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Preface

It is our pleasure to present the proceedings of the 21st International Conference
on Analytical and Stochastic Modelling Techniques and Applications (ASMTA),
held from June 30 to July 2, 2014, in Budapest, Hungary. The ASMTA confer-
ence is a main forum for bringing together researchers of academia and industry
to discuss the latest developments in analytical, numerical, and simulation algo-
rithms for stochastic systems, including Markov processes, queueing networks,
stochastic Petri nets, process algebras, game theory, etc.

We had submissions from most European contries including Belgium, Den-
mark, Finland, France, Germany, Hungary, Italy, Latvia, Poland, Spain, The
Netherlands, and the UK, but also received contributions from Australia, Azer-
baijan, Belarus, China, Japan, Kazakhstan, Korea, and the USA. The interna-
tional Program Committee reviewed these submissions and decided to accept 18
high-quality papers. The selection procedure was based on at least three, and
on average of 3.7 reviews, followed by an active discussion phase. We would like
to thank the authors for the high-quality contributions and the Program Com-
mittee members for their excellent work and for the time and effort devoted to
this conference.

We are grateful for our sponsors, the IEEE UK-RI Computer Chapter and
the ECMS - The European Council for Modelling and Simulation. Finally, we
would like to thank the EasyChair team and Springer for the editorial support
of this conference series.

April 2014 Bruno Sericola
Miklós Telek

Gábor Horváth
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Abstract. In this work, the fluid limit approach is applied to find sta-
bility conditions of two models of queueing networks with interacting
servers. We first consider a two-station queueing model with two cus-
tomer classes in which customers that are awaiting service at any queue
can move to the other station, whenever it is free, to be served there
immediately. Then we consider a cascade-type three-station system in
which the third station, whenever it is free, can assist the other two sta-
tions. In both models, each station is fed by a renewal input with general
i.i.d. inter-arrival times and general i.i.d. service times.

Keywords: cascade networks, fluid limit approach, interacting servers,
stability, X-model.

1 Introduction

In the present paper, we study two variants of the cascade networks considered
in [12]. First, we consider a queueing system consisting of two basic customer
classes, 1 and 2, and two servers. Class-j customers are primarily assigned to
server j, j = 1, 2. However, servers are cross-trained so that, when become free,
they can serve customers from the other class (that is, from the queue of other
server). Such a model, which is called X-model in [19], differs from the two-
station cascade network considered in [12] in which in that paper, the 1st server,
being free, cannot support the 2nd one. Motivation for the study of these models
can be found in [19]. Secondly, we study a generalized cascade model consisting
of three stations with three basic customer classes, in which the 3rd station
assists the 2nd station which, in turn, assists the 1st one, as was the case of the
three-station cascade network introduced in [12], but with the novelty that now

� Corresponding author.
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2 R. Delgado and E. Morozov

the 3rd station can also assist station 1. For convenience, we call it tree-cascade
system.

In both models each station has an unlimited-capacity buffer for awaiting cus-
tomers. Customers of each basic customer class arrive following an independent
general renewal input, and have i.i.d. general service times when served at the
same station. Interarrival times and service times are possibly different for dif-
ferent customer classes. Service discipline is work-conserving and FCFS within
each class. Whenever a station becomes empty while customers are awaiting
service in other station, one customer jumps to be served there if it is allowed
in the given model. More specifically, a customer can jump from each queue to
other station in the X-model, while only jumps from station i to station j > i
(i = 1, 2; j = 2, 3) are allowed in the tree-cascade system.

There are closely related systems with flexible servers, where a server may
transfer some service capacity to accommodate workload accumulated in an-
other server, [3,13,16,20,24] and also other with cross-trained servers, in which
some servers can handle a reduced set of customers types, whereas others accept
all types [1,2,21,22]. These models describe a variety of real-life systems, includ-
ing service centers, production systems, computer networks with rescheduling of
jobs, and parallel computing systems where processors have overlapping capabil-
ities [5]. There are also manufacturing applications in which machines may have
differing primary functions and some overlapping secondary ones. Such a model
is also called N -model with static priority rule, see [23] and references therein.
The most related papers focus on an optimal server allocation to minimize a
cost function, and much less attention is devoted to stability analysis.

Under heavy-traffic regime, the boundary of the stability region is typically
defined based on the resource pooling (RP) or complete resource pooling (CRP)
assumption when the input rate in a pool of servers must be less than (RP) or
equal to (CRP) the maximal service rate of the pool, [4,6,15,17,20]. Sometimes
such an assumption is formulated as the existence of a specific solution of a linear
programming problem, [4,23]. However concrete service rates are not specified
there. At the same time, it is not a trivial problem to delimit the stability region
in terms of predefined parameters, see [14,18].

Finally, in [12] stability analysis of a N -station cascade networks in which each
station only can support the previous one, is carried out by using the fluid limit
approach instead of standard Foster’s type arguments. It is worth mentioning
that in this model the service discipline is in fact state-dependent, and it can be
a source of problems to apply this methodology ([7]).

Our aim is to find stability conditions for the X-model and the tree-cascade
system by using the fluid limit approach as in [12]. Indeed, for each model we
find conditions implying the positive Harris recurrence of the underlying Markov
process describing the network dynamics. Following [9], we first establish the
stability of the fluid limit model associated to the queueing network, which
means that the fluid limit of the queue-size process reaches zero in a finite time
interval and stays there.
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The organization of the paper is as follows. In Section 2 we give main nota-
tions. In Section 3 we describe the X-model and the equations that govern the
processes associated to the network. Section 4 is devoted to stability analysis
of such a queueing model. In particular, Section 4.1 introduces the associated
fluid limit model, while in Section 4.2 we prove the stability result (Theorem 1).
Finally, in Section 5 we analyze the tree-cascade system and establish corres-
ponding stability conditions (Theorem 2).

2 Notations

Vector (in)equalities are interpreted component-wise. For any integer d ≥ 1, let

Rd
+ = { v ∈ Rd : v ≥ 0 }, Zd

+ = { v = (v1, . . . , vd) ∈ Rd : vi ∈ Z+ } .

For a vector v = (v1, . . . , vd) , let |v| =

d∑
i=1

|vi| . We say that a sequence of

vectors {vn}n≥1 converges to a vector v as n → ∞ if |vn − v| → 0, and denote
it as lim

n→∞ vn = v . (This convergence is equivalent to the component-wise con-

vergence.) For n ≥ 1, let Ωn : [0, ∞) → Rd be right continuous functions having
limits on the left on (0, ∞), and let function Ω : [0, ∞) → Rd be continuous. We
say that Ωn converges to Ω as n → ∞ uniformly on compacts (u.o.c.) if for any
T ≥ 0,

||Ωn − Ω||T := sup
t∈[0,T ]

|Ωn(t)− Ω(t)| → 0 as n→ ∞ ,

and write it as lim
n→∞Ωn = Ω . If function Ω is differentiable at a point s ∈ (0, ∞)

then s is a regular point of Ω, and we denote the derivative by Ω̇(s).
Finally, by convention max ∅ = 0 and =st denotes stochastic equality.

3 The X-Model

We consider a X-model with two stations, 1 and 2, with infinite-capacity buffers
for the awaiting customers arrived from outside as shown in Figure 1. If a station
becomes free, then an awaiting customer in the buffer of other station (if any)
switches to the free station and starts service there immediately. We call class-j
exogenous customers who arrive at station j = 1, 2, and class-(i, j) customers
jumping from station i to station j; i, j = 1, 2. (For stability analysis, it does not
matter which customer makes the jump.) In what follows, we use index j (double
index i, j) to denote the quantities related to class-j (class-(i, j)) customers. Let
σj(γ), γ ≥ 2, be the i.i.d. inter-arrival times of class-j arriving after instant 0
(j = 1, 2) and let ωk(γ), γ ≥ 2, be the i.i.d. service times of class-k customers
finishing service after instant 0, k = 1, 2, (1, 2), (2, 1). All sequences are assumed
to be mutually independent. We denote the generic elements of these sequences
by σj and ωk, respectively, j = 1, 2; k = 1, 2, (1, 2), (2, 1). The residual arrival
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time σj(1) of the first class-j customer entering the system after instant 0 is
independent of {σj(γ), γ ≥ 2}, j = 1, 2. Also the residual service time ωk(1) of a
class-k customer initially being served, if any, is independent of {ωk(γ), γ ≥ 2},
and ωk(1) =st ωk if class k is initially empty, k = 1, 2, (1, 2), (2, 1) . Denote
the arrival rate λj = 1/Eσj of class-j customers ( j = 1, 2) and the service
rate μk = 1/Eωk of class-k customers ( k = 1, 2, (1, 2), (2, 1)), and impose the
following standard conditions [9] which in particular imply that λj , μk ∈ (0, ∞):

0 < E ωk <∞, k = 1, 2, (1, 2), (2, 1), (1)

E σj <∞, j = 1, 2 , (2)

P(σj ≥ x) > 0, j = 1, 2 for any x ∈ [0, ∞) . (3)

Also we assume that inter-arrival times are spread out, that is, for some integers
sj > 1 and functions fj ≥ 0 with

∫∞
0
fj(y) dy > 0:

P
(
a ≤

sj∑
σ=2

σj(γ) ≤ b
) ≥ ∫ b

a

fj(y) dy, for any 0 ≤ a < b, j = 1, 2 . (4)

Fig. 1. The X-model

Service discipline is assumed to be non-preemptive and also non-idling, in
which case any server can not be idle if there are waiting customers in any
buffer.

We introduce the following primitive processes of the X-model: the exogenous
arrival process E = {E(t) := (E1(t), E2(t)), t ≥ 0}, with Ej(t) := max{n ≥ 1 :∑n

σ=1 σj(γ) ≤ t} the total number of class-j arrivals in interval [0, t], j = 1, 2,
and the process of served customers S = {S(t) := (S1(t), S2(t), S1,2(t), S2,1(t)),
t ≥ 0}, where the renewal process Sk(t) := max {n ≥ 1 :

∑n
σ=1 ωk(γ) ≤ t} is the

total number of class-k customers served in [0, t] if the server devotes all time
to class k = 1, 2, (1, 2), (2, 1). (By definition, Ej(0) = Sk(0) = 0.)

Now we also introduce the descriptive processes to measure the performance of
the network. For any t ≥ 0, let Dk(t) be the number of class-k departures (from
the network) in interval [0, t], and let Zk(t) be the number of class-k customers
that are being served at time t, so Zk(t) ∈ {0, 1}, k = 1, 2, (1, 2), (2, 1). Also
let Tk(t) be the total service time devoted to class-k customers in interval [0, t],
that is

Tk(t) =

∫ t

0

1{Zk(u)=1} du .
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For j = 1, 2, let Yj(t) be the idle time of server j in interval [0, t] and let
Qj(t) be the number of customers in buffer j at time t. Now we introduce the
following processes

D = {D(t) := (D1(t), D2(t), D1,2(t), D2,1(t)), t ≥ 0},
Z = {Z(t) := (Z1(t), Z2(t), Z1,2(t), Z2,1(t)), t ≥ 0},
T = {T (t) := (T1(t), T2(t), T1,2(t), T2,1(t)), t ≥ 0},
Q = {Q(t) := (Q1(t), Q2(t)), t ≥ 0},
Y = {Y (t) := (Y1(t), Y2(t)), t ≥ 0}.

Processes D, T and Y are nondecreasing and satisfy initial conditions D(0) =
T (0) = Y (0) = 0, and it is assumed that Z(0) and Q(0) are independent and
independent of all above given quantities. We also define the remaining time Uj(t)
at time t before next exogenous j-class arrival, j = 1, 2 , and the remaining service
time Vk(t) for the class-k customer being served at time t, k = 1, 2, (1, 2), (2, 1).
We assume the processes U, V to be right-continuous, and define Vk(t) = 0 if
Zk(t) = 0. Note that Uj(0) = σj(1), while Vk(0) = ωk(1) if Zk(0) = 1 . We intro-
duce the following processes: U = {U(t) := (U1(t), U2(t)), t ≥ 0}, V = {V (t) :=
(V1(t), V2(t), V1,2(t), V2,1(t)), t ≥ 0}, and define the process

X = (Q, Z, U, V ) := {X(t) = {(Q(t), Z(t), U(t), V (t)), t ≥ 0}
describing the dynamics of the network with the state space X = Z2

+ ×{0, 1}4×
R2

+ × R4
+. The process X is a piecewise-deterministic Markov process which

satisfies Assumption 3.1 [11] and is a strong Markov process (p. 58, [9]).
Let x ∈ X denote the initial state of the network. We denote X as Xx

(and analogously for the processes E, S, D, T, Y ) if X(0) = x, being X(0) =
(Q(0), Z(0), U(0), V (0)) . The following queueing network equations hold for
t ≥ 0 :

Dk(t) = Sk (Tk(t)) , k = 1, 2, (1, 2), (2, 1), (5)

Q1(t) = Q1(0) + E1(t)−
(
D1(t) + Z1(t) +D1,2(t) + Z1,2(t)

)
,

Q2(t) = Q2(0) + E2(t)−
(
D2(t) + Z2(t) +D2,1(t) + Z2,1(t)

)
,(

T1(t) + T2,1(t)
)
+ Y1(t) = t ,

(
T2(t) + T1,2(t)

)
+ Y2(t) = t ,∫ ∞

0

Qj(t) d Yj(t) = 0 , j = 1, 2, (6)∫ ∞

0

Q1(t) d Y2(t) = 0 ,

∫ ∞

0

Q2(t) d Y1(t) = 0 , (7)∫ ∞

0

(Q2(t) + Z2(t)) d T1,2(t) = 0 ,

∫ ∞

0

(Q1(t) + Z1(t)) d T2,1(t) = 0 . (8)

Equations (5) reflect that Sk (Tk(t)) is the total number of class-k customers ser-
vice completions by time t, while equations (6) correspond to a work-conserving
discipline. Relations (7) show that any server cannot be idle if there are cus-
tomers waiting in the buffer of the other station, while relations (8) mean that
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server j gives priority to class-j customers over customers waiting in the other
station. The rest of the equations are self-explained.

4 Stability Analysis of the X-Model

By definition, the queueing network is stable if its associated underlying Markov
process X is positive Harris recurrent, that is, it has a unique invariant proba-
bility measure (see [7,9] for details). By Theorem 4.2 [9], the queueing network
is stable whenever the corresponding fluid limit model is stable in the sense of
Definition 1 below. Thus, to prove stability of the network, it is enough to es-
tablish stability of the associated fluid limit model, and this is what we will do,
first for the X-model in Theorem 1.

4.1 The Fluid Limit Model

Next proposition is similar to Theorem 4.1 [9] (see also Lemma 3.1 in [10]), and
to Proposition 1 [12], so we present the result without proof.

Proposition 1. For the X-model, for almost all sample paths and any sequence
of initial states {xn}n≥1 ⊂ X with limn→∞ |xn| = ∞, there exists a subsequence
{xnr}r≥1 ⊆ {xn}n≥1 with limr→∞ |xnr | = ∞ such that the following limit exists

lim
r→∞

1

|xnr |
Xxnr (0) := X̄(0) , (9)

and the following u.o.c. limit exists

lim
r→∞

1

|xnr |
(Xxnr (|xnr |t), Dxnr (|xnr |t), T xnr (|xnr |t), Y xnr (|xnr |t))

:=(X̄(t), D̄(t), T̄ (t), Ȳ (t)) , (10)

where (in an evident notation) X̄(t) := (Q̄(t), Z̄(t), Ū(t), V̄ (t)) . Furthermore,
the following equations are satisfied for any t ≥ 0:

D̄k(t) = μk (T̄k(t)− V̄k(0))
+ , k = 1, 2, (1, 2), (2, 1), (11)

Z̄k(t) = 0 , k = 1, 2, (1, 2), (2, 1), (12)

Q̄1(t) = Q̄1(0) + λ1 (t− Ū1(0))
+ − (

D̄1(t) + D̄1,2(t)
)
, (13)

Q̄2(t) = Q̄2(0) + λ2 (t− Ū2(0))
+ − (

D̄2(t) + D̄2,1(t)
)
, (14)

(T̄1(t) + T̄2,1(t)) + Ȳ1(t) = t , (T̄2(t) + T̄1,2(t)) + Ȳ2(t) = t , (15)∫ ∞

0

Q̄j(t) d Ȳj(t) = 0 , j = 1, 2, (16)∫ ∞

0

Q̄1(t) d Ȳ2(t) = 0 ,

∫ ∞

0

Q̄2(t) d Ȳ1(t) = 0 , (17)∫ ∞

0

Q̄2(t) d T̄1,2(t) = 0 ,

∫ ∞

0

Q̄1(t) d T̄2,1(t) = 0, (18)

Ū(t) = (Ū(0)− t)+ , V̄ (t) = (V̄ (0)− t)+ . (19)
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In addition, for any 0 ≤ s ≤ t and k = 1, 2, (1, 2), (2, 1),

0 ≤ T̄k(t+ s)− T̄k(s) ≤ t . (20)

Remark 1. Any limit (X̄, D̄, T̄ , Ȳ ) in (9) and (10) is called a fluid limit model
associated to the queueing network. Proposition 1 states that any fluid limit
model satisfies the fluid model equations (11)-(19), and also condition (20).

Definition 1. ([7,9,12]) The fluid limit model (X̄, D̄, T̄ , Ȳ ) associated to the
X-model, with X̄ = (Q̄, Z̄, Ū , V̄ ), is stable if there exists t1 ≥ 0 (depending on
the arrival and service rates only) such that if |Q̄(0)|+ |Ū(0)|+ |V̄ (0)| = 1 then

Q̄(t) = 0 for all t ≥ t1 . (21)

Remark 2. By Lemma 5.3 [9] (see also [8]), hereinafter we will assume without
loss of generality that Ū(0) = V̄ (0) = 0 which, by (19), implies Ū(t) = V̄ (t) = 0
for all t > 0. We denote it Ū = V̄ = 0.

4.2 The Stability Analysis

In this section, we present stability result of the X-model, whose proof follows
the same arguments of Theorem 1 [12]. Denote r1 = μ1/μ2,1 and r2 = μ2/μ1,2,
both in (0,∞) .

Theorem 1. Let conditions (1)-(4) hold and the following assumption take place:
either a) r1, r2 ≥ 1; or b) r1, r2 < 1. Then the X-model is stable if the following two
conditions are satisfied: {

(A1) λ1 − μ1 +
λ2−μ2

r2
< 0 ,

(A2)
λ1−μ1

r1
+ λ2 − μ2 < 0 .

(22)

Remark 3. Assumption a) corresponds to the situation in which customers are
served at a slower rate when served in the other station of the rightful, while
assumption b) reflects just the opposite situation.

Proof. Take a fluid limit model (X̄, D̄, T̄ , Ȳ ) with X̄ = (Q̄, Z̄, Ū , V̄ ) for the
X-model, with Ū = V̄ = 0 and |Q̄(0)| = 1. We introduce the Lyapunov function

f(t) =
Q̄1(t)

r1
+
Q̄2(t)

r2
, t ≥ 0 .

Then Q̄ and f have the same points of differentiability, and by (13), (14) and
(11) we have for any regular point t of Q̄,
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˙̄Q1(t) = λ1 −
(
μ1

˙̄T1(t) + μ1,2
˙̄T1,2(t)

)
,

˙̄Q2(t) = λ2 −
(
μ2

˙̄T2(t) + μ2,1
˙̄T2,1(t)

)
, (23)

implying

ḟ(t) =
λ1
r1

− (μ1

r1
˙̄T1(t) +

μ1,2

r1
˙̄T1,2(t)

)
+
λ2
r2

− (μ2

r2
˙̄T2(t) +

μ2,1

r2
˙̄T2,1(t)

)
. (24)

Let t > 0 be a point of differentiability of f such that f(t) > 0, if exist. Then
Q̄1(t) > 0 or Q̄2(t) > 0. We will show that in either case, ḟ(t) ≤ −C for a
constant C > 0 . Then, by Lemma 5.2 [9], f is nonincreasing and f(t) = 0 for
t ≥ f(0)/C, where

f(0) =
Q̄1(0)

r1
+
Q̄2(0)

r2
≤ 1

r1
+

1

r2
.

(Recall that Q̄1(0)+Q̄2(0) = 1.) Then (21) will follow with t1 = 1
C ( 1

r1
+ 1

r2
) > 0 .

To finish the proof, we distinguish the following three cases:

a) Assume that Q̄1(t) > 0 and Q̄2(t) = 0. As Q̄1(t) > 0, then by (16) ˙̄Y1(t) = 0,
and it implies by (15)

˙̄T1(t) +
˙̄T2,1(t) = 1 . (25)

Moreover, ˙̄Y2(t) = 0 by (17) which, by (15), gives

˙̄T2(t) +
˙̄T1,2(t) = 1 . (26)

Finally, (18) implies ˙̄T2,1(t) = 0, which in turn by (25) implies ˙̄T1(t) = 1.
Thus, (24) gives

ḟ(t) =
λ1 − μ1

r1
− μ1,2

r1
˙̄T1,2(t) +

λ2
r2

− μ2

r2
˙̄T2(t) . (27)

Since Q̄2 ≥ 0 and Q̄2(t) = 0 is a local minimum, as t is a regular point, then,

by Fermat’s theorem on stationary points, ˙̄Q2(t) = 0 . Therefore μ2
˙̄T2(t) +

μ2,1
˙̄T2,1(t) = λ2 by (23). Since ˙̄T2,1(t) = 0, we obtain ˙̄T2(t) =

λ2

μ2
, and also

˙̄T1,2(t) = 1− λ2

μ2
by (26). Now, from (27) we can write

ḟ(t) =
λ1 − μ1

r1
− μ1,2

r1
(1 − λ2

μ2
) =

1

r1

(
λ1 − μ1 − μ1,2 +

λ2
r2

)
=

1

r1

(
λ1 − μ1 +

λ2 − μ2

r2

)
= −C1 ,

where constant C1 := − 1
r1

(
λ1 − μ1 +

λ2−μ2

r2

)
is positive by condition (A1)

in (22).
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b) Assume that Q̄1(t) = 0 and Q̄2(t) > 0. By symmetry with the previous case,
ḟ(t) = −C2 , where C2 := − 1

r2

(
λ1−μ1

r1
+ λ2 − μ2

)
is positive by condition

(A2) in (22).
c) Assume that Q̄1(t) > 0 and Q̄2(t) > 0. As in the previous cases, Q̄1(t) > 0

and Q̄2(t) > 0 imply ˙̄Y1(t) =
˙̄Y2(t) =

˙̄T2,1(t) =
˙̄T1,2(t) = 0. The latter gives

˙̄T1(t) =
˙̄T2(t) = 1

by (15). It follows from (24) that

ḟ(t) =
λ1 − μ1

r1
+
λ2 − μ2

r2
:= −C3.

Now we show that constant C3 > 0. Indeed, by (22) the three following
situations are possible:
i) λ1 < μ1 and λ2 ≥ μ2. Under assumption a) condition (A2) implies C3 >

0, while under assumption b) we arrive to the same conclusion by (A1). In
fact, under a), −C3 ≤ −r2 C2 < 0, while under b), −C3 < −r1 C1 < 0 .

ii) λ1 ≥ μ1 and λ2 < μ2. In this case, we use (A1) under assumption a),
while use (A2) under b). Analogously, −C3 ≤ −r1 C1 < 0 under a), while
−C3 < −r2 C2 < 0 under b).

iii) λ1 < μ1 and λ2 < μ2. In this case it is obvious that C3 > 0 .

Therefore, in either case, ḟ(t) ≤ −C < 0, where C := min(C1, C2, C3) . �

Remark 4. Comparing conditions (22) with stability conditions{
λ1 − μ1 +

λ2−μ2

r2
< 0,

λ2 − μ2 < 0

for the two-station cascade system (see [12] and references therein), we see
that the only difference is that condition (A2) includes the additional summand
λ1−μ1

r1
.

5 The Tree-Cascade System

In this section, we consider a three-station queueing system with interacting
servers where each server has an infinite-capacity buffer. We call class-j exoge-
nous customers who arrive at station j = 1, 2, 3 following independent renewal
processes. An awaiting customer at station 1 jumps to station 2 whenever it is
free, and an awaiting customer at station 2 jumps to station 3 if it is free. This
interaction corresponds exactly to the three-station cascade network studied in
[12]. However, in addition, we now allow an awaiting customer at station 1 to
jump from the buffer to station 3 whenever it is free. That is, in this model sta-
tion 3 supports both stations 1, 2 but gives priority to station 2. We denote by
class-(i, j) customers jumping from station i to station j > i, i = 1, 2 . We will
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μ1
λ1

μ2
λ2

μ1,2

station 1

station 2

μ3
λ3

μ2,3

station 3

μ1,3

Fig. 2. The tree-cascade system

use the same notations as before, mutatis mutandis. In particular, the arrival
rates of class-j customers ( j = 1, 2, 3) are λj ∈ (0,∞), and the service rates of
class-k customers ( k = 1, 2, 3, (1, 2), (1, 3), (2, 3)) are μk ∈ (0,∞), see Figure 2.

We also impose standard conditions (1)-(4) on the interarrival and service
times, assume work-conserving discipline and introduce the following processes:

D = {D(t) := (D1(t), D2(t), D3(t), D1,2(t), D1,3(t), D2,3(t)), t ≥ 0},
Z = {Z(t) := (Z1(t), Z2(t), Z3(t), Z1,2(t), Z1,3(t), Z2,3(t)), t ≥ 0},
T = {T (t) := (T1(t), T2(t), T3(t), T1,2(t), T1,3(t), T2,3(t)), t ≥ 0},
Q = {Q(t) := (Q1(t), Q2(t), Q3(t)), t ≥ 0},
Y = {Y (t) := (Y1(t), Y2(t), Y3(t)), t ≥ 0},
U = {U(t) := (U1(t), U2(t), U3(t)), t ≥ 0},
V = {V (t) := (V1(t), V2(t), V3(t), V1,2(t), V1,3(t), V2,3(t)), t ≥ 0},

and define the piecewise-deterministic strong Markov process

X = (Q, Z, U, V ) := {X(t) = (Q(t), Z(t), U(t), V (t)), t ≥ 0}

describing the dynamics of the network with the state space X = Z3
+ ×{0, 1}6×

R3
+ ×R6

+ . The following queueing network equations governing the system hold
for all t ≥ 0 :

Dk(t) = Sk (Tk(t)) , k = 1, 2, 3, (1, 2), (1, 3), (2, 3),

Q1(t) = Q1(0) + E1(t)

− (
D1(t) + Z1(t) +D1,2(t) + Z1,2(t) +D1,3(t) + Z1,3(t)

)
,

Q2(t) = Q2(0) + E2(t)−
(
D2(t) + Z2(t) +D2,3(t) + Z2,3(t)

)
,

Q3(t) = Q3(0) + E3(t)−
(
D3(t) + Z3(t)

)
,
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T1(t) + Y1(t) = t ,
(
T2(t) + T1,2(t)

)
+ Y2(t) = t ,(

T3(t) + T1,3(t) + T2,3(t)
)
+ Y3(t) = t ,∫ ∞

0

Qj(t) d Yj(t) = 0 , j = 1, 2, 3,∫ ∞

0

Q1(t) d Y2(t) = 0 ,

∫ ∞

0

(
Q1(t) +Q2(t)

)
d Y3(t) = 0 , (28)∫ ∞

0

(Q2(t) + Z2(t)) d T1,2(t) = 0 , (29)∫ ∞

0

(Q3(t) + Z3(t) + Z1,3(t)) d T2,3(t) = 0 , (30)∫ ∞

0

(Q2(t) +Q3(t) + Z3(t) + Z2,3(t)) d T1,3(t) = 0 . (31)

Relations (28) mean that server 2 supports server 1, while server 3 supports
both servers 1 and 2. Equations (29) and (30) mean that server j (j = 2, 3) gives
priority to class-j customers, and equation (31) shows that server 3 gives priority
to class-2 customers over class-1 ones.

The corresponding fluid limit model (X̄, D̄, T̄ , Ȳ ) is defined as above, with
X̄ = (Q̄, Z̄, Ū , V̄ ) and the assumption Ū = V̄ = 0. Then the corresponding
fluid model equations are the following, for any t ≥ 0:

D̄k(t) = μk T̄k(t) , k = 1, 2, 3, (1, 2), (1, 3), (2, 3), (32)

Z̄k(t) = 0 , k = 1, 2, 3, (1, 2), (1, 3), (2, 3), (33)

Q̄1(t) = Q̄1(0) + λ1 t−
(
D̄1(t) + D̄1,2(t) + D̄1,3(t)

)
, (34)

Q̄2(t) = Q̄2(0) + λ2 t−
(
D̄2(t) + D̄2,3(t)

)
, (35)

Q̄3(t) = Q̄3(0) + λ3 t− D̄3(t) , (36)

T̄1(t) + Ȳ1(t) = t , (T̄2(t) + T̄1,2(t)) + Ȳ2(t) = t , (37)

(T̄3(t) + T̄1,3(t) + T̄2,3(t)) + Ȳ3(t) = t , (38)∫ ∞

0

Q̄j(t) d Ȳj(t) = 0 , j = 1, 2, 3, (39)∫ ∞

0

Q̄1(t) d Ȳ2(t) = 0 ,

∫ ∞

0

(
Q̄1(t) + Q̄2(t)

)
d Ȳ3(t) = 0 , (40)∫ ∞

0

Q̄2(t) d T̄1,2(t) = 0 ,

∫ ∞

0

Q̄3(t) d T̄2,3(t) = 0 , (41)∫ ∞

0

(
Q̄2(t) + Q̄3(t)

)
d T̄1,3(t) = 0 . (42)

We denote r1,2 = μ2/μ1,2, r1,3 = μ3/μ1,3 and r2,3 = μ3/μ2,3, the three quantities
in (0,∞) .



12 R. Delgado and E. Morozov

Theorem 2. Let the standard conditions on the inter-arrival and service times
hold and also hold:

r1,3 ≤ r1,2 r2,3 . (43)

Then, the tree-cascade system is stable if the following conditions hold:⎧⎪⎨⎪⎩
(B1) λ1 − μ1 +

λ2−μ2

r1,2
+ λ3−μ3

r1,2 r2,3
< 0,

(B2) λ2 − μ2 +
λ3−μ3

r2,3
< 0,

(B3) λ3 − μ3 < 0 .

(44)

Proof. We consider a fluid limit model (X̄, D̄, T̄ , Ȳ ) with X̄ = (Q̄, Z̄, Ū , V̄ )
verifying (32)-(42), and assume |Q̄(0)| = 1. Let we introduce the following Lya-
punov function:

f(t) = Q̄1(t) +
Q̄2(t)

r1,2
+

Q̄3(t)

r1,2 r2,3
, t ≥ 0 .

Then Q̄ and f have the same points of differentiability. It follows from fluid
model equations that for any regular point t of Q̄,

˙̄Q1(t) = λ1 −
(
μ1

˙̄T1(t) + μ1,2
˙̄T1,2(t) + μ1,3

˙̄T1,3(t)
)
, (45)

˙̄Q2(t) = λ2 −
(
μ2

˙̄T2(t) + μ2,3
˙̄T2,3(t)

)
, (46)

˙̄Q3(t) = λ3 − μ3
˙̄T3(t).

It implies

ḟ(t) = λ1 −
(
μ1

˙̄T1(t) + μ1,2
˙̄T1,2(t) + μ1,3

˙̄T1,3(t)
)

+
λ2
r1,2

− ( μ2

r1,2
˙̄T2(t) +

μ2,3

r1,2
˙̄T2,3(t)

)
+

λ3
r1,2 r2,3

− μ3

r1,2 r2,3
˙̄T3(t) . (47)

Let t > 0 be a point of differentiability of f such that f(t) > 0, if exist. Then
Q̄1(t) > 0, Q̄2(t) > 0 or Q̄3(t) > 0. We will show that in either case, ḟ(t) ≤ −C
for a constant C > 0 . Then f is nonincreasing, and f(t) = 0 for t ≥ f(0)

C (see
[9]), where

f(0) ≤ 1 +
1

r1,2
+

1

r1,2 r2,3
.

Then (21) is accomplished with t1 = 1
C (1 + 1

r1,2
+ 1

r1,2 r2,3
) . We distinguish the

following three cases:

a) Assume that Q̄1(t) > 0. Then, it follows from (39) and (37) that ˙̄Y1(t) = 0

and ˙̄T1(t) = 1. Now (40), (37) and (38) give ˙̄Y2(t) =
˙̄Y3(t) = 0 and

˙̄T2(t) +
˙̄T1,2(t) = 1 , (48)

˙̄T3(t) +
˙̄T1,3(t) +

˙̄T2,3(t) = 1 . (49)
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As a result, (47) becomes

ḟ(t) = λ1 − μ1 +
λ2 − μ2

r1,2
+
λ3 − μ3

r1,2 r2,3
+
( μ3

r1,2 r2,3
− μ1,3

) ˙̄T1,3(t)

≤ λ1 − μ1 +
λ2 − μ2

r1,2
+
λ3 − μ3

r1,2 r2,3
= −C1 ,

with C1 := −(λ1 − μ1 +
λ2−μ2

r1,2
+ λ3−μ3

r1,2 r2,3

)
> 0 by condition (B1), where we

have used that ˙̄T1,3(t) ≥ 0 and μ3

r1,2 r2,3
− μ1,3 ≤ 0 by (43).

b) Assume that Q̄1(t) = 0 and Q̄2(t) > 0. Since Q̄1 ≥ 0 and t is a regular point,

then we conclude that ˙̄Q1(t) = 0. On the other hand, Q̄2(t) > 0 implies

by (39) and (40) that ˙̄Y2(t) = 0 and ˙̄Y3(t) = 0, which gives (48) and (49),

respectively, by (37) and (38). Moreover, ˙̄T1,2(t) =
˙̄T1,3(t) = 0 by (41). As a

result, we obtain

˙̄T2(t) = 1 , ˙̄T1,2(t) = 0 ,

˙̄T1,3(t) = 0 , ˙̄T3(t) +
˙̄T2,3(t) = 1.

If we take into account (45) then (47) becomes

ḟ(t) =
λ2 − μ2

r1,2
− μ2,3

r1,2
˙̄T2,3(t) +

λ3 − μ3
˙̄T3(t)

r1,2 r2,3

=
λ2 − μ2

r1,2
− μ3

r1,2 r2,3

(
1− ˙̄T3(t)

)
+
λ3 − μ3

˙̄T3(t)

r1,2 r2,3

=
λ2 − μ2

r1,2
+
λ3 − μ3

r1,2 r2,3
:= −C2 ,

where C2 > 0 by condition (B2) .

c) Assume that Q̄1(t) = Q̄2(t) = 0 and Q̄3(t) > 0. As above, equalities Q̄1(t) =

Q̄2(t) = 0 imply ˙̄Q1(t) =
˙̄Q2(t) = 0, while Q̄3(t) > 0 implies

˙̄T1,3(t) =
˙̄T2,3 = 0 , ˙̄T3(t) = 1.

Now it is seen from (45) and (46) that (47) becomes

ḟ(t) =
λ3 − μ3

˙̄T3(t)

r1,2 r2,3
=
λ3 − μ3

r1,2 r2,3
:= −C3 ,

where C3 > 0 by condition (B3) .

Thus, in either case ḟ(t) ≤ −C < 0, where C := min(C1, C2, C3) . �
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Remark 5. The following stability conditions have been obtained in [12] for the
three-station cascade system:⎧⎪⎨⎪⎩

λ1 − μ1 +
λ2−μ2

r1,2
< 0,

λ2 − μ2 +
λ3−μ3

r2,3
< 0,

λ3 − μ3 < 0.

The only difference with (44) is that, in condition (B1), we have the additional
summand λ3−μ3

r1,2 r2,3
, which reflects the fact that in the tree-cascade system server

3 also accepts awaiting customers from the 1st station.

6 Conclusion

In this paper, we apply the fluid limit approach to find stability conditions of
two models of queueing networks with interacting servers. In both models, each
station has a renewal input with general i.i.d. inter-arrival times and general i.i.d.
service times. The first, so-called X-model, contains two stations with two classes
of customers. Each station, when is free, helps to serve customers awaiting in
queue of other station. Then a cascade-type three-station system is considered,
in which the third station, whenever it is free, assists the other two stations. Fol-
lowing conventional methodology of the fluid analysis [9], we first construct the
network equations describing stochastic dynamics of the system and then obtain
deterministic fluid limit model. Finally, for each model, we find some conditions
and relevant Lyapunov functions to prove that the fluid limit of the queue-size
process reaches zero in a finite time interval and stays there. It means that un-
der these conditions the corresponding underlying Markov process describing the
network dynamics is positive Harris recurrent.

Acknowledgments. The authors wish to thank the anonymous referees for
careful reading and helpful comments on the paper.
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Abstract. We introduce a new Markovian Agents formalism, called
Population Markovian Agent Models, a technique able to describe sys-
tems characterized by large populations of entities whose properties and
interactions may depend on their position. We apply this approach to
the analysis of the cancer evolution, and to comprehend the mechanisms
underlying the Cancer Stem Cells hierarchy whose characterization is
crucial in the study of tumor progression. We exploit the model to con-
sider movement of cell populations in a bi-dimensional space, and use it
to derive the system evolution.

1 Introduction

In this work we present the Population Markovian Agent Model (PMAM), a
technique able to describe systems characterized by large populations of entities
whose properties and interactions may depend on their position. We spatially
extend some of the concepts presented in [9] were the e-coli bacteria was studied
with an object oriented technique, and in [3] where we developed a framework
based on the Markovian agent formalism to model next generation cellular net-
works. In this formalism, agents can move to other locations, can increase in
number or decrease (either spontaneously or induced by other agents), or they
can multiply during the transitions. We apply this approach to the analysis of
the cancer evolution. Current evidence indicates that many cancers arise from a
small population of cells named Cancer Stem Cells (CSCs) [20], which have un-
dergone malignant transformation driven by frequent genetic mutations [17]. The
application of the PMAM to describe the behaviour of such cell populations al-
lowed us to observe their proliferation through the host tissue. The model output
could be exploited to comprehend the mechanisms underlying the CSC hierar-
chy, whose characterization is crucial in the study of tumor progression and in
predicting treatment response, as shown in [10].

The rest of the paper is organized as follows. In Section 2, we introduce
the PMAM formalism. The CSC biological model is presented in Section 3. In
Section 4, we describe the PMAM model of the cancer subpopulations together

B. Sericola, M. Telek, and G. Horváth (Eds.): ASMTA 2014, LNCS 8499, pp. 16–32, 2014.
c© Springer International Publishing Switzerland 2014



Markovian Agents Population Models to Study Cancer Evolution 17

i j

bi(l)

dj(l)
qij(l)

k

vh(l)

n-i,h(l,l")

h

n+k,h(l,l")

n+
k,h(l,l")

ve(l)e

n+j,e(l,l")

n-
j,e(l,l")

Fig. 1. A Population Markovian Agent (PMA) showing birth, death, spontaneous tran-
sitions and population reactions

with the results obtained by applying it to single location and bi-dimensional
scenario.

2 Population Markovian Agents

Population Markovian Agents are an extension of Markovian Agents [14], a for-
malism used to describe spatial system, where elements interact by inducing a
transition in neighboring agents. Such models are solved using Mean Field Anal-
ysis [13,1]. In this case, agents do not communicate using messages as ordinary
Markovian Agents, but they can influence each other via induction: the rate of
jumping from one state to another can be influenced by the number of agents in
a given state at a given location. Moreover, in PMAM, agents can move to other
locations, can increase in number or decrease (either spontaneously or induced
by other agents), or they can multiply during the transitions.

2.1 Population Markovian Agents Models

A Population Markovian Agent Model (PMAM) is a tuple (L,M, Init). L is a
set of locations, that can be either discrete or continuous: to simplify the pre-
sentation, in this work we will focus only on discrete locations L = {l1, . . . , l|L|}.
M is a set of Population Markovian Agents (PMA), Init(l) is the initialization
function, that describes the initial state for all the agents in each location: they
will be explained in more detail in the following. In this work we will only present
results concerning a single class of agents: this limitation however can be easily
removed following the ideas presented in [7].

A PMA describes the evolution of a single agent, and it is defined by a tuple
(Ω,Q, b, d, R, v,N). The first four components define the common Markovian
Agent behavior, while the last three account for the population evolution of the
system. A graphical representation of a PMA is given in Figure 1. We have that:
Ω = {σ1, . . . σ|Ω|} is the set of states in which the agent can be. States are visu-
ally represented as circles.

Q = (Q̃(l), Q̂[k](l, l′)), where Q̃(l) = |q̃ij(l)| and Q̂[k](l′, l) = |q̂[k]ij (l
′, l)|, with

σi, σj , σk ∈ Ω and l, l′ ∈ L, are the transition rate matrices. q̃ij(l) is the rate at
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which an agent in location l jumps from state σi to σj due to local activities.

Q̂
[k]
ij (l

′, l) accounts for transitions caused by inductions, and represents the rate
at which an agent in state σk in position l′ induces jumps from state σi to state
σj in position l. Standard transitions are drawn as normal arcs that go from the
source to the destination state, that are labeled with the corresponding tran-
sition rate. Both matrices Q̃(l) and Q̂[k](l′, l) are infinitesimal generators: their
diagonal term is equal to the sum of the other transitions out of the state (that

is, q̃ii(l) = −∑j �=i q̃ij(l) and q̂
[k]
ii (l

′, l) = −∑j �=i q̂
[k]
ij (l

′, l)), and their row sum is
equal to zero.

b = (b̃(l), b̂[k](l, l′)), with b̃(l) = |b̃i(l)| and b̂[k](l) = |b̂[k]i (l′, l)|, are respectively
the spontaneous and induced births vectors. In particular, b̃i(l) represents the

rate at which agents are created in state σi at location l, and b̂
[k]
i (l′, l) is the rate

at which an agent in state σk in position l′ induces birth of agents in state i at
location l. Birth is graphically represented with an arrow that enters one state,
labeled with the birth rate.

In a similar way, d = (d̃(l), d̂[k](l, l′)), where d̃(l) = |d̃i(l)| and d̂[k](l′, l) =

|d̂[k]i (l′, l)| are respectively the spontaneous and induced death vectors, where

d̃i(l) represents the rate at which agents are destroyed in state σi at location l,

and d̂
[k]
i (l′, l) is the rate at which an agent in state σk and position l′ induces

decrease in the number of agents in state i at location l. Graphically, death is
represented by arrows exiting a state, labeled with the death rate.

R = {r1, . . . , r|R|} is a set of reactions, that allow agents to move, duplicate or
merge. Such events can occur either locally or in neighbor locations. Graphically
they are represented as small filled circles.

v(l) = |vh(l)| is the reaction vector with rh ∈ R and l ∈ L. In particular, vh(l)
represents the speed at which reaction rh occurs in location l. Since reaction
rates can have very complex expressions, they can be function of the complete
state of the model. Reaction rates are graphically represented as labels associ-
ated to the corresponding reactions.

Finally,N=(N+(l, l′′), N−(l, l′′)) whereN+(l, l′′)= |n+
i,k(l, l

′′)| andN−(l, l′′)=
|n−

i,k(l, l
′′)| describe the effects that a reaction rk ∈ R, happening in location l,

has on the number of agents in state σi ∈ Ω at location l′′. The value of n+
i,k(l, l

′′)
represents the number of agents that are added to state σi in location l′′ when
reaction rk takes place, while n−

i,k(l, l
′′) accounts for the agents that are removed.

Graphically, additive effects are represented as arcs that go from one reaction to
the state, and subtractive effects are drawn as arrows going from the state to the
reaction. In both cases, arcs are labeled with the replication factor (n+

i,k(l, l
′′) or

n−
i,k(l, l

′′)): if there is an arc with no label, then n+
i,k(l, l

′′) = 1 or n−
i,k(l, l

′′) = 1.
The formalization of terms v and N is quite similar to one used in computational
system biology (see [11]). Self-loop arcs are also allowed to represent reactions
that multiply or divide the number of agents in a given location. In this case
both n−

j,e(l, l
′′) > 0 and n+

j,e(l, l
′′) > 0 for the same reaction re and state σj (see

for example reaction re for state σj in the right part of Figure 1).
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Fig. 2. Examples of different effects achievable with r, v and N : a) duplication, b)
movement, c) combination of duplication, halving and movement

The definitions of v and N are powerful enough to model several different
features: duplication or decimation of agents in a state, movement of agents (de-
terministic or probabilistic) to other locations, duplication or decimation com-
bined with state jump and location movement. In the following, we will describe
how such features can be obtained. To simplify the description, we focus on an
agent with two states (Ω = {σa, σb}), and two reactions (R = {r1, r2}) available
in two locations (L = {u,w}). In particular we consider how N can be defined
for an agent in position u: for all the σi, rk, l and l′ non directly described, we
suppose n±

i,k(l, l
′′) = 0.

Duplication or decimation of agents. We want to model duplication of an
agent in state a (Figure 2.a) at position u. We first add a self-loop arc on state
σa involving reaction r1. We then set n−

a,1(u, u) = 1 and n+
a,1(u, u) = 2, meaning

that whenever the agent chooses the self-loop transition, it will remain in state
σa, and in the same location u, but it will be multiplied by a factor of 2. In
general a reaction rk with n−

i,k(l, l) = 1 and n+
i,k(l, l) = a, either multiplies (if

a > 1) or decimates (a < 1) an agent in state σi at location l.
Movement of agents. We want to model the movement of an agent in state σa

at location u, to state σb of location w. (Figure 2.b). We add an arc from state
σa to reaction r2, and one from r2 to σb. We set n−

a,2(u, u) = 1 and n+
b,2(u,w) = 1.
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Fig. 3. Examples of: a) multi-state duplication, b) multi-state fusion

In general n+
i,k(l, l

′) = 1, defines a movement from state σi of location l to state
σj of location l′ due to a reaction rk.

Combined movement, duplication and decimation of agents. Figure 2.c) shows
a very general case, where the agent in state σa at location u jumps to state σb

due to reaction r2: during the transition, two copies of the agent are generated
in location w, and the original agent might remain in location u with probability
1/2, this is achieved by setting n+

b,2(u,w) = 2 and n+
b,2(u, u) = 0.5.

Multi-state duplication accounts for cases in which one agent during its tran-
sition is duplicated into several states. For example, in Figure 3.a, the agent in
state σa gives birth to six other agents due to reaction r1: one remains in state σa

together with the original agent, one goes to state σb, three to state σc and one
to state σd. This effect can be achieved by defining n−

a,1(u, u) = 1, n+
a,1(u, u) = 2,

n+
b,1(u, u) = 1, n+

c,2(u, u) = 3 and n+
d,1(u, u) = 1. This methodology can be easily

extended to support multi-state duplication in different locations.
Multi-state fusion is the exact opposite of multi-state duplication: agents in

several states are merged together. In Figure 3.c, for instance, one agent in state
σb, three from σc and one from σd are merged together to generate one agent in
state σa. This is achieved by setting: n−

b,1(u, u) = 1, n−
c,2(u, u) = 3, n−

d,1(u, u) = 1

and n+
a,1(u, u) = 1.

2.2 Analysis

As for conventional Markovian Agents, we describe a state of the system as
a vector x(l) = |xi(l)|, with one component for each state σi ∈ Ω, per each
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location l ∈ L. xi(l) represents the number of agents in state σi at location l,
and the evolution of the model is approximated using a mean field technique.
The transient evolution of the PMAM model can be evaluated by solving the
following system of non-linear differential equations:{

x(l, 0) = Init(l)
dx(l, t)

dt
= B(l, x) + x(l, t) · (D(l, x) +K(l, x)) +M(l, x)

(1)

In Equation (1), Init(l) = |initi(l)| is a vector whose elements initi(l) deter-
mine the initial number of agents in state σi for each location l. Vector B(l, x)
represents the birth term and takes into account both the spontaneous genera-
tion of agents, and the birth induced by neighbor locations. It can be computed
as:

B(l, x) = b̃(l) +
∑
l′∈L

∑
σk∈Ω

b̂[k](l′, l) · xk(l
′) (2)

The induced birth rate (second term on the r.h.s. of Equation (2)) can be
affected by the number of agents in any state σk and in any location l′ of the
model. In particular, the induced birth rate is proportional to both the number
of agents xk(l

′), and the induction factor b̂[k](l′, l). In a similar way, the death
term (D) can be defined:

D(l, x) = diag

(
d̃(l) +

∑
l′∈L

∑
σk∈Ω

d̂[k](l′, l) · xk(l
′)

)
(3)

where diag(y) is a diagonal matrix composed by the elements of vector y. Note
that in Equation (1), D(l, t) is left multiplied by the count vector x(l, t): in this
way the actual death rate is proportional both to the number of agents in the
inducing location xk(l

′), and to the number of agents in the considered position
x(l). Matrix K(l, x) represents the main transition kernel, and is defined as:

K(l, x) = Q̃(l) +
∑
l′∈L

∑
σk∈Ω

Q̂[k](l′, l) · xk(l
′) (4)

Note that since both matrices Q̃ and Q̂ are infinitesimal generators, also
K(l, x) is an infinitesimal generator. Finally, vector M(l, x) accounts for the
change of agents in a location l due to the reactions used to model duplication,
decimation or movement of agents. It can be defined as:

M(l, x) = −
∑
l′′∈L

v(l, x) · [N−(l, l′′)
]T

+
∑
l′′∈L

v(l′′, x) · [N+(l′′, l)
]T

(5)

where [N ]T denotes the transpose of matrix N . The first term on the r.h.s. of
Equation (5) accounts for the change in the number of agents occurring in one
state due to elements removed by the reactions. In particular, it accounts for all
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the agents that are leaving location l directed to a reaction happening in location
l′′. The second term on the r.h.s. considers agents that are entering a location
l, coming from a reaction that takes place in a location l′′. The definition of
v(l, x) must depend on the total state of the system x, and it must be correctly
defined to prevent reactions to happen when there are not enough agents in
the involved states: an improperly defined function v(l, x) can lead to negative
counts in the number of agents. Determining the condition for which a function
v(l, x) does not lead to negative counts, it is an important topic that will be
investigated in future woks: here we will limit ourselves to consider functions
coming from system biology, that are known to correctly behave as reaction
rates. In particular we refer to the Law of Mass Action (Waage and Guldberg,
1864), which tells that the reaction rate is proportional to the probability of a
collision of the reactants, that in turn is proportional to the concentration of
reactants (agents in our case), elevated to the multiplicity required to start the
reaction:

vh(l, x) = γh
∏

j:∃l′′∈L,n−
j,h(l,l

′′)>0

(∑
l′∈L

xj(l
′)

)∑
l′′∈L

n−
j,h(l, l

′′)
(6)

Here γv represents the speed at which the reaction occurs. Note that since the
soruce agents of reaction rh in location l can arrive from any location l′′ such
that n−

j,h(l, l
′′) > 0, the total count of agents required to engage a reaction must

be computed with the sum
∑

l′′∈L n−
j,h(l, l

′′). For the same reason, the number
of agents involved in the reaction, must be computed with the sum over all the
possible input locations, i.e.,

∑
l′∈L xj(l

′).

3 The Biological Model

Recent studies in cancer biology have lead to a new perspective in tumor pro-
gression, known as the CSC theory. It states that the growth and evolution of
many cancers are driven by a small population of cells named CSC [20], and that
CSC-based tumors are hierarchically structured, and characterized by different
subpopulations of cells: CSCs, Progenitor Cells (PCs) and Totally differentiated
Cells (TCs). Moreover, such heterogeneity is considered the cause of the fail-
ure of many conventional therapies. Indeed, although several treatments induce
death on the differentiated tumor cell subpopulations (i.e. non-CSCs), they are
ineffective on CSCs, which resist to most of the common drugs and vaccinations,
causing tumor relapse [19]. It is hence fundamental to fully comprehend the
mechanisms underlying the CSC hierarchy, whose characterization is crucial in
the study of tumor progression and in predicting treatment response.

In this paper we propose a model describing the CSC-based tumor growth
and able to reproduce the overall dynamics among cell subpopulations during
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tumor progression. Specifically, starting from the CSC theory we have defined
relationships (7), which express how subpopulations change during tumor evolu-
tion. Notice that, over the subpopulations defined by the CSC theory (i.e. CSCs,
PCs and TCs) we have introduced a new set of cells, called Dead/quiescent Cells
(DCs), since they represent a significant contribution to the tumor volume.

a) CSC
PsyλCSC−−−−−−→ CSC + CSC

b) CSC
(1−Psy)λCSC−−−−−−−−−→ CSC + PC1

c) CSC
η1−→ PC1

d) CSC
δ1−→ DC

e) PC1
γPC−−−→ CSC

f) PC1
λPC−−−→ PC2 + PC2

g) PC1
η2−→ PC2

h) PC1
δ2−→ DC

i) PC2
η3−→ TC

j) PC2
δ2−→ DC

k) TC
δ3−→ DC

l) DC
δ4−→ 0

(7)

Equations (7) describe both dynamics among cell subpopulations, and those
cellular events which are responsible for changes in each subpopulation. More
precisely, in accordance with the CSC theory, several factors are responsible for
the CSC variation [20]. Firstly, they can self-renew either symmetrically (Psy

ωCSC), or asymmetrically ((1 − Psy)ωCSC). Then, a furhter progression mode
- called differentiation (λ1) or CSC commitment - can also occur contributing
to give rise to the multipotent progenitor cell subpopulation. PCs, on turn,
evolve through two stages: the first one, PC1, able to proliferate (ωCSC) and
differentiate (λ2) giving rise to the second stage, PC2. On the other side, PCs2
develop into non-proliferative terminally differentiated cells, TCs, only through
differentiation (λ3). We considered also the de-differentiation (γPC) of PCs1 into
CSCs, as described in [5]. De-differentiation is the process in which specialized
cells take on a more primitive stage, probably in response to environment sig-
nals [15]. Lastly, CSCs, PCs and TCs are also affected by a death rate, (δi),
which is specific for each cell type (i = 1, 2, 3 for CSCs, PCs, TCs, respectively).
Therefore, the DC subpopulation increases as a result of the death of the viable
cell species, but it decreases due to cell lysis (δ4).

A schematic representation of the described subpopulation dynamics is shown
in Figure 4, where the hierarchical organization of CSC-based tumors is high-
lighted too. Specifically, Figure 4 shows how subpopulations differ considering
their differentiation degree and their proliferative potential. Differentiation is
highest in TCs - which are completely differentiated - and, conversely, prolifera-
tion potential is highest in CSCs, which can divide either symmetrically or asym-
metrically. Using a derivation similar to the Generalized Mass Action law [8],
relations (7) were translated into the following system of Ordinary Differential
Equations (ODEs):
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Fig. 4. CSC hierarchical model. Simplified schematic representation of the cell sub-
population dynamics and interactions. The proliferative potential and differentiation
degree are highlighted for each subpopulation: moving from the CSC compartment to
the TC one, cells became more differentiated and lose their proliferative ability.

dSCSC

dt
= PsyωCSCSCSC + γPCSPC1 − λ1SCSC − δ1SCSC

dSPC1

dt
= (1− Psy)ωCSCSCSC − ωPCSPC1 − γPCSPC1 +

+λ1SCSC − λ2SPC1 − δ2SPC1

dSPC2

dt
= 2ωPCSPC1 + λ2SPC1 − λ3SPC2 − δ2SPC2

dSTC

dt
= λ3SPC2 − δ3STC

dSDC

dt
= δ1SCSC + δ2(SPC1 + SPC2) + δ3STC − δ4SDC (8)

where SCSC , SPC , STC and SDC are the total numbers of CSCs, PCs, TCs and
DCs, respectively.

Although in cancer many mechanisms of cell control are disrupted, the feed-
back control - typical of lineage progression - still plays an important role in
tumor progression. More precisely, the lineage progression of the original tis-
sue - as well as many other intrinsic feedback controls - continue to operate,
even if altered by cell mutations. As described by the CSCs theory, indeed, tu-
mor cells appear to progress through a lineage stages-like evolution, as in normal
tissues. Therefore, auto growth limitation, expressed by feedback regulatory con-
trols, were introduced in model (8). Specifically, such mechanisms are defined
to control cell proliferation of both CSCs and PCs, i.e. to model an unbounded
cell division. The following two functions represent the feedback regulating
proliferation:
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ωCSC(t) =
ωCSC

1 + hCSCSTC(t)
, (9)

ωPC(t) =
ωPC

1 + hPCSTC(t)
, (10)

where hCSC and hPC define the strength of the feedback. Notice that, in equa-
tions (9),(10) the number of TCs acts as a brake on cell growth, being CSC and
PC proliferation rates defined as decreasing functions of this quantity. Indeed,
a high number of cells in the system induces a decrease in the cell proliferation
rates.

Model Parameters All rates and initial cellular concentrations are tuned start-
ing from those found in the literature [21,18,6] and by experimental evidences.
Specifically, considering the tumor-initiation ability of CSCs, population dynam-
ics were investigated using only few CSCs, with respect to the total, as initial
condition. Parameters were then retrieved by tuning the system to reproduce
the tumor mass growth trend observed in BALB/c mice, after a subcutaneous
injection of 105 cancer cells. All the values used in the numerical experiments
are reported in Table 1.

Table 1. Parameter values of cell population model (8)

Symbols Values Biological meaning

ωCSC 6 CSC proliferation
ωPC 60 PC proliferation
Psy 0.5 CSC symmetrical proliferation probability
η1 1 CSC differentiation
η2 4 PC1 differentiation
η3 6 PC2 differentiation
γPC 0.0001 PC1 de-differentiation
δ1 0.0001 CSC death
δ2 0.001 PC death
δ3 0.001 TC death
δ4 0.001 DC death

hCSC 10−12 CSC feedback intensity
hPC 10−12 PC feedback intensity
kCSC 0.016 initial CSC concentration
kPC 0.109 initial PC concentration
kTC 1− (kCSC + kPC) initial TC concentration
S0 105 initial number of cell

SCSC0 S0kCSC initial number of CSCs
SPC0 S0kPC initial number of PCs
STC0 S0kTC initial number of TCs
SDC0 0 initial number of DCs
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4 Experiments

Here we study the biological case presented in the previous section: first we
describe the corresponding PMAM model and analyze the case with a single lo-
cation, also showing its equivalence to the conventional biological models. Then,
we extend the model to consider movement of agents in a bi-dimensional space,
and exploit it to derive new results. The initial phase of the increment of tumor
volume, that in our case corresponds to an increment of the number of TC (see
Figure 6), is comparable with respect to experimental data published in [12].

Figure 5 shows the PMAM model of the system shown in Equation 7. For
each subpopulation in the model, there is a corresponding state in the PMA,
and for each subpopulation dynamic (expressed as evolution equation), there is
a corresponding arc in the PMA. The evolution of the populations is modeled by
changes of state: for example, a CSC cell that evolves in a PC1 cell is modeled
by a state transition from CSC to PC1 in the agent. In particular, reactions
that transform a subpopulation into another (e.g. Equations (7.c-e,g-k) ) are
modeled with a normal state transition at the rate corresponding to the speed of
the reaction: for example this is done with the arc from state CSC to state PC1

at rate λ1 for Equation (7.c), with the arc from state PC1 to state PC2 at rate
λ2 for Equation (7.g) and so on. Removal of subpopulation elements (Equation
(7.l)) are instead modeled with death-arc, as the one that exits state CSC at
rate δ4. Equations that models an increase of subpopulation are modeled with
reactions. Equation (7.a), that models a duplication of a CSC cell, is modeled
with reaction r1 that performs a self-loop on state CSC. In this case, the speed
v(l)1 = PsyωCSC corresponds to the rate of the evolution equation and we have
n+
CSC,1(l, l

′′) = 2. Equation (7.f) represents the combination of a subpopulation
change (from PC1 to PC2) with a duplication. This is done by connecting an
arc from state PC1 to reaction r3, and one from reaction r3 to state PC2.
The speed matches the one of Equation (7.f) (that is v(l)3 = ωPC), and we
have n+

PC2,3
(l, l′′) = 2 to define the duplication. Finally, Equation (7.b) adds a

CSC and a PC1 starting from a CSC. This is modeled by reaction r2 at speed
v(l)2 = (1−Psy)ωCSC . Since two subpopulations are generated, two output arcs
exiting from reaction r2 connect it respectively with states CSC and PC1. Both
subpopulations are generated with multiplicity one, so we have n+

PC1,2
(l, l′′) = 1

and n+
CSC,2(l, l

′′) = 1. Note that in all the three reactions, we have implemented
the feedback mechanism defined in Equations (9) and (10) for both ωCSC and
ωPC .

4.1 Single Location Model

We first consider a model with a single location L = {l}. In this case, if we apply
the technique proposed in Section 2.2 to the model presented in Figure 5, we
obtain exactly the same equations as the ones presented in Equation (8). We
have solved the model using a custom experimental Markovian Agents tool on
a standard MacBook Air, that was able to compute the solution in about one
second. The tool analyzes the PMAM models using a mean field approximation.
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Fig. 5. Model of the CSC population diffusion

a) b)

Fig. 6. Single location model: a) linear scale, b) logarithmic scale

For each cell, and for each state, a non-linear differential equation is solved
to capture the evolution of the populations in the model. Figure 6 shows the
results both in linear and logarithmic scale. As we can see from the linear scale
representation in Figure 6a, at around time T = 8 the subpopulation of the
TC cells starts to explode, and at around T = 12, CSC, PC1 and PC2 reach
their maximum count and start to decrease. The TC subpopulation is limited at
around 1012 due to the feedback mechanism defined in Equations (9) and (10).
If we examine the logarithmic version of Figure 6b, we can appreciate the fact
that there is a constant growth of DC cells as T → ∞ and that in the beginning
(around T = 1) there is first a decrease in both PC1 and PC2 cells that start to
grows immediately after.

4.2 Spatial Model

We then consider the same system on a bi-dimensional grid of 21x21 locations1

L = {lij : 1 ≤ i, j ≤ 21}. Thanks to the proposed PMAM formalism, we can
express the possibility of reactions to expand in neighbor cells. To simplify the

1 The choice of using a two-dimensional space has been made to simplify the presen-
tation of the results. The proposed technique could be easily extended to consider
tridimensional models.
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model, we focus on the case where new populations can be created not only in
the same cell, but also in one of its four neighbors: in particular we modify the
arcs that exit from reactions corresponding to Equations (7.a,b,f). In particular,
we set:

n+
CSC,1(l, l

′′) = 1 + φ(l, l′′) (11)

n+
CSC,2(l, l

′′) = φ(l, l′′) (12)

n+
PC2,3

(l, l′′) = φ(l, l′′) (13)

(14)

where φ(l, l′′) represents the probability that a subpopulation generated in loca-
tion l is routed to location l′′.

φ(l, l′′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

G(l)
ψ(l) if l′′ = l

1

G(l)
[1− ψ(l)]ψ(l′′) if l′′ ∈ neigh(l)

0 otherwise

(15)

with:

ψ(l) = e
−
(∑

k xk(l)

χmax

)α

(16)

G(l) :
∑
l′∈L

φ(l, l′) = 1 (17)

neigh(lij) = {l′i′j′ : (i− i′)2 + (j − j′)2 = 1} (18)

ψ(l) is the probability that a location l accepts a cell: it is controlled by a
maximum value χmax and it tends to zero if the total number of cells in location
l is greater than χmax, or to one if the total population in l is less than χmax.
Parameter α controls the speed at which the transition from zero to one occurs:
higher values of α models a more deterministic behavior, while smaller values
causes smoother transitions. In our experiments we set α = 2 and χmax = 1011.
G(l) is a normalization constant, to make φ(l, l′) a proper probability distribution
in l′. Finally neigh(l) represents the set of the cells that share one of the borders
with l (i.e. its closest neighbors).

We evaluate the model starting in two different configurations. First we con-
sider that all the subpopulations start in the center of the space, using the same
proportion used for the single location case presented in Section 4.1. As it can be
seen in Figure 7, the evolution of the model remains concentrated in the center
until the total population of cells reaches χmax. Then neighbor cells start to be
filled and expansion starts to grow at around T = 8. As for the single location
case, at T = 12 the concentration of PC cells starts to decrease. At time T = 20,
we only have a high concentration of TC cells and all the other subpopulations
are almost negligible.
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Fig. 7. Central diffusion

We then consider a different initial distribution that resemble the one of a
mammosphere [4]. In particular we imagine that there is a nucleus of CSC cells,
followed by a ring of PC cells, and finally an outer membrane of TC cells. The
evolution of this model can be followed in Figure 8. As it can be seen, without
considering other evolution rules, the outer TC and CSC cells tend to implode
toward the center, and the initial ring topology is almost canceled out already
at T = 3. From that point on, the model evolves in a way similar to the one
presented in Figure 7: in this case however the concentration of cells is more
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Fig. 8. Mammosphere simulation

evenly spread across the space, and there is a more abrupt reduction in the
concentration of non-TC cells after T = 12.

5 Conclusions

In this paper we have presented a new Markovian Agents based formalism that
is able to consider spatial evolution of populations of entities. We have applied to



Markovian Agents Population Models to Study Cancer Evolution 31

a simple biological example to test its suitability to capture spatial phenomena
that can happen in reaction occurring in an area. The validation of our results
in term of spatial growth will be given by a in vivo and in vitro experiments.
In detail, mammospheres generated from TUBO cell line will be frozen then
sliced into sections. Immunofluorescence of these frozen sections was performed
according to the antibodies - selected by previous analysis - associated to each cell
subpopulation, e.g. CSC, PC and TC. These fluorescence imaging was performed
using a confocal laser scanning microscope will give to us the possibility to
obtain the spatial distribution of each populationa of cells. In future works, this
technique could be applied to study the effect of localized therapies, trying to
determine optimal prescription strategies (such as diffusing a medicine in the
center of tumor, or in some points on its boundaries). The same technique can
also be used to model other spatial based system, such as wireless networks [2],
economical evolution of firms [16] and many more.
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Abstract. Epidemic modelling is fundamental to our understanding of
biological, social and technological spreading phenomena. As conceptual
frameworks for epidemiology advance, it is important they are able to
elucidate empirically-observed dynamic feedback phenomena involving
interactions amongst pathogenic agents in the form of syndemic and
counter-syndemic effects. In this paper we model the dynamics of two
types of epidemics with syndemic and counter-syndemic interaction ef-
fects in multiple possibly-overlapping populations. We derive a Markov
model whose fluid limit reduces to a set of coupled SIR-type ODEs. Its
numerical solution reveals some interesting multimodal behaviours, as
shown in our case studies.

Keywords: Epidemics, Social Networks, Syndemic, Counter-syndemic.

1 Introduction

You think because you understand ‘one’ you must also understand ‘two’,
because one and one make two. But you must also understand ‘and’...

Rumi (13th century Persian Poet)

Epidemics of various kinds have been an important focus of study throughout
human history. As health care standards have risen and information technology
has advanced over the past half century, our preoccupation with epidemics of a
biological nature has lessened while our obsession with epidemics of a social and
technological nature has dramatically increased. This has been accompanied by
a growing realisation that many of the epidemiological techniques used in the
modelling of biological diseases can be readily transplanted into social and tech-
nological domains such as content and information diffusion, rumour spreading,
gossiping protocols and viral marketing.

There is one recent but crucial respect in which our conceptual understand-
ing of biological epidemics has advanced dramatically. In particular, it has be-
come increasingly realised that it is important to study the interplay between
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c© Springer International Publishing Switzerland 2014
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pathogenic agents and between pathogenic agents and their environment. The
corresponding field of study is known as synepidemiology in which the subjects
of study are syndemics and counter-syndemics [35]. A syndemic is a set of mu-
tually reinforcing health problems whose combined impact is more devastating
than sum of the health problems in isolation (e.g. the risk developing tubercu-
losis is estimated to be between 12–20 times high for people with HIV [21]),
while a counter-syndemic concerns a set of mutually inhibiting health problems
whose combined impact is not as high as the sum of the health problems in iso-
lation (e.g. studies suggest that a measles infection can temporarily inhibit the
replication of the HIV virus [27]). Very lately, there has been a growing aware-
ness that syndemics may also exist in a technological context: e.g. the purchase
of a smartphone may make the purchase of the corresponding accessories and
applications more likely [30].

In this paper, we extend the well-known Susceptible-Infected-Recovered (SIR)
compartmental epidemiological model to support the interplay of multiple inter-
acting epidemics. Our focus is on a scenario of two potentially-interacting epi-
demics spreading across a set of overlapping subpopulations. In this context, we
derive a Markov model which describes the state changes of an individual with
respect to each epidemic and whose transition rates incorporate syndemic and
counter-syndemic interactions. The fluid limit of this Markov model reduces to
a set of coupled SIR-type ODEs, the solution of which describes the evolution
of the number of individuals infected by each epidemic.

The remainder of this paper is organised as follows. Section 2 presents an
historical perspective on conceptual frameworks and modelling efforts pertinent
to the field of epidemic modelling in the biological, social and technological
domains. Section 3 presents our approach in extending the SIR model to support
interacting epidemics, while Section 4 presents case studies of two interacting
SIR epidemics propagating through two intersecting populations with various
degrees of overlap. Section 5 concludes and considers avenues for future work.

2 Background

Human societies have been ravaged by biological epidemics throughout his-
tory with recurrent deadly outbreaks of bubonic plague, smallpox, yellow fever,
cholera and influenza [38]. As shown in Fig. 1, the predominant early theories
of disease causation were mostly supernatural, astronomical or religious, with
causal agents including evil spirits, planetary motion and divine retribution.
From the Middle Ages until Victorian times, it was also believed that if one
inhaled miasmas – toxic vapors that emanated from swamps or decaying or-
ganic matter – disease would result [32]. Progress towards a more scientific and
data–based approach began to be made from 1600 onwards with the collection
of the first public health statistics, by John Graunt (1620–1674) [11] and others.
One of the most famous studies was by John Snow of the 1854 London Cholera
epidemic [36] in which he identified a particular water pump as the likely source
of the outbreak.
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Fig. 1. The historical development of conceptual frameworks for epidemics

Predictive mathematical models for epidemics were relatively slow to develop,
despite their utility in understanding, managing and forecasting epidemics. One
of the earliest was by Daniel Bernoulli who carried out a study of the effects of
smallpox vaccination in 1766 [9]. But arguably the most significant breakthrough
came with the compartmental disease models proposed by Kermack and McK-
endrick in 1927 [19]. These elegantly express disease dynamics as coupled ODEs.
The most well-known model is the Susceptible-Infected-Recovered (SIR) model.
SIR features a closed population of individuals divided into three evolving sub-
populations: S(t) tracks those susceptible to become infected by the disease at
time t, I(t) tracks those infected by the disease with rate β and R(t) tracks those
who have recovered from the disease at rate γ.

The science of epidemiology has made rapid advances in recent times and has
moved from monocausal studies of infectious diseases to multifactor studies of
chronic diseases (e.g. obesity). It has become increasingly realised that many dis-
eases feature a complex web of interconnected risk factors (the so-called web of
causation), which may include relationships with other diseases and relationships
between diseases and the environment. The latter point of view is central to the
science of synepidemiology [12]. Related mathematical models have been concur-
rently evolving, with some studies of the dynamics of two possibly-dependent
co-infections in single populations [4, 25].

Of course it is not only disease which spreads in an epidemic fashion and
researchers have proved adept at progressively transplanting the corresponding
theory into sociological and technological domains, especially those related to
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information diffusion. In the middle of the 20th century, spreading-process mod-
els for rumours, ideas and memes were proposed for the first time [5, 7, 13],
followed by mathematical models of how information spreads under mass media
dissemination [17,23]. Various networks have subsequently come under the spot-
light including computer networks [14], vehicular networks [39], mobile and ad-
hoc networks [20], peer-to-peer file-sharing networks [22], mobile networks [34],
wireless sensor networks [2,6] and social networks [8,16]. More recently, mathe-
matical models were developed to yield insights into the dynamics of emerging
infectious diseases from social and technological network data [3,15,18,28,29,31].
There have also been studies analysing how user behaviour varies within user
communities defined by a recommendation network [24], which creates viral mar-
keting effects as well as studies about the role of centrality and influence in
information diffusion within social networks [1, 26, 33, 37].

3 Epidemic Model

We focus on two interacting SIR (susceptible, infected, recovered) processes liv-
ing on a finite set of overlapping subpopulations Pi constituting a population
P = ∪iPi. For notational convenience, we introduce the partition P of the pop-
ulation P induced by the overlapping sub-populations. For each part p in the
partition, let its neighbourhood N (p) be a set of parts which includes p. More-
over, the size of the population of part p is denoted by n(p).

Remark 1. The neighbourhood of any part will be used to relate an individual’s
view-of-the-world to its infection rate. To make this concrete, consider a simple
example where there are two subpopulations with a non-empty intersection.
These overlapping subpopulations induce a partition with 3 parts: the two parts
of individuals that belong to one subpopulation and not to the other, and the
part corresponding to the intersection. As individuals in the intersection belong
to both sub-populations, their neighbourhood includes all parts. The individuals
that only belong to a single sub-population only see their own sub-population.
Their neighbourhood therefore consists of their own part and the intersection.

Any individual of the population is susceptible to, infected by or recovered
from any of two epidemics. The state of an individual is described by a pair
(k, ), with k,  ∈ {s, i, r}, where s, i and r stand for susceptible, infected and
recovered, respectively and where k and  refer to the first and second epidemic,
respectively. We consider a Markovian epidemic model and its fluid limit. At
any point in time, the state of the Markov chain is described by the number of
individuals in the different states and in the different parts.

Prior to introducing the Markov chain, some additional notation is required.
Let xp

(k,	) be the number of individuals of part p that are in state (k, ), and let

x be the vector with elements xp
(k,	), for p ∈ P and k, l ∈ {s, i, r}. The state

space X of the Markov chain is defined as the set of vectors x such that,

xp
(k,	) ∈ N = {0, 1, 2, . . .} ,

∑
k,	∈{s,i,r}

xp
(k,	) = n(p) for all p ∈ P .
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Fig. 2. Transition rates for an individual in part p

Moreover, let ep(k,	), for p ∈ P and k, l ∈ {s, i, r} be the obvious unit vectors

of the state space X . The following parameters describe the transition rates
for changing states. An (s, s)-individual in part p gets infected by the first and
second epidemics with rates β1f

p
1 (x) and β2f

p
2 (x), respectively. Here, fp

1 (x) and
fp
1 (x) are the fractions of individuals that are infected by epidemic 1 and 2 in
the neighbourhood of p ∈ P ,

fp
1 (x) =

∑
q∈N (p)

(
xq
(i,r) + xq

(i,s) + xq
(i,i)

)
∑

q∈N (p) n(q)
, (1)

fp
2 (x) =

∑
q∈N (p)

(
xq
(r,i) + xq

(s,i) + xq
(i,i)

)
∑

q∈N (p) n(q)
. (2)

If such an individual is already infected by or has already recovered from the
other epidemic, the infection rate is modified. An (s, i) individual in part p
gets infected by the first epidemic with rate (β1 + Δ1)f

p
1 (x), while an (s, r)

individual gets infected by the first epidemic with rate (β1+ Δ̄1)f
p
1 (x). Modified

infection rates are defined likewise for the second epidemic. Finally, the recovery
rates of an individual from epidemic 1 and 2 are constant and equal to γ1 and
γ2, respectively. For clarity, the transition rates for an individual in part p are
depicted in Figure 2. The infinitesimal generator A of this Markov chain is:

Ag(x) =
∑
p∈P

(
β1f

p
1 (x)x

p
(s,s)[g(x− ep(s,s) + ep(i,s))− g(x)]

+ β2f
p
2 (x)x

p
(s,s)[g(x− ep(s,s) + ep(s,i))− g(x)]

+ (β1 +Δ1)f
p
1 (x)x

p
(s,i)[g(x− ep(s,i) + ep(i,i))− g(x)]

+ (β2 +Δ2)f
p
2 (x)x

p
(i,s)[g(x− ep(i,s) + ep(i,i))− g(x)]
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+ (β1 + Δ̄1)f
p
1 (x)x

p
(s,r)[g(x− ep(s,r) + ep(i,r))− g(x)]

+ (β2 + Δ̄2)f
p
2 (x)x

p
(r,s)[g(x− ep(r,s) + ep(r,i))− g(x)]

+ γ1x
p
(i,s)[g(x− ep(i,s) + ep(r,s))− g(x)]

+ γ1x
p
(i,i)[g(x− ep(i,i) + ep(r,i))− g(x)]

+ γ1x
p
(i,r)[g(x− ep(i,r) + ep(r,r))− g(x)]

+ γ2x
p
(s,i)[g(x− ep(s,i) + ep(s,r))− g(x)]

+ γ2x
p
(i,i)[g(x− ep(i,i) + ep(i,r))− g(x)]

+ γ2x
p
(r,i)[g(x− ep(r,i) + ep(r,r))− g(x)]

)
, (3)

for x ∈ X . Due to the considerable size of the state space X , even for modest
population sizes, direct computation of either transient or stationary distribu-
tions is quite forbidding. As we are mainly interested in the dynamics when
the population is large, we focus on the fluid limit of the process. However, the
original Markov chain will also be simulated and compared with the fluid limits.

More specifically, we consider a sequence of Markov chains with generators
AN such that the population size is N for the Nth Markov chain and we keep
track of the fractions of populations, such that components of the state space
XN of the Nth Markov chain live on a lattice with step size 1/N , and the unit
vectors have size 1/N as well. By contrast, the transition rates increase by N
as we need to translate from population fractions to population sizes. Setting
ε := 1/N , we get the following generator:

Aε−1g(x) = ε−1
∑
p∈P

(
β1f

p
1 (x)x

p
(s,s)[g(x− εep(s,s) + εep(i,s))− g(x)]

+ β2f
p
2 (x)x

p
(s,s)[g(x− εep(s,s) + εep(s,i))− g(x)]

+ (β1 +Δ1)f
p
1 (x)x

p
(s,i)[g(x− εep(s,i) + εep(i,i))− g(x)]

+ (β2 +Δ2)f
p
2 (x)x

p
(i,s)[g(x− εep(i,s) + εep(i,i))− g(x)]

+ (β1 + Δ̄1)f
p
1 (x)x

p
(s,r)[g(x− εep(s,r) + εep(i,r))− g(x)]

+ (β2 + Δ̄2)f
p
2 (x)x

p
(r,s)[g(x− εep(r,s) + εep(r,i))− g(x)]

+ γ1x
p
(i,s)[g(x− εep(i,s) + εep(r,s))− g(x)]

+ γ1x
p
(i,i)[g(x− εep(i,i) + εep(r,i))− g(x)]

+ γ1x
p
(i,r)[g(x− εep(i,r) + εep(r,r))− g(x)]

+ γ2x
p
(s,i)[g(x− εep(s,i) + εep(s,r))− g(x)]

+ γ2x
p
(i,i)[g(x− εep(i,i) + εep(i,r))− g(x)]

+ γ2x
p
(r,i)[g(x− εep(r,i) + εep(r,r))− g(x)]

)
. (4)

We can deduce the (candidate) fluid limit by Taylor expansion of this gen-
erator around ε = 0, from which we find a limiting generator of the form
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Âg = h(x) · ∇g, for a certain 9|P|-dimensional vector function h. Note that
a generator of this form corresponds to a deterministic process satisfying the
system of differential equations ẋ(t) = h(x(t)).

In order to prove this limit rigourously, it needs to be checked that both the
pre-limit processes and the limit process are Feller processes [10], which basically
boils down to checking the so-called Hille-Yosida conditions. We believe that a
careful proof of this statement falls outside the scope of this paper, but remark
that due to the compactness of the state space (in the prelimit as well as in the
limit), the proof is not as involved as is sometimes the case. Below we detail
the set of differential equations, where we have dropped the dependence of t for
notational convenience.

After some manipulations we find the following fluid limit which not only
generalises syndemics in a single population but also epidemics on a stratified
population:

ẋp
(s,s) = −β1y

p
1x

p
(s,s) − β2y

p
2x

p
(s,s)

ẋp
(i,s) = β1y

p
1x

p
(s,s) − (β2 +Δ2)y

p
2x

p
(i,s) − γ1x

p
(i,s)

ẋp
(s,i) = β2y

p
2x

p
(s,s) − (β1 +Δ1)y

p
1x

p
(s,i) − γ2x

p
(s,i)

ẋp
(i,i) = (β2 +Δ2)y

p
2x

p
(i,s) + (β1 +Δ1)y

p
1x

p
(s,i) − (γ1 + γ2)x

p
(i,i)

ẋp
(r,s) = γ1x

p
(i,s) − (β2+Δ̄2)y

p
2x

p
(r,s)

ẋp
(r,i) = (β2+Δ̄2)y

p
2x

p
(r,s) + γ1x

p
(i,i) − γ2x

p
(r,i)

ẋp
(i,r) = (β1+Δ̄1)y

p
1x

p
(s,r) + γ2x

p
(i,i) − γ1x

p
(i,r)

ẋp
(s,r) = γ2x

p
(s,i) − (β1+Δ̄1)y

p
1x

p
(s,r)

ẋp
(r,r) = γ1x

p
(i,r) + γ2x

p
(r,i)

yp1 =

∑
q∈N (p)

(
xq
(i,s) + xq

(i,i) + xq
(i,r)

)
∑

q∈N (p) ν(p)

yp2 =

∑
q∈N (p)

(
xq
(s,i) + xq

(i,i) + xq
(r,i)

)
∑

q∈N (p) ν(q)
,

for p ∈ P . The fractions yp1 and yp2 were introduced in the set of ODEs to simplify
notation: ypi (t) is the fraction of individuals that are infected by epidemic i in
the neighbourhood of p.

4 Case Studies

With the ODEs established we now focus on some numerical examples. To limit
the number of parameters, we investigate the spread of two epidemics, say e1
and e2, on two intersecting populations. For both epidemics, the spreading and
recovery parameters are set to βi = 0.4 and γi = 0.1 (i = 1, 2), respectively.
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There are two populations. Population P1 constitutes 30% of the total popula-
tion. The population P2 constitutes 70% of the total population. The fraction
of the individuals in the intersection of both populations – referred to as the
degree of overlap – is denoted by ν and assumed to be 0.01% unless indicated
otherwise. For a fixed ν, 30%− ν/2 and 70%− ν/2 of the individuals are in P1
and not in P2 and in P2 and not in P1, respectively.

For all case studies Δ̄1 = Δ1 and Δ̄2 = Δ2. Epidemic e1 begins in the
non-intersecting population P1 at time 0, and epidemic e2 begins in the non-
intersecting population P2 at time 0. The initial number of infected individuals
is 1% for each epidemic, and no individuals are infected by both epidemics at
the start. With the parameters fixed, we now investigate how spreading of the
epidemics is affected by (i) the size of the intersection, (ii) syndemic effects and
(iii) counter-syndemic effects.
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Fig. 3. Evolution of the fractions of infected, susceptible and recovered individuals for
epidemics e1 and e2 and for different sizes of the intersection ν as indicated
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Case Study 1: Influence of Degree of Overlap. Fig. 3 shows the influence
of the degree of overlap ν between the populations on the spread of e1 and e2.
We see that the smaller the intersection, the more significant the delay of the
propagation of the epidemics between the populations. With values of ν above
1%, the results are increasingly indistinguishable from epidemics spreading in a
single population. The multimodality of the spread over time is quite apparent.
The epidemics first reach their peak in the population in which they originated.
Only after sufficiently many individuals in the intersection are affected, spreading
in the other population starts, reaching its peak considerably later, even though
the spreading mechanism is exactly the same in both populations and for both
epidemics. Finally note that the first peak of e2 is considerably higher than the
first peak of e1 while the opposite is observed for the second peak which is in
line with the sizes of the populations the epidemics originate from.
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Fig. 4. Syndemic effects on the evolution of epidemics e1 and e2
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Case Study 2: The Impact of Syndemic Effects. Fig. 4 shows how syn-
demic effects affect the evolution of the epidemics. We consider three cases. For
Δ1 = β = 0.4 and Δ2 = 0, the second epidemic reinforces spreading of the
first. Specifically, if an individual is infected by the second epidemic, its infec-
tion rate for the first epidemic is doubled. For Δ2 = β = 0.4 and Δ1 = 0, the
first epidemic reinforces spreading of the second in a similar manner. Finally, for
Δ1 = Δ2 = β = 0.4, both epidemics reinforce each other. For Δ1 = 0, Δ2 = 0.4
for e1 corresponds to the case where there are no syndemic effects on e1. Com-
parison with the other e1 curves clearly reveals the syndemic effects. Particularly
note that when both epidemics reinforce each other, the peak of e1 is sooner and
a little higher.
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Case study 3: The Impact of Counter-Syndemic Effects. Fig. 5 shows
the impact of counter-syndemic effects. We consider three cases. For Δ1 = −β =
−0.4 andΔ2 = 0, an individual infected by the second epidemic is immune to the
first epidemic. For Δ2 = −β = −0.4 and Δ1 = 0, an individual infected by the
first epidemic is immune to the second epidemic. Finally, for Δ1 = Δ2 = −β =
−0.4, immunity works both ways. As similar effects apply for both epidemics, we
focus on e1. Clearly, for Δ2 = −β = −0.4 and Δ1 = 0, the first epidemic is not
affected by syndemic effects. Hence, the e1 curve for Δ2 = −β = −0.4 and Δ1 =
0 can be used as reference. Comparing this curve with the other e1 curves clearly
illustrates counter-syndemic effects. In fact, the second peak of the epidemic is
no longer present. This is explained by noting that this peak was reached in the
population where the second epidemic originates. By the time the first epidemic
reaches this population, most of its individuals are already immune. Finally,
note that a large proportion of the population remains susceptible to the first
epidemic.

5 Conclusion

It is important that the sophistication of mathematical modelling techniques
keeps pace with our evolving understanding of the dynamics of epidemic
processes, especially as they become applied in myriad domains beyond the bi-
ological. Our present paper has made some progress in this direction by consid-
ering models of syndemic and counter-syndemic interactions between two SIR
epidemics in multiple overlapping populations. The results from this kind of
analysis can give insights into epidemic forecasting and optimal strategies for
managing the response to outbreaks.

Much more remains to be done. For example, while the present work targets
fluid limits, other scalings leading to diffusion limits may shed light on the vari-
ance of outcomes. In addition, our populations are assumed to be static when a
more realistic model might assume some dynamic movement of individuals be-
tween populations (practically realised as facilities to join and leave populations).
Practical case studies could also be carried out in application areas ranging from
computer viruses to extreme ideologies.
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José Niño-Mora

Statistics Department, Carlos III University of Madrid, Spain
jnimora@alum.mit.edu

http://alum.mit.edu/www/jnimora

Abstract. This paper consider a Markovian model for the optimal dy-
namic scheduling of page refreshes in a local repository of copies of ran-
domly evolving remote web pages. A limited number of refresh agents,
e.g., crawlers for web search engines, are used to visit the remote pages
for refreshing their copies, which raises the need for effective scheduling
policies. Maintaining the copies results in utilities and costs, which are
incorporated into a performance objective to be optimized. The paper
develops a low-complexity closed-form heuristic dynamic index policy,
and an upper bound on the optimal performance, by adapting a general
approach of Whittle. The existence and evaluation of the index are re-
solved by methods introduced earlier by the author. A numerical study
provides evidence showing that the proposed policy is consistently near
optimal and may substantially outperform a myopic baseline policy.

Keywords: web page refresh policies, web crawlers, dynamic schedul-
ing, index policies, Whittle index, Markov decision processes.

1 Introduction and Model Description

We consider a Markovian model for the optimal dynamic scheduling of page
refreshes in a local repository of copies of randomly evolving remote content
sources, e.g., web pages. In order to prevent the latter from becoming obsolete,
a collection of refresh agents, e.g., web crawlers, is used to visit the remote
sources for refreshing their local copies, bringing them up-to-date. Typically,
the number of such agents is much smaller than the number of content sources,
which raises the need for effective scheduling policies for prioritizing which local
copies to refresh at each time. Further, there might be refresh costs, due, e.g., to
contract agreements or to the energy expended, which creates tradeoffs between
the utility and the cost of maintaining the freshness of the local copies.

Such issues have attracted extensive research attention, motivated by appli-
cations such as web crawler scheduling in search engines for maintaining local
copies of remote web pages (see, e.g., [1–5]), and refresh scheduling for apps data
in smartphones (see [6]). Most of such work considers static (state-independent)
refresh scheduling policies. Work on dynamic refresh policies is limited, and has
mostly focused on the case of a single content source, as in [3, 6].
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In contrast, this paper aims to develop an effective, low-complexity dynamic
refresh scheduling policy, which comes close to optimizing a performance objec-
tive involving both freshness and cost metrics, in the setting of aMarkov decision
process (MDP) model.

We thus consider an MDP model for the dynamic refresh scheduling of n local
copies of remote content sources using m � n refresh agents, which we will call
crawlers. We assume that time is slotted into discrete periods t � 0, and that a
crawler spends one time slot to visit a content source and refresh its local copy.
Thus, at each time slot, no more than m local copies can be refreshed.

The system controller keeps track over time of the state of each local copy
k = 1, . . . , n, which is given by its age Xk(t) ∈ N � {1, 2, . . .}, the number of
time slots since its last refresh. We consider that when local copy k is xk-slots
old (Xk(t) = xk), it yields a utility Uk(xk) in the current slot, which satisfies
the following natural assumption.

Assumption 1. For each k, Uk(xk) is nonincreasing in the age xk.

Such utilities can be used as powerful modeling devices to encapsulate infor-
mation on both the stochastic evolution of updates and the relative value of each
content source. Thus, suppose that content source k is updated at random time
slots according to a discrete-time renewal process Nk(t) with inter-renewal times
distributed as Tk. For example, we might define, for a given reward rk > 0,

Uk(xk) � rkP{xk-old copy k is fresh} = rkP{Tk > xk}. (1)

We could also take, for a given cost-per-missed-update hk > 0,

Uk(xk) � −hkE[number of missed updates in xk-old copy k] = −hkE[Nk(xk)].
(2)

More generally, we could consider a nondecreasing function Hk(nk) � 0 measur-
ing the cost of missing k content source updates in copy k, and take

Uk(xk) � −E[Hk(Nk(xk))]. (3)

If the controller refreshes copy k at the start of slot t, then the its age is reset
back to Xk(t + 1) = 1 and a refresh cost ck � 0 is incurred. If the copy is not
refreshed, then Xk(t+ 1) = Xk(t) + 1 and no cost is incurred.

We use a binary action process Ak(t) ∈ {0, 1} for each copy k, where Ak(t) = 1
if the copy is refreshed in slot t and Ak(t) = 0 otherwise. At each time t, the
controller observes the system stateX(t) =

(
Xk(t)

)n
k=1

∈ Nn, and then chooses a

joint control actionA(t) =
(
Ak(t)

)n
k=1

, subject to the refresh capacity constraints

n∑
k=1

Ak(t) � m, t = 0, 1, 2, . . . (4)
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We denote in the sequel the state and action dependent one-slot net rewards
for copy k by Rk(xk, ak) � Uk(xk)− ckak.

Actions are selected according to a scheduling policy π, which is chosen from
the classΠ(m) of control policies that at each time slot t select anA(t) satisfying
(4) based on the state-action history H (t) �

(
(X(s),A(s))t−1

s=0;X(t)
)
. We will

denote henceforth by Xπ,x0

k (t) and Aπ,x0

k (t) the state and action processes for
copy k under policy π starting from the system state x0 = (x0

k)
n
k=1 ∈ Nn.

We consider the following infinite-horizon performance optimization problems:
(1) find a discount-optimal policy for a given discount factor β ∈ (0, 1),

maximize
π∈Π

∞∑
t=0

n∑
k=1

βtRk

(
Xπ,x0

k (t)Aπ,x0

k (t)
)
; (5)

and (2) find a long-run average-optimal policy,

maximize
π∈Π

lim inf
T→∞

1

T

T∑
t=0

n∑
k=1

Rk

(
Xπ,x0

k (t)Aπ,x0

k (t)
)
. (6)

Problems (5) and (6) belong to the class ofmultiarmed restless bandit problems
(MARBPs), which are in general computationally intractable. See [7]. Our main
goal is to obtain new heuristic dynamic scheduling policies for such problems,
which have low complexity and attain a nearly optimal performance.

Given their intuitive appeal and ease of implementation, we consider policies
of priority-index type. These are based on attaching an index ϕk(xk) to each
copy k, which is nondecreasing in its age xk. At each time t, copies with higher
index values ϕk

(
Xk(t)

)
get higher priority for being refreshed. Only copies whose

current index value is positive are considered. Ties are broken arbitrarily.
In particular, we will consider the index introduced by Whittle in [8] for rest-

less bandits, adapted to the present model. To deploy such an index certain
technical issues need to be resolved, such as establishing its existence (indexa-
bility) and devising an efficient index-computing scheme. For such purposes, we
will deploy the methodology introduced and developed by the author in [9–12].

The main contributions of this paper are as follows. The paper carries out
an analysis for the model of concern, establishing its indexability and deriving
closed formulae for the Whittle index. Further, the paper reports the results of a
numerical study on randomly generated instances, which shows that the policy
consistently attains a near-optimal performance, and substantially outperforms
the performance of a baseline myopic policy.

The remainder of the paper is organized as follows. §2 shows how to adapt
Whittle’s relaxation and index to the present model. §3 applies a general method-
ology to establish the model’s indexability (existence of the Whittle index) and
to evaluate the Whittle index. §4 reports the results of the numerical study.
Finally, §5 ends the paper with some concluding remarks.
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Detailed analyses and proofs of the results outlined herein will be presented
in a full version of this paper.

2 Whittle’s Relaxation and Index Policy

The following discussion focuses on the discounted problem (5), although the
approach and results apply also to the long-run average problem (6).

2.1 Relaxed Problem and Performance Bound

Along the lines in [8], one can obtain an upper bound vR(x0) on the optimal
value v∗(x0) of (5) by solving the following relaxed problem, where it is assumed
that each copy is separately controlled, as if in isolation, under its own policy
πk ∈ Πk, and there is a coupling constraint which relaxes (4):

maximize

n∑
k=1

∞∑
t=0

βtRk

(
X

πk,x
0
k

k (t), A
πk,x

0
k

k (t)
)

subject to : πk ∈ Πk, k = 1, . . . , n
n∑

k=1

∞∑
t=0

βtA
πk,x

0
k

k (t) � m

1− β
.

(7)

Note that, in (7), X
πk,x

0
k

k (t) and A
πk,x

0
k

k (t) denote the state and action processes
for copy k under the single-copy policy πk starting from state x0

k ∈ N, and Πk

is the class of admissible refresh policies for copy k taken in isolation.

2.2 Lagrangian Relaxation and Decomposition

To address (7) we pursue a Lagrangian approach (see [13, Ch. 5]), attaching a
multiplier λ � 0 to the coupling constraint, which yields the Lagrangian relax-
ation

maximize
mλ

1− β
+

n∑
k=1

∞∑
t=0

βt
{
Rk

(
X

πk,x
0
k

k (t), A
πk,x

0
k

k (t)
)− λA

πk,x
0
k

k (t)
}

subject to : πk ∈ Πk, k = 1, . . . , n.

(8)

For any multiplier value λ � 0, (8) is a relaxation of (7) in that its optimal
value vL(x0;λ) is an upper bound for vR(x0). Further, (8) is much easier to solve
that (7), as it decouples into the n separate single-copy subproblems

Pk(λ) : maximize
πk∈Πk

∞∑
t=0

βt
{
Rk

(
X

πk,x
0
k

k (t), A
πk,x

0
k

k (t)
)− λA

πk,x
0
k

k (t)
}
, (9)
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for k = 1, . . . , n. Now, Lagrangian theory ensures the existence of an optimal
multiplier value λ∗ � 0 (which depends on x0) such that the Lagrangian relax-
ation of (7) is exact, in that vL(x0;λ∗) = vR(x0). An optimal multiplier λ∗ can
be obtained by solving the scalar convex optimization problem

minimize
λ�0

mλ

1− β
+

n∑
k=1

v∗k(x
0
k;λ), (10)

where v∗k(x
0
k;λ) is the optimal value of (9).

2.3 Indexability and Index Policy

Consider the parametric problem collection {Pk(λ) : λ ∈ R} in (9) for copy k.
Note that λ represents an extra refresh charge (added to the regular cost ck).

Let us say that copy k’s subproblem collection {Pk(λ) : λ ∈ R} is indexable
if there is a function ϕW

k : N → R such that, for any given λ ∈ R, it is optimal
in problem Pk(λ) —regardless of the initial state x0

k— to refresh the copy when
Xk(t) = xk if and only if ϕW

k (xk) � λ, and it is optimal not to refresh it if and
only if ϕW

k (xk) � λ. We will then refer to ϕW

k as the Whittle index for copy k.
If each copy is indexable, we readily obtain a low-complexity approach to solve

(10) and thus compute vR(x0). Further, the ϕW

k (xk) can be used as priority-
indices to obtain a dynamic index policy for problem (5).

3 Indexability Analysis

This section reports the results of an analysis for establishing that the single-copy
refresh model of concern is indexable and for evaluating its Whittle index.

3.1 Sufficient Indexability Conditions

We next outline the sufficient indexability conditions developed in [9–12], formu-
lating them as they apply to the present setting for ease of exposition. Since the
focus is on a single-copy dynamic refresh subproblem (9), we drop henceforth
the subscript k and write the copy’s state and action at time t, under policy π
and starting from x, as Xπ,x(t) and Aπ,x(t).

For any given copy refresh policy π ∈ Π and initial state x ∈ N, we evaluate
the policy’s performance using two performance metrics : the refresh metric

G(x, π) �
∞∑
t=0

βtAπ,x(t),

and the reward metric

F (x, π) �
∞∑
t=0

βtR
(
Xπ,x(t), Aπ,x(t)

)
.
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We will be concerned with the class of threshold policies. For any given thresh-
old z ∈ N � N ∪ {0,∞}, consider the z-policy, defined as the stationary deter-
ministic policy that refreshes the copy in state x if and only if x > z. We will
denote its performance metrics by G(x, z) and F (x, z).

For a given a and z, let 〈a, z〉 be the policy that takes action a at time t = 0
and then follows the z-policy aftewards. Define the marginal refresh metric

g(x, z) � G(x, 〈1, z〉)−G(x, 〈0, z〉), (11)

and the marginal reward metric

f(x, z) � F (x, 〈1, z〉)− F (x, 〈0, z〉). (12)

Further, if g(x, z) �= 0, define the marginal productivity (MP) metric

ϕMP(x, z) � f(x, z)

g(x, z)
. (13)

Finally, if g(x, x) �= 0 for every state x ∈ N, define the copy’s MP index ϕMP

by (with a slight abuse of notation)

ϕMP(x) � ϕMP(x, x), x ∈ N. (14)

Adapting the author’s results in [9–12] to the present setting, we next define
the concept of PCL-indexability —after partial conservation laws (PCLs).

Definition 1. We say that the copy refresh model is PCL-indexable (with re-
spect to threshold policies) if the following conditions hold:

(i) positive marginal refresh metric: g(x, z) > 0 for x ∈ N, z ∈ N;
(ii) monotone MP index: ϕMP is monotone nondecreasing.

For the countably infinite state case, the following result is proven in [11].

Theorem 2. A PCL-indexable model is indexable, with its Whittle index being
given by its MP index: ϕW = ϕMP.

3.2 Evaluation of Performance Metrics

For any z ∈ N, the refresh metric G(·, z) is characterized by the equations

G(x, z) =

{
βG(x + 1, z), 1 � x � z

1 + βG(1, z), x > z.

We can solve such equations in closed form. For a threshold z ∈ N, we obtain

G(x, z) =

⎧⎪⎨⎪⎩
βz−xG(z, z), 1 � x < z

β/(1− βz+1), x = z

1 + βzG(z, z), x > z.
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Further, for z = 0 (always refresh) we have G(x, 0) ≡ 1/(1− β) and, for z = ∞
(never refresh), G(x,∞) ≡ 0.

As for the reward metric F (·, z), it is characterized by

F (x, z) =

{
U(x) + βF (x+ 1, z), 1 � x � z

U(0)− c+ βF (1, z), x > z.

We can also solve it in closed form. For a threshold z ∈ N, we obtain

F (x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z−x−1∑
t=0

βtU(x+ t) + βz−xF (z, z), 1 � x < z

U(z)− βc+ β

z−1∑
t=0

βtU(t)

1− βz+1 , x = z

U(0)− c+ βF (1, z), x > z.

For z = 0 (always refresh) we have F (x, 0) ≡ {
U(0) − c

}
/(1 − β), whereas for

z = ∞ (never refresh) we have F (x,∞) =
∑∞

t=0 β
tU(x+ t).

3.3 Evaluation of Marginal Metrics and MP Index

Concerning the marginal refresh metric, we have

g(x, z) = 1 + βG(1, z)− βG(x+ 1, z) =

{
1− βz−x(1− βx)G(z, z), 1 � x < z

(1− β)
{
1 + βG(1, z)

}
, x � z.

(15)

In particular, g(x, 0) ≡ 1 and g(x,∞) ≡ 1. Further,

g(x, x) = G(x+ 1, x)−G(x, x) =
1− β

1− βx+1
.

As for the marginal reward metric, we have

f(x, z) = U(0)− c+ βF (1, z)− U(x)− βF (x + 1, z), (16)

from which we obtain

f(x, x) = F (x+ 1, x)− F (x, x) =

(1− β)

{ x−1∑
t=0

βtU(t)− c

}
− (1− βx)U(x)

1− βx+1
.

We thus obtain the MP index in closed form:

ϕMP(x) =
f(x, x)

g(x, x)
�

x−1∑
t=0

βtU(t)− 1− βx

1− β
U(x)− c, x ∈ N. (17)
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Note that ϕMP is generated by the recursion (with ΔU(x) � U(x)− U(x− 1))

ϕMP(x) =

⎧⎨⎩−c−ΔU(1), if x = 1

ϕMP(x− 1)− 1− βx

1− β
ΔU(x), if x � 2.

(18)

It is of interest to consider the case β = 0, which yields the myopic index

ϕM(x) = U(0)− U(x)− c. (19)

3.4 PCL-Indexability and Whittle Index

From the above we readily obtain the following result under Assumption 1.

Proposition 1. The discounted copy refresh model is PCL-indexable.

Hence, by Theorem 2, the present copy refresh model’s Whittle index is given
by its MP index: ϕW = ϕMP.

Note that, as the age x → ∞, the index ϕW(x) converges to the limit

ϕW(∞) =

∞∑
t=0

βtU(t)− c. (20)

3.5 Long-Run Average Criterion

We next draw on the above results for the discounted criterion to obtain corre-
sponding results for the long-run average criterion.

Under the long-run average criterion we consider the refresh and reward per-
formance metrics given by

Ḡ(x, π) � lim sup
T→∞

1

T

T∑
t=0

Aπ,x(t)

and

F̄ (x, π) � lim inf
T→∞

1

T

T∑
t=0

R
(
Xπ,x(t), Aπ,x(t)

)
.

We define the long-run average marginal metrics ḡ(x, z), f̄(x, z) and ϕ̄MP(x, z)
as for the discounted criterion, as well as the long-run average MP index ϕ̄MP(x).

We can evaluate such metrics from their discounted counterparts using that

Ḡ(x, z) = lim
β↗1

(1 − β)G(x, z), F̄ (x, z) = lim
β↗1

(1− β)F (x, z).

Such metrics do not depend on the initial state x, being given by

Ḡ(x, z) =

⎧⎨⎩
1

z + 1
, z ∈ N ∪ {0}

0, z = ∞



54 J. Niño-Mora

and

F̄ (x, z) =

⎧⎪⎪⎨⎪⎪⎩
z∑

t=0

U(t)− c

z + 1 , z ∈ N ∪ {0}
0, z = ∞.

As for the long-run average marginal metrics, we have

ḡ(x, z) = lim
β↗1

g(x, z) =

⎧⎨⎩1− x

z + 1
, 1 � x < z

1

z + 1
, x � z

for z ∈ N, whereas ḡ(x, 0) = ḡ(x,∞) ≡ 1.
On the other hand,

f̄(x, x) = lim
β↗1

f(x, x) =

x−1∑
t=0

U(t)− xU(x)− c

x+ 1
.

We thus obtain the long-run MP index in closed form:

ϕ̄MP(x) =
f̄(x, x)

ḡ(x, x)
=

x−1∑
t=0

U(t)− xU(x) − c, x ∈ N. (21)

Note that ϕ̄MP(x) is generated by the recursion

ϕ̄MP(x) =

{
−c−ΔU(1), if x = 1

ϕ̄MP(x− 1)− xΔU(x), if x � 2.
(22)

From the above we readily obtain the following result under Assumption 1.

Proposition 2. The long-run average copy refresh model is PCL-indexable.

As for the discounted case, Theorem 2 yields that the present copy refresh
model’s long-run Whittle index is given by its long-run MP index: ϕ̄W = ϕ̄MP.

Note that, as the age x → ∞, the index ϕ̄W(x) tends to

ϕ̄W(∞) =

∞∑
t=0

U(t)− c. (23)

3.6 Geometrically Decreasing Utility

A relevant special case is that where the utility function decreases geometrically
with the copy’s age, with U(x) = rαx for some constants r > 0 and α ∈ (0, 1).
Note that this corresponds to the case of (1) when the remote source’s inter-
update time T is geometrically distributed with P{T = x} = (1− α)αx−1.
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Then, the discounted single-copy Whittle index has the evaluation

ϕW(x) = r

{
1− (αβ)x

1− αβ
− αx − (αβ)x

1− β

}
− c, (24)

while the long-run Whittle index is

ϕ̄W(x) = r

{
1− αx

1− α
− xαx

}
− c. (25)

3.7 Linearly Decreasing Utility

Another relevant case is that where the utility decreases linearly with the copy’s
age until a minimum of zero for age y, so U(x) = max(0, y− x)r for some r > 0
and y ∈ N, so an y-slot old copy is considered obsolete.

Then, the discounted Whittle index for a single-copy refresh model is

ϕW(x) =

⎧⎪⎪⎨⎪⎪⎩
(1 − β)x− β (1− βx)

(1− β)2
r − c, 1 � x � y

(1 − β)y − β (1− βy)

(1 − β)2
r − c, x > y.

(26)

whereas the long-run Whittle index has the evaluation

ϕ̄W(x) =

⎧⎪⎨⎪⎩
x(x + 1)

2
r − c, 1 � x � y

y(y + 1)

2
r − c, x > y.

(27)

4 Numerical Study

This section reports on numerical experiments (run in MATLAB) for assessing
the quality of the Whittle index policy under the long-run average criterion.

For each instance considered, the long-run average performance objective was
evaluated both for the Whittle index policy and for the myopic index policy,
using a horizon of T = 20000 time slots. Since state dynamics are deterministic,
a single run suffices. Further, the upper bounds on the optimal performance
objective resulting from Whittle’s relaxation were computed.

The experiments aim to test the conjecture stated by Whittle in [8, p. 293],
whereby the Whittle index policy is asymptotically optimal as m and n grow to
infinity in a fixed proportion, provided the “projects” (web pages in the present
model) are drawn from a finite number of types with fixed probabilities. The
conjecture’s validity has been proven under certain conditions in [14]. Here, the
ratio has been set to m/n = 1/10, i.e., one agent per 10 copies. The cases of 30
and 40 page types have been considered.

Four sets of experiments were conducted. Experiments 1–2 consider the geo-
metrically decreasing utility model in §3.6, whereas experiments 3–4 consider the
linearly decreasing utility model in §3.7. In each set, both the cases of costless
and of costly refresh are considered.
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4.1 Geometrically Decreasing Utility

The utility parameters α and r in §3.6 were generated for each page type using
MATLAB’s rand pseudo-random number generator (Uniform[0, 1]).

Experiment # 1: Costless Refresh. For the costless refresh case (c = 0),
Figures 1–2 show the results with 30 and 40 page types. In each figure, the
variable on the horizontal axis is the number of web pages, n, ranging up to
5000. The variable on the vertical axis is the relative optimality gap, in percent,
evaluated as the ratio of the difference between the upper bound on the optimal
performance objective and the objective value of the corresponding policy, in
the numerator, to the said upper bound in the denominator.

The figures show that, in each instance, the Whittle index policy’s perfor-
mance was so close to the upper bound as to render it indistinguishable from
that of an optimal policy. In contrast, the performance of the myopic index policy
was substantially suboptimal, with optimality gaps of over 20%.
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Fig. 1. Experiment # 1 with 30 page types
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Fig. 2. Experiment # 1 with 40 page types
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Experiment # 2: Costly Refresh. The refresh costs are now taken to be 20%
of the reward parameters r in §3.6. Figures 3–4 show corresponding results with
30 and 40 page types. The figures show again that, in each instance, the Whittle
index policy’s performance is optimal or has an exceedingly small optimality
gap. As for the performance of the myopic index policy, it is even poorer than
in the costless refresh case, showing substantial optimality gaps.

1000 2000 3000 4000 5000
0

10

20

30

number of pages

re
la

tiv
e 

op
tim

al
ity

 g
ap

 (
%

)

 

 

myopic

Whittle

Fig. 3. Experiment # 2 with 30 page types
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Fig. 4. Experiment # 2 with 40 page types

4.2 Linearly Decreasing Utility

The utility function parameters y and r in §3.7 were generated for each page
type using MATLAB’s randi (Uniform over the integers 1, . . . , 10) and rand

(Uniform[0, 1]) pseudo-random number generators.
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4.3 Experiment # 3: Costless Refresh

For the costless refresh case, Figures 5–6 show the results with 30 and 40 page
types. The figures show that, in each instance, the Whittle index policy’s per-
formance was near optimal. As for the performance of the myopic index policy,
its performance, though worse than Whittle’s, was quite good, with optimality
gaps no larger than about 3%.
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Fig. 5. Experiment # 3 with 30 page types
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Fig. 6. Experiment # 3 with 40 page types

4.4 Experiment # 4: Costly Refresh

For the costly refresh case, the refresh cost was taken to be c = ry/4 for each
page type. Figures 7–8 show corresponding results with 30 and 40 page types.
In the cases of 30 and 40 page types, the results show a similar pattern to those
in the costless refresh case.
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Fig. 7. Experiment # 4 with 30 page types
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Fig. 8. Experiment # 4 with 40 page types

5 Conclusions

This paper has developed a simple closed-form dynamic policy based on Whit-
tle’s priority index for dynamic page-refresh scheduling. Preliminary results of
numerical experiments are reported showing that the performance of the pro-
posed policy is consistently near optimal across a range of large-scale randomly
generated instances, outperforming the performance of the myopic policy. The
approach used to establishing the model’s indexability and to evaluate the Whit-
tle index has been based on deploying general sufficient conditions for indexabil-
ity. The results presented demonstrate the usefulness of the Whittle index, the
associated performance bound, and the method of analysis employed to obtain a
simple tractable policy with an excellent performance. For future work, it would
be interesting to analyze theoretically the performance of such a policy.
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Abstract. Recently, mobile devices have multiple wireless interfaces to
use, but how to choose an appropriate network interface? Energy-efficient
data transmission is a key issue in mobile cloud computing due to energy-
poverty of the mobile devices. In this paper, we study an energy-delay
tradeoff and address the issue of energy-efficient offloading that migrates
data-intensive but delay-tolerant applications from the mobile devices to
a remote cloud. Through dynamic scheduling and link selection based on
Lyapunov optimization for data transmission between the mobile devices
and the cloud, we are able to reduce battery consumption of the mobile
devices for transferring large volumes of data. We derive a control algo-
rithm which determines when and on which network to transmit data so
that energy-cost is minimized by leveraging delay tolerance. Further, we
propose and compare three kinds of transmission schedulers with energy-
efficient link selection policies under heterogeneous wireless network in-
terfaces (e.g., 3G and WiFi), where the average energy consumption is
optimized.

Keywords: energy-efficient; transmission scheduling; link selection; op-
timization; delay-tolerant; mobile cloud computing.

1 Introduction

Mobile cloud computing [1] is emerging as a new computing paradigm that aims
to augment resource-poor mobile devices, taking advantage of the abundant re-
sources hosted by clouds. Offloading programs from mobile devices to a remote
cloud is becoming an increasingly attractive way to reduce execution time and
extend battery life time[2]. It makes running computing/data-intensive applica-
tions feasible on resource-constrained mobile devices. Apple’s Siri and iCloud
[3] are two examples. However, cloud offloading critically depends on a reliable
end-to-end communication and on the availability of the cloud. Access to the
cloud is usually influenced by uncontrollable factors, such as the instability and
intermittency of wireless networks.

Mobile devices often have multiple wireless interfaces, such as 3G/EDGE, 4G
LTE and WiFi for data transfer. While in most situations 4G LTE uses most en-
ergy and WiFi the least, normally WiFi has the highest bandwidth, 3G/EDGE
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the lowest. However, the bandwidth, the energy-efficiency and even the avail-
ability of these networks can vary significantly, such that the stated ordering
does not always hold true. Not only the availability and quality of access points
(APs) may vary from place to place, but also the uplink and downlink band-
widths fluctuate frequently due to multiple factors such as weather, mobility,
building shield and so on [4]. If we can adaptively select one of the available
links in every slot, energy consumption may be reduced.

Energy consumption in mobile devices has become an important issue for net-
work selection. Gribaudo et. al. [5] developed a framework based on the Marko-
vian agent formalism, which could model the dynamics of user traffic and the
allocation of the network radio resources. Rahmati et. al. [6] suggested on-the-
spot network selection by examining tradeoff between energy consumption for
WiFi search and transmission efficiency when the WiFi network was intermit-
tently available. In [7], a power control scheme suitable for a multi-tier wireless
network was presented. It maximizes the energy-efficiency of a mobile device
transmitting on several communication channels while at the same time ensur-
ing the required minimum quality of service. More recently, “delayed” offloading
has been proposed: if there is no WiFi available, traffic can be delayed up to
some chosen deadline [8]. Some studies like [9] and [4], suggested energy-efficient
delayed network selection by exploring the tradeoff between transmit power of
heterogeneous network interfaces (e.g., 3G, WiFi) and transmission delay.

Many mobile applications are dealing with video, audio, sensor data, or are
accessing large databases on the Internet. Delay-tolerant applications are less
sensitive to network delays. Participatory sensing applications are a good ex-
ample of data-intensive but delay-tolerant applications. Participatory sensing is
the collective sampling of sensor data by a number of sensor nodes. This creates
a body of knowledge on parameters such as personal resource consumption, di-
etary habits and urban documentation [9]. Data is uploaded from a smartphone
to a back-end cloud server either through the cellular network or any available
WiFi network. Some of the sensor information is not time-critical and its sub-
mission to the server may be delayed until the device enters an energy-efficient
network. Users can browse or search the obtained archives through a website at
the server side.

In this paper, we address the operation of a mobile user terminal equipped
with multiple radio access technologies. We focus on energy-efficient offloading of
delay-tolerant data to a remote cloud. To this end, we propose a framework based
on Lyapunov optimization and contribute the following: (i) minimization of the
average energy consumption for the link selection and transmission scheduling
problem, and (ii) formulating a number of transmission schedulers when using
3G and WiFi interfaces to transmit data.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the link selection problem in mobile cloud computating systems. Section 3
analyzes the energy-delay tradeoff by using Lyapunov optimization. Three kinds
of transmission schedulers are proposed and investigated in Section 4. Section 5
gives some simulation results. Finally, the paper is concluded in Section 6.
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2 Problem Formulation

We provide a brief introduction of the studied adaptive link selection problem
and consider a Markovian queueing model for dynamic transmission scheduling
and link selection in mobile cloud computing systems.

2.1 Multiple Wireless Interfaces

Mobile devices usually have multiple wireless interfaces that can be used for
data transfer, such as EDGE (Enhanced GPRS), 3G, WiFi and so on. The time
intervals of cellular connectivity (EDGE or 3G) are usually much longer than
for WiFi. Especially, EDGE has very high coverage. In addition, the data rates
differ significantly (from hundreds of Kbps for EDGE, to a few Mbps for 3G,
to ten or more Mbps for WiFi). The achievable data rate for different radio
transmission depends on the environment and can vary widely. It is sometimes
far below the nominal value. Also energy-efficiency of the different technologies
is different. The energy usage for transmitting a fixed amount of data can differ
by an order of magnitude or more [9]. In general, the WiFi interface is more
energy-efficient than the cellular interface, and data transmission using a good
connection requires much less energy than under bad conditions [4].

Thus, offloading large data items from a mobile device to the cloud using WiFi
can be more energy-efficient than using cellular radio, but WiFi connections are
not always available. Therefore it must be decided when to transmit data and
across which network interface. However, this decision is not easy to take since
we know neither the future availability of APs nor their transmission quality.

2.2 Adaptive Link Selection

The problem when to transmit data and which mobile interface to use can be
formulated as an adaptive link selection problem as depicted in Fig. 1. Given
a set of available links with energy information, AP availability information as
obtained from traces and data system queues, determine whether to use any of
the available links (the appropriate network interface) to transfer data, while
keeping the transmission delay bounded [9]. In Fig. 1, the 3G interface is chosen
for data transfer.

The mobile device selects the link with the best connection quality by running
a series of probe-based tests to the cloud. Even after a particular link is selected,
the connectivity can still be unstable as it is affected by user mobility, limited
coverage of the WiFi APs and other factors. Because it sacrifices delay for en-
ergy, the problem of link selection and transmission scheduling for delay-tolerant
applications can be naturally formulated using an optimization framework.

Suppose there are M channels available, let Bj(t) denote the bandwidth be-
tween the mobile device and the cloud in time slot t when using channel j, where
j ∈ {1, · · · ,M}. Let bj(t) or b̂j(α(t)) denote the amount of data transmitted over
channel j between the mobile device and the cloud in slot t. It is determined by a
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Fig. 1. A mathematical model of adaptive link selection

transmission decision α(t), which is the choice made in slot t, either to transmit
data over channel j or not to transfer, and can be expressed as:

bj(t) = b̂j(α(t)) =

{
Bj(t) · τ, if α(t)=“Transmit over channel j”,
0, if α(t)=“Idle”,

(1)

where α(t)=“Idle” means that no transmission takes place in slot t and τ is the
time duration that the interface is on. For convenience, τ is assumed to be a
constant, which is based on the bandwidth estimation and should neither too
large to too small [4].

We denote the energy consumption caused by data transmission on the mobile
device in time slot t as E(t) = Ê(α(t)), which depends on the current link
bandwidth and the transmission decision α(t). Over a long time period T , the

total amount of transmitted data is
∑T−1

t=0

∑M
j=1 bj(t), correspondingly, the total

energy consumption of the mobile device for transmitting such an amount of data
can be denoted as

∑T−1
t=0 E(t).

Suppose there are N queues of data to be sent from the the mobile device to
the cloud, and we define the vector of current queue backlogs by:

Q(t) =
(
Q1(t), Q2(t), · · · , QN(t)

)
, ∀t ∈ {0, 1, · · · , T − 1}, (2)

where the queues are maintained in the mobile device’s memory and for each
queue i, Qi(t) represents its queue backlog of data to be transmitted from the
mobile device to the cloud at the beginning of time slot t.

Further, letAi(t) denote the amount of newly arriving data added to each queue
i in time slot t. We assume that each random variable Ai(t) is i.i.d. over time slots
with expectation E{Ai(t)} = λi. We call λi the arrival rate to queue i.

Therefore, the queue length of queue i in time interval t + 1, i.e., Qi(t + 1)
has the following dynamics:

Qi(t+1) = max
[
Qi(t)−bi(t), 0

]
+Ai(t), ∀i ∈ {1, 2, · · · , N}, ∀t ∈ {0, 1, · · · , T−1}. (3)
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Given this notation, we can formally state the queueing constraint that is
imposed on our adaptive link selection algorithm. We require all the queues to
be stable in the time average sense, i.e.,

Q̄ � lim sup
T→∞

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} < ∞, (4)

the stability constraint ensures that the average queue length is finite and we
should not always defer the transmission.

While maintaining a stable queue we seek to design an adaptive link selection
algorithm and dynamic transmission scheduling such that the time-averaged
expected transmission energy is minimised [9]:

min
[
Ē � lim sup

T→∞

1

T

T−1∑
t=0

E{E(t)}
]
, (5)

where the required transmission energy E(t) depends on the selected link for
transmission during slot t.

3 Energy-Delay Tradeoff

In this section, an optimization model is formulated, with the objective of min-
imizing the average energy consumption subject to a stability constraint on the
queue of data to be transmitted.

3.1 Problem Analysis Using Lyapunov Optimization

To solve the adaptive link selection problem we employ a Lyapunov optimization
framework, which enables us to derive a control algorithm that determines when
and on which network to transmit our data such that the total energy-cost is
minimized. This optimization is not strict with respect to transmission delay.

For each slot t, we define a Lyapunov function [10] as:

L(Q(t)) =
1

2

N∑
i=1

Q2
i (t), (6)

which represents a scalar measure of queue length in the network.
We then define the Lyapunov drift as the change in the Lyapunov function

from one time slot to the next:

L(Q(t+ 1))− L(Q(t)) =
1

2

N∑
i=1

[
Q2

i (t+ 1)−Q2
i (t)

]
=

1

2

N∑
i=1

[(
max[Qi(t)− bi(t), 0] +Ai(t)

)2 −Q2
i (t)

]
≤

N∑
i=1

A2
i (t) + b2i (t)

2
+

N∑
i=1

Qi(t)[Ai(t)− bi(t)]. (7)
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The conditional Lyapunov drift Δ(Q(t)) is the expected change in the Lya-
punov function over one time slot, given that the current state in time slot t is
Q(t). That is:

Δ(Q(t)) = E
{
L(Q(t+ 1))− L(Q(t))|Q(t)

}
. (8)

From (7), we have that for a general control policy Δ(Q(t)) satisfies:

Δ(Q(t)) ≤ E

{ N∑
i=1

A2
i (t) + b2i (t)

2
|Q(t)

}
+

N∑
i=1

Qi(t)λi − E

{ N∑
i=1

Qi(t)bi(t)|Q(t)

}
,(9)

where we have used the assumption that arrivals are i.i.d. over slots and hence
independent of current queue backlogs, so that E{Ai(t)|Q(t)} = E{Ai(t)} = λi.

Let C be a finite constant that bounds the first term on the right-hand-side
of (9), so that for all t, all possible Q(t) and all possible transmission decisions
we have:

E

{ N∑
i=1

A2
i (t) + b2i (t)

2
|Q(t)

}
=

1

2
E

{ N∑
i=1

A2
i (t)

}
+

1

2
E

{ N∑
i=1

b2i (t)|Q(t)

}
≤ C. (10)

There exist constantsA2
max and b

2
max that satisfy the conditions:E

{∑N
i=1 A

2
i (t)

}
≤ A2

max and E
{∑N

i=1 b
2
i (t)|Q(t)

} ≤ b2max, where Amax ≥ Ai(t) represents the
maximum amount of data that can arrive per time slot, and bmax ≥ bi(t) denotes
the maximum amount of data that can be transmitted via the wireless network in
a time slot. Hence, we have C = 1

2 (A
2
max + b2max).

To stabilize the data queue by making sure that there is a balance of arriving
data and transmitted data, while minimizing the time-averaged energy E(t), we
incorporate the expected energy consumption over one slot t. It can be designed
to make transmission decisions that greedily minimize a bound on the following
drift-plus-penalty term in each slot t [10]:

Δ(Q(t)) + V E{E(t)|Q(t)}, (11)

where V ≥ 0 is a control parameter that represents an “importance weight” in
deciding relative importance among queue backlog, estimated rate, and energy
cost. In other words, V can be thought of as a threshold on the queue backlog
beyond which the control algorithm decides to transmit, so V controls the energy-
delay tradeoff [9].

From (9) and (10) we have:

Δ(Q(t)) + V E{E(t)|Q(t)} ≤ C +

N∑
i=1

Qi(t)λi + V E{E(t)|Q(t)} − E

{ N∑
i=1

Qi(t)b̂i(α(t))|Q(t)

}

= C +

N∑
i=1

Qi(t)λi + E

{[
V E(t) −

N∑
i=1

Qi(t)b̂i(α(t))
]
| Q(t)

}
. (12)
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Using the concept of opportunistically minimizing an expectation, the opti-
mization of the right-hand-side of (12) is accomplished by greedily minimizing
the following term:

arg min
α(t)

[
V E(t)−

N∑
i=1

Qi(t)b̂i(α(t))
]
, (13)

where we choose the transmission decision α(t) that will minimize (13).

We denote a decision function as d(t) = V E(t)−∑N
i=1 Qi(t)b̂i(α(t)), which is

the decision results that depends on the current link bandwidth and the trans-
mission decision α(t). In order to understand the intuition behind this decision,
we would like to see when d(t) can have a low value.

1. Link with a Good Quality: d(t) can be small when the link has a high
estimated rate. It makes sense that we would like to use any high-quality
link to transfer data over a low-quality link.

2. Queue Backlog is High: d(t) can achieve a low-value if the queue backlog
Q(t) is high. This is also intuitive: when data has been in the queue for long,
there should be a higher incentive to transmit.

3. Link Energy Cost is Low: d(t) is small when the energy cost E(t) of a link
is low (e.g., a WiFi link). Such a link should be preferred over a high-energy
cellular link [9].

In other words, the link selection model based on Lyapunov optimization
defers transmission until good-quality and low-energy links become available,
unless the queue backlog is too high.

Further, considering the decision α(t), the decision function d(t) can be de-
noted as:

d(t) =

{
V Ei(t)−Qi(t)bi(t), if α(t)=“Transmit over channel i”,
0, if α(t)=“Idle”.

(14)

3.2 Performance Bounds

For any control parameter V > 0, we assume that the data arrival rate λi is
strictly within the network capacity region, which is defined as the region that
can be achieved by the mobile device in communication networks [9]. We can
achieve a time-averaged energy consumption and queue backlog satisfying the
following constraints [11]:

Ē = lim sup
T→∞

1

T

T−1∑
t=0

E{E(t)} ≤ E∗ +
C

V
, (15)

Q̄ = lim sup
T→∞

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} ≤ C + V (E∗ − Ē)

ε
, (16)
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where ε > 0 is a constant denoting the distance between arrival pattern and
the capacity region boundary [9], E∗ is a theoretical lower bound on the time-
averaged energy consumption using any control policy that achieves queue sta-
bility.

Proof. Because the transmission decision α(t) minimizes the right-hand-side of
the drift-plus-penalty in inequality (12), in every slot t (given the observedQ(t)),
we have:

Δ(Q(t)) + V E{E(t)|Q(t)} ≤ C + V E
{
Ê(α∗(t))|Q(t)

}
+

N∑
i=1

Qi(t)λi

− E

{ N∑
i=1

Qi(t)b̂i(α
∗(t))|Q(t)

}
, (17)

where α∗(t) is any other (possibly randomized) transmission decision that can
be made in slot t. Fixing any value ε > 0 in the capacity region boundary further
yields:

Δ(Q(t))+V E{E(t)|Q(t)}≤C + V E
{
Ê(α∗(t))|Q(t)

}
+

N∑
i=1

Qi(t)λi −
N∑
i=1

Qi(t)(λi + ε)

=C + V E
{
Ê(α∗(t))|Q(t)

}−ε

N∑
i=1

Qi(t). (18)

Taking expectations for (18) with respect to Q(t) and using the law of iterated
expectations, yields:

E{L(Q(t+ 1))} − E{L(Q(t))}+ V E{E(t)} ≤ C + V E∗ − ε

N∑
i=1

E{Qi(t)}, (19)

where E∗ � E
{
Ê(α∗(t))

}
.

Summing the above inequality over t ∈ {0, 1, · · · , T − 1} for some positive
integer T , yields:

E{L(Q(T ))}−E{L(Q(0))}+V
T−1∑
t=0

E{E(t)} ≤ CT +V TE∗−ε
T−1∑
t=0

N∑
i=1

E{Qi(t)}. (20)

Then, dividing (20) by V T and after a simple manipulation we obtain:

1

T

T−1∑
t=0

E{E(t)} ≤ C

V
+ E∗ − ε

∑T−1
t=0

∑N
i=1 E{Qi(t)}
V T

− E{L(Q(T ))}
V T

+
E{L(Q(0))}

V T
.

(21)

Since the Lyapunov function is non-negative by definition and so is E∗, ne-
glecting that we subtract non-negative quantities in (21) yields:

1

T

T−1∑
t=0

E{E(t)} ≤ P ∗ +
C

V
+

E{L(Q(0))}
V T

. (22)
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Similarly, dividing (20) by εT , and after rearranging terms we obtain:

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} ≤ C + V (E∗ − 1
T

∑T−1
t=0 E{E(t)})

ε
+

E{L(Q(0))}
εT

. (23)

Finally, taking a lim sup as T → ∞ in inequalities (22) and (23), we can
derive (15) and (16), respectively. ��

It can be seen that (15) and (16) demonstrate an [O(1/V ), O(V )] tradeoff
between energy consumption and delay. We can achieve an average energy con-
sumption Ē arbitrarily close to E∗ while maintaining queue stability. However,
this is achieved at the expense of a larger delay because the average queue back-
log Q̄ increases linearly with V . Choosing a large value of V can thus push the
average energy arbitrarily close to its optimal value. However, this comes by
sacrificing average queue backlog or average delay that is O(V ) [10]. A good V
value is one that achieves a good energy and delay tradeoff, where a unit increase
in V yields a very small reduction in Ē with consistently growing delays [9]. In
mathematical terms we can choose a k < 0 that satisfies:

d(E∗ + C/V )

dV
≥ k =⇒ V ≥

√
C

−k
, (24)

where k is the slope of Ē curve.

4 Performance Analysis Models

To understand this link selection algorithm, we consider the two most prominent
networks: WiFi and 3G. Typically, the WiFi interface is much more energy-
efficient, but its availability is limited while the 3G network is available almost
everywhere. Besides, channel quality can be affected by environmental factors
and interference. The channel bandwidth can be reduced due to competing users
in the same cells. Therefore, for data-intensive but delay-tolerant applications,
we can save energy by delaying transmissions until a good-quality or a low-energy
interface such as WiFi becomes available, unless the queue backlog is too high.

4.1 Bandwidth Estimation and Energy Models

Since our transmission scheduling model uses the knowledge of current states
(i.e, the current network bandwidth is supposed to be known), it closely de-
pends on the bandwidth estimation. We use a predictor proposed in [12], which
considers the classical bandwidth predictors (such as Last value, Mean filter,
Network weather service forecaster, etc.) synthetically. The framework unifies
such decision models by formulating the problem as a statistical decision prob-
lem that can either be treated “classically” or using a Bayesian approach. The
experimental result shows that the Bayes strategy performs significantly better
than the traditional predictors. Thus, this prediction model is more general and
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Table 1. Energy model for 3G and WiFi networks

Items 3G WiFi

Ramp and Transfer Energy R(x) 0.025x + 3.5 0.007x + 5.9

Tail power P 0.62J/s NA

Tail time T 12.5s NA

could be used by our offloading system. Further, we assume that the network
bandwidth is constant in one time slot.

Table 1 lists the measured energy consumption models according to [13]. The
energy needed to transmit x bytes of data over the cellular network can be split
into three components: ramp energy, transmission energy and tail energy. R(x)
denotes the sum of the ramp and the transfer energy to send x KB, P denotes
the tail power and T denotes the tail time.

Obviously, the energy consumption depends on the type of interface that is
selected. For the 3G interface, the sum of the ramp and the transfer energy
is R(x) = 0.025x + 3.5. After transmitting a packet, instead of transitioning
from high to low power state, the 3G interface spends substantial time in the
high state, which incurs considerable energy, referred to as the tail energy. For
the WiFi interface, the sum of the ramp and the transfer energy is R(x) =
0.007x+ 5.9, and the tail energy is zero. Using WiFi, the data transfer itself is
significantly more efficient than using the 3G connection for all transfer sizes. In
addition to the transfer cost, the total energy to transmit a packet also depends
on the time that the interface is on.

Therefore, the energy consumption for the 3G and WiFi interfaces in time
slot t can be expressed as follows:

E3G(t) = 0.025 · b3G(t) + 3.5 + 0.62 · 12.5, (25)

EWiFi(t) = 0.007 · bWiFi(t) + 5.9. (26)

4.2 Transmission Scheduler I (N �= M)

The model of the transmission scheduler I for only one queue of arriving jobs is
depicted in Fig. 2. The arrival vector A(t) is assumed to be i.i.d over the time
slot and E{A(t)} = λ.

We take decisions of transmission scheduling according to the estimate of the
current network bandwidth. In Fig. 2, “B3G(t)” represents the estimated 3G
bandwidth in slot t, “BWiFi(t)” represents the estimated WiFi bandwidth and
“Idle” denotes that no transmission takes place in time slot t. If B3G(t) is larger
than BWiFi(t), the mobile device will be linked to the 3G interface in time slot t
to transmit data, otherwise it will be linked to the WiFi interface. The decision
criterion can be denoted as max{B3G(t), BWiFi(t)}. Therefore, the bandwidth of
the selected interface is as follows:

B(t) =

{
B3G(t), if B3G(t) > BWiFi(t),
BWiFi(t), otherwise.

(27)
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WiFi ( )B t

3G ( )B t

Fig. 2. Model of transmission scheduler I

According to the Lyapunov optimization, the minimization of the average en-
ergy consumption is accomplished by greedily minimizing the following criterion:

arg min
α(t)

[
V E(t)−Q(t)b̂(α(t))

]
. (28)

Denoting the decision function as d(t) = V E(t) − Q(t)b̂(α(t)), when consid-
ering the transmission decision α(t) we have:

d(t) =

{
V E(t)−Q(t)B(t) · τ, if α(t) = “transmit”,
0, if α(t) = “idle”,

(29)

where α(t) ∈ {“transmit” and “idle”}, taking on two possible values and

E(t) =

⎧⎨⎩
E3G(t), if α(t) = “transmit” and B3G(t) > BWiFi(t),
EWiFi(t), if α(t) = “transmit” and B3G(t) ≤ BWiFi(t),
0, if α(t) = “idle”.

If the transmission decision is α(t) = “transmit”, we choose to transfer data
according to the current channel bandwidth. If α(t) = “idle”, no data is trans-
mitted in slot t, so E(t) = 0 and b(t) = 0, and then we have d(t) = 0. Therefore,

transmission takes place only if V satisfies: V E(t)−Q(t)b̂(α(t)) < 0. This hap-

pens when the bandwidth is high, making a large b̂(α(t)), or the queue Q(t) is
already congested in time slot t.

Over time, the queuing dynamic is given by:

Q(t+ 1) = max[Q(t)− b(t), 0] +A(t), ∀t ∈ {0, 1, · · · , T − 1}. (30)

By Little’s Theorem [14], the average delay can be calculated as:

D̄ =
Q̄

λ
. (31)

The disadvantage of transmission scheduler I is that only the estimated band-
width of 3G and WiFi in time slot t is considered and the energy usage of
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3G and WiFi is not taken into account. For example, if B3G(t)=50Kbps and
BWiFi(t)=49.99Kbps, since B3G(t) is larger than BWiFi(t) we choose the 3G in-
terface to transmit data, even though it consumes much more energy than WiFi.
In this situation we should also consider the energy demand of 3G and WiFi.

4.3 Transmission Scheduler II (N �= M)

The model of transmission scheduler II is shown in Fig. 3. There are two links
(M = 2) available for selection. We also use one queue (N = 1) to represent
data transmission during each slot.

3G ( )B t

1 3G

2

( ) ( )
( ) 0

b t B t
b t

Idle

WiFi ( )B t

2

( ) 1

ˆargmin ( ) ( ) ( )j
t j

VE t Q t b t

( )A t
( )Q t

( )b t1

2

( ) 0
( ) 0

b t
b t

1

2 WiFi

( ) 0
( ) ( )

b t
b t B t

Fig. 3. Model of optimal transmission scheduler II

Using the concept of opportunistically minimizing the expectation, the mini-
mization of average energy consumption is accomplished by greedily minimizing:

arg min
α(t)

[
V E(t)−Q(t)

M∑
j=1

b̂j(α(t))
]
. (32)

Similarly, let d(t) = V E(t)−Q(t)
∑M

j=1 b̂j(α(t)). Since M = 2, there are three
possible results according to the transmission decision of α(t):

d(t) =

⎧⎨⎩
V E3G(t)−Q(t)B3G(t) · τ, if α(t)=“transmit via 3G”,
V EWiFi(t)−Q(t)BWiFi(t) · τ, if α(t)=“transmit via WiFi”,
0, if α(t)=“idle”,

(33)

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi” and “idle”} is the trans-
mission decision in slot t, taking on three possible values.

According to (33), we not only consider the estimated bandwidth but also
take into account the energy usage of 3G and WiFi in time slot t. We thus
compare the above values and choose the transmission decision corresponding
to the smallest outcome. The queuing dynamics and the average delay are given
by (30) and (31), respectively.

If the 3G and WiFi interfaces can be used simultaneously, the model of trans-
mission scheduler II in Fig. 3 can be further extended as in Fig. 4.
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Fig. 4. Model of transmission scheduler II for the combined scheme

Since the combined transmission works just like an extra channel, we have
M = 3. Thus, there are four possible results in (32) according to the transmission
decision of α(t):

d(t) =

⎧
⎪⎪⎨
⎪⎪⎩

V E3G(t) − Q(t)B3G(t) · τ, if α(t)=“transmit via 3G”,
V EWiFi(t) − Q(t)BWiFi(t) · τ, if α(t)=“transmit via WiFi”,
V · [

E3G(t) + EWiFi(t)
] − Q(t) · [

B3G(t) + BWiFi(t)
] · τ, if α(t)=“transmit via 3G and WiFi”,

0, if α(t)=“idle”,

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi”, “transmit via 3G and
WiFi”, and “idle”} is the transmission decision in slot t, taking on four possible
values.

4.4 Transmission Scheduler III (N = M)

The model of transmission scheduler III is depicted in Fig. 5. To overcome the
problem pointed out above and to take more accurate decisions, we divide the
data into two queues. The number of channels is equal to the number of queues,
that is N = M = 2.
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( ) 0
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( ) 0
( ) ( )

b t
b t B t

2
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ˆargmin ( ) ( ) ( )i i
t i

VE t Q t b t

1

2

( ) 0
( ) 0

b t
b t

1( )Q t

2 ( )A t

( )A t

Fig. 5. Model of transmission scheduler III

It can be seen from Fig. 5 that A1(t) is only transmitted through the 3G
interface while A2(t) is only transmitted through the WiFi interface. We assume
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that A1(t) and A2(t) take integer units of packets, the arrival vector A(t) is
i.i.d over slot and E{A(t)} = λ. The question whether or not to allocate A(t)
to A1(t) and A2(t) in equal shares still remains. To analyze this problem, we
simplify the model as shown in Fig. 6, such that it involves routing decisions
besides scheduling decisions.
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2 ( )Q t

1( )Q t

3G ( )B t

1 3G
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( ) ( )
( ) 0
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b t
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( ) 0
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b t B t

2

( ) 1

ˆargmin ( ) ( ) ( )i i
t i

VE t Q t b t

1

2

( ) 0
( ) 0

b t
b t

Fig. 6. Equivalent model of transmission scheduler III

There are two separate queues depicted in Fig. 6, the arrival vectors A1(t) and
A2(t) are i.i.d over slot, E{A1(t)} = λ1 and E{A2(t)} = λ2. Since A1(t)+A2(t) =
A(t), according to the property of the Poisson distribution we have:

λ1 + λ2 = λ, (34)

where λ1 = ρλ, λ2 = (1− ρ)λ, and 0 ≤ ρ ≤ 1 is the ratio of arrival rate to queue
1. There are two extreme cases: when ρ = 0, the mobile device only uses the
WiFi interface to transmit data and when ρ = 1, the mobile device only uses
the 3G interface.

Similarly, using the concept of opportunistic minimization of the expectation,
the minimization of the average energy consumption is accomplished by greedily
minimizing:

arg min
α(t)

[
V E(t)−

2∑
i=1

Qi(t)b̂i(α(t))
]
. (35)

Let d(t) = V E(t) −∑2
i=1 Qi(t)b̂i(α(t)). Then there are three possible results

according to the transmission decision of α(t) as given by:

d(t) =

⎧⎨⎩
V E3G(t)−Q1(t)b1(t), if α(t)=“transmit via 3G”,
V EWiFi(t)−Q2(t)b2(t), if α(t)=“transmit via WiFi”,
0, if α(t)=“idle”,

(36)

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi” and “idle”} is the trans-
mission decision in slot t, taking on the three possible values.

The amount of data transmitted between the mobile device and the cloud in
slot t is as follows:

{b1(t), b2(t)} =

⎧⎨⎩
{B3G(t) · τ, 0}, if α(t)=“transmit via 3G”,
{0, BWiFi(t) · τ}, if α(t)=“transmit via WiFi”,
{0, 0}, if α(t)=“idle”,
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and the queuing dynamics are given by:

Qi(t+1) = max[Qi(t)−bi(t), 0]+Ai(t), ∀i ∈ {1, 2}, ∀t ∈ {0, 1, · · · , T−1}. (37)

Similarly, the average delay for this system is:

D̄ =
Q1 +Q2

λ1 + λ2
. (38)

Furthermore, the transmission scheduler III can be extended in the same way
to more general scenarios as depicted in Fig. 1, where several traffic queues can
be concurrently distributed over several communication channels.

5 Simulation Results

As for parameter setting, we assume that data arrivals follow Possion Process
with λ = 4 packets/minute and the size of each packet is 100 KB. Suppose that
the network bandwidths stay the same during each time slot. Our algorithms are
simulated in 1,000 time slots for each of the V value ranging from 1 to 300. We
study the impact of parameter V on time-averaged energy consumption, queue
backlog, delay and transmit data. The energy consumption models are according
to (25) and (26) for the 3G and WiFi interfaces, respectively.

We first estimate the achievable network bandwidth B(t) at the beginning
of every time slot t. Since data communication time between the mobile device
and the cloud depends on the network bandwidth and the bandwidth of wireless
LAN is remarkably higher than the bandwidth provided by radio access on a
mobile device, we suppose that the bandwidth for the 3G interface follows a
uniform distribution on [1, 100] KB/s and the bandwidth for the WiFi interface
follows a uniform distribution on the interval [1, 300] KB/s. We set the length
of each slot τ = 60, and the bandwidth in the corresponding time slot t is used
for every 60 seconds.

It can be seen from Fig. 7 (transmission scheduler I, refer to Fig. 2) that
the time-average energy consumption and transmit data fall quickly at the be-
ginning and then tend to descend slowly while the time-average queue backlog
grows linearly with V . This finding confirms the [O(1/V ), O(V )] tradeoff as cap-
tured in (15) and (16). According to different delay-tolerant and data-intensive
applications, we can adjust the value of V to control the energy-delay tradeoff.
Especially, there exists a sweet spot of V , and at this point, the marginal energy
conservation is not worth the consistently growing delay with increasing of V .
For example, when V increases from 100 to 200, it shows a negligible decrease of
the average energy consumption while the average delay increases significantly,
thus we should not trade energy with delay. Further, according to (24), the slope
of the curve is k ≈ 0 at this point.

The numerical results of using transmission scheduler II are depicted in Fig.
8. We compare the scheme that combines 3G and WiFi (refer to Fig. 4) with the
one that transmit separately (refer to Fig. 3). It can be seen that the average
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Fig. 7. The impact of V on time-averaged energy consumption, queue backlog and
transmit data for transmission scheduler I

number of transmitted packets and average delay in both schemes almost coin-
cide with each other while the combined scheme achieves a lower average energy
consumption than both individual schemes when the control factor V is small
(e.g., V ≤ 50).

0 50 100 150
0

20

40

60

80

100

120

V

Transmission scheduler II (λ=4)

Energy consumption (combined)

Delay (combined)

Transmit data (combined)

Energy consumption

Delay

Transmit data

Fig. 8. Comparison of different schemes for transmission scheduler II

The numerical results of using transmission scheduler III for the scenario (refer
to Fig. 6) are depicted in Figs. 9-11.

It is known that when ρ = 0 (ρ is defined before as the dispatching ratio
of arrival rate to queue 1), the mobile device only uses the WiFi interface to
transmit data and when ρ = 1, it only uses the 3G interface. As shown in Fig.
9, when V is small, it has the minimum energy consumption when only using
3G for data transfer, while it has the maximum energy consumption when only
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Fig. 10. The impact of V on time-averaged delay

using WiFi. The average energy increases with the increase of ρ when V ≤ 37.
However, when V arrives to a certain value (V ≈ 37), the scheme that only uses
WiFi for data transfer has the minimum energy consumption while the one that
only uses 3G has the maximum energy consumption. The time-averaged energy
consumption increases with the increment of ρ when V > 37. Therefore, the
energy consumption for such a transmission scheduler closely depends on the
value of ρ.

The impact of V on the time-averaged delay is shown in Fig. 10. It is found
that the average delay is minimal when only using WiFi to transmit data. With
the increase of ρ, the average delay at first increases, but it then decreases after
ρ arrives at some value, for example, the average delay is smaller for ρ = 1 than
for ρ = 0.75.
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Fig. 11. The impact of V on time-averaged transmit data

The impact of V on time-averaged transmitted data is depicted in Fig. 11. It
can be seen that when V is small, the average transmit data decreases with the
increment of ρ, thus the mobile device can transfer the largest amount of data
when only using the WiFi interface to transmit data due to its high bandwidth.
However, when V is large, the average transmitted data is almost the same and
does not change with increasing of V .

6 Conclusion and Future Work

In this paper, we present a fundamental approach for designing an online algo-
rithm for the energy-delay tradeoff in “delayed” mobile data offloading through
the Lyapunov optimization framework. Considering the changing landscape of
network connectivity, the problem of link selection and data transmission schedul-
ing can be formulated as an optimization problem, in which a significant amount
of energy can be saved without sacrificing on the transmission delay too much.
Three types of transmission schedulers are proposed and compared based on
simulation results. These energy-efficient transmission schedulers consider sev-
eral factors: data backlog, channel quality and energy consumption of the wire-
less interface, when making transmission decisions. They will choose to transmit
data when the connectivity is good enough or when the queues in the mobile
device are congested.

So far the validation of the approach is based on simulation under simplifying
assumptions. For future work, validation based on real workloads and more re-
alistic application examples will be provided to gain insights about efficiency of
the proposed algorithm in practice. Besides, a mobile-cloud offloading middle-
ware will be developed to apply those schedulers to reduce energy consumption
for delay-tolerant applications on mobile devices.
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Abstract. This paper proposes a new algorithm based on a non-linear
programming approach to deal with the buffer allocation problem in
the case of unreliable production lines. Processing, failure and repair
times are assumed to be random variables exponentially distributed. The
proposed approach can be used to solve the different versions of the buffer
allocation problem: primal, dual and generalized.

This method is based on the modeling and the analysis of the serial
production line using an equivalent machines method. The idea is to
model the different possible states of each buffer using dedicated birth-
death Markov processes to calculate the blockage and starvation proba-
bilities of each machine. Then, each original machine is replaced by an
equivalent one taking into account these probabilities.

A comparative study based on different test instances issued from
the literature is presented and discussed. The obtained results show the
effectiveness and the accuracy of the proposed approach.

Keywords: Buffer allocation, Unreliable production lines, Equivalent
Machine Method, Non-Linear Programming, Birth-death processes.

1 Introduction

The buffer allocation problem is one of the major issues in the production sys-
tems design because of the great effect that buffers can do on improving the
performance and the efficiency of a production system. However, the use of
these intermediate stocks generates investment costs in terms of space or other
physical means. They also increase work-in-process inventories through the pro-
duction line. That is why, the buffer allocation is a major optimization problem
faced by manufacturing systems designers as well as by researchers. The problem
is complicated and critical since it introduces computational complexity and in-
volves trade-offs between the constraints and the objectives posed by the problem
itself [18].

Due to its complexity and importance, the buffer allocation problem has been
widely studied in the literature. One of the earliest works dealing with this
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problem was presented by Koenigsberg [5] more than fifty years ago. The author
proposed an analysis of the fundamental problems combining the allocation of
storage areas and the efficiency of production systems.

Vergara and Kim [17] stated that the buffer allocation research literature can,
in general, be separated into two main categories. The first category focuses
on general design rules that have been developed after extensive computational
experimentations. For example, Conway et al. [1] did extensive simulation studies
of open production lines and identified general buffer allocation principles and
design rules for balanced unbalanced and unbalanced production lines. A similar
study was presented by Matta [6].The author proposes explicit mathematical
programming representations for jointly simulating and optimizing discrete event
systems for solving the buffer allocation problem in flow lines with finite buffer
capacities.

The second category of buffer allocation literature focuses on algorithms for
buffer allocation optimization in serial production lines and is directly related
to the topic of this paper. In general, these algorithms possess some method for
evaluating the performance of each candidate solution, and include some search
procedure to select candidate solutions. For example, Nahas et al. [7] described a
new local search approach for solving the buffer allocation problem in unreliable
production lines. The authors used a variant of a local search metaheuristic,
called the degraded ceiling approach to select the t candidate solutions. Then an
analytical decomposition-type approximation is used to estimate the production
line throughput.

Other studies, such as those of Dallery and Gershwin [2] and Papadopoulos
and Heavey [11], were interested in the analysis of various analytical methods
and mathematical models describing the effects of intermediate buffers on dif-
ferent kinds of production systems. Recently, Papadopoulos et al. [10] proposed
a classification of the different optimization methods taking into account the
length (size) of the production lines.

More details about the buffer allocation problem literature can be found on
the comprehensive literature survey proposed by Demir et al. [3]. To provide a
systematic review of current relevant research, first studies are grouped in two
categories: reliable production lines and unreliable production lines. Next, the
studies in each group are reviewed based on topology of the production line, the
solution methodologies suggested and the objective function employed.

In this paper we address the problem of buffer allocation in serial production
lines. Here the focus is on assigning a fixed number of buffer spaces to maxi-
mize system throughput. The proposed approach can then be used to find the
minimum of buffer sizes required to meet or exceed a target average through-
put, sometimes referred to as a dual buffer placement optimization problem. The
main contribution presented in this paper is the development of a new non-linear
method that can rapidly identify a near-optimal buffer allocation solution. This
optimization method is an adaptation of the equivalent machine method pro-
posed by Ouazene et al. [8] to evaluate the throughput of serial production lines.
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The originality is how to transform a performance evaluation method into an
optimization algorithm.

The remainder of this paper is organized as follows: Section 2 introduces
the problem studied with the different assumptions and notations. In Section 3
and Section 4, the analytical approach and the non-linear programming model
proposed in this paper are developed. An experimental study is presented and
discussed in Section 5. Finally, a conclusion section summarizes the guidelines
of our contribution.

2 Problem Description and Assumptions

The production line considered in this paper consists ofK unreliable machines or
stations separated by (K − 1) intermediate buffers (see Figure 1). The products
flow continuously in a fixed sequence from the first machine to the last one. It is
assumed that the first machine is never starved and the last one is never blocked.
It follows that there is an infinite number of products at the input of the system
and unlimited storage capacity at the output of the last machine.

The failures are operation-dependent, a machine cannot fail while it is starved,
blocked or idle. Times to failure and to repair are independent and exponentially
distributed. The processing times of each machine are assumed to be independent
random variables following the exponential distribution. The mean values of
these variables are not necessarily identical.

If no products are available in the upstream buffer Bj−1 the machine Mj will
be starved and when the downstream buffer Bj is full, it will be blocked.

The capacities of the different intermediate buffers are finite but unknown. In
fact, the aim of this paper is to propose an efficient method to determine these
capacities in order to maximize the throughput of the production line.

Fig. 1. A K-machine (K − 1)-buffer serial production line

The notations used in this paper are defined below.
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λi Equivalent failure rate of the machine Mi

μi Equivalent repair rate of the machine Mi

ωi Processing rate of the machine Mi

Nj , j ∈ {1...K − 1} Capacity of the intermediate buffer Bj

Nj , j ∈ {1...K − 1} average inventory level in buffer j
ξi, i ∈ {1...K} Probability of both blockage and starvation of machine Mi

αj , j ∈ {1...K − 1} Processing rates fraction related to the buffer Bj

ρi, i ∈ {1...K} Equivalent production rate of the machine Mi

P s
j , s ∈ {0...Nj} Steady state probability to have s products in the buffer Bj

ψ Production line throughput

In mathematical terms, the buffer allocation problem can be stated as a non-
linear programming problem. Gershwin and Schor [4] presented two versions of
this problem.

Primal Problem: the objective of the primal formulation is to minimize the
total buffer space required for the line to meet or exceed a given average produc-
tion rate. This formulation is appropriate if either storage space or the buffering
mechanism is expensive, if work-in-process inventory is inexpensive, and if an
average production rate is mandated.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Min
∑K−1

j=1 Nj

Constraints:
ψ ≥ ψrequired∑K−1

j=1 Nj ≤ Navailable

Nj ∈ N, ∀j = 1...K − 1

(1)

Dual Problem: the objective of the dual formulation is to maximize the
production rate achievable with a given total buffer space. This is appropriate
in cases where the total storage space is limited, where the number of buffer
locations is fixed. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Max ψ

Constraints:∑K−1
j=1 Nj ≤ Navailable

Nj ∈ N, ∀j = 1...K − 1

(2)

Seong et al. [16] introduced the generalized version of the buffer allocation
problem. In this case, the objective is to maximize the difference between the
profit obtained from the throughput and the holding cost incurred by work-in-
process inventory.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max f1 × ψ − f2 ×
∑K−1

j=1 Nj

Constraints:∑K−1
j=1 Nj ≤ Navailable

Nj ∈ N, ∀j = 1...K − 1
Nj average inventory level in buffer Bj

f1 profit per unit
f2 holding cost per unit

(3)

The mathematical programming approach, proposed in this paper, can be used
to solve the buffer allocation problem in the different cases cited above.

This approach is inspired by the analytical method proposed by Ouazene et
al. [8] to evaluate the throughput of a serial production line while the capacities
of the different buffers are assumed to be known. This method is based on
the analysis of the different buffers states using dedicated birth-death Markov
processes. The idea of this paper is to transform this analytical method into
an optimization method to deal with the buffer allocation problem where the
capacities of the different buffers are variables to be determined.

3 Analytical Method Description

The main idea of the proposed approach is to replace each machine by an equiv-
alent one that has only up and down states. The blockage and starvation are
integrated in the up state of the machine. This formulation is a generalization
of two-machine-one-buffer production line proposed by Ouazene et al. [9].

Based on the analysis of the buffers steady states using birth-death Markov
processes, the probabilities of starvation and blockage of each buffer are de-
termined. Then, these probabilities are used to model and analyze the system
behavior in its steady state.

3.1 Two-Machine-One-Buffer Model

Before detailing the general formulation, we introduce the simple system which
consists of two machines separated by one buffer. This model is used as a building
block to construct the general model. To analyze the steady states of the buffer,
we consider a birth-death Markov process with (N +1) states {0, 1...N} such as
N is the capacity of the intermediate buffer and ω1 and ω2 are respectively the
birth and death transition rates.

The differential equations for the probability that the system is in state j at
time t are:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂P0(t)
∂t = −ω1 × P0(t) + ω2 × P1(t)

∂Pj(t)
∂t = ω1 × Pj−1(t)− (ω1 + ω2)× Pj(t) + ω2 × Pj+1(t)

∂PN (t)
∂t = ω1 × PN−1(t) + ω2 × PN (t)

(4)
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In the steady state of the system, all the differential terms are equal to zero (see
Equation 5). ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 = −ω1 × P0 + ω2 × P1

0 = ω1 × Pj−1 − (ω1 + ω2)× Pj + ω2 × Pj+1

0 = ω1 × PN−1 + ω2 × PN

(5)

So, by simplifying the system above and considering the normalization equa-
tion:

∑N
j=0 Pj = 1 we obtain the different steady state probabilities. We are

especially interested in the starvation and blockage probabilities respectively
represented by empty and full buffer states given by the following equations:

P0 =

⎧⎨⎩
1−α

1−αN+1 if α �= 1

1
N+1 if α = 1

(6)

PN =

⎧⎪⎨⎪⎩
αN×(1−α)
1−αN+1 if α �= 1

1
N+1 if α = 1

(7)

Based on these two probabilities, the effective production rate of each work
station is defined as function of machine processing rate, machine and the buffer
availabilities (8).

ρi = ωi × μi × ξi
μi + ξi × λi

(8)

Such as: ξ1 = 1− PN and ξ2 = 1− P0.
The system throughput ψ is defined as the bottleneck between the two effective
production rates ρ1 and ρ2.

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1 ×min{ μ1×(1−αN )
μ1×(1−αN+1)+λ1×(1−αN ) ;

μ2×(1−αN )
μ2×(1−αN+1)+λ2×α×(1−αN )}
if α �= 1

ω ×min{ N×μ1

N×λ1+(N+1)×μ1
, N×μ2

N×λ2+(N+1)×μ2
}

if α = 1

(9)

More implicitly:

ψ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω1 ×min{ 1
1−αN+1

1−αN +
λ1
μ1

; 1
1−αN+1

1−αN +α×λ2
μ2

}
if α �= 1

ω ×min{ 1
N

N+1+
λ1
μ1

; 1
N

N+1+
λ2
μ2

}
if α = 1

(10)
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3.2 General Model with K Machines and (K − 1) Buffers

The two-machine-one-buffer presented above is used as a building block to anal-
ysis larger production lines. Therefore, the states of each intermediate buffer Bj

are analyzed using a dedicated birth-death Markov process. These Markov pro-
cesses differ in terms of number of states because the buffers are not identical.
They also differ in terms of birth and death transition rates because each buffer
Bj is differently influenced by the machines and the other buffers (see Figure 2).

Fig. 2. Sub-system of the original production line

In the simple case of two machines and one buffer, each available machine
processes ωi products per time unit. For this reason, ω1 and ω2 are respectively
the birth and death transition rates. But in the general case, the machines Mi

and Mi+1 related to the buffer Bj=i are subject to starvation and blockage. So
their effective processing rates are affected by the availabilities of the buffers
Bi−1 and Bi+1. The upstream machine Mi can process products if the buffer
Bi−1 is not empty and the downstream machine Mi+1 can process products
when the buffer Bi+1 is not full.

The first buffer and the last one should be considered as particular cases
because the first machine cannot be starved and the last machine cannot be
blocked. The birth-death Markov process, related to the buffer Bi, is represented
in Figure 3.

Fig. 3. Birth-death Markov process related to the buffer Bi

The different states of the (K− 1) buffers are modeled by (K− 1) related but
different birth-death Markov processes. Each stochastic process is defined by its
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processing rates ratio αj . The different ratios αj are defined by the following
equations:

α1 =
ω1 × (1 − P 2

N2
)

ω2
. (11)

αK−1 =
ωK−1 × (1− PK−1

0 )

ωK
. (12)

∀j = 2...K − 2, αj =
ωi × (1− P j−1

0 )

ωi+1 × (1− P j+1
Nj+1

)
. (13)

Equations (11) and (12) consider respectively the particular case of the first and
the last buffer because the first machine cannot be starved and the last one
cannot be blocked.

Based on the analysis presented in Section 2, the probabilities of empty and
full states of each buffer are calculated using Equations (10) and (11).

P j
0 =

⎧⎪⎨⎪⎩
1−αj

1−α
Nj+1

j

if αj �= 1

1
Nj+1 if αj = 1

(14)

P j
Ni

=

⎧⎪⎪⎨⎪⎪⎩
α

Nj
j ×(1−αj)

1−α
Nj+1

j

if αj �= 1

1
Nj+1 if αj = 1

(15)

The resolution of Equations (11) to (15) allows the determination of the pro-
cessing rates ratio αj and empty and full states probabilities (P j

0 , P
j
Nj

) of each
buffer. So, based on these information and the two-machine-one-buffer model
presented above, we can calculate the effective production rate of each machine
considering the influence of the buffers availabilities using Equation (16).

∀i = 1...K, ρi = ωi × μi × ξj
μi + ξj × λi

. (16)

Such as: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ξ1 = 1− P 1

N1

ξK = 1− PK−1
0

∀j = 2...K − 1, ξj = (1− P j−1
0 )× (1− P j+1

Nj+1
)

(17)

Similarly to the two-machine-one-buffer model, the throughput of the produc-
tion line ψ is defined as the bottleneck between the effective production rates of
all machines:
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ψ = min{ωi × μi × ξi
μi + ξi × λi

}, i = 1...K . (18)

4 Non-linear Programming Model

The transformation of the analytical approach for performance evaluation pro-
posed above into an optimization approach is obtained by considering that the
capacities of the different buffers (N1, N2,..., NK−1) are finite but variables. So
the different characteristics (probabilities of the blockage, starvation, birth and
death ratios and equivalent machines ratios) are expressed as function dependent
on the buffer capacities.

The obtained non-linear programming model is solved using LINGO software
as illustrated by algorithm 1. Without loss of generality, algorithm 1 presents
the dual version of the buffer allocation problem. It can be easily adapted to the
generalized case by adding the formula for calculating the average storage level
of the production line.

The average inventory level of the system can be defined as the sum of the
average inventory levels of the different buffers.

N =

K−1∑
j=1

Nj (19)

Or,

Nj = E[PBj ]

=

Nj∑
s=1

s× P s
j

=

⎧⎪⎪⎨⎪⎪⎩
∑Nj

s=1 s×
αs

j×(1−αj)

1−α
Nj+1

j

si αj �= 1

∑Nj

s=1 s× 1
1+Nj

si αj = 1

(20)

Nj =

⎧⎪⎪⎨⎪⎪⎩
Nj×α

Nj+2

j −(Nj+1)×α
Nj+1

j +αj

α
Nj+2

j −α
Nj+1

j −αj+1
si αj �= 1

Nj

2 si αj = 1

(21)

Remark:

The formulation above is based on the following finite series sum:
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Nj∑
s=1

s× αs
j(1− αj)

1− α
Nj+1
j

=
1− αj

1− α
Nj+1
j

×
Nj∑
s=1

s× αs
j (22)

Such as:

Nj∑
s=1

s× αs
j = αj ×

∂
∑Nj

s=1 α
s
j

∂αj

= αj ×
∂
αj×(1−α

Nj
j )

1−αj

∂αj

=
αj − (Nj + 1)× α

Nj+1
j +Nj × α

Nj+2
j

(1− αj)2

(23)

So,

Nj =
1− αj

1− α
Nj+1
j

× αj − (Nj + 1)× α
Nj+1
j +Nj × α

Nj+2
j

(1 − αj)2

=
Nj × α

Nj+2
j − (Nj + 1)× α

Nj+1
j + αj

α
Nj+2
j − α

Nj+1
j − αj + 1

(24)

5 Numerical Experiments

In this section, the proposed non-linear programming model is solved using
LINGO software (version 12.0). The optimization algorithm was implemented
on a laptop with a Core Duo processor running at 2.00 GHz. Some numerical
results are given concerned with the buffer allocation problem in unbalanced
production lines based on different instances proposed in the literature.

This benchmark has been widely reported by various authors, such as Seong et
al. [15], Gershwin and Schor [4], Papadopoulos and Vidalis [12] and Sabuncuoglu
et al. [13]. It is consists of ten different instances representing production lines
with 4, 5, 6, 8, 9 and 10 machines and total storage capacity varying from 10 to
315 units. Each of the configurations considers the general case of asynchronous
non-homogeneous line with machines having different reliability parameters and
different processing times. Table 2 summarizes the design of these instances.

The proposed non-linear programming method is compared with six methods
issued from the literature.

SEVA, Non-SEVA1 and Non-SEVA2 proposed by Seong et al. [15]. The
authors formulated the buffer allocation as a nonlinear multidimensional search
problem. They developed two algorithms called SEVA (standard exchange vector
algorithm) and Non-SEVA (non-standard exchange vector algorithm).



90 Y. Ouazene et al.

Algorithm 1. Non-linear programming model coded using LINGO Software

Require:

K Number of machines
K − 1 Number of buffers
λi Failure rate of machine Mi

μi Repair rate of machine Mi

ωi Processing rate of machine Mi

P 0
0 = 0 first machine is never starved

PNK
K = 0 Last machine never blocked

for all each buffer Bj do
for all each machine Mi do

Max ψ = mini=1...K{ρi}
Nj ∈ N and Nj �= 0

αj =
mini=1...j ρi

mini=j+1...K ρi

ρi = ωi × μi×(1−P0
j−1)×(1−P

Nj
j

)

μi+(1−P0
j−1)×(1−P

Nj
j )×λi

if αj = 1 then

P
Nj

j = P 0
j = 1

Nj+1

else

P
Nj

j =
α
Nj
i ×(1−αj)

1−α
Nj+1

i

P 0
j =

1−αj

1−α
Nj+1

j

end if
end for

end for
return ψ and (N1, N2, ..., NK−1)

Both methods are based on the principle of local search by exploring a spe-
cific neighborhood. In the first algorithm, the neighborhood search is identified
according to the concept of standard exchange vector whereas the in the second
algorithm, the authors introduced the concepts of pseudo-gradient and gradient
projection to accelerate exploration the search space. The authors considered
two different versions of this algorithm: Non- SEVA1 and Non- SEVA2 which
differ in terms of heuristic used for the approximation of the gradient of the
objective function.

LIBA is a simulation-based heuristic procedure proposed by Selvi [14] and
reproduced by Sabuncuoglu et al. [13]. The main feature of the procedure is to
minimize the difference between the throughput values of two sub-lines created
by dividing the line around each buffer and to transfer the buffers from the faster
sub-line to the slower one.

H-1 and H-2 are two heuristic approaches proposed by Sabuncuoglu et al.
[13]. The first heuristic starts with a uniform allocation as initial solution,
whereas the second heuristic uses the solution obtained by the method LIBA.
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Table 2. Parameters of production lines reported in Seong et al. [15] and Sabuncuoglu
et al [13]

Instance K
∑K−1

j=1 Nj (λi, μi, ωi)

1 4 10 (0.07,0.17,3.7); (0.11,0.37,1.5); (0.49,0.78,1.1); (0.19,0.50,3.0)

2 4 30 (0.38,0.45,3.0); (0.30,0.55,1.0); (0.35,0.50,2.0); (0.45,0.40,3.6)

3 5 10 (0.10,0.30,1.2); (0.30,0.50,1.0); (0.50,0.20,3.0); (0.40,0.30,2.0);
(0.20,0.10,1.8)

4 5 15 (0.30,0.64,2.8); (0.40,0.83,1.7); (0.45,0.75,2.5); (0.35,0.85,3.4);
(0.10,0.74,1.9)

5 6 115 (0.08,0.40,2.6); (0.24,0.40,3.0); (0.20,0.60,3.4); (0.17,0.50,4.7);
(0.10,0.30,1.5)

6 6 130 (0.30,0.20,3.0); (0.50,0.50,1.0); (0.10,0.30,1.2); (0.20,0.10,1.8);
(0.30,0.20,1.5); (0.40,0.30,2.0)

7 8 125 (0.25,0.52,1.0); (0.18,0.48,3.6); (0.23,0.58,1.7); (0.32,0.50,1.4);
(0.19,0.47,2.8); (0.35,0.46,2.7); (0.26,0.66,1.6); (0.20,0.41,1.2)

8 9 200 (0.20,0.70,2.5); (0.10,0.60,1.5); (0.30,0.80,2.8); (0.20,0.80,3.6);
(0.10,0.70,2.1); (0.10,0.60,1.9); (0.30,0.80,2.7); (0.20,0.50,3.0)
(0.30,0.60,2.0)

9 10 310 (0.20,0.70,2.5); (0.10,0.60,1.5); (0.30,0.80,2.8); (0.20,0.80,3.6);
(0.10,0.70,2.1); (0.10,0.60,1.9); (0.30,0.80,2.7); (0.20,0.50,3.0)
(0.30,0.60,2.0);(0.10,0.70,2.1)

10 10 315 (0.365,0.465,2.4); (0.215,0.565,1.7); (0.305,0.485,2.8);
(0.375,0.455,2.2);(0.340,0.455,2.1); (0.390,0.390,2.5);
(0.265,0.500,1.1); (0.285,0.490,1.3);(0.255,0.495,1.6);
(0.240,0.505,0.8)

Tables 3 and 4 summarize the performance of the different approaches investi-
gated in this comparative study. For each instance, the buffer allocation solution,
the corespondent throughput and the computational times are given.

The results of the comparative study show the efficiency of the proposed
method to solve the buffer allocation problem. In fact, we note that for the
small instances (1 to 4), the proposed approach and the method SEVA obtain
the optimal solutions except for the first instance. This instance is particular
case because the optimal solution contain a zero-buffer solution (the first buffer
does not exist). The proposed method does not consider the case of zero-buffer
capacity since it is based on the analysis of the different buffers states.

For some large instances, the results of the method SEVA are not reported
because it failed to obtain solutions because of the computational complexity.

We note also that for the rest of the instance the different methods obtain
different solutions (buffer allocations) but the values of the objective function
are very close. In fact, in the buffer allocation problem the optimal solution is
not unique especially when the total capacity to be allowed is hight.

As conclusion, the proposed non-linear programming approach is computa-
tionally faster than all other methods and obtain high-quality solutions.
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Table 3. Results of the comparative study (1)

Instance Method buffers allocation ψ min:sec

SEVA (Seong et al. [15]) (0,7,3) 0.6363 00:06
Non-SEVA1 (Seong et al. [15]) (0,6,4) 0.6363 00:03
Non-SEVA2 (Seong et al. [15]) (0,7,3) 0.6363 00:04

1 LIBA (Sabuncuoglu et al. [13]) (0,7,3) 0.6258 -
H-1 (Sabuncuoglu et al. [13]) (0,7,3) 0.6258 -
H-2 (Sabuncuoglu et al. [13]) (0,7,3) 0.6258 -
Proposed method (2,5,3) 0.6327 00:00

SEVA (Seong et al. [15]) (11,16,3) 0.6394 02:53
Non-SEVA1 (Seong et al. [15]) (11,16,3) 0.6394 01:06
Non-SEVA2 (Seong et al. [15]) (11,16,3) 0.6394 00:38
LIBA (Sabuncuoglu et al. [13]) (11,16,3) 0.6384 -

2 H-1 (Sabuncuoglu et al. [13]) (11,15,4) 0.6384 -
H-2 (Sabuncuoglu et al. [13]) (11,15,4) 0.6384 -
Proposed method (11,16,3) 0.6460 00:00

SEVA (Seong et al. [15]) (1,3,4,2) 0.3484 00:13
Non-SEVA1 (Seong et al. [15]) (1,3,4,2) 0.3484 00:13
Non-SEVA2 (Seong et al. [15]) (1,3,4,2) 0.3484 00:13
LIBA (Sabuncuoglu et al. [13]) (1,3,4,2) 0.3468 -

3 H-1 (Sabuncuoglu et al. [13]) (1,3,3,3) 0.3475 -
H-2 (Sabuncuoglu et al. [13]) (1,3,3,3) 0.3475 -
Proposed method (1,3,4,2) 0.3662 00:01

SEVA (Seong et al. [15]) (4,6,3,2) 0.9460 00:14
Non-SEVA1 (Seong et al. [15]) (4,6,4,1) 0.9439 00:15
Non-SEVA2 (Seong et al. [15]) (4,6,4,1) 0.9439 00:15
LIBA (Sabuncuoglu et al. [13]) (4,7,3,1) 0.9714 -

4 H-1 (Sabuncuoglu et al. [13]) (4,7,3,1) 0.9714 -
H-2 (Sabuncuoglu et al. [13]) (4,7,3,1) 0.9714 -
Proposed method (4,6,3,2) 0.9940 00:04

Non-SEVA1 (Seong et al. [15]) (29,15,29,42) 1.1250 00:43
Non-SEVA2 (Seong et al. [15]) (22,11,22,60) 1.1250 00:35
LIBA (Sabuncuoglu et al. [13]) (17,17,22,59) 1.1248 -

5 H-1 (Sabuncuoglu et al. [13]) (21,27,16,51) 1.1248 -
H-2 (Sabuncuoglu et al. [13]) (20,31,11,53) 1.1248 -
Proposed method (17,22,4,56) 1.1250 00:01

Non-SEVA1 (Seong et al. [15]) (26,45,26,16,17) 0.4995 07:37
Non-SEVA2 (Seong et al. [15]) (23,38,47,14,8) 0.4989 09:19

6 LIBA (Sabuncuoglu et al. [13]) (23,38,47,14,8) 0.4797 -
H-1 (Sabuncuoglu et al. [13]) (23,38,47,14,8) 0.4799 -
H-2 (Sabuncuoglu et al. [13]) (23,38,47,14,8) 0.4801 -
Proposed method (21,78,9,15,7) 0.4999 0:01

Non-SEVA1 (Seong et al. [15]) (33,2,18,0,21,19,32) 0.6756 83:49
Non-SEVA2 (Seong et al. [15]) (33,2,18,0,21,19,32) 0.6756 92:22

7 LIBA (Sabuncuoglu et al. [13]) (57,8,17,17,5,8,13) 0.6755 -
H-1 (Sabuncuoglu et al. [13]) (48,2,18,0,21,19,32) 0.6755 -
H-2 (Sabuncuoglu et al. [13]) (54,13,18,15,4,10,17) 0.6755 -
Proposed method (87,6,18,17,5,8,17) 0.6753 00:05
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Table 3. (Continued)

Non-SEVA1 (Seong et al. [15]) (42,42,8,25,25,25,8,25) 1.2857 61:26
8 Non-SEVA2 (Seong et al. [15]) (70,44,15,17,16,16,6,16) 1.2857 01:36
LIBA (Sabuncuoglu et al. [13]) (28,47,20,15,21,20,22,27) 1.2780 -
H-1 (Sabuncuoglu et al. [13]) (25,44,4,18,18,24,18,49) 1.2783 -
H-2 (Sabuncuoglu et al. [13]) (28,41,12,10,20,25,18,46) 1.2784 -
Proposed method (29,108,2,4,7,8,2,40) 1.2818 00:05

Table 4. Results of the comparative study (2)

Instance Method buffers allocation ψ min:sec

Non-SEVA1 (Seong et al. [15]) (34,34,34,2,34,34,34,34,70) 0.9864 24:12
Non-SEVA2 (Seong et al. [15]) (20,15,16,18,25,15,20,112,69) 0.9863 89:20

9 LIBA (Sabuncuoglu et al. [13]) (6,22,15,15,21,20,41,112,58) 0.9860 -
H-1 (Sabuncuoglu et al. [13]) (6,25,14,22,22,20,39,110,52) 0.9860 -
H-2 (Sabuncuoglu et al. [13]) (6,25,14,20,25,23,39,106,52) 0.9860 -
Proposed method (5,10,4,23,8,6,25,174,55) 0.9863 00:07

Non-SEVA1 (Seong et al. [15]) (35,35,35,35,18,52,118,35,52) 0.5423 05:28
Non-SEVA2 (Seong et al. [15]) (65,20,5,5,5,65,5,5,140) 0.5423 03:18

10 LIBA (Sabuncuoglu et al. [13]) (29,18,26,31,30,38,49,40,54) 0.5417 -
H-1 (Sabuncuoglu et al. [13]) (35,22,35,35,35,35,35,35,48) 0.5417 -
H-2 (Sabuncuoglu et al. [13]) (29,24,26,31,30,38,49,40,48) 0.5417 -
Proposed method (4,11,7,13,21,42,110,23,94) 0.5423 00:08

6 Conclusion

This paper proposes an efficient non-linear programming method for the buffer
allocation problem in serial unreliable production lines. This approach can be
used to deal with the three versions of this problem: primal, dual and generalized.
Numerical analysis shows that the computational time required to solve the
buffer allocation problem can be significantly reduced by using the proposed
formulation. It shows also the efficiency of the proposed approach on solving
both small-size and big-size problems.

The originality of this method is its reduced number of variables used to
model the behavior of the system because it considers only the empty and full
states of each buffer. Therefore, to solve the buffer allocation problem in the
case K-machine (K − 1)-buffer production line, we have to solve a non-linear
programming model with (5×K − 3) variables.

Future extension of this work may be the adaptation of this approach to
deal with other production systems types such as series-parallel structures or
assembly/disassembly systems. The main challenges in such extensions are more
in the modeling and the analysis than the optimization algorithm.
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The PH/PH/1 Multi-threshold Queue
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Abstract. We consider a PH/PH/1 queue in which a threshold policy
determines the stage of the system. The arrival and service processes
follow a Phase-Type (PH) distribution depending on the stage of the
system. Each stage has both a lower and an upper threshold at which
the stage of the system changes, and a new stage is chosen according to a
prescribed distribution. The PH/PH/1 multi-threshold queue is a Quasi-
Birth-and-Death process with a tri-diagonal block structured boundary
state which we model as a Level Dependent Quasi-Birth-and-Death pro-
cess. An efficient algorithm is presented to obtain the stationary queue
length vectors using Matrix Analytic methods.

Keywords: PH/PH/1 queue, multiple thresholds, Matrix Analytic
methods, Quasi-Birth-and-Death process, tri-diagonal block structured
boundary state.

1 Introduction

We consider a PH/PH/1 queue in which a threshold policy determines the
stage of the system. The arrival and service processes follow a Phase-Type (PH)
distribution depending on the stage of the system. Each stage has both a lower
and an upper threshold at which the stage of the system changes. At these
thresholds a new stage is chosen according to a prescribed distribution.

In literature, threshold policies are often used to activate or deactivate servers
when the queue length reaches certain thresholds. The M/M/2 queue in which
the second server is activated when the queue length reaches an upper thresh-
old and deactivated when it reaches a lower threshold is studied in [11], where
a closed form expression is obtained for the steady-state probabilities. In [13],
see also Section 4.2, closed form expressions are obtained for the steady-state
distributions for the M/M/c with c heterogeneous servers. Using Green’s func-
tion, Ibe and Keilson [9] studied the M/M/c queue with homogeneous servers
and the M/M/2 queue with heterogeneous servers. The M/M/c with hetero-
geneous servers is also studied in [14] where the steady-state probabilities are
obtained using a stochastic complement analysis for uncoupling Markov Chains.
A MAP/M/c with homogeneous servers is analysed in [4] and the PH/M/2
queue with heterogeneous servers is studied by Neuts [16]. In [5], see also Sec-
tion 4.3, a very general setting is studied in which the generator of the queueing

B. Sericola, M. Telek, and G. Horváth (Eds.): ASMTA 2014, LNCS 8499, pp. 95–109, 2014.
c© Springer International Publishing Switzerland 2014
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system forms a nested Quasi-Birth-and-Death process. In this model a thresh-
old policy controls the stage of the system which, in turn, determines the arrival
process and the service process. An upper threshold increases the stage by one
whereas the the lower threshold decreases the stage by one, creating a staircase
threshold policy. In [12] an M/M/2 queue is studied with two heterogeneous
servers in which the second server is exponentially delayed before activation.

Threshold policies are also used to send servers to a certain queue, as is shown
in [7]. In this paper, a system is studied containing two queues and two servers
where both interarrival times and service times are exponentially distributed.
After each service completion, the server chooses a queue to serve according
to a threshold policy. A generalisation of this model is analysed in [6] where
customers from multiple classes arrive according to a Poisson process and require
an exponential amount of service. The queueing system contains a fixed number
of servers which are allocated to a customer class according to a threshold policy.
Each server experiences an exponential delay once it is assigned to a different
customer class. In [17], the joint queue length distribution is obtained for an
M/G/1 queue with multiple customer classes in which customers from higher
class are blocked when thresholds are reached.

Motivating Example. The queueing system in this paper is motivated by the
hysteretic relation between density and speed of traffic flows observed on a high-
way, see Helbing [8]. In [8] it is stated that this hysteretic behaviour is controlled
by two critical densities, denoted by ρ1 and ρ2. When the density of cars on
the highway increases vehicles are more and more affected by each other and
the driving speeds decrease. Once the density reaches ρ2 the highway becomes
congested and driving speeds decrease drastically. The density must reduce to
ρ1 for the highway to become non-congested. In Baer, Boucherie and van Om-
meren [2], an M/M/1 threshold queue was used to model a particular highway
section. In [2], the arrival rates were kept constant, whereas the service rates
where altered according to a 2-stage threshold policy. When the queue length
surpasses an upper threshold the service rates decreased. The service rates were
increased again when the queue length dropped below a lower threshold. In [2],
the mean sojourn time is determined. Since a single queue represents a highway
section, this directly gives the average time to cross the highway section and the
mean speed of a vehicle. The motivating example in Figure 1 is an extension to
the model in [2], where not only the service rates are controlled by a threshold
policy, but also the arrival rates. This models the hysteretic relation within a
highway section, but also between two consecutive highway sections. We will,
get back to this example in Section 4.1.

Contribution. This paper generalises the model of [5] to an arbitrary threshold
policy and introduces a novel dedicated solution method based on the Level De-
pendent Quasi-Birth-and-Death process of [3]. In particular, a class of PH/PH/1
multi-threshold queueing systems is described for which the solution method in
[3] can be decomposed to find the stationary queue length vector for each stage
separately. The stationary distribution of the PH/PH/1 multi-threshold queue
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Fig. 1. State Diagram

can be obtained using the results in [3] but for a large number of stages, this
may result in computational demanding calculations. In this paper we use the
structure of the PH/PH/1 multi-threshold queue to form, based on the results
in [3], smaller and easier equations to obtain the stationary distribution.

Overview. Section 2 introduces thePH/PH/1multi-threshold queue andpresents
the queueing system as a LevelDependent Quasi-Birth-and-Deathprocess. In Sec-
tion 3 we analyse the multi-threshold queue using Matrix Analytic methods and
obtain the stationary queue length probabilities. Furthermore, we present a de-
composition theorem for a class of multi-threshold queues providing an explicit
description of the stationary queue length probability vectors. In Section 4 we il-
lustrate our results via three multi-threshold queues obtained from literature. Sec-
tion 5 gives concluding remarks.

2 Model Description

Consider a PH/PH/1 queue, controlled by a threshold policy. The system can
be in different stages s = 1 . . . , S, where every stage s is associated with a set
of feasible queue lengths {Ls, . . . , Us}. The quantities Ls and Us are the lower,
respectively upper thresholds for stage s. In case Us = ∞, we say that stage
s has no upper threshold. For each queue length n = 0, 1, . . ., a stage s is a
potential stage when Ls ≤ i ≤ Us. If the system is in stage s and a departure or
arrival causes the queue length to drop below Ls or to exceed Us, the stage of
the system changes (the threshold policy). If the queue length increases to Us+1
the stage changes from s to t with probability ps,t. Note that ps,t > 0 implies
that t is a potential stage for queue length Us +1. If the queue length decreases
to Ls − 1 the stage changes from s to t with probability qs,t. See Figure 1 for an
illustration with exponential service times and Poisson arrivals.
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The arrival process in stage s follows a PH(Λs,λs) distribution of vs + 1
phases (vs transient phases and 1 absorbing phase). We define Λ0

s = −Λsevs ,
with evs a vs×1 vector of ones. Furthermore we assume that the absorbing state
is never chosen as initial state, i.e. λsevs = 1. Similarly, the service process in
stage s is PH(Ms,μs) distributed with ws+1 phases. We defineM0

s = −Msews

and assume μsews = 1. The mean interarrival times and mean service time if
given by −λjΛ

−1
j evj and −μjM

−1
j ewj , see Neuts [15].

When an arrival or departure changes the stage of the system both the arrival
process and service process are reset by choosing a new initial phase for both
processes according to the distributions of the new stage.

This PH/PH/1 multi-threshold queue can be modelled as a four-dimensional
Markov Chain (i, s, x, y) where i and s represent the queue length and stage of
the system, x = 1, . . . , vs the phase of the arrival process and y = 1, . . . , ws the
phase of the service process. This queueing system is a Quasi-Birth-and-Death
process (QBD) [10] in which the levels are represented by the queue length
i, with i > maxs{Us}. Modelling the system as a QBD-process results in a
boundary level (level 0) containing the entire threshold policy. By ordering the
states lexicographically a tri-diagonal block structure emerges in the boundary
level. This structure is utilised by modelling the queueing system as a Level
Dependent Quasi-Birth-and-Death process (LDQBD) [3] in which the levels of
the LDQBD are the queue length i. We stress that, from here on, we refer to
the queue lenght as the level of the LDQBD. The other three variables represent
the phase within a level. The states are ordered lexicographically in (i, s, x, y).

The generator Q for this LDQBD is:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(0) F (0) 0 · · ·
B(1) L(1) F (1)

. . .

0 B(2) L(2)
. . .

...
. . .

. . .
. . . F (i−1)

B(i) L(i)
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where B(i) denotes the backward transitions (departures) from level i to level
i − 1, L(i) the local transitions within level i and F (i) the forward transitions
(arrivals) from level i to level i + 1.

If the number of potential stages for level i − 1, i and i + 1, are , m and n
respectively, B(i) is a m×  matrix of submatrices B(i)

(j,k), L
(i) is a m×m matrix

of submatrices L(i)

(j,k)
and F (i) is a m×n matrix of submatrices F (i)

(j,k)
, describing

the backward, local and forward transition rates from stage j to stage k. Let It

denote the t × t identity matrix and let ⊗ denote the Kronecker product. For
s = 1, . . . , S, the forward, local and backward submatrices are given by:
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F
(i)
(s,j) =

⎧⎪⎨⎪⎩
Λ0

s ⊗ λs ⊗ Iws , if j = s and Ls ≤ i < Us,

ps,j ·Λ0
s ⊗ ews ⊗ λj ⊗ μj , if i = Us,

0, otherwise.

(2)

L
(i)
(s,j) =

⎧⎪⎨⎪⎩
Λs ⊗ Iws + Ivs ⊗Ms, if j = s, i > 0 and Ls ≤ i ≤ Us,

Λs ⊗ Iws , if j = s, i = 0 and Ls = 0,

0, otherwise.

(3)

B
(i)
(s,j) =

⎧⎪⎨⎪⎩
Ivs ⊗M0

s ⊗ μs, if j = s and Ls < i ≤ Us,

qs,j · evs ⊗M0
s ⊗ λj ⊗ μj , if i = Ls,

0, otherwise.

(4)

These formulas can be obtained by closely observing the queueing system.
Consider, for instance, the forward transition matrices F (i)

(s,j). When Ls ≤ i < Us

the stage cannot change upon an arrival, so j = s. Now, with rate Λ0
s an arrival

occurs at which an initial state is chosen with probability λs, independent of the
phase of the service process. The stage will change when an arrival occurs when
i = Us. Now, with rate Λ0

s, independent of the phase of the service process, an
arrival occurs and the stage changes from s to j with probability ps,j. During
this event an initial phase is chosen for both the arrival process and the service
process respectively probability λj and μj . Similar reasoning gives the relations
for L(i)

(s,j)
and B(i)

(s,j)
.

Remark 1. Note that modelling the queueing system as a QBD-process results
in the following generator

Q̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q̃00 Q̃01 0 · · · · · ·
Q̃10 L F

. . .

0 B L F
. . .

...
. . . B L

. . .
...

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

The threshold policy, in the LDQBD-process described by the levels 0, . . . , Umax,
is now described in the submatrix Q̃00 with

Umax = 1 +max{Us : s = 1, . . . , S, Us < ∞}.
Finding the stationary distribution for the QBD-process, i.e. solving πQ̃ = 0,
would also include solving

π0Q̃00 + π1Q̃10 = 0,

with π0 and π1 denoting the stationary distribution of the entire threshold policy
and of the first level in the QBD-process respectively. By modelling the queueing
system as the LDQBD-process in (1) we split up level 0 in the QBD-process (5)
into smaller blocks such that the stationary distribution π is easier obtained.
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3 Steady-State Analysis

In the previous section we modelled the PH/PH/1 multi-threshold queue as
a LDQBD. In this section, following the analysis in [3] we obtain the steady-
state probabilities of the Markov Chain using Matrix Analytic methods. The
special structure of our generator allows us to obtain an efficient algorithm for
the R-matrices.

We assume the queueing system is stable, i.e., the mean service time is less
than the mean interarrival time, see [15], in stages without upper threshold:

−μjM
−1
j ewj < −λjΛ

−1
j evj , for j such that Uj = ∞.

The equilibrium distribution π = [π0,π1,π2, . . .] is then given, see Bright and
Taylor [3], by

πn = π0

n−1∏
i=0

R(i),

where R(i) is the minimal non-negative solution to

F (i) +R(i)L(i+1) +R(i)R(i+1)B(i+2) = 0, (6)

with 0 the zero matrix, see [3]. The element [R(i)](r,t) describes the mean sojourn
time in state (i + 1, t) per unit sojourn time in the state (i, r) before returning
to level i, given that the process started in state (i, r) see p. 499 in [3]. The
R(i)-matrices can be obtained using the algorithm for LDQBD’s by Bright and
Taylor [3]. For later convenience, by analogy of F (i)

(j,k)
, L(i)

(j,k)
and B(i)

(j,k)
, we define

the submatrix R(i)

(j,k)
of R(i) in which the element [R(i)

(j,k)
](r,t) describes the mean

sojourn time in state (i + 1, t) and stage k per unit sojourn time in state (i, r)
and stage j before returning returning to level i, given that the process started
in state (i, r) and stage j.

We obtain π0 by solving the boundary condition:

π0L
(0) + π1B

(1) = π0

(
L(0) +R(0)B(1)

)
= 0,

and the normalising equation:

1 =
∞∑

n=0

πne = π0

(
I +

∞∑
n=1

n−1∏
i=0

R(i)

)
e.

Above level Umax only stages without upper threshold are active and we may
define F = F (i), L = L(i) and B = B(i), i ≥ Umax, i.e., the LDQBD is level
independent from level Umax upwards. We have R(i) = R, i ≥ Umax, where R
is the minimal nonnegative solution of

F +RL+R2B = 0. (7)

The LDQBD is level independent from level Umax. Therefore, the matrices F ,
L, B and R are diagonal block matrices. As a consequence, (7) reduces to the
matrix equation for the submatrices R(s,s) of R

F (s,s) +R(s,s)L(s,s) +R2
(s,s)B(s,s) = 0, for s such that Us = ∞. (8)
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For i < Umax, the matrices R(i) are obtained from (6) by iteration

R(i) = −F (i)
[
L(i+1) +R(i+1)B(i+2)

]−1
, i = 0, 1, . . . , Umax − 1. (9)

Following the appendix in [3] the inverse exists and has only non-positive ele-
ments so that R(i), given by (9), is the unique non-negative solution to (6).

Notice that, unlike [3], we do not need to truncate the iteration for large i, as
the structure of our multi-threshold queue guarantees the existence of Umax <
∞, or for Umax = ∞ reduces to a single stage.

For a special class of multi-threshold queue the submatrices R(i)

(j,k)
of R(i) can

be obtained efficiently by considering the block elements of the l.h.s. of (6). This
result is presented in Theorem 1.

Theorem 1. For a multi-threshold queue consisting of S stages such that

(i) F (i)

(j,k) = 0, for k < j and i = 0, 1, . . ., and
(ii) if B(i)

(j,k)
�= 0, for k < j, then L(i−1)

(x,x)
= 0, for k < x ≤ j,

the submatrices R(i)

(j,k) of R
(i) are given by

R(i)

(j,j) = −F (i)

(j,j)

⎡⎣L(i+1)

(j,j) +

S∑
b=j

R(i+1)

(j,b) B
(i+2)

(b,j)

⎤⎦−1

, (10)

R(i)

(j,k)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if k < j,

−
⎡⎣F (i)

(j,k) +

k−1∑
a=j

S∑
b=a

R(i)

(j,a)R
(i+1)

(a,b) B
(i+2)

(b,k)

⎤⎦
·
[
L(i+1)

(k,k)
+

S∑
b=k

R(i+1)

(k,b)
B(i+2)

(b,k)

]−1

, if k > j.

(11)

and

R(i)

(x,y)
= 0 if B(i+1)

(j,k)
�= 0 for k < x ≤ y ≤ j. (12)

Proof. Assuming R(i+1) is an upper triangular block matrix one can verify that
the unique solution to the block elements of the l.h.s. of (6), i.e.

0 = F (i)

(j,k)
+

S∑
a=1

R(i)

(j,a)
L(i+1)

(a,k)
+

S∑
a=1

S∑
b=1

R(i)

(j,a)
R(i+1)

(a,b)
B(i+2)

(b,k)

= F (i)

(j,k)
+R(i)

(j,k)
L(i+1)

(k,k)
+

S∑
a=1

S∑
b=a

R(i)

(j,a)
R(i+1)

(a,b)
B(i+2)

(b,k)
.

is given by (10), (11) and (12). Since R is a diagonal block matrix this proves
by induction that R(i), i = 0, 1, . . ., is an upper triangular block matrix and that
its submatrices are uniquely determined by (10), (11) and (12).
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The conditions of Theorem 1 can be interpreted as (i) at upper thresholds the
stage of the system can only change to higher stages, and (ii) at lower thresholds
the stage of the system can change to higher stages and to at most one lower
stage. If at level i the stage of the system changes from s to t, with t < s, then
all stages, r = t+ 1, . . . , s− 1 must not be potential stage for level i− 1.

Remark 2 (Upper triangularity of R(i)). Note that under the conditions of The-
orem 1, R(i) must be an upper triangular block matrix for all i. This implies
that only stage 1 has no lower threshold.

To prove this, we extend the interpretation of R(i) to the product R(i)R(i+1).
Observe that the element

[
R(i)R(i+1)

]
(r,t)

describes the mean sojourn time in

state (i + 2, t) per unit sojourn time in state (i, r) before returning to level i,
given that the process started in state (i, r). If the element

[
R(i)R(i+1)

]
(r,t)

= 0

then state (i + 2, t) cannot be reached from state (i, r) without visiting level i.
The same interpretation holds for the submatrices of the product

R(n) =

n−1∏
i=0

R(i).

If the submatrix R(n)(j,k) of R(n) is 0, then stage k at level n can never be
reached from stage j at level 0. Under the conditions of Theorem 1, R(i) is
an upper triangular block matrix for i ≥ 0, therefore, R(n) is also an upper
triangular block matrix for n ≥ 0. Suppose now that stage j �= 1 has no lower
threshold, then stages k < j can never be reached from stage j sinceR(n)(j,k) = 0
for k < j and n ≥ 0. This implies that stages k < j can be removed from the
threshold policy. Since the Markov Chain is irreducible, j = 1. �

In Corollary 1, we provide an efficient algorithm to compute the stationary queue
length vectors πi, i = 0, 1, . . ., using the submatrices ofR(i) defined in Theorem 1
and equation (8).

Corollary 1. Define the vector pi =
[
p1
i p2

i · · · pS
i

]
for i = 0, 1, . . . such that

pj
i =

⎧⎪⎨⎪⎩
j∑

a=1

pa
i−1R

(i−1)

(a,j)
, i = 1, . . . , Umax,

pj
Umax

[R(j,j)]
i−Umax , i = Umax + 1, Umax + 2, . . . ,

(13)

with p1
0 the solution to

p1
0

[
L(0)

(1,1) +

S∑
a=1

R(0)

(i,a)B
(1)

(a,i)

]
= 0, (14)

such that

p1
0e = 1, (15)



The PH/PH/1 Multi-threshold Queue 103

and pj
0 = 0 for j = 2, . . . , S. Under the conditions of Theoren 1, the stationary

probability vector, πi =
[
π1

i π2
i · · · πS

i

]
, is given by

πj
i =

pj
i∑S

k=1 βk

, (16)

with

βk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Uk∑
i=Lk

pk
i e, if Uk < ∞,

Umax−1∑
i=Lk

pk
i e+ pk

Umax
[I −R(k,k)]

−1
e, if Uk = ∞,

where e is a vector of ones and I the identity matrix of appropriate size.

Proof. From (13) is follows directly that

pi = pi−1R
(i−1),

and from (16)
πi = πi−1R

(i−1).

At level 0, only stage 1 is active (see Remark 1), it then follows from (14) that

p0

[
L(0) +R(0)B(1)

]
= 0,

and that
π0

[
L(0) +R(0)B(1)

]
= 0.

Stability of the multi-threshold queue guarantees that

S∑
j=1

∞∑
i=0

pj
ie =

∑
{j : Uj<∞}

Uj∑
i=Lj

pj
ie+

∑
{j : Uj=∞}

⎧⎨⎩
Umax−1∑
i=Lj

pj
ie+

∞∑
i=Umax

pj
ie

⎫⎬⎭
=

∑
{j : Uj<∞}

βj +
∑

{j : Uj=∞}

⎧⎨⎩
Umax−1∑
i=Lj

pj
ie+ pj

Umax

∞∑
i=0

[R(j,j)]
i
e

⎫⎬⎭
=

∑
{j : Uj<∞}

βj +
∑

{j : Uj=∞}

⎧⎨⎩
Umax−1∑
i=Lj

pj
ie+ pj

Umax
[I −R(j,j)]

−1
e

⎫⎬⎭
=

S∑
j=1

βj < ∞,

and that π is the stationary queue length distribution.

Remark 3 (Permutations of stages). Consider a multi-threshold queue with S
stages. If there exists a permutation of the S stages such that the conditions of
Theorem 1 hold, its stationary queue length vector can efficiently be obtained
using this permutation and the results from Theorem 1 and Corollary 1.
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4 Examples

In this section expressions for R(i)

(j,k)
and the stationary queue length distribution

πj
i are obtained for three multi-threshold queueing systems. These expressions

follow using Theorem 1 and Corollary 1 and are obtained by straightforward but
tedious derivations. The three multi-threshold queueing systems we will consider
are the multi-threshold queue from Figure 1, the staircase multi-threshold with
exponential service and arrival rates from [13] and the staircase multi-threshold
queue in a general setting from [5].

4.1 Extended Traffic Model

Consider the multi-threshold queue in Figure 1. Observe that the threshold pol-
icy in Figure 1 satisfies both conditions of Theorem 1. In this multi-threshold
queueing system, inspired by the traffic model in [2], we assume that

0 = L1 < L3 < L2 = L4 < U1 = U3 < U2 < U4 = ∞
and we define ρi =

λi

μi
. Note that by assuming exponential arrival and service

rates, each submatrix R(i)

(j,k)
reduces to a single element. Therefore, the solution

to equation (8) is ρ4 and each submatrix R(i)

(j,k)
is given by:

ρ1, i = 0, . . . , L3 − 2,

R(i)

(1,1)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ρ1

(
1−ρ

U1−i
1

)(
ρ
U2−U1
2 −ρ

U2−L2+2
2

)
+
(
1−ρ

U1−L2+2
1

)(
1−ρ

U2−U1
2

)
(
1−ρ

U1+1−i
1

)(
ρ
U2−U1
2 −ρ

U2−L2+2
2

)
+
(
1−ρ

U1−L2+2
1

)(
1−ρ

U2−U1
2

) ,

i = L3 − 1, . . . , L2 − 2,

ρ1−ρ
U1+1−i
1

1−ρ
U1+1−i
1

, i = L2 − 1, . . . , U1 − 1,

R(i)

(1,2) =
λ1

μ2

(
ρ
U1−i
1 −ρ

U1−i+1
1

)(
1−ρ

U2−U1
2

)
(
1−ρ

U1+1−i
1

)(
1−ρ

U2+1−i
2

) , i = L2 − 1, . . . , U1,

R(i)

(1,3)
= λ1

μ3

(
ρ
U1−i
1 −ρ

U1+1−i
1

)(
ρ
U2−U1
2 −ρ

U2−L2+2
2

)
(
1−ρ

U1+1−i
1

)(
ρ
U2−U1
2 −ρ

U2−L2+2
2

)
+
(
1−ρ

U1−L2+2
1

)(
1−ρ

U2−U1
2

) ,

i = L3 − 1, . . . , L4 − 2,

R(i)

(1,4) =
λ1

μ4

(
ρ
U1−i
1 −ρ

U1+1−i
1

)(
ρ
U2−U1
2 −ρ

U2+1−i
2

)
(
1−ρ

U1+1−i
1

)(
1−ρ

U2+1−i
2

) , i = L4 − 1, . . . , U1,

R(i)

(2,2)
=

ρ2−ρ
U2+1−i
2

1−ρ
U2+1−i
2

, i = L2, . . . , U2 − 1,

R(i)

(2,3)
= 0, ∀i,

R(i)

(2,4) =
λ2

μ4

ρ
U2−i
2 −ρ

U2+1−i
2

1−ρ
U2+1−i
2

, i = L2, . . . , U2,

ρ3, i = L3, . . . , L4 − 2,

R(i)

(3,3)
=

{
ρ3−ρ

U3+1−i
3

1−ρ
U3+1−i
3

, i = L4 − 1, . . . , U3 − 1,
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R(i)

(3,4)
= λ3

μ4

ρ
U3−i
3 −ρ

U3+1−i
3

1−ρ
U3+1−i
3

, i = L4 − 1, . . . , U3,

R(i)

(4,4)
= ρ4, i = L4, L4 + 1, . . . .

The stationary queue length probability of i customers in stage j, πj
i , follows

from Corollary 1 by normalising pj
i . For i = 0:

1, j = 1,
pj
0 =

{
0, j �= 1,

and for i > 0:

p1
i = p1

i−1R
(i−1)

(1,1)
, 0 < i ≤ U1,

p1
i−1R

(i−1)

(1,2)
, i = L2,

p2
i =

⎧⎨⎩ p1
i−1R

(i−1)

(1,2) + p2
i−1R

(i−1)

(2,2) , L2 < i ≤ U1 + 1,

p2
i−1R

(i−1)

(2,2)
, U1 + 1 < i ≤ U2,

p1
i−1R

(i−1)

(1,3)
, i = L3,

p3
i =

⎧⎨⎩ p1
i−1R

(i−1)

(1,3)
+ p3

i−1R
(i−1)

(3,3)
, L3 < i ≤ L4 − 1,

p3
i−1R

(i−1)

(3,3) , L4 − 1 < i ≤ U3,

p1
i−1R

(i−1)

(1,4)
+ p3

i−1R
(i−1)

(3,4)
, i = L4,

p1
i−1R

(i−1)

(1,4)
+ p2

i−1R
(i−1)

(2,4)
+ p3

i−1R
(i−1)

(3,4)
+ p4

i−1R
(i−1)

(4,4)
,

p4
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
L4 < i ≤ U1 + 1,

p2
i−1R

(i−1)

(2,4) + p4
i−1R

(i−1)

(4,4) , U1 + 1 < i ≤ U2 + 1,

p4
U2+1

[
R(U2+1)

(4,4)

]i−U2−1
, U2 + 1 < i.

4.2 Le Ny and Tuffin [13]

Consider a multi-threshold queue of S stages as analysed by Le Ny and Tuffin in
[13]. In each stage i arrivals are Poisson distributed with rate λi, service times
are exponentially distributed with rate μi and we define ρi = λi

μi
. An arrival

changes the stage from j to j + 1 at Uj and a departure changes the stage from
j to j − 1 at Lj . We assume

0 = L1 < L2 < · · · < LS ≤ U1 < · · · < US−1 < US = ∞.

The state diagram created by this threshold policy forms a staircase as schemat-
ically shown in Figure 2.

As in Section 4.1 each submatrix R(i)

(j,k)
consists of a single element and equa-

tion (7), and in particular (8), gives

R(Umax)

(S,S) = ρS .

Both conditions of Theorem 1 are satisfied by the threshold policy and R(i)

(j,k) is
given by:
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Fig. 2. Schematic representation of the state diagram of a staircase threshold policy
with 4 stages.

ρj , Lj ≤ i ≤ Lj+1 − 2,

ρj−ρ
Uj+1−i

j

1−ρ
Uj+1−i

j

, Lj+1 − 1 ≤ i ≤ Uj,
R(i)

(j,j)
=

⎧⎨⎩
R(i)

(S,S) = ρS , LS ≤ i,

λj

μk

ρ
Uj−i

j −ρ
Uj+1−i

j

1−ρ
Uj+1−i

j

·∏k−1
a=j+1

ρ
Ua−Ua−1
a −ρUa+1−i

a

1−ρUa+1−i
a

, Lk − 1 ≤ i ≤ Lk+1 − 2,

R(i)

(j,k)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λj

μk

(
ρ
Uj−i

j −ρ
Uj+1−i

j

)(
1−ρ

Uk−Uk−1
k

)
(
1−ρ

Uj+1−i

j

)(
1−ρ

Uk+1−i

k

)

·∏k−1
a=j+1

ρ
Ua−Ua−1
a −ρUa+1−i

1−ρUa+1−i
a

, Lk+1 − 1 ≤ i ≤ Uj,

R(i)

(j,S) =
λj

μS

ρ
Uj−i

j −ρ
Uj+1−i

j

1−ρ
Uj+1−i

j

∏S−1
a=j+1

ρ
Ua−Ua−1
a −ρUa+1−i

a

1−ρUa+1−i
a

, LS − 1 ≤ i.

The stationary queue length distribution πj
i follows from Corollary 1 by normal-

ising pj
i . For i = 0:

pj
0 =

{
1,
0,

j = 1,
j �= 1,

for i > 0 and j = 1 or j = 2:

p1
i = p1

i−1R
(i−1)

(1,1)
, 0 < i ≤ U1, (17)

p2
i =

⎧⎨⎩
p1
i−1R

(i−1)

(1,2)
,

p1
i−1R

(i−1)

(1,2) + p2
i−1R

(i−1)

(2,2) ,
p2
i−1R

(i−1)

(2,2) ,

i = L2,
L2 < i ≤ U + 1,
U + 1 < i ≤ U2,

(18)

for i > 0 and j = 3, . . . , S − 1:

pj
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑j−1

a=1 p
a
i−1R

(i−1)

(a,j)
,∑j

a=1 p
a
i−1R

(i−1)

(a,j)
,∑j

a=k p
a
i−1R

(i−1)

(a,j) ,

pj
i−1R

(i−1)

(j,j) ,

i = Lj ,
Lj < i ≤ U1 + 1,
Uk−1 + 1 < i ≤ Uk + 1, k = 2, . . . , j − 1,
Uj−1 + 1 < i ≤ Uj ,

(19)
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and for i > 0 and j = S

pS
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑S−1

a=1 pa
i−1R

(i−1)

(a,S) ,∑S
a=1 p

a
i−1R

(i−1)

(a,S)
,∑S

a=k p
a
i−1R

(i−1)

(a,S)
,

pS
i−1

[
R(i−1)

(S,S)

]i−Umax
,

i = LS ,
LS < i ≤ U1 + 1,
Uk−1 + 1 < i ≤ Uk + 1, k = 2, . . . , S − 1,
Umax < i.

(20)

4.3 Choi et al [5]

Consider the multi-threshold queue of S stages as analysed by Choi et al [5].
This model generalises the staircase model of [13] to PH(Λs, λs) arrivals and
PH(Ms, μs) services in stage s. The forward, local and backward transition ma-
trices are given by (2), (3) and (4) respectively. In this case, the submatrices
R(i)

(j,k) are not single elements and the matrix equation (8) must be solved nu-
merically. The submatrices R(i)

(j,k)
, i = 0, . . . , Umax − 1, are iteratively given,

following Theorem 1, by

R(i)

(j,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− F (i)

(j,j)

[
L(i+1)

(j,j)
+R(i+1)

(j,j)
B(i+2)

(j,j)

]−1
, Lj ≤ i < Uj − 1, i �= Lj+1 − 2,

− F (i)

(j,j)

[
L(i+1)

(j,j) +
∑j+1

b=j
R(i+1)

(j,b) B
(i+2)

(b,j)

]−1
,

i = Lj+1 − 2,

− F (i)

(j,j)

[
L(i+1)

(j,j)

]−1
, i = Uj − 1,

0, otherwise,

− [∑
k−1

a=j
R(i)

(j,a)R
(i+1)

(a,k)B
(i+2)

(k,k)

]
· [L(i+1)

(k,k) +R(i+1)

(k,k)B
(i+2)

(k,k)

]−1
, Lk − 1 ≤ i < Uj, i �= Lk+1 − 2,

− [∑k+1

b=k

∑k−1

a=j
R(i)

(j,a)R
(i+1)

(a,b) B
(i+2)

(b,k)

]
R(i)

(j,k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
· [L(i+1)

(k,k)
+
∑k+1

b=k
R(i+1)

(k,b)
B(i+2)

(b,k)

]−1
, i = Lk+1 − 2,

− [F (i)

(j,k)�{k=j+1} +
∑k−1

a=j+1
R(i)

(j,a)R
(i+1)

(a,k)B
(i+2)

(k,k)

]
· [L(i+1)

(k,k) +R(i+1)

(k,k)B
(i+2)

(k,k)

]−1
, i = Uj,

0, otherwise,

for j = 1, . . . , S − 1, and

R(S,S), LS ≤ i,
R(i)

(S,S) =

{
0, otherwise.

The stationary queue length distribution πj
i follows from Corollary 1 by normal-

ising pj
i . The vectors pj

i , i > 0, are given by equations (17), (18), (19) and (20).

Finally, p1
0 is obtained from (14) and (15) and pj

0 = 0, j > 1.
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5 Summary and Conclusion

We introduced the PH/PH/1 multi-threshold queue where the arrival process
and service process are controlled by a threshold policy. The threshold policy
determines, based on the queue length, the stage of system, and the stage de-
termines the arrival and service processes. We modelled this queue as a Level
Dependent Quasi-Birth-and-Death process and obtained the stationary queue
length probabilities using Matrix Analytic methods.

A special class of multi-threshold queues is presented and explicit description
of the R-matrices has been obtained in terms of its submatrices. This decom-
position theorem allows an efficient computation of each R-submatrix as well as
the stationary queue length probability vectors.

Future work consists of a network of PH/PH/1 threshold queues in which the
threshold policy can control the service rates of previous queue, see Baer, Al
Hanbali, Boucherie and van Ommeren [1].
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Abstract. The transient queueing delay distribution in theGI/M/1/K-
type model with the N-policy is investigated. After finishing each busy
period the service is being initialized simultaneously with the Nth packet
arrival occurrence. Using the approach based on the idea of embedded
Markov chain, the formula of total probability, renewal theory and linear
algebra, the compact-form representation for the Laplace transform of
the tail of delay distribution is obtained. The results can be useful in
modeling the operation of wireless sensor networks (WSNs) with energy
saving mechanism based on “queued” waking up of nodes. A network-
motivated numerical example is attached.

Keywords: Finite-buffer queue, N-policy, Queueing delay, Transient
state, Wireless sensor network (WSN).

1 Introduction

Wireless sensor networks (WSNs) are commonly used nowadays in controlling
of different real-life phenomena and in the risk alerting. The WSN technology is
apllied in observation of air and water pollution, monitoring of patients’ health
condition in hospitals, road traffic analysis, fire prevention systems, military op-
erations and many others. In typical WSN nodes (sensors) are equipped with a
non-rechargable battery so the implementation of efficient energy saving mecha-
nism is one of the most essential challenges. Since the information is transmitted,
according to a proper routing algorithm, from node to node to the gateway sen-
sor node which is connected with the Internet, then the problem of power saving
is extremely important for sensors which are situated closer to the gateway, and
for which the probability of their using in the processing is greater than for
nodes situated more distant from the gateway. Moreover, in WSN nodes are
often located in hardly accessible places and hence the frequent replacement of
“discharged” sensors with new ones can be difficult. In relation to the above-
mentioned applications of wireless sensor networks, one of the most important
stochastic characteristics helpful in performance evaluation of each WSN is a

B. Sericola, M. Telek, and G. Horváth (Eds.): ASMTA 2014, LNCS 8499, pp. 110–124, 2014.
c© Springer International Publishing Switzerland 2014
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node queueing delay v(t), that at fixed epoch t gives the time needed for ini-
tialization of the processing of a packet joining the queue exactly at time t.
Evidently, the total queueing delay of the packet depends on the number of
nodes located on the route between the source of the signal and the gateway
sensor node, and on the power saving mechanism applied in successive nodes.

In the paper we study the transient behavior of queueing delay distribution
in the GI/M/1/K-type model with power saving mechanism based on the N -
policy. After the busy period of the node, during which the information is being
processed continuously, the radio transmitter/receiver is being turned off and be-
comes active simultaneously with the Nth arrival occurrence only. So, the nodes
are “queued” waked up after each busy period. This model of server operation
allows to achieve optimal energy management level in conjunction with adequate
quality of the network. In the case of data with high validity (e.g. monitoring the
fire risk), you can choose a lower threshold value, while for the less important
data (e.g. monitoring the road traffic or parking places), the threshold can be
set higher. As one can note, most results obtained for stochastic characteristics
of different-type finite-buffer queues relate to the stationary state of the sys-
tem. However, time-dependent analysis is often desired or even necessary, e.g.
during the observation of the system just after its opening after a failure, or
together with application of the new control mechanism. Moreover, in practice,
the stochastic behavior of the system may be destabilized by the phenomena
like fade-out or interference which occur in wireless communication. Using the
approach based on the idea of embedded Markov chain, the continuous version of
the formula of total probability, renewal theory and linear algebra, we find the
closed-form representation for the LT (=Laplace transform) of the tail of d.f.
(=distribution function) of queueing delay in the considered system. The for-
mula can be efficiently numerically treated and we attach a network-motivated
numerical example.

An infinite-buffer M/G/1-type queueing system with the N -policy is consid-
ered in [5] as a model of WSN’s node with battery saving. Some similar power
saving models based on different-type server vacations can be found e.g. in [3],
[4] and [14], however the obtained analytical results relate only to performance
measures of the stationary state of the system, e.g. mean queueing delay or
mean queue size. In [7] and [9] time-dependent analysis of the queue-size dis-
tribution in the MX/G/1-type system with batch arrivals, infinite buffer and
the N -policy can be found. Some new results for transient queueing delay dis-
tribution are obtained e.g. in [6] and [10]. In particular, in [10] (see also [8]) the
representation for the double LT of the d.f. of time-dependent queueing delay in
the M/G/1/K-type model with single server vacation is derived.

The remaining part of the paper is organized as follows. In the next Section 2
we give the precise mathematical description of the considered queueing model. In
Section 3 we find the formulae for LTs of d.fs of queueing delay in the buffer loading
period and the period duration. Section 4 is devoted to the analysis of queueing
delay distribution in the busy cycle. The main result, utilizing the representations
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obtained in Sections 3 and 4, is presented in Section 5. In Section 6 one can find
a numerical example and the last Section 7 contains short conclusion.

2 Mathematical Description of the Model

Let us consider the finite-buffer GI/M/1/K queue in which interarrival times
are independent and generally distributed random variables with a d.f. F (·), and
the incoming packets are being served individually with an exponential service
time with mean μ−1, according to the FIFO service discipline. The total number
of packets present in the system is bounded by K i.e. there is a finite buffer with
capacity K and one place for service. It is assumed that the system starts the
operation together with the first packet arrival and the server initializes the
processing simultaneously with the arrival epoch of the Nth packet (the N -
policy), where 1 ≤ N ≤ K. When the server becomes idle it is being turned
off and begins the service again if it finds N packets accumulated in the buffer,
and so on. In consequence, the evolution of the system can be observed on
successive buffer loading periods L1, L2, ... followed by untypically defined busy
cycles B1, B2, ..., consisting of a busy period during which the queue empties
(beginning with the initial level N) and the idle time which ends at the arrival
epoch of the first packet after the busy period. Since successive arrival epochs
ar Markov moments in the GI/M/1/K-type queue (see e.g. [2]), then (Lk) and
(Bk), k = 1, , 2, ..., are sequences of totally independent random variables having
the same d.fs “inside” each sequence separately. In the article buffer loading
periods and busy cycles will often be identified with their durations.

In the next sections we obtain the representations for the LTs of queueing de-
lay distributions during a single buffer loading period and a busy cycle. Besides,
we find the formulae for LTs of busy cycle and buffer loading time durations.
Next, by using the renewal-theory approach, basing on the fact that successive
Lk’s and Bk’s are independent and identically distributed separately, we obtain
the formula in the general case.

3 Analysis of a Buffer Loading Period

Let us analyze, firstly, the queueing delay distribution at arbitrary time epoch
t during the first buffer loading period L1, which begins at t = 0 together with
the first arrival occurrence. Let F j∗(·) denote the j-fold convolution of the d.f.
F (·) with itself and let Ek,μ(·) be the k-Erlang with parameter μ d.f. i.e.

Ek,μ(x) = 1− e−μx
k−1∑
i=0

(μx)i

i!
. (1)

Moreover, let F (·) and Ek,μ(·) be tails of d.fs F (·) and Ek,μ(·), respectively.
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Let us note that the following representation is true:

P{(v(t) > x
) ∩ (t ∈ L1

)} =
N−2∑
i=0

∫ t

y=0

dF i∗(y)
∫ ∞

u=t−y

dF (u)×

×
∫ ∞

v=x−y−u+t

Ei+1,μ(x − y − u− v + t)dF (N−i−1)∗(v). (2)

On the right side of the formula above i indicates the number of packets entering
before t (excluding the packet entering at t = 0) and v denotes the last inter-
arrival time during the buffer loading period (the interarrival time between the
(N − 1)th and the Nth packet). The “virtual” packet joining the system exactly
at time t will wait more than x, if and only if the accumulated service time of
N packets plus the time distant from t to the completion epoch of the buffer
loading period will be greater than x.

Introducing now the following notation:

ṽL(s, x) =

∫ ∞

0

e−stP{(v(t) > x
) ∩ (t ∈ L1

)}dt, Re(s) > 0, (3)

we obtain from (2)

ṽL(s, x) =

N−2∑
i=0

∫ ∞

t=0

e−stdt

∫ t

y=0

dF i∗(y)
∫ ∞

u=t−y

dF (u) (4)

×
∫ ∞

v=x−y−u+t

Ei+1,μ(x− y − u− v + t)dF (N−i−1)∗(v)

=

N−2∑
i=0

f i+1(s)

∫ ∞

z=0

e−szdz

∫ x+z

v=0

Ei+1,μ(x− v + z)dF (N−i−1)∗(v), (5)

where f(s) =
∫∞
0

e−stdF (t), Re(s) > 0.
Let us note that, since each buffer loading period Lk, k ≥ 1, begins with

one packet present, then its duration equals the waiting time for the (N − 1)th
arrival. Thus, we have

d̃L(s) = d̃Lk (s) =

∫ ∞

0

e−stdP{Lk < t}dt

=

∫ ∞

0

e−stdF (N−1)∗(t) = fN−1(s). (6)

4 Queueing Delay in a Busy Cycle

Suppose temporarily, for the needs of this section, that the system may start a
busy cycle not necessarily with N packets accumulated in the buffer queue but
with arbitrary number of n packets, where 1 ≤ n ≤ K. Besides, let us identify
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the start epoch of the first busy cycle B1 with t = 0, and introduce the following
notation:

V B
n (t, x) = P{(v(t) > x

) ∩ (t ∈ B1

)|X(0) = n}, 1 ≤ n ≤ K, x > 0, t > 0. (7)

So, V B
n (t, x) is the tail distribution function of the queueing delay on the first

busy cycle B1, conditioned by the number of packets present in the buffer at the
initial moment of B1.

Since successive arrival epochs are Markov moments then, applying the for-
mula of total probability with respect to the first arrival instant after t = 0, we
get the following system of integral equations:

V B
n (t, x) =

n−1∑
k=0

∫ t

0

(μy)k

k!
e−μyV B

n−k+1(t− y, x)dF (y)

+

∞∑
k=n

∫ ∞

0

(μt)k

k!
e−μyV B

1 (t− y, x)dF (y) + F (t)e−μ(t+x)

[
μ(t+ x)

]n
n!

, (8)

where 1 ≤ n ≤ K − 1, and

V B
K (t, x) =

∫ t

0

e−μyV B
K (t− y, x)dF (y)

+

K−1∑
k=1

∫ t

0

(μy)k

k!
e−μyV B

K−k+1(t− y, x)dF (y)

+

∞∑
k=K

∫ ∞

0

(μt)k

k!
e−μyV B

1 (t− y, x)dF (y) + F (t)e−μ(t+x)

[
μ(t+ x)

]K
K!

. (9)

Indeed, te first summand on the right side of (8) relates to the situation in
which the first arrival (after t = 0) occurs at time y < t. If the buffer does not
empty before this moment (there are 0 ≤ k ≤ n− 1 departures before y), then,
including the first arrival, the system contains exactly n− k + 1 packets at the
renewal (Markov) moment y. In the second summand the buffer empties before
the first arrival and the last summand describes the situation in which there are
no arrivals before t. On the right side of (9) the first sum is taken from k = 1
since if before the first arrival occurring at time y < t no services are finished,
the packet entering at time y is lost (compare the first summand on the right
side of (9)).

Denote

ṽBn (s, x) =

∫ ∞

0

e−stV B
n (t, x)dt, n ≥ 1, (10)

an(s) =

∫ ∞

0

e−(s+μ)t (μt)
n

n!
dF (t), n ≥ 0, (11)

bn,x(s) =

∫ ∞

0

e−(s+μ)t−μxF (t)

[
μ(t+ x)

]n
n!

dt, n ≥ 1, (12)
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where Re(s) > 0. Introducing (10)–(12) into the system (8)–(9), we get

ṽBn (s, x) =

n−2∑
k=−1

ak+1(s)ṽ
B
n−k(s, x)− ṽBn (s, x) = φn(s, x), 1 ≤ n ≤ K − 1, (13)

and

[
1− f(s+ μ)

]
ṽBK(s, x) =

K−1∑
k=1

ak(s)ṽ
B
K−k+1(s, x) + ṽB1 (s, x)

∞∑
k=K

ak(s), (14)

where

φn(s, x) = −ṽB1 (s, x)

∞∑
k=n

ak(s)− bn(s, x), n ≥ 1. (15)

In [11] (see also [12]) the infinite-sized system of type (13) is considered, where
n ≥ 2 and is not bounded. It is proved there that each solution of (13) can be
written as

ṽBn (s, x) = C1(s, x)Rn−1(s) +

n∑
k=2

Rn−k(s)φk(s, x), n ≥ 2, (16)

where C1(s, x) does not depend on n, and successive terms of the sequence(
Rn(s)

)
can be found recursively in the following way:

R0(s) = 0, R1(s) = a−1
0 (s),

Rn+1(s) = R1(s)
(
Rn(s)−

n∑
i=0

ai+1(s)Rn−i(s)
)
, (17)

where n ≥ 1.
Let us note that the representation for ṽB1 (s, x) must be found in another

way, since the formula (16) is valid only for n ≥ 2. Since in the system (13)
the number of equations is finite, we can efficiently use the identity (14) as
a boundary condition and find C1(s, x) (and next ṽB1 (s, x)) explicitly. Indeed,
substituting n = 2 into (16), we get

ṽB2 (s, x) = C1(s, x)a
−1
0 (s). (18)

Next, taking n = 2 in (13) and referring to (15), we obtain

a0(s)ṽ
B
2 (s)− ṽB1 (s, x) = −ṽB1 (s, x)

∞∑
k=1

ak(s)− b1(s, x), (19)

and hence, since
∑∞

k=0 ak(s) = f(s) and a0(s) = f(s+μ), substituting (18) into
(19), we get

ṽB1 (s, x) =
(
1 + f(s+ μ)− f(s)

)−1(
C1(s, x) + b1(s, x)

)
. (20)
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At this stage we have all tools necessary for finding C1(s, x) explicitly. Indeed,
substituting (16) and (20) into (14) we obtain

[
1− f(s+ μ)

]{
C1(s, x)RK−1(s) +

K∑
k=2

RK−k(s)
[
−(1 + f(s+ μ)− f(s)

)−1

× (
C1(s, x) + b1(s, x)

) ∞∑
i=k

ai(s)− bk(s, x)
]}

=

K−1∑
k=1

ak(s)
{
C1(s, x)RK−k(s) +

K−k+1∑
i=2

RK−k+1−i(s)

×
[
−(1 + f(s+ μ)− f(s)

)−1(
C1(s, x) + b1(s, x)

) ∞∑
j=i

aj(s)− bi(s, x)
]}

+
(
1 + f(s+ μ)− f(s)

)−1(
C1(s, x) + b1(s, x)

) ∞∑
k=K

ak(s). (21)

From (21) we eliminate C1(s, x) as follows:

C1(s, x) =
Δ1(s, x) −Δ2(s, x)

Π1(s, x) −Π2(s, x)
, (22)

where

Δ1(s, x) =
(
1− f(s+ μ)

)
×

K∑
k=2

RK−k(s)
[(
1 + f(s+ μ)− f(s)

)−1
b1(s, x)

∞∑
i=k

ai(s) + bk(s, x)
]

+
(
1 + f(s+ μ)− f(s)

)−1
b1(s, x)

∞∑
k=K

ak(s), (23)

Δ2(s, x) =

K−1∑
k=1

ak(s)

K−k+1∑
i=2

RK−k+1−i(s)
[(
1 + f(s+ μ)− f(s)

)−1
b1(s, x)

×
∞∑
j=i

aj(s) + bi(s, x)
]
, (24)

Π1(s, x) =
(
1− f(s+ μ)

)[
RK−1(s)−

(
1 + f(s+ μ)− f(s)

)−1

×
K∑

k=2

RK−k(s)
∞∑
i=k

ai(s)
]
− (

1 + f(s+ μ)− f(s)
)−1

∞∑
k=K

ak(s) (25)
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and

Π2(s, x) =

K−1∑
k=1

ak(s)
[
RK−k(s)−

(
1 + f(s+ μ)− f(s)

)−1

×
K−k+1∑

i=2

RK−k+1−i(s)

∞∑
j=i

aj(s)
]
. (26)

Thus, the following theorem can be written:

Theorem 1. The representations for the LT ṽBn (s, x) of the conditional queue-
ing delay tail distribution on the busy cycle are following:

ṽB1 (s, x) =
(
1 + f(s+ μ)− f(s)

)−1
(Δ1(s, x) −Δ2(s, x)

Π1(s, x) −Π2(s, x)
+ b1(s, x)

)
(27)

and

ṽBn (s, x) =
Δ1(s, x)−Δ2(s, x)

Π1(s, x)−Π2(s, x)
Rn−1(s) +

n∑
k=2

Rn−k(s)φk(s, x) (28)

where Re(s) > 0, 2 ≤ n ≤ K, and the formulae for ak(s), bk(s), φk(s, x), Rk(s),
Δ1(s, x), Δ2(s, x), Π1(s, x) and Π2(s, x) can be found in (11), (12), (15), (17),
(23), (24), (25) and (26), respectively.

Before we will prove the main theorem we need yet a representation for the LT
of the busy cycle Bk, k ≥ 1, duration, conditioned by the initial buffer state.
Introduce the following notation:

d̃Bn (s) = d̃Bk
n (s) =

∫ ∞

0

e−stdP{Bk < t |X(0) = n}dt, (29)

where Re(s) > 0 and 1 ≤ n ≤ K.
Applying the formula of total probability we obtain now (compare (8)–(9))

d̃Bn (s) =
n−1∑
k=0

d̃Bn−k+1(s)

∫ ∞

0

e−sx (μx)
k

k!
e−μxdF (x)

+

∞∑
k=n

∫ ∞

0

e−sx (μx)
k

k!
e−μxdF (x), 1 ≤ n ≤ K − 1 (30)

and

d̃BK(s) = d̃BK(s)

∫ ∞

0

e−sxe−μxdF (x)

+
K−1∑
k=1

d̃BK−k+1(s)

∫ ∞

0

e−sx (μx)
k

k!
e−μxdF (x) +

∞∑
k=K

∫ ∞

0

e−sx (μx)
k

k!
e−μxdF (x).

(31)
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Denoting

Ψn(s) = −
∞∑

k=n

ak(s), (32)

where ak(s) was defined in (11), we can rewrite (30)–(31) as

∞∑
k=−1

ak+1(s)d̃
B
n−k(s)− d̃Bn (s) = Ψn(s), (33)

where 1 ≤ n ≤ K − 1, and

d̃BK(s)
(
1− f(s+ μ)

)
=

K−1∑
k=1

ak(s)d̃
B
K−k+1(s) +

∞∑
k=K

ak(s). (34)

The representation for the solution of the system (33)–(34) has the following
form (see (16)):

d̃Bn (s) = C2(s)Rn−1(s) +

n∑
k=2

Rn−k(s)Ψk(s), 2 ≤ n ≤ K, (35)

where the formula for Rk(s) was given in (17). To find the representations for

C2(s) and d̃B1 (s), substitute n = 2 into (33) and (35). We get

a0(s)d̃
B
2 (s)− d̃B1 (s) = Ψ1(s) (36)

and

d̃B2 (s) = C2(s)a
−1
0 (s). (37)

Combining (36) and (37), since a0(s) = f(s+ μ), gives

d̃B1 (s) = C2(s) + f(s)− f(s+ μ). (38)

Substituting now the representation (35) into (34) we obtain

(
1− f(s+ μ)

)[
C2(s)RK−1(s)−

K∑
k=2

RK−k(s)

∞∑
i=k

ai(s)
]

=

K−1∑
k=1

ak(s)
[
C2(s)RK−k(s)−

K−k+1∑
i=2

RK−k+1−i(s)

∞∑
j=i

aj(s)
]
+

∞∑
k=K

ak(s)

(39)

and hence we find the formula of C2(s) in the form

C2(s) =
(
Λ1(s)− Λ2(s)

)(
Θ(s)

)−1
, (40)
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where

Λ1(s) =
(
1− f(s+ μ)

) K∑
k=2

RK−k(s)

∞∑
i=k

ai(s) +

∞∑
k=K

ak(s), (41)

Λ2(s) =

K−1∑
k=1

ak(s)

K−k+1∑
i=2

RK−k+1−i(s)

∞∑
j=i

aj(s) (42)

and

Θ(s) =
(
1− f(s+ μ)

)
RK−1(s)−

K−1∑
k=1

ak(s)RK−k(s). (43)

Collecting the formulae (32), (35), (38) and (40)–(43) we obtain the following

theorem that gives the compact-form representation for the LT d̃Bn (s) of the d.f.
of the conditioned busy cycle duration:

Theorem 2. For Re(s) > 0 the following formulae hold true:

d̃B1 (s) =
(
Λ1(s)− Λ2(s)

)(
Θ(s)

)−1
+ f(s)− f(s+ μ) (44)

and

d̃Bn (s) =
(
Λ1(s)− Λ2(s)

)(
Θ(s)

)−1
Rn−1(s)−

n∑
k=2

Rn−k(s)

∞∑
i=k

ai(s), (45)

where 2 ≤ n ≤ K, and the representations for ak(s), Rk(s), Λ1(s), Λ2(s) and
Θ(s) are found in (11), (17), (41), (42) and (43), respectively.

5 General Result

In this section we will use the renewal-theory approach and analytical results
obtained in Sections 3 and 4 to prove the following main theorem:

Theorem 3. The representation for the LT of the tail of the d.f. of queueing
delay v(t) in the GI/M/1/K-type system with N -policy (“queued” wake up of
the server) is following:∫ ∞

0

e−stP{v(t) > x}dt = ṽL(s, x) + d̃L(s)ṽBN (s, x)

1− d̃BN (s)d̃L(s)
, (46)

where the formulae for ṽL(s, x), d̃L(s), ṽBN (s, x) and d̃BN (s) were obtained in (4),
(6), (28) and (45), respectively.
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Proof. It is easy to note that

P{v(t) > x} =
∞∑
k=1

(
P{(v(t) > x

) ∩ (t ∈ Lk

)}
+P{(v(t) > x

) ∩ (t ∈ Bk

)}). (47)

Now, since all terms of sequences (Lk) and (Bk), k ≥ 1, are independent and
identically distributed random variables “inside” each sequence separately, then
we obtain

P{(v(t) > x
) ∩ (t ∈ Lk

)}
=

∫ t

0

P{(v(t− y) > x
) ∩ (t− y ∈ L1

)}d(DL ∗DB
N

)(k−1)∗
(y) (48)

and, similarly,

P{(v(t) > x
) ∩ (t ∈ Bk

)}
=

∫ t

0

P{(v(t− y) > x
) ∩ (t− y ∈ B1

)}d[(DL
)k∗ ∗ (DB

N

)(k−1)∗]
(y), (49)

where DL(·) and DB(·) denote d.fs of buffer loading period and busy cycle
duration, respectively. Introducing Laplace transforms into equations (48)–(49),
by virtue of (47), we get the conclusion (46).

6 Numerical Example

In this section we present numerical examples in which the behavior of time-
dependent queueing delay distribution is shown for two examples of packet traf-
fic. In numerical analysis we use for the main representation (46) from Theorem
3 the algorithm of numerical Laplace transform inversion described in details in
[1]. The algorithm is based on the Bromwich integral which is used for finding
the value of the function q(·) at fixed t > 0 from its transform q̂(·), namely

q(t) =
1

2πi

∫ ε+i∞

ε−i∞
estq̂(s)ds, (50)

where ε ∈ R is located on the right to all singularities of q̂(·). From (50) we
obtain the following approximation qΔ(t) of q(t) :

qΔ(t) =
Δeεt

2π
q̂(ε) +

Δeεt

π

∞∑
k=1

Re
[
eikΔtq̂(ε + ikΔt)

]
. (51)

Substituting Δ = π
Lt and ε = A

2Lt , we get the series representation

qΔ(t) = qA,L(t) =
∞∑
k=0

(−1)kuk(t), (52)
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where

uk(t) =
eA/2L

2Lt
ωk(t), k ≥ 0, (53)

ω0(t) = q̂
( A

2Lt

)
+ 2

L∑
j=1

Re
[
q̂
( A

2Lt
+

ijπ

Lt

)
eijπ/L

]
(54)

and

ωk(t) = 2

L∑
j=1

Re
[
q̂
( A

2Lt
+

ijπ

Lt
+

ikπ

t

)
eijπ/L

]
, k ≥ 1. (55)

Applying the following Euler formula:

∞∑
k=0

(−1)kck ≈
m∑

k=0

(
m

k

)
1

2m

n+k∑
j=0

(−1)jcj , (56)

where m is usually of order of dozen and n - of order of several dozen (see [1]),
we derive the final formula in the form

q(t) ≈
m∑

k=0

(
m

k

)
1

2m

n+k∑
j=0

(−1)juj(t), (57)

where typical values of parameters are following (see [1]): m = 38, n = 11, A = 19
and L = 1. As it was pointed out in [1], to evaluate the estimation error in (57), it
is recommended to execute the calculation twice, changing one of the parameters
m, n, A or L by one. The difference between the obtained results, e.g. for n = 11
and n = 12, gives a good evaluation of the error.

Let us take into consideration the stream of packets of average sizes 100 B
arriving at the WSN node with the “queued” wake up energy saving mechanism,
and are being transmitted with speed 300 kb/s. Fix K = 6 as the buffer size and
analyze separately two different arrival rates: 180 kb/s (ρ = 0.6) and 300 kb/s
(ρ = 1). Assume that interarrival times of entering packets have hyperexponen-
tial distribution with the following probability density function:

dF (t) =
(
pe−λ1t + (1 − p)e−λ2t

)
dt, t > 0.

Suppose that p = 0.5 and λ1 = 2λ2. Then for the arrival rate 180 kb/s we
obtain λ1 = 336.5 and λ2 = 168.75 packets/sec. Similarly, for the intensity 300
kb/s we get λ1 = 562.5 and λ2 = 281.25 packets/sec. For the exponentially
distributed processing time we obtain μ = 375 packets/sec. In consequence,
mean interarrival times are 4.444 ms for ρ = 0.6 and 2.667 ms for ρ = 1, and
mean processing time equals 2.667 ms.

In Figures 1 and 2 probabilities P{v(t) > 0.01} for K = 2, 3 and 4 are
presented for the cases of ρ = 0.6 and ρ = 1, respectively.
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Fig. 1. P{v(t) > 0.01} for N = 2, 3, 4 and ρ = 0.6
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Fig. 2. P{v(t) > 0.01} for N = 2, 3, 4 and ρ = 1
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Fig. 3. P{v(t) > 0.0001} for N = 2, 3, 4 and ρ = 1
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Fig. 4. P{v(t) > 0.0001} for N = 2, 3, 4 and ρ = 1

Similarly, in Figures 3 and 4 we present the time-dependent behavior of the
probability P{v(t) > 0.0001}. As one can note, the considered conditional prob-
abilities are the smallest for the threshold N = 2 and the greatest for N = 4 and
with the passage of time, all characteristics are close to each other. Indeed, just
after the opening of the system, the probability of long delay will be the lowest
for the lowest threshold of accumulation, while in the long-term time horizon
the value N of the threshold becomes less and less essential.

7 Conclusion

In the paper the explicit representation for the LT of time-dependent queueing
delay d.f. in the finite-buffer GI/M/1/K-type queueing model with “queued”
wake up of the server (N -policy) was obtained, using the approach based on
embedded Markov chain paradigm, renewal theory and linear algebra results.
The considered system can be used as a good theoretical model in performance
evaluation of WSN with the mechanism of energy saving based on “queued” wake
up of sensors. The algebraic form of analytical results allows for their numerical
treatment. A network-motivated numerical example was attached.

Acknowledgment. The project was financed with subsidies from the Na-
tional Science Centre in Poland, granted by virtue of the decision number DEC-
2012/07/B/ST6/01201.
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Abstract. This paper considers a continuous-time queueing model with
two types (classes) of customers each having their own dedicated server
with exponential service times. The system adopts a “global FCFS” ser-
vice discipline, i.e., all arriving customers are accommodated in one single
FCFS queue, regardless of their types. “Class clustering”, i.e., the fact
that customers of any given type may (or may not) have a tendency to
“arrive back-to-back”, is a concept that we believe is often neglected in
literature. As it is clear that customers of different types hinder each
other more as they tend to arrive in the system more clustered according
to class, the major aim of this paper is to estimate the impact of the
degree of class clustering on the system performance. In this paper both
classes of customers have an own “cluster parameter”. The motivation
of our work are systems where this kind of blocking is encountered, such
as input-queueing network switches, security checkpoints or road splits.

Keywords: queueing, blocking, global FCFS, Markov, non-workcon-
serving, class clustering.

1 Introduction

In general, queueing phenomena occur when some kind of customers, desiring to
receive some kind of service, compete for the use of a service facility (containing
one or multiple servers) able to deliver the required service. Most queueing mod-
els assume that a service facility delivers exactly one type of service and that
all customers requiring this type of service are accommodated in one common
queue. If more than one service is needed, multiple different service facilities
can be provided, i.e., one service facility for each type of service, and individual
separate queues are formed in front of these service facilities. In all such models,
customers are only hindered by customers that require exactly the same kind of
service, i.e., that compete for the same resources.

In some applications, it may not be physically feasible or desirable to pro-
vide separate queues for each type of service that customers may require, and
it may be necessary or desirable to accommodate different types of customers

B. Sericola, M. Telek, and G. Horváth (Eds.): ASMTA 2014, LNCS 8499, pp. 125–139, 2014.
c© Springer International Publishing Switzerland 2014
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(i.e., customers requiring different types of service) in the same queue. In such
cases, customers of one type (i.e., requiring a given type of service) may also
be hindered by customers of other types. For instance, if a road or a highway
is split in two or more subroads leading to different destinations, cars on that
road heading for destination A may be hindered or even blocked by cars head-
ing for destination B, even when the subroad leading to destination A is free,
simply because cars that go to B are in front of them. In other words, there
is a first-come-first-served (FCFS) order on the main road. This blocking also
takes place in weaving sections on highways albeit to a lesser extent [1,2]. We
refer to [3,4] for a general overview and validation of modelling traffic flows with
queueing models. Similarly, in switching nodes of telecommunication networks,
information packets with a given destination of node A may have to wait for
the transmission of packets destined to node B that arrived earlier, even when
the link to node A is free, if the arriving packets are accommodated in so-called
input queues according to the source from which they originate (the well-known
HOL-blocking effect, see [5,6,7,8,9]). Analogously, at a security checkpoint (e.g.,
at an international airport or train station) people are usually body-searched by
someone of the same gender. As a result, when a group of friends of the same
gender arrive, the people of the opposite gender behind them may have to wait
until the whole group has been checked, even when the other security person is
available, at least when it is not allowed to overtake at the security checkpoint
(which is often the case for security reasons). In general, these applications can
be modelled by a queueing system with different types of traffic, servers which
are dedicated to these different classes, and a FCFS scheduling in the shared
queue. Therefore, customers of one type can be blocked by customers of the
other type that are waiting in front of them, even when their server is available.
We will refer to this scheduling as “global FCFS” in the remainder. A lot of work
has already been done on multi-type queues ([10,11,12]). However, the novelty
of this paper lies in the global FCFS service discipline (and thus no longer the
single server case).

In [13], we already got some insight in the impact of this kind of phenomenon
on the performance of the involved systems. In this paper we want to extend
our model to introduce class clustering, i.e., the fact that customers of any
given type may (or may not) have a tendency to “arrive back-to-back”. Class
clustering is a concept that is often neglected in literature to keep the model
as simple as possible, but in this paper we want to demonstrate that it is not
always possible to ignore this concept and this is especially true for our system.
It is already intuitively clear that when the customers arrive with alternating
types, less blocking will occur than when the types alternate only very rarely.

In [14], we already briefly studied the concept of class clustering with a very
simple “cluster model” characterized by one simple “cluster parameter” indicat-
ing the probability the next customer in the arrival stream has the same type as
the previous customer. Consequently, in [14], we could only study cases where
both classes of customers were equiprobable and thus both types of customers
accounted for half of the total load of the system. In this paper, we got rid of
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this restriction as both classes no longer have the same cluster parameter. In this
paper, it is also possible that one class has a big tendency to arrive back-to-back,
while the other class has the complete opposite tendency.

The structure of the rest of the paper is as follows: in section 2, we start by
giving a brief description of the mathematical model. In section 3, we first discuss
the stability condition of our system. It is clear that only when the stability
condition is met, our analysis is justified. In section 4, the distribution of the
system occupancy, i.e., the number of customers in the system, is determined
and some related performance measures are calculated. Section 5 is devoted
to a discussion of the results derived in previous sections and some numerical
examples are provided. Some conclusions and directions for future work are given
in section 6.

2 Mathematical Model

We consider a continuous-time queueing model with infinite waiting room. Two
servers have exponential service times; server 1 has a service rate of μ1 and server
2 a service rate of μ2. The servers are dedicated to a given class of customers.
Server 1 only serves customers of one type (say type 1) and server 2 serves
customers of the other type (type 2). The customers are served in their order of
arrival, regardless of the class they belong to (global FCFS).

1 2α

1-α

β

1-β

Fig. 1. 2-state Markov chain to determine the type of an arriving customer

The customers enter the system according to a Poisson arrival process with
arrival rate λ. The type of the arriving customer is determined by a two-state
Markov chain (see Fig. 1). If the previous customer is of type 1, then the customer
is of type 1 with probability α and of type 2 with probability (1 − α). If the
previous customer is of type 2, then the current customer is of type 1 with
probability (1 − β) and of type 2 with probability β. Notice here already that
we can transform α and β in two other parameters σ and K that have a more
intuitive meaning. The transformations from (α,β) to (σ,K) are

σ =
1− β

2− α− β
, (1)

K =
1

2− α− β
(2)

and from (σ,K) to (α,β)
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α = 1− 1− σ

K
, (3)

β = 1− σ

K
. (4)

The intuitive meaning behind the parameter σ is that it represents the relative
frequency of the type 1 customers, i.e., the fraction of customers that are of type
1 (2) is σ (1− σ respectively). The parameter K on the other hand gives a clear
indication about the correlation. The parameter is directly proportional to one
minus the mean number of customers of the same type that arrive back-to-back.
More specifically, we have

E [number of customers of type 1 arriving back-to-back] = 1
1−α =

K

1− σ
, (5)

E [number of customers of type 2 arriving back-to-back] = 1
1−β =

K

σ
, (6)

where E [· · · ] represents the expected value of the quantity between brackets.
Notice here that when K equals 1, the types of consecutive customers in the
arrival stream are uncorrelated.

3 Stability Condition

When deriving the stability condition, we can presume that the system is con-
stantly provided with new customers and the system will therefore be filled with
at least 2 customers all the time. Note that we are only interested in the class
of the customers in the set of leading customers, i.e., the first 2 customers of the
system (possibly being served). These observations lead to the 4-state Markov
chain depicted in Fig. 2. In state (m, t), m customers are of type 2 (and thus
2−m are of type 1) and the last customer in the set of leading customers has type

0,1

1,2

1,1

2,2

αμ2

(1-α)μ1 (1-β)μ1

(1-α)μ1

(1-β)μ2

(1-β)μ2(1-α)μ2

βμ1

(1) (2) (3)

Fig. 2. 4-state Markov chain to determine the stability condition
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t. Notice that we do not have states (0, 2) and (2, 1) since the “last” customer
cannot be of type 2 (1) if all leading customers are of type 1 (2).

If we define p(m, t) as the steady-state probabily to be in state (m, t), then we
end up with the following balance equations (corresponding to the dotted lines
(1) to (3) in Fig. 2):

(1 − α)μ1p(0, 1) = αμ2p(1, 1) + (1− β)μ2p(1, 2), (7)

μ2p(1, 1) = μ1p(1, 2), (8)

(1 − β)μ2p(2, 2) = (1 − α)μ1p(1, 1) + βμ1p(1, 2). (9)

These balance equations combined with the normalization condition

2∑
m=0

(p(m, 1) + p(m, 2)) = 1, (10)

where p(0, 2) = p(2, 1) = 0 by definition, yields

p(0, 1) =
μ2
2(1 − β)(αμ1 + (1− β)μ2)

(1 − α)2μ3
1 + (1− α)μ2

1μ2 + (1− β)μ1μ2
2 + (1− β)μ3

2

, (11)

p(1, 1) =
μ2
1μ2(1− β)(1 − α)

(1 − α)2μ3
1 + (1− α)μ2

1μ2 + (1− β)μ1μ2
2 + (1− β)μ3

2

, (12)

p(1, 2) =
μ1μ

2
2(1− β)(1 − α)

(1 − α)2μ3
1 + (1− α)μ2

1μ2 + (1− β)μ1μ2
2 + (1− β)μ3

2

, (13)

p(2, 2) =
μ2
1(1 − α)((1 − α)μ1 + βμ2)

(1 − α)2μ3
1 + (1− α)μ2

1μ2 + (1− β)μ1μ2
2 + (1− β)μ3

2

. (14)

Having obtained the p(m, t)’s, we can now move on to the stability condition.
Therefore, we postulate that the average amount of work per unit time that
enters the system (ρ) is smaller than the average amount of work the system can
execute per unit time, i.e., the average amount of work the system would execute
per unit time when it would be constantly provided with new customers. Here,
the system is able to execute 2 units of work per unit of time when both servers
are able to work (when the system is in the state (1,1) or (1,2)). The system is
able to execute 1 unit of work per unit of time when only one server is able to
work (when the system is in state (0,1) or (2,2)). The stability condition is thus

ρ < p(0, 1) + 2(p(1, 1) + p(1, 2)) + p(2, 2), (15)

or after using expressions (11) to (14)

ρ <
(1 + (1−α)μ1

(1−β)μ2
)
(
(1 − α)μ1

μ2
+ (1 − β)μ2

μ1
+ 1

)
(1−α)μ1

(1−β)μ2

(
(1− α)μ1

μ2
+ 1

)
+ (1− β)μ2

μ1
+ 1

, (16)

where ρ (average amount of work that enters the system) is defined as follows

ρ = ρ1 + ρ2 � σλ

μ1
+

(1 − σ)λ

μ2
. (17)
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To make the numerical results in section 5 more intuitive we use the transfor-
mations from equations (3) and (4). Here, we also already see that not the exact
values of μ1 and μ2 are of importance but only the ratio. The stability condition
becomes

ρ <
(1 + 1−σ

σ c)
(
1−σ
K c+ σ

K
1
c + 1

)
1−σ
σ c

(
1−σ
K c+ 1

)
+ σ

K
1
c + 1

, (18)

where

c =
μ1

μ2
. (19)

4 System Occupancy

4.1 System State Diagram and Balance Equations

The system can be described by a continuous-time Markov chain where the state
of the system is described by the triple (n,m, t). Here, n represents the number of
customers in the system, m represents the number of customers of type 2 in the
set of leading customers and t represents the type of the last customer in this set
of customers (1 or 2). Notice that we do not have states (n, 0, 2) and (n, 2, 1) for
n > 1 since the “last” customer cannot be of type 2 (1) if all leading customers
are of type 1 (2). Notice, we do have states (1, 0, 2) and (1, 1, 1). It is possible
that the last customer has already left the system and thus has overtaken the
customer still in the system (by having a shorter service time). The remaining
customer is not necessarily the last customer. State (0, t) represents the empty
system where the last customer that arrived is of type t. This is thus a Quasi-
birth-and-death (QBD) process (see also [15]) with four phases and the levels
are represented by the number of customers in the system.

If we define p(n,m, t) as the steady-state probability to be in state (n,m, t)
(and p(0, t) to be in state (0, t)), we end up with the following balance and
boundary equations (observe transitions to and from states (1)-(14) in Fig. 3):

λp(0, 1) = μ1p(1, 0, 1) + μ2p(1, 1, 1) (20)

λp(0, 2) = μ1p(1, 0, 2) + μ2p(1, 1, 2) (21)

(λ+ μ1)p(1, 0, 1) = μ1p(2, 0, 1) + μ2p(2, 1, 1)

+ λ(αp(0, 1) + (1 − β)p(0, 2)) (22)

(λ+ μ1)p(1, 0, 2) = μ2p(2, 1, 2) (23)

(λ+ μ2)p(1, 1, 1) = μ1p(2, 1, 1) (24)

(λ+ μ2)p(1, 1, 2) = μ1p(2, 1, 2) + μ2p(2, 2, 2)

+ λ((1 − α)p(0, 1) + βp(0, 2)) (25)
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(λ+ μ1)p(2, 0, 1) = μ1αp(3, 0, 1) + μ2((1 − β)p(3, 1, 2) + αp(3, 1, 1))

+ λ(αp(1, 0, 1) + (1− β)p(1, 0, 2)) (26)

(λ+ μ1 + μ2)p(2, 1, 2) = μ1(1 − α)p(3, 0, 1)

+ μ2(βp(3, 1, 2) + (1− α)p(3, 1, 1))

+ λ((1 − α)p(1, 0, 1) + βp(1, 0, 2)) (27)

(λ+ μ1 + μ2)p(2, 1, 1) = μ1((1 − β)p(3, 1, 2) + αp(3, 1, 1))

+ μ2(1− β)p(3, 2, 2)

+ λ(αp(1, 1, 1) + (1− β)p(1, 1, 2)) (28)

(λ+ μ2)p(2, 2, 2) = μ1(βp(3, 1, 2) + (1− α)p(3, 1, 1)) + μ2βp(3, 2, 2)

+ λ((1 − α)p(1, 1, 1) + βp(1, 1, 2)) (29)

(λ+ μ1)p(k, 0, 1) = μ1αp(k + 1, 0, 1)

+ μ2((1 − β)p(k + 1, 1, 2) + αp(k + 1, 1, 1))

+ λp(k − 1, 0, 1) , k ≥ 3 (30)

(λ+ μ1 + μ2)p(k, 1, 2) = μ1(1 − α)p(k + 1, 0, 1)

+ μ2(βp(k + 1, 1, 2) + (1− α)p(k + 1, 1, 1))

+ λp(k − 1, 1, 2) , k ≥ 3 (31)

(λ+ μ1 + μ2)p(k, 1, 1) = μ1((1 − β)p(k + 1, 1, 2) + αp(k + 1, 1, 1))

+ μ2(1− β)p(k + 1, 2, 2)

+ λp(k − 1, 1, 1) , k ≥ 3 (32)

(λ+ μ2)p(k, 2, 2) = μ1(βp(k + 1, 1, 2) + (1 − α)p(k + 1, 1, 1))

+ μ2βp(k + 1, 2, 2)

+ λp(k − 1, 2, 2)) , k ≥ 3 (33)

For example, the left-hand side of equation (31) represents the system leaving
state (k, 1, 2) with rate λ (a new customer enters the system), rate μ1 (a customer
of type 1 leaves the system) and rate μ2 (a customer of type 2 leaves the system).
The right-hand side of the equation is a bit more involved. We go to state (k, 1, 2)
in four cases. First, with rate λ (an arrival occurs) state (k, 1, 2) is reached from
state (k− 1, 1, 2). The arriving customer does not change the leading customers
since at least 2 customers are already present when the customer arrives (k ≥ 3).
Secondly, the system goes from state (k + 1, 0, 1) to state (k, 1, 2) with rate
μ1(1 − α). This happens when a customer of type 1 leaves the system and the
“new” customer in the set of leading customers is of type 2 (with probability
1 − α since the previous “last” customer of the leading customers was of type
1). Analogously, the system can go with rate μ2β from state (k+1, 1, 2) to state
(k, 1, 2) and with rate μ2β from state (k + 1, 1, 1) to state (k, 1, 2).

4.2 Distribution and Moments of System Occupancy

To tackle this problem, generating functions are used. We first introduce the
three following partial probability generating functions (pgf’s)
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P0(z) �
∞∑
k=2

p(k, 0, 1)zk , (34)

P1(z) �
∞∑
k=2

p(k, 1, 2)zk , (35)

P2(z) �
∞∑
k=2

p(k, 1, 1)zk , (36)

P3(z) �
∞∑
k=2

p(k, 2, 2)zk. (37)

Equations (30) to (33) are multiplied by zk and summed over all k � 3. We find

(λ+ μ1)(P0(z)− z2p(2, 0, 1)) =

1

z

[
μ1α(P0(z)− z3p(3, 0, 1)− z2p(2, 0, 1))

+ μ2((1 − β)(P1(z)− z3p(3, 1, 2)− z2p(2, 1, 2))

+ α(P2(z)− z3p(3, 1, 1)− z2p(2, 1, 1)))
]

+ λzP0(z), (38)

(λ+ μ1 + μ2)(P1(z)− z2p(2, 1, 2)) =

1

z

[
μ1(1− α)(P0(z)− z3p(3, 0, 1)− z2p(2, 0, 1))

+ μ2(β(P1(z)− z3p(3, 1, 2)− z2p(2, 1, 2))

+ (1− α)(P2(z)− z3p(3, 1, 1)− z2p(2, 1, 1)))
]

+ λzP1(z), (39)

(λ+ μ1 + μ2)(P2(z)− z2p(2, 1, 1)) =

1

z

[
μ1((1− β)(P1(z)− z3p(3, 1, 2)− z2p(2, 1, 2))

+ α(P2(z)− z3p(3, 1, 1)− z2p(2, 1, 1)))

+ μ2(1 − β)(P3(z)− z3p(3, 2, 2)− z2p(2, 2, 2))
]

+ λzP2(z), (40)

(λ+ μ2)(P3(z)− z2p(2, 2, 2)) =

1

z

[
μ1(β(P1(z)− z3p(3, 1, 2)− z2p(2, 1, 2))

+ (1 − α)(P2(z)− z3p(3, 1, 1)− z2p(2, 1, 1)))

+ μ2β(P3(z)− z3p(3, 2, 2)− z2p(2, 2, 2))
]

+ λzP3(z)). (41)
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The common probability generating function of the (total) number of cus-
tomers in the system is given by

P (z) = p(0) + z · (p(1, 0, 1) + p(1, 0, 2) + p(1, 1, 1) + p(1, 1, 2))

+ P0(z) + P1(z) + P2(z) + P3(z). (42)

If we solve equations (20) to (29) and (38) to (41) and insert the solutions in
(42) this equation translates into a equation that only contains known quan-
tities, except for four unknown probabilities in the numerator. These can be
determined, in general, by invoking the well-known property that pgfs such as
P (z) are bounded inside the closed unit disk {z : |z| ≤ 1} of the complex z-plane,
at least when the stability condition (15) of the queueing system is met (only
in such a case our analysis was justified and P (z) can be viewed as a legitimate
pgf). Now, it can be shown by means of Rouché’s theorem from complex analy-
sis [16,17] that the denominator of (42) has exactly four zeroes inside the closed
unit disk of the complex z-plane, one of which is equal to 1, as soon as the sta-
bility condition (15) is fulfilled. It is clear that these four zeroes should also be
zeroes of the numerator of (42), as P (z) must remain bounded in those points.
We conclude with the calculation of the three remaining zeroes that are inside
the closed unit disk, using numerical methods. For the zeroes inside the closed
unit disk (z0, z1, z2), the requirement that the numerator should vanish yields
three linear equations for the four unknowns. For the zero z = 1, this condition
is fulfilled regardless of the values of the unknowns, since the numerator of (42)
contains a factor z − 1. A fourth linear equation can however be obtained by
invoking the normalizing condition of the pgf P (z), i.e., the condition P (1) = 1.
In general, the four unknown probabilities can be found as the solutions of the
four established linear equations. Substitution of the obtained values in (42)
then leads to a fully determined expression for the steady-state pgf P (z) of the
system occupancy. P (z) is a rational function (the quotient of two polynomials
of degree 4).

From this result, various performance measures of practical importance can
then be derived. For instance, the mean system occupancy can be found as N =
P ′(1). The mean system delay T can then be calculated using Little’s Law [18].

T =
N

λ
. (43)

5 Discussion of Results and Numerical Examples

In this section, we discuss the results obtained in the previous sections, both
from a qualitative perspective and by means of some numerical examples. Before
discussing the results, we introduce two new parameters

ω �
σ
μ1

σ
μ1

+ 1−σ
μ2

=
ρ1

ρ1 + ρ2
, (44)

d � μ1

μ1 + μ2
=

c

c+ 1
(45)
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Fig. 4. ρsup, the least upper bound of the set of values ρ where the system is stable
versus parameter ω, with μ1 = 20 and μ2 = 1 (d = 20
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These parameters will allow us to interpret the results more intuitively. The
parameter ω represents the relative load of customers of type 1 and d represents
the relative service rate of type 1.

Impact of Class Clustering (Parameter K). Fig. 4 shows ρsup, least upper
bound of the set of values ρ where the system is stable versus parameter ω,
with μ1 = 20 and μ2 = 1 (d = 20

21 ). It is clear that the system where customers
have the tendency to arrive back-to-back (higher K) performs “worse” than the
system where customers have the tendency to arrive more alternatingly (smaller
K). An observation that is also confirmed in Fig. 5 where the mean system
occupancy versus parameter ρ with σ = 2

5 , μ1 = 1 and μ2 = 20 (and thus
ω = 40

43 and d = 1
21 ) is shown. Those figures illustrate that it is not possible to

ignore the concept of class clustering for our system.

Impact of the Load and Service Rate Balance between Customers of
Type 1 and Customers of Type 2 (Parameters ω and d). In Fig. 4,
we notice that the maximum achievable throughput when K = 1 is obtained
for a perfectly balanced system (ω = 1

2 ). However, the more class clustering
(K increases), the more this maximum will move towards a situation where the
fastest server gets a higher relative load. This might be a little contra-intuitive.
In a system without blocking, the maximum achievable throughput is achieved
when our system is perfectly balanced (both servers get a load of 1, or a total load
of 2) irrespective of K. In the system with blocking, this maximum achievable
throughput lies between 1 (the load one server can process) and 2 (the load
two servers can process), as can also be seen from Fig. 4. The exact maximum
is actually determined by maximizing the fraction of time both servers work
simultaneously, i.e., when the two leading customers are of opposite type. This
observation that is also confirmed by Fig. 6, which represents ρsup, the least
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Fig. 6. ρsup, the least upper bound of the set of values ρ where the system is stable
versus parameter ω, with K = 10

upper bound of the set of values ρ where the system is stable versus parameter
ω, with K = 10. We notice here that it not always ideal to have a symmetric
system (where the workload is equally balanced and both servers have the same
service rate). Even more surprising is that when there is negative correlation in
the types of consecutively arriving customers (K < 1), the slowest server should
get a higher relative load.

In Fig. 7, the mean system time versus parameter ω, with K = 5, μ1 = 1 and
μ2 = 2 (d = 1

3 ) is shown.We see that the mean system time is rather independent
of the load balance (ω), for small total load (ρ). The load balance (whether or
not the slowest server is also working) becomes only of importance when the
total load becomes too much for one server to handle (when ρ approaches 1). In
Fig. 7, it is even better for our system to have only one type of customer (of the
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fastest server) for a small load. This, however, is mainly due to the fact that the
service time is included in the system time.

Impact of Customers of One Type on Customers of the Other Type.
Fig. 8 represents ρ1,sup, the least upper bound of the set of values ρ1 where the
system is stable versus parameter ρ2, with σ = 1

4 . The more class clustering
(higher K), the more the customers of different types have an influence on each
other. This is intuitively also clear since the more class clustering (or more
customers of the same type arriving consecutively), the more a customer of a
different type will be blocked behind the group of customers of the same type.
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6 Conclusions and Future Work

In this paper, we have studied a two-class, two-server, continuous-time queue
with class-dedicated servers assuming a Poisson arrival process. The type of the
arriving customer is determined by a two-state Markov chain. We have derived an
expression for the steady-state pgf of the system occupancy. We have illustrated
and quantified that it is not possible to ignore the concept of class clustering for
our system. We have also shown that when we look at the stability condition or
when the system has to handle a high load, a well balanced system (where both
customers accommodate for half of the total load) performs not always best.
This is especially the case when the difference in service rates of both servers is
large. The system where the fastest server is more preferred, often gives more
performant results. The bigger the difference between the service times of the
servers, the more the fastest server should be preferred.
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traction Poles Programme initiated by the Belgian Science Policy Office.
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Abstract. Time Parallel Simulation (TPS) is the construction of the
time-slices of a sample-path on a set of parallel processors (see [11] chap.
6 and references therein). TPS has a potential to massive parallelism as
the number of logical processes is only limited by the number of time
intervals which is a direct consequence of the time granularity and the
simulation length. Stochastic Automata Networks (SAN in the following)
and some stochastic process algebra (like PEPA) allow the construction
of extremely large Markov chains which are difficult to analyze due to
their size. Here, we show how we can use TPS to solve efficiently some
models based on SAN or PEPA. The approach uses some graph the-
oretical properties which can be checked easily on a SAN or a PEPA
model. The quantitative results are obtained by a TPS based on linear
recurrence equations of the daters with associative operators.

1 Introduction

Stochastic Automata Networks (SAN in the following) have been introduced by
Plateau in a seminal paper [20]. They offer many interesting properties for the
modeling of systems and their analysis. First, as a component based modeling
paradigm, they allow to design complex interactions between sub-models. An
automaton consists of states and transitions which represent the effects of events.
These events are classified into two categories: local events and synchronizing
events. A local event affects a single automaton and is modeled by one local
transition. On the opposite, a synchronizing event modifies the state of more
than one automaton. The key property is the representation of the transition
rate matrix M of the Continuous Time Markov Chain (CTMC) associated with
the SAN as a sum of tensor product of smaller matrices used to describe the
behavior of the components and the ways they interact. Therefore, it is possible
to design chains with extremely large state space.

Many algorithms have been developed to use this tensor representation of M
to numerically solve the steady-state distribution of the chain (see for instance
[5]). Further properties such as lumpability or existence of a product form solu-
tion can be checked on the automaton level [13,8,4], with a smaller complexity

B. Sericola, M. Telek, and G. Horváth (Eds.): ASMTA 2014, LNCS 8499, pp. 140–154, 2014.
c© Springer International Publishing Switzerland 2014
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than at the global level. SANs also have strong relations with Stochastic Process
Algebra with exponential durations of transition. This is typically the case for
PEPA (Performance Evaluation Process Algebra) introduced by Hillston [14].
Thus the approach we present here can be applied to PEPA models as well. For-
mally, the approach is based on a graph representation and this representation
can be obtained in both frameworks. Here we present a new method to compute
the asymptotic throughput of some SAN and PEPA models using time parallel
simulation. The presentation put more emphasis on SANs to be simpler but it
must be clear that the results apply to PEPA models.

Time Parallel Simulation (TPS in the following) is based on a decomposition
of the time axis. One performs the simulations on time intervals in parallel on
adjacent time intervals (see [11] chap. 6, and references therein). Afterwards
the simulation results are combined to build the overall sample-path. TPS has
a potential to massive parallelism [19] as the number of logical processes is
only limited by the number of time intervals which is a direct consequence of
the time granularity and the simulation length. But the final and initial states
of adjacent time intervals do not necessarily coincide at interval boundaries,
possibly resulting in incorrect state changes. The efficiency of TPS depends on
our ability to guess the state of the system at the beginning of the simulation
intervals or to efficiently correct the guessed states to finally obtain a consistent
sample-path after a small number of trials. Several properties had already been
studied: regeneration [17], efficient forecasting of some points of the sample-path
[10], parallel prefix computation [12], a guessed initial state followed up by some
fix-up computations when the first state has a weak influence on the sample-
path [19]. Relaxing these assumptions, one may obtain an approximation of the
results [15] or some bounds on the sample-path [6,9].

Here we consider some families of SANs and we show that we can obtain some
linear recurrence equations using operators ”max” and ”+” on the daters (i.e. the
time instants when transitions occur). Such a property has already been proved
for some Stochastic Event Graph in [1]. It is also known, following [2] that, in
that case, one can develop a parallel prefix technique to obtain a time parallel
simulation of the recurrence equation and estimate the asymptotic throughput
and the steady-state distribution.

The technical part of the paper is organized as follows. In the next section,
we give a brief introduction of SANs, we introduce the Synchronized Product of
Directed Cycles (SPDC) subset of SANs and we prove that these models exhibit
a linear recurrence equation on daters based on associative operators. Due to
this associativity, following [2], we derive in Section 3 a time parallel simulation
approach based on the parallel prefix technique. Then we show how to obtain the
throughput and how to compute stochastic bounds on the instant of transitions
with a faster simulation. It is important to note that we never generate the whole
state space and we study the dater (i.e. the times of transition) rather than the
states.
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2 Stochastic Automata Networks Associated with a
(max,+) Evolution of Daters

We briefly introduce SANs. We refer to the literature [5,4,21] to obtain more
details and results.

Definition 1. A SAN is defined by

1. N automata denoted as An for n = 1 to N with finite state space.
2. The local transitions are defined by matrix Ln for automaton An. Ln is an

infinitesimal generator.
3. K synchronizations between automata. Synchronization i on Automaton An

is described by stochastic matrix Sn
i . Synchronization i has rate δi.

4. A reachability function which describes which states of the Cartesian product
of the automata state spaces are reachable.

5. A set of functions which describe how a transition rate in one automaton
may depend on the state of the whole set of automata.

Property 1. (see [21] for a proof). The continuous time Markov Chain associated
to a SAN has a transition rate matrixM built with the tensor products and sums
of the matrices used to describe the local transitions and the synchronizations:

M =

N⊕
n=1

Ln +

K∑
i=1

δi

N⊗
n=1

Sn
i −

K∑
i=1

δi

N⊗
n=1

Nn
i ,

where
⊕

and
⊗

are generalized tensor sum and product defined in [21] and
matrices Nn

i are normalization matrices associated with Sn
i (see the references

for a more detailed discussion).

This representation of the transition rate matrix allows to consider extremely
large Markov chains to study protocols or systems [3] as one only stores matrices
Ln and Sn

i and matrix M is neither explicitly stored in memory. Structural
properties can also be checked at the automaton level in a more efficient way.
These properties allow to chose a solver well-suited for this type of models. It
is typically the approach we have used here. We show how the Time Parallel
Simulation based of Parallel Prefix computation of the daters can be used to
compute in parallel a sample-path for some easy to identify SAN models.

2.1 PEPA

In PEPA, a system is viewed as a set of components which carry out activities.
Each activity is characterized by an action type and a duration which is exponen-
tially distributed. PEPA formalism provides a set of combinators which allows
expressions to be built, defining the behavior of components, via the activities
they engage in. One may refer to [14] for a more formal and detailed descrip-
tion of PEPA. We just give here the necessary information to understand the
syntax of the example and to show how to transform the model into a labelled
multigraph.
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– Prefix: noted (α, r).P , this combinator is the basic mechanism by which
the behavior of the components are constructed. The component carries out
activity (α, r) (where α is an action and r is its rate) and subsequently
behaves as component P .

– Choice: noted P1+P2, this combinator represents competition between com-
ponents. The system may behave either as component P1 or as P2. All current
activities of the components are enabled. The first activity to complete, de-
termined by the race condition, distinguishes one of these components, the
other is discarded.

– Cooperation: noted P1 ��
L

P2, it allows the synchronization of components
P1 and P2 over the activities in the cooperation set L. Components may
proceed independently with activities whose types do not belong to this set.
A particular case of the cooperation is when L = ∅. In this case, components
proceed with activities independently and are noted P1||P2.

Necessary (but not sufficient) conditions for the ergodicity of the Markov
process in terms of the structure of the PEPA model have been identified and
can be readily checked [14]. These conditions imply that the model must be
a cyclic PEPA component. The model should be constructed as a cooperation
of sequential components, i.e. components constructed using only prefix, choice
and constants. This leads to formally define the syntax of PEPA expressions in
terms of model components P and sequential components S:

P ::= A | P ��
L

P | P/L S ::= (α, r).S | S + S | As

where A denotes a constant which is either a model or a sequential component
and As denotes a constant which is a sequential component. In our graphical
approach detailed in the next section, the model components will be defined by
labelled multi-graphs. The labels will be the rates, the action names and the
synchronization list. An example is given in the next section.

2.2 Synchronized Product of Directed Cycles

The approach is based on the directed graphs of the automata. Therefore we
just have to translate the SAN or the PEPA model into a set of labelled directed
graphs. The conditions to apply the method only depend on local conditions on
the graphs. It is therefore easy to check them with a small complexity. We never
build the global state space.

Typically at the first step of the model, we can transform the stochastic au-
tomata or the PEPA model of one component into a directed and labelled multi-
graph . The nodes of the multigraph are the states of the component. Each edge
represents a transition which carry only one label. As some transitions between
states may occur due to several events or actions and therefore carry multiple
labels, we use several edges, each of them carrying only one label. Therefore, we
obtain a directed multigraph with simple labels while the usual representation of
a SAN is a directed graph with multiple labels. This multigraph representation
allows to describe in an easier way the deletion of arcs associated to a label.
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Definition 2 (Subgraph). Let G = (V,E) be a labelled directed graph with
vertices set V and set of directed edges with labels E, H is a subgraph of G if
V (H) ⊂ V (G) and E(H) ⊂ E(G). Furthermore, if (x, y) is an arc from x to y
with label l in H, it also exists in G with the same label.

1 2

3

s1

s2

s1

s1

s2

s3

s3

1 2

4 3

1 2

34

4

5

56

7

8 9

G
1

G 2

G3

Fig. 1. A SPDC composed of three automata, the synchronization arcs are depicted as
dotted lines and the local transitions by black lines. The rates are omitted to simplify
the presentation.

Definition 3 (Minor). Let G = (V,E) be a labelled directed graph with vertices
set V and set of directed edges with labels E, H is a minor of G if H can be
obtained from G by deleting edges and vertices and contracting edges. An edge
contraction consists in deleting the edge from the graph while simultaneously
merging the two vertices previously connected by the edge. Of course the labels
carried by the arcs are kept unchanged when the arcs are not deleted.

Definition 4. A SAN is a Synchronized Product of Directed Cycles (SPDC in
the following) if the multi-graphs of the automata satisfy the following condition.

A1 Let Gi the multigraph of Automaton Ai. We assume that Gi is strongly con-
nected. The directed edges of Gi carry a transition rate when the transition
is local or a synchronization label. A synchronization label is the name of
the synchronization and a rate. The syntax for the rate description for a
local transition and a synchronization are not the same for SAN and PEPA
models but we do not detailed them here. The time description is given in
Property 4.
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e
b

s s

Fig. 2. An abstracted representation of a connected component of Ai after edge-
extraction of the synchronizations. The edges inside the connected components are
omitted.

A2 We delete in Gi the edges carrying a synchronization label. We do not delete
the nodes even if their degree is 0. Let Hi be this graph. We decompose Hi

into connected components. Let cci be the number of connected components
in Hi. We assume that for each connected component (say component Cj

i

for the j-th connected component of Hi), there exist two unique nodes bji and

eji such that (the assumptions are illustrated in Fig. 2):

1. bji and eji are distinct,

2. for all nodes u in Cj
i , there exists a directed path from u to eji ,

3. for all nodes v in Cj
i , there exists a directed path from bji to v.

4. in Gi the synchronization arcs between Ck
i and Cj

i begin in node eki and

finish at node bji .

Clearly, all the paths crossing component Cj
i begin in node bji and finish at

node eji .

1 2

3

s1
s2

s1
s1

s2

s3s3

1 2

4 3

1 2

3
4

Fig. 3. The reduction of the SPDC detailed in assumption A3

A3 Let us consider Gi again. We replace each of the connected components by
a simple directed graph with the two distinguished nodes bji and eji and a

directed edge from bji to eji . The synchronization arcs are kept unchanged.
Let Fi be this new graph. Graphs Fi will be called the reduced version of the
SPDC. We have depicted in Fig. 3 the reduced version of the SPDC presented
in Fig. 1. We assume that for all i, Fi is a directed cycle, eventually an
isolated node.

A4 Now we consider the whole model (the network of stochastic automata or
the complete specification in PEPA). We assume that there exists a labelled
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directed graph called the network synchronization graph (NSG) such that for
all i, each Fi is a minor of the NSG and the NSG is a directed cycle where all
the synchronizations of the model appear only once. Each synchronization arc
in the NSG is followed by a local transition. The NSG of the small example
is depicted in Fig. 4.

s1

s2

s3

Fig. 4. The network synchronization graph

Note that assumption A4 implies that the graphs Fi are directed cycles (i.e.
assumption A3) but we keep A3 to be clearer.

Note that, with this definition, the transitions between two distinct states of
an automaton cannot be both local and synchronized. In a general SAN, the
graph of an automaton is a multigraph, thus we may have a synchronization
and a local transition between two states. This is strictly forbidden here.

Property 2. As the NSG is a directed graph, it defines, once the initial state of
the model is fixed, a unique sequence of firing of the synchronizations.

Example 1. As the model depicted in Fig. 1 is very closed to a SAN, we do not
give the associated SAN. But we give the PEPA model for the first two compo-
nents of the model. The third component is omitted for the sake of conciseness
(symbol � means that the transition rate is given by the other component of
the synchronization):

P ::= G1.1 ��
s1,s2

G3.1 ��
s1,s3

G2.1

G1.1 ::= (local1, α1)G1.2

G1.2 ::= (s1, 1/B1)G1.3

G1.3 ::= (s2, 1/B2)G1.4

G1.4 ::= (local2, α2)G1.1 + (local3, α3)G1.5
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G1.5 ::= (local4, α4)G1.1

G2.1 ::= (s1,�)G2.2

G2.2 ::= (local5, α5)G2.3

G2.3 ::= (s1, 1/B3)G2.4

G2.4 ::= (local6, α6)G2.1

The state space of a SPDC is included into the Cartesian product of the states
of the automata. Thus, a state will be defined by (x1, . . . , xN ) where xn is the
state of automaton An. For the analysis, one must have a description of the
reachable states space to correctly initialize the transient distribution. We now
define globally consistent states. Starting the simulation in a globally consistent
state ensures that the simulation will never deadlock.

Definition 5. A synchronization is fireable if and only if all the automata in-
volved in the synchronization are in the initial state of the synchronization.

Note that a synchronization may synchronize only a subset of the automata
and not necessarily all the automata. In the example of Fig. 1, S1 synchronizes
the three automata while S2 synchronizes only two. From a global state, a tran-
sition may change only one component if it is a local transition, or it may change
some (resp. all) of the components for a synchronization that acts on some (resp.
all) automata.

Definition 6. Let xi be a state in Gi, we associate a path Pi to xi as follows:

1. If xi is in a connected component Cj
i , we replace xi by j (i.e. the connected

component index). Otherwise we keep xj.
2. After step 1, we obtain a node in Fi. As Fi is a directed cycle, we find the

last synchronization before the node (say sa) and the next synchronization
after the node (say sb).

3. As Fi is a minor of the NSG, synchronizations sa and sb are also labels
carried by some edges of the NSG. Let a the finishing node of sa and b the
starting node of sb in the NSG.

4. Pi is a subgraph of the NSG consisting in the path from a to b.

Definition 7. A state X = (x1, . . . , xN ) is globally consistent if and only if the
intersection of paths Pi associated to state xi and graph Gi is not empty. For
instance node (5, 1, 1) is consistent while node (4, 2, 2) is not.

Property 3. If X is a globally consistent state, then after any transitions, local or
synchronized when they are fireable, the state reached is also globally consistent.

The proof is omitted for the sake of conciseness.
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Definition 8. We consider the daters of the sample path of automaton An in
its reduced representation (with graph Fn). In the following, tn(u, k) will denote
the time instant where reduced automaton An reaches state u for the k-th time.

Property 4. By construction, all the transitions in Gi have an exponential du-
ration. These delays are also assumed to be independent. However this is not
mandatory for the structural properties we will prove now. These assumptions
are inherited from the SAN (or PEPA) methodology.

Let us now consider the timing of the transitions in Fi (i.e. after transforma-
tion of the connected components into the arc bji to eji ). We have two types of
transitions:

– local: The local transition out of state u in Automaton Fi has a duration
which is denoted by Dn

u . The durations follow a Phase type distribution.
Indeed, the transition between bii and eji represents an absorbing Markov

chain beginning in bji and finishing at eji . This is the definition of a PH
distribution.

– synchronization: Denote by On(i) the set of all automata involved in syn-
chronization i. When all the automata in On(i) are ready to trigger the
transition, synchronization i takes place and its duration is denoted by Bi.

Like a Stochastic Event graph [1], a SPDC with a globally consistent initial
state is associated with equations on the daters which have a linear represen-
tation with (max,+) operations when we model it at the aggregated level (i.e.
when the connected components are replaced by transitions from bii to eji ). Note
that as Fi is a directed cycle, we define u− 1 as the node which is the origin of
the arc finishing at node u.

Theorem 1. If a SPDC is associated with a globally consistent initial state, then
the equations on the daters for the aggregated model have a linear representation
with (max,+) operations. More precisely, we have:

– If u is not the initial state of An, then
• if the arc arriving at u is local,

tn(u, k) = tn(u− 1, k) +Dn
u−1

• if the arc arriving at u is a synchronization,

tn(u, k) = max
m∈On(r)

(tm(dmr , k)) + Br

– If u is the initial state of An, then:
• if the arc arriving at u is local,

tn(u, k) = tn(u− 1, k − 1) +Dn
u−1

• if the arc arriving at u is a synchronization,

tn(u, k) = max
m∈On(r)

(tm(dmr , k − 1)) +Br



Time-Parallel Simulation for Stochastic Automata Networks 149

where dmr is the initial state of synchronization r in Fm. As Fm is a minor
of the NSG, synchronization r appears at most once and as m ∈ On, dmr is
defined without ambiguity.

Proof. The proof is simply based on the fact that there is only one transition for
each node. This transition may be local or a synchronization. The timing of local
transitions simply requires that we add the delay. As usual, synchronizations
implies that all the components are ready to synchronize, therefore we must
wait maxm∈On(r)(t

m(dmr , k)) before firing the transition and this transition has
a duration equal to Br.

Example 2. Let consider again the small example presented in Fig. 3. Assume
that the initial state is (2, 1, 4). We now give the equations on the daters.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1(1, k) = max(t1(3, k), t3(2, k)) +B2

t1(2, k) = t1(1, k − 1) +D1
1

t1(3, k) = max(t1(2, k), t2(1, k), t3(1, k)) +B1

t2(1, k) = t2(4, k − 1) +D2
4

t2(2, k) = max(t1(2, k), t2(1, k), t3(1, k)) +B1

t2(3, k) = t2(2, k) +D2
2

t2(4, k) = max(t2(3, k), t3(3, k)) +B3

t3(1, k) = t3(4, k) +D3
4

t3(2, k) = max(t1(2, k), t2(1, k), t3(1, k)) +B1

t3(3, k) = max(t1(3, k), t3(2, k)) +B2

t3(4, k) = max(t2(3, k − 1), t3(3, k − 1)) +B3

3 Quantitative Analysis of SPDC

We proceed in a hierarchical way. First we analyze the network at the Fi level (i.e.
the connected components Cj

i have been replaces by an arc from bji to eji ). Then
we combine this analysis with the model of a connected components to obtain
more detailed results. Note that we obtain the marginal distributions rather than
the distribution on the global state space (i.e. the Cartesian product of the states
of the component). Finally we show how we can simplify the computation using
stochastic bounds to obtain stochastic guarantees with a faster simulation.

3.1 Time Parallel Simulation of Reduced SPDCs based on the
Parallel Prefix Algorithm

We briefly present the Parallel Prefix approach for the Time Parallel Simulation.
It is known for a long time that if the simulation consists in the computation of
associative operators on the input sequences of random variables, one can use
the parallel prefix method with parallel processors (see [11] chap. 6). Assume
that we have a sequence yi of M values and we want to compute all the values
of �T

i=1yi for all T . This is the computation of the sample-path of the simulation
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built from the input traces or the realization of the random variables (i.e. the
sequence yi). We assume that � is an associative operator which represents the
simulation models. We have at our disposal M synchronous processors. The
algorithm will need log2(M) steps. At the end of these steps, processor J has
computed �J

i=1yi. The processors proceed as follows:

– initially (i.e. at step 0), processor J receives yJ and stores it in Y (0).
– At step M+1, it has a current value Y (M). It receives from processor J−2M

a value X(M), it computes X(M) � Y (M) and stores it in Y (M+1).
– To complete this step, it sends Y (M+1) to processor J + 2M+1.

Processors

Time=0

Time=1

Time=3

Time=2

P1 P8

Fig. 5. Computations and exchanges of message for a Time parallel simulation on 8
processors

The global computation is depicted in Fig. 5 for 8 processors. After log2(M)
steps, the sample-path (i.e. �T

i=1yi for all T ) has been computed on the M
processors and it is locally stored as Y (M). The only property we need here is
the possibility to build the sample-path of the simulation with an associative
operator applied on the input sequence. Following the approach developed by
Baccelli and his colleagues [1], we use a matrix and vector representation of the
previous set of equations on R∪{−∞} semi-ring with (max,+) operations where
−∞ is used as an absorbing element for the max operation.

Example 3. This is illustrated by two equations for the former example (we
cannot give all of them because of the lack of space).
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t1(1, k + 1) = max(t1(1, k) +B1 +B2 +D1
1, t

1(2, k)−∞, t1(3, k)−∞,
t2(1, k)−∞, t2(2, k)−∞, t2(3, k) +B1 +B2 +B3 +D3

4,
t2(4, k) +B1 +B2 +D2

4 , t
3(1, k)−∞, t3(2, k)−∞,

t3(3, k) +B1 +B2 +B3 +D3
4, t

3(4, k)−∞),

t1(2, k + 1) = max(t1(1, k) +D1
1 , t

1(2, k)−∞, t1(3, k)−∞,
t2(1, k)−∞, t2(2k)−∞, t2(3k)−∞, t2(4, k)−∞,
t3(1, k)−∞, t3(2, k)−∞, t3(3, k)−∞, t3(4, k)−∞).

The set of equations is a vector matrix product on the R ∪ {−∞} semi-
ring with (max,+) operations [1]. It is well known that this representation is
associative. Thus, one can design the same parallel prefix techniques to get all
the daters for the simulation. The operation � mentioned earlier is this product
of the vector of daters by the matrix of the model in the considered semi-ring.

3.2 Analysis of SPDCs

Let us now turn to the steady-state. Under the assumptions about the directions
of the transitions, the system is ergodic [1]. And we obtain the cycle time and
the throughput of the model as a function of the limit.

Property 5. The cycle time c is estimated as tn(u, k)/k for a large value for k.
The value of the limit when k lead to infinity does not depend on the state u and
the automaton n. However as the simulation is finite, the estimates may depend
on n and u. The throughput γ of the system is 1/c.

Property 6. The probability of state u in Fi when the transition out of u is local
is estimated by :

πi
F (u) = γDi

u.

Consider now the original problem with the initial description of the automata
(i.e. graphsGi for all i = 1..N). We want to estimate the probability that the state
is x where x is a node of Cu

i . After conditioning on the component we obtain

πi
G(x) = Pr(state = x | component = u)πi

F (u).

Therefore we have to estimate the conditional probability that the state is x
knowing the component is u. Remember that the component is an absorbing
Markov chain. We propose to make a simulation of this Markov chain to obtain
such an estimate. We can take advantage of the parallel processors to obtain
several samples more efficiently. The algorithm proceeds as follows for each pro-
cessor creating samples:

1. the processor begins in state bji
2. it simulates the continuous time Markov chain counting the time spent at

each state and the current time.
3. until it reaches eji
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The conditional probability is estimated by the ratio of the time spend at
state x before being absorbed.

It is also possible to make some numerical analysis of the absorbing Markov
chain to obtain the conditional probability but we prefer using a simulation
approach to be consistent with the analysis at the reduced level which is also
performed by a simulation approach.

3.3 Stochastic Bound and Simplification

Note that we have to compute k samples of the durations Dj
i which are PH

distributions. Such a task may be extremely time consuming. Note that it can
be done in parallel using the M processors before computing the sample path.
Here we show how we can use the stochastic ordering methodology to simplify
the computation of the sample-path while obtaining bounds on the daters. For
more details on stochastic ordering, one should refer to [16,18].

Definition 9 (Stochastic Ordering). Let x and y be Rm-valued random
variables.

We say that x is smaller than y with the strong stochastic ordering (st ordering
for short) and we note x �st y if E[f(x)] ≥ E[f(y)] for all non decreasing
functions f from Rm to R whenever the expectations exist.

Similarly we say that x is smaller than y with the increasing convex stochastic
ordering and we note x �icx y if E[f(x)] ≥ E[f(y)] for all functions f from Rm

to R which are increasing and convex (whenever the expectations exist).

Baccelli and his coauthors [1] had proved many results on the stochastic mono-
tonicity property for systems of linear equations on (max,+) semi-ring. This
properties still hold as the equations we obtain are similar to the equations
obtained in [1] for Stochastic Event Graphs, a subset of stochastic Petri nets.
They are all due to the following property: the Max and Plus operators are non
decreasing and convex functions. Note that if we compute bounds of the cycle
time, we are not able anymore to perform the Monte Carlo simulation described
in section 3.2 to analyze the states in a connected component.

Property 7 (Bounds for st-ordering). if we build Lj
i and U j

i such that Lj
i �st

Dj
i �st U j

i , we clearly obtain a lower and un upper stochastic bound of the
sequence ti().

For instance the truncation algorithm given in the following provides a sample
of a distribution which is a st-lower bound of Dj

i . Clearly this algorithm has a
smaller average complexity. For many algorithms to find stochastic bounds on
Markov chains, one can refer to [7].

1. the processor begins in state bji
2. it simulates the continuous time Markov chain counting the time spent at

each state.
3. until it reaches eji or the current time equal to T 0.
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Property 8 (Lower bound for icx-ordering). If we replace Dj
i by its expectation,

we get an icx bound for the sequence ti(, ).

Proof. Due to Jensen’s inequality, we have E[Dj
i ] �icx Dj

i . As the system of is
modeled by a linear system of equation in (max,+) semi-ring and as the operators
Max and ”+” are convex and non decreasing, we get the result. Note that using
E[Dj

i ] instead of generating a sample has a large influence of the complexity. The
expectation is computed once, before the simulation starts. Using the constant
during the simulation now has a complexity of O(1) while the generation of a
sample of the PH distribution may be much more time consuming.

4 Conclusion

We have proposed a method based of time parallel simulation to estimate the
throughput of a system modeled by some family of SANs or PEPA specifications.
We combine two approaches: a time parallel simulation for the analysis at the
reduced level and a Monte Carlo simulation of the component for the results
at the initial level. We are now investigating the implementation of the Time
Parallel Simulation approach based on Parallel prefix on a GPU with a large
number of cores.
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Abstract. In this paper, we consider the problem of statistical validation of 
multivariate stationary response simulation and analytic stochastic models of 
observed systems (say, transportation or service systems), which have p re-
sponse variables. The problem is reduced to testing the equality of the mean 
vectors for two multivariate normal populations. Without assuming equality of 
the covariance matrices, it is referred to as the Behrens–Fisher problem. The 
main purpose of this paper is to bring to the attention of applied researchers the 
satisfactory tests that can be used for testing the equality of two normal mean 
vectors when the population covariance matrices are unknown and arbitrary. To 
illustrate the proposed statistical techniques, application examples are given.  

Keywords: Simulation model, stochastic model, validation, hypothesis tests.     

1 Introduction 

Validation is a central aspect to the responsible application of models to scientific and 
managerial problems. The importance of validation to those who construct and use 
models is well recognized [1-7]. However, there is little consensus on what is the best 
way to proceed. This is at least in part due to the variety of models, model applica-
tions, and potential tests. The options are manifold, but the guidelines are few.  

It is generally preferable to use some form of objective analysis to perform model 
validation. A common form of objective analysis for validating simulation models is 
statistical hypothesis testing. Statistical hypothesis testing, as distinguished from 
graphical or descriptive techniques, offers a framework that is particularly attractive for 
model validation. A test would compare a sample of observations taken from the target 
population against a sample of predictions taken from the model. The validity of the 
model is then assessed by examining the accuracy of model predictions. Such tests 
have numerous advantages: they provide an objective and quantifiable metric, they are 
amenable to reduction to a binary outcome, and therefore permit computation of error 
probability rates, and they accommodate sample-based uncertainty into the test result.  
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Not surprisingly, a number of statistical tools have been applied to validation prob-
lems. For example, Freese [8] introduced an accuracy test based on the standard χ2 
test. Ottosson and Håkanson [9] used R2 and compared with so-called highest-
possible R2, which are predictions from common units (parallel time-compatible sets). 
Jans-Hammermeister and McGill [10] used an F-statistic-based lack of fit test. 
Landsberg et al. [11] used R2 and relative mean bias. Bartelink [12] graphed field data 
and predictions with confidence intervals. Finally, Alewell and Manderscheid [13] 
used R2 and normalized mean absolute error (NMAE). 

The purpose of this paper is to give a methodology based on pivotal quantities for 
constructing statistical hypothesis tests, which are used for validating a simulation or 
analytic stochastic model of a real, observable system. 

2 Preliminaries 

Theorem 1 (Characterization of the multivariate normality). Let Zi, i=1(1)n, be n 
independent p-multivariate random variables (n≥p+2) with common mean μ and co-
variance matrix (positive definite) Q. Let Wr, r=p+2, …, n, be defined by 
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then the Zi (i=1, …, n) are Np(μ,Q) if and only if Wp+2, …, Wn are independently dis-
tributed according to the central F distribution with p and 1, 2, . . . , n-(p+1) degrees 
of freedom, respectively. 

Proof. The proof is similar to that of the theorems of characterization (Nechval et 
al. [14, 15]) and so it is omitted here.    

Goodness-of-Fit Testing for the Multivariate Normality. The results of Theorem 1 
can be used to obtain test for the hypothesis of the form H0: Zi follows Np(μ,Q) versus 
Ha: Zi does not follow Np(μ,Q), ∀i=1(1)n. The general strategy is to apply the proba-
bility integral transforms of Wr, ∀r=p+2(1)n, to obtain a set of i.i.d. U(0,1) random 
variables under H0 [16]. Under Ha this set of random variables will, in general, not be 
i.i.d. U(0,1). Any statistic, which measures a distance from uniformity in the trans-
formed sample (say, a Kolmogorov-Smirnov statistic), can be used as a test statistic. 
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3 Statistical Validation of Simulation and Analytic Models 

Suppose that we desire to validate a multivariate stationary response simulation model 
having p normally distributed response variables. In using statistical hypothesis test-
ing to test the validity of a simulation model under a given experimental frame and for 
an acceptable range of accuracy consistent with the intended application of the model, 
we have the following hypotheses: 

 

H0: Model is valid for the acceptable range of accuracy under the experimental frame. 
 

H1: Model is invalid for the acceptable range of accuracy under the experimental frame. 
Let μm and μs be the population means of the simulation model (subscript m) and 

system (subscript s) response variables, and let Qm and Qs be the model and system 
covariance matrices. We are interested in the testing problem 
 

H0: μm=μs vs. H1: μm≠μs.  (4) 
 

Furthermore, let us assume that for the purpose, for which the simulation model is 
intended, the validity of the model can be determined with respect to its mean re-
sponse, and the acceptable range of accuracy can be expressed as the difference be-
tween the means of the model and the system responses and can be stated as  
 

, Δμμ ≤− sm  (5) 
 

where Δ is a vector of the largest acceptable differences. Thus, we deal with the mul-
tivariate Behrens-Fisher problem, where it is assumed that μm and μs are unknown p × 
1 vectors and Qm and Qs are unknown p × p positive definite covariance matrices. 

3.1 Validation via Testing Two Mean Vectors with Equal Covariance 
Matrices 

Let the p-vectors X1, X2, …,
mnX and Y1, Y2, …, 

snY be independent  (potential)  ran-
dom samples from X (model) and Y (system), respectively, where X~ Np(μm,Qm) and 
Y~Np(μs,Qs). The problem is to compare the mean vectors μm and μs.   

Here we consider the case when the covariance matrices of the two normal distri-
butions are equal (say Qm=Qs=Q). In this case, Hotelling’s T2 statistic is used for 
testing the hypothesis H0: μm= μs vs. H1: μm≠μs. 

Define 
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Then 

),)/1(,(~ mmmp nN QX μ      (9) 
 

 ),)/1(,(~ sssp nN QY μ  (10) 
 

),,1(~)1( mmpmm nWn QS −−  (11) 
 

),,1(~)1( sss sp nWn QS −−   (12) 

and these are mutually independent, where Wp(n,Q) denotes the Wishart distribution 
with n degrees of freedom and corresponding covariance matrix Q. 

If Qm= Qs= Q, then 
 

 ),)/1/1(,(~ QYX smsmp nnN +−− μμ  (13) 
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where " ~ " denotes "is distributed as". Thus the test statistic is 
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The 2T statistic has the central 2T  distribution when μm=μs is true. For 2T  to have an 

F distribution, the expression for 2T  must be weighted by the factor (nm+ 
ns−p−1)/[p(nm + ns−2)] so that 
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where 1, −−+ pnnp sm
F is the F distribution with degrees of freedom p and nm + ns−p−1. 

If 
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the null hypothesis H0: μm=μs is accepted  and rejected otherwise. 
A 100(1-α)% confidence region for μm−μs is given by 
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represents a pivotal quantity whose distribution does not depend on unknown parame-
ters. 

Thus, the decision rule for testing the validity of the model with specified model 
user's risk (α) is the following: Accept the validity of the model for the acceptable 
range of accuracy (5) under the given experimental frame if (18) takes place and  
 

Δμμ ≤− sm  for all .)
sm

Csm μμμ(μ −∈−    (22) 

With 
], ..., , ..., ,[ 11 spmpskmksmsm μμμμμμ −−−=′−′ μμ         (23) 

 

the 100(1-α)% simultaneous confidence intervals for the p population mean differ-
ences (components of the vector μm−μs) are 
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where 2
kS  is the pooled variance for variables Xk and Yk. 

3.2 Testing the Equality of Two Covariance Matrices 

For testing the hypothesis H0: Qm=Qs, for two multivariate normal populations, the 
statistic 

||ln)1(||ln)1[(||ln)2( ssmmsm nnnnM SSS −+−−−+=    (25) 
 

is used. χ2 approximation for the probability distribution of M is given by Box [17] as 
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The hypothesis H0
  is rejected if 

 

,)1( 2
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where α is the significance level. 
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3.3 Validation via Testing Two Mean Vectors with Unequal Covariance Matrices 

Let the p-vectors X1, X2, …, ,
mnX  and Y1, Y2, …, 

snY  be independent (potential) 
random samples from X (model) and Y (system), respectively, where X~ Np(μm,Qm) 
and Y~ Np(μs,Qs). The problem is to compare the mean vectors μm and μs.  In this 
section, we consider the case when the covariance matrices of the two normal distri-
butions are unequal (i.e., Qm≠Qs).  

Version 1. In this case, for testing the hypothesis H0: μm= μs vs. H1: μm≠μs, a very 
natural statistic   

)(]//[)( 12 YXSSYX −+′−= −
• ssmm nnT  (30) 

 

can be used. This test statistic has approximately Hotelling’s distribution, as it is 
shown in Krisnamoorthy and Yu [18], i.e.,  
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Krishnamoorthy and Yu [18] showed that ν is bound in the same way as in the one-
dimensional case, 

,2)1 ,1min( −+≤≤−− smsm nnnn ν   (33) 
 

ν being close to the upper bound tells us that the two variance matrices are (almost) 
equal. The closer ν  is to the lower bound, the bigger the discrepancy is between them. 
The lower bound is attained only if one of Sm, Ss is a zero matrix.  

A 100(1-α)% confidence region for μm−μs is given by   
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Thus, in this case, the decision rule for testing the validity of the model with specified 
model builder's risk is the following: Accept the validity of the model for the accepta-
ble range of accuracy (5) under the given experimental frame if  
  

αννν −+−• +−≤ 1;1,
2 )]1/([ ppFppT      (35) 

 

takes place and 

Δμμ ≤− sm  for all .) •
−∈−

sm
Csm μμμ(μ   (36) 

The 100(1-α)% simultaneous confidence intervals for the p components of the vector 
μm−μs are 
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where 2
mkS and 2

skS  are the variances for variables Xk and Yk, respectively. 

Version 2. In this case, for testing the hypothesis H0: μm= μs vs. H1: μm≠μs, the statis-
tic (30) is used. This test statistic has approximately Hotelling’s distribution, as it is 
shown in Seber [19], i.e.,  
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A 100(1-α)% confidence region for μm−μs is given by   
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Thus, in this case, the decision rule for testing the validity of the model with specified 
model builder's risk is the following: Accept the validity of the model for the accepta-
ble range of accuracy (5) under the given experimental frame if   
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takes place and 
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The 100(1-α)% simultaneous confidence intervals for the p components of the vector 
μm−μs are 
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where 2
mkS and 2

skS  are the variances for variables Xk and Yk, respectively. 
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3.4 Validation of Analytic Model via Testing One Mean Vector 

Let us assume that a random sample Y1, Y2, …,
snY is available from the observed 

system, where  Yi ~ Np(μs,Qs), i∈{1,2. …, ns}. The problem is to compare the mean 
vectors μs (from the system) and μ0 (from the analytic model), i.e., we are interested 
in the problem of testing 

H0: μs=μ0 vs. H1: μs≠μ0. (44) 
 

Furthermore, let us assume that for the purpose, for which the analytic model is in-
tended, the validity of the model can be determined with respect to its mean response, 
and the acceptable range of accuracy can be expressed as the difference between the 
means of the system and the analytic model responses and can be stated as   

 , 0 Δμμ ≤−s  (45) 
 

where Δ is a vector of the largest acceptable differences. 
If the covariance matrix Qs were known, then testing the hypothesis (44) can be 

based on the chi-squared statistic 
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Typically Qs is unknown and so one instead uses 
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as the test statistic, which is commonly known as the Hotelling’s T2 statistic with p 

and ns−1 degrees of freedom. For 2T  to have an F distribution, the expression for 2T  
must be weighted by the factor (ns−p)/[p(ns−1)] so that 
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the null hypothesis H0: μs=μ0 is accepted  and rejected otherwise. 
A 100(1-α)% confidence region for μs is given by 
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represents a pivotal quantity whose distribution does not depend on unknown parame-
ters. 

Thus, the decision rule for testing the validity of the model with specified model 
user's risk (α) is the following: Accept the validity of the model for the acceptable 
range of accuracy (45) under the given experimental frame if (50) takes place and   

  Δμμ ≤− 0s  for all .
s

Cs μμ ∈  (54) 

With 
], ..., , ..., ,[ 1 spskss μμμ=′μ    (55) 

 

the 100(1-α)% simultaneous confidence intervals for the p components of the vector 
μs are 
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where 2
kS  is the variance for variable Yk. 

4 Application Examples 

4.1 Example of Statistical Validation of Simulation Model 

Consider airline seat inventory control system [20] and the simulation model, on each 
of which 4 endpoints (passenger demand) were recorded. Based on the experimental 
data from the simulation model (nm=28) and the control system (ns=28), the summary 
statistics for the simulation model and the control system follow.  
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The sample covariance matrices defined in (7) and (8) are: 
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mS    (59) 

and 
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258.132951.31451.38517.31

951.31522.20726.11062.15

451.38726.11374.42747.18

517.31062.15747.18036.24

sS ,   (60) 

Consider testing 
H0: μm− μs= 0 vs. H1: μm−μs ≠ 0. (61) 

Statistical Validation when Qm= Qs. The pooled sample covariance matrix is given by 
 

  



















=

666.111235.31577.47666.26

235.31018.19154.13748.9

577.47154.13491.60845.24

666.26748.9845.24489.23

S       (62) 

 

and the Hotelling T2 statistic defined in (15) is computed as 
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Taking α=0.025, we have that 
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Because T2 = 5.646 < 12.93, we do not reject H0. Thus, the data do not provide suffi-
cient evidence to indicate that the mean vectors are significantly different. 

Testing the Equality of Two Covariance Matrices. It follows from (25) and (28) that 
 

,48.2025377.19)1( 2
1; =<=− −αχ fAM   (65) 

 

where M=20.91959, A=0.07963, f=10, α=0.025. Thus, the data do not provide suffi-
cient evidence to indicate that the covariance matrices are significantly different. 

Statistical Validation when Qm ≠ Qs. For this example, the values of T2 and 2
•T  must 

be the same because the sample sizes are equal. Thus, 
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and the critical value 
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Because 2
•T = 5.646 < 12.988, we do not reject H0. Thus, both tests produced similar 

results and yielded the same conclusions.  
It follows from (24) that the 100(1-α)% simultaneous confidence intervals for the p 

components of the vector μm−μs are 
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Let us assume that Δ′=[5, 11, 5.5, 15]. It follows from (69) that .  Δμμ <− sm  Thus, 

in this case, the decision rule for testing the validity of the model with specified mod-
el builder's risk is the following: Accept the validity of the model for the acceptable 
range of accuracy 
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under the given experimental frame: 
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and 
Δμμ <− sm  for all 
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4.2 Example of Statistical Validation of Analytic Model 

Performance of mechanical components undergoes a change by uncertainties such as 
environmental effects, dimensional tolerances, loading conditions, material properties 
and maintenance processes. Especially when the design criterion is fatigue life, it is 
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significantly affected by system uncertainties. Even with today’s modern computing 
systems, it is infeasible to include all the relevant uncertain variables into the analyti-
cal prediction, since many of the potential inputs are not characterized in the design 
phase. To account for the unknown variables, common practices use so called “safety 
factors” or statistical minimum properties in conjunction with the analytical predic-
tion when evaluating lifetimes. Due to these conservative estimations, analytical pre-
dictions are often in disagreement with field experience, and a gap exists in correlat-
ing the field data with the analytical predictions. Thus, there is an increasing need to 
improve the analytical predictions using field data, which collectively represents the 
real status of a particular machine. 

For example, the expected fatigue life (lifetime) can be determined by the most 
well known Paris–Erdogan equation [21, 22], which is of the form 
  

 

  btaq
dt

tda
))((

)( =  (73) 

 

in which q and b are constants that are depended on loading conditions, material 
properties and maintenance processes. The independent variable t can be interpreted 
as stress cycles, flight hours, or flights depending on the applications. Integrating (73) 
gives   

   =
ff a

a
b

t

qv

dv
dt

0

.
0

 (74) 

 

Here a0 is the initial crack length, af is the final crack length corresponding to failure, 
and tf is the estimated number of flight hours (expected fatigue life) to produce a fail-
ure after the initial crack is formed. 

Table 1 presents the data of fatigue tests on a particular type of structural compo-
nents (stringer) of aircraft IL-86.  

Table 1.   Observed lifetimes of two structural components (stringer) of aircraft IL-86  

Components Observed lifetimes of components ( in terms of 103 flight hours) 

Component 1 72.8 68.0 59.2 66.7 74.2 70.4 69.6 77.9 63.9 65.1 
Component 2 69.9 70.9 68.4 78.2 63.9 64.6 66.5 71.6 77.2 66.8 
Y Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 

 
It is assumed that Yi ~ Np(μs,Qs), i=1, …, 10, where p=2, ns=10. Suppose the problem 
is to test the null hypothesis 

H0 : μs = μ0  (75) 
 

against the alternative hypothesis H1 : μs ≠ μ0, where μ0 (vector of expected lifetimes) 
obtained from (74)  via tf  is given by 
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The acceptable range of accuracy is expressed as 
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where Δ is a vector of the largest acceptable differences. 
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it follows from (56) that the 100(1-α)% simultaneous confidence intervals for the 
components of the vector ],[ 21 sss μμ=′μ are 
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where α = 0.05.  

It follows from (80) and (81) that 
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i.e., .  0 Δμμ <−s  Thus, in this case, the decision rule for testing the validity of the 

model with specified model builder's risk is the following: Accept the validity of the 
model for the acceptable range of accuracy 
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under the given experimental frame: 
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and Δμμ <− 0s  for all  
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5 Conclusion 

Analytical and simulations models have become an important tool for building and 
testing theories in Cognitive Science during the last years. The area of their applica-
tions includes, in particular, business process, resource management, knowledge man-
agement systems, transportation systems, service systems, operations research, eco-
nomics, optimization, operation and production management, supply chain manage-
ment, work flow management, total quality management, logistics, risk analysis, 
scheduling, forecasting, etc.  

One of the most important steps in the development of a model for observable 
process in stochastic system is recognition of the model, which is an accurate repre-
sentation of the process under study. A common form of objective analysis for vali-
dating simulation models is statistical hypothesis testing. In this paper, we are con-
cerned about the choice of a test for equality of two multivariate normal mean vectors. 
The definition of a confidence region is generalized so that problems such as con-
structing exact confidence regions for the difference in two multivariate normal 
means can be tackled without the assumption of equal covariance matrices. This al-
lows one to provide satisfactory solutions in a variety of problems, not just the ones 
reported here. 

The authors hope that this work will stimulate further investigation using the ap-
proach on specific applications to see whether obtained results with it are feasible for 
realistic applications. 
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Abstract. This paper devises new hypothesis tests for detecting changes in the
scale of interdependent and serially correlated data streams, i.e, proportional
changes of the mean and (co-)variance. Such procedures are of great importance
in various networking contexts, since they enable automatic detection of changes,
e.g. in the network load. Assuming the underlying structure is Gaussian, we com-
pute the log-likelihood ratio test statistic, either as a function of the observations
themselves or as a function of the innovations (i.e., a sequence of i.i.d. Gaussians,
to be extracted from the observations). An alarm is raised if the test statistic ex-
ceeds a certain threshold. Based on large deviations techniques, we demonstrate
how the threshold is chosen such that the ratio of false alarms is kept at a predefined
(low) level. Numerical experiments validate the procedure, and demonstrate the
merits of a multidimensional detection approach (over multiple one-dimensional
tests). Also a detailed comparison between the observations-based approach and
the innovations-based approach is provided.

1 Introduction

Statistical change point detection is an important tool in network control, and has been
widely applied in e.g. intrusion detection systems, [17,18,19], and overload detection
[13]. In order to enable the network operator to adequately respond to persistent changes
in the (inherently random) observations, the main task is to detect persistent changes as
quickly as possible while keeping the number of false alarms at a predefined low level
(for instance 5%).

Traditionally, in the change point detection literature the main focus has been on
detecting a change in the mean value corresponding to a sequence of independent, one-
dimensional observations [4,8,16]. However, in many situations this setting is far from
adequate. In the first place, in practice there is typically positive correlation between
subsequent data points [20]. Moreover, single data points often consist of multidimen-
sional records, rather than one-dimensional values. In addition, in the context of com-
munication networks, an increase in the number of active users tends to be not reflected
by a change in the mean only, but rather as a change in scale – a change in both the
mean and (proportionally) the corresponding variance. Therefore, to only focus on the
detection of mean shifts neglects an additional indicator that a change has taken place
[2, Ex. 4.1.9].

B. Sericola, M. Telek, and G. Horváth (Eds.): ASMTA 2014, LNCS 8499, pp. 170–184, 2014.
c© Springer International Publishing Switzerland 2014
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Motivated by the above considerations, a number of procedures have been proposed
that allow for data streams to be either serially correlated [15] or multidimensional
[8]. In [19] a detection method for testing serially correlated and multidimensional
data streams is presented but the multiple data streams are assumed to be indepen-
dent. The more general setting of dependent multidimensional data streams is covered
in [2], where testing against a change in mean or variance is considered separately.
In the current paper, we develop techniques different from those of [2] for the detec-
tion of changes in scale in multidimensional and serially correlated sequences, which
allow the network operator to limit the false alarm rate to a level of her choice. We
focus on Gaussian sequences (Xt)t∈Z, where sets of observations have a multivariate
Normal distribution. Gaussian time series are popular for modeling network traffic,
see e.g. [1] and [12, Part A].

Let us consider the illustrative example of a link of a communication network. If
the bandwidth consumed by different users is i.i.d., then the mean and variance of the
total bandwidth consumption are both proportional to the number of users. As a conse-
quence, a change in the number of users can be considered as a change of scale, in the
sense defined above: the mean and variance exhibit the same relative (i.e., percentage-
wise) change. When measuring not only at a single link but at various points in the
network, then more information is available, potentially facilitating earlier detection or
a lower risk of false alarms. In this case – apart from serial correlation (correlation
over time) – also cross-correlation between data sequences generated by different sen-
sors has to be taken into account, because the same traffic may be captured by several
sensors. For large traffic aggregates, the Gaussianity is justified by central-limit type
of arguments. Based on the above, we conclude that the setup considered in this paper
can be used to detect changes in load, caused by, for instance, a (legal) increase in the
number of users, or a DDoS (distributed denial of service) attack.

At the methodological level, the testing procedure we propose is a sequential hy-
pothesis test, in line with the popular CUSUM algorithm [14]. Our procedure monitors a
likelihood ratio test statistic, and raises an alarm as soon as it exceeds some predefined
threshold. The question arises how this threshold should be chosen so as to ensure that
the number of false alarms does not exceed a given (low) level. In case the observa-
tions are one-dimensional and independent, the test’s false alarm performance can be
assessed using a functional central limit theorem to establish the convergence of the test
statistic to a Brownian motion [16]. Alternatively, since a false alarm is required to be a
rare event, a limit expression for the false alarm probability can be derived using large
deviations theory (concerned with the asymptotic behavior of rare event probabilities),
see e.g. [10] and [5, Ch. VI.E]. Choosing the smallest threshold that satisfies the pre-
defined level of false alarms ensures that an alarm is raised quickly once a change has
occurred.

In [11] we extended the large deviations (LD) approach to detect a change in mean
in serially correlated (one-dimensional) autoregressive moving average (ARMA) pro-
cesses. The main objective of the present paper is to further extend such a LD ap-
proach to make it applicable to detect changes in scale in multidimensional correlated
data. Furthermore, we compare the method of testing the sequence of observations
(Xt)t∈N themselves, with an innovations based approach, where first the observations are
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transformed into i.i.d. innovations, and then change point detection tests are performed
on the innovations, see e.g. [2]. Our testing procedure differs from the one considered
in [2], which uses the so-called local approach [2, 4.2.3] to determine the threshold
for testing an i.i.d. sequence, whereas in this paper the false alarm probabilities are
evaluated in the large deviations regime to choose the threshold. For the innovations
based approach we impose the weak assumption [3, 5.7.1] that the process be linear
and invertible, while for the observations based approach we need additional assump-
tions on the underlying correlation structure. We validate the proposed tests in a series
of numerical experiments, which (i) study the trade-off between the detection ratio and
the corresponding delay, (ii) assess the gain of multidimensional testing procedures
(over multiple one-dimensional tests), and (iii) provide a systematic comparison be-
tween (A) the observations-based and (B) the innovations-based method.

This paper is organized as follows. In the next section we explain the change in scale
and the set-up of our LD-based hypothesis test in greater detail. In Section 3 we compute
the log-likelihood ratio test statistics for the observations and the innovations based
detection approach, before we derive the threshold functions in Section 4. The results
of the numerical evaluation are presented in Section 5. We conclude in Section 6.

2 Detection Procedure for a Change in Scale

We are concerned with testing a stationary multidimensional Gaussian sequence (Xt)
against a change in scale, where after the change both the mean and variance are mul-
tiplied by some constant c. Each Xt is a d-dimensional column vector consisting of the
measurements of d different ‘sensors’ at (discrete) time t. In this section we explain
the general detection procedure; a more detailed description for the case of a change in
scale can be found in the following two sections.

To detect a change in the traffic streams, we monitor windows of size n ∈ N, i.e., at
time t the n most recent observations (in the sequel denoted by X1, . . . , Xn) are tested
in order to decide whether a change has occurred at some point k ∈ {1, . . . , n}. In other
words, we consider the hypotheses:

H0: No change has occurred within the window.
H1: A change occurred at some point within the window.

Thus, the alternative hypothesis is essentially the union of hypotheses:

H1(k): A change in scale occurred exactly at time k, for a specific k ∈ {1, . . . , n}.
It will turn out to be convenient to express the change point k via the window size n, that
is, we write k = nβ+1, where (throughout the paper) β ∈ B = {0/n, 1/n, . . . , (n − 1)/n}.

To set up the testing procedure, we may consider (A) testing the observations directly,
or (B) testing the extracted independent sequence of innovations – denoted by (εt) and
defined in Section 3. We list some of the benefits and drawbacks of both approaches in
Table 1; the details are explained in the sequel. Our method for testing a window of size
n can be summarized as follows.
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Table 1. Characteristics of (A) the observations and (B) the innovations based approach

(A) (B)

Suitable test statistic for changes in mean and
variance but also in coefficients

Suitable for detecting changes in mean or vari-
ance

Computationally expensive Recursive computation of LLR and reduced
dimensionality

How to define the threshold function in the
multidimensional case is unclear, unless there
is no shift in mean or data streams are inde-
pendent

We can compute the threshold function for the
change in scale explicitly

The process does not need to be invertible Requires invertibility

The observations are well-defined test statis-
tics

Since innovations are defined in terms of past
observations, initial conditions are required

(i) The log-likelihood ratio (LLR) test statistic Lnβ(·) for testing H0 against the sim-
ple alternative hypothesis H1(nβ + 1) is computed as either (A) L X

nβ(X) (when
considering the observations) or (B) L ε

nβ(ε) (when considering the innovations).
The two approaches are equivalent under H0.

(ii) Based on large deviations theory, the threshold b(β) is obtained as (A) bX(β) or
(B) bε(β); it is a function of β such that for any value of β asymptotically (for
large n) the probability of raising a false alarm is kept at level α.

(iii) In line with [5, Ch. VI.E, Eqn. (43)] we reject H0 (“raise an alarm”)
(A) as soon as

max
β∈B

(
1
n
L X

nβ(X) − bX(β)

)
:= max
β∈B

(
1
n

log
gnβ(X)

fn(X)
− bX(β)

)
> 0, (1)

where fn and gnβ are the joint densities of X1, . . . , Xn under H0 and H1(nβ+1)
respectively.

(B) Accordingly, for the innovations based approach, we raise an alarm when

max
β∈B

(
1
n
L ε

nβ(ε) − bε(β)

)
> 0. (2)

We explain steps (i) and (ii) in greater detail in Sections 3 and 4.

3 Computation of the Log-Likelihood Ratio Test Statistic

We now formulate the null hypothesis and the alternative hypothesis for the case of a
change in scale in terms of an appropriate test statistic, for (A) the observations based
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approach, and (B) the innovations based approach. Approach (A) can be used to detect
a change point in a stationary Gaussian process, for approach (B) we restrict our ex-
position to linear processes1, which allows for the rich class of vector autoregressive
moving average (VARMA) processes. In both cases we may assume, without loss of
generality, that the pre-change process has mean vector 0 (we may subtract the original
mean vector to achieve this).

(A) For the observations based approach, to compute the LLR, we consider the n obser-
vations within each window jointly. The joint distribution of X := (XT

1 , . . . , X
T
n )T

under H0 is Nnd (0, Σ), a Gaussian distribution of dimension nd. We write the co-
variance matrix Σ of the joint observations as a block Toeplitz matrix of the indi-
vidual autocovariance matrices Γh = Cov (Xt, Xt−h).
Now we can formulate H0 and H1 more specifically. For all β ∈ B we want to test

H0 : X ∼ Ndn (0, Σ) vs. H1(nβ + 1) : X ∼ Ndn (ν, T ) ,

where

ν =
(
0T . . . , 0T , ν̄T , . . . , ν̄T

)T
, T =

(
Σ(dnβ) 0

0 c · Σ(dn(1−β))

)
,

with ν̄ = cμ− μ, μ denoting the mean vector before centering, and where m in Σ(m)

denotes the dimension of the matrix. For method (A), we assume that the sequence
before nβ + 1 is independent of the sequence afterward. This assumption enables
computations, and is reasonable if a change has taken place, and the cause of the
change is ‘external’ (as in the examples mentioned in the introduction).
The LLR for testing X ∼ Nnd (0, Σ) against the simple alternative hypothesis X ∼
Nnd (ν, T ) can be computed as

L X
n (X) =

1
2

log |Σ | − 1
2

log | T | + 1
2

XTΣ−1 X − 1
2

(X − ν)TT−1(X − ν).

Filling in ν, Σ, T , the LLR for testing against a change in scale at a specific point
nβ + 1 becomes

L X
nβ(X) = −1

2
dn(1 − β) log c +

1
2

X̌
T (
Σ(dn(1−β)))−1

X̌

− 1
2c

(
X̌ − ν(dn(1−β)))T (

Σ(dn(1−β)))−1 (
X̌ − ν(dn(1−β))) , (3)

where X̌ := (XT
nβ+1, . . . , X

T
n )T.

(B) For the innovations based approach we need to impose further assumptions (see
also Table 1). We focus on linear processes, i.e., we assume that Xt can be modeled
as

Xt =

∞∑
j=0

Ψ j Zt− j =: Ψ (L)Zt, (4)

1 Generalization may be possible using Wold’s decomposition theorem.
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(L denoting the lag operator: LZ t := Zt−1), with uncorrelated error terms Zt ∼
Nd (0, Ω), and where the Ψ j form an absolutely summable sequence of coefficient
matrices [3].
We further need to assume that the process be invertible, i.e., that i.i.d. the sequence
of innovations

εt := Xt − E (Xt | Xt−1, . . . , X1) (5)

can be extracted as a well-defined function of present and past observations (lie in
their closed linear span). If Xt is given by a VARMA(p,q) process

Xt =

p∑
i=1

AiXt−i +

q∑
j=1

B jZt− j + Zt,

then a well-known sufficient condition for invertibility is that |B(z)| has no roots on
the unit circle, where B(z) = I +

∑q
j=1 B jz j denotes the MA-polynomial [3].

Given such an invertibility assumption holds, a proportional change in the co-
variance matrix of the observations (i.e. covariances are inflated by c) can be de-
tected as a proportional change in the covariance matrix of the innovations, as it
is known [3, Eqn. (11.1.13)] that under H0 the autocovariances of Xt are given
by Γh =

∑
j Ψ jΩΨ

T
j−h. It has been shown in [2] that (for VARMA processes) the

sequence of innovations is a sufficient statistic for detecting a change in the mean
value.
Then, defining θ = Ψ (L)−1ν̄, the above hypotheses can equivalently be formulated
as

H0 : εt ∼ Nd (0, Ω) , t = 1, . . . , n vs. H1(nβ + 1) :

⎧⎪⎪⎨⎪⎪⎩
εt ∼ Nd (0, Ω) , t ≤ nβ,

εt ∼ Nd (θ, cΩ) , t > nβ.

Since the innovations are independent, the LLR L ε
nβ(ε) for testing H0 against

H1(nβ + 1) can be expressed as the sum of the LLRs at time t > nβ (since the
LLR is zero for t ≤ nβ). Therefore, L ε

nβ becomes

L ε
nβ (ε) =

n∑
t=nβ+1

1
2

log
1
cd

+
1
2
εT

t Ω
−1εt − 1

2c
(εt − θ)T Ω−1 (εt − θ) . (6)

Note that in this case we can compute the LLR for each new window recursively
(for details, see the literature on CUSUM, e.g., [6]). On the other hand, in practice
the true innovations after the change points can only be estimated as the recursion
(5) requires initial conditions. The effect is minor if the order of the process is
small (see Section 5).

The LLR test statistics obtained for approach (A) and (B) are compared with the asso-
ciated threshold functions as derived in the next section.

4 Derivation of the Threshold Function

In this section we show how to obtain the threshold function as bX(β) for the obser-
vations based or bε(β) for the innovations based approach. We first outline the main
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idea behind the derivation of the threshold function for both approaches (therefore, the
subscripts X and ε are omitted).

Let P0,E0 denote probability and expectation under H0. When testing H0 against
H1(nβ+1) for any fixed β ∈B, the probability of a type I error is given byP0

(
Lnβ(·)/n >

b(β)
)
. Since we wish this probability to be small, it certainly holds that b(β) > E0Lnβ(·)/n,

so that we are indeed concerned with a rare event. LD theory suggests that for fixed β the
false alarm probability can be approximated by

P0
(1
n
Lnβ(·) > b(β)

) ≈ exp
(
−nI

(
b(β)

))
,

where I denotes a function specified below. Recall that we wish the false alarm prob-
ability on the left hand side to be kept at a small level α. This suggests to pick the
threshold function b such that it satisfies

α = exp
(
−nI

(
b(β)

))
(7)

for all β ∈ B. This choice entails that raising a false alarm is essentially equally likely ir-
respective of the supposed location of the change point within the
window.

Now let us make the above more rigorous. The limiting logarithmic moment gener-
ating function Λ(λ) associated with the distribution of the LLR is defined as

Λ(λ) := lim
n→∞

1
n

log Mn(λ) := lim
n→∞

1
n

logE0

(
eλLnβ(·)) ; (8)

we assume for now that this function exists and is finite for every λ ∈ R. Define I as
the Fenchel-Legendre transform of Λ(λ), that is,

I
(
b(β)

)
= sup
λ∈R

(
λb(β) − Λ(λ)

)
. (9)

Provided that Λ exists and is finite, by the Gärtner-Ellis theorem [5,9], it holds that

lim
n→∞

1
n

logP0(Lnβ(·) > nb(β)) = −I (
b(β)

)
.

In accordance with the idea expressed in (7), we choose the threshold function b(β)
such that it satisfies

−I (b(β)) = lim
n→∞

1
n

logP0

(
1
n
Lnβ(·) − b(β) > 0

)
= − γ (10)

for some positive γ = −1/n logα, across all β ∈ B. Asymptotically, as n → ∞, the
probability of raising a false alarm within the window is then kept at level α.

To be able to obtain b(β) from (10), we need to compute the limiting log-moment
generating function Λ(λ) in more explicit terms (this way we also check that it indeed
exists and is finite for all λ).
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(A) In Section 3 of [11] we outlined how to compute the moment generating function
Mn(λ) for testing X ∼ Nnd (0, Σ) against X ∼ Nnd (ν, T ) (for arbitrary ν, Σ, T ):

Mn(λ) =

( |Σ |
| T |

)λ/2 1
| λT−1Σ + (1 − λ)Idn |1/2

× exp

(
−λ

2
νTT−1ν +

λ2

2
νTT−1

(
λT−1 + (1 − λ)Σ−1

)−1
T−1ν

)
.

Filling in the specific ν, Σ, T for testing against a change in scale, this expression
reduces to

Mnβ(λ) = c−λdn(1−β)/2
(
λ

c
+ 1 − λ

)−dn(1−β)/2
× exp

(
ν̄Tsnβν̄

λ2 − λ
2(λ + c − λc)

)
,

where snβ denotes the sum of all d dimensional covariance matrices within the
lower right dn(1 − β) × dn(1 − β) dimensional block matrix in Σ−1.
Using the expression we obtained for Mn(λ), the limiting log-moment generating
function as defined in (8) becomes

Λ(λ) = −1
2
λd(1−β) log(c)− 1

2
d(1−β) log

(
λ

c
+ 1 − λ

)
+ lim

n→∞
1
n
ν̄Tsnβν̄

λ2 − λ
2(λ + c − λc)

.

We can evaluate the limit in the specific cases (i) Xt can be modeled as d indepen-
dent ARMA processes

Xit = Zit +

p∑
j=1

ai jXi,t− j +

q∑
j=1

bi jZi,t− j,

(i.e., the d monitored traffic streams are independent), or (ii) there is no shift in
mean, i.e. ν̄ = 0. The latter may happen, for example, if the number of users stays
constant while the variance of their load changes (e.g. due to application changes).

(i) In the first case, the autocovariance matrices Γh are diagonal, and thus the
expression ν̄T snβν̄ reduces to

∑d
i=1 ν̄

2
i ti,nβ, where ν̄i is the size of the mean

shift of Xit, and ti,nβ denotes the sum of the entries of the lower right n(1 −
β) × n(1− β)-dimensional block matrix of Σ−1

i , the inverse covariance matrix
of Xit. From [11, Lemma 1] we have

lim
n→∞

ti,nβ
n(1 − β) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 −∑p

j=1 ai j

σi

(
1 +

∑q
j=1 bi j

)
⎞⎟⎟⎟⎟⎟⎟⎟⎠

2

=: τi,

and hence, the limiting log-moment generating function exists and is finite.
The threshold bX(β) can then be evaluated by putting the resulting rate function

sup
λ

⎧⎪⎪⎨⎪⎪⎩λbX(β) +
1
2

(1 − β)
⎡⎢⎢⎢⎢⎢⎢⎣λd log c + d log

(
λ

c
+ 1 − λ

)
− λ2 − λ
λ + c − λc

d∑
i=1

ν̄2i τi

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭
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equal to γ. Defining η = −d (1 − c)2 /2
∑d

i=1 ν̄
2
i τi, we compute the optimizing

λ to be

c
1 − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝η +

√
η2 + c − d + 1 +

4cη
1 − c

(
b(β)
1 − β +

1
2

log c

)⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1

− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (11)

The threshold function bX(β) can be evaluated using standard numerical
procedures.

(ii) If there is no shift in mean, then Mn(λ) does not depend on snβ. Hence the
limiting log-moment generating function always exists, and bX(β) follows
from

γ = I (bX(β)) = sup
λ

(
λbX(β) +

1
2

d(1 − β)
[
λ log c + log

(
λ

c
+ 1 − λ

)])
.

The optimizing λ is

−
(

d(1 − β)
2bX(β) + d(1 − β) log c

+
c

1 − c

)
.

(B) When using the innovations based approach, we may make use of the fact that
innovations are independent, in which case the LLR can be written as a sum of the
form

∑n
t=nβ+1 st as given in (6). It follows that Λ(λ) exists as a finite number:

Λ (λ) = lim
n→∞

1
n

log
[
E0 exp (λs1)

]n(1−β)
= (1 − β) logE0 exp (λs1) .

The threshold can be found from putting

sup
λ

[
λbε(β) +

1
2

(1 − β)
(
λd log c + d log

(
λ

c
+ 1 − λ

)
− λ2 − λ
λ + c − λcθ

TΩ−1θ

)]
(12)

equal to γ.
The optimizing λ is similar to (11) (replace η by −d (1 − c)2 /2θTΩ−1θ).

As expected both approaches yield the same threshold function in case there is no shift
in mean. We now know how to compute the LLR and the threshold function either using
the observations or the innovations based approach. In the next section we evaluate the
performance of the resulting detection procedures (1) and (2) respectively.

5 Numerical Evaluation

In this section we summarize the results of our numerical experimentation, carried out
with MATLAB. We investigate the performance of detection methods (A) and (B) with
respect to the false alarm rate and the detection delay, when testing vector autoregressive
(VAR) processes against a change in scale.

We begin in Section 5.1 with an illustrative example which outlines how the testing
methods (A) and (B) could be applied in practice. Then, in Section 5.2, we explain how
the performance measures, false alarm rate and detection delay, are evaluated. Finally, in
Section 5.3, we demonstrate the potential gain from using multidimensional detection
procedures by comparing the multidimensional procedure to the corresponding one-
dimensional procedure that tests each data stream individually.
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5.1 On-line Detection

Let us first explain how to apply the detection methods set up in this paper for on-line
detection of changes in scale in multidimensional Gaussian processes. We assume that
one new observation arrives at a time, and the n most recent observations are being
tested against a change with scaling factor c. As an illustrative example, we run the
following procedure.

– We simulate a VAR(1) process of length N according to

Xt = AXt−1 + Zt, (13)

where Zt is Gaussian white noise with Zt ∼ N (0, Ω) for t = 1, . . . , k − 1, 0 < k <
N, and Zt ∼ N (θ, cΩ) afterward.

– We consider windows of size n < k, adding one new observation at a time while
deleting the oldest.

– In order to test whether a change in scale with scaling factor c has occurred in a
particular window, we determine whether (A) criterion (1) holds true if the LLR
is computed as a function of observations, or (B) criterion (2) holds true if the
LLR is expressed as a function of innovations. In the latter case, the innovations
are extracted as Xt − AXt−1 for all t, and thus, the assumed independence between
pre- and post-change observations is neglected. We do so to account for the fact
that in practice the true value of εk is not known as it depends on unknown initial
values.

– We repeat the above steps 15, 000 times, and divide the total number of alarms
raised for each window by 15, 000 so as to obtain the alarm ratio for each window.

Two examples are presented in Fig. 1. It can be seen that the false alarm rate (the ratio
of alarms before the change point as indicated by the vertical line) is indeed kept at a
low level, whereas the alarm rate increases gradually to 1 after the change has occurred.
It is not surprising that the detection ratio depends on the position of the change point
within the window – the more observations have been affected by the change, the easier
the change can be detected.

The figure shows that method (B) results in a slightly higher detection rate than
method (A). This may be due to the fact that in the test set-up for approach (A) we
neglected the dependence between X1, . . . , Xk−1 and Xk, . . . , XN under H0.

As expected, we also see that if ν̄ � 0, i.e., if there is a change in the mean value also,
then both false alarm rate and detection rate improve; the shift in mean is an additional
indicator that a change has occurred (for a formal proof of this intuitive result, see [2,
Ex. 4.1.9]). In the following, we focus on the worst-case setting ν̄ = 0 when evaluating
the performance measures, false alarm ratio and the detection delay, in the next section.

5.2 Performance Measures

To evaluate the false alarm rate, we perform the above experiment; however, instead of
shifting windows along a series of length N > n, we now consider a single window of
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(a) Mean shift ν̄ = (0, 0, 0)T
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(b) Mean shift ν̄ = (2, 2, 2)T

Fig. 1. Alarm ratios obtained when testing a three-dimensional AR(1) sequence of observations,
simulated according to (13) with diagonal coefficient matrix A with diagonal entries 0.5 and
diagonal input variance matrix Ω with diagonal entries 1, against a change in scale with c = 2,
α = 0.01, window size n = 50. The first window containing the change is indicated by a vertical
line.

observations that all correspond to H0. Then every alarm that is raised in 15, 000 runs
is a false alarm, and hence, the number of change points detected on average gives an
estimate for the false alarm rate. The significance level is set to α ∈ {0.01, 0.05}, and
we pick c = 2 (as no change is simulated, the choice of c has little impact on the test
results).

In order to evaluate the detection delay, we simulate a VAR(1) sequence where the
first 49 observations correspond to H0 while all later observations have been affected
by the change. We test windows of size 50, at each point in time adding one new ob-
servation and dropping the oldest (thus, in window i only i out of 50 observations have
been affected by the change). The procedure is stopped as soon as the change has been
recognized, i.e., when the first alarm was raised. We then take the number of the first
window for which this happened, averaged over 30, 000 runs (to obtain an estimate for
the average run length under H1, i.e. the number of decisions that have to be taken
before the change is detected), and subtract one to obtain the detection delay.

The results of these experiments, where data streams are tested jointly, are presented
in Table 2 for a number of two-dimensional examples (next to the results from testing
the streams separately as explained in Section 5.3). It can be seen that – as expected –
the outcome of the experiments is similar for methods (A) and (B), and the false alarm
rate is generally close to the significance level α as desired. Table 2 also shows that the
detection delay is small, and provides quantitative insight into the the trade-off between
the false alarm rate and the detection delay: It suffices if 22% of the observations have
been affected by the change when α = 0.01 while less than 12% need to be affected
when α = 0.05.

These and similar examples suggest that the test performance is affected neither by
the sign (positive or negative) nor by the magnitude of the correlation induced by Ω
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Table 2. False alarm rates and detection delays obtained from testing two-dimensional VAR(1)
sequences, using (A) the observations-based approach and (B) the innovations-based approach,
with c = 2, window size n = 50, mean zero. Streams are tested jointly with significance level α,
and separately (ignoring interdependence) with significance level α/2. In the latter case an alarm
is raised as soon as a change point is found in any of the d streams. The standard error is given in
parentheses.

Example α Testing
False alarm rate Delay

(A) (B) (A) (B)

A =

(
0.5 0
0 0.5

)
, Ω =

(
1.0 0
0 1.0

)
0.01

separately
0.007 0.007 14.278 14.139

(0.0006) (0.0006) (0.075) (0.075)

jointly
0.008 0.007 10.510 10.289

(0.0007) (0.0007) (0.058) (0.058)

0.05
separately

0.031 0.032 7.998 7.818
(0.0014) (0.0015) (0.050) (0.050)

jointly
0.038 0.038 5.992 5.802

(0.0016) (0.0016) (0.040) (0.040)

A =

(
0.5 0.4
0.4 0.5

)
, Ω =

(
1.0 0
0 1.0

)
0.01

separately
0.397 0.374 3.264 3.438

(0.0040) (0.0040) (0.036) (0.037)

jointly
0.008 0.007 7.384 6.970

(0.0007) (0.0007) (0.055) (0.054)

0.05
separately

0.552 0.529 1.527 1.625
(0.0041) (0.0041) (0.022) (0.023)

jointly
0.038 0.038 4.105 3.768

(0.0016) (0.0016) (0.037) (0.036)

A =

(
0.5 0
0 0.5

)
, Ω =

(
1.0 0.5
0.5 1.0

)
0.01

separately
0.006 0.006 15.502 15.340

(0.0006) (0.0006) (0.082) (0.082)

jointly
0.008 0.007 10.509 10.289

(0.0007) (0.0007) (0.058) (0.058)

0.05
separately

0.031 0.031 8.782 8.634
(0.0014) (0.0014) (0.055) (0.055)

jointly
0.038 0.038 5.992 5.802

(0.0016) (0.0016) (0.040) (0.040)

A =

(
0.5 0.4
0.4 0.5

)
, Ω =

(
1.0 0.5
0.5 1.0

)
0.01

separately
0.515 0.485 2.674 2.919

(0.0041) (0.0041) (0.035) (0.037)

jointly
0.008 0.007 7.458 7.023

(0.0007) (0.0007) (0.055) (0.055)

0.05
separately

0.640 0.610 1.295 1.428
(0.0039) (0.0040) (0.023) (0.022)

jointly
0.038 0.038 4.146 3.796

(0.0016) (0.0016) (0.037) (0.036)
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because the change size is relative to the size of the covariances if ν̄ = 0. (The effect of
the shift size ν̄ has been investigated in [11] for the case of a change in mean only.) A
higher correlation via A on the other hand seems to have a positive effect on the delay
– the effect of a change is enhanced due to the cross correlation.

5.3 A Case for Multidimensional Testing Procedures

In this section we demonstrate the merits of multidimensional detection procedures. In
general, the signature of a change in scale is stronger when it affects d > 1 data streams
simultaneously. In fact, in case the d tested data streams are independent, and the detec-
tion probability for each of them is p, then the detection probability when testing the d
streams simultaneously is 1− (1− p)d. For example, if the detection probability for one
data stream is 0.8, then the detection probability for testing three i.i.d. data streams si-
multaneously is 0.992. As a consequence, the multidimensional procedure outperforms
a procedure that tests one of the individual data streams.

The more interesting question is whether the multidimensional procedure (testing
data streams jointly) performs better than a one-dimensional approach where each of
the d data streams is tested separately but an alarm is raised as soon as a change has
been detected in any of the streams. In the latter case the significance level is corrected
using the (conservative) Bonferroni method [7], that is, it is put to α/d for each one-
dimensional testing procedure.

The main conclusion we draw from the results presented in Table 2 is that indeed
the multidimensional detection procedure outperforms the method of separate testing
of data streams in terms of false alarm rate and detection delay, even if the sequences
are independent. However, it should be noted that this benefit comes at the cost of a
longer computation time.

Furthermore, it can be seen that testing the data streams separately results in a con-
siderably larger false alarm rate as soon as the data streams are mutually dependent via
the coefficient matrix A; due to the increased correlation, the process Xt makes larger
jumps, but the separate testing does not account for this. It is surprising that the perfor-
mance in terms of detection delay is good when streams are tested separately, but this
may be explained by the high false alarm rate.

Cross-correlations in the covariance matrix of the innovations process on the other
hand have a negative impact on the detection delay when testing the streams separately,
whereas the false alarm rate remains low. This is because the fluctuations of the process
Xt are of smaller magnitude if the error terms Zit are cross-correlated. (In the example
given in the table, Zt is generated as Zt = Ω1/2Yt, where the two components of Yt

are independent standard Normals. Therefore, Z1t = Y1t and Z2t = 0.5Y1t + 0.866Y2t.
This way it can be seen that jumps of Zt are more moderate than when there is no
cross-correlation in Ω.)

6 Conclusion

In this paper we explained how to set up a testing procedure for detecting a change in
scale within multidimensional serially correlated Gaussian processes, and found appro-
priate threshold functions. In the networking context, this type of change may occur
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for instance as a change in scale in correlated traffic streams due to an increase in the
number of users, or due to an attack on the network.

We applied the testing procedure to (A) the sequence of observations and (B) the se-
quence of innovations. We listed benefits and drawbacks of each approach, and saw that
both performed well in numerical experiments. We also demonstrated the supremacy of
multidimensional detection procedures – compared to one-dimensional testing meth-
ods – for detecting changes that affect multiple data streams simultaneously, even if the
data streams are independent.

A number of interesting questions arise. For example, can we quantify the advantage
of approach (B) over (A) in terms of running time? Can we compute the threshold
function in more general cases? How can we generalize the LD testing procedure, for
example, to detect changes in processes that are not purely indeterministic, or to detect
different types of changes, such as changes in correlation structure? We hope to address
these questions in future research.
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Abstract. In data centers, there are a huge number of servers which
consume a large amount of energy. Reducing a few percent of the power
consumption leads to saving a large amount of money and also saving
our environment. In the current technology, an idle server still consumes
about 60% of its peak and thus a simple way to save energy is shut-
down of idle servers. However, when the workload increases, we have to
turn on the OFF servers. A server needs some setup time to be active
during which the server consumes energy but cannot process any job.
Furthermore, a waiting job may abandon without service after a long
waiting time which may be incurred by setup times. In this paper, we
consider the power saving and the performance trade-off in data centers
through a multiserver queueing model with setup time and impatient
customers. We formulate the system by a level-dependent QBD process
obtaining the stationary distribution and some performance measures.
Our numerical results provide various insights into the performance of
the system.

Keywords: multiserver queues, cloud computing, data centers, power-
saving, setup time, abandonment, ON-OFF policy.

1 Introduction

1.1 Motivation

Cloud computing is a new paradigm where companies make money by providing
computing services through the Internet [12]. Customers use software and hard-
ware from a provider through the Internet so they do not have to maintain the
resources by themselves. The core part of cloud computing is data center where
a huge number of servers are available. The key issue for the management of
data centers is to minimize the power consumption while keeping an acceptable
service level for customers. It is reported that under the current technology an
idle server still consumes about 60% of its peak processing jobs [2]. A simple way
to save energy is to turn off immediately idle servers. This method is referred to
as ON-OFF policy in the literature [6]. However, if the workload increases, OFF
servers should be turned on so as to serve awaiting customers. Furthermore,
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servers need some setup time to be active during which they consume power
but cannot process jobs. Therefore, customers may have to wait a longer time
in comparison with the case where all the servers are always ON. Furthermore,
customers tend to be impatient if the waiting time is too long. If the waiting
time is greater than the patience time of a customer, the customer abandons
the system. From a management point of view, the abandonment of customers
implies the loss of profit for the provider. Thus, setup time may incur both extra
waiting time and abandonment. It is important to understand the situations un-
der which the ON-OFF policy outperforms the ON-IDLE policy where a server
is always ON.

Furthermore, the switching rate, i.e., the mean number of ON-OFF switches
per unit time is also an important performance measure. This is because a server
instantaneously consumes a large amount of energy when it is switched from
OFF to ON. This incurs an instantaneous increase in power consumption which
has a negative effect on the whole system [6]. Therefore, the relations between,
power consumption, abandonment rate and switching rate on various parameters
should be carefully evaluated. This motivates us to consider multiserver queue
with setup cost and impatient customers.

1.2 Related Work

Although queues with setup time have been extensively investigated in the
literature, most of papers deal with single server case without impatient cus-
tomers [3,4,5,17]. These papers deal with single server queues with general service
time distribution. Artalejo et al. [1] present a thorough analysis for multiserver
queues with setup time in which the authors consider the case where at most
one server can be in setup mode at a time. This mechanism is referred to as
staggered setup policy in the literature [6]. It should be noted that the model
in [1] is formulated by a level-independent quasi-birth-and-death process (QBD)
for which an iterative solution is available [9]. Using some special structure, Ar-
talejo et al. [1] show an analytical solution where the stationary distribution is
recursively obtained without any approximation. Artalejo et al. [1] also point out
that the rate matrix of the underlying QBD is explicitly obtained. Recently, mo-
tivated by applications in data centers, multiserver queues with setup time have
been extensively investigated in the literature. In particular, Gandhi et al. [6,7,8]
analyze multiserver queues with setup time. They derive explicit solution for the
staggered setup policy and some closed form approximations for the ON-OFF
policy where any number of servers can be in the setup mode.

Mitrani [12] considers models for server farms with setup cost. The author
deals with the case where a group of reserve servers are shutdown concurrently
if the workload is lower than some lower threshold and are powered up concur-
rently when the workload exceeds some upper threshold. Due to this concurrent
shutdown and setup, the underlying Markov chains in [12] have a homogeneous
birth-and-death structure which allows closed form solutions. The author investi-
gates the optimal lower and upper thresholds for the system. Mitrani [10] extends
his analysis to the case where each customer has an exponentially distributed
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random timer exceeding which the customer abandons the system. Mitrani [11]
also considers a more complicated control with multiple lower and upper thresh-
olds. Slegers et al. [16] formulate power-saving server farms using a Markov
decision process (MDP) and propose some heuristic policies.

It should be noted that the threshold control policy in [10,11,12] operates in a
centralized manner while the ON-OFF policy works on a decentralized manner.
Thus the implementation of the latter is easier than that of the former.

1.3 Contribution

As is pointed out in Gandhi et al. [6], from an analytical point of view the most
challenging model is the ON-OFF policy where the number of servers in setup
mode is not limited. Gandhi et al. [6] present some approximation models for
the ON-OFF policy which work well in practical parameter settings. Because
setup time not only incurs extra waiting time but also causes abandonments,
the impatient behavior of customers should be carefully taken into account. The
main aim of this paper is a numerical investigation of the multiserver queueing
model with setup time under the ON-OFF policy and impatient customers. The
abandonment of customers leads to the inhomogeneity in the underlying Markov
chain which allows analytical solutions for only some special cases. More specif-
ically, the underlying Markov chain is a level-dependent quasi-birth-and-death
process (LDQBD) whose stationary distribution can be numerically obtained
by an efficient algorithm by Phung-Duc et al. [13]. In this paper, we adopt
the algorithm in [13] to investigate the stationary distribution of the model. A
comparison with some exact formulae reveals that numerical results are highly
accurate. Furthermore, for the single server case, we obtain exact solutions for
the partial generating functions of the joint stationary distribution of the state
of the server and the number of waiting customers.

The rest of this paper is organized as follows. Section 2 describes the model
in details. Section 3 presents a level-dependent QBD formulation for the model
and its analysis. Section 4 is devoted to an analytical solution for the single
server case. Section 5 presents some numerical results and Section 6 concludes
the paper and gives some remarks.

2 Model

We consider M/M/c queueing systems with setup time and abandonment. Cus-
tomers arrive at the system according to a Poisson process with rate λ. In this
system, a server is shutdown immediately if it has no job to do. An arriving
job seeing an OFF server turns on the server. However, a server needs some
setup time to be active so as to serve a waiting customer. We assume that the
setup time follows an exponential distribution with mean 1/ν. Let j denotes the
number of customers in the system and i denotes the number of active servers.
The number of servers in setup process is given by min(j − i, c− i). Under these
assumptions, the number of active servers does not exceed the number of cus-
tomers in the system. It should be noted that in this model a server is in either
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busy, off or setup. Furthermore, we assume that each waiting job has an expo-
nentially distributed timer with mean 1/γ. If the waiting time is larger than the
timer, awaiting job leaves the system without receiving a service. We assume
that the service time of jobs follows an exponential distribution with mean 1/μ.

3 Level-Dependent QBD Process

In this section, we present the level-dependent quasi-birth-and-death process for
the model.

Let C(t) and N(t) denote the number of busy servers and the number of jobs
in the system (including those in service), respectively. Under the assumptions
made in Section 2, it is easy to confirm that {X(t) = (N(t), C(t)); t ≥ 0} forms
a Markov chain in the state space

S = {(i, j); j = 0, 1, . . . ,min(i, c), i ∈ Z+},

where Z+ denotes the set of non-negative integer. The infinitesimal generator of
{X(t); t ≥ 0} is given by

Q =

⎛⎜⎜⎜⎜⎜⎜⎝
Q

(0)
1 Q

(0)
0 O O · · ·

Q
(1)
2 Q

(1)
1 Q

(1)
0 O · · ·

O Q
(2)
2 Q

(2)
1 Q

(2)
0 · · ·

O O Q
(3)
2 Q

(3)
1 · · ·

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where O denotes a zero matrix with an appropriate dimension. The block ma-

trices Q
(i)
2 , Q

(i)
1 and Q

(i)
0 (i ≥ c) are explicitly given as follows.

Q
(i)
0 = λI,

Q
(i)
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q
(i)
0 cν 0 · · · · · · 0

0 −q
(i)
1 (c− 1)ν

. . .
...

0 0 −q
(i)
2

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . −q
(i)
c−1 ν

0 · · · · · · 0 0 −q
(i)
c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Q
(i)
2 = diag(iγ, (i− 1)γ + μ, . . . , (i− c)γ + cμ),

where q
(i)
j = λ + (c − j)ν + (i − j)γ + jμ and I is the identity matrix of an

appropriate size.
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For i = 0, 1, . . . , c− 1, Q
(i)
2 , Q

(i)
1 and Q

(i)
0 are (i+1)× (i+2), (i+1)× (i+1)

and (i + 1)× i matrices whose contents are given as follows.

Q
(i)
0 =

⎛⎜⎜⎜⎜⎝
λ 0 · · · 0 0

0 λ
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 λ 0

⎞⎟⎟⎟⎟⎠ ,

Q
(i)
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−q
(i)
0 iν 0 · · · · · · 0

0 −q
(i)
1 (i− 1)ν

. . .
...

0 0 −q
(i)
2

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . −q
(i)
i−1 ν

0 · · · · · · 0 0 −q
(i)
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Q
(i)
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iγ 0 · · · · · · 0

0 (i− 1)γ + μ
. . .

. . .
...

0 0
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . γ + (i− 1)μ

0 · · · · · · 0 iμ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where q
(i)
j = (i − j)ν + (i− j)γ + jμ (j = 0, 1, . . . , i).

In what follows we assume that {X(t); t ≥ 0} is positive recurrent and thus
the stationary distribution uniquely exists. Indeed, the Markov chain is always
ergodic if γ > 0 while if γ = 0, the ergodic condition is simply λ < cμ due to the
fact that eventually all the servers are active if the queue length is long enough.

We define the stationary probabilities and vectors as follows.

πi,j = lim
t→∞Pr(N(t) = i, C(t) = j), (i, j) ∈ S,

πi = (πi,0, πi,1, . . . , πi,min(i,c)), i ∈ Z+,

π = (π0,π1, . . . ).

The stationary distribution π is the unique solution of

πQ = 0, πe = 1,

where 0 and e represent a row vector of zeros and a column vector of ones with
an appropriate size. According to the matrix analytic methods [15], we have

πi = πi−1R
(i), i ∈ N,
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where N = {1, 2, . . .} and π0 is the solution of the boundary equation

π0(Q
(0)
1 +R(1)Q

(1)
2 ) = 0, π0(e+R(1)e+R(1)R(2)e+ · · · ) = 1.

Here {R(i); i ∈ N} is the minimal nonnegative solution of the following equation

Q
(i−1)
0 +R(i)Q

(i)
1 +R(i)R(i+1)Q

(i+1)
2 = O. (1)

Equation (1) is equivalent to

R(i)
(
Q

(i)
1 +R(i+1)Q

(i+1)
2

)
= −Q

(i−1)
0 , (2)

or

R(i) = −Q
(i−1)
0

(
Q

(i)
1 +R(i+1)Q

(i+1)
2

)−1

. (3)

Letting Q(i) = Q
(i)
1 +R(i+1)Q

(i+1)
2 , we observe that Q(i) is invertible because it

represents the defective infinitesimal generator of a Markov chain. We define the
function Ri(·) as follows.

Ri(X) = −Q
(i−1)
0

(
Q

(i)
1 +XQ

(i+1)
2

)−1

.

Phung-Duc et al. (2010) propose an algorithm for R(i) based on Lemma 1 below.

Lemma 1 (Proposition 2.4 in [13]). it We define {R(i)
k ; k ∈ Z+} as follows.

R
(i)
0 = O, R

(i)
k = Ri

(
R

(i+1)
k−1

)
, k ∈ N,

or equivalently

R
(i)
k = Ri ◦Ri+1 ◦ · · · ◦Ri+k−1(O), k ∈ N,

where f ◦ g(·) = f(g(·)). We then have limk→∞ R
(i)
k = R(i).

Corollary 2. {R(n);n ∈ N} are upper diagonal matrices.

Proof. We observe that Q
(i)
0 , Q

(i)
1 (i ∈ Z+) and Q

(i)
2 (i ∈ N) are upper triangular

matrices. Thus, it is easy to check that R
(n)
1 is an upper diagonal matrix too.

Consequently, we confirm from the definition that R
(n)
k is an upper diagonal

matrix ∀n, k ∈ N. Therefore, it follows from Lemma 1 that R(n) is also an upper
diagonal matrix.

Remark 1. Based on Lemma 1, approximations to the rate matrices and the
stationary distribution can be calculated by the algorithms in [13]. The main
step is the backward calculation in (3) and Lemma 1 whose complexity might be
improved using the sparsity presented in Corollary 2. We refer to Appendix A
for details. A similar technique is also used in [14].
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4 Single Server Case

In this section, we derive the analytical solution for the single server case. Let S(t)
denote the number of active servers, i.e., S(t) = 0 if the server is not active and
S(t) = 1 if the server is active. Let Q(t) denote the number of waiting customers.
Let pi,j denote the stationary probability that S(t) = i and Q(t) = j. We write
down the balance equations as follows.

λp0,0 = γp0,1 + μp1,0, (4)

(λ+ iγ + ν)p0,i = λp0,i−1 + (i + 1)γp0,i+1, i = 1, 2, . . . , (5)

(λ+ μ)p1,0 = νp0,1 + (γ + μ)p1,1, (6)

(λ+ ν + iγ)p1,i = λp1,i−1 + νp0,i+1 + [(i + 1)γ + μ]p1,i+1, i = 1, 2, . . . . (7)

We define the partial generating functions as follows.

p0(z) =

∞∑
i=0

p0,iz
i, p1(z) =

∞∑
i=0

p1,iz
i.

Transforming the balance equations (4) and (5), we obtain

λp0(z) + ν(p0(z)− p0,0) + γzp′0(z) = λzp0(z) + γp′0(z) + μp1,0,

yielding

p′0(z) =
[
λ

γ
− ν

γ(z − 1)

]
p0(z) +

νp0,0 + μp1,0
γ(z − 1)

. (8)

Similarly, we obtain the following differential equation for p1(z) by transforming
equations (6) and (7).

(λ+ μ)p1(z) + γzp′1(z) = λzp1(z) +
ν

z
(p0(z)− p0,0) +

μ

z
(p1(z)− p1,0) + γp′1(z),

or equivalently

p′1(z) =
(
λ

γ
− μ

γz

)
p1(z) +

νp0(z)− (νp0,0 + μp1,0)

γz(z − 1)
. (9)

First, we solve equation (8). The general solution of (8) is given as follows.

p0(z) = B(z) exp

(
λ

γ
z

)
(1 − z)−

ν
γ , (10)

where

B(z) = C −
∫ z

0

exp

(
−λ

γ
u

)
(1− u)

ν
γ
νp0,0 + μp1,0
γ(1− u)

du.

Because p0(z) is analytic at z = 1, we have B(1) = 0, i.e.,

C =

∫ 1

0

exp

(
−λ

γ
u

)
(1 − u)

ν
γ
νp0,0 + μp1,0
γ(1− u)

du.
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and thus

B(z) =

∫ 1

z

exp

(
−λ

γ
u

)
(1− u)

ν
γ −1 νp0,0 + μp1,0

γ
du. (11)

Therefore, it follows from (10) and (11) that

p0(z) = (νp0,0 + μp1,0)p̂0(z),

where p̂0(z) is a known function. Next, we find explicit expression for p1(z). The
general solution for (9) is given by

p1(z) = exp

(
λ

γ
z

)
z−

μ
γ

∫ z

0

exp

(
−λ

γ
u

)
u

μ
γ −1 νp0,0 + μp1,0 − νp0(u)

γ(1− u)
du. (12)

Substituting p0(z) into (12) and arranging the result we eventually obtain

p1(z) = (νp0,0 + μp1,0)p̂1(z),

where

p̂1(z) = exp

(
λ

γ
z

)
z−

μ
γ

∫ z

0

exp

(
−λ

γ
u

)
u

μ
γ −1 1− νp̂0(u)

γ(1− u)
du.

It follows from the normalization condition

p0(1) + p1(1) = 1,

that

νp0,0 + μp1,0 =
1

p̂0(1) + p̂1(1)
.

Therefore, we have

p0(z) =
p̂0(z)

p̂0(1) + p̂1(1)
, p1(z) =

p̂1(z)

p̂0(1) + p̂1(1)
.

As a byproduct, we can obtain

p0,0 =
p̂0(0)

p̂0(1) + p̂1(1)
, p1,0 =

p̂1(0)

p̂0(1) + p̂1(1)
.

We derive simple formulae for the mean number of waiting customers in the
system. To this end, we calculate p′0(1) and p′1(1). Taking the limit of equation
(8) as z → 1, we obtain

p′0(1) =
λ

ν + γ
p0(1).

On the other hand, taking the limit of equation (9) as z → 1, we obtain

p′1(1) =
(λ− μ)p1(1) + νp′0(1)

γ
.

The mean number of waiting customers is given by p′0(1) + p′1(1).

Remark 2. Although we obtain closed form expressions for the partial generat-
ing functions, it is not convenient to compute the stationary distribution from
these expressions. The level-dependent QBD formulation in the Section 3 is more
efficient and can apply for general case with any c.
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5 Performance Measures and Numerical Results

5.1 Performance Measures

First of all, let E[C] denote the mean number of busy servers (serving a job).
We then have

E[C] =

∞∑
i=0

min(c,i)∑
j=0

πi,jj.

Let E[S] denote the mean number of setting up servers, i.e.,

E[S] =

∞∑
i=0

min(c,i)∑
j=0

πi,j(min(i, c)− j).

Let E[Q] denote the mean number of waiting customers. We then have

E[Q] =

∞∑
i=0

min(c,i)∑
j=0

πi,j(i− j).

We define the virtual waiting time as the time from the arrival epoch until the
time the customer either abandons or is served by the server. The mean virtual
waiting time is given by E[Q]/λ due to Little’s law. The mean number of OFF
servers by c− E[C]− E[S].

Let E[Sw] denote the mean number of switches per a time unit. It should be
noted that the number of switches from OFF to ON is equal to that from ON
to OFF. Thus, we have

E[Sw] =

c∑
i=1

πi,i × iμ.

We also have E[Sw] = E[S]ν according to the definition.

5.2 Numerical Result

In this section, we present numerical results to show the effect of parameters
on performance measures. We fix μ = 1 and c = 10 in all of our numerical
experiments. The stationary distribution is obtained by Algorithm 3 in [13] with
the truncation point N = 100, ε = 10−10 and kn = 2n − 1.

5.3 Non-abandonment Case

We observe from Figure 1 that the number of busy servers E[C] is insensitive to ν
and is equal to cρ. This fact agrees with Little’s law implying that the truncation
point N = 100 is large enough and that our algorithm yields accurate result.

Figure 2 presents the mean virtual waiting time against the traffic intensity.
We observe a very interesting phenomenon that the mean virtual waiting time is
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not monotonic increase with the traffic intensity. In particular, the mean virtual
waiting time decreases with ρ when ρ is small and increases with ρ when ρ is
relatively large. The reasons are as follows. The waiting time is influenced by the
number of servers that are in setup process. When the traffic is light, increasing
ρ leads to the increase in the number of setting up servers. As a result, the
mean virtual waiting time decreases. However, when the traffic intensity is large
enough, this influence is small, i.e., all the servers are likely ON. Thus, the mean
virtual waiting time depends on only the amount of offered traffic. As a result,
the mean virtual waiting time increases with the traffic intensity.

 0

 2

 4

 6

 8

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

N
um

be
r 

of
 S

er
vi

ng
 S

er
ve

rs

Traffic Intensity (ρ)

ν = 1
ν = 0.1
ν = 10

Fig. 1. Mean # of serving customers

 0

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

M
ea

n 
W

ai
tin

g 
T

im
e

Traffic Intensity (ρ)

ν = 1
ν = 10

ν = 0.1

Fig. 2. Mean virtual waiting time

5.4 Total Cost

As we have observed in previous sections, the ON-OFF policy may reduce the
power consumption. At the same time it also incurs some extra impatience of
customers leading to the loss of profit. Thus, in order to have a fair comparison
between the ON-OFF and the ON-IDLE policies we need a cost function taking
into account both the power consumption and the abandonment rate.

In the ON-OFF model, we assume that the power consumption per a time unit
for an ON server and a setting up server is Ca = 1. In the ON-IDLE model, we
assume that the power consumption per a time unit is Ca for an ON server while
it is Ci = 0.6 × Ca for an idle server. In addition, the cost per an abandoned
customer for both policies is Cr = 3. Under these assumptions, the cost for
ON-OFF model and ON-IDLE model are given in (13) and (14) as follows.

CON−OFF = Ca(E[C] + E[S]) + CrE[Q]γ, (13)

CON−IDLE = CaE[C] + Ci(c− E[C]) + CrE[Q]γ. (14)

It should be noted that equations (13) and (14) are calculated based on the model
in this paper and the corresponding M/M/cmodel with impatient customers and
without setup time, respectively.
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We observe from Figures 3 and 4 that there exists some νγ,ρ such that ON-
IDLE outperforms the ON-OFF policy when ν < νγ,ρ while the latter is superior
to the former for ν > νγ,ρ. This suggests that when the setup time is short enough
the ON-OFF policy outperforms the ON-IDLE one while it is better to keep the
servers always ON if the setup time is relatively long.
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5.5 Performance Against γ

We investigate the performance measures against the abandonment rate (γ). We
also fix the traffic intensity ρ = λ/(cμ) = 0.7, i.e., λ = 7.

We observe from Figure 5 that the mean number of busy servers decreases
with γ as is expected. This is because a large impatient rate γ implies the loss
of traffic and thus the mean number of busy servers decreases.

Figure 6 represents the switching rate against the abandonment rate. We also
observe that the switching rate increases and then decreases with γ when γ is
relatively small and relatively large, respectively. Figure 7 shows that the number
of OFF servers increases with γ as expected. An interesting point is that all the
curves cross at γ = 1.0.
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Figure 8 presents the number of starting up servers against γ. We observe
an interesting phenomenon where the mean number of servers in setup mode
increases with a relatively small γ and while decreasing with a relatively large
γ. The reason is given as follows. The number of servers in setup model is
influenced by two factors. First, the number of servers in setup mode decreases
with the abandonment rate when γ is large enough. This is because the increase
in the abandonment rate γ means that the more servers in setup mode should
be shutdown. As a result, E[S] decreases with γ.

On the other hand, increasing γ means that the number of abandoned cus-
tomers increases. This leads to the fact that a large amount of servers are shut-
down. However, they are eventually setup, leading to the increase in the number
of servers in setup mode E[S].
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5.6 Performance Against ν

In this section, we investigate the influence of ν on the performance measures.
We keep the traffic intensity λ/(cμ) = 0.7, i.e., λ = 7.

Figure 9 presents the mean number of busy servers against ν for γ = 0.1, 1, 10
and γ = 0. We observe that the number of busy servers increases with ν for
the cases γ = 0.1, 1 and 10 while keeping constant for the case γ = 0. It should
be noted that ν = 0 corresponds to the case where a customer never abandons
the system. In this case, the number of busy servers is equal to the offered load
λ/μ = 7. We also observe that when ν → ∞, the mean number of busy servers
tends to some fixed value. The reason is that when ν → ∞ our system tends to
that without setup time.

Figure 10 shows the mean number of waiting customers against ν. We observe
from all four curves that the mean number of waiting customers decreases with
ν as expected. This is because a fast setup time results in increasing the number
of busy servers. As a result, the mean number of waiting customers decreases.
We also observe that the mean number of waiting customers decreases with the
abandonment rate γ as is expected. We further observe that the mean number
of waiting customers tends to some fixed value as ν → ∞.
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6 Conclusion

In this paper, we have analyzed the multiserver queue with setup time and im-
patient customers for data centers. We have formulated the model using a level-
dependent QBD process whose rate matrices have an upper diagonal structure.
This structure might be used to develop a special algorithm to compute the rate
matrices and then the stationary distribution. We have analyzed the influence of
various parameters on the power consumption, the queue length and the mean
number of switches. Our numerical results have shown that a decision whether
to choose the ON-OFF policy or the ON-IDLE policy should be carefully con-
sidered based on not only the power consumption but also the abandonment
rate and the switching rate. For future work, we may use Lemma 1 to improve
reduce the complexity of the algorithms so as to deal with large-scale systems.
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A Efficient Method for Feedback Computation

The main step for the calculation of the rate matrices and the stationary distri-
bution is to solve the equation

X
(
Q

(i)
1 +R(i+1)Q

(i+1)
2

)
= −Q

(i−1)
0 , i ∈ N. (15)

provided that R(i+1) is given. With the observation that X and R(i+1) are upper
triangular matrices, (15) can be solved effectively by a simple recursive scheme.

First, we consider the case where i ≥ c + 1. In this case, the size of involved
matrices is (c + 1) × (c + 1). For simplicity, we consider a problem solving the
following equation

XA = −λI,

where both X and A are upper triangular matrices of size (c+ 1)× (c+ 1). Let

xi = (0, 0, . . . , 0, xi,i, xi,i+1, . . . , xi,c)

denote the i-th row of X . The above equation is equivalent to

xiA = (0, 0, . . . , 0,−λ, 0, . . . , 0), i = 0, 1, . . . , c,



Impatient Customers in Power-Saving Data Centers 199

where −λ is the (i+1)-th entry in the vector of the left hand side. The solution
of this equation is given by the following recursive formulae.

xi,i = − λ

ai,i
, xi,j = −

∑j−1
k=i xi,kak,j

aj,j
, j = i+ 1, i+ 2, . . . , c.

Second, we consider the problem obtaining R(i) provided that R(i+1) is given
for the case i = 1, 2, . . . , c. In this case, we need to solve the following equation

XA = −Q
(i−1)
0 ,

where A is an (i + 1) × (i + 1) matrix and X is an i × (i + 1) matrix. Let
xj = (0, 0, . . . , xj,j , xj,j+1, . . . , xj,i) (j = 0, 1, . . . , i − 1) denote the j-th row
vector of X . The above equation is equivalent to

xjA = (0, 0, . . . ,−λ, 0, . . . , 0), j = 0, 1, . . . , i− 1,

where the −λ is the (j + 1)-th entry of the vector in the right hand side. The
solution of this equation is given by

xj,j = − λ

aj,j
, xj,l = −

∑l−1
k=j xj,kak,l

al,l
, l = j + 1, j + 2, . . . , i.

We also can easily find X using the fundamental transform (Gauss-Seidel).
Indeed, we consider the following matrix.(

Q
(i)
1 +R(i+1)Q

(i+1)
2 ;−Q

(i−1)
0

)
.

We use fundamental transforms to obtain the following form,

(I;X) ,

where I is the identity matrix. We then haveX = −Q
(i−1)
0 (Q

(i)
1 +R(i+1)Q

(i+1)
2 )−1.

Remark 3. The computational complexity for (15) is O(c2) by the method pre-
sented in this section while that by a conventional method is O(c3).
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Abstract. In this paper we consider a single server queueing system
with variable service rate. If the number of customers in system is less
than a threshold, the service rate is set in a low value and it also can
be switched to a high value once the number reaches to the threshold.
We study five performance measures: the probability that the system
is empty, the expected number in system and in queue, as well as the
expected sojourn time in system and waiting time in queue. And we
primarily show that these performance measures have the monotonicity
or convexity with respect to the traffic intensity. These results are useful
to the optimization problem in queueing system.
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1 Introduction

Convexity results have very extensive applications in the queueing system
because these results can guarantee the unique global optimal solution which is
very important for optimization models. Some performance measures are used
to obtain the optimal arrival rate, service rate, the number of server and the
traffic intensity. The performance measures mainly include the probability that
the system is empty, the expected number in system and in queue, as well as the
expected sojourn time in system and waiting time in queue.

Rolfe [1] established that the expected sojourn time is decreasing and convex
in C for a M/D/C queue and Dyer and Proll [2] proved Rolfe’s conjecture that
the result is also correct for a M/M/C queue. Grassmann [3] proved that the
expected number in system and in queue are convex with respect to the traffic
intensity in a M/M/C queue and Lee and Cohen got the same results in Ref [4]
independently. In Ref [5] Harel and Zipkin gave the results of the convexity: the
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reciprocal of the average sojourn time and the standard deviation in a M/M/C
queue and generalized the similar results in a M/G/C queue. Finally, they got
the mean and stand deviation of the sojourn time are jointly strictly convex in
arrival and service rate. Moreover Harel and Zipkin [6] established the convexity
of the expected number in system and in queue, the expected sojourn time in
system and waiting time in queue with respect to the S in a M/M/S queue .

Recently, Dimitrakopoulos and Burnetas [7] presented anM/M/1 queue based
on a T -threshold strategy, where the service rate switches between a low and a
high value according to the number of customers in system T . Except for some
equilibrium strategies, they also derived some convexity results of the waiting
time and the social welfare function with respect to the arrival rate in the case
of T = 1. In this paper we consider the M/M/1 queueing system with variable
service rate and concentrate on properties of five main performance measures.
For any T ≥ 1, we establish the monotonicity or convexity of the performance
measures with respect to the traffic intensity.

The organization of this paper is as follows. The model under consideration
is described in Section 2 and we give some notations and preliminary results in
Section 3. Then according to the value of traffic intensity, we study the proper-
ties of these performance measures in Section 4 and Section 5 respectively.

2 Model Description

In this model we consider an M/M/1 queueing system with T -threshold service
policy in which all the customers arrive according to a Poisson process with rate
λ. If the customers find the server is free upon arrival, they immediately occupy
the server and leave the system after the service completion. Otherwise, if the
server is busy upon arrival, the customers have to enter the queue to wait for
service and would not leave the system without service. When the number of
customers in system is less than a natural number T (≥ 1), the service rate is set
in a low value with rate μ0 and it is switched to a high value with rate μ(> μ0)
if the number is equal to or greater than the threshold T . If μ0 = μ, the model
reduce to the normal M/M/1 queue. Here we neglect the switching period. We
assume all the customers are informed to the service policy and without loss of
generality, the inter-arrival time and the service time are mutually independent.
The system consists of a set of states {0, 1, · · · , T − 1, T, T + 1, · · ·} and the
transition rate diagram is shown in Fig.1.

0
λ ��

1
λ ��

μ0

�� 2
λ ��

μ0

�� · · ·
λ ��

μ0

�� T − 1
λ ��

μ0

�� T
λ ��

μ
�� T + 1

λ ��
μ

�� · · ·
μ

��

Fig. 1. Transition rate diagram of the original model
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3 Notations and Preliminary Results

We study this system under the T -threshold strategy. First, we give some per-
formance measures that have been proven in [8]. The steady-state probabilities
are

pn =

{
ρn0p0, if 1 ≤ n < T,

ρT−1
0 ρn−T+1p0, if n ≥ T,

and the probability that the system is empty

p0 =

⎧⎪⎨⎪⎩
(
T + ρ

1−ρ

)−1

, if ρ0 = 1, ρ < 1,(
1−ρT

0

1−ρ0
+

ρρT−1
0

1−ρ

)−1

, if ρ0 �= 1, ρ < 1,
(1)

where ρ0 = λ/μ0, ρ = λ/μ < 1 and ρ0 > ρ. The expected number in system is
then

L =

⎧⎨⎩p0

(
T (T−1)

2 + ρ[T (1−ρ)+ρ]
(1−ρ)2

)
, if ρ0 = 1, ρ < 1,

p0

(
ρ0[1+(T−1)ρT

0 −TρT−1
0 ]

(1−ρ0)2
+

ρρT−1
0 [T−(T−1)ρ]

(1−ρ)2

)
, if ρ0 �= 1, ρ < 1,

(2)

and the expected number in queue is

Lq = L− (1− p0). (3)

Finally, according to Little’s formulae, we find the expected sojourn time in
system W and the expected waiting time in queue Wq as

W = L/λ and Wq = Lq/λ. (4)

In the following two sections, we establish the properties of the five perfor-
mance measures p0, L, Lq, W, Wq for two cases: ρ0 = 1 and ρ0 �= 1.

4 The Properties for Case ρ0 = 1

Theorem 1. The probability p0(ρ) is strictly monotone decreasing and concave
in ρ, 0 < ρ < 1, ∀ T ≥ 1.

Proof. Using equation (1), we can easily get the conclusion through the deriva-
tive of p0(ρ) with respect to ρ as

dp0(ρ)

dρ
= − 1

[T (1− ρ) + ρ]2
< 0,

d2p0(ρ)

dρ2
= − 2(T − 1)

[T (1− ρ) + ρ]3
≤ 0. ��
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Theorem 2. The expected number in system L(ρ) is strictly monotone increas-
ing and strictly convex in ρ, 0 < ρ < 1, ∀ T ≥ 1.

Proof. Using equations 1-2, we have

L(ρ) =
T (T − 1)

2
p0 +

ρ

1− ρ
.

So we can get the conclusions through the derivative of L(ρ) with respect to ρ
as

dL(ρ)

dρ
=

T (T − 1)

2

dp0(ρ)

dρ
+

d

dρ

( ρ

1− ρ

)
=

2[ρ2 + 2Tρ(1− ρ)] + T (T + 1)(1− ρ)2

2(1− ρ)2[T (1− ρ) + ρ]2
> 0,

d2L(ρ)

dρ2
=

T (T − 1)

2

d2p0(ρ)

dρ2
+

d2

dρ2

( ρ

1− ρ

)
=

2[3T 2ρ(1− ρ)2 + 3T (1− ρ)ρ2 + ρ3] + T (T 2 + 2T − 1)(1− ρ)3

(1− ρ)3[T (1− ρ) + ρ]3
> 0.

��
Similar to the Theorem 2, using equations (3)-(4) it is evident to get the

following corollaries about Lq(ρ), W (ρ) and Wq(ρ).

Corollary 3. The expected number in queue Lq(ρ) is strictly monotone in-
creasing and strictly convex in ρ, 0 < ρ < 1, ∀ T ≥ 1.

Corollary 4. W (ρ) and Wq(ρ) are all strictly monotone increasing and strictly
convex in ρ, 0 < ρ < 1, ∀ T ≥ 1 when λ is held constant.

5 The Properties for Case ρ0 �= 1

For convenience, we introduce some notations as follows and it is not difficult to
determine the sign of them:

C1 =
1− ρT0
1− ρ0

> 0, C2 = ρT−1
0 > 0, C2 − C1 = −1− ρT−1

0

1− ρ0
≤ 0, (5)

C1(1 − ρ) + C2ρ > 0, C3 =
ρ0[1 + (T − 1)ρT0 − TρT−1

0 ]

(1− ρ0)2
≥ 0. (6)

Theorem 5. The probability p0(ρ) is strictly monotone decreasing and concave
in ρ, 0 < ρ < 1, ∀ T ≥ 1.

Proof. Using equations (1), (5) and

p0(ρ) =
1− ρ

C1(1 − ρ) + C2ρ
,



204 X. Zhang, J. Wang, and Q. Ma

we can easily get the conclusion through the derivative of p0(ρ) with respect to
ρ as

dp0(ρ)

dρ
= − C2

[C1(1 − ρ) + C2ρ]2
< 0,

d2p0(ρ)

dρ2
=

2C2(C2 − C1)

[C1(1− ρ) + C2ρ]3
≤ 0.

��
In order to give the monotonicity of L(ρ), the following Lemma is necessary.

Lemma 6. For ∀ T ≥ 1, ρ0 �= 1, the following three conclusions hold true:
(1) A(ρ0, T ) = ρT−1

0 − (T − 1)ρ0 + (T − 2) ≥ 0, more specifically, A(ρ0, 1) =
A(ρ0, 2) = 0 and A(ρ0, T ) > 0 for T ≥ 3;

(2) B(ρ0, T ) = 2[−ρT0 + Tρ0 − (T − 1)] ≤ 0, more specifically, B(ρ0, 1) = 0
and B(ρ0, T ) < 0 for T ≥ 2;

(3) C(ρ0, T ) = ρT+1
0 − (T + 1)ρ0 + T > 0.

Proof. (1) It is obvious that, for any ρ0 �= 1, A(ρ0, 1) = A(ρ0, 2) = 0 and then
for T ≥ 3,

A(ρ0, T +1)−A(ρ0, T ) = (1−ρ0)(1−ρT−1
0 ) = (1−ρ0)

2(1+ρ0+ · · ·+ρT−2
0 ) > 0,

so A(ρ0, T ) is strictly monotone increasing in T and A(ρ0, T ) ≥ A(ρ0, 3) =
(ρ0 − 1)2 > 0.

(2)(3) Be the same as (1). ��

Theorem 7. The expected number in system L(ρ) is strictly monotone increas-
ing in ρ, 0 < ρ < 1, ∀ T ≥ 1.

Proof. Using equations (1)-(2), (5)-(6) and

L(ρ) =
1− ρ

C1(1− ρ) + C2ρ
·
(
C3 +

C2ρ[T − (T − 1)ρ]

(1− ρ)2

)
,

the derivative of L(ρ) with respect to ρ is

dL(ρ)

dρ
= − C2

[C1(1 − ρ) + C2ρ]2

(
C3 +

C2ρ[T − (T − 1)ρ]

(1 − ρ)2

)
+

C2

C1(1 − ρ) + C2ρ
· T + (2 − T )ρ

(1 − ρ)2
.

So we just need to determine the sign of dL(ρ)
dρ . Multiplying dL(ρ)

dρ by
[C1(1−ρ)+C2ρ]

2(1−ρ)2

C2
and using equations (5)-(6), we have

L1(ρ) =
[C1(1− ρ) + C2ρ]

2(1− ρ)2

C2
· dL(ρ)

dρ

= [C1(1− ρ) + C2ρ][T + (2− T )ρ]− C3(1− ρ)2 − C2ρ[T − (T − 1)ρ]

= (C1T + C2 − 2C1 − C3)ρ
2 + (2C1 − 2C1T + 2C3)ρ+ C1T − C3
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=
ρT−1
0 − (T − 1)ρ0 + (T − 2)

(1− ρ0)2
ρ2 +

2[−ρT0 + Tρ0 − (T − 1)]

(1− ρ0)2
ρ

+
ρT+1
0 − (T + 1)ρ0 + T

(1 − ρ0)2

=
1

(1 − ρ0)2
[A(ρ0, T )ρ

2 +B(ρ0, T )ρ+ C(ρ0, T )] =
1

(1− ρ0)2
L2(ρ).

Next, we analyze the sign of function L2(ρ) = A(ρ0, T )ρ
2 + B(ρ0, T )ρ +

C(ρ0, T ) based on T .

Case 1: T = 1. In this case, according to the Lemma 6, A(ρ0, T ) = B(ρ0, T ) =
0, C(ρ0, T ) = (1− ρ0)

2, so L2(ρ) = (1 − ρ0)
2 > 0, L1(ρ) = 1 > 0 and then L(ρ)

is strictly monotone increasing in ρ ∈ (0, 1).
Case 2: T =2. In this case, according to the Lemma 6,A(ρ0, T )=0, B(ρ0, T )=

−2(ρ0 − 1)2, C(ρ0, T ) = ρ30 − 3ρ0 + 2, so L2(ρ) = [−2(1 − ρ0)
2ρ + (ρ30 − 3ρ0 +

2)] > 0, L1(ρ) =
1

(1−ρ0)2
L2(ρ) > 0. The first inequality follows from the terms

ρ ∈ (0, 1) and ρ30 − 3ρ0 + 2 > 2(1− ρ0)
2 for all ρ0 �= 1. Therefore L(ρ) is strictly

monotone increasing in ρ ∈ (0, 1).
Case 3: T ≥ 3. In this case, according to the Lemma 6,A(ρ0, T )>0, B(ρ0, T )<

0 and C(ρ0, T ) > 0. So L2(ρ) is a normal quadratic function.

Δ = [B(ρ0, T )]
2 − 4A(ρ0, T )C(ρ0, T )

= 4[(T − 1)ρT+2
0 − (3T − 2)ρT+1

0 + (3T − 1)ρT0 − TρT−1
0 + (ρ0 − 1)2]

= 4[TρT−1
0 (ρ30 − 3ρ20 + 3ρ0 − 1) + (ρ0 − 1)2 − ρT0 (ρ0 − 1)2]

= 4[TρT−1
0 (ρ0 − 1)3 + (ρ0 − 1)2(1− ρT0 )]

= 4(1− ρ0)
2[1− ρT0 − (1− ρ0)Tρ

T−1
0 ]

= 4(1− ρ0)
3(1 + ρ0 + · · ·+ ρT−1

0 − TρT−1
0 ) > 0.

The above inequality follows from the term (1−ρ0)
3(1+ρ0+ · · ·+ρT−1

0 −TρT−1
0 )

is positive for ∀ρ0 �= 1. Hence the equation L2(ρ) = 0 has two distinct roots ρ̂, ρ̄
and by means of Lemma 6 it is easy to show that min{ρ̂, ρ̄} > 1. Therefore for
∀ρ ∈ (0, 1), L2(ρ) > 0, L1(ρ) > 0 and then L(ρ) is strictly monotone increasing
in ρ ∈ (0, 1).

Generally speaking, L(ρ) is strictly monotone increasing in ρ, 0 < ρ <
1, ∀ T ≥ 1. ��

Corollary 8. W (ρ) is strictly monotone increasing in ρ, 0 < ρ < 1, ∀ T ≥ 1
when λ is held constant.

Finally we state the convexity of L(ρ) with the help of Theorem 7.

Theorem 9. The expected number in system L(ρ) is strictly convex in ρ, 0 <
ρ < 1, ∀ T ≥ 1.
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Proof. It is necessary to show that d2L(ρ)
dρ2 > 0. According to Theorem 7 and

Lemma 6, we have

d2L(ρ)

dρ2
=

2C2(C2 − C1)

[C1(1− ρ) +C2ρ]3

(
C3 +

C2ρ[T − (T − 1)ρ]

(1− ρ)2

)

− C2
2

[C1(1− ρ) + C2ρ]2
· T + (2− T )ρ

(1− ρ)3
− C2(C2 − C1)

[C1(1− ρ) + C2ρ]2
· T + (2− T )ρ

(1− ρ)2

+
C2

C1(1− ρ) + C2ρ
· (2 + T ) + (2− T )ρ

(1− ρ)3

=
C2

[C1(1− ρ) +C2ρ]3(1− ρ)3

{
2(C2 − C1)(C1T + C2 − 2C1 − C3)ρ

3

+3(C2 − C1)(2C1 − 2C1T + 2C3)ρ
2 + 6(C2 − C1)(C1T − C3)ρ

+2[(C2 − C1)(C3 −C1T ) + C2
1 ]
}

=
C2

[C1(1− ρ) +C2ρ]3(1− ρ)3(1− ρ0)2

{
2(C2 − C1)A(ρ0, T )ρ

3

+3(C2 − C1)B(ρ0, T )ρ
2 + 6(C2 − C1)C(ρ0, T )ρ

+2[−(C2 − C1)C(ρ0, T ) + (1− ρT0 )
2]
}

=
C2

[C1(1− ρ) +C2ρ]3(1− ρ)3(1− ρ0)2
L3(ρ).

So we just need to determine L3(ρ) > 0 by virtue of equations (5)-(6).
Case 1: T = 1. In this case, according to the equations (5)-(6), C2 − C1 =

0, L3(ρ) = 2(1 − ρ0)
2 > 0 and then d2L(ρ)

dρ2 = 2
(1−ρ)3 > 0, so L(ρ) is strictly

convex in ρ ∈ (0, 1).
Case 2: T ≥ 2. In this case, according to the equation (5), C2 − C1 < 0 and

considering the results L2(ρ) > 0 in Theorem 7, we have

dL3(ρ)

dρ
= 6(C2−C1)[A(ρ0, T )ρ

2+B(ρ0, T )ρ+C(ρ0, T )] = 6(C2−C1)L2(ρ) < 0.

So L3(ρ) is strictly monotone decreasing in ρ ∈ (0, 1), furthermore, according to
equations (5)-(6) and Lemma 6, we get

L3(0) = 2[−(C2 − C1)C(ρ0, T ) + (1 − ρT0 )
2] > 0, L3(1) = 2C2

2 (1 − ρ0)
2 > 0,

and

L3(0)− L3(1) = 2(C1 − C2)[C(ρ0, T ) + (1− ρ20)(C1 + C2)] > 0.

Hence, L3(ρ) > 0 and d2L(ρ)
dρ2 > 0 for all ρ ∈ (0, 1) , so L(ρ) is strictly convex in

ρ ∈ (0, 1).
Generally speaking, L(ρ) is strictly convex in ρ, 0 < ρ < 1, ∀ T ≥ 1. ��

Corollary 10. W (ρ) is strictly convex in ρ, 0 < ρ < 1, ∀ T ≥ 1 when λ is held
constant.
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Abstract. Cognitive radio networks employ opportunistic scheduling of
secondary (unlicensed) users for the efficient use of the scarce radio spec-
trum resources. The main idea is that secondary users (SUs) transmit
data opportunistically by utilizing idle licensed frequency bands. The
transmission of a SU may get interrupted several times due to the ar-
rival of primary (licensed) users; the SU then needs to sense the spectrum
to determine another available channel for retransmission. In this paper,
we investigate the performance of SUs in a cognitive radio network. To
this end, we develop a three-dimensional continuous-time Markov chain
(CTMC) model of the system. We present an efficient method to compute
steady-state probabilities by exploiting the specific Quasi-Birth-Death
structure of the CTMC. Based on this, several SU performance mea-
sures are evaluated such as the mean delay of a SU, the SU interruption
probability, the probability of a SU getting discarded from the system
after an interruption and the SU blocking probability upon arrival. Nu-
merical examples illustrate the influence of system parameters such as
the sensing rate on the SU performance.

Keywords: Cognitive radio, Opportunistic scheduling, Markov chain,
Performance evaluation.

1 Introduction

In wireless communication, the radio spectrum is a limited resource by its na-
ture. Traditionally, spectrum regulators use a fixed spectrum allocation policy to
assign each spectrum band to dedicated (licensed) users. In recent years, the de-
mand for wireless communication is constantly increasing due to the increasing
number of wireless devices and services. This leads to the fact that the spec-
trum is fully allocated in many countries [1] on one hand. On the other hand,
it has been shown through several spectrum measurement studies [2–4] that the
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spectrum is heavily underutilized, which in turn leads to wasted bandwidth of
wireless channels.

Cognitive radio networks (CRNs) [5] are a radical solution to spectrum scarcity.
The aim of CRNs is to use the free spectrum gaps without causing any harm to
licensed transmissions. For that purpose cognitive radios should be able to adapt
their transmission parameters to the changing spectrum opportunities.

In CRNs, two kinds of spectrum handoff for secondary users are differentiated:
proactive and reactive spectrum handoff [6]. In proactive spectrum handoff, a
secondary user (SU) evacuates the current channel upon the arrival of a primary
user (PU) and the interrupted SU switches to a new channel based on a pre-
determined channel hopping sequence. This sequence is obtained through the
analysis of the traffic statistics and the interrupted SU does not perform any
spectrum sensing. In reactive spectrum handoff, an interrupted SU is required
to sense the spectrum to determine an idle channel to retransmit.

The performance of CRNs has been extensively studied in the last years. A
Markovian multiserver model with a random preemptive discipline is presented
in [7]. The case with r kinds of user classes is considered where within each class,
customers are served according to their arrival order. The moments of the so-
journ time distribution for lower priority customers are derived. An assumption
of this model is that higher priority customers can interrupt lower priority cus-
tomers only when all servers are busy. This means that higher priority customers
are aware of the presence of lower priority customers, which does not correctly
depict an important aspect of the CRN paradigm where PUs are completely un-
aware of SU actions. In [8], continuous-time Markov chains (CTMCs) with and
without queueing are proposed to analyse the performance of SUs in a CRN. The
case where multiple SUs can simultaneously share a spectrum band is consid-
ered. A limitation of this work is that it assumes that an interrupted SU should
wait on the same channel to complete unfinished service when the channel be-
comes available again. A loss model with finite population for spectrum access is
presented in [9]. In this work, the delay of SUs is investigated based on a CTMC.
A CTMC model to assess the maximum throughput of SUs in a heterogeneous
CRN is developed in [10]. The behavior of a CRN system with both PUs and
SUs is modeled using a two dimensional Markov chain in [11–14]. Throughput
and forced termination of a SU are derived in [11] and blocking probabilities
for PUs and SUs are calculated in [12–14]. In [13] spectrum sensing errors are
considered. None of the papers discussed above however take the sensing time
into consideration. M/G/1 queueing models are proposed in [15, 16], where the
authors investigate the case where each SU can transmit on all channels simulta-
neously. These models also do not take the effect of the handoff processing time
into consideration.

Other studies use the ON/OFF random process to describe the behavior of
PUs on each channel, where the OFF period represents a spectrum opportunity
to SUs [17, 18]. In [17] the spectrum utilization and blocking time are derived
but the effect of the sensing time is not addressed. The influence of the sensing
time on the data delivery time is examined in [18]. An assumption of this work
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is that at least one channel is always available for SUs, and the case where the
system is blocked is not investigated.

Some recent analytical models that include sensing time are proposed in [6,19],
but with different sensing time definitions. The authors in [19] refer to in-Band
sensing where the sensing delay is the time from a collision moment between a
PU and SU until the moment that the collision is detected by the SU. In [6],
sensing time is defined as the time from the moment a SU is interrupted by a
PU until the moment an idle channel is found. Both these definitions do not
consider the need of a SU to sense upon arrival.

The goal of this paper is to analyze the performance of SUs in a CRN with
reactive spectrum handoff. The sensing time is defined as the time used by a SU
to scan the spectrum and detect the first idle channel. Also, each SU performs
spectrum sensing every time it attempts to access a channel including the case
when a SU has just arrived. Upon the arrival of a PU, the SU instantly evacuates
the occupied channel, i.e. no collision between a SU and a PU can happen as
in [20]. The contributions of this paper are summarized as follows. A CTMC of a
CRN with reactive-decision spectrum handoff is developed. This model describes
the interactions of PUs and SUs where PUs exercise preemptive priority over
SUs. Based on this model, a wide range of performance measures are evaluated
including the mean SU delay, the SU interruption probability, the SU discard
probability and the SU blocking probability.

The structure of this paper is as follows. In Section 2 we describe the CTMC
model of the system. In Section 3 we focus on the calculation of several SU perfor-
mance measures. Next, the computation methodology is explained in Section 4.
We provide some numerical examples in Section 5. Finally, we draw conclusions
in Section 6.

2 Model Description

We consider a spectrum divided into N frequency bands forming N identical
channels, i.e. channels with the same radio characteristics. Each channel can be
accessed by PUs and SUs. PUs and SUs arrive according to a Poisson process
with rates λ1 and λ2 respectively. Upon arrival, a PU is assigned to an idle
channel (i.e., a channel not occupied by another PU) randomly, i.e. no default
channel is allocated. The PU transmission time is exponentially distributed with
rate μ1. If all channels are occupied by PUs, a new arriving PU is blocked.
Arriving SUs enter into a sensing state. We assume that a SU senses all channels
one by one until it detects the first idle channel. This sensing procedure seems
reasonable and has been used in [21, 22]. Also each SU chooses its own sensing
order randomly. In this setting, as the sensing time can be different for each SU,
we assume it is exponentially distibuted with rate σ. In case all channels are
busy, a SU stays in the sensing state until at least one channel is detected idle
(i.e., not occupied by any PU or other SU). After sensing, a SU enters into a
transmission state. The SU transmission time is exponentially distributed with
rate μ2. A SU transmission can be interrupted by the arrival of a PU on the
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same channel, and in this case the SU is transferred into the sensing state again
for retransmission. Thus, and different from [6], the assumptions that a default
channel is assigned to SUs upon arrival and the interrupted SU has to stay on its
channel if all the other channels are busy, are relaxed. We assume no collisions
between SUs trying to transmit on the same channel can happen as in [6,8] and
the sensing room is limited to N1 SUs. Arriving and interrupted SUs who find
a full sensing room are blocked and discarded from the system respectively.

In order to analyze this system, we create a CTMC where a state x is given
as x = (x1, x2, x3). Here, x1 and x2 are the numbers of PUs and transmitting
SUs and x3 is the number of sensing SUs. The state space S contains all states
such that

x1 + x2 ≤ N, x3 ≤ N1. (1)

The transition rates qx,y from one state x into another state y (x �= y) are given
as

qx,y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1

N − x1 − x2

N − x1
if y = (x1 + 1, x2, x3),

x1 < N,

λ1

x2

N − x1
if y = (x1 + 1, x2 − 1, x3 + 1),

x3 < N1, x1 < N,

λ1

x2

N − x1
if y = (x1 + 1, x2 − 1, x3),

x3 = N1, x1 < N,

λ2 if y = (x1, x2, x3 + 1),

x3 < N1,

x1μ1 if y = (x1 − 1, x2, x3),

x2μ2 if y = (x1, x2 − 1, x3),

x3σ if y = (x1, x2 + 1, x3 − 1),

(x1 + x2) < N,

0 , otherwise.

(2)

To explain the above equation, we differentiate 8 transition cases. In case 1,
an arriving PU does not interrupt a transmitting SU. The rate λ1(x2)/(N − x1)
is the fraction of λ1 where a transmitting SU is interrupted and transferred into
the sensing state (case 2) or lost due to lack of sensing room (case 3). An arriving
SU starts to sense if there is a place in the sensing room (case 4). In cases 5 and
6, a PU and a SU finish transmission respectively. In case 7, a SU leaves the
sensing state into the transmitting state with rate x3σ if there is at least one
idle channel.

We show next that the above CTMC has a Quasi-Birth-Death (QBD) struc-
ture. This allows us to use a specific methodology to efficiently compute steady-
state probabilities as described later in the computation methodology section.
In order to display the infinitesimal generator Q of the chain in a QBD for-
mat, we define the QBD level as the number of sensing SUs x3, whereas the
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QBD phase corresponds to the pair (x1, x2) of transmitting PUs and transmit-
ting SUs. The possible phases are ordered lexicographically for (x1, x2), i.e. in
the order (0, 0),(0, 1),· · · ,(0, N), (1, 0),(1, 1), · · · ,(1, N − 1),· · · , (i, 0), (i, 1), · · · ,
(i, N−i),· · · , (N, 0). In view of the transition rates of equation (2), the generator
matrix Q has the following block structure:

Q =

⎡⎢⎢⎢⎢⎢⎢⎣
Q0 Λ
Σ Q1 Λ

2Σ Q2 Λ
· · ·

(N1 − 1)Σ QN1−1 Λ
N1Σ Q∗

N1

⎤⎥⎥⎥⎥⎥⎥⎦ , (3)

where the submatrices Λ, jΣ,Qj and Q∗
N1 are derived as follows. We let the

subscripts i,m, j denote the number of PUs x1, transmitting SUs x2 and sensing
SUs x3. In the sequel, we also use the concept of horizontal (∼) and vertical (|)
matrix concatenation. Submatrix Λ then corresponds to transitions where the
level is increased by 1; these are due either to the interruption of a SU by the
arrival of a PU (case 2) or the arrival of a new SU (case 4). Matrix Λ is therefore
given as

Λ =

⎡⎢⎢⎢⎢⎣
Λ2,0 I0

Λ2,1 I1
· · ·

Λ2,N−1 IN−1

Λ2,N

⎤⎥⎥⎥⎥⎦ ,

with as component matrices the diagonal matrix Λ2,i = λ2I, where I is the
identity matrix, and Ii defined as

Ii =

⎡⎢⎢⎢⎢⎣
0

λ∗
i,1

λ∗
i,2

· · ·
λ∗
i,N−i

⎤⎥⎥⎥⎥⎦ ,

with elements λ∗
i,m =

λ1m

N − i
. Submatrix jΣ corresponds to transitions from level

j to level j − 1 due to a SU moving from the sensing to the transmitting state
after finding an idle channel (case 7). Matrix Σ is therefore structured as follows:

Σ =

⎡⎢⎢⎢⎢⎣
Σ0

Σ1

· · ·
ΣN−1

0

⎤⎥⎥⎥⎥⎦ ,
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where Σi = v1 ∼ σ ∗ I|v2, with v1 a column vector of zeros concatenated to
the left side of σ ∗ I and v2 a row vector of zeros concatenated vertically below
v1 ∼ σ ∗ I. The non-diagonal elements in Qj correspond to transitions where the
level j remains unchanged. For j < N1, such transitions are due to the arrival of
a PU without an interruption of a SU (case 1), the end of a transmission of a PU
(case 5) or the end of a transmission of a SU (case 6). Matrix Qj , for j < N1,
and its components are hence given by

Qj =

⎡⎢⎢⎢⎢⎢⎢⎣

Q0,j Λ1,0

M1,1 Q1,j Λ1,1

2M1,2 Q2,j Λ1,2

· · ·
(N − 1)M1,N−1 QN−1,j Λ1,N−1

NM1,N QN,j

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Λ1,i =

⎡⎢⎢⎢⎢⎣
λ∗∗
i,0

λ∗∗
i,1

· · ·
λ∗∗
i,(N−i−1)

0

⎤⎥⎥⎥⎥⎦ ,

Qi,j =

⎡⎢⎢⎢⎢⎣
si,0,j
μ2 si,1,j

2μ2 si,2,j
· · ·

(N − i)μ2 si,N−i,j

⎤⎥⎥⎥⎥⎦ ,

M1,i = μ1I ∼ v3, where a column vector v3 of zeros is concatenated to the right
side of μ1I, and λ∗∗

i,m = λ1(N − i − m)/(N − i). The diagonal elements si,m,j

of the matrix Qi,j are such that the row sums in the generator matrix Q equal

Table 1. Diagonal elements of Qi,j

Elements si,m,j Condition

-(λ1 + λ2 +mμ2 + iμ1 + jσ) i+m < N
-(λ1 + λ2 +mμ2 + iμ1) i+m = N , i �= N
-(λ2 + iμ1) i = N

Table 2. Component matrices description

Matrix Type Size

Σi square N − i+ 1, N − i+ 1
Λ2,i square N − i+ 1, N − i+ 1
Ii non square N − i+ 1, N − i

Qi,j square N − i+ 1, N − i+ 1
Λ1,i non square N − i+ 1, N − i
M1,i non square N − i+ 1, N − i+ 2
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zero. Their values are given in Table 1. A description of the various component
matrices is given in Table 2. Finally, the last diagonal block of Q is defined as
Q∗

N1 = QN1 +Λ. This is due to case 3, where SUs can still be interrupted while
the sensing room is full.

3 SU Performance Measures

From this CTMC model, we can compute various performance measures, which
we detail below. All these measures are based on the steady-state vector π, which
we solve from the set of equations πQ = 0. We describe in Section 4 how this
can be done in an efficient manner.

First, the expected number of transmitting SUs E[UTransmitsu] and the ex-
pected number of sensing SUs E[USensesu] are respectively given by

E[UTransmitsu] =
N1∑

x3=0

∑
x∈Sx3

x2πx , (4)

E[USensesu] =

N1∑
x3=1

∑
x∈Sx3

x3πx , (5)

where Sx3 is the set of all states within level x3 and πx is the probability that
the system is in state x. The blocking probability γ of SUs, i.e. the probability
that an arriving SU finds a full sensing room, is given as

γ =
∑

x∈SN1

πx.

With these results and based on Little’s law, the expected delay E[Dsu] of a SU
is then calculated as

E[Dsu] = (E[USensesu] + E[UTransmitsu])/(λ2 − λ2γ) . (6)

Secondly, the SU interruption probability α, i.e. the probability that a trans-
mitting SU is interrupted upon arrival of a PU, is given as follows:

α =

N1∑
x3=0

∑
x∈S∗

x3

πx

λ1x2/(N − x1)

D1(x)
, (7)

where λ1x2/(N − x1) is the transition rate from state x where a SU gets inter-
rupted due to a PU arrival, D1(x) denotes the total transition rate from state
x, which is given by
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D1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1μ1 + x2μ2 + λ1 + λ2 if x3 < N1,

x1 + x2 = N,

x1μ1 + x2μ2 + λ1 + λ2 + x3σ if x3 < N1,

x1 + x2 < N,

x1μ1 + x2μ2 + λ1 if x3 = N1,

x1 + x2 = N,

x1μ1 + x2μ2 + λ1 + x3σ if x3 = N1,

x1 + x2 < N,

and S∗
x3

= Sx3 \ {(N, 0, x3)} denotes the set of all states within level x3 except
the state where x1 = N (since in this state all N channels are occupied by PUs,
there are no transmitting SU to interrupt and a new PU is always blocked).

Similarly, the SU discard probability β, i.e. the probability that a transmitting
SU is interrupted and discarded upon arrival of a PU because of a full sensing
room, is computed as

β =
∑

x∈S∗
N1

πx

λ1x2/(N − x1)

D2(x)
, (8)

where

D2(x) =

{
x1μ1 + x2μ2 + λ1 if x1 + x2 = N,

x1μ1 + x2μ2 + λ1 + x3σ if x1 + x2 < N.

4 Computation Methodology

Here we show how to solve the equation πQ = 0 for a CTMC with QBD struc-
ture. We solve this equation for the CTMC of Section 2.

To obtain the stationary probability vector π, we employ the Gaussian elimi-
nation technique and the concept of censored Markov chains applied to a block
structured tridiagonal QBD using a similar approach as in [23]. To illustrate the
major steps of the technique, let a CTMC X(t) have the following generator
matrix:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L0 F0

B1 L1 F1

B2 L2 F2

. . .
. . .

. . .

Bn−1 Ln−1 Fn−1

Bn Ln

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Let Lu
1 = L1 − B1L

−1
0 F0 be the Schur complement of L0 in Q. Let Qi→n

denote the generator matrix of the Markov chain censored to the levels i to
n, and let πi→n be the corresponding (partial) distribution. We apply Schur
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complementation level by level: first eliminating level 0, then level 1, etc. For
example, eliminating the level 0 results in

Q1→n =

⎡⎢⎢⎢⎢⎢⎣
Lu
1 F1

B2 L2 F2

. . .
. . .

. . .

Bn−1 Ln−1 Fn−1

Bn Ln

⎤⎥⎥⎥⎥⎥⎦ . (10)

We keep folding up the state space in this manner:

Qi→n =

⎡⎢⎢⎢⎢⎢⎣
Lu
i Fi

Bi+1 Li+1 Fi+1

. . .
. . .

. . .

Bn−1 Ln−1 Fn−1

Bn Ln

⎤⎥⎥⎥⎥⎥⎦ , (11)

where Lu
i is recursively given as Lu

i = Li − BiL
u
i−1

−1Fi−1. We end up with
Qn→n = Lu

n. Finding the stationary solution then proceeds in a backwards
fashion. We have that πnL

u
n = 0, and recursively from the first block row of

equation πi→nQ
i→n = 0,

πiL
u
i + πi+1Bi+1 = 0. (12)

Finally, we normalize the obtained stationary probability vectors πi corre-
sponding to level i using

∑n
i=0 πi1, where 1 is the column vector of ones. This

leads to the steady-state vector π:

π =
1∑n

i=0 πi1

[
π0 π1 . . . πn

]
. (13)

5 Numerical Examples

To investigate the SU performance, we consider a cognitive radio system with
N = 20 channels. The average transmission time for both PUs and SUs equals
1/μ1 = 1/μ2 = 10 ms. The offered PU load ρpu and the offered SU load ρsu
are defined as λ1/(Nμ1) and λ2/(Nμ2) respectively. We consider the case where
ρpu = 0.3 as CRNs are expected to operate under light PU load. Of particular
interest is the effect of the sensing rate σ of SUs and the maximum number of
sensing SUs N1 on the performance measures derived above.

Fig. 1 shows the SU discard probability β as a function of N1. As can be seen
the curves have two parts. In the first part, for increasing N1 the SU discard
probability will increase as well. This is because an increase of N1 for low values
of N1 will increase the number of SUs that can access the system, and hence (for
a given σ) also the number of transmitting SUs, so more SUs can get interrupted
by a PU, while the probability that an interrupted SU finds a full sensing room
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Fig. 1. SU discard probability β versus maximum number of sensing SUs N1 for
various sensing rates normalized to the average SU transmission rate t = σ/μ2 = 0.1,
0.2, 0.3, 0.4, 0.5, ρpu = 0.3, ρsu = 0.5, N = 20 and 1/μ1 = 1/μ2 = 10 ms

still remains high. In the second part, an increase in N1 decreases the probability
β because the load offered from both PUs and SUs is fixed and for high N1 it is
more likely that an interrupted SU will be able to sense again until eventually
no interrupted SUs are discarded. We observe that for higher values of σ, this
behavior is repeated over a smaller range of N1 and clearly the maximum discard
probability is not affected. Indeed, for higher σ, sensing SUs leave the sensing
room and enter the transmitting state at a higher rate, and therefore already
for lower values of N1 there will likely remain space in the sensing room for an
interrupted SU, so the SU doesn’t need to be discarded.

Fig. 2. SU blocking probability γ versus maximum number of sensing SUs N1 for
various sensing rates normalized to the SU average transmission rate t = σ/μ2 = 0.1,
0.2, 0.3, 0.4, 0.5, ρpu = 0.3, ρsu = 0.5, N = 20 and 1/μ1 = 1/μ2 = 10 ms
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The SU blocking probability γ as a function of the maximum number of sensing
users N1 is given in Fig. 2. As expected, an increase of N1 decreases this proba-
bility as more SUs are allowed to enter the sensing state. Also for increasing σ, a
further and sharper decrease of the blocking probability can be noticed. Interest-
ingly, σ has a huge effect on this probability for some values of N1.

Fig. 3. SU interruption probability α versus maximum number of sensing SUs N1 for
various sensing rates normalized to the average SU transmission rate t = σ/μ2 = 0.1,
0.2, 0.3, 0.4, 0.5, ρpu = 0.3, ρsu = 0.5, N = 20 and 1/μ1 = 1/μ2 = 10 ms

In Fig. 3, the SU interruption probability α is plotted as a function of N1.
Increasing the maximum number of sensing users N1, we observe an increase
of the SU interruption probability. For increasing σ, an even sharper increase
of this probability can be seen. These observations are intuitively clear as ex-
plained before. Also we notice that the interruption probability converges to the
same value for different σ as the maximum number of sensing users increases.
Comparing Fig. 1 and Fig. 3 we see that there is convergence of α upwards a
value of N1 for which β approaches zero.

Fig. 4 shows the average delay of SUs as a function of the sensing room
size N1. For increasing N1, the mean delay linearly increases until it reaches
some convergence point. Afterwards, a further increase of the maximum number
of sensing users will not affect the mean delay. This convergence is fully in
accordance with the observation in Fig. 1 and Fig. 3. Also we notice the strong
effect of σ on the mean delay of SUs. Decreasing the mean sensing time 1/σ over
the given range, we see that the mean delay doubles and sometimes triples.

Fig. 5 shows the SU interruption probability α as a function of the SU arrival
rate λ2 for different maximum numbers of sensing SUs N1. For N1 = 100 and
increasing λ2, we can see that the SU interruption probability increases steadily
until the sensing room is almost full of sensing users; afterwards, it increases
more slowly. The same behavior can be noticed for other values of N1. The
sharp increase in the SU interruption probability when the cumulative offered
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Fig. 4. Average delay of SUs E[Dsu] versus maximum number of sensing SUs N1 for
various sensing rates normalized to the average SU transmission rates t = σ/μ2 = 0.1,
0.2, 0.3, 0.4, 0.5, ρpu = 0.3, ρsu = 0.5, N = 20 and 1/μ1 = 1/μ2 = 10 ms

Fig. 5. SU interruption probability α versus λ2 for various values of N1 = 100, 300,
500, 700, 900, ρpu = 0.3, N = 20, 1/σ = 100 ms and 1/μ1 = 1/μ2 = 10 ms

load from both SUs and PUs approaches one (in the range for λ2 between 1200
and 1400) is explained by the sudden increase of the number of sensing users in
this region.

Fig. 6 displays the SU discard probability β as a function of the SU arrival rate
λ2 for different maximum numbers of sensing SUs N1. As expected, for small
values of λ2 and increasing N1, the discard probability decreases since there are
more possibilities for an interrupted SU to sense again. But surprisingly, when
λ2 increases further, we observe that the discard probability is higher for larger
sensing rooms, which is not intuitively expected. Based on Fig. 5 and Fig. 6,
we observe that for the highest value of N1 = 900, the maximum values of the
interruption and the discard probabilities are below 15% and 10% respectively.

Fig. 7 shows the average delay of a SU as a function of the SU arrival rate λ2

for different values of the transmission time 1/μ2 = 100, 50 ms when the sum of
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Fig. 6. SU discard probability β versus λ2 for various values of N1 = 100, 300, 500,
700, 900, ρpu = 0.3, N = 20, 1/σ = 100 ms and 1/μ1 = 1/μ2 = 10 ms

Fig. 7. Average delay of SUs E[Dsu] versus λ2 for various values of the SU transmission
time and SU sensing time (1/μ2 = 1/σ = 100 ms), (1/μ2 = 50 ms, 1/σ = 150 ms),
N1 = 200, ρpu = 0.3, N = 20 and 1/μ1 = 10 ms

both transmission and sensing times is 200 ms. This plot can be divided into two
parts. In the first part, for an increasing SU arrival rate λ2 the average SU delay
increases as the number of SUs (sensing and transmitting) increases. In this part,
no SUs are discarded from the system as the sensing room is not full yet. In the
second part, the sensing room is almost full and an increase of λ2 increases the
probability that a SU is discarded from the system before successful completion
and consequently decreases the time the SU spends in the system.

6 Conclusion

In this paper, we investigated the impact of different parameters on SU perfor-
mance measures in a CRN using a finite Quasi-Birth-Death CTMC. It has been
shown that an increase of the sensing rate σ increases the SU interruption prob-
ability, but considerably reduces the mean SU delay. Further research would
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be needed to investigate the effect of sensing errors on these SU performance
measures.
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Abstract. The amount of data hosted by Internet servers and data
centers is increasing at a remarkable pace requiring more capable and
more efficient servers. However, physical efficiency does not necessarily
correlate with computational efficiency. In fact, independent studies re-
veal that Internet servers are mostly over provisioned and still additional
servers are deployed each year. Understanding the characteristics of the
workload of servers is an essential step to efficiently manage them. For
example, from the workload statistics, it is possible to predict idle or
underutilized states and to consolidate workload, so that the idle or un-
derutilized servers can be switched off. In this paper, we systematically
analyze the characteristics of video servers – since they are responsible
for producing the largest Internet traffic – and provide an insight into
the relationship between the statistics pertaining to workload, the size
of videos, and service time. We shall show that from the distribution of
the video sizes on host servers, it is possible to estimate the distribution
of the workload size produced by clients and the distribution of the time
required to process individual requests.

Keywords: Service time, workload characterization, workload genera-
tion, workload size, workload statistics, video server, video size.

1 Introduction

The amount of data hosted, processed, and communicated by Internet-based
servers and data centers is increasing at a remarkable pace. According to a recent
report by Cisco Global Cloud Index1, the global data center IP traffic will be
554 exabyte per month by 2016. In comparison, this has been 146 exabyte per
month in 2011. Likewise, the global cloud IP traffic will reach 355 exabyte per
month by 2016 (from 57 exabyte per month in 2011). The corresponding amount
of workload per installed cloud server will increase by more than twofold by 2016
compared to the workload per installed server in 2011.

The research community as well as the IT industry approaches this phe-
nomenon in a number of ways. Two of them, and perhaps the most ubiquitous
ones, involve (1) the replacement of existing servers with more capable servers
1 Cisco Global Cloud Index: Forecast and Methodology, 2011–2016, Cisco Inc.

(http://www.cisco.com)
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and (2) the deployment of additional servers. The estimated worldwide server
deployment in 2010 was 40 million units [10], but additional servers have been
steadily deployed since then. The latest statement from the International Data
Corporation (IDC)2 reveals that 1.9 million server units have been shipped in
the first quarter of 2013 alone. Unfortunately, these approaches alone do not en-
sure a sustainable computing due to the fact that a rapid growth in the number
and capacity of installed servers results in an equally rapid growth in power con-
sumption [1,15,19]. Moreover, physical efficiency does not necessarily correlate
with computational efficiency. In fact, independent studies reveal that Internet
servers are mostly over provisioned yet additional servers are deployed each year.
For example:

– At Twitter CPU utilization is less than 20% per server even though resource
reservation reaches up to 80%. Similarly it uses between 40 and 50% of the
available memory but memory reservation is approximately 80% [9].

– In a Google cluster CPU utilization is between 25 and 35% per server but
reservation is approximately 75%. Likewise, memory utilization is approxi-
mately 40% but memory reservation is approximately 60% [25].

– In Amazon’s EC2 cloud environment, the CPU utilization per server is be-
tween 3 and 7% [17].

The third approach presently adopted by the industry combines server vir-
tualization with cloud computing, so that Internet services encapsulated in vir-
tualized machines can share hardware resources, but each virtual machine has
its own dedicated execution space. Moreover, the virtual machines can be freely
migrated from one physical machine (server) to another at runtime. This fea-
ture has two advantages: Firstly, virtual machines are not bound to any specific
server; their owners can change host servers whenever they wish to. Secondly,
infrastructure owners can freely decide where and for how long individual virtual
machines should execute, so that they can efficiently utilize hardware resources
– this aspect is known in the literature as service or workload consolidation [4]
as well as server consolidation [2].

Whether in a virtualized environment or otherwise, understanding the char-
acteristics of the workload of servers is useful for efficiently managing hardware
resources [8]. Firstly, the workload of underutilized or overloaded servers can
be timely migrated to servers which can be loaded optimally. Secondly, from
the statistics of resource utilization, it is possible to determine whether and for
how long idle servers can be switched off to save power [26,27]. Thirdly, services
that consume complementary resources can be scheduled on the same machine
whereas services known for competing for similar resources can be scheduled to
execute on separate servers [29].

The workload of an Internet server is primarily generated by users issuing
requests. Hence, it consists of two independent quantities which cannot be known
in advance except in a probabilistic sense. The first quantity refers to the arrival
2 http://www.idc.com/getdoc.jsp?containerId=prUS24136113 (last visited August

20, 2013).
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pattern of the requests (request arrival rate) while the second refers to the size of
each request or the computational complexity each request induces on the server.
Most existing probabilistic models for managing the resources and predicting the
performance of Internet services rely on these two quantities.

In this paper, we shall experimentally demonstrate that for online video host-
ing services, such as Metacafe and YouTube, the statistics of the workload as well
as the time needed to serve individual requests can be sufficiently determined
from the statistics of the videos they host. The justification for our assertion
is that for a large number of videos, there is a strong correlation between the
preference of the users who generate videos and the users who view these videos.
This knowledge is useful because service providers can estimate (1) the amount
of resources they should make available to accommodate user requests and (2)
the quality of service they can achieve for a given resource configuration. In
other words, service providers need only examine how the statistics of the videos
they host change over time to balance the supply of resources (for example, the
leasing of network bandwidth or storage) with the demand for resources and to
make a desirable trade-off between performance and resource consumption (in-
cluding power). Since the required statistics is always available to them on the
server side, they can make decisions without the influence of external entities.

We summarize our contribution as follows:

1. We develop a realistic and comprehensive workload generation model for a
video hosting server. Unlike previous models which address partial aspects
of video hosting servers, our model attempts to provide a more complete and
a more unified aspect.

2. We set up a realistic server environment to test the workload generator; and,
3. We experimentally examine the relationship between the statistics of the

request size received by the server, the video size hosted by the server, and
service time needed to process user requests.

The rest of this paper is structured as follows: In section 2, we analyze related
work. In section 3, we describe our experimental setting and how we generate
workload. In section 4, we analyze our measurement data and discuss our obser-
vation. Finally, in section 5, we provide summary and conclusion.

2 Related Work

The term workload is understood in the literature in one of the following two
ways: In the first, it refers to the magnitude of client requests processed by an
Internet server3 [6,11,20,21,33]; and in the second, it refers to the magnitude of
utilization of hardware resources (such as CPU and memory) [4,14,23,24,31]. The
main difference lies in the quantity that is available for modeling and analyzing
the characteristic of a service. In this paper, we adopt the first association.
3 As long as the context is clear, we use the terms service and server interchangeably.

We use the term physical machine when we wish to put the emphasis on the hardware
server.
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Regardless of the way a workload is understood, obtaining sufficient statistics
to accurately model and analyze Internet services is a difficult task because of
privacy concerns and business secrecy. In the past, researchers have tried to piece
together several parameters that can characterize the workload of web servers,
particularly, video hosting applications. Some have made use of publicly available
data, such as traces of CPU utilization of real-world web servers, so as to model
and reason about similar web servers running on different platforms [16], [31].
Others have employed either web crawling to obtain metadata of files hosted by
Internet services or filtered and analyzed Internet packets destined to or arriving
from hosting sites at particular gateways. Evidently, all of these approaches can
only provide partial views of the real workloads.

Barford et al. [3] identify seven statistical properties that characterize (con-
ventional) HTTP traffic. These are the probability distribution of file sizes at
the server side, the file popularity, temporal locality, the request sizes, active
OFF times, inactive OFF times, and the number of embedded references. They
assert that file sizes follow heavy-tailed probability density functions.

Tang et al. [28] analyze the traffic of a media streaming server. Their model
builds on the idea of Barford et al. but relaxes the assumption that file popularity
is statistically stationary. Instead they define a life-span distribution to account
for a file popularity that changes over time. Moreover, they determine two types
of life-spans: a regular life-span following a log-normal distribution and a news-
like life-span following a Pareto distribution. The parameters for both types
of life-span distributions are normally distributed. Their approach is the only
approach known to us which examines prefix durations (i.e., aborted sessions).

Gill et al. [12] investigate the traffic of YouTube at a campus network. The
central finding of their work is understanding the relationship between file types
and traffic size: Whereas only 3% of all requests were for video files, 98.6% of
the traffic was caused by video files. The majority of requests, i.e. 86%, were for
images and text files which account for less than 1% of all traffic. The remaining
11% of requests were for applications and script data which account for 0.5% of
all traffic. In addition, the study reveals that video file sizes are not considerably
variable and therefore, cannot be modeled as long-tailed random variables. This
is most likely due to the 10-minutes duration restriction for videos existing at
the time which has been increased to 15 minutes as of July 2010. Today it is
possible to upload videos larger than 20 GB as a result of which the probability
density function of video size can be expected to be heavy-tailed.

Similarly, Cheng et al. [7], Cha et al. [5] and Mitra et al. [18] analyze the
traffic of several video hosting applications. One of the observations common
to all is that the popularity of a video does not follow a purely Zipf function.
Instead, it exhibits a cutoff at the lower end. In other words, less popular videos
still receive more views than assumed by a purely Zipf function. Like Tang et al.
these researchers emphasize the need to capture a change in file popularity (life
span). The analysis of Cheng et al. reveals that the life span of a video follows
a Pareto density function. The most important parameter for the life-span is
the growth trend factor, p. A value of p > 1 indicates a rise in popularity while
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0 < p < 1 indicates a decline in popularity. According to Cheng et al. in 70%
of all the videos they considered, p < 1. Based on this observation, Cheng et al.
propose a model to predict the amount of additional views a video receives in
future, which takes video age, current popularity, and p as its input parameters.

Cha et al. [5] analyze the popularity patterns of videos in YouTube, Daum, and
Lovefilm. They find no correlation between video length and video popularity.
The popularity follows a power law with an exponential cutoff, an observation
confirmed by Mitra et al. [18]. Gummadi et al. [13] attribute this cutoff to a
post-filtering process by recommendation systems. According to Cha et al. 99%
of all videos of the video hosting applications are shorter than 10 minutes (which,
again, is most probably influenced by the then existing 10-minute upload limit).

Finally, the investigation of Cha et al. reveals that the share of workload
generated by users’ activities (ratings and comments) is almost negligible: For
YouTube only 0.22% of all views result in a rating and only 0.16% of all views
result in a comment. This observation agrees with an earlier observation [12].
Similar observations are made by Mitra et al. – the workload due to ratings,
comments, and uploads is typically several orders of magnitudes less than the
workload generated by video views.

In the following sections, we build on the ideas and concepts discussed in this
section to generate realistic workloads for a video hosting server.

3 Workload Generation

Whether running on a privately owned server or on a leased public cloud plat-
form, understanding the workload of a server is vital for planning and managing
resources (for example, resource-efficient schedulers employ workload statistics
to determine where a given request should be processed). We assert that some
of the statistics of a workload can be established from the statistics of the files
the server hosts. We shall analytically as well as experimentally illustrate the
correctness of this assertion by taking a video hosting server as an example. We
assume that the videos hosted by the server are generated and viewed by users
who are independent of the service management.

Our server consists of four quad core Intel Xeon E5-4603 processors, 16 GB
memory, 10 Gbps Intel NIC, and an XFS-formatted 6 TB hard disk RAID with
a theoretical sustained data rate of ∼465 MB/s (the data rate reduces to ∼300
MB/s during heavy contention). The server hosts 5000 videos of different sizes
and user requests are served by an Apache2 web server.

The first step towards examining our assertion is to generate a realistic work-
load and to feed this workload to the video hosting server. We combine together
the different models we reviewed in section 2 to generate the workload. As can
be recalled, the models are developed by independent researchers who had ac-
cess to actual Internet workloads (they employ traces or web crawlers). These
models refer to: (1) The distribution of file sizes on the host server, (2) the file
popularity at the start of the experiment, (3) the popularity growth factor, (4)
the age of the files, and (5) the distribution of weekly views. We explain these
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features in more detail in the subsequent subsections and report how they relate
to the workload of our server.

3.1 Video Size

As we already mentioned earlier, determining the distribution of the sizes of files
in existing video hosting platforms is difficult for lack of access to the actual
servers and because file sizes are not parts of publicly available meta data. In
addition, most sites do not allow web crawling. However, early analysis of In-
ternet traffic shows that the density of data size exhibits a heavy-tailed density
function [22,32,3]. Studies contending this assertion (for example, [12,7]) often
refer to restrictions made by service providers on the size of videos that can be
uploaded on their servers. For example, YouTube currently limits the uploaded
video duration to 15 minutes for most users, but for users with good conduct
record this limit is pushed to 12 hours4. Likewise, Vimeo currently allows up-
loads of up to 5 GB for standard users and up to 20 GB per upload for Pro
users5. Even so, it is reasonable to assume a heavy-tailed density for video file
size.

We therefore fix the maximum permissible file size to 25 GB6 and take a
previously published value (median = 8.215 MB) to determine the minimum
median value for the video size [12]. Even though results published by Barford
et al. [3] suggest a Pareto distribution for the density of the traffic size, the
rpareto function from GNU R’s VGAM package we employ for our analysis
produces hardly controllable variates. We therefore decide to replace it by the
Weibull density which is implemented by the rweibull function in GNU R’s
stats package. We choose the parameter values k = 0.3 (shape) and λ = 30
(scale) to produce variates comparable to the above mentioned medians and
maximum values. We then generate 5000 variates with Ms = 8.514, μs = 255.8,
and maxs = 24680, where Ms refers to the median video size; μs the mean video
size, and maxs the maximum video size.

We then convert these figures to bytes and add an offset term to avoid a 0
byte video size. Gill et al. [12] found minimum payload sizes ranging from 452
to 95760 bytes for four different Youtube traces. We pick a random clip of 1s
duration from Youtube and determine the minimum video size accordingly; it is
11500 bytes.

Based on these specifications we fragment a large video file of approximately
25 GB into 5000 randomly generated video clips. The sizes of these clips follow
a Weibull distribution.

3.2 Video Popularity

Popularity refers to the number of times a particular video has been viewed in
the past. Researchers who study the statistics of video popularity assert that
4 https://support.google.com/youtube/answer/71673?hl=en
5 https://vimeo.com/pro
6 Vimeo has reduced file upload limit from 25 GB to 20 GB only recently.

https://support.google.com/youtube/answer/71673?hl=en
https://vimeo.com/pro
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it follows a power law7 [12], but because most existing video servers employ
recommendation systems the distribution function experiences an exponential
cutoff at the lower end of the density function [5,7,18,28]. For our case, we do
not employ a recommendation system and, therefore, the video popularity is
assumed to obey a power law. As a basis for establishing the parameter values
of the power-law variates, we use actual values from Dailymotion as presented
in [18] with α = −1.72, and the maxv = 2, 895, 396.

3.3 View Gain

The video popularity serves as a basis for estimating the additional number of
views a video gains in future. Cheng et al. [7] derive a quantitative expression
for the view gain after x additional weeks as follows:

v(x) = v0 · (x+ a)p

ap
(1)

where v0 refers to the present popularity of the video; a refers to the age of
the video in weeks at the beginning of the observation period and p refers to
popularity growth factor. Cheng et al. provide the plot of the CDF of p but left
out its mathematical expression. We perform a graphical analysis and estimate
the CDF with a Weibull distribution with W (2, 0.9). With this knowledge we
calculate the additional view gains for each video our server hosts. We will use
the terms view gain and popularity gain interchangeably.

3.4 Video Age

To determine a video’s age, we use a parameter called video upload trend, α.
The upload trend of a video hosting server refers to the number of videos it hosts
each week: n = wα, where n refers to the number of videos currently hosted by
the server and w refers to the number of weeks the server has been active. The
upload trend of YouTube in 2008 has been estimated to be 2.61 [7]. Since our
video server hosts 5000 videos at the time of our experiment, for α = 2.61, the
oldest video should be 16 weeks old whereas the newest video is 1 week old.
Hence, “16 weeks ago” one video was uploaded and the first file size variate is
associated with an age of 1. By applying the upload trend like this we calculate
�22.61� = 7 uploads for the second week and the next 7 request size variates are
associated with an age of 2. This procedure is repeated until the age of all videos
are determined. After every request size variates is associated with an age, we
calculate the video gain for each video using Equation 1.

7 The probability density function of a random variable x obeying a power law is
expressed as: f(x) = Cx−α with x > xmin and.
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3.5 Request Distribution

The view gain expresses the number of additional views a video receives on a
weekly basis. This term has to be broken down into days and the time of a day
to estimate the workload size per unit time. For our experiment, we consider it
sufficient to generate requests for a time span of one day. Therefore, we evenly
distribute the view gain (i.e., the number of requests) to the seven days of the
week, but a further even distribution of the daily requests to the 24 hourly slots
is not plausible, because repeated observations indicate that the daily load of
a multimedia server exhibits rather a wave-like distribution [12,34]. However,
results in [28,30] show that stationary can be assumed if the day is split into
time slots of one hour or less. We thus employ a y-shifted cosine function to
determine the portion of workload for each time slot.

Mathematically, this portion is determined as:

As =

∫ u

l

cos(x) + 1.1 dx (2)

where u = 2π s
24 , and l = 2π s−1

24 with s = {1, . . . , 24}. Then, the amount of
requests a video v receives in the time slot s is expressed as: rvs = As

A ×gd, where
A =

∫ 2π

0
cos(x) + 1.1 dx and gd is the view gain for day d.

3.6 Test Cases

It turned out that generating requests for all the files the video server hosts over-
whelms the physical machine due to contention at the disk drive. This problem
can be addressed in two different ways: (1) By reducing the number of available
videos on the server, since the user request rate depends on this quantity (the
larger the number of videos the server hosts, the larger the number of users it
attracts); or (2) by scaling down the initial popularity of the video files since the
view gain per week (and thus, per time slot) directly depends on this quantity.
Similarly, the view gain for each video can be scaled down. For our experiment
we adopt the first approach.

With our server configuration, a workload generated for 300 videos slightly
overloads the sever (in terms of system load average8). When the number of
videos is reduced to 200 a low to medium load is generated on the server. When
the number of videos is reduced to 100 then the server has sufficient resources
to accommodate user requests (low system load average). We consider these
three scenarios to generate different request distributions and to analyze the
relationship between the statistics of the workload generated by users and the
statistics of the videos hosted by the server.

8 The load average refers to the average length of the CPU run queue. If this length
is greater than the number of logical cores, we consider the server to be overloaded.
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4 Observation and Analysis

In this section, we analyze the relationship between the statistics of (1) the
service time for individual requests and the size of individual requests (workload
size), and (2) the workload size and the video size. In all our investigation, we
shall focus on the probability distribution function (CDF) because this function
sufficiently expresses a random variable.

As mentioned in section 1, the workload of a video server is the convolution
of two random variables, namely, the request arrival rate and the size of indi-
vidual requests. The distribution of request sizes is in turn influenced by (1)
the distribution of sizes of available videos on the server and (2) the popularity
(view) gain of each video in each time slot. We consider both parameters and
generate six different types of workloads: We vary the number of available videos
to 100, 200, and 300 and we consider four different types of workloads which are
produced under the assumption that the hosted videos have initial video popu-
larity (v0 in Equation 1) distributions obeying power law (for all the video sets),
normal, uniform, and gamma distributions (for the 200 video set). Fig. 1 shows
the rank-frequency plots of the different view gains we consider to produce the
workloads.
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Fig. 1. The rank-frequency plot of the initial video popularity

Varying the amount of available videos changes the parameters of the video
size distribution while varying the popularity distribution changes the popularity
gain and thus, the distribution of the request size. We perform the experiments in
the time slots between 16:00 and 19:00 o’clock. However, in this paper, we shall
limit ourselves to the analysis of the experiment results of the time slot between
18:00 and 19:00 o’clock (this is the time slot with the highest request rate). The
experiment data for the other time slots do not lead to different results.
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4.1 Service Time vs Request Size

One of the most critical parameters to evaluate the performance of a server is
the service time as seen by clients. We define this time as the time span begin-
ning from sending a request up to the time the requested video is downloaded
completely. Technically, it is the time span beginning from starting to establish
an HTTP session (wait time) until the HTTP session termination (download
time).

The wait time (the time needed to establish a session) does not much depend
on the request size; instead, it depends on the request arrival rate. Even so, the
wait time is very small compared to the download time and can be neglected –
the mean wait time that can be experienced under a heavy load is below 0.08
second whereas the mean service time under the same condition is 13.18 seconds.
Therefore, the service time can be approximated by the download time, which
depends on the size of the video being downloaded. We propose to estimate the
service time in terms of the request size (video size) using a linear model.
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Fig. 2. Comparison of the cumulative distribution functions of the experimentally ob-
tained and the estimated service times when the available videos for downloading are
(top: from left to right) 100, 200, and 300. The workloads are generated with a power
law distribution initial video popularity. Bottom: the available videos on the server are
200, but the initial video popularity follows (from left to right) normal, uniform, and
gamma distributions.
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Fig. 2 displays the relationship between the CDFs of the actual service time
we measure and the service time we estimate from the size of incoming requests.
While the graphs show deviations in the lower end of the distributions, the middle
parts and the upper ends match comparatively well. To evaluate the goodness
of fits, we calculate the R2 values. The best estimation is achieved when the
initial video popularity has a gamma distribution (R2 = 0.8132) whereas the
worst estimation is achieved when the initial video popularity follows a uniform
distribution (R2 = 0.648). In general, the results suggest that the assumption
that a linear relationship exists between the service time and the request size is
a plausible assumption.

From the graphs it can be observed that the deviations between the CDFs of
the actual and the estimated service times start to increase at values below 0.1
which comprise the lower 0.5 quantile of the values. There can be two reasons
for this: (1) the lower-bound of the service time is fixed by the minimum wait
time and the data rate of the network interface card. For our experiments the
minimum wait time is 0.00257 second. (2) Due to the heavy-tailed nature of
the video size distributions, the request size is heavy-tailed as well (we shall
discuss this fact shortly). In this case, the linear model produces better results
for larger values of the request size than for smaller values. Since the request
size comprises a range between six (for 100 videos) and seven (for 300 videos)
orders of magnitudes, but the service time only between five (for 100) and six
(for 300 videos) orders of magnitudes, it may not come as a surprise to observe
a larger deviation at the lower end of the CDFs.

4.2 Request Size vs. Video Size

Likewise, we examine the existence of a relationship between the statistics of the
request size of a workload (client-side property) and the statistics of the video
size on the server (server-side property). Similar to the previous test cases we
vary the amount of available videos on the server and the distribution of the
initial video popularity to generate different workloads.

As can be recalled, the video size for all the test cases obeys a Weibull distri-
bution, but each test case results in a different value for the scaling parameter.
On the other hand, the workloads generated for each test case are dissimilar
with each other because of the different popularity distributions we selected.
Regardless of these variation, the graphs in Fig. 3 confirm that the distribu-
tions of the size of videos on the servers exhibit strong similarity with the
distributions of the request size produced by users (it should be noted that
both the distributions of the video size and the request size are measured in
byte).

Interestingly, for all the test cases, the CDFs of both the request and the video
sizes can be estimated by Weibull distributions. Tab. 1 and Tab. 2 summarize the
shapes and scales of the two random variables for all the test cases we considered.
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Fig. 3. Comparison between the cumulative distribution functions of the video size
on the server and the request size generated by users when the available videos for
downloading are (top: from left to right) 100, 200, and 300. The workloads are generated
by a power-law distributed initial video popularity. Bottom: the available videos on
the server are 200, but the initial video popularity follows (from left to right) normal,
uniform, and gamma distributions.

Table 1. The estimated parameters and the corresponding relative error (rel.err =
actual−estimated

actual
) for the video and the request size distributions. The server makes 100,

200, and 300 videos available for downloading and the workloads are generated with
the assumption that the initial video popularity distribution obeys a power law.

Request Size Distribution Video Size Distribution
Subset shape scale shape (rel. err) scale (rel. err)
100 Videos 3.2934e-01 4.5283e+07 3.1854e-01 (.0328) 3.6322e+07 (.1979)
200 Videos 3.5754e-01 3.4089e+07 3.3792e-01 (.0549) 3.4331e+07 (.0071)
300 Videos 3.2390e-01 3.1389e+07 3.3279e-01 (.0274) 3.9909e+07 (.2714)

The above results clearly show that regardless of the distribution of view gain,
the statistics of the request size can be sufficiently determined by the statistics
of the size of the videos hosted by the server.
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Table 2. The estimated parameters and the corresponding relative error (rel.err =
actual−estimated

actual
) for the video and the request size distributions. The server makes 200

videos available for downloading and the workloads are generated with the assump-
tion that the initial video popularity distribution obeys normal, uniform, and gamma
distributions.

Request Size Distribution Video Size Distribution
Subset shape scale shape (rel. err) scale (rel. err)
Power law 3.576e-01 3.4724e+07 3.1854e-01 (.1092) 3.6322e+07 (.0439)
N(1700, 300) 3.543e-01 3.5378e+07 3.1854e-01 (.1009) 3.6322e+07 (.0267)
U(700, 2700) 3.350e-01 3.6285e+07 3.1854e-01 (.0491) 3.6322e+07 (.0010)
Γ (.372, 2391) · 106 3.277e-01 3.9370e+07 3.1854e-01 (.0279) 3.6322e+07 (.0774)

5 Conclusion

In this paper we analyzed the characteristics of a video server. We generated
probabilistic workload and examined the relationship between server-side statis-
tics and workload properties. In particular, we studied whether the probability
distribution function of the request size - a property which is not influenced by
the server configuration - is related to the probability distribution function of
the size of videos hosted by the server. We found that the distribution function
of the request size resembles the distribution function of the file size despite the
fact that the distribution of the workload size is technically the convolution of
the distribution function of the video size and the distribution function of the
video popularity. Furthermore, we examined the relationship between the statis-
tics of the service time and the workload size. We found that a linear relationship
exists between the workload size and the service time.

We thus confirmed our assertion that the performance (service time) of a video
server can be sufficiently predicted by examining the statistics of the video files
it hosts.
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Abstract. In this paper we study the impact of different types of con-
straints on the maximum throughput that a system can handle. In par-
ticular, we focus on constraints limiting the use of resources and/or the
allowed response time. The problem is made even more difficult by the
pronounced diversity in resource requirements of the different applica-
tions in execution, i.e., by the multiclass characteristic of the workloads.
The proposed approach allows to determine the maximum load of the
different classes, while still satisfying the considered performance objec-
tives. An experimental validation of the described technique through the
study of a realistic e-commerce application is presented.

1 Introduction

Over the last few years, the growth of available physical resources was a very
evident phenomenon thanks to the widespread diffusion of cloud computing.
Concurrently, the capacity requirements of the new applications has also in-
creased significantly. Modern computing infrastructures are characterized by a
huge amount of resources with heterogeneous capacities (e.g. [14,23]) that are
shared among several applications with very different requirements. Such fea-
tures have made the allocation of resources a very critical problem because the
capacity required to sustain the flow of requests may not be always available.
The performance of the servers remains a crucial component of many comput-
ing infrastructures. In order to address this problem in the case of shared sys-
tems, different types of constraints are imposed to the resources deployed to the
various applications.

In this paper we study the effects of a variety of resource and time based
constraints on a performance objective function. The constraints at the resource
level are based on the utilization, and on the maximum number of jobs in the
system. As time based constraints we consider thresholds on residence time and
on the mean system response time. The performance objective function to be
maximized is the system throughput.
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In this paper, peculiar properties of open multiclass queuing networks subject
to different types of constraints are investigated and their applicability to some
practical problems is proposed. In particular, the problem solved is the following:
find the maximum throughput per class of requests that the system can sustain
while satisfying the given time and/or resource based constraints.

Even if multiclass open queuing networks are well established mathematical
models, the specific way in which they are used in this paper constitute a novelty.
This application of known theory can provide new interesting insights and be
useful to solve stream-line research problems about the allocation of resources
in contexts such as cloud computing and multi-tier architectures.

The structure of the paper is the following. Section 2 analyzes the related
works, and Section 3 presents a brief overview of some basic results of open queu-
ing networks that will be used throughout the paper. Sections 4 and 5 address
the identification of the maximum throughput without and with constraints.
Section 6 applies the results to a realistic system, and Section 7 concludes the
paper.

2 Related Work

A common problem in data center management is resource allocation and pro-
visioning in the presence of loads that can vary frequently with Internet appli-
cations. Resource over-provisioning leads to low average server utilization and
high recurring utility costs. On the other hand, under-provisioning translates in
a potential shortage of computing resources. Both strategies may cause serious
economic losses. Provisioning decisions are usually taken by either hardware,
platform or application providers, even if in many cases the responsibility of
provisioning is demanded to end users (see e.g [23,25,24]).

Several techniques have been recently introduced to deal with the identifica-
tion of the proper set of resources. Autonomic data centers, referred sometimes
to as self-tuning, self-adaptive or self-aware systems (e.g.[11,28]) try to adapt the
allocated resources to the fluctuations of requests in order to meet agreed op-
erational objectives. In [20,21] the authors take into consideration the response
time only, typically defined as the aggregated value across all the request classes.
Our solution differs from these approaches as it deals also with multi-class work-
loads. Moreover, our approach enables the data center resource management
to identify the workload mix that maximizes both the throughput and the uti-
lization of resources under a set of constraints, not only response time. Other
bottleneck identification techniques for queueing networks are considered in [7].
Optimization of a cost function has been addressed in many different ways: using
combinatorial search algorithms in [5,9,10], linear programming in [2], game the-
ory in [26], while in other cases the maximization of some utility functions like
response time (e.g. [22]) or power consumption (e.g. [3]) is sought. An heuristic
approach is discussed in [1].

The problem of scalability has been approached by dynamically allocating and
deallocating resources. Admission control schemes have been devised in order to
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guarantee given objectives. Usually, performance goals are achieved by rejecting
some types of requests during peak periods [8,10] or by maximizing of provider’s
revenue [13,15]. Different approaches are also based on policies that control the
arrival rates of the classes of applications in order to saturate simultaneously
multiple resources to maximize a given metric as in [27,12].

3 Background

In this section, we briefly review the basic notations that will be used in the
following. We consider a workload consisting of C classes of requests and a
system with M resources that operate at a fixed rate. Requests cannot change
class during their execution. Let Dmc be the global service demand of a class c
job on station m (with 1 ≤ c ≤ C and 1 ≤ m ≤ M). The service demands of the
system are described by the following M × C demand matrix:

D =

∣∣∣∣∣∣∣
D11 . . . D1C

...
...

DM1 . . . DMC

∣∣∣∣∣∣∣ (1)

Class c requests enter the system at a Poisson rate λc. We collect the workload
intensities of all the classes in a vector λ = (λ1, . . . , λC). The overall arrival rate,
i.e., the global load of the system, is given by Λ =

∑
c λc. Let β = (β1, . . . , βC)

be the population mix vector, where βc is the fraction of arriving requests that
belong to class c. The following relations between Λ, λ, β exists:

λ = Λβ, λc = Λβc,
∑
c

λc = Λ,

β =
λ

Λ
, βc =

λc

Λ
,

∑
c

βc = 1
(2)

We define the population mix scaled demand for resource m Dm as: Dm(β)

Dm(β) =
∑
c

βcDmc (3)

Dm(β) represents the mean service demand generated on resource m by a given
population mix β.

We use the subscript ‘mc’ to denote an index computed for class c at resource
m (Umc, Rmc and Qmc). We also denote aggregated metrics related to class c by
the index �c: U�c, R�c and Q�c. The metrics at the resource level are denoted
by the index of the resource: Rm and Qm.

4 Maximization of Unconstrained Systems

With a multiclass workload, the maximum throughput that a system can handle
is a function of the fraction of the jobs of the different classes in concurrent
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execution, i.e., is mix dependent. Indeed, for a given workload intensity there are
mixes in correspondence to which the system perform better than with other, i.e.,
that provide the maximum throughput and the minimum response time. We are
considering open systems, and it is known that as the arrival rate of customers
of the various classes increases, the number of customers in the system, and thus
the response time, tends to grow without bounds, (i.e. the system saturate). In
particular, with a given population mix β, the system is not in saturation if the
utilization of each resource is strictly less than 1, that is: ΛDm(β) < 1, ∀m :
1 ≤ m ≤ M . This ensures that the system is stable, and it can be used to
determine the maximum arrival rates that it can handle. For a given population
mix β, the maximum possible arrival rate Λ̂(β) can be determined by inverting
the stability condition:

Λ̂(β) =
1

max
m

{Dm(β)} . (4)

It can then be interesting to determine the population mix β for which the
system can experience the maximum throughput Λ̂(β). Since the utilization of
the resources are linear functions, the population mix β∗ corresponding to the
maximum throughput can be obtained solving the following Linear Programming
Problem (LPP):

Variables: λc, 1 ≤ c ≤ C

Objective: maximize
∑
c

λc

Constraints:
∑
d

λdDmd ≤ 1, 1 ≤ m ≤ M

λc ≥ 0, 1 ≤ c ≤ C

(5)

The interpretation of the LPP of Eq. 5 is the following: the objective function
corresponds to the total arrival rate, expressed as the sum of the arrival rates
of the individual classes (Λ =

∑
c λc). Constraints ensure that arrival rates

are positive (λc ≥ 0), and that the utilization of each resource is less than 1
(
∑

c λdDmd ≤ 1). If we call λ∗
c , 1 ≤ c ≤ C the optimizer, then the maximum

allowed throughput corresponds to the value assumed by the objective function
Λ∗ =

∑
c λ

∗
c . The optimal population mix can then be computed as β∗ = {β∗

c}
with β∗

c = λ∗
c/Λ

∗.
The set of the population mixes that can achieve the maximum throughput

corresponds to the solution of the linear program. If the solution of the LPP of
Eq.5 is a single point, then the maximum throughput can be obtained only for
single population mix β∗. If the solution of the LPP in Eq.5 is a segment or a
convex polyhedron, then there exists a set of population mixes corresponding to
the maximum overall throughput Λ∗.

We now see the application of the technique through the description of an e-
commerce system consisting of four resources (Management, CMS System, Inven-
tory and Shipping) and three classes of customers (Intranet,On-line Purchase, In
Store). The service demands of the three classes are shown in Table 1. The Man-
agement resource is the storage server for the financial, transactions and customers
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data. The different contents of the website (mainly products catalog) are managed
by the CMS system, while the administration of the catalog and the warehouse in-
ventory involve the Inventory server. A dedicated resource is provided to handle
the Shipping of purchased items. The back-end operations, including tasks related
to the organization of the web site, the products catalog update, and the customers
data update, are executed by requests of the Intranet class.On-Line Purchase rep-
resents the process of buying one or more products through the web in a single
transaction, while In Store purchase transactions take place off-line, and usually
are started by a customer entering a physical store. During their execution the re-
quests of each class visit all the four servers.

Table 1. Service demands D of the three classes of requests at the three resources of
the e-commerce model

Class 1 (ms.) Class 2 (ms.) Class 3 (ms.)

D Intranet
On-Line
Purchase

In Store

Resource 1 Management 80 65 60
Resource 2 CMS system 30 130 80
Resource 3 Inventory 45 30 135
Resource 4 Shipping 65 115 45

Fig.1 shows the maximum throughput Λ̂(β) for all the possible mixes β =
|β1, β2, (1−β1−β2)| of the requests of the three classes. The mixes of requests of
each surface of the polyhedron shown correspond to a bottleneck on a different
resource (indicated in the figure by its own label). The edges at the intersection of
two surfaces are the common saturation sectors, and represent the mixes whose
execution generates more than one bottleneck, i.e., that concurrently saturate
two resources [4]. It is clear from the figure that there exists a point, correspond-
ing to the population mix β∗, for which the throughput is maximized (i.e. the
top of the pyramid-like polyhedron). In this point, more than two resources sat-
urate concurrently.

Solving the LPP of Eq. 5 to determine the maximum system throughput with
respect to the mixes β, we obtain:

β∗ = |0.4512 0.2307, 0.3181| , Λ∗ = 14.25 jobs/s (6)

It is interesting to point out that the maximum system throughput is obtained
with β1 = 0.4512, that is, when 45% of the requests in execution are of the
Intranet class. This is not surprising, since the global service demand of the
Intranet requests, i.e., the sum of its service demands over all the resource, is
smaller with respect to the ones of the other two classes.
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Fig. 1. Maximum system throughput vs the population mixes β in a three class, four
resources system

5 Performance Constraints

We then consider the case in which constraints are imposed to some performance
metrics of the system. Typical constraints are, for example, thresholds to the
maximum mean response time, to the utilization, or upper bounds for the queue
lengths of a resource. Constraints may reduce the maximum allowed arrival
rate Λ∗ to values that are smaller than Λ̂(β) given by Eq.4. They can also
change the population mixes β∗ for which the maximum throughput Λ∗ can
be achieved. To address this issue, we divide the performance constraints in
two categories: system-level and resource-level. System-level constraints concern
either the whole system or a specific class c. For all possible β, as the total
arrival rate Λ approaches Λ̂(β), both the queue length and the response time
tend to infinity:

lim
Λ→Λ̂(β)

R�c = ∞, lim
Λ→Λ̂(β)

RS = ∞,

lim
Λ→Λ̂(β)

Q�c = ∞, lim
Λ→Λ̂(β)

QS = ∞.
(7)

Resource-level constraints refer to a station m, either for a specific class c or
for the aggregate of all the classes. In this case the utilization, the mean queue
length and the response time can have very different behaviors depending on the
considered population mix β. Let us call d(β) = {m : 1 ≤ m ≤ M ∧Dm(β) =
max

l
{Dl(β)}, the set of resources that are bottleneck with the population mix

β, and let us call ûm, b̂m, q̂m, (ûmc, b̂mc, q̂mc) the maximum utilization, mean
response time and mean queue length that can be obtained for a resource m (re-
spectively for class c requests at resource m). Let us focus on resource utilization
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first. If a resource m is a bottleneck (i.e. m ∈ d(β)), then as the system reaches
its instability point (i.e. Λ → Λ̂(β)), the resource must be completely saturated.
In other words, we have that:

ûm = lim
Λ→Λ̂(β)

Um = 1, ∀m ∈ d(β). (8)

However, if we focus on the utilization of a given class c at a bottleneck station
m, it will tend to the fraction of jobs of the considered class:

ûmc = lim
Λ→Λ̂(β)

Umc =
βcDmc

Dm(β)
, ∀r ∈ d(β). (9)

The mean response time and the mean queue length at a bottleneck resource m
tend to infinity since the system is not able to handle all the incoming requests.
That is:

b̂mc = lim
Λ→Λ̂(β)

Rmc = ∞, b̂m = lim
Λ→Λ̂(β)

Rm = ∞,

q̂mc = lim
Λ→Λ̂(β)

Qmc = ∞, q̂m = lim
Λ→Λ̂(β)

Qm = ∞,

∀m ∈ d(β).

(10)

Instead if we consider a resource k that is not a bottleneck (i.e, k �∈ d(β)),
the limiting value of the considered performance index is finite, and it can be
computed with standard queueing network formulas using an arrival rate Λ̂(β).
Let us call such limiting values:

ûkc = lim
Λ→Λ̂(β)

Ukc = Ukc(Λ̂(β)), ûk = lim
Λ→Λ̂(β)

Uk = Uk(Λ̂(β)),

b̂kc = lim
Λ→Λ̂(β)

Rkc = Rkc(Λ̂(β)), b̂k = lim
Λ→Λ̂(β)

Rk = Rk(Λ̂(β)),

q̂kc = lim
Λ→Λ̂(β)

Qkc = Qkc(Λ̂(β)), q̂k = lim
Λ→Λ̂(β)

Qk = Qk(Λ̂(β)),

∀k �∈ d(β).

(11)

5.1 Resource-Level Constraints

Constraints on resources (either per class, or aggregate) can be computed with
closed form expressions. Let us denote with umc, bmc, qmc, the maximum utiliza-
tion, the response time, and the mean queue length allowed for a class c job at
resource m, and with um, bm and qm the corresponding thresholds at resource
m regardless of the class.

Constraints are automatically satisfied if they are based on thresholds that
are greater than the maximum values determined in Eq.11: that is if either
umc > ûmc, bmc > b̂mc, qmc > q̂mc, um > ûm, bm > b̂m or qm > q̂m.
Let us consider a non-trivial case, and let us initially focus on the response time
of a class c job at resource m. The constraint is not trivial if bmc < b̂mc. In this
case we have that:

Dmc

1− ΛDm(β)
< bmc. (12)
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Since we consider that the system must be stable, we know that Um < 1 ∀r,
which implies that 1 − ΛDm(β) > 0 (since we have that Um = ΛDm(β)). We
can then multiply both sides of the equation with the denominator obtaining:

Dmc < bmc (1− ΛDm(β)) . (13)

We can thus derive Λ from Eq. 13:

Λ < Λ∗ =
bmc −Dmc

bmcDm(β)
, (14)

that expresses the maximum total arrival rate Λ∗ allowed for the population mix
β to ensure that the mean response time is Rmc < bmc.
The expressions for the maximum arrival rate that satisfy the other type of
resource level constraints can be derived with similar computations, and they
are shown in Table 2.

Table 2. Maximum throughput to assure resource-level constraints as function of the
control parameters

Utilization Response time Mean queue length

Class c,
res. m

Λ <
umc

βcDmc
Λ <

bmc −Dmc

bmcDm(β)
Λ <

qmc

qmcDm(β) + βcDmc

Res. m Λ <
um

Dm(β)
Λ <

bm −Dm(β)

bmDm(β)
Λ <

qm
Dm(β) (qm + 1)

5.2 System-Level Constraints

The maximum throughput for system-level constraints does not have a closed
form expression, and it must be computed numerically. However, it is easy to
show that the considered indices are monotone with respect to Λ, and have a
closed form expression for their first derivative. These features allow the use
of efficient numerical solution techniques to compute the maximum throughput
with an iterative procedure. In particular, the Newton-Raphson method [18] is
able to converge to the solution in very few iterations.

The technique requires an initial guess x0 for the unknown that has to be
computed. This initial solution should be greater than the actual value, in order
to keep the guess decreasing (and thus always included in the stability region
of the model). Let us focus on limiting the mean number of jobs in the system
below a threshold qs. From Eq.7 we know that lim

Λ→Λ̂(β)
QS = ∞, which means

that it is always possible to find an initial guess greater than the threshold in
an interval close to x0. We can then set x0 = Λ̂(β) − δ, where δ > 0 is a
small number such that QS(x0) > qs (i.e the corresponding performance index
computed in x0 is greater than the required threshold). This parameter δ can be
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efficiently computed with an exponential scaling step. The procedure to compute
the maximum throughput satisfying QS < qS , is the following:

δ = 1;
do {

δ = δ · δ0;
x = Λ̂(β) · (1 − δ);

} while (QS(x) < qS);

while (
∣∣∣QS(x)−qS

qS

∣∣∣ > ε);

x = x− QS(x)−qS
Q′

S(x) ;

}
Λ = x;

(15)

where ε is a term that represents the relative precision of the solution, δ0 is a con-
stant 0 < δ0 < 1 corresponding to the exponential scaling factor and Q′

S(x) is the
first derivative of the mean number of requests in the system (as defined in Table
3). In the experiments presented in this paper we used δ0 = 0.1 and ε = 10−6.

Table 3. First derivative of system-level indices

Response time Mean queue length

Class c
∂R�c

∂Λ
=

∑
m

DmcDm(β)

(1− ΛDm(β))2
∂Q�c

∂Λ
= βc

∑
m

Dmc

(1− ΛDm(β))2

System
∂RS

∂Λ
=

∑
m

Dm(β)2

(1− ΛDm(β))2
∂QS

∂Λ
=

∑
m

Dm(β)

(1− ΛDm(β))2

5.3 Constrained Maximum Throughput

Also for constrained systems, we can determine the population mix for which the
maximum arrival rate could be achieved without violating the given performance
constraints. This can be done by solving an Optimization Problem (OP), similar
to the one proposed in Section 4, where extra constraints are added to account
for the desired performance requirements:

Variables: λc, 1 ≤ c ≤ C

Objective: maximize
∑
c

λc

Constraints:
∑
d

λdDmd ≤ 1, 1 ≤ m ≤ M

λc ≥ 0, 1 ≤ c ≤ C
Performance constraints1
...
Performance constraintsn

(16)

Constraint expressions are given in Table 4. For five of the performance in-
dexes shown in Table 4, (the one with the white background), the corresponding
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Table 4. Constraints. Equations in gray cells are of non-linear constraints

Utilization Response time Mean queue length

Class c,
res. m

λcDmc ≤ umc bmc

(
1−

∑
d

λdDmd

)
≥ Dmc

qmc

(
1−

∑
d

λdDmd

)
≥

λcDmc

Res. m
∑
d

λdDmd ≤ um

bmc

(
1−

∑
d

λdDmd

)∑
d

λd ≥∑
d

λdDmd

qm

(
1−

∑
d

λdDmd

)
≥∑

d λdDmd

Class c ��
∑
m

Dmc

1−∑
d λdDmd

≤ bc λc

∑
m

Dmc

1−∑
d λdDmd

≤ qc

System ��

∑
m

∑
d λdDmd

1−∑
d λdDmd

≤

bS

(∑
d

λd

) ∑
m

∑
d λdDmd

1−∑
d λdDmd

≤ qS

constraints are linear in λc. This means that when only such constraints are
present, Eq. 16 is a LPP which can be efficiently and accurately solved using
the simplex algorithm. In presence of the other constraints (the one with gray
background in Table 4), non linear optimization techniques should be employed.
However, since all the functions are convex, the problem can still be solved using
simple techniques such as Successive Quadratic Programming (SQP) [16].

As an example, we can use the result to investigate the effect of combining
several different constraints on the total throughput of the system described in
Section 4. In particular, we set the following requirements:

S1: The utilizations of the (S1a) Inventory and (S1b) Shipping resources
should be less than 70%.

S2: The requests of the Intranet class should be executed with a mean transfer
time less than 650 ms.

S3: We mush have β3 = 0.2.
The maximum throughput with the given set of constraints corresponds to

the solution of the following OP:

Variables: λc, 1 ≤ c ≤ C

Objective: maximize
∑
c

λc

Constraints:

1) ur3 −
∑
d

λdD3d ≥ 0 2) ur4 −
∑
d

λdD4d ≥ 0

3) b1 −
∑
m

Dm1

1−∑
d λdDmd

≥ 0 4) λ3 − β3(
∑
d

λd) ≥ 0

5) 1−
∑
d

λdDmd ≥ 0, 1 ≤ m ≤ M

6) λc ≥ 0, 1 ≤ c ≤ C

(17)
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The constraints in Eq. 17 are derived from those in Table 4 and expressed as
inequalities greater than or equal to 0 to conform with OP conventions. Con-
stant parameters ur3 and ur4 of the 1) and 2) constraints (which corresponds to
constraints S1a and S1b) are both set to 0.7. In constraint 3) (corresponding
to S2) the Response time requirement of class 1 is set to b1 = 650 ms, while
constraint 4) corresponds to constraint S3. It is interesting to note that among
all the constraints in Eq.17, 3) (S2) is the only one non-linear. If we exclude
it from the OP, the Eq. 17 becomes a LPP which can be solved very efficiently
with the simplex algorithm. In this case, the maximum Λ is 9.1864 job/s. with
β1 = 0.38857, β2 = 0.41143 and β3 = 0.20006. If we consider the complete set
of constraints, we can use the SQP non-linear optimization technique, to find a
maximum Λ = 8.7508 jobs/s. with β1 = 0.35245, β2 = 0.44755 and β3 = 0.2.
Results were computed using GNU Octave [17] on a standard laptop PC in few
seconds.

5.4 Computational Complexity

The proposed performance bounds can be computed very efficiently. The pop-
ulation mix scaled demands Dm(β) must be computed for all the resources
1 ≤ m ≤ M : this has time complexity O(M · C) and storage complexity
O(M). Value Dm(β) can then be used to compute the population mix maxi-
mum throughput Λ̂(β) with complexity O(M).

Knowing the population mix scaled demand, resource-level constraints can be
obtained in O(1) time since they do not include any iterative procedure and can
be computed with closed form expressions.

System-level constraints are more complex since they must be computed iter-
atively. However, thanks to the Newton-Raphson, usually less than ten iterations
are enough to reach a solution within the desired precision. During each iter-
ation, both the value of the performance index and of its derivative must be
computed: the complexity of both operations is O(M) since these expressions
iterate over all the system resources.

The most time-consuming operation is thus the computation ofDm(β), which
however could be cached and reused if several constraints have to be computed
(i.e., a set of J constraints must be satisfied at the same time). The final compu-
tational complexity is O(M ·max{C, J}), which gives the possibility to explore
very large parameter spaces in term of different β, even when considering a large
number of classes, resources and performance objectives.

The convergence to the optimal solution of the LPP to determine either the
unconstrained maximum throughput, or to consider linear constraints is also not
an issue. The LPPs have always C variables and M+#LK+C (LP) constraints,
where #LK is the total number of linear constraints. If the problem includes also
#LK non-linear constraints, then the OP has a total of M+#LK+#NLK+C
(OP) constraints, which can still be handled by todays commodity hardware,
provided that the total number of classes or resources is not extremely high.
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6 Experimental Results

To show the applicability of the proposed technique in a real scenario, we applied
it to study the maximum throughput of the RUBiS [6] benchmark application.
RUBiS is a prototype of an auction site that mimics eBay, which is available
in three different technologies: Java servlets, PHP, and Enterprise Java Bean.
We used the servlet version of the benchmark, which is organized as a three-tier
architecture using standard HTML, Java Servlet, and SQL technology. RUBiS
comes with Apache server as the web server, JBoss as application server and
MySQL as database. Each tier was deployed on a different physical machine
equipped with a single core Intel Xeon processor running at 2.66 GHz with
Ubuntu 12.04 LTS; the client emulator and the load balancer were deployed on
servers running Microsoft Windows Server 2008 R2. A dedicated gigabit LAN
provided the network functionality.

Since servlets’ execution times are mostly related with the queries sent to
the database, and with the amount of data returned, we focused our study on
two servlets with fixed queries: ViewBidHistory and PutComment. Even though
RUBiS is composed of a larger set of servlets, we selected these two as represen-
tatives of two types of requests: the application server intensive and the database
intensive type, respectively. We consider this not to be an over-simplification;
on the contrary, it is quite common in other related works as well, where tech-
niques such as K-means clustering are commonly used to group requests into
fewer clusters with similar profiles e.g. [19]. The technique proposed in Sec. 4
and Sec. 5 requires the determination of the demands of the considered classes
at the resources that compose the system. In order to estimate such parame-
ters, we studied the system by performing a set of test workloads. In particu-
lar, we loaded our client emulator with Λ ∈ {150, 200, 250, 350, 400} job/s and
β1 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. Not all the configurations were stable: in particular
we experienced a large number of requests being dropped for Λ = 350 job/s and
β1 = 0, and for Λ = 400 job/s and β1 ≤ 0.6. We discarded the configurations
where we experienced drops in the system. We used the JBoss’ and database’s
mean service times to determine the demands that better describes our system
through a simple fitting procedure: we minimized the difference between the
service time expected by the model and the one measured on the real system.
Figure 2a shows both the model and the measures: as it can be seen, we have
very small errors for the JBoss component, while the DB experiences a larger
deviation. Table 5a shows the estimated service times.

By applying the values from Table 5a to Eq. 5, we determined that the systems
is capable of offering a maximum throughput Λ∗ = 443.5 jobs/s for a population
mix of β∗ = |0.0558, 0.9442|. In particular, in Fig. 2b we can see that the system
should be stable for all the possible population mixes for Λ < 308 jobs/s, while
it will present instabilities for some β for Λ > 308. These results were confirmed
by measurements, where we found the system being unstable at Λ = 350 job/s
for βV iewBidHistory = 1, and at Λ = 400 job/s for βV iewBidHistory ≤ 0.4.
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β β

a. b.

Fig. 2. (a.) Estimated vs. measured mean service demands and (b.) Maximum through-
put of the considered RUBiS application

Table 5. (a.) Estimated demands of the considered RUBiS servlets (in msec) and (b.)
Performance indices of the RUBiS application at β∗

D PutComment viewBidHistory

JBoss 0.5855 2.3532
DB 3.2463 2.1959

Λ [job/sec] RV iewBidHistory [ms.] UJBoss Qsys

350 11.0 55% 11.9
400 55.0 74% 373.6

a. b.

We then adds three constraints to the system:

S2: The requests of the ViewBidHistory class should be executed with a mean
transfer time less than 25 ms.

S2: The utilizations of the JBoss resources should be less than 70%.
S3: The mean number of jobs in the system should be not greater than 20.

Figure 2b shows the effect of the constraints to the maximum throughput for
various values of the class mix β. Using the optimization procedure described in
Sec. 5.3, we can determine that the maximum throughput is Λ∗ = 358.34 jobs/s.
for a population mix of β∗ = |0.2262, 0.7738|. To check such requirements,
we measured the system at β∗ = |0.2262, 0.7738| for Λlow = 350 job/s. and
Λhigh = 400 job/s. The system was stable for both arrival rates. The results are
shown in Table 5b: as it can be seen, all the constraints are met at Λlow, but
they are all violated for Λhigh, even if the system is still stable.

7 Conclusions

In this paper we described a technique to identify the maximum throughput
that a system can provide, given an SLA for each class of applications. Limiting
values of several performance metrics were considered, i.e., response times, uti-
lizations, and queue lengths, and the maximum throughput for each class was
computed. We demonstrated that the predicted values can be obtained in a real
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environment through experiments executed on a commonly adopted benchmark
that simulates an e-commerce web site.

The future work will be concentrated on policies for the performance control
of each node of a large set of interconnected systems in order to maximize the
throughput of the global network.
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Abstract. A task with ideal execution time T such as the execution
of a computer program or the transmission of a file on a data link may
fail. A number of protocols for failure recovery have been suggested and
analyzed, in particular RESUME, REPLACE and RESTART. We con-
sider here RESTART with particular emphasis on checkpointing where
the task is split into K subtasks by inserting K−1 checkpoints. If a fail-
ure occurs between two checkpoints, the task needs to be restarted from
the last checkpoint only. Various models are considered: the task may
have a fixed (T ≡ t) or a random length, and the spacing of checkpoints
may be equidistant, non-equidistant or random. The emphasis here is on
tail asymptotics for the total task time X in the same vein as the study
of Asmussen et al. [5] on simple RESTART. For a fixed task length
(T ≡ t) and certain types of failure mechanism, for example Poisson, the
conclusion of the study is clear and not unexpected: the essential thing
to control for minimizing large delays is making the maximal distance
between checkpoints as small as possible. For random unbounded task
length, it is seen that the effect of checkpointing is limited in the sense
that the tail of X remains power-like as for simple RESTART (K = 1).

Keywords: computer reliability, coupling, data transmission, failure
rate, fault-tolerant computing, geometric sum, order statistics, renewal
equation, stochastic ordering, tail asymptotics, Tauberian theorem,
uniform spacings.

1 Introduction

For many systems failure is rare enough that it can be ignored. For others,
failure is common enough that the design choice of how to deal with it may
have a significant impact on the performance of the system. Failures may occur
for many reasons: external ones such as power failure, disk failure, processor
failure, and internal ones due to problems with the task itself. Consider a job
that ordinarily would take a time T to be executed on some system (e.g., a
CPU). If at some time U < T the processor fails, the job may take a total time
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X to complete. We let F,G be the distributions of T, U and H the distribution
of X which in addition to F,G depends on the failure recovery scheme.

Many papers discuss methods of failure recovery and analyze their complexity
in one or more metrics, like restartable processors in Chlebus et al. [11], or stage
checkpointing in De Prisco et al. [13], etc. There are many specific and distinct
failure recovery schemes, but they can be grouped into three broad classes. In the
RESUME scenario, if there is a processor failure while a job is being executed,
after repair is implemented the job can continue where it left off. In theREPLACE
situation, if a job fails, it is replaced by a different job from the same distribution.
Here, no details concerning the previous job are necessary in order to continue.
The analysis of the distribution function H(x) = P(X ≤ x) when the policy is
RESUME or REPLACE was carried out by Kulkarni et al. [23], [24].

There are many examples where the RESTART scenario is relevant. The
obvious one alluded to above involves execution of a program on some computer.
If the computer fails, and the intermediate results are not saved externally (e.g.,
by checkpointing), then the job must restart from the beginning. As another
example, one might wish to copy a file from a remote system using some standard
protocol as FTP or HTTP. The time it takes to copy a file is proportional to
its length. A transmission error immediately aborts the copy and discards the
partially received data, forcing the user to restart the copy from the beginning.
Yet another example is call centers where connections may be broken. However,
despite its relevance the RESTART policy resisted detailed analysis until the
recent work of Asmussen et at. [5] where the tail of H was found in a variety of
combinations of tail behavior of F and G. A main finding was that the tail of
H is always heavy-tailed if F has unbounded support. The consequence is that
delays can be very severe in the RESTART setting. The purpose of the present
paper is to study a method of failure recovery mitigating this, checkpointing
where K − 1 checkpoints are inserted in the task, splitting it into K subtasks.
If a failure occurs between two checkpoints, the task needs to be restarted from
the last checkpoint only.

We start the paper in Section 2 by a summary of the results of [5] for simple
RESTART. In Section 3, we introduce the models for checkpointing to be studied
later in the paper. Various possibilities are considered: the task may have a fixed
(T ≡ t) or a random length, and the spacing of checkpoints may be equidistant,
non-equidistant or random. There could be a fixed number of checkpoints, or a
variable number proportional to T .

Sections 4–10 contains our main new results, a detailed analysis of the sug-
gested checkpointing models. The emphasis is on tail asymptotics for the total
task time X in the same vein as the study of [5] on simple RESTART, whereas
early literature on checkpointing tends to concentrate on expected values (see
Nicola [28] for a survey with an extensive list of references). The results show
that sometimes checkpointing is a considerable improvement, sometimes not (in
particular not for random spacings and or unbounded task lengths).

It should be noted that a feature neglected here is the cost of checkpointing,
which may be considerable. If checkpointing was free, the optimal solution would
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obviously be to insert an infinity of checkpoints, in which case X = T so that
studies like ours would be irrelevant. We have also (as in [5]) ignored that repair
times may be non-zero.

The asymptotic results on H are illustrated numerically in Section 8, and
comparisons in the sense of stochastic ordering are given for the different models
in Section 7.

Notation: constants are throughout denoted by subscripts referring to the spe-
cific models (RESTART, A, and checkpoint models A–E), CR,1, CC,2, cA,3, cD,2

etc., such that upper case C refers to a constant whose value is important and
lower case c to one where it is less so.

The distribution of the (ideal) task time T is throughout denoted by F , and
the distribution of the failure times U1, U2, . . . by G. For convenience, the density
g ofG is asssumed to exist, and F is taken either degenerate at T (say), i.e. T ≡ t,
or with a density f . Assume EU < ∞ and write μ = 1/EU .

For most applications, it would be of particular interest to assume G to be
exponential, say at rate μ, and F to be either degenerate, say at t, gamma-like
in the sense that

f(t) ∼ ctα−1e−λt , t → ∞, (1)

or of power-form in the sense that log f(t)/t → −α − 1; the main example of
this is a regularly varying f where f(t) = L(t)/tα+1 with L slowly varying at ∞
and α > 0, cf. [7]. We shall therefore often specialize to one of these cases.

The proofs are sometimes sketchy and more detail can be found in a full paper
available upon request from the authors.

2 Simple RESTART

Consider in this section the simple RESTART model without checkpoints. The
approach of [5] is to first obtain the tail of H in the case of a deterministic T ≡ t
and next to mix over t with weights f(t) (the density of F ) for the case of a
random T .

2.1 Deterministic Task Time T ≡ t

Consider a deterministic T ≡ t and let XR(t) be the corresponding simple
RESTART total time (without checkpointing), HR(x|t) = P

(
XR(t) ≤ x

)
. Write

U1, U2, . . . for the failure times, assumed i.i.d. with distribution G
Let ĤR[a|t] = EeaXR(t) be the m.g.f. of HR(·|t) and mR(t) = EXR(t) the

mean. Then:

Proposition 1. Define m1(t) =
∫ t

0 y G(dy). Then

mR(t) = t+
m1(t)

G(t)
, ĤR[a|t] = eat

G(t)

1− ∫ t

0
eay G(dy)

. (2)
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Proof. Similar formulas appear already in early literature. A short proof goes
by noting that if U1 = y ≤ t, we have XR(t) = y + X̃R(t) where X̃R(t) is an
independent copy of XR(t). Given U1 > t, we simply have XR(t) = t. This gives
equations that are readily solved for the unknowns. �

Now consider the tail. As in [5], we can write XR(t) = t + SR(t) where

SR(t) =
∑N

1 Ui(t) is a geometric sum: N,U1(t), U2(t), . . . are independent such
that P(Ui(t) ≤ s) = G(s)/G(t) for s ≤ t, P(Ui(t) ≤ s) = 1 for s > t, and
P(N = n) = (1− ρ)ρn with ρ = G(t). From [5] we know that

P
(
SR(t) > x

) ∼ CR,1(t)e
−γ(t)x , (3)

where γ(t) is the solution of

1 =

∫ t

0

eγ(t)y G(dy) (4)

(note for the following that γ(t) is non-increasing in t) and

CR,1(t) =
G(t)

γ(t)m2(t)
where m2(t) =

∫ t

0

yeγ(t)y G(dy) . (5)

Since P
(
XR(t) > x

)
= P

(
SR(t) > x− t

)
, we therefore have

HR(x|t) = P
(
XR(t) > x

) ∼ CR,2(t)e
−γ(t)x (6)

where CR,2(t) = eγ(t)tCR,1(t). In summary:

Theorem 1. Assume T ≡ t and G(t) > 0. Then

H(x|t) ∼ D(t)e−γ(t)x , x → ∞,

where γ(t) > 0 is given by (4) and D(t) = G(t)eγ(t)t/γ(t)B(t) where B(t) =∫ t

0 ye
γ(t)yg(y) dy.

2.2 Unbounded Task Time

In the case of an infinite support of f , Theorem 1 shows that the tail of H is
heavier than e−γ(t)x for all t. Now note that γ(t) ↓ 0 as t → ∞. It therefore follows
that H is heavy-tailed in the sense that eγxH(x) → ∞. for all γ > 0. This is
remarkable by giving an example where combining two light-tailed distributions
F,G can lead to heavy tails. We illustrate this via the following particularly
important case:

Theorem 2. Assume that f(t) ∼ cF t
α−1e−λt, t → ∞, and that g(t) = e−μt,

i.e. failures follow a Poisson(μ) process. Then

H(x) ∼ cFΓ (λ/μ)

μα+λ/μ

logα−1 x

xλ/μ
.
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Sketch of proof. Clearly,

H(x) ∼
∫ ∞

0

P(X > x |T = t)f(x) dx .

From γ(t) → 0, one expects that only large t matter so that (using Theorem 1)

H(x) ∼
∫ ∞

0

cF t
α−1e−λt D(t)e−γ(t)x dt .

Now a simple Taylor expansion gives γ(t) ∼ μG(t) = μe−μt. From this one
concludes D(t) → 1 and expects that

H(x) ∼ I(x) where I(x) =

∫ ∞

0

cF t
α−1e−λte−μe−μtx dt .

Substituting z = μe−μtx, we have

e−λt =
( z

μx

)λ/μ
, −μz dt = dz , t =

1

μ

(
log x+ log(μ/z)

)
,

and so I(x) is asymptotically∫ μx

0

cF
1

μα−1

(
log x+ log(μ/z)

)α−1
( z

μx

)λ/μ
e−z 1

μz
dz

= cF
1

μα+λ/μ

1

xλ/μ

∫ μx

0

(
log x+ log(μ/z)

)α−1
zλ/μ−1e−z dz

which has the same asymptotics as asserted. �

In general, the asymptotic form of H(x) becomes the simpler (and easier to
derive!) the more F and G are alike. For example:

Corollary 1. Assume f, g belong to the class of regularly varying densities of
the form L(t)/t1+α where L is slowly varying, with parameters αF , LF for f and
αG, LG for g. Then H(x) = LH(x)/xαH , where αH = αF /αG and LH is slowly
varying with

LH(x) ∼ Γ (αH)ααH−1
G

μαH

LF

(
x1/αG

)
LαH

G

(
x1/αG

) .
3 Checkpoint Models

The checkpoints are t0 = 0 < t1 < . . . < tK−1 < T , with corresponding spacings
hk = tk − tk−1, k = 1, . . . ,K (with the convention tK = T ).

It is assumed that system failures regenerate at a checkpoint tk (no memory on
the previous checkpoint period [tk−1, tk)). Obviously, the caseK = 1 corresponds
to the simple RESTART setting.

We shall study the following models (here throughout t0 = 0):
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0 = t0 t1 t2 tK−1 tK = T

h1 h2 hK

Fig. 1. The checkpoints and their spacings

A: T is deterministic, T ≡ t, and the checkpoints are deterministic and equidis-
tant, t1 = t/K, t2 = 2t/K, . . . , tK−1 = (K−1)t/K. Equivalently, hk = t/K.

B: T is deterministic, T ≡ t, and the checkpoints are deterministic but not
equidistant, for simplicity hk �= h	 for k �= . In particular, there is a unique
maximal checkpoint interdistance hk∗ .

C: T is deterministic, T ≡ t, and the checkpoints are random. More precisely,
the set {t1, . . . , tK−1} is the set of outcomes of K − 1 i.i.d. uniform r.v.’s
V1, . . . , VK−1 on (0, t). That is, the tk = V(k), k = 1, . . . ,K− 1, are the order
statistics of K − 1 i.i.d. uniform r.v.’s on (0, t).

D: T is random and the checkpoints equally spaced, hk ≡ h for k < K. Thus,
K = �T/h� is random (note that hK = T − (K − 1)h).

E: T is random and the checkpoints are given by tk = t′kT for a deterministic
set of constants 0 = t′0 < t′1 < . . . < t′K−1 < t′K = 1.

Model A is the most obvious choice of checkpoints for a fixed T ≡ t. In trans-
mission of a stream of data, it corresponds to breaking the stream into packets
of equal size. In computing, it could be implemented by the operating system by
interrupting the program execution at will. Similar remarks apply to Model D.
However, in practice it is not always possible to place checkpoints everywhere,
as this depends to a large extent on the structure of the task. This motivates
model B. A more realistic plan would be to assume that the checkpoints are
selected randomly, and Model C is the simplest case of this. Finally, Model E
could again arise in data transmission where a simple case of the model is that
any message is routinely split into a fixed number K packets of equal size.

Note that Models, A, B, C, E have a fixed K, but model D has variable K,
proportional to T . This is important for controlling the tail of X .

We write XA(t), XB(t), XC(t) for the total task times in Models A, B,C where
T ≡ t, XD, XE in Models D, E, and XR(t) for simple RESTART. Also, we define
HA(·|t), HD etc. as the corresponding distributions. Our results will deal mainly
with tail behaviour of these distributions subject to various assumptions, but we
also give some discussion of comparison of the models.

It should be noted that the list of models A–E for checkpointing is by no
means exhaustive. For example, Nicola et al. [29] consider a scheme where at a
failure a fraction 0 < q < 1 of the work performed since the previous failure is
lost. This model has the fundamental difference from A–E that the total task
time X given T = t is bounded and is therefore not considered here.

4 Model A

We assume in this section that T is deterministic, T ≡ t, and the checkpoints are
deterministic and equidistant, t1 = t/K, t2 = 2t/K, . . . , tK−1 = (K − 1)t/K.
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Equivalently, hk = t/K = ht
K where here and in the following ht

K = t/K. Thus,
the total task time XA(t) is the sum of K i.i.d. copies XR,1(h

t
K), . . . , XR,K(ht

K)
of RESTART total times with task time ht

K and failure time distribution G.
Recall the definitions of CR,1(·), CR,2(·) from Section 2.1 and define

CA,1,k =
G(ht

K)k−1CR,1(h
t
K)

(k − 1)!m2(ht
K)k−1

.

Theorem 3. Let CA,2 = CA,1,Keγ(h
t
K)t. Then

HA(x|t) = P
(
XA(t) > x) ∼ xK−1e−γ(ht

K)x · CA,2

There are several proofs of Theorem 3, all fairly straightforward. Three dif-
ferent ones can be found in the full version of the paper. Here we just recall that
XA(t) = XR,1(h

t
K) + · · ·+XR,K(ht

K), so that we can appeal to Theorem 1 and
the following simple lemma on convolutions of gamma-like tails:

Lemma 1. Let V1, . . . , VK ≥ 0 be independent r.v.’s such that P(Vi > x) ∼
Dix

αi−1e−γx for some γ > 0, α1, . . . , αK > 0 and some D1, . . . , DK > 0. Then

P(V1 + · · ·+ VK > x) ∼ Dxα−1e−γx ,

where α = α1 + · · ·+ αm, D = D1Γ (α1) · · ·DKΓ (αK)γK−1/Γ (α).

Proof. The lemma is standard if each Vi has a gamma(αi, γ) distribution. In-
deed, then Di = γαi−1/Γ (αi) and the sum is gamma(α, γ) with asymptotic tail
γα−1xα−1e−γx/Γ (α).

For the general case, show that the contribution to

P(V1 + · · ·+ VK > x) =

∫
· · ·
∫
{v1+···+vK>x}

P(V1 ∈ dv1) · · · P(VK ∈ dvK)

from any region of the form {vi ≤ ai} is negligible, use a Riemann sum approxi-
mation for the remaining tail integral, and involve what is known for the Gamma
case. We omit the details. �

5 Model B

Throughout this section, we assume T ≡ t and consider the case of deterministic
but not equidistant checkpoints 0 = t0 < t1 < · · · < tK−1 < t. The length of the
kth checkpoint interval is then hk = tk − tk−1, k = 1, . . . ,K, where tK = t. Not
surprising is the asymptotics of X then determined by the largest hk:

Theorem 4. Assume T ≡ t and hk �= h	 for k �= , and define k∗ = argmaxhk.
Then P(XB > x) ∼ CB,1e

−γ(hk∗ )x, where

CB,1 = CR,2(hk∗)
∏
k �=k∗

ĤR

[
γ(hk∗) | hk

]
.
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[For ĤR[·|·], see (2)]. In the proof, we need the following elementary lemma:

Lemma 2. Let U1, U2 ≥ 0 be independent r.v.’s such that P(U1 > x) ∼ Ce−ηx

and P(U2 > x) = o
(
e−ηx

)
for some λ > 0. Then

P(U1 + U2 > x) ∼ Ce−ηxEeηU2 .

Proof. Clearly, P(U1 + U2 > x,U2 > x) = o
(
e−ηx

)
and hence

P(U1 + U2 > x)

e−ηx
∼

∫ x

0

P(U1 > x− y)

e−η(x−y)
eηy P(U2 ∈ dy) →

∫ ∞

0

Ceηy P(U2 ∈ dy)

by dominated convergence. �

Proof of Theorem 4. The contributions XR,1(h1), . . . , XR,K(hK) from the in-
dividual checkpoint intervals are independent, have tails which decay exponen-
tially at rates γ(h1), . . . , γ(hk), and m.g.f.’s ĤR[·|h1], . . . , ĤR[·|hK ]. Now just
use Lemma 2 inductively, starting by XR,k∗(hk∗) and adding one XR,k(hk) with
k �= k∗ at a time. �

The assumption that hk �= h	 for k �=  is not essential: if some hk have
multiplicities > 1, it is straightforward to modify the result and proof by com-
bining with what has been shown for Model A. The asymptotics takes the form
xM−1e−γ(h∗)xCB,3 where M is the multiplicity of h∗. We omit the details for the
ease of exposition.

6 Model C

We next consider a random set-up. Recall that g(·) is the density of the failure
distribution.

Theorem 5. Assume T ≡ t and that the checkpoints are 0, t and K − 1 i.i.d.
uniform r.v.’s on (0, t). That is, the checkpoints are 0 = t0 < t1 < · · · < tK−1 <
tK = t where t1 < · · · < tK−1 are the order statistics of K − 1 i.i.d. uniform
r.v.’s V1, . . . , VK−1 on (0, t). Assume that g is left continuous at t with g(t) > 0
and let

CC,1(t) =
CR,2(t)Γ (K)

CC,2(t)K−1tK−1
, CC,2(t) = eγ(t)tg(t)/mR(t) .

Then

P(XC > x) ∼ CC,1(t)
e−γ(t)x

xK−1
(7)

The implication is that in this setting, the effects of checkpointing for large pro-
cessing times is minimal, reduction from order e−γ(t)x in the case of no check-
pointing to order e−γ(t)x/xK−1. The heuristics behind this is clear: in the nota-
tion of Model B, hk∗ is now random but has t as upper endpoint of its support,
so that the tail of X must decay slower than e−γ(s)x for any s < t. On the other
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hand, the decay can not be faster than exponential at rate γ(t). What may not
be obvious is the modification of the exponential decay by the factor 1/xK−1

(and of course the form of CC,1!).
The uniformity assumption in Theorem 5 is maybe the first possible model

for random checkpoints that comes to mind, but of course, there are other pos-
sibilities depending on the context. Thus, Theorem 5 should largely be seen as
a first example on random checkpoints.

Proof of Theorem 5. The heuristics above indicate that the form of the distri-
bution of hk∗ close to t must play a key role. It is a classical result in order
statistics, going all the way back to Fisher [16] (see also Feller [15] and [12]),
that this distribution can be found in closed form: for t = 1, the tail is

(K − 1)(1− y)K−2 −
(K − 1

2

)
(1− 2y)K−2 + · · · + (−1)i−1

(K − 1
i

)
(1 − iy)K−2

where the final index i is the last with 1 − iy > 0. This result is not trivial
at all, but we are only concerned with the upper tail (y close to 1), and here
a simple direct argument is available. Indeed, since the distribution of the set
V1, . . . , VK−1 is exchangeable, one gets for y > t−t/K and a general t the density
of hk∗ as

P(hk∗ ∈ dy) = (K − 1)P(V1 ∈ dy, k∗ = 1)

= (K − 1)P(V1 ∈ dy, V2 > y, . . . , VK−1 > y) =
K − 1

tK−1
(t− y)K−2 .

In Corollary 3.1 of [5], a uniformity property of the Cramér-Lundberg asymp-
totics is noted (this relies on uniform renewal theorems, cf. Kartashov [22], [21]
and Wang & Woodroofe [31]. Together with some easy extension of the argu-
ments of Section 5 this can be seen to imply that Theorem 4 holds uniformly in
hk∗ . It follows as in the proof of Theorem 4 that∫ t

t/K

!P(hk∗ ∈ dy)P
(
XC > x

∣∣hk∗ =y
)
dy=

∫ t

t/K

P(hk∗ ∈ dy)cC,1(y)e
−γ(y)x

(
1+o(1)

)
,

where the o(1) term is uniform in y and

cC,1(y) = CR,2(y)E
[ ∏
k �=k∗

ĤR[γ(y) | hk

] ∣∣∣hk∗ = y
]
.

Here cC,1(y) → CR,2(t) as y ↑ t because hk ≤ t−y when hk∗ = y and ĤR[s|a] → 1
uniformly in a ≤ a0 as s ↓ 0.

It is shown in [5] by a simple Taylor expansion that

γ(y)− γ ∼ (t− y)CC,2 as y ↑ t . (8)

Choose t1 < t with

γ(t1) > γ(t), cC,1(y) ≤ (1 + ε)CR,2(t), γ(y) ≥ (1− ε)(t− y)CC,2
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for t1 < y ≤ t. We then get

P(XC > x) =

∫ t

t1

P(hk∗ ∈ dy)cC,1(y)e
−γ(y)x

(
1 + o(1)

)
dy +O(e−γ(t1)x

)
,

where the integral can be bounded above by(
1 + o(1)

)
(1 + ε)CR,2(t)(K − 1)

∫ t

t1

(t− y)K−2

tK−1
e−(1−ε)CC,2(t−y)x dy

=
(
1 + o(1)

)(1 + ε)CR,2(t)(K − 1)[
(1− ε)CC,2tx

]K−1
e−γ(t)x

∫ (1−ε)CC,2(t−t1)x

0

zK−2e−z dz

=
(
1 + o(1)

)(1 + ε)CR,2(t)(K − 1)Γ (K − 1)[
(1− ε)CC,1tx

]K−1
e−γ(t)x ,

where we substituted z = (1− ε)CC,2(t− y)x. This shows that

lim sup
x→∞

xK−1

e−γ(t)x
P(XC > x) ≤ 1 + ε

(1 − ε)K−1
CC,1 .

Letting ε ↓ 0 and combining with a similar lower bound completes the proof. �

7 Orderings for Models A,B,C

In models A,B,C, we have T ≡ t. In this section, we study comparisons of the
total RESTART time XR(t) with checkpointing total times XA(t), XB(t), XC(t)
for the different models.

For a fixed K, one expects Model A to be preferable to Model B, which in turn
as a minimum should improve RESTART. With expected values as performance
measure, this means mathematically that

KEXR(t/K) ≤
K∑

k=0

EXR(hk) ≤ EXR(t) (9)

when h0+ · · ·+hK = t. However, depending on t and the failure distribution G,
this is not always the case:

Example 1. Let t = 2, K = 2 and let g(u) > 0 be arbitrary on (0, 1], g(u) = 0
on (1, 2]. Then G(1) = G(2) and so by (2)

2EXR(1) = 2
(
1 +

1

G(1)

∫ 1

0

yg(y) dy
)

= 2 +
2

G(2)

∫ 2

0

yg(y) dy

= EXR(2) +
1

G(2)

∫ 2

0

yg(y) dy > EXR(2) .

By a slight perturbation, the counterexample is easily modified to a g(u) that is
strictly positive. �
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Remark 1. The intuition behind Example 1 is of course that checkpointing at
1 forces taking the high risk of early failures in [0, 1] twice because the failure
mechanism regenerates at each checkpoint. Instead, simple RESTART benefits
from the low risk in the task period (1, 2] of the execution of the task.

Intuitively, one expects checkpointing at t1 = 1/2 (Model B) to be preferable
to t = 1 (Model A), and the analysis below shows that indeed this is the case
for example if g(u) = e−u for 0 < u ≤ 2.

Continuing with analysing the case K = 2, let ϕ(s) = EXR(s). Equation (9)
can then be rewritten

2ϕ(t/2) ≤ ϕ(s) + ϕ(t− s) ≤ ϕ(t) (10)

for 0 < s < t. Since ϕ(s) + ϕ(t − s) is symmetric around s = 1/2, the function
must have either a local minimum (when ϕ′′(t/2) ≥ 0) or a local maximum
(when ϕ′′(t/2) ≤ 0) at t/2, and Example 1 shows that ϕ′′(t/2) ≤ 0 may indeed
arise.

The observation that equidistant checkpointing is not always optimal is not
new. For example, it appears already in Tantawi & Ruschitzka [30]. �

A simple sufficient condition avoding the above pathologies is the following
result formulated in the more general framework of the stochastic ordering �st.
It covers, e.g., an exponential G, i.e. Poisson.

Theorem 6. Assume that the failure rate μ(t) = g(t)/G(t) of G is non-decrea-
sing. Then XA(t) �st XB(t) �st XR(t). In particular, equation (9) on ordering
of means holds. Further, XA(t) �st XC(t) �st XR(t).

Recall (e.g. Müller & Stoyan [27]) that X �st Y can, for example, be defined
by the requirement that X,Y can be defined on a common probability space
such that X ≤ Y a.s.). It implies, of course, ordering of means, but also ordering
of tails. That the Models A,B ,C are tail ordered follows already by comparisons
of Theorems 3, 4, 5 since γ(t) is non-increasing in t.

The key step in the proof is the following coupling lemma. Here we consider
two RESTART total times X ′

R(t), X
′′
R(t) with the same t, but failure time dis-

tributions G′, G′′ such that the corresponding failure rates satisfy μ′(s) ≤ μ′′(s)
for all s ≤ t. Let M ′,M ′′ be the number of failures (restarts) and U ′

i , U
′′
j the

failure times, i = 1, . . . ,M ′, j = 1, . . . ,M ′′.

Lemma 3. The G′ and G′′ systems can be defined on a common probability
space in such a way that M ′ ≤ M ′′ and

{U ′
i}i≤M ′ ⊆ {U ′′

j }j≤M ′′ . (11)

Proof. Assume given the G′′-system. At the first failure time U ′′
1 , we then flip a

coin coming up heads w.p. μ′(U ′′
1 )/μ

′′(U ′′
1 ). If a head comes up, we take U ′

1 = U ′′
1 .

Otherwise, the G′′ system will restart, and after a number of restarts, the elapsed
time since the last restart will reach U ′′

1 for the first time. If a further failure
occurs before t, say at U ′′

k1
, a new coin flip is performed w.p. μ′(U ′′

k1
)/μ′′(U ′′

k1
)
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for heads. If a head comes up, we take U ′
1 = U ′′

k1
. Otherwise, the G′′ system will

restart, and after a number of restarts, the elapsed time since the last restart
will reach U ′′

k1
for the first time, and the procedure is repeated. The construction

ensures that the first failure of the G′ system occurs at rate μ′(·), as should be.
An illustration is in Fig. 2. The • mark G′′-failure times at which a coin flip is
performed unsuccesfully, the ∗ the succesful one (if any), and the ◦ the ones at
which no coin flipping at all is performed.

0 t•U
′′
1

◦U
′′
2

◦
•U
′′
k1

∗U ′
1 = U ′′

kr

Fig. 2. Construction of U ′
1

We face two possibilities: there are no successful coin flips before the G′′ system
has completed its task. In this case, the conclusion of the lemma is obvious
(the l.h.s. of (11) is just the empty set and M ′ = 0). The second is that of a
successful coin flip before completion as on Fig. 2. Then M ′ ≥ 1, U ′

1 corresponds
to precisely one U ′′

kr
and so U ′

1 belongs to the set of the r.h.s. of (11). Further,
after the successful coin flip both systems restart, and the whole construction
can be repeated to either construct U ′

2 as a member of the r.h.s. of (11) or to
conclude that the G′ system have reached completion, that M ′ = 1 ≤ M ′′,
and that the conclusion of the lemma holds. Continuing in this manner until
completion completes the proof. �

Proof of XB(t) �st XR(t). Let K = 2, t = u + v, h1 = u, h2 = v. Then

XB(t)
D
= XR(u) +XR(v) and

XR(t)
D
= XR(u) + v +

M(u,v)∑
i=1

[
U#
i (u, v) +XR,i(u)

]
(12)

whereM(u, v) is the number of restarts in simple RESTART with t replaced by v,

μ(·) changed to μ(·+u), U#
1 (u, v), U#

2 (u, v), . . . the corresponding failure times,
XR,1(u, v), XR,2(u, v), . . . replicates of the corresponding RESTART total time,
and obvious independence assumptions apply. Indeed, the part u of the total
task time must first be completed which gives the term XR(u). At each failure
after that, we must again reach u which explains the presence of the XR,i(u) in
the sum, and finally v is the contribution from the final successful passage from
u to t.
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Now since μ(·) is non-decreasing, Lemma 3 implies M(0, v) �st M(u, v) and
that we may assume M(0, v) ≤ M(u, v) and{

U#
1 (0, v)

}
i≤M(0,v)

⊆ {
U#
1 (u, v)

}
i≤M(u,v)

.

It follows that

XR(t) "st XR(u) + v +

M(0,v)∑
i=1

U#
i (0, v)

D
= XR(u) +XR(v)

D
= XB(t) .

This proves XB(t) �st XR(t) for K = 2. For K = 3, we then get

XB(t)
D
= XR(h1) +XR(h2) +XR(h3) �st XR(h1 + h2) +XR(h3)

�st XR(h1 + h2 + h3) = XR(t) .

Continuing in this manner yields XB(t) �st XR(t) for all K. �

Proof of XA(t) �st XB(t). Let first K = 2, h1 = s < h2 = t− s (thus s < t/2 <
t− s/2). Then as in (12),

XR,1(t/2)
D
= XR(s) + t/2− s +

M(s,t/2−s)∑
i=1

{
U#
i (s, t/2− s) +XR,i(t/2− s)

}
,

XR(t− s)
D
= XR,2(t/2) + t/2− s +

M(t/2,t/2−s)∑
i=1

{
U#
i (t/2, t/2− s) +XR,i(t/2− s)

}
By Lemma 3, we may assume M(s, t/2− s) ≤ M(t/2, t/2− s) and, reordering if

necessary, that the U#
i (s, t/2−s) and XR,i(t/2−s) coincide for i ≤ M(s, t/2−s).

It follows that

XB(t)
D
= XR(s) +XR,1(t/2) + t/2− s

+

M(t/2,t/2−s)∑
i=1

{
U#
i (t/2, t/2− s) +XR,i(t/2− s)

}
≥ XR(s) +XR,1(t/2) + t/2− s+

M(s,t/2−s)∑
i=1

{
U#
i (s, t/2− s) +XR,i(t/2− s)

}
= XR,1(t/2) +XR,2(t/2)

D
= XA(t) ,

completing the proof for K = 2.
For K > 2, one could believe that an extension of the argument or a simple

induction argument as in the proof of XB(t) �st XR(t) would apply, but we were
not able to proceed along these lines. We first illustrate our alternative proof for
K = 3. We may assume h1 ≤ h2 ≤ h3 and define h0,i = hi for i = 1, 2, 3 and
Δ0 = h3 − h1. Using the result for K = 2 twice, we obtain

XB(t) = XR(h1) +XR(h2) +XR(h3)

"st XR

(
(h1 + h2)/2) +XR

(
(h1 + h2)/2

)
+XR(h3)

"stXR

(
(h1+h2)/2

)
+XR

(
(h1+h2)/4+h3/2

)
+XR

(
(h1+h2)/4+h3/2

)
,
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with the understanding that all r.v.’s are independent. We therefore obtain a set

h1,1 = (h1 + h2)/2, h1,2 = h1,3 = (h1 + h2)/4 + h3/2

with h1,1 ≤ h1,2 ≤ h1,3 and satisfying

XB(t) �st XR(h1,1) +XR(h1,2) +XR(h1,3) .

Δ1 = h1,3 − h1,1 ≤ 3h3/4 + h1/4− h1 = 3Δ0/4 .

See Fig. 3.

0 th0,1 h0,2 h0,3

h1,1 h1,2 h1,3

Fig. 3. K = 3: first recursive step

It follows by induction that there exists a set hn,1 ≤ hn,2 ≤ hn,3 satisfying

t = hn,1 + hn,2 + hn,3 , (13)

XB(t) �st XR(hn,1) +XR(hn,2) +XR(hn,3) . (14)

Δn = hn,3 − hn,1 ≤
(3
4

)n
Δ0 . (15)

It follows from (15) and 13 that hn,i → t/3, i = 1, 2, 3. Hence (14) combined
with easy continuity properties gives

XB(t) �st XR(t/3) +XR(t/3) +XR(t/3)
D
= XA(t) .

For a general K > 2, the same construction is easily seen to provide a set
hn,1 ≤ · · · ≤ hn,K satisfying h0,i = hi and

t = hn,1 + · · · ≤ hn,K ,

XB(t) �st XR(hn,1) + · · ·+XR(hn,K) .

Δn = hn,K − hn,1 ≤ (1− 2K−1)nΔ0 ,

where Δ0 = hK − h1. The rest of the argument is then as for K = 3. �

Proof of XA(t) �st XC(t) �st XR(t). Let XC(t|v1, . . . , vK−1) have the condi-
tional distribution of XC(t) given V1 = v1, . . . , VK−1 = vK−1. This is a special
case of Model B, so

XA(t) �st XC(t|v1, . . . , vK−1) �st XR(t) .

Now just note that �st is closed under mixtures. �
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8 Numerical Examples for Models A,B,C

In the numerical examples, we took T ≡ t = 1 and assumed exponential fail-
ures, g(u) = μe−μu. We considered the following scenarios: (a) Model A, K = 1;
(b) Model A, K = 2; (c) Model A, K = 4; (d) Model A, K = 16; (e) Model
B, K = 2, t1 = 0.4; (f) Model B, K = 2, t1 = 0.2; (g) Model B, K = 4,
t1 = 0.3, t2 = 0.5, t3 = 0.85; (h) Model C, K = 2; (i) Model C, K = 4; (j)
Model C, K = 16. Thus, (a) is the simple RESTART setting, the benchmark
with which the gain of checkpointing in the other scenarios is to be compared.
For each scenario, we considered exponential(μ) failure distributions with μ cho-
sen such that eμ − 1 took the values 10, 5, 1, 0.5, 0.1, 0.01, 0.001 (meaning μ =
2.398, 1.792, 0.693, 0.405, 0.0953, resp. 0.00995). Note that (cf. [5]) eμ − 1 has a
simple interpretation as EN where N is the number of restarts. As performance
measures, we computed first the expected total time EX . In scenarios (a)–(g),
this follows in a straigthforward way by expressing the total time as sums of
independent RESTART times and using formula (2) for EXR(t). In scenarios
(h), (i), (j), EXC(t) is in principle explicitly computable using known formulas
for uniform spacings, but since these are complicated sums, we used simulation
for the ease of computation.

Table 1. Expected values of the total time

EN 10 5 1 0.5 0.1 0.01 0.001

(a) 4.17 2.79 1.44 1.23 1.05 1.01 1.00
(b) 1.93 1.62 1.20 1.11 1.02 1.00 1.00
(c) 1.37 1.26 1.09 1.05 1.01 1.00 1.00
(d) 1.08 1.06 1.02 1.01 1.00 1.00 1.00
(e) 2.01 1.66 1.21 1.11 1.03 1.00 1.00
(f) 2.68 2.02 1.28 1.15 1.03 1.00 1.00
(g) 1.42 1.30 1.10 1.06 1.01 1.00 1.00
(h) 2.65 2.00 1.28 1.15 1.03 1.00 1.00
(i) 1.77 1.50 1.16 1.09 1.02 1.00 1.00
(j) 1.16 1.12 1.04 1.02 1.01 1.00 1.00

It is seen that EX is very close to t = 1 even in the simple RESTART setting
if EN is moderate or small so that the numbers for EX only show a notable
advantage of checkpointing if EN is 10 or 5 or larger. For a comparison of the
effects of unevenly spaced checkpoints, compare entry (b) with (e) and (f), and
(c) with (g).

In contrast, one should see an effect of checkpointing also for small EN
when considering the tail or equivalently the quantiles. We considered the and
the 1 − α quantile q1−α for α = 0.05, 0.01, 0.001, 0.0001 (that is, the exact
value of q1−α is the solution of P(X > q1−α) = α). For each combination
of scenario, μ and quantile, the first number (in Roman) given is computed by
crude Monte Carlo (which is sufficient for the present purposes; note, however,
that more sophisticated algorithms are available, cf. Asmussen [3]). The second
number (in Italics) is the one provided by our approximations. The numbers
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are given in the following four tables, corresponding in lexicograhical order to
α = 0.05, 0.01, 0.001, 0.0001.

As we see it, some main conclusions to be drawn are: (a) checkpointing is less
efficient in reducing the probability of long processing times than one maybe
would have expected; (b) our approximations are reasonably precise.

EN 10 5 1 0.5 0.1 0.01 0.001

(a)
11.1 6.90 2.84 2.16 1.47 1.00 1.00
11.0 6.90 2.85 2.18 1.49 1.20 1.10

(b)
3.57 2.83 1.78 1.50 1.24 1.00 1.00
3.60 2.87 1.84 1.60 1.30 1.15 1.09

(c)
1.94 1.73 1.36 1.24 1.11 1.00 1.00
2.13 1.90 1.51 1.39 1.23 1.13 1.09

(d)
1.19 1.15 1.08 1.06 1.03 1.00 1.00
1.47 1.41 1.29 1.24 1.17 1.12 1.09

(e)
3.92 3.03 1.84 1.57 1.23 1.00 1.00
3.93 3.03 1.84 1.58 1.26 1.11 1.05

(f)
6.34 4.42 2.24 1.78 1.27 1.00 1.00
6.34 4.41 2.23 1.81 1.36 1.15 1.07

(g)
2.16 1.87 1.41 1.30 1.12 1.00 1.00
2.22 1.93 1.46 1.33 1.16 1.07 1.03

(h)
6.54 4.43 2.20 1.79 1.27 1.00 1.00

(i)
3.46 2.68 1.68 1.48 1.15 1.00 1.00

(j)
1.48 1.37 1.19 1.14 1.03 1.00 1.00

EN 10 5 1 0.5 0.1 0.01 0.001

(a)
16.4 10.2 4.01 2.97 1.93 1.00 1.00
16.5 10.2 4.01 2.98 1.92 1.45 1.28

(b)
4.72 3.68 2.20 1.87 1.46 1.00 1.00
4.74 3.71 2.26 1.92 1.49 1.26 1.17

(c)
2.34 2.03 1.54 1.41 1.23 1.00 1.00
2.46 2.17 1.66 1.52 1.31 1.18 1.13

(d)
1.26 1.21 1.12 1.10 1.06 1.00 1.00
1.51 1.45 1.31 1.27 1.19 1.13 1.10

(e)
5.39 4.07 2.33 1.95 1.52 1.00 1.00
5.38 4.07 2.33 1.94 1.48 1.24 1.15

(f)
9.33 6.36 3.02 2.38 1.72 1.00 1.00
9.30 6.35 3.01 2.38 1.67 1.34 1.21

(g)
2.66 2.27 1.64 1.48 1.28 1.00 1.00
2.70 2.31 1.67 1.50 1.27 1.14 1.09

(h)
10.6 6.90 3.06 2.40 1.71 1.00 1.00

(i)
5.54 3.40 2.21 1.84 1.45 1.00 1.00

(j)
1.77 1.61 1.32 1.25 1.14 1.00 1.00

EN 10 5 1 0.5 0.1 0.01 0.001

(a)
24.1 14.8 5.64 4.13 2.57 1.91 1.00
24.4 15.0 5.67 4.13 2.53 1.80 1.53

(b)
6.59 4.84 2.78 2.31 1.74 1.45 1.00

- 4.87 2.84 2.36 1.76 1.43 1.29

(c)
2.80 2.43 1.78 1.61 1.35 1.23 1.00
2.91 2.54 1.88 1.70 1.43 1.26 1.18

(d)
1.32 1.28 1.18 1.14 1.08 1.06 1.00
1.56 1.49 1.35 1.30 1.21 1.14 1.11

(e)
7.50 5.54 3.03 2.47 1.78 1.50 1.00
7.48 5.56 3.03 2.47 1.80 1.44 1.30

(f)
13.4 9.18 4.17 3.20 2.13 1.70 1.00
13.5 9.13 4.14 3.19 2.13 1.61 1.41

(g)
3.36 2.83 1.97 1.73 1.41 1.28 1.00
3.38 2.84 1.98 1.75 1.43 1.25 1.17

(h)
16.8 10.8 4.42 3.35 2.14 1.69 1.00

(i)
9.61 6.51 3.14 2.49 1.75 1.44 1.00

(j)
2.36 2.04 1.56 1.43 1.26 1.13 1.00

EN 10 5 1 0.5 0.1 0.01 0.001

(a)
31.6 19.4 7.40 5.24 3.10 1.99 1.89
32.3 19.7 7.33 5.28 3.14 2.15 1.78

(b)
8.48 6.02 3.34 2.77 1.97 1.50 1.45

- - 3.40 2.79 2.02 1.59 1.41

(c)
3.17 2.79 2.01 1.79 1.47 1.25 1.22
3.34 2.89 2.10 1.87 1.54 1.34 1.24

(d)
1.39 1.35 1.22 1.18 1.11 1.06 1.06
1.62 1.54 1.38 1.33 1.23 1.16 1.12

(e)
9.36 7.04 3.78 2.99 2.10 1.59 1.50
9.57 7.05 3.73 3.00 2.11 1.63 1.44

(f)
17.1 11.8 5.25 4.07 2.54 1.79 1.71
17.6 11.9 5.27 4.00 2.58 1.88 1.61

(g)
4.07 3.44 2.28 1.99 1.58 1.34 1.28
4.06 3.38 2.29 1.99 1.59 1.35 1.25

(h)
23.3 14.8 5.93 4.38 2.67 1.91 1.68

(i)
13.9 9.43 4.22 3.26 2.20 1.68 1.43

(j)
3.20 2.63 1.86 1.65 1.39 1.25 1.13

Remark 2. Giving confidence limits for quantiles is possible, but tedious, cf. [4]
III.4a, III.5.3. We have not implemented this. To get an idea of the order of the
uncertainly, we instead repeated a few of the simulation runs 5 time. The results
are given in Table 2 and indicate that the simulation results are reasonably
precise.
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Table 2. Indications of uncertainty on quantiles

(a), EN = 10, α = 0.05 11.06 11.05 11.03 11.06 11.05
(a), EN = 0.001, α = 0.05 1.00 1.00 1.00 1.00 1.00
(a), EN = 10, α = 0.0001 31.56 31.55 31.71 31.60 32.04
(a), EN = 0.001, α = 0.0001 1.894 1.912 1.896 1.903 1.895

9 Model D

Next consider a random T with infinite support and equally spaced checkpoints
at 0, h, 2h, . . . , h#T/h$, with the same regeneration assumption as above.

The key representation is the independent sum

XD = SN +XR(T −Nh) where SN = XR,1(h) + · · ·+XR,N (h) , (16)

where N = #T/h$. The easy case when deriving the asymptotics for this expres-
sion is the heavy-tailed one [recall the expression (2) for mR(t) = EXR(t)]:

Theorem 7. Assume that the distribution of T is regularly varying, P(T > t) =
L(t)/xα with α > 0 and L(·) slowly varying. Then

P(XD > x) ∼ P
(
T > xh/mR(h)

) ∼ mR(h)
αL(x)

hαxα
. (17)

Proof. Clearly, P(N ≥ n) = P(T ≥ nh). Therefore the term SN is a light-tailed
random walk sampled at a regularly varying time, and therefore by Asmussen,
Klüppelberg & Sigman [6] P(SN > x) ∼ P(N > x/mR(t)) which is the same
asymptotics as is claimed in (17) (the last identity follows from L being slowly
varying). In particular, SN is subexponential and since XR(T − Nh) is light-
tailed and independent of SN , this implies that SN +XR(T −Nh) has the same
tail asymptotics as SN . This completes the proof. �

In the light-tailed case, we will consider the example of a gamma-like T :

Theorem 8. Assume that the density f(t) of T satisfies f(t) ∼ ctαe−λt as
t → ∞ where −∞ < α < ∞. Then P(XD > x) ∼ CD,1e

−γ2x where γ2 = γ2(h)

is the solution of ĤR[γ2] = eλh and CD,1 a constant.

[CD,1 can be evaluated explicitly by collecting expressions given below; for sim-

plicity, we omit the details]. Note that since ĤR[s|h] has a singularity at s = γ(h),
one has γ2(h) < γ(h), as was to be expected since the tail of each individual
XR,k(h) decays exponentially at rate γ(h).

Proof. It is easy to see that P(N ≥ n) = P(T ≥ nh) ∼ c1n
αρn where c1 =

chα/λ, ρ = e−λh, and that

lim
n→∞P

(
T −Nh ≤ y

∣∣N ≥ n
)

=
1− e−λy

1− e−λh
, 0 ≤ y ≤ h
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(that is, the asymptotic distribution is exponential truncated to (0, h)). By
Lemma 1, we therefore are able to evaluate the asymptotic tail of.

P
(
SN +XR(T −Nh) > x

∣∣N = n
)
, .

The proof is completed by an extension to random sums with P(N = n) ∼
cnα−1ρn of the Cramér-Lundberg asymptotics for geometric sums (the Cramér-
Lundberg theory is the case α = 1) given in the concluding remarks of Embrechts
et al. [14].

10 Model E

We assume in this section that T is random with infinite support and that the
checkpoints are given by tk = t′kT for a deterministic set of constants 0 = t′0 <
t′1 < . . . < t′K−1 < 1.

The most natural case is probably that of equally spaced checkpoints, t′k =
k/K. As in [5], one can show that the contribution to P

(
X(T ) > x

)
from the

event {T ≤ t∗} is negligible for any t∗ < ∞. Replacing the root γ(s) by its
aymptote μG(s) for large s andm(s) by its asymptotem(∞), similar estimates as
in [5] combined with Theorem 3, then yields the following extension of Lemma 1.1
of [5] (recall that ht

K = t/K):

Lemma 4. Assume tk = kT/K. Let μ = 1/EU and define

I±(x, ε) =
∫ ∞

t∗

G(ht
K)K−1

(K − 1)!m(∞)K−1
· exp

{−μG(ht
K)x(1 ± ε)

}
f(t) dt

Then for each ε > 0,

1− ε ≤ lim inf
x→∞

H(x)

I+(x, ε)
≤ lim sup

x→∞
H(x)

I−(x, ε)
≤ 1 + ε .

From this we get the following exact asymptotics:

Theorem 9. Assume tk = kT/K and that

f(t) = g(ht
K)G(ht

K)β−1L0

(
G(ht

K)
)

= g
(
t/(K + 1)

)
G
(
t/(K + 1)

)β−1
L0

(
G
(
t/(K + 1)

))
(18)

for some β and some function L0(s) that is slowly varying at s = 0. Then

H(x) ∼ Γ (β +K − 1)

(K − 1)!m(∞)K−1

L0(1/x)

xβ+K−1μβ +K − 1
(19)

As in [5], the assumption (18) covers the case where F andG are not too different,
in particular when they are both gamma-like or both regularly varying.
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Proof of Theorem 9. Substituting s = G
(
t/(K + 1)

)
and using (18), we get

I±(x, ε) =
1

(K − 1)!m(∞)K−1

G
(
t∗/(K+1)

)∫
0

ψ(s) ds

where

ψ(s) =
(K + 1)G(s)K−1

(K − 1)!m(∞)K−1
exp {−μsx(1± ε)} sβ+K−2L0(s) .

Then by Karamata’s Tauberian theorem ([7, Theorems 1.5.11 and 1.7.1]),

I± ∼ Γ (β +K − 1)

(K − 1)!m(∞)K−1

L0

(
1/(xμ(1± ε)

)
xβ+K−1μβ+K−1(1± ε)β

∼ Γ (β +K − 1)

(K − 1)!m(∞)K−1

L0(1/x)

xβ+K−1μβ +K − 1(1± ε)β+K−1
.

Let ε ↓ 0. �
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