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Abstract Losses in biodiversity critically impact the ability of ecosystems to pro-

vide critical services ranging from carbon sequestration and food production to the

maintenance of soil fertility. The maintenance of biodiversity is thus essential for

human well-being and a sustainable future. Since landscape diversity often relates

to species biodiversity, considering several ecological levels from species commu-

nity diversity to genetic diversity, measuring landscape heterogeneity, is an efficient

and relatively cheap way of providing biodiversity estimates over large geographi-

cal areas. In this study we will demonstrate the power of using remotely sensed data

to estimate landscape heterogeneity and locate diversity hotspots, allowing effective

management and conservation of the landscape.

1 Introduction

It is worth noting that the assessment of species diversity over relatively large areas

is a challenging task. Compiling complete inventories has been hampered by the im-

mense physical effort required for field estimates, and despite such effort, inaccurate

estimates of diversity may result from changes in species composition through time.
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Yet it is critically important to assess and monitor changes in species diversity

for effective conservation. Losses in biodiversity critically impact the capabil-

ity of ecosystems to provide critical services ranging from carbon sequestra-

tion and food production to the maintenance of soil fertility (Cardinale et al.

2012). Thus the maintenance of biodiversity is essential for human well-being

and a sustainable future (Naeem et al. 2009; Nagendra et al. 2013).

New approaches have been proposed to overcome these issues, using landscape

heterogeneity measured by the spatial variation of remotely sensed spectral signal

as a proxy for species diversity (see Rocchini et al. 2010 for a review). The hetero-

geneity of the Earth’s surface is closely related to physical and ecological diversity

(Nagendra and Gadgil 1999; Gillespie et al. 2008). Since landscape diversity of-

ten relates to species biodiversity considering several ecological levels from species

community diversity to genetic diversity, measuring landscape heterogeneity is an

efficient and relatively cheap way of providing biodiversity estimates over large ge-

ographical areas. Depending on the study objectives, species diversity can also be

modelled at appropriate scales in time and space. This is true in light of the Spec-

tral Variation Hypothesis (Palmer et al. 2002; Rocchini 2007), which assumes that

the higher the habitat heterogeneity, the higher will be the species diversity therein.

Depending on the scale and the habitat being considered, the Spectral Variation Hy-

pothesis can be expected to hold true in many cases.

The availability of satellite-derived data with high spatial (IKONOS, Orbview-3,

BGIS-2000 (Balls Global Imaging System-2000), RapidEye) and spectral resolution

(CHRIS (Compact High Resolution Imaging Spectrometer), Hyperion, GLI (Global

Imager), MERIS (Medium Resolution Imaging Spectrometer), and MODIS (Mod-

erate Resolution Imaging Spectrometer)) together with long term programmes such

as the Landsat programme makes it feasible to study all terrestrial regions of the

globe up to a resolution of few meters.

Free and Open Source tools (allowing the access to the source code and its peer-

review) for assessing landscape heterogeneity at different spatial scales and in dif-

ferent environmental conditions (e.g. different habitats with divergent entropy gra-

dients) are under development (e.g. Rocchini et al. 2013). Such tools may help to

identify biodiversity hotspots from remotely-sensed and/or geographical and/or cli-

matic data, which could help to focus field-based campaigns in a more efficient way

in terms of time and costs, based on the application of best-fit-based parameters at

appropriate spatial scales.
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2 Information theory applied to the quantification of landscape
heterogeneity

The most popular metrics for entropy measurement are derived from information

theory, which measures the disorder contained in a system (Margalef 1958). In par-

ticular, consider a universe of entities u (e.g. pixels in a satellite image), each of

which can be represented as a tuple z(u)—s(u), where z(u) = property of the uth

entity related to its s(u) spatial component (Goodchild et al. 1999).

Most measures of spectral diversity that have been proposed thus far are based on

either i) the Shannon entropy index (Shannon 1948; see also Bolliger 2005; Ricotta

2005) H ′ = −∑ p× ln(p) with 0 ≤ H ′ ≤ ln(N), where p is the relative abundance

of each spectral reflectance value (DN) and N is the total number of possible values,

or ii) reversed dominance, derived from the Simpson Dominance index D = ∑ p2

with 0 ≤ D ≤ 1 (Simpson 1949), as 1−D (Simpson Diversity index). Both H ′ and

1−D will increase if the DN values are equally distributed with no DN value being

dominant with respect to the others.

However, Nagendra (2002) and Rocchini and Neteler (2012) reported several

problems with entropy based metrics, that is, a single index of diversity was not

useful for either distinguishing different ecological situations, or for discerning dif-

ferences in richness or relative abundance. This is because areas differing in richness

or relative abundances of reflectance values (DNs) may share similar Shannon in-

dex values. Instead, coupling such entropy- or reversed-dominance-based metrics

with indices taking into account evenness would dramatically increase the infor-

mation content of such metrics. Among these, the mostly widely used index is the

Pielou evenness index J = −∑ p×ln(p)
ln(N) (Pielou 1969) with 0 ≤ J ≤ 1, which takes

into account the maximum diversity given the same number of DNs and thus can be

rewritten as J = H ′
H ′

max
(see also Ricotta and Avena 2003 for a review).

As demonstrated by Ricotta and Avena (2003), each index increases/decreases

in a different manner depending on the relative array of abundances being consid-

ered. Hence, one could under- or over-estimate entropy/diversity depending on the

metric being used. Diversity cannot be reduced to single index information, since

one can never capture all aspects of diversity in a single statistic (Gorelick 2006).

As an example, Nagendra (2002), dealing with the Shannon H ′ index and the Simp-

son diversity index 1−D, reports the case of discordant diversity patterns obtained

by considering different indices. Such information may remain hidden if only one

index is considered. Thus, following O’Neill et al. (1988) in a pioneer study on the

landscape indices, a restricted set of non-redundant indices could reach significant

aspects on the spatial patterns.

In this view, generalised entropy based algorithms for entropy calculation

could provide a solution to such problems since they encompass a contin-

uum of diversity measures by varying one of few parameters in their formula.
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As an example, Rényi (1970) proposed a generalised entropy:

Hα =
1

1−α
ln(∑ pα) (1)

where p=relative abundance of each spectral reflectance value (DN).

Such measure is extremely flexible and powerful since many popular di-

versity indices are simply special cases of Hα .

For instance, for α=0, H0 = ln(N) namely the logarithm of richness (N=number

of DN values) or the maximum Shannon entropy index (Hmax) which is used as the

denominator of the Pielou index, while for α=2, H2 = ln 1
D where D is the Simp-

son Dominance index. For α=1 the Rényi entropy is not defined and its derivation,

H1=Shannon’s entropy H ′, is based on l’Hôpital’s rule of calculus (Ricotta 2005).

While traditional metrics supply point descriptions of diversity, in Rényi’s frame-

work there is a continuum of possible diversity measures, which differ in their sensi-

tivity to rare and abundant DNs, becoming increasingly regulated by the commonest

DNs when increasing the values of α . This is why Rényi generalised entropy has

been referred to as a “continuum of diversity measures” (Ricotta et al. 2003).

Implementing such algorithms into Open Source Software will help researchers

to freely develop measures of landscape heterogeneity in an Open Source code

space.

The aim of this study is to demonstrate the power of using remotely sensed data

to estimate landscape heterogeneity and locate diversity hotspots over space, allow-

ing effective management and conservation of the landscape. We will rely on the

Rényi generalised entropy, based on the Free and Open Source Software GRASS

GIS.

3 Open Source software philosophy for the calculation of
landscape diversity metrics

The idea of Free and Open Source (FOSS) software has been around for almost as

long as software has been developed (Neteler and Mitasova 2008).

The famous “four freedoms” paradigm, developed by Richard Stallman

(1985) in his seminal work, proclaims i) the freedom to run the program for

any purpose, ii) the freedom to study how the program works and adapt it to

one’s own needs, iii) the freedom to redistribute copies, and iv) the freedom to

improve the program and release such improvements to the public. This guar-

antees that the whole community benefits from software development (also

see Fogel 2009).
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With the aim of calculating landscape metrics in GIS to ensure robust analysis

output, particularly where complex algorithms are concerned (Neteler and Mitasova

2008), full access to the source code is crucial. There are well-known examples

of FOSS in research fields such as statistics (e.g. R Language and Environment

for Statistical Computing, R Development Core Team, 2013), while GIS scientists

and more generally landscape ecologists may benefit from the powerful GIS named

GRASS (Geographical Resources Analysis Support System, http://grass.osgeo.org,

see Neteler et al. 2012), which includes more than 350 modules for managing

and analysing geographical data. GRASS was originally created in 1982 by the

U.S. Army Construction Engineering Research Laboratories, and is now one of the

cutting-edge projects of the Open Source Geospatial Foundation (OSGeo, founded

in 2006). Quoting Neteler and Mitasova (2008):

The key development in recent GRASS history was the adoption of GNU GPL (General
Public License, see http://www.gnu.org) in 1999. With this, GRASS embraced the Open
Source philosophy, well known from the GNU/Linux development model, which stimulated
its wide acceptance.

Adoption of the FOSS license changed the development process of GRASS with

contributions to the source code becoming decentralised. The legal statements de-

clared in the GPL are based on the aforementioned “four freedoms” paradigm (Stall-

man 1985; 1997) and allow the user to use the software’s full range of capabilities,

and to distribute, study and improve it.

Figure 19. 1 from Rocchini et al. (2013) represents an example of Rényi calcula-

tion (with α = 2, relying on the r.diversity function of GRASS GIS (available at

http://grasswiki.osgeo.org/wiki/AddOns/GRASS6), and the comparison with the

Shannon, Simpson and Pielou diversity indices. Notice that the Simpson diversity

index results in an emphasissmall differences in low-diversity areas (e.g. in homoge-

neous zones) since its formula contains a squared p, while logarithm-based indices

(Shannon entropy, Pielou evenness, Rényi generalised entropy) enhance differences

in sites with higher evenness (Nagendra, 2002).

4 A case study: mapping spatial heterogeneity in the Tadoba
Andhari Tiger Reserve, India

The Tadoba Andhari Tiger Reserve (TATR) is a national park and wildlife sanctuary

located in central India, in the eastern part of Maharashtra state. The protected area

extends over 625 square kilometres, covering a landscape that is largely a matrix

of dry tropical forests, interspersed with some grasslands, water bodies and a few

small patches of riparian forest alongside streams. The park is drained by two main

rivers. The southern section of the park is flat, giving way to gradually undulating

topography as one moves northwards.
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Fig. 19. 1 An example of the calculation of the Rényi generalised entropy with α = 2 and the com-
parison with the Shannon, Simpson and Pielou indices, based on the r.diversity function of GRASS
GIS applied to a Landsat Normalized Difference Vegetation Index (NDVI) map. Reproduced from
Rocchini et al. (2013) under license permission number 3331820502202 from Elsevier Ltd. Refer
to the main text for additional information.

There is a well-developed road network in the northeastern part of the reserve,

which provides access to the forest for grazing and biomass extraction. To the north,

south and east, the TATR has some protection from surrounding State controlled Re-

serve Forest and Protected Forest areas. Six villages are located within the bound-

aries of the park (one village has since been relocated outside the park), and there

are two villages located on the periphery. In addition to the six interior villages,

several other villages and communities access resources from the park. Nagendra et

al. (2010a) individualised three main zones of human impact/pressure as reported in

Figure 19. 2. These villages fulfil a large part of their fuel, fodder, timber and non-

timber forest requirements from the park. The TATR also experiences substantial

seasonal use from migrant herders, and is frequented by timber, bamboo and wildlife

poachers. Thus, despite being located within a protected area, this dry tropical forest

habitat is also subject to human disturbance due to grazing, fire and biomass extrac-

tion Figure 19. 2.

A Landsat ETM+ image, acquired on 29 October 2001 (path 144, row 046, spa-

tial resolution 28.5 meters, band from 1 to 5 and 7. see Rocchini et al. 2009 and

http://glcfapp.glcf.umd.edu:8080/esdi/ftp?id=268517)

covering the whole study area, was downloaded from the Global Land Cover Facil-
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Fig. 19. 2 Map of the Tadoba Andhari Tiger Reserve (TATR, India), showing the villages in
the park and three zones of human impact, from high (zone A, villages’ surroundings) to low
(zone C, dry tropical forest and grasslands) human disturbance, as defined in Nagendra et al.
(2010a). The figure is reproduced from Nagendra et al. (2010a) under license permission num-
ber 3331821040245 from Elsevier Ltd.

ity site hosted by the University of Maryland

(www.glcfapp.umiacs.umd.edu, Tucker et al. 2004 for major details).

A Principal Component Analysis (PCA) was performed on the image and the first

component explaining 49.57% of the total variance was retained and rescaled to 16-

bit to calculate the landscape heterogeneity by the r.diversity function in GRASS

GIS.
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Figure 19. 3 shows the results attained when relying on Rényi diversity with α=0

(related to richness) and α=2 (related to evenness). While Rényi diversity based on

pure richness immediately saturated towards highest values (pixels being different

from each other in a window of 3x3 pixels), this effect was not achieved when con-

siderig evenness (Figure 19. 3) where the contrast between diverse and non-diverse

areas is higher. It is worth noting that the highest diversity, considering overall even-

ness (α=2, i.e. contrast in the spectral signal) was found not only in the dry natural

forest of the study area but also in the villages, as previously postulated by Nagen-

dra et al. (2010a). Looking as an example at the location of the Navegaon village

(Figure 19. 2, northern part) in the Rényi diversity index images (Figure 19. 3), this

is one of the areas with highest landscape diversity over the whole area.

5 Discussion

The Tadoba Andhari Tiger Reserve (TATR) is an important tiger reserve in India,

containing a large contiguous habitat of dry tropical forest that is very important for

tigers as well as other large wildlife that is characteristic of the central Indian land-

scape. The landscape is also a very important source of human livelihood, with high

densities of forest-dependent communities living in this region who harvest a wide

range of forest products including timber, bamboo and non-timber forest products

such as medicinal herbs (Nagendra et al. 2006). Hence, in addition to its biological

significance, the maintenance of biological diversity has great social importance for

livelihood sustainability. The forest dependent tribal populations living within the

park are extremely dependent on the biodiversity in this forest for their daily liveli-

hood, using as many as 19 different species of trees for timber and an even larger

number of species for medicinal use through personal consumption, as well as for

sale (Nagendra et al., 2010a). Depletion of biological diversity will create extreme

problems for these communities.

Mapping and monitoring of biodiversity and forest heterogeneity in the TATR is

thus very important for a better understanding of human impacts on ecology, given

the importance of this large heterogeneous landscape for biodiversity. Such studies

also provide a deeper understanding of human impacts on dry tropical forest, which

represents a habitat type that is very important for biodiversity because of its bi-

ological richness as well as its vulnerability to human impact, yet which remains

little studied in comparison to moist tropical and dry temperate forests (Feeley et al.

2005). As this research demonstrates, the villages in the interior of the park contain

significant amounts of spatial heterogeneity which is believed to relate to biological

diversity (Nagendra et al. 2010b). In particular, Navalgaon, a village that is located

at the park gate with high levels of disturbance but which also provides access to

the less disturbed park interior, has a significant diversity of habitats which relates

to the intermediate disturbance hypothesis (Paine and Vadas 1969; Grime 1973; see

also Catford et al. 2012 and references therein), which indicates that areas of inter-

mediate disturbance are likely to have maximum diversity. This research thus points
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Fig. 19. 3 The Tadoba Andhari Tiger Reserve (TATR, NDVI image on top from Nagendra et al.
2010b, with village borders in white) and the calculation of the Rényi generalised entropy, mea-
sured from the first principal component of a Landsat ETM+. Rényi diversity based on pure rich-
ness immediately saturated towards highest values; this effect was not achieved when considering
evenness where the contrast among diverse and non-diverse areas is higher. It is worth noting that
the highest diversity was found not only in the dry natural forest of the study area but also in the
villages. Refer to the main text for additional information.

to a need to go beyond the treatment of parks as monoliths requiring a standardized

approach for management band monitoring across all areas(Nagendra et al. 2010a),

towards a more sophisticated use of mapping approaches (e.g. Nagendra et al. 2013)

to provide input for spatially directed monitoring and management based on the dif-
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ferences in heterogeneity and diversity across different areas of the park.

Despite efforts to demonstrate the relationship between remotely sensed- and

species-diversity, there are still no useful tools available for managers and adminis-

trators responsible for environmental policy and landscape diversity, even though the

maintenance of diversity is often a stated objective of these decision makers (Na-

gendra 2002). Strictly speaking, it is becoming increasingly important to develop

means for rapidly and objectively forecasting species diversity in order to assess,

with limited resources, the impacts of anthropogenic and natural disturbances on

biodiversity.

Due to the difficulties of field-based data collection at wider spatial scales,

we have demonstrated in this study how the use of remote sensing for esti-

mating environmental heterogeneity as a proxy of diversity at different spatial

scales represents a powerful tool since it allows an a-priori estimate of poten-

tial hotspots of diversity allowing an effective management and conservation

of the landscape.
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Appendix 1:

Code used to calculate Rényi entropy in GRASS GIS 7.0

Import landsat bands
# freely available from http://glcfapp.glcf.umd.edu:8080/esdi/

# path of the used image: 144

# row of the used image: 046

# acquisition date: October 29th 2011

r.in.gdal in=/path/p144r046 7dt20011029.SR.b01.tif out=B1

r.in.gdal in=/path/p144r046 7dt20011029.SR.b02.tif out=B2

r.in.gdal in=/path/p144r046 7dt20011029.SR.b03.tif out=B3

r.in.gdal in=/path/p144r046 7dt20011029.SR.b04.tif out=B4

r.in.gdal in=/path/p144r046 7dt20011029.SR.b05.tif out=B5

r.in.gdal in=/path/p144r046 7dt20011029.SR.b07.tif out=B7

Set the region of analysis (optional)
g.region=B7 # all bands are overlapping each other

# image information
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# projection: 1 (UTM)

# zone: 44

# datum: wgs84

# ellipsoid: wgs84

# north: 2292630

# south: 2194170

# west: 293250

# east: 362610

# nsres: 30

# ewres: 30

# rows: 3282

# cols: 2312

# cells: 7587984

Perform PCA to extract one single band with the highest information con-
tent
i.pca input=B1,B2,B3,B4,B5,B7 output prefix=pc rescale=0,255 then store pc1

Perform Rényi entropy calculation
# code to produce entropy maps of Figure 19. 3

r.diversity input=pc.1 prefix=pc.1 size=3 method=renyi alpha=0

r.diversity input=pc.1 prefix=pc.1 size=3 method=renyi alpha=2

# the size equals the moving window size of analysis, in this case a 3x3

# alpha parameter is related to the Rényi formula (see the main text)
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