
Chapter 2
Efficient Resolution of Anisotropic Structures

Wolfgang Dahmen, Chunyan Huang, Gitta Kutyniok, Wang-Q Lim,
Christoph Schwab, and Gerrit Welper

Abstract We highlight some results obtained in the DFG-SPP project “Adaptive
Anisotropic Discretization Concepts”. We focus on new developments concerning
the sparse representation of possibly high-dimensional functions exhibiting strong
anisotropic features and low regularity in isotropic Sobolev or Besov scales.
Specifically, we focus on the solution of transport equations which exhibit prop-
agation of singularities where, additionally, high-dimensionality enters when the
convection field, and hence the solutions, depend on parameters varying over some
compact set. Important constituents of our approach are directionally adaptive
discretization concepts motivated by compactly supported shearlet systems, and
well-conditioned stable variational formulations that support trial spaces with
anisotropic refinements with arbitrary directionalities. We prove that they provide
tight error-residual relations which are used to contrive rigorously founded adaptive
refinement schemes which converge in L2. Moreover, in the context of parameter
dependent problems we discuss two approaches serving different purposes and
working under different regularity assumptions. For “frequent query problems”,
making essential use of the novel well-conditioned variational formulations, a
new Reduced Basis Method is outlined which exhibits a certain rate-optimal
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performance for indefinite, unsymmetric or singularly perturbed problems. For the
radiative transfer problem with scattering a sparse tensor method is presented which
mitigates or even overcomes the curse of dimensionality under suitable (so far still
isotropic) regularity assumptions. Numerical examples for both methods illustrate
the theoretical findings.

2.1 Introduction

The more complex a data site or mathematical model is the more adapted a
corresponding mathematical representation needs to be in order to capture its
information content at acceptable cost in terms of storage and computational
complexity. In principle, this is true for mathematical objects described explicitly by
large sets of possibly noisy or corrupted data but also for those given only implicitly
as the solution of an operator equation. The latter scenario is perhaps even more
challenging because direct observations are not possible. By “adapted represen-
tation” we mean a representation of the unknown function that exploits possibly
global features of this function so as to require, for a prescribed target accuracy,
only relatively few parameters to determine a corresponding approximation. Such
global features could take a variety of forms such as (i) a high degree of regularity
except at isolated singularities located on lower dimensional manifolds, or (ii) a
particular sparsity possibly with respect to a dictionary which may even depend
on the problem at hand. In fact, corresponding scenarios are not strictly disjoint.
In either case reconstruction or approximation methods are necessarily nonlinear.
For instance, as for (i), 1D best N -term wavelet approximations offer a powerful
method based on selecting only possible few coefficients in an exact representation
with respect to a given universal background dictionary, e.g. a wavelet basis. When
dealing with more than one spatial variable the situation quickly becomes more
complicated and for spatial dimensions much larger than three, classical numerical
tools designed for the low dimensional regime become practically useless. This is
commonly referred to as curse of dimensionality. Unfortunately, there seems to be
no universal strategy of dealing with the curse of dimensionality, i.e., that works in
all possible cases.

One global structural feature which is encountered in many multivariate sce-
narios is anisotropy: images, as functions of two variables, exhibit edges and
discontinuities along curves. Higher dimensional biological images have sharp
interfaces separating more homogeneous regions. Likewise highly anisotropic
phenomena such as shear- or boundary layers are encountered in solutions to
transport dominated initial-boundary value problems.

One major focus of the DFG-SPP project “Adaptive Anisotropic Discretization
Concepts” has been to efficiently recover and economically encode anisotropic
structures represented by explicitly given data or determined as solutions of operator
equations which are prone to give rise to such structures. Regarding this latter case,
which we will focus on in this article, parametric transport problems (as well as
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close relatives) have served as guiding model problems for the following reasons:
(i) their solutions could exhibit shear or boundary layers and hence discontinuities
across lower dimensional manifolds calling for suitable anisotropic discretizations;
(ii) how to contrive suitable variational formulations, which in particular accom-
modate such anisotropic discretizations is much less clear than in the elliptic case;
(iii) parametric versions give rise to high-dimensional problems.

Concerning (i), directional representation systems like curvelets and shearlets
outperform classical isotropic wavelet bases when approximating so called “cartoon
images”, see [23] and [9, 31–35]. For recent applications to imaging data, in
particular, inpainting as well as in combination with geometric separation concepts
the reader is referred to [24,29]. In the present context of solving operator equations
we outline in Sect. 2.2 trial spaces which accommodate directional adaptivity. They
are motivated by recent constructions of compactly supported piecewise polynomial
shearlet systems (see e.g. [30]) because they are close to classical multiresolution
structures and similar in nature to classical discretization systems. Since cartoons
exhibit structural similarities with the solution to transport problems we state best
N -term error bounds for cartoon functions that will later serve as benchmarks for an
adaptive solver. For related anisotropic simplicial discretizations and their analysis
see e.g. [10, 12, 15].

As for (ii), our approach differs from previous works on anisotropic discretiza-
tions derived from “curvature information” on the current approximation and hence
not based on a rigorous error control (see e.g. [22] and the references therein), in
that we derive first in Sect. 2.3 well conditioned variational formulations for general
unsymmetric or indefinite and singularly perturbed problems, see [14,16] for details
on convection-diffusion and transport problems. The underlying basic principles
are of independent interest by themselves and seem to have appeared first in [3].
They are also closely related to ongoing developments running under the flag of
Discontinuous Petrov Galerkin (DPG) Methods, see e.g. [19, 20]. The approach is
motivated by two crucial corner stones. On the one hand, one can essentially choose
the norm for the (infinite dimensional) trial space X by which one would like to
measure accuracy while adapting the norm for the (infinite dimensional) test space
Y so as to ensure that (ideally) the operator induced by this variational formulation
is even an isometry from X to Y 0 (the normed dual of Y ). Numerical feasibility of
(nearly optimal) Petrov Galerkin discretizations based on such formulations, even
beyond a DPG framework, hinges on an appropriate saddle point formulation which
turns out to be actually crucial in connection with model reduction [18]. On the one
hand, this allows one to accommodate, for instance, L2-frames. On the other hand,
the resulting tight error-residual relation is the basis of computable a-posteriori
error estimators [14, 16] and, ultimately, to rigorously founded adaptive anisotropic
refinement strategies.

These variational formulations apply in much more generality but in order to
address issue (iii) we exemplify them for the simple linear transport equation
(stationary or instationary) whose parametric version leads to high-dimensional
problems and forms a core constituent of kinetic models such as radiative transport.
There the transport direction – the parameter – varies over a unit sphere so that
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solutions are functions of the spatial variables (and, possibly, of time) and of the
transport direction.

We briefly highlight two ways of treating such parametric problems under
slightly different objectives. Both strategies aim at approximating the solution
u.x; s/, x 2 ˝ � R

d , s 2 Sd�1, in the form

u.x; s/ �
nX

jD1
cj .s/uj .x/: (2.1)

In Sect. 2.4 the uj are constructed offline in a greedy manner from snapshots of the
solution manifold, thus forming a solution dependent dictionary. According to the
paradigm of the Reduced Basis Method (RBM) the parameter dependent coefficients
cj .s/ are not given explicitly but can be efficiently computed in an online fashion,
e.g. in the context of design or (online) optimization. This approach works the
better the smoother the dependence of the solution on the parameters is so that
the Kolmogorov n-widths decay rapidly with increasing n. Making essential use of
the well conditioned variational formulations from Sect. 2.3, it can be shown that
the resulting RBM has stability constants as close to one as one wishes yielding
for the first time an RBM for transport and convection-diffusion problems with this
property exhibiting the same rates as the Kolmogorov widths [18].

In Sect. 2.5 of this report, and in [26], we present algorithms which construct
explicitly separable approximations of the form (2.1) for the parametric transport
problem of radiative transfer. We also mention that separable approximations
such as (2.1) arise in a host of other applications; for example, in parametric
representations of PDEs with random field input data with the aid of sparse tensor
product interpolation methods; we refer to [11, 13] and to the references therein.
Adaptive near-minimal rank tensor solvers for problems in high dimensional phase
space are established and analyzed in [2].

2.2 Anisotropic Approximations

Let D D .0; 1/2 and let curv.@˝/ denote the curvature of @˝ \ D. The class of
cartoon-like functions on D D .0; 1/2,

C .�; L;M;D/ WD ff1�˝ C f2�Dn˝ W ˝ � D; j@˝ \Dj � L; @˝ \D 2 C2;

curv.@˝/ � �; kf .l/
i kL1.D/ � M; l � 2; i D 1; 2g; (2.2)

(where the parameters �; L are not mutually independent) has become a well
accepted benchmark for sparse approximation in imaging [23]. Compactly sup-
ported shearlet systems for L2.R2/ have been introduced in [30, 33] to provide
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(1) (2) (3) (4) (5)

Fig. 2.1 Illustration of the partition rules

(near-) optimal sparse approximations for such classes. We observe that such
cartoons also exhibit similar features as solutions to transport problems.

Unfortunately, even compactly supported shearlets do not comply well with
quadrature and boundary adaptation tasks faced in variational methods for PDEs.
We are therefore interested in generating locally refinable anisotropic partitions for
which corresponding piecewise polynomial approximations realize the favorable
near-optimal approximation rates for cartoon functions achieved by shearlet sys-
tems. Unfortunately, as shown in [36, Chapter 9.3], simple triangular bisections
connecting the midpoint of an edge to the opposite vertex is not sufficient for
warranting such rates, see [10, 15] for related work. In fact, a key feature would
be to realize a “parabolic scaling law” similar to the shearlet setting. By this we
mean a sufficient rapid directional resolution by anisotropic cells whose width scales
like the square of the diameter. To achieve this we consider partitions comprised of
triangles and quadrilaterals pointed out to us in Cohen and Mirebeau (2013, private
communication). We sketch the main ideas and refer to [17] for details.

Starting from some initial partition consisting of triangles and quadrilaterals,
refined partitions are obtained by splitting a given cell Q of a current partition
according to one of the following rules:

(i) Connect a vertex with the midpoint of an edge not containing the vertex.
(ii) Connect two vertices.

(iii) Connect the midpoints of two edges which, when Q is a quadrilateral, do not
share any vertex.

The types of bisections are indicated in Fig. 2.1: (1), (2) are examples of (i),
(3) illustrates (ii), and (4), (5) are examples for (iii). One easily checks that these
refinement rules produce only triangles and quadrilaterals. Moreover, a quadrilateral
can be bisected in eight possible ways whereas a triangle can be split in six possible
ways. Assigning to each split type a number in IQ D f1; : : : ; 8g when Q is a
quadrilateral and a number in IQ D f9; : : : ; 14g whenQ is a triangle, we denote by

R�Q.Q/ D fQ1;Q2g for some �Q 2 IQ; (2.3)

the refinement operator which replaces the cell Q by its two children Q1;Q2

generated, according to the choice �Q, by the above split rules (i)–(iii).
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For any partition G of D, let P1.G / D fv 2 L2.D/ W vjQ 2 P1;Q 2 G g be
the space of piecewise affine functions on G and denote by G the set of all finite
partitions that can be created by successive applications of R�Q to define then

˙N WD
[

fP1.G / W G 2 G; #.G / � N g:

The next result from [17] shows that approximations by elements of˙N realize (and
even slightly improve on) the known rates obtained for shearlet systems for the class
of cartoon-like functions [33].

Theorem 2.1 ([17]). Let f 2 C .�; L;M;D/ with D D .0; 1/2 and assume that
the discontinuity curve � D @˝ \D is the graph of a C2-function. Then one has

inf
'2˙N

kf � 'kL2.D/ � C.�;L/M N�1 logN;

where C.�;L/ is an absolute constant depending only on �; L.

The proof of Theorem 2.1 is based on constructing a specific sequence Cj of
admissible partitions from G where the refinement decisions represented byR�Q use
full knowledge of the approximated function f . A similar sequence of partitions is
employed in Sect. 2.3.4.2 where �Q 2 IQ, however, results from an a posteriori
criterion described later below. We close this section by a few remarks on the
structure of the Cj . Given Cj�1, we first generate

QCj D fQ0 2 QR.Q/ W Q 2 Cj�1g; (2.4)

where QR is either R�Q or the identity. To avoid unnecessary refinements we define

then Cj by replacing any pair of triangles Q;Q
0 2 QCj whose union forms a

parallelogram P by P itself. This reduces the number of triangles in favor of
parallelograms.

2.3 Well-Conditioned Stable Variational Formulations

In this section we highlight some new conceptual developments from [14, 16, 18]
which are, in particular, relevant for the high dimensional parametric problems
addressed later below.

2.3.1 The General Principles

Anisotropic structures are already exhibited by solutions of elliptic boundary value
problems on polyhedral domains in 3D. However, related singularities are known
a priori and can be dealt with by anisotropic preset mesh refinements. Anisotropic
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structures of solutions to transport dominated problems can be less predictable so
that a quest for adaptive anisotropic discretization principles gains more weight.
Recall that every known rigorously founded adaptation strategy hinges in one way
or the other on being able to relate a current error of an approximate solution to the
corresponding residual in a suitable norm. While classical variational formulations
of elliptic problems grant exactly such an error-residual relation, this is unclear
for transport dominated problems. The first fundamental issue is therefore to find
also for such problems suitable variational formulations yielding a well conditioned
error-residual relation.

2.3.1.1 Abstract Petrov-Galerkin Formulation

Suppose that for a pair of Hilbert spaces X; Y (with scalar products .�; �/X; .�; �/Y
and norms k � kX ; k � kY ), and a given bilinear form b.�; �/ W X �Y ! R, the problem

b.u; v/ D f .v/; v 2 Y; (2.5)

has for any f 2 Y 0 (the normed dual of Y ) a unique solution u 2 X . It is well-
known that this is equivalent to the existence of constants 0 < cb � Cb < 1 such
that

sup
w2X

sup
v2Y

b.w; v/

kwkXkvkY � Cb; inf
w2X sup

v2Y
b.v;w/

kwkXkvkY � cb; (2.6)

and that, for each v 2 Y , there exists a w 2 X such that b.w; v/ ¤ 0. This means
that the operator B W X ! Y 0, defined by .Bu/.v/ WD b.u; v/, u 2 X; v 2 Y , is
an isomorphism with condition number �X;Y .B/ WD kBkL .X;Y 0/kB�1kL .Y 0;X/ �
Cb=cb . For instance, when (2.5) represents a convection dominated convection-
diffusion problem with the classical choice X D Y D H1

0 .˝/, the quotient Cb=cb
becomes very large. Since

kBk�1
L .X;Y 0/kBv � f kY 0 � ku � vkX � kB�1kL .Y 0 ;X/kBv � f kY 0 ; (2.7)

the error ku � vkX can then not be tightly estimated by the residual kBv � f kY 0 .

2.3.1.2 Renormation

On an abstract level the following principle has surfaced in a number of different
contexts such as least squares methods (see e.g. [5, 8]) and the so-called, more
recently emerged Discontinuous Petrov Galerkin (DPG) methods, see e.g. [3, 16,
19, 20] and the references therein. The idea is to fix a norm, k � kY , say, and modify
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the norm for X so that the corresponding operator even becomes an isometry. More
precisely, define

kuk OX WD sup
v2Y

b.u; v/

kvkY D kBukY 0 D kR�1
Y BukY ; (2.8)

whereRY W Y ! Y 0 is the Riesz map defined by .v; z/Y D .RY v/.z/. The following
fact is readily verified, see e.g. [16, 40].

Remark 2.1. One has � OX;Y .B/ D 1, i.e., (2.6) holds with cb D Cb D 1 when k � kX
is replaced by k � k OX .

Alternatively, fixing X and redefining k � kY by kvk OY WD kB�vkX 0 , one has
�X; OY .B/ D 1, see [16]. Both possibilities lead to the error residual relations

ku � wkX D kf � Bwk OY 0 ; ku � wk OX D kf � BwkY 0 ; u;w 2 X: (2.9)

2.3.2 Transport Equations

Several variants of these principles are applied and analyzed in detail in [14] for
convection-diffusion equations. We concentrate in what follows on the limit case for
vanishing viscosity, namely pure transport equations. For simplicity we consider the
domainD D .0; 1/d , d D 1; 2; 3, with � WD @D, denoting as usual by n D n.x/ the
unit outward normal at x 2 � (excluding the four corners, of course). Moreover, we
consider velocity fields b.x/, x 2 D, which for simplicity will always be assumed
to be differentiable, i.e., b.x/ 2 C1.D/d . Likewise c.x/ 2 C0.D/ will serve as the
reaction term in the first order transport equation

b � ru C cu D fı in D ; u D g on �� ; (2.10)

where �˙ WD fx 2 @D W ˙b.x/ � n.x/ > 0g denotes the inflow, outflow boundary,
respectively. Furthermore, to simplify the exposition we shall always assume that
2c � r � b � c0 > 0 in D holds.

A priori there does not seem to be any “natural” variational formulation.
Nevertheless, the above principle can be invoked as follows. Following e.g. [16],
one can show that the associated bilinear form with derivatives on the test functions

b.w; v/ WD
Z

D

w.�b � rv C v.c � r � b// dx; (2.11)

is trivially bounded on L2.D/ �W0.�b;D/, where

W0.	b;D/ WD closk�kW.b;D/fv 2 C1.D/ \ C.D/; v j�
˙


 0g; (2.12)
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and

kvkW.b;D/ WD
�

kvk2L2.D/ C
Z

D

jb � rvj2 dx

�1=2
: (2.13)

Moreover, the trace ��.v/ exists for v 2 W0.b;D/ in L2.��; jb � nj/, endowed with
the norm kgk2

L2.�˙
;jb�nj/ D R

�
˙

jgj2jb � njds so that

f .v/ WD .fı; v/C
Z

��

g��.v/jb � njds (2.14)

belongs to .W0.b;D//
0 and the variational problem

b.u; v/ D f .v/; v 2 W0.�b;D/ (2.15)

possesses a unique solution in L2.D/ which, when regular enough, coincides with
the classical solution of (2.10), see [16, Theorem 2.2].

Moreover, since X D L2.D/ D X 0, the quantity kvkY WD kB�vkL2.D/ is an
equivalent norm on W0.�b;D/, see [16], and Remark 2.1 applies, i.e.,

kBkL .L2.D/;.W0.b;D//0/ D kB�kL .W0.b;D/;L2.D// D 1; (2.16)

see [16, Proposition 4.1]. One could also reverse the roles of test and trial space
(with the inflow boundary conditions being then essential ones) but the present
formulation imposes least regularity on the solution which will be essential in the
next section. Note that whenever a PDE is written as a first order system, X can
always be arranged as an L2-space.

Our particular interest concerns the parametric case, i.e., the constant convection
field s in

s � ru.x; s/C �.x/u.x; s/ D fı.x/; x 2 D � R
d ; d D 2; 3;

u.x; s/ D g.x; s/; x 2 ��.s/;
(2.17)

may vary over a set of directions S so that now the solution u depends also on the
transport direction s. In (2.17) and the following we assume that ess infx2D �.x/ �
0. Thus, for instance, when S D S2, the unit 2�sphere, u is considered as a
function of five variables, namely d D 3 spatial variables and parameters from a
two-dimensional set S . This is the simplest example of a kinetic equation forming
a core constituent in radiative transfer models. The in- and outflow boundaries now
depend on s:

�˙.s/ WD fx 2 @D W 	s � n.x/ < 0g; s 2 S : (2.18)
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Along similar lines one can determine u as a function of x and s inX D L2.D�S /

as the solution of a variational problem with test space Y WD closk�kW.D�S /
fv 2

C.S ; C 1.D// W vj�
˙


 0g with kvk2W.D�S / WD kvk2L2.D�S /C
R
S �D js �rvj2dxds.

Again this formulation requires minimum regularity. Since later we shall discuss yet
another formulation, imposing stronger regularity conditions, we refer to [16] for
details.

2.3.3 ı-Proximality and Mixed Formulations

It is initially not clear how to exploit (2.9) numerically since the perfect inf-sup
stability on the infinite dimensional level is not automatically inherited by a given
pair Xh � X; Yh � Y of equal dimension. However, given Xh � OX , one can
identify the “ideal” test space Y.Xh/ D R�1

Y B.Xh/ which may be termed ideal
because

sup
w2Xh

sup
v2Y.Xh/

b.w; v/

kwkXkvkY D inf
w2Xh

sup
v2Y.Xh/

b.v;w/

kwkXkvkY D 1; (2.19)

see [16]. In particular, this means that the solution uh 2 Xh of the corresponding
Petrov-Galerkin scheme

b.uh; v/ D f .v/; v 2 Y.Xh/; (2.20)

realizes the best OX -approximation to the solution u of (2.5), i.e.,

ku � uhk OX D inf
w2Xh

ku � wk OX : (2.21)

Of course, unless Y is an L2 space, the ideal test space Y.Xh/ is, in general,
not computable exactly. To retain stability it is natural to look for a numerically
computable test space Yh that is sufficiently close to Y.Xh/.

One can pursue several different strategies to obtain numerically feasible test
spaces Yh. When (2.5) is a discontinuous Galerkin formulation one can choose Y
as a product space over the given partition, again with norms induced by the graph
norm for the adjoint B� so that the approximate inversion of the Riesz map RY can
be localized [19, 20]. An alternative, suggested in [14, 16], is based on noting that
by (2.8) the ideal Petrov Galerkin solution uh from (2.20) is a minimum residual
solution in Y 0, i.e., uh D argminw2Xhkf � BwkY 0 whose normal equations read
.f � Buh;Bw/Y 0 D 0, w 2 Xh. Since the inner product .�; �/Y 0 is numerically hard
to access, one can write .f � Buh;Bw/Y 0 D hR�1

Y .f � Buh/;Bwi, where the dual
pairing h�; �i is now induced by the standard L2-inner product. Introducing as an
auxiliary variable the “lifted residual”

y D R�1
Y .f � Buh/; (2.22)
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or equivalently .RY y/.v/ D hRY y; vi D .y; v/Y D hf � Buh; vi, v 2 Y , one can
show that (2.20) is equivalent to the saddle point problem

hRY y; vi C b.uh; v/ D hf; vi; v 2 Y;
b.w; y/ D 0; w 2 Xh; (2.23)

which involves only standard L2-inner products, see [16, 18].

Remark 2.2. When working with X; OY instead of OX; Y , one has RY D BR�1
X B

�
and hence, when X D L2.D/ as in (2.11), one has RY D BB�.

Since the test space Y is still infinite dimensional, a numerical realization would
require finding a (possibly small) subspace V � Y such that the analogous saddle
point problem with Y replaced by V is still inf-sup stable. The relevant condition on
V can be described by the notion of ı-proximality introduced in [16], see also [14].
We recall the formulation from [18]: V � Y is ı-proximal for Xh � OX if, for some
ı 2 .0; 1/, with PY;V denoting the Y -orthogonal projection from Y to V ,

k.I � PY;V /R�1
Y BwkY � ıkR�1

Y BwkY ; w 2 Xh : (2.24)

For a discussion of how to monitor or realize ı-proximality we refer to [14,16], see
also Sect. 2.3.5.

Theorem 2.2 ([14,16,18]). Assume that for given Xh � V � X � Y the test space
V is ı-proximal for Xh, i.e. (2.24) is satisfied. Then, the solution .uXh;V ; yXh;V / 2
Xh � V of the saddle point problem

hRY yXh;V ; vi C b.uXh;V ; v/ D hf; vi; v 2 V;
b.w; yXh;V / D 0; w 2 Xh;

(2.25)

satisfies

ku � uXh;V k OX � 1

1 � ı inf
w2Xh

ku � wk OX : (2.26)

and

ku � uXh;V k OX C ky � yXh;V kY � 2

1 � ı
inf

w2Xh
ku � wk OX : (2.27)

Moreover, one has

inf
w2Xh

sup
v2V

b.w; v/

kvkY kqk OX
�

p
1 � ı2: (2.28)
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Finally, (2.25) is equivalent to the Petrov-Galerkin scheme

b.uXh;V ; v/ D f .v/; v 2 Yh WD PY;V .R
�1
Y B.Xh// D PY;V .Y.Xh//: (2.29)

The central message is that the Petrov-Galerkin scheme (2.29) can be realized
without computing a basis for the test space Yh, which for each basis function
could require solving a problem of the size dimV , by solving instead the saddle
point problem (2.25). Moreover, the stability of both problems is governed by the ı-
proximality of V . As a by-product, in view of (2.22), the solution component yXh;V
approximates the exact lifted residual R�1

Y .f � BuXh;V / and, as pointed out below,
can be used for an a posteriori error control.

The problem (2.25), in turn, can be solved with the aid of an Uzawa iteration
whose efficiency relies again on ı-proximality. For k D 0; : : :, solve

hRY yk; vi D hf � Buk; vi; v 2 V;
.ukC1;w/ OX D .uk;w/ OX C hB�yk;wi; w 2 Xh: (2.30)

Thus, each iteration requires solving a symmetric positive definite Galerkin problem
in V for the approximate lifted residual.

Theorem 2.3 ([16, Theorem 4.3]). Assume that (2.24) is satisfied. Then the iter-
ates generated by the scheme (2.30) converge to uXh;V and

kuXh;V � ukC1k OX � ıkuXh;V � ukk OX ; k D 0; 1; 2; : : : : (2.31)

2.3.4 Adaptive Petrov-Galerkin Solvers on Anisotropic
Approximation Spaces

The benefit of the above saddle point formulation is not only that it saves us the
explicit calculation of the test basis functions but that it provides also an error
estimator based on the lifted residual yh D yh.uXh;V ; f / defined by the first row
of (2.25).

2.3.4.1 Abstract ı-Proximinal Iteration

In fact, it is shown in [16] that when Vh � Y is even ı-proximal for Xh C B�1Fh,
with some finite dimensional subspace Fh � Y 0, one has

.1 � ı/kfh � BwkY 0 � kyh.w; fh/kY � kfh � BwkY 0 ; w 2 Xh; (2.32)
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where fh 2 Fh is an approximation of f 2 Y 0. The space Fh controls which
components of f are accounted for in the error estimator. The term f � fh is a
data oscillation error as encountered in adaptive finite element methods. It follows
that the current error of the Petrov-Galerkin approximation uXh;V is controlled from
below and above by the quantity kyhkY . This can be used to formulate the adaptive
Algorithm 1 that can be proven to give rise to a fixed error reduction per step. Its
precise formulation can be found in [16, § 4.2]. It is shown in [16, Proposition 4.7]
that each refinement step in Algorithm 1 below reduces the error by a fixed fraction.
Hence it terminates after finitely many steps and outputs an approximate solution Nu
satisfying ku � Nuk OX � ".

Algorithm 1 Adaptive algorithm
1: Set target accuracy ", initial guess Nu D 0, initial error bound e D kf kY 0 , parameters
�; 	; ˛1; ˛2 2 .0; 1/, initial trial and ı-proximal test spaces Xh; Vh;

2: while e > " do solve (2.25) within accuracy ˛1� (e.g. by an Uzawa iteration with initial guess
Nu) to obtain an approximate solution pair . Oy; Ou/ 2 Vh � Xh;

3: enlarge Xh to Xh;C in such a way that

inf
g2Xh;C

kB� Oy�gk OX 0 � 	kB� Oyk OX 0 and set r WD argming2Xh;C
kB� Oy�gk OX 0 I (2.33)

4: compute Xh0 � Xh; Fh0 � Fh, fh 2 BXh0 C Fh0 such that kf � fhkY 0 � ˛2�e;
5: set Xh CXh;C CXh0 ! Xh, �e ! e, and choose a ı-proximal subspace Vh for Xh;
6: set Ou C rX ! Nu.
7: end while

2.3.4.2 Application to Transport Equations

We adhere to the setting described in Sect. 2.3.2, i.e., X D OX D L2.D/, OY D Y D
W0.�b;D/, and RY D BB�.

The trial spaces that we now denote by Xj to emphasize the nested construction
below, are spanned by discontinuous piecewise linear functions on a mesh composed
of cells from collections Cj , i.e.,

Xj D P1.Cj /; j � 0; (2.34)

where the collections Cj are derived from collections QCj of the type (2.4) as
described in Sect. 2.2.

Given Xj of the form (2.34), the test spaces Vj are defined by

Vj WD P2.Gj /\ C.D/ with Gj WD fRiso.Q/ W Q 2 Cj g; (2.35)

where Riso.Q/ D fQ \ Pi W i D 1; : : : ; 4g is defined as follows. Let P be
a parallelogram containing Q and sharing at least three vertices with Q. (There
exist at most two such parallelograms and we choose one of them). Then the
parallelograms Pi result from a dyadic refinement of P . As pointed out later, the
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test spaces Vj constructed in this way, appear to be sufficiently large to ensure
ı-proximality for Xj for ı significantly smaller than one uniformly with respect
to j .

Since the test spaces Vj are determined by the trial spaces Xj the crucial
step is to generate XjC1 by enlarging Xj based on an a posteriori criterion
that “senses” directional information. This, in turn, is tantamount to a possibly
anisotropic adaptive refinement of Cj leading to the updated spaces for the next
iteration sweep of the form (2.30). The idea is to use a greedy strategy based on
the largest “fluctuation coefficients”. To describe this we denote for each �Q 2 IQ
by 
R�Q .Q/ an orthonormal Alpert-type wavelet basis for the difference space
P1.R�Q.Q//� P1.Q/, see [1]. We then set


j D f � 2 
R.Q/ W Q 2 Cj�1g; (2.36)

where 
R.Q/ D S
�Q2IQ 
R�Q .Q/. Initializing C0 as a uniform partition (on a low

level), we define for some fixed � 2 .0; 1/

Tj D � � max
 �2
j

jhB�rKj ;  � ij

for j > 0, where 
j is the two level basis defined in (2.36) and rKj D yK is the
lifted residual from the first row of the Uzawa iteration. Then, for each Q 2 Cj�1,
we define its refinement QR.Q/ (see the remarks following (2.4)) by

QR.Q/ WD
(

fQg; if max �2
R.Q/ jhB�rKj ;  � ij � Tj ;

RO�Q .Q/; otherwise;

where O�Q is chosen to maximize max �2
R�Q .Q/
jhB�rKj ;  � ij among all �Q 2 IQ.

One can then check whether this enrichment yields a sufficiently accurate L2-
approximation of B�rKj (step 3 of Algorithm 1). In this case, we adopt Cj .
Otherwise, the procedure is repeated for a smaller threshold � .

2.3.5 Numerical Results

We provide some numerical experiments to illustrate the performance of the
previously introduced anisotropic adaptive scheme for first order linear transport
equations and refer to [17] for further tests. We monitor ı-proximality by computing

inf�2Vj kuj � uKj � B��kL2.Œ0;1
2/
kuj � uKj kL2.Œ0;1
2/

; (2.37)
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a b c

Fig. 2.2 Possible directional adjustments are illustrated for a parallelogram P (dashed line).
(a) Rule (iii) of Sect. 2.2 yields two parallelograms with the same “direction”. (b), (c) Applying
rule (i) twice, changes the anisotropic direction slightly. The three refined parallelograms depicted
in (b), (c) illustrate the results of a possible merging of adjacent triangles

where uj D argminvj2Xj ku � vjkL2.D/. This is only a lower bound of the ı-
proximality constant ı for one particular choice of w in (2.24) which coincides with
the choice of w in the proof in [16]. In the following experiment, the number K of
Uzawa iterations is for simplicity set toK D 10. One could as well employ an early
termination of the inner iteration based on a posteriori control of the lifted residuals
rkj .

We consider the transport equation (2.10) with zero boundary condition g D 0,
convection field b D .x2; 1/

T , and right hand side f D �fx1>x22=2g C1=2 ��fx1�x22=2g
so that the solution exhibits a discontinuity along the curvilinear shear layer given
by x1 D 1

2
x22 .

In this numerical example we actually explore ways of reducing the relatively
large number of possible splits corresponding to the operators R�Q , �Q 2 IQ, while
still realizing the parabolic scaling law. In fact, we confined the cells to intersections
of parallelogramsP and their intersections with the domainD, much in the spirit of
shearlet systems, employing anisotropic refinements as illustrated in Fig. 2.2 as well
as the isotropic refinement Riso. Permitting occasional overlaps of parallelograms,
one can even avoid any interior triangles, apparently without degrading the accuracy
of the adaptive approximation. The general refinement scheme described in Sect. 2.2
covers the presently proposed one as a special case, except, of course, for the
possible overlap of cells.

Figure 2.3a, b show the adaptive grids associated with the trial space X5 and the
test space V5. The refinement in the neighborhood of the discontinuity curve reflects
a highly anisotropic structure. Figure 2.3c illustrates the approximation given by
306 basis elements. We emphasize that the solution is very smooth in the vicinity
of the discontinuity curve and oscillations across the jump are almost completely
absent and in fact much less pronounced than observed for isotropic discretizations.
Figure 2.3d indicates the optimal rate realized by our scheme, see Theorem 2.1. The
estimated values of the proximality parameter ı, displayed in Table 2.1, indicate the
numerical stability of the scheme.
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Fig. 2.3 (a) Adaptive grid for the trial space X5. (b) Adaptive grid for the test space V5.
(c) Approximate solution (306 basis elements). (d) L2.D/ errors (vertical axis) for N degrees of
freedom (horizontal axis) achieved by the adaptive scheme (blue) in comparison with the optimal
rate N�1 (red), predicted by Theorem 2.1. This is to be compared with the rate N�1=2 realized by
adaptive isotropic refinements [16]

Table 2.1 Numerical
estimates (2.37) for the
proximality constant ı and for
the L2 approximation error

n Estimated ı kuKj � ukL2.Œ0;1
2/
48 0.298138 0.036472

99 0.442948 0.021484

138 0.352767 0.013948

177 0.322156 0.010937

237 0.316545 0.008348

306 0.307965 0.006152

In the remainder of the paper we discuss parametric equations whose solutions
are functions of spatial variables and additional parameters. Particular attention will
here be paid to the radiative transfer problems, where the dimension of the physical
domain is 2 or 3.



2 Efficient Resolution of Anisotropic Structures 41

2.4 Reduced Basis Methods

2.4.1 Basic Concepts and Rate Optimality

Model reduction is often necessary when solutions to parametric families of PDEs
are frequently queried for different parameter values e.g. in an online design or
optimization process. The linear transport equation (2.17) is a simple example of
such a parameter dependent PDE. Since (a) propagation of singularities is present
and (b) the parameters determine the propagation direction s it turns out to already
pose serious difficulties for standard model reduction techniques.

We emphasize that, rather than considering a single variational formulation for
functions of spatial variables and parameters, as will be done later in Sect. 2.5, we
take up the parametric nature of the problem by considering a parametric family
of variational formulations. That is, for each fixed s the problem is an ordinary
linear transport problem for which we can employ the corresponding variational
formulation from Sect. 2.3.2, where now the respective spaces may depend on the
parameters. In this section we summarize some of the results from [18] which are
based in an essential way on the concepts discussed in the previous section.

In general, consider a family

b�.u; v/ D f .v/; u 2 X�; v 2 Y�; � 2 P; b�.u; v/ D
MX

kD1
�k.�/bk.u; v/

(2.38)

of well-posed problems, where P � R
P is a compact set of parameters �, and

the parameter dependence is assumed to be affine with smooth functions �k . The
solutions u.�I�/ D u.�/ then become functions of the spatial variables and of the
parameters � 2 P .

As before we can view (2.38) as a parametric family of operator equations
B�u D f , where B� W X� ! Y 0

� is again given by .B�u/.v/ D b�.u; v/. Each
particular solution u.�/ is a point on the solution manifold

M WD fB�1
� f W � 2 Pg: (2.39)

Rather than viewing u.�/ as a point in a very high-dimensional (in fact infinite
dimensional) space, and calling a standard solver for each evaluation in a frequent
query problem, the Reduced Basis Method (RBM) tries to exploit the fact that each
u.�/ belongs to a much smaller dimensional manifold M . Assuming that all the
spaces X� are equivalent to a reference Hilbert space X with norm k � kX , the
key objective of the RBM is to construct a possibly small dimensional linear space
Xn � X such that for a given target accuracy " > 0

sup
�2P

inf
w2Xn

ku.�/ � wkX WD maxdistX.M ; Xn/ � ": (2.40)
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Once Xn has been found, bounded linear functionals of the exact solution u.�/ can
be approximated within accuracy " by the functional applied to an approximation
fromXn which, when n is small, can hopefully be determined at very low cost. The
computational work in an RBM is therefore divided into an offline and an online
stage. Finding Xn is the core offline task which is allowed to be computationally
(very) expensive. More generally, solving problems in the “large” space X is part
of the offline stage. Of course, solving a problem in X is already idealized. In
practice X is replaced by a possibly very large trial space, typically a finite element
space, which is referred to as the truth space and should be chosen large enough to
guarantee the desired target accuracy, ideally certified by a posteriori bounds.

The computation of a (near-)best approximation un.�/ 2 Xn is then to be online
feasible. More precisely, one seeks to obtain a representation

un.�/ D
nX

jD1
cj .�/�j ; (2.41)

where the �j form a basis for Xn and where for each query � 2 P the expansion
coefficients cj .�/ can be computed by solving only problems of the size n, see
e.g. [39] for principles of practical realizations. Of course, such a concept pays off
when the dimension n D n."/, needed to realize (2.40), grows very slowly when
" decreases. This means that the elements of M have sparse representations with
respect to certain problem dependent dictionaries.

The by now most prominent strategy for constructing “good” spaces Xn can be
sketched as follows. Evaluating for a given Xn the quantity maxdistX.M ; Xn/ is
infeasible because this would require to determine for each � 2 P (or for each
� in a large training set Ph � P which for simplicity we also denote by P) the
solution u.�/ which even for the offline stage is way too expensive. Therefore, one
chooses a surrogate Rn.�/ such that

inf
w2Xn

ku.�/� wkX � Rn.�;Xn/; � 2 P; (2.42)

where the evaluation of Rn.�;Xn/ is fast and an optimization of Rn.�;Xn/ can
therefore be performed in the offline stage. This leads to the greedy algorithm in
Algorithm 2. A natural question is to ask how the spaces Xn constructed in such a
greedy fashion compare with “best spaces” in the sense of the Kolmogorov n-widths

dn.M /X WD inf
dimWnDn sup

w2M
inf

z2Wn
kw � zkX : (2.44)

The n-widths are expected to decay the faster the more regular the dependence of
u.�/ is on �. In this case an RBM has a chance to perform well.

Clearly, one always has dn.M /X � maxdistX.M ; Xn/. Unfortunately, the best
constant Cn for which maxdistX.M ; Xn/ � Cndn.M /X is Cn D 2n, see [4, 6].
Nevertheless, when comparing rates rather than individual values, one arrives at
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Algorithm 2 Greedy algorithm
1: function GA
2: Set X0 WD f0g, n D 0,
3: while argmax�2PR.�;Xn/ � " do
4:

�nC1 WD argmax�2PR.�;Xn/;

unC1 WD u.�nC1/;

XnC1 WD span
˚
Xn; fu.�nC1/g� D span fu1; : : : ; unC1g

(2.43)

5: end while
6: end function

more positive results [4, 21]. The following consequence of these results asserts
optimal performance of the greedy algorithm provided that the surrogate sandwiches
the error of best approximation.

Theorem 2.4 ([18, Theorem 1.3]). Assume that there exists a constant 0 < cR � 1

such that one has for all n

cRRn.�;Xn/ � inf
w2Xn

ku.�/ � wkX � Rn.�;Xn/; � 2 P : (2.45)

Then, the spaces Xn produced by Algorithm 2 satisfy

dn.M /x � Cn�˛ H) maxdistX.M ; Xn/ � NCn
�˛
; (2.46)

where NC depends only on C; ˛, and �.Rn/ WD 1=cR, the condition of the surrogate.

We call the RBM rate-optimal whenever (2.46) holds for any ˛ > 0. Hence,
finding rate-optimal RBMs amounts to finding feasible well-conditioned surrogates.

2.4.2 A Double Greedy Method

Feasible surrogates that do not require the explicit computation of truth solutions
for each � 2 P need to be based in one way or the other on residuals. When (2.38)
is a family of uniformly X -elliptic problems so that B� are uniformly bounded
isomorphisms from X onto X 0, residuals indeed lead to feasible surrogates whose
condition depends on the ratio of the continuity and coercivity constant. This follows
from the mapping property of B�, stability of the Galerkin method, and the best
approximation property of the Galerkin projection, see [18].

When the problems (2.38) are indefinite or unsymmetric and singularly perturbed
these mechanisms no longer work in this way, which explains why the conventional
RBMs do not perform well for transport dominated problems in that they are far
from rate-optimal.
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As shown in [18], a remedy is offered by the above renormation principle
providing well-conditioned variational formulations for (2.38). In principle, these
allow one to relate errors (in a norm of choice) to residuals in a suitably adapted
dual norm which are therefore candidates for surrogates. The problem is that, given
a trial space Xn, in particular a space generated in the context of an RBM, it is not
clear how to obtain a sufficiently good test space such that the corresponding Petrov-
Galerkin projection is comparable to the best approximation. The new scheme
developed in [18] is of the following form:

(I) Initialization: take X1 WD span fu.�1/g, �1 randomly chosen, Y1 WD f0g;
(II) Given a pair of spaces Xn; QVn, the routine UPDATE-INF-SUP-ı enriches QVn to

a larger space Vn which is ı-proximal for Xn;
(III) ExtendXn toXnC1 by a greedy step according to Algorithm 2, set QVnC1 D Vn,

and go to (II) as long as a given target tolerance for an a posteriori threshold is
not met.

The routine UPDATE-INF-SUP-ı works roughly as follows (see also [25] in the
case of the Stokes system). First, we search for a parameter N� 2 P and a function
Nw 2 Xn for which the inf-sup condition is worst, i.e.

sup
v2 QVn

b N�. Nw; v/
kvkY N�

k Nwk OX N�

D inf
�2P

 
inf

w2Xn
sup
v2 QVn

b�.w; v/

kvkY�kwk OX�

!
: (2.47)

If this worst case inf-sup constant does not exceed yet a desired uniform lower
bound, QVn does not contain an effective supremizer, i.e., a function realizing the
supremum in (2.47), for N�; Nw, yet. However, since the truth space satisfies a uniform
inf-sup condition, due to the same variational formulation, there exists a good
supremizer in the truth space which, is given by the Galerkin problem

Nv D R�1
Y N�
B N� Nw D argmaxv2Y N�

b N�. Nw; v/
kvkY N�

k Nwk OX N�

;

providing the enrichment QVn ! spanf QVn;R�1
Y�
B� Nwg.

The interior greedy stabilization loop (II) ensures that the input pair Xn; Yn in
step (III) is inf-sup stable with an inf-sup constant as close to one as one wishes,
depending on the choice of ı < 1. By Theorem 2.2, each solution un.�/ of the
discretized system for .Xh; V / D .Xn; Vn/ satisfies the near-best approximation
property (2.26) and (2.27). Hence kf �B�un.�/kY 0

�
is a well conditioned surrogate

(with condition close to one). Therefore, the assumptions of Theorem 2.4 hold so
that the outer greedy step (III) yields a rate-optimal update. In summary, under
the precise assumptions detailed in [18], the above double greedy scheme is rate-
optimal.

Before turning to numerical examples, a few comments on the interior greedy
loop UPDATE-INF-SUP-ı are in order.
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(a) Finding N� in (2.47) requires for each �-query to perform a singular value
decomposition in the low dimensional reduced spaces so that this is offline
feasible, see [18, Remark 4.2].

(b) When the test spaces Y� all agree with a reference Hilbert space Y as sets
and with equivalent norms it is easy to see that the interior stabilization
loop terminates after at most M steps where M is the number of parametric
components in (2.38), see [18, Remark 4.9] and [25, 38]. If, on the other hand,
the spaces Y� differ even as sets, as in the case of transport equations when the
transport direction is the parameter, this is not clear beforehand. By showing that
the inf-sup condition is equivalent to a ı-proximality condition one can show
under mild assumptions though that the greedy interior loop still terminates after
a number of steps which is independent of the truth dimension, [18, Remark
4.11].

(c) In this latter case the efficient evaluation of kf �B�u.�/kY 0

�
requires additional

efforts, referred to as iterative tightening, see [18, Section 5.1].
(d) The renormation strategy saves an expensive computation of stability constants

as in conventional RBMs since, by construction, through the choice of ı, the
stability constants can be driven as close to one as one wishes.

The scheme has been applied in [18] to convection-diffusion and pure transport
problems where the convection directions are parameter dependent. Hence the
variational formulations are of the form (2.38). We briefly report some results for
the transport problem since this is an extreme case in the following sense. The test
spaces Y� do not agree as sets when one would like the X� to be equivalent for
different parameters. Hence, one faces the obstructions mentioned in (b), (c) above.
Moreover, for discontinuous right hand side and discontinuous boundary conditions
the dependence of the solutions on the parameters has low regularity so that the n-
widths do not decay as rapidly as in the convection-diffusion case. Nevertheless, the
rate-optimality still shows a relatively fast convergence for the reduced spaces Xn
shown below.

The first example concerns (2.17) (with � D s ranging over a quarter circle,
D D .0; 1/2) for fı 
 1, g 
 0. In the second example, we take fı.x1; x2/ D 0:5

for x1 < x2, fı.x1; x2/ D 1 for x1 � x2 (Tables 2.2, 2.3 and Fig. 2.4).

Table 2.2 Numerical results for Example 1, maximal truth error in L2 0.000109832

Dimension Maximal error between
Trial Test ı Maximal surr rb truth rb L2 Surr/err

4 11 3.95e�01 8.44e�03 2.45e�02 2.45e�02 3.45e�01

10 33 4.32e�01 3.37e�03 5.74e�03 5.74e�03 5.87e�01

16 57 4.32e�01 1.50e�03 2.56e�03 2.56e�03 5.84e�01

20 74 4.16e�01 1.21e�03 2.10e�03 2.10e�03 5.77e�01

24 91 4.05e�01 7.27e�04 1.58e�03 1.58e�03 4.61e�01
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Table 2.3 Numerical results for Example 2 after a single cycle of iterative tightening. Maximal
truth error in L2 0.0154814

Dimension Maximal error between
Trial Test ı Maximal surr rb truth rb L2 Surr/err

First reduced basis creation

20 81 3.73e�01 2.71e�02 5.46e�02 5.62e�02 4.82e�01

Second reduced basis creation

10 87 3.51e�01 6.45e�02 7.40e�02 7.53e�02 8.57e�01

10 20
0

5 ·10−3

1 ·10−2

reduced basis trial dimension

Example 1

10 20
0

2 ·10−2

4 ·10−2

6 ·10−2

reduced basis trial dimension

Example 2

Fig. 2.4 Surrogates of the reduced basis approximation for Examples 1 and 2

2.5 Sparse Tensor Approximation for Radiative Transfer

We now extend the parametric transport problem (2.17) to the radiative transport
problem (RTP) (see, e.g., [37]) which consists in finding the radiative intensity
u W D � S ! R, defined on the Cartesian product of a bounded physical domain
D � R

d , where d D 2; 3, and the unit dS-sphere as the parameter domain:P D S
with dS D 1; 2. Given an absorption coefficient � � 0, a scattering coefficient � �
0, and a scattering kernel or scattering phase function ˚ > 0, which is normalized
to
R
S ˚.s; s0/ds0 D 1 for each direction s, one defines the transport operator Tu WD

.s � rx C �/u, and the scattering operator Qu WD �Q1u D �.u �R
S ˚.s; s0/u.x; s0/ds0/. The radiative intensity is then given by

.T C Q/u D f; uj@˝�
D g; (2.48)

where f WD �Ib , @˝� WD f.x; s/ 2 @D � S W s � n.x/ < 0g, and g denote the
source term, the inflow-boundary, and the inflow-boundary values, respectively. As
before, ��.s/ WD fx 2 @D W s � n.x/ < 0g (see (2.18)) stands for the physical
inflow-boundary.

The partial differential equation (2.48) is known as stationary monochromatic
radiative transfer equation (RTE) with scattering, and can be viewed as (nonlocal)
extension of the parametric transport problem (2.17), where the major difference
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to (2.17) is the scattering operator Q. Sources with support contained in D are
modeled by the blackbody intensity Ib � 0, radiation from sources outside of the
domain or from its enclosings is prescribed by the boundary data g � 0.

Deterministic numerical methods for the RTP which are commonly used in engi-
neering comprise the discrete ordinates (SN -) method and the spherical harmonics
(PN -) method.

In the discrete ordinate method (DOM), the angular domain is collocated by a
finite number of fixed propagation directions in the angular parameter space; in this
respect, the DOM resembles the greedy collocation in the parameter domain: each
of the directions Eq. (2.48) results in a spatial PDE which is solved (possibly in
parallel) by standard finite differences, finite elements, or finite volume methods.

In the spherical harmonics method (SHM), a spectral expansion with spatially
variable coefficients is inserted as ansatz into the variational principle Eq. (2.48).
By orthogonality relations, a coupled system of PDEs (whose type can change from
hyperbolic to elliptic in the so-called diffuse radiation approximation) for the spatial
coefficients is obtained, which is again solved by finite differences or finite elements.

The common deterministic methods SN - and PN -approximation exhibit the so-
called “curse of dimensionality”: the error with respect to the total numbers of
degrees of freedom (DoF)MD andMS on the physical domainD and the parameter
domain S scales with the dimension d and dS asO.M�s=d

D CM�t=dS
S /with positive

constants s and t .
The so called sparse grid approximation method alleviates this curse of dimen-

sionality for elliptic PDEs on cartesian product domains, see [7] and the references
therein. Widmer et al. [41] has developed a sparse tensor method to overcome the
curse of dimensionality for radiative transfer with a wavelet (isotropic) discretiza-
tion of the angular domain. Under certain regularity assumptions on the absorption
coefficient � and the blackbody intensity Ib , their method achieves the typical
benefits of sparse tensorization: a log-linear complexity in the number of degrees
of freedom of a component domain with an essentially (up to a logarithmic factor)
undeteriorated rate of convergence. However, scattering had not been addressed in
that work.

In order to include scattering and to show that the concepts of sparse tensorization
can also be applied to common solution methods, sparse tensor versions of the
spherical harmonics approximation were developed extending the “direct sparse”
approach by [41]. The presently developed version also accounts for scattering [27].
For this sparse spherical harmonics method, we proved that the benefits of sparse
tensorization can indeed be harnessed.

As a second method a sparse tensor product version of the DOM based on the
sparse grid combination technique was realized and analyzed in [26, 28]. Solutions
to discretizations of varying discretization levels, for a number of collocated
transport problems, and with scattering discretized by combined Galerkin plus
quadrature approximation in the transport collocation directions are combined in
this method to form a sparse tensor solution that we proved in [26, 28] breaks the
curse of dimensionality as described above. These benefits hold as long as the exact
solution of the RTE is sufficiently regular. An overview follows.
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2.5.1 Sparse Discrete Ordinates Method (Sparse DOM)

We adopt a formulation where the inflow boundary conditions are enforced in a
weak sense. To this end, we define the boundary form (see, e.g., [26])

@b.u; v/ WD .v; s � nu/L2.@˝�/
D
Z

S

Z

��.s/

s � nuvdxds : (2.49)

Writing for v W D � S ! R briefly kvk WD kvkL2.D�S /, the norms

kvk2� WD �@b.v; v/; kvk12 WD kvk2 C ks � rxvk2 C kQ1vk2 C kvk2�
define the Hilbert space V1 WD fv 2 L2.D�S / W kvk1 < 1g. The SUPG-stabilized
Galerkin variational formulation reads: find u 2 V1 such that

.Rv; .T C Q/u/L2.D�S / � 2@b.u; v/ D .Rv; f /L2.D�S / � 2@b.g; v/ 8v 2 V1
(2.50)

with SUPG stabilization Rv WD v C 	s � rxv, where 	 � 2�L.
For the discretization of (2.50), we replace V1 by V L;N D V L

D ˝ V N
S . In

the physical domain, standard P1-FEM with a one-scale basis on a uniform
mesh of width hmax . 2�L is used, in the angular domain, piecewise constants
on a quasiuniform mesh of width hmax . N�1. Fully discrete problems are
obtained with a one-point quadrature in the angular domain. The resulting Galerkin
formulation (2.50) can be shown to result in the same linear system of equations
as the standard collocation discretization [26, Sec. 5.2]. The solution is constructed
with the sparse grid combination technique (see [7]):

OuL;N D
LX

`DD0

�
u`D;`max

S .`D/ � u`D;`max
S .`DC1/

�
;

where u`D;`S 2 V `D;`S denotes the solution to a full tensor subproblem of physical
resolution level `D and angular resolution level `S . The maximum angular index
`max
S D 2blog2.NC1/c=L.L�lD/ ensures that the angular resolution decreases when the

physical resolution increases and vice versa.
While the full tensor solution uL;N requiresO.2dLNdS/ degrees of freedom, the

sparse solution involves asymptotically at mostO..LClogN/.2dLCNdS// degrees
of freedom [26, Lemma 5.6]. At the same time, we have

ku � uL;N k1 � C2�LkukH2;0.D�S / CN�1kukH1;1.D�S /;

while for solutions in H2;1.D � S / � .H2;0.D � S /\H1;1.D � S //



2 Efficient Resolution of Anisotropic Structures 49

ku � OuL;N k1 � CLmaxf2�L;N�1gkukH2;1.D�S / ;

where C is an absolute constant.

2.5.2 Numerical Experiment

To evaluate the solution numerically we monitor the incident radiation G.x/ DR
S u.x; s/ds and its relative error err.GL;N /X D kG � GL;N kX=kGkX , X D
L2.D/;H

1.D/.
The setting for the experiment is D D .0; 1/d , S D S d

S
. We solve the

RTP (2.48) with isotropic scattering ˚.s; s0/ D 1=jS j and with zero inflow
boundary conditions g D 0. A blackbody radiation Ib.x; s/ corresponding to the
exact solution

u.x; s/ D 3

16�
.1C .s � s0/2/

3Y

iD1
.�4xi.xi � 1//;

with fixed s0 D .1=
p
3; 1=

p
3; 1=

p
3/> is inserted in the right hand side functional

in (2.50). The absorption coefficient is set to � D 1, the scattering coefficient to
� D 0:5.

This 3C 2-dimensional problem was solved with a parallel C++ solver designed
for the sparse tensor solution of large-scale radiative transfer problems. Figure 2.5
shows the superior efficiency of the sparse approach with respect to number of
degrees of freedom vs. achieved error. The convergence rates indicate that the curse
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Fig. 2.5 Convergence in incident radiation with full and sparse DOM. Resolution for reference
solution was Lref D 4. Reference slopes provided as visual aids only
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of dimensionality is mitigated by the sparse DOM. Further gains are expected once
the present, nonadaptive sparse DOM is replaced by the greedy versions outlined in
Sect. 2.3.1.1.
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