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Abstract Soil and associated stress conditions not only influence dwelling micro-

bial populations and soil ecosystems but also affect growth and yield of plants.

Major soil stress includes salinity, drought, and metal contamination. Due to

burgeoning populations and expanding food demands, it has become imperative

to alleviate the stressful soil conditions so that the crop production is increased and,

consequently, the food demands are fulfilled. Different strategies are followed to

resolve this problem, and one such approach involves exploiting microbial potential

for plant’s benefit. The multifunctional microscopic life-forms are already known

for their applications in industries, medicine, and agricultural field. One of the

major attributes of microbes from agronomic point of view is their ability to

solubilize difficultly available forms of soil phosphorus. Phosphate-solubilizing

microbes are also known to produce enzymes, siderophores, and growth hormones;

embellish plant growth and biocontrol activity; and improve soil properties. Such

microorganisms possessing attributes, beneficial for plants are termed as plant

growth-promoting rhizobacteria (PGPR). There are plentiful reports on bacterial-

mediated plant growth promotion under nonstressed conditions although fewer

reports are available on their effects under stressed condition. The bacterial ability

to enhance tolerance of plants in stressed soils and the impact of PGPR consortium

(mixture) on different crops are highlighted. The major idea here is to consolidate

the fact that PGPR consortium can be used directly in stress-affected soil with an

aim to refurbish soil conditions to foster crop productivity in stressed soils.
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11.1 Introduction

Soil inhabits different life-forms including plants, animals, and microorganisms and

is a nutrient hoarded treasure, a support system (for plant) furnishing with plentiful

crops and yields. Any change in soil conditions eventually affects plant growth.

Human activities and ever-increasing populations are continuously exploiting this

natural system, consequently affecting the growth and productivity of plants.

However, there are certain soil factors which negatively affect plant growth.

These are (1) moisture content, (2) salt, (3) nutrient pool of soils, (4) microbial

composition and their functional variation, and (5) soil pollution especially depo-

sition of toxicants (heavy metal and pesticides) in soil. When deviated from optimal

conditions, these factors cause adverse effects and are specified as stress conditions

for soil. The deleterious impacts of these stresses include dwindling productivity,

burden on delimited resources, and economic fall. Considering these threats,

researchers from different fields are working in unison to avert such problems.

One such area involves the exploitation of microbiological resources of soils.

Microorganisms are known to be omnipresent and possess multifunctional charac-

teristics even though the full potential of microorganisms is still unrevealed. Most

of the chemical reactions occurring in soil leading to nutrient availability are

mediated by different microorganisms like N2 fixers, P solubilizers, or decomposers

(Powlson et al. 2001). Considering the available information and application of

microorganisms, there has been greater interest in using such organisms to restrain

the adverse effects also (Vassilev et al. 2012).

Microorganisms colonizing the rhizospheres are known to have beneficial

effects on the nutrient acquisition, mineral solubilization, disease resistance, and

stress tolerance and are collectively described as plant growth-promoting

rhizobacteria (PGPR) (Kloepper and Schroth 1978; Vessey 2003). Reports are

available in the literature on the effectiveness of rhizospheric microorganisms as

plant growth promoters as well as on their potential for imparting stress resistance

or improving stress tolerance in plants, presenting PGPR as viable option to cope

with these problems (Yang et al. 2009; Zelicourt et al. 2013; Ahemed and Kibret

2014). Another aspect of exploiting microbial potential is to combine the attributes

of different microbes to get an outcome encompassing numerous or complementing

beneficial effects. Microorganisms are known to have attributes like cooperation/

mutualism where they benefit each other or other life-forms to enhance the positive

outcomes (Singh et al. 2010). Multiple properties of resistance/tolerance and plant

growth promotion, therefore, serve as an appraisal and make PGPR one of the most

suitable choices to manage these problems (Bano and Fatima 2009; Egamberdieva

and Kucharova 2009; Zelicourt et al. 2013). Judicial application of the stress-

tolerant PGPR consortium can be a viable solution and need to be further strength-

ened through field trials. The present chapter gathers reports on the experimental

studies done on PGPR consortium helping plant/crops cope with stressful soil

conditions. Also, the focus is given here on soil stress and associated effects

including mechanisms of PGPR in stress alleviation.
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11.2 Stresses Occurring in Soils

Soil can be defined as upper layer of earth where plant grows and have their roots

(Brady 1974). Soil indeed is the habitat for both microscopic (millions of microor-

ganisms) and macroscopic (insects, animals, plants) life (Pelczar et al. 1993; Saika

2013). The plants along with soil inhabiting microbes affect the soil structure,

fertility, and porosity; prevent erosion; and serve as source of organic matter;

likewise, any alteration in soil influences these life-forms. Soil stress is one of the

abiotic factors and can be defined as environmental variables affecting soil, which

can induce potentially injurious effects on the growth and yield of plants. Stress in

plants is mainly measured in relation to survival, growth, crop yield, biomass, and

primary assimilation processes associated with growth (Oliveira et al. 2013). These

abiotic stresses also reduce the number, activity, and diversity of soil microflora,

which in turn may limit the crop production (Sgroy et al. 2009).

11.2.1 Types of Soil Stresses

Soil stresses involve drought stress (decreased water availability to plants), salt

stress (increase salts in soil solution), heavy metal stress (excessive toxic metals in

soil), nutrient stress (insufficient nutrients in soil), and temperature stress (extremes

of temperature both high and freezing). Of these, drought is one of the most

important stresses followed by salinity stress (Kinje 2006; Carmen and Roberto

2011). Extensive areas of land are affected by these two stresses and are reported to

have maximum deleterious effects on the agricultural productivities (Oliveira

et al. 2013). The effects of drought and salt stress are highly interrelated and

influence practically almost every aspect of plant. The effects of stresses on plants

involve disrupted photosynthesis leading to leaf senescence, accumulation of

excessive reactive oxygen species (ROS), nutrient deficiency, and destruction of

cellular organelles and metabolism leading to decreased plant growth. The after-

effect includes both physiological and metabolically disturbed homeostasis of plant

(Carmen and Roberto 2011; Oliveira et al. 2013). Metal stress is another important

soil stress, which is becoming increasingly intensive due to numerous anthro-

pogenic factors (Glick 2010). Unchecked increase in population and industrial

revolution is resulting in accumulation of toxic metals and organic wastes in soil

making it unsuitable for agricultural practices and also harmful to all life-forms

(Glick 2010). Some of the effects of these stresses are briefly outlined in Fig. 11.1.

11.2.1.1 Drought Stress

Water comprises 80–90 % of the plant biomass and plays central role in all major

physiological processes of the plants involving nutrient uptake and photosynthesis.
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Drought stress can be defined as low water or moisture content in soil, not enough to

fulfill the plant requirements. When the water loss occurs due to metabolic pro-

cesses and transpiration exceeds the water availability for absorption or when water

content of plant gets low enough to interfere with normal plant processes, water

deficit/stress is created. It can also result from reduced moisture of soil, due to less

rainfall or supplemental irrigation. Water stress has been found as an important

factor affecting deleteriously various stages/metabolic processes of plants

(Upadhyay and Panda 2013). For example, water stress reduces the water potential

of plant cell and thus enhances the solute concentration, which further hinders cell

enlargement, stem proliferation, and root elongation, thereby hampering the plant

growth (Akinci and Losel 2012). However, when plants are growing under stressed

situation, it exhibits visible symptoms. As an example, “wilting” is the condition of

plants where the non-wooden parts of the plants become nonrigid due to low turgor

pressure and is one of the most common symptoms of water stress (Correia

et al. 2001; Cabuslay et al. 2002). Also, water stress may cause stomata closure.

Accumulation of plant hormone, for instance, abscisic acid (ABA), is responsible

for the stomatal closure (Socias et al. 1997). This further reduces gaseous exchange,

Decrease in
photosynthesis and
pigmentation

ROS accumulation

Stomatal closure
senescence
wilting
Necrosis
Chlorosis

Cell
death

Suppressed
growth

Protein denaturation &
membrane destabilization

Cytotoxicity

Mineral/toxic ions
accumulation

Osmotic stress,
Physiological
drought

Nutrient unavailability,
Competitive exclusion
of nutrientslonic

imbalance

Fig. 11.1 An overview of stress effects on the plant. Effects include a combinatorial picture of salt

and metal stress (ionic imbalance) and drought stress (osmotic stress) on physiological and

metabolic aspects of plants focusing mainly on leaves and root-associated processes which

ultimately lead to inhibition in growth
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transpiration, and CO2 assimilation during photosynthesis (Cornic 2000). Also,

water stress results in reduced chlorophyll content, inhibits chloroplast activity

and disorganizes thylakoid membranes, decreases the activity of ribulose-1,5-

bisphosphate carboxylase/oxygenase and other enzymes in carbon reduction cycle

(Reddy et al. 2004), impairs electron transport, and increases the concentration of

ROS. The imbalance in scavenging and formation of ROS and increased O2

photoreduction in chloroplast results in ROS accumulation (Robinson and Bunce

2000). The ROS damages photosynthetic apparatus, cell membrane, and macro-

molecules. DNA nicking, denaturation of structural and functional macromole-

cules, lipid peroxidation, oxidation of amino acids and proteins, and

photosynthetic pigments are some of the effects of ROS accumulation (Lisar

et al. 2012). Stomata closure under drought stress is also found to be related to

altered nutritional status, xylem sap pH, and hydraulic conductivity as well as

declines water content in leaf (Oren et al. 1999). Summarily, drought stress

interrupts the enzymatic reactions mainly involved in CO2 fixation and ATP

synthesis and thus affects the plant by altering (1) photosynthesis, (2) transpiration,

(3) nutrient uptake, (4) hormone production, (5) homeostasis, and (6) other meta-

bolic processes.

11.2.1.2 Saline Stress

In agricultural terms, salinity can be defined as salt level exceeding the plant

requirements (Yadav et al. 2011). In other words, it can also be defined in terms

of dissolved mineral salt concentration, i.e., electrolytes of cations and anions

where major cations involve Na+, Ca2+, Mg2+, and K+ and anions involve Cl�,
SO4

2�, CO3
2�, HCO3

�, and NO3
�. According to USDA Salinity Laboratory

(Seidahmed et al. 2013), saline soil is defined as soil having electrical conductivity

4 dS m�1 or higher. The excessive concentrations of salt change the physico-

chemical properties of soil and affect the nutrient uptake from soil, making nutri-

ents inaccessible for plants. Some of the effects of salt stress on plants include

deteriorated growth, nitrogen content, photosynthetic capacity, and metabolic pro-

cesses including protein and lipid metabolism (Upadhyay et al. 2011). Salt stress

has been reported to drastically affect the growth and yield of several crops (Parida

and Das 2005; Ondrasek et al. 2011). Broadly, effects of salt stress can be catego-

rized as (1) unavailability of water causing drought-like conditions; (2) high salt

content in plants, i.e., Na+ and Cl�, leading to disrupted physiological and bio-

logical processes; and (3) high salt content affecting availability of other soil

nutrients. One of the most dominant symptoms of salt stress involves stunted

growth. Cessation of leaf expansion and reduction in dry weight and fresh weights

of stem, roots, and leaves are some other effects of the salt stress (Hernandez

et al. 1999; Wang and Nil 2000). Salt stress affects largely the shoot growth

compared to root growth and hence influences both vegetative and reproductive

stages of plants. It creates osmotic and ionic stress due to less water content and

high salt concentration, respectively. The osmolarity of external tissues results in
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decreased growth of plant (Munns 2002), whereas the ionic effect leads to ion

(mainly Na+) accumulation mainly in leaf tissues leading to necrosis. “Necrosis” is

death or degeneration of tissue, visible as yellowing or dark patches on plant leaves.

Due to excessive salt in soil, the required nutrient becomes unavailable for plants.

The salt ions (Na+) intervene the transporters of root plasma membrane and hamper

root growth, thus obstructing the nutrient uptake by plants (Yadav et al. 2011). Salt

stress causes water deficit, which results in oxidative stress due to formation of

ROS, causing membrane dysfunction and cell death (Parida and Das 2005). Lipids

also act as a target for oxidative reactions and, being structural constituent of

membranes and insulator for internal organs, damage the cellular structure aggra-

vating negative effects of the salt stress (Singh et al. 2002). The high concentration

of solutes in root medium interferes with the water absorption by roots and reduces

root conductivity. These effects further lead to decreased plant growth and photo-

synthetic rate. The chlorophyll and carotenoid content in leaves decline under salt

stress. Symptoms of chlorosis appear on leaves due to the reduction of photosyn-

thetic pigments. Salt stress affects different physiological processes such as cessa-

tion of carbon assimilation in leaves, reduction in permeability due to dehydration,

closure of stomata affecting chloroplast activity, senescence, ionic leakage into the

cytosol leading to inactivation of photosynthetic and respiratory electron transport

(Allakhverdiev et al. 2000; Parvaiz and Satyawati 2008), and altered enzyme

activity due to change in cytoplasmic structure.

11.2.1.3 Metal Stress

Heavy metals (HM) can be defined as elements with metallic properties and higher

range of molecular weight and include transition elements. The industrial revolu-

tion and anthropogenic activities have dramatically raised the metal concentration

in soil (Yan-de et al. 2007; Oves et al. 2012). Among these metals, iron (Fe),

molybdenum (Mo), and manganese (Mn) are known as essential micronutrients

required by the plants, while a few, for example, cadmium (Cd), do not have any

biological activity. Other metals like chromium (Cr), copper (Cu), mercury (Hg),

lead (Pb), and nickel (Ni) are also common in soil. Based on the requirement, HM

can be divided into essential and nonessential elements, although the excessive

accumulation of both of these in soils adversely affects the plants (Wani et al. 2012;

Morsy et al. 2013) as well as soil microflora (Oliveira and Pampulha 2006; Wani

and Khan 2010). The plentiful HM in soil is absorbed and translocated to various

organs of plants and impairs plant metabolism and growth (Bingham et al. 1986;

Cheng 2003; Ahmad et al. 2012b). The excessive metals in soil also affect soil

properties and fertility, making it unsuitable for agricultural activities.

The possible toxic impact of heavy metals on plant includes (1) disintegration of

cell organelles and (2) disruption of membranes and physiological processes like

(a) photosynthesis, (b) inactivation of protein synthesis, (c) inactivation of respira-

tion and carbohydrate metabolism, and (d) nutrient uptake (Jing et al. 2007; Wani

et al. 2007; Wani et al. 2008; Khan et al. 2012). Metal accumulation also results in
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reduced microbial population (Wani and Khan 2013) thereby affecting the soil

fertility and making it unsuitable for sustainable agriculture (Cheng 2003). Germi-

nation rate and root vitality of the plant are also affected by the metal stress (Shu

et al. 1997). Heavy metals were also known to affect the cell division by causing

inhibition of DNase and RNase activity; damaging nucleolus and disrupting DNA

synthesis; and causing chromosomal aberration, coagulation, and fragmentation

(Yang and He 1995; Musarrat et al. 2011). Reduced cell division and elongation

along with decreased cell membrane integrity are some other effects of membrane

toxicity. Some of the visible symptoms include interfoliar chlorosis, wilting, necro-

sis, crinkling of leaf, reddening, and purpling (Reichman 2002). Lessened chloro-

phyll content, reduced photosynthetic rate, and augmented carotenoid breakdown

are also some of the results of metal toxicity. Accumulated metals are believed to

replace Mg ion of the chlorophyll molecule thus affecting photosynthesis (Kupper

et al. 1996). Heavy metals are also known to disrupt the photosystems ensuing

decreased proton availability, consequently affecting photosynthesis. Reduced ATP

synthesis and disrupted activity of chloroplast are some other effects reported for

metal toxicity by disruption of enzymatic systems (Teige et al. 1990). Like any

other stress, free radical production is increased in plant as a response to metal

stress. The concentration of metal plays an important role here as at low concen-

tration the protective antioxidant enzymes balance the effect, but at higher metal

toxic condition these accumulated free radicals damage membranes by lipid peroxi-

dation (Yadav 2010) followed by injury to surrounding cells. Free radicals also

damage macromolecules like nucleic acids and proteins, thus disrupting normal

metabolism and leading to cell death. Leaf senescence is another effect of oxidative

damage due to ROS accumulation (Luna et al. 1994). Since growth, yields, and

many other physiological functions of plants are affected negatively by toxic metals

(Yadav 2010; Selvakumar et al. 2012), remedial measures are urgently required for

its cleanup from the contaminated sites (Khan et al. 2011; Zaidi et al. 2012). In this

context, scientists around the world have attempted to use molecular tools and

breeding programs for exploiting physiological traits of plants, developing new

stress-tolerant crop varieties, altering crop calendars, and managing agronomic

resources to circumvent stress-related impact on plants. Another well-considered

option in this direction is the use of microorganisms for combating stress (Khan

et al. 2009). In this regard, reports on the individual/combined use of metal-tolerant/

normal microorganisms in growth promotion and other positive effects on plants

are available (Selvakumar et al. 2012; Ahmad et al. 2013; Oves et al. 2013).

11.3 Plant Growth-Promoting Rhizobacteria

Soil is inhabited by numerous microorganisms, which can be categorized as

beneficial or detrimental based on their effect on the soil, plants, and ultimately

plant’s yield (Singh et al. 2011a). The diverse microbial population of soil plays a

pivotal role in processes determining soil fertility and plant’s productivity (Tilak

11 Microbial Consortium of Plant Growth-Promoting Rhizobacteria Improves the. . . 263



et al. 2005). Soil microorganisms participate in processes like decomposition,

mineralization, and nutrient availability, improve soil structure (soil aggregation

by production of polysaccharides), increase the nutrient acquisition efficiency of

the plants, and improve plant health through growth hormone production (Hayat

et al. 2010; Singh et al. 2011b). Microbial populations having the ability to colonize

root surface and imparting beneficial effects to plants are known as plant growth-

promoting rhizobacteria (PGPR) (Kloepper and Schroth 1978; Joshi and Bhatt

2011). Plant growth-promoting rhizobacteria facilitate plant growth both directly

and indirectly (Glick 2012). Some of the notable PGPR belong to genera

Arthrobacter (Banerjee et al. 2010), Azotobacter (Ponmurugan et al. 2012),

Azospirillum (Jacoud et al. 1999), Bacillus (Kumar et al. 2011), Enterobacter
(Shoebitz et al. 2009), Pseudomonas (Noori and Saud 2012), and Serratia (Zhang

et al. 1997). Based on the proximity with the plant roots, PGPR can be divided into

(1) extracellular PGPR, existing in rhizosphere, rhizoplane, or spaces between root

cortices, and (2) intracellular PGPR, present within roots or nodules of the plant.

Also, based on the mode of action, PGPR have been classified as (1) bio-stimulants

which promote plant growth via phytohormone production, including auxins IAA

and similar compounds like abscisic acid, gibberellic acid, cytokinins (Carmen and

Roberto 2011); (2) biofertilizers which enable nutrient availability and acquisition

via N2 fixation (Mohammadi and Sohrabi 2012) and P solubilization (Khan

et al. 2007; Zaidi et al. 2009; Khan et al. 2010; Das et al. 2013); and

(3) bioprotectants which provide protection to plants against phytopathogens via

production of antibiotics (Labuschagne et al. 2011), siderophores (Glick 2012), and

induced systemic resistance (Figueiredo et al. 2011).

11.3.1 Direct Mechanisms

11.3.1.1 Production of Plant Growth Regulators

Microorganisms are known to produce plant growth-stimulating substances such as

phytohormones, for example, auxins (Spaepen and Vanderleyden 2011), cytokinins

(Nieto and Frankenberger 1990), gibberellins and abscisic acid (Singh 2013), etc.,

as well as certain volatiles (Ryu et al. 2003). The phytohormone-producing micro-

organisms include Acetobacter diazotrophicus (Patil et al. 2011), Azospirillum
brasilense (Perrig et al. 2007), Herbaspirillum seropedicae (Bastian et al. 1998),

Bacillus pumilus and B. licheniformis (Gutirrez-Manero et al. 2001), etc.

11.3.1.2 Nitrogen Uptake

Specialized microorganisms have capability to fix atmospheric N (biological nitro-

gen fixation; BNF) and maintain the balance of N in soil ecosystem. Nitrogen fixers

are categorized into two groups: (a) symbiotic nitrogen fixers and (b) nonsymbiotic

264 M. Panwar et al.



nitrogen fixers. Rhizobium and Frankia belong to symbiotic N2 fixers that associate

with legumes, whereas nonsymbionts are free-living N2 fixers which interacts with

nonleguminous plants (Ahemed and Kibret 2014). Numerous PGPR are also known

to possess this attribute although the mechanism responsible for their growth

promotion is not N2 fixation. Some of these PGPR are Azotobacter (Kizilkaya

2009), Bacillus (Ding et al. 2005), Clostridium, Klebsiella (Iniguez et al. 2004),

Alcaligenes, and Arthrobacter (Mohammadi and Sohrabi 2012).

11.3.1.3 Increased Mineral Uptake

Plant growth-promoting rhizobacteria are reported to provide nutrients to plants via

mineralization/solubilization of unavailable minerals like P (Khan et al. 2007).

Also, the siderophores, secreted by PGPR strains, play important roles in mineral

transport (Vessey 2003; Ahmad et al. 2013). Mineralization process involves

conversion of organic P into soluble forms through enzymes like phytases and

phosphatases (Walpola and Yoon 2012), whereas in solubilization the inorganic P

is transformed into soluble forms via organic acid production, acidification of

medium (Park et al. 2009; Khan et al. 2010), chelation, and exchange reactions

(Walpola and Yoon 2012). Both solubilization and mineralization mechanism can

occur in one bacterial species also. Some of the phosphate solubilizing (PS) bacteria

include Acinetobacter (Rokhbakhsh-Zamin et al. 2011), Burkholderia (Gupta

et al. 2012), Enterobacter (Gupta et al. 2012; Maheshwari and Sudha 2013),

Klebsiella (Ahemad and Khan 2011), Pseudomonas (Rajkumar and Freitas 2008),

and Stenotrophomonas (Mehnaz et al. 2010). Numerous studies have been

conducted globally to analyze the effects of various P solubilizers on growth,

yield, and other important parameters of plants (Khan et al. 2009; Ahmad

et al. 2012a). Some of the examples supporting the effectiveness of these micro-

organisms against different crops are listed in Table 11.1.

11.3.2 Indirect Mechanisms

11.3.2.1 Antibiotic Production

Antibiotics are defined as heterogenous low molecular weight organic compounds

secreted by microorganism, having destructive/inhibitory effects on the growth and

metabolism of other microorganism/s (Duffy 2003; Beneduzi et al. 2012). PGPR

are also known to produce antibiotics and other small molecules preventing plants

from damage caused by the plant pathogens. These antibiotics are categorized as

(A) nonvolatiles including polyketides (e.g., pyoluteorin), heterocyclic nitrogenous

compounds such as phenazine derivatives, phenylpyrrole (e.g., pyrrolnitrin),

lipopeptides (e.g., bacillomycin), aminopolyols (e.g., zwittermicin A) and

(B) volatile antibiotics such as hydrogen cyanide (HCN), aldehydes, sulfide,
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ketones, and alcoholic compounds (Fernando et al. 2006). Some of the antibiotics

like 2,4-diacetylphloroglucinol (Shanahan et al. 1992), phenazine-1-carboxylate

(Chin-A-Woeng et al. 2001), pyoluteorin (Howell and Stipanovic 1980),

pyrrolnitrin (Thomashow and Weller 1988), and HCN are produced by Pseudo-
monas sp. (Hass and Defago 2005); bacillomycin (Volpon et al. 1999), kanosamine

(Milner et al. 1996), and iturin A (Constantinescu 2001) are produced by Bacillus
sp. (Fernando et al. 2006). Toluene, dimethyl disulfide, and terpenoid compounds

like α-pinene and limonene are the other volatiles produced by Burkholderia sp.
(Tenorio-Salgado et al. 2013).

11.3.2.2 Siderophore Production

Siderophores are low molecular weight peptide molecules with side chains and

functional groups acting as ligand for Fe3+ (Beneduzi et al. 2012). Siderophores are

also known as “iron carriers” and act as biocontrol agents by sequestering iron (Fe),

required for phytopathogens. By limiting the iron availability, siderophores inhibit

the growth of phytopathogens in immediate vicinity of plant and hence indirectly

protect plant from pathogen damage (Glick 2012). Siderophore-producing PGPR,

for example, Pseudomonas sp. and Enterobacter sp. (Gram-negative bacteria) and

Table 11.1 Examples of P-solubilizing microorganism and their effects on the plants

P solubilizer Plants Effect Reference

Bacillus
megaterium

Sugarcane

(Saccharum
officinarum)

Enhanced sugarcane and sugar yield,

P content in soil

Sundara

et al. (2002)

Bacillus sp. Banana cultivars

(Musa
paradisiaca)

Improved yield and mineral content,

fresh biomass (aerial and root),

aerial dry mass, diameter, and

foliar surface

Jaizme-Vega

et al. (2004)

Pseudomonas sp. Tomato (Solanum
lycopersicum)

Enhanced growth El-Tantawy and

Mohammed

(2009)

Pantoea eucalypti Slender trefoil

(Lotus tenuis)
Enhanced growth Castagno

et al. (2011)

Variovorax
paradoxus

Pea (Pisum
sativum)

Increased root-shoot biomass, sto-

matal conductance, enhanced

nutrient availability, and P

accumulation

Jiang

et al. (2012)

Burkholderia
multivorans
WS FJ9

Poplar (Populus
euramericana
cv.)

Increased height, root collar diame-

ter, biomass, P content

Li et al. (2013)

B. tropica KS04 Chili (Capsicum
frutescens L. cv.
Hua Rua)

Significant increase in height, fresh

weight, root and shoot dry

weight, as well as number of

flowers

Boonlue et al.
(2013)
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Bacillus sp. and Rhodococcus sp. (Gram-positive bacteria) (Saharan and Nehra

2011) also deprive native microflora from available iron and thus outnumber the

native microbes and exhibit plant growth-promoting effect (Kloepper et al. 1980).

11.3.2.3 Induced Systemic Resistance

Induced systemic resistance (ISR) is another indirect mode of action where PGPR

or nonpathogenic rhizobacteria act as stimuli, and in response, plants develop

enhanced resistance to pathogens. ISR involves actions of nonpathogenic bacteria

and is mainly dependent on jasmonic acid and ethylene signaling in plants

(Lugtenberg and Kamilova 2009). Some of the putative mechanisms responsible

for enhanced resistance include accumulation of phenolic compounds, increased

activity of defense enzymes, enhanced lignifications, etc. Many Pseudomonas sp.
and Bacillus sp. are recognized to act as biocontrol agents and protect plant from

pathogens through this mechanism (Kloepper et al. 2004). PGPR-mediated ISR

against bacteria, fungi, and viruses has already been reported (Niranjan et al. 2005).

11.4 Microbial Consortium

“Consortium” is a Latin word, which stands for partnership, association, or group,

that works for common interest. From the microbiological perspective, consortium

constitutes a group of compatible organisms belonging to different species in

contact with one another, implicated in different biological processes ranging

from sewage treatment to metabolic processes in rumen (Mark 2009). Two or

more microorganisms living in symbiosis can be called as consortium. Microbes

with different attributes can be used as consortium, which can work synergistically

promoting each other’s beneficial effects. Some of the PGPR consortium-related

studies are summarized in Table 11.2. A study involving N2 fixing,

R. leguminosarum bv. viceae (LB-4); P solubilizing, B. megaterium; and PGPR,

LK-786 (Kurthia sp.) and LK-884 (Pseudomonas diminuta) was carried out to

ascertain their effects on lentil (Lens culinaris) crop following single and dual

culture inoculation (Kumar and Chandra 2008). Maximum increase in dry weight,

yield, mineral uptake, and nodule number was reported in case of all microbial

combination as compared to dual combinations of Rhizobium+B. megaterium or
Rhizobium+LK-884/LK-786 (Kurthia sp.), whereas no positive effects were

observed in uninoculated controls. A similar study was carried out using consor-

tium of Burkholderia gladioli 10242, Enterobacter hormaechei 10240, Pseudomo-
nas synxantha 10223, and Serratia marcescens 10241, for their effect on the Aloe
vera plants. The result indicated augmented biomass as well as aloin-A content of

the plants (Gupta et al. 2012). An experimental study was conducted on the

evaluation of effects of PGPR consortium comprising FCA-8, FCA-56, and

FCA-60 of P. putida and arbuscular mycorrhizal fungi (AMF) on citrus (Citrus
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volkameriana) (Chiquito-Contreras et al. 2012). The study involved consortium

treatment with 50 % fertilization, whereas control involved no PGPR inoculation

with 100 % fertilization. Different parameters studied involved plant height, stem-

base diameter, root length and volume, biomass, and colonization; results so

obtained were similar to the effects obtained with control, suggesting that their

effectiveness is similar to fertilizers.

Besides agricultural crops, PGPR were also found effective in facilitating the

growth of flower crops (Kumari et al. 2013). One such study involved the combi-

nation of four PGPR (A. chroococcum, A. lipoferum, B. megaterium, and

P. fluorescens) on rose plants (Catharanthus roseus). Mixed inoculation enhanced

growth, vigor, nutrient content (P, K, and N by 2.34 %, 2.2 %, and 0.34 %,

respectively), and chlorophyll content (Lenin and Jayanthi 2012). Another com-

parative experiment involving single, double, and consortium inoculation of

A. chroococcum, P. fluorescence, and T. viride was carried out for chili crop

(Capsicum annum L.). Maximum growth and yield were recorded for consortium

cultures relative to single and double inoculation (Sateesh and Sivasakthivelan

Table 11.2 Examples of PGPR consortium effects on various crops

PGPR Crop/plant Effects Reference

Rhizobium+B. megaterium
or Rhizobium+LK-884

(P. diminuta)/LK-786
(Kurthia sp.)

Lentil crop

(Lens
culinaris)

Increased dry weight, yield,

mineral uptake, and nodule

number

Kumar and

Chandra

(2008)

A. brasilense strain Az39

and B. japonicum strain

E109

Soybean (Gly-
cine max)
and corn/

maize (Zea
mays)

Augmented germination rate,

shoot-root length, dry

weight, and nodulation

Cassan

et al. (2009)

A. lipoferum, P. fluorescens,
and P. putida

Maize

(Zea mays)
Improved biomass and yield Adjanohoun

et al. (2011)

PGPR strains FCA-8,

FCA-56, FCA-60 of

P. putida and AM-fungi

Citrus (Citrus
volkameria)

Plant height, stem-base diam-

eter, root length and vol-

ume, biomass, and

colonization similar to

fertilization

Chiquito-

Contreras

et al. (2012)

Different combinations of

PGPR

Artichoke

(Cynara
scolymus)

Increased shoot length, root

and shoot weight, vigor,

germination percentage,

and mean time of

germination

Jahanian

et al. (2012)

Pantoea cypripedii and
Enterobacter aerogenes

Chickpea (Cicer
arietinum)

Increased P uptake by plant Singh

et al. (2013)

Trichoderma viride,
P. fluorescence, and
A. chroococcum

Chili (Capsicum
annum L.)

Improved growth and yield Sateesh and

Sivasakthiv-

elan (2013)
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2013). Phosphate-solubilizing Pantoea cypripedii and Enterobacter aerogenes
used together increased P uptake by 53 % in chickpea crop compared to control

(Singh et al. 2013).

11.5 PGPR and Stress Alleviation

Different studies have suggested that such microorganisms can also divulge some

degree of tolerance to the plants thus imparting resistance to these plants. Tolerance

can be defined as microbe’s intrinsic property to encounter stressful conditions,

whereas resistance is microorganism’s ability to withstand stressful conditions by

certain mechanisms. Some of the experimental evidence indicates that micro-

organisms with tolerance/resistance abilities can help plants to successfully adapt

to different stressed situations. Therefore, the organisms endowed with tolerance/

resistance abilities can be used effectively as beneficial inoculants for enhancing

crop production in stressed/derelict soils (Khan et al. 2011; Milosevic et al. 2012).

Some of the mechanisms by which PGPR ameliorate stress situations are discussed

in the following section and are illustrated in Fig. 11.2.

11.5.1 Mechanisms and Role of PGPR in Stress Alleviation

11.5.1.1 Exopolysaccharide Secretion

Microorganisms belonging to different functional groups for example rhizobia

secrete exopolysaccharides (EPS), which provide resistance to cell against different

stressors and thus protect the microorganism from stress. The EPS also improve the

soil structure by forming macroaggregates with soil, which further increase the

water retention ability of soil (Alami et al. 2000). Macroaggregates uphold equili-

brium in aerobic and anaerobic conditions in soil and also ascertain gradual uptake

of nutrients from soil. In case of salt stress, these aggregates help by binding cations

making them unavailable to plants (Haynes and Swift 1990). The rhizobacteria

have the ability to form biofilms by secreting polysaccharides and proteins, the

matrix so formed limits the diffusion of compounds like plant growth hormones and

nutrients from the plant’s vicinity, thus promoting plant growth by alleviating stress

conditions (Timmusk et al. 2013).

11.5.1.2 Accommodation: Accumulation and Sequestration of Metals

Plant growth-promoting rhizobacteria produce metal-chelating agents, known as

siderophores, an iron-chelating agent, which can make the required iron available to

plants and hence prevent plants from becoming chlorotic and indirectly
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ameliorating metal stress. The siderophores also bind to other metals like Mg, Mn,

and Cr and chelate the solubilized/leached metals (Akhtar et al. 2013). Siderophore-

producing PGPR can therefore be used to remove toxicants (metals) from metal

polluted soil (Mani et al. 2010). Along with metal stress, siderophore-producing

rhizobacteria also inhibit the phytopathogen (Kloepper et al. 1980; Glick 2012) as

discussed in Sect. 11.3.2.2.

11.5.1.3 Biotransformation: Conversion of Toxic Forms to Less Toxic

Forms

Microorganisms especially PGPR can help in relieving metal toxicity by

transforming highly toxic metals to less toxic forms or in forms more readily

accessible to plant roots (Khan et al. 2009). The conversion of metals involves

mainly a change in the valence state of metals, for example, change of organic

selenium to selenate or organo-selenium (Zayed et al. 1998) which can easily be

taken up by plants. This feature of PGPR has been well exploited in

SOIL
Toxic compounds

Cytokinin

ACC
deaminase

Volatiles

Siderophores

Antioxidants

Protective
compound

ABA

Ethylene Ion
translocation

Osmoprotection

Growth
promotion

Sequester
metal ions

Reduces
ROS

IAA

Non toxic

PGPR

Exopolysaccharide
Improved texture,
water retention and nutrients

Fig. 11.2 Stress alleviation modes of PGPR (modified from Yang et al. 2009). ABA abscisic acid,

IAA indole acetic acid, ROS reactive oxygen species
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phytoremediation technology for enhancing metal removal by plants (Jing

et al. 2007). Furthermore, rhizobacteria affect the adsorption/desorption of metals

by altering their chemical properties, pH, organic matter content, redox state, etc.,

consequently affecting their solubility and mobility (Gray et al. 1998). PGPR also

improve the efficiency of phytoremediation strategy of metal cleanup by increasing

the hyper-accumulating abilities of certain plants through their rapid growth in

metal stress (Varsha et al. 2011).

11.5.1.4 P Solubilization

The amount of P available to plants is very less as compared to total soil P pool. One

of the important attributes of PGPR is phosphate solubilization and the group of

microorganisms capable of converting inorganic P into soluble forms is known as

P-solubilizing microorganisms (Khan et al. 2007). Along with P assimilation, these

microorganisms release a fair amount of soluble P into soil which can be used as P

source by the plants. The most efficient PS bacterial strains are Pseudomonas (Das
et al. 2003) and Rhizobium (Sridevi and Mallaiah 2009), whereas Penicillium (Chai

et al. 2011) and Aspergillus (Singh and Reddy 2011) are the most powerful fungal

PS strains (Khan et al. 2010; Brahmaprakash and Sahu 2012).

11.5.1.5 Improves Plant Defense Mechanisms Under Stressed

Environment

Modulating Enzyme: 1-Aminocyclopropane-1-Carboxylate Deaminase

Under normal condition, plant maintains its homeostasis by producing a hormone

“ethylene” which plays important role in various developmental processes.

Under stress conditions, the amount of ethylene produced by plant increases

due to which it is also known as “stress ethylene.” At higher concentrations, it

decreases root and shoot growth and also induces defense responses of plant to

mitigate adverse effects. Plant growth-promoting rhizobacteria produce an enzyme

1-aminocyclopropane-1-carboxylate (ACC) deaminase, which degrades ACC, the

precursor for ethylene, into ammonia and α-ketobutyrate. Bacteria utilize ammonia

as N source thereby restricting the ethylene accumulation consequently rescuing the

plant growth from the stress (Khan et al. 2009). Also, PGPR synthesize growth

hormone IAA from tryptophan produced in plant root exudates which in turn

enhances both plant growth and activates enzyme ACC synthase involved in

ACC production. ACC so produced is then exuded from the plant roots and

acted upon by the bacteria (Selvakumar et al. 2012).
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Volatile Production

PGPR are known to produce volatile organic and inorganic compounds which can

affect the plant growth and resistance/tolerance against biotic and abiotic stresses

via different mechanisms. Some of the volatile compounds produced by different

PGPR include 3-hydroxy-2-butanone (acetoin) and 2,3-butanediol by B. subtilis
GB03 and B. amyloliquefaciens IN937a (Ryu et al. 2003) and C-13 hydrocarbon

tridecane by Paenibacillus polymyxa E681 (Lee et al. 2012). These volatile com-

pounds were found to affect the tissue-specific regulation of high-affinity K+

transporter 1 (HKT1), which is further involved in the regulation of Na+ homeo-

stasis in salt stress. The volatiles downregulate hkt1 in roots but upregulate them in

the shoot, lowering Na+ levels and recirculation of Na+ levels in plant (Yang

et al. 2009). Other mechanisms include enhanced iron uptake by upregulating

FIT1 (Fe-deficiency-induced transcription factor) during metal stress and produc-

tion of compatible solutes like betaine under oxidative stress (Farag et al. 2013).

These volatiles are also found to have negative effects on the plant growth under

certain circumstances (Bailly and Weisskopf 2012). Some of the volatiles involved

in stress resistance against biotic factors like pathogens have been already discussed

in Sect. 11.3.2.1.

Synthesis of Auxins and Similar Compounds

Microbial auxins can affect the plant’s auxins governed developmental processes

such as root development including root length, surface area, and number of root

tips. This root development further enables nutrient uptake by plants, thereby

improving plant health in the presence of inhibitory compounds or under stress

conditions (Egamberdieva and Kucharova 2009). Plant exudates contain trypto-

phan, which is when acquired by rhizobacteria converted to IAA. The microbial

IAA along with plant’s pooled auxins stimulates plant growth and proliferation

(Glick 1995).

Protective Compounds

Microorganisms are known to produce osmo-protectants such as proline, betaine,

trehalose, and glutamate which modulate their cytoplasmic osmolarity and hence

protect plants from stress conditions (Blanco 1994). Plant also produces protective

compounds or compatible osmolytes in response to stress conditions, mainly salt

stress. Some of these compounds include amino acids, imino acids, amides, pro-

teins, quaternary ammonium compounds, and polyamines (Carmen and Roberto

2011). Increased production of proline in response to stressors has been reported

(Lalelou et al. 2010; Marin et al. 2010) which plays a role in osmo-adaptation in salt

stress (Meloni et al. 2001), and as a molecular chaperone it protects and stabilizes
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macromolecules like proteins during dehydration and also acts as a scavenger for

hydroxyl radical, thus protecting from osmotic stress (Csonka 1989; Upadhyay

et al. 2012).

Antioxidative Enzymes

Another mechanism of PGPR to counteract stress involves the production of ROS

scavengers. Enhanced production of ROS, such as H2O2, hydroxyl radicals, singlet

oxygen, and superoxide, ensues oxidative damage to DNA, proteins, and lipids.

This response is mainly an outcome of imbalance in production and scavenging of

ROS due to stress condition. Major ROS scavengers include catalase, superoxide

dismutase, and ascorbate peroxidase. PGPR, for instance, Serratia sp., Rhizobium
sp. (Han and Lee 2005), Bacillus sp., Arthrobacter sp. (Upadhyay et al. 2012),

Azospirullum sp., and Pseudomonas sp. (Baniaghil et al. 2013), are reported to

enhance the production of these antioxidant enzymes responsible for ROS degra-

dation/breakdown, thereby helping plants to ameliorate stress response and also

growth promotion (Kohler et al. 2009; Carmen and Roberto 2011).

Induced Systemic Tolerance

Similar to ISR for biotic factors, another term “induced systemic tolerance (IST)”

had been proposed for abiotic stress alleviation by PGPR. IST is defined as physical

and chemical changes elicited by PGPR in response to abiotic stresses such as salt

stress, drought stress, temperature stress, metal stress, or nutrition deficiency (Yang

et al. 2009). These microbial communities follow different mechanisms such as

production of (1) volatiles to modulate Na + homeostasis under salt stress (Farag

et al. 2013); (2) abscisic acid causing closure of stomata, thus preventing water loss

in drought stress; (3) antioxidant enzymes like superoxide dismutase and catalase,

which degrade the reactive oxygen species, bringing down cell damage

(Selvakumar et al. 2012); (4) IAA, cytokinins, and other metabolites stimulating

root growth, thus helping nutrient acquisition combating nutrient deficiency; etc.

(Yang et al. 2009). Some of the PGPR reported for IST include B. cereus,
B. subtilis, Serratia sp. (Wang et al. 2012), Paenibacillus polymyxa (Timmusk

and Wagner 1999), Achromobacter piechaudii (Mayak et al. 2004), etc.
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11.6 PGPR Consortium Application in Plants Growing

in Stressed Soils

11.6.1 Drought Stress

The consortia of Paenibacillus polymyxa (DSM 36) and P. polymyxa Loutit

(L) along with Rhizobium tropici (CIAT 899) significantly increased growth, N

content, and nodulation of common bean (Phaseolus vulgaris) growing under

drought stress conditions (Figueiredo et al. 2008) compared to plants inoculated

only with Rhizobium. However, negative effects of drought stress on the measured

parameters were observed suggesting that the mixture of bacteria had a positive

mitigating impact on stressor. Single and multiple inoculations with different

Pseudomonas sp. were carried out to study the effect on Asparagus (Asparagus
officinalis) cultivars (Guelph millennium and Jersey giant) under both drought and

flood stress up to 8 weeks. The results so obtained were significantly convincing in

one of the cultivars in case of both single and multiple inoculation (Liddycoat

et al. 2009). Five drought-tolerant bacterial strains, namely, Pseudomonas
entomophila strain BV-P13, P. monteillii strain WAPP53, P. putida strain

GAP-P45, P. stutzeri strain GRFHAP-P14, and P. syringae strain GRFHYTP52,

were used to inoculate maize grown under water-deficit conditions. The PGPR

inoculation reduced the drought stress damage and improved plant biomass, leaf

water potential, relative water content, aggregation stability, sugars, amino acids,

and proline content. The effects also included decreased electrolyte leakage and

water loss from leaves (Sandhya et al. 2010). In other experiment, three plant

growth-promoting strains—B. cereus AR156, B. subtilis SM21, and Serratia sp.
XY21—decreased wilting symptoms and leaf monodehydroascorbate in cucumber

(Cucumis sativus) plant, while they showed 3.45-fold increase in proline content

along with increased SOD activity, supporting the hypothesis of induced systemic

tolerance in drought stress (Wang et al. 2012). The combined application of PGPR

(A. brasilense, B. lentus, and Pseudomonades sp.) improved antioxidant activity

and also indicated better photosynthetic capacity and improved photosynthetic

pigments in Basil (Ocimum basilicum) (Heidari and Golpayengani 2012), while

the combined inoculation of different PGPR strains increased superoxide dismutase

and peroxidase activity along with better chlorophyll content and transpiration in

runner bean plants (Phaseolus coccineus L.) (Stefan et al. 2013).

11.6.2 Salt Stress

Effects of dual inoculation of Serratia sp. and Rhizobium sp. on the growth and

other parameters of lettuce plant grown under salt stress were variable. PGPR

negated the effects of salt stress on the antioxidant enzymes and on photosynthesis,
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mineral content, and growth (Han and Lee 2005). And hence, the consortia of

microbial cultures showed both growth-promoting activity and the stress alleviation

activity. Another greenhouse study was carried out on two legumes like common

bean and soybean under moderate salt conditions (25 mM) where rhizobial strains

R. tropici (CIAT899) or R. etli (ISP42) and Ensifer fredii (Sinorhizobium) SMH12

and HH103 along with PGPR Chryseobacterium balustinumAur9 strains were used

both individually and in combination to determine their effects on nodulation and

growth. The coinoculation significantly increased the nodule primordial formation

in common bean and showed better nodulation and shoot-root growth in both crops

(Estevezi et al. 2009). In yet other report, the coinoculation of Pseudomonas sp. and
Rhizobium sp. showed maximum increase in growth (dry weight and height),

mineral accumulation, ion uptake, chlorophyll content, and proline content in

maize (cv. Agaiti 2002 and Av 4001) plants grown under salt stress compared to

single inoculations of either culture (Bano and Fatima 2009). The consortia of EPS

producing salt-tolerant PGPR strains comprising of Bacillus sp., Burkholderia sp.,
Enterobacter sp., Microbacterium sp., and Paenibacillus sp. increased the biomass

of wheat (Upadhyay et al. 2012). The mixture of salt-tolerant bacteria such as

strains of Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08),
and Haererohalobacter (JG-11) augmented the water content, metal ion ratio K+/

Na+, and mineral and auxin content and decreased the electrolyte leakage and

oxidative damage in peanut (Arachis hypogaea) plants compared to uninoculated

control plants (Shukla et al. 2012). In a similar study, Nadeem et al. (2013)

observed a significant increase in germination rate and percentage, growth, yield,

and nutritional status of wheat inoculated with consortia of Enterobacter cloacae,
Pseudomonas putida, P. fluorescens, and Serratia ficaria, when grown under

saline-stressed environment. The co-culture of Pseudomonas syringae Mk1,

P. fluorescens Mk20, and P. fluorescens Biotype G Mk25 in combination with

R. phaseoli (M1, M6, and M9) increased the shoot weight, root weight, number of

pods, and total dry weight of mung bean plants by 145 %, 173 %, 150 %, and 269 %,

respectively, when grown in saline condition. Furthermore, the seedling growth,

nodulation, and mineral uptake were significantly enhanced following mixture of

PGPR where there was a substantial reduction in salt stress due to microbial

application (Ahmad et al. 2012a; Aamir et al. 2013). Two bacterial strains

A. brasilense and Pantoea dispersa showed a significant increase in dry weight

and K+/Na+ level of salt-sensitive sweet pepper (Capsicum annuum) compared to

uninoculated controls. The net assimilation rate remained unaffected even at higher

salinity level (80 mM) in case of inoculated plants. Inoculated plants were also

found to have higher stomatal conductance at higher stress (Amor and Cuadra-

Crespo 2012).

11 Microbial Consortium of Plant Growth-Promoting Rhizobacteria Improves the. . . 275



11.6.3 Metal Stress

Plant growth-promoting attributes of metal-tolerant Flavobacterium sp.,
Rhodococcus sp., and Variovorax paradoxus were found to stimulate the root

growth of rapeseed both in the presence and the absence of Cd, supporting their

role as promoters under metal-stressed situation (Belimov et al. 2005). A study on

the effect of metal-tolerant PGPR Burkholderia sp. CMBM40 and

Methylobacterium oryzae CMBM20 inoculation on tomato plants grown in Ni-

and Cd-treated soil was carried out. The PGPR were found to decrease the metal

uptake by plants and also enhanced the plant growth by producing growth hor-

mones (Madhaiyan et al. 2007). Consortia of Bradyrhizobium sp. with metal-

tolerant PGPR Pseudomonas sp. and Ochrobactrum cytisi significantly improved

biomass, yield, and N content of metal accumulating Lupinus luteus plants but they
decreased metal accumulation within plants (Dary et al. 2010). Likewise, the metal-

tolerant PGPR consortia significantly increased root length, shoot length, biomass,

and chlorophyll content of mung bean by 138 %, 88 %, 256 %, and 54.1 %,

respectively, when grown in chromium-treated soils (Singh et al. 2010). Similar

enhancement in some cereals, for example, wheat following metal-tolerant PGPR,

B. thuringiensis and P. fluorescens (Shahzadi et al. 2013) and A. brasilense and

A. chroococcum (Janmohammadi et al. 2013), has been reported. The PGPR

Ralstonia eutropha (B1) and Chryseobacterium humi (B2) inoculated sunflower

(Helianthus annuus) plants when grown in Zn- and Cd-contaminated soil had

decreased metal concentration inside plant tissues, suggesting that metal-resistant

PGPR might have served as effective stabilizers for plants grown in metal-

contaminated soil (Marques et al. 2013).

11.7 Conclusion

Among various abiotic stresses, drought, salinity, and metal pollution are the most

stronger and stringent ones, which restrict the overall performance of plants grow-

ing in such derelict soils. The sole or composite (consortia) application of PGPR is

an emerging area of interest because these microbes have been found to enhance the

growth and development of plants both under conventional and stressed environ-

ments in different production systems across varying ecological niches. Moreover,

microbial inoculation is cost effective, environmentally friendly, and easy option

for farm practitioners. However, before they are made commercially available,

more field trials are needed to get the full benefit of this strategy in combating

stress-related problems caused to agronomically important crops. Considering the

available information, it is believed that the practice of PGPR consortium appli-

cation is likely to grow faster and agricultural practices will slowly be able to

shifting its focus from fertilizer to efficacious use of PGPR.
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