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Abstract Community detection and link prediction are two well-studied problems
in social network analysis. They are interesting because they can be used as
building blocks for other more complex problems like network visualisation or
social recommendation. Because real networks are subject to constant evolution,
these problems have also been extended to dynamic networks. This chapter presents
an overview on these two problems.

1 Introduction

Many real-world complex systems can be modelled as networks. A network is a
set of entities, called nodes or vertices, connected by links also called edges. The
semantics of entities and links depends on the underlying system. For example,
in social networks, entities are persons and links are social relationships such
as friendship, message exchanges, or collaborations. In power grids, vertices
correspond to stations and substations, and edges represent physical transmission
lines.

Complex networks generated from real-world systems usually share an inter-
esting property called community structure [15]. A community is a set of nodes
having more connections between them than with the rest of the network. These
communities can be interpreted as modules and can help to analyse and visualise
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the network. Global community detection methods generally assume that the
entire structure of the network is known. This assumption is not realistic for very
large and dynamic networks. Moreover, these methods usually produce very large
communities [16] that are not very useful in practice [40]. For that reason, the
concept of local community, i.e. a community obtained by exploring the network
starting from a node uy, is considered. The methods introduced for the identification
of local communities do not require to access the entire network, allowing real time
processing [10,31,39].

Work on social networks has for a long time considered only a static view: a
snapshot G; is taken at a particular time ¢ and is analysed. However, networks
are dynamic by nature. New nodes appear and some existing nodes disappear.
Similarly, links representing social relations are created or ended. This dynamics
can be captured by considering T snapshots G = (G, G», ..., Gr) of the network
attimes 1,2, ..., T. One can then design algorithms to predict links as well as local
and global communities that are likely to appear in the next snapshot, G4 .

The remainder of this chapter is organised as follows: Sect. 2 gives some general
definitions and observations on complex networks. Global community detection
methods are discussed in Sect. 3. Section 4 then presents some recent methods for
the detection of local communities detection and the analysis of their dynamic.
Section 5 presents link prediction and some methods defined for this problem.
Finally Sect. 6 presents the conclusion and draws some perspectives.

2 Complex Networks Analysis

A social network can be represented by a graph G = (V, E), where V is the set
of vertices or nodes, and E is the set of edges or links, formed by pairs of vertices.
The two nodes u and v are the end vertices of the edge e = (u,v). If the order of
end vertices matters in an edge, then the graph is said to be directed otherwise, it is
undirected. Links of directed graphs are denoted e = (u,v). The neighbourhood
I"(u) of anode u, is the set of nodes v such that (u, v) € E. The degree of a node u is
the number of its neighbours or the cardinality of I' (), i.e. degree(u) = |I"(u)|. The
degree of node u will also be denoted by d,. Given this model, all graph theoretic
tools can be reused in network analysis. We recall in the rest of this section the main
concepts of graph theory that will be used in this paper.

Hereafter, the number of nodes of the network will be denoted by n and the
number of edges will be denoted by m. The adjacency matrix of G is an n x n
boolean matrix A defined by a;; = 1 if there is a link from i to j, and a;; = 0
otherwise. In some applications, it is useful to model the strength of the link between
i and a neighbour j, and g;; is a real number. Such networks are said to be weighted.

The spectrum of a graph G is the set of eigenvalues of its adjacency matrix A.
The Laplacian matrix L of a graph G is defined by L = D — A, where D is the
diagonal matrix of order n defined by d;; = degree(i).

A finite path of length k in G is a sequence of edges ey = (uj,uz),e; =
(uz,u3),...,ex = (ug,ur+1), such that two consecutive edges e; = (u;, ui4+1)
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Fig. 1 Example of
community structure

and e;+1 = (4;j+1,U;+2) share a common end vertex u; 1. Such a path connects
uy to ug4+1. A path of length k is said to be closed if u; = wuy41. A connected
component of an undirected graph G is a maximal subgraph in which any two
vertices are connected to each other by paths. Maximal means that such a component
is not connected to any additional vertex in G. A clique is a set of nodes that forms
a complete graph, i.e. with all possible links. The term k — clique is used to denote
a clique of k nodes.

Alink e = (i, j) is internal to a sub-graph G’ = (V’, E’) if i and j are in V.
Alink e = (i, j) is external to a sub-graph G’ if either i or j is in V’, but not both.
The density § of a graph corresponds to the proportion of its existing links compared
to the total possible links. The internal density §;, corresponds to the proportion of
internal links of a sub-graph compared to the possible internal links. Similarly, the
external density 8,,, corresponds to the proportion of external links of a sub-graph
compared to the possible external links.

The clustering coefficient of a network is the number of closed paths of length
3 (or triangles) divided by the number of paths of length 2. It corresponds to the
probability that two nodes u and v, connected to a common neighbour w, are also
connected.

A community is a set of nodes having a high internal density and a low external
density. Figure 1 presents an example of community structure in a network.

It has been observed that many real-world complex networks share some
characteristics [5,35]:

» Scale-free property: the degree distribution follows a power law, i.e. the proba-
bility that a node has degree k is given by:

Pky=k7" 6]

for a given constant y usually between 2 and 3.

* Small world property: the shortest path between any given pair of nodes is usually
small.

* High clustering coefficient compared to a random network.
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* Presence of a community structure. Note, however, that community structure is
not always present or easy to detect. This topic is the subject of active research,
see, for instance, [8,26].

The observation of a dynamic network during 7' time-steps is modelled by
G = (G1,G,,...,Gr), where G, = (V;, E;) is the network observed at time ¢.

3 Global Communities in Social Networks

Given a network G = (V, E), the global community detection problem can be
defined as follows: find a partition C = {Cy, Cs, ..., Ci} of nodes such that the
link density is high in each C; and low between each C; and the rest of the network.
To uncover the community structure in a network, most existing methods translate
this (quite informal) definition into a computable quality function and then use a
greedy algorithm to approximate the optimum of this function and the associated
community structure. A very good survey on global community detection can be
found in [15]. Note that the former definition is quite restrictive: in some cases, it is
interesting to consider overlapping communities [21,43].

3.1 Quality Functions

Quality functions or criteria will be used to assess how good the computed
community structure is. Many quality functions have been defined in the literature.
Examples are the conductance, the performance, and the modularity [15].

The conductance is one of the simplest functions. For a partition S U §, it is
defined as the ratio between the number of external links and min(a(S),a(S))
where a(C) is the total number of links having one end in C. It corresponds to
the following expression:

[{(u,v) :ueS,veS}
min(ZueS d(u), Zve§ d(v))

Its values range from O to 1. A value close to O corresponds to a good partition.

The performance [15] is the proportion of pairs of nodes correctly interpreted by
the algorithm, i.e. pairs of nodes belonging to the same community and connected
with links and pairs of nodes belonging to different communities and not connected.
For a community structure C = (Cy,C,,...,C,), the performance score is
given by:

?(S) = 2)

G J) € E.C=Cjj|+1G.J) ¢ E.Ci #Cjl

PC) = nn—1)/2

3)
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Clearly, 0 < P(p) < 1. A value for the performance close to 1 means a good
partitioning.

The modularity introduced by Girvan and Newman [37] is the most used quality
function. The intuition behind this quality function is that a random network is not
supposed to have a community structure. For each community, the internal density
is compared to the expected internal density in a random network with the same
number of nodes and the same degree distribution but without community structure.
This corresponds to the formula:

1 did;
0= ;MU- — 5, 0)8(C.C)) “)

with m the number of links of the network, A the adjacency matrix, C; the
community of node i. The function §(C;, C;) is equal to 1 if C; = C; and 0
otherwise. The value of Q ranges from —1 to 1. High values of Q are supposed
to correspond to partitions with well-separated communities.

Modularity optimisation gives a good way to detect community structures in very
large networks. However, this quality function has some drawbacks.

The first drawback is the instability. The assumption behind the modularity is
that a random network is not supposed to have community structure. The actual
community structure is then compared with a null model expressed in terms of
expectation as presented in Eq. (4). This leads to many possible realisations of the
null model and many (very) different community structures with a high modularity,
even in random networks [27].

The second drawback is called the resolution limit. Indeed, it has been shown in
[16] that the size of the community produced by most algorithms depends on the
number of nodes in the network. It is then impossible to detect small, even well-
separated communities in very large networks.

3.2 Community Detection Methods

Many global community detection methods have been proposed. The main classes
of these algorithms are: random walks methods, hierarchical methods, spectral
methods.

Random Walks

A random walker on G = (V, E) follows a stochastic process that starts at a node
ug € V and at each step i, selects, with probability P; among its neighbours, the
next node j to visit at time ¢ 4+ 1 [29]. Usually, this selection is done randomly
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and uniformly, i.e. P; = %’ The length of a random walk is its number of steps.
The transition matrix of the random walk is P = AD™!, and the probability of
going from a vertex i to a vertex j in ¢ steps is (P');;.

The idea behind random walk methods is that a random walker on G tends to
get trapped into communities. As a consequence, two vertices i and j of the same
community tend to see all the other vertices in the same way, i.e. if the length ¢
of the random walk is long enough, the i’ row (P’);. and the j" row (P?); will
be similar. This leads to a definition of distance between nodes and community
detection becomes a clustering problem that can be solved using, for example,
hierarchical methods [45].

Hierarchical Methods

Hierarchical methods are either top down or bottom up. In top down methods, one
starts with all nodes in one unique community. At each step, one tries to separate
the existing communities into sub-communities. An example of method ranging in
this category is described in [37]. In bottom up methods, one starts with each node
belonging to a separate community and at each step, one tries to merge the most
similar communities.

Louvain [7] is one of the fastest methods for community detection in complex
networks. It can be used in the general case of weighted networks (links have
weights expressing the strength of relationships). The algorithm is a bottom up
hierarchical method and has two main steps. In the first step, every node of the
network is evaluated by computing the weighted modularity gain if it is then added
to the community of a neighbour j. Node i is added to the community which
produces the maximal positive gain. This process is repeated until there is no more
positive gain. At the end of this step one has a partition of the network.

In the second step, each of the previous discovered communities becomes a
super-node. The weight of the link between two super-nodes is the sum of the
weights of links between nodes of the corresponding communities. Links between
nodes of the same community lead to a self-loop of the corresponding super-node.

These two steps are repeated until no more gain in modularity is observed.
The speed of this method comes from the observation that the modularity can be
optimised locally: only the neighbours are considered during the evaluation. This
enables to update the modularity gain in linear time (O(m)). This method is only
limited by the storage (main memory) capacity and allows to analyse networks with
millions of nodes in few minutes.

Relation with Spectral Methods

Random walks on graphs are strongly related to methods that study community
structure using spectral properties of graphs. For instance, in [45] it is shown that
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the distance r;; defined between two nodes i and j, using random walks, is related
to the spectral property of the matrix P by the formula:

rd =22 eli) = va()))? (5)

oa=2

where (Ay)i1<a<n and (vy)i<e<n, are respectively, the eigenvalues and right
eigenvectors.

On the other hand, it is shown in [49] that if two vertices i and j belong to
the same community, then the coordinates v; and v; are similar in eigenvectors of
P that correspond to the largest positive eigenvalues. More recently, Newman has
shown that community detection by modularity maximisation, community detection
by statistical inference, and normalised-cut graph partitioning can be solved using
spectral approaches that use matrix representations of the network [36].

3.3 Dynamics of Global Communities

For community detection in dynamic networks, various methods have been
proposed in the literature. Some of these methods try to track the evolution of
communities between time-steps, others try to update the existing community
structure and finally, the last class of methods try to detect communities that are
consistent in all the time steps.

Community Tracking

Algorithms for global community detection in static networks have been used for
tracking community structures in dynamic networks. The idea is to detect the
communities at each time-step and match them between consecutive time-steps.
Examples of such methods were proposed by Palla et al. [44], Greene et al. [20],
and Tantipathananandh et al. [50].

The algorithm by Palla et al. is based on the Clique Percolation Method [43].
This approach is not usable in very large graphs. The two other methods can be
used with any algorithm and particularly with modularity-based algorithms.

The tracking of communities is very difficult because of the instability of global
methods. This is particularly true for modularity-based methods. This drawback can
be reduced by using community cores analysis. In [46] and [14] a community core
is defined as a set of node that are frequently in the same community during many
executions of an unstable algorithm.
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Community Updating

The main idea of community updating is to detect the community structure at a
reference time-step #( and then, for all the future time-steps, the community structure
is updated according to the elementary events that can appear in the network. These
elementary events are: addition of a node, deletion of a node, creation of a link, and
removal of a link. Examples of methods that have been proposed to handle these
events can be found in [9,42].

The main problem with community updating is that it is sensible to the initial
partition. Note that community core analysis can help to stabilise the initial partition.

Long-Term Community Detection

A long-term community can be defined as a set of nodes that interact more with each
other than with the rest of the network at all time-steps [4]. This is an extension
of the classical community definition to the dynamic context. To detect long-
term communities, Aynaud and Guillaume [4] have proposed to define an average
modularity and to optimise it using a modified version of Louvain’s algorithm [7].
In another work, Mitra et al. [33] have proposed a method designed for citation
networks. They propose to build a summary network as follows:

* anode a, is created if author a has published a paper at time ¢.
 alink is created between nodes a; and b, if and only if the paper published by
author a at time 7 cites the paper published by author b at time ¢'.

A static community detection method can then be used to mine the community
structure in this summary network.

4 Dynamics of Local Communities

Global communities give a way to analyse the dynamics at a macroscopic level.
Because global communities are either too large or cannot be computed due to the
size of the network, we show in this section how to analyse the dynamics using local
communities that can be computed without the entire knowledge of the network.

4.1 Local Community Identification

Given a node u, of a partially known network G = (V, E), initially limited to 1, and
its neighbours, and with the restriction that new information can only be obtained
by getting adjacent nodes one by one, the problem of local community identification
is to find the community the node 1, belongs to.
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Table 1 Some quality

functions for local Quality functions Authors
. . . Bi,
community identification R= Fo - Clauset [11]
M= p= Luo et al. [31]
ZiepIr®)ND]
L= % Chen et al. [10]

[B]

IT@)ND|
— Yiep (+d;)
Yien ITONSI(1+d)

T Ngonmang et al. [39]

Most existing algorithms for local community identification use a greedy
scheme: initially, the local community D contains only the starting node u, and the
quality of this initial community is 0. At each step, the external node that maximises
the quality function F used by the algorithm is considered. If its inclusion into D
increases the quality criterion F, then it is added to D, and the quality F of the
community is updated. This procedure is repeated until there is no more external
vertex whose inclusion into D increases the quality F. At the end of the algorithm,
D contains the local community of uy.

Let D denote a local community. B is the set of nodes of D that have at least
one neighbour out of D and S is the set of nodes out of D that have at least one
neighbour in D. Table 1 presents some existing quality functions used in local
community identification. In this table, D;, corresponds to the set of links having
both ends in D. D, corresponds to the set of links having only one end into D.
B;, and B,, have a similar meaning. d; is the distance from i to u, the starting
node, and I"(i) is the set of neighbours of node i.

Some problems are similar to local community identification because they only
require local information. One of these problems is ego-community detection. This
problem consists in detecting the communities between the direct neighbours of a
node. One successful approach to solve this problem is the method proposed in [19].
Unfortunately, this method is not suitable for local community detection because it
discards the rest of the network. Another similar problem is to consider multiple
starting nodes and detect the communities that contain them, as in the work of
Danisch et al. [12].

4.2 Application to a Dynamic Behaviour: Churn Prediction

The objective of churn prediction is to estimate the likelihood that a given user
will stop using a social network platform in the near future. A churner will thus
be defined as a user who has become inactive for a certain period of time. This
knowledge can be exploited by the platform operator to take preventive actions:
if the user is likely to stop using the platform, it could be interesting to send him
some incentives (personalised recommendations, free applications, etc.).
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Most of the methods for churn prediction belong to three main categories:
feature-based methods, network-based methods, and hybrid methods. Feature-based
methods extract attributes from the user profile (age, gender, etc.) and usage (time
spent, connexion history, etc.) of the platform and then build a predictive model [24].

Network-based methods use the social links to detect the churners. The methods
of this category usually model the churn prediction as a diffusion or contagion
process [13]: starting with the known churners as seeds, each seed tries to activate
its neighbours at each iteration. This process is repeated until convergence or up to
a maximum number of iterations.

Finally hybrid methods combine the two previous ones. One application of
local community analysis can be found in this category. Indeed, the hybrid method
proposed in [40], for example, proposes to extract some attributes from the local
community of the node and to add them to the features of the node in order to build
the churn prediction model.

4.3 Prediction of Local Communities

The local community prediction problem in complex networks can be stated as
follows: given a dynamic network G = (Gi,...,Gr) and the dynamic local
community D = (Dy,..., Dr) of a node uy, what will be the local community
Driqattime T 4 1in (G741)?

To solve this problem, two main classes of approaches can be used. The first
class consists in predicting for each node v, whether or not it will belong to the
local community D74 of node ug at time 7" + 1. The second class first predicts the
structure of the network at time 7 + 1 and then computes the local community of
u in the predicted network.

To predict the membership of each node u to D74, some simple attributes can
be computed at each time-step: the position of u with respect to the subsets D, B,
and S defined in Sect. 4.1, the number of links with the community, the number of
links with nodes outside the community, etc. A supervised learning model can then
be used for the prediction. The real challenge here is that one is restricted to nodes
having already belonged to the local community of 1 or to its neighbourhood.

The work in [41], for example, presents a method to predict local communities
according to the second approach. The network of the target time-step is predicted
and the local communities are computed on that predicted network. To keep the
locality on this process, only the local portion of the network containing the starting
node is predicted.

This gives a way to locally analyse a dynamic network and make some
predictions on its future structure. A more microscopic view of the dynamic is
provided by link prediction that will be presented in the next section.
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5 Link Prediction

Given a snapshot of a social network at time ¢, the link prediction problem is to
accurately predict the edges that will be added to the network from time ¢ to a given
future time ¢’. The link prediction problem therefore tackles the following question:
to what extent can the evolution of a social network be modelled using features
intrinsic to the network itself [28]? Formally, consider a network G = (V, E) where
V is the set of vertices and E is the set of links. The set of edges (u,v) € V with
u # v that are absent in E is denoted E. In a practical application, E can be divided
into two parts: the set E’ of links that will appear in the future, also called missing
links, and the set E” of edges that will never appear. Clearly, £/ U E” = E and
E’' N E” = @. The challenge of link prediction is to produce quickly, accurate
approximations for E’, even for huge social networks.

As noted by Zhu and Kinzel [53], it is possible, for any discrete prediction
algorithm A for sequences, to generate using an algorithm B no more complicated
than A, an instance for which A’s prediction is always wrong. Moreover, for any
prediction algorithm A and an instance x, there exists a sequence y no more
complicated than x, such that if A performs better than random on x, then it will
perform worse than random on y by the same margin. This shows that, to design
a predictor with good performance, it is necessary to have prior knowledge on the
problem.

Link prediction is a very active research area because of its wide range of
applications. For instance, if G is a social network representing recorded inter-
actions between terrorists, the link prediction can be used to detect underground
relationships between them. On the other hand, a link prediction algorithm can
be applied to a clients/products network produced by an e-commerce platform,
to suggest products that a client is likely to purchase in the near future. Other
algorithms and applications related to link prediction in complex networks can be
found in [30].

We now present some basic link prediction algorithms according to the following
nomenclature: probabilistic methods, transitivity-based methods, and attributes-
based methods. After that we introduce an extension of the link prediction problem
to dynamic networks.

5.1 Probabilistic Methods

The most naive probabilistic model of link prediction is the Random predictor which
randomly chooses a subset of links that are not present in the network and predicts
them. Since the subset selection is done randomly, the accuracy of the algorithm is
based on luck. The probability of failure of the Random predictor is % This method
can’t be taken seriously when dealing with an application. It only serves as reference
point: any serious algorithm must have a better accuracy.
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The probabilistic approaches can nevertheless be useful when there is a prior
knowledge on the problem. For instance, many complex natural and social systems
assemble and evolve through the addition and removal of nodes and links. This
dynamics often appears to be a self-organising mechanism governed by evolutionary
laws that lead to some common topological features. One of such features is the
power-law degree distribution, i.e. the probability that a node has degree k is
P(k) = k77, usually with 2 < y < 3. Such networks are said to be scale-free.
For such networks, the “preferential attachment principle” states as follows: when a
new node is added to the network with m edges that link this new node to m nodes
already present, the probability that this new node will connect to a node i with
degree d; is proportional to d;, i.e. 7(d;) = ﬁ It can be shown that a network
evolving according to this principle tends to a scale-invariant state with y = 3.
Clearly, such a model of network growth constitutes an a priori information that
can help to design efficient link prediction algorithms. The preferential attachment
principle is also known in economy as cumulative advantage: the rich get richer
[6,48].

The preferential attachment is a good illustration of Zhu and Kinzel’s obser-
vation. Indeed, it gives the worst performance when applied to physical Internet
networks where high degree nodes are routers that have a very low probability of
being connected by new physical lines.

Recently, Freno et al. [17] have proposed a new approach that is not based on
parametric assumptions concerning the modelled distributions. More precisely, they
have introduced the Fielder random field model, called Fielder delta statistic that,
for each binary edge variable X, ,, defines a potential that encapsulates the measure
of its role in determining the connectivity of its neighbourhood. The trick is that
these potentials can be estimated from data by minimising a suitable objective
function. Experiments on some real-world networks have resulted in link prediction
algorithms that outperform the solutions proposed by Watts-Strogatz [51] and
Barabasi-Albert [6]. Other probabilistic methods for link prediction are reported
in [30].

5.2 Transitivity-Based Methods

In mathematics, a binary relation ) defined on a domain D is said to be transitive if
whenever u is in relation with v(z 9 v) and v is in relation with w(v it w), then u is
in relation with w(u R w).

In topological transitivity applied to a complex network G = (V, E), the domain
D consists of the set 17 of nodes of the network, and the relation ) is represented
by the set E of edges. The application of topological transitivity to link prediction
is based on the assumption that, as a complex network evolves, it tends to become
transitive, i.e.: if at time ¢, u is related to v and v is related to w, then there is a high
probability that at a future time ¢/, u will be related to w. This assumption follows
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from a common observation made, for instance, on friendship networks: a friend
of your friend is likely to be or become your friend. This corresponds to triangles
in G, i.e. triples of edges (u,v), (v,w), and (u, w). In graph-theoretic terms, the
degree of transitivity of a network G can be measured by the so-called clustering
coefficient [51]:

ZMGV Cu

C =
14

(6)
where

number of triangles connected to vertex u

C, = )

number of triples centred on vertex u

As reported in [35], this coefficient has remarkable values for many current
networks: greater than 0.75 for film actors and power grids; between 0.6 and 0.74
for biology co-authorship, train routes and metabolic networks; between 0.30 and
0.59 for math co-authorship, Internet and word co-occurrences in web pages, and
less than 0.20 for email messages and freshwater food web.

The basic link prediction methods based on topological transitivity use some
local or global properties of the network G, to assign a connection weight
Score(u, v), to pairs of nodes (u,v) of V. All non-observed links are then ranked
in decreasing order of Score(u, v). In this approach, links with the highest scores are
supposed to be of higher existence likelihoods and are produced by the algorithm.
Such a measure must reflect the proximity or similarity between nodes u and v. The
problem is to design good similarity measures.

Let us denote I"(u) the set of neighbours of node u, and let | A| be the cardinality
of aset A. CN(u,v) = |I'(u) N T'(v)| [34] corresponds to the number of common
neighbours of u and v. The idea is that if # and v have many neighbours in common,
then there is a high probability that they will become neighbours in the future. The
efficiency of this measure has been experienced with collaborative networks [35].
However, this measure suffers from serious drawbacks. For instance, in a friendship
network, the fact that two nodes u and w have a common very popular neighbour v,
i.e. with a very high degree d,, does not necessarily mean that u and w will become
friends in the future. They may even be from different continents and never meet.
In the same way, in an allocation network, if node u# sends a unit of resource to a
very popular neighbour v that serves as intermediary, and if node v subdivides the
resource and sends equal parts to his neighbours, then the portion received by any
neighbour w € T'(v) will be div. This means that the contribution of an intermediate
node v for the “future connection” between u and w is divided by the degree of v.
This has motived some authors to introduce RA(u,v) = 3_ crunrm dlw [52] and

the log form AA(u,v) = 3 erunre) log(;dw) [1]. Many other variants of CN have
been proposed, but extensive experiments on real-world networks have shown that
R A is the best whereas C N is the second best.

A nice link prediction method based on topological transitivity has been
introduced by Latapy et al. [2]. Consider a bipartite clients/products network
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G = (L, T, E) where L is the set of clients, T the set of products, and E the set of
purchases. The L -projection of G is the graph G, = (L, E}) in which (u,v) € E |
if # and v have at least s neighbours in common in G, where s is a given threshold,
ie. [C(w) N T'(v)] = s. The underlying intuition of the internal link prediction
method is that, in a clients/products network, if two clients have bought in the past
many common products, then they will probably acquire new common products in
the future. This method falls within the transitivity framework as follows: if client
A is related to client B in G and if client B is related to product p in G, then there
is high probability for 4 to be related to p in the future.

Another topological transitivity measure for link prediction is based on random
walks already introduced in section “Random Walks” for community detection. In
the simplest version of this method, it is assumed that, when a random walker is at
node u, it can go in one step to any node v € I"(u) with probability dlu Let m(u,v)
denote the average number of steps necessary for a random walker to go from u to v.
The commute time is the symmetrical measure C T (u,v) = m(u, v) + m(v, u). This
transitivity measure is then used to predict missing links: the smaller C T (u, v) is,
the greater is the probability for u and v to establish a connection in the future.

Association rules originally defined for large databases of sales transactions
can be adapted for link prediction on a network G = (V,FE). Consider
D = {['(u)|u € V}. Define frequent groups of nodes as subsets that are included
in at least s elements of D, where s is a given threshold. An association rule is an
implication of the form A — B, where A C V,BCV,ANB =0,and AUB
is frequent. A rule A — B holds with confidence ¢ if ¢% of neighbourhoods in D
that contain A also contain B. Hereafter, we denote A — B : c. The transitivity
principle states as follows: if A — B :cand B — C : ¢/,then A — C : ¢ x .
In the context of an application to co-authorship [25]: A, B and C are sets of
co-authors. A — B : ¢ means that ¢% of articles co-authored by A are also
co-authored by B, and B — C : ¢’ means that ¢’% of articles co-authored by B
are also co-authored by C. As a consequence, if A — B : cand B — C : ¢’ are
observed, then A — C is predicted with probability ¢ x ¢’ (i.e. a new article with
A U C as co-authors is predicted) [25].

5.3 Attributes-Based Methods

The great specificity for graphs that model social networks is that nodes and links
usually have attributes. Consider a phone network in which a node represents a
person and each link represents a call. Phone numbers can be used as node attributes
and the average number of calls between nodes can be used as link attributes.

The link prediction problem can be expressed as a classification problem for pairs
(u, v). The following attributes may be considered when dealing with co-authorship
networks [23]: the number of common neighbours (I'(«) N I'(v)), the number of
common keywords (Kw(u) N Kw(v)), or the total number of articles published
by u# and v. The class attribute is a binary variable with value 1 if the link will
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appear and O otherwise. All attributes values are normalised to have zero mean
and one standard deviation. A classification model such as Decisions Tree (DT),
Support Vector Machine (SVM) or Artificial Neural Network (ANN) can then be
used. Hasan et al. [23] have shown on two networks (DBPL and BIOBASE) that
SVM beats all the most used classification methods.

The similarity between two nodes can use attributes of nodes and links. This
is the case for Abstract proposed in [25], which takes into account summaries of
articles in the bipartite graph Authors/Articles. The idea is that articles already
published contain information on topics that interest the co-authors. It is then natural
to suppose that authors working in the same domain are more likely to collaborate
and co-publish an article in the future. The attributes-based similarity between two
u and v authors is then defined as:

score(u,v) = cos(V(u), V(v)) ®)

where V' (u) is a descriptor that encapsulates the attributes for vertex u. It has been
shown in [25] that this approach produces very good predictions for some well-
known co-authorship networks.

5.4 Link Prediction in Dynamic Complex Networks

Classical link prediction is not sufficient to fully analyse the dynamics of a complex
network. Indeed, it supposes that all the created links will last forever. However, in a
real interaction complex network, the links between nodes are created and ended.
For example, in a collaboration network, a publication between two scientists in a
particular year does not guarantee that they will still work together in the future.
To fully analyse the dynamics of connections between nodes, one needs a more
general model which determines whether or not a particular link will exist at a future
time .

This can be stated as follows: given a dynamic network G = (Gy,...,Gr),
what will be the structure of the following snapshot (Gr4)? This problem is a
generalisation of the link prediction problem: here not only the non-previously seen
links are predicted but also the existing ones to check whether or not they will still
exist in the following snapshot.

As a generalisation of the link prediction problem, the class of methods designed
for the classical link prediction problem can also be used to solve it. A similarity-
based and a supervised learning method to solve this problem can be found in [38].
The supervised method can be described as follows: for each snapshot ¢ of the
training period, the following features are computed for each pair of nodes:

 the number of common neighbours

* the number of common community members

e a boolean attribute indicating whether an interaction is present or not between
the two nodes

 other similarity between the two nodes (if available)
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The real classes are obtained on the test period. It is worth nothing that to reduce
the complexity (the number of possible interactions is in the order of O(n?)),
only the interactions that are likely to appear, based on the computed similarity
scores (topological or attribute based), are considered. Finally, a supervised learning
method (SVMs for example) can be used to build the model.

6 Conclusions and Perspectives

In this chapter, we have presented some tools for the analysis of the community
structure and for link prediction in social networks in both static and dynamic
contexts. This corresponds to the observation of the evolution of such a network at
the macroscopic level (global communities), intermediate level (local communities),
and microscopic (link prediction) level. Such analysis, and more generally social
mining techniques, can lead to many applications in Africa and some interesting
work has already been done.

In epidemiology, for example, the work in [18] presents an agent-based model
of epidemic spread using social networks. On the other hand, because of the dense
interaction patterns, infectious diseases tend to spread more rapidly in communities.
As a consequence, an interesting question may be to design models of infection
spread, that take into account the community structure of a contact network. An
example of attempt in this direction can be found in [3] where the Ross—Macdonald
model which describes the dynamics of malaria has been extended to multipatch
systems. In this approach, a patch models a community. On the other hand, a nice
and simple analytic formula of the basic reproduction number has been proposed in
[47] for cellular SIR networks.

In telecommunication networks, thanks to the Data for Development challenge
http://www.fr.d4d.orange.com/, many researches have been conducted on the Ivory
Coast telecommunication network [6]. For example, the work in [20] presents a
method based on the phone calls network and airtime credit, for the evaluation of
the socioeconomic state of a country. More recently in a Ph.D. thesis, Guigoures [22]
has studied the co-clustering technique that consists of simultaneously partitioning
the rows and the columns of a data matrix. Applications to detailed call records from
a telecom operator in Ivory Coast have permitted to detect individuals that are the
most representative of their profiles. This information was then used to improve the
knowledge of users, develop new products and improve urban infrastructure related
to mobility.

For co-authorship networks, the work in [32] analyses the evolution of
co-publications in the community of researchers involved since 1992 in the African
conference for research in applied mathematics and computer science (CARI).

Note that, for Africa to take full benefit of tools for network analysis, an increased
effort must be put on data collection.
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