
Chapter 14
Adaptive Approximation Algorithms for Sparse
Data Representation

Mijail Guillemard, Dennis Heinen, Armin Iske, Sara Krause-Solberg,
and Gerlind Plonka

Abstract We survey our latest results on the development and analysis of adaptive
approximation algorithms for sparse data representation, where special emphasis
is placed on the Easy Path Wavelet Transform (EPWT), nonlinear dimensionality
reduction (NDR) methods, and their application to signal separation and detection.

14.1 Introduction

During the last few years there has been an increasing interest in efficient (i.e.,
sparse) representation and denoising of high-dimensional signals. We have focussed
our research on the development and analysis of adaptive approximation algorithms
for high-dimensional signals, especially (a) scattered data denoising by wavelet
transforms; (b) nonlinear dimensionality reduction relying on geometrical and
topological concepts. This contribution reviews our recent research results on (a)
and (b).

For (a), we present a general framework for the Easy Path Wavelet Transform
(EPWT) for sparse representation and denoising of scattered data taken from
high-dimensional signals (in Sect. 14.2). As regards (b), we continue our research
on nonlinear dimensionality reduction (NDR) methods (cf. Sect. 14.3), where we
combine recent NDR methods with non-negative matrix factorization (NNMF),
for the purpose of separating sources from a mixture of signals without a prior
knowledge about the mixing process. More details on dimensionality reduction
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and NNMF, along with our recent results on signal separation, are discussed in
Sect. 14.4.

The presented results are based on our papers [7–9, 11, 13, 17–21, 25] and have
been achieved in the project “Adaptive approximation algorithms for sparse data
representation” of the German Research Foundation’s priority program DFG-SPP
1324.

14.2 The Easy Path Wavelet Transform

Let ˝ be a connected domain in R
d and let � be a large finite set of points in

˝ . We let h� WD maxy2˝ minx2� ky � xk2 be the fill distance of � in ˝ and its
grid distance is g� WD minx;x02�;x¤x0 kx � x0k2: We say that the set � is quasi-
uniform, if h� < 2g� . Further, let f W ˝ ! R be a piecewise smooth function that
is sampled at � , i.e., the values f .x/, x 2 � , are given. We are now interested
in an efficient approximation of f using a meshless multiscale approach called
Easy Path Wavelet Transform (EPWT). For applications, we usually assume that
� approximates a smooth manifold in R

d . For example, our approach covers the
efficient approximation of digital images, see [16, 20], where � is chosen to be
a set of regular grid points in a rectangle ˝ , and the approximation of piecewise
smooth functions on the sphere, see [18], where˝ D S

2 and � is a suitably chosen
quasi-uniform point set on the sphere S2.

Similar approaches have also been proposed for generalizing the wavelet trans-
form to data defined on weighted graphs, see [22]. In this section, we extend the
EPWT proposed in [16,18,24] to the case of high-dimensional data approximation.

14.2.1 The General EPWT Algorithm for Sparse
Approximation

Let us shortly recall the notions of a biorthogonal wavelet filter bank of perfect
reconstruction. To this end, let ' be a sufficiently smooth, compactly supported,
one-dimensional scaling function, Q' the corresponding biorthogonal compactly
supported scaling function, and  ; Q the corresponding pair of biorthogonal
compactly supported wavelets, see, e.g., [2, 15]. These functions provide us with
a filter bank of perfect reconstruction with sequences .hn/n2Z, . Qhn/n2Z of low-pass
filter coefficients and .gn/n2Z, . Qgn/n2Z of high-pass filter coefficients.

Assume that the number N D j� j of given points x 2 � � R
d is a power

of 2, N D 2J , where J � 1. We denote � J WD � and its elements by xJk D xk ,
k D 1; : : : ; N , i.e., we fix some ordering of the points in � J . Now the EPWT works
as follows. In a first step, we seek a suitable permutation pJ of the indices of the
points in � J by determining a path of length N through all points xJk such that
consecutive data points .xJ

pJ .k/
; f .xJ

pJ .k/
// and .xJ

pJ .kC1/; f .x
J
pJ .kC1/// in the path
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Algorithm 9 Decomposition

Let � D fx1; : : : ; xN g D fxJ1 ; : : : ; xJN g D � J � R
d be a given point set. Let f J

k WD f .xk/,
for k D 1; : : : ; N , where N D 2J . Choose a biorthogonal wavelet filterbank with decomposition
filters Qh; Qg, and reconstruction filters h; g, where

P
k2Z

Qh.k/ D p
2, and a low-pass filter Qhp ,

where
P

k2Z
Qhp.k/ D 1.

Iteration: Perform the following 4 steps for ` D J; J � 1 : : : ; J � LC 1 with L < J :

1. Find a suitable path vector p` 2 N
2` consisting of a permutation of the indices of the points in

� ` that describes a fixed order of points .x`
p`.k/

; f `
p`.k/

/, k D 1; : : : ; 2`.

2. Apply the (periodic) low-pass filter Qh to .f `
p`.k/

/2
`

kD1 followed by downsampling by two to obtain

the low-pass data .f `�1
k /2

`�1

kD1 . Apply the (periodic) high-pass filter Qg to .f `
p`.k/

/2
`

kD1 followed

by downsampling by two to obtain the vector of wavelet coefficients .d`�1
k /2

`�1

kD1 .

3. Apply the low-pass filter Qhp to point vector .x`
p`.k/

/2
`

kD1 (component-wise) followed by

downsampling by two to obtain a new vector of scattered points .x`�1
k /2

`�1

kD1:

Determine the new point set � `�1 WD fx`�1
1 ; : : : ; x`�1

2`�1g.

4. Apply a hard-threshold operator T� to the wavelet vector .d`�1
k /2

`�1

kD1 to find

Qd`�1
k D T�.d

`�1
k / D

�
d`�1
k if jd`�1

k j � �;

0 if jd`�1
k j < �;

with a predefined threshold parameter � > 0.

Output: low-pass function values .f J�L
k /2

J�L

kD1 , thresholded high-pass function values . Qd`k /2`kD1 ,

` D J � 1; : : : ; J � L, path vectors p`, ` D J; : : : ; J � LC 1.

strongly “correlate”. In the second step, we apply the one-dimensional wavelet filter
bank to the sequence of functions values .f .xJ

pJ .k/
//NkD1, and simultaneously a low-

pass filter to the points .xJ
pJ .k/

/NkD1, where we consider each of the d components
separately. The significant high-pass coefficients corresponding to the function
values will be stored. The N=2 low-pass data will be processed further at the next
level of the EPWT. Particularly, we denote the set of the N=2 points obtained by
low-pass filtering and downsampling of .xJ

pJ .k/
/NkD1 by � J�1, and relate the low-

pass function coefficients to these points. Again, we start with seeking a permutation
pJ�1 of the indices of the points in � J�1 to obtain an appropriate ordering of the
data and apply the one-dimensional wavelet filter bank to the ordered low-pass
function data. We iterate this procedure and obtain a sparse representation of the
original data by applying a hard thresholding procedure to the high-pass coefficients
of the function value components. The complete procedure is summarized by
Algorithm 9.

By construction many high pass values d`k will vanish. An optimal storage of
the path vectors p` depends on the original distribution of the points xJk and on the
applied filter Qhp . Employing a “lazy” filter, we have x`k WD x`C1

p`C1.2k/
, such that at

each level the new point set is just a subset of that of the preceding level of half
cardinality.
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Algorithm 10 Reconstruction

Reconstruct values f .xk/ D f .xJk / by applying the following iteration, where . Qf J�L
k /2

J�L

kD1 WD
.f J�L
k /2

J�L

kD1 .
Iteration: Perform the following three steps for ` D J � L; J � LC 1; : : : ; J � 1:

1. Apply an upsampling by two and then the low-pass filter h to . Qf `
k /

2`

kD1 .

2. Apply an upsampling by two and then the high-pass filter g to . Qd`k /2`kD1 .

3. Add the results of the previous two steps to obtain . Qf `C1

p`C1.k/
/2
`C1

kD1 ; and invert permutation p`C1.

Output: . Qf J
k /

N
kD1 , the approximated function values at scattered points xk 2 � .

14.2.2 Construction of Path Vectors

The main challenge for the application of the EPWT to sparse data representation
is to construct path vectors through the point sets � `, ` D J; : : : ; J � LC 1. This
step is crucial for the performance of the data compression. The path construction is
based on determining a suitable correlation measure that takes the local distance
of the scattered points x`k into account, on the one hand, and the difference of
the corresponding low-pass values f `

k , on the other hand. In the following, we
present some strategies for path construction and comment on their advantages and
drawbacks.

14.2.2.1 Path Construction with Fixed Local Distances

One suitable strategy for path construction [16, 24] is based on a priori fixed local
"-neighborhoods of the points x`k . In R

d , we consider a neighborhood of the form

N".x
`
k/ D fx 2 � ` n fx`kg W kx`k � xk2 � mMn 2.J�`/=d"g;

where " > 2J=d g� depends on the distribution of the original point set � D � J .
For example, starting with a regular rectangular grid in R

2 with mesh size
g� D 2�J=2 (with J even) in both directions, one may think about a constant " withp
2 � " < 2, such that each inner grid point has eight neighbors.
For path construction at level ` of the EPWT, we choose a first point x` 2 � `

randomly, and put x`
p`.1/

WD x`. Let now P `
j WD fx`

p`.1/
; : : : ; x`

p`.j /
g be the set of

points that have already been taken in the path. Now, we determine the .j C 1/-th
point by

x`
p`.jC1/ WD argmin

x2N".x`
p`.j /

/nP`j
jf .x/ � f .x`

p`.j /
/j; (14.1)
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i.e., we choose the point x in the neighborhood of the point x`
p`.j /

with minimal
absolute difference of the corresponding function values. This measure has been
applied in the rigorous EPWT of [16, 18]. The advantage of fixing the local
neighborhood in spatial domain lies in the reduced storage costs for the path vector
that needs to be kept to ensure a reconstruction. The drawback of this measure is that
the set of “admissible points”N".x`p`.j // nP `

j may be empty. In this case a different
rule for finding the next path entry has to be applied.

A special measure occurs if one tries to mimic the one-dimensional wavelet
transform. In order to exploit the piecewise smoothness of the function f to be
approximated, one should prefer to construct path vectors, where locally three
consecutive points x`

p`.j�1/, x
`
p`.j /

, x`
p`.jC1/ lie (almost) on a straight line. This

consideration leads to the following measure: We fix a threshold � for the function
values. For finding the next point in the path, we compute

N";�.x
`
p`.j /

/ WD fx 2 N".x`p`.j // n P `
j W jf .x/ � f .x`

p`.j /
/j � �g; (14.2)

and then let

x`
p`.jC1/ WD argmin

x2N";�.x`
p`.j /

/

hx`
p`.j�1/ � x`

p`.j /
; x`

p`.j /
� xi

kx`
p`.j�1/ � x`

p`.j /
k2 kx`

p`.j /
� xk2

; (14.3)

where h�; �i denotes the usual scalar product in R
d . Note that in (14.3) the cosine

of the angle between the vectors x`
p`.j�1/ � x`

p`.j /
and x`

p`.j /
� x is minimized if

x`
p`.j�1/; x

`
p`.j /

and x are co-linear. This approach is taken in [16, 24] for images
(called relaxed EPWT), and in [10] for scattered data denoising.

Remark 14.1. The idea to prefer path vectors, where the angles between three
consecutive points in the path is as large as possible, can be theoretically validated
in different ways. Assume that the given wavelet decomposition filter Qg D . Qgk/k2Z
in the filter bank satisfies the moment conditions

P
k2Z Qgk D 0 and

P
k2Z k Qgk D 0.

Then we simply observe that for a constant function f .x/ D c for x 2 � and c 2 R

by

dJn D
X

k2Z
Qgk�2nC1f .xJpJ .k// D c

X

k2Z
Qgk�2nC1 D 0

all wavelet coefficients vanish, while for a linear function of the form
f .x/ D aT x C b with a 2 R

d and b 2 R we have

dJn D
X

k2Z
Qgk�2nC1f .xJpJ .k// D aT

X

k2Z
Qgk�2nC1xJpJ .k/ C b

X

k2Z
Qgk�2nC1:
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Consequently, these coefficients only vanish, if the points in the sequence
.xJ
pJ .k/

/k2Z are co-linear and equidistant, see [10]. A second validation for choosing
the path vector using the criterion (14.3) is given by the so-called path smoothness
condition in [17], see also Subsection 14.2.4, Remark 14.4.

Remark 14.2. Our numerical results in Sect. 14.2.5 show that the relaxed path con-
struction proposed in (14.2)–(14.3) is far superior to the rigorous path construction
(14.1), since it produces fewer “interruptions”, i.e., cases whereN".xp`.j //nP `

j D ;,
and a new path entry needs to be taken that is no longer locally correlated to the
preceding point, which is usually leading to large wavelet coefficients and a higher
effort in path coding (see [16, 24]).

14.2.2.2 Path Construction with Global Distances

We want to present a second path construction using a global weight function.
Considering the vectors y`k D y.x`k/ WD ..x`k/

T ; f `
k /

T 2 R
dC1 at each level, we

define a symmetric weight matrix W ` D .w.y`k; y
`
k0//

2`

k;k0D1, where the weight is
written as

w.y`k; y
`
k0/ D w1.x

`
k; x

`
k0/ � w2.f

`
k ; f

`
k0/:

Now the weights for the scattered points x`k can be chosen differently from the
weights for the (low-pass) function values f `

k . A possible weight function used
already in the context of bilateral filtering [25] is

w.y`k; y
`
k0/ D exp

 
�kx`k � x`k0k22
22.J�`/=d �1

!

� exp

 
�jf `

k � f `
k0 j2

2J�`�2

!

;

where �1 and �2 need to be chosen appropriately. The normalization constant
22.J�`/=d in the weight w1 is due to the reduction of the points x 2 � ` by factor 2, at
each level, so that the distances between the points grow. The normalization constant
2J�` in the weight w2 arises from the usual amplification of the low-pass coefficients
in the wavelet transform with filters Qh satisfying

P
k2Z Qhk D p

2.

Having computed the weight matrix W ` D .w.y`k; y
`
k0//

2`

k;k0D1, we simply

compute the path vector as follows. We choose the first component x`
p`.1/

randomly

from � `. Using again the notation P `
j WD fx`

p`.1/
; : : : ; x`

p`.j /
g for the set of points in

� ` that are already contained in the path vector, we now determine the next point as

x`
p`.jC1/ WD argmax

x2� `nP`j
w.y.x/; y.x`

p`.j /
//;

where uniqueness can be achieved by fixing a rule if the maximum is attained
at more than one point. The advantage of this path construction is that no
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“interruptions” occur. The essential drawback consists in higher storage costs for
path vectors, where we can no longer rely on direct local neighborhood properties
of consecutive points in the path vector. Further, computing the full weight matrix
W ` is very expensive. The costs can be reduced by cutting the spatial weight at a
suitable distance defining

w1.x
`
k; x

`
k0/ D

�
exp.�kx`k � x`k0k22=22.J�`/=d �1/ for kx`k � x`k0k2 � 2�`=dD;
0 for kx`k � x`k0k2 > 2�`=dD;

(14.4)

with D chosen appropriately to ensure a sufficiently large spatial neighborhood.

Remark 14.3. This approach has been used in [10] for random path construction,
where the compactly supported weight function w1.x`k; x

`
k0/ above is employed.

Taking the weight function

w1.x
`
k; x

`
k0/ D

�
1 for kx`k � x`k0k2 � 2�`=dD;
0 for kx`k � x`k0k2 > 2�`=dD;

and w2.f `
k ; f

`
k0/ D exp

�
�jf `k �f `

k0
j2

2J�`�2

�

we obtain a distance measure that is equivalent

to (14.1).

14.2.3 EPWT for Scattered Data Denoising

The EPWT can also be used for denoising of scattered data. Let us again assume
� D fx1; : : : ; xN g are scattered points in R

d and let f W R
d ! R be a smooth

function sampled on � � ˝ . For the measured data Qf .xj /, we suppose that

Qf .xj / D f .xj /C zj ;

where zj denotes additive Gaussian noise with zero mean and an unknown variance
�2. For the distribution of the points in ˝ we assume quasi-uniformity as before.

We now apply the EPWT, Algorithms 9 and 10 in Sect. 14.2.1, for data denoising.
Note that in case of noisy function values, the construction of path vectors (being
based on the correlation of function values at points with small spatial distance) is
now influenced by the noise. To improve the denoising performance, we have to
resemble the “cycle spinning” method (see [3]) that works as follows. We apply
the (tensor product) wavelet shrinkage not only to the image itself, but also to the
images that are obtained by up to seven cyclic shifts in x- and y-direction. After
un-shifting, one takes the average of the 64 reconstructed images, thereby greatly
improving the denoising result.
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Employing the EPWT algorithm, we use Algorithms 9 and 10, applying them 64
times using different starting values xpJ .1/ as a first path component each time. For
the path construction, we utilize one of the two methods described in Sect. 14.2.2.
After reconstruction of the 64 data sets, we take the average in order to obtain the
denoising result. Similarly as for wavelet denoising, the threshold parameter � in
Algorithm 9 needs to be selected carefully depending on the noise level.

In [10] we have employed two different path constructions for image denoising.
The first one is very similar to the path construction in Sect. 14.2.2.1. The second
one is based on a weight matrix resembling that in Sect. 14.2.2.2. Here, the next
component in the path vector is chosen randomly according to a probability
distribution based on the weight matrix.

For images, the proposed denoising procedure strongly outperforms the usual
tensor-product wavelet shrinkage with cycle spinning, see [10]. Moreover, the
procedure is not restricted to rectangular grids, but can be used in a much more
general context for denoising of functions on manifolds. Numerical examples of the
EPWT-based denoising scheme are given in Sect. 14.2.5.

14.2.4 Optimal Image Representation by the EPWT

In this subsection we restrict ourselves to the EPWT on digital images on a domain
˝ D Œ0; 1/2. For cartoon models, where the image is piecewise Hölder continuous
or even Hölder smooth, we can prove that the EPWT leads to optimally sparse image
representations, see [17, 19]. To explain this, let F 2 L2.˝/ be a piecewise Hölder
continuous image. More precisely, let f˝ig1�i�K be a finite set of regions forming
a disjoint partition of ˝ whose boundaries are continuous and of finite length. In
each region˝i , F is assumed to be Hölder continuous of order ˛ 2 .0; 1�,

jF.x/ � F.x C h/j � Ckhk˛2 ; x; x C h 2 ˝i; (14.5)

where C > 0 does not depend on i . For given samples f.F.2�J=2n//gn2IJ , the
function F can be approximated by the piecewise constant function

F J .x/ D
X

n2IJ
F .2�J=2n/�Œ0;1/2 .2J=2x � n/; x 2 Œ0; 1/2;

where the index set IJ WD fn D .n1; n2/ 2 N
2 W 0 � n1 � 2J=2 � 1;

0 � n2 � 2J=2 � 1g is of cardinality 2J . In this special case ˛ 2 .0; 1� we
can rely on the orthogonal Haar wavelet filter bank in Algorithms 9 and 10. An
optimal image representation is strongly based on an appropriate path construction.
As shown in [19], we need to satisfy the following two conditions.



14 Adaptive Approximation Algorithms for Sparse Data Representation 289

Region condition. At each level ` of the EPWT, we need to choose the path vector,
such that it contains at mostR1K discontinuities which are incurred by crossing over
from one region˝i to another region, or by jumping within one region˝i . HereR1
does not depend on J or `, and K is the number of regions.

Diameter condition. At each level ` of the EPWT, we require

kxp`.k/ � xp`.kC1/k2 � D12
�`=2;

for almost all points x`
p`.k/

, k D 1; : : : ; 2` � 1, where D1 does not depend on J
or `. The number of path components which do not satisfy the diameter condition is
bounded by a constant being independent of ` and J .

The region condition suggests that for path construction, we should first collect
all points that belong to one region ˝i before transferring to the next region. The
diameter condition ensures that the remaining points in � ` are quasi-uniformly
distributed at each level ` of the EPWT. Satisfying these two conditions for the
path vectors, we have shown in [19], Corollary 3.1 that the M -term approximation
FM reconstructed from theM most significant EPWT wavelet coefficients, satisfies
the asymptotically optimal error estimate

kF � FM k22 � QC M�˛ (14.6)

with a constant QC and the Hölder exponent ˛ 2 .0; 1� in (14.5).

Remark 14.4. Observe that at each level of the EPWT the path vector .p`.j //2
j

jD1
determines a planar curve that interpolates f `

p`.j /
at the points x`

p`.j /
, j D 1; : : : ; 2`.

By definition, this curve is only piecewise linear. A generalization of the optimal
M -term approximation result (14.6) for piecewise Hölder smooth images with
Hölder exponent ˛ > 1 has been developed in [17]. In this case, one needs
to generalize the idea of a piecewise linear path vector curve to a smooth path
function that satisfies, besides the region condition and the diameter condition, a
third condition called path smoothness condition, see [17]. More precisely, let us
consider a domain ˝ � Œ0; 1�2 with a sufficiently smooth boundary and a disjoint
partition˝i of˝ with smooth boundaries of finite length. Further, instead of (14.5),
we assume that F 2 L2.˝/ is a piecewise smooth bivariate function being Hölder
smooth of order ˛ > 1 in each region ˝i , i D 1; : : : ; K . In order to show the
optimal error estimate (14.6) also for ˛ > 1, we need to employ a path function
that approximates the values f `

p`.j /
at the points x`

p`.j /
being a planar curve that is

not only piecewise smooth but smooth of order ˛ inside a region ˝i with suitably
bounded derivatives, see [17], Section 3.2. Particularly, this condition suggests that
one should avoid “small angles” in the path curve.
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Fig. 14.1 Top row: Reconstruction by tensor-product wavelet compression using the 7–9 biorthog-
onal filter bank with 1,000 wavelet coefficients for test image clock (PSNR 29.93), 700 coeffs
for Lenna (PSNR 24.28), and 200 coeffs for sail (PSNR 19.58). Bottom row: Reconstruction by
EPWT wavelet transform using the 7–9 biorthogonal filter bank with 1,000 wavelet coefficients for
clock (PSNR 33.55), 700 coeffs for Lenna (PSNR 30.46), 200 coeffs for sail (PSNR 27.19)

14.2.5 Numerical Results

We shortly illustrate the performance of the proposed EPWT algorithm for sparse
date representation and data denoising. In Fig. 14.1, we illustrate the application of
the EPWT for sparse image representation, see also [16, 24]. The three considered
images are of size 256 � 256. In Algorithm 9, we have used the 7–9 biorthogonal
filter bank for the function values, and the lazy filter bank for the grid points, i.e.,
at each level of the EPWT, we have kept only every other grid point. The path
construction from Sect. 14.2.2.1 is taken, where in (14.2) the parameters " D p

2

and � D 5 are employed. The threshold parameter � in Algorithm 9 is chosen,
such that 1,000 most significant EPWT wavelet coefficients are kept for the clock
image, 700 coefficients are kept for the Lenna image and 200 coefficients are kept
for the sail image. Figure 14.1 shows the reconstructed images, where we compare
the results of a tensor-product wavelet compression with the 7–9 biorthogonal filter
bank with the results of the EPWT reconstruction, using the same number of wavelet
coefficients for the reconstruction in both cases.

In a second example we study the denoising behavior of the EPWT approach
as described in Sect. 14.2.3. In Fig. 14.2, we present the noisy pepper image with a
PSNR of 19:97 and compare the denoising results of different methods. In particular,
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Fig. 14.2 Top row: Peppers with additive white Gaussian noise with � D 25 (PSNR 19.97)
and reconstruction by the Four-Pixel Scheme [28] (PSNR 28.26), Mid row: Reconstruction by 2d
tensor product wavelet transform using the 7–9 biorthogonal filter bank without (PSNR 24.91)
and with cycle spinning (PSNR 28.11) Bottom row: Reconstruction by our approach described in
Sect. 14.2.3 using a relaxed path construction with fixed local distances in (14.2), (PSNR 29.01)
and a random path construction based on (14.4) (PSNR 27.96)
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Fig. 14.3 Cameraman. Data with additive white Gaussian noise with � D 25 (PSNR 19.98), and
EPWT reconstruction using the approach in Sect. 14.2.3 (PSNR 26.31)

we have used the four-pixel denoising scheme based on anisotropic diffusion by
Welk et al. [28] with 76 iterations and step size 0.001 providing a PSNR of 28.26.
Further, we apply the 7–9 wavelet shrinkage with a PSNR of 24.91 and the 7–9
wavelet shrinkage with cycle spinning using 64 shifts of the image and yielding the
PSNR 28.11. Our EPWT denoising approach employing a relaxed path construction
as described in Sect. 14.2.2.1 achieves a PSNR of 29.01 while a random path
construction based on the ideas in Sect. 14.2.2.2 yields the PSNR 27.96. Note that
the repeated application of the EPWT shrinkage method can be done in a parallel
process. While our proposed EPWT denoising is (due to the path constructions)
more expensive than the tensor-product wavelet shrinkage its application is not
restricted to rectangular regular grids.

The third example shows the EPWT denoising to a triangular domain taking the
approach in Sect. 14.2.3, see Fig. 14.3. We use the 7–9 biorthogonal filter bank for
the function values, the lazy filter bank for the grid points, and the path construction
from Sect. 14.2.2.1 with " D 1:3, � D 89 and threshold � D 89.

14.3 Dimensionality Reduction on High-Dimensional Signal
Data

To explain basic concepts on dimensionality reduction, we regard point cloud data
as a finite family of vectors

X D fxi gmiD1 � R
n

contained in an n-dimensional Euclidean space. The fundamental assumption is that
X lies in M , a low dimensional (topological) space embedded in R

n. Therefore,



14 Adaptive Approximation Algorithms for Sparse Data Representation 293

X � M � R
n with p WD dim.M / � n. Another ingredient is a parameter

domain˝ for M , where˝ is assumed to be embedded in a low dimensional space
R
d with p � d < n. Moreover, we assume the existence of a homeomorphism

(diffeomorphism)

A W ˝ ! M ;

so that˝ is a homeomorphic (diffeomorphic) copy of M . This concept can then be
used for signal analysis in a low dimensional environment. In practice, we can only
approximate˝ by a projection

P W M ! ˝ 0;

where ˝ 0 is a homeomorphic copy of ˝ . The low dimensional structure represent-
ing X is the reduced data Y D fyi gmiD1 � ˝ 0 � R

d , according to the following
diagram.

Principal component analysis (PCA) is a classical linear projection method.
Dimensionality reduction by PCA can be described as an eigenvalue problem,
so that PCA can be applied by using the singular value decomposition (SVD).
More precisely, in PCA we consider centered data X (i.e., X has zero mean)
in matrix form X 2 R

n�m. Now the concept of PCA is to construct a linear
projection P W R

n ! R
n, for rank.P / D p < n, with minimal error

err.P;X/ D Pm
kD1 kxk � P.xk/k, or, equivalently, with maximal variance

var.P;X/ D Pm
kD1 kP.xk/k2. These conditions can in turn be reformulated as

an eigenvalue problem, where the p largest eigenvalues of the covariance matrix
XXT 2 R

n�n are sought, cf. [14].
Another classical linear dimensionally reduction method is multidimensional

scaling (MDS), which is also relying on an eigendecomposition of data X 2 R
n�m.

In contrast to PCA, the MDS method constructs a low dimensional configuration
of X without using an explicit projection map. More precisely, on input matrix
X 2 R

n�m, MDS works with the distance matrix D D .dij/i;jD1;��� ;m, of the points
in X to compute an optimal configuration of points Y D .y1; � � � ; ym/ 2 R

p�m,
with p � n, minimizing the error err.Y;D/ D Pm

i;jD1.dij � kyi � yjk/2. In other
words, the low dimensional configuration of points Y preserves the distances of the
higher dimensional dataset X approximately.

In the construction of nonlinear dimensionality reduction (NDR) methods, we
are especially interested in their interaction with signal processing tools, e.g.,
convolution transforms. When applying signal transforms to the dataset X , one
important task is the analysis of the incurred geometrical deformation. To this end,
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we propose the concept of modulation maps and modulation manifolds for the
construction of particular datasets which are relevant in signal processing and NDR,
especially since we are interested in numerical methods for analyzing geometrical
properties of the modulation manifolds, with a particular focus on their scalar and
mean curvature.

We define a modulation manifold by employing a homeomorphism (or diffeo-
morphism) A W ˝ ! M , for a specific manifold ˝ , as used in signal processing.
The basic objective is to understand how the geometry of ˝ is distorted when we
transform ˝ using a modulation map A . More explicitly, let f	kgdkD1 � H be a
set of vectors in an Euclidean space H , and fsk W ˝ ! CH .H /gdkD1 a family of
smooth maps from a manifold ˝ to CH .H / (the continuous functions from H
into H ). We say that a manifold M � H is a f	kgdkD1-modulated manifold if

M D
(

dX

kD1
sk.˛/	k; ˛ 2 ˝

)

:

In this case, the map A W ˝ ! M , ˛ 7! Pd
kD1 sk.˛/	k , is called modulation map.

To make one prototypical example (cf. [7]), we regard a map of the form

A .˛/.ti / D
dX

kD1
	k.˛kti /; ˛ D .˛1; : : : ; ˛d / 2 ˝; ftigniD1 � Œ0; 1�;

for a set of band-limited functions f	kgdkD1 in combination with a finite set of
uniform samples fti gniD1 � Œ0; 1�.

Now we use the same notation for the band-limited functions 	k and the
above mentioned vector of sampling values f	k.ti /gniD1, as this is justified by the
Whittaker-Shannon interpolation formula as follows.

As the support of the band-limited functions 	k is located in Œ0; 1�, the Whittaker-
Shannon interpolation formula allows us to reconstruct each 	k exactly from the
finite samples .	k.ti //niD1 2 R

n. This in turn gives a one-to-one relation between
the band-limited functions 	k W Œ0; 1� ! R and the vectors .	k.ti //niD1 2 R

n. Note
that the maps sk.˛/ are in our example given by sk.˛/	k.ti / D 	k.˛kti /. In other
words, we use the (continuous) map sk.˛/, f .t/ 7! f .˛kt/, as the scaling by factor
˛k , being the k-th coordinate of vector ˛ 2 ˝ � R

d .
To explain our analysis of the geometric distortions incurred by A , we restrict

ourselves to the case d D 3 and ˝ � R
3 with dim.˝/ D 2. We compute the scalar

curvature of M from the parametrization of ˝ and the modulation map A by the
following algorithm [7].
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Algorithm 11
On input parametrization ˛ D .˛j .�1; �2//

d
jD1 of ˝ and band-limited functions f	j gdjD1 that are

generating the map A , perform the following steps.

(1) Compute the Jacobian matrices J˛ ;

(2) Compute the metric tensor gij D
nP

`D1

t 2`

dP

r;qD1

�
d	r
dt
.˛r t`/

d	q

dt
.˛q t`/

@˛r
@�i

@˛q

@�j

�
I

(3) Compute the Christoffel symbols � k
ij D 1

2

pP

`D1

�
@gj`

@xi
C @gi`

@xj
� @gij

@x`

�
g`kI

(4) Compute the tensors R`ijk D
pP

hD1

.� h
jk�

`
ih � � h

ik�
`

jh/C @� `jk

@xi
� @� `ik

@xj
I

(5) Compute the scalar curvature S D
pP

i;jD1

gijRij, where Rij D
pP

k;`D1

gk`Rkkij.

Output: The scalar curvature S of M D A .˝/.

Fig. 14.4 (a) A sphere ˝ whose colors represent the scalar curvature of M D A .˝/, (b) PCA
projection of M D A .˝/ with Gaussian curvature represented by colors

For further details concerning the construction of Algorithm 11, we refer to [7].

14.4 Audio Signal Separation and Signal Detection

In many relevant applications of signal processing there is an increasing demand
for effective methods to estimate the components from a mixture of acoustic
signals. In recent years, different decomposition techniques were developed to
do so, including independent subspace analysis (ISA), based on independent
component analysis (ICA), see [1, 5, 26], and non-negative matrix factorization
(NNMF), see [6,23,27]. The computational complexity of these methods, however,
may be very large, in particular for real-time computations on audio signals. In
signal separation, dimensionality reduction methods are used to first reduce the
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Fig. 14.5 Signal separation
with dimensionality reduction

spectrograms
of f1 and f2

ICA, NNMF

signal f

X

Y

decomposed data

signals f1, f2

STFT

U
UT

inverse STFT

dimension of the data obtained from a time-frequency transform, e.g., short time
Fourier transform (STFT), before the reduced data is decomposed into different
components, each assigned to one of the source signals. For the application
of dimensionality reduction in combination with NNMF, however, non-negative
dimensionality reduction methods are essentially required to guarantee non-negative
output data from non-negative input data (e.g., a non-negative spectrogram from the
STFT). For the special case of PCA, a suitable rotation map is constructed in [12]
for the purpose of back-projecting the reduced data to the positive orthant of the
Cartesian coordinate system, where the sought rotation is given by the solution of a
constraint optimization problem in a linear subspace of orthogonal matrices.

In this section, we evaluate different decomposition methods for signal separation
in combination with the non-negative PCA projection from [12]. The basic steps of
our method are illustrated in Fig. 14.5.

To explain how we use PCA, let U 2 R
D�d be an orthogonal projection,

satisfying Y D UTX , being obtained by the solution of the minimization problem

min
QUT QUDI

nX

kD1

�
�xk � QU QUT xk

�
�
2
: (14.7)

The solution of (14.7) is given by the maximizer of the variance var.Y / of Y ,
as given by the trace of Y Y T . This observation allows us to reformulate the
minimization problem in (14.7) as an equivalent maximization problem,

max
QUT QUDI

tr. QUTXXT QU /; (14.8)
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where the maximizerU of var.Y / is given by a matrix U whose d columns contain
the eigenvectors of the d largest eigenvalues of the covariance matrix XXT .

For further processing the data in a subsequent decomposition by NNMF, the data
matrix Y is essentially required to be non-negative. Note, however, that even if the
data matrix X (obtained e.g., by STFT) may be non-negative, this is not necessarily
the case for the components of the reduced data matrix Y . Therefore, we reformulate
the maximization problem in (14.8) by adding a non-negativity constraint:

max
QUT QUDI
QUT X�0

tr. QUTXXT QU /: (14.9)

Note that this additional restriction transforms the simple PCA problem (14.8)
into a much more difficult non-convex optimization problem (14.9) with many local
solutions, for which (in general) none of the solutions is known analytically.

We tackle this fundamental problem as follows. We make use of the fact that the
input data set X is non-negative, before it is projected onto a linear subspace, with
the perception that there exists a rotation of the low-dimensional data set Y into the
non-negative orthant. Indeed, as proven in [12], such a rotation map exists, which
motivates us to split the non-negative PCA (NNPCA) problem (14.9) into a PCA
part and a rotation part. This, in turn, gives rise to seek for a general construction of
a rotation matrix W satisfyingW UTX 	 0.

To further explain our splitting approach, recall that we already know the solution
U of the PCA part. Since the rotation matrix W is orthogonal, it does not affect the
value of the NNPCA cost functional. Now, in order to determine the rotation matrix
W , we consider solving an auxiliary optimization problem on the set of orthogonal
matrices SO.d/, i.e., we minimize the cost functional

J. QW / D 1

2

X

i;j

�	 QWUTX



�
�2

ij
where ŒZ��ij D

�
zij if zij < 0;

0 otherwise,
(14.10)

as this was proposed in [21] in the context of ICA. However, we cannot solve
this optimization problem directly by an additive update algorithm, since the set
of rotation matrices SO.d/ is not invariant under additions. But an elegant way to
minimize the cost functional J in (14.10) uses the Lie-group structure of SO.d/
to transfer the problem into an optimization problem on the Lie-algebra of skew-
symmetric matrices so.d/. Due to the vector space property of so.d/, standard
methods can be applied to find the minimum (see [9, 11, 21] for details).

14.4.1 Decomposition Techniques

There are different methods for the decomposition of the (reduced) spectrogram Y .
Among them, independent component analysis (ICA) and non-negative matrix
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factorization (NNMF) are commonly used. In either case, for the application of ICA
or NNMF, we assume the input data Y to be a linear mixture of source terms si , i.e.,

Y D AS; (14.11)

where A 2 R
d�r and S 2 R

r�n are unknown. For the estimation of A and S we
need specific additional assumptions to balance the disproportion of equations and
unknowns in the factorization problem (14.11).

14.4.1.1 Independent Component Analysis (ICA)

The basic assumption of ICA is that the source signals are statistically independent.
Furthermore, the data matrix Y is assumed to result from n realizations of a
d -dimensional random vector. In order to estimate S , a random variable S is
constructed, whose n realizations yield the columns of the source matrix S . The
components of S are chosen to be as stochastically independent as possible, where
the stochastical independence can be measured by the Kullback-Leibler distance [4].

In practice, the number of sources is usually unknown. Therefore, we may
detect more independent components than the true number of sources. In this case,
two or more of the separated components belong to the same source. Thus, the
sources are combinations of the independent components. In a subsequent step, the
sources are grouped into independent subspaces, each corresponding to one source.
Finally, the sources are reconstructed from these multi-component subspaces [1].
This procedure is called independent subspace analysis (ISA). The main difficulty
of ISA is to identify components belonging to the same multi-component subspace.

14.4.1.2 Non-negative Matrix Factorization (NNMF)

The factorization of the given data Y into a mixing matrix A and the source signals
(source components) S , i.e., Y D AS, could be done by matrix factorization.
The data we use for signal separation are obtained by taking the modulus of the
signal’s STFT, and so the input data is non-negative. Since the source components
are assumed to be spectrograms, too, we assume them to be non-negative as
well. Therefore, non-negative matrix factorizations (NNMF) are suitable tools for
decomposition.

There are different NNMF algorithms available, all of which are relying on
the non-negativity Y;A; S 	 0, where different measures d.Y;AS/ for the recon-
struction error were proposed [6, 23, 27]. We consider using the generalized
Kullback-Leibler distance (proposed in [13] and used for decomposing signal data
in [27]):

d.Y;AS/ D
X

i;j

Yij log
Yij

.AS/ij
� Yij C .AS/ij:
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Fig. 14.6 Two acoustic signals: castanets f1 (top left), cymbal f2 (top right), and corresponding
spectrograms (second row). Signal f D f1 C f2 and spectrogram (third row)

14.4.2 Numerical Results

We present one numerical example comparing the decomposition strategies ICA and
NNMF. We consider a mixture f D f1 C f2 of acoustic transient signals, where f1
is a sequence of castanets and f2 a cymbal signal, shown in Fig. 14.6, where also
the combination f D f1 C f2 of the two signals is displayed. The spectrograms in
these figures are generated with an STFT using a Hamm-window. Since f2 is a high-
energy signal, f has a complex frequency characteristic. Therefore, the extraction
of the castanets signal f1, being active only at a few time steps, is a challenging task.

The obtained separations, resulting from the two different decomposition meth-
ods using NNPCA and PCA, respectively, are displayed in Fig. 14.7. Note that both
methods, NNMF and ICA, achieve to reproduce the characteristic peaks of the
castanets quite well. However, in the case of NNMF strong artifacts of the castanets
are visible in the cymbal signal, whereas the separation by ICA is almost perfect.
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Fig. 14.7 Signal separation by NNPCA & NNMF (left column); PCA & ICA (right column)
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Fig. 14.8 Reconstruction of f as sum of the decomposed fi by using NNPCA & NNMF (left
column) and by using PCA & ICA (right column)

Likewise, for the reconstruction of the reduced signal, the combination of
PCA and ICA provides an almost complete reproduction of the original signal f
(see Fig. 14.8). Merely at time steps where a high amplitude of the cymbal exactly
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matches the peaks of the castanets, a correct separation is not quite achieved. As for
the NNMF, the spectrogram in Fig. 14.8 shows that information is being lost.

We finally remark that for signal separation without dimensionality reduction,
NNMF is competitive to ICA (see e.g. [27]). This indicates that our use of
NNPCA in combination with NNMF could be improved. Further improvements
could be achieved by the use of more sophisticated (nonlinear) dimensionality
reduction methods. On the other hand, this would lead to a much more complicated
construction of the inverse transform, as required for the back-projection of the data.
We defer these points to future research. Nevertheless, although PCA is only a linear
projection method, our numerical results of this section, especially those obtained
by the combination of PCA and ICA, are already quite promising.
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