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Abstract. The gene duplication problem seeks a species tree that reconciles
given gene trees with the minimum number of gene duplication events, called
gene duplication cost. To better assess species trees inferred by the gene dupli-
cation problem we study diameters of the gene duplication cost, which describe
fundamental mathematical properties of this cost. The gene duplication cost is
defined for a gene tree, a species tree, and a leaf labeling function that maps
the leaf-genes of the gene tree to the leaf-species. The diameters of this cost are
its maximal values when one topology or both topologies of the trees involved
are fixed under all possible leaf labelings, and are fundamental in understand-
ing how gene trees and species trees relate. We describe the properties and for-
mulas for these diameters for bijective and general leaf labelings, and present
efficient algorithms to compute the diameters and their corresponding leaf label-
ings. Moreover, we provide experimental evaluations demonstrating applications
of diameters for the gene duplication problem.

1 Introduction

A basic tenet of all biological disciplines is the common evolutionary history of all
life forms, including all extant species. The evolutionary relationships among such
entities are usually represented as species trees and are a key tool in understanding
evolution and its complex events that have engineered the enormous species and phe-
notypic diversity to date. Species trees are fundamental to evolutionary biology, but are
also essential tools for an array of other disciplines such as agronomy, biochemistry,
conservation biology, epidemiology, and medical sciences. For example, evolutionary
trees are increasingly used to study the dynamic range of patients’ cancer progressions,
and to tailor corresponding treatments [22]. Species trees were also used to develop
pesticides [17], to control invasive species [16], and to predict outbreaks of infectious
diseases [14]. Invariably common to such studies is that large-sale species trees need to
be accurately inferred.

One approach to construct large-scale trees is to utilize the rapidly growing avail-
ability of gene trees, i.e. the evolutionary history of genes. Gene trees describe how
parts of the species genomes have evolved, and thus can be assembled into larger evo-
Iutionary trees of species. Unfortunately, evolutionary mechanism can cause conflicting
evolutionary relationships between gene trees and the topology of the species tree along
whose branches they have evolved [26]. Resolving such conflicts has become a grand
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challenge in the field of phylogenetic tree inference. There has been considerable in-
terest in inference approaches that account for conflict involving gene duplication [5],
which is a major and frequently occurring evolutionary mechanism [25].

One such approach is solving the gene duplication problem, which is well studied [5].
Given a collection of gene trees, this problem seeks a species tree that is a median tree
of the given trees under the gene duplication cost, i.e. the fewest number of duplica-
tion events that can explain the conflict between a gene tree and a species tree [12,23].
Despite the NP-hardness of the gene duplication problem [19], effective local search
heuristics [1,30] have produced credible estimates for this problem [4,20,21,24]. Re-
cently, exact dynamic programming solutions have been developed for the gene dupli-
cation problem that were able to solve instances of up to 22 taxa within a few hours on
a standard workstation [3]. Furthermore, there are modifications of the gene duplication
problem that handle various types of input trees, such as erroneous trees [8], unrooted
trees [11], and non-binary trees [18].

Unfortunately, despite ongoing work on the gene duplication problem, little is known
about the mathematical properties of the gene duplication cost that is at the heart of the
gene duplication problem. Here we investigate into diameters of this cost, that is, the
maximal values of this cost when one shape or both shapes of the input trees are fixed.
Diameters of the duplication cost are fundamental in understanding how gene trees and
species trees relate under this cost [12].

Related Work. Goodman et al.’s pioneering work [7] introduced the gene duplication
cost between a gene tree and a species tree that are both rooted and full binary. It is also
assumed that the leaves of the gene tree are related to the leaves of the species tree by
a function that is called leaf labeling. The leaf labeling is thought to relate the leaves
of the species tree by a leaf of the gene tree from which it was sampled. An extension
of the leaf labeling, called least common ancestor (LCA) mapping, relates every node
of the gene tree to the most recent species in the species tree that could have contained
this gene. A node in the gene tree is a gene duplication if it has the same lca mapping
as one of its children. The duplication cost between a gene tree and a species tree under
a given leaf labeling is the number of gene duplications. While diameter for other cost
functions used for tree inference are well understood [10,28], diameters for the gene
duplication cost have not been investigated yet.

Our Contribution. Under the gene duplication cost we study diameters of trees when
leaf labelings are constrained to be bijective and when they are unconstrained. In par-
ticular, we study under the assumption that only the topologies of the trees involved are
given (i) the diameter of a gene tree and a species tree, (ii) the diameter of a gene tree,
and (iii) the diameter of a species tree. For example, the bijective diameter of a gene
tree is the maximal duplication cost among all gene and species tree pairs such that the
gene tree is fixed and its leaf labeling is bijective.

For bijective leaf labelings we show that the diameter of a gene tree and a species tree
is equal to the number of non-cherry nodes (a node that is not the parent of two leaves)
in the gene tree. While it follows that this diameter is linear time computable, we show
that a leaf labeling that induces this diameter is also linear time computable. We also
provide the exact conditions for a gene tree and a species tree to establish this diam-
eter. For other types of diameters we describe their formulas. Moreover, we study the
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properties of the expected values of the bijective diameters and provide formulas for
them. Based on this theoretical results, we evaluate computationally the expected values
of bijective diameters. We also provide two experiments showing applications of uncon-
strained diameters in the gene duplication problem for two empirical datasets [13,27].

2 Preliminaries

2.1 Basic Definitions

We begin by recalling some basic definitions from phylogenetic theory. A (phyloge-
netic) tree is a connected acyclic graph such that exactly one of its nodes has a degree
of two (root), and all its remaining nodes have a degree one (leaves) and three. The
nodes with degree at least two are called internal. By < we denote the partial order in
a tree T  such that a < b if b is a vertex on the shortest path between a and the root of
T'. Note that a < b is equivalent to ¢ < b and a # b. The least common ancestor of a
and b in T is denoted by a @ b. We write that a and b are comparableif a < borb < a.
If a is not the root of T', then the parent of a, denoted by ma, is the least node v such
that a < v. If two nodes a and b have the same parent, then a is called a sibling of b. A
sibling of a will be denoted by oa. T'(a) is the maximal subtree of T rooted at a. |T'|
denotes the number of leaves in T'. A cherry in T is a subtree of 7' that has exactly two
leaves. A leaf that is not an element of a cherry is called free leaf. By L1 we denote the
set of all leaves in T'.

A species tree is a tree whose leaves are called species. A gene tree over a set of
species X, is a triple (Vig, Eg, Ay such that (Viz, Eg) is a tree and A¢ is the leaf
labeling function Ag: Lg — X, called labeling. For simplicity, if the species tree .S
is known, we write that the gene tree is over S instead of Lg. Traditionally, gene and
species trees are defined by nested parenthesis notation. For a species tree S and a gene
tree G over S, let M : Vo — Vg be the least common ancestor (LCA) mapping between
G and S that preserves the labeling of the leaves. In other words, M|, = Ag, and for
any non-root node a we have M (ma) = M (a) ® M (ca).

Parenthesis may be omitted in formulas for more clarity. For instance, instead of writ-
ing M (7x) to denote the LCA mapping of wx, we write M7z, If P = {p1,pa, ..., Dky
is a sequence of nodes of G, then by M P, we denote the sequence (Mp1, Mpa, ...
, Mpiy. If @ is a set of nodes, we define M Q) to be {Mq: q € Q}.

A path P in a tree T' is a non-empty sequence of nodes without repetitions such that
for every adjacent v and w in P, {v,w} € Ep. Note that every path in a tree T has
a unique <-maximal element. We denote it by max P. A path P is called simple (in
T) if its vertexes are comparable and its unique <-minimal element will be denoted
by min P. A path partition II of T is a set of pairwise disjoint paths in 7" such that
U= V.

A tree is called caterpillar if it contains exactly one cherry. A tree T is called trivial
if T is a single noded tree, i.e., |Vr| = 1. By C(T') we denote the set of all cherry roots
from a tree T'. By xr we denote the number of all cherries in a tree 7.

We call an internal node g from G a S-duplication (node), or duplication, if Mg =
M ¢ for some child ¢ of g. The duplication cost (D) from G to S, denoted by D(G, S),
is defined as the total number of duplication nodes present in G.
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2.2 Duplication Diameters

For a species tree .S, we denote by G(.5) the set of all gene trees over S. By B(S) we
denote the set of all gene trees over S with bijective labeling.

Let G be a gene tree. By G we denote the unlabeled tree obtained from G by forget-
ting the labeling. We define several types of bijective diameters. For trees T and S with
the same number of leaves we define the bijective duplication diameter for fixed shapes
as:

bP(T, S) = max{D(G, S): GeB(S),G =T}

We define the bijective duplication diameter for a fixed species tree:

Next, we define the bijective duplication diameter for a fixed shape of a gene tree:

bP(T, %) = max bP(T, S).

Similarly to bP (T, S), bP(T, ) and bP (%, S) we introduce uP (T, S), uP (T, x) and
uP (%, ), respectively, to denote the unconstrained duplication diameters by replacing
B(S) in the above definitions with G(S), b® with uP and relaxing the assumption that
T and S have the same size. We omit straightforward definitions.

3 Results

3.1 Bijective Duplication Diameters

In this section all labelings are bijections. First we define problems related to bijective
diameters.

Problem 1. Given a tree T' and a species tree S with the same number of leaves. Find a
gene tree G such that G = T and D(G, S) = bP (T, 9).

Problem 2. Given a tree T'. Find a species tree S and a gene tree G such that G=T
and D(G, S) = bP (T, »).

Problem 3. Given a species tree S. Find a gene tree G € B(.S) such that D(G, S) =
bP (x, ).

First, we show the upper bound for the diameter:

Lemma 1. For every species tree S and every tree G both with n leaves: bP (G, S) <
n 1 xg

Proof. 1t is obvious that a gene tree can have at most n 1 duplication nodes. Addi-

tionally, a cherry root in G cannot be a duplication node. Thus, the upper bound for
bP(G,S)isn 1 xe.
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We now show that the upper bound is reached by showing a simple procedure that
induces the maximal number of gene duplications. First we introduce a notion of a trunk
[10], that will be used to assign mappings to a cherry leaves.

A trunk of a species tree S is a non-empty sequence 1" = {11,715, ..., %), of inter-
nal nodes from .S that starts in the root of .S and satisfies (I) both children of 1} have
the same number of descendant leaves, and (II) for ¢ > 1, 77 is the child of 7; ; having
more descendant leaves than its sibling. A subtree T  of .S is called a limb, if the root of T’
is not a trunk node, while its parent is a trunk node. S can be represented in limb format
by using the standard nested parenthesis notation: S = (S1, (S2, ..., (Sjr|, Sjr|+1)))s
where S; is a limb of S, for each 4. For a leaf a in .S let T°a be the lowest trunk node,
whose subtree contains a.

Algorithm 1. Inference of a gene tree that induces the diameter b”

1. Input: A species tree .S and a tree 1" both with n > 1 leaves. Output: A gene tree G such that T" = G
and D(G, S) = bP (T, S).

2. Comment We define the labeling function A for 7.

3. Let (€1, &2,...,&x o) be a sequence of all cherry roots from 7. Let (S1, (S2,...,(Sk, Sk+1))) be
a limb representation of S. Let vy, v2, ..., v, be the sequence of all leaves of .S, such that, for every
i < j,if v; € Sy and v; € S;, then k < [.

4. Fori=1,2,...,xg Doif x and y are the leaves of G(&;), set A(x) := v; and A(y) = vn xg+is

. Letvyg+1,Vxg+2,--+,Un x be the labels of the remaining n 2 * x ¢ free leaves of G.

6. Return {V, ET, A).

W

Theorem 1. For every species tree S and every tree T both with n leaves: b° (T, S)
equals the number of non-cherry nodes from T, thatis, n 1 xr.

Proof. We show that Algorithm 1 infers a labeling that induces the maximal number
of gene duplications. Let A be the function inferred by the algorithm. It is easy to see
that A is a well defined labeling for T'. Then, for every 1 < ¢ < j < |Lg|, we have
M¢g; > ME;, thus all cherry mappings are comparable. We show that every non-cherry
node is a S-duplication in a gene tree (Vr, Ex, A). Let g be a non-cherry node and let
i be the minimal index of a cherry root from £ that is present in G(g). All mappings of
internal nodes are comparable, thus M¢&; = M g. Moreover, at least one child of g is
mapped to M ¢, thus g is a duplication. This completes the proof.

Now, we introduce a notion of a cherry partition, that is crucial for the bijective di-
ameters of the duplication cost. A path partition I of a tree G is called cherry partition
(of G) if every path that contains an internal node is a simple path whose minimal ele-
ment is a cherry root. We say that the LCA mapping M between a species tree .S and
a gene tree G over S induces a cherry partition if there is a cherry partition I7 of G
such that for every path P in II, M P consists of a single element. Let A < V{, then
by GA A we denote the set of all maximal subtrees of G that do not contain any nodes
from A.

First we classify cherry partitions.

Lemma 2. Let S be a species tree, G be a gene tree over S and M be the LCA mapping
between G and S. Then, M induces a cherry partition of G if and only if for every
internal node g of G there is a cherry K in G(g) such that MK = Mg.
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Proof. (=). Assume that M induces a cherry partition I7. Let g be an internal node
of G. The proof is by induction on the structure of G. We consider two cases. (1) If g
is a cherry root, then the property is trivially satisfied. (2) Otherwise, g has a child ¢
such that g and ¢ belongs the the same path from /7. Thus, Mg = Mc < Moc. By the
inductive hypothesis there is a cherry K in G(c) such that M ¢ = M K. By the previous
observation, we have M K = Mg. This completes the first part of the proof. («<). We
show that there exists a cherry partition of G induced by M. Consider the following
procedure, where for each i, X; is a set of subtrees of G: (I) Let Xy = {G}. (II) For
0<i<xe letX; = (TAr)u (X; 1\{T})and ¢, is the root of T', where T" is some
non-trivial subtree of G from X; ; and r is a cherry root from 7" such that Mr = Mt;
(in G). It is easy to proof that for each i > 0, X, is a set of disjoint subtrees of G
satisfying Upex, C(T') = C(G)\{r1,r2,..., i} Thus, Xy y = yer, G(9), ie., it
is composed of all trivial subtrees of G. For i = {1,2,...,xg}, let P; be the simple
and the shortest path connecting r; and ¢;. Note, that M P; is a one-element set. Now, it
should be clear that | J P; is the set of all internal nodes of G, and the following family
of simple paths | J ¢ 1 ,<9) v {P1, P2, ..., Pxs} is a cherry partition of G induced by
M.

Theorem 2. Let S be a species tree, G be a gene tree over S and M be the LCA
mapping between G and S. Then, bP(G,S) = D(G, S) if and only if M induces a
cherry partition of G.

Proof. (=). Assume that bP (G, S) = D(G, S). Then by Theorem 1 every non-cherry
node is a duplication. By Lemma 2 it is sufficient to show that for every internal g,
there is a cherry K in G(g) such that Mg = M K. The proof is by induction on the
structure of G. If g is a cherry root the condition is trivially satisfied. Otherwise, g is
a duplication and has a non-leaf child ¢ such that Mg = Mec. Then by the inductive
hypothesis, there is a cherry K in G(c) such that M K = Mec. Thus, M K = M g which
completes the inductive proof. («<). Assume that there is a cherry partition induced by
M. Let g be a non-cherry node of G. Then, by Lemma 2 there is a cherry root 7 in
G(g) such that Mg = Mr. Thus, for some child ¢ of g, Mc = Mg. We conclude
that g is a duplication. We proved that every non-cherry node is a duplication. Thus, by
Theorem 1, D(G, S) = bP (&, S).

Theorem 3. Given a species tree S and a tree T both with n leaves, Algorithm 1 infers
a gene tree G such that G = T and D(G,S) = bP(T,S). The time complexity of
Algorithm 1 is O(n).

Proof. Algorithm 1 is adopted from [10]. Correctness of Algorithm 1 follows from
Theorem 1. It should be clear that every step of the algorithm can be completed in
O(n) number of steps. For more details please refer to [10].

In the remaining part of this section, we study other bijective diameters.

Theorem 4. For every tree G and every species tree S with the same number of leaves,

bP(G, S) = bP(G, ).

Proof. The proof follows immediately from Theorem 1.
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We conclude that Problem 2 can be solved by choosing any species tree with |G| leaves
and applying Algorithm 1.

Theorem 5. For a species tree S with n > 1 leaves bP (x,S) =n 2.

Proof. It follows from Theorem 1, that the gene tree G that maximizes duplication cost
should have the minimal number of cherries (which is 1 in this case). Thus, such a tree
is a caterpillar tree. Moreover, by Lemma 2 and Theorem 2 the root of the only cherry
present in G has to be mapped to the root of S.

We conclude that Problem 3 has a simple solution.

Theorem 6. For a species tree S and a gene tree G € B(S), D(G, S) = bP(x, ) if
and only if G is a caterpillar tree such that the only cherry of G is mapped to the root
of S.

Proof. («<). It easy to see that D(G,S) = n 2. Thus by Theorem 5 D(G, S) =
bP (%, 8). (=). See the proof of Theorem 5.

3.2 Unconstrained Duplication Diameters

In this section, we show similar results for the unconstrained diameters. To avoid repe-
titions we skip formal definitions of unconstrained problems.

Theorem 7. For trees T and S, we have uP (T, S) = uP(T,*) = |T| 1

Proof. For the first diameter, choose the labeling for 7' that is a constant function. Then,
every internal node is a duplication. Thus, we have |T'| 1 gene duplications, which is
the maximal possible duplication cost. The same holds true for uP (7', ).

Theorem 8. For a species tree S, uP (x, S) = +oo.

Proof. Assume that we have a sequence of trees 717,75, ... over .S such that T;, has
n leaves. Then, by Theorem 7 lim,, o uP(7},,S) = lim, ,;,n 1 = +oo. We
conclude, uP (*, §) = +o0.

3.3 Expected Number of Gene Duplications

In this section we show the formulas for the expected values of diameters considered in
this paper.

In this section we assume n!! = 1 for n < 2. For a set X consisting of n > 0 species,
by S(X, ¢), we denote the set of all pairwise non-isomorphic bijectively labeled gene
trees over X (i.e., having n leaves uniquely labeled by elements from X') and c cherries.
By t,, . we denote the size of S(X ¢).

Lemma 3. Forn > 1andc = 0, we have

(2¢ 1N(2e¢ 3)! ifn=2c>=2,
. tn 1 10 2¢+ 1)+t 1.(n+2c 2)ifn>2c>0,
e ifn=1,c=0,

O =

otherwise.
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Proof. We omit the proof for brevity.

Based on the recurrence for the number of rooted binary leaf-labeled trees with n
leaves [6], we can derive the following recurrence for ¢,

Lemmad. [fn>3andce {1,2,...,|n/2|}, then

n 1 n
Qtn,c = Z (k)
k=1 7

c

tk,itn k,c i-
0

Proof. Every species tree S € S(X, ¢) has the following form S = (S’, 5”), where S’ €
S(A,i) and S” € S(X\A,c i) forsome & # Ac X, k=|A|landi€ {0,1,...,c}.
Thus, forevery k € {1,2,...,n 1} we distribute k species from X in the left subtree
of S. This can be done in (Z) ways. Then, for the left subtree we choose shapes with ¢
cherries, while for the right subtree we choose shapes with ¢ ¢ cherries. Additional,
every possibility is counted twice due to the symmetry.

Lemma 5. Foreveryn >1,% t,.= (2n 3)!

Proof. 1t follows easily from the fact that the number of rooted binary leaf-labeled trees
with n leaves equals (2n  3)!! [6].

Theorem 9. Under the assumption of a uniform distribution of gene trees with n leaves,
the expected value of the bijective diameter for fixed shape of gene tree equals

1
(2n 3)!!2“’”(” ¢ b )

where n is the number of species.
Proof. 1t follows easily from Theorem 1 and Lemma 5.

The same result can be obtained for bP diameter (under a uniform distribution of
gene and species tree pairs). Finally, it is straightforward to proof that under the as-
sumption of a uniform distribution of species trees, the expected value of the bijective
diameter of a species tree equals n 1. We omit details.

4 Experimental Evaluation and Discussion

We performed two types of experimental evaluations related to the diameters studied in
this article. The first experiment analyzes the expected value of the bijective diameter of
the gene tree, while the second experiment studies the effect of inferring species trees
by solving the GTP problem when the cost involved is normalized by the diameter.



220 P. Gorecki, J. Paszek, and O. Eulenstein

4.1 Expected Value of the Bijective Diameter of a Gene Tree

We computed values of the expected value of b (T, *) diameter according the the for-
mula 1 from Theorem 9. By using a dynamic programming for efficient computation
of the recurrence from Lemma 4, implemented in a python script, we computed the
expected value of this diameter for n = 10, 20, ..., 990 (99 values in total). The overall
time of computation was approximately 3 hours of a standard PC workstation (a single
core, AMD processor, 1400MHz). The result is depicted in Figure 1. Based on Theo-
rem | and Theorem 4, we present minimal (i.e., [n/2] 1) and maximal (i.e., n 1)
values of this diameter for fixed n. The main conclusion from this experiment is that
the expected value can be well approximated by the average between these two values.

800 T T T T T T T
700 b
Max. diameter: n-1
~600 - X1
a X Expected value xxxxxxxxx
‘g 500  m  Min. diameter: ceil(n/2)-1 xxxxxx">< h
o XX
XXX
S400 K -
i) X L
© xxxxxx _— i
XX oL
2300 XX pumnn E
g Saaa8 el
Sa00 | o 1
XXX
100 - XX qmam 1
0 M ! ! ! ! ! !
0 100 200 300 400 500 600 700 800

n - number of leaves in a tree

Fig. 1. The expected value of the bijective diameter for a fixed shape of a gene tree (middle line)
with values of maximal and minimal values of this diameter. Here ceil(x) denote the ceil function,
i.e., the smallest following integer function.

4.2 GTP Evaluation

We studied the gene tree parsimony problems (GTP) [3,9,19,29] under duplication cost
and its normalized variant. The problems are defined as follows:

Problem 4 (GTP-DUP). Given a collection of gene trees (). Find a species tree S that
minimizes the total cost } ;.o D(G, 9).

Problem 5 (GTP-DUP-NORM). Given a collection of gene trees (. Find a species tree
S that minimizes the total normalized cost ¥, D(G, S)/ bP (G, *).

Since Problem 4 is known to be NP-hard, we implemented in Java a classical hill climb-
ing heuristic based on the nearest neighborhood interchange (NNI) local search algo-
rithm [2,9]. We used our computer program to perform four computational experiments
on two publicly available datasets under the standard duplication cost (GTP-DUP) and
the normalized cost (GTP-DUP-NORM).

Guigd dataset. The first dataset consists of 53 gene trees from 16 eukaryotes from [13]
(median size of a gene tree is 4.66). It is known from [3], that there are exactly 71 op-
timal species trees having the minimal total duplication cost equal to 36. Our heuristic
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was able to infer all these optimal trees. The heuristic run for the normalized variant
yielded the same set of species trees and the normalized cost 8.9809.

TreeFam dataset. The second dataset consists of 1274 curated gene family trees from
TreeFam v7.0 [27] spanning 25 mostly animal species. The gene trees were rooted by
using FastUrec [9] with the species tree based on the NCBI taxonomy (see Figure 2b).
Median size of a gene tree in this dataset is 31.80. Multiple runs of our program inferred
a single optimal species tree with 7451 gene duplications in total (see Figure 2a). The
same tree was inferred for the normalized variant of the duplication cost with 177.3693.
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Fig. 2. Species trees for TreeFam dataset. Left: an optimal tree inferred by our heuristic. Right:
Species tree based on NCBI taxonomy with branch lengths obtained from diversification dates of
the TreeTime database [15]. Stars in the left tree denote the differences between both trees. Note
that lengths of the branches of the left tree are not proportional to the time.

The total runtime for these computational experiments was approximately 3 hours
on a server with 64 cores (8 Opteron AMD processors, 1400 MHz). The prototype
computer programs are available on request.

5 Conclusions and Future Outlook

In this article we investigated into diameters of the duplication cost under several vari-
ants and two types of leaf labelings. We proved mathematical properties describing
these diameters. Based on these properties we proposed simple formulas for the diam-
eters and efficient algorithms to compute the diameters and their corresponding leaf
labelings. In particular we presented an optimal, linear time, algorithm for the bijective
case when the shapes of both input trees are fixed.

This is a continuation of our previous research on the deep coalescence diame-
ters [10], that lays foundations for further study on the diameters of other reconciliation
based cost functions, e.g., duplication-loss or loss costs [11,23,28].

Our GTP experiments for the duplication cost show no difference between optimal
species trees inferred for the standard and normalized variants of the cost. This is likely
due to the low resolution of the duplication cost function. However, our experiments are
only based on two examples, and future studies will include more complex analyses.
Furthermore, we will also investigate in expected values of diameters under various
phylogenetic models.
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