
Chapter 6

Role of Phosphate-Solubilizing

Actinomycetes in Plant Growth Promotion:

Current Perspective

Saima Saif, Mohammad Saghir Khan, Almas Zaidi, and Ees Ahmad

Abstract Phosphorus (P), an essential plant nutrient, is a nonrenewable resource

whose availability depends exclusively on mined rock phosphates. Deficiency of P

in soil results in reduction in food production since all plants require an adequate

supply of P for its growth and development. Even though synthetic phosphatic

fertilizer has played some major roles in enhancing crop production, its excessive

use has also dark sides to it where it has been found to damage the environment,

destruct soil fertility, and, via food chain, seriously affect the human health.

Considering the nuisance of overuse of P, there is an urgent demand by the

agriculture practitioners to find nonhazardous strategy that can overcome/reduce

the use of agrochemicals in agricultural practices and, hence, may preserve the very

integrity of soil ecosystems. In this context, actinobacteria, a group of Gram-

positive bacteria, ubiquitous in soils, are likely to play some important roles in

supplying soluble P to plants by solubilizing/mineralizing complex P resources of

soils. Additionally, the extracellular metabolites produced by actinomycetes may

inhibit phytopathogens and, sometimes such metabolic compounds may also act as

plant growth regulators. These qualities, among others, make actinobacteria an

ideal candidate for developing as microbial inoculants for ultimate use in agricul-

ture production system. The potential roles of actinomycetes as phosphate

solubilizers in enhancing crop production are discussed.
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6.1 Introduction

Phosphorus, identified as an essential element for all life forms (Smil 2000), is the

second most important plant macronutrient after N (Donahue et al. 1990). Phos-

phorus accounts for the biomass buildup, the energy transfer, signal transduction,

macromolecular biosynthesis, photosynthesis, and respiration chain reactions

(Vance et al. 2003; Fernández et al. 2007). Sadly, this highly vital element is one

of the least accessible (only 0.1 % of the total soil P reserve) nutrients to the plants

(Zou et al. 1992; Takahashi and Anwar 2007). Owing to the suboptimal levels of P,

it is often considered a limiting factor to primary production across a diverse range

of ecosystem (Elser et al. 2007) and may cause a 5–15 % loss in plant yields

(Hinsinger 2001). The low availability of P in soil is primarily due to its highly

reactive nature as it readily forms insoluble complexes with the soil ions. Thus, to

fulfill the growing P demands for food production and to maintain a balanced

fertility in soils and, hence, to achieve a low-input, sustainable eco-friendly agri-

culture targets, a better management of the soil P reserve is urgently needed. Many

strategies have been introduced by the scientists across different regions where the

role of phosphate-solubilizing microorganisms involving bacteria (Zaidi

et al. 2009; Ahmad et al. 2013), fungi (Khan et al. 2010), and actinomycetes

(Gangwar et al. 2012) in increasing plant yields and soil quality via P supply has

been recognized. Among these, actinomycetes as P solubilizers (de Vasconcellos

et al. 2010; Hamdali et al. 2012) have been less explored despite showing a better

genetic and greater biodiversity potential (Pathom-Aree et al. 2006; Thangapandian

et al. 2007). Also, they represent heterogeneous and abundant microbial

populations and hugely affect cycling of nutrient in soil ecosystems (Elliot and

Lynch 1995; Figueiredo et al. 2010). Recently, the role of actinomycetes in

sustainable agriculture (Johansson et al. 2004; Strap 2011) via P supply to plants

has been identified. Some other actinomycetes, for example, endophytic actinomy-

cete (Araújo et al. 2000; Kunoh 2002; Lee et al. 2008; Qin et al. 2008), which fix

atmospheric N into NH3 and export the fixed N to the host plants, have also shown

PS activity (Gangwar et al. 2012). In a study, almost 44 % of the endophytic

actinomycetes isolated from rice had PS activity, among which S. lavendulae
R22 solubilized the maximum (26.5 mg/100 ml) amount of P, while

Micromonospora R19 isolate could solubilize the minimum amount of

P. Realizing the plant-growth-promoting potentials of actinomycetes which involve

one or simultaneous mechanisms, here, the recent advances in P solubilization by

actinomycetes and its impact on crop production are highlighted.
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6.2 Phosphorus Status and P Dynamics in Rhizosphere:

Current Perspective

Globally, rock phosphate (RP) is an abundantly available and inexpensive form

of P, and therefore, about 80 % of mined RP is used for agricultural fertilizer

(Tirado and Allsopp 2012). Worldwide, there is a huge RP deposit in countries such

as Morocco and China, while other regions particularly Asian countries depend

heavily on import of phosphates for intensive agriculture production systems. From

a consumption point of view, China is the largest consumer of P fertilizers account-

ing for about 34 % of the total world consumption, whereas India ranks second with

19 % of global consumption (FAOSTAT 2012). Similarly, the uptake of P by plants

varies greatly (Fig. 6.1). Regrettably, mining of RP and its use as fertilizers pose a

serious human health risk (Zhang and Shan 2008; Pan et al. 2010; Tirado and

Allsopp 2012). Considering the declining P resources, cost of P-fertilizer produc-

tion, and direct or indirect human health problems due to their excessive applica-

tion, scientists around the world have directed their attention toward exploring the

natural and inexpensive P resources which could serve as an eco-friendly and

economical alternative for chemical fertilizers in sustainable agriculture. In this

context, the phosphate-solubilizing actinomycetes have provided some solutions to

the expensive P problems.

Further, the chemical and biological processes in the rhizosphere play an

important role in soil nutrient availability and crop productivity (Zhang

et al. 2010) as presented in Fig. 6.2. Plants acquire P in the form of orthophosphate

anions (mainly H2PO4
� and H2PO4

�2) which they obtain from different soil P

reserves including inorganic P (Pi) and organic P (Po). Broadly, on the basis of

plant accessibility, soil P has been grouped as follows: (a) solution P, present in the

soil solution and immediately available for plant uptake; (b) active P, adsorbed on

active sites of soil yet readily available and in equilibrium with solution P; and

(c) fixed P, strongly adsorbed and least soluble with slow conversions to active P

over a vast period, even years (Syers et al. 2008; Shen et al. 2011). Generally,

concentration of plant-available P in soil is below the critical level required for

plant growth and yields (Raghothama 1999). Thus, the synthetic phosphatic fertil-

izer or organic manure is applied to overcome the P deficiency to plants. Of the total

P applied to soils, only 15–25 % of it is available for uptake by plants and the

remainder is fixed (Shen et al. 2011). The P dynamics and availability in soil is,

therefore, controlled by several factors: (1) the ability of plants to form extensive

root systems, (2) impact of microbial colonization onto the development of plants,

(3) soil microflora affecting biogeochemical cycling of elements, and (4) physico-

chemical properties of soils supporting plants and microbial life in soils.
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6.3 Actinomycetes: An Ideal Candidate for Sustainable

Crop Production

Actinomycetes are a ubiquitous, saprophytic, and heterogeneous group of micro-

organisms belonging to an extensive and diverse group of Gram-positive, aerobic,

mycelial bacteria that have DNA with high %G+C content (51–73 %) with the

exception of freshwater actinobacteria which has low GC content (Takisawa

et al. 1993; Ghai et al. 2012). Actinomycetes inhabit both the rhizoplane and

rhizosphere (Solans and Vobis 2003; Frioni 2006) and are known to play some

important ecological roles in soil nutrient cycling (Elliot and Lynch 1995),

probiotics (Lievin et al. 2000), bioremediation (Amoroso et al. 2013), nitrogen

fixation, and deterioration and decomposition of plant and animal residues and also

provide many bioactive compounds such as vitamins, enzymes, and antibiotics

(de Boer et al. 2005; Busti et al. 2006; Prapagdee et al. 2008; Genilloud et al. 2011).

Apart from their beneficial impact, actinomycetes also cause some harmful effects

such as they cause diseases and spoil different useful materials (Waksman 1950).

Other properties which make them an ideal candidate for developing inoculants are

as follows: (1) their high genetic and metabolic versatility, (2) they can easily be

genetically engineered (Pogell et al. 1991), (3) high growth rate and relatively faster

colonization efficiency (Hsu and Lockwood 1975), and (4) ability to tolerate high

salt concentration (Vassilev et al. 2012). Despite possessing such qualities, actino-

mycetes in general have been less explored organisms in agricultural technology,

among variously distributed soil microflora (Qin et al. 2011).

Fig. 6.1 Crop-wise use of phosphorus and its distribution in different countries (Source: CRU,

Fertecon, IFA (Potash Corp. 2013)
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6.3.1 Isolation and Identification of Actinomycetes

Phosphate-solubilizing actinomycetes have been isolated from diverse environment

(Matsumoto et al. 1998; Rai et al. 2007; Lee et al. 2008) such as soil (Xu et al. 1996;

Debananda et al. 2009; Salcedo et al. 2014), rhizospheres (Norovsuren et al. 2007),

phyllosphere (Gupta et al. 2010), and salt and alkaline environments (Jiang

et al. 2005) (Table 6.1). The bioprospecting of actinomycetes from the usual or

routine habitat is likely to result in rediscovery or the recovery of the same strain

with the similar mode of actions (Jensen et al. 2005).

Actinomycetes represent one of the largest domains of bacteria involving

145 genera and more than 4,000 species (Berdys 2005). Their population has

been reported highest at the soil surface which, however, decreases with increasing

soil depth (Takahashi and Omura 2003). Prior to isolation, soil is pretreated in order

Fig. 6.2 Phosphorus dynamics in soil [Adapted from Shen et al. (2011)]
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to avoid the emergence of bacterial and fungal contaminants. For this, soil samples

are collected bulked, mixed, and allowed to dry heating (at 45 �C for 2 h or 50 �C
for 10 min or 60 �C for 30 min) (Goodfellow 1971). The isolation medium is also

suspended with antibacterial (penicillin 25 mg/ml) or antifungal (nystatin 0.1 % or

cycloheximide 50 mg/ml) agents (Balagurunathan and Radhakrishnan 2007).

A 0.1 ml of serially diluted (Nonomura and Ohara 1969) soil sample is spread

plated onto different actinomycete isolation media, such as casein starch agar, the

Czapek agar, and the oatmeal agar, and incubated at 28 �C for 15–30 days. The

resulting colonies are then picked and identified using cultural, morphological

(Pridham and Tresner 1974; Nonomura 1989; Sabaou et al. 1998), and physiolog-

ical (Nonomura and Ohara 1969; Goodfellow 1971) characteristics. The actinomy-

cetes are then identified to species level using fatty acid analysis, mol (%) G+C

contents, DNA–DNA hybridization, and 16S rRNA sequencing.

Table 6.1 Different habitat and varying isolation methods for actinomycetes

Habitat Actinomycete genus isolated

Cultivated field

Cultivated paddy field

Plant matter

Pasture

Lake sediment

Mangrove rhizosphere soil

Tea field soil

Desert soil, marine sediment,

seawater, and activated sludge

Streptomyces
Micromonospora
Microbispora
Micromonospora
Micromonospora
Actinobacteria
Acidophilic and acid tolerant actinomycetes

Pretreatment

Yeast extract (6 %, 20 min) Enrichment of actinomycetes

Heating (100 �C, 1 h) Streptosporangium, Microbispora, Microtetraspora

Phenol (1.0–1.5 %, 30 min) Dactylosporangium, Microbispora, Microtetraspora

Pre-culture with CaCO3 Enrichment of actinomycetes

Chemotactic method

(KCl, ɣ-collidin, xylose)
Motile actinomycetes, actinomycetes,

Dactylosporangium

Medium for isolation

Addition of antibiotics

Novobiocin Actinoplanes, Kitasatospora

Tunicamycin Micromonospora

Rifampicin Actinomadura

Chlortetracycline Nocardia

Macrolide or aminoglycoside Macrolide or aminoglycoside producer

Addition of humic acid Rare actinomycetes

Addition of proline Enrichment of actinomycetes

Gellan gum (substitute for agar) Actinobispora

Conditions for isolation

High temperature Thermophilic actinomycetes

Adapted from Takahashi and Omura (2003)
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6.3.2 In Vitro Screening of Phosphate-Solubilizing
Actinomycetes

The phosphate-solubilizing activity of the actinomycetal strains is assessed gener-

ally on the Pikovskaya (PVK) medium (Pikovskaya 1948) which contains (g/l):

glucose 10; Ca3(PO4)2, 5; (NH4)2SO4, 0.5; NaCl, 0.2; MgSO4·7H2O, 0.1; KCl, 0.2;

yeast extract, 0.5; MnSO4·H2O, 0.002; and FeSO4·7H2O, 0.002, agar 15. The

streaked/spot inoculated plates are incubated at 22 �C for 14 days and observed

for halo formation. The development of a clear zone around the colony on the

culture plates is taken as an index of P solubilization. Halo size is calculated by

subtracting colony diameter from the total diameter (Valverde et al. 2006). There-

after, the halo-forming actinobacteria is grown on SRSM-1 medium which has the

same composition as that of the PVK medium but is supplemented with

bromocresol purple as a pH indicator for determining the involvement of organic

acid production in PS activity.

6.3.3 Role of Actinobacteria in Rock Phosphate
Solubilization

Nearly 20 % of the actinomycetes including Streptomyces and Micromonospora
possess profound phosphate-solubilizing potential (Barreto et al. 2008; El-Tarabily

et al. 2008; Hamdali et al. 2008b). Actinomycetes as P solubilizer have received

greater attention for two reasons: (1) ability to produce agro-active metabolites, for

example, phytohormones, siderophores, and antibiotics, etc. (Hoster et al. 2005;

Errakhi et al. 2007; Errakhi et al. 2009), and (2) ability to tolerate different stressor

molecules (Fabre et al. 1988; Keiser et al. 2000; Hamdali et al. 2008d). Also, the

inoculation with actinomycetal strains has been found to increase the plant growth

(Hamdali et al. 2008c). Plants take up the orthophosphorus form of P as nutrient, the

availability of which depends on soil characteristics (Nath and Borah 1983).

However, Fe and Al at high pH and Ca at low pH fix the soluble form into insoluble

form rendering it unavailable to the plants (Rengel and Marschner 2005; Johnson

and Loepper 2006). The PS actinomycetes, however, through the release of organic

acid (acidification) (Hoberg et al. 2005; Abdulla 2009) and by other mechanisms

such as chelation, exchange reactions, and polymeric substances formation

(Delvasto et al. 2006) convert the insoluble forms of P into soluble forms. The

organic anions assist P solubilization mainly in two ways: (a) lowering pH and

(b) ligand exchange reaction (Beunemann et al. 2011; Balemi and Negisho 2012).

However, the organic anions in some cases have been found not to acidify the

medium, probably because once they are released in soil, they already exist in the

dissociated form due to their low acid dissociation constants (pKa). In fact, it is

assisted by the proton extrusion accompanying respiration and NH4+ assimilation

(Illmer and Schinner 1992), which compensates for the losses of negative charge
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and hence lowers the pH values. Organic anions are also involved in ligand

exchange or ligand-enhanced desorption and/or chelation of Fe and Al oxides and

Ca phosphates, thereby decreasing the positive surface potential on the metal oxide

(Filius et al. 1991) and releasing the inaccessible P from the soil matrix

(Raghothama and Karthikeyan 2005). The extent of solubilization by actinomy-

cetes however depends on (1) the source of inorganic P (Pi), (2) the intrinsic PS

ability of actinomycetal species, and (3) the types and composition of photosyn-

thates available in the rhizospheres (Banik and Dey 1982). Interestingly, both

solubilization (acidification of inorganic P) and mineralization (enzymatic dissolu-

tion of organic P) may coexist in the same PS actinomycetal strains (Tao

et al. 2008).

Recently, numerous rhizoactinomycetes capable of solubilizing insoluble P have

been identified (Franco-Correa et al. 2010; Pragya et al. 2012). For example, apart

from soil actinomycetes, many marine actinomycetes have also shown the produc-

tion of phosphatase which consequently enhanced the P availability (Sahu

et al. 2007). In a similar study, Franco-Correa et al. (2010) reported that 20 % of

the actinomycetes including Streptomyces and Thermobifida, isolated from the

rhizosphere of Trifolium repens, grown in the fields of Sabana de Bogotá, Colom-

bia, had quite active P-solubilizing activity. Even though all isolates produced acid

phosphatase wherein 43 % isolates demonstrated alkaline phosphatase, which

indicated that all the test actinomycete strains could mineralize the organic P

sources (Richardson et al. 2009). Among phosphatases, acid phosphatases, a

group of enzymes produced by plants/microbes in response to P stress, catalyze

hydrolysis of phosphoric esters in a range of organic P complexes, thereby enhanc-

ing plant P uptake (Tarafdar and Claassen 1988; Tarafdar and Claassen 2001;

Richardson et al. 2011) from unavailable P resources. There are also some other

enzymes secreted by actinomycetes that take part in the dissolution process. As an

example, Reza-Ghorbani-Nasrabadi et al. (2012) assessed 97 soil samples collected

from different soil ecosystems and showed for the first time that actinomycetes had

extracellular phytate-degrading activity. Phytases are a group of enzyme responsi-

ble for stepwise dephosphorylation of phytate, the most abundant inositol phos-

phate in nature. Of the total actinomycetal cultures, 46.3 % showed extracellular

phytate-degrading activity in liquid culture medium supplemented with 4 g/l

Na-phytate as sole P source. The two more closely studied phytase producers

were identified according to 16SrRNA sequencing as Streptomyces (sp. isolate

No. 43 showed 98 % similarity to Streptomyces alboniger and S. venezuelae,
while isolate No. 63 exhibited 98 % sequence relatedness with S. ambofaciens
and S. lienomycini).

144 S. Saif et al.



6.3.4 Actinomycetes as a Potential Candidate for Increased
Plant Growth and Yield

The agronomic use of PGPR at field scale in general has been hampered by poor

understanding of mechanisms that facilitate plant growth, inability of bacterial

strains to establish in various soils, rhizosphere incompetence, and changing envi-

ronmental conditions. On the contrary, the actinobacteria with their ability to

(1) sporulate, (2) transform various complex soil nutrients into simple and acces-

sible forms, (3) extensively and efficiently colonize plant roots, (4) manage phyto-

pathogens, and (5) secrete other plant-growth-promoting substances make these

organisms as preferred choices for developing potential field bio-inoculants. Acti-

nomycetes are metabolically flexible soil/rhizosphere-colonizing microorganisms

(Miller et al. 1990; Euanorasetr et al. 2010; Lei et al. 2013) capable of producing a

range of compounds of interest, including (1) antifungal compounds which have

been found useful in controlling fungal root diseases (Rothrock and Gottlieb 1984;

Zucchi et al. 2010; Bungonsiri et al. 2011; Sreevidya and Gopalakrishnan 2012;

Francisco et al. 2013) (2) siderophores (Lee et al. 2012; Nakouti et al. 2012; Najwa

et al. 2013), ACC deaminase (El-Tarabily 2008), and (3) plant-growth-promoting

hormones (Hamdali et al. 2008a; Khamna et al. 2010). Generally, plant root

exudates stimulate growth, proliferation, and rhizosphere colonization of actino-

mycetes that may act as a strong antagonist to fungal pathogens. The root exudates

are utilized as a source of carbon and energy by the actinomycetes and, concom-

itantly, enhance the synthesis of antimicrobial substances (Crawford et al. 1993;

Yuan and Crawford 1995). In addition, actinomycetes synthesize an array of

biodegradative enzymes which includes chitinases (Blaak et al. 1993; Gupta

et al. 1995; Pattanapipitpaisal and Kamlandharn 2012; Sowmya et al. 2012),

glucanases (Hopwood 1990; Damude et al. 1993; Mahadevan and Crawford

1996; Harchand and Singh 1997; Thomas and Crawford 1998; Trejo-Estrada

et al. 1998; Fayad et al. 2001; Huiling et al. 2014), peroxidases (Ramachandra

et al. 1988; Djamila et al. 2011), and other enzymes possibly involved in

mycoparasitic activity. Considering the potential role of actinomycetes in the

management of plant diseases and plant growth promotion by certain other mech-

anisms, actinomycetes in recent times are considered as one of the important

aspects in sustainable plant production (Palaniyandi et al. 2013) as presented in

Table 6.2.

The root-colonizing soil actinomycetes S. lydicus WYEC108, for instance, have

been reported to influence pea root nodulation and increase the nodulation fre-

quency possibly at the level of infection by Rhizobium spp. Following colonization,

S. lydicus sporulate inside the surface cell layers of the nodules which in turn led to
a massive increase in the nodules size. Subsequently, the forms and vigor of

bacteroids were greatly improved due to enhanced assimilation of iron and possibly

other soil nutrients within nodules. Moreover, bacteroid accumulation of the C

storage polymer, poly-β-hydroxybutyrate (PHB), was reduced in colonized nodules
(Solans 2007). The co-inoculation of rhizoactinomycetes Streptomyces MM40,
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Actinoplanes ME3, and Micromonospora MM18 has been found to promote the

growth of Discaria trinervis in symbiosis with Frankia; however, no plant-growth-
promoting effect was observed when rhizoactinomycetes were applied alone to the

plant (Solans 2007). In a similar study, Hamdali et al. (2010) isolated a population

of PS actinomycetes spp. from Moroccan phosphate mines and tested their growth-

promoting efficacy using wheat as a test plant. The most active RP-solubilizing

strains had the highest stimulatory effect on the production of plant biomass. Of the

various isolated actinomycetes strains, strain BH7 of Streptomyces griseus stimu-

lated aerial growth of the plant by 70 % in test tubes and more than 30 % in RP soil

compared to the non-inoculated control plants. In another study, the actinomycetes

showed P solubilization activity (1,916 mg l�1) and produced phytase

(0.68 U ml�1), chitinase (6.2 U ml�1), IAA (136.5 mg l�1), and siderophore

(47.4 mg l�1). Furthermore, inoculation of Streptomyces mhcr0816 and

mhce0811 with Triticum aestivum (wheat) significantly improved plant growth,

biomass (33 %), and mineral (Fe, Mn, P) content in non-axenic conditions (Jog

et al. 2014).

6.4 Conclusion

In order to reduce the environmental and economic stress due to massive use of

synthetic fertilizers and to achieve food security goals, the use of actinomycete as

biofertilizers in intensive agriculture practices appears to be a sound, inexpensive,

and eco-friendly option. Even though the physiological functions and symbiotic

roles of actinomycetes have been revealed under in vitro condition, the role of

actinomycetes in sustainable crop production is not adequately explored. Consid-

ering the importance of actinomycetes in plant growth promotion via disease

suppression and some other mechanisms, there is urgent need to popularize and

maximize the use of actinomycetes in crop production in order to reduce depen-

dence on chemical fertilizers and hence to preserve soil fertility without damaging

the soil dwellers.
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