
Mohammad Saghir Khan · Almas Zaidi
Javed Musarrat    Editors 

Phosphate 
Solubilizing 
Microorganisms
Principles and Application of Microphos 
Technology



Phosphate Solubilizing Microorganisms



ThiS is a FM Blank Page



Mohammad Saghir Khan • Almas Zaidi •
Javed Musarrat

Editors

Phosphate Solubilizing
Microorganisms

Principles and Application of Microphos
Technology



Editors
Mohammad Saghir Khan
Almas Zaidi
Dept. Agricultural Microbiology
Aligarh Muslim University Fac.

Agricultural Sciences
Aligarh
India

Javed Musarrat
Department of Zoology
King Saud University
Riyadh
Saudi Arabia

ISBN 978-3-319-08215-8 ISBN 978-3-319-08216-5 (eBook)
DOI 10.1007/978-3-319-08216-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014947651

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The rapidly increasing human population has placed tremendous pressure on agri-

culture sector to provide sufficient quantity and better quality foods in a more

sustainable manner. In order to achieve food security, artificially developed

chemicals (fertilizers/pesticides) have been used over the years in energy-intensive

agricultural practices to overcome the nutrient deficiencies of the soils and hence to

optimize the food production. Even though the synthetic fertilizers among agrochem-

icals, for example, single super phosphate, when applied in different production

systems, have shown promising results, when used excessively and inadvertently,

they cause a profound diminishing impact on soil health (soil fertility) and concur-

rently diminish the viability and productivity of crops. Phosphorus among soil

constituents is one of the most important plant nutrients next to nitrogen. Even

though there is no deficiency of phosphorus reserves in agronomic soils worldwide,

the availability of soluble phosphorus to plants is a major global problem due largely

to its rapid fixation and precipitation ability. This, in effect, leads to severe phospho-

rus deficit in soils. To mitigate such acute phosphatic problems, especially in resource

crunch agricultural sector, chemically synthesized fertilizers are applied on a regular

basis and at larger scale. Even though the use of artificial fertilizers in agricultural

practices has resulted in some better results, their use and misuse has been questioned

due in part to its cost and hazardous impact onto natural environment including soil

ecosystems. Considering these challenging threats, the interest and awareness have

been generated among scientists to uncover some easy-to-operate options. In this

regard, in order to accomplish lab-to-land concepts, the naturally abundant yet

functionally divergent phosphate-solubilizing microorganisms (PSM) have attracted

greater attention of the farm practitioners due to its low cost and easy-to-apply

approach. Indeed, PSM offer a practicable alternative to hugely expensive chemical

P fertilizers. Application of PSM involving bacteria, fungi, and actinomycetes in

agricultural practices has shown some overwhelming results with different crops like

legumes, vegetables, and cereal, etc. Apart from providing phosphorus to plants,

these organisms also profoundly increase the plant growth by supplying other major

plant nutrients like nitrogen via N2 fixation, increasing the availability of plant

hormones, absolving the lethal impact of pathogenic microorganisms, and secreting
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a few enzymes, etc. Thus, PSM possessing numerous multifunctional plant growth-

promoting abilities could be of great practical help to both farmers and students/

teachers/scientists across different ecological regions of the world.

Phosphate-Solubilizing Microorganisms: Principles and Application of

Microphos Technology is an inclusive source of information on numerous useful

aspects of phosphate-solubilizing microorganisms which could be applied and

practiced for enhancing crop production in distinctly variable agro-ecosystems.

This book highlights both fundamental information on the subject and strategies

as to how the PSM could be raised to the level of microbial inoculants (microphos),

mechanisms, and physiological functions of PSM and factors affecting the growth

and phosphate-solubilizing potentials of such microbes. Furthermore, there are

separate chapters on the role of phosphate-solubilizing fungi and actinomycetes

in the survivability and development of some economically important plants.

Discussion on cold-tolerant PSM as elaborated in this book may upgrade and

popularize the use of such microbes in enriching the soil P pool and hence

increasing the agricultural produce in temperate climatic zones of the world. The

ecological diversity and biotechnological implications of PSM and their consequent

impact on crops are discussed separately. Special attention is given on to assess the

sole/synergistic/additive effects of PSM on some important legumes and cereal

crops grown distinctively in different production systems. This book further

describes the role of PSM in improving the nutrient uptake and consequently the

yield of aerobic rice. The book also highlights a broad and updated view of the

management of plant diseases using phosphate-solubilizing microbes. Moreover,

the book describes as to how the consortia of plant growth-promoting rhizobacteria

other than phosphate solubilizers facilitate the plant growth under stressed envi-

ronment. The impact of PSM on the growth and development of some notable

vegetable crops is also considered and effectively discussed.

The major aim of Phosphate-Solubilizing Microorganisms: Principles and

Application of Microphos Technology is to compose scientific information avail-

able so far in this area and to make this information available to readers and

practitioners in a more meaningful and practical way so that maximum benefits of

this technology could be achieved. The book gives an extensive and well-organized

scientific coverage in the area of microphos and how the use of microphos technology

could be exploited and extended to larger section of the agronomic society in an

inexpensive and easy way. This book is likely to be of special interest to the

postgraduate students, research scholars, teachers, scientists, and professionals work-

ing in the field of microbiology, soil microbiology, biotechnology, agronomy, plant

sciences, plant physiology, and plant protection sciences. In addition to gratifying the

desires of the academicians/professionals, Phosphate-Solubilizing Microorgan-

isms: Principles and Application of Microphos Technology also provides infor-

mation to the policy makers, inoculant making industries and the people practicing

agriculture, and microbial biotechnology across the globe. Each chapter presented

herein is contributed by highly experienced academicians/professionals, and attempts

have been made to emancipate the quality information and updated knowledge on the

subject for ultimate use in academics and/or agriculture practices.
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Chapter 1

Microphos: Principles, Production

and Application Strategies

Almas Zaidi, Md. Saghir Khan, and Ees Ahmad

Abstract The increasing demand for inexpensive, ecologically sound and environ-

mentally friendly agricultural practices has warranted the use of microbial fertil-

izers. The preparation from microbial inoculants (biofertilizers) especially the

organisms capable of transforming insoluble phosphorus (P) to soluble and avail-

able forms is one of the better choices for enhancing crop production by supplying

essential nutrients and other growth regulators in different production systems.

Furthermore, the critical interactions between microbial communities with soil

constituents and plants have provided some novel clues to better exploit them in

agricultural practices. Even though the use of microbial preparation in agriculture is

an old practice, the production of efficient inoculants expressing consistent perfor-

mance under field soil is a major obstacle in their extensive and practical appli-

cation. Therefore, the variations in the performance of microbial inoculants

including microphos have greatly hampered their large-scale application. On the

other hand, the selection of the technology for inoculant production and modes of

their application are key to their success. We highlight here the various strategies

employed to produce the phosphatic microbial inoculants (microphos), and how

this inoculants can be applied under different agro-ecological niches is discussed

and considered.

Keywords Phosphate-solubilizing microorganisms • Microphos • Rhizosphere •

Phylogenetic tree • Plant growth regulators

A. Zaidi (*) • M.S. Khan • E. Ahmad

Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim

University, Aligarh 202002, Uttar Pradesh, India
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1

mailto:alma29@rediffmail.com


1.1 Introduction

The major and most essential macronutrient, phosphorus (P), is required by the

plants for vital functions such as cell division, energy transfer, signal transduction,

macromolecular formation, nucleic acid synthesis, photosynthesis and respiration,

nitrogen fixation and production of oil, sugars and starches (Saber et al. 2005; Zaidi

et al. 2009; Eftekhari et al. 2010; Elser 2012). Consequently, acquisition of suffi-

cient concentration of P enhances the growth and development of plants in different

production systems (Hayat et al. 2010; Ahemad et al. 2009; Vikram and

Hamzehzarghani 2008). However, of the total soil P pool (0.5 %), only 0.1 % is

plant available (Scheffer and Schachtschabel 1988) and the remaining soil P is

inaccessible to plants (Rodrı́guez and Fraga 1999). Therefore, the deficiency of P

impedes the growth and yields of plants heavily. Such P scarcity in agronomic

practices is, however, corrected through the application of synthetic phosphatic

fertilizers which indeed is expensive and hazardous. Moreover, greater portion of P

applied exogenously to soils is rapidly fixed into soil constituents (Norrish and

Rosser 1983; Borling et al. 2001; Hao et al. 2002) and, hence, becomes unavailable

to plants. Even though the organic P constitutes a large fraction of P (as much as

50 % in soils), yet it is not directly used up as nutrient unless degraded by soil

enzymes. Considering the high cost of chemical phosphatic fertilizers and ability of

P to form a complex with soil constituents, it has become imperative to find an

inexpensive and viable alternative to chemical P fertilizers. In this regard, the

bio-preparation containing viable and sufficient number of efficient phosphate-

solubilizing microorganisms (PSM) quite often called as “microphos” has provided

some solution to the P problems (Ahemad and Khan 2010; Hui et al. 2011; Xiang

et al. 2011; Khan et al. 2013). When applied to seed, plant surfaces or soil, PSM

colonize the rhizosphere or the interior of the plant (endophytes) and facilitate

growth by providing P to growing plants (Khan et al. 2006). Several PSM

inhabiting the soils (Behbahani 2010; Ahemad and Khan 2011a; Marra

et al. 2011; Sanjotha et al. 2011; Yadav et al. 2011; Abd El-Fattah et al. 2013;

Saxena and Sharma 2007) include bacteria (Khan et al. 2010; Yasmin and Bano

2011; Oves et al. 2013), fungi (Khan et al. 2010) and actinomycetes (Franco-Correa

et al. 2010; Kaviyarasi et al. 2011; Balakrishna et al. 2012; Hamdali et al. 2012).

Several authors attribute the solubilization of inorganic insoluble P by PSM to the

production of organic acids and chelating oxo acids from sugars (Gulati et al. 2009;

Khan et al. 2010). Mechanistically, when applied to seeds and soils, PSM facilitates

plant development by (i) supplying hugely important nutrients to plants (Sashidhar

and Podile 2010); (ii) releasing phytohormones, for example, IAA (Naz et al. 2009;

Kavamura et al. 2013), gibberellins (Dey et al. 2004; Cassan et al. 2009) and

cytokinin and ABA (Zahir et al. 2004; Cassan et al. 2013); (iii) alleviating the

stress induced by ethylene on plants by synthesizing 1-aminocyclopropane-1-

carboxylate (ACC) deaminase to reduce ethylene level (Ahmad et al. 2012);

(iv) producing siderophores for iron sequestration (Roca et al. 2013) and cyano-

genic compounds (Ghyselinck et al. 2013); (v) releasing antimicrobial compounds

2 A. Zaidi et al.



capable of inhibiting the growth of phytopathogens (Khan et al. 2002; Guo

et al. 2004; Saravanakumar et al. 2007; Khan et al. 2009; Sambanthamoorthy

et al. 2012); and (vi) providing resistance to drought, salinity, waterlogging and

oxidative stress (Alvarez et al. 1996; Stajner et al. 1997; Saleem et al. 2007).

Therefore, the use of microphos in crop production is considered as an

environment-friendly alternative to further applications of mineral P fertilizers.

However, in order to produce microphos, the organisms with P-solubilizing ability

must be isolated and characterized. Subsequently, the microphos are tested both

under pot soil or field environment prior to their transfer to the practitioner/farmers

for application in agricultural practices.

1.2 Rationale for Using Microphos in Sustainable

Agriculture

In contemporary agricultural practices, millions of tons of agrochemicals including

P fertilizers are frequently but indiscriminately used to achieve optimum crop

yields. Such synthetic chemicals are, however, not completely used up by plants

and, hence, persist in different forms in soil. From here, they leach deep into the

grounds and disrupt the composition and functions of beneficial rhizosphere micro-

organism (Ai et al. 2012), soil matrix (Ai et al. 2013; Lemanski and Scheu 2014)

and via food chain, the human health (Ayala and Rao 2002). Furthermore, the

chemical fertilizers are used either alone, for example, single super phosphate

(Maheshwari et al. 2011), or as mixture (Malhi et al. 2007), for example,

diammonium phosphate (DAP), for enhancing crop production in different soil

ecosystems. The excessive use of agrochemicals is, however, posing some serious

threats to the very sustainability of the environments and is being considered as one

of the major problems around the world. So, due to the alarmingly very high costs

of fertilizers and some acute environmental hazards associated with the use of

synthetic fertilizers (López-Bellido et al. 2013), it has become increasingly impor-

tant to find some low-cost alternative like the use of renewable resources which

could both be inexpensive and could minimize the environmental threats (Bashan

1998; Vessey 2003; Adesemoye and Kloepper 2009). In this context, the discovery

of plant growth-promoting rhizobacteria (Kloepper et al. 1986; Ahemad and Khan

2011b; Ahmad et al. 2013; Oves et al. 2013) and the preparation from PSM

(microphos) have provided some relief to the poor agronomic practitioners largely

due to: (i) low-cost technology with a high cost-benefit ratio, (ii) easy and abundant

availability of PSM, (iii) enhances plant growth and crop yields through increased P

supply and other growth regulators, (iv) reduces the environmental pollution caused

from the manufacturing of the fertilizers and chemicals used, (v) improves soil

health and conditioning, (vii) protects plants from pathogens damage and (viii)

helps plant to grow under stressed conditions. Therefore, the discovery of PSM and,

hence, the production of microphos have attracted greater attention of agronomists

1 Microphos: Principles, Production and Application Strategies 3



than microbiologists in recent times because they can reduce/minimize the depen-

dence on synthetic P fertilizers and, hence, can protect soil from chemical toxicity.

During the last couple of decades, there has been some practical progress in this

direction where some new and functionally exciting/novel PS microbes have been

identified and used for enhancing agriculture productivity in a more sustainable

manner (Khan et al. 2007, 2010).

1.3 Rhizosphere and PSM Colonization

Heterogeneously distributed microbial communities play an important role in the

acquisition and transfer of various nutrients in soil. For P, soil microorganisms are

involved in a range of processes that affect P transformation and thus influence the

subsequent availability of P (as phosphate) to plant roots. The rhizosphere indeed is

the narrow region of soil that is directly influenced by root secretions (Sørensen

1997) and associated soil microorganisms (Fig. 1.1) and plays some critical roles in

plant growth and consequently in soil fertility (Avis et al. 2008). According to

Bringhurst et al. (2001), the rhizosphere includes the region of soil bound by plant

roots, often extending a few mm from the root surface. This region of soil is much

richer in bacteria than the surrounding bulk soil (Hiltner 1904). In soil, microbes are

often limited by energy, and hence, root exudates such as organic acids, sugars and

amino acids provide energy to them and stimulate their growth and metabolic

activities which in turn influence biogeochemical cycling of nutrients in soils

(Cardoso and Freitas 1992; Stevenson and Cole 1999; Fontaine and Barot 2005).

Studies based on molecular techniques have estimated more than 4,000 microbial

species per gram of soil (Montesinos 2003). Of these, about 107–109 colony-

forming units of culturable bacteria have been found in per gram of rhizosphere

soil (Benizri et al. 2001), whereas the population densities in the rhizoplane have

been reported to range from 105 to 107 colony-forming units per gram of fresh

weight (Benizri et al. 2001; Bais et al. 2006). Furthermore, the microbial

populations first colonize the rhizosphere following soil inoculation (Gamalero

et al. 2003) as shown by many techniques like microscopic tools, immuno-markers

or by fluorescence in situ hybridization (FISH) and by using gnotobiotic conditions.

Following colonization, bacterial cells are visualized as single cells attached to the

root surfaces and subsequently as doublets on the rhizodermis, forming a string of

bacteria (Hanson et al. 2000). From here onwards, the whole surface of some

rhizodermal cells are colonized, and bacteria can establish even as microcolonies

or biofilms (Benizri et al. 2001). In a similar manner, rhizoplane colonization has

been studied using both in vitro-grown plants and plants grown in natural soil

inhabiting a high microbial diversity. In order to provide benefits to plants, such

microorganisms (inoculated one/natural inhabitants of soils) thus must be rhizo-

sphere and/or rhizoplane competent (Elliot and Lynch 1984; Compant et al. 2005)

for an extended period of times (Whipps 2001). Many factors can be involved in

rhizosphere and rhizoplane competence by PGPB (Albareda et al. 2006). However,
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the competence of bacteria varies among different rhizospheres/rhizoplane

(Gamalero et al. 2003) which has been described to be linked to root exudation

(Lugtenberg et al. 2001). For instance, carbon fixed by plant photosynthesis is

known to be partly translocated into the root zone and released as root exudates

(Bais et al. 2006). Moreover, various carbohydrates, amino acids, organic acids and

other compounds, which provide a source of nutrients for root-associated bacteria,

are released in the rhizosphere (Walker et al. 2003). Such exudates act as

chemoattractants towards which the bacterial population moves and in effect

allow them to colonize and multiply in both the rhizosphere and the rhizoplane

(Lugtenberg and Kamilova 2009). Plant exudates thus provide a rich source of

energy and nutrients for the bacteria in rhizosphere, resulting in more microbial

populations in the region than outside the region (Haas and Defago 2005). The

colonization of plant rhizosphere by Bacillus subtilis sp. and Pseudomonas sp. has
been well studied (Trivedi et al. 2005; Steenhoudt and Vanderleyden 2000).

Rhizobacteria may depend on other microbes for nutrient sources as one microbe

may convert plant exudates into a form that can be used by another microbe. Thus,

rhizosphere has appeared as a versatile and dynamic ecological environment of

intense plant–microbe interactions (Mayak et al. 2004) harnessing essential micro-

and macronutrients affecting plant growth, although the process of root coloni-

zation is under the influence of various parameters such as bacterial traits, root

exudates and several other biotic and abiotic factors (Benizri et al. 2002). Broadly,

chemotaxis is generally considered to play an important role for successful

rhizosphere/rhizoplane colonization (Andrews and Harris 2000; Walsh

Fig. 1.1 An illustration of the rhizosphere. A amoeba-consuming bacteria, BL energy-limited

bacteria, BU non-energy-limited bacteria, RC root-derived carbon, SR sloughed root hair cells,

F fungal hyphae, N nematode worm (adapted from http://en.wikipedia.org./wiki/rhizosphere)
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et al. 2001). Recently, it has been reported that soil microorganisms, including free-

living as well as associative and symbiotic rhizobacteria belonging to the genera

Acinetobacter, Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, Bacillus,
Burkholderia, Enterobacter, Erwinia, Flavobacterium, Proteus, Pseudomonas,
Rhizobium, Serratia and Xanthomonas in particular, are the integral parts of

rhizosphere biota (Glick 1995; Kaymak 2011) and have shown successful rhizo-

sphere colonization.

1.4 Occurrence of Phosphate-Solubilizing Microbes

Soil is a dynamic system that harbours numerous microbial communities, and it is

reported that one gram of fertile soil contains 101 to 1010 bacteria (Hayat

et al. 2010). In soil ecosystems, bacteria are found in different forms such as bacilli,

spiral and cocci. Of these, the rod-shaped bacilli are common in soil and have been

found as prominent P solubilizers among various bacteria (Khan et al. 2010).

However, the composition and structure of PSM within soil varies greatly and are

influenced largely by the physico-chemical characteristics of soil (Kim et al. 1997;

Khan et al. 2007). Besides soils, PSM have also been reported in various rhizo-

sphere soils of different crops, for example, wheat [(Triticum aestivum) Rawat

et al. 2011; Babana et al. 2013], maize [(Zea mays) Ranjan et al. 2013], rice [(Oryza
sativa) Panhwar et al. 2012], sugar cane (Saccharum officinarum), onion [(Allium
cepa) Ranjan et al. 2013], garlic (Allium sativum), betel vine plant [(Piper betel L.)
Tallapragada and Seshachala 2012], chickpea (Cicer arietinum L.), pea (Pisum
sativum), green gram [Vigna radiata (L.) Wilczek)], lentil (Lens esculentus),
mentha (Mentha arvensis), potato (Solanum tuberosum), tomato [(Lycopersicon
lycopersicum) Ranjan et al. 2013], chilli (Capsicum annuum), cabbage (Brassica
oleracea var. capitata), mustard (Brassica campestris), jasmine (Ranjan

et al. 2013), rhizoplane (Compant et al. 2013), phyllosphere (Ryan et al. 2008;

Vorholt 2012), rock phosphate deposit area soil (Richardson et al. 2009), marine

environment (Zhu et al. 2011) and polluted soils (Luo et al. 2011). Due to variation

in PSM populations in different agro-ecological habitat and considering their

functional diversity, it has become extremely important to search PSM with varied

biological and chemical properties so that the soil microbial diversity, mechanistic

basis of nutrient transformation and plant growth promotion by PSM could be

revealed.

1.5 Production Strategies of Microphos (PSM Inoculants)

The production of efficient microbial inoculants involving P-solubilizing activity

(microphos) broadly includes (a) collection of samples and determination of micro-

bial diversity; (b) isolation, screening and selection of PSM from heterogeneous
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microbial populations; (c) bioassay of P-solubilizing activity of the microbial

strains; (d) characterization and identification of PSM; (e) bioassay of plant

growth-promoting activities; (f) selection of suitable carriers, mixing of inocula

with selected carriers and development of microbial inoculants; and (g) pot/field

trials of prepared microphos before commercial recommendation for agricultural

practices.

1.5.1 Collection of Samples and Assessment of Microbial
Diversity

The soil samples are collected generally in sterile polythene bags from a depth of

15–12 cm2 from conventional/polluted non-rhizosphere and rhizosphere soils,

mixed thoroughly and are used for determining microbial diversity. The total

bacterial, fungal, actinomycetal populations, phosphate-solubilizing micro-

organisms (PSM) and asymbiotic nitrogen fixers, for example, Azotobacter, can be

isolated using standard media and microbiological methods (Holt et al. 1994). For

this, soil samples are serially diluted in sterile normal saline solutions (NSS), and

100 μl of diluted suspension is spread plated (Buck and Cleverdon 1960) on nutrient
agar [g/l:beef extract 3; peptone 5; agar 15; pH 7], Martin’s medium [g/l: dextrose 5;

potassium dihydrogen orthophosphate 1; magnesium sulphate 0.5; streptomycin

0.006; Rose Bengal 2 part in 3,000 part of medium; 1 g of chloramphenicol/nalidixic

acid can be dissolved in 100 ml of sterile water and 0.3 ml of this solution is added to

100ml of Rose Bengal medium after it is cooled to 45 �C], Kenknight’s medium [g/l:

dextrose 1; potassium dihydrogen phosphate 0.1; sodium nitrate 0.1; potassium

chloride 0.1; magnesium sulphate 1.50] or starch casein agar (SCA) medium [g/l:

starch 10; casein 0.3; KNO3 2; NaCl 2; K2HPO4 2; MgSO4·7H2O 0.05; CaCO3 0.02;

FeSO4·7H2O 0.01 agar 18; pH 7.2; tetracycline (100 μg/ml) and amphotericin B

(50 μg/ml) are added to medium after autoclaving to prevent bacterial growth and

fungal growth, respectively (Williams and Davies 1965; Porter and Tresner 1960)],

Pikovskaya (Table 1.1) medium, Ashby’s medium (Table 1.1) and yeast extract

mannitol (YEM) agar medium (Table 1.1) for total bacterial counts, fungal

populations, actinomycetes, phosphate solubilizers, Azotobacter and rhizobia,

respectively.

Each sample should be replicated at least three times and incubated at 28� 2 �C
for 2, 3, 5, 5 and 5 to 7 days for quantifying the populations of bacteria, fungi,

actinomycetes, PSM and Azotobacter, respectively. Where microbiological assay is

not done immediately, the samples are kept in sterile polythene bags and stored at

4 �C for a short period of time. Standard culture medium and growth conditions

should be used for isolation and enumeration of microbial populations as given in

Table 1.2.
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1.5.2 Isolation, Screening and Selection of PSM

Gerretsen (1948) initially demonstrated that microbial activity in the rhizosphere

could dissolve sparingly soluble inorganic P and increase plant growth. Subse-

quently, Pikovskaya (Pikovskaya 1948) devised a medium (Table 1.1) for the

isolation and screening of PSM. Later on, a modified Pikovskaya medium using

bromophenol blue dye as suggested by Gupta et al. (1994) and National Botanical

Research Institute P [NBRIP] medium (Table 1.1) developed by Nautiyal (1999)

are used for the isolation and selection of P solubilizers. However, there are

conflicting reports on the performance of these media. For example, the

bromophenol blue method used to improve the clarity and visibility of the

yellow-coloured halo has not necessarily improved the plate assay (Nautiyal

1999). Moreover, the Pikovskaya medium contains yeast extract, and it is desirable

Table 1.1 Chemical composition of media used for assessment of microbial diversity in soil

Media component

Amount (g/l)

Pikovskaya

medium

NBRIP

medium

Ashby’s

medium

Yeast extract

mannitol agar

Dextrose 10.0 10.0 – –

Mannitol – – 20.0 10.0

Yeast extract – – – 1.0

Ca3(PO4)2 5.0 5.0 – –

CaCO3 – 5.0 2.0

MgCl2·6H2O 5.0 5.0 – –

MgSO4·7H2O 0.25 0.25 0.2 0.2

KCl 0.2 0.2 – –

(NH4)2SO4 0.1 0.1 – –

K2HPO4 – – 0.2 0.5

K2SO4 – – 0.1 –

NaCl – – – –

Bromophenol

blue (BPB)

– 0.025 – –

Table 1.2 Culture medium and growth conditions used for isolation and enumeration of micro-

bial populations

Microbes Medium

Incubation temperature

(�C)
pH of

medium

Incubation period

(days)

Bacteria Nutrient agar 28� 2 7� 0.2 1–2

Fungi Martin’s agar 28� 2 7� 0.2 3–5

Actinomycetes Kenknight’s agar 28� 2 7� 0.2 5–7

PSM Pikovskaya agar 28� 2 7� 0.2 5–7

Azotobacter spp. Ashby’s agar 28� 2 7� 0.2 5–7

Rhizobia YEM agar 28� 2 7� 0.2 2–5
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to formulate a defined medium to elucidate the role of microorganisms in P

mineralization. On the contrary, the NBRIP medium has several advantages over

other media (Nautiyal 1999). For instance, the NBRIP medium can be used as a

defined medium because it excludes the use of yeast extract. Secondly, NBRIP is

more efficient in a broth assay compared to the Pikovskaya medium.

Despite the variation in the effectiveness of different media, first of all, PSM is

isolated from soils/any source using serial plate dilution method or by enrichment

culture technique (Fig. 1.2). The serially diluted rhizospheric or non-rhizospheric

soil samples are then spread (100 μl) or streaked or spot (10 μl) inoculated on solid

Pikovskaya plates or any plates containing insoluble P (e.g. tricalcium phosphate)

and incubated. After proper incubation of inoculated solid Pikovskaya plates for

5–7 days (bacteria) and 3–5 days (fungi and actinomycetes) at 28� 2 �C, the
P-solubilizing microbes are detected by the formation of clear halo around their

colonies (Plate 1.1). The development of a clear zone around the colony on the

culture plates are taken as an index of P solubilization. However, the reliability of

this halo-based technique is questioned as many isolates in other studies did not

produce any visible halo/zone on agar plates but could solubilize insoluble in-

organic P in the liquid medium (Gupta et al. 1994; Louw and Webley 1959). The

phosphate solubilizers are then maintained on medium, for example, Pikovskaya,

which is used for PSM isolation until use. Since P-solubilizing organisms exhibit

many-fold variations in P-dissolving activity (Khan et al. 2007) and instability with

regard to their P-solubilizing activity (Illmer and Schinner 1992), they are repeat-

edly subcultured to test the persistence of P-solubilizing potential. Once the effi-

cient PSM are selected, they are tested for their ability to solubilize insoluble P

Fig. 1.2 Isolation and selection of P-solubilizing microorganism from different sources

1 Microphos: Principles, Production and Application Strategies 9



under liquid culture medium. Finally, the efficient P-solubilizing organisms are

selected and used for the development of inoculants whose performance is tested

under pot/field environments against various crops of economic importance.

1.5.3 Bioassay of P-Solubilizing Activity

The microbial strains expressing PS activity during screening process are further

enriched by inoculating into the Pikovskaya medium, incubated at 28� 2 �C for

7 days and then observed on solid plates for halo formation. The solubilization

index (SI) and solubilizing efficiency (SE) of such microbes are calculated by the

formula suggested by Premono et al. (1996) as

Solubilization Index SIð Þ ¼ �
colony diameter þ zone of halo

�
=colony diameter

Solubilizing Efficiency SEð Þ ¼ �
zone of halo=colony diameter

�� 100

The colonies forming clear halo around microbial growth indicating P solubili-

zation are counted and further used to determine the relative P-solubilizing effi-

ciency [RPSE] in liquid Pikovskaya medium. The clear halo around bacterial

growth is measured, and cultures are further used to determine the extent of P

solubilization in liquid Pikovskaya medium. For quantitative measurement, 100 ml

of Pikovskaya broth containing 5 g TCP is inoculated with 1 ml of 108 cells/ml of

each culture. The flasks are incubated for 5, 10 and 15 days with shaking at 120 rpm

at 28� 2 �C. A 20 ml culture broth from each flask is removed and centrifuged

(9,000� g) for 30 min, and the amount of water-soluble P released into the

Plate 1.1 Phosphate solubilization on Pikovskaya plate by some notable P solubilizers. (a)

Bacillus, (b) Azotobacter, (c) Serratia, (d) Fungi, (e) Pseudomonas sp.
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supernatant is estimated by the chlorostannous-reduced molybdophosphoric acid

blue method (King 1932; Jackson 1967). To 10 ml of supernatant, 10 ml

chloromolybdic acid (ammonium molybdate 15 g; distilled water 400 ml and

10 N HCl 400 ml. These materials are mixed slowly with rapid stirring and cooled,

and the volume is made to one litre with distilled water) and 5 drops of

chlorostannous acid (stannous chloride 10 g; concentrated HCl 25 ml; the stock

solution is kept in airtight bottle and one ml of stock solution is mixed in 132 ml of

distilled water at the time of experiment) are added, and the volume is adjusted to

50 ml with distilled water. The absorbance of blue colour developed is read at

600 nm. The amount of P solubilizer is calculated using the calibration curve of

KH2PO4. The change in pH following TCP solubilization is also recorded. Each

independent experiment should be repeated three times after several subcultures to

ensure the reproducibility of the results. Solubilization index and SE of the bacterial

isolates showing greater solubilization on both solid and liquid media and persis-

tence of PS activity after several subcultures are the criteria for the selection of

efficient PS strains for further studies.

1.5.4 Microbiological and Biochemical Characterization
of PSM

The phosphate solubilizers are identified firstly by microbiological and biochemical

tests. The microbiological tests may include the assessment of colonial morphology

[shape, margin (serrated or smooth)], colour and characteristics such as the secre-

tion of watery or mucoid/gummy substances from colonies, Gram reaction and

shape of microbes. The biochemical reaction may involve indole reaction, citrate

utilization, methyl red test, Voges–Proskauer, catalase, oxidase test, starch, gelatin,

lipid hydrolysis, mannitol salt utilization test and sugar fermentation test, etc. The

resulting characteristics are compared with those given in Bergey’s Manual of
Determinative Bacteriology (Holt et al. 1994), and strains are identified to generic

level only.

1.5.4.1 Antibiotic Sensitivity Behaviour of Isolated Cultures

Antibiotic sensitivity behaviour of the isolated P solubilizers is determined using

the antibiotic discs of known potency by disc diffusion method of Bauer (1966) in

order to find antibiotic markers for the PSM strains. For this, freshly prepared and

autoclaved nutrient broth is inoculated by isolated bacterial cultures and incubated

for 24 h at 28� 2 �C. 100 μl of overnight grown test culture is taken on nutrient agar
plates and is evenly spread with sterile glass rod spreader. Plates are then mounted

with individual antibiotic (e.g. amoxicillin, chloramphenicol, ciprofloxacin, cloxa-

cillin, nalidixic acid, nitrofurantoin, norfloxacin, novobiocin, doxycycline
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hydrochloride, erythromycin, etc.) disc using a sterile forceps. Each antibiotic-

mounted plate is incubated at 28� 2 �C for 24–48 h. After incubation, the zone

of inhibition is measured, and the strains are scored as resistant (R) and susceptible

(S). Following the standard antibiotic disc sensitivity testing method (Margalejo

et al. 1984), the plates are recorded for comparing the zone of inhibition (diameter

in mm) with chart provided by the disc manufacturers.

1.5.4.2 Identification of Phosphate-Solubilizing Organisms

Microbial cultures showing greater P-solubilizing activity in vitro, when grown on

Pikovskaya medium, and exhibiting optimum solubilization of insoluble P in liquid

culture medium are selected and presumptively identified to the genus level using

morphological and biochemical test. Such organisms are then identified to the

species level using whole-cell fatty acid methyl ester (FAME) profile and 16S

rDNA sequence analysis (Chung et al. 2005; Chen et al. 2006). For 16S rDNA

sequence analysis, partial 16S rRNA gene sequences of selected strains are done

using universal primers, 518 F (50CCAGCAGCCGCGGTAATACG30) and 800R

(50TACCAGGGTATCTAATCC30). All nucleotide sequence data should then be

deposited in the public domain (e.g. GenBank sequence database). There are

various agencies which are providing molecular sequencing for identifying bacte-

rial cultures to species level, for example, Macrogen Inc., Seoul, South Korea. The

online programme BLASTn is then used to find related sequences with known

taxonomic information in the databank at the NCBI website (http://www.ncbi.nml.

nih.gov/BLAST) to accurately identify and compare the isolates with nearest

neighbour sequence available in the NCBI database.

1.5.4.3 Construction of Phylogenetic Tree

The sequence obtained from nucleotide-sequencing agencies is initially estimated

by the BLASTn online programme facility of NCBI (http://www.ncbi.nml.nih.gov/

BLAST) and then aligned with all related sequences obtained from GenBank by

ClustalW (Thompson 1994). Phylogenetic tree is then reconstructed by neighbour-

joining method (Saitou and Nei 1987). Bootstrapped neighbour-joining relation-

ships are estimated with MEGA4 software (Tamura et al. 2007).
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1.5.5 Bioassay of Plant Growth-Promoting Activities of PS
Bacteria

1.5.5.1 Screening for 1-Aminocyclopropane-1-Carboxylate (ACC)

Deaminase Activity

Using the spot inoculation method, 5 μl of each isolated PS bacterium is placed on a

section of plate (marked in 16 equal parts) containing DF (Dworkin and Foster

1958) salt minimal medium [g/l: KH2PO4 4; Na2HPO4 6, MgSO4·7H2O 0.2,

glucose 2.0, gluconic acid 2.0; citric acid 2.0; trace elements, 1 mg FeSO4·7H2O,

10 μg H3BO3, 11.19 μg MnSO4·H2O, 124.6 μg ZnSO4·7H2O, 78.22 μg
CuSO4·5H2O, 10 μg MoO3, pH 7.2 and 2.0 g (NH4)2SO4 as nitrogen source]

supplemented with three mM ACC instead of [(NH4)2SO4)] and incubated at

28� 2 �C for 72 h. The bacterial growth should be checked daily as suggested by

Penrose and Glick (2003). At least one ACC deaminase-positive bacterial strain

should be used as a control in this type of study (Nascimento et al. 2011), and all the

samples should be tested in duplicate, and experiments must be repeated at least

three times to ensure the reproducibility of the results.

Quantitative Assay of ACC Deaminase Activity

The ACC deaminase activity of P solubilizers (Ahmad et al. 2013) can be assayed

following the method of Honma and Shimomura (1978) later modified by Penrose

and Glick (2003). According to this method, the amount of α-ketobutyrate is

measured which is produced by reaction of the enzyme ACC deaminase which

cleaves ACC to α-ketobutyrate and NH3. The number of mmol of α-ketobutyrate
produced by this reaction is determined by comparing the absorbance at 540 nm of a

sample to a standard curve of α-ketobutyrate ranging between 0.1 and 1 mmol. A

stock solution of 100 mM α-ketobutyrate (Sigma-Aldrich) is prepared in 0.1 M

Tris–HCl, pH 8.5, and stored at 4 �C. Just prior to use, the stock solution is diluted

with the same buffer to make a 10 mM solution from which a standard concen-

tration curve is generated. Each in a series of known α-ketobutyrate concentrations
is prepared in a volume of 200 ml, 300 ml of the 2,4-dinitrophenylhydrazine reagent

(0.2 % 2,4-dinitrophenylhydrazine in 2 M HCl) (Sigma-Aldrich) is added and the

contents are vortexed and incubated at 30 �C for 30 min during which time the

α-ketobutyrate is derivatized as a phenylhydrazone. The colour of the phenyl-

hydrazone is developed by the addition of two ml 2 M NaOH; after mixing, the

absorbance of the mixture is measured at 540 nm. Using this method, the ACC

deaminase activity can be measured in bacterial extracts prepared in the following

manner. The ACC deaminase-positive bacterial strains, for example, P solubilizers

(108 cells/ml) are inoculated in Luria–Bertani broth (g/l: tryptone 10; yeast extract

5; NaCl 10; pH 7.5) and incubated in a shaking incubator at 200 rpm for 24–48 h at

28� 2 �C. Then, cultures are centrifuged at 8,000� g for 10 min at 4 �C, and the
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biomass of P solubilizers is harvested. The supernatant is removed, and the cells are

washed with 5 ml DF salts minimal medium. Following an additional centrifugation

for 10 min at 8,000� g at 4 �C, the cells are resuspended in 7.5 ml DF salts minimal

medium in a fresh culture tube. Just prior to incubation, the frozen 0.5 M ACC

solution is thawed, and an aliquot of 45 ml is added to the cell suspension to obtain a

final ACC concentration of 3.0 mM. The bacterial cells are re-shaken in the

incubator to induce the activity of ACC deaminase at 200 rpm for 24 h at the

same temperature as is done for overnight-incubated cultures. The bacteria cultures

are harvested by centrifugation at 8,000� g for 10 min at 4 �C. The supernatant is
removed, and the cells are washed by resuspending the cell pellets in 5 ml 0.1 M

Tris–HCl at pH 7. Each bacterial cell pellet, prepared as described above are

suspended in 1 ml of 0.1 M Tris–HCl, pH7.6 and transferred to a 1.5-ml micro-

centrifuge tube. The contents of the 1.5-ml micro-centrifuge tube are spun at

16,000� g for 5 min, and the supernatant is removed. The pellet is suspended in

600 ml of 0.1 M Tris–HCl, pH 8.5. A 30 μl of toluene is added to the cell suspension
and vortexed at the highest setting for 30 s. At this point, a 100-ml aliquot of the

“toluenized cells” is set aside and stored at 4 �C for protein assay by Lowery

et al. (1951) method at a later time. The remaining toluenized cell suspension is

immediately assayed for ACC deaminase activity. All sample measurements should

be carried out in duplicate. 200 μl of the toluenized cells are placed in a fresh 1.5-ml

micro-centrifuge tube; 20 ml of 0.5 M ACC is added to the suspension, briefly

vortexed and then incubated at 30 �C for 15 min. Following the addition of 1 ml of

0.56 M HCl, the mixture is vortexed and centrifuged for 5 min at 16,000� g at

room temperature. One ml of the supernatant is vortexed together with 800 ml of

0.56 M HCl. Thereupon, 300 ml of the 2,4-dinitrophenylhydrazine reagent (0.2 %

2,4-dinitrophenylhydrazine in 2 M HCl) is added to the glass tube; the contents are

vortexed and then incubated at 30 �C for 30 min. Following the addition and mixing

of 2 ml of 2 N NaOH, the absorbance of the mixture is measured at 540 nm.

1.5.5.2 Quantitative Assay of Indole Acetic Acid

Indole-3-acetic acid (IAA) synthesized by P solubilizers (Wani and Khan 2010;

Ahemad and Khan 2012) is quantitatively evaluated by the method of Gordon and

Weber (1951), later modified by Brick et al. (1991). For this, the PS bacterial strains

are grown in Luria–Bertani (LB) broth. Luria–Bertani broth (100 ml) having 0, 50,

100, 200, 400 and 500 μg/ml tryptophan is then inoculated with 1 ml culture (108

cells/ml) of PS cultures and incubated for 3, 6, 9 and 12 days at 28� 2 �C with

shaking at 125 rpm. After incubation, 5 ml of culture of each treatment is spun

(9,000� g) for 15 min, and an aliquot of 2-ml supernatant is mixed with 100 μl of
orthophosphoric acid and 4 ml of Salkowski’ reagent (2 % 0.5 M FeCl3 in 35 %

perchloric acid) and incubated at 28� 2 �C in darkness for 1 h. The absorbance of

developed pink colour is read at 530 nm. The IAA concentration in the supernatant

is determined using a calibration curve of pure IAA as a standard. The experiment

should be repeated three times on different time intervals.
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1.5.5.3 Qualitative and Quantitative Estimation of Siderophores

The PS bacterial strains are further tested for siderophore production using Chrome

Azurol S (CAS) agar medium following the method of Alexander and Zuberer

(1991). Chrome Azurol S (CAS) agar medium is prepared from four solutions as

(i) Solution 1, Fe-CAS indicator solution: A 10 ml of 1 mM FeCl3·6H2O [in 10 Mm

HCl} is mixed with 50 ml of an aqueous solution of CAS (1.21 mg/ml). The above

solution is then added to 40 ml of HDTMA (1.82 mg/ml) and cooled to 50 �C.
(ii) Solution 2, buffer solution: A 30.24 g of PIPES is dissolved in 750 ml of a salt

solution containing 0.3 g KH2PO4, 0.5 g NaCl and 1 g NH4Cl, pH 6.8, with 50 %

KOH, and water is added to bring the volume to 800 ml. (iii) Solution 3: (in 70 ml

water) 2 g glucose, 2 g mannitol, 493 mg MgSO4. 7H2O, 11 mg CaCl2, 1.17 mg

MnSO4. H2O, 1.4 mg H3BO3, 0.04 mg CuSO4·5H2O, 1.2 mg ZnSO4. 7H2O and

1 mg Na2MoO4·2H2O. Autoclaved, cooled to 50 �C, then added to the buffer

solution along with 30-ml filter-sterilized 10 % (W:V) casamino acids (Solution

4). The indicator solution is added last with sufficient stirring to mix the ingredients

without forming bubbles. Chrome Azurol S agar plates are then prepared separately

and divided into equal sectors and spot inoculated with 10 μl of 108 cells/ml and

incubated at 28� 2 �C for 5 days. Development of yellow-orange halo around the

bacterial growth is considered as positive for siderophore synthesis. Each individual

experiment should be repeated three times to ensure the reproducibility of results.

The production of siderophore by the PSB strains are further detected quantitatively

using Modi medium (K2 HPO4 0.05 %; MgSO4 0.04 %; NaCl 0.01 %; mannitol

1 %; glutamine 0.1 %; NH4NO3 0.1 %). Modi medium is inoculated with 108 cells/

ml of PSB and incubated at 28� 2 �C for 5 days. Catechol-type phenolates are

measured on ethyl acetate extracts of the culture supernatant using a modification of

the ferric chloride–ferrocyanide reagent of Hathway. Ethyl acetate extracts is

prepared by extracting 20 ml of supernatant twice with an equal volume of solvent

at pH 2. Hathway’s reagent is prepared by adding 1 ml of 0.1 M ferric chloride in

0.1 N HCl to 100 ml of distilled water, and to this, 1 ml of 0.1 M potassium

ferrocyanide is added (Reeves et al. 1983). For the assay, one volume of the reagent

is added to one volume of sample, and absorbance is determined at 560 nm for

salicylates with sodium salicylate as standard and at 700 nm for dihydroxy phenols

with 2, 3-dihydroxy benzoic acid (DHBA) as standard.

1.5.5.4 Assay of Hydrogen Cyanide and Ammonia

Hydrogen cyanide (HCN) production by PS cultures is detected by the method of

Bakker and Schipper (1987). For HCN production, PS bacterial strains are grown

on an HCN induction medium (g/l: tryptic soy broth 30; glycine 4.4; agar 15) for

3–4 days at 28� 2 �C. For each bacterial strain, a 100 μl of 108 cells/ml is spread on

the Petri plates. A disc of Whatman filter paper no. 1 dipped in 0.5 % picric acid and

2 % Na2CO3 is placed at the lid of the Petri plates. The plates are then sealed with
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Parafilm, and after 4 days of incubation at 28� 2 �C, an orange-brown colour of the
paper indicating HCN production is observed. For ammonia assessment, the bacte-

rial strains are grown in peptone water (g/l: peptone 10; NaCl 5; pH 7) and

incubated at 28� 2 �C for 4 days. One ml of Nessler’s reagent [potassium iodide

50 g; distilled water (ammonia free) 35 ml; add saturated aqueous solution of

mercuric chloride until a slight precipitate persists; potassium hydroxide 400 ml;

dilute the solution to 1,000 ml with ammonia-free distilled water. Allow to stand for

1 week, decant supernatant liquid and store in a tightly capped amber bottle] is

added to each tube and the development of yellow colour indicating ammonia

production is recorded following the method of Dye (1962).

1.5.5.5 Bioassay of Exo-Polysaccharides

The exo-polysaccharides (EPS) produced by the PS bacterial strains are determined

under in vitro conditions as suggested by Mody et al. (1989). For this, PS bacterial

strains are grown in 100-ml capacity flasks containing basal medium supplemented

with 5 % sucrose. Inoculated flasks are then incubated for 5 days at 28� 2 �C on

rotary shaker (100 rpm). Culture broth is spun (5,433 g) for 30 min, and EPS is

extracted by adding three volumes of chilled acetone (CH3COCH3) to one volume

of supernatant. The precipitated EPS is repeatedly washed three times alternately

with distilled water and acetone, transferred to a filter paper and weighed after

overnight drying at room temperature. In a study, Ashraf et al. (2004) have shown

that inoculating wheat seedlings with EPS-producing bacteria restricts sodium

uptake and stimulates plant growth under salt stress.

1.5.5.6 Determination of Antifungal Activity

Antifungal activity of the PSB against plant pathogenic fungi, for example, Rhizo-
ctonia sp., Penicillium sp. and Alternaria sp., can be assessed on agar plates as

described by Weller and Cook (1986) and Wong and Baker (1984). Fungal patho-

gens maintained on potato dextrose agar (PDA) are transferred to Petri dishes

containing fresh PDA (g/l: potato infusion 4; dextrose 20; agar 15; pH 5.4) to

produce fungal mycelium plugs. The PS bacteria are grown in YEM broth (N2

PSB), Ashby’s broth (Azotobacter with PS activity) and Luria–Bertani (other PSB

like Pseudomonas/Bacillus) broth, respectively. A 1-ml stationary cell of each PSB

(108 cells/ml) is inoculated into 100 ml YEM broth, Ashby’s broth and Luria–

Bertani broth, for rhizobia, Azotobacter and PS bacteria, respectively. The samples

(1.8 ml) of each broth is removed in eppendorf and centrifuged at 3,875�g for

10 min, and the supernatants are filtered through sterile Millipore filter. A 200-μl
sample of each strain is then placed in an 8-mm well cut into the centre of

pre-inoculated fungal plates. Inoculated plates are incubated at 28� 2 �C for

2 days (PS bacteria) and 5 days (rhizobia and Azotobacter), and the zone of growth
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inhibition (mm) is recorded. Each individual experiment should be replicated three

times at different time intervals.

1.5.6 Production of Microphos

The main objective of microphos production strategy is to enhance the survival of

PS organisms during the period between its production and application to the soil

and the rhizosphere it colonizes. The microphos is prepared commonly by adding

flask-grown cultures (small scale) or fermenter-grown broth (large scale)

containing a large population (about 108–109 cells/ml) of PSB to finely powdered

carrier followed by a period of incubation. Here, both the evaluation of broth media

at regular intervals for the presence of specific and viable PSB and selection of a

suitable carrier for inoculant preparation are vital. Generally, the microphos pro-

duction involves (i) inoculum preparation, (ii) processing of the raw material and

(iii) mixing of PSM broth with carrier materials and inoculant packaging.

1.5.6.1 Inoculum Preparation

After proper selection of potential PS organisms, high-quality microphos is pre-

pared. For this, the starter PS organisms are first grown in specific medium, for

instance, Pikovskaya/NBRIP medium, in a small capacity (50 ml) flask, and then

the inoculum are transferred to a larger capacity flasks or a fermenter at the rate of

1–5 % of the medium. However, conditions for PS growth in both flasks and

fermenter of different capacities, like the pH of the medium and nutrient supply

(C and N source), must be at the optimal level. Culture should be incubated at

temperature as required by each specific PS bacterium. The broth in flasks or

fermenter should be checked at regular intervals for both contamination and

microbial density. If at any stage the broth becomes contaminated, it should

immediately be discarded. When the bacterial density reaches to 109 cells/ml,

culture growing in flasks/fermenter can be withdrawn and added to sterilized carrier

materials. Incorporation of microorganisms in carrier material enables easy han-

dling, long-term storage and high effectiveness of microphos.

1.5.6.2 Processing of Carrier Material

Various types of materials are used as carrier for seed or soil inoculation (Table 1.3)

to improve the survival and biological effectiveness of inoculants by protecting

bacteria from biotic and abiotic stresses (Malusá et al. 2012). Carrier is a delivery

vehicle which is used to transfer live microorganism in a good physiological

condition from an agar slant of laboratory to a seed/rhizosphere (Smith 1992).

Since a suitable carrier plays a major role in formulating microbial inoculants, the
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Table 1.3 Different carriers used for inoculant production

Carrier material Inoculant bacterium Characteristics

Sterilized oxalic acid industrial

waste

Rhizobium Seed inoculation; Rhizobium multipli-

cation in carrier in ambient tem-

perature up to 90 days; carrier

sterilization resulted in significant

increase in grain yield, nodule

number and N content

Alginate-perlite dry granule Rhizobium Soil inoculation; Rhizobium strains

survived in dry granules beyond

180 days; the inoculant can be

stored in a dry state without losing

much viability

Composted sawdust Bradyrhizobium,
Rhizobium and

Azospirillum

Seed inoculation; good growth and

survival of the inoculant strains

Agriperlite, expanded clay, kaolin,

Celite, Diatom, porosil MP,

MicroCel, vermiculite

Agrobacterium
radiobacter K84

Crown gall control. Screening was

performed to find improved for-

mulation of K84 cells; effect of

carrier storage temperature and

carrier water content on survival of

K84 was examined

Cheese whey grown cells in peat Rhizobium meliloti Seed inoculation; better survival at

various temperature during storage

even under desiccation

Mineral soils Rhizobium Seed inoculants; Rhizobium survived

better at 4 �C than at higher

temperature

Coal/charcoal Rhizobium/PS
bacteria

Seed inoculants

Granular inoculants amended with

nutrients

B. japonicum Soil inoculants; bentonite granules,

illite and smectite granules, silica

granules amended with glycerol,

Na glutamate and inoculated with

either peat or liquid B. japonicum
inoculants; enhanced early nodula-

tion of soybean and increased N

content of grain

Soybean oil or peanut oil added

with lyophilized cells

Rhizobium Seed inoculants; provide more protec-

tion than peat-based inoculants

when rhizobia are inoculated on

seeds and exposed to condition of

drought and high temperature

Perlite Rhizobium,
Bradyrhizobium,
Bacillus

Seed inoculants; combination of a

sucrose adhesive with the perlite

carrier gave better survival of bac-

teria on seeds; produced similar

number of nodules, nodule dry

weight, crop yield and nitrogen

content as peat-based inoculants

(continued)
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use of any ideal carrier material is important in the production of good quality

microbial inoculants including microphos. Among various materials, peat soil,

lignite, vermiculite, charcoal, press mud, wastewater sludge, cow dung cake pow-

der, sawdust, farmyard manure (FYM) and soil mixture have been used by many

workers as carrier materials for producing the microbial inoculants (Ben Rebah

et al. 2002; Trivedi et al. 2005; Maheshwari 2008; Khan et al. 2010, 2013). Of these

materials, the neutralized peat soil/lignite has been found as the better carrier

material for inoculant production. However, an ideal carrier should have these

properties: (i) it should be inexpensive, mixable, packageable and locally available

in powder or granular form in adequate quantities; (ii) the carrier must permit gas

exchange, particularly oxygen, and have high organic matter content (Bashan 1998)

and water holding and retention capacity and it should be more than 50 %; (iii) it

should be easy to process (mixing, curing and packaging operations) and free of

lump-forming materials; (iv) it should be easy to sterilize by autoclaving or gamma-

irradiation; (v) it should have good adhesion to seeds (Hegde and Brahmaprakash

1992) and good pH buffering capacity (Keyser et al. 1993); (vi) it should be

non-toxic to inoculant bacterial strain and plant and easily biodegradable and

non-polluting; (vii) it should nearly be sterile and uniform; (viii) it should support

growth and survival of bacteria; and (ix) rapid release of bacteria in soil. For

preparation of seed inoculant, the carrier material is milled to fine powder with

particle size of 10–40 μm. The selected carriers are then sterilized before mixing

with inoculum so that high number of inoculant bacteria can be maintained on

carrier for long storage period. Furthermore, carrier is sterilized to prevent unde-

sirable spreading of pathogenic bacteria to agricultural field. Different methods

have been adopted to sterilize the carrier materials in order to find the most suitable

one without any effect on their quality. In this context, gamma-irradiation has been

found as the most suitable way of sterilization since gamma-irradiation does not

alter the physical and chemical characteristics of the carrier materials. However,

there are other ways by which carrier materials can also be sterilized. Of these,

Table 1.3 (continued)

Carrier material Inoculant bacterium Characteristics

Wastewater sludge Sinorhizobium
meliloti

Seed inoculants; result showed the

suitability of using sludge as a car-

rier because it had the same or a

higher potential than peat to sup-

port survival of S. meliloti

Wheat bran, sugar cane bagasse Rhizobium/
Bradyrhizobium
and PS fungus,

A. niger

Soil inoculants; the number of micro-

organisms was the highest with

peat, followed by bran and sugar-

cane bagasse

Nutrient-supplemented pumice Rhizobium Seed inoculants; good storage and

handling properties and could be

mixed directly with the seeds dur-

ing the sowing process

1 Microphos: Principles, Production and Application Strategies 19



autoclaving is the most commonly used and has the superiority among all employed

methods due to low cost and its ability to allow absolutely pure culture of inocula to

be prepared. For autoclaving, carrier material is packed in partially opened, thin-

walled polypropylene bags and autoclaved for 60 min at 121 �C. However, during
autoclaving, some materials change their properties and produce toxic substances

which could be toxic to some bacterial strains. Once carrier is sterilized, it is ready

for mixing with PS inocula.

1.5.6.3 Mixing of Carrier with Inocula and Inoculant Packaging

The most suitable carrier material is first spread in clean, dry, sterile metallic or

plastic trays, and the bacterial culture developed at small scale (flasks) or large scale

(fermenter) is added to the sterilized carrier and mixed well manually by wearing

sterile gloves or mechanically by mixer. The culture suspension is added at a level

of 40–50 % WHC of the carrier. After proper mixing, the inoculant is kept in a

polythene bag (low density and thickness of the bag should be around 50–75 μm) of

200 g capacity, sealed with electric sealer and allowed for curing for 2–3 days at

room temperature. Curing of carrier-based microphos can be done by spreading the

inoculant on a clean floor/polythene sheet by keeping in open shallow tubs/trays

with polythene covering for 2–3 days at room temperature before packaging. After

packaging, the packet containing microphos should legibly be marked with the

name of the manufacturer, name and cost of the product, batch number and strain

number, the mode of application, date of manufacture and expiry, full address of the

manufacturer and storage information. The microphos bags are now ready for

pot/field application or can be stored for later use. The microphos packets can,

however, be stored for about 3 months at 25� 2 �C. Similarly, the two cultures of

the same groups or different groups [one or two fungi/AM fungi together or one

PSM and other PGPR] can be mixed together in order to produce a mixed/co-

inoculant. However, before the two organisms, identical or different, are used, their

compatibility towards each other and the persistence of P-solubilizing activity

under in vitro conditions must be ascertained (Khan et al. 2007). If the two

organisms show any kind of antagonisms under laboratory conditions, they should

not be used together for developing a mixed or co-culture of the microphos.

Approaches used in the production and application of phosphate-solubilizing

microbes are shown in Fig. 1.3.

1.5.6.4 Instruction for Microphos Storage

Carrier-based microphos packet should be stored in a cool place away from heat or

direct sunlight. The microphos packets may also be stored at room temperature or in

cold storage conditions. However, microphos should regularly (at least at 15 days

interval) be checked very carefully to evaluate the number of viable cells using

plate count method or serological methods (if available). The PSM density in
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prepared microphos packet should not be less than 109 cells/g of inoculant at the

time of preparation and 107 cells/g on dry weight basis before expiry date. How-

ever, this microbial load in carrier-based microphos may vary from organisms to

organisms.

1.5.7 Method of Microphos Application

The microphos containing potential PS organism can be applied in different ways,

for example, (i) seed treatment or seed inoculation, (ii) seedling root dip and (iii)

main field/soil application.

Prospection, isolation and characterization of microbial PS strains

Development of certified microbial PS inoculant

Mass Production of PS inoculant

Microphos 

Mono-culture inoculation
[Single inoculation]

Composite inoculation

[Co-inoculation]

Seed coating technology 
Direct application 

of broth/carrier 

Fig. 1.3 Approaches used for production and application of microbial phosphatic inoculants

[adapted from Khan et al. (2009)]
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1.5.7.1 Seed Treatment

Coating/bacterization of plant seeds by microbial cultures involving microphos has

traditionally been the most common and widely used method in agricultural

practices for enhancing crop production across different ecological niches (Khan

et al. 2007, 2010). In this method, one packet containing 200 g of microphos is

sufficient to treat 10 kg of healthy and good quality medium-sized seeds of

groundnut, wheat, cotton, maize, etc., whereas 100 g per acre inoculant is required

for priming small-sized seeds. For seed treatment, one packet of the microphos is

cut open and the inoculants (bacteria–carrier mixture) are mixed with water to make

slurry and then mixed with seeds. To achieve the firm and sufficient coating of

inoculant on seed surface, use of adhesive/sticker solution such as 10 % gum arabic,

methylethylcellulose, sucrose solutions and vegetable oils is recommended.

Furthermore, any locally available sticky material (e.g. jaggery solution) which is

non-toxic to bacteria and seeds can also be used as adhesive. The seeds intended for

one-acre lands are then dipped in the slurry for about 3 h so as to have a uniform

coating of the culture over the seeds. The uniformly bio-primed seeds are then dried

under shade for 30 min, and the shade-dried seeds are sown in pot or field soils

within 24 h. Even though this method allows the adequate loading of bacterial cells

on to the seeds [108 cells/seed], this method has certain limitations, for example, the

bacterized seeds may come in direct contact with any seed applied with chemicals,

which, in turn, may adversely affect the survivability of the inoculated strains.

Secondly, the bacterial cultures after application may move away from rooting

zones and hence could be exposed to agrochemicals after planting.

1.5.7.2 Seedling Root Dip

Here, contents of the microphos packets are mixed in water, and the root portion of

the seedlings required for an acre is dipped in the mixture for 5 to 10 min; seedlings

are then removed from the suspension and transplanted as early as possible.

Suspension of one kg microphos in 10–15 l of water is sufficient for treating

seedlings for one acre. This method is generally used for transplanted crops,

for instance, vegetable crops.

1.5.7.3 Main Field/Soil Application

Seed inoculation technique in agricultural practices may not always be successful.

For example, if PS organisms belonging to N2 fixing (e.g. rhizobia) are applied, it

may result in poor nodulation and hence depressed nitrogen fixation by legumes.

Secondly, there may be low colonization and weak establishment of the inoculated

rhizobacterial strains. This situation might be due to low population and/or low

survival of the inoculated bacterial strain on the seed surface and in the soil.
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So, in such cases, “soil inoculation” method should be adopted wherein a large

population of a bacterial strain can be introduced directly into the soil. For soil

inoculation, in general, granular inoculant is placed into the furrow under or

alongside the seed. This enhances the chance for the inoculated strain to be in

contact with plant roots. Alternatively, four packets of microphos are mixed with

20 kg of dried and powdered farmyard manure (FYM) and then broadcasted in one

acre of main field just before transplanting. This method allows a rapid and greater

colonization of P-solubilizing organisms per unit area. In addition, the direct

contact of inocula with chemically treated seeds is minimized. This method also

offers advantages like (i) it is quick compared to seed inoculation technique which

requires mixing of seeds with inoculants, (ii) inoculants can withstand low-moisture

conditions better than carrier-based inoculants and (iii) it is less expensive com-

pared to other inoculation methods. Thus, in accordance with these considerations,

two approaches can be applied for microphos applications: (i) the monoculture

approach [MCA] where P-solubilizing microorganisms can be used alone and

(ii) the co-culture or multiple culture approach [CCA], where microphos prepared

from two or more identical or different microbial strains can be mixed together and

then applied under natural field/pot house conditions. The bacterial inoculants,

however, should not be mixed with insecticide, fungicide, herbicide and fertilizers.

When seeds are treated with fungicides, the seeds should be treated first with

pesticides and then with microphos.

1.6 Conclusion

In high-input agricultural practices, the deficiency of soil P is circumvented mainly

through the use of chemical phosphatic fertilizers, the excessive and continued use

of which results in loss of soil fertility and, hence, the crop productivity. Microphos

in this context might play a pivotal and practicable role in enhancing the soil P pool

without adversely disturbing the soil microflora and the processes mediated by

them. Since majority of microbial inoculants developed so far are used for enhanc-

ing legume, cereal and some vegetable production, there is an increasing demand

from fruit and vegetable production sector, where use of chemical fertilizers is

either not allowed or is restricted for human health reasons. In this regard, the

development of microphos could serve a viable option for such crops, and using

microphos, some success has been achieved over in different production systems.

The challenge, however, is to find some novel phosphate-solubilizing microorgan-

ism expressing multiple growth-promoting activities that could be applied under

diverse agroecosystems. Moreover, there is a need to develop some simple tech-

niques for mass production of microphos and its delivery systems so that the use of

microphos could be popularized and increased across different regions in a sustain-

able manner. The commercialization of microphos is, however, a challenging task

which requires full-scale, cost-effective manufacturing, packaging and quality

control systems. Furthermore, the large-scale field trials for microphos are needed
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to ascertain the potentiality and functionality of PSM. Thus, the search for identi-

fying new PS microbes and fine-tuning the production strategies of microphos

requires the continuous efforts of scientists working in different disciplines across

the countries.
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Chapter 2

Mechanism of Phosphate Solubilization

and Physiological Functions of

Phosphate-Solubilizing Microorganisms

Md. Saghir Khan, Almas Zaidi, and Ees Ahmad

Abstract Phosphorus (P) is the second important key plant nutrient after nitrogen.

An adequate supply of P is therefore required for proper functioning and various

metabolisms of plants. Majority of P in soils is fixed, and hence, plant available P is

scarcely available despite the abundance of both inorganic and organic P forms in

soils. A group of soil microorganisms capable of transforming insoluble P into

soluble and plant accessible forms across different genera, collectively called

phosphate-solubilizing microorganisms (PSM), have been found as best eco-

friendly option for providing inexpensive P to plants. These organisms in addition

to supplying soluble P to plants also facilitate the growth of plants by several other

mechanisms, for instance, improving the uptake of nutrients and stimulating the

production of some phytohormones. Even though several bacterial, fungal and

actinomycetal strains have been identified as PSM, the mechanism by which they

make P available to plants is poorly understood. This chapter focuses on the

mechanism of P-solubilization and physiological functions of phosphate

solubilizers in order to better understand the ecophysiology of PSM and conse-

quently to gather knowledge for managing a sustainable environmental system.

Conclusively, PSM are likely to serve as an efficient bio-fertilizer especially in

areas deficient in P to increase the overall performance of crops.
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2.1 Introduction

Phosphorus (P) is one of the most essential plant nutrients which profoundly affect

the overall growth of plants (Wang et al. 2009) by influencing various key meta-

bolic processes such as cell division and development, energy transport, signal

transduction, macromolecular biosynthesis, photosynthesis and respiration of

plants (Shenoy and Kalagudi 2005; Ahemad et al. 2009; Khan et al. 2009). On

the contrary, unlike N, the atmosphere does not provide soluble P to plants. And

hence, the source of P is largely the primary and secondary minerals and/or organic

compounds. In comparison to other nutrients, P concentration in soil solution is

much lower and ranges from 0.001 to 1 mg/l (Brady and Weil 2002). Broadly, P

compounds in soil can be placed into three categories: (i) inorganic compounds,

(ii) organic compounds of the soil humus and (iii) organic and inorganic P com-

pounds associated with the cells of living matter. Mineral compounds of P usually

contain aluminium (Al), iron (Fe), manganese (Mn) and calcium (Ca) and vary

from soils to soils. For example, P forms a complex with Al, Fe and Mn in acidic

soils, while in alkaline soils it reacts very strongly with Ca. However, under all

conditions, the types of soil P compounds are determined mainly by soil pH and by

the type and concentrations of soil minerals. Some of the most common P minerals

are presented in Table 2.1. Of the total soil P pool, about 50 % of P is in the organic

forms (Richardson 1994), which varies between 4 and 90 % in most soils (Yadav

and Verma 2012). The organic P in plants includes (i) inositol phosphate (10–50 %

in soil) which represents a series of phosphate esters ranging from monophosphates

up to hexaphosphates. Phytic acid (inositol hexakisphosphate) is the main com-

pound that plants use to store P in seeds to support early seedling growth following

germination. Phytin (a Ca–Mg salt of phytic acid) is the most abundant of the

known organophosphorus compounds in soils. Other organic P in soils occur as

sugar phosphates, nucleotides (0.2–2.5 %), phosphoprotein (trace), phosphonates

(Tate 1984) and phospholipids (1–5 %) (Yadav and Verma 2012). Of the various

forms of P, plants take up only negatively charged primary and secondary ortho-

phosphate ions (H2PO4
� and HPO4

2�) as nutrient. Indeed, the amount of plant

available P is very low relative to the total soil P. Moreover, majority of the soil P is

fixed, and only a small fraction of P is available for uptake by plants. Therefore, P

deficiency results in stunted growth, dark leaves, and inhibition of flowering and

root system development. In most plants, these symptoms will appear when P

concentration in the leaves goes below 0.2 %. And, hence, in many cases, phos-

phatic fertilizers which are quite soluble and manures that also contain P (soluble P,

organic P and inorganic P) are applied to overcome P deficiency in soils and to

provide adequate P to plants. The P of the phosphatic fertilizers or the manure reacts

very strongly with soil constituents and becomes unavailable to plants. The in-

soluble and inaccessible forms of P are hydrolysed to soluble and available forms

through the process of solubilization (inorganic P)/mineralization (organic P). The

immobilization in contrast is the reverse reaction of mineralization. During

immobilization, microorganisms convert inorganic forms to organic phosphate,
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which are then incorporated into their living cells. Mineralization and immo-

bilization of P occur simultaneously and are influenced by structure and composi-

tions of microbes and physico-chemical characteristics of soils besides the exudates

of various plant genotypes.

2.2 Phosphate Solubilization by Microbes: Current

Perspective

The insoluble forms of P such as tricalcium phosphate (Ca3PO4)2, aluminium

phosphate (Al3PO4), iron phosphate (Fe3PO4), etc. may be converted to soluble P

by P-solubilizing organisms inhabiting different soil ecosystems (Gupta et al. 2007;

Song et al. 2008; Khan et al. 2013; Sharma et al. 2013). Soil microorganisms in this

regard have generally been found more effective in making P available to plants

from both inorganic and organic sources by solubilizing (Toro 2007; Wani

et al. 2007a) and mineralizing complex P compounds (Bishop et al. 1994;

Ponmurugan and Gopi 2006), respectively. Several workers have documented

their findings in order to better understand as to how the microbial populations

cause the solubilization of insoluble P (Illmer and Schinner 1995; Khan et al. 2007,

2009; Buch et al. 2008). Of the various strategies adopted by microbes, the

involvement of low molecular mass organic acids (OA) secreted by microorgan-

isms has been a well-recognized and widely accepted theory as a principal means of

P-solubilization, and various studies have identified and quantified organic acids

and defined their role in the solubilization process (Maliha et al. 2004; Khan

et al. 2010; Marra et al. 2012). The OA produced by many P-solubilizers, for

example, bacterial cultures (Table 2.2) or fungi (Table 2.3), in the natural environ-

ment or under in vitro conditions chelate mineral ions or decrease the pH to bring P

into solution (Pradhan and Shukla 2005). Consequently, the acidification of micro-

bial cells and their surrounding leads to the release of P-ions from the P-mineral by

H+ substitution for Ca2+ (Goldstein 1994; Mullen 2005; Trivedi and Sa 2008). The

Table 2.1 Common phosphorous (P) minerals found in acid, neutral and calcareous soils

S.No. Minerals Chemical formula

Acid soils

Strengite FePO4.2H2O

Variscite AlPO4.2H2O

Neutral and calcareous soils

B-tricalcium phosphate Ca3(PO4)2
Dicalcium phosphate CaHPO4

Dicalcium phosphate dihydrate CaHPO4∙2H2O

Fluorapatite Ca5(PO4)3 F

Hydroxyapatite Ca5(PO4)3 OH

Octacalcium phosphate Ca4H(PO4)3∙2–5 H2O

Adapted from Yadav and Verma (2012)
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efficiency of solubilization, however, depends on the kind of organic acids released

into the medium and their concentration. Furthermore, the quality of the acid is

more important for P-solubilization than the total amount of acids produced by

phosphate solubilizing (PS) organisms (Scervino et al. 2010a, b). Additionally, the

simultaneous production of different organic acids by the PS strains may contribute

to the greater potential for solubilization of insoluble inorganic phosphates (Marra

et al. 2012).

There are also reports which suggest that insoluble P could be transformed into

soluble forms of P without OA production by microbes (Asea et al. 1988; Illmer and

Schinner 1992; Chen et al. 2006). For example, Altomare et al. (1999) while

investigating the P-solubilizing ability of plant growth-promoting and biocontrol

fungus Trichoderma harzianum T-22 did not produce OA under in vitro condition

suggesting that the insoluble P could be solubilized by mechanisms other than

acidification process also. The fungal-solubilizing activity was credited both to

chelation and to reduction processes, which may be useful in the management of

phytopathogens. Apart from the OA theory, some of the inorganic acids (Reyes

et al. 2001; Richardson 2001) such as HCl (Kim et al. 1997), nitric acid and

sulphuric acids (Dugan and Lundgren 1965) produced by chemoautotrophs and

the H+ pump, for example, in Penicillium rugulosum, have also been reported to

solubilize the insoluble P (Reyes et al. 1999). The inorganic acids so released

Table 2.3 Some examples of organic acids produced by P-solubilizing fungi

Organism Predominant acids References

Aspergillus niger FS1, Penicillium
canescens FS23, Eupenicillium
ludwigii FS27, Penicillium
islandicum FS30

Citric, gluconic, oxalic Mendes

et al. (2013)

Aspergillus awamori S19 Oxalic, malic, citric, succinic,

fumaric

Jain et al. (2012)

T. flavus, T. helicus,
P. purpurogenum, P. janthinellum

Acetic, butyric, citric, fumaric,

gluconic, glucuronic, lactic,

oxalic, propionic, succinic,

valeric

Scervino

et al. (2010a, b)

Aspergillus niger, Penicillium
bilaiae, Penicillium sp.

Oxalic, citric Arwidsson

et al. (2010)

Aspergillus flavus, A. candidus,
A. niger, A. terreus, A. wentii,
Fusarium oxysporum, Penicillium
sp., Trichoderma isridae,
Trichoderma sp.

Lactic, maleic, malic, acetic, tartaric,

citric, fumaric, gluconic

Akintokun

et al. (2007)

A. flavus, A. candidus, Penicillium
oxalicum

Glutaric, malic, gluconic, oxalic Shin et al. (2006)

Aspergillus flavus, A. niger,
P. canescens

Oxalic, citric, gluconic, succinic Maliha et al. (2004)

Penicillium rugulosum Citric, gluconic Reyes et al. (2001)

A. niger Succinic Vazquez

et al. (2000)
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convert TCP to di- and monobasic phosphates with the net result of an enhanced

availability of the element to plants.

2.2.1 Mineralization: Enzymatic Degradation of Complex
Organic P Compounds

Organic P compounds undergo mineralization, and the resulting P is taken up as

nutrient by plants. In this regard, numerous soil microbes or rhizosphere microflora

possess the ability to transform organic P into soluble forms of P (Tarafdar and

Claassen 1988; Rodriguez et al. 2006). This mineralization process is mediated by

the enzymes especially phosphatases (Tarafdar et al. 1988; Yadav and Tarafdar

2003; Aseri et al. 2009) and phytases (Maougal et al. 2014), released by the soil

microbes. The enzyme phosphatases (e.g. acid and alkaline phosphatases) released

exterior to the cell (exo-enzymes) are non-specific in nature and use organic P as a

substrate to convert it into inorganic form (Beech et al. 2001). Of the two phospha-

tases, acid phosphatases (To-O et al. 2000), a widely distributed enzyme and

commonly found in fungi (To-O et al. 1997; Abd-Alla and Omar 2001),

for example, Colletotrichum graminicola (Schadeck et al. 1998a, b), are considered
as the principal mechanism for mineralization of soil organic P (Hilda and Fraga

1999) where it catalyses the release of inorganic P from organic P compounds

such as inositol hexaphosphate (Nozawa et al. 1998; Tarafdar and Gharu 2006;

Yadav and Tarafdar 2007, 2011). However, the degradation of organic P mediated

by phosphatases varies greatly among different fungi (Guimarães et al. 2006).

Another attractive application of P-dissolving enzymes is the mineralization of

soil organic P through phytate degradation mediated by the enzyme phytase, which

specifically causes release of P from phytic acid. Phytate is a major component of

organic P in soil. Though the ability of plants to obtain P directly from phytate is

very limited, the growth and P nutrition of Arabidopsis plants supplied with phytate
was improved significantly when they were genetically transformed with the

phytase gene [phyA] derived from Aspergillus niger (Richardson 2001). This led

to the increase in P nutrition to such an extent that the growth and P content of the

plant was equivalent to control plants supplied with inorganic P. Similar increase in

utilization of inositol P by plants in the presence of microbial communities includ-

ing P-solubilizing fungus (A. niger) capable of producing phytase is reported

(Richardson 2001; Vassilev et al. 2007). Phosphonatases (Kumar et al. 2013) and

C–P lyases (Salimpour et al. 2010) are the other enzymes that cleave the C–P of

organophosphonates. Once the inorganic or organic P compound is changed to

soluble P, it can now easily be used up as P nutrient by plants, algae, cyanobacteria

and autotrophic bacteria and thereafter could be immobilized into organic cellular

macromolecules, for example, DNA, RNA and ATP. Considering the critical

impact of such enzymes in dissolution of complex organic compounds into usable

form of P, it is highly desirable to develop the bacterial/fungal inoculants with high
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phosphatase and phytase activity which in turn could possibly be of great practical

value in sustainable crop production.

2.3 Physiological Functions of Phosphate-Solubilizing

Microorganisms

Phosphate-solubilizing microorganisms increase the overall performance of plants

by providing mainly soluble P to plants in different production systems. However,

they also benefit plants by other mechanisms (Fig. 2.1). Indeed, PSM exhibit

multifunctional properties (Vassileva et al. 2010; Yadav et al. 2011; Khan

et al. 2013); for example, they are known to synthesize siderophores (Hamadali

et al. 2008; Wani et al. 2008a; Tank and Saraf 2003; Viruel et al. 2011) and IAA and

gibberellic acid (Sattar and Gaur 1987; Souchie et al. 2007; Viruel et al. 2011).

Fig. 2.1 An illustration depicting functional diversity among PS bacteria [Adapted from Khan

et al. (2013)]
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Phosphate-solubilizing bacteria such as Gram-negative P. fluorescens,
P. aeruginosa and Chromobacterium violaceum also secrete antibiotics (Lipping

et al. 2008; Taurian et al. 2010) and provide protection to plants against soilborne

pathogens (biocontrol) (Khan et al. 2002; Vassilev et al. 2006; Singh et al. 2010).

Other physiological traits of PSM involve the release of cyanide, a secondary

metabolite which is ecologically important (Wani et al. 2007b) and gives a selective

advantage to the producing strains (Rudrappa et al. 2008; Badawi et al. 2011).

Besides strict P-solubilizers, a few genera of rhizobia, for example, Bradyrhizobium
and Rhizobium, have also been found to solubilize P and secrete IAA (Pandey and

Maheshwari 2007; Badawi et al. 2011). There are numerous PS bacteria that

possess the ability to synthesize a key enzyme, 1-aminocyclopropane-1-carboxylate

(ACC) deaminase (Glick et al. 2007), which hydrolyses ACC [the immediate

precursor of plant hormone ethylene (C2H4)] to NH3 and α-ketobutyrate and thus

mitigate the inhibitory effects of C2H4. Some of the compounds synthesized by PS

bacteria with possible effect on plant growth are listed in Tables 2.4 and 2.5.

2.3.1 Some Examples of Positive Plant Growth Regulators
Synthesized by PSM

Plant growth regulators (PGRs) are the substances that influence physiological

processes of plants at very low concentrations and modify or control one or more

specific metabolic events of a plant (Danova et al. 2012; Sane et al. 2012).

According to the Environmental Protection Agency (EPA), the plant regulators

have been defined as “any substance or mixture of substances intended, through

physiological action, to accelerate or retard the rate of growth or maturation, or

otherwise alter the behaviour of plants or their produce”. Such compounds pro-

duced by the plant or by PGPR are called plant hormones (Davies 1995; Karadeniz

et al. 2006). Broadly, on the basis of chemical structures and their subsequent

effects on plants, plant growth-regulating substances have been divided into five

general groups: (1) auxins, (2) gibberellins, (3) cytokinins, (4) ethylene and (5) a

group called inhibitors, which includes abscisic acid (ABA), phenolics and alka-

loids (Frankenberger and Arshad 1995; Ferguson and Lessenger 2006). The pro-

duction of auxins (Glick 1995; Wani et al. 2007b, 2008b; Ahemad and Khan 2012)

and ethylene (Sasek et al. 2012), for example, by PSM, is considered a common

microbiological trait, while the synthesis of cytokinins by bacteria, for example,

Paenibacillus polymyxa (Raza et al. 2008), is less common (Timmusk et al. 1999).

The gibberellin secretion at high concentrations is, however, very rare (Solano

et al. 2010). Generally, majority (>80 %) of the soil bacteria are capable of

secreting auxins especially IAA, indole butyric acid or similar compounds via

tryptophan metabolism (Solano et al. 2010; Legault et al. 2011). A few examples

of the phytohormones secreted by PGPR including PS bacteria (Table 2.4) and PS
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rhizobia (Table 2.5) and other compounds and their direct or indirect impact on

plant growth and development are reviewed and discussed briefly in the following

section.

Table 2.4 Growth-promoting substances produced by plant growth-promoting rhizobacteria

Organisms Growth regulators References

Pseudomonas putida ACC deaminase, IAA, siderophore,

ammonia, HCN,

P-solubilization

Pseudomonas sp., Pseudomonas
fluorescens, Burkholderia glumae

ACC deaminase, IAA, siderophore,

ammonia, HCN,

P-solubilization

Rashid

et al. (2012)

Bacillus ACC deaminase, IAA, siderophore,

P-solubilization, lytic enzyme,

HCN

Kumar

et al. (2012)

Azotobacter IAA, siderophore, P-solubilization Farajzadeh

et al. (2012)

Klebsiella IAA, siderophore, P-solubilization,

HCN

Azotobacter, Fluorescent Pseudomonas,
and Bacillus

IAA, siderophore, ammonia, HCN,

P-solubilization

Pantoea dispersa strain 1A P-solubilization, IAA, siderophore,

HCN

Selvakumar

et al. (2008a,

b)

Bacillus spp. IAA, siderophore, HCN Wani

et al. (2007d)

Pseudomonas, Bacillus Siderophore, IAA, P-solubilization Rajkumar

et al. (2006)

Brevibacillus sp. IAA Vivas

et al. (2006)

Xanthomonas sp. RJ3, Azomonas sp. RJ4,
Pseudomonas sp. RJ10, Bacillus
sp. RJ31

IAA Sheng and Xia

(2006)

Bacillus sp. P-solubilization Canbolat

et al. (2006)

Brevibacterium sp. Siderophore Noordman

et al. (2006)

Bacillus subtilis IAA and P-solubilization Zaidi and Khan

(2006)

Variovorax paradoxus, Rhodococcus
sp. and Flavobacterium (Cd tolerant)

IAA and siderophore Belimov

et al. (2005)

Pseudomonas fluorescens IAA, siderophore, P-solubilization Gupta

et al. (2005)

Pseudomonas putida Siderophore Tripathi

et al. (2005)

Azotobacter, fluorescent Pseudomonas IAA

2 Mechanism of Phosphate Solubilization and Physiological Functions of. . . 39



2.3.1.1 Synthesis and Physiological Functions of Phytohormones

Synthesis of IAA

The synthesis of IAA by microbes (Fig. 2.2) involves one of the three pathways:

(1) Indoleacetic acid formation via indole-3-pyruvic acid and indole-3-acetic alde-

hyde is found in the majority of bacteria like Erwinia herbicola; saprophytic species
of the genera Agrobacterium and Pseudomonas; and certain representatives of

Bradyrhizobium, Rhizobium, Azospirillum, Klebsiella and Enterobacter. (2) The
conversion of tryptophan into indole-3-acetic aldehyde may involve an alternative

pathway in which tryptamine is formed. This pathway is believed to operate in

pseudomonads and azospirilla. (3) IAA biosynthesis via indole-3-acetamide for-

mation is reported for phytopathogenic bacteria Agrobacterium tumefaciens,
Pseudomonas syringae and E. herbicola and saprophytic pseudomonads like

Pseudomonas putida and P. fluorescens. The genes controlling IAA synthesis via

this pathway are also reported in symbiotic bacteria like Rhizobium spp.,

Table 2.5 Examples of plant growth-promoting substances synthesized by symbiotic nitrogen

fixers

Symbiotic N2 fixer Crop enhancer References

Rhizobium leguminosarum
RP2

ACC deaminase, IAA, HCN, siderophore,

ammonia, EPS

Bradyrhizobium MRM6 IAA, HCN, siderophore, ammonia, EPS

Rhizobium MRL3 IAA, HCN, siderophore, ammonia

Sinorhizobium strain Chitinase Qing-xia

et al. (2011)

Rhizobium leguminosarum
var. Phaseoli

IAA Stajković

et al. (2011)

Rhizobium spp. IAA, siderophore Mehboob

et al. (2010)

Sinorhizobium meliloti IAA, P-solubilization Bianco and Defez

(2010)

Bradyrhizobium IAA, gibberellic acid Afzal et al. (2010)

Mesorhizobium IAA

Rhizobium spp. IAA Chakraborty

et al. (2009)

Rhizobium leguminosarum IAA, siderophore

Mesorhizobium IAA, HCN, siderophore, ammonia,

P-solubilization

Rhizobium strain TAL 1145 ACC deaminase Tittabutr

et al. (2008)

Rhizobium spp. IAA, gibberellic acid, zeatin Boiero et al. (2007)

Mesorhizobium loti MP6 IAA, HCN, siderophore, P-solubilization Chandra

et al. (2007)

Rhizobium etli USDA9032 Phenazine, antibiotic Krishnan

et al. (2007)
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Bradyrhizobium spp. and Azospirillum spp., although the activity of the

corresponding enzymes is either negligible or not detectable. Indoleacetic acid

biosynthesis that involves tryptophan conversion into indole-3-acetonitrile is

found in plants, Alcaligenes faecalis, and possibly the cyanobacterium

Synechocystis sp., and the tryptophan-independent pathway, more common in

plants, is also found in microorganisms (azospirilla and cyanobacteria). However,

the synthesis of IAA using this pathway is reported to be insignificant, and the

mechanisms are largely unknown. Many bacteria are known to synthesize auxins

using such pathways and help the plants to grow better. Bacteria in general form

maximum amount of IAA during the steady-state stage of their growth while

ammonium ions and glutamine inhibit IAA biosynthesis (Tsavkelova et al. 2006).

The genes involved in IAA synthesis in bacterial strains may be plasmid or

chromosomal borne. For example, pathogenic bacteria contain Ti plasmids that

control the formation of the phytohormone, whereas in saprophytic microorgan-

isms, auxin biosynthesis is governed by chromosomal genes (Tsavkelova

et al. 2006). It is reported that 80 % of microorganisms isolated from the rhizo-

sphere of various crops possess the ability to synthesize and release auxins as

secondary metabolites (Loper and Schroth 1986). Of the various PGPR strains,

bacteria belonging to the genera Azospirillum, Pseudomonas, Xanthomonas and

Rhizobium as well as Alcaligenes, Enterobacter, Acetobacter and Bradyrhizobium
have been shown to produce auxins which help in stimulating plant growth

(Egamberdieva et al. 2007; Wani et al. 2007c; Kumar et al. 2008; Poonguzhali

et al. 2008). However, the extent of IAA production by bacterial strains could be

different due in part to the involvement of biosynthetic pathways, location of the

genes, regulatory sequences and the presence of enzymes to convert active free IAA

into conjugated forms. Moreover, the synthesis of IAA is also influenced by

environmental factors (Patten and Glick 1996). Synthesis of IAA by Rhizobium
spp. in the presence and absence of tryptophan has also been demonstrated (Wani

et al. 2007c). In a similar study, Bent et al. (2001) reported that the concentration of

indole compounds by three different strains, Paenibacillus polymyxa (L6),

P. polymyxa (Pw-2) and Pseudomonas fluorescens (M20), increased with increas-

ing rate of tryptophan (0–200 mg/ml) at different incubation interval.

Fig. 2.2 Biosynthetic pathways of IAA in bacteria [Adapted from Patten and Glick (1996)]
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Physiological Functions of IAA

The production of phytohormones such as auxins by microbial communities has

been reported by various workers over the last 20 years (Giordano et al. 1999a, b;

Rajkumar and Freitas 2008; Singh 2008; Ahemad and Khan 2012). Among plant

hormones, auxins are the major plant growth regulators produced by PSM (Oves

et al. 2013) and exhibit many physiological functions as shown in Fig. 2.3. Apart

from varying physiological functions of IAA, the role of IAA in legume–Rhizobium
symbiosis is briefly discussed in the following section.

Role of Indoleacetic Acid in Legume–Rhizobium Symbiosis

Among nodule bacteria, rhizobial strains have been reported to produce auxins in

variable amounts. For example, Vargas et al. (2009) in a study reported consider-

ably lower frequency of auxin producers (23 %) among populations of clover

nodulating R. leguminosarum bv. trifolii. The auxins so released by nodule bacteria
are reported to affect nodulation, and accordingly, IAA synthesizing rhizobia have

been found to produce more nodules than IAA-negative mutants (Boiero

et al. 2007). The IAA produced by rhizobia may also induce root morphogenesis

and consequently enhance its (1) size and weight, (2) branch numbers and patterns

and (3) the surface area of roots as reported in non-legumes (Dazzo and Yanni

Fig. 2.3 Indoleacetic acid affecting various stages of plant development
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2006). Inoculation with auxin-producing bacteria may also result in the formation

of adventitious roots (Solano et al. 2010). Furthermore, Noel et al. (1996) observed

that the inoculation with IAA-producing strains of R. leguminosarum accelerated

the germination of canola and lettuce. Similarly, Biswas et al. (2000) concluded that

the inoculation of rice with R. leguminosarum bv. trifolii increased dry matter and

grain production, besides an increment in N, P, K and Fe content in plant tissue. All

these effects were ascribed due to the accumulation of IAA in the rhizosphere

following rhizobial inoculation leading to some physiological changes in the root

systems with consequent increase in nutrient uptake. In contrast, the overproduction

of IAA in some cases by PGPR has been found to have deleterious impact on to

plants (Schlindwein et al. 2008). For example, R. leguminosarum bv. trifolii strain
TV-13 produced 171.1 mg/ml IAA in media enriched with tryptophan (Schlindwein

et al. 2008), while strains of Bradyrhizobium sp. isolated from black wattle roots

produced between 1.2 and 3.3 mg/ml IAA and increased the seedling vigour in

relation to un-inoculated control plants. The variation in the amount of IAA

produced by PGPR was, however, suggested due to differences in the composition

of the growth medium and tryptophan concentration. In a follow-up study, Sridevi

et al. (2008) observed that IAA production by rhizobia occurred only when trypto-

phan was added to YM and that the isolates produced the maximum amount of IAA

in medium supplemented with 2.5 mg/ml tryptophan concentration.

Other Phytohormones

Like auxins, cytokinins influence both cell division and cell enlargement and also

affect seed dormancy, flowering, fruiting and plant senescence (Ferguson and

Lessenger 2006). Cytokinin production by PGPR (Boiero et al. 2007) is, however,

less obvious compared to the production of auxins. This is probably due to the lack

of methods used for cytokinin detection, and hence, reports on cytokinin synthesis

by PGPR in general are scarce. Gibberellin is yet another growth regulator which

(1) affects seed germination (Miransari and Smith 2009), (2) stimulates growth of

plants (Guo et al. 2011) and (3) delays ageing (Ferguson and Lessenger 2006). The

production of gibberellins at high concentrations is considered very rare and has

been reported for two strains of Bacillus, isolated from the Alnus glutinosa rhizo-

sphere (Solano et al. 2010). The concentration of gibberellins in nodules is,

however, generally higher than in nearby root tissue as supported by the fact that

rhizobia have the capacity to produce some amount of gibberellin-like substances.

However, it is not known whether bacteria contribute significantly to the amount of

gibberellins within the nodule or it is just imported from some remote host plant

tissue (Dobert et al. 1992; Hedden and Thomas 2012). Despite all these contrasting

facts, the role of gibberellin in Rhizobium–legume symbiosis that may have impor-

tant implications in the endophytic colonization of non-legumes by rhizobia is

adequately described. For example, A. caulinodans infects the semi-aquatic legume

Sesbania rostrata via the intercellular crack entry, a process mediated by gibbe-

rellins. Considering that crack entry is the main process of endophytic colonization
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of non-legumes by rhizobia, the production of gibberellins by the bacterium is

reported to facilitate this process (Lievens et al. 2005).

2.3.2 Negative Plant Growth Regulator

Abscisic acid is one of the strong inhibitor of growth and germination and promotes

seed dormancy (Miransari and Smith 2009; Yang et al. 2009). Apart from these,

ABA also helps plants to tolerate abiotic stresses. When plants are exposed to

drought stress, the hormonal balance of plants changes and ABA content in the

leaves increases, which reduce the level of cytokinin. This in turn elicits stomata

closure (Yang et al. 2009). Cohen et al. (2009) in a similar study suggested that

ABA produced along with gibberellins by PGPR strain significantly contributed to

water stress alleviation of maize plants. Some rhizobial strains such as B. japonicum
USDA110 also produce ABA (Boiero et al. 2007) and function in the same way as

do the other PGPR (Zhang et al. 2012).

2.3.3 Growth Modulation Enzyme ACC Deaminase

Ethylene is a plant hormone which under normal conditions regulates many physio-

logical processes, such as (1) seed germination, (2) root hair development and root

elongation, (3) leaf and organ senescence, (4) leaf and petal abscission, (5) epinasty

and (6) fruit ripening (Abeles et al. 1992; Frankenberger and Arshad 1995; Arshad

and Frankenberger 2002; Siddikee et al. 2011). Also, ethylene regulates nod factor

signalling and nodule formation and has primary functions in plant defence sys-

tems. Besides its physiological role in different developmental processes of plants,

ethylene is also considered as a stress hormone, whose synthesis in plants is

increased substantially by a number of biotic and abiotic stresses. At higher

concentrations, ethylene, however, inhibits growth and development of plants

(Grichko and Glick 2001). The enzyme 1-aminocyclopropane-1-carboxylate

(ACC) deaminase (E.C. 4.1.99.4) which however mitigates the ethylene stress

was first purified to homogeneity from Pseudomonas sp. strain ACP (Honma and

Shimomura 1978), later on partially purified from P. chlororaphis 6G5 (Klee

et al. 1991) and P. putida GR12-2 (Jacobson et al. 1994) and then purified to

homogeneity from P. putida UW4 (Hontzeas et al. 2004). Enzyme ACC deaminase

(a multimeric enzyme) has been found thereafter to be synthesized by a variety of

PGPR (Belimov et al. 2005; Rajkumar et al. 2006; Madhaiyan et al. 2007; Mellado

et al. 2007).
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2.3.3.1 How the Bacterial ACC Deaminase Works

Mechanistically, the ACC deaminase-producing plant growth-promoting bacteria

first bind to the surface of a plant (usually seeds or roots), although these bacteria

may also be found on leaves and flowers or within a plant’s internal tissues, i.e. as

an endophyte (Glick et al. 1998). Along with other small molecular components of

root exudates, some of the plant ACC (a non-ribosomal amino acid) is exuded from

seeds, roots or leaves (Penrose et al. 2001) and may be taken up by the bacteria

associated with these tissues and subsequently cleaved by ACC deaminase (Penrose

and Glick 2003). The ACC, the immediate precursor of C2H4, when hydrolysed by

ACC deaminase results in NH3 and α-ketobutyrate formation (Glick et al. 1998;

Penrose and Glick 2003; Reed et al. 2005; Safronova et al. 2006), and hence, it

strongly alleviates the stress induced by ethylene-mediated impact on plants by

lowering the C2H4 levels in plants (Glick et al. 2007; Sessitsch et al. 2005; Sun

et al. 2009). The bacteria utilize the NH3 so evolved from ACC as a source of N and

thereby restrict the accumulation of C2H4 within the plant, which otherwise inhibits

plant growth (Belimov et al. 2002). Thus, the decreased levels of C2H4 in turn allow

the plants to grow better (Zahir et al. 2008). A model to explain how ACC

deaminase promotes plant growth is depicted in Fig. 2.4. It has been observed

that plants inoculated with PGPR containing ACC deaminase were dramatically

more resistant to the deleterious effects of stress ethylene, synthesized under

stressful conditions such as flooding (Grichko and Glick 2001), heavy metals

(Burd et al. 1998; Grichko et al. 2000), presence of phytopathogens (Wang

et al. 2000), drought and high saline conditions (Mayak et al. 2004). The net result

of the cleavage of exuded ACC by bacterial ACC deaminase is that the bacterium is

de facto acting as a sink for ACC. Additionally, plants growing in association with

ACC deaminase-containing plant growth-promoting bacteria generally have longer

roots and shoots and are more resistant to growth inhibition by a variety of ethylene-

inducing stresses. Furthermore, the reduction of ethylene levels in plant tissues

following ACC deaminase activity can cause significant morphological changes in

root tissue, such as changes in root hair length and increases in root mass, accom-

panied by the consequent improvement in nutrient uptake. The morphological

changes in plants are further increased when ACC deaminase action is coupled

with the production of auxins by PGPR. The question arises, how bacterial ACC

deaminase selectively reduces the deleterious ethylene levels (the second ethylene

peak) without affecting the small first peak of ethylene that is thought to activate

plant defence responses. In this regard, ACC deaminase is generally present in

bacteria at a relatively low level until it is induced, and the induction of enzyme

activity is a rather slow and complex process. Immediately following an abiotic or

biotic stress, the pool of ACC in the plant is low as is the level of ACC deaminase in

the associated bacterium. Stress induces the induction of ACC oxidase in the plant

so that there is an increased flux through ACC oxidase resulting in the first (small)

peak of ethylene that in turn induces the transcription of protective/defensive genes

in the plant. At the same time, bacterial ACC deaminase is induced by the
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increasing amounts of ACC that ensue from the induction of ACC synthase in the

plant so that the magnitude of the second, deleterious, ethylene peak is decreased

significantly (typically by 50–90 %). Because ACC oxidase has a greater affinity for

ACC than does ACC deaminase, when ACC deaminase-producing bacteria are

present, plant ethylene levels are dependent upon the ratio of ACC oxidase to ACC

deaminase. That is, to effectively reduce plant ethylene levels, ACC deaminase

must function before any significant amount of ACC oxidase is induced. Thus, in

the absence of some other mechanism, IAA-producing bacteria might all be

expected to ultimately be inhibitory to plant growth. However, this is in fact not

the case because as plant ethylene levels increase, the ethylene that is produced

through feedback mechanism inhibits IAA signal transduction thereby limiting the

extent that IAA can activate ACC synthase transcription (Pierik et al. 2006;

Prayitno et al. 2006; Czarny et al. 2007; Stearns et al. 2012). In plants inoculated

with PGPR that secrete both IAA and ACC deaminase, the level of ethylene does

not increase compared to the plants inoculated only with IAA-secreting bacteria. In

the presence of ACC deaminase, there is much less ethylene and subsequent

ethylene feedback inhibition of IAA signals transduction so that the bacterial IAA

can continue to promote both plant growth and increase ACC synthase

Fig. 2.4 A schematic model of how plant growth-promoting bacteria that both produce ACC

deaminase and synthesize IAAmay facilitate plant growth. The only enzyme shown in this scheme

is ACC deaminase. SAM is converted to ACC by the enzyme ACC synthase; ACC is converted to

ethylene by ACC oxidase. IAA biosynthesis, both in bacteria and in plants, is a complex multi-

enzyme/protein process as is IAA signal transduction. ACC 1-aminocyclopropane-1-carboxylate,

IAA indole-3-acetic acid, SAM S-adenosyl methionine [Adapted from Glick (2014)]
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transcription. However, in this case, a large portion of the additional ACC which is

synthesized is hydrolysed by the bacterial ACC deaminase. Therefore, the use of

such plant growth-promoting bacteria containing ACC deaminase may prove useful

in developing strategies to facilitate plant growth in stressed soil environments.

2.3.3.2 Role of ACC Deaminase in Nodulation

ACC deaminase-containing bacteria are relatively common in soil and have been

found in a wide range of environments across the world. Indeed, the ability of

bacteria to hydrolyse ACC has a competitive advantage over other soil inhabitants

because it can use ACC as an N source (Jacobson et al. 1994). This hypothesis

suggests that ACC may act as a unique/novel source of N for some soil bacteria.

While searching for ACC deaminase positive rhizobial strains, it was found that

amongst 13 different rhizobial strains, five strains displayed enzyme activity while

seven strains had the acdS gene (Ma et al. 2003). Conclusively, it was reported that

the Mesorhizobium strain only expressed this activity when the bacterium was

present within a root nodule. In other investigation conducted in southern Saskatch-

ewan, Canada, of the total 233 rhizobial strains isolated from soil samples collected

from 30 different sites, nearly 12 % (27 strains) displayed the ACC deaminase

activity (Duan et al. 2009). Similarly, ACC deaminase genes have been reported in

chickpea Mesorhizobium isolates (Nascimento et al. 2012), B. japonicum E109,

USDA110 and SEMIA5080 (Boiero et al. 2007). Rhizobial strains that express

ACC deaminase are up to 40 % more efficient at forming nitrogen-fixing nodules

than strains that lack this activity (Ma et al. 2003, 2004). However, strains of

rhizobia that express ACC deaminase have only a low level of enzyme activity

compared with free-living plant growth-promoting bacteria, i.e. typically around 2–

10 %. Thus, free-living bacteria bind relatively non-specifically to plant tissues

(mainly roots) and have a high level of ACC deaminase activity that can protect

plants from different abiotic and biotic stresses by lowering ethylene levels

throughout the plant. On the other hand, (symbiotic) rhizobia that generally bind

tightly only to the roots of specific plants have a low level of enzyme activity which

facilitates nodulation by locally lowering ethylene levels. It is not known whether

the large differences in enzyme activity that are observed when comparing free-

living bacteria with rhizobia are a consequence of differences in the amount of

enzyme synthesized by one type of bacteria versus the other or of differences in the

specific catalytic activity of the enzymes from the different types of bacteria. It has

also been observed that some rhizobia reduces the plant ethylene levels mediated by

ACC deaminase activity and enhances nodulation in host legumes (Zahir

et al. 2008; Belimov et al. 2009) or modifies root system of non-legumes. For

instance, strains of R. leguminosarum bv. viciae and Mesorhizobium loti increased
the number of lateral roots in Arabidopsis thaliana because of this plant growth-

promoting mechanism (Contesto et al. 2008). In addition to the more common

mode of acdS transcriptional regulation, acdS genes from various strains of M. loti
have been found to be under the transcriptional control of the nifA promoter that is
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normally responsible for activating the transcription of nif, nitrogen fixation genes

(Kaneko et al. 2000; Sullivan et al. 2002; Uchiumi et al. 2004; Nukui et al. 2006;

Nascimento et al. 2012). The consequence of this somewhat unusual mode of

regulation is that, unlike ACC deaminases from other rhizobia, the M. loti ACC
deaminase does not facilitate nodulation but, rather, is expressed within nodules.

The result of this unusual regulation is, in M. loti, ACC deaminase may act to

decrease the rate of nodule senescence. This is particularly important because of the

fact that nitrogen fixation, a process that utilizes a very high level of energy in the

form of ATP, could (perhaps inadvertently) activate stress ethylene synthesis

resulting in premature nodule senescence.

2.3.4 Physiological Functions of Siderophores

Iron is essential for almost all life for processes such as respiration and DNA

synthesis. Despite being one of the most abundant elements in the Earth’s crust,

the bioavailability of iron in many environments such as the soil is limited by the

very low solubility of the Fe3+ ion. In the aerobic environment, iron accumulates in

common mineral phases such as iron oxides and hydroxides and hence becomes

inaccessible to organisms. Microbes (e.g. bacteria and fungi) have, therefore,

evolved a strategy to acquire iron by releasing siderophores (Greek: “iron carrier”),

small (generally less than 1,000 molecular weight) high-affinity iron-chelating

compounds, which scavenge iron from the mineral phases by forming soluble

Fe3+ complexes that can be taken up by active transport mechanisms. Broadly,

siderophores act as solubilizing agents for iron from minerals or organic com-

pounds under conditions of iron starvation (Miethke and Marahiel 2007;

Indiragandhi et al. 2008). There are more than 500 different siderophores which

are produced mainly by Gram-positive and Gram-negative bacteria. Siderophores

are highly electronegative and bind Fe (III), preferentially forming a

hexacoordinated complex. The iron ligation groups have been tentatively classified

into three main chemical types: (1) hydroxamate (e.g. aerobactin and ferrichrome),

(2) catecholates/phenolates (e.g. enterobactin) and (3) hydroxyl acids/carboxylates

(e.g. pyochelin). Some siderophores contain more than one of the three iron-

chelating groups (Table 2.6). Siderophores are, however, usually classified by the

ligands used to chelate the ferric iron. Citric acid can also act as a siderophore. The

wide variety of siderophores may be due to evolutionary pressures placed on

microbes to produce structurally different siderophores (Fig. 2.5). Siderophores

are important for some pathogenic bacteria for their acquisition of iron. The strict

homeostasis of iron leads to a free concentration of about 10�24 mol/l, and hence,

there are great evolutionary pressures put on pathogenic bacteria to obtain this

metal. For example, the anthrax pathogen Bacillus anthracis releases two

siderophores, bacillibactin and petrobactin, to scavenge ferric iron from iron

proteins.
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Table 2.6 Some examples of siderophores produced by various bacteria and fungi

S.No. Siderophores Producing organisms

1 Hydroxamate

A Ferrichrome Ustilago sphaerogena

B Desferrioxamine B (deferoxamine) Streptomyces pilosus, Streptomyces coelicolor

C Desferrioxamine E Streptomyces coelicolor

D Fusarinine C Fusarium roseum

E Ornibactin Burkholderia cepacia

2 Catecholate

A Enterobactin Escherichia coli

B Bacillibactin Bacillus subtilis, Bacillus anthracis

C Vibriobactin Vibrio cholera

3 Mixed ligands

A Azotobactin Azotobacter vinelandii

B Pyoverdine Pseudomonas aeruginosa

C Yersiniabactin Yersinia pestis

Fig. 2.5 Different types of siderophores
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2.3.4.1 Role of Siderophores in Biological Nitrogen Fixation

Siderophore produced by majority of PGPR (Rajkumar et al. 2010) including

rhizobia (Ahemad and Khan 2012) has been suggested as one of the modes of

growth promotion of nodulated legumes under field conditions wherein

siderophores facilitate the uptake of iron (assimilation) from the environment

(Kloepper and Schroth 1978; Katiyar and Goel 2004). The iron enzymes involved

include nitrogenase, leghemoglobin, ferredoxin and hydrogenase with nitrogenase

and leghemoglobin constituting up to 12 % and 30 % of total protein in the bacterial

and infected plant cells, respectively (Verma and Long 1983). A nodulated legume

has been found to have an increased demand for iron compared to that of a

non-nodulated plant (Derylo and Skorupska 1993). For example, Pseudomonas
sp. strain 267 enhanced symbiotic N2 fixation in clover under gnotobiotic condi-

tions, produced fluorescent siderophores under low-iron conditions and secreted B

group vitamins (Marek-Kozaczuk and Skorupska 2001). However, Tn5 insertion

mutants of strain 267 defective in siderophore production did not differ from the

wild type in promoting the growth of clover suggesting that the siderophore

production had no effect on stimulating nodulation. In contrast, Gill et al. (1991)

demonstrated that mutants of R. melioti that were unable to produce siderophores

were able to nodulate the plants, but the efficiency of N2 fixation was less compared

to the wild type, indicating the importance of iron in N2 fixation. In a similar study,

Kluyvera ascorbata, a siderophore-producing PGPR, was able to protect plants

from heavy metal toxicity (Burd et al. 1998).

2.3.5 Cyanogenic Compounds

Cyanide is yet another secondary metabolite produced during the early stationary

growth phase (Knowles and Bunch 1986) by several PGPR, notably Pseudomonas
spp. and Bacillus (Wani et al. 2007d), Chromobacterium (Faramarzi and Brand

2006) and Rhizobium spp. (Wani et al. 2008a, b) by oxidative decarboxylation

pathway using glycine, glutamate or methionine as precursors (Curl and Truelove

1986). The cyanide so released by microbial communities in solution acts as a

secondary metabolite and confers a selective advantage onto the producer strains

(Vining 1990). Although cyanide is a phytotoxic agent capable of disrupting

enzyme activity involved in major metabolic processes, its role as a biocontrol

substance is overwhelming (Devi et al. 2007; Voisard et al. 1989). Hydrogen

cyanide (HCN) among cyanogenic compounds effectively blocks the cytochrome

oxidase pathway and is highly toxic to all aerobic microorganisms at picomolar

concentrations. However, producer microbes, mainly pseudomonads, are reported

to be resistant (Bashan and de-Bashan 2005).

50 M.S. Khan et al.



2.3.6 Production of Lytic Enzymes

In high input modem agricultural practices, pesticides are frequently and inappro-

priately used to protect crop plants from damage by insects, disease and so on which

today still destroy almost 33 % of all food crops. The use of pesticides in this

respect is considered effective if they provide the desired biological results and are

inexpensive. However, the indiscriminate use of pesticides has resulted in the

adverse impact on soil fertility, human health and the environment. Therefore,

one of the safest strategies involving microorganisms for controlling/managing

plant pests often called as “biocontrol” holds great promise as an alternative to

the use of synthetic agrichemicals. Biological control agents are generally consi-

dered more environmentally sound than the pesticides and other antimicrobial

treatments. In this context, the antagonistic potential of microbes in particular has

formed the base for effective applications of such organisms as an alternative to the

chemical control measures against a range of fungal and bacterial plant pathogens.

And hence, a variety of microbial compounds have been identified/extracted that

have been found to inhibit/suppress the phytopathogenic growth leading thereby to

the reduction in damage to plants (Helbig 2001; Yang et al. 2005; Raza et al. 2008).

These microbially synthesized compounds include defence enzymes, such as

chitinase, β-1,3-glucanase, peroxidase, protease and lipase (Bashan and

de-Bashan 2005; Karthikeyan et al. 2006). Chitinase and β-1,3-glucanase degrade

the fungal cell wall and cause lysis of fungal cell. Furthermore, chitin and glucan

oligomers released during degradation of the fungal cell wall by the action of lytic

enzymes act as elicitors that elicit various defence mechanisms in plants. Such

enzymes produced by Pseudomonas stutzeri have demonstrated the lysis of the

pathogen Fusarium sp. (Bashan and de-Bashan 2005). Peroxidase (PO) represents

another component of an early response in plants to pathogen attack and plays a key

role in the biosynthesis of lignin which limits the extent of pathogen spread (Bruce

and West 1989). In bean, rhizosphere colonized by various bacteria induced PO

activity (Zdor and Anderson 1992). In a study, a rapid increase in PO activity was

recorded in coconut (Cocos nucifera L.) treated with a mixture of P. fluorescens,
T. viride and chitin which contributed to induced resistance against invasion by

Ganoderma lucidum, the causal agent of Ganoderma disease (Karthikeyan

et al. 2006). These findings suggest that PGPR possessing the ability to synthesize

hydrolytic enzymes can effectively be utilized for managing the plant diseases and

can help to reduce the pesticide usage.

2.4 Conclusion

In intensive agricultural practices, P is supplied to plants through synthetic phos-

phatic fertilizers, which indeed is expensive and environment disruptive. Appli-

cation of phosphate-solubilizing microorganisms as an alternative to chemically
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synthesized phosphatic fertilizer is therefore an urgent requirement in crop produc-

tion systems. The success of this microbiological approach, however, depends on

identification, preparation and delivery of multifunctional phosphate solubilizers to

farm practitioners. Understanding the mechanistic basis of phosphate solubilization

by soil dwellers is critical and requires multifaceted approach to uncover the hidden

phosphate-solubilizing potentials of functionally diverse yet naturally abundant soil

microflora. Moreover, the functional variations among phosphate solubilizers need

to be identified. Once identified and physiologically characterized, phosphate-

solubilizing microbes are likely to provide benefits to crops in sustainable

agriculture.
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inhibits the production of gibberellins but not sterol or carotenoid biosynthesis in Gibberella
fujikuroi. Microbiology 145:2997–3002

Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol

41:109–117

Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the

world. Microbiol Res 169:30–39

Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentration by

plant growth promoting bacteria. J Theor Biol 190:63–68

Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant

growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization

of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S

(eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington,

DC, pp 197–203

54 M.S. Khan et al.



Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant

growth-promoting bacteria. Plant Physiol Biochem 39:11–17

Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the

bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol

81:45–53
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Chapter 3

Factors Affecting Phosphate-Solubilizing

Activity of Microbes: Current Status

Javed Musarrat and Md. Saghir Khan

Abstract Phosphorous (P) plays an important role in regulating the vital meta-

bolism and concomitantly the health of plants. The use of phosphate-solubilizing

microorganisms (PSM) in P-deficient soils has been found effective in transforming

insoluble P into soluble forms and, hence, enriching the soil P pool. The structure,

composition, and physiological functions of soil dwellers depend, however, on the

variable soil constituents and other environmental factors. Moreover, the establish-

ment and performance of these microbes are affected severely by environmental

stressors such as high temperature, pH, and salt, etc. prevalent in degraded eco-

systems such as alkaline/saline soils. Therefore, any alteration in normal environ-

mental factors leads to poor growth and survival of PSM. Also, PSM, when

introduced exogenously into soil as inoculant, encounter a furious competition

from the indigenous soil microflora. The success of the inoculants, therefore,

depends on how quickly and efficiently such microbes overcome the stressful

environmental variables. This chapter focuses on the effects of different factors

on the overall functioning of the PSM, which is likely to help in developing

environment-friendly bio-inoculants, especially for P acquisition by plants under

environmentally challenged conditions.

Keywords PSM • Temperature • Salts • Alkalinity • pH

3.1 Introduction

Phosphorus is one of the 16 known major plant nutrients that plays a significant role

in plant metabolism (Vikram and Hamzehzarghani 2008; Padmavathi and Usha

2012). On global basis, 40 % of the arable soil is P deficient (Vance 2001) because
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most of the P remain in insoluble forms (Omar 1998; Zaidi et al. 2009). Further-

more, a large portion of the phosphatic fertilizers applied to soil is rapidly fixed/

immobilized and becomes unavailable to plants (Xiao et al. 2011). The insoluble

and fixed forms of P, therefore, alter the fertility of soil (Bhattacharyya and Jha

2011) and limit plant growth (Prejambda et al. 2009; Victoria et al. 2009; Plassard

and Dell 2010). Due to this P fertility problems, growers often apply severalfold

excess P than required by plants (Goldstein 1986) which after accumulation/

deposition gradually results in soil pollution and pollution of other water resources

such as lakes, streams, and groundwater (Del Campillo et al. 1999; Reddy

et al. 2002). On the contrary, the rate of replenishment and availability of P in

soil is determined largely by so many environmental factors, for example, soil pH,

temperature, humic substances, soil P concentration, its fixation by soil, microbial

composition including PSM (Hameeda et al. 2008; Henri et al. 2008; Srividya

et al. 2009) and their functions, and various plant exudates (Hoffland et al. 1989; Ae

et al. 1990; Gillespie and Pope 1990; Hartwig et al. 1991; Cook et al. 1995). Apart

from these, the P solubilization process, a complex phenomenon, also depends on

many other factors such as the nutritional richness of soils and growth dynamics and

physiological functions of the organisms involved in solubilization of complex

organic P (mineralization) or inorganic P (solubilization) (Cunningham and Kuiack

1992; Reyes et al. 1999; Chen et al. 2006). Moreover, the performance of PSM has

also been found to be severely affected by stressors and vegetation (Yoon

et al. 2001; Gupta et al. 2007; Sánchez-Porro et al. 2009; Yadav et al. 2010),

while for proper growth, establishment, and normal functioning of PSM in soils, the

organisms should be provided with a healthy and nutrient-rich environment

(Vassileva et al. 1999). Despite conflicting reports on the P solubilization efficiency

of PSM in fluctuating environment (Kern et al. 2012), such microbes, when coated

onto seeds or applied in soils, have shown a variable yet profound increase in P

uptake by plants and in turn enhance the crop yields (Zaidi et al. 2003; Afzal and

Bano 2008; Hamdali et al. 2012; Ahmad et al. 2013) under changing/stressed

environmental conditions. The impact of various environmental variables on struc-

tural and functional diversity of PS microbes is reviewed and discussed in the

following section.

3.2 Factors Affecting Inorganic P Solubilization

3.2.1 Hydrogen Ion Concentration (pH)

Among the various environmental factors affecting the growth and metabolic

activities of microbial populations including PSM (Table 3.1; Fig. 3.1) is the pH

of the medium in which organisms are growing (Narsian and Patel 2000; Reyes

et al. 2002; Khan et al. 2007). Functionally, the optimum pH for maximum

solubilization of inorganic P by bacteria has been found to be neutral or slightly
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acidic (Bajpai and Sundara 1971). The phosphate-solubilizing (PS) activity of PSF

and yeast in contrast occurs best in the pH range 4–6 (Ahmad and Jha 1968).

Moreover, the activity of PSF is considerably reduced when pH values increases to

pH 7.0 to pH 8.0 because fungi in general prefer slightly acidic conditions for

growth than do the bacterial cultures. This indeed is true because in most of the

cases, acidification has been reported as the principal mode of P solubilization by

microbes (Khan et al. 2007, 2009, 2010, 2013). Therefore, high P solubilization by

microbes is quite often associated with a consequent decrease in the pH of the

medium in which they are growing. Concomitantly, a significantly negative corre-

lation between pH and solubilization of inorganic P, for example, calcium phos-

phate, has been reported (Wani et al. 2008). Also, a significant correlation between

final pH value and titratable acidity and between titratable acidity and soluble P has

been observed when 42 bacterial isolates were tested for their ability to solubilize

rock phosphate (RP) and Ca-P in culture medium (Nahas 1996). Recently, the

liquid Pikovskaya (PVK) medium inoculated with PSF and PSB showed greater

reduction in pH, and it has been observed that more the phosphate solubilized, the

greater was the reduction in pH values (Reena et al. 2013). Interestingly, both

bacteria (P. aeruginosa and B. subtilis) and fungi (A. niger, Penicillium sp., and

Micrococcus sp.) showed maximum P solubilization at pH 3.0 at 28 �C and 37 �C,
respectively. Furthermore, such bacterial and fungal cultures produced carboxylic

acids, which solubilized the insoluble Tri-calcium phosphate (TCP) efficiently in

the medium. The titratable acidity also confirmed the release of carboxylic acid in

Fig. 3.1 Factors affecting the survival and physiological functions of PSM
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the medium. The converse correlation observed between the pH and soluble P

concentration indicated that organic acid production by these PS strains might have

played a significant role in the acidification of the medium facilitating the P

solubilization as also reported by Hwangbo et al. (2003).

3.2.2 Temperature

Temperature is one of the important factors that immediately affect the interior of

the cell and the biological activity of soils. Generally, normal temperature has been

employed in soil biological research. On the contrary, the soil temperature remains

seldom constant under field conditions because of the diurnal temperature and

seasonal fluctuations. Therefore, bacteria responds differently to varying tempera-

tures and hence are capable of growing at elevated temperature (thermophiles,

thermotolerant) and also at extremely downshifted temperatures such as at or

below 0, 15, and 20 �C (psychrophiles, psychrotolerant) by synthesizing a group

of heat and cold shock proteins, respectively. These temperature-induced proteins

are highly significant for the survival of bacteria at higher or lower temperatures

(Negi et al. 2009). Moreover, temperature has bewildering effects onto the

“P”-solubilizing abilities of naturally occurring thermotolerant PSB, for example,

B. subtilis (Moussa et al. 2013), Acidithiobacillus caldus (Xiao et al. 2011), and

B. smithii (Chang and Yang 2009), and psychrotolerant strains of bacteria, for

instance, Pseudomonas fragi (Selvakumar et al. 2009). At low temperature, the

biological activity remains low which, however, improves further with increasing

temperature towards optimum range, beyond which microorganisms are either

desiccated or show variable responses. Generally, the PS microbes identified and

considered so far belong to mesophilic group (Khan et al. 2007, 2010), suggesting

that they could only be utilized under mesophilic environment. However, a few

thermotolerant (Chang and Yang 2009; Rao et al. 2009; Maheswar and Sathiyavani

2012; Panda et al. 2013) and psychrophilic PS organisms have also been reported

exhibiting P-solubilizing activity (Katiyar and Goel 2003; Negi et al. 2009; Pallavi

and Gupta 2013). In this regard, bacterial cultures particularly B. subtilis and

B. circulans showed consistent P solubilization even at 45 �C which was due to

the ability of their enzyme systems to tolerate higher temperatures. Such a situation

of higher soil temperature during summer is generally found in tropics where

temperature may reach up to 50 �C. Therefore, the inoculant designed for growth

and survival at higher temperatures in soil and happening during storage and

transport is one of the most craving characteristics. It is thus urgently needed to

isolate PS organisms which can tolerate high temperatures of tropics. To fulfil such

demands, Gaind and Gaur (1991) tested several PSM for their P-solubilizing

efficiency while growing them at 35, 40, and 45 �C temperatures. Even though

there was a marked variation in PS activity of PSM, the effect was more pro-

nounced at 45 �C. The thermotolerant bacterial strains exhibiting PS activity at

higher temperatures were identified as B. subtilis and B. circulans, while fungal
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strain was identified as A. niger (TT10). Later on, seed inoculation of green gram

revealed a better establishment of temperature-tolerant strains which was evident

by the high rhizosphere microbial populations. In a similar investigation, Panda

et al. (2013) reported that P. fluorescence exhibited enhanced P solubilization at

35 �C, while P. corrugata isolated from a temperate region in Sikkim (Himalaya)

solubilized TCP both at psychrophilic and mesophilic temperature ranges (Pandey

et al. 2002, 2006). The maximum P solubilization occurred at 21 �C but the test

culture could also solubilize more TCP at 4 �C than at 28 �C. Phosphate solubili-

zation by P. lurida M2RH3 determined at three incubation temperatures in other

studies revealed a steady increase in the soluble P levels across the incubation

temperatures coupled with a steady drop in pH of the culture supernatant

(Selvakumar et al. 2010a, b). Likewise, cold-tolerant species of Pantoea dispersa
and Exiguobacterium acetylicum very effectively solubilized P at lower tempera-

tures (Selvakumar et al. 2008a, 2010a, b). Serratia marcescens strain SRM (MTCC

8708) could solubilize about 28 mgP/ml in National Botanical Research Institute’s

Phosphate (NBRIP) broth at 4 �C (Selvakumar et al. 2008a, b), whereas Pseudo-
monas sp. PGERs 17 (MTCC 9000) solubilized P at various temperatures (Mishra

et al. 2008). Gulati et al. (2008) also screened various Pseudomonas strains from the

cold region which could solubilize TCP, Mussoorie rock phosphate (MRP), Udai-

pur rock phosphate (URP), and North Carolina rock phosphate (NCRP).

Thermotolerant multifunctional PS microbes with six types of enzyme activities

and three types of inorganic P-solubilizing efficiencies expressing at 25 �C and

50 �C were isolated from composts and biofertilizers. Microbial inoculation accele-

rated the decomposition of agricultural and animal wastes and resulted in high

soluble P content. Of the microbial inoculations, B. smithii (F18) had the shortest

maturity period, the highest soluble P content, and the highest microbial

populations which were followed by B. coagulans (C45) and B. licheniformis
(A3). Inoculation with thermotolerant PSB released more soluble P than did the

actinomycetes or fungi. However, all isolates could solubilize calcium P and Israel

RP, aluminium P, iron P, and hydroxyapatite (Chang and Yang 2009).

3.2.3 Carbon and Energy

Development of growth and phosphate-solubilizing activity of PSM has also been

affected by the presence of various carbon sources, for example, glucose, galactose,

fructose, starch, and mannitol, present in the rhizospheres, discharged as photo-

synthates by many plants (Derrien et al. 2004; McRae and Monreal 2011) which are

used as C and energy source by many soil microbes including PSM (Yadav

et al. 2010; Khan et al. 2013). Such carbon sources has been reported to affect

the production of enzymes involved in dissolution of organic P and (Qureshi

et al. 2010) and solubilization of inorganic P by A. niger. In another report, sucrose
was found as the best C source for P. rugulosum for solubilization of hydroxy-

lapatite and FeSO4 (Reyes et al. 1999). According to Nautiyal (1999) when glucose
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was used as C source, microorganisms produced higher amounts of organic acids

which causes more insoluble P solubilization. The influence of C on the solubili-

zation of insoluble P was determined further by Song et al. (2008) who used

different sugars such as glucose, sucrose, or maltose in order to assess the P

solubilization activity of Burkholderia cepacia (DA23). Among all sugars, P

solubilization was found to be twofold lesser in a medium containing sucrose

relative to glucose which generally resulted in the most extensive solubilization

of calcium P (Panda et al. (2013). Mechanistically, the P-solubilizing efficiency of

microorganisms is associated with its ability to secrete organic acids (Maliha

et al. 2004; Khan et al. 2009, 2010), the nature and quantity of which, however,

varies between different sugars and microbes (Rodriguez et al. 2004; Hu et al. 2006;

Perrig et al. 2007). For example, glucose, galactose, maltose, and sucrose used as

single C source were metabolized by Bacillus (strain T-34) and produced citric,

malic, acetic, and lactic acids in considerably higher concentrations compared to

those secreted by Azospirillum (WS-1) and Enterobacter T-41 strains (Tahir

et al. 2013). Similar results have also been reported by others (Chen et al. 2006;

Archana et al. 2012) where Azospirillum, Bacillus, and Enterobacter produced

variable amounts of citric, oxalic, gluconic, and 2-keto-gluconic acids. Also, the

concentrations of the preferred energy source plays a pivotal role in enhancing PS

activity of microbes, and generally the PS activity increases with increasing con-

centration of sugars added to the growth medium. Increasing the concentration of

glucose, for instance, from 1 to 3 % resulted in profound increase in RP solubili-

zation by PSM because higher concentration of glucose led to increased production

of acidity, an important factor in P solubilization (Song et al. 2008). In other reports,

a further increase in glucose concentrations from 1 to 5 % (w/v) enhanced the P

solubilization considerably, and the most obvious increment has been recorded up

to 3 % glucose which, however, decreases at 5 % glucose level (Son et al. 2006;

Stephen and Jisha 2011).

3.2.4 Nitrogen Source

Nitrogen (N), like many other nutrients, influences the growth and functionality of

soil-inhabiting PSM. Nitrogen is involved in various metabolisms such as it partici-

pates in synthesis of amino acids, proteins, and nucleotides. Microorganisms take

up N in ammonical, nitrite, nitrate, or amino form, depending upon the enzyme

present in their system and greatly influencing P solubilization activity (Bar-Yosef

et al. 1999; Habte and Osorio 2012). Recently, an in vitro experiment was carried

out to evaluate the effect of different nitrogen (N) forms (NH4
+ and/or NO3

�) on the
dissolution of rock phosphates (RP) by the PSF Mortierella sp. (Habte and Osorio

2012). It has been reported that in the presence of NH4Cl or NH4NO3, the solution

of pH following Mortierella sp. application significantly decreases from an initial

value of 7.6 to 3.4 and 3.7, respectively, while KNO3 reduces the pH to 6.7 only.

Due to greater decrease in pH, there was significantly more P solubilized in the
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presence of NH4Cl (129.65 mg/l) than in the presence of NH4NO3 (109.25 mg/l) as

reported by Habte and Osorio (2012). The concentration of P solubilized by

Mortierella sp. in the presence of KNO3 was only 0.08 mg/l. Moreover, the excess

of NH4
+ adversely affected the growth of Mortierella sp. In the presence of NO3

�

as the only source of N, Mortierella sp. not only dissolves a small amount of

inorganic phosphate (Pi) from the RP but also immobilizes most of it into its

mycelia. In contrast, in the presence of NH4Cl, Mortierella sp. has been effective

in dissolving RP, and the Pi released remained in solution, while only a little portion

was immobilized by the fungal mycelia (Habte and Osorio 2012). In yet another

investigation, ammonium significantly decreased mineral phosphate solubilization

(mps) in a wild-type Mps+ strain IR94-MF1 and superpositive Mps++ of Penicillium
rugulosum mutants (Reyes et al. 1999). Also, ammonium in most of the studies has

been found as a better N source than nitrate (Wenzel et al. 1994; Asea et al. 1988),

and P. fluorescence, for example, utilized (NH4)
2SO4 most efficiently and signif-

icantly decreased the pH of the medium during P solubilization. According to

Sulbaran et al. (2009), P. agglomerans MMB051, when grown in the presence of

KNO3, as an alternative N source, instead of (NH4)
2SO4, changed the final pH of

the culture supernatant which was almost two units higher (pH 5.1� 0.15) than that

recorded for (NH4)2SO4 (pH 2.86� 0.21). The final concentration of soluble P by

P. agglomerans MMB051 was however lower in supernatant prepared from cells

grown in medium treated with KNO3 (58.15 mg/l) relative to those recovered from

(NH4)2SO4-grown cells (95.75 mg/l). In bacteria, although different NO3
� trans-

porter systems have been identified, nitrate/proton symporter is the main transporter

for NO3
� (Rowe et al. 1994; Kucera and Kaplan 1996). Consequently, there may be

an increase in extracellular pH due to NO3
� uptake by bacterial cells (Crawford and

Glass 1998) which possibly could explain the differences in the P-solubilizing

abilities of P. agglomerans MMB051 cells grown in the presence of NH4
+ or

NO3
� ions (Sulbaran et al. 2009). Similar effect of different N sources on PS

activity has been reported (Roos and Luckener 1994; Relwani et al. 2008).

3.2.5 Effect of CaCO3 and Aeration

Acidic soils are generally limed to adjust the pH of the soil, while pyrite and

gypsum are used to amend alkaline/saline soils. However, addition of CaCO3 to

the medium markedly reduces P solubilization by bacteria and fungi in liquid

media. For example, Enterobacter intermedium, isolated from grass rhizosphere,

even though had a strong ability to solubilize insoluble P, the concentration of

soluble P was significantly decreased to 200–250 mg/l when grown in medium

treated with 1 % CaCO3 compared to medium without CaCO3 (1,000 mg/l).

Furthermore, the bacteria oxidize glucose to gluconic acid and sequentially to

2-keto-gluconic acid (2-KGA) (Hwangbo et al. 2003). Similarly, calcium added

as CaCl2, CaCO3, and Ca(OH)2 to the medium reduces the P solubilization by

Rhizobium and Bradyrhizobium from RP because CaCO3 enhances the pH of the
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medium towards alkalinity, which inhibits the growth of bacteria, resulting in little

solubilization (Halder et al. 1990). Aeration is yet another important factor that

contributes hugely to P solubilization by microbes. Strains of P. striata and

A. awamori improve the P solubilization in shake culture as compared to stationary

cultures. The increased P solubilization in shake culture has been attributed to

enhanced aeration following shaking of cultures. Under aeration, the P concen-

tration has been reported to increase from 349 ppm to 1,675 ppm, while in the

non-aerated environment, it increases from 242 ppm to 1,164 ppm (Jung

et al. 2002). However, the P removal by Burkholderia spp. from sediments

containing mineral phosphate is facilitated in the absence of aeration (Kim

et al. 2005).

3.2.6 Kinds of Microorganisms and Incubation Periods

The extent of P solubilization, naturally by microbes, also depends on the compo-

sition of microorganisms since heterogeneously distributed microbial communities

exhibit varying capacity to solubilize P (Khan et al. 2007). Among microbial

communities, the genera Bacillus (B. polymyxa) and Pseudomonas (P. striata)
have shown maximum P-solubilizing activity (Khan et al. 2009), followed by

Penicillium and Aspergillus (Khan et al. 2010), while Streptomyces is the least

effective one. Generally, fungi have more PS activity in liquid media than bacteria,

actinomycetes, and yeast (Khan et al. 2010). P-solubilizing fungi show greater

P-solubilizing activity both in precipitated agar and in liquid media than do bacteria

because the hyphae of fungi remain attached to P mineral particles and fungi in soil

are able to traverse longer distances more easily than bacteria and are thus more

important to P solubilization in soils. Even there is difference in P solubilization

among pigment-producing and pigment-non producing bacterial strains (Jayashree

et al. 2011). As an example, pink-pigmented facultative methylotrophic (PPFM)

strains isolated from Adyar and Cooum rivers in Chennai and forest soils in Tamil

Nadu, India, along with Methylobacterium extorquens, M. organophilum,
M. gregans, and M. komagatae showed phosphate solubilization activity on

NBRIP-BPB plates after 7 days of growth. The growth of PPFMs in

TCP-amended medium has been reported to be directly proportional to the concen-

tration of glucose oxidized. Higher P solubilization has been observed in four

strains MSF 32 (415 mg/l), MDW 80 (301 mg/l), M. komagatae (279 mg/l), and

MSF 34 (202 mg/l), after 7 days of incubation. A drop in pH from 6.6 to 3.4 has

been found coupled with an increase in titratable acidity. Furthermore, acid phos-

phatase activity has been found to be more pronounced in the culture filtrate than

alkaline phosphatase activity (Jayashree et al. 2011). Many P-solubilizing bacteria

lose their ability to solubilize P on regular sub-culturing (Khan et al. 2007), while

fungi in contrast retain their P-solubilizing activity even after several sub-culturing

and could continue actively solubilizing P for many years (Khan et al. 2010).
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The incubation period also plays an important role in production of organic acids

which in turn affect the P solubilization process (Maliha et al. 2004; Khan

et al. 2007). Experiments have shown that P solubilization in culture medium

progressively increases with gradual increase in incubation periods (Ahmad

2014). The decrease in P solubilization, however, occurs after certain period of

incubation which could be due to the depletion of nutrients, production of certain

toxic metabolites in the growth medium, or autolysis of cells (Khan et al. 2013). In a

study, Stephen and Jisha (2011) reported maximum solubilization of P (30.44 mg/

100 ml) by Burkholderia sp. (MTCC 8369) after 18 days of incubation which

decreased thereafter with subsequent incubation days. This decrease in P solubili-

zation in some cases has been found to be due to increase in pH of the medium

caused by utilization of P and organic acids to run the various metabolic reactions

of the PSB (Tripura et al. 2007). Similar variation in P solubilization with change in

time has been reported by others (Zaidi 1999; Balakrishnan et al. 2012; Panda

et al. 2013).

3.2.7 Humic Substances and Organic Matter

Humic substances in soils are the dark brown, extremely versatile, and fully

decomposed remains of plant or animal organic matter. Humic compounds consist

of humic acid, fulvic acid, and humin fraction. In soils, humic substances play some

important roles in (i) soil conditioning and plant growth (Benedetti et al. 1996);

(ii) improving nutrient uptake, especially P, S, N, and Zn; (iii) removing toxins

from both soils and animals; (iv) stimulating soil biological activity;

(v) solubilizing minerals; (vi) improving soil structure; (vii) protecting soil from

degradation; and (viii) enhancing water-holding capacity (WHC) for better drought

resistance and reduction in water usage. Humic substances also improves the

effectiveness of RP by causing the release of PO4 from hardly soluble rock minerals

because of high total acidity and its ability to complex and chelate the resulting

solutions and to stimulate microbial metabolism. Of the different humic com-

pounds, humic acid (HA), a naturally occurring polymeric organic compound

(Schnitzer and Khan 1972; Sposito 1989) is an active constituent of organic

humus which improves soil structure and enhances the WHC of the soil. Apart

from these, HA affects the growth of useful soil organisms and serves as an

adsorption and retention complex for inorganic plant nutrients (Brannon and

Sommers 1985). Moreover, HA can convert soil constituents into forms that are

suitable for uptake by plant due to its ability to form complexes (Vaughan and

McDonald 1976). Since HA contains 51–57 % organic C, 4–6 % N, and 0.2–1 % P,

it improves crop yields by supplying N and P to the plants together with the

improvement in the physico-chemical and biological characteristics of the soils

(Hajra and Debnath 1987).

The application of humic compounds in the presence of PSB increases the pH

and available P and decreases the exchangeable ions. The presence of sodium
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humate and fulvic acid, for example, has been found to improve P solubilization by

B. megaterium var. phosphaticum from insoluble TCP, and the amounts of P

solubilized were in proportion to the quantities of the humic substances added

(Khan et al. 2009). Humic and fulvic acids react with the insoluble TCP and release

soluble P. Of these, fulvic acid releases more P than sodium humate. Humic

substances on the other hands act as strong complex forming and chelating agents.

The chelation property of humic substances is thus of great use in increasing the

efficiency of P fertilizers which are rendered insoluble through fixation mecha-

nisms. In a study, a pot experiment was conducted at green house (LRRI) NARC,

Islamabad, on loamy soil during kharif season of year 2012, to investigate the

interactive effect of HA, PSB, and varying level of P on P use efficiency in

chickpeas. The N, P, and K contents were found to be significantly increased by

the application of HA (50 mg HA/kg) and PSB inoculation, and maximum N

(4.5 %), P (36 %), and K (2.15 %) contents were recorded in chickpea grown in

the presence of 50 mg P2O5/kg. Also, the nutrient availability in soil was also

improved following single or mixed application of HA, PSB, and P (Sarwar

et al. 2013). From this study it has been suggested that the combined application

of HA, P, and PSB inoculation improves nutrient use efficiency and could help in

reducing the use of P fertilizer by 25 % for chickpea production (Sarwar

et al. 2013). In a similar study the combined effects of humic compounds and

PSB (Pseudomonas putida) were investigated to increase the yields of soybean,

grown under glasshouse experiment. The humic compounds were extracted from

rice straw compost, the PSB were obtained from Bogor Agricultural University, and

the soils (Typic Paleudult) for this experiment were collected from Kentrong

Banten, Indonesia. The results showed that the application of humic compounds

together with PSB inoculation increased the pH and available P, while it decreased

the exchangeable Al of an ultisol (Winarso et al. 2011). The improved soil charac-

teristic, however, did not lead to any significant difference in the uptake of

macronutrients by soybean plant (Winarso et al. 2011). The application of organic

matter has been found to improve the physical, chemical, and biological properties

of soil, which in turn provide a better environment for the growth and activity of the

indigenous/introduced PSM.

3.2.8 Kinds of Substrate

Phosphate-solubilizing microorganisms have been found to solubilize a variety of P

compounds including DCP and TCP, Fe and Al-P, bone meal, apatites, and differ-

ent types of RP. In a study, the production of soluble P by Burkholderia cepacia
DA23 with TCP and hydroxylapatite was higher compared to Al-P, and the

production also increased following increase in amounts of the insoluble P (Song

et al. 2008). The reactivity of PRs, the main constituent of which is mineral apatite

(Ca5(PO4)
3X) where X is predominantly fluorine, is determined by the rate of

dissolution in acid and the amount of P recovery. The reactivity also depends on
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the composition of the apatite mineral, presence of impurities, and particle size.

Increasing the degree of substitution of carbonate for P and of magnesium and

sodium for Ca in the apatite structure and decreasing particle size enhance the

reactivity of PRs (Chien and Menon 1995). The solubilization of apatites and RP

depends upon the chemical composition and arrangements of minerals, which

increase their resistance to solubilization as compared to DCP and TCP. The

maximum RP solubilization has been reported with particle size ranging between

30 and 99 mesh. The efficiency of solubilization, however, gets reduced when the

size of RP is finer compared to coarser particles. The solubilization of RP of varying

particle sizes, due to inoculation with efficient solubilizing A. awamori and

P. striata, is reported to be maximum when RP size is between 30 to 59 and

60 to 99 (Gaur 1986). Microbial conversion is less obvious with finer RP particles

than with coarser particles. However, complete solubilization of RP never occurs

because a part of RP is so strongly bound that even concentrated HCI or H2SO4

cannot solubilize it (Gaur 1986). Other P sources are Udaipur rock phosphate

(UPR), Mussoorie rock phosphate (MRP), and North Carolina rock phosphate

(NCRP) which have fluorapatite structure with the highest substitution of P with

carbonate in NCRP (Narayanasamy and Biswas 1998). The higher solubilization

and lowered quantities of organic acids detected in the presence of NCRP could be

due to the higher reactivity and greater diversion of organic acids in the neutral-

ization of free carbonates in the solubilization of NCRP as compared to MRP and

URP (Bolland 2007). Likewise, the higher solubilization and production of organic

acids in the presence of TCP could be attributed to its amorphous nature with simple

structure and absence of any free carbonates as compared to the crystalline lattice

structure of the RP (Kumari et al. 2008). The decreasing soil pH also increases PR

effectiveness (Rivaie et al. 2008; Chien et al. 2010) and dissolution, which has been

shown to be linearly correlated with the reserve acidity of the soil.

3.2.9 Effect of Salt Concentrations

Soils containing salts have various ions that may obstruct the uptake of water and

concurrently be toxic to numerous soil microflora (Zahran 1997; Rietz and Haynes

2003; Tripathi et al. 2006; Yuan et al. 2007; Vanessa et al. 2008; Li et al. 2011).

However, phosphobacteria among microbes have been found in even highly saline

environments, for example, marine habitat (Chookietwattana and Maneewan 2012;

Promod and Dhevendaran 1987). Phosphate-solubilizing microorganisms when

grown in salt-affected environments exhibit variable responses (Table 3.2) to

different concentrations (Srinivasan et al. 2012) and compositions of salts (Yadav

et al. 2011). For example, Pseudomonas aeruginosa, P. putida, P. cepacia, and
P. fluorescens when grown in the presence of varying concentrations of salts (NaCl)
displayed optimum P solubilization at 0–1.25 % NaCl, but the higher concen-

trations of NaCl delayed the P solubilization process (Deshwal and Kumar 2013).

In a similar study, the effect of salt concentrations (0 %, 2 %, 4 %, 6 %, and 8 %) on
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the PS ability of Bacillus strains isolated from the rhizosphere of wheat from three

areas in arid and semi-arid regions in Algeria was assayed (Cherif-Silini

et al. 2013). The bacterial cultures grown in NBRIP medium treated with varying

rates of salts had variable solubilization activity which decreased with gradual

increase in salinity. However, the response of Bacillus to salt was strain dependent

where D1 (121.84 μg/ml) and D13 (112.83 μg/ml) strains showed maximum P

solubilization compared to other strains. Interestingly, the strains B8 (58.8 μg/ml),

BA5 (78.7 μg/ml), and BA11 (88.5 μg/ml) could solubilize more P at 2 % NaCl and

demonstrated a high solubilization capacity with concomitant drop in pH of the

medium at higher NaCl concentrations. Some of the strains like B14 (31.94 μg/ml),

B18 (78.54 μg/ml), BA7 (75.80 μg/ml), and BA12 (35.26 μg/ml) produced the same

results even at 4 % NaCl. Bacillus sp. in other investigation has also shown

optimum P solubilization at 2.5 % salt concentration (Banerjee et al. 2010).

On the contrary, among fungi, the P solubilization has been reported even from

2 % NaCl (Srividya et al. 2009) in Aspergillus niger F7 to 10 % NaCl (Rosado

et al. 1998); however, the activity declines with any further increase in the concen-

tration of NaCl (Johri et al. 1999). The control treatment (without salt) showed

luxuriant growth, but the drop in pH and P solubilization was quite low. Moreover,

Zhu et al. (2011) have isolated a high P-solubilizing bacterium Kushneria
sp. (YCWA18) from the sediment of a saltern. Being a halotolerant and capable

of growing on solid media at a very high (20 % w/v) NaCl concentration, the

Kushneria sp. (YCWA18) showed a declining trend of P solubilization with

increasing rates of NaCl (Cabrera et al. 2007). The reduction in P activity following

microbial growth in high-salt environment can thus be explained as follows: (i) salts

adversely affect the growth and cell proliferation resulting in a loss of solubilization

efficiency or (ii) chloride ions (Cl�) sequester or neutralize protons or acids

produced in the media and hence reduce the P-solubilizing activity. The decrease

in PSM population with increasing concentration of NaCl can be attributed to the

exposure of organisms to the conditions of hyper osmolarity resulting in a decrease

in their cytoplasmic water activities.

Solutes (NaCl) increase the osmolarity of the medium which in turn cause the

loss of intracellular water with a concomitant increase in the osmolarity of the

intracellular contents (Botsford 1984). It appears likely that proteins (enzymes) and

other biological macromolecules have evolved to function only within certain

normal ranges of water activities, outside which some essential cellular functions

become impaired (Csonka 1989). In a study, the nodule bacteria, for instance,

Rhizobium strains, isolated from alkaline soils tolerated high salt concentrations

(up to 5 %), but 1,290 mM (7.5 %) salt was inhibitory to the growth of Rhizobium
strains (Surange et al. 1997). The ability of the selected PSB and PSF to grow and

solubilize TCP under salt stress has also been examined by Srinivasan et al. (2012).

It has been reported that after 15 days growth, Aerococcus sp. (strain PSBCRG1-1)
irrespective of NaCl concentrations showed maximum P solubilization compared to

other strains. The amount of Pi released increases with incubation period

irrespective of strains and salt concentrations. The percent Pi release, in general,

increased with an increase in NaCl concentration, up to 0.8 M for bacterial
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solubilization, and declined thereafter. The amount of Pi released among PSF in

general declined with enhancing NaCl concentration at all incubation periods

(Srinivasan et al. 2012). According to Kumar et al. (2010) P solubilization also

increased with an increase in NaCl concentration. Realizing the variable impact of

salts on microbial structure and function, the impact of salts on P-solubilizing

organisms and barley crops inoculated with PSB was conducted (El-Din and

Saber 1983). A significant increase in P uptake by plants due to inoculation was

observed, but this increase was negatively correlated with increasing salinity levels.

The strong promotion of growth of plants, percent Pi release by PSM, and P uptake

by plants due to combined interactions of plants and microbes provide evidence that

crop productivity could be improved in P-deficient soils affected by salinity. The

tomato (Lycopersicon esculentum) seeds inoculated with halotolerant PSB strains

and grown in different saline conditions exhibited a significant increase in germi-

nation percentage of the seeds at salt concentration between 0 and 60 mM,

suggesting that the isolated halotolerant PSB may provide P to the growing plants

under saline conditions (Soni et al. 2013).

3.2.10 Factors Affecting Organic P Mineralization

The availability of organic P depends on microbial activity to break down the

organic matter (OM) and release this P into available forms. The organic P

availability depends on physico-chemical characteristics of soils such as (i) soil

conditions and weathering process, which influence microbial activity; (ii) soil pH,

temperature, and warm moist conditions; and (iii) nutrient levels of soils. Of these

factors, temperature above 30 � C has the maximum positive impact on minerali-

zation of organic P, while the optimum temperature supporting P solubilization is

35 �C. Below 30 �C net immobilization of P occurs. The moisture range of 50–75 %

of total WHC is considered optimum for mineralization of organic P although it

may also occur in flooded conditions. Alternate wetting and drying favour mineral-

ization of P as it breaks up water stable soil aggregates and exposes for decompo-

sition of otherwise inaccessible humic matter to microorganisms. Other factors that

affect organic P mineralization are the cultivation practices (Hedley et al. 1982;

Miguel and Wright 2008) which stimulate microbial activity following aeration and

facilitate faster decomposition of OM. Hence, cultivated soils generally contain less

organic P than virgin soils. Also, cultivation decreases phytate, phospholipids, and

nucleic acid P compounds but increases non-hydrolysable residues. Although the

effect of aeration is not always consistent, but due to poor aeration, the organic

matter decomposition decreases particularly at O2 levels below 1 % of partial

pressure of O2 in atmosphere. The mineralization of organic P is mediated through

certain enzymes which indeed are influenced by several factors. For example, the

availability of phosphatases, one of the several enzymes involved in the mineral-

ization of organic P in soil, is enhanced by organic residue addition because P ties

up as insoluble Fe, Al, and Ca. Addition of inorganic P may also increase the
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mineralization of organic P as a consequence of enhanced solubility of organic P

and hence its insusceptibility to mineral. The rate of organic P mineralization has,

however, been found to be greatly influenced by the activity of microorganisms in

the soil. Species of Penicillium (Gawas-Sakhalkar et al. 2012), Aspergillus (Qureshi
et al. 2013), Rhizopus (Acikel and Erşan 2010), Mucor (Boyce and Walsh 2007),

Bacillus (Mahesh et al. 2010), and Pseudomonas (Cho et al. 2005; Infantes

et al. 2012) produce phosphatase that degrades nucleic acids, glycerophosphates,

and phytin. Since carbohydrate is required as C and energy source for mineral-

ization of organic P by soil microorganisms, the organic P mineralization in soil/

rhizospheres occurs very rapidly.

3.3 Conclusion

Optimal microenvironmental parameters and metabolizable C compounds must be

applied as energy source to the microbial solubilizers to ensure their growth,

organic acid production, and, simultaneously, P solubilization. However, low and

high temperatures, pH, and salinity, among other factors, are considered the most

important abiotic environmental variables that affect both plant physiology and

growth and the activity of plant beneficial microbes including PSM. Understanding

the impact of such environmental factors on structure and functions of PSM is

therefore extremely important for developing and modelling these micro-

phosphatic fertilizers for ultimate transfer to consumers. In order to obtain PSM

with high PS activity, it is important to analyse samples from different sources/

locations including extreme environments so that a better suited PSM could be

identified. A constant exploration of the natural microbial biodiversity of soil and

the optimization and fine-tuning (manipulation) of PS microbes are, therefore,

required for developing more proficient microbial P inoculants. No doubt, mani-

pulating PSM to acclimatize well to extreme environment is likely to hold the key

to improved plant nutrition under stressed environmental conditions and hopefully

increased crop yields in the sustainable crop production practices.
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Chapter 4

Phosphate-Solubilizing Fungi: Impact

on Growth and Development of Economically

Important Plants

Hruda Ranjan Sahoo and Nibha Gupta

Abstract Phosphorus (P) is an important mineral macronutrient required for

proper growth and development of plants. It is involved in the synthesis of a series

of fundamental cellular molecules such as phospholipids, nucleic acids, nucleo-

tides, etc. Since it is deficient in soils, only a minute amount is available for plant

acquisition. Moreover, soluble chemical fertilizers are quickly immobilized in soil

and thus are not available for uptake by plants. So, alternative and cleaner agricul-

tural practices have to be developed. In this regard, P supply through biological

systems is considered a viable alternative, and inoculation of P-solubilizing micro-

organisms, especially fungi to soil, is a reliable source for increasing soluble P in

soil. Phosphate-solubilizing fungi have been reported from different ecological

niches such as agricultural fields, arctic region, forest, mangrove, mine areas,

volcanic areas, vermicompost, etc. Following inoculation, phospho-fungi have

shown to improve the growth of different group of plants such as cereals, legumes,

oilseed and fibre crops, vegetables and horticultural crop, etc. Overall, the use of

microbial inoculants particularly the phospho-fungi as a substitute to synthetic

phosphatic fertilizers has been found effective in plant-growth promotion and

inexpensive vis-à-vis maintaining the natural integrity and fertility of soil.
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4.1 Introduction

Phosphorus is one of the major plant nutrients and plays some important physio-

logical and biochemical roles in plant growth and development (Bagyaraj

et al. 2000). However, a greater part of soil P, approximately 95–99 %, is insoluble

and, hence, cannot be utilized by the plants. The rapid fixation of P by soil

constituents leads to soil P deficiency. This necessitates the application of P

fertilizer to the P-deficient soils regularly in agricultural practices in order to fulfil

the phosphatic demands of crops. However, most of the available P added to

calcareous soils may become unavailable within a short period of time (Tisdal

et al. 1995). Considering the brisk P-fixing ability of calcareous soils and increasing

cost of P fertilizers, scientists suggested adding P to the soils as raw material

(e.g. rock P) after pulverizing it (Antonio and David 1997). In the last decades,

several strategies were applied to reduce the P fixation through the following:

(i) use of high rates of P fertilizers, (ii) selection of fertilizers, (iii) time and method

of application, (iv) combination with amendments and other fertilizers, (v) use of

soil tests, etc. (Engelstad and Terman 1980). However, the efficiency of P fertilizers

is still low and range between 5 and 10 % (Havlin et al. 1999). In modern agronomic

practices, enormous amounts of synthetic P fertilizers are applied, which however,

adversely affects the environment (Brady and Weil 1999). Therefore, primary

approach in agronomic management of P is to scavenge the native/fixed P and

also to overcome the fixation of applied P fertilizer. In this respect, the use of

microorganisms capable of mobilizing P into available/soluble forms as

biofertilizers is feasible, particularly in sustainable agriculture production systems.

Hence, there is enormous interest in isolating PSM, including P-solubilizing and

P-mineralizing saprophytic fungi (phospho-fungi), due to their large biomass-

producing ability, high metabolic activity and ability to maintain solubilizing

capacity for longer periods. Such phospho-fungi have been isolated from various

soils (Pandey et al. 2008; Morales et al. 2011). The rationale for using such

P-solubilizing fungi as an alternative to synthetic phosphatic fertilizer in agriculture

is highlighted.

4.2 Rationale for Mineral P Solubilizers

For sustained agricultural production, use of efficient fertilizer to maintain the soil

and plant quality is critical. The application of synthetic fertilizers has been

practised for more than a thousand years in many countries since it provides

essential nutrients to plants, improves soil structure, helps in the moisture-retaining

capacity of various soils and increases microbial activities (Chen et al. 2006). In

developing countries like India, the stress on agriculture is increasing day by day.

The land under farming is declining and this has posed an extra pressure on

agriculture. There are reports that most of the agricultural lands are deprived of
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one or more minerals required for the growth and development of plants

(Gyaneshwar et al. 2002). In order to maintain a good health, plants require these

minerals sufficiently and regularly. And hence, the plant nutrients in the form of

chemical fertilizers are applied from external sources. Such chemical fertilizers,

however, pose health hazards and cause pollution problems, when applied exces-

sively in soil. Besides, chemical fertilizers are quite expensive. Moreover, the usage

of chemical fertilizers alters the structure, composition and function of beneficial

soil microorganisms (Whitelaw 2000; Reena et al. 2013).

One of the most important problems in tropical agriculture is the low-soil-P

availability. Many of the tropical soils are highly weathered and have a high P

fixation capacity that makes their management more difficult. Sanchez and Logan

(1992) in a study estimated that 1,018 million ha in the tropics have a high P fixation

capacity. In tropical America, there are 659 million ha affected, 210 in Africa and

199 in Asia. The term “P fixation” is used in reference to a series of complex

reactions that remove bioavailable soil P from the soil solution, where roots directly

take up plant nutrients (Barber 1995). Additionally, P is one of the essential

nutrients and is classified as macronutrient because it is required in large amounts

by the plants (Bushman et al. 2009). On the contrary, about 98 % soils have

inadequate supply of available P (Hansan 1996) and hence plants suffer heavily

from P deficiency. Most of the soils contain the substantial reserves of total P; large

part of it relatively remains inert and only <10 % of soil P enters the plant–animal

cycle (Kucey and Leggett 1989). When P is added as fertilizer to the soil, it gets

rapidly fixed. Therefore, P is one of the three major nutrients which are generally

added to soil in agronomic practices.

4.3 Mechanism of P Solubilization: A Brief Account

The major microbiological means by which phosphate compounds are mobilized is

the production of low molecular weight organic acids (Goldstein 1995) accompa-

nied by acidification of the medium. These organic acids are the source of biotical

generated H+ ions, which dissolves the mineral phosphate and make it available for

the plants (Bhattacharya and Jain 2000). The type of organic acid produced and

their amounts, however, differ with different organisms. Among them, glucuronic

and α-ketogluconic acids are the most frequently secreted organic acids causing

mineral phosphate solubilization (Song et al. 2009). Other organic acids such as

acetic, citric, succinic, propionic, glycolic, oxalic, malonic, fumaric and tartaric

acid have also been identified among P solubilizers (Ivanova et al. 2006). Ryan

et al. (2001) in a study reported that the ability of different carboxylic anions to

desorb P decreased with a decrease in the stability constants of Fe- or Al-organic acid

complex in the order: citrate> oxalate>malonate/malate> tartrate> lactate>
gluconate> acetate> formate. Tri- and dicarboxylic acids are more effective as com-

pared to monobasic and aromatic acids–aliphatic acids which have also been found

significant in P solubilization compared to phenolic, citric and fumaric acids
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(Mahidi et al. 2011). The organic acids produced by PSM acidify the microbial cells

and their surroundings (Richardson et al. 2009) and the release of P ions from the

phosphate mineral by H+ substitution for Ca2+ through induction of metabolic pro-

cesses that are effective in directly solubilizing and mineralizing P from sparingly

available forms of P (Illmer and Schinner 1995). In soil, organic acids further reduce

the pH of their surroundings and can either dissolve the P directly by lowering the pH of

soil or they can chelate heavy metal ions such as Ca, Al and Fe and release associated P

with them (Awasthi et al. 2011). The mechanism of P solubilization also involves

lowering of pH by release of proton/bicarbonate, gaseous exchange, chelation of

cations and by competing with P for the adsorption sites in soil (Nahas 1996). Some

of the inorganic acids (e.g. HCl) are also helpful in solubilizing P, but they are less

effective as compared to organic acids (Kim et al. 1997). There are other mechanisms

by which microorganisms solubilize inorganic P other than the secretion of organic

acids, for example, by producing siderophores (Vassilev et al. 2006) and secretion of

phenolic compounds and humic substances (Patel et al. 2008).

4.4 Types of Phosphate Solubilization

Mainly two forms of P, namely, organic and inorganic forms, occur in soils and are

important for plants as a specific source of P. The relative amounts of P in both

forms, however, vary from soil to soil. Most inorganic P compounds in soil belong

to one of the two groups: (i) those in which calcium is the most dominant

controlling cation (calcium phosphate) and (ii) those in which iron and aluminium

are the controlling cations (iron and aluminium phosphate). Calcium phosphates,

including rock phosphate ores (fluorapatite, francolite), are insoluble in soil with

respect to the release of inorganic P (Pi) at rates necessary to support agronomic

levels of plant growth (Goldstein 2000). Phosphate-solubilizing microorganisms

increase the P nutrition of plants through enhanced solubility of Ca phosphates

(Vassilev et al. 2006) and their solubility increases with a consequent decrease in

soil pH. Phosphate solubilization is mainly due to the combined effect of pH

decrease and organic acids production (Khan et al. 2010). Microorganisms through

secretion of different types of organic acids and pH lowering mechanisms dissoci-

ate the bound forms of P like Ca3(PO4)2. Nevertheless, buffering capacity of the

medium reduce the effectiveness of PSMs in releasing P from tricalcium phos-

phates (Stephen and Jisha 2009). Carboxylic anions produced by PSMs have high

affinity to calcium and solubilize more P than acidification alone (Staunton and

Leprince 1996). Complexing of cations is an important mechanism in P solubili-

zation if the organic acid structure favours complexation (Fox et al. 1990). It is

controlled by nutritional, physiological and growth conditions of the microbial

culture (Reyes et al. 2007), but it is mostly due to the lowering of pH alone by

organic acids or production of microbial metabolites (Abd-Alla 1994). Calcium

phosphate (Ca-P) release results from the combined effects of pH decrease and
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carboxylic acids synthesis, but proton release cannot be the single mechanism

(Deubel et al. 2005).

4.4.1 Solubilization of Iron Phosphate/Aluminium
Phosphate

Solubilization of Fe and Al by PSMs occurs via proton release accompanied by

decrease in the negative charge of adsorbing surfaces to facilitate the sorption of

negatively charged P ions. Proton release can also decrease P sorption upon

acidification which increases H2PO4
� in relation to HPO4

2� having higher affinity

to reactive soil surfaces (Whitelaw 2000). Carboxylic acids mainly solubilize Al-P

and Fe-P (Khan et al. 2007; Henri et al. 2008) through direct dissolution of mineral

P as a result of anion exchange of PO4
3� by acid anion or by chelation of both Fe

and Al ions associated with phosphate (Omar 1998). Root-colonizing Pseudomo-
nads with high-affinity iron uptake system based on the release of Fe3+-chelating

molecules, i.e. siderophores (Altomare et al. 1999), have been reported to solubilize

bound Fe. Moreover, carboxylic anions replace P from sorption complexes by

ligand exchange and chelate both Fe and Al ions associated with P, releasing P

available for plant uptake after transformation. Ability of organic acids to chelate

metal cations is greatly influenced by its molecular structure, particularly by the

number of carboxyl and hydroxyl groups. Type and position of the ligand in

addition to acid strength determine its effectiveness in the solubilization process

(Kpomblekou and Tabatabai 1994).

4.4.2 Mineralization of Organic Phosphate

Mineralization of soil organic P plays an imperative role in P cycling of a farming

system. Organic P may constitute 4–90 % of the total soil P. Approximately half of

the soil and rhizosphere microorganisms possess P mineralization potential which

is catalysed by enzymes, for instance, phosphatases (Tarafdar and Claassen 1988).

Phosphatase enzymes are present in all organisms but only bacteria, fungi and some

algae are able to secrete them outside of their cells. There are two different kinds of

phosphatases such as acid phosphatases and alkaline phosphatases which use

organic P as a substrate to convert it into inorganic form (Beech et al. 2001).

Principal mechanism for mineralization of soil organic P is indeed the production

of acid phosphatases (Hilda and Fraga 1999). Acid phosphatase by plant roots/

microbes (Yadav and Tarafdar 2001) or alkaline phosphatase (Tarafdar and

Claassen 1988) enzymes hydrolyse the soil organic P or split P from organic

residues. Soil organisms such as Bacillus and Streptomyces sp. have been reported

to mineralize very complex organic P by producing extracellular enzymes and
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phospholipases (Kannahi and Umaragini 2013). Many PS fungi, for example,

Aspergillus fumigatus (Yadav and Tarafdar 2003) and Trichoderma harzianum
(Aseri et al. 2009), have also been reported to produce acid and alkaline phospha-

tase enzymes, respectively (Yadav and Tarafdar 2003). In addition, PS fungi, for

example, A. terreus and P. simplicissimum, produced phytase, an enzyme which

releases soluble inorganic P from organic P compound (inositol hexaphosphate)

(Yadav and Tarafdar 2007).

Inositol hexaphosphateþ water ! Inositolþ phosphate catalyzed by phytaseð Þ

4.5 Groups of Mineral Solubilizers

4.5.1 Fungi

Fungi are important component of soil microbiota constituting more of the soil

biomass than bacteria, depending on soil depth and nutrient conditions. Wide

ranges of soil fungi are reported to solubilize insoluble P. Aspergillus and Penicil-
lium among fungi are the most common P-solubilizing fungi (Seshadri et al. 2004;

Wakelin et al. 2004). Other fungal species like Talaromyces and Eupenicillium are

considered “key organisms” in the P cycle (Whitelaw 2000). Most of the fungi, for

example, A. terreus, A. flavus, A. awamori, A. niger, A. tubingensis, A. aculeatus,
Penicillium digitatum, P. simplicissimum, Eupenicillium parvum, Sclerotium rolfsii
and species of Fusarium, Rhizoctonia, etc., have been found to solubilize inorganic
Ca-P, for example, tricalcium phosphates (Das et al. 2012; Vyas et al. 2007; Reddy

et al. 2002), but had poor Al-P- or Fe-P-solubilizing ability (Illmer and

Schinner 1995).

4.5.2 Occurrence of Phosphate-Solubilizing Fungi

Phosphate-solubilizing fungi have been isolated from different habitats such as

agricultural soil, arctic region, husk waste, coffee plantation, forest soil, hill soil,

mangrove area, mine soil, rhizosphere of different crop plants, saline soil, terrestrial

soil, vermicompost, volcanic soils, etc., and are listed in Table 4.1.
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4.5.3 Examples of Some Notable Phosphate-Solubilizing
Fungi

About 62 different species of PS fungi belonging to different genera such as

Alternaria, Aspergillus, Fusarium, Penicillium, Talaromyces, Trichoderma, etc.
have been recovered from different habitats and are listed in Table 4.2. Some of

the fungi with greater P-solubilizing abilities are discussed briefly in the following

section.

Table 4.1 Distribution and occurrence of phosphate-solubilizing fungi

Habitat Fungi References

Arecanut husk waste Aspergillus niger, A. terreus, Botrytis cinerea Naveenkumar

et al. (2012)

Coffee plants Cylindrocarpon obtusisporum, C. didymum,
Paecilomyces marquandii, Penicillium
janthinellum

Posada et al. (2013)

Forest soil Aspergillus flavus, A. niger Das et al. (2012)

Hawaiian soil Mortierella sp. Habte and Osorio

(2012)

Hills soil Penicillium citrinum, P. islandicum, P. mellini,
P. olivicolor, P. restrictum, P. rugulosum

Sharma et al. (2010),

Sharma (2011)

Himalayan soil Aspergillus glaucus, A. niger, A. sydowii Rinu et al. (2013)

Rhizospheric soil and

roots

Aspergillus niger, Penicillium notatum Malviya et al. (2011)

Rhizosphere of

banana

Aspergillus sp., Penicillium sp. Reena et al. (2013)

Rhizosphere of chick

pea

Aspergillus niger Yadav et al. (2011c)

Rhizosphere of

melon

Aphyllophorales, Aspergillus, Penicillium,
Rhizopus

Coutinho et al. (2011)

Rhizosphere of sug-

arcane and sugar

beet

Alternaria alternata, Aspergillus awamori,
A. fumigates, A. niger, Curvularia pallescens,
Penicillium oxalicum, P. rubrum, Trichoderma
viride

Mahamuni

et al. (2012)

Rhizosphere soil

of green gram

Aspergillus niger, Fusarium oxysporum Kannahi and

Umaragini (2013)

Rhizosphere soil

of leguminous plant

Aspergillus sp. Selvi (2013)

Saline soil Aspergillus clavatus, A. fumigatus, A. nidulans,
A. niger, A. sydowii, A. terreus, A. ustus,
Fusarium sp., Penicillium sp.

Singh et al. (2012),

Sanjotha

et al. (2011)

Tea leaves Penicillium sp. Nath et al. (2012)

Vermicompost Emericella nidulans Bhattacharya

et al. (2013)
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4.5.3.1 Penicillium

Among the various PSF, Penicillium radicum, a PSF isolated from the rhizosphere

of wheat, has shown P-solubilizing ability when grown in liquid culture medium

containing either ammonium or nitrate as the sole source of N. Insoluble or

sparingly soluble P (1,000 mg P/l) was supplied as calcium monohydrogen

Table 4.2 Phosphate-solubilizing fungi recovered from various sources

P-solubilizing

fungi Habitat References

Aspergillus species

Aspergillus
awamori

Rhizosphere of sugarcane and sugar

beet

Mahamuni et al. (2012)

A. clavatus Agricultural soil; saline soil Chakraborty et al. (2010); Singh

et al. (2012)

A. flavus Forest soil; agricultural soil; rhizo-

sphere soil

Das et al. (2012); Gomashe et al. (2012);

Priya et al. (2013)

A. fumigatus Rhizosphere of sugarcane and sugar

beet, agricultural soil; saline soil

Mahamuni et al. (2012); Priya

et al. (2013); Singh et al.(2012)

A. glaucus Himalayan soil Rinu et al. (2013)

A. melleus Agricultural soil Chakraborty et al. (2010)

A. nidulans Saline soil Singh et al. (2012)

A. sydowii Himalayan soil; saline soil Rinu et al. (2013); Singh et al. (2012)

A. terreus Arecanut husk waste; saline soil Naveenkumar et al. (2012); Singh

et al. (2012)

A. ustus Saline soil Singh et al. (2012)

Penicillium species

P. albidum Volcanic soils Morales et al. (2011)

P. chrysogenum Agricultural soil Naik et al. (2013)

P. citrinum Hill soil; rhizosphere of sugarcane;

rhizospheric soils

Sharma et al. (2010, 2011); Yadav

et al. (2011a, b)

P. frequentans Volcanic soils Morales et al. (2011)

P. islandicum Hill soil Sharma et al. (2010, 2011)

P. janthinellum Agricultural soil; coffee plantations Scervino et al. (2010); Posada

et al. (2013)

P. mellini Hill soil Sharma (2011)

P. nigricans Mangroves Kanimozhi and Panneerselvam (2010)

P. notatum Rhizospheric soil and roots Malviya et al. (2011)

P. olivicolor Hills soil Sharma et al. (2010)

P. oxalicum Rhizosphere of sugarcane and sugar

beet; mine soil

Mahamuni et al. (2012); Singh

et al. (2011)

P. purpurogenum Agricultural soil Scervino et al. (2010)

P. restrictum Volcanic soils; hills soil Morales et al. (2011); Sharma

et al. (2010, 2011)

P. rubrum Rhizosphere of sugarcane and sugar

beet

Mahamuni et al. (2012)

P. rugulosum Hills soil Sharma et al. (2010, 2011)
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phosphate (CaHPO4), calcium orthophosphate (Ca3(PO4)2), crystalline ferric phos-

phate (FePO4·4H2O), crystalline aluminium phosphate (AlPO4), colloidal ferric

phosphate or colloidal aluminium phosphate. Phosphate solubilization was highest

for CaHPO4 (475 mg P/l), Ca3(PO4)2 (360 mg P/l) and colloidal aluminium

phosphate (207 mg P/l). Phosphate solubilization was generally higher with ammo-

nium than the nitrate (Whitelaw et al. 1999). Wakelin et al. (2004) also found

Penicillium spp. exhibiting P-solubilizing activity both on and in the roots of wheat

plants grown in southern Australian agricultural soils. Of the different fungal

species, P. bilaiae strain RS7B-SD1 was the most effective, mobilizing 101.7 mg

P/l. Other effective strains included P. simplicissimum (58.8 mg P/l),

P. griseofulvum (56.1–47.6 mg P/l) and Talaromyces flavus (48.6 mg P/l) and two

unidentified Penicillium spp. (50.7 and 50 mg P/l). A newly identified strain of

P. radicum (KC1-SD1) could mobilize 43.3 mg P/l. Reyes et al. (2007) in a similar

study found six fungal strains belonging to the genus Penicillium endowed with

high hydroxyapatite dissolution capacities. Five of them had similar phenotypes to

P. rugulosum IR94MF1 but they solubilized hydroxyapatite at different degrees

with both N sources. On the contrary, Vyas et al. (2007) showed high solubilization

of TCP, aluminium P, MRP and North Carolina RP by E. parvum. The organism

also exhibited tolerance against desiccation, salinity, acidity, aluminium and iron.

Similar reports on P solubilization by P. restrictum, P. rugulosum, P. citrinum,
P. islandicum, P. olivicolor, P. mellini (Sharma et al. 2010, Sharma 2011),

P. citrinum (Yadav et al. 2011a, b) and P. oxalicum (Singh et al. 2011) are available

in the literature. In a recent study, the TCP-solubilizing activity of two different

endophytic Penicillium species isolated from tea leaves was reported by Nath

et al. (2012). Both the isolates had remarkable PS activity up to 8 days with

consequent increase in the acidity of the medium. Tricalcium P-solubilizing activity

of species 1 ranged between 39.22� 1.17 and 86.1� 1.2 μg/ml, while that of

species 2 varied between 32.57� 1.41 and 84.25� 1.5 μg/ml following 2 to

10 days incubation (Figs. 4.1 and 4.2).

4.5.3.2 Aspergillus

Barroso et al. (2006) studied the solubilization of CaHPO4 and AlPO4 by A. niger
using several C and N sources. Solubilization of Ca-P was enhanced when the C

sources were mannitol, maltose, galactose and glucose (in that order), while Al-P

was solubilized in the order: galactose> sucrose>maltose. More extensive

growth, acid production and decrease in pH were recorded in the Al-P medium

than in the Ca-P medium. According to Gupta et al. (2007), Aspergillus isolated
from mangrove plants grown in Bhitarkanika, Orissa, showed good PS activity,

while Kang et al. (2008) found a “soil isolate” Aspergillus sp. which had excellent

potential to solubilize RP with occurrence of high levels of citric acid which also

caused a significant drop in pH of the medium. Similarly, A. niger and A. fumigates
solubilized RP and TCP significantly (Hefnawy et al. 2009). In other study, Singh

et al. (2011) showed that A. niger strain 1 could solubilize 285 mg P/ml, while
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A. niger strain 2 solubilized 262 mg/ml from 0.5 % TCP after 7 days growth. This

was probably the first report of TCP solubilization by any Arctic fungal strains

which could be used to prepare fungal P biofertilizer. Zeroual et al. (2012) isolated

A. niger, from agricultural soil, and tested for its ability to solubilize different P

matrixes (TCP, DCP, phosphates rock). Singh et al. (2012) isolated a total of

42 fungal isolates belonging to 12 different species from 40 soil samples of unusual

habitats of Agra region, Uttar Pradesh, India. Of these, 27 Aspergilli showed PS

activity, and 18 from 27 fungi, namely, A. clavatus, A. fumigatus, A. nidulans,
A. niger, A. terreus, A. ustus and A. sydowii, showed comparatively more PS

activity. While comparing the PS activity of all fungi, A. niger (KH-4, KH-6 and

CH-2) had the largest PS activity which could be used in the field as biofertilizers

for supplying P to field-grown crops and, hence, increasing the crop productivity.

Rinu et al. (2013) in a follow-up experiment recovered three species of Aspergillus,
namely, A. niger, A. glaucus and A. sydowii, from Indian Himalayan Region (IHR),

and assayed their aluminium P- and iron P-solubilizing efficiency in the presence of

different C and N sources. The P solubilized by fungal cultures varied considerably

among C and N wherein A. niger solubilized 32 % and 8 % of the supplemented

aluminium P and iron P, respectively. This result indicated that the C and N sources

influenced the PS efficiency of all the Aspergillus spp.

Fig. 4.1 Plate culture

showing phosphate

solubilization by

Penicillium
chrysogenum Thom

Fig. 4.2 Plate culture

showing phosphate

solubilization by

Penicillium restrictum
Gilman and Abott

(courtesy: Dash, S. Ph.D.

Thesis: Characterization

and evaluation of

biofertilization potential of

phosphate and iron

solubilizing fungi and

rhizobia for tree legumes,

Utkal University, 2012)
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4.5.3.3 Trichoderma, Mortierella and Galactomyces

A total of 14 strains of Trichoderma isolated from the forest tree rhizospheres of

Pinus, deodar, bamboo, guava and oak using Trichoderma-specific medium were

evaluated for P-solubilizing activity employing National Botanical Research Insti-

tute Phosphate (NBRIP) broth containing TCP as the sole P source and were

compared with a standard culture of T. Harzianum (Kapri and Tewari 2010).

Even though all fungal cultures could solubilize TCP, the degree of solubilization

differed among fungal isolates which varied between 111.5 μg/ml and 404.07 μg/ml

in the culture filtrates of Trichoderma. In a similar study, Habte and Osorio (2012)

evaluated the effect of N (NH4
+ and/or NO3

�) on the dissolution of RP by a PSF

Mortierella sp. In the presence of NH4Cl or NH4NO3, the pH of the medium was

significantly decreased from an initial value of 7.6 to 3.4 and 3.7, respectively. In

the presence of KNO3, the pH went down only to 6.7. As a result, significantly more

P was detected in the presence of NH4Cl (129.65 mg/l) than in the presence of

NH4NO3 (109.25 mg/l), while the concentration of P in the presence of KNO3 was

only 0.08 mg/l. Yingben et al. (2012) observed that Galactomyces geotrichum P14,

isolated from soil of phosphate mines, demonstrated maximum solubilization of

insoluble P (1252.13 mg/l) within 40 h in a modified phosphate growth medium

supplemented with TCP.

4.5.3.4 Mixed Group

Pradhan and Sukla (2005) tested two fungal isolates for their TCP-solubilization

efficiency on solid and in liquid medium. The fungal Isolates were identified as

Aspergillus sp. and Penicillium sp. on the basis of their colony morphology and

microscopic characteristics. Phosphate solubilization was coupled to pH decrease

mediated by growth of fungus in medium containing glucose as C source. Asper-
gillus sp. solubilized 480 g P/ml, while Penicillium sp. solubilized 275 g P/ml from

0.5 % TCP after 4 and 3 days of growth, respectively. High P-solubilization activity

of Aspergillus sp., Penicillium sp. and Fusarium sp. isolated from saline area of

Purna river basin was reported by Rajankar et al. (2007). Of the total 107 soil

samples collected from saline affected area, 31 % samples had P-solubilizing fungi

wherein 87 % were identified as Aspergillus spp., 8.7 % as Penicillium spp. and

4.3 % as Fusarium spp. Xiaoa et al. (2008) conducted a similar experiment for RP

solubilization by PS fungi, Candida krissii, P. expansum and Mucor ramosissimus,
isolated from phosphate mines (Hubei, PR China). The content of soluble P was the

highest when the initial pH for RP solubilization was 5.5 in the medium inoculated

with C. krissii, which was different from that of 7 in the medium inoculated with

P. expansum and 7.5 in the medium inoculated with M. ramosissimus. Mittal

et al. (2008) isolated 6 PSF (2 strains of A. awamori and 4 of P. citrinum) from
various rhizosphere. The P-solubilizing activity of PSF in liquid varied from 38 to

760 μg/ml for TCP and 28–248 μg/ml for MRP among all isolates. Phosphate-
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solubilizing bacteria and fungi associated with Salix alba Linn from Lahaul and

Spiti valleys of Himachal Pradesh were recovered using PVK, modified Pikovskaya

(MPVK) and NBRIP media. The PSF belonged mainly to Penicillium sp.,

A. fumigatus, A. niger, A. spp. and non-sporulating sterile groups. Amongst the

PSF, 7 fungal isolates dissolved higher amounts of P from North Carolina RP than

MRP and Udaipur rock phosphate (URP). However, the organisms solubilized

higher P in NBRIP broth than PVK broth. FC28 (Penicillium sp.) isolate could

solubilize 52.3 μg/ml amongst fungi, and while solubilizing URP, FC28 and FC39

displayed maximum decrease in pH of medium from 6.8 to 5.96 in NBRIP broth

(Chatli et al. 2008).

According to Srividya et al.(2009), A. niger (F7), A. niger (F4), A. niger and
Penicillium sp. showed 107.7, 108.3, 112.7 and 110.3 % PS efficiency on PVK

medium with 0.5 % (w/v) TCP and 285, 187.5, 258 and 70.5 μgP/ml, respectively,

from 0.5 % (w/v) TCP in liquid broth after 5 days of growth. The fungal isolate F7

however showed a varied level of PS activity both on solid and in liquid culture

medium treated with different C and N sources. In a similar study, Jayaraman and

Ilyas (2010) assessed the PS activity of Aspergillus and Penicillium isolated from

the paddy rhizosphere in Tamil Nadu, India. Phosphate solubilization efficacy of

the fungal strains followed the order: A. niger>Penicillium sp.>A. fumigatus.
Coutinho et al. (2011) isolated a total of 318 filamentous fungi from areas cultivated

with melon and determined their PS ability. Of these, 52 fungal isolates were able to

solubilize P and were identified as Aphyllophorales (2), Aspergillus (34), Penicil-
lium (10) and Rhizopus (6). Yadav et al. (2011a) tested the P-solubilization poten-

tial of Aspergillus niger strain BHUAS01, P. citrinum strain BHUPC01 and

T. harzianum in vitro which showed 328 μg P/ml, 301 μg P/ml and 287 μg P/ml,

respectively. Noor et al. (2013) demonstrated that microorganisms are the most

prominent entities for solubilization of P in various soils of different areas of Sindh

Province including Tando Muhammad Khan, Tando Allahyar, Nawabshah,

Ratodero-Larkana, Shikarpur and Umerkot, Pakistan. These soils had varying

concentrations of chemicals, variable climatic conditions, pH and microbial

populations especially the PSA. The isolated fungi expressing PSA included spe-

cies of Fusarium, Aspergillus, Penicillium and Rhizopus. Among PSF, Aspergillus
sp. showed greatest PSA as compared to other fungi. Naveenkumar et al. (2012)

isolated fungal species from the Areca catechu husk waste and determined the PSA.

The zone of clearance was higher in A. terreus (0.8� 0.03 cm), medium in

B. cinerea (0.5� 0.08 cm) and very low PS activity was detected for A. niger
(strain 2) and unidentified 3 (0.1� 0.03 cm). The P-solubilizing activity in broth

was higher for unidentified 2 (550� 8.5 μg/ml), medium in unidentified

1 (530� 10 μg/ml) and very low activity in A. niger (strain 2) (40� 2.52 μg/ml).

Mahamuni et al. (2012) isolated PSF from the sugarcane and sugar beet rhizosphere

of Western Maharashtra region of India on the basis of clear zones on Pikovskaya

agar medium and solubilization indices. The PSF recovered from both rhizospheres

were identified as A. niger (NFCCI 1991), A. awamori (NFCCI 1992), A. fumigatus
(NFCCI 1993), Alternaria alternata (NFCCI 1994), Curvularia pallescens (NFCCI
1996), P. oxalicum (NFCCI 1997), P. rubrum (NFCCI 1998) and T. viride (NFCCI
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1999). The percent P solubilized in medium containing TCP and RP by the fungi

ranged from 34.2 to 58 % and from 16.6 to 36.6 %, respectively. Among PSF,

C. pallescens (NFCCI 1996) produced the highest soluble P while A. alternata
(NFCCI 1994) had the lowest PSA when grown in medium supplemented with

TCP. Trichoderma viride (NFCCI 1999) showed a variable PSA. Posada

et al. (2013) isolated fungal isolates from 8 coffee plantations in Columbia and

Mexico. Cylindrocarpon didymum and C. obtusisporum (both from Columbia)

could solubilize 9.9 and 6.4 mg PO4
3� P/l and accumulated 8.6 and 11.6 mg P in

biomass. However, Penicillium janthinellum and Paecilomyces marquandii (both
from Mexico) solubilized 7 and 1.9 mg PO4

3� P/l and accumulated 11.3 and

17.3 mg P in biomass.

4.6 Some Examples of Impact of PSF on Plant Growth

Several plants have shown dramatic increase in growth following PSF application.

The list of groups of plants positively influenced by PSF application is given in

Table 4.3.

4.6.1 Cereals

4.6.1.1 Maize and Corn

In a study, Richa et al. (2007) showed that A. tubingensis and A. niger inoculation
improved the growth of maize (Zea mays) and the level of P in shoots. In a similar

investigation, the single and mixture of 3 genera [Aspergillus (2 species), Penicil-
lium, (2 species) and Cephalosporium sp.] of RP-solubilizing fungi were used in the

presence and absence of organic fertilizer (chicken manure) to assess their impact

on corn (Kassim and Al-Zandinany 2011). Rock phosphate was added at a fixed rate

(88 kg/ha). Vegetative growth of corn was used as an indicator and plants were

grown for 60 days, during which, P availability was measured at a 2-week interval.

Dry matter accumulation in shoots and roots of inoculated/uninoculated plants and

the uptake of P by the corn plant was measured. Results indicated that the total

amount of P solubilized, expressed as percentage of the added RP in the presence of

organic fertilizer, was 41.5 % in soil inoculated with the mixture of fungi which was

followed by single application of Penicillium (37.3 %), Aspergillus and

Cephalosporium (36.6 %), resulting in an increase of 31.8 %, 22.5 % and 20 %

over control plants, respectively. Recently, Patil et al. (2012) evaluated the ability

of P. bilaiae and Penicillium spp. and different P levels on growth, yield and

nutrient content in maize grown in calcareous soil. Seed inoculation with PSF

along with P2O5 significantly influenced plant height, number of leaves per plant,

dry matter production, cob length, grain weight per cob, 1,000 grain weight, grain
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Table 4.3 List of host plants benefitted by phosphate-solubilizing fungi

Plant group Host plant PSF Effect References

Cereals Amaranthus
cruentus L.

Aspergillus niger Number of leaves, dry

weight of shoot, total

P content increased

Reena

et al. (2013)

Maize and corn Aspergillus sp.,
Penicillium
sp. and

Cephalospor-
ium sp.

Amount of phosphorus

absorbed and plant

dry weight

Kassim and

Al-Zandinany

(2011)

Wheat P. bilaji, Penicil-
lium spp.

Plant height, number of

leaves per plant, dry

matter production,

cob length, grain

weight per cob,1,000

grain weight, grain

yield

Patil et al. (2012)

Wheat P. oxalicum Increased the growth and

yield

Singh et al. (2011)

Wheat A. awamori,
A. niger

Increased the grain and

straw yield

Sharma

et al. (2012)

Leguminous

crops

Chick pea Trichoderma
harzianum
and A. niger

Shoot length, root

length, dry weight of

shoot and root

increased

Yadav

et al. (2011a)

Cowpea Aspergillus sp. Wet and dry weight of

the shoot, root and

pod were higher

Manivannan

et al. (2012)

Soybean A. niger,
A. melleus
and

A. clavatus

Root phosphate content

showed an increase

Chakraborty

et al. (2010)

Oilseed and

fibre

crops

Anise PSF Highest seed yield,

essential oil content

in seeds

Zand et al. (2013)

Groundnut A. niger,
P. notatum

Increased dry matter,

yield, percentage of

protein; oil. N and P

content percentage

increased

Malviya

et al. (2011)

Vegetable

and hor-

ticultural

crops

Cucumber Aspergillus spp. Increase in shoot length,

shoot fresh weight,

shoot dry weight,

root length, root fresh

weight, root dry

weight, plant length,

leaf area and leaf

chlorophyll content

Islam et al. (2014)

Lettuce P. albidum Increase in the gross

weight

Morales

et al. (2011)

(continued)

100 H.R. Sahoo and N. Gupta



yield and tissue nutrient content (N, P, K, Zn and Fe) at tasseling of leaves and at

harvest. Higher growth and yield of maize were achieved when P-solubilizing fungi

were used with 100 % P2O5 compared to 0 and 50 % P2O5. It was concluded that

single and dual inoculation of PSF along with P fertilizer gave 20–23 % higher

maize yield over control.

4.6.1.2 Rice

Ferreira et al. (2008) performed an experiment in greenhouse conditions with three

P-solubilizing isolates involving two bacteria and one fungi and four increasing

inocula concentrations (106–109 cfu/ml). The height, root dry matter, length and

volume of rice (Oryza sativa) increased following PSF inoculation (PSF-8) in the

first experiment. This inoculant (PSF-8) also enhanced the rice growth at the

highest inoculum concentration in the second experiment.

4.6.1.3 Wheat

In a study, Xiaoa et al. (2008) isolated 3 PSF from phosphate mines of Hubei,

People’s Republic of China, and identified them as Penicillium expansum, Mucor
ramosissimus and Candida krissii. Subsequently, these PSF were tested under pot

trial to evaluate their growth-promoting abilities using wheat as a test crop.

Generally, all fungi enhanced the growth of wheat plants and increased soil-

available P and P and N uptake of wheat seedling in soil containing RP under pot

conditions. This study thus demonstrated the capability of the fungal isolates to

convert insoluble form of P into plant-available P form from RP, and therefore,

such fungal cultures hold great potential for developing biofertilizers to enhance

soil fertility and promote wheat plant growth. Similarly, P-solubilizing fungus

P. oxalicum isolated from the rhizosphere soil of rock phosphate mine landfills

Table 4.3 (continued)

Plant group Host plant PSF Effect References

Tomato A. awamori,
Trichoderma
viride

Improved yield Sibi (2011)

Tomato A. niger Increased the yield and

dry matter content

Anwer and Khan

(2013)

Forest trees Bamboo AM fungi and

A. tubingensis
P increased in shoot

tissues

Giridhar Babu

and Reddy

(2010)

Dalbergia
sissoo

P. chrysogenum
and

Aspergillus sp.

Maximum

biomass

production

Dash et al. (2013)
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was tested for its efficacy to solubilize RP and effect on the growth of wheat and

maize plants grown in soil amended with RP. Field experiments clearly showed that

the plants inoculated with P. oxalicum had significantly higher growth and resulted

in maximum yield of wheat and maize compared to the control plants. The P

content was also significantly increased in the plants (Singh et al. 2011). Sharma

et al. (2012) in a follow-up study assessed the influence of P levels and PSF on yield

and nutrient uptake by wheat. The dry matter production by wheat at tillering, ear

emergence and harvest was significantly higher. Application of A. awamori gave
the highest dry matter accumulation at tillering, at ear emergence and at harvest.

Increasing levels of P also increased the grain and straw yield significantly.

Increasing level of P and inoculation with A. awamori and A. niger significantly
increased the uptake of N, P and K in wheat at all stages of growth. The

maximum N, P and K uptake was, however, recorded in grain and straw at harvest

which was followed by ear emergence and tillering stage when seeds were inocu-

lated with A. awamori.

4.6.2 Leguminous Crops

The effect of 6 PS fungi including two strains belonging to A. awamori and four to

P. citrinum was tested for their growth-promoting efficiency against chickpea

plants (Cicer arietinum L. cv. GPF2) grown in pot experiments (Mittal

et al. 2008). A maximum stimulatory effect on chickpea growth was observed

following inoculation of two A. awamori strains which resulted in 7–12 % increase

in shoot height, nearly threefold increase in seed number and twofold increase in

seeds weight as compared to the control (uninoculated) plants. Inoculation of four

strains of P. citrinum however exhibited lesser stimulatory effect and showed only

7 % increase in shoot height, twofold increase in seed number and 87 % increase in

seed weight relative to the control plants. However, a consortium of all the 6 fungal

isolates showed no stimulatory effect on chickpea plants growth. Later on, Kapri

and Tewari (2010) reported a significant increase in biological properties of

Trichoderma-inoculated chickpea plants grown in P-deficient soil under glasshouse
conditions. The dry matter accumulation in above-the-ground plant organ (shoot)

was increased by 23 % and 33 % due to inoculation with the Trichoderma (DRT-1)
in the soil amended with 100 and 200 mg TCP kg�1 soil, respectively, after 60 d of

sowing. In a similar investigation, Yadav et al. (2011a) showed that co-inoculation

of T. harzianum and A. niger demonstrated a significant increase in the growth of

chickpea plants. Manivannan et al. (2012) conducted an experiment using Asper-
gillus sp. to enrich the total P content of vermicompost. The fungus was grown in

mass and the spore count was done periodically. Pre-prepared vermicompost was

mixed with a spore suspension of Aspergillus sp. at 1� 108 spores/g. Treated

vermicompost was then mixed with soil, for pot culture studies. The composition
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of PS fungi with vermicompost showed higher productivity of Vigna unguiculata
(L.)Walp. (cowpea). Pot culture studies also showed that the wet and dry weight of
the shoot, root and pod were higher in vermicompost enriched with microbial

inoculants than in vermicompost alone and in control plants. The maximum growth

performance and yield of a cow pea was observed in the Aspergillus sp.-enriched
vermicompost. This is probably due to more phosphorus content in the soil formu-

lation. Saber et al. (2009) demonstrated that the inoculation of green gram (Vigna
radiata) seeds with A. niger and Penicillium in the presence of RP and calcium

superphosphate (CSP) increased significantly the growth, seed yield and P uptake

and also improved the nodulation status and population of total and P-dissolving

fungi in the rhizospheric soil of green gram and could save about 1/3 P fertilizer

dose. Chakraborty et al. (2010) observed a significant increase in soybean growth

following A. niger, A. melleus and A. clavatus application under in situ. However, a
decrease in soil P content was recorded following fungal application.

4.6.3 Oilseed and Fibre Crops

The PSF has also been found to have positive effects on growth and development of

oil seed and fibre crops. As an example, Zand et al. (2013)in a study investigated the

effects of PSM and plant density on seed yield and essential oil content of anise

(Pimpinella anisum). Treatments consisted of control (P1), seed inoculation

(P2) and seed inoculation + spraying on the plant base at stem elongation stage

(P3) and plant density at four levels (67, 34, 23 and 17 plants/m2). The PS

organisms had positive effects on all the measured traits especially when it was

used two times (at seed inoculation + spraying on the plant base at stem elongation

stage). Highest seed yield and essential oil content in seeds were obtained at plant

density of 17plants/m2. Greenhouse and field experiments were conducted to

evaluate the effect of a PSF isolate of P. bilaiae on the yield and P uptake by

canola (Brassica napus L.). Under greenhouse conditions, P. bilaiae inoculation

did not affect canola pod or straw dry matter production, but it did increase straw

and pod P concentrations and resulted in increased P uptake over uninoculated

plants. Addition of P (20 mg/kg soil) as Florida rock phosphate (FRP) together with

P. bilaiae enhanced P uptake by canola which was at par with those resulting from

the sole application of mono-ammonium phosphate (MAP), used at the same rate of

P. Addition of FRP had inferior effect on plant P uptake. However, the addition of

P. bilaiae generally increased dry matter yields and P uptake by canola growing in

two fields, suggesting that P. bilaiae might have accounted for increase in the P

pool and hence greater uptake by plants (Kucey and Leggett 1989). Likewise,

A. niger and P. notatum solubilized TCP in vitro and promoted the growth of

groundnut (Arachis hypogaea) plants grown in soil amended with TCP (Malviya

et al. 2011). From pot experiments it was clear that the dual inoculation of A. niger
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and P. notatum significantly increased dry matter and yield of groundnut plants as

compared to the control plants. Also, a significant increment in percentage of

protein and oil as well as an increase in the percentage of N and P content of the

plant was noticed. The increase in N levels of groundnut plants was, however,

nonsignificant with the percentage of total P, under the experimental conditions.

4.6.4 Vegetable and Horticultural Crop

4.6.4.1 Cucumber

Aspergillus PPA1 significantly increased shoot length, shoot fresh weight, shoot dry
weight, root length, root fresh weight, root dry weight, plant length, leaf area and

leaf chlorophyll content of cucumber (Cucumis sativus) plants compared to

non-treated control plants. The growth rate of plants increased with the increasing

concentration of fungal inoculum applied to soil. The fungus was re-isolated from

the roots of cucumber plants at higher frequencies. These results suggest that

Aspergillus spp. PPA1could be used as a root-colonizing plant-growth-promoting

fungus for enhancing the overall performance of cucumber (Islam et al. 2014).

4.6.4.2 Lettuce and Tomato

Kohler et al. (2007) observed that a joint inoculation of P. albidum with native

mycorrhizae had a synergistic effect on the growth of lettuce (Lactuca sativa). Also,
Penicillium albidum possessed with the capacity to solubilize both inorganic and

organic P enhanced the growth and mineral nutrition of lettuce plants growing in a

volcanic soil (Morales et al. 2011). In other experiments conducted by Sibi (2011),

the co-inoculation of A. awamori and T. viride significantly increased the nutrient

value of the compost. A maximum P content (64.3 %) was observed in

co-inoculation treatment which was followed by single inoculation of A. awamori
(62.2 %). The present findings revealed that PS fungi can interact positively in

promoting nutrient content of compost and tomato (Solanum lycopersicum) growth
leading to improved yield. A similar increase in the yield and dry matter content of

tomato plants due to inoculation of nursery root-dip culture of A. niger is reported
(Anwer and Khan 2013). Salicylic acid, total phenolic and chlorophyll contents of

plant, and lycopene, ascorbic acid (Vitamin C), Brix index, diameter of fruit skin,

and rate of pressure tolerance of tomato fruit were increased compared to untreated

control plants. Among all isolates, A. niger SkNAn5 was found to be the most

efficient and increased yield by 54 % and dry matter of tomato plants by 59.8 %.

A. niger SkNAn5 also significantly increased the salicylic acid of root and fruit

quality of tomato, having increased amount of vitamin C (35.59 g/100 g against
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control 23.9 g/100 g), lycopene (9.8 mg/100 g against control 8.3 mg/100 g) and

rate of pressure tolerance of fruits (2.84 kg/cm against control 1.35 kg/cm). These

results suggest that nursery application of A. niger SkNAn5 may improve quantity

and quality of tomato fruits.

4.6.5 Forest Trees

4.6.5.1 Bamboo and Dalbergia sissoo

Co-inoculation of arbuscular mycorrhizal (AM) fungi and PS fungus A. tubingensis
fungi significantly increased the P (150 %), K (67 %), Ca (106 %) and Mg (180 %),

whereas the Al and Fe content were significantly reduced by 50 and 60 %, respec-

tively, in shoot tissues of bamboo (Dendrocalamus strictus) plants grown in fly ash
as compared to control plants (Giridhar Babu and Reddy 2010). A significant

increase in biomass production of D. sissoo was recorded when seedlings were

inoculated with P. chrysogenum and Aspergillus sp. and grown in pot culture under
polyhouse misting facility. Growth analysis revealed that NAR (net assimilation

rate) and LAR (leaf area ratio) differed with RGR (relative growth rate) in the

treatments. Application of selected microbes can lead to a successful establishment

of D. sissoo in nurseries, even in pot soils, and help in producing quality planting

material (Dash et al. 2013) (Figs. 4.3 and 4.4).

4.7 Conclusion and Assumption

The use of biofertilizers or microbial inoculants for replacing the efficacy of

chemical fertilizers has been found to be effective in reducing the cost of cultivation

and maintaining the natural fertility of soil. Therefore, utilization of PS fungi as

biofertilizer has gigantic potential for making use of fixed P present in the soil in

crop production without causing any harmful effects on aerial and soil environment.

Biofertilizers are more economical due to their low market prices compared to

synthetic fertilizers, helpful in improving soil structure and the restoration of

environment for leveraging agriculture. Research efforts are, therefore, required

for exploring new and better agronomic effectiveness of biofertilizers application

for profitable crops such as orchards, flowers and vegetables. Although PSMs are

abundant in many of the soils, isolation, identification and selection of PSMs have

yet not been successfully commercialized, and thus, its application is still limited.

There is therefore an urgent need to popularize the use of inexpensive and more

powerful biofertilizers, especially the use of PSM in sustainable crop production

across different agro-climatic regions of the world.
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Chapter 5

Cold-Tolerant Phosphate-Solubilizing

Microorganisms and Agriculture

Development in Mountainous Regions

of the World

Luis Andrés Yarzábal

Abstract In many mountainous regions of the world, agriculture faces several

major challenges. Of these, cold temperatures and low fertility of soils are of

particular importance. For instance, in the Indian Himalayas and in the High

Andes, soils are acidic and phosphorus deficient, severely limiting crop production.

In the contemporary world, the use of biofertilizers-especially nitrogen fixers and

phosphate solubilizers-to enhance crop yields has become an attractive alternative

for farmers, due to low costs and no environmental hazards. Nevertheless, use of

commercially available biofertilizers in cold climates like the ones prevailing in

mountainous regions has been found ineffective. To overcome these challenges,

numerous biotechnological/microbiological approaches have been assayed during

the last two decades, involving the use of cold-loving (psychrophilic) or cold-

tolerant (psychrotrophic) organisms. However, despite their great potential, the

development of cold-tolerant biofertilizers based on the rational use of psychro-

philic and psychrotrophic microorganisms is still in its infancy. The most important

achievements in the field of cold-tolerant phosphate-solubilizing bioinoculants

documented so far are reviewed and highlighted in this chapter.

Keywords Cold-tolerant biofertilizers • Psychrophilic microorganisms • Tropical

Andes • Phosphate solubilization • Mountain agriculture • Plant growth promotion

5.1 Introduction

According to the United Nations Universal Declaration of Human Rights, “every-

one has the right to a standard of living adequate for the health and well-being of

himself and of his family, including food, clothing, housing. . .” (Article 25)
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(UN General Assembly 1948). Hence, freedom from hunger is a fundamental

human right. Alas, the most recent estimates of the Food and Agriculture Organi-

zation of the United Nations (FAO) indicate that, even though the proportion of the

world’s population suffering from undernourishment has declined to 12.5 %,

868 million people still remain undernourished in terms of energy intake, most of

them in rural areas of poor countries. Besides, an estimated two billion people

suffer from one or more micronutrient deficiencies (FAO Report 2013). Further-

more, considering the pace of human populations, which is likely to reach 7.4

billion by 2017 and 9.3 billion in 2050 (FAO Report 2005), there is an urgent need

to increase food production by at least 50 % in the next 20 years. To overcome

hunger problems around the world, agriculture has traditionally played a funda-

mental role in producing food and generating income. Since 1947, significant

improvements in agriculture technologies have unleashed processes of productivity

growth, economic development, and social transformation, which are witnessed all

around the world (FAO Report 2013). However, there is still much to do and

agriculture in this context can contribute further to eradicate the malnutrition

problems.

In the mountainous regions of the developing world, agriculture faces several

major challenges. Two of them are of particular importance: (1) a dramatic growth

in mountain populations which is causing an unprecedented pressure on natural

resources and (2) an accentuated demand on commercial products (crops and

livestock) that intensifies the rapid resource use to ensure high productivities.

However, for enhancing the production of many mountain crops, either there are

no improved technologies available or, even if available, they are not affordable to

small farmers. Because of these and some other related problems like deforestation,

soil erosion, and frequent, excessive, and non-judicious use of chemical fertilizers

and pesticides, there is greater pressure on land resources, some of which may have

been damaged irreversibly (Johda et al. 1992). When considering agriculture in

mountainous regions, special attention must be paid to two fundamental aspects: the

climatic context, mainly characterized by low soil and atmospheric temperatures

especially during the winter months, and the fertility of soils, which is generally low

to very low. Indeed, the soils of many mountainous regions of the world are acidic

and severely nutrient limited. Of the most important macronutrients for plant

growth, phosphorus (P) can be either “occluded” within or else strongly fixed at

the surface of soil minerals like Fe and Al hydrous oxides (sesquioxides). Free Al

and Fe cations react readily with inorganic forms of P, leading to relatively

insoluble precipitates. This reversible process is known as “P fixation” (Johnson

and Loeppert 2006). Additionally, intensive weathering of soils removes nutrient

cations and leaves behind more stable materials rich in Fe and Al oxides. Besides,

human intervention on soils through fertilization, irrigation, and long-term

monocropping contributes to increased land degradation and loss of productivity

(Tilman et al. 2002). In the following section, two distant mountainous regions of

the world, yet sharing striking similarities and challenges when considering their

agricultural productivity, are highlighted.
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5.2 Indian Himalayan Region

The Indian Himalayan Region (IHR) occupies a special place in the mountain

ecosystems of the world. This vast mountain region, which encompasses a total

geographical area of about 530.795 km2 (about 16.2 % of the country’s total

geographical area), is inhabited by >64 million people (around 6.2 % of the

country’s population) (SARDM Report 2006). Like elsewhere in other mountain-

ous regions, most IHR people are marginalized and highly dependent on natural

resources, agriculture, and livestock. Agriculture is the basis of the livelihood of

over 80 % of the rural population in some areas of the IHR (FAO Report 2003).

Food grain crops dominate the agriculture sector, despite a slight drop in area due to

diversification toward horticultural crops, but even the Green Revolution has failed

to climb the Himalayan heights (SARDM Report 2006). For many people in the

IHR, which do not have the financial means to improve their yields, crop production

is just a matter of subsistence. A series of climatologic, topologic, pedologic, and

socioeconomic factors severely limit crop production in the IHR. For example,

many agroecosystems are poorly irrigated, subjected to soil erosion, and very often

inadequately managed. On the other hand, forest and cropped soils in the IHR are

frequently acidic (Rinu et al. 2013) and characterized by poor availability of some

essential mineral nutrients. Finally, cold temperatures, sometimes reaching subzero

values, are not uncommon in these mountains. In some regions, snowfall is frequent

during the winter season, and hence, the soil may remain frozen for several days,

limiting growth of crops and increasing the risk of damage incurred by frost

and hail.

5.3 Tropical Andes

The Tropical Andes spans 1,542,644 km2, from western Venezuela to northern

Chile and Argentina, and includes large portions of Colombia, Ecuador, Peru, and

Bolivia. This region is considered as the richest and most diverse region on Earth.

As in the IHR, the rural Andean population, particularly those inhabiting the

highlands (>2,500 m), depends largely on agriculture and related activities for

their livelihoods. Many agroecosystems, managed by smallholder farmers, are

characterized by the exploitation of a mix of old and new world crops including

potato, grains (e.g., maize, quinoa, barley, oats), legumes (e.g., fava beans, peas),

and a wide array of vegetables (e.g., carrots, garlic, onions, cabbage). In some

countries, it is common to find small plantations of native tubers like oca, mashwa,

and ullucu (Fonte et al. 2012). Several of these cropping systems are pre-Columbian

and, in some cases, date back several millennia (Sandor and Eash 1995; Stanish

2007). However, many farmers in the Andean region have limited access to a

number of basic agricultural inputs such as fertilizers, pesticides, improved crop

varieties, mechanized tillage, and irrigation. Despite the diversity of
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agroecosystems in the Tropical Andean highlands, agriculture is also limited by a

familiar set of environmental constraints throughout the region, with climate

playing the most important role at high altitudes (Stadel 1991). On the other

hand, with a few exceptions, soils in the high Andes are generally thin, fragile,

and highly nutrient limited. For example, non-allophanic Andosols, which domi-

nate the Ecuadorean highlands (Poulenard et al. 2001), can have severe problems of

P deficiency, acidity, and aluminum toxicity (Dahlgren et al. 2004).

5.4 The Need to Develop Biofertilizers for Mountainous

Regions

The land quality in the mountain regions of the developing world is deteriorating,

leading to a declining in soil fertility and productivity. That is why many mountain

families are facing food shortages which contribute to the chain reaction process of

poverty-resource deterioration-scarcity-poverty (Jodha and Shrestha 1993). It is,

therefore, imperative to explore new options for increasing the productivity and

carrying capacity of farms, in order to improve the livelihoods of marginal moun-

tain households (Partap 1999). This will also allow the mountain people to compete

favorably in the modern world. One of these options is the cultivation of high value

cash crops, such as fruits and vegetables, a tendency which is slowly increasing in

the IHR (FAO Report 2003). Adoption of organic farming practices largely exclud-

ing the use of synthetic agro-chemicals and fertilizers and rescue of native species,

varieties, and breeds which have played an important role in the human diet and

traditional cultures and which are threatened by extinction are other promising

alternatives. A complementary and very promising approach for improving the

agricultural productivity of farmers without serious economic or environmental

impacts is the development and correct use of biofertilizers, well suited to perform

efficiently under the particular conditions of mountainous agroecosystems. A

biofertilizer can be defined as a product containing live or latent cells of agricul-

turally beneficial strains of microorganisms that are applied to seeds or soils to build

up the numbers of such microorganisms and accelerate certain microbial processes

to augment nutrient acquisition by plants (Motsara and Roy 2008). Biofertilizers

consist of nitrogen fixers (N-fixers) (Rhizobium, Azotobacter, Azospirillum,
cyanobacteria/blue-green algae, Azolla), phosphate-solubilizing bacteria (PSB),

and mycorrhizal fungi. In the contemporary world, the use of biofertilizers to

enhance crop yield particularly of N-fixers and PSB is widespread and well

documented (Banerjee et al. 2006). However, use of commercially available

biofertilizers in colder climates like the ones prevailing in mountainous ecosystems

has proven ineffective (Pandey et al. 1998). Indeed, low temperatures impose a

serious threat to the metabolic activities of microorganisms. For instance, it has

been estimated that lowering the temperature by 10 �C induces a two- to fourfold

decrease in enzyme activity (Feller and Gerday 2003). Therefore, it has become
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extremely important to find microorganisms with varying plant growth-promoting

(PGP) abilities and potential to adapt well to low temperatures [¼cold-tolerant

(CT) or cold-loving], in order to develop proficient CT-biofertilizers for use in

mountain agriculture.

5.5 Plant Growth-Promoting Rhizobacteria,

Plant Growth-Promoting Bacteria, and

Phosphate-Solubilizing Bacteria

Soil microorganisms do play a significant role in the biogeochemical cycling of

elements, regulating the dynamics of organic and inorganic matter and increasing

the availability of plant nutrients in the rhizosphere. The beneficial effects of some

primitive “environmentally friendly” agricultural practices on plant growth and

development were indeed observed and recorded centuries ago by the Ancient

Greeks and Romans. At the time, it was proposed that mixing different soil samples

or adding organic manures to the farmland might improve soil fertility and,

consequently, crop yields (Tisdale and Nelson 1975). Subsequently, Hellriegel

and Wilfarth (1888) and Beijerinck (1888) reported that some soil bacteria may

convert atmospheric nitrogen (N) into plant usable forms of N. Thereafter,

Kloepper and Schroth (1978) introduced the term “rhizobacteria” referring to the

soil bacterial community competent in colonizing plant roots and able to stimulate

plant growth. Later on, Kloepper and Schroth (1981) termed such beneficial

rhizobacteria as plant growth-promoting rhizobacteria (PGPR). Considering the

fact that not all plant-beneficial bacteria are inhabitants of the rhizosphere, some-

times the term PGPB (for plant growth-promoting bacteria) is used instead of PGPR

(Andrews and Harris 2003).

Mechanistically, some PGPB enhance crop growth and development indirectly:

for example, many of them inhibit plant pathogens (these are termed

“bioprotectants,” “biocontrollers,” or “biopesticides”); others degrade toxic xeno-

biotics (“bioremediators”) or trigger the induced systemic resistance (ISR) in

plants. Additionally, some PGPB act directly and promote plant growth by releas-

ing phytostimulators (“biostimulants”) or by providing essential nutrients, such as

N and P (“biofertilizers”) (Glick 2012). Phosphate-solubilizing bacteria (or PSB)

belong to the latter group. This heterogeneous group of PGPB is characterized by

their ability to readily and efficiently solubilize mineral forms of inorganic P (Pi).

The mechanisms employed by PSB to perform this Pi solubilization are as diverse

as their phylogeny (see below). Another group of PGPB includes organic-P (Po)

mineralizing bacteria, which hydrolyze organic forms of P (phosphate esters,

phosphonates, and anhydrides) through the action of specific enzymes (mainly

phosphatases) (Turner et al. 2006; Richardson and Simpson 2011). This process,

usually called “substrate mineralization,” is of fundamental importance because it

releases plant-available orthophosphate (PO4
2�). Many PSB have been tested both
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in greenhouse and in field trials and have been found to efficiently promote plant

growth in P-deficient soils (Bashan et al. 2013). Concurrently, numerous commer-

cial PSB-based biofertilizers have been developed and are being marketed on a

global scale. However, these biofertilizers are not used as commonly as N-fixing

bacteria (NFB) in crop production systems, and even in many cases their effective-

ness in the soil-plant system has been reported quite uncertain, particularly under

field conditions. Still, they remain a very attractive alternative to chemical phos-

phatic fertilizers, particularly in poor regions of the world.

5.5.1 Mechanisms of Inorganic-P Solubilization: A Brief
Account

It is widely agreed that the most important mechanism evolved in bacteria to

solubilize sparingly soluble forms of Pi in the soil is related to the abundant

production and excretion of organic acids (Rodriguez and Fraga 1999; Goldstein

2007; Khan et al. 2010). This is mainly accomplished by bacterial transformation of

sugars exuded through the roots into their respective sugar acids, whose amount and

nature varies with the type of available sugars (Deubel et al. 2000). Even though

several organic acids including citric, glutamic, succinic, lactic, oxalic, glyoxalic,

maleic, fumaric, tartaric, and a-ketobutyric acids have been shown to efficiently

mobilize Pi from soils (Khan et al. 2006), two of them are particularly effective:

gluconic and 2-ketogluconic acids, probably due to their extremely low pKa

(s) (~3.4 and ~2.6, respectively) (Goldstein 1995; Rodriguez and Fraga 1999).

Gluconic and 2-ketogluconic acids are produced through direct oxidation

(or non-phosphorylating oxidation) of glucose, an alternative aldose-utilization

pathway which is expressed in a number of rhizobacteria (Goldstein 2007).

Nevertheless, other mechanisms have also been proposed to explain PO4
2� release

from P-containing minerals, in the absence of a noticeable acidification of the

extracellular milieu. The sink theory considers that continuous microbial uptake

of P from water solution would disturb the chemical equilibrium between soluble

and insoluble forms of P, favoring thus the solubilization process (Halvorson

et al. 1990). The acidification by H+ excretion theory, proposed by Illmer and

Schinner in 1995, claims that ammonium ion assimilation by bacteria would release

protons that will act, in turn, as agents for P solubilization. This would occur in the

absence of any organic acid production. The bacterial surface adsorption theory

is based on the fact that bacterial interaction with P-containing minerals, through

exopolymeric substances, will cause both an increase in the extent of mineral

dissolution and an inhibition of secondary mineral formation (Wightman and Fein

2004; Rong et al. 2008). The chelating theory proposes that the chelating property

of the organic acid anions is as important as the proton effect. In such a context, any

effective biological chelator—siderophores, for example—would enhance both

mineral dissolution and P solubilization (Campbell and Eick 2002; Hamdali
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et al. 2008). The reductive dissolution theory affirms that the reduction of hydrous

ferric oxides under anaerobic conditions may release occluded P and ferrous iron

(Fe2+) to the soil solution (Stemmler and Berthelin 2003). Finally, the inorganic

acid production theory is based on the fact that many acidophilic bacteria

(extremophiles), able to oxidize reduced sulfur compounds (such as pyrite) to

sulfuric acid (H2SO4), may participate in the solubilization of P in soils (Muchovej

et al. 1989).

5.6 Cold-Tolerant Microorganisms

The ability of some microorganisms to tolerate (and even proliferate) at low

temperatures was first reported by Forster in 1887. This ability is related to the

strategies these organisms have evolved to face the challenges imposed by perma-

nently cold environments. Many of these strategies, dependent on mechanisms

which are far from universal (Casanueva et al. 2010), are quite well known; others

still wait to be elucidated. Some of these are regulation of membrane fluidity, the

synthesis of specialized molecules (e.g., cold-shock proteins, cryoprotectors, and

antifreeze molecules), the regulation of ion channels permeability (osmoregula-

tion), seasonal dormancy, and perhaps the most important adaptation to freezing

temperatures, the modification of enzyme kinetics (Georlette et al. 2004; D’Amico

et al. 2006). Although they are both able to grow in cold places, there is an

important difference between cold-tolerant (¼psychrotrophs or psychrotolerant)

and cold-loving (¼psychrophilic) microorganisms: psychrotrophs are able to resist

suboptimal temperatures of growth (<20 �C) without being seriously

compromised; on the contrary, psychrophiles are adapted to grow efficiently at

low temperatures and strongly depend on this abiotic factor to successfully colonize

cold habitats (Margesin and Miteva 2011). However, distinguishing between these

two kinds of microorganisms is not always easy, and there has been a debate

concerning such distinction. The classical definition of a psychrophile is related

to its growth rate, which is said to be maximal at the so-called optimal temperature.

Indeed, Morita (1975) defined psychrophiles as organisms having an optimal

temperature for growth at about 15 �C or lower, a maximal temperature for growth

at about 20 �C, and a minimal temperature for growth at 0 �C or below. However,

some authors have contradicted this definition in the past few years mainly because

when considering efficient colonization of cold environments, the growth rate may

not be as relevant as growth yield (Bakermans and Nealson 2004). In a paramount

work in the field, Margesin (2009) clearly demonstrated that slow growth rates of

psychrophiles at the so-called suboptimal, lower temperatures are compensated by

high growth yields and maximized cellular fitness. Nevertheless, it is important to

consider here that psychrotolerant microorganisms (able to grow between 20 and

40 �C, but also at lower temperatures with much lower rates) are the organisms

most frequently found in cold environments (Hoover and Pikuta 2010).
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5.6.1 Cold-Tolerant Phosphate-Solubilizing Bacteria

During the past 15 years, the search for cold-tolerant PSB has followed two main

routes. The first one was the isolation of native cold-tolerant phosphate-solubilizing

bacteria (CT-PSB) from natural soils collected in mountainous regions (including

alpine and sub-alpine environments, mainly in the IHR); the second path was the

development of cold-tolerant mutants from well-known PS bacterial strains,

irrespective of their ability of colonizing the roots of crops and/or to survive in

natural rhizospheric environments under the prevailing climatic conditions. Para-

doxically, one of the first attempts in this field followed the second approach.

During the mid- to late 1990s, Goel and her team at the G.B. Pant University of

Agriculture and Technology (India) decided to produce cold-tolerant mutants of

Pseudomonas fluorescens, a well-known PGPR species able to effectively solubi-

lize Pi, and then to determine their effect on plant growth promotion at low

temperatures. The mutants were developed by nitrosoguanidine treatment of three

different strains of P. fluorescens, namely, GRS1, PRS9, and ATCC13525 (Mishra

and Goel 1999). In their first report, Das et al. (2003) showed that some of these

P. fluorescens mutants were able to solubilize much more P than their respective

native strains, at 10 �C. This primary work was complemented by another study

which revealed that two of these mutants could enhance growth of wheat and mung

bean at 10 �C under in vitro (gnotobiotic system) and in situ conditions (Katiyar and

Goel 2003). In a follow-up experiment, Trivedi and Sa (2008) isolated a

psychrotrophic strain of P. corrugata from IHR soils and generated mutants with

high P-solubilizing abilities using nitrosoguanidine. Of the total 115 mutants ini-

tially identified, only 2 were chosen to further test their PGPR and P-solubilizing

abilities. These mutants were indeed able to solubilize more P at 4, 9, and 28 �C
than their native counterpart; this P-solubilizing activity was concomitant to a

drastic acidification of the culture broth, related to organic acid production (both

gluconic and 2-ketogluconic acids). Subsequently, following bacterization of seeds,

the growth of wheat and mung bean increased significantly under in vitro and

greenhouse conditions at 10 and 15 �C and in the presence of rock phosphate

(as the sole source of P). Also, the bacterial inoculation had a positive effect on

soil enzymatic activities, especially acid and alkaline phosphatases.

Even though the mutagenesis strategy has shown some promising results, the

alternative approach isolating soil-borne CT-PSB is by far the most popular prac-

tice among researchers. This easy and inexpensive experimental approach is based

on the premise that for isolating competitive and effective bacterial strains, it is the

pool of indigenous soil bacteria that must be screened in the first place. It is

therefore assumed that such microorganisms would be well adapted to the partic-

ular climatic conditions of the particular site (Paau 1989). The arguments beneath

such an assumption are that (1) dominant, competitive indigenous strains are

specific to a particular geographical region as a result of natural selection by various

biotic and abiotic pressures (e.g., low temperatures, heavy rainfall and snowfall,

food and non-food crop species commonly used in the area), (2) important
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physiological plant-promotion characteristics (e.g., N-fixation, P-mobilization,

antagonism, phytohormone production, and others) may vary with soil and weather

parameters, and (3) indigenous strains, when isolated, added to the seed in high

numbers, and planted in the same geographical region, under favorable moisture

and temperature conditions, will establish themselves in the rhizosphere of crops

(Höflich et al. 1994; Pandey et al. 2006a). Nevertheless, in apparent contradiction

with these premises, Pandey et al. (1998) tested the effectiveness of well-known

mesophilic PGPR inoculants—such as Azotobacter chroococcum and Azospirillum
brasilense—on the promotion of maize growth in colder (¼higher) locations of

Sikkim Himalaya. A statistically significant positive effect on the A. chroococcum
inoculated plants was observed when they were grown under subtropical conditions

(1,200 m altitude). On the contrary, bacterial inoculations were found to be inef-

fective at the temperate site (1,900 m altitude). In a similar investigation,

Egamberdiyeva and Höflich (2003) assessed the impact of mesophilic PS-PGPR

on wheat plants grown at low temperatures (16 �C) and under greenhouse condi-

tions (pot experiments). The bacteria used previously isolated from the

phyllosphere, rhizosphere, or soil of the root zone of different crops were not

described as psychrophilic or even psychrotolerant and were isolated instead from

two distant regions of the world (i.e., Germany and Uzbekistan). Inoculation of

seedlings with P. fluorescens PsIA12, Pantoea agglomerans 050309, and Myco-
bacterium sp. 44 (the three of them isolated from Müncheberg, a German region

with semi-continental climate) was found to significantly increase the root and

shoot growth of winter wheat at 16 �C compared to 26 �C in loamy sand. On the

other hand, Mycobacterium phlei MbP18 and Mycoplana bullata MpB46, both

isolated from the semiarid region of Tashkent in Uzbekistan, significantly increased

root and shoot growth of wheat in nutrient-poor Calcisol at 38 �C and in nutrient-

rich loamy sand at 16 �C. Furthermore, the inoculated wheat plants had significantly

higher N, P, and K contents. In addition, some of these bacterial isolates could

survive and establish better at 16 �C than at 26 �C, in the rhizosphere of winter

wheat and in the bulk soil.

Apart from these pioneer experiments, later efforts were directed toward isolat-

ing indigenous CT-PSB from natural environments of cold mountainous regions

and subsequently testing them as potential PGPB under different conditions. With

the exception of one study conducted with bacterial isolates obtained from ginseng

rhizospheric soil in South Korea (Park et al. 2010) and another one conducted with

a bacterial strain naturally colonizing the rhizosphere of Antarctic hair grass

(Berrıos et al. 2013), all the other studies conducted so far have involved bacterial

strains isolated from either rhizospheric or bulk soil fractions collected at different

alpine and sub-alpine locations in the IHR. Not surprisingly, major findings on this

subject have come mainly from several Indian research groups. Besides, one of the

main outcomes of this effort was the establishment of a culture collection of native

“high altitude bacteria,” allowing characterization of some selected isolates for

plant growth promotion and biocontrol, with special reference to their adaptability

to low temperatures (Pandey et al. 2004, 2006a) (Fig. 5.1).
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The most notable bacterial species isolated so far from natural soils of alpine and

sub-alpine regions and tested both for their tolerance to low temperatures and their

ability to efficiently dissolve inorganic phosphates (¼CT-PSB) include Pseudomo-
nas fluorescens (Egamberdiyeva and Höflich 2003), P. putida (Pandey

et al. 2006b), P. lurida (Selvakumar et al. 2011), P. corrugata (Pandey and Palni

1998), P. fragi (Selvakumar et al. 2009a), Pantoea agglomerans (Egamberdiyeva

and Höflich 2003), P. dispersa (Selvakumar et al. 2008), Burkholderia
vietnamiensis (Park et al. 2010), Rahnella sp. (Vyas et al. 2010), Serratia
marcescens (Selvakumar et al. 2007), Tetrathiobacter sp. (Kumar et al. 2013),

Mycoplana bullata (Egamberdiyeva and Höflich 2003), Achromobacter
sp. (Kumar et al. 2013), Acinetobacter rhizosphaerae (Gulati et al. 2009), Bacillus
subtilis (Rinu and Pandey 2009; Malviya et al. 2012), B. megaterium (Trivedi and

Pandey 2008a), Mycobacterium phlei (Egamberdiyeva and Höflich 2003), and

Exiguobacterium acetylicum (Selvakumar et al. 2009b).

In general, the CT-PSB is a heterogeneous group, which includes species

belonging to distant related genera of both Gram-negative and Gram-positive

bacteria. Of these, Pseudomonads are by far the most relevant CT-PSB identified

and tested so far, followed by Bacillus species. In addition to their Pi-solubilizing

abilities, CT strains of Pseudomonas and Bacillus also exhibit other “desirable

traits” such as N fixation and antagonism against phytopathogens (Pandey

et al. 2006b; Mishra et al. 2008). In accordance with this, growth promotion

abilities of CT Pseudomonas isolates have been demonstrated using a variety of

crops such as mung bean (Katiyar and Goel 2003), wheat (Egamberdiyeva and

Höflich 2003; Trivedi and Pandey 2007; Mishra et al. 2008, 2009a; Trivedi and Sa

2008; Selvakumar et al. 2009a, 2011), maize (Pandey et al. 2006b; Kumar

et al. 2007), rice (Trivedi et al. 2007), and lentil (Mishra et al. 2011). Similar results

were obtained when using CT Bacillus strains to promote growth of lentil (Rinu and

Pandey 2009; Mishra et al. 2009b), rice, millet (Malviya et al. 2012), and Indian

mustard (Kumar et al. 2013). In addition to their P-solubilizing activities, some

CT-PSB strains have also shown some other interesting properties (Fig. 5.2). For

Fig. 5.1 Initial steps toward identification of candidate CT-PSB. (a) Primary isolation of bacteria

at cold temperatures; (b) initial screening of PSB in the chemically defined medium supplemented

with insoluble forms of Pi; (c) confirmation of P-solubilizing activity at low temperature by

selected isolates
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example, Burkholderia vietnamiensis M6 has been found to tolerate several envi-

ronmental stressing factors simultaneously, including high salt concentrations

(up to 3 % KCl and 5 % NaCl) as well as low and high pHs (range 2–11 pH

units), still solubilizing Pi rapidly (Park et al. 2010). On the other side, both

Rahnella sp. BIHB 783 and Acinetobacter rhizosphaerae BIHB 723 exhibited

similar broad-spectrum plant growth-promoting abilities (i.e., both could enhance

the growth of four different crops) and high rhizospheric competence, without a

significant effect on the resident microbial population (Vyas et al. 2010; Gulati

et al. 2009, 2010). The latter attribute has been considered very important in the

screening of new isolates for the development of plant growth-promoting formula-

tions (Lottmann et al. 2000; Castro-Sowinski et al. 2007). It has to be mentioned,

however, that plant growth promotion experiments with Rahnella sp. and

A. rhizosphaerae were carried out at normal temperatures (25 �C).
Among the CT-PSB, Exiguobacterium strains are emerging as very promising

candidates to develop efficient inoculants for mountainous regions.

Exiguobacterium strains have been isolated from an impressive diversity of

extreme environments, including the Siberian permafrost, a glacial ice core sample

in Greenland, and hot springs in Yellowstone National Park (Vishnivetskaya

et al. 2009). Selvakumar et al. (2009b) reported the isolation of a strain identified

as E. acetilycum 1P (MTCC 8707) from the rhizosphere of apple trees (Malus
domestica) growing at 2,200 m.a.s.l. in Uttarakhand state, in the N.W. IHR. Strain

1P was able to grow from 4 to 42 �C (optimal growth temperature 30 �C) and to

tolerate a wide pH range (4–10 pH units) and also high salt concentrations (up to

8 % NaCl). Besides producing indoleacetic acid (IAA), hydrogen cyanide (HCN),

and siderophores at 4 �C, the strain retained its P-solubilizing ability at this

suboptimal temperature. More importantly, the PGP ability of E. acetylicum 1P

was confirmed using wheat as test crop under non-sterile soil conditions at cold

temperatures (18 �C) (Selvakumar et al. 2010). Indeed, a significant increase in root

and shoot biomass was observed in bacterized seedlings. Additionally, increased

Fig. 5.2 Most prominent

traits to look for when

searching for proficient

CT-PSB
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nutrient uptake was also observed in the bacterized plants, when compared to

uninoculated controls. Very recently, phytase-producing CT-PSB, able to mineral-

ize Po as well as to solubilize Pi, were isolated from Himalayan soil samples

collected at Uttarakhand region, northern India (Kumar et al. 2013). The isolates

were identified as Achromobacter sp. PB-01 and Tetrathiobacter sp. PB-03, both
members of the Burkholderiales, and Bacillus sp. PB-13. Despite growing at a wide
range of pH (5–11 pH units), temperature (10–42 �C), and salt concentrations (from
0 to 8.5 % NaCl), these strains also exhibited diverse PGPR activities, such as

production of IAA and siderophores. Their PGP abilities were confirmed using

Indian mustard as test crop grown under greenhouse conditions at 20–25 �C.
Bacterization of seeds with Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13

significantly increased the biomass and P content of 30-day-old plants. Also,

Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 inhibited the growth of the

phytopathogen Rhizoctonia solani.
Recently, Berrıos et al. (2013) used an Antarctic bacterial strain to promote

growth and development of Antarctic hair grass (Deschampsia antarctica). The
Pseudomonas sp. Da-bac TI-8 strain, previously isolated from the rhizosphere of

D. antarctica, naturally growing in the Antarctic Peninsula (Barrientos-Dı́az

et al. 2008), grows both at 4 �C and 20 �C (doubling times of 4.31 h and 1.31 h,

respectively) but not at 30 �C. Even though it grew slower at 4 �C, the biomass yield

at the end of the exponential phase in LB medium was almost the same as that

recorded at 20 �C. Its P-solubilizing activity at 4 �C, attributed to gluconic acid

production, was demonstrated in the presence of calcium phosphate dehydrate,

calcium hydrogen phosphate, and phosphate rock. When D. antarctica seedlings

were inoculated with strain Da-bac TI-8, a significant effect on the shoot dry

weight/root dry weight ratio of plants was recorded at 22 �C—but not at 13 �C—
as compared to uninoculated controls. Interestingly, Pseudomonas sp. Da-bac TI-8
was included in the formulation of a microbial bioinoculant developed to efficiently

solubilize P at low temperatures and which was submitted to the US Patent and

Trademark Office (Gidekel et al. 2010).

5.6.2 Cold-Tolerant Fungi (CTF)

Among the P-solubilizing microorganisms, filamentous fungi occupy a prominent

position. Indeed, some fungal species belonging to Aspergillus and Penicillium
genera have been shown to exhibit high P-solubilizing activities. As in the case of

PSB, release of organic acids (e.g., citric, gluconic, lactic, oxalic, and succinic) is

the main mechanism responsible for this solubilization (Khan et al. 2010). Besides,

fungi produce larger amounts of organic acids than bacteria and consequently

generally exhibit greater P-solubilizing activities. For example, under certain cul-

ture conditions, A. niger can convert glucose to citric acid with more than 80 %

efficiency and at final concentrations of hundreds of grams per liter (Magnuson and

Lasure 2004). Some other advantages in using fungi, instead of bacteria, for
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biofertilization purposes have been claimed. For example, fungal hyphae are able to

traverse longer distances in the rhizosphere and bulk soil and to firmly attach to

P-containing particles (Kucey 1983; Chabot et al. 1993). Also, fungi do not lose the

P-dissolving activity upon repeated subculturing under laboratory conditions.

Moreover, some fungal species are able to mobilize Pi from sparingly soluble

minerals, like iron oxides (Delvasto et al. 2007).

Under certain circumstances, the combined inoculation of more than one species

may benefit plants better than either group of organisms alone. Dual-inoculation

assays have clearly shown that field effects of PSB may be enhanced upon their

mixed inoculation with P-solubilizing fungi (PSF) (Gull et al. 2004; Khan

et al. 2006). Not surprisingly then, combined inoculation of PSF and PSB resulted

in enhanced growth, nutrient uptake, and yield in several crops. For example, dual

inoculation of wheat with an arbuscular mycorrhizal fungus (AMF), Glomus
etunicatum, and PSB augmented all monitored plant growth and yield parameters,

in experiments conducted in pots containing P-deficient soil (Saxena et al. 2014;

Minaxi et al. 2013). These are among the main reasons explaining why mixed

populations of soil bacteria and fungi are currently prepared and sold as commercial

biofertilizers for improving P nutrition of plants (Richardson 2007).

In the context of mountain agriculture, however, only a few studies have been

published concerning the potential use of CT-PSF as biofertilizers. The first report

concerning the isolation, characterization, and identification of CT-PSF was

published in 2008 (Pandey et al. 2008). From soil samples collected in the IHR, a

total of 246 fungal isolates, representing 36 genera and 72 species, were isolated.

After a thoroughly screening procedure, eight species of PS Penicillium were

finally selected for further investigation. These isolates solubilized P in vitro after

15–21 days at 21 �C, and this ability was correlated with acidification of the culture
medium. They also produced acid and alkaline phosphatases. Additionally, some

isolates showed a wide range of tolerance for temperature, pH, and salt concentra-

tion. Very similar results were also obtained by this research group when studying

ten Aspergillus species, isolated from the same IHR soil samples (Rinu and Pandey

2010). Among the species tested, A. niger exhibited the highest P-solubilizing

activity at low temperatures (9 and 14 �C), after 5–6 weeks of incubation in vitro.

This preliminary study demonstrated the potential of CT Aspergillus species to be

developed as “bioinoculants” for application in cold mountainous regions. The

ability of A. niger to solubilize and release Pi was further confirmed by Singh

et al. (2011). This time, two strains of A. niger were isolated not from mountainous

ecosystems but from Spitsbergen, the largest island of the Svalbard Archipelago in

the Arctic region. Both isolates showed maximum PS activities at pH 7.2 and 20 �C
in bioassays conducted in vitro, but they were not studied further. To confirm their

potential as good candidates for developing biofertilizers to be used in acidic soils,

containing sparingly soluble Al and Fe phosphates, three CT Aspergillus species,
namely, A. niger, A. glaucus, and A. sydowii, were tested in vitro in the presence of
different carbon sources (Rinu et al. 2013). Even though all the three species

mobilized P from the P-containing minerals tested, A. niger gave the best results:

it solubilized 32 % and 8 % of the supplemented Al and Fe phosphate, respectively.
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This activity was significantly influenced by C and N sources. In pot-based assays,

conducted under greenhouse conditions at 25 �C, all the three species enhanced

maize and wheat production. Similarly Paecilomyces hepiali, a psychrotolerant

fungal species isolated from rock soil of a cold desert site in Indian Himalaya, was

also shown to slowly and steadily solubilize P at low (suboptimal) temperatures

(i.e., 14 �C) (Rinu and Pandey 2011). This ability was attributed to the production of
organic acids and the consequent acidification of the culture medium.

5.7 Cold-Tolerant Bioinoculants

Application of PSB in agronomic practices started about 60 years ago, when a large

proportion of the former Soviet Union’s agricultural soils were inoculated with a

biofertilizer consisting of kaolin-impregnated Bacillus megaterium var.

phosphaticum spores to increase their fertility (Mishustin and Naumova 1962).

The results were so spectacular that, in some cases, up to 70 % increases in crop

yields were recorded and this was mainly related to P mobilization. The success of

Phosphobacterin, as this bioinoculant was called, reflected not only the importance

in selecting an appropriate PGPB strain but also the paramount role of a good

carrier (kaolin) for the biofertilizer preparation. Indeed, from both a commercial

and agricultural point of view, the success of a biofertilizer strongly depends on the

development of appropriate formulations, easy to be handled and stored for long

periods of time. As highlighted by Bashan (1998), a good carrier for PGPB should

have the capacity to deliver the right number of viable cells, in appropriate

physiological condition and at the right time. It should also protect bacterial cells

from the various biotic and abiotic stresses they will face once applied to the soil.

Furthermore, bacteria carried this way must retain their PGP abilities after long

periods of storage. Lastly, when considering developing countries, an ideal carrier

should be of low cost and locally available. Alas, even though many formulations

have been tested, no universal formulation for CT-PSB inoculants is presently

available.

Again, efforts have been extensive in this field and mostly made by Indian

researchers, aimed at using locally available, low-cost organic raw materials as

carriers. Charcoal, for instance, has been employed in many formulations because it

is inexpensive and easily available in plenty everywhere. However, the low quality

of charcoal may sometimes affect badly its water holding capacity, bulk density,

and porosity (NIIR Board 2012). Only the use of good quality charcoal is therefore

recommended for bioinoculant formulations. A series of greenhouse and field

experiments have been conducted in the last 10 years using charcoal-based

CT-PSB inoculants (more appropriately CT-PGPB) (Kumar et al. 2007; Trivedi

et al. 2007; Mishra et al. 2009b; Rinu and Pandey 2009; Vyas et al. 2010). In

general, the bacterial cultures were grown first in appropriate culture media, mixed

with sterilized activated charcoal (usually in combination with a gluing and stabi-

lizing agent like raw sugar or carboxy-methyl cellulose) and, then, applied to seeds
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in order to coat them with the biofertilizer. The results obtained confirmed the

suitability of these formulations to increase crop growth, nutrient content of various

plant components, and other yield attributing parameters. Other carriers have also

been tested. For example, Negi et al. (2005) prepared PSB inoculants by mixing

bacterial suspensions of four strains of CT Pseudomonas fluorescens with a mixture

of talc powder and carboxy-methyl cellulose. Talc is considered an excellent

coating agent, preventing caking (often occurring during both storage and trans-

portation of biofertilizers), improving fertilizer flow, and reducing water pickup and

dust. The formulation developed by Negi et al. was air-dried, packed in autoclaved

polybags, and stored at �20 �C. When pea seeds were treated by this formulation,

its effectiveness in promoting plant growth and inhibiting phytopathogens was

confirmed. Alternatively, formulations based on natural, hydrophilic polymers

like sodium alginate have also been proposed and tested for their potential as CT

bacterial carriers (Trivedi et al. 2005; Trivedi and Pandey 2007, 2008a, b). Sodium

alginate, for instance, a highly porous polymer when appropriately prepared, was

used by Bashan in 1986 to develop a new inoculant carrier, capable of slowly

releasing the entrapped PGPB in the rhizosphere of crops. Since then, it has been

widely used as a suitable carrier for biofertilizer development, even though it is

more expensive than charcoal. In 2005, Trivedi et al. tested five carrier-based

preparations of plant growth-promoting bacterial inoculants suitable for use in

cool regions, namely, (1) alginate beads, (2) alginate beads supplemented with

skim milk, (3) alginate-coated seeds, (4) charcoal-based, and (5) broth-based

preparations. Two well-known PGPR were included in the formulations: Bacillus
subtilis (NRRLB-30408) and Pseudomonas corrugata (NRRL B-30409) using

maize (var. QPM-1) as test crop in plant growth promotion assays conducted at

22 �C. Even though all the formulations tested increased the measured parameters

of maize relative to untreated control, alginate-based formulations were the most

effective, followed by charcoal- and broth-based formulations, respectively. Long-

term rhizosphere colonization was also shown to be more efficient when applying

alginate-based formulations as compared to charcoal- and broth-based formula-

tions. Similar growth promotion effects were obtained for wheat when an alginate-

based formulation of P. putida (MTCC6842) was applied to the soil at the time of

sowing in a pot assay conducted at temperatures ranging between 10 and 15 �C
(Trivedi and Pandey 2007). The success of alginate-based formulations was further

confirmed using B. megaterium B388—as PGPB—and maize or wheat as test

species (Trivedi and Pandey 2008a). Again, a maximum increase in the growth

parameters of both plant species was observed in the case of alginate-based

formulations followed by coal- and broth-based formulations, respectively. On

the other hand, viability of bacterial inoculants after 180 days of storage at 4 �C
was confirmed in formulations containing alginate beads and alginate beads

supplemented with skim milk (Trivedi et al. 2005). Trivedi and Pandey (2008b)

further reported the survival, viability, and plant growth-promoting ability of

B. subtilis (NRRLB-30408) and P. corrugata (NRRL B-30409) immobilized in

sodium alginate beads after 3 years of storage at 4 �C. When using coal or broth for

the same purpose, the decrease in bacterial viability for the same period was much
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higher, reaching three to four orders of magnitude. Plant-based bioassays-

conducted at 22 �C and using wheat as test crop under greenhouse conditions-

indicated that the bacterial isolates did not lose their plant growth promotion

abilities. Furthermore, the bacterial isolates retained the root colonization, antifun-

gal, and enzyme activities in the alginate-based formulation during storage. The

authors noticed, however, some liquefaction at the bottom of the flasks containing

P. corrugata after 3 years of storage, possibly due to organic acid production. No

such loss of integrity was observed in the case of beads entrapping B. subtilis. From
all these studies, it became apparent that sodium alginate might be the best choice

for the large scale production of high-quality CT bacterial inoculants, for commer-

cialization and field application of this microbe-based technology.

5.8 What Lies Ahead?

Even though much work has been done, many aspects concerning the development

of CT-PS bioinoculants require further scientific attention. For instance, almost

nothing is known about the specificities of bacterial-mediated phosphate dissolution

at low temperatures (e.g., enzymes involved, enzyme kinetics, genetics, and regu-

lation). It is widely accepted that the mechanisms adopted by CT bacteria for

mobilizing P from sparingly insoluble P-containing minerals are similar to those

adopted by mesophilic PS organisms. This assumption, which might prove incor-

rect, has been biased in many cases in the search for efficient CT P solubilizers

toward microorganisms only capable of solubilizing tri-calcium phosphate in

agarized media (e.g., Pikovskaya’s Medium). Alas, as recently shown by Bashan

et al. (2013), this form of reasoning can be misleading and certainly yields many

false PS-microorganisms. Therefore, a different experimental approach-including

the use of a combination of two or three metal-P compounds together or in tandem

according to the end use of these bacteria-has been invoked. In the case of acidic

soils, Fe-P and Al-P compounds should be included in the preliminary tests; for

alkaline soils, Ca-P compounds (including rock phosphates) would be the right

choice. Once a potential candidate is identified following these guidelines, appro-

priate tests must be performed to confirm direct contribution to P plant nutrition and

not to general growth promotion, as commonly done. Indeed, as we have previously

seen, in many cases growth promotion of plants by PS microorganisms can be the

consequence of other-direct or indirect-mechanisms (e.g., phytohormone produc-

tion). According to Bashan and his coauthors, isolates that do not comply with this

general sequence of testing should not be declared as PSB. Also, it is important to

mention here that there are still numerous unexplored natural environments which

can be targeted for isolating potential CT P solubilizers. Perhaps one of the most

evident choices in this regard is glacier ice. Indeed, as shown by a great number of

scientific reports, glaciers are repositories of an almost unknown diversity of

microorganisms (Miteva 2008). Many of these are true psychrophiles and possess

unexpected metabolic repertoires which, in some cases, have been exploited to
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develop a series of biotechnological products (Cavicchioli et al. 2011). Therefore, it

would not be a surprise to obtain encouraging results when looking at these

environments.

5.9 Conclusion

There is an urgent need to develop cold-tolerant biofertilizers to improve crop

production in developing mountainous regions of the world. The obvious impact of

such a biotechnology in terms of increasing agricultural productivity of small

farmholders, without severely affecting either their economies or the environment,

is beyond any doubt. Serious efforts have been made by the scientific community to

address this issue, with many bacterial and fungal species already identified and

tested, both in greenhouse and in the field. The results obtained so far indicate that

cold-tolerant P-solubilizing microorganisms may represent a real alternative to

improve agriculture productivity in mountainous regions of the developing world.

But still much work is needed to finally achieve the desired bioinoculant formula-

tions which could perform efficiently under diverse conditions, at low cost and with

the smallest possible environmental impact.
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Forster J (1887) Über eihnigh Eigenschafter leuchtender Bakterien. Centr Bakteriol Rev

Parasitenk 2:337–340

Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G,

Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev

28:25–42

Gidekel M, Gutiérrez A, Barrientos L, Cabrera G, Berrı́os G, Mihovilovic I (2010) Biofertilizer

formulation. US Patent Application US 2010/0234222 A1

Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica.

Article ID 963401, 15 p. http://dx.doi.org/10.6064/2012/963401

Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of

calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193

Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: one hundred

years of insolubility. In: Velazquez E, Rodrıguez-Barrueco C (eds) First international meeting

on microbial phosphate solubilization. Springer, Dordrecht, pp 91–96

130 L.A. Yarzábal

http://www.fao.org/docrep/005/y4586e/y4586e00.htm
http://www.fao.org/docrep/005/y4586e/y4586e00.htm
http://www.fao.org/docrep/008/a0200e/a0200e00.htm
http://www.fao.org/docrep/008/a0200e/a0200e00.htm
http://www.fao.org/docrep/018/i3300e/i3300e00.htm
http://www.fao.org/docrep/018/i3300e/i3300e00.htm
http://dx.doi.org/10.6064/2012/963401


Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent

Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr

Microbiol 58:371–377

Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production

and plant growth promotion as a function of phosphate solubilization by Acinetobacter
rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch

Microbiol 192:975–983

Gull FY, Hafeez I, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of

chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial

culture. Aust J Exp Agric 44:623–628

Halvorson HO, Keynan A, Kornberg HL (1990) Utilization of calcium phosphates for microbial

growth at alkaline pH. Soil Biol Biochem 22:887–890

Hamdali H, Bouizgarnea B, Hafidid M, Lebrihic A, Virolleb MJ, Ouhdouch Y (2008) Screening

for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil

Ecol 38:12–19

Hellriegel H, Wilfarth H (1888) Untersuchungen über die stickstoff nahrung der gramineen und

leguminosen. Beilageheft zu der zeitschrift des vereins fur Rubenzucker-Industrie Deutschen

Reichs, p 234
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http://www.fao.org/docrep/011/i0131e/i0131e00.htm
http://www.fao.org/docrep/011/i0131e/i0131e00.htm


Pandey A, Trivedi P, Kumar B, Chaurasia B, Singh S, Palni LMS (2004) Development of

microbial inoculants for enhancing plant performance in the mountains. In: Reddy MS,

Kumar S (eds) Biotechnological approaches for sustainable development. Allied Publishers,

New Delhi, pp 13–20

Pandey A, Trivedi P, Kumar B, Chaurasia B, Palni LMS (2006a) Soil microbial diversity from the

Himalaya: need for documentation and conservation. NBA Scientific Bulletin No. 5, National

Biodiversity Authority, Chennai, Tamil Nadu

Pandey A, Trivedi P, Kumar B, Palni LMS (2006b) Characteristics of a phosphate solubilizing and

antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the

Indian central Himalaya. Curr Microbiol 53:102–107

Pandey A, Das N, Kumar B, Rinu K, Trivedi P (2008) Phosphate solubilization by Penicillium spp.

isolated from soil samples of Indian Himalayan region. World J Microbiol Biotechnol 24:97–

102

Park KH, Lee OM, Jung HI, Jeong JH, Jeon YD, Hwang DY, Lee CY, Son HJ (2010) Rapid

solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia
vietnamiensisM6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86:947–

955

Partap T (1999) Sustainable land management in marginal mountain areas of the Himalayan

region. Mt Res Dev 19:251–260

Poulenard J, Podwojewski P, Janeau J-L, Collinet J (2001) Runoff and soil erosion under rainfall

simulation of Andisols from the Ecuadorian Páramo: effect of tillage and burning. Catena
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Chapter 6

Role of Phosphate-Solubilizing

Actinomycetes in Plant Growth Promotion:

Current Perspective

Saima Saif, Mohammad Saghir Khan, Almas Zaidi, and Ees Ahmad

Abstract Phosphorus (P), an essential plant nutrient, is a nonrenewable resource

whose availability depends exclusively on mined rock phosphates. Deficiency of P

in soil results in reduction in food production since all plants require an adequate

supply of P for its growth and development. Even though synthetic phosphatic

fertilizer has played some major roles in enhancing crop production, its excessive

use has also dark sides to it where it has been found to damage the environment,

destruct soil fertility, and, via food chain, seriously affect the human health.

Considering the nuisance of overuse of P, there is an urgent demand by the

agriculture practitioners to find nonhazardous strategy that can overcome/reduce

the use of agrochemicals in agricultural practices and, hence, may preserve the very

integrity of soil ecosystems. In this context, actinobacteria, a group of Gram-

positive bacteria, ubiquitous in soils, are likely to play some important roles in

supplying soluble P to plants by solubilizing/mineralizing complex P resources of

soils. Additionally, the extracellular metabolites produced by actinomycetes may

inhibit phytopathogens and, sometimes such metabolic compounds may also act as

plant growth regulators. These qualities, among others, make actinobacteria an

ideal candidate for developing as microbial inoculants for ultimate use in agricul-

ture production system. The potential roles of actinomycetes as phosphate

solubilizers in enhancing crop production are discussed.
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6.1 Introduction

Phosphorus, identified as an essential element for all life forms (Smil 2000), is the

second most important plant macronutrient after N (Donahue et al. 1990). Phos-

phorus accounts for the biomass buildup, the energy transfer, signal transduction,

macromolecular biosynthesis, photosynthesis, and respiration chain reactions

(Vance et al. 2003; Fernández et al. 2007). Sadly, this highly vital element is one

of the least accessible (only 0.1 % of the total soil P reserve) nutrients to the plants

(Zou et al. 1992; Takahashi and Anwar 2007). Owing to the suboptimal levels of P,

it is often considered a limiting factor to primary production across a diverse range

of ecosystem (Elser et al. 2007) and may cause a 5–15 % loss in plant yields

(Hinsinger 2001). The low availability of P in soil is primarily due to its highly

reactive nature as it readily forms insoluble complexes with the soil ions. Thus, to

fulfill the growing P demands for food production and to maintain a balanced

fertility in soils and, hence, to achieve a low-input, sustainable eco-friendly agri-

culture targets, a better management of the soil P reserve is urgently needed. Many

strategies have been introduced by the scientists across different regions where the

role of phosphate-solubilizing microorganisms involving bacteria (Zaidi

et al. 2009; Ahmad et al. 2013), fungi (Khan et al. 2010), and actinomycetes

(Gangwar et al. 2012) in increasing plant yields and soil quality via P supply has

been recognized. Among these, actinomycetes as P solubilizers (de Vasconcellos

et al. 2010; Hamdali et al. 2012) have been less explored despite showing a better

genetic and greater biodiversity potential (Pathom-Aree et al. 2006; Thangapandian

et al. 2007). Also, they represent heterogeneous and abundant microbial

populations and hugely affect cycling of nutrient in soil ecosystems (Elliot and

Lynch 1995; Figueiredo et al. 2010). Recently, the role of actinomycetes in

sustainable agriculture (Johansson et al. 2004; Strap 2011) via P supply to plants

has been identified. Some other actinomycetes, for example, endophytic actinomy-

cete (Araújo et al. 2000; Kunoh 2002; Lee et al. 2008; Qin et al. 2008), which fix

atmospheric N into NH3 and export the fixed N to the host plants, have also shown

PS activity (Gangwar et al. 2012). In a study, almost 44 % of the endophytic

actinomycetes isolated from rice had PS activity, among which S. lavendulae
R22 solubilized the maximum (26.5 mg/100 ml) amount of P, while

Micromonospora R19 isolate could solubilize the minimum amount of

P. Realizing the plant-growth-promoting potentials of actinomycetes which involve

one or simultaneous mechanisms, here, the recent advances in P solubilization by

actinomycetes and its impact on crop production are highlighted.

138 S. Saif et al.



6.2 Phosphorus Status and P Dynamics in Rhizosphere:

Current Perspective

Globally, rock phosphate (RP) is an abundantly available and inexpensive form

of P, and therefore, about 80 % of mined RP is used for agricultural fertilizer

(Tirado and Allsopp 2012). Worldwide, there is a huge RP deposit in countries such

as Morocco and China, while other regions particularly Asian countries depend

heavily on import of phosphates for intensive agriculture production systems. From

a consumption point of view, China is the largest consumer of P fertilizers account-

ing for about 34 % of the total world consumption, whereas India ranks second with

19 % of global consumption (FAOSTAT 2012). Similarly, the uptake of P by plants

varies greatly (Fig. 6.1). Regrettably, mining of RP and its use as fertilizers pose a

serious human health risk (Zhang and Shan 2008; Pan et al. 2010; Tirado and

Allsopp 2012). Considering the declining P resources, cost of P-fertilizer produc-

tion, and direct or indirect human health problems due to their excessive applica-

tion, scientists around the world have directed their attention toward exploring the

natural and inexpensive P resources which could serve as an eco-friendly and

economical alternative for chemical fertilizers in sustainable agriculture. In this

context, the phosphate-solubilizing actinomycetes have provided some solutions to

the expensive P problems.

Further, the chemical and biological processes in the rhizosphere play an

important role in soil nutrient availability and crop productivity (Zhang

et al. 2010) as presented in Fig. 6.2. Plants acquire P in the form of orthophosphate

anions (mainly H2PO4
� and H2PO4

�2) which they obtain from different soil P

reserves including inorganic P (Pi) and organic P (Po). Broadly, on the basis of

plant accessibility, soil P has been grouped as follows: (a) solution P, present in the

soil solution and immediately available for plant uptake; (b) active P, adsorbed on

active sites of soil yet readily available and in equilibrium with solution P; and

(c) fixed P, strongly adsorbed and least soluble with slow conversions to active P

over a vast period, even years (Syers et al. 2008; Shen et al. 2011). Generally,

concentration of plant-available P in soil is below the critical level required for

plant growth and yields (Raghothama 1999). Thus, the synthetic phosphatic fertil-

izer or organic manure is applied to overcome the P deficiency to plants. Of the total

P applied to soils, only 15–25 % of it is available for uptake by plants and the

remainder is fixed (Shen et al. 2011). The P dynamics and availability in soil is,

therefore, controlled by several factors: (1) the ability of plants to form extensive

root systems, (2) impact of microbial colonization onto the development of plants,

(3) soil microflora affecting biogeochemical cycling of elements, and (4) physico-

chemical properties of soils supporting plants and microbial life in soils.
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6.3 Actinomycetes: An Ideal Candidate for Sustainable

Crop Production

Actinomycetes are a ubiquitous, saprophytic, and heterogeneous group of micro-

organisms belonging to an extensive and diverse group of Gram-positive, aerobic,

mycelial bacteria that have DNA with high %G+C content (51–73 %) with the

exception of freshwater actinobacteria which has low GC content (Takisawa

et al. 1993; Ghai et al. 2012). Actinomycetes inhabit both the rhizoplane and

rhizosphere (Solans and Vobis 2003; Frioni 2006) and are known to play some

important ecological roles in soil nutrient cycling (Elliot and Lynch 1995),

probiotics (Lievin et al. 2000), bioremediation (Amoroso et al. 2013), nitrogen

fixation, and deterioration and decomposition of plant and animal residues and also

provide many bioactive compounds such as vitamins, enzymes, and antibiotics

(de Boer et al. 2005; Busti et al. 2006; Prapagdee et al. 2008; Genilloud et al. 2011).

Apart from their beneficial impact, actinomycetes also cause some harmful effects

such as they cause diseases and spoil different useful materials (Waksman 1950).

Other properties which make them an ideal candidate for developing inoculants are

as follows: (1) their high genetic and metabolic versatility, (2) they can easily be

genetically engineered (Pogell et al. 1991), (3) high growth rate and relatively faster

colonization efficiency (Hsu and Lockwood 1975), and (4) ability to tolerate high

salt concentration (Vassilev et al. 2012). Despite possessing such qualities, actino-

mycetes in general have been less explored organisms in agricultural technology,

among variously distributed soil microflora (Qin et al. 2011).

Fig. 6.1 Crop-wise use of phosphorus and its distribution in different countries (Source: CRU,

Fertecon, IFA (Potash Corp. 2013)
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6.3.1 Isolation and Identification of Actinomycetes

Phosphate-solubilizing actinomycetes have been isolated from diverse environment

(Matsumoto et al. 1998; Rai et al. 2007; Lee et al. 2008) such as soil (Xu et al. 1996;

Debananda et al. 2009; Salcedo et al. 2014), rhizospheres (Norovsuren et al. 2007),

phyllosphere (Gupta et al. 2010), and salt and alkaline environments (Jiang

et al. 2005) (Table 6.1). The bioprospecting of actinomycetes from the usual or

routine habitat is likely to result in rediscovery or the recovery of the same strain

with the similar mode of actions (Jensen et al. 2005).

Actinomycetes represent one of the largest domains of bacteria involving

145 genera and more than 4,000 species (Berdys 2005). Their population has

been reported highest at the soil surface which, however, decreases with increasing

soil depth (Takahashi and Omura 2003). Prior to isolation, soil is pretreated in order

Fig. 6.2 Phosphorus dynamics in soil [Adapted from Shen et al. (2011)]
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to avoid the emergence of bacterial and fungal contaminants. For this, soil samples

are collected bulked, mixed, and allowed to dry heating (at 45 �C for 2 h or 50 �C
for 10 min or 60 �C for 30 min) (Goodfellow 1971). The isolation medium is also

suspended with antibacterial (penicillin 25 mg/ml) or antifungal (nystatin 0.1 % or

cycloheximide 50 mg/ml) agents (Balagurunathan and Radhakrishnan 2007).

A 0.1 ml of serially diluted (Nonomura and Ohara 1969) soil sample is spread

plated onto different actinomycete isolation media, such as casein starch agar, the

Czapek agar, and the oatmeal agar, and incubated at 28 �C for 15–30 days. The

resulting colonies are then picked and identified using cultural, morphological

(Pridham and Tresner 1974; Nonomura 1989; Sabaou et al. 1998), and physiolog-

ical (Nonomura and Ohara 1969; Goodfellow 1971) characteristics. The actinomy-

cetes are then identified to species level using fatty acid analysis, mol (%) G+C

contents, DNA–DNA hybridization, and 16S rRNA sequencing.

Table 6.1 Different habitat and varying isolation methods for actinomycetes

Habitat Actinomycete genus isolated

Cultivated field

Cultivated paddy field

Plant matter

Pasture

Lake sediment

Mangrove rhizosphere soil

Tea field soil

Desert soil, marine sediment,

seawater, and activated sludge

Streptomyces
Micromonospora
Microbispora
Micromonospora
Micromonospora
Actinobacteria
Acidophilic and acid tolerant actinomycetes

Pretreatment

Yeast extract (6 %, 20 min) Enrichment of actinomycetes

Heating (100 �C, 1 h) Streptosporangium, Microbispora, Microtetraspora

Phenol (1.0–1.5 %, 30 min) Dactylosporangium, Microbispora, Microtetraspora

Pre-culture with CaCO3 Enrichment of actinomycetes

Chemotactic method

(KCl, ɣ-collidin, xylose)
Motile actinomycetes, actinomycetes,

Dactylosporangium

Medium for isolation

Addition of antibiotics

Novobiocin Actinoplanes, Kitasatospora

Tunicamycin Micromonospora

Rifampicin Actinomadura

Chlortetracycline Nocardia

Macrolide or aminoglycoside Macrolide or aminoglycoside producer

Addition of humic acid Rare actinomycetes

Addition of proline Enrichment of actinomycetes

Gellan gum (substitute for agar) Actinobispora

Conditions for isolation

High temperature Thermophilic actinomycetes

Adapted from Takahashi and Omura (2003)
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6.3.2 In Vitro Screening of Phosphate-Solubilizing
Actinomycetes

The phosphate-solubilizing activity of the actinomycetal strains is assessed gener-

ally on the Pikovskaya (PVK) medium (Pikovskaya 1948) which contains (g/l):

glucose 10; Ca3(PO4)2, 5; (NH4)2SO4, 0.5; NaCl, 0.2; MgSO4·7H2O, 0.1; KCl, 0.2;

yeast extract, 0.5; MnSO4·H2O, 0.002; and FeSO4·7H2O, 0.002, agar 15. The

streaked/spot inoculated plates are incubated at 22 �C for 14 days and observed

for halo formation. The development of a clear zone around the colony on the

culture plates is taken as an index of P solubilization. Halo size is calculated by

subtracting colony diameter from the total diameter (Valverde et al. 2006). There-

after, the halo-forming actinobacteria is grown on SRSM-1 medium which has the

same composition as that of the PVK medium but is supplemented with

bromocresol purple as a pH indicator for determining the involvement of organic

acid production in PS activity.

6.3.3 Role of Actinobacteria in Rock Phosphate
Solubilization

Nearly 20 % of the actinomycetes including Streptomyces and Micromonospora
possess profound phosphate-solubilizing potential (Barreto et al. 2008; El-Tarabily

et al. 2008; Hamdali et al. 2008b). Actinomycetes as P solubilizer have received

greater attention for two reasons: (1) ability to produce agro-active metabolites, for

example, phytohormones, siderophores, and antibiotics, etc. (Hoster et al. 2005;

Errakhi et al. 2007; Errakhi et al. 2009), and (2) ability to tolerate different stressor

molecules (Fabre et al. 1988; Keiser et al. 2000; Hamdali et al. 2008d). Also, the

inoculation with actinomycetal strains has been found to increase the plant growth

(Hamdali et al. 2008c). Plants take up the orthophosphorus form of P as nutrient, the

availability of which depends on soil characteristics (Nath and Borah 1983).

However, Fe and Al at high pH and Ca at low pH fix the soluble form into insoluble

form rendering it unavailable to the plants (Rengel and Marschner 2005; Johnson

and Loepper 2006). The PS actinomycetes, however, through the release of organic

acid (acidification) (Hoberg et al. 2005; Abdulla 2009) and by other mechanisms

such as chelation, exchange reactions, and polymeric substances formation

(Delvasto et al. 2006) convert the insoluble forms of P into soluble forms. The

organic anions assist P solubilization mainly in two ways: (a) lowering pH and

(b) ligand exchange reaction (Beunemann et al. 2011; Balemi and Negisho 2012).

However, the organic anions in some cases have been found not to acidify the

medium, probably because once they are released in soil, they already exist in the

dissociated form due to their low acid dissociation constants (pKa). In fact, it is

assisted by the proton extrusion accompanying respiration and NH4+ assimilation

(Illmer and Schinner 1992), which compensates for the losses of negative charge
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and hence lowers the pH values. Organic anions are also involved in ligand

exchange or ligand-enhanced desorption and/or chelation of Fe and Al oxides and

Ca phosphates, thereby decreasing the positive surface potential on the metal oxide

(Filius et al. 1991) and releasing the inaccessible P from the soil matrix

(Raghothama and Karthikeyan 2005). The extent of solubilization by actinomy-

cetes however depends on (1) the source of inorganic P (Pi), (2) the intrinsic PS

ability of actinomycetal species, and (3) the types and composition of photosyn-

thates available in the rhizospheres (Banik and Dey 1982). Interestingly, both

solubilization (acidification of inorganic P) and mineralization (enzymatic dissolu-

tion of organic P) may coexist in the same PS actinomycetal strains (Tao

et al. 2008).

Recently, numerous rhizoactinomycetes capable of solubilizing insoluble P have

been identified (Franco-Correa et al. 2010; Pragya et al. 2012). For example, apart

from soil actinomycetes, many marine actinomycetes have also shown the produc-

tion of phosphatase which consequently enhanced the P availability (Sahu

et al. 2007). In a similar study, Franco-Correa et al. (2010) reported that 20 % of

the actinomycetes including Streptomyces and Thermobifida, isolated from the

rhizosphere of Trifolium repens, grown in the fields of Sabana de Bogotá, Colom-

bia, had quite active P-solubilizing activity. Even though all isolates produced acid

phosphatase wherein 43 % isolates demonstrated alkaline phosphatase, which

indicated that all the test actinomycete strains could mineralize the organic P

sources (Richardson et al. 2009). Among phosphatases, acid phosphatases, a

group of enzymes produced by plants/microbes in response to P stress, catalyze

hydrolysis of phosphoric esters in a range of organic P complexes, thereby enhanc-

ing plant P uptake (Tarafdar and Claassen 1988; Tarafdar and Claassen 2001;

Richardson et al. 2011) from unavailable P resources. There are also some other

enzymes secreted by actinomycetes that take part in the dissolution process. As an

example, Reza-Ghorbani-Nasrabadi et al. (2012) assessed 97 soil samples collected

from different soil ecosystems and showed for the first time that actinomycetes had

extracellular phytate-degrading activity. Phytases are a group of enzyme responsi-

ble for stepwise dephosphorylation of phytate, the most abundant inositol phos-

phate in nature. Of the total actinomycetal cultures, 46.3 % showed extracellular

phytate-degrading activity in liquid culture medium supplemented with 4 g/l

Na-phytate as sole P source. The two more closely studied phytase producers

were identified according to 16SrRNA sequencing as Streptomyces (sp. isolate

No. 43 showed 98 % similarity to Streptomyces alboniger and S. venezuelae,
while isolate No. 63 exhibited 98 % sequence relatedness with S. ambofaciens
and S. lienomycini).
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6.3.4 Actinomycetes as a Potential Candidate for Increased
Plant Growth and Yield

The agronomic use of PGPR at field scale in general has been hampered by poor

understanding of mechanisms that facilitate plant growth, inability of bacterial

strains to establish in various soils, rhizosphere incompetence, and changing envi-

ronmental conditions. On the contrary, the actinobacteria with their ability to

(1) sporulate, (2) transform various complex soil nutrients into simple and acces-

sible forms, (3) extensively and efficiently colonize plant roots, (4) manage phyto-

pathogens, and (5) secrete other plant-growth-promoting substances make these

organisms as preferred choices for developing potential field bio-inoculants. Acti-

nomycetes are metabolically flexible soil/rhizosphere-colonizing microorganisms

(Miller et al. 1990; Euanorasetr et al. 2010; Lei et al. 2013) capable of producing a

range of compounds of interest, including (1) antifungal compounds which have

been found useful in controlling fungal root diseases (Rothrock and Gottlieb 1984;

Zucchi et al. 2010; Bungonsiri et al. 2011; Sreevidya and Gopalakrishnan 2012;

Francisco et al. 2013) (2) siderophores (Lee et al. 2012; Nakouti et al. 2012; Najwa

et al. 2013), ACC deaminase (El-Tarabily 2008), and (3) plant-growth-promoting

hormones (Hamdali et al. 2008a; Khamna et al. 2010). Generally, plant root

exudates stimulate growth, proliferation, and rhizosphere colonization of actino-

mycetes that may act as a strong antagonist to fungal pathogens. The root exudates

are utilized as a source of carbon and energy by the actinomycetes and, concom-

itantly, enhance the synthesis of antimicrobial substances (Crawford et al. 1993;

Yuan and Crawford 1995). In addition, actinomycetes synthesize an array of

biodegradative enzymes which includes chitinases (Blaak et al. 1993; Gupta

et al. 1995; Pattanapipitpaisal and Kamlandharn 2012; Sowmya et al. 2012),

glucanases (Hopwood 1990; Damude et al. 1993; Mahadevan and Crawford

1996; Harchand and Singh 1997; Thomas and Crawford 1998; Trejo-Estrada

et al. 1998; Fayad et al. 2001; Huiling et al. 2014), peroxidases (Ramachandra

et al. 1988; Djamila et al. 2011), and other enzymes possibly involved in

mycoparasitic activity. Considering the potential role of actinomycetes in the

management of plant diseases and plant growth promotion by certain other mech-

anisms, actinomycetes in recent times are considered as one of the important

aspects in sustainable plant production (Palaniyandi et al. 2013) as presented in

Table 6.2.

The root-colonizing soil actinomycetes S. lydicus WYEC108, for instance, have

been reported to influence pea root nodulation and increase the nodulation fre-

quency possibly at the level of infection by Rhizobium spp. Following colonization,

S. lydicus sporulate inside the surface cell layers of the nodules which in turn led to
a massive increase in the nodules size. Subsequently, the forms and vigor of

bacteroids were greatly improved due to enhanced assimilation of iron and possibly

other soil nutrients within nodules. Moreover, bacteroid accumulation of the C

storage polymer, poly-β-hydroxybutyrate (PHB), was reduced in colonized nodules
(Solans 2007). The co-inoculation of rhizoactinomycetes Streptomyces MM40,
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Actinoplanes ME3, and Micromonospora MM18 has been found to promote the

growth of Discaria trinervis in symbiosis with Frankia; however, no plant-growth-
promoting effect was observed when rhizoactinomycetes were applied alone to the

plant (Solans 2007). In a similar study, Hamdali et al. (2010) isolated a population

of PS actinomycetes spp. from Moroccan phosphate mines and tested their growth-

promoting efficacy using wheat as a test plant. The most active RP-solubilizing

strains had the highest stimulatory effect on the production of plant biomass. Of the

various isolated actinomycetes strains, strain BH7 of Streptomyces griseus stimu-

lated aerial growth of the plant by 70 % in test tubes and more than 30 % in RP soil

compared to the non-inoculated control plants. In another study, the actinomycetes

showed P solubilization activity (1,916 mg l�1) and produced phytase

(0.68 U ml�1), chitinase (6.2 U ml�1), IAA (136.5 mg l�1), and siderophore

(47.4 mg l�1). Furthermore, inoculation of Streptomyces mhcr0816 and

mhce0811 with Triticum aestivum (wheat) significantly improved plant growth,

biomass (33 %), and mineral (Fe, Mn, P) content in non-axenic conditions (Jog

et al. 2014).

6.4 Conclusion

In order to reduce the environmental and economic stress due to massive use of

synthetic fertilizers and to achieve food security goals, the use of actinomycete as

biofertilizers in intensive agriculture practices appears to be a sound, inexpensive,

and eco-friendly option. Even though the physiological functions and symbiotic

roles of actinomycetes have been revealed under in vitro condition, the role of

actinomycetes in sustainable crop production is not adequately explored. Consid-

ering the importance of actinomycetes in plant growth promotion via disease

suppression and some other mechanisms, there is urgent need to popularize and

maximize the use of actinomycetes in crop production in order to reduce depen-

dence on chemical fertilizers and hence to preserve soil fertility without damaging

the soil dwellers.
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Chapter 7

Ecological Diversity, Mechanism,

and Biotechnology of Phosphate-Solubilizing

Bacteria for Enhanced Crop Production

Anamika Jha, Sanjay Jha, and Debayan Baidya

Abstract The exponentially growing population has engendered the global need to

enhance agricultural production in a sustainable manner. Phosphate solubilization

is a vital process that determines plant productivity. Conversely, P availability in

soil is highly limited due to chemical reactions that fix it into insoluble forms. Soil

naturally has organisms capable of bioameliorating the soil Pi by converting it into

orthophosphates that can be taken up by the plants. Addition of such bacteria

possessing mineral phosphate-solubilizing (mps) activity has been found to

increase plant growth and yield even further. Research evidence has clearly

shown that microorganisms apart from possessing P-solubilizing ability also

enhance plant growth and development through other mechanisms such as nutrient

transformation, nutrient mobilization, and production of biologically active com-

pounds. The understanding of microbial community dynamics, functional variation,

the relationship between roots and microbiota and their implications in mps mech-

anism, and the applications of biotechnological tools need to be interwoven to find

efficient bacterial cultures with super plant growth-promoting qualities that can be

used to develop effective biofertilizers for enhancing crop nutrition in different

agroecological niches.

Keywords Rhizosphere competence • Diversity • DGGE • PSB • Biofertilizer

A. Jha (*) • D. Baidya

Department of Biotechnology, Ashok and Rita Patel Institute of Integrated Study and Research

in Biotechnology and Allied Sciences, New Vidyanagar, Gujarat 388121, India

e-mail: anamikajha@aribas.edu.in

S. Jha

Department of Plant Biotechnology, Gujarat Agricultural Biotech Institute, Navsari

Agricultural University, Surat, Gujarat 395007, India

M.S. Khan et al. (eds.), Phosphate Solubilizing Microorganisms,
DOI 10.1007/978-3-319-08216-5_7, © Springer International Publishing Switzerland 2014

157

mailto:anamikajha@aribas.edu.in


7.1 Introduction

Phosphorus (P) is a major growth-limiting nutrient, but unlike nitrogen, there is no

large atmospheric source of P that can be made biologically available (Ezawa

et al. 2002). Root development, stalk and stem strength, flower and seed formation,

crop maturity and production, N2 fixation in legumes, crop quality, and resistance to

plant diseases are some of the important attributes associated with P nutrition. Soil

P dynamics is characterized by physicochemical (sorption–desorption) and biolog-

ical (immobilization–mineralization) processes. Large amount of P applied as

fertilizer enters in to the immobile pools through precipitation reaction with highly

reactive Al3+ and Fe3+ in acidic soils and Ca2+ in calcareous or normal soils

(Gyaneshwar et al. 2002; Hao et al. 2002). Efficiency of P fertilizer throughout

the world is around 10–25 % (Isherword 1998), and concentration of bioavailable P

in soil is very low reaching the level of 1 mg kg�1 soil (Goldstein 1994). Soil

microorganisms playing a key role in soil P dynamics and subsequent availability of

P to plants (Richardson 2001; Khan et al. 2007) are quite often referred to as

phosphate-solubilizing microorganisms (PSMs).

Inorganic forms of soil P are solubilized by PSMs through organic acids

production that dissolve P minerals and/or chelate cationic partners of the P ions,

i.e., PO43� directly, releasing P into solution (He et al. 2002). Phosphate-

solubilizing bacteria (PSB) among PSM have been used as biofertilizer since

1950s (Kudashev 1956; Krasilinikov 1957). Release of P by PSB from insoluble

and fixed/adsorbed P is, therefore, an import aspect of P availability in soils. There

are strong evidences that soil bacteria can transform soil P to the forms available to

plant. Microbial biomass on the contrary assimilates soluble P and prevents it from

adsorption or fixation (Khan and Joergensen 2009). Microbial community also

influences soil fertility through other soil processes, for example, decomposition,

mineralization, and storage/release of nutrients. Even though microbial inoculants

are in use for improving soil fertility since long, research on P solubilization has

inadequately been done compared to N2 fixation. Considering the gap in this area,

the ecological perspectives, diversity, mechanism of P solubilization, and role of

PSB in plant growth promotion are highlighted here in this chapter. Furthermore,

various biotechnological tools currently employed to better understand the plant

rhizosphere and its associated microbiota are discussed.

7.2 Distribution, Diversity, and Rhizosphere Competence

of Phosphate Solubilizers

Evidence of naturally occurring rhizospheric PSM dates back to 1903 (Khan

et al. 2007). Among PSM, fungi more effectively solubilize P than bacteria

(Alam et al. 2002). On the contrary, of the whole soil microbial populations, PSB

constitute 1–50 %, while PS fungi (PSF) accounts for only 0.1–0.5 % (Chen
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et al. 2006). Number of PSB among total PSM in north Iranian soil was found as

88 % (Fallah 2006). Microorganisms involved in P acquisition also include mycor-

rhizal fungi (Fankem et al. 2006). Among soil bacterial communities,

ectorhizospheric strains from Pseudomonas and Bacilli and endosymbiotic

Rhizobia have been found as notable P solubilizers (Igual et al. 2001). Additionally,

Enterobacter sp., Bacillus megaterium, B. circulans, B. subtilis, B. polymyxa,
B. sircalmous, Pseudomonas striata (Subbarao 1988; Kucey et al. 1989),

Burkholderia sp., Serratia marcescens, Klebsiella terrigena, and Aeromonas vaga
(Jha et al. 2013) have also demonstrated the ability to solubilize phosphate rocks

(RP). Among fungi, Penicillium and Aspergillus are the most powerful P

solubilizers (Whitelaw 2000).

High proportions of ubiquitously found PSM are concentrated generally in the

rhizosphere and are metabolically more active than those found in other habitat

(Vazquez et al. 2000; Anamika et al. 2007). Usually, one gram of fertile soil

contains 101 to 1010 bacteria, and their live weight may exceed 2,000 kg ha�1.

The shape of soil bacteria varies from cocci (sphere, 0.5 μm) to bacilli (rod, 0.5–

0.3 μm) to spiral (1–100 μm). However, bacilli are the most dominant and common

form in soil whereas spirilli are very rare in natural environments (Baudoin

et al. 2002). Population of PSB depends on different soil properties (physical and

chemical properties, organic matter, and P content) and cultural activities (Kim

et al. 1998a, b). Larger populations of PSB are found in agricultural and rangeland

soils (Yahya and Azawi 1998). For instance, in northern part of Iran, the PSB counts

ranged from 0 to 107 cells g�1 soil, with 3.98 % population of PSB among total

bacteria (Fallah 2006). Further, zone/site of origin determines the capacity of

bacterial isolates to solubilize P. Among various sources, rhizoplanes harbor the

bacteria with highest capacity, rhizosphere organisms with intermediate capacity,

while those from bulk soils with the least PS activity. The survival of P solubilizers

is determined by “chemosequence” and “climosequence” of soils. Inadequate

information is, however, available about the diversity of bacterial populations in

and around the rhizosphere, possibly due to lack of appropriate techniques required

to isolate and accurately identify specific PS strains belonging to the same species.

Such limitations hinder the process to explore community dynamics, which leads to

the poor understanding of variations in microbial community dynamics in response

to soil type, plant type, or stage of plant development (McSpadden Gardener and

Driks 2004). In fact, bacterial communities residing in the rhizosphere respond, in

particular, with respect to density, composition, and activity, to the plethora and

diversity of organic root exudates, resulting in plant species-specific microflora

which may eventually vary with the stage of plant growth. The role of plant (largely

exudates) in affecting the ability of bacteria to colonize the rhizosphere (Kumar

et al. 2011) has been considered as one of the major factors. Among PSB, fluores-

cent pseudomonads that colonize aggressively the plant roots have been considered

as an important group of bacteria due to their biofertilizing and biocontrol proper-

ties (Naik et al. 2008; Parikh and Jha 2012; Jha et al. 2012). These strains were

taxonomically described as different fluorescent pseudomonad species such as

P. monteilli, P. putida, P. plecoglossicida, P. fluorescens, P. fulva, and
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P. aeruginosa on the basis of 16S rRNA gene sequencing and subsequent molecular

phylogeny analysis. Phenotypic analyses as well as 16S rRNA and BOX-PCR-

based genotypic analyses revealed a high degree of diversity among PSB as

reported by Naik et al. (2008).

7.2.1 Rhizospheric Competence

Rhizospheric competence is a necessary prerequisite for plant growth-promoting

rhizobacteria (PGPR). It involves effective root colonization combined with the

ability of PGPR to survive and proliferate along the roots of growing plant in the

presence of indigenous microbiota over a period of time. Understanding the plant–

microbe communication, which is influenced by genetic and environmental factors,

can contribute significantly toward revealing the mechanistic basis of PGPR action

(Bais et al. 2004). Among soil bacteria, Bacillus species are believed to be less

rhizosphere competent than Pseudomonas species. Eventually, most research even

today is focused at the development of biofertilizer and biocontrol agents based on

Pseudomonas species (Parikh and Jha 2012; Jha et al. 2012). However, studies on

the genetic diversity of Bacillus inhabiting soil and wheat rhizosphere implied that

rhizosphere competence is a characteristic of the strain (genotype) not exclusive to

the genus or species. Experiments with different wheat varieties conducted by

Milus and Rothrock (1993) have revealed that seeds pelleted with selected strains

of Bacillus could successfully establish in the rhizosphere. But whether the colo-

nization attained by introduced strains was on the entire root or only on the top few

centimeters of root below the seed could not be confirmed.

7.2.2 Rhizospheric Effect and Host Specificity

Though previous studies have proved that plants opt for taxonomic functional

groups in the rhizosphere (Mittal and Johri 2007), it is not certain whether plants

dynamically select beneficial soil microbial communities in their rhizosphere

through rhizodeposition. Although some field studies with mixed plant communi-

ties did not find such selections in the rhizosphere, there are reports that suggest a

strong correlation between plant and soil microbial communities (Duineveld

et al. 2001). The root exudates are believed to be plant specific, and this specificity

may reflect the evolution or specific physiological adaptation to conditions of a

particular soil habitat. Composition of root exudates has been shown to vary with

plant species and stage of plant growth (Mittal and Johri 2007). Concomitantly, the

plant is supposed to influence the composition of both indigenous and introduced

rhizobacteria. The exudates, for instance, sugar, amino acids, or organic acids, act

as chemoattractants and hence affect structure and functions of soil bacteria

(Somers et al. 2004). Being a major driving force for microbial root colonization,
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plant root exudation could be engineered precisely to stimulate specific microbial

colonization on the roots. It has also been observed that genetically engineered

plants producing opine, for example, have an altered rhizosphere community

compared to their wild counterparts. Furthermore, due to several chemical factors

in the rhizosphere of different plants, roots are colonized by microbes out of

indefinite pool of soil microbial diversity.

Another important factor that may affect the rhizospheric microbiota has been

recognized as the cultivation practices in different production systems. Agriculture

management strategies can induce clear shifts in the structures of plant-associated

microbial communities. For example, plant genotypes can exert strong effects on

the bacterial communities associated with the plants. Growth stage of plant is

another important factor that alters the rhizobacterial community structure, and as

reported in case of potato rhizosphere, it has been identified as one of strongest

factors affecting the bacterial communities (van Overbeek and van Elsas 2008).

Besides, land use, soil history, and cultivation practices are some of the other

factors which govern the structure of plant-associated microbial communities

(Sharma et al. 2013).

7.3 Mechanism of P Solubilization

Phosphorus-solubilizing activity is determined by the ability of microbes to release

metabolites such as organic acids, which through their hydroxyl and carboxyl

groups chelate the cation bound to phosphate, the latter being converted to soluble

forms (Sagoe et al. 1998). General sketch of P solubilization in soil is shown in

Fig. 7.1. A wide range of microbial P solubilization mechanisms exist in nature, and

much of the global cycling of insoluble organic and inorganic soil phosphates is

attributed to bacteria and fungi (Banik and Dey 1982).

Phosphorus solubilization is carried out by a large number of bacteria and fungi

acting on sparingly soluble soil phosphates, mainly by chelation-mediated mecha-

nisms (Whitelaw 2000). Inorganic P is solubilized by the action of organic and

inorganic acids secreted by PSB in which hydroxyl and carboxyl groups of acids

chelate cations (Al, Fe, and Ca) and decrease the pH in basic soils (Kpomblekou

and Tabatabai 1994; Stevenson 2005; Jha et al. 2013). The PSB dissolve the soil P

through production of low molecular weight organic acids mainly gluconic and

keto gluconic acids (Goldstein 1995; Deubel et al. 2000), in addition to lowering the

pH of rhizosphere. The pH of rhizosphere is lowered by proton/bicarbonate release

(anion/cation balance) and gaseous (O2/CO2) exchanges. Release of root exudates

such as organic ligands can also alter the concentration of P in soil solution

(Hinsinger 2001). Inorganic acids like hydrochloric acid (HCl) can also solubilize

phosphate, but they are less effective compared to organic acids at the same pH

(Kim et al. 1997). In certain cases phosphate solubilization is induced by phosphate

starvation (Gyaneshwar et al. 1999).
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Soil phosphates mainly the apatites and metabolites of phosphatic fertilizers are

fixed in the form of calcium phosphates under alkaline conditions. Many of the

calcium phosphates, including rock phosphate ores (fluoroapatite, francolite), are

insoluble in soil with respect to the release of inorganic P (Pi) at rates necessary to

support agronomic levels of plant growth (Goldstein 2000). Gerretsen (1948) first

showed that pure cultures of soil bacteria could increase the P nutrition of plants

through increased solubility of Ca-phosphates. Their solubility increases with

consequent decrease in soil pH. Microorganisms through secretion of different

types of organic acids, e.g., carboxylic acid (Deubel and Merbach 2005), and

rhizospheric pH-lowering mechanisms (He and Zhu 1988) dissociate the bound

forms of phosphate like Ca3(PO4)2. Nevertheless, buffering capacity of the medium

reduces the effectiveness of PSB in releasing P from tricalcium phosphates (Ste-

phen and Jisha 2009).

Acidification of the microbial cell surroundings releases P from apatite by proton

substitution/excretion of H+ (accompanying greater absorption of cations than

anions) or release of Ca2+ (Goldstein 1994; Illmer and Schinner 1995; Villegas

and Fortin 2002) (Fig. 7.2), while the reverse occurs when uptake of anions exceeds

that of cations, with excretion of OH�/HCO3
� exceeding that of H+ (Tang and

Rengel 2003). Carboxylic anions produced by PSB have high affinity to calcium

and solubilize more P than acidification alone (Staunton and Leprince 1996).

Complexing of cations is an important mechanism in P solubilization if the organic

acid structure favors complexation (Fox et al. 1990). It is controlled by nutritional,

physiological, and growth conditions of the microbial culture (Reyes et al. 2007),

but it is mostly due to the lowering of pH alone by organic acids (Moghimi and Tate

1978) or production of microbial metabolites (Abd Alla 1994). Organic anions and

associated protons are effective in solubilizing precipitated forms of soil P (e.g.,

Fe– and Al–P in acid soils, Ca–P in alkaline soils), chelating metal ions that may be

associated with complexed forms of P or may facilitate the release of adsorbed P

Fig. 7.1 Schematic diagram of soil P mobilization and immobilization in bacteria (Richardson

and Simpson 2011)

162 A. Jha et al.



through ligand exchange reactions (Jones 1998). Dissociation of calcium phosphate

(Ca–P) results from the combined effects of carboxylic acids synthesis and subse-

quent pH decrease involving common mechanism, but proton release is the out-

come of several mechanisms (Deubel et al. 2000).

7.4 PSB and Plant Growth Promotion

PSB helps in making the soluble P accessible for uptake by plants and concurrently

promotes the growth of plants promotion of plants by PSMs (Khan et al. 2007).

Growth promotion can be achieved by production of plant beneficial metabolites,

such as phytohormones, antibiotics, or siderophores; however, there are about or

more than 20 possible mechanisms by which the plant growth promotion can be

mediated (Sharma et al. 2013). Many reports show that bacteria belonging to genera

Bacillus, Pseudomonas, Serratia, Enterobacter, etc., solubilize inorganic P and aid

in plant growth promotion (Rodriguez and Fraga 1999). Use of PSB is reported to

increase crop yields up to 70 % (Verma 1993). Pseudomonas sp. CDB35, for

instance, solubilized P in buffered RP medium (Hameeda et al. 2008) and, when

tested, promoted overall growth including the biomass index of the maize. It has,

however, been observed that a single PSB strain may not employ several mecha-

nisms at one time; instead simultaneous mechanisms can function in unison and

very efficiently enhance the plant growth. The role of a very few select groups of

PSB in growth promotion of various crops is listed in Table 7.1 (Patil et al. 2002;

Mehrvarz et al. 2008).

Single and dual inoculation along with P fertilizer was 30–40 % better than P

fertilizer applied alone in terms of grain yield of wheat. Also, dual inoculation

without P fertilizer improved grain yield up to 20 % against sole P fertilization

Fig. 7.2 A model of phosphate starvation-inducible mps genes (Bagyaraj et al. 2000)
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(Afzal and Bano 2008). The increase in yield of wheat was attributed to the

phosphate-solubilizing potential of PSB applied in this study as reported by others

(Kucey et al. 1989; Ponmurugan and Gopi 2006). The seedling length of chickpea

(Sharma et al. 2007) was enhanced following PSB inoculation, while in other

report, co-inoculation of PSB with certain PGPR reduced P application by 50 %

without affecting corn yields (Yazdani et al. 2009). Rhizospheric microorganisms

can interact positively in soil and improve plant growth synergistically or additively

(Zaidi et al. 2003; Wani et al. 2007) by enhancing N and P uptake by plants. For

example, seed yield of green gram was enhanced by 24 % following triple inocu-

lation of Bradyrhizobium +Glomus fasciculatum+Bacillus subtilis (Zaidi and

Khan 2006). The synergistic effect of an arbuscular mycorrhizal fungus (AMF),

G. etunicatum, and an indigenous PSB strain, Burkholderia cepacia BAM-6, was

determined against wheat plants grown in pots containing soil with low available P

to assess their potential to be used as bioinoculants in semiarid regions (Saxena

et al. 2013). Seed yield and N concentration were remarkably enhanced by more

than 50 and 90 %, respectively, following dual inoculation. Percent root coloniza-

tion by rhizosphere population of PSB was also increased with time in soil.

Integration of half dose of NP fertilizer with biofertilizer resulted in crop yields

comparable to those obtained for full rate of fertilizer. This led to reduction in use of

Table 7.1 Impact of PGPR inoculation on plant growth and yield

Inoculant used Crops benefited

Experimental

soil Response/effects References

G. etunicatum +
Burkholderia
cepacia BAM 6

Wheat [Triticum
aestivum]

Loam soil Enhanced biomass

and phosphorous

uptake

Saxena

et al. (2013)

Pseudomonas putida Barley [Hordeum
vulgare]

Heavy loam Enhanced chlorophyll

content

Mehrvarz

et al. (2008)

P. fluorescence +
Bacillus
megaterium

Chickpea [Cicer
arietinum]

Alluvial soil Enhanced seedling

growth

Sharma

et al. (2007)

P. striata Chickpea, soy-

bean [Glycine
max]

Sandy

alluvial

Increased the number

of nodules, weight

of nodules, and

grain yield

Son

et al. (2006)

Bradyrhizobium +

G. fasciculatum
+B. subtilis

Green gram

[Vigna
radiata (L.)

Wilczek]

Loam soil Enhanced seed yield Zaidi and Khan

(2006)

B. megaterium +
G. fasciculatum
and

G. fasciculatum

Banana [Musa
paradisiaca]

Acidic soil Biomass and phos-

phorous intake

Patil

et al. (2002)

B. firmus NCIM
2636

Paddy [Oryza
spp.]

Moist and

acidic soil

Increased root bio-

mass and

phytohormones

Datta

et al. (1982)
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fertilizers, and therefore, the production cost was minimized. The exploitation of

P-solubilizing bacteria as biofertilizer thus has enormous potential for making use

of ever-increasing fixed P in soil and natural reserves of phosphate rocks.

7.5 Some Examples of Biotechnological Tools to Identify

Potential PSB

More than 99 % of soil microorganisms including P solubilizers have not been

cultured successfully. Thus, culture-independent methods are needed for evaluating

the functional diversity and ecology of PSB involved in P cycling in soils. Molec-

ular approaches for such culture-independent methods have been developed. The

molecular techniques based on nucleic acid composition like LMW RNA profiling

and PCR-based techniques are excellent tools for this purpose, as they are precise,

reproducible, and not dependent on culture media composition or growth phase of

microorganisms (Peix et al. 2007). An understanding of coupled biological process

at the molecular level is fundamental for assessing the composition and function of

microbes which in turn affect the health of soil that eventually could lead to

increased soil fertility and consequently the crop production. In this regard, several

molecular and cellular techniques are available which in conjunction with biolog-

ical and chemical indicators help to better understand the functionality of microbes

and, hence, the soil health (Gautam and Jha 2011). Some of the techniques used in

identifying microbes with varied biological potentials are discussed briefly.

7.5.1 DNA Measurement

Quantification of DNA following its extraction and enrichment (in insoluble

P-containing media) from any environmental sample may provide a simple and

practicable method for estimating the amount of microbial biomass (Girvan

et al. 2004). However, further work on correlating DNA measurements with a

particular soil type is required. The total DNA isolation is done, and then it is

followed by the amplification of 16S rDNA or the intergenic region (i.e., the region

between16S rDNA and 23S rDNA) with the universal primers. The amplicon is

then proceeded for sequencing to identify the most abundant type of bacterium

present in the sample and to reveal the bacterial diversity.
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7.5.2 Fluorescence Microscopy

The number of bacteria in soil, their cell volumes, and the frequencies of dividing

cells can be determined by fluorescence microscopy and computerized image

analysis (Bloem et al. 1995). Soil microbial biomass can be estimated by staining

with fluorescent dyes such as fluorescein isothiocyanate.

7.5.3 Fluorescence In Situ Hybridization

Fluorescence in situ hybridization (FISH) is a direct, cultivation-independent tech-

nique using rRNA-targeted oligonucleotide probes that is frequently used for the

identification of microorganisms in soils. While this technique allows selective

visualization of bacterial cells of different phylogenetic groups, it also has some

limitations, particularly regarding quantitative analysis of complex samples (Moter

and Göbel 2000; Peix et al. 2007).

7.5.4 Stable Isotope Probing

Stable isotope probing (SIP) is a culture-independent technique that allows the

identification of microorganisms directly involved in specific metabolic processes.

In this method, labeled nucleic acids synthesized during assimilation of an isotopi-

cally enriched substrate are isolated and analyzed (Radajewski et al. 2002). The

technique has been used to study forest soils. Genetic diversity is most commonly

studied by analyzing the diversity of genes encoding 16S rRNA (18S rRNA for

eukaryotes). These genes occur in all microorganisms and show species-dependent

variations in their base compositions. Three methods are commonly applied to

examine the diversity of 16S (and 18S) rDNA sequences in total DNA extracted

from soil microbial communities: denaturing gradient gel electrophoresis (DGGE),

temperature gradient gel electrophoresis (TGGE), and terminal restriction fragment

length polymorphisms (T-RFLP).

7.5.5 RNA Measurement

The composition of soil microbial communities can be estimated by reverse

transcriptase polymerase chain reaction (RT-PCR) followed by gel electrophoresis

of the amplified cDNA fragments (Duineveld et al 2001). The analysis of specific

mRNAs reflects the expression of the corresponding gene in soil. Such measure-

ments can also be done by quantitative real-time RT-PCR, which allows the
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detection and quantification of mRNAs present in low amounts in environmental

samples including soils (Pfaffl and Hageleit 2001). However, this method requires

previous knowledge of the sequence of the mRNA of interest.

7.5.6 Denaturing Gradient Gel Electrophoresis

Differences in the melting behavior of small DNA fragments (200–700 bp) that

differ in as little as a single base substitution can be detected by DGGE (Muyzer

et al. 1993). The denaturants used are heat (a constant temperature of 60 �C) and a

fixed ratio of formamide (ranging from 0 to 40 %) and urea (ranging from 0 to 7 M).

The benefit of this approach is that a molecular fingerprint of the community

structure is generated for each soil. In fact, each band in each lane of the gel

theoretically represents a different bacterial species. In addition, this technique

enables the excision and subsequent sequencing of bands, allowing species identi-

fication using existing databases. The structure of the bacterial communities asso-

ciated with the root endosphere and in the plant rhizosphere can be dissected by 16S

rRNA gene-based PCR-DGGE (denaturing gradient gel electrophoresis) analysis.

Naik et al. (2008) performed molecular phylogenetic analyses by aligning the

sequences of 16S rRNA using the multiple sequence alignment program

CLUSTAL W. The aligned sequences were then checked for gaps manually,

arranged in a block of 600 bp in each row, and saved as molecular evolutionary

genetics analysis (MEGA) format in software MEGA v3.0. The pair-wise evolu-

tionary distances were computed using the Kimura 2-parameter model. A DGGE

technique has also been developed for analyzing the diversity of the PQQ biosyn-

thetic gene pqqC, a gene which has been found as a good molecular marker for

investigations of natural populations of P-solubilizing pseudomonads (Naik

et al. 2008).

7.5.7 Temperature Gradient Gel Electrophoresis

Variations are known to exist in the genetic microdiversity within the species of

Bacillus and Paenibacillus (McSpadden Gardener and Driks 2004). Wieland

et al. (2001) studied the spatiotemporal variation among the microbial communities

from soil, rhizosphere, and rhizoplane with respect to crop species (clover, bean,

and alfalfa), soil type, and crop development following a comparative study of 16S

rRNA sequences employing TGGE. According to their study, the type of plant

species had profound effects on microbial community dynamics, with the effect of

soil type typically exceeding that of plant type. Plant development had only minor

habitat-dependent effect, and insignificant variations were observed in time-

dependent shifts among the microbial communities compared to the soil type or

plant type in all the habitats under study. Systematic community shifts could not be

7 Ecological Diversity, Mechanism, and Biotechnology of Phosphate. . . 167



recognized in samples from bulk soil; however, some variations in the TGGE

patterns could be correlated to time of development in the rhizosphere and rhizo-

plane. Nearly, similar findings were reported by Mahaffee and Kloepper (1997)

who used fatty acid methyl ester analysis (FAME) to determine the community

shifts in the rhizosphere of cucumber. However, only an altered window of obser-

vations generated by the use of specific primers could possibly reveal a stronger

time-dependent stimulation of certain bacterial groups.

7.5.8 Terminal Restriction Fragment Length Polymorphism

Organisms can also be differentiated according to the patterns derived from cleav-

age of their DNA. Thus, in T-RFLP, the specific fingerprint of a community is

revealed by analyzing the polymorphism of a certain gene. T-RFLP is a high-

throughput, reproducible method that allows the semiquantitative analysis of the

diversity of a particular gene in a community. It requires the extraction of DNA

from a soil sample and its PCR amplification using a fluorescently labeled primer.

T-RFLP yields a mixture of amplicons of the same or similar sizes with a fluores-

cent label at one end. After purification, the amplicon mixture is digested with a

restriction enzyme, which generates fragments of different sizes that are separated

by gel or capillary electrophoresis. The separated, labeled fragments are then

densitometrically detected, and a profile based on fragment lengths is generated.

McSpadden Gardener and Driks (2004) studied the population structure of these

two groups by T-RFLP using group-specific primers Ba1F and Ba2R and charac-

terized the plant growth-promoting population of PGPR; only minor differences

were observed in the number and relative abundance of Bacillus-like ribotypes

from different sites all the way through Ohio (USA). Despite environmental

constraints and interactions with other microorganisms, some bacteria are able to

colonize the phylloplane with higher frequency than others. Arias et al. (1999)

evaluated the diversity and distribution of Bacillus spp. from soybean phylloplane

wherein a decline was observed in the population of Bacillus spp. from 80 % of total

bacterial isolates in early stages to 0 % at the time of harvesting (Kumar et al. 2011).

7.5.9 Microbial Resilience

The ability to estimate the relative abundance of each species of microorganisms in

the soil, using the three techniques described above, has led to the suggestion that

the “equitability index” (J) of numbers of individual species is an important

estimation of the resilience of a soil. The use of statistical packages such as Phoretix

enables quantification of both diversity indices and equitability (Girvan et al. 2004).

The development of approaches that do not require the establishment of microbial

cultures will undoubtedly enhance our knowledge of bio-resources and promote the
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discovery of new microorganisms with unique capacities for bioremediation, soil

restoration, and therapeutic applications.

7.5.10 BOX-PCR-Based Genotypic Analysis

Naik et al. (2008) evaluated genetic and functional diversity of phosphate-

solubilizing fluorescent pseudomonads associated with rhizospheric soils of rice

and banana by an array of in vitro assays, gene amplification techniques, fermen-

tation methods, and chromatographic analyses. Taxonomic affiliation of bacteria

was done on the basis of 16S rRNA gene similarity and molecular phylogenetic

analyses. These strains were taxonomically described as different fluorescent pseu-

domonad species such as P. monteilli, P. putida, P. plecoglossicida, P. fluorescens,
P. fulva, P. monteilli, and P. aeruginosa on the basis of 16S rRNA gene sequencing

and subsequent molecular phylogeny analysis. Phenotypic analyses as well as 16S
rRNA and BOX-PCR-based genotypic analyses revealed a high degree of diversity

among PSB reported in this study. Meyer et al. (2013) used MRPP (Multiple

Response Permutation Procedure) to examine potential impacts of plant production

procedure, plant age, and sampling year on the diversity of the Pseudomonas
communities colonizing wheat roots, based on their DGGE profiles (presence/

absence matrices of individual replicates and frequency matrices of pooled repli-

cates). Additionally, to analyze relationships between diversity-based genotype

number and factors such as plant line, replicate (block) effect, plant age, field

season, plant production procedures, and damage level (vandals damage), a gener-

alized linear model (glm) was fitted on the number of pqqC genotypes/bands

present per plant sample.

7.6 Conclusion and Future Prospects

The fragile agroecosystem is burdened with the responsibility of enhanced agricul-

tural production from a steadily decreasing and degrading land resource in the

present global scenario. Current strategies to improve the agricultural productivity

via high-input practices have placed considerable emphasis on reliable techniques

for each component of the production sequence with little consideration to the

integration of these components in a holistic, systems approach. Improvement in

agricultural sustainability requires optimal use and management of soil fertility and

soil physical properties, both of which rely on soil biological processes and soil

biodiversity. In this context, the long-lasting challenges in soil microbiology are

development of effective methods to know the types of microorganisms present in

soils and to determine functions which the microbes perform in situ. The soil

conditions need to be mimicked “in vitro” during isolation and screening of the

phosphate solubilizers, and the compatibility and abundance of introduced bacteria
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should be checked in soil time to time for optimum crop yields. Key factor in

biofertilizer failure is the low colonization and establishment rate of introduced

microbial population. Success of this strategy will be very useful in bridging the gap

between in vitro and in field biofertilizer applications.
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Chapter 8

Response of PSM Inoculation to Certain

Legumes and Cereal Crops

Ees Ahmad, Almas Zaidi, and Md. Saghir Khan

Abstract Phosphate-solubilizing microorganisms (PSM) including bacteria, fungi,

and actinomycetes dwelling in soil or other environment, for example, rhizosphere,

do play some vital roles in facilitating growth and development of legumes and

cereal plants via one or simultaneous mechanisms. Phosphate-solubilizing

microbes when applied in agricultural practices provide one of the major plant

nutrients, phosphorus, to plants by transforming insoluble P into soluble and plant

available forms. This practice of applying PSM for enhancing legumes and cereal

production has been found inexpensive and in many cases a successful strategy of

reducing fertilizer input in intensive agricultural practices. The advent of such an

eco-friendly option in farming system holds greater promise for increasing the

productivity of legumes and cereal crops. Here, an attempt is made in this chapter

to highlight the role of PSM involving different microbial groups, used either alone

or in combination, in the promotion of growth and yield of legumes and cereal crops

in different production systems.

Keywords PSM • Cereals • Legumes • AM fungi

8.1 Introduction

An ever-increasing human population has placed tremendous pressure on declining

lands under cultivation in different regions of the world. And hence, such chal-

lenges need constant efforts to make less fertile soils into fertile ones so that the

crops can be provided with sufficient and need-based nutrients for better growth and

substantial yields (Rengel 2008). In this context, chemical fertilizers have exces-

sively been used in agriculture worldwide to provide nutrients to support plant
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growth and consequently to boost crop productivity. Since deficiency of P (the

second most important plant nutrient after N) is an important chemical factor

restricting plant growth, chemical phosphatic fertilizers are widely used to achieve

optimum yields (Del Campillo et al. 1999; Shenoy and Kalagudi 2005). Soluble

forms of P fertilizer after application are, however, easily and rapidly precipitated

as insoluble forms and become inaccessible to plants (Goldstein 1986; Takahashi

and Anwar 2007). The deficiency of P in turn can severely limit plant growth and

productivity (Fernández et al. 2007), particularly in legumes, where both the plants

and their symbiotic bacteria are affected. As a result, this may have a deleterious

effect on nodule formation, development, and function (Robson et al. 1981). Unde-

niably, synthetic fertilizers have resulted in better crop yields but at the cost of

deteriorating fertility of soils leading ultimately to human health problems via food

chain. There is therefore urgent need to find alternative option to eliminate or at

least minimize too much dependence on chemical fertilizers so that the use of

biofertilizers on a large scale in agronomic practices could be popularized among

farm practitioners. The application of beneficial soil microbes especially

phosphate-solubilizing organisms (Krishnaveni 2010; Yu et al. 2011; Zhu

et al. 2011; Bashan et al. 2013; Dugar et al. 2013; Sharma et al. 2013) used both

alone and in combination with other compatible microbes (Zaidi et al. 2003; Zaidi

and Khan 2006; Wani et al 2007a; Awasthi et al. 2011; Khan et al. 2013) has

provided some solutions to the ever-increasing use of expensive synthetic fertilizers

in farming system. Such microorganisms when used in agriculture practices provide

benefits to plants in different ways, for example, they assist in maintaining long-

term soil fertility by providing good soil biological activity, suppressing pathogenic

soil organisms, and stimulating microbial activity in the rhizosphere (Biswas and

Narayanasamy 2006; Ouahmane et al. 2007; Collavino et al. 2010; Parani and Saha

2012). Accordingly, it is reported that the phosphate-solubilizing (PS) bacteria

when applied with other plant growth-promoting rhizobacteria (PGPR) could

reduce P fertilizer application by 50 % without any significant reduction in crop

yields (Jilani et al. 2007; Yazdani et al. 2009) suggesting that PS organisms as

inoculant/biofertilizers hold greater promise for sustaining crop production (Wani

et al. 2007b; Deepa et al. 2010). Here, we highlight the impact of PS microbes on

the growth and yield of certain widely grown legumes and cereal crops in different

production systems.

8.2 Synthetic Fertilizers and Soil Microorganisms: Benefits

and Deleterious Impact

Synthetic fertilizers are widely used in agricultural practices particularly in devel-

oping countries to enhance soil fertility and, hence, crop production. Some argue

that fertilizer was as important as seed in the Green Revolution (Tomich et al. 1995)

period contributing as much as 50 % of the yield growth in Asia (FAO 1998;
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Hopper 1993). Others have found that one-third of the cereal production worldwide

is due to the use of fertilizer and related factors of production (Bumb 1995).

Fertilizer consumption in many countries including India has increased substan-

tially in recent times, and today India is probably the largest producer and consumer

of fertilizers in the world. According to some estimates, the total fertilizer con-

sumption in India was 26.49 million nutrient tonnes in 2009–2010 (Jaga and

Yogesh 2012). The importance/use of fertilizers for crop yield is likely to increase

further in order to achieve optimum agriculture production and consequently to

feed the alarmingly increasing human populations. This is due to two reasons:

(1) cultivable land is declining rapidly and there is little scope for bringing more

area under cultivation and (2) majority of soils over the world including Indian soils

are deficient in many essential nutrients including P. However, the accumulation of

such fertilizers in soils which results from the excessive and repeated application

and poor uptake by plants significantly affects biological and biochemical proper-

ties of soils (Marschner 2003; Yevdokimov et al. 2008; Zhong et al. 2010). More-

over, studies have mainly been conducted at a bulk soil scale or in short-term

experiments, and as a result, there is still little information available on rhizosphere

effects on extracellular enzyme activities and microbial community structure in

agricultural soils, influenced by long-term practices. Among various factors,

organic matter (OM) addition has been found to cause a rapid shift in the activities

of various enzymes and reactivation of biogeochemical cycles in bulk soil

(Madejon et al. 2001; Bastida et al. 2007). It is generally recognized that OM

addition tends to increase the total microbial biomass, though the responses of

specific groups such as Gram-positive bacteria, Gram-negative bacteria, and fungi

vary greatly. For instance, OM additions often result in increased or altered fungal

populations (Bastida et al. 2007), variable populations of arbuscular mycorrhizal

(AM) fungi (Corkidi et al. 2002), shifts in Gram-positive and Gram-negative

bacteria (Peacock et al. 2001; Marschner 2003), and increased fungi/bacteria ratios

(Elfstrand et al. 2007). Importantly, the response of the microbial community

structure to OM additions tends to be based on differences in the carbon amount

or quality of the organic amendments. Inorganic fertilizers such as N, P, and K have

also been reported to have a contrasting impact on structure and activities of soil

microbes (Goyal et al. 1999; Böhme et al. 2005) especially the P-solubilizers. As an

example, Bolle et al. (2013) in a study investigated the adaptation and performance

of PS bacteria (three Bacillus spp. and two Pseudomonas spp.) in conditions of high
total P content in soil employing three experiments. In the first experiment, the PS

potential of the Bacillus and Pseudomonas species was determined under fully

controlled conditions on several growth media treated with different rates and

forms of insoluble P [(FePO4, AlPO4) or (Ca)3(PO4)2]. All PS bacterial strains

survived and proliferate and could solubilize P even after 14 days of incubation. In

the second experiment, the same bacterial species were inoculated in pure quartz

sand amended with a nutrient solution, and P was added separately in an insoluble

form, as Fe–P, Al–P, or Ca–P. The extractable ammonium lactate ranged from 3.2

to 6.9 and 29 to 40.7 mg kg�1 sand for the insoluble Al–P and Fe–P treatments,

respectively. Pseudomonas putida and B. brevis performed best as PSB at high P
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concentration where the P was fixed with Al or Fe. In the third experiment,

P. putida and B. brevis were inoculated in an acidic sandy P-saturated soil for

4 weeks. The inoculation of the PSB showed promising results in solubilizing P

suggesting that the higher concentration of P did not have any negative effect on

P-solubilizing activity of microbes. In other study, many hydrolytic enzyme activ-

ities of forest soil were increased by the addition of N fertilizer, but the phenol

oxidase activity was dropped by 40 % compared to control plots (Saiya-Cork

et al. 2002). In yet other investigation, Weand et al. (2010) found that the N addition

caused a change in the enzymatic activities in a soil which, however, depends on the

nature of the dominant substrates (labile or recalcitrant). Furthermore, the rhizo-

sphere effects on microbial activities and nutrient availability were reduced by

fertilizer addition in nutrient-poor forest soil, which was presumed to be due to

fertilizer-induced shifts in the belowground C supply (Phillips and Fahey 2008).

Similarly, most studies have found obvious changes in soil microbial communities

after addition of organic or inorganic fertilizer amendments (Peacock et al. 2001;

Marschner 2003; Enwall et al. 2005). Changes in soil microbial community struc-

ture were also observed following additions of inorganic N, P, and K fertilizers

(Zhang et al. 2007; Yevdokimov et al. 2008). However, the ecological conse-

quences of the application of various fertilizers in the rhizosphere are unclear,

because of the poor understanding of how changes in nutrient availability affects

the plant and soil microbial processes (Hobbie et al. 2002). Fertilizer additions

possibly result in decreased C allocation to roots and subsequent decreases in

microbial respiration in the rhizosphere (Phillips and Fahey 2007).

8.3 Pulse Production: A Brief Account

Pulses are the second most important nutritional group of crops after cereals in the

dietary system of many countries. India is the largest producer and consumer of

pulses in the world accounting for about 25 % of global production, 27 % of

consumption, and 34 % of food use (FAO 2009). According to the Indian Council

of Agricultural Research (ICAR), an apex body of the National Agricultural

Research System, Ministry of Agriculture, Government of India, pulses production

in India has been hovering around 13–15 million tonnes during the last decade,

while annual domestic demand has risen to 18–19 million tonnes. During 2010–

2011, the production of pulses in India, estimated at 17.29 million tonnes, was an

all-time high record. According to the ministry of agriculture, the country has,

however, achieved all-time high-record pulse production of 18.45 million tonnes

(MT) in the 2012–2013 crop year ended June. The previous pulse production record

was 14.91 million tonnes during the year 2003–2004. Among kharif pulses (7.3

million tonnes), pigeon pea (3.15 million tonnes) and black gram (1.82 million

tonnes) production are all-time higher. A record production of 18.45 million tonnes

became possible primarily due to the availability of quality seeds to pulse growers.

Apart from the availability of quality seeds of high-yielding varieties, the strong
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technology backup, favorable monsoon, increase in minimum support prices, and

effective government programs helped for the increase of production of pulses in

the country. The projected pulse requirement by the year 2030 is estimated at about

32 million tonnes (ICAR Vision 2030 2011). In India, about dozen of pulse crops,

namely, chickpea, pigeon pea, mung bean, urdbean, lentil, field pea, lathyrus,

cowpea, common bean, moth bean, horse gram, and rice bean are cultivated on

22.47 million ha area under varied agroecological conditions. About 90 % of the

global pigeon pea, 75 % of chickpea, and 37 % of lentil area falls in India

(FAOSTAT 2009). Globally, the pulse production in 2009 was 61.5 million tons

over an area of 70.6 million ha with an average yield of 871 kg/ha. Of these, beans

contributed about 32 % to global pulse production which was followed by dry peas

(17 %), chickpea (15.9 %), broad beans (7.5 %), lentils (5.7 %), cowpeas (6 %), and

pigeon pea (4 %). Among different nations, developing countries contribute about

74 % to the global pulse production, and the remaining comes from developed

countries. India, China, Brazil, Canada, Myanmar, and Australia are the major

pulse-producing countries with relative share of 25, 10, 5, 5, and 4 %, respectively.

Countries recording annual production growth of more than 4 % are Myanmar

(11.48 %), Canada (10.80 %), Germany (8.27 %), Sudan (8.08 %), Spain (7.37 %),

Ethiopia (4.92 %), China (4.67 %), and Syria (4.12 %) presented in ICAR Vision

2030 (2011). A few example of top pulse-producing countries are listed in

Table 8.1.

8.3.1 Nutritional Value of Important Legumes

Pulses, sometimes called “grain legumes,” form an important component of the

dietary systems of many countries including India due to their high-protein and

essential amino acid content. In addition, pulses provide complex carbohydrates

and several vitamins and minerals. Like other plant-based foods, they contain no

cholesterol and little fat or sodium. Pulses also provide Fe, Mg, P, Zn, and other

minerals. The nutritive value of pulses, however, varies greatly among different

legumes (Table 8.2) and plays a variety of roles in maintaining good health

(Schneider 2002). Apart from their role in maintaining good human health, pulses

also play a key role in crop rotation due to their ability to fix atmospheric nitrogen in

association with symbiotic nitrogen fixers like rhizobia. To support the awareness

on this matter, the United Nations has declared 2016 the UN International Year of

Pulses.
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8.4 Response of PSM Inoculation to Crops

The discovery of P-solubilizing potentials besides other growth-promoting activi-

ties (Table 8.3) among P-solubilizers has been one of the most attractive biological

traits that have resulted in reducing the dependence on synthetic P fertilizers and

consequently protecting soil fertility and environmental safety from chemical

toxicity. And therefore, the use of PS bacteria isolated from different soils (Saha

and Biswas 2009; Hui et al. 2011; Xiang et al. 2011; Minaxi et al. 2012) belonging

largely to the genera pseudomonads (Behbahani 2010; Bholay et al. 2012), bacilli

(Erkovan et al. 2010; Sanjotha et al. 2011), rhizobia (Chandra et al. 2007; Marra

et al. 2011), and Azotobacter (Yi et al. 2008; Audipudi et al. 2012) etc. as an

alternative to chemical fertilizer has generated greater interest among agronomists

than microbiologists to employ such microbes in practical field application for

enhancing the crop production (Kumari et al. 2009; Erkovan et al. 2010; Yu

et al. 2011; Gupta et al. 2012) in different agroecological niches (Khan

et al. 2007; Vega 2007). However, direct inoculation of free PS bacteria into soil

is not easy to maintain the survival of bacterial cells around roots of plants since

they are easily susceptible to a variety of environmental variables such as temper-

ature, humidity, and salt stress (Wu et al. 2012). Also, the variable response of PSB

inoculation to plant is mainly due to the differences in the quality of inoculants

applied under pot/field soils. Considering the vast and varied activities, researchers

around the world have either attempted or included the use of single or mixture of

this novel group of economically feasible biological materials in agronomic oper-

ation for sustainable pulse and cereal production.

Table 8.1 Top pulse (chickpea and lentil)-producing countries (in metric tonnes)

Country

Chickpea Lentil

2010 2011 2010 2011 2012

India 7,480,000 8,220,000 1,031,600 943,800 950,000

Australia 602,000 513,338 140,000 379,659 463,000

Pakistan 561,500 496,000 DNA DNA DNA

Turkey 530,634 487,477 447,400 405,952 438,000

Burma 441,493 473,102 DNA DNA DNA

Ethiopia 284,640 322,839 80,952 128,009 151,500

Iran 267,768 290,243 100,174 71,808 85,000

United States 87,952 99,881 392,675 214,640 240,490

Canada 128,300 90,800 1,947,100 1,531,900 1,493,620

Mexico 131,895 72,143 DNA DNA DNA

Nepal DNA DNA 151,757 206,969 208,201

China DNA DNA 125,000 150,000 145,000

Syria DNA DNA 77,328 112,470 130,229

World 10,897,040 11,497,054 4,686,673 4,386,870 4,522,097

Source: UN Food and Agriculture Organizations

DNA data not available
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8.4.1 Phosphate Solubilizers-Legume Interactions: Current
Perspective

The sole or composite application of PS bacteria (Table 8.4) for raising legume

production has received considerable attention worldwide (Fernández et al. 2007;

Comakli and Dasci 2009; Bianco and Defez 2010) and is discussed and considered

in the following section.

8.4.1.1 Impact of Monoculture of PSB on Legume Improvement

The constantly increasing costs of phosphatic fertilizers have generated interest

among farming communities toward using microbial phosphatic fertilizers (PSM)

for enhancing the legume production (Jha et al. 2011). Considering the importance

of PSM in legume improvement, Kannapiran and Sri Ramkumar (2011) assayed the

single inoculation effects of PS bacteria Pseudomonas putida (Plate 8.1a) and

Table 8.2 Nutritional value of important legumes

Nutritional value (per 100 g) Chickpea Soybean Green gram Pea Lentil Pigeon pea

Energy (KJ) 686 1,866 1,452 339 1,477 569

Carbohydrates (g) 27.42 30.16 62.62 14.45 60 23.88

Sugars (g) 4.8 7.33 6.6 5.67 2 3.0

Dietary fiber (g) 7.6 9.3 16.3 5.1 31 5.1

Fat (g) 2.59 19.94 1.15 0.4 1 1.64

Protein (g) 8.86 36.49 23.86 5.42 26 7.2

Water (g) 60.21 8.54 – – 10 –

Vitamin A equiv. (μg) 1 1 – 38 – –

Thiamine (vit. B1) (mg) 0.116 0.874 0.621 0.266 0.87 0.4

Riboflavin (vit. B2) (mg) 0.063 0.87 0.233 0.132 0.211 0.17

Niacin (vit. B3) (mg) 0.526 1.623 2.251 2.09 2.60 2.2

Pantothenic acid (B5) (mg) 0.286 0.793 1.91 – 2.12 0.68

Vitamin B6 (mg) 0.139 0.377 0.382 0.169 0.54 0.068

Folate (vit. B9) (μg) 172 375 625 65 479 173

Vitamin B12 (μg) 0 – – – – –

Vitamin C (mg) 1.3 6.0 4.8 40 4.4 39

Vitamin E (mg) 0.35 0.85 0.51 0.13 – 0.39

Vitamin K (μg) 4 47 9 24.8 – 24

Calcium (mg) 49 277 132 25 56 42

Iron (mg) 2.89 15.7 6.74 1.47 7.54 1.6

Magnesium (mg) 48 280 189 33 122 68

Phosphorus (mg) 168 704 367 108 451 127

Potassium (mg) 291 1,797 1,246 244 955 552

Sodium (mg) 7 2 – 05 6 5.0

Zinc (mg) 1.53 4.89 2.68 1.25 4.78 1.04

Manganese (mg) – 2.517 1.035 0.41 – 0.574

Source: USDA Nutrient Database (http://en.wikipedia.org)
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Table 8.3 Growth-promoting substances released by phosphate-solubilizing bacteria

Phosphate-solubilizing bacteria Plant growth-promoting traits References

Advenella sp. and Cellulosimicrobium sp. Siderophore, IAA, ammonia,

and antifungal activity

Singh et al. (2014)

Pseudomonas aeruginosa, P. Putida, Pseu-
domonas cepacia

IAA, HCN, and siderophore Deshwal and

Kumar (2013)

Pseudomonas fluorescens and Bacillus
subtilis

IAA, gibberellic acid,

siderophore

Sivasakthi

et al. (2013)

Pantoea agglomerans and Burkholderia
anthina

IAA, ammonia, siderophore,

and HCN

Walpola and Yoon

(2013)

Pseudomonas fluorescens Siderophore, auxin, and ACC

deaminase

Alishahi

et al. (2013)

Pseudomonas aeruginosa and Bacillus sp. IAA Kannapiran and Sri

Ramkumar

(2011)

Pseudomonas aeruginosa and Bacillus sp. IAA, siderophore, antifungal

activity

Panhwar

et al. (2012)

Enterobacter aerogenes sp. (NII-0907 and

NII-0929), E. cloacae subsp. cloacae
sp. (NII-0931), E. asburiae
sp. (NII-0934)

IAA, HCN Deepa et al. (2010)

Acinetobacter rhizosphaerae IAA, siderophores, ACC

deaminase

Gulati et al. (2009)

Pseudomonas sp. ACC deaminase, IAA,

siderophore

Poonguzhali

et al. (2008)

Bacillus subtilis IAA, siderophore, antifungal

activity

Singh et al. (2008)

Serratia marcescens IAA, siderophore, HCN Selvakumar

et al. (2008)

Pseudomonas fluorescens ACC deaminase Shaharoona

et al. (2008)

Acinetobacter sp., Pseudomonas sp. ACC deaminase, IAA, anti-

fungal activity, N2-

fixation

Indiragandhi

et al. (2008)

Enterobacter sp. ACC deaminase, IAA,

siderophore

Kumar et al. (2008)

Burkholderia ACC deaminase, IAA,

siderophore, heavy metal

solubilization

Jiang et al. (2008)

Pseudomonas jessenii ACC deaminase, IAA,

siderophore, heavy metal

solubilization

Rajkumar and

Freitas (2008)

Pseudomonas aeruginosa ACC deaminase, IAA,

siderophore

Ganesan (2008)

Pseudomonas sp. ACC deaminase, IAA,

siderophore, heavy metal

solubilization

Rajkumar and

Freitas (2008)

Azotobacter sp., Mesorhizobium sp.,

Pseudomonas sp., Bacillus sp.
IAA, siderophore, antifungal

activity, ammonia produc-

tion, HCN

Ahmad

et al. (2008)

(continued)
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Bacillus pumilus (Plate 8.1b) and N2-fixing Azotobacter sp. (Plate 8.1c) on the

growth, chlorophyll content, and P and N content of black gram plants grown in

green house and observed a variable impact on the measured parameters. The N

contents in roots and shoots of inoculated black gram plants differed considerably

among the treatments. The variation in the performance of inoculated plants was

attributed to the release of differing amounts of siderophore, HCN, and ammonia by

the inoculant bacterial strains. Moreover, the substantial production of IAA by

A. chroococcum (23.6 μg ml�1) and A. beijerinckii (17.6 μg ml�1) and by the

P-solubilizers P. aeruginosa (26.5 μg ml�1) and Bacillus sp. (19.8 μg ml�1) might

also have accounted for considerable increase in the black gram plants. Similarly,

PS-fluorescent pseudomonads isolated from the groundnut rhizosphere, when used

as microbial P biofertilizer, enhanced the groundnut germination by 30 % while it

increased the grain yield by 77 %. Further, the PS culture also showed antagonistic

activity against plant pathogenMacrophomina phaseolina. The increase in yield of
groundnut following Pseudomonas application, therefore, suggested that this strain
has two basic traits: (1) biocontrol activity against phytopathogen and (2) that it

provided the available form of P and consequently enhanced the yield of groundnut

(Shweta et al. 2008). Dey et al. (2004) in yet another study observed a significantly

higher pod yields, haulm yield, and nodule dry weight in P. fluorescens-inoculated
peanut plants compared to those recorded for uninoculated plants grown in pots and

field trials. The seed bacterization also resulted in higher N and P contents in soil. In

addition, the pod yields were increased by 23–26 %; other plant characteristics such

as root length, pod number, 100-kernel mass, shelling out-turns, and nodule num-

bers were also increased following bacterial inoculation. Seed treatment with

P. fluorescens also depressed the incidence of soil-borne fungal diseases, like collar
rot and charcoal rot of peanut (Bhatia et al. 2008) caused by A. niger. While

considering the overall improvement in inoculated peanut, it was inferred that the

increase was due to (1) the synthesis of IAA, ACC deaminase, and siderophore and

Table 8.3 (continued)

Phosphate-solubilizing bacteria Plant growth-promoting traits References

Fluorescent Pseudomonas IAA, siderophores, HCN,

antifungal activity

Shweta

et al. (2008)

Pseudomonas vancouverensis IAA, HCN, siderophore, anti-

fungal

activity

Mishra

et al. (2008)

Bacillus spp. IAA, siderophores, ammonia

production, HCN, chro-

mium

reduction, metal

solubilization

Wani

et al. (2007a, b)

Pseudomonas PSB5, Bacillus PSB9 IAA and siderophores Wani

et al. (2007c)

Klebsiella oxytoca IAA, nitrogenase activity Jha and Kumar

(2007)

Bacillus subtilis IAA Zaidi et al. (2006)
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Table 8.4 Examples of sole and composite inoculation effects of phosphate-solubilizing bacteria

on biological and chemical characteristics of certain legume and cereal crops

Phosphate

solubilizers Legumes Plant attributes References

Bradyrhizobium
japonicum with
PSB

Soybean Plant biomass, grains per plant, and

grain yield increased

Shiri-Janagard

et al. (2012)

Bacillus sp. with
Rhizobium

Mash bean Co-inoculation improved pod and

straw yield; increased the root

length, root mass, and number

of nodule and mass; enhanced

the nutrient concentration in

mash plant and grains

Qureshi

et al. (2012)

Enterobacter sp. Cowpea Root and shoot length, dry biomass,

seedling length

Deepa

et al. (2010)

Citrobacter,
Pantoea, Klebsi-
ella, and
Enterobacter

Pigeon pea Shoot P content, dry shoot/root

ratio, dry weight

Patel

et al. (2010)

Bacillus sp. Chickpea Root and shoot length, nodulation,

dry weight

Wani and Khan

(2010)

Pontibacter
niistensis

Cowpea Root and shoot weight, dry weight,

seedling growth

Dastager

et al. (2011)

P. fluorescens with
Burkholderia
cepcia,
Aeromonas vaga

Mung bean Root and shoot length, dry weight,

leaf area, photosynthetic yield,

P content in leaf

Jha et al. (2011)

Bacillus,
Pseudomonas

Alfalfa Root and shoot dry weight, root

length, N content in shoot

Guiñazú

et al. (2010)

Enterobacterium
with

Sinorhizobium
meliloti

Chickpea, pea Increased P uptake and biomass Hynes

et al. (2008)

P. putida and

B. japonicum
Soybean Root and shoot dry weight,

nodulation

Rosas

et al. (2006)

P. putida Alfalfa Root and shoot dry weight,

nodulation

Rosas

et al. (2006)

Cereals

P. fluorescens with
S. meliloti

Wheat Increased dry matter accumulation

in roots and shoots, shoot

length, and P uptake

Schoebitz

et al. (2013)

Unidentified PSB

with farmyard

manure

Maize Phosphate-solubilizing bacteria

along with FYM increased the

yield attributes and grain and

stover yields. PSB inoculation

along with FYM enhanced the

content of NPK in grain and

stover, and their uptake by grain

and stover. The inoculation of

PSB along with FYM also

enhanced the available NPK

Taipodia and

Yubbey

(2013)

(continued)
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(2) antifungal activity expressed by the test bacterial strain against various fungal

pathogens. Similar increase in the biological and chemical characteristics and

quality of pea and chickpea under both controlled conditions and field environment

following P-solubilizing, auxin, ACC deaminase, ammonia, and siderophore-

producing strains of Acinetobacter rhizosphaerae and Mesorhizobium
mediterraneum (PECA21) has been reported (Gull et al. 2004; Gulati et al. 2009).

Likewise, inoculation of green gram seeds with PSB demonstrated an extensive

nodulation, and increased shoot dry matter and total dry matter, P content, and P

uptake in green gram plants 45 days after sowing relative either to rock phosphate

(RP) or single super phosphate (SSP) application (Vikram and Hamzehzarghani

2008).

8.4.1.2 Synergistic Effects of Phosphate-Solubilizing Bacteria

with Other Soil Microflora

Phosphate-solubilizing microorganisms while inhabiting rhizosphere are reported

to exhibit many fold relationship with other soil microflora especially the PGPR and

enhance the overall performance of legumes additively or synergistically both in

the presence and absence of chemically synthesized phosphatic fertilizers in dif-

ferent production systems (Plate 8.2). Phosphate-solubilizing organisms in addition

to supplying P to plants can also enhance plant growth by improving the efficiency

of BNF, by accelerating the availability of other trace elements, and by production

of phytohormones (Khan et al. 2009, 2013). Accordingly, increase in the yield of

Table 8.4 (continued)

Phosphate

solubilizers Legumes Plant attributes References

content in soil at harvest, and

protein and carbohydrates in

grains.

Unidentified PSB

with triple

superphosphate

Rice Plant height and number of tillers

per plant were significantly

increased; level of mineral

nutrients in rice plant tissues

was increased

Sarkar

et al. (2012)

P. agglomerans
NBRISRM

Maize, Chickpea Shoot length, leaves, seed, N,P, and

K uptake

Mishra

et al. (2011)

P. fluorescens,
P. Putida

Wheat Plant height, tillers, number of

grains/spike, 1,000-grain

weight, grain and straw yield, N,

P, and K uptake

Zabihi

et al. (2011)

Paenibacillus alvei,
Bacillus simplex,
Bacillus cereus

Wheat Shoot and root biomass and total

root length

Hassen and

Labuschagne

(2010)

Pseudomonas sp. Wheat Improved grain yield, shoot weight,

and plant height

Afzal and Bano

(2008)
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various legumes has been observed following seed or soil inoculation of PS

organisms with other PGPR (Messele and Pant 2012), fungi (Mittal et al. 2008;

Jain et al. 2012), and AM fungus (Zaidi et al. 2003; Zaidi and Khan 2006; Khan and

Zaidi 2007). In a study, Walpola and Yoon (2013) observed that the PS bacteria

Pantoea agglomerans and Burkholderia anthina under greenhouse conditions

remarkably enhanced shoot and root length, shoot and root dry matter, and P uptake

of green gram plants. Growth of the inoculated plants improved further by adding

TCP with PSB inoculation. Moreover, the dual inoculation of both P. agglomerans
and B. anthina in the presence of TCP exhibited the highest increase in growth and

P uptake by green gram plants suggesting that these bacterial cultures together

could act as a promising alternative to minimize the P problem in agricultural soils.

Shiri-Janagard et al. (2012), in order to investigate the effects of biological and

Plate 8.1 Scanning

electron microscopy of

bacterial strains: (a)

P. putida strain PSE3, (b)

B. pumilus strain ES3, (c)

Azotobacter strain AZ19
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chemical fertilizers on soybean yield, carried out an experiment at the University of

Tabriz Research Farm, Iran. Biological fertilizer consisting of (1) non-inoculated

(NI), (2) PS bacteria (PSB), (3) Bradyrhizobium japonicum (BJ), and

(4) B. japonicum +PSB (BJ + PSB) was in the presence of absence of varying levels

of chemical fertilizers: (1) control (0 %), (2) 16.5 kg/ha�1 urea + 49.5 kg/ha�1 triple

superphosphate (33 %), (3) 33.3 kg/ha�1 urea + 99 kg/ha�1 triple superphosphate

(66 %), and (4) 50 kg/ha�1 urea + 150 kg/ha�1 triple superphosphate (100 %). Grain

weight was significantly enhanced following BJ and BJ + PSB application over NI

and PSB. Also, grains per pod were more in bio-inoculated plants. Plant biomass,

grains per plant, and grain yield per plant in NI- and PSB-inoculated plants were

enhanced with increasing chemical fertilizers. The highest plant biomass, grains per

plant, and grain yield were recorded for treatment having 16.5 kg/ha�1 urea

+ 49.5 kg/ha�1 triple superphosphate fertilizer� BJ + PSB. Inoculation of seeds

by BJ and BJ + PSB without chemical fertilizer application had equal or higher

performance than non-inoculated seeds with 100 % chemical fertilizer. Therefore,

soybean seed inoculation by B. japonicum singly or in combination with PSB not

only reduced the use of chemical fertilizer but also highlighted the role of syner-

gistic microbes in improving the yield and yield components of soybean. In a

follow-up study, Suri and Choudhary (2013) determined the interactive effects of

soybean-AM fungi (Glomus mosseae andG. intraradices)-PS bacterium (P. striata)
on the productivity, nutrient dynamics, and root colonization in soybean grown in

P-deficient Himalayan acidic alfisol. Sole application of PSB or AM fungus con-

siderably enhanced VA-mycorrhizal root colonization and root weight besides crop

productivity and nutrient uptake over control. The co-inoculation of PSB and AM

fungus also showed a similar stimulatory effect on mycorrhizal root colonization

and root weight relative to control. Dual inoculation of G. mosseae and P. striata
significantly increased the grain and straw yield besides grain protein content

suggesting a strong synergism between the AM fungus and PS bacterium. The

impact of co-culture of either G. intraradices or G. Mosseae with PSB in the

presence of 75 % P2O5 on crop productivity, nutrient content, nutrient uptake,

and soil fertility was at par with sole application of 100 % P2O5, but the root

colonization and root weight were maximum at flowering stage indicating that

Glycine–Glomus–PSB interactions in combination with 75 % P2O5 dose based on

STCR precision model could lead to the reduction in fertilizer application by about

one-fourth without disturbing the soybean productivity and soil fertility in a

Himalayan acidic alfisol region.

Guiñazú et al. (2010) in a similar study evaluated the effect of single or mixed

cultures of nodule bacterium (S. meliloti B399) and PS bacterium (Bacillus sp. and
Pseudomonas sp.) on N-fixing efficiency of alfalfa plants and observed that the sole
culture of Pseudomonas sp. FM7d significantly enhanced the dry matter accumu-

lation in roots and shoots, length of plants and surface area of roots, and symbiotic

attributes of alfalfa plants. On the contrary, the mixture of S. meliloti B399 and

Bacillus sp. M7c further increased the measured parameters suggesting a synergis-

tic/additive effect of the two phenotypically different bacterial genera. Likewise,

the tripartite combination of Rhizobium, PGPR, and PSB has been found to signif-

icantly increase nodulation and grain yield relative to uninoculated mung bean
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plants. While comparing the impact of all treatments, the mixture of Rhizobium,
PGPR, and PSB had maximum positive effect and profoundly enhanced the sym-

biotic properties and yield of mung bean grains (Bansal 2009). In a follow-up study,

Dutta and Bandyopadhyay (2009), while conducting a field experiment during the

winter seasons, observed that P and biofertilizers, phosphobacterin (P. striata) and

Plate 8.2 Sole and composite impact of microbial inoculation on chickpea grown in soils treated

with phosphate fertilizer where T1 indicates control; T2, urea (30 kg/ha); T3, DAP (80 kg/ha); T4,

B. pumilus; T5, M. ciceri; T6, urea with B. pumilus; T7, DAP with M. ciceri; T8, B. pumilus with
M. ciceri; and T9, urea with DAP
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co-inoculation of Rhizobium with phosphobacterin, when applied together

enhanced the early vegetative growth, symbiotic properties like nodule production

and excessive synthesis of leg hemoglobin in nodules, nitrogenase activity (NA),

and yield components such as seed yields, harvest index (HI), and P uptake by

chickpea cultivar Mahamaya-2 plants grown in entisol (laterite soil) under rainfed

conditions. Of the various combination treatments, seed inoculation of

phosphobacterin with Rhizobium was significantly better than other treatments.

When P (26.2 kg/ha) was also added to the mixture of Rhizobium and

phosphobacterin, the biological and chemical properties of chickpeas were further

improved relative to other levels of P used with biofertilizer. In yet other study,

Messele and Pant (2012) conducted a field experiment to assess the inoculation

effects of Sinorhizobium ciceri and PS bacteria on the performance of chickpea in

Shoa Robit area, Ethiopia, using three levels of NP fertilizer and four levels of

inoculants. The sole application of S. ciceri increased dry matter yield (DMY) by

156.58 and nodule numbers (NN) by 117.96 % relative to control. In the presence of

18/20 kg N (urea)/P (DCB) ha�1, S. ciceri enhanced the DMY, NN, and nodule dry

weight (NDW) by 149.6, 143.6, and 200 %, respectively, over uninoculated control

suggesting the role of P in nodule tissue development. Similarly, Pseudomonas
sp. in the presence of 18/20 kg NP ha�1 increased NDW, NN, nodule volume (NV),

and seed yield (SY) by 240, 188.52, 151.81, and 142.95 %, respectively, compared

to control indicating the P-solubilizing efficacy of bacteria in the presence of DCB.

In contrast, the co-inoculation of S. ciceri and Pseudomonas sp. with 18/20 kg NP

ha�1 dramatically enhanced the NN, NDW,NV, and DMY by 208.8, 220, 221.24,

and 172.09 % over uninoculated control at mid-flowering stage of chickpea.

Apart from forming relationship with PGPR, PSM has also been found to

establish associative/symbiotic association with arbuscular mycorrhizal (AM)-

fungi (Wang et al. 2011) and facilitate plant growth (Osorio and Habte 2013)

including legumes (Souchie et al. 2010). Mycorrhizal interactions are ubiquitous

and improve plant fitness and soil quality by (1) increasing the nutrient uptake from

soil; (2) facilitating uptake of relatively immobile trace elements such as, Zn, Cu,

and Fe; (3) increasing protection against biotic and abiotic stresses; and (4) forming

soil aggregate (Turnau et al. 2006; Lingua et al. 2008; Garg and Chandel 2010).

Conclusively, the interaction of PS organisms with AM fungi is likely to have larger

impact on plant health than the sole application of any organism in agricultural

practices. The interactive effect of PS organisms with AM fungi on legume

development and yield is discussed briefly in the following section.

Souchie et al. (2010) in a study evaluated the synergism between several PS

fungi and AM fungi to improve clover growth in the presence of Araxá apatite. The

combination of A. niger and PSF 21 in the presence of AM fungi showed greatest

clover growth; however, A. niger, PSF 7, and PSF 21 were found most effective

fungal cultures in increasing clover growth when used with AM fungi. Due to

greater mycorrhizal colonization, there was a maximum increase in clover plants

inoculated with PSF isolates. Of these, isolate PSF 7 was found as the best-

performing fungal culture in terms of mycorrhizal establishment and rhizobia

symbiosis. Toro et al. (2008) in an experiment tested the efficacy of mixed
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microbial cultures: a wild-type (WT) R. meliloti strain, its genetically modified

(GM) derivative, the AM fungus G. mosseae (Nicol and Gerd) Gerd and Trappe,

and a PSB Enterobacter sp. and rock phosphate (RP), on N and P accumulation in

alfalfa plants. Microbial cultures, in general, survived well inside root tissues and

colonized alfalfa rhizosphere and did not show any antagonism toward each other.

The population of PSB is stimulated due to both AM colonization, RP application,

and GM Rhizobium inoculation leading to a substantial increase in N and P

acquisition by alfalfa plants. Even though the Enterobacter application showed

no observable effects on N or P accumulation in soil treated with RP, it had an

obvious effect on N and P in the non-RP-amended control. In addition, 15N:14N

ratio in plant shoots indicated enhanced N2 fixation rates in Rhizobium-inoculated
AM plants, compared to those obtained by the same Rhizobium strain in

non-mycorrhizal plants. Regardless of the Rhizobium strain and of whether or not

RP was added, AM-inoculated plants showed a lower specific activity (32P:31P)

than did their comparable non-mycorrhizal controls suggesting that the plant was

using otherwise unavailable P sources. The P-solubilizing, AM-associated,

microbiota could in fact release P ions, either from the added RP or from the

indigenous “less-available” P. Additionally, the proportion of plant P derived either

from the labeled soil P (labile P pool) or from RP was similar for AM-inoculated

and non-mycorrhizal controls (without Enterobacter inoculation) for each Rhizo-
bium strain, but the total P uptake, regardless of the P source, was far higher in AM

plants which could probably be due to P mobilization by AM fungi. In other

investigation, Mehdi et al. (2006) assessed the responses of lentil to co-culture of

P-solubilizing rhizobia and AM fungi in a calcareous soil with high-pH and low

available P and N. The effects of AM fungi (Glomus mosseae and G. intraradices),
rhizobial strain (R. leguminosarum bv. Viciae) and mixture of rhizobial inoculant

and PS M. ciceri, and P fertilizers (superphosphate and RP) were highly significant

and enhanced the dry matter accumulation in shoots, seed yield, P and N contents,

and AM colonization. The PS rhizobial strain had a more pronounced favorable

effect on lentil growth and nutrient uptake than the strain without this ability. The

P-uptake efficiency was increased when P fertilizers were applied along with AM

fungi and/or P-solubilizing rhizobial strains.

8.4.2 Cereal Production and Its Nutritive Value

Cereal crops are grown largely for the edible components of its grain which

contains the endosperm, germ, and bran. Cereal is grown in many parts of the

world (Table 8.5) and serves as a major energy source worldwide than any other

type of crops and hence are called staple crops. They also provide some useful and

valuable food nutrients even in their natural form as in the form of whole grain and

have been found as a rich source of vitamins, minerals, carbohydrates, fats, oils, and

protein (Table 8.6). In some developing countries, rice, wheat, millet, or maize

form an important component of dietary system and a sound means of daily
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sustenance, while in developed nations, cereal consumption is moderate and varied

but still substantial.

8.4.2.1 Impact of Sole/Composite Application of PSMicrobes on Cereal

Crops

The use of PSB in agricultural practices dates back to the 1950s when some Russian

and European scientists applied Megatierium viphosphateum, which later on was

identified as Bacillus megatierium var. phosphaticum. The preparation of this

bacterium was subsequently called as phosphobacterin (Cooper 1959; Menkina

1963) and, when this was used, increased crop yields from 0 to 70 % in Soviet

soils. However, similar experiments conducted in the United States failed to

produce any significant effect (Smith et al. 1961). Despite conflicting reports on

the performance of PSB in variable agroecosystem against a multitude of crops

(Yarzábal 2010) including cereals (Yazdani et al. 2009; Abdel-Ghany et al. 2010;

Deshwal et al. 2011; Khalimi et al. 2012; Nico et al. 2012), they have since been

applied and have shown promising results in some parts of the world (Chesti and

Ali 2007; Baig et al. 2011). For example, Saxena et al. (2014) investigated the

synergistic effect of an AM fungus, Glomus etunicatum, and an indigenous PSB

strain, Burkholderia cepacia BAM-6, on wheat plants grown in pots containing soil

with low available P in order to find a comparable paring of microbial cultures for

enhancing wheat production in semiarid regions.

The dual inoculation of AM fungus and PSB augmented growth and yield

parameters relative to the sole application of each culture. Wheat yield and N

concentration were enhanced by greater than 50 and 90 %, respectively, following

the dual inoculation. Percent root colonization by AM fungi and rhizosphere

population of PSB was also increased with time in soil. From this study, it was

Table 8.5 Top staple foods produced worldwide

Grain

Worldwide production (millions (106) of metric tons)

2012 2011 2010

Maize (corn) 87 888 85

2 1

Wheat 671 699 650

Rice 720 725 703

Barley 133 133 124

Sorghum 57 58 60

Millet 30 27 33

Oats 21 22 20

Rye 15 13 12

Triticale 14 13 14

Buckwheat 2.3 2.3 1.4

Fonio 0.59 0.59 0.57

Quinoa 0.08 0.08 0.08
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inferred that B. cepacia interacted synergistically well with AM fungus leading

eventually to increase in growth and nutrient uptake of wheat plants. Therefore, this

study shows a great promise for using biofertilizer for wheat crop grown in arid to

semiarid regions. Similarly, Yousefi et al. (2011) investigated the interactive effects

of PS bacteria and AM fungi on wheat production, changes in biological popula-

tion, and inorganic P fractions. In this study, the combined application of PS

bacteria and AM fungi increased dry matter accumulation in shoots, seed grain

spike number, and grain yields by 52, 19, and 26 %, respectively, compared to the

control plants. Moreover, P application increased Olsen–P, Ca2–P, and Ca8–P%

while biological fertilizers reduced the amount of Ca2–P and Ca8–P%. Taking into

consideration the success achieved at small scales, Akhtar et al. (2013) conducted a

field experiment to investigate the effect of Rhizobium and Bacillus, alone and in

combination, on the yield of wheat (var. Sehar 2006). A uniform rate of N

(160 kg ha�1) and K (60 kg ha�1) and two levels of P (57 and 114 kg ha�1) were

applied as urea, SOP, and SSP, respectively. Number of tillers, spike length

(13.50 cm), number of grains, grain yield (6,171 kg ha�1), biomass (17 t ha�1),

Table 8.6 Nutritional value

of some major staple foods
Nutritional value per 100 g

Cereal crops

Maize Rice Wheat

Energy (KJ) 1,528 1,528 1,369

Carbohydrates (g) 74 80 71

Sugars (g) 0.64 0.12 0.41

Dietary fiber (g) 7.3 1.3 12.2

Fat (g) 4.74 0.66 1.54

Protein (g) 9.4 7.1 12.6

Water (g) 10 12 13

Vitamin A equiv. (μg) 214 0 9

Thiamine (vit. B1) (mg) 0.39 0.07 0.30

Riboflavin (vit. B2) (mg) 0.20 0.05 0.12

Niacin (vit. B3) (mg) 3.63 1.6 5.46

Pantothenic acid (B5) (mg) 0.42 1.01 0.95

Vitamin B6 (mg) 0.62 0.16 0.3

Folate (vit. B9) (μg) 19 8 38

Vitamin B12 (μg) – – –

Vitamin C (mg) 0 0 0

Vitamin E (mg) 0.49 0.11 1.01

Vitamin K (μg) 0.3 0.1 1.9

Calcium (mg) 7 28 29

Iron (mg) 2.71 0.8 3.19

Magnesium (mg) 127 25 126

Phosphorus (mg) 210 115 288

Potassium (mg) 287 115 363

Sodium (mg) 35 5 2

Zinc (mg) 2.21 1.09 2.65

Manganese (mg) 0.49 1.09 3.99

Source: USDA Nutrient Database (http://en.wikipedia.org)
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grain protein (11.84 %), and 1,000 grain weight (62 g) were higher for wheat plants

co-inoculated with Rhizobium and Bacillus. The increase in grain yield due to

co-inoculation of Rhizobium and Bacillus was calculated as 17.5 % increase over

control. In contrast, the single inoculation of Bacillus increased grain yield by

7.7 %. Phosphorus uptake by grains (25.29 kg ha�1) was maximum following

dual-culture application which was followed by sole application of Bacillus inoc-
ulation. Available P in soil after wheat harvest was 16.27 mg kg�1 which was

significantly higher than all other treatments. This field trial clearly demonstrated a

dramatic increase in the availability of P following dual application of Rhizobium
and Bacillus sp. which in effect exerted a strong positive effect on the growth and

yield of wheat plants. Similarly, in a trial conducted under both pot and field

environments, the biomass and total P of winter wheat was significantly increased

following sole application of Phosphobacterium strain 9320-SD. However, there

was no significant difference in height of the test plants (Chen et al. 2006). Simi-

larly, PSB (Serratia marcescens) isolated from cold temperature region, capable of

synthesizing IAA, HCN, and siderophore, profoundly enhanced the plant biomass

and nutrient uptake of wheat seedlings when grown in cold environment

(Selvakumar et al. 2008). In a follow-up study, wheat plants inoculated with

ACC deaminase-positive P. fluorescens and P. fluorescens biotype F had higher

growth, yield, and nutrient use efficiency, when grown in soil treated simulta-

neously with varying levels of three major nutrients like N, P, and K (at 0,

25, 50, 75, and 100 % of recommended doses). However, the overall growth of

inoculated wheat plants decreased both under pot and field trials with increasing

concentration of synthetic fertilizers. Hence, in most of the cases, significant

negative linear correlations were recorded between percentage increases in growth

and yield parameters of even inoculated wheat plants. The decline in growth and

yield of bacterized wheat plants when grown with increasing chemical fertilizers,

however, raised certain questions. For example, do the rates of fertilizers greater

than the recommended ones have any direct impact on composition and functional

activities of bacteria or do excessive rates have any inhibitory effect on plant

metabolism? In this context, it is speculated that low fertilizer application causes

reduction in the ACC deaminase activity of PS strains and thereby leads to

reduction in the synthesis of stress (nutrient)-induced inhibitory levels of ethylene

in the roots through ACC hydrolysis into NH3 and α-ketobutyrate. Based on this

finding, it was suggested that pseudomonads could be used in combination with

appropriate doses of fertilizers for better plant growth and savings of fertilizers

(Shaharoona et al. 2008) as also observed by Kumari et al. (2009) and Maheshwari

et al. (2011). Such increase in cereal production following PSB such as

P. fluorescens 153, P. fluorescens 169, P. putida 4, and P. putida 108 application

has been attributed to both PSA of PSB and their ability to synthesize growth-

promoting substances (such as ACC deaminase and IAA-like products) in natural

soil ecosystem (Zabihi et al. 2011). Interestingly, P. putida 108 among the bacterial

cultures displayed enhanced P uptake (96 and 80 %) and grain yield (58 and 37 %)

in wheat under greenhouse and field conditions, respectively. Even though this

finding suggested that Pseudomonas sp. could serve as an alternative to expensive P
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application in wheat production system, better results can be achieved when a

compatible bioinoculant is added as mixture with 50 % (25 kg/ha P2O5) P fertili-

zation. In a recent follow-up study, Abbasi et al. (2011) isolated eight PGPR strains

and assessed their morphological and cultural characteristics, PSA, and their ability

to secrete IAA. Invariably all strains produced IAA (ranging from 5.5 to 31.0 mg/

ml), while only four of them showed P-solubilizing traits. Subsequently, strains

WPR-32, WPR-42, and WPR-51 grouped under PGPR category were used both as

single and co-culture along with two levels (50 and 100 kg N/ha) of N to evaluate

their effect against wheat under greenhouse conditions. As expected, application of

PGPR resulted in significant increase in plant height (25 %), shoot fresh weight

(45 %), and shoot dry weight (86 %), while it was 27, 102, and 76 %, increase in

root length, root fresh, and dry weight, respectively, over uninoculated plants. In

addition, the number of tillers per plant, 1,000-grain weight, and grain yield were

enhanced by 23, 48, and 59 %, respectively, over control. The nutrient (N and P)

uptake by plant organs like shoot was increased threefolds, while K uptake was

increased by 58 % following PGPR application. However, the growth, yields, and

nutrient uptake were increased even further when bacterial cultures were used

together with varying levels of N. Apart from the direct effect of PGPR on wheat

plants, the concentration of NO�3, N, and available P in soil also increased with

PGPR application. Moreover, of the varying treatments, mixed bacterial cultures

showed better efficiency than the individual ones suggesting that there is no reason

to doubt why application of PGPR with N fertilizer cannot increase N contents and

N uptake by plants. Also, the application of PGPR even with low fertilizer rates

could be a more viable option for achieving optimum benefits while reducing the

dependence on chemical inputs (Kumar et al. 2009). An interactive and positive

effect of PSB, N2 fixer, and AM fungi on plant vigor, nutrient uptake, and yield in

wheat plants was observed following composite application of P. striata
+A. chroococcum +G. fasciculatum. The available P contents in soil enhanced

significantly due to triple inoculation of A. chroococcum, P. striata, and

G. fasciculatum. The residual N content of soil, however, did not change apprecia-

bly even among the treatments. The density of A. chroococcum, PSB, percentage
root infection, and spore density of the AM fungus in inoculated treatments

increased at 80 days of wheat growth (Zaidi and Khan 2005).

Like the impact of biofertilizers on wheat production, there have also been

reports suggesting similar effects on other cereal crops such as rice and maize.

For example, Ebrahimi et al. (2014) observed maximum number of tillers, the

highest percentage of fertile tillers, the longest panicles (26.29 cm), and the largest

number of seeds per panicle when rice seeds were simultaneously inoculated with

bacterial species. With respect to seed yield, it was found that the use of a single

bacterial species (P. putida P. fluorescens) caused a greater increase in seed yield.

The two cultures when used together in the presence of 83 kg of mineral P showed

the largest positive effect and resulted in the highest seed yield. This was accom-

panied by the maximum %age of fertile tillers (94.24 %), long panicles (26.09 cm),

and a considerable 1,000-seed weight (22.8 g). Vahed et al. (2012) in a similar study

assessed the beneficial effects of PS bacteria on rice crop productivity in a field
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experiment at the Rice Research Institute of Iran. Results indicated that PSB and

PCF had a significant influence on grain yield, biological yield, and grain P uptake,

while there was no effect on the straw P uptake and plant heights. While comparing

the overall response, biofertilizer application enhanced the grain yield by 1–11 %,

while P uptakes by grains were increased by 6–8 % than control. It was concluded

from this study that the application of biofertilizer could stimulate growth and

consequently increased the grain yield of rice. Similarly, the inoculation of

Burkholderia vietnamiensis to rice cultivars in two pot and four field trials at

different locations in Vietnam showed an enhancement of 33, 57, 30, and 13 % in

shoot weight, root weight, leaf area, and number of tillers/hill, respectively, com-

pared to non-inoculated plants. In other study, strain of Rhodobacter capsulatus
significantly increased the plant dry weight, number of productive tillers, and grain

and straw yields of rice var. Giza 176, grown in pot treated with different levels of N

fertilizer compared to non-inoculated plants (Elbadry et al. 1999). The results of

this study concluded that N fertilizer could be saved up to 50 % while applying

bacterial fertilizers. Similarly, an increase of 41, 12, 11.2–20, and 18.7 % in root

weight, straw yield, grain yield, and total biomass, respectively, due to PGPR

inoculation over non-inoculated rice is reported (Mehnaz et al. 1998; Sherchand

2000). The liquid culture (for pot experiments) or carrier-based preparation (for

field trials) of three bacterial species, such as B. megaterium, B. subtilis, and
P. corrugata, isolated from temperate locations in the Indian Himalayan region

and exhibiting phosphate-solubilizing activity (PSA) in the order

P. corrugata>B. megaterium>B. subtilis, when tested, caused a dramatic

increase in overall performance of rice. While comparing the effect of three

cultures, B. subtilis had the most promising effect and increased the grain yield

by 1.7- and 1.6-fold in pot and field trials, respectively (Trivedi et al. 2007). In a

recent study, Rajapaksha et al. (2011) conducted experiments under both pot and

field environments to assess the substitutability of triple superphosphate (TSP) by a

P fertilizer mixture (PFM) involving TSP, RP, and PSB inoculants for wetland rice.

For these studies, 6 single and 2 dual inoculants were formulated with Enterobacter
gergoviae and 5 Bacillus species. In pot trials, the mixture of E. gergoviae and

B. mycoides and the sole application of B. subtilis enhanced yields by 32 and 25 %,

respectively, relative to single application of TSP. The results observed in pot trials

were validated under field environment where dual culture of E. gergoviae with

B. subtilis and E. gergoviae with B. pumilus augmented grain yield by 22–27 %

compared to TSP application alone (574 g�2). Overall, it was suggested that about

50 % of TSP could be saved when RP is applied with E. gergoviae, B. pumilus, and
B. subtilis, as seed inoculant for raising the productivity of rice both under pot and

field conditions.

Similar variable effects of PSB on other cereals used either alone or in combi-

nation with other chemical fertilizers have been reported (Panhwar et al. 2011;

Yazdani et al. 2011). For example, like wheat and cereals, there has also been a

substantial increase in the biomass of maize plants inoculated with fluorescent

Pseudomonas (Vyas and Gulati 2009) and S. marcescens (EB 67) and Pseudomo-
nas sp. (CDB 35) (Hameeda et al. 2008). In this experiment, strain EB 67 enhanced
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the dry matter accumulation by 99 %, while it was 94 % by strain CDB 35. Grain

yields of inoculated maize increased by 85 % and 64 %, following EB 67 and CDB

35 application, respectively. When applied as mixture with arbuscular mycorrhizal

(AM) fungi G. intraradices, the PSB Pseudomonas fluorescens had a positive

impact on plant growth, nutrient uptake, grain yield, and yield components in

maize plants. Composite inoculation of the two cultures significantly increased

grain yield, yield components, harvest index, grain N and P, soil available P, and

root colonization percentage under water stress conditions. However, some of the

assayed characteristics under well-watered conditions were nonsignificantly higher

in chemical fertilizer treatment compared to those observed for dual inoculation

treatments. However, the effect of sole application of P. fluorescens (Pf) was poor
relative to the composite application of AM fungus with PSB or single application

of AM fungi. The measured parameters of inoculated plants were in general higher

than uninoculated plants under water-deficit stress conditions. In addition, the

characteristics determined for co-inoculated plants grown under severe water-

stressed conditions were significantly lower than co-inoculated plants grown

under well-watered and moderate-stressed conditions. This finding suggested that

PSB can interact positively with other organism like AM fungi as observed in this

study and can be used to facilitate plant growth and P uptake by maize plants,

leading to plant tolerance improving under water-deficit stress conditions

(Ehteshami et al. 2007). In another study, Yazdani et al. (2009) investigated the

effect of PS bacteria such as A. coroocoocum, A. brasilense, P. putida, and B. lentus
on yield and growth components of Zea mays where they observed an increase in

row number, ear weight, grain number/year, grain yield, biological yield, and

harvest index relative to control.

8.5 Conclusion

Nitrogen and phosphorus are the two essential nutrients for plant growth and

development. The extensive use of chemical fertilizers to provide these nutrients

in agriculture is currently under debate due to environmental concern, and questions

are raised regarding the consumer’s health. Recent advancements in the field of

biofertilizers offer an opportunity to environmentally friendly and sustainable

agricultural practices to reduce dependence on chemical fertilizers and thereby

decrease adverse environmental effects. Phosphate-solubilizing bacteria in associ-

ation with N2 fixers and AM fungi can lead to increased legume growth through a

range of mechanisms which could be of great practical value in sustainable,

low-input agricultural cropping systems that rely on biological processes to main-

tain soil fertility and plant health. Although there are numerous reports highlighting

interactions among P-solubilizers, N2 fixers, and mycorrhizal fungi, the underlying

mechanisms behind these associations are in general not conclusive. Moreover, the

development of effective microbial inoculants for raising the productivity of

legumes remains a major scientific challenge. And hence, functional properties of
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interacting microbes together with the development of suitable microbial pairing

still require further experimental confirmation in order to achieve optimum benefits

of such natural resources. Future research should therefore strive hard toward an

improved understanding of the functional mechanisms behind such microbial

interactions, so that compatible organisms could be identified and applied as

effective inoculants within sustainable legume production systems.
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Erkovan HI, Güllap MK, Daşçi M, Koç A (2010) Effects of phosphorus fertilizer and phosphorus

solubilizing bacteria application on clover dominant meadow: i. hay yield and botanical

composition. Turk J Field Crops 15:12–17

FAO (1998) Guide to efficient plant nutrition management. FAO/AGL, Rome

FAO (2009) FAOSTAT online statistical service. Food and Agriculture Organization of the United

Nations (FAO), Rome, Italy. http://faostat.fao.org
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Chapter 9

Phosphate-Solubilizing Bacteria Improves

Nutrient Uptake in Aerobic Rice

Radziah Othman and Qurban Ali Panhwar

Abstract Phosphate-solubilizing bacteria (PSB) are frequently used in agriculture

as plant growth promoters because they provide soluble P to growing plants by

solubilizing complex soil inorganic phosphates like Al-P, Fe-P, and Ca-P. Several

PSB strains isolated from local aerobic rice are able to solubilize P from insoluble P

through production of organic acids, for example, oxalic, malic, succinic, and

propionic acids. Hence, the application of PSB plays a vital role in supplying P to

growing plants. The application of PSB strains in this study solubilized higher P

from the soil and significantly enhanced plant uptake in aerobic rice. Besides

possessing P-solubilizing activity, PSB has greater potential to produce phytohor-

mones, for example, indoleacetic acid, and enzymes like phosphatase and phytases.

The continuous supply of soluble P to soil P pool and phytohormones in the root

environment have resulted in the increased P uptake and consequently improved the

growth of aerobic rice. The impact of PSB on aerobic rice is highlighted in this

chapter.
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9.1 Introduction

Rice (Oryza sativa) is mostly cultivated under flooded conditions and consumes up

to 43 % of the world’s irrigation resources (Bouman et al. 2007). Water scarcity is

becoming a major problem for agriculture, and it is expected that by 2025, 15–20

million ha of irrigated rice will suffer some degree of water scarcity (Tuong and

Bouman 2003). The aerobic rice is a water-saving rice system in which potentially

high yielding and fertilizer-responsive adapted rice varieties are grown without

standing water. Aerobic rice requires the same amount of nutrients as flooded rice,

but there is a problem of phosphorus (P) availability, due to its rapid fixation/

immobilization with other soil elements (Goldstein 1986). And hence, P becomes

unavailable to plants, and it is estimated that about 70–90 % of externally applied

phosphatic fertilizers become fixed in soil (Holford 1997). To obviate this, micro-

organisms, especially phosphate-solubilizing bacteria (PSB) and arbuscular mycor-

rhizal (AM) fungi, have been found to have the ability to solubilize P in soil and

could reduce fertilizers inputs (Khan et al. 2007). As a result, PSB increases P

availability to plants and fulfills the metabolic demands of plant P (Panhwar

et al. 2011; Tao et al. 2008). A number of mechanisms involving organic acids

(solubilization) and enzyme production (mineralization), the release of H+, chela-

tion, and respiratory H2CO3 production are the documented evidence for P trans-

formation in soils (Khan et al. 2010). Of these, production of organic acids is the

main mechanism used to mineralize inorganic P (Khan et al. 2009; Rodrı́guez

et al. 2004). The organic forms of P in contrast are mineralized into inorganic P

by some of the enzymes, for example, phosphatase and phytase. Different levels of

microbial phosphatase activity have been observed in various types of soils

(Kucharski et al. 1996). In addition, enzymes perform a vital role in P release and

simultaneously improve crop yields (Wyszkowska and Wyszkowski 2010).

Phytases are known to hydrolyze phytates to a series of lower phosphate esters of

myoinositol and phosphate which in turn contributes hugely to plant nutrient cycle.

In tropical soils, poor availability of soluble P is a common problem because

most of the soil P remains as a fraction of Fe or Al-P. The cheap source of phosphate

rock (PR) is relatively less soluble; nevertheless, it has been observed that the

bioavailability of PR can be increased by applying PSB (Zapata and Axmann

1995). Here, PSB plays a significant role in solubilizing fixed soil P leading to

greater availability of P to plants and, concomitantly, the larger increase in crop

yields (Gull et al. 2004). Release of P by PSB from insoluble and fixed/adsorbed

forms is, therefore, an important aspect of P availability in soils. Hence, the use of

PSB as inoculants simultaneously increases P uptake by the plant and crop yields.
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9.2 Aerobic Rice

Aerobic rice requires the same amount of nutrients as flooded rice, but in the former

case, there is a problem of P availability, due to its fixation with other elements

(Goldstein 1986). In acidic soils (pH< 6.0), most crops suffer from P deficiency

due to the ability of soil P to form complexes with Al and Fe and become insoluble

under aerobic conditions (Sanchez and Uehara 1980). There is insufficient infor-

mation available on the cultivation of aerobic rice especially in terms of its nutrient

management. On the other hand, there are several reports where potential PSB has

been used for the management of P-deficient soils (Panhwar et al. 2012; Vazquez

et al. 2000). The use of these beneficial bacteria enhances the sustainable crop

production and reduces the dependency on costly imported phosphatic fertilizers.

Although several findings are available on the beneficial effects of PSB in many

upland crops, there is still inadequate information available on the use of PSB as

vital agents for P fertilizer management (especially phosphate rock) in aerobic rice.

Hence, the present study was focused on identifying and selecting some biologi-

cally efficient PSB strains for improving the uptake of P and simultaneously

enhancing the growth of aerobic rice.

9.2.1 Water Requirement of Aerobic Rice

Aerobic rice reduces total water use by 27–51 % and improves water productivity

by 32–88 % and can decrease water loss due to seepage, percolation, and evapo-

ration (Bouman et al. 2005). Previous studies in the Philippines and northern China

have shown that aerobic rice required 30–50 % less water as compared to flooded

systems with 20–30 % lower yields (4.7–5.3 tons ha�1) than Wetland rice (Bouman

et al. 2006). Due to this, the cultivation of aerobic rice is increasing very rapidly in

both temperate and tropical regions in China (Wang et al. 2002).

9.2.2 Nutrient Management in Aerobic Rice

Aerobic rice can be grown in non-flooding soils and can tolerate flooding, thus it is

ideally suited for both flood-prone and drought-prone areas. In aerobic rice, the

focus of researchers is more on water use and yields (Bouman et al. 2006); however,

little attention is paid on fertilizer response and nutrient use efficiency. The transfer

from flooding to non-flooding (aerobic) soil conditions may alter soil water status,

soil aeration, and nutrient availability (Timsina and Connor 2001). In addition, the

research findings suggest that N and P deficiency in aerobic crops is quite common

(Fageria and Breseghello 2001). For availability of P, the mechanism is different in

aerobic condition compared to anaerobic rice cultivation system, and P deficiency
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has been recognized as one of the main limiting factors for upland rice production

in many parts of the world (Sahrawat et al. 2001). This situation requires an

extensive research in order to manage the fertilizer application in aerobic rice,

especially phosphorus nutrient management.

9.2.2.1 Phosphorus

Phosphorus indeed is a primary essential nutrient for rice production. It stimulates

various physiological activities such as root and shoot growth, promotes vigorous

seedling growth, advances crop maturity, and plays a vital role in plant metabolism

such as cell division, breakdown of sugar, nutrient transport within the plant,

regulation of metabolic pathways, and other biochemical characteristics

(Theodorou and Plaxton 1993; Khan et al. 2009).

Phosphorus deficiency is a common problem in many soils; globally, about 5.7

billion ha of land has been found to contain too little available P for sustaining

optimal crop production. Phosphorus ion concentration in most of the soils ranges

from 0.1 to 10 μM, while P in soil should range from 1 to 5 μM for the optimal

growth of grasses and 5–60 μM for high-demand crops such as tomato and pea

(Hinsinger 2001). Malaysian soils are generally poor in P, and a substantial amount

of Malaysia’s income (RM 55 billion) was expected to be derived from agricultural

activities in 2010. Demand of phosphate fertilizer in the world has increased from

40.6 million tons in 2011 to 41.5 million tons in 2012, at a growth rate of 2.4 %. It is

expected to reach 45 million tons in 2016 at a growth rate of 2 % per year. Of the

overall increase in demand for a total of 3.5 million tons P2O5 between 2012 and

2016, 58 % would be in Asia, 24 % in America, 11 % in Europe, 4 % in Africa, and

3 % in Oceania. Among the Asian countries, about 25 % of growth in world demand

of P is expected in India, 14 % in China, 4 % in Pakistan, and 3 % in Indonesia,

Malaysia, and Bangladesh. West Asia accounts for 5 % of the increase in consump-

tion, of which Turkey, Iran, and Syria have the bulk of the share (FAO 2012).

9.3 Phosphate-Solubilizing Bacteria

Soil microorganisms have ability to convert insoluble phosphatic compounds into

soluble P form for uptake by the crops (Panhwar et al. 2011). There are many

rhizosphere microorganisms, which are able to dissolve insoluble P (Henri

et al. 2008; Hameeda et al. 2008). Microorganisms play an important role in

agriculture by supplying nutrients to the plants and reduce the demand of chemical

fertilizers (Çakmakçı et al. 2006). It has been found that the poorly soluble P is

usually dissolved by microorganisms, which can then be converted into soluble

forms by the process of acidification, chelation, and exchange reactions (Chung

et al. 2005). The quantity of PSB, involved in solubilization process, is more

abundant in the rhizosphere than non-rhizosphere soil and is metabolically more
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dynamic than from other sources (Vazquez et al. 2000). The PSB are ubiquitous,

varying in forms and composition. The population of PSB is affected by physical

and chemical properties of soils, soil organic matter content, P content, and cultural

activities (Kim et al. 1998). Higher populations of PSB are found in agricultural and

range land soils (Yahya and Azawi 1998). The PSB also plays a vital role in

combination with chemical fertilizers, for example, single super phosphate (SSP)

and PR, and application of microbial phosphatic fertilizers has been found to reduce

the synthetic P levels by 25–50 % in agricultural practices (Sundara et al. 2002).

Direct application of PR is mostly not effective for annual crops (Goenadi

et al. 2000), the availability of which however can be enhanced by applying some

acid-producing microorganisms: able to solubilize PR (Gyaneshwar et al. 2002).

Rodrı́guez and Fraga (1999) in a study suggested that certain PSB strains were able

to solubilize P; examples included were those of Pseudomonas putida (51 %),

P. fluorescens (29 %), and P. fluorescens (62 %) (Ghaderi et al. 2008). Pseudomo-
nas striata and Bacillus polymyxa solubilized 156 and 116 mg P l�1, respectively;

Pseudomonas fluorescens solubilized 100 mg P l�1 containing Ca3 (PO4)2,

92 mg P l�1 containing AlPO4, and 51 mg P l�1 containing FePO4 (Henri

et al. 2008).

9.3.1 Production of Organic Acids by Phosphate-Solubilizing
Bacteria

There are different mechanisms by which PSB can transform insoluble P into

soluble P forms. These include acidification, enzymatic dissolution of phosphates,

and ammonium assimilation. Generally, P solubilization is correlated with the

production of organic acids through oxidation process that happens on the outer

face of the cytoplasmic membrane and is related with the drop in pH of the medium

(Maliha et al. 2004; Pradhan and Sukla 2005). Bacteria and fungi can produce

organic acids and acidify their surroundings with the release of P ions from mineral

P by the substitution of H+ for Ca2+ (Goldstein 1994). The findings by Asea

et al. (1988) revealed that fixed P in acidic soils accumulated Fe or Al ions, and

there was no correlation found between pH and P solubilization. Hence, there might

be other alternative possibilities than organic acids for the insoluble inorganic P

solubilization, such as the release of H+ and production of chelating substances and

inorganic acids (Khan et al. 2007). Illmer and Schinner (1995) reported that the

production of organic acids by the bacterial cells is not the only reason for P

solubilization; therefore, acidification is not the only mechanism of P solubiliza-

tion, as the capability to decrease the pH in some cases did not correlate with the

solubilized mineral P. The chelating ability of the organic acids is also significant

(Kucey 1988). Altomare et al. (1999) has examined the ability of plant growth-

promoting and biocontrol fungus Trichoderma harzianum T-22 to solubilize P in

in vitro conditions including PR, whereas organic acids were not detected in culture
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filtrates, which revealed that the insoluble P might be solubilized by mechanisms

other than process of acidification. Soil inorganic P is mostly solubilized by

production of organic acids. Low-molecular-weight organic acids play multiple

roles in the soil processes, such as root nutrient acquisition, mineral weathering,

microbial chemotaxis, and metal detoxification (Jones et al. 2003). Phosphate-

solubilizing bacteria can release numerous organic acids including oxalic, citric,

butyric, malonic, lactic, succinic, malic, gluconic, acetic, glyconic, fumaric, adipic,

and 2-ketogluconic acid (Leyval and Berthelin 1989). Among the organic acids,

oxalic and malic acid amounts are more common than the others (Zeng et al. 2008).

Phosphate-solubilizing bacterial strains belonging to the genera Pseudomonas,
Bacillus, and Rhizobium are among the most powerful P solubilizers (Sharma

et al. 2013; Rodriguez et al. 1999). Some of the organic acids released by PSB

strains are listed in Table 9.1.

9.3.2 Phosphate Solubilization by Phosphate-Solubilizing
Bacteria

9.3.2.1 Solubilization of Al and Fe-bound Soil P

The solubilization of Fe and Al takes place through the release of protons by PSB,

reducing the adsorbing surface charge to make possible the sorption of negatively

charged P ions. Phosphate sorption also might be decreased with the release of protons

by acidification that increases H2PO4
� in comparison to HPO4

2� having higher

similarity to reactive soil surfaces (Whitelaw 2000). The different forms of P, like

Al-P and Fe-P, are mostly solubilized by carboxylic acids (Khan et al. 2007; Henri

et al. 2008) by the mineral P dissolution as an effect of anion exchange of PO4
3� or by

chelation of Al and Fe ions associated with P (Omar 1998). This is due to high affinity

of iron uptake system by root-colonizing pseudomonas which depends on the release

of Fe3+-chelating molecules like siderophores (Altomare et al. 1999). Furthermore, P

is replaced by carboxylic anions through ligand exchange from sorption complexes

Table 9.1 Production of organic acids by PSB grown in broth culture

PSB

strains

Oxalic acid

(mg l�1)

Malic acid

(mg l�1)

Succinic acid

(mg l�1)

Propionic acid

(mg l�1)

PSB1 0.052 0.042 0.150 0.031

PSB6 0.020 0.043 0.125 0.019

PSB9 0.025 0.070 0.245 0.011

PSB10 0.010 0.062 0.175 0.009

PSB14 0.008 0.025 0.205 0.008

PSB15 0.008 0.026 0.172 0.020

PSB16 0.011 0.050 0.250 0.028

Modified from Panhwar et al. (2012)

PSB phosphate-solubilizing bacteria
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(Whitelaw 2000) and chelates Fe and Al ions with phosphate, and after transforma-

tion, phosphates become available for plant uptake. Different carboxylic anion lowers

the P desorption potential with decrease in the stability constants of Fe- or Al-organic

acid complexes (log KAl or log KFe) in the order: citrate> oxalate>malonate/

malate> tartrate> lactate> gluconate> acetate> formiate (Ryan et al. 2001).

9.3.2.2 Solubilization of Ca-Bound Soil P by Phosphate-Solubilizing

Bacteria

At high pH, soil P forms a complex with Ca and remains unavailable to plants. In

the alkaline soil conditions, phosphatic fertilizers and its metabolites are fixed as

calcium phosphates. Rock phosphate in soil is insoluble and can become soluble

following the release of inorganic P to maintain plant growth (Goldstein 2000).

Calcium phosphate solubilization occurs through the secretion of organic acids by

microbes (Deubel and Merbach 2005), and lowering of rhizosphere pH (He and Zhu

1988), that break down the bound forms of P like Ca3 (PO4)2; however, the

buffering capacity of the medium decreases the effectiveness of PSB in releasing

P from tricalcium phosphates (Stephen and Jisha 2009). Thus, any microorganism

that acidifies its external medium will result in some level of PS activity. In majority

of the soils, proton substitution reactions are determined by microbial production of

organic acids, which is shown by the following equation:

Ca2þ
� �

m
PO4

3�� �
n
þ HAð Þ ¼ Hþð Þ PO4

3�� �þ Ca2þ
� �

A�ð Þ

There is no stoichiometry in the equation above because of the complexity of

Ca-P chemistry and the multiplicity of microbially produced organic acids with

differing numbers of dissociable protons (Goldstein 1986).

9.3.2.3 Phosphate Solubilization from Phosphate Rock

Various bacterial species have been reported to solubilize insoluble inorganic P

compounds, like TCP, DCP, hydroxyapatite, and PR (Goldstein 1986). Pseudomo-
nas, Bacillus, Rhizobium, Burkholderia, Achromobacter, Agrobacterium, Micro-
coccus, Aerobacter, Flavobacterium, and Erwinia are the most common genera

which have the ability to solubilize P. For inorganic P solubilization by PSB, there

is a relationship between bacterial growth, supernatant acidification, and P solubi-

lization from Ca3 (PO4)2. In vitro study conducted to determine the P solubilization

by PSB isolates using different levels of organic acids demonstrated a significant

variation in the organic acid secretion by microbes. Of the organic acids, oxalic acid

at 20 mM was significantly better than others (Table 9.2).
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Significant and constant quantities of organic acids might be detected in the soil

solution (Shen et al. 1996). However, the amount of organic acids was found to be

very low in the soil solution, usually from 1 to 50 μM (Strobel 2001). In other

investigation, low amounts of residual organic acids were found in the soil.

However, organic acid concentration in soil is not stable and it can vary with the

passage of time (Table 9.3). Similar findings of Jones (1998) and Strobel (2001)

showed that the organic acid concentration in soil solution would be different at

different space and time.

9.3.2.4 Ammonium Assimilation

Plant supply of nitrogen might have a computable consequence on pH change

because of the H+ release from plant roots through ammonium assimilation

(NH4
+). In the plants that rely on NH4

+ rather than NO3
� to reduce pH, the cation

uptake ratio will be increased as compared to the anions (Gahoonia et al. 1992).

Microbial excretion of H+ is also similar to plants under the assimilation of cations,

mainly associated to N source. It is well understood that microbes H+ are exerted in

exchange for NH4
+ (Asea et al. 1988), and it is reported that high P is solubilized

due to the NH+
4 rather than NO3

� nitrogen (Whitelaw et al. 1999). Furthermore,

among N sources, ammonium sulfate is known to support high P solubilization for

different bacterial species, Bacillus circulans, B. brevis, and B. coagulans (Vora
and Shelat 1998).

9.3.2.5 Organic Phosphate Solubilization

In most soils, the organic forms of P are 30–50 %, while in other soils they may be

as low as 5 % and as high as 95 % (Paul and Clark 1989). Organic P in the soil is

mostly present in the form of inositol phosphate (soil phytate). An organic form is

the most stable form in the soil and accounts for up to 50 % of the total organic P. It

is synthesized mostly in soil by microorganisms and by plants (Harley and Smith

1983). Phosphomonoesters, phosphodiesters including phospholipids and nucleic

acids, and phosphotriesters are the other organic P compounds in soil. Organic P

Table 9.2 Effect of application of organic acids on P solubilization (mg kg�1) in soil

Dose of organic acids applied (mM)

P solubilization in PSB

non-inoculated treatments

P solubilization in PSB

inoculated treatments

Oxalic acid Malic acid Oxalic acid Malic acid

0 18.80 18.80 22.55 22.55

10 21.50 19.12 27.23 22.77

20 24.57 20.35 28.37 21.57

30 23.55 19.70 26.15 19.55

Source: modified from Panhwar et al. (2013)

PSB phosphate-solubilizing bacteria
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compounds degradability mostly depends on the physicochemical and biochemical

properties of their molecules, e.g., nucleic acids, phospholipids, and sugar phos-

phates are easy to break down, but phytic acid, polyphosphates, and phosphonates

decay more slowly (McGrath et al. 1998). Alkaline and acid phosphatases use

organic phosphate as a substrate to change it into inorganic form (Beech

et al. 2001). The major mechanism for mineralization of soil organic P is the

production of acid phosphatases. Phosphate can be released from organic com-

pounds in soil by three different enzymes. Acid phosphatases and phytases perform

major role for the P solubilization due to the presence of their substrates in soil.

9.3.2.6 Enzymatic Dissolution of Phosphates

Organic P compounds in soil are mineralized by phosphatases, phytases,

phosphonatases, and C-P lyases. The microbial-released phosphatases are an exten-

sively distributed exoenzyme and play vital roles in mineralization and dissolution

of organic P compounds in the rhizosphere (Rodriguez et al. 2006). Phosphate-

solubilizing bacterial strains have the ability to produce phytohormones and phos-

phatase enzymes and make it available to plants (Ponmurugan and Gopi 2006;

Relwani et al. 2008; Aseri et al. 2009). While plants do not take up P in the

insoluble form, it can become soluble by acid and alkaline phosphatase. Phospha-

tase is an enzyme which eliminates P from its substrate by hydrolyzing phosphoric

acid monoesters into a P ion and a molecule with a free hydroxyl group. The root

phosphatase activities can be helpful to the plants for their greater consumption of

soil organic P (Asmar et al. 1995). Different PSB, namely, Sinorhizobium
sp. AS017 and Sinorhizobium sp. AS016, have shown maximum activity of acid

phosphatase. A corn experiment by Pantujit and Pongsilp (2010) concluded that

PSE008 had maximum alkaline phosphatase activity. Besides this, PSB increased

plant dry weight and P content as compared to control in corn crop. The majority of

the microorganisms in soil contain phytase (myoinositol hexaphosphate

phosphohydrolase) that can hydrolyze sodium phytate, resulting in inorganic P

(Greaves et al. 1963). There are many bacterial strains such as Escherichia coli,
B. subtilis, B. amyloliquefaciens, and Klebsiella spp.; yeasts like, Schwanniomyces
castellii, S. occidentalis, Hansenula polymorpha, and Rhodotorula gracilis; and

Table 9.3 Organic acid recoveries after 40 days of application in aerobic rice soil

Dose of organic acids applied (mM)

Recovery (%) in PSB

non-inoculated treatments

Recovery (%) in PSB

inoculated treatments

Oxalic acid Malic acid Oxalic acid Malic acid

0 0 0 0 0

10 6.0 2.2 14.4 4.5

20 3.8 2.4 7.7 3.8

30 3.7 1.6 5.7 2.7

Modified from Panhwar et al. (2013)

PSB phosphate-solubilizing bacteria, mM millimole
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fungi such as Aspergillus niger and A. ficuum species being used for the production

of microbial phytases (Pandey et al. 2001). Some PSB strains capable of producing

phosphatase and phytase are listed in Table 9.4.

Enzyme activities increase due to the inoculation of PSB. There were two

enzymes, such as phosphatase and phytase, which were found in the roots of aerobic

rice. The PSB inoculation produced higher values of both enzymes as compared to

non-inoculated plants. The highest phosphatase (10.68 μg p-NP g�1 root dry

wt ha�1) activity (Fig. 9.1) and phytase (25.71 U mg�1) activity (Fig. 9.2) were

found following the application of mixtures of PSB, PR, and oxalic acid. In this

study, it was found that the inoculated plants had significantly higher amounts of

phosphatase enzyme. It is known that this enzyme excreted from roots can hydro-

lyze a wide range of organic P compounds in soil and release Pi for plant uptake

(George et al. 2002). Therefore, increased Pi pool confirmed the role of PSB in

solubilizing P from organic substances.

9.4 Effect of PSB on Nutrient Uptake and Growth

of Aerobic Rice

9.4.1 Phosphorus Uptake by Plants Inoculated with PSB

A number of bacterial species including PSB associated with the plants’ rhizo-

sphere are able to exert a beneficial effect on plants growth. Therefore, their use as

biofertilizers or as biocontrol agents in agricultural practices has been the focus of

numerous researchers (Glick 1995). This group of bacteria has often been termed as

“plant growth-promoting rhizobacteria” (PGPR), and among them are strains

belonging to the genera Pseudomonas, Azospirillum, Burkholderia, Bacillus,
Enterobacter, Rhizobium, Erwinia, Serratia, Alcaligenes, Arthrobacter,
Acinetobacter, and Flavobacterium (Sharma et al. 2013; Panhwar et al. 2012)

which facilitate the growth of plants. Inoculation of PSB and the application of

oxalic acid increased P uptake in aerobic rice (Panhwar et al. 2013). The lower

Table 9.4 Enzyme activity by phosphate-solubilizing bacteria

PSB strains Phosphatase activity (EU ml�1) Phytase activity (EU ml�1)

PSB1 200 82

PSB6 356 86

PSB9 245 106

PSB10 180 125

PSB14 150 78

PSB15 280 120

PSB16 417 142

Modified from Panhwar et al. (2012)

EU enzyme unit

216 R. Othman and Q.A. Panhwar



specific activity (32P) in the aerobic rice tissue showed a positive effect of PSB

inoculation or OA application to make the bioavailable P from PR and native soil

sources (Table 9.5). This result is in concurrence with the earlier findings of Bolan

(1991), who found lower values of 32P in the inoculated treatments. The PSB

treatments showed effectiveness at releasing 31P from sparingly soluble sources

and the total amount of P derived either from the available (labeled) soil fraction

(Pdfl) or from the added PR (PdfCIPR) in plants. In fact, PSB released P from the

low-available P sources. The inoculation of PSB with CIPR (expand) and OA

showed higher values in plant P uptake and the amount of P derived from the

unavailable sources. Our results are in agreement with the findings of Toro

et al. (1997), who also found that plant total P and 32P activity were lowered due
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to the dilution effects from the P solubilized by the PSB. Thus, this decreased

the 32P activity, as compared to the control, where no P was solubilized from the

added PR.

9.4.2 Effect of PSB on Grain Yield

A synergistic effect on aerobic rice in this study was observed which enhanced the P

uptake and plant biomass production. In a similar study, Barea et al. (2003) also

found an identical trend in plants P uptake following inoculation of PSB while

P. putida inoculation enhanced the growth of canola (Lifshitz et al. 1987). Since the
production of IAA by PSB has a positive effect on root architecture (Naher

et al. 2009), therefore, an extensive root system improves the nutrient uptake

from the surroundings leading to the higher plant biomass production. The IAA

exudation can further increase the carbon fixation through increased nutrient

uptake. Moreover, inoculation with PSB, for example, Azospirillum lipoferum
34H, has reported to improve rice seeds P ion content and consequently improved

root length and fresh and dry shoot biomass (Murty and Ladha 1988). Concurrently,

increases in P uptake and crop yields have been observed after PSB inoculation

with Bacillus sp. (Panhwar et al. 2013), Pseudomonads, and Bacilli (Sharma

et al. 2013). Inoculation of PSB enhanced P uptake and simultaneously increased

the yield of aerobic rice. Plant P uptake, P use efficiency (PUE %), total biomass,

and total protein content increased with the inoculation of PSB with CIPR and

OA. In addition, PSB inoculation and the application of PR and OA significantly

increased the grain yield and plant biomass of aerobic rice (Table 9.6). The highest

grain yield and plant biomass were determined when PSB was inoculated with

CIPR and OA and was statistically at par with those of PSB and PR application

(Panhwar et al. 2013).

9.5 Conclusion

The phosphate-solubilizing bacteria have generally been found effective for

enhancing the bioavailable P by several mechanisms, such as production of organic

acids, ammonium assimilation, or enzyme production. In the acidic soil, P is mostly

bound with Fe/Al and in alkaline soil with Ca. Moreover, phosphate-solubilizing

bacteria are widely distributed in different soil-plant ecosystem and perform a

major role in soil organic and inorganic P solubilization. The inoculation of PSB

solubilization/mineralization endowed with phytohormone-producing ability is

likely to have a synergistic and productive effect, which might increase P uptake,

growth and yield of various crops including aerobic rice.
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Chapter 10

Role of Phosphate-Solubilizing Microbes

in the Management of Plant Diseases

Almas Zaidi, Ees Ahmad, and Md. Saghir Khan

Abstract Soilborne phytopathogens are one of the major problems in sustainable

crop production world over. To alleviate the damaging impact of pathogens on crop

yields, huge quantities of toxic chemicals especially pesticides are used in modern

agronomic practices, which, however, are extremely destructive to the environ-

ment. The non-desirability of applying huge quantities of pesticides to soil due in

part to residue problems, emergence of resistance among soil phytopathogens, and

lack of pathogen-resistant crop varieties has forced researchers to find solutions to

the increasing pesticides problems. To this end, biological control measures

consisting of microbial preparations are considered a promising option to the use

of expensive and environment disruptive pesticides. Microorganisms including

plant growth-promoting rhizobacteria (PGPR) in general have been found to syn-

thesize a wide array of metabolites with significant fungicidal and bactericidal

capabilities. The use of phosphate-solubilizing (PS) microorganisms among

PGPR has produced both direct and indirect effects on growth and development

of plants. The PS microbes endowed with biocontrol activity manage the pathogens

by one or simultaneous mechanisms of antibiosis, lysis, competition, and myco-

parasitism and prevent the yield losses. Even though the literature on the physio-

logical role of PS microorganisms in crop enhancement via P supply is adequately

available, the information on the ability of such organisms in the control of

phytopathogens is scarce. Here, different mechanisms utilized by PS organisms

for plant disease suppression are discussed. It is envisioned that the PS bacteria in

the near future are expected to reduce, if not completely eliminate, the use of

pesticides in insect-pests management strategies.
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enzymes
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10.1 Introduction

Among various crop declining factors, the phytopathogens capable of destructing

plant vitality are major and chronic threat to the sustainability and food production

worldwide. On global basis, plant diseases caused by more than 60 pathogens

account for about 30 % loss of crop yields amounting to the tune of about

416 million US dollars (Nehl et al. 1996). Plant diseases, therefore, need to be

controlled to preserve the quality and abundance of food, feed, and fiber produced

by growers around the world. In order to mitigate the damage caused by phyto-

pathogens and, hence, to achieve optimum crop yields, various approaches are

adopted. For example, apart from good agronomic and horticultural practices,

growers very frequently and excessively use agrochemicals in high input modern

agriculture systems to manage phytopathogens. The long-term use and misuse of

synthetic chemicals have, however, resulted in severe deleterious impacts on

ecological balance of soil, associated beneficial soil microflora, soil fertility, crop

production, and emergence of resistance among pathogens (De Weger et al. 1995;

Gerhardson 2002). In addition, the ever-increasing cost of pesticides has also been

an acutely worrying factor among progressive crop producers world over. Consid-

ering such challenges, scientists indeed are desperate to find environmentally

friendly alternatives to the extensive use of toxic pesticides, for combating crop

diseases. To this end, the use of valuable microbes especially those capable of

suppressing/inhibiting the pathogen populations, often called “biocontrol agents” or

biological control agents (BCA), is considered one of the most suitable choices for a

meaningful and secure crop-management practices (Welbaum et al. 2004; Fravel

2005; Ongena and Jacques 2008; Hyakumachi 2013). The terms “biological con-

trol” and its abbreviated synonym “biocontrol” have been used in different fields of

biology, most notably among entomology and plant pathology. In entomology, it

involves the use of live predatory insects, entomopathogenic nematodes, or micro-

bial pathogens to suppress populations of different pest insects. In plant pathology,

the term applies to the use of microbial antagonists to suppress diseases and the use

of host-specific pathogens to control weed populations. In both fields, the organism

that suppresses the pest or pathogen is referred to as the biological control agent
(BCA). Also, the term biological control involves the use of natural products

extracted or fermented from various sources (Pal and Gardener 2006). Undeniably,

many soilborne microorganisms have been found useful and are perpetually

included purposely into differing production systems as a part of integrated pest

and productivity management practices (Avis et al. 2008; Singh et al. 2010;

Tallapragada and Gudimi 2011; Guiñazú et al. 2013). Among the variously distrib-

uted microbial communities, the PGPR (Kloepper and Schroth 1978; Bashan and

Holguin 1998) facilitate the growth of plants (Bhattacharya and Jha 2012) both

directly by way of supplying N (nitrogen fixation) and P (phosphate solubilization)

to plants (Khan et al. 2009) or by providing other growth promoting substances like

IAA (Ahmad et al. 2013; Oves et al. 2013) and trace elements and indirectly by

diminishing the activity of plant pathogens (biocontrol) (Mamaghani et al. 2009;

226 A. Zaidi et al.



Ingle and Deshmukh 2010; Yaqub and Shahazad 2011; Parikh and Jha 2012;

Geethapriya and Krishnaveni 2012) by virtue of synthesizing siderophores

(Ahmad et al. 2013; Walia et al. 2013), antibiotics (Compant et al. 2005), lytic

enzymes (Postma et al. 2010; Kumar et al. 2012) or cyanogenic compounds

(Hallman et al. 1997; Sturz et al. 2000; Welbaum et al. 2004; Ahmad et al. 2013),

etc. In general, the symbiotic PGPR, for example, rhizobia (Khan et al. 2002), free-

living PGPR (Khan et al. 2006), and endophytic PGPR, have been reported to

continuously promote plant growth by restricting/inhibiting the populations of

disease-causing phytopathogens (Sturz et al. 2000; Lodewyckx et al. 2002;

Dobbelaere et al. 2003). Experimental evidence that is consistent with the involve-

ment of PS biocontrol bacteria in the suppression of fungal pathogen causing plant

disease comes from several different studies. For example, P-solubilizing fluores-

cent pseudomonads demonstrated a profound antifungal activity against R. solani
and effectively protected the pepper plants against damping off under in vivo

conditions through the release of disease inhibiting lytic enzymes (chitinase and

β-1,3-glucanase), siderophores, and HCN (Rajkumar et al. 2008). On the other

hand, one study observed that ACC deaminase-producing P-solubilizing strain

BPR7 of Bacillus sp. recovered from Indian Himalayan region was most efficient

at protecting plants against fungal pathogens like M. phaseolina, Fusarium
oxysporum, F. solani, Sclerotinia sclerotiorum, R. solani, and Colletotrichum
sp. (Kumar et al. 2013).

10.2 Examples of Plant Pathogenic Bacteria, Fungi,

and Nematode Causing Plant Diseases

Plant diseases are reported to cause economical loss of billions of dollars by

reducing crop yields and result in poorer quality produce. When pesticides are

used to control phytopathogens, it contaminates food grains which later on become

nonconsumable for humans (Guo et al. 2013). Taking into account the magnitude of

yield losses by the phytopathogens, a survey was conducted to identify the most

prominent fungi, bacteria, and nematodes able to cause diseases onto plants, and the

results of this finding were published in Molecular Plant Pathology Journal. The

top 10 fungi (Ralph et al. 2012), bacteria (Mansfiels et al. 2012), and nematodes

(Jones et al. (2013) inflicting heavy losses to crops are listed in Table 10.1. Bacteria

which were very close to top ten listed bacteria but did not find place in top ten club

included Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomo-
nas savastanoi, and Candidatus liberibacter asiaticus.
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10.3 Importance of PSM in the Management of Plant

Diseases: An Overview

The production and release of certain secondary metabolites by PSM in the

rhizosphere (Khan et al. 2013) deleteriously affects the soilborne phytopathogens

(Vassilev et al. 2006; Postma et al. 2010) (Fig. 10.1), and some of the pathogen-

suppressing metabolites, for example, siderophores (Ahmad et al. 2013), antibiotics

(de Werra et al. 2009), and lytic enzymes (Kumar et al. 2013), produced by PSM

in vitro are listed in Table 10.2.

In a most recent study, Son et al. (2014) evaluated the effects of PS bacteria,

identified by 16S rDNA sequence analysis as Kluyvera cryocrescens KUDC1771
and Brevibacterium iodinum KUDC1716, on growth promotion of pepper and

antagonistic activity against a gray leaf spot disease pathogen, Stemphylium
lycopersici. The selected PS bacteria enhanced the growth of K. cryocrescens
KUDC1771 inoculated plants. Of these, B. iodinum KUDC1716 significantly

decreased the severity of gray leaf spot disease and concurrently enhanced the

plant health. Also, KUDC1716 strain of B. iodinum considerably increased the

expression of pathogenesis-related (PR) protein genes including CaPR4 and

CaChi2 in the absence of pathogen suggesting that B. iodinum could induce defense

response against S. lycopersici and, hence, it may be used as a potential biological

control agent. Similarly, PS bacteria, Janibacter, Pseudomonas, and Bacillus iso-
lated from Uruguay, Chile, and Argentina produced siderophores and exopolysac-

charides (EPS), hydrolyzed starch, and demonstrated biological control activity

Control Control

Control

Control

a

c

b

d

Fig. 10.1 Antifungal activity expression of certain unidentified PS organisms: (a) The volatile

compounds inhibiting the growth of phytopathogenic fungi in a dual plate assay, (b) the metabolite

produced by bacteria inhibiting the growth of phytopathogenic fungi, (c) the antifungal metabolite

that inhibit the growth of fungi in a well-diffusion method, and (d) cyanogenic compound (HCN)

production by PS bacterial strain
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inhibiting the growth ofMacrophomina phaseolina and Rhizoctonia spp. (Guiñazú
et al. 2013).

10.3.1 Mechanism of Biocontrol by P-Solubilizing Bacteria

Some of the common modes of disease suppression adopted by the PGPR include

(1) competition for an ecological niche or a substrate, (2) the production of

inhibitory allelochemicals, and (3) induction of systemic resistance (ISR) in host

plants to a broad spectrum of pathogens (Haas et al. 2000, 2002; Lugtenberg

et al. 2001; Ryu et al. 2004a). A possible mode of disease management using

P-solubilizing microorganism is presented in Fig. 10.2.

10.3.1.1 Rhizosphere Competence and Colonization

The variable response of PS microbes as a biocontrol agent in plant protection

strategies against phytopathogens under filed trials has largely contributed to the

failure of developing microbial biocontrol agents at commercial levels. The com-

monly differing performance of such microbes has been ascribed mainly to the poor

rhizosphere competence (Van Wees et al. 1997; Schroth and Hancock 1981; de

Weert and Bloemberg 2006) among other factors (McLean et al. 2005; Ghirardi

et al. 2012). Rhizosphere competence of any microbial cell is a prerequisite for the

expression of their beneficial effects on plant growth and health. The rhizosphere

Fig. 10.2 Possible mode of disease management using P-solubilizing microorganism
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competence of biocontrol agents involves the efficient root colonization coupled

with the ability to survive and proliferate all along the growing plant roots and in the

presence of soil microflora over a considerable time period (Weller 1988; Whipps

1997; Lugtenberg and Dekkers 1999; Compant et al. 2005). Since rhizosphere

competence plays a central role in deciding the fate of success of biocontrol agents

under field soil, it is equally important to better understand the impact of some soil

variables on such biocontrol agents also. In the rhizospheres, the plant exudates

(photosynthates) discharged by many plant genotypes are the primary source of

nutrients and, therefore, distinctly attract a huge number of diverse microflora

including both PS organisms (acting as biocontrol agents) and phytopathogens

(Van Overbeek and Van Elsas 1995). However, due to restricted availability of

nutrients in and around the extremely vital rhizosphere, a furious competition

occurs among soil microbiota resulting either in colonization or in exclusion

(weak colonizers) of microbial populations from the rhizospheres. Such competi-

tive factors which drives the microbial populations in soils could be the flagella of

the organisms (which facilitates motility) and the chemotactic substances (Turnbull

et al. 2001; Uroz et al. 2003; Dennis et al. 2010) like organic acids, amino acids, and

specific sugars, exuded from the growing plants (Badri and Vivanco 2009). As an

example, root exudates have been found to positively mediate the interaction of

plants, for example, cucumber root and rhizosphere bacteria such as Bacillus
amyloliquefaciens SQR9, and ultimately enhanced its root colonization (Liu

et al. 2014). Some of these chemicals may also have the antimicrobial activity

and, hence, give an edge to the secreting organisms over other soil dwellers. The

quantity and composition of chemoattractants and antimicrobials, however, differ

from plants to plants and are influenced largely by environmental factors (Bais

et al. 2004). Among the various cellular components, the bacterial lipopolysaccha-

ride (LPS), for example, is reported to influence the root colonization (Duijff

et al. 2008). It has also recently been shown that the rapid bacterial growth rate

and their ability to synthesize vitamin B1 and to discharge NADH dehydrogenases

contribute immensely to plant colonization by rhizobacteria (Simons et al. 1996;

Camacho et al. 2002). Of the total 43 isolates of PS bacteria recovered from

37 rhizospheric soils of tomato, growing in the Karnataka regions of India, only

33 isolates were found P solubilizer and colonized the roots of tomato, increased the

biological and chemical properties of plants, and improved the quality of seeds

under laboratory conditions relative to control. Some of these PS bacteria also

protected plants from fusarium wilt infection, but none of them had any antagonis-

tic activity against early blight (Hariprasad and Niranjana 2009).

10.3.1.2 Allelochemicals Mediated Biocontrol Activity

The allelochemicals including iron-chelating siderophores, antibiotics, biocidal

volatiles, lytic enzymes, and detoxification enzymes (Glick 2012; Saraf

et al. 2014) synthesized by the P-solubilizers and PGPR and used in the manage-

ment of plant diseases are listed in Table 10.3. A few of these metabolites released
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by PS bacteria and their consequential impact on plant pathogens are discussed

briefly in the following section.

Role of Siderophores in Disease Suppression

Iron is one of the most important nutrients for both eukaryotes (Sayyed et al. 2007a,

b) and nearly all prokaryotes (Kaplan and Kaplan 2009) which play fundamental

roles in both iron metabolism and virulence of most fungi. Some of the crucial

functions of iron in different metabolism include (1) transport, storage, and activa-

tion of molecular oxygen and amino acid syntheses, (2) respiration, (3) DNA

biosynthesis, (4) nitrogen fixation, (5) reduction of ribonucleotides and dinitrogen,

and (6) activation and decomposition of peroxides and electron transport (Duhan

et al. 1998; Faraldo-Gomez and Sansom 2003; Katiyar and Goel 2004; Miethke and

Marahiel 2007; Sandy and Butler 2009). However, when iron concentration in the

environment is reduced, the growth of organisms requiring such element is

inhibited. Under iron-starved conditions, numerous prokaryotes including bacteria

such as Chryseobacterium sp. (Radzki et al. 2013), Pseudomonas sp. (Babana

et al. 2013), Pantoea agglomerans and Burkholderia anthina (Walpola and Yoon

2013), and P. fluorescens (Parani and Saha 2012); fungi such as A. fumigatus and
A. nidulans (Gründlinger et al. 2013); and actinomycetes Streptomycetes spp. (Das
et al. 2007), however, synthesize a wide range of siderophores (a Greek phrase for

“iron bearer”), a relatively low molecular weight (below 2 kDa), ferric ion-specific

chelating agents (Neilands 1995; Budzikiewicz et al. 2010) in order to solubilize,

capture, and transport inorganic iron to the cell (Carrillo-Castaneda et al. 2005;

Sandy and Butler 2009). Some of the common siderophores produced by many

fungi include ferrichromes by Aspergillus spp. (Charlang et al. 1981), Suillus
variegatus (Wallander and Wickman 1999), and Microsporum spp. (Bentley

et al. 2008); coprogens by Fusarium dimerum (Van der Helm and Winkelmann

1994) and Epicoccum purpurascens (Frederick et al. 1981); and fusigen by Fusar-
ium spp. (Van der Helm and Winkelmann 1994) and Histoplasma capsulatum (Burt

1982). Siderophores produced by many organisms play some vital roles, for

example, it functions as plant growth promoters (Yadav et al. 2011; Gamit and

Tank 2014), biocontrol agents (Arora et al. 2001; Schenk et al. 2012), and biore-

mediation agents (Wang et al. 2011; Ishimaru et al. 2012), in addition to their

valuable role in soil mineral weathering (Reichard et al. 2005; Buss et al. 2007;

Shirvani and Nourbakhsh 2010). Realizing these properties, siderophore-positive

strains have been exploited in the management of plant diseases (Kloepper

et al. 1980; Wong et al. 1996; Sindhu et al. 1997; Sritharan 2000; Verma

et al. 2011). The siderophoregenic rhizobacteria inhabiting soil/rhizospheres pro-

tect the plants from damage by preventing the iron acquisition by phytopathogens

(Lemanceau and Albouvette 1993; Estrella and Chet 1998; Bloemberg and

Lugtenberg 2001; Johri et al. 2003). Apart from iron, siderophores also form

complex with heavy metals such as Cd, Pb, Ni, As (III, V), Al, Zn, Cu, Co, and

Sr (Nair et al. 2006; Sayyed and Chincholkar 2010). Therefore, iron-deficient
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situation in turn leads to reduction in the proliferation and root colonization by

phytopathogens. The siderophore-mediated mechanism of biocontrol is considered

extremely effective because PS bacteria/PGPR-produced siderophores have a much

greater affinity for iron than do the fungal pathogens (Schippers et al. 1987). In the

presence of siderophores, the fungal pathogens, therefore, become unable to pro-

liferate in the root rhizospheres of the host plants due largely to the unavailability of

iron (O’Sullivan and O’Gara 1992). While employing this strategy of biocontrol,

the siderophore-secreting PS strains successfully out-compete fungal pathogens for

available iron. In contrast, the growth of plants is generally not affected even by the

reduction in rhizosphere iron concentration which results from the siderophores

released by the biocontrol agents because plants in general can grow at much lower

iron concentrations than most microorganisms. Also, many plants can bind, take up,

and then utilize the iron siderophore complex (Bar-Ness et al. 1991; Wang

et al. 1993). There are several scientific evidences which confirm the role of

siderophores in the prevention of pathogen infestation (Vandenbergh and Gonzalez

1984; Sulochana et al. 2013). For example, of the 41 bacterial isolates collected

from rhizosphere soil, 12 exhibited a maximum antagonistic activity in dual culture

assay. These 12 bacterial cultures were further screened for disease suppression on

red pepper plants in both natural and greenhouse conditions. All the antagonists

showed varying levels of antagonism, whereas the isolates R33 and R13 exhibited

the maximum (86.8 % and 71 %) ability to reduce the disease severity under in vivo

conditions. Based on the 16S rDNA sequencing, the most effective isolate was

identified as Bacillus subtilis. Further, the bacteria inoculated red pepper plants had
longer and thicker roots and shoots, while there was great reduction in the severity

of diseases which was possibly due to the release of siderophores, cyanogenic

compounds, and hydrolytic enzymes secreted by the test bacteria (Lee

et al. 2008). In a follow-up study, B. cepacia XXVI when used as antagonist in

Petri-dish bioassay test inhibited massively the population of Colletotrichum
gloeosporioides. The halo formation on CAS agar plates indicating growth inhibi-

tion of the pathogen was due to hydroxamate siderophore (deferoxamine mesylate

salt-equivalent) production by strain XXVI. Interestingly, even the lowest concen-

tration (0.64 μg ml�1) of siderophore resulted in more than 91 % inhibition of the

pathogens and the biocontrol activity of the test bacterium against

C. gloeosporioides ATCC MYA 456 correlated directly with the siderophore

production by B. cepacia XXVI. The growth of other five strains of

C. gloeosporioides, isolated from mango “Ataulfo” orchards located in the munic-

ipality of Chahuites, State of Oaxaca in Mexico, was also inhibited when tested

against B. cepacia XXVI. This finding, therefore, suggested that B. cepacia with

siderophore-producing ability could be utilized as prospective microbial agent

controlling the C. gloeosporioides infection. The use of such biocontrol materials

is likely to reduce the environmental hazards which otherwise could be caused by

the current practices of applying pesticides to control such diseases (Santos-

Villalobos et al. 2012). Similarly, both siderophore rich-culture broth and cell-

free supernatant of Alcaligenes sp. and Pseudomonas aeruginosa RZS3 in other

investigation have shown growth inhibition of phytopathogenic fungi, namely,
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A. niger, A. flavus, F. oxysporum, A. alternata, C. arachichola, M. anisopliae, and
P. solanacearum (Sayyed and Patel 2011). However, the control preparation (free

of any siderophore activity) did not inhibit the growth of any of the test fungal

species consolidating the role of siderophores in disease suppression. Rhizobacteria

capable of synthesizing and releasing siderophores are also known to be involved in

inducing systemic resistance (ISRs) to the plants (Wees et al. 2000; Pieterse

et al. 2001) and suppressiveness to the soil (Mazzola 2002). Summarily, the

siderophore-based biological control agents must be popularized among field

practitioners for reasons as they (1) are inexpensive and nondestructive (safer) to

the environment, (2) are self-replicating in the environment and hence do not

require repeated application, (3) do not lead to biomagnification, and (4) have no

emergence of resistance among target organisms (Sayyed et al. 2005).

Antibiosis

Antibiotics are bioactive microbial metabolites that at low concentrations inhibit

the growth or metabolic activities of other organisms (Thomashow and Weller

1995). Microbial communities able to produce antibiotics are common in natural

environment. Historically, the natural antibiotics are reported to contribute to

(1) microbial defense, (2) fitness, (3) interference, and (4) competitiveness (Wise-

man et al. 1996; Haas and Defago 2005; Mavrodi et al. 2006; Fajardo and Martinez

2008; Little et al. 2008). The antibiotic-mediated inhibition of plant pathogens by

rhizosphere-inhabiting biocontrol microorganisms is well documented

(Raaijmakers et al. 2002; Haas and Keel 2003; Haas and Defago 2005; Raaijmakers

and Mazzola 2012). Among all the PGPR strains, Bacillus and Pseudomonas are
the two most common genera widely used in the disease management practices

through antibiotics production. Perhaps, a well-known example is the suppression

of take-all disease in wheat by 2,4-diacetylphloroglucinol, produced by

P. fluorescens in the rhizosphere (Weller et al. 2007). However, like many other

bacterial species, the antibiotics production by PS organisms is also one of the

important traits by which the PS bacteria prevent the proliferation of plant patho-

gens (Sunish et al. 2005; Naik et al. 2008; Mazurier et al. 2009). Since then, a

variety of antibiotics have been identified, including compounds such as amphisin,

2,4-diacetylphloroglucinol (DAPG), oomycin A, phenazine, pyoluteorin,

pyrrolnitrin, tensin, tropolone, and cyclic lipopeptides produced by pseudomonads

(Defago 1993; Nielsen and Sørensen 2003; Raaijmakers and Mazzola 2012; Zhou

et al. 2012; Saraf et al. 2014) and oligomycin A, kanosamine, zwittermicin A, and

xanthobaccin produced by Bacillus, Streptomyces, and Stenotrophomonas spp.

(Milner et al. 1995, 1996; Hashidoko et al. 1999; Nakayama et al. 1999; Mavrodi

et al. 2012). In a study, 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT)

producing P. fluorescens CHA0 promoted the growth of various plants and

protected them against root diseases caused by pathogenic fungi. Among the

organic acids, gluconic acid was the principal acid produced by Pseudomonas
spp. and the mutant strain (genes encoding glucose dehydrogenase (gcd) and
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gluconate dehydrogenase (gad) were deleted) acidified the environment and solu-

bilized mineral P. Furthermore, the formation of gluconic acid by CHA0

completely inhibited the production of PLT and partially hampered the synthesis

of DAPG. In the Δgcd mutant, which did not produce gluconic acid, the enhanced

production of antifungal compounds was associated with improved biocontrol

activity against take-all disease of wheat, caused by Gaeumannomyces graminis
var. tritici. This study provided a new evidence for a close association of gluconic

acid metabolism with antifungal compound production and biocontrol activity in

P. fluorescens CHA0 (de Werra et al. 2009). Pseudomonas fluorescens strain Q8r1-
96, an aggressive colonizer of the wheat rhizosphere, in a study was found to

produce 1,850 μg ml�1 2,4-DAPG after 48 h of growth in King’s B Medium,

while strain Q2-87V1 could produce only 19.4 μg ml�1 metabolites under the

identical conditions. Rhizoplane levels of 2,4-DAPG after 4 days of Q8r1-96

colonization were 1,946, 1,650, and 2,767 ng g�1 for Buchanan, Finley, and Tara

wheat cultivars, respectively. Metabolite levels obtained for Q2-87V1 colonization

were 1,468, 366, and 80 ng g�1 on the respective cultivars. Thus, strain Q8r1-96

produced significantly more 2,4-DAPG than Q2-87V1 on Tara and Finley roots,

whereas both strains produced similar amounts of the metabolites on Buchanan

roots. In greenhouse experiments, take-all damage was reduced only on Tara roots

inoculated with Q8r1-96. Moreover, in a recent study, bacterial strain, Pseudomo-
nas brassicacearum J12, isolated from the rhizosphere soil of tomato plants

strongly inhibited the growth of phytopathogenic bacteria Ralstonia solanacearum.
J12 could produce 2,4-diacetylphloroglucinol (2,4-DAPG), HCN, siderophore(s),

and protease. The maximum growth and antagonistic activity were recorded at

30 �C and pH 8. Strain J12 significantly suppressed tomato bacteria wilt by 45.5 %

in the greenhouse experiment. The main antimicrobial compound of J12 was

identified as 2,4-diacetylphloroglucinol (2,4-DAPG) by HPLC–ESI-MS analysis

(Zhou et al. 2012). One problem with depending too much on antibiotic-producing

bacteria as biocontrol agents is, however, that with the increased use of these

bacterial strains, some phytopathogens may also develop resistance to specific

antibiotics in a manner similar to those exhibited for chemically synthesized

antibacterial drugs. To obviate this, it is suggested that the HCN positive biocontrol

agents should be utilized along with antibiotics producing bacterial strains in order

to suppress the pathogens and to avoid emergence of antibiotic resistance among

bacterial species. This approach seems more credible because while HCN may not

have a strong biocontrol activity by itself, it may act synergistically with bacterially

encoded antibiotics.

Lytic Enzyme

Lytic enzymes such as chitinase, pectinases, and cellulases secreted by a variety of

microorganisms including PS organisms disrupt the functionality of pathogens by

hydrolyzing chitin, pectins, and cellulose, respectively, and thus play a pivotal role
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in direct suppression of plant pathogens (Chernin and Chet 2002; Kamensky

et al. 2003; Ovadis et al. 2004; Kim et al. 2008). The extracellular secretion of

hydrolytic enzymes, for example, chitinase, is considered distinctly crucial in

disease management strategies. For instance, S. plymuthica C48 through the pro-

duction of chitinase has been found to inhibit spore germination and germ-tube

elongation in fungal pathogen, Botrytis cinerea (Frankowski et al. 2001). Likewise,
the PS bacterium Serratia marcescens (Wani et al. 2005) has shown antagonist

activity against Sclerotium rolfsii (Ordentlich et al. 1988), while Paenibacillus
sp. strain 300 and actinomycetes Streptomyces sp. strain 385 suppressed

F. oxysporum f. sp cucumerinum. Extracellular chitinase and laminarinase synthe-

sized by Pseudomonas stutzeri digested and lysed mycelia of F. solani (Lim

et al. 1991). In yet other example, secretion of β-1,3-glucanases and chitinases

and induction of host resistance by P. guilliermondii M8 played a major role in the

biocontrol of P. guilliermondii M8 against B. cinerea (Zhang et al. 2011). The

1,3-glucanase synthesized by Paenibacillus sp. strain 300 and Streptomyces
sp. strain 385 lysed fungal cell walls of F. oxysporum fsp. cucumerinum (Singh

et al. 1999). Similar degradation of cell wall of R. solani, S. rolfsii, and Pythium
ultimum by 1,3-glucanase of B. cepacia is reported (Fridlender et al. 1993). In other
investigation, the PS bacterial strains produced protease and exhibited a broad-

spectrum antifungal activity against phytopathogenic fungi. Also, when tested in

PCR using the gene-specific primers, PS strain BFPB9 showed the presence of

hcnBC genes that encode HCN. On the basis of phenotypic traits, 16S rRNA

sequence homology, and subsequent phylogenetic analysis, PS strains BFPB9,

FP12, and FP13 were identified as P. aeruginosa, P. plecoglossicida, and

P. mosselii, respectively. Due to the inherent ability of protease, cellulase, and

HCN production by P. plecoglossicida and P. mosselii and P. aeruginosa, these PS
strains were suggested to be developed as biofertilizers and biocontrol agents (Jha

et al. 2009).

The extracellular chitinase and an antifungal compound produced by

Chromobacterium sp. strain C61 were investigated by Kim et al. (2014) to elucidate

their biological control activity. They observed that strain C61 had antifungal

activities under in vitro conditions and successfully controlled plant diseases in

field conditions. The bacterium possessed a locus chi54 encoding chitinase, while

chi54 mutant did not produce chitinase. The wild-type strain showed significantly

increased production of the extracellular enzymes and expression of the chi54
transcript, when grown in culture medium treated with chitin. Furthermore, the

in vitro assays demonstrated that purified chitinase inhibited spore germination of

multiple pathogens. However, the in planta biocontrol activity of filtrates of cul-

tures grown in the presence of chitin was lower than that of filtrates grown without

chitin indicating that correlation between chitinase and biocontrol activity was

missing. The further analysis of C61 culture filtrates revealed an antifungal cyclic

lipopeptide, chromobactomycin, whose structure contained a unique nonameric

peptide ring. The purified chromobactomycin inhibited the growth of several

phytopathogenic fungi in vitro, and plant application significantly reduced disease

severity for several pathogens. These data suggest that both the extracellular
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chitinase and the antibiotic chromobactomycin can act synergistically to suppress

plant disease by Chromobacterium sp. strain C61.

ACC Deaminase

Plant growth can also be stimulated by PGPR including PS bacteria that produce

1-aminocyclopropane-1-carboxylate (ACC) deaminase, which cleaves ACC, the

immediate precursor of the plant hormone ethylene, to produce α-ketobutyrate and
ammonia (Todorovic and Glick 2008; Ahmad et al. 2013). Ethylene is an important

signaling molecule in plants which under pathogen attack or abiotic stress results in

plant growth inhibition (Abeles et al. 1992). Following infection by a pathogen, a

strong correlation between the timing of ethylene production increase and the

development of chlorotic, necrotic, or wilt symptoms is reported (Goto

et al. 1980; Elad 1988; Boller 1991). Inoculation of plants with ACC deaminase

positive PGPR reduced the stress levels of ethylene and resulted in longer roots and

promoted plant growth following environmental- or pathogen-induced stress (Glick

et al. 1998, 2007; Farwell et al. 2007). For example, ACC deaminase-producing

biocontrol bacteria were more effective in preventing growth inhibition on cucum-

ber plants caused by root pathogen P. ultimum and in potato plants by root rot

pathogen Erwinia carotovora (Wang et al. 2004). In a recent example, the ACC

deaminase-producing Methylobacterium inoculated with tomato showed signifi-

cantly reduced disease symptoms caused by Ralstonia solanacearum and lowered

ethylene emission under greenhouse condition. The ACC and ACO

(1-aminocyclopropane-1-carboxylate oxidase) accumulation in tomato leaves was

significantly reduced with Methylobacterium strain inoculation. While ACC oxi-

dase gene expression was found higher in plants treated with R. solanacearum than

Methylobacterium sp. treatment, PR proteins related to ISR like β-1,3-glucanase,
PAL, PO, and PPO were increased in Methylobacterium sp. inoculated plants. A

significant increase in β-1,3-glucanase and PAL gene expression was found in all

the Methylobacterium spp. treatments compared to the R. solanacearum treatment

(Yim et al. 2013). In addition, transgenic tomato plants expressing a bacterial ACC

deaminase gene under the transcriptional control of a root-specific promoter, which

mimics the effect of adding ACC deaminase-producing plant growth-promoting

bacteria to the plant roots, have been reported to significantly protect against

damages from Verticillium wilt compared to non-transformed tomato plants

(Robison et al. 2001). Stearns et al. (2012) also observed the ACC deaminase

activity in PS bacterium P. putida and used it to evaluate its effect on growth

promotion of Brassica napus (canola). Transcriptional changes in bacterially

treated canola plants were investigated employing an A. thaliana oligonucleotide

microarray. The results indicated that the transcription of genes involved in plant

hormone regulation, secondary metabolism, and stress response was altered in

inoculated plants, whereas the upregulation of genes for auxin response factors

and the downregulation of stress response genes were observed only in the presence

of bacterial ACC deaminase. These results, therefore, support the hypothesis that
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there is a direct link between ethylene and the auxin response and that this study

provides more evidence for the stress-reducing benefits of ACC deaminase-

expressing plant growth-promoting bacteria (Stearns et al. 2012).

10.3.2 Indirect Plant Growth Promotion Through Induced
Systemic Resistance

Inoculation of plants with sole or multiple plant growth-promoting activities

containing PGPR including PS bacteria is reported to provide systemic resistance

against a broad spectrum of plant pathogens, for example, those belonging to

fungal, bacterial, and viral groups (Ryu et al. 2004b; Latha et al. 2009; Raj

et al. 2012; Alizadeh et al. 2013; Son et al. 2014).

10.3.2.1 Induced Systemic Resistance

Plants have numerous active defense apparatuses that can aggressively be

expressed when exposed to biotic stresses such as phytopathogens and parasites

or viruses to phytophagous insect. Induced systemic resistance (ISR) is a phenom-

enon in plants which is triggered principally following inoculation of microbial

cultures and is phenotypically similar to the systemic acquired resistance (SAR)

that occurs when plants activate their defense systems in response to infection by a

pathogenic agent (Pieterse et al. 2009). Induced systemic resistance of plants

against pathogens is a widespread phenomenon that has its potential use in the

management of phytopathogens, for instance, fungi, bacteria, and viruses. Induced

systemic resistance involves jasmonate (JA), ethylene, and salicylic acid

(SA) signaling within plants, and these hormones stimulate the host plant’s defense

responses to a range of pathogens (Verhagen et al. 2004). Besides ethylene, JA, and

SA, other bacterial molecules such as the O-antigenic side chain of the bacterial

outer membrane protein lipopolysaccharide, flagellar proteins, pyoverdine, chitin, β
-glucans, and cyclic lipopeptide surfactants have been reported to act as signaling

molecules inducing ISR. However, ISR does not require any direct interaction

between the resistance-inducing bacteria and the pathogens (Bakker et al. 2007).

Strains of PGPR are reported to suppress diseases by antagonism between the

bacteria and soilborne pathogens (Khan et al. 2002) and by ISR in plants against

pathogens (Beneduzi et al. 2012; Alizadeh et al. 2013). The PGPB-elicited ISR was

first observed on carnation (Dianthus caryophillus) with reduced susceptibility to

wilt caused by Fusarium sp. (Van Peer et al. 1991) and on cucumber (Cucumis
sativus) with reduced susceptibility to foliar disease caused by Colletotrichum
orbiculare (Wei et al. 1991). Manifestation of ISR is dependent on the combination

of both host plants and bacterial strains (Van Loon et al. 1998; Kilic-Ekici and Yuen

2004). The bacterial triggered ISR strengthens plant cell wall and alters host
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physiology and metabolic responses, leading to an enhanced synthesis of plant

defense chemicals upon challenge by pathogens and/or abiotic stress factors

(Ramamoorthy et al. 2001; Nowak and Shulaev 2003; Alizadeh et al. 2013). Inter-

estingly, the rhizobacteria-assisted ISR is identical to that of pathogen-induced

SAR in that both types of induced resistance make uninfected plant parts more

resistant to a broad spectrum of plant pathogens. The type of bioprimed plant

response induced after challenge with a pathogen results in the formation of

structural barriers, such as thickened cell wall papillae due to the deposition of

callose and the accumulation of phenolic compounds at the site of pathogen attack

(Benhamou et al. 1996a, 1998). Similarly, biochemical or physiological changes in

plants following inoculation include induced accumulation of pathogenesis-related

proteins (PR proteins) such as PR-1, PR-2, chitinases, and some peroxidases

(Viswanathan and Samiyappan 1999; Park and Kloepper 2000; Jeun et al. 2004;

Latha et al. 2009; Raj et al. 2012; Chowdappa et al. 2013). However, certain PGPB

do not induce PR proteins (Hoffland et al. 1995; Pieterse et al. 1996; Van Wees

et al. 1997); instead, it increases the accumulation of peroxidase, phenylalanine

ammonia lyase, phytoalexins, polyphenol oxidase, and/or chalcone synthase (Van

Peer et al. 1991; Ongena et al. 2000; Chen et al. 2000; Ramamoorthy et al. 2001;

Chowdappa et al. 2013). In several studies, numerous rhizobacteria have been

found to trigger the salicylic acid (SA)-dependent SAR pathway by producing SA

at the root surface, whereas some other rhizobacteria triggered different signaling

pathway independent of SA. The SA-independent ISR pathway has been observed

in Arabidopsis thaliana, which is dependent on jasmonic acid (JA) and ethylene

signaling. Similar ISR in plants, for example, carnation, cucumber, radish, tobacco,

and Arabidopsis following Pseudomonas inoculation, is reported (Choudhary

et al. 2007). In addition to Pseudomonas strains, ISR is developed following

inoculation of different Bacillus species, for example, B. amyloliquifaciens,
B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B. sphaericus,
and shown considerable reduction in the incidence or severity of various diseases

on a variety of hosts (Choudhary et al. 2007). Similarly, the ISR in one of the study

was triggered by Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14, both

isolated from the rhizosphere of cucumber, and had inhibitory activity against

Fusarium oxysporum fsp. radicis cucumerinum (cucumber) and in A. thaliana
against Botrytis cinerea (Alizadeh et al. 2013). In other reports, the ISR was

triggered by P. fluorescens (Pf1 and Py15) and B. subtilis (Bs16) when used either

alone or together and as mixture with the most effective plant extract, Zimmu, in

both in vitro and in vivo experiments against early blight disease in tomato caused

by A. solani (Latha et al. 2009), P. fluorescens EP1 against red rot caused by

Colletotrichum falcatum on sugarcane (Viswanathan and Samiyappan 1999),

Burkholderia phytofirmans PsJN against Botrytis cinerea on grapevine (Barka

et al. 2000, 2002), Verticillium dahliae on tomato, P. denitrificans and P. putida
against Ceratocystis fagacearum on oak (Brooks et al. 1994), P. fluorescens against
F. oxysporum fsp. radicis-lycopersici on tomato, B. pumilus SE34 against

F. oxysporum fsp. pisi on pea roots (Benhamou et al. 1996b), and F. oxysporum
fsp. vasinfectum on cotton roots (Conn et al. 1997). Recently, B. pumilus strain
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INR-7 effectively induced downy mildew resistance in pearl millet. The histochem-

ical analysis of B. pumilus INR-7-mediated systemic resistance indicated that IR

was associated with the expression of hypersensitive response (HR), enhanced

lignification, callose deposition, and H2O2 in addition to the increased expression

of the defense enzymes β-1,3-glucanase, chitinase, phenylalanine ammonia lyase

(PAL), peroxidase (POX), and polyphenol oxidase (PPO). The HR was rapidly

expressed in the resistant pearl millet. The further microscopic investigation of

inoculated pearl millet tissues showed the presence of significantly higher levels of

lignin, callose, and H2O2 in resistant and induced resistant seedlings. Accumulation

of various defense enzymes (e.g., β-1,3-glucanase, chitinase, PAL, POX, and PPO)
located in vascular bundles was an immediate response to Sclerospora graminicola
infection and preceded the development of induced resistance elicited by strain

INR-7. This study clearly demonstrated that the differences between the responses,

susceptibility, INR-7 treated, or resistant pearl millet seedlings exhibited variations

in the speed, intensity, and pattern of different histochemical responses to

S. graminicola infection (Raj et al. 2012).

10.4 Conclusion

Naturally abundant yet functionally diverse rhizosphere microorganisms have

immense potential in sustainable crop production and have shown significant

increase in crop yields both directly and indirectly under fluctuating field environ-

ments. Besides supplying soluble P to plants and increasing crop production

directly, phosphate-solubilizing microorganisms also promote plant growth and

yields (primary effect) indirectly by suppressing the plant diseases (secondary

effect) caused by so many phytopathogens. In some cases, the secondary effect is

more obvious and effective than the primary ones. Therefore, the simultaneous

biocontrol activity and other plant growth-promoting properties of PS organisms

provide one of the better options to replace pesticides and chemical fertilizers in

sustainable agriculture practices. From the disease management point of view, more

researches aimed at finding quality biocontrol PS organisms with multiple growth-

promoting activities are urgently required. Moreover, understanding the precise

mode of action and the ecophysiology of the PSM in relation to other soilborne

inhabitants is important which may help in developing the appropriate inoculants

for their efficient use under different production systems. Further investigations

including efficacy test under field conditions are however needed to consolidate the

role of PS organisms as proficient biofertilizers. If the field trials show promising

results, this could allow further exploiting the full potential of PS organisms as

multifaceted beneficial bio-inoculants at commercial scale for increasing the

growth and health of plants which in turn is likely to reduce problems associated

with the use of toxic chemicals in agriculture practices.
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Babana AH, Dicko AH, Maı̈ga K, Traoré D (2013) Characterization of rock phosphate-

solubilizing microorganisms isolated from wheat (Triticum aestivum L.) rhizosphere in Mali.

J Microbiol Microbial Res 1:1–6

Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ

32:666–681

Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using

the underground information superhighway. Trends Plant Sci 9:26–32

Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent

Pseudomonas spp. Phytopathology 97:239–243

Barka EA, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and

resistance to gray mould of Vitis vinifera cocultured with plant growth-promoting

rhizobacteria. FEMS Microbiol Lett 186:91–95

Barka EA, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte

bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Contr

24:135–142

Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas
putida as an iron source for dicot and monocot plants. In: Chen Y, Hadar Y (eds) Iron nutrition

and interactions in plants. Kluwer, Dordrecht, pp 271–281

Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria

into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil

Biol Biochem 30:1225–1228

Beneduzi A, Ambrosini A, Luciane MPP (2012) Plant growth-promoting rhizobacteria (PGPR):

their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

246 A. Zaidi et al.

http://dx.doi.org/10.1080/03235408.2013.782223


Benhamou N, Belanger RR, Paulitz TC (1996a) Induction of differential host responses by

Pseudomonas fluorescens in Ri T-DNA-transformed pea roots after challenge with Fusarium
oxysporum f. sp. pisi and Pythium ultimum. Phytopathology 86:114–178

Benhamou N, Kloepper JW, Quadt-Hallmann A, Tuzun S (1996b) Induction of defense-related

ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant

Physiol 112:919–929

Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of

tomato by combination of chitosan with an endophytic bacterial strain: ultra structure and

cytochemistry of the host response. Planta 204:153–168

Bentley SD, Corton C, Brown SE, Barron A, Clark L et al (2008) Genome of the actinomycete

plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adapta-

tion. J Bacteriol 190:2150–2160

Bhattacharya PN, Jha DK (2012) Plant growth promoting rhizobacteria: emergence in agriculture.

World J Microbiol Biotechnol 28:1327–1350

Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol

by rhizobacteria. Curr Opin Plant Biol 4:343–350

Boller T (1991) Ethylene in pathogenesis and disease resistance. In: Mattoo AK, Suttle JC (eds)

The plant hormone ethylene. CRC Press, Boca Raton, FL, pp 293–314

Brooks DS, Gonzalez CF, Apple DN, Filer TH (1994) Evaluation of endophytic bacteria as

potential biological control agents for oak wilt. Biol Contr 4:373–381

Budzikiewicz H (2010) Microbial siderophores. In: Kinghorn AD, Falk H, Kobayashi J (eds)

Progress in the chemistry of organic natural products. Fortschritte der chemie organischer

naturstoffe. Springer, Vienna, pp 1–75

Burt WR (1982) Identification of coprogen B and its breakdown products from Histoplasma
capsulatum. Infect Immunol 35:990–996
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vis-à-vis chemical fungicide. Curr Microbiol 58:47–51

Sayyed RZ, Chincholkar SB (2010) Growth and siderophore production Alcaligenes faecalis is
influenced by heavy metals. Indian J Microbiol 50:179–182

Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant

Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-à-vis organophosphorus fungicide.
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Chapter 11

Microbial Consortium of Plant Growth-

Promoting Rhizobacteria Improves

the Performance of Plants Growing

in Stressed Soils: An Overview

Meenu Panwar, Rupinder Tewari, and Harsh Nayyar

Abstract Soil and associated stress conditions not only influence dwelling micro-

bial populations and soil ecosystems but also affect growth and yield of plants.

Major soil stress includes salinity, drought, and metal contamination. Due to

burgeoning populations and expanding food demands, it has become imperative

to alleviate the stressful soil conditions so that the crop production is increased and,

consequently, the food demands are fulfilled. Different strategies are followed to

resolve this problem, and one such approach involves exploiting microbial potential

for plant’s benefit. The multifunctional microscopic life-forms are already known

for their applications in industries, medicine, and agricultural field. One of the

major attributes of microbes from agronomic point of view is their ability to

solubilize difficultly available forms of soil phosphorus. Phosphate-solubilizing

microbes are also known to produce enzymes, siderophores, and growth hormones;

embellish plant growth and biocontrol activity; and improve soil properties. Such

microorganisms possessing attributes, beneficial for plants are termed as plant

growth-promoting rhizobacteria (PGPR). There are plentiful reports on bacterial-

mediated plant growth promotion under nonstressed conditions although fewer

reports are available on their effects under stressed condition. The bacterial ability

to enhance tolerance of plants in stressed soils and the impact of PGPR consortium

(mixture) on different crops are highlighted. The major idea here is to consolidate

the fact that PGPR consortium can be used directly in stress-affected soil with an

aim to refurbish soil conditions to foster crop productivity in stressed soils.
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11.1 Introduction

Soil inhabits different life-forms including plants, animals, and microorganisms and

is a nutrient hoarded treasure, a support system (for plant) furnishing with plentiful

crops and yields. Any change in soil conditions eventually affects plant growth.

Human activities and ever-increasing populations are continuously exploiting this

natural system, consequently affecting the growth and productivity of plants.

However, there are certain soil factors which negatively affect plant growth.

These are (1) moisture content, (2) salt, (3) nutrient pool of soils, (4) microbial

composition and their functional variation, and (5) soil pollution especially depo-

sition of toxicants (heavy metal and pesticides) in soil. When deviated from optimal

conditions, these factors cause adverse effects and are specified as stress conditions

for soil. The deleterious impacts of these stresses include dwindling productivity,

burden on delimited resources, and economic fall. Considering these threats,

researchers from different fields are working in unison to avert such problems.

One such area involves the exploitation of microbiological resources of soils.

Microorganisms are known to be omnipresent and possess multifunctional charac-

teristics even though the full potential of microorganisms is still unrevealed. Most

of the chemical reactions occurring in soil leading to nutrient availability are

mediated by different microorganisms like N2 fixers, P solubilizers, or decomposers

(Powlson et al. 2001). Considering the available information and application of

microorganisms, there has been greater interest in using such organisms to restrain

the adverse effects also (Vassilev et al. 2012).

Microorganisms colonizing the rhizospheres are known to have beneficial

effects on the nutrient acquisition, mineral solubilization, disease resistance, and

stress tolerance and are collectively described as plant growth-promoting

rhizobacteria (PGPR) (Kloepper and Schroth 1978; Vessey 2003). Reports are

available in the literature on the effectiveness of rhizospheric microorganisms as

plant growth promoters as well as on their potential for imparting stress resistance

or improving stress tolerance in plants, presenting PGPR as viable option to cope

with these problems (Yang et al. 2009; Zelicourt et al. 2013; Ahemed and Kibret

2014). Another aspect of exploiting microbial potential is to combine the attributes

of different microbes to get an outcome encompassing numerous or complementing

beneficial effects. Microorganisms are known to have attributes like cooperation/

mutualism where they benefit each other or other life-forms to enhance the positive

outcomes (Singh et al. 2010). Multiple properties of resistance/tolerance and plant

growth promotion, therefore, serve as an appraisal and make PGPR one of the most

suitable choices to manage these problems (Bano and Fatima 2009; Egamberdieva

and Kucharova 2009; Zelicourt et al. 2013). Judicial application of the stress-

tolerant PGPR consortium can be a viable solution and need to be further strength-

ened through field trials. The present chapter gathers reports on the experimental

studies done on PGPR consortium helping plant/crops cope with stressful soil

conditions. Also, the focus is given here on soil stress and associated effects

including mechanisms of PGPR in stress alleviation.
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11.2 Stresses Occurring in Soils

Soil can be defined as upper layer of earth where plant grows and have their roots

(Brady 1974). Soil indeed is the habitat for both microscopic (millions of microor-

ganisms) and macroscopic (insects, animals, plants) life (Pelczar et al. 1993; Saika

2013). The plants along with soil inhabiting microbes affect the soil structure,

fertility, and porosity; prevent erosion; and serve as source of organic matter;

likewise, any alteration in soil influences these life-forms. Soil stress is one of the

abiotic factors and can be defined as environmental variables affecting soil, which

can induce potentially injurious effects on the growth and yield of plants. Stress in

plants is mainly measured in relation to survival, growth, crop yield, biomass, and

primary assimilation processes associated with growth (Oliveira et al. 2013). These

abiotic stresses also reduce the number, activity, and diversity of soil microflora,

which in turn may limit the crop production (Sgroy et al. 2009).

11.2.1 Types of Soil Stresses

Soil stresses involve drought stress (decreased water availability to plants), salt

stress (increase salts in soil solution), heavy metal stress (excessive toxic metals in

soil), nutrient stress (insufficient nutrients in soil), and temperature stress (extremes

of temperature both high and freezing). Of these, drought is one of the most

important stresses followed by salinity stress (Kinje 2006; Carmen and Roberto

2011). Extensive areas of land are affected by these two stresses and are reported to

have maximum deleterious effects on the agricultural productivities (Oliveira

et al. 2013). The effects of drought and salt stress are highly interrelated and

influence practically almost every aspect of plant. The effects of stresses on plants

involve disrupted photosynthesis leading to leaf senescence, accumulation of

excessive reactive oxygen species (ROS), nutrient deficiency, and destruction of

cellular organelles and metabolism leading to decreased plant growth. The after-

effect includes both physiological and metabolically disturbed homeostasis of plant

(Carmen and Roberto 2011; Oliveira et al. 2013). Metal stress is another important

soil stress, which is becoming increasingly intensive due to numerous anthro-

pogenic factors (Glick 2010). Unchecked increase in population and industrial

revolution is resulting in accumulation of toxic metals and organic wastes in soil

making it unsuitable for agricultural practices and also harmful to all life-forms

(Glick 2010). Some of the effects of these stresses are briefly outlined in Fig. 11.1.

11.2.1.1 Drought Stress

Water comprises 80–90 % of the plant biomass and plays central role in all major

physiological processes of the plants involving nutrient uptake and photosynthesis.
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Drought stress can be defined as low water or moisture content in soil, not enough to

fulfill the plant requirements. When the water loss occurs due to metabolic pro-

cesses and transpiration exceeds the water availability for absorption or when water

content of plant gets low enough to interfere with normal plant processes, water

deficit/stress is created. It can also result from reduced moisture of soil, due to less

rainfall or supplemental irrigation. Water stress has been found as an important

factor affecting deleteriously various stages/metabolic processes of plants

(Upadhyay and Panda 2013). For example, water stress reduces the water potential

of plant cell and thus enhances the solute concentration, which further hinders cell

enlargement, stem proliferation, and root elongation, thereby hampering the plant

growth (Akinci and Losel 2012). However, when plants are growing under stressed

situation, it exhibits visible symptoms. As an example, “wilting” is the condition of

plants where the non-wooden parts of the plants become nonrigid due to low turgor

pressure and is one of the most common symptoms of water stress (Correia

et al. 2001; Cabuslay et al. 2002). Also, water stress may cause stomata closure.

Accumulation of plant hormone, for instance, abscisic acid (ABA), is responsible

for the stomatal closure (Socias et al. 1997). This further reduces gaseous exchange,

Decrease in
photosynthesis and
pigmentation

ROS accumulation

Stomatal closure
senescence
wilting
Necrosis
Chlorosis

Cell
death

Suppressed
growth

Protein denaturation &
membrane destabilization

Cytotoxicity

Mineral/toxic ions
accumulation

Osmotic stress,
Physiological
drought

Nutrient unavailability,
Competitive exclusion
of nutrientslonic

imbalance

Fig. 11.1 An overview of stress effects on the plant. Effects include a combinatorial picture of salt

and metal stress (ionic imbalance) and drought stress (osmotic stress) on physiological and

metabolic aspects of plants focusing mainly on leaves and root-associated processes which

ultimately lead to inhibition in growth
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transpiration, and CO2 assimilation during photosynthesis (Cornic 2000). Also,

water stress results in reduced chlorophyll content, inhibits chloroplast activity

and disorganizes thylakoid membranes, decreases the activity of ribulose-1,5-

bisphosphate carboxylase/oxygenase and other enzymes in carbon reduction cycle

(Reddy et al. 2004), impairs electron transport, and increases the concentration of

ROS. The imbalance in scavenging and formation of ROS and increased O2

photoreduction in chloroplast results in ROS accumulation (Robinson and Bunce

2000). The ROS damages photosynthetic apparatus, cell membrane, and macro-

molecules. DNA nicking, denaturation of structural and functional macromole-

cules, lipid peroxidation, oxidation of amino acids and proteins, and

photosynthetic pigments are some of the effects of ROS accumulation (Lisar

et al. 2012). Stomata closure under drought stress is also found to be related to

altered nutritional status, xylem sap pH, and hydraulic conductivity as well as

declines water content in leaf (Oren et al. 1999). Summarily, drought stress

interrupts the enzymatic reactions mainly involved in CO2 fixation and ATP

synthesis and thus affects the plant by altering (1) photosynthesis, (2) transpiration,

(3) nutrient uptake, (4) hormone production, (5) homeostasis, and (6) other meta-

bolic processes.

11.2.1.2 Saline Stress

In agricultural terms, salinity can be defined as salt level exceeding the plant

requirements (Yadav et al. 2011). In other words, it can also be defined in terms

of dissolved mineral salt concentration, i.e., electrolytes of cations and anions

where major cations involve Na+, Ca2+, Mg2+, and K+ and anions involve Cl�,
SO4

2�, CO3
2�, HCO3

�, and NO3
�. According to USDA Salinity Laboratory

(Seidahmed et al. 2013), saline soil is defined as soil having electrical conductivity

4 dS m�1 or higher. The excessive concentrations of salt change the physico-

chemical properties of soil and affect the nutrient uptake from soil, making nutri-

ents inaccessible for plants. Some of the effects of salt stress on plants include

deteriorated growth, nitrogen content, photosynthetic capacity, and metabolic pro-

cesses including protein and lipid metabolism (Upadhyay et al. 2011). Salt stress

has been reported to drastically affect the growth and yield of several crops (Parida

and Das 2005; Ondrasek et al. 2011). Broadly, effects of salt stress can be catego-

rized as (1) unavailability of water causing drought-like conditions; (2) high salt

content in plants, i.e., Na+ and Cl�, leading to disrupted physiological and bio-

logical processes; and (3) high salt content affecting availability of other soil

nutrients. One of the most dominant symptoms of salt stress involves stunted

growth. Cessation of leaf expansion and reduction in dry weight and fresh weights

of stem, roots, and leaves are some other effects of the salt stress (Hernandez

et al. 1999; Wang and Nil 2000). Salt stress affects largely the shoot growth

compared to root growth and hence influences both vegetative and reproductive

stages of plants. It creates osmotic and ionic stress due to less water content and

high salt concentration, respectively. The osmolarity of external tissues results in
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decreased growth of plant (Munns 2002), whereas the ionic effect leads to ion

(mainly Na+) accumulation mainly in leaf tissues leading to necrosis. “Necrosis” is

death or degeneration of tissue, visible as yellowing or dark patches on plant leaves.

Due to excessive salt in soil, the required nutrient becomes unavailable for plants.

The salt ions (Na+) intervene the transporters of root plasma membrane and hamper

root growth, thus obstructing the nutrient uptake by plants (Yadav et al. 2011). Salt

stress causes water deficit, which results in oxidative stress due to formation of

ROS, causing membrane dysfunction and cell death (Parida and Das 2005). Lipids

also act as a target for oxidative reactions and, being structural constituent of

membranes and insulator for internal organs, damage the cellular structure aggra-

vating negative effects of the salt stress (Singh et al. 2002). The high concentration

of solutes in root medium interferes with the water absorption by roots and reduces

root conductivity. These effects further lead to decreased plant growth and photo-

synthetic rate. The chlorophyll and carotenoid content in leaves decline under salt

stress. Symptoms of chlorosis appear on leaves due to the reduction of photosyn-

thetic pigments. Salt stress affects different physiological processes such as cessa-

tion of carbon assimilation in leaves, reduction in permeability due to dehydration,

closure of stomata affecting chloroplast activity, senescence, ionic leakage into the

cytosol leading to inactivation of photosynthetic and respiratory electron transport

(Allakhverdiev et al. 2000; Parvaiz and Satyawati 2008), and altered enzyme

activity due to change in cytoplasmic structure.

11.2.1.3 Metal Stress

Heavy metals (HM) can be defined as elements with metallic properties and higher

range of molecular weight and include transition elements. The industrial revolu-

tion and anthropogenic activities have dramatically raised the metal concentration

in soil (Yan-de et al. 2007; Oves et al. 2012). Among these metals, iron (Fe),

molybdenum (Mo), and manganese (Mn) are known as essential micronutrients

required by the plants, while a few, for example, cadmium (Cd), do not have any

biological activity. Other metals like chromium (Cr), copper (Cu), mercury (Hg),

lead (Pb), and nickel (Ni) are also common in soil. Based on the requirement, HM

can be divided into essential and nonessential elements, although the excessive

accumulation of both of these in soils adversely affects the plants (Wani et al. 2012;

Morsy et al. 2013) as well as soil microflora (Oliveira and Pampulha 2006; Wani

and Khan 2010). The plentiful HM in soil is absorbed and translocated to various

organs of plants and impairs plant metabolism and growth (Bingham et al. 1986;

Cheng 2003; Ahmad et al. 2012b). The excessive metals in soil also affect soil

properties and fertility, making it unsuitable for agricultural activities.

The possible toxic impact of heavy metals on plant includes (1) disintegration of

cell organelles and (2) disruption of membranes and physiological processes like

(a) photosynthesis, (b) inactivation of protein synthesis, (c) inactivation of respira-

tion and carbohydrate metabolism, and (d) nutrient uptake (Jing et al. 2007; Wani

et al. 2007; Wani et al. 2008; Khan et al. 2012). Metal accumulation also results in
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reduced microbial population (Wani and Khan 2013) thereby affecting the soil

fertility and making it unsuitable for sustainable agriculture (Cheng 2003). Germi-

nation rate and root vitality of the plant are also affected by the metal stress (Shu

et al. 1997). Heavy metals were also known to affect the cell division by causing

inhibition of DNase and RNase activity; damaging nucleolus and disrupting DNA

synthesis; and causing chromosomal aberration, coagulation, and fragmentation

(Yang and He 1995; Musarrat et al. 2011). Reduced cell division and elongation

along with decreased cell membrane integrity are some other effects of membrane

toxicity. Some of the visible symptoms include interfoliar chlorosis, wilting, necro-

sis, crinkling of leaf, reddening, and purpling (Reichman 2002). Lessened chloro-

phyll content, reduced photosynthetic rate, and augmented carotenoid breakdown

are also some of the results of metal toxicity. Accumulated metals are believed to

replace Mg ion of the chlorophyll molecule thus affecting photosynthesis (Kupper

et al. 1996). Heavy metals are also known to disrupt the photosystems ensuing

decreased proton availability, consequently affecting photosynthesis. Reduced ATP

synthesis and disrupted activity of chloroplast are some other effects reported for

metal toxicity by disruption of enzymatic systems (Teige et al. 1990). Like any

other stress, free radical production is increased in plant as a response to metal

stress. The concentration of metal plays an important role here as at low concen-

tration the protective antioxidant enzymes balance the effect, but at higher metal

toxic condition these accumulated free radicals damage membranes by lipid peroxi-

dation (Yadav 2010) followed by injury to surrounding cells. Free radicals also

damage macromolecules like nucleic acids and proteins, thus disrupting normal

metabolism and leading to cell death. Leaf senescence is another effect of oxidative

damage due to ROS accumulation (Luna et al. 1994). Since growth, yields, and

many other physiological functions of plants are affected negatively by toxic metals

(Yadav 2010; Selvakumar et al. 2012), remedial measures are urgently required for

its cleanup from the contaminated sites (Khan et al. 2011; Zaidi et al. 2012). In this

context, scientists around the world have attempted to use molecular tools and

breeding programs for exploiting physiological traits of plants, developing new

stress-tolerant crop varieties, altering crop calendars, and managing agronomic

resources to circumvent stress-related impact on plants. Another well-considered

option in this direction is the use of microorganisms for combating stress (Khan

et al. 2009). In this regard, reports on the individual/combined use of metal-tolerant/

normal microorganisms in growth promotion and other positive effects on plants

are available (Selvakumar et al. 2012; Ahmad et al. 2013; Oves et al. 2013).

11.3 Plant Growth-Promoting Rhizobacteria

Soil is inhabited by numerous microorganisms, which can be categorized as

beneficial or detrimental based on their effect on the soil, plants, and ultimately

plant’s yield (Singh et al. 2011a). The diverse microbial population of soil plays a

pivotal role in processes determining soil fertility and plant’s productivity (Tilak

11 Microbial Consortium of Plant Growth-Promoting Rhizobacteria Improves the. . . 263



et al. 2005). Soil microorganisms participate in processes like decomposition,

mineralization, and nutrient availability, improve soil structure (soil aggregation

by production of polysaccharides), increase the nutrient acquisition efficiency of

the plants, and improve plant health through growth hormone production (Hayat

et al. 2010; Singh et al. 2011b). Microbial populations having the ability to colonize

root surface and imparting beneficial effects to plants are known as plant growth-

promoting rhizobacteria (PGPR) (Kloepper and Schroth 1978; Joshi and Bhatt

2011). Plant growth-promoting rhizobacteria facilitate plant growth both directly

and indirectly (Glick 2012). Some of the notable PGPR belong to genera

Arthrobacter (Banerjee et al. 2010), Azotobacter (Ponmurugan et al. 2012),

Azospirillum (Jacoud et al. 1999), Bacillus (Kumar et al. 2011), Enterobacter
(Shoebitz et al. 2009), Pseudomonas (Noori and Saud 2012), and Serratia (Zhang

et al. 1997). Based on the proximity with the plant roots, PGPR can be divided into

(1) extracellular PGPR, existing in rhizosphere, rhizoplane, or spaces between root

cortices, and (2) intracellular PGPR, present within roots or nodules of the plant.

Also, based on the mode of action, PGPR have been classified as (1) bio-stimulants

which promote plant growth via phytohormone production, including auxins IAA

and similar compounds like abscisic acid, gibberellic acid, cytokinins (Carmen and

Roberto 2011); (2) biofertilizers which enable nutrient availability and acquisition

via N2 fixation (Mohammadi and Sohrabi 2012) and P solubilization (Khan

et al. 2007; Zaidi et al. 2009; Khan et al. 2010; Das et al. 2013); and

(3) bioprotectants which provide protection to plants against phytopathogens via

production of antibiotics (Labuschagne et al. 2011), siderophores (Glick 2012), and

induced systemic resistance (Figueiredo et al. 2011).

11.3.1 Direct Mechanisms

11.3.1.1 Production of Plant Growth Regulators

Microorganisms are known to produce plant growth-stimulating substances such as

phytohormones, for example, auxins (Spaepen and Vanderleyden 2011), cytokinins

(Nieto and Frankenberger 1990), gibberellins and abscisic acid (Singh 2013), etc.,

as well as certain volatiles (Ryu et al. 2003). The phytohormone-producing micro-

organisms include Acetobacter diazotrophicus (Patil et al. 2011), Azospirillum
brasilense (Perrig et al. 2007), Herbaspirillum seropedicae (Bastian et al. 1998),

Bacillus pumilus and B. licheniformis (Gutirrez-Manero et al. 2001), etc.

11.3.1.2 Nitrogen Uptake

Specialized microorganisms have capability to fix atmospheric N (biological nitro-

gen fixation; BNF) and maintain the balance of N in soil ecosystem. Nitrogen fixers

are categorized into two groups: (a) symbiotic nitrogen fixers and (b) nonsymbiotic
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nitrogen fixers. Rhizobium and Frankia belong to symbiotic N2 fixers that associate

with legumes, whereas nonsymbionts are free-living N2 fixers which interacts with

nonleguminous plants (Ahemed and Kibret 2014). Numerous PGPR are also known

to possess this attribute although the mechanism responsible for their growth

promotion is not N2 fixation. Some of these PGPR are Azotobacter (Kizilkaya

2009), Bacillus (Ding et al. 2005), Clostridium, Klebsiella (Iniguez et al. 2004),

Alcaligenes, and Arthrobacter (Mohammadi and Sohrabi 2012).

11.3.1.3 Increased Mineral Uptake

Plant growth-promoting rhizobacteria are reported to provide nutrients to plants via

mineralization/solubilization of unavailable minerals like P (Khan et al. 2007).

Also, the siderophores, secreted by PGPR strains, play important roles in mineral

transport (Vessey 2003; Ahmad et al. 2013). Mineralization process involves

conversion of organic P into soluble forms through enzymes like phytases and

phosphatases (Walpola and Yoon 2012), whereas in solubilization the inorganic P

is transformed into soluble forms via organic acid production, acidification of

medium (Park et al. 2009; Khan et al. 2010), chelation, and exchange reactions

(Walpola and Yoon 2012). Both solubilization and mineralization mechanism can

occur in one bacterial species also. Some of the phosphate solubilizing (PS) bacteria

include Acinetobacter (Rokhbakhsh-Zamin et al. 2011), Burkholderia (Gupta

et al. 2012), Enterobacter (Gupta et al. 2012; Maheshwari and Sudha 2013),

Klebsiella (Ahemad and Khan 2011), Pseudomonas (Rajkumar and Freitas 2008),

and Stenotrophomonas (Mehnaz et al. 2010). Numerous studies have been

conducted globally to analyze the effects of various P solubilizers on growth,

yield, and other important parameters of plants (Khan et al. 2009; Ahmad

et al. 2012a). Some of the examples supporting the effectiveness of these micro-

organisms against different crops are listed in Table 11.1.

11.3.2 Indirect Mechanisms

11.3.2.1 Antibiotic Production

Antibiotics are defined as heterogenous low molecular weight organic compounds

secreted by microorganism, having destructive/inhibitory effects on the growth and

metabolism of other microorganism/s (Duffy 2003; Beneduzi et al. 2012). PGPR

are also known to produce antibiotics and other small molecules preventing plants

from damage caused by the plant pathogens. These antibiotics are categorized as

(A) nonvolatiles including polyketides (e.g., pyoluteorin), heterocyclic nitrogenous

compounds such as phenazine derivatives, phenylpyrrole (e.g., pyrrolnitrin),

lipopeptides (e.g., bacillomycin), aminopolyols (e.g., zwittermicin A) and

(B) volatile antibiotics such as hydrogen cyanide (HCN), aldehydes, sulfide,
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ketones, and alcoholic compounds (Fernando et al. 2006). Some of the antibiotics

like 2,4-diacetylphloroglucinol (Shanahan et al. 1992), phenazine-1-carboxylate

(Chin-A-Woeng et al. 2001), pyoluteorin (Howell and Stipanovic 1980),

pyrrolnitrin (Thomashow and Weller 1988), and HCN are produced by Pseudo-
monas sp. (Hass and Defago 2005); bacillomycin (Volpon et al. 1999), kanosamine

(Milner et al. 1996), and iturin A (Constantinescu 2001) are produced by Bacillus
sp. (Fernando et al. 2006). Toluene, dimethyl disulfide, and terpenoid compounds

like α-pinene and limonene are the other volatiles produced by Burkholderia sp.
(Tenorio-Salgado et al. 2013).

11.3.2.2 Siderophore Production

Siderophores are low molecular weight peptide molecules with side chains and

functional groups acting as ligand for Fe3+ (Beneduzi et al. 2012). Siderophores are

also known as “iron carriers” and act as biocontrol agents by sequestering iron (Fe),

required for phytopathogens. By limiting the iron availability, siderophores inhibit

the growth of phytopathogens in immediate vicinity of plant and hence indirectly

protect plant from pathogen damage (Glick 2012). Siderophore-producing PGPR,

for example, Pseudomonas sp. and Enterobacter sp. (Gram-negative bacteria) and

Table 11.1 Examples of P-solubilizing microorganism and their effects on the plants

P solubilizer Plants Effect Reference

Bacillus
megaterium

Sugarcane

(Saccharum
officinarum)

Enhanced sugarcane and sugar yield,

P content in soil

Sundara

et al. (2002)

Bacillus sp. Banana cultivars

(Musa
paradisiaca)

Improved yield and mineral content,

fresh biomass (aerial and root),

aerial dry mass, diameter, and

foliar surface

Jaizme-Vega

et al. (2004)

Pseudomonas sp. Tomato (Solanum
lycopersicum)

Enhanced growth El-Tantawy and

Mohammed

(2009)

Pantoea eucalypti Slender trefoil

(Lotus tenuis)
Enhanced growth Castagno

et al. (2011)

Variovorax
paradoxus

Pea (Pisum
sativum)

Increased root-shoot biomass, sto-

matal conductance, enhanced

nutrient availability, and P

accumulation

Jiang

et al. (2012)

Burkholderia
multivorans
WS FJ9

Poplar (Populus
euramericana
cv.)

Increased height, root collar diame-

ter, biomass, P content

Li et al. (2013)

B. tropica KS04 Chili (Capsicum
frutescens L. cv.
Hua Rua)

Significant increase in height, fresh

weight, root and shoot dry

weight, as well as number of

flowers

Boonlue et al.
(2013)
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Bacillus sp. and Rhodococcus sp. (Gram-positive bacteria) (Saharan and Nehra

2011) also deprive native microflora from available iron and thus outnumber the

native microbes and exhibit plant growth-promoting effect (Kloepper et al. 1980).

11.3.2.3 Induced Systemic Resistance

Induced systemic resistance (ISR) is another indirect mode of action where PGPR

or nonpathogenic rhizobacteria act as stimuli, and in response, plants develop

enhanced resistance to pathogens. ISR involves actions of nonpathogenic bacteria

and is mainly dependent on jasmonic acid and ethylene signaling in plants

(Lugtenberg and Kamilova 2009). Some of the putative mechanisms responsible

for enhanced resistance include accumulation of phenolic compounds, increased

activity of defense enzymes, enhanced lignifications, etc. Many Pseudomonas sp.
and Bacillus sp. are recognized to act as biocontrol agents and protect plant from

pathogens through this mechanism (Kloepper et al. 2004). PGPR-mediated ISR

against bacteria, fungi, and viruses has already been reported (Niranjan et al. 2005).

11.4 Microbial Consortium

“Consortium” is a Latin word, which stands for partnership, association, or group,

that works for common interest. From the microbiological perspective, consortium

constitutes a group of compatible organisms belonging to different species in

contact with one another, implicated in different biological processes ranging

from sewage treatment to metabolic processes in rumen (Mark 2009). Two or

more microorganisms living in symbiosis can be called as consortium. Microbes

with different attributes can be used as consortium, which can work synergistically

promoting each other’s beneficial effects. Some of the PGPR consortium-related

studies are summarized in Table 11.2. A study involving N2 fixing,

R. leguminosarum bv. viceae (LB-4); P solubilizing, B. megaterium; and PGPR,

LK-786 (Kurthia sp.) and LK-884 (Pseudomonas diminuta) was carried out to

ascertain their effects on lentil (Lens culinaris) crop following single and dual

culture inoculation (Kumar and Chandra 2008). Maximum increase in dry weight,

yield, mineral uptake, and nodule number was reported in case of all microbial

combination as compared to dual combinations of Rhizobium+B. megaterium or
Rhizobium+LK-884/LK-786 (Kurthia sp.), whereas no positive effects were

observed in uninoculated controls. A similar study was carried out using consor-

tium of Burkholderia gladioli 10242, Enterobacter hormaechei 10240, Pseudomo-
nas synxantha 10223, and Serratia marcescens 10241, for their effect on the Aloe
vera plants. The result indicated augmented biomass as well as aloin-A content of

the plants (Gupta et al. 2012). An experimental study was conducted on the

evaluation of effects of PGPR consortium comprising FCA-8, FCA-56, and

FCA-60 of P. putida and arbuscular mycorrhizal fungi (AMF) on citrus (Citrus
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volkameriana) (Chiquito-Contreras et al. 2012). The study involved consortium

treatment with 50 % fertilization, whereas control involved no PGPR inoculation

with 100 % fertilization. Different parameters studied involved plant height, stem-

base diameter, root length and volume, biomass, and colonization; results so

obtained were similar to the effects obtained with control, suggesting that their

effectiveness is similar to fertilizers.

Besides agricultural crops, PGPR were also found effective in facilitating the

growth of flower crops (Kumari et al. 2013). One such study involved the combi-

nation of four PGPR (A. chroococcum, A. lipoferum, B. megaterium, and

P. fluorescens) on rose plants (Catharanthus roseus). Mixed inoculation enhanced

growth, vigor, nutrient content (P, K, and N by 2.34 %, 2.2 %, and 0.34 %,

respectively), and chlorophyll content (Lenin and Jayanthi 2012). Another com-

parative experiment involving single, double, and consortium inoculation of

A. chroococcum, P. fluorescence, and T. viride was carried out for chili crop

(Capsicum annum L.). Maximum growth and yield were recorded for consortium

cultures relative to single and double inoculation (Sateesh and Sivasakthivelan

Table 11.2 Examples of PGPR consortium effects on various crops

PGPR Crop/plant Effects Reference

Rhizobium+B. megaterium
or Rhizobium+LK-884

(P. diminuta)/LK-786
(Kurthia sp.)

Lentil crop

(Lens
culinaris)

Increased dry weight, yield,

mineral uptake, and nodule

number

Kumar and

Chandra

(2008)

A. brasilense strain Az39

and B. japonicum strain

E109

Soybean (Gly-
cine max)
and corn/

maize (Zea
mays)

Augmented germination rate,

shoot-root length, dry

weight, and nodulation

Cassan

et al. (2009)

A. lipoferum, P. fluorescens,
and P. putida

Maize

(Zea mays)
Improved biomass and yield Adjanohoun

et al. (2011)

PGPR strains FCA-8,

FCA-56, FCA-60 of

P. putida and AM-fungi

Citrus (Citrus
volkameria)

Plant height, stem-base diam-

eter, root length and vol-

ume, biomass, and

colonization similar to

fertilization

Chiquito-

Contreras

et al. (2012)

Different combinations of

PGPR

Artichoke

(Cynara
scolymus)

Increased shoot length, root

and shoot weight, vigor,

germination percentage,

and mean time of

germination

Jahanian

et al. (2012)

Pantoea cypripedii and
Enterobacter aerogenes

Chickpea (Cicer
arietinum)

Increased P uptake by plant Singh

et al. (2013)

Trichoderma viride,
P. fluorescence, and
A. chroococcum

Chili (Capsicum
annum L.)

Improved growth and yield Sateesh and

Sivasakthiv-

elan (2013)
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2013). Phosphate-solubilizing Pantoea cypripedii and Enterobacter aerogenes
used together increased P uptake by 53 % in chickpea crop compared to control

(Singh et al. 2013).

11.5 PGPR and Stress Alleviation

Different studies have suggested that such microorganisms can also divulge some

degree of tolerance to the plants thus imparting resistance to these plants. Tolerance

can be defined as microbe’s intrinsic property to encounter stressful conditions,

whereas resistance is microorganism’s ability to withstand stressful conditions by

certain mechanisms. Some of the experimental evidence indicates that micro-

organisms with tolerance/resistance abilities can help plants to successfully adapt

to different stressed situations. Therefore, the organisms endowed with tolerance/

resistance abilities can be used effectively as beneficial inoculants for enhancing

crop production in stressed/derelict soils (Khan et al. 2011; Milosevic et al. 2012).

Some of the mechanisms by which PGPR ameliorate stress situations are discussed

in the following section and are illustrated in Fig. 11.2.

11.5.1 Mechanisms and Role of PGPR in Stress Alleviation

11.5.1.1 Exopolysaccharide Secretion

Microorganisms belonging to different functional groups for example rhizobia

secrete exopolysaccharides (EPS), which provide resistance to cell against different

stressors and thus protect the microorganism from stress. The EPS also improve the

soil structure by forming macroaggregates with soil, which further increase the

water retention ability of soil (Alami et al. 2000). Macroaggregates uphold equili-

brium in aerobic and anaerobic conditions in soil and also ascertain gradual uptake

of nutrients from soil. In case of salt stress, these aggregates help by binding cations

making them unavailable to plants (Haynes and Swift 1990). The rhizobacteria

have the ability to form biofilms by secreting polysaccharides and proteins, the

matrix so formed limits the diffusion of compounds like plant growth hormones and

nutrients from the plant’s vicinity, thus promoting plant growth by alleviating stress

conditions (Timmusk et al. 2013).

11.5.1.2 Accommodation: Accumulation and Sequestration of Metals

Plant growth-promoting rhizobacteria produce metal-chelating agents, known as

siderophores, an iron-chelating agent, which can make the required iron available to

plants and hence prevent plants from becoming chlorotic and indirectly

11 Microbial Consortium of Plant Growth-Promoting Rhizobacteria Improves the. . . 269



ameliorating metal stress. The siderophores also bind to other metals like Mg, Mn,

and Cr and chelate the solubilized/leached metals (Akhtar et al. 2013). Siderophore-

producing PGPR can therefore be used to remove toxicants (metals) from metal

polluted soil (Mani et al. 2010). Along with metal stress, siderophore-producing

rhizobacteria also inhibit the phytopathogen (Kloepper et al. 1980; Glick 2012) as

discussed in Sect. 11.3.2.2.

11.5.1.3 Biotransformation: Conversion of Toxic Forms to Less Toxic

Forms

Microorganisms especially PGPR can help in relieving metal toxicity by

transforming highly toxic metals to less toxic forms or in forms more readily

accessible to plant roots (Khan et al. 2009). The conversion of metals involves

mainly a change in the valence state of metals, for example, change of organic

selenium to selenate or organo-selenium (Zayed et al. 1998) which can easily be

taken up by plants. This feature of PGPR has been well exploited in

SOIL
Toxic compounds

Cytokinin

ACC
deaminase

Volatiles

Siderophores

Antioxidants

Protective
compound

ABA

Ethylene Ion
translocation

Osmoprotection

Growth
promotion

Sequester
metal ions

Reduces
ROS

IAA

Non toxic

PGPR

Exopolysaccharide
Improved texture,
water retention and nutrients

Fig. 11.2 Stress alleviation modes of PGPR (modified from Yang et al. 2009). ABA abscisic acid,

IAA indole acetic acid, ROS reactive oxygen species
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phytoremediation technology for enhancing metal removal by plants (Jing

et al. 2007). Furthermore, rhizobacteria affect the adsorption/desorption of metals

by altering their chemical properties, pH, organic matter content, redox state, etc.,

consequently affecting their solubility and mobility (Gray et al. 1998). PGPR also

improve the efficiency of phytoremediation strategy of metal cleanup by increasing

the hyper-accumulating abilities of certain plants through their rapid growth in

metal stress (Varsha et al. 2011).

11.5.1.4 P Solubilization

The amount of P available to plants is very less as compared to total soil P pool. One

of the important attributes of PGPR is phosphate solubilization and the group of

microorganisms capable of converting inorganic P into soluble forms is known as

P-solubilizing microorganisms (Khan et al. 2007). Along with P assimilation, these

microorganisms release a fair amount of soluble P into soil which can be used as P

source by the plants. The most efficient PS bacterial strains are Pseudomonas (Das
et al. 2003) and Rhizobium (Sridevi and Mallaiah 2009), whereas Penicillium (Chai

et al. 2011) and Aspergillus (Singh and Reddy 2011) are the most powerful fungal

PS strains (Khan et al. 2010; Brahmaprakash and Sahu 2012).

11.5.1.5 Improves Plant Defense Mechanisms Under Stressed

Environment

Modulating Enzyme: 1-Aminocyclopropane-1-Carboxylate Deaminase

Under normal condition, plant maintains its homeostasis by producing a hormone

“ethylene” which plays important role in various developmental processes.

Under stress conditions, the amount of ethylene produced by plant increases

due to which it is also known as “stress ethylene.” At higher concentrations, it

decreases root and shoot growth and also induces defense responses of plant to

mitigate adverse effects. Plant growth-promoting rhizobacteria produce an enzyme

1-aminocyclopropane-1-carboxylate (ACC) deaminase, which degrades ACC, the

precursor for ethylene, into ammonia and α-ketobutyrate. Bacteria utilize ammonia

as N source thereby restricting the ethylene accumulation consequently rescuing the

plant growth from the stress (Khan et al. 2009). Also, PGPR synthesize growth

hormone IAA from tryptophan produced in plant root exudates which in turn

enhances both plant growth and activates enzyme ACC synthase involved in

ACC production. ACC so produced is then exuded from the plant roots and

acted upon by the bacteria (Selvakumar et al. 2012).
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Volatile Production

PGPR are known to produce volatile organic and inorganic compounds which can

affect the plant growth and resistance/tolerance against biotic and abiotic stresses

via different mechanisms. Some of the volatile compounds produced by different

PGPR include 3-hydroxy-2-butanone (acetoin) and 2,3-butanediol by B. subtilis
GB03 and B. amyloliquefaciens IN937a (Ryu et al. 2003) and C-13 hydrocarbon

tridecane by Paenibacillus polymyxa E681 (Lee et al. 2012). These volatile com-

pounds were found to affect the tissue-specific regulation of high-affinity K+

transporter 1 (HKT1), which is further involved in the regulation of Na+ homeo-

stasis in salt stress. The volatiles downregulate hkt1 in roots but upregulate them in

the shoot, lowering Na+ levels and recirculation of Na+ levels in plant (Yang

et al. 2009). Other mechanisms include enhanced iron uptake by upregulating

FIT1 (Fe-deficiency-induced transcription factor) during metal stress and produc-

tion of compatible solutes like betaine under oxidative stress (Farag et al. 2013).

These volatiles are also found to have negative effects on the plant growth under

certain circumstances (Bailly and Weisskopf 2012). Some of the volatiles involved

in stress resistance against biotic factors like pathogens have been already discussed

in Sect. 11.3.2.1.

Synthesis of Auxins and Similar Compounds

Microbial auxins can affect the plant’s auxins governed developmental processes

such as root development including root length, surface area, and number of root

tips. This root development further enables nutrient uptake by plants, thereby

improving plant health in the presence of inhibitory compounds or under stress

conditions (Egamberdieva and Kucharova 2009). Plant exudates contain trypto-

phan, which is when acquired by rhizobacteria converted to IAA. The microbial

IAA along with plant’s pooled auxins stimulates plant growth and proliferation

(Glick 1995).

Protective Compounds

Microorganisms are known to produce osmo-protectants such as proline, betaine,

trehalose, and glutamate which modulate their cytoplasmic osmolarity and hence

protect plants from stress conditions (Blanco 1994). Plant also produces protective

compounds or compatible osmolytes in response to stress conditions, mainly salt

stress. Some of these compounds include amino acids, imino acids, amides, pro-

teins, quaternary ammonium compounds, and polyamines (Carmen and Roberto

2011). Increased production of proline in response to stressors has been reported

(Lalelou et al. 2010; Marin et al. 2010) which plays a role in osmo-adaptation in salt

stress (Meloni et al. 2001), and as a molecular chaperone it protects and stabilizes

272 M. Panwar et al.



macromolecules like proteins during dehydration and also acts as a scavenger for

hydroxyl radical, thus protecting from osmotic stress (Csonka 1989; Upadhyay

et al. 2012).

Antioxidative Enzymes

Another mechanism of PGPR to counteract stress involves the production of ROS

scavengers. Enhanced production of ROS, such as H2O2, hydroxyl radicals, singlet

oxygen, and superoxide, ensues oxidative damage to DNA, proteins, and lipids.

This response is mainly an outcome of imbalance in production and scavenging of

ROS due to stress condition. Major ROS scavengers include catalase, superoxide

dismutase, and ascorbate peroxidase. PGPR, for instance, Serratia sp., Rhizobium
sp. (Han and Lee 2005), Bacillus sp., Arthrobacter sp. (Upadhyay et al. 2012),

Azospirullum sp., and Pseudomonas sp. (Baniaghil et al. 2013), are reported to

enhance the production of these antioxidant enzymes responsible for ROS degra-

dation/breakdown, thereby helping plants to ameliorate stress response and also

growth promotion (Kohler et al. 2009; Carmen and Roberto 2011).

Induced Systemic Tolerance

Similar to ISR for biotic factors, another term “induced systemic tolerance (IST)”

had been proposed for abiotic stress alleviation by PGPR. IST is defined as physical

and chemical changes elicited by PGPR in response to abiotic stresses such as salt

stress, drought stress, temperature stress, metal stress, or nutrition deficiency (Yang

et al. 2009). These microbial communities follow different mechanisms such as

production of (1) volatiles to modulate Na + homeostasis under salt stress (Farag

et al. 2013); (2) abscisic acid causing closure of stomata, thus preventing water loss

in drought stress; (3) antioxidant enzymes like superoxide dismutase and catalase,

which degrade the reactive oxygen species, bringing down cell damage

(Selvakumar et al. 2012); (4) IAA, cytokinins, and other metabolites stimulating

root growth, thus helping nutrient acquisition combating nutrient deficiency; etc.

(Yang et al. 2009). Some of the PGPR reported for IST include B. cereus,
B. subtilis, Serratia sp. (Wang et al. 2012), Paenibacillus polymyxa (Timmusk

and Wagner 1999), Achromobacter piechaudii (Mayak et al. 2004), etc.
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11.6 PGPR Consortium Application in Plants Growing

in Stressed Soils

11.6.1 Drought Stress

The consortia of Paenibacillus polymyxa (DSM 36) and P. polymyxa Loutit

(L) along with Rhizobium tropici (CIAT 899) significantly increased growth, N

content, and nodulation of common bean (Phaseolus vulgaris) growing under

drought stress conditions (Figueiredo et al. 2008) compared to plants inoculated

only with Rhizobium. However, negative effects of drought stress on the measured

parameters were observed suggesting that the mixture of bacteria had a positive

mitigating impact on stressor. Single and multiple inoculations with different

Pseudomonas sp. were carried out to study the effect on Asparagus (Asparagus
officinalis) cultivars (Guelph millennium and Jersey giant) under both drought and

flood stress up to 8 weeks. The results so obtained were significantly convincing in

one of the cultivars in case of both single and multiple inoculation (Liddycoat

et al. 2009). Five drought-tolerant bacterial strains, namely, Pseudomonas
entomophila strain BV-P13, P. monteillii strain WAPP53, P. putida strain

GAP-P45, P. stutzeri strain GRFHAP-P14, and P. syringae strain GRFHYTP52,

were used to inoculate maize grown under water-deficit conditions. The PGPR

inoculation reduced the drought stress damage and improved plant biomass, leaf

water potential, relative water content, aggregation stability, sugars, amino acids,

and proline content. The effects also included decreased electrolyte leakage and

water loss from leaves (Sandhya et al. 2010). In other experiment, three plant

growth-promoting strains—B. cereus AR156, B. subtilis SM21, and Serratia sp.
XY21—decreased wilting symptoms and leaf monodehydroascorbate in cucumber

(Cucumis sativus) plant, while they showed 3.45-fold increase in proline content

along with increased SOD activity, supporting the hypothesis of induced systemic

tolerance in drought stress (Wang et al. 2012). The combined application of PGPR

(A. brasilense, B. lentus, and Pseudomonades sp.) improved antioxidant activity

and also indicated better photosynthetic capacity and improved photosynthetic

pigments in Basil (Ocimum basilicum) (Heidari and Golpayengani 2012), while

the combined inoculation of different PGPR strains increased superoxide dismutase

and peroxidase activity along with better chlorophyll content and transpiration in

runner bean plants (Phaseolus coccineus L.) (Stefan et al. 2013).

11.6.2 Salt Stress

Effects of dual inoculation of Serratia sp. and Rhizobium sp. on the growth and

other parameters of lettuce plant grown under salt stress were variable. PGPR

negated the effects of salt stress on the antioxidant enzymes and on photosynthesis,
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mineral content, and growth (Han and Lee 2005). And hence, the consortia of

microbial cultures showed both growth-promoting activity and the stress alleviation

activity. Another greenhouse study was carried out on two legumes like common

bean and soybean under moderate salt conditions (25 mM) where rhizobial strains

R. tropici (CIAT899) or R. etli (ISP42) and Ensifer fredii (Sinorhizobium) SMH12

and HH103 along with PGPR Chryseobacterium balustinumAur9 strains were used

both individually and in combination to determine their effects on nodulation and

growth. The coinoculation significantly increased the nodule primordial formation

in common bean and showed better nodulation and shoot-root growth in both crops

(Estevezi et al. 2009). In yet other report, the coinoculation of Pseudomonas sp. and
Rhizobium sp. showed maximum increase in growth (dry weight and height),

mineral accumulation, ion uptake, chlorophyll content, and proline content in

maize (cv. Agaiti 2002 and Av 4001) plants grown under salt stress compared to

single inoculations of either culture (Bano and Fatima 2009). The consortia of EPS

producing salt-tolerant PGPR strains comprising of Bacillus sp., Burkholderia sp.,
Enterobacter sp., Microbacterium sp., and Paenibacillus sp. increased the biomass

of wheat (Upadhyay et al. 2012). The mixture of salt-tolerant bacteria such as

strains of Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08),
and Haererohalobacter (JG-11) augmented the water content, metal ion ratio K+/

Na+, and mineral and auxin content and decreased the electrolyte leakage and

oxidative damage in peanut (Arachis hypogaea) plants compared to uninoculated

control plants (Shukla et al. 2012). In a similar study, Nadeem et al. (2013)

observed a significant increase in germination rate and percentage, growth, yield,

and nutritional status of wheat inoculated with consortia of Enterobacter cloacae,
Pseudomonas putida, P. fluorescens, and Serratia ficaria, when grown under

saline-stressed environment. The co-culture of Pseudomonas syringae Mk1,

P. fluorescens Mk20, and P. fluorescens Biotype G Mk25 in combination with

R. phaseoli (M1, M6, and M9) increased the shoot weight, root weight, number of

pods, and total dry weight of mung bean plants by 145 %, 173 %, 150 %, and 269 %,

respectively, when grown in saline condition. Furthermore, the seedling growth,

nodulation, and mineral uptake were significantly enhanced following mixture of

PGPR where there was a substantial reduction in salt stress due to microbial

application (Ahmad et al. 2012a; Aamir et al. 2013). Two bacterial strains

A. brasilense and Pantoea dispersa showed a significant increase in dry weight

and K+/Na+ level of salt-sensitive sweet pepper (Capsicum annuum) compared to

uninoculated controls. The net assimilation rate remained unaffected even at higher

salinity level (80 mM) in case of inoculated plants. Inoculated plants were also

found to have higher stomatal conductance at higher stress (Amor and Cuadra-

Crespo 2012).
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11.6.3 Metal Stress

Plant growth-promoting attributes of metal-tolerant Flavobacterium sp.,
Rhodococcus sp., and Variovorax paradoxus were found to stimulate the root

growth of rapeseed both in the presence and the absence of Cd, supporting their

role as promoters under metal-stressed situation (Belimov et al. 2005). A study on

the effect of metal-tolerant PGPR Burkholderia sp. CMBM40 and

Methylobacterium oryzae CMBM20 inoculation on tomato plants grown in Ni-

and Cd-treated soil was carried out. The PGPR were found to decrease the metal

uptake by plants and also enhanced the plant growth by producing growth hor-

mones (Madhaiyan et al. 2007). Consortia of Bradyrhizobium sp. with metal-

tolerant PGPR Pseudomonas sp. and Ochrobactrum cytisi significantly improved

biomass, yield, and N content of metal accumulating Lupinus luteus plants but they
decreased metal accumulation within plants (Dary et al. 2010). Likewise, the metal-

tolerant PGPR consortia significantly increased root length, shoot length, biomass,

and chlorophyll content of mung bean by 138 %, 88 %, 256 %, and 54.1 %,

respectively, when grown in chromium-treated soils (Singh et al. 2010). Similar

enhancement in some cereals, for example, wheat following metal-tolerant PGPR,

B. thuringiensis and P. fluorescens (Shahzadi et al. 2013) and A. brasilense and

A. chroococcum (Janmohammadi et al. 2013), has been reported. The PGPR

Ralstonia eutropha (B1) and Chryseobacterium humi (B2) inoculated sunflower

(Helianthus annuus) plants when grown in Zn- and Cd-contaminated soil had

decreased metal concentration inside plant tissues, suggesting that metal-resistant

PGPR might have served as effective stabilizers for plants grown in metal-

contaminated soil (Marques et al. 2013).

11.7 Conclusion

Among various abiotic stresses, drought, salinity, and metal pollution are the most

stronger and stringent ones, which restrict the overall performance of plants grow-

ing in such derelict soils. The sole or composite (consortia) application of PGPR is

an emerging area of interest because these microbes have been found to enhance the

growth and development of plants both under conventional and stressed environ-

ments in different production systems across varying ecological niches. Moreover,

microbial inoculation is cost effective, environmentally friendly, and easy option

for farm practitioners. However, before they are made commercially available,

more field trials are needed to get the full benefit of this strategy in combating

stress-related problems caused to agronomically important crops. Considering the

available information, it is believed that the practice of PGPR consortium appli-

cation is likely to grow faster and agricultural practices will slowly be able to

shifting its focus from fertilizer to efficacious use of PGPR.
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Chapter 12

Inoculation Impact of Phosphate-Solubilizing

Microorganisms on Growth

and Development of Vegetable Crops

Asfa Rizvi, Md. Saghir Khan, and Ees Ahmad

Abstract Vegetables are one of the important food components of dietary systems

in many countries including Asian regions. It provides some of the essential

nutrients such as carbohydrates, proteins, and fats and therefore plays a critical

role in the human health. Vegetables while growing in soil require significant

amounts of phosphorus for better biological growth and optimum yields. The

soluble and available forms of phosphorous in soil are, however, limited and not

accessible for uptake by vegetable crops. To this end, apart from chemical phos-

phatic fertilizers, one strategy to provide phosphorus to vegetable crops is the use of

phosphate-solubilizing microorganisms, which are ubiquitous and both inexpensive

and safe to the environment. Phosphate-solubilizing microorganisms secrete

organic acid which in turn solubilizes the complex forms of phosphorus and

makes it available to vegetable plants, besides exhibiting other growth-promoting

activities. Here, the impact of phosphate-solubilizing microorganisms onto the

growth and yield of vegetables is discussed and considered. This approach of

using PS microorganisms in vegetable cultivation is likely to help in reducing, if

not completely eliminating, the use of synthetic fertilizers in vegetable production

across different regions of the world.

Keywords PSM • Vegetables • Synthetic fertilizers • Brinjal • Potato • Tomato

12.1 Introduction

Vegetables are the source of several important nutrients and form an intricate part

of our daily routine diets. For proper development and higher yields, vegetable

crops grown in different production systems rely hugely on various plant nutrients
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(Solaiman and Rahbbani 2006) including the major element phosphorous (P). Even

though the vegetables require high amounts of P for its luxuriant growth and

development, the accessibility of P to such crops is restricted due to its rapid

fixation ability (Khan et al. 2007; Bushman et al. 2009). Therefore, the deficiency

of soluble P in soil has become one of the most limiting factors in crop production in

different agroclimatic regions. The plants obtain their P requirements from the soil

pool where it occurs as inorganic P, produced as a result of weathering of parent

rock or as organic P derived from decayed plants, animal remains, or microorgan-

isms. Mineral forms of P present in soil are apatite, hydroxyapatite, and oxyapatite,

while organic P occurs chiefly in the form of inositol phosphate. Other organic P

compounds in soil are in the form of phosphomonoesters, phosphodiesters (includ-

ing phospholipids, nucleic acids), and phosphotriesters (Paul and Clark 1988).

Although P is present in soil in abundance, yet it is the least soluble and majority

of it is immobilized and rendered unavailable for plant uptake. Plants acquire P

from soil solution as phosphate anions which are extremely reactive and are

immobilized through precipitation with cations such as Ca2+, Mg2+, Fe3+, and

Al3+. And hence, the soluble fraction of P within the soils is usually very low

relative to other mineral nutrients.

Deficiency of P is a common and quite widespread problem among many soils

including the Indian soils, because of which, the growth of vegetable suffers

heavily. Phosphorous, therefore, needs to be applied frequently and externally in

the form of phosphatic fertilizers in order to maintain a lavish crop growth. The

chemical fertilizers when used, however, also become rapidly immobilized soon

after application and thus remain unavailable to the plants (Sanyal and Datta 1991;

Rodriguez and Fraga 1999). In this context, soil microorganisms play an important

role in phosphate solubilization by mineralizing the organic P in the soil and thus

making it available to the plants. Some microbes, isolated from various

rhizospheric soils including those of vegetable rhizospheres, popularly known as

the phosphate-solubilizing microorganisms, have this ability of solubilizing insol-

uble mineral P by various mechanisms (Sung-Man et al. 2010; Varsha et al. 2010;

Sagervanshi et al. 2012; Sharma et al. 2012; Alia et al. 2013; Onyia and Anyanwu

2013; Karpagam and Nagalakshmi 2014). Some of the important genera of

phosphate-solubilizing bacteria include Achromobacter, Aerobacter, Alkaligenes,
Bacillus, Pseudomonas, Serratia, and Xanthomonas (Li 1981; Sharma et al. 2005;

Chen et al. 2006; Ivanova et al. 2006). Besides providing P, PSM also facilitate the

growth of vegetables by other mechanisms (Jeon et al. 2003; Lucy et al. 2004;

Egamberdiyeva 2005; Calvo et al. 2010; Kang et al. 2010; Sung-Man et al. 2010;

Dastager et al. 2011; Sagervanshi et al. 2012).
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12.2 Importance of Vegetables in Human Dietary System

Vegetables are considered a cheap source of energy as compared to other foods

(Alertor et al. 2002; Hussain et al. 2009) but serve as a rich source of essential

nutrients such as carbohydrates, carotene, protein, vitamins, calcium, iron, ascorbic

acid, dietary fiber, and concentration of trace minerals (Salunkhe and Kadam 1995).

Major nutritional components of some of the widely consumed vegetables are listed

in Table 12.1. Indeed, vegetables are one of the important food components of

human diets world over and have numerous health benefits. Cruciferous vegetables,

for instance, contain protein, carbohydrate, and vitamins (ascorbic acid, folic acid,

tocopherols, and provitamin A). The cruciferous vegetables contain both major

essential mineral elements such as Ca, K, P, and Na, Mg, etc. (Singh et al. 2001),

while Fe, Se, Cu, Mn, and Zn are micronutrients found in these vegetables. Among

the root vegetables, carrot is rich in carotenoids and dietary fibers with high levels

of several other functional components that aid in improving human health. Spin-

ach, on the other hand, has a high nutritional value and is extremely rich in

antioxidants and has vitamin A, vitamin C, vitamin E, vitamin K, Mg, Mn, folate,

betaine, Fe, vitamin B2, Ca, K, vitamin B6, Cu, protein, P, Zn, niacin, Se, omega-3

fatty acids, and folic acid. Spinach also has a high Ca content. Potato contains

several vitamins and minerals along with carbohydrate (starch) (�26 g/medium-

sized potato). The starch of potato has the similar physiological effects and health

benefits as fiber and offers protection against colon cancer, improves glucose

tolerance and insulin sensitivity, lowers plasma cholesterol and triglyceride con-

centrations, and reduces even fat storage. Tomatoes on the contrary are versatile

vegetable in daily dietary practice and contain lycopene, one of the most powerful

natural antioxidants. Lycopene has also been shown to protect against oxidative

damage in many epidemiological and experimental studies. In addition to its

antioxidant activity, other metabolic effects of lycopene have also been demon-

strated. Tomato consumption has been associated with decreased risk of breast,

head, and neck cancers and might be strongly protective against neurodegenerative

diseases. In general, diets rich in these foods are associated with a lower risk of the

chronic disease of cancer (Hennekens 1986) and heart diseases (Vanpoppel

et al. 1994). Apart from human health benefits, vegetables in general improve the

quality of the soil where they are growing (Hussain et al. 2010).

12.3 Importance of P to Some Vegetable Crops

Worldwide crop production remains limited due to low phytoavailability of P (Abd

El-Salam et al. 2005; Khan et al. 2010). Therefore, it is required at regular basis to

overcome the P deficiency to crop plants in P-deficient soils. Among different

vegetables, potato, for example, has a relatively high P requirement, but it uses

soil P inefficiently due to the limited accessibility of P. However, from the primary
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growth until the maturity stage, an adequate supply of P is required by the plant

(Grant et al. 2001). When sufficient concentration of P is taken up by potato, it

promotes rapid canopy development, root cell division, tuber set, and starch

synthesis in potato. An ample amount of P is therefore essential for optimizing

the tuber yield, nutritional quality, and resistance of potato to some diseases also.

Other studies have also demonstrated a significant increase in yield, number of

tubers, and tuber size distribution due to fertilizer P application (Jenkins and Ali

1999; Maier et al. 2002; Sanderson et al. 2003). Even though an inverse relationship

between tuber number and tuber size is reported (Knowles and Knowles 2006), an

increase in tuber number with P fertilization has shown both an increase and

decrease in tuber size (Freeman et al. 1998; Jenkins and Ali 1999). Also, P is an

important constituent of nucleoproteins and nucleic acids of other vegetables such

as brinjal (Parihar and Tripathi 2003). Onion (Allium cepa L.) is yet another most

important commercial bulbous vegetable which requires sufficient amount of P

among other macro- and micronutrients, from very early stages of growth for

optimum production (Grant et al. 2001).

12.3.1 Relevance of Phosphate-Solubilizing Bacteria
to Vegetable Crops

Vegetable crops require highest quantity of N, P, and K, while other nutrients,

including Fe, Cu, Mn, and Zn, are needed in much smaller amounts. Apart from N

and P, majority of these nutrients are most likely available in the soil in adequate or

even excessive amounts. When nutrients are not needed by vegetables yet they are

added to soil, may lead to deficiencies of other nutrients and can result into nutrient

imbalance within soils. For example, when P is applied, but not needed, it can kill

off the symbiotic mycorrhizal-forming fungi required by the plant and reduce the

ability of vegetables to absorb iron and other micronutrients. Similarly, excess soil

P also shuts down the plant’s ability to produce phytochelates, organic molecules

produced by roots to increase its iron uptake. Considering the cost and some side

effects of excessive application in vegetable cultivation, there is an urgent need to

Table 12.1 Nutritional value of some common vegetables

Nutrient components (g/100 g)

Vegetables

Brinjal Cabbage Tomato Potato

Energy (kcal) 25 25 18 77

Carbohydrate 5.88 5.80 3.9 17.47

Protein 0.98 1.28 0.9 2.00

Fat 0.18 0.10 0.2 0.10

Dietary fibre 3.00 2.50 1.2 2.20

Sugars 3.53 3.20 2.6 15.44

Source: USDA Nutrient Database
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protect the vegetable crops from deleterious impact of chemical fertilizers. In this

regard, bacteria possessing the capability to solubilize/mineralize insoluble/organic

forms of P, known as phosphate-solubilizing bacteria (PSB), have provided some

solutions to the expensive synthetic P fertilizers (Khan et al. 2009, 2010; Calvo

et al. 2010; Madgaonkar and Lakshman 2013). Phosphate-solubilizing bacteria

isolated from different ecological habitats have been used for improving crop

production including vegetables (Han and Lee 2005; Turan et al. 2007;

El-Tantawy and Mohamed 2009) since 1903 (Khan and Joergensen 2009). The

PSB are ubiquitous with variation in forms and population in different soils. These,

PS bacteria are being used as biofertilizer since the 1950s (Kudashev 1956;

Krasilinikov 1957) to supply soluble P to vegetable crops in an environment

friendly and sustainable manner (Khan et al. 2007) by production of organic

acids (solubilization) or by catalyzing organic P by enzymes (mineralization)

(Khan et al. 2009, 2013).

12.4 Examples of Effects of PS Bacteria on a Few Notable

Vegetable Crops

12.4.1 Brinjal

Brinjal (Solanum melongena L.) is one of the most popular and widely grown

vegetables in the world. Generally, solanaceous vegetables require larger quantities

of major nutrients like N, P, and K for optimum yields. In this context, PSB strain

has been used to provide P to plants (Han and Lee 2005; Turan et al. 2007). The PS

bacterium Bacillus megaterium, for example, when used as microbial inoculant

against brinjal plants grown in nutrient-deficient soils, resulted in a higher P

availability in the soil, and consequently there was more uptake of P by brinjal

plants leading eventually to enhanced growth. Furthermore, the shoot and root dry

weight of eggplants were increased substantially by 30 and 27 %, respectively, due

to sole application of PSB or inoculation combined with RP after 30 days of

planting. A significant increase in plant height, dry weight, and rate of photosyn-

thesis was also observed following PSB application. Also, photosynthetic rates

were enhanced by 12 % under the influence of PSB inoculation. From this study, it

was suggested that Bacillus megaterium could be used as a biofertilizer to enhance

various growth parameters and yield of eggplant in P-limited soils (Han and Lee

2005). Single and composite inoculation effects of some other PSB on two varieties

of brinjal, viz., “Muktajhuri” and “VNR60,” were found to be greatly variable.

There was a significant positive effect of PSB on the vegetative growth of brinjal

plants, and hence, an increase in fruit yield was observed when compared with

uninoculated control. The PSB isolates when used either alone or in combination

had a pronounced impact on growth and yields. However, the tripartite combina-

tions of all the three P solubilizers resulted in highest crop yield compared to single
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inoculation of PSB. In summary, there was an overall improvement in average plant

height, plant canopy, and other measured yield parameters when the brinjal culti-

vars were inoculated with the PSB strains, indicating a clear-cut role of PS bacteria

in the development of eggplants (Roy and Sengupta 2008).

12.4.2 Potato and Tomato

Globally, approximately 40 % of world’s land has low crop production efficiency

especially for potato because its roots have limited access to P in the soil (Igual

et al. 2001). Moreover, potato needs high amounts of P because of its high biomass

producing ability. In order to circumvent this P deficiency, chemical fertilizers are

used, but due to rapid fixation ability, P is not available for consumption by potato

plants. PSM here play an important role and supply P to potato by secreting certain

organic acids (Rashid et al. 2004; Uma and Sathiyavani 2012). Three PS bacterial

strains, namely, Pantoea agglomerans,Microbacterium laevaniformans, and Pseu-
domonas putida, when used singly or in combination against potato (Solanum
tuberosum), demonstrated a positive response under three sets of experiments,

i.e., laboratory, greenhouse, and fields. The combinations of either

P. agglomerans or M. laevaniformans strains with P. putida led to higher biomass

and potato tuber growth in greenhouse and in field trials. This increase was

attributed to the fact that mixture of an acid- and a phosphatase-producing bacte-

rium might have allowed the simultaneous utilization of both inorganic and organic

P compounds by potato plants. On the contrary, the Pi levels of soil or application of

chemical Pi fertilizer, however, did not cause much difference in potato yields. Of

all the three PSB, P. agglomerans significantly increased the growth and yield of

potato plants by about 20–25 % (Malboobi et al. 2009). Likewise, the dry weight of

creole potato roots, and the soil available N, showed better results with the

inoculation of 50 % of the inoculum consisting of PSB (Pseudomonas cepacia,
Xanthomonas maltophilia, Enterobacter cloacae, and Acidovorans delafieldii, for-
merly called P. delafieldii) and four strains of Azotobacter chroococcum plus 50 %

of chemical fertilizer. A dual inocula of PSB and A. chroococcum resulted in

significant production of “criolla” potato, Yema de Huevo variety (Solanum
phureja), at a level matching that of crops grown solely with 100 % NPK fertilizer.

Furthermore, approximately 7.4 % reduction in costs of production was observed

following microbial inoculation (Faccini et al. 2007). According to Naderi

et al. (2012) in a follow-up study, the tuber number per plant, stem number per

plant, and plant height of potato were not affected, but the PSB application had

significant effects on tuber formation (yield) and tuber mean weight. Leaf area

index (LAI), crop growth rate (CGR), and relative growth rate (RGR) were all

higher in the first stage of growth due to PSB application which further increased at

later stages of plant growth. Among all treatments, spraying PSB on the soil treated

with 100 kg/ha P chemical fertilizer displayed the best production of potato,
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suggesting that this combination of fertilizer and PSB could serve as a sound

strategy for sustainable production of potato in any conducive environment.

Tomato (Lycopersicon esculentum Mill) is the other important vegetable crop,

which contains some important minerals and vitamins. Tomatoes, eaten freely

throughout the world, are believed to benefit the heart among other things. Lyco-

pene is one of the most powerful antioxidants found in tomato, and, when cooked,

tomatoes have been found beneficial in preventing prostate cancer. The NPK are the

most important nutrients supporting its growth, while deficiency of any one of these

nutrients limits growth and yield. To increase the availability of P for plants, large

amounts of phosphatic fertilizer are used on a regular basis. However, due to

reasons explained in the other section (Sect. 12.3.1), PS microorganisms are

considered to supply P to tomato plants in a more economical and hazard-free

manner. For example, the PS bacteria isolated from tomato rhizosphere efficiently

promoted the growth of tomato plants under laboratory conditions. Moreover, shoot

length, root length, fresh weight, dry weight, and P content of the plants were

increased following PSB application over control. The concentration of available P

in rhizospheric soil collected after 30 days growth of tomato plants was higher in

rhizospheric soil samples of plants bacterized with PSB over control. The inocu-

lated tomato plants accumulated more P than control plants. Subsequently, the

PSB-inoculated plants were healthier and were protected well from diseases like

Fusarium wilt and early blight, and hence, the overall disease incidence was

significantly decreased in the inoculated plants (Hariprasad and Niranjana 2009).

Also, two PS bacterial isolates (Pantoea agglomerans and Burkholderia anthina) in
a pot experiment under greenhouse conditions remarkably enhanced plant height,

root length, shoot and root dry weight, P uptake of tomato plants, and available P

content of soil compared to the control. The enhancement was more pronounced in

co-inoculation of PSB strains with TCP. It was, therefore, concluded that the PSB

strains possessed greater potential to be developed as biofertilizers for enhancing

soil fertility and concurrently the health of tomato plants (Walpola and Min-Ho

2013) Also, the impact of Bacillus application along with fertilizer treatment on

growth and phosphorous content of tomato was studied. Similar increase in tomato

growth and yields following Pseudomonas (El-Tantawy and Mohamed 2009) or

other PSB inoculation is reported (Awasthi et al. 2011).

12.4.3 Cucumber and Pepper

The impact of a P solubilizer Bacillus megaterium var. phosphaticum on cucumber

and pepper in nutrient-deficient soils was variable, but this strain enhanced nutrient

P uptake from the soil and promoted the growth of plants. The availability of P

increased further for plants inoculated with PSB when applied with RP (Han and

Supanjani 2006). Plant growth-promoting rhizobacteria (Pseudomonas sp.), PS

biofertilizer prepared from Pseudomonas putida strain P13 and P. agglomerans
strain P5, and chemical fertilizers were used in a separate experiment to evaluate
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their effect on yield and yield components of cucumbers under field environment.

The results clearly showed that the mixture of PGPR (Pseudomonas sp.), strains of
P. putida and P. agglomerans, and chemical fertilizers demonstrated a profound

increase in length, fresh and dry weight of roots and shoots, and yield of cucumber

plants (Isfahani and Besharati 2012). Bacterial cultures, for instance, Pseudomonas
sp., exhibiting high PS ability isolated from the rhizosphere soil and root cuttings of

bush black pepper (Piper nigrum L.) when used in combination with N2 fixing

Azospirillum sp. and VAM showed additive effect on black pepper under green-

house trials and reflected their potentiality as efficient P solubilizer for black pepper

growing in soils (Ramachandran et al. 2007). In a similar way, a Gram-positive,

rod-shaped potential PSB Bacillus strain which shared highest sequence similarity

to Bacillus tequilensis NRRL B-41771T (99.5 %) produced good amount of IAA

and was positive for siderophore production. The seed inoculation with this strain

(NII-0943) resulted in significantly higher root initiation in black pepper cuttings

grown under pot experiments. The soil N and P and P and N uptake by inoculated

plants were also enhanced significantly following bacterial inoculation (Dastager

et al. 2011).

12.5 Conclusion and Future Prospects

Even though phosphorus is an essential nutrient required for proper growth and

development of vegetable plants, it is generally unavailable due to its rapid fixation

ability with soil constituents. No doubt, PSM in this context can act as a better and

viable substitute and may supply an ample quantity of P to vegetable crops in an

inexpensive way. Therefore, researchers need to identify more and more potentially

sound PSM so that they could be developed as microbial P inoculants for raising the

production of vegetables in eco-friendly way under different agroecological

regions. Broadly, the use of PSB in vegetable cultivation has genuinely provided

an exciting and meaningful option for enhancing its production and simultaneously

preserving the inherent characteristics of diverse agroecosystems from the unpleas-

ant shock of synthetic fertilizers. The success of PSB application, however, depends

on selection and delivery of quality PSB inoculants, which requires considerable

attention of the scientists to overcome such challenges.
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