instance be caused by the induction of logical units or algorithms with
high computational complexity in the backend service. Alternatively, such global
delays may be caused by overzealous synchronization in the application code,
which may even lead to temporary service outages when a deadlock situation
cannot be immediately resolved by the underlying operating system or virtual
machine.

2.2 Periodic Delay

Periodic delays are global delays that are not continuous, but happen, e.g., a few
times a day. A periodic delay is mostly not induced through a new deployment
or release, but rather through a background process causing the system to use an
increased amount of resources. One practical example of such a background job
is log rotation. Log rotation is an automated process in server systems admin-
istration, where log files that exhibit certain characteristics are archived. The
process is usually configured to run as a periodic cronjob to be fully automated.
Log rotating often includes archiving and transferring large text files, and, hence,
can oversaturate the backend system for a short period of time.

2.3 Partial Delay

Partial delays are global delays that occur only for a subset of all requests, e.g.,
for a subset of all customers of the Web service. This situation can occur if
the application employs a form of redundancy, e.g., load balancing or content
distribution networks. In such scenarios, any problems that lead to global delays
can potentially be inflicting only one or a subset of all backend servers, hence
delaying only those requests that happen to be handled by one of the inflicted
backends. Partial delays are interesting, as they are hard to detect (especially if
the number of inflicted backends is small).

3 Identifying Root Causes of Performance Degradation

After introducing externally visible classes of root causes of performance
degradation (global, partial, periodic), we want to identify characteristics in per-
formance data associated with each class. Furthermore, we want to present sta-
tistical methods that are well suited for identifying such changes. Our approach

Identifying Root Causes of Web Performance Degradation 185

is to generate realistic performance traces for each class through a testbed Web
service, which we have modified in order to be able to inject specific performance
degradation scenarios associated with each class. We collect data through active
monitoring as described in Section 3.1. The specific scenarios we used are de-
scribed and defined in Section 3.2. Afterwards, we apply the methods described
in Section 4.1 to the traces we generated, in order to be able to make general
statements about how these methods are able to detect root causes of perfor-
mance degradation.

3.1 Simulation Design

We consider a simulation model of a simple Web service environment for our
experiments. The model consists of the following components: Synthetic Agent
Nodes, Scenario Generation Component, and Dynamic Web Service Component.
Synthetic agents send out HTTP GET requests every n minutes from m agents
and collect response times. In the simulation, we sample every 1 minute resulting
in 1 new observation of our system every minute. Each observation is stored in
a database with the corresponding timestamp.

The simulation design and its communication channels are depicted in Figure
2. We consider a system with this architecture where requests incoming from
the synthetic nodes are governed by a stochastic process {Y (t), t ∈ T }, with T
being an index set representing time.

Fig. 2. Simulation Design

Synthetic Agent Nodes. We gather data from the Dynamic Web Service
Component via active, periodic monitoring through Synthetic Agent Nodes. A
synthetic monitoring agent acts as a client in order to measure availability and
performance metrics, such as response time. Every synthetic agent is able to
perform active measurements or synthetic tests. An active measurement is a
request to a target URL, where subsequently all performance metrics that are
available through the response are obtained. When configuring a set of synthetic
tests, we can configure the following parameters: (1) URL of the Web service that
should be tested; (2) sampling interval, e.g., every n minutes; (3) test duration,
i.e., how many sample requests to issue in each run of the test agent.

186 J. Cito et al.

Scenario Generation Component. As only the main classifications of root
causes can be identified through synthetic monitoring, changes following the pri-
mary notions of global delays, partial delays, and periodic delays (see Section 2)
are injected in the simulation. We achieve this by introducing a Scenario Gen-
eration Component into our model. It functions as an intermediary between the
request sent by the synthetic agent nodes and the Web service. Instead of man-
ually injecting faults into our test Web server, we define a set of scenarios that,
subsequently, reflect the desired scenario, i.e., the faults over time in our system.
The scenarios need to reflect performance degradation and performance volatil-
ity within a certain system, i.e., a single Web server. The Scenario Generation
Component also needs to take into account possible geographic distribution of
the agents, as well as load balancing mechanisms. In the following, we introduce
a formal model for defining scenarios that reflects these notions that can be used
to formally describe scenarios.

We consider a given set of parameters to compose a complete scenario within
our simulation model. Within a scenario, we need to be able to specify how
performance metrics (i.e., response times) develop over time, as well as synthetic
agents that are actively probing our target system.

– A development D ∈ D maps from a certain point in t ∈ T of the stochastic
process {Y (t), t ∈ T } (driving the requests of the synthetic agent nodes) to
an independent random variable Xi ∈ X , where X being the set of possible
random variables (Equation 1).

D : T �→ X (1)

where Xi ∈ X and ∀ Xi ∼ U(a, b)
– On the top-level, we define a scenario S that describes how the target system

that is observed by each synthetic agent A = {a1, a2, ..., an} develops over
time. Each agent observes a development in performance Di ∈ D, with D
being the set of all possible developments (Equation 2).

S : A �→ D (2)

This formalization allows us to express any performance changes (either pos-
itive or negative) as a classification of performance developments over time at-
tributed to specific synthetic agents. More accurately, it models a performance
metric as a uniformly distributed random variable of a system at any given time
point t ∈ T . Specifying an assignment for every point in time is a tedious and un-
necessary exercise. In order to define scenarios in a more efficient and convenient
way, we introduce the following notation for developments D ∈ D:

– Simple Developments: [X0, t1, X1, ..., tn, Xn] defines a simple development as
a sequence of independent random variablesXi and points in time ti, further
defined in Equation 3.

Identifying Root Causes of Web Performance Degradation 187

[X0, t1, X1, ..., tn, Xn](t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X0 0 ≤ t < t1

X1 t1 ≤ t < t2
...

Xn tn ≤ t

(3)

This allows us to easily define developments Xi in terms of time spans
ti+1 − ti ≥ 0 within the total time of observation. The last development
defined through Xn remains until the observation of the system terminates.

– Periodic Developments: A periodic development is essentially a simple devel-
opment, which occurs in a periodic interval p. It is preceded by a ”normal
phase” up until time point n. The ”periodic phase” lasts for p−n time units
until the development returns to the ”normal phase”. A periodic develop-
ment [X0, n,X1, p]

∗ is defined in Equation 4.

[X0, n,X1, p]
∗(t) =

{
X1 for kp+ n ≤ t < (k + 1)p

X0 otherwise
(4)

where k ≥ 0.

Figure 3 depicts how a periodic development can be seen over time with given
parameters X0 as the ”normal phase” random variable, X1 as the ”periodic
phase” random variable, n to define the time span for a ”normal phase”, p as
the periodic interval and (p− n) as the time span for the ”periodic phase”.

Fig. 3. Depiction of the periodic development scheme defined in Equation 4

These two defined functions allow us to conveniently define scenarios which
adhere to our notions of global, partial and periodic delays. We can now define
changes in performance at certain points in time in a declarative way, as well as
define changes in periodic time intervals that result in changes in response times
for a specific amount of time.

Dynamic Web Service Component. The Dynamic Web Service Component
works together with the Scenario Generation Component to achieve the reflec-
tion of performance issues for the Synthetic Agent Nodes. In order to do so,
it offers an endpoint that simulates delays over parameters passed from a spe-
cific scenario script. This means that the declared scenarios are executed within
the Web service component and thus simulate workload through the parameters
given in the scenarios.

188 J. Cito et al.

3.2 Simulation Scenarios

Here, we formally define the parameters that actually form a certain scenario,
and give an example of a real-life situation that would lead to such a performance
behavior. The aim of each scenario is to properly represent one of global, partial
or periodic delay.

Global Delay. A global delay is the introduction of a significant difference
in response time on all incoming requests, i.e., it affects all users accessing the
resource in question.

Example Scenario Use Case. A new feature needs to be implemented for a new
release. A junior developer in charge of the new feature introduces a new (slow)
database query, causing significantly higher overall response times. The slow
query is not caught in QA (Quality Assurance) and the new release is deployed
to all users.

Scenario Parameters. The parameter for this delay is given in Equation 5. Fur-
ther, for every index i, we define the initial response time range as in Equation
6, as well as the range for the global change over all agents in Equation 7.

SG = {ai �→ [Xai,0, 420, Xa,1] | ai ∈ {a1, a2, a3, a4, a5}} (5)

Xa1,0 ∼ U(90, 115), Xa2,0 ∼ U(100, 130), Xa3,0 ∼ U(110, 140),

Xa4,0 ∼ U(95, 110), Xa5,0 ∼ U(100, 110)
(6)

Xa,1 ∼ U(150, 175) (7)

Partial Delay. A partial delay scenario consists of requests that, at some point
in time, cause a delay on a subset of the incoming requests.

Example Scenario Use Case. A Web application sits behind a load balancer
handling 5 servers. One of the servers encounters unexpected hardware issues,
which result in higher response times. The balancer uses “Round Robin” as its
load balancing algorithm [22]. 20% of all users perceive the application with
higher response times.

Scenario Parameters. The parameter for this delay is defined in Equation 8. For
every index i we define the initial response time range as in Equation 9, as well
as the range for the partial change for agent a5 in Equation 10.

SP = {ai �→ [Xai,0,∞]|ai ∈ {a1, a2, a3, a4, a5}, a5 �→ [Xa5,0, 360, Xa5,1]} (8)

Identifying Root Causes of Web Performance Degradation 189

Xa1,0 ∼ U(115, 125), Xa2,0 ∼ U(115, 120), Xa3,0 ∼ U(120, 145),

Xa4,0 ∼ U(105, 115), Xa5,0 ∼ U(110, 120)
(9)

Xa5,1 ∼ U(140, 165) (10)

Periodic Delay. A periodic delay takes place when, due to a (background)
process, resource contention occurs and, subsequently, higher usage of hardware
resources leads to higher response times for a certain amount of time. This
scenario addresses those processes that are (usually) planned ahead and are
executed within a specific interval.

Example Scenario Use Case. Log files of an application make up a large amount
of the server’s disk space. The system administrator creates a cron job to process
older log files and move them over the network. The process induces heavy
load on CPU (processing) and I/O (moving over network), which result into
temporarily higher response times. The cron job is configured to take place in
periodic intervals to ensure the server has enough disk space.

Scenario Parameters. The parameter for this periodic delay is defined in Equa-
tion 11. The response time ranges are defined as in Equation 12.

SPD = {a1 �→ [X0, 45, X1, 65]
∗} (11)

X0 ∼ U(95, 115), X1 ∼ U(160, 175) (12)

4 Experiments

We now describe the methods of analysis and execution of the experiments
introduced in Section 3, as well as the concrete results we achieved.

4.1 Methods of Analysis

The specified scenarios are executed within a physical testbed (described in
Section 4.2) and results are analyzed and interpreted. The following sections
outline the methods of analysis that are applied to the results.

Exploratory Data Analysis. Our first analysis approach is to examine the
time series of monitored response times over time visually over graphs in order
to explore and gain further understanding on the effect specific underlying causes

190 J. Cito et al.

have on the resulting data. We also determine what kind of statistical attributes
are well suited to identify key characteristics of the data sample and for humans
to properly observe the performance change. For this initial analysis we plot the
raw time series data1 as line charts. This allows for visual exploratory exam-
ination, which we further complement with proper interpretations of the data
displayed in the visualization that correlates with induced changes in the server
backend.

Statistical Analysis. After manually inspecting the time series over visual
charts, we evaluate the observation of performance changes by the means of
statistical changepoint analysis. Specifically, we evaluate algorithms that are
employed in the R [20] package “changepoint”. This approach makes sense, as
we are not interested in the detection of spikes or other phenomena that can
be considered as outliers in the statistical sense, but rather in the detection
of fundamental shifts in our data that reflect a longer standing performance
degradation. We also want to keep false positives low, and determine whether
a change is actually a change that implies a root cause that requires some kind
of action. Thus, we also need to determine the magnitude of the change. For
this, we recall the simple view on delays we introduced in our taxonomy: λ =
|xt − xt+1| > c. We adapt this model of change as follows. Instead of comparing
two consecutive data points xt and xt+1, we compare the changes in the mean at
the time point where changepoint have been detected by the algorithm. In other
words, we compute the difference between the mean of the distribution before
the detected changepoint occurred, μ<τ , and the mean of the distribution after
the detected changepoint occured, μ>τ , where τ denotes the changepoint. This
difference is then denoted as λ, and can be defined as λ = |μ<τ − μ>τ | > c via
replacing two variables.

The threshold c is challenging to determine optimally. When c is set up too
high, legitimate changes in performance that were caused by problems may not
be detected and the system is in risk of performance degradation. When c is
defined unnecessarily sensitive, the monitoring system is prone to false positives.
The value of the threshold depends on the application and must be either set
by a domain expert or be determined by statistical learning methods through
analysis of past data and patterns. Sometimes it is useful to compare new metrics
in relation to old metrics, this is a very simple way of statistical learning through
past data. In the conducted experiments, we set the threshold as c = μ<τ · 0.4.
This means that if the new metric after the changepoint μ>τ is 40% above or
below the old metric μ<τ , the change is considered a real change as opposed to a
false positive. If we want to consider positive changes as well, the calculation of
the threshold must be extended in a minor way to not yield into false negatives
due to a baseline that is too high: c = min(μ>τ , μ<τ) · 0.4.

Note that, in the case of this paper, the threshold 40% of the mean was chosen
after discussions with a domain expert, as it is seen as an empirically estimated

1 Raw in this context means that we will not smooth the data by any means and will
not apply statistical models in any way.

Identifying Root Causes of Web Performance Degradation 191

baseline. In practice, a proper threshold depends on the type of application,
SLAs, and other factors and is usually determined by own empirical studies.

4.2 Testbed Setup

The experiments based on the described simulation model were executed in a
local testbed consisting of 5 Synthetic Agent Nodes and 1 Dynamic Web Ser-
vice Component. The agents operate in the local network as well. Each of the 5
nodes sends out a request every 5 minutes that is handled by a scheduler that
uniformly distributes the requests over time. This results into 1 request/minute
that is being send out by an agent that records the data. The physical node
setup consists of Intel Pentium 4, 3.4 GHz x 2 (Dual Core), 1.5 GB RAM on
Windows and is running a Catchpoint agent node instance for monitoring. The
Web service running on the target server has been implemented in the Ruby
programming language and runs over the HTTP server and reverse proxy nginx
and Unicorn.The physical web server setup is the same as the synthetic agent
node setup, but is running on Ubuntu 12.04 (64 bit). During simulation, a ran-
dom number generator is applied to generate artificial user behavior as specified
in the distributions, which can be represented efficiently with common random
numbers [12]. However, as with deterministic load tests, replaying user behavior
data may not always result into the same server response. Even with the server
state being the same, server actions may behave nondeterministically. To adhere
the production of independent random variables that are uniformly distributed
we use MT19937 (Mersenne twister) [18] as a random number generator.

4.3 Results and Interpretation

We now discuss the results of our scenario data generation, and the results of
applying the statistical methods described in Section 4.1. At first, we display a
raw plot of the resulting time series data without any filters and interpret its
meaning. Further, we apply a moving average smoothing filter (with a window
size w = 5) to each resulting time series and conduct a changepoint analysis.

Global Delay. The global delay forms the basis of our assumptions on how
performance changes can be perceived on server backends. Both, the partial
and periodic delay, are essentially variations in the variables time, interval and
location of a global delay. Hence, the findings and interpretations of this section
on global delays are the foundation for every further analysis and discussion.

Exploratory Visual Analysis. In Figure 4c, we see the results for the global
delay scenario. We can clearly see the fundamental change in performance right
after around 400 minutes of testing. The data before this significant change does
seem volatile. There are a large amount of spikes occurring, though most of
them seem to be outliers that might be caused in the network layer. None of the
spikes sustain for a longer period of time, in fact between the interval around
150 and 250 there seem to be no heavy spikes at all. The mean seems stable

192 J. Cito et al.

around 115ms in response time and there is no steady increase over time that
might suggest higher load variations. Thus, we can conclude that the significant
performance change has occurred due to a new global release deployment of the
application.

(a) Variance Changepoint (b) Mean Changepoint

(c) Global delay results raw time series

Fig. 4. Global Delay results

Statistical Changepoint Analysis. We apply changepoint analysis to the smoothed
time series with a moving average window size of 5. In Figure 4a, we can imme-
diately see how the smoothing affected the chart, compared to the chart with
the raw data in Figure 4c: The spikes, i.e., the random noise, have been canceled
out to a certain extent, making the main signal stronger and easier to identify.
This makes it easier for our statistical analysis to focus on our signal and detect
the proper underlying distributions. While this is definitely a pleasant effect of
every smoothing technique, we also need to keep in mind that every model that
we apply contains its own assumptions and own errors that need to be consid-
ered. What can further be seen in Figure 4a is the changepoint in the variance,
denoted by a vertical red line at the changepoint location. Table 1 contains the
numerical results of the changepoint in variance analysis and indicates the es-
timation for the changepoint τ1 at 422. This number coincides approximately
with our own estimation we concluded in the previous section.

Next, we look at Figure 4b, where the change in the mean is indicated by
horizontal lines depicting the mean value for each segment that has been de-
tected. This method has detected more changepoints than the previous analysis,
which can be not clearly seen in Figure 4b due to the very small change in the
mean. The estimated numerical values for the changepoints are listed in Table 2.

Identifying Root Causes of Web Performance Degradation 193

The table also lists the mean values, as well as the calculated threshold c =
μ<τ · 0.4. The last column also states whether or not a detected changepoint in
the mean is an actual changepoint (CP) as defined by the notion of significant
change where λ = |μ<τ − μ>τ | > c, or a false positive (FP). Only one of the
estimated changepoints has been identified as CP when considering the thresh-
old c. This shows that detecting a fundamental change is a difficult undertaking,
especially considering non-parametric statistical analysis, as in our case. Post-
processing and analysis of the estimated changepoints and its according mean
values is important to avoid false positives.

Table 1. Variance CP for SG

τ σ2
<τ σ2

>τ

422 10.695 67.731

Table 2. Mean CP for SG

τ μ<τ μ>τ λ c CP/FP
127 106.18 103.7 2.48 42.47 FP
241 103.7 105.32 1.62 41.48 FP
366 105.32 110.85 5.53 42.12 FP
374 110.8 103.62 7.23 44.32 FP
421 103.62 150.65 47.03 41.44 CP
427 150.65 165.62 14.97 60.62 FP

Partial Delay. Partial delays are global delays that only occur on a certain
subset of requests and, therefore, need different techniques to properly examine
the time series data and diagnose a performance degradation. Experiments on
simulating partial delays have found that detection of a changepoint in partial
delays, or even the visual detection of performance change, is not at all trivial.

Exploratory Visual Analysis. As before, we plot the time series data and look
for changes in our performance. In Figures 5a and 5b, we see rather stable time
series charts, relatively volatile (spiky), due to the higher amount of conducted
tests and random network noise. Around the time points 460-500 and 1600-1900,
we see a slight shift, but nothing alarming that would be considered a significant
change. From this first visual analysis, we would probably conclude that the
system is running stable enough to not be alerted. However, that aggregation
hides a significant performance change. The convenience, or sometimes necessity,
of computing summary statistics and grouping data to infer information this time
concealed important facts about the underlying system. In order to detect this
performance change, we have to look at additional charts and metrics.

In Figure 5c, we plot the same aggregation as in Figures 5a and 5b, but also
plot the 90th percentile of the data to come to a more profound conclusion:
There actually has been a performance change that is now very clear due to
our new plot of the 90th percentile. While this can mean that percentiles also
show temporary spikes or noise, it also means that if we see a significant and
persisting shift in these percentiles, but not in our average or median, that a
subset of our data, i.e., a subset of our users, indeed has experienced issues in

194 J. Cito et al.

performance and we need to act upon this information. Another way of detecting
issues of this kind is to plot all data points in a scatterplot. This allows us to have
an overview of what is going on and to identify anomalies and patterns more
quickly. As we can see in Figure 5d, a majority of data points is still gathered
around the lower response time mean. But we can also see clearly that there has
been a movement around the 400 time point mark that sustains over the whole
course of the observation, building its own anomaly pattern.

(a) Variance Changepoints (b) Mean Changepoints

(c) 90th percentile and mean plot (d) Partial Delay Scatterplot

Fig. 5. Partial Delay results

Statistical Changepoint Analysis. Analyzing both the changepoints in the vari-
ance in Table 3 and Figure 5a, as well as the changepoints in the mean in Table
4 and Figure 5b yields no surprise following our initial exploratory visual anal-
ysis. The changes that have been identified are not significant enough to be
detected through the mean and the variance respectively. Although we need to
point out that both analyses actually detected the actual significant change-
point around the time point 374-376, but are disregarded as false positives by
our post-processing step of checking the threshold. Thus, our post-process actu-
ally resulted into a false negative. This is usually a sign that an indicator (in our
case the threshold c) needs to be adjusted or rethought completely. However,
before this kind of decision can be made, more information has to gathered on
how this indicator has performed in general (i.e., more empirical evidence on
false negatives, ratio between false positives and false negatives, etc.).

In order for our regular statistical analysis process, as applied previously, to
properly work we need a further pre-processing step. Neither mean nor variance
can detect the performance change, therefore, we need to consider a different
metric. In our exploratory analysis, we concluded that the 90th percentile was
able to detect the change. Thus, we need to apply our changepoint analysis to
percentiles in order to detect a significant shift for partial delays.

Identifying Root Causes of Web Performance Degradation 195

Table 3. Variance CP for SP

τ σ2
<τ σ2

>τ

374 12.88 24.25
1731 24.25 12.43
1911 12.43 6.63

Table 4. Mean CP for SP

τ μ<τ μ>τ λ c CP/FP
376 114.74 121.92 7.18 45.88 FP
1710 121.92 118.91 3.01 48.76 FP
1756 118.91 124.1 5.19 47.56 FP
2035 124.1 122.27 1.83 49.64 FP

Periodic Delay. Periodic delays are either global or partial delays that occur
in specific intervals, persist for a certain amount of time, and then performance
goes back to its initial state.

Exploratory Visual Analysis. For this experiment we recorded enough values to
result into three periods that indicate a performance degradation for a certain
amount of time before returning back the system returns to its normal operation.
The intuition we have on periodic delays can be clearly observed in Figure 6.
Between the phases, we have usual performance operation with usual volatility,
and in between we see fundamental shifts that persist for approximately 20
minutes before another shift occurs. Seeing periodic delays is fairly simple, as
long as we are looking at a large enough scale. If we would have observed the
time series within the periodic phase, before the second shift to the normal state
occurred, we might have concluded it to be a simple global delay. Thus, looking
at time series at a larger scale might help to identify periodic delays that would
have otherwise been disregarded as short-term trends or spikes.

(a) Variance Changepoint (b) Mean Changepoint

Fig. 6. Periodic Delay results

Statistical Changepoint Analysis. While the exploratory visual analysis in pe-
riodic delays was straight forward, the changepoint analysis brings some inter-
esting insights. Figure 6a and Table 5 show the analysis for the changepoints in
the variance, which mostly coincide with our visual assessment. Merely the first
detected changepoint in the variance is a false negative.

The changepoint in the mean yields more interesting results, as seen in Table
6 Contrary to the results in the other experiments the number of false positives
is very low at only one. When looking at the result in Figure 6b, we can observe

196 J. Cito et al.

another interesting phenomena we have not seen before, a false negative. The
third period was not detected as a changepoint in the mean by the algorithm,
although it was detected by the changepoint in the variance method. This means,
in order to avoid false negatives, we should apply both analyses for changepoint
in the mean and variance.

Table 5. Variance CP for SPD

τ σ2
<τ σ2

>τ

32 5.21 20.22
46 20.22 156.25
62 156.25 11.73
181 11.73 233.96
199 233.96 16.3
327 16.3 180.3
343 180.3 25.16

Table 6. Mean CP for SPD

τ μ<τ μ>τ λ c CP/FP
33 100.47 113.27 12.8 40.18 FP
47 113.27 168.11 54.84 45.31 CP
63 168.11 106.18 61.93 42.47 CP
180 106.18 169.35 63.17 42.46 CP
199 169.35 110.52 58.83 44.20 CP

4.4 Threats to Validity

In this research, we employ a simplified simulation model in order to show how
significant performance changes can be detected in continuously observed data
of a constructed target system. The creation and design of a simulation model
comes with inherent risk concerning the validity of the results when applied
to real-life systems. Most importantly, in our simulation design, we do not ac-
tively inject the notion of web traffic workloads (as has been, for instance, taken
in consideration in [16]), but rather simulate the variability of workloads (and
therefore response times) in web services through specific scenarios parameters.
Further, the notions of network traffic and network volatility in wide area net-
works (WAN) are completely omitted to limit the interference of network noise
in the recorded data. Of course, noise is still present even in LANs, but is limited
to very few factors within the data center, as opposed to the possible factors in
WANs. This also means that there is, for instance, no increased response time
due to DNS resolution in our experiments.

5 Related Work

Analyzing performance data observed through continuous monitoring in dis-
tributed systems and web services has produced a large body of research dealing
with statistical modeling of underlying systems, anomaly detection and other
traditional methods in statistics to address problems in performance monitoring
and analysis. For instance, Pinpoint [8] collects end-to-end traces of requests in
large, dynamic systems and performs statistical analysis over a large number
of requests to identify components that are likely to fail within the system. It
uses a hierarchical statistical clustering method, using the arithmetic mean to

Identifying Root Causes of Web Performance Degradation 197

calculate the difference between components by employing the Jaccard similar-
ity coefficient [13]. [11] makes use of statistical modeling to derive signatures
of systems state in order to enable identification and quantification of recur-
rent performance problems through automated clustering and similarity-based
comparisons of the signatures. [1] proposes an approach which identifies root
causes of latency in communication paths for distributed systems using statis-
tical techniques. An analysis framework to observe and differentiate systemic
and anomalous variations in response times through time series analysis was
developed in [9]. A host of research from Borzemski et al. highlights the use
of statistical methods in web performance monitoring and analysis [2–6]. The
research work spans from statistical approaches to predict Web performance to
empirical studies to assess Web quality by employing statistical modeling. [19]
suggests an approach to automated detection of performance degradations us-
ing control charts. The lower and upper control limits for the control charts are
determined through load testing that establish a baseline for performance test-
ing. The baselines are scaled employing a linear regression model to minimize the
effect of load differences. [10] proposes an automated anomaly detection and per-
formance modeling approach in large scale enterprise applications. A framework
is proposed that integrates a degradation based transaction model reflecting re-
source consumption and an application performance signature that provides a
model of runtime behavior. After software releases, the application signatures
are compared in order to detect changes in performance. [17] conducted an ex-
perimental study comparing different monitoring tools on their ability to detect
performance anomalies through correlation analysis among application parame-
ters. In the past, we have also applied time series analysis to the prediction of
SLA violations in Web service compositions [15].

6 Conclusion and Future Work

A taxonomy of root causes in performance degradations in web systems has been
introduced, which was further used to construct scenarios to simulate issues in
web performance within an experimental setup. In a series of simulations, we
measured how performance metrics develop over time and presented the results.
Furthermore, we provided analysis and interpretation of the results. Following
the work presented in this paper, there are possible improvements and further
work we were not able to address sufficiently. Performance data gathered through
external synthetic monitoring only allows for a black box view of the system and
is often not sufficient for in-depth root cause analysis of performance issues.
Combining data from external monitoring and internal monitoring in order to
automate or assist in root cause analysis and correlation of issues is a possible
approach that should be considered. The simulation and analysis in this paper
is limited to performance issues on the server. Further work might include ex-
tending the taxonomy of root causes and simulation scenarios to also represent
frontend performance issues.

198 J. Cito et al.

Acknowledgements. The research leading to these results has received par-
tial funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement 610802 (CloudWave). Numerical sim-
ulation was carried out during a research visit of the first author at Catchpoint
Systems, Inc., New York, USA. The authors would like to thank Prof. Gernot
Salzer for his comments on earlier versions of this work.

References

1. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Per-
formance debugging for distributed systems of black boxes. ACM SIGOPS Oper-
ating Systems Review 37, 74–89 (2003)

2. Borzemski, L.: The experimental design for data mining to discover web perfor-
mance issues in a wide area network. Cybernetics and Systems 41(1), 31–45 (2010)

3. Borzemski, L., Drwal, M.: Time series forecasting of web performance data mon-
itored by MWING multiagent distributed system. In: Pan, J.-S., Chen, S.-M.,
Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 20–29. Springer,
Heidelberg (2010)

4. Borzemski, L., Kamińska-Chuchma�la, A.: Knowledge discovery about web per-
formance with geostatistical turning bands method. In: König, A., Dengel, A.,
Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II.
LNCS, vol. 6882, pp. 581–590. Springer, Heidelberg (2011)

5. Borzemski, L., Kaminska-Chuchmala, A.: Knowledge engineering relating to spatial
web performance forecasting with sequential gaussian simulation method. In: KES,
pp. 1439–1448 (2012)

6. Borzemski, L., Kliber, M., Nowak, Z.: Using data mining algorithms in web per-
formance prediction. Cybernetics and Systems 40(2), 176–187 (2009)

7. Bouch, A., Kuchinsky, A., Bhatti, N.: Quality is in the eye of the beholder: meeting
users’ requirements for internet quality of service. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 297–304. ACM (2000)

8. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: Problem
determination in large, dynamic internet services. In: Proceedings of International
Conference on Dependable Systems and Networks, DSN 2002, pp. 595–604. IEEE
(2002)

9. Chen, Y., Mahajan, R., Sridharan, B., Zhang, Z.-L.: A provider-side view of web
search response time. SIGCOMM Comput. Commun. Rev. 43(4), 243–254 (2013)

10. Cherkasova, L., Ozonat, K., Mi, N., Symons, J., Smirni, E.: Automated anomaly
detection and performance modeling of enterprise applications. ACM Transactions
on Computer Systems (TOCS) 27(3), 6 (2009)

11. Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., Fox, A.: Capturing,
indexing, clustering, and retrieving system history. ACM SIGOPS Operating Sys-
tems Review 39, 105–118 (2005)

12. Heikes, R.G., Montgomery, D.C., Rardin, R.L.: Using common random numbers
in simulation experiments - an approach to statistical analysis. Simulation 27(3),
81–85 (1976)

13. Jaccard, P.: The distribution of the flora in the alpine zone. 1. New Phytolo-
gist 11(2), 37–50 (1912)

14. King, A.: Speed up your site: Web site optimization. New Riders, Indianapolis
(2003)

Identifying Root Causes of Web Performance Degradation 199

15. Leitner, P., Ferner, J., Hummer, W., Dustdar, S.: Data-Driven Automated Predic-
tion of Service Level Agreement Violations in Service Compositions. Distributed
and Parallel Databases 31(3), 447–470 (2013)

16. Liu, Z., Niclausse, N., Jalpa-Villanueva, C., Barbier, S.: Traffic Model and Perfor-
mance Evaluation of Web Servers. Technical Report RR-3840, INRIA (December
1999)

17. Magalhaes, J.P., Silva, L.M.: Anomaly detection techniques for web-based appli-
cations: An experimental study. In: 2012 11th IEEE International Symposium on
Network Computing and Applications (NCA), pp. 181–190. IEEE (2012)

18. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Model-
ing and Computer Simulation (TOMACS) 8(1), 3–30 (1998)

19. Nguyen, T.H., Adams, B., Jiang, Z.M., Hassan, A.E., Nasser, M., Flora, P.: Auto-
mated detection of performance regressions using statistical process control tech-
niques. In: Proceedings of the Third Joint WOSP/SIPEW International Conference
on Performance Engineering, pp. 299–310. ACM (2012)

20. R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, (2013)

21. Forrester research. Ecommerce web site performance today: An updated look at
consumer reaction to a poor online shopping experience (August 2009)

22. Shirazi, B.A., Kavi, K.M., Hurson, A.R. (eds.): Scheduling and Load Balancing
in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos
(1995)

Indexing Rich Internet Applications

Using Components-Based Crawling

Ali Moosavi1, Salman Hooshmand1, Sara Baghbanzadeh1,
Guy-Vincent Jourdan1,2, Gregor V. Bochmann1,2, and Iosif Viorel Onut3,4

1 EECS - University of Ottawa
2 Fellow of IBM Canada CAS Research, Canada

3 Research and Development, IBMR© Security AppScanR© Enterprise
4 IBM Canada Software Lab., Canada

{smousav2,shooshma,sbaghban}@uottawa.ca,
{gvj,bochmann}@eecs.uottawa.ca,

vioonut@ca.ibm.com

Abstract. Automatic crawling of Rich Internet Applications (RIAs) is a
challenge because client-side code modifies the client dynamically, fetch-
ing server-side data asynchronously. Most existing solutions model RIAs
as state machines with DOMs as states and JavaScript events execution
as transitions. This approach fails when used with “real-life”, complex
RIAs, because the size of the produced model is much too large to be
practical. In this paper, we propose a new method to crawl AJAX-based
RIAs in an efficient manner by detecting “components”, which are areas
of the DOM that are independent from each other, and by crawling each
component separately. This leads to a dramatic reduction of the required
state space for the model, without loss of content coverage. Our method
does not require prior knowledge of the RIA nor predefined definition
of components. Instead, we infer the components by observing the be-
havior of the RIA during crawling. Our experimental results show that
our method can index quickly and completely industrial RIAs that are
simply out of reach for traditional methods.

Keywords: Rich Internet Applications, Web Crawling, Web Applica-
tion Modeling.

1 Introduction

In the past decade, modern web technologies such as AJAX, Flash, Silverlight,
etc. have given emergence to a new class of more responsive and interactive web
applications commonly referred to as Rich Internet Applications (RIAs). RIAs
make Web-applications more interactive and efficient by introducing client-side
computation and updates, and asynchronous communications with the server [1].
Crawling RIAs is more challenging than crawling traditional web applications
because some core characteristics of traditional web applications are violated by
RIAs. Client states no longer correspond to unique URLs as modern web tech-
nologies enable the ability to change the client state and even populate it with

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 200–217, 2014.
c© Springer International Publishing Switzerland 2014

Indexing RIAs Using Components-Based Crawling 201

new data without changing the URL, up to the point that it is possible to have
complete complex web applications with a single URL. Moreover, JavaScript
events (from here on, called “events”) can take the place of hyperlinks; and
unlike hyperlinks, the crawler cannot predict the outcome of an event before ex-
ecuting it. In that sense, the behavior and user interface of a RIA is more similar
to an event-driven software like a desktop software GUI than to a traditional
web application.

The problem of crawling AJAX-based RIAs has been a focus of research in the
past few years. In such RIAs, executing events can change the Document Object
Model (DOM), hence leading the RIA to a new client state, and can possibly
leaned to message exchanges with the server, changing the server state as well.
A common approach is to model a RIA as a finite state machine (FSM). In the
FSM, DOMs are represented as states and event executions are represented as
transitions. Events can lead from one DOM-state1 to another.

One simplifying assumption that is usually made is that server states are in
sync with client states. Therefore by covering all client states (i.e. DOM-states),
the crawler has also covered all server states. Based on this assumption, by ex-
ecuting each event from each DOM-state once and building a complete FSM
model from the RIA, the crawler can assume that the RIA has been entirely
covered and modeled. In order to stay in sync with server, however, the crawler
cannot jump to arbitrary DOM-states at will (e.g. by saving DOM-state in ad-
vance and restoring it when desired); instead, it must follow a sequence of events.
If the desired DOM-state is not reachable from the current DOM-state using a
chain of transitions (called a “transfer sequence”), the crawler needs to issue a
“reset” (reloading the URL of the initial page) to go to the initial DOM-state
and follow a valid transfer sequence from there. Resets are usually modelled as
special transitions from all DOM-states to the initial DOM-state. In the be-
ginning, the only known DOM-state is the initial DOM-state and all its events
are unexecuted yet. By executing an unexecuted event, the crawler discovers its
destination, which might be a known DOM-state or a new one. The event exe-
cution can then be modelled as a transition between its source and destination
DOM-states. A state machine can be represented as a directed graph. The prob-
lem of crawling a RIA is therefore that of exploring an unknown graph. At any
given time, the crawler needs to execute an unexecuted event, or use the known
portion of the graph to traverse to another DOM-state to execute one, until all
events in the graph have been executed, at which point the graph is fully uncov-
ered and crawling is done. Based on this model, different exploration strategies
(such as depth-first search, Greedy and Model-Based strategies, see Section 2)
have been suggested. Comparing different exploration strategies can be done by
comparing the number of events and resets executed during the crawl. We call
this the “exploration cost”.

1 Related works in the literature commonly refer to DOM-states simply as “states”. In
this work we differentiate between “DOM-states” and what we will call “component-
states”.

202 A. Moosavi et al.

One major challenge in this field is a state space explosion: the model being
built grows exponentially in the size of the RIAs being crawled. This state space
explosion not only leads to production of a large model that is difficult to analyze,
but also makes the crawlers unable to finish in a reasonable time. Because of this
excessive running times, all DOM-based methods that have been published so far
are essentially unsuitable for real-life scenarios. These methods cannot be used
in the industrial world. Current studies use different notions of DOM equivalence
to map several DOMs to one state. These approaches usually involve applying
reduction and normalization functions on the DOM. While these approaches
have been used and tested successfully on experimental RIAs, they fail to provide
satisfactory equivalency criteria when faced with real-world large-scale RIAs.

Most of the time, this state space explosion is caused by having the same data
being displayed in different combinations, leading to large sets of new DOMs and
large state space for a small set of functionalities. In a typical RIA, it is com-
mon to encounter a new DOM-state which is simply a different combination
of already-known data (Figure 1). We call this situation new DOM-state with-
out new data. Such DOM-states should be ideally regarded as already known.
Today’s complex RIA interfaces consist of many interactive parts that are inde-
pendent from one another, and the Cartesian product of different content that
each part can show easily leads to an exponential blow-up of the number of
DOM-states. In the following, we call these independent parts components, and
each of their values component-state. A fairly intuitive example is widget-based
RIAs, in which various combination of contents that each widget can show cre-
ates a very large number of different DOM-states. Not all these DOM-states
are of interest to the crawler. A content indexing crawler, for instance, needs
to retrieve the content once and finish in a timely fashion. These “rehashed”
DOM-states only prolong crawling while providing no new data. Figure 1 pro-
vides an example. This issue is not just limited to widgets, but is present in any
independent part in RIAs down to every single popup or list item. Typical ev-
eryday websites such as Facebook, Gmail and Yahoo, and any typical RIA mail
client, enterprise portal or CMS contain dozens if not hundreds of independent
parts. Different combinations of these independent parts lead crawlers through
a seemingly endless string of new DOM-states with no new data. A human user,
on the other hand, is not confused by this issue since she views these components
as separate entities, and in fact would be surprised if the behavior of one of these
parts turns out to be dependent on another.

We observe that one major drawback inherent to all these methods is that
they model client states of RIA at the DOM level. We propose a novel method
to crawl RIAs efficiently by modeling in terms of states of individual sub-trees of
the DOM that are deemed independent, which we call components . Our method
detects independent components of RIA automatically, using the result of diffs
between DOMs. By modeling at the component level rather than at the DOM
level, the crawler is able to crawl complex RIAs completely (and in fact quickly)
while covering all the content. The resulting end-model is smaller and therefore
easier for humans to understand and for machines to analyze, while providing

Indexing RIAs Using Components-Based Crawling 203

Fig. 1. Example of a new DOM-state with no new data. The DOM in (c) is only a
combination of data already present in (b) and (a), but will have a new DOM-state
in the existing methods.

more information about the RIAs being modeled. As we will show in our ex-
perimental results, the method presented here is suitable to crawl and index
real-life, complex RIAs, without loss of content in our experiments, where pre-
viously published methods failed to do the same thing even on much simplified
version of the same RIAs.

The remainder of this paper is organized as follows. In Section 2, we provide
a review of related work. In Section 3 we present the general overview of our so-
lution. We first describe the model that the crawler builds, and we then describe
how the crawler builds this model and makes use of it during the crawl. Exper-
imental results and comparisons are presented in Section 4, and we conclude in
Section 5.

2 Related Works

Crawling RIAs using a state transition model has been extensively studied. Duda
et al. use a breadth-first search approach to explore RIA, assuming the ability
to cache and restore client states at will [2, 3]. In [2], they point to the state
space explosion problem caused by independent parts as an unresolved chal-
lenge. Amalfitano et al. use manual user-sessions to build a state machine [4]. In
a follow-up work, they automate their tool by using depth-first exploration [5].
Peng et al. propose using a greedy algorithm as exploration strategy that outper-
forms depth-first and breadth-first search exploration significantly [6]. We use
here the same greedy approach as exploration strategy. A different approach,
called “model-based crawling” [7], focuses on finding the clients states as soon
as possible by assuming some particular behavior from the RIAs [8,9]. The model

204 A. Moosavi et al.

used in [9] accumulates statical information about the result of previous event
executions to infer what event to execute next. All the these method suffer from
the problem of accumulating new DOM states that do no contain new data.
In [10], an approach similar to model-based crawling is used, but for sites that
have a known structure.

DynaRIA [11] provides a tool for tracing AJAX-Based application executions.
It generates abstract views on the structure and run-time behavior of the appli-
cation. The generated crawling model has been used for accessibility testing [12]
or for generating test sequences [13]. It also also been used for modelling native
android apps [14, 15] and native iOS apps [16].

All the above mentioned works use DOM-level state machines and use different
DOM equivalence criteria to guide crawling: in [17], an edit distance between
DOM-states is used. Methods based on DOM manipulations are used in [7–9,18].
These various DOM equivalence criteria do help but ultimately fail to address
completely the state space explosion problem. To alleviate this problem, in [17]
it is proposed to explore only new events that appear on a DOM after an event
execution.This limits the crawler’s ability to reach complete coverage, and does
not prevent exploring redundant data when different event execution paths lead
to the same structure (e.g. a widget frame) but in different DOMs. FeedEx [19]
extends [6] by selecting states and events to be explored based on probability to
discover new states and increase coverage. They include four factors to prioritize
the events : code coverage, navigational diversity, page structural diversity and
test model size. Surveys of RIAs crawling can be found in [20, 21].

In the context of detecting independent parts, static widget detection meth-
ods such as [22] and [23], and detection of underlying source dataset [24] have
been developed. In [23], the use of patterns for detecting widgets based on static
JavaScript code analysis and interaction between widget parts is proposed. How-
ever, these methods designed only to detect widgets or source datasets, which
are a small subset of independent entities in RIAs.

3 Component-Based Crawling

3.1 Overview of Our Solution

Our solution is to model RIAs at a “finer” level, using subtrees of the DOM
(called “components”) instead of modeling in terms of DOMs. By building a
state-machine at the component level, we get a better understanding of how
the RIA behaves, which helps addressing the aforementioned state explosion
problem [25]. The crawler can use this model along with its exploration strategy.
Our prototype implementation uses the greedy algorithm presented in [26] as the
exploration strategy. In this section we present a brief general overview of the
concept of components, before providing more details in the following Sections.

In a typical real-life RIA such as the one depicted in Figure 2, a given “page”
(DOM-state) contains a collection of independent entities. We call these entities
“components”. They are subtrees of the current DOM. Examples of components

Indexing RIAs Using Components-Based Crawling 205

include menu bars, draggable windows in Twitter, as well as each individual
tweet, chat windows in Gmail, as well as the frame around each chat window,
the notifications drop-down and mouse-over balloons in Facebook, etc. Users
normally expect to be able to interact with each of these components indepen-
dently, without paying attention to the state of the other components on the
page. Classical crawling methods do not consider these components, and conse-
quently generate every possible combination of these components states while
building the model. Our aim is to detect these components to crawl each of
them separately. The assumption of independency between components enables
our method to “divide and conquer” the RIA to overcome state space explo-
sion without loss of coverage. We expect this assumption to hold true in almost
all real-life RIAs as it follows human user intuition. We did not encounter any
counterexamples in our investigation of real-life RIAs. If, however, there are
components on a particular RIA that affect each other, the crawler might lose
coverage of some of the content of the RIA since it does not analyze the in-
teractions between the components. In our experiments, this situation did not
occur.

Fig. 2. (a) A webpage, (b) components on the page the way a human user sees them
as entities of the page, and (c) the way the crawler sees them as subtrees of the DOM

The input of the crawler after each event execution is the DOM tree. Since
components appear as subtrees in the DOM tree, we partition the DOM into
multiple subtrees that are deemed independent of each other. Each of these sub-
trees correspond to a particular state of a component (a component-state). We
model the RIAs as a combination of independent component states instead of
assigning a DOM-state to the entire DOM. The idea of components and their as-
sociated component-states completely replace use of DOM-states in our method.
Each component has a set of possible component-states, and a component-state
of a particular component is only compared to other component-states of its
own.

As explained, in our model, at any given time, the RIA is in a set of component-
states, since it consists of different components each in its own component-state.
It is worth mentioning that the DOM is partitioned into components in a collec-
tively exhaustive and mutually exclusive manner, meaning that each XML-node

206 A. Moosavi et al.

on the DOM tree belongs to one and only one component. Modeling RIAs at
the component level as several benefits. The most obvious one is that it reduces
the state space by avoiding modeling separately every combination of compo-
nent states, including the many instances in which the combination is new but
each component state has been seen before (as depicted previously in Figure 2).
Moreover, this fine-grained view of RIA helps the crawler map the effect of event
executions more precisely, resulting in a simpler model of the RIA with fewer
states and transitions. As a result, the crawler will traverse the RIA more effi-
ciently by taking fewer steps when aiming to revisit a particular structure (such
as a text or event) in the RIA that is not present in the current DOM. The
resulting model of the RIA will also be more easily understandable by humans
because it has fewer states and transitions and the effect of each event execution
on the DOM is defined more clearly.

To illustrate the potential gain of our methods, imagine that the current
DOM is made of k independent components C1, C2, . . . , Ck. Assume that each
component Ci has C̄i components states. Using the traditional, DOM-state based
method, this will lead to

∏k
i=1 C̄i DOM-states. If in addition the components

can be moved freely on the page, this number will be repeated k! times, leading
to k!

∏k
i=1 C̄i DOM-states. This already intractable number will increase even

more of some components are repeated or if some components can be removed
from the DOM. Using our method yields only

∑k
i=1 C̄i component-states for the

same RIAs, even when the components are repeated or removed from the page.

3.2 Model Description

In our model, we partition each DOM into independent components. Each com-
ponent has its own component-state so the current DOM corresponds to a set of
component-states in the state machine. Because JavaScript events are attached
to XML nodes, each event resides in one of the component-states present in the
DOM. We call it the “owner component-state” of the event2.

3.2.1 Multistate Machine
An event is represented as a transition that starts from its owner component-
state. Since the execution of the event can affect multiple components, the corre-
sponding transition can end in multiple component-states. Therefore, our model
is a multi-state-machine. Figure 3 illustrates how an event execution is mod-
eled in our method versus other methods. The destination component-states of
a transition correspond to component-states that were not present in the DOM,
and appeared as a result of the execution of the event.

Our model is a multistate-machine, defined as a tuple M = (A, I ,Σ , ∂) where
A is the set of component-states, I is the set of initial component-states (those
that are present in the DOM when the URL is loaded), Σ is the set of events, and
∂ : A×Σ → 2A is a function that defines the set of valid transitions. Similarly to

2 For events that are not attached to an XML-node on the DOM, such as timer events,
a special global always-present component is defined as their owner component.

Indexing RIAs Using Components-Based Crawling 207

Fig. 3. An event execution modeled with (a) DOM-states, and (b) component-states.
Rectangles in (b) represent DOM-states and are not used in the actual model.

the classical state-transition model, ∂ is a partial function, since not all events
are available on all component states. Unlike the state-transition model, we
have a set of initial states, and executing an event can modify any number of
component-states. Our multistate-machine is resilient to shuffling components
around in a DOM, and does not store information about exact location of the
component-states in a DOM.

3.2.2 Components Definition
We have mentioned that components must be “independent” from one another.
By this, we mean that the outcome of execution of an event only depends on
the component-state of its owner component. In other words, the behavior of an
events in a component is independent from the other components in the DOM
and their individual component states. As an example, the border around a
widget that has minimize/close buttons is independent of the widget itself, since
it minimizes or closes regardless of the widget that it is displaying. Therefore,
the widget border and the widget itself can be considered separate independent
components. On the other hand, the next/previous buttons around a picture
frame are dependent on that picture frame, since their outcome depends on the
picture currently being shown. So the next/previous buttons should be put in
the same component as the picture frame. Note that event executions outcome
can affect any number of components and this does not violate the constraint of
independency.

Two notions are important in our definition: first, we need to specify how we
define a component, then how we capture the various component states that
component might have.

Component are identified by an XPath, which specifies the root of the sub-
tree that contains this component. In order to find a particular component in
the DOM, one should start from the document root and follow the component’s
associated XPath. The element reached is the root of the component i.e. the

208 A. Moosavi et al.

component is the subtree under that element. Note that an XPath can poten-
tially map to several nodes, therefore several instances of a component can be
present in a DOM at the same time. Since the XPath serves as an identifier
for a component, we need the XPath to be consistent throughout the RIA, i.e.
it should be able to point to the intended subtree across different DOMs of
the RIA. However, some attributes commonly used in XPath are too volatile
to be consistent throughout the RIA. Hence, we only use the “id” and “class”
attributes for each node in the XPath, and omit other predicates such as the
position predicate.

Here is how we build an XPath for an element e: we consider the path p from
the root of the DOM to e, and for each HTML element in p, we include the tag
name of the element, the id attribute if it has one, and the class attribute if it
has one.

Fig. 4. Part of a shopping website’s DOM

Figure 4 is an example of DOM for a shopping website. Individual list items
in the product list are instances of a component “product list item”. In this
example, there are two instances of this component, which is identified by the
XPath /html/body/div[@id=“dvContent”]/div[@class=“ListItem”]. But the se-
lected item in the list yields a different XPath since it is assigned a different
class attribute, [@class=“ListItemSelected”].

Each component, identified by its XPath which points at the root of the com-
ponent, can have a series of component states that are going to be uncovered
throughout the crawl. These states are simply the content of the subtree found
under the XPath. For efficiency reasons, we are not recording the entire subtree
for each component state. Instead, we derive a unique identifier for the com-
ponent state by hashing the content of the corresponding subtree3. In practice,
the crawler keeps information on each component-state of each component in
a data structure for use by the greedy algorithm. A simplified version of the
data structure, called stateDictionary, is depicted in Table 1. In general, on any
given DOM, some components are present in the DOM and some are not. Using
the “Component Location” column, the crawler can find out which components
are present on the DOM, then use the component’s content to compute its ID.

3 In reality, we first prune nested sub-components as explained later, and we also
perform some transformations on the subtree to detect equivalents sub-components.
See [27] for more details.

Indexing RIAs Using Components-Based Crawling 209

Using the “Component-State ID” column it can look up additional info on that
component-state (event/transition destinations, unexecuted events, etc.), or dis-
cover that it is a new component-state.

Table 1. The StateDictionary

Component Location (XPATH) Component State-ID (Hash) Info

1 / @J#F@)J#403rn0f29r3m19

2 /html/body/div[@id=”dvClipList”]
*&ˆ$@̂J$$P@@$#$# !$ *$ * ...
GPDFJD}{PL”!{#R$$)%$*! $#!! ...

3 /html/body/div[@id=”dvContent”]
VMLCVCPQ!#$! ()̃ IKEF) I) ...
{:$%@)(@#*GRJPGFD{#@)(...
?”$#%*%@$)(!#HI! D}{|||#R!#! ...

Since components are identified by their XPath, it is possible to have nested
components, with the root of one component (identified by its XPath) failing
inside the subtree of another component. If a component contains other com-
ponents, these components should be removed from the containing component
when defining that component’s states. The pseudo-algorithm below explains
how to list all the known component states that are present in the current DOM.
Refer to [27] for more details.

Algorithm 1. Pseudo-code to find current component-states

procedure FindCurrentStates

for all xpath in stateDictionary do
ComponentInstances := go through the xpath and give the subtree
for all Instance in ComponentInstances do

for all sub-path under the current xpath do
go through the sub-path and prune the subtrees

end for
stateID := ReadContentsAndComputeStateID(instance)
Add the stateID to SetOfCurrentState

end for
end for
return SetOfCurrentStates

end procedure

Note that the only location information for component states is an XPath to
the root of the component state. Therefore, while our model is able to break
a DOM into component-states, it is not possible to reconstruct an exact DOM
using the multi-state-machine. While the resulting model of a RIA can be used
to infer an execution trace to any given component state (thus any content of
the RIA), it cannot be used to infer an execution trace to any given DOM.

210 A. Moosavi et al.

3.3 Crawling Algorithm

As explained above, a crawling algorithm relies on an exploration strategy that
tells it which events to execute next. Several exploration strategies can be used
with our model. We explain our algorithm independently from the chosen strat-
egy (which is “greedy” in our prototype).

Generally, using the “Component Location” list in the stateDictionary, the
crawler can discover new component-states during the crawl and populate the
“Component-State ID” lists. Our proposed component discovery algorithm pop-
ulates the Component Location and Component-State ID lists incrementally
during the crawl as it observes the behavior of the RIA. The algorithm is based
on comparing the DOM tree snapshots before and after each event execution.
Every time an event is executed by the crawler, the subtree of the DOM that
has changed as a result of the event execution is considered a component.

The way we compare the DOM trees to obtain the changed subtree is defined
as follows: suppose the DOM-tree before the event execution is Tbefore and the
DOM tree after the event execution is Tafter . We traverse Tbefore using breadth-
first search. For each node x in Tbefore , we compute the path from root to x,
and find the node y in Tafter that has the same path. If x and y are different,
or have different number of children, x is considered the root of a component;
its XPath is added to the stateDictionary if not already existing, and the search
is discontinued in the subtree of x . If several such nodes y exist in Tafter , their
deepest common ancestor is used as the root of the component.

Initially, the stateDictionary contains only one component with XPath “/”.
Additional components are discovered and added to the stateDictionary as the
crawling proceeds. The algorithm is summarized in the pseudo-code below. One
important practical point to note is that the discovery of a new component
can lead to a modification of previously known component states, if the new
component is nested inside these component states. As explained before, the
new component must be pruned from the containing component states, so their
component state ID must be recomputed. It is not practical to save all component
states DOM to be able to recompute their ID when this occurs. Instead, in our
prototype we mark these component states as invalid and visit them again later
during the crawl.

4 Experimental Results

4.1 Test Cases

In order to evaluate the efficiency of our method, we have run some crawling
experiments with a number of experimental and real RIAs. We split these re-
sults in two categories. In the first category, we have seven simple RIAs4. Two of
these are test application that we have built ourselves for testing purpose, while
the five other ones are real, but simple (or simplified) RIAs. We have also run our

4 http://ssrg.eecs.uottawa.ca/testbeds.html

http://ssrg.eecs.uottawa.ca/testbeds.html

Indexing RIAs Using Components-Based Crawling 211

Algorithm 2. Pseudo-code of proposed crawling algorithm

1: procedure ComponentBasedCrawl

2: for as long as crawling goes do
3: event := select next event to be executed based on the exploration strategy
4: execute (event)
5: delta := diff (dombefore , domafter)
6: xpath := getXpath (delta)
7: if stateDictionary does not contain xpath then
8: add xpath to stateDictionary
9: end if
10: resultingStates := FindCurrentStates(delta)
11: for all state in resultingState do
12: if stateDictionary does not contain state then
13: add state to stateDictionary
14: end if
15: event.destinations := resultingStates
16: end for
17: end for
18: return stateDictionary
19: end procedure

test on two real “complex” RIAs: IBM Rational Team Concert (RTC5), an agile
application life-cycle management web-based application, and MODX 6, an open
source content management system. For these two test cases, the complexity
of the web site made it impossible for us to crawl with classical method for
comparison, so we report the results separately in Section 4.3. Note that the
number of test cases is not as large as we would like, but we are faced with
the limitation of the tools we use to execute the crawl on RIAs7. We provide
the characteristics of the model built for each of these nine RAIs in table 2.
Note that these are the numbers for our component-based model, which is much
smaller than the classical DOM-based model (see [27] for more details).

Table 2. Applications tested, along with their number of states and transitions in
component-based model

Name # States # Trans. Type Name # States # Trans. Type

Bebop 119 774 Simple TestRIA 67 191 Test
Elfinder 152 3,239 Simple Altoro 87 536 Test
Periodic 365 2,019 Simple RTC 432 3,667 Complex
Clipmarks 31 377 Simple MODX 1,291 7,868 Complex
DynaTable 24 49 Simple

5 https://jazz.net/products/rational-team-concert
6 http://modx.com
7 We stress that the work in question is not related to the strategy described here,
but to the limitation of the available tools.

https://jazz.net/products/rational-team-concert
http://modx.com

212 A. Moosavi et al.

We have implemented all the mentioned crawling strategies in a prototype
of IBM R© Security AppScan R© Enterprise8. Each strategy is implemented as a
separate class in the same code base, so they use the same DOM equivalence
mechanism [28], the same event identification mechanism [29], and the same
embedded browser. For this reason, in Section 4.2 all strategies find the same
model for each application. We crawl each application with a given strategy ten
times and present the average of these crawls. In each crawl, the events of each
state are randomly shuffled before they are passed to the strategy. The aim here
is to eliminate influences that may be caused by exploring the events of a state
in a given order since some strategies may explore the events on a given state
sequentially.

4.2 Results on Simple RIAs

This first set of test case were simple enough to allow crawling with the tra-
ditional method. We report here comparisons with the greedy exploration [6]
and the probability strategy [8], which are known to be to two most efficient
strategy for building an exhaustive model [9]. This gives us complete knowledge
of the model, allowing us to see whether our optimized strategy provides 100%
coverage.

4.2.1 Complete Exploration Cost
Our first set of results are about the “total exploration costs”, that is, the cost
of finishing the crawl, expressed in terms of number of events executed. Most
results are detailed in Figure 5. As can be seen, our component-based crawl-
ing method consistently outperforms both probability method and the greedy
method by a very wide margin. The difference is more dramatic in RIAs that
have a complex behavior, though even for the smaller ones, TestRIA and Altoro
Mutual (not shown), the cost of component-based crawling is about 30% of the
cost of the other methods. The best example among our test cases is Bebop,
which contains very few data items shown on the page, but can sort and filter
and expand/collapse those items in different manners. Even in an instance of
the RIA with only 3 items, component-based crawling is 200 times more effi-
cient than the other methods. This difference in performance quickly gets even
bigger in an instance of the RIA with more items, as shown in Section 4.2.4.

4.2.2 Time Measurement
Since component-based crawling requires a fair amount of computation at each
step, we also measured time in similar experiments to ensure this processing over-
head does not degrade the overall performance. As can be seen on Table 3, even
in terms of absolute time component-based crawling significantly outperforms
the two other methods.
8 Details are available at http://ssrg.eecs.uottawa.ca/docs/prototype.pdf Since
our crawler is built on top of the architecture of a commercial product, we are not
currently able to provide open-source implementations of the strategies.

http://ssrg.eecs.uottawa.ca/docs/prototype.pdf

Indexing RIAs Using Components-Based Crawling 213

ClipMarks Periodic Table Elfinder Bebop DynaTable
0

20,000

40,000

60,000

80,000

1
2
,3
9
8

3
1
,8
1
4

3
0
,8
3
3

7
2
,2
9
0

9
,0
7
8

1
2
,5
6
2

3
1
,4
5
6

3
2
,0
1
4

7
1
,0
4
1

9
,2
2
7

4
4
3 3
,8
5
6

2
,7
3
3

2
9
3

9
8

E
x
p
lo
ra
ti
o
n
C
o
st

Greedy Probability Component-Based

Fig. 5. Comparison of exploration costs of finishing crawl for different methods

Table 3. Time of finishing crawl for different methods (hh:mm:ss)

TestRIA Altor-Mutual ClipMarks Periodic Table Elfinder Bebop DynaTable

Greedy 00 : 00 : 18 00 : 00 : 34 00 : 03 : 38 01 : 13 : 08 00 : 51 : 22 01 : 25 : 11 00 : 05 : 35
Probability 00 : 00 : 11 00 : 00 : 20 00 : 02 : 50 01 : 09 : 42 00 : 49 : 00 01 : 17 : 32 00 : 04 : 51
Component-Based 00 : 00 : 06 00 : 00 : 04 00 : 00 : 13 00 : 01 : 21 00 : 08 : 21 00 : 00 : 29 00 : 00 : 06

4.2.3 Coverage
Unlike previous DOM-based methods, component-based crawling does not guar-
anty complete coverage. This is because the method is based on discovering
automatically independent components, and if the method wrongly identifies as
“components” sections of the DOM that are not independent from each other,
some coverage might be lost. It is difficult to know in general the amount of
coverage that can be lost, but in the case of our seven test cases, our method
systematically reached 100% coverage. No information was lost despite the dra-
matic decrease in crawling time.

4.2.4 Scalability
Some of the test RIAs that we used had to be significantly “trimmed” before they
could be crawled by the traditional methods. One example is Clipmark, which
displays a number of items on the page. Although it had initially 40 items, we
had to reduce it to 3 in order to finish the crawl with the traditional methods!
When using component-based crawling, on all of our test beds we were easily
able to finish the crawl on the original data, and we could increase the number
of items beyond that without problem. We show the data for two examples,
Clipmarks on Figure 6 and Bebop on Figure 7. As can clearly been seen on both
examples, while the crawling time increases linearly with the number of items

214 A. Moosavi et al.

in the page when using component-based crawling, it grows exponentially with
the DOM-based, greedy method and soon becomes intractable. The results are
the same with probability, and will necessarily be similar for any DOM-based
crawling method, since the size of the end-model itself increases exponentially
with the number of items in the page. This shows that component-based crawling
is able to crawl and index RIAs that are simply out of reach to any DOM-based
strategy.

0 20 40

0

5,000

10,000

number of Items

T
im

e
(S
ec
o
n
d
s)

Comp.-Based

Greedy

Fig. 6. Scalability with Clipmarks

0 10 20 30

0

2,000

4,000

number of Items

Comp.-Based

Greedy

Fig. 7. Scalability with BeBop

4.3 Results on Complex RIAs

When crawling large and complex RIAs, comparison with DOM-based methods
do not tell much, since these methods are essentially unable to crawl them.
In addition, for many of these RIAs (e.g. Facebook, Gmail etc.), the amount
of data available is very large. “Finishing” the crawl is often not a realistic
proposition. Instead, the question becomes how efficient the crawl can be as
it progresses overtime. In order to measure this, we focus on the question of
crawling for indexing, where we argue that a fair definition of “efficient” is the
ability of the crawler to keep finding new content. In our experiment, we have
measured how much the textual information accumulated increases overtime. An
efficient method will provide a steady increasing amount of information, while
an inefficient method might stop providing any new information for long period
of times (basically re-fetching known data many times). We have measured how
“efficient” component-based crawling is, by counting how many “lines” of text
(excluding html tags) are accumulated overtime. As can been seen from the
Figures 8 and 9, for both of our examples, the method provides a nice steadily
increasing line, showing that the method is efficient at fetching new information
overtime. An inefficient method would have plateaued, during which the crawl
is not adding any new data.

Indexing RIAs Using Components-Based Crawling 215

0 500 1,000 1,500

500

1,000

1,500

Number of Events Executed

D
is
co
v
er
ed

co
n
te
n
t
(L

in
es
)

Fig. 8. Progress overtime with RTC

0 1,000 2,000

1,000

1,500

2,000

Number of Events Executed

Fig. 9. Progress overtime with MODX

5 Conclusions and Future Work

This work addresses one of the most prevalent problems in the context of crawl-
ing AJAX-based RIAs: state space explosion. The presented method detects
independent components and models the RIA at component level rather than
DOM level, resulting in exponential reduction of the overall crawling complex-
ity, with minimal or no loss of data coverage. The method captures the effect
of event execution more precisely, resulting in a simpler model with fewer states
and transitions. The produced model can point to any desired data with an
event execution trace from the initial state, but cannot necessarily produce a
path to lead to any valid DOM-state. The methods has been implemented using
a greedy exploration strategy and DOM diff as automatic component discovery
algorithm. Our experimental results verify the significant performance gain of
the method while covering equal content as DOM-based methods.

This work can be improved in several areas. In particular, our future work
include devising better algorithms for component discovery. One important im-
provement can be done on detection and handling of violations: currently, we
have no effective way of recovering from a situation where components that have
been assumed to be independent turn out not to be. We simply ignore theses
violation. Although that did not impact negatively our experimental results, we
cannot be sure that this won’t be the case on every RIAs. A naive approach for
detecting violations and adapting the strategy accordingly is not particularly
difficult, but it would be too costly to be practical.

Acknowledgments. This work is partially supported by the IBM Center for
Advanced Studies, and the Natural Sciences and Engineering Research Council of
Canada (NSERC). The views expressed in this article are the sole responsibility
of the authors and do not necessarily reflect those of IBM.

216 A. Moosavi et al.

Trademarks: IBM and AppScan are trademarks or registered trademarks of In-
ternational Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other com-
panies. A current list of IBM trademarks is available on the Web at Copyright
and trademark information at www.ibm.com/legal/copytrade.shtml. Java and
all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates.

References

1. Fraternali, P., Rossi, G., Sánchez-Figueroa, F.: Rich internet applications. IEEE
Internet Computing 14(3), 9–12 (2010)

2. Duda, C., Frey, G., Kossmann, D., Zhou, C.: Ajaxsearch: crawling, indexing
and searching web 2.0 applications. Proceedings of the VLDB Endowment 1(2),
1440–1443 (2008)

3. Duda, C., Frey, G., Kossmann, D., Matter, R., Zhou, C.: Ajax crawl: making ajax
applications searchable. In: ICDE 2009, pp. 78–89. IEEE (2009)

4. Amalfitano, D., Fasolino, A.R., Tramontana, P.: Reverse engineering finite state
machines from rich internet applications. In: Proceedings of WCRE, pp. 69–73.
IEEE (2008)

5. Amalfitano, D., Fasolino, A.R., Tramontana, P.: Rich internet application testing
using execution trace data. In: Proceedings of ICSTW, pp. 274–283. IEEE (2010)

6. Peng, Z., He, N., Jiang, C., Li, Z., Xu, L., Li, Y., Ren, Y.: Graph-based ajax crawl:
Mining data from rich internet applications. In: Proceedings of ICCSEE, vol. 3,
pp. 590–594 (March 2012)

7. Dincturk, M.E., Jourdan, G.V., Bochmann, G.v., Onut, I.V.: A model-based ap-
proach for crawling rich internet applications. ACM Transactions on the WEB (to
appear, 2014)

8. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Jourdan, G.-V., Bochmann, G.v.,
Onut, I.V.: Model-based rich internet applications crawling:menu and probability
models. Journal of Web Engineering 13(3) (to appear, 2014)

9. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Jourdan, G.-V., Bochmann, G.v.,
Onut, I.V.: Building rich internet applications models: Example of a better strategy.
In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 291–305.
Springer, Heidelberg (2013)

10. Faheem, M., Senellart, P.: Intelligent and adaptive crawling of web applications for
web archiving. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977,
pp. 306–322. Springer, Heidelberg (2013)

11. Amalfitano, D., Fasolino, A.R., Polcaro, A., Tramontana, P.: The dynaria tool for
the comprehension of ajax web applications by dynamic analysis. In: Innovations
in Systems and Software Engineering, pp. 1–17 (2013)

12. Doush, I.A., Alkhateeb, F., Maghayreh, E.A., Al-Betar, M.A.: The design of ria
accessibility evaluation tool. Advances in Engineering Software 57, 1–7 (2013)

13. Mesbah, A., van Deursen, A.: Invariant-based automatic testing of ajax user inter-
faces. In: ICSE, pp. 210–220 (May 2009)

14. Amalfitano, D., Fasolino, A.R., Tramontana, P.: A gui crawling-based technique
for android mobile application testing. In: Proceedings of ICSTW, pp. 252–261.
IEEE Computer Society, Washington, DC (2011)

Indexing RIAs Using Components-Based Crawling 217

15. Amalfitano, D., Fasolino, A.R., Tramontana, P., De Carmine, S., Memon, A.M.:
Using gui ripping for automated testing of android applications. In: Proceedings
of ASE, pp. 258–261. ACM, New York (2012)

16. Erfani, M., Mesbah, A.: Reverse engineering ios mobile applications. In: Proceed-
ings of WCRE (2012)

17. Mesbah, A., Bozdag, E., van Deursen, A.: Crawling ajax by inferring user interface
state changes. In: Proceedings of ICWE, pp. 122–134. IEEE (2008)

18. Ayoub, K., Aly, H., Walsh, J.: Dom based page uniqueness identification, canada
patent ca2706743a1 (2010)

19. Milani Fard, A., Mesbah, A.: Feedback-directed exploration of web applications to
derive test models. In: Proceedings of ISSRE, 10 pages. IEEE Computer Society
(2013)

20. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Moosavi, A., Bochmann, G.v.,
Jourdan, G.-V., Onut, I.-V.: Crawling rich internet applications: the state of the
art. In: CASCON, pp. 146–160 (2012)

21. Mirtaheri, S.M., Dinçtürk, M.E., Hooshmand, S., Bochmann, G.v., Jourdan, G.-
V., Onut, I.V.: A brief history of web crawlers. In: Proceedings of CASCON, pp.
40–54. IBM Corp. (2013)

22. Bezemer, C.P., Mesbah, A., van Deursen, A.: Automated security testing of web
widget interactions. In: Proceedings of ESEC/FSE, pp. 81–90. ACM (2009)

23. Chen, A.Q.: Widget identification and modification for web 2.0 access technologies
(wimwat). ACM SIGACCESS Accessibility and Computing (96), 11–18 (2010)

24. Crescenzi, V., Mecca, G., Paolo, Merialdo, et al.: Roadrunner: Towards automatic
data extraction from large web sites. In: VLDB, vol. 1, pp. 109–118 (2001)

25. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

26. Peng, Z., He, N., Jiang, C., Li, Z., Xu, L., Li, Y., Ren, Y.: Graph-based ajax crawl:
Mining data from rich internet applications. In: Proceedings of ICCSEE, vol. 3,
pp. 590–594. IEEE (2012)

27. Moosavi, A.: Component-based crawling of complex rich internet applications.
Master’s thesis, EECS - University of Ottawa (2014),
http://ssrg.site.uottawa.ca/docs/Ali-Moosavi-Thesis.pdf

28. Benjamin, K., Bochmann, G.v., Jourdan, G.-V., Onut, I.-V.: Some modeling chal-
lenges when testing rich internet applications for security. In: Proceedings of
ICSTW, pp. 403–409. IEEE Computer Society, Washington, DC (2010)

29. Choudhary, S., Dincturk, M.E., Bochmann, G.v., Jourdan, G.-V., Onut, I.V.,
Ionescu, P.: Solving some modeling challenges when testing rich internet appli-
cations for security. In: Proceedings of ICST, pp. 850–857 (2012)

http://ssrg.site.uottawa.ca/docs/Ali-Moosavi-Thesis.pdf

Pattern-Based Specification

of Crowdsourcing Applications

Alessandro Bozzon1, Marco Brambilla2, Stefano Ceri2,
Andrea Mauri2, and Riccardo Volonterio2

1 Software and Computer Technologies Department, Delft University of Technology,
Postbus 5 2600 AA, Delft, The Netherlands

a.bozzon@tudelft.nl
2 Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
{name.surmame}@polimi.it

Abstract. In many crowd-based applications, the interaction with per-
formers is decomposed in several tasks that, collectively, produce the
desired results. Tasks interactions give rise to arbitrarily complex work-
flows. In this paper we propose methods and tools for designing crowd-
based workflows as interacting tasks. We describe the modelling concepts
that are useful in such framework, including typical workflow patterns,
whose function is to decompose a cognitively complex task into simple
interacting tasks so that the complex task is co-operatively solved.

We then discuss how workflows and patterns are managed by Crowd-
Searcher, a system for designing, deploying and monitoring applications
on top of crowd-based systems, including social networks and crowd-
sourcing platforms. Tasks performed by humans consist of simple opera-
tions which apply to homogeneous objects; the complexity of aggregating
and interpreting task results is embodied within the framework. We show
our approach at work on a validation scenario and we report quantita-
tive findings, which highlight the effect of workflow design on the final
results.

1 Introduction

Crowd-based applications are becoming more and more widespread; their com-
mon aspect is that they deal with solving a problem by involving a vast set of
performers, who are typically extracted from a wide population (the ”crowd”).
In many cases, the problem is expressed in the form of simple questions, and the
performers provide a set of answers; a software system is in charge of organis-
ing a crowd-based computation – typically by distributing questions, collecting
responses and feedbacks, and organising them as a well-structured result of the
original problem.

Crowdsourcing systems, such as Amazon Mechanical Turk (AMT), are nat-
ural environments for deploying such applications, since they support the as-
signment to humans of simple and repeated tasks, such as translation, proofing,

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 218–235, 2014.
c© Springer International Publishing Switzerland 2014

Pattern-Based Specification of Crowdsourcing Applications 219

content tagging and items classification, by combining human contribution and
automatic analysis of results [1]. But a recent trend (emerging, e.g., during the
CrowdDB Workshop1), is to use many other kinds of platforms for engaging
crowds, such as proprietary community-building systems (e.g., FourSquare or
Yelp) or general-purpose social networks (e.g., Facebook or Twitter). In the
various platforms, crowds take part to social computations both for monetary
rewards and for non-monetary motivations, such as public recognition, fun, or
genuine will of sharing knowledge.

In previous work, we presented CrowdSearcher [2, 3], offering a conceptual
framework, a specification paradigm and a reactive execution control environ-
ment for designing, deploying, and monitoring applications on top of crowd-based
systems, including social networks and crowdsourcing platforms. In Crowd-
searcher, we advocate a top-down approach to application design which is inde-
pendent on the particular crowd-based system. We adopt an abstract model of
crowdsourcing activities in terms of elementary task types (such as: labelling,
liking, sorting, classifying, grouping) performed upon a data set, and then we
define a crowdsourcing task as an arbitrary composition of these task types; this
model does not introduce limitations, as arbitrary crowdsourcing tasks can al-
ways be defined by aggregating several operation types or by decomposing the
tasks into smaller granularity tasks, each one of the suitable elementary type. In
general, an application cannot be submitted to the crowd in its initial formula-
tion; transformations are required to organise and simplify the initial problem,
by structuring it into a workflow of crowd-based tasks that can be effectively per-
formed by individuals, and can be submitted and executed, possibly in parallel.
Several works [4, 5] have analysed typical crowdsourcing patterns, i.e. typical
cooperative schemes used for organising crowd-based applications.

The goal of this paper is to present a systematic approach to the design
and deployment of crowd-based applications as arbitrarily complex workflows of
elementary tasks, which emphasises the use of crowdsourcing patterns. While our
previous work was addressing the design and deployment of a single task, in this
paper we model and deploy applications consisting of arbitrarily complex task
interactions, organised as a workflow; we use either data streams or data batches
for data exchange between tasks, and illustrate that tasks can be controlled
through tight coupling or loose coupling. We also show that our model supports
the known crowd management patterns, and in particular we use our model as
a unifying framework for a systematic classification of patterns.

The paper is structured as follows. Section 2 presents related work; Section 3
introduces the task and workflowmodels and design processes. Section 4 details a
set of relevant crowdsourcing patterns. Section 5 illustrates how workflow speci-
fications are embodied within the execution control structures of Crowdsearcher,
and finally Section 6.3 discusses several experiments, showing how differences in
workflow design lead to different application results.

1 http://dbweb.enst.fr/events/dbcrowd2013/

http://dbweb.enst.fr/events/dbcrowd2013/

220 A. Bozzon et al.

2 Related Work

Many crowdsourcing startups2 and systems [6] have been proposed in the last
years. Crowd programming approaches rely on imperative programming mod-
els to specify the interaction with crowdsourcing services (e.g., see Turkit [7],
RABJ [8], Jabberwocky [9]). Several programmatic methods for human compu-
tation have been proposed [7][8][9][10], but they do not support yet the com-
plexity required by real-world, enterprise–scale applications, especially in terms
of designing and controlling complex flows of crowd activities.

Due to its flexibility and extensibility, our approach covers the expressive
power exhibited by any of the cited systems, and provides fine grained targeting
to desired application behaviour, performer profiles, and adaptive control over
the executions.

Several works studied how to involve humans in the creation and execution
of workflows, and how to codify common into modular and reusable patterns.
Process-centric workflow languages [11] define business artefacts, their trans-
formations, and interdependencies trough tasks and their dependencies. Scien-
tists and practitioners put a lot of effort in defining a rich set of control-driven
workflow patterns.3 However, this class of process specification languages: focus
mainly on control flow, often abstracting away data almost entirely; disregard
the functional and non-functional properties of the involved resources; do not
specify intra- and inter-task execution and performer controls; and provide no
explicit modelling primitives for data processing operations.

In contrast, data- driven workflows have recently become very popular, typ-
ically in domains where database are central to processes [12][13], and data
consistency and soundness is a strong requirement. Data-driven workflows treat
data as first-class citizens, emphasise the role of control intra- and inter-task
control, and ultimately served as an inspiration for our work.

Very few works studied workflow-driven approaches for crowd work. Crowd-
Lang [5] is notable exception, which supports process-driven workflow design and
execution of tasks involving human activities, and provides an executable model-
based programming language for crowd and machines. The language, however,
focuses on the modelling of coordination mechanisms and group decision pro-
cesses, and it is oblivious to the design and specification of task-specific aspects.

Several works tried to codify patterns for crowdsourcing. At task level, a great
wealth of approaches has been proposed for the problems of output agreement
[14], and performer control [15]. At workflow level, less variety can be witnessed,
but a set of very consolidated patterns emerge [7][16][4][17][18]. In Section 4 we
will provide an extensive review of the most adopted pattern in crowdsourcing,
classifying them in the light of the workflow model of Section 3.

2 E.g., CrowdFlower, Microtask, uTest.
3 http://workflowpatterns.com/

http://workflowpatterns.com/

Pattern-Based Specification of Crowdsourcing Applications 221

Performer

Task

MicroTask

Platform

Object

1

1

*

*

*

*

*

Evaluation
*

1

Object
Type

*

1

1

*

1

*

Operation

1

*

* *

1 *

Account

*

1
*

1

Community
*
*

* *

1*

*

Platform
Parameters

1

1

Execution*1
*

*

*

Fig. 1. Metamodel of task properties

Crowd Task

[T operation types]
(intra-task patterns)

Object Type

block size
min #obj
(cons)

input buffer

batch flow (on closed task)

stream flow (on closed object)

MicroTask
[MT operation types]

r

data manipulator

Fig. 2. Task notation

3 Models and Design of Crowd-Based Workflows

Although humans are capable of solving complex tasks by using their full cog-
nitive capacity, the approaches used in crowd-based computations prefer to de-
compose complex tasks into simpler tasks and then elaborate their results [16].
Following this approach, we restrict crowdsourcing tasks be to simple opera-
tions which apply to homogeneous objects; operations are simple actions (e.g.
labelling, liking, sorting, classifying, grouping, adding), while objects have an
arbitrary schema and are assumed to be either available to the application or to
be produced as effect of application execution.

3.1 Task Model

Tasks of a crowd-based application are described in terms of an abstract model,
that was initially presented in [2], and represented in Fig. 1. We assume that each
task receives as input a list of objects (e.g., photos, texts, but also arbitrarily
complex objects, all conforming to the same object type) and asks performers
to do one or more operations upon them, which belong to a predefined set of
abstract operation types. Examples of operation types are Like, for assign-
ing a preference to an item; or Classify, for assigning each item to one or more
classes. The full list of currently supported operation types is reported in [2].
Task management requires specific sets of objects to be assembled into a unit of
execution, called micro-task, that is associated with a given performer. Each
micro-task can be invited or executed on different platforms and/or commu-
nities. The relation with platform is specified through a series of platform
parameters, specific for each platform, that are needed in order retrieve the
answers of the performers (e.g., the HIT identifier on AMT). A performer may
be registered on several platforms (with different accounts) and can be part of
several communities. Micro-task execution contains some statistics (e.g., start
and end timestamps). The evaluation contains the answer of the performer for
each object, whose schema depends on the operation type.

For example, a like evaluation is a counter that registers how many performers
like the object, while a classify evaluation contains the category selected by the
performers for that object.

222 A. Bozzon et al.

3.2 Workflow Model

A crowdsourcing workflow is defined as a control structure involving two or
more interacting tasks performed by humans. Tasks have an input buffer that
collects incoming data objects, described by two parameters: 1) The task size,
i.e. the minimum number of objects (m) that allow starting a task execution;
2) The block size, i.e. the number of objects (n) consumed by each executions.

Clearly, n ≤ m, but in certain cases at least m objects must be present in the
buffer before starting an execution; in fact n can vary between 1 and the whole
buffer, when a task execution consumes all the items currently in the buffer.
Task execution can cause object removal, when objects are removed from the
buffer, or object conservation, when objects are left in the buffer, and in such
case the term new items denotes those items loaded in the buffer since the last
execution.

Tasks communicate with each other with data flows, produced by extracting
objects from existing data sources or by other tasks, as streams or batches.
Data streams occur when objects are communicated between tasks one by
one, typically in response to events which identify the completion of object’s
computations. Data batches occur when all the objects are communicated
together from one task to another, typically in response to events related to the
closing of task’s computations.

Flows can be constrained based on a condition associated with the arrow
representing the flow. The condition applies to properties of the produced objects
and allows transferring only the instances that satisfy the condition. Prior to task
execution, a data manipulator may be used to compose the objects in input
to a task, possibly by merging or joining incoming data flows.

We can represent tasks within workflows as described in Fig. 2, where each
task is equipped with an input buffer and an optional data manipulator, and
may receive data streams or data batches from other tasks. Each task consists of
micro-tasks which perform given operations upon objects of a given object type;
the parameter r indicates the number of executions that are performed for each
micro-tasks, when statically defined (default value is 1). Execution of tasks can
be performed according to intra-task patterns, as described in Section 4.

3.3 Workflow Design

Workflow design consists of designing tasks interaction; specifically, it consists
of defining the workflow schema as a directed graph whose nodes are tasks
and whose edges describe dataflows between tasks, distinguishing streams and
batches. In addition, the coupling between tasks working on the same object
type can be defined as loose or tight.

Loose coupling is recommended when two tasks act independently upon
the objects (e.g. in sequence); although it is possible that the result of one task
may have side effects on the other task, such side effects normally occur as an
exception and affect only a subset of the objects. Loosely coupled tasks have
independent control marts and monitoring rules (as described in Section 3.4).

Pattern-Based Specification of Crowdsourcing Applications 223

 Position Scenes

[Classify]
(Static Agreement@3)

MicroTask [Classify]

Scene

block 1
min 1

Spoiler Scenes

[Like]
(Static Agreement@3)

MicroTask [Like]

Scene

block 1
min 1

5

Order Scenes

[Order] (SortByLiking)

MicroTask [Like]

Scene

block 2
min 2

[Class=E]

[Class=B OR M]

Fig. 3. Example of crowd flow

Tight coupling is recommended when the tasks intertwine operations upon
the same objects, whose evolution occurs as combined effect of the tasks’ evolu-
tion; tightly coupled tasks share the same control mart and monitoring rules.

Figure 3 shows a simple workflow example in the domain of movie scenes
annotation. The Position Scenes tasks asks performers to say whether a scene
appears at the beginning, middle or end of the film; it is a classification task,
one scene at a time, with 5 repetitions and acceptance of results based on an
agreement threshold of 3. Scenes in the ending part of the movies are transmitted
to the Spoiler Scenes task, which asks performers whether the scene is a spoiler
or not;4 scenes at the beginning or in the middle of the movie are transmitted
to the Order Scenes task, which asks performers to order them according to the
movie script; each micro-task orders just two scenes, by asking the performer to
select the one that comes first. The global order is then reconstructed. Given
that all scenes are communicated within the three tasks, they are considered as
tightly coupled.

3.4 Task Design

Crowdsourcing tasks are targeted to a single object type and are used in order
to perform simple operations which either apply to a single object (such as like,
tag, or classify) or require comparison between objects (such choice or score);
more complex tasks perform operations inspired by database languages, such as
select, join, sort, rank, or group by.

Task design consists of the following phases: 1)Operations design – deciding
how a task is assembled as a set of operation types; 2) Object and performer
design – defining the set of objects and performers for the task; 3) Strategy
design – Defining how a task is split into micro-tasks, and how micro-tasks are
assigned to subsets of objects and performers; 4) Control Design – Defining
the rules that enable the run-time control of objects, tasks, and performers.

For monitoring task execution, a data structure called control mart was
introduced in [3]; Control consists of four aspects:

– Object control is concerned with deciding when and how responses should
be generated for each object.

4 A spoiler is a scene that gives information about the movie’s plot and as such should
not be used in its advertisement.

224 A. Bozzon et al.

(a) (b)

RULE: CountBeginning

e: UPDATE FOR Execution[Answer]
c: NEW.Answer == 'Beginning'
a: SET Object_CTRL[oid == NEW.oid].Beg += 1

μTObjExecution

Performer

TaskScene
Sta

tu
s

Sta
rtT

s

End
Ts

μT
as

kID

Object
Control

Performer
Control

Task
Control

Spo
ilC

at

CompObjs
TaskID

CompExecs

Name
PerformerID
Score

Spo
il

Beg
M

idNot
Spo

il

TaskID
ObjectID

CorrectPos
ImgUrl

Pos
Cat

CorrectSpoil

ObjectID

AnswerSpoil
AnswerPos

End

ObjectID

PerformerID
TaskID

MovieID

Status

PerformerID

PlatformID

Execs
Status

SpoilEvals
PosEvals

Groundtruth

Fig. 4. (a) Example of control mart for the tasks of Fig. 3; (b) Example of control rule
that updates the number of responses in the Position of Scenes task

– Performer control is concerned with deciding how performers should be
dynamically selected or rejected, on the basis of their performance.

– Task control is concerned with completing a task or re-planning task exe-
cution.

The control of objects, performers and tasks is performed by active rules,
expressed according to the event-condition-action (ECA) paradigm. Each rule is
triggered by events (e) generated upon changes in the control mart or periodi-
cally; the rule’s condition (c) is a predicate that must be satisfied on order for
the action to be executed; the rule’s actions (a) change the content of the con-
trol mart. Rules properties (e.g., termination) can be been proven in the context
of a well-organised computational framework [3].

Figure 4(a) shows a sample control mart for the three tasks in the example
scenario, which we assume to be tightly connected, thus using the same data
mart. The control mart stores all the required information for controlling the
task’s evolution and is automatically defined from the task specifications. Fig-
ure 4(b) reports a simple control rule that updates the number of responses with
value “Beginning” after receiving an answer.
This rule has the following behaviour: every time a performer perform a new
evaluation on a specific object (UPDATE event on μTObjExecution), if the se-
lected answer is “Beginning” (the condition part of the rule), then it increases
the counter of the “Beginning” category for that object (Object CTRL[oid ==
New.oid] selected the correct object, then the correct property can be acessed
with the dot notation). For a deeper description of the rule grammar and struc-
ture see our previous work [3].

4 Crowdsourcing Patterns

Several patterns for crowd-based operations are defined in the literature. We
review them in light of the workflow model of Section 3. We distinguish them in
three classes and we implement them in Crowdsearcher (see Section 5):

Pattern-Based Specification of Crowdsourcing Applications 225

– Intra-Task Patterns. They are typically used for executing a complex
task by means of a collection of operations which are cognitively simpler
than the original task. Although these patterns do not appear explicitly in
the workflow, they are an essential ingredient of crowd-based computations.

– Workflow Patterns. They are used for solving a problem by involving
different tasks, which require a different cognitive approach; results of the
different tasks, once collected and elaborated, solve the original problem.

– Auxiliary Patterns. They are typically performed before or after both
intra-task and workflow patterns in order either to simplify their operations
or to improve theirs results.

4.1 Intra-Task Patterns

Intra-task patterns apply to complex operations, whose result is obtained by
composing the results of simpler operations. They focus on problems related
to the planning, assignment, and aggregation of micro tasks; they also include
quality and performer control aspects. Figure 5 describes the typical set of design
dimensions involved in the specification of a task. When the operation applies
to a large number of objects and as such cannot be mapped to a single pattern
instantiation, it is customary to put in place a splitting strategy, in order to
distribute the work, followed by an aggregation strategy, to put together results.
This is the case in many data-driven tasks stemming from traditional relational
data processing which are next reviewed.

Consensus Patterns. The most commonly used intra-task patterns aim at pro-
ducing responses by replicating the operations which apply to each object, col-
lecting multiple assessments from human workers, and then returning the answer
which is more likely to be correct. These patterns are referred to as consensus
or agreement patterns. Typical consensus patterns are: a) StaticAgreement
[3]: accepts a response when it is supported by a given number of performers.
For instance, in a tag operation we consider as valid responses all the tags that
have been added by at least 5 performers. b) MajorityVoting [19]: accepts
a response only if a given number of performers produce the same response,
given a fixed number of total executions. c) ExpectationMaximisation [20]:
adaptively alternates between estimating correct answers from task parameters
(e.g. complexity), and estimating task parameters from the estimated answers,
eventually converging to maximum-likelihood answer values.

Pre-Processing Post-
Processing

Task

C
on

se
ns

us

S
pl

itt
in

g

A
ss

ig
nm

en
t

A
gg

re
ga

tio
nmicroTaskmicroTaskmicroTask

microTaskmicroTaskmicroTask

microTaskmicroTaskmicroTask

Fig. 5. Building blocks of an Intra-Task Pattern

226 A. Bozzon et al.

Join Patterns. Crowd join patterns, studied in [14], are used to build an equal-
ity relationship between matching objects in the context of crowdsourcing tasks.
We identify: a) SimpleJoin consists in defining microtasks performing a sim-
ple classification operation, where each execution contains a single pair of items
to be joined, together with the join predicate question, and two buttons (Yes,
No) for responding whether the predicate evaluates to true or false; b) One-
ToManyJoin is a simple variant that includes in the same microtask one left
object and several right candidates to be joined; c) ManyToManyJoin includes
in the same microtask several candidate pairs to be joined;

Sort Patterns. Sort patterns determine the total ordering of a set of input ob-
jects. The list includes: a) SortByGrouping [14] orders a large set of objects by
aggregating the results of the ordering of several small subsets of them. b) Sort-
ByScoring [14] asks performers to rate each item in the dataset according to a
numerical scale. c) SortByLiking [3] is a variant that simply asks the performer
to select/like the items they prefer. The mean (or sum) of the scores achieved by
each image is used to order the dataset. d) SortByPairElection [3] asks work-
ers to perform a pairwise comparison of two items and indicate which one they
like most. Then ranking algorithms calculate their ordering. e) SortByTour-
nament [18], presents to performers a tournament-like structure of sort tasks;
each tournament elect its champions that progress to the next level, eventually
converging to a final order.

Grouping Patterns. Grouping patterns are used in order to classify or clus-
tered several objects according to their properties. We distinguish:
a)GroupingByPredefinedClasses[21] occurs when workers are provided with
a set of known classes. b) GroupingByPreference [22] occurs when groups are
formed by performers, for instance by asking workers to select the items they
prefer the most, and then clustering inputs according to ranges of preferences.

Performer Control Patterns. Quality control of performers consists in decid-
ing how to engage qualified workers for a given task and how to detect malicious
or poorly performing workers. The most established patterns for performer con-
trol include: a) QualificationQuestion [23], at the beginning of a microtask,
for assessing the workers expertise and deciding whether to accept his contri-
bution or not. b) GoldStandard, [3] for both training and assessing worker’s
quality through a initial subtask whose answers are known (they belong to the so-
called gold truth. c) MajorityComparison, [3] for assessing performers’ qual-
ity against responses of the majority of other performers, when no gold truth is
available.

4.2 Auxiliary Intra-Task Patterns

The above tasks can be assisted by auxiliary operations, performed before or
after their executions, as shown in Figure 5. Pre-processing steps are in charge
of assembling, re-shaping, or filtering the input data so to ease or optimise the
main task. Post-processing steps is typically devoted to the refinement or trans-
formation of the task outputs into their final form.

Pattern-Based Specification of Crowdsourcing Applications 227

Examples of auxiliary patterns are: a) PruningPattern [14], consisting of
applying simple preconditions on input data in order to reduce the number of
evaluations to be performed. For instance, in a join task between sets of actors
(where we want to identify the same person in two sets), classifying items by
gender, so as to compared only pairs of the same gender. b) TieBreakPattern
[14], used when a sorting task produces uncertain rankings (e.g. because of ties
in the evaluated item scores); the post-processing includes an additional step
that asks for an explicit comparison of the uncertainly ordered items.

4.3 Workflow Patterns

Create Decide

Improve
Compare
/ Verify

Find Fix

(a)

(b)

(c)

Auxiliary
Task

Fig. 6. Template for complex task patterns

Very often, a single type of task
does not suffice to attain the de-
sired crowd business logic. For in-
stance, with open-ended multimedia
content creation and/or modification,
it is difficult to assess the quality of a
given answer, or to aggregate the out-
put of several executions. A Work-
flow Pattern is a workflow of het-
erogeneous crowdsourcing tasks with
co-ordinated goals. Several workflow
patterns defined in the literature are
next reviewed; they are comparatively
shown in Figure 6:

a) Create/Decide [16], shown in Figure 6(a), is a two-staged pattern where
first workers create various options for new content, then a second group of
workers vote for the best option. Note that the create step can include any type
of basic task. This pattern can have several variants: for instance, with a stream
data flow, the vote is typically restricted to the solutions which are produced
faster, while with a batch data flow the second task operates on all the generated
content, in order to pick the best option overall. b) Improve/Compare [7],
shown in Figure 6(b), iterates on the decide step to progressively improve the
result. In this pattern, a first pool of workers creates a first version of a content;
upon this version, a second pool of workers creates an improved version, which
is then compared, in a third task, to decide which one is the best (the original
or the improved one). The improvement/compare cycle can be repeated until
the improved solution is deemed as final. c) Find/Fix/Verify [4], shown in
Figure 6(c), further decomposes the improve step, by splitting the task of finding
potential improvements from the task of actually implementing them.

4.4 Auxiliary Workflow Patterns

Auxiliary tasks can be designed to support the creation and/or the decision
tasks. They include: a) AnswerBySuggestion [17]: given a create operations
as input, the provided solution can be achieved by asking suggestions from the

228 A. Bozzon et al.

crowd as follows. During each execution, a worker can choose one of two actions:
it can either stop and submit the most likely answer, or it can create another job
and receive another response to the task from another performer. The auxiliary
suggestion task produces content that can be used by the original worker to
complete or improve her answer. b) ReviewSpotcheck strengthens the decision
step by means of a two-staged review process: an additional quality check is
performed after the corrections and suggestions provided by the performers of
the decision step. The revision step can be performed by the same performer of
the decision step or by a different performer.

5 Workflow Execution

Starting from the declarative specification described in Sections 3 and 4, an au-
tomatic process generates task descriptors and their relations. Single tasks and
their internal strategies and patterns are transformed into executable specifica-
tion; we support all the intra-task patterns described in Section 4, through model
transformations that generate the control marts and control rules for each task
[3]. Task interactions are implemented differently depending on whether inter-
acting tasks are tightly coupled or loosely coupled.

Tightly coupled tasks share the control mart structure (and the respective
data instances), thus coordination is implemented directly on data. Each task
posts its own results and control values in the mart. Dependencies between tasks
are transformed into rules that trigger the creation of new micro-tasks and their
executions, upon production of new results by events of object or task closure.

Loosely coupled tasks have independent control marts, hence their interac-
tion is more complex. Each task produces in output events such as ClosedTask,
ClosedObject,ClosedMicrotask,ClosedExecution.We rely on an event based,
publish-subscribe mechanism, which allows tasks to be notified by other tasks
about some happening. Loosely coupled tasks do not rely on a shared data space,
therefore events carry with them all the relevant associated pieces of informa-
tion (e.g., a ClosedObject event carries the information about that object; a
ClosedTask event carries the information about the closed objects of the task).

The workflow structure dictates how tasks subscribe to events of other tasks.
Once a task is notified by an incoming event, the corresponding data is incor-
porated in its control mart by a-priori application of the data manipulation
program, specified in the data manipulator stage of the task. Then, reactive
processing takes place within the control mart of the task.

Modularity allows executability through model transformations which are sep-
arately applied to each task specification. Automatically generated rules and
mart structures can be manually refined or enriched when non-standard be-
haviour is needed.

This approach is supported by CrowdSearcher, a platform for crowd man-
agement written in JavaScript. CrowdSearcher runs on Node.js, a full-fledged
event-based system, which fits the need of our rule-based approach. Each control
rule is translated into scripts; triggering is modelled through internal platform

Pattern-Based Specification of Crowdsourcing Applications 229

Position Scenes

[Classify]
(Static Agreement@3)

MicroTask [Classify]

Scene

block 1
min 1

 Spoiler Scenes

[Like]
(Static Agreement@3)

MicroTask [Like]

Scene

block 1
min 1

7

 Order Scenes

[Order]
(SortByLiking)

MicroTask [Like]

Scene

block 2
min 2
Cons.

[Class=E]

[Class=B OR M]

(P2)
5

3

Position Scenes

[Classify]
(Static Agreement@3)

MicroTask [Classify]

Scene

block 1
min 1

 Spoiler Scenes

[Like]
(Static Agreement@3)

MicroTask [Like]

Scene

block 1
min 1

7

 Order Scenes

[Order]
(SortByLiking)

MicroTask [Like]

Scene

block 2
min 2

[Class=E]

[Class=B OR M]

(P1)
5

3

Fig. 7. Flow variants for the Positioning scenario

events. Precedence between rules is implicitly obtained by defining the scripts
in the proper order. CrowdSearcher offers a cloud-based environment to trans-
parently interface with social networks and crowdsourcing platforms, according
to the task model described in Section 3.1. It features an online configuration
interface where designers build complex crowdsourcing applications through a
wizard–driven, step by step approach. A built-in Task Execution Framework
(TEF) provides support for the creation of custom task user interfaces, to be
deployed as stand-alone application, or embedded within third-party platforms
such as Amazon Mechanical Turk. Specific modules are devoted to the invita-
tion, identification, and management of performers, thus offering support for a
broad range of expert selection paradigms, from pure pull approaches of open
marketplaces, to pre-assigned execution to selected performers. Alternatives for
the implementation of operations on crowd-based systems are discussed in [2].

6 Experiments

We demonstrate various pattern-based workflow scenarios, defined using our
model and method and deployed by using Crowdsearcher as design framework
and Amazon Mechanical Turk as execution platform. We consider several scenes
taken from popular movies, and we enrich them with crowd-sourced information
regarding their position in the movie, whether the scene is a spoiler, and the
presence of given actors in each scene. In the experiments reported here we
considered the movie “The Lord of the Rings: the Fellowship of the Ring”. We
extracted 20 scenes and we created a groundtruth dataset regarding temporal
positioning and actors playing in the scenes. We compare cost and quality of
executions for different workflow configurations.

Table 1. Scenario 1 (Positioning): number of evaluated objects, microtask executions,
elapsed execution time, performers, and executions per performer (for each task and
for each scenario configuration)

Position Scenes (payed $0.01) Order Scene (payed $0.01) TOTAL
#Obj #Exe Time #Perf #Exe/Perf #Obj #Exe Time #Perf #Exe/Perf Time Cost #Perf

P1 20 147 123 16 9.19 17 252 157 14 18.00 342 3.99$ 26
P2 20 152 182 12 12.67 17 230 318 17 13.53 349 3.82$ 26

230 A. Bozzon et al.

Table 2. Scenario 2 (Actor): number of evaluated objects, microtask executions,
elapsed execution time, performers, and executions per performer (for each task and
for each scenario configuration)

Find Actors (payed $0.03) Validate Actors (payed $0.02) TOTAL
#Obj #Exe Time #Perf #Exe/Perf #Obj #Exe Time #Perf #Exe/Perf Time Cost #Perf

A1 20 100 120 18 5.56 – – – – – 120 3.00$ 18
A2 20 100 128 10 10.00 – – – – – 128 3.00$ 10
A3 20 100 123 14 7.15 20 21 154 10 2.10 159 3.42$ 20
A4 20 100 132 10 10.00 41 19 157 9 2.10 164 3.38$ 16
A5 20 100 126 13 7.69 69 60 242 17 3.53 257 4.20$ 24
A6 66 336 778 56 6.00 311 201 821 50 4.02 855 14.10$ 84

6.1 Scenario 1: Scene Positioning

The first scenario deals with extracting information about the temporal position
of scenes in the movie and whether they can be considered as as spoilers. Two
variants of the scenario have been tested, as shown in Figure 7: the task Position
Scenes classifies each scene as belonging to the beginning, middle or ending part
of the movie. If the scene belongs to the final part, we ask the crowd if it is a
spoiler (Spoile Scenes task); otherwise, we ask the crowd to order it with respect
to the other scenes in the same class (Order Scenes task).

Tasks have been configured according to the following patterns:

– Position Scene: task and microtask types are both set as Classify, using
a StaticAgreement pattern with threshold 3. Having 3 classes, a maximum
number of 7 executions grants that one class will get at least 3 selections.
Each microtask evaluates 1 scene.

– Order Scene: task type is Order, while microtask type is set as Like. Each
microtask comprises two scenes of the same class. Using a SortByLiking
pattern, we ask performers to select (Like) which scene comes first in the
movie script. A rank aggregation pattern calculates the resulting total order
upon task completion.

– Spoiler Scene: Task and microtask type both set as Like. A StaticAgreement
pattern with threshold 3 (2 classes, maximum 5 executions) defines the
consensus requirements. Each microtask evaluates 1 scene.

We experiment with two workflow configurations. The first (P1) defines a
batch data flow between the Position Scene and Order Scene tasks, while the
second configuration (P2) defines the same flow as stream. In both variants, the
data flow between Position Scene and Spoiler Scenes is defined as stream.

The P2 configuration features a dynamical task planning strategy for the the
Order Scenes task, where the construction of the scene pairs to be compared in
is performed every time a new object is made available by the Position Scenes
task. A conservation policy in the Order Scenes data manipulator ensures that
all the new scenes are combined with the one previously received.

Pattern-Based Specification of Crowdsourcing Applications 231

Find Actors

[Tag]

MicroTask [Tag]

Scene

block 1
min 1

5 Find Actors

[Tag]
(Static Agreement@3)

MicroTask [Tag]

Scene

block 1
min 1

5

Find Actors

[Tag]

MicroTask [Tag]

Scene

block 1
min 1

Validate Actors

[Like]

MicroTask [Like]

Scene+Actor

block All
min 1

5 Find Actors

[Tag]
(Static Agreement@3)

MicroTask [Tag]

Scene

block 1
min 1

Validate Actors

[Like]

MicroTask [Like]

Scene+Actor

block All
min 1

5

Find Actors

[Tag]

MicroTask [Tag]

Scene

block 1
min 1

 Validate Actors

[Like]
(Majority Voting@2)

MicroTask [Like]

Scene+Actor

block All
min 1

5 3

(A1) (A2)

(A3) (A4)

(A5) (A6)

Find Actors

[Tag]
(Static Agreement@3)

MicroTask [Tag]

Scene

block 1
min 1

 Validate Actors

[Like]
 (Majority Voting@2)

MicroTask [Like]

Scene+Actor

block All
min 1

5 3

count(Actor.Like)<=1

Fig. 8. Flow variants for the Actor scenario

6.2 Scenario 2: Actors

In the second scenario, we model a create/decide workflow pattern by asking
the crowd to identify the actors that take part in the movie scenes; in Find
Actors, performers indicate actors, in Validate Actor they confirm them. Tasks
are designed as follows:

– Find Actors : Task and microtask types are set as Tag. Each microtask eval-
uates one scene; each scene is evaluated five times. Depending on the con-
figuration, either no consensus pattern (A1, A3, A5) or a StaticAgreement
pattern with threshold three (A2, A4, A6) is employed.

– Validate Actors : the task is preceded by a data manipulator function that
transform the input Scene object and associated tags into a set of tuples
(Scene,Actor), which compose an object list subject to evaluation. In all
configurations, microtasks are triggered if at least one object is available in
the buffer. Note that each generated microtask features a different number of
objects, according to the number of actors tagged in the corresponding scene.
Configurations A5 and A6 features an additional MajorityVoting pattern
to establish the final actor validation.

We tested this scenario with five workflow configurations, shown in Figure 8,
and designed as follows:

– Configuration A1 performs 5 executions and for each scene collects all the
actors tagged at least once;

– Configuration A2 performs 5 executions and for each scene collects all the
actors tagged at least three times (StaticAgreement@3);

– Configuration A3 adds the validation task to A1; the validation asks one
performer to accept or reject the list of actors selected in the previous step;

– Configuration A4 adds a validation task to A3, performed as in A3;
– Configuration A5 is similar to A3, but the validation task is performed 3
times and a MajorityVoting@2 is applied for deciding whether to accept or
not the object;

232 A. Bozzon et al.

Actor
Validate

A3
Actor
Validate

A4
Actor
Validate

A5

Actor
Validate

A6

a) Elapsed Time (Mins)

#C
lo

se
d

 O
b

je
ct

s

0
10
20
30
40
50
60

5 30 60 90120 160

5 30 60 90120 160 5 60 120 180240 60 300 540 780

Position
Order

P1
Position
Order

P2

b) Elapsed Time (Mins)

#C
lo

se
d

 O
b

je
ct

s

1
10
20
30
40
50
60
70
80

5 60 120 180 240 300 0 5000 10000 15000 20000

Fig. 9. Temporal distributions of closed objects

– Configuration A6 extends A5 by adding a StaticAgreement@3 on FindAc-
tors a feedback stream flow, originating from the Validate Actors task and
directed to the Find Actors task, which notifies the latter about actors that
were wrongly tagged in a scene (i.e., for which agreement on acceptance was
not reached). Misjudged scenes are then re-planned for evaluation; for each
scene, the whole process is configured to repeat until validation succeeds, or
at most 4 re-evaluations are performed.

6.3 Results

We tested the performance of the described scenarios in a set of experiments
performed on Amazon Mechanical Turk during the last week of September 2013.
Table 1 and Table 2 summarise the experiment statistics for the two scenarios,
1700 HITS for a total cost of 39$.

Streaming Vs. Batch (Scenario 1: Positioning). In the first scenario we
tested the impact on the application performance of the adoption of a stream
data flow in a crowd workflow.

Time. Figure 9(b) shows the temporal distribution of closed objects for the
P1 and P2 configurations. As expected, a stream flow (P2) allows for almost
synchronous activation of the subsequent task in the flow, while batch scenario
(P1) shows a strict sequential triggering of the second task. However, the overall
duration of the workflow is not significantly affected by the change. While the
first task of the flow behaves similarly in the two configurations, the second task
runs significantly quicker in the batch flow, thus recovering the delay due to the
sequential execution.

Quality. Table 3a shows the precision of the classification results of task Position
Scenes (note that for this first part the two configurations are exactly the same,

Pattern-Based Specification of Crowdsourcing Applications 233

it makes no sense to compare the two results). Table 3b shows a measure of
the quality of the obtained orders of scenes, i.e., Spearman’s rank correlation
coefficient of the resulting ranks from the Order Scenes task against the real
order of scenes. Both tables show that the attained quality was not significantly
influenced by the different task activation modes.

In summary, we didn’t notice a different behaviour due to streaming. One
possible reason is that in the batch configuration the entire set of assignments is
posted at once on AMT, thus becoming more prominent in terms of number of
available executions (and thus being preferred by performers, as widely studied
[1]), while in a stream execution a small number of assignments is posted on
AMT at every closing event of objects from the previous tasks.

Intra-Task Consensus Vs. Workflow Decision (Scenario 2: Actors).
The second scenario aimed at verifying the impact that different intra-task and
workflow patterns produced on the quality, execution time, and cost. We focused
in particular on different validation techniques.

Time. Figure 9(a) and (c) shows the temporal distribution of closed object for
configurations A3-A6. Configurations A1 and A2 are not reported because
they are composed of one single task and thus their temporal distribution is
not comparable. The temporal behaviour of the first and second tasks in the
flow are rather similar (in the sense that the second one immediately follows the
other). Validation is more delayed in A5 due to the MajorityVoting pattern that
postpones object close events. Configuration A6 (Figure 9(c)) is significantly
slower due to the feedback loop, which also generates a much higher cost of the
campaign, as reported in Table 1. Indeed, due to the feedback, many tasks are
executed several times before converging to validated results.

Quality. Table 4 reports the precision, recall and F-Score figures of the six
configurations. The adoption of increasingly refined validation-based solutions
(configurations A3-A4-A5) provides better results with respect to the baseline
configuration A1, and also to the intra-task agreement based solution A2; val-
idations do not have a negative impact in terms of execution times and costs.
On the other hand, the complexity of of case A6, with the introduction of feed-
back, proved counter-productive, because the validation logic harmed the per-
formance, both in monetary (much higher cost) and qualitative (lower results
quality) senses, bringing as well overhead in terms of execution time. Notice

Table 3. Scenario 1 (Positioning), configuration P1 and P2: a) Precision of the Position
Scenes classification task; b) Spearman’s rank correlation coefficient of the resulting
ranks from the Order Scenes task against the real order of scenes

(a)

Config. P Beg. P Mid. P End

P1 0.50 1 0.11

P2 0.50 0.80 0.33

(b)

Spearman Beg. Spearman Mid.

P1 0.500 0.543

P2 0.900 0.517

234 A. Bozzon et al.

Table 4. Scenario 2 (Actor): Precision, Recall, and F-score of the 6 configurations

A1 A2 A3 A4 A5 A6

Precision 0.79 1 0.92 0.99 0.95 0.89

Recall 0.98 0.87 0.97 0.90 1 0.96

F-Score 0.85 0.91 0.93 0.93 0.97 0.90

that the configuration A3 reaches the highest precision score. That’s because
the StaticAgreement strategy ensures that all the selected actors really appear
in the image, while using the crowd for the validation part can add some errors
(for instance some actors recognized in the Find Actor can be discarded in the
Validate Actors). However note that the other configurations (A3 - A5) reach
an higher recall and F-score value, meaning an overall better quality of the final
result.

In summary, the above tests show an advantage of concentrating design ef-
forts in defining better workflows, instead of just optimising intra-task validation
mechanisms (based e.g. on majority or agreement), although overly complex con-
figurations should be avoided.

7 Conclusions

We present a comprehensive approach to the modeling, design, and pattern-
based specification of crowd-based workflows. We discuss how crowd-based tasks
communicate by means of stream-based or batch data flows, and we define the
option between loose and tight coupling. We also discuss known patterns that are
used to create crowd-based computations either within a task or between tasks
and we show how the workflow model is translated into executable specifications
which are based upon control data, reactive rules, and event-based notifications.

A set of experiments demonstrate the viability of the approach and show how
the different choices in workfllow design may impact on the cost, time and quality
of crowd-based activities.

References

[1] Law, E., von Ahn, L.: Human Computation. Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool Publishers (2011)

[2] Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher.
In: 21st Int.l Conf. on World Wide Web, WWW 2012, pp. 1009–1018. ACM (2012)

[3] Bozzon, A., Brambilla, M., Ceri, S., Mauri, A.: Reactive crowdsourcing. In: 22nd
World Wide Web Conf., WWW 2013, pp. 153–164 (2013)

[4] Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ackerman, M.S., Karger,
D.R., Crowell, D., Panovich, K.: Soylent: a word processor with a crowd inside.
In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software
and Technology, UIST 2010, pp. 313–322. ACM, New York (2010)

Pattern-Based Specification of Crowdsourcing Applications 235

[5] Minder, P., Bernstein, A.: How to translate a book within an hour: towards general
purpose programmable human computers with crowdlang. In: WebScience 2012,
Evanston, IL, USA, pp. 209–212. ACM (June 2012)

[6] Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

[7] Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: tools for iterative
tasks on mechanical turk. In: HCOMP 2009, pp. 29–30. ACM (2009)

[8] Kochhar, S., Mazzocchi, S., Paritosh, P.: The anatomy of a large-scale human
computation engine. In: HCOMP 2010, pp. 10–17. ACM (2010)

[9] Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming
environment for structured social computing. In: UIST 2011, pp. 53–64. ACM
(2011)

[10] Marcus, A., Wu, E., Madden, S., Miller, R.C.: Crowdsourced databases: Query
processing with people. In: CIDR 2011, pp. 211–214 (January 2011),
www.cidrdb.org

[11] (OMG), O.M.G.: Business process model and notation (bpmn) version 2.0. Tech-
nical report (January 2011)

[12] Wang, J., Kumar, A.: A framework for document-driven workflow systems. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 285–301. Springer, Heidelberg (2005)

[13] Nigam, A., Caswell, N.: Business artifacts: An approach to operational specifica-
tion. IBM Systems Journal 42(3), 428–445 (2003)

[14] Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts
and joins. Proc. VLDB Endow. 5(1), 13–24 (2011)

[15] Kazai, G., Kamps, J., Milic-Frayling, N.: An analysis of human factors and label
accuracy in crowdsourcing relevance judgments. Inf. Retr. 16(2), 138–178 (2013)

[16] Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Exploring iterative and paral-
lel human computation processes. In: Proceedings of the ACM SIGKDDWorkshop
on Human Computation, HCOMP 2010, pp. 68–76. ACM, New York (2010)

[17] Lin, C.H., Mausam, Weld, D.S.: Crowdsourcing control: Moving beyond multiple
choice. In: UAI, pp. 491–500 (2012)

[18] Venetis, P., Garcia-Molina, H., Huang, K., Polyzotis, N.: Max algorithms in crowd-
sourcing environments. In: WWW 2012, pp. 989–998. ACM, New York (2012)

[19] Nowak, S., Rüger, S.: How reliable are annotations via crowdsourcing: a study
about inter-annotator agreement for multi-label image annotation. In: Proceedings
of the International Conference on Multimedia Information Retrieval, MIR 2010,
pp. 557–566. ACM, New York (2010)

[20] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society 39(1), 1–38
(1977)

[21] Davidson, S.B., Khanna, S., Milo, T., Roy, S.: Using the crowd for top-k and group-
by queries. In: Proceedings of the 16th International Conference on Database
Theory, ICDT 2013, pp. 225–236. ACM, New York (2013)

[22] Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6), 734–749 (2005)

[23] Alonso, O., Rose, D.E., Stewart, B.: Crowdsourcing for relevance evaluation. SI-
GIR Forum 42(2), 9–15 (2008)

www.cidrdb.org

SmartComposition: A Component-Based

Approach for Creating Multi-screen Mashups

Michael Krug, Fabian Wiedemann, and Martin Gaedke

Technische Universität Chemnitz, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. The spread and usage of mobile devices, such as smartphones
or tablets, increases continuously. While most of the applications devel-
oped for these devices can only be used on the device itself, mobile devices
also offer a way to create a new kind of applications: multi-screen applica-
tions. These applications run distributedly on multiple screens, like a PC,
tablet, smartphone or TV. The composition of all these screens creates a
new user experience for single as well as for several users. While creating
mashups is a common way for designing end user interfaces, they fail in
supporting multiple screens. This paper presents a component-based ap-
proach for developing multi-screen mashups, named SmartComposition.
The SmartComposition approach extends the OMELETTE reference ar-
chitecture to deal with multiple screens. Furthermore, we enhance the
OMDL for describing multi-screen mashups platform independently. We
draw up several scenarios that illustrate the opportunities of multi-screen
mashups. From these scenarios we derive requirements SmartComposi-
tion needs to comply with. A huge challenge we face is the synchroniza-
tion between the screens. SmartComposition solves this through real-
time communication via WebSockets or Peer-to-Peer communication. We
present a first prototype and evaluate our approach by developing two
different multi-screen mashups. Finally, next research steps are discussed
and challenges for further research are defined.

Keywords: Mobile, distributed user interface, distributed displays,
multi-screen applications, web applications, mashup, widgets.

1 Introduction

Internet-enabled devices are not anymore limited to computers and laptops. De-
vices, like smartphones, tablets or TVs, also offer users access to the Internet [8].
The number of mobile devices sold in 2013 exceeds the numbers of computers
and laptops by factor three [10]. These new devices as well as the new capabil-
ities of the Internet enable applications that can be used in several areas, such
as entertainment, communication or productivity. While most of these applica-
tions can only be used on the device itself, mobile devices offer a way to create
a new kind of applications: multi-screen applications. Multi-screen applications
run distributedly on different devices, like a PC, smartphone, tablet or TV. The

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 236–253, 2014.
c© Springer International Publishing Switzerland 2014

SmartComposition: A Component-Based Approach 237

composition of these multiple screens creates a new user experience. Multi-screen
applications are suitable for single as well as several users.

A particular kind of multi-screen applications are multi-screen mashups. These
multi-screen mashups are also a special type of user interface mashups (UI
mashups), the importance of which has increased significantly within the last
years [1]. A mashup consists of several widgets that offer a limited functionality.
By combining and aggregating these widgets more complex tasks can be solved.
While each widget can work by itself, it has to be extended to support the commu-
nication with other widgets inside the mashup. Examples for these UI mashups
are platforms like iGoogle or Yahoo! Pipes. The compositional way UI mashups
are built eases the development of new rich web applications. Current approaches
regarding UI mashups focus on applications that run on a single screen. They
offer the opportunity to easily create end user interfaces [3] on different devices
but not across these devices. Although the EU FP7 project OMELETTE has
focused on telco service mashups, it proposed a reference architecture for UI
mashups in [6,18]. This architecture facilitates the deployment of UI mashups
to desktop as well as mobile devices, but cannot distribute the UI across several
devices. Another outcome of this EU project was the Open Markup Descrip-
tion Language (OMDL) [18] which supports the process of designing, evolving
and deploying UI mashups, but is also limited to single-screen mashups. Thus,
we extend the OMELETTE reference architecture and the OMDL to deal with
multi-screen mashups.

Developing web applications is a methodical process our approach needs to
deal with. Therefore, aspects of software and web engineering have to be consid-
ered. The WebComposition approach [4] describes a way to design and develop
web applications based on reusable components. These components can be ex-
changed or reused within other web applications. The purpose of this paper is to
propose an approach to support end users in creating multi-screen mashups.
Therefore, we want to extend the UI mashup approach to support multiple
screens. We present an architecture that supports and eases the development
process of multi-screen mashups.

The rest of the paper is organized as follows: In Section 2 we describe three
scenarios to illustrate the use cases we focus on. From these scenarios we de-
rive challenges that a solution has to deal with in Section 3. The SmartCom-
position approach is proposed in Section 4. We describe our extension of the
OMELETTE reference architecture and the OMDL. A first prototype which fol-
lows the SmartComposition approach is demonstrated in Section 5. In Section 6
we evaluate our approach. We discuss related work in Section 7. Finally, we
provide a conclusion and give an outlook towards future work in Section 8.

2 Scenarios

In this section we present three scenarios that illustrate where multi-screen ap-
plications can create a benefit for users. Using these scenarios we want to show
what users could expect from such applications and what challenges exist that
need to be solved.

238 M. Krug, F. Wiedemann, and M. Gaedke

Scenario 1. The first scenario focuses on media enrichment using multiple
screens. While consuming a documentary on television, the user, called Amy,
wants to see additional content about the currently watched show. This addi-
tional content could be a related article on Wikipedia, images from online photo
services, like Google or Flickr, or where to buy items that were shown in the
video. For easing the reading or enabling interaction with the additional content,
it will be displayed on Amys smartphone or tablet, while she is still watching the
documentary on her television. Figure 1 illustrates this scenario. While watching
a documentary about the United Nations (cf. 1) the location of the UN head-
quarters in New York is shown on a map on Amys smartphone (cf. 2) as soon as
the video reaches the scene where it is presented. In the same way other kinds
of information, which are directly related to the current scene, are provided.
Amy can easily decide what types of additional content she wants to receive.
For deleting this information two use cases are applicable. First, the information
about the UN headquarters’ location will be removed from Amy’s smartphone,
if the documentary does not talk anymore about it. Second, by clicking on the
information Amy can prevent the automatic removing of the information.

Fig. 1. Mockup illustrating media enrichment in Scenario 1

Scenario 2. The second scenario addresses the enhancement of a presentation
by distributing additional information to multiple secondary screens. As an ex-
ample, a professor is giving a talk in front of many students. While showing
slides of his presentation via a projector, the students receive further informa-
tion on their mobile devices. Thus, the students can read and see details about
the current topic without messing up the slides with a lot of text. Furthermore,
the students can use the additional information on their laptops as a script. The
professor can keep his slides clean, while the students get a synced script related
to the current lecture. While the professor is authenticated as a lecturer, he can
broadcast slides and information. This functionality is denied to the students
who do not have this privilege.

Scenario 3. Our third scenario aims at collaborative work on multiple screens.
Therefore, we want to reuse a scenario described by Husmann et al. in [9]. In
this scenario ”two users, Alex and Bill, are planning a mountain biking trip at

SmartComposition: A Component-Based Approach 239

home in their living room”. While Alex is planning the mountain biking route
on her tablet, Bill is searching for railway connections on his smartphone. Both
are using the television in their living room to share the results of their tasks on
a larger display. When Alex chooses a start point for their mountain biking trip,
this start point will be pushed to Bill’s smartphone, where it is automatically
inserted in the input field for the destination of his railway connection query.
Bill can choose his favorite railway connections to be displayed on the television.
Alex’ chosen mountain biking route will be displayed as a map on the television
next to the railway connection information.

3 Analysis

We use the presented scenarios in Section 2 to derive objectives our approach
needs to deal with for creating multi-screen mashups. First, we begin with some
basic findings. In all scenarios there is always a common context shared between
all participating screens. This context has to be maintained. We identified two
possible screen constellations. In the first one a primary screen publishes infor-
mation to all secondary screens (cf. Scenarios 1 and 2). The secondary screens
are only consuming and displaying information. An interaction with the infor-
mation is possible, but without reflection to the original publisher. In the sec-
ond constellation all screens are in an equal role (cf. Scenario 3). All of the
participants are publishing and consuming information. A more interactive and
collaborative usage of the application is possible. This setup requires a more com-
plicated synchronization mechanism. Furthermore, there are also two scenario
types regarding the number of users: single-user (cf. Scenario 1) and multi-user
(cf. Scenarios 2 and 3). Both will require a different application design.

Based on the scenarios in Section 2, we now state several objectives that our
approach should fulfill.

Simplicity of Mashup Creation. We targeted several scenarios in Section 2
where multi-screen mashups can provide a suitable solution. Thus, our approach
should enable end users to easily create these multi-screen mashups for their
specific tasks. This includes the reuse of developed widgets as well as the easy
configuration of a set of devices which interact as a multi-screen. Inspired by
the WebComposition approach from Gaedke et al. in [4,5] we apprehend widgets
as loosely-coupled components, which were assembled in a mashup to a new
application. Furthermore, the end users should not fiddle with designing UI
mashups for mobile use only. The process of creating a multi-screen mashup is
independent of the targeted device which can be a mobile as well as a PC or
laptop.

Support for Multi-screen Usage. The focus of our proposal is the develop-
ment of multi-screen mashups. Therefore, our approach should provide function-
ality to develop applications that can be used with more than one screen or
device. Thus, there is a need for unique identification and data synchronization.
The types of the participating screens should be detected and used to deliver an

240 M. Krug, F. Wiedemann, and M. Gaedke

according user interface. While there can be a lot of devices which use the sys-
tem, they should not be connected to any other available screen. This objective
implies that devices can be grouped to so called workspaces and cannot commu-
nicate with devices in different workspaces. As we described in Scenarios 1 to 3
the support for multiple screen is the central point of our approach.

Support for Real-Time Communication and Synchronization. To propa-
gate information without noticeable delay between server and client a component
for real-time communication and synchronization should be available. We define
the communication as real-time, when the latency of the transmission of a mes-
sage from one widget to another one is 50 milliseconds or less [15]. That ensures
no noticeable delay when distributing information across one screen as well as
multiple screens. Furthermore, the components on one screen must be able to
communicate among themselves.

Collaboration Support. The applications to develop should not only be used
by a single user. We want to support the development of multi-screen multi-user
mashups. Thus, our approach should provide the basis for collaborative work,
such as user identification and data synchronization. This is highly related to
the real-time synchronization requirement. Scenario 3 illustrates this objective
best, while Scenario 2 also partially requires some support in collaboration.

Authentication. Nowadays it is important to provide a personalized user ex-
perience as well as social interaction. Thus it is required to offer the users a
way to authenticate themselves. Using protocols like WebID even an authenti-
cation without requiring a password is possible. A user and role based identity
management would provide a flexible way to handle most scenarios. The usage
of multiple different devices creates a challenge to provide user-friendly login
mechanisms for different use cases.

After we specified our objectives, we propose our own approach within the
next section.

4 The SmartComposition Approach

To fulfill the requirements gathered from the analysis we propose a component-
based approach to develop multi-screen mashups, called SmartComposition. We
extend the OMELETTE reference architecture [18] for fitting the requirements
in Section 3. In the following paragraphs we describe the SmartComposition ar-
chitecture, which is depicted in Figure 2. We highlight our significant changes
related to the OMELETTE reference architecture with underlined text. Our pro-
posal consists of four parts: SmartComposition Runtime Environment, Multi-
Screen Workspace, Information Store, SmartScreen. These parts interact like
described in the following.

The SmartComposition Runtime Environment runs a multiple instances of a
mashup. Thus, it handles multiple Multi-Screen Workspaces which are separated
and secured against other existing Multi-Screen Workspaces. To enable the se-
curity between the Multi-Screen Workspaces we introduce the Session-Handler.

SmartComposition: A Component-Based Approach 241

The Session-Handler knows all running workspaces and instantiates the Multi-
Screen Workspaces. Each Multi-Screen Workspace contains a Workspace Man-
ager.

SSmartComposition Runtime Environment

Mobile SmartScreenDesktop SmartScreen

Information
Store

Widget
Repository

Multi-Screen Workspace

Desktop SmartScreen Mobile SmartScreen

Workspace
Repository

Cross-Screen
Communication Service

reads/
writes

Widget
Browser

Inter-Widget Commn.
Manager

Authentication Manager

reads
from

Identity
Provider

Authentication Manager

Composition
assistance
services

Widget
Browser

Inter-Widget Commn.
Manager

Widget communication
exchange

Session-Handler

SmartScreen
Manager

SmartScreen
Manager

reads
from

Workspace
Manager

Widget communication
exchange

Fig. 2. Architecture of the SmartComposition approach

The Workspace Manager handles the workspace of a single user as well as
several users who use the mashup in a collaborative way. Furthermore, the
Workspace Manager is responsible for initialization of the SmartScreens and
for the state management of the whole workspace. The illustrated component
composition assistance services [16] in Figure 2 are not covered by our approach
yet. Therefore, a workspace is defined as a set of one or more SmartScreens,
which share the same information space and can communicate among them-
selves. Thus, the simplest form of a workspace consists of a single SmartScreen.
A workspace is identified by a workspace ID and described by its workspace
configuration. The configuration contains information about the SmartScreens
which are connected, the widgets on each screen and additional properties. We
use the OMDL as the basis for our configuration notation. Therefore, we extend
the OMDL to support multi-screen aspects. How we did this and what changes
we made is described later in this section.

242 M. Krug, F. Wiedemann, and M. Gaedke

The inter-widget communication is a highly important topic when develop-
ing mashups [1]. Our approach does not improve the inter-widget communica-
tion by itself but extends it for multi-screen mashups. On a single SmartScreen
we use the publish-subscribe pattern for transmitting messages from one wid-
get to one or several other widgets. For supporting inter-widget communica-
tion across multiple screens we extend the inter-widget communication compo-
nent to publish the message to other connected SmartScreens (cf. Figure 3).
That is, if a widget publishes a message on a certain topic, the inter-widget
communication component publishes this message to all widgets on the same
SmartScreen that are subscribed on the same topic. Furthermore, the message
is transmitted to a Cross-Screen Communication Service where the message is
sent to all connected SmartScreens within the same session. The assignment of
SmartScreens and the workspace session they belong to is done by the Session-
Handler. This ensures that a SmartScreen can only communicate with other
SmartScreens of the same workspace. On each SmartScreen the inter-widget
communication component publishes the message also to the subscribed widgets
on their SmartScreen. The Cross-Screen Communication Service can work in two
modes: broadcast mode and multi-layered publish-subscribe mode. In broadcast
mode the Cross-Screen Communication Service sends every incoming message of
one SmartScreen to all other SmartScreens of the same workspace. However, in
the multi-layered publish-subscribe mode the inter-widget communication com-
ponent of each SmartScreen subscribes to topics at the Cross-Screen Communi-
cation Service. The topics to subscribe depend on the topics that the widgets
subscribe to on their SmartScreen. After publishing a message from a widget
to the inter-widget communication component of its SmartScreen the message
will be published to all subscribed widgets. Furthermore, the message will be
published to the Cross-Screen Communication Service. There, the message will
be published to inter-widget communication component of the SmartScreens, if
they are subscribed to the topic. Each inter-widget communication component
then publishes the message to the subscribed widgets.

As defined before, a workspace consists of SmartScreens. A SmartScreen is an
abstract representation of a web browser window. It provides the runtime envi-
ronment for all client-side components. Each SmartScreen has its own identifier.
This identifier has to be at least unique in the workspace. This is important for
the communication between the screens. The SmartScreen Manger within the
SmartScreen initializes the widgets, handles the state management and provides
access to device-specific properties. It detects the type and resolution of the de-
vice and uses this information to adapt the presentation. Thus, it is responsible
for composition of the user interface.

The information store is the part which is dealing with all required and avail-
able persistent data. It consists of three components: the widget repository, the
identity provider and the workspace repository.

Described in the OMELETTE reference architecture in [18] the widget repos-
itory is part of the SmartComposition Runtime Environment, but there are also
meta data about the widgets available in the information store. Thus, we decided

SmartComposition: A Component-Based Approach 243

SmartScreen 1

widget A widget B

inter-widget communication
using publish/subscribe

Cross-Screen Communication Service

SmartScreen 2

Widget Y

inter-widget communication
using publish/subscribe

widget X widget Z

Fig. 3. Cross-screen message flow of inter-widget communication

to combine both parts and move the widget repository to the information store.
There it is responsible for delivering the executables as well as providing meta
data about the widgets. The end user can search for a specific widget based on
the name or id of the widget. Furthermore, the end user can discover widgets
based on their meta data. That is, a widget can be selected by the messages it can
consume or the way it presents the proposed information, such as a map widget
which shows given coordinates on a map excerpt. The widget repository is also
responsible for delivering the executables to the SmartComposition Runtime En-
vironment. In case of W3C widgets [19] the executables contains HTML-, CSS-
and JavaScript-files which can be delivered to the SmartScreen without much
effort.

The identity provider offers information about the current user or users. It con-
tains endpoints for verifying the user’s identity. While our approach enables us-
ing different identity management concepts, we propose the usage of WebID [17].
When using WebID the identity provider gives access to the users’ WebID pro-
files. The supplied information about the authenticated user can also be used for
accessing resources from the widget repository as well as the workspace reposi-
tory [7]. Closely related to the identity provider is the Authentication Manager
within the SmartScreens.

Therefore, the Authentication Manager requests the users WebID certificate.
The WebID URI is extracted from the Subject Alternative Name of the WebID
certificate. Then, the Authentication Manager requests the WebID profile from
the Identity Provider and verifies that the public key of the users WebID certifi-
cate is equal to the public key in the corresponding WebID profile. This is the
authentication part within the WebID flow described in [17]. Afterwards, based
on the users WebID, authorization could be granted. Based on the authenticated
user access to restricted resources can be permitted or denied, such as the users

244 M. Krug, F. Wiedemann, and M. Gaedke

workspace or some special widgets, which are limited to specific users. To ease
the access to a users roles, the Authentication Manager offers an interface to
request the users WebID profile for personal information, like name, birthdate
and more. Furthermore, the users roles can be requested by other widgets or
core components of the SmartComposition Runtime Environment. However, the
users relationships can be queried without requesting the users WebID profile
again.

The workspace repository stores and offers predefined or user-specific Multi-
Screen Workspaces. Predefined workspaces will be used if there is no user-specific
workspace existing. Thus, our approach enables the developer to define the de-
fault appearance of a single SmartScreen. Defining a default workspace with
more than one SmartScreen is not useful, because the developer cannot predict
with how many devices the user will use the application. However, it is possi-
ble to define multiple different default workspaces regarding to context specific
information, such as the users role, device or geo-location. Within the default
workspace a set of widgets and their position on the SmartScreen is defined.

When a user or several users are using the multi-screen web application,
it could be necessary to save the current Multi-Screen Workspace. The users
workspace will be saved by storing the OMDL description of the workspace in
the workspace repository. While a Multi-Screen Workspace can contain multi-
ple SmartScreens, it is at least necessary that one device wants to restore its
SmartScreen as part of the workspace. Therefore, the device needs to save at
least the workspace identifier within its client-side storage. The workspace repos-
itory offers an interface where the OMDL description corresponding to a given
identifier is responded. From this OMDL description the device can extract its
workspace configuration and can so restore the widgets on this SmartScreen.
When another device of this workspace wants to restore its SmartScreen, it
also sends the workspace identifier and retrieves the OMDL description of the
workspace where it can extract its SmartScreen. On restoring the second or an-
other SmartScreen the communication channel between these SmartScreen will
be established by the Cross-Screen Communication Service.

4.1 Extension of OMDL

We use the OMDL for describing our Multi-Screen Workspaces and for stor-
ing them in the workspace repository. While the OMDL defines three levels for
describing mashups [18], we just use the Physical Level for the SmartCompo-
sition approach. However, the defined Physical Level needs to be extended to
support multiple screens, because the OMDL has no support for distributed
mashups. The OMDL uses XML documents to describe mashups, their layout
and the apps they contain. The root element of an OMDL document is the
workspace. In the SmartComposition approach we apply the OMDL workspace
to theMulti-Screen Workspace described above.

While the OMDL does not support multiple screens yet, we extend the vo-
cabulary of the OMDL by adding several elements. The first new element is the
SmartScreen which is added within the workspace element. The SmartScreen

SmartComposition: A Component-Based Approach 245

element is used to define a SmartScreen within a Multi-Screen Workspace. Thus,
there can be multiple SmartScreen elements. The SmartScreen element has an
attribute id, which is unique and identifies the SmartScreen. Furthermore, the
SmartScreen element has a child element named type, which defines the type of
the device the SmartScreen runs on. For dealing with collaborative multi-user
workspaces we define a user element within the SmartScreen element, which
refers to the authenticated users WebID URI.

1 <workspace xmlns="http://omdl.org/">

2 <identifier>http://example.org/workspacerepo/ws1</identifier>

3 <title>Media</title>

4 <date>2012-07-03T14:23+37:00</date>

5 <SmartScreen id="phone1">

6 <type>Smartphone</type>

7 <user>http://example.org/people/alice.rdf#me</user>

8 <grid><height>4</height><width>2</width></grid>

9 </SmartScreen>

10 <SmartScreen id="pc1">

11 <type>PC</type>

12 <user>http://example.org/people/bob.rdf#me</user>

13 <grid><height>6</height><width>10</width></grid>

14 </SmartScreen>

15 <app id="http://example.org/workspacerepo/ws-of-alice/1">

16 <SmartScreen>phone1</SmartScreen>

17 <type>MAP</type>

18 <link rel="source" href="http://example.org/repo/w1"

19 type="application/widget"/>

20 <position><x>0</x><y>0</y></position>

21 <size><height>2</height><width>2</width></size>

22 </app>

23 <app id="http://example.org/workspacerepo/ws-of-alice/2">

24 <SmartScreen>pc1</SmartScreen>

25 <type>LIST</type>

26 <link rel="source" href="http://example.org/repo/w2"

27 type="application/widget"/>

28 <position><x>0</x><y>0</y></position>

29 <size><height>5</height><width>2</width></size>

30 </app>

31 </workspace>

Listing 1.1. Example of a workspace description in OMDL

Each SmartScreen has an individual fine grained grid to arrange the widgets.
To store the position of the widgets the SmartScreen element has a child element
named grid. This element has two child elements height and width which repre-
sent the number of rows and columns the grid has. Another element we adapted
is the app element. In OMDL this element describes a part of the mashup. In the

246 M. Krug, F. Wiedemann, and M. Gaedke

SmartComposition approach we define an app as a widget. While the OMDL has
no multi-screen support yet, we also need to extend the app element to define on
which SmartScreen the widget is located. Therefore, we introduce a SmartScreen
element within the app element. This SmartScreen element contains the id of
the containing SmartScreen. Furthermore, we assume that the type element of
the app can be extended by several types which are required for a specific multi-
screen web application. However, the alignment of apps in OMDL does not fit
our approach, which focuses on a finer grained positioning. Therefore, we ex-
tended the position element by two new elements which are x and y. These
elements represent the position of the widget regarding to a fine grained grid on
the SmartScreen, where x means the distance to the left side and y means the
distance to the top. Furthermore, we added a new element to the app element
named size. This element has two child elements height and width, which mean
the size of the widget regarding to fine grained grid on the SmartScreen. An
example of a SmartComposition workspace described in OMDL can be seen in
Listing 1.1.

5 Prototype

To validate the SmartComposition approach we have implemented a first proto-
type, which is based on another work we recently presented at the ICWE 2013
[12,14] and WWW 2014 [13]. The prototype demonstrates the Scenarios 1 and 2
we described in this paper (cf. Figure 4). All the client-side components we de-
scribe are implemented in JavaScript running as a web application in a web
browser.

To achieve a multi-screen experience we implemented the following compo-
nents. We created a SmartScreen class. This class works as described in our
approach and is the host for the widgets. For our user interface components
we implemented a basic widget class which provides the interface and basic
functionality. This basic class is used to derive various new widget types using
prototype-based inheritance. We have implemented widgets that can display a
map, images from different web sources, excerpts from Wikipedia, text, transla-
tions or tweets. The widgets can be added and removed on runtime. The user
can arrange them in a grid-based layout by using drag-and-drop.

To handle the information exchange between the widgets we implemented a
component as part of the inter-widget communication. This component provides
the publish-subscribe pattern and thus offers loosely coupled communication.
Once a widget is added to the SmartScreen it can subscribe to one or more
topics on which events are published.

The workspace configuration of the SmartScreens is currently stored on the
client-side using the HTML5 feature LocalStorage. Using the proposed workspace
identifier the users customized arrangement can be restored. A workspace repos-
itory is not yet implemented.

To make the prototype work on multiple screens we extended the inter-widget
communication component with a synchronization mechanism. This mecha-
nism uses WebSockets to propagate the events which were published on one

SmartComposition: A Component-Based Approach 247

Fig. 4. Prototype of a multi-screen mashup described in Scenario 1. On the primary
screen (top) a german news cast is played. Meta data from this video are published to
all widgets within the workspace. Additional information are displayed on the different
screens, such as Google Maps on the primary screen, Flickr images on the iPad (bottom
right), and Twitter feed on the iPhone (bottom left).

248 M. Krug, F. Wiedemann, and M. Gaedke

SmartScreen to the other connected screens. This extension also handles the
re-publishing of received events to the widgets. Thus, the whole communica-
tion is synchronized with all connected SmartScreens. This approach assures
that each client behaves equally regardless of where the event was published. To
make that work we also had to implement a server-side component. Once a new
SmartScreen is added to a workspace the RTC components registers the screen
at the Session-Handler using the workspace ID, the SmartScreens own identifier
and device specific information. This data is supplied to the other participants.

To deal with the Cross-Screen Communication Service we implemented a
WebSockets server that provides methods for propagating information to other
connected clients. It handles the propagation of the events it receives to all
SmartScreens that are combined in a workspace. Using the workspace identi-
fier the related SmartScreens are selected. This component is implemented as a
Node.JS application.

Demonstration. The prototype presented in this paper is available for testing
at: http://vsr.informatik.tu-chemnitz.de/demo/chrooma/icwe14/

6 Evaluation

In this section we evaluate the SmartComposition approach. Based on the analy-
sis in Section 3, we examine how the approach assists in developing multi-screen
mashups. We outline our expectations and explain actual findings.

A big challenge our approach has to deal with is the support of multi-
ple screens. Therefore, we introduced the concept of workspaces where several
SmartScreens create the interface of the mashup. The introduced parts of our
architecture, the Cross-Screen Communication Service and the Session-Handler,
enable the inter-widget communication across multiple screen (cf. Figure 2). This
two parts also ensure that only screens within the same workspace can commu-
nicate with each other. Thus, the workspaces are isolated from each other. We
extended the OMDL to support multiple screens within a workspace and used
it to store and restore the configuration of a workspace.

Real-time communication for the SmartScreens has to be enabled for syn-
chronization and communication of multiple SmartScreens within a workspace.
While web systems often use long-polling for nearly real-time communication, we
considered that new technologies, such as WebRTC or WebSockets, which are in-
troduced with HTML5, might better correspond to our requirements. Therefore,
we designed our RTC component using WebRTC and WebSockets and support
long-polling as a fallback mechanism for browsers, which do not support these
new technologies. We evaluate the performance of the RTC component in our
prototype by measuring the duration of transporting an information from one
widget to another. A special widget was developed, which publishes a times-
tamp to a second widget. The second one re-publishes the timestamp to its
source. After receiving the timestamp on the first widget the difference between
the current timestamp and the received one is calculated and then halved. We
examined different constellations. The first one was where both widgets were

http://vsr.informatik.tu-chemnitz.de/demo/chrooma/icwe14/

SmartComposition: A Component-Based Approach 249

Table 1. Transport duration of a message from one widget to another in milliseconds

Average Standard Deviation

Same SmartScreen 5,121 0,654
Same PC 4,100 0,921
PC - iPad 38,735 26,842
PC - PC (WiFi) 26,668 19,036
PC - PC (Wired) 3,494 1,254

on the same SmartScreen. Another one was where the widgets were on differ-
ent SmartScreens which run on the same PC. The third constellation was one
SmartScreen on a PC and the other on a WiFi-connected iPad. The fourth one
was two SmartScreens on two PCs which are connected via WiFi. Two PCs
are connected via wire in the last constellation. The statistical values of our
evaluation can be seen in Table 1. As we proposed in Section 3 the real-time
communication is satisfied as the transport of a message from one widget to
another is less than 50 ms. Our findings show that the largest latency occurs
at the communication between a widget on the PC and a widget on the iPad
with 38,735 ms. We can argue the difference in the average communication be-
tween the same SmartScreen and two SmartScreens on the same PC with the
multi-threading architecture of the PC. That is, with two SmartScreens in two
browser windows enables more parallelism in execution, because each browser
window can be run in a different thread. The high standard deviation in the com-
munication via WiFi (PC-iPad and PC-PC) can be ascribed to some side effect
caused by the WiFi. To ensure that the higher latency when using WiFi does
not is caused by constant term we give the relation of the IP-latency measured
by ping in Table 2.

Table 2. Ping latency between two PCs in milliseconds

Average Standard Deviation

PC - PC (WiFi) 3,800 1,279
PC - PC (Wired) 1,025 0,798

We evaluate the simplicity of creation by developing two mashups for Sce-
nario 1 and Scenario 2. In Scenario 1 we developed some new widgets for dis-
playing a video and processing the meta data, such as the given subtitles. Other
widgets could be reused in both scenarios, like a Wikipedia-widget which is dis-
playing an article from Wikipedia or a GoogleMaps-widget which shows a map
excerpt. Since the separation of the SmartScreens into their workspaces is an
essential part of our approach, the end user has not to deal with the configura-
tion of the workspaces. A mashup created based on our approach runs on PCs,
laptops, smartphones, tablets as well as on web-enabled TVs.

250 M. Krug, F. Wiedemann, and M. Gaedke

For supporting authentication we propose a two tier approach The Authenti-
cation Manager within the SmartComposition Runtime Environment deals with
the process of authentication and offering interfaces for accessing roles and per-
missions. The Identity Provider in the Information Store gives access to the users’
profile and personal data, such as name, birth date or e-mail address. The usage
of WebID offers the opportunity to let users easily login with their different de-
vices. They can use a WebID certificate on each device which refers to the same
WebID profile of the user.

Performing collaborative tasks is facilitated by multi-user workspaces and
real-time communication. For collaborative work on a multi-screen web appli-
cation we extended the OMDL to define a specific user for each SmartScreen.
Thus, a device, which is authenticated by the users WebID, receives the corre-
sponding workspace and can load the SmartScreen associated to the device. This
enables several users to use the same workspace. Utilizing the real-time commu-
nication functionality of the RTC component synchronization of different users
SmartScreens can be achieved.

7 Related Work

Our approach is closely related to work in three research domains: distributing
and migrating Web UIs, data mashups, and classic user interface mashups (UI
mashups). The DireWolf approach proposed in [11] enables the distribution and
migration of Web widgets between multiple devices. While our approach focuses
on developing multi-screen mashups from scratch, the DireWolf approach ex-
tends the functionality of single-device mashups to run across multiple devices.
The framework is involved in every layer of a widget-based Web Application:
the widget itself, the client browser, the backend service and the data storage.
DireWolf manages communication between widgets on one device as well as be-
tween widgets on multiple devices. It also extends the functionality of common
widget spaces with a shared application state. While our approach uses HTML5
features, such as WebSockets, for communication the DireWolf approach uses
the XMPP protocol and its publish-subscribe extensions. That is, the DireWolf
approach uses an additional layer within the communication architecture, which
increases the effort for maintaining and exchanging parts of this communication
layer. Furthermore, the usage of XMPP can increase the incompatibility when
using mobile devices inside restricted GSM networks.

MultiMasher is a visual tool to create multi-device mashups from existing web
content [9]. It aims at designing mashups without the need for modeling or pro-
gramming. The MultiMasher runs in the browser, connects to the MultiMasher
server and provides the user with a toolbar. After the user has connected his
devices he can load any web site, which he can then mashup. UI elements can
be selected visually and distributed (move or copy) to other connected devices.
The mashups can be saved, loaded and reused as basis for other mashups. Multi-
Masher uses event forwarding to propagate changes to the connected clients and
only displays the previously selected UI elements on each device. MultiMasher
focuses on the creation of mashups and not on the creation of new applications.

SmartComposition: A Component-Based Approach 251

The EU FP7 Project OMELETTE is closely related to our work, because it
proposes a reference architecture for designing platforms for UI mashups [18].
They focus on end users with less or no programming skills to create their own
mashups for fulfilling a certain goal. The outcome of this project was a prototype
based on Apache Rave and Apache Wooky [2]. After a user log in, she can restore
recent workspaces or create a new one by adding widgets to her workspace. The
focus of the OMELETTE project was on the automatic composition of these
mashups. Therefore, they invented some great strategies for suggesting widgets
to add or for establishing the inter-widget communication between two widgets
based on the user’s behavior. While the OMELETTE reference architecture is a
well-proven approach, it lacks in supporting UI mashups which run distributed
across multiple screens. Thus, we extend the proposed reference architecture to
support workspaces which include multiple screens. We also showed that con-
cepts of inter-widget communication designed for a workspace on one screen
works also for a workspace across multiple screens.

Mashup tools, like Yahoo! Pipes, offer end users developing data mashups.
End user in this context means people with no or less development skills. While
our approach focuses on user interface mashups, Yahoo! pipes is focusing on
mixing popular data feeds to create data mashups via a visual editor. Therefore,
it lets users transform, aggregate, transform and filter one or more data sources,
such as RSS/Atom feeds or XML sources, and output this as a RSS feed. Thus,
it enables end users to develop a kind of business logic for processing data [20].
However, Yahoo! Pipes does not offer a multi-screen environment where the
created mashups can be executed.

8 Lessons Learned and Outlook

The SmartComposition approach proposed in this paper enables end users to
easily create multi-screen mashups. We extended the OMELETTE reference
architecture to deal with mashups across multiple screens. The Cross-Screen
Communication Service extends classic inter-widget communication to work on
a trans-screen level, while separating different workspaces from each other via
the Session-Handler. Furthermore, our approach handles the challenge of real-
time communication. The component-based architecture enables adding required
and removing obsolete components. Thus, SmartComposition can be adjusted
for different multi-screen web application scenarios. Both, the workspace repos-
itory as well as the widget repository offer a generalized access to widgets and
workspaces.

Our future work will focus on integrating commonly used widget formats, such
as W3C-widgets or Opera widgets. We also plan to evolve the cross-screen inter-
widget communication by considering constraints given by several roles. That
is, in a multi-user scenario, e.g., Scenario 3, one user is permitted to update a
specific widget on a shared screen, while another user just has read-only access to
the presented information. Another aspect we want to focus on in future work is
the authorization of widgets to use the users’ external services, such as Facebook
or Google Drive.

252 M. Krug, F. Wiedemann, and M. Gaedke

As described in Section 4 the composition assistance services, such as auto-
matic composer and workspace pattern recommender, are not yet a part of our
approach for multi-screen mashups. We plan to adapt the approaches proposed
by Roy Chowdhury in [16] for multi-screen mashups. Different use cases in this
field of research are possible: The user gets a recommendation to add an addi-
tional screen, like a smartphone or a laptop, when she is using the mashup to
accomplish her desired goal in a better way. When a user starts a new workspace,
the widgets will be deployed to all available screens. This can be done by learning
from the behavior of the users or by designing a default workspace.

Acknowledgment. This work was supported by the Sächsische Aufbaubank
within the European Social Fund in the Free State of Saxony, Germany (Project
Crossmediale Mehrwertdienste für die digitale Mediendistribution).

References

1. Chudnovskyy, O., Fischer, C., Gaedke, M., Pietschmann, S.: Inter-widget commu-
nication by demonstration in user interface mashups. In: Daniel, F., Dolog, P., Li,
Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 502–505. Springer, Heidelberg (2013)

2. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Fernández-Villamor, J.I.,
Chepegin, V., Fornas, J.A., Wilson, S., Kögler, C., Chang, H.: End-user-oriented
telco mashups: the omelette approach. In: Proceedings of the 21st International
Conference Companion on World Wide Web, pp. 235–238. ACM (2012)

3. Chudnovskyy, O., Pietschmann, S., Niederhausen, M., Chepegin, V., Griffiths, D.,
Gaedke, M.: Awareness and control for inter-widget communication: Challenges
and solutions. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977,
pp. 114–122. Springer, Heidelberg (2013)

4. Gaedke, M., Rehse, J.: Supporting compositional reuse in component-based web
engineering. In: Proceedings of the 2000 ACM Symposium on Applied Computing,
vol. 2, pp. 927–933. ACM (2000)

5. Gaedke, M., Turowski, K.: Specification of components based on the web-
composition component model. In: Managing Information Technology in a Global
Economy, p. 411 (2001)

6. Gebhardt, H., Gaedke, M., Daniel, F., Soi, S., Casati, F., Iglesias, C., Wilson, S.:
From mashups to telco mashups: A survey. IEEE Internet Computing 16(3) (2012)

7. Hollenbach, J., Presbrey, J., Berners-Lee, T.: Using rdf metadata to enable access
control on the social semantic web. In: Proceedings of the Workshop on Collabora-
tive Construction, Management and Linking of Structured Knowledge (CK 2009),
vol. 514 (2009)

8. Horizont: Report TV-Marketing, Ausgabe 17, p. 40 (April 2012),
http://www.horizont.net/report

9. Husmann, M., Nebeling, M., Norrie, M.C.: MultiMasher: A visual tool for multi-
device mashups. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013.
LNCS, vol. 8295, pp. 27–38. Springer, Heidelberg (2013)

10. IDC Coroporate USA: Tablet Shipments Forecast to Top Total PC Shipments
in the Fourth Quarter of 2013 and Annually by 2015, According to IDC (2013),
http://www.idc.com/getdoc.jsp?containerId=prUS24314413

http://www.horizont.net/report
http://www.idc.com/getdoc.jsp?containerId=prUS24314413

SmartComposition: A Component-Based Approach 253

11. Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R.: DireWolf - distributing
and migrating user interfaces for widget-based web applications. In: Daniel, F.,
Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 99–113. Springer,
Heidelberg (2013)

12. Krug, M., Wiedemann, F., Gaedke, M.: Media enrichment on distributed displays
by selective information presentation: A first prototype. In: Sheng, Q.Z., Kjeldskov,
J. (eds.) ICWE Workshops 2013. LNCS, vol. 8295, pp. 51–53. Springer, Heidelberg
(2013)

13. Krug, M., Wiedemann, F., Gaedke, M.: Enhancing Media Enrichment by Semantic
Extraction. In: Proceedings of the Companion Publication of the 23rd International
Conference on World Wide Web Companion, pp. 111–114. International World
Wide Web Conferences Steering Committee (2014)

14. Oehme, P., Krug, M., Wiedemann, F., Gaedke, M.: The chrooma+ approach to
enrich video content using html5. In: Proceedings of the 22nd International Con-
ference on World Wide Web Companion, pp. 479–480. International World Wide
Web Conferences Steering Committee (2013)

15. Pantel, L., Wolf, L.C.: On the impact of delay on real-time multiplayer games.
In: Proceedings of the 12th International Workshop on Network and Operating
Systems Support for Digital Audio and Video, pp. 23–29. ACM (2002)

16. Roy Chowdhury, S., Chudnovskyy, O., Niederhausen, M., Pietschmann, S.,
Sharples, P., Daniel, F., Gaedke, M.: Complementary assistance mechanisms for
end user mashup composition. In: Proceedings of the 22nd International Confer-
ence on World Wide Web Companion, pp. 269–272. International World Wide Web
Conferences Steering Committee (2013)

17. Sporny, M., Inkster, T., Story, H.: WebID 1.0: Web Identication and Discovery
(2011), http://www.w3.org/2005/Incubator/webid/spec/

18. University of Trento: D2.2 - Initial Specification of Mashup Description Language
and Telco Mashup Architecture. Tech. rep., University of Trento (2011)

19. W3C: Packaged Web Apps (Widgets) - Packaging and XML Configuration, 2nd
edn. (2012), http://www.w3.org/TR/2012/REC-widgets-20121127/

20. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
IEEE Internet Computing 12(5), 44–52 (2008)

http://www.w3.org/2005/Incubator/webid/spec/
http://www.w3.org/TR/2012/REC-widgets-20121127/

SSUP – A URL-Based Method

to Entity-Page Discovery

Edimar Manica1,2, Renata Galante2, and Carina F. Dorneles3

1 Campus Avançado Ibirubá - IFRS - Ibirubá, RS, Brazil
edimar.manica@ibiruba.ifrs.edu.br

2 PPGC - INF - UFRGS - Porto Alegre, RS, Brazil
galante@inf.ufrgs.br

3 INE/CTC - UFSC - Florianópolis, SC, Brazil
dorneles@inf.ufsc.br

Abstract. Entity-pages are Web pages that publish data representing
one only instance of a certain conceptual entity. In this paper we propose
SSUP, a new method to entity-page discovery. Specifically, given a sam-
ple entity-page from a Web site (e.g., Jolyon Palmer entity-page from
GP2 Web site) we aim to find all same type entity-pages (driver entity-
pages) from this Web site. We propose two structural URL similarity
metrics and a set of algorithms to combine URL features with HTML
features in order to improve the quality results and minimize the number
of downloaded pages and processing time. We evaluate our method in
real world Web sites and compare it with two baselines to demonstrate
the effectiveness of our method.

Keywords: entity-pages, structural similarity, URL features, HTML
features.

1 Introduction

The Web contains an increasing number of Web sites that can be considered a
repository of pages with valuable information about real world entities. These
pages are called entity-pages (or object-pages). Weninger et al. [8] define an
entity-page as a Web page that describes a specific entity. For example, a Web
page that describes a GP2 driver or a city council member.

Making use of the data presented in the entity-pages is an opportunity to cre-
ate knowledge useful to several real applications (such as: comparative shopping,
vertical search, named entity recognition and query suggestion). For instance,
when we type the query “players of real madrid” on Google1, it shows a list
with all the players of Real Madrid Football Club including the attributes: name,
position and image. If we click in one player of this list, the original query is
replaced by the player name. The data for this kind of suggestion can be ex-
tracted from Wikipedia2. However, the Wikipedia does not contain all entities.

1 http://www.google.com/
2 http://en.wikipedia.org/

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 254–271, 2014.
c© Springer International Publishing Switzerland 2014

http://www.google.com/
http://en.wikipedia.org/

SSUP – A URL-Based Method to Entity-Page Discovery 255

For example, the council members of Natal (a Brazilian state capital) are not
presented in Wikipedia, but there is an official Web site with an entity-page for
each council member describing the attributes: name, political party, image,
phone, among others. As in general the entity-pages in the same Web site share
a common template, HTML patterns can be learned to extract their data.

One important problem in this context is how to discover the entity-pages of
the same type in one Web site. This is not a trivial task due to the variety of Web
sites and structures. Some sites contain a page with a link to all entity-pages,
while others divide these links in pages organized in a hierarchical manner and
others divide these links in discrete pages (pagination). Moreover, some entity-
pages have more details about an entity while others have less influencing in
the HTML structure of the entity-pages. On the other hand, how the data in
the entity-pages can change and new entity-pages can become available, it is
necessary to re-execute the method to entity-page discovery periodically. Then,
the number of downloaded pages and the processing time are important metrics
to choose an effective method.

We found some methods to entity-page discovery in the literature. Methods
based on HTML-tables [7] or human-compiled encyclopedias [6] are very restric-
tive. The method proposed by Weninger et al. [8] is based on the HTML and
visual features, but in order to analyze the visual information is necessary to ren-
der the page in a browser loading all images, css and javascripts, then increasing
the processing time. On the other hand, the method proposed by Blanco et al. [2]
uses only the HTML features, then collect the information required is faster, but
being based on only one kind of feature makes the method very sensitive to the
parameter configuration.

Our goal is to find the set of entity-pages of the same type given a sample
entity-page minimizing the number of downloaded pages and the processing time.
For example, given the entity-page about Jolyon Palmer on the GP2 Web site,
we intent to find the set of driver entity-pages on the GP2 Web site. The main
contributions of this paper can be summarized as follows: (i) two structural URL
similarity metrics (weaksimurl and strongsimurl); (ii) SSUP: a new method
to entity-page discovery that combines URL features with HTML features; (iii)
show through experiments that combining URL features with HTML features
improves the quality results of entity-page discovery and decreases the number of
downloaded pages and the processing time; (iv) create datasets from real World
Web sites for experiments.

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 specifies the key concepts at the basis of our method. Section 4
presents the two structural URL similarity metrics proposed and the SSUP
method. Section 5 presents a set of experiments we have conducted to evalu-
ate our method on real Web sites comparing it with two baselines. Section 6
concludes the paper and presents future directions.

256 E. Manica, R. Galante, and C.F. Dorneles

2 Related Work

Yu et al. [9] uses an SVM-based method to classify Web pages according to
features from the content and URL of a Web page. Blanco et al. [3] presents a
method for structurally clustering Web pages using only the URLs of the Web
pages and simple content features. Although both methods analyze the URL of
the Web page, their assumptions are different from SSUP, since they have as
input all Web pages of the Web site in order to classify or cluster them while
SSUP wants to download the minimum number of Web pages as possible to
discover the entity-pages. SSUP represents URL in a way very similar to Blanco
et al. [3], but SSUP treats this representation using the principle of TF-IDF [1]
while Blanco et al. [3] uses the principle of minimum description length [4].

Kaptein et al. [6] present a Wikipedia-based method for entity-page discovery
searching the Wiki-page for a link to the entity’s home page. Lerman et al. [7]
present a method that relies on the common structure of many Web sites, which
present information as a list or a table, with a link in each entry pointing to
a detail page containing additional information about that item. SSUP differs
from these methods because it depends neither on the specific HTML markup
nor on a human-compiled encyclopedia. He et al. [5] focus on deep Web, then the
entity-pages are found through HTML form submissions while SSUP focuses
on surface Web, then the entity-pages are found through browsing the Web site
by its hyperlinks.

Indesit [2] and GPP (Growing Parallel Paths) [8] aim to find the set of entity-
pages of the same type given a sample entity-page. Indesit models Web pages
in terms of the DOM-structure of the HTML of the Web page and measure
the structural similarity between two Web pages with respect to this feature.
GPP combines both DOM-structure of the HTML and visual information. SSUP
combines both DOM-structure of the HTML and URL information that is more
robust that consider only DOM-structure of HTML and less costly that consider
visual information. We choose Indesit and GPP as our baselines in the exper-
iments because they are the most similar methods to SSUP and they depend
neither on the specific HTML markup nor on a human-compiled encyclopedia.
It is important to note that we reuse the definitions of Indesit related to the
HTML of the Web pages because our contribution is how to use the URL fea-
tures and to combine them with HTML features. The use of HTML features to
entity-discovery seems to be consolidated since it was proposed in Indesit and
reused by GPP.

3 Definitions

Here, we specify the key concepts at the basis of our method. First, we define
the basic structures of a Web site (Section 3.1). Finally, we define the basic
structures of a Web page (Section 3.2).

SSUP – A URL-Based Method to Entity-Page Discovery 257

3.1 Web Site

A Web site is a directed graph whose nodes correspond to the pages of the Web
that exist within the same domain and the edges correspond to the hyperlinks.
According to our intuition, a part of a Web site is designed to allow the user to
navigate in it from homepage until the entity-pages through a logical hierarchy of
topics. The pages that are part of this logical hierarchy are classified as entity-
pages or index-pages. Entity-pages were defined in Section 1. Index-pages are
pages with links to the entity-pages or with links to other index-pages, whose
role is to group entity-pages/index-pages in order to allow the user to navigate
through a logical hierarchy of topics.

Definition 1. (Index page) Let p be a Web page in the Web site s, EP be the
set of all entity-pages in s, sEP be a subset of EP , IP be the set of all index-
pages in s, sIP be a subset of IP . p is an index-page if it contains at least one
link for each entity-page in sEP (or index-page in sIP) and its functional role
in s is group sEP (or sIP).

Each index-page and entity-page has a degree of topic specificity that rep-
resents the number of attributes that the page restricts. Entity-pages have the
highest degree of topic specificity, since always entity-pages restrict more at-
tributes that their index-pages, i.e., they represent the more specific topic in the
logical hierarchy.

Definition 2. (Degree of topic specificity) Let an entity e with two attributes
a1 and a2. Let Px[w] (Py[z]) be an index-page with links to entity-pages that
describe instances where the value of a1 is x (y) and the value of a2 is w (z).
Let Px be an index-page with links to index-pages with links to entity-pages that
describe instances where the value of a1 is x, then we say that Px[w] and Py[z]
has the same degree of topic specificity (because they restrict the same number
of attributes) and Px[w] has higher degree of topic specificity that Px (because
Px[w] restricts more attributes that Px).

Example 1. In Figure 1, Page A has the lowest degree of topic specificity re-
stricting the value of the attribute type to car. The pages B, C and D, besides
restricting the type attribute value, restricts the value of the manufacture year

attribute, then they have a degree of topic specificity higher than Page A. The
pages E, F, G, H, I and J have the highest degree of topic specificity because they
are entity-pages.

The logical hierarchy of topics is a tree, named entity-tree, whose root is the
index-page with the lowest degree of topic specificity, the leaves are the entity-
pages and non-leaves are index-pages.

Definition 3. (Entity-tree) Let Et be a tree where the node set and the edge
set are subsets of that of a given Web Site. Et is an entity-tree if it satisfies the
following properties: (1) all leaf nodes are entity-pages of the same type; (2) all
leaf nodes are at the same level; (3) all non-leaf nodes are index-pages; (4) the

258 E. Manica, R. Galante, and C.F. Dorneles

�

�������������������

�

����			
��			���			�

����			
��			�			�

����������
���������������

�������� 			
���
���
�

����������
��������������

�������� ����	���
���

�������� 			
���
���
�

������� � 			
���
���
�

��������� 			
���
���
�

�

�

�

�������� ����	���
���
���

�������� ����	���
���
���

����� � � ����	���
���
���

�

�

����� �� 			
���
���
�

�����!�� 			
���
���
"

�

�

�

�

 #���$�%����

&'�(�')�*

�#+�,�%����

&'�(�'�)�-*

�#+�,�%����

&'�(�'�)��*

�����.�� ����	���
#�/�

#�����%���

Fig. 1. Entity-tree example. The Page Z is highlighed because it is not part of the
entity-tree.

root is the index-page with links to all index-pages of the next level (level+1); (5)
all pages at a same level have the same degree of topic specificity; (6) the higher
the level of a page the higher its degree of topic specificity; (7) all index-pages at
a same level have links to their child nodes in a same link DOM path; and (8)
all nodes at the same level of a same entity-tree share a similar URL and HTML
structure.

Example 2. The illustration in Figure 1 describes an entity-tree with height two.
The pages that are not part of the logical hierarchy of topics (e.g. Page Z) do
not belong to the entity-tree and are referred as noise pages.

A Web Site can have more than one entity-tree to the same entity-type with a
different topic structure. For example, a Web Site with software project entity-
pages can be designed in such way that user may navigate through a logical
hierarchy of licenses or programming languages. For each type of entity-pages
available in a Web site must be at least one entity-tree.

In real Web sites usually occurs a situation that violates the property 5: “all
pages at a same level have the same degree of topic specificity”. This situation,
called pagination, occurs when an index-page is pointed by an index-page of
the same degree of topic specificity instead of an index-page of the immediately
preceding degree of topic specificity (more general topic). In this case, we have
a pagination page and need a pagination operation.

Definition 4. (Pagination page) Let p1 be an index-page, pp1 be the parent
node of p1, the Web page p2 is a pagination page if p1 and p2 have the same
degree of topic specificity, p1 points to p2 and there is not an index-page of the
same degree of topic specificity of pp1 pointing to p2.

Definition 5. (Pagination operation) Let p1 be an index-page, pp1 be the parent
node of p1, and p2 be a pagination page pointed by p1, then pagination operation
states that we need to remove the edge from p1 to p2 and add an edge from pp1
to p2.

SSUP – A URL-Based Method to Entity-Page Discovery 259

���������	���
������

��

���������	��������

������

������������	������������

������

�����	

�

�

�����

������

�

�

������

�����

�

�

�

Fig. 2. Example of pagination operation

����

��

��

	

��

��

	

�

���

	

��

�

��

Fig. 3. Example of the
DOM tree of a Web page

Example 3. The illustration in Figure 2 shows the pagination operation that
generates the valid entity-tree presented in Figure 1. Originally the Web site
had the edge 3 and did not have the edge *, violating the property 5. Then,
after pagination operation, the edge 3 was removed and the edge * was added.

3.2 Web Page

We consider that the structure of a Web page is defined by its URL and HTML
features. The URL feature is defined through a url-schema. A url-schema is the
set of terms of the URL.

Definition 6. (url-schema) A url-schema of a Web page p, denoted υ(p), is the
set of terms of the URL of the p.

In order to understand our concept of URL term is necessary to know that
we see a URL as a sequence of substrings (called tokens) split by “/”, “?” or
“&” characters. Each token is a set of substrings (sub-tokens) split by non-
alphanumeric characters, changing from letter to digit and vice versa. Then, a
URL term is a sub-token associated with the position of the token that contains
it. We do not consider the position of each sub-token in a token, since URLs of
the Web pages with same entity-type can have different number of sub-tokens.

Definition 7. (URL Term) Let T be a sequence of tokens of a URL u (T1, T2,
..., Tn), where Ti occurs in u before Ti+1. Each token Ti is a set of sub-tokens
(Si[1], Si[2], ..., Si[n]), where Si[j] is the jth sub-token of the token Ti. Each
sub-token Si[j] associated with i is a URL term. An additional URL term is the
size of T .

Example 4. Figure 4 shows an example of a URL, describing all tokens, the
sub-tokens of the token T3 and all URL terms. The additional URL term is
highlighted.

The HTML feature is defined through a html-schema. An html-schema is the
set of link DOM paths of the HTML.

260 E. Manica, R. Galante, and C.F. Dorneles

cmm.ap.gov.br/pagina.php?pg=exibir_parlamentar&iddeputado=6

�
�

�
�

�
�

�
�

{pos1_cmm, pos1_ap, pos1_gov, pos1_br, pos2_pagina,
pos2_php, pos3_pg, pos3_exibir, pos3_parlamentar,

pos4_iddeputado, pos4_6, size_4}

������

�	
�������

� �
�

�����

Fig. 4. Example of tokens, sub-tokens and URL terms

Definition 8. (html-schema) A html-schema of a Web page p, denoted Δ(p),
is the set of link DOM paths in p.

In order to understand our concept of link DOM path is necessary to know
that we see the HTML of Web pages as a Document Object Model (DOM) tree.
Then, the link DOM path is a path from the root node to an anchor node.

Definition 9. (Link DOM Path) Let p be a Web page, a link DOM path is a
path through the DOM-tree of p that starts from the root and terminates into an
anchor node.

Example 5. The html-schema of the page presented in Figure 3 is (HTML −
UL − LI − A,HTML−DIV − A). The path HTML− P does not belong to
the html-schema because it does not terminate into an anchor node.

4 SSUP – A URL-Based Method to Entity-Page
Discovery

The SSUP (Structurally Similar URLs and Pages) is a method for entity-page
discovery. Specifically, SSUP aims to find the set of same type entity-pages in
a Web site given a sample entity-page.

We present an overview of our method using the Figure 1. SSUP starts with
an entity-page as sample page (Page G) and find its index-page (Page C). Then,
a new instance of our problem is recursively triggered using now the index-page
found as sample page (finding Page A as index-page of the Page C). This process
is performed until to find the root of the entity-tree (Page A in the case). Then,
SSUP obtains a sample page path from root until the given entity-page (Page A

-> Page C -> Page G). We call sample page each page from the sample page
path. We call sample link DOM path each link DOM path that points to a sample
page. The Page C is the sample page of the level 1 and “HTML-DIV-SPAN-A” is
its sample link DOM path.

After, SSUP transverses the sample page path from root until the leaf (which
is the sample entity-page) catching same level pages. To perform this, in each
level x of the entity-tree, SSUP catches all pages pointed by the pages of that
level and analyzes the structural URL and HTML similarity between these pages
and the sample page in the level x+1 in order to discard pages that do not belong

SSUP – A URL-Based Method to Entity-Page Discovery 261

to the entity-tree. For example, consider Figure 1, analyzing the level 0, SSUP
catches all pages pointed by Page A, including pages C, D and Z. Remember that
Page B is actually pointed by Page C. SSUP analyzes the structural URL and
HTML similarity between each page with the Page C (sample page of level 1) in
order to prune noise pages (Page Z). By this time, we have pages C and D in the
level 1. Then, SSUP needs to discover if these pages contain pagination pages.
To perform this, SSUP catches all pages pointed by pages C and D that are
structural URL and HTML similar to them (finding the Page B as a pagination
page of the Page C). The process is performed to the next level catching all
pages pointed by the pages B, C and D, analyzing the structural URL and HTML
similarity between each page with Page G (sample page of level 2) and so on.

In the next subsections, we present the similarity metrics used to determine
the structural URL and HTML similarity between Web pages (Section 4.1).
Finally, we propose four algorithms (Section 4.2). The first algorithm finds the
index-page of a given entity/index-page. The second algorithm catches same
level pages. The third algorithm catches pagination pages. The last algorithm
combines the previous algorithms to perform entity-page discovery.

4.1 Structural Similarity Metrics

In this subsection we present two metrics based on the Web page URL (Weak
URL Similarity and Strong URL Similarity) and reuse a metric based on the
Web page HTML (simhtml) proposed by Blanco et al. [2] in order to measure the
structural similarity between two Web pages. The similarity metrics Weak URL
Similarity and HTML Similarity are used to determine if a page is a pagination
of other. The similarity metrics Strong URL Similarity and HTML Similarity
are used to determine if two pages are in the same level in the entity-tree.

Weak URL Similarity is a simple similarity metric that compares two Web
pages based on the terms that belong to their url-schema. This metric gives
the same importance to each term. So, if two URLs share the term “www” or the
term “driver” has the same impact in the result.

Definition 10. (Weak URL Similarity) Let υ(p1) be the url-schema of the Web
page p1 and υ(p2) be the url-schema of the Web page p2, the weak URL similarity
between p1 and p2 is defined as:

weaksimurl(p1, p2) =
|υ(p1) ∩ υ(p2)|
|υ(p1) ∪ υ(p2)| (1)

The Strong URL Similarity also compares two Web pages based on the terms
that belong to their url-schema. However, it is more robust than Weak URL
similarity since it assigns a different weight to each URL term according to its
importance to distinguish same level pages from non-same level pages. In this
metric, the URL terms are assumed to be all mutually independent. The URL of
the sample page is represented as vector of URL term weights in a n-dimensional
space, in which n is the total number of URL terms.

262 E. Manica, R. Galante, and C.F. Dorneles

Definition 11. (Strong URL Similarity) Let υ(sp) be the url-schema of the
sample page sp, υ(p) be the url-schema of the Web page p, which we desire
to compare with sp, and ip be the index-page of sp, the strong URL similarity
between sp and p is defined as:

strongsimurl(ip, sp, p) =

∑
t ∈ υ(sp) ∩ υ(p) Wt(ip, sp)∑

t ∈ υ(sp) Wt(ip, sp)
(2)

The weight of a URL term used in the Strong URL Similarity is based on the
observation of Weninger et al. [8] “lists usually contain items which are similar in
type or in content” and our observation “entity-pages of the same type usually
share a common URL structure”. In our context, we have a sample page and we
want to know how are other web pages similar to sample page based on their
URLs. The idea is that terms that occur in many URLs, from links of the index-
pages, in the same link DOM path that the sample page, and occur in few link
DOM paths from the index-pages are more important because they have a high
discriminating power. For example, in Table 1, considering L1 as sample page
and P1 as its index-page, the term “pos2 car” should have the highest weight
because it occurs in five URLs that are in the same link DOM path of the sample
page (“HTML-UL-LI-A”) and does not occur in other link DOM paths.

Definition 12. (URL Term Weight) Let ip be the index-page of the sample
page sp. Let P be a set of link DOM paths (P1, P2, ..., Pn) from ip. Let Pi =
(Pi[1], Pi[2], ..., Pi[n]), where Pi[j] is the url-schema of the jth URL in the link
DOM path Pi. Let Psp be the Pi that contains υ(sp), and t a URL term from
υ(sp), the weight of t from sp in ip is defined as:

Wt(ip, sp) = TFt,Psp × IDFt,P (3)

where, TFt,Psp is the number of url-schemas in Psp that contains the term t
and IDFt,P is defined as:

IDFt,P (ip) = log(
|P |

|Pi ∈ P : t ∈ Pi|)

Example 6. The Table 1 presents an example of same level index-pages with
their links and the link DOM path that points to each link. For each link, we
show its strong URL similarity with the sample page L1. The highest strong URL
similarity is with itself (1.00), followed by pages L2 and L3 that share with L1
the sub-token “car” in the second token and the sub-token “ford” in the third
token. These sub-tokens occur only in the link DOM path of the sample page.
The strong URL similarity of the Page L7 is 0 because all sub-tokens shared
between this page and the sample page (e.g., “www”) occurs in all link DOM
paths and all occurrences are in the first token. Pages L0 and L8 do not have
ssu because they are in a link DOM path different from sample page.

HTML Similarity is a simple similarity metric that compares two Web pages
based on the link DOM paths that belong to their html-schema. This metric
gives the same importance to each link DOM Path.

SSUP – A URL-Based Method to Entity-Page Discovery 263

Table 1. An example of same level index-pages with their link DOM paths and the
pages pointed by each link DOM path (column Links). The column ssu shows the
strong URL similarity between each page in the column Links with the sample page
L1.

���������	

���������

������������� ����� ��
�

��

�������	�
 ����������������������������������� �� �

���������
��

����� ! �"����!#$�%#�&%'$&�%"��'�	#$��&�(!���

�"����������������������#��$������%���&'���������%�� ��()

�*����������������������#��$��%���&'���� �! ��()

+" �,����������������������#�������*(��� ����&'������$��� ��-*

+* �-�����������������������%$���,�����������*�� ��-*

+, �(�����������������������$������.�)� �� ��"!

+-
�/������������������&���� �� ����

�������	�
 �)���������������������������� �� �

Definition 13. (HTML Similarity) Let Δ(p1) be the html-schema of the Web
page p1 and Δ(p2) be the html-schema of the Web page p2, the HTML similarity
between p1 and p2 is defined as:

simhtml(p1, p2) =
|Δ(p1) ∩Δ(p2)|
|Δ(p1) ∪Δ(p2)| (4)

4.2 Algorithms

In this subsection we present the algorithms that compose the method SSUP.
The Algorithm 1 aims to find the index-page of a given page. The intuition
behind the algorithm is that the index-page of a given page sp is the page
delivering the largest number of more structurally similar URLs to sp. The
solution presented by the algorithm collects the pages pointed by the given page
(line 4). Then, the pages that do not have a link to the given page are removed
(line 5). Finally, the algorithm returns the page with the max candidate index-
page weight (line 6).

The candidate index-page weight accumulates the Strong URL Similarity be-
tween its links and a given page. It is considered only the links in the same link
DOM path that the given page. The Algorithm 1 uses this weight to find the
index-page of a given page, choosing the candidate index-page with the highest
weight.

Algorithm 1. Top Index-Page algorithm

1: input: a sample page sp;
2: output: the top index-page;
3: begin top index page(sp)
4: P = GetLinks(sp);
5: remove pi from P where pi does not have a link to sp;
6: return pi from P with max Wci(pi, sp); //Equation 5
7: end

264 E. Manica, R. Galante, and C.F. Dorneles

Algorithm 2. Catching Same Level Pages algorithm

1: input: a set of index-pages of the level x (IP), the sample page of the level x+ 1
(sp), the sample link DOM path of sp (sdp);

2: output: the set of pages of the level x+ 1 pointed by IP ;
3: begin catching same level pages(IP, sp, sdp)
4: add sp to rs;
5: for each ipi IN IP do
6: add GetLinksInPath(ipi, sdp) to L;
7: end for
8: create a list of groups G = (G1, G2, ..., Gn), where each group Gi contains each

link li ∈ L (except sp) with the same strongsimurl with sp;
9: sort G by strongsimurl decreasing order;
10: add all links from G1 to rs;
11: minsimhtml = minli ∈ G1 simhtml(sp, li);
12: remove G1 from G
13: for each Gi IN G do
14: if maxli ∈ Gi simhtml(sp, li) >= minsimhtml then
15: add all links from Gi to rs;
16: else
17: break;
18: end if
19: end for
20: return rs
21: end

Definition 14. (Candidate index-page weight) Let p be a candidate index-page
for the Web page sp, L be a set of pages pointed by p through the same link DOM
path that sp, the candidate index-page weight of p for sp is defined as:

Wci(p, sp) =
∑
l ∈ L

strongsimurl(p, sp, l) (5)

The goal of the Algorithm 2 is given a set of index-pages of level x and the
sample page of the level x + 1, finds all pages of level x + 1 delivered by the
index-pages. The intuition behind the algorithm is that same level pages have
structurally similar URLs and HTMLs. The solution proposed is that same level
pages have larger strongsimurl and simhtml than non-same level pages.

The Figure 5 presents an example of the execution of the Algorithm 2, con-
sidering the pages P1, P2, P3, P4 and P5 as index-pages of level x (called just
index-pages); L1 as the sample page of level x + 1 (called just sample page)
and “HTML-UL-LI-A” as the sample link DOM path of the sample page, i.e.,
the path in the index-page that points to sample page. The Table 1 describes
these pages. The goal is to return all pages of level x + 1. In the line 4, the
sample page is added to the result set. In lines 5-9, the Web pages pointed by
the index-pages through the sample link DOM path, except sample page, are
collected and grouped by their strong URL similarity with the sample page. The

SSUP – A URL-Based Method to Entity-Page Discovery 265

���������

�	
�

�	��
�	���

�	

�	�

��������

����	
��

���

�������

���

��������

���� ��

��

����	 �����

��	������������

����	 �����

������������������� ������

Fig. 5. An execution of the Algorithm 2. Input: IP=(P1, P2, P3, P4, P5), SP=L1,
sdp=HTML-UL-LI-A (described in Table 1). Ok icon means that the Web page was
added to the result set. Not ok icon means that the Web page was discarded.

groups are sorted by their strong URL similarity decreasing order. Four groups
are created: G1, G2, G3, G4. The group G1 (G4) has the Web pages with largest
(lowest) strong URL similarity value with the sample page. In line 10, all Web
pages from G1 (L2 and L3) are added to result set. In line 11, we compute the
min HTML similarity between the sample page and the pages from G1, called
minsimhtml. In this example, the minsimhtml is the HTML similarity between
sample page and L3 (0.75). In line 12, omitted in the figure, the G1 is removed
from the list of groups. The first iteration of the “for” (lines 13-19) analyzes
the group G2, since it has the largest strong URL similarity after G1 has been
removed. It is computed the HTML similarity between the first Web page of
the G2 (L4) and the sample page. As the HTML similarity value is greater than
minsimhtml all Web pages from G2 are added to result set, without compute the
HTML similarity for other Web pages of G2. The second iteration of the “for”
(lines 13-19) analyzes the group G3. Since the min HTML similarity between
sample page and the pages of G3 is less than minsimhtml, so all pages of the
group (L6) are discarded and all remain groups (G4) are discarded too. This fol-
lows the idea “the same level pages have larger strongsimurl and simhtml than
non-same level pages”. Finally, the result set (with pages L1, L2, L3, L4 and L5)
is returned in line 20.

The Algorithm 2 fails in catch pagination pages because these pages are not
pointed by index-pages of the preceding level, but by pages of the same level. So,
the Algorithm 3 aims to catch these pages. The intuition behind this algorithm
is that pages delivered by index-pages of the level x with HTML similarity to
pages of the level x larger than to pages of the level x+1 are strong candidate to
be pagination pages. The solution presented in the algorithm receives as input:
(i) a set of index-pages of the level x; (ii) a sample page of the level x (spx);
and (iii) a sample page of the level x+ 1 (spx+1). Then, in lines 4-6, the pages
pointed by the index-pages are collected. These pages are grouped according to
their Weak URL Similarity with spx+1 (line 7). After, one page of each group has
its HTML similarity computed with spx and with spx+1, and if the first score
is greater or equal to the second score, then all pages of the group are added to
the result set (lines 8-13). Finally, the result set is returned (line 14).

It is important to note that this step catches noise pages. But these pages are
pruned when a next level is analyzed because noise pages do not point to pages
with structurally similar URL and HTML to the sample page.

266 E. Manica, R. Galante, and C.F. Dorneles

Algorithm 3. Pagination algorithm

1: input: the sample page of the level x (spx), the sample page of the level x + 1
(spx+1), index-pages of the level x (IP);

2: output: a set of pagination pages of the level x pointed by the IP ;
3: begin pagination(spx, spx+1, IP)
4: for each ipi IN IP do
5: add GetLinks(ipi) to L;
6: end for
7: create a list of groups G = (G1, G2, ..., Gn), where each group Gi contains each link

li ∈ L with the same weaksimurl(spx+1, li) and has the same link DOM path;
8: for each Gi IN G do
9: l0 = first link from Gi

10: if simhtml(spx, l0) >= simhtml(spx+1, l0) then
11: add all links from Gi to rs;
12: end if
13: end for
14: return rs
15: end

The Algorithm 4 shows the overall SSUP algorithm. In lines 4-12 the sample
page path is created by calling recursively the function top index page. Note
that we do not have an approach to discovery the root node, instead we have a
parameter that estimates the height of the entity-tree. If this parameter is less
than the real entity-tree height then some entity-pages will not be discovered. If
this parameter is greater than the real entity-tree height then some unnecessary
pages will be downloaded, but the quality results is not affected since the noise
pages are pruned when we analyze the URL and HTML structural similarity.
However, we add an additional stopping criterion (lines 7-9): when an index-
page discovered for a level x was already discovered for a level y where y > x. In
lines 13-22, we transverse the entity-tree from root to leaves catching same level
entity-pages through the functions catching same level pages and pagination.
It is important to note in lines 19-21 that entity-pages do not have pagination.

5 Experiments

In this section, we describe the experiments we performed in order to evaluate the
effectiveness of SSUP. We compared SSUP with Indesit [2] and GPP [8]. We
chose to compare our method with these baselines among the methods that focus
on surface Web because they depend neither on the specific HTML markup [7]
nor on a human-compiled encyclopedia [6].

In order to analyze the results of experiments, we evaluated them considering
the following measures: (i) recall, (ii) precision; (iii) F1-measure; (iv) number
of downloaded pages; (v) processing time and (vi) T-test. T-test is a statistical
hypothesis test, and recall, precision and F1-measure are well known quality
measure metrics in IR community [1]. We show just F1-measure results in terms

SSUP – A URL-Based Method to Entity-Page Discovery 267

Algorithm 4. SSUP algorithm

1: input: one sample entity-page sp, the entity-tree height h;
2: output: the set of entity-pages of the same type that sp contained in the Web site;

3: begin ssup(sp, r)
4: add sp to SPP [h]; //SPP = Sample Page Path
5: for i=0 until h− 1 do
6: tmp = top index page(SPP [h− i]);
7: if SPP contains tmp then
8: break;
9: end if
10: aux = h− i− 1;
11: add tmp to SSP [aux];
12: end for
13: for i=aux until h− 1 do
14: if i = aux then
15: add SPP [i] to IP ;
16: end if
17: sdp = the link DOM path in SPP [i] that contains the link to SPP [i+ 1];
18: add catching same level pages(IP,SPP [i+ 1], sdp) to IP ;
19: if i < h - 2 then
20: add pagination(SPP [i+ 1], SPP [i+ 2], IP) to IP ;
21: end if
22: end for
23: return IP
24: end

of quality because recall and precision are combined in F1-measure. In the ef-
ficiency aspect we evaluated the total number of downloaded pages and the
processing time. We previously downloaded the pages of each Web site used in
order to avoid the network interference in the processing time.

5.1 Setup

The experiments were performed on a Intel Core 2 Quad 2.66GHz running
Ubuntu 9.10, with 8GB of main memory and 5TB of disk space. SSUP, Indesit
and GPP were implemented in Java. We created 28 datasets, each one from a
specific Web site, considering a specific entity-type. We created two groups with
these datasets: (i) multiple type group with 10 datasets of different entity-
types (except association that repeats once), described in Table 2; and (ii)
council type group with 18 datasets of council member entity-type. In the
last group, we analyzed the official Web sites of the council of the 26 Brazilian
state capitals. However, we excluded: 4 Web sites because they do not have an
entity-page for each council member; 3 Web sites because the council member
entity-pages are internal frames of the index-page; and 1 Web site because it
does not allow crawling its pages.

268 E. Manica, R. Galante, and C.F. Dorneles

Table 2. Datasets of the multiple type group

ID Web site Entity-type NEP

Fifa www.fifa.com Association 209

GP2 www.gp2series.com Driver 32

Guitar www.guitaretab.com Group 32318

MIT EECS www.eecs.mit.edu People 1042

Olympic-A www.olympic.org Association 204

Olympic-S www.olympic.org Sport 56

Pgfoundry pgfoundry.org Software Project 382

Senado www.senado.gov.br Senator 121

Stanford EE engineering.stanford.edu Staff 473

Supercar www.supercarsite.net Car 512

Label: NEP: number of entity-pages

Indesit has two parameters: (i) T-value - the html-schema similarity thresh-
old between twoWeb pages varying from 0 to 1; (ii) Tag features - defines if the
Indesit considers as a link DOM path only tags; tags and attribute names; or
tags, attribute names and attribute values. We tested all combinations between
T-values (0.1; 0.2; ...; 0.9) and tag features. The best parameter configuration
related to quality of results in the multiple type group was T-value= 0.5
and Tag feature = tags and attribute names; and in the council type group

was T-value= 0.8 and Tag feature = tags and attribute names. SSUP has
one parameter: H-value - the estimate of the entity-tree height. We tested the
H-values: 1, 2, ..., 5. The best H-value related to quality of results was 2 and
1 in the multiple type group and council type group, respectively. GPP has
one parameter: K-value - the number of iterations. We tested only one itera-
tion because the processing time of GPP is too high compared with Indesit and
SSUP. We ran all methods with each configuration three times, each one with a
different sample entity-page in order to verify that the behavior of the method
does not depend on specific features of the sample entity-page. The three sample
entity-pages were chosen randomly from the first page displayed (when there is
pagination).

5.2 Comparison

The goal of these experiments is to compare the methods SSUP, Indesit and
GPP in terms of quality and efficiency. For SSUP and Indesit we show the
results with the best parameter configuration in terms of quality results in each
individual dataset (individual configuration) and with the best parameter con-
figuration in terms of quality results considering all datasets of the group ana-
lyzed (general configuration). We run GPP with only one iteration (so, individ-
ual and general configuration are the same one) and only on the multiple type

group because its processing time is too high.

SSUP – A URL-Based Method to Entity-Page Discovery 269

����

����

����

����

����

����

����

�	
���
�� ��	����

�
�
�
�
��
�
�	
�
�

�
��

�����������	
�������	

�	
���� ��� ����

(a) multiple type group

����

����

����

����

����

����

�	
���
�� ��	����

�
�
�
�
��
�
�	
�
�

�
��

�����������	
�������	

�	
���� ����

(b) council type group

Fig. 6. Mean F1-measure comparison

Figure 6 shows a comparison between the F1-measure of SSUP, Indesit
and GPP on the multiple type group (Figure 6a) and between SSUP and
Indesit on the council type group (Figure 6b). SSUP outperformed Indesit

and GPP. There is a statistical significant difference (p-value < 0.05) between the
F1-measure values of the methods (except between Indesit and SSUP with indi-
vidual configuration on the multiple type group where p-value was 0.50126).
Considering the general configuration, SSUP had better quality results than
Indesit because it learns the threshold of html-schema similarity in each dataset
from the groups of Web pages with high structurally URL similarity with the
sample entity-page and that are in the same link DOM path that the sample
entity-page. On the other hand, in Indesit the user should define a threshold
of html-schema similarity between entity-pages and this threshold varies from
dataset to dataset. Considering the individual configuration (the smallest dif-
ference in terms of F1-measure between SSUP and Indesit), SSUP only out-
performed Indesit in datasets that contain an intersection of entity-pages and
non-entity pages related to the html-schema similarity. In these cases, in Indesit

if we increase the T-value the precision increases, but the recall decreases. If we
decrease the T-value the recall increases, but the precision decreases because the
method catches erroneous pages. On the other hand, SSUP uses the structurally
URL similarity as an additional feature to discriminate entity-pages from non
entity-pages. GPP presented the worst values of F1-measure because, in many
cases, one iteration was not enough to find most entity-pages. However, even on
the Olympic - S dataset where GPP found all entity-pages (recall = 1) many
erroneous pages were returned decreasing the precision to 0.32 because the host
city entity-pages have similar HTML and visual features to sport entity-pages.

The main SSUP fail cases occurred when: (i) the entity-pages do not contain
a link to their index-page affecting the recall of SSUP; (ii) some entity-pages
have different link DOM paths affecting the recall of SSUP; (iii) the URL of the

270 E. Manica, R. Galante, and C.F. Dorneles

Table 3. Average of downloaded pages and processing time on the multiple type

group

Indesit Indesit GPP SSUP SSUP
Individual General Individual General

Downloaded Pages 1680 980 212 778 781

Processing Time 854 779 2984 46 47

entity-pages and non entity-pages are composed of the domain plus “/” plus one
token affecting the precision.

The average of downloaded pages on the multiple type group for each
method is presented in Table 3. Considering individual configuration, the mean
number of downloaded pages of Indesit was 1680 while SSUP was 778 (53.69%
less than Indesit and p-value < 0.05). This occurred because SSUP filters out
some pages just by their URLs, without needing to download them while Indesit
needs to download a Web page to evaluate it. Considering general configuration,
the mean number of downloaded pages of Indesit was 980 while SSUP was 781
(20.31% less than Indesit). However, this difference is not statistically signifi-
cant (p-value > 0.05). This occurred because Indesit with general configuration
had a low recall in many datasets, consecutively it downloaded fewer pages. GPP
presented the lowest number of downloaded pages (72.86% less than SSUP with
general configuration and p-value < 0.05). The main reason of this big difference
is the low recall in most datasets. However, even in the Olympic - S dataset
where all entity-pages were found, the number of downloaded pages was lower.
This occurred because we used only one iteration, but if we increase the number
of iterations to increase the recall, more pages are downloaded.

The average of processing time for SSUP, Indesit and GPP on the multiple
type group is presented in Table 3. SSUP had the shortest processing time
(with p-value < 0.05 in all cases). This behavior can be explained because SSUP
filters out some pages just by their URLs, without needing to analyze the HTML
of them while Indesit needs to analyze the HTML of all downloaded pages.
Moreover, after computing the Sample Page Path, SSUP analyzes in each Web
page only the sample link DOM path while Indesit analyzes all link DOM paths
in all Web pages downloaded. GPP had the worst values of processing time, even
having downloaded less Web pages, because it explores visual information and
to perform this it is necessary to render the Web page in a browser loading all
images, css and javascripts, which greatly increases the processing time.

The experiments showed that SSUP outperforms Indesit related to the qual-
ity results when we define one unique parameter configuration for all datasets.
When we use the best parameter configuration for each individual dataset,
SSUP improves the quality results when the dataset has an intersection be-
tween entity-pages and non-entity pages related to the html-schema similarity.
In other cases, SSUP does not improve the quality results, but it reduces the
number of downloaded pages and processing time. Furthermore, the SSUP pa-
rameter - H - can be defined by a user visually navigating through the Web site

SSUP – A URL-Based Method to Entity-Page Discovery 271

while the Indesit parameters (T and tag feature) require a processing of the
entity-pages. Then, we can conclude that combining URL and HTML features
improves the quality results of entity-page discovery and decreases the number
of downloaded pages and the processing time.

6 Conclusions

In this paper we propose a new method to entity-page discovery, called SSUP.
Specifically, given a sample entity page of a Web site, we want to find the set of
same type entity-pages of that Web site. The main contribution of SSUP is to
combine URL and HTML features to entity-page discovery. We first define the
basic structures of a Web site and a Web page according to our method. Second,
we propose two structural URL similarity metrics and reuse a HTML similarity
metric. Thirdly, we develop a set of algorithms that compose the method. We
demonstrated the effectiveness of SSUP by comparing it with Indesit and GPP

using real datasets.
The experiments have showed that combining URL and HTML features im-

proves the results in terms of quality, number of downloaded pages and process-
ing time. Entity-pages dynamically generated by populating fixed pages templates
with content from a back-end DBMS have the better results. However, we are
working on incorporating other features besides URL and HTML to achieve good
results in people entity-pages created by different users, since these pages usually
do not contain a link to its index-page affecting the recall of SSUP. We are also
creating a parallelized version of SSUP.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts
and Technology Behind Search. Addison Wesley Professional (2011)

2. Blanco, L., Crescenzi, V., Merialdo, P.: Efficiently locating collections of web pages
to wrap. In: WEBIST, pp. 247–254. INSTICC Press (2005)

3. Blanco, L., Dalvi, N.N., Machanavajjhala, A.: Highly efficient algorithms for struc-
tural clustering of large websites. In: WWW, pp. 437–446. ACM (2011)

4. Grünwald, P.D.: The Minimum Description Length Principle (Adaptive Computa-
tion and Machine Learning). The MIT Press (2007)

5. He, Y., Xin, D., Ganti, V., Rajaraman, S., Shah, N.: Crawling deep web entity
pages. In: WSDM, pp. 355–364. ACM (2013)

6. Kaptein, R., Serdyukov, P., de Vries, A.P., Kamps, J.: Entity ranking using
wikipedia as a pivot. In: CIKM, pp. 69–78. ACM (2010)

7. Lerman, K., Getoor, L., Minton, S., Knoblock, C.A.: Using the structure of web
sites for automatic segmentation of tables. In: SIGMOD Conf., pp. 119–130. ACM
(2004)

8. Weninger, T., Johnston, T.J., Han, J.: The parallel path framework for entity dis-
covery on the web. ACM Trans. Web 7(3), 16:1–16:29 (2013)

9. Yu, H., Han, J., Chang, K.C.C.: Pebl: Web page classification without negative
examples. IEEE Trans. on Knowl. and Data Eng. 16(1), 70–81 (2004)

StreamMyRelevance!

Prediction of Result Relevance from Real-Time
Interactions and Its Application to Hotel Search

Maximilian Speicher1,2, Sebastian Nuck2,3,
Andreas Both2, and Martin Gaedke1

1 Chemnitz University of Technology, 09111 Chemnitz, Germany
2 R&D, Unister GmbH, 04109 Leipzig, Germany

3 Leipzig University of Applied Sciences, 04277 Leipzig, Germany
maximilian.speicher@s2013.tu-chemnitz.de,

martin.gaedke@informatik.tu-chemnitz.de,

andreas.both@unister.de, sebnuck@gmail.com

Abstract. The prime aspect of quality for search-driven web appli-
cations is to provide users with the best possible results for a given
query. Thus, it is necessary to predict the relevance of results a priori.
Current solutions mostly engage clicks on results for respective predic-
tions, but research has shown that it is highly beneficial to also con-
sider additional features of user interaction. Nowadays, such interactions
are produced in steadily growing amounts by internet users. Processing
these amounts calls for streaming-based approaches and incrementally
updateable relevance models. We present StreamMyRelevance!—a novel
streaming-based system for ensuring quality of ranking in search engines.
Our approach provides a complete pipeline from collecting interactions
in real-time to processing them incrementally on the server side. We con-
ducted a large-scale evaluation with real-world data from the hotel search
domain. Results show that our system yields predictions as good as those
of competing state-of-the-art systems, but by design of the underlying
framework at higher efficiency, robustness, and scalability.

Keywords: Streaming, Real-Time, Interaction Tracking, Learning to
Rank, Relevance Prediction.

1 Introduction

Nowadays, search engines are among the most important and most popular web
applications. They are essential for supporting users with finding specific pieces
of information on the web. Thus, their prime aspect of quality is to ensure that
relevant results are displayed where they receive the highest attention. In other
words, the ranking of results is a major quality aspect in the context of the
search application as a whole. This makes it necessary to estimate the relevance
of results a priori. Common methods for obtaining such estimates are generative
click models (e.g., [3,4,15]). Based on certain assumptions about user behavior,
these models predict the relevance of a certain result taking into account the

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 272–289, 2014.
c© Springer International Publishing Switzerland 2014

StreamMyRelevance! 273

number of clicks it has received for a given query. However, click data are not
a perfect indicator concerning relevance since users might return to the search
engine results page (SERP) after having clicked a useless result. Additionally,
search engines more and more try to answer queries directly on the SERP, e.g.,
as Google do with their Knowledge Graph1. Thus, additional information that
complement click data should be taken into account for predicting relevance, e.g.,
in terms of dwell times on landing pages [9] or other client-side user behavior
(e.g., [9,13,18]). Previous research has shown the value of such page-level inter-
actions [11,13,20]. Also, generative [12] as well as discriminative [20] approaches
to relevance prediction exist that engage user behavior other than clicks only.

With a growing amount of users, it is possible for search engine providers to
collect enormous amounts of client-side data. This is particularly the case if we
consider interactions other than clicks. Along with the increasing quantities of
tracking data, a short time-to-market becomes more and more important. That
is, providers need to quickly analyze collected information and feed potential
findings back into their products to ensure user satisfaction. This calls for the
use of novel systems for data stream mining, such as Storm2, which are currently
gaining popularity in industry and research. These systems can help to cope with
the seemingly endless streams of data produced by today’s internet users. Yet,
none of the approaches for relevance prediction mentioned above leverages data
stream mining to process collected information.

Fig. 1. The intention behind StreamMyRelevance!—from collecting a stream of user
interactions to reordering search results based on relevance models

We present StreamMyRelevance! (SMR), which is a novel streaming-based
system for ensuring ranking quality in search engines. Our system caters for
the whole process from tracking interactions to learning incremental relevance
models, i.e., models that predict the relevance of a search result (for a given
query) based on certain features of user interaction. The latter can be used to
directly feed predictions back into the ranking process of the search engine, e.g.,
as a weighted factor in a learning-to-rank function (cf. Fig. 1). SMR is based
on Storm and leverages tracking and data processing functionalities provided
by TellMyRelevance! (TMR)—a pipeline that has proven its effectiveness in
predicting search result relevance [20]. Yet, TMR is a batch-oriented approach
that does not provide means for incrementally learning relevance models on

1 http://www.google.com/insidesearch/features/search/knowledge.html (2013-
09-06).

2 http://www.storm-project.net/ (2013-12-30).

http://www. google.com/insidesearch/features/search/knowledge.html
http://www.storm-project.net/

274 M. Speicher et al.

a streaming basis. Thus, SMR wraps the borrowed functionalities into a new
system that is able to handle real-time streams. Our system has three main
advantages over existing approaches, i.e., (1) considering interactions other than
clicks for predicting relevance, (2) collecting and processing these interactions
as a stream and (3) providing incremental relevance models that do not require
re-processing of previously processed data. Based on this, the main hypothesis
investigated in this paper is as follows: SMR is able to achieve the same relevance
prediction quality as TMR at better efficiency, robustness and scalability.

We have evaluated SMR in terms of its feasibility and quality of relevance
predictions. For this, large amounts of real-world data from two hotel booking
portals were available. A comparison to TMR has been performed, which due
to its batch-oriented design has look-ahead capabilities and thus more informa-
tion available [20]. Still, our results show that SMR’s prediction quality is not
significantly worse compared to TMR. Moreover, our system in parts compares
favorably with predictions of the Bayesian Browsing Model (BBM) [16], a state-
of-the-art generative click model successfully applied in industry. Furthermore,
reviews of efficiency, robustness and scalability show that SMR compares favor-
ably with the competing approaches in these respects.

In the following section, we describe important concepts our work is based
on, before giving an overview of related work. Section 3 explains the design and
architecture of SMR, followed by an evaluation of effectiveness, efficiency, robust-
ness and scalability of SMR and competing approaches in Section 4. Limitations
and potential future work are addressed in Section 5, before giving concluding
remarks in Section 6.

2 Background and Related Work

The following gives background information on the underlying concepts of Storm
[17], which are important for understanding the architecture of SMR.

The logic of a Storm application is represented as a graph consisting of spouts
and bolts that are connected by streams, i.e., unbounded sequences of data tu-
ples. This concept is called a topology. On the one hand, spouts act as sources of
streams by reading from external data sources (e.g., aDB) and emitting tuples into
the topology. On the other hand, bolts are the core processing units of a topology.
They receive tuples, process the contained data and emit results as a new stream.
Spouts and bolts can have multiple outgoing streams, which provides the possibil-
ity of separating tuples within bolts and emitting them using different streams.

The direct competitor to Storm is Yahoo!’s S43. It as well provides distributed
stream computing functionality, but its underlying concepts and configuration
are more complex4. As described in [22], benchmarks have shown that S4 is
almost 10 times slower than Storm.

This research is related to a variety of existing work in the fields of relevance
prediction and data stream mining. An overview will be given in the following.

3 http://incubator.apache.org/s4/ (2013-09-28).
4 http://demeter.inf.ed.ac.uk/cross/docs/s4vStorm.pdf (2014-01-06).

http://incubator.apache.org/s4/
http://demeter.inf.ed.ac.uk/cross/docs/s4vStorm.pdf

StreamMyRelevance! 275

Concerning the relevance of search results, it is necessary to rely on human
relevance judgments—i.e., asking the user to explicitly rate the relevance of a
result—for the best possible predictions. However, since such data are usually
not available in large numbers, different solutions are required. Joachims [15]
proposes to use clickthrough data instead of human relevance judgments. Based
on the cascade hypothesis [4,16], i.e., the user examines results top-down and
neglects results below the first click, it is possible to infer relative relevances.
That is, the clicked result is more relevant than the non-clicked results at higher
positions. Using such relative relevances, Joachims engages clickthrough data
as training data for learning retrieval functions with a support vector machine
approach [15]. In contrast to the above, models like the Dependent Click Model
[8] assume that more than one result can receive clicks. That is, results below a
clicked position might be examined and thus also clicked if they are relevant.

The Dynamic Bayesian Network Click Model (DBN) described in [3] gener-
alizes the Cascade Model [4] by aiming at relevance predictions that are not
influenced by position bias. To achieve this, the authors (besides the perceived
relevance of a search result) also consider users’ satisfaction with the website
linked by the clicked result.

Generally, click models are based on the examination hypothesis, which states
that only relevant search results that have been examined are clicked [16]. Yet,
not all of these models follow the cascade hypothesis. All of the above described
are generative click models that try to provide an alternative to explicit hu-
man judgments by predicting the relevance of search results based on click logs.
The main differences to SMR are that we aim at predicting relevance using a
discriminative approach also taking into account interactions other than clicks.
Moreover, the above click models are not designed for efficient processing of
massive data streams or incremental updates.

TheBayesian Browsing Model (BBM) [16] is based on theUser BrowsingModel
(UBM) [7], which assumes that the probability of examination depends on the po-
sition of the last click and the distance to the current result [16]. Contrary to UBM,
BBM aims at scalability to petabyte-scale data and incremental updates. The au-
thors compute “relevance posterior[s] in closed form after a single pass over the
log data” [16]. This enables incremental learning of the click model while making
iterations unnecessary. Still, contrary to SMR, BBM is again a generative model
that does not leverage the advantages of additional interaction data.

Concerning user interactions other than clicks, in [11], Huang has found that
these are a valuable source of information for relevance prediction. Following,
Huang et al. [13] investigate the correlations between human relevance judgments
and mouse features such as hover time and unclicked hovers, among others. They
find positive correlationsand conclude that these can be used for inferring search
result relevance. Also, part of our system is based on a scalable approach for
collecting client-side interactions described by the authors [13].

In [9], Guo and Agichtein present their Post-Click Behavior Model. They in-
corporate interactions like cursor or scrolling speed on a landing page into deter-
mining its relevance, i.e., interactions that happen post-click. This is also partly

276 M. Speicher et al.

related to DBN [3], where the relevance of the landing page is modeled separately
from the perceived relevance of the result. While this approach is promising for
inferring the actual usefulness of a landing page, it would be difficult to realize
since search engines would need access to landing page interactions through, e.g.,
a browser plug-in or tracking scripts.

Making use of scrolling and hover interactions, Huang et al. [12] extend the
Dynamic Bayesian Network Click Model described earlier to leverage information
beyond click logs. Their results show that this improves the performance in terms
of predicting future clicks compared to the baseline model. While this generative
approach involves interactions other than clicks, in contrast to SMR, it does not
specifically aim at incremental learning or efficient processing of massive data
streams.

TMR is a system described by Speicher et al. [20]. Parts of SMR are based on
this work, particularly in terms of client-side interaction tracking, preprocessing
of raw data and computation of interaction features. Like SMR, TMR is a dis-
criminative approach to relevance prediction, but in contrast is a batch-oriented
system. In particular, its relevance models are not trained incrementally, i.e., all
data have to be re-processed before obtaining an updated model.

3 SMR: Streaming Interaction Data for Learning
Relevance Models

The following Section describes SMR, which is organized as a streaming-based
process. Its aim is to enable processing of big data streams while leveraging the
advantages of user interaction data for the prediction of search result relevance.
This supports more optimal ranking of results, which is a major quality aspect
of search-driven web applications.

The system comprises four main components as illustrated in Fig. 2: The
Client-Side Interaction Tracking component in terms of a jQuery plug-in;
The Preprocessor for reading and preprocessing streams of tracking data and

Fig. 2. The main components and process flow of SMR (Streams are visualized by
sequences of chevrons; Storm topologies are annotated using a “T”)

StreamMyRelevance! 277

relevance judgments; The Interaction Features Processor for calculating in-
teraction features from tracking data; The Classification Processor for incre-
mentally training a relevance model using the previously computed features and
collected relevance judgments.

Our Storm-based system has been specifically designed with an incremental
approach in mind. The four steps above can be regarded as a sequence of in-
dependent processes. That is, the results of each step as well as the resulting
relevance models are persisted (temporarily). As a result, in case of a crash
within the system, SMR can resume its work at the step prior to the incident
without starting over from the very beginning.

3.1 Client-Side Interaction Tracking

For client-side interaction tracking, SMR builds upon a “minimally invasive
jQuery plug-in” [20] that is provided by TMR. This plug-in tracks mouseenter,
mousepause, mousestart, mouseleave and click events that happen within the
bounds of a search result on a SERP [20]. Each mouse event is extended with the
search query, a user ID and the ID of the corresponding result [20]. The result-
ing data packets are then sent to a specified key-value store at suitable intervals
(Fig. 2) [20]. For integration, the developer has to specify jQuery selectors for (a)
the HTML container element holding all results, (b) a single search result, (c)
an element within a result holding the result ID and (d) links to landing pages.

The second function provided by the plug-in is intended for recording human
relevance judgments, often also referred to as conversions, which are crucial for
learning relevance models. It is realized as a JavaScript method that can be
called from anywhere, e.g., upon clicking an upvote button next to a search
result [20]. This method has to be provided with the value of the judgment (e.g.,
−1 for a downvote and +1 for an upvote) as well as the corresponding search
query, session ID and user ID by the developer.

3.2 Preprocessor

After having been recorded using the above jQuery plug-in, all interaction data
is received by SMR as a stream of individual events for preprocessing (Fig. 2).
Additionally, information about a corresponding search session5 is transferred
when a user enters a SERP. These contain an anonymous user ID, the current
search query and the ordered list of all results, among others [20]. Every event
received by SMR is subsequently associated with its respective search session.
This concept is referred to as a collected search session.

It is logically not possible to process events from search sessions that have
not ended yet. Thus, all events are passed on in the SMR pipeline on a per–
search session basis. Since it is unreliable to fire client-side unload events on

5 For our purposes, a search session starts when entering and ends when leaving a
SERP. For example, a reload triggers a new session, even for the same user and
query.

278 M. Speicher et al.

a SERP, this is realized using a configurable time-out on the server side. For
example, if no events related to a given session have been received for 2 minutes, it
is considered finished and the collected search session is passed on for interaction
feature computation (Fig. 2).

Moreover, the preprocessing component receives human relevance judgments
that are required for learning actual models. These judgments are checked for
validity, i.e., whether a corresponding search session exists during which the
judgment happened. The latter is not the case if a judgment is triggered by
a user who did not perform a search beforehand, e.g., because they received a
link to a result from a friend. Relevance judgments are persisted at this point
for later use by the Classification Processor (Fig. 2). Finally, for later filtering
purposes, each valid judgment is associated with the list of queries triggered by
the corresponding user ID.

3.3 Interaction Features Processor

The Interaction Features Processor is realized as a separate topology within
our Storm-based system (Fig. 2). It receives collected search sessions from the
preprocessor that are emitted as a stream by a dedicated spout. To ensure that all
interaction events associated with a search session are ordered logically, invalid
sequences of events are filtered out. This prevents the computation of faulty
interaction feature values. An invalid sequence would be, e.g., if a mouseleave

happens before a mouseenter event on the same search result. Typical causes
for such a case can be faulty time stamps or latency while transferring data from
client to server. Since at the moment we specifically focus on mouse interactions,
search sessions that have been recorded on touch devices are eliminated as well.

Subsequently, the values of the actual interaction features are calculated per
query–result pair. For example, the value of the arrival time is determined by
subtracting the time stamp of the first mouseenter event on a result from the
time stamp of the page load (which is available as meta information about the
associated search session). The features we are considering are:

(i) Arrival time, (ii) clicks (not leading to a landing page), (iii) click-

throughs (leading to a landing page), (iv) cursor movement time, (v) cur-
sor speed (cursor trail divided by cursor movement time), (vi) cursor trail,
(vii) hovers, (viii) hover time, (ix) maximum hover time, (x) position and
(xi) unclicked hovers (hovers during which no clickthrough happened).

These are in accordance with [20]. Features are moreover averaged over the
number of hovers, if possible. This applies to clicks, clickthroughs, cursor move-
ment time, cursor trail, hover time and unclicked hovers [20]. Finally, the com-
puted values are persisted, which is important for later normalization purposes
and actual use of SMR’s relevance models (see below). In case feature values
are already present for a query–result pair, they are automatically updated by
adding the new values and taking the average over all values.

Within this topology, emitting a stream of collected search sessions is realized
using a spout. Contrary, checking event sequence validity, the actual computation

StreamMyRelevance! 279

of feature values and updating values of already existing query–result pairs are
realized through bolts.

The raw search sessions and associated events are not necessarily lost after
they have been used for computing interaction features. Rather, SMR provides
the option to persist all processed data. In this way, it is possible to batch-
wise train a new model from parts of old data (e.g., after removing outdated
information) before continuing to incrementally update this new model using
real-time interactions and judgments.

3.4 Classification Processor

The Classification Processor is as well realized as a separate topology within our
system (Fig. 2). It receives the previously calculated interaction features (one
set per query–result pair) in terms of a stream that is emitted into the Storm
cluster by a dedicated spout. Using the lists of queries associated to judgments
during preprocessing, we filter out sets of interaction feature values that are not
associated with a user who triggered at least one relevance judgment. This helps
to ensure a good quality of our training data.

Moreover, relevance models provided by SMR highly depend on the layout
of a SERP [20]. Thus, normalization of feature values is necessary to guaran-
tee comparability between models related to different SERP layouts [20]. This
happens in terms of dividing feature values by the maximum value of the re-
spective feature across all results for the given query. Since interaction feature
values arrive as a stream, maximum values change over time and have to be con-
stantly updated. Hence, they become more precise the longer the system runs.
This is a major difference compared to TMR, which—due to its batch-oriented
nature—has look-ahead capabilities and knows exact maximum values from the
start.

In the next step, we derive the normalized relevance relN for a query–result
pair using the human relevance judgments that have been persisted in the pre-
processing step. For this, all relevance judgments judg corresponding to the
query–result pair (q,r) are summed up before dividing them by the sum of all
judgments for the given query [20]:

relN(q, r) =

∑
u∈U

judg(u, q, r)∑
s∈R

∑
u∈U

judg(u, q, s)
,

with U the set of users who triggered a judgment and R the set of possible results
for the query q. Normalizing judgments is important since otherwise, a result X
that was among the results of 20 queries and received 10 positive judgments
(relN=0.5) would be considered more relevant than a result Y that was among
the results of only 5 queries and received 5 positive judgments (relN=1).

Having available interaction feature values and normalized relevance of a
query–result pair, it is possible to use them as a training instance for SMR’s
relevance model. For this, the query–result pair is transformed into an instance

280 M. Speicher et al.

that can be interpreted by the WEKA API [10]. The interaction features are la-
beled as attributes while “relevance” is labeled as the target attribute on which
we train the model. At the moment, SMR has two built-in classifiers available
that are provided by the WEKA API and trained in parallel. That is, a Hoeffding
Tree, which is specifically aimed at incremental learning and is suitable for very
large datasets [6], and an updateable version of Näıve Bayes6, which also works
for smaller datasets. The current states of the relevance models are serialized and
persisted after each incremental update. These models are ready-to-use and can
be instantly engaged for obtaining relevance predictions and feeding them back
into a SERP for results optimization (Fig. 2). Moreover, all training instances
are persisted to a file to enable manual inspections using, e.g., the WEKA GUI.

Within this topology, emitting a stream of interaction feature values is realized
using a spout. Contrary, filtering and normalization tasks as well as incrementally
training the relevance models are realized as bolts.

The incrementally trained relevance models are serialized and persisted after
every update. This makes it possible to manually review the quality of the current
model and interrupt or stop training if the model is reasonably stable, which
helps to prevent overfitting. Moreover, SMR does not require to directly feed
predictions by the incremental relevance model back into the ranking process
of the underlying search engine. Rather, as just described, search engine owners
are given the option to review the model before usage to ensure ranking quality.

3.5 Making Use of Relevance Models

SMR only caters for learning and providing relevance models. This means that
the actual usage of a model is up to the search engine owner. A relevance model
RM takes a vector of interaction feature values I for a given query–result pair

(q,r) and returns a corresponding relevance prediction r̂el, i.e., RM(q, r, I) =

r̂el(q, r).
This can, e.g., be integrated into a scheduled process of updating search result

ranking according to a learning-to-rank function that contains r̂el as a param-
eter (Fig. 2). The interaction feature values used for prediction could be those
recorded by SMR and persisted by the Interaction Features Processor.

4 Evaluation

To show SMR’s capability of coping with realistic workloads, we have performed
a large-scale log analysis of real-world user interactions. The anonymous data
used were collected on two large hotel booking portals. We used the number of
conversions (i.e., when a hotel has been actually booked by users) as relevance
judgments for training our models. This stands in contrast to commonly used
click models, where clicks are the prime indicators of relevance. First, we com-
pare SMR to its analogous batch-wise approach TMR (cf. [20]) in terms of the

6 http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/

NaiveBayesUpdateable.html (2013-10-07).

http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html

StreamMyRelevance! 281

prediction quality of the two systems. Second, we provide BBM (as a state-of-the
art generative click model aiming at stream processing; cf. [16]) with the same
set of raw interaction logs and compare its quality of relevance prediction against
that of SMR. Third, we check SMR against a version of itself that considers click-
throughs only (SMRclick) as well as an analogous version of TMR, i.e., TMRclick.
Results indicate that SMR is able to provide reasonably good relevance predic-
tions that are not significantly different from those of TMR and might compare
favorably to those of BBM—although the difference is not significant. Moreover,
our system is superior to corresponding discriminative approaches that do not
consider interactions other than clickthroughs. Subsequently, we have a look at
the efficiency, robustness and scalability of the evaluated approaches. Results
show that SMR can easily cope with realistic workloads in a manner that is
robust to external influences. This is especially important in real-world settings
with big data streams.

For detailed figures and descriptive statistics, see http://vsr.informatik.

tu-chemnitz.de/demo/SMR. Also, we provide training data and serialized mod-
els for reproducing this evaluation using WEKA (cf. [10]).

4.1 Effectiveness

Method. Approximately 32 GB of raw tracking data were collected by SMR’s
interaction tracking facilities in May 2013 on two large hotel booking portals. Of
these, ∼10 GB of interaction logs were chosen for evaluation, which correspond
to ∼3.8 million search sessions over a period of 10 days. Based on these, we com-
puted interaction features for a total of 86,915 query–result pairs. Because the
collected data contained critical information about the cooperating company’s
business model, it was a requirement that all data was saved to a key-value store
controlled by the company. In particular, we are not allowed to publish the con-
crete conversion–to–search session (CTS) ratio. Yet, it can be stated that this
ratio is very low, i.e., #conversions � #search sessions.

We divided the chosen raw interaction data into 10 distinct datasets DS0–
DS9 (∼0.7–1.5 GB each) that were intended for training relevance models and
corresponded to one day each. Since SMR cannot—due to its streaming-based
nature—use fixed maximum values for interaction feature normalization (cf. Sec-
tion 3.4), it produces different feature values for the same tracking data compared
to TMR. Thus, processing the above raw datasets with both systems yields a to-
tal of 20 datasets containing interaction features and relevances (i.e., normalized
conversions) of the extracted query–result pairs: DS0

TMR–DS9
TMR from TMR

and DS0
SMR–DS9

SMR from SMR. For this, we considered only search sessions
that were produced by users who triggered at least one conversion (in terms of
booking a hotel). Conversions are treated as relevance judgments in analogy to
[20], i.e., a greater number of conversions implies higher relevance and vice versa.
For evaluating SMR, we simulated a stream of search sessions based on the logs
containing raw interaction data.

In analogy to [20], we observed a very low ratio of booked hotels to search
sessions. In addition with a high query diversity this leads to more than 99% of

http://vsr.informatik.tu-chemnitz.de/demo/SMR
http://vsr.informatik.tu-chemnitz.de/demo/SMR

282 M. Speicher et al.

the query–result pairs having a relevance of either 0.0 or 1.0. Therefore, in this
evaluation, we treat relevance prediction as a binary classification problem with
two classes: “bad” (relevance < 0.5) and “good” (relevance ≥ 0.5). With more
than 90% of the query–result pairs having a bad relevance and less than 10%
having a good relevance, these classes are rather unbalanced. Thus, we use the
Matthews Correlation Coefficient (MCC) for evaluations of model quality, which
is suitable for cases with unbalanced classes [1].

Relevance models as provided by SMR and TMR are highly sensitive to lay-
out specifics of the corresponding SERPs [20]. Yet, since the two hotel booking
portals feature the exact same layout template, it is valid to use combined data
from both portals for training the same model(s).

The Storm cluster used for evaluation was based on Amazon EC2 7. It com-
prised four computing instances. An additional machine was used for logging
purposes and hosting the database used. All computers in the Storm cluster
were instances of type m1.large, featuring two CPUs and 7.5 GB RAM8.

Fig. 3. MCC values for DS0–DS9 (threshold = 0.5)

SMR vs. TMR. Based on the datasets described above, we trained a total of 20
Näıve Bayes classifiers (10 per system), as provided by TMR and SMR through
the WEKA API. Thereby, our system used the updateable version of the classi-
fier for incremental learning. The Näıve Bayes classifier was chosen because the
amount of data available for evaluation was too small to train reasonably good
Hoeffding Tree classifiers [6]. All classifiers learned have been evaluated using
10-fold cross validation, from which we obtained corresponding MCC values. As
can be seen in Fig. 3, the difference between SMR and TMR is not significant
across the 10 datasets. This result has been validated using a Wilcoxon rank sum
test, with p>0.05 (α=0.05, W=75, 95.67% conf. int. = [-0.047, 0.004]). It implies
that statistically, SMR yields the same prediction quality as TMR, even though
it has less information available; particularly in terms of feature normalization
and missing look-ahead capabilities. While Fig. 3 shows only MCC values at a

7 http://aws.amazon.com/ec2 (2013-09-30).
8 http://aws.amazon.com/en/ec2/instance-types/#instance-details

(2013-10-05).

http://aws.amazon.com/ec2
http://aws.amazon.com/en/ec2/instance-types/#instance-details

StreamMyRelevance! 283

threshold of 0.5, our result is underpinned by the exemplary receiver operating
characteristic (ROC) curves depicted in Fig. 4, where SMR does not dominate
TMR or vice versa. This is similar for the remaining nine datasets.

Fig. 4. ROC values for DS7

SMR vs. BBM. Additionally, we have compared SMR’s prediction quality
to that of a state-of-the-art generative click model designed for very large
amounts of data and incremental learning. For this, we have used an existing
re-implementation of BBM—as described in [16]—and provided it with the exact
same raw interaction logs. Fig. 3 shows that BBM yields slightly better predic-
tions for four out of ten datasets (DS0–DS2 , DS9) at a threshold of 0.5 while
SMR has a better prediction quality for the remaining six datasets. For this,
predictions of BBM have been compared to the normalized relevances computed
by SMR based on the available conversions. The difference between the two
approaches is not significant according to a Wilcoxon rank sum test (α=0.05,
W=64.5, p>0.05, 95.67% conf. int. = [-0.177, 0.021]). Still, our result indicates
that SMR has the potential to provide relevance predictions that compare fa-
vorably to BBM. Particularly, Fig. 4 suggests that predictions of BBM can be
partly dominated by SMR’s predictions for certain datasets. We expect SMR’s
prediction quality to increase with amounts of data larger than used in this eval-
uation. Thus, we hypothesize that our system can predict relevance at least as
good as BBM, whose predictions are being successfully used in industry.

SMR vs. SMRclick vs. TMRclick. To investigate the influence of the addi-
tional user interactions, we have performed a comparison of SMR to versions of
itself and TMR that consider clickthroughs only, named SMRclick and TMRclick.
Results show that SMR outperforms the click-only approaches across all 10
datasets (Fig. 3) based on 10-fold cross-validation. Moreover, the MCC differ-
ences between SMR and SMRclick/TMRclick are significant, as has been shown
by two Wilcoxon rank sum tests (SMRclick: α=0.05, W=84.5, p<0.05, 95.67%
conf. int. = [-0.075, -0.020]; TMRclick: α=0.05, W=90, p<0.01, 95.67% conf. int.
= [-0.101, -0.044]). Our results are further supported by the ROC curves shown
in Fig. 4, where SMR (area under ROC = 0.861) performs better than both
SMRclick (area under ROC = 0.834) and TMRclick (area under ROC = 0.759).

284 M. Speicher et al.

These findings underpin that adding interaction data other than clicks yields con-
siderable improvements for discriminative approaches, as has also been outlined
in [11,13]. This is true even if clickthroughs show a correlation with relevance
that is notably higher than those of the additional attributes (e.g., r=0.34 for
DS2

TMR).

4.2 Efficiency, Scalability and Robustness

Efficiency and Scalability. SMR is a feasible approach for processing
web-scale interaction data. In contrast, TMR uses a batch-wise approach and
non-incremental classifiers [20]. This means that all training data (in terms of
query–result pairs, i.e., interaction features and relevances) already put into a
model have to be re-processed for an update, which yields a time-complexity of
O(q) + O(s) with s = #search sessions in new log, q = #previously processed
query–result pairs. Assume we receive one log with raw interaction data per
day and want a daily model update. Then the amount of data that needs to
be re-processed grows linearly. At some point, processing these data would take
longer than 24 hours unless we add more/faster hardware to the system, which is,
however, not a feasible approach in the long-term. Particularly, re-processing pre-
viously processed query–result pairs involves numerous slow database requests.
To give just one concrete example from our evaluation, TMR needs ∼5 hours for
processing a single 1.5 GB log on a dual-core machine with a 2.3 GHz Intel Core
i5 CPU and 4 GB RAM. Since this corresponds to one day, processing the logs
for two days would already take ∼10 hours etc. This means that after five days,
we exceed a processing time of 24 hours, which makes it impossible to provide a
daily model update unless we use a better machine than the given one.

In contrast, SMR does not need to re-process logs from previous days since
data is processed on a per–search session basis and models are learned incre-
mentally. Thus, a model update considers only one search session at a time and
the time-complexity of the update depends on the complexity of the classifier
used. For example, “constant time per example [i.e., a query–result pair in our
case]” [6] if using a Hoeffding Tree. SMR needs ∼2 hours for processing all search
sessions in a 1.5 GB log using the cluster described in Section 4.1. For this, the
search sessions have been put into the system at the highest possible frequency.
The log used corresponds to one day of real-world traffic from two hotel booking
portals. This means that—using simple interpolation—SMR would be able to
cope with approximately 12 times the load based on the relatively simple cluster
set-up used.

Finally, BBM has been specifically designed for incremental updates and web-
scalability. As described in [16], 0.25 PB of data were processed using the gener-
ative click model. The authors state that it was possible to compute relevances
for 1.15 billion query–result pairs in three hours on a MapReduce [5] cluster.
BBM’s time-complexity for updating a relevance model is O(s).

Due to the differences in system architecture—TMR runs on a single node
while the other two approaches require a cluster—the above is not an absolute,
hardware-independent comparison of performance. Rather, it describes relative

StreamMyRelevance! 285

performances between the three systems. An overall, relative comparison of effi-
ciency and scalability of the compared approaches is shown in Table 1.

Robustness. Being based on Storm, SMR is a highly robust system by design.
In particular, it features guaranteed message passing9 and high fault-tolerance10

if one or more nodes die due to external reasons—which happened numerous
times during our evaluation. In such a case, SMR continued processing the cur-
rent interaction data from the step prior to the incident.

In [16], Liu et al. do not explicitly address the robustness of their approach.
Rather, BBM has been designed for use as a MapReduce job on a Hadoop clus-
ter. That is, differences in robustness between SMR and BBM originate from
corresponding differences between Storm and Hadoop. Particularly, Hadoop has
disadvantages when it comes to guaranteed message processing or when super-
vising/master nodes are killed.

Finally, TMR is the least robust of the compared approaches. In case the
processing of a batch of data is stopped due to external reasons (e.g., a mem-
ory overflow), all data need to be re-processed. In particular, this means that
already computed values of interaction features are useless since contributions
of already processed data can not be subtracted out before starting over an it-
eration. Therefore, careful evaluation and set-up of the required hardware are
necessary before using TMR to minimize the risk of costly and time-consuming
errors.

4.3 Discussion and Summary

In this evaluation, we have shown that SMR does not perform significantly less
effective than TMR, even though it relies on lower-quality information for train-
ing its relevance models. Moreover, SMR is more efficient, robust and scalable
compared to its batch-wise predecessor. The difference of SMR’s predictions to
those of the generative state-of-the-art click model BBM were not significant
as well. Yet, our results indicate that our discriminative approach can be ad-
vantageous over BBM for certain datasets and that it is more robust at similar
efficiency and scalability. Finally, we have underpinned the value of interaction
data other than clicks for relevance prediction, with clickthrough-only versions
SMRclick and TMRclick performing significantly worse than SMR. However, there
are some points remaining for discussion.

Discussion. Why does SMR show the tendency to perform better than TMR,
although its training data are of lower quality? As described in Section 3.4, the
maximum values for feature normalization change during the processing of a
dataset due to SMR’s streaming-based nature (i.e., no look-ahead is possible).
This means that SMR has less information available and as a result, the training

9 https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-

processing (2013-12-30).
10 https://github.com/nathanmarz/storm/wiki/Fault-tolerance (2013-12-30).

https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing
https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing
https://github.com/nathanmarz/storm/wiki/Fault-tolerance

286 M. Speicher et al.

data has lower quality. However, the different feature values for query–result pairs
that appear early in a dataset can—purely by chance—lead to better predictions
of SMR. This is especially the case because in this evaluation we were working
with relatively small and closed datasets, as compared to a real-world setting.
Hence, we strongly assume that in such a setting, the already non-significant
difference between SMR and TMR would become even smaller.

Why does BBM make better predictions than SMR for DS2 but predicts worse
for DS7? SMR computes almost the same amount of query–result pairs for the
two datasets, with nearly identical means and distributions of the individual in-
teraction features. In contrast, BBM has approximately 12% less search sessions
available in DS7 compared to DS2 , which is due to the fact that search sessions
are treated differently by BBM. Our system treats every page load event on a
SERP as the beginning of a new search session. That is, if a user clicks a result
and then returns to the SERP for clicking another result, SMR interprets this as
two separate sessions. However, BBM handles this as a single search session with
two clickthrough events. Besides containing more of these “combined” search ses-
sions, DS7 also features ∼12% less clickthrough events. All in all, this results
in BBM having less data available for training its relevance model, which is an
explanation for the lower-quality prediction compared to DS2 . The same holds
for other datasets showing similar differences, DS2 and DS7 are only used for
representative purposes here.

Why are the MCC values relatively low (< 0.5) in general? The data collected
for evaluation featured a very low CTS ratio, i.e., the amount of interaction data
exceeded the available relevance judgments by far. To give just one example, the
CTS ratios of both DS0 and DS1 lie under 1%, which is similar for the remaining
datasets. This and the fact that the datasets used for evaluation were relatively
small (compared to a realistic long-term scenario) leads to a rather low data
quality. Yet, in an evaluation with larger amounts of data, we would expect
increasing MCC values. This is, e.g., indicated in [20], where the authors work
with datasets that are notably larger than 1.5 GB. Also, Huang et al. state that
“adding more data can result in an order of magnitude of greater improvement in
the system than making incremental improvements to the processing algorithms”
[12].

How does SMR deal with click spam? Click spam is a major problem in systems
where clicks are the main indicator for relevance [19]. However, in the specific
setting we are focusing on in this paper, a high number of conversions indicates
high relevance. Since conversions imply a confirmed payment, we do not have
to deal with “traditional” click spam as described in [19]. Yet, in settings where
no conversions are available, our discriminative approach has to rely on other
indicators of relevance, such as clicks on social media buttons, for training its
models. In such cases, additional measures have to be taken that prevent fraudu-
lent behavior aiming at manipulating relevance models. Potential measures could
be based on, e.g., filtering pre-defined behavior profiles, blacklists, personalized
search [19] or the ranking framework described by [2].

StreamMyRelevance! 287

Table 1. Overall relative comparison of the considered approaches

effectiveness efficiency robustness scalability

SMR 0 ++ ++ ++
BBM − ++ + ++
TMR (baseline) 0 0 0 0
SMRclick −− ++ ++ ++
TMRclick −− 0 0 0

Summary. Table 1 shows a comparison of all approaches considered in the eval-
uation. Since the systems—due to differences in the underlying architectures—
are difficult to compare in an absolute, hardware-independent manner, we give a
comparison of relative performances. Using TMR as the baseline, “0” indicates
similar performance, “+”/“−” indicate a tendency and “++”/“−−” indicate a
major or significant difference.

5 Limitations and Future Work

The following section discusses limitations of SMR and provides an overview of
potential future work.

As described, in this paper SMR specifically aims at relevance prediction in
the context of travel search. One specific feature of this setting is the fact that we
can use hotel booking conversions as indicators of relevance. However, in a more
general setting, other implicit or explicit relevance judgments are necessary. For
example, one could obtain such judgments by providing optional vote up/down
buttons to visitors or tracking clicks on Facebook “Like” buttons of a search
result. Transferring SMR into such a more general context is our current work-
in-progress.

Concerning the evaluation of our system, we had to rely on relatively small
datasets compared to the real-world settings the system is intended for in the
long-term. As part of our future work, we intend to evaluate SMR with larger
datasets that simulate a real-world setting of a timespan considerably longer
than 10 days. This will also give us the chance to investigate the performance
of the Hoeffding Tree classifier, which becomes feasible only for very massive
amounts of data [6].

Currently, SMR is only able to track client-side interactions on desktop PCs,
i.e., mouse input. However, since the mobile market is steadily growing, an in-
creasing number of users access search engines using their (small-screen) touch
devices. This demands for also making use of touch interactions for predicting
the relevance of results. Leveraging these valuable information is especially im-
portant for search engine owners and intended in future versions of SMR.

Finally, interaction features are often coupled with temporal features or their
values change over time. This has to be addressed in the context of concept drift
[21]. SMR is generally capable of handling changing data streams, as Tsymbal
states that “[i]ncremental learning is more suited for the task of handling con-
cept drift” [21]. However, the Näıve Bayes classifier used in the context of this

288 M. Speicher et al.

paper would have to be replaced by an adequate concept drift–ready learner. A
potential candidate is the CVFDT learner, which is based on Hoeffding trees
and dismisses a subtree based on old data whenever a subtree based on recent
data becomes more accurate [14].

6 Conclusions

This paper presented SMR, which is a novel approach to providing incremental
models for predicting the relevance of web search results from real-time user
interaction data. Our approach helps to ensure one of the prime aspects of search
engine quality, i.e., providing users with the most relevant results for their queries.
In contrast to numerous existing approaches, SMR does not require re-processing
of already processed data for obtaining an up-to-date relevance model. Moreover,
our system involves interaction features other than clicks and was specifically
designed for coping with large amounts of data in real-time. This allows for
feeding relevance predictions back into SERPs with relatively low latency.

For evaluating SMR, we have simulated a real-world setting with large amounts
of interaction data from two large hotel booking portals. Comparison of our sys-
tem to an analogous batch-wise approach showed that SMR is able to predict rel-
evances that do not differ significantly, although it has less information available
for training. Furthermore, we have compared the discriminative SMR approach
to BBM—a generative state-of-the-art click model for incrementally processing
big data streams that is successfully applied in industry. Results show that pre-
diction quality does not differ significantly between the two systems. Still, they
indicate that predictions by SMR might compare favorably to those of BBM,
as it outperforms the click model for the majority of datasets. Additionally, we
have considered a click-only version of SMR that was compared to the complete
system. From the significantly better predictions of the latter, we conclude that
interactions other than clicks yield valuable information for relevance prediction
and should not be neglected.

As future work, we plan to adjust SMR to more general settings besides
travel search. Moreover, it is planned to further optimize the system regarding
performance and perform an evaluation with even larger amounts of real-world
interaction data.

Acknowledgments. We thank Christiane Lemke and Liliya
Avdiyenko for supporting us with their implementation of
BBM. This work has been supported by the ESF and the
Free State of Saxony.

References

1. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H.: Assessing the
accuracy of prediction algorithms for classification: an overview. Bioinformatics
16(5) (2000)

StreamMyRelevance! 289

2. Bian, J., Liu, Y., Agichtein, E., Zha, H.: A Few Bad Votes Too Many? Towards
Robust Ranking in Social Media. In: Proc. AIRWeb (2008)

3. Chapelle, O., Zhang, Y.: A Dynamic Bayesian Network Click Model for Web Search
Ranking. In: Proc. WWW (2009)

4. Craswell, N., Zoeter, O., Tylor, M., Ramsey, B.: An Experimental Comparison of
Click Position-Bias Models. In: Proc. WSDM (2008)

5. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
CACM 51(1) (2008)

6. Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Proc. KDD (2000)
7. Dupret, G.E., Piwowarski, B.: A User Browsing Model to Predict Search Engine

Click Data from Past Observations. In: Proc. SIGIR (2008)
8. Guo, F., Liu, C., Wang, Y.M.: Efficient Multiple-Click Models in Web Search. In:

Proc. WSDM (2009)
9. Guo, Q., Agichtein, E.: Beyond Dwell Time: Estimating Document Relevance from

Cursor Movements and other Post-click Searcher Behavior. In: Proc. WWW (2012)
10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11(1) (2009)
11. Huang, J.: On the Value of Page-Level Interactions in Web Search. In: HCIR

Workshop (2011)
12. Huang, J., White, R.W., Buscher, G., Wang, K.: Improving Searcher Models Using

Mouse Cursor Activity. In: Proc. SIGIR (2012)
13. Huang, J., White, R.W., Dumais, S.: No Clicks, No Problem: Using Cursor Move-

ments to Understand and Improve Search. In: Proc. CHI (2011)
14. Hulten, G., Spencer, L., Domingos, P.: Mining Time-Changing Data Streams. In:

Proc. KDD (2001)
15. Joachims, T.: Optimizing Search Engines using Clickthrough Data. In: Proc. KDD

(2002)
16. Liu, C., Guo, F., Faloutsos, C.: BBM: Bayesian Browsing Model from Petabyte-

scale Data. In: Proc. KDD (2009)
17. Marz, N.: Storm Wiki, http://github.com/nathanmarz/storm/wiki
18. Navalpakkam, V., Churchill, E.F.: Mouse Tracking: Measuring and Predicting

Users’ Experience of Web-based Content. In: Proc. CHI (2012)
19. Radlinski, F.: Addressing Malicious Noise in Clickthrough Data. In: LR4IR Work-

shop at SIGIR (2007)
20. Speicher, M., Both, A., Gaedke, M.: TellMyRelevance! Predicting the Relevance of

Web Search Results from Cursor Interactions. In: Proc. CIKM (2013)
21. Tsymbal, A.: The problem of concept drift: definitions and related work. Technical

Report, Trinity College Dublin (2004)
22. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:

A fault-tolerant model for scalable stream processing. Technical Report, UC Berke-
ley (2012)

http://github.com/nathanmarz/storm/wiki

The Forgotten Many? A Survey of Modern Web

Development Practices

Moira C. Norrie, Linda Di Geronimo, Alfonso Murolo, and Michael Nebeling

Department of Computer Science, ETH Zurich
CH-8092 Zurich, Switzerland

{norrie,lindad,amurolo,nebeling}@inf.ethz.ch

Abstract. With an estimated 21.9% of the top 10 million web sites
running on WordPress, a significant proportion of the web development
community consists of WordPress developers. We report on a survey that
was carried out to gain a better understanding of the profile of these de-
velopers and their web development practices. The first two parts of the
survey on the background and development practices were not exclu-
sive to WordPress developers and therefore provide insight into general
web developer profiles and methods, while the third part focussed on
WordPress specifics such as theme development. We present the results
of the survey along with a discussion of implications for web engineering
research.

Keywords: web engineering, web development practices, WordPress
developers.

1 Introduction

Second-generation content management systems (CMS) such as WordPress1 and
Drupal2 are based on a crowdsourcing model where vast developer communities
share themes and plugins. It is possible for endusers to create a web site without
any programming effort by selecting an existing theme and adding content, even
adding or customising the functionality through the user interface. At the same
time, developers with programming skills and knowledge of the platform can
create or edit PHP templates, CSS stylesheets and JavaScript functions to extend
the functionality or create their own themes and/or plugins.

The availability of these platforms has radically changed the web develop-
ment landscape with estimates that 21.9% of the top 10 million web sites are
running on WordPress which has 60.3% of the CMS market share3. While many
sites running on WordPress are personal web sites, the platform also supports
everything from web sites created by professional designers for small businesses

1 http://www.wordpress.com, http://www.wordpress.org
2 http://www.drupal.org
3 http://w3techs.com/technologies/overview/content_management/all

(10.4.2014).

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 290–307, 2014.
c© Springer International Publishing Switzerland 2014

http://www.wordpress.com
http://www.wordpress.org
http://www.drupal.org
http://w3techs.com/technologies/overview/content_management/all

The Forgotten Many? A Survey of Modern Web Development Practices 291

to large, complex sites created by teams of developers. WordPress has gone well
beyond its origins as a blogging platform and its web sites include popular online
newspapers, e.g. Metro UK4, as well as e-commerce sites, e.g. LK Bennett5.

Yet, WordPress and its developers have received little attention within the
web engineering research community. Information gleaned from books about
WordPress, online articles and forums as well as talking to personal contacts,
suggests that many WordPress web sites are developed by individuals with a
mix of technical and design skills. Books on developing WordPress themes such
as [1] propose an interface-driven approach where the main steps are to develop
a mockup of the interface, add client-side functionality and then migrate to the
WordPress platform. This contrasts with the model-driven approaches [2] widely
promoted within the web engineering research community.

Since WordPress developers form a significant part of the development
community, we think it is important to get a better understanding of their de-
velopment practices with a view towards identifying requirements and research
challenges. We therefore decided to carry out a survey of web development prac-
tices which, although not exclusively limited to WordPress developers, made
efforts to reach out to this community.

The results of our survey show that there is a need to support alternative
methods to model-driven web engineering that are more in line with widely-
used interface-driven practices and can be integrated with platforms such as
WordPress. Further, since many developers seek inspiration from existing web
sites and frequently reuse elements of design and implementation from other
projects, a major issue is how to provide better support for reuse in all aspects
of web engineering.

In Sect. 2, we discuss the background to this work including previous surveys
of web development practices. Section 3 provides details of our survey and how
it was carried out. The results are presented in three sections. Section 4 reports
on results related to developer profiles in terms of experience, educational back-
ground and the size of team and organisation for which they work. Results on
general methods and tools used in development are then presented in Sect. 5.
The third part of the survey was specific to WordPress developers and we report
on the results for this part in Sect. 6. Implications for web engineering research
are discussed in Sect. 7, while concluding remarks are given in Sect. 8.

2 Background

The discipline of web engineering emerged in the late 1990s with calls for system-
atic methods for the development of web applications, e.g. [3,4]. This in turn led
to the first of the ICWE series of conferences in 2001 and the appearance of the
Journal of Web Engineering (JWE) in 2002. A position paper [5] in the first issue
of JWE defined web engineering as “the application of systematic, disciplined
and quantifiable approaches to the development, operation and maintenance of

4 http://metro.co.uk
5 http://www.lkbennett.com

http://metro.co.uk
http://www.lkbennett.com

292 M.C. Norrie et al.

web-based applications”. The paper presented the characteristics of both sim-
ple and advanced web-based systems, discussing how the development of such
systems differed from traditional software engineering. The authors concluded
that “web engineering at this stage is a moving target since web technologies are
constantly evolving, making new types of applications possible, which in turn
may require innovations in how they are built, deployed and maintained.”

It is certainly true that both web technologies and the kinds of web-based
applications in everyday use have changed dramatically over the last decade.
Further, the emergence of second-generation CMS such as WordPress which
offer powerful platforms for both the development and operation of all kinds of
web sites has also changed how a significant proportion of web sites are built,
deployed and maintained. By offering a WordPress hosting platform6, it is even
possible for endusers to literally create and deploy a web site in a few clicks.
Meanwhile, developers with technical skills and knowledge of the WordPress
model can develop both plugins and themes offering rich functionality for their
own use and to share with others.

Examining the research literature in web engineering over the past decade
reveals less radical changes in proposals for how web sites should be devel-
oped. Model-driven approaches such as OOHDM [6], UWE [7], WebML [8] and
WSDM [9] were introduced in the 1990s and early 2000s. Many of these still
prevail although the modelling languages may have been extended to cater for
new kinds of technologies and applications. For example, the web modelling lan-
guage WebML has been extended to cater for service-enabled applications [10]
and context-awareness [11]. The continued emphasis on model-driven approaches
may be due to the fact that the main focus still appears to be on development
within, or for, large enterprises using multi-disciplinary development teams in-
volving programmers, database architects and graphic designers. In such set-
tings, it might be expected that the model-driven approaches widely used in
software engineering and information systems would be familiar to both pro-
grammers and database architects and hence adaptations for web engineering
would be more likely to be adopted. However, it is interesting to note that in
a recent paper analysing model-driven web engineering methodologies [2], they
comment on the fact that model-driven web engineering approaches have still
not been widely adopted and they accredit this mainly to the lack of tools.

There is little recent research literature reporting on modern web development
practices, especially concerning the use of platforms such as WordPress. A num-
ber of surveys were carried out in the early 2000s in conjunction with the call for
web engineering to be established as a discipline. Barry and Lang [12] reported
on a study in Ireland on multimedia software development methods, which in-
cluded web-based information systems. Almost a quarter (24.6%) reported that
they did not use a methodology while the rest stated that they used an in-house
variant, with most using what the researchers considered as outdated methods
and only 6.2% using UML. Reasons given for not using methodologies were that

6 http://www.wordpress.com

http://www.wordpress.com

The Forgotten Many? A Survey of Modern Web Development Practices 293

they were “too cumbersone”, “not suited to the real world” or “long training is
required”.

Taylor et al. [13] carried out a study of web development activities in 25 UK
organisations based on interviews. They found that few formalised techniques
were used and most “web site development activities appeared to be undertaken
in an ad hoc manner” with only 8 of the 25 using design techniques such as
hierarchy charts, flowcharts and storyboards. They reported little or no use of
established software development techniques. Around the same time, McDonald
and Welland [14] carried out a study of web development practices based on
in-depth interviews, in this case involving 9 UK organisations. Only 7 of the
15 interviewees claimed to have a development process in place, with only 2
of these 7 using industry standard software development processes. Although
the majority of interviewees were using prototyping or user-centred design tech-
niques, none of them mentioned involving endusers in validating the success of
a project.

More recently, El Sheikh and Tarawneh [15] reported on a survey of web
engineering practices in small Jordanian companies. The results of their study
showed that many developers had 5 or fewer years of software experience and
that the development processes were still mainly ad hoc, with little application
of established web practices.

We wanted to find out how much the situation has changed over the years in
terms of the profile of web developers and also the methods used. In particular,
we were interested in the community of WordPress developers and whether their
backgrounds, work settings and methods differ significantly from developers that
use some form of web development framework rather than a CMS as the basis
for their implementation.

3 Survey

The survey was designed to address both web developers and designers includ-
ing those specifically developing with and for WordPress. We designed a ques-
tionnaire consisting of 31 questions distributed over three parts: background,
development practices and WordPress development. We used a mix of 5-point
Likert-scale questions for frequency-based answers or where agreement with dif-
ferent statements was to be expressed as well as open-ended questions.

The first part collected demographics by asking participants to provide their
age, gender and country of residence and origin. We also enquired about any
formal qualifications in computer science, design and web development. Other
questions addressed the participant’s professional background and experience.
We asked for the number of years working as a professional web developer, as
well as the size of both the organisation they work for and their web develop-
ment team. Participants were also encouraged to share any recent projects they
developed and their role and specific contributions to the projects. These ques-
tions together enabled us to determine developer profiles that we will report in
the next section.

294 M.C. Norrie et al.

The second part concerned their development practices with the goal of finding
out about particular methods and tools used by participants. This part started
with a question on how much they look at existing web sites for inspiration in the
beginning of a project. Participants were asked how often they start by modifying
an existing web site or theme as opposed to creating a new one from scratch.
This was followed by questions on the use of sketching and digital mockups as
well as the modelling of data and functional requirements. Participants were
also asked to list any tools used for creating mockups and for modelling. These
questions enabled us to better assess current development practices and identify
trends between different groups of developers.

We also included a question on the reuse of resources published by other
developers in terms of design or layout (HTML, CSS, etc.) and functionality
(JavaScript, PHP, etc.). The goal was to get a better understanding of how
different types of developers work and whether and how they make use of existing
resources and material provided by other developers.

The second part closed with a question on the use of CMS such as WordPress
or Drupal as opposed to web development frameworks as the starting point
for web development. Participants were also asked to list the specific CMS and
frameworks that they use. The answers to these questions were used to classify
developers based on the software tools they typically use as the basis for de-
velopment. These classifications were then used for comparison purposes in the
analysis of other results.

Finally, the third part specifically dealt with WordPress development. Only
participants indicating that they were WordPress developers were asked to com-
plete this part of the survey. We asked participants whether they mainly use an
existing theme, modify an existing theme, create a child theme or create their
own theme from scratch when they create a web site using WordPress. These
questions tried to characterise the role of themes as one of the main concepts
supporting reuse in WordPress.

The last set of questions allowed us to further profile WordPress developers
and identify their specific needs and requirements. We asked how often they
reuse code from previous WordPress projects and find themselves in the situa-
tion that they would like to mix parts of two or more themes. As before, we again
distinguished between layout/style and functionality for mixing and matching
parts. Finally, participants were asked to indicate the need for more customisa-
tion options of WordPress themes and which additional features they would like
to see added in future versions of WordPress to support theme development.

Before starting the online survey, we first asked members of our research group
to fill it in and provide feedback on the design of the questionnaire. This allowed
us to fix minor issues in the phrasing of some questions and calibrate the time
typically required to answer all questions which was around 10 minutes. For dis-
semination, we primarily recruited via Twitter, reaching out to members of the
web design and development community as well as the WordPress community,
asking them to contribute to our survey and retweet our request for participa-
tion with a link to the online questionnaire. Targeted Twitter users ranged from

The Forgotten Many? A Survey of Modern Web Development Practices 295

users who frequently post and retweet links to articles related to web design
and development to organisers of WordPress Meetup groups, giving us access to
a network of several thousand followers of these active Twitter users. We also
used Facebook and Reddit as well as directly contacting web developers known
to us personally via email. Between January and February 2014, the survey was
accessed 622 times and we received 208 complete responses that we included in
the following analysis.

4 Developer Profiles

The 208 participants (83% male, 17% female) were from 24 different countries,
with the majority living in the USA (49), Switzerland (45), Germany (39) or the
UK (22). The age groups are shown in Fig. 1a and the years of professional web
development in Fig. 1b.

1%

39%

33%

27%

Age

Less than 20

20-30

31-40

over 40

(a) Age

2%

6%
5%

11%

9%

67%

0

1

2

3

4

5 or more

(b) Years of experience

Fig. 1. Age and experience of participants

It is interesting to note that we had good coverage of the different age groups
and the majority of our participants (67%) had 5 or more more years of expe-
rience as a professional developer. This contrasts with the survey of El Sheikh
and Tarawneh [15] where 63% had 5 or fewer years of software experience.

Since one of the aims of our survey was to compare the profiles and methods
of developers using a CMS as their main development platform with those using
web development frameworks such as Django7, Ruby on Rails8 and Bootstrap9,
we asked participants how often they use each of these approaches.

The results in Fig. 2 show that the CMS developers are more likely to stick
with this approach as 39% of participants answered that they always use this
approach while only 18% always use a development framework. It is important

7 http://www.djangoproject.com
8 http://rubyonrails.org
9 http://getboostrap.com

http://www.djangoproject.com
http://rubyonrails.org
http://getboostrap.com

296 M.C. Norrie et al.

0% 20% 40% 60% 80% 100%

CMS

Dev. Framework

1 - Never 2 3 4 5 - Always

Fig. 2. Use of CMS or development framework

to note that these are not disjoint communities and 9% said that they always
use both. 53% of the participants classified themselves as WordPress developers
and 47% did not. Since we made efforts to target WordPress developers, it is not
surprising that the majority were in this category, but we also achieved our aim
to have a good mix of WordPress and non-WordPress developers. We note that
some developers listed WordPress as a CMS that they use, but answered ‘No’ to
the question asking if they are a WordPress developer. One reason for this might
be that they interpreted the question as whether they are involved in developing
the WordPress platform rather than whether they use it for developing appli-
cations. Another explanation could be that they classify themselves as endusers
rather than developers since they create applications using the platform without
actually doing any coding.

We classified the participants into three disjoint categories: those who an-
swered ‘Yes’ to the question asking if they are a WordPress developer (WP),
those who are not in WP but answered in the range 3-5 (sometimes to always)
when asked if they use a CMS (CMS) and those who are not in WP and answered
1 or 2 (rarely or never) when asked if they use a CMS (Other). Thus developers
who mostly use Drupal would be in the CMS category, while those who mainly
use a web development framework and only occasionally use a CMS would be in
the Other category. The sample sizes of each category are 111 (WP), 62 (CMS)
and 35 (Other).

We asked participants how they would classify themselves in terms of whether
they are designers, developers or both. Figure 3 reveals that, in all three
categories, a significant proportion classified themselves as half-designer/half-
developer (WP: 40%, CMS: 29%, Other: 34%), but there was also a significant
proportion who classified themselves as ‘developer’ or ‘mainly developer’ (WP:
48%, CMS: 48%, Other: 63%). Since we were mainly targeting developer com-
munities rather than design communities, we did not expect many participants
to classify themselves as ‘designer’ or ‘mainly designer’. Nevertheless, this shows
that, rather than considering themselves as pure developers, many web devel-
opment practitioners would see themselves as a mix of web developer and web
designer.

The Forgotten Many? A Survey of Modern Web Development Practices 297

0% 20% 40% 60% 80% 100%

Other

CMS

WP

Designer Mainly Designer
Half Designer/Half Developer Mainly Developer
Developer

Fig. 3. Designer and/or developer

0% 20% 40% 60% 80% 100%

Other

CMS

WP

None Other Degree

Fig. 4. Computer Science education

The educational background of the three categories is shown in Fig. 4 and 5. In
all three categories, a significant proportion of participants have no formal qual-
ification in computer science (WP: 65%, CMS: 52%, Other: 34%). Although we
targeted developer communities rather than design communities, we also asked
what, if any, qualification the participants have in design. As might be expected,
relatively few have any formal qualification in design (WP: 31%, CMS: 25%,
Other: 24%), although a significant proportion in each of the three categories
classified themselves as half-designer/half-developer.

42% of all participants have no qualification in either computer science or
design. In the case of participants who classified themselves as half-designer/half-
developer, we also had 42% with no qualification in computer science or design.
We also asked participants whether they have any kind of qualification in web
development or specific web technologies. Taking this information into account,
we still had 38% of participants with no formal education in computer science,
design or web development.

Next, participants were asked to indicate the size of the organisation for
which they work and also the size of their project team. The results shown
in Fig. 6 indicate that a significant proportion of WordPress developers are ei-
ther self-employed (42%) or belong to organisations with 5 or fewer employees
(16%). On the other hand, it also shows that WordPress is not solely used by

298 M.C. Norrie et al.

0% 20% 40% 60% 80% 100%

Other

CMS

WP

None Other Degree

Fig. 5. Design education

individuals and small businesses since 10% of WordPress developers are working
in organisations with more than 250 employees. While a significant proportion of
non-CMS developers are also self-employed (14%) or in organisations with 5 or
fewer employees (9%), the proportion working in organisations with more than
50 employees (51%) is far greater than for WordPress (20%).

0% 20% 40% 60% 80% 100%

Other

CMS

WP

Self employed <= 5 employees

Between 6 and 10 employees Between 11 and 50 employees

Between 50 and 250 employees More than 250 employees

Fig. 6. Size of organisation

Previous surveys have tended to target organisations rather than individuals,
and therefore have not involved developers who are self-employed. The smallest
organisation involved in the survey by Taylor et al [13] had 20 employees. While
the survey of El Sheikh and Tarawneh [15] targeted small companies in Jordan
and 75% of companies had fewer than 10 employees, they also did not include
self-employed developers.

Since many of our participants are self-employed or working in organisations
with 5 or fewer members, clearly these developers either work alone or in very
small teams and therefore the percentages for ‘no team’ and a team size of ‘5
or fewer’ would be expected to reflect this. Still, even in larger organisations,
participants often work in small teams and 75% of WordPress developers work
in teams with 5 or fewer members, with only 7% working in teams with more

The Forgotten Many? A Survey of Modern Web Development Practices 299

than 10 members. In the case of the non-CMS participants (Other), team sizes
still tend to be small with 51% working in teams with 5 or fewer members, but
26% of them do work in teams with more than 10 members.

0% 20% 40% 60% 80% 100%

Other

CMS

WP

No Team <= 5 members 6-10 members 11-15 members > 15 members

Fig. 7. Size of team

McDonald and Welland [14] estimated the average team size of web develop-
ment projects in the organisations that they surveyed as 6. They argued that the
small size of web development teams is one of the major differences to traditional
software development teams, citing an article published in 2000 by Reifer [16]
where he estimated the size of web development teams as 3-5 compared with
traditional software development projects with hundreds of team members.

Interestingly, a survey of 200 Java developers carried out in 2011 by Munoz10

reported that 40.7% worked in a team size of 1-5, 26.6% in a team size of 5-10
and 32.6% in teams larger than 10. These figures are actually not so different
from the Other group where 52% work in teams of 1-5, 23% work in teams of
6-10 and 26% in teams larger than 10.

5 Methods and Tools

In this section, we report on the second part of the survey where all participants
were asked questions about the methods and tools that they use in development
projects. We started by asking them if they use existing web sites for inspiration
at the beginning of a new project.

As shown in Fig. 8, more than 20% always look at examples of web sites for
inspiration (WP: 23%, CMS: 24%, Other: 30%) and more than 50% answered 4
or 5 indicating that they often inspect examples (WP: 53%, CMS: 54%, Other:
67%). Although WordPress explicitly supports design-by-example through its
notion of themes that can be easily accessed and previewed in online galleries, it
is interesting to note that examples are used as much, if not more, in the Other
group.

10 http://www.antelink.com/blog/software-developer-survey-first-

chapter.html

http://www.antelink.com/blog/software-developer-survey-first-chapter.html
http://www.antelink.com/blog/software-developer-survey-first-chapter.html

300 M.C. Norrie et al.

0% 20% 40% 60% 80% 100%

Other

CMS

WP

1 - Never 2 3 4 5 - Always

Fig. 8. Use of other web sites for inspiration

The survey by Taylor et al [13] published in 2002 also noted that examples
of other web sites were often used for inspiration: “Roughly a third of those
interviewed across 25 organisations studied indicated that they used other or-
ganisations’ websites for design ideas in order to supplement their website design
activities”.

We also asked how often developers create a website or theme based on the
modification of an existing web site or theme, either of their own or of another
developer. As shown in Fig. 9, 61% of WordPress developers answered that they
sometimes, often or always base the design of a web site or theme on an existing
web site or theme. While none of the Other group answered that they always base
a new design on an existing one, 50% said that they do this sometimes or often.

0% 20% 40% 60% 80% 100%

Other

CMS

WP

1 - Never 2 3 4 5 - Always

Fig. 9. Modify existing web sites or themes

Participants were asked how often they sketch mockups or create digital mock-
ups and the results are shown in Fig. 10 and 11.

It is clear that sketching plays an important role with 43% of WordPress
developers and 39% of the CMS group saying that they usually or always sketch.
Sketching is used even more in the Other group with 57% stating that they
usually or always sketch.

It is also common to produce digital mockups with more than 45% of the
WordPress developers, 56% of the CMS group and 57% of the Other group
answering 4 or 5 to indicate that they often or always use them. A range of tools

The Forgotten Many? A Survey of Modern Web Development Practices 301

0% 20% 40% 60% 80% 100%

Other

CMS

WP

1 - Never 2 3 4 5 - Always

Fig. 10. Sketching mockups

0% 20% 40% 60% 80% 100%

Other

CMS

WP

1 - Never 2 3 4 5 - Always

Fig. 11. Digital mockups

were listed including graphics editing tools such as Adobe Photoshop, diagram
editors such as Microsoft Visio and wireframing tools such as Balsamiq11.

Some developers wrote that they do not sketch or create digital mockups
because they have a pure development role and implement the mockups produced
by a graphic designer.

Since model-driven web engineering is widely promoted in the research com-
munity, we were interested in how frequently data and functional requirements
are modelled. The results are shown in Fig. 12 and Fig. 13, respectively.

While only 28% of WordPress developers answered 4 or 5 to indicate that they
often or always model data, 52% of Other developers answered that they often or
always model data. The percentages answering that they often or always model
functional requirements were also higher in the Other group (60%) compared to
the WordPress developers (42%).

26% of participants answered that they never model data or functional re-
quirements, leaving 74% who indicated that they use modelling at least some of
the time. However, further analysis of the written comments provided by partic-
ipants showed that the figures presented in Fig. 12 and 13 are very misleading
as, in many cases, the participants had no idea what was meant by “modelling
data” or “modelling functional requirements”. We asked participants to list tools

11 http://balsamiq.com

http://balsamiq.com

302 M.C. Norrie et al.

0% 20% 40% 60% 80% 100%

Other

CMS

WP

1 - Never 2 3 4 5 - Always

Fig. 12. Modelling data

0% 20% 40% 60% 80% 100%

Other

CMS

WP

1 - Never 2 3 4 5 - Always

Fig. 13. Modelling functional requirements

that they use for modelling data and/or functional requirements and answers in-
cluded “text documents”, “spreadsheets and/or code editors”, “Django to create
prototypes” and “WordPress”. One participant wrote “Not sure if I misunder-
stand this, but I usually just write requirements out—paper, text edit, google
doc spreadsheets etc.” Some listed project management tools and one participant
even wrote something about testing and deployment. Only 11% of all partici-
pants listed an application or suite of tools that provides support for data or
functional modelling. A further 5% wrote something general such as “paper and
pen” or “whiteboard” that could also be considered as tools for modelling. This
suggests that the number of developers actually doing some form of modelling
of data or functional requirements is well below the figures reported.

This leads us to conclude that many of the participants are not even aware
of software engineering practices, let alone applying them in even an informal
way. This could be a consequence of the fact that a significant proportion of
participants (WP 65%, CMS 52%, Other 34%) have no formal education in
computer science.

6 WordPress Development Practices

The third part of the survey was only for WordPress developers as it deals
specifically with the development of WordPress themes. A theme is a set of

The Forgotten Many? A Survey of Modern Web Development Practices 303

PHP templates, CSS stylesheets and media objects that define the structure,
navigation, functionality and presentation of a web site. The media objects in-
cluded in a theme are generally static images used in the presentation of a web
site such as the arrows used in sliders, buttons used in navigation and images
that appear in the header. Endusers can select a theme from a gallery and create
their own web site by simply adding content. A theme can also have a number
of associated parameters to make it customisable through the general adminis-
trative interface. A professional developer will typically develop a theme to meet
the requirements of a client, but they may also develop a theme for a particular
class of clients such as restaurants, photographers or professional societies and
make it customisable to the needs of a specific client.

The questions in this part of the survey were designed to find out more about
how developers generate themes and specifically the forms of reuse that they
employ or would like to have supported. Figure 14 presents an overview of the
answers to a set of questions asking if and how they develop new themes for a
specific project.

0% 20% 40% 60% 80% 100%

Use an existing theme

Modify an existing theme

Create a child theme

Create your own theme from
scratch

1 - Never 2 3 4 5 - Always

Fig. 14. Developing themes

7% of developers answered that they always use an existing theme. This means
that these developers simply select a theme already provided by another devel-
oper and customise it for a client. This could involve the design of logos and other
presentation features as well as the choice of layout, navigation and content.

19% of developers indicated that they always develop their own themes from
scratch while 19% specified that they never do this. A developer can create a
new theme based on an existing theme. This can be done by formally creating
a child theme, but often developers will simply modify the PHP templates and
CSS stylesheets provided. The results show that it is common for developers to
build on existing themes using either of these approaches. 47% indicated that
they often or always create a child theme of an existing theme for a project,
while 37% answered that they often or always create a theme for a project by
modifying an existing theme.

304 M.C. Norrie et al.

Since a theme defines an entire web site, a developer can only select a single
theme as the starting point for a web site which means that they support all-
or-nothing reuse. Once a theme has been selected, reuse of features from other
themes can only be done by copying pieces of code and making any necessary
modifications to integrate it into the theme under development.

We asked developers how often they find themselves in the situation where
they would like to be able to mix parts of two or more existing themes. In the
questions, we differentiated between the reuse of layout as specified by HTML
and CSS and the reuse of functionality which could be either PHP code or
JavaScript.

0% 20% 40% 60% 80% 100%

Layout (CSS, HTML)

Functionalities
(JS, PHP)

1 - Never 2 3 4 5 - Always

Fig. 15. Desire to be able to mix themes

Only 12% said they never find themselves in the situation where they would
like to mix functionality from different themes, while 18% said they never want
to mix layout. 75% answered 3-5 indicating that they sometimes, often or always
find themselves wanting to mix functionality, while 56% answered 3-5 for layout.

We included a question asking participants to list what, if any, features they
would like to see added to WordPress to support theme development. Most
participants left this empty and the suggestions covered a range of issues from
better means of managing media to easier ways of handling custom post types.
One participant wrote: “I think where WordPress needs to go is to click-and-play
development. Get rid of the need to code and it will take over the Internet”. This
comment can be interpreted as a request that it should go further in its support
of enduser development.

7 Discussion

The results of our survey confirmed our impression that a significant propor-
tion (40%) of WordPress developers work alone and act as both designer and
developer. Since previous studies targeted organisations and tended to omit self-
employed developers, it is impossible to say whether this is an increasing trend.
However, the tendency for web developers to work in small teams as reported
in earlier surveys is still the case, with 75% of WordPress developers working
in teams with 1–5 members and only 26% of non-CMS developers working in
teams with more than 10 members.

The Forgotten Many? A Survey of Modern Web Development Practices 305

The fact that a significant proportion (40%) of both WordPress and non-CMS
developers classified themselves as half-designer/half-developer, taken together
with the fact that 41% of participants in this category have no qualification in
either computer science or design, suggests that many of these developers have a
mix of some design skills and some technical skills. Without a formal education
in computer science and working alone or in very small organisations where there
is likely to be a lack of in-house training, it may well be the case that many of
these developers are not aware of modern software engineering methods, let alone
using them. This would certainly be suggested by the answers that we received to
our question about the tools that they use for the modelling of data and/or func-
tional requirements. It is interesting to compare this with the results of the survey
of Java developers carried out in 2011 by Munoz12 where he reported that almost
all participants had either a Bachelor or Masters degree in Computer Science.

This raises the question of whether efforts to adapt and promote software
engineering methods, and specifically model-driven approaches, for web engi-
neering are ever likely to have an impact in the web development community at
large. Not only are many of these developers unaware of the underlying prin-
ciples and techniques as well as the details of the methods, but many CMS
developers have good reasons to employ interface-driven approaches rather than
model-driven approaches. Therefore, while model-driven approaches may have
their place in larger enterprises, we believe that the research community should
also be exploring alternative methods that target practitioners at large.

One of the key findings of our study is how much developers build on the work
of other designers and developers in their projects. This includes everything from
using examples of other web sites for inspiration down to the detailed reuse of
code. At the moment, there is little engineering support for reuse in CMS other
than the concept of themes which support all-or-nothing reuse. Even the concept
of child themes which is intended to provide a controlled way of developers
building on existing themes is frequently not used and themes modified directly
instead.

Within the web engineering research community, support for reuse has mainly
been at the level of services. For example, WebComposition [17] allows appli-
cations to be built through hierarchical compositions of reusable application
components. There has also been a lot of research in the area of web mashups
to allow applications to be created through compositions of existing web sites,
e.g. [18,19]. While this research is certainly relevant, the focus is purely on reuse
rather on the design and development of new web sites as a whole and, as far as
we know, there has been no attempt yet to adapt or integrate these methods into
platforms such a WordPress. It is however important to mention that the work
on mashups is also significant within the web engineering research community
in its efforts to support enduser development.

Some researchers within the HCI community advocate a design-by-example
approach [20,21] where the focus is very much on the reuse of the design aspects

12 http://www.antelink.com/blog/software-developer-survey-first-

chapter.html

http://www.antelink.com/blog/software-developer-survey-first-chapter.html
http://www.antelink.com/blog/software-developer-survey-first-chapter.html

306 M.C. Norrie et al.

of a web site. The idea is to allow users with little or no technical knowledge
to develop their web site by selecting and combining elements of example web
sites accessed in galleries. While the results of their studies are promising, they
only deal with static elements and have not addressed the technical challenges
of extracting and reusing functionality.

We believe that design-by-example is a promising paradigm worthy of detailed
investigation within the web engineering research community. It is compatible
with the interface-driven approaches that are currently in widespread use where
mockups lead to prototypes that are gradually refined and migrated to platforms
such as WordPress. With this goal in mind, we have started investigating how
design-by-example could be supported in WordPress so that users could design
and develop a fully functioning web site by selecting and reusing components of
existing themes [22].

8 Conclusion

With a view to providing an insight into modern web practices, especially among
the vast communities of WordPress developers, we have reported on the results
of an online survey involving 208 participants working with CMS and/or web
development frameworks. Unlike many previous surveys, we were keen to reach
out to self-employed developers as well as developers within larger organisations
and this we achieved.

The results point to the need for alternatives to model-driven approaches with
a stronger focus on interface-driven development and enduser tools suited to the
large numbers of developers with a lack of formal education in computer science
and a mix of design and technical skills. Further, there is a need for methods
that support the reuse of all aspects of web engineering and can be integrated
into platforms such as WordPress that already have a significant proportion of
the CMS market share and are continuing to grow.

Acknowledgements. We acknowledge the support of the Swiss National
Science Foundation who financially supported this research under project
FZFSP0 147257.

References

1. Silver, T.B., McCollin, R.: WordPress Theme Development - Beginner’s Guide.
Packt Publishing (2013)

2. Aragon, G., Escalona, M.-J., Lang, M., Hilera, J.R.: An Analysis of Model-Driven
Web Engineering Methodologies. International Journal of Innovative Computing,
Information and Control 9(1) (2013)

3. Coda, F., Ghezzi, G., Vigna, G., Garzotto, F.: Towards a Software Engineering
Approach to Web Site Development. In: Proc. 9th Intl. Workshop on Software
Specification and Design (1998)

4. Gellersen, H.W., Gaedke, M.: Object-Oriented Web Application Development.
IEEE Internet Computing 3(1) (1999)

The Forgotten Many? A Survey of Modern Web Development Practices 307

5. Deshpande, Y., Murugesan, S., Ginige, A., Hansen, S., Schwabe, D., Gaedke, M.,
White, B.: Web Engineering. Journal of Web Engineering 1(1) (2002)

6. Schwabe, D., Rossi, G.: The Object-Oriented Hypermedia Design Model. Commu-
nications of the ACM 38(8) (1995)

7. Koch, N., Kraus, A.: The Expessive Power of UML-based Web Engineering. In:
Proc. 2nd Intl. Workshop on Web-Oriented Software Technology (IWWOST)
(2002)

8. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling
Language For Designing Web Sites. Computer Networks 33(1-6), 137–157 (2000)

9. de Troyer, O., Leune, C.: WSDM: A User-Centred Design Method for Web Sites.
Computer Networks and ISDN Systems 30(1-7) (1998)

10. Brambilla, M., Ceri, S., Fraternali, P., Acerbis, R., Bongio, A.: Model-Driven De-
sign of Service-Enabled Web Applications. In: Proc. SIGMOD Industrial (2005)

11. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-Driven Development of
Context-Aware Web Applications. TOIT 7(1) (2007)

12. Barry, C., Lang, M.: A Survey of Multimedia and Web Development Techniques
and Methodology Usage. IEEE Multimedia (April–June 2001)

13. Taylor, M.J., McWilliam, J., Forsyth, H., Wade, S.: Methodologies and Web Site
Development: A Survey of Practice. Information and Software Technology (44)
(2002)

14. McDonald, A., Welland, R.: Web Engineering in Practice. In: Proc. 4th WWW
Workshop on Web Engineering (2001)

15. Sheikh, A.E., Tarawneh, H.: A Survey of Web Engineering Practice in Small Jorda-
nian Web Development Firms. In: Proc. 6th Joint Meeting on European Software
Engineering Conference and ACM SIGSOFT Symposium on Foundations of Soft-
ware Engineering (ESEC/FSE) (2007)

16. Reifer, D.: Web Development: Estimating Quick-to-Market Software. IEEE Soft-
ware (November–December 2000)

17. Gellersen, H.-W., Wicke, R., Gaedke, M.: WebComposition: An Object-Oriented
Support System for the Web Engineering Lifecycle. Computer Networks 29(8-13)
(1997)

18. Daniel, F., Casati, F., Benatallah, B., Shan, M.C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829,
pp. 428–443. Springer, Heidelberg (2009)

19. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: DashMash: A Mashup Environment for End User Development. In: Auer, S.,
Dı́az, O., Papadopoulos, G.A. (eds.) ICWE 2011. LNCS, vol. 6757, pp. 152–166.
Springer, Heidelberg (2011)

20. Hartmann, B., Wu, L., Collins, K., Klemmer, S.R.: Programming by a Sample:
Rapidly Creating Web Applications with d.mix. In: Proc. 20th ACM User Interface
Software and Technology Symposium (UIST) (2007)

21. Lee, B., Srivastava, S., Kumar, R., Brafman, R., Klemmer, S.: Designing with
Interactive Example Galleries. In: Proc. Conf. on Human Factors in Computings
Systems (CHI) (2010)

22. Norrie, M.C., Di Geronimo, L., Murolo, A., Nebeling, M.: X-Themes: Supporting
Design-by-Example. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014.
LNCS, vol. 8541, Springer, Heidelberg (2014)

Using Path-Dependent Types to Build Type
Safe JavaScript Foreign Function Interfaces

Julien Richard-Foy, Olivier Barais, and Jean-Marc Jézéquel

IRISA, Université de Rennes, France

Abstract. The popularity of statically typed programming languages
compiling to JavaScript shows that there exists a fringe of the program-
mer population interested in leveraging the benefits of static typing to
write Web applications. To be of any use, these languages need to stat-
ically expose the Web browser dynamically typed native API, which
seems to be a contradiction in terms. Indeed, we observe that existing
statically typed languages compiling to JavaScript expose the browser
API in ways that either are not type safe, or when they are, typically
over constrain the programmers. This article presents new ways to en-
code the challenging parts of the Web browser API in static type systems
such that both type safety and expressive power are preserved. Our first
encoding relies on type parameters and can be implemented in most
mainstream languages but drags phantom types up to the usage sites.
The second encoding does not suffer from this inconvenience but requires
the support of dependent types in the language.

1 Introduction

We recently observed the emergence of several statically typed programming
languages compiling to JavaScript (e.g. Java/GWT [10], Dart [9], TypeScript [8],
Kotlin1, Opa2, SharpKit3, Haxe [2], Scala [7], Idris [1], Elm [6]). Though dynamic
typing has its merits and supporters, the mere existence of these statically typed
languages shows that there is also a community interested in benefiting from
static typing features (allowing e.g. better refactoring support in IDE, earlier
error detection, etc.) to write Web applications. Nevertheless, at some point
developers need a way to interface with the underlying Web browser dynamically
typed native API using a foreign function interface mechanism.

We observe that, even though these languages are statically typed, their
integration of the browser API either is not type safe or over constrain the
programmers. Indeed, integrating an API designed for a dynamically typed
language into a statically typed language can be challenging. For instance,
the createElement function return type depends on the value of its parameter:
createElement(’div’) returns a DivElement, createElement(’input’) returns an
InputElement, etc.
1 http://kotlin.jetbrains.org
2 http://opalang.org
3 http://sharpkit.net

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 308–321, 2014.
c© Springer International Publishing Switzerland 2014

http://kotlin.jetbrains.org
http://kotlin.jetbrains.org
http://opalang.org
http://opalang.org
http://sharpkit.net
http://sharpkit.net

Using Path-Dependent Types to Build Type Safe JavaScript 309

Most of the aforementionned languages expose this function by making it
return an Element, the least upper bound of the types of all the possible re-
turned values, thus loosing type information and requiring users to explicitly
downcast the returned value to its expected, more precise type. Another way
to expose this function consists in exposing several functions, each one fixing
the value of the initial parameter along with its return type: createDivElement,
createInputElement, etc. are parameterless functions returning a DivElement and
an InputElement, respectively. This encoding forces to hard-code the name of the
to-be created element: it cannot anymore be a parameter. In summary, the first
solution is not type safe and the second solution reduces the expressive power
of the API.

This paper reviews some common functions of the browser API, identifies
the patterns that are difficult to encode in static type systems and shows new
ways to encode them in such a way that both type safety and expressive power
are preserved. We show that type parameters are sufficient to achieve this goal
and that path-dependent types provide an even more convenient encoding of the
browser API.

The remainder of the paper is organized as follows. The next section reviews
the most common functions of the browser API and how they are typically
integrated into statically typed languages. Section 3 shows two ways to improve
their integration such that type safety and expressiveness are preserved. Section
4 validates our contribution and discusses its limits. Section 5 discusses some
related works and Section 6 concludes.

2 Background

This section reviews the most commonly used browser functions and presents the
different integration strategies currently used by the statically typed program-
ming languages GWT, Dart, TypeScript, Kotlin, Opa, SharpKit, Haxe, Scala,
Idris and Elm.

All these languages support a foreign function interface mechanism, allowing
developers to write JavaScript expressions from their programs. Since this mech-
anism is generally untyped and error prone, most languages (TypeScript, Kotlin,
Opa, SharpKit, Haxe, Scala and Elm) support a way to define external typed
interfaces. Most of them also expose the browser API this way, as described in
the next section.

2.1 The Browser API and Its Integration in Statically Typed
Languages

The client-side part of the code of a Web application essentially reacts to user
events (e.g. mouse clicks), triggers actions and updates the document (DOM)
according to their effect. Table 1 lists the main functions supported by Web

310 J. Richard-Foy, O. Barais, and J.-M. Jézéquel

Table 1. Web browsers main functions that are challenging to encode in a static type
system

Name Description
getElementsByTagName(name) Find elements by their tag name
getElementById(id) Find an element by its id attribute
createElement(name) Create an element
target.addEventListener(name, listener) React to events

browsers according to the Mozilla Developer Network4 (we omit the functions
that can trivially be encoded in a static type system).

To illustrate the challenges raised by these functions, we present a simple
JavaScript program using them and show how it can be implemented in stati-
cally typed programming languages according to the different strategies used to
encode these functions. Listing 1 shows the initial JavaScript code of the pro-
gram. It defines a function slideshow that creates a slide show from an array of
image URLs. The function returns an image element displaying the first image
of the slide show, and each time a user clicks on it with the mouse left button
the next image is displayed.

function slideshow (sources) {
var img = document.createElement (’img’);
var current = 0;
img.src = sources[current];
img.addEventListener (’click’, function (event) {

if (event.button == 0) {
current = (current + 1) % (sources.length - 1);
img.src = sources[current];

}
});
return img

}

Listing 1. JavaScript function creating a slide show from an array of image URLs

The most common way to encode the DOM API in statically typed languages
is to follow the standard interface specifications of HTML [18] and DOM [4].

The main challenge comes from the fact that the parameter types and
return types of these functions are often too general. Indeed, functions
getElementsByTagName(name), getElementById(id) and createElement(name) can
return values of type DivElement or InputElement or any other subtype of Element
(their least upper bound). The interface of Element is more general and provides
less features than its subtypes. For instance, the ImageElement type (representing
images) has a src property that does not exist at the Element level. Similarly, the
MouseEvent type has a button property that does not exist at the (more general)
Event level, used by the function addEventListener.
4 https://developer.mozilla.org/en-US/docs/DOM/DOM_Reference/Introduction

https://developer.mozilla.org/ en-US/docs/DOM/DOM_Reference/Introduction
https://developer.mozilla.org/en-US/docs/DOM/DOM_Reference/Introduction

Using Path-Dependent Types to Build Type Safe JavaScript 311

def slideshow (sources: Array[String]): ImageElement = {
val img =

document .createElement ("img"). asInstanceOf [ImageElement]
var current = 0
img.src = sources(current)
img.addEventListener ("click", event => {

if (event.asInstanceOf [MouseEvent].button == 0) {
current = (current + 1) % (sources.size - 1)
img.src = sources(current)

}
})
img

}

Listing 2. Scala implementation of slideshow using the standard HTML and DOM
API

Listing 2 shows a Scala implementation of the slideshow program using an API
following the standard specifications of HTML and DOM. The listing contains
two type casts, needed to use the src property on the img value and the button
property on the event value, respectively.

These type casts make the code more fragile and less convenient to read and
write. That’s why some statically typed languages attempt to provide an API
preserving types as precisely as possible.

Of course, in the case of getElementById(id), the id parameter does not give
any clue on the possible type of the searched element, so it is hard to more
precisely infer the return type of this function. Hence, most implementations
use Element as their return type.

However, in the case of getElementsByTagName(name) and createElement(name),
there is exactly one possible return type for each value of the name parameter:
e.g. getElementsByTagName(’input’) always returns a list of InputElement and
createElement(’div’) always returns a DivElement. This feature makes it possible
to encode these two functions by defining as many parameterless functions as
there are possible tag names, where each function fixes the initial name parameter
to be one of the possible values and exposes the corresponding specialized return
type.

The case of target.addEventListener(name, listener) is a bit different. The
name parameter defines the event to listen to while the listener parameter iden-
tifies the function to call back each time such an event occurs. Instead of being
polymorphic in its return type, it is polymorphic in its listener parameter. Nev-
ertheless, a similar property as above holds: there is exactly one possible type
for the listener parameter for each value of the name parameter. For instance, a
listener of ’click’ events is a function taking a MouseEvent parameter, a listener
of ’keydown’ events is a function taking a KeyboardEvent parameter, and so on.
The same pattern as above (defining a set of functions fixing the name parameter
value) can be used to encode this function in statically typed languages.

312 J. Richard-Foy, O. Barais, and J.-M. Jézéquel

def slideshow (sources: Array[String]): ImageElement = {
val img = document.createImageElement ()
var current = 0
img.src = sources(current)
img.addClickEventListener { event =>

if (event.button == 0) {
current = (current + 1) % (sources.size - 1)
img.src = sources(current)

}
}
img

}

Listing 3. Scala implementation of slideshow using specialized functions

Listing 3 shows what would our slideshow implementation look like using
such an encoding. There are two modifications compared to Listing 2: we use
document.createImageElement instead of document.createElement, and we use
img.addClickEventListener instead of img.addEventListener.

The createImageElement function takes no parameter and returns a value of
type ImageElement, and the addClickEventListener function takes as parameter
a function that takes a MouseEvent value as parameter, ruling out the need for
type casts.

In the case of the addEventListener function we also encountered a slight
variation of the encoding, consisting in defining one general function taking
one parameter carrying both the information of the event name and the event
listener.

img.addEventListener (ClickEventListener { event =>
// ...

})

Listing 4. Implementation of slideshow using a general addEventListener function
taking one parameter containing both the event name and the even listener

Listing 4 shows the relevant changes in our program if we use this encod-
ing. The addEventListener function takes one parameter, a ClickEventListener,
carrying both the name of the event and the event listener code.

Most of the studied languages expose the browser API following the standard
specification, but some of them (GWT, Dart, HaXe and Elm) define a modified
API getting rid of (or at least reducing) the need for downcasting, following the
approaches described above.

2.2 Limitations of Existing Encoding Approaches

We distinguished three approaches to integrate the challenging parts of the
browser API into statically typed languages. This section shows that each

Using Path-Dependent Types to Build Type Safe JavaScript 313

approach favours either type safety or expressive power but none provides both
type safety and the same expressive power as the native browser API. We indeed
consider that an API requiring users to do type casts is not type safe, while an
API making it impossible to implement a function that can readily be imple-
mented using the native API gives less expressive power to the programmer.

The first approach, consisting in using the least upper bound of all the possible
types has the same expressive power as the native browser API, but is not type
safe because it sometimes requires developers to explicitly downcast values to
their expected specialized type.

The second approach, consisting in defining as many functions as there are
possible return types of the encoded function, is type safe but leads to a less gen-
eral API: each function fixes a parameter value of the encoded function, hence
being less general. The limits of this approach are better illustrated when one
tries to combine several functions. Consider for instance Listing 5 defining a
JavaScript function findAndListenTo that both finds elements and registers an
event listener when a given event occurs on them. Note that the event listener is
passed both the event and the element: its type depends on both the tag name
and the event name. This function cannot be implemented if the general func-
tions getElementsByTagName and addEventListener are not available. The best
that could be done would be to create one function for each combination of tag
name and event name, leading to an explosion of the number of functions to im-
plement. Thus, this approach gives less expressive power than the native browser
API. Moreover, we find that defining many functions for the same task (creat-
ing a DOM element or listening to an event) clutters the API documentation:
functions serving other purposes are hidden by these same-purpose-functions.

The third approach, consisting in combining two parameters into one pa-
rameter carrying all the required information, is type safe too, but reduces the
expressive power because it forbids developers to partially apply the function
by supplying only one parameter. Consider for instance Listing 6 that defines
a function observe partially applying the addEventListener function5. Such a
function cannot be implemented with this approach because the name of the
event and the code of the listener cannot be decoupled. Thus, this one gives less
expressive power than the native browser API.

In summary, the current integration of the browser API by statically typed
languages compiling to JavaScript is either not type safe or not as expressive
as the underlying JavaScript API. Indeed, we showed that our simple slideshow
program requires type casts if the browser API is exposed according to the
standard specification. We are able to get rid of type casts on this program by
using modified browser APIs, but we presented two functions that we were not
able to implement using these APIs, showing that they give less expressive power
than the native API.

5 The code of this function has been taken (and simplified) from the existing functional
reactive programming libraries Rx.js [14] and Bacon.js
(http://baconjs.github.io/).

http://baconjs.github.io/
http://baconjs.github.io/

314 J. Richard-Foy, O. Barais, and J.-M. Jézéquel

function findAndListenTo (tagName , eventName , listener) {
var elements = document .getElementsByTagName (tagName);
elements .forEach(function (element) {

element.addEventListener (eventName , function (event) {
listener (event , element);

});
});

}

Listing 5. Combination of use of getElementsByTagName and addEventListener

function observe(target , name) {
return function (listener) {

target.addEventListener (name , listener);
}

}

Listing 6. Partial application of addEventListener parameters

This article aims to answer the following questions: is it possible to expose the
browser API in statically typed languages in a way that both reduces the need for
type casts and preserves the same expressive power? What typing mechanisms
do we need to achieve this? Would it be convenient to be used by end developers?

3 Contribution

In this section we show how we can encode the challenging main functions of the
DOM API in a type safe way while keeping the same expressive power.

The listings in this paper use the Scala language, though our first solution
could be implemented in any language with basic type parameters support, such
as Java’s generics6. Our second solution is an improvement over the first one,
using path-dependent types.

3.1 Parametric Polymorphism

In all the cases where a type T involved in a function depends on the value of
a parameter p of this function (all the aforementionned functions of the DOM
API are in this case), we can encode this relationship in the type system using
type parameters as follows:

1. Define a parameterized class P[U]
2. Set the type of p to P[U]
3. Use type U instead of type T
4. Define as many values of type P[U] as there are possible values for p, each

one fixing its U type parameter to the corresponding more precise type

6 For a lack of space, we do not present them here but all Java versions of all
the Scala listings (excepted those using type members) are available online at
http://github.com/js-scala/js-scala/wiki/ICWE’14

http://github.com/js-scala/js-scala/wiki/ICWE'14
http://github.com/js-scala/js-scala/wiki/ICWE'14

Using Path-Dependent Types to Build Type Safe JavaScript 315

class ElementName [E]

trait Document {
def createElement [E](name: ElementName [E]): E
def getElementsByTagName [E](name: ElementName [E]): Array[E]

}

val Input = new ElementName [InputElement]
val Img = new ElementName [ImageElement]
// etc. for each possible element name

Listing 7. Encoding of the createElement function using type parameters

Listing 7 shows this approach applied to the createElement and
getElementsByTagName functions which return type depends on their name pa-
rameter value: a type ElementName[E] has been created, the type of the name
parameter has been set to ElementName[E] instead of String, and the return type
of the function is E instead of Element (or Array[E] instead of Array[Element],
in the case of getElementsByTagName). The ElementName[E] type encodes the re-
lationship between the name of an element and the type of this element7. For
instance, we created a value Input of type ElementName[InputElement].

Listing 8 shows the encoding of the addEventListener function. The
EventName[E] type represents the name of an event which type is E. For in-
stance, Click is a value of type EventName[MouseEvent]: when a user adds an
event listener to the Click event, it fixes to MouseEvent the type parameter E of
the callback function passed to addEventListener.

class EventName [E]

trait EventTarget {
def addEventListener [E](

name: EventName [E], callback : E => Unit): Unit
}

val Click = new EventName [MouseEvent]
val KeyUp = new EventName [KeyboardEvent]
// etc. for each possible event name

Listing 8. Encoding of the addEventListener function using type parameters

Listing 9 illustrates the usage of such an encoding by implementing our
slideshow program presented in the introduction. Passing the Img value as a pa-
rameter to the createElement function fixes its E type parameter to ImageElement

7 The type parameter E is also called a phantom type [12] because ElementName values
never hold a E value.

316 J. Richard-Foy, O. Barais, and J.-M. Jézéquel

def slideshow (sources: Array[String]) {
val img = document.createElement (Img)
var current = 0
img.src = sources(current)
img.addEventListener (Click , event => {

if (event.button == 0) {
current = (current + 1) % (sources.length - 1)
img.src = sources(current)

}
})
img

}

Listing 9. Scala implementation of the slideshow function using generics

so the returned value has the most possible precise type and the src property
can be used on it. Similarly, passing the Click value to the addEventListener
function fixes its E type parameter to MouseEvent, so the event listener has the
most possible precise type and the button property can be used on the event
parameter.

It is worth noting that this code is actually exactly the same as in Listing 2
excepted that type casts are not anymore required because the browser API is
exposed in a way that preserves enough type information. Our way to encode
the browser API is more type safe, but is it as expressive as the native API?

Listings 10 and 11 show how the challenging functions of Section 2.2,
findAndListenTo and observe, can be implemented with our encoding. They are
basically a direct translation from JavaScript syntax to Scala syntax, with ad-
ditional type annotations.

def findAndListenTo [A, B](
tagName: ElementName [A],
eventName : EventName [B],
listener : (A, B) => Unit) = {

for (element <- document .getElementsByTagName (tagName)) {
element.addEventListener (eventName , event => {

listener (event , element)
})

}
}

Listing 10. Combination of getElementsByTagName and addEventListener functions
encoded using type parameters

In summary, our encoding is type safe and gives as much expressive power as
the native API since it is possible to implement exactly the same functions as
we are able to implement in plain JavaScript.

Using Path-Dependent Types to Build Type Safe JavaScript 317

def observe[A](target: EventTarget , name: EventName [A]) = {
(listener : A => Unit) => {

target.addEventListener (name , listener)
}

}

Listing 11. Partial application of addEventListener encoded with type parameters

However, every function taking an element name or an event name as parame-
ter has its type signature cluttered with phantom types (extra type parameters):
the observe function takes a phantom type parameter A and the findAndListenTo
function takes two phantom type parameters, A and B. These extra type param-
eters are redundant with their corresponding value parameters and they make
type signatures harder to read and reason about.

3.2 Path-Dependent Types

This section shows how we can remove the extra type parameters needed in the
previous section by using path-dependent types [16]. Essentially, the idea is to
model type parameters using type members, as suggested in [17].

Programming languages generally support two means of abstraction: param-
eterization and abstract members. For instance Java supports parameterization
for values (method parameters) and types (generics), and member abstraction
for values (abstract methods). Scala also supports member abstraction for types
through type members [5,16]. An abstract type member of a class is an inner
abstract type that can be used to qualify values. Subclasses can implement and
override their methods, and similarly they can define or refine their type mem-

trait ElementName {
type Element

}

trait Document {
def createElement (name: ElementName): name.Element
def getElementsByTagName (

name: ElementName): Array[name.Element]
}

object Div extends ElementName {
type Element = DivElement

}
object Input extends ElementName {

type Element = InputElement
}
// etc. for each possible element name

Listing 12. Encoding of createElement using path-dependent types

318 J. Richard-Foy, O. Barais, and J.-M. Jézéquel

bers. A concrete subclass must provide a concrete implementation of its type
members. Outside of the class, type members can be referred to using a type
selection on an instance of the class: the type designator p.C refers to the C type
member of the value p and expands to the C type member implementation of the
singleton type of p.

trait EventName {
type Event

}

object Click extends EventName { type Event = MouseEvent }

trait EventTarget {
def addEventListener (name: EventName)

(callback: name.Event => Unit): Unit
}

Listing 13. Encoding of addEventListener using path-dependent types

Listings 12 and 13 show an encoding of createElement, getElementsByTagName
and addEventListener in Scala using type members. Now, the ElementName type
has no type parameter but a type member Element. The return type of the
createElement function is name.Element: it refers to the Element type member of
its name parameter. The Div and Input values illustrate how their corresponding
element type is fixed: if one writes createElement(Input), the return type is the
Element type member of the Input value, namely InputElement. The same idea
applies to EventName and addEventListener: the name of the event fixes the type
of the callback.

The implementation of the slideshow function with this encoding is exactly
the same as with the previous approach using generics. However, functions
findAndListenTo and observe can be implemented more straightforwardly, as
shown by listings 14 and 15, respectively.

With this encoding, the functions using event names or element names are
not anymore cluttered with phantom types, and type safety is still preserved.

def findAndListenTo (eltName: ElementName , evtName: EventName)
(listener : (evtName.Event , eltName.Element) => Unit) = {

for (element <- document .getElementsByTagName (eltName) {
element.addEventListener (evtName) { event =>

listener (event , element)
}

}
}

Listing 14. Combination of getElementsByTagName and addEventListener using
path-dependent types

Using Path-Dependent Types to Build Type Safe JavaScript 319

def observe(target: EventTarget , name: EventName) =
(listener : (name.Event => Unit)) => {

target.addEventListener (name)(listener)
}

Listing 15. Partial application of addEventListener using path-dependent types

4 Validation

4.1 Implementation in js-scala

We implemented our encoding in js-scala [11], a Scala library providing com-
posable JavaScript code generators8. On top of that we implemented various
samples, including non trivial ones like a realtime chat application and a poll
application.

We have shown in this paper that our encoding leverages types as precisely
as possible (our slideshow program is free of type casts) while being expressive
enough to implement the challenging findAndListenTo and observe functions
that were impossible to implement with other approaches.

4.2 API Clarity

We mentioned in the background section that a common drawback of existing
approaches to bring more type safety was the multiplication of functions having
the same purpose, making the API documentation harder to read.

Our encoding preserves a one to one mapping with browser API functions
whereas existing approaches often have more than 30 functions for a same pur-
pose. For instance, the createElement function is mapped by 31 specialized func-
tions in GWT and 62 in Dart, the addEventListener is mapped by 32 specialized
functions in GWT and 49 in Dart.

4.3 Convenience for End Developers

Statically typed languages are often criticized for the verbosity of the information
they add compared to dynamically typed languages [15]. In our case, what is
the price to pay to get accurate type ascriptions?

The first encoding, using type parameters, can be implemented in most pro-
gramming languages because it only requires a basic support of type parameters
(for instance Java, Dart, TypeScript, Kotlin, HaXe, Opa, Idris and Elm can im-
plement it). However this encoding leads to cluttered type signatures and forces
functions parameterized by event or element names to also take phantom type
parameters.

However, the second encoding, using type members, leads to type signatures
that are not more verbose than those of the standard specifications of the HTML
8 Source code is available at http://github.com/js-scala

http://github.com/js-scala
http://github.com/js-scala

320 J. Richard-Foy, O. Barais, and J.-M. Jézéquel

and DOM APIs, so we argue that there is no price to pay. However, this encoding
can only be implemented in language supporting type members or dependent
types (Scala and Idris).

4.4 Limitations

Our encodings only work with cases where a polymorphic type can be fixed by
a value. In our examples, the only one that is not in this case is getElementById.
Therefore we are not able to type this function more accurately (achieving this
would require to support the DOM tree itself in the type system as in [13]).

Our solution is actually slightly less expressive than the JavaScript API: in-
deed, the value representing the name of an event or an element is not anymore
a String, so it cannot anymore be the result of a String manipulation, like e.g.
a concatenation. Fortunately, this case is uncommon.

5 Related Works

The idea of using dependent types to type JavaScript has already been explored
by Ravi Chugh et. al. [3]. They showed how to make a subset of JavaScript
statically typed using a dependent type system. However, their solution requires
complex and verbose type annotations to be written by developers.

Sebastien Doreane proposed a way to integrate JavaScript APIs in Scala [7].
His approach allows developers to seamlessly use JavaScript APIs from statically
typed Scala code. However, his work does not expose types as precise as ours
(e.g. in their encoding the return type of createElement is always Element).

TypeScript supports overloading on constant values: the type of the expres-
sion createElement("div") is statically resolved to DivElement by the constant
parameter value "div". This solution is type safe, as expressive and as easy
to learn as the native API because its functions have a one to one mapping.
However, this kind of overloading has limited applicability because overload res-
olution requires parameters to be constant values: indeed, the findAndListenTo
function would be weakly typed with this approach.

6 Conclusion

Having a statically typed programming language compiling to JavaScript is not
enough to leverage static typing in Web applications. The native browser API
has to be exposed in a statically typed way, but this is not an easy task.

We presented two ways to encode dynamically typed browser functions in
mainstream statically typed languages like Java and Scala, using type parameters
or path-dependent types. Our encodings give more type safety than existing
solutions while keeping the same expressive power as the native API.

We feel that parametric polymorphism and, even more, dependent types are
precious type system features for languages aiming to bring static typing to Web
applications.

Using Path-Dependent Types to Build Type Safe JavaScript 321

Acknowledgements. The authors would like to thank Thomas Degueule.

References

1. Brady, E.: Idris, a general-purpose dependently typed programming language: De-
sign and implementation. Journal of Functional Programming 23(05), 552–593
(2013)

2. Cannasse, N.: Using haxe. The Essential Guide to Open Source Flash Development,
227–244 (2008)

3. Chugh, R., Herman, D., Jhala, R.: Dependent types for javascript. SIGPLAN
Not. 47(10), 587–606 (2012)

4. W3C-World Wide Web Consortium et al.: Document object model (dom) level 3
core specification. W3C recommendation (2004)

5. Cremet, V., Garillot, F., Lenglet, S., Odersky, M.: A core calculus for scala type
checking. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162,
pp. 1–23. Springer, Heidelberg (2006)

6. Czaplicki, E.: Elm: Concurrent frp for functional guis (2012)
7. Doeraene, S.: Scala.js: Type-Directed Interoperability with Dynamically Typed

Languages. Technical report (2013)
8. Fenton, S.: Typescript for javascript programmers (2012)
9. Griffith, R.: The dart programming language for non-programmers-overview (2011)

10. Kereki, F.: Web 2.0 development with the Google web toolkit. Linux J., 2009(178)
(February 2009)

11. Kossakowski, G., Amin, N., Rompf, T., Odersky, M.: JavaScript as an embedded
DSL. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 409–434. Springer,
Heidelberg (2012)

12. Leijen, D., Meijer, E.: Domain specific embedded compilers. ACM SIGPLAN No-
tices 35, 109–122 (1999)

13. Lerner, B.S., Elberty, L., Li, J., Krishnamurthi, S.: Combining Form and Function:
Static Types for JQuery Programs. In: Castagna, G. (ed.) ECOOP 2013. LNCS,
vol. 7920, pp. 79–103. Springer, Heidelberg (2013)

14. Liberty, J., Betts, P.: Reactive extensions for javascript. In: Programming Reactive
Extensions and LINQ, pp. 111–124. Springer (2011)

15. Meijer, E., Drayton, P.: Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages

16. Odersky, M., Cremet, V., Röckl, C., Zenger, M.: A nominal theory of objects with
dependent types. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 201–224.
Springer, Heidelberg (2003)

17. Odersky, M., Zenger, M.: Scalable component abstractions. ACM SIGPLAN No-
tices 40, 41–57 (2005)

18. Raggett, D., Le Hors, A., Jacobs, I., et al.: Html 4.01 specification. W3C Recom-
mendation 24 (1999)

Visual vs. DOM-Based Web Locators:
An Empirical Study

Maurizio Leotta1, Diego Clerissi1, Filippo Ricca1, and Paolo Tonella2

1 DIBRIS, Università di Genova, Italy
2 Fondazione Bruno Kessler, Trento, Italy

{maurizio.leotta,filippo.ricca}@unige.it,
diego.clerissi@gmail.com, tonella@fbk.eu

Abstract. Automation in Web testing has been successfully supported by DOM-
based tools that allow testers to program the interactions of their test cases with
the Web application under test. More recently a new generation of visual tools has
been proposed where a test case interacts with the Web application by recognising
the images of the widgets that can be actioned upon and by asserting the expected
visual appearance of the result.

In this paper, we first discuss the inherent robustness of the locators created
by following the visual and DOM-based approaches and we then compare empir-
ically a visual and a DOM-based tool, taking into account both the cost for initial
test suite development from scratch and the cost for test suite maintenance during
code evolution. Since visual tools are known to be computationally demanding,
we also measure the test suite execution time.

Results indicate that DOM-based locators are generally more robust than vi-
sual ones and that DOM-based test cases can be developed from scratch and
evolved at lower cost. Moreover, DOM-based test cases require a lower execu-
tion time. However, depending on the specific features of the Web application
under test and its expected evolution, in some cases visual locators might be the
best choice (e.g., when the visual appearance is more stable than the structure).

1 Introduction

The importance of test automation in Web engineering comes from the widespread
use of Web applications (Web apps) and the associated demand for code quality. Test
automation is considered crucial for delivering the quality levels expected by users [14],
since it can save a lot of time in testing and it helps developers to release Web apps with
fewer defects [1]. The main advantage of test automation comes from fast, unattended
execution of a set of tests after some changes have been made to a Web app.

Several approaches can be employed to automate functional Web testing. They can
be classified using two main criteria: the first concerns how test cases are developed,
while, the second concerns how test cases localize the Web elements (i.e., GUI com-
ponents) to interact with, that is what kind of locators (i.e., objects that select the
target web elements) are used. Concerning the first criterion, it is possible to use the
capture-replay or the programmable approach. Concerning the second criterion, there
are three main approaches, Visual (where image recognition techniques are used to
locate GUI components and a locator consists of an image), DOM-based (where Web

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 322–340, 2014.
c© Springer International Publishing Switzerland 2014

Visual vs. DOM-Based Web Locators: An Empirical Study 323

page elements are located using the information contained in the Document Object
Model and a locator is, for instance, an XPath expression) and Coordinates-based (where
screen coordinates of the Web page elements are used to interact with the Web app
under test). This categorization will be deeply analysed in the next section.

For developers and project managers it is not easy to select the most suitable automated
functional web testing approach for their needs among the existing ones. For this reason,
we are carrying out a long term research project aimed at empirically investigating the
strengths and weaknesses of the various approaches (see also our previous work [9]).

In this work we evaluate and compare the visual and DOM-based approaches consid-
ering: the robustness of locators, the initial test suite development effort, the test suite
evolution cost, and the test suite execution time. Our empirical assessment of the ro-
bustness of locators is quite general and tool independent, while the developers’ effort
for initial test suite development and the effort for test suite evolution were measured
with reference to specific implementations of the two approaches. We instantiated such
analysis for two specific tools, Sikuli API and Selenium WebDriver, both adopting the
programmable approach but differing in the way they localize the Web elements to in-
teract with during the execution of the test cases. Indeed, Sikuli API adopts the visual
approach, thus using images representing portions of the Web pages, while Selenium
WebDriver employs the DOM-based approach, thus relying on the HTML structure. We
selected six open source Web apps and for each tool, we first developed a test suite per
application and then we evolved them to a subsequent version. Moreover, since visual
tools are known to be computational demanding, we also measured and compared the
test suite execution time.

The paper is organized as follows: Sect. 2 gives some background on test case devel-
opment using the visual and the programmable approaches, including examples for the
two specific tools used in this work. In the same section, we describe test case repair ac-
tivities. Sect. 3 describes our empirical study, reports the obtained results and discusses
the pros and cons of the two considered approaches. We then present the related works
(Sect. 4), followed by conclusions and future work (Sect. 5).

2 Background

There are several approaches for functional Web testing [13] and the choice among
them depends on a number of factors, including the technology used by the Web app
and the tools (if any) used for Web testing. Broadly speaking, there are two main criteria
to classify the approaches to functional Web testing that are related to: (1) test case
construction; and, (2) Web page element localisation.
For what concerns the first criterion, we can find two main approaches:

1) Capture-Replay (C&R) Web Testing: this approach consists of recording the actions
performed by the tester on the Web app GUI and generating a script that provides
such actions for automated, unattended re-execution.

2) Programmable Web Testing: this approach aims at unifying Web testing with tradi-
tional testing, where test cases are themselves software artefacts that developers write,
with the help of specific testing frameworks. For Web apps, this means that the frame-
work supports programming of the interaction with a Web page and its elements, so

324 M. Leotta et al.

that test cases can, for instance, automatically fill-in and submit forms or click on hy-
perlinks.

An automated functional test case interacts with several Web page elements such as
links, buttons, and input fields, and different methods can be employed to locate them.
Thus, concerning the second criterion, we can find three different cases1:

1) Coordinate-Based Localisation: first generation tools just record the screen coordi-
nates of the Web page elements and then use this information to locate the elements
during test case replay. This approach is nowadays considered obsolete, because it
produces test cases that are extremely fragile.

2) DOM-Based Localisation: second generation tools locate the Web page elements
using the information contained in the Document Object Model. For example, the
tools Selenium IDE and WebDriver employ this approach and offer several different
ways to locate the elements composing a Web page (e.g., ID, XPath and LinkText).

3) Visual Localisation: third generation tools have emerged recently. They make use
of image recognition techniques to identify and control GUI components. The tool
Sikuli API belongs to this category.

In our previous work [9], we compared the capture-replay approach and the pro-
grammable approach using two 2nd generation tools: Selenium IDE and Selenium Web-
Driver. In this work, we fixed the test case definition method (i.e., programmable) and
changed the locator type, with the aim of comparing the visual approach and the DOM-
based approach. Empirical results refer to two specific programmable tools: Sikuli API
and Selenium WebDriver.

Let us consider a running example, consisting of a typical login web page (login.asp).
The login page requires the users to enter their credentials, i.e., username and password
(see Fig. 1). After having inserted the credentials and clicked on “Login”, the appli-
cation shows the home page (homepage.asp). If credentials are correct, the username
(contained in an HTML tag with the attribute ID="uname") and the logout button are
reported in the upper right corner of the home page (e.g., John.Doe). Otherwise, Guest
User and login button are shown. For the sake of simplicity, the application does not
report any error message in case of invalid credentials or unrecognised users.

<form name="loginform" action="homepage.asp" method="post">
 Username: <input type="text" id="UID" name="username">

 Password: <input type="text" id="PW" name="password">

 Login
</form>

Username:
Password:
 Login

Fig. 1. login.asp – Page and Source

2.1 Programmable Web Testing

Programmable Web testing is based on manual creation of a test script. Web test scripts
can be written using ad-hoc languages and frameworks or general purpose program-
ming languages (such as Java and Ruby) with the aid of specific libraries able to play
the role of the browser. Usually, these libraries extend the programming language with
user friendly APIs, providing commands to, e.g., click a button, fill a field and submit

1 http://jautomate.com/2013/08/22/730/

http://jautomate.com/2013/08/22/730/

Visual vs. DOM-Based Web Locators: An Empirical Study 325

public class LoginPage {
 private final WebDriver driver;
 public LoginPage(WebDriver driver) {this.driver=driver;}
 public HomePage login(String UID, String PW) {
 driver.findElement(By.id("UID")).sendKeys(UID);
 driver.findElement(By.xpath("./input[2]")).sendKeys(PW);
 driver.findElement(By.linkText("Login")).click();
 return new HomePage(driver);
 }
}

public class HomePage {
 private final WebDriver driver;
 public HomePage(WebDriver driver)
 {this.driver = driver;}
 public String getUsername() {
 return
 driver.findElement(By.id("uname")).getText;
 }
}

Fig. 2. LoginPage and HomePage page objects in Selenium WebDriver

a form. Test scripts are completed with assertions (e.g., JUnit assertions if the language
chosen is Java).

A best practice often used when developing programmable test cases is the page
object pattern. This pattern is used to model the Web pages involved in the test process
as objects, employing the same programming language used to write the test cases. In
this way, the functionalities offered by a Web page become methods exposed by the
corresponding page object, which can be easily called within any test case. Thus, all
the details and mechanics of the Web page are encapsulated inside the page object.
Adopting the page object pattern allows the test developer to work at a higher level of
abstraction and it is used to reduce the coupling between Web pages and test cases, and
the amount of duplicate code. For these reasons, the adoption of the page object pattern
is expected to improve the test suite maintainability and evolvability [8].

DOM-Based Programmable Test Case Creation: The tool for Web app testing be-
longing to the DOM-based/Programmable category that we used in this work is Se-
lenium WebDriver release 2.25.0 (in the following shortly referred to as WebDriver
- http://seleniumhq.org/projects/webdriver/). WebDriver is a tool for automating Web
app testing that provides a comprehensive programming interface used to control the
browser. WebDriver test cases are implemented manually in a programming language
(in our case Java) integrating WebDriver commands with JUnit or TestNG assertions.
We chose WebDriver as the representative of this category, because: (1) it is a quite
mature tool, (2) it is open-source, (3) it is one of the most widely-used open-source so-
lutions for Web test automation (even in the industry), (4) during a previous industrial
collaboration [8], we have gained a considerable experience on its usage.

As an example, we here use a simple WebDriver test case (Fig. 3 left): a successful
authentication test case. It submits a valid login, using correct credentials (i.e., user-
name=John.Doe and password=123456) and verifies that in the home page the user
appears as correctly authenticated (“John.Doe” must be displayed in the top-right cor-
ner of the home page).

The first step is to create two page objects (LoginPage.java and HomePage.java)
corresponding to the Web pages login.asp and homepage.asp respectively (see Fig. 2).
The page object LoginPage.java offers a method to log into the application. This method
takes username and password as inputs, inserts them in the corresponding input fields,
clicks the Login button and returns a page object of kind HomePage.java, because af-
ter clicking the Login button the application moves to the page homepage.asp. Home-
Page.java contains a method that returns the username authenticated in the application
or “Guest” when no user is authenticated. As shown in Fig. 2, the Web page elements

326 M. Leotta et al.

public void testLogin() { // WebDriver
 WebDriver driver = new FirefoxDriver();
 // we start from the 'login.asp' page
 driver.get("http://www.....com/login.asp");
 LoginPage LP = new LoginPage(driver);
 HomePage HP = LP.login("John.Doe","123456");
 // we are in the 'homepage.asp' page
 assertEquals("John.Doe", HP.getUsername());
}

public void testLogin(){ // Sikuli

 // we start from the 'login.asp' page
 CommonPage.open("http://www.....com/login.asp");
 LoginPage LP = new LoginPage();
 HomePage HP = LP.login("John.Doe", "123456"); John.Doe
 // we are in the 'homepage.asp' page
 assertTrue(HP.isUsernamePresent(new URL("JohnDoe.png")));
}

 Fig. 3. TestLogin test case in Selenium WebDriver (left) and in Sikuli API (right)

are located by searching for values in the DOM (using ID and LinkText locators) or
navigating it (using XPath locators). While WebDriver offers several alternative ways
to locate the Web elements in a Web page, the most effective one, according to Web-
Driver developers (http://docs.seleniumhq.org/docs/03_webdriver.jsp), is searching the
elements by their ID values. Hence, whenever possible, we used this method. The sec-
ond step is to develop the test case making use of the page objects (see Fig. 3 left).
In the test method, first, a WebDriver of type FirefoxDriver is created, so that the test
case can control a Firefox browser as a real user does; second, the WebDriver (i.e.,
the browser) opens the specified URL and creates a page object that instantiates Login-
Page.java (modelling the login.asp page); third, using method login(...) offered by the
page object, a new page object (HP) representing the page homepage.asp is created;
finally, the test case assertion is checked.

Visual Programmable Test Case Creation: The Web app testing tool, belonging to the
Visual/Programmable category, that we used in this work is Sikuli API release 1.0.2 (in
the following shortly referred to as Sikuli - http://code.google.com/p/sikuli-api/). Sikuli
is a visual technology able to automate and test graphical user interfaces using screen-
shot images. It provides image-based GUI automation functionalities to Java program-
mers. We chose Sikuli as the representative of this category mainly because: (1) it is
open-source and (2) it is similar to WebDriver, thus, we can create test cases and page
objects similarly to the ones produced for WebDriver. In this way, using Sikuli, we
are able to make the comparison between visual and DOM-based programmable tools
fair and focused as much as possible on the differences of the two approaches. In fact,
in this way we can use the same programming environment: programming language
(Java), IDE (Eclipse), and testing framework (JUnit). Sikuli allows software testers to
write scripts based on images that define the GUI widgets to be tested and the asser-
tions to be checked. This is substantially different from the way in which WebDriver
performs page element localisation and assertion checking.

As an example, the Sikuli version of the testLogin test case is shown in Fig. 3
(right) while the related page objects are given in Fig. 4. The test case developed in
Sikuli performs the same conceptual steps2 as the WebDriver test case, as apparent
from Fig. 3 (left) and Fig. 3 (right). The page objects (shown in Fig. 4) are instead quite
different. To locate a Web page element, an instruction (based on the Sikuli Java API)

2 Actually, in Sikuli there is no command to open Firefox at a specified URL as in WebDriver.
We have encapsulated this functionality in a method, CommonPage.open(...), that clicks
the Firefox icon on the desktop, inserts the URL into the address bar and then clicks on the
“go” arrow.

Visual vs. DOM-Based Web Locators: An Empirical Study 327

public class LoginPage {
 private ScreenRegion s = new DesktopScreenRegion();
 private Mouse m = new DesktopMouse();
 private Keyboard keyboard = new DesktopKeyboard();
 public HomePage login(String UID, String PW){
 m.click(s.find(new ImageTarget(new URL("un.png"))).getCenter());
 keyboard.type(UID);
 m.click(s.find(new ImageTarget(new URL("pw.png"))).getCenter());
 keyboard.type(PW);
 m.click(s.find(new ImageTarget(new URL("log.png"))).getCenter());
 return new HomePage();
 }
}

public class HomePage {
 private ScreenRegion s = new
 DesktopScreenRegion();
 private Mouse m = new DesktopMouse();
 public boolean isUsernamePresent(URL uname){
 try{m.click(s.find(new
 ImageTarget(uname)).getCenter());
 return true;
 } catch(Exception e) {return false;}
 }
}

Fig. 4. LoginPage and HomePage page objects in Sikuli API

is used which searches for the portion of Web page that looks like the image saved
for the test suite (e.g., in a png file). Thus, in Sikuli, locators are always images. In
addition, some other minor differences can be noticed in the test case implementation.
For instance, in the case of WebDriver it is possible to assert that an element must
contain a certain text (see the last line in Fig. 3 (left)), while in Sikuli it is necessary to
assert that the page shows a portion equal to an image where the desired text is displayed
(see the last line in Fig. 3 (right)).

2.2 Test Case Evolution

When a Web app evolves to accommodate requirement changes, bug fixes, or functional-
ity extensions, test cases may become broken. For example, test cases may be unable to
locate some links, input fields and submission buttons and software testers will have to
repair them. This is a tedious and expensive task since it has to be performed manually
(automatic evolution of test suites is far from being consolidated [11]).

Depending on the kind of maintenance task that has been performed on the target
Web app, a software tester has to execute a series of test case repairment activities that
can be categorised, for the sake of simplicity, in two types: logical and structural.

Logical Changes involve the modification of the Web app functionality. To repair the
test cases, the tester has to modify the broken test cases and the corresponding page ob-
jects and in some cases, new page objects have to be created. An example of a change
request that needs a logical repairment activity is enforcing the security by means of
stronger authentication and thus adding a new Web page, containing an additional ques-
tion, after the login.asp page of Fig. 1. In this case, the tester has to create a new page
object for the Web page providing the additional authentication question. Moreover,
she has to repair both the testLogin test cases shown in Fig. 3, adding a new Java
command that calls the method offered by the new page object.

Structural Changes involve the modification of the Web page layout/structure only.
For example, in the Web page of Fig. 1 the string of the login button may be changed to
Submit. Usually, the impact of a structural change is smaller than a logical change. To
repair the test cases, often, it is sufficient to modify one or more localisation lines, i.e.,
lines containing locators. In the example, the tester has to modify the LoginPage.java
page object (see Fig. 2 and 4) by: (1) repairing the line:
driver.findElement(By.linkText("Login")).click()

328 M. Leotta et al.

in the case of Selenium WebDriver; or, (2) changing the image that represents the Login
button in the case of Sikuli.

3 Empirical Study

This section reports the design, objects, research questions, metrics, procedure, results,
discussion and threats to validity of the empirical study conducted to compare visual vs.
DOM-based Web testing.

3.1 Study Design

The primary goal of this study is to investigate the difference in terms of robustness (if
any) that can be achieved by adopting visual and DOM-based locators with the purpose
of understanding the strengths and the weaknesses of the two approaches. Then, after
having selected two tools that respectively belong to the two considered categories, as
secondary goal we investigated the cost/benefit trade-off of visual vs. DOM-based test
cases for Web apps. In this case, the cost/benefit focus regards the effort required for the
creation of the initial test suites from scratch, as well as the effort required for their evo-
lution across successive releases of the software. The results of this study are interpreted
according to two perspectives: (1) project managers, interested in understanding which
approach could lead to potentially more robust test cases, and in data about the costs
and the returns of the investment associated with both the approaches; (2) researchers,
interested in empirical data about the impact of different approaches on Web testing.
The context of the study is defined as follows: two human subjects have been involved,
a PhD student (the first author of this paper) and a junior developer (the second author,
a master student with 1-year industrial experience as software tester); the software ob-
jects are six open source Web apps. The two human subjects participating in the study
are referred below using the term “developers”.

3.2 Web Applications

We have selected and downloaded six open-source Web apps from SourceForge.net.
We have included only applications that: (1) are quite recent, so that they can work
without problems on the latest versions of Apache, PHP and MySQL, technologies we
are familiar with (actually, since Sikuli and WebDriver implement a black-box approach,
the server side technologies do not affect the results of the study); (2) are well-known
and used (some of them have been downloaded more than one hundred thousand times
last year); (3) have at least two major releases (we have excluded minor releases because
with small differences between versions the majority of the test cases are expected to
work without problems); (4) belong to different application domains; and, (5) are non-
RIA – Rich Internet Applications (to make the comparison fair, since RIAs can be
handled better by the visual approach, see Sect. 3.7).

Table 1 reports some information about the selected applications. We can see that
all of them are quite recent (ranging from 2008 to 2013). On the contrary, they are
considerably different in terms of number of source files (ranging from 46 to 840) and
number of lines of code (ranging from 4 kLOC to 285 kLOC, considering only the

Visual vs. DOM-Based Web Locators: An Empirical Study 329

Table 1. Objects: Web Applications from SourceForge.net

Vers. Date Filea kLOCb Vers. Date Filea kLOCb

MantisBT bug tracking system sourceforge.net/projects/mantisbt/ 1.1.8 2009 492 90 1.2.0 2010 733 115
PPMAc password manager sourceforge.net/projects/ppma/ 0.2 2011 93 4 0.3.5.1 2013 108 5
Claroline learning environment sourceforge.net/projects/claroline/ 1.10.7 2011 840 277 1.11.5 2013 835 285
Address Book address/phone book sourceforge.net/projects/php-addressbook/ 4.0 2009 46 4 8.2.5 2012 239 30
MRBS meeting rooms manager sourceforge.net/projects/mrbs/ 1.2.6.1 2008 63 9 1.4.9 2012 128 27
Collabtive collaboration software sourceforge.net/projects/collabtive/ 0.65 2010 148 68 1.0 2013 151 73

Description Web Site 1st Release 2nd Release

a Only PHP source files were considered b PHP LOC - Comment and Blank lines are not considered

lines of code contained in the PHP source files, comments and blank lines excluded).
The difference in lines of code between 1st and 2nd release (columns 7 and 11) gives a
rough idea of how different the two chosen releases are.

3.3 Research Questions and Metrics

Our empirical study aims at answering the following research questions, split between
considerably tool-independent (A) and significantly tool-dependent (B) questions:

RQ A.1: Do Visual and DOM-based test suites require the same number of locators?
The goal is to quantify and compare the number of locators required when adopting
the two different approaches. This would give developers and project managers a rough
idea of the inherent effort required to build the test suites by following the two ap-
proaches. Moreover, the total number of locators could influence also the maintenance
effort, since the more the locators are, the more the potential locators to repair could be.
The metrics used to answer the research question is the number of created locators.

RQ A.2: What is the robustness of visual vs. DOM-based locators?
The goal is to quantify and compare the robustness of the visual and the DOM-based
locators. This would give developers and project managers an idea of the inherent ro-
bustness of the locators created by following the two approaches. The metrics used to
answer this research question is the number of broken locators.

RQ B.1: What is the initial development effort for the creation of visual vs. DOM-based
test suites?
The goal is to quantify and compare the development cost of visual and DOM-based
tests. This would give developers and project managers an idea of the initial invest-
ment (tester training excluded) to be made if visual test suites are adopted, as compared
to DOM-based test suites. The metrics used to answer this research question is the
time (measured in minutes) the two developers spent in developing visual test suites vs.
DOM-based test suites.

RQ B.2: What is the effort involved in the evolution of visual vs. DOM-based test suites
when a new release of the software is produced?
This research question involves a software evolution scenario. For the next major release
of each Web app under test, the two developers evolved the test suites so as to make
them applicable to the new software release. The test case evolution effort for visual
and for DOM-based test suites was measured as the time (measured in minutes) spent
to update the test suites, until they were all working on the new release.

330 M. Leotta et al.

RQ B.3: What is the execution time required by visual vs. DOM-based test suites?
Image processing algorithms are known to be quite computation-intensive [2] and ex-
ecution time is often reported as one of the weaknesses of visual testing. We want to
quantitatively measure the execution time difference (in seconds) between visual and
DOM-based test execution tools.

It should be noticed that the findings for research questions A.x are mostly influ-
enced by the approaches adopted, independently of the tools that implement them, since
the number of (DOM-based/visual) locators and the number of broken locators depend
mostly on the test cases (and on the tested Web app), not on the tools. On the other hand,
the metrics for research questions B.x (effort and execution time) are influenced by the
specific tools adopted in the empirical evaluation.

3.4 Experimental Procedure

The experiment has been performed as follows:

– Six open-source Web apps have been selected from SourceForge.net as explained in
Section 3.2.

– For each selected application, two equivalent test suites (written for Sikuli and Web-
Driver) have been built by the two developers, working in pair-programming and adopt-
ing a systematic approach consisting of three steps: (1) the main functionalities of the
target Web app are identified from the available documentation; (2) each discovered
functionality is covered with at least one test case (developers have assigned a meaning-
ful name to each test case, so as to keep the mapping between test cases and func-
tionalities); (3) each test case is implemented with Sikuli and WebDriver. For both
approaches, we considered the following best practices: (1) we used the page object
pattern and (2) we preferred, for WebDriver, the ID locators when possible (i.e., when
HTML tags are provided with IDs), otherwise Name, LinkText, CSS and XPath locators
were used following this order. Overall, for the WebDriver case we created: 82 ID, 99
Name, 65 LinkText, 64 CSS and 177 XPath locators. For each test suite, we measured
the number of produced locators (to answer RQ A.1) and the development effort for the
implementation as clock time (to answer RQ B.1). Each pair of test suites (i.e., visual
and DOM-based) are equivalent because the included test cases test exactly the same
functionalities, using the same sequences of actions (e.g., locating the same web page
elements) and the same input data. The WebDriver test suites had been created by the
same two developers about a year ago during a previous case study [9], while the Sikuli
test suites have been created more recently, for the present study, which potentially
gives a slight advantage to Sikuli (see Threats to Validity section).

– Each test suite has been executed against the second release of the Web app (see
Table 1). First, we recorded the failed test cases (we highlight that no real bugs have
been detected in the considered applications; all the failures are due to broken locators
and minimally to modifications to the test cases logic) and then, in a second phase,
we repaired them. We measured the number of broken locators (to answer RQ A.2)
and the repair effort as clock time (to answer RQ B.2). Finally, to answer RQ B.3 we
executed 10 times (to average over any random fluctuation of the execution time) each
of the 12 repaired test suites (both WebDriver and Sikuli test cases) and recorded the

Visual vs. DOM-Based Web Locators: An Empirical Study 331

execution times. We executed the test suites on a machine hosting an Intel Core i5 dual-
core processor (2.5 GHz) and 8 GB RAM, with no other computation or communication
load, in order to avoid CPU or memory saturation. To avoid as much as possible network
delays we installed the web server hosting the applications on a machine belonging to
the same LAN.

– The results obtained for each test suite have been compared to answer our research
questions. On the results, we conducted both a quantitative analysis and a qualitative
analysis, completed with a final discussion where we report our lessons learnt. The test
suites source code can be found at: http://softeng.disi.unige.it/2014-Visual-DOM.php

3.5 Quantitative Results

This section reports the quantitative results of the empirical study, while the reasons and
implications of the results are further analysed in Section 3.6.

RQ A.1. Table 2 shows the data to answer the A.x research questions by reporting, for
each application, the number of visual and DOM-based broken/total locators. The num-
ber of locators required to build the test suites varies from 81 to 158 when adopting
the visual approach and from 42 to 126 when adopting the DOM-based one. For all
the six applications the number of required locators is higher when adopting the visual
approach. Considering the data in aggregate form, we created 45% more Visual loca-
tors than DOM locators (706 visual vs. 487 DOM-based locators). To summarise, with
respect to the research question RQ A.1, the visual approach has always required to
create a higher number of locators.

RQ A.2. From the data shown in Table 2, we can see that in only two test suites out
of six visual locators result more robust than the DOM-based ones (i.e., Mantis and
Collabtive), while in the remaining four cases the DOM-based locators are more robust.
Overall, 312 visual locators out of 706 result broken, while only 162 DOM-based lo-
cators out of 487 have been repaired (i.e., 93% more broken locators in the case of the
visual approach). To summarise, with respect to RQ A.2, the result is not clear-cut. Gen-
erally, DOM-based locators are more robust but in certain cases (i.e., depending on the
kind of modifications among the considered releases), visual locators proved to be the
most robust (e.g., in Collabtive only 4 broken visual locators vs. 36 DOM-based ones).

RQ B.1. Table 3 reports some data about the developed test suites. For each application,
it reports: the number of test cases and page objects in the test suites built for the newer
release of each application (c. 1- 2); the time required for the initial development of
the test suites (c. 3- 4); the percentage difference between the initial development time
required by WebDriver vs. Sikuli (c. 5); the p-value of the Wilcoxon paired test used

Table 2. Visual vs. DOM-Based Locators Robustness

MantisBT 15 127 29 106
PPMA 78 81 24 42
Claroline 56 158 30 126
Address Book 103 122 14 54
MRBS 56 83 29 51
Collabtive 4 135 36 108

DOM-BasedVisual
Total

Locators
Total

Locators
Broken

Locators
Broken

Locators

332 M. Leotta et al.

Table 3. Test Suites Development

Test PO Total Test PO Total
MantisBT 41 30 498 383 -23% < 0.01 1645 1291 2936 1577 1054 2631
PPMA 23 6 229 98 -57% < 0.01 958 589 1547 867 346 1213
Claroline 40 22 381 239 -37% < 0.01 1613 1267 2880 1564 1043 2607
Address Book 28 7 283 153 -46% < 0.01 1080 686 1766 1078 394 1472
MRBS 24 8 266 133 -50% < 0.01 1051 601 1652 949 372 1321
Collabtive 40 8 493 383 -22% < 0.01 1585 961 2546 1565 650 2215

WebDriverSikuli
API

Time (Minutes)

p-value Sikuli API
Code (Java LOC)Number of

Test
Cases

Page
Objects Web Driver

to assess whether the development time difference is statistically significant (c. 6) and
finally the test suites size (measured in Lines Of Code (LOC), comment and blank lines
have not been not considered), split between page objects and test cases, for the newer
release of each application (c. 7-12). The development of the Sikuli test suites required
from 229 to 498 minutes, while the WebDriver suites required from 98 to 383 minutes.
In all the six cases, the development of the WebDriver test suites required less time
than the Sikuli test suites (from 22% to 57%). This is related with the lower number of
locators required when adopting the DOM-based approach (see RQ A.1). According to
the Wilcoxon paired test (see c. 6 of Table 3), the difference in test suite development
time between Sikuli and WebDriver is statistically significant (at α = 0.05) for all test
suites. For what concerns the size of the test suites (Table 3, c. 9, Total), we can notice
that in all the cases, the majority of the code is devoted to the test case logics, while
only a small part is devoted to the implementation of the page objects. Moreover, the
number of LOCs composing the test cases is very similar for both Sikuli and WebDriver,
while it is always smaller in WebDriver for what concerns the page objects (often, in
the Sikuli page objects, two lines are needed to locate and perform an action on a web
element while in WebDriver just one is sufficient, see for example Fig. 2 and 4). To
summarise, with respect to the research question RQ B.1 we can say that for all the six
considered applications, the effort involved in the development of the Sikuli test suites
is higher than the one required by WebDriver.

RQ B.2. Table 4 shows data about the test suites repairing process. In detail, the table
reports, for each application, the time required to repair the test suites (Sikuli and Web-
Driver), and the number of repaired test cases over the total number of test cases. The
WebDriver repair time is compared to the Sikuli repair time by computing the percent-
age difference between the two and by running the Wilcoxon paired test, to check for
statistical significance of the difference. Sikuli test suites required from 7 to 126 minutes
to be repaired, while WebDriver test suites required from 46 to 95 minutes. The results
are associated with the robustness of the two kinds of locators (RQ A.2) employed by
the two tools and thus follow the same trend: in four cases out of six, repairing of the

Table 4. Test Suites Maintenance

Time
Minutes Minutes p-value

MantisBT 76 37 / 41 95 + 25% 0.04 32 / 41
PPMA 112 20 / 23 55 - 51% < 0.01 17 / 23
Claroline 71 21 / 40 46 - 35% 0.30 20 / 40
Address Book 126 28 / 28 54 - 57% < 0.01 28 / 28
MRBS 108 21 / 24 72 - 33% 0.02 23 / 24
Collabtive 7 4 / 40 79 + 1029% < 0.01 23 / 40

Sikuli API WebDriver
Test

Repaired
Time Test

Repaired

Visual vs. DOM-Based Web Locators: An Empirical Study 333

Table 5. Test Suites Execution

Mean
Seconds Absolute Relative Seconds p-value Absolute Relative

MantisBT 41 2774 60 2,2% 1567 - 43% < 0.01 70 4,5%
PPMA 23 1654 12 0,7% 924 - 44% < 0.01 35 3,8%
Claroline 40 2414 34 1,4% 1679 - 30% < 0.01 99 5,9%
Address Book 28 1591 19 1,2% 977 - 39% < 0.01 106 10,9%
MRBS 24 1595 19 1,2% 837 - 48% < 0.01 54 6,5%
Collabtive 40 2542 72 2,8% 1741 - 31% < 0.01 59 3,4%

Number
of Test
Cases

Meanσ σ
WebDriverSikuli API

WebDriver test suites required less time (from 33% to 57% less) than Sikuli. In one
case (i.e., MantisBT), the WebDriver test suite required slightly more time (25% more)
to be repaired than the corresponding Sikuli test suite. In another case (i.e., Collabtive),
WebDriver required a huge amount of time for test suite repairment with respect to the
time required by Sikuli (about 10x more time with WebDriver where, as seen before,
we have about 10x more locators to repair). According to the Wilcoxon paired test, the
difference in test suite evolution time between Sikuli and WebDriver is statistically sig-
nificant (at α = 0.05) for all test suites (sometimes in opposite directions) except for
Claroline (see Table 4). Note that, the maintenance effort is almost entirely due to repair
the broken locators (i.e., structural changes) and minimally to modifications to the test
cases logic (i.e., logical changes). Indeed, during maintenance, we have approximately
modified only the 1% of the LOCs composing the test suites in order to address logical
changes of the Web apps. Very often the modifications were exactly the same for both
the approaches (i.e., Visual and DOM-based). To summarise, with respect to RQ B.2,
the result is not clear-cut. For four out of six considered applications, the effort involved
in the evolution of the Sikuli test suites, when a new release of the software is produced,
is higher than with WebDriver, but in two cases the opposite is true.

RQ B.3. Table 5 shows data about the time required to execute the test suites. For
both tools we report: the mean execution time, computed on 10 replications of each
execution; the standard deviation (absolute and relative); the difference in percentage
between the time required by the Sikuli test suites and the WebDriver test suites; and, the
p value reported by the Wilcoxon paired test, used to compare Sikuli vs. WebDriver’s
execution times. Execution times range from 1591s to 2774s for Sikuli and from 837s
to 1741s for WebDriver. In all the cases, the WebDriver test suites required less time to
complete their execution (from -30% to -48%). According to the Wilcoxon paired test,
the difference is statistically significant (at α = 0.05) for all test suites. To summarise,
with respect to the research question RQ B.3 the time required to execute the Sikuli
test suites is higher than the execution time of WebDriver for all the six considered
applications.

3.6 Qualitative Results

In this section, we discuss on the factors behind the results presented in the previous
section, focusing more on the ones that are related to the two approaches and, for space
reasons, less on the factors related to the specific tools used:

Web Elements Changing Their State. When a Web element changes its state (e.g., a
check box is checked or unchecked, or an input field is emptied or filled), a visual loca-

334 M. Leotta et al.

tor must be created for each state, while with the DOM-based approach only one locator
is required. This occurred in all the six Sikuli test suites and it is one of the reasons why,
in all of them, we have more locators than in the WebDriver test suites (see RQ A.1
and Table 2). As a consequence, more effort both during the development (RQ B.1) and
maintenance (RQ B.2) is required in the case of Sikuli test suites (more than one locator
had to be created and later repaired for each Web element, RQ A.2). For instance, in
MRBS, when we tested the update functionality for the information associated with a
room reservation, we had to create two locators for the same check box (corresponding
to the slot: Monday from 9:00 to 10:00) to verify that the new state has been saved
(e.g., from booked, checked, to available, unchecked). Similarly, in Collabtive, we had
to verify the changes in the check boxes used to update the permissions assigned to the
system users.

Changes behind the Scene. Sometimes it could happen that the HTML code is modi-
fied without any perceptible impact on how the Web app appears. An extreme example
is changing the layout of a Web app from the “deprecated” table-based structure to
a div-based structure, without affecting its visual aspect in any respect. In this case,
the vast majority of the DOM-based locators (in particular the navigational ones, e.g.,
XPath) used by DOM-based tools may be broken. On the contrary, this change is almost
insignificant for visual test tools. A similar problem occurs when auto-generated ID lo-
cators are used (e.g., id1, id2, id3, ... , idN) by DOM-based locators. In fact, these tend
to change across different releases, while leaving completely unaffected the visual ap-
pearance of the Web page (hence, no maintenance is required on the visual test suites).
For example, the addition of a new link in a Web page might result in a change of all
IDs of the elements following the new link [8]. Such “changes behind the scene” oc-
curred in our empirical study and explain why, in the case of Collabtive, the Sikuli test
suite has required by far a lower maintenance effort (see RQ B.2 and Table 4). In detail,
across the two considered releases, a minor change has been applied to almost all the
HTML pages of Collabtive: an unused div tag has been removed. This little change im-
pacted quite strongly several of the XPath locators (XPath locators were used because
IDs were not present) in the WebDriver test suite (see RQ A.2). The majority of the
36 locators (all of them are XPaths) was broken and had to be repaired (an example of
repairment is from .../div[2]/... to .../div[1]/...). No change was necessary on the Sikuli
visual test suite for this structural change. Overall, in Sikuli, we had only few locators
broken. For this reason, there is a large difference in the maintenance effort between the
two test suites. A similar change across releases occurred also in MantisBT, although it
had a lower impact in this application.

Repeated Web Elements. When in a Web page there are multiple instances of the same
kind of Web element (e.g., an input box), creating a visual locator requires more time
than creating a DOM-based one. Let us consider a common situation, consisting of a
form with multiple, repeated input fields to fill (e.g., multiple lines, each with Name,
Surname, etc.), all of which have the same size, thus appearing identical. In such cases,
it is not possible to create a visual locator using only an image of the Web element of
our interest (e.g., the repeated Name input field), but we have to: (i) include also some

Visual vs. DOM-Based Web Locators: An Empirical Study 335

context around (e.g., a label as shown in Fig. 4) in order to create an unambiguous lo-
cator (i.e., an image that matches only one specific portion of the Web page) or, when
this is not easily feasible, (ii) locate directly a unique Web element close to the input
field of interest and then move the mouse of a certain amount of pixels, in order to reach
the input field. Both solutions locate the target Web element by means of another, eas-
ier to locate, element (e.g., a label). This is not straightforward and natural for the test
developer (i.e., it requires more effort and time). Actually, both solutions are not quite
convenient. Solution (i) requires to create large image locators, including more than one
Web element (e.g., the label and the corresponding input field). On the other hand, even
if it allows to create a small locator image for only one Web element (e.g., the label), So-
lution (ii) requires to calculate a distance in pixels (similarly to 1st generation tools), not
so simple to determine. Both solutions have problems in case of variation of the relative
positions of the elements in the next releases of the application. Thus, this factor has a
negative effect on both the development and maintenance of Sikuli test suites. Repeated
Web elements occurred in all test suites. For instance, in Claroline, a form contains a set
of radio buttons used to select the course type to create. In Sikuli, localisation of these
buttons requires either Solution (i) or (ii). Similarly, in AddressBook/MantisBT, when
a new entry/user is inserted, a list of input fields, all with the same appearance, has to
be filled. In these cases, we created the Sikuli locators as shown in Fig. 4. Recently,
JAutomate (http://jautomate.com/), a commercial GUI test automation tool, provided a
different solution to this problem by mixing visual locators and position indexes. When
a visual locator selects more than one element, it is possible to use an index to select
the desired element among the retrieved ones.

Elements with Complex Interaction. Complex Web elements, such as drop-down lists
and multilevel drop-down menus, are quite common in modern Web apps. For instance,
let us consider a registration form that asks for the nationality of the submitter. Typi-
cally, this is implemented using a drop-down list containing a list of countries. A DOM-
based tool like WebDriver can provide a command to select directly an element from
a drop-down list (only one locator is required). On the contrary, when adopting the vi-
sual approach the task is much more complex. Once could, for instance: (1) locate the
drop-down list (more precisely the arrow that shows the menu) using an image locator;
(2) click on it; (3) if the required list element is not shown, locate and move the scrollbar
(e.g., by clicking the arrow); (4) locate the required element using another image loca-
tor; and, finally, (5) click on it. All these steps together require more LOCs (in the page
objects, see RQ B.1) and locators. Actually, in this case the visual approach performs
exactly the same steps that a human tester would do.

Execution Time. The execution time required by the Sikuli tool is always higher than
the one required by WebDriver (see RQ B.3 and Table 5). This was expected, since
executing an image recognition algorithm requires more computational resources (and
thus, generally, more time) than navigating the DOM. However, surprisingly, the differ-
ence in percentage between the two approaches is not high, being only 30-48%. It is
not very much considering that: (1) Sikuli is a quite experimental tool, (2) it is not fo-
cused on Web app testing and, (3) the needed manual management of the pages loading

336 M. Leotta et al.

delay (through sleep commands) we applied is not optimal3. For what concerns the
latter point, according to our estimates, the overhead due to the Web page loading de-
lay is not a major penalty for Sikuli (only 20-40 seconds per test suite) as compared
to the total processing time. Indeed, we carefully tuned the delays in order to find the
smallest required. The standard deviation (see Table 5) is always greater in the case of
WebDriver given that, sometimes, it unexpectedly and randomly stops for short periods
during test suites execution (e.g., 2-3s between two test cases).

Lesson Learnt: In the following, we report some lessons learnt during the use of the
two experimented approaches and tools:

Data-driven Test Cases. Often in the industrial practice [8], to improve the coverage
reached by a test suite, test cases are re-executed multiple times using different values.
This is very well supported by a programmable testing approach. However, benefits
depend on the specific programmable approach that is adopted (e.g., visual vs. DOM-
based). For instance, in WebDriver it is possible to use data from various sources, such
as CSV files or databases, or even to generate them at runtime. In Sikuli it is necessary to
have images of the target Web elements, so even if we can use various data sources (e.g.,
to fill input fields), when assertions are evaluated, images are still needed to represent
the expected data (see Fig. 3). For this reason, in the visual approach it is not possible
to create complete data-driven test cases (i.e., for both input and assertions). In fact,
while it is indeed possible to parameterise the usage of image locators in the assertions,
it is not possible to generate them from data. This happens because using a DOM-based
tool there is a clear separation between the locator for a Web element (e.g., an ID value)
and the content of that Web element (e.g. the displayed string), so that we can reuse the
same locator with different contents (e.g., test assertion values). On the contrary, using
a visual tool, the locator for a Web element and the displayed content are the same thing,
thus if the content changes, the locator must be also modified. Moreover, it is important
to highlight that, if necessary, parameterising the creation of DOM-based locators is
usually an easy task (e.g., .//*[@id=‘list’]/tr[X]/td[1] with X=1..n), while it is infeasible
in the visual approach. In our case study, we experienced this limitation of the visual
approach since we had, in each test suite, at least one test case that performs multiple,
repeated operations that change only in the data values being manipulated, such as:
insert/remove multiple different users, projects, addresses, or groups (depending on the
considered application). In such cases we used: (1) a single parameterized locator in
WebDriver, and (2) several different image locators in Sikuli (e.g., for evaluating the
assertions), with the effect that, in the second case, the number of locators required is
higher.

Test Case Comprehensibility. The locators used by the two approaches have often a
different degree of comprehensibility. For instance, by comparing Fig. 2 with Fig. 4,
it is clear that the visual locator pw.png (password) is much easier to understand than
the corresponding XPath locator. In fact, the visual approach works in a manner that

3 A browser needs time to open a Web page. Thus, before starting to perform actions on the page
the test automation tool has to wait. WebDriver provides specific commands to deal with this
problem (i.e., waiting for the web page loading). In Sikuli this is not available and testers have
to insert an explicit delay (e.g., Thread.sleep(200)).

Visual vs. DOM-Based Web Locators: An Empirical Study 337

is closer to humans than the DOM-based approach. In our case study, we experienced
this fact several times. For instance, during test suites maintenance, understanding why
a locator is broken is generally easier and faster with Sikuli than with WebDriver.

Test Suites Portability. If a Sikuli test suite is executed on a different machine where
the screen resolution or the font properties are different, Sikuli test cases may not work
properly. We experienced this problem two times while executing the Sikuli test suites
on two different computers: in one case because the default font size was different,
resulting in broken image locators, and in another case because the screen resolution
was lower than expected, thus more mouse scroll operations were required.

3.7 Threats to Validity

The main threats to validity that affect this study are: Construct (authors’ bias), Internal
and External validity threats.

Authors’ Bias threat concerns the involvement of the authors in manual activities con-
ducted during the empirical study and the influence of the authors’ expectations about
the empirical study on such activities. In our case, two of the authors developed the test
suites and evolved them to match the next major release of each application under test.
Since none of the authors was involved in the development of any of the tools assessed
in the empirical study, the authors’ expectations were in no particular direction for what
concerns the performance of the tools. Hence, we think that the authors’ involvement
in some manual activities does not introduce any specific bias.

Internal Validity threats concern confounding factors that may affect a dependent
variable (number of locators, number of broken locators, development, repair, and ex-
ecution time of the test suites). One such factor is associated with the approach used
to produce the test cases (i.e., the chosen functional coverage criterion). Moreover, the
variability involved in the selection of the input data and of the locators could have
played a role. To mitigate this threat, we have adopted a systematic approach and ap-
plied all known good-practices in the construction of programmable test suites. Con-
cerning RQ B.1, learning effects may have occurred between the construction of the
test suites for WebDriver and Sikuli. However, this is quite unlikely given the long
time (several months) elapsed between the development of WebDriver and Sikuli test
suites and the kind of locators (DOM-based vs. visual), which is quite different. More-
over, given the high level of similarity of the test code (in practice, only locators are
different), learning would favour Sikuli, which eventually showed lower performance
than WebDriver, so if any learning occurred, we expect that without learning the results
would be just amplified, but still in the same direction.

External Validity threats are related to the generalisation of results. The selected ap-
plications are real open source Web apps belonging to different domains. This makes
the context quite realistic, even though further studies with other applications are neces-
sary to confirm or confute the obtained results. In particular, our findings could not hold
for RIAs providing sophisticated user interactions, like, for instance, Google Maps or
Google Docs. In fact, using a visual approach it is possible to create test cases that are
very difficult (if not impossible) to realise with the DOM-based approach. For instance,
it is possible to verify that in Google Docs, after clicking the “center” button, a portion
of text becomes centred in the page, which is in practice impossible using just the DOM.

338 M. Leotta et al.

The results about number and robustness of locators used by the visual and DOM-based
approaches (RQ A.1 and RQ A.2) are not tied to any particular tool, thus we expect they
hold whatever tool is chosen in the two categories. On the other hand, the same is not
completely true for RQ B.1 and RQ B.2, where the results about the development and
maintenance effort are also influenced by the chosen tools, and different results could
be obtained with other Web testing frameworks/tools. The problem of the generalisation
of the results concerns also RQ B.3 where, for instance, employing a different image
recognition algorithm could lead to different execution times.

4 Related Works

We focus our related work discussion considering studies about test suite development
and evolution using visual tools; we also consider automatic repairment of test cases.

Several works show that the visual testing automation approach has been recently
adopted by the industry [2,6] and governmental institutions [3]. Borjesson and Feldt
in [2], evaluate two visual GUI testing tools (Sikuli and a commercial tool) on a real-
world, safety-critical industrial software system with the goal of assessing their usability
and applicability in an industrial setting. Results show that visual GUI testing tools
are applicable to automate acceptance tests for industrial systems with both cost and
potentially quality gains over state-of-practice manual testing. Differently from us, they
compared two tools both employing the visual approach and did not focus specifically
on Web app testing. Moreover, our goal (comparing visual vs. DOM-based locators) is
completely different from theirs.

Collins et al. [6], present three testing automation strategies applied in three different
industrial projects adopting the Scrum agile methodology. The functional GUI test au-
tomation tools used in these three projects were respectively: Sikuli, Selenium RC and
IDE, and Fitnesse. Capocchi et al. [3], propose an approach, based on the DEVSimPy
environment and employing both Selenium and Sikuli, aimed at facilitating and speed-
ing up the testing of GUI software. They validated this approach on a real application
dealing with medical software.

Chang et al. [4] present a small experiment to analyse the long-term reusability of
Sikuli test cases. They selected two open-source applications (Capivara and jEdit) and
built a test suite for each application (10 test cases for Capivara and 13 test cases for
jEdit). Using some subsequent releases of the two selected applications, they evaluated
how many test cases turned out to be broken in each release. The lesson drawn from this
experiment is: as long as a GUI evolves incrementally a significant number of Sikuli test
cases can still be reusable. Differently from us, the authors employed only a visual tool
(Sikuli) without executing a direct comparison with other tools.

It is well-known that maintaining automated test cases is expensive and time con-
suming (costs are more significant for automated than for manual testing [15]), and that
often test cases are discarded by software developers due to huge maintenance costs. For
this reason, several researchers proposed techniques and tools for automatically repair-
ing test cases. For instance, Mirzaaghaei et al. [12] presents TestCareAssistant (TcA),
a tool that combines data-flow analysis and program differencing to automatically re-
pair test compilation errors caused by changes in the declaration of method parameters.

Visual vs. DOM-Based Web Locators: An Empirical Study 339

Other tools for automatically repairing GUI test cases or reducing their maintenance ef-
fort have been presented in the literature [16,7,10]. Choudhary et al. [5] extended these
proposals to Web apps, presenting a technique able to automatically suggest repairs for
Web app test cases.

5 Conclusions and Future Work

We have conducted an empirical study to compare the robustness of visual vs. a DOM-
based locators. For six subject applications, two equivalent test suites have been devel-
oped respectively in WebDriver and Sikuli. In addition to the robustness variable, we
have also investigated: the initial test suite development effort, the test suite evolution
cost, and the test suite execution time. Results indicate that DOM-based locators are
generally more robust than visual ones and that DOM-based test cases can be devel-
oped from scratch at lower cost and most of the times they can be evolved at lower cost.
However, on specific Web apps (MantisBT and Collabtive) visual locators were easier
to repair, because the visual appearance of those applications remained stable across
releases, while their structure changed a lot. DOM-based test cases required a lower
execution time (due to the computational demands of image recognition algorithms
used by the visual approach), although the difference was not that dramatic. Overall,
the choice between DOM-based and visual locators is application-specific and depends
quite strongly on the expected structural and visual evolution of the application. Other
factors may also affect the testers’ decision, such as the availability/unavailability of
visual locators for Web elements that are important during testing and the presence of
advanced, RIA functionalities which cannot be tested using DOM-based locators. More-
over, visual test cases are definitely easier to understand, which, depending on the skills
of the involved testers, might also play a role in the decision.

In our future work we intend to conduct further studies to corroborate our findings.
We plan to complete the empirical assessment of the Web testing approaches by con-
sidering also tools that implement capture-replay with visual Web element localisation
(e.g., JAutomate). Finally, we plan to evaluate tools that combine the two approaches,
such as SikuliFirefoxDriver (http://code.google.com/p/sikuli-api/wiki/SikuliWebDriver),
that extends WebDriver by adding the Sikuli image search capability, combining in
this way the respective strengths.

References

1. Berner, S., Weber, R., Keller, R.: Observations and lessons learned from automated testing.
In: Proc. of ICSE 2005, pp. 571–579. IEEE (2005)

2. Borjesson, E., Feldt, R.: Automated system testing using visual GUI testing tools: A compar-
ative study in industry. In: Proc. of ICST 2012, pp. 350–359 (2012)

3. Capocchi, L., Santucci, J.-F., Ville, T.: Software test automation using DEVSimPy environ-
ment. In: Proc. of SIGSIM-PADS 2013, pp. 343–348. ACM (2013)

4. Chang, T.-H., Yeh, T., Miller, R.C.: Gui testing using computer vision. In: Proc. of CHI 2010,
pp. 1535–1544. ACM (2010)

5. Choudhary, S.R., Zhao, D., Versee, H., Orso, A.: Water: Web application test repair. In: Proc.
of ETSE 2011, pp. 24–29. ACM (2011)

340 M. Leotta et al.

6. Collins, E., Dias-Neto, A., de Lucena, V.: Strategies for agile software testing automation:
An industrial experience. In: Proc. of COMPSACW 2012, pp. 440–445. IEEE (2012)

7. Grechanik, M., Xie, Q., Fu, C.: Maintaining and evolving GUI-directed test scripts. In: Proc.
of ICSE 2009, pp. 408–418. IEEE (2009)

8. Leotta, M., Clerissi, D., Ricca, F., Spadaro, C.: Improving test suites maintainability with the
page object pattern: An industrial case study. In: Proc. of 6th Int. Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2013, pp. 108–113. IEEE (2013)

9. Leotta, M., Clerissi, D., Ricca, F., Tonella, P.: Capture-replay vs. programmable web testing:
An empirical assessment during test case evolution. In: Proc. of 20th Working Conference
on Reverse Engineering, WCRE 2013, pp. 272–281. IEEE (2013)

10. Memon, A.M.: Automatically repairing event sequence-based GUI test suites for regression
testing. TOSEM, 18(2), 4:1–4:36 (2008)

11. Mirzaaghaei, M.: Automatic test suite evolution. In: Proc. of ESEC/FSE 2011, pp. 396–399.
ACM (2011)

12. Mirzaaghaei, M., Pastore, F., Pezze, M.: Automatically repairing test cases for evolving
method declarations. In: Proc. of ICSM 2010, pp. 1–5. IEEE (2010)

13. Ricca, F., Tonella, P.: Testing processes of web applications. Ann. Softw. Eng. 14(1-4), 93–
114 (2002)

14. Ricca, F., Tonella, P.: Detecting anomaly and failure in web applications. IEEE MultiMe-
dia 13(2), 44–51 (2006)

15. Skoglund, M., Runeson, P.: A case study on regression test suite maintenance in system
evolution. In: Proc. of ICSM 2004, pp. 438–442. IEEE (2004)

16. Xie, Q., Grechanik, M., Fu, C.: Rest: A tool for reducing effort in script-based testing. In:
Proc. of ICSM 2008, pp. 468–469. IEEE (2008)

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 341–358, 2014.
© Springer International Publishing Switzerland 2014

Widget Classification
with Applications to Web Accessibility

Valentyn Melnyk1, Vikas Ashok1, Yury Puzis2,
Andrii Soviak2, Yevgen Borodin2, and I.V. Ramakrishnan2

1 Computer Science Department, Stony Brook University, Stony Brook, NY, USA
{vmelnyk,vganjiguntea}@cs.stonybrook.edu

2 Charmtech Labs LLC, 1500 Stony Brook Rd., Stony Brook, NY, USA
{yury.puzis,and.soviak,borodin,ram}@charmtechlabs.com

Abstract. Once simple and static, many web pages have now evolved into
complex web applications. Hundreds of web development libraries are provid-
ing ready-to-use dynamic widgets, which can be further customized to fit the
needs of individual web application. With such wide selection of widgets and a
lack of standardization, dynamic widgets have proven to be an insurmountable
problem for blind users who rely on screen readers to make web pages accessi-
ble. Screen readers generally do not recognize widgets that dynamically appear
on the screen; as a result, blind users either cannot benefit from the convenience
of using widgets (e.g., a date picker) or get stuck on inaccessible content (e.g.,
alert windows). In this paper, we propose a general approach to identifying or
classifying dynamic widgets with the purpose of “reverse engineering” web ap-
plications and improving their accessibility. To demonstrate the feasibility of
the approach, we report on the experiments that show how very popular dynam-
ic widgets such as date picker, popup menu, suggestion list, and alert window
can be effectively and accurately recognized in live web applications.

Keywords: web applications, reverse engineering, widget classification, widget
localization, dynamic widgets, screen reader, web accessibility, ARIA.

1 Introduction

The Web has permeated many aspects of our lives; we use it to obtain and exchange
information, shop, pay bills, make travel arrangements, apply for college or employ-
ment, connect with others, participate in civic activities, etc. A 2012 report by the
Internet World Stats shows that Internet usage has skyrocketed by more than 566%
since 2000, to include over a third of the global population in 2012 (over 2.4 billion
people) [23]. However, over this time period, the Web has evolved from text-based
web pages to interactive web applications, becoming less accessible to blind people.

Many popular websites such as Blackboard, Gmail, Linked-In, Google Drive,
eBay, Kayak, YouTube, etc. have turned into sophisticated web applications that util-
ize dynamic (appearing and disappearing) widgets such as dropdown menus, date
pickers, suggestion boxes, etc. to enhance user experience by adding convenient tools.

342 V. Melnyk et al.

According to the W3C definition [31], a widget (called “widget” thereafter) is de-
fined as a “discrete user interface object with which the user can interact”. Widgets
can be simple objects including standard HTML controls with a single value or opera-
tion (e.g., buttons and textboxes) or they can be complex objects (e.g., trees).

Hundreds of web development libraries and toolkits (e.g., [10, 13, 28] to mention a
few) are providing an ever growing number of ready-to-use web widgets that can be
further customized by web developers to fit the needs of individual web sites. Unfor-
tunately, the diversity of the libraries and a lack of standardization and enforcement of
W3C specifications have proven to be an insurmountable problem for blind users.

For web browsing, blind people employ screen readers (e.g., JAWS [17], Win-
dows-Eyes [33], VoiceOver [30], Dolphin [27], Sa To Go [26], NVDA [24], etc.),
which convert the Web to speech, generally ignoring layout and graphics, and reading
aloud all the textual content in web pages. Screen readers enable their users to listen
to and navigate web content sequentially in the order it is laid out in the HTML
source code, which often does not correspond to visual layout. Screen readers provide
many shortcuts to navigate among elements of a particular type, e.g., links, buttons,
edit fields, etc. Although not very efficient for web browsing [3], screen readers ena-
ble visually-impaired people to browse the Web and perform online activities.

Unfortunately, screen readers do not recognize widgets that dynamically appear on
the screen, so the user has no easy way to find them; at best, a dynamically appearing
widget will be “navigable,” meaning that it can be found and narrated by the screen
reader, but without giving any indication as to what kind of widget it is. As a result,
blind users either cannot benefit from the convenience of using widgets (e.g., use a
date picker) or they even get stuck on inaccessible content (e.g., an HTML alert win-
dow). So, while sighted people can enjoy Rich Internet Applications (RIA), blind
people either cannot access them at all (e.g., cannot use Google Docs) or have to use
basic versions of the websites (Gmail and Facebook).

To make web applications more accessible, web developers have to follow Access-
ible Rich Internet Applications (ARIA) specifications [32]. For instance, ARIA al-
lows developers to mark up live regions where the content may update, specify the
importance of those updates, and provide simple roles such as “progress meter.” Un-
fortunately, web developers do not follow ARIA specifications consistently, and
ARIA does not have predefined roles for complex widgets such as date picker.

In this paper, we propose an ARIA-independent approach towards improving the
accessibility of dynamic widgets. Specifically, the contribution of this paper is a scal-
able machine learning approach to identification/classification of dynamic widgets.
To demonstrate the feasibility of the approach, we demonstrate high accuracy in clas-
sifying popular dynamic widgets such as date pickers, popup menus, suggestion lists,
and HTML alert windows. Sample screenshots of these widgets are shown in Fig. 1.

The identification of static widgets (the ones that are already in the web page) and
the design and evaluation of accessible user interfaces for widgets are beyond the
scope of this paper, as these have been well explored in the literature, e.g., [7, 29].

 Widg

a) Date Picke

c) Suggestion B

Fig. 1. Sample screen shots of
Alert window, c) Suggestion B

In the remainder of this p
dealing with dynamic widg
we review prior work relev
we describe the setup of t
obtained results in Section
pact view of this work and p

et Classification with Applications to Web Accessibility

er b) Alert Box

Box d) Popup Menu

f the four widget types collected in the corpus: a) Date Picker
Box, and d) Popup menu

paper, we provide some background on the complexitie
gets as well as on the specifics of using ARIA in Section
vant to widget localization and classification in Section
the experiments in Section 4; we present and discuss
5, and, finally, we conclude by providing the broader
propose future directions of research in Section 6.

343

r, b)

s of
n 2;
n 3;
the
im-

344 V. Melnyk et al.

2 Background

In order to help understand the technology behind dynamic widgets, and thus the
complexity of identifying them, we give a short overview of a variety of methods
employed for making the widgets “appear” and “disappear” in web pages. We also
provide background on how ARIA [32] can be used to mark up widgets in a way that
would make them accessible with screen readers.

2.1 Methods for Displaying Dynamic Widgets

The most straightforward approach to displaying a new widget on the screen is to use
JavaScript to insert a new sub-tree representing the widget into the HTML DOM tree.
However, in order for this newly inserted widget, or any other widget that is already a
part of the DOM tree to appear on the screen, the web developer must set a long list of
widget’s properties. Modifying any one of them can make the widget invisible or
visible for the user. The following is a non-exhaustive list of “tricks” that web devel-
opers use to make the widget “appear” or “disappear” (this list was collected from
HTML specification [16], numerous developer forums, and confirmed by observing
the behavior of hundreds of widgets in the wild):

• Coordinates can be set to a negative value (off-screen) to hide a widget, and set to
a positive value to show a widget within the webpage viewport;

• Coordinates can be set to place a widget within or outside of the viewport of a
containing object, which can also be another widget;

• Dimensions of a containing object’s viewport can be set in a way that the contained
widget is hidden or shown on the screen;

• The width and height of a widget can be set to a value that would make it big
enough to be visible or make it so small that it disappears;

• The widget’s color can be set to blend in with the background or make it stand out;
• The font can be set to a human-readable size or to 0 to make the textual content of

widgets appear or disappear;
• The opacity of the widget can be set to make it transparent or opaque;
• The “visibility” or “display” style of the widget can be set as desired;
• The Z-index of the widget can be set to place it behind or in front of other objects.

All these properties can be modified directly in the HTML code of the widget or
indirectly, e.g., by changing the widget’s “style” attribute. Further, some of these
properties (e.g., “display”) are inherited from ancestor DOM nodes, so adding a wid-
get as a sub-tree to the DOM will immediately result in the application of ancestor’s
properties unless they are overridden.

The code and content of widgets can be in the HTML, Cascading Style Sheets
(CSS), in JavaScript, or it can be delivered to the webpage via AJAX from the web
server. Given the variety of ways to hide and show a widget and deliver it to the web
page, the only good way to detect the appearance of dynamic widgets is by monitor-
ing the changes in the DOM tree [12], as we describe in Section 4.1.

 Widget Classification with Applications to Web Accessibility 345

2.2 Screen Readers and Accessible Rich Internet Applications (ARIA)

As the blind user is “navigating” on a webpage, screen readers maintain the virtual
cursor pointing at the currently narrated object. When dealing with widgets, screen-
readers have three main tasks: 1) allow the user to move a virtual cursor from widget
to widget, and from one atomic object on the webpage to another; 2) announce rele-
vant information at the current (new) virtual cursor position, including: textual con-
tent of the widget, semantics or purpose of the visited widget (e.g., text box, alert
window, etc.), its state (e.g., “blank”, “disabled”, etc.), and the results of user actions
affecting the widget (e.g., typed letter, selected item, etc.), and 3) announce important
changes to the webpage not localized at the current virtual cursor position.

Unfortunately, the best screen readers can only accomplish the tasks above if wid-
gets are marked up following the Accessible Rich Internet Applications standard
(ARIA) [32]. And the responsibility for making web content accessible lies entirely
on web developers most of whom take the off-the-shelf ready-to-use widgets from a
widget library. Alas, ARIA is not widely followed by web developers or even by
screen reader developers. Furthermore, due to its complexity, it is often incorrectly
implemented by web developers, which makes the accessibility problem even worse.

Making a Widget Accessible with ARIA. ARIA markup is not necessary for making
standard widgets (e.g., textbox, link, listbox, button, etc.) accessible, because screen
readers already have a long list of sophisticated hardcoded interaction rules that ena-
ble: a) virtual cursor’s movement between widgets, b) user interaction with the wid-
gets, and c) relevant announcements that are made to the user when the cursor arrives
or leaves the widget or changes its value.

For custom widgets which model the standard widgets, web developers can use the
ARIA roles, states, and properties that enable the screen reader to map the custom
widget to a standard widget and activate corresponding hardcoded rules. For example,
a checked checkbox implemented using JavaScript and html tag “div” can be marked
up with attributes role=“checkbox” and aria-checked=“true”. When the checkbox is
unchecked, the author needs to use JavaScript to set aria-checked=“false”.

For custom widgets that model a combination of standard widgets web authors can
use a complex combination of ARIA roles, states and properties. ARIA authoring
practices can be found in [19], and a good overview of accessible widgets in [21].

For custom widgets that, due to their functional complexity or uniqueness, cannot
be mapped to any standard widget (e.g., calendar), web developers need to: a) inform
the screen-reader that this is a custom widget without explicit mapping to a standard
widget by specifying the widget’s role as “application”; b) process relevant keyboard
commands, including those that would normally be handled by the screen-reader (e.g.,
arrow keys), and map those keys to the widget’s functionality; c) if the widget con-
sists of multiple interactive components (e.g., a grid with editable grid cells), the web
author needs to assign some shortcuts to move the browser’s focus between all those
components (this will hint the screen-reader to follow the focus with the virtual cur-
sor, and narrate the relevant content).

346 V. Melnyk et al.

To announce changes to the webpage not localized at the current virtual cursor po-
sition the authors can use ARIA Live Regions; designated by attribute “live”, it can be
set to one of four politeness levels (“off”, “polite”, “assertive”, “rude”) determining
the urgency (importance) of the changes in the region. The attribute “relevant” is used
to set the relevance of specific types of DOM changes within the live region.

The Problems with Using ARIA. Using standard widgets or a custom implementa-
tion of standard widgets enables the screen-reader to implement a powerful, accessi-
ble interface to a very limited set of widgets. This requires no or little overhead for the
web developer, but, in case of custom widgets, this often depends on the diligence in
assigning roles and dynamically modifying attributes as a result of user interactions.

Using a complex combination of ARIA roles and states to implement a single
widget has the potential to expand the range of functionality and types of widgets
supported by the screen-readers. However, this approach requires advanced under-
standing of ARIA by the developer, increases cost of implementation and support,
depends on advanced support of ARIA by screen-readers, which is not yet available
for the full ARIA specification, and is limited by the scope of ARIA specifications
that do not cover all possible types of functionality. As a result, the use of ARIA in
complex widgets (e.g., date picker, etc.) to make them accessible is not widely used.

The use of the “application” role in combination with JavaScript code for
processing keyboard events and controlling browser focus has the potential to enable
even more complicated widgets than the other approaches. However, predictably, this
requires even more effort on the part of the developers than the purely ARIA ap-
proach, and, hence, this approach is not widely deployed either.

Issues with ARIA live regions, including difficulties with determining causality of
the region updates, giving developers the ability to combine technically discrete but
semantically atomic updates, handling interim updates, and providing higher-level
abstractions for web developers, are well summarized in [29].

Overcoming the Widget Accessibility Problems. In order to make a widget accessi-
ble, it needs to be first localized and identified. Once localized, the widget needs to be
enabled for screen reader interaction which can be accomplished either by injecting
ARIA into the widget components [9, 18] or by enabling the screen-reader to map the
widget (or its components) to the hardcoded interaction rules that will make this wid-
get accessible, similar to the way it is done with the standard widgets. The latter ap-
proach is both more powerful than ARIA injection (because it is not restricted by the
expressively of the ARIA specifications) and is less prone to errors since it is not
restricted by the ability of other screen-readers to correctly interpret ARIA.

In this paper, we focus on the classification or identification of dynamic widgets,
which is the first step toward making them accessible. Customizing and evaluating
user interfaces for widgets [7, 29] is not in scope of this paper. However, it is notable
that the proposed method does not limit the way widgets will be made accessible.

 Widget Classification with Applications to Web Accessibility 347

3 Related Work

Many researchers have recognized the accessibility problems caused by dynamic
content and dynamic widgets (those that dynamically appear and disappear on the
screen), as well as the deficiency of screen readers in handling this problem [1, 2, 4, 6,
8, 9, 11, 14, 18, 20]. Several approaches were proposed to make dynamic content and
widgets accessible, localize widgets, and classify the widgets into types.

3.1 Making Dynamic Widgets Accessible

The majority of the approaches described in the literature focused primarily on retro-
fitting the existing web application by adding ARIA markup [32] to the web page,
while a few attempted to provide a custom screen-reader interface.

An early approach proposed by the authors [4] enabled users to review any dynam-
ic updates on the web page using a special layered view isolating the changes. While
useful, that approach, however, did not help identify the type of changes or their im-
portance; and, without the ability to isolate and classify the type of widgets, it is im-
possible to provide a usable interface that works best with a particular widget.

For example, if a slideshow widget changes, unless the screen-reader user is on it,
it is a low priority event that should not interrupt what the user is listening to. On the
other hand, if an alert window appears, the event has to be audibly announced, screen-
reader navigation should only be available within the scope of the window, and the
text of the window needs to be read out. If a date picker appears, current date has to
be announced, and table navigation (left/right/up/down) has to be enabled in the ca-
lendar.

AxsJax [9] was one of the pioneering approaches that showed (using the example
of Google chat) how web developers can make their web applications more accessible
by injecting ARIA metadata into AJAX (Asynchronous JavaScript) responses sent
from the server to the web browser. The injection would happen on the server-side
and would have to be enabled by the web developers. However, if the developers
were motivated to make their websites accessible, they would have ARIA from the
start. So, AxsJax, does not fix the accessibility problem, but rather provides web de-
velopers with an alternative method for making their web applications accessible.

Single Structured Accessibility Stream for Web 2.0 Access Technologies
(SASWAT) [18] is a project performing the AJAX injection on a proxy server. This
releases the web developers of responsibility and puts it into the hands of the
SASWAT supporters, who would have to provide the ARIA metadata describing the
dynamic content and store it into a repository. Then, if any of the specified webpages
were loaded through the proxy, the proxy would inject the ARIA metadata into
the webpages, thus making them accessible. Of course, this approach breaks down if
the web pages are changed by the developers and it is not scalable across websites,
because any variation of a widget would require modifications of the scripts. A truly
scalable approach would require automatic widget localization and classification as
we discuss in the following section.

348 V. Melnyk et al.

3.2 Widget Localization and Classification

In [1], authors propose an approach to widget security vulnerability detection. For this
purpose, the authors locate widgets using DOM dynamic updates analyses. They track
the parts of the DOM, which were changed as a result of some user action or Java-
Script event. Later, they test identified widgets for inter change, i.e. when one widget
is updated automatically by another widget. While there is some similarity in track-
ing mutation events used in this paper, authors do not care about the types of widgets.

The approach proposed in [2] utilizes end-user-programming to enable automation
and customization of web application. Based on the selected keywords, one can build
a pattern to localize a widget on the web page, which could potentially be reused
across websites. However, this approach only works for simple widgets (search box
or a button) and requires manual effort for selected keywords for a particular widget.

Several research teams have looked into the possibility of recognizing complex
dynamic widgets. For instance, [7] has explored the possibility of detecting calendar
widgets; however, the approach was a special-case heuristic classification that de-
tected the calendar based on user interaction, which is not scalable to other widget
types.

An early attempt to classify different widgets was made in [8]. The proposed algo-
rithm analyzed webpage sources (HTML, JS, and CSS) using regular expressions to
find the display window (the area containing the widget) and then matching the con-
tent to an ontology with predefined widget features. Unfortunately, the classification
was done by constructing a hierarchy of widgets based on widget implementations in
specific libraries, which means that the classification will work only for the widgets
taken from these libraries. Also, the ontology has to be created manually, and the
approach will not be able to detect the (dis)appearance of a dynamic widget.

A more dynamic approach to desktop widget classification is proposed in [11]. The
main goal of the paper is to simplify a desktop interface and make it “visually access-
ible”. The system is built as an extension of the Prefab pixel-based recognition sys-
tem. The system recognizes some simple widgets such as “Windows 7 steal buttons”
based on the visual markers. Besides requiring compute-intensive vision based analy-
sis of the screen, unfortunately, this approach is also limited by the visual distinction
between widgets. For example, it will not able to distinguish a suggestion box from
the popup menu because both look like popups. Neither will it be able to find a widget
if it is hidden behind some other control such as a drop down menu.

In contrast, the method proposed in this paper overcomes the limitations listed
above by using a more general and lightweight approach to widget classification. It
employs machine learning to classify widgets automatically regardless of the library
they come from. Since a variety of features can be extracted from the DOM tree (Sec-
tion 4.2), the approach can classify widgets even if they are visually similar, e.g.,
based on trigger events. Furthermore, once the widgets are classified, this information
can be used either to inject ARIA metadata into the webpage or provide this informa-
tion directly to the screen reader to provide customized interaction with the widget.

The limitation of the proposed approach is that it can only identify dynamic wid-
gets that appear and disappear in web pages. However, some of the reviewed methods
[2, 8, 11] can be employed to detect static widgets that are already on the web page.

 Widget Classification with Applications to Web Accessibility 349

4 Experimental Setup

4.1 The Corpus and Widget Localization

To experiment with widgets, we collected a corpus with four types of popular widgets
(suggestion list, HTML alert window, popup window, and date picker, shown in Fig.
1) with 50 examples of each widget type. To this corpus, we added an additional 50
examples of other randomly selected widget types; we refer to this generic widget
type as “others”. The corpus was collected from widget libraries and live websites
using custom tool developed specifically for this purpose.

The data collection tool, based on the Capti Narrator (www.captivoice.com) for
Mac/Windows [5], consists of a Firefox browser extension and a Java application.
The browser extension listens to all DOM mutation events (updates), and communi-
cates them over an open socket to the Java application. Java application uses the up-
dates to construct a timeline of DOM mutations, reconstructs the DOM at any given
point of time, and displays it in a separate window, in the form of a tree. Once a web-
site with a widget has loaded, the process of collecting the data of that single widget is
semi-automatic:

1. Press a button control shortcut to start “recording” all DOM mutation events;
2. Trigger opening of the widget and wait for it to open (usually instantaneous), e.g.,

press a button opening an alert window, focus on a textbox with a date picker, etc.;
3. Press the same button to terminate the “recording” of DOM mutations;
4. Verify that the recorded DOM mutations represent the target widget;
5. Save the resulting timeline of DOM mutations into the corpus of widgets.

The recorded timeline spans the period of “recording” and includes only the events in
two sub-trees: one representing the trigger object and the other representing the wid-
get that opened as a result of the trigger; all other events are ignored. The data collec-
tion tool was designed with the following considerations in mind.

A webpage may have many scheduled DOM mutation events, so it is very impor-
tant to localize the relevant DOM mutations. While JavaScript is executed synchron-
ously in most browsers, the exact localization of the mutation events relevant to a
particular widget is an unsolved problem; multiple unrelated mutation events can
happen immediately one after another. So, automated analysis of the underlying Java-
Script would be required to understand the relationship between the user action (e.g.,
pressing a shortcut) and the system reaction (e.g., displaying a widget).

However, in practice, a heuristic approach that uses both temporal and spatial in-
formation helps minimize the risk of collecting irrelevant mutation events. Specifical-
ly, any user event such as focus change or control activation can be considered to be
the potential trigger event, starting an observation period. Any subsequent DOM mu-
tation events occurring within time t of the trigger event can be considered candidates
for the widget. If more than one DOM sub-tree has updated, the collected mutation
events can be further filtered by their spatial proximity to the trigger object.

350 V. Melnyk et al.

4.2 Features for Widget Classification

The selection of features was inspired by the observations made during a manual in-
spection of the corpus. The vector representation of features was assembled from the
features extracted from four different categories listed in Table 1. Most of the ex-
amined features are binary with the exception of the “Proportion of text nodes with
only numbers in them” and the “Number of text nodes”.

Table 1. Feature space for widget classification

Feature Description Binary

PRESENCE OF HTML TAGS & KEYWORDS

Ptable Presence of table tag <table> in the HTML associated with widget Yes

Plist
Presence of list related tags like , , etc, in the HTML asso-
ciated with widget

Yes

Ptextbox
Presence of textboxes (e.g. <input type= ”text”>) in the HTML
associated with the widget

Yes

Pname
Presence of widget name in “class” attribute of any tag in the
HTML associated with the widget

Yes

Pdate
Presence of “date” as the value of “type” attribute in any tag in the
HTML associated with the widget

Yes

Pimage
Presence of an image () in the HTML associated with the
widget

Yes

CONTEXT RELATED

Tlink Widget appears due to click of a button or link Yes

Tinput Widget appears due to a keyboard entry in an input box Yes

CHARACTERISTICS OF NODES IN WIDGET DOM SUBTREE

Ctext.num Number of text(<text>) nodes No

Ctext.prop Proportion of text (<text>) nodes containing only numbers in them No

Ctable.list
A table (<table>) or list () is present and over 80% of its con-
tent are links

Yes

DISPLAY PROPERTIES OF WIDGET

Dwidget Widget appears right below the “triggering” element Yes

 Widget Classification with Applications to Web Accessibility 351

Presence of HTML Tags and Keywords (P). Analysis of the corpus revealed that, in
some widgets, certain HTML elements are almost always present. For example, a
list of links (…) can be found with high probability in a popup
menu, a table (<table>) is likely to be present in a date picker widget to format the
calendar, and an input textbox is always a part of suggestion list. In addition to HTML
tags, attribute values can also be used to identify the widget. For example, we ob-
served that, in many cases, the “class” attribute of one of the <div> or HTML
tags contained the name of the widget (e.g., “suggestion-box”, “date-picker”, etc.).

Context-Related Features (T). The local context surrounding a widget provides
valuable information and important cues for identifying that widget. We refer to any
HTML element that causes the appearance of a widget as a “trigger”. The fact that
different widgets are triggered in different ways by different HTML elements can be
exploited to improve widget classification performance. For example, a suggestion
box is almost always triggered when a user types something in an input text box; a
menu popup appears on-screen when a user presses the corresponding button; a date
picker widget appears when the user goes in focus on the textbox, etc.

Characteristics of Nodes in Widget DOM Sub-tree (C). This set of features was
crafted after an extensive analysis of the DOM sub-trees corresponding to different
widgets in the corpus. These features strive to leverage differences in the composition
of DOM sub-trees corresponding to different widgets. For example, we observed
that the DOM sub-tree of a suggestion box contains relatively higher number of
<text> nodes compared to the DOM sub-tree of an alert box. Variation in composition
also includes the type of content stored in the DOM nodes. For example, a list in a
menu pop-up widget is likely to contain a high percentage of links, whereas a list in a
suggestion box widget is likely to contain a large number of text nodes.

Display Characteristics of Widget (D). The position of a widget on the screen pro-
vides an important cue for its classification. Specifically, we are interested in the
screen location of the widget relative to its triggering HTML element. This is based
on our observation that different widgets exhibit different display patterns relative to
their corresponding trigger. For example, in our corpus, the suggestion box widget
appeared right below the triggering input textbox 100% of the time, and the menu pop
widget always appeared either below or to the right of the corresponding triggering
button or link. This feature is especially useful to filter out “irrelevant” dynamic mu-
tations that can happen in the same time frame when the widget appears.

Having identified the salient features that could help distinguish different widgets,
we conducted experiments to identify which combination of these features with which
machine learning tools would yield the best widget classification results.

5 Experiments and Results

To conduct the experiments, we used the Weka [15] toolkit. We considered several
popular machine learning classifiers and selected the following classifiers that yielded

352 V. Melnyk et al.

the best performances: Support Vector Machine, frequently used for benchmarking,
and the J48 Decision Tree classifiers, which is a simple rule-based classifier that is
appropriate for the mostly binary widget features.

As described in the previous section, we divided the features into five thematic cat-
egories according to the type of the feature. In order not to evaluate each feature sepa-
rately, we combined the categories into five groups (Groups 1-5 in Table 2) in a way
that would allow us to evaluate the impact of each individual category on the results.
For example, Presence (P) features are absent in Group 1, Context (T) features are
absent in Group 2 and so on. Group 5 has all the feature sets, and hence the perfor-
mance of group 1-4 can be compared with Group 5 to assess the importance of the
corresponding missing feature set.

Table 2. Feature groups used for widget classification

Group Features
Group 1 Context (T) + Characteristics (C) + Display (D)

Group 2 Presence (P) + Characteristics (C) + Display (D)

Group 3 Presence (P) + Context (T) + Display (D)
Group 4 Presence (P) + Context (T) + Characteristics (C)

Group 5 Presence (P) + Context (T) + Characteristics (C) + Display (D)

Finally, we ran both classifiers on each of the five groups of features. We used 5-
fold cross validation: 200 widget examples (40 of each type) were used for training
and 50 (10 of each type) for testing, repeated 5 times with different divisions into
folds. The results of the experiments are detailed in Table 3; the winning group-
widget type combinations are in bold.

The absolute winners (J48 on Groups 4 and 5) have shaded background. As can be
seen from the averages in Table 3, SVM and J48 classifiers yielded similar perfor-
mance: SVM showed highest performance: 86% recall and precision in groups 4 and
5, while J48 won by a single percent point in both precision and recall. In all groups,
J48 was performing better than SVM on average. In general, SVM yielded slightly
better performance than J48 in identifying Date Pickers, but J48 was better at distin-
guishing Alert Boxes and Popup Menus. The absolute best performance was shown
by J48 in Groups 4 and 5, yielding precision: 87% and recall: 87%, beating the SVM
by 1% in both precision and recall.

Group 5 yielded the best average performance (Precision: 91%, Recall: 94%) when
the generic widget type “Others” was excluded from the analysis, beating Group 4
(Precision: 90%, Recall: 94%) by a narrow margin of 1% in precision. In all of the
feature groups, the average precision excluding “Others” is only slightly better than
average precision with “Others”. However, the average recall excluding “Others” is
significantly better than the overall average recall, in all of the feature groups. These
performance results demonstrate the effectiveness of our models in accurately identi-
fying the 4 core widget types considered in our work.

 Widget Classification with Applications to Web Accessibility 353

Table 3. Widget classification results, Notation: P - Precision, R - Recall, J48 - Decision Tree,
SVM - Support Vector Machine; the values in bold indicate the best performances per group

Widget Classifier
Group 1 Group 2 Group 3 Group 4 Group 5
P R P R P R P R P R

Suggestion box
SVM 0.96 0.96 0.81 0.88 0.76 0.68 0.96 0.96 0.96 0.96
J48 0.96 0.96 0.80 0.96 0.94 0.58 0.96 0.96 0.96 0.96

Alert Box
SVM 0.65 0.76 0.73 0.90 0.67 0.84 0.74 0.94 0.77 0.94
J48 0.92 0.78 0.84 0.78 0.76 0.84 0.83 0.90 0.85 0.88

Menu Popup
SVM 0.47 0.68 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
J48 0.61 0.62 0.79 0.88 0.80 0.80 0.83 0.90 0.85 0.90

Date Picker
SVM 0.98 1.00 0.98 1.00 0.61 0.64 0.98 1.00 0.97 1.00
J48 0.96 1.00 0.96 1.00 0.61 0.82 0.96 1.00 0.96 1.00

Others
SVM 0.70 0.24 0.59 0.36 0.64 0.44 0.79 0.54 0.80 0.56
J48 0.59 0.60 0.58 0.42 0.62 0.54 0.78 0.60 0.74 0.60

Overall Avg.
SVM 0.75 0.73 0.78 0.79 0.70 0.68 0.86 0.85 0.86 0.86
J48 0.81 0.79 0.79 0.81 0.75 0.72 0.87 0.87 0.87 0.87

Avg. excl. Others
SVM 0.77 0.85 0.83 0.90 0.72 0.75 0.88 0.93 0.88 0.93
J48 0.87 0.84 0.85 0.91 0.78 0.76 0.90 0.94 0.91 0.94

Group 3, missing the Characteristics (C) features had the worst results both with
the SVM (average P: 70%, R: 68%) and J48 (average P: 75%, R: 72%) classifiers.
This shows that Characteristics (C) features were very important for classification of
widgets in general. The results of both Group 1 and Group 2 are also significantly
worse than Group 5, thereby demonstrating the importance of Presence (P) and Con-
text (T) features. However, the absence of Display (D) feature (Group 4) did not
cause any significant drop in performance (compared to Group 5 containing D fea-
ture). Overall, it can be inferred from Table 3 that feature sets P, T and C are critical
for high performance, while the feature set D has minimal impact on the performance.

Notice in Table 3 that the accuracy in identifying Suggestion Boxes is heavily de-
pendent on the T and C features (there is a significant drop in performance in Groups
2 and 3 compared to Group 5), while the performance is least influenced by the P and
D features (Groups 1 and 4 yield the same performance as Group 5). Similarly, in
case of Date Pickers, the C features were seen to contribute the most towards perfor-
mance improvement compared to P, T and D features.

Table 4 lists the top discriminatory features for each widget as determined by the
SVM classifier. As expected, Tinput is the topmost predictive feature for Suggestion
Box widget since all suggestion boxes are always activated when a user types some-
thing in an input textbox (often a search box). Also, observe that the feature Pimage is
also highly predictive of Suggestion Boxes, which indicates that a lot of websites
provide suggestion boxes that contain image icons in addition to the suggested links
or text. An example of such a suggestion box is shown in Fig. 1(c).

354 V. Melnyk et al.

Table 4. Top discriminatory features as determined by the SVM classifier weights. According
to [25], high positive weights indicate high predictiability of the corresponding class.

Widget Top Discriminatory Features
Suggestion Box Tinput, Plist, Pimage, Ctable.list

Alert Box Pimage, Tinput, Ptextbox
Menu Popup Plist, Pname, Ctable.list
Date Picker Ctext.prop, Ptable, Tinput, Pname, Ctext.num, Ctable.list

It can be also seen in Table 4 that Pname is predictive of Menu Popup and Date
Picker widgets, but not the other two widgets, thereby, highlighting a difference in the
way these types of widgets are implemented with reference to CSS; compared to Alert
windows and Suggestion boxes, a higher percentage of Popup Menu and Date Picker
widgets have at least one node in their DOM sub-trees storing the corresponding wid-
get name as a class attribute. Also, as expected, Plist is a top discriminatory feature for
Menu Popup, since almost all pop-up menus contain a list of selectable items.

It can be inferred from Table 4 that overall, the features related to the DOM sub-
tree characteristics (C) are extremely useful for widget classification.. This claim is
supported by two observations: (i) Feature Group 3 yielded the lowest performance
among the feature groups as previously noted in Table 3 analysis, and (ii) 3 out of 4
classes in Table 4 have at least one top discriminatory feature belonging to this cate-
gory, e.g., Ctext.num points to variations in textual composition of different widgets.

Figure 2 depicts the decision tree (considering the entire dataset and all the fea-
tures) produced by the J48 decision tree algorithm supported by WEKA toolkit. It can
be inferred from Figure 2 that the feature Ctext.prop is the most important feature for
identifying Date Picker widget type. More specifically, the proportion of text nodes
with only numbers, in all Date Picker widgets in the dataset was above 0.21. Only one
other widget of a different type in the dataset had the value of Ctext.prop greater than
0.21 (The label ‘51/1’ of Date Picker leaf node in Figure 2 indicates that out of 51
data points placed in that group, 1 of them is incorrectly classified).

Similar inferences can be made from the decision tree in Figure 2 with respect to
other widget types. For example, it can be observed that the context feature Tinput is
critical for correctly identifying the Suggestion Box widget type. Recall that even the
SVM classifier determined Tinput to be the most discriminating feature for identifying
the Suggestion Box widget type (Table 4).

Similarly, it can be seen that Plist is the most important feature required for the ac-
curate classification of Menu Popup widget type. Also observe in Figure 2 that the
feature Pname plays an important role in identifying those Menu Popup data points that
are not covered by Plist. These observations are in accordance with the SVM results
presented in Table 4 where Plist and Pname are the top two discriminating features for
Menu Popup widget type. However, no such straightforward comparisons between
SVM and J48 decision tree results can be made with respect to the Alert box widget
type as it can be observed in Figure 2 that the Alert Box widget type relies on differ-
ent combinations of a wide variety of features for their accurate identification.

 Widget Classification with Applications to Web Accessibility 355

Fig. 2. Decision tree produced by the J48 algorithm on the entire dataset for feature group 5.
Each leaf label indicates total classified data points followed by total incorrect classifications.

The importance of each group of features is apparent from the decision tree in Fig-
ure 2, where all features except Ptable and Pdate are used for classification. The absence
of Ptable in Figure 2 is a bit surprising since Ptable was determined to be one of the top
discriminatory features for Date Picker widget type. This observation adds weight to
our earlier deduction that Ctext.prop is the single most important feature for identifying
Date Picker widgets.

6 Conclusion and Future Work

In this paper, we have proposed and evaluated a scalable method for classification of
dynamic web widgets using machine learning. The experiments on a corpus of
250 widgets showed that the decision tree learning was the most accurate machine
learning technique for identifying and distinguishing among four popular types of

356 V. Melnyk et al.

widgets: the popup menu, the HTML alert window, suggestion box, and data picker
(Fig. 1).

To date, there exists no assistive technology capable of enabling consistent and us-
able interaction with dynamic content and dynamic widgets. As was discussed in
Sections 2 and 3, the existing solutions are very limited and are inadequate given the
continuing and rapid adoption of dynamic web technologies. The ability to access the
same web applications that are available to sighted people will enable people with
vision impairments to enjoy the latest assistive technology, making them more pro-
ductive. The approach proposed in this paper is the first step towards making widgets
accessible, requiring further research and development in this direction.

While this paper handled four popular types of dynamic widgets, there are many
more types of dynamic widgets that are used more rarely, but are used nonetheless.
Although the proposed approach is scalable for more types of widgets, an extensive
dataset has to be first assembled in order to handle more types of widgets. New ap-
proaches to dynamic widget localization have to be explored and tested. A reliable
method needs to be developed for identifying static widgets that are already in the
web page as soon as it loads.

In parallel, automatically identified widgets need to be made accessible to screen
readers. While injecting ARIA (Section 3.1) may provide general accessibility to all
screen readers supporting ARIA, it is also possible to embed the method described in
this paper into a screen reader. The latter approach will allow for a more powerful
user interface that is not possible given the limited expressivity of ARIA. Longitu-
dinal user studies will have to be conducted to evaluate the usability of the user inter-
faces and verify the accuracy of the widget identification approach in the wild.

Finally, the approach proposed in this paper can find use in other web-based appli-
cation areas. For instance, widget identification can be useful in website crawling
[22], website simplification [11], and other reverse engineering of web applications.

Acknowledgements. This work was developed under a grant from the Department of
Education, NIDRR grant number H133S130028. However, contents do not represent
the policy of the Department of Education, and you should not assume endorsement
by the Federal Government. We are also grateful to our Accessibility Consultant,
Glenn Dausch, for his insightful feedback on accessibility problems with dynamic
widgets.

References

[1] Bezemer, C.-P., Mesbah, A., Deursen, A.V.: Automated security testing of web widget
interactions. In: Proceedings of the the 7th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering, pp. 81–90. ACM, Amsterdam (2009)

[2] Bolin, M., Webber, M., Rha, P., Wilson, T., Miller, R.C.: Automation and customization
of rendered web pages. In: Proceedings of the 18th Annual ACM Symposium on User In-
terface Software and Technology, pp. 163–172. ACM, Seattle (2005)

 Widget Classification with Applications to Web Accessibility 357

[3] Borodin, Y., Bigham, J.P., Dausch, G., Ramakrishnan, I.V.: More than meets the eye: a
survey of screen-reader browsing strategies. In: Proceedings of the 2010 International
Cross Disciplinary Conference on Web Accessibility (W4A), pp. 1–10. ACM, Raleigh
(2010)

[4] Borodin, Y., Bigham, J.P., Raman, R., Ramakrishnan, I.V.: What’s new?: making web
page updates accessible. In: Proceedings of the 10th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM, Halifax (2008)

[5] Borodin, Y., Sovyak, A., Dimitriyadi, A., Puzis, Y., Melnyk, V., Ahmed, F., Dausch, G.,
Ramakrishnan, I.V.: Universal and ubiquitous web access with Capti. In: Proceedings of
the International Cross-Disciplinary Conference on Web Accessibility, pp. 1–2. ACM,
Lyon (2012)

[6] Brown, A., Jay, C., Chen, A.Q., Harper, S.: The uptake of Web 2.0 technologies, and its
impact on visually disabled users. Univers. Access Inf. Soc. 11(2), 185–199 (2012)

[7] Brown, A., Jay, C., Harper, S.: Audio access to calendars. In: Proceedings of the 2010 In-
ternational Cross Disciplinary Conference on Web Accessibility (W4A), pp. 1–10. ACM,
Raleigh (2010)

[8] Chen, A., Harper, S., Lunn, D., Brown, A.: Widget Identification: A High-Level Ap-
proach to Accessibility. World Wide Web 16(1), 73–89 (2013)

[9] Chen, C.L., Raman, T.V.: AxsJAX: a talking translation bot using Google IM: bringing
Web-2.0 applications to life. In: Proceedings of the 2008 International Cross-Disciplinary
Conference on Web Accessibility (W4A). ACM, Beijing (2008)

[10] DevExpress. DevExpress Widget Library (2014), https://www.devexpress.com
(cited 2014)

[11] Dixon, M., Leventhal, D., Fogarty, J.: Content and hierarchy in pixel-based methods for
reverse engineering interface structure. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 969–978. ACM, Vancouver (2011)

[12] DOM. W3C Document Object Model (2004), http://www.w3.org/DOM/DOMTR
(cited 2010)

[13] Google. Google Web Toolkit (2014), http://gwt-ext.com/demo/ (cited 2014)
[14] Hailpern, J., Guarino-Reid, L., Boardman, R., Annam, S.: Web 2.0: blind to an accessible

new world. In: Proceedings of the 18th International Conference on World Wide Web,
pp. 821–830. ACM, Madrid (2009)

[15] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
Data Mining Software: An Update. SIGKDD Explorations (2009)

[16] HTML5. Hyper-Text Markup Language v.5.0 (2010),
http://dev.w3.org/html5/spec/ (cited 2010)

[17] JAWS. Screen reader from Freedom Scientific (2013),
http://www.freedomscientific.com/products/fs/
jaws-product-page.asp (cited 2013)

[18] Jay, C., Brown, A.J., Harper, S.: Internal evaluation of the SASWAT audio browser: me-
thod, results and experimental materials, The University of Manchester (2010)

[19] Joseph Scheuhammer, M.C.: WAI-ARIA 1.0 Authoring Practices (2013),
http://www.w3.org/TR/wai-aria-practices/ (cited 2014)

[20] Linaje, M., Lozano-Tello, A., Perez-Toledano, M.A., Preciado, J.C., Rodriguez-
Echeverria, R., Sanchez-Figueroa, F.: Providing RIA user interfaces with accessibility
properties. Journal of Symbolic Computation 46(2), 207–217 (2011)

[21] Lourdes, M.: Toward an Equal Opportunity Web: Applications, Standards, and Tools that
Increase Accessibility. In: Paloma, M., Belen, R., Ana, I. (eds.), pp. 18–26 (2011)

358 V. Melnyk et al.

[22] Mesbah, A., Bozdag, E., Deursen, A.V.: Crawling AJAX by inferring user interface state
changes. In: Proceedings of the 2008 8th International Conference on Web Engineering.
IEEE Computer Society (2008)

[23] MiniwattsMarketingGroup. Internet Usage Statistics: The Internet Big Picture World In-
ternet Users and Population Stats (2013),
http://www.internetworldstats.com/stats.htm (cited 2013)

[24] NVDA. NonVisual Desktop Access (2013), http://www.nvda-project.org/
(cited 2013)

[25] Rayson, P., Wilson, A., Leech, G.: Grammatical word class variation within the British
National Corpus sampler. Language and Computers 36(1), 295–306 (2001)

[26] SaToGo, Screen reader from Serotek (2010)
[27] SuperNova. Screen Reader from Dolphin (2013),

http://www.yourdolphin.com/productdetail.asp?id=1 (cited 2013)
[28] Telerik. Telerik Widget Library, http://www.telerik.com (cited 2014)
[29] Thiessen, P., Chen, C.: Ajax live regions: chat as a case example. In: Proceedings of the

2007 International Cross-Disciplinary Conference on Web Accessibility (W4A), pp. 7–
14. ACM, Banff (2007)

[30] VoiceOver, Screen reader from Apple (2010)
[31] W3C. Important Terms (2014), http://www.w3.org/TR/wai-aria/terms

(cited 2014)
[32] WAI-ARIA. W3C Accessible Rich Internet Applications (2013),

http://www.w3.org/TR/wai-aria (cited 2013)
[33] Window-Eyes, Screen Reader GW Micro (2010)

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 359–369, 2014.
© Springer International Publishing Switzerland 2014

(De-)Composing Web Augmenters

Sergio Firmenich1, Irene Garrigós2, and Manuel Wimmer3

1 LIFIA, Universidad Nacional de La Plata and CONICET Argentina
sergio.firmenich@lifia.info.unlp.edu.ar

2 WaKe Research, University of Alicante, Spain
igarrigos@dlsi.ua.es

3 Business Informatics Group, Vienna University of Technology, Austria
wimmer@big.tuwien.ac.at

Abstract. Immersed in social and mobile Web, users are expecting
personalized browsing experiences, based on their needs, goals, and
preferences. This may be complex since the users’ Web navigations usually
imply several (related) Web applications. A very popular technique to tackle
this challenge is Web augmentation. Previously, we presented an approach to
orchestrate user tasks over multiple websites, creating so-called procedures.
However, these procedures are not easily editable, and thus not reusable and
maintainable. In this paper, we present a complementary model-based
approach, which allows treating procedures as (de)composable activities for
improving their maintainability and reusability. For this purpose we introduce a
dedicated UML profile for Activity Diagrams (ADs) and translators from
procedures to ADs as well as back-translators to execute new compositions of
these procedures. By combining benefits of end-user development for creation
and model-driven engineering for maintenance, our approach proposes to have
the best of both worlds as is demonstrated by a case study for trip planning.

1 Introduction

The evolution of the Web is a complex and constant process. Nowadays, immersed in
social and mobile Web, users are expecting a personalized browsing experience,
which adapt to their needs, goals, and preferences. One of the main limitations of how
to adapt the application to each user is the current use of the Web. When performing a
concrete task (e.g., organizing a trip) the user normally exceeds the application’s
boundaries, visiting several (related) Web applications. In cases like these, the user
may feel a loss of context every time she navigates from one application to another,
because the new application used has no way of tracking the previous user navigation.
This missing integration, and also a lack in customization, has a deep impact in the
user’s browsing experience.

These limitations motivated the development of mash-ups tools [21] in order to merge
a set of resources that are scattered among different websites into specialized
applications. One often occurring limitation is that mash-ups are used straightforward
when most of the tasks users perform are volatile and do not require the creation of
entirely new applications. In the same context of managing existing Web applications,
another technique that has emerged is called Web augmentation [3]. Web augmentation

360 S. Firmenich, I. Garrigós, and M. Wimmer

is the activity of navigating the Web using a “layer” over the visited websites. This layer
may manipulate the original UI of existing third-party websites; in this way, users
perceive an augmented website instead of the original one. Generally, these
augmentations are performed on the client-side, once the content is delivered from the
server. Normally, users having some kind of programming skills are the ones who
develop the software artifacts that perform these augmentations. Web augmentation as a
technique may be applied with different aims; from simple presentation changes to task-
based Web integration mechanisms.

In [6] we presented an approach based on Web augmentation to orchestrate user
tasks over multiple websites. It supports flexible processes by allowing the users to
combine manual and automated tasks from a repertoire of patterns of tasks performed
over the Web, creating so-called procedures, which are persisted in XML files.
Although the tools around our previous approach allow users to record their own
procedures by-example, and subsequently edit the details; larger editions, such as
replacing several tasks with other equivalent ones or building reusable chunks, is
challenging. However, this may be often required, since several large tasks such as
planning a trip involve several smaller ones (book flights, hotel rooms, cars, etc.) and
the requirements involved change, as well as the browsed websites. If the user wants
to change a larger part of the procedure, the process order may have to be changed,
additional tasks have to be intermingled, or complete procedures have to be
substituted or executed in series. The importance of these aspects has been studied
before in the field of Web applications [13] [17]. These are also relevant issues in the
context of Web Augmentation, not only because the Web changes constantly and
consequently the scripts may stop working, but also because the same script could be
reused in several Web pages under the same domain [13].

Therefore, one challenging aspect for those approaches that support users tasks
based on Web augmentation, is the maintenance of procedures, which has associated
two dimensions: (i) how to reuse existing augmentation units in order to support
complex scenarios (i.e., how to compose them to fulfill a larger goal), (ii) how to
decompose subtasks and make them reusable chunks. In order to tackle these
challenges, this paper extends our previous work with a modeling language based on
UML Activity Diagrams (ADs) to represent the procedure’s tasks involving dedicated
transformations from procedures to activities. Models allow raising the abstraction
level and the separation from the applications functional specification [19], which
improve the reusability and maintenance of the procedures. In this way, the
maintenance of existing procedures as well as the composition of new ones based on
existing building blocks is supported by graphical modeling. By having the
transformations from activities to procedures, we are able to execute new
compositions of Web augmenters. With this approach, we combine the benefits of
end-user development for creating procedures based on Web augmentation and
model-driven engineering for maintaining Web augmenters to have the best of both
worlds as is demonstrated by a case study for trip planning.

The remainder of this paper is as follows: Section 2 briefly summarizes our previous
work on Web augmentation and introduces an example used to illustrate our approach.
Section 3 elaborates on the proposed model-based approach for representing procedures.
Section 4 discusses the state-of-the-art on Web augmentation, and finally, we conclude
with pointers to future work in Section 5.

 (De-)Composing Web Augmenters 361

2 Background

Web augmentation is used for improving the user experience in several aspects. In
particular, we have previously proposed an approach for supporting Web tasks by
supporting users with procedures [6]. Procedures are programs focused on executing
augmentation tasks when some user interaction is detected. These artifacts support
tasks involving more than one application, and also give some mechanisms for
moving information from one application to another one. In order to specify
procedures we have previously designed a DSL based on XML that defines a
procedure as a sequence of tasks. This DSL has been improved in the context of this
work. The current version of the procedures metamodel is shown in Figure 1.

Fig. 1. The metamodel of the Web Augmentation DSL

The main concepts around the DSL are explained in the following.

• There are four types of tasks:
o Primitive tasks: are based on common actions that users perform when

navigating the Web (e.g., clicking an anchor).
o Augmentation tasks: are tasks that allow the execution of a specific augmenter

developed with our underlying framework for Web augmentation [7].
o DataCollection tasks: this kind of tasks enables procedures to contemplate data

collected by users. These tasks are also strongly related to DataCollectors and
Pocket, two tools distributed with the framework supporting the procedures,
which allow users to move information among Web applications.

o Composed tasks: these tasks make possible to group other instances of tasks in
order to manage them altogether. As an example, imagine the need of
executing an augmenter each time that the user collects some information. In
this case both tasks may be grouped in order to do repetitive the whole set.

• All tasks have three properties: (i) repetition property for specifying if the task
may be executed more than once; (ii) optional property allows skipping the

362 S. Firmenich, I. Garrigós, and M. Wimmer

execution of the task; (iii) automatic property is true, then the Web augmentation
framework automatically triggers the task.

• Tasks have attributes representing information needed for the execution, e.g., if an
augmenter is applied for filling in a form and it is marked as automatic, the
augmenter needs to know which form fields are filled with which value.

• Tasks may have preconditions. Preconditions are used to decide if the task will be
executed or not according to which information is currently available. There are
two main kinds of preconditions: on the one side, preconditions about collected
data, and on the other side, preconditions about navigation history.

Our approach gives support to the end-user with visual tools, deployed as Web
browser plugins, for creating and executing procedures. Figure 2 shows the editor: a
sidebar that allows users to specify tasks into the procedure while analyzing websites.
The tool provides an assisted mode: users may record their interaction with the Web
and the corresponding tasks will be added to the procedure automatically. This mode
contemplates primitive tasks, augmentation tasks, and data collection tasks. Figure 3
shows how to edit a particular task. It allows users to specify the name, pre and post-
conditions as well as values for both properties and attributes. If some sensitive
information is saved when recording the interaction, users may remove it by editing
the corresponding task.

Fig. 2. General view of the tool Fig. 3. Edition of a single task

In order to give more insights to the real use of procedures, consider the following
example (it will be used as a running example during the rest of the paper). The
example responds to the following situation:

“Peter is going to travel to Paris for vacation. In that context, he has to buy
flights from his town to there, and also book a taxi from the airport to
downtown. For accomplishing these tasks, he uses different websites, e.g.,
expedia.com and wecab.com. In each of these two subtasks, Peter has to
enter the same information. Besides booking flights and taxi, Peter is also
interested in getting touristic information about Paris and nearby areas”.

 (De-)Composing Web Augmenters 363

In scenarios like this, users may take advantage of using Web augmentation
approaches, since these may support users on moving relevant information from one
application to other while using this information for executing augmenters in the
visited websites. It is important to note that not only each augmenter is configurable
(even replaceable by other similar ones) but also the subtasks (book flight or book
taxi) may be also reordered and replaced according with the user’s interest. Also the
information used for performing the tasks (both primitive and augmentation tasks)
may vary in distinct executions of the same procedure. It could be achieved by using
conceptual tags during data collection tasks. In this way, if different users prefer, for
example, different hotel’s location or airlines, the procedure can be defined for
consuming information through concept names such as “Hotel Location” or “Airline”
instead of concrete data.

Although this is a common scenario, the order used for each subtasks may vary for
different instantiations of the same scenario, when these are more complex. It may
vary even more when Web augmentation is involved, because it is desirable to allow
users to vary the augmentations applied in an easy way and to compose different
procedures to solve larger examples. Thus, we provide a complementary extension to
the end-user based development of Web augmenters, namely a model-based
maintenance approach as explained in the next section.

3 (De-)Composing Procedures – A Model-Based Perspective

In order to solve the before mentioned drawbacks, we present a model-based
approach, which allows treating procedures as composable activities. For this purpose
we introduce transformations from procedures to activities as well as back-
transformations to be able to execute new compositions of augmenters. In order to do
so, we first need to be able to represent the procedures on the model level. With this
goal in mind, we propose to use UML activity diagrams (ADs).

3.1 Model-Based Representation of Procedures

Representing procedures with ADs [16], in particular following the fUML execution
semantics proposed by the OMG [15], requires a systematic mapping between our
DSL and ADs. Here we follow existing methodologies for deriving UML profiles
from DSL metamodels [18,20]. After investigating ADs for the purpose of modeling
procedures, we identified a high overlap, although the later are, of course, more
specific as the former. The following table illustrates the identified mappings between
our DSL and ADs from a Web augmentation point of view, i.e., only the AD concepts
are shown that are corresponding to the DSL concepts.

In addition to the mappings, to explicitly represent the specifics of Web
augmenters (cf. Table 1 – column comments), we introduce a Web Augmentation
profile for ADs. By using this profile, we are able to provide information preserving
the transformations between the executable procedures expressed as XML files and
the corresponding ADs. This property is one of the main building blocks of our
approach to allow the continuous development on the front-end side (recording and
testing procedures) as well as on the model side (maintaining and composing

364 S. Firmenich, I. Garri

Table 1. Mapping of

procedures). Figure 4 sho
introduce a stereotype) as w
we only introduce tagged
corresponding properties in
much as possible the UML

Fig. 4. Web Augment

To summarize the syntax
the main metaclass for our
metaclass, because ADs a
contains all the elements sh
mapped to the Activity me

Web Augmentation
Procedures

UML A
Diag

Procedure Activity D

Task Activity

PrimitiveTask Activity

AugmentationTask Activity

DataCollectionTask Activity

ComposedTask Activity

Attribute Property

Precondition Constrain
(LocalPreC

Postcondition Constrain
(LocalPost

igós, and M. Wimmer

f Web Augmentation concepts to UML activity diagrams

ows the introduced stereotypes (for each meta-class
well as the extended metaclasses of UML. Please note t
values in the profile for properties of the DSL that m

n the base UML metaclasses. By this, we ensure to reuse
language and to keep the profile concise and minimal.

tation Profile – an Extension for UML Activity Diagrams

x of the developed profile, we use the Activity metaclas
extension. We map the Procedure metaclass to the Acti
are UML internally represented by a root activity t
hown within the ADs. Also the different kinds of Tasks
etaclass. Because the Activity metaclass inherits from

Activity
grams

Comments

iagram runInBackground attribute has no direct mapping to UML,
rest has direct mapping to UML

Optional, automatic, repetitive attributes have no direct mapping
to UML, rest has direct mapping to UML

May be mapped to Action metaclass, but to allow for properties,
Activity is used as metaclass

Same comment as for PrimitiveTask

Same comment as for PrimitiveTask

Activity may contain other activities by using CallBehaviorAction

Value and example attributes have no direct mapping to UML, rest
has direct mapping to UML

t
Condition)

Precondition subclasses have no direct mapping to UML

t
tCondition)

Postcondition subclasses have no direct mapping to UML

we
that

miss
e as

s as
ivity
that
are
the

Classifier metaclass in UM
required for reflecting the A
may also be nested, by us
another activity from a con
concept of the Web Augme

Moreover, we extend th
Attribute metaclass of the
definition of an actual valu
the Constraint metaclass of
and post-condition types co

Concerning the semantic
sequence of tasks, by definin
of tasks involved in a proce
also exploit other control
conditions, etc. However, t
version of the Web augment
representation on the executi
the data flow, i.e., to repres
DSL, by making use of the
using this type of links, we a
that are set externally before
values after the execution of
may have input and output p
Pins are a powerful modelin
pins, input pins may be defin
for a given pin) for the exec
data exchange between two a

Fig. 5. Procedur

Fig. 6. Compo

(De-)Composing Web Augmenters

L, activities may contain properties. This is exactly wha
Attribute concept of Tasks. Besides these aspects, activi
sing the CallBehaviourAction that is also able to trig
ntext activity. By this, we can simulate the CompositeT
entation DSL.
he metaclass Property with a stereotype to represent

DSL and to introduce additional attributes to allow
ue and an example value for properties. Finally, we ext
f UML with specific stereotypes to reflect the specific p

ontemplated in our DSL.
cs of ADs, we consider an explicit control flow, normall
ng control flow links. This is quite analogue to the seque

edure and the information flow among these. In addition,
l structure possibilities of ADs such as parallelizat
these constructs are not explicitly available in the curr
tation DSL and thus, have to be compiled to a more verb
ion level. In addition to the control flow, we explicitly mo
ent the pocket and data collectors of the Web augmentat
 object flow links supported by UML activity diagrams.
are able to connect activity parameter nodes, i.e., parame
e calling a certain activity as well as parameters that prov
f an activity to its environment, with so called pins. Activi
pins that represent input and output parameters, respectiv
ng concept in UML, e.g., by setting the multiplicity of in
ned as mandatory or optional (i.e., a value is available or
cution of an activity. By linking output pins with input p
activities is defined.

re OrganizeTrip in UML Activity Diagram Notation

osite Task Book Flight as UML Activity Diagram

365

at is
ities
gger
Task

the
the

tend
pre-

ly a
ence
, we
tion,
rrent
bose
odel
tion
 By

eters
vide
ities

vely.
nput

not
pins,

366 S. Firmenich, I. Garrigós, and M. Wimmer

Consider again our main example. If we take only one of the main subtasks, such as
book flights (a CompositeTask called BookFlight), an activity diagram with stereotype
«procedure» is generated (cf. Figure 5) for visualizing the execution of the sequence of
tasks as illustrated in Figure 6. In this specific case, and for reason of conciseness, we
only contemplated AugmentationTasks, but the given activity may also include several
PrimitiveTasks allowing the procedure developer to specify specific user interactions.
Again we use the CallBehaviorActions to call the primitive and augmentation tasks.

3.2 Transformation Chain: Procedures to Activities and Back Again

In order to allow for a transparent transition from Web Augmentation (WA) DSL
expressed in XML to UML activity diagrams (ADs) and back again, we implemented
a bi-directional transformation chain consisting of a set of transformations as
explained in the following paragraphs. More information on the implementation may
be found at our project website1.

Model Injection/Extraction Transformations. We developed an XML 2 WA DSL
transformation that parses the XML-based representations and produces models
conform to an Ecore-based WA DSL metamodel. In addition, we developed a WA
DSL 2 XML transformation for printing models back to executable XML code. These
transformations have been implemented in Groovy2 due to its dynamic programming
features and the support by the XmlSlurper and XmlMarkupBuilder APIs.

DSL/UML Integration Transformations. We developed a WA DSL 2 UML AD
transformation that produces UML models from WA DSL models and applies
automatically the Web augmentation profile to the UML models. In addition, we also
developed the inverse transformation that takes a profiled UML model and produces a
WA DSL model. These transformations have been implemented in ATL [11] due to
its support for EMF models as well as UML models and the possibility to deal with
profile information within the transformations.

Fig. 7. Composing Web Augmentation Tasks with Hypertext Models

3.3 Composing Web Augmenter Models and Hypertext Models

One additional benefit of having Web augmenters explicitly modeled is the possibility
to compose them with traditional Web design models such as supported by WebML,

1 https://sites.google.com/site/decomposingwebaugmenters
2 http://groovy.codehaus.org

Enter Trip
Details

NewTrip

Show
Bookings

TripSummary

«AugmentationTask»
Organize Trip

Hypertext Model

Web Augmenter Delegation

 (De-)Composing Web Augmenters 367

OO-H [10], or UWE [12]. By this, Web augmentation techniques may be used by
Web applications by delegating to pre-defined Web augmenters or Web augmenters
may be developed for a specific Web application and integrated in the hypertext
models of such applications. Consider the following example. Assume one would like
to provide for a Web application that offers specific events the possibility to book a
hotel room at an external website. Navigating to the external website with the specific
information such as place and time may be provided by the hypertext model. This
information may be passed by typical transport links transferring parameters to the
Web augmenter activity (as it is done for standard hypertext nodes) and the Web
augmenter activity may provide information of the booked hotel room back to the
hypertext model again as parameters of a transport link. In Figure 7 we show such a
composition of a hypertext model and a Web augmenter activity for the WebML
language. We leave as subject for future work the creation of Web augmenter units
for WebML based on the WebRatio inherent extension mechanism and the integration
of the profile presented in this paper with the UWE profile for modeling hypertext
models. We think this is an important line of future work to close the gap between
traditional Web modeling and Web augmentation.

4 Related Work

Several approaches for supporting Web user tasks have been created, and different
abstraction levels have been used. For example, CoScripter [1] proposes a DSL for
supporting recurrent tasks, which may be parameterized in order to alter the data used
in each step. The main idea of CoScripter is to automate some tasks by recording the
user interactions (based on DOM events) and then the script may reproduce the same
steps automatically. A similar approach, ChickenFoot [2], also proposes a DSL that
raises the abstraction level of JavaScript programs in order to emulate user behaviour
easily. However, although these approaches support slight changes in the task
processes, considerable changes over these cannot be contemplated. These tools allow
modifying end-user programs to vary the way that tasks are going to be performed,
but usually, the augmentation effect is limited to a predefined subset of possibilities.

Although we share the philosophy behind these approaches, we think that further
efforts should be made for making this kind of tools closer to the actual use of the
Web, because users navigate the Web in a volatile way, and some tasks may be
achieved in different ways (Web applications involved, data used, navigation) under
different circumstances. In previous work we have presented our approach called
procedures. Although this involves a composition of tasks where each task may be
preconditioned and parameterized, the reuse of parts of procedures related to a
particular subtask is not foreseen. All the mentioned approaches would improve
taking into account some aspects from task modelling such as HAMSTERS [14], in
which “abstract tasks” may be defined and the execution order may be more flexible.

The most related work in this context is [4], which proposed to model the user
navigation using state machines in order to create the so-called webflows. This work
defines a DSL, which allows users to specify the navigation flow as well as the data
associated with each transition. One of the main differences to our work is the fact
that [4] does not foresee the inclusion of third-party augmentations (i.e. developed by

368 S. Firmenich, I. Garrigós, and M. Wimmer

users), which again implies a limitation of augmentation effects. In our approach, this
is contemplated by the execution of augmenters [7]. Finally, [9] define a UML profile
for data mashups, but the integration with Web augmenters is not considered.

5 Conclusions and Future Work

Web augmentation is an emerging trend that allows users to improve their
experiences while navigating the Web. Several approaches have been proposed to
improve websites with different goals, from accessibility aspects over data integration
to complex user task support, which is the focus of this work.

Although there are currently several works aiming to support specific navigation
scenarios, user navigation is not always systematic as current approaches assume. In
this way, one of the main challenges in this context is to support users even under
volatile requirements. There are several other issues in the middle, such as how easy
users may define their own artifacts for these approaches. The key is to find a good
trade-off between the expressivity of the approach (what can be specified) and the
usability of the tools (how it is specified). Reaching this point is challenging, and in
this work, we aim to address a solution of maintaining procedures by using activity
diagrams, where each activity represents a relevant subtask in a more general
navigation scenario. Of course, the target users of the proposed modeling approach
may no longer be end-users, but Web engineers may decompose, recompose, and
maintain already existing Web augmenters and integrate these pieces in their
developed hypertext models. The next steps imply defining mechanisms for including
the transformations developed in this work in our Web augmentation tools and
performing experiments with different kinds of users. Since our underlying Web
augmentation framework allows tracking the user interaction, we plan to incorporate
aspect orientation concepts [8] in order to further (de)compose procedures when
cross-cutting concerns occur.

References

1. Bogart, C., Burnett, M., Cypher, A., Scaffidi, C.: End-user programming in the wild: a
field study of CoScripter scripts. In: VL/HCC, pp. 39–46 (2008)

2. Bolin, M., Webber, M., Rha, P., Wilson, T.: C. Miller R.: Automation and customization
of rendered web pages. In: UIST, pp. 163–172 (2005)

3. Díaz, O.: Understanding Web augmentation. In: Grossniklaus, M., Wimmer, M. (eds.)
ICWE Workshops 2012. LNCS, vol. 7703, pp. 79–80. Springer, Heidelberg (2012)

4. Diaz, O., De Sosa, J., Trujillo, S.: Activity fragmentation in the Web: empowering users to
support their own webflows. In: Hypertext, pp. 69–78 (2013)

5. Díaz, O., Arellano, C., Iturrioz, J.: Interfaces for Scripting: Making Greasemonkey Scripts
Resilient to Website Upgrades. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 233–247. Springer, Heidelberg (2010)

6. Firmenich, S., Rossi, G., Winckler, M.: A Domain Specific Language for Orchestrating
User Tasks Whilst Navigation Web Sites. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE
2013. LNCS, vol. 7977, pp. 224–232. Springer, Heidelberg (2013)

 (De-)Composing Web Augmenters 369

7. Firmenich, S., Winckler, M., Rossi, G., Gordillo, S.: A crowdsourced approach for
concern-sensitive integration of information across the web. JWE 10(4), 289–315 (2011)

8. Garrigós, I., Wimmer, M., Mazón, J.-N.: Weaving Aspect-Orientation into Web Modeling
Languages. In: Sheng, Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS,
vol. 8295, pp. 117–132. Springer, Heidelberg (2013)

9. Gaubatz, P., Zdun, U.: UML2 Profile and Model-Driven Approach for Supporting System
Integration and Adaptation of Web Data Mashups. In: Grossniklaus, M., Wimmer, M.
(eds.) ICWE Workshops 2012. LNCS, vol. 7703, pp. 81–92. Springer, Heidelberg (2012)

10. Gómez, J., Cachero, C., Pastor, O.: Extending a Conceptual Modelling Approach to Web
Application Design. In: Wangler, B., Bergman, L. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 79–93. Springer, Heidelberg (2000)

11. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci.
Comput. Program. 72(1-2), 31–39 (2008)

12. Koch, N., Kraus, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering - An
Approach Based on Standards. In: Web Engineering, pp. 157–191 (2008)

13. Li, J., Gupta, A., Arvid, J., Borretzen, B., Conradi, R.: The empirical studies on quality
benefits of reusing software components. In: COMPSAC, pp. 399–402 (2007)

14. Martinie, C., Palanque, P., Winckler, M.: Structuring and composition mechanisms to address
scalability issues in task models. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque,
P., Winckler, M. (eds.) INTERACT 2011, Part III. LNCS, vol. 6948, pp. 589–609. Springer,
Heidelberg (2011)

15. Object Management Group. Unified Modeling Language (UML), Superstructure, Version
2.4.1 (2011), http://www.omg.org/spec/UML/2.4.1

16. Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.0 (2011), http://www.omg.org/spec/FUML/1.0

17. Rossi, G., Schwabe, D., Lyardet, F.: Abstraction and Reuse Mechanisms in Web
Application Models. In: Mayr, H.C., Liddle, S.W., Thalheim, B. (eds.) ER Workshops
2000. LNCS, vol. 1921, p. 76. Springer, Heidelberg (2000)

18. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML. In:
ISORC, pp. 2–9 (2007)

19. Van Deursen, A., Visser, E., Warmer, J.: Model-driven software evolution: A research
agenda. In: Workshop on Model-Driven Software Evolution (2007)

20. Wimmer, M.: A semi-automatic approach for bridging DSMLs with UML. IJWIS 5(3),
372–404 (2009)

21. Yu, J., Benatallah, B., Casati, F., Florian, D.: Understanding mashup development. IEEE
Internet Computing 12(5), 44–52 (2008)

An Exploratory Study on the Relation between

User Interface Complexity and the Perceived
Quality

Seyyed Ehsan Salamati Taba1, Iman Keivanloo2, Ying Zou2,
Joanna Ng3, and Tinny Ng3

1 School of Computing, Queen’s University, Canada
2 Department of Electrical and Computer Engineering, Queen’s University, Canada

3 IBM Toronto Lab, Markham, Ontario, Canada
taba@cs.queensu.ca, {iman.keivanloo,ying.zou}@queensu.ca,

{jwng,tinny.ng}@ca.ibm.com

Abstract. The number of mobile applications has increased drastically
in the past few years. Some applications are superior to the others in
terms of user-perceived quality. User-perceived quality can be defined as
the user’s opinion of a product. For mobile applications, it can be quan-
tified by the number of downloads and ratings. Earlier studies suggested
that user interface (UI) barriers (i.e., input or output challenges) can af-
fect the user-perceived quality of mobile applications. In this paper, we
explore the relation between UI complexity and user-perceived quality
in Android applications. Furthermore, we strive to provide guidelines for
the proper amount of UI complexity that helps an application achieve
high user-perceived quality through an empirical study on 1,292 mobile
applications in 8 different categories.

1 Introduction

Mobile applications are pervasive in our society and play a vital role in our daily
lives. Users can perform similar tasks both on smartphones and PCs [1] such
as: checking e-mails or browsing the web. Due to the limitations of smartphones
(e.g., small screen size, network problems and computational power) developers
should be more careful in designing their applications on smartphones than PCs.
Developers’ negligence in the importance of UI design is one of the major reasons
for users to abandon a task on smartphone and switch to PC [2].

User-perceived quality can be defined as user’s opinion of a mobile application.
It can be quantified by the number of downloads and ratings in mobile stores. It
is important to mention that based on our definition user-perceived quality has
no relation with usability in this context. The studies conducted by Karlson et
al. [2] and Kane et al. [3] demonstrate that improper use of UI elements (e.g.,
input and output) on mobile applications increases end-user frustration. For
example, the excessive use of input fields in mobile applications negatively affect
user-perceived quality. Although mobile applications seem to be simple and easy

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 370–379, 2014.
© Springer International Publishing Switzerland 2014

Relation between UI Complexity and the Perceived Quality of Android Applications 371

to develop, these studies illustrate that designing UI for mobile applications is
not a trivial task.

Software metrics are widely used to derive guidelines for programmers. For
example, McCabe [4] defines a complexity metric for functions, and recommends
a proper implementation should hold a value below 10. Such guidelines can be
exploited either during the development process for on-the-fly recommendation
or during the quality assurance process. There exist several studies on the de-
sign patterns for UI development of mobile applications [5]. However, they do
not provide a concrete number of appropriate UI complexity for mobile applica-
tions in order to achieve high user-perceived quality. In this paper, we focus on
UI complexity and its relation with the user-perceived quality of mobile appli-
cations. Moreover, we aim to derive guidelines for UI complexity by mining the
available mobile applications on Android Market. We define seven UI complex-
ity metrics that can be calculated using static analysis. We calculate the metrics
in two different granularities: i) category, and ii) functionality of 1,292 mobile
applications. A category reflects the purpose of a group of mobile applications
(e.g., Shopping or Health) extracted from mobile stores. A functionality defines
a fine-grained capability of a mobile application (e.g., Payment or Sign in). We
observe that there exists a relation between UI complexity and user-perceived
quality of application pages (activities) belong to a similar functionality. UI
complexity is dependent on the corresponding functionality. Activities with high
user-perceived quality tend to be simpler in terms of UI complexity in general.

2 Background

In this section, we briefly talk about the architecture of Android applications.
Android applications are written in Java programming language using Android
Software Development Kit (SDK). The Android SDK compiles the code into an
Android PaKage (APK) file which is an archive file with a “.apk” extension.
One APK file contains all the content of an Android application.

Application components are the essential building blocks of an Android appli-
cation. There are four different types of application components, including ac-
tivities, services, content providers and broadcast receivers. Among those, users
only interact with activities. An Android application consists of several activ-
ities. An activity is a single, focused task that the user can do. Each activity
represents a single-screen user interface (UI). As a result, only one activity can
be in the foreground for the users to interact with.

There are two ways to declare a UI layout for an activity: i) Declaring UI
layout elements in an XML file (standard), or ii) Instantiating UI layout elements
programmatically. Our premise in this work is towards the former approach since
it is the recommended way by Android design guidelines [6]. Applications using
the latter way are excluded from our study since our analysis and data gathering
approach cannot handle them.

Every Android application has an AndroidManifest.xml (manifest) file in root
directory. It contains meta-data information of an application (e.g., the path to
the source code of activities, permissions).

372 S.E. Salamati Taba et al.

3 Study Design

3.1 Data Collection

In Android Market, there are 34 different kinds of categories from which we
analyze 8 different categories. The 8 different categories are: Shopping, Health,
Transportation, News, Weather, Travel, Finance and Social. Table 1 shows de-
scriptive statistics for different categories. In total, we study 1,292 free android
applications crawled in the first quarter of 2013.

Table 1. Summary of the characteristics of different categories

Category # Applications # Activities # Inputs # Outputs # Elements

Shopping 193 2,822 12,529 25,058 68,468

Health 286 4,129 23,232 40,330 108,366

Transportation 128 1,078 5,603 7,718 22,991

News 114 1,302 4,725 7,407 23,507

Weather 244 1,608 6,713 38,659 84,739

Travel 106 1,711 7,164 15,210 38,285

Finance 103 1,167 5,989 12,899 33,818

Social 118 1,107 4,948 7,646 24,091

Extracting User-Perceived Quality. In Android Market, users can rate ap-
plications from 1 to 5 (i.e., Low to High), and write comments. The rating
reflects the user-perceived quality of applications.However, Ruiz et al. [7] have
shown that the rating of an application reported by Android Market is not
solely a reliable quality measure. They found that 86% of the five-star appli-
cations throughout the Android Market in 2011 are applications with very few
raters (less than 10 raters). Moreover, Harman et al. [8] show that the ratings
have a high correlation with the download counts which is a key measure of
the success for mobile applications. To overcome these challenges, we measure
user-perceived quality by considering both rating and popularity factors (i.e.,
the number of downloads and raters) using Equation (1):

UPQ(A) = (
1

n
∗

n∑
j=1

log(Qj)) ∗Rating(A). (1)

Where UPQ(A) is the measured user-perceived quality for an application; A
refers to an application; n is the total number of quality attributes (i.e., the num-
ber of downloads and raters) extracted from Android Market for A. Qj shows a
quality attribute. To normalize the value of quality attributes, we used log trans-
form. Rating(A) is the rating score extracted for A from the Android Market.

3.2 Data Processing

Extracting APK Files. To extract the content and the needed information
from APKs, we use apktool [9], a tool for reverse engineering closed, binary

Relation between UI Complexity and the Perceived Quality of Android Applications 373

Android applications. It decodes APK files almost to the original form and struc-
ture. It provides the source code of the application in an intermediate “Smali”
format [10] which is an assembler for the dex format used in Android Java virtual
machine implementation.

Inspecting Decoded APK Files. Given an activity, there does not exist
any direct mapping between its source code and its UI page. To measure UI
complexity, we need to recover this linking.

Given an application, we extract the path to the source code of activities from
the manifest file. To map the activities to their corresponding XML layouts,
similar to Shirazi et al.’s work [11], we parse the source code of an activity (i.e.,
Smali file) to look for a call of the SetContentView() method, which includes an
ID to the corresponding UI XML layout file. However, this heuristic cannot map
an activity to the corresponding XML layout file if the input argument to this
method is the name of the UI XML layout file. To overcome this issue, we trace
both IDs and names.

Calculating Metrics. We parse the XML layout files to calculate different UI
metrics that is used to quantify UI complexity. We consider two sets of metrics in
different granularities (i.e., application and activity levels) as shown in Table 2.
For the application level metrics, we compute the UI complexity metrics for each
activity, and lift the metrics up to the application level by using the average
values for ANI, ANO, ANE and sum for NA. We categorize the elements as
inputs and outputs as shown in Table 3. We use input and output tags listed in
Table 3 since such elements are frequently used in Android applications [11].

Table 2. Proposed Application and Activity Level Metrics

Metric Names Description

Activity Level
NI Number of Inputs in an activity
NO Number of Outputs in an activity
NE Number of Elements in an activity

ANI Average Number of Inputs in an application
Application ANO Average Number of Outputs in an application

Level ANE Average Number of Elements in an application
NA Average Number of Activities in an application

Table 3. Input and Output Tags

Element Names

Inputs
Button, EditText, AutoCompleteTextView, RadioGroup, RadioButton
ToggleButton, DatePicker, TimePicker, ImageButton, CheckBox, Spinner

Outputs TextView, ListView, GridView, View, ImageView, ProgressBar, GroupView

Extracting Functionalities. We extract the functionalities of each mobile ap-
plication using text mining techniques. For each activity, we extract contents,
strings, labels and filenames associated to the source code of activities and their
corresponding UI XML layout files. We use two different heuristics to extract
the texts shown to a user from an activity: i) labels assigned to each element in

374 S.E. Salamati Taba et al.

the UI XML layout file, and ii) strings assigned from the source code. Finally,
we use LDA [12] to automatically extract the functionalities in each category.

4 Study Results

This section presents and discusses the results of our two research questions.

RQ1: Can our measurement approach quantify UI complexity?

Motivation. Measuring the complexity of a UI is not a trivial task. As the first
step, we evaluate if our UI complexity metrics and our measurement approach
(i.e., static analysis) can be used to quantify UI complexity. We want to answer
this concern by testing whether our UI complexity metrics can testify hypothe-
ses reported by previous different studies. A user study by Kane et al. [3] has
shown that user-perceived quality of some categories of mobile applications is
lower than the others. For example, users are reluctant to use smartphones for
shopping purposes. As a result, we aim to find out whether we can make similar
observations using our metrics and approach. If we provide evidence that our
measured metrics for quantifying UI complexity can correlate with the findings
of previous studies, we will conjecture that our proposed metrics can be used for
studies on the UI complexity of mobile applications.

Approach. For each APK file (application), we use the approach mentioned in
Section 3.2 to map the source code of activities to their corresponding UI XML
layout files. Next, to quantify UI complexity within each category (see Table 2),
we calculate four application level UI metrics (i.e., ANI, ANO, ANE and NA).
Finally, based on each metric, we observe whether the UI complexity is different
between categories. We test the following null hypothesis among categories:

H1
0 : there is no difference in UI complexity of various categories.

We perform Kruskal Wallis test [13] using the 5% confidence level (i.e., p-
value < 0.05) among categories. This test assesses whether two or more samples
are originated from the same distribution.

To testify the previous findings by Kane et al. [3], we classify our categories
based on their study into two categories: i) applications that belong to the cate-
gories with high user-perceived quality, and ii) the ones that belong to categories
with low user-perceived quality (i.e., Shopping, Health, Travel, Finance, Social).
Then, we investigate whether UI complexity is different among these two groups.
We test the following null hypothesis for these two groups:

H2
0 : there is no difference in the UI complexity of applications related to cat-

egories with high and low user-perceived quality.
We perform a Wilcoxon rank sum test [13] to evaluate H2

0 , using the 5% level
(i.e., p-value < 0.05).

Findings. Our Approach for Quantifying UI Complexity Confirms the
Findings of Previous Studies. The Kruskal Wallis test was statistically signif-
icant for each application level UI metric between different categories (Table 4)

Relation between UI Complexity and the Perceived Quality of Android Applications 375

Table 4. Kruskal-Wallis test
results for application level UI
metrics in different categories

Metric p-value

ANI 0.001148
ANO <2.2e-16
ANE <2.2e-16
NA 4.842e-05

Table 5. Wilcoxon rank sum test results for
the usage of application level UI metrics in cat-
egories with high and low user-perceived quality

Metric p-value ΔCliff

ANI 1.23e-11 -0.21
ANO 1.927e-10 -0.19
ANE 0.001 -0.10
NA 0.007 -0.05

meaning that there exists a significant difference in the UI complexity of various
categories. Moreover, there also exists a difference between the UI complexity of
applications related to categories with high and low user-perceived quality. As
shown in Table 5, there exists a significant difference in UI complexity quanti-
fied by the four studied metrics that are used to quantify the applications in the
categories of high and low user-perceived quality. Therefore, by quantifying UI
complexity of mobile applications, we found the similar findings as the earlier
user studies ([2], [3]) that UI complexity is important on user-perceived quality
of mobile applications, and it varies among different categories. Therefore, our
measurement approach based on static analysis can quantify UI complexity.

RQ2: Does UI complexity have an impact on the user-perceived
quality of the functionalities in mobile applications?

Motivation.Mobile applications have a lot of variety even in the same category.
To perform a fine-grained analysis, we cluster the activities based on their func-
tionalities. We investigate whether there is a relation between UI complexity and
the user-perceived quality among various functionalities of mobile applications.
If yes, we can provide guidelines to developers of the proper number of activity
level UI metrics required to have a high quality functionality.

Approach. For each application, we extract the corresponding activities and
their UI XML layouts (see Section 3.2). Next, to label each activity with a fine-
grained functionality, we use LDA [12] which clusters the activities (documents)
based on their functionalities (i.e., topics). In other words, for each activity, we
extract all the strings and labels shown to the users (see Section 3.2). We apply
LDA to all the activities retrieved from the existing applications in a category
to extract their corresponding functionalities.

Since mobile applications perform a limited number of functionalities, the
number of topics (i.e., K) should be small in our research context. As we are
interested in the major functionalities of applications, we empirically found that
K = 9 is a proper number for our dataset by manual labeling and analysis
of randomly selected mobile applications. We use MALLET [14] as our LDA
implementation. We run the algorithm with 1000 sampling iterations, and use
the parameter optimization provided by the tool to optimize α and β. In our
corpus, for each category, we have n activities (extracted from the applications

376 S.E. Salamati Taba et al.

in the corresponding category) A = {a1, ..., an}, and we name the set of our
topics (i.e., functionalities) F = {f1, ..., fK}. These functionalities are different
in each category, but the number of them is the same (K = 9). For instance, f1 in
the Shopping category is about “Login” and “Sign in” functionality. However,
in the Health category, it is about “information seeking” functionality. LDA
automatically discovers a set of functionalities (i.e., F), as well as the mapping
(i.e., θ) between functionalities and activities. We use the notation θij to describe
the topic membership value of functionality fi in activity aj .

Each application (A) is consisted of several activities ({a1, a2, ..., an}), and it
has a user-perceived quality calculated by Equation (1). To compute the user-
perceived quality for each activity, we assign each activity the user-perceived
quality obtained from the application that they belong to. All the activities
from the same application acquire the same user-perceived quality. However, by
applying LDA [12] each activity acquires a weight of relevance to each function-
ality. Therefore, the user-perceived quality for an activity can originate from two
sources: i) the user-perceived quality of its corresponding application, and ii) the
probability that this activity belongs to a functionality. Moreover, we use a cut-
off threshold for θ (i.e., 0.1) that determines if the relatedness of an activity to a
functionality is important. A similar decision has been made by Chen et al. [15].
We calculate the user-perceived quality for each activity as the following:

AUPQ(aj) = θij ∗ UPQ(aj), (2)

Where AUPQ(aj) reflects the activity level user-perceived quality for activity j
(aj); θij is the probability that activity j (aj) is related to functionality i (fi);
UPQ(aj) is the user-perceived quality of the application which aj belongs to it.

For each functionality, we sort the activities based on the user-perceived qual-
ity. Then, we break the data into four equal parts, and named the ones in the
highest quartile, activities with high user-perceived quality, and the ones in the
lowest quartile, activities with low user-perceived quality. Finally, we investigate
whether there exists any difference in the distribution of activity level UI metrics
(i.e., quantifiers of UI complexity in functionality level) between activities of low
and high user-perceived quality. We test the following null hypothesis for each
activity level UI metric in each category for each functionality:

H3
0 : there is no difference in UI complexity between activities with low and

high user-perceived quality.

We perform a Wilcoxon rank sum test [13] to evaluate H3
0 . To control family-

wise errors, we apply Bonferroni correction which adjusts the threshold p-value
by dividing the number of tests (i.e., 216). There exists a statistically significant
difference, if p-value is less than 0.05/216=2.31e-04.

Findings. There is a significant difference between UI complexity of
activities with low and high user-perceived quality. For each cell of Ta-
ble 6, we report three pieces of information. Let’s consider the cell related to the
Shopping category for the first functionality (i.e., f1) which refers to “Login”
and “Sign in” functionalities, for the NI (i.e., Number of Inputs) metric. In this

Relation between UI Complexity and the Perceived Quality of Android Applications 377

Table 6. Average usage of activity level UI metrics in the activities with low and
high user-perceived quality for each functionality in each category. (p<0.0002/50�;
p<0.0002/5◦; p <0.0002+)

f1 f2 f3 f4 f5 f6 f7 f8 f9

Shopping
NI ↗2.23� ↗2.38� ↗3.92 ↗2.83� ↘3.89 ↗3.22� ↗2.53� ↘3.44� ↗2.25
NO ↗4.01� ↗3.55 ↗4.77� ↗4.92� ↘8.55 ↗5.40� ↗4.28� ↗6.27� ↗3.57
NE ↗11.13� ↗9.84� ↗16.17� ↗13.32� ↘22.80 ↗15.71� ↗11.83� ↗16.90� ↗10.00�

Health
NI ↗2.92� ↗2.01� ↘2.57� ↗3.25� ↗2.41� ↗2.54� ↘2.55 ↗3.23 ↘2.46
NO ↘4.20� ↘3.16� ↗3.22� ↗5.24� ↗2.70� ↗3.70� ↗3.78� ↗4.66� ↘3.11�

NE ↗13.41� ↘13.43� ↗10.35� ↗14.55� ↗8.32� ↗10.89� ↗10.86� ↗13.77� ↘8.95�

News
NI ↗2.63� ↘2.36� ↘3.25 ↗2.50� ↗2.21� ↗2.45� ↗3.26� ↗2.13� ↘2.47�

NO ↘3.70� ↘3.15� ↗3.50� ↘3.03� ↗3.00� ↗3.91� ↗3.58� ↗2.51� ↗3.72�

NE ↘11.66� ↘10.40� ↘11.94� ↘9.69� ↗10.06� ↗12.38� ↗12.59� ↗8.63� ↗12.75�

Transportation
NI ↘3.49� ↗4.17 ↗3.11� ↘1.77� ↘3.83� ↗4.39 ↗3.22� ↗4.09+ ↗3.78�

NO ↗2.81� ↗5.07+ ↗2.84� ↗3.35� ↘3.49� ↘4.21� ↗4.85� ↗3.53� ↘5.25◦
NE ↗10.39� ↗15.91+ ↗8.96� ↗9.44� ↗12.83� ↘12.72� ↗13.34� ↗12.70� ↘12.98�

Weather
NI ↗2.08� ↘3.33 ↗2.35 ↗1.23� ↗2.87� ↘2.04 ↗2.03� ↗3.78+ ↘3.29◦
NO ↘5.35� ↘6.17� ↗5.57� ↘11.77� ↘5.48� ↗4.23� ↗1.82� ↗6.38� ↗3.79�

NE ↘10.92� ↘16.61� ↗14.03� ↘30.97� ↗14.15� ↗8.99� ↗5.92� ↗14.65� ↗11.51�

Travel
NI ↗3.36� ↘3.81 ↗2.36� ↘3.52+ ↗3.51� ↘2.87� ↗3.64� ↗3.03� ↗2.41�

NO ↗4.22� ↗5.64� ↗2.61� ↘5.66� ↗4.77� ↘4.03� ↗4.26� ↘3.57� ↘3.21�

NE ↗12.94� ↗16.62� ↗7.78� ↘16.19� ↗14.52� ↘12.38� ↗11.94� ↘12.68� ↗10.46�

Finance
NI ↗3.38� ↘2.81� ↗3.97� ↘2.81� ↗2.40� ↗2.37� ↘4.14 ↗4.02� ↘5.29

NO ↗6.42� ↘4.59� ↘7.85� ↗6.30� ↗4.00� ↗4.01� ↗7.22� ↗5.98� ↘9.41◦
NE ↗15.90� ↘11.60� ↘21.00� ↗18.16� ↘11.24� ↗10.58� ↗18.24� ↗16.85� ↘24.77

Social
NI ↗2.77� ↘3.17� ↗2.48� ↘2.04� ↗2.96+ ↗3.02� ↗3.12� ↗2.06� ↘4.07
NO ↗4.57� ↘3.81� ↗3.86� ↗2.56� ↗3.50� ↗3.86� ↗5.38� ↗2.55� ↘6.16
NE ↗14.45� ↘14.10� ↗13.43� ↘9.39� ↗12.41� ↗14.36� ↗16.38� ↗9.35� ↘19.34

cell, first, there is a “↗” or “↘” sign which implies whether the difference for
the corresponding metric (i.e., NI) between activities with low and high user-
perceived quality is positive or negative. In this example, it is positive (“↗”)
which means that activities related to this functionality (f1) in the Shopping
category with low user-perceived quality have more complexity for NI than the
ones with high user-perceived quality. Moreover, we report the average usage of
the corresponding metric (NI) for the activities with high user-perceived quality
which is 2.23 in this example. Such average values can be used to derive software
development guidelines (e.g., McCabe [4]). Here, it implies the average number
of the corresponding activity level UI metric for high quality activities. Finally,
we report whether the difference in the usage of the corresponding metric (i.e.,
NI) is statistically significant between low quality activities and high quality
ones. In this example, the difference is statistically significant ().

As it can be seen from Table 6, we can rejectH3
0 , and conclude that there exists

a significant difference in UI complexity between activities with low and high user-
perceived quality. Furthermore, we observe that UI complexity is dependent on
the corresponding functionality and category. For some functionalities higher UI
complexity can result in a better user-perceived quality. However, in some cases
this relation is quite different. In most cases this difference is a positive number
(“↗”)meaning that lowquality activities tend to usemore activity levelUImetrics
than the high quality ones. In other words, simpler activities in terms of our used
activity level UImetrics may results in a better perceived quality by the users. Our
guidelines can be exploited by developers to use the proper UI complexity required
to have functionalities with high user-perceived quality.

378 S.E. Salamati Taba et al.

5 Threats to Validity

We now discuss the threats to validity of our study following common guidelines
for empirical studies [16].

Construct validity threats concern the relation between theory and observa-
tion. They are mainly due to measurement errors. Szydlowski et al. discuss the
challenges for dynamic analysis of iOS applications [17]. They mention that these
challenges are user interface driven. Due to such challenges, we were not able to
use dynamic analysis for mobile application UI reverse engineering for a large
scale study. In this study, our premise is based on the UI elements declared in
XML files since it is the recommended approach by Android guidelines [6].

Threats to internal validity concern our selection of subject systems, tools,
and analysis method. The accuracy of apktool impacts our results since the
extracted activity and XML files are provided by this tool. Moreover, the choice
of the optimal number of topics in LDA is a difficult task. However, through a
manual analysis approach, we found that in all categories there exist at least 9
common functionalities.

Conclusion validity threats concern the relation between the treatment and
the outcome. We paid attention not to violate assumptions of the constructed
statistical models; in particular we used non-parametric tests that do not require
any assumption on the underlying data distribution.

Reliability validity threats concern the possibility of replicating this study.
Every result obtained through empirical studies is threatened by potential bias
from data sets [18]. To mitigate these threats we tested our hypotheses over 1,292
mobile applications in 8 different categories. We chose these categories since they
contain both categories with high and low user-perceived quality, and they are
from different domains. Also, we attempt to provide all the necessary details to
replicate our study.

Threats to external validity concern the possibility to generalize our results.
We try to study several mobile applications (1,292) from different categories. Our
study analyzes free (as in “no cost”) mobile applications in 8 different categories
of the Android Market. To find out if our results apply to other mobile stores and
mobile platforms, we need to perform additional studies on those environments.

6 Conclusion

In this paper, we provided empirical evidence that UI complexity has an impact
on user-perceived quality of Android applications. To quantify UI complexity,
we proposed various UI metrics. Then, we performed a detailed case study us-
ing 1,292 free Android applications distributed in 8 categories, to investigate
the impact of UI complexity on user-perceived quality of mobile applications.
The highlights of our analysis include: i) We can quantify UI complexity based
on our measurement approach (RQ1) and ii) There is a significant difference
between UI complexity of activities with low and high user-perceived quality.
Activities with high user-perceived quality tend to use less activity level UI

Relation between UI Complexity and the Perceived Quality of Android Applications 379

metrics (i.e., simpler) than activities with low user-perceived quality. Moreover,
we derive guidelines for the proper amount of UI complexity required to have
functionalities with high user-perceived quality (RQ2).

In future work, we plan to replicate this study on more categories existing
on Android Market. Moreover, we should investigate whether our findings are
consistent among other platforms (iOS and BlackBerry).

References

1. Karlson, A.K., Meyers, B.R., Jacobs, A., Johns, P., Kane, S.K.: Working overtime:
Patterns of smartphone and pc usage in the day of an information worker. In:
PerCom (2009)

2. Karlson, A.K., Iqbal, S.T., Meyers, B., Ramos, G., Lee, K., Tang, J.C.: Mobile
taskflow in context: A screenshot study of smartphone usage. In: SIGCHI (2010)

3. Kane, S.K., Karlson, A.K., Meyers, B.R., Johns, P., Jacobs, A., Smith, G.: Ex-
ploring cross-device web use on pcs and mobile devices. In: Gross, T., Gulliksen,
J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) IN-
TERACT 2009. LNCS, vol. 5726, pp. 722–735. Springer, Heidelberg (2009)

4. McCabe, T.: A complexity measure. IEEE Transactions on Software Engineer-
ing SE-2(4), 308–320 (1976)

5. Nilsson, E.G.: Design patterns for user interface for mobile applications. Advances
in Engineering Software 40(12), 1318–1328 (2009)

6. Android guidelines (April 2014),
http://developer.android.com/guide/developing/building/index.html

7. Mojica Ruiz, I.J.: Large-scale empirical studies of mobile apps. Master’s thesis,
Queen’s University (2013)

8. Harman, M., Jia, Y., Zhang, Y.: App store mining and analysis: Msr for app stores.
In: MSR (2012)

9. apktool, http://code.google.com/p/android-apktool/
10. smali, http://code.google.com/p/smali/
11. Sahami Shirazi, A., Henze, N., Schmidt, A., Goldberg, R., Schmidt, B., Schmauder,

H.: Insights into layout patterns of mobile user interfaces by an automatic analysis
of android apps. In: SIGCHI (2013)

12. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The J. of Machine
Learning Research 3, 993–1022 (2003)

13. Sheskin, D.J.: Handbook of parametric and nonparametric statistical procedures.
CRC Press (2003)

14. McCallum, A.K.: Mallet: A machine learning for language toolkit (2002),
http://mallet.cs.umass.edu

15. Chen, T.-H., Thomas, S.W., Nagappan, M., Hassan, A.E.: Explaining software
defects using topic models. In: MSR (2012)

16. Yin, R.K.: Case study research: Design and methods, vol. 5. Sage (2009)
17. Szydlowski, M., Egele, M., Kruegel, C., Vigna, G.: Challenges for dynamic analysis

of ios applications. In: iNetSec (2012)
18. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn

defect predictors. IEEE Transactions on Software Engineering 33(1), 2–13 (2007)

Beyond Responsive Design:

Adaptation to Touch and Multitouch

Michael Nebeling and Moira C. Norrie

Department of Computer Science, ETH Zurich
CH-8092 Zurich, Switzerland

{nebeling,norrie}@inf.ethz.ch

Abstract. The new generation of touch devices are often used for web
browsing, but the majority of web interfaces are still not adapted for
touch and multi-touch interaction. Using an example of an existing web
site, we experiment with different adaptations for touch and multi-touch.
The goal is to inform the design of a new class of web interfaces that could
leverage gesture-based interaction to better support application-specific
tasks. We also discuss how current responsive design techniques would
need to be extended to cater for the proposed adaptations.

Keywords: responsive web design, adaptation to touch and multi-touch.

1 Introduction

Given the proliferation of touch devices, web applications in particular are in-
creasingly accessed using input modalities other than mouse and keyboard. How-
ever, to date many web sites still do not provide an interface that is optimised
for touch input, and multi-touch interaction is generally still limited to gestures
for scrolling and zooming content as interpreted by web browsers [1,2]. This pa-
per aims to show how web sites could be adapted and instead provide carefully
designed multi-touch features that are tailored to the web interface and therefore
of potential benefit when carrying out application-specific tasks.

We investigate the adaptation to touch and multi-touch as a two-layered web
design problem with a new set of technical and design challenges beyond respon-
sive design [3]. In the original proposal1, responsive web design was conceived
as a way of developing flexible web page layouts that can dynamically adapt
to the viewing environment by building on fluid, proportional grids and flexible
images. Similar to some of the techniques used to support the study presented
in this paper, this is mainly based on using CSS3 media queries for defining
breakpoints for different viewing conditions and switching styles to adapt the
layout. While responsive design is nowadays used as a broader term to describe
techniques for delivering optimised content across a wide range of devices, the
focus is still on dealing with different screen sizes, rather than adapting to differ-
ent input modalities such as touch, which is the focus of this paper. While both

1 http://alistapart.com/article/responsive-web-design

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 380–389, 2014.
c© Springer International Publishing Switzerland 2014

http://alistapart.com/article/responsive-web-design

Beyond Responsive Design: Adaptation to Touch and Multitouch 381

Fig. 1. One of the multi-touch versions we have designed and evaluated for a simple
picture tagging application similar to Facebook, here using a two-point interaction

issues come together when designing for small, mobile touch devices, we want to
separate the concerns by focusing on the adaptation to touch and multi-touch
on devices where screen size is not the primary issue.

As one example, we examine alternative designs with a number of touch en-
hancements and different multi-touch features for FBTouch, a simple picture
tagging application that we designed and gradually adapted based on the one
provided by Facebook (Fig. 1). The goal of our work is two-fold: First, we want
to identify the key issues related to touch specifically in a web context and con-
sider various aspects of web design and the adaptation of interfaces for touch
input. Second, we want to demonstrate how a new class of web interfaces with
active support for multi-touch could be designed to improve task performance
and the overall user experience on touch devices.

We begin by discussing related work and the background to our study in
the next section. We then present the different designs created for the picture
tagging application and the results of an initial user experiment. The paper
discusses the implications for designing the required forms of adaptation and
technical considerations for extending current responsive design techniques.

2 Background

Over the years, many different web design guidelines and best practices have
been developed by practitioners and experts as well as in research. For example,
several metrics to quantify usability factors such as the total word count in a
page, the number of links and media as well as the spectrum of colours and font

382 M. Nebeling and M.C. Norrie

styles have been proposed [4]. More directed guidelines such as WCAG, the Web
Content Accessibility Guidelines by W3C, consist of a set of recommendations
on making content accessible, primarily for users with visual impairments. In our
previous study, we developed a new set of metrics that address spatial factors
and the distribution of content depending on the viewing condition [5]. However,
the specifics of the new generation of touch devices have been out of scope of
this and other studies. As a matter of fact, best practices are currently mostly
driven by vendors, e.g. Apple’s iOS Human Interface Guidelines.

As for the adaptation of web interfaces to different devices, previous research
has focused on design issues with respect to small screens, e.g. [6], and fully auto-
mated methods for retargeting existing web interfaces to mobile phones [7]. For
more comprehensive techniques, research has mainly looked at different models
of user interface abstraction and model-driven approaches for generating inter-
faces adapted to different user, platform and environment contexts [8]. Although
the authoring of adaptive and multi-modal user interfaces has been the subject
of extensive research, e.g. [9], the concrete design and layout requirements have
received relatively little attention. Specifically for touch, the key adaptation tech-
niques have not been established, and studies so far have been limited to touch
without considering multi-touch [2]. Despite the increasing availability of multi-
touch web development frameworks such as jQMultiTouch [1], we are still far
from an advanced use of multi-touch gestures in web interfaces. Rather, users
currently employ simple pinch and pan gestures primarily for scrolling web pages
and navigating between them, or as a workaround, and then for dealing with low-
level issues such as precise selection of hyperlinks and other forms of active web
content that are often inappropriately sized and placed for touch.

3 FBTouch

The initial design of our FBTouch example application is based on the orig-
inal Facebook design. Rather than creating a new touch interface specifically
designed for our study, we wanted to experiment with an existing interface with
which many users are familiar, and study the effects of our adaptations. We
chose picture tagging primarily because it is a common interaction technique
for many Web 2.0 sites and current support in web interfaces is rather limited.
As challenging and beneficial as it is for multi-touch interaction, it is also an
example of a real-world task likely to be performed by users.

Common to all our FBTouch prototypes shown in Fig. 2 is the fact that users
have to select from a list of names to tag people in pictures. Apart from the fact
that this is the case in Facebook, we intentionally designed it in this way as it
requires precise selection from multiple options which is difficult if the size and
spacing of elements is too narrow for touch input. Also similar to Facebook, text
search functions are provided in all interfaces to narrow down the list of names
to only those that match the input. However, these are not necessarily needed
because of the limited amount of scrolling required to view all name tags. The
intention was not to give too much of an advantage to the mouse and keyboard

Beyond Responsive Design: Adaptation to Touch and Multitouch 383

A1/A2

C1

B

C2

Fig. 2. Different interfaces designed and compared as part of the experiment

interface since text input on a touch screen requires users to switch between the
browser and the on-screen keyboard and text input via a physical keyboard is
usually faster. The alignment of the two links, “Previous” and “Next”, next to
each other above the picture is also similar to Facebook. At the same time, it
is interesting for the purpose of our study since this alignment requires precise
selection from a horizontal set of options where padding and margin are often
less generous in web interfaces.

In the following, we will start by presenting the features of the standard
interface and then show how it was gradually adapted, focussing mostly on what
was changed between versions in terms of the tagging interaction.

The standard interface can be operated using mouse and keyboard or touch
input. The tagging interaction is started by pointing with the mouse and clicking
on people in the picture, or directly by touching the picture. This will then open
a pop-up window next to where the input occurred, showing the search field on
top and a list of names with a vertical scrollbar below. Clicking or touching the
check boxes or names in the list will tag the selected person, as indicated by the
checkmarks, or remove the tag if the name was already selected in a previous
tagging interaction. Tagging can be cancelled by pressing ESC as well as by
clicking or touching somewhere outside the pop-up window. The pop-up will
be hidden after a person was successfully tagged or if the tagging interaction
is cancelled. Pressing the “Previous” and “Next” links will navigate between

384 M. Nebeling and M.C. Norrie

pictures. Alternatively, the left and right arrow keys can be used to navigate to
the previous or next picture. We will refer to this interface as A1 for mouse and
keyboard input or A2 for touch.

Interface B uses the same tagging interaction, but in preparation for touch
input, scales text slightly larger and increases the padding and spacing for ac-
tive content areas such as links. In particular, the size of the “Next” link was
adjusted to match the touch area of the “Previous” link. While this may not be
as important for mouse input, it was considered because the touch area for the
dominant action “Next” in the standard interface is significantly smaller, sim-
ply because the text link consists of only four letters. Also, the design now uses
increased line height and spacing in the list of names, which required further
adjustments of the list’s height to have the same number of visible names. To
prevent undesired default behaviour in browsers when using touch, the interface
was further modified to disable text selection within touch-sensitive areas and
prevent users from accidentally dragging the picture when touching it. Except
for these small enhancements for touch input, the interface does not make use
of any multi-touch features yet.

Interface C1 is based on the touch enhancements from the previous interface
B, but in addition introduces a simple set of basic multi-touch gestures. These
include swipe right or left to navigate to the previous or next picture, spread
to overlay a larger version of the picture in higher quality and pinch to hide
the overlay again. The tagging interaction itself then requires two-point inter-
action with one finger touching the picture and the other a name in the list.
The order in which the touches occur determines the meaning of the interaction.
Tapping the picture at different positions while touching the same name only
changes the position of the tagging box. Tapping other names while touching
the picture overwrites the current tag with the currently selected name. Tagged
names are marked with a background colour slightly lighter than the highlight
colour, and untagging can be performed by simply tapping a marked name.
Interestingly, Windows 7 used on the TouchSmart with which the interfaces
were developed and tested, did not allow for simultaneous touches on the pic-
ture while interacting with Windows standard controls such as the list of tags.
We therefore enhanced the scrolling mechanisms of the list control to support
scrolling when users touch the picture at the same time and prevent accidental
tagging/untagging when scrolling occurred prior to the interaction.

The last interface C2 uses an alternative design of version C1 so that tagging
now requires dragging a name from the list and dropping it on a person shown
in the picture; dropping the tag outside the picture will cancel the operation.
The interface supports the simple gesture set introduced in the previous version
and additionally allows for performing multiple such drag-n-drop operations at
a time. Not to remove names from the list via drag-n-drop, we implemented a
way for touch events to be delegated to other elements that was previously not
available in browsers. We used this method to drag a thumbnail of the person’s

Beyond Responsive Design: Adaptation to Touch and Multitouch 385

photo as an intermediate representation of the original touch target. We also
developed our own event capture technique so that simultaneous dragging of two
or more photo tags using multi-finger or hand interaction can be supported. This
new interaction is further enabled by the horizontal layout of the list now placed
below the picture. Finally, the scrolling mechanisms of the previous version were
adapted for horizontal scrolling not to interfere with active dragging operations,
which required special event handling mechanisms.

We are aware of the fact that the design space for adaptations to support
touch and gesture-based interaction is very large and that the different touch
interfaces we created represent only two possible adaptations of the Facebook
interface for touch devices. Nevertheless, the intention was to make only minor
design modifications and then test their effects on users.

The first multi-touch tagging interaction using a two-point concept was de-
signed as an alternative to the pop-up window from the standard versions of
the interface as well as a simple way of employing two-touch to interact with
two interface controls at a time. The intended meaning of this interaction was
a natural mapping of pointing at somebody while calling out the name, or link-
ing elements by holding them at the same time. However, this kind of layout
that assigns rather fixed roles to hands also requires an alternative design for
left-handed users who may prefer to use their left hand for the selection task.

The design modifications for the second multi-touch interface were made to
allow users to use two hands independently and also to see whether users would
employ multi-drag to improve their performance in the picture tagging task. The
fact that this interface shows slightly more options in the list of names has two
reasons. First, pilot testing showed that users are not as comfortable with the
horizontal scroll layout and, second, it is also a countermeasure to make up for
the fact that usually one hand hides a significant portion of the list when the
tagging interaction is performed.

The swipe gestures available in both multi-touch interfaces were added to
provide users with basic gestural support also known from other multi-touch
applications. However, we intentionally kept the “Previous” and “Next” links in
the interfaces primarily to assess the gestural support as an optional feature and
make switching between them easier for users since the main navigation controls
are present in every interface. Also we were interested to see how often users
would make use of the gestures or the basic controls. Finally, the pinch/spread
gestures for zooming only the picture rather than the entire interface were added
to see whether users would appreciate an adapted zoom for the task.

The device used both for the active development as well as for user testing
was an HP TouchSmart 600-1200 with 58.4 cm (23”) screen diagonal and 16:9
wide-format screen at full HD resolution (1920x1080 pixels). The multi-touch
features were built on top of Firefox which has included support for Windows 7
touch events since Version 4. The FBTouch prototypes were implemented using
jQMultiTouch [1] and are published on the project web site2.

2 http://dev.globis.ethz.ch/fbtouch

http://dev.globis.ethz.ch/fbtouch

386 M. Nebeling and M.C. Norrie

4 User Experiment

To assess the user performance and experience of the different interfaces shown
in Fig. 2, we carried out a small lab study with 13 participants on the Touch-
Smart all-in-one computer also used for designing the interfaces. The majority
of participants were between 25 and 35 years of age and right-handed. Partici-
pants’ overall background using touch input was generally high and more than
half of them (8 people) stated that they use touch devices several times a week
to every day. The experiment consisted of performing the same simple picture
tagging task with every interface. Rather than actually connecting to Facebook
and tagging personal pictures and friends, we used a pre-defined set of pictures
and names to make for equal conditions for all participants. The order was ran-
domised and counterbalanced so that participants were not necessarily provided
with gradually more features. They were therefore given a short time to get
familiar with each interface before the actual experiment started.

The results of the user study reveal a number of interesting aspects concerning
task performance and rated user experience for the different interfaces and input
modalities that were tested. In general, one can see that participants were most
efficient using mouse and keyboard, but the touch enhancements and multi-touch
prototypes were well received by participants and helped them to achieve a better
performance on the touch screen. Also, the relatively high user experience of the
mouse and keyboard interface was only matched by the multi-touch interfaces.
In the following, we provide a brief analysis.

As for task performance, Figure 3a shows the average times required by par-
ticipants. A one-way repeated measures ANOVA found a significant effect of
time required to complete the task using the different interfaces. The mean task
completion times were best for interface A1 using mouse and keyboard. On the
other hand, the same interface using touch provided the worst performance as
participants took on average almost one minute longer to complete the task. As
a result, the differences between interfaces A1 and A2 were significant.

Quite promising when comparing interface A2 to the adapted interfaces for
touch is the fact that the relatively simple touch enhancements in interface
B already contributed to almost 15% faster task completion times. Also, the
second best mean time overall was only then achieved as participants used the
drag-n-drop multi-touch features of interface C2, which was significantly faster
compared to interface A2. The mean task completion time using interface C1
was close to B. Overall, interface C2 seemed the best version for touch and multi-
touch in terms of the time required to complete the picture tagging task, but
the differences to B and C1 were not significant.

Moreover, interface A1 showed significant differences compared to interfaces
A2, B and C1. Even though participants were on average still 9% slower with
interface C2 than using mouse and keyboard, there was no significant difference
between interfaces A1 and C2. This high suitability of interface C2 for touch
input is also underlined by the fact that participants completed the task almost
26% faster than with interface B on the touch screen. We can therefore say
that only complementing the simple touch enhancements of interface B with the

Beyond Responsive Design: Adaptation to Touch and Multitouch 387

0 50 100 150 200

A1

A2

B

C1

C2

Mean task-completion times [s]

In
te

rf
ac

e

(a) Mean task-completion times

1 2 3 4 5

A1

A2

B

C1

C2

Median perceived user experience (1=worst, 5=best)

In
te

rf
ac

e

(b) Median user experience

Fig. 3. Compared to the mouse and keyboard interface A1, only interfaces C1 and C2
with task-specific adaptations for multi-touch produced similar task-completion times
and user experience—the basic touch enhancements in B were not sufficient

multi-touch features of interface C2 helped participants to achieve accuracies
that come a lot closer to the mouse and keyboard interface A1.

In terms of user feedback, Figure 3b illustrates that interfaces A1, C1 and
C2 seemed to provide the best user experience for participants. The standard
interface A2 executed on the touch display was rated by far the lowest. While in-
terface B performed slightly better than interface C1, the user experience of the
latter was on average rated considerably higher. This supports the general rule
that faster execution times do not necessarily reflect in higher user experience.
As a matter of fact, for nearly half of participants, interface A1 with mouse and
keyboard was the fastest (6 times). Taking the touch interfaces only, interface
C2 was first (5 times), closely followed by interface B (4 times). However, when
looking at the best interfaces in terms of the user experience as rated by partic-
ipants, we are presented with a slightly different picture where interface C1 was
selected six times and interface C2 only four times.

In general, most participants felt very comfortable and fairly efficient with
the touch adaptations specifically designed for the Facebook interface. When
using the multi-touch interfaces C1 and C2, all participants but one favoured
the swipe gestures rather than clicking the “Previous” and “Next” links for
navigating between pictures. The majority of participants (10 people) also found
the tagging interactions more tangible compared to the standard interfaces, with
minor differences between the two-point interaction used in interface C1 and the
drag-n-drop interaction in interface C2, which was however not significant. For
the eight participants that effectively used the pinch/spread gestures, namely
to zoom either the entire web site in interfaces A2 and B or specifically the
picture in interfaces C1 and C2, it can be said that the adapted zoom to view
a larger version of the picture was appreciated and rated higher. Still, due to
the relatively large screen used in the study, the adapted zoom was generally
not so often requested by participants and further studies on small-form factor
devices should therefore aim to update these results. For other aspects, e.g. the
almost vertical position of the touch display or technical limitations, such as

388 M. Nebeling and M.C. Norrie

limited precision and number of touch points that can be recognised with the
TouchSmart, participants were generally neutral.

5 Observations and Implications for Design

The relatively high ratings for the user experience of the touch enhanced andmulti-
touch interfaces generally support our design decisions. One of the key factors that
contributed to the fast times using interfaceA is that precise selectionwas not an is-
sue with themouse. Some participants even stated that the interfacewas optimally
designed for mouse input because of the short distances between target elements.
On the contrary, using the same interface on the touch display, participants had
to concentrate on very precise selection and, for the nearly vertical setup that we
used, often expected the touch to be recognised much higher than it was. Hence,
we could often observe that participants developed a sort of counter technique in
generally touching the screen slightly above the targets they actually wanted to
hit, but this usually required some time to get used to. This was most often ob-
served with activating the “Previous” and “Next” links or when trying to directly
check the boxes associatedwith the listed tags rather than selecting the names. For
the simple touch enhancements that we applied to the main navigation controls as
well as the list of tags, the number of times participants missed the intended tar-
get elements on average were effectively reduced from 8 in the standard interface
A2 using touch to a consistent .08 in all touch-enhanced interfaces B, C1 and C2—
a significant improvement. As a result, the touch enhancements were sufficient to
counteract some issues related to the precise selection of content.

We have already mentioned the fact that users rated the gestures for nav-
igating between pictures relatively high. It also happened that users switched
between techniques by sometimes using gestures and sometimes referring back
to the “Previous” and “Next” links. In particular, participants found it faster
to use the links when the tagging interaction previously occurred close to them.
Web designers should therefore think of employing gestures as an alternative
way of interacting with web content, not to completely replace standard means
for interaction. This is especially important when users are already familiar with
the traditional interface on non-touch devices and frequently switch between
versions depending on the device in use, as for example in the case of Facebook.

6 Moving Forward

The study presented in this paper was driven by the current need to adapt inter-
faces for the emerging forms of multi-touch devices often used for web browsing.
We have not only demonstrated that basic adaptations for touch can already
contribute to better user experience, but also that it seems beneficial to further
adapt interfaces to multi-touch interaction. In particular, we found it practical
to start by addressing the low-level design issues first, such as the appropriate
size and position of touch areas, and then address any issues with the existing
interaction model as it is translated to a multi-touch design. We have already

Beyond Responsive Design: Adaptation to Touch and Multitouch 389

started to operationalise the key adaptation techniques used in this paper. Re-
cently, we have added initial support in a multi-touch web interface toolkit,
jQMultiTouch [1], and successfully used them as the basis for W3Touch [2], a
metrics-based interface adaptation tool for touch. Our ongoing investigations
have revealed several shortcomings of current web standards. Media queries pro-
vide a foundation for responsive design but, for the adaptations presented in
this paper, they were not sufficient. One issue is that not all device aspects
can be queried. For example, whether the TouchSmart was configured for touch
rather than mouse input cannot be detected. Also information on the number
of touch points supported by the device in use, namely two on the TouchSmart,
is not available. Given that the latest proposals for CSS4 media queries cover
only a few interaction media features, namely pointer and hover, this may not
change in the near future3. In this regard, we want to critically note the remain-
ing problem that state-of-the-art web technologies still lack common concepts
and vocabulary, let alone a unified method, for the specification of multi-device
web applications. In a related project, we have therefore investigated ways of
enhancing existing languages with powerful context-adaptive mechanisms [10].
We would hope that similar concepts will make it to the web standards and be
natively and consistently supported in future web browsers.

References

1. Nebeling, M., Norrie, M.C.: jQMultiTouch: Lightweight Toolkit and Development
Framework for Multi-touch/Multi-device Web Interfaces. In: Proc. EICS (2012)

2. Nebeling, M., Speicher, M., Norrie, M.C.: W3Touch: Metrics-based Web Page
Adaptation for Touch. In: Proc. CHI (2013)

3. Nebeling, M., Norrie, M.C.: Responsive Design and Development: Methods, Tech-
nologies and Current Issues. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013.
LNCS, vol. 7977, pp. 510–513. Springer, Heidelberg (2013)

4. Ivory, M., Megraw, R.: Evolution of Web Site Design Patterns. ACM Trans. on
Information Systems 23(4) (2005)

5. Nebeling, M., Matulic, F., Norrie, M.C.: Metrics for the Evaluation of News Site
Content Layout in Large-Screen Contexts. In: Proc. CHI (2011)

6. Findlater, L., McGrenere, J.: Impact of screen size on performance, awareness, and
user satisfaction with adaptive graphical user interfaces. In: Proc. CHI (2008)

7. Hattori, G., Hoashi, K., Matsumoto, K., Sugaya, F.: Robust Web Page Segmenta-
tion for Mobile Terminal Using Content-Distances and Page Layout Information.
In: Proc. WWW (2007)

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for Multi- Target User Interfaces. IWC 15
(2003)

9. Paternò, F., Santoro, C., Spano, L.: MARIA: A Universal, Declarative, Multiple
Abstraction-Level Language for Service-Oriented Applications in Ubiquitous En-
vironments. TOCHI 16(4) (2009)

10. Nebeling, M., Grossniklaus, M., Leone, S., Norrie, M.C.: XCML: Providing
Context-Aware Language Extensions for the Specification of Multi-Device Web
Applications. WWW 15(4) (2012)

3 http://dev.w3.org/csswg/mediaqueries-4

http://dev.w3.org/csswg/mediaqueries-4

Composing JSON-Based Web APIs

Javier Luis Cánovas Izquierdo and Jordi Cabot

AtlanMod, École des Mines de Nantes – INRIA – LINA, Nantes, France
{javier.canovas,jordi.cabot}@inria.fr

Abstract. The development of Web APIs has become a discipline that compa-
nies have to master to succeed in the Web. The so-called API economy is pushing
companies to provide access to their data by means of Web APIs, thus requiring
web developers to study and integrate such APIs into their applications. The ex-
change of data with these APIs is usually performed by using JSON, a schemaless
data format easy for computers to parse and use. While JSON data is easy to read,
its structure is implicit, thus entailing serious problems when integrating APIs
coming from different vendors. Web developers have therefore to understand the
domain behind each API and study how they can be composed. We tackle this
issue by presenting an approach able to both discover the domain of JSON-based
Web APIs and identify composition links among them. Our approach allows de-
velopers to easily visualize what is behind APIs and how they can be composed
to be used in their applications.

1 Introduction

The use and composition of different APIs is in the basis of computer programming.
Software applications have largely used APIs to access different assets such as databases
or middleware. In the last years, a new economy based on APIs has been emerging in
the web field. To be competitive, companies are not only providing attractive websites
but also useful Web APIs to access their data. Web developers have therefore to cope
with the existing plethora of web APIs in order to create new web applications.

More and more web APIs use the JavaScript Object Notation (JSON) to exchange
data (more than 47% of the APIs included in ProgrammableWeb1 return JSON data).
JSON is a schemaless data format easy for computers to parse and use. While JSON
data is easy to read, its structure is implicit, thus entailing serious problems when inte-
grating APIs coming from different vendors. In order to integrate external JSON-based
web APIs, developers have to deeply analyze them in order to understand and manage
the JSON data returned by their services. After analyzing JSON-based web APIs indi-
vidually, it is still required to identify how to map the data coming from an API to call
others since their implicit structure can differ.

Some approaches have appeared to make easier the understanding of JSON-based
APIs, but they are still under development (e.g., RAML2) or are not widely used (e.g.,
JSON Schema3 or Swagger4). Furthermore, the support for easily identifying how

1 http://www.programmableweb.com
2 http://raml.org
3 http://json-schema.org
4 http://swagger.wordnik.com

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 390–399, 2014.
c© Springer International Publishing Switzerland 2014

Composing JSON-Based Web APIs 391

JSON-based web APIs can be composed is still limited. We believe that an approach
intented to help developers to both understand and compose JSON-based web APIs
would be a significant improvement.

In a previous work [1] we shown how to discover the schema which is implicit in
JSON data. In this paper we build on that contribution to study how schemas coming
from different JSON-based web APIs can be composed. Thus, we present an approach
able to identify composition links between schemas of different APIs. This composition
information plus the API schemas are used to render a graph where paths represent API
compositions and are used to easily identify how to compose the APIs. For instance,
we illustrate one application based on generating sequence diagrams from graph paths,
where the diagram includes the API calls (and their corresponding parameters) that web
developers have to perform in order to compose one or more APIs.

The paper is structured as follows. Section 2 motivates the problem. Sections 3, 4 and
5 describe our approach to discover the domain and composition links among JSON-
based web APIs, respectively. Section 6 illustrates how our approach can be used to
compose JSON-based web APIs and Section 7 discusses additional applications. Sec-
tion 8 presents the related work and finally Section 9 concludes the paper and describes
further work.

2 Using and Composing JSON-Based Web APIs

The development of web applications usually involves the composition of different web
APIs. With the emergence of JSON-based APIs, web developers have to cope with the
lack of documentation of these APIs and, when it exists, its non-standard format. Nowa-
days it is therefore usual to devote a significant amount of time to study JSON-based
web APIs and to understand the implicit structure of the data they return. However,
this is only the beginning since once APIs have been studied, it is required to explore
how they can be composed (if possible). In this section we will show a simple example
using two JSON-based web APIs we want to compose. From now on, we will refer
JSON-based web APIs as APIs for the sake of conciseness.

Our example consists of a web application for tourists which includes a set of places
to visit in our city and shows the routes to follow to reach them. The application includes
a set of predefined places and needs to calculate the best route the user has to follow.
Furthermore, the application also visualizes the bus/tram stops throughout the route,
thus facilitating the route for old or handicapped people. Thus, we need two APIs to (1)
calculate the best route between two points and (2) discover the bus/tram stops.

To calculate routes between points we will use the Google Maps API5. In particular,
we will use the service to calculate the route to follow from a source point to a target
one, which we will refer as routeCalculation service. This service receives as inputs: (1)
the origin and (2) the destination of the route (expressed as addresses), and (3) whether
a location sensor is available. The service returns a route to follow including the bounds
and steps. Figure 1a shows an example of this service.

5 https://developers.google.com/maps

392 J.L. Cánovas Izquierdo and J. Cabot

Fig. 1. Two API calls examples: (a) the routeCalculation service from the Google Maps API and
(2) the stopPosition service from the TAN API. The input data is shown on top while the resulting
JSON is listed below. For the sake of clarity, the resulting data is shown partially and strings of
the TAN API have been translated into English.

As we plan to deploy our example application in Nantes, France, we will use the
API provided by TAN6, the transportation entity of the city of Nantes, to discover the
bus/tram stops along the calculated route. In particular, we will use the service we call
stopPosition, which allows knowing the set of bus/tram stops near a given location. The
service receives a position determined by the latitude and longitude, and returns the
nearest tram/bus stops. Figure 1b shows an example of this service.

In this example the developer must first explore these APIs and then study how they
can be composed (if possible). The analysis of the inputs/outputs allows identifying the
main concepts used in each API (i.e., the domain). For instance, routeCalculation uses
addresses to specify both the origin and destination of the route. Regarding its output
data, locations are represented by lat and lng to specify the latitude and longitude,
respectively. On the other hand, stopPosition receives a location as input and returns
a set of bus/tram stops. After this study, the developer may come up with a possible
mapping involving the values representing locations in the output of routeCalculation
and the input of stopPosition, thus enabling their composition.

As can be seen, composing JSON-based web APIs require deeply studying the in-
volved APIs and also how to compose them, which is a time-consuming and hard task,
in particular, when dealing with a number of candidate APIs. In the remainder of this
paper we will show our proposal to identify the domain behind APIs as well as data
mappings which can help developers to easily compose them.

6 http://data.nantes.fr/donnees/detail/
info-trafic-temps-reel-de-la-tan

http://data.nantes.fr/donnees/detail/info-trafic-temps-reel-de-la-tan
http://data.nantes.fr/donnees/detail/info-trafic-temps-reel-de-la-tan

Composing JSON-Based Web APIs 393

Fig. 2. Overall view of our approach. The main phases are represented with black-filled rounded
boxes while input/output data is represented with white-filled boxes.

3 Our Approach

We propose an approach to study the composition of JSON-based web APIs. Our
approach applies a discovery process which first analyzes the domains behind each
involved API and then identifies composition links among them. The discovered infor-
mation is used to render a graph in which calculations can be made to assist developers
to compose APIs (e.g., sequence diagrams can be generated). Figure 2 illustrates our
approach including the main two discovery phases (i.e., Domain Discovery and Compo-
sition Discovery) and facilities to realize the composition (see Composition Assistant).

Our approach represents domain information as class diagrams, including concepts
(i.e., classes) and their relationships (i.e., attributes/associations), while composition
links will be represented as relationships between concepts from different domains. We
will leverage on model-driven techniques to represent both the domain and composition
information as models and model references, respectively. The following sections will
describe the main phases of our approach.

4 Domain Discovery in JSON-Based Web APIs

The domain of an API can be discovered by merging the domain of its services, which
in turn can be discovered by analyzing the JSON data used as input/output. We de-
vised a two-phase process to obtain the API domain represented as a model [1], which
has been extended and adapted to enable the subsequent composition discovery phase
(i.e., enriching the generated metadata). Next, we describe the basis of the process to
facilitate the understanding of the remainder of the paper7.

The first phase, called Single-service discovery, analyzes each service in order to dis-
cover its domain. Since JSON-based API services do not necessarily return JSON data
conforming to the same structure, the accuracy of this phase increases when a number
of JSON examples are provided. Thus, the single-service discovery phase analyzes a
set of JSON examples (including inputs/outputs defined as JSON data) per API service.
This phase is launched for each API service and has two execution modes: creation,
which initializes the model concepts from JSON objects representing new concepts;
and refinement, which refines existing model concepts with information coming from
new JSON objects representing such concepts. Both execution modes are driven by a
set of mapping rules transforming JSON elements into model elements7. As result, the
single-service discovery phase returns a model representing the service domain.

7 A detailed description of the process and mapping rules applied can be found in [1].

394 J.L. Cánovas Izquierdo and J. Cabot

Fig. 3. Discovered domain for (a) Google API (including routeCalculation service) and (b) TAN
API (including stopPosition service)

The second phase, called Multi-service discovery, composes the models generated
by the previous phase and produces a new model representing the overall domain of the
API. Similarly to what the single-service discovery phase does, several mapping rules
are applied to obtain the composed model7.

Figure 3 shows the API domains for the Google Maps and TAN APIs. For the sake of
conciseness, we only show the excerpt of the model regarding the data shown in Figure
1. Note that since some JSON name/value pairs represent the same information, some
concepts have been merged (e.g., the Location concept represents northeast,
southwest, end_location and start_location JSON objects).

5 Composition Discovery in JSON-Based Web APIs

Composition links among APIs are discovered by means of matching concepts among
their domains and analyzing whether they are part of the input parameters of API ser-
vices. In this section we describe how to identify matching concepts and create com-
position links. These links can be later digested to facilitate the composition of the
involved APIs, as we will explain below.

The discovery process of composition links analyzes the API domains to discover
differences and similarities. However, this is not an easy task when dealing with models
since the problem can be reduced to the problem of finding correspondences between
two graphs (i.e., an NP-hard problem [2]). Based on our experience, we have identified
a set of core rules but they can be extended by implementing other existing approaches
(e.g., the ones presented in [3]):

R1 Two domain concepts c1 and c2 contained in different API domains are considered
the same concept if c1.name = c2.name.

R2 As an API domain concept can represent several JSON objects (e.g., Location in
Figure 3), only concept attributes/references found in every object are considered.

Composing JSON-Based Web APIs 395

Fig. 4. Composition graph for the routeCalculation and stopPosition services

R3 Two attributes/references a1 and a2 are similar if a1.name = a2.name and a1.type
= a2.type. Otherwise heuristics based on their name/type may be applied (e.g., the
number of matching letters in their names must be higher than a given threshold).

R4 Two domain concepts c1 and c2 contained in different API domains are similar if
they contain a number of similar attributes/references higher than a given threshold.

R5 There is a composition link between two domain concepts c1 and c2 contained in
different API domains if they are the same (or similar) and c2 is an input concept.
The source of the composition link will be c1 and the target will be c2.

The application of rules to our example will result in only one composition link from
Location to StopPositionInput since R2, R3, R4 and R5 are fulfilled.

Composition links plus the API domains can be used to render a graph where nodes
represent concepts/attributes and edges represent composition links or attribute compo-
sition. Figure 4 shows an example of this graph representation for our example. For the
sake of clarity, nodes have been annotated with the name of the concept they represent.
Gray-filled nodes represent the concepts used in each API, black nodes the concepts
used as input to call an API, and white nodes the concept attributes, which are linked to
the concept by an un-directed edge. Nodes are connected by directed edges, which can
link nodes from the same (filled arrow) or different (dashed arrow) APIs. Nodes from
the same API are linked when there is a reference between them, whereas nodes from
different APIs are linked when a composition link has been detected.

6 Assisting Developers to Compose APIs

Paths in the graph can be used to assist developers in the composition of APIs. To
calculate a path, developers must specify both the input information (by selecting the
concepts/attributes they have available) and what they want to get (by selecting the de-
sired concepts/attributes). Well-known graph algorithms can then be applied to calculate
paths (if exist) among the selected nodes (through the directed edges). For instance, in
our example we provide the attributes of the node RouteCalculationInput and our tar-
get node is Line. A possible path between these two nodes is highlighted in Figure 4,
which indicates that a composition between these two APIs is possible. In particular,

396 J.L. Cánovas Izquierdo and J. Cabot

Fig. 5. Sequence diagram generated from a path between RouteCalculationInput and
StopPositionInput nodes of the graph shown in Figure 4

the composition can be performed calling the RouteCalculation service and using the
attributes of the resulting Location concept to call to the stopPosition service.

Given this graph and the API domain models, several calculations can be applied to
make easier the composition of the involved APIs and the understanding of paths in the
graph. For instance, a sequence diagram can illustrate the calls and parameters to real-
ize the composition. Figure 5 shows the sequence diagram for our example. Sequence
diagrams can be drawn following these rules:

– There are as many actors as APIs are traversed by the path plus the developer actor.
– The diagram includes as many synchronous calls as APIs are traversed by the path.
– A method call is included for each API crossed. The method calls is named as the

first node of the sub-path traversing the API and the parameters are its attributes.
The method returns the set of attributes of the ending node of the sub-path.

– If the sub-path traverses a multivalued reference, the call for such path is a loop.
– A mapping between the output/input parameters of intermediate calls may be pro-

vided as annotation following the rules explained in Section 5.

7 Additional Applications

In previous sections we used a simple example to illustrate our approach and how paths
in the graph can facilitate the composition of APIs. In this section we will increase
the scope and size of the graph in order to study additional applications. In particu-
lar, we will focus on a cost-aware composition mechanism and obtaining the minimal
branching subgraph. We will show first the extended graph we will use and then we will
describe these applications.

Figure 6 shows the composition graph obtained from three real JSON-based web
APIs, namely: Google Maps, TAN and an adapted version of the Foursquare API.
Foursquare8 is a social network allowing users to share their experiences when visit-
ing places. For the sake of conciseness, we do not present the real name of each service
but we will use an identifier9. Thus, the Google API includes four services (i.e., G1,

8 http://foursquare.com
9 The graph can be found at https://github.com/atlanmod/json-discoverer/
tree/master/fr.inria.atlanmod.json.discoverer.zoo/
exampleThreeAPIs

https://github.com/atlanmod/json-discoverer/tree/master/fr.inria.atlanmod.json.discoverer.zoo/exampleThreeAPIs
https://github.com/atlanmod/json-discoverer/tree/master/fr.inria.atlanmod.json.discoverer.zoo/exampleThreeAPIs
https://github.com/atlanmod/json-discoverer/tree/master/fr.inria.atlanmod.json.discoverer.zoo/exampleThreeAPIs

Composing JSON-Based Web APIs 397

Fig. 6. Composition graph obtained from the services provided by three JSON-based APIs,
namely, Google Maps, TAN and an adapted version of the Foursquare API

G2, G3 and G4), the TAN API includes three services (i.e., T1, T2 and T3) and the
Foursquare API includes three services (i.e., F1, F2 and F3).

Cost-Aware Composition. Some APIs follow a pay-per-use schema, e.g., fixed price
per call, special price according to agreements, etc. To enable cost calculation, edges
connecting different APIs can be annotated with the cost value. This information can
then be used to obtain the best path (e.g., the cheapest path) among APIs.

Figure 6 includes annotations with the cost value in those edges connecting differente
APIs. Thus, calling the TAN, adapted Foursquare and Google APIs costs C1, C2 and C3

respectively. A possible scenario could be as follows. As described before, developers
can compose the Google and TAN APIs by means of the services G1 and T1, which
costs C1. However, there exists a second option which involves composing the three
APIs of the graph (i.e., the path will start with the G1 node of the Google API, then will
cross the F3 node of the adapted Foursquare API and finally the T1 node of the TAN
API), which costs C2+C1. Depending on the concrete values of these costs, developers
can decide which one is the most suitable to their needs.

Minimal Subgraph. The graph shown in Figure 6 also allows developers to discover all
the composition paths among the analyzed APIs. In order to facilitate the identification
of all the API compositions, it is possible to apply traditional graph algorithms to calcu-
late the optimum branching (such as [4]), which will provide the minimal path among
every node of the graph. The developer can also prune some nodes and recalculate the
graph in those cases in which a path crosses some nodes representing concepts/attributes
that the developer cannot provide.

398 J.L. Cánovas Izquierdo and J. Cabot

It is important to note that composition paths may not access to every API node since
the API subgraph may not be a strongly connected graph. For instance, the composition
of the Google API with the TAN API provides access to the latter API through the ser-
vice T1, which is connected with a limited number of nodes of the TAN subgraph. Thus,
when the API subgraph is not a strongly connected graph, to be precise, composition
paths should be indicated in terms of API services.

8 Related Work

The discovery of the implicit structure in JSON data is related to works focused on
obtaining structured information from unstructured data such as [5]. Our approach in-
tegrates some of their ideas. Furthermore, the use of metadata in the model discoevry
phase has been inspired by works such as [6, 7].

Composition link discovery applies some basic tecniques to detect matching model-
ing elements. Several works such as [8–11] and tools such as EMFCompare [12] could
be used here to improve our discovery process.

In the field of web engineering, our approach is related to those ones focused on
web services. For instance, [13] proposes an approach based on semantic web services
which are analyzed to discover how they can be coreographed (i.e., composed). A simi-
lar approach to ours has been presented in [14], where a solution to integrate and query
web data services is presented. The approach resorts in the web service definitions (i.e.,
WSDL) to define service interfaces which are later analyzed to discover possible ways
to integrate and query them. The Yahoo Query Language (YQL)10 is also related to our
approach, since they allow perfoming queries among web services with the aim of com-
posing them. Finally, in the particular field of mashups, the works [15, 16] also address
the problem of composing different web services. Regarding the data used, the main
difference with these approaches is that ours is specifically adapted to deal with JSON-
based web APIs, where generally there are no formal definitions of the services (as it
could happen with web services by means of definition such as WSDL or semantic web
services with OWL-S). However, with regard to the mechanisms to discover potential
composition links, our approach can be enriched adapting their proposals.

9 Conclusion and Future Work

In this work we have presented an approach to study how JSON-based web APIs can
be composed. Our approach leverages on a previous work and extends it to infer com-
position links among APIs. Composition information is represented as graphs, where
paths represent concrete API compositions. Furthermore, these paths are used to create
sequence diagrams to facilitate the understanding of the composition. Our tool has been
fully implemented and is available as a free service11.

10 https://developer.yahoo.com/yql
11 http://atlanmod.github.io/json-discoverer

Composing JSON-Based Web APIs 399

As future work, we plan to explore other possible ways to facilitate API composi-
tion, such as generating the glue code among them. We would also like to study new
mechanisms to detect concept similarities (e.g., using WordNet12) as well as conduct a
quantitative evaluation of our approach to study its scalability.

References

1. Cánovas Izquierdo, J.L., Cabot, J.: Discovering Implicit Schemas in JSON Data. In: Daniel,
F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68–83. Springer, Heidelberg
(2013)

2. Lin, Y., Gray, J., Jouault, F.: DSMDiff: a differentiation tool for domain-specific models.
Europ. Inf. Syst. 16(4), 349–361 (2007)

3. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for model match-
ing: An analysis of approaches to support model differencing. In: CVSM Conf., pp. 1–6
(2009)

4. Edmonds, J.: Optimum Branchings. J. Res. Nat. Bur. Standards 71B, 233–240 (1967)
5. Nestorov, S., Abiteboul, S., Motwani, R.: Inferring structure in semistructured data. ACM

SIGMOD Record 26(4), 39–43 (1997)
6. Famelis, M., Salay, R., Di Sandro, A., Chechik, M.: Transformation of Models Containing

Uncertainty. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS
2013. LNCS, vol. 8107, pp. 673–689. Springer, Heidelberg (2013)

7. Famelis, M., Salay, R., Chechik, M.: Partial models: Towards modeling and reasoning with
uncertainty. In: ICSE Conf., pp. 573–583 (2012)

8. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

9. Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams. In: ACM
SIGSOFT Conf., pp. 227–236 (2003)

10. Selonen, P., Kettunen, M.: Metamodel-Based Inference of Inter-Model Correspondence. In:
CSMR Conf., pp. 71–80 (2007)

11. Melnik, S., Garcia-molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching
Algorithm. In: DE Conf., pp. 117–128 (2002)

12. Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework. UP-
GRADE, The European Journal for the Informatics Professional 9(2), 29–34 (2008)

13. Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction
and composition of Semantic Web services. J. Web Sem. 1(1), 27–46 (2003)

14. Quarteroni, S., Brambilla, M., Ceri, S.: A bottom-up, knowledge-aware approach to integrat-
ing and querying web data services. TWEB 7(4), 19 (2013)

15. Daniel, F., Rodríguez, C., Chowdhury, S.R., Nezhad, H.R.M., Casati, F.: Discovery and reuse
of composition knowledge for assisted mashup development. In: WWW Conf., pp. 493–494
(2012)

16. Chowdhury, S.R., Daniel, F., Casati, F.: Efficient, interactive recommendation of mashup
composition knowledge. In: ICSOC Conf., pp. 374–388 (2011)

12 http://wordnet.princeton.edu/

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 400–409, 2014.
© Springer International Publishing Switzerland 2014

Design Criteria for Web Applications
Adapted to Emotions

Giulio Mori, Fabio Paternò, and Ferdinando Furci

ISTI – CNR, Via Moruzzi, 1, 57126 Pisa, Italy
{giulio.mori,fabio.paterno,ferdinando.furci}@isti.cnr.it

Abstract. The main goal of this work is to identify a set of design criteria for
Web applications taking into account the users’ emotions. The results are based
on the analysis of a user study with 50 participants who tested six Web interfac-
es, each one designed to elicit a specific emotion (hate, anxiety, boredom,
fun, serenity, love). The design criteria applied to the six emotion-based Web
interfaces were drawn from the results of a previous survey, which involved
57 different users, on the relationships between emotional state and Web inter-
faces. This initial survey asked the users to indicate the emotions most often
associated with Web interaction, and then assign each emotion with some spe-
cific Web design characteristics. The resulting design criteria can form the basis
for a set of emotion-related guidelines for Web application user interfaces.

Keywords: Web guidelines, emotions, affective interfaces.

1 Introduction

The important role of emotions in HCI is widely accepted [3-5]. However, little work
has been dedicated to how to take them into account in Web applications, which are
the most widely used applications. Thus, Web developers and designers need support
on some design criteria (such as choice of user interface elements, navigation style,
suitable colors, etc.) associated to emotional states. Emotions are complex and depend
on individual preferences, attitudes, moods, affect dispositions, and interpersonal
stances; “there is no single standard gold-method for their measurement” [10].

The literature reports different methodological approaches to classifying emotions,
such as Geneva [8] or Feeltrace [9], and scales and questionnaires to measure either
two primary (negative-positive) dimensions of moods [1], or hedonic and pragmatic
dimensions of user-experience [7][12], but no work has focused on typical emotions
during Web interaction. There are some works comparing different versions of Web
pages [5] to investigate the impact of their attractiveness [2] or aesthetics, or if one
Web site is better than another at eliciting emotions [4]. An analysis of existing Web
sites about the hedonic elements (such as color, images, shapes and photographs) has
been carried out [11] to investigate the emotional appeal, the sense of the aesthetic or
positive impression resulting from the overall graphical look of a Website. However,
none of these studies provide precise indications on how the various aspects of Web
interfaces can elicit a specific emotion. Modeling the key subjective aspects of user

 Design Criteria for Web Applications Adapted to Emotions 401

experience and how it affects the perception of the final product or emotional res-
ponses [4] are important contributions, but there is the need to better address the emo-
tion-based Web design aspects.

In this paper we aim to investigate the impact of some Web design criteria to elicit
a particular emotional state on the user, independently of the application domain. In
order to better understand what design choices are most suitable for most recurrent
user emotions in Web applications, we have conducted two user studies described
herein. Since there were no specific indications in the literature about the effects of
Web design on eliciting a specific emotion, we organized a first survey to start our
research, with the goal of collecting some basic indications from a sample of 57 users.
The survey aimed to better understand the most recurrent emotions during Web inte-
raction and the related Web design features. Next, we wanted to check the effective-
ness of the data gathered in the survey through a user study. We applied the criteria to
six Web interfaces, each one designed to elicit a specific emotion. Fifty different users
judged their emotional impact. Positive emotions are certainly important for improv-
ing the user experience, however, also understanding the Web design criteria eliciting
negative emotions has its importance for Web designers in order to improve their
awareness of the risks and kinds of emotions their Web sites may elicit. In particular,
section 2 describes the initial survey having the goal to investigate the relationships
between emotional state and Web interfaces. Section 3 reports on the user study hav-
ing the goal to validate the design principles through six Web Interfaces, and finally,
we draw some conclusions and provide indications for future work.

2 A Survey: Collecting Opinions about Emotional Web Design

The questionnaire was completed by 57 users in two sessions (the average completion
time per user was about two hours): the first session was carried out in the presence of
the authors (to provide the users with explanations, when necessary), and a second
session in which the users completed the questionnaire alone. The questionnaire was
composed of three parts: 1) personal information, 2) classification of emotions in Web
interaction, 3) emotion-based Web design opinions. The first part aimed to collect
some personal information from the users and their experiences with the Web. In the
second part, users had to propose some emotions they considered relevant during Web
interaction and, for each of them, they had to freely associate colours and some attrib-
utes characterizing the user activity. The third part was more oriented to the Web
design, where users had to give their opinions by associating each emotion with vari-
ous Web interface features (depending on the question, we showed them various
graphical examples of typical elements of a Web interface).

2.1 Personal Information

The participants were 25 females and 32 males, with an average age of 38,21 years
(ranging from 26 to 59). Seventeen users had a PhD, 21 users had a five-year degree,
2 users had a four-year degree, 8 users had a bachelor's degree, while 7 users had a
high school diploma and 2 users had a school diploma. Users were used to surf the
Internet (46 users were connected to the Web every day, 9 users navigated three times

402 G. Mori, F. Paternò, and F. Furci

per week, 2 users used the Web one time every fifteen days). The sample considered
both experienced and inexperienced users in Web development (at different levels, 38
users had implemented some Web interfaces, while 19 users had little or no
knowledge on Web programming).

2.2 Classification of Emotions in Web Interaction

In this part, each user had to indicate a certain number of emotions (maximum 8)
which s/he considered relevant during the Web interaction. The only constraint of
their suggestions was that for each chosen emotion, they also had to indicate the op-
posite emotion (depending on the emotional valence, negative or positive, in their
perception). The reason for this request was that we wanted to define a complete de-
sign space that given a negative emotion could allow the identification of the positive
counterpart. At the beginning of the questionnaire, some users found difficulties to
define emotions and needed support, however at the end, the total average number of
the proposed emotions was 3.84 per user, with a total of 219 distinct proposed emo-
tion names perceived as negative and other 219 perceived as positive emotions. Each
user had to associate a value (in an ordered scale from -8 to +8) to each emotion, as a
measure to indicate how negative or positive s/he considered it. Analyzing the pro-
posed emotions of the 57 users, we decided to consider as more “significant” only the
emotions with at least 10 preferences, discarding the remaining others, which had
received just only 1, 2 or at maximum 3 preferences each one. In addition, after hav-
ing analyzed the complete final results of the questionnaire, we noticed that some
emotions (having different proposed names by the users, but similar meaning), were
characterized by the same Web features. In these cases, with the consent of the users
who proposed the emotions, synonyms have been considered the same emotion, and
finally, we have obtained an essential basic ordered scale of 6 emotions (3 negative
and 3 positive) to express the typical affective states of a user interacting with Web
(see Table 1), corresponding to well distinguishable Web design characteristics. The
final emotions would have been the same also first joining the synonyms and then
filtering the emotions with at least 10 preferences because in addition to the “primary
emotions” [13] (such as hate, love, etc.) many users proposed a lot of different “sec-
ondary emotions” [13] (such as jealousy, nostalgia, loneliness, etc.), which were pro-
posed only by few other users.

Considering the complexity of the emotions world for human beings and the many
emotion classifications existing in literature [8][9][10] (even if no one is specifically
oriented to the Web interaction and design), this classification is not exhaustive.
However, the goal of this work is not to provide a further emotion classification, but
rather to investigate whether some clearly distinguishable design characteristics can
elicit a specific emotion on the user independently of the application domain. So this
small starting set composed of 6 emotions oriented to Web interaction (obtained by
the users suggestions) has been the basis of our study. The goal is to understand if
some different Web design features can concretely have a specific impact on the users
perception and on the personal emotional state, independently of the contents. Look-
ing at Table 1, some considerations about the meanings of the emotions in the scale
proposed by the users are necessary: a) hate and love express the sense of dislik-
ing/liking or indifference/empathy for something or somebody (typical of Web social

 Design Criteria for Web Applications Adapted to Emotions 403

network environments and Web 2.0). English language expresses well these meanings
(i.e.: I hate/love Louis Armstrong music); b) anxiety and serenity express the emo-
tional state during critical/safe actions (i.e.: the user is booking/buying something on
Web and s/he need to fill a form inserting personal or credit card data); c) boredom or
fun depends on the interest of users for the Web content, and the way the contents are
presented is fundamental. Table 1 shows the ordered scale of the emotions with the
corresponding average values proposed by the users.

Table 1. The main 6 emotions indicated by the users. The order is determined by the average
values assigned by the users on the scale of a negative or positive personal perceptions.

Average values of the main Web Emotions considered relevant by the users
Hate Anxiety Boredom Fun Serenity Love
-3.48 -2.54 -1.99 +2.1 +2.25 +3.6

Standard Deviation values of the main Web Emotions considered relevant by the users
1.29 1.04 0.76 0.92 0.83 1.23

In this part of the questionnaire, we also asked the subjects to associate some

attributes related to the user activities for each emotion. Users had to select from the
following pairs: static or dynamic (perceived level of changes of the interfaces reflect-
ing the changes of the personal emotional state), passive or active (perceived level of
the user’s involvement in doing actions), simple or complex (perceived level of how
the interface can be elaborated in design). The results are summarized in Table 2. As a
criteria of choice (for the results of Table 2 and for the other tables presented for this
first survey), we took into considerations an attribute as strongly characterizing an
emotion, when the total number of users’ preferences for a value of a pair (or group)
was at least the double (over 50%) of the other/s preferred choices; in borderline cas-
es, conclusions could be ambiguous. The double threshold was a prudential strategy,
because we noticed that when a characteristic was chosen quite unanimously by most
of the users, that characteristic collected a number of preferences higher than the
double (in comparison with the other choices).

Table 2. User activity attributes for each emotion

Emotions User activities attributes
Love dynamic, active, complex

Serenity static, simple
Fun dynamic, active

Boredom static, passive, simple

Anxiety dynamic, complex
Hate static, active

The following part of the questionnaire asked also to the users to associate one or

more colors (preferably belonging to the 16 HTML standard color palette supported
by all browsers [6]) to each emotion, and then it was asked to associate freely some
visual characteristics, real objects or abstract ideas. The exact tint of the 16 colors
were showed to each user during the questionnaire. Table 3 summarizes the results.

404 G. Mori, F. Paternò, and F. Furci

Table 3. Colours and visual characteristics for each emotion

Emotions Main Colors Visual Characteristics
Love red, pink bright, transparent, indefinite, heart

Serenity blue, aqua, white, green, lime clear, bright, calm waters, large open spaces,
open sky, nature, flat, smooth, light colors

Fun fuchsia, red, orange, yellow,
green, lime, teal, aqua

brilliant, bright, colorful, spring, light, sun,
flowers, light fire

Boredom silver, gray, black night, dark, blurred, indefinite, hazy, fog,
opaque, rain, tears, dim, empty

Anxiety black, gray, navy, yellow night, dark, wavy, intermittent, storm, throb-
bing, blurred, indefinite, fog

Hate black night, dark

2.3 Emotion-Based Web Design

The last part of the questionnaire asked the users suggestions regarding specific asso-
ciations between each emotion and many Web design features. This part aimed to
investigate the structure, the multimedia elements and type of interactive elements
being the most effective to evoke a specific emotional state. The users could express
their preference about any elements of the interface or Web design features, (we
showed for each question some graphical samples with the goal that each proposed
choice was clear for the users). In particular, first the users had to choose between the
following groups related to the Web site structure and the interaction elements for
data insertion: 1) few or many pages, 2) blurred or clear text, 3) short or long text, 4)
presence of textbox (to insert short data) or textarea (to insert long information, e.g.
requests). Table 4 summarizes the results.

Table 4. Page contents & structure for each emotion

Emotions Pages & Content structure
Love few pages, long text, clear text, textarea

Serenity little content, short text, clear text, textarea
Fun many pages, short text, clear text, textbox

Boredom few pages, long text, textbox
Anxiety many pages, blurred text, textarea

Hate few pages, blurred text, textbox

We then asked the users their opinions about the emotional impact of the multime-
dia element style, whereby the users had to choose one option from each group: 1)
presence of video, animations, images, or no multimedia, 2) small, medium or large
size of the images, 3) definition of the images (blurred or clear), 4) color, black &
white, or de-saturated (the color was reduced) images. Table 5 shows the results. It is
not trivial at all (we cannot say if it depends on some cultural factors or something
unconscious in human beings), observing that every user suggested unanimously
color and clear images for every positive emotion, and blurred and no color images
for two negative emotions hate and anxiety (for boredom absence of images or video
was perceived by the users as a factor more emphasizing boredom).

 Design Criteria for Web Applications Adapted to Emotions 405

Table 5. Multimedia elements style for each emotion

Emotions Multimedia Elements
Love color medium/large clear images

Serenity color medium-clear images, videos

Fun animations, color medium-clear images, videos
Boredom no images, no videos
Anxiety de-saturated small blurred images, videos

Hate black & white medium/large blurred images, videos

The questionnaire also sought to explore the users’ opinions about the navigation

elements (Table 6), choosing amongst the following options: 1) links, standard but-
tons, graphic buttons or tabs, 2) static or dynamic effects on navigation elements.

Table 6. Navigation elements for each emotion

Emotions Navigation Elements
Love graphic buttons, dynamic effects

Serenity tabs, link, graphic/standard buttons

Fun graphic buttons, dynamic effects
Boredom links/standard buttons, static effects
Anxiety standard/graphic buttons, dynamic effects

Hate standard/graphic buttons, static effects

Finally, the users gave their opinions about the interactive elements (Table 7),
choosing from among the following options: 1) interactive elements with static or
dynamic effects 2) textual or graphic interactive elements, 3) radio-button or pull-
down single selection, 4) checkboxes, scroll or fixed multiple selection.

Table 7. Interactive elements for each emotion

Emotions Interactive Elements
Love dynamic, graphic, pull-down, checkboxes/scroll selection

Serenity static, textual

Fun dynamic, graphic
Boredom static, textual, checkboxes
Anxiety dynamic, graphic, pull-down menu, scroll select

Hate checkboxes

As a confirmation of the complexity of the emotions, it is not surprising that tables

contain some overlapping Web features between the six emotions. With this survey
we received indications about many other aspects of Web design (such as position of
the elements, font type/dimension, alignment of text, etc.). We do not report these
extra data, because the results are too ambiguous and further tests are necessary.

406 G. Mori, F. Paternò, and F. Furci

2.4 Additional Emotion-Related Design Aspects

In addition to the analysed data, we received interesting comments of the participants
suggesting us useful indications to improve the emotional effect of Web design. Even
if enumeration of these comments was not possible because some users did not pro-
vide any comment, we decided to apply them to the Web interfaces design (see sec-
tion 3) to verify their effects. We report below the summary of the key indications:

Hate-Love. A user can feel hate due to the design of the interface, if the interface is
difficult to use (bad usability), the layout of the interface and/or the positioning of the
widgets are confused (not easy to understand). In the worst case, the interface ob-
stacles the interaction of the user, or/and something is not working (i.e. elements of
the interface are not responding to the user input). On the contrary, a user can feel
love due to the design of the interface, if the appealing aesthetic of the Web interface
stimulates its use. Besides, the interface should be easy to use (good usability), the
layout and disposition of the widgets should be disposed in a way easy to understand.

Anxiety-Serenity. A user can feel anxiety due to the design of the interface, if the
interface emphasizes particular stress factors (i.e. a deadline, risk, or sense of losing
something, etc.). In these stress conditions, the interface does not allow the user to
reason comfortably (i.e. adding intermittent light effects, distortion or jerky transfor-
mations of the elements in the interface, etc.). On the contrary, a user can feel serenity
due to the design of the interface, if the interface let the user to feel safe, (i.e. provid-
ing always feedbacks, or showing well known reassuring elements, as a logo of secure
transactions, etc.). Besides, the simplicity of the interface allows the user to interact
easily, reducing her/his effort and giving the time s/he needs.

Boredom-Fun. A user can feel boredom due to the design of the interface, if the in-
terface provides or requires lots of information (i.e. very long texts, or many required
fields in a form, etc.). Much text without images or multimedia elements, increases
boredom. On the contrary, a user can feel fun due to the design of the interface, if
unexpected elements, animations or effects surprise the user in a positive way. The
animations or dynamic effects should be oriented to facilitate the interaction, other-
wise they are perceived as annoying.

3 A User Study: Applying the Emotion-Based Design Principles

On the basis of the results of the survey, we developed six Web interfaces, applying
the collected Web designs principles. Each Web interface had the goal to elicit one of
the six emotions of the scale. Each Web interface presented the same content (except
very minimal additions suggested by the users) in a different design style. Consider-
ing that most users in the survey suggested music as topic for an emotion-based Web

 Design Criteria for Web Applications Adapted to Emotions 407

application, we chose the Beatles’ musical history as a topic for the Web six interfac-
es. In details, the interfaces contained: a short textual biography, a media player to
listen to five famous songs, a musical video, a form where the user could buy some
virtual tickets for revival musical events, and some clickable graphical covers of six
famous albums. Finally, we recruited 50 different users (through a mailing list of our
institute), who had not participated to the previous survey, to test the six Web inter-
faces through some interactive tasks, and after that, to judge (through a questionnaire)
the Web design effectiveness in stimulating a specific emotion.

3.1 Description of the User Test and Discussion of the Results

We showed the six Web interfaces to the 50 users in random order. We wanted to
avoid that the order could influence the emotional perception. Each user had to test
each Web interface by completing three tasks, and then s/he had to fill in an online
questionnaire. The questionnaire was composed of three sections, and it asked the
users: a) personal information, b) judgment about the effectiveness of the interface to
stimulate the proposed emotion and comments, c) suggestions about other emotions
we did not consider in the classification, opinions about the utility of the adaptation of
the Web design to elicit more positive emotions on the users, and some suggestions
about useful application fields. Most users considered the six emotions exhaustive for
the Web interaction (even if some users proposed anger or surprise as examples of
additional emotions). Nearly all the participants found the adaptation of the Web de-
sign to elicit positive emotions very useful. As important applications for applying the
emotional Web design, they suggested educational environments, telemedicine and
online psychological platforms, games, home automation applications, or tools
oriented to helping people with disabilities or the elderly. The users preferred Web
design stimulating positive emotions because it improves the user experience. How-
ever, they also considered the utility of eliciting negative emotions not only to im-
prove the awareness of Web designers, or to recreate particular thrilling atmospheres
in games, but also in the telemedicine field. In this area the ability to understand the
reactions of patients in a good or bad affective state is important. Moreover, it could
improve children’s awareness about the difference between good and bad behavior in
some educational or learning tools. The users gave their judgment in a scale from 1 to
5 (where the value 1 indicated that the page was very ineffective to elicit the proposed
emotion, while value 5 indicated that the page was very effective, and the value 3
represented the neutrality). Considering that the survey was “open answer” (concern-
ing the users’ proposal of Web emotions), we decided for this user test that the users
could know in advance the emotional goal of the currently tested interface. We
wanted to avoid that another “open-answer user test” could produce too vague results.
In particular for each emotion, the users were asked to accomplish three tasks: a) find
the answer to a proposed question in the biography text (the goal was obliging the
user to read the text with specific style characteristics), b) click on one proposed cover
of one album (the goal was obliging the user to evaluate the interaction with the
elements of navigation), c) fill in a form (with proposed data corresponding to one
imaginary user) to buy some virtual tickets (the goal was obliging the user to evaluate

408 G. Mori, F. Paternò, and F. Furci

the elements of interaction). The questionnaire was completed by 50 users (average
completion time per user of about one hour). The participants were 21 females and 29
males, with an average age of 38,28 years (ranging from 26 to 77). Ten users had
a PhD, 21 users had a five-year degree, 4 users had a four-year degree, 9 users had
a bachelor's degree, while 6 users had an high school diploma. Users were used to surf
the Internet (42 users were connected to the Web every day, 5 users navigated three
times per week, 2 users used the Web one time every fifteen days, and one used Web
when it happens). The sample considered both experienced and inexperienced users in
Web development (at different levels, 28 users had implemented some Web
interfaces, while 22 users had little or no knowledge on Web programming).

The six Web interfaces were designed as follows: a) the Web interface to elicit hate
was completely unusable with a confused layout, b) the Web interface to elicit anxiety
showed intermittent light effects and jerky transformations, with a countdown as a
pressure factor to fill in the form, c) the Web interface to elicit boredom, was neutral,
without images or videos, requiring more fields to fill in the form, d) the Web inter-
face to elicit fun, showed unpredictable animations and dynamic effects, e) the Web
interface to elicit serenity, was very simple to minimize the user’s effort, f) the Web
interface to elicit love had an appealing graphics and it was usable. For lack of space,
we have to omit further details. The average judgment of the 50 users about the effec-
tiveness of the interfaces to elicit the proposed emotion was high: (over value 4) for
hate, anxiety, boredom and serenity, while it was slightly effective (over value 3) for
fun and love. The results of the user test showed that the usability, even if it is an
important factor, it is not the unique aspect responsible to elicit an emotional reaction
on the user (e.g. the different unusable interfaces aiming to elicit hate and anxiety,
produced different emotional effects). Even if the results are encouraging, a more
detailed statistical analysis is necessary. In particular it is important to understand for
each emotion, if a subset (“core”) of key design factors can be responsible for elicit-
ing a specific mood. It is necessary investigate further if the results can depend on
some “confounding factors” (such as age, gender, experience in development, etc.), or
if the results are domain/topic-dependent or domain/topic-independent.

4 Conclusions and Future Work

The goal of this work has been to study whether the collected preliminary user indica-
tions about the relevant emotions during Web interaction and the corresponding
specific design criteria actually do have an emotional impact on users. The results
obtained are encouraging, even if further refinements and investigation are necessary.
In particular, other user tests will be necessary to better understand the essential Web
design key factors affecting emotional state. The ultimate goal of this research is the
formalization of a set of Web guidelines to design interfaces that can effectively sti-
mulate user emotions during the interaction. For the implementation of the next user
tests, we are considering various sensors to detect physiological parameters of the
users in order to monitor their changes and to adapt the Web design with the goal of
eliciting more positive emotions on the users.

 Design Criteria for Web Applications Adapted to Emotions 409

References

1. Watson, D., Clark, L.A.: Development and Validation of Brief Measures of Positive and
Negative Affect: the PANAS Scales. Journal of Personality and Social Psychology 54(6),
1063–1070 (1988)

2. Hartmann, J., Sutcliffe, A., De Angeli, A.: Investigating Attractiveness in Web User Inter-
faces. In: Proc. CHI 2007. ACM Press (2007)

3. Hassenzahl, M.: The Think and I: Understanding the relationship between user and prod-
uct. Funology Human Computer Interaction Series 3, 31–42 (2005)

4. Karlsson, M.: Expressions, Emotions, and website design. CoDesign 3(1), 75–89 (2007)
5. Kim, J., Lee, J., Choi, D.: Designing Emotionally Evocative Homepages: An Empirical

Study of the Quantitative Relations Between Design Factors and Emotional Dimensions.
International Journal of Human-Computer Studies 56(6), 899–940 (2003)

6. The 16 HTML color names, http://en.wikipedia.org/wiki/Web_colors
7. Voss, K.E., Spangenberg, E.R., Grohmann, B.: Measuring the hedonic and utilitarian di-

mensions of consumer attitude. Journal of Marketing Research 40(3), 310–320 (2003)
8. Bànziger, T., Tran, V., Scherer, K.R.: The Geneva emotion wheel. Journal, Social Science

Information 44(4), 23–34 (2005)
9. Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E.: Feeltrace: an instrument for

recording perceived emotion in real time. In: Proceedings of the ISCA Workshop on
Speech and Emotion 2000, pp. 19–24 (2000)

10. Scherer, K.R.: What are emotions? And how can they be measured? Social Science Infor-
mation 44(4), 695–729 (2005)

11. Cyr, D.: Emotion and Website Design, 2nd edn., ch. 40.,
http://www.interaction-design.org/encyclopedia/
emotion_and_website_design.html

12. Diefenbach, S., Hassenzahl, M.: The Dilemma of Hedonic – Appreciated, but hard to justi-
fy. Interacting with Computers 23(5), 461–472 (2011)

13. Damasio, A.R.: Descartes’ error: Emotion, reason, and the human brain. Avon Books,
New York (1997)

Driving Global Team Formation in Social

Networks to Obtain Diversity

Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo,
Antonino Nocera, and Domenico Ursino

DIIES, University of Reggio Calabria
Via Graziella, Località Feo di Vito

89122 Reggio Calabria, Italy
{bucca,lax,s.nicolazzo,a.nocera,ursino}@unirc.it

Abstract. In this paper, we present a preliminary idea for a crowdsourc-
ing application aimed at driving the process of global team formation to
obtain diversity in the team. Indeed, it is well known that diversity is
one of the key factors of collective intelligence in crowdsourcing. The
idea is based on the identification of suitable nodes in social networks,
which can profitably play the role of generators of diversity in the team
formation process. This paper presents a first step towards the concrete
definition of the above application consisting in the identification of an
effective measure that can be used to select the most promising nodes
w.r.t. the above feature.

1 Introduction and Description of the Idea

It is well known that diversity is one of the key factors of collective intelligence in
crowdsourcing [20]. On the other hand, it is clear that this concept fully confirms
the famous principle summarized as the strength of weak ties, stated in the field
of social networks [14]. The two worlds, social networks and crowdsourcing, have
a strong overlap, as social-network users form a huge crowd. But, social-network
crowd includes something more than the simple Web crowd. It has a friendship-
based structure, embeds contents, and is full of knowledge about people. This
opens a lot of opportunities that can reinforce the power of crowdsourcing (e.g.,
see [16]). For instance, consider the problem of dynamic formation of globally
distributed teams for enterprisers [21]. Driving team formation can result in tan-
gible benefits for the success of the team work, as a number of features of the
individuals, such as expertise, should be considered. Social networks are reposi-
tories of a large amount of information about people, in which we can find the
aimed features. But this is not enough. Indeed, it is not what a crowdsourcing
process, thus spontaneous and evolutionary, requires. As a matter of fact, indi-
viduals in a social networks are not monads. So, not only friendship relationships
allow the autonomous flooding of the network, enabling crowd formation, but
the type of ties on which the crowd formation propagates can be dramatically
important for the final quality of the global team: We have to hope that the
most of crossed ties are weak, to fully reach the goal of diversity. Therefore, the

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 410–419, 2014.
c© Springer International Publishing Switzerland 2014

Driving Global Team Formation in Social Networks to Obtain Diversity 411

basic principle we are stating here is that global team formation in crowdsourc-
ing, even though mostly spontaneous, should be driven in some way by taking
advantage of social networks with the aim of maximizing diversity.

In this paper, we try to answer a simple question: How to translate the above
principle in a social-web application aimed at improving the quality of global
team formation in crowdsourcing? This is a preliminary research, as it contains
an idea on how to do this, but it is focused on a very important aspect which is
the starting point for transforming this idea into a concrete application. The idea
is that team formation should be driven by weak ties, as mentioned earlier. But,
how to find weak ties? From social network analysis we know that the concept of
weak tie is related to behavioral aspects (for example, the number of interactions
in the dyad), which are very difficult to capture in a feasible way. Actually, the
concept of weak tie is also related to structural properties, since weak ties are
typically bridges between two different communities. In particular, it is related
to centrality measures [11]. Among these, betweenness centrality has a primary
role, as it is the fraction of shortest paths between node pairs that pass through
a node, and thus it is capable of measuring the influence of this node over the
information spread through the network [1,17]. Therefore, to detect nodes that
interconnect different communities we have to find nodes that are central in
terms of betweenness centrality. In general, this search could appear difficult,
if no restriction of the domain is done. The idea we present here is based on
the consideration that some special nodes exist that exhibit explicitly a role of
connectors between two different worlds. To understand this, we have to move
towards the perspective of the social internetworking scenario (SIS) [18,3,7,6,8],
in which the scope of the action of both people and applications is not confined to
a single social network. As a matter of fact, in the current scenario characterized
by hundreds of online social networks, a single user can join more of them.
This leads to have membership overlap among social networks as expression
of different traits of users’ personality (sometimes almost different identities),
also enabling, as side effect, the passage of information from one social network
to another. As a consequence, membership overlap can be viewed as a feature
that gives a specific power to users in terms of capability of connecting different
worlds. But the good news is that, differently from a generic central node in
a social network, a node interconnecting two different social networks (that we
call i-bridge) often exhibits some explicit information showing this feature, thus
it can be easily (automatically) identified. Indeed, often, a user shows in the
home page of her account in a social network the link to her account in another
social network. As a consequence, it is possible to define crawling strategies that
privilege these nodes, allowing their easy discovery. One of these strategies is
that called Bridge-Driven Search (BDS) presented in [9].

On the basis of this reasoning, our idea is to use BDS to find a number of
seeds for our team formation, possibly iterating the process until a suitable stage
is reached. But, the basic question is now: Are all i-bridges good for our pur-
pose? How to compare different i-bridges in terms of capability of generating
diversity? On the basis of the above considerations, one could think that the

412 F. Buccafurri et al.

classic measure of betweennes centrality could be used to do this. In this paper,
we show that the above hypothesis is not correct. In particular, we show that we
need a measure of centrality that, differently from classic betweenness centrality,
is able to take into account paths crossing distinct social networks in a different
way from internal paths. Thus, we study a new measure of betweenness central-
ity, called cross betweenness centrality (CBC), which allows us to characterize
nodes in a social internetworking scenario in terms of importance w.r.t. inter-
social-network information flows and to characterize candidate nodes in terms
of suitability to be actors in global team formation.

It is clear that all the above reasoning appears well-founded only if the basic
(even intuitive) assertion really holds that i-bridges play the role of ties connect-
ing two social networks in a weak way. Thus, in this paper, as a first contribution,
we prove the above claim through an experimental validation.

The plan of this paper is as follows. In the next section, we model our reference
scenario. A description of the testbed adopted for the experimental campaign is
described in Section 3. In Section 4, we prove the basic claim that i-bridges play
the role of ties connecting two social networks in a weak way. In Section 5, we
introduce the new measure, called cross betweenness centrality (CBC), needed
for our application to detect good i-bridges. An experimental proof about the
need and the validity of CBC is presented in Section 6. In Section 7, a review of
the related literature is discussed. Finally, in Section 8, we draw our conclusions
and identify how to continue our research.

2 The Multi-Social-Network Model

In this section, we model our reference scenario, which is called social inter-
networking scenario (SIS) and takes into account the multiplicity of social net-
works and their interconnections through me edges. A SIS is a directed graph
G = 〈N,E〉, where N is the set of nodes representing (social network) user
accounts and E is the set of edges (i.e., ordered pairs of nodes) representing re-
lationships between user accounts. Given a node a ∈ N , we denote by S(a) the
social network which a belongs to. E is partitioned into two subsets Ef and Em.
Ef is said the set of friendship edges and Em is the set of me edges. Ef is such that
for each (a, b) ∈ Ef , S(a) = S(b), while Em is such that for each (a, b) ∈ Em,
S(a) �= S(b). Each node a of G is associated with the (social network) account of
a user joining the social network S(a). An edge (a, b) ∈ Ef means that the user
having the account b is a friend of the user having the account a (both a and b
belong to the same social network). An edge (c, c′) ∈ Em means that c and c′

are accounts of the same user in two different social networks. As a consequence,
c is an i-bridge and a me edge interconnects the two social networks S(c) and
S(c′). Given a SIS G = 〈N,E〉, we call the social networks of G the set of social
networks S such that for each Q ∈ S there exists n ∈ N such that S(n) = Q.
Observe that, the graph of a SIS differs from those underlying a single social
network because of the presence of me edges, which connect nodes of different
social networks. From now on, consider given a SIS G = 〈N,E〉.

Driving Global Team Formation in Social Networks to Obtain Diversity 413

3 Tools and Data for Our Experiments

Our experiments have been carried out on real-life data obtained by crawling on-
line social networks. As for the crawling strategy, we used the well-known BFS
[22], which performs a Breadth First Search on a local neighborhood of a seed it
starts from. The crawling task was performed by means of the system SNAKE
[5], which is able to extract not only connections among the accounts of different
users in the same social network, but also connections among the accounts of
the same user in different social networks. These connections are represented
by two standards encoding human relationships, namely XFN (XHTML Friends
Network) and FOAF (Friend-Of-A-Friend). This way, we got a dataset consist-
ing of five social networks, namely Flickr, LiveJournal, Google+, MySpace, and
Twitter. They are compliant with the XFN or FOAF standards and have been
largely analyzed in social network analysis in the past. Starting from this real-
life dataset, we extracted several subgraphs for our tests. Each subgraph was
obtained by randomly choosing an i-bridge node b and selecting all the nodes
having a minimum distance from b less than or equal to 4 (observe that, due
to the small diameter of real-life social networks, the chosen distance is signi-
ficative). Figure 1 shows one of the subgraphs of the real-life dataset, in which
black and white nodes stand for users belonging to Flickr and LiveJournal, re-
spectively.

4 Are me edges Weak ties?

One of the most fascinating results of social network analysis is due to one of the
fathers of this discipline and regards the concept of weak ties [14]. Although a
complete notion of the strength of a tie can be given only if we consider dynamic
and behavioral information, even the sole structural knowledge about a social
network allows us to identify those ties that, informally speaking, connect two
dense components keeping a low connection degree between them. The theory
presented in [14] and confirmed by years of study on social networks, gives a
strong importance to such ties, as they connect different communities, so they
can be a formidable vehicle of cross contamination between them. The claim
underlying our crowdsourcing application is that i-bridges are good candidates
to be actors in a global team formation. But to prove this claim, the first step
is to face this issue: Are me edges weak ties, in general?

In this section, we try to give an answer to the above question by conducting a
suitable experiment on real-life social networks. To detect weak ties, we adopt the
strategy proposed in [10]. In particular, we consider an edge e between the nodes
n1 and n2 and we check if the removal of this edge would increase the distance
between n1 and n2 to a value strictly more than two. If this occurs, then e can
be considered as a weak tie. This experiment is carried out on the whole dataset
described in Section 3 consisting of a set of 171, 982 normal edges (i.e., non-me
edges) and a set M of 79 me edges. At the end of the experiment, the approach
described above detected a set W of 5619 weak ties among the set E of 172, 061

414 F. Buccafurri et al.

Fig. 1. Visualization of one subgraph

edges and 60 of them were also me edges. We calculated the percentage of me edges

which are weak ties as |M∩W |
|M| = 0.76, the percentage of me edges |M|

|E| = 4.6 ·10−4

and the percentage of weak ties |W |
|E| = 3.3 · 10−2. From the above results, we

conclude that the probability that a me edge is a weak tie is high, whereas the
probability that a generic edge is a weak tie is very low. Because |M | and |W | are
much lesser than |E|, the result that |M∩W |

|M| = 0.76 demonstrates that a strong

relation between weak ties and me edges exists. Thus, the experiment concludes
that the correlation between weak ties and me edges exists, so that we can sight
potential powerful roles for such edges in a social internetworking scenario. It is
worth remarking that the interpretation of me edges as weak ties means that,
given a user u, her account in a social network S sees her account in another
social network T (in case a me edge from S to T is established by u) as a weak tie.
This means that u can be used as powerful disseminator of information across
different communities, each belonging to a different social network. Obviously,
the more the number of me edges of a user u, the higher her strength (in the

Driving Global Team Formation in Social Networks to Obtain Diversity 415

Granovetter sense [14]) in the network. Observe that the above conclusion is not
in contradiction with the results given in [8], where the presence of me edges into
user accounts has been proven to be assortative. Indeed, one could think that,
if the friends of a user u assortatively declare me edges from the social network
S to the social network T , as done by u, we obtain a very dense clique of users
invalidating the result about the correspondence between me edges and weak
ties. However, [8] shows that the strict (i.e., towards the same social network T)
assortativity does not hold for the most representative real-life social networks
(i.e., Facebook). In other words, the friends of u assortatively declare me edges
from S to any other social network. Thus, the contradiction does not exist.

5 Measuring the Suitability of Diversity Generators:
Cross Betweenness Centrality

After having proved, in Section 4, that me edges are weak ties, we know that
our application is well-founded in the sense that all the i-bridges that we are
able to find by using a crawling strategy as BDS [9] are good candidates to
play the role of diversity generators in team formation. In this section we face a
second important issue: Are all the candidates the same in terms of suitability
to our application? In general, betweenness centrality (BC) [11] is used to detect
weak ties (and also their structural strength). Unfortunately, as we will show in
Section 6, the above claim cannot be applied to the case of i-bridges, in the sense
that it is not able to measure their structural strength in terms of connectors
of two social networks. Therefore, in this section, we introduce a new measure
called cross betweenness centrality (CBC) to rate candidates in our application,
overcoming the limits of BC. The need and the validity of CBC is shown in
the next section. Recall that we are interested in a measure able to take into
account paths crossing distinct social networks in a different way from internal
paths. Even though the definition of betweenness centrality does not explicitly
take into account the presence of the multiplicity of social networks, it could
happen that the real-life structure of the interconnections among distinct social
networks (i.e., i-bridges) is such that BC automatically favors nodes belonging to
the frontier of each social network, as paths are in some way forced to cross them.
Intuitively, the above claim is true if the density of the involved social networks
is comparable. Otherwise, we expect that the most dense social network works
as an accumulation point, biasing the centrality towards it. However, also in this
case, the role of i-bridges is still crucial, so we would like not to miss it.

The definition of cross betweenness centrality (CBC) is the following. Let
Ω ⊆ S. Given a node n ∈ N , we denote the cross betweenness centrality of n
w.r.t. Ω as:

CBC(n,Ω) =

⎧⎨⎩
∑

s,t∈N,s�=n,t�=n,S(s) �=S(t),S(t)∈Ω
σst(n)
σst

if σst > 0

0 otherwise
where σst is the total number of the shortest paths from s to t and σst(n) is the
number of those shortest paths from s to t passing through n. In this definition,

416 F. Buccafurri et al.

Table 1. Results obtained for the first subgraph

Type of node BC CBC

Bridges 1,242,081.10 42.67

Power Users 1,543,513.59 4.43

Normal Users 3,795.34 0.01

Ω is a subset of the social networks of the SIS (see Section 2) and allows the
computation of the cross betweenness centrality of a node to be limited (if this
is desired) to a subset of the social networks of the SIS. In the definition of CBC,
considered paths are only those (i) linking two nodes belonging to different social
networks and (ii) having the target node (t) belonging to one social network in
Ω (it does not matter whether the source node s belongs to a social network in
Ω). In particular, we compute how many times the node n is involved in this
kind of path. Interestingly, if n belongs to a fragment of a social network not
connected with the rest of the SIS, then CBC(n,Ω) = 0.

Observe that the following relation between cross betweenness centrality and
the classical betweenness centrality can be proved: BC(n) = CBC(n,Ω) +

CBC(n,Ω) + IBC(n), where IBC(n) =
∑

s,t∈N,s�=n,t�=n,S(s)=S(t)
σst(n)
σst

and

Ω = S \ Ω. A direct consequence of this results is that, in the trivial case of
a single-social-network SIS, BC(n) = IBC(n). Indeed, no inter-social-network
contribution occurs.

6 Need and Validity of CBC: An Experimental Proof

In this experimental section, we show that BC is not able to capture the capa-
bility of i-bridges to be central w.r.t. cross-social-network paths. Then, we show
that CBC is a measure that can be used in our application to compare different
i-bridges in terms of suitability to be actors in global team formation. For this
purpose, we partitioned nodes into three categories:

1. i-bridges, which are nodes with a me edge;
2. power users, which are non-i-bridge nodes whose degree is equal to, or higher

than, the average degree of all nodes;
3. normal users, which are neither i-bridges nor power users.

Then, we computed the average values of BC and CBC for each category. The
experiments presented in this section are carried out on two of the subgraphs
described in Section 3. The results obtained for the first and second subgraphs
are reported in Tables 1 and 2.

From the analysis of these tables, we note that there is no correlation between
BC and node cathegory. Indeed, in Table 1, i-bridges and power users have com-
parable values, whereas normal users have a value that is about 3 magnitude
orders lesser than the previous ones. By contrast, in Table 2, power users and

Driving Global Team Formation in Social Networks to Obtain Diversity 417

Table 2. Results obtained for the second subgraph

Type of node BC CBC

Bridges 105.01 43.33

Power Users 1,480,655.07 5.14

Normal Users 1,092,715.52 0.04

normal users have comparable values, whereas i-bridges have a value 4 magni-
tude orders lesser than the previous ones. Thus, it is evident that betweenness
centrality is not able to correctly identify i-bridge nodes.

Consider now cross betweenness centrality. By looking at Tables 1 and 2, we
observe that, for each node category, there is a great uniformity in the corre-
sponding values. Even more interesting, i-bridges have a value of CBC always
higher than power users (about one magnitude order), which, in turn, show a
value much higher than normal users (about two magnitude orders). Therefore,
the distinction among the three categories of nodes is evident by taking cross
betweenness centrality into account. Thus, even our expectation about cross
betweenness centrality is confirmed by analyzing real-life social networks.

7 Related Work

The concept of centrality, as applied to the context of human communication,
was first introduced by Bavelas in 1948 [2]. He mainly focused on communication
in small groups and he hypothesized a relationship between structural central-
ity and influence in group processes. More recently, Leavitt [15], Shaw [19] and
Goldberg [13] proposed studies on speed, activity and efficiency in solving prob-
lems, on personal satisfaction and on leadership in small group settings. The
concept of centrality is motivated by the idea that a person who is close to oth-
ers can have access to more information, a higher status, more power, a greater
prestige, or a greater influence [12] than others. Indeed, this person can facilitate
or inhibit the communication of others and is, therefore, in a position to mediate
their information access, power, prestige, or influence. Among all the centrality
measures, betweenness centrality is one of the most popular, and its computation
is the core component of a range of algorithms and applications. Both Bavelas
[2] and Shaw [19] suggested that, when a person is strategically located in the
middle of communication paths linking other users, she is central. A person in
such a position can influence the group by holding or distorting information.
By the way, the development of betweenness centrality is generally attributed
to the sociologist Linton Freeman [11]. Over the past few years, betweenness
centrality has become a popular strategy to measure node influence in complex
networks, such as social networks. For this purpose, a lot of new metrics based
on betweenness centrality have been already defined [17]. A concept strongly
related to edge importance is edge classification. This task is usually performed
on the basis of the kind (and, hence, of the “strength”) of the relationship the
edge represents. Under this assumption, an edge could be a strong or a weak

418 F. Buccafurri et al.

tie. The concept of tie strength was introduced by Mark Granovetter in his very
popular paper entitled “The Strength of Weak Ties” [14]. He identified four main
features contributing to outline the strength of a tie, namely: amount of time,
intimacy, intensity and reciprocal services. Finally, a first characterization of the
nodes of a SIS has been proposed in [4]. However, no experimental validation
has been provided therein.

8 Conclusion and Future Work

In this paper, we have presented a preliminary idea of a crowdsourcing applica-
tion aimed at driving the process of global team formation to obtain diversity
in the team. This paper presents a first step towards the concrete definition of
the above application consisting in the identification of an effective measure that
can be used to select seed nodes in the team formation. A first preliminary ex-
perimental validation has been provided showing that our idea is well-founded.
The next steps are to further validate the new measure and to design the social
web application in detail. We plan to do this in our future research.

Acknowledgments. This work has been partially supported by the TENACE
PRIN Project (n. 20103P34XC) funded by the Italian Ministry of Education,
University and Research and by the Program “Programma Operativo Nazionale
Ricerca e Competitività” 2007-2013, Distretto Tecnologico CyberSecurity funded
by the Italian Ministry of Education, University and Research.

References

1. Barthelemy, M.: Betweenness centrality in large complex networks. The European
Physical Journal B-Condensed Matter and Complex Systems 38(2), 163–168 (2004)

2. Bavelas, A.: A Mathematical Model for Small Group Structures. Human Organi-
zation 7(3), 16–30 (1948)

3. Buccafurri, F., Foti, V., Lax, G., Nocera, A., Ursino, D.: Bridge Analysis in a Social
Internetworking Scenario. Information Sciences 224, 1–18 (2013)

4. Buccafurri, F., Lax, G., Nicolazzo, S., Nocera, A., Ursino, D.: Measuring Between-
ness Centrality in Social Internetworking Scenarios. In: Demey, Y.T., Panetto, H.
(eds.) OTM 2013 Workshops 2013. LNCS, vol. 8186, pp. 666–673. Springer, Hei-
delberg (2013)

5. Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: A system for extracting structural
information from Social Network accounts. Technical Report. Available from the
authors

6. Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Crawling Social Internetworking
Systems. In: Proc. of the International Conference on Advances in Social Analysis
and Mining (ASONAM 2012), Istanbul, Turkey, pp. 505–509. IEEE Computer
Society (2012)

7. Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Discovering Links among Social
Networks. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part II. LNCS, vol. 7524, pp. 467–482. Springer, Heidelberg (2012)

Driving Global Team Formation in Social Networks to Obtain Diversity 419

8. Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Internetworking assortativity in
Facebook. In: Proc. of the International Conference on Social Computing and its
Applications (SCA 2013), Karlsruhe, Germany, pp. 335–341. IEEE Computer So-
ciety (2013)

9. Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Moving from social networks to so-
cial internetworking scenarios: The crawling perspective. Information Sciences 256,
126–137 (2014)

10. Easley, D., Kleinberg, J.: Networks, crowds, and markets, vol. 8. Cambridge Uni-
versity Press, Cambridge (2010)

11. Freeman, L.C.: Centrality in Social Networks Conceptual and Clarification. Social
Networks 1(3), 215–239 (1979)

12. Friedkin, N.E.: Theoretical foundations for centrality measures. American Journal
of Sociology 96(6), 1478–1504 (1991)

13. Goldberg, S.C.: Influence and leadership as a function of group structure. Journal
of Abnormal and Social Psychology 51(1), 119–122 (1955)

14. Granovetter, M.: The strength of weak ties. American Journal of Sociology 78(6),
1360–1380 (1973)

15. Leavitt, H.J.: Some effects of a certain communication patterns on group perfor-
mance. Journal of Abnormal and Social Psychology 46(1), 38–50 (1951)

16. Lim, S., Ncube, C.: Social networks and crowdsourcing for stakeholder analysis in
system of systems projects. In: Proc. of the International Conference on System of
Systems Engineering (SoSE 2013), Maui, Hawaii, USA, pp. 13–18. IEEE (2013)

17. Newman, M.: A measure of betweenness centrality based on random walks. Social
Networks 27(1), 39–54 (2005)

18. Okada, Y., Masui, K., Kadobayashi, Y.: Proposal of Social Internetworking. In:
Shimojo, S., Ichii, S., Ling, T.-W., Song, K.-H. (eds.) HSI 2005. LNCS, vol. 3597,
pp. 114–124. Springer, Heidelberg (2005)

19. Shaw, M.E.: Group structure and the behavior of individuals in small groups.
Journal of Psychology 38(1), 139–149 (1954)

20. Surowiecki, J., Silverman, M.: The Wisdom of Crowds. American Journal of
Physics 75(2), 190–192 (2007)

21. Vukovic, M.: Crowdsourcing for enterprises. In: Proc. of the International Confer-
ence on Services-I 2009, Los Angeles, CA, USA, 2009, pp. 686–692. IEEE Computer
Society Press (2009)

22. Ye, S., Lang, J., Wu, F.: Crawling online social graphs. In: Proc. of the International
Asia-Pacific Web Conference (APWeb 2010), Busan, Korea, pp. 236–242. IEEE
(2010)

Effectiveness of Incorporating Follow Relation

into Searching for Twitter Users to Follow

Tomoya Noro and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{noro,tokuda}@tt.cs.titech.ac.jp

Abstract. Twitter is one of the most popular microblogging services
that facilitate real-time information collection, provision, and sharing.
Following influential Twitter users is one way to get valuable informa-
tion related to a topic of interest efficiently. Recently many researches
on this issue have been done and, in general, it is said that the follow re-
lation is not useful for measuring user influence. In this paper, we study
effectiveness of incorporating not only the tweet activity (retweet and
mention) but also the follow relation into searching for good Twitter
users to follow for getting information on a topic of interest. We present
a method for finding Twitter users based on both the follow relation
and the tweet activity, and show the follow relation could improve the
performance as compared with methods based on only the tweet activity.

Keywords: Social network analysis, microblog, Twitter, search,
influential users, power iteration algorithm.

1 Introduction

Currently Twitter has become a more and more important platform of informa-
tion collection, provision, and sharing. If we would like to get information of a
topic of interest and discuss the topic with others on a daily basis, we usually
follow some users who provide valuable information on the topic 1. For example,
if we look for information about dementia, we could find that some doctors and
care staff members deliver information about the topic, and some people who
have family members with dementia post tweets about their daily care. We can
get various information on dementia by following such users. However, it is not
easy for us to find good users to follow in a massive number of users.

Many researches on this issue have been done recently. Measuring user in-
fluence on a particular topic will be one solution. They measure each user’s
influence based on the tweet content, the follow relation, the tweet activity such
as retweet and mention, and so on, and some of them pointed out that the fol-
low relation is not useful for measuring user influence. Cha et al. investigated

1 In this paper, we do not consider temporary topics such as incidents and events (nat-
ural disaster, terrorism, FIFA World Cup, etc). If we would like to get information
on such topics, we would take different actions such as keyword search.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 420–429, 2014.
c© Springer International Publishing Switzerland 2014

Effectiveness of Incorporating Follow Relation into Twitter User Search 421

characteristics of Twitter users, then concluded users who have many followers
are popular but not necessarily influential, while users who are retweeted or
mentioned many times have ability to post valuable tweets or ability to engage
others in conversation [2]. We have also been working on this issue and showed
a user search method based on the tweet activity outperforms a method based
on the follow relation [6].

Here is one question. Is the follow relation really useless for finding good users
to follow? Actually some users follow almost all of their followers. We can easily
get many followers if we search for such users, follow them, wait for them to
follow us, and remove them if they do not follow us. The follow relation built
in this way is meaningless since most of the followers may not be interested in
our tweets and we have little influence on them. However, in general, influential
users have many followers. Users who have a small number of followers may not
be good users to follow since they should have more followers if they provide a
lot of valuable information. The search accuracy could be improved by dealing
with both the tweet activity and the follow relation.

In this paper, we study effectiveness of incorporating not only the tweet ac-
tivity but also the follow relation into searching for good Twitter users to follow
for getting information on a topic of interest. We present a method for finding
good users to follow based on both the follow relation among users and the tweet
activity of each user. In evaluation, we compare the method with other methods
without taking the follow relation into account and show incorporating both the
tweet activity and the follow relation could improve the search performance.

This paper is organized as follows. In section 2, we discuss some researches on
searching Twitter users to follow on a topic of interest. We present our method
based on both the follow relation and the tweet activity in section 3, then show
some evaluation results in section 4. Lastly we conclude this paper in section 5.

2 Related Work

Twitter provides its own services for user search and recommendation. Given
some keywords, Twitter mainly shows some users whose screen names or profiles
match the keywords and does not care whether they actually post tweets related
to the keywords. The Twitter recommendation service shows users based on the
follow relation (users who have mutual followers and/or friends), and does not
consider their activity and the tweet content either.

Twittomender [3] finds users related to a particular user or query by using lists
of followers, friends and terms in the user’s tweets. TwitterRank [8] considers
the follow relation and topical similarity to find influential users. Both of the
methods are based on the follow relation and they do not consider the tweet
activity such as retweet and mention.

Leavitt et al. [5] measured user influence by using ratio of being retweeted and
mentioned to the number of tweets the user posted. They do not consider the
follow relation. Anger et al. [1] defined user influence based on ratio of retweeted
tweets and ratio of the user’s followers who retweeted the user’s tweets or men-
tioned the user. Although they consider both the tweet activity and the follow

422 T. Noro and T. Tokuda

relation, they use the follow relation to observe how many followers retweeted
the user’s tweets or mentioned the user and do not consider who follows whom.

We presented a method for finding good users to follow for getting information
about a topic of interest by using the tweet activity [6]. Although we showed that
a search method based on the tweet activity outperforms a method based on the
follow relation, we study effectiveness of considering both the tweet activity and
the follow relation in this paper.

3 Method for Finding Good Twitter Users to Follow

3.1 Overview

Our process of finding good users to follow on a topic of interest goes as follows.

1. Given some keywords representing the topic of interest, collect tweet data
and user data by using the Twitter APIs.

2. Create a user reference graph based on the follow relation and a user-tweet
reference graph based on both the tweet activity and the follow relation.

3. Calculate score of each user from the two graphs and rank the users.

The data collection process in the first step goes as follows.

1. Given some keywords representing a topic of interest, get tweets matching
the keywords posted in the last N days. Duplicate tweets (exactly the same
tweet text posted by the same user) are removed to exclude spammers who
post the same tweets repeatedly. Let this tweet set be T0.

2. For each tweet in T0, get ID and poster’s name of the tweet and user names
in the tweet text (user mention). If the tweet is a reply tweet/retweet, get
ID and poster’s name of the replied/retweeted tweet. Let the set of tweets
and the set of users be Tall and Uall respectively.

3. Get the follow relation among users in Uall (F ⊆ Uall × Uall).

3.2 Score Calculation

In order to define the score of each user, we assume the followings.

1. Users who post many valuable tweets about the topic are worth following.
2. Valuable tweets attract attention from many users.
3. Each user pay attention to tweets the user retweets or replies to.
4. Each user also pay attention to tweets posted by the user’s friends.

The first assumption means that users who post many tweets related to the
topic should be ranked higher. However, some users who post many valueless
tweets such as spam tweets will also be ranked higher if we consider only this
assumption. To exclude such users, we take the other assumptions into account.
A user’s retweeting or replying to a tweet means that the user is interested in
the tweet. Each user may pay attention to a tweet posted by the user’s friends
to some extent even if the user did not retweet or reply to the tweet.

Effectiveness of Incorporating Follow Relation into Twitter User Search 423

Based on these assumptions, we define the score of each user u as follows.

Score(u) = TC(u)wc ×UI(u)wi × FR(u)wf

such that wc + wi + wf = 1 ∧ wc ≥ 0 ∧wi ≥ 0 ∧ wf ≥ 0 (1)

TC(u), UI(u), and FR(u) are respectively “tweet count (TC) score”, “user in-
fluence (UI) score”, and “follow relation (FR) score” of user u ranging between
0 and 1. The TC score is based on the number of tweets each user posted, and
reflects the first assumption. The FR score is based on the follow relation among
users, and reflects the second and forth assumptions. The UI score is based on
both the tweet activity and the follow relation, and reflects the second, third
and forth assumptions.

3.3 Tweet Count Score (TC Score)

The TC score is calculated by counting not only each user’s original tweets but
also retweets in T0. We count retweets as each user’s own tweets 2. The score is
normalized so that the largest value should be 1.

TC(u) =
log(1 + |{t|t ∈ T0 ∧ t.user .id = u.id}|)

maxu′∈Uall
log(1 + |{t|t ∈ T0 ∧ t.user .id = u′.id}|) (2)

t.user .id indicates poster’s ID of tweet t and u.id indicates ID of user u.

3.4 User Influence Score (UI Score)

The basic idea is as follows.

1. If user ui retweets or replies to user uj ’s tweet, uj has an influence on ui.

2. Users who post many tweets paid attention to by many users are influential,
especially if their tweets are often paid attention to by influential users.

How much each tweet is paid attention to by others is measured according to the
tweet activity (retweet and reply) and the follow relation. Based on this idea,
we define not only the UI score of each user but also tweet influence score (TI
score) of each tweet. The UI score is calculated using the TI score of tweets and
retweets posted by the user, and the TI score is calculated using the UI score of
users who pay attention to the tweet.

We create a user-tweet reference graph consisting of user nodes (Uall), tweet
nodes (Tall), and directed edges each of which connects a user node and a tweet

2 The retweet activity is incorporated into both the TC score and the UI score. The
number of times each user retweeted is considered in the TC score while the user-
tweet relation (who retweeted what) is considered in the UI score.

424 T. Noro and T. Tokuda

node. The reference graph is represented as combination of three adjacency ma-
trices At, Ar, and As.

At(ti, uj) =

{
1 if ti is tweeted/retweeted by uj

0 otherwise
(3)

Ar(uj , ti) =

{
1 if uj retweets/replies to ti

0 otherwise
(4)

As(uj , ti) =

{
1 if uj follows at least 1 user who tweets/retweets ti

α otherwise (0 < α ≤ 1)
(5)

ti and uj indicates the i-th tweet and the j-th user respectively (1 ≤ i ≤ |Tall | and
1 ≤ j ≤ |Uall |). At and Ar are derived from the tweet activity of each user, and
As is derived from the follow relation among users. At represents what (tweet)
is tweeted or retweeted by whom (user), and Ar and As respectively represent
who retweets or replies to what and who sees what. The follow relation will be
ignored if α is equal to 1.

These adjacency matrices are transformed into the following two matrices.

Bt(ti, uj) =
At(ti, uj)∑
k At(ti, uk)

(6)

Ba(uj , ti) =

{
Ar(uj ,ti)∑
k Ar(uj ,tk)

(1− d) +
As(uj ,ti)∑
k As(uj ,tk)

d if
∑

k Ar(uj, tk) �= 0
As(uj ,ti)∑
k As(uj ,tk)

otherwise
(7)

d is a damping factor of 0 < d < 1. Transformation of Ar and As into Ba reflects
the third and forth assumptions of good users to follow described in section 3.1.
Each user pay attention to tweets the user retweets or replies to, and the user
also watches all tweets at a certain rate of d regardless of the user’s activity of
retweet and reply. Tweets posted or retweeted by the user’s friends are more
likely to be seen than the other tweets, and the idea is also included.

The UI score and the TI score are calculated as follows.

u = BT
t t t = BT

a u (8)

u and t indicate a column vector of the UI score of all users and a column vector
of the TI score of all tweets respectively. We can calculate the UI score and the
TI score using the power iteration method. Lastly the UI score of each user is
normalized so that the largest value should be 1.

UI(uj) =
u(j)

maxk u(k)
(9)

3.5 Follow Relation Score (FR Score)

The FR score is calculated based on the follow relation using PageRank [7]. A
user reference graph is created from the follow relation F . Adjacency matrix of
the graph is represented as follows.

Effectiveness of Incorporating Follow Relation into Twitter User Search 425

Af (ui, uj) =

{
1 if ui follows uj i.e. (ui, uj) ∈ F

0 otherwise
(10)

Bf (ui, uj) =

{
Af (ui,uj)∑
k Af (ui,uk)

(1− d) + d
|Uall | if

∑
k Af (ui, uk) �= 0

1
|Uall | otherwise

(11)

f = BT
f f (12)

ui and uj indicates the i-th user and the j-th user respectively, and d is a damping
factor. f indicates the column vector of the FR score of all users.

Unlike normalization of the TC score and the UI score, the FR score of each
user is not divided by the maximum value. As described in section 1, users who
have many followers are not necessarily influential, and it is said that the follow
relation is not useful for measuring user influence. However, we think the follow
relation could be used for excluding uninfluential users who have few (influential)
followers. Instead of dividing the FR score of each user by the maximum value,
we set upper limit of the FR score to the minimum score of the top-P% users
and divide the score of each user by the limit.

FR(ui) =
min(f(i), limit)

limit
(13)

limit indicates the minimum FR score of the top-P% users. This normalization
can weaken influence of the users who have high FR score since the score of all
of the top-P% users will be set to 1.

Some alternative ways for normalization may be considered. For example,
some may think of normalization by setting the upper limit to a predetermined
proportion to the maximum value (e.g. limit = 0.1×maxk f(k)) or determining
the number of users to be capped (e.g. Top-50 users). However, the number of
users to be ranked depends on topics of interest, and distribution of the FR score
also varies by the topics. We think that determining the percentage of users to
be capped is better from our observation.

4 Evaluation

4.1 Experimental Setup

We selected the following 7 Japanese keywords (in Japanese characters) as input
query representing topics of interest: “nuclear power”, “animal test”, “whaling”,
“dementia”, “digital book”, “basic income” and “fair trade”. We chose these
topics since we expect that tweets related to the topics are posted on a daily
basis (independent of season). Tweets and other data were collected 6 times
on different days. For each time, we get tweets posted in the last 5 days. The
average number of tweets and users we collected is shown in Table 1. “Reply”
means tweets replying to tweets specified in “reply-to” attribute, and “Mention”
means tweets including user names but not specifying their target tweets.

426 T. Noro and T. Tokuda

Table 1. The average number of tweets and users

Keyword |T0| |Tall | |Uall |
Total Retweet Reply Mention

nuclear power 26,937.7 14,878.0 1,008.7 1,336.0 28,124.0 13,435.3

animal test 2,591.7 1,539.8 185.7 126.5 2,818.3 1,349.3

whaling 4,057.7 1,045.7 254.0 321.0 4,249.7 3,112.7

dementia 5,497.5 1,670.7 832.3 163.5 6,255.0 4,959.3

digital book 19,208.0 4,408.2 1,307.8 1,273.3 20,333.5 12,976.8

basic income 400.7 148.8 68.3 19.8 449.0 251.5

fair trade 779.2 364.8 70.7 14.7 849.8 662.2

Table 2. Value of each parameter

d in Eqs. (7) and (11) 0.15
P for FR(+lim) 5%
α in Eq. (5) for UI(+fol) 0.1
wc and wi in Eq. (1) for TC+UI 0.6 and 0.4
wc, wi and wf in Eq. (1) for TC+UI+FR 0.6, 0.2, and 0.2

We set up the following methods for comparison.

TC+UI(+fol)+FR(+lim): Rank users based on the TC score, the UI score
with the follow relation, and the FR score with upper limit.

TC+UI(-fol)+FR(+lim): Rank users based on the TC score, the UI score
without the follow relation, and the FR score with upper limit (α in Eq. (5)
is set to 1).

TC+UI(+fol)+FR(-lim): Rank users based on the TC score, the UI score
with the follow relation, and the FR score without upper limit (normalization
of the FR score is done by dividing each score by the maximum value).

TC+UI(-fol)+FR(-lim): Rank users based on the TC score, the UI score
without the follow relation, and the FR score without upper limit.

TC+UI(+fol): Rank users based on the TC score and the UI score with the
follow relation (wf in Eq. (1) is set to 0).

TC+UI(-fol): Rank users based on the TC score and the UI score without
the follow relation

TC: Rank users based on only the TC score.
UI(+fol): Rank users based on only the UI score with the follow relation.
UI(-fol): Rank users based on only the UI score without the follow relation
FR(-lim): Rank users based on only the FR score without upper limit

We carried out a preliminary experiment using tweet data collected on differ-
ent days to determine the parameters appeared in section 3. The value of each
parameter is shown in Table 2.

Effectiveness of Incorporating Follow Relation into Twitter User Search 427

nuclear power animal test whaling dementia digital book basic income fair trade
0

0.2

0.4

0.6

0.8

TC+UI(+fol)+FR(+lim)

TC+UI(-fol)+FR(+lim)

TC+UI(+fol)+FR(-lim)

TC+UI(-fol)+FR(-lim)

TC+UI(+fol)

TC+UI(-fol)

TC

UI(+fol)

UI(-fol)

FR(-lim)

Fig. 1. Average nDCG of each method

Evaluation is done on the top 20 users ranked by each method with respect
to normalized discounted cumulative gain (nDCG) [4].

DCG20 = rel1 +

20∑
i=2

rel i
log2 i

maxDCG20 = 2 +

20∑
i=2

2

log2 i
(14)

nDCG20 =
DCG20

maxDCG20
(15)

rel i indicates relevance score between the user ranked i-th and the input keyword,
which is judged on a scale of 0 to 2. Users who often post related tweets are
assigned the score of 2, while users who rarely post related tweets are assigned
the score of 0. Users who post a lot of unrelated tweets like advertisement and
spams are also assigned the score of 0. The judgment was done by watching their
tweets posted after the data collection period (for about one month) to check
whether they continuously post related tweets.

4.2 Result

The result is shown in Figure 1. We can see that considering the follow relation
in calculation of the UI score improves the search result on average (e.g. methods
including UI(+fol) vs methods including UI(-fol)).

Except for the case of “whaling”, incorporating the FR score is also effective
(e.g. TC+UI(+fol)+FR(+lim) vs TC+UI(+fol)). The FR(-lim) method found
no relevant user in the case of “whaling”. When incidents related to whaling oc-
cur, many major news organizations will post tweets related to the topic and will
get high ranking in the FR score since they have many followers. However, their
interest is not always focused on the topic. On the other hand, users who usually
talk about or discuss the topic do not have strong follow relation with others

428 T. Noro and T. Tokuda

H
CB

E

G

I

J

0

0.01

0.02

0.03

0.04

0.05

0.06

0.7 0.75 0.8 0.85 0.9

A
ct

iv
en

es
s

Consistency

H nuclear power

C animal test

B whaling

E dementia

G digital book

I basic income

J fair trade

Fig. 2. Consistency and activeness of each keyword

compared to such news organizations. We think this is why the performance
were not improved by incorporating the FR score.

Effectiveness of setting the upper limit for normalization of the FR score differs
according to keywords (e.g. TC+UI(+fol)+FR(+lim) vs TC+UI(+fol)+FR (-
lim)). In the case of “whaling”, a large decline caused by incorporating the FR
score is prevented. This is because influence of users who is ranked high on
the FR score but do not focus on the topic (e.g. major news organizations) are
reduced. Setting the upper limit worsen the search performance in the case of
“dementia” since, unlike the case of “whaling”, some users who usually focus
on the topic also have strong follow relation with others and difference between
their FR score and the score of major news organizations is not large.

If we compare methods including UI(+fol) with methods including UI(-fol)
in more details, we can see that incorporating the follow relation in calculation
of the UI score seems not to improve the search performance in the case of
“whaling” and “digital book”. To analyze this issue, we calculate two measures.
One measure is “consistency”, how much their tweet activity (retweet and reply)
is consistent with their follow relation, and the other measure is “activeness”,
how many tweets posted by their friends they retweet or reply to. They are
defined as follows.

Consistency =
Consistent

Consistent + Inconsistent
(16)

Activeness =
Consistent

Consistent + Ignored
(17)

“Consistent” means the number of times they retweeted or replied to their
friends’ tweets and retweets, and “Inconsistent” means the number of times
they retweeted or replied to tweets and retweets posted by none of their friends.
“Ignored” means the number of times they do not retweeted nor replied to their
friends’ tweets and retweets. From the result shown in Figure 2, we can see both
consistency and activeness of “whaling” and “digital book” are low compared

Effectiveness of Incorporating Follow Relation into Twitter User Search 429

with other keywords. We guess users who are interested in the topics are likely to
see tweets of non-following users and to communicate with them while they do
not communicate with their friends so much. This situation would occur if they
usually talk about or discuss topics of interest by using hashtags. It can also be
seen in the case of “basic income” but, in this case, many of them communicate
with their friends as well as other users (activeness is high in the case of “basic
income”). On the other hand, both consistency and activeness of “fair trade”
and “dementia” are high. In both cases, we can see effectiveness of incorporating
the follow relation into calculation of the UI score. The percentage of retweets,
reply tweets and mention tweets of “digital book” and “whaling” is low (36.3%
and 40.0% respectively) as shown in Table 1, which would also be one factor
that worsens the performance.

5 Conclusion

In this paper, we presented a method for finding good Twitter users to follow for
getting information about a topic of interest based on both the tweet activity and
the follow relation, and showed incorporating both of them improves the search
performance on average except for the case that performance of the method
based only the follow relation is extremely bad. We also measured “consistency”
and “activeness”, and found effectiveness of incorporating the follow relation
into the UI score is high if the two scores are high.

References

1. Anger, I., Kittl, C.: Measuring influence on Twitter. In: 11th International Confer-
ence on Knowledge Management and Knowledge Technologies, vol. 31. ACM Digital
Library (2011)

2. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring user influence
in Twitter: The million follower fallacy. In: 4th International AAAI Conference on
Weblogs and Social Media, pp. 10–17 (2010)

3. Hannon, J., Bennett, M., Smyth, B.: Recommending Twitter users to follow using
content and collaborative filtering approaches. In: 4th ACM Conference on Recom-
mender Systems, pp. 199–206 (2010)

4. Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques.
ACM Transactions on Information Systems 20(4), 422–446 (2002)

5. Leavitt, A., Burchard, E., Fisher, D., Gilbert, S.: The influentials: New approaches
for analyzing influence on Twitter. Web Ecology Project (2009),
http://www.webecologyproject.org/2009/09/

analyzing-influence-on-twitter/
6. Noro, T., Ru, F., Xiao, F., Tokuda, T.: Twitter user rank using keyword search. In:

Information Modelling and Knowledge Bases XXIV. Frontiers in Artificial Intelli-
gence and Applications, vol. 251, pp. 31–48. IOS Press (2013)

7. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Tech. rep., Stanford University (1998)

8. Weng, J., Lim, E.P., Jiang, J., He, Q.: TwitterRank: Finding topic-sensitive influ-
ential Twitterers. In: 3rd ACM International Conference on Web Search and Data
Mining. pp. 261–270 (2010)

http://www.webecologyproject.org/2009/09/analyzing-influence-on-twitter/
http://www.webecologyproject.org/2009/09/analyzing-influence-on-twitter/

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 430–439, 2014.
© Springer International Publishing Switzerland 2014

Improving the Scalability of Web Applications
with Runtime Transformations

Esteban Robles Luna1, José Matías Rivero1,2, Matias Urbieta1,2, and Jordi Cabot3

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles,mrivero,matias.urbieta}@lifia.info.unlp.edu.ar

2 Also at Conicet
3 École des Mines de Nantes / INRIA

jordi.cabot@inria.fr

Abstract. The scalability of modern Web applications has become a key aspect
for any business in order to support thousands of concurrent users while reduc-
ing its computational costs. If a Web application does not scale, a few hundred
users can take the application down and as a consequence cause business prob-
lems in their companies. In addition, being able to scale a Web application is
not an easy task, as it involves many technical aspects such as architecture de-
sign, performance, monitoring and availability that are completely ignored by
current Model Driven Web Engineering approaches. In this paper we present a
model-based approach that uses runtime transformations for overcoming scala-
bility problems in the applications derived from them. We present our approach
by “scaling up” a WebML application under a stress scenario, proving that it
provides a “framework” for overcoming scalability issues.

1 Introduction

Scalability is the ability of a system to handle a growing amount of work in a capable
manner or its ability to be enlarged to accommodate that growth [3]. Scalability prob-
lems in the applications derived using Model Driven Web Engineering (MDWE) tools
may not appear as soon as they are deployed, but rather after they has been “living” in
production for some time.

In the Web engineering research area, MDWE approaches [11] have become an at-
tractive solution for building Web applications by raising the level of abstraction and
simplifying Web application development. Regardless of the approach used, the main
focus is always the same: to create a Web application that satisfies functional require-
ments. As a consequence, little attention has been put to non-functional requirements
such as scalability issues as they have been considered technological-dependent as-
pects [12]. Additionally, the Web applications derived from MDWE approaches pose a
rigid/static architecture that cannot be easily changed hindering scalability fixes. To
make things worse, diagnosing and fixing these problems becomes cumbersome and
impossible to be done in the models thus forcing teams to deal with the generated code.

To overcome these problems, a recent study [7] has captured the top 20 problems
that Web applications face to achieve scalability and it also shows that “unforeseen
scalability issues during development, can easily appear in a production environ-
ment”. This list includes obstacles that affect both code and model based development

 Improving the Scalabi

and includes aspects such
scalability is a desired aspe
the application to run fast (
technical aspects that need t

Identifying a scalability
can be easy, however diagn
sumes many human resour
software development effor
not help on that aspect a
until their primitives and a
code, thus breaking the mod
improvement claimed by M

 Fig. 1a. Traditional MDWE

In this paper we present
MDWEs to help them diag
stead of deriving the code fr

1. Transform the M
preted by our in

2. Deploy those m
them).

3. Provide tools
(SREs) to diagn
their identificati

4. Provide scalabi
rivation contem
plication once t
tinues in the hig

5. Enable to dynam
runtime directly
ment (doing ste

The paper is structured
Section 3 we present the de
proach is implemented and

lity of Web Applications with Runtime Transformations

as monitoring, logging and caching. Furthermore, thou
ect of a Web application, achieving it does not only requ
(within an acceptable threshold), but it also involves ot
to be handled during the application lifecycle [7].
problem (e.g. the application runs out of DB connectio
nosing to find the root cause of the issue and fixing it c
rces and it has been probed to consume 50%-75% of
rt [2]. We argue that the current status of MDWE tools
s they do not allow to decompose the model eleme

as a consequence forces teams to deal with the genera
dels’ abstraction and, consequently, losing the productiv

MDWEs.

E Fig. 1b. LiquidML approach

a model-based approach called LiquidML that complem
gnose and fix scalability issues in running applications.
from MDWE models (Fig 1a), we (Fig 1b):

MDWE models into LiquidML models that can be in
nterpreter.
models into a LiquidML Server (final platform for runn

for domain experts such as Site Reliability Engine
nose scalability problems directly at the model level a
ion.
ility annotations with architectural changes so the next

mplates them to produce a more scalable version of the
the problem has been diagnosed and as development c
gher-level MDWE models,
mically apply a model transformation to fix the problem
y in the LiquidML servers if we want to avoid a depl
ps 1 and 2 again).
as follows: in Section 2 we present related work and

etails of our approach. In Section 4, we show how the
in Section 5 we present the conclusions and further wor

431

ugh
uire
ther

ons)
con-

the
can
ents
ated
vity

ment
In-

nter-

ning

eers
after

de-
ap-

con-

m at
loy-

d in
ap-

rk.

432 E. Robles Luna et al.

2 Related Work

Developing and maintaining Web applications require not only an initial construction
process but also a continuous monitoring/fixing cycles that must interleave with new
requirements implementation. Scalability is generally an implicit desired feature by
product owners but it is the least aspect that is paid attention on during development.

In this matter, the authors in [12] clearly states “Many MDWE approaches have
been created in the last 20 years with special focus in modeling the functional aspects
of Web applications. Non-functional (e.g., scalability) properties of Web applications
have traditionally been a minor concern in the Web engineering community and have
been seen as technology or system-related issues”. Additionally, the author presents a
theoretical proposal to deal with non-functional requirements during a model based
development; however scalability is not treated as a specific concern and no imple-
mentation is presented.

Not restricting to Web Engineering, the aspects of dealing with scalability in Mod-
el-Driven Engineering (MDE) are the central topic of a recent study [8]. However, the
term scalability in this area is treated not as the scalability of the derived application
but to actually scale the tools and models to be able to handle relatively big applica-
tions. In this aspect, being able to scale the development of model based applications
involves handling huge graph representing the models which compromise the perfor-
mance of the transformations applied to obtain the applications.

In [5] the authors present an approach for transforming models into code while the
application is running. To accomplish such task, the authors provide a runtime model
with an API to push the code changes to the running environment. Though the ap-
proach makes sense from a conceptual point of view, many technological issues such
as concurrency and well known issues in the derived language (e.g. memory issues in
a Java program such as hot code replacement) are not taken into account. As a conse-
quence, we argue that the approach, in its current state, lacks practical application.

Finally, holding models at runtime to perform runtime changes has been presented
in [1]. However, the approach focuses in the representation of the actual requirements
while the application is running rather than on the live models. The approach was
initially applied for autonomous systems where domain experts are not able to access
the system easily and thus has to run autonomously. The applications built with mod-
els @ runtime are from a different domain and seems to have less sophisticated busi-
ness requirements than a Web application; as a consequence those automatic changes
can be applied. In the Web engineering area, we think that those changes should be
applied by SREs in a semi automatic way.

3 LiquidML

In this section we present our approach for fixing scalability issues at runtime.
Though our approach can be applied to any MDWE method, we will illustrate it using
WebML [4], as it is the most mature MDWE regarding to tool support.

3.1 LiquidML in a Nutshell

A LiquidML model is a composition of so-called Flows. A Flow describes a sequence
of steps that need to happen within a Web request (called a Message in our approach).

 Improving the Scalabi

A Message has a payload
identified by an icon and co
Elements happens by mean
from one Element to anothe

We have categorized the

• Message source
from them. A c
ing requests fro

• Processor: Proc
Processors can v

• Router: Moves
conditions. For
Element of its li

To summarize the Liquid

3.2 Transforming MDW

Flow models (main model
however a more common
WebML navigation models
from LiquidML. To provid
product details page of a W
product information and a r

The actual transformatio
through the elements of the
the WebML model but tha
straction (so that they can
shows the result of the trans

Fig. 3. Fragment

lity of Web Applications with Runtime Transformations

(body) and a list of properties while each step is visua
onstitutes an Element of the flow. Communication betw
ns of message interchanges. The way messages are mo
er one is defined by the Connections between them.
e Elements using the categories found in [6]:

e: Listens for incoming requests and generates messa
oncrete example is an HTTP listener that listens to inco
m users and creates Messages from HTTP requests.

cesses a message by changing its payload and propert
vary from custom user logic to DB access.
the message between processors depending on its type
instance, a ChoiceRouter routes the message to a spec

ist, based on a Boolean condition.

dML concepts, a metamodel is presented in Fig. 2.

Fig. 2. LiquidML metamodel

WE Models to LiquidML Models

of the our LiquidML models) could be manually creat
scenario would be to start from higher level models (l
s) and then transform those into our flow models to ben
de an example of this transformation we show in Fig 3
WebML model. The product details page shows the ba
rank that qualifies the product.
on from the WebML model to LiquidML works iterat
e model and “unfolding” some elements that are implici
at have an explicit representation in our lower level of

be configured, if needed, for scalability purposes). Fig
sformation for the WebML example.

of WebRatio model for our E-Commerce application

433

ally
ween

ved

ages
om-

ties.

and
cific

ted,
like

nefit
the

asic

ting
it in
ab-

g. 4

434 E. Robles Luna et al.

The Element with no in
will receive incoming requ
Message source named “
choice/switch statement an
the request comes to a URL
the Page units of WebML
URL. The transformation a
“Get info” is another router
obtains the product info fro
tation of the product’s ran
reputation” and “Get produ
this information (“Comput
tained from the “product d
Groovy source code of “Co
posed (“Compose data”) an
processor. These elements a
example UI; we also make t

A Flow model can be ex
lowing subsection, we prov
and a brief description of th

3.3 Model Interpretatio

As aforementioned, flows d
contrary to all MDWE app
code of a Web application.
[9] and in many informal di
answer to this matter but ra
our model based approach.

1 http://www.theenterp
 model-driven-develop
2
 http://modeling-lan
executable-models-vs

3 http://blog.webratio

ncoming arrow represents the Message source listener t
uests (implicit in WebML). The Element connected to
“Route path” is a ChoiceRouter that behaves like

nd it will route the message to the “Get info” processo
L starting with “/product/*”. This element is represented

(“Detail” unit in Fig. 3) by a property that identifies
also tries to derive highly concurrent models and thus
r that gets information in parallel from multiple sources

om the DB: (“Get product info”) and it triggers the com
nk, which involves two database (DB) queries (“Get u
uct reviews”) and a Processor that computes the rank fr
te product rank”). The “Get product info” element is
detail unit” while the other elements are derived from
ompute product rank”. Finally, the information gets co

nd used for rendering a Web page in the “Render templa
are hidden in the WebML model as WebRatio generates
these elements explicit.

Fig. 4. Product details flow

xecuted by means of the LiquidML interpreter. In the
vide an overview of how our model interpretation wo

he deployment process.

on and Deployment

define the behavioral part of the Web application. On
proaches, we decided to interpret rather than to derive
 Strong cons and pros of both approaches can be found
iscussions1,2,3

; however, we do not expect to find a defin
ather present the advantages we found for Web scaling
 It is true that at a first sight, code-generation seems to

prisearchitect.eu/archive/2010/06/28/
pment-code-generation-or-model-interpretati
guages.com/
s-code-generation-vs-model-interpretation-
o.com/?p=368

that
the

e a
or if
d in
s its
the

s. It
mpu-
user
rom
ob-
the

om-
ate”
s an

fol-
orks

the
the

d in
nite
g in
o be

on

-2/

 Improving the Scalability of Web Applications with Runtime Transformations 435

the right option when aiming at scalable applications but scalability involves more
than an application running fast.

As our behavioral models (Flows) are rather simple, the interpreter algorithm is
quite simple too. We present a simplified version of the algorithm using a Java-based
pseudocode in the next lines: the interpreter works when messages are received (event
based style [6]) on Message sources (e.g. an HTTP message source) (line 1). It finds
the next element (currentElement) that will handle the message (line 2 and 5) and
evaluates it using the message content (line 4). An evaluation returns a Message
instance that could be the same as the previous one or a new one depending on the
Element intent (data transformation, routing, etc.) and it is passed to the next Element
until we run out of Elements (line 3).

1. OnMessageReceived(MessageSource msgSource, Message message): {

2. Element currentElement = interpreter.getNextInChain(msgSource);

3. while (currentElement != null) {

4. interpreter.evaluate(currentElement, message);

5. currentElement = interpreter.getNextInChain(currentElement);

6. }

7. }

Interpretation happens while engineers are building the application and when the ap-
plication is run in every other deployment environment (QA, Staging, Production). Once
the models satisfy the requirements, the deployment process to a specific environment
occurs. The deployment is an automatic process where a copy of the models is moved to
the servers where they can start receiving messages. As aforementioned, unforeseen
problems may appear in a production environment; thus in the following subsection, we
present two tools to help diagnosing problems while our models are running.

3.4 Diagnosing Production Problems

The LiquidML model is what the engineering team tweaks and what is being run in
production by means of the LiquidML interpreter. Such interpreter resides inside the
LiquidML server, which is our execution platform that provides the ability of tweak-
ing the models at runtime to improve the overall scalability of the application.

In our approach, each Element inside a Flow can suffer of production problems and
as a consequence it may need to be adjusted. In these cases our approach allows us to
monitor specific Elements but only when the engineer requests so. Monitoring adds a
small performance footprint on each request that must be handled with caution. To
diagnose problems we provide two well-known features such as profiling and log-
ging. However, instead of generating low-level artifacts such as Java code, we work
at a high level allowing to reference elements and messages.

As shown in [7], logging is a practical tool for this purpose as we can log informa-
tion about the incoming messages. In our approach, we also allow condition logging
(log information if it only satisfies some conditions). This is extremely important as it
helps to reduce the performance degradation [10] of the elements when thousands of
messages are processed per second and because it filters messages that we know are
not causing the problem. Considering the Product detail example, we can dynamically

436 E. Robles Luna et al.

add a logger to the “Path r
coming URL) by simply wr

 ‘Incoming traffic: ’

The second feature we
temporary measuring of the
tion of elements that are co
modelers in providing quick
optimizations. We can atta
the average response time c
ing we can better diagnose
we will discuss this topic in

3.5 Annotation of MDW

Once the problem has been
it. Our approach allows ann
improve the scalability pro
Fig. 5 shows that the compu
time and as a consequence
ment team proposes to cach
vigation line in the WebM
value. In Fig. 6 we show th
Lazy Compute” as shown in

The tag applied to the W
plied to the generated Liqui
of applying such transforma

outer” Element that prints the requested resources (the
riting the following expression:

’ + message.properties[‘actions.http.requestURI

provide is Element profiling, meaning that we allow
e performance of an Element. It helps with the identifi
onsuming more time to complete in the Flow and orie
k performance solutions through the introduction of mo
ch multiple profilers to our elements (Fig 5) and see h
changes as traffic comes in. Using both logging and pro
the problem and check if a runtime fix is possible or n

n the following subsections.

Fig. 5. Profiling a flow

WE Models

n identified and diagnosed, the development team has to
notating the MDWE model with scalability annotation

operties of the applications derived from the MDWE to
utation of the rank is taking a large percent of the respo

e some optimization needs to be introduced. The devel
he the product rank that gets computed by tagging the

ML model of Fig. 3 with a cache strategy of the compu
e tagged WebML model (the name ALC stands for “As
n the following section).

Fig. 6. Tagged WebML model

WebML model generates a transformation that can be
idML model. In the following section, we present the re
ation.

 in-

I’]

the
fica-
ents
odel
how
ofil-
not;

o fix
s to
ool.

onse
lop-
na-

uted
ync

ap-
sult

 Improving the Scalabi

3.6 Runtime Model Tra

As mentioned in the previo
approach and do not requir
ing non-functional requirem
tered. In this matter, we hav
can be automatically applie
to space constraints, we wi
tion applied in the example

The caching (Async Laz
consequence we cache the
We store when was the las
ecution and upon incomin
Applying this transformatio
rank” will cache all the re
rank”. The transformation n
ly obtained if it is specified

• A key expressio
sults in the c
['actions.http.pr

• A value expres
of the message:

The application of the t
leaves it in the state shown
tions added by the transfo
shown in Fig. 4. The first
gets the cached value for th
if it is not cached we conti
as before and then we store
last update computation (“
chronously evaluated when
putedTime()) > configurabl
ous way but only when it i
value but after the new valu

Fig. 7. Resu

lity of Web Applications with Runtime Transformations

ansformations

ous subsection, some problems can be quickly fixed in
re a build-deploy process. Those fixes tend to help satis
ments and thus functional requirements should not be
ve created a small, non-exhaustive catalog of solutions t

ed to flows and it is based on the concepts found in [6]. D
ill not present the catalog but just explain the transform
of Fig. 6.

zy Compute) is used when an Element is running slow, a
results produced by the Element for a long period of ti

st time that the element was run and the result of such
g requests we update the cached results asynchronou
on to the connection between “Get info” and “Get prod
esults coming from the subgraph starting in “Get prod
needs some inputs to be applied which can be automatic
in the WebML model:

on: an expression used for the getting and putting the
cache. In our case we will use message. Proper
roductId'].
sion: what we want to cache. In our case just the payl
 message.payload.

transformation modifies the Flow model dynamically
n in Fig 7. We have highlighted the elements and conn
rmation, as the remaining of the diagram is the same
element added by the transformation “Get cached val

his request using the product id. In the “Is cached?” rou
inue to the “Chain” element. Here, we compute the val
e the value in the cache (“Put cached value”) and save
“Put last update”). Finally, the “Async cache” gets as
n the value has been cached before and (NOW() – lastCo
le threshold. So, we recomputed the value in an asynchr
is requested and it is old enough. The user may see an
ue has been computed it will appear for the following us

ult of applying “Caching (async lazy compute)”

437

our
sfy-
 al-
that
Due
ma-

as a
me.
ex-

usly.
duct
duct
cal-

re-
rties

oad

and
nec-
e as
lue”
uter
lues
the

syn-
om-
ron-
old

ser.

438 E. Robles Luna et al.

4 Implementation

We have developed some tools to support the construction of models using a Web
based application that allows modeling each of the concepts we have mentioned. All
the figures presented in this paper have been obtained from the Web tool we have
built. Such tool allows handling multiple teams and each team allows the creation of
multiple applications. Each application consists of multiple flows, properties and re-
sources and it can be snapshot and deployed.

Once the application is deployed, we can move to a deployment view of the flows
where we can modify the application at runtime to diagnose and fix any performance
problem that may arise. In the deployment view, we can select an element and add a
profiler. After some messages are received, we can start seeing the number of millise-
conds it takes for a message to be processed. If necessary we can add some logging
information that can help us diagnose the problem. The logging information is gener-
ated from a dynamic expression on the message and each recorded entry can be seen
in the tool. Finally, if the problem can be fixed by simply applying a transformation,
we can do so by selecting the Element involved, configuring the transformation (if
necessary) and clicking in the apply button. The task is straightforward because the
user selects a Flow Element used as a reference for the transformation and then
chooses a valid transformation.

We have decided not to use the well-known Eclipse Modeling Framework (EMF)4
for defining our language and its visual representation since, in our humble opinion, it
provides a rigid structure that we want to avoid. As a consequence, our tool support
required a bit of extra effort to be developed. To implement it we have used a stan-
dard Java architecture composed by Spring Framework5 and Hibernate6. In addition,
Cappuccino7 was used to build the editor. On the server side, we implemented the
REST API services with Jersey8 so that the models can be deployed and share most of
the Java code. We have also used Spring and Hibernate in the Server side too. We
encourage the reader to visit our Web site at http://www.liquidml.com for demonstra-
tion videos.

5 Conclusions and Future Work

In this paper we have presented LiquidML, a model-based approach that comple-
ments MDWEs methodologies to help them improving the scalability of the applica-
tions they derive. To the best of our knowledge, this is the first work to propose
and implement a solution to deal with this topic. Once a LiquidML model is obtained,
we can monitor the application to help with the identification of production problems
that can not be reproduced in any other environment. If the problem can be fixed at

4 Eclipse modeling framework. http://www.eclipse.org/modeling/emf/
5 Spring, http://projects.spring.io/spring-framework/
6 Hibernate, http://hibernate.org/
7 Cappuccino, http://www.cappuccino-project.org/
8 Jersey, https://jersey.java.net/

 Improving the Scalability of Web Applications with Runtime Transformations 439

runtime, engineers can apply a well-known solution safely and automatically, avoid-
ing the high cost of redeploying the application.

Interpreting models poses multiple challenges and many advantages that we want
to take into account as future work. From analyzing multiple empirical experiences, it
is easy to abstract solutions to common patterns that appear in the application. Thus,
we plan to provide these patterns that fix production problems and the rules that help
their identification as first class entities. We predict that such approach cannot be ful-
ly automated as it requires knowledge about the running application (e.g. where the
information is stored in the message and what are the things we want to cache) and as
a consequence a semi automatic process using a rule engine seems to be a viable solu-
tion. Finally, we plan to expand the catalog of patterns that can be applied to flows,
which will help SREs fixing more problems at runtime.

References

1. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22 (2009)
2. Boehm, B.W.: Software engineering economics. Prentice-Hall, Englewood Cliffs (1981)
3. Bondi, A.: Characteristics of scalability and their impact on performance. In: Proceedings

of the 2nd International Workshop on Software and Performance (WOSP 2000),
pp. 195–203. ACM, New York (2000)

4. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

5. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: The Program Is the Model: Enabling
Transformations@run.time. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS,
vol. 7745, pp. 104–123. Springer, Heidelberg (2013)

6. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions, p. 735. Addison-Wesley (2012)

7. Hull, S.: 20 Obstacles to Scalability. ACM Queue 11(7), 20 (2013)
8. Kolovos, D., Rose, L., Matragkas, N., Paige, R., Guerra, E., Cuadrado, J.S., Lara, J.,

Ráth, I., Varró, D., Tisi, M., Cabot, J.: A research roadmap towards achieving scalability
in model driven engineering. In: Proceedings of the Workshop on Scalability in Model
Driven Engineering (BigMDE 2013). ACM, New York (2013)

9. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Architectures.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

10. Molyneaux, I.: The Art of Application Performance Testing: Help for Programmers and
Quality Assurance, 1st edn. O’Reilly Media, Inc. (2009)

11. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and Imple-
menting Web Applications. Springer (2007)

12. Toffetti, G.: Web engineering for cloud computing. In: Grossniklaus, M., Wimmer, M.
(eds.) ICWE Workshops 2012. LNCS, vol. 7703, pp. 5–19. Springer, Heidelberg (2012)

Multi Matchmaking Approach for Semantic Web

Services Selection Based on Fuzzy Inference

Zahira Chouiref1,2, Karim Benouaret3, Allel Hadjali2, and Abdelkader Belkhir4

1 Université de Bouira, 10000 Bouira, Algeria
zahira.chouiref@univ-bouira.dz

2 LIAS, ENSMA, 86360 Chasseneuil-du-Poitou, France
{zahira.chouiref,allel.hadjali}@ensma.fr

3 LT2C, Université Jean Monnet, 42000 Saint-Etienne, France
karim.benouaret@univ-st-etienne.fr

4 USTHB, 16000 Algiers, Algeria
kaderbelkhir@hotmail.com

Abstract. Selecting services from those available according to user pref-
erences plays an important role due to the exploding number of services.
Current solutions for services selection focus on selecting services based
either only on non functional features, on context preferences or profile
preferences. This paper discusses an improvement of existing services
selection approaches by considering both user context and profile. The
ultimate aim is to derive maximum profit from available profile and con-
text information of the user by inferring the most relevant preferences
w.r.t his/her contextual profile. Linguistic/fuzzy preference modeling and
fuzzy inference based approach are used to achieve efficiently a selection
process. Some experiments are conducted to validate our approach.

Keywords: Web Services Selection, Profile, Context, Preferences,
Fuzzy Logic Theory, Fuzzy Inference Rules, Contextual Profile Matching.

1 Introduction

Semantic Web services; SWS field plays an increasingly important role in en-
hancing the user interaction in the Web and enterprise search, as well as in
providing a flexible solution to the problem of application integration. With the
rapid worldwide deployment of offered services on Internet, SWS selection has
been an active and fast growing research area. The services selection is a tech-
nique which uses functional features (Input, Output, Precondition, Effect; IOPE)
and non functional features (Quality of Service; QoS, etc.) [12], to search Web
services from large scale service repositories that fit best the user requirements.
Development of methods which would increase research accuracy and reduce
research time is one of the main challenges in SWS selection. Most of these
approaches focus on satisfying the functional requirements. A service consumer
copes with a difficult situation in having to make a choice from a mass of al-
ready discovered services satisfying the functional requirements. To discriminate

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 440–449, 2014.
c© Springer International Publishing Switzerland 2014

Multi Matchmaking Approach for Semantic Web Services Selection 441

such discovered services, the focal point of current SWS selection is on the non-
functional aspect of a service [12]. This can be done using QoS parameters [1],
context [8], preferences [11], profile [5]. These approaches help to improve the
service discovery, selection and composition and simplify the management pro-
cess for non functional attributes of Web services. However, such approaches do
not address the issue of: i) Taking into account all the information character-
izing the service (offered and requested) often called contextual profile; CP, ii)
the gradual nature of the parameters related to context/preferences in a human
language, iii) deriving new relevant preferences on the basis of user CP infor-
mation by means of fuzzy inference rules. The key concept of the approach is
the user/service profile where fuzzy logic theory is used to describe information
related to the profile in a faithfully way. The first objective of this paper is to
propose a common profile model that can capture all information describing the
user and the service. The second objective is to introduce linguistic terms to
express preferences and fuzzy rules to model contextual preferences.

The remainder of this paper is structured as follows: Section 2 presents a brief
background on fuzzy set theory and provides a survey on existing approaches of
SWS selection. In Section 3, we set up a required and provided service model
based on CP, then we provide an SWS selection framework based on our model.
Section 4 describes the query processing in a real case study related to the
field of restaurant business and the ranking mechanism as well. In Section 5, an
experimental study is described to show the feasibility and effectiveness of our
proposal. Finally, Section 6 concludes the paper.

2 Related Work

A key issue in service computing is selecting service providers with the best user
desired quality. Recently, existing service selection approaches reviewed below
are distinguished by the fact that they rely on QoS parameters [1], context
information [8], user preferences [2][7][9][11], etc.

A matchmaking algorithm proposed by Adnan et al. [1] is based on tying QoS
metrics of Web service with fuzzy words that are used in users request. The aim
of the paper is to satisfy user’s requirements and preferences regarding only QoS
and not all preferences related to non-functional service parameters. In [8], au-
thors proposed the non-functional properties that are related to local constraints
which reflect the user preferences and context of the demanded service. How-
ever, in real-life systems, context information is naturally dynamic, uncertain,
and incomplete, which represents an important issue when comparing the service
description with user requirements. This approach, however, is based on context
rather than the data of services and could not handle both exact and fuzzy re-
quirements. They do not allow reasoning on context information to determine
criteria weights automatically, also the model proposed by the authors does not
consider the implicit user preferences. Web services selection based on prefer-
ences mainly consider single user’s preferences. Benouaret et al [2] introduce a
novel concept called collective skyline to deal with the problem of multiple users

442 Z. Chouiref et al.

preferences to select skyline Web services. Chao et al. [4] proposed a framework,
which leverages fuzzy logic to abstract and classify the underlying data of Web
services as fuzzy terms and rules. The aim is to increase the efficiency of Web
services discovery and allow the use of imprecise or vague terms at the level of
the search query. Steffen et al [7] model Web service configurations and associ-
ated prices and preferences more compactly using utility function policies, and
propose flexible and extensible framework for optimal service selection that com-
bines declarative logic-based matching rules with optimization methods, such as
linear programming. In [10], a framework of SWS discovery based on fuzzy logic
and multi-phase matching is proposed in this work. The first level matchmaking
is executed with service capability against the second level matching is executed
with service fuzzy information. The authors do not take into account neither the
vague information of the user profile (personal information, etc.) nor the vague
information of the context.

The presented work links user profile, user context and user preferences and
provides suitable selection method that uses inferred preferences in order to have
powerful, yet scalable ranking process. These preferences are inferred from the
user’s contextual profile, this is done by directly applying an efficient inference
method based on an extended modus ponens.

3 Our Model

3.1 Service Description Model

We describe a SWS (provided / required) by the following model, which not only
supports service capability information (IO), but also supports service profile,
service context and presents service vague information associated to preferences.
For the sake of illustration, the following reference example is used.

Reference Example: Let U be a user wants to book a hotel in Australia.
He sets his preferences and submits the following query Q : ”return the hotels
in Australia preferably {near to his position} with {affordable price} and
{at least three stars} and having a restaurant with an {asiatic cuisine},
knowing that he has a car and he is accompanied by his wife and his child”.

Definition 1 (Advertised Service Description Model/Required Ser-
vice Description Model). An advertised Web service (A required Web ser-
vice) is described by the following model respectively: SA = {CA, CPA, FZA}/
SR = {CR,CPR,FZR, θ}, where:

– CA/CR is the advertised/required service capability information description,
which contains (NA, DA, FPA)/(NR, DR, FPR, θ) where NA/NR is the
name of the advertised/required service,DA/DR is the functional description
of the advertised/required service and FPA/FPR is all functional parameters
of the advertised/required service (IOPE).

Multi Matchmaking Approach for Semantic Web Services Selection 443

– CPA = (CPA1, . . . CPAn), CPR = (CPR1, . . . CPRn), is a set of non-
functional parameters that make up the CP of SA/SR. The detail context
can be explored in section 3.2.

– FZA/FZR is a set of linguistic terms which used to describe the vagueness
that pervades information containing in CA/CR and CPA/CPR.

– θ(0<θ<1) is a threshold such that if the satisfaction degree of a service w.r.t
the query at hand is below this threshold, it is not retrieved.

Each I/O attribute of request ai is characterized by a set of preferences values
pi, i.e. (ai, pi). For each SA attribute, we can assign crisp constraints (e.g.
MinStars) or fuzzy constraints (FZA) (e.g. CheaperPrice). The attributes are
self explanatory, which indicates the pereference values which help the user to
choose the service that suits its preferences. For each SR attribute, we can assign
crisp preferences, or fuzzy preferences (FZR) (e.g. AffordablePrice).

3.2 Fuzzy Model to Contextual Profile

Fuzzy Contextual Profile Modeling. The information of CP can be: static
such as Profile {Personal data, etc}, evolutionary such as Preferences {Colour,
Language, etc} and temporary such asContext {Devices, Localization, etc}. These
pieces of informationmust be captured tomatchdemands to offers of services, in or-
der to improve the relevance of answers during a selectionprocess. For a given query
X, we define its CP environmentCPEx as a finite set {(P1, P2, . . . Pn)} of multidi-
mensional parameters, for instance, {personal informations, context, preferences,
etc}. Each parameter Pi is modeled as a finite set {(C1, . . . Cm)} of concepts, for
instance {demographic information, spatial context, display mode, etc}. Each con-
ceptCi is modeled as a finite set {(C′

1, . . . C
′
t)} of sub concepts for instance {gender

value, family situation, country name , etc}, and/or a finite set {(v1, . . . vt)} of at-
tributes value, for instance {full screen, postscript format, etc}. Each concept (sub-
concept) is characterized by a set of preference values. The attribute value domain
dom(Ci) can be expressed bymeans of: numerical assessments, logical assessments
and fuzzy linguistic assessments.

An instantiation of the CP, called CP state, writes:
w = (C1 is v1 ∧ ... ∧ Ck is vk), k � m , where each Ci ∈ CPEx, 1 � i � k and
vi ⊆ dom (Ci) (the symbol ∧ denotes a conjunction).

Example 3. For instance, w may be (family situation is married, means of trans-
port is car, accompanying people is wife and child) for the example above.

Definition 2 (Contextual Profile Preferences). A contextual profile pref-
erence CPP is a fuzzy rule of the form: if C1 is v1 ∧ ... ∧ Cm is vm then A1 is
F1 ∧ ... ∧ Al is Fl, where vi, 1 ≤ i ≤ m ≤ n, stands for a crisp or fuzzy value
of the context or the profile parameter CPi and Fj, 1 ≤ j ≤ l represents a fuzzy
preference related to attribute Aj.

444 Z. Chouiref et al.

The meaning of CPP is that in the CP state specified by the left part of the
rule, the preference Aj is Fj is inferred. From the user profile, one can deduce
the following preferences on the searched hotels:

Example 4. A user who has a car, generally prefers hotels with parking. This
may be expressed as (CPP1): if means of transport is car then PreferencePark-
ing is yes.

User Preferences Modeling. Let us now discuss the notion of fuzzy pref-
erences: for instance, ”affordable price” and ”nearest city” are primitive terms.
A primitive term can be described thanks to fuzzy sets, allowing to obtain for a
price and a given distance, the satisfaction levels defined on the interval [0, 1]. As
for categorial attributes, the membership functions are modeled as follows: The
membership function of ”CuisineStyle” is modeled by: μC cuisine={1/chinese,
0.9/japanese, 0.8/thaiwanese, 0.7/sushi, 0.7/indonesian, 0.5/vietnamese, 0.3/in-
dian, 0.2/pakistani, 0.1/americain} for chinese cuisine and μF cuisine={1/french,
0.9/belgian, 0.8/mediterranean, 0.7/italian, 0.7/dutch, 0.6/latin, 0.5/german,
0.4/british, 0.2/american} for french cuisine. The membership function of park-
ing is μparking = {1/yes, 0/no}.

4 Query Processing

4.1 Semantic Web Service Selection Framework

Let HD be a Hotels database. The desired services should accept {Address} as
inputs and return {HotelName, StarsNumber, Price, CuisineStyle} as output for
the case of our reference example. This query Q is written as follows:
SELECT name-Hotel FROM HD WHERE (Hotel.Price is affordable AND
Hotel.Stars is at least 3 AND Hotel.Dist is near of city AND Hotel.CuisineStyle
is asiatic).

Fig. 1 gives an overview of the selection framework. The matching engine
must match the list of services with the input, output specified by the user. The
main steps of the framework are:

First Search Filter. The result returned by step 1 and 2 of Fig. 1 is
∑

Q, the
list of services that correspond to the desired number of stars, price, asiatic cui-
sine and distance to user. Note that the preferences expressed on these attributes
are mandatory. The system will computes the distance or similarity between all
the concepts vector of the query and those of the Web services by means of suit-
able measures of similarity. In presence of different types of attributes, for each
attribute, an adequate similarity measure is used as the following functions:
Sp1, Sp2, Sp3 and Sp4 represents respectively functions that compute the degrees
of satisfaction of the distance, Price, Number of Stars and Cuisine Style of the
SWS at hand w.r.t the fuzzy set modeling the user preference on attribute dis-
tance, Price, Stars and Cuisine. For instance, μnear(8) = 0.4, μaffordable(45) =
0.5, μstars(4) = 1 and μF Cuisine(italian) = 0.7.

Multi Matchmaking Approach for Semantic Web Services Selection 445

It is worth noticing the all the functions (Sp1, Sp2, Sp3, Sp4) provide degrees
that belong to the same scale [0,1]. This property of commensurability allow ag-
gregating them, in a convenient way, to obtain an overall score of an SWS.

Overall Matching Score1. After calculating the different individual match-
ing values of each attributes of a service, one way to obtain an overall matching
score is to aggregate these individual matching values using a T-norm operator
(such the min operator) as follows:
Score1= �(Sp1, Sp2, Sp3, Sp4) = min(Sp1, Sp2, Sp3, Sp4).
Now, if the Score1 of a service is higher than θ, then this service is added to∑

Q list of services that satisfying request’s attributes.

Second Search Filter. In this phase, not only I/O parameters has to be
considered but also contextual profile information such as accompanying people,
age of child, etc. This means that service contextual profile should contribute
to the development of an advanced search strategy. The steps (3, 3’, 4, 5, 5’,
6) of the Fig. 1 illustrate this strategy and are summarized in the following: (i)
Infering a set of relevent preferences and their semantics from the fuzzy rules
base BCPP 1, regarding the user CP state w, then augment the query by the
inferred preferences. To achieve this, we make use of a knowledge based model
described bellow. (ii) Calculation of the satisfaction of the result provided by
the first filter w.r.t. to the inferred preferences.

Fig. 1. Semantic Web Services Selection Framework

1 Is a set of contextual profile preferences that can be built from users’ experiences in
the domain considered.

446 Z. Chouiref et al.

Knowledge Based Model. We rather propose here to specify contextual pref-
erences by means of fuzzy gradual rules. The use of gradual rules for deriving
preferences with respect to the user CP leads to refining the search results and
returns the best ones to the user.
Inference Process: We assume available BCPP = {CPP1, ..., CPPm} a fuzzy
rules base modeling a set of contextual profile preferences. Each rule is of the
form if C1 is v1 ∧ ... ∧ Cm is vm then A1 is F1 ∧ ... ∧ Al is Fl (see Definition
2.). Now, given a user’s CP state, i.e., CP=(C1 is v1 ∧ ... ∧ Ck is vk), one can
derive relevant preferences to the user by using a fuzzy inference schema, called
the Generalized Modus Ponens; GMP [6]. In a simple case, from the rule: if C is
V then A is F and the fact: C is V’, where V, F and V’ are gradual predicates
modeled thanks to fuzzy sets, the GMP allows inferring the preference A is F’
and the fuzzy semantics of F’. See [6] for more details.

Example 6. The preference Parking is Yes is inferred by applying the rule (If
user has a car then preferenceParking is Yes) and the fact (user has a car).
Note that car and yes are fuzzy sets represented by (car/1)(yes/1) respectively.

Example 7. In our booking hotels example, assume available the rules base BCPP

of Table 1. The preference Hotel is Animated’ is inferred by applying the rule
(If age is young then hotel is animated) and the fact (age is about 26) where
young and about 26 are fuzzy sets represented by (0,0,25,27) and (24, 26, 26,
28) and animated is expressed using a qualitative rating such as: low, medium,
high and very high whose semantics are given by triangular membership func-
tion. The semantics of Animated’ is calculated from the semantics of Animated,
young and about 26, see [3].

Our model entirely leverages the knowledges base presented in Table 1 to
derive new relevant preferences. A rule-based representation which includes dif-
ferent possible preferences for our reference example is proposed.

Augmented Query Process: Once the user preferences are inferred, we offer
the system the possibility of augmenting the query in order to refine the selection
process. Then, we have a final user query QA, the augmented query of Q writes:
QA = {C1∧ C2... ∧ Cn ∧ P1 ∧ P2∧ ... Pm}.

Example. QA = {Price ∧ Stars ∧ Distance ∧ CuisineStyle ∧ Parking ∧ Hair
and Beauty Service ∧ Sauna ∧ Games and Activities ∧ Kid Friendly
Menu ∧ Childrens Highchairs ∧ Family ∧ Animated’}, where the infered
preferences appear in bold.

Similarity Computing: in this phase, the system computes the similarity
between inferred user preferences and services’ constraints by means of fuzzy
semantics associated w.r.t these preferences. To accomplish this phase, the sys-
tem will evaluate the similarity degree between all the inferred preferences from
BCPP and the services’ constraints of

∑
Q by using the following functions: Now,

Multi Matchmaking Approach for Semantic Web Services Selection 447

Table 1. Knowledges Base

Knowledges Base
Rule Rules Base Facts Base

R1 If user has car then preferenceParking is Yes Car
R2 If accompanying people is wife then facilities is hair and beauty service Married
R3 If accompanying people is wife then facilities is sauna Wife
R4 If accompanying people is child then facilities is games and activities Child
R5 If accompanying people is child then facilities is kid friendly menu
R6 If accompanying people is child then facilities is childrens highchairs
R7 If accompanying people is wife then theme is family
R8 If age is young then hotel is animated

assume that the initial queryQ is only augmented by the inferred preferences:
Parking and Animated’. To compute the satisfaction of each hotel h ∈ ∑

Q w.r.t
such preferences, we use:
Sp5: for each h ∈ ∑

Q, we have μparking(h) = 1 if h.parking = yes, 0 otherwise,
and Sp6: the fuzzy semantics of the predicate Animated’ is computed by means
of the combination/projection principle [3] (see example 7). Then, for each h ∈∑

Q, the degree of satisfaction is μanimated′(h).

Overall Matching Score2.
Score2= �(Score1, Sp5, Sp6) = min(Score1, Sp5, Sp6).

Overall Score S. We use an aggregation function of Score1 and Score2 to
compute the overall score S. Now, to give priority to the initial preferences w.r.t.
to inferred preferences (IP) we make use of the following formula (where α ∈]0, 1]
is the priority of IP). Then S is given by:
S= min(Score1,max(Score2, 1−min(Score1, α)))
Finally, the user can select the top-k answers or the answers whose score S is
greater than a given threshold.

5 Experimental Evaluation

The main purpose of this evaluation is to compare the effectiveness of our pro-
posed selection framework (referred to as IP for inference process) with the
traditional frameworks that do not use the inference process (referred to as TR
for traditional). We perform a case study, due to the limited availability of public
services. We created a set of 100 synthetic restaurant service descriptions, and
we involved different users to conduct our experiments. However, due to lake of
space we only report results regarding 4 users.

Fig. 2 shows the precision of IP and TR at various ranks for 4 different users.
Observe that IP has consistently better precision than TR since IP includes into
the ranking process inferred preferences that are interesting for users. See also
that, for user1 and user2 IP has an almost perfect precision, while the precision of
TR is mediocre. Moreover, for user3 and user4 IP and TR have similar precision
at rank 15 and rank 20. The reason is that the increase of the rank may increase
the probability that similar services belong to the top-k list of both approaches.

448 Z. Chouiref et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

P
re

ci
si

on

Rank

IP
TR

(a) user1

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

P
re

ci
si

on

Rank

IP
TR

(b) user2

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

P
re

ci
si

on

Rank

IP
TR

(c) user3

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20

P
re

ci
si

on

Rank

IP
TR

(d) user4

Fig. 2. Precision at Rank (θ = 0.5, α = 0.5)

6 Conclusion

This paper has proposed an SWS selection framework based on user (fuzzy) pref-
erences. The goal of our work is to enhance accuracy of SWS search results by
using multi matching level to compute similarity between advertised SWS and
users request and taking into account the user preferences that may be inferred
from users profile. We also showed the interest of using gradual rules for rep-
resenting contextual preferences and deriving new preferences that are relevant
to the user. The proposed framework makes the integration of user contextual
profile and fuzzy inference rules techniques into the selection process. Some ex-
periments are done to show the feasibility and the precision of our proposal.

References

1. Al Rabea, A.I., Al Fraihat, M.M.: A new matchmaking algorithm based on multi-
level matching mechanism combined with fuzzy set. Journal of Software Engineer-
ing and Applications 5(3) (2012)

2. Benouaret, K., Benslimane, D., HadjAli, A.: Selecting skyline web services for
multiple users preferences. In: ICWS, pp. 635–636 (2012)

Multi Matchmaking Approach for Semantic Web Services Selection 449

3. Bouchon-Meunier, B., Dubois, D., Godo, L., Prade, H.: Fuzzy sets and possibility
theory in approximate and plausible reasoning. In: Fuzzy Sets in Approximate
Reasoning and Information Systems (1999)

4. Chao, K.M., Younas, M., Lo, C.C., Tan, T.H.: Fuzzy matchmaking for web ser-
vices. In: 19th International Conference on Advanced Information Networking and
Applications, AINA 2005, vol. 2, pp. 721–726. IEEE (2005)

5. Chouiref, Z., Belkhir, A., Hadjali, A.: Advanced profile similarity to enhance se-
mantic web services matching. International Journal of Recent Contributions from
Engineering, Science & IT (iJES) 1(1), 1–13 (2013)

6. Hadjali, A., Mokhtari, A., Pivert, O.: A fuzzy-rule-based approach to contextual
preference queries. In: Computational Intelligence for Knowledge-Based Systems
Design, pp. 532–541. Springer (2010)

7. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: Proceedings of the 16th International Confer-
ence on World Wide Web, WWW 2007, pp. 1013–1022. ACM, New York (2007),
http://doi.acm.org/10.1145/1242572.1242709

8. Reiff-Marganiec, S., Yu, H.Q.: An integrated approach for service selection using
non-functional properties and composition context. In: Handbook of Research on
Service-Oriented Systems and Non-Functional Properties: Future Directions, pp.
165–191 (2011)

9. Skoutas, D., Alrifai, M., Nejdl, W.: Re-ranking web service search results under
diverse user preferences. In: VLDB, Workshop on Personalized Access, Profile Man-
agement, and Context Awareness in Databases, pp. 898–909 (2010)

10. Su, Z., Chen, H., Zhu, L., Zeng, Y.: Framework of semantic web service discov-
ery based on fuzzy logic and multi-phase matching. Journal of Information and
Computational Science 9, 203–214 (2012)

11. Wang, H., Shao, S., Zhou, X., Wan, C., Bouguettaya, A.: Web service selection with
incomplete or inconsistent user preferences. In: Baresi, L., Chi, C.-H., Suzuki, J.
(eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 83–98. Springer, Heidelberg
(2009)

12. Yu, H.Q., Reiff-Marganiec, S.: Non-functional property based service selection: A
survey and classification of approaches (2008)

http://doi.acm.org/10.1145/1242572.1242709

Semantic Mediation Techniques for Composite

Web Applications

Carsten Radeck, Gregor Blichmann, Oliver Mroß, and Klaus Meißner

Technische Universität Dresden, Germany
{carsten.radeck,gregor.blichmann,oliver.mross,

klaus.meissner}@tu-dresden.de

Abstract. The mashup paradigm allows end users to build custom web
applications by combining data-exchanging components in order to ful-
fill specific needs. Since such building blocks typically originate from dif-
ferent third party vendors, compatibility issues at component interface
level are inevitable. This decreases re-usability and requires skilled users
or automatisms to provide the necessary mediation to solve such issues.
However, current mashup proposals are very limited in this regard.

We present techniques for data mediation that leverage semantically
annotated interface descriptions to overcome a high degree of interface
mismatch. We equipped the EDYRA mashup platform for end user de-
velopment with automatic support for these techniques to increase the
re-usability of components and to foster the long tail of user needs. In or-
der to show the practicability of our approach, we describe the platform
implementation and present benchmark results.

Keywords: mashup, semantics, data mediation, end user development.

1 Introduction

Recently, universal composition approaches like CRUISe [1] allow for platform-
independent modeling of mashups and a uniform description of components
spanning all application layers. Since components are typically developed by
different third party providers, combining component interfaces in a meaning-
ful way is far from trivial. Data exchanged between components may differ in
various aspects leading to incompatibilities: providers use different vocabularies,
schemata, units or abstraction levels when designing interface signatures. This
complicates end user development (EUD) further, and connecting components
in ways not anticipated becomes a cumbersome task. Semantic technologies are a
potent solution to provide data mediation, i. e., automatic resolving of hetero-
geneous data structures. Although proposals in the semantic web service (SWS)
domain exist, most mashup platforms neglect data mediation so far.

Within the EDYRA project, we adhere to universal composition and strive for
enabling domain experts without programming skills to build and reuse compos-
ite web application (CWA). We utilize semantic annotations to refer to ontology
concepts of component interfaces. Based on this, semantic data mediation tech-
niques are applied by our platform and hidden from end users.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 450–459, 2014.
c© Springer International Publishing Switzerland 2014

Semantic Mediation Techniques for Composite Web Applications 451

MAPCALENDAR

WEATHER INFO
FLIGHT SEARCH

display(Location)itemSelected
(Appointment)

1
currentUserLocation(Location)

search(hasTime, Location, Location)

 montreLeTemps
(Localité)

2

AppointmentLocation
xsd:string

xsd:dateTime

Location

Localité

...

...
geo_en.owlgeo_fr.owl

showRadius(Location, milesDist)

distance(Location, kilometerDist)
3

xsd:double

ha
sT

im
e

hasI
D ...

hasL
oca

tio
n

hasValue

Unit

ha
sU

ni
t

mile
kilometer

isA
isA

milesDist isA

kilometerDist isA DistanceAppointment

4

Fig. 1. Reference scenario: conference planning

To highlight arising challenges, let us consider the following use case which
we use as a reference scenario throughout this paper.

Non-programmer Bob from the USA builds a CWA (Fig. 1) to organize a
conference participation in Toulouse, France. He selects the conference, which
he noted previously as an appointment, in the calendar. Then Bob wants to see
the appointment location on a map. However, syntactically there is no pos-
sibility to combine the calendar and the map component’s interface. While
the calendar offers a data object of type Appointment, the map consumes a
Location. Therefore, semantically it would be possible to take the appoint-
ment’s AppointmentLocation and “cast” it to a general Location 1 . Next, he
wants to search for flights to Toulouse 2 . In this case, he adds a flight search
service and uses his current location as well as the appointment’s location and
time as search criteria. Besides the semantic problem of querying time and loca-
tion of the appointment, it is necessary to put all three parameters together in
compliance with the signature required by the flight service. Furthermore, Bob
wants to visualize the distance between the airport and the conference location,
which is calculated by the flight service 3 . Because the flight service is located
in Europe, the distance is provided in kilometers. To use the showRadius func-
tionality of the map (from an American provider) this value has to be converted
to miles. Finally, Bob wants to see the weather forecast for the appointment’s
time and location. He utilizes a French weather service which uses an ontology
for annotating the interface that differs from the calendar’s 4 . But semantically
the same concepts are described and the components can be coupled.

Current mashup proposals lack capabilities to implement this scenario. Thus,
as our main contribution, we introduce data mediation techniques for CWAs
and show their practicability within our EUD platform. These concepts help to
combine components in more flexible ways than pure syntactic interfaces would
allow, increasing re-usability and fostering the long tail of user needs.

452 C. Radeck et al.

The remaining paper is structured as follows. Sect. 2 presents mediation tech-
niques for CWA. In Sect. 3, we describe our mashup platform with mediation
support and show the practicability of our concepts. In Sect. 4, we discuss related
work. Sect. 5 concludes the paper and outlines future work.

2 Semantic Data Mediation Techniques for CWA

Data mediation serves to resolve interface incompatibilities, of course within
certain boundaries. In this section, incorporating results from the SWS domain
like WSMO Mediators [6], we introduce a set of generic mediation techniques
for CWA. We apply semantic data mediation and thereby leverage the domain
knowledge defined in OWL-DL ontologies and annotated to component interfaces
[1]. Essentially, annotations refer to classes, datatype and object properties or
individuals in ontologies modeling the application/component domain. Since it
is possible to model the same domain in various ways, we assume a certain
modeling and annotation style.

In general, ontology classes can be annotated directly, e. g. Location, or via
an OWL object property whose range the class is, if it is necessary to highlight a
more specific meaning, e. g. hasCenter. Additionally, OWL datatype properties
can be used, e. g. hasLatitude. However, there are circumstances where it is
more appropriate to model individuals rather than subclasses. Units, currencies,
and quantities, i. e., convertible concepts, may be mentioned as examples, or
classes that refer to such convertibles on OWL property level (see Distance in
Fig. 1). In this case, concrete individuals should be annotated, e. g. milesDist,
a Distance individual where hasUnit points to mile.

In general, data transfer is realized through interface elements, which are prop-
erties, operations and events in our case. Interface elements can have one (e. g.
properties) or more (e. g. operations and events) parameters, which have an iden-
tifier and a semantic type annotation. Channels combine one interface element
of a source component SC with one of a target component TC. Therefore, an
assignment assi has to exist, that maps n parameters Pout of the SC bijectively
to all n parameters Pin of the TC. A perfect match exists if assi only includes
mappings between parameters that are semantically identical (both refer to the
identical concept). As an example, the mapping (latitude, longitude) →
(latitude, longitude) is a perfect match.

Due to the usage of third-party components, a perfect match is unlikely. Pout

and Pin can be semantically compatible if a Semantic Connector SeCo can
be defined, which is a set of channels and mediation techniques. It ensures that
all parameters Pin of one interface element of a TC are connected and of the
required semantic type. This may include that several channels from one or more
SC can exist. In case of multiple inbound channels, the SeCo takes care of an
appropriate synchronization between them.

Upcast. As proposed earlier [1], the upcast mediation technique serves for solv-
ing different generalization levels of concepts annotated at parameters. In case

Semantic Mediation Techniques for Composite Web Applications 453

of classes this means, that a more specific class is cast into a more generic one as
long as they are in subClassOf relationship. Assume that a component outputs
an AppointmentLocation but the target component requires a more generic
Location. Then a upcast can be applied.

In principle, upcasts may additionally be used for OWL object properties if
there is a subPropertyOf relation, by dealing with it as if the range would have
been annotated. In case of datatype properties we presume that the underlying
range stays the same, rendering upcasts simple. Upcasts are one way, i. e., only
casts upwards the inheritance hierarchy are valid along the data flow.

Conversion. The conversion mediation technique has two main application
areas. First, it resolves incompatibilities between two parameters annotated by
convertible concepts, like units, quantities and data types. Please consider the
example kilometer → mile from Fig. 1. The specific knowledge required can,
e. g., be formalized in dedicated ontologies like the QUDT (http://qudt.org).
In the latter, a base type is assigned to each unit for conversion purposes. For
example, meter is the base type for LengthUnit, to which all other length units
have a conversion factor to. Another use case are scale adjustments requiring
more domain-specific transformations, e. g., mapping a five star rating to a ten
point rating. Typically, these conversions require domain-specific knowledge and
cannot be covered by generic algorithms or reasoners.

Second, conversion is used on class level in case of equivalentClass relation-
ships, e. g. Location and Localité in Fig. 1 or Location and Place. For sake of
simplicity, we pose a rather strict definition of equivalence: There have to exist
equivialentProperty relations for all declared properties of those classes.

Semantic Split. A semantic split queries multiple OWL properties of an in-
dividual, which is represented as a parameter or property, and distributes them
on one or more parameters of a target interface element. Fundamentally, only
individuals can be “split” within the restrictions of their ontology class. This me-
diation technique is applicable if the following OWL constructs are annotated:

• Class: OWL data and object properties can be assigned to target parameters
that reference a semantically compatible class, data or object property, e. g.
connection 1 in Fig. 1 (Appointment.hasLocation → Location).

• OWL object property: This case is handled as if the range class of the object
property is annotated, e. g. hasLocation→ {hasLatitude, hasLongitude}

Semantic Join. A semantic join creates an individual, representing a tar-
get parameter, by joining of multiple parameters of one source interface ele-
ment. Assume, that a map publishes an event with parameters {hasLatitude,
hasLongitude} and there is a point of interest finder that offers an operation
consuming a parameter of type Location. Then, a semantic join is possible.

It has to be guaranteed, that the generated individual fulfills all constraints
on OWL properties defined by the target class (and thus all superclasses).

http://qudt.org

454 C. Radeck et al.

Partial Substitution. Using a partial substitution, an OWL property of an
individual represented as parameter can be updated with an individual or literal
given by another parameter. With regard to Fig. 1, a partial substitution is
possible between Location and Event, since the object of the OWL property
hasLocation of an Event can be substituted by a Location individual. Partial
substitutions are exclusively applicable for properties as target interface element.
This is caused by the fact, that in our component model only properties expose
and allow to change a partition of the component’s data layer directly.

Using partial substitution increases the possibility to connect properties bidi-
rectionally. As an example, consider that the calender has a property for its
currently selected appointment and the map has a property for the currently
selected location. Beside the possibility to semantically split the event to display
its location, it is even feasible to connect the map to the calendar, to substitute
the appointment’s location with that of the map by dragging the map’s marker.

Partial substitutions are not suitable for connections between events and op-
erations for two reasons: First, it is not guaranteed that an event is correlated to
an input interface element which can update the individual represented by the
event. Second, events and operations in general hide the data layer.

Syntactic Join. A syntactic join is intended to synchronize m parameters pub-
lished by n source interface elements of several SC and feeds them together in
1 target interface element. Several synchronization modes are supported.

• tolerant : The joiner waits until all sources have published at least once. Only
the latest parameters are cached per source (the old value is overridden), and
the cache is cleared after data transfer to the target.

• repeating: Here, the cache is not cleared, i. e., once all sources have sent data,
each following publication causes the joiner to transfer data to the target.

• queuing: There is a queue per parameter. When all queues have at least one
entry, the data is transferred to the target and the first element is removed.

3 Mediation-Equipped Platform for Mashups

3.1 Architecture

Our platform builds up on the CRUISe and EDYRA infrastructure we intro-
duced earlier [1,2]. An overview is shown in Fig. 2. Universal composition is
applied to create and execute presentation-oriented CWA, where components of
the data, business logic and user interface (UI) layer share a generic component
model. The latter characterizes components by means of several abstractions:
parametrized events and operations, properties, and capabilities. The Seman-
tic Mashup Component Description Language (SMCDL) serves as a declarative
language implementing the component model. It features semantic annotations
to clarify the meaning of component interfaces and capabilities [2]. Based on the
component model, the declarative Mashup Composition Model (MCM) describes
all aspects of a CWA, e. g. included components and event-based communication.

Semantic Mediation Techniques for Composite Web Applications 455

application container
MRE

Ontology-specific
mapping
discovery

and execution

ONTOLOGIES REPOSITORY

Composition
Models

Component
Models

Composition
Models

Composition
Models

Component
Models

Component
Models

composition
models

component
models

MEDIATOR

interaction

...

QUDT

domain 3

domain 1

ontology
mapping 1 DISCOVERY &

 RANKING

mapping
discovery

mapping
execution

SUB
MODULES

generic
mapping
discovery

and
execution

mappings
mappings
mappings

mapping
definitions

transformation
ontology Z

domain 2

ontology
mapping 2

ontology
mapping 3

SUB
MODULES

... APP
COMPONENT

APP
COMPONENT

CHANNELS

MEDIATION
TECHNIQUES

CHANNELS

SE
M

A
N

TI
C

CO
N

N
EC

TO
R

A
N

T
SE

Fig. 2. Architectural overview of our mediation-equipped mashup platform

A repository is in charge of managing components and compositions. Further-
more it provides services for querying those artifacts.

Ontologies play an important role in our approach as they serve for annotating
components and provide the schema knowledge most mediation techniques are
based on. Besides domain-specific ontologies there can be (1) upper ontologies,
e. g., for units, (2) ontologies defining how to transform concepts, and (3) map-
ping ontologies pointing out similarity relations of concepts in different know-
ledge representations. For the provision of mapping ontologies we assume that
a state-of-the-art ontology alignment process takes place. Only confirmed map-
pings result in an ontology, linking concepts via predicates like equivalentClass
and sameAs, e. g. Location equivalentClass Localité. A component can in-
troduce new ontologies by using them for semantic annotation.

To enable recommendations, there are facilities for discovery and ranking of
composition fragments, which represent composition knowledge, best matching
user requirements and the current context. Within those modules, algorithms for
recommendations utilize amongst others the semantic component annotations
and ontology mappings. An essential task during discovery is the calculation
of semantic connectors between components. Thereby, mapping definitions are
derived utilizing the mediator or reused if already calculated.

A mapping definition specifies the mediation techniques required to align in-
terface elements in a semantic connector. It is a data structure consisting of: an
ID, Pin and Pout for more efficient matching and reuse, and one or more map-
pings including the composition and configuration mediation techniques, like the
synchronization mode of a syntactic join.

A mashup runtime environment (MRE) interprets composition models in or-
der to run mashups. With regard to data mediation, an MRE provides automatic
support for the proposed mediation techniques, see Sect. 3.2 for details.

The mediator is responsible for mainly two tasks. First, it provides means for
looking up mappings, which involve mediation techniques. To this end, the me-
diator takes two signatures, i. e., the URIs of concepts annotated at a source and
a target interface element. In order to detect mappings e. g. between milesDist

and kilometerDist in our scenario, algorithms have to inspect concepts on
OWL property level, whereby we restrict the depth to one level. This task may

456 C. Radeck et al.

result in multiple valid mappings, which have to be ranked further. Second, the
mediator serves for the execution of mediation techniques defined in mapping
definitions as requested by an MRE.

As illustrated in Fig. 2, there are generic and ontology-specific algorithms to
accomplish these tasks. Generic algorithms utilize standard modeling constructs
and reasoning rules of RDF/S and OWL. Mainly, relations like subsumption,
property ranges and domains, sameAs and equivalentClass are leveraged.

The mediator can be extended with ontology-specific modules by implement-
ing the required interface. They use dedicated modeling constructs and reasoning
rules to derive and apply mappings and are consulted if generic algorithms cannot
provide a mapping. Knowledge is encapsulated in modules for the algorithmic
part and the corresponding ontologies for the terminology. Although in principle
generically applicable, such modules are especially useful for conversions. There
are modules per transformation ontology, responsible for interpreting and apply-
ing transformations on the payload delivered by events/properties. To identify
suitable modules, each one provides a method to state if it supports the given
signatures during discovery as well as execution of mappings.

Within the EDYRA project1, we implemented a client-side thin-server MRE
completely written in JavaScript. The mediator is distributed over the MRE
and the SOAP-based mediation service. The latter is implemented in Java and
uses the Jena framework for working with semantic models, including validat-
ing, reasoning and querying via SPARQL. The mapping discovery is located
at the Java-based repository. We implemented the DataSemanticsMatcher as a
generic algorithm that builds up on a QUDT-specific and a generic conversion
module. The QUDT module supports annotated parameter types which refer to
QUDT concepts. It queries the QUDT ontologies to check if both concepts are
convertible, i. e., if they belong to the same unit domain. At execution time, the
conversion multiplier is looked up and applied. The generic conversion module
utilizes OWL constructs like equivalentClass and equivalentProperty to de-
cide if two given classes are equal according to our definition in Sect. 2. To add
new ontologies in our prototype, they have to be used for semantic annotation
in SMCDL and registered manually at the repository and mediation service.

3.2 Runtime Support

Semantic connectors are implemented by associating the mapping definitions of
semantic mediation techniques with a communication channel, and providing
syntactic joins as built-in mediation components. The latter comply to the com-
ponent model and can consequently be connected with other components. The
MRE has templates for the SMCDL and the implementation of joiners and con-
figures those as stated in the mapping definition to seamlessly instantiate and
manage joiners like application components. With syntactic joins as components,
single channels connect one SC with one TC.

1 http://mmt.inf.tu-dresden.de/edyra (also links to our live demonstrator).

http://mmt.inf.tu-dresden.de/edyra

Semantic Mediation Techniques for Composite Web Applications 457

CALENDAR
itemSelected

(Appointment)

semantic split
SYNTACTIC JOIN

MODE:
REPEATING

FLIGHT SEARCH

search
(hasTime, Location, Location)MAP

Appointment

Location

locationSelected
(Location)

hasTime

d

Fig. 3. Implementation of an exemplified semantic connector from the scenario

Fig. 3 shows an example (dashed area) of a semantic connector present in
the mashup from our scenario. The semantic split is realized through a mapping
definition which is directly attached to the channel between the calendar and
a syntactic join. The latter aligns the split Location and Date as well as the
Location from the map and transfers them combined to the flight search.

As described in our previous work [1], our components predominantly ex-
change data serialized in XML. There is a predefined grounding per ontology
concept specifying the XML schema for individuals and literals. In case com-
ponent developers utilize their own schemata or even other formats, like JSON,
they have to ensure that data are transformed to the grounding, either as part of
the component implementation or by transformation instructions in the SMCDL.
In order to apply semantic mediation, data has to be available in RDF. Thus,
we assume lifting and lowering transformations per predefined grounding.

When a SC publishes data according to the grounding, the channel dele-
gates the execution of mediation techniques to the mediator by handing over the
transported payload, the mapping definition, and in case of partial substitutions
the target property’s value. Per parameter, the mediator applies the lifting to
get triples, which are then put in separate semantic models together with the
terminological knowledge of ontologies. Using Jena in our prototype, validation
and reasoning takes place automatically. Then the mediation techniques are ex-
ecuted as configured by the mapping definition. We utilize Jena’s OWL API,
e. g., to add OWL property values to individuals, and invoke conversion modules
if required. Next, lowering takes place. Thereby, per target parameter, the model
is queried with SPARQL, the results are serialized in the XML results format
on which an XSLT transformation is applied. Finally, the mediated payload is
forwarded to the TC. For simple datatypes as grounding, e. g. as input for con-
versions or result of a split, there is no dedicated lifting and lowering required.
We programmatically map primitive data types to Literals and vice versa.

Syntactic joiners are connected to n inbound and one outbound channels. To
achieve that, there are n operations in the joiner’s generated SMCDL, whose
parameter count and names correspond to those of the source interface element.
Occurring event on an inbound channel are handled by the connected operation.
The joiner extracts the parameter payload, handles it (e. g., adds it to a queue)
and decides whether to fire its event according to its synchronization mode.

We conducted a benchmark where we measured the average response time of
the mediation service’s operations implementing the mediation techniques.

458 C. Radeck et al.

Table 1. Average response time of the mediation service in 100 runs per technique on
a local server. The setup includes an Intel Core i7 2.8GHz and 32GB RAM.

Mediation technique Avg. response time

Upcast (AppointmentLocation → Location) ≈15ms

Conversion (kilometers → miles) ≈14ms

Conversion (two equivalent classes) ≈40ms

Semantic split (Location → {hasLat, hasLng}) ≈23ms

Semantic join (reversed split) ≈13ms

Partial substitution (Location → Event.hasLocation) ≈23ms

The results show a decent performance considering that lifting and lowering
takes place in most cases. Network overhead of SOAP over HTTP may result in
noticeable delays on slow connections, so that user experience may suffer in com-
parison to perfect match channels. That can be lowered by using WebSockets,
and by integrating the mapping execution in a client-server MRE. Other crucial
factors are ontology size and complexity, especially when a reasoner is attached.

4 Related Work

Proposals for semantically annotated services mostly use lifting and lowering
to transfer data to the semantic layer [4,5]. While we use this, because our
components do not exchange semantic data, our concept is not limited to upcasts.

Research shows that semantic web service descriptions are suited for media-
tion. There are different mediators in the conceptual framework of WSMO [6],
which are provided as web services too and completely operate at a seman-
tic layer. There are similar techniques involved, but due to the lack of a UI,
execution performance is not that critical as for CWA. In addition, only a 1:1
communication is supported, while we can handle n:m semantic connectors.

For mashups, automated data mediation has been neglected so far [7]. Simple
constructs exist that support, e. g., filtering, assignment and sorting of data,
for example in Yahoo Pipes. But those rather belong to application logic than
generic mediation techniques, and data semantics is not taken into consideration.
Few approaches use semantically annotated component interfaces for matching
at all, like [8,1]. Our previous work [1] can solve syntactical issues like different
parameter naming with the help of wrappers. As a semantic issue only upcasts
can be handled. Therefore, we largely extend this work.

5 Conclusion and Future Work

Since components of a CWA typically originate from different vendors, connect-
ing them in meaningful way is challenging. Incompatibilities of signatures and
exchanged data may, for instance, result from varying vocabularies or units.
This complicates EUD, especially for non-programmers. In addition, connecting

Semantic Mediation Techniques for Composite Web Applications 459

components in unforeseen ways becomes far from trivial. Thus, platforms for
mashup EUD should feature means to automatically provide the required glue
code.

We describe a set of data mediation techniques that use semantic component
annotations to resolve interface mismatches. Those techniques reflect knowledge
captured by ontologies, can be combined and are essential for establishing se-
mantic connectors between components. The higher flexibility for combining
components fosters re-usability and unforeseen coupling. This way, more niche
requirements can be meet without the need for new components. Utilizing our
implemented core platform, we show the practicability. However, due to the in-
creased possibility of combinations, it is challenging to identify useful connectors.
In addition, our approach depends on semantic annotations of OWL concepts,
and we limit the depth to 1 when analyzing concepts during mapping discovery.
Tough this may restrict the solution space, it lowers the algorithmic complexity.

Currently, we utilize mediation techniques for deriving and visualizing recom-
mendations, in the CapView [2] and for synchronization of mediable components
during collaboration. Future research will focus on the mediation of collections.

Acknowledgments. Carsten Radeck and Gregor Blichmann are funded by the
German Federal Ministy of Economic Affairs and Energy (ref. no. 01MU13001D).

References

1. Pietschmann, S., Radeck, C., Meißner, K.: Semantics-based discovery, selection and
mediation for presentation-oriented mashups. In: 5th Intl. Workshop on Web APIs
and Service Mashups (Mashups), pp. 1–8. ACM (September 2011)

2. Radeck, C., Blichmann, G., Meißner, K.: Capview – functionality-aware visual
mashup development for non-programmers. In: Daniel, F., Dolog, P., Li, Q. (eds.)
ICWE 2013. LNCS, vol. 7977, pp. 140–155. Springer, Heidelberg (2013)

3. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Challenges.
IEEE Transactions on Knowledge and Data Engineering 25(1), 158–176 (2013)

4. Szomszor, M., Payne, T., Moreau, L.: Automated syntactic medation for web service
integration. In: Proc. of the Intl. Conf. on Web Services, pp. 127–136 (September
2006)

5. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J.A.: Ontology driven data mediation
in web services. Intl. Journal of Web Services Research 4(4), 104–126 (2007)

6. Mocan, A., Cimpian, E., Stollberg, M., Scharffe, F., Scicluna, J.: WSMO mediators
(December 2005), http://www.wsmo.org/TR/d29/

7. Di Lorenzo, G., Hacid, H., Paik, H.Y., Benatallah, B.: Data integration in mashups.
SIGMOD Rec. 38(1), 59–66 (2009),
http://doi.acm.org/10.1145/1558334.1558343

8. Bianchini, D., De Antonellis, V., Melchiori, M.: A recommendation system for se-
mantic mashup design. In: Workshop on Database and Expert Systems Applications
(DEXA), pp. 159–163 (September 2010)

http://www.wsmo.org/TR/d29/
http://doi.acm.org/10.1145/1558334.1558343

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 460–469, 2014.
© Springer International Publishing Switzerland 2014

Standard-Based Integration of W3C and GeoSpatial
Services: Quality Challenges

Michela Bertolotto1, Pasquale Di Giovanni1,2, Monica Sebillo2, and Giuliana Vitiello2

1 School of Computer Science and Informatics
Belfield, Dublin 4, Ireland

michela.bertolotto@ucd.ie
2 Department of Management and Information Technology (DISTRA)

Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
{pdigiovanni,msebillo,gvitiello}@unisa.it

Abstract. In recent years, Service Oriented Computing (SOC) has become one
of the leading approaches for the design and implementation of distributed solu-
tions. The key concepts are the notion of service and the possibility to seam-
lessly combine several modules to offer more sophisticated functionality. Such
features were soon recognized by both W3C and OGC as relevant for their pur-
poses, although their standards are incompatible and the seamless communica-
tion and exchange of information between these types of services are not
directly achievable. The current most accepted solution to address this matter is
represented by the development of a wrapper that manages technical issues that
arise during the translation of requests and responses between them. However,
the design of such a software module presents challenges in terms of infrastruc-
ture design and Quality of Service. In this paper we describe some issues to be
faced when developing a service wrapper aimed at integrating existing geospa-
tial services into a W3C service-based infrastructure.

1 Introduction

The Service Oriented Computing (SOC) paradigm has emerged as one of the leading
approaches for designing and implementing distributed applications. The key idea
behind this approach is the concept of service, an autonomous software module that,
combined with other services, can be used to create complex solutions.

A service exposes its functionality through its public interface whose methods can
be invoked by any software system without the need, for the service client, to know
any detail about the service internal structure and business logic. However, since ser-
vices and their clients can be developed by different entities, the first issues to address
involve describing the public interface and providing a framework for data exchange
in a wide accepted way and in a technology neutral manner.

In this context, the World Wide Web Consortium (W3C) has defined a series
of universally accepted standards based on the use of the Extensible Markup Lan-
guage (XML) in order to guarantee their independence from a specific platform or
technology. The two most important W3C standards are the Web Services Descrip-
tion Language (WSDL) for the description of the service interface and the SOAP

 Standard-Based Integration of W3C and GeoSpatial Services: Quality Challenges 461

protocol for the exchange of messages [3], [13]. The flexibility and pervasiveness
guaranteed by the W3C infrastructure has promoted during time the development of a
growing number of service based solutions in many diverse fields [4].

The service-based approach has also become one of the preferred ways to discover,
access, and manage geographic information. The ability to offer traditional Geo-
graphic Information Systems (GIS) capabilities in a distributed manner has been rec-
ognized by the geographic community as a valuable opportunity to provide new ways
to use geospatial information and increase its distribution. However, despite the wide
acceptance of the W3C proposals as a means to promote interoperability and platform
independence, the GIS community has developed, over time, its own set of standards
for the fulfilment of geospatial data oriented services. In particular, the proposals of
the Open Geospatial Consortium (OGC), which represents the reference organization
for "the development of international standards for geospatial interoperability"
(http://www.opengeospatial.org/), have become the de facto standard for developing
distributed geographic applications.

Unfortunately, although both W3C and OGC standards are based on XML for data
exchange and HTTP as the transport protocol, some design choices make them totally
incompatible. Nevertheless, a better integration between these two worlds could be of
interest for both communities. In fact, the former could access and process the wide
amount of geospatial data currently available only by invoking OGC services, while
the latter could benefit both from additional standards, such as those for access man-
agement and security, and from the huge amount of supporting infrastructures for
W3C services. Such awareness is stimulating a radical revision of such standards to
remove their intrinsic incompatibilities.

The currently most accepted solution to this aim is represented by the development
of a software wrapper, usually a service itself, that "translates" the requests and re-
sponses messages from the W3C services format to a format suitable for the OGC
services and vice-versa, while keeping the structure of the original services un-
changed [2], [5], [15]. However, the concrete development of a wrapper does not
represent the only issue to solve since, independently of the actual set of adopted
standards, every service-oriented solution cannot disregard fundamental non-
functional requirements, such as the quality of the provided information, its security,
the service response time. In fact, taking into account essential Quality of Service
(QoS) aspects is of utmost importance to guarantee a satisfactory computation and
make the SOC paradigm a feasible option for the development of complex distributed
solutions.

In this paper we discuss our research in the area of geospatial service-oriented ar-
chitectures. We analyze the challenges involved in the integration and reuse of het-
erogeneous services with focus on QoS aspects, and propose recommendations for the
development of a viable solution that takes such aspects into account.

The remainder of this paper is organized as follows. In Section 2 we provide an
overview of the two main W3C standards and compare them with the OGC proposals.
In Section 3 we briefly describe the most important QoS attributes that directly impact
on the development of service-based solutions, and discuss the QoS issues that affect
the development of distributed solutions for geospatial data. In Section 4, we describe

462 M. Bertolotto et al.

the main challenges that arise during the design of a wrapper addressed to the W3C-
OGC services dialogue. Some conclusions are drawn in Section 5.

2 W3C and OGC Standards for Service Based Development

The functionality of a service is exposed through its public interface and the commu-
nication between a service and its clients is based on various messages exchange pat-
terns. However, the actual definition of the public interface and the structure of
messages are strongly related to the particular set of standards adopted. In this section
we provide an overview of the main characteristics of the two major W3C standards,
namely WSDL and the SOAP protocol, and compare them with the three principal
OGC proposals, namely the Web Map Service (WMS), the Web Feature Service
(WFS) and the Web Coverage Service (WCS) standards.

WSDL [3] is an XML based language for describing W3C services. A WSDL doc-
ument separates the abstract aspects of a service description from more concrete ones,
such as the binding to a certain network protocol. The typical structure of a WSDL
document is made up of seven elements, namely Types, Message, Operation, Port
Type, Binding, Port and Service. In particular, the former four are meant to statically
define the public interface of a Web service, while the latter three are used to bind the
interface to a concrete network protocol. A direct drawback of such design choices is
that, in a W3C-oriented environment, the structure of the message payload has to be
completely specified at design time [22].

SOAP is "a lightweight protocol for exchange of information in a decentralized,
distributed environment” [13]. Three basic components characterize a typical SOAP-
based message: an Envelope, a Header and a Body. The Envelope can be seen as the
container of the message itself. The optional Header field can be used to carry addi-
tional information useful to guarantee some properties, such as security and reliability
of exchanged messages. The Body element encompasses the real payload of the
exchanged message.

When compared to the W3C choices, the design philosophy of the OGC standards
is quite different, and the main dissimilarities between them concern the different
approach for the public interface design, and the binding type and the binding time of
operations. Two further clear differences are the basic role of the Geography Markup
Language (GML) [21] and the fact that each type of OGC service is based on a sepa-
rate standard explicitly designed to deal with a specific kind of data. Moreover, they
also specify the functionality offered by the service interface along with the possibly
needed additional data structures. A direct consequence of this choice is that, with
OGC services, the actual structure of the message payload can be known only at run
time, differently from what occurs in W3C environments.

As for the service specification, the most widespread and commonly used are
WMS, WFS and WCS. A WMS allows clients to request georeferenced map images
from one or more geospatial databases. WFS allows for accessing and manipulating
geographic features. Finally, the WCS defines an interface for the exchange of geos-
patial information representing phenomena that can vary in space and time, known as

 Standard-Based Integration of W3C and GeoSpatial Services: Quality Challenges 463

coverages. The only functionality that is common to these three types of services is
GetCapabilities, it allows a geospatial service to expose its capabilities to clients.

3 QoS Issues in Geospatial Web Services

The increasing adoption of the OGC proposals as a concrete means to access and
make use of geospatial data in a distributed and vendor independent manner, has
shifted the attention from data and information supply to information quality and
implementation of services themselves. Thus, also for OGC services, the assessment
of the most common QoS attributes is becoming fundamental to distinguish between
reliable and non-reliable services. Generally speaking, QoS within the SOC paradigm
represents an important and widely discussed topic, due to its basic role in various key
aspects. The scientific and industrial communities have defined several main QoS
categories and various attributes for each of them that contribute to the fulfillment of
the desired QoS property. Moreover, a W3C working group [19] has identified a set
of basic QoS requirements that have to be taken into account during the development
of a Web service, namely Performance, Reliability, Scalability, Capacity, Robustness,
Exception Handling, Accuracy, Integrity, Accessibility, Availability, Interoperability
and Security. A complete analysis of these can be found in [20], while approaches to
express and describe QoS characteristics and metrics can be found in [18].

As for the quality of geospatial Web services, basic assumptions about QoS
attributes still hold. However, their evaluation must be performed according to both
the specific characteristics of geospatial data and the way it is handled by OGC-
compliant solutions. In addition, another relevant aspect that must be taken into
account is represented by the technical differences among the various software
implementations of the OGC standards and the related supporting infrastructure.

From a high level perspective, the process of obtaining knowledge from geospatial
information can be viewed as a three step process, namely querying the data, assem-
bling the retrieved subset and finally performing the effective computation [25]. The
first issue along this sequence of operations is represented by the specific characteris-
tics of geospatial data that usually is voluminous and heterogeneous, distributed
among different data silos and can suffer from access restrictions due to institutional
policies [11]. Such characteristics have, of course, a significant impact on the actual
quality of the final information offered by geospatial services to third party users. In
fact, as clearly discussed in [12], due to the common practice of combining data from
multiple sources, geospatial datasets are inclined to contain errors since the various
providers can make, for example, different assumptions about data structure. As de-
fined in [12], the most important quality components for geospatial data are lineage,
completeness, logical consistency, attribute accuracy and positional accuracy.

The aforementioned quality attributes are useful to assess also the quality of meta-
data that, due to its importance in this context, must be accurately evaluated. Indeed, a
poor quality metadata determines the lack of information quality and can lead final
users to formulate wrong assumptions about the received dataset.

464 M. Bertolotto et al.

The ISO19113 standard, instead, identifies five criteria for geospatial data quality,
namely positional accuracy, temporal accuracy, logical accuracy, thematic accuracy,
and completeness [17]. Finally, a recent factor that influences the quality of geospatial
data is represented by the creation of user-generated geospatial content and Web 2.0.
How to efficiently assess the quality of such a type of data is still an open research
question. An example of filtering and composition of Web 2.0 sources can be found
in [1].

As for the quality factors that mainly impact on the actual development of geospa-
tial services dealing with significant amount of data, a first important discussion can
be found in [10]. This document shows how, from a general point of view, the quality
attributes proposed by W3C and mentioned in the previous section can be applied to
geospatial services, except for the scalability requirement. In [9] some more specific
directives and obligations for implemented services are mentioned. In particular, the
three fundamental QoS criteria to respect are:

- performance: the time for sending the initial response to a discovery service re-
quest shall be maximum 3 seconds in normal situations. Normal situations represent
out of peak load periods, i.e., 90 % of the time;

- capacity: the minimum number of simultaneous requests served by a discovery
service according to the performance quality of service shall be 30 per second;

- availability: the probability of a network service to be available shall be 99% of
the time.

In [24] the common issues impacting on the overall QoS and concerning current
proposals and implementations of OGC standards are discussed. The authors divide
those issues into three levels, namely standard definition, software implementation of
the standard, and software application. Among the various problems, the following
are functional to the goal of the present discussion: the lack of a standardized authori-
zation/authentication mechanism, the misuse of the standardized HTTP error codes,
the version proliferation, the discrimination between mandatory and optional features,
and the high level of autonomy offered by the various standard specifications.

A concrete example of QoS issues in a real software solution can be found in [26].
In the development of their prototype for real time geospatial data sharing over the
Web, authors notice how the adoption of OGC standards is useful to solve problems
at the syntactic level, while several issues may arise at the semantic level. System
reliability represents the second important problem that is particularly accentuated
when OGC services are provided by different entities. Security is another major con-
cern. Finally, performance bottlenecks due to the transfer of redundant XML data
over the network and the high cost of the parsing XML messages have a serious
impact on the effective use of the proposed solution.

In [11] several OGC-compliant services implementations are tested. The results re-
lated to relevant performance parameters, show how, due to the GML verbose nature,
a consistent number of bottlenecks may arise when there is the need to transfer large
amount of geospatial data. Moreover, different software solutions vary in the way
OGC specifications are implemented. Two direct consequences may arise from such
dissimilarities, namely the reduced quality that can be perceived by final users and
critical interoperability problems.

 Standard-Based Integration of W3C and GeoSpatial Services: Quality Challenges 465

4 A Wrapper-Based Solution

In order to face effects deriving from technical and semantic differences between
W3C and OGC services the currently most accepted solution is represented by a soft-
ware wrapper that manages most of the technical topics that arise during the transla-
tion of requests and responses [15]. However, such a translation cannot be automated
due to several issues that need to be carefully taken into account during the wrapper
design to make this solution a feasible option. First of all, a wrapper is usually a ser-
vice itself, then it requires a typical supporting infrastructure of service-based solu-
tions, while its design might be influenced by the specific needs of the application
under development. Indeed, two symmetrical types of wrapper can be developed,
either adapting the interface of an OGC service to the technical requirements of a
W3C-based infrastructure or vice-versa. Existing W3C services providing geospatial
information that could be useful in an OGC-based Spatial Data Infrastructure (SDI)
constitute an example of the latter case. The second cause of difficulties is represented
by the number of services whose functionality has to be exposed by the intended
wrapper. In fact, although the simplest solution concerns a one-to-one mapping, i.e., a
wrapper adapts the interface and functionality of a single W3C / OGC service, it is
also possible for it to gather functionality of different services. A typical example is
constituted by a W3C service that offers, in a single WSDL document, the methods to
access the data layers of either two WFSs or a WFS and a WMS. Finally, a further
issue concerns the need to properly structure the WSDL document in order to distin-
guish among the various OGC services since the public interface and signatures of the
implemented methods are rigorously standardized by the Consortium.

In the following, we discuss some challenges about the design of a one-to-one
wrapper by describing a concrete example of an OGC to W3C mapping, Moreover,
some basic QoS parameters are investigated that are affected when offering geospatial
data coming from other OGC services and exploited through W3C standards.

As a concrete example where an OGC-to-W3C wrapper can actually promote and
support a better information exchange between different entities, we illustrate its usage
in the context of a research activity aimed at helping Sri Lankan farmers improve their
productivity by providing them with customized and up-to-date information, such as the
current selling prices of a product. Such an activity constitutes a pilot study for the So-
cial Life Networks for the Middle of the Pyramid (SLN4MoP) project, an international
collaborative research program that aims at providing real-time information to meet the
daily needs of people living in developing countries [23].

The proposed system is based on a client-server architecture, although some tech-
nological constraints and the elicited needs of the involved stakeholders deeply influ-
enced its overall design. As for the client tier, a common trait in many developing
countries is the wide spread of mobile devices compared to the diffusion of traditional
PCs. Such a factor led us to propose a mobile solution for the actual application with
which the farmers interact. Detailed information about the implications and design
challenges of our choice can be found in [6,7].

As for the back-end, the blueprint of the architecture has been organized by exploit-
ing the principles of the SOC paradigm, which better comply with the in progress

466 M. Bertolotto et al.

nature of SLN4MoP project, that is, providing its functionality as set of interacting
services helped us to easily satisfy several fundamental design goals and QoS parame-
ters. In particular, we needed both a reliable and flexible infrastructure, where new
software modules can be added and can communicate with the existing ones without
affecting the original design and behavior, and a reduced complexity during the
access to heterogeneous and distributed data sources hiding, at the same time, the
underlying different storage formats.

As for the QoS aspects, since the business processes are now decomposed into a
series of interacting services, the availability, interoperability and performance para-
meters are of utmost importance for an efficient usage of this system. However, while
availability strongly depends on the failure ratio of the underlying supporting compo-
nents, interoperability and performance deserve further considerations.

To support our discussion, we consider the following real scenario. A governmen-
tal officer needs to visualize on a map the position of all local markets of a given dis-
trict along with the selling prices of certain crops. The required operation corresponds
to a combination of two atomic functions, namely the provision of various data units
for the composition of a map, and a list of scalar values. The former is a typical func-
tionality offered by an OGC service, the latter can be provided by a W3C service. In
order to derive the expected result, it is necessary to invoke an advanced service
capable to split and direct the atomic requests towards components in charge of per-
forming them, and then combine responses deriving from them as a unique output.
This capability represents a fundamental feature of the SOC paradigm: the services
composition, namely the ability to compose services to obtain complex results.

One of the most common types of composition is service orchestration where the
messages exchanged among services and the execution order of their interactions, is
coordinated by a central controller. In order to effectively make the orchestration
possible, all the involved services need to share the same Interface Description Lan-
guage (IDL) and the same framework for the messages exchange. Then, the interope-
rability in the context of services orchestration represents a key requirement, but,
as shown in our scenario, protocols based on different rules for the definition of the
public interface and the message exchange system, make services orchestration not
directly achievable.

The solution we have proposed is based on a wrapper addressed to a syntactic
translation from OGC to W3C, which exploits existing orchestration middleware and
the well-established services orchestration in W3C environments. In particular, the
task performed by the proposed wrapper consists in the translation of SOAP-based
messages into OGC-compliant requests and vice-versa. Such a task can be partitioned
into four main steps:

1. the wrapper receives, from a W3C service a SOAP message containing a request
for a specific geospatial dataset;

2. the wrapper translates the SOAP-based request into a format suitable for the un-
derlying OGC service, and sends the query;

3. the OGC service returns the desired information;
4. the wrapper translates the received response into a SOAP-compliant format and

sends it back to the requesting client.

 Standard-Based Integration of W3C and GeoSpatial Services: Quality Challenges 467

However, a wrapper-based solution presents an important drawback, namely a se-
rious impact on the overall composition performance. Such an aspect, in the context
of our project, cannot be underestimated and requires further investigation.

Besides traditional aspects (such as, the quality of the underlying network that con-
tributes to the achievement of a satisfactory performance level), a relevant factor for
performances is represented by the specific characteristics of geospatial information
(described in Section 3). As compared to the size of traditional SOAP messages, the
size of geospatial data is usually several orders of magnitude larger. Since in the
wrapper-based solution such data has to be packaged in the Body element of a SOAP
message, it is clear that encoding, decoding and transmission of SOAP messages
represent new significant issues. Such a problem has a direct impact on measurable
values (like response time or throughput) directly related to the Quality of Experience
of final users. Moreover, it might also influence the behavior of other aspects of the
entire Service Oriented Architecture (SOA) to which the wrapper belongs, such as the
transaction management protocols and the above described services orchestration. In
particular, in a traditional orchestration the execution of an operation may depend on
the output of a previous computation, and data complexity. The above described sce-
nario deals with high volumes of data and long running operations, then the consider-
able amount of waiting time needed to process or simply transfer SOAP-encoded
geographic data may cause a throughput reduction. In the worst case, a time-out error
may occur that causes the entire workflow blocking. An asynchronous strategy
based on appropriate SOAP message patterns (e.g., Fire and Forget) [8] represents a
possible solution for all wrapper-based and time-consuming tasks.

Another aspect that adversely affects the performance and effectiveness of a wrap-
per is related to the supplementary delay caused by the need to query remote OGC
sources. Information caching represents a feasible solution to reduce this inconve-
nience and improve performance and overall scalability. Some considerations about
the design choices of OGC services support this option. In particular, most of OGC
services are basically read-only services whose queries "access groups of features
rather than individual features" [16]. Of course, traditional cache invalidation me-
chanisms (on demand, time limited, etc.) can be used to force the wrapper to invoke
the original data source and refresh the local cache. Examples of cacheable items are
the Capabilities document returned by the invocation of the GetCapabilities function,
and the GML Schemas returned by the DescribeFeatureType function of a WFS.

A further service property to be taken into account when designing a wrapper, con-
cerns its level of flexibility and reusability (a desirable property in the SOC para-
digm). Such parameters are related to the granularity of a service, namely its size. In
[14], the authors classify service granularity into three different categories: functional-
ity granularity, data granularity and business value granularity. In a wrapper-based
solution for service orchestration, data granularity represents the unique parameter
that can be investigated during the design. Some optimizations can be done, however
such parameters depend on the implementation and specific choices made for the
original OGC service. A detailed discussion about this topic can be found in [16].

468 M. Bertolotto et al.

5 Conclusions

The goal of the research we are conducting is to define an infrastructure for the provision
of heterogeneous Web services within a geographic information system. In particular, the
focus of our current efforts is on the orchestration of traditional and geospatial services.
The solution we have proposed is based on a wrapper that integrates W3C and OGC
services in a seamlessly manner. In this paper we have discussed the QoS parameters that
should be properly considered in this context. We have emphasized that, besides parame-
ters that the literature suggests to take into account when dealing with these two stan-
dards separately, it is necessary to include some criteria that exclusively derive from the
growing complexity of the integrated solution, such as supplementary delay and through-
put reduction. Indeed, a wrapper-based solution implies a notable impact on the service
performances and effectiveness, and then it is essential to handle those QoS parameters
during the design phase in order to perform the best choices, independently from the
technology used in the subsequent implementation step. In the future, we plan to com-
plete the infrastructure proposed for SLN4MoP, and stress it by testing its performances
against a large amount of data.

References

1. Barbagallo, D., Cappiello, C., Francalanci, C., Matera, M., Picozzi, M.: Informing observ-
ers: quality-driven filtering and composition of web 2.0 sources. In: EDBT/ICDT Work-
shops, pp. 1–8 (2012)

2. Bertolotto, M., Di Giovanni, P., Sebillo, M., Tortora, G., Vitiello, G.: The Information
Technology in Support of Everyday Activities: Challenges and Opportunities of the
Service Oriented Computing. Mondo Digitale (2014)

3. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description
Language (WSDL) 1.1. World Wide Web Consortium (2001),
http://www.w3.org/TR/wsdl

4. Costagliola, G., Casella, G., Ferrucci, F., Polese, G., Scanniello, G.: A SCORM Thin
Client Architecture for e-learning Systems Based on Web Services. Int. J. of Distance
Education Technologies. 5(1), 19–36 (2007)

5. Di Giovanni, P., Bertolotto, M., Vitiello, G., Sebillo, M.: Web Services Composition and
Geographic Information. In: Pourabbas, E. (ed.) Geographical Information Systems:
Trends and Technologies, pp. 104–141. CRC Press (to appear, 2014)

6. Di Giovanni, P., Romano, M., Sebillo, M., Tortora, G., Vitiello, G., Ginige, T., De Silva,
L., Goonethilaka, J., Wikramanayake, G., Ginige, A.: User Centered Scenario Based Ap-
proach for Developing Mobile Interfaces for Social Life Networks. In: First International
Workshop on Usability and Accessibility Focused Requirements Engineering (UsARE
2012), pp. 18–24. IEEE (2012)

7. Di Giovanni, P., Romano, M., Sebillo, M., Tortora, G., Vitiello, G., Ginige, T., De Silva,
L., Goonethilaka, J., Wikramanayake, G., Ginige, A.: Building Social Life Networks
Through Mobile Interfaces: The Case Study of Sri Lanka Farmers. In: Spagnoletti, P. (ed.)
Organizational Change and Information Systems. LNISO, vol. 2, pp. 399–408. Springer,
Heidelberg (2013)

8. Erl, T.: Service-oriented architecture: concepts, technology, and design. Prentice Hall,
PTR (2005)

 Standard-Based Integration of W3C and GeoSpatial Services: Quality Challenges 469

9. European Commission: Commission Regulation 1088/2010 amending Regulation (EC) No
976/2009 as regards download services and transformation services (2010),
http:seur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=CELEX:02009R0976-20101228:EN:NOT

10. European Commission: INSPIRE Network Services Performance Guidelines (2007)
11. Giuliani, G., Dubois, A., Lacroix, P.: Testing OGC Web Feature and Coverage Service

performance: Towards efficient delivery of geospatial data. J. of Spatial Information
Science. 7, 1–23 (2013)

12. Goodchild, M.F., Clarke, K.C.: Data Quality in Massive Data Sets. In: Abello, J.,
Pardalos, P., Resende, M.G.C. (eds.) Handbook of Massive Data Sets, pp. 643–659.
Kluwer Academic Publishers, The Netherlands (2002)

13. Gudgin, M., Hadley, M., Moreau, J.J., Nielsen, H.F.: SOAP Version 1.2. World Wide Web
Consortium (2001), http://www.w3.org/TR/2001/WD-soap12-20010709/

14. Haesen, R., Snoeck, M., Lemahieu, W., Poelmans, S.: On the Definition of Service Granu-
larity and Its Architectural Impact. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 375–389. Springer, Heidelberg (2008)

15. Ioup, E., Lin, B., Sample, J., Shaw, K., Rabemanantsoa, A., Reimbold, J.: Geospatial Web
Services: Bridging the Gap between OGC and Web Services. In: Sample, J.T., Shaw, K.,
Tu, S., Abdelguerfi, M. (eds.) Geospatial Services and Applications for the Internet,
pp. 73–93. Springer, New York (2008)

16. Ioup, E., Sample, J.: Managing Granularity in Design and Implementation of Geospatial
Web Services. In: Zhao, P., Di, L. (eds.) Geospatial Web Services: Advances in Informa-
tion Interoperability, pp. 18–35. IGI Global, New York (2011)

17. ISO 19113: Geographic information - Quality principles. International Organization for
Standardization (2002)

18. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S.,
Brandic, I., Kertész, A., Parkin, M., Carro, M.: A Survey on Service Quality Description.
ACM Computing Surveys 46(1), Article 1 (2013)

19. Lee, K.G., Jeon, J.H., Lee, W.S., Jeong, S.-H., Park, S.-W.: QoS for Web Services: Re-
quirements and Possible Approaches. World Wide Web Consortium (2003)

20. O’Brien, L., Bass, L., Merson, P.F.: Quality Attributes and Service-Oriented Architectures.
Software Engineering Institute (2005)

21. Portele, C.: OpenGIS Geography Markup Language (GML) Encoding Standard. Open
Geospatial Consortium Inc. (2007),
http://www.opengeospatial.org/standards/gml

22. Schäffer, B.: OWS 5 SOAP/WSDL Common Engineering Report. Open Geospatial Con-
sortium Inc. (2008), http://www.opengeospatial.org/standards/dp

23. Sebillo, M., Tortora, G., Vitiello, G., Di Giovanni, P., Romano, M.: A Framework for
Community-Oriented Mobile Interaction Design in Emerging Regions. In: Kurosu, M.
(ed.) Human-Computer Interaction, HCII 2013, Part III. LNCS, vol. 8006, pp. 342–351.
Springer, Heidelberg (2013)

24. Vanmeulebrouk, B., Bulens, J., Krause, A., de Groot, H.: OGC standards in daily practice:
gaps and difficulties found in their use. In: GSDI11 World Conference (2009)

25. Wei, Y., Santhana-Vannan, S.-K., Cook, R.B.: Discover, Visualize, and Deliver Geospatial
Data through OGC Standards-based WebGIS System. In: 17th International Conference on
Geoinformatics, pp. 1–6. IEEE (2009)

26. Zhang, C., Li, W.: The Roles of Web Feature and Web Map Services in Real-time Geospa-
tial Data Sharing for Time-critical Applications. Cartography and Geographic Information
Science 32(4), 269–283 (2005)

Tamper-Evident User Profiles

for WebID-Based Social Networks

Stefan Wild, Falko Braune, Dominik Pretzsch, Michel Rienäcker,
and Martin Gaedke

Technische Universität Chemnitz, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. Empowering people to express themselves in global commu-
nities, social networks became almost indispensable for exchanging user-
generated content. User profiles are essential elements of social networks.
They represent their members, but also disclose personal data to compa-
nies. W3C’s WebID offers an alternative to centralized social networks
that aims at providing control about personal data. WebID relies on
trusting the systems that host user profiles. There is a risk that attack-
ers exploit this trust by tampering user profile data or stealing identities.
In this paper, we therefore propose the IronClad approach. It improves
trustworthiness by introducing tamper-evident WebID profiles. IronClad
takes protective measures to publicly discover malicious manipulation of
profile data. We exemplarily implement IronClad in an existing WebID
identity management platform known from previous work.

Keywords: Identity, WebID, Linked Data, Social Networks, Trust,
Security, Data Integrity, Protection, Tamper Detection.

1 Introduction

Social networks have become crucial elements in modern society. They allow peo-
ple to connect, communicate, and express themselves on a global scale. Joining
social networks usually requires creating user profiles. Users therefore need to
entrust personal information to network providers which escrow the information
for them. This enables identification, eases discovery, and digitally represents the
user. However, it also creates another copy of the user’s digital identity. In to-
day’s ecosystem of social networks each copy needs to be maintained separately.
This makes exchange and update of personal data across different domains and
organizational boundaries difficult. Thus, centralized social networks like Twitter
and Facebook gave rise to customer lock-in for millions of users [15].

For avoiding such walled gardens, the W3C devised WebID. As an open, uni-
versal, and decentralized identification approach, WebID allows users to be their
own identity provider and establish their own personal social networks [11]. With
WebID, users are enabled to manage their personal information at a self-defined
place. They can also employ their WebID identities for global authentication.

WebID consists of three interrelated artifacts, which are illustrated in Figure 1:
The WebID URI is a unique identifier referring to an agent. While an agent is

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 470–479, 2014.
c© Springer International Publishing Switzerland 2014

Tamper-Evident User Profiles for WebID-Based Social Networks 471

typically a person, it can also be a robot, group or any other entity that needs
to be identified. The WebID certificate is a common X.509v3 client certificate.
It includes a public key and a WebID URI linking to the WebID profile. The
WebID profile is a resource containing personal information about the identity
owner. Personal information are described in an extensible and machine-readable
way using Linked Data. Each WebID profile also stores public keys. They are
used along with the corresponding WebID certificate for an ownership-based
authentication defined by the WebID protocol.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix cert: <http://www.w3.org/ns/auth/cert#> .

@prefix profile: <https://example.org/alice#> .

profile:aa a foaf:Person;

foaf:name „Alice Anderson“;

foaf:knows <https://example.com/bob#me>;

cert:key [

a cert:RSAPublicKey;

rdfs:label „Made on Monday, July 8, 2013 3:16 PM“;

cert:modulus „00cb25ed...“^^xsd:hexBinary;

cert:exponent 65537 ;

] .

WebID Profile
available at WebID URI https://example.org/alice#aa

PPPPPMMMMMMMMMMMMMMMM““““““““““““““;;;;;;;;;;;

aaaaaaaaa

WebID
Certificate

WebID URI

Fig. 1. Artifacts in WebID

Problem. Despite all advantages, being an identification mechanism that does
not rely on authorities makes WebID vulnerable to attacks on user identities.
WebID allows users to host their profiles at arbitrary locations. Yet it does nei-
ther ensure nor verify data integrity of user profiles. Experienced users know
how to set up and protect a system storing their WebID profile. Inexperienced
users, however, do not know this and would probably prefer using third-party
managed services for hosting. Consequently, inexperienced users must trust third
parties to not accessing and tampering their profile data [6]. The trustworthi-
ness of managed services can hardly be assessed or guaranteed [5]. This shifts the
problem from trusting identity providers [4] to trusting cloud storage providers.
Requestors therefore depend on external means to decide whether to trust pro-
file data. Obtaining write access to a WebID profile would enable an attacker
to tamper user data stored inside [5]. Tampering user profile data, e.g., chang-
ing the e-mail address or replacing social contacts, could interfere with further
transaction. Having a chance to add a public key to the identity owner’s WebID
profile would allow constructing a client certificate with the corresponding pri-
vate key. Attackers could then use such certificate for authenticating to services
as the identity owner without her knowledge and intent.

472 S. Wild et al.

Objective. To increase trustworthiness in WebID-based social networks, we
aim at providing a means for users to publicly detect tampering of profile data.
For achieving this objective, we propose the novel IronClad approach for tamper-
evident1 WebID profiles. We therefore provide contributions for:

– Signing WebID profile data,
– Discovering WebID identity theft, and
– Verifying WebID profile data integrity.

Impact. Achieving the objective would allow for storing WebID profiles in
potentially harmful environments, reducing the entry barrier for inexperienced
users and, thus, contributing to increase the overall security and adoption of the
WebID identity mechanism. Otherwise, users still risk to retrieve WebID profile
data that is not in accordance with the identity owner’s original intention.

The rest of the paper is organized as follows: Section 2 discusses related work.
Section 3 describes and exemplarily demonstrates the IronClad approach for
providing tamper-evident WebID profiles. Section 4 evaluates the approach. Sec-
tion 5 concludes the paper.

2 Related Work

Literature to file systems and database systems broadly deals with the topic of
ensuring data integrity. This discussion of related work focuses on the applicabil-
ity of integrating features for detecting tampering attacks to Web-based systems
only. To structure the discussion, we pay particular attention to interoperability,
applicability and accessibility of tamper-evident features.

Centralized social networking platforms like Facebook and Google+ enable
users to create views on their profile data. Such views can conceal sensitive data
to external parties, e.g., groups of requestors. When targeting profile data disclo-
sure or malicious manipulation, they are, however, inapplicable to detect inter-
nal read/write attacks without further ado, as described by Feldman et al. in [6].
Through establishing decentralized social networks, WebID distributes this prob-
lem to systems that host the profiles. Contrary to centralized social networking
platforms, Web Access Control2 (WAC) facilitates securing resources in a de-
coupled and decentralized way. However, WAC also focuses on access protection
and not on data protection [14]. Even though protection of personal data could
be accomplished through encryption, this is inappropriate in WebID. Profiles
have to be, at least partially, accessible for authentication of identity owners
and for queries of requestors. It would be also required to either distribute keys
for decryption to an unknown number of potential requestors or establish cen-
tral authorities for key management, which does not conform to WebID’s idea
of focusing on individuals.

1 “Tamper-evident” is commonly defined as a means for making unauthorized access
to a protected object easily detectable.

2 http://www.w3.org/wiki/WebAccessControl

http://www.w3.org/wiki/WebAccessControl

Tamper-Evident User Profiles for WebID-Based Social Networks 473

With regard to detect tampering of profile data, WebID shares similar disad-
vantages with other identity management systems like OpenID or Mozilla Per-
sona [8]. OpenID implements only limited handling of personal attributes [7],
whereas Persona is not designed for attaching profile data to an identity in a
holistic way [1]. In contrast, WebID allows flexibly extending profile data, i.e.,
add cryptographic signatures. Such extension is not applicable to many social
networking platforms and identification systems due to their centralized, closed
or restricted handling of user profile data.

Public keys and signatures must also be protected from manipulation in order
to provide sound proof of the identity owner’s intent. This could be accomplished
by a public key infrastructure (PKI) involving certificate authorities (CA) or
a Web of Trust (WoT). A PKI based on CAs represents a centralized trust
model that uses hierarchically organized authority chains [2]. WebID allows for
adapting this model, e.g., similar to signing WebID certificates by a trusted third
party instead of the identity owner himself3. However, we do not want to impair
WebID’s decentralized approach of involving and empowering individuals instead
of authorities. By contrast, the WoT concept represents a flat hierarchy only
relying on individuals [2]. It needs member discovery and makes updating public
keys and signatures difficult due to their necessary distribution and inclusion in
other data stores, e.g., user profiles.

3 Tamper-Evident WebID Profiles through IronClad

In order to detect tampering of WebID profile data, we created IronClad. It is
based on the principle that only identity owners should be enabled to change
their profile data in a sustainable way. For ensuring requestors that all WebID
profile data is what was intended by the identity owner, IronClad incorporates
three main activities: signing profile data, storing/retrieving signatures, and ver-
ifying data integrity of profiles. They are according to our key contributions. We
illustrated them using BPMN in Figure 2 and describe them in the following.

3.1 Operations Supported by IronClad

Signing WebID Profile Data. By signing the WebID profile, the identity
owner (cf. top of Figure 2) proves that personal data stored in his profile is
sound and was not changed by another party. In order to avoid signing tam-
pered data, the data integrity of the WebID profile needs to be checked (cf. 1©
in Figure 2) prior to updating relevant data (cf. 2©) and creating signatures
(cf. 3©). Algorithm 1 specifies in pseudo code notation how IronClad creates
signatures of WebID profile data. Our approach uses the RDF graph represen-
tation of a WebID profile for computing hash values independent from specific
data serializations, e.g., RDF/XML or Turtle. To address different orders of RDF

3 In WebID, certificates are usually self-signed as the trust does not rely on the public
key, but on the WebID URI linked resource storing the public key, which we want
to protect against tampering.

474 S. Wild et al.

Id
en

ti
ty

 O
w

ne
r

R
eq

ue
st

or

Si
gn

er
St

or
er

Verifying WebID Profile Data Integrity

Signing WebID Profile Data

Store
Profile Data

Retrieve
Profile Data WebID Profile

Repository

Signed WebID
Profile

Compare
Signatures with

Profile Data
Want to

Retrieve WebID
Profile Data

Get
Profile Data

Comparison
Successful?

no

WebID URI

Received
WebID Profile

Verify
WebID Profile
Data Integrity

Want to
Sign WebID
Profile Data

Retrieved Profile Data
as Was Intended
by Profile Owner

Integrity Breach in
Retrieved Profile Data

WebID URI
Create

Signatures of
Profile Data

Identity Owner’s
Private Key

Incorporate
Updates of
Profile Data

Data Integrity
Breach of

Profile Data

Save
Profile Data

incl. Signatures

Profile Data
Change Set

Signed WebID
Profile Data

yes

Profile Data
as Was

Intended

1 2 3 4

65

Fig. 2. Big picture of IronClad: Signing, storing, and verifying data integrity of profiles

triples and blank nodes, IronClad performs a canonicalization. We therefore uti-
lize the One-Step Deterministic Labeling method proposed by Carroll in [3] and
the methodology described by Tummarello et al. in [12].

To avoid disclosing the identity owner’s private key to a third party, the
signing process is split into a server and a client side part. IronClad’s server
side computes hash values of each minimal self-contained graph [12] found in
the graph representation of the WebID profile. It combines all hash values to a
signing request afterwards (cf. lines 4 to 8). The client side part analyzes this
request and signs the content. It creates the signature through encrypting each
hash value with a private key (cf. lines 9 to 12). The identity owner selects the
corresponding private key beforehand. IronClad supports client side signing by
a tool. It transforms a signing request into a signed response, which is then sent
back to the server side.

Once received by the server side (cf. lines 13 to 16), the signed response
containing the signatures is verified. Provided that the verification was success-
ful, IronClad stores the signatures in the identity owner’s WebID profile in 4©.
When storing (cf. middle of Figure 2), IronClad applies the method proposed by
Sayers and Eshghi in [10]. This method closely links the public key of the profile
with the WebID URI. Thus, it assists in detecting attacks that aim at removing
profile data and signatures.

Tamper-Evident User Profiles for WebID-Based Social Networks 475

Discovering WebID Identity Theft. Following the principle of empowering
individuals instead of authorities, we could not solely rely on attaching signatures
to profile data4. IronClad creates a binding between the public key and the
WebID URI. Thus, it ensures that this key cannot be changed without losing
personal relationship data such as incoming social connections expressed via
foaf:knowsWebID URIs. Having the public key stored in the WebID URI allows
detecting the same key inside the profile. This facilitates not only discovering
identity theft done by malicious key manipulation, but also using the public key
for signature verification. The length of the public key, e.g., 2048-bit, makes it
inconvenient to store it directly inside a WebID URI. Therefore, IronClad uses
the SHA-1 hash value of the public key instead.

Algorithm 1. Creating Signatures of User Profile Data

Input: WebID URI u, Private Key key
// on server side

1 get WebID profile p from u;
2 get RDF graph g from p;
3 apply canonicalization on g using [3] and [12];
4 repeat
5 delete minimal self-contained graph msg from g;
6 create hash value h of msg; // currently uses SHA-1

7 add h to client request req;

8 until g is empty ;
// on client side to avoid private key disclosure

9 foreach hash value h in client request req do
10 create signature sig by encrypting h with key;
11 add sig to server response res;

12 end
// on server side

13 foreach signature sig in server response res do
14 if signature sig is invalid then stop
15 end
16 add all signatures in server response res to graph g;

Verifying WebID Profile Data Integrity. Tomake signedWebIDprofiles eas-
ily verifiable for requestors, we integrated the verification process into the WebID
authentication routine. It is triggeredwhen theWebID profile has been loaded. For
verifying signed profile data (cf. bottom of Figure 2), IronClad receives theWebID
profile via theWebID URI in 5©. It tries to detect a plausible public key5 inside the
profile. Such public key has to correspond to the hash value stored in the WebID

4 By gaining access to the system storing the WebID profile, an attacker could tam-
per identity data and manipulate signatures stored in the profile. Due to this vul-
nerability to attacks, an external authority would be required to provide proof of
correctness.

5 A public key with a common length, e.g., 2048 bit.

476 S. Wild et al.

URI. Having found the public key, IronClad computes hash values of WebID pro-
file data asmentioned in the signing process. It then compares the hash values with
the hash values retrieved by decrypting the signatures using the public key, as indi-
cated by 6©. The data integrity ofWebID profiles cannot be guaranteed in case any
detection or verification step has failed. Handling failed verifications depends on
the scenario and authentication target. This is not a part of the IronClad approach
and, thus, needs be to addressed separately.

3.2 Implementation and Demonstration of IronClad

For showcasing the approach, we exemplarily implemented IronClad in the
Sociddea WebID identity provider and management platform proposed by
Wild et al. in [13]. It is important to mention here that IronClad is not limited
to a specific platform. That is, it is possible to apply the approach in arbitrary
WebID identity providers, management platforms or authentication methods.
Thus, IronClad is line with the idea of decentralized social networks.

In Sociddea, IronClad is optionally applied when creating new WebID iden-
tities. It is furthermore used for signing and verifying profile data hosted in
Sociddea’s ecosystem. Figure 3 illustrates the visual representation of a tamper-
evident WebID profile in four different scenarios. While the figure shows tam-
pering by changing a personal attribute of the identity owner, data integrity
breaches through adding or removing RDF triples are also detected by IronClad.
In addition to visually highlighting malicious data manipulations, identity own-
ers and service providers also benefit from tamper-evident WebID profiles during
user authentication and requests for profile data.

Try It Out. For a live demonstration, screen casts, and further information
about IronClad and Sociddea please visit:
http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

4 Evaluation of IronClad

While the acceptance and handling of tamper-evidentWebID profiles is a planned
subject of a larger empirical investigation, this evaluation discusses to which ex-
tent IronClad takes the criteria into account we used for analyzing related work.
From a theoretical point of view, we think that such study therefore allows for
determining how well IronClad achieves the objective defined in Section 1.

WebID profiles depend on RDF for describing an identity owner’s personal
attributes in a machine-readable way. Appropriate RDF-based vocabularies en-
able describing and interlinking new contents. This facilitates extending WebID
profiles by additional RDF triples. It is consequently well applicable to represent
and associate signatures to personal attributes.

As the IronClad approach does not involve encrypting user profile data, it does
not impair the accessibility of tamper-evident WebID profiles. Both common and
tamper-evidentWebIDprofiles share similar characteristics.While tamper-evident
WebID profiles consist of additional RDF-based signatures, existing personal data

http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

Tamper-Evident User Profiles for WebID-Based Social Networks 477

Fig. 3. Exemplary implementation of IronClad for tamper-evident user profiles with
visualized results for: Identity owner Alice’s view on her valid profile data (top/left),
“Lastname” changed - tampering detected (bottom/left), requestor Bob’s view on
Alice’s valid profile data (top/right), Bob’s view on Alice’s tampered profile (bot-
tom/right)

remains untouched. In IronClad, signatures are loosely coupled statements about
personal data. Removing all signature RDF triples would reveal the original pay-
load of a WebID profile. The hash value included in the WebID URI, however, in-
dicates that the corresponding WebID profile is tamper-evident. Considering an
attacker would remove signatures stored in a tamper-evidentWebID profile, there
is still the WebID URI indicating that the WebID profile has to be data integrity
protected. While there are other ways of using hash values in URIs [9], IronClad
just appends them to commonWebID URIs for the sake of simplicity and confor-
mity. Such verification for tamper-evidence is part of the proposed extension of the
WebID authentication sequence. Even though signatures and personal data con-
tained in tamper-evidentWebID profiles are accessible per se, view filters can assist
in concealing particular RDF triples, as described byWild et al. in [14]. For exam-
ple, excluding all signaturesmight be beneficial for presenting profile data to users.

478 S. Wild et al.

Through directly operating on the RDF graph representing a WebID profile,
IronClad is compatible to different orders and structures of RDF triples, and
diverse types of serialization. This allows for dealing with the high heterogeneity
prevailing in this context. Despite all advantages, we also identified some issues
restricting the interoperability and compatibility of our approach: Combining
the hash value of the public key with the WebID URI creates a universal mean
to detect tampering in WebID profiles. This, however, implicates that it is not
possible 1) to transform common WebID URIs to tamper-evident ones and 2)
to change tamper-evident WebID URIs without invalidating all incoming con-
nections from social contacts expressing their friendship and so on. Changing a
WebID URI results in creating a different and therefore new identity. This can
be considered as a common shortcoming in WebID. There is a need for an ap-
proach to indicate that a new (tamper-evident) WebID URI belongs an already
existing one. Creating a tamper-evident WebID profile necessitates signing the
profile data worth protecting. As we wanted to avoid disclosing the private key
to a third-party, we rely on a client-side signing tool at the moment. This depen-
dency entails new requirements for system, platform and device support. We seek
to resolve the dependency by a solution that is user-friendly and interoperable.

5 Conclusion and Future Work

By providing a means for users and machines to detect data integrity breaches in
WebID profiles, we contributed to increase the trustworthiness of open, decentral-
ized, anduniversal identificationmechanisms.Taking compatibility and accessibil-
ity of user profile data into account, our approach for tamper-evident user profiles is
well-applicable for newWebID identities. Focusing on empowering individuals in-
stead of authorities,we expect that suchmechanismwill gainmoremomentumand
coverage in the future. By adding security features to WebID artifacts, we enabled
profile owners and requestors to detect malicious manipulation and identity theft.
We integrated IronClad into the WebID authentication routine to verify the pro-
file data integrity as a requirement for any successful identity proof. Not only does
IronClad operate independently of data type and order, but also independently of
the profile hosting system. We enabled verification without requiring prior knowl-
edge except for an already knownWebID identifier.

Having made an important step towards more trustworthiness in the context
of WebID, we will constitute future work on that basis. For validating not solely
the technical feasibility of our approach, it is necessary to conduct a more com-
prehensive evaluation involving how well users accept tamper-evident WebID
URIs and profiles. Even though we are aware that tamper-evident WebID URIs
make the management for users more difficult, e.g., compared to managing email
addresses, we claim that most issues can be successfully addressed through utiliz-
ing techniques such as URI drag and drop, QR codes or WebID URIs embedded
into other objects like WebID certificates. Identifying the origin of tampering at-
tacks, facilitating key replacement and enabling signature creation with several
keys are also interesting topics for future research.

Tamper-Evident User Profiles for WebID-Based Social Networks 479

References

1. Bamberg, W., et al.: Persona - Protocol Overview (2013),
https://developer.mozilla.org/en-US/docs/

Mozilla/Persona/Protocol Overview (accessed February 23, 2014)
2. Caronni, G.: Walking the Web of Trust. In: Proeedings of the IEEE 9th Interna-

tional Workshops on Enabling Technologies: Infrastructure for Collaborative En-
terprises (WET ICE 2000), pp. 153–158. IEEE (2000)

3. Carroll, J.J.: Signing RDF Graphs. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, pp. 369–384. Springer, Heidelberg (2003)

4. Dhamija, R., Dusseault, L.: The Seven Flaws of Identity Management: Usability
and security Challenges. IEEE Security & Privacy 6(2), 24–29 (2008)

5. Feldman, A.J., Blankstein, A., Freedman, M.J., Felten, E.W.: Privacy and Integrity
are Possible in the Untrusted Cloud. Bulletin of the IEEE Computer Society Tech-
nical Committee on Data Engineering 35(4), 73–82 (2012)

6. Feldman, A.J., Blankstein, A., Freedman, M.J., Felten, E.W.: Social Networking
with Frientegrity: Privacy and Integrity with an Untrusted Provider. In: Proceed-
ings of the 21st USENIX Conference on Security Symposium, Security, vol. 12,
p. 31 (2012)

7. Fitzpatrick, B., Recordon, D., Hardt, D., Hoyt, J.: OpenID Authentication 2.0 -
Final (2007), http://openid.net/specs/openid-authentication-2_0.html (ac-
cessed February 23, 2014)

8. Hackett, M., Hawkey, K.: Security, Privacy and Usability Requirements for Feder-
ated Identity. In: Workshop on Web 2.0 Security & Privacy (2012)

9. Sauermann, L., Cyganiak, R., Völkel, M.: Cool URIs for the Semantic Web. Tech.
rep., Saarländische Universitäts- und Landesbibliothek (2007)

10. Sayers, C., Eshghi, K.: The case for generating URIs by hashing RDF content
(2002)

11. Sporny, M., Inkster, T., Story, H., Harbulot, B., Bachmann-Gmür, R.: WebID 1.0:
Web Identification and Discovery (2011),
http://www.w3.org/2005/Incubator/webid/spec/

(accessed February 23, 2014)
12. Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F.: Signing Individual Fragments

of an RDF Graph. In: Special Interest Tracks and Posters of the 14th International
Conference on WWW, pp. 1020–1021. ACM (2005)

13. Wild, S., Chudnovskyy, O., Heil, S., Gaedke, M.: Customized Views on Profiles in
WebID-Based Distributed Social Networks. In: Daniel, F., Dolog, P., Li, Q. (eds.)
ICWE 2013. LNCS, vol. 7977, pp. 498–501. Springer, Heidelberg (2013)

14. Wild, S., Chudnovskyy, O., Heil, S., Gaedke, M.: Protecting User Profile Data
in WebID-Based Social Networks Through Fine-Grained Filtering. In: Sheng,
Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS, vol. 8295, pp. 269–280.
Springer, Heidelberg (2013)

15. Yeung, C.M.A., Liccardi, I., Lu, K., Seneviratne, O., Berners-lee, T.: Decentraliza-
tion: The Future of Online Social Networking. In: W3C Workshop on the Future
of Social Networking Position Papers, vol. 2, pp. 2–7 (2009)

https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview
https://developer.mozilla.org/en-US/docs/Mozilla/Persona/Protocol_Overview
http://openid.net/specs/openid-authentication-2_0.html
http://www.w3.org/2005/Incubator/webid/spec/

X-Themes: Supporting Design-by-Example

Moira C. Norrie, Michael Nebeling, Linda Di Geronimo, and Alfonso Murolo

Department of Computer Science, ETH Zurich
CH-8092 Zurich, Switzerland

{norrie,nebeling,lindad,amurolo}@inf.ethz.ch

Abstract. Design-by-example enables users with little technical knowl-
edge to develop web sites by reusing all or parts of existing sites. In
CMS such as WordPress, themes essentially offer example designs for
all-or-nothing reuse. We propose an extension to the theme concept that
allows web sites to be designed by reusing and combining components of
different themes. In contrast to previous research advocating design-by-
example, we do not restrict ourselves to static web pages, but also sup-
port the reuse of dynamic content including functionality for animations
and database access. Our approach is to provide a theme generator that
structures the themes that it generates in terms of reusable components
which can then be reused in future themes. We present a first prototype
tool, called the X-Themes Editor, developed to demonstrate the viability
of the approach and investigate requirements and issues. We describe how
the X-Themes Editor has been integrated into the WordPress platform
as well as discussing the outcomes of these initial investigations.

Keywords: design-by-example, content management system, theme,
end-user development, reuse in web design.

1 Introduction

Within the research community, model-driven approaches to web engineering
have been promoted as the best way of supporting the systematic development
of web sites [1]. Often methods are designed to cater for projects involving large,
diverse teams including graphic designers, database architects, programmers and
marketing staff.

However, an increasing number of professional as well as personal web sites
are being developed by individuals using platforms such as WordPress1 which
allows users to dynamically customise crowdsourced themes. A theme defines
a set of templates, stylesheets and media for an entire web site and therefore
essentially supports only all-or-nothing reuse.

The idea of this paper is to show how this paradigm of design-by-example
could be extended to allow users to design their web sites by reusing and com-
bining features of different themes. For example, they might choose the colour
scheme and front page layout of one theme, a slider content component from

1 http://www.wordpress.org

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 480–489, 2014.
c© Springer International Publishing Switzerland 2014

http://www.wordpress.org

X-Themes: Supporting Design-by-Example 481

a second theme, and the drop-down menu style from a third. As discussed in
Sect. 2, this approach has been advocated by researchers in the HCI commu-
nity [2,3], but typically their experiments and studies focus on the static parts of
web sites and do not address the technical challenges of extracting and reusing
functionality. A key factor in our research was to support the reuse of all as-
pects of a web site, including animations, client-side processing and database
access. Further, to avoid the need for developers to change their work practices,
we wanted to investigate how such an approach could be integrated into the
WordPress platform.

Our approach, which is presented in Sect. 3, exploits the concept of a theme
generator to produce a collection of so-called X-Themes that conform to a well-
structured model designed to support reuse. The special X-Themes generated
by our tool are then available to other developers who can drag-and-drop com-
ponents of existing themes into their newly created themes at design time. We
outline the main features of a first prototype designed to demonstrate the vi-
ability of the approach in Sect. 4 before discussing the main requirements and
challenges to be addressed in future research in Sect. 5.

2 Background

Several model-driven approaches to web site development have been proposed,
for example WebML [1], Hera [4] and UWE [5]. While these approaches have
received acclaim in the research community, they have had limited impact in
the web development community at large where many professionals work with
a mix of technical knowledge and design skills and build on modern content
management systems (CMS) such as WordPress or Drupal2. An indication of the
scale of the developer community using WordPress is the estimate that 21.9%
of the top 10 million web sites are implemented on WordPress3. The size and
complexity of these web sites varies enormously, but has certainly gone well
beyond the original focus on personal blogging sites and now includes online
newspapers, e.g. Metro UK4, e-commerce sites, e.g. Kuborra5, and information
platforms for communities e.g. SAP.info6.

As highlighted by a recent survey on modern web development practices [6],
many of these developers have no formal computer science training and are
either self-employed or working in very small organisations. In these settings,
developers typically adopt an interface-driven approach, starting from a mockup
of the interface and first adding client-side functionality before adding server-side
functionality by migrating to a CMS platform.

The WordPress platform was developed using a crowdsourcing model that
allows their user community to develop and share both themes and plugins.

2 http://www.drupal.org
3 http://www.w3techs.com, accessed 10 April 2014
4 http://metro.co.uk/
5 http://www.kuborra.com/
6 http://en.sap.info/

http://www.drupal.org
http://www.w3techs.com,
http://metro.co.uk/
http://www.kuborra.com/
http://en.sap.info/

482 M.C. Norrie et al.

A theme is a set of PHP templates, CSS stylesheets and media objects that
define the presentation, structure, functionality and types of content of a web
site. To develop their own web site, a user simply has to select a theme and then
start adding their own content. Themes are usually parametrised so that users
can easily customise their sites and they can also extend the types of content
and functionality by adding plugins.

Themes can be considered as a form of design-by-example [7]. While Word-
Press themes only support all-or-nothing reuse, researchers have investigated
approaches which would allow users to design their web sites by freely selecting
and combining parts of example web sites from interactive galleries [2,3]. While
these studies have demonstrated the benefits of this general approach, they did
not address the technical challenges of being able to extract and combine arbi-
trary elements of modern web pages that are often dynamic rather than static
and make heavy use of JavaScript and jQuery7. As a result, their methods were
only able to deal with the reuse of appearance and content and not functionality.

A number of approaches for developing web applications from reusable com-
ponents have been proposed. WebComposition [8] is an object-oriented sup-
port system for building web applications through hierarchical compositions of
reusable application components. While some mashup editors help users to in-
tegrate information from distributed sources, others provide infrastructure for
building new applications from reusable components. For example, MashArt [9]
enables advanced users to create their own applications through the composition
of user interface, application and data components. While our approach shares
some of the goals and enables similar extraction and reuse techniques, it offers
these at the theme level to base web site designs on multiple examples, which is
different from mashups that are direct compositions of existing web sites. More
recently, extensions to CMS such as WordPress have been proposed to allow
web applications to be developed from a component model that supports com-
position at the data, application and interface levels [10]. The focus of this work
differs in that our approach is interface-driven rather than model-driven and our
component model captures concepts of popular web development platforms such
as WordPress as well as the new HTML5 and CSS3 web standards together with
jQuery that power the underlying themes.

Summarising, the solution proposed by many researchers has been to try
and bring discipline into web engineering by requiring developers to first model
different aspects of their web sites and only then generate code. But this usually
requires that developers abandon popular platforms and learn new modelling
skills, tools and possibly even languages. It also makes it more difficult to support
rapid prototyping and allow developers to start by adapting existing web site
designs developed either by themselves or other developers. Instead of trying to
force developers to change their ways of working, we think it is important to
instead find ways of better supporting them. This means that not only should
we find ways to support the design-by-example paradigm, but this should be
done using existing, popular platforms and technologies.

7 http://jquery.com

http://jquery.com

X-Themes: Supporting Design-by-Example 483

3 Approach

While the WordPress platform is very flexible and powerful, the basic model
behind it is relatively simple and developers are offered a very loose framework
in which to work. As a result, it is possible to build advanced web sites but widely
varying approaches are used to achieve similar functionality and presentation.

In the rare case that a personal or professional developer finds an existing
theme that fully meets their requirements, the process of developing a web site
mainly consists of setting some parameters and adding content through the
WordPress dashboard. To some degree, they can even extend the functionality
of the theme through this interface by selecting and adding various plugins.
However, as soon as a developer is faced with the task of adapting or extending
a theme, they have to start working at the level of the HTML, CSS and PHP files
and learning about the core WordPress model and system operation. Developers
often work on a need-to-know basis, learning only enough to solve the particular
task at hand. Further, the documentation and tutorials vary a lot in terms of
guidelines and solutions offered to developers. It is clear from reading tutorial-
style books, e.g. [11,12] as well as online forums8 that many developers simply
copy and paste bits of CSS, HTML and PHP with the hope that it will achieve
the desired effects. However, often these attempts to reuse code fail because they
are inconsistent with how other parts of the site have been developed.

Fig. 1. Examples of portfolio themes from the company Elegant Themes

We want users to be able to create their own themes by selecting and combin-
ing parts of different existing themes. For example, Fig. 1 shows three portfolio
themes offered by the company Elegant Themes9. A user might want to have
the general styling of the theme on the left which includes a slider of background
images and an animated drop down element in the gallery page, but want to in-
clude in the front page the slider component of the theme in the middle and have

8 For example, http://www.wpbeginner.com
9 http://www.elegantthemes.com

http://www.wpbeginner.com
http://www.elegantthemes.com

484 M.C. Norrie et al.

a blog post page with the layout shown in the theme on the right. To achieve
this, we have developed a graphical theme editor, called the X-Themes Editor,
which allows users to select parts of other themes that can be integrated into
their own themes using simple drag-and-drop operations.

To support this kind of reuse, it is necessary that themes adhere to a well-
defined component model. One way to do this would be to develop a new plat-
form or domain specific language based on a component model but, as stated
previously, this is something that we wanted to avoid. Instead, we designed our
own metamodel for WordPress themes and then based the X-Themes Editor on
this model. This means that any themes generated with our editor are clearly
structured in terms of components that can be shared and reused. By offering
a theme editor that is integrated into the WordPress platform, developers can
already be offered a valuable tool for creating new themes from scratch. Themes
generated using the tool are called X-Themes and the collection of X-Themes
are made available for reuse in an interactive gallery.

It is important to note that a number of theme generators for WordPress
already exist but many of these have serious limitations, especially when it comes
to customising functionality. For example, Templatr10 is a free web-based tool
that allows users to customise static elements but they can only select from
a fixed set of layouts. Some tools such as Lubith11 allow users to customise
layout via drag and drop, but they usually do not support the customisation of
functionality. Another limitation of existing generators is the fact that they are
not integrated into WordPress. This means that it is not possible to perform
content-related tasks such as displaying the pages or latest posts and comments
during the design of the theme and often there can be compatibility problems
betweenWordPress versions. Therefore, offering a theme editor that is integrated
into the WordPress platform, and enables not only presentation but also layout
and functionality to be customised, is in itself a valuable contribution.

4 X-Themes Editor

Using the possibilities to customise and extend the functionality of the Word-
Press dashboard, we were able to integrate the X-Themes Editor into the tool
options menu offered to developers. When the X-Themes tool is selected, the
standard dashboard interface is replaced by the GUI of the X-Themes Editor
which, in addition to offering a menu for creating and customising elements of
a theme, also provides access to an interactive gallery of previously generated
X-Themes. A user can create a theme using a mix of editing operations to define
new components and drag-and-drop operations to import selected components
from various source themes opened in the X-Themes gallery.

Every theme created in the editor has three main components—Header, Body
and Footer— that are visually separated as indicated in Fig. 2. Users can create

10 http://templatr.cc
11 http://www.lubith.com

http://templatr.cc
http://www.lubith.com

X-Themes: Supporting Design-by-Example 485

Fig. 2. Dragging a navigation menu from an existing website into the X-Themes editor

different types of containers within each of these main components and each
container may itself contain other containers.

As soon as a component from an existing theme is dropped into the new
theme, it will be active and any dynamic behaviour experienced. For example,
if the user drag-and-drops a dropdown menu into the navigation component as
illustrated in Fig. 2, they will immediately be able to try out this functionality
in the theme under construction.

There are two main types of container—static and dynamic. A static container
has no elements that can change dynamically. A dynamic container is one in
which at least one JavaScript or PHP function appears. This could be a function
to access a theme parameter or content of the database such as the site’s title or
application data. A container with any kind of dynamic content will be executed
and show the corresponding result already at design time, even when dragged-
and-dropped from a different theme.

After a drag-and-drop operation, the user can choose whether or not they
want to keep the style of the source theme or have the style of the destination
theme applied. For example, a user may wish to keep the information displayed
in an imported database query (referred to as a Loop in WordPress) but apply
a different design in the new theme. If the user decides to keep the style of the
source theme, they can adjust both the format and style later using the general
editing functionality of the X-Themes Editor.

When the editing of a theme is complete, the X-Themes Editor generates the
set of templates for that theme together with the files defining the components
of the X-Theme and associated metadata based on the X-Themes metamodel
shown in Fig. 3.

486 M.C. Norrie et al.

Fig. 3. X-Themes metamodel

Concepts defining basic structural elements of a web page such as header,
footer and sidebar are fundamental to the WordPress model as are posts as the
primary content type. To extend the model to support other types of content,
custom post types can be introduced. Our metamodel introduces the concept
of a component shown at the bottom right of Fig. 3. A component can include
layout and style rules as well as dynamic behaviour specified as PHP logic or
JavaScript. If a component is to be exported and reused, then clearly all code,
including CSS rules as well as PHP logic and JavaScript, must also be exported
along with the component.

To support the extraction and reuse of components, each component is de-
scribed in an XML file of the form shown in Fig. 4. All the required PHP, CSS
and JavaScript files are stored in a separate folder in the WordPress theme direc-
tory, and the DOM of the theme is annotated using HTML5 dataset properties
to indicate reusable components based on the metamodel.

The component type can be custom header, sidebar or undefined in the case of
a generic component. For header and sidebar components, a functions element
is included to specify dependencies so it is known which files have to be included
in the functions.php file of a WordPress theme for that component to be used.

A clientlogic element specifies JavaScript code that needs to be exported
with the component, while serverlogic does the same for PHP logic. Any
required style files are specified in the styles element. The include element
specifies the file to be included in a page of the theme to execute and show the
component. Various forms of dependencies to other code files are specified in the
dependency elements.

A layout component is a special type of component representing the layout
structure of the theme and can be a header, a footer or a container. Any of
these three types of component can include containers, allowing a fully nested
container structure. We distinguish layout components that contain only static
content from those that include JavaScript or PHP code.

X-Themes: Supporting Design-by-Example 487

l version="1.0"?>
ture name="dropdown">
omponent_type>undefined</component_type>
lientlogic>
<name>dropdown.js</name>

clientlogic>
erverlogic>
<name>dropdown.php</name>
<name>dropdown.code</name>
serverlogic>
tyles>
<name>style1.css</name>
styles>
nclude>dropdown.php</include>
ippath>dropdown</zippath>

ependency>dropdown.js</dependency>
ependency>style1.css</dependency>
ependency>dropdown.code</dependency>
ependency>dropdown.js</dependency>
ependency>style1.css</dependency>
ependency>common.css</dependency>
ependency>demo.css</dependency>
ependency>icons.css</dependency>
ependency>dropdown.code</dependency>
ependency>icommon.eot</dependency>
ependency>icommon.svg</dependency>
ependency>icommon.ttf</dependency>
ependency>icommon.woff</dependency>
ature>

Fig. 4. Component XML Sample

Each component is allocated a separate directory where its code, resources and
XML component files are stored. This includes all PHP required to reuse the
component as well as generated CSS files. In the final step of theme generation,
an XML representation of the theme defining the component structure is created.

When a user opens a theme in the X-Themes gallery, reusable components are
highlighted as the cursor moves over them. If the user drags a component, such
as a navigation menu made in PHP/JavaScript and CSS, the X-Themes Editor
accesses the metamodel information of that component and acquires references
to linked resources which are then cloned for use in the editor. The component
is then executed in the context of the X-Themes Editor running on the user’s
own WordPress installation. The ability for users to view their own content at
design time is only one of the advantages of implementing the X-Themes Editor
as a WordPress plugin. Another is the fact that it provides an easy means of
deploying the tool to existing developer communities and hence raising awareness
and chances of acceptance.

5 Discussion

While the X-Themes Editor represents an important first step in showing how
design-by-example could be fully supported in CMS platforms such as Word-
Press, there are a number of issues that need to be addressed in future research.

X-Themes Metamodel. The metamodel that we have worked with so far is
based on the WordPress core model and therefore WordPress specific. Fur-
ther, it focusses more on system and implementation features than general
asbtract concepts. One of the next steps will be to generate a conceptual
metamodel that could be applied to more than one CMS. Specifically, we
are currently investigating how our approach could be applied in Drupal
and the metamodel generalised.

Beyond the Front Page. Although the themes that we currently generate are
not single page, like many WordPress themes, they very much focus on the

488 M.C. Norrie et al.

front page which is often seen as defining the main features of a web site in
terms of the header, footer, navigation and layout as well as presentation.
We need to extend the X-Themes Editor to cater for web sites with more
complex structures with variable page layout and content.

Transforming Themes to X-Themes. One of the main ideas behind our ap-
proach was to provide users with a graphical theme editor that would in
itself be a valuable tool and hence something that developers would want to
use independent of the goals of this project. In this way, we could address
the cold start problem of generating a collection of X-Themes available for
reuse. At the same time, we do think it important that we offer support
for transforming existing WordPress themes into X-Themes. This is a topic
for future research where we will investigate the extent to which this could
be automated.

Interactive Galleries. The current way of searching for WordPress themes
relies on descriptions and keywords provided by developers. We want to
investigate alternative and complementary ways of supporting search within
interactive galleries. This would include search-by-example as well as ways
of automatically classifying themes based on a variety of factors.

Data-Intensive Web Sites. Data-intensive web sites require the integration
of custom post types to manage application data. In previous work within
our research group, a tool was developed that generates a WordPress plugin
with custom post types based on an entity-relationship data model defined
by a developer [13]. We have now started to investigate an alternative ap-
proach that would extend the design-by-example approach to automatically
derive data schemas and custom post type definitions based on example data
content.

6 Conclusion

We have shown how the support for design-by-example offered by modern CMS
platforms such as WordPress could go well beyond the current all-or-nothing
approach of sharing entire themes. Users should be able to selectively reuse and
combine parts of existing themes, including dynamic components that define
functionality. Our work therefore goes beyond previous research on design-by-
example paradigms in web development [2,3] which were limited to static views
on web sites.

We note however that, while the X-Themes Editor we have developed is suffi-
cient to demonstrate the potential of the approach, as outlined in Sect. 5, there
are a number of open issues that would need to be addressed in future research
in order for the method to be deployed in practice. Further, the tool would
need to advance beyond the prototype stage to support a full palette of editing
capabilities expected of a state-of-the-art web design tool.

X-Themes: Supporting Design-by-Example 489

Acknowledgements. We acknowledge the support of the Swiss National
Science Foundation who financially supported this research under project
FZFSP0 147257.

References

1. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc. (2002)

2. Hartmann, B., Wu, L., Collins, K., Klemmer, S.R.: Programming by a Sample:
Rapidly Creating Web Applications with d.mix. In: Proc. 20th ACM User Interface
Software and Technology Symposium, UIST (2007)

3. Lee, B., Srivastava, S., Kumar, R., Brafman, R., Klemmer, S.: Designing with
Interactive Example Galleries. In: Proc. Conf. on Human Factors in Computings
Systems, CHI (2010)

4. Houben, G., Barna, P., Frasincar, F., Vdovjak, R.: Hera: Development of
Semantic Web Information Systems. In: Cueva Lovelle, J.M., Rodŕıguez, B.M.G.,
Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722,
pp. 529–538. Springer, Heidelberg (2003)

5. Hennicker, R., Koch, N.: A UML-based methodology for hypermedia design. In:
Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 410–424.
Springer, Heidelberg (2000)

6. Norrie, M.C., Geronimo, L.D., Murolo, A., Nebeling, M.: The Forgotten Many?
A Survey of Modern Web Development Practices. In: Casteleyn, S., Rossi, G.,
Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 285–302. Springer, Heidel-
berg (2014)

7. Herring, S., Chang, C., Krantzler, J., Bailey, B.: Getting Inspired! Understanding
How and Why Examples are Used in Creative Design Practice. In: Proc. Conf. on
Human Factors in Computings Systems, CHI (2009)

8. Gellersen, H.W., Wicke, R., Gaedke, M.: WebComposition: An Object-Oriented
Support System for the Web Engineering Lifecycle. Computer Networks 29(8-13)
(1997)

9. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Frame-
work for Rapid Integration of Presentation Components. In: Proc. 16th Intl. World
Wide Web Conference, WWW (2007)

10. Leone, S., de Spindler, A., Norrie, M.C., McLeod, D.: Integrating Component-
Based Web Engineering into Content Management Systems. In: Daniel, F.,
Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 37–51. Springer, Heidel-
berg (2013)

11. Blakeley-Silver, T.: WordPress Theme Design. Packt Publishing (2008)
12. Casabona, J.: Building WordPress Themes from Scratch (2012)
13. Leone, S., de Spindler, A., Norrie, M.C.: A Meta-plugin for Bespoke Data Man-

agement in WordPress. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 580–593. Springer, Heidelberg (2012)

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 490–493, 2014.
© Springer International Publishing Switzerland 2014

A Tool for Detecting Bad Usability Smells
in an Automatic Way

Julián Grigera1, Alejandra Garrido1,2, and José Matías Rivero1,2

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Argentina
2 CONICET, Argentina

{Julian.Grigera,Garrido,MRivero}@lifia.info.unlp.edu.ar

Abstract. The refactoring technique helps developers to improve not only
source code quality, but also other aspects like usability. The problems
refactoring helps to solve in the specific field of web usability are considered to
be issues that make common tasks complicated for end users. Finding such
problems, known in the jargon as bad smells, is often challenging for
developers, especially for those who do not have experience in usability. In an
attempt to leverage this task, we introduce a tool that automatically finds bad
usability smells in web applications. Since bad smells are catalogued in the
literature together with their suggested refactorings, it is easier for developers to
find appropriate solutions.

1 Introduction

The refactoring technique [1] has been recently brought to the usability field of web
applications, allowing developers to apply usability improvements without altering
the application’s functionality [2]. The problems developers can solve by refactoring,
called bad usability smells are often hard to find, so there are ways to assist this task.

Running usability tests is the most common way to find usability problems [3], but
it requires supervision by usability experts, among other resources. These tests can be
automated to some extent, presenting an attractive alternative to lower the costs.
Some approaches in the literature automate the gathering of data from users [4, 5] but
not the analysis, which still depends on usability experts. Other approaches automate
part of the analysis by comparing users behavior to optimal behavior paths [6, 7], but
this requires prior preparation and subjects to conduct the experiments. There are also
commercial tools like CrazyEgg1 or ClickTale2 that offer statistical data to their
customers by analyzing interaction data from real users instead of tests subjects.
However, even if these tools can represent a cheaper option, the results they obtain
also require analysis from usability experts.

The tool we present in this work also automates the gathering of interaction data from
real users, but in addition, it preprocesses the events on the client side to report concrete
usability problems, easier to interpret than mere statistics. Moreover, the tool presents the
usability issues as bad usability smells, which are problems catalogued in the literature
along with the refactorings that solve them. Using these catalogues, developers can find a

1 http://www.crazyegg.com
2 http://www.clicktale.com

 A Tool for Detecting Bad Usability Smells in an Automatic Way 491

concrete way to correct the detected bad smells. The Bad Smells Finder (as we called our
tool) was developed as the first stage of a process for automatically improving usability
on web applications. We explain this process in the next section.

2 The Process in a Nutshell

Our process for improving web usability is based on the refactoring technique. When
applying refactoring in the context of web usability, developers first must detect bad
usability smells, and then they must find refactorings to solve them, keeping the basic
functionality intact. The tool helps them find bad usability smells.

The automated process for finding bad smells consists in three steps, depicted in
Fig. 1. The Threats Logger is a client-sided script that gathers interaction events
from real users. Instead of logging raw, atomic events, it processes them to generate
usability threats, a concept we devised to represent higher-level interaction events.

Fig. 1. Schematics of the process

The server-sided Bad Smells Finder receives usability threats and stores them for
analysis. When a user requests a report, the Bad Smells Finder processes the threats
and displays the resulting bad smells through the Bad Smells Reporter frontend.

3 The Tool in Action

We will show how the tool works with an example. Consider for instance a web
application where users need to register before they can operate. Whenever a user fills
the registration form, the threats logger captures the form submission event and
evaluates what happens next:

• If no navigation follows, the threats logger considers the submission was
blocked by client-side validation.

• If a navigation is detected, and the form is still on the destination page, the
logger considers there was server-side validation.

• If a navigation is detected, but the form is absent in the destination page, the
logger considers a successful submission.

The tool uses a simple algorithm to identify search forms, where validation rules do
not generally apply. Combining all this information on the client-side, it creates a
Form Submission threat and sends it to the Bad Smells Finder. The script can be set to
verbose mode to show the threats it finds in the browser’s console, as seen in Fig. 2.

492 J. Grigera, A. Garrido, and J.M. Rivero

Fig. 2. Threats Logger indicating the detection of a Failed Submission threat

The server-side Bad Smells Finder processes all Form Submission threats to
potentially find a No Client Validation bad smell, which indicates a problematic form
that usually fails to submit without offering any client-side validation whatsoever. To
do this, it compares the amount of successful submissions with the ones that failed
with server validation, according specific criteria for the proportion threshold (e.g.
30% of failed validations indicate a bad smell).

The site owners may then ask for a report by accessing the tool’s Reporter, where
bad smells are listed with data like the URL where it happened, an XPath of the
affected element, and specific extra information depending on each bad smell.

The Bad Smells Finder can detect 12 different kinds of bad usability smells, and
the logics for detecting each one are diverse. Other featured bad smells are:

• No Processing Page: By calculating the average time of a request and
watching DOM mutations, the Bad Smells Finder is able to detect that a
process usually takes a long time, but users are never informed about that
process taking place on the background (i.e. “loading…” widget).

• Unnecessary Bulk Action: Users perform actions on a list of items by first
marking checkboxes, and then selecting the action – e.g. deleting emails on a
webmail application. If the Bad Smells Finder detects that most of the time
users apply actions one item at a time rather than many, then the Unnecessary
Bulk Action is detected, implying that the UI with checkboxes and actions
should be complemented with other mechanism that require less interactions.

• Free Input For Limited Values: A free text input is presented to the user, but
the set of possible values that can be entered belong to a limited set, like
countries or occupations. Two problems ensue: error-proneness, and
unnecessarily time wasted in typing the whole text. The Bad Smells Finder
captures all the inputs and calculates the proportion of repeated (and similar)
values, in order to determine the bad smell’s presence.

 A Tool for Detecting Bad Usability Smells in an Automatic Way 493

The rest of the bad smells are related to navigation issues (like long paths for
frequently accessed pages), and misleading/misused widgets. We are currently
extending the tool to detect more bad usability smells.

4 Tool Implementation and Usage

The tool has two main modules: the Threats Logger, implemented as a client-side
script, and the Bad Smells Finder, a server-sided component that analyzes threats and
reports bad smells.

The client-side Threats Logger (coded in JavaScript using the JQuery3 library)
captures interaction events and then processes them on the client to create (and filter)
usability threats. The server-sided analyzer parses the incoming asynchronous POST
requests from the client script to generate usability threats. When a report is asked, the
analyzer filters all the threats to find potential bad usability smells, and then renders
the bad smells report in the web frontend.

To install the tool, the site owner must include the Threats Logger script in the
application’s header. After completing this step, the Bad Smells Finder starts logging
and reporting bad usability smells right away.

References

1. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the
Design of Existing Code. Object Technology Series. Addison Wesley (1999)

2. Garrido, A., Rossi, G., Distante, D.: Refactoring for Usability in Web Applications. IEEE
Softw. 28, 60–67 (2011)

3. Rubin, J., Chisnell, D.: Handbook of Usability Testing: How to Plan, Design, and Conduct
Effective Tests. Wiley (2008)

4. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move. In: Proceedings of
the 15th International Conference on World Wide Web, WWW 2006, p. 203. ACM Press,
New York (2006)

5. Saadawi, G.M., Legowski, E., Medvedeva, O., Chavan, G., Crowley, R.S.: A Method for
Automated Detection of Usability Problems from Client User Interface Events AMIA 2005
Symposium Proceedings, pp. 654–658 (2005)

6. Fujioka, R., Tanimoto, R., Kawai, Y., Okada, H.: Tool for detecting webpage usability
problems from mouse click coordinate logs. In: Jacko, J.A. (ed.) HCI 2007. LNCS,
vol. 4550, pp. 438–445. Springer, Heidelberg (2007)

7. Okada, H., Fujioka, R.: Automated Methods for Webpage Usability & Accessibility
Evaluations. In: Adv. Hum. Comput. Interact, ch. 21, pp. 351–364. In-Tech Publ. (2008)

3 http://jquery.com

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 494–497, 2014.
© Springer International Publishing Switzerland 2014

An Extensible, Model-Driven and End-User Centric
Approach for API Building

José Matías Rivero1,2, Sebastian Heil3, Julián Grigera1, Esteban Robles Luna1,
and Martin Gaedke3

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{mrivero,julian.grigera,esteban.robles}@lifia.info.unlp.edu.ar

2 Also at Conicet
3 Department of Computer Science, Chemnitz University of Technology, Germany
{sebastian.heil,martin.gaedke}@informatik.tu-chemnitz.de

Abstract. The implementation of APIs in new applications is becoming a man-
datory requirement due to the increasing use of cloud-based solutions, the ne-
cessity of integration with ubiquitous applications (like Facebook or Twitter)
and the need to facilitate multi-platform support from scratch in the develop-
ment. However, there is still no theoretically sound process for defining APIs
(starting from end-user requirements) or their productive development and
evolution, which represents a complex task. Moreover, high-level solutions in-
tended to boost productivity of API development (usually based on Model-
Driven Development methodologies) are often difficult to adapt to specific use
cases and requirements. In this paper we propose a methodology that allows
capturing requirements related to APIs using end-user-friendly artifacts. These
artifacts allow quickly generating a first running version of the API with a spe-
cific architecture, which facilitates introducing refinements in it through direct
coding, as is commonly accomplished in code-based Agile processes.

Keywords: API, Model-Driven Development, Agile Development, Prototyping.

1 Introduction

Over the last years, users and businesses have witnessed a trend to move applications
and services to the cloud. Several aspects motivate this trend, most importantly cost
and deployment time. In this context, developers must interact with applications and
services they do not directly control, so they need APIs to facilitate this interaction.
Since APIs generally centralize operations and business-logic among applications in
several platforms, they are inherently complex; however, most development processes
do not take this into account, particularly Agile methodologies, which do not provide
clear and structure method to cope with the complexity of API design [1]. To tackle
such complex requirements, we have introduced a Model-Driven Development
(MDD) [2] solution called MockAPI [1], which is limited to providing a prototypical
version of the API. In this paper we propose ELECTRA (standing for Extensible mod-
eLdriven Enduser CenTRic API), an hybrid Agile, MDD and coding approach that

 An Extensible, Model-Driven and End-User Centric Approach for API Building 495

(1) uses an end-user friendly language to define API-related requirements as in
MockAPI (annotated mockups), (2) allows to quickly define and generate a running
API for testing integration with other software artifacts, and (3) proposes an API run-
time that can be extended (hence the term Extensible) with custom code without
breaking the model’s abstraction. We chose mockups as our main requirement artifact
because of their positive results in agile approaches [3], and their valuable require-
ments communication capabilities [4]. Using mockup and annotations as an end-user
friendly language we intend to capture the complex API requirements and, at the
same, time, provide a framework for quick API generation and refining.

2 The ELECTRA Approach

The ELECTRA process, depicted in Figure 1, is an adaptation of Scrum [5], the most
widely used agile process in industry [6]. As in Scrum, every iteration in the
ELECTRA approach starts by selecting the User Stories to be tackled (Define Sprint
Backlog step). Then, ELECTRA mandatorily requires building mockups with essen-
tial end-user participation to concretize each of these stories (Mockup Construction
step). After all User Stories are associated to mockups, developers use an enhanced
version of the MockAPI tool [1] to tag the mockups with API-related annotations
(Mockup Tagging step in Figure 1). These annotations are based on a simple grammar
that makes them easy to understand by end-users. From the annotated mockups, an
API can be derived through a code generation process (API Generation step). At this
point, developers get a running usable API for integration testing with other software
artifacts (API testing step). The generated API is deployed to ELECTRA’s runtime
environment which allows developers to refine it through direct coding (API
Refining). The result of this process is the Final API for the current iteration (API
Increment step).

Fig. 1. The ELECTRA workflow

Any type of user interface mockup can be used with ELECTRA tooling. After
mockups have been imported, different kinds of annotations can be defined by the
engineers in presence and with collaboration of end-users. The three most important
annotations types are Data annotations, which allow defining object types or business
entities well-known by stakeholders, Constraint annotations, which enable the
definition of business rules and Action annotations, which describe the execution of
heterogeneous or complex tasks within the API. Besides its technical specifications

496 J.M. Rivero et al.

(understood by engineers), some annotations provide an end-user friendly structured
text mode to describe API requirements in natural language. While end-users require
engineers help to write annotations, this text mode eases their understanding.
ELECTRA tooling currently uses JavaScript as its default scripting language, but any
scripting language implementing the Java Scripting API can be used instead. In Fig-
ure 2 a Data and Action annotations are shown applied over an invoice management
application to specify the existence of an Invoice business object and how it must be
integrated with an external API.

Fig. 2. Annotations in its different modes: end-user friendly (upper) and developer (lower)

3 Architecture and Code Generation

The core of the ELECTRA tool implementation (the so-called ELECTRA API run-
time) defines and implements a RESTful API as a set of Endpoints, which are com-
posed by an HTTP method, a URL regular expression and a script. When a new
HTTP request is received by the runtime, it seeks for a matching Endpoint (with the
same HTTP method and a matching URL regular expression). If it finds one, it
executes its internal script. Endpoint scripts can access and invoke other Scripts,
use stored Resources (for instance, media content as images or video) or invoke
operations on Services, which are declared and customized by developers.

ELECTRA’s code generation process consists in the generation of a set of End-
points and Scripts, and the configuration of a default DB Service for storage purposes
analyzing the annotated mockups. After triggering a code generation, developers can
tune the API as much as needed just editing the required Scripts and Endpoints or
changing the DB Service used. Also, they can define new Resources, Services or
Endpoints manually. Scripts are generated respecting the Pipes and Filters pattern
(where every Filter is formed by a Script implementing a different concern – i.e., code
for a different annotation type –, thus facilitating and isolating changes in the API.

 An Extensible, Model-Driven and End-User Centric Approach for API Building 497

When triggering a code regeneration, edited Scripts (Filters) are not altered, thus
preserving changes incorporated through direct coding.

4 Related Work

Benefits of using mockups as a primary requirement artifact in the development
process have been reported through statistical studies [7]. Also, its benefits in the
context of Agile and MDD processes (even API generation) have been commented
[8]. In addition, in our previous work [8] we demonstrated that mockup and annota-
tions provide a modeling framework that results more efficient than manual modeling,
even considering conceptual models – which are very similar to the Data annotations
presented in this work. However, none of these works propose a Model-Driven ap-
proach that can be extended through direct coding even in the models, as ELECTRA
provides. Several MDD approaches specifically tackle RESTful APIs [9,10] (as
ELECTRA), but they not provide a clear and pattern-based codebase allowing the
quick introduction of detailed implementation as ELECTRA does.

References

[1] Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: An Agile Approach
Supporting API-first Web Application Development. In: Daniel, F., Dolog, P., Li, Q.
(eds.) ICWE 2013. LNCS, vol. 7977, pp. 7–21. Springer, Heidelberg (2013)

[2] Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation.
Wiley-IEEE Computer Society (2008)

[3] Ferreira, J., Noble, J., Biddle, R.: Agile Development Iterations and UI Design. In: Agil.
2007 Conf., pp. 50–58. IEEE Computer Society, Washington, DC (2007)

[4] Mukasa, K.S., Kaindl, H.: An Integration of Requirements and User Interface Specifica-
tions. In: 6th IEEE Int. Requir. Eng. Conf., pp. 327–328. IEEE Computer Society,
Barcelona (2008)

[5] Sutherland, J., Schwaber, K.: The Scrum Papers: Nuts, Bolts, and Origins of an Agile
Process

[6] VersionOne Inc., State of Agile Survey (2011)
[7] Ricca, F., Scanniello, G., Torchiano, M., Reggio, G., Astesiano, E.: On the effectiveness

of screen mockups in requirements engineering. In: 2010 ACM-IEEE Int. Symp. Empir.
Softw. Eng. Meas. ACM Press, New York (2010)

[8] Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R., Montero, F., Gaedke, M.: Mockup-Driven
Development: Providing agile support for Model-Driven Web Engineering. Inf. Softw.
Technol., 1–18 (2014)

[9] Pérez, S., Durao, F., Meliá, S., Dolog, P., Díaz, O.: RESTful, Resource-Oriented Archi-
tectures: A Model-Driven Approach, in: Web Inf. In: Chen, L., Triantafillou, P., Suel, T.
(eds.) WISE 2010. LNCS, vol. 6488, pp. 282–294. Springer, Heidelberg (2010)

[10] Valverde, F., Pastor, O.: Dealing with REST Services in Model-driven Web Engineering
Methods. In: V Jornadas Científico-Técnicas En Serv. Web y SOA, JSWEB (2009)

Building Bridges between Diverse

Identity Concepts Using WebID

Michel Rienäcker, Stefan Wild, and Martin Gaedke

Technische Universität Chemnitz, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. Single sign-on systems enable users to log into different Web
services with the same credentials. Major identity providers such as
Google or Facebook rely on identity concepts like OpenID or OAuth for
this purpose. WebID by the W3C offers similar features, but additionally
allows for storing identity data in an expressive, extensible and machine-
readable way using Linked Data. Due to differences in manageable user
attributes and the authentication protocols as such, the identity concepts
are incompatible to each other. With more than one identity concept in
use, users need to remember or keep further credentials. In this paper
we therefore propose the B3IDS approach. It aims at improving the user
experience and the adoption of WebID by building bridges between di-
verse identity concepts with WebID. We exemplarily implement B3IDS
in an existing WebID identity provider and management system.

Keywords: Identity, Linked Data, Social Networks, Security, WebID.

1 Introduction

For providing a personalized experience, today’s Web applications rely on user
authentication. Major single sign-on systems have gradually replaced proprietary
authentication solutions by consolidating the users’ digital identities. So, they
also addressed the password-fatigue issue [1]. Global enterprises, e.g., Google or
Facebook, offer widely used authentication systems like OpenID or Facebook
Connect. While this is convenient for the users, it carries the risk of analyzing
user-generated content, including shared information, messages and votes. This
enables tracking the user’s behavior and creating tailored advertisements. To
prevent this risk, the W3C created WebID, which does not only enable authen-
tication, but also empowers people to keep control about their identity data [3].

Despite the advantages, WebID is still in development and not yet broadly
accepted by common Web users. Service providers are also reluctant to inte-
grate it as an authentication option. Reasons might be the missing involvement
of username/password pairs and technological problems through requesting a
certificate. An insufficient adoption by service providers reduces the chance of
convincing more users from the benefits of WebID and, thus, prevents its wider
use.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 498–502, 2014.
c© Springer International Publishing Switzerland 2014

Building Bridges between Diverse Identity Concepts Using WebID 499

Enabling users to access their Web applications and services as usual and
make use of WebID requires the availability of identity bridges. Identity bridg-
ing is predicted by Gartner as a major trend in the next year [4]. Existing
approaches including Mozilla BigTent (https://wiki.mozilla.org/Identity/
BrowserID/BigTent), CA CloudMinder Gateway [2] and ForgeRock Bridge Ser-
vice [6] enable bridging between particular identity concepts such as OpenID and
Mozilla Persona, but they are characterized by limitations including only provid-
ing one-way identity bridging or only enabling access to selected applications via
SAML or OAuth.

In order to address the problem, we propose the B3IDS approach. It uses
WebID to mediate between different identity concepts. In WebID, all identity
data is based on RDF. So, it is expressive, extensible, and machine-readable.
This enables representing all data required in other identity concepts in so-called
WebID profiles. Users maintain exclusive control about their identity data.

To demonstrate the approach, we show how B3IDS mediates between WebID
and OpenID as an example. Relying on WebID, B3IDS strives to bridge the gap
between diverse identity concepts by considering 1) exchange of identity data, 2)
authentication as usual, and 3) WebID creation from existing identities like an
OpenID. So, B3IDS aim at giving rise to the adoption of WebID by the users.

2 Building Secure Bridges to WebID

For bridging between diverse identity concepts, B3IDS mimics two generic com-
ponents: an identity provider and a relying party. The B3IDS identity provider
allows users for authenticating to relying parties of other identity concepts us-
ing their WebID certificates as specified in the WebID authentication sequence.
Relevant data available in a WebID profile is therefore transparently mapped to
data required in the other identity concept. The B3IDS relying party enables
users to create a new WebID identity based on their identity data from another
identity concept like OpenID. Users can then authenticate to services with such
WebID identities. As an example, Alice wants to access a WebID service, but
only has a Google account. To get access, she uses B3IDS to issue an authentica-
tion request to Google. Alice authenticates herself and, thus, authorizes B3IDS
to retrieve identity data from Google. The approach then creates a new WebID
profile and a WebID certificate which Alice can use for logging into the WebID
service.

B3IDS also incorporates logging Alice into a relying party of another
identity concept like OpenID, as shown in Fig. 1. Therefore, B3IDS mimics
an OpenID provider retrieving user data from Alice’s WebID profile. To
accomplish this, Alice passes an identifier to the OpenID relying party (cf.

1© in Fig. 1) . The identifier contains the URI of the location of the identity
bridge and the WebID URI linking to her WebID profile in the query part, e.g.,
https://b3ids.example.org/?webid=https://webid.example.org/Alice.
The OpenID relying party redirects Alice’s user agent to B3IDS using the given
identifier. It then requests her identity data (cf. 2©). Having received Alice’s

https://wiki.mozilla.org/Identity/BrowserID/BigTent
https://wiki.mozilla.org/Identity/BrowserID/BigTent
https://b3ids.example.org/?webid=https://webid.example.org/Alice

500 M. Rienäcker, S. Wild, and M. Gaedke

Alice’s
User Agent

OpenID
Relying Party

B3IDS
https://b3ids.example.org/

WebID Provider
https://webid.example.org

1

2 3

4

56

7

8
9

?

Alice’s identifier

Redirect to

Get

Request certificate
Get WebID profile

Alice‘s WebID profile

Check

Alice’s certificate

Compare WebID URI and OpenID URIAgreement?

YES

Extract data from

Redirect to Relying Party

GET

Logon successful

Identifier?

GET

Fig. 1. Sequence Diagram of B3IDS Bridging WebID to OpenID

identifier, B3IDS asks Alice for proving her identity (cf. 3©). According to the
WebID authentication sequence, Alice has to legitimate herself with the right
WebID certificate (cf. 4©). To ban an illegitimate WebID URI, B3IDS verifies
that her WebID certificate contains a URI that matches the WebID URI in the
identifier (cf. 5©). When Alice grants access to her identity data (cf. 6©), B3IDS
transfers requested identity data to the relying party (cf. 7©) by redirecting her
user agent back to it (cf. 8©). Alice is logged in successfully (cf. 9©).

To show B3IDS in practice, we prototypically implemented the approach
in the Sociddea WebID provider known from previous work [7]. Fig. 2 presents
a usage scenario of logging into the OpenID-enabled Stack Overflow using
a WebID identity. The numbers in this figure correlates to the number
in Fig. 1. While the implementation can only bridge between WebID and
OpenID at the moment, our approach is neither restricted to this combination
nor to Sociddea. In the editing box shown in Fig. 2 users can type their
OpenID identifier to create a WebID identity based on their OpenID identity.
To log into an OpenID relying party users have to use the following iden-
tifier: https://vsr-demo.informatik.tu-chemnitz.de/sociddea/bridge/

openid?webid=<WebID-URI> .

Demonstration. For a live demo and further information about B3IDS and
Sociddea visit: http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

https://vsr-demo.informatik.tu-chemnitz.de/sociddea/bridge/openid?webid=<WebID-URI>
https://vsr-demo.informatik.tu-chemnitz.de/sociddea/bridge/openid?webid=<WebID-URI>
http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

Building Bridges between Diverse Identity Concepts Using WebID 501

1

2

3

4

5

6

7 8
9

Fig. 2. Logging into Stack Overflow using a WebID identity

3 Conclusion and Future Work

By enabling users to both create WebID identities based on the personal data
stored at their OpenID identity providers and use their new WebIDs to log into
OpenID relying parties, B3IDS demonstrated the identity bridging concept as
an example. In B3IDS, WebID users can authenticate to relying parties using
a typical OpenID without impairing their normal user experience. Thus, we
expect to increase the user acceptance of WebID. Future work will focus on
addressing the security concerns related to B3IDS acting as a mediator between
identity concepts with the need of having access to associated user data. We also
plan to support further identity concepts like OpenID Connect, which obsoletes
OpenID [5]. In addition to this, we will work on retrieving protected profile data
taking the user’s privacy and secrecy preferences into account.

References

1. Dhamija, R., Dusseault, L.: The Seven Flaws of Identity Management: Usability
and security Challenges. IEEE Security & Privacy 6(2), 24–29 (2008)

2. Diodati, M.: Identity Bridges: Uniting Users and Applications Across the Hybrid
Cloud (2012), https://www.gartner.com/doc/2008315/
identity-bridges-uniting-users-applications (accessed March 12, 2014)

3. Inkster, T., et al.: WebID TLS - W3C Editors Draft (2014),
http://www.w3.org/2005/Incubator/webid/spec/tls/ (accessed March 12, 2014)

https://www.gartner.com/doc/2008315/identity-bridges-uniting-users-applications
https://www.gartner.com/doc/2008315/identity-bridges-uniting-users-applications
http://www.w3.org/2005/Incubator/webid/spec/tls/

502 M. Rienäcker, S. Wild, and M. Gaedke

4. Pettey, C., et al.: Gartner Identifies Six Trends That Will Drive the Evolution of
Identity and Access Management and Privacy Management (2012),
http://www.gartner.com/newsroom/id/1909714 (accessed March 12, 2014)

5. Sakimura, N., et al.: OpenID Connect Core 1.0 (2014),
http://openid.net/specs/openid-connect-core-1_0.html

(accessed March 11, 2014)
6. Simmons, H.: ForgeRock Releases Breakthrough Identity Bridge (2013),

http://www.reuters.com/article/2013/07/30/

ca-forgerock-idUSnBw305380a+100+BSW20130730 (accessed March 12, 2014)
7. Wild, S., Chudnovskyy, O., Heil, S., Gaedke, M.: Protecting User Profile Data in

WebID-Based Social Networks Through Fine-Grained Filtering. In: Sheng, Q.Z.,
Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS, vol. 8295, pp. 269–280. Springer,
Heidelberg (2013)

http://www.gartner.com/newsroom/id/1909714
http://openid.net/specs/openid-connect-core-1_0.html
http://www.reuters.com/article/2013/07/30/ca-forgerock-idUSnBw305380a+100+BSW20130730
http://www.reuters.com/article/2013/07/30/ca-forgerock-idUSnBw305380a+100+BSW20130730

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 503–506, 2014.
© Springer International Publishing Switzerland 2014

Cross-Browser Testing in Browserbite

Tõnis Saar1, Marlon Dumas2, Marti Kaljuve1, and Nataliia Semenenko2

1 Software Technology and Applications Competence Center, Estonia
{tonis.saar,marti.kaljuve}@stacc.ee

2 University of Tartu, Estonia
{marlon.dumas,nataliia}@ut.ee

Abstract. Cross-browser compatibility testing aims at verifying that a web page
is rendered as intended by its developers across multiple browsers and plat-
forms. Browserbite is a tool for cross-browser testing based on comparison of
screenshots with the aim of identifying differences that a user may perceive as
incompatibilities. Browserbite is based on segmentation and image comparison
techniques adapted from the field of computer vision. The key idea is to first
extract web page regions via segmentation and then to match and compare these
regions pairwise based on geometry and pixel density distribution. Additional
accuracy is achieved by post-processing the output of the region comparison
step via supervised machine learning techniques. In this way, compatibility
checking is performed based purely on screenshots rather than relying on the
Document Object Model (DOM), an alternative that often leads to missed in-
compatibilities. Detected incompatibilities in Browserbite are overlaid on top of
screenshots in order to assist users during cross-browser testing.

Keywords: Cross-browser compatibility testing, image processing.

1 Introduction

Cross-browser (compatibility) testing aims at finding incompatibilities in the way a
Web page is rendered across different combinations of a browser, a browser setting,
an operating system (OS) and a hardware platform (herein called a configuration).
The exact meaning of the term “incompatibility” varies from one testing subject to
another and hence cross-browser testing has to take into account the sensitivity of the
intended user(s). Incompatibilities may range from missing buttons, to misaligned text
blocks, broken images or misplaced elements. In the absence of tool support for cross-
browser testing, testers have to open web pages manually and check for differences.
This procedure is time-consuming, monotonous and non-scalable given the growing
number of configurations that need to be supported by Web applications.

Existing automated methods for cross-browser testing are generally based on an
analysis of the Document Object Model (DOM) [1][2][3]. However, the fact that a
Web page has very similar DOM structure and parameters across different configura-
tions does not guarantee absence of incompatibilities, as rendering engines may dis-
play similar DOMs in rather different ways. Thus DOM-based cross-browser testing

504 T. Saar et al.

techniques suffer from lower recall (high number of missed incompatibilities). Some
techniques such as WebDiff [1] apply DOM-based web page segmentation in con-
junction with image comparison over pairs of matching segments. But while the latter
step improves recall, the DOM segmentation step may still hide incompatibilities.

In contrast to the above techniques, Browserbite employs image processing both
for web page segmentation and segment comparison. Specifically, Browsebite com-
bines an image segmentation technique based on detection of discontinuities and
colour changes with an image comparison technique based on a combination of geo-
metric features and histograms of pixel intensity distribution. These techniques
are complemented by supervised machine learning, so as to take into account user
sensitivity.

2 System Overview

Browserbite consists of three main components: screenshot generation, image seg-
mentation and comparison, and classification, as shown in Fig. 1. These components
are triggered sequentially when a user inserts a URL of a web page under test in
Browserbite’s interface. The URL is added to a queuing system implemented using
Ruby Resque. Different Ruby workers then take specific tasks from the queue and
perform the task in question, incl. generating screenshot, resizing image, comparing
pair of images, or filtering potential incompatibility via a classification model.

Fig. 1. Overview of Browserbite’s tool chain

In addition to a URL, the user specifies a baseline configuration, that is a browser-
OS-platform for which the user has verified correct rendering. On average, results are
displayed in 30 – 45 seconds (with initial results shown incrementally). Detected in-
compatibilities are highlighted on top of the baseline configuration as shown in Fig 2.

Fig. 2. Example of Browserbite report

 Cross-Browser Testing in Browserbite 505

2.1 Screenshot Capturing

A number of virtual machines are used to generate screenshots on different browsers
and operating systems. Browserbite supports six OS (Windows XP, Vista, 7, 8, Apple
OS X 10.6, iOS 6.0) and two browsers with default settings (Google Chrome, Firefox,
IE and Safari). A screenshot is generated using the Selenium WebDriver library.

After a web page is loaded, the browser window is maximized. Then the whole
window (a.k.a. viewport) is saved as an image. In case of OS X a full-page screenshot
has to be composed out of fragments, in a process of scrolling, screenshotting and re-
stitching. In Windows, a full-page screenshot can be taken in a single step [4].

2.2 Segmentation and Comparison

In this stage, pairs of screenshot images are compared to find significant differences.
One of the images is a baseline image and the other is an image under test.

As mentioned earlier, pixel-by-pixel comparison leads to excessive false positives.
Indeed, small misalignments of even one pixel may cause pixel-by-pixel comparison
to immediately fail. Accordingly, Browserbite adopts a two-step comparison process.
First, images are segmented into smaller so-called regions, which are then matched
pairwise. Segmentation helps to prevents false alarms caused by small misalignments
of web page elements. The segmented regions can represent for example buttons,
forms, headings, text blocks etc. Segmentation in Browserbite is based purely on vis-
ual features (discontinuity and colour changes) and is implemented using well-known
image processing techniques [5].

In a second step, segments are compared pairwise (one baseline segment versus
one image-under-test segment). Pairwise comparison is performed first on geometric
features (position and size) and secondly on the values of the histogram of pixel den-
sity distribution, following a well-known histogram extraction technique used in
computer vision [5]. Each baseline segment is matched to the most similar segment
from the image-under-test. If two matched segments have differences in feature pa-
rameters beyond a tolerance threshold, or if a segment in one image has no matching
pair in the other, the segment(s) is/are declared potentially incompatible. Tolerance
thresholds have been tuned experimentally based on a corpus of images (see below) in
such a way as to produce a small number of false negatives (2% of missed incompati-
bilities, i.e. 98% recall). These thresholds however lead to a precision of 66%. To
strike a better tradeoff, Browserbite relies on an additional classification stage.

2.3 Classification

The classification stage is used to classify potential incompatibilities into actual in-
compatibilities versus false alarms. The classifier uses the same features mentioned
above, which are extracted via image comparison (full list of features is given in [6]).

For training and testing the classifier, we used the 140 most popular web pages in
Estonia (from the alexa.com list). These web pages were tested manually using Brow-
serbite without the classifier component. As a result 20 000 potential differences were

506 T. Saar et al.

found. From this set 2700 segment pairs were randomly selected. 40 people were
asked to classify these 2700 potential incompatibilities into the two classes. As a
result 1350 positive and negative cases were obtained.

We tested both decision trees and neural networks (using the OpenCV library) as
classification techniques. Neural networks give clearly better results [6]. Plain Brow-
serbite without neural network classifier has precision of 66% and recall 98%.
The neural network classifier improves precision to 96% with a recall of 89%, illu-
strating the trade-offs. Despite this imperfect result, Browserbite’s accuracy (F-score)
is superior to that of a state-of-the-art tool (Mogotest) [6].

On the background of these trade-offs, Browserbite has been made a commercial
product, available on a software-as-a-service basis at: http://www.browserbite.com. It
has a growing user base (over 10 000 registered users). At present, Browserbite can
produce false positive results while testing pages with dynamic regions (e.g. anima-
tions). It is planned to add dynamic region suppression. Dynamic regions are detected
by taking a screenshot of a web page with an interval in-between, and comparing the
two screenshots using the same technique described above.

3 Conclusion

The Browserbite development experience demonstrates the feasibility and power of
cross-browser testing based on image processing. Extensions include the ability to
handle Web page flows (as opposed to individual pages) and the adaptation of Brow-
serbite to non-traditional web platforms like smart TV’s, billboards and GPS devices.

References

1. Choudhary, S.R., Versee, H., Orso, A.: WEBDIFF: Automated identification of cross-
browser issues in web applications. In: 2010 IEEE International Conference on Software
Maintenance (ICSM), pp. 1–10 (2010)

2. Choudhary, S.R., Prasad, M.R., Orso, A.: CrossCheck: Combining Crawling and Differenc-
ing to Better Detect Cross-browser Incompatibilities in Web Applications. In: 2012 IEEE
Fifth International Conference on Software Testing, Verification and Validation (ICST),
pp. 171–180 (2012)

3. Mesbah, A., Prasad, M.R.: Automated cross-browser compatibility testing. In: Proceedings
of the 33rd International Conference on Software Engineering, pp. 561–570 (2011)

4. Kaljuve, M.: Cross-Browser Document Capture System. Master’s Thesis, University of
Tartu (June 2013), http://tinyurl.com/nlze7ub

5. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall (2001)
6. Semenenko, N., Dumas, M., Saar, T.: Browserbite: Accurate Cross-Browser Testing

via Machine Learning Over Image Features. In: Proceedings of the 28th International
Conference on Software Maintenance (ICSM), pp. 528–531. IEEE Computer Society
(2014)

DireWolf Goes Pack Hunting: A Peer-to-Peer

Approach for Secure Low Latency Widget
Distribution Using WebRTC

István Koren, Jens Bavendiek, and Ralf Klamma

Advanced Community Information Systems (ACIS) Group,
RWTH Aachen University,

Ahornstr. 55, 52056 Aachen, Germany
{lastname}@dbis.rwth-aachen.de

http://dbis.rwth-aachen.de

Abstract. Widget-based Web applications are outperforming mono-
lithic Web applications in terms of distribution of the user interface on
many devices and many standard browsers. However, latency of the re-
mote inter-widget communication may be an obstacle for the uptake
of Widget-based Web applications in near real-time domains like Web
gaming and augmented reality. In this demo paper we show DireWolf 2.0
which is replacing the XMPP server of the DireWolf approach by a client-
side relay realized by the means of WebRTC. This is not only decreas-
ing the latency of the distributed interface for any application but also
increasing the security by avoiding man-in-the-middle attacks on the
XMPP server. This progress is enabling further uptake in Widget-based
solutions in advanced Web engineering.

1 Introduction

The Web as a ubiquitous platform allows us to deal with complex tasks within
the familiar environment of a Web browser. Mobile devices such as laptops,
smartphones and tablets allow us to access Web resources from any possible
location. This goes in hand with the shift away from fixed office settings to
mobile and dynamic working environments. Yet using multiple devices in parallel
is not sufficiently dealt with on the Web. Though the Responsive Web Design
(RWD) [1] paradigm helps us to open the same Web site on devices with varying
screen sizes, it only targets the UI level and does not care about data migration
and synchronization issues.

To this end in earlier work we have presented the DireWolf framework [2].
DireWolf is a widget based Web application framework that allows distributing
widgets over multiple devices while keeping the application state. It is based
on the Inter-Widget Communication (IWC) capabilities of the underlying Open
Source ROLE SDK1. However, the underlying architecture that involves mes-
sages being sent over an XMPP server turned out to be an obstacle for latency-
sensitive near real-time Web applications.

1 http://sourceforge.net/projects/role-project/

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 507–510, 2014.
c© Springer International Publishing Switzerland 2014

http://dbis.rwth-aachen.de
http://sourceforge.net/projects/role-project/

508 I. Koren, J. Bavendiek, and R. Klamma

To solve this problem we hereby introduce the next iteration of the DireWolf
framework that uses the recentWeb Real-Time Communication (WebRTC) draft
for sending peer-to-peer messages from browser instances across multiple devices
[3]. In the next sections we present our architecture that involves a refurbished
message passing and show a preliminary evaluation that confirms an average
decrease of message round-trip times of around 80%.

A video of our demo is available at http://goo.gl/ZV7RJ1.

2 Peer-to-Peer Distributed User Interfaces

DireWolf 1.0 is using a server-side Device Manager that maintains different
devices and their respective device profiles e.g. tablet or desktop of a user; the
server also stores widget arrangements i.e. which widget is present on which
device. Clients initiate the migration of widgets by requesting it at the Device

Manager which then notifies online devices. The communication between clients
and the Device Manager as well as between the devices themselves is organized
by using publish/subscribe over XMPP. The central routing leads to two major
problems: First, the indirection over the server is on the expense of high latency.
Second, security is threatened as the XMPP server imposes a single point of
failure for man-in-the-middle attacks. Since in most cases where devices are
used jointly to master a task they are in immediate vicinity, it is obvious to
establish direct peer-to-peer connections for message exchange.

The recent WebRTC draft introduces the DataChannels API that allows Web
applications to connect and send arbitrary data to instances running on other de-
vices; thereby firewalls as well as NATs and proxy servers are automatically taken
care of. Additionally, WebRTC connections are encrypted by default. Therefore,
WebRTC fulfills two major requirements to overcome the aforementioned draw-
backs of the existing DireWolf framework: Security as well as low latency through
avoiding intermediary servers2.

To leverage WebRTC we have adapted the architecture of DireWolf. Instead
of sending the IWC messages through the XMPP server we introduced a relay
that acts as a proxy server for all participating devices. We deliberately opted for
the relay approach in order to avoid a full-mesh topology of the peer-to-peer net-
work as initial tests showed a performance loss caused by resource-constrained
mobile devices. The relaying device now hosts the Message Router that is re-
ponsible for setting up the proxied publish/subscribe node and the WebRTC
connections to other clients. We still keep the XMPP connection in place for
exchanging endpoint information and the initial connection negotiation process;
all other messages are sent over the relay. We have successfully submitted an
XMPP extension protocol that describes the DataChannel negotiation process
over Jingle to the XMPP Standards Foundation (XSF) [4].

2 In case all firewall-traversal techniques fail WebRTC still redirects the encrypted
traffic through Traversal Using Relays around NAT (TRUN) servers as last resort.

http://goo.gl/ZV7RJ1

DireWolf Goes Pack Hunting 509

3 Evaluation

We performed both a comparative technical evaluation as well as a user study
to prove our conceptions. For the technical part, we measured the round-trip-
times of messages sent from a widget to an instance running on a remote device.
Figure 1 shows the results of the test series which included 50 runs. First we
measured the round-trip times on the previous DireWolf framework that uses
the XMPP server for message routing; the average delay was around 143 ms.

Fig. 1. Latency over various connections Fig. 2. Evaluation Space

In contrast, test runs performed within the newly developed DireWolf 2.0
framework show a significant reduction of round-trip times, however results
vary depending on where the computationally intensive publish/subscribe relay
was hosted. On a state of the art desktop PC we reached an average round-trip
time of around 26 ms. Measurements on a recent smartphone revealed an average
time of around 99 ms though there were significant outliers; we assume that these
peaks were caused by periodical background tasks occupying the processor.

To the usability end we performed a preliminary evaluation with 16 partici-
pants recruited from our research lab. We tested the outcome with two highly
latency sensitive applications: near real-time collaborative painting as well as
gaming. Both widget spaces were shown on an Android tablet and a Windows
laptop side by side and executed first on DireWolf 1.0 and then on DireWolf
2.0. First, users were requested to migrate widgets from one device to another.
Then, participants were asked to draw a house on the tablet; the painting was
synchronized to a laptop screen via the framework. Finally, users were presented
a little platform game that can be seen on Figure 2; the control widgets were
placed on the touchscreen device while the interactions were shown on the laptop
screen.

For the migration 60% rated DireWolf 2.0 as being ”very fast” while around
40% noted it was ”fast”. DireWolf 1.0 scored around 20% for ”very fast” and
around 55% for ”fast”; around 20% of the interviewed persons even considered
the migration time being ”slow”.

510 I. Koren, J. Bavendiek, and R. Klamma

For DireWolf 1.0 the overall synchronization speed was rated as ”slow” by
around 40% and even ”very slow” by around 25%, while the proportions for
DireWolf 2.0 shifted to ”very fast” or ”fast” by almost 100% of the respondents.

4 Conclusion and Future Work

In this paper we have presented the demo of the DireWolf framework in its
newest iteration which allows distributing widget based Web applications to
various devices while leveraging the recent WebRTC draft for peer-to-peer style
message exchange. For that we have successfully moved the publish/subscribe
functionality from the server to a dedicated client in the form of a relay node;
client devices connect to the relay for getting updates on the application state.

The technical evaluation has shown that we could decrease the average la-
tency from around 150 ms to around 25 ms with WebRTC relayed by a desktop
computer. Furthermore we are now able to prevent man-in-the-middle attacks
on the XMPP server for synchronization messages. A usability study verified our
findings.

What remains open for future work is a comparison with other DUI or IWC
solutions like in the established Omelette project. Technical limitations of our
systems include the comparatively high initial migration time, as currently wid-
get resources like HTML, JavaScript and image files on a new device still have to
be loaded from a Web server. Employing W3C widgets might solve this problem
as they are packaged in a single zip file; the system would then send the whole
widget bundle over the peer-to-peer connection. Besides, responsifying the wid-
get spaces has a high priority in order to accommodate for today’s huge variation
in display sizes and resolutions.

We are committed to tackle these challenges in future versions of the DireWolf
framework and are dedicated to continue defining the underlying standards.

Acknowledgements. The work has received funding from the European Com-
mission’s FP7 IP Learning Layers under grant agreement no 318209.

References

1. Nebeling, M., Norrie, M.C.: Responsive Design and Development: Methods, Tech-
nologies and Current Issues. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013.
LNCS, vol. 7977, pp. 510–513. Springer, Heidelberg (2013)

2. Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R.: DireWolf - Distributing
and Migrating User Interfaces for Widget-Based Web Applications. In: Daniel,
F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 99–113. Springer,
Heidelberg (2013)

3. Burnett, D., Bergkvist, A., Jennings, C., Narayanan, A.: WebRTC 1.0: Real-time
Communication Between Browsers (2013)

4. Bavendiek, J.: XEP-0343: Use of DTLS/SCTP in Jingle ICE-UDP Version 0.1,
Experimental (2014)

http://www.ict-omelette.eu/

Easing Access for Novice Users in Multi-screen

Mashups by Rule-Based Adaption

Philipp Oehme, Fabian Wiedemann, Michael Krug, and Martin Gaedke

Technische Universität Chemnitz, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. Novice users often need support to become familiar with
a new mashup. The most common problem is that mashups offer a
high grade of personalization, such as the user’s choice which widgets
she wants to use. This problem becomes more difficult in multi-screen
mashups, because the user has to decide additionally on which screen
the widgets should run. In our recent work we focused on creating multi-
screen mashups for enriching multimedia content. That is, a user can
watch a video on one screen and also can consume additional content,
like a Google Maps excerpt, on another one. This paper presents an
approach for rule-based adaption of multi-screen mashups to ease the
access for novice users. Therefore, we analyze the users’ interaction with
the mashup and detect patterns. Based on these patterns we derive rules
which will be applied to the mashups of novice users as well as experi-
enced ones. Thus, widgets will be added and arranged automatically on
the user’s several screens when the execution of a previously generated
rule is triggered.

Keywords: Mobile, distributed user interface, distributed displays,
multi-screen applications, web applications, mashup, widgets, user in-
terface adaption.

1 Introduction

Mashups allow end users without programming knowledge to easily create appli-
cations for their desired target. There, the end users combine small applications,
so called widgets, to accomplish their goal. With the emerging amount of mobile
devices the opportunities of mashups increase. That is, the mashup is not limited
to run on one screen. Rather, multiple screens can be used to create the user
interface of one mashup. The following example illustrates the opportunities of
these multi-screen mashups: Alice watches a video about an animal documentary
on her TV. Meanwhile, she receives additional content on her tablet. This addi-
tional content could be a map excerpt about the location of the current scene or
the Wikipedia article of the animal which is presented. In this scenario several
widgets are described, like a video widget, a map widget or a Wikipedia widget.

One problem for users - especially for novice ones - is that they have to
decide which widget they should add. This problem gets more difficult in the

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 511–514, 2014.
c© Springer International Publishing Switzerland 2014

512 P. Oehme et al.

field of multi-screen mashups due to the choice on which screen a widget should
be placed. Closely related to this topic is the automatic composition in classic
single-screen mashups described in [4]. While Roy Chowdhury et al. focus on
creating a useful startup configuration of a mashup, they do support neither the
adaption of the mashup during runtime nor mashups across multiple screens.

In this paper, we enhance our recent approach for multi-screen mashups to
ease the access for novice users to multi-screen mashups by rule-based adaption.
By observing and analyzing user actions we create rules which are executed, if
a defined action is triggered. For example, Alice adds a video widget to her TV
and a map widget to her tablet. This interaction will be transformed into a rule.
When Bob adds a video widget to his TV, the rule is triggered and a map widget
is automatically added to his tablet.

The rest of this paper is organized as follows: In Section 2 we first present
our previous work called SmartComposition and we extend this approach with
rule-based adaption in Section 3. Finally, we provide a conclusion and give an
outlook on future work in Section 4.

2 SmartComposition Overview

In recent work we described an approach for creating multi-screen mashups
called SmartComposition. For illustrating this approach we developed a proto-
type that enriches a video with related information originating from the Web [1].
In the SmartComposition approach, we describe a workspace as the union of
all SmartScreens of one user who uses a mashup. A SmartScreen is an abstract
representation of the browser window. It offers the runtime environment for the
widgets and also includes functionality to enable the inter widget communica-
tion. We differentiate between mobile and desktop SmartScreens that differ in
size, accessibility and the available widgets. We also developed a mechanism to
enable inter widget communication across multiple screens.

We extend the SmartComposition to offer rule-based adaption of multi-screen
mashups for novice users.

3 SmartComposition Enhancements

Our approach enhances the existing architecture of the SmartComposition to
effectively support adaption for novice users. The following is a brief description
of the extensions we made.

To capture the user actions and also the goal of the users [3, 5] the interac-
tion receiver observes every interaction of the user with the system. We consider
actions as every interaction of the user with the system, such as adding new
widgets to any SmartScreen as well as moving widgets across several screens or
removing them. The captured actions include all required information to repro-
duce the action by the system, such as the device, the type of the action and
other relevant options, such as the widget position. Afterwards, the captured ac-
tions are analyzed by the pattern detector to search for patterns on the different

Easing Access for Novice Users in Multi-screen Mashups 513

Workspace
Global Rule Store

Workspace
Workspace

Desktop SmartScreenDesktop SmartScreen
Desktop SmartScreen

Mobile SmartScreenMobile SmartScreen
Mobile SmartScreen

Interaction
Receiver

Pattern
Detector

Rule
Generator

Rule
Executor

Screen
Adaptor Rule Repository

Rule
Generalizer

Interaction
Receiver

Screen
Adaptor

Fig. 1. Architecture of the approach

actions on all devices of a user. That is, the pattern detector examines similar
actions which are performed in a specific time interval. Thereby it searches for
two actions, one of them is the initiating action and the other one is the resulting
action.

If the identified pattern is detected again, the rule generator creates a new
rule based on the actions of the pattern. For deciding which pattern will be
transformed to a rule we introduce a significance value. This significance value
takes two parameters into account: the time difference between the two related
actions of one pattern and the amount of occurrences of the same pattern.

The generated rules consist of the initiating action, the resulting action and
further parameters to particularize the rule. While the initiating action is trigger-
ing the rule later on, the resulting action takes effect in the process of adaption.
The rules are utilized to adapt the system to the user [2]. With the aid of the
interaction receiver, the rule executor searches for a recurrence of an action that
is part of a rule as an initiating action. If an initiating action is found, the rule
executor executes the associated resulting action of the related rule. Thus, the
action of adding a video widget can lead to the automatic execution of adding
a map widget on one of the screens in the workspace.

The rule generalizer uses created user specific rules to derive global rules that
are applicable to all users. Therefore, the rule generalizer examines the quality
of a rule. This quality is associated to the user’s experience in using the mashup.
That is, a novice user also creates rules in her own workspace but they are
ignored by the rule generalizer because of their minor quality. The generalized
rules are saved in the rule repository from which rules can be retrieved from the
rule executor in any workspace.

Demonstration. The prototype presented in this paper is available for testing
at: http://vsr.informatik.tu-chemnitz.de/demo/chrooma/adaption/

http://vsr.informatik.tu-chemnitz.de/demo/chrooma/adaption/

514 P. Oehme et al.

4 Lessons Learned and Outlook

In this paper we enhanced our SmartComposition approach to adapt multi-
screen mashups by a rule-based system. We observe the users’ interaction with
the mashup and detect patterns of these interactions. Based on these patterns
the system generated rules that follow the abstract template of If-This-Then-
That. These rules are executed if a condition is triggered and the multi-screen
mashup will be updated. We also introduced a rule-system which differentiates
two types. While rules of the first type are applicable only for one specific user,
rules of the second type are applicable for all users.

Our future work will focus on a comprehensive user study to examine good
thresholds for the rule generation based on the detected patterns as well as
the rule generalization. This also includes the time interval within which user
interactions will be grouped as one pattern and not as separated ones. We also
plan to extend the evolution of generalized rules. That is, rules can be outdated,
modified or merged with other rules based on their acceptance of the users.

Acknowledgment. This work was supported by the Sächsische Aufbaubank
within the European Social Fund in the Free State of Saxony, Germany (Project
Crossmediale Mehrwertdienste für die digitale Mediendistribution).

References

1. Krug, M., Wiedemann, F., Gaedke, M.: Enhancing Media Enrichment by Semantic
Extraction. To appear in WWW 2014 Companion: Proceedings of the 23rd Interna-
tional Conference on World Wide Web Companion. International World Wide Web
Conferences Steering Committee, Seoul (2014),
http://vsr.informatik.tu-chemnitz.de/publications/2014/002

2. Muntean, C.H., McManis, J.: Fine grained content-based adaptation mechanism for
providing high end-user quality of experience with adaptive hypermedia systems. In:
Proceedings of the 15th International Conference on World Wide Web, pp. 53–62.
ACM (2006)

3. Rose, D.E., Levinson, D.: Understanding user goals in web search. In: Proceedings
of the 13th International Conference on World Wide Web, pp. 13–19. ACM (2004)

4. Roy Chowdhury, S., Chudnovskyy, O., Niederhausen, M., Pietschmann, S., Sharples,
P., Daniel, F., Gaedke, M.: Complementary assistance mechanisms for end user
mashup composition. In: Proceedings of the 22nd International Conference on World
Wide Web Companion, pp. 269–272. International World Wide Web Conferences
Steering Committee (2013)

5. Tsandilas, T., Schraefel, M.: Usable adaptive hypermedia systems. New Review of
Hypermedia and Multimedia 10(1), 5–29 (2004)

http://vsr.informatik.tu-chemnitz.de/publications/2014/002

Interactive Scalable Lectures with ASQ

Vasileios Triglianos and Cesare Pautasso

Faculty of Informatics, University of Lugano (USI), Switzerland
{name.surname}@usi.ch
http://asq.inf.usi.ch/

Abstract. Taking full advantage of the Web technology platform dur-
ing in-class lectures requires a shift from the established scheme of online
education delivery that utilizes the video channel to embed all types of
content and gathers student feedback via multiple choice questions or
textual answers. In this paper we present the design of ASQ to deliver
interactive content for use in heterogeneous educational settings with a
large number of students, taking advantage of the co-location of students
and instructors and building upon the latest capabilities of the Web plat-
form. ASQ is centered around interactive HTML5 presentations coupled
with a versatile microformat to create and deliver various types quizzes
and scalable, synchronous/asynchronous feedback mechanisms.

1 Introduction

The Web is increasingly used to deliver educational content, being the medium
of choice for the popular [1] massive open online courses (MOOCs) and “flipped”
(or blended or hybrid) classrooms [2]. Courses are delivered through video lec-
tures and students are assessed either automatically, through multiple choice or
text input quizzes, or via peer assessment. Student Response Systems that take
advantage of the increased number of Web-enabled devices are finding their way
to brick and mortar classrooms replacing traditional hardware clickers. Video as
the prominent delivery format of an online lecture is not optimized for the Web
medium; it is cumbersome to author and interleave with quizzes and various
types of assessment; and it lacks the interactivity and the features that mod-
ern Web technologies offer. Today’s Web technology can support lectures with
highly interactive content such as selectable text, forms, 3D graphics, that can
be reactive to a student’s input and personalized [3] for different learning styles.

Also of importance are the current assessment models which have remained
stale for years: formative or summative assessment is predominantly perfomed
through multiple choice or free text quizzes which do not encourage experimen-
tation and creation of original content. In terms of communication models, either
between students or between students and teachers, findings suggest that syn-
chronous communication, as a complement to asynchronous communication, can
potentially enhance participation in online education [4].

Our goal is to demonstrate ASQ, a platform to create and deliver interac-
tive lectures and gather student feedback in synchronous or asynchronous set-
tings. ASQ makes full use of the HTML5 capabilities of modern Web browsers

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 515–518, 2014.
© Springer International Publishing Switzerland 2014

http://asq.inf.usi.ch/

516 V. Triglianos and C. Pautasso

and provides teachers with the ability to author, deliver and reflect upon the
performance of their interactive educational content, while it gives students an
additional communication channel to demonstrate their learning progress and
actively participate during a traditional lecture.

2 ASQ in the Classroom

ASQ aims to promote the shift from the traditional frontal lecture paradigm
(monologue) to interactive bi-directional presentations and discussions (dia-
logue), through the following features that will be demonstrated: Delivering
educational content: Interactive lectures are shared with students through a
simple URL pointing to the lecture slides. Retrieving the link will connect the
student browsers to follow the online presentation. As the instructor navigates
through the slides, the navigation events propagate to the connected students
which can synchronously follow the material on their Web browsers. This can
enhance the accessibility of the lecture, since the material is now displayed in
front of the students as it is being explained to them.

Authoring educational content: ASQ manages different kinds of educa-
tional content: lecture slides and questions. These can be authored using all
the rich multi-hyper-media (images, videos, text, interactive widgets, audio) ca-
pabilities of HTML5 compliant Web browsers. Exemplary interactions include
selecting or highlighting text, keeping notes for a slide in provided placeholder,
playing back audio and video, filling forms, dragging and dropping textual or
iconic elements, and any sort of interaction that can be implemented in a Web
page using Javascript, CSS3 and HTML5.

Interactive questions and microformat: Questions can be used for both
formative and summative assessment, embedded in lectures, collected in quizzes
and homework assignements or exams. Each question type is associated with a
set of related statistics to be computed over the answers collected by the students.
The configuration for rendering questions, assessing answers and visualizing the
results of the assessment is controlled with a simple microformat, as shown in
the following example:

<!-- a multiple choice quiz with id q-1 -->

<article class="asq-question multi-choice choose-0-n" id="q-1">

<h3 class="stem"></h3>

<li class="option">This figure is a square.

<li class="option">This figure is a circle.

<li class="option">This figure is symmetric.

<li class="option">This figure has four corners.

</article>

<!-- statistics for the quiz q-1 -->

<article class="stats" data-target-assessment="q-1"

id="stats-q-1"></article>

Interactive Scalable Lectures with ASQ 517

The microformat parser searches for elements that contain the asq-question

keyword in their class attribute. Once a question is identified the parser searches
for its type, in this case multi-choice; and for configuration options, in this case
students can choose as many of the available multiple choice options they want
(choose-0-n, but also choose-1 or choose-1-n are possible). Each question
type features keywords that provide information about its structure. In the mul-
tiple choice example, the class option of the li elements instruct the parser to
store these elements as the options of the multiple choice question. Similarly,
statistics are processed with the parser searching for the asq-stats keyword.
The data-target-assessment points to the associated question. Once all ques-
tions and statistics are parsed, they are stored in the database and then a markup
generator is invoked, that injects necessary markup like form fields and buttons.

Innovative quiz types: Besides standard multiple choice (MC) and single-
line text input (STI) quizzes, ASQ currently features two question types specif-
ically targeting the Computer Science domain: code highlight and code input.

Classroom flow: ASQ enhances the educational material by weaving sup-
port for complex interactions. Instructors can highlight important points on the
presentation and have the marking happen instantly on the students screens. Stu-
dents can answer quizzes and questions embedded in the slides –individually or in
teams– giving instant feedback to the instructor about their level of comprehen-
sion. ASQ supplies instructors with a continuous stream of events and statistics
related to quizzes, like student progress, correct versus wrong answers, enumer-
ation of actual solutions. Upon receiving the results an instructor may choose
to discuss them with individual students, share them with the class through the
projector or the students screens to present insightful statistics.

3 Architecture

ASQ follows a client server architecture (Fig. 1). In the backend the logic is
implemented in express.js on top of node.js, a choice mandated by the need for
efficient I/O operations. The Web server design follows a REST approach treat-
ing educational material (lectures, slides, questions, answers) as Web resources.

Bi-directional communication between instructors and students is imple-
mented using WebSockets. This allows for real-time exchange of a fairly big
volume of events that are crucial for monitoring progress, supporting compli-
cated assessment modes (for example peer assessment) or fine-grained logging
of student actions. User management in ASQ, involves user roles like professors,
teaching assistants and students and user permissions defined for each course. In-
teractions with the website that involve regular HTTP requests use cookie-based
authentication, while realtime communication uses token-based authentication
and group-based WebSocket namespaces.

The database consists of MongoDB collections for question instances, question
types, lectures, sessions, users, and answers. Session events and socket events are
stored in a Redis key-value store for scalability and increased performance.

ASQ supports both client- and server-side rendering with Dust.js templates.
Question instances are parsed and rendered on the backend, which allows for

518 V. Triglianos and C. Pautasso

WebSocket
ServerHTTP

Server

MongoDB

Redis

Teacher Students

Control
panel

Slides
Questions
Statistics

Q
uestio

ns

APPLICATION LOGIC PERSISTENCE

PUB/SUB

Session

Model

PRESENTATION

Slides
Questions
Statistics

Control Panel

Slides
Questions

Results

Student &
Teacher Events

Slideshow
Quizzes

Static
Assets

Fig. 1. ASQ Architecture

caching and saves CPU time on the clients. Dynamic elements like graphs and
dialog windows are rendered client-side. Moreover, ASQ takes into account dis-
play size and user roles to optimize the rendered content. For example, in a
student’s smartphone with limited HTML5 features and/or a small screen, ASQ
only renders the questions so that students can answer them, but does not show
the statistics visualizations.

4 Conclusion

In this paper we demonstrate the main features of ASQ, a tool for delivering
highly interactive educational content on the Web. Traditionally, instructors may
only gather a small sample of answers from the students (who may have to speak
up in front of a large audience). ASQ opens a new channel through which teachers
can collect the answers of every single student attending a lecture. In the future,
we will augment the question delivery system to enable the formation of groups
of students to collaboratively solve problems. Finally we plan on evaluating the
educational outcomes of ASQ through a summative evaluation that aims to
compare a traditional classroom with an ASQ-enabled classroom.

References

1. Shah, D.: MOOCs in 2013: Breaking Down the Numbers. Teasing out trends among
the unabated growth of online courses. edSurge (December 2013)

2. Bergmann, J., Sams, A.: Flip your classroom: reach every student in every class
every day. International Society for Technology in Education Eugene, OR (2012)

3. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: Personalization in distributed e-learning
environments. In: Proceedings of WWW Alt. 2004, pp. 170–179. ACM (2004)

4. Hrastinski, S., Carlsson, S.A.: Participating in synchronous online education. Lund
Studies in Informatics (6) (2007)

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 519–522, 2014.
© Springer International Publishing Switzerland 2014

LiquidML: A Model Based Environment
for Developing High Scalable Web Applications

Esteban Robles Luna1, José Matías Rivero1,2, and Matias Urbieta1,2

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{esteban.robles,mrivero,matias.urbieta}@lifia.info.unlp.edu.ar

2 Also at Conicet

Abstract. The scalability of modern Web applications has become a key aspect
for any business in order to support thousands of concurrent users while reduc-
ing its computational costs. However, existing model driven web engineering
approaches have been focus on building Web applications that satisfy function-
al requirements while disregarding “technological” aspects such as scalability
and performance. As a consequence, the applications derived from these ap-
proaches may not scale well and need to be adapted. In this paper we present
the LiquidML environment, which allows building Web applications using a
model-based approach. In contrast with existing approaches, aspects that help
to improve the scalability of a Web application are modeled as first class
citizens and as a consequence the applications obtained scale better than its
counterparts.

Keywords: Scalability, Model driven development, Web engineering.

1 Introduction

Scalability is the ability of a system to handle a growing amount of work in a capable
manner or its ability to be enlarged to accommodate that growth [2]. Scalability prob-
lems in the applications derived using Model-Driven Web Engineering (MDWE)
tools may not appear as soon as they are deployed, but rather after they has been “liv-
ing” in production for some time. Fixing scalability issues requires a detail diagnosis
and consumes many human resources [4] and it has been shown to take 50-70% of the
development time [1].

In the Web engineering research area [6], MDWE approaches [5,3,7] have become
an attractive solution for building Web applications as they raise the level of abstraction
and simplify the Web application development. However, according to [8], little atten-
tion has been put to non-functional requirements such as scalability issues as they have
been considered a technological aspect that does not need to be modeled. In the same
line, the Web applications derived from MDWE approaches pose a rigid/static architec-
ture that cannot be easily changed thus limiting the size of the Web applications that can
be built with them. In addition, diagnosing and fixing these problems in production sys-
tems (which are the ones that present overload symptoms) becomes cumbersome and
impossible to be done in the models thus forcing teams to deal with the generated code
losing the high level of abstraction provided by the design models.

520 E.R. Luna, J.M. Rive

In this paper we present
ble Web applications that c
be either derived from MD
inside the environment by m
ing tools is that we do no
aspects are modeled; as a c
the models at runtime in a s

2 LiquidML Mod

The LiquidML environmen
Web applications requests
cludes: logging and profili
quence execution modes, m
application is a compositio
need to happen within a W
has a payload (body) and a
identified by an icon and
Elements happens by mean

To exemplify the concep
E-commerce web applica
represents the Message sou
case, it will receive HTTP
ment connected to the Mes
behaves like a choice/switc
processor if the request com
another router that gets inf
product info from the DB:
product’s rank, which invol
“Get product reviews”) and
(“Compute product rank”).
and used for rendering a W

As aforementioned, to i
ments suggested in [4] has
modified version of the Pro

ero, and M. Urbieta

LiquidML, an environment that helps building high sca
an be manipulated at runtime. A LiquidML application

DWE models such as WebML, or it can be built strai
manually creating models. The main difference with ex
ot impose a rigid architecture and those “technologic
consequence we can keep track of their changes and a
safe way.

els

nt allows engineers to model a set of features that han
as first class citizens. A non-exhaustive list of features
ing, caching, service calls, parallel, asynchronous and

message queuing and the deployment process. A LiquidM
on of Flows and a Flow describes a sequence of steps t
Web request (called Message in our approach). A Mess
a list of properties while each step in the Flow is visua

d constitutes an Element of it. Communication betw
s of Message interchanges.
pts, we present a Flow for the product’s detail page of

ation (Fig. 1). The Element with no incoming arr
urce listener that will receive incoming requests – in
request and will transform them in to Messages. The E
sage source named “Route path” is a ChoiceRouter, wh

ch statement and it will route the message to the “Get in
mes to a URL starting with “/product/*”. The “Get info
formation in parallel from multiple sources. It obtains

(“Get product info”) and triggers the computation of
lves two database (DB) queries (“Get user reputation”

d a Processor that computes the rank from this informat
Finally, the information gets composed (“Compose dat

eb page in the “Render template” processor.

Fig. 1. Product details flow

improve the scalability of the Web application some e
 been modeled as first class citizens. In Fig. 2 we show

oduct details flow of Fig 1, were some elements for cach

ala-
can
ight
xist-
cal”
alter

ndle
 in-
se-

ML
that

sage
ally

ween

f an
row
this
Ele-
hich
nfo”
o” is

the
the
and
tion
ta”)

ele-
w a

hing

A Model Based Envi

purposes have been added
In LiquidML, these change
in the diagram or by mean
on-the-fly while the applica

Fig. 2. Produ

3 LiquidML Envi

The LiquidML environmen

• LiquidML edito
to deploy them
ply dynamic tr
with the scalabi
formation on-th
(DEV, QA or ev

• LiquidML serv
definitions, the
applications are
ing deployment
deploys it.

LiquidML do not impo
complete Web application c
which can be integrated by
each application, e.g. the f
combined by load balancer
of the application. As an ex
gram, which allows us to u
logging and it also support
the scalability of the Web a

Both, the editor and the
the JEE stack. We have use
ping, Spring MVC and Twi
part of this development, w
diagram editors, which is p
to visit the LiquidML site
code and the demonstration

1 https://github.com/e

ironment for Developing High Scalable Web Applications

to improve the overall scalability of the Web applicati
es can be applied at design time by adding the eleme

ns of runtime transformations that change model eleme
ation is running.

uct details flow improved with caching elements

ronment

nt is composed of 2 applications:

or: it allows defining the applications, modelling Flows
to the LiquidML servers. It also, allows developers to
ansformations to the deployed diagrams in order to d
ility problems and watch for performance and logging

he-fly in any environments where the application is runn
ven Production).
er: The server is responsible for holding the applicat
LiquidML interpreter and notifying the editor about h

 running. In addition, it regularly checks if it has any pe
ts and if so, it fetches the Application and automatic

se any rigid implementation architecture. For instance
can be split in 1 front-end app and 2 different service ap
y sending messages to their REST endpoints. In additi
front-end app, can be instantiated in multiple servers
rs to distribute the load and improve the overall scalabi
xample, in Fig. 3 we present the deployment view of a d
use the diagnostic tools of LiquidML such as profiling
ts performing runtime transformations oriented to impr
application.

server have been built using open source technologies
ed Spring and Hibernate for basic service and ORM m
itter bootstrap for UI and Jersey for the LiquidML API.
we have built the CupDraw framework1 for building W
ublicly available. For the technical readers, we invite th
http://www.liquidml.com and check the project’s sou

n videos.

estebanroblesluna/cupDraw

521

ion.
ents
ents

and
ap-

deal
g in-
ning

tion
how
end-
ally

e, a
pps,
ion,
and
ility
dia-
and

rove

s of
map-
. As

Web
hem
urce

522 E.R. Luna, J.M. Rivero, and M. Urbieta

Fig. 3. Deployment view

4 Conclusions

In this demo paper, we have presented the LiquidML environment as a place where
Web applications can be either derived from MDWE models or manually created
from our “low level” LiquidML models. These models can be then interpreted and
dynamically reconfigured at runtime. The environment is web based and it only re-
quires a browser to be used.

References

1. Boehm, B.W.: Software engineering economics. Prentice-Hall, Englewood Cliffs (1981)
2. Bondi, A.: Characteristics of scalability and their impact on performance. In: Proceedings of

the 2nd International Workshop on Software and Performance (WOSP 2000), pp. 195–203.
ACM, New York (2000)

3. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Model-ing Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

4. Hull, S.: 20 Obstacles to Scalability. Queue 11(7), 20 (2013)
5. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering, An

Approach Based On Standards. In: Web Engineering, Modelling and Implementing Web
Applications, pp. 157–191. Springer, Heidelberg (2008)

6. Rossi, G., Pastor, O., Schwabe, D., Olsina, L.: Web Engineering: Modelling and
Implementing Web Applications. Springer (2007)

7. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications using OOHDM.
In: Web Engineering, Modelling and Implementing Web Applications, pp. 109–155.
Springer, Heidelberg (2008)

8. Toffetti, G.: Web engineering for cloud computing (web engineering forecast: cloudy with a
chance of opportunities). In: Proceedings of the 12th International Conference on Current
Trends in Web Engineering (ICWE 2012), pp. 5–19. Springer, Heidelberg (2012)

Managing and Monitoring Elastic Cloud Applications

Demetris Trihinas, Chrystalla Sofokleous, Nicholas Loulloudes, Athanasios Foudoulis,
George Pallis, and Marios D. Dikaiakos

Department of Computer Science, University of Cyprus
{trihinas,stalosof,loulloudes.n,afoudo01,

gpallis,mdd}@cs.ucy.ac.cy

Abstract. Next generation Cloud applications present elastic features and rapidly
scale their comprised resources. Consequently, managing and monitoring Cloud
applications is becoming a challenge. This paper showcases the functionality and
novel features of: (i) c-Eclipse, a framework for describing Cloud applications
along with their elasticity requirements and deploying them on any IaaS provider;
and (ii) JCatascopia, a fully-automated, multi-layer, interoperable Cloud monitor-
ing system. Particularly, we demonstrate how a user can manage the full lifecycle
of a three-tier web application and observe, in real-time, how an elasticity manage-
ment platform automatically scales the application based on various user-defined
elasticity requirements, workloads and performance metrics.

1 Introduction

Cloud computing offers organizations the opportunity to reduce IT costs and improve
the efficiency of their services. The next generation of Cloud applications present elas-
tic features which allow them to expand or contract their allocated resources in order
to meet their exact demands. However, managing and monitoring elastic Cloud appli-
cations is not a trivial task. For instance, organizations with large-scale distributed web
applications (e.g. online video streaming services) require a deployment comprised of
multiple virtual instances, which often have complex inter-dependencies. Despite the
fact that current elasticity management platforms such as Amazon Auto Scaling1 and
Rackspace Auto Scale2 can automatically and seamlessly scale large Cloud applica-
tions, these systems are proprietary and limit the application to operate only on specific
Cloud platforms. Portability imposes a level of complexity and additional effort, from
the Cloud consumer perspective, to move an application from one IaaS provider to an-
other. Another downside of the aforementioned systems is that they only handle sim-
plistic boolean requirements based on a limited number of low-level metrics (i.e. CPU,
memory usage, etc.) and only support fine-grained elasticity actions (e.g. add/remove
virtual instances). Tiramola [1] on the other hand, is an open-source alternative which
succeeds in accommodating complex elasticity requirements based on application-level
metrics but it is limited to only scale NoSQL databases.

1 http://aws.amazon.com/autoscaling/
2 http://www.rackspace.com/cloud/monitoring/

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 523–527, 2014.
c© Springer International Publishing Switzerland 2014

http://aws.amazon.com/autoscaling/
http://www.rackspace.com/cloud/monitoring/

524 D. Trihinas et al.

Furthermore, elasticity management requires the monitoring of elastic applications,
a challenge that is left unaddressed by many of the existing monitoring tools (i.e. Gan-
glia3, Nagios4). The complex nature of this task requires for the monitoring system
to run in a fully automated manner, detecting configuration changes in the application
topology which occur due to elasticity actions (e.g. a new VM is added) or when allo-
cated resource-related parameters change (e.g. new disk attached to VM).

To address the aforementioned challenges which occur when managing and moni-
toring elastic Cloud applications, we present two powerful open-source tools:

c-Eclipse: A client-side Cloud application management framework which allows
developers to describe, deploy and manage the lifecycle of their applications in a clean
and graphical manner, under a unified environment. c-Eclipse is built on top of the
well-established Eclipse platform. It adheres to two highly desirable Cloud applica-
tion features: portability and elasticity. Current frameworks such as the ServiceMesh
Agility Platform5 limit users to describe and deploy their applications to a small num-
ber of Cloud platforms for which connectors are available and when users want to move
their application to another Cloud, the description must be altered. Additionally, cur-
rent frameworks offer limited or no elasticity support by only allowing the definition of
fine-grain elasticity requirements. c-Eclipse ensures application portability by adopting
the open TOSCA specification6 for describing the provision, deployment and applica-
tion re-contextualization across different Cloud platforms. In contrast to other frame-
works which also adopt the TOSCA specification [2], c-Eclipse does not require for
its users to have any prior knowledge of the TOSCA specification since users describe
their application through an intuitive graphical interface which automatically translates
the description into TOSCA. Finally, c-Eclipse facilitates the specification of complex,
multi-grained elasticity requirements via the SYBL [3] directive language.

JCatascopia [4]: A fully-automated, multi-layer, interoperable Cloud monitoring
system. JCatascopia addresses the aforementioned challenges by being able to run in a
non-intrusive and transparent manner to any underlying virtualized infrastructure. Cur-
rent monitoring systems which provide elasticity support [5] [6], require for special
entities at the physical level or depend on the current hypervisor to detect topology
changes. In contrast to these systems, JCatascopia uses a variation of the publish and
subscribe protocol 7 to dynamically detect, at runtime, when monitoring agents have
been added/removed from the overall system due to elasticity actions. This is accom-
plished without any human intervention, special entities or dependence on the under-
lying hypervisor, allowing users to even monitor applications distributed over multiple
Cloud platforms. In addition, JCatascopia provides filtering capabilities to reduce the
overhead for metric distribution and storage, and generates high-level application met-
rics dynamically at runtime by aggregating and grouping low-level metrics.

3 http://ganglia.sourceforge.net/
4 http://www.nagios.org/
5 http://www.servicemesh.com
6 http://docs.oasis-open.org/tosca/TOSCA/v1.0/
7 Monitoring Agents (metric producers) subscribe to Monitoring Servers instead of the other

way around, allowing for them to (dis-)appear dynamically [4].

http://ganglia.sourceforge.net/
http://www.nagios.org/
http://www.servicemesh.com
http://docs.oasis-open.org/tosca/TOSCA/v1.0/

Managing and Monitoring Elastic Cloud Applications 525

2 Elasticity Management Platform

In this section we focus on describing the components which comprise an elasticity
management platform which incorporates c-Eclipse and JCatascopia.

A developer, at first, uses the c-Eclipse Application Description Tool to graphically
describe the application topology, software dependencies and elasticity requirements.
The graphical description is translated, on the fly, into TOSCA. Then, the developer
selects a Cloud provider and via the c-Eclipse Submission Tool, the description is sub-
mitted to the Cloud Manager for deployment. Subsequently, the Cloud Manager parses
the portable and platform independent TOSCA description, and initiates the deployment
of the Cloud application via the Orchestrator. The Orchestrator consists of two sub-
components. The first component is the Cloud Orchestrator, which is the interface that
interacts with the IaaS provider to (de-)allocate the requested Cloud resources. The sec-
ond component is the App Orchestrator, which performs the execution of application
specific scripts and ensures the configuration and deployment correctness.

After successfully deploying a Cloud application, users are able, via c-Eclipse, to
monitor the deployment, acquire aggregated monitoring metrics from JCatascopia, and
configure the deployment by refining the elasticity requirements. The Cloud Manager
(Fig. 1) constantly checks the user-defined elasticity requirements and when a viola-
tion is detected, resizing actions are issued. Specifically, the Cloud Manager requests
from the Cloud Orchestrator to add/remove instances depending on the application
demands and from the App Orchestrator to configure the application accordingly.

Fig. 1. Elasticity Management Platform

3 Demonstration Description

This demonstration showcases8 the functionality of the proposed platform by manag-
ing the full lifecycle of an elastic Cloud application. Specifically, we will: (i) describe,

8 Screenshots of c-Eclipse and JCatascopia can be found at:
http://linc.ucy.ac.cy/CELAR/icwe2014

http://linc.ucy.ac.cy/CELAR/icwe2014

526 D. Trihinas et al.

via c-Eclipse, a Cloud application’s topology, software dependencies and relationships
between its tiers; (ii) define, via c-Eclipse, elasticity requirements for the elastic compo-
nents comprising the application; (iii) select a Cloud platform and submit the generated
TOSCA description to the Cloud Manager; (iv) monitor both the Cloud resources al-
located for the application and its performance by utilizing JCatascopia (Fig. 2); and
(v) scale the application, via the Cloud Manager, based on collected metrics and the
user-defined elasticity requirements. It must be noted that both the Cloud Manager and
Orchestrator are simplistic components developed only to showcase the full potential
of c-Eclipse and JCatascopia. Furthermore, attendees may configure the deployment
by refining the elasticity requirements. Finally, users will observe real-time graphs for
each collected metric, configure monitoring parameters (i.e. sampling rate) and gener-
ate graphs by aggregating metrics originated from multiple instances.

Use Case Scenario: we consider a three-tier online video streaming service comprised
of: (i) an HAProxy9 load balancer which distributes client requests (i.e. download, up-
load video) across multiple application servers. (ii) An application server tier, where
each instance is an Apache Tomcat10 server containing the video streaming web ser-
vice. Aggregated tier metrics such as the average number of connections and/or request
throughput can be used to decide when a scaling action should occur; (iii) a Cassan-
dra11 NoSQL distributed data storage backend. Similarly, aggregated metrics such as
the average CPU utilization and/or query latency can be used to scale the Cassandra
ring. To stress the video service, we have developed a workload generator where the
workload form (i.e. sinusoidal, linear), type (i.e. read-heavy, write-heavy, combination)
and parameters (i.e. intensity, max execution time) are all configurable.

Fig. 2. Screenshot from JCatascopia while running the demo scenario

Acknowledgements. This work was partially supported by the European Commission
in terms of the CELAR 317790 FP7 project (FP7-ICT-2011-8).

9 http://haproxy.1wt.eu/
10 http://tomcat.apache.org/
11 http://cassandra.apache.org/

 http://haproxy.1wt.eu/
 http://tomcat.apache.org/
 http://cassandra.apache.org/

Managing and Monitoring Elastic Cloud Applications 527

References

1. Tsoumakos, D., Konstantinou, I., Boumpouka, C., Sioutas, S., Koziris, N.: Automated, Elas-
tic Resource Provisioning for NoSQL Clusters Using TIRAMOLA. In: IEEE International
Symposium on Cluster Computing and the Grid, pp. 34–41 (2013)

2. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool for tosca-based
cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS,
vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

3. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: An Extensible Language for Con-
trolling Elasticity in Cloud Applications. In: 13th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 112–119 (2013)

4. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: Monitoring Elastically Adaptive Ap-
plications in the Cloud. In: 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (2014)

5. Clayman, S., Galis, A., Mamatas, L.: Monitoring virtual networks with lattice. In: Net-
work Operations and Management Symposium Workshops (NOMS Wksps), pp. 239–246.
IEEE/IFIP (2010)

6. de Carvalho, M.B., Granville, L.Z.: Incorporating virtualization awareness in service monitor-
ing systems. In: IEEE Integrated Network Management, pp. 297–304 (2011)

MAPMOLTY: A Web Tool for Discovering Place

Loyalty Based on Mobile Crowdsource Data

Vinicius Monterio de Lira1, Salvatore Rinzivillo2, Valeria Cesario Times1,
Chiara Renso2, and Patricia Tedesco1

1 Universidade Federal de Pernambuco, Recife, Brazil
{vcml,vct,pcart}@cin.ufpe.br

2 ISTI - CNR, Pisa, Italy
{salvatore.rinzivillo,chiara.renso}@isti.cnr.it

Abstract. Mobility crowdsourced data, like check-ins of the social net-
works and GPS tracks, are the digital footprints of our lifestyles. This
mobility produces an impact on the places that we are visiting, char-
acterizing them by our behavior. In this paper we concentrate on the
loyalty of places, indicating the regularity of people in visiting a given
place for performing an activity. In this demo we show a web tool called
MAPMOLTY that, given a dataset of mobility crowdsourced data and
a set of Points of Interests (POI), computes a number of quantitative
indicators to indicate the loyalty level of each POI and displays them in
a map.

Keywords: place loyality, crowdsource mobility data, activities regu-
larity.

1 Introduction

Tracking capabilities of modern geo-based network services provide us with un-
precedented opportunities of sensing both movements and activities performed
by people. We can exploit these data to monitor and study traffic, animals, mar-
itime and people [3]. Particularly, people produce crowdsourced data from which
we can investigate how people use the area where they live. One interesting as-
pect is to analyze how regularly a person is visiting a given destination. For
example, some people tend to go to their preferred restaurant for eating, while
some others may tend to explore different restaurants.

We introduce the concept of loyal user for a place p and activity A to indicate
a user who regularly visits p to perform activity A. For the sake of generality,
we associate the Point of Interest’s (POI) category to the activity performed in
that POI, thus in the rest of the paper we refer to the category or activity as
synonyms. From the loyalty measure of the user we can derive a loyalty map of
a territory. We can discover that some areas have the tendency to be visited by
loyal users, while other areas are more characterized by occasional visitors.

The purpose of this demo is to show a web tool called MAPMOLTY (MAPping
MObility loyaLTY)1 that, given a dataset of mobility crowdsourced data, like

1 http://mapmolty.isti.cnr.it

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 528–531, 2014.
c© Springer International Publishing Switzerland 2014

http://mapmolty.isti.cnr.it

A Web Tool for Discovering Place Loyalty 529

tracks of individuals, and a set of Point Of Interest, computes a number of
measure, called loyalty indicators, to summarize the loyalty level of each POI.

The analysis enabled by the tool may be useful in different scenarios. For
example, an urban manager may quickly discover attractions that are visited by
occasional visitors like tourists or loyal visitors like dwellers. This may be useful
in supporting decision making in traffic management and / or urban planning.
On the other hand, the loyalty analysis results may be used for marketing pur-
pose by the owners of the POIs to better plan advertising to targeted individuals.
The loyalty indicators are also useful for developing services for the citizen like a
recommendation system suggesting new destinations according to the observed
visitors’ behavior.

To the best of our knowledge, this is the first web tool providing a loyalty
map of Points of Interests. Other related approaches about individual regularity
measures are, for example, in [1, 2, 4]. These papers focus on the individual
instead of the places and they measure (using entropy or other measures) how
much a user is regular in visiting specific locations. This idea is at the basis of
our approach, but here we focus on geographic and activity aspects instead of
concentrating on the regularity behavior of a specific user.

2 The MAPMOLTY Tool

The overview of the tool is illustrated in Figure 1. As we can see, it is organized
into three components as described below.

Data Collection and Pre-processing. This module organizes the data that
is fed into our system. We identify two main sources of data: list of Points of In-
terest (POI) and set of crowdsourced time stamped visits of individuals to these
POIs. There are many POIs dataset available from several web services. To enable
the analytical features of our system we require that the POIs dataset should
provide at least the following attributes for each POI: a unique identifier poi id,
spatial coordinates latitude and longitude, category of the POI poi cat and a name
or description of the place. Many POIs collections are organized into a hierarchy,

Fig. 1. The overview of MAPMOLTY with the three components

530 V.M. de Lira et al.

where places with similar categories are grouped under the same larger category.
For example, places tagged as Indian Restaurant and Fast Food, may be associ-
ated with the super-categoryRestaurant. Since the super-category is generally in-
formally paired with an activity, we are using the two terms as synonyms. In our
experiments we used the set of POIs provided by the Foursquare API2.

The Mobility dataset provides the mobility information to associate a per-
son p to a POI poi id she visited. We require that each visit is represented
by a tuple < VisitID ,UserID , poi id , timestamp >, where VisitID is the visit
unique identifier, UserID and poi id represent univocally a user and a place,
and timestamp is the time when UserID arrived at poi id . We call such tuple
a visit. MAPMOLTY works with many different sources like: Location Based
Mobile Social Networks (e.g. Foursquare, Jiepang, Brightkite) and GPS traces.
However, a transformation may be needed to convert the mobility data into this
format. For example, let us consider a sequence of time stamped GPS points
for an individual (called trajectory). A trajectory can be transformed into a se-
quence of visits in a two-step process: (1) we detect stops, i.e. subsequences of
points where the user stands still for a minimum amount of time; (2) we as-
sociate each stop to the closest POIs provided by the POIs dataset 3. For the
stop detection, we use two parameters: δ, a spatial tolerance threshold and τ , a
temporal tolerance threshold. In our experiments, we used δ = 50m, τ = 20min,
meaning that we detect a stop if the user stays in an area of radius 50m for at
least 20 minutes.

MAPMOLTY uses PostGres SQL 9.3 4 with PostGIS 2.1.15 as Data Base Man-
agement System (DBMS) to store the data. PostGIS provides spatial extension for
the PostgreSQL database, allowing storage and query of geographical data.

Core. This module analyzes the visits dataset to derive loyalty indicators about
the POIs. A visitor is loyal to a place when her visits to that place, for performing
an activity, are regular. We measure the regularity for a visitor computing his
spatial distribution over the frequency of visits to places for a specific activity.
Due to lack of space we omit here the mathematical background of this compu-
tation. Starting from the spatial distributions from the visitors, MAPMOLTY
computes a set of loyalty indicators for each POI: Number of Visits ; Number
of Visitors ; Number of Loyal Visitors ; Number of Non Loyal Visitors ; Average
Relative Frequency of All Visitors ; Average Relative Frequency of Loyal Visitors ;
Average Relative Frequency of Non Loyal Visitors ; Average Visits by Visitors.
These indicators show different aspects of the loyalty and are implemented as
SQL Procedures developed in PostGres SQL.

The User Interface. The user interface is implemented as a web application,
where the user can interact with the map and visualize the information com-
puted from the core component. This tool has been developed using the ASP

2 https://developer.foursquare.com/
3 More sophisticated Stop-POI association techniques can be used.
4 http://www.postgresql.org/download/
5 http://postgis.net/install

https://developer.foursquare.com/
http://www.postgresql.org/download/
http://postgis.net/install

A Web Tool for Discovering Place Loyalty 531

MVC 4 framework6. This technology has a Model-View-Controller architecture
providing an easy separation between the data manipulation (server side) and
the interaction of the user with the web application (client side). MAPMOLTY
uses JQuery Mobile 1.3.2 with JQuery 1.9.1 7 to implement the visual widgets
used for the visualization for different types of web-browser devices. The web
map widget also uses the JavaScript Google Maps API V38 for the visualization
and interaction with the map.

The analytical process implemented in MAPMOLTY is structured as follows.
When the analyst begins the interaction, the system proposes a list of POI
datasets from which to choose the area of interest. Once the area has been
selected, the user selects the super-category. The system shows a summary of
the available indicators on a map. Each POI is indicated in the map by three
visualization properties: marker color, circle size and circle opacity. Based on the
loyalty indicators and normalization limits selected by the user, MAPMOLTY
computes and plots the values of these visualization properties.

Clicking on the marker the user can visualize the detailed information about
the place like the name, the super-category, category and all the indicators values.
Other interesting features provided by the web interface are: visually comparison
two places, filtering places by their categories and search places by their names.

One peculiarity of this web tool is that it provides a first kernel of features and it
can be easily extended with new functionalities. For example, we can incorporate
new analysis functions in the database like statistics functions (median, mode and
so on) over the data and consequently update the web application to display this
new information. Another possible extension is towards the mobile environment.
Since we are using a component from JQuery Mobile, the tool can also be easily
embedded into a smartphone app using aweb panel. This canbe particularlyuseful
when associated to a recommendation function based on the loyalty.

Acknowledgments. This work was partially supported by EU-FP7-PEOPLE
SEEK (295179), EU-FP7-FET DataSim (270833), FP7-SMARTCITIES-2013
PETRA (609042), CNPq (Brazil) grant 246263/2012-1.

References

1. Eagle, N., Pentland, A(S.): Reality mining: Sensing complex social systems. Personal
Ubiquitous Comput. 10(4), 255–268 (2006)

2. Qin, S., Verkasalo, H., Mohtaschemi, M., Hartonen, T., Alava, M.: Patterns, entropy,
and predictability of human mobility and life. CoRR, abs/1211.3934 (2012)

3. Renso, C., Spaccapietra, S., Zimányi, E.: Mobility Data: Modeling, Management,
and Understanding. Cambridge Press (2013)

4. Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of predictability in human
mobility. Science 327(5968), 1018–1021 (2010)

6 http://www.asp.net/mvc/mvc4
7 http://jquerymobile.com/download/
8 https://developers.google.com/maps/documentation/javascript/

http://www.asp.net/mvc/mvc4
http://jquerymobile.com/download/
https://developers.google.com/maps/documentation/javascript/

Paving the Path to Content-Centric

and Device-Agnostic Web Design

Maximilian Speicher

VSR Research Group, Chemnitz University of Technology, 09111 Chemnitz, Germany
maximilian.speicher@s2013.tu-chemnitz.de

Abstract. Content-centric and device-agnostic design are crucial parts
of modern web design. They are required to cater for the rapidly growing
variety of different web-enabled devices and screen resolutions. We review
satire site motherfuckingwebsite.com as a drastic example for realizing
these aspects. Additional enhancements are proposed that pave the path
to up-to-date minimalistic web design. A simple example application is
described to illustrate the proposed approach.

Keywords: Content-centric Web Design, Device-agnostic Web Design,
Responsive Web Design, Web Interfaces.

1 Introduction

Nowadays, web developers are confronted with a growing amount of novel devices.
Thus, also an increasing range of display resolutions has to be addressed (Fig. 1).
When the first web-enabled smartphones became popular, it was common
practice to provide separately designed versions of the same website. Yet, this
approach is highly inefficient considering the range of devices and display res-
olutions. This calls for the application of responsive web design, i.e., a website
flexibly reacts to the device it is accessed with [4]. The usual approach is to
combine a fluid grid layout (cf. frameworks like Bootstrap1) with CSS3 media
queries (i.e., breakpoints) to select rules based on the detected device context [4].

Fig. 1. Comparison of display resolutions of Android devices (left) and Apple de-
vices (right). The graphics have been taken from [5].

1 http://getbootstrap.com/ (2014-03-17).

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 532–535, 2014.
c© Springer International Publishing Switzerland 2014

motherfuckingwebsite.com
http://getbootstrap.com/

Paving the Path to Content-Centric and Device-Agnostic Web Design 533

Besides, websites that are overloaded with, e.g., JavaScript libraries or exten-
sive images, can cause problems with web-enabled mobile devices due to slow
loading times. Thus, besides responsiveness, modern web design should strongly
focus on delivering content while minimizing user distraction through triviali-
ties. A promising method for realizing this is mobile first design [6] since the
capabilities of mobile devices are still limited compared to desktop computers.

Still, many websites are developed with only three kinds of devices in mind,
i.e., desktop, tablet and smartphone, while neglecting resolutions in between.2

Moreover, cutting-edge websites—although often mobile-ready—tend to focus
on a complex visual appearance that is often graphic- and animation-heavy. In
this paper3, we present a review of motherfuckingwebsite.com (MFW), which
denounces these grievances and satirically claims that it is perfect by follow-
ing the simplest possible approach to web design. That is, the website is radi-
cally content-centric and device-agnostic without using any device- or resolution-
specific breakpoints. We find that, based on established findings from user expe-
rience design, MFW would require adjustments to three particular aspects to
provide a more perfect user experience. Yet, although intended to be satire, it is
a valid step into the direction of up-to-date minimalistic web design.

2 Related Work

Two well-known strategies for providing websites for different devices are pro-
gressive enhancement and graceful degradation [4]. These focus on starting from
one end of the spectrum of devices and then adding more or less sophisticated
variants of the website to cater for other devices [4]. The above depend on spe-
cific devices while responsive design is more oriented towards device-agnosticism.
Still, the majority of responsive approaches depend on breakpoints for devices
and/or resolutions. The Goldilocks approach [1] strongly focuses on text presen-
tation and using as little breakpoints as possible. Conceptually, it is closer to
MFW than other responsive approaches such as Bootstrap.

3 Review of motherfuckingwebsite.com

MFW is a website following a drastically minimalistic approach to web design
(Fig. 2). Although the site is intended to be satire and highly exaggerated, we
believe its concept is a valid step into the direction of content-centric and device-
agnostic web design. This was underpinned by numerous positive reactions by
users on different social media platforms. We provide a review of MFW w.r.t.
established findings from user experience design. Particularly, the website makes
the following points to underpin its initial statement that “it’s [...] perfect”:

2 http://www.webdesignerdepot.com/2013/05/common-misconceptions-

about-responsive-design/ (2014-03-17).
3 This paper is based on an earlier blog post by the author, see
http://wp.me/p4gilw-I (2014-03-17).

motherfuckingwebsite.com
http://www.webdesignerdepot.com/2013/05/common-misconceptions-about-responsive-design/
http://www.webdesignerdepot.com/2013/05/common-misconceptions-about-responsive-design/
http://wp.me/p4gilw-I

534 M. Speicher

Fig. 2. Screenshot of motherfuckingwebsite.com.

1. It is lightweight and loads fast by omitting client-side scripts and graphics.
2. It is completely device-agnostic, i.e., “[the] site doesn’t care if you’re on an

iMac or a [...] Tamagotchi”. In fact, it omits any JavaScript- or CSS-based
breakpoints and only makes use of the HTML viewport meta tag4.

3. It is cross-browser compatible.
4. It is accessible for all users, particularly visually impaired ones.
5. It delivers content instead of overloading the site with trivialities.
6. It uses HTML5 tags to leverage semantics.

The above points are correct and necessary for modern web design. Yet,
MFW’s statement about perfectness, if not meant satirically, would not be com-
pletely correct. This is because the site’s design follows a rather functional point
of view while neglecting important aspects that affect user experience. In this
context, we assume that a perfect user experience—independent of devices and
resolutions—is what makes a website perfect. Particularly, MFW would need
adjustments w.r.t. the following three points.

Line Width. Text lines on MFW span across the whole width of the viewport.
They might exceed the optimal line length of ∼66 characters [1], particularly
in large-screen contexts. More optimal than MFW would be to limit text lines
to a width of about 30 characters [1]. Further optimization would include a
multicolumn layout5 and pagination for large screens [3].

Navigation. MFW omits statements about navigation. However, a website fea-
turing larger amounts of content requires corresponding means. Optimally, de-
velopers should use a navigation bar fixed to the top of the viewport, which cur-
rently is common practice in web design (cf. Ecosia6). Following the approach
of device-agnostic design, the navigation bar must react flexibly if the contained
links would span more than one line on small screens.

Visual Aesthetics. Although technically flawless, MFW does not pay atten-
tion to site aesthetics, which strongly affect user satisfaction [2] and thus also
user experience. Better aesthetics can be realized by using more sophisticated

4
https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag (2014-03-17).

5 http://www.w3.org/TR/css3-multicol/ (2014-03-17).
6 http://www.ecosia.org/what (2014-03-17).

https://developer.mozilla.org/en-US/docs/Mozilla/Mobile/Viewport_meta_tag
http://www.w3.org/TR/css3-multicol/
http://www.ecosia.org/what

Paving the Path to Content-Centric and Device-Agnostic Web Design 535

typography and color schemes, e.g., for better contrast. This does not require
the use of extensive graphics, which is a major aspect of MFW.

The above points underpin that MFW cannot be a completely perfect ap-
proach to web design. Yet, they also show that only little changes to the site can
make for a serious approach to up-to-date minimalistic web design. Given the
increasing diversity of web-enabled devices, we believe that more content-centric
and device-agnostic design—as promoted by MFW—are an integral part of the
future of web engineering.

Example Application. We have designed a website featuring a fixed navi-
gation bar at the top of the viewport. Established approaches like Bootstrap
engage CSS3 media queries to determine whether the standard navigation has
to be adapted. Since it is cumbersome to cover all potential resolutions (Fig. 1)
using media queries, we leverage a more device-agnostic approach. A script adds
a second navigation bar featuring only a single dummy link to the site. This ad-
ditional navigation is placed outside the viewport. On each window resize event,
we compare the height of this navigation bar with the real navigation. If the lat-
ter has a greater height than the hidden navigation, we know that the contained
links span more than one line and should be adjusted to form a dropdown menu.
This approach is in accordance with MFW and the proposed enhancements. A
corresponding demo is available at http://www.maximilianspeicher.tk/DAD/.

4 Conclusion

The increased proliferation of novel devices and growing number of screen reso-
lutions makes it difficult to design websites that can react flexibly to all of them.
This requires highly device-agnostic approaches to web design. Also, focusing
on content more strongly supports modern, device-independent websites. We
provide a review of motherfuckingwebsite.com, which is a minimalistic satire
site drastically addressing current problems in (cross-device) web design. Addi-
tional enhancements to this website make for a valid and feasible approach to
up-to-date content-centric and device-agnostic webdesign.

References

1. Armstrong, C.: The Goldilocks Approach to Responsive Design,
http://goldilocksapproach.com/article/

2. Lavie, T., Tractinsky, N.: Assessing dimensions of perceived visual aesthetics of
websites. IJHCS 60(3) (2004)

3. Nebeling, M., Matulic, F., Streit, L., Norrie, M.C.: Adaptive Layout Template for
Effective Web Content Presentation in Large-Screen Contexts. In: Proc. DocEng.
(2011)

4. Nebeling, M., Norrie, M.C.: Responsive Design and Development: Methods, Tech-
nologies and Current Issues. In: Proc. ICWE (Tutorials) (2013)

5. OpenSignal: Android Fragmentation Visualized,
http://opensignal.com/reports/fragmentation.php

6. Wroblewski, L.: Mobile First. A Book Apart (2011)

http://www.maximilianspeicher.tk/DAD/
motherfuckingwebsite.com
http://goldilocksapproach.com/article/
http://opensignal.com/reports/fragmentation.php

Twiagle: A Tool for Engineering Applications

Based on Instant Messaging over Twitter

Ángel Mora Segura, Juan de Lara, and Jesús Sánchez Cuadrado

Universidad Autónoma de Madrid, Spain
{Angel.MoraS,Juan.deLara,Jesus.Sanchez.Cuadrado}@uam.es

Abstract. Microblogging services, like Twitter, are widely used for all
kind of purposes, like organizing meetings, gathering preferences among
friends, or contact community managers of companies or services.

With suitable automation, tweets can be used as a dialogue mecha-
nism between users and computer applications, and we have built a tool,
named Twiagle, to construct tweet-based applications. Twiagle includes
a pattern-matching language to express the interesting parts to be de-
tected and selected from tweets, and an action language to query matched
tweets, aggregate information from them or synthesize messages.

1 Introduction

Microblogging and instant messaging systems are booming nowadays, thanks
in part to the proliferation of smartphones and mobile devices. Services like
Twitter1 or WhatsApp2 are extremely used nowadays to connect with friends,
or to organize social activities. These services are not only used for leisure, but
most companies and brands use these services to keep in contact with clients.

In this setting, we observe a growing need to automate social activities, lever-
aging on popular social network platforms, like Twitter. On the one hand, users
of social networks – possibly lacking any programming skills – may wish to define
simple applications involving the participation of a community of users. On the
other, companies may like to open their information systems to social networks
platforms, but this integration effort needs to be done by hand.

We claim that social networks based on instant messaging, in particular Twit-
ter, are suitable as front-ends for computer-based applications. We call them
tweet-based applications, and they present many advantages in some scenarios.
First, instant messaging systems are designed to support a high load of users and
messages, serving as a robust front-end, difficult to achieve for companies or end
users. Second, many people are familiar with Twitter, and have it already in-
stalled. Hence, they do not need to learn a new application, or even install a new
one. Third, applications can leverage from Twitter’s social network structure.

We foresee three main kinds of scenarios for tweet-based applications. In the
first one, Twitter is used as a front-end, which then needs to be connected to an

1 http://www.twitter.com
2 http://www.whatsapp.com/

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 536–539, 2014.
c© Springer International Publishing Switzerland 2014

http://www.twitter.com
http://www.whatsapp.com/

A Tool for Engineering Applications 537

existing information system (e.g., an airport may send notifications with flight in-
formation, or with status updates via Twitter to interested users). In the second
scenario, small, simple, self-contained applications can be designed by unexpe-
rienced end users (e.g., outdoors educational games based on quizzes). Finally,
an important scenario is the quick construction of applications to coordinate a
large amount of people upon unexpected events, like natural disasters.

These scenarios present several challenges for this technology. First, if tweets
are used as simple communication mechanism with the application, the relevant
information needs to be extracted from them. Second, a mechanism is needed to
specify simple actions, like querying the extracted information, or synthesizing
messages. Finally, a quick, easy way for constructing this kind of applications is
needed, enabling their use by non-experts, but supporting also their deployment
into servers, and their integration with existing information systems.

This paper presents Twiagle, a tool for constructing tweet-based applications,
including a Domain Specific Language (DSL) for expressing patterns, and a
DSLs for describing actions. Sec. 2 describes our architecture for Tweet-based
applications, Sec. 3 describes Twiagle using an example, and Sec. 4 ends with
the conclusions and prospects for future work.

2 Architecture

Tweet

User
Community

mentioning
@user

Tweet

Tweet

Pattern

matcher

end

[cond]

tweets,

messages

Twitter

Patterns
tweets

Match
Set

Queries
Selection,

aggregation, …

Tweet

M

message synthesis
Message

The working scheme of
our solution for tweet-
based applications is shown
in the inset figure, where
the numbers illustrate a
typical interaction. Firstly
(label 1), users send tweets
or private messages via
Twitter. Then, the relevant information in tweets is extracted. Our solution
relies on the definition of patterns, expected to be found in tweets. Not every
tweet is sought, buy only those mentioning the user associated to the application,
or private messages directed to it (label 2). The patterns (label 3) are defined by
social media experts, or software engineers. A typical application may include
different queries, selecting the relevant concepts in matching tweets, or calculat-
ing different aggregation values from them (label 4). In addition, data can be
obtained or sent to existing information systems (label 5). The data extracted
from queries, or provided by the information system can be used to synthesize
tweets or private messages, directed to the users (label 6). Finally, conditions
can be defined to signal the end of the execution.

In order to facilitate the construction of such system, we provide a Model-
Driven Engineering solution, based on two domain-specific languages (DSLs).
The first DSL (called Twittern) helps in the definition of relevant patterns, and
concepts to be found in them. The latter are sets of relevant words, or fragments,

and sets of synonyms can be automatically extracted from Wordnet [??]. The

538 Á.M. Segura, J. de Lara, and J.S. Cuadrado

second DSL, called Twition, is targeted to the description of the processing
logic of tweet-based applications. It allows defining queries on tweets matching
some pattern, using an SQL-like syntax. Queries can be used to select relevant
information from tweets, or to calculate aggregated information from a set of
tweets. The DSL also provides commands to synthesize private messages and
tweets. Finally, it is also possible to define data hooks, a way to push extracted
data into an existing information system, or to gather data from it. The next
section describes a tool that realizes this approach.

3 Twiagle by Example

We show Twiagle’s capabilities through an example consisting in a simple voting
among a set of users (see Fig. 1). The first step is to describe the interesting
information in Tweets, using the Twittern DSL. A pattern is made of concepts,
and in its simplest form, a concept is a set of words, which can be either defined
explicitly by the designer, or can be automatically taken from a synonym set
provided by Wordnet. We have also included specific Twitter concepts, like pat-
terns to detect user names, URLs (specially pictures), and to define collections
of interesting hashtags. The meta-data information present in tweets, like the
originator, date or geoposition can be retrieved and does not need to be explicitly
declared in patterns. Patterns also indicate if concepts have to appear in some
specific order, or allow the interleaving of concepts with other words. It is also
possible to specify that some concept cannot occur in a pattern, and whether
concepts are to be sought ignoring upper/lower case, accents, and permitting
missing vowels, as this is a usual idiom in tweets.

As a second step, our approach considers the description of actions by means
of the Twition DSL. Twition allows issuing queries using an SQL-like syntax.
They may refer to a set of matches of a pattern, as if they formed an SQL table,
and the concepts in the pattern, as if they were SQL columns. Three kinds of
specialized queries can be issued: Select (to select some concepts from a set of
tweets matching a pattern), Adding (to perform some arithmetical operation on
result sets), and Metadata queries (to obtain a result set made of some tweet
metadata). Similar to data stream management systems [1] we may query using
temporal windows. Currently, we support two kinds of temporal windows, one
considering all data, and another one with the last tweet (@newest annotation).
Once data becomes available from queries, messages can be composed and sent
to a collection of users either publicly (command tweet), or in private, directed
to a certain user (command message). In addition, received tweets can also be
retweeted, and be categorized as favorite. Other commands include facilities to
exchange data with an external source, and to signal the application end.

Each action has a name, so that actions can refer to the data they produce
simply by that name. The type of data does not need to be declared, but it is
inferred by simple rules. The execution model of Twition is based on data flow,
relying on data dependencies, the recommended execution model for reactive,
event-driven, scalable applications [3]. In this way, an action is performed as soon

A Tool for Engineering Applications 539

Fig. 1. (1) Defining patterns with Twittern, (2) Using Wordnet, (3) Testing with live
tweets, (4) Authorizing Twiagle to use Twitter account data, (5) Defining actions with
Twition, (6) Execution Debug, (7) Results shown in the Twitter console

as its data becomes available, unless it contains an explicit trigger, in which case
it is executed when the data is available and the trigger becomes true.

Twiagle includes a console to test patterns against live tweets, as well as an
execution debug, showing the results of queries and actions performed. The tool
is available at http://www.miso.es/tools/twiagle.html.

4 Conclusions and Future Work

In this paper, we have introduced Twiagle, a tool to build tweet-based appli-
cations. We are currently increasing the expressiveness of Twittern, improving
Twition with new primitives, taking inspiration from data-stream systems for
tweet querying. We are also working on the deployment mode, and considering
support for other social networks, enabling inter-platform applications.

Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).

References

1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS, pp. 1–16. ACM (2002)

2. Miller, G.A.: Wordnet: A lexical database for english. CACM 38(11), 39–41 (1995)
3. Reactive manifesto, http://www.reactivemanifesto.org

http://www.miso.es/tools/twiagle.html
http://www.reactivemanifesto.org

Using Linked Data for Modeling Secure

Distributed Web Applications and Services

Falko Braune, Stefan Wild, and Martin Gaedke

Technische Universität Chemnitz, Germany
{firstname.lastname}@informatik.tu-chemnitz.de

Abstract. The increasing service orientation of today’s Web applica-
tions enables swift reaction on new customer needs by adjusting, extend-
ing or replacing parts of the Web application’s architecture. While this
allows for an agile response to change, it is inappropriate when it comes
to security. Security needs to be treated as a first thought throughout the
entire lifecycle of a Web application. The recently proposed WAMplus
approach does not only offer an expressive, extensible and easy-to-use
way to model a Web application architecture, but also puts a strong
emphasis on the security. In this paper we present an exemplary imple-
mentation of WAMplus using the Sociddea WebID identity management
system known from prior work. There, we show how WebID is used to
identify, describe and authenticate Web applications and services while
taking their protection through WAC and fine-grained data filters into
account.

Keywords: Modeling, Security, Identity, Protection, Linked Data, WebID.

1 Introduction

Modern Web applications are facing changing costumer needs, short time to mar-
ket, and an increasing degree of distribution. The service-oriented architecture
(SOA) design pattern supports developing such Web applications by providing
a set of best practices for organizing distributed capabilities. For responding to
change, agile methodology fits well in this context.When it comes to security, how-
ever, it is inappropriate to apply this approachwithout sufficient consideration. Se-
curity needs not to be treated as an afterthought, but as a first thought throughout
the entire lifecycle of a Web application [5]. While there are various tools which
support developers in modeling and building Web applications, they do not holis-
tically address the security of the entire Web application architecture [6].

In a recent work, (author?) proposed the WAMplus approach [8]. It does
not only offer an expressive, extensible and easy-to-use way to model a Web
application architecture, but also puts a strong emphasis on the security.

This work describes a prototypical implementation of the WAMplus approach
into an existing WebID identity provider and management system. By exem-
plarily integrating the approach into Sociddea (http://www.sociddea.com/),
we show its applicability, demonstrate its use in practice and strive to increase
its adoption.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 540–544, 2014.
c© Springer International Publishing Switzerland 2014

http://www.sociddea.com/

Using Linked Data for Modeling Secure Distributed Web Applications 541

The rest of the paper is organized as follows: Sect. 2 discusses related work.
Sect. 3 demonstrates the WAMplus approach. Sect. 4 concludes the paper.

2 Related Work

Model-drivenWeb engineering (MDWE) approaches likeOOWS,UWEorWebML
aim at providing means for a systematic and efficient engineering of Web applica-
tions [3]. Yet, the variety of existing domain-specific and often proprietary model
description languages reduces interoperability. An integral and widely adopted so-
lution for addressing the security topic in MDWE is missing. Dealing with the in-
teroperability concern, semantic vocabularies for describing Web services in RDF
typically consider only one type of service aspect: SAWSDL or OWL-S for SOAP-
based services; SA-REST or ROSM for RESTful services [2]. OpenID or Facebook
Connect arewidely adopted identity management systems [1], but their limited ex-
tensibility makes them inappropriate to directly identify and attach data to Web
applications and services. The Access Control Ontology (ACO) semantically spec-
ifies role-based protection of URI-identifiable resources via RDF-based access con-
trol lists. Compared to WAC, it is not yet widely used [7].

3 Utilizing WAMplus to Model Secure Web Applications

WAMplus enriches the WebComposition Architecture Model (WAM), known
from prior work [4], with 1) semantic descriptions, 2) universal identification,
and 3) protection through fine-grained access control for Web application and
services. The semantic description of Web services allows for dynamic adaption
to interface changes or feature updates. The identification facilitates intercon-
necting components and establishing authentication through WebID. WAMplus
suggests to rely on WAC and customized views for protecting resources, also
including descriptions of Web applications and services, at different granularity
levels [8].

For the description of SOAP-based and RESTful Web services
and to maintain interoperability, we use the WSDL RDF mapping
(http://www.w3.org/TR/wsdl20-rdf/) combined with WebID. Being an identity
concept, WebID (http://www.w3.org/2005/Incubator/webid/spec/) enables
identification and authentication, and facilitates more detailed description. It
consists of three artifacts: The WebID URI refers to a subject, like a Web
service, and links to a WebID profile storing the subject’s identity data and
public keys using Linked Data. WebID profiles rely on RDF to semantically
describe a subject’s attributes. The WebID certificate is an X.509 certificate
that includes a WebID URI identifying the subject. Matching the public key in
both WebID certificate and profile enables subject authentication.

To protect resources and descriptions, the WebAccessControl (WAC)
(http://www.w3.org/wiki/WebAccessControl) is a RDF-based vocabulary that de-
fines access rules for URI-addressable resource. The WebID Profile Filter Lan-
guage enables specifying fine-grained filters to protect data within user
profiles [7].

http://www.w3.org/TR/wsdl20-rdf/
http://www.w3.org/2005/Incubator/webid/spec/
http://www.w3.org/wiki/WebAccessControl

542 F. Braune, S. Wild, and M. Gaedke

Fig. 1. WAM example

Combining these technologies facilitates a security-focused modeling of Web
applications and services that also takes interoperability into account.

To demonstrate WAMplus in practice, we prototypically implemented it in the
Sociddea WebID identity provider proposed by (author?) in [7]. Yet, WAMplus
is not limited to this system. Fig. 1 illustrates an example Web application
modeled with WAM. There, a file Web service contains data a photo Web service
intents to use. Sociddea is used here to publish Web service descriptions as
WebID profiles.

Fig. 2. Usage scenario of photo management system showing WAMplus in practice

Using Linked Data for Modeling Secure Distributed Web Applications 543

As an example, Alice wants to use this photo service to create a new album, as
illustrated by Fig. 2. Her photos are stored on the file service, which is operated
by Bob. When deploying the file service, Bob also published the service descrip-
tion as a WebID profile using Sociddea. He uses the provided graphical user
interface to create a new profile and to add the WSDL RDF description. All fol-
lowing steps are executed during the run-time. Requesting the description of the
file service through the photo service invokes the WebID authentication process
of Sociddea. In the Sociddea system, every request to a resource has to pass the
WAC-type access control rules. Assuming that WAC only allows authenticated
users to access profile resources, the photo service has to authenticate with its
own WebID. Having access to the profile, its WSDL RDF description provides
all necessary information for addressing and binding the service to interact with
it. Consistent linking between the resources is established by the use of predi-
cates like foaf:maker or foaf:knows. If the photo service encounters a problem,
Alice or other services could retrieve the operator’s contact data by following
the WebID URI to Bob’s profile being linked to in the WebID profile of the file
Web service.

Demonstration. For a live demo and further information about Sociddea and
WAMplus visit: http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

4 Conclusion

Combining semantic description, universal identification, and access control with
WAM’s modeling capabilities, WAMplus contributes to designing and managing
secure distributed Web applications and services. Our approach assists Web engi-
neers in modeling SOA-basedWeb applications by creating machine-readable big
pictures of their architecture, by using WebID to identify and describe Web ser-
vices with WSDL+RDF, and by protecting resources with WAC and fine-grained
filters. In future work we intend to apply the WAMplus approach in more sce-
narios to discover patterns relevant to the evolution of Web applications. There
we will research the topic of dynamic service replacement and delegation.

References

1. El Maliki, T., et al.: A Survey Of User-centric Identity Management Technologies.
In: The International Conference on Emerging Security Information, Systems, and
Technologies, SecureWare 2007, pp. 12–17. IEEE (2007)

2. Kim, C.S., et al.: Building semantic ontologies for RESTful web services. In: CISIM,
pp. 383–386 (2010)

3. Koch, N., et al.: Model-driven Web Engineering. Upgrade 9(2), 40–45 (2008)

4. Meinecke, J., et al.: Enabling Architecture Changes in Distributed Web-
Applications. In: Web Conference, LA-WEB 2007, pp. 92–99. IEEE (2007)

5. Papazoglou, M.P., et al.: Service-Oriented Computing: State of the Art and Re-
search Challenges. IEEE Computer 40(11), 38–45 (2007)

http://vsr.informatik.tu-chemnitz.de/demo/sociddea/

544 F. Braune, S. Wild, and M. Gaedke

6. Saleem, M.Q., et al.: Model Driven Security Frameworks for Addressing Security
Problems of Service Oriented Architecture. In: ITSim, vol. 3, pp. 1341–1346. IEEE
(2010)

7. Wild, S., Chudnovskyy, O., Heil, S., Gaedke, M.: Protecting User Profile Data
in WebID-Based Social Networks Through Fine-Grained Filtering. In: Sheng,
Q.Z., Kjeldskov, J. (eds.) ICWE Workshops 2013. LNCS, vol. 8295, pp. 269–280.
Springer, Heidelberg (2013)

8. Wild, S., Gaedke, M.: Utilizing Architecture Models for Secure Distributed Web
Applications and Services. Information Technology Special Issue on Architecture
of Web Applications (Accepted Journal Paper, Published Q2/2014)

WaPPU: Usability-Based A/B Testing

Maximilian Speicher1,2, Andreas Both2, and Martin Gaedke1

1 Chemnitz University of Technology, 09111 Chemnitz, Germany
{maximilian.speicher@s2013,martin.gaedke@informatik}.tu-chemnitz.de

2 R&D, Unister GmbH, 04109 Leipzig, Germany
{maximilian.speicher,andreas.both}@unister.de

Abstract. Popular split testing approaches to interface optimization
mostly do not give insight into users’ behavior. Thus, a new concept is
required that leverages usability as a target metric for split tests. WaPPU
is a tool for realizing this concept. It learns models using a minimal ques-
tionnaire and can then predict usability quantitatively based on users’
interactions. The tool has been used for evaluating a real-world interface.
Results underpin the effectiveness and feasibility of our approach.

Keywords: Usability, Metrics, Interaction Tracking.

1 Introduction

Usability is an utterly important factor for successful interfaces. Yet, in today’s e-
commerce industry, effective methods for determining usability are applied only
at very slow iteration cycles (i.e., mainly before a website or redesign goes live).
This is because such established usability evaluation methods are costly and time-
consuming from a company’s point of view. User testing and expert inspections
are two of the most prominent examples (cf. [3,6]). Contrary, interfaces are mostly
optimized based on conversions and more efficient split tests (cf. Visual Website
Optimizer1) during operation.A conversion is a predefined action completedby the
user, e.g., a submitted registration form. In a common split test, the interface ver-
sion which generated the most conversions is considered best. However, this gives
no insights into the user’s actual behavior.2. In fact, suboptimal interfaces can lead
to accidentally triggered conversions, which is contrary to usability.

Based on the above, Speicher et al. [7] have pointed out the need for usability
as a target metric in split tests. This would enable a trade-off between traditional
methods and split testing. That is, a usability-based approach to split tests
would provide insights into user behavior while leveraging the efficiency and
affordability of split testing. As a solution, Speicher et al. [7] propose a novel
concept called Usability-based Split Testing that must meet three requirements:
(R1) It is more effective in measuring usability than conversions; (R2) Efforts for
users and developers are kept to a minimum; and (R3) It delivers precise/easy-to-
understand usability metrics that enable quantitative comparison of interfaces.

1 http://visualwebsiteoptimizer.com/ (2014-03-07).
2 http://www.nngroup.com/articles/putting-ab-testing-in-its-place/

(2014-03-16)

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 545–549, 2014.
c© Springer International Publishing Switzerland 2014

http://visualwebsiteoptimizer.com/
http://www.nngroup.com/articles/putting-ab-testing-in-its-place/

546 M. Speicher, A. Both, and M. Gaedke

In this demo paper, we presentWaPPU (“Was that Page P leasant to U se?”),
a tool that has been developed for realizing the above concept. Our tool enables
developers to perform usability-based A/B tests and carry out metric-based com-
parisons of web interfaces. For this, WaPPU tracks user interactions I and, based
on existing machine learning classifiers, trains models Mi for predicting aspects
of usability Ui from these: Mi(I) = Ui. The tool offers a dedicated service for
creating and monitoring A/B testing projects in real-time with minimal effort.

2 Related Work

WaPPU is related to a variety of existing research and tools concerned with
usability evaluation. The following gives a representative overview.

AttrakDiff 3 is an existing A/B testing tool for optimizing e-commerce prod-
ucts. It measures two dimensions of user experience based on a specific instru-
ment. Despite superficial similarities, the tool is conceptually different from
WaPPU. Particularly, it does not leverage user interactions for predicting us-
ability metrics based on models.

W3Touch [5] and m-pathy4 are two tools that leverage user interactions for
evaluating web interfaces. The first engages interactions to automatically adapt
interfaces for touch devices. The latter collects interactions for manual interpre-
tation by an evaluator. In analogy, tools like WUP [1] allow to track interactions
on a website and compare them to predefined, optimal logs. Yet, all of these do
not focus on usability as a quantitative target metric.

Nebeling et al. [4] derive quantitative metrics from static layout properties of
a web interface, such as the amount of too small text. The specific aim of their
approach is to support the adaptation of interfaces for large-screen contexts.
Although they take a step into the direction of usability metrics, they do not
leverage dynamic interactions. Contrary to WaPPU, their concept is based on
well-grounded a priori assumptions rather than learning indicators of good/bad
usability from actual user behavior.

3 WaPPU

Our tool is realized as a service with a central repository, which enables devel-
opers to create and monitor A/B testing projects. First, an A/B testing project
is given a name and password for access to real-time analyses and visualizations.
Subsequently, the developer chooses which interaction features shall be tracked
for which components (defined by jQuery selectors) of their interface.

Listing 1.1. Exemplary WaPPU configuration.
1 WaPPU.start ({
2 projectId: 42, interfaceVersion: ’A’, provideQuestionnaire: true },{
3 ’#nav’: [’hovers ’, ’hoverTime’],
4 ’#content ’: [’cursorSpeed’, ’cursorTrail’] });

3 http://attrakdiff.de/ (2014-03-07).
4 http://www.m-pathy.com/cms/ (2014-03-07).

http://attrakdiff.de/
http://www.m-pathy.com/cms/

WaPPU: Usability-Based A/B Testing 547

Fig. 1. The WaPPU dashboard

It is possible to choose from a range of 27 predefined interaction features includ-
ing clicks, length of the cursor trail, amount of scrolling etc. The developer is then
provided with two automatically generated JavaScript snippets to be added to
the two interfaces-under-test of the A/B testing project (Listing 1.1). The above
snippet defines an interface-under-test associated with the split testing project
with project ID 42 and specifies that a usability questionnaire is shown to users
of the interface. The amount of hovers and hover time are tracked for the com-
ponent #nav. Moreover, the length of the cursor trail as well as the cursor speed
are tracked for the component #content.

By default, the first interface is configured to show a dedicated usability ques-
tionnaire (R1) with seven items based on [8] (Fig. 1) while the second interface
does not. From users’ answers to this questionnaire and client-side interactions,
WaPPU incrementally learns models (e.g., Näıve Bayes5) on a per-item and per-
context6 basis for the A/B testing project. These are stored in the central repos-
itory. The models are then used to predict the usability of the second interface
based on user interactions only (R1). In this way, the amount of questionnaires
shown to users is kept to a minimum (R2). Yet, WaPPU can also be configured
to show the questionnaire on both (for remote asynchronous user testing) or
none of the interfaces-under-test (for use with existing models/heuristics). As
soon as the configuration snippets have been integrated into the interfaces (R2),
analyses are available via the WaPPU dashboard (Fig. 1). On the dashboard,
developers are presented with users’ evaluations of seven usability items for the
two interfaces. Depending on whether an interface shows a questionnaire, these
evaluations are either based on users’ answers or on predictions by the learned
models for each item. The items’ value range lies between −1 and +1. The dash-
board provides the average rating across all users of the interface along with
standard deviations. From the seven individual ratings, WaPPU computes an

5 http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/

NaiveBayesUpdateable.html (2014-03-16).
6 Context is determined based on screen size and whether an ad blocker is activated.
These factors influence the appearance of an interface and thus also users’ interactions.

http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayesUpdateable.html

548 M. Speicher, A. Both, and M. Gaedke

overall usability rating between 0% and 100% (R3). Moreover, the tool auto-
matically performs a Mann–Whitney U test to determine whether there is a
statistically significant difference between the interfaces w.r.t. overall usability.
The result of this test is indicated by a traffic light (R3).

4 Example Study

WaPPU was used to evaluate two versions of a real-world search engine results
page in a user study with 81 participants [7]. The old version of the interface
had been redesigned by three usability experts. Our tool was able to detect the
predicted difference in usability with statistical significance for the largest and
most representative user group (screen=HD, new user). We were able to train
reasonably good models with F-measures between 0.518 (item distraction) and
0.296 (item readability). Finally, heuristics for search engine results pages were
derived based on these models. These state that, e.g., less confusion is indicated
by a lower scrolling distance from top (Pearson’s r=-0.44); and better readability
is indicated by a lower length of text selections (r=-0.39).

5 Conclusion

Wehave presentedWaPPU, a tool for realizing the novel concept ofUsability-based
Split Testing [7]. Our tool enables developers to set-up A/B testing projects with
minimal effort and instantly provides them with quantitative usability metrics.
These metrics can be derived from user interactions based on previously learned
models.Auser studywitha real-world interfaceunderpins the feasibility ofWaPPU.
Potential future work includes integration with existing approaches such as Web-
Composition [2] for automatic optimization of widget-based interfaces.

Acknowledgments. This work has been supported by the
ESF and the Free State of Saxony.

References

1. Carta, T., Paternò, F., de Santana, V.F.: Web Usability Probe: A Tool for Support-
ing Remote Usability Evaluation of Web Sites. In: Campos, P., Graham, N., Jorge,
J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS,
vol. 6949, pp. 349–357. Springer, Heidelberg (2011)

2. Gaedke, M., Gräf, G.: Development and Evolution of Web-Applications using the
WebComposition Process Model. In: WWW9-WebE Workshop (2000)

3. Insfran, E., Fernandez, A.: A systematic review of usability evaluation in web de-
velopment. In: Hartmann, S., Zhou, X., Kirchberg, M. (eds.) WISE 2008. LNCS,
vol. 5176, pp. 81–91. Springer, Heidelberg (2008)

4. Nebeling, M., Matulic, F., Norrie, M.C.: Metrics for the Evaluation of News Site
Content Layout in Large-Screen Contexts. In: Proc. CHI (2011)

WaPPU: Usability-Based A/B Testing 549

5. Nebeling, M., Speicher, M., Norrie, M.C.: W3Touch: Metrics-based Web Page Adap-
tation for Touch. In: Proc. CHI (2013)

6. Nielsen, J., Molich, R.: Heuristic Evaluation of User Interfaces. In: Proc. CHI (1990)
7. Speicher, M., Both, A., Gaedke, M.: Ensuring web interface quality through

usability-based split testing. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE
2014. LNCS, vol. 8541, pp. 89–106. Springer, Heidelberg (2014)

8. Speicher, M., Both, A., Gaedke, M.: Towards Metric-based Usability Evaluation of
Online Web Interfaces. In: Mensch & Computer Workshopband (2013)

Webification of Software Development:

User Feedback for Developer’s Modeling

Eduard Kuric and Mária Bieliková

Faculty of Informatics and Information Technologies,
Slovak University of Technology, Ilkovičova 2, 842 16 Bratislava 4, Slovakia

name.surname@stuba.sk

Abstract. In this paper we present an approach to leveraging experi-
ence from rapidly evolving field of information processing on the Web for
software development. We consider a web of software artifacts (compo-
nents) as an information space. Supporting any task in such environment
of interconnected artifacts depends on our knowledge on user preferences
and his characteristics. We envision the concept of collaborative software
development to improve software quality and development efficiency by
using both implicit and explicit user (software developer) feedback. It
opens a space for using approaches originally devised for the Web. The
core of our approach is based on our developed platform for independent
code monitoring where we create a dataset of developers’ implicit and
explicit feedback based on monitoring developers’ behavior. Employing
this platform we acquire, generate and process descriptive metadata that
indirectly refer source code artifacts, project documentations and devel-
opers activities via document models and user models. As an example of
our concept we present an approach for estimation of student’s expertise
in a programming course.

Keywords: webification of software development, implicit/explicit feed-
back, interaction information, user modeling, monitoring user behavior.

1 Developer’s Feedback in a Web of Software Artifacts

Developers often use a web of software artifacts as a giant repository of source
code, which can be utilized for solving their software development tasks. Sup-
porting any task in such environment of interconnected artifacts depends on our
knowledge on user preferences and his characteristics. Relevance user feedback
is typically used for user profiling during long/short-term modeling of user’s in-
terests and preferences on the Web. Relevance feedback techniques have been
used to retrieve, filter and recommend a variety of items [4]. Our aim is to sup-
port software development by using both implicit and explicit user (software
developer) feedback, which creates rich interconnections between software arti-
facts. This includes not only the shift towards the use of web-based resources in
software processes, but also and more importantly it opens a space for using ap-
proaches originally devised for the Web (as a network of interconnected content)
to support the software development process.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 550–553, 2014.
c© Springer International Publishing Switzerland 2014

Webification of Software Development 551

Our work is a part of a research project called PerConIK1 (Personalized Con-
veying of Information and Knowledge). We cooperate with a medium size soft-
ware company. We focus on support of applications development by viewing a
software system as a web of information artifacts. Our aim is devising the right
metrics to evaluate software artifacts and to identify particular problems and
recommending corrective actions. The core of our approach is based on our devel-
oped platform for independent code monitoring [1]. We developed several agents
that collect and process documentations, source code repositories, developers’
activities, etc. We create within the project a dataset of developers’ implicit and
explicit feedback based on monitoring behavior of developers for the purpose
of estimating developers’ expertise. For example, we exploit implicit feedback
such as searching relevant information on the Web and searching in source code
during performing tasks, writing and correcting source code in development en-
vironment, and explicit feedback such as peer review (review feedback attached
to source code).

To the present, we have focused mainly on modeling developer’s expertise
in software house environment. It is based on investigation of software arti-
facts which the developer creates and the way how the artifacts were created.
In other words, we take into account the developer’s source code contributions,
their complexity and how the contributions were created to a software arti-
fact (e.g. copy/paste actions from external resources, such as a web browser);
the developer’s know-how persistence about a software artifact; and technolog-
ical know-how - the level of how the developer knows the used libraries, i.e.,
broadly/effectively. All on daily basis of software development.

In a software company estimation of developers’ expertise allows, for example,
on the one hand, managers and team leaders to look for specialists with desired
abilities, form working teams or compare candidates for certain positions, on the
other hand, developers can locate an expert in a particular library or a part of a
software system (someone who knows a component or an application interface)
[2,5]. It can be also used to support so-called “search-driven development”. When
a developer reuses a software artifact from an external source he has to trust
the work of an external developer who is unknown to him. If a target developer
would easily see that a developer with a good level of expertise has participated
in writing the software artifact, then the target developer will be more likely to
think about reusing.

On the contrary of a software company, where software is created by pro-
fessionals, in academic environment, students learn how to design and develop
software. Moreover, a student produces significantly less data (implicit/explicit
feedback). Our goal is to provide a tool that allows a teacher to evaluate stu-
dent’s knowledge and skills (expertise) based on monitoring student’s behavior
during developing tasks and adaptation of instruments developed for the general
approach. As an example of our approach we present an approach for estimation
of student’s expertise in a programming course. It allows, for example, teacher
to adapt and modify his teaching practices.

1 PerConIK: http://perconik.fiit.stuba.sk/

http://perconik.fiit.stuba.sk/

552 E. Kuric and M. Bieliková

2 Estimation of Student’s Programming Expertise

In our approach modeling student’s expertise is based on estimation of a degree
of student’s expertise of a concept in comparing with other investigated students.
In other words, if students solve a task focused on acquiring skills of particular
concept, e.g., priority queue, then by analyzing their resultant source code, in-
teraction data and by using appropriate software metrics, we can estimate levels
of students’ expertise of the concept. By using the particular students’ expertise
estimations of concepts we are able to estimate a degree of student’s expertise for
the whole course and compare the estimations among the investigated students
based on the same evaluation criteria.

We experimented with data gathered during bachelor course on Data struc-
tures and algorithms. During seminars the students solve programming tasks.
Each week is focused on training and acquiring skills of a concept such as stack,
binary tree, hash table, etc. The students solve the tasks in a learning system
Peoplia2 . Students can select to solve a simpler or more complex task focused on
acquiring skills of a concept. Students get points for their successful solutions.
In autumn semester 2013/14, 251 students enrolled in the course.

When a student submits a solution of a task to Peoplia, its correctness and
efficiency (time complexity) is evaluated. The solution is accepted if it is correct
and efficiency tests are successful. The student has unlimited number of submis-
sion attempts and the solutions are checked by a plagiarism detection system.
Estimation of a degree of student’s expertise of a concept c based on a student’s
correct solution l for a programming task t is calculated as follows:

Expc(s, t, l) = CX(t) ∗ EF (s, l) ∗ 1

log2(1 + CT (s, t))
, (1)

where CX(t) is complexity of the task t estimated based on a combination of
Logical Source Lines of Code (SLOC-L) and McCabe VG complexity metrics.
For calculation of SLOC-L we have adopted the definition from the CodeCount3.
EF (s, l) returns 1.5 if the student’s s submitted solution l is effective, otherwise
1. A solution is effective if its execution time is less than or is equal to a median
value of all execution times of submitted correct solutions for t (it is based on
preliminary experiments). CT (s, t) is a number of submitted solutions by the stu-
dent s for the task t (the last solution was accepted by Peoplia). The estimation
of a degree of student’s expertise of the course is calculated as

∑
i Expci(s, ti, li).

We estimated expertise for all students and compared our results to results
achieved on exam. 78 out of 251 students were not allowed to take the final exam
because they did not achieve the qualification criteria. Both values (estimated
expertise and points of the final exam) were normalized into the interval [0, 100].
To each student a pair (X,Y) is assigned, where X ∈ [0, 100] is a number of
points of the final exam and Y ∈ [0, 100] is the estimated student’s expertise.
Subsequently, the values in each pair were mapped as follows: A − [92, 100],
B − [83, 91], C − [74, 82], D − [65, 73], E − [56, 64], and FX − [0, 55].

2 Peoplia: http://www.peoplia.org/
3 USC CodeCount: http://sunset.usc.edu/research/CODECOUNT/

http://www.peoplia.org/
http://sunset.usc.edu/research/CODECOUNT/

Webification of Software Development 553

Fig. 1. Comparison of how automatic estimation of students’ expertise correlates with
exam results

The result of our experiment is illustrated in Figure 1. The number of concor-
dant pairs equals 143 and the number of discordant pairs equals 30. The total
number of pairs equals 173. We calculated precision as 0.83.

The idea of “webification” of software development which is based on viewing
software repositories as webs is not new. Already Knuth in 1984 presented the
idea that “a program is best thought of as a web”[3]. The novel aspect lies in
considering not only software artifacts but also users (developers) together with
their explicit and implicit feedback, which brings a new view on software and
software process metrics. It helps developers be more efficient and can enrich
them with the experience and knowledge of their colleagues while managers or
senior developers can get advantage of improved planning and decision support
via aggregation of statistical data for individual developers.

Acknowledgement. This work was partially supported by the Scientific Grant
Agency of the Slovak Republic, grant No. VG1/0675/11 and it is the partial
result of the Research & Development Operational Programme for the project
PerConIK, ITMS 26240220039, co-funded by the ERDF.

References

1. Bieliková, M., Polášek, I., Barla, M., Kuric, E., Rástočný, K., Tvarožek, J., Lacko,
P.: Platform independent software development monitoring: Design of an architec-
ture. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM
2014. LNCS, vol. 8327, pp. 126–137. Springer, Heidelberg (2014)

2. Fritz, T., Ou, J., Murphy, G.C., Murphy-Hill, E.: A degree-of-knowledge model to
capture source code familiarity. In: Proc. of the 32nd Int. Conf. on Softw. Eng.,
vol. 1, pp. 385–394. ACM, USA (2010)

3. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984)
4. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.

Cambridge University Press, USA (2008)
5. Minto, S., Murphy, G.C.: Recommending emergent teams. In: Proc. of the 4th Int.

Workshop on Mining Softw. Repositories. IEEE Computer Society, USA (2007)

Comparing Methods of Trend Assessment

Radek Malinský and Ivan Jeĺınek

Department of Computer Science and Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague,

Karlovo náměst́ı 13, 121 35 Prague, Czech republic
{malinrad,jelinek}@fel.cvut.cz

http://webing.felk.cvut.cz

Abstract. This paper deals with a comparison of selected webometric
methods for the evaluation of Internet trends. Each of the selected me-
thods uses a different methodology to the trend assessment: frequency,
polarity, source quality. It can be assumed that a combination of individ-
ual methods can provide much more accurate results with respect to the
desired area of interest. This will lead to improve the quality of search
engines on the principle of webometrics and thereby the reduction of ir-
relevant web search results. The introductory part of the paper explains
a concept and basic functional background for all selected webometric
methods.

Keywords: Webometrics, Web Mention Analysis, Sentiment Analysis,
Social Network Analysis, Trend Assessment.

1 Introduction

With the growing popularity of social networking and blogging, there have been
arising a large number of comments on various topics from many different types
of users on the web. Some of these comments may be totally unimportant to the
other Internet users. On the contrary, other comments might be very important,
and do not only for an ordinary user, but also for some commercial companies
that want to know a public opinion on price, quality and other factors of their
products.

However, web content diversity, variety of technologies and website structure
differences, all of these make the web a network of heterogeneous data, where
things are difficult to find for common internet users.

Web search engines are the easiest way to find specific information in such
diversified network for ordinary users. The search engines are based on complex
algorithms that allow search structured but also unstructured data sets and re-
turn the most relevant results in a correlation to user-entered query. Webometric
methods are often used as supportive assessment methods for search engines al-
gorithms; Web Mention Web Analysis, Sentiment Analysis and Social Network
Analysis are among the most widely used webometric methods.

Each of the selected methods uses a different methodology to the trend assess-
ment: frequency, polarity, source quality. It can be assumed that a combination

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 554–557, 2014.
c© Springer International Publishing Switzerland 2014

http://webing.felk.cvut.cz

Comparing Methods of Trend Assessment 555

of individual methods can provide much more accurate results with respect to
the desired area of interest. This will lead to improve the quality of search en-
gines on the principle of webometrics and thereby the reduction of irrelevant
web search results.

2 Selected Methods of Trend Assessment

Web Mention Analysis, Sentiment Analysis and Social Network Analysis are
among frequently used methods for searching and evaluating of web pages [7].
The selected methods were primarily chosen for their diversity and applicability
in various areas of web and social engineering; blogs and social networks are an
ideal data source for social science research because it contains vast amount of
information from many different users.

Web Mention Analysis [7] is used for the evaluation of the “web impact” of
documents or ideas by counting how often they are mentioned online. This idea
essentially originates due to a study of an academic research. The researches
wanted to know the place and the context which their works occurred in. This
approach is applied in a commercial search service Google Scholar [1], which
covers not only academic works but also journal articles, patents, etc. Another
example of the use of Web Mention Analysis is an identification of how often
and in which countries is some product (e.g. camera, book) mentioned online [2].

Sentiment Analysis or Opinion Mining [3], [4] enables us to automatically
detect opinions from structured but also unstructured data. The research in
this field originated from the demand of commercial companies, who wanted
to know public opinion on price, quality and other features of their products.
The classification of sentences or whole documents is very often based on the
identification of sentiments of individual words or phrases [5]. Several approaches
for the purpose have been explored and basically divided into three categories
[8]: full-text machine learning, lexicon-based methods and linguistic analysis.

Social Network Analysis is the mapping and measuring of relationships on the
web [2], [6]. A centrality is a part of the social network analysis, which is very
often used in the web link analysis [6]. The centrality is a single node feature,
which explains the node position in a network. It is for example used to determine
the most active collaborator in the collaboration scientific networks [2]. There
are several methods to measure the centrality of the nodes in a network [6].

3 Methodology of Study

The methods selected for the evaluation of the trends were compared over the
data from film industry. Blog posts published in 2012-2013 served as the data
source for this research. The five best rated movies which premiered in 2012 were
chosen as trends for the assessment. All movies were selected according to IMDb1

1 IMDb (Internet Movie Database) - an online database of information related to films,
http://www.imdb.com

http://www.imdb.com

556 R. Malinský and I. Jeĺınek

ranking, which is based on the site visitors rating. The rating is performed by
selecting a numeric value from 1 to 10; with 10 being the best.

Because it is very difficult to find a correlation among the methods, the output
of each assessment is represented as a list of movies rated from best (1) to worst
(5). Table 1 shows the evaluation of trends for each compared method. The
names of movies were for all comparing methods used as exact phrase searched
with quotes on both sides, e. g. “The Avengers”.

Table 1. Comparing Methods of Trend Assessment

Movie IMDb SA WMA SNA SNA+SA Rank

Django Unchained 2 3 5 4 3 4 (12)
Life of Pi 4 5 4 5 5 5 (14)

The Avengers 3 2 3 2 4 2 (7)
The Dark Knight Rises 1 1 1 1 1 1 (3)

The Hobbit: An Unexpected Journey 5 4 2 3 2 3 (9)

For Sentiment Analysis (SA), the surroundings of each searched expression
had been recognized and a list of sentences for the trend had been created. All
sentences were processed using Lexicon-Based method with SentiWordNet as a
lexicon of words. Web Mention Analysis (WMA) is based on counting how often
searched words were mentioned in the corpus of blog posts. For Social Network
Analysis (SNA), the Degree Centrality was used to determine the most read blog
posts and thereby to identify the trend assessment. The combination of methods
(SNA+SA) represents the evaluation of trends by using Sentiment Analysis for
only the most important blogs that were selected in the previous step through
Social Network Analysis.

Values in the column ”Rank” were determined by the sum of (SA)+(WMA)+
(SNA); result of the sum is given in parentheses. Trend assessment is represented
by the first number; lower sum means better ranking. The combination of me-
thods (SNA+SA) had not been included into the sum because its output does
not reflect all the data, but only the selected most important blogs are eval-
uated. The final ranking in the ”Rank” column in comparison with ranking in
the ”IMDb” column, it represents the rating difference between ”common users”
and ”film fans from IMDb”.

The result shows that movie The Dark Knight Rises was rated as the best
by all methods; it is also correlated with ranking from IMDb. On the contrary,
Django Unchained, very well ranked on IMDb, it did not gain too much popu-
larity on blogs (Rank is 4). This may be caused primarily by the value of WMA,
which shows that this movie was at least mentioned on the web in comparison
with other movies. Another important influence of the overall assessment by
WMA is observed on the The Hobbit: An Unexpected Journey. This movie was
the worst rated of the selected set of movies from IMDb. This negative evalu-
ation is also reflected by SA, which shows the high number of negative words.
However, the low value of WMA proves that the movie was high interested.

Comparing Methods of Trend Assessment 557

4 Conclusion

We have selected three webometric methods, which are often used as supportive
search engines assessment algorithms. Each of the selected methods was used to
analyze five trends (movie titles) over a set of blog posts published in 2012-2013.
The output of the analysis is by popularity ordered ranking of trends (movies).

The output of each method represents a different view on the evaluation of
trends: Web Mention Analysis - emphasizes the frequency of blog posts that
mention the trend; Sentiment Analysis - defines the output based on the pos-
itive / negative feedback from bloggers; Social Network Analysis – defines the
output by quality of blogs that mention the trend. The combination of individ-
ual methods can provide much more accurate results with respect to the desired
area of interest. In our case the ranking defined by the all three methods in
comparison with ranking from IMDb represents the rating difference between
”common users” and ”film fans from IMDb”.

The subject of future work is especially in the finding a correlation among
the methods. This means to define criteria for quality assessment of found infor-
mation, and ”distance” among each trend. On this basis, rules for evaluation of
semantic content in relation to user’s queries can be designed.

Acknowledgments. This research has been supported by the Grant Agency of
the Czech Technical University in Prague, grant No. SGS12/149/OHK3/2T/13.

References

1. Gehanno, J. F., Rollin, L., Darmoni, S.: Is the coverage of Google Scholar enough
to be used alone for systematic reviews. BMC medical informatics and decision
making. Vol 13, No. 1 (2013)

2. Han, S. K., Shin, D., Jung, J. Y., Park, J.: Exploring the relationship between
keywords and feed elements in blog post search. World Wide Web. 12:381–398 (2009)

3. Jagtap, V. S., Pawar, K.: Analysis of different approaches to Sentence-Level Senti-
ment Classification. In International Journal of Scientific Engineering and Technol-
ogy. Vol. 2, No. 3, 164-170 (2013)

4. Liu, B.: Sentiment analysis and opinion mining. In Synthesis Lectures on Human
Language Technologies. Vol. 5, No. 1, 1-167 (2012)

5. Montejo-Ráez, A., Mart́ınez-Cámara, E., Mart́ın-Valdivia, M. T., Urena-López, L.
A.: Ranked WordNet Graph for Sentiment Polarity Classification in Twitter. In
Computer Speech & Language. Vol. 41, No. 11, 373-381 (2013)

6. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion min-
ing. Proceedings of the Seventh conference on International Language Resources
and Evaluation (LREC’10), Valletta, Malta (2010)

7. Thelwall, M.: Introduction to webometrics: Quantitative web research for the social
sciences. San Rafael, CA: Morgan & Claypool (2009)

8. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in twitter events. Journal of the
American Society for Information Science and Technology. 62:406–418 (2011)

Exploiting Different Bioinformatics Resources

for Enhancing Content Recommendations

Abdullah Almuhaimeed� and Maria Fasli

University of Essex
{ansalm,mfasli}@essex.ac.uk

Abstract. To assist the user in his/her quest for information it may
be possible to draw and combine information from multiple resources
in order to provide more accurate answers/recommendations. Resources
can be structured (such as ontologies and taxonomies) or unstructured
(corpora). The purpose of this work is to explore how better recom-
mendations can be provided to users by mining and exploiting semantic
relations, hidden associations, and overlapping information between var-
ious concepts in multiple bioinformatics resources such as ontologies,
websites, and corpora. The work also utilizes users’ interests to enhance
the provided recommendations. A number of techniques will be explored
and developed, including ontology mapping, reasoning with multiple re-
sources, and constructing adaptive user profiles.

Keywords: Semantic Techniques, Recommendations & Bioinformatics.

1 Introduction

Given the recent advances in the field of Bioinformatics, a lot more information
has become available online. However, searching for such information may not
necessarily be easy as resources remain unconnected and current search engine
and recommendation systems are not able to combine information that may ex-
ist in different resources in order to better understand the user request, enrich
it and then use it in order to extract more accurate information to satisfy the
users’ needs. For instance, Middleton et al. [5] developed a recommender ap-
proach which provides recommendations on online academic papers. It uses a
single source (i.e. ontology) to enrich a user profile and draws recommendations
based on this enrichment. This approach does not take into account the avail-
ability of multiple sources of information (ontologies, taxonomies, etc.) to enrich
the user profile, and as a result this may decrease the accuracy of the provided
recommendations. The motivation of this work is to bridge this gap by using
multiple sources to provide the user with more accurate and rich recommenda-
tions. We also aim to develop techniques that infer semantic relations and hidden
associations from different bioinformatics resources which we subsequently ex-
ploit to enhance the precision of the provided recommendations, while we also
make use of user profiles to further tailor the recommendations provided.

� PhD student, School of Computer Science & Electronic Engineering.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 558–561, 2014.
c© Springer International Publishing Switzerland 2014

Exploiting Different Bioinformatics Resources 559

2 Background

Ding et al. [1] purports that ontologies are a fundamental concept in the Semantic
Web, used to represent researcher perspectives about a domain in a conceptu-
alised manner. A number of formal languages have been developed to represent
ontologies such as Resource Description Framework (RDF), Resource Descrip-
tion Framework Schema (RDFs) [6], and Web Ontology Language (OWL) [3].
Reasoning with multiple resources is an increasing need due to the large amount
of resources contained on the Web. There are several challenges that need to be
overcome in performing reasoning through different resources. These resources
may have different structures and may not necessarily be compatible, which may
lead to inconsistencies during the reasoning process [2]. In addition to exploiting
semantic relations between bioinformatics resources, user profiles represent an
important source of information providing recommendations to users. User pro-
files can be constructed based on different methods. The data used to construct
user profiles can be classified into two types: static and dynamic data. Static
which does not change very frequently, such as names. Dynamic information
represents user preferences that can be collected explicitly or implicitly [4].

3 The Recommender Approach

This research contributes to developing semantic-based methods for identifying
relations and hidden associations extracted from bioinformatics resources (e.g.
ontologies such as Protein Ontology (PO)1, Gene Ontology (GO)2, Open Direc-
tory Project (ODP)3 and Bioinformatics Links Directory (BLD)4 and corpora
such as Wikipedia). By studying such resources, we have concluded that there
is implicit information that can be extracted through semantic analysis and our
central hypothesis is that this can be used in providing better recommendations
to users. In addition, we want to tailor-make the recommendations to user needs
based on their profiles which will be automatically constructed by collecting
user preferences and interests implicitly. We aim to demonstrate our methods
through providing recommendations to bioinformaticians on the most relevant
content (i.e. articles) from the bioinformatics corpus BMC5.

Our work consists of two branches: (i) developing methods for extracting
semantic information from multiple resources (such as ontologies, taxonomies,
Wikipedia) and reasoning with this information to obtain new relations; (ii) con-
structing an ontological user profile based on information extracted implicitly
from the user surfed sessions as well as interaction with the system. The infor-
mation from (i) and (ii) is then combined to enrich the user query and provide
more accurate recommendations to users.

1 http://pir.georgetown.edu/pro/
2 http://geneontology.org/
3 http://www.dmoz.org/
4 http://bioinformatics.ca/links_directory/
5 http://code.google.com/p/bmc-bioinformatics-processed-corpus/

http://pir.georgetown.edu/pro/
http://geneontology.org/
http://www.dmoz.org/
http://bioinformatics.ca/links_directory/
http://code.google.com/p/bmc-bioinformatics-processed-corpus/

560 A. Almuhaimeed and M. Fasli

Fig. 1. Recommender System Structure

We first aim to develop a rea-
soning method to exploit overlapping
information between different bioin-
formatics resources such PO1,
GO2, etc., and to extract semantic
relations and hidden associations be-
tween different classes. This method
uses SPARQL6 queries to extract in-
formation, and provides them to the
reasoner which combines them with
semantic rules to infer new relations
that may exist among resources. As
a result, a semantic network is cre-
ated which represents the extracted
semantic relations and hidden associ-
ations from the intersection between
different resources. This includes new
identified relations, not found in the
original resources. Users’ profiles will then be boosted by adding the relevant
information from this network.

We suppose that such enrichment contributes to enhancing the precision and
accuracy of the returned results and recommendations. There are several chal-
lenges that need to be overcome in this branch of work in that the resources’
structure may contain inconsistencies, resources may get updated or further de-
veloped and hence the system needs to take this into account, and exploiting
semantic relations to enhance recommendations may not be straightforward. The
contribution of our approach will be in its ability to handle different resources
with various structures such as ontologies and corpora and employing extracted
semantic relations, such as siblings relations, between multiple resources to
enhance the accuracy of the articles’ recommendations.

Among the requirements to reach our goal of providing a user with recom-
mendations that are drawn from multiple resources is constructing an adaptive
ontological profile based on a bioinformatics ontology (i.e. ODP3 bioinformatics
branch). This profile will be equipped with mechanisms to perform the main
tasks (i.e. add, update, and delete). All of the aforementioned tasks will be
handled automatically. An adaptive user profile needs to be created and exam-
ined in a manner that reflects the user’s interests. This profile should be able
to accommodate the frequent changes of the user preferences, the enrichment
with valuable information that is gained from the semantic network and pro-
viding fully automated solutions. This approach will be fully automated and
tailor recommendations to each user individually based on his/her preferred
topics.

6 http://www.w3.org/TR/rdf-sparql-query/query

http://www.w3.org/TR/rdf-sparql-query/query

Exploiting Different Bioinformatics Resources 561

4 Bioinformatics Recommender Pipeline

For assessing our recommendation approach, a system pipeline (Figure 1) was
put together as follows: a user is interested in identifying articles of interest and
will enter a bioinformatics concept (query) to be searched in the BMC5 corpus.
We use the Lucene7 search engine to index and retrieve data from the corpus.
A method has been created to automatically collect user’s interests from surfed
sessions and we subsequently calculate their similarity with the ODP3 ontology
to construct ontological user profiles. The semantic network will enrich the user’s
query with valuable information that is acquired from multiple resources. If the
same class has been found in more than one resource, our approach can exploit
any associated extra information but avoids duplication and repetition. The
results (i.e. articles) are re-ranked and returned based on the highest degree
of similarity to the user’s preferences and the enrichment of the query that is
provided by the semantic network. In this pipeline, we target the recommender
system, semantic network and user profile. In addition, each user is presented
with a hyperlink which contains some recommendations related to the entered
query as well as the top five interests stored in the user profile.

5 Conclusion

This research aims to provide a set of new methods to improve recommendations.
This includes a personalised recommender service, a mechanism for reasoning
through multiple resources and extracting semantic relations and hidden asso-
ciations. This service should include modelling and learning automatic adaptive
user profiles, a method for representing semantic relations and hidden associa-
tions, and a method for filtering user interests. Finally, we have constructed the
main blocks of our recommender approach to assess to what extent our assump-
tion assists in enhancing the precision of the provided recommendations. We are
currently preparing to run an experiment with the aid of bioinformaticians.

References

1. Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web: A
survey. In: Ontologies, pp. 79–113. Springer (2007)

2. Huang, Z., Van Harmelen, F.: Using semantic distances for reasoning with incon-
sistent ontologies. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 178–194.
Springer, Heidelberg (2008)

3. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.
W3C Recommendation 10(2004-03) (2004)

4. Mezghani, M., Zayani, C.A., Amous, I., Gargouri, F.: A user profile modelling using
social annotations: a survey. In: WWW 2012, pp. 969–976 (2012)

5. Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in rec-
ommender systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)

6. Miller, E.: An introduction to the resource description framework. Bulletin of the
American Society for Information Science and Technology (1998)

7 https://lucene.apache.org/core/

https://lucene.apache.org/core/

Methodologies for the Development

of Crowd and Social-Based Applications�

Andrea Mauri

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano. Piazza Leonardo da Vinci, 32. 20133 Milano, Italy

andrea.mauri@polimi.it

Abstract. Even though search systems are very efficient in retrieving
world-wide information, they cannot capture some peculiar aspects of
user needs, such as subjective opinions, or information that require lo-
cal or domain specific expertise. In these scenarios the knowledge of an
expert or a friend’s advice can be more useful than any information re-
trieved by a search system. This way of exploiting human knowledge
for information seeking and computational task is called Crowdsourc-
ing. The main objective of this work is to develop methodologies for
the creation of applications based on Crowdsourcing and social interac-
tion. The outcome will be a framework based on model-driven approach
that will allow end user to develop their own application with a fraction
of the effort required by the traditional approaches. It will guarantee a
strong control of the execution of the crowdsourcing task by mean of a
declarative specification of objectives and quality measures. A prototype
will be developed that will allow the creation and execution of task on
various platforms. Validation of the approach will consist of quantita-
tive and qualitative analysis of results and performance of the system
upon some sample scenarios, where real users from social networks and
crowdsourcing platforms will be involved.

1 Introduction

Crowd-based applications are becoming more and more widespread [4]; their
common aspect is that they deal with solving a problem by involving a vast set
of performers, who are typically extracted from a wide population (the ”crowd”).
In a typical crowdsourcing scenario is presente a requester, who is the one who
want to solve a problem with a crowdsourcing campaign (a set of one or more
tasks created to fulfill an objective), a set of responders, which are the people who
perform some tasks and provide answers, and finally the system that organize
the tasks and collect the results.

The main objective of the requester is to solve his problem while making the
best use of responder’s availability and reliability so as to get the best possible
result for his campaign. For instance he wants to maximize the quality while
minimizing the cost and time.

� This research is developed under the supervision of Professor Marco Brambilla.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 562–566, 2014.
c© Springer International Publishing Switzerland 2014

Methodologies for the Development of Crowd and Social-Based Applications 563

Crowdsourcing is applied to different fields and within various communities,
including information retrieval, databases [5], artificial intelligence and social
sciences.

Moreover different platforms can be used to perform this activity, ranging from
the classical crowdsourcingmarketplaces (e.g AmazonMechanical Turk), to ques-
tion answering systems (e.g Quora1) and generic social networks (e.g Facebook).

Large crowds may take part to human computation for a variety of motiva-
tions, which include non-monetary ones, such as public recognition, fun, or the
genuine wish of contributing their knowledge to a social process.

In this situation different issues arise: each type of scenario is characterized
by a peculiar set of needs and requirements, that need to be mapped to the
particular platform,that usually is not flexible, as it do not support a high-level,
fine-tuned control upon posting and retracting tasks.

For instance if the requester wants to post and control a crowdsourcing task on
Amazon Mechanical Turk he has to code the implementation with imperative
and low-level programming language or using a framework like Turkit [10]. If
he wants to exploit the relations between people, he may want to use a social
network as crowdsourcing platform. In this case the requester has to directly use
the API provided by the social network.

The objective of this work is to develop methodologies for creating applica-
tions that leverage the knowledge of the crowd or social communities. The ap-
proach developed should be platform agnostic and allow the requester to create
his application without having strong technical knowledge.

Thus the research questions that lead this work are: (1)What are the main
features of a crowdsourcing campaign ?(2)How can I abstract all these character-
istics in a agnostic metamodel? (3) How can this model be used to facilitate the
development of a crowd or social based application maximizing its performance?

2 The Approach

In this work I define a top-down approach to application design that adopts an
abstract model of crowdsourcing activities in terms of elementary task opera-
tions (such as: labeling, liking, sorting, classifying, grouping) performed upon a
data set. Starting from operations, strategies are defined for task splitting, repli-
cation, and assignment to performers. I also define the data structures which are
needed for controlling the planning, execution, and reactive control of crowd-
based applications.

The whole process follow a model driven approach, in which the data struc-
tures needed for the execution of the application are automatically generated
starting from the abstract description of the crowdsourcing task.

Figure 1 shows an example of such process (taken from [3]). On the top there
is the model, while on the bottom there are the instances. The image shows how
the model-driven process generates the structure needed for the execution and
control. The metamodel(1) describes which operation needs to be performed

1 www.quora.com

www.quora.com

564 A. Mauri

Task Type Object Type

AttributeOperation Type

*

Performer

Task Politician
*

*

Object Attr.

Output Attr.

⎧

⎫

⎨
Politician:

ObjectType

LastName:
Attribute

Photo:
Attribute

Classify by
Political Party:

TaskType

MODEL

TRANSF.

(M
T1)

MODEL
TRANSF.

(MT2)

Classify:
OperationType μTask723:

μTask

J. F. Kennedy:
Politician

J. F. Kennedy:
Politician

Classify by
Political Party:

Task

M
O

D
E

L
LE

V
E

L
IN

S
TA

N
C

E
 L

E
V

E
L Ken

ne
dy

JFK
.jpg

La
stN

am
e

Pho
to

Par
ty

NU
LL

3

4 6

Op. Parameter

Republican
Party:

OpParameter

Democratic
Party:

OpParameter

2

*

*

Classify by
Political Party:

Task

Luigi:
Performer

Mario:
Performer

George Bush:
Politician

μTask

Performer

TaskPolitician

*

Status

5

*

*

Mario:
Performer

George Bush:
Politician

Barak Obama:
Politician

<<instance-of>>

<<instance-of>>

<<instance-of>>

1

OpT
yp

es

Par
am

ete
rs

Name
Platform

Oba
m

a

BO
.jpg

NU
LL

METAMODEL STRUCTURAL MODEL

LastName

Party
Photo

Non-spammer

*
Status
StartTs
EndTs

Status

WORKPLAN MODEL

Bush
GB.jpg
NULL

Party

Fig. 1. The model transformations that generate the needed data structure starting
from the abstract model

and the schema of the data to be used. The first model transformation gener-
ate the structural model(3), that contains all the information needed for the
execution of the task. Then the second transformation generate the structure
needed for the control (the workplan model(5)) . This model is composed by
the control mart, that is analogous to data marts used for data warehous-
ing [6] as its central entity represents the facts, surrounded by three dimension
tables, and the aggregate tables (Performer, Object and Task), that contain
aggregate information.

Control is performed on top of this last model by mean of declarative rules. A
rule is composed by an event, condition and action. An event is triggered when
a change in the control mart occurs, a condition is a predicate that must be
satisfied in order to execute the action, finally, an action is a modification of the
control mart and aggregate tables.

Together to the conceptual approach, a concrete prototype was developed2.
Early results were published in [3].

3 Related Work

Most current approaches rely on an imperative programming models to specify
the interaction with crowdsourcing services. For instance Turkit [10] offers a
scripting language for programming iterative tasks on Amazon Mechanical Turk.
RABJ [8] offers very simple built-in control logic, while complex controls are
externalized to client applications written in HTML and Javascript. Another
example is Jabberwocky [1], a framework that transparently manages several
crowdsourcing platforms and can be procedurally programmed.

2 http://crowdsearcher.search-computing.org/

http://crowdsearcher.search-computing.org/

Methodologies for the Development of Crowd and Social-Based Applications 565

Other works propose approaches for human computation which are based
on high-level abstractions, sometimes of declarative nature. For example in [13]
the authors propose a language that interleaves human-computable functions,
standard relational operators and algorithmic computation in a declarative way.
Qurk [11] exploits a relational data model, SQL to express queries, and a UDF-
like approach to specify human tasks. CrowdDB [5] also adopts a declarative
approach by extending SQL both as a language for modeling data and to ask
queries; human tasks are modeled as crowd operators in query plan, from which
it is possible to semi-automatically derive task execution interfaces. Similarly, the
DeCo [14] system allows SQL queries to be executed on a crowd-enriched data-
source. Finally CrowdLang [12] supports workflow design and execution of tasks
involving human and machine activities, it incorporates explicit abstractions for
group decision processes and human computation tasks. None of the these works
face the problem of specifying the control associated with the execution of human
tasks, leaving its management to opaque optimization strategies. Moreover all
these systems and researches either deal with a single specific problem (and they
focus on a single deployment platform) or they focus on a single aspect of the
crowdsourcing campaign.

4 Conclusions and Future Work

The model and the process described in this paper are the starting point of my
PhD work. Future steps will consist in extending the conceptual framework in
the following way:

– Crowdsourcing workflow: In the current model the crowdsourcing cam-
paign is composed by a single task, while complex problems need to be
solved by coordinating different tasks. An example of this kind of problem
is the creation and modification of content, where is difficult to evaluate and
aggregate the outcome of a given task. Previous works face the problem of
designing and executing workflow of tasks focusing on a specific domain [2][7]
or develop a programmatic approach based on a single execution platform
[9]. I aim to start from the existing model of the task extending the existing
concepts in order to support task coordination.

– Higher level of abstraction: The requester needs to directly configure the
task to be performed and has to program himself the control rules (if not
provided by the system). Raising the level of abstraction of the model allows
to automatically generate the correct strategies and control rules needed to
solve the problem.

– Optimization problem: There are several possible task configurations
suited to solve a particular problem. In this case it’s interesting to study
the problem of finding the optimal configuration. To achieve this, specific
metrics are needed in order to evaluate the effectiveness of a selected ap-
proach.

In parallel the development of the prototype will be carried on in order to support
the evolution of the conceptual model.

566 A. Mauri

References

[1] Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming
environment for structured social computing. In: UIST 2011, pp. 53–64. ACM
(2011)

[2] Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ackerman, M.S., Karger,
D.R., Crowell, D., Panovich, K.: Soylent: a word processor with a crowd inside.
In: Proceedings of the 23rd Annual ACM Symposium on User Interface Software
and Technology, UIST 2010, pp. 313–322. ACM, New York (2010)

[3] Bozzon, A., Brambilla, M., Ceri, S., Mauri, A.: Reactive crowdsourcing. In: 22nd
World Wide Web Conf., WWW 2013, pp. 153–164 (2013)

[4] Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

[5] Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: Crowddb: an-
swering queries with crowdsourcing. In: ACM SIGMOD 2011, pp. 61–72. ACM
(2011)

[6] Inmon, W.H.: Building the Data Warehouse. John Wiley & Sons, Inc., New York
(1992)

[7] Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: Crowdforge: Crowdsourcing com-
plex work. In: Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology, UIST 2011, pp. 43–52. ACM, New York (2011)

[8] Kochhar, S., Mazzocchi, S., Paritosh, P.: The anatomy of a large-scale human
computation engine. In: HCOMP 2010, pp. 10–17. ACM (2010)

[9] Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows
with turkomatic. In: Proceedings of the ACM 2012 Conference on Computer Sup-
ported Cooperative Work, CSCW 2012, pp. 1003–1012. ACM, New York (2012)

[10] Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: tools for iterative
tasks on mechanical turk. In: HCOMP 2009, pp. 29–30. ACM (2009)

[11] Marcus, A., Wu, E., Madden, S., Miller, R.C.: Crowdsourced databases:
Query processing with people. In: CIDR 2011, pp. 211–214 (January 2011),
www.cidrdb.org

[12] Minder, P., Bernstein, A.: How to translate a book within an hour: towards general
purpose programmable human computers with crowdlang. In: WebScience 2012,
Evanston, IL, USA, pp. 209–212. ACM (January 2012)

[13] Parameswaran, A.G., Polyzotis, N.: Answering queries using humans, algorithms
and databases. In: CIDR 2011, Asilomar, CA, USA, pp. 160–166 (January 2011)

[14] Park, H., Pang, R., Parameswaran, A.G., Garcia-Molina, H., Polyzotis, N.,
Widom, J.: Deco: A system for declarative crowdsourcing. PVLDB 5(12), 1990–
1993 (2012)

www.cidrdb.org

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 567–570, 2014.
© Springer International Publishing Switzerland 2014

Using Semantic Techniques to Improve Service
Composition by End Users

Giuseppe Desolda

Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro
via Orabona, 4, 70125 - Bari, Italy
giuseppe.desolda@uniba.it

Abstract. My PhD research focuses on supporting non-technical end users to
flexibly integrate, into personal interactive workspaces, heterogeneous services
available in the Web, in order to satisfy their own personal needs in various
contexts of daily life. End users should be enabled to shape their application at
use time, and also supported on identifying data and services of interests. The
latter requirement addresses an issue about improving the quality of the re-
trieved services with respect to the end user’s goal. As described in this paper, a
direction that I am exploring refers to the use of linked open data as a new
source of data to be exploited, in order to better fulfill the end user’s desires.

Keywords: Composition Paradigms, End-User Development, Linked Data.

1 Introduction

Nowadays we are facing the increasing amount of data and services available on In-
ternet. This situation, together with the opportunities offered by Web 2.0, stimulates
researchers to investigate new ways for effectively allowing laypeople, i.e., end users
without expertise in programming (often called end users in the rest of this paper), to
access, manipulate, and combine different kinds of resources in order to generate
personalized contents and applications. Mashups have been very much investigated in
the last years; they are applications assembled by end users through the integration of
heterogeneous resources (APIs, databases, spreadsheets, HTML pages, etc.), in order
to solve situational needs. Unfortunately, the proposed mashup platforms are not very
end-user oriented [1]. Some mashup tools provide graphical user interfaces for com-
bining services, but the adopted visual composition languages are not suitable for end
users, who have difficulties in understanding the integration logic (e.g. data flow,
parameter coupling) [2]. Moreover, platforms are usually general purpose and not
adequate to the needs of specific application domains and specific end users.

The research I’m interested for my PhD aims at empowering end users to create
personal interactive workspaces by combining End User Development (EUD) prin-
ciples with mashup methodologies and techniques. In this way, services available on
the Web can be composed to create new contents and applications by using intuitive
and easy-to-use composition mechanisms and platforms. The first couple of years of
my research, I investigated recent proposals of mashup compositions and identified

568 G. Desolda

models and techniques derived from the lessons learned on End-User Development;
they were used in developing a novel methodology and the prototype of a platform for
service and data composition to satisfy end users’ needs [3]. A key point is that the
platform has to offer mechanisms to be customized to a specific domain in which it
has to be used, so that, capitalizing on the knowledge of the people working in that
domain, it can offer a composition process that is adequate to such people. Thus, the
developed platform is based on a meta-design approach and a novel stratification into
different design layers. Meta-design permits the involvement of different stakeholders
in the design: the first phase (the meta-design phase) is performed by professional
developers and consists of designing software environments that allow some stake-
holders (including domain experts) to create templates, basic elements, and software
environments appropriate for end users in the specific application domain, making
possible the domain customization; in the second phase, using such environments, end
users are able to compose their Personal Information Space (PIS), in which they inte-
grate and manipulate services of interest. Thus, as explained in details in [3], there are
different design layers: at the top layer, professional developers create software envi-
ronments, services descriptors and visual templates for other stakeholders by using an
integrated development environment; at the middle layer, domain experts and profes-
sional developers perform participatory design to customize the platform by selecting
visual templates and registering and composing services; at the bottom layer, end
users can create, use and update their PIS.

2 Using Linked Open Data

User studies recently performed indicated new requirements, such as adding new
services, changing their visualization, composing different services. In [4], prototypes
developed to satisfy such requirements are presented. Moreover, a need for mashup
data quality emerged. From the end users’ point of view, data quality also refers to the
amount of information provided by the retrieved services and its appropriateness to
their needs [5]. Actually, some people using the platform prototype observed that few
information were retrieved and with few details, compared to what they expected.
This because end users are very diverse and have a great variety of needs. Often, not
only a single service does not provide the required information, but even the mashup
of more services is not capable to completely satisfy end users, who are increasingly
more demanding.

I present here an approach that exploits linked data as a new source to be combined
with services: it overcomes the above problem of data quality by adding semantic
annotations to the services. Previous proposals tried to annotate services on the basis
of manual or semi-automatic approaches [6]. The novelty of this approach is that it
exploits automatic annotation of services, as described after the following scenario.

Scenario. Tony, the main persona of this scenario, is an organizer of entertainment
events. He is looking for a musician for a local event he is organizing. He has added
to his workspace Grooveshark, a service that, receiving in input the name of a musical
artist, retrieves her albums and songs. Tony wants to know details like age, band,
birthplace, etc. To find these details, Tony looks in the platform for some services to
be combined with Grooveshark, but he is very disappointed because he does not find

 Using Semantic Techniques to Improve Service Composition by End Users 569

anything. How can linked data be useful to solve Tony’s problem? The use of linked
data enable Tony to query a knowledge base and have support in finding relevant data
to be composed with other services.

The term linked data refers to best practices for publishing and linking structured
data on the Web. Because they have been adopted by an increasing number of data
providers, a global data space containing billions of assertions - the Web of Data –
has been created. Linked data will be implemented in our platform by building a
meta-layer over the registered services. In this layer, all relevant properties (input,
output, etc.) of registered services are annotated by using classes’ name of the ontolo-
gies adopted in the knowledge base of reference. This approach faces some critical
issues: 1) identification of significant service properties to annotate; 2) how to label
these properties, manually or automatically; 3) how to use these annotations to ‘con-
nect’ services with linked data. For 1), being the considered mashups a composition
of services oriented to information retrieval, the important properties are input query,
output attributes and topic of service. For 2), a solution to automatically annotate
services is the following. For each service offered by the platform, the platform ad-
ministrator produces some significant query examples, which are used by an annota-
tion engine to query these services and to collect many instances. Afterwards, for each
service the automatic annotation phase starts: for each instance of each service
attribute, the annotation engine queries a knowledge base, e.g. DBpedia, and obtains a
set of classes related to the specific attribute instance. An algorithm establishes, for
each attribute, the most important classes. The annotation engine annotates each
attribute using the relevant classes. The same procedure is applied to the input
attribute. This flow is summarized in this pseudo-code.

Annotation algorithm

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

Input: Set T of Triples t=(s,A,Q), s is a service, A is a set of attributes a for s, and Q is a set of query on s
for each t ∈ T do
 create I as empty set of instances results for queries
 for each q ∈ Q do
 query s by using q and collect instances results into I
 end for
 for each attribute a of s do
 create L as empty set of label for a
 for each i ∈ I do
 query DBpedia by using value of i respect to a and obtain a set C of classes
 put values of C into L
 end for
 annotate a by choosing most important class of L
 end for
end for

Starting from the annotation of service attributes, an algorithm establishes the ser-
vice topic. The proposed approach will be empowered by investigating recent algo-
rithms and techniques proposed in ontology matching research area [7] and methods
of semantic annotation of Web service based on DBpedia [8]. The result is a meta-
level to each service that describes attributes in term of classes of an ontology. For
example, in the case of our previous scenario, the artist_name attribute of Groove-
shark is annotated with the Musical_artist class contained in DBpedia ontology. The
most critical point is the third problem: how the system can exploit these annotations?

570 G. Desolda

To cover the lack of information of previous scenario, the platform offers Tony the
opportunity to use DBpedia as new data source. When Tony, starting from Groove-
shark, opens DBpedia source in the mashup platform to add details, the system re-
trieves the classes used to annotate the artist_name attribute (Musical_artist in the
previous example) and accesses to the DBpedia ontology to retrieve all possible links
of the Musical_artist class with other classes or properties like age, instrument, style,
etc. Tony can choose some of these links so that he can view in his future searches
new artist’s details contained in DBpedia.

This approach allows end users to deal linked data as new rich knowledge base
connected with each service through an automatically built meta-layer transparent to
the end user. However, this solution presents some open questions: how many classes
have to be used to annotate services? How the system should choose the correct ab-
straction level of the class respect to the ontology? If the links of thighs to show to the
users are too many, how the system should visualize all these information?

Acknowledgments. This work is partially supported by Italian Ministry of University
and Research, grant VINCENTE, and by Ministry of Economic Development
(MISE), grant LOGIN.

References

1. Casati, F.: How End-User Development Will Save Composition Technologies from Their
Continuing Failures. In: Costabile, M.F., Dittrich, Y., Fischer, G., Piccinno, A. (eds.)
IS-EUD 2011. LNCS, vol. 6654, pp. 4–6. Springer, Heidelberg (2011)

2. Namoun, A., Nestler, T., De Angeli, A.: Conceptual and Usability Issues in the Composable
Web of Software Services. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385,
pp. 396–407. Springer, Heidelberg (2010)

3. Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A., Picozzi,
M.: User-driven visual composition of service-based interactive spaces. Journal of Visual
Languages & Computing (in print)

4. Ardito, C., Costabile, M.F., Desolda, G., Lanzillotti, R., Matera, M., Picozzi, M.: Visual
Composition of Data Sources by End-Users. In: Proc. of AVI 2014 (in print, 2014)

5. Picozzi, M., Rodolfi, M., Cappiello, C., Matera, M.: Quality-Based Recommendations for
Mashup Composition. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp.
360–371. Springer, Heidelberg (2010)

6. Zeshan, F.: Semantic Web Service Composition Approaches: Overview and Limitations.
Int. Journ. of New Computer Architectures and their Applications 3(1) (2011)

7. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Challenges. IEEE
Transactions on Knowledge and Data Engineering 25(1), 158–176 (2013)

8. Zhen, Z., Shizhan, C., Zhiyong, F.: Semantic Annotation for Web Services Based on
DBpedia. In: IEEE Int. Symp. on Service Oriented System Eng., pp. 280–285 (2013)

Social Search

Marc Najork

Microsoft Research
1065 La Avenida, Mountain View, CA 94043, USA

Abstract. “Social Search” refers to two aspects of the integration of
web search with social networks: how queries to a search engine may
surface (socially) relevant content from social networks, and how signals
from social networks may influence the (personalized) ranking of search
results. The first part of the talk surveys the integration of Bing with
Facebook, Twitter, Quora, Foursquare, LinkedIn, Klout, and other so-
cial platforms. The second part focuses on two technical details of this
integration: a measure for quantifying the “affinity” between two users of
a social network and an efficient algorithm for computing that measure,
and a method for efficiently surfacing pages “liked” by your friends from
a document-sharded index. The final part discusses limitations of social
search, such as skewed demographics and weak homophily.

Keywords: Web search, social networks, social search.

1 Introduction

In this talk, I discuss the integration of web search with social networks. “Social
Search” refers to two distinct aspects of this integration: how a user’s queries to a
search engine may surface content from social networks (possibly authored by the
searcher’s connections on that network), and how signals from social networks
(say, the fact that a friend “liked” a web page) may influence the personalized
ranking of algorithmic search results.

The talk is divided into three parts. In the first part, I survey the integration
of Microsoft’s Bing Search engine with various social platforms, including Face-
book, Twitter, Quora, Foursquare, LinkedIn, Klout, and others. Bing surfaces
relevant content from multiple social networks, whether it is public or authored
by the searcher’s connections on each network. It also promotes algorithmic
search results that were endorsed by the user’s friends, or that are trending
social media platforms.

Bing pays particular attention to “people search”, queries meant to retrieve
relevant information about a person. Celebrity search is a well-studied problem,
and retrieval precision is high, but this is less true for non-celebrity people search,
due to the ambiguity of common names. Bing uses separation in social networks
to surface individuals in the searcher’s extended social circle. Furthermore, it
allows registered users to claim content related to them, thereby making it pos-
sible to cluster people search results by individual. Finally, it shows summaries

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 571–572, 2014.
c© Springer International Publishing Switzerland 2014

572 M. Najork

of LinkedIn profiles directly on the results page. For celebrity searches, it will
similarly show their presence in social media prominently on the results page
together with related postings.

The second portion of the talk focuses on two technical details of Social Search.
First, I describe an “affinity” measure [3] for quantifying how robustly connected
two nodes in a graph (or two users of a social networks) are, or more precisely,
what fraction of the graph’s edges can be deleted before the nodes become dis-
connected. The affinity measure can be efficiently estimated by a randomized,
sketch-based algorithm. The off-line phase of that algorithm computes a fixed-
size sketch for each node of the graph, capturing a representative of its connected
component at various levels of edge deletion. The online phase consists of retriev-
ing the sketches of two nodes and performing a pointwise comparison on them
to compute the affinity. The space complexity of the algorithm is O(n), the time
complexity of the off-line phase is O(α(n)) (the complexity of union-find with
path compression), while the time complexity of the online phase is O(1).

Second, I discuss an approach for efficiently retrieving web pages “liked” by
a user’s friends. While seemingly trivial, it is challenging to integrate this func-
tionality into a document-sharded distributed search index [2]. In such a setting,
queries are distributed from a front-end to many index servers (each holding a
part of the index), and results are sent back. Because of network constraints,
both query and result transfers should be small; in particular, it is neither fea-
sible to send the full set of the searcher’s friends down the distribution tree, nor
to send the full set of results up the aggregation tree. Moreover, social graphs
can be very large and change continuously, making it impractical to maintain a
copy of the graph on each index server.

The final part of the talk confesses to some of the limitations of Social Search;
namely, that many social networks have skewed demographics [4] (in terms of
gender, race, age, education and income), making it dangerous to generalize
trends in networks to the overall population; and that while a user’s actions on
social networks is predictive of their proclivities [1], it is not clear that these pref-
erences transfer to their “virtual” friends. Finally, it is challenging to “separate
the wheat from the chafe” – to identify salient posts in a sea of the mundane.

References

1. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable
from digital records of human behavior. Proceedings of the National Academy of
Sciences, 5802–5805 (2013)

2. Najork, M.A., Panigrahy, R., Shenoy, R.K.: Considering document endorsements
when processing queries. US Patent App. 13/218,450 (filed 2011)

3. Panigrahy, R., Najork, M., Xie, Y.: How user behavior is related to social affinity. In:
5th ACM International Conference on Web Search and Data Mining, pp. 713–722.
ACM, New York (2012)

4. Rainie, L., Brenner, J., Purcell, K.: Photos and videos as social currency online.
Pew Research Center (2012)

Wisdom of Crowds or Wisdom of a Few?

Ricardo Baeza-Yates

Yahoo Labs Barcelona
Barcelona, Spain

Abstract. In this keynote we focus on the concept of wisdom of crowds
in the context of the Web, particularly through social media and web
search usage. As expected from Zipf’s principle of least effort, the wisdom
is heterogeneous and biased to active people, which represent at the end
the wisdom of a few. We also explore the impact on the wisdom of crowds
of dimensions such as bias, privacy, scalability, and spam. We also cover
related concepts such as the long tail of the special interests of people,
or the digital desert, web content that nobody sees.

Summary

The Web continues to grow and evolve very fast, changing our daily lives. This
activity represents the collaborative work of the millions of institutions and peo-
ple that contribute content to the Web as well as more than two billion people
that use it. In this ocean of hyperlinked data there is explicit and implicit infor-
mation and knowledge. But how is the Web? What are the activities of people?
What is the impact of these activities? Web data mining is the main approach
to answer these questions. Web data comes in three main flavors: content (text,
images, etc.), structure (hyperlinks) and usage (navigation, queries, etc.), im-
plying different techniques such as text, graph or log mining. Each case reflects
the wisdom of some group of people that can be used to make the Web better.

The wisdom of crowds [9] at work in the Web is best seen in social media as
well as in social networks. It is also implicit in the usage of search engines [1]
and other popular web applications. The wisdom behind web users is shaped
by different complex factors such as the heterogeneity of user activity [10] and
hence a heavy long tail [6]; different types of bias [3] that create problems such
as the bubble effect [7]; privacy breaches coming from data [5]; too much data
that endangers minorities [2]; or web spam in all possible ways [8].

The diversity of user activity implies that an elite of users represent most of
the wisdom and that we should really talk about the wisdom of a few [4]. This
diversity also generates a digital desert, web content that no one ever sees.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts
and Technology Behind Search, 2nd edn. Addison-Wesley (January 2011)

2. Baeza-Yates, R., Maarek, Y.: Usage Data in Web Search: Benefits and Limitations.
In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 495–506.
Springer, Heidelberg (2012)

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 573–574, 2014.
c© Springer International Publishing Switzerland 2014

574 R. Baeza-Yates

3. Baeza-Yates, R.: Big Data or Right Data? In: AMW 2013, Puebla, Mexico (May
2013)

4. Baeza-Yates, R., Saez-Trumper, D.: Wisdom of the Crowd or Wisdom of a Few?
An Analysis of Users’ Content Generation (submitted, 2014)

5. Barbaro, M., Zeller. Jr., T.: A face is exposed for aol searcher no. 4417749. The
New York Times (August 9, 2006)

6. Goel, S., Broder, A., Gabrilovich, E., Pang, B.: Anatomy of the long tail: ordinary
people with extraordinary tastes. In: Proceedings of the Third ACM International
Conference on Web Search and Data Mining, WSDM 2010, New York, NY, USA,
pp. 201–210 (2010)

7. Pariser, E.: The Filter Bubble: What the Internet Is Hiding from You. Penguin
Press (2011)

8. Spirin, N., Han, J.: Survey on web spam detection: principles and algorithms. ACM
SIGKDD Explorations Newsletter Archive 13(2), 50–64 (2011)

9. Surowiecki, J.: The Wisdom of Crowds: Why the Many Are Smarter Than the Few
and How Collective Wisdom Shapes Business, Economies, Societies and Nations.
Random House (2004)

10. Zipf, G.K.: Human behavior and the principle of least effort. Addison-Wesley Press
(1949)

IFML: Building the Front-End of Web and

Mobile Applications with OMG’s Interaction
Flow Modeling Language

Marco Brambilla

Politecnico di Milano. Dipartimento di Elettronica, Informazione e Bioingegneria
Piazza L. Da Vinci 32. I-20133 Milan, Italy

marco.brambilla@polimi.it

Abstract. Front-end design of Web applications is a complex and mul-
tidisciplinary task, where many perspectives intersect. A new standard
modeling language called IFML (Interaction Flow Modeling Language)
addresses this problem in a platform-independent way. IFML grants exe-
cutability of models and binding to other aspects of system and enterprise
design through integration with widespread software modeling languages
such as UML, BPMN, SysML, SoaML and the whole MDA suite.

1 The UI Modeling Problem

In the last twenty years, capabilities such as form-based interaction, information
browsing, link navigation, multimedia content fruition, and interface person-
alization have become mainstream and are implemented on top of a variety of
technologies and platforms. However, no PIM-level design approach has emerged
as a standard in the industry so far. Thus, front-end development continues to
be a costly and inefficient process, where manual coding is predominant, reuse
is low, and cross-platform portability is limited.

A possible solution to this problem is the Interaction Flow Modeling Lan-
guage (IFML) [2], a visual notation for platform-independent design of software
front end. IFML has been adopted as a standard by the Object Management
Group (OMG) and features direct involvement of influential industrial players,
seamless integration with widespread modeling languages such as UML, BPMN,
SysML and the whole MDA suite, and availability of both open-source editors
and industrial-strength implementations supporting end-to-end development.

2 The Interaction Flow Modeling Language (IFML)

The main contributions of IFML is the integration of best practices in the fields
of model-driven development, software engineering, and Web engineering. IFML
spawns mainly from the WebML [3] and the industrial experience obtained by
the tool WebRatio [1]. IFML features user events and system events as first-class
citizens, orthogonalization of business logic and interaction logic, and explicit
and formal description of interoperability procedures and notations.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 575–576, 2014.
c© Springer International Publishing Switzerland 2014

576 M. Brambilla

Products
List

Products Page

Delete
Product

Products
List Product

 <<ParameterBindingGroup>>
SelectedProduct TheProduct

Product
Search

Search Page

<<Form>> <<List>>

Fig. 1. IFML model example: search and listing of products, with deletion of an item

IFML supports the specification of: (1) view structure, i.e., visibility and reach-
ability of view containers; (2) view content, , i.e., view components contained
within view containers; (3) user events and system events ; (4) event transitions,
i.e., the effect of events on the user interface; (5) parameter binding, i.e., input-
output dependencies between view elements; and (6) binding to the business
logic, through references to application logic models and data models.

Figure 1 shows a simple example of IFML model where the user can search for
products, gets the list of matching items and then can select one; the selection
causes the selected product to be deleted and then leads back to the list.

Core Competencies. Besides learning the basics of the IFML syntax, the
core competencies of IFML designers shall comprise: multi-perspective modeling,
pattern-based design, UX-based design, and real-world industrial experience.

References

1. Acerbis, R., Bongio, A., Brambilla, M., Tisi, M., Ceri, S., Tosetti, E.: Developing
ebusiness solutions with a model driven approach: The case of acer emea. In: Baresi,
L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 539–544.
Springer, Heidelberg (2007)

2. Brambilla, M., Fraternali, P., et al.: The Interaction Flow Modeling Language
(IFML), version 1.0 (2014), http://www.ifml.org

3. Ceri, S., Brambilla, M., Fraternali, P.: The History of WebML Lessons Learned
from 10 Years of Model-Driven Development of Web Applications. In: Borgida,
A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos Festschrift. LNCS,
vol. 5600, pp. 273–292. Springer, Heidelberg (2009)

http://www.ifml.org

Mashups: A Journey from Concepts and Models

to the Quality of Applications

Cinzia Cappiello1, Florian Daniel2, and Maristella Matera1

1 Politecnico di Milano
Via Ponzio 34/5, I-20133 Milano, Italy

{cinzia.cappiello,maristella.matera}@polimi.it
2 University of Trento,

Via Sommarive 9, I-38123, Povo (TN), Italy
daniel@disi.unit.it

Abstract. This tutorial aims to provide insight into the constantly
evolving mashup ecosystem. It presents core definitions, overviews a rep-
resentative set of mashup components (the resources to be integrated)
and mashup models (how resources are integrated), illustrates composi-
tion paradigms supported by state-of-the-art mashup tools, and discusses
the quality of the resulting mashups from a user perspective. The goal of
the tutorial is to introduce the topic and show its applicability, benefits
and limitations.

1 Context and Motivation

The term “mashup” is widely used today. There are people developing “mobile
mashups,” others doing research on “Web mashups,” and others again selling
tools for “data mashups.” Yet, when it comes to a concrete discussion of the topic,
it is not uncommon to discover that the parties involved in the discussion actually
have very different interpretations of what mashups are and what they are not.
Typical discussion points are whether a mashup must have a user interface (UI)
or not to be called a “mashup”, whether it must be built by using Web-accessible
resources only or not, whether it must be developed with client-side technologies
(e.g., JavaScript) only, and the like. That is, even after several years that the
term has been around and used, there is still no common agreement on its actual
meaning and implications.

Interestingly, however, in the meantime mashing up data, functionalities and
user interface widgets sourced from the Web has inexorably percolated into Web
Engineering as a tacitly accepted development practice. Today, it is unimaginable
to develop modern Web applications without some form of reuse and integration
of value-adding, third-party content or services, a task that is greatly facilitated
by technologies like Web services [3], the RESTful architectural style [2], Open
Data, XML, JSON, W3C widgets, and many more.

But which are the conceptual underpinnings of this practice? What does it
exactly mean to “mash up” resources that can be accessed via the Web? Which
are the paradigms adopted for the composition of mashups? What kinds of tools

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 577–578, 2014.
c© Springer International Publishing Switzerland 2014

578 C. Cappiello, F. Daniel, and M. Matera

exist that support this activity? And, eventually, what does it mean to develop
“good” mashups? Working with students, discussing with colleagues, reading
publications on the topic, we have seen that these questions are still open to
many. We also identified a lack of suitable study material.

2 Learning Objectives

In light of these considerations, the learning objectives of this tutorial are:

– To obtain a basic understanding of the core mashup aspects and concepts,
such as their contexts of use and target users, the most important definitions
of mashups depending on the considered point of view (e.g., Web mashups,
enterprise mashups, process mashups, telco mashups, mobile mashups, etc.),
their intrinsic complexity and benefits.

– To get insight into the most representative component technologies used by
mashups. Components are the basic elements of a mashup, and the compre-
hension of their characteristics and capability is fundamental for the under-
standing of what a mashup is and how it can be developed.

– To understand the conceptual underpinning of mashups, which developers
must master and that can help them focus on the relevant issues when inte-
grating components into mashups, as well as reference architectural patterns
that can be instantiated. Both concepts and architectures can be analyzed
independently of the particular technologies or sources used for an actual
implementation.

– To gain insight into how mashup models and development practices can ma-
terialize into dedicated mashup tools and composition paradigms for assisted
mashup development.

– To get insight into quality models for both mashup components and mashups,
to understand how such models can guide the initial choice of components
and the successive selection of composition patterns, and how they can also
augment composition paradigms through the generation of quality-based
recommendations.

The target audience are researchers, practitioners, advanced students who
want to learn more about mashup development from a perspective that especially
privileges abstractions and models, not only implementation aspects.

The tutorial is based on the authors’ latest publication on mashups [1] and is
complemented with an online resource providing additional material, slides and
links for further study: http://www.floriandaniel.it/mashupsbook.

References

1. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer
(2014)

2. Fielding, R.: Architectural Styles and the Design of Network-based Software Archi-
tectures. Ph.D. Dissertation, University of California, Irvine (2007)

3. Papazoglou, M.P.: Web Services - Principles and Technology. Prentice Hall (2008)

http://www.floriandaniel.it/mashupsbook

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 579–580, 2014.
© Springer International Publishing Switzerland2014

Web of Things: Concepts, Technologies and Applications
for Connecting Physical Objects to the Web

Iker Larizgoitia, Dominique Guinard, and Vlad Trifa

EVRYTHNG LIMITED, 4th Floor, 45 - 49 Leather Lane,
London EC1N 7TJ, United Kingdom

{iker,dom,vlad}@evrythng.com

Abstract. Inter-communicating devices and integrated Web-based services will
open exciting opportunities. The idea of a world where everything is connected
is becoming a reality, as hardware and software evolves to provide the neces-
sary infrastructure to connect any physical device and objects to the Web. The
goal of this tutorial is to present an overview on the advances in the Web of
Things initiative. It will cover the key ideas behind the concept, how it works,
infrastructure, as well as present the attendees with ideas and frameworks on
how to build applications on top of it. The tutorial will have a practical ap-
proach and is open to both academia and industry attendees with interest in
technologies and applications to interconnect physical objects to the Web.
Knowledge of the architecture of the Web (e.g SOA, REST) and basic under-
standing of Web technologies (e.g. URIs, HTML, Javascript) are encouraged
but not necessary to attend this tutorial.

1 Introduction

Inter-communicating devices and integrated Web-based services will open exciting
opportunities. Smart appliances in smarter buildings will be linked in grids that can be
more tightly monitored and regulated in real time. New communications protocols
and software applications of fundamental importance are showing the way. Over the
last several years, we have witnessed two major trends in the world of embedded
devices:

• Hardware is becoming smaller, cheaper and more powerful, so that many devices
will soon have communication and computation capabilities. Objects will be able to
connect, interact and cooperate with other objects in their surrounding environment
and with control centres—a vision generally dubbed the Internet of Things (IoT).

• The software industry is moving towards service-oriented integration technologies;
especially in the business software domain, complex applications based on com-
bined and collaborative services have been appearing. The Internet of Services
(IoS) vision projects such integration on a large scale: services will reside in differ-
ent layers of an enterprise; for example, in different operational units, IT networks
or even run directly on devices and machines within a company.

580 I. Larizgoitia, D. Guinard, and V. Trifa

As both of these trends are not domain-specific but common to multiple industries,
we are facing a trend where the service-based information systems blur the border
between the physical and virtual worlds, providing a fertile ground for a new breed of
real-world aware applications. To facilitate these connections, research and industry
have come up with a number of low-power network protocols such as Zigbee and
Bluetooth, BLE and IPv6, in a version optimized for resource-constrained devices
called 6lowpan.

Although they are increasingly part of our world, embedded devices still form mul-
tiple, small and incompatible islands at the application layer; developing applications
to take advantage of them remains a very challenging task that requires expert know-
ledge of each platform. To ease the task, recent research initiatives have tried to pro-
vide uniform interfaces that create a loosely coupled ecosystem of services for smart
things; these initiatives are often referred to as: "Web of Things".

2 Web of Things

The Web of Things is an evolution of the Internet of Things where the primary con-
cern has been how to connect objects together at the network layer: similarly to the
way the Internet addressed the lower-level connectivity of computers (layers 3-4 of
the OSI model), the Internet of Things is primarily focusing on using various tech-
nologies such as RFID, Zigbee, Bluetooth or 6LoWPAN.

On the other hand, just like what the Web is to the Internet, the Web of Things re-
groups research and industrial initiatives looking into building an application layer for
physical objects to foster their reusability and integration into innovative 3rd party
applications. The envisioned approach is to reuse the already well-accepted and ubi-
quitous Web standards such as URI, HTTP, HTML5, REST, Web feeds, Javascript
etc. Although these technologies were initially created for desktop computers, the fast
increase of capabilities of embedded devices makes this possible already today.

3 Tutorial Objectives

In this tutorial we'll review a number of embedded devices and their integration to the
Web, reviewing the Web of Things best practices on the way. We'll then dig into Web
of Things platforms both on the commercial side, where we will present the
EVRYTHNG platform and on the research side, where latest advances in object inte-
gration carried out in the COMPOSE platform will be presented. Based on these two
platforms, use cases and applications will be showcased to demonstrate how to inte-
grate objects, devices and applications following the Web of Things concepts.

S. Casteleyn, G. Rossi, and M. Winckler (Eds.): ICWE 2014, LNCS 8541, pp. 581–582, 2014.
© Springer International Publishing Switzerland 2014

Distributed User Interfaces and Multimodal Interaction

María D. Lozano1, Jose A. Gallud1, Víctor M.R. Penichet1, Ricardo Tesoriero1,
Jean Vanderdonckt2, Habib Fardoun3, and Abdulfattah S. Mashat3

1 Computing Systems Department, University of Castilla-La Mancha, Spain
{maria.lozano,victor.penichet,jose.gallud,

ricardo.tesoriero}@uclm.es
2 Université Catholique de Louvain, Belgium
jean.vanderdonckt@uclouvain.be
3 King AbdulAziz University, Saudi Arabia
{hfardoun,asmashat}@kau.edu.sa

1 Objetives

This Workshop is the fourth in a series on Distributed User Interfaces. On this occa-
sion, the workshop is focused on Distributed User Interfaces and Multimodal interac-
tion. The main goal is to join together people working in extending the Web and other
user interfaces to allow multiple modes of interaction such as GUI, TUI, Speech,
Vision, Pen, Gestures, Haptic interfaces, etc. Multimodal interaction poses the chal-
lenge of transforming the way we interact with applications, creating new paradigms
for developers and end-users. In a multi-device environment, we can find coupled
displays, multi-touch devices, interactive table-tops, tablets, tangible user interfaces,
eWatchs, etc., and this diversity of devices offers new possibilities and makes multi-
modal interaction even more challenging. Through active group discussion, partici-
pants will have the chance to share their knowledge and experience to advance in this
field.

2 Theme and Topics

The main theme is to discuss and analyze how multimodal interaction can be applied
in software applications based on Distributed User Interfaces (DUI). Moreover, inte-
racting with the system through different means provides a richer user experience that
it is worth exploring. Some of the topics to tackle are the following:

• Multimodal Interaction within Distributed User Interfaces
• Multimodal Web technologies
• Gesture-based interaction
• Multimodal Web Applications
• Multimodal mobile application
• Tangible user interfaces

582 M.D. Lozano et al.

3 Workshop Format

This one-day workshop will include a mix of paper presentations and breakout ses-
sion activities according to the following scheme. With the goal of promoting debate
among the workshop attendees, we will set the role of the “commentator” before the
workshop, in such a way that every participant will be assigned the task of comment-
ing the key points of other participant’s paper, promoting this way the discussion and
participation of everybody.

During the workshop, we will divide it into two clearly differentiated parts. During
the morning, participants will present their papers followed by short questions and
discussion promoted by the “commentator”. Then, breakout sessions will be held
during the afternoon. We will set working groups of 4-5 people to discuss about the
topics of the workshop. This way we will promote active participation among all at-
tendees to end up the workshop with useful conclusions and final remarks agreed by
the attendees.

4 Expected Outcomes

We would like the workshop to be a forum to promote collaborations, generate ideas
and synergies. We expect to find answers to the questions that would surely arise
during the workshop and define the key guidelines that designers might consider
when addressing the design of applications based on Distributed User Interfaces and
the different ways of interacting within them. Besides, we also plan to organize a
Special Issue in an International Journal with extended versions of a selection of pa-
pers, which will help to disseminate the workshop outcomes.

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target UI. Interacting with Computers 15(3)

2. Vandervelpen, C., Vanderhulst, G., Luyten, K., Coninx, K.: Light-weight Distributed Web
Interfaces: Preparing the Web for Heterogeneous Environments. In: Lowe, D.G., Gaedke,
M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 197–202. Springer, Heidelberg (2005)

3. Lozano, M.D., Gallud, J.A., Tesoriero, R., Penichet, V.M.R. (eds.): Distributed User Inter-
faces: Usability and Collaboration. Human–ComputerInteraction Series. Springer-Verlag
London (2013) ISBN 978-1-4471-5498-3

4. Gallud, J.A., Tesoriero, R., Penichet, V.M.R. (eds.): Distributed User Interfaces. Designing
Interfaces for the Distributed Ecosystem. Human-Computer Interaction Series. Springer-
Verlag London (2011) ISBN: 978-1-4471-2270-8

5. Pedro, G., Villanueva, R., Tesoriero, J.A.: Gallud. Distributing web components in a display
ecosystem using Proxywork. In: Proceedings of the 27th International BCS Human Com-
puter Interaction Conference, BCS-HCI 2013, Article No. 28. British Computer Society,
Swinton (2013)

Author Index

Almuhaimeed, Abdullah 558
Antonelli, Leandro 1
Ashok, Vikas 341
Azpeitia, Iker 76

Baeza-Yates, Ricardo 573
Baghbanzadeh, Sara 200
Barais, Olivier 308
Bavendiek, Jens 507
Belkhir, Abdelkader 440
Benouaret, Karim 440
Bertolotto, Michela 460
Bieliková, Mária 550
Blichmann, Gregor 450
Bochmann, Gregor V. 200
Borodin, Yevgen 341
Both, Andreas 93, 272, 545
Bozzon, Alessandro 218
Brambilla, Marco 218, 575
Braune, Falko 470, 540
Buccafurri, Francesco 410

Cabot, Jordi 390, 430
Cánovas Izquierdo, Javier Luis 390
Cappiello, Cinzia 577
Ceri, Stefano 218
Chouiref, Zahira 440
Cito, Jürgen 181
Clerissi, Diego 322
Cuadrado, Jesús Sánchez 536

Daniel, Florian 577
de Lara, Juan 536
de Lira, Vinicius Monterio 528
Desolda, Giuseppe 567
Dı́az, Oscar 76
Di Geronimo, Linda 290, 480
Di Giovanni, Pasquale 460
Dikaiakos, Marios D. 523
Dorneles, Carina F. 254
Dumas, Marlon 503
Dustdar, Schahram 181

Eraslan, Sukru 163

Fardoun, Habib 581
Fasli, Maria 558
Firmenich, Diego 1
Firmenich, Sergio 1, 359
Foudoulis, Athanasios 523
Frasincar, Flavius 130
Furci, Ferdinando 400

Gaedke, Martin 57, 93, 145, 236, 272,
470, 494, 498, 511, 540, 545

Galante, Renata 254
Gallud, Jose A. 581
Garrido, Alejandra 490
Garrigós, Irene 359
Grigera, Julián 490, 494
Guinard, Dominique 579

Hadjali, Allel 440
Harper, Simon 163
Heil, Sebastian 57, 494
Hertel, Michael 145
Hooshmand, Salman 200

Iturrioz, Jon 76

Jeĺınek, Ivan 554
Jézéquel, Jean-Marc 308
Jourdan, Guy-Vincent 200
Jugo, Igor 40

Kaljuve, Marti 503
Keivanloo, Iman 21, 370
Kermek, Dragutin 40
Klamma, Ralf 507
Koren, István 507
Krug, Michael 236, 511
Kuric, Eduard 550

Larizgoitia, Iker 579
Lax, Gianluca 410
Leitner, Philipp 181
Leotta, Maurizio 322
Lew, Philip 111
Loulloudes, Nicholas 523
Lozano, Maŕıa D. 581

584 Author Index

Malinský, Radek 554
Manica, Edimar 254
Mashat, Abdulfattah S. 581
Matera, Maristella 577
Mauri, Andrea 218, 562
Meißner, Klaus 450
Melnyk, Valentyn 341
Meštrović, Ana 40
Moosavi, Ali 200
Mori, Giulio 400
Mroß, Oliver 450
Murolo, Alfonso 290, 480

Najork, Marc 571
Nebeling, Michael 290, 380, 480
Ng, Joanna 21, 370
Ng, Tinny 370
Nicolazzo, Serena 410
Niederhausen, Matthias 145
Nocera, Antonino 410
Noro, Tomoya 420
Norrie, Moira C. 290, 380, 480
Nuck, Sebastian 272

Oehme, Philipp 511
Olsina, Luis 111
Onut, Iosif Viorel 200

Pallis, George 523
Paternó, Fabio 400
Pautasso, Cesare 515
Penichet, Vı́ctor M.R. 581
Pietschmann, Stefan 145
Pretzsch, Dominik 470
Puzis, Yury 341

Radeck, Carsten 450
Ramakrishnan, I.V. 341
Renso, Chiara 528
Ricca, Filippo 322
Richard-Foy, Julien 308
Rienäcker, Michel 470, 498

Rinzivillo, Salvatore 528
Rivero, José Mat́ıas 1, 430, 490, 494, 519
Robles Luna, Esteban 430, 494, 519

Saar, Tõnis 503
Santos, Lucas 111
Schouten, Kim 130
Sebillo, Monica 460
Segura, Ángel Mora 536
Semenenko, Nataliia 503
Sofokleous, Chrystalla 523
Soviak, Andrii 341
Speicher, Maximilian 93, 272, 532, 545
Suljoti, Dritan 181

Taba, Seyyed Ehsan Salamati 370
Tedesco, Patricia 528
Tesoriero, Ricardo 581
Times, Valeria Cesario 528
Tokuda, Takehiro 420
Tonella, Paolo 322
Trifa, Vlad 579
Triglianos, Vasileios 515
Trihinas, Demetris 523
Tschudnowsky, Alexey 145

Upadhyaya, Bipin 21
Urbieta, Matias 430, 519
Ursino, Domenico 410

Vanderdonckt, Jean 581
Vitiello, Giuliana 460
Volonterio, Riccardo 218

Wang, Shaohua 21
Wiedemann, Fabian 236, 511
Wild, Stefan 57, 470, 498, 540
Wimmer, Manuel 359

Yesilada, Yeliz 163

Zou, Ying 21, 370

	Foreword
	Organization
	Table of Contents
	Research Papers
	A Platform for Web Augmentation Requirements Specification
	1 Introduction
	2 The Approach
	3 Tools for Web Augmentation Requirements Management
	3.1 MockPlug
	3.2 Requirements Repository

	4 Evaluation
	4.1 Protocol and Participants
	4.2 Results

	5 Related Works
	6 Conclusions and Future Work
	References

	An Empirical Study on Categorizing User InputParameters for User Inputs Reuse
	1 Introduction
	2 Web and Mobile Application User Interface
	3 Our Proposed Approach for Categorizing User Input Parameters
	3.1 An Ontology Definition Model
	3.2 Our Approach of Updating Ontology
	3.3 Our Approach for Category Identification

	4 Empirical Study
	4.1 First Empirical Study
	4.2 Second Empirical Study

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

	Analysis and Evaluation of Web ApplicationPerformance Enhancement Techniques
	1 Introduction
	2 Background
	3 Performance of Web Applications
	4 Performance Testing and Analysis
	4.1 Preparation Phase
	4.2 Testing Phase
	4.3 Results

	5 Calculating Technique Effectiveness
	6 Conclusion
	References

	CRAWL·E: Distributed Skill Endorsementsin Expert Finding
	1 Introduction
	2 Objectives of Distributed Expert Finding
	3 Expert Finding with CRAWL
	4 CRAWL· E: Extending CRAWL with Endorsements
	4.1 Integrating Skill Endorsements in Distributed Profiles
	4.2 Extending Distributed Expert Finding to Leverage Skill Endorsements

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Discussion of Findings

	6 Related Work
	7 Conclusions and Future Work
	References

	Cross Publishing 2.0: Letting Users DefineTheir Sharing Practices on Top of YQL
	1 Introduction
	2 A Brief on YQL
	3 Cross Publishing Scripts: The Notion of Trygger
	4 Trygger at Work
	5 Trygger Architecture
	5.1 Deployment
	5.2 Interaction

	6 Validation
	6.1 Research Method
	6.2 Results

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	Ensuring Web Interface Quality throughUsability-Based Split Testing
	1 Introduction
	2 Related Work
	2.1 Automatic Approaches to Usability Evaluation
	2.2 Metrics-Based Approaches to Usability Evaluation
	2.3 Motivating Study

	3 Usability-Based Split Testing
	3.1 Component-Based Interaction Tracking
	3.2 Interaction-Based Heuristic Rules for Usability Evaluation
	3.3 Leveraging Usability Models

	4 The WaPPU Tool
	5 Evaluation
	5.1 Method
	5.2 Interface Redesign
	5.3 Results

	6 Key Findings of the User Study
	7 Limitations and Future Work
	8 Conclusions
	References

	Evaluating Mobileapp Usability: A Holistic Quality Approach
	1 Introduction
	2 Featuring Mobileapp Usability and UX
	2.1 Featuring Mobileapp Usability
	2.2 Featuring Mobileapp UX
	2.3 Featuring Mobileapp Context

	3 Conceptual Framework and Evaluation Approach
	3.1 M&E Conceptual Framework
	3.2 Evaluation Approach and Strategies

	4 Usability Evaluation for the Facebook Mobile App
	5 Related Work and Discussion
	6 Conclusions
	References

	Finding Implicit Features in Consumer Reviewsfor Sentiment Analysis
	1 Introduction
	2 Related Work
	3 Method
	4 Data Analysis
	4.1 Product Reviews
	4.2 Restaurant Reviews

	5 Evaluation
	6 Conclusion
	References

	From Choreographed to Hybrid User InterfaceMashups: A Generic Transformation Approach
	1 Introduction
	2 From Choreographed to Hybrid UI Mashups
	2.1 Choreographed UI Mashups
	2.2 Communication Model
	2.3 Visualization and Tailoring Facilities
	2.4 Reference Architecture

	3 Hybrid Mashups Based on Publish-Subscribe Choreography Model
	3.1 Widget Descriptors
	3.2 Model Importer
	3.3 Awareness and Control Module
	3.4 Message Broker
	3.5 Model Exporter

	4 Evaluation
	4.1 Results

	5 Related Work
	6 Conclusions and Outlook
	References

	Identifying Patterns in Eyetracking Scanpaths in Termsof Visual Elements of Web Pages
	1 Introduction
	2 Related Work
	3 eMine Scanpath Algorithm
	3.1 System Architecture and Implementation

	4 An Eyetracking Study
	4.1 Equipment
	4.2 Materials
	4.3 Procedure
	4.4 User Tasks
	4.5 Participants

	5 Results
	5.1 Validity
	5.2 Scalability

	6 Discussion
	7 Concluding Remarks and Future Work
	References

	Identifying Root Causes of Web PerformanceDegradation Using Changepoint Analysis
	1 Introduction
	2 Root Causes of Server Performance Degradation
	2.1 Global Delay
	2.2 Periodic Delay
	2.3 Partial Delay

	3 Identifying Root Causes of Performance Degradation
	3.1 Simulation Design
	3.2 Simulation Scenarios

	4 Experiments
	4.1 Methods of Analysis
	4.2 Testbed Setup
	4.3 Results and Interpretation
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

	Indexing Rich Internet ApplicationsUsing Components-Based Crawling
	1 Introduction
	2 Related Works
	3 Component-Based Crawling
	3.1 Overview of Our Solution
	3.2 Model Description
	3.3 Crawling Algorithm

	4 Experimental Results
	4.1 Test Cases
	4.2 Results on Simple RIAs
	4.3 Results on Complex RIAs

	5 Conclusions and Future Work
	References

	Pattern-Based Specificationof Crowdsourcing Applications
	1 Introduction
	2 Related Work
	3 Models and Design of Crowd-Based Workflows
	3.1 Task Model
	3.2 Workflow Model
	3.3 Workflow Design
	3.4 Task Design

	4 Crowdsourcing Patterns
	4.1 Intra-Task Patterns
	4.2 Auxiliary Intra-Task Patterns
	4.3 Workflow Patterns
	4.4 Auxiliary Workflow Patterns

	5 Workflow Execution
	6 Experiments
	6.1 Scenario 1: Scene Positioning
	6.2 Scenario 2: Actors
	6.3 Results

	7 Conclusions
	References

	SmartComposition: A Component-BasedApproach for Creating Multi-screen Mashups
	1 Introduction
	2 Scenarios
	3 Analysis
	4 The SmartComposition Approach
	4.1 Extension of OMDL

	5 Prototype
	6 Evaluation
	7 Related Work
	8 Lessons Learned and Outlook
	References

	SSUP – A URL-Based Methodto Entity-Page Discovery
	1 Introduction
	2 Related Work
	3 Definitions
	3.1 Web Site
	3.2 Web Page

	4 SSUP – A URL-Based Method to Entity-Page Discovery
	4.1 Structural Similarity Metrics
	4.2 Algorithms

	5 Experiments
	5.1 Setup
	5.2 Comparison

	6 Conclusions
	References

	StreamMyRelevance!
	1 Introduction
	2 Background and Related Work
	3 SMR: Streaming Interaction Data for Learning Relevance Models
	3.1 Client-Side Interaction Tracking
	3.2 Preprocessor
	3.3 Interaction Features Processor
	3.4 Classification Processor
	3.5 Making Use of Relevance Models

	4 Evaluation
	4.1 Effectiveness
	4.2 Efficiency, Scalability and Robustness
	4.3 Discussion and Summary

	5 Limitations and Future Work
	6 Conclusions
	References

	The Forgotten Many? A Survey of Modern WebDevelopment Practices
	1 Introduction
	2 Background
	3 Survey
	4 Developer Profiles
	5 Methods and Tools
	6 WordPress Development Practices
	7 Discussion
	8 Conclusion
	References

	Using Path-Dependent Types to Build Type Safe JavaScript Foreign Function Interfaces
	1 Introduction
	2 Background
	2.1 The Browser API and Its Integration in Statically Typed Languages
	2.2 Limitations of Existing Encoding Approaches

	3 Contribution
	3.1 Parametric Polymorphism
	3.2 Path-Dependent Types

	4 Validation
	4.1 Implementation in js-scala
	4.2 API Clarity
	4.3 Convenience for End Developers
	4.4 Limitations

	5 Related Works
	6 Conclusion
	References

	Visual vs. DOM-Based Web Locators:An Empirical Study
	1 Introduction
	2 Background
	2.1 Programmable Web Testing
	2.2 Test Case Evolution

	3 Empirical Study
	3.1 Study Design
	3.2 Web Applications
	3.3 Research Questions and Metrics
	3.4 Experimental Procedure
	3.5 Quantitative Results
	3.6 Qualitative Results
	3.7 Threats to Validity

	4 Related Works
	5 Conclusions and Future Work
	References

	Widget Classification with Applications to Web Accessibility
	1 Introduction
	2 Background
	2.1 Methods for Displaying Dynamic Widgets
	2.2 Screen Readers and Accessible Rich Internet Applications (ARIA)

	3 Related Work
	3.1 Making Dynamic Widgets Accessible
	3.2 Widget Localization and Classification

	4 Experimental Setup
	4.1 The Corpus and Widget Localization
	4.2 Features for Widget Classification

	5 Experiments and Results
	6 Conclusion and Future Work
	References

	Late Breaking Results
	(De-)Composing Web Augmenters
	1 Introduction
	2 Background
	3 (De-)Composing Procedures – A Model-Based Perspective
	3.1 Model-Based Representation of Procedures
	3.2 Transformation Chain: Procedures to Activities and Back Again
	3.3 Composing Web Augmenter Models and Hypertext Models

	4 Related Work
	5 Conclusions and Future Work
	References

	An Exploratory Study on the Relation betweenUser Interface Complexity and the PerceivedQuality
	1 Introduction
	2 Background
	3 Study Design
	3.1 Data Collection
	3.2 Data Processing

	4 Study Results
	5 Threats to Validity
	6 Conclusion
	References

	Beyond Responsive Design:Adaptation to Touch and Multitouch
	1 Introduction
	2 Background
	3 FBTouch
	4 User Experiment
	5 Observations and Implications for Design
	6 Moving Forward
	References

	Composing JSON-Based Web APIs
	1 Introduction
	2 Using and Composing JSON-Based Web APIs
	3 Our Approach
	4 Domain Discovery in JSON-Based Web APIs
	5 Composition Discovery in JSON-Based Web APIs
	6 Assisting Developers to Compose APIs
	7 Additional Applications
	8 Related Work
	9 Conclusion and Future Work
	References

	Design Criteria for Web Applications Adapted to Emotions
	1 Introduction
	2 A Survey: Collecting Opinions about Emotional Web Design
	2.1 Personal Information
	2.2 Classification of Emotions in Web Interaction
	2.3 Emotion-Based Web Design
	2.4 Additional Emotion-Related Design Aspects

	3 A User Study: Applying the Emotion-Based Design Principles
	3.1 Description of the User Test and Discussion of the Results

	4 Conclusions and Future Work
	References

	Driving Global Team Formation in SocialNetworks to Obtain Diversity
	1 Introduction and Description of the Idea
	2 The Multi-Social-Network Model
	3 Tools and Data for Our Experiments
	4 Are me edges Weak ties?
	5 Measuring the Suitability of Diversity Generators: Cross Betweenness Centrality
	6 Need and Validity of CBC: An Experimental Proof
	7 Related Work
	8 Conclusion and Future Work
	References

	Effectiveness of Incorporating Follow Relationinto Searching for Twitter Users to Follow
	1 Introduction
	2 Related Work
	3 Method for Finding Good Twitter Users to Follow
	3.1 Overview
	3.2 Score Calculation
	3.3 Tweet Count Score (TC Score)
	3.4 User Influence Score (UI Score)
	3.5 Follow Relation Score (FR Score)

	4 Evaluation
	4.1 Experimental Setup
	4.2 Result

	5 Conclusion
	References

	Improving the Scalability of Web Applications with Runtime Transformations
	1 Introduction
	2 Related Work
	3 LiquidML
	3.1 LiquidML in a Nutshell
	3.2 Transforming MDWE Models to LiquidML Models
	3.3 Model Interpretation and Deployment
	3.4 Diagnosing Production Problems
	3.5 Annotation of MDWE Models
	3.6 Runtime Model Transformations

	4 Implementation
	5 Conclusions and Future Work
	References

	Multi Matchmaking Approach for Semantic WebServices Selection Based on Fuzzy Inference
	1 Introduction
	2 Related Work
	3 Our Model
	3.1 Service Description Model
	3.2 Fuzzy Model to Contextual Profile

	4 Query Processing
	4.1 Semantic Web Service Selection Framework

	5 Experimental Evaluation
	6 Conclusion
	References

	Semantic Mediation Techniques for CompositeWeb Applications
	1 Introduction
	2 Semantic Data Mediation Techniques for CWA
	3 Mediation-Equipped Platform for Mashups
	3.1 Architecture
	3.2 Runtime Support

	4 Related Work
	5 Conclusion and Future Work
	References

	Standard-Based Integration of W3C and GeoSpatial Services: Quality Challenges
	1 Introduction
	2 W3C and OGC Standards for Service Based Development
	3 QoS Issues in Geospatial Web Services
	4 A Wrapper-Based Solution
	5 Conclusions
	References

	Tamper-Evident User Profilesfor WebID-Based Social Networks
	1 Introduction
	2 Related Work
	3 Tamper-Evident WebID Profiles through IronClad
	3.1 Operations Supported by IronClad
	3.2 Implementation and Demonstration of IronClad

	4 Evaluation of IronClad
	5 Conclusion and Future Work
	References

	X-Themes: Supporting Design-by-Example
	1 Introduction
	2 Background
	3 Approach
	4 X-Themes Editor
	5 Discussion
	6 Conclusion
	References

	Demos/Posters
	A Tool for Detecting Bad Usability Smells in an Automatic Way
	1 Introduction
	2 The Process in a Nutshell
	3 The Tool in Action
	4 Tool Implementation and Usage
	References

	An Extensible, Model-Driven and End-User Centric Approach for API Building
	1 Introduction
	2 The ELECTRA Approach
	3 Architecture and Code Generation
	4 Related Work
	References

	Building Bridges between DiverseIdentity Concepts Using WebID
	1 Introduction
	2 Building Secure Bridges to WebID
	3 Conclusion and Future Work
	References

	Cross-Browser Testing in Browserbite
	1 Introduction
	2 System Overview
	2.1 Screenshot Capturing
	2.2 Segmentation and Comparison
	2.3 Classification

	3 Conclusion
	References

	DireWolf Goes Pack Hunting: A Peer-to-PeerApproach for Secure Low Latency WidgetDistribution Using WebRTC
	1 Introduction
	2 Peer-to-Peer Distributed User Interfaces
	3 Evaluation
	4 Conclusion and Future Work
	References

	Easing Access for Novice Users in Multi-screenMashups by Rule-Based Adaption
	1 Introduction
	2 SmartComposition Overview
	3 SmartComposition Enhancements
	4 Lessons Learned and Outlook
	References

	Interactive Scalable Lectures with ASQ
	1 Introduction
	2 ASQ in the Classroom
	3 Architecture
	4 Conclusion
	References

	LiquidML: A Model Based Environment for Developing High Scalable Web Applications
	1 Introduction
	2 LiquidML Models
	3 LiquidML Environment
	4 Conclusions
	References

	Managing and Monitoring Elastic Cloud Applications
	1 Introduction
	2 Elasticity Management Platform
	3 Demonstration Description
	References

	MAPMOLTY: A Web Tool for Discovering PlaceLoyalty Based on Mobile Crowdsource Data
	1 Introduction
	2 The MAPMOLTY Tool
	References

	Paving the Path to Content-Centricand Device-Agnostic Web Design
	1 Introduction
	2 Related Work
	3 Review of motherfuckingwebsite.com
	4 Conclusion
	References

	Twiagle: A Tool for Engineering Applications Based on Instant Messaging over Twitter
	1 Introduction
	2 Architecture
	3 Twiagle by Example
	4 Conclusions and Future Work
	References

	Using Linked Data for Modeling SecureDistributed Web Applications and Services
	1 Introduction
	2 Related Work
	3 Utilizing WAMplus to Model Secure Web Applications
	4 Conclusion
	References

	WaPPU: Usability-Based A/B Testing
	1 Introduction
	2 Related Work
	3 WaPPU
	4 Example Study
	5 Conclusion
	References

	Webification of Software Development:User Feedback for Developer’s Modeling
	1 Developer’s Feedback in a Web of Software Artifacts
	2 Estimation of Student’s Programming Expertise
	References

	PhD Symposium
	Comparing Methods of Trend Assessment
	1 Introduction
	2 Selected Methods of Trend Assessment
	3 Methodology of Study
	4 Conclusion
	References

	Exploiting Different Bioinformatics Resourcesfor Enhancing Content Recommendations
	1 Introduction
	2 Background
	3 The Recommender Approach
	4 Bioinformatics Recommender Pipeline
	5 Conclusion
	References

	Methodologies for the Developmentof Crowd and Social-Based Applications
	1 Introduction
	2 The Approach
	3 Related Work
	4 Conclusions and Future Work
	References

	Using Semantic Techniques to Improve Service Composition by End Users
	1 Introduction
	2 Using Linked Open Data
	References

	Keynotes
	Social Search
	1 Introduction
	References

	Wisdom of Crowds or Wisdom of a Few?
	Summary
	References

	Tutorials
	IFML: Building the Front-End of Web andMobile Applications with OMG’s InteractionFlow Modeling Language
	1 The UI Modeling Problem
	2 The Interaction Flow Modeling Language (IFML)
	References

	Mashups: A Journey from Concepts and Modelsto the Quality of Applications
	1 Context and Motivation
	2 Learning Objectives
	References

	Web of Things: Concepts, Technologies and Applications for Connecting Physical Objects to the Web
	1 Introduction
	2 Web of Things
	3 Tutorial Objectives

	Workshop
	Distributed User Interfaces and Multimodal Interaction
	1 Objetives
	2 Theme and Topics
	3 Workshop Format
	4 Expected Outcomes
	References

	Author Index

