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Foreword

In April 2007, the Deutsche Forschungsgemeinschaft (DFG) approved the Priority
Program 1324 “Mathematical Methods for Extracting Quantifiable Information
from Complex Systems”. The objective of this volume is to offer a comprehensive
overview of the scientific highlights obtained in the course of this priority program.

Mathematical models of complex systems are gaining rapidly increasing impor-
tance in driving fundamental developments in various fields such as science and
engineering at large but also in new areas such as computational finance. Ever-
increasing hardware capacities and computing power encourage and foster the
development of more and more realistic models. On the other hand, the necessarily
growing complexity of such models keeps posing serious and even bigger challenges
to their numerical treatment.

Principal obstructions such as the curse of dimensionality suggest that a proper
response to these challenges cannot be based solely on further increasing computing
power. Instead, recent developments in mathematical sciences indicate that signif-
icant progress can only be achieved by contriving novel and much more powerful
numerical solution strategies by systematically exploiting synergies and conceptual
interconnections between the various relevant research areas. Needless to stress
that this requires a deeper understanding of the mathematical foundations as well
as exploring new and efficient algorithmic concepts. Fostering such well-balanced
developments has been a central objective of this priority program.

The understanding and numerical treatment of spatially high-dimensional sys-
tems is clearly one of the most challenging tasks in applied mathematics. The
problem of spatial high dimensionality is encountered in numerous application
contexts such as machine learning, design of experiments, parameter-dependent
models and their optimization, mathematical finance, PDEs in high-dimensional
phase space, to name only a few, which already reflect the conceptual breadth.
It is this seeming variability that makes a substantial impact of better exploiting
conceptual and methodological synergies conceivable and in fact likely. It seems
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vi Foreword

that to be really successful, theoretical research and practical applications should
go hand in hand. In fact, this volume reflects an attempt to realize a proper
balance between research with a primary methodological focus and challenging
concrete application areas, although these two regimes can, of course, not be strictly
separated. To that end, it has appeared to be necessary to combine different fields
of mathematics such as numerical analysis and computational stochastics. On the
other hand, to keep the whole programme sufficiently focused, it seemed advisable
to concentrate on specific but related fields of application that share some common
characteristics that allow one to benefit from conceptual similarities.

On the methodological side, several important new numerical approximation
methods have been developed and/or further investigated in the course of the
priority program. First of all, as one of the central techniques, let us mention
tensor approximations. New tensor formats have been developed, and efficient
tensor approximation schemes for various applications, e.g. in quantum dynamics
and computational finance, have been studied; see Chaps. 2, 10, 12, 16 and 19.
Adaptive strategies with all their facets have been employed in most of the projects;
see, e.g., Chaps. 2, 4, 5, 9, 10, 14 and 16. Closely related with adaptivity is
of course the concept of sparsity/compressed sensing; see Chaps. 14 and 18. As
further techniques, sparse grids (Chap. 9), ANOVA decompositions (Chap. 11) and
Fourier methods (Chap. 17) have been investigated. As a quite new technique, the
reduced basis methods also came into play (see Chap. 2), in particular in the second
period of SPP 1324. Of course, tensor methods as well as model order reduction
concepts such as the reduced basis method address spatially high-dimensional
problems. Both paradigms use the separation of variables as the central means to
reduce computational complexity. Moreover, they can be viewed as trying to exploit
sparsity by determining specific problem- and solution-dependent dictionaries that
are able to approximate the searched object by possibly few terms. Moreover,
Chaps. 1, 6 and 20 are concerned with Monte Carlo and Multilevel Monte Carlo
methods in the context of stochastic applications.

One of the major themes within SPP 1324 has been high-dimensional problems
in physics. Chapter 21 is concerned with the regularity of the solution to the
electronic Schrödinger equation. Chapter 19 studies problems in quantum dynamics,
the chemical master equation is one of the topics in Chap. 15, and Chap. 11 is
concerned with electronic structure problems. Another very important issue within
SPP 1324 has been differential equations with random or parameter-dependent
coefficients and their various applications. The theory and numerical treatment of
these problems are discussed in Chaps. 2 and 7. Closely related with this topic
are stochastic differential equations and stochastic partial differential equations.
The adaptive numerical treatment of SPDEs is studied in Chap. 5. SDEs with their
various applications such as stochastic filtering are discussed in Chaps. 1, 6 and 8.
Additional fields of application have been computational finance (see Chap. 16) and
inverse problems (see Chaps. 3 and 18).

Overall, the network of SPP 1324 comprised more than 60 scientists, and 20
projects were funded in two periods. Up to now, more than 170 papers have been
published by the participants of SPP 1324. The aim of this volume is of course not
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to give a complete presentation of all these results but rather to collect the scientific
highlights in order to demonstrate the impact of SPP 1324 on further researches.
The editors and authors hope that this volume will arouse interest in the reader in
the various new mathematical concepts and numerical algorithms that have been
developed in the priority program. For further information concerning SPP 1324,
please visit http://www.dfg-spp1324.de/.

Marburg, Germany Stephan Dahlke
Aachen, Germany Wolfgang Dahmen
Bonn, Germany Michael Griebel
Leipzig, Germany Wolfgang Hackbusch
Kaiserslautern, Germany Klaus Ritter
Berlin, Germany Reinhold Schneider
Zürich, Switzerland Christoph Schwab
Berlin, Germany Harry Yserentant
June 2014
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Chapter 1
Solving Stochastic Dynamic Programs
by Convex Optimization and Simulation

Denis Belomestny, Christian Bender, Fabian Dickmann,
and Nikolaus Schweizer

Abstract In this chapter we review some recent progress on Monte Carlo methods
for a class of stochastic dynamic programming equations, which accommodates
optimal stopping problems and time discretization schemes for backward stochastic
differential equations with convex generators. We first provide a primal maxi-
mization problem and a dual minimization problem, based on which confidence
intervals for the value of the dynamic program can be constructed by Monte
Carlo simulation. For the computation of the lower confidence bounds we apply
martingale basis functions within a least-squares Monte Carlo implementation. For
the upper confidence bounds we suggest a multilevel simulation within a nested
Monte Carlo approach and, alternatively, a generic sieve optimization approach with
a variance penalty term.

1.1 Introduction

In this chapter we review some recent progress on Monte Carlo methods for
dynamic programming equations of the form

Y �
j D Fj .Ej ŒˇjC1Y �

jC1�/; j D 0; : : : ; J � 1; Y �
J D FJ .0/ (1.1)

on a complete filtered probability space .˝;F ; .Fj /jD0;:::J ; P / in discrete time.
In this equation an adapted RDC1-valued process ˇ and the adapted random field
F W f0; : : : ; J g�˝�RDC1 ! R are given. Moreover,Ej Œ�� denotes the conditional
expectation given Fj . Assumptions on ˇ and F will be specified later on.
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2 D. Belomestny et al.

Several time discretization schemes for backward stochastic differential
equations (BSDEs) with or without reflection and for fully nonlinear second order
parabolic PDEs lead to dynamic programs of the form (1.1), see [10,11,15,20,28]. In
financial engineering, equations of the form (1.1) appear (after a time discretization
is performed) in many nonlinear option pricing problems. These include:

• Bermudan option pricing: Here ˇ � 1 and Fj .y/ D maxfSj ; yg, where the
adapted process Sj denotes the discounted payoff of the Bermudan option, when
called at the j th exercise time. Then, Y �

0 is the price of the Bermudan option (in
discounted units), see e.g. [25].

• Credit value adjustment: Here ˇ � 1, Fj .y/ D .1� r�/y� .1�R/��.y/C for
j < J , where r � 0 is the risk-free interest rate, � > 0 is the default intensity
of the counterparty, R 2 Œ0; 1/ is the recovery rate in case of default, and .�/C
denotes the positive part. The random variable FJ .0/ represents the payoff of
the option at maturity T , if there is no default prior to maturity, and the interval
Œ0; T � is divided into J equidistant subintervals of length �. Then, Y �

j is the
price of the option at time j� including credit value adjustment (in a reduced
form approach), provided that default did not occur prior to j�. See e.g. [13,14]
for BSDE approaches to pricing under credit risk.

• Funding costs: We now assume that funding costs are incorporated in the
valuation mechanism, when at time j� the hedging costs for the delta hedge in
the risky stocksX1

j ; : : : ; X
D
j exceeds the price of the option with payoffFJ .0/ (at

maturity T ). In this caseFj .y0; : : : ; yD/ D .1�r�/y0�R.PD
dD1 yd�y0/C� for

j < J , where r is the interest rate, at which money can be lent, and .RCr/ is the
rate, at which money can be borrowed. This is a classical example of nonlinear
option pricing by BSDEs, for which we refer to the survey paper [19]. The
variable y0 represents the price of the option and the variables yd , d D 1; : : : ;D,
describe the amount of money required for the delta hedge in the d th stock.
Correspondingly one chooses ˇ0j D 1 and ˇdj as (a suitable approximation of)

Xd
j�1.Xd

j � Ej�1ŒXd
j �/=Ej�1Œ.Xd

j � Ej�1ŒXd
j �/

2�.

The main difficulty when solving equations of the form (1.1) numerically is
that, going backwards in time, in each time step a conditional expectation must be
approximated which depends on the numerical approximation of Y � one time step
ahead. Therefore one needs to apply an approximate operator for the conditional
expectation which can be nested without exploding costs. In particular, when the
generator F depends on ! through a high-dimensional Markovian process, Monte
Carlo methods are usually applied to estimate the conditional expectations. In this
respect, the least-squares Monte Carlo method, which was suggested for Bermudan
option pricing by [21, 26] and for BSDEs by [20], is certainly among the most pop-
ular choices. For the Bermudan option pricing problem this approximate dynamic
programming approach (i.e. solving the dynamic program with the conditional
expectation replaced by an approximate operator) is often complemented with the
primal-dual methodology of [1]. In a nutshell, the solution of the approximate
dynamic program is taken as an input in order to construct confidence intervals for
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the price Y �
0 of the option. This approach crucially relies on the dual representation

of [18, 23] for Bermudan option pricing.
In Sect. 1.2 we first provide a review of this primal-dual approach for Bermudan

option pricing. Following the lines of [7] we then generalize the theory behind this
approach to dynamic programs of the form (1.1) under the assumptions that the
driver F is convex and that a discrete comparison principle holds. The remaining
sections are devoted to making this general primal-dual approach practical by
designing and analyzing algorithms, which improve on the existing literature in
various aspects. In Sect. 1.3 we suggest to run the least-squares Monte Carlo method
for the approximate dynamic program with a set of basis functions which satisfy
a martingale property. While this corresponds to the ‘regression later’ approach of
[17] for the Bermudan option problem, it was recently observed by [8] that the use of
martingale basis functions can significantly reduce the propagation of the projection
error over time and the variance in the context of time discretization schemes for
BSDEs.

Given the corresponding approximate solution of the dynamic program (1.1), the
construction of a lower confidence bound for Y �

0 is usually a straightforward appli-
cation of the primal-dual methodology. Contrarily, the construction of the upper
bound requires a martingale as input, which should be close to the Doob martingale
of ˇY �. In the context of Bermudan option pricing, Andersen and Broadie [1]
suggested a method to approximate this martingale starting from the solution of
the approximate dynamic program and applying one layer of nested simulation in
order to compute the Doob decomposition numerically. Based on [5] we present in
Sect. 1.4.1 a multilevel variant of this algorithm, where varying numbers of paths are
applied for the two layers of simulations at different levels. This multilevel variant
can be shown to reduce the complexity of the Andersen-Broadie algorithm from
"�4 (generic nested Monte Carlo) to "�2 log2."/, which up to the logarithmic factor
is the same complexity as a plain non-nested Monte Carlo implementation. As an
alternative to the Andersen-Broadie type algorithms we also present a completely
generic approach to the approximation of the Doob martingale of ˇY � via sieve
optimization combined with a variance penalty term in Sect. 1.4.2. Convergence
of this algorithm was analyzed in [3] for the Bermudan option pricing problem
as the number of martingales in the sieve and the number of simulated samples
converges to infinity. Finally, we illustrate the proposed algorithms by numerical
experiments in the context of nonlinear expectations under model uncertainty and
of option pricing under credit value adjustment.

1.2 The Primal-Dual Approach to Convex Dynamic
Programs

In this section we first recall how the primal-dual approach works for the Bermudan
option pricing problem. Then we present a generalization to dynamic programs of
the form (1.1) with convex generator.
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As stated in the introduction, the Bermudan option pricing problem leads to a
dynamic program of the form

Y �
j D maxfSj ;Ej ŒY �

jC1�g; Y �
J D SJ (1.2)

for some adapted and integrable process S with SJ � 0. The starting point of the
primal-dual approach is the well-known observation that this dynamic program is
the one associated to the optimal stopping problem (primal problem), i.e.

Y �
0 D sup

�2S
EŒS� �; (1.3)

where S is the set of stopping times with values greater than or equal to j , and the
(smallest) optimal stopping time �� can be expressed as

�� D inffi � 0I Si � Ei ŒY
�
iC1�g:

Hence, for any stopping time � , Y low
0 WD EŒS� � yields a lower bound for the

Bermudan option price Y �
0 . In practice, a ‘close-to-optimal’ stopping time � is often

constructed as follows: One first rephrases the dynamic program in terms of the
continuation value Z�

j WD Ej ŒY
�
jC1� as

Z�
j D Ej ŒmaxfSjC1; Z�

jC1g�; Z�
J D 0:

Then, one solves this dynamic program numerically, replacing the conditional
expectation by some approximate operator, which leads to an approximation Z of
Z�. Finally, based on Z one constructs the lower bound Y low

0 via the stopping time
� D inffi � 0I Si � Zi g. The primal lower bound is then complemented by a dual
upper bound. Indeed, Rogers [23] and Haugh and Kogan [18] showed independently
that Y �

0 can be expressed via the dual minimization problem

Y �
0 D inf

M2M1

EŒ max
jD0;:::;J .Sj �Mj/�; (1.4)

where MDC1 denotes the set of RDC1-valued martingales with M0 D 0, and that
the Doob martingale of Y � is optimal. Hence, the construction of a tight upper
bound requires the numerical approximation of the Doob decomposition of Y �. The
nested Monte Carlo algorithm by [1] is popular to perform such numerical Doob
decompositions, but in Sect. 1.4 we present algorithms that can produce tight upper
bounds at the cost of a non-nested Monte Carlo implementation.

Following the approach of [7], which is detailed there for the case of discrete
time reflected BSDEs, we now generalize the construction of a primal maximization
problem and a dual minimization problem to dynamic programs of the form (1.1).
The following assumptions are in force:
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(R) .ˇj /j D .ˇ0;j ; : : : ; ˇD;j /j is a bounded, adaptedDC1-dimensional process
with ˇ0;j � 1 for all j . The adapted random field F W f0; : : : ; J g�˝�RDC1 !
R is Lipschitz continuous in z 2 RDC1 uniformly in .j; !/ and satisfies
EŒjFj .0/j2� < 1 for every j D 0; : : : ; J .

(Comp) For every j and any two FjC1-measurable, integrable real-valued
random variables Y; QY such that Y � QY a.s., it holds that

Fj .Ej ŒˇjC1Y �/ � Fj .Ej ŒˇjC1 QY �/:

(Conv) The map z 7! Fj .!; z/ is convex for every j and almost every !.

We briefly comment on the first two assumptions. The regularity condition (R)
makes sure that the dynamic program (1.1) recursively defines square-integrable
random variables Y �

j , j D J; : : : ; 0. Condition (Comp) entails a comparison
principle for the dynamic program (1.1). Indeed, if Y is a subsolution of (1.1), i.e.

Yj � Fj .Ej ŒˇjC1YjC1�/; j D 0; : : : ; J � 1; YJ � FJ .0/;

then one can easily show by backward induction that, thanks to (Comp),

Yj � Y �
j ; j D 0; : : : ; J: (1.5)

Of course, the analogous statement holds for supersolutions.

Primal lower bounds. The construction of the primal maximization problem
relies on a linearization of F in terms of its convex conjugate and is analogous
to Proposition 3.4 in [19] for BSDEs in continuous time. Recall that the convex
conjugate F #

j of Fj is defined by

F #
j .�/ D sup

z2RDC1

�>z � Fj .z/ (1.6)

and lives on the (bounded uniformly in !) domain Dj;!

F # � RDC1 where the
supremum in (1.6) is finite. We denote by A the set of adapted, RDC1-valued
processes � such that �j takes values in Dj;!

F # and satisfies EŒF #
j .�j /� < 1 for

j D 0; : : : ; J � 1. For a fixed � 2 A , we define recursively the typically non-
adapted process � low WD � low.�/ via � low

J WD FJ .0/ and

� low
j WD �>

j ˇjC1� low
jC1 � F #

j .�j / D FJ .0/

J�1Y

kDj
�>
k ˇkC1 �

J�1X

iDj
F #
i .�i /

i�1Y

kDj
�>
k ˇkC1:

(1.7)
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Then, the adapted process defined by Y low
j WD Y low

j .�/ WD Ej Œ�
low
j � satisfies

Y low
j D �>

j Ej ŒˇjC1Y low
jC1� � F #

j .�j / � sup
�2Dj;!

F #

.�>Ej ŒˇjC1Y low
jC1� � F #

j .�//

D Fj .Ej ŒˇjC1Y low
jC1�/; j D 0; : : : ; J � 1: (1.8)

where the final step uses that Fj D F ##
j by convexity. As Y low

J D FJ .0/ D Y �
J , we

observe that Y low is a subsolution, and, hence, (1.5) yields Y low
j .�/ � Y �

j for every
j D 0; : : : ; J . Finally, by the Lipschitz assumption there exists an adapted process
�� such that

��
j

>
Ej ŒˇjC1Y �

jC1� � F #
j .�

�
j / D Fj .Ej ŒˇjC1Y �

jC1�/: (1.9)

One can now show by induction that Y �
j D Y low

j .��/ for every j D 0; : : : ; J .
We can summarize these considerations in the following theorem.

Theorem 1.1 (Primal problem). Under assumptions (R), (Comp), and (Conv), Y �
0

can be represented as value of the maximization problem

Y �
0 D sup

�2A
EŒ� low

0 .�/� D sup
�2A

E

"

FJ .0/

J�1Y

kD0
�>
k ˇkC1 �

J�1X

iD0
F #
i .�i /

i�1Y

kD0
�>
k ˇkC1

#

:

Moreover, any process �� 2 A , which satisfies (1.9), is optimal.

Dual upper bounds. For the construction of the dual minimization problem we
apply a pathwise dynamic programming approach, i.e. the conditional expectations
are dropped in (1.1), but some martingale increments are added to the equation
instead. To this end we first fix an RDC1-valued martingale, i.e. an integrable and
adapted process M with Ej ŒMjC1 �Mj � D 0 and M0 D 0. Define recursively the
typically non-adapted process �up WD �up.M/ via �up

J WD FJ .0/ and

�
up
j D Fj .ˇjC1�up

jC1 � .MjC1 �Mj//:

Taking conditional expectations and applying Jensen’s inequality shows that the
adapted process Y up

j D Ej Œ�
up
j � satisfies

Y
up
j � Fj .Ej ŒˇjC1�up

jC1�/ D Fj .Ej ŒˇjC1Y up
jC1�/; j D 0; : : : ; J � 1: (1.10)

As Y �
J D FJ .0/ D Y

up
J , Y up is a supersolution of (1.1), and hence the comparison

principle implies that Y up
j � Y �

j for all j . Finally, choosing M � as the the Doob
martingale of ˇY �, i.e.,M �

j �M �
j�1 D ˇjY

�
j �Ej�1Œˇj Y �

j � for all j , one can check
inductively that �up.M �/ is adapted and that �up.M �/ D Y �. We, thus, arrive at the
following result.
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Theorem 1.2 (Dual problem). Under assumptions (R), (Comp), and (Conv), Y �
0

can be represented as value of the minimization problem

Y �
0 D inf

M2MDC1

EŒ�
up
0 .M/�:

Moreover, the Doob martingale of ˇY � is optimal even in the sense of pathwise
control, i.e. �up

0 .M
�/ D Y �

0

Remark 1.1. (i) As explained in Remark 3.5 of [7], the above minimization
problem can be re-interpreted as the dual problem to the maximization problem
in Theorem 1.1 in the sense of information relaxation. For the general theory
of information relaxation duals for discrete time stochastic control problems
we refer to [12].

(ii) The results in [7] also cover constructions of minimization and maximization
problems with value given by Y �

0 for implicit dynamic programs of the form

Y �
j D Fj .Yj ; Ej ŒˇjC1Y �

jC1�/; j D 0; : : : ; J � 1; Y �
J D FJ .0/;

even without imposing the convexity assumption on F .
(iii) The primal-dual methodology can also be applied for problems with a

multi-dimensional value process Y � such as multiple stopping problems,
see [6, 24].

Examples. (i) We first revisit the Bermudan option problem, which is governed
by the dynamic programming equation (1.2). As D D 0, ˇ � 1 and
Fj .z/ D maxfSj ; zg, the standing assumptions are satisfied. One easily
computes F #

j .�/ D .� � 1/Sj with domainDj;!

F # D Œ0; 1�. The primal problem
of Theorem 1.1 then reads

Y �
0 D sup

�

E

"

SJ

J�1Y

kD0
�k C

J�1X

iD0
Si .1 � �i /

i�1Y

kD0
�k;

#

where � runs over the set of adapted process with values in Œ0; 1�. By the
optimality condition (1.9), it obviously suffices to take the supremum over the
set of adapted processes � with values in f0; 1g. The primal problem is then seen
to be a reformulation of the optimal stopping problem (1.3), if one maps � on the
stopping time inffi � 0I �i D 0g. Concerning the dual minimization problem,
one can check inductively that in this case �up

j .M/ D maxi2fj;:::;J g.Si � .Mi �
Mj//. Hence, the dual minimization problem in Theorem 1.2 collapses to the
dual formulation in (1.4) due to [18, 23].

(ii) The second example is concerned with an Euler type time discretization
scheme for backward stochastic differential equations (BSDEs) driven by
a D-dimensional Brownian motionW . For a BSDE of the form
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dYt D �f .t;Yt ;Zt /dt C Z >
t dW t ; YT D h

we consider Y � as discretization over the time grid ft0; : : : ; tJ g, where:

Y �
j D Ej ŒY

�
jC1�C .tjC1 � tj /f

�

tj ; Ej ŒYjC1�; Ej
�

Y �
jC1

WtjC1
�Wtj

tjC1 � tj

��

(1.11)

with terminal condition Y �
J D h. The generator f is an adapted,

square-integrable, convex and (uniformly in .t; !/) Lipschitz continuous
random field and h is a square-integrable FJ -measurable random variable.
This is a slight variant of the schemes studied by [11, 28] and coincides with
the one suggested by [15] in the more general context of second order BSDEs.
As filtration in discrete time we can choose the one generated by the Brownian
motion up to the j th point in the time grid. By defining ˇ1; : : : ; ˇD as suitably
normalized and truncated increments of the Brownian motion, this recursion is
of the form Fj .z/ D z0 C .tjC1 � tj /f .tj ; z/. Assumptions (R) and (Conv) are
then certainly fulfilled. The truncation of ˇ depends on the time grid and the
Lipschitz constants of f in an appropriate way and is necessary to ensure that
(Comp) is satisfied, see [7] for details.

1.3 Construction of Lower Bounds via Martingale Basis
Functions

This section reviews the popular least-squares Monte Carlo approach for the
approximate solution of a dynamic program of the form (1.1) via empirical
regression on a set of basis functions, see e.g. [20,21,26]. A special emphasis will be
on the particular situation where the basis functions form a set of martingales. This
case was studied by [17] for optimal stopping problems and by [8] for the BSDE
case.

In view of the optimality condition (1.9) for the primal maximization problem
we first rewrite the dynamic program in terms of Z�

j WD Ej ŒˇjC1Y �
jC1� as

Z�
j D Ej ŒˇjC1FjC1.Z�

jC1/�; Z�
J D 0; (1.12)

and note that the solution of the dynamic program (1.1) can be recovered from
Z� as Y �

j D Fj .Z
�
j /. The basic idea of the least-squares Monte Carlo approach

is to replace the conditional expectations in (1.12) by an orthogonal projection on
a linear subspace of L2.Fj /, which is spanned by a set of basis functions. The
orthogonal projection is then calculated numerically via Monte Carlo simulation by
replacing the expectations in the definition of the orthogonal projection by empirical
means. More precisely, denote by �d;j a row vector of 	 Fj -measurable random
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variables for every time index j and every d D 0; : : : ;D C 1. We then define an
approximationZj of Z�

j by

Zd;j D �d;j ˛d;j ; d D 0; : : : ;D;

where the coefficients ˛d;j are computed as follows: Assume we have N indepen-
dent copies (‘regression paths’) of

n
.F

.n/
j ; ˇ

.n/
j ; �

.n/
j /; j D 0; : : : ; J; n D 1; : : : ; N

o

at hand. We now define ˛d;J D 0 for every d D 0; : : : ;D and

˛d;j D arg min
˛2R	

1

N

NX

nD1

ˇ
ˇ
ˇˇ
.n/

d;jC1F
.n/
jC1.�

.n/
0;jC1˛0;jC1; : : : ; �.n/D;jC1˛D;jC1/� �

.n/

d;j ˛
ˇ
ˇ
ˇ
2

:

(1.13)

Given these coefficients we can compute on the one hand an approximation of Y � by
Yj D Fj .�0;j ˛0;j ; : : : ; �D;j ˛D;j /, and on the other hand we can (approximatively)
solve for the optimality criterion (1.9) with Z� replaced by Z in order to get an
approximation � of the optimizer �� of the primal problem, i.e. �j satisfies

.�0;j ˛0;j ; : : : ; �D;j ˛D;j /�j � F #
j .�j / 	 Fj ..�0;j ˛0;j ; : : : ; �D;j ˛D;j //:

Then,

E

"

FJ .0/

J�1Y

kD0
�>
k ˇkC1 �

J�1X

iD0
F #
i .�i /

i�1Y

kD0
�>
k ˇkC1

#

is a lower bound for Y �
0 which is expected to be good, if the basis functions are

well-chosen and the number of simulated sample paths is sufficiently large. For a
detailed analysis of the projection error due to the choice of the basis and of the
simulation error for least-squares Monte Carlo algorithms we refer to [27] and [2]
for the Bermudan option pricing problems and to [20] for the BSDE case. Lower
confidence bounds for Y �

0 can finally be calculated by replacing the expectation by
a sample mean over a new set of independent samples (‘outer paths’) of fF; ˇ; �g
(which are independent of the regression paths). We note that the complexity of this
type of algorithm can be reduced by a multilevel approach, which balances the cost
between the effort for approximating the conditional expectations and the number
of outer paths at different levels, see [4] for the Bermudan option problem. We do
not dwell on the details here, but present a similar idea for the computation of upper
bounds in Sect. 1.4.1.

In order to illustrate the above least-squares Monte Carlo scheme, let us denote
the simulation based projection on the d th set of basis functions at time j by Pd;j .
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Then the algorithm can be written (informally) as

Zj D Pd;j

�
ˇjC1FjC1.ZjC1/

�
;

i.e. the conditional expectations of the dynamic program are replaced by the
empirical projections. We now modify this algorithm by adding an additional
projection. Precisely we replace the aboveZj by

QZj D Pd;j

�
ˇjC1P0;jC1.FjC1. QZjC1//

�
:

A-priori this does not look like a good idea, because each additional empirical
projection is expected to increase the numerical error. However, this scheme can
be simplified, if the basis satisfies the following additional martingale property:

(MB) The basis functions �0;j form a system of martingales, i.e. Ej Œ�0;jC1� D
�0;j for j D 0; : : : ; J � 1 and, for d D 1; : : : ;D, the basis functions are defined
via �d;j WD Ei Œˇd;jC1�0;jC1� (which entails that these conditional expectations
are available in closed form).

Under this martingale basis assumption one chooses one set of basis functions
�0;J at terminal time only, and all the other basis functions are computed from this
set. The main advantage of assumption (MB) is that conditional expectations of
linear combinations of the basis functions (even if multiplied by the ˇ-weights)
are at hand in closed form. Hence, the outer empirical projections in the definition
of QZ need not be performed, but should rather be replaced by the true conditional
expectations. These considerations lead to the the martingale basis algorithm

QZ.MB/
j D Ej

h
ˇjC1P0;jC1.FjC1. QZ.MB/

jC1 //
i
:

More precisely, one modifies the construction of the coefficients ˛d;i compared to
the standard least-square Monte Carlo scheme as follows. Define ˛d;i D ˛i for all
d D 0; : : : ;D, where ˛J D 0 and

˛j D arg min
˛2R	

1

N

NX

nD1

ˇ
ˇ
ˇF

.n/
jC1.�

.n/
0;jC1˛jC1; : : : ; �.n/D;jC1˛jC1/ � �.n/0;jC1˛

ˇ
ˇ
ˇ
2

(1.14)

Once the coefficients are computed, one constructs the approximations of
Y �; Z�; �� and the lower bound for Y �

0 in exactly the same way as described
above. An obvious advantage of this martingale basis algorithm for D � 1 is, that
only one empirical regression is performed at each time step, while the original
least-squares Monte Carlo algorithm requires .D C 1/ empirical regressions per
time step.

In the setting of discrete time approximations of BSDEs one has Fj .z/ D z0 C
.tjC1 � tj /f .tj ; z/. Hence, (with a slight abuse of notation), the martingale basis
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algorithm can be further simplified to

Z
.MB/
j DEj

h
ˇjC1

�
Z
.MB/
0;jC1 C .tjC2 � tjC1/P0;jC1.f .tjC1; Z.MB/

jC1 //
	i
; j � J�2;

becauseZ.MB/
0;jC1 is already a linear combination of the basis functions and, thus, need

not be projected on the basis. In this BSDE setting, the projection error, i.e. the error
which stems from the basis choice, was analyzed in [8]. Very roughly speaking, they
show that with martingale basis functions the total projection error is an average of
the projection error at the different time indices j , while it is known that, for general
function bases, the projection errors sum up over time, see e.g. [20]. Concerning the
simulation error we will demonstrate the strong variance reduction effect of the
martingale basis algorithm in the numerical examples.

1.4 Construction of Upper Bounds: Multilevel Monte Carlo
and Sieve Optimization

In this section we present two algorithms for approximating the Doob martingale
of ˇY �, which in view of the dual representation in Theorem 1.2 give rise to the
computation of tight upper bounds on Y �

0 . The first one is a generalization of the
multilevel approach of [5] to the setting of Sect. 1.2, while the second one relies on
a generic sieve optimization approach [3].

1.4.1 Multilevel Dual Approach

In Sect. 1.2 we observed that the Doob martingale M � of ˇY � solves the dual
minimization problem. The most common approach for deriving tight upper bounds
on Y �

0 from this observation is to approximate M � by the Doob martingale M
associated to some approximation Y of Y �. M is given by

Mj D
jX

iD1
.ˇiYi � Ei�1 ŒˇiYi �/ ; j D 0; : : : ; J: (1.15)

Unless the conditional expectations on the right hand side of (1.15) can be calculated
explicitly, further approximations are necessary to obtain numerically tractable
upper bounds on Y �

0 however. Andersen and Broadie [1] suggested to estimate these
by one layer of nested Monte Carlo. This leads to an estimate
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MK
j D

jX

iD1

 

ˇiYi � 1

K

KX


D1
�
.
/
i

!

; K 2 N;

where, conditionally on FJ ; all RDC1-valued random variables �.
/j , 
 D 1; : : : ; K ,

j D 1; : : : ; J; are independent and fulfill Law.�.
/j jFJ / D Law.ˇj Yj jFj�1/ and
thus

E
h
�
.
/
j jFJ

i
D Ej�1

h
�
.
/
j

i
D Ej�1



ˇj Yj

�
:

The martingale MK is explicit enough to allow for a straightforward Monte Carlo
estimator relying onN so-called outer paths andK inner samples at each outer path
and time point: Fix natural numbersN andK; and consider N independent copies

n
.F

.n/
j ; ˇ

.n/
j ;MK;.n//; j D 0; : : : ; J; n D 1; : : : ; N

o

of the process .F; ˇ;MK/: Denote by �up;.n/
0 .MK;.n// the nth copy of �up

0 .M
K/, i.e.

�
up;.n/
j .MK;.n//DF

.n/
j

�
ˇ
.n/

jC1
�

up;.n/
jC1

.MK;.n// � .MK;.n/

jC1
�M

K;.n/
j /

	
; j D 0; : : : ; J�1;

with �up;.n/
J .MK;.n// D F

.n/
J .0/, and consider the estimator

Y
N;K
0 WD 1

N

NX

nD1
�

up;.n/
0 .MK;.n//: (1.16)

In the following we study the simulation error, i.e., the difference between Y N;K0

and Y up
0 D EŒ�

up
0 .M/�. Denote by j � j the Euclidean norm in RDC1. We have

E
h
jMK

j �Mj j2
i

D E

2

4

ˇ
ˇ
ˇ
ˇ
ˇ

jX

iD1

 

Ei�1 ŒˇiYi � � 1

K

KX

lD1

�
.l/
i

!ˇ
ˇ
ˇ
ˇ
ˇ

2
3

5

D 1

K

jX

iD1

E

�ˇ
ˇ
ˇEi�1 ŒˇiYi � � �.1/i

ˇ
ˇ
ˇ
2
�

� 1

K

JX

iD1

EŒjˇiYi j2�DO.1=K/;

provided that EŒjˇiYi j2� < 1 for i D 0; : : : ; J: By the Lipschitz continuity of the
random field F and the boundedness of ˇ under (R), this implies

E

j�up

0 .M
K/ � �up

0 .M/j2� � CK�1; (1.17)
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for some constant C , and hence

E
h
.Y

N;K
0 � Y

up
0 /

2
i

� N�1Var.�up
0 .M

K//C CK�1 DW N�1vK C CK�1:

Therefore, in order to ensure

r

E
h
.Y N;K0 � Y

up
0 /

2

i
� "; we may take

K D
�
2C

"2



; and N D
�
2vK
"2



with dxe denoting the first integer which is larger than or equal to x: If vK is non-
increasing, then, given an accuracy "; the complexity of the MC estimate Y N;K0 is,
up to a constant,

C N;K."/ WD NK D 2vK
"2

2C

"2
<�

vl 2C
"2

m

"4
:

The question is whether one can reduce the complexity of the Andersen-Broadie
approach. For the optimal stopping problem (1.2), [5] introduced and studied a
new multilevel approach, which makes substantial reductions possible. The idea
of this multilevel dual approach is inspired by the pathbreaking work of [16] on the
multilevel approach to discretization of SDEs.

Now we describe the main idea of the approach of [5] in the more general setting
of the convex dynamic program (1.1). Let L 2 N and K D .K0; : : : ; KL/ with
1 � K0 < K1 < : : : < KL: Recall that Y up

0 .M
Kl / D EŒ�

up
0 .M

Kl /� and observe
that

Y
up
0 .M

KL/ D Y
up
0 .M

K0/C
LX

lD1
ŒY

up
0 .M

Kl / � Y up
0 .M

Kl�1/�

D EŒ�
up
0 .M

K0/�C
LX

lD1
EŒ�

up
0 .M

Kl /� �
up
0 .M

Kl�1 /�:

The multilevel algorithm estimates each expectation in the above sum by Monte
Carlo in such a way that the variance of the resulting estimate is small. This is
achieved by using the same trajectories within one level to compute martingale
estimates MKl and MKl�1 : Fix a sequence N D .N0; : : : ; NL/ 2 NL with
1 � NL < : : : < N0 and simulate the initial set of N0 trajectories

n�
F
.n/
j ; ˇ

.n/
j ;M

K0;.n/
j

�
; n D 1; : : : ; N0; j D 0; : : : ; J

o

of .F; ˇ;MK0/. Further for each level l D 1; : : : ; L; we generate independently a
set of Nl trajectories
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n�
F
.n/
j ; ˇ

.n/
j ;M

Kl�1;.n/
j ;M

Kl;.n/
j

�
; n D 1; : : : ; Nl ; j D 0; : : : ; J

o

of .F; ˇ;MKl�1 ;MKl /. We suppress the dependence on l of F .n/
j , ˇ.n/j etc. in the

notation. Finally, we construct a multilevel estimate for Y up
0 .M/:

Y
N;K
0 W D 1

N0

N0X

nD1

�up;.n/.M K0;.n//C
LX

lD1

1

Nl

NlX

nD1

h
�

up;.n/
0 .MKl ;.n//� �up;.n/

0 .MKl�1;.n//
i

where �up;.n/
0 .MKl�1;.n// and �up;.n/

0 .MKl;.n// denote the nth copies of �up
0 .M

Kl�1 /

and �up
0 .M

Kl / at the l th level.
The next theorem shows that the complexity of Y N;K

0 is reduced almost to the one
of a non-nested Monte Carlo estimation.

Theorem 1.3. Suppose (R), (Comp), and (Conv). Fix " > 0 and let Kl D K0�
l ,

l D 0; : : : ; L; for some K0 2 N and � > 1: Then there exist constants C1 and C2
(independent of ") such that the choice

L D
l
C1 log.�/�1 log

�
.
p
K0"/

�1	m ; Nl D ˙
C2"

�2.LC 1/K�1
0 ��l�

yields

q

EŒ.Y
N;K
0 � Y up

0 .M//2� � ";

while the computational complexity of the estimator Y N;K is of order

C N;K."/ D
LX

lD0
NlKl <� "

�2 log2 ":

For optimal stopping, this is a special case of Theorem 5.1 in [5]. Their proof
instantly generalizes to the present setting, relying on the L2-bound (1.17) (and the
L1-bound it entails by Cauchy-Schwarz) in place of inequality (3.4) in [5].

1.4.2 Sieve Optimization Approach

Most of the literature studies dual martingales which are derived from approxima-
tions of Y �. In contrast, the sieve optimization approach introduced and analyzed
in [3] constructs dual martingales and thus upper bounds directly without first con-
structing an approximation of Y �. The guiding idea is that the optimal martingale
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M � is variance-minimizing in the sense that �up
0 .M

�/ D Y �
0 is deterministic and

that �up
0 .M/ has a positive variance for any suboptimal martingale M . A second,

complimentary advantage of using martingales M for which �up
0 .M/ has a small

variance is that Monte Carlo estimators

Y N0 D 1

N

NX

nD1
�

up;.n/
0 .M/

also have small variance and can be evaluated with relatively few samples N . Here,
the random variables �up;.n/

0 .M/ are N independent copies of �up
0 .M/ which are

derived from independent copies

.F
.1/
j ; ˇ

.1/
j ;M

.1/
j /; : : : ; .F

.N/
j ; ˇ

.N/
j ;M

.N/
j /; j D 0; : : : ; J;

of the process .F; ˇ;M/. Consider the penalized optimization problem

inf
M2MDC1

�

E


�

up
0 .M/

�C �

q
Var



�

up
0 .M/

�
�

(1.18)

Since Var


�

up
0 .M

�/
� D 0 andM � minimizes EŒ�up

0 .M
�/� within the set MDC1 of

adapted RDC1-valued martingales with M0 D 0, M � solves (1.18) for any � > 0.
Now let M be a family of adapted martingales with M0 D 0 and consider the

empirical version

MN WD arg inf
M2M

 
1

N

NX

nD1
�

up;.n/
0 .M/C �

p
VN .M/

!

; � > 0; (1.19)

of (1.18), where

VN .M/ WD 1

N.N � 1/

X

1�n<m�N
.�

up;.n/
0 .M/� �

up;.m/
0 .M//2:

How large are the variance VarŒ�up
0 .MN /� and the bias EŒ�up

0 .MN /� � Y �
0 ? Let

.; �/ be a metric space and let M D fM. / W  2 g be a parameterized
family of adapted continuous RDC1-valued martingales. Denote by � 
  a set
of functions  in  satisfying

Y �
0 D �

up;.n/
0 .M. // a.s.:

We assume that the set � is not empty. If  is infinite-dimensional, minimizing

QN. / WD 1

N

NX

nD1
�

up;.n/
0 .M. //C �

p
VN .M. //
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over  2  may not be well-defined; or even if a minimizer exists, it is
generally difficult to compute, and may have undesirable large sample properties
such as inconsistency and/or a very slow rate of convergence. These difficulties
arise because the problem of optimization over an infinite-dimensional noncompact
space may no longer be well-posed. The method of sieves provides one general
approach to resolve the difficulties associated with minimizing QN. / over an
infinite-dimensional space  by minimizing QN. / over a sequence of approxi-
mating spaces 
 , called sieves, which are less complex but are dense in  . Popular
sieves are typically compact, nondecreasing 
 � 
C1 � : : : �  and are such
that for any  2  there exists an element �
 in 
 satisfying �. ; �
 / ! 0

as 
 ! 1, where the notation �
 can be regarded as a projection mapping from
 to 
:

Now suppose that we are in a Markovian setting: We assume that Fj .�/ only
depends on ! through the value at time tj of an M -dimensional Markov process
.Xt/, 0 D t0 < t1 < : : : < tJ D T: With a slight abuse of notation we write
Fj .�/ D Fj .Xtj ; �/ and assume that Fj .x; �/ is Hölder in x. Moreover we assume
that ˇjC1 is independent of Fj for all j , and that Xt solves the following system of
SDEs:

dXt D �.t; Xt / dt C �.t; Xt / dW t ; X0 D x: (1.20)

The coefficient functions � W Œ0; T � � RM ! RM and � W Œ0; T � � RM ! RM�M
are supposed to be Lipschitz in space and 1=2-Hölder continuous in time and W D
.W 1; : : : ;W M /> is an M -dimensional Brownian motion.

It is well-known that under the assumption that a RDC1-valued martingaleMt is
square integrable and is adapted to the filtration generated by Wt ; there is a square
integrable R.DC1/�M -valued process Ht D .Hd;m

t /; d D 0; : : : D;m D 1; : : : ;M

satisfying

Mt D
Z t

0

Hs dWs: (1.21)

It is not hard to see that in our Markovian setting, we have Hs D  .s;Xs/ for
some matrix-valued function  .s; x/ D . d;m.s; x/; d D 0; : : : D;m D 1; : : : ;M /

satisfying

Z T

0

EŒj .s;Xs/j2� ds < 1:

As a result,

Mt D Mt. / D
Z t

0

 .s; Xs/ dWs:
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Thus, the set of adapted square-integrable martingales can be “parameterized” by
the set L2;P .Œ0; T � � RM/ of square-integrable R.DC1/�M -valued functions  on
Œ0; T � � RM that satisfy k k22;P WD R T

0 EŒj .s;Xs/j2� ds < 1:

Consider linear sieves of the form:

	 WD f˛1�1 C : : :C ˛	�	 W ˛1; : : : ; ˛	 2 Rg; (1.22)

where �1; : : : ; �	 are some given matrix-valued functions with components from
the space of bounded continuous functions Cb.Œ0; T � � RM/ and 	 2 N. Next
define a class of adapted square-integrable martingales via

M	 WD fM�. / W  2 	g

and set

MN WD arg inf
M2M	N

 
1

N

NX

nD1
�up;.n/.M/C .1C �N /

p
VN .M/

!

; (1.23)

where 	N ! 1 and �N ! 0 as N ! 1: For the optimal stopping problem, it
was shown in [3] that under a proper choice of �N and	N

max

�

EŒ�
up
0 .MN /�� Y �

0 ;

q
Var.�up

0 .MN //

�

DOP

�
ıN C	MC1

N log.	N /=
p
N
	
;

where ıN D inf 2	N ; �2� �. ; �/: In particular, both the variance and the bias
of �up

0 .MN / converge to 0 as N ! 1:

1.5 Numerical Experiments

In the numerical examples we consider a BSDE of the form

dYt D �
0

@

 

a

5X

dD1
Zd;t � bYt

!

C
� rYt

1

A dtCZ >
t dW t ; YT Dh

�

max
dD1;:::;5 Xd;T

�

(1.24)

for constants a; b; r 2 R and a Lipschitz continuous function h W R ! R. Here
W is a five-dimensional Brownian motion and Xd;t , d D 1; : : : ; 5, are independent,
identically distributed geometric Brownian motions with drift � 2 R, volatility
� > 0, and initial value x0 > 0, i.e.

Xd;t D x0 exp
˚
�Wd;t C .� � �2=2/t� ; d D 1; : : : ;D; t 2 Œ0; T �:
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This setting covers the funding risk example, explained in the Introduction, for an
option with payoff function h on the maximum of five Black-Scholes stocks with
a D R=� , b D R, and � D r . Moreover, the example on pricing under credit
value adjustment for an option with payoff function �h on the maximum of five
Black-Scholes stocks can be accommodated by setting a D 0, b D �.R � 1/,
� D r and noting that the option price is given by �Y0. Finally we can recover a
g-expectation [22] related to drift uncertainty of the form

Y0 D sup
b

E

�

h

�

max
dD1;:::;5 x0 exp

�

�Wd;T C
Z T

0

.b.s/ � �2=2/ds

���

; (1.25)

where the sup runs over the set of adapted processes b such that � � b.t/ � �CR

by letting b D r D 0 and a D R=� .
Given a time grid 0 D t0 � t1 < � � � < tJ D T , a natural time discretization for

Ytj is given by

Y �
j D Ej ŒY

�
jC1��

0

@

 

a

5X

dD1
Ej

�
�Wd;j

�j
Y �
jC1

�

� bEj ŒY �
jC1�

!

C
� rEj ŒY �

jC1�

1

A�j

Y �
J D h

�

max
dD1;:::;5 Xd;T

�

;

where �j D tjC1 � tj , and the Brownian increments �Wd;j D Wd;tjC1
� Wd;tj

can be truncated appropriately, whenever necessary for theoretical reasons. It can
be deduced from the results in [11] and [28] that the time discretization error of this
scheme converges at a rate of 1/2 in the mesh size of the time grid. Precisely, there
is a constant C such that

max
j
EŒjYtj � Y �

j j2�C
X

j

E

"Z tjC1

tj

ˇ
ˇ
ˇ
ˇZs � Ej

�
�Wj

�j

Y �
jC1

�ˇ
ˇ
ˇ
ˇ

2

ds

#

� C.max
j
�j /:

Example 1.1 (g-expectation). The first example is in the context of g-expectation,
as described in (1.25), with parameters x0 D 100, � D 0:01, � D 0:2, R D
0:05, and T D 1=4. For the terminal condition we choose the payoff function
of a call spread option h.x/ D .x � 95/C � 2.x � 115/C: We first compare
the performance of the martingale basis algorithm with the standard least-squares
Monte Carlo algorithm of Lemor, Gobet, and Warin [20]. For both algorithms we
choose the same function basis, namely the martingale basis computed from �0;J D
.1; h.maxdD1;:::;5 Xd;T //. The corresponding approximations will be denoted by

.Y
.MB;N /
j ; Z

.MB;N /
d;j /; resp. .Y .LGW;N /

j ; Z
.LGW;N /
d;j /; d D 1; : : : ;D;
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Fig. 1.1 Error criterion for
the martingale basis
algorithm with 100 regression
paths (circles) and for the
Lemor-Gobet-Warin
algorithm with 10.000
regression paths (boxes) as
the number of time steps
J increases from 10 to 240
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for the martingale basis algorithm and for the Lemor-Gobet-Warin algorithm,
respectively. Here, the superscript N makes the dependence on the number of
regression paths explicit. The time grid is a partition of the interval Œ0; T � into J
subintervals of equal length. For the comparison we apply the a-posteriori estimates
of [9]. By Example 3.6 in [9], there are constants c1; c2 > 0 independent of the time
grid such that for all square integrable processes .Yj ;Zd;j /, d D 1; : : : ;D, with
YJ D YT

1

c1
E .Y;Z/ � max

j
EŒjYtj � Yj j2�C

X

j

E

"Z tjC1

tj

ˇ
ˇZs �Zj

ˇ
ˇ2 ds

#

� c2E .Y;Z/:

(1.26)

Here the error criterion E .Y;Z/ can be calculated from the discrete time approxi-
mation .Y;Z/ as

E .Y;Z/ D max
1�i�J E

2

6
4

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
Yi � Y0 �

i�1X

jD0

 
R

�

DX

dD1
Zd;j

!

C
�j �

i�1X

jD0
Z>
j �Wj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2
3

7
5 :

(1.27)

We note that (1.26) and (1.27) still hold true for the above least-squares Monte Carlo
approximations, when the expectation is taken conditionally on the regression paths.

Figure 1.1 is a log-log-plot of the error criterion with the expectations replaced
by sample means over 10.000 outer paths for the approximations

.Y
.MB;100/
j ; Z

.MB;100/
d;j / and .Y

.LGW;10:000/
j ; Z

.LGW;10:000/
d;j /

as number of time steps J increases. For the martingale basis algorithm we observe
an almost linear decay with a slope of about �0:8 for up to 240 time steps. By
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Eq. (1.26) this indicates that the very cheap and fixed estimator for the conditional
expectation consisting of 2 basis functions and 100 regression paths is sufficient
to make the L2-approximation error decrease at a rate of about 0.4 as the time
discretization becomes as fine as about 10�3. Contrarily, for the LGW algorithm
the simulation error dominates and the L2-error does not decrease, although the
number of regression paths is increased by a factor of 100 compared to the
martingale basis algorithm. We stress that this comparison is only meant to illustrate
the strong variance reduction effect of the martingale basis algorithm. One can
achieve, in principle, the same decay as for the martingale basis algorithm with the
LGW algorithm, if the number of regression paths increases polynomially with the
number of time steps, see [20] for the theoretical background and [9] for numerical
examples. This example illustrates that exploiting martingale basis functions may
be highly beneficial in the BSDE context, if a good set of such basis functions is at
hand.

Table 1.1 shows lower and upper bounds based on the primal-dual approach in
Theorems 1.1 and 1.2 as the time discretization becomes finer. The lower bounds
are calculated as explained in Sect. 1.3 applying the martingale basis algorithm (with
the same specification as above) to solve the dynamic program approximately. The
upper bounds are computed with the Andersen-Broadie type algorithm described in
Sect. 1.4.1, i.e. the 6-dimensional Doob martingale corresponding to the martingale
basis approximation of the dynamic program is estimated by inner simulations. We
apply 100 inner paths and 10.000 outer paths, and refer to [7] for more details on the
general implementation including the use of control variates. Table 1.1 demonstrates
that very tight 95 % confidence intervals can be constructed for the solution Y �

0 of
the discretized BSDE for up to J D 160 time discretization steps, although the
BSDE is five-dimensional and depends on the control partZ of the solution. Indeed,
the relative width of the 95 % confidence intervals ranges from less than 0.4 % for
J D 40 time steps to still less than 1 % for J D 160 time steps.

Example 1.2 (Credit value adjustment). In the second numerical example we test
the sieve optimization algorithm for a pricing problem with credit value adjustment.
As parameters we choose x0 D 100, � D 0:02, � D 0:2, � D 0:02, T D 2 and
recovery rates R D 0:1; 0:5; 0:9. The time grid is equidistant on Œ0; 2� with J D 50

time steps. The payoff function �h corresponds to a call spread option given by

�h.x/ D 2.x � 115/C � .x � 95/C:

Table 1.1 g-expectation for
different time discretizations.
Standard deviations are in
brackets

J 40 80 120 160

Lower bound 13:936
.0:003/

13:935
.0:003/

13:941
.0:003/

13:942
.0:003/

Upper bound 13:976
.0:003/

14:001
.0:003/

14:033
.0:003/

14:061
.0:003/
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The linear sieve in (1.22) with 	 D 40 is defined in terms of trigonometric
functions. Precisely, let

trigk.x/ D
�

cos. k
2
x/; k even;

sin. kC1
2
x/; k odd:

Denote by �t .1/ 2 f1; : : : 5g the index of the highest asset at time t , and by �t .2/ the
index of the second highest. For k D 0; : : : ; 19; choose

�kd .x; t/ D
8
<

:

trigk
�
X
�t .1/
t

100

�

X
�t .1/
t ; d D �t .1/

0; otherwise.

For k D 20; : : : ; 39; define

�kd .x; t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

trigk�20
�
X
�t .1/
t �X�t .2/t

10

�

X
�t .1/
t ; d D �t .1/

�trigk�20
�
X
�t .1/
t �X�t .2/t

10

�

X
�t .2/
t ; d D �t .2/

0; otherwise.

The optimization in (1.23) is performed with N D 5:000 sample paths in order to
construct the martingale MN . Given this martingale a new set of one million outer
paths is applied to estimate the upper bound for Y �

0 (and hence a lower bound on
the option price �Y �

0 ). In order to evaluate the quality of these upper bounds, we
compute lower bounds on Y �

0 (and hence upper bounds on the option price �Y �
0 )

based on the martingale basis algorithm as described in the previous example.
Table 1.2 presents the sieve optimization lower bounds on the option price �Y �

0

with credit value adjustment and the primal upper bounds for different recovery
rates. The problem becomes more difficult for smaller recovery rates, as these lead
to higher Lipschitz constants in the generator of the BSDE. Nonetheless, even
for R D 0:1 the relative width of the corresponding 95 % confidence interval
Œ8;570I 8;597� is just 0.3 %. Hence, the sieve optimization algorithm provides
excellent price bounds in this example with a rather generic choice of the linear
sieve and without the requirement of nested simulation, which makes it way faster
than the Andersen-Broadie type algorithm.

Table 1.2 Price bounds for
different recovery rates.
Standard deviations are in
brackets

Recovery 0.1 0.5 0.9

Lower bound 8:554
.0:008/

8:725
.0:008/

8:895
.0:008/

Upper bound 8:573
.0:012/

8:730
.0:012/

8:903
.0:012/
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Chapter 2
Efficient Resolution of Anisotropic Structures

Wolfgang Dahmen, Chunyan Huang, Gitta Kutyniok, Wang-Q Lim,
Christoph Schwab, and Gerrit Welper

Abstract We highlight some results obtained in the DFG-SPP project “Adaptive
Anisotropic Discretization Concepts”. We focus on new developments concerning
the sparse representation of possibly high-dimensional functions exhibiting strong
anisotropic features and low regularity in isotropic Sobolev or Besov scales.
Specifically, we focus on the solution of transport equations which exhibit prop-
agation of singularities where, additionally, high-dimensionality enters when the
convection field, and hence the solutions, depend on parameters varying over some
compact set. Important constituents of our approach are directionally adaptive
discretization concepts motivated by compactly supported shearlet systems, and
well-conditioned stable variational formulations that support trial spaces with
anisotropic refinements with arbitrary directionalities. We prove that they provide
tight error-residual relations which are used to contrive rigorously founded adaptive
refinement schemes which converge in L2. Moreover, in the context of parameter
dependent problems we discuss two approaches serving different purposes and
working under different regularity assumptions. For “frequent query problems”,
making essential use of the novel well-conditioned variational formulations, a
new Reduced Basis Method is outlined which exhibits a certain rate-optimal
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performance for indefinite, unsymmetric or singularly perturbed problems. For the
radiative transfer problem with scattering a sparse tensor method is presented which
mitigates or even overcomes the curse of dimensionality under suitable (so far still
isotropic) regularity assumptions. Numerical examples for both methods illustrate
the theoretical findings.

2.1 Introduction

The more complex a data site or mathematical model is the more adapted a
corresponding mathematical representation needs to be in order to capture its
information content at acceptable cost in terms of storage and computational
complexity. In principle, this is true for mathematical objects described explicitly by
large sets of possibly noisy or corrupted data but also for those given only implicitly
as the solution of an operator equation. The latter scenario is perhaps even more
challenging because direct observations are not possible. By “adapted represen-
tation” we mean a representation of the unknown function that exploits possibly
global features of this function so as to require, for a prescribed target accuracy,
only relatively few parameters to determine a corresponding approximation. Such
global features could take a variety of forms such as (i) a high degree of regularity
except at isolated singularities located on lower dimensional manifolds, or (ii) a
particular sparsity possibly with respect to a dictionary which may even depend
on the problem at hand. In fact, corresponding scenarios are not strictly disjoint.
In either case reconstruction or approximation methods are necessarily nonlinear.
For instance, as for (i), 1D best N -term wavelet approximations offer a powerful
method based on selecting only possible few coefficients in an exact representation
with respect to a given universal background dictionary, e.g. a wavelet basis. When
dealing with more than one spatial variable the situation quickly becomes more
complicated and for spatial dimensions much larger than three, classical numerical
tools designed for the low dimensional regime become practically useless. This is
commonly referred to as curse of dimensionality. Unfortunately, there seems to be
no universal strategy of dealing with the curse of dimensionality, i.e., that works in
all possible cases.

One global structural feature which is encountered in many multivariate sce-
narios is anisotropy: images, as functions of two variables, exhibit edges and
discontinuities along curves. Higher dimensional biological images have sharp
interfaces separating more homogeneous regions. Likewise highly anisotropic
phenomena such as shear- or boundary layers are encountered in solutions to
transport dominated initial-boundary value problems.

One major focus of the DFG-SPP project “Adaptive Anisotropic Discretization
Concepts” has been to efficiently recover and economically encode anisotropic
structures represented by explicitly given data or determined as solutions of operator
equations which are prone to give rise to such structures. Regarding this latter case,
which we will focus on in this article, parametric transport problems (as well as
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close relatives) have served as guiding model problems for the following reasons:
(i) their solutions could exhibit shear or boundary layers and hence discontinuities
across lower dimensional manifolds calling for suitable anisotropic discretizations;
(ii) how to contrive suitable variational formulations, which in particular accom-
modate such anisotropic discretizations is much less clear than in the elliptic case;
(iii) parametric versions give rise to high-dimensional problems.

Concerning (i), directional representation systems like curvelets and shearlets
outperform classical isotropic wavelet bases when approximating so called “cartoon
images”, see [23] and [9, 31–35]. For recent applications to imaging data, in
particular, inpainting as well as in combination with geometric separation concepts
the reader is referred to [24,29]. In the present context of solving operator equations
we outline in Sect. 2.2 trial spaces which accommodate directional adaptivity. They
are motivated by recent constructions of compactly supported piecewise polynomial
shearlet systems (see e.g. [30]) because they are close to classical multiresolution
structures and similar in nature to classical discretization systems. Since cartoons
exhibit structural similarities with the solution to transport problems we state best
N -term error bounds for cartoon functions that will later serve as benchmarks for an
adaptive solver. For related anisotropic simplicial discretizations and their analysis
see e.g. [10, 12, 15].

As for (ii), our approach differs from previous works on anisotropic discretiza-
tions derived from “curvature information” on the current approximation and hence
not based on a rigorous error control (see e.g. [22] and the references therein), in
that we derive first in Sect. 2.3 well conditioned variational formulations for general
unsymmetric or indefinite and singularly perturbed problems, see [14,16] for details
on convection-diffusion and transport problems. The underlying basic principles
are of independent interest by themselves and seem to have appeared first in [3].
They are also closely related to ongoing developments running under the flag of
Discontinuous Petrov Galerkin (DPG) Methods, see e.g. [19, 20]. The approach is
motivated by two crucial corner stones. On the one hand, one can essentially choose
the norm for the (infinite dimensional) trial space X by which one would like to
measure accuracy while adapting the norm for the (infinite dimensional) test space
Y so as to ensure that (ideally) the operator induced by this variational formulation
is even an isometry from X to Y 0 (the normed dual of Y ). Numerical feasibility of
(nearly optimal) Petrov Galerkin discretizations based on such formulations, even
beyond a DPG framework, hinges on an appropriate saddle point formulation which
turns out to be actually crucial in connection with model reduction [18]. On the one
hand, this allows one to accommodate, for instance, L2-frames. On the other hand,
the resulting tight error-residual relation is the basis of computable a-posteriori
error estimators [14, 16] and, ultimately, to rigorously founded adaptive anisotropic
refinement strategies.

These variational formulations apply in much more generality but in order to
address issue (iii) we exemplify them for the simple linear transport equation
(stationary or instationary) whose parametric version leads to high-dimensional
problems and forms a core constituent of kinetic models such as radiative transport.
There the transport direction – the parameter – varies over a unit sphere so that
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solutions are functions of the spatial variables (and, possibly, of time) and of the
transport direction.

We briefly highlight two ways of treating such parametric problems under
slightly different objectives. Both strategies aim at approximating the solution
u.x; s/, x 2 ˝ 
 R

d , s 2 Sd�1, in the form

u.x; s/ 	
nX

jD1
cj .s/uj .x/: (2.1)

In Sect. 2.4 the uj are constructed offline in a greedy manner from snapshots of the
solution manifold, thus forming a solution dependent dictionary. According to the
paradigm of the Reduced Basis Method (RBM) the parameter dependent coefficients
cj .s/ are not given explicitly but can be efficiently computed in an online fashion,
e.g. in the context of design or (online) optimization. This approach works the
better the smoother the dependence of the solution on the parameters is so that
the Kolmogorov n-widths decay rapidly with increasing n. Making essential use of
the well conditioned variational formulations from Sect. 2.3, it can be shown that
the resulting RBM has stability constants as close to one as one wishes yielding
for the first time an RBM for transport and convection-diffusion problems with this
property exhibiting the same rates as the Kolmogorov widths [18].

In Sect. 2.5 of this report, and in [26], we present algorithms which construct
explicitly separable approximations of the form (2.1) for the parametric transport
problem of radiative transfer. We also mention that separable approximations
such as (2.1) arise in a host of other applications; for example, in parametric
representations of PDEs with random field input data with the aid of sparse tensor
product interpolation methods; we refer to [11, 13] and to the references therein.
Adaptive near-minimal rank tensor solvers for problems in high dimensional phase
space are established and analyzed in [2].

2.2 Anisotropic Approximations

Let D D .0; 1/2 and let curv.@˝/ denote the curvature of @˝ \ D. The class of
cartoon-like functions on D D .0; 1/2,

C .�; L;M;D/ WD ff1�˝ C f2�Dn˝ W ˝ 
 D; j@˝ \Dj � L; @˝ \D 2 C2;

curv.@˝/ � �; kf .l/
i kL1.D/ � M; l � 2; i D 1; 2g; (2.2)

(where the parameters �; L are not mutually independent) has become a well
accepted benchmark for sparse approximation in imaging [23]. Compactly sup-
ported shearlet systems for L2.R2/ have been introduced in [30, 33] to provide
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(1) (2) (3) (4) (5)

Fig. 2.1 Illustration of the partition rules

(near-) optimal sparse approximations for such classes. We observe that such
cartoons also exhibit similar features as solutions to transport problems.

Unfortunately, even compactly supported shearlets do not comply well with
quadrature and boundary adaptation tasks faced in variational methods for PDEs.
We are therefore interested in generating locally refinable anisotropic partitions for
which corresponding piecewise polynomial approximations realize the favorable
near-optimal approximation rates for cartoon functions achieved by shearlet sys-
tems. Unfortunately, as shown in [36, Chapter 9.3], simple triangular bisections
connecting the midpoint of an edge to the opposite vertex is not sufficient for
warranting such rates, see [10, 15] for related work. In fact, a key feature would
be to realize a “parabolic scaling law” similar to the shearlet setting. By this we
mean a sufficient rapid directional resolution by anisotropic cells whose width scales
like the square of the diameter. To achieve this we consider partitions comprised of
triangles and quadrilaterals pointed out to us in Cohen and Mirebeau (2013, private
communication). We sketch the main ideas and refer to [17] for details.

Starting from some initial partition consisting of triangles and quadrilaterals,
refined partitions are obtained by splitting a given cell Q of a current partition
according to one of the following rules:

(i) Connect a vertex with the midpoint of an edge not containing the vertex.
(ii) Connect two vertices.

(iii) Connect the midpoints of two edges which, when Q is a quadrilateral, do not
share any vertex.

The types of bisections are indicated in Fig. 2.1: (1), (2) are examples of (i),
(3) illustrates (ii), and (4), (5) are examples for (iii). One easily checks that these
refinement rules produce only triangles and quadrilaterals. Moreover, a quadrilateral
can be bisected in eight possible ways whereas a triangle can be split in six possible
ways. Assigning to each split type a number in IQ D f1; : : : ; 8g when Q is a
quadrilateral and a number in IQ D f9; : : : ; 14g whenQ is a triangle, we denote by

R�Q.Q/ D fQ1;Q2g for some �Q 2 IQ; (2.3)

the refinement operator which replaces the cell Q by its two children Q1;Q2

generated, according to the choice �Q, by the above split rules (i)–(iii).
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For any partition G of D, let P1.G / D fv 2 L2.D/ W vjQ 2 P1;Q 2 G g be
the space of piecewise affine functions on G and denote by G the set of all finite
partitions that can be created by successive applications of R�Q to define then

˙N WD
[

fP1.G / W G 2 G; #.G / � N g:

The next result from [17] shows that approximations by elements of˙N realize (and
even slightly improve on) the known rates obtained for shearlet systems for the class
of cartoon-like functions [33].

Theorem 2.1 ([17]). Let f 2 C .�; L;M;D/ with D D .0; 1/2 and assume that
the discontinuity curve � D @˝ \D is the graph of a C2-function. Then one has

inf
'2˙N

kf � 'kL2.D/ � C.�;L/M N�1 logN;

where C.�;L/ is an absolute constant depending only on �; L.

The proof of Theorem 2.1 is based on constructing a specific sequence Cj of
admissible partitions from G where the refinement decisions represented byR�Q use
full knowledge of the approximated function f . A similar sequence of partitions is
employed in Sect. 2.3.4.2 where �Q 2 IQ, however, results from an a posteriori
criterion described later below. We close this section by a few remarks on the
structure of the Cj . Given Cj�1, we first generate

QCj D fQ0 2 QR.Q/ W Q 2 Cj�1g; (2.4)

where QR is either R�Q or the identity. To avoid unnecessary refinements we define

then Cj by replacing any pair of triangles Q;Q
0 2 QCj whose union forms a

parallelogram P by P itself. This reduces the number of triangles in favor of
parallelograms.

2.3 Well-Conditioned Stable Variational Formulations

In this section we highlight some new conceptual developments from [14, 16, 18]
which are, in particular, relevant for the high dimensional parametric problems
addressed later below.

2.3.1 The General Principles

Anisotropic structures are already exhibited by solutions of elliptic boundary value
problems on polyhedral domains in 3D. However, related singularities are known
a priori and can be dealt with by anisotropic preset mesh refinements. Anisotropic
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structures of solutions to transport dominated problems can be less predictable so
that a quest for adaptive anisotropic discretization principles gains more weight.
Recall that every known rigorously founded adaptation strategy hinges in one way
or the other on being able to relate a current error of an approximate solution to the
corresponding residual in a suitable norm. While classical variational formulations
of elliptic problems grant exactly such an error-residual relation, this is unclear
for transport dominated problems. The first fundamental issue is therefore to find
also for such problems suitable variational formulations yielding a well conditioned
error-residual relation.

2.3.1.1 Abstract Petrov-Galerkin Formulation

Suppose that for a pair of Hilbert spaces X; Y (with scalar products .�; �/X; .�; �/Y
and norms k � kX ; k � kY ), and a given bilinear form b.�; �/ W X �Y ! R, the problem

b.u; v/ D f .v/; v 2 Y; (2.5)

has for any f 2 Y 0 (the normed dual of Y ) a unique solution u 2 X . It is well-
known that this is equivalent to the existence of constants 0 < cb � Cb < 1 such
that

sup
w2X

sup
v2Y

b.w; v/

kwkXkvkY � Cb; inf
w2X sup

v2Y
b.v;w/

kwkXkvkY � cb; (2.6)

and that, for each v 2 Y , there exists a w 2 X such that b.w; v/ ¤ 0. This means
that the operator B W X ! Y 0, defined by .Bu/.v/ WD b.u; v/, u 2 X; v 2 Y , is
an isomorphism with condition number �X;Y .B/ WD kBkL .X;Y 0/kB�1kL .Y 0;X/ �
Cb=cb . For instance, when (2.5) represents a convection dominated convection-
diffusion problem with the classical choice X D Y D H1

0 .˝/, the quotient Cb=cb
becomes very large. Since

kBk�1
L .X;Y 0/kBv � f kY 0 � ku � vkX � kB�1kL .Y 0 ;X/kBv � f kY 0 ; (2.7)

the error ku � vkX can then not be tightly estimated by the residual kBv � f kY 0 .

2.3.1.2 Renormation

On an abstract level the following principle has surfaced in a number of different
contexts such as least squares methods (see e.g. [5, 8]) and the so-called, more
recently emerged Discontinuous Petrov Galerkin (DPG) methods, see e.g. [3, 16,
19, 20] and the references therein. The idea is to fix a norm, k � kY , say, and modify
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the norm for X so that the corresponding operator even becomes an isometry. More
precisely, define

kuk OX WD sup
v2Y

b.u; v/

kvkY D kBukY 0 D kR�1
Y BukY ; (2.8)

whereRY W Y ! Y 0 is the Riesz map defined by .v; z/Y D .RY v/.z/. The following
fact is readily verified, see e.g. [16, 40].

Remark 2.1. One has � OX;Y .B/ D 1, i.e., (2.6) holds with cb D Cb D 1 when k � kX
is replaced by k � k OX .

Alternatively, fixing X and redefining k � kY by kvk OY WD kB�vkX 0 , one has
�X; OY .B/ D 1, see [16]. Both possibilities lead to the error residual relations

ku � wkX D kf � Bwk OY 0 ; ku � wk OX D kf � BwkY 0 ; u;w 2 X: (2.9)

2.3.2 Transport Equations

Several variants of these principles are applied and analyzed in detail in [14] for
convection-diffusion equations. We concentrate in what follows on the limit case for
vanishing viscosity, namely pure transport equations. For simplicity we consider the
domainD D .0; 1/d , d D 1; 2; 3, with � WD @D, denoting as usual by n D n.x/ the
unit outward normal at x 2 � (excluding the four corners, of course). Moreover, we
consider velocity fields b.x/, x 2 D, which for simplicity will always be assumed
to be differentiable, i.e., b.x/ 2 C1.D/d . Likewise c.x/ 2 C0.D/ will serve as the
reaction term in the first order transport equation

b � ru C cu D fı in D ; u D g on �� ; (2.10)

where �˙ WD fx 2 @D W ˙b.x/ � n.x/ > 0g denotes the inflow, outflow boundary,
respectively. Furthermore, to simplify the exposition we shall always assume that
2c � r � b � c0 > 0 in D holds.

A priori there does not seem to be any “natural” variational formulation.
Nevertheless, the above principle can be invoked as follows. Following e.g. [16],
one can show that the associated bilinear form with derivatives on the test functions

b.w; v/ WD
Z

D

w.�b � rv C v.c � r � b// dx; (2.11)

is trivially bounded on L2.D/ �W0.�b;D/, where

W0.�b;D/ WD closk�kW.b;D/fv 2 C1.D/ \ C.D/; v j�˙
� 0g; (2.12)
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and

kvkW.b;D/ WD
�

kvk2L2.D/ C
Z

D

jb � rvj2 dx

�1=2
: (2.13)

Moreover, the trace ��.v/ exists for v 2 W0.b;D/ in L2.��; jb � nj/, endowed with
the norm kgk2

L2.�˙;jb�nj/ D R
�˙

jgj2jb � njds so that

f .v/ WD .fı; v/C
Z

��

g��.v/jb � njds (2.14)

belongs to .W0.b;D//
0 and the variational problem

b.u; v/ D f .v/; v 2 W0.�b;D/ (2.15)

possesses a unique solution in L2.D/ which, when regular enough, coincides with
the classical solution of (2.10), see [16, Theorem 2.2].

Moreover, since X D L2.D/ D X 0, the quantity kvkY WD kB�vkL2.D/ is an
equivalent norm on W0.�b;D/, see [16], and Remark 2.1 applies, i.e.,

kBkL .L2.D/;.W0.b;D//0/ D kB�kL .W0.b;D/;L2.D// D 1; (2.16)

see [16, Proposition 4.1]. One could also reverse the roles of test and trial space
(with the inflow boundary conditions being then essential ones) but the present
formulation imposes least regularity on the solution which will be essential in the
next section. Note that whenever a PDE is written as a first order system, X can
always be arranged as an L2-space.

Our particular interest concerns the parametric case, i.e., the constant convection
field s in

s � ru.x; s/C �.x/u.x; s/ D fı.x/; x 2 D 
 R
d ; d D 2; 3;

u.x; s/ D g.x; s/; x 2 ��.s/;
(2.17)

may vary over a set of directions S so that now the solution u depends also on the
transport direction s. In (2.17) and the following we assume that ess infx2D �.x/ �
0. Thus, for instance, when S D S2, the unit 2�sphere, u is considered as a
function of five variables, namely d D 3 spatial variables and parameters from a
two-dimensional set S . This is the simplest example of a kinetic equation forming
a core constituent in radiative transfer models. The in- and outflow boundaries now
depend on s:

�˙.s/ WD fx 2 @D W �s � n.x/ < 0g; s 2 S : (2.18)
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Along similar lines one can determine u as a function of x and s inX D L2.D�S /

as the solution of a variational problem with test space Y WD closk�kW.D�S /
fv 2

C.S ; C 1.D// W vj�˙
� 0g with kvk2W.D�S / WD kvk2L2.D�S /C

R
S �D js �rvj2dxds.

Again this formulation requires minimum regularity. Since later we shall discuss yet
another formulation, imposing stronger regularity conditions, we refer to [16] for
details.

2.3.3 ı-Proximality and Mixed Formulations

It is initially not clear how to exploit (2.9) numerically since the perfect inf-sup
stability on the infinite dimensional level is not automatically inherited by a given
pair Xh 
 X; Yh 
 Y of equal dimension. However, given Xh 
 OX , one can
identify the “ideal” test space Y.Xh/ D R�1

Y B.Xh/ which may be termed ideal
because

sup
w2Xh

sup
v2Y.Xh/

b.w; v/

kwkXkvkY D inf
w2Xh

sup
v2Y.Xh/

b.v;w/

kwkXkvkY D 1; (2.19)

see [16]. In particular, this means that the solution uh 2 Xh of the corresponding
Petrov-Galerkin scheme

b.uh; v/ D f .v/; v 2 Y.Xh/; (2.20)

realizes the best OX -approximation to the solution u of (2.5), i.e.,

ku � uhk OX D inf
w2Xh

ku � wk OX : (2.21)

Of course, unless Y is an L2 space, the ideal test space Y.Xh/ is, in general,
not computable exactly. To retain stability it is natural to look for a numerically
computable test space Yh that is sufficiently close to Y.Xh/.

One can pursue several different strategies to obtain numerically feasible test
spaces Yh. When (2.5) is a discontinuous Galerkin formulation one can choose Y
as a product space over the given partition, again with norms induced by the graph
norm for the adjoint B� so that the approximate inversion of the Riesz map RY can
be localized [19, 20]. An alternative, suggested in [14, 16], is based on noting that
by (2.8) the ideal Petrov Galerkin solution uh from (2.20) is a minimum residual
solution in Y 0, i.e., uh D argminw2Xhkf � BwkY 0 whose normal equations read
.f � Buh;Bw/Y 0 D 0, w 2 Xh. Since the inner product .�; �/Y 0 is numerically hard
to access, one can write .f � Buh;Bw/Y 0 D hR�1

Y .f � Buh/;Bwi, where the dual
pairing h�; �i is now induced by the standard L2-inner product. Introducing as an
auxiliary variable the “lifted residual”

y D R�1
Y .f � Buh/; (2.22)
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or equivalently .RY y/.v/ D hRY y; vi D .y; v/Y D hf � Buh; vi, v 2 Y , one can
show that (2.20) is equivalent to the saddle point problem

hRY y; vi C b.uh; v/ D hf; vi; v 2 Y;
b.w; y/ D 0; w 2 Xh; (2.23)

which involves only standard L2-inner products, see [16, 18].

Remark 2.2. When working with X; OY instead of OX; Y , one has RY D BR�1
X B

�
and hence, when X D L2.D/ as in (2.11), one has RY D BB�.

Since the test space Y is still infinite dimensional, a numerical realization would
require finding a (possibly small) subspace V 
 Y such that the analogous saddle
point problem with Y replaced by V is still inf-sup stable. The relevant condition on
V can be described by the notion of ı-proximality introduced in [16], see also [14].
We recall the formulation from [18]: V 
 Y is ı-proximal for Xh 
 OX if, for some
ı 2 .0; 1/, with PY;V denoting the Y -orthogonal projection from Y to V ,

k.I � PY;V /R�1
Y BwkY � ıkR�1

Y BwkY ; w 2 Xh : (2.24)

For a discussion of how to monitor or realize ı-proximality we refer to [14,16], see
also Sect. 2.3.5.

Theorem 2.2 ([14,16,18]). Assume that for given Xh � V 
 X � Y the test space
V is ı-proximal for Xh, i.e. (2.24) is satisfied. Then, the solution .uXh;V ; yXh;V / 2
Xh � V of the saddle point problem

hRY yXh;V ; vi C b.uXh;V ; v/ D hf; vi; v 2 V;
b.w; yXh;V / D 0; w 2 Xh;

(2.25)

satisfies

ku � uXh;V k OX � 1

1 � ı inf
w2Xh

ku � wk OX : (2.26)

and

ku � uXh;V k OX C ky � yXh;V kY � 2

1 � ı
inf

w2Xh
ku � wk OX : (2.27)

Moreover, one has

inf
w2Xh

sup
v2V

b.w; v/

kvkY kqk OX
�

p
1 � ı2: (2.28)
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Finally, (2.25) is equivalent to the Petrov-Galerkin scheme

b.uXh;V ; v/ D f .v/; v 2 Yh WD PY;V .R
�1
Y B.Xh// D PY;V .Y.Xh//: (2.29)

The central message is that the Petrov-Galerkin scheme (2.29) can be realized
without computing a basis for the test space Yh, which for each basis function
could require solving a problem of the size dimV , by solving instead the saddle
point problem (2.25). Moreover, the stability of both problems is governed by the ı-
proximality of V . As a by-product, in view of (2.22), the solution component yXh;V
approximates the exact lifted residual R�1

Y .f � BuXh;V / and, as pointed out below,
can be used for an a posteriori error control.

The problem (2.25), in turn, can be solved with the aid of an Uzawa iteration
whose efficiency relies again on ı-proximality. For k D 0; : : :, solve

hRY yk; vi D hf � Buk; vi; v 2 V;
.ukC1;w/ OX D .uk;w/ OX C hB�yk;wi; w 2 Xh: (2.30)

Thus, each iteration requires solving a symmetric positive definite Galerkin problem
in V for the approximate lifted residual.

Theorem 2.3 ([16, Theorem 4.3]). Assume that (2.24) is satisfied. Then the iter-
ates generated by the scheme (2.30) converge to uXh;V and

kuXh;V � ukC1k OX � ıkuXh;V � ukk OX ; k D 0; 1; 2; : : : : (2.31)

2.3.4 Adaptive Petrov-Galerkin Solvers on Anisotropic
Approximation Spaces

The benefit of the above saddle point formulation is not only that it saves us the
explicit calculation of the test basis functions but that it provides also an error
estimator based on the lifted residual yh D yh.uXh;V ; f / defined by the first row
of (2.25).

2.3.4.1 Abstract ı-Proximinal Iteration

In fact, it is shown in [16] that when Vh 
 Y is even ı-proximal for Xh C B�1Fh,
with some finite dimensional subspace Fh 
 Y 0, one has

.1 � ı/kfh � BwkY 0 � kyh.w; fh/kY � kfh � BwkY 0 ; w 2 Xh; (2.32)
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where fh 2 Fh is an approximation of f 2 Y 0. The space Fh controls which
components of f are accounted for in the error estimator. The term f � fh is a
data oscillation error as encountered in adaptive finite element methods. It follows
that the current error of the Petrov-Galerkin approximation uXh;V is controlled from
below and above by the quantity kyhkY . This can be used to formulate the adaptive
Algorithm 1 that can be proven to give rise to a fixed error reduction per step. Its
precise formulation can be found in [16, § 4.2]. It is shown in [16, Proposition 4.7]
that each refinement step in Algorithm 1 below reduces the error by a fixed fraction.
Hence it terminates after finitely many steps and outputs an approximate solution Nu
satisfying ku � Nuk OX � ".

Algorithm 1 Adaptive algorithm
1: Set target accuracy ", initial guess Nu D 0, initial error bound e D kf kY 0 , parameters
�; �; ˛1; ˛2 2 .0; 1/, initial trial and ı-proximal test spaces Xh; Vh;

2: while e > " do solve (2.25) within accuracy ˛1� (e.g. by an Uzawa iteration with initial guess
Nu) to obtain an approximate solution pair . Oy; Ou/ 2 Vh � Xh;

3: enlarge Xh to Xh;C in such a way that

inf
g2Xh;C

kB� Oy�gk OX 0 � �kB� Oyk OX 0 and set r WD argming2Xh;C
kB� Oy�gk OX 0 I (2.33)

4: compute Xh0 � Xh; Fh0 � Fh, fh 2 BXh0 C Fh0 such that kf � fhkY 0 � ˛2�e;
5: set Xh CXh;C CXh0 ! Xh, �e ! e, and choose a ı-proximal subspace Vh for Xh;
6: set Ou C rX ! Nu.
7: end while

2.3.4.2 Application to Transport Equations

We adhere to the setting described in Sect. 2.3.2, i.e., X D OX D L2.D/, OY D Y D
W0.�b;D/, and RY D BB�.

The trial spaces that we now denote by Xj to emphasize the nested construction
below, are spanned by discontinuous piecewise linear functions on a mesh composed
of cells from collections Cj , i.e.,

Xj D P1.Cj /; j � 0; (2.34)

where the collections Cj are derived from collections QCj of the type (2.4) as
described in Sect. 2.2.

Given Xj of the form (2.34), the test spaces Vj are defined by

Vj WD P2.Gj /\ C.D/ with Gj WD fRiso.Q/ W Q 2 Cj g; (2.35)

where Riso.Q/ D fQ \ Pi W i D 1; : : : ; 4g is defined as follows. Let P be
a parallelogram containing Q and sharing at least three vertices with Q. (There
exist at most two such parallelograms and we choose one of them). Then the
parallelograms Pi result from a dyadic refinement of P . As pointed out later, the
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test spaces Vj constructed in this way, appear to be sufficiently large to ensure
ı-proximality for Xj for ı significantly smaller than one uniformly with respect
to j .

Since the test spaces Vj are determined by the trial spaces Xj the crucial
step is to generate XjC1 by enlarging Xj based on an a posteriori criterion
that “senses” directional information. This, in turn, is tantamount to a possibly
anisotropic adaptive refinement of Cj leading to the updated spaces for the next
iteration sweep of the form (2.30). The idea is to use a greedy strategy based on
the largest “fluctuation coefficients”. To describe this we denote for each �Q 2 IQ
by R�Q .Q/ an orthonormal Alpert-type wavelet basis for the difference space
P1.R�Q.Q//� P1.Q/, see [1]. We then set

j D f � 2 R.Q/ W Q 2 Cj�1g; (2.36)

where R.Q/ D S
�Q2IQ R�Q .Q/. Initializing C0 as a uniform partition (on a low

level), we define for some fixed � 2 .0; 1/

Tj D � � max
 �2j

jhB�rKj ;  � ij

for j > 0, where j is the two level basis defined in (2.36) and rKj D yK is the
lifted residual from the first row of the Uzawa iteration. Then, for each Q 2 Cj�1,
we define its refinement QR.Q/ (see the remarks following (2.4)) by

QR.Q/ WD
(

fQg; if max �2R.Q/ jhB�rKj ;  � ij � Tj ;

RO�Q .Q/; otherwise;

where O�Q is chosen to maximize max �2R�Q .Q/
jhB�rKj ;  � ij among all �Q 2 IQ.

One can then check whether this enrichment yields a sufficiently accurate L2-
approximation of B�rKj (step 3 of Algorithm 1). In this case, we adopt Cj .
Otherwise, the procedure is repeated for a smaller threshold � .

2.3.5 Numerical Results

We provide some numerical experiments to illustrate the performance of the
previously introduced anisotropic adaptive scheme for first order linear transport
equations and refer to [17] for further tests. We monitor ı-proximality by computing

inf�2Vj kuj � uKj � B��kL2.Œ0;1�2/
kuj � uKj kL2.Œ0;1�2/

; (2.37)
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a b c

Fig. 2.2 Possible directional adjustments are illustrated for a parallelogram P (dashed line).
(a) Rule (iii) of Sect. 2.2 yields two parallelograms with the same “direction”. (b), (c) Applying
rule (i) twice, changes the anisotropic direction slightly. The three refined parallelograms depicted
in (b), (c) illustrate the results of a possible merging of adjacent triangles

where uj D argminvj2Xj ku � vjkL2.D/. This is only a lower bound of the ı-
proximality constant ı for one particular choice of w in (2.24) which coincides with
the choice of w in the proof in [16]. In the following experiment, the number K of
Uzawa iterations is for simplicity set toK D 10. One could as well employ an early
termination of the inner iteration based on a posteriori control of the lifted residuals
rkj .

We consider the transport equation (2.10) with zero boundary condition g D 0,
convection field b D .x2; 1/

T , and right hand side f D �fx1>x22=2g C1=2 ��fx1�x22=2g
so that the solution exhibits a discontinuity along the curvilinear shear layer given
by x1 D 1

2
x22 .

In this numerical example we actually explore ways of reducing the relatively
large number of possible splits corresponding to the operators R�Q , �Q 2 IQ, while
still realizing the parabolic scaling law. In fact, we confined the cells to intersections
of parallelogramsP and their intersections with the domainD, much in the spirit of
shearlet systems, employing anisotropic refinements as illustrated in Fig. 2.2 as well
as the isotropic refinement Riso. Permitting occasional overlaps of parallelograms,
one can even avoid any interior triangles, apparently without degrading the accuracy
of the adaptive approximation. The general refinement scheme described in Sect. 2.2
covers the presently proposed one as a special case, except, of course, for the
possible overlap of cells.

Figure 2.3a, b show the adaptive grids associated with the trial space X5 and the
test space V5. The refinement in the neighborhood of the discontinuity curve reflects
a highly anisotropic structure. Figure 2.3c illustrates the approximation given by
306 basis elements. We emphasize that the solution is very smooth in the vicinity
of the discontinuity curve and oscillations across the jump are almost completely
absent and in fact much less pronounced than observed for isotropic discretizations.
Figure 2.3d indicates the optimal rate realized by our scheme, see Theorem 2.1. The
estimated values of the proximality parameter ı, displayed in Table 2.1, indicate the
numerical stability of the scheme.
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Fig. 2.3 (a) Adaptive grid for the trial space X5. (b) Adaptive grid for the test space V5.
(c) Approximate solution (306 basis elements). (d) L2.D/ errors (vertical axis) for N degrees of
freedom (horizontal axis) achieved by the adaptive scheme (blue) in comparison with the optimal
rate N�1 (red), predicted by Theorem 2.1. This is to be compared with the rate N�1=2 realized by
adaptive isotropic refinements [16]

Table 2.1 Numerical
estimates (2.37) for the
proximality constant ı and for
the L2 approximation error

n Estimated ı kuKj � ukL2.Œ0;1�2/
48 0.298138 0.036472

99 0.442948 0.021484

138 0.352767 0.013948

177 0.322156 0.010937

237 0.316545 0.008348

306 0.307965 0.006152

In the remainder of the paper we discuss parametric equations whose solutions
are functions of spatial variables and additional parameters. Particular attention will
here be paid to the radiative transfer problems, where the dimension of the physical
domain is 2 or 3.
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2.4 Reduced Basis Methods

2.4.1 Basic Concepts and Rate Optimality

Model reduction is often necessary when solutions to parametric families of PDEs
are frequently queried for different parameter values e.g. in an online design or
optimization process. The linear transport equation (2.17) is a simple example of
such a parameter dependent PDE. Since (a) propagation of singularities is present
and (b) the parameters determine the propagation direction s it turns out to already
pose serious difficulties for standard model reduction techniques.

We emphasize that, rather than considering a single variational formulation for
functions of spatial variables and parameters, as will be done later in Sect. 2.5, we
take up the parametric nature of the problem by considering a parametric family
of variational formulations. That is, for each fixed s the problem is an ordinary
linear transport problem for which we can employ the corresponding variational
formulation from Sect. 2.3.2, where now the respective spaces may depend on the
parameters. In this section we summarize some of the results from [18] which are
based in an essential way on the concepts discussed in the previous section.

In general, consider a family

b�.u; v/ D f .v/; u 2 X�; v 2 Y�; � 2 P; b�.u; v/ D
MX

kD1
�k.�/bk.u; v/

(2.38)

of well-posed problems, where P 
 R
P is a compact set of parameters �, and

the parameter dependence is assumed to be affine with smooth functions �k . The
solutions u.�I�/ D u.�/ then become functions of the spatial variables and of the
parameters � 2 P .

As before we can view (2.38) as a parametric family of operator equations
B�u D f , where B� W X� ! Y 0

� is again given by .B�u/.v/ D b�.u; v/. Each
particular solution u.�/ is a point on the solution manifold

M WD fB�1
� f W � 2 Pg: (2.39)

Rather than viewing u.�/ as a point in a very high-dimensional (in fact infinite
dimensional) space, and calling a standard solver for each evaluation in a frequent
query problem, the Reduced Basis Method (RBM) tries to exploit the fact that each
u.�/ belongs to a much smaller dimensional manifold M . Assuming that all the
spaces X� are equivalent to a reference Hilbert space X with norm k � kX , the
key objective of the RBM is to construct a possibly small dimensional linear space
Xn 
 X such that for a given target accuracy " > 0

sup
�2P

inf
w2Xn

ku.�/ � wkX WD maxdistX.M ; Xn/ � ": (2.40)
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Once Xn has been found, bounded linear functionals of the exact solution u.�/ can
be approximated within accuracy " by the functional applied to an approximation
fromXn which, when n is small, can hopefully be determined at very low cost. The
computational work in an RBM is therefore divided into an offline and an online
stage. Finding Xn is the core offline task which is allowed to be computationally
(very) expensive. More generally, solving problems in the “large” space X is part
of the offline stage. Of course, solving a problem in X is already idealized. In
practice X is replaced by a possibly very large trial space, typically a finite element
space, which is referred to as the truth space and should be chosen large enough to
guarantee the desired target accuracy, ideally certified by a posteriori bounds.

The computation of a (near-)best approximation un.�/ 2 Xn is then to be online
feasible. More precisely, one seeks to obtain a representation

un.�/ D
nX

jD1
cj .�/�j ; (2.41)

where the �j form a basis for Xn and where for each query � 2 P the expansion
coefficients cj .�/ can be computed by solving only problems of the size n, see
e.g. [39] for principles of practical realizations. Of course, such a concept pays off
when the dimension n D n."/, needed to realize (2.40), grows very slowly when
" decreases. This means that the elements of M have sparse representations with
respect to certain problem dependent dictionaries.

The by now most prominent strategy for constructing “good” spaces Xn can be
sketched as follows. Evaluating for a given Xn the quantity maxdistX.M ; Xn/ is
infeasible because this would require to determine for each � 2 P (or for each
� in a large training set Ph 
 P which for simplicity we also denote by P) the
solution u.�/ which even for the offline stage is way too expensive. Therefore, one
chooses a surrogate Rn.�/ such that

inf
w2Xn

ku.�/� wkX � Rn.�;Xn/; � 2 P; (2.42)

where the evaluation of Rn.�;Xn/ is fast and an optimization of Rn.�;Xn/ can
therefore be performed in the offline stage. This leads to the greedy algorithm in
Algorithm 2. A natural question is to ask how the spaces Xn constructed in such a
greedy fashion compare with “best spaces” in the sense of the Kolmogorov n-widths

dn.M /X WD inf
dimWnDn sup

w2M
inf

z2Wn
kw � zkX : (2.44)

The n-widths are expected to decay the faster the more regular the dependence of
u.�/ is on �. In this case an RBM has a chance to perform well.

Clearly, one always has dn.M /X � maxdistX.M ; Xn/. Unfortunately, the best
constant Cn for which maxdistX.M ; Xn/ � Cndn.M /X is Cn D 2n, see [4, 6].
Nevertheless, when comparing rates rather than individual values, one arrives at
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Algorithm 2 Greedy algorithm
1: function GA
2: Set X0 WD f0g, n D 0,
3: while argmax�2PR.�;Xn/ 	 " do
4:

�nC1 WD argmax�2PR.�;Xn/;

unC1 WD u.�nC1/;

XnC1 WD span
˚
Xn; fu.�nC1/g� D span fu1; : : : ; unC1g

(2.43)

5: end while
6: end function

more positive results [4, 21]. The following consequence of these results asserts
optimal performance of the greedy algorithm provided that the surrogate sandwiches
the error of best approximation.

Theorem 2.4 ([18, Theorem 1.3]). Assume that there exists a constant 0 < cR � 1

such that one has for all n

cRRn.�;Xn/ � inf
w2Xn

ku.�/ � wkX � Rn.�;Xn/; � 2 P : (2.45)

Then, the spaces Xn produced by Algorithm 2 satisfy

dn.M /x � Cn�˛ H) maxdistX.M ; Xn/ � NCn
�˛
; (2.46)

where NC depends only on C; ˛, and �.Rn/ WD 1=cR, the condition of the surrogate.

We call the RBM rate-optimal whenever (2.46) holds for any ˛ > 0. Hence,
finding rate-optimal RBMs amounts to finding feasible well-conditioned surrogates.

2.4.2 A Double Greedy Method

Feasible surrogates that do not require the explicit computation of truth solutions
for each � 2 P need to be based in one way or the other on residuals. When (2.38)
is a family of uniformly X -elliptic problems so that B� are uniformly bounded
isomorphisms from X onto X 0, residuals indeed lead to feasible surrogates whose
condition depends on the ratio of the continuity and coercivity constant. This follows
from the mapping property of B�, stability of the Galerkin method, and the best
approximation property of the Galerkin projection, see [18].

When the problems (2.38) are indefinite or unsymmetric and singularly perturbed
these mechanisms no longer work in this way, which explains why the conventional
RBMs do not perform well for transport dominated problems in that they are far
from rate-optimal.
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As shown in [18], a remedy is offered by the above renormation principle
providing well-conditioned variational formulations for (2.38). In principle, these
allow one to relate errors (in a norm of choice) to residuals in a suitably adapted
dual norm which are therefore candidates for surrogates. The problem is that, given
a trial space Xn, in particular a space generated in the context of an RBM, it is not
clear how to obtain a sufficiently good test space such that the corresponding Petrov-
Galerkin projection is comparable to the best approximation. The new scheme
developed in [18] is of the following form:

(I) Initialization: take X1 WD span fu.�1/g, �1 randomly chosen, Y1 WD f0g;
(II) Given a pair of spaces Xn; QVn, the routine UPDATE-INF-SUP-ı enriches QVn to

a larger space Vn which is ı-proximal for Xn;
(III) ExtendXn toXnC1 by a greedy step according to Algorithm 2, set QVnC1 D Vn,

and go to (II) as long as a given target tolerance for an a posteriori threshold is
not met.

The routine UPDATE-INF-SUP-ı works roughly as follows (see also [25] in the
case of the Stokes system). First, we search for a parameter N� 2 P and a function
Nw 2 Xn for which the inf-sup condition is worst, i.e.

sup
v2 QVn

b N�. Nw; v/
kvkY N�

k Nwk OX N�

D inf
�2P

 

inf
w2Xn

sup
v2 QVn

b�.w; v/

kvkY�kwk OX�

!

: (2.47)

If this worst case inf-sup constant does not exceed yet a desired uniform lower
bound, QVn does not contain an effective supremizer, i.e., a function realizing the
supremum in (2.47), for N�; Nw, yet. However, since the truth space satisfies a uniform
inf-sup condition, due to the same variational formulation, there exists a good
supremizer in the truth space which, is given by the Galerkin problem

Nv D R�1
Y N�
B N� Nw D argmaxv2Y N�

b N�. Nw; v/
kvkY N�

k Nwk OX N�

;

providing the enrichment QVn ! spanf QVn;R�1
Y�
B� Nwg.

The interior greedy stabilization loop (II) ensures that the input pair Xn; Yn in
step (III) is inf-sup stable with an inf-sup constant as close to one as one wishes,
depending on the choice of ı < 1. By Theorem 2.2, each solution un.�/ of the
discretized system for .Xh; V / D .Xn; Vn/ satisfies the near-best approximation
property (2.26) and (2.27). Hence kf �B�un.�/kY 0

�
is a well conditioned surrogate

(with condition close to one). Therefore, the assumptions of Theorem 2.4 hold so
that the outer greedy step (III) yields a rate-optimal update. In summary, under
the precise assumptions detailed in [18], the above double greedy scheme is rate-
optimal.

Before turning to numerical examples, a few comments on the interior greedy
loop UPDATE-INF-SUP-ı are in order.
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(a) Finding N� in (2.47) requires for each �-query to perform a singular value
decomposition in the low dimensional reduced spaces so that this is offline
feasible, see [18, Remark 4.2].

(b) When the test spaces Y� all agree with a reference Hilbert space Y as sets
and with equivalent norms it is easy to see that the interior stabilization
loop terminates after at most M steps where M is the number of parametric
components in (2.38), see [18, Remark 4.9] and [25, 38]. If, on the other hand,
the spaces Y� differ even as sets, as in the case of transport equations when the
transport direction is the parameter, this is not clear beforehand. By showing that
the inf-sup condition is equivalent to a ı-proximality condition one can show
under mild assumptions though that the greedy interior loop still terminates after
a number of steps which is independent of the truth dimension, [18, Remark
4.11].

(c) In this latter case the efficient evaluation of kf �B�u.�/kY 0
�

requires additional
efforts, referred to as iterative tightening, see [18, Section 5.1].

(d) The renormation strategy saves an expensive computation of stability constants
as in conventional RBMs since, by construction, through the choice of ı, the
stability constants can be driven as close to one as one wishes.

The scheme has been applied in [18] to convection-diffusion and pure transport
problems where the convection directions are parameter dependent. Hence the
variational formulations are of the form (2.38). We briefly report some results for
the transport problem since this is an extreme case in the following sense. The test
spaces Y� do not agree as sets when one would like the X� to be equivalent for
different parameters. Hence, one faces the obstructions mentioned in (b), (c) above.
Moreover, for discontinuous right hand side and discontinuous boundary conditions
the dependence of the solutions on the parameters has low regularity so that the n-
widths do not decay as rapidly as in the convection-diffusion case. Nevertheless, the
rate-optimality still shows a relatively fast convergence for the reduced spaces Xn
shown below.

The first example concerns (2.17) (with � D s ranging over a quarter circle,
D D .0; 1/2) for fı � 1, g � 0. In the second example, we take fı.x1; x2/ D 0:5

for x1 < x2, fı.x1; x2/ D 1 for x1 � x2 (Tables 2.2, 2.3 and Fig. 2.4).

Table 2.2 Numerical results for Example 1, maximal truth error in L2 0.000109832

Dimension Maximal error between
Trial Test ı Maximal surr rb truth rb L2 Surr/err

4 11 3.95e�01 8.44e�03 2.45e�02 2.45e�02 3.45e�01

10 33 4.32e�01 3.37e�03 5.74e�03 5.74e�03 5.87e�01

16 57 4.32e�01 1.50e�03 2.56e�03 2.56e�03 5.84e�01

20 74 4.16e�01 1.21e�03 2.10e�03 2.10e�03 5.77e�01

24 91 4.05e�01 7.27e�04 1.58e�03 1.58e�03 4.61e�01
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Table 2.3 Numerical results for Example 2 after a single cycle of iterative tightening. Maximal
truth error in L2 0.0154814

Dimension Maximal error between
Trial Test ı Maximal surr rb truth rb L2 Surr/err

First reduced basis creation

20 81 3.73e�01 2.71e�02 5.46e�02 5.62e�02 4.82e�01

Second reduced basis creation

10 87 3.51e�01 6.45e�02 7.40e�02 7.53e�02 8.57e�01

10 20
0

5 ·10−3

1 ·10−2

reduced basis trial dimension

Example 1

10 20
0

2 ·10−2

4 ·10−2

6 ·10−2

reduced basis trial dimension

Example 2

Fig. 2.4 Surrogates of the reduced basis approximation for Examples 1 and 2

2.5 Sparse Tensor Approximation for Radiative Transfer

We now extend the parametric transport problem (2.17) to the radiative transport
problem (RTP) (see, e.g., [37]) which consists in finding the radiative intensity
u W D � S ! R, defined on the Cartesian product of a bounded physical domain
D 
 R

d , where d D 2; 3, and the unit dS-sphere as the parameter domain:P D S
with dS D 1; 2. Given an absorption coefficient � � 0, a scattering coefficient � �
0, and a scattering kernel or scattering phase function ˚ > 0, which is normalized
to
R
S ˚.s; s0/ds0 D 1 for each direction s, one defines the transport operator Tu WD

.s � rx C �/u, and the scattering operator Qu WD �Q1u D �.u �R
S ˚.s; s0/u.x; s0/ds0/. The radiative intensity is then given by

.T C Q/u D f; uj@˝�
D g; (2.48)

where f WD �Ib , @˝� WD f.x; s/ 2 @D � S W s � n.x/ < 0g, and g denote the
source term, the inflow-boundary, and the inflow-boundary values, respectively. As
before, ��.s/ WD fx 2 @D W s � n.x/ < 0g (see (2.18)) stands for the physical
inflow-boundary.

The partial differential equation (2.48) is known as stationary monochromatic
radiative transfer equation (RTE) with scattering, and can be viewed as (nonlocal)
extension of the parametric transport problem (2.17), where the major difference
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to (2.17) is the scattering operator Q. Sources with support contained in D are
modeled by the blackbody intensity Ib � 0, radiation from sources outside of the
domain or from its enclosings is prescribed by the boundary data g � 0.

Deterministic numerical methods for the RTP which are commonly used in engi-
neering comprise the discrete ordinates (SN -) method and the spherical harmonics
(PN -) method.

In the discrete ordinate method (DOM), the angular domain is collocated by a
finite number of fixed propagation directions in the angular parameter space; in this
respect, the DOM resembles the greedy collocation in the parameter domain: each
of the directions Eq. (2.48) results in a spatial PDE which is solved (possibly in
parallel) by standard finite differences, finite elements, or finite volume methods.

In the spherical harmonics method (SHM), a spectral expansion with spatially
variable coefficients is inserted as ansatz into the variational principle Eq. (2.48).
By orthogonality relations, a coupled system of PDEs (whose type can change from
hyperbolic to elliptic in the so-called diffuse radiation approximation) for the spatial
coefficients is obtained, which is again solved by finite differences or finite elements.

The common deterministic methods SN - and PN -approximation exhibit the so-
called “curse of dimensionality”: the error with respect to the total numbers of
degrees of freedom (DoF)MD andMS on the physical domainD and the parameter
domain S scales with the dimension d and dS asO.M�s=d

D CM�t=dS
S /with positive

constants s and t .
The so called sparse grid approximation method alleviates this curse of dimen-

sionality for elliptic PDEs on cartesian product domains, see [7] and the references
therein. Widmer et al. [41] has developed a sparse tensor method to overcome the
curse of dimensionality for radiative transfer with a wavelet (isotropic) discretiza-
tion of the angular domain. Under certain regularity assumptions on the absorption
coefficient � and the blackbody intensity Ib , their method achieves the typical
benefits of sparse tensorization: a log-linear complexity in the number of degrees
of freedom of a component domain with an essentially (up to a logarithmic factor)
undeteriorated rate of convergence. However, scattering had not been addressed in
that work.

In order to include scattering and to show that the concepts of sparse tensorization
can also be applied to common solution methods, sparse tensor versions of the
spherical harmonics approximation were developed extending the “direct sparse”
approach by [41]. The presently developed version also accounts for scattering [27].
For this sparse spherical harmonics method, we proved that the benefits of sparse
tensorization can indeed be harnessed.

As a second method a sparse tensor product version of the DOM based on the
sparse grid combination technique was realized and analyzed in [26, 28]. Solutions
to discretizations of varying discretization levels, for a number of collocated
transport problems, and with scattering discretized by combined Galerkin plus
quadrature approximation in the transport collocation directions are combined in
this method to form a sparse tensor solution that we proved in [26, 28] breaks the
curse of dimensionality as described above. These benefits hold as long as the exact
solution of the RTE is sufficiently regular. An overview follows.
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2.5.1 Sparse Discrete Ordinates Method (Sparse DOM)

We adopt a formulation where the inflow boundary conditions are enforced in a
weak sense. To this end, we define the boundary form (see, e.g., [26])

@b.u; v/ WD .v; s � nu/L2.@˝�/
D
Z

S

Z

��.s/

s � nuvdxds : (2.49)

Writing for v W D � S ! R briefly kvk WD kvkL2.D�S /, the norms

kvk2� WD �@b.v; v/; kvk12 WD kvk2 C ks � rxvk2 C kQ1vk2 C kvk2�
define the Hilbert space V1 WD fv 2 L2.D�S / W kvk1 < 1g. The SUPG-stabilized
Galerkin variational formulation reads: find u 2 V1 such that

.Rv; .T C Q/u/L2.D�S / � 2@b.u; v/ D .Rv; f /L2.D�S / � 2@b.g; v/ 8v 2 V1
(2.50)

with SUPG stabilization Rv WD v C �s � rxv, where � 	 2�L.
For the discretization of (2.50), we replace V1 by V L;N D V L

D ˝ V N
S . In

the physical domain, standard P1-FEM with a one-scale basis on a uniform
mesh of width hmax . 2�L is used, in the angular domain, piecewise constants
on a quasiuniform mesh of width hmax . N�1. Fully discrete problems are
obtained with a one-point quadrature in the angular domain. The resulting Galerkin
formulation (2.50) can be shown to result in the same linear system of equations
as the standard collocation discretization [26, Sec. 5.2]. The solution is constructed
with the sparse grid combination technique (see [7]):

OuL;N D
LX

`DD0

�
u`D;`max

S .`D/ � u`D;`max
S .`DC1/

�
;

where u`D;`S 2 V `D;`S denotes the solution to a full tensor subproblem of physical
resolution level `D and angular resolution level `S . The maximum angular index
`max
S D 2blog2.NC1/c=L.L�lD/ ensures that the angular resolution decreases when the

physical resolution increases and vice versa.
While the full tensor solution uL;N requiresO.2dLNdS/ degrees of freedom, the

sparse solution involves asymptotically at mostO..LClogN/.2dLCNdS// degrees
of freedom [26, Lemma 5.6]. At the same time, we have

ku � uL;N k1 � C2�LkukH2;0.D�S / CN�1kukH1;1.D�S /;

while for solutions in H2;1.D � S / 
 .H2;0.D � S /\H1;1.D � S //
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ku � OuL;N k1 � CLmaxf2�L;N�1gkukH2;1.D�S / ;

where C is an absolute constant.

2.5.2 Numerical Experiment

To evaluate the solution numerically we monitor the incident radiation G.x/ DR
S u.x; s/ds and its relative error err.GL;N /X D kG � GL;N kX=kGkX , X D
L2.D/;H

1.D/.
The setting for the experiment is D D .0; 1/d , S D S d

S
. We solve the

RTP (2.48) with isotropic scattering ˚.s; s0/ D 1=jS j and with zero inflow
boundary conditions g D 0. A blackbody radiation Ib.x; s/ corresponding to the
exact solution

u.x; s/ D 3

16�
.1C .s � s0/2/

3Y

iD1
.�4xi.xi � 1//;

with fixed s0 D .1=
p
3; 1=

p
3; 1=

p
3/> is inserted in the right hand side functional

in (2.50). The absorption coefficient is set to � D 1, the scattering coefficient to
� D 0:5.

This 3C 2-dimensional problem was solved with a parallel C++ solver designed
for the sparse tensor solution of large-scale radiative transfer problems. Figure 2.5
shows the superior efficiency of the sparse approach with respect to number of
degrees of freedom vs. achieved error. The convergence rates indicate that the curse
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Fig. 2.5 Convergence in incident radiation with full and sparse DOM. Resolution for reference
solution was Lref D 4. Reference slopes provided as visual aids only
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of dimensionality is mitigated by the sparse DOM. Further gains are expected once
the present, nonadaptive sparse DOM is replaced by the greedy versions outlined in
Sect. 2.3.1.1.
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Chapter 3
Regularity of the Parameter-to-State Map
of a Parabolic Partial Differential Equation

Rudolf Ressel, Patrick Dülk, Stephan Dahlke, Kamil S. Kazimierski,
and Peter Maass

Abstract In this paper, we present results that have been obtained in the DFG-
SPP project “Adaptive Wavelet Frame Methods for Operator Equations: Sparse
Grids, Vector-Valued Spaces and Applications to Nonlinear Inverse Problems”. This
project has been concerned with (nonlinear) elliptic and parabolic operator equa-
tions on nontrivial domains as well as with related inverse parameter identification
problems. In this paper we study analytic properties of the underlying parameter-to-
state map, which is motivated by a parabolic model for the embryonal development
of drosophila melanogaster.

3.1 Introduction

The DFG-SPP project “Adaptive Wavelet Frame Methods for Operator Equations”
has been concerned with (nonlinear) elliptic and parabolic operator equations on
nontrivial domains as well as with related inverse parameter identification problems.
In this paper we study analytic properties of the underlying parameter-to-state map.
The complementary results on the development of optimally convergent adaptive
wavelet schemes obtained in this project are presented in [5].
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The starting point of the present paper is the common Drosophila melanogaster
organism at a particular embryonal stage, when the entire metabolism still takes
place in one large (multinuclear) cell. More precisely, we are concerned with
a presumed governing differential equation for the model system, where the
gene-expression concentrations (state) appear as the solutions of a model equation
and the parameters model the regulating interaction (based on models proposed
by [12, 13]). To derive a differential equation resulting from these assumptions, we
take some connected Lipschitz-bounded domain U 
 R

n, n D 2; 3 as the physical
domain of the metabolism. We denote by the scalar functions ui ; i D 1; : : : ; d

the gene product concentrations on U over the time interval Œ0; T �. The partial
differential equation governing the biochemical evolution under consideration
reads:

@ui
@t

� r � .Dirui /C �i � ui D Ri˚
� dX

jD1
Wijuj

	
in UT D U � .0; T �;

@ui
@


D 0 on @U � Œ0; T �;
u.0/ D u0 on U � f0g;

(3.1)

where i; j D 1; : : : ; d and ui ; Di ; �i ; Ri ;Wij are functions of space and time and

the function ˚i W R ! R is given via ˚.y/ D 0:5
�
y=
p
y2 C 1C 1

	
.

The non-negative parameter functions D, �, R are measurable, almost every-
where pointwise bounded functions in time and space. The terms in the PDE
correspond to diffusion, chemical consumption, and synthesis, respectively. The
function ˚ is some smooth sigmoidal signal response function (cf. [12]). The
matrix function W is likewise bounded, but may attain negative values. In fact, in
the matrix-vector product .W u/ negative entries in W correspond to an inhibiting
influence of one expressed gene on the synthesis of the other gene and positive
ones represent an amplifying effect. The task is then to identify the parameters from
measured concentrations of the .ui /iD1;::;d at certain times of the observation period,
most importantly the genetic interaction encoded in W .

A well-known technique to solve the nonlinear inverse problem that arises from
Eq. (3.1) is Tikhonov regularization with sparsity constraints [4, 8, 11]. This paper
aims at laying down a functional analytic framework for the parameter-to-state
operator, i.e. the operator that maps a parameter tuplet to the respective solution
of the differential equation, which allows us to apply Tikhonov regularization.
Especially, it is shown, that the parameter-to-state map has a Lipschitz continuous
derivative. This is the key ingredient to apply numerical minimization schemes for
Tikhonov-type functionals [4].
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3.2 Function Spaces

Usually, one reformulates the model equation as a Cauchy problem with solutions
in L2.Œ0; T �;H1.U // and parameters in L1 (cf. [17]). We choose a slightly more
general approach by utilizing recent regularity results of [9]. The benefit lies in
obtaining greater leeway for the topology of the parameters (cf. [10, 15]).

3.2.1 The Parameter Space

We start with pointwise a.e. (almost everywhere) bounded sets of measurable
functions, i.e. bounded subsets of L1-spaces (bounds are indicated in Eq. (3.2)
right below). The topology we then work with is induced by Lp-norms. The global
pointwise bounds are denoted by

0 < CP;1 � D; � � CP;2; 0 � R � CP;2; kW k1 � CP;2: (3.2)

The parameter space for D is defined as

PD D fD 2 LpD .U � Œ0; T �;Rd / W 0 < CP;1 � D � CP;2g:

Accordingly, the spaces P�;PR;PW for �;R;W are defined with the exponents
of integrability 2 � p�; pR; pW � 1. These parameters will be specified later
to meet further analytical goals, e.g., the differentiability of differential operators
appearing in the PDE. We denote the space of admissible parameter tuplets by P D
PD � P� � PR � PW and endow this space with the norm k.D; �;R;W /k WD
kDkLpD .UT ;Rd / C k�kLpD .UT ;Rd /k C kRkLpR .UT ;Rd / C kW kLpW .UT ;Rd�d /. Note, that
in case one of the exponents of integrability is smaller than 1, P does not
include all the nearby Lp (or L1) elements but only those that satisfy the stated
almost everywhere bounds. Therefore all the results presented later on should be
understood with respect to the relative topology.

3.2.2 Solution Spaces

To establish the solvability theory for our model PDE (3.1) we need to choose spaces
Vq and Yq , such that these spaces “fit” the elliptic part r � .Dirgi / as well as the
nonlinear part Ri˚.Wgi/ of the differential operator. As a reference for Sobolev
and Besov spaces we refer to [6, Ch.3], [16, 2.1.2] or [18].

With dim.U / D n and 1=q C 1=q0 D 1 we define:

Vq D H1
q .U;R

d / and Yq D .H1
q0.U;R

d //0; q 2 .n; nC "/:
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This gives us a Gelfand triple Itriple W Vq ,! Lq ,! Yq . For notational convenience,
we will not distinguish between elements u 2 Vq and their embeddings in Yq .

We now define a suitable space for the solutions of (3.1):

Ws;q D fu 2 Ls.Œ0; T �IVq/ W u0 2 Ls.Œ0; T �IYq/g

with norm kuk D kukLs.Œ0;T �IVq / C ku0kLs.Œ0;T �IYq/, s � 2, where u0 denotes the
distributional derivative with values in Yq .

We choose q 2 .n; n C "/, where " depends on results of maximal parabolic
regularity, see Sect. 3.3.3. For simplicity we will always set s D q. This avoids a
second set of exponents, however, all subsequent results remain correct for a general
s � 2. For notational convenience, we define Vq D Lq.Œ0; T �; Vq/. Using s D q and
omitting the subscript s from now on, we introduce the shorter notation

W D fu 2 Vq W u0 2 .Vq0/0g with norm kukW D kukVq C ku0k.Vq0 /0 :

We will need the following embeddings, which are derived from well-known facts
about solution spaces of vector-valued parabolic equations, see e.g. [14].

Theorem 3.1. W is a Banach space with continuous embeddings W ,!
C .Œ0; T �; G/ ,! C .Œ0; T �;C .U ;Rd //, where G D Bm

q;q.U;R
d /, m D 1 � 2=q.

Theorem 3.2. The embedding IM W W ,! Lr.Œ0; T �ILr.U;Rd // is continuous for
any r 2 .q;1�.

From now on we choose r > q.

3.3 The Model PDE as an Evolution Equation

In this section we will analyze the differential operators defining (3.1) and derive an
existence result for solutions of (3.1).

3.3.1 The Linear Differential Operator

Now we restrict the indices of the function spaces and choose q 2 .n; n C "/,
p�; pR; pW > 4q, pD D 1 and r 2 .2q;1�. Under these restraints we find

1

pR
C 1

pW
C 1

r
<
1

q
;

1

p�
C 1

r
� 1

q
: (3.3)

These indices have been chosen in order to be able to apply Hölder estimates (cf. the
concept of multiplicator spaces in [1, pp.90]) in the subsequent sections. We now
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define the differential operator d
dt CA W P�W ! .Vq0/0 by

�
d
dt C A

�
.�; u/ D F ,

where F acts like

F.v�/ D �
Z T

0

�Z

U

uvdx
	
�0dt C

Z T

0

�Z

U

Drurvdx
	
�dt C

Z T

0

�Z

U

� u v dx
	
�dt;

with � 2 C1
0 .Œ0; T �;R/; v 2 Vq0 ; � D .D; �;R;W / 2 P . Note, that � captures

the distributional time derivative of the test functions.

Theorem 3.3. Let W andP be defined as above. Then d
dt C A W P � W ! .Vq0/0

is linear and continuous in each argument. Moreover d
dt C A is continuously

differentiable in .�; u/.

Proof. The linearity of the operator is obvious. The continuity of d
dt follows directly

from the fact that u0 2 .Vq0/0 by u 2 W . By the choice of the parameter p� and the
inclusion W 
 Lr , the map

P � W ! .Vq0/0; .�; u/ 7! �u

is continuous and by its bilinearity also continuously differentiable. The map

P � W ! .Vq0/0; .D; u/ 7! �div.Dru/

is bilinear, (locally Lipschitz) continuous and therefore also continuously differen-
tiable. ut

3.3.2 Superposition Operators

For analyzing Hölder and Lipschitz continuity as well as differentiability of the
nonlinear right-hand side of (3.1) we use results on superposition operators, see the
standard references [1, 16]. Here we just summarize the relevant results, the reader
is referred to [14] for their proofs. We start with a technical remark.

Remark 3.1. The function '.x/ D 0:5.x=
p
x2 C 1C 1/ is globally Lipschitz con-

tinuous and so are all its derivatives. In particular, they decay as '.n/.x/ D o.jxjn/
for jxj ! 1. Typical other examples for such sigmoidal functions are arctan and
tanh.

Now we return to our quest of analyzing superposition operators. In all the
generic statements and claims below, the space Z is a finite measure space.

Definition 3.1. A function f W Z � R ! R, .z; u/ 7! f .z; u/ which is measurable
in z and continuous in u is called a Caratheodory function.
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Remark 3.2. Let f be a Caratheodory function as above. Let v W Z ! R be a
measurable function. Then f .�; v.�// is a measurable function. The proof can be
found in [1].

Definition 3.2. Let 1 � q; p � 1, q ¤ 1, and f be a Caratheodory function as
defined above. Suppose that f satisfies a growth estimate (in case of p ¤ 1)

jf .z; u.z//jq � C.h.z/q C ju.z/jp/ a.e. on Z;

or (in case of p D 1)

jf .z; u.z//jq � C.h.z/q C ku.z/kL1.Z// a.e. on Z;

where h � 0 is from Lq.Z/. Then we define the operator .B.u//.z/ WD f .z; u.z//.

Theorem 3.4. The operator B defined above is a bounded, continuous map
Lp.Z/ ! Lq.Z/, q ¤ 1 which satisfies

kB.u/kLq.Z/ � C.khkLq.Z/ C kuk
p
q

Lp.Z/
/:

The nonlinear operator F D R˚.W u/ in (3.1) is indeed a function of u and of
the parametersR;W , i.e. F D F .R;W; u/. With a slight abuse of notation we will
frequently write F .u/, F .R/, F .W / instead of F .R;W; u/, whenever it is clear
how the other arguments are fixed.

Remark 3.3. The compositions u 7! F .u/;Fi .u/ D Ri QFi ..Wu/i / D Ri˚..Wu/i /
andW 7! F .W /;Fi .W / D Ri QFi ..Wu/i / D Ri˚..Wu/i / are continuous.

A stronger type of continuity is stated under additional assumptions.

Theorem 3.5. Let B W Lp.Z/ ! Lq.Z/ be a continuous superposition operator
as in the preceding Theorem 3.4 generated by a Caratheodory function f , 1 � q �
p < 1. f is assumed to be globally Lipschitz continuous in u, such that we have
an a.e. pointwise Lipschitz estimate

jf .z; u/� f .z; v/j � T .z/ku � vkRd ;

where T � 0; T .z/ 2 Lr.Z/, r D pq

p�q . Then the operator B is globally Lipschitz
continuous with Lipschitz constant kT kLr .Z/.

For later use we have to compute the strong (or Fréchet) derivative of F with
respect to u andW . A first step towards this result is to define this operator formally
and to prove its continuity properties. Define the exponents

p D .1=pR C 1=pW C 1=r/�1 ; a D pq

p � q
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and the multiplication space La.0; T; La.U;R
d // DW Mp;q . Now we will utilize the

liberty in the choice of r : For fixed exponents pR and pW we find

p D p.r/ !
�
1

pR
C 1

pW

��1
for r ! 1;

a D a.r/ ! CP;1.pR; pW / for r ! 1:

Therefore, we assume r to be sufficiently large such that a � r . This will suit the
analysis concerning the argument u. A similar reasoning implies a < pW for r large
enough (see [14, pp.31] for details). We will use this space in the following technical
lemma.

Lemma 3.1. The superposition operators

Lr.Œ0; T �; Lr.U;R
d // ! La.Œ0; T �; La.U;R

d //; u 7! ˚ 0.W u/

and

PW ! La.Œ0; T �; La.U;R
d //; W 7! ˚ 0.W u/

are Lipschitz continuous for a � r (a � pW ).

From now on we will assume that pW > a and r > a. A statement similar to the
above (yet without proof) can be found in [1, Rem. p. 105]. The next step is to define
the spaces

Mr;q WD L .Lr.Œ0; T �; Lr .U;R
d //; Lq.Œ0; T �; Lq.U;R

d ///

and

MpW ;q WD L .LpW .Œ0; T �; LpW .U;R
d�d //; Lq.Œ0; T �; Lq.U;Rd ///:

Corollary 3.1. The superposition operators

Lr.Œ0; T �; Lr .U;R
d // ! Mr;q ; u 7! .h 7! R˚ 0.Wu/Wh/

and

PW ! MpW ;q; W 7! . QW 7! R˚ 0.Wu/ QW u/

are Lipschitz continuous.

To conclude this section, we state a result about differentiability. Take the
parameter function W , the signal response function ˚ , and q; pW ; pR as before.
Then we obtain
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Theorem 3.6. The operator u 7! F .u/ as defined above is continuously
differentiable and its (Lipschitz continuous) derivative is given by

Fu W Lr.Œ0; T �; Lr .U;Rd // ! Mr;q;

Fu.Qu/ D R˚ 0.W Qu/W:

An analogous result holds for the other argument W in our nonlinear superpo-
sition operator: u is continuous on Œ0; T � � U by Theorem 3.1, so it is certainly an
L1-function.

Theorem 3.7. The superposition operatorW 7! F .Wu/ mapping between spaces
PW ! Lq.Œ0; T �; Lq.U;R

d // as defined above is continuously differentiable and
the (Lipschitz continuous) derivative is the respective one stated in Corollary 3.1.
The derivative is given by

PW ! MpW ;q; W 7! . QW 7! R˚ 0.Wu/ QW u/:

The continuity of F .R/ is trivial, sinceR 7! F .R/ is just a linear (and by Eq. (3.3)
continuous) map, which entails even continuous differentiability. So we have
ultimately shown that the operator on the right-hand side is partially continuously
differentiable, hence totally differentiable. The derivative is Lipschitz continuous in
each entry.

3.3.3 Solution of the Model PDE

Our model PDE (3.1) can be rephrased as an evolution equation by using the
definitions of the operators A and F .

Definition 3.3. u 2 W is a weak solution of (3.1), if

u0 C A .�; u/ D F .�; u/ in .Vq0/0; u.0/ D u0 2 G: (3.4)

This definition is made under the constraints pD D 1 and p�; pR; pW > 4q

and q 2 .n; n C "/. In order to prove existence and uniqueness of a solution we
will first fix the argument u in F to some arbitrary w 2 C .Œ0; T �IG/ and obtain
F .�;w.�// D f .�/ 2 .Vq0/0. The system now decouples for each component of u
and we even obtain a linear equation. So we restate the definition of a solution for
this simplified Cauchy problem as a function u 2 W which satisfies:

u0 C A .�; u/ D f in .Vq0/0; u.0/ D u0 2 G: (3.5)

Recent results on maximal parabolic regularity [2, 9] can be used to proof the
following statement, for a proof see [14, Thm.8.6.3].
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Theorem 3.8. There exists an Q" sufficiently small and depending on U;CP;1 and
CP;2 such that for any f 2 .Vq0/0 and q 2 .n; nC Q"/ there exists a unique solution
of the linear problem (3.5). This solution depends continuously on f and the initial
data u0, i.e.

kukW � C.kf k.Vq0 /0 C ku0kG/;
where the constant C depends on U;CP;1 and CP;2.

We can slightly extend the scope of the theorem above by the common trick of
exponential shifting and by reversing the time axis:

Remark 3.4. The preceding theorem also holds without the non-negativity con-
straint of � as long as � 2 L1 is pointwise bounded. Moreover, the time-reversed
equation

�u0 C A .�; u/ D f; u.T / D uT 2 G
has a unique solution under the assumptions of the previous theorem.

After treating the Cauchy problem with simplified right-hand side, we will
now address the original problem. This uniqueness result will mark the final
point of this section and will constitute the major building block for the anal-
ysis of the parameter-to-state map in the next section, since it ensures that the
parameter-to-state map is well defined. The admissible range of the parameters will
be P as before. We rephrase our original model equation (3.1) as a Cauchy problem

u 2 L2.Œ0; T �IV / W u0 C A .�; u/ D F .�; u/ in L2.Œ0; T �IV 0/; u.0/ D u0:
(3.6)

To establish existence and uniqueness for the nonlinear setting, we make use of
Banach’s fixed point theorem in C .Œ0; T �IL2.U;Rd //. Exploiting the continuous
embeddings W ,! C .Œ0; T �IG/ and G ,! L2.U;R

d / one can follow the ideas
of [7, pp. 500]. This leads to a solution in C .Œ0; T �IL2.U;Rd // for the nonlinear
equation. Finally, one bootstraps back to the regularity of W by using Theorem 3.8.
We summarize the key finding of this section on the solvability of our nonlinear
model equation:

Theorem 3.9. The nonlinear Cauchy problem as stated in (3.6) has a unique
solution.

3.4 The Parameter-to-State Map

In this section we will show the continuous differentiability of the parameter-to-state
map, see Sect. 3.4.1. Then in Sect. 3.4.2 we verify its Lipschitz continuity and the
uniform continuity of the derivative.
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3.4.1 Continuity and Differentiability of the Parameter-to-State
Map

In order to prove that the parameter-to-state map

D W P ! W ; .D; �;R;W / 7! u

is continuous and differentiable we will make use of its implicit definition by
application of the implicit function theorem. For this purpose, we introduce the
operator

C W P � W ! G � .Vq0/0

� D ..D; �;R;W /; u/ 7! .u.0/� u0; u
0 C A .�; u/� F .�; u//:

The point evaluation at 0 in the first term is well-defined due to Theorem 3.1, the
second component of C is well-defined by the assumptions on u;A ; and F . For
the next lemma we fix the first argument and show continuous differentiability.

Lemma 3.2. The map S D C .�0; �/ W W ! G � .Vq0/0 is continuously
differentiable and the derivative at any y 2 W is an isomorphism from W to
G � .Vq0/0.

Proof. For the first component of the image of S we see that the evaluation
map u 7! u.0/ is a linear map. It is furthermore continuous, since ku.0/kG �
kukC.0;T IG/ � CembedkukW :

For the second component we consider each summand separately. By The-
orem 3.3 we know that the operator d

dt C A is in C1. The third summand
u 7! F .�; u/ D R � ˚.W u/ has been discussed in the conclusions of Sect. 3.3.2,
where we proved differentiability of the superposition operator with respect to u
and the Lipschitz continuity of the derivative. So we may deduce that S is a
continuously differentiable map. For the derivative S 0 in the direction of some
h 2 W , we obtain

S 0.y/h D .h.0/; h0 C A .�; h/ � @uF .�; y/h/:

Define Q� D � � @uF .�; y/ and denote the resulting linear differential operator
by QA . By the (componentwise) boundedness of @uF it is clear that Q� satisfies the
requirements of Sect. 3.3.3, see Remark 3.4. Therefore we may apply the findings
of that subsection to S 0.u/: For arbitrary .v0; f / 2 G � V 0 there exists a solution
h for .h.0/; h0 C A .�; h/ � @uF .�; y/h/ D .v0; f /. This ensures surjectivity of
S 0.y/. The uniqueness of this solution ensures injectivity ofS 0.y/. The continuous
dependence of the solution on the right-hand side, see Theorem 3.8 and Remark 3.4,
is equivalent to the continuity of the solution map .S 0.y//�1 W .v0; f / 7! h. So we
may conclude that for any y 2 W , S 0.y/ is an isomorphism from W toG�V 0. ut
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Lemma 3.3. The map P D C .�; u/ W P ! G � .Vq0/0 is continuously
differentiable.

Proof. Following the arguments of Sect. 3.3.1 we see that .D; �/ 7! A is
continuously differentiable. By the findings of Sect. 3.3.2 we obtain the continuous
differentiability of the operator .R;W / 7! F . Hence, continuous differentiability
of all partial derivatives is confirmed and we may conclude that P is totally
continuously differentiable. ut
We obtain the following explicit expressions of the partial derivatives

Cu.�0; u/.h/ D .h.0/; h0 C A .�0; h/ �R0˚ 0.W0u/W0h/;

C�.�0; u/.�1/ D .0; .�1u � r � .D1ru/�R1˚.W0u/�R0˚ 0.W0u/W1u//:

The last two lemmata enable us to state the following application of the implicit
function theorem in the formulation of [14, Thms. 8.7.8.,8.7.9].

Theorem 3.10. The parameter-to-state map D W P ! W ; .D; �;R;W / 7! u
of (3.4) is continuously differentiable and the derivative is given by

D 0.�0/.�1/ D � .Cu.�0; u//
�1 ı C�.�0; u/.�1/ DW v:

Hence, v is a solution of the differential equation: v.0/ D 0,

v0 C A .�0; v/� R0˚
0.W0u/W0v D �A .�1; u/CR1˚.W0u/CR0˚

0.W0u/W1u;

where u D u.�0/ D D.�0/.

Proof. The existence proof from Theorem 3.9 ensures the existence of a root of the
map C . The last two lemmata supply the other parts of the conditions in the implicit
function theorem. ut
The underlying implicit function theorem crucially hinges on the completeness
of the space W and the continuity (differentiability) of the operator A to utilize
Banach’s fixed point theorem. This leaves no alternative to the definition pD D 1,
at least not, when one relies on the implicit function theorem.

3.4.2 Properties of the Derivative of the Parameter-to-State
Map

The last result, namely the explicit formula for the derivative of the
parameter-to-state map at some �0, enables us to investigate further interesting
and useful properties of D 0. Our inspection will be divided into several lemmata,
which then allow us to show the (local) Lipschitz continuity of the operators D and
D 0 on bounded sets.
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Lemma 3.4. The map D 0.�/ W P ! L .P;W / is bounded on P .

Proof. Denote u D D.�0/. Let Q� D � � R0˚
0.W0u/W0 and Q� D .D0; Q�;R0;W0/,

and r.�0/.�1/ D �A .�1; u/CR1˚.W0u/CR0˚ 0.W0u/W1u. Let �1 be an arbitrary
admissible displacement vector. By Remark 3.4, D 0.�0/.�1/ is the solution of the
Cauchy problem v.0/ D 0; v0 C A . Q�; v/ D r.�0/.�1/. By the continuous depen-
dence of the PDE solution on the right-hand side (see Sect. 3.3.3, Theorem 3.8), we
have the linear stability estimate

kvkVq � kvkW � Ckr.�0/.�1/k.Vq0 /0 :

An analogous estimate holds for the solution of our model PDE (Eq. (3.4)):

kukW � C.kR0˚.W0u/kV 0 C ku0kG/
� C.kR0k.Vq0 /0 C ku0kG/ � C.kR0kPR C ku0kG/ � C.k�0kP C ku0kG/:

The last estimate implies

kŒr.�0/�.�1/k.Vq0 /0 � kA .�1; u/k C kR1˚.W0u/k C kR0˚ 0.W0u/W1uk
� CkukW k�1kP C C˚kR1kP C kR0kPR

kW1kPW
kukW

� .C.k�0kP C ku0kG C 1/C Ck�0kP.k�0kP C ku0kG//k�1kP ;

i.e., r.�0/ is bounded. So

kvkW
k�1kP � kŒr.�0/�.�1/k.Vq0 /0

k�1kP � C..k�0kP C ku0kG/.1C k�0kP/C 1/:

This implies the boundedness of the operator D 0:kD 0.�0/kL .P;W / � C: ut
Using the mean value theorem (compare [19, Satz III.5.4 b)]) on D we obtain

Lemma 3.5. The map D W P ! W is Lipschitz continuous on convex, bounded
sets.

Proof. By the mean value theorem we have for some �0; �2 2 P , and any �� D
��0 C .1 � �/�2, � 2 .0; 1/

kD.�0/ � D.�2/kW � sup
�2.0;1/

.kD 0.�� /kL .P;W //k�0 � �2kP :

The supremum in the estimate exists and is bounded uniformly by the preceding
lemma. ut
We would like to establish a similar result for D 0. However D involves the inversion
of an operator and we will only obtain local Lipschitz continuity. We consider the
superposition operators C� and Cu separately.
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Lemma 3.6. The operatorCu W P�W ! L .W ; G�.Vq0 /0/ defined by .�0; u/ 7!
.h 7! .h.0/; h0 C A .�0; h/ �R0˚ 0.W0u/W0h// is Lipschitz continuous.

Proof. The first component h 7! h.0/ is independent of the argument .�0; u/ and
therefore Lipschitz continuous. Considering the second component we start with the
summand .�0; u/ 7! .h 7! h0 C A .�0; h//. This is a bounded linear operator and
hence globally Lipschitz. For the last summand .�0; u/ 7! .h 7! R0˚

0.W0u/W0h/

we refer to Corollary 3.1. For .�0; u/; .�2; v/, where �0; �2 2 P we get the estimate

kŒR2˚ 0.W2v/W2 � R0˚
0.W0u/W0�hk.Vq0 /0

� C.kR0 �R2kpR C .kW2 �W0kpW C ku2 � u0kW //khkLr .0;T;Lr .UT �;Rd //:

The constant C in the last estimate depends on the bound of the considered domain
and on sup.˚ 0/. ut
A helpful technical lemma is the following:

Lemma 3.7. On the domain P � W the map C �1
u is bounded in dependence

of CP;1; CP;2, the domains U and Œ0; T �.

Proof. This follows by maximal regularity results stated in [14, Lemma 4.2.4, Thm.
8.6.3], which are based on the results of [9] and [2]. ut

Using the fact that operator inversion is locally Lipschitz continuous, we can
deduce the following

Corollary 3.2. The map .Cu.�; �//�1 W P � W ! L .G � .Vq0/0;W / is locally
Lipschitz continuous with uniform Lipschitz constant .C3:7/2C3:6, where C3:6 and
C3:7 denote the respective bounds of Lemmas 3.6 and 3.7.

Proof. We take for .�0; u/ the bounded neighborhood

A D f.�; v/ W k.�0; u/� .�2; v/kP�W < C3:7.2C3:6/
�1g:

Then on A it holds

kCu.�0; u/� Cu.�2; v/kL.W ;.Vq0 /0/ � C3:6


C3:7.2C3:6/

�1� D .1=2/C3:7:

For two invertible operators x; y 2 L .X; Y / with kx � yk � 1=2C , it holds
kx�1 � y�1k � C2kx � yk, see [14, Cor. 8.7.4] (based on [3, Ch. 50]). Hence, we
may conclude

kC�1
u .�0; u/� C�1

u .�2; v/kL..Vq0 /0;W / � .C3:7/
2kCu.�0; u/� Cu.�2; v/kL.W ;.Vq0 /0/

� .C3:7/
2C3:6k.�0; u/� .�2; v/kP�W :

This establishes the claim. ut
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Lemma 3.8. The operator

C� W P � W ! L .P; G � .Vq0/0/ defined as

C�.p; u/.�1/ D .0;A .�1; u/� R1˚.W0u/� R0˚
0.W0u/W1u/

is Lipschitz continuous on bounded sets with a Lipschitz constant depending on the
diameter of the considered set and on ˚ 0.

Proof. The first component of C� , i.e. the point evaluation, is clear. For the second
component take u; v 2 W and �0; �2 2 P , and the displacement vector �1.
Consider

kŒA .�1; u/� R1˚.W0u/� � ŒA .�1; v/� R1˚.W0v/�k.Vq0 /0

� k�1kPku � vkW C k�1kC˚.kW0 �W2kpW C ku � vkW /:

Similar to the proof of Lemma 3.6 we invoke again the partial Lipschitz continuity
of partial derivatives of F (as in Corollary 3.1) and obtain

kR0˚ 0.W0u/W1u �R2˚ 0.W2v/W1vk.Vq0 /0

� kR0˚ 0.W0u/W1u �R0˚ 0.W2u/W1uk.Vq0 /0 C kR0˚ 0.W2u/W1u �R0˚ 0.W2u/W1vk.Vq0 /0

C kR0˚ 0.W2u/W1v �R0˚ 0.W2v/W1vk.Vq0 /0 C kR0˚ 0.W2v/W1v � R2˚
0.W2v/W1vk.Vq0 /0

� k�0kPk�1kP
�
L˚ 0

h
kW0 �W2kPkukLr .U�Œ0;T �IRd /

i
kukW C sup.˚ 0/ku � vkW

	

C k�1kPkvkW
�
k�0kPL˚ 0

h
kW2kPku � vkLr .U�Œ0;T �IRd /

i
C k�0 � �2kP sup.˚ 0/

	

� C.kukW ; kvkW ; k�0kP /k�1kP Œku � vkW C k�0 � �2kP � :

From all these estimates we obtain Lipschitz continuity of C� on bounded sets. ut
Lemma 3.8 and Corollary 3.2 lead to a local estimate:

Theorem 3.11. D 0 is locally Lipschitz continuous with uniform Lipschitz constant.

Proof. Take �0; �1; �2 as in the above proofs. Then for k�0��2k sufficiently small,
by Lipschitz continuity k.Cu/

�1.�0;D.�0// � .Cu/
�1.�2;D.�2//k becomes small

enough such that we may apply Corollary 3.2. Lemma 3.8 implies the estimate

kŒD 0.�0/� D 0.�2/�kL.P;W /

� k .Cu.�0;D.�0///
�1 .C�.�0;D.�0///� .Cu.�2;D.�2///

�1 .C�.�0;D.�0/// k
C k .Cu.�2;D.�2///

�1 .C�.�0;D.�0// � .Cu.�2;D.�2///
�1 .C�.�2;D.�2/// k

� k .Cu.�0;D.�0///
�1 � .Cu.�2;D.�2///

�1 .C�.�0;D.�0/// k
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C k .Cu.�2;D.�2///
�1 .C�.�0;D.�0/// � .C�.�2;D.�2/// k

� C.k�0 � �2kP C kD.�0/� D.�2/kW /kC�.�0;D.�0//kL.P;.Vq0 /0/

C C.k�0 � �2kP C kD.�0/ � D.�2/kW /:

The Lipschitz continuity of D yields the claim. ut
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Chapter 4
Piecewise Tensor Product Wavelet Bases
by Extensions and Approximation Rates

Nabi G. Chegini, Stephan Dahlke, Ulrich Friedrich, and Rob Stevenson

Abstract In this chapter, we present some of the major results that have been
achieved in the context of the DFG-SPP project “Adaptive Wavelet Frame Methods
for Operator Equations: Sparse Grids, Vector-Valued Spaces and Applications
to Nonlinear Inverse Problems”. This project has been concerned with (non-
linear) elliptic and parabolic operator equations on nontrivial domains as well
as with related inverse parameter identification problems. One crucial step has
been the design of an efficient forward solver. We employed a spatially adaptive
wavelet Rothe scheme. The resulting elliptic subproblems have been solved by
adaptive wavelet Galerkin schemes based on generalized tensor wavelets that
realize dimension-independent approximation rates. In this chapter, we present the
construction of these new tensor bases and discuss some numerical experiments.

4.1 Introduction

The aim of the project “Adaptive Wavelet Frame Methods for Operator Equations”
has been the development of optimal convergent adaptive wavelet schemes for
elliptic and parabolic operator equations on nontrivial domains. Moreover, we
have been concerned with the efficient treatment of related parameter identification
problems. For the design of the efficient forward solver, we used variants of the
recently developed adaptive wavelet schemes for elliptic operator equations, see.,
e.g., [4,12]. (This list is clearly not complete). As usually, the construction of a suit-
able wavelet basis on the underlying domain is a nontrivial bottleneck. We attacked
this problem by generalizing the construction of tensor wavelets on the hypercube
to general domains. The resulting fully adaptive solver for the elliptic forward
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problem realizes dimension-independent convergence rates. For the treatment of the
related inverse parameter identification problems we used regularization techniques.
In particular, we analyzed and developed Tikhonov-regularization schemes with
sparsity constraints for such nonlinear inverse problems. As a model problem,
we studied the parameter identification problem for a parabolic reaction-diffusion
system which describes the gene concentration in embryos at an early state of
development (embryogenesis). In this chapter, we will only be concerned with
the analysis of the forward problem, and we will concentrate on the construction
of the new tensor wavelets and their approximation properties. For the analysis
of the inverse problem, in particular concerning the regularity of the associated
control-to-state map, we refer to Chap. 3 of this book. Numerical examples of the
overall, fully adaptive wavelet scheme can be found in [5].

The approach we will present has partially been inspired by the work of
Z. Ciesielski and T. Figiel [3] and of W. Dahmen and R. Schneider [6] who
constructed a basis for a range of Sobolev spaces on a domain˝ from corresponding
bases on subdomains. The principle idea can be described as follows. Let ˝ D
[N
kD0˝k 
 R

n be a non-overlapping domain decomposition. By the use of
extension operators, we will construct isomorphisms from the Cartesian product of
Sobolev spaces on the subdomains, which incorporate suitable boundary conditions,
to Sobolev spaces on ˝ . By applying such an isomorphism to the union of Riesz
bases for the Sobolev spaces on the subdomains, the result is a Riesz basis for the
Sobolev space on ˝ .

Since the approach can be applied recursively, to understand the construction of
such an isomorphism, it is sufficient to consider the case of having two subdomains.
For i 2 f1; 2g, let Ri be the restriction of functions on ˝ to ˝i , let �2 be the
extension by zero of functions on ˝2 to functions on ˝ , and let E1 be some
extension of functions on ˝1 to functions on ˝ which, for some m 2 N0, is

bounded from Hm.˝1/ to the target space Hm.˝/. Then

�
R1

R2.Id � E1R1/

�

W
Hm.˝/ ! Hm.˝1/�Hm

0;@˝1\@˝2.˝2/ is boundedly invertible with inverse ŒE1 �2�.
(Hm

0;@˝1\@˝2.˝2/ is the space of Hm.˝2/ functions that vanish up to order m � 1

at @˝1 \ @˝2). Consequently, if 1 is a Riesz basis for Hm.˝1/ and 2 is a Riesz
basis forHm

0;@˝1\@˝2.˝2/, then E11 [ �22 is a Riesz basis for Hm.˝/.
Our main interest in the construction of a basis from bases on subdomains lies

in the use of piecewise tensor product approximation. On the hypercube � WD
.0; 1/n one can construct a basis for the Sobolev space Hm.�/ (or for a subspace
incorporating Dirichlet boundary conditions) by taking an n-fold tensor product of
a collection of univariate functions that forms a Riesz basis for L2.0; 1/ as well
as, properly scaled, for Hm.0; 1/. Thinking of a univariate wavelet basis of order
d > m, the advantage of this approach is that the rate of nonlinear best M -term
approximation of a sufficiently smooth function u is d � m, compared to d�m

n

for standard best M -term isotropic (wavelet) approximation of order d on �. The
multiplication of the one-dimensional rate d � m by the factor 1

n
is commonly
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referred to as the curse of dimensionality. However, when it comes to practical
applications one should keep in mind that also the constants depend on n – even
exponentially in the worst case. This is an intrinsic problem that also holds for
other discretizations, e.g., by sparse grids. Nonetheless, tensor wavelets are a tool
by which, for moderate space dimensions, the curse of dimensionality is at least
diminished.

In view of these results on �, we consider a domain ˝ whose closure is the
union of subdomains ˛k C � for some ˛k 2 Z

n, or a domain˝ that is a parametric
image of such a domain under a piecewise sufficiently smooth, globally Cm�1
diffeomorphism �, being a homeomorphism when m D 1. We equip Hm.˝/ (or
a subspace incorporating Dirichlet boundary conditions) with a Riesz basis that
is constructed using extension operators as discussed before from tensor product
wavelet bases of order d on the subdomains, or from push-forwards of such
bases. Many topological settings are covered by our approach, i.e., we consider
homogeneous Dirichlet boundary conditions on arbitrary Lipschitz domains in two
dimensions, see also Example 4.1 below. Our restriction to decompositions of ˝
into subdomains from a topological Cartesian partition will allow us to rely on
univariate extensions. Indeed, in order to end up with locally supported wavelets,
we will apply local, scale-dependent extension operators – i.e., only wavelets that
are adapted to the boundary conditions on the interfaces will be extended. We will
show the best possible approximation rate d �m for any u that restricted to any of
these subdomains has a pull-back that belongs to a weighted Sobolev space.

4.2 Approximation by Tensor Product Wavelets
on the Hypercube

We will study non-overlapping domain decompositions, where the subdomains are
either unit n-cubes or smooth images of those. Sobolev spaces on these cubes, that
appear with the construction of a Riesz basis for a Sobolev space on the domain as a
whole, will be equipped with tensor product wavelet bases. From [7], we recall the
construction of those bases.

For t 2 Œ0;1/n.N0C 1
2
/ and � D .�`; �r / 2 f0; : : : ; btC 1

2
cg2, with I WD .0; 1/,

let

Ht
� .I / WD fv 2 Ht.I / W v.0/ D � � � D v.�`�1/.0/ D 0 D v.1/ D � � � D v.�r�1/.1/g:

With t and � as above, and for Qt 2 Œ0;1/ n .N0 C 1
2
/ and Q� D . Q�`; Q�r/ 2

f0; : : : ; bQt C 1
2
cg2, we assume that

� ; Q� WD ˚
 
.� ; Q� /
� W � 2 r� ; Q�

� 
 Ht
� .I /; Q� ; Q� WD f Q .� ; Q� /� W � 2 r� ; Q� g 
 H

Qt
Q� .I /
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are biorthogonal Riesz bases forL2.I /, and, by rescaling, forHt
� .I / andH Qt

Q� .I /,
respectively. Furthermore, denoting by j�j 2 N0 the level of �, we assume that for
some

N 3 d > t;

W1. jh Q .� ; Q� /� ; uiL2.I /j . 2�j�jd kukHd .supp Q .� ;Q� // (u 2 Hd.I /\Ht
� .I /),

W2. � WD sup�2r� ;Q� 2
j�j max.diam supp Q .� ; Q� /� ; diam supp .� ; Q� /� /

Å inf�2r� ;Q� 2j�j max.diam supp Q .� ; Q� /� ; diam supp .� ; Q� /� /;

W3. sup
j;k2N0

#fj�j D j W Œk2�j ; .kC1/2�j �\.supp Q .� ; Q� /� [supp .� ; Q� /� / ¤ ;g < 1.

These conditions (as well as (W4) – (W7) in Sect. 4.4) are satisfied by following the
biorthogonal wavelet constructions on the interval outlined in [8, 11].

It holds that L2.�/ D ˝n
iD1L2.I /. Further with

� D .� i D ..�i /`; .�i /r //1�i�n 2 .f0; : : : ; bt C 1
2
cg2/n;

we define

Ht
� .�/ WD Ht

� 1
.I /˝L2.I /˝� � �˝L2.I /\ � � � \L2.I /˝� � �˝L2.I /˝Ht

� n
.I /;

which is the space of Ht.�/-functions whose normal derivatives of up to orders
.�i /` and .�i /r vanish at the facets I i�1 � f0g � I n�i and I i�1 � f1g � I n�i ,
respectively .1 � i � n/ (the proof of this fact given in [7] for t 2 N0 can be
generalized to t 2 Œ0;1/ n .N0 C 1

2
/).

The tensor product wavelet collection

�� ; Q� WD ˝n
iD1� i ; Q� i D ˚

 
.� ; Q� /
� WD ˝n

iD1 
.� i ; Q� i /
�i

W � 2 r � ; Q� WD
nY

iD1
r� i ; Q� i

�
;

and its renormalized version
˚�Pn

iD1 4t j�i j
��1=2

 
.� ; Q� /
� W � 2 r� ; Q�

�
are Riesz bases

for L2.�/ and Ht
� .�/, respectively. The collection that is dual to �� ; Q� reads as

Q�� ; Q� WD ˝n
iD1 Q� i ; Q� i D ˚ Q .� ; Q� /

� WD ˝n
iD1 Q .� i ; Q� i /�i

W � 2 r � ; Q�
�
;

and its renormalized version
˚�Pn

iD1 4j�i j��Qt=2 Q .� ; Q� /
� W � 2 r � ; Q�

�
is a Riesz basis

forH Qt
Q� .�/.

For � 2 r � ; Q� , we set j�j WD .j�1j; : : : ; j�nj/.
For � � 0, the weighted Sobolev space H d

� .I / is defined as the space of all
measurable functions u on I for which the norm
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kukH d
� .I / WD

2

4
dX

jD0

Z

I
jx�.1 � x/�u.j /.x/j2 dx

3

5

1
2

is finite. For m 2 f0; : : : ; btcg, we will consider the weighted Sobolev space

H d
m;� .�/ WD \n

pD1 ˝n
iD1 H d

��ıip min.m;�/.I /;

equipped with a squared norm that is the sum over p D 1; : : : ; n of the squared
norms on ˝n

iD1H d
��ıip min.m;�/.I /.

4.3 Construction of Riesz Bases by Extension

Let f�0; : : : ;�N g be a set of hypercubes from f� C � W � 2 Z
ng, and let Ő

be a (reference) domain (i.e., open and connected) in R
n with [N

kD0�k 
 Ő 

.[N

kD0�k/
int, and such that @ Ő is the union of (closed) facets of the �k’s. The case

Ő ¨ .[N
kD0�k/

int corresponds to the situation that Ő has one or more cracks. We
will describe a construction of Riesz bases for Sobolev spaces on Ő from Riesz
bases for corresponding Sobolev spaces on the subdomains �k using extension
operators. We start with giving sufficient conditions (D1)–(D5) such that suitable
extension operators exist.

We assume that there exists a sequence .f Ő .q/
k W q � k � N g/0�q�N of sets of

polytopes, such that Ő .0/
k D �k and where each next term in the sequence is created

from its predecessor by joining two of its polytopes. More precisely, we assume that
for any 1 � q � N , there exists a q � Nk D Nk.q/ � N and q � 1 � k1 D k

.q/
1 ¤

k2 D k
.q/
2 � N such that

D1. Ő .q/Nk D
� Ő .q�1/

k1
[ Ő .q�1/

k2
n@ Ő 	int

is connected, and the interface J WD Ő .q/Nk n
. Ő .q�1/

k1
[ Ő .q�1/

k2
/ is part of a hyperplane,

D2. f Ő .q/
k W q � k � N; k ¤ Nkg D ˚ Ő .q�1/

k W q � 1 � k � N; k ¤ fk1; k2g
�
,

D3. Ő .N /
N D Ő .

For some

t 2 Œ0;1/ n .N0 C 1
2
/;

to each of the closed facets of all the hypercubes �k , we associate a number in
f0; : : : ; btC 1

2
cg indicating the order of the Dirichlet boundary condition on that facet

(where a Dirichlet boundary condition of order 0means no boundary condition). On
facets on the boundary of Ő , this number can be chosen at one’s convenience (it is
dictated by the boundary conditions of the boundary value problem that one wants
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to solve on Ő ), and, as will follow from the conditions imposed below, on the other
facets it should be either 0 or bt C 1

2
c.

By construction, each facet of any Ő .q/
k is a union of some facets of the �k0’s, that

will be referred to as subfacets. Letting each of these subfacets inherit the Dirichlet
boundary conditions imposed on the �k0 ’s, we define

ı
H
t
. Ő .q/

k /;

and so for k D q D N in particular
ı
H
t
. Ő / D ı

H
t
. Ő .N /

N /, to be the closure in

Ht. Ő .q/
k / of the smooth functions on Ő .q/

k that satisfy these boundary conditions.
Note that for 0 � k � N , for some � .k/ 2 .f0; : : : ; bt C 1

2
cg2/n,

ı
H
t
. Ő .0/

k / D ı
H
t
.�k/ D Ht

� .k/.�k/:

The boundary conditions on the hypercubes that determine the spaces
ı
H
t
. Ő .q/

k /,
and the order in which polytopes are joined should be chosen such that

D4. on the Ő .q�1/
k1

and Ő .q�1/
k2

sides of J , the boundary conditions are of order 0

and bt C 1
2
c, respectively,

and, w.l.o.g. assuming that J D f0g � MJ and .0; 1/ � MJ 
 ˝
.q�1/
k1

,

D5. for any function in
ı
H
t
. Ő .q�1/

k1
/ that vanishes near f0; 1g � MJ , its reflection in

f0g�R
n�1 (extended with zero, and then restricted to Ő .q�1/

k2
) is in

ı
H

t
. Ő .q�1/

k2
/.

The condition (D5) is a compatibility condition on the subfacets adjacent to the
interface, see Fig. 4.1 for an illustration.

Given 1 � q � N , for i 2 f1; 2g, let R.q/i be the restriction of functions on
Ő .q/Nk to Ő .q�1/

ki
, and let �.q/2 be the extension of functions on Ő .q�1/

k2
to Ő .q/Nk by

zero. Under the conditions (D1)–(D5), the extensions E.q/
1 of functions on Ő .q�1/

k1

to Ő .q/Nk can be constructed (essentially) as tensor products of univariate extensions
with identity operators in the other Cartesian directions. In the remaining part of this

Fig. 4.1 Two illustrations with (D1)–(D5). The fat arrow indicates the action of the extension E.q/
1
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chapter Œ�; ��s;2 denotes the real interpolation space between two Hilbert spaces. For
further information we refer to [1].

Proposition 4.1 ([2, Prop. 4.4.]). Let G1 be an extension operator of functions on
.0; 1/ to functions on .�1; 1/ such that

G1 2 B.L2.0; 1/; L2.�1; 1//; G1 2 B.Ht .0; 1/;H t

.btC 1
2 c;0/.�1; 1//:

LetE.q/
1 be defined byR.q/2 E

.q/
1 being the composition of the restriction to .0; 1/� MJ ,

followed by an application of

G1 ˝ Id ˝ � � � ˝ Id;

followed by an extension by 0 to Ő .q�1/
k2

n .�1; 0/ � MJ . Then for s 2 Œ0; 1�

E.q/ WD ŒE
.q/
1 �

.q/
2
� 2 B�

2Y

iD1
ŒL2. Ő .q�1/

ki
/;

ı
H
t
. Ő .q�1/

ki
/�s;2; ŒL2. Ő .q/Nk /;

ı
H
t
. Ő .q/Nk /�s;2

�

(4.1)

is boundedly invertible.

A Riesz basis on Ő can now be constructed as follows.

Corollary 4.1 ([2, Cor. 4.6]). For 0 � k � N , let � k be a Riesz basis for L2.�k/,
that renormalized in Ht.�k/, is a Riesz basis for

ı
H
t
.�k/ D Ht

� .k/.�/. Let E be

the composition for q D 1; : : : ; N of the mappings E.q/ defined in (4.1), trivially
extended with identity operators in coordinates k 2 fq � 1; : : : ; N g n fk.q/1 ; k.q/2 g.
Then it holds that

E 2 B
� nY

kD0
ŒL2.�k/;

ı
H
t
.�k/�s;2; ŒL2. Ő /; ı

H
t
. Ő /�s;2

	
(4.2)

is boundedly invertible. Further, for s 2 Œ0; 1�, the collection E.
QN
kD0 � k/,

normalized in the corresponding norm, is a Riesz basis for ŒL2. Ő /; ı
H
t
. Ő /�s;2.

For the dual basis E��.
QN
kD0 Q� k/ a similar result holds. In particular, for s 2

Œ0; 1�, it is, properly scaled, a Riesz basis for ŒL2. Ő /; ı
H

Qt
. Ő /�s;2. We refer to [2] for

a detailed presentation.
The construction of Riesz bases on the reference domain Ő extends to more

general domains in a standard fashion. Let ˝ be the image of Ő under a
homeomorphism �. We define the pull-back �� by ��w D w ı �, and so its inverse
���, known as the push-forward, satisfies ���v D v ı ��1.

Proposition 4.2 ([2, Prop. 4.11.]). Let �� be boundedly invertible as a mapping
both from L2.˝/ to L2. Ő / and from Ht.˝/ to Ht. Ő /. Setting

ı
H
t
.˝/ WD

=���j ı
H

t
. Ő /, we have that ��� 2 B.ŒL2. Ő /; ı

H
t
. Ő /�s;2; ŒL2.˝/;

ı
H
t
.˝/�s;2/ is
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Fig. 4.2 Example extension
directions and compatible
boundary conditions

boundedly invertible .s 2 Œ0; 1�/. So if � is a Riesz basis for L2. Ő / and, properly
scaled, for

ı
H
t
. Ő /, then for s 2 Œ0; 1�, ���� is, properly scaled, a Riesz basis for

ŒL2.˝/;
ı
H
t
.˝/�s;2. If Q� is the collection dual to � , then jdetD��1.�/j��� Q� is the

collection dual to ���� .

We conclude this section by discussing some of the topological aspects of the
construction.

Example 4.1. Consider a T-shaped domain decomposed into four subcubes as
depicted in Fig. 4.2. In such a setting it is not possible to arrange the subdomains in a
linear fashion. Further, when constructing a basis on such a domain, the ordering and
directions of the extension operators are not unique. However, both aspects influence
the boundary conditions that may be imposed. When proceeding as depicted, in the
first step wavelets on Ő

1 are extended to Ő
2. Then the resulting basis is extended

to Ő
3. Finally wavelets on Ő

4 are extended along the bottom interface. This set of
extensions and its ordering is compatible with all boundary conditions that satisfy
the restrictions depicted in Fig. 4.2, e.g., with homogeneous Dirichlet boundary
conditions. In the second step of the construction only tensor wavelets on Ő

2 are
extended. Consequently interchanging the ordering of the first two extensions does
not change the resulting basis.

4.4 Approximation by – Piecewise – Tensor Product Wavelets

In the setting of Corollary 4.1 we select the bases on the subdomains �k D �C˛k ,
˛k 2 Z

n, to be �� .k/; Q� .k/.� � ˛k/, Q�� .k/; Q� .k/.� � ˛k/, as constructed in Sect. 4.2.
In this setting, for m 2 f0; : : : ; btcg we study the approximation of functions u 2ı
H
m
.˝/ WD ŒL2.˝/;

ı
H
t
.˝/�m=t;2, that also satisfy

u 2 ���.
NY

kD0
H d
m;� .�k// WD fv W ˝ ! R W v ı � 2

NY

kD0
H d
m;� .�k/g; (4.3)

by ���E
�QN

kD0 �� .k/; Q� .k/.� � ˛k/
�

in the Hm.˝/-norm. Since, as is assumed in

Proposition 4.2, �� 2 B.
ı
H

m
.˝/;

ı
H
m
. Ő // is boundedly invertible, it is sufficient

to study this issue for the case that � D Id and so ˝ D Ő .
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We will apply extension operators E.q/
1 that are built from univariate extension

operators. The latter will be chosen such that the resulting primal and dual wavelets
on Ő , restricted to each �k 
 Ő , are tensor products of collections of univariate
functions. We make the following additional assumptions on the univariate wavelets.
For � D .�`; �r / 2 f0; : : : ; bt C 1

2
cg2, Q� D . Q�`; Q�r/ 2 f0; : : : ; bQt C 1

2
cg2, and with

0 WD .0; 0/,

W4. V
.� /
j WD spanf .� ; Q� /� W � 2 r� ; Q� ; j�j � j g is independent of Q� , and V .� /

j D
V
.0/
j \Ht

� .I /,

W5. r� ; Q� is the disjoint union of r.`/

�`;Q�` , r.I /, r.r/

�r ;Q�r such that

i. sup
�2r.`/

�`;Q�`
; x2supp 

.� ;Q� /

�

2j�jjxj . �, sup
�2r.r/

�r ;Q�r
; x2supp 

.� ;Q� /

�

2j�jj1 � xj . �,

ii. For � 2 r.I /,  .� ; Q� /� D  
.0;0/

� , Q .� ; Q� /� D Q .0;0/� , and the extensions of  .0;0/�

and Q .0;0/� by zero are in Ht.R/ andH Qt .R/, respectively,

W6.

8
<̂

:̂

spanf .0;0/� .1 � �/ W � 2 r.I /; j�j D j g D spanf .0;0/� W � 2 r.I /; j�j D j g;
spanf .�`;�r /;.Q�`;Q�r /� .1 � �/ W � 2 r.`/

�`;Q�` ; j�j D j g D
spanf .�r ;�`/;.Q�r ;Q�`/� W � 2 r.r/

�r ;Q�r ; j�j D j g;

W7.

(
 
.� ; Q� /
� .2l �/ 2 spanf .� ; Q� /� W � 2 r.`/

�`;Q�`g .l 2 N0; � 2 r.`/

�`; Q�` /;
 
.0;0/

� .2l �/ 2 spanf .0;0/� W � 2 r.I /g .l 2 N0; � 2 r.I //:

In the setting of Proposition 4.1 we choose the univariate extension operator to
be a Hestenes extension [6, 9, 10], that is,

MG1v.�x/ D
LX

lD0
�l .�v/.ˇlx/ .v 2 L2.I /; x 2 I /; (4.4)

(and, being an extension, MG1v.x/ D v.x/ for x 2 I ), where �l 2 R, ˇl > 0, and
� W Œ0;1/ ! Œ0;1/ is some smooth cut-off function with � � 1 in a neighborhood
of 0, and supp � 
 Œ0;minl .ˇl ; ˇ�1

l /�.

With such an extension operator at hand the obvious approach is to define E.q/
1

according to Proposition 4.1 with G1 D MG1. A problem with the choice G1 D MG1 is
that generally the desirable property diam.suppG1u/ . diam.supp u/ is not implied.
Indeed, think of the application of a Hestenes extension to a u with a small support
that is not located near the interface.

To solve this and the corresponding problem for the adjoint extension, following
[6] we will apply our construction using the modified, scale-dependent univariate
extension operator

G1 W u 7!
X

�2r.`/
0;0

hu; Q .0;0/� iL2.I /
MG1 .0;0/� C

X

�2r.I /[r.r/
0;0

hu; Q .0;0/� iL2.I /�1 
.0;0/

� :

(4.5)
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We focus on univariate extension operators with ˇl D 2l . This, together
with (W7) ensures that the extended wavelets are locally (weighted sums of)
univariate wavelets. Consequently most properties, like the locality on the primal
and dual side in the sense of (W2), and (W3), as well as piecewise Sobolev
smoothness are inherited by the extended wavelets. Further, by the symmetry
assumption (W6), the extended part of a wavelet belongs to the span of boundary
adapted wavelets. Therefore, together with (W4), we derive the technically useful
property that extended wavelets G1 

.� ; Q� /
� belong piecewise to spaces V .0/

j with
additionally j � j�j C 2L. This property, together with the locality of the primal
and dual wavelets, is key for our central approximation result in Theorem 4.1.

Proposition 4.3 ([2, Prop. 5.2]). Assuming � to be sufficiently small, the scale-
dependent extension G1 from (4.5) satisfies, for � 2 f0; : : : ; bt C 1

2
cg2, Q� 2

f0; : : : ; bQt C 1
2
cg2

G1 
.� ; Q� /
� D

(
�1 

.� ; Q� /
� when � 2 r.I / [ r.r/

�r ;Q�r ;MG1 .� ; Q� /� when � 2 r.`/

�`;Q�` :
(4.6)

Assuming, additionally, MG1 to be a Hestenes extension with ˇl D 2l , the resulting
adjoint extension G2 WD .Id � �1G�

1 /�2 satisfies

G2. Q .� ; Q� /� .1C �// D
(
�2. Q .� ; Q� /� .1C �// when � 2 r.I / [ r.`/

�`;Q�` ;MG2. Q .� ; Q� /� .1C �// when � 2 r.r/

�r ;Q�r :
(4.7)

We have G1 2 B.L2.0; 1/; L2.�1; 1//, G1 2 B.Ht .0; 1/;H t.�1; 1//, and further
G�
1 2 B.H Qt .�1; 1/;H Qt

.bQtC 1
2 c;0/.0; 1//. Finally, G1 and G2 are local in the following

sense
(

diam.suppR2G1u/ . diam.supp u/ .u 2 L2.0; 1//;
diam.suppR1G2u/ . diam.supp u/ .u 2 L2.�1; 0//:

(4.8)

A typical example of a Hestenes extension with ˇl D 2l is the reflection, i.e., L D
0; �0 D 1.

Remark 4.1. Although implicitly claimed otherwise in [6, (4.3.12)], we note
that (4.7), and so the second property in (4.8), cannot be expected for MG1 being
a general Hestenes extension as given by (4.4), without assuming that ˇl D 2l .

We may now formulate the central approximation result. Recall that by utilizing the
scale-dependent extension operator in the construction presented in Sect. 4.3, we
end up with a pair of biorthogonal wavelet Riesz bases

�
E.

NY

kD0

� k/; E��.

NY

kD0

Q� k/
� D �f �;p W .�; p/ 2 r. Ő /g; f Q �;p W .�; p/ 2 r . Ő /g�
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for L2. Ő /, that is for s 2 Œ0; 1� and properly scaled a pair of Riesz bases for

ŒL2. Ő /; ı
H
t
. Ő /�s;2 and ŒL2. Ő /; ı

H
Qt
. Ő /�s;2, respectively. In particular the index set

is given by r. Ő / D SN
kD0 r� .k/; Q� .k/ � fkg.

Theorem 4.1 ([2, Thm. 5.6]). Let the E.q/
1 be defined using the scale-dependent

extension operators as in Proposition 4.3. Then for any � 2 Œ0; d /, there exists a
(nested) sequence .rM/M2N 
 r . Ő / with #rM Å M , such that

inf
v2spanf �;p W.�;p/2r M g

ku � vkHm. Ő / . M�.d�m/
v
u
u
t

NX

kD0
kuk2

H d
m;� .�k/

; (4.9)

for any u 2 ı
H
m
. Ő / for which the right-hand side is finite, i.e., that satisfies (4.3)

(with � D Id). For m D 0, the factor M�.d�m/ in (4.9) has to be read as
.logM/.n�1/. 12Cd/M�d .

The issue whether we may expect (4.3) for u to hold is nontrivial. Fortunately, in
[2], we were able to prove that this property holds for the solutions of a large class
of boundary value problems over polygonal or polyhedral domains.

4.5 Numerical Results

As domains, we consider the slit domain˝ D .0; 2/2nf1g�Œ1; 2/, the 3-dimensional
L-shaped domain ˝ D .0; 2/2 � .0; 1/ n Œ1; 2/2 � .0; 1/, and the Fichera corner
domain ˝ D .0; 2/3 n Œ1; 2/3. The corresponding domain decompositions and the
directions in which the extension operator is applied are illustrated in Fig. 4.3.

z

1

2

1

22

2

1

12
2

3

1

x
y

Fig. 4.3 The direction and ordering of the extensions
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Fig. 4.4 Support length vs.
relative residual on the slit
domain (line), L-shaped
domain (dotted) and Fichera
corner domain (dashed)

As extension operator, we apply the reflection suited for 1
2
< t < 3

2
, 0 < Qt < 1

2
,

which is sufficient for our aim of constructing a Riesz basis for H1
0 .˝/.

Using piecewise tensor product bases, we solved the problem of finding u 2
H1
0 .˝/ such that

Z

˝

ru � rv dx D f .v/ .v 2 H1
0 .˝// (4.10)

by applying the adaptive wavelet-Galerkin method [4, 12]. We choose the forcing
vector f D 1.

As the univariate bases for the tensor wavelet construction we choose C1,
piecewise quartic (d D 5) (multi-) wavelets. The chosen solver is known to produce
a sequence of approximations that converges in theH1.˝/-norm with the same rate
as bestM -term wavelet approximation. We therefore expect the approximation rate
d �m D 5 � 1 D 4.

The numerical results are presented in Fig. 4.4.
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Chapter 5
Adaptive Wavelet Methods for SPDEs

Petru A. Cioica, Stephan Dahlke, Nicolas Döhring, Stefan Kinzel,
Felix Lindner, Thorsten Raasch, Klaus Ritter, and René L. Schilling

Abstract We review a series of results that have been obtained in the context of
the DFG-SPP 1324 project “Adaptive wavelet methods for SPDEs”. This project
has been concerned with the construction and analysis of adaptive wavelet methods
for second order parabolic stochastic partial differential equations on bounded,
possibly nonsmooth domains O 
 Rd . A detailed regularity analysis for the
solution process u in the scale of Besov spaces Bs

�;� .O/, 1=� D s=d C 1=p,
˛ > 0, p � 2, is presented. The regularity in this scale is known to determine
the order of convergence that can be achieved by adaptive wavelet algorithms and
other nonlinear approximation schemes. As it turns out, in general, for solutions of
SPDEs this regularity exceeds the Lp.O/-Sobolev regularity, which determines the
order of convergence for uniform approximation schemes. We also study nonlinear
wavelet approximation of elliptic boundary value problems on O with random right-
hand side. Such problems appear naturally when applying Rothe’s method to the
parabolic stochastic equation. A general stochastic wavelet model for the right-
hand side is introduced and its Besov regularity as well as linear and nonlinear
approximation is studied. The results are matched by computational experiments.
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5.1 Introduction

In this paper we survey a series of results towards the construction and analysis of
adaptive wavelet methods for the pathwise approximation of parabolic stochastic
differential equations (SPDEs) on bounded Lipschitz domains, see [4–9, 32]. This
kind of analysis has to be built on a regularity analysis in suitable scales of Besov
spaces and the study of nonlinear approximation for the following reason. It is well-
known that the approximation order, which can be achieved by adaptive wavelet
algorithms, is determined by the regularity of the exact solution u in the scale

Bs
�;� .O/;

1

�
D s

d
C 1

p
; s > 0; (5.1)

of Besov spaces. In contrast, the efficiency of nonadaptive (uniform) schemes
depend on the Lp.O/-Sobolev regularity of u. Therefore, the use of adaptive
algorithms to solve SPDEs is completely justified, whenever the Besov regularity
of u in the scale (5.1) exceeds its Lp.O/-Sobolev regularity. For deterministic
PDEs, promising results in this direction have already been developed; we refer to
[11, 13, 14, 19] for a detailed discussion. However, for their stochastic counterparts
this line of research has only been started a few years ago.

Generally speaking, the numerics of parabolic SPDEs has been rapidly develop-
ing during the last decade, and different problems, like strong and weak approxi-
mation and the quadrature problem, are being studied. While the vast majority of
papers in this field is devoted to uniform discretizations in space and time, spatially
adaptive methods or nonuniform time discretizations have been considered in [5, 7]
and in [34], respectively.

The SPDEs under consideration in this paper are given as follows. Let O 

Rd be a bounded Lipschitz domain, T 2 .0;1/, and let .wkt /t2Œ0;T � be an
independent family of one-dimensional standard Wiener processes. We consider
parabolic SPDEs with zero Dirichlet boundary conditions of the form

du D
� dX

i;jD1
aijuxixj C f

	
dt C

1X

kD1
gkdwkt on ˝ � Œ0; T � � O;

u D 0 on ˝ � .0; T � � @O;
u.0; �/ D u0 on ˝ � O:

9
>>>>>=

>>>>>;

(5.2)

In Sect. 5.2.1 we recall key results on the existence and uniqueness and the
spatial regularity of the solution u D .u.t; �//t2Œ0;T � to Eq. (5.2) in weighted Sobolev
spaces, as far as they are needed for our purposes. This approach to parabolic
SPDEs was initiated in [26]. In Sect. 5.2.2 we briefly discuss Besov spaces and their
characterization by means of wavelet expansions.
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Results on the Besov or Hölder-Besov regularity of u, i.e., sufficient conditions
on the parameters aij, f , gk , and u0 of Eq. (5.2) for

E
h Z T

0

ku.t; �/kqBs�;� .O/ dt
i
< 1

or

EkukqC r .Œ0;T �IBs�;� .O// < 1

to hold, together with explicit upper bounds in terms of the parameters of Eq. (5.2),
are presented in Sect. 5.3. For the justification to use adaptive approximation
schemes it is important to know whether the smoothness in the scale (5.1) exceeds
the smoothness in the scale of Sobolev spaces W s

p .O/, s > 0; specific examples of
SPDEs with this property are discussed in Sect. 5.3.4.

Rothe’s method for Eq. (5.2) leads to a sequence of elliptic subproblems with
random right-hand sides g, say. As a model problem of this type, we consider the
Poisson equation with Dirichlet boundary conditions on bounded Lipschitz domains
in Sect. 5.4. In Sect. 5.4.1, we introduce a stochastic model for g that is based on a
wavelet expansion with random coefficients. The latter are products of normally
distributed and Bernoulli distributed random variables, and the model allows to
explicitly control the Besov regularity of the realizations of g. Furthermore, we
determine the asymptotic behaviour of the linear approximation error and the error
of the best (average)N -term wavelet approximation in Sect. 5.4.1. In Sect. 5.4.2 we
present upper bounds for the error of best N -term wavelet approximation for the
solution of the Poisson equation, together with numerical experiments, which very
well match the asymptotic error analysis.

5.2 Preliminaries

Throughout this paper O 
 R
d denotes a bounded Lipschitz domain. The

underlying filtered probability space .˝;A ; .Ft /t2Œ0;T �;P/ for Eq. (5.2) is assumed
to satisfy the usual conditions. To simplify the exposition we assume that the
coefficients aij do not depend on .!; t; x/ 2 ˝ � Œ0; T � � O , and the matrix
.aij/ 2 Rd�d is assumed to be symmetric and positive definite. The force terms
f and gk are real-valued functions on ˝ � Œ0; T � � O . For a better readability, we
omit the notation of the sums

Pd
i;j and

P1
kD1 in the sequel and use the summation

convention on the repeated indices i; j; k. Let us stress that most of the regularity
results presented in Sect. 5.3 extend to more general equations, including, e.g., the
case of multiplicative noise, cf. [8, Appendix B].
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5.2.1 SPDEs in Weighted Sobolev Spaces

Our regularity analysis of the solution to Eq. (5.2) in the nonlinear approximation
scale (5.1) relies on the theory of SPDEs in weighted Sobolev spaces initiated in
[26] and developed further, e.g., in [30,31] and [22,23]. In this section, we describe
the basic concepts of this theory and state an existence result from [23] which we
will use later on in Theorem 5.1. We are interested in solutions to equations of the
form

du D .aijuxixj C f /dt C gkdwkt ; u.0; �/ D u0; (5.3)

in certain stochastic parabolic weighted Sobolev spaces H
�;q

p;� .O; T / with smooth-
ness, weight and summability parameters

� 2 R; � 2 R; p; q 2 Œ2;1/: (5.4)

If the parameters are chosen properly, all elements in these spaces fulfill the zero
Dirichlet boundary condition in (5.2), cf. Remark 5.3 below. In the context of these
spaces, the assumption (5.4) is taken for granted throughout the whole article.

5.2.1.1 Weighted Sobolev Spaces

We give the definition of weighted Sobolev spacesH�

p;� .O/ as introduced in [33].
Let �.x/ WD dist.x; @O/ be the distance between x 2 O and the boundary @O of

O . In the sequel, let n 2 Z. Fix k0 > 0 and consider the layers On 
 O of points x
whose distance to @O lies in the interval .e�n�k0 ; e�nCk0/, i.e.,

On WD fx 2 O W e�n�k0 < �.x/ < e�nCk0g:

Let C 1
0 .G / be the space of smooth functions with compact support in G 
 R

d .
Consider a sequence of nonnegative functions �n 2 C1

0 .On/ satisfying

inf
x2O

X

n2Z
�n.x/ > 0 and

sup
x2O;n2Z

jD˛�n.x/je�j˛jn < 1 for all ˛ 2 Nd
0 ;

where D˛ D @˛=.@x
˛1
1 � � � @x˛dd / and j˛j D ˛1 C : : : C ˛d . If On is empty we set

�n D 0. For a construction of such functions see, e.g., [9, Section 2]. The weighted
Sobolev spaces H�

p;� .O/ consist of (generalized) functions u 2 D 0.O/ such that

the localized and dilated functions u.n/ WD �n.e
�n � /u.e�n � / belong to the Bessel

potential spaceH�
p .R

d / D .1��/��=2Lp.Rd / and the sequence of their norms lies
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in a certain weighted `p-space. As usual, D 0.O/ denotes the space of distributions
on O .

Definition 5.1. We define

H
�

p;� .O/ WD
n
u 2 D 0.O/ W kukp

H
�
p;� .O/

WD
X

n2Z
e�n���.1 ��/�=2u.n/��p

Lp.Rd /
< 1

o
:

Remark 5.1. If � D m 2 N0, then the spaces H�

p;� .O/ can be characterized as

H0
p;� .O/ D Lp;� .O/ WD Lp.O; �.x/

��ddx/;

Hm
p;� .O/ D

n
u 2 Lp;� .O/ W �j˛jD˛u 2 Lp;� .O/ for all ˛ 2 Nd

0 with j˛j � m
o
;

and one has the norm equivalence

X

˛2Nd
0 ; j˛j�m

Z

O

ˇ
ˇ
ˇ�.x/j˛jD˛u.x/

ˇ
ˇ
ˇ
p

�.x/��d dx  kukp
Hm
p;� .O/

:

By f  g we indicate that there is a constant c > 0 such that c�1f .x/ �
g.x/ � cg.x/ for all x. The spaces H�

p;� .O/ with noninteger parameter � can
also be obtained by complex interpolation. Moreover, one has a monotonicity in
the parameters: if �1 � �2, p1 � p2 and �1 � �2, thenH�2

p2;�1
.O/ ,! H

�1
p1;�2

.O/. All
these facts and further details can be found in [33].

For the formulation of the assumption on the noise term in Eq. (5.3) we use
analogously defined spaces of `2.N/-valued functions g D .gk/k2N. The norm
in `2 D `2.N/ is denoted by j � j`2 .
Definition 5.2. We define

H
�

p;� .OI `2/ WD
n
g 2 .H�

p;� .O//
N W

kgkp
H
�
p;� .OI`2/ WD

X

n2Z
e�n�

�
�
�
ˇ
ˇ
ˇ
�
.1��/�=2.gk/.n/�

k2N
ˇ
ˇ
ˇ
`2

�
�
�
Lp.Rd /

<1
o
;

with v.n/ D �n.e
�n � /v.e�n � / for v 2 D 0.O/ as above.

5.2.1.2 Stochastic Parabolic Spaces

The stochastic parabolic weighted Sobolev spaces H�;qp;� .O; T / are defined in terms
of the following spaces of stochastic processes and initial conditions u0. By P we
denote the predictable �-algebra w.r.t. the filtration .Ft /t2Œ0;T �.
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Definition 5.3. We set

H
�;q

p;� .O; T / WD Lq.˝ � Œ0; T �;P;P ˝ dtIH�

p;� .O//;

H
�;q

p;� .O; T I `2/ WD Lq.˝ � Œ0; T �;P;P ˝ dtIH�

p;� .OI `2//;
U
�;q

p;� .O/ WD Lq.˝;F0;PIH��2=q
p;��p.1�2=q/.O//:

Ifp D q we also write H�

p;� .O; T /, H
�

p;� .O; T I `2/,U �

p;� .O/ instead ofH�;p

p;� .O; T /,

H
�;p

p;� .O; T I `2/ and U �;p

p;� .O/ respectively.

Remark 5.2. The restrictions on the parameters in the definition of U �;q

p;� .O/ is due
to considerations concerning the trace at t D 0 of solutions to equations of the
type (5.3), cf. [29, Remarks 3.3 and 4.2].

Definition 5.4. We write u 2 H
�;q

p;� .O; T / if, and only if, we have u 2
H
�;q

p;��p.O; T /, u.0; �/ 2 U
�;q

p;� .O/, and there exist f 2 H
��2;q
p;�Cp.O; T / and

g 2 H
��1;q
p;� .O; T I `2/ such that

du D f dt C gk dwkt

in the sense of distributions. That is, for any ' 2 C 1
0 .O/, with probability one, the

equality

.u.t; �/; '/ D .u.0; �/; '/C
Z t

0

.f .s; �/; '/ ds C
1X

kD1

Z t

0

.gk.s; �/; '/ dwks (5.5)

holds for all t 2 Œ0; T �. If p D q, we also write H
�

p;� .O; T / instead of H�;pp;� .O; T /.

We add that, due to our assumption p; q � 2, the series of stochastic inte-
grals in (5.5) converges in the space of continuous, square-integrable .Ft /t2Œ0;T �-
martingales, compare [27, Remark 3.2] or [8, Appendix A]. Moreover, given u, the
coefficients f and gk are determined uniquely and we write Du WD f and Su WD g.
The space H

�;q

p;� .O; T / is a Banach space when endowed with the norm

kukH�;q
p;� .O;T /

WDkukH�;q
p;��p.O;T /

C kDuk
H
��2;q

p;�Cp.O;T /

C kSuk
H
��1;q
p;� .O;T I`2/ C ku.0; �/kU�;qp;� .O/;

compare [29, Remark 3.8].



5 Adaptive Wavelet Methods for SPDEs 89

5.2.1.3 Solution Concept and Existence of Solutions

We use the following notion of a solution.

Definition 5.5. A stochastic process u 2 H
�;q

p;� .G; T / is a solution to Eq. (5.3) if,

and only if, Du D aijuxixj C f , Su D .gk/k2N and u.0; �/ D u0 in the sense of
Definition 5.4.

Remark 5.3. A solution u 2 H
�;q

p;� .O; T / to Eq. (5.3) fulfills the boundary condition
in Eq. (5.2) in the sense of traces whenever � > 1=p and d � 1 < � < d C p � 1,
see [9, Remark 6.7]. To simplify the exposition we focus on existence results for
solutions in H

�;q

p;d .O; T /, i.e., on the case � D d . However, we note that there are
more general existence results available, compare Remark 5.5.

Remark 5.4. In many cases our solution concept fits to the one used in the
semigroup approach to SPDEs, cf. [18, 36]. Assume for example that Eq. (5.3)
admits a solution u 2 H

1;q

2;d .O; T /, that the process f is L2.O/-valued, predictable,
with locally Bochner integrable trajectories, and that g D .gk/k2N 2 H0

2;d .OI `2/
is constant in .!; t/. Then this solution coincides with the unique weak solution in
the sense of [18, Chapter 5] to the equation

du.t/ D .Au.t/C f .t//dt CG dW.t/; u.0; � / D u0; t 2 Œ0; T �;

compare [8, Remark 2.14]. Here A W D.A/ 
 L2.O/ ! L2.O/ is the unbounded

linear operator defined by Ah WD aijhxi xj , h 2 D.A/ WD f� 2 VW 1
2 .O/ W aij�xixj 2

L2.O/g, G is the Hilbert-Schmidt operator from `2 D `2.N/ to L2.O/ defined by
G a WD gkak , a D .ak/k2N 2 `2, and W D .w1;w2; : : :/ is the cylindrical Wiener
process on `2 with coordinate processes wk D .wkt /t2Œ0;T �, k 2 N. Here and below

we use the notation VW m
2 .O/ for the closure of the space C 1

0 .O/ in the L2-Sobolev
space W m

2 .O/ of orderm 2 N.

The following result concerning existence and uniqueness of a solution to
Eq. (5.3) in H

�

p;d .O; T / D H
�;p

p;d .O; T / summarizes Theorem 2.12, Remark 2.13
and Theorem 2.15 of [23]. Detailed proofs can be found in [23, Section 4] and [23,
Section 5].

Theorem 5.1. There exists p0 > 2, such that for all p 2 Œ2; p0/, f 2
H
�

p;dCp.O; T /, g 2 H
�C1
p;d .O; T I `2/ and u0 2 U

�C2
p;d .O/, Eq. (5.3) has a unique

solution u in the class H�C2
p;d .O; T /. For this solution

kuk
H
�C2
p;d .O;T /

� C
�
kf kH�

p;dCp.O;T /
C kgk

H
�C1
p;d .O;T I`2/ C ku0kU�C2

p;d .O/

	
;

where the constant C depends only on d , p, � , .aij/, T and O .
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Remark 5.5. Theorem 1 remains valid if we replace d in all weight parameters by
� 2 .d � �; d C �/ for a certain � 2 .0; 1/ that depends on the shape of the domain
O , see [23]. If O is a C1-domain, the result remains valid with p0 D 1 and one can
choose an arbitrary � 2 .d � 1; d C p � 1/ instead of d in the weight parameters,
see [22]. This is important since we obtain even higher spatial regularity in the
scale (5.1) for smaller values of � , see Sect. 5.3.

A regularity result for the stochastic heat equation in H
�;q

p;d .O; T / with q > p

is presented in Sect. 5.3.2 below. It will lead to a Hölder-Besov regularity result in
Sect. 5.3.3, see Theorem 5.6 (ii).

5.2.2 Besov Spaces and Wavelets

We consider Besov spaces B�
p;q.O/ with smoothness parameter � > 0 and

summability parameters p; q 2 .0;1/, see, e.g., [8, Section 2.2] and the references
therein.

In general, a wavelet basis  WD f � W � 2 rg is a Riesz basis for an L2-
space with specific properties, cf. [10]. The indices � 2 r typically encode several
types of information, namely the scale, often denoted by j�j, the spatial location,
and also the type of the wavelet. For instance, on the real line, j�j D j 2 Z denotes
the dyadic refinement level and 2�j k with k 2 Z stands for the location of the
wavelet. We ignore any explicit dependence on the type of the wavelet, since this
only produces additional constants. Hence, we use � D .j; k/ and

r D f.j; k/ W j � j0; k 2 rj g;

where rj is some countable index set and j.j; k/j D j . Moreover, Q WD f Q � W
� 2 rg denotes the dual wavelet basis.

In Sect. 5.4 we assume, that the domain O under consideration enables us to con-
struct a wavelet basis , which have local support, i.e., that diam.supp  �/  2�j�j;
and satisfy the cancellation property. Furthermore we assume that the cardinalities
of the index sets rj satisfy #rj  2jd and that the wavelet basis induces the norm
equivalence

kvkB�p;q.O/ 

0

B
@

1X

jDj0
2
j.�Cd. 12� 1

p //q

0

@
X

k2rj

jhv; Q j;kiL2.O/jp
1

A

q=p
1

C
A

1=q

; (5.6)

see [7]. Suitable constructions of wavelets on domains can be found in [3,15–17,35].

Remark 5.6. For the proofs of the Besov regularity results for SPDEs in [4, 8, 9],
cf. Sect. 5.3 below, the existence of a suitable wavelet on the domain is not needed.
We use the fact that for bounded Lipschitz domains O 
 Rd the spaces B�

p;q.O/,
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� > maxf0; d.1=p�1/g, can be characterized by means of extension operators and
wavelet expansions on all of Rd : For a suitable wavelet basis  D f � W � 2 rg on
Rd with dual basis Q D f Q � W � 2 rg and a linear and bounded extension operator
E W B�

p;q.O/ ! B
�
p;q.R

d / one has the norm equivalence

kvkB�p;q .O/ 

0

B
@

1X

jDj0
2
j.�Cd. 12� 1

p //q

0

@
X

k2rj

jhE v; Q j;kiL2.Rd /jp
1

A

q=p
1

C
A

1=q

; (5.7)

see, e.g., [8] for details. Note that the inner products appearing in (5.7) are the
wavelet coefficients of E v w.r.t. the basis  .

5.3 Regularity Analysis in Besov Spaces

Throughout this section let d � 2.

5.3.1 Spatial Besov Regularity

The spatial regularity in the Besov scale (5.1) of solutions to SPDEs of the type (5.3)
has been analyzed for the first time in [8], where weighted Sobolev norm estimates
as in Theorem 5.1 have been combined with the wavelet technique as inspired by the
results in [14]. The results in [8] have been improved in the subsequent paper [9],
which we follow here.

In order to gain some insight into the strategy to obtain regularity results in the
scale (5.1), let us denote by �.O/ the set of harmonic functions on O , so that we
can reformulate the main result in [14] as follows:

�.O/\ B

p;p.O/ 
 Bs

�;� .O/;
1

�
D s

d
C 1

p
; for all 0 < s < 


d

d � 1
:

The key idea to prove this is to make use of the fact that the Besov smoothness of a
function can be described in terms of decay properties of its wavelet coefficients, see
the norm equivalence (5.7). Further, one has to use the fact that harmonic functions
contained in B


p;p.O/ have finite weighted Sobolev seminorm

j u jHm
p;d�
p.O/

WD
� X

˛2Nd
0j˛jDm

Z

O

ˇ
ˇ�.x/j˛jD˛u.x/

ˇ
ˇp�.x/�
pdx

	1=p
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for any 
 < m 2 N. This together with the Lipschitz character of @O allow for a
certain control of the decay of the wavelet coefficients. It turns out that, using similar
arguments as in [14], one can even show that for 
 > 0 and m 2 N,

Hm
p;d � 
p.O/ \ B


p;p.O/ ,!Bs
�;� .O/;

1

�
D s

d
C 1

p
; 0<s < min

n
m; 


d

d � 1

o
;

where ‘,!’ denotes a continuous embedding. The Besov regularity results for
SPDEs in [8] are implicitly based on this embedding, although the embedding is
not explicitly stated there. It has been substantially improved and generalized in [9,
Section 6]: On the one hand, by using refined estimates for the wavelet coefficients,
the embedding can be generalized to arbitrary smoothness parameters � > 0 instead
of m 2 N. (This generalization is needed for the Hölder-Besov regularity results
below.) On the other hand, by using interpolation arguments, one can show that
H
�

p;d�
p.O/ ,! B
�^

p;p .O/. As a consequence, see [9, Theorem 6.9], one obtains

Theorem 5.2. Let p 2 Œ2;1/ and � and 
 be positive numbers. Then

H
�

p;d�
p.O/ ,! Bs
�;� .O/;

1

�
D s

d
C 1

p
; for all 0 < s < min

n
�; 


d

d � 1
o
:

In the sequel, we use the shorthand notation

Lq.˝T IX/ WD Lq.˝ � Œ0; T �;P;P ˝ dtIX/;

whereX is a quasi-Banach space, e.g.,X D Bs
�;� .O/. Thus,Lq.˝T IX/ is the space

of (equivalence classes) of strongly P-measurable functions f W ˝ � Œ0; T � !
X such that E

R T
0 kf kqX dt is finite. As a consequence of Theorem 5.2 and the

definition of H�;qp;d .O; T /, we have the embedding

H
�;q

p;� .O; T / ,! Lq.˝T IBs
�;� .O//;

1

�
D s

d
C 1

p
; (5.8)

holding for � > 0 and

0 < s < min
n
�;
�
1C d � �

p

	 d

d � 1

o
:

The combination of this embedding and Theorem 5.1 with � D 0 leads to the
following spatial Besov regularity result for SPDEs of the type (5.3), see [9,
Theorem 7.2].

Theorem 5.3. Let � C 2 2 .0;1/, p0 > 2 and p 2 Œ2; p0/ as in Theorem 5.1.
Then, for any f 2 H

�

p;dCp.O; T /, g 2 H
�C1
p;d .O; T I `2/ and u0 2 U

�C2
p;d .O/, the

unique solution u 2 H
�C2
p;d .O; T / to Eq. (5.3) satisfies
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u 2 Lp.˝T IBs
�;� .O//;

1

�
D s

d
C 1

p
; for all 0 < s < min

n
� C 2;

d

d � 1
o
:

(5.9)

Moreover, for any s in (5.9), there exists a constant C , which does not depend on u,
f , g and u0, such that

E
h Z T

0

ku.t; �/kpBs�;� .O/ dt
i

� C
�
kf kp

H
�

p;dCp.O;T /
Ckgkp

H
�C1
p;d .O;T I`2/

Cku0kp
U
�C2
p;d .O/

	
:

Remark 5.7. The result in Theorem 5.3 is the crucial step in our regularity analysis
for SPDEs of the type (5.3). Now we have an explicit assertion concerning the
spatial regularity of the solution u in the nonlinear approximation scale (5.1). In
Sect. 5.3 we will see that the spatial regularity of u in the corresponding linear
approximation scale W �

p .O/, � > 0, is in general lower than the regularity in
the nonlinear approximation scale (5.1). Thus, we can justify the use of spatially
adaptive approximation methods for u in concrete situations.

Remark 5.8. The assertion of Theorem 1 concerning the existence of a solution
to Eq. (5.3) in H

�C2
p;d .O; T / also holds for a more general class of linear SPDEs,

cf. [23]. Moreover it has been extended to a class of semilinear SPDEs in [4]. Due
to Theorem 5.2, both results lead to corresponding spatial Besov regularity results.

5.3.2 Regularity in Weighted Sobolev Spaces Revisited

For bounded Lipschitz domains O , first regularity results in the spaces H�;qp;d .O; T /
with q > p have been derived recently in [9, Chapter 4]. For q � p we are
able to improve our results concerning the spatial regularity in the scale (5.1) w.r.t.
regularity in time, cf. Sect. 5.3.3. We present a result from [9, Chapter 4] for the
model equation

du D .�u C f / dt C gk dwkt ; u.0; �/ D 0; (5.10)

see Theorem 4.4 therein. The proof combines methods from the analytic approach to
SPDEs as used in [28] with functional analytic results from the semigroup approach
to SPDEs in [36] and results concerning the Dirichlet Laplacian in Lp.O/ from
[37].

Theorem 5.4. Let � � 0. There exists an exponent p0 with p0 > 3 when d � 3
and p0 > 4 when d D 2 such that for p 2 Œ2; p0/ and p � q < 1, Eq. (5.10) has
a unique solution u 2 H

�C2;q
p;d .O; T /, provided

f 2 H
�;q

p;dCp
.O; T / \ H

0;q

p;d
.O; T / and g 2 H

�C1;q

p;d
.O; T I `2/ \ H

1;q

p;d�p
.O; T I `2/:
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Moreover, there exists a constant C 2 .0;1/, which does not depend on f and g,
such that

kuk
H
�C2;q
p;d .O;T /

� C
�
kf kH�;q

p;dCp
.O;T / C kf k

H
0;q

p;d .O;T /

C kgk
H
�C1;q
p;d .O;T I`2/ C kgk

H
1;q

p;d�p.O;T I`2/
	
:

5.3.3 Hölder-Besov Regularity

For r 2 .0; 1/ and a (quasi-)Banach space .X; k � kX/ we denote by C r .Œ0; T �IX/
the Hölder space of continuous functions v W Œ0; T � ! X with finite (quasi-)norm
kvkC r .Œ0;T �IX/ defined by

Œv�C r .Œ0;T �IX/ WD sup
s;t2Œ0;T �

kv.t/ � v.s/kX
jt � sjr ;

kvkC .Œ0;T �IX/ WD sup
t2Œ0;T �

kv.t/kX ;

kvkC r .Œ0;T �IX/ WD kvkC .Œ0;T �IX/ C Œv�C r .Œ0;T �IX/:

We want to improve the spatial Besov regularity results for SPDEs of the
type (5.3) w.r.t. regularity in time and derive assertions of the form u 2
Lq.˝IC r .Œ0; T �IBs

�;� .O///, 1=� D s=d C 1=p, for certain r 2 .0; 1/ and
s > 0. The key to achieve this is the following result concerning the Hölder
regularity in time of elements of the spaces H�;qp;� .O; T /, which has been shown in
[9, Theorem 5.1]. The proof uses [29, Proposition 4.1], which covers the assertion
of Theorem 5.5 with RdC instead of O , and a quite technical boundary flattening
argument exploiting the Lipschitz character of @O .

Theorem 5.5. Let 2 � p � q < 1, � 2 N and u 2 H
�;q

p;� .O; T /. Moreover, let

2=q < Nr < r � 1:

Then there exists a constant C 2 .0;1/, which does not depend on T and u, such
that

EŒu�q
C Nr=2�1=q.Œ0;T �IH��r

p;��p.1�r/.O//

� CT .r�Nr/q=2�kukq
H
�;q

p;��p.O;T /
C kDukq

H
��2;q

p;�Cp.O;T /
C kSukq

H
��1;q
p;� .O;T I`2/

	
;
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and

Ekukq
C Nr=2�1=q.Œ0;T �IH��r

p;��p.1�r/.O//
� CT .r�Nr/q=2kukq

H
�;q

p;� .O;T /
:

Remark 5.9. For the case that the summability parameters in time and space
coincide, i.e., q D p, a result similar to Theorem 5.5 has been proved in [23,
Theorem 2.9]. However, the technique used there does not work in the case q > p.
This case is important for us, since it allows a wider range of parameters Nr and r and
enables us to obtain Hölder-Besov regularity results for SPDEs, see Theorem 5.6
(ii).

The combination of Theorems 5.2, 5.4 and 5.5 leads to Besov and Hölder-Besov
regularity results for the solution to Eq. (5.10).

Theorem 5.6. Let p 2 Œ2; p0/ and p � q < 1, and let p0 with p0 > 3 when
d � 3 and p0 > 4 when d D 2 be as in Theorem 5.4. For f 2 H

0;q

p;d .O; T /

and g 2 H
1;q

p;d�p.O; T I `2/, let u be the unique solution in the class H2;qp;d .O; T / to
Eq. (5.10). Then, the following assertions hold:

(i) We have

u 2 Lq.˝T IBs
�;� .O//;

1

�
D s

d
C 1

p
; for all 0 < s <

d

d � 1 : (5.11)

For any s in (5.11), there exists a constant C 2 .0;1/, which does not depend
on u, f , and g, such that

E
h Z T

0

ku.t; �/kqBs�;� .O/ dt
i

� C
�
kf k

H
0;q
p;d .O;T /

C kgk
H
1;q
p;d�p.O;T I`2/

	
:

(ii) Assume furthermore that 2=q < Nr < 1, and that s and � fulfill

1

�
D s

d
C 1

p
and 0 < s < min

n
2 � Nr; .1 � Nr/ d

d � 1

o
:

Then, with a constant C 2 .0;1/ that does not depend on u, f and g, we also
have

Ekukq
C Nr=2�1=q.Œ0;T �IBs�;� .O// � C

�
kf k

H
0;q
p;d .O;T /

C kgk
H
1;q
p;d�p.O;T I`2/

	
: (5.12)

Proof. By Remark 5.1 we have the continuous embeddings H0
p;d .O/ ,!

H0
p;dCp.O/ and H1

p;d�p.O/ ,! H1
p;d .O/, so that Theorem 5.4 with � D 0 implies

the existence of a unique solution u 2 H
2;q

p;d .O; T / and the estimate

kuk
H
2;q
p;d .O;T /

� C
�
kf k

H
0;q
p;d .O;T /

C kgk
H
1;q
p;d�p .O;T I`2/

	
: (5.13)
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The combination of (5.13) and Theorem 5.2 yields the assertion in (i), compare the
embedding (5.8). Further, the combination of (5.13), Theorem 5.5 and Theorem 5.2
implies that the estimate (5.12) holds for 0 < s < minf2�r; .1�r/d=.d �1/g with
r as in Theorem 5.5. Since r can be chosen arbitrarily close to Nr < r , we obtain the
assertion in (ii). ut

5.3.4 Comparison with the Regularity in the Linear
Approximation Scale

The results on the spatial regularity of solutions to SPDEs in the nonlinear
approximation scale (5.1) justify the use of adaptive schemes only if we can show
that the regularity in the corresponding linear approximation scale W s

p .O/, p > 0,
is lower than the regularity in (5.1). We give two simple concrete examples in the
Hilbert space setting (p D 2) where this is the case.

In both examples we consider equations of the type

du D �udt C gkdwkt ; u.0; �/ D u0;

and assume that u0 2 L2.˝I VW 2
2 .O// 
 U 2

2;d .O/ and that g D .gk/k2N 2
H1
2;d .OI `2/ is constant in .!; t/. Recall that VW n

2 .O/ denotes the closure of the space
C1
0 .O/ in the L2-Sobolev space W n

2 .O/ of order n 2 N. By Theorem 5.1, there
exists a unique solution in the class H22;d .O; T /. Since we use results derived within
the semigroup approach to SPDEs, we recall that, by Remark 5.4, the solution in
H22;d .O; T / coincides with the weak solution in the sense of [18, Chapter 5] to the
equation

du.t/ D �D
O u.t/dt CG dW.t/; u.0; �/ D u0; t 2 Œ0; T �; (5.14)

where �D
O W D.�D

O/ 
 L2.O/ ! L2.O/ is the Dirichlet-Laplacian on O with

domain D.�D
O/ WD fv 2 VW 1

2 .O/ W �v 2 L2.O/g, and G and W are as in
Remark 5.4.

In the first example, the spatial regularity of u in the linear approximation scale
W s
2 .O/, s > 0, is limited due to the shape of the domain O . In the second example,

the limitation is due the incompatibility of the noise with the zero Dirichlet boundary
condition. In view of the results in Sect. 5.4, we remark that another reason for
a limited regularity in the linear approximation scale can be the limited Sobolev
regularity of the noise term itself.

Example 5.1. Let d D 2 and let O 
 R2 be a bounded, nonconvex, polygonal
domain. Denote by $ the largest interior angle at a vertex of @O . Assume that the
range of the operatorG is dense in L2.O/. Then, it follows from [32, Example 3.6],
that the weak solution u to Eq. (5.14) is such that
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u.!; �/ 62 L2.Œ0; T �IW 1C�=$
2 .O// for P-almost all ! 2 ˝: (5.15)

We stress that the density of G.L2.O// in L2.O/ is essential here: it implies that
the stochastic source term in (5.14) induces the appearance of corner singularities
of the solution u, cf. Remark 5.10 below. Note that the smoothness parameter
1 C �=$ in (5.15) is less than 2, since O is nonconvex. However, we have
u 2 L2.˝T IBs

�;� .O//, 1=� D s=2C 1=2 for all s < 2 by Theorem 5.3.

Remark 5.10. Example 3.6 in [32] is a consequence of a general decomposition
result concerning the weak solution u to a stochastic heat equation of the form

du.t/ D Œ�D
O u.t/C F.u.t//�dt CG.u.t// dW.t/; u.0; �/ D u0; t 2 Œ0; T �;

see [32, Theorem 3.3]. Under certain technical assumptions, u can be decomposed
into a regular part uR and a singular part uS. Both parts have negative regularity in
time. While uR has full L2-Sobolev regularity of order 2 in space, the spatial L2-
Sobolev regularity of the singular part uS is in general limited by 1 C �=$ , since
uS may contain the corner singularities for the Poisson problem on O .

Example 5.2. Let O 
 Rd be a bounded C 1-domain. Let g1 D 1 and gk D 0 for
all k � 2. Then the weak solution to Eq. (5.14) is such that

u.t/ … L2.˝IW �
2 .O// for all t 2 .0; T � and � > 3=2:

This is a straightforward application of Itô’s isometry, using the representation
u.t/ D etAu0CR t

0
e.t�s/AGdW.s/, the properties of the operator semigroup .etA/t	0

generated byA, and the explicit characterization of the domains of fractional powers
of A in [20]. Combining Theorem 5.2 and the general existence results mentioned
in Remark 5.5, one can show that in the described situation, for d D 2, we even
have u 2 L2.˝T IBs

�;� .O//, 1=� D s=2C 1=2 for all s < 3.

5.4 Nonlinear Approximation for Elliptic Equations

One approach to approximate the solutions to equations of the type (5.3) is the
horizontal method of lines, also known as Rothe’s method, which starts with
a discretization first in time and then in space. The parabolic equation can be
interpreted as an abstract Cauchy problem, i.e., as an ordinary stochastic differential
equation in some suitable function spaces. This immediately provides a way to
employ adaptive strategies. Indeed, in time direction we might potentially even
use SDE-solvers with step size control. This solver must be based on an implicit
discretization scheme since the equation under consideration is usually stiff. Then,
in each time step, a system of elliptic equations with random right-hand sides has
to be solved. To this end, a second level of adaptivity, well-established adaptive
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numerical schemes based, e.g., on wavelets or finite elements, can be used, see [6].
More details and results on error propagation and complexity estimates for Rothe’s
method can be found in [5], compare also [25].

Therefore, in this section, we study adaptive wavelet algorithms for the Poisson
equation

��u D g in O;

u D 0 on @O;
(5.16)

which serves as a model problem for elliptic equations with random right-hand
side g. More precisely, g is a random function (random field) with realizations
at least in L2.O/, and we wish to approximate the realizations of the random
function u in W 1

2 .O/. We investigate a new stochastic model for g that provides an
explicit control of the Besov regularity, and we analyze nonlinear approximations
of both, g and u. An average N -term approximation of the right-hand side g can
be simulated efficiently, and the nonlinear approximation rate for the solution u
is achieved by means of an adaptive wavelet algorithm. More precisely, we apply
optimally convergent wavelet algorithms, see [11–13], in a stochastic setting. These
algorithms realize the convergence order of the best N -term approximation.

Rates of convergence for the approximation of stochastic evolution equations
using uniform wavelet schemes in space are presented in [21]. In [24] wavelet
methods have been used to simplify the additive noise term of linear stochastic
evolution equations. In [25] a splitting scheme for a semilinear stochastic heat
equation using uniform wavelet approximation for the stochastic part and an
adaptive wavelet method for the deterministic part is considered. An algorithm for
solving stochastic heat equations by nonuniform time discretization of the driving
Brownian motion is presented in [34].

5.4.1 Random Functions in Besov Spaces

In this section we discuss linear and nonlinear approximations as well as the Besov
regularity of random functions g W ˝ ! L2.O/. The random functions are defined
in terms of wavelet expansions according to a stochastic model that provides an
explicit control for the Besov regularity and, in particular, induces sparsity of the
wavelet coefficients. In the context of Bayesian nonparametric regression this model
was introduced and analyzed in [1] and generalized in [2] in the case O D Œ0; 1� for
Besov spaces with parameters p; q � 1.

The stochastic model is based on the wavelet expansion described in Sect. 5.2.2,
where the coefficients are given as independent random variables Yj;k and Zj;k for
j � j0 and k 2 rj on some probability space .˝;A ;P/. The variables Yj;k are
Bernoulli distributed with parameter

pj WD min
�
1; C12

� ǰd
�
; with P.Yj;k D 1/ D pj and P.Yj;k D 0/ D 1 � pj ;
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where ˇ 2 Œ0; 1�; C1 > 0. The random variables Zj;k are standard-normalN.0; 1/-
distributed and, in order to rescale their variances, we put

�2j WD C2j
�d 2�˛jd;

with parameters ˛;C2 > 0; � 2 R. Now we define

g WD
1X

jDj0

X

k2rj

�j Yj;kZj;k j;k; (5.17)

which converges P-a.s. in L2.O/.

Remark 5.11. Classical examples for Gaussian random functions on O D Œ0; 1�d

are the Brownian sheet, which, in terms of smoothness, corresponds to ˛ D 2;

ˇ D 0 and � D 2.d � 1/=d , and Lévy’s Brownian motion, which, in terms of
smoothness, corresponds to ˛ D .d C 1/=d; ˇ D 0 and � D 0.

Theorem 5.7. Suppose that s > maxf0; d=p � d g. We have g 2 Bs
p;q.O/ with

probability one if, and only if,

s < d

�
˛ � 1

2
C ˇ

p

�

(5.18)

or

s D d

�
˛ � 1

2
C ˇ

p

�

and q�d < �2: (5.19)

Furthermore,

EkgkqBsp;q .O/ < 1

if (5.18) or (5.19) is satisfied.

We set

Vj1 D max
j�j1

max
k2rj

�j Yj;kjZj;kj

in order to normalize the absolute values of the coefficients of the truncated wavelet
expansion

Ogj1 WD
j1X

jDj0

X

k2rj

�j Yj;kZj;k j;k:
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Fig. 5.1 Left: absolute values of normalized coefficients. Right: respective realization. (a) ˛D 2:0,
ˇ D 0:0. (b) ˛ D 2:0, ˇ D 0:0. (c) ˛ D 1:2, ˇ D 0:8. (d) ˛ D 1:2, ˇ D 0:8

Remark 5.12. In Fig. 5.1, the left column shows realizations of the normalized
absolute values �j Yj;kjZj;kj=Vj1 of all coefficients on O D Œ0; 1� up to level
j1 D 11. It exhibits that the parameter ˇ induces sparsity patterns, for larger values
of ˇ more coefficients are zero and the wavelet expansion of g is sparser. The right
column shows the corresponding realization of g. We observe that for ˇ D 0 the
realization is irregular everywhere, and by increasing ˇ the irregularities become
more isolated. The first row in Fig. 5.1 corresponds, in terms of smoothness, to a
Brownian motion, see Remark 5.11. By keeping ˛ C ˇ D 2, in the second row we
obtain the same L2-Sobolev smoothness, whereas it is well-known that piecewise
smooth functions with isolated singularities have a higher Besov smoothness on the
nonlinear approximation scale.

As a special case of Theorem 5.7, we consider the specific scale of Besov spaces
Bs
�;� .O/ with

1

�
D s � t

d
C 1

2
(5.20)
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for some smoothness parameter t with s > t � 0, which determines the
approximation order of bestN -term wavelet approximation with respect to W t

2 .O/.
For t D 0 this is the Besov scale (5.1) considered in the previous sections.

Corollary 5.1. Suppose that

0 � t < d
˛ C ˇ � 1

2

and s > t as well as

.1 � ˇ/s < d
˛ C ˇ � 1

2
� ˇt:

Let � be given by (5.20). Then g 2 Bs
�;� .O/ holds with probability one, and

Ekgk2Bs�;� .O/ < 1:

Remark 5.13. It follows from Corollary 5.1 that by choosing the sparsity parameter
ˇ close to one we get an arbitrarily high regularity in the nonlinear approximation
scale of Besov spaces, cf. (5.20), provided that the wavelet basis is sufficiently
smooth. This is obviously not possible in the classical L2-Sobolev scale, since, by
Theorem 5.7 with p D q D 2, the Sobolev regularity is bounded by d=2.˛Cˇ�1/.

In the following we study the approximation of g with respect to the L2-
norm. Any linear approximation method employs a fixed finite-dimensional linear
subspace of L2.O/ to approximate all realizations of g. The corresponding linear
approximation error of g is given by

elin
N .g/ D inf

�
Ekg � Ogk2L2.O/

�1=2

with the infimum taken over all measurable mappings Og W ˝ ! L2.O/ such that

dim.span. Og.˝/// � N:

Theorem 5.8. The linear approximation error satisfies

elin
N .g/  .lnN/

�d
2 N� ˛Cˇ�1

2 :

The best N -term wavelet approximation imposes a restriction only on the number

�.g/ D #
n
� 2 r W c� ¤ 0; g D

X

�2r
c�  �

o
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of nonzero wavelet coefficients of g. Hence the corresponding error of best N -term
approximation for g is given by

eN .g/ D inf
�
Ekg � Ogk2L2.O/

�1=2

with the infimum taken over all measurable mappings Og W ˝ ! L2.O/ such that

�. Og.!// � N P-a.s.

The analysis of eN .g/ is based on the Besov regularity of g and the underlying
wavelet basis  . For deterministic functions v on O the error of best N -term
approximation with respect to the L2-norm is defined by

�N .v/ D inffkv � OvkL2.O/ W Ov 2 L2.O/; �.Ov/ � N g: (5.21)

Clearly

eN .g/ D �
E.�2N .g//

�1=2
:

Theorem 5.9. For every " > 0, the error of best N -term approximation satisfies

eN .g/ �
(
N�1="; if ˇ D 1

N
� ˛Cˇ�1

2.1�ˇ/ C"
; otherwise.

By f � g we indicate that there is a constant c > 0 such that f .x/ � cg.x/ for all
x. For random functions it is also reasonable to impose a constraint on the average
number of nonzero wavelet coefficients only, and to study the error of best average
N -term (wavelet) approximation

e
avg
N .g/ D inf

�
Ekg � Ogk2L2.O/

�1=2

with the infimum taken over all measurable mappings Og W ˝ ! L2.O/ such that

E.�. Og// � N:

Theorem 5.10. The error of best average N -term approximation satisfies

e
avg
N .g/ �

(
N

�d
2 2� ˛dN

2 ; if ˇ D 1

.lnN/
�d
2 N

� ˛Cˇ�1
2.1�ˇ/ ; otherwise.

Remark 5.14. One can show that for ˇ < 1 the upper bound is sharp.
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Remark 5.15. The asymptotic behavior of elin
N .g/ is essentially determined by the

parameter ˛ C ˇ. According to Theorem 5.7, this quantity also determines the
regularity of g in the scale of Sobolev spaces W s

2 .O/. The asymptotic behavior
of eavg

N .g/ is essentially determined by the parameter .˛ C ˇ � 1/=.1 � ˇ/, which
also determines the regularity of g in the scale (5.20) of Besov spaces Bs

�;� .O/,
according to Corollary 5.1. For ˇ 2 .0; 1� nonlinear approximation is superior to
linear approximation.

5.4.2 Nonlinear Approximation for Elliptic Boundary Value
Problems

We are interested in best N -term wavelet approximation for elliptic boundary
value problems with random right-hand sides. As a particular, but nevertheless very
important, model problem we are concerned with the Poisson equation (5.16), where
the right-hand side g W ˝ ! L2.O/ 
 W �1

2 .O/ is a random function as described
in Sect. 5.4.1. However, g is given as expansion in the dual basis Q , on which we
impose the same assumptions as in Sect. 5.2.2 on the basis  . Analogous to (5.21)
we introduce

�N;W 1
2 .O/

.u/ D inffku � OukW 1
2 .O/

W Ou 2 W 1
2 .O/; �.Ou/ � N g:

The quantity �N;W 1
2 .O/

.u.!//, where u.!/ is the exact solution to (5.16), serves
as benchmark for the performance of the adaptive wavelet algorithms. In order to
analyze the power of these algorithms in the stochastic setting, we investigate the
error

eN;W 1
2 .O/

.u/ D inf.Eku � Ouk2
W 1
2 .O/

/1=2;

with the infimum taken over all measurable mappings Ou W ˝ ! W 1
2 .O/ such that

�.Ou.!// � N P-a.s.

Clearly

eN;W 1
2 .O/

.u/ D
�
E.�2

N;W 1
2 .O/

.u//
	1=2

:

Theorem 5.11. Suppose that d 2 f2; 3g and that the right-hand side g in (5.16) is
of the form (5.17). Put

% D min

�
1

2.d � 1/
;
˛ C ˇ � 1

6
C 2

3d

�

:
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Then, for every " > 0, the error of the best N -term approximation satisfies

eN;W 1
2 .O/

.u/ � N�%C":

In case O is a C 1-domain, the problem is completely regular. Therefore, similar
to Corollary 5.1, it is remarkable that an arbitrarily high order of convergence
(subject to the maximal approximation order afforded by the wavelet basis  ) can
be realized by choosing ˇ close to one.

Theorem 5.12. Suppose that O is a boundedC 1-domain in R
d and that the right-

hand side g in (5.16) is of the form (5.17). Moreover, assume that ˇ < 1 and put

% D 1

1 � ˇ
�
˛ � 1
2

C ˇ

�

C 1

d
:

Then, for every " > 0, the error of best N -term approximation satisfies

eN;W 1
2 .O/

.u/ � N�%C":

5.4.2.1 Numerical Experiments

Here, we illustrate the impact of ˛ and ˇ on approximation rates of elliptic stochastic
equations as outlined in Sect. 5.4.2. In the one-dimensional case the equation is
given by

�u00.�; !/ D g.�; !/; u.0; !/ D u.1; !/ D 0 on O D Œ0; 1�:

The numerical experiment is carried out and evaluated as follows. On input ı > 0
the adaptive wavelet scheme, see [11–13], computes an N -term approximation
Ou.�; !/ to u.�; !/, whose error with respect to theW 1

2 -norm is at most ı. The number
N of terms depends on ı as well as on ! via the right-hand side g.�; !/. We
determine u.�; !/ in a master computation with very high accuracy and then use the
norm equivalence (5.6) for the space W 1

2 .O/ D Bs
2;2.O/. The master computation

employs a uniform approximation with refinement level j1 D 11. To get a reliable
estimate for the average number E.�.Ou// of nonzero wavelet coefficients of Ou and
for the error .Eku � Ouk2

W 1
2 .O/

/1=2 we use 1;000 independent samples of right-hand

sides. This procedure is carried out for 18 different values of ı; the results are
presented together with a regression line, whose slope yields an estimate for the
order of convergence. For the uniform scheme, we use 1,000 independent samples
for 6 different refinement levels, j D 4; : : : ; 9. We add that confidence intervals for
the level 0:95 are of length less than 3 % of the estimate in all cases.

In the first experiment we choose ˛ D 0:9; ˇ D 0:2; i.e., the right-hand side
is contained in W s

2 .O/ only for s < 0:05. Consequently, since in the univariate
case the problem is completely regular, the solution is contained in W s

2 .O/ with
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Fig. 5.2 Error and expected number of nonzero coefficients. (a) ˛ D 0:9, ˇ D 0:2. (b) ˛ D 0:4,
ˇ D 0:7

s < 2:05. An optimal uniform approximation scheme with respect to the W 1
2 .O/-

norm yields the approximation order 1:05 � " for every " > 0. This is observed in
Fig. 5.2a, where the empirical order of convergence for the uniform approximation
is 1:113. For the relatively small value of ˇ D 0:2, the Besov smoothness, and
therefore the order of best N -term approximation, is not much higher. In fact, by
inserting the parameters into Theorem 5.12 with d D 1, we get the approximation
order % � " with % D 19=16 D 1:1875. This is also reflected in Fig. 5.2a, where the
empirical order of convergence for the adaptive wavelet scheme is 1:164. In both
cases the numerical results match very well the asymptotic error analysis, and both
methods exhibit almost the same order of convergence. Let us point out, that even
in this case adaptivity slightly pays off for the same regularity parameter, since the
Besov norm is smaller than the Sobolev norm, which yields smaller constants.

The picture changes for higher values of ˇ. As a second test case, we choose
˛ D 0:4; ˇ D 0:7. Then, the Besov regularity is considerably higher. In fact,
from Theorem 5.12 with d D 1 we expect the convergence rate % � " with
% D 7=3, provided that the wavelet basis indeed characterizes the corresponding
Besov spaces. It is well known that a tensor product spline wavelet basis of order
m in dimension d has this very property for Bs

�;� .O/ with 1=� D s � 1=2 and
s < s1 D m=d . In our case, s1 D 3, so % D 2 is the best we can expect. From
Fig. 5.2b, we observe that the empirical order of convergence is slightly lower,
namely 1:425. The reason is that the Besov smoothness of the solution is only
induced by the right-hand side, which, in a Galerkin approach, is expanded in the
dual wavelet basis. Estimating the Hölder regularity of the dual wavelet basis Q , it
turns out that this wavelet basis is only contained inW s1.O/ for s < 0:55. Therefore,
by using classical embeddings of Besov spaces, it is only ensured that this wavelet
basis characterizes Besov spaces Bs

�;� .O/, with the same smoothness parameter.
Consequently, the solution u, which is obtained by the master computation, is only
contained in the spaces Bs

�;� .O/ with 1=� D s � 1=2 and s < 2:55 which gives an
approximation order % � " with % D 1:55. This is captured very well in Fig. 5.2b.
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For uniform approximation the empirical order of convergence is 1:115 and thus
does not differ from the result in the first experiment.
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Chapter 6
Constructive Quantization and Multilevel
Algorithms for Quadrature of Stochastic
Differential Equations

Martin Altmayer, Steffen Dereich, Sangmeng Li, Thomas Müller-Gronbach,
Andreas Neuenkirch, Klaus Ritter, and Larisa Yaroslavtseva

Abstract In this article we summarise the progress made in the project Con-
structive Quantization and Multilevel Algorithms for Quadrature of Stochastic
Differential Equations. Research was conducted along the following three lines.
First we focus on deterministic quadrature formulas to approximate expectations
with respect to marginal distributions of SDEs. Here we provide a complexity
analysis for deterministic algorithms in a worst case setting with respect to classes
of SDEs that are defined in terms of smoothness constraints on the coefficients, and
we present an algorithm that is based on weak Itô-Talyor steps and performs almost
asymptotically optimal. Next, we are concerned with computing expectations of
quantities that depend discontinuously on the SDE at the terminal time. We present
an efficient method for quadrature in the Heston model based on multilevel schemes
and a Malliavin calculus-based payoff smoothing. Finally, we consider expected
values of quantities that depend on the whole trajectory of a Lévy-driven SDE. We
establish error estimates and central limit theorems for a multilevel Monte Carlo
algorithm that achieves error rates of order N� 1

2Co.1/ as the runtime N of the
algorithm tends to infinity.
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6.1 Introduction

In this article we introduce and analyse new methods for the numerical computa-
tion of

S.f / D EŒf .X/�;

where X D .Xt/t2Œ0;T � is a solution to the stochastic differential equation

dXt D a.Xt�/ dt C b.Xt�/ dY t ; t 2 Œ0; T �; (6.1)

X0 D x0:

Here Y D .Yt /t2Œ0;T � is a Wiener process or a Lévy process depending on the
branch of the project, x0 is the deterministic initial value, and a and b are,
in general, vector-valued and matrix-valued functions, respectively, that satisfy
appropriate regularity conditions. In general we distinguish two kinds of settings.
In the marginal setting/case the functional f depends only on the value of the
path at terminal time T and we rather conceive f as a function on the state
space of the differential equation. Conversely in the path-dependent setting/case
f is a measurable function mapping trajectories into reals. Motivated by financial
applications, we shall refer to the function f as payoff in the subsequent discussion.

Research was carried out along three different lines and the exposition is arranged
accordingly.

In line (I) of the project we consider the marginal setting for a d -dimensional
SDE (6.1) driven by an m-dimensional Brownian motion. We study quantization of
the distribution PXT , i.e., construction of quadrature formulas for integration on IRd

with respect to PXT , by means of deterministic algorithms that are based on finitely
many evaluations of the coefficients of the SDE. We provide a worst case complexity
analysis with respect to classes of equations .x0; a; b/ and classes of payoffs f that
are defined in terms of the degree of smoothness s1, s2, r of a, b, f , respectively,
and we present an algorithm that performs almost asymptotically optimal in a large
number of cases. The main results can be summarised as follows.

• If m � d then the minimal errors that can be achieved are of order N�� with
� D min.s1; s2/=d , r=d , min.s1; s2; r/=d for N being the worst case number of
evaluations of a and b, the worst case support size of the quadrature formulas
and the worst case computational cost, respectively, see Theorem 6.1.

• For coefficients of smoothness at least 6 and Lipschitz continuous payoffs the
optimal orders are achieved, up to an arbitrary small power, by a method that
combines weak order 2.0 Itô-Taylor steps with strategies for the reduction of the
size and the diameter of the support of a discrete measure, see Theorem 6.2 and
Remark 6.4.

In line (II) of the project we establish an integration by parts formula for the
quadrature of discontinuous payoffs in a multidimensional Heston model. We use
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integration by parts of Malliavin calculus to smoothen the original functional.
In combination with a payoff-splitting we obtain very efficient multilevel Monte
Carlo schemes that achieve errors of order N� 1

2Co.1/ in the runtime N of the
algorithms. We work under mild integrability conditions on the payoff and under
a non-negativity assumption on the volatility.

In line (III) of the project we consider the path-dependent and the marginal
setting for a Lévy-driven SDE. We consider multilevel schemes that make use
of approximations based on Euler schemes with (nondeterministic) jump-adapted
update times. The main results can be summarised as follows.

• The root mean squared error achieved by appropriate multilevel schemes is of
order N� 1

2Co.1/ in the runtime N in the path-dependent setting with payoffs that
are Lipschitz continuous with respect to the supremum norm, see Theorem 6.6.

• In the case of Lévy-driven SDEs with Gaussian component one has stable
convergence of certain error processes, see Theorem 6.7, which implies a central
limit theorem for the marginal setting, see Theorem 6.8.

These three lines of research aim at enhancing our understanding of quadrature
problems for SDEs in various directions. Although a synthesis of these directions
has not yet been carried out we would like to point out a number of potential
questions that arise through their interplay.

Line (I) considers deterministic methods for classical stochastic differential
equations and it is natural to ask for extensions to the case of discontinuous driving
processes as considered in line (III). Line (II) develops specific multilevel methods
for classical stochastic differential equations and hence it is natural to consider
central limit theorems for these schemes as in line (III). Conversely, the ideas in (II)
can be equally well employed for Lévy-driven SDEs with a Gaussian component
and it is natural to ask whether a central limit theorem as in (III) holds true for the
resulting numerical schemes.

6.2 Constructive Quantization of Systems of SDEs

In this section we summarize the results that have been obtained within line (I) of the
project on the construction and the analysis of methods for quantization of systems
of SDEs. For proofs and further details regarding Sects. 6.2.1 and 6.2.2 we refer
to [35] and [36], respectively.

We consider a d -dimensional equation (6.1) with Y given by an m-dimensional
Brownian motion and Lipschitz continuous coefficients a and b, and for simplicity
we assume T D 1.

The computational task is to approximate the distribution

S.x0; a; b/ D PX1

of the solution X of (6.1) at time t D 1 by a probability measure
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OS.x0; a; b/ D
NX

iD1
ci ıxi

on IRd with finite support based on the initial value x0 and finitely many evaluations
of a and b or derivatives of a and b.

The constructive approximation of marginal distributions of SDEs has been
studied in [28–31, 34] with a focus on upper bounds, and we refer to [33] for the
analogous problem on the path space. A technique to prove lower bounds has so far
been developed only in a particular setting in [40].

In the sequel M.IRd / and M1.IRd / denote the sets of finite measures and
probability measures on IRd with finite support, respectively. For sequences un and
vn in Œ0;1/ we write un � vn if there exists c > 0 such that un � c vn for all n 2 IN.

6.2.1 Complexity Analysis of Marginal Quantization

Consider a class C of equations .x0; a; b/ given by

C D C0 � C1 � C2;

where C0 
 IRd and C1 and C2 are classes of functions aW IRd ! IRd and bW IRd !
IRd�m, respectively, that are at least Lipschitz continuous.

We study deterministic algorithms

OS WC ! M1.IR
d /

in the real number model of computation that use x0 and finitely many evaluations of
a and b or derivatives of these functions to compute an approximation OS.x0; a; b/ 2
M1.IRd / to the distribution S.x0; a; b/. The class of all deterministic algorithms OS
is denoted by S.

We employ the following three notions of the cost of an algorithm OS 2 S. For any
equation .x0; a; b/ 2 C we use n. OS; .x0; a; b// to denote the number of evaluations
of a; b; @ai =@xp; @bi;j =@xp etc. that are carried out by OS for this equation and we
define the information cost of OS by

costinf. OS/ D supfn. OS; .x0; a; b//W .x0; a; b/ 2 C g:

Furthermore,

costsupp. OS/ D supf#supp. OS.x0; a; b//W .x0; a; b/ 2 C g

is the maximum support size of the probability measures computed by OS . Finally,
we consider the total computational cost of OS given by
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costtotal. OS/ D costinf. OS/C costsupp. OS/C supfop. OS.x0; a; b//W .x0; a; b/ 2 C g;

where op. OS.x0; a; b// is the number of all basic computational operations, i.e., arith-
metical operations, jumps, assignments and evaluations of elementary functions,
that are carried out by OS for the input .x0; a; b/.

For the definition of the error of OS we employ a class F of payoffs f W IRd ! IR
that are measurable and satisfy a polynomial growth condition. We use

�. OS.x0; a; b/; S.x0; a; b// D sup
f 2F

nˇ
ˇ
ˇ

Z

IRd
f d OS.x0; a; b/�

Z

IRd
f dS.x0; a; b/

ˇ
ˇ
ˇ
o

to quantify the error of each single approximation OS.x0; a; b/ and we define

error. OS/ D supf�. OS.x0; a; b/; S.x0; a; b//W .x0; a; b/ 2 C g:

The key quantities of the complexity analysis are the N -th minimal errors

e�
N D e�

N .C ;F / D infferror. OS/W OS 2 S; cost�. OS/ � N g;

where � 2 finf; supp; totalg.
For r 2 IN,K > 0 and ˇ � 0 we use F .r;K; ˇ/ to denote the class of functions

h 2 C r.IRd I IR/ that satisfy jh.˛/.x/j � K � .1Ckxkˇ1/ for every x 2 IRd and every
˛ 2 INd

0 with 1 � k˛k1 � r . Moreover, we put

F 0.r;K/ D fh 2 F .r;K; 0/W jh.0/j � Kg:

Theorem 6.1. Assume m � d . Let r; s1; s2 2 IN, K > 0, ˇ � 0 and consider the
class

C D C .s1; s2;K/ D Œ�K;K�d � .F 0.s1;K//
d � .F 0.s2;K//

d�m (6.2)

of equations and the class F D F .r;K; ˇ/ of payoffs. Then

N��� � e�
N .C ;F / � N���C"

for every " > 0 and � 2 finf; supp; totalg with

�� D
8
<

:

min.s1; s2/=d; if � D inf;
r=d; if � D supp;
min.s1; s2; r/=d; if � D total:

We conjecture that the upper bound in Theorem 6.1 actually holds with " D 0.
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Remark 6.1. The lower bounds in Theorem 6.1 are derived by relating the respec-
tive minimal errors to minimal errors for suitably chosen weighted integration
problems on IRd and use results on corresponding lower bounds from [9, 38].

In the particular case of � D inf we consider the two subclasses of C given by

C .1/ D f0g � .F 0.s;K//d � fK �Ed g;
C .2/ D f0g � f0gd � fdiag.h/ j h 2 .F 0.s;K//d g;

where Ed denotes the identity matrix in IRd�d and diag.h/W IRd ! IRd�d is defined
by .h.x//i;j D hi .x/ if i D j and .h.x//i;j D 0 otherwise. We then essentially
follow the approach in [40] and use a series expansion of the Lebesgue density of
PX1 by means of the parametrix method, see [14], to obtain

einf
N .C

.i/; ff g/ � N�s=d (6.3)

for any non-constant f 2 F .1;K; ˇ/ in the case i D 1 and any non-multilinear
f 2 F .2;K; ˇ/ in the case i D 2.

Remark 6.2. Let " > 0. For the proof of the upper bounds in Theorem 6.1
we construct a sequence of algorithms OSn;" such that limn!1 cost�. OSn;"/ D 1
as well as

error. OSn;"/ � .cost�. OSn;"//���C" (6.4)

simultaneously for � D inf, � D supp and � D total.
However, implementing OSn;" requires at least nd

2nd min.s1;s2/ basic computational
operations in a precomputation step, so that these algorithms are of no practical
use. The main purpose of constructing and analysing OSn;" is to show that the lower
bounds for the minimal errors in Theorem 6.1 are essentially sharp. In Sect. 6.2.2 we
present algorithms that do not rely on precomputation, are easy to implement and
perform almost asymptotically optimal for a large subclass QC of C in the particular
case of r D 1 and min.s1; s2/ � 6, see Theorem 6.2 and Remark 6.4.

Remark 6.3. Assume m < d . One can show that the upper bounds in Theorem 6.1
are still valid in this case. Moreover, it is easy to see that the lower bounds for the
minimal errors esupp

N in Theorem 6.1 hold true as well. For the minimal errors einf
N

we only have the lower bounds cN� min.s1;s2/=m with a positive constant c > 0, up to
now. The precise order of convergence of the quantities einf

N is unknown to us.

6.2.2 Marginal Quantization Based on a Weak Itô-Taylor
Scheme

It is natural to ask whether the upper bounds in Theorem 6.1 can be achieved by
implementable algorithms that do not rely on heavy precomputation. The answer
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to this question is positive, at least, if further restrictions are imposed on the input
equations. In the following we assume m � d and min.s1; s2/ � 6 in (6.2). Let
	 > 0 and consider the subclass QC 
 C of equations given by

QC D QC .K;	/ D f.x0; a; b/ 2 C W kak1; kbk1 � K; inf
x2IRd

�min.bbT.x// � 	g;

where �min.bbT.x// denotes the smallest eigenvalue of the matrix bbT.x/ 2 IRd�d .
For every n 2 IN and " > 0 we introduce a deterministic method

QSn;" W QC ! M1.IR
d /

that computes an approximation QSn;".x0; a; b/ in the following way. Starting with
the one-point measure in x0 it iteratively applies, with time-steps � according to
a non-uniform discretization of the time interval Œ0; 1�, a linear transition T a;b� on
M1.IRd /, which yields an approximation to the distribution of the solution of the
equation .x; a; b/ at time � for any x 2 IRd , together with strategies D"

� and R� to
reduce the diameter and the size of the support of a probability measure inM1.IRd /,
respectively, in order to avoid an explosion of the computational cost. The number
of time-steps is given by n and the parameter " specifies the diameter reduction
strategy.

Fix .x0; a; b/ 2 QC . The definition of the transition T a;b� is based on corresponding
simplified weak order 2.0 Itô-Taylor steps Y x;a;b� of length � starting in x 2 IRd that
have been introduced in [43] in the case d D m D 1 and extended to arbitrary
dimensions d;m 2 IN in [27, Sec. 14.2].

Consider independent random variables

�i ; �j;`; 1 � i � m; 1 � j < ` � m;

with

�i � 1=6 � ı�p
3� C 2=3 � ı0 C 1=6 � ıp

3� ; �j;` � 1=2 � .ı�� C ı� /:

Put J.0/;� D � , J.0;0/;� D �2=2 and

J.i/;� D �i ; J.i;0/;� D J.0;i/;� D � � �i
2
; J.i;j /;� D

8
<

:

.�i �j C �i;j /=2; if i < j;

.�i �j � �j;i /=2; if i > j;

.�2i � �/=2; if i D j;

for i; j ¤ 0, and define

Y x;a;b� D x C
X

˛2G
'a;b˛ .x/ J˛;� ; (6.5)



116 M. Altmayer et al.

where G D f0; : : : ; mg [ f0; : : : ; mg2, 'a;b˛ W IRd ! IR denotes the Itô-Taylor
coefficient function corresponding to a; b and ˛ 2 G and J˛;� serves as a discrete
approximation to the iterated Itô-integral corresponding to ˛ up to time � .

We define T a;b� WM1.IRd / ! M1.IRd / by

T a;b� .
/ D
X

x2supp.
/


.fxg/P
Y
x;a;b
�

:

For the reduction of the diameter of a support we project points x 2 IRd onto the
cube Œ�s�"; s�"� d by taking

bxc";� D �
xi C .�xi � ��"/C � .xi � ��"/C

�
iD1;:::;d

and we define D"
� WM1.IRd / ! M1.IRd / by

D"
�.
/ D

X

x2supp.
/


.fxg/ � ıbxc";� :

Next we explain the strategy to reduce the size of a support. Let q 2 IN. By a
well-known sequential support point elimination procedure due to [13] we obtain
an algorithm RWM.IRd / ! M.IRd / that satisfies

supp.R.
// 
 supp.
/; jsupp.R.
//j �
�
d C q

d

�

as well as
Z

IRd
p dR.
/ D

Z

IRd
p d


for every polynomial p on IRd up to order q. The number of arithmetical operations
needed to carry out one sequential step of the computation of R.
/ is proportional

to
�
dCq
d

	3
. Hence q should be small. On the other hand, q should be large enough

in order that the reduced measure R.
/ stays close to 
 with respect to taking
expectations of smooth functions. In fact, a direct application of this algorithm
would lead to a suboptimal relation of error and cost for any choice of the parameter
q. We therefore use the following variant of a localized version of R, which has
been introduced in [30] for the Wiener cubature approach. Take q D 5, put

Aj;� D d�
iD1Œji

p
� ; .ji C 1/

p
�/
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for j 2 Zd and define R� WM1.IRd / ! M1.IRd / by

R�.
/ D
X

j2Zd
R
� X

x2supp.
/\Aj;�

.fxg/ ıx

	
:

Finally, we employ the non-uniform time discretization

ti D 1 � .1 � i=n/3; i D 0; : : : ; n;

which, in a more general form, has been introduced in [28] and is also used in [30,
31] for the Wiener cubature approach.

Put �i D ti � ti�1 for i D 1; : : : ; n and define

QSn;".x0; a; b/ D R�n ıD"
�n

ı T a;b�n
ı : : : ıR�1 ıD"

�1
ı T a;b�1

.ıx0/:

Proposition 6.1. We have

cost�. QSn;"/ � cn3d.1C2"/=2

for � 2 fsupp; totalg and

ˇ
ˇ
ˇ

Z

f d QSn;".x0; a; b/�
Z

f dS.x0; a; b/
ˇ
ˇ
ˇ � c � kf kLip � n�3=2;

for every .x0; a; b/ 2 QC and every Lipschitz continuous f W IRd ! IR, where c > 0

only depends on d;m;K;	; " and kf kLip is the Lipschitz semi-norm of f .

Proposition 6.1 implies the following worst case error estimate of QSn;".
Theorem 6.2. For every " > 0 the worst case error of QSn;" on QC with respect to the
class of payoffs F D F .1;K; 0/ satisfies for � 2 fsupp; totalg,

error. QSn;"/ � .cost�. QSn;"//�
1

d.1C2"/ : (6.6)

Remark 6.4. Using piecewise polynomial interpolation of the coefficients a and b
one obtains a modified version of QSn;", which achieves (6.6) as well as

error. QSn;"/ � .costinf. QSn;"//�
min.s1 ;s2/
d.1C2s"/ :

It is easy to see that the lower bounds from Theorem 6.1 are still valid with C
replaced by QC , i.e.,

e�
N .

QC ;F / �
�
N�1=d ; if � 2 fsupp; totalg;
N� min.s1;s2/=d ; if � D inf:
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Consequently, the sequence of algorithms QSn;" performs asymptotically optimal, up
to an arbitrary small exponent, with respect to cost� for � 2 fsupp; inf; totalg.

Remark 6.5. The method QSn;" is already applicable to equations .x0; a; b/ 2
C .s1; s2;K/ with s1; s2 � 2 since only Itô-Taylor coefficient functions up to
the iteration order 2 are involved in the construction of the underlying weak Itô-
Taylor steps, see (6.5). However, it is an open question, whether QSn;" performs
asymptotically optimal also in the case 2 � min.s1; s2/ < 6, which can not
appropriately be treated by our error analysis techniques. Similarly, it is unclear
to us, whether the optimality properties of QSn;" carry over to classes of payoffs
F .r;K; ˇ/ with r > 1. We conjecture that in the latter case asymptotically optimal
algorithms can be constructed by using simplified Itô-Taylor steps of higher weak
order if the coefficients of the equation are sufficiently smooth.

6.3 Multilevel Methods for Discontinuous Payoffs
in the Generalized Heston Model

In this part of the project we aim to compute expectations of discontinuous
path-independent functionals in the generalized Heston model, which is a very
popular stochastic volatility model in mathematical finance. Thus the goal is to
efficiently compute

S.f / D EŒf .XT /�;

where X D .Xt /t2Œ0;T � is the generalized Heston price process. An efficient
method for Lipschitz continuous functionals is the multilevel Monte Carlo method,
see [22, 24], and also Sect. 1.3 in the context of Lévy driven SDEs. Combining
approximations using different step-sizes in a way that reduces the overall variance
this method usually is significantly more efficient than standard Monte Carlo.
However, the method requires a good L2-convergence rate for the approximations
which is often not easy to achieve for discontinuous functionals, see [8, 23].

To overcome this problem we use the integration by parts formula from Malliavin
calculus to replace the discontinuous functional by a continuous one, i.e.

S.f / D EŒf .XT /� D EŒG.XT / �˘�;

whereG is Lipschitz continuous and˘ is a stochastic weight term (see Theorem 6.4
below). Combined with a payoff-splitting to reduce the variance of the weight, this
estimator outperforms the direct multilevel Monte Carlo estimator for S.f / in our
numerical experiments. This is also supported by the error analysis we have carried
out so far.

The underlying SDE for the Heston model has non-Lipschitz coefficients. Thus
neither are smoothness assumptions of Sects. 1.1 and 1.3 satisfied here nor are
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standard results for the numerical analysis of SDEs applicable, see e.g. [27]. We
mention that discontinuous functionals also appear when estimating distribution
functions which is the topic of [21].

6.3.1 Malliavin Calculus

Malliavin calculus adds a derivative operator to stochastic analysis. Basically, if X
is a random variable and .Wt/t2Œ0;T � a d -dimensional Brownian motion, then the
Malliavin derivative measures the dependence of X onW . The Malliavin derivative
is defined by a standard extension procedure: Let S be the set of smooth random
variables of the form

S D '

�Z T

0

h1.s/dWs; : : : ;

Z T

0

hk.s/dWs

�

with hi 2 L2.Œ0; T �IRd /, i D 1; : : : ; k,
R T
0
hj .s/dW.s/ D Pd

iD1 h
.i/
j dW.i/

s and

' 2 C1.Rk IR/ bounded with bounded derivatives. The derivative operator D of
such a smooth random variable is defined as

DS D
kX

iD1

@'

@xi

�Z T

0

h1.s/dWs; : : :

Z T

0

hk.s/dWs

�

hi :

This operator is closable from Lp.˝/ into Lp
�
˝IL2.Œ0; T �IRd /� and the Sobolev

space D1;p denotes the closure of S with respect to the norm

kXkp1;p WD EjX jp C E

ˇ
ˇ
ˇ
ˇ

Z T

0

jDsX j2ds

ˇ
ˇ
ˇ
ˇ

p

:

In particular, if D.i/ denotes the i -th component of the Malliavin derivative, i.e. the
derivative with respect to W .i/, we have

D.i/W
.j /
t D

�
1Œ0;t � if i D j;

0 else,

for i; j D 1; : : : ; d . The derivative operator follows rules similar to ordinary
calculus. For example, for a random variable X 2 D1;2 and g 2 C1.RIR/ with
bounded derivative the chain rule reads as

Dg.X/ D g0.X/DX: (6.7)

The divergence operator ı is the adjoint of the derivative operator. If a random vari-
able u 2 L2

�
˝IL2.Œ0; T �IRd /� belongs to dom.ı/, the domain of the divergence

operator, then ı.u/ is defined by the duality (or integration by parts) relationship
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EŒXı.u/� D E
�Z T

0

hDsX; usids

�

for all X 2 D1;2: (6.8)

Moreover, if u 2 dom.ı/ and X 2 D1;2 such that Xu 2 L2�˝IL2.Œ0; T �IRd /�, then
we have the following formula:

ı.Xu/ D Xı.u/�
Z T

0

hDsX; usids: (6.9)

For more details on Malliavin calculus we refer to [39].

6.3.2 Generalized Heston Model

We study a generalized version of Heston’s stochastic volatility model, where the
volatility v D .vt /t2Œ0;T � is given by the SDE

dvt D �.� � vt /dt C �v�t dW .1/
t

with parameters �; �; � > 0, � 2 Œ1=2; 1/, initial value v0 > 0 and a Brownian
motion W .1/. In the case � D 1=2 the volatility process is a Cox-Ingersoll-Ross
process (CIR) and this leads to the standard Heston model, while for � > 1=2 the
volatility process is known as mean-reverting constant elasticity of variance process
(CEV) [5]. It turns out that for our integration by parts procedure it is necessary
that the volatility processes have strictly positive sample paths. In the CEV case this
requires no further condition, but in the CIR case we need the parameters to satisfy
2�� > �2 which is however often fulfilled in practice (see e.g. [1,19]). In both cases
the price process is given by

dXt D bXtdt C p
vtXtd

�
�W

.1/
t C

p
1 � �2W

.2/
t

	
;

where b � 0, � 2 Œ�1; 1� andW .2/ is a Brownian motion independent of W .1/.
Often it will be easier to consider the transformed processes �t WD v1��t and

Zt WD log.Xt /:

d�t D .1 � �/
�
���

� �
1��

t � ��t � ��2

2
��1
t

	
dt C �.1 � �/dWt;

dZt D
�
b � 1

2
vt
	

dt C �
p

vtd
�
�W

.1/
t C

p
1 � �2W

.2/
t

	
:

Neither the original nor the transformed processes satisfy the global Lipschitz
assumption for its coefficients that is required by most standard results for the
numerical approximation of SDEs as well as in Malliavin calculus. However,
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by approximating � and Z by suitable processes which do fulfill this crucial
assumption, we can prove that vt andXt are in fact Malliavin differentiable and can
explicitly calculate their derivatives. It turns out that the derivative of the Heston
price with respect to W .2/ is particularly simple:

Theorem 6.3 ([4, Theorem 4.3]). If XT 2 LpC".˝/ for some p � 1, " > 0, then
XT 2 D1;p and

D
.2/
t XT D XT �D.2/

t ZT D
p
1 � �2XT

p
vt ; t 2 Œ0; T �:

Note that the integrability condition on the Heston price can be expressed in terms
of its parameters, see e.g. [5]. For conciseness we omit this.

6.3.3 Quadrature Formula

The Malliavin differentiability of XT allows us to replace a functional f by one of
its antiderivatives F :

Theorem 6.4 ([4, Theorem 5.3]). Assume that f W Œ0;1/ ! R is measurable and
of at most quadratic growth. Let F W Œ0;1/ ! R be given by F.x/ WD R x

0
f .z/dz.

Assume that either � > 1=2 or 2�� > �2 and that there is an " > 0 such that
XT 2 L2C".˝/. Then

EŒf .XT /� D E

"
F.XT /

XT
�
 

1C 1
p
1 � �2T �

Z T

0

1p
vt

dW .2/
t

!#

:

The idea of the proof is as follows: To replace f by F we use the chain rule (6.7)
in the 2nd equality and the integration by parts formula (6.8) in the 3rd equality:

EŒf .XT /� D 1

T
� E

"Z T

0

f .XT / �D.2/
t XT � 1

D
.2/
t XT

dt

#

D 1

T
� E

"Z T

0

D
.2/
t .F .XT // � 1

D
.2/
t XT

dt

#

D 1

T
� E
�

F.XT / � ı.2/
�

1

D.2/XT

��

:

Now it remains to compute the Skorohod integral which is possible thanks to the
simple form of D.2/

t XT and formula (6.9).
For digital options, i.e. f D 1Œ0;K� for some K > 0, the resulting functional

F.x/=x is bounded and globally Lipschitz continuous. The price to pay is that
the weight term ˘ D 1 C .

p
1 � �2T /�1 R T

0
v�1=2
t dW .2/

t typically has a very high
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variance due to the usually low average volatility �. To solve this problem, we split
discontinuous payoffs into f D g C h with a Lipschitz continuous part g and a
discontinuous part with small support h. The quadrature formula is then applied
only to the discontinuous part:

EŒf .XT /� D E

"

g.XT /C H.XT /

XT
�
 

1C 1
p
1 � �2T

�
Z T

0

1p
vt

dW .2/
t

!#

;

whereH.x/ D R x
0
h.z/dz.

6.3.4 Multidimensional Heston Models

A multidimensional Heston model consists of several one-dimensional models
which are correlated via the correlation of the driving Brownian motions. For
i D 1; : : : ; d the i -th volatility and price process are given as

dv.i/t D �i .�i � v.i/t /dt C �i .v
.i/
t /

�i dW .i;1/
t ;

dX.i/
t D biX

.i/
t dt C

q

v.i/t X
.i/
t dW .i;2/

t ;

where W .i;1/;W .i;2/, i D 1; : : : ; d , can be arbitrarily correlated Brownian motions,
as long as their covariance matrix is positive definite. In this case there exists an
invertible upper 2d � 2d triangular matrix R such that

Z D R�1 �W .1;1/; : : : ;W .d;1/;W .1;2/; : : : ;W .d;2/
��

is a 2d -standard Brownian motion. Then a slightly modified quadrature formula
holds:

Theorem 6.5 ([4, Theorem 6.5]). Assume that f W Œ0;1/d ! R is measurable and
of at most quadratic growth. Let F W Œ0;1/d ! R be given by

F.x/ WD
Z x1

0

f .�; x2; : : : ; xd /d�:

Assume that for each j D 1; : : : ; d either �j > 1=2 or 2�j�j > �2j and that there

is an " > 0 such that X.j /
T 2 L2C".˝/ for all j D 1; : : : ; d . Then

EŒf .XT /� D E

2

6
4
F.XT /

X
.1/
T

�

0

B
@1C 1

R11T
�
Z T

0

1
q

v.1/t

dZ.1/
t

1

C
A

3

7
5 :
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Note that a reordering of the price processes allows to apply the integration by parts
procedure to arbitrary components of f .

6.3.5 Discretization

To approximate v we use the drift-implicit Euler scheme for � because it is easy
to implement, preserves positivity and leads to a strong convergence order of one
for the approximation of v at fixed time points as shown in e.g. [3, 37]. Note that
this is the only scheme for v for which such a sharp convergence result is known
at the moment. For simplicity we consider only the one-dimensional case here. The
scheme is given by O�0 WD v1��0 and

O�kC1 WD O�k C .1 � �/
�
�� O�� �

1��

kC1 � � O�kC1 C �2�

2
O��1
kC1

	
�C .1� �/��kW

.1/;

Ovk WD O�
1

1��

k

with �kW
.1/ WD W

.1/

.kC1/� �W
.1/

k� and � > 0. For the Heston model, � D 1=2, the
implicit equation for O�kC1 can be solved explicitly while in the general case it can
be solved using standard root-finding methods.

In any case the price is then approximated using Euler’s method on the log-price,
i.e. OZ0 WD log.X0/ and

OZkC1 WD OZk C
�
b � 1

2
Ovk
	
�C

p
Ovk
�
��kW

.1/ C
p
1 � �2�kW

.2/
	
;

OXk WD e
OZk :

Using these approximations we can formulate two estimators. The first uses the
discontinuous functional directly, while the second one uses the quadrature formula
and payoff-splitting.

OP1 D f . OXbT=�c/;

OP2 D g. OXbT=�c/C H. OXbT=�c/
OXbT=�c

�
0

@1C 1
p
1 � �2 T

�
bT=�cX

kD0

1pOvk
�kW

.2/

1

A :

To use multilevel Monte Carlo good L2-convergence properties are important,
see [22], which are provided by the following result for our estimator based on the
integration by parts procedure.

Proposition 6.2. Let g; hW Œ0;1/ ! R be measurable and bounded with g being
Lipschitz-continuous. If � D 1

2
and 2��=�2 > 3 or � > 1=2, then
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E

ˇ
ˇ
ˇ
ˇ

OP2 �
�

g.XT /C H.XT /

XT
�˘
�ˇ
ˇ
ˇ
ˇ

2

� C ��

for some constant C > 0.

The main difficulty for � D 1=2 is to control the inverse moments for the CIR
process and its approximations. The same problem also appears when analyzing the
approximation of the CIR process itself, see [3, 37]. For the bias of OP2 numerical
tests indicate a weak order of one. Our current research focuses on establishing this
weak convergence rate and also on an improvement on the condition for � D 1=2

in the above Proposition.

6.4 Multilevel Methods for Lévy-Driven SDEs

In this section we summarize our research on multilevel Monte Carlo methods for
Lévy-driven stochastic differential equations. Let us first fix the notation. Let X D
.Xt/t2Œ0;T � be the solution of the stochastic differential equation

Xt D x0 C
Z t

0

a.Xs�/ dYs; (6.10)

where a is a Lipschitz continuous coefficient and Y D .Yt /t2Œ0;T � is a square
integrable Lévy process. For ease of notation we will assume that the processes
X and Y are one-dimensional, although this is not mandatory for most results. In
particular, one could add a Lipschitz drift term and get analogous results.

The aim of this branch of the project was to design and analyse new numerical
multilevel methods for the computation of expectations S.f / D EŒf .X/�, in the
path-dependent and marginal setting.

The distribution of the L2-Lévy process Y is characterized by the Lévy triplet
.b; �2; 
/ constituted by

• The drift b 2 R,
• The diffusion coefficient �2 2 Œ0;1/ and
• The Lévy measure 
, a measure on Rnf0g with

R
x2 
.dx/ < 1

via its characteristic exponent EŒeizYt � D expft .z/g (z 2 R), where

 .z/ WD ib � 1

2
�2z C

Z

.eizx � 1 � izx/ 
.dx/:

The Lévy process is naturally connected to a simple Poisson point process ˘ on
the Borel sets of .0;1/ � .Rnf0g/ given by

˘ D
X

s>0W�Ys 6D0
ı.s;�Ys/;
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where�Ys D Ys �Ys� denotes the displacement of Y in s. It has intensity `j.0;1/˝

, where `j.0;1/ denotes Lebesgue measure on .0;1/, and we will also consider its
compensated version, the random signed measure N̆ on .0;1/� .Rnf0g/ given by

N̆ D ˘ � `j.0;1/ ˝ 
:

Now we can represent .Yt / as the limit

Yt D bt C �Wt C lim
ı#0

Z

.0;t ��B.0;ı/c
x d N̆ .s; x/; (6.11)

where .Wt/ denotes an independent Brownian motion and the limit is to be
understood locally uniformly in L2. For further details concerning Lévy processes,
we refer the reader to [6, 11] and [42]. For ease of notation, we write

Z

.0;t ��A
x d N̆ .s; x/ D lim

ı#0

Z

.0;t ��.A\B.0;ı/c /
x d N̆ .s; x/;

for a Borel set A of Rnf0g and note that the limit always exists locally uniformly
in L2.

6.4.1 Multilevel Monte Carlo with an Jump-Adapted Euler
Scheme

Let us introduce the numerical scheme explicitly. We use approximate solutions that
are parametrised by three positive parameters

• h 2 .0;1/, the threshold for the size of the jumps being considered large or
small,

• " 2 .0;1/ with T
"

2 IN, the fixed update intervals for the Brownian motion, drift
and large jumps,

• "0 2 "IN, the update intervals for the contribution of the small jumps.

Let us first explain how the Lévy process is simulated. We will represent the Lévy
process Y as the sum of four independent processes. We denote by Nh and Mh the
process constituted by the compensated small jumps, resp. large jumps, that is

Nh
t D

Z

.0;t ��B.0;h/c
x d N̆ .s; x/; Mh

t D
Z

.0;t ��.B.0;h/nf0g/

x d N̆ .s; x/; for t 2 Œ0; T �;

and note that Yt D bt C �Wt C Nh
t C Mh

t , see (6.11). In general simulation
of increments of .Mh

t / is not straight-forward. With precomputation it is possible
to design fast simulation algorithms on intervals of fixed length provided that the
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dimension of the Lévy process is small. Conversely, we would like to consider large
jumps immediately when they occur. We work with two sets of update times, namely

I D ."IN0 \ Œ0; T �/ [ ft 2 .0; T � W �Nh
t 6D 0g D fT0; T1; : : : g;

where T0; T1; : : : is an enumeration of the times in I in increasing order. The
contribution of the small jumps Mh is only taken into account at the deterministic
times J D "0IN0 \ Œ0; T �.

In practise, one simulation of an approximate solution is based on the simulation
of W and Nh on the random set of times I and a simulation of Mh on the
(deterministic) time grid J. Simulation of Nh is achieved via a simulation of the
point process ˘ j.0;T ��B.0;h/c and the simulation of the Brownian motion is straight-
forward since it is independent of Nh. To simulate the increments of Mh on
J, we invert the characteristic function with the Hilbert transform method in a
precomputation and record the cumulative distribution function on a large and fine
enough grid, see [12].

We are now in the position to introduce the approximate solution. We let OX0 D x0
and for n D 1; 2; : : :

OXTn D OXTn�1 C a. OXTn�1 / .b.Tn � Tn�1/C �.WTn �WTn�1 /CNh
Tn

�Nh
Tn�1

/

C1lJ.Tn/ a. OXTn�"0/ .Mh
Tn

�Mh
Tn�"0/:

There are two canonical ways to extend the approximate solution to a process on
Œ0; T �: the piecewise constant approximation extends the process such that it is
constant on each interval ŒTn�1; Tn/ and the continuous approximation, which uses

OXt D OXTn�1 C a. OXTn�1 / .b.t � Tn�1/C �.Wt �WTn�1 /CNh
t �Nh

Tn�1
/

for t 2 ŒTn�1; Tn/.
We work with multilevel Monte Carlo schemes as introduced by Giles [22]

and Heinrich [24]. Instead of working with one approximate solution that is
parametrised by .h; "; "0/ we now work with a hierarchical family of approximate
solutions parametrised by .hk; "k; "

0
k W k 2 IN/ with all individual sequences

decreasing to zero as k ! 1. For each k 2 IN, we denote by OXk D . OXk
t /t2Œ0;T � the

piecewise constant approximation for the triple .hk; "k; "0
k/. Formally, a multilevel

Monte Carlo scheme OS is an element of the IN-valued vectors .n1; : : : ; nL/ of
arbitrary finite length: for a measurable function f W DŒ0; T � ! R we approximate
S.f / by

EŒf . OX1/�C EŒf . OX2/ � f . OX1/�C : : :C EŒf . OXL/ � f . OXL�1/�

and denote by OS.f / the random output that is obtained when estimating the
individual expectations EŒf . OX1/�; EŒf . OX2/� f . OX1/�; : : : ; EŒf . OXL/� f . OXL�1/�
by classical Monte-Carlo with n1; : : : ; nL iterations and summing up the individual
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estimates. A natural notion of the cost of such an algorithm is the expected number
of Euler steps used in the simulation, that is

cost. OS/ D n1EŒ#I1�C
LX

kD2
nk EŒ#Ik�1 C #Ik�;

where Ik is as the I above for the k-th approximate solution.

6.4.2 Error Estimates in the Path-Dependent Case

In this section we consider the path-dependent setting. Let DŒ0; T � denote the
space of real-valued càdlàg functions on Œ0; T � endowed with supremum norm. The
quadrature problem for Lipschitz continuous functionals f W DŒ0; T � ! R was
already treated in the first period, see [15] and [16]. To explain the findings we
make use of the Blumenthal-Getoor index which is given by

ˇ WD inf
n
p 2 Œ0; 2� W

Z

0<jxj<1
jxjp d
.x/ < 1

o
2 Œ0; 2�:

The bottleneck in the simulation of Lévy-driven SDEs is the simulation of incre-
ments of the process .

R
.0;t ��.B .0;h/nf0g/ x d N̆ .s; x//t2Œ0;T �. In high dimensions it is

typically not feasible to do direct simulation. Two canonical approaches, typically
referred to as shot noise approximations, are

1. To simulate jumps larger than a threshold and disregard small jumps or
2. To simulate jumps larger than a threshold and add an appropriate Brownian

motion for the non-simulated small jumps, see [7].

In the case where the Blumenthal-Getoor index is smaller or equal to one, the first
approach leads to multilevel Monte Carlo schemes whose root mean squared error
decays of order N�1=2Co.1/ when the runtime N of the algorithm tends to infinity.
However, if the Blumenthal-Getoor index is larger than one efficiency is drastically
fading, see [16] . A remedy to get better rates for ˇ 2 Œ1; 2� is approach two.
Here significantly better rates can be proved for large ˇ. However the order is still
decreasing with increasing ˇ and clearly lower than the order 1=2 obtained for small
Blumenthal-Getoor indices, see [15]. The marginal setting was considered in [32]
and similar effects where observed.

For the multilevel scheme introduced in Sect. 6.4.1 the Blumenthal-Getoor index
has no severe impact on the order of convergence. One often obtains multilevel
Monte Carlo schemes with errors of order N� 1

2Co.1/, when the runtime N of the
algorithm tends to infinity:

Theorem 6.6 ([18]). Let Y be a square integrable Lévy process with
Blumenthal-Getoor index smaller than two and a W R ! R be a Lipschitz



128 M. Altmayer et al.

continuous coefficient. For a measurable and Lipschitz continuous (w.r.t. supremum
norm) function f W DŒ0; T � ! R, there exist multilevel Monte Carlo algorithms
. OSN W N 2 IN/ with cost. OSN / � N such that the following property holds for a
positive constant �:

1. If the Lévy process Y has no Gaussian component, then one has

E
hˇ
ˇ OSN .f /� S.f /

ˇ
ˇ2
i1=2 � � N� 1

2 ; for large N:

2. If the Lévy process Y has a Gaussian component, then one has

E
hˇ
ˇ OSN .f / � S.f /ˇˇ2

i1=2 � � N� 1
2 .logN/

3
2 ; for large N:

Remark 6.6. The algorithms . OSN W N 2 IN/ and the constant � can be uniformly
chosen for all f with Lipschitz-seminorm less than a constant. For the particular
choice of the parameters we refer the reader to [18].

6.4.3 Stable Convergence and Central Limit Theorems

Central limit theorems for classical Monte Carlo were derived by Duffie and Glynn
in [20] for various schemes for classical and Lévy-driven SDEs. These results
are typically the consequence of stable convergence of the error process between
approximate and genuine solution. Unfortunately the stable convergence results
cannot be immediately used in the context of multilevel Monte Carlo and we
mention Ben Alaya and Kebaier [10] for a central limit theorem for multilevel Monte
Carlo for classical diffusions.

Motivated by Theorem 6.6 we analyse the jump adapted Euler approximations
introduced above which are typically not covered by standard theory even for
classical Monte Carlo. We will proceed as follows. First we give the necessary
assumptions and introduce the main theorem on stable convergence of the involved
error processes. In a second step, we deduce the central limit theorem for the
multilevel scheme.

Stable convergence, first introduced by Rényi [41] and then studied by Aldous
and Eagleson [2], is a property of sequences of random variables. To be more
precise, given a �-field F and a sequence .Zk/k2IN of F -measurable random
variables taking values in a Polish space E , we say .Zk/ converges stably to Z

or briefly Zk
stableH) Z, if for every A 2 F and continuous and bounded f W E ! R

lim
k!1 EŒ1lAf .Zk/� D EŒ1lAf .Z/�:

We refer the reader to [25] and [26] for basic results concerning stable convergence.
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Assumptions. We assume that � ¤ 0 and suppose that the Blumenthal-Getoor
index is strictly smaller than two. The parameters .hk; "k; "0

k W k 2 IN/ are
componentwise monotonically decreasing sequences satisfying

• "k D M�kT , where M 2 f2; 3; : : : g is fixed,
• 
.B.0; hk/

c/ "k ! � as k ! 1, where � 2 Œ0;1/, and
• "0

k 2 "kIN \ .0; T � with "0
k

R
B.0;hk/

x2 
.dx/ log2.1 C 1="0
k/ D o."k/ and

h2k log2.e C 1="0
k/ D o."k/.

Such parameters exist, if the Blumenthal-Getoor index is strictly smaller than two.
To state the main theorem concerning stable convergence, we need some further

notation. We let F denote the �-field generated by the Lévy process Y . Further, we
denote by .Bt /t2Œ0;T � an F -independent standard Brownian motion and equip the
points of the point process ˘ with independent marks by denoting for every point
.s; x/ 2 ˘
• By �s , a standard normal distributed variable,
• By �s , an independent uniform random variable on Œ0; 1�, and
• By �s;1 and �s;2 independent Exp.�/ and Exp..M � 1/�/-distributed random

variables respectively.

Theorem 6.7 ([17]). Assume that a W R ! R is continuously differentiable with
uniformly bounded derivative a0. We denote by . OXk W k 2 IN/ the continuous
approximate solutions, as introduced in Sect. 6.4.1. Under the assumptions from
above, one has

"
� 1
2

k . OXkC1 � OXk/
stableH) U; in the Skorokhod topology;

where U D .Ut/t2Œ0;T � is the solution of

Ut D
Z t

0

a0.Xs�/ Us� dYs C �2� .�/

Z t

0

.aa0/.Xs�/ dBs

C�
X

s2.0;t �W�Ys 6D0

p
's �s .aa0/.Xs�/�Ys; (6.12)

where � 2 D
h
1
�

� .1 � e�� / 1
�2

i
.1 � 1

M
/, if � > 0, � 2 D 1

2
.1 � 1

M
/, if � D 0, and

's D
X

1�m�M
1lfm�1

M ��s< m
M g
h
min.�s;1; �s/� min

�
�s;1; �s;2; �s � m � 1

M

�i
:

Here the infinite sum in (6.12) has to be understood as an appropriate martingale
limit.

Theorem 6.8 ([17]). Let f W R ! R be Lipschitz continuous and differentiable in
PXT D P ıX�1

T -almost every point. Assume that ˛ � 1
2

is such that the limit
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� WD lim
n!1 "�˛

n E
h
f . OXn

T /� f .XT /
i

exists. For N � 1 we denote by OSN the multilevel scheme with parameters

.n1.N /; : : : ; nL.N/.N //

with

1. L.N/ D
l

logN
2˛ logM

m
and

2. nk.N / D d"k�1 N L.N/e, for k D 1; 2; : : : ; L.N /.

Then cost. OSN / D O.N.logN/2/ and one has

p
N
� OSN .f / � S.f /

	
H) N .�; �2/; as N ! 1;

where N .�; �2/ is the normal distribution with expectation � and variance �2 D
Var.f 0.XT / UT /.
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Chapter 7
Bayesian Inverse Problems and Kalman Filters

Oliver G. Ernst, Björn Sprungk, and Hans-Jörg Starkloff

Abstract We provide a brief introduction to Bayesian inverse problems and
Bayesian estimators emphasizing their similarities and differences to the classical
regularized least-squares approach to inverse problems. We then analyze Kalman
filtering techniques for nonlinear systems, specifically the well-known Ensemble
Kalman Filter (EnKF) and the recently proposed Polynomial Chaos Expansion
Kalman Filter (PCE-KF), in this Bayesian framework and show how they relate
to the solution of Bayesian inverse problems.

7.1 Introduction

In recent years the interest and research activity in uncertainty quantification (UQ)
for complex systems modelled by partial differential equations (PDEs) has increased
significantly. This is due both to growing available computing resources as well as
new efficient numerical methods for high-dimensional problems, which together
make the solution of UQ problems associated with PDEs feasible. The motivation
driving UQ is the simple fact that, in practical applications, we usually do not
know parameters, coefficients or even boundary conditions for the PDE model
under consideration exactly. A typical example are material properties such as
conductivity. At the same time, we may still have some knowledge about possible
values for these uncertain input data, e.g., the hydraulic conductivity of layered
clay may be between 10�6 and 10�4 cm/s. A careful simulation would take into
account the uncertainty in the input data and quantify the resulting uncertainty in the
output of the physical or PDE model. Although there are also other mathematical
techniques for modeling uncertainty such as fuzzy set theory or interval arithmetic,
we focus here on the probabilistic approach.
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Initially, the main interest has been in solving the forward problem, in which one
is given the probability law of uncertain data u � � with the goal of computing
the corresponding law of a quantity of interest � D F.u/, where F represents the
composition of solving a PDE and evaluating a functional of its solution. Current
numerical methods for this task include, e.g., multilevel Monte Carlo, stochastic
Galerkin and stochastic collocation methods, proper orthogonal decomposition, and
Gaussian process emulators.

Within UQ, the more fundamental task is to develop a good probability law
for the unknown quantity u reflecting our (possibly subjective) knowledge of u,
since this determines the outcome. In general, transforming expert knowledge and
physical reasoning into a probability distribution is a subtle and quite difficult
task. Moreover, incorporating any available information about the unknown into
the probability law is desirable, since this will, in general, reduce uncertainty and
lead to improved models. For this reason the inverse problem has received increased
attention in the UQ community.

Specifically, given noisy data z D G.u/C", the task is to either identify u or make
inferences, i.e., refine an initial model of u. Here we want to distinguish between
identification, i.e., determining a value u which best explains the data, and inference,
i.e., updating our understanding or belief about u based on the new information z.

The latter is more interesting for UQ purposes, since adjusting prior probability
models of the unknown according to indirect data yields an improved uncertainty
model for u, whereas identification would merely provide a certain best estimate
with no indication of how well this estimate is determined.

In the probabilistic setting, merging new information with a given prior model
(i.e., a prior random variable or probability measure), is performed by conditioning
this model on the available information, resulting in a conditional measure. The
procedure of conditioning, and thus also the conditional measure or distribution,
are rooted in Kolmogorov’s fundamental concept of conditional expectation. In
particular, Bayes’ rule provides an analytic expression for the conditional measure
in terms of the prior measure and provides the main tool in Bayesian inference as
well as Bayesian inverse problems.

Since Bayesian inverse problems have gained much attention in the scientific
computing community in the last few years, numerous algorithms and numerical
methods have been proposed for their solution. We provide a short overview of
existing methods and focus on the Kalman Filter and two of its variants, namely
the Ensemble Kalman Filter [15] and the Polynomial Chaos Expansion Kalman
Filter [35], which have been recently proposed for UQ in association with inverse
problems. In particular, we investigate what these Kalman filtering methods actually
compute and how they relate to Bayesian inverse problems and Bayes estimators.
Thus, our main purpose is to clarify which quantities Kalman filters can and cannot
approximate.

The remainder of this paper is organized as follows: Sect. 7.2 briefly recalls
the deterministic and Bayesian approaches to inverse problems and provides a
short overview of computational methods. In Sect. 7.3 we consider Kalman filtering
methods and analyze these in the light of Bayes estimators. In particular, we show
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that these filtering methods approximate a random variable which is, in general,
not distributed according to the desired posterior measure. Moreover, we illustrate
the performance of Kalman filters and the difference between their output and the
solution of the Bayesian inverse problem for a simple 1D boundary value problem
in Sect. 7.4. A summary and conclusions are given in Sect. 7.5.

7.2 Bayesian Approach to Inverse Problems

In this section we introduce the setting and notation for the inverse problem and
recall the basic concepts of the classical regularized least-squares and the Bayesian
approaches.

Throughout the article, j � j shall denote the Euclidean norm on R
k , k � k the norm

on a general separable Banach space .X ; k � k/, X � the topological dual of X and
Y a second separable Banach space.

We consider the abstract inverse problem of identifying an unknown u 2 X
given finite-dimensional but noisy observations z 2 R

k according to the model

z D G.u/C " (7.1)

containing an observation operator G W X ! R
k and measurement noise " 2 R

k .

Example 7.1 (Elliptic PDE). Consider the problem of determining the logarithm
� 2 C.D/ of the conductivity exp.�/ of an incompletely known porous medium
occupying a bounded domainD 
 R

d given observations of the pressure head p at
several locations in the domain of a fluid in steady flow through the medium. The
relation between � and p can be modelled by, e.g.,

� r � .e�rp/ D f on D; pj@D D 0: (7.2)

Here the unknown is u D � and the observation operator G is the mapping � 7!
.p.x1/; : : : ; p.xk// for given measurement locations xi 2 D, i D 1; : : : ; k.

Example 7.2 (Discrete dynamics). Consider a discrete-time dynamical system
fyngn2N0 with state evolution equation

ynC1 D hn.yn/; y0 D x 2 R
N ;

where hn W RN ! R
N governs the (deterministic) dynamics driving the system at

step n. Suppose we observe J noisy states

znj D ynj C "j ; j D 1; : : : ; J; 0 < n1 < � � � < nJ ;
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and wish to infer from these the unknown initial state u D x. Setting Gj D h0 ı
� � � ı hnj�1 and G WD .G1; : : : ; GJ /, we arrive at a problem of the form (7.1). By
extending the unknown u to the vector .y0; yn1 ; : : : ; ynJ / one arrives at the problem
of inferring the J states at n1; : : : ; nJ .

Remark 7.1. Identification problems for dynamical systems with sequentially arriv-
ing data call for special, efficient sequential methods for solving (7.1). These are
methods for computing the solution for z D .zn1 ; : : : ; znJ /

> based only on the
solution for .zn1 ; : : : ; znJ�1 /

> and the current observation znJ . To limit the scope
of this paper, we omit considerations of sequentiality in this work.

7.2.1 Deterministic Identification for Inverse Problems

Solving (7.1) by determining u D G�1.z/ is usually not an option since " ¤
0 generally results in z … G.X /. Moreover, the more general least-squares
formulation u D argminv2X jz � G.v/j2 is typically ill-posed, as u may depend
discontinuously on z and is often heavily underdetermined. Making (7.1) mathemat-
ically tractable is usually achieved by some form of regularization, which, generally
speaking, involves the incorporation of additional prior information on u and ".
A comprehensive introduction to the regularized least-squares approach to inverse
problems is given in [10]. We briefly summarize this approach for nonlinearG here.

The conceptual starting point for the deterministic approach is the noise-free
model z� D G.u/, i.e., z D z� C ". Since we want to identify the element u 2 X
which led to the observations z, it is reasonable to assume that the “true”, unpolluted
data z� lies in the range of G. Thus we assume the existence of u� 2 X such that
G.u�/ D z�. This is sometimes called the attainability assumption [11]. Next, we
introduce a penalty or regularizing functional R W X ! Œ0;1� and define an R-
minimizing solution to z� D G.u/ to be any element u� 2 X which satisfies

R.u�/ D min
˚
R.u/ W u 2 X ; G.u/ D z�

�
: (7.3)

Note that u� need not be unique. Furthermore, the choice of R is significant and
reflects prior assumptions about u. Often R is taken to be convex. A common choice
for R is, e.g., R.u/ D ku � urefk2, where uref 2 X is a given reference state known
to lie in the vicinity of the solution. For a broader discussion of different penalty
functionals we refer to [36].

However, since only polluted data z D z� C " is available, we can only ask
for an approximation of u� which should improve with diminishing noise ". This
approximation is the regularized solution Ou˛ given by

Ou˛ D argmin
u2X

jz �G.u/j2 C ˛R.u/; (7.4)
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where ˛ 2 Œ0;1/ serves as a regularization parameter to be chosen wisely. If further
smoothness assumptions on u� and G are satisfied and if ˛ is chosen as a suitable
function ˛ D ˛.ı/ of the noise level j"j � ı, then convergence rate bounds such as

kOu˛.ı/ � u�k D O.
p
ı/ as ı ! 0

can be obtained [11]. These rates are typically based on explicit error estimates
such as kOu˛.ı/ � u�k � C.˛/

p
ı for the above result. For further analysis of the

smoothness requirements on u� and related convergence rates see, e.g., [21] and,
for appropriate choices ˛ D ˛.ı/, see, e.g., [1] and the references therein.

7.2.2 The Bayesian Inverse Problem

Recall that, in order to regularize the usually ill-posed least-squares formulation
of the inverse problem (7.1), we incorporated additional prior information about the
desired u into the (deterministic) identification problem by way of the regularization
functional R. A further possibility for regularization is to restrict u to a subset or
subspace QX 
 X , e.g., by using a stronger norm of u � uref as the regularization
functional. Speaking very broadly, the Bayesian approach stems from yet another
way of modelling prior information on u and adding it to the inverse problem. In
this case we express our prior belief about u through a probability distribution �0
on the Banach space X , by which a quantitative preference of some solutions u
over others may be given by assigning higher and lower probabilities. However, the
goal in the Bayesian approach is not the identification of a particular u 2 X , but
rather inference on u, i.e., we would like to learn from the data in a statistical or
probabilistic fashion by adjusting our prior belief �0 about u in accordance with
the newly available data z. The task of identification may also be achieved within
the Bayesian framework through Bayes estimates and Bayes estimators, which are
discussed in Sect. 7.2.3.

The Bayesian approach to the inverse problem (7.1) thus differs conceptually
from the regularized least-squares approach as summarized above in that its
objective is inference rather than identification. As stated in [24], the Bayesian
approach1 is based on the following four principles:

1. All quantities occurring in (7.1) are modelled as random variables.
2. The randomness describes our degree of information concerning their realiza-

tions.
3. This degree of information concerning these values is encoded in probability

distributions.
4. The solution of the inverse problem is the posterior probability distribution.

1This is referred to in [24] as the statistical inversion approach.
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In the Bayesian setting we therefore replace our model (7.1) in the following with

Z D G.U /C "; (7.5)

where " and henceZ are both random variables on R
k while U is a random variable

on X whose posterior probability distribution given the available observationsZ D
z is to be determined. Before giving a precise definition of the posterior distribution
we require some basic concepts from probability theory.

7.2.2.1 Probability Measures and Random Variables

Let .˝;F ;P/ denote a probability space. We denote by B.X / the Borel �-algebra
of X generated by the open sets in X w.r.t. k � k. A measurable mapping X W
.˝;F / ! .X ;B.X // is called a random variable (RV) and the measure PX WD
PıX�1, i.e., PX.A/ D P.X�1.A// for allA 2 B.X /, defines the distribution ofX
as the push-forward measure of P underX . Conversely, given a probability measure
� on .X ;B.X //, then X � � means PX D �. By �.X/ 
 F we denote the
�-algebra generated by X , i.e., �.X/ D fX�1.A/ W A 2 B.X /g.

The Bochner space of p-integrable X -valued RVs, i.e., the space of RVs X W
˝ ! X such that

R
˝

kX.!/kp P.d!/ < 1, is denoted by Lp.˝;F ;PIX / or
simply Lp.X / when the context is clear.

An element m 2 X is called the mean of a RV X if for any f 2 X � there
holds f .m/ D EŒf .X/�. Here and in the following E denotes the expectation
operator w.r.t. P. If X 2 L1.˝;F ;PIX / then its mean is given by m D EŒX� DR
˝
X.!/P.d!/. An operator C W Y � ! X is called the covariance of two RVs

X W ˝ ! X and Y W ˝ ! Y if it satisfies f .Cg/ D E


f .X�EŒX�/ g.Y �EŒY �/

�

for all f 2 X � and g 2 Y �. We denote the covariance of X and Y by Cov.X; Y /
and, if X D Y , simply by Cov.X/.

Besides normed vector spaces of RVs we will also work with metric spaces of
probability measures. One notion of distance between measures is the Hellinger
metric dH : given two probability measures �1 and �2 on the Banach space X , it is
defined as

dH.�1; �2/ WD
2

4
Z

X

 r
d�1
d


.u/�
r

d�2
d


.u/

!2


.du/

3

5

1=2

;

where 
 is a dominating measure of �1 and �2, e.g., 
 D .�1 C �2/=2. Note that
the definition of the Hellinger metric is independent of the dominating measure. For
relations of the Hellinger metric to other probability metrics such as total variation
distance or the Wasserstein metric, we refer to [18].

In the following, we will use upper case Latin letters such as X , Y , Z, U to
denote RVs on Banach spaces and lower case Latin letters like x, y, z, u for elements
in these Banach spaces or realizations of the associated RVs, respectively. Greek
letters such as " will be used to denote RVs on R

k as well as their realizations.
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7.2.2.2 Conditioning

Bayesian inference consists in updating the probability distribution encoding our
prior knowledge on the unknown U to a new probability distribution reflecting a
gain in knowledge due to new observations. There are certain subleties associated
with the probabilistic formulation of this transition from prior to posterior measure,
and we take some care in this section to point these out.

The distribution of the RV U , characterized by the probabilities P.U 2 B/ for
B 2 B.X /, quantifies in stochastic terms our knowledge about the uncertainty
associated with U . When new information becomes available, such as knowing that
the event Z D z has occurred, this is reflected in our quantitative description as
the “conditional distribution of U given fZ D zg”, denoted P.U 2 BjZ D z/.
Unfortunately, P.U 2 BjZ D z/ cannot be defined in an elementary fashion when
P.Z D z/ D 0, in which case the conditional distribution is defined by an integral
relation. The key concept here is that of conditional expectation.

Given RVs X 2 L1.˝;F ;PIX / and Y W ˝ ! Y , we define the conditional
expectation EŒX jY � of X given Y as any mapping EŒX jY � W ˝ ! X with the
following two properties:

1. EŒX jY � is �.Y /-measurable.
2. For any A 2 �.Y / there holds

Z

A

EŒX jY � P.d!/ D
Z

A

X P.d!/:

Note that, since it is defined by an integral relation, the RV EŒX jY � is determined
only up to sets of P-measure zero and is thus understood as an equivalence class of
such mappings. By the Doob-Dynkin Lemma (cf. [25, Lemma 1.13]) there exists
a measurable function � W Y ! X such that EŒX jY � D �.Y / P-almost surely.
Again, we note that this does not determine a unique function � but an equivalence
class of measurable functions, where �1 � �2 iff P.Y 2 fy 2 Y W �1.y/ ¤
�2.y/g/ D 0. For a specific realization y of Y (and a specific �), we also denote the
function value by

EŒX jY D y� WD �.y/ 2 X :

Setting X D 1fU2Bg, one can, for each fixed B 2 B.X /, define

EŒ1fU2BgjZ D z� DW P.U 2 BjZ D z/ (7.6)

as an equivalence class of measurable functions R
k ! Œ0; 1�. One would like to

view this, conversely, as a family of probability measures with the realization z as
a parameter, giving the posterior distribution of U resulting from having made the
observation Z D z. Unfortunately, this construction need not, in general, yield a
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probability measure for each fixed value of z (cf. [33]). In case X is a separable
Banach space, a function

Q W B.X / � R
k ! R

can be shown to exist (cf. [33]) such that

(a) For each z 2 R
k , Q.�; z/ is a probability measure on .X ;B.X //.

(b) For each B 2 B.X / the function

R
k 3 z 7! Q.B; z/

is a representative of the equivalence class (7.6), i.e., it is measurable and there
holds

P.U 2 B;Z 2 A/ D
Z

A

Q.B; z/ PZ.dz/ 8A 2 B.Rk/:

Such a function Q, also denoted by �U jZ , is called the regular conditional
distribution of U given Z and is defined uniquely up to sets of z-values of PZ-
measure zero. We have thus arrived at a consistent definition of the posterior
probability P.U 2 BjZ D z/ as �U jZ.B; z/.

It is helpful to maintain a clear distinction between conditional and posterior
quantities: the former contain the – as yet unrealized – observation as a parameter,
while in the latter the observation has been made. Specifically, �U jZ is the con-
ditional measure of U conditioned on Z, whereas �U jZ.�; z/ denotes the posterior
measure of U for the observationZ D z.

7.2.2.3 Bayes’ Rule and the Posterior Measure

We make the following assumptions for the model (7.5).

Assumption 7.1. 1. U � �0, " � �" and .U; "/ � �0 ˝ �", i.e., U and " are
independent.

2. �" D �."/ d" where �."/ D C e�`."/ with C > 0 and ` W Rk ! R
C
0 measurable

and nonnegative. Here d" denotes Lebesgue measure on R
k .

3. G W X ! R
k is continuous.

Throughout we assume �0.X / D 1 and �".Rk/ D 1. By Assumption 7.1, the
distribution �Z of Z in (7.5) is determined as �Z D C�.z/dz where C > 0 and

�.z/ WD
Z

X
e�`.z�G.u// �0.du/:



7 Bayesian Inverse Problems and Kalman Filters 141

Note that �.z/ is well-defined since je�`.z�G.u//j � 1 and � 2 L1.Rk/ due to
Fubini’s theorem [25, Theorem 1.27]. In particular, we have that .U;Z/ � � with
�.du; dz/ D C e�`.z�G.u// �0.du/ ˝ dz where dz again denotes Lebesgue measure
on R

k . Further, we define the potential

˚.uI z/ WD `.z �G.u//

and assume the following to be satisfied.

Assumption 7.2. 1. The potential ˚ is continuous w.r.t. z in mean-square sense
w.r.t. �0, i.e, there exists an increasing function  W Œ0;1/ ! Œ0;1/ with
lims!0  .s/ D  .0/ D 0 such that

Z

X
j˚.uI z/� ˚.uI z0/j2 �0.du/ �  .jz � z0j/:

For instance, there may exist a function � 2 L2.X ;B.X /; �0IR/ such that

j˚.uI z/� ˚.uI z0/j � �.u/  .jz � z0j/:

Before stating the abstract version of Bayes’ Rule in Theorem 7.1, we recall the
finite-dimensional case X ' R

n where it can be stated in terms of densities: here
�0.du/ D �0.u/du and Bayes’ rule takes the form

�z.u/ D 1

�.z/
exp.�˚.uI z// �0.u/

where e�˚.uIz/ D e�`.z�G.u// represents the likelihood of observing z when fixing
u. The denominator �.z/ can be interpreted as a normalizing constant such thatR
X �z.u/ du D 1. We now show that, in the general setting, Bayes’ rule yields

(a version of) the (regular) conditional measure �U jZ of U w.r.t. Z.

Theorem 7.1 (cf. [42, Theorems 4.2 and 6.31]). Let Assumptions 7.1 and 7.2 be
satisfied and define for each z 2 R

k a probability measure on .X ;B.X // by

�z.du/ WD 1

�.z/
exp.�˚.uI z// �0.du/: (7.7)

Then the mappingQ W B.X / � R
k given by

Q.B; z/ WD �z.B/ 8B 2 B.X /
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is a regular conditional distribution of U givenZ. We call �z the posterior measure
(of U given Z D z). Moreover, �z depends continuously on z w.r.t. the Hellinger
metric, i.e., for any z1; z2 2 R

k with jz1 � z2j � r there holds

dH.�
z1 ; �z2 / � Cr.z1/  .jz1 � z2j/;

where Cr.z1/ D C.1C minf�.z0/ W jz1 � z0j � rg3/�1 < C1.

Proof. Continuity with respect to the Hellinger metric is a slight generalization of
[42, Theorem 4.2] and may be proved in the same way with obvious modifications.
To show that Q is a regular conditional distribution we verify the two properties (a)
and (b) given in Sect. 7.2.2.2. The first follows from the construction of �z. For the
second property, note that measurability follows from continuity. The continuity of
�z w.r.t. z in the Hellinger metric implies also that �z.B/ depends continuously on z
due to the relations between Hellinger metric and total variation distance (see [18]).
Finally, we have for any A 2 B.Rk/ and B 2 B.X / that

P.U 2 B;Z 2 A/ D
Z

A�B
�.du; dz/ D

Z

A

Z

B

C e�`.z�G.u// �0.du/ dz

D
Z

A

C�.z/Q.B; z/ dz D
Z

A

Q.B; z/ PZ.dz/

which completes the proof. ut
Remark 7.2. We wish to emphasize that Theorem 7.1 and Assumption 7.2 show in
detail the connection between the smoothness of the potential˚.uI z/ D `.z�G.u//
and the continuity of the posterior �z w.r.t. z for a general prior �0 and an additive
error " with Lebesgue density proportional to e�`."/. Roughly speaking, the negative
log-likelihood ` and the posterior �z share the same local modulus of continuity.
This generalizes the results in [42] in that we allow for non-Gaussian priors �0 and
errors ".

Thus, under mild conditions, the Bayesian inverse problem is well-posed. It
is also possible to prove continuity of �z w.r.t. to the forward map G, see [42,
Section 4.4], which is crucial when the forward map G is realized by numerical
approximation.

To give meaning to the mean and covariance of U � �0 and Z D G.U /C ", we
make the further assumption that all second moments exist:

Assumption 7.3. There holds

Z

X
. kuk2 C jG.u/j2 / �0.du/ < C1 and

Z

Rk

j"j2 �".d"/ < C1:
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7.2.3 Bayes Estimators

Although the posterior measure �z is by definition the solution to the Bayesian
inverse problem, it is, in general, by no means easy to compute in practice. In
special cases, e.g., when G is linear and �0 and �" are Gaussian measures, closed-
form expressions for �z are available, but in general �z can only be computed
in an approximate sense, see also Sect. 7.2.4. Moreover, when the dimension of
X is large or infinite, visualizing, exploring or using �z for postprocessing are
demanding tasks.

Other, more accessible quantities from Bayesian statistics, [3] which are also
more similar to the result of deterministic parameter identification procedures than
the posterior measure, are point estimates for the unknown u. In the Bayesian setting
a point estimate is a “best guess” Ou of u based on posterior knowledge. Here “best” is
determined by a cost function c W X ! RC satisfying c.0/ D 0 and c.u/ � c.�u/
for any u 2 X and � � 1. This cost function describes the loss or costs c.u � Ou/
incurred when Ou is substituted for (the true) u for post processing or decision mak-
ing. Note that also more general forms of a cost function are possible, see, e.g., [2,3].

For any realization z 2 R
k of the observation RV Z we introduce the (posterior)

Bayes cost of the estimate Ou w.r.t. c as

Bc.OuI z/ WD
Z

X

c.u � Ou/ �z.du/;

and define the Bayes estimate Ou as a minimizer of this cost, i.e.,

Ou WD argmin
u02X

Bc.u0I z/;

assuming that such a minimizer exists. The Bayes estimator O� W Rk ! X is then
the mapping which assigns to an observation z the associated Bayes estimate Ou, i.e.,

O� W z 7! argmin
u02X

Bc.u0I z/ :

We assume measurability of O� in the following. Note that O� is then also the
minimizer of the (prior) Bayes cost

Bc. O�/ WD
Z

Rk

Bc. O�.z/I z/ �Z.dz/ D E

h
Bc. O�.Z/IZ/

i
;

i.e., there holds

E

h
Bc. O�.Z/IZ/

i
� E ŒBc.�.Z/IZ/�

for any other measurable � W Rk ! X .
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Remark 7.3. Since O� D argmin� Bc.�/ it is possible to determine the estimator O�
and thereby also the estimate Ou D O�.z/ for a given z without actually computing
the posterior measure �z, as the integrals in Bc. O�/ are w.r.t. the prior measure.
Therefore, Bayes estimators are typically easier to approximate than �z.

We now introduce two very common Bayes estimators: the posterior mean estima-
tor and the maximum a posteriori estimator. For the remainder of the discussion we
assume that X is a separable Hilbert space.

7.2.3.1 Posterior Mean Estimator

For the cost function c.u/ D kuk2 the posterior Bayes cost

Bc.OuI z/ D
Z

X
ku � Ouk2 �z.du/

is minimized by the posterior mean Ou D uCM WD R
X u�z.du/. The corresponding

Bayes estimator for c.u/ D kuk2 is then given by

O�CM.z/ WD
Z

X
u�z.du/:

There holds in particular O�CM.Z/ D EŒU jZ� P-almost surely.
Recall that, EŒU jZ� is the best approximation of U in L2.˝; �.Z/;PIX / w.r.t.

the norm in L2.˝;F ;PIX /. Hence, the Bayes estimator O�CM.Z/ D EŒU jZ�
represents the best L2-approximation to U w.r.t. the information �.Z/ available
from the observation process Z.

7.2.3.2 Maximum A Posteriori Estimator

Another common estimator in Bayesian statistics is the maximum a posteriori
(MAP) estimator O�MAP. For finite-dimensional X ' R

n and absolutely continuous
prior �0, i.e., �0.du/ D �0.u/du, the MAP estimate is defined as

O�MAP.z/ D argmin
u2Rn

˚.u; z/� log�0.u/

provided the minimum exists for all z 2 R
k . For the definition of the MAP

estimate via a cost function and the Bayes cost, we refer to the literature, e.g., [28,
Section 16.2] or the recent work [5] fora novel approach; for MAP estimates in
infinite dimensions, we refer to [8].

There is an interesting link between the Bayes estimator O�MAP and the solution
of the associated regularized least-squares problem: If R W R

n ! Œ0;1/ is a
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regularizing functional which satisfies
R
Rn

exp.� ˛
�2

R.u// du < C1, then the

solution Ou˛ D argmin jz�G.u/j2C˛R.u/ corresponds to the MAP estimate O�MAP.z/
for " � N.0; �2I / and �0.du/ / exp.� ˛

�2
R.u// du.

7.2.4 Computational Methods for Bayesian Inverse Problems

We summarize the most common methods for computing the posterior measure and
Bayes estimators, referring to the cited literature for details.

In finite dimensions X ' R
n and in the case of conjugate priors, see, e.g., [20],

the posterior density is available in closed form since in this case the product of the
prior density and the likelihood function belongs to the same class of probability
densities as the prior. Therefore only the parameters of the posterior need to be
computed, and for these analytical formulas are often available.

Aside from these special cases �z can only be approximated – but how may a
probability distribution, possibly on an infinite-dimensional space, be approximated
computationally? Perhaps the simplest and most natural idea is to generate samples
distributed according to the posterior measure. A well-known method for this
purpose is the Markov Chain Monte Carlo method (MCMC). The idea here is
to construct a Markov chain with the posterior measure as its stationary resp.
limiting distribution. If such a chain is run sufficiently long, it will yield (correlated)
samples which are asymptotically distributed according to the posterior measure.
For details we refer to [17] and, for the underlying theory of Markov chains, to [30].
The computational efficiency of the chain mainly depends on its transition kernel.
Recently, much research has been devoted towards constructing good kernels. We
mention [7] for MCMC suited for very high and even infinite dimensions, [19] for
the idea of adapting the kernel to geometrical features of the posterior and [29],
where this idea is realized by a transition kernel derived from the Gauss-Newton
method.

Besides MCMC another common Bayesian method are particle filters [24,
Section 4.3]. Here samples are generated according to the prior and all samples are
assigned initially equal weights. Then, in an updating step, the weights are modified
according to the posterior distribution. A further extension, Gaussian mixture filters
[41], approximate the posterior density by a weighted mean of Gaussian kernels
located at samples/particles. Here, in addition to the weights, also the location of
the particles are modified according to the posterior.

A further technique for sampling from the posterior is presented in [9]: here a
mapping F W X ! X is constructed in such a way that F.U / � �z for a random
variable U � �0. Given F , which is obtained by solving an optimal transport
problem, samples according to �z can then easily be generated by evaluating F
for samples from the prior.

For the posterior mean, the immediate computational method is numerical
integration w.r.t. �z.du/ or e�˚.uIz/�0.du/. A Monte Carlo integration is again
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performed by averaging samples generated by a suitable Markov chain. Recently,
sparse quadrature methods based on known quadrature rules for �0 have been
investigated, see [37, 38]. Due to assumed smoothness of the likelihood e�˚.uIz/
w.r.t. u, these methods can yield faster convergence rates than Monte Carlo/MCMC
integration and are also suited to infinite dimensions.

Alternatively, the corresponding Bayes estimator �CM could be approximated,
e.g., by linear functions, and simply evaluated for the observational data. We return
to this approach in Sect. 7.3.3 and show that Kalman filters may be viewed as
approximation methods of this type.

Computing the MAP estimate is, by construction, a minimization problem for the
posterior density and related to classical Tikhonov regularization. Therefore, meth-
ods from numerical optimization and computational inverse problems, respectively,
can be applied here [10, 44]. Note that in numerical weather prediction the popular
methods 3DVar and 4DVar are precisely computations of the MAP estimate. The
difference between both is that 3DVar treats the typically sequential data recursively,
while 4DVar performs the optimization w.r.t. the entire data set at once, see also [28].

7.3 Analysis of Kalman Filters for Bayesian Inverse
Problems

In this section we consider Kalman filters and their application to the nonlinear
Bayesian inverse problem (7.5). We begin with the classical Kalman filter for state
estimation in linear dynamics and then consider two generalizations to the nonlinear
setting which have been recently proposed for UQ in inverse problems. We show
that both methods can be understood as discretizations of the same updating scheme
for a certain RV and analyze the properties of this updated variable, thereby
characterizing the properties of the approximations provided by the two filtering
methods. In particular, we show that Kalman filters do not solve the nonlinear
Bayesian inverse problem, nor can they be justified as approximations to its solution.
They are, rather, related to a linear approximation of the Bayes estimator �CM and
its estimation error.

7.3.1 The Kalman Filter

The Kalman filter [26] is a well-known method for sequential state estimation
for incompletely observable, linear discrete-time dynamics, see, e.g., [6, 39] for
a broader introduction and discussion. Thus, the Kalman filter may be applied to
systems of the form

Un D AnUn�1 C �n; Zn D GnUn C "n; n D 1; 2; : : : (7.8)
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where Un denotes the unknown, unobservable state and Zn the observable process
at time n, and where U0, �n and "n are mutually independent RVs. The operators
An and Gn are linear mappings in state space and from state to observation space,
respectively. For the noises �n and "n, zero mean and given covariances �n and
˙n, respectively, are assumed. Then, given observations Z1 D z1; : : : ; Zn D zn
of the process Z, the state Un is to be inferred. Assume an initial guess Ou0 of the
unknown U0 with minimal variance trace.E0/ where E0 WD Cov.U0 � Ou0/ denotes
the error covariance of the estimate Ou0. Then the Kalman filter results in recursive
equations for the minimum variance estimates Oun of Un and their error covariances
En WD Cov.Un � Oun/.

Although the main advantage of the Kalman filter is its sequential structure which
allows for a significant reduction of computational work (see [42, Section 5.3] for
a nice discussion on this topic) we will apply the Kalman filter to our stationary
inverse problem

Z D GU C "; U � N.m0; C0/; " � N.0;˙/; (7.9)

which is, of course, only a special case of the system (7.8) in that there are no
dynamics, An � I , �n � 0 and only a single update n D 1. If we take Ou0 D m0 as
the initial guess this yields E0 D C0 and the Kalman filter yields the updates

Ou1 D Ou0 CK.z �G Ou0/; E1 D E0 � KGE0

whereK D E0G
�.GE0G� C˙/�1 is the well-known Kalman gain.

In the Gaussian case (7.9), for which .U;Z/ is a jointly Gaussian RV, the
posterior measure �z is again Gaussian, i.e., �z D N.mz; C z/. Moreover, the
posterior meanmz and the posterior covariance C z are given by

mz D m0 CK.z � Gm0/; C z D C0 � KGC0;

where K D C0G
�.GC0G

� C ˙/�1. Thus, for (7.9) the Kalman filter is seen
to yield the solution of the Bayesian inverse problem by providing the posterior
mean and covariance. However, we emphasize that the Kalman filter does not
directly approximate the posterior measure. The filter provides estimates and
error covariances which, in the Gaussian case, coincide with the posterior mean
and covariance which, in turn, uniquely determine a Gaussian posterior measure.
Whenever the linearity of G or Gaussianity of the prior U � �0 or noise
" � N.0;˙/ do not hold, then neither does the Kalman filter yield the first two
posterior moments nor is the posterior measure necessarily Gaussian. We will return
to the interpretation of the Kalman filter for linear G but non-Gaussian U or " in
Sect. 7.3.3.
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7.3.2 Kalman Filter Extensions for Nonlinear Inverse
Problems

Besides the extended Kalman filter (EKF), which is based on linearizations of the
nonlinear forward map G but which we shall not consider here, a widely used
method for nonlinear systems is the Ensemble Kalman Filter (EnKF) introduced
by Evensen [13]. In addition, a more recent development, the Polynomial Chaos
Expansion Kalman Filter (PCE-KF) developed by Matthies et al. [32, 34, 35] can
also be applied to the nonlinear inverse problem (7.5).

7.3.2.1 The Ensemble Kalman Filter

Since its introduction in 1994, the EnKF has been investigated and evaluated in
many publications [4, 14–16, 31]. However, the focus is usually on its application
to state or parameter estimation rather than solving Bayesian inverse problems.
Recently, the interest in the EnKF for UQ in inverse problems has increased, see,
e.g., [22, 23, 27].

If we consider Z D G.U /C " with U � �0 and " � �" and given observations
z 2 R

k , the EnKF algorithm proceeds as follows:

1. Initial ensemble: Generate samples u1; : : : ; uM of U according to �0.
2. Forecast: Generate samples z1; : : : ; zM of Z by

zj D G.uj /C "j ; j D 1; : : : ;M;

where "1; : : : ; "M are samples of " according to �".
3. Analysis: Update the inital ensemble u D .u1; : : : ; uM/ member by member via

uaj D uj C QK.z � zj /; j D 1; : : : ;M; (7.10)

where QK D Cov.u; z/Cov.z/�1 and Cov.u; z/ and Cov.z/ D Cov.z; z/ are the
empirical covariances of the samples u and z D .z1; : : : ; zM /. This yields an
analysis ensemble ua D .ua1; : : : ; u

a
M /.

The empirical mean of ua serves as estimate Ou for the unknown u and the
empirical covariance of ua as an indicator for the accuracy of the estimate.

Note that for dynamical systems such as (7.8), the analysis ensemble An.ua/ serves
as the initial ensemble for the next step n.

7.3.2.2 The Polynomial Chaos Expansion Kalman Filter

In [32, 34, 35] the authors propose a sampling-free Kalman filtering scheme for
nonlinear systems. Rather than updating samples of the unknown, this is carried
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out for the coefficient vector of a polynomial chaos expansion of the unknown. This
necessitates the construction of a polynomial chaos expansion distributed according
to the prior measure �0: we assume there exist countably many independent real-
valued random variables � D .�m/m2N, and chaos coefficients u˛ 2 X , "˛ 2 R

k for
each

˛ 2 J WD f˛ 2 N
N

0 W ˛j ¤ 0 for only finitely many j g;

such that

X

˛2J
ku˛k2 < C1 and

X

˛2J
j"˛j2 < C1;

and
�X

˛2J
u˛P˛.�/;

X

˛2J
"˛P˛.�/

	
� �0 ˝ �":

Here, P˛.�/ D Q
m	1 P

.m/
˛m .�m/ denotes the product of univariate orthogonal poly-

nomials P .m/
˛m where we require fP .m/

˛ g˛2N to be a CONS in L2.�m;B.�m/;P�m/,
�m D �m.˝/ � R. Note, that the completeness of orthogonal polynomials will
depend in general on properties of the measure P�m , see [12] for a complete
characterization.

We then define U WD P
˛2J u˛P˛.�/ and " WD P

˛2J "˛P˛.�/, denoting their
PCE vectors .u˛/˛2J and ."˛/˛2J by ŒU � and Œ"�. For the same problem considered
for the EnKF, the PCE-KF algorithm is as follows.

1. Initialization: Compute a PCE with coefficient vector ŒU � such that U � �0.
2. Forecast: Compute the PC vector ŒG.U /� of G.U / and set

ŒZ� WD ŒG.U /�C Œ"�;

where Œ"� is a PC vector such that then " � �". Note that, by linearity, ŒZ� is the
PC vector of the RV defined by Z WD G.U /C ".

3. Analysis: Update the inital PC vector by

ŒU �a D ŒU �CK ˝ IJ .Œz� � ŒZ�/; (7.11)

where Œz� D .z; 0; : : :/ is the PC vector of the observed data z 2 R
k and

K WD Cov.U;Z/Cov.Z/�1. The action of the covariances as operators can be
described, e.g. in the case of Cov.U;Z/ W Rk ! X , by

Cov.U;Z/z D
X

˛2J

X

ˇ2J
z>̌z u˛:

The result of one step of the PCE-KF algorithm is an analysis PC vector ŒU �a.
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Remark 7.4. Neither the independence of the f�mgm2N nor an expansion in poly-
nomials fP˛.�/g is crucial for the PCE-KF. In principle, only a countable CONS
f˛g˛2N for the space L2.� ;B.� /;P�/, � D �.˝/ � R

N, is required such
that

�P
˛ u˛˛.�/;

P
˛ "˛˛.�/

� � �0 ˝�". However, the independence structure
of �0 ˝ �" requires at least two independent random vectors � D .�1; : : : ; �M /,
� D .�1; : : : ; �N /, � D .�; �/, and expansions of the form

P
˛ u˛˛.�1; : : : ; �M /

and
P

˛ "˛˛.�1; : : : ; �N /.

7.3.2.3 The Analysis Variable

Note that the analysis PC vector ŒU �a defines an analysis variable U a WDP
˛2J ua˛P˛.�/. Indeed, both EnKF and PCE-KF perform discretized versions of

an update for RVs, namely,

U a D U CK.z �Z/; K D Cov.U;Z/Cov.Z/�1;

where Z WD G.U / C ", and .U; "/ � �0 ˝ �", providing samples ua and PCE
vectors ŒU �a D ŒU a� ofU a, respectively. This raises the question of how the analysis
variable U a is to be understood in context of Bayesian inverse problems?

7.3.3 The Linear Conditional Mean

To relate the results produced by the EnKF or PCE-KF to the Bayesian setting, we
introduce a new Bayes estimator, or, more precisely, a linear approximation to the
Bayes estimator O�CM resp. the conditional mean EŒU jZ�. The linear posterior mean
estimator O�LCM is given by

O�LCM D argmin
�2spanf1;zg

E

kU � �.Z/k2� ; (7.12)

here

spanf1; zg D f� W �.z/ D b C Az with b 2 X ; A W Rk ! X linear and boundedg

Moreover, we refer to the RV O�LCM.Z/ as the linear conditional mean. Thus,
O�LCM.Z/ is the best L2.˝;F ;PIX /-approximation to U � �0 in the subspace
spanf1;Zg 
 L2.˝; �.Z/;PIX /. Or, alternatively, �LCM is the linear estimator
with minimal prior Bayes cost for c.u/ D kuk2. Furthermore, there holds

O�LCM.z/ D E ŒU �CK.z � E ŒZ�/;

with the usual Kalman gainK D Cov.U;Z/Cov.Z/�1, and we immediately obtain
the following result.
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Theorem 7.2. Consider (7.5) and let Assumptions 7.1–7.3 be satisfied. Then for
any z 2 R

k the analysis variable U a D U CK.z �Z/, K D Cov.U;Z/Cov.Z/�1,
coincides with

U a D O�LCM.z/C .U � O�LCM.Z//:

In particular, there holds

E ŒU a� D O�LCM.z/ and Cov.U a/ D Cov.U /�KCov.Z;U /:

We summarize the consequences of Theorem 7.2 as follows:

• The analysis variable U a, to which the EnKF and the PCE-KF provide approxi-
mations, is the sum of a Bayes estimate O�LCM.z/ and the prior errorU � O�LCM.Z/

of the corresponding Bayes estimator O�LCM.
• The resulting mean of the EnKF analysis ensemble or the PCE-KF analysis

vector corresponds to the linear posterior mean estimate and therefore provides
an approximation to the true posterior mean.

• The covariance approximated by the empirical covariance of the EnKF analysis
ensemble, as well as that of the PCE-KF analysis vector, is independent of the
actual observational data z 2 R

k . It therefore constitutes a prior rather than a
posterior measure of uncertainty.

• In particular, the randomness in U a is entirely determined by the prior measures
�0 and �". Only the location, i.e., the mean, of U a is influenced by the
observation data z; the randomness of U a is independent of z and determined
only by the projection error U � O�LCM.Z/ w.r.t. the prior measures.

• By the last two items, the analysis variable U a, and therefore the EnKF analysis
ensemble or the result of the PCE-KF, are in general not distributed according
to the posterior measure �z. Moreover, the difference between �z and the
distribution of U a depends on the data z and can become quite large for nonlinear
problems, see Example 7.3.

Remark 7.5. Note that in particular the second and third item above explain
the observations made in [27], i.e., that “[. . . ] (i) with appropriate parameter
choices, approximate filters can perform well in reproducing the mean of the
desired probability distribution, (ii) they do not perform as well in reproducing the
covariance [. . . ] ”.

We illustrate the conceptual difference between the distribution of the analysis
variable U a and the posterior measure �z with a simple yet striking example.

Example 7.3. We consider U � N.0; 1/, " � N.0; �2/ and G.u/ � u2. Given data
z 2 R, the posterior measure, obtained from Bayes’ rule for the densities, is

�z.du/ D C exp

�

��
2u2 C .z � u2/2

2�2

�

du:
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Fig. 7.1 Density of the
posterior �z (dashed, blue
line) and the probability
density of the analysis
variable Ua (solid, red line)
for z D 9 and � D 0:5

Due to the symmetry of �z we have OuCM D R
X u�z.du/ D 0 for any z 2 R

k . Thus,
EŒU jZ� � 0 and O�LCM � O�CM. In particular, we haveK D 0 due to

Cov.U;Z/ D Cov.U; U 2/ D 1p
2�

Z

R

u.u2 � 1/e�u2=2du D 0;

which in turn yields U a D U � N.0; 1/. Hence the analysis variable is distributed
according to the prior measure. This is not surprising as, by definition, its mean is the
best linear approximation to the posterior mean according to �z and its fluctuation is
simply the prior estimation error U � O�LCM.Z/ D U � 0 D U . This illustrates that
U a is suited for approximating the posterior mean, but not appropriate as a method
for uncertainty quantification for the nonlinear inverse problem. As displayed in
Fig. 7.1, the distribution of U a can be markedly different from the true posterior
distribution.

7.4 Numerical Example: 1D Elliptic Boundary Value
Problem

To illustrate the application of the EnKF and PCE-KF to a simple Bayesian inverse
problems, we consider the following PDE model onD D Œ0; 1�:

� d

dx

�

exp.u1/
d

dx
p.x/

�

D f .x/; p.0/ D p0; p.1/ D u2: (7.13)

Here u D .u1; u2/ are the unknown parameters to be identified. The solution
of (7.13) is given by

p.x/ D p0 C .u2 � p0/x C exp.�u1/ .Sx.F /� S1.F / x/ ; (7.14)
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Fig. 7.2 Left: Contour plot of the negative logarithm of the prior density and the locations of
1;000 ensemble members of the initial EnKF-ensemble. Right: Contour plot of the logarithm of
the negative logarithm of the posterior density and the locations of the updated 1;000 ensemble
members in the analysis EnKF-ensemble

where Sx.g/ WD R x
0 g.y/ dy and F.x/ D Sx.f / D R x

0 f .y/ dy. For simplicity we
choose f � 1 and p0 D 0 in the following.

Assume now that noisy measurements of p are available at x1 D 0:25 and x2 D
0:75, namely z D .27:5; 79:7/. We wish to infer u based on this data and on a priori
information modelled by the prior distributions of the independent random variables

u1 � N.0; 1/; and u2 � Uni.90; 110/:

Here Uni.90; 110/ denotes the uniform distribution on the interval Œ90; 110�. Thus,
the forward map here is G.u/ D .p.x1/; p.x2// with p according to (7.14) for
f � 1, and the model for the measurement noise is " � N.0; 0:01 � I2/.

In Fig. 7.2 we show the prior and the posterior densities as well as 1;000
ensemble members of the initial and analysis ensemble obtained by the EnKF. A
total ensemble size ofM D 105 was chosen in order to reduce the sampling error to
a negligible level. It can be seen, however, that the analysis EnKF-ensemble does not
follow the posterior distribution, although its mean .�2:92; 105:14/ is quite close to
the true posterior mean .�2:65; 104:5/ (computed by quadrature). To illustrate the
difference between the distribution of the analysis ensemble resp. variable and the
true posterior distribution, we present the marginal posterior distributions of u1 and
u2 in Fig. 7.3. For the posterior the marginals were evaluated by quadrature, whereas
for the analysis ensemble we show a relative frequency plot.

We note that slightly changing the observational data to Qz D .23:8; 71:3/ moves
the analysis ensemble resp. variable much closer to the true posterior, see Fig. 7.4.
Also, the mean of the analysis ensemble .0:33; 94:94/ provides a better fit to the
true posterior mean .0:33; 94:94/ here.
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Fig. 7.3 Left: Posterior marginal and relative frequencies in the analysis ensemble for u1. Right:
The same for u2

Fig. 7.4 Left: Contours of the logarithm of the negative log posterior density and locations
of 1;000 members of the analysis EnKF-ensemble. Middle: Posterior marginal and relative
frequencies in the analysis ensemble for u1. Right: The same for u2

Fig. 7.5 Left: Kernel density estimates for ua1 (blue, solid line) and Qua1 (green, dashed line).
Middle: Kernel density estimates for ua1 � EŒua1 � (blue, solid) and Qua1 � EŒQua1� (green, dashed).
Right: Kernel density estimates for ua2 � EŒua2� (blue, solid) and Qua2 � EŒQua2� (green, dashed)

To reaffirm the fact that only the mean of analysis variable U a depends on the
actual data, we show density estimates for the marginals of u1 and u2 of U a in
Fig. 7.5. Here we have used once the data z D .27:5; 79:7/ (blue lines) and once Qz D
.23:8; 71:3/ (green lines). The density estimates were obtained by normal kernel
density estimation (KDE, in this case MATLAB’s ksdensity routine) based on
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the resulting analysis ensembles .ua1;u
a
2/ and . Qua1; Qua2/, respectively, of the EnKF for

these two data sets z; Qz. In the left picture we show the KDE for ua1 and Qua1 and in
the middle picture we display the KDE for the corresponding centered ensembles
ua1 �EŒua1� and Qua1 �EŒ Qua1�. In the right picture we provide the KDEs for the centered
ensembles of u2. Note that the marginal distributions of the centered ensembles
coincide, in agreement with Theorem 7.2.

However, note that, particularly in this example where the prior, and thus
posterior, support for u2 is bounded, the EnKF may yield members in the anal-
ysis ensemble which are outside this support. This is a further consequence of
Theorem 7.2: Since the analysis ensemble of the EnKF follows the distribution of
the analysis variable rather than that of the true posterior distribution, ensemble
members lying outside the posterior support can always occur whenever the support
of the analysis variable is not a subset of the support of the posterior.

In addition, we would like to stress that, whether or not the distribution of the
analysis variable is a good fit to the true posterior distribution depends entirely on
the observed data – which can neither be controlled nor are known a priori.

Applying the PCE-KF to this simple example problem can be done analytically.
We require four basic independent random variables �1 � N.0; 1/, �2 � Uni.0; 1/,
�3 � N.0; 1/ and �4 � N.0; 1/ to define PCEs which yield random variables
distributed according to the prior and error distributions:

U WD .�1; 90C 20�2/
> � �0; " WD .0:1�3; 0:1�4/

> � �":

Moreover, due to (7.14), G.U / is also available in closed form as

G.U / D
0

@
c11.90C 20�2/C c12

P1
nD0.�1/n

p
ep
nŠ
Hn.�1/

c21.90C 20�2/C c22
P1

nD0.�1/n
p

ep
nŠ
Hn.�1/

1

A ;

where Hn denotes the nth normalized Hermite polynomial and c11; c12; c21; c22 can
be deduced from inserting x D 0:25 and x D 0:75 into (7.14). Here, we have used
the expansion of exp.��/ in Hermite polynomials, see also [43, Example 2.2.7].
Thus, the PCE coefficient vectors ŒU � and ŒG.U /C "� w.r.t. the polynomials

P˛.�/ D H˛1.�1/ L˛2.�2/H˛3.�3/H˛4.�4/; ˛ 2 N
4
0;

can be obtained explicitly. Here H˛ and L˛ denote the ˛th normalized Hermite
and Legendre polynomials, respectively. In particular, the nonvanishing chaos
coefficients involve only the basis polynomials

P0.�/ � 1; P1.�/ D L1.�2/; P2.�/ D H1.�3/; P3.�/ D H1.�4/

and P˛.�/ D H˛�3.�1/ for ˛ � 4. Arranging the two-dimensional chaos
coefficients of U and G.U / as the column vectors ŒU �; ŒG.U / C "� 2 R

2�N0 , and
denoting by PŒU � the matrix .u1; u2; : : :/ 2 R

2�N we get
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K D PŒU � PŒG.U /�
> � PŒG.U /� PŒG.U /�

> C 0:01I2

	�1
:

Thus, the only numerical error for applying the PCE-KF to the example is the
truncation of the PCE. We have carried out this calculation using a truncated
PCE of length J D 4 C 50 according to the reduced basis above, evaluated the
approximation to K by using the truncated vector ŒG.U /� in the formula above
and then performed the update of the PCE vectors according to (7.11). We then
sampled the resulting random variable U a again M D 105 times. The resulting
empirical distributions were essentially indistinguishable from the results obtained
by the EnKF described previously and are therefore omitted.

Remark 7.6. Although a detailed complexity analysis of these methods is beyond
the scope of this contribution, we would like to mention that the EnKF calls for
M evaluations of the forward map G.uj /, j D 1; : : : ;M , whereas the PCE-KF
requires computing the chaos coefficients of G.U / by, e.g., the Galerkin method.
Thus the former yields, in general, many small systems to solve, whereas the latter
typically requires the solution of a large coupled system. Moreover, we emphasize
the computational savings by applying Kalman filters compared to a “full Bayesian
update”, i.e., sampling from the posterior measure by MCMC methods. In particular,
each MCMC run one may require calculating many hundreds of thousands forward
maps G.u/, e.g., for each iteration uj of the Markov chain as in the case of
Metropolis-Hastings MCMC. Hence, if one is interested in only the posterior mean
as a Bayes estimate, then EnKF and PCE-KF provide substantially less expensive
alternatives to MCMC for its approximation by means of the linear posterior mean.

7.5 Conclusions

We have contrasted the deterministic and Bayesian formulations of nonlinear inverse
problems such as arise in parameter estimation and data assimilation settings. An
important distinction lies in the objectives of the two approaches: the identification
of a particular value of the unknown quantity in the deterministic case versus the
updating of a prior to a posterior probability measure encoding the uncertainty
associated with the unknown quantity due to new observations. Moreover, we have
also pointed out the relation between regularized least-squares solutions and the
concept of Bayesian (point) estimators. Among the computational methods for
Bayesian inverse problems we have focused on Kalman filters such as the EnKF
and PCE-KF and presented a precise characterization of these methods in the
Bayesian setting. A summary of the contrasting features of Bayesian inversion,
Bayes estimators and Kalman filter-based methods is given in Table 7.1.

Most important, the RVs approximated by the Kalman filter-based methods, will
not, in general, be distributed according to the posterior distribution in the Bayes’
sense. They are rather related to a common Bayes estimator – the linear conditional
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Table 7.1 Distinguishing features of Bayesian inverse problems, Bayes estimators and Kalman
filters

Bayesian Inversion Bayes Estimators Kalman Filters

Goal Merge prior belief with
new observational data

Compute best guess w.r.t.
posterior belief

Compute best linear guess
and associated error

Result Measure �z on X Estimate Ou 2 X Estimate Ou 2 X and
estimation error
U � O�LCM.Z/

Allows for Rigorous UQ in
post-processing

Deterministic
post-processing with Ou

Deterministic
post-processing with Ou and
certain UQ

mean – and its estimation error RV, and therefore represent a different uncertainty
model than the posterior measure. Some carefully chosen numerical examples were
given to illustrate these basic differences.
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Chapter 8
Robustness in Stochastic Filtering
and Maximum Likelihood Estimation
for SDEs

Joscha Diehl, Peter K. Friz, Hilmar Mai, Harald Oberhauser,
Sebastian Riedel, and Wilhelm Stannat

Abstract We consider complex stochastic systems in continuous time and space
where the objects of interest are modelled via stochastic differential equations,
in general high dimensional and with nonlinear coefficients. The extraction of
quantifiable information from such systems has a long history and many aspects.
We shall focus here on the perhaps most classical problems in this context: the
filtering problem for nonlinear diffusions and the problem of parameter estimation,
also for nonlinear and multidimensional diffusions. More specifically, we return to
the question of robustness, first raised in the filtering community in the mid-1970s:
will it be true that the conditional expectation of some observable of the signal
process, given an observation (sample) path, depends continuously on the latter?
Sadly, the answer here is no, as simple counterexamples show. Clearly, this is an
unhappy state of affairs for users who effectively face an ill-posed situation: close
observations may lead to vastly different predictions. A similar question can be
asked in the context of (maximum likelihood) parameter estimation for diffusions.
Some (apparently novel) counter examples show that, here again, the answer is
no. Our contribution (Crisan et al., Ann Appl Probab 23(5):2139–2160, 2013);
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Diehl et al., A Levy-area between Brownian motion and rough paths with applica-
tions to robust non-linear filtering and RPDEs (2013, arXiv:1301.3799; Diehl et al.,
Pathwise stability of likelihood estimators for diffusions via rough paths (2013,
arXiv:1311.1061) changed to yes, in other words: well-posedness is restored,
provided one is willing or able to regard observations as rough paths in the sense of
T. Lyons.

8.1 Introduction

The first part of this paper concerns the problem of stochastic filtering. Let a filtered
probability space .˝;F ; .Ft /t	0;P/ be given, on which a two component diffusion
process .X; Y / solving a stochastic differential equation is given, driven by a
multidimensional Brownian motion. One assumes that the first component X is
unobservable and the second component Y is observed. The filtering problem
consists in computing the conditional distribution of the unobserved component,
called the signal process, given the observation process Y . Equivalently, one is
interested in computing

�t .f / D EŒf .Xt ; Yt /jYt �;

where Y D fYt ; t � 0g is the observation filtration and f is a suitably chosen test
function. An elementary measure theoretic result tells us1 that there exists a Borel-
measurable map �ft W C.Œ0; t �;RdY / ! R, such that

�t .f / D �
f
t .Y�/ P-a.s., (8.1)

where dY is the dimension of the observation state space and Y� is the path-valued
random variable

Y� W ˝ ! C.Œ0; t �;RdY /; Y�.!/ D .Ys.!/; 0 � s � t/:

Of course, �ft is not unique. Any other function N�ft such that

P ı Y �1�
� N�ft ¤ �

f
t

	
D 0;

where P ı Y �1� is the distribution of Y� on the path space C.Œ0; t �;RdY / can replace
�
f
t in (8.1). It would be desirable to solve this ambiguity by choosing a suitable

representative from the class of functions that satisfy (8.1). A continuous version,
if it exists, would enjoy the following uniqueness property: if the law of the

1See, for example, Proposition 4.9 page 69 in [3].
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observation P ı Y �1� positively charges all non-empty open sets in C.Œ0; t �;RdY /
then there exists a unique continuous function �ft that satisfies (8.1). In this case,
we call �ft .Y�/ the robust version of �t .f / and Eq. (8.1) is the robust representation
formula for the solution of the stochastic filtering problem.

The need for this type of representation arises when the filtering framework is
used to model and solve “real-life” problems. As explained in a substantial number
of papers (e.g. [5, 6, 9–13, 26]) the model chosen for the “real-life” observation
process NY may not be a perfect one. However, if �f is continuous (or even
locally Lipschitz, as in the setting of [6]), and as long as the distribution of NY�
is close in a weak sense to that of Y� (and some integrability assumptions hold),
the estimate �ft . NY�/ computed on the actual observation will still be reasonable, as
EŒ.f .Xt ; Yt / � �ft . NY�//2� is close to the idealized error EŒ.f .Xt ; Yt /� �

f
t .Y�//2�.

Moreover, even when Y and NY actually coincide, one is never able to obtain
and exploit a continuous stream of data as modelled by the continuous path Y�.!/.
Instead the observation arrives and is processed at discrete moments in time

0 D t0 < t1 < t2 < � � � < tn D t:

However the continuous path OY�.!/ obtained by linear interpolation of the dis-
crete observations .Yti .!//

n
iD1 is close to Y�.!/ (with respect to the supremum

norm on C.Œ0; t �;RdY /; hence, by the same argument, �ft . OY�/ will be a sensible
approximation to �t .f /. In the uncorrelated framework, that is the case where the
Brownian motions driving signal and observation are uncorrelated, continuity of the
filter (in supremum norm) has first been established in [5] and technical details on
measurability questions were provided in [6].

To our knowledge, the general correlated noise and multidimensional observation
case has not been studied and it is the subject of the current work. In this case it turns
out that we cannot hope to have robustness in the sense advocated by Clark. More
precisely, there may not exists a continuous map �ft W C.Œ0; t �;RdY / ! R, such that
the representation (8.1) holds almost surely. The following is a simple example that
illustrates this.

Example 8.1. Consider the filtering problem where the signal and the observation
process solve the following pair of equations

Xt D X0 C
Z t

0

Xrd


Y 1r C Y 2r

�C
Z t

0

Xrdr

Yt D
Z t

0

h.Xr/dr CWt ;

where Y is 2-dimensional and P.X0 D 0/ D P.X0 D 1/ D 1
2
. Then with f; h such

that f .0/ D h1.0/ D h2.0/ D 0 one can explicitly compute
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EŒf .Xt /jYt � D
f .exp.Y 1t C Y 2t //

1C exp
�
�
X

kD1;2

Z t

0

hk.exp.Y 1r C Y 2r //dYkr C 1

2

Z t

0

jjh.exp.Y 1r C Y 2r //jj2dr
	 :

(8.2)

Following the findings of rough path theory (see, eg, [23,27–29]) the expression on
the right hand side of (8.2) is not continuous in supremum norm (nor in any other
metric on path space) because of the stochastic integral. Explicitly, this follows,
for example, from Theorem 1.1.1 in [29] by rewriting the exponential term as the
solution to a stochastic differential equation driven by Y .

As detailed in Sect. 8.2, continuity is established when considering the observa-
tion as a rough path. This amounts to taking the rough path lift Y of Y as input to
the problem. In addition to the path Y itself, Y consists of its iterated (Stratonovich)
integrals

R
Y i ı dYj . Distance on the space of rough paths is measured using a

Hölder metric, that also takes into account the iterated integrals. Our main result
can then be stated as follows.

Theorem. Under appropriate assumptions on the vector fields defining the diffu-
sion processes X and Y , there exists a locally Lipschitz continuous map � on the
space of rough paths, such that �.Y/ is a version of the conditional expectation
�t .f /.

We prove this result in Sect. 8.2.1 by directly working with the conditional
expectation (8.1). One can also characterize the measure valued process � in terms
of a stochastic partial differential equation, the Zakai equation. Showing continuity
in the noise for this type of equations hence also entails robustness of the filter. The
convergence of Wong-Zakai type approximations (in probability) has already been
shown in [24, 25]. The true (rough) pathwise formulation and continuity of such
measure valued rough differential equations will be laid out in our forthcoming
work [15].

Regarding the second part of this paper, consider now, given an observation OX of
the SDE

dX D A � h.X/dt C˙.X/dW;

the maximum likelihood estimator for A 2 L.Rd ;Rd /, that is the maximizer of the
likelihood PAŒ OX�. For X of dimension one, the estimator depends continuously on
the path of a realization of X . To wit, in the case h.x/ D x;˙.x/ � � > 0,

OAT .X/ D X2
T � x20 � �2T

2
R T
0
X2
s ds

;
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which is, away from the singularity at the zero path Xt � 0, immediately seen
to be continuous in X . Note that the estimator is also continuous in � , even though
pathspace measure associated to different values of � are actually mutually singular.
Now, the numerator here is (two times) the stochastic Stratonovich integral

R T
0
Xs ı

dXs . For X a multidimensional diffusion, continuous dependence of the estimator
on the path itself does not hold anymore.

Example 8.2. For X of dimension 2, h.x/ D x, it is a straightforward calculation
(see for example [14]) that the .1; 2/ component of the estimator OAT is given by

OA1;2T D
R T
0
X
.2/
r X

.2/
r dr

R T
0
X
.1/
r dX.1/r � R T

0
X
.1/
r X

.2/
r dr

R T
0
X
.2/
r dX.1/r

R T
0
X
.1/
r X

.1/
r dr

R T
0
X
.2/
r X

.2/
r dr � .

R T
0
X
.1/
r X

.2/
r dr/2dr

:

As in the previous example, because of the stochastic integral
R T
0
X
.2/
r dX.1/r , this

expression is not continuous on pathspace.

Using rough path metrics, continuity can be established though:

Theorem. Under appropriate assumptions on the vector fields h and˙ , there exists
a continuous map OAT on a subset of the space of rough paths, such that OA.X/ is a
version of the maximum likelihood estimator OA.

The following is the outline of the paper: In Sect. 8.2 we give our results on the
filtering problem. In Sect. 8.2.1 we introduce the notion of a stochastic differential
equation with rough drift, which is necessary for our main result there. We present
it separately of the filtering problem, since this notion is of independent interest.
Section 8.2.2 contains the main result of this section. In Sect. 8.3 we report on the
problem of robustness of the maximum likelihood estimation for SDEs. Finally,
in Sect. 8.4 we give some concluding remarks on the practical implications of our
results.

8.2 Robustness of the Stochastic Filter

In the following, we will assume that the pair of processes .X; Y / satisfy the
equation

dXt D l0.Xt ; Yt /dt C
X

k

Zk.Xt ; Yt /dWk
t C

X

j

Lj .Xt ; Yt /dBjt ; (8.3)

dY t D h.Xt ; Yt /dt C dW t ; (8.4)

withX0 being a bounded random variable and Y0 D 0. In (8.3) and (8.4), the process
X is the dX -dimensional signal, Y is the dY -dimensional observation, B and W
are independent dB -dimensional, respectively, dY -dimensional Brownian motions
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independent of X0. Suitable assumptions on the coefficients will be introduced later
on. This framework covers a wide variety of applications of stochastic filtering (see,
for example, [8] and the references therein) and has the added advantage that, within
it, �t .f / admits an alternative representation that is crucial for the construction of
its robust version. Let us detail this representation first.

Let u D fut ; t > 0g be the process defined by

ut D exp

"

�
dYX

iD1

�Z t

0

hi .Xs; Ys/dW i
s � 1

2

Z t

0

.hi .Xs; Ys//
2ds

�#

: (8.5)

Then, under suitable assumptions,2 u is a martingale which is used to construct the
probability measure P0 equivalent to P on Ft whose Radon–Nikodym derivative
with respect to P is given by u, viz

dP0
dP

ˇ
ˇ
ˇ
ˇ
Ft

D ut :

Under P0, Y is a Brownian motion independent of B . Moreover the equation for the
signal process X becomes

dXt D Nl0.Xt ; Yt /dt C
X

k

Zk.Xt ; Yt /dYkt C
X

j

Lj .Xt ; Yt /dBjt : (8.6)

Observe that Eq. (8.6) is now written in terms of the pair of Brownian motions
.Y; B/ and the coefficient Nl0 is given by Nl0 D l0 C P

k Zkhk . Moreover, for any
measurable, bounded function f W RdXCdY ! R, we have the following formula
called the Kallianpur-Striebel formula,

�t .f / D pt .f /

pt .1/
; pt .f / WD E0Œf .Xt ; Yt /vt jYt � (8.7)

where v D fvt ; t > 0g is the process defined as vt WD exp.It /, t � 0 and

It WD
dYX

iD1

�Z t

0

hi .Xr; Yr /dY ir � 1

2

Z t

0

.hi .Xr; Yr //
2dr

�

; t � 0: (8.8)

The representation (8.7) suggests the following three-step methodology to construct
a robust representation formula for �ft :

2For example, if Novikov’s condition is satisfied, that is, if E
h
exp

�
1
2

R t
0 khi .Xs; Ys/k2ds

	i
< 1

for all t > 0, then u is a martingale. In particular it will be satisfied in our setting, in which h is
bounded.
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Step 1 We construct the triplet of processes .Xy; Y y; I y/ 3 corresponding to the
pair .y; B/ where y is now a fixed observation path y: D fys; s 2 Œ0; t �g
belonging to a suitable class of continuous functions and prove that the random
variable f .Xy; Y y/ exp.I y/ is P0-integrable.

Step 2 We prove that the function y: ! g
f
t .y:/ defined as

g
f
t .y:/ D E0



f .X

y
t ; Y

y
t / exp.I yt /

�
(8.9)

is continuous.
Step 3 We prove that gft .Y:/ is a version of pt.f /. Then, following (8.7), the

function, y: ! �
f
t .y:/ defined as

�
f
t D g

f
t

g1t
(8.10)

provides the robust version of �t .f /.

We emphasize that Step 3 cannot be omitted from the methodology. Indeed one has
to prove that gft .Y:/ is a version of pt .f / as this fact is not immediate from the
definition of gft .

Step 1 is immediate in the particular case when only the Brownian motion B
drives X (i.e. the coefficient Z D 0) and X is itself a diffusion, i.e., it satisfies an
equation of the form

dXt D l0.Xt/dt C
X

j

Lj .Xt/dBjt ; (8.11)

and h does only depend on X . In this case the process .Xy; Y y/ can be taken to be
the pair .X; y/. Moreover, we can define I y by the formula

I
y
t WD

dYX

iD1

�

hi .Xt/y
i
t �

Z t

0

yirdhi .Xr/� 1

2

Z t

0

.hi .Xr ; Yr //
2dr

�

; t � 0:

(8.12)

provided the processes hi .X/ are semi-martingales. In (8.12), the integralR t
0
yirdhi .Xr/ is the Itô integral of the non-random process yi with respect to

hi .X/. Note that the formula for I yt is obtained by applying integration by parts to
the stochastic integral in (8.8)

Z t

0

hi .Xr/dY ir D hi .Xt /Y
i
r �

Z t

0

Y ir dhi .Xr/; (8.13)

3 As we shall see momentarily, in the uncorrelated case the choice of Y y will trivially be y. In the
correlated case we make it part of the SDE with rough drift, for (notational) convenience.
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and replacing the process Y by the fixed path y in (8.13). This approach has been
successfully used to study the robustness property for the filtering problem for the
above case in a number of papers [5, 6, 26].

The construction of the process .Xy; Y y; I y/ is no longer immediate in the case
when Z ¤ 0, i.e. when the signal is driven by both B and W (the correlated
noise case). In the case when the observation is one dimensional one can solve
this problem by using a method akin with Doss-Sussmann’s “pathwise solution” of
a stochastic differential equation (see [17, 30]). This approach has been employed
by Davis to extend the robustness result to the correlated noise case with scalar
observation (see, [10–13]). In this case one constructs first a diffeomorphism which
is a pathwise solution of the equation4

�.t; x/ D x C
Z t

0

Z.�.s; x// ı dY t : (8.14)

The diffeomorphism is used to express the solution X of Eq. (8.6) as a composition
between the diffeomorphism � and the solution of a stochastic differential equation
driven by B only and whose coefficients depend continuously on Y . As a result, we
can make sense of Xy . I y is then defined by a suitable (formal) integration by parts
that produces a pathwise interpretation of the stochastic integral appearing in (8.8)
and Y y is chosen to be y, as before. The robust representation formula is then
introduced as per (8.10). Additional results for the correlated noise case with scalar
observation can be found in [19]. The extension of the robustness result to special
cases of the correlated noise and multidimensional observation has been tackled
in several works. Robustness results in the correlated setting have been obtained by
Davis in [10,11] and Elliott and Kohlmann in [18], under a commutativity condition
on the signal vector fields. Florchinger and Nappo [20] do not have correlated noise,
but allow the coefficients to depend on the signal and the observation To sum up,
all previous works on the robust representation problem either treat the uncorrelated
case, the case with one-dimensional observation or the case where the Lie brackets
of the relevant vector fields vanish. In parallel, Bagchi and Karandikar treat in [1]
a different model with “finitely additive” state white noise and “finitely additive”
observation noise. Robustness there is virtually built into the problem.

Nevertheless, we can show that a variation of the robustness representation
formula still exists in this case. For this we need to “enhance” the original process
Y by adding a second component to it which consists of its iterated integrals (that,
knowing the path, is in a one-to-one correspondence with the Levỳ area process).
Explicitly we consider the process Y D fYt ; t � 0g defined as

Yt D

0

B
@Yt ;

0

B
@

R t
0
Y 1r ı dY1r � � � R t

0
Y 1r ı dYd

Y

r

� � � � � � � � �
R t
0
Y d

Y

r ı dY1r � � � R t
0
Y d

Y

r ı dYd
Y

r

1

C
A

1

C
A ; t � 0: (8.15)

4Here dY D 1 and Y is scalar.
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The stochastic integrals in (8.15) are Stratonovich integrals. The state space of Y
is G2.RdY / Š R

dY ˚ so.dY /, where so.dY / is the set of anti-symmetric matrices
of dimension dY .5 Over this state space we consider not the space of continuous
function, but a subspace C 0;˛ that contains paths � W Œ0; t � ! G2.RdY / that are ˛-
Hölder in theRdY -component and somewhat “2˛-Hölder” in the so.dY /-component,
where ˛ is a suitably chosen constant ˛ < 1=2. Note that there exists a modification
of Y such that Y.!/ 2 C 0;˛ for all ! (Corollary 13.14 in [23]).

The space C 0;˛ is endowed with the ˛-Hölder rough path metric under which
C 0;˛ becomes a complete metric space. The main result of the paper (captured in
Theorem 8.2) is that there exists a continuous map �ft W C 0;˛ ! R, such that

�t .f / D �
f
t .Y�/ P-a.s. (8.16)

Even though the map is defined on a slightly more abstract space, it nonetheless
enjoys the desirable properties described above for the case of a continuous version
on C.Œ0; t �;Rd /. Since P ı Y�1 positively charges all non-empty open sets of C 0;˛ ,6

the continuous version we construct will be unique. Also, it provides a certain
model robustness, in the sense that EŒ.f .Xt / � �

f
t . NY�//2� is well approximated

by the idealized error EŒ.f .Xt / � �
f
t .Y�//2�, if NY� is close in distribution to Y�.

The problem of discrete observation is a little more delicate. One one hand, it is
true that the rough path lift OY calculated from the linearly interpolated Brownian
motion OY will converge to the true rough path Y in probability as the mesh goes
to zero (Corollary 13.21 in [23]), which implies that �ft . OY/ is close in probability
to �ft .Y/ (we provide local Lipschitz estimates for �f ). Actually, most sensible
approximations will do, as is for example shown in Chapter 13 in [23] (although,
contrary to the uncorrelated case, not all interpolations that converge in uniform
topology will work, see e.g. Theorem 13.24 ibid.). But these are probabilistic
statements, that somehow miss the pathwise robustness that one wants to provide
with �ft . If, on the other hand, one is able to observe at discrete time points not
only the process itself, but also its second level, i.e. the area, one can construct an
interpolating rough path using geodesics (see e.g. Chapter 13.3.1 in [23]) which is
close to the true (lifted) observation path Y in the relevant metric for all realizations
Y 2 C 0;˛ .

Nomenclature Lip� is the set of � -Lipschitz 7 functions a W Rm ! R
n where m

and n are chosen according to the context.

5More generally, GŒ1=˛�.Rd / is the “correct” state space for a geometric ˛-Hölder rough path; the
space of such paths subject to ˛-Hölder regularity (in rough path sense) yields a complete metric
space under ˛-Hölder rough path metric. Technical details of geometric rough path spaces (as
found e.g. in section 9 of [23]) are not required for understanding the results of the present paper.
6This fact is a consequence of the support theorem of Brownian motion in Hölder rough path
topology [21], see also Chapter 13 in [23].
7 In the sense of E. Stein, i.e. bounded k-th derivative for k D 0; : : : ; b�c and � � b�c-Hölder
continuous b�c-th derivative.
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G2.RdY / Š R
d ˚ so.dY / is the state space for a dY -dimensional Brownian

motion (or, in general for an arbitrary semi-martingale) and its corresponding Lévy
area.

C 0;˛ WD C
0;˛�Höl
0 .Œ0; t �; G2.RdY // is the set of geometric ˛-Hölder rough paths

� W Œ0; t � ! G2.RdY / starting at 0. We shall use the non-homogenous metric �˛�Höl

on this space, with associated “norm” jj:jj˛�Höl.
In the following we will make use of an auxiliary filtered probability space

. N̋ ; NF ; . NFt /t	0; NP/ carrying a dB -dimensional Brownian motion NB .8

Let S 0 D S 0. N̋ / denote the space of adapted, continuous processes in R
dS ,

with the topology of uniform convergence in probability.
For q � 1 we denote by S q D S q. N̋ / the space of processes X 2 S 0 such

that

jjX jjS q WD
�

NEŒsup
s�t

jXt jq�
�1=q

< 1:

8.2.1 SDE with Rough Drift

For the statement and proof of the main result we shall use the notion (and the
properties) of an SDE with rough drift captured in the following theorem.

As defined above, let . N̋ ; NF ; . NFt /t	0; NP/ be a filtered probability space carrying
a dB -dimensional Brownian motion NB and a bounded dS -dimensional random
vector S0 independent of NB . We recall that .˝;F ;P0/ carries, as above, the dY -
dimensional Brownian motion Y and let Ő D ˝ � N̋ be the product space, with
product measure OP WD P0˝ NP. Let S be the unique solution on this probability space
to the SDE

St D S0 C
Z t

0

a.Sr/dr C
Z t

0

b.Sr/ ı d NBr C
Z t

0

c.Sr / ı dYr : (8.17)

Denote by Y the rough path lift of Y (i.e. the enhanced Brownian Motion over Y ).
In the following, we fix " 2 .0; 1/ and ˛ 2 . 1

2C" ;
1
2
/.

We will use one of the following assumptions.

(a1) a; b 2 Lip1 and c 2 Lip4C"
(a1’) a; b 2 Lip1 and c 2 Lip5C"
(a2) a 2 Lip1C" and b; c 2 Lip2C"

8We introduce this auxiliary probability space, since in the proof of Theorem 8.2 it will be easier
to work on a product space separating the randomness coming from Y and B . A similar approach
was followed in the proof of Theorem 1 in [2].
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Theorem 8.1. Under assumption (a1), (a10) or (a2), for every � 2 C 0;˛ , there
exists a dS -dimensional process S� 2 S 0 such that

• It possesses exponential integrability: for every R > 0; q � 1

sup
jj�jj˛�Höl<R

EŒexp.qjS�j1IŒ0;t �/� < 1: (8.18)

• The mapping � 7! S�, from C 0;˛ to S q , is locally uniformly continuous for all
q � 1; under assumption (a10) or (a2) it is even locally Lipschitz.

• S� is consistent with the Stratonovich SDE solution: for P0 � a:e: !
NPŒSs.!; �/ D SY.!/s.�/; s � t � D 1: (8.19)

We write that formally S� solves the following stochastic differential equation
with rough drift

S
�
t D S

�

0 C
Z t

0

a.S�r /dr C
Z t

0

b.S�r /d
NBr C

Z t

0

c.S�r /d�r : (8.20)

The preceding theorem was proven in [7] under assumptions (a1) and (a10),
using a flow decomposition. Although (8.20) does at first sight not have a rigorous
meaning, if one (formally) computes the equation for QS�t WD ��1.t; S�t /, where
� D �� is the flow corresponding to dx D c.x/d�, one is left with a classical
SDE (the d� term disappears). In the equation for QS the dependence on the rough
path is harmless and only comes in through the flow and its space-derivatives
(but not its time-derivative!). Hence QS� can be solved classically and we define
now S

�
t WD �.t; QS�t /. The claimed continuity and integrability properties then

follow from estimates on the rough flow � and classical robustness and integrability
properties of SDEs. It is well-known in rough path theory (for example Chapter 13
in [23]), that �� evaluated at the lifted Brownian motion Y coincides with the
Stratonovich flow to dX D c.X/ ı dY. It then is easy to show property (8.19).

In [16] under assumption (a2) another approach was chosen. We realized that
there is a canonical way of defining a joint rough path lift 	 of � and NB . In fact
the only term that is not immediately well-defined is the cross-term

R NBd�. But
using formal integration by parts one can rewrite as B� � R

�d NB , which is well-
defined via Itô-integration. It is then straightforward to check that this indeed defines
a rough path (almost surely, with the null-set depending on �). To show (8.18) we
modify recent integrability results for Gaussian rough paths [4, 22] using the Borell
inequality on Gaussian spaces.
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8.2.2 Assumptions and Main Result

In the following we will make use of the Stratonovich version of Eq. (8.6)

Xt D X0 C
Z t

0
L0.Xr ; Yr /dr C

X

k

Z t

0
Zk.Xr ; Yr / ı dYkr C

X

j

Z t

0
Lj .Xr ; Yr / ı dBjr ;

Yt D
Z t

0
h.Xr ; Yr /dr CWt :

(8.21)

where

L
j
0 .x; y/ D Nlj0 .x; y/� 1

2
@xi Z

j

k
.x; y/Zik.x; y/� 1

2
@ykZ

j

k
.x; y/ � 1

2
@xi L

j

k
.x; y/Lik.x; y/:

We remind that under P0 the observation Y is a Brownian motion independent of B .
We will assume that f is a bounded Lipschitz function and we fix " 2 .0; 1/

˛ 2 . 1
2C" ;

1
2
/, t > 0 and X0 is a bounded random vector independent of B and Y .

We will use one of the following assumptions.

(A1) Z1; : : : ; ZdY 2 Lip4C", h1; : : : ; hdY 2 Lip4C" and L0;L1; : : : ; LdB 2 Lip1

(A10) Z1; : : : ; ZdY 2 Lip5C", h1; : : : ; hdY 2 Lip5C" and L0;L1; : : : ; LdB 2 Lip1

(A2) Z1; : : : ; ZdY 2 Lip2C", h1; : : : ; hdY 2 Lip2C" and L0;L1; : : : ; LdB 2
Lip1C"

Assume (A1), (A10) or (A2). For � 2 C 0;˛ there exists, by Theorem 8.1,
a solution .X�; I �/ to the following SDE with rough drift

X
�
t D X0 C

Z t

0

L0.X
�
r ; Y

�
r /dr C

Z t

0

Z.X�
r ; Y

�
r /d�r C

X

j

Z t

0

Lj .X
�
r ; Y

�
r /d

NBj
r ;

Y
�
t D

Z t

0

d�r ;

I
�
t D

Z t

0

h.X�
r ; Y

�
r /d�r � 1

2

X

k

Z t

0

Dkh
k.X�

r ; Y
�
r /dr:

(8.22)

Remark 8.1. Note that formally (!) when replacing the rough path � with the
process Y , X�; Y � yields the solution to the SDE (8.21) and exp.I �t / yields the
(Girsanov) multiplicator in (8.7). This observation is made precise in the statement
of Theorem 8.1.

We introduce the functions gf ; g1; � W C 0;˛ ! R defined as
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gf .�/ WD NEŒf .X�
t ; Y

�
t / exp.I �t /�; g1.�/ WD NEŒexp.I �t /�; �.�/ WD gf .�/

g1.�/
:

Denote by Y�, as before, the canonical rough path lift of Y to C 0;˛ .

Theorem 8.2. 1. Assume that (A1) holds then � is locally uniformly continuous
function of the “observation” rough path �. If (A10) or (A2) holds, then � is
locally Lipschitz.

2. Under any of the conditions (A10), (A10) or (A2) we have �.Y�/ D �t .f /, P�a:s:
Proof. (i) From Theorem 8.1 we know that for � 2 C 0;˛ the SDE with rough

drift (8.22) has a unique solution .X�; Y �; I �/ belonging to S 2.
Let now �;�0 2 C 0;˛ . Denote X D X�; Y D Y �; I D I � and analogously

for �0.
Then

jgf .�/ � gf .�/j
� EŒjf .Xt ; Yt / exp.It / � f .X 0

t ; Y "t / exp.I 0
t /j�

� EŒjf .Xt ; Yt /jj exp.It /� exp.I 0
t /j�C EŒjf .Xt ; Yt /� f .X 0

t ; Y
0
t /j exp.I 0

t /�

� jf j1EŒj exp.It /� exp.I 0
t /j�C EŒjf .Xt ; Yt /�f .X 0

t ; Y
0
t /j2�1=2EŒj exp.I 0

t /j2�1=2

� jf j1EŒj exp.It /C exp.I 0
t /j2�1=2EŒjIt � I 0

t j�1=2

C EŒjf .Xt ; Yt / � f .X 0
t ; Y

0
t /j2�1=2EŒj exp.I 0

t /j2�1=2

Hence, using from Theorem 8.1 the continuity statement as well as the bounded-
ness of exponential moments, we see that gf is locally uniformly continuous under
(A1) and it is locally Lipschitz under (A1’) or (A2).

The same then holds true for g1 and moreover g1.�/ > 0. Hence � is locally
uniformly continuous under (A1) and locally Lipschitz under (A1’) or (A2).

(ii) To prove the statement it is enough to show that

gf .Y�/ D pt .f / P � a:s:

which is equivalent to

gf .Y�/ D pt .f / P0 � a:s:

For that, it suffices to show that

E0Œpt .f /� .Y�/� D E0Œg
f .Y�/� .Y�/�; (8.23)

for an arbitrary continuous bounded function � W C.Œ0; t �;RdY / ! R.
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Let . N̋ ; NF ; NP/ be the auxiliary probability space from before, carrying an dB -
dimensional Brownian motion NB . Let . Ő ; OF ; OP/ WD .˝ � N̋ ;F ˝ NF ;P0 ˝ NP/. By
Y and X0 we denote also the ‘lift’ of Y to Ő , i.e. Y.!; N!/ D Y.!/, X0.!; N!/ D
X0.!/. Then .Y; B/ (on ˝ under P0) has the same distribution as .Y; NB/ (on Ő
under OP).

Denote by . OX; OI / the solution on . Ő ; OF ; OP/ to the SDE

OXtDX0C
Z t

0

L0. OXr; Yr/drC
X

k

Z t

0

Zk. OXr; Yr / ı dYkrC
X

j

Z t

0

Lj . OXr; Yr /d NBj
r ;

OIt D
X

k

Z t

0

hk. OXr; Yr / ı dYkr � 1

2

X

k

Z t

0

Dkh
k. OXr; Yr /dr:

Then

.Y; OX; OI / OP �
 

Y;X;
X

k

Z �

0

hk.Xr; Yr / ı dYkr � 1

2

X

k

Z �

0

Dkh
k.Xr ; Yr/dr

!

P0

:

Hence, for the left hand side of (8.23),

E0Œpt .f /� .Y�/�

D E0Œf .Xt ; Yt / exp

 
X

k

Z t

0
hk.Xr ; Yr/ ı dYkr � 1

2

X

k

Z t

0
Dkh

k.Xr ; Yr /dr

!

� .Y�/�

D OEŒf . OXt ; Yt / exp
� OIt
	
� .Y�/�

On the other hand, from Theorem 8.1 we know that for P0�a:e !, for NP�a:e: N!

XY�.!/. N!/t D OXt.!; N!/; Y Y�.!/. N!/t D OYt .!; N!/; IY�.!/. N!/t D OIt .!; N!/:

Hence, for the right hand side of (8.23) we get (using Fubini for the last equality)

E0Œg
f .Y�/� .Y�/� D E0Œ NEŒf .XY�

t ; Y
Y�
t / exp

�
I

Y�
t

	
�� .Y�/�

D E0Œ NEŒf . OXt ; Yt / exp
� OIt
	
�� .Y�/�

D OEŒf . OXt ; Yt / exp
� OIt
	
� .Y�/�;

which yields (8.23).
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8.3 Maximum Likelihood Estimation for SDEs

Let W be a d -dimensional Wiener process and A 2 V WD L
�
R
d ;Rd

�
. Consider

sufficiently regular h W Rd ! R
d and ˙ W Rd ! L

�
R
d ;Rd

�
so that

dXt D Ah .Xt / dt C˙ .Xt / dWt (8.24)

has a unique solution, started fromX0 D x0. The important example of multidimen-
sional Ornstein-Uhlenbeck dynamics, for instance, falls in the class of diffusions
considered here (take h.x/ D x; g D 0 and constant, non-degenerate diffusion
matrix ˙). We are interested in estimating the drift parameter A, given some
observation sample path fXt .!/ D !t W t 2 Œ0; T �g. More precisely, we are looking
for a Maximum Likelihood Estimator (MLE) of the form

OAT D OAT .!/ D OAT .X/ 2 V

relative to the reference measure given by the law of X , viewed as measure on
pathspace, in the case A � 0.

Theorem 8.3. (i) Define

Rh WD ˚
X 2 C �Œ0; T � ;Rd � W span fh .Xt/ W t 2 Œ0; T �g D R

d
�
: (8.25)

Assume that the set of critical points of h has no accumulation points (i.e. on
every bounded set, there is only a finite set of points at which det Dh .x/ D 0).
Then, for every fixed, non-degenerate volatility function ˙

P
0;˙ .Rh/ D 1:

Hence, IT D IT .!/ is P
0;˙ -almost surely invertible so that AT .!/ WD

I�1
T ST .!/ is P0;˙ -almost surely well-defined.

(ii) Fix ˛ 2 .1=3; 1=2/. Then, P
0;˙ -almost surely, X .!/ lifts to a (random)

geometric ˛-Hölder rough path, i.e. a random element in the rough path space
C 0;˛ , via the (existing) limit in probability

X .!/ WD .X .!/ ;X .!// WD lim
n

�

Xn;

Z

Xn ˝ dXn
�

where Xn denotes dyadic piecewise linear approximations to X .
(iii) Define D 
 D˛

g

�
Œ0; T � ;Rd

�
by

D D ˚
.X;X/ 2 C 0;˛ W X 2 Rh

�
:
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Then, under the assumption of (i), for every fixed, non-degenerate volatility
function˙ ,

P
0;˙ .X .!/ 2 D/ D 1:

(iv) There exists a deterministic, continuous [with respect to ˛-Hölder rough path
metric] map

OAT W
�
D ! R

d�d
X 7! OAT .X/

so that, for every fixed, non-degenerate volatility function ˙ ,

P
0;˙
h OAT .X .!// D AT .!/

i
D 1: (8.26)

In fact, OAT is explicitly given, for .X;X/ 2 D 
 C 0;˛ , by

OA.X;X/ WD I�1
T .X/ST .X;X/;

where

IT .X/ WD
Z T

0

h .Xs/˝ C�1.Xs/˝ h.Xs/ ds;

ST .X;X/i;j WD
Z T

0

hi .Xs/˝ C�1
j � .Xs/ ı dXs

� 1

2

Z T

0

TrŒD.hiC
�1
j � /.Xs/˙.Xs/˙.Xs/T �ds

and the ıdX integral9 is understood as a (deterministic) rough integration
against X D .X;X/.

(v) The map OAT is also continuous with respect to the volatility specification.
Indeed, fix c > 0 and set

# WD ˚
˙ 2 Lip2 W c�1I � ˙˙T � cI

�
:

Then OAT viewed as map from D �# ! R
d is also continuous.

9. . . often written as dX integral in the literature on rough integration . . .
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8.4 Practical Implications

Both the optimal filter for partially observed diffusion processes and the maximum
likelihood estimator for the drift of an SDE are functionals on pathspace. In
dimension strictly larger then one (and with non-zero correlation in the filtering
problem) there are simple countexamples (Examples 8.1 and 8.2) that demonstrate
that continuity of these functionals in the path itself (in supremum norm, say) is
not possible. Our main results, Theorems 8.2 and 8.3, re-establish continuity by
measuring distance with a rough path metric.

As already briefly touched upon, this requires the user to understand observations
as a rough path. In our setting (Hölder regularity just below 1

2
) this amounts to

recording the second order integrals of the stochastic process.
A possible approach that we are currently investigating, is observing the effect

that the observation has on an (auxiliary) differential equations (which would
model a physical measuring device). Under certain assumption on this differential
equation, this forces the rough path to reveal its higher order elements (up to a
certain order of error).

A different interpretation is the view that (discrete) observation data always gives
rise to (piecewise) smooth paths by suitable interpolation (piecewise linear, say).
However, with increasing frequency of observation the Lipschitz norm of these
continuous paths will blow up. As a result one has no control over the modulus
of continuity (of the filter resp. the MLE) with respect to the discrete data as the
observation frequency becomes large. Our point of view here leads to a uniform (in
the frequency of observation) modulus of continuity.
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Chapter 9
Adaptive Sparse Grids in Reinforcement
Learning

Jochen Garcke and Irene Klompmaker

Abstract We propose a model-based online reinforcement learning approach for
continuous domains with deterministic transitions using a spatially adaptive sparse
grid in the planning stage. The model learning employs Gaussian processes regres-
sion and allows a low sample complexity. The adaptive sparse grid is introduced
to allow the representation of the value function in the planning stage in higher
dimensional state spaces. This work gives numerical evidence that adaptive sparse
grids are applicable in the case of reinforcement learning.

9.1 Introduction

We consider function approximation techniques for reinforcement learning (RL).
Reinforcement learning is a computational approach to learning, where an agent
tries to maximise the total amount of reward it receives when interacting with a
complex, uncertain environment [33]. The setting is very closely related to solving
optimal control problems using Hamilton-Jacobi Bellman (HJB) equations, but in
contrast to that only a partial amount of the data describing the system is known.
For example the state dynamics describing the evolution of a system are unknown
and can only be observed by performing actions.

Formally the evolution of the problem in the control space is determined by the
differential equation

@x.t/

@t
D f .x.t/; ˇ.t//;

where x.t/ is the state, ˇ.t/ the action and f is called state dynamics. The latter
describes the effect of an action ˇ taken in a particular state x, and gives the new
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state f .x; ˇ/ after the action is taken. Although we consider deterministic dynamics
in this work, they could also be stochastic, to which situation our approach can be
extended. For an initial state x0 the choice of actions ˇ therefore leads to a unique
trajectory x.t/. Further, there is the reinforcement or reward function r.x; ˇ/, which
assigns each state (or state-action pair) a numerical value indicating the intrinsic
desirability of that state. The aim is to find a policy which maximises the total reward
in the long run, where rewards in states reached by a trajectory through the state
space are taken into account. For simplicity we consider a deterministic policies
�.x/, which assign each state a unique action, i.e., ˇ D �.x/; it is a mapping from
perceived states of the environment to actions to be taken when in those states.

There are many types of reinforcement learning problems: state dynamics known
or not, discrete or continuous case, model-based or model-free, deterministic or
stochastic [33]. What they all have in common is that they solve an optimal control
problem, at least implicitly. The difference of reinforcement learning in comparison
to optimal control problems is that the state dynamics and the reinforcement
function are, a priori, at least partially unknown. Nevertheless, it is a problem
of optimal control and the dynamic programming method is usually employed to
estimate the best future cumulative reinforcement.

In this work we consider a deterministic model-based reinforcement learning
approach in a continuous state space with unknown state dynamics, but known
rewards. As in [9,23] and related methods our approach consists of two ingredients,
a model-learner and a planner. By performing an action ˇ in a state x the algorithm
interacts with the environment and observes a sample f .x; ˇ/ of the state dynamics.
Based on such sample transitions fxk; ˇk; f .xk; ˇk/gkD1;:::;K the model-learner then
estimates the state dynamics. On the other hand, given the current model the planner
aims to find the best possible action ˇ in a state x, i.e. those which is part of the
trajectory starting at x with the highest total reward, and thereby determines an
approximation� to the optimal policy ��. With more and more samples of the state
dynamics the model-learner is assumed to become more accurate, while the derived
actions are supposed to get closer to the optimal ones from ��.

For model-learning we use Gaussian process regression as in [23], while for the
planner we employ adaptive sparse grid interpolation. The discretization technique
of sparse grids allows to cope with the curse of dimensionality to some extent.
It is based on a hierarchical multilevel basis [36] and a sparse tensor product
construction. The underlying idea was first used for numerical integration and
interpolation [34]. Subsequently, the sparse grid method has been developed for the
solution of partial differential equations [37]. By now, it is also successfully used
for, e.g., integral equations, stochastic differential equations, machine learning, or
approximation, see the overview articles [10, 17] and the references cited therein.

For the representation of a function f defined over a d -dimensional domain,
the conventional sparse grid approach employs O.h�1

n � log.h�1
n /

d�1/ grid points
in the discretization process, where hn WD 2�n denotes the mesh width. It can be
shown that the order of approximation to describe a functionf , provided that certain
mixed smoothness conditions hold, is O.h2n � log.h�1

n /
d�1/. This is in contrast to
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conventional grid methods, which need O.h�d
n / for an accuracy of O.h2n/, albeit for

less stringent smoothness conditions. Thus, the curse of dimensionality of full grid
methods arises for sparse grids to a much smaller extent. In case the smoothness
conditions are not fulfilled, spatially adaptive sparse grids have been used with
good success [6, 10, 15, 31]. There, as in any adaptive grid refinement procedure,
the employed hierarchical basis functions are chosen during the actual computation
depending on the function to be represented. In regard to adaptivity, closely related
work in reinforcement learning was presented in [28, 30], in contrast to these
approaches we investigate sparse grids in the planner and use a model-based setting.

The presented sparse grid approach for reinforcement learning is an extension
of a semi-Lagrangian scheme for HJB-equations on an adaptive sparse grid, which
was introduced in [6]. There it was empirically shown that for problems related to
the front propagation model, the number of grid points needed in higher dimensions
to approximately represent the involved functions with a given threshold error can
be small. Thus, the approach is able to circumvent the curse of dimensionality of
standard grid approaches for Hamilton-Jacobi Bellman equations to some extent.
This work now shows numerical results for the case of reinforcement learning and
gives evidence that adaptive sparse grids can be used there as well.

But note that the sparse grid scheme is not monotone as the interpolation with
sparse grids is not monotone [29, 31]. Thus neither convergence towards the vis-
cosity solutions of Hamilton-Jacobi Bellman equations nor stability of the scheme
can presently be guaranteed, even for the linear advection equation. Consequently,
these properties do not necessarily hold in the case of reinforcement learning
either; numerically divergent behaviour of the adaptive sparse grid approach can
be observed in certain situations. To this end, further analytical work on the scheme,
both for the HJB and the RL case, is necessary.

9.2 Reinforcement Learning

Our reinforcement learning approach is based on the procedure presented in [23], a
model-based online reinforcement learning approach for continuous domains with
deterministic transitions. It separates function approximation in the model learner
from the interpolation in the planner. For model-learning we use Gaussian process
regression as in [23], but we replace the equidistant grid in the planner by an
adaptive sparse grid procedure similar to the one used for HJB equations [6]. The
overall approach assumes some properties of the reinforcement learning problems
under consideration: We consider discrete actions, a smooth transition function, i.e.
an action performed on states which are close in state space must lead to successor
states that are close, deterministic transitions, and known reward functions. The
latter two are mainly for simplicity, the ingredients of the approach can be extended
to the non-deterministic case, and learning a reward function would just be one
more function to be learned. Since our goal is to investigate the applicability of
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adaptive sparse grids in the planning stage of a reinforcement learning setting, a
simple setting is advantageous to concentrate on the effect of, and interplay with,
unknown and only approximately learned state dynamics, which is the extension in
comparison to [6].

We assume that the state space X is a hyperrectangle in R
d , which is justified

for many applications, and that we have a finite action space B, this might involve
discretizations of continuous controls. For simplicity we assign each action a unique
number 1; : : : ; jBj. Note that we use here a setting where all actions involve the
same time horizon � , which therefore can be omitted from the exposition for
simplification. In general, temporal aspects need to be taken into account, see
e.g. [26, 30]. The function f W X � B ! X describes the state dynamics. In
our setting the state dynamics are (at least partially) unknown, only an approximate
model Of W X � B ! X , which will be learneded from samples, is available with
f 	 Of . Finally r W X � B ! R is the reward function.

For a state x 2 X one is interested in determining a sequence of actions
ˇ0; ˇ1; : : : such that the accumulated reward is maximised, this is given by the
optimal value function v�.x/

v�.x/ WD max
ˇ0;ˇ1;:::

( 1X

tD0
� t � r.xt ; ˇt / j x0 D x; xtC1 D f .xt ; ˇt /

)

;

where 0 < � < 1 is the discount factor, which determines the importance of future
rewards [5, 33].

The value iteration, the employed basic numerical scheme, is based on the
dynamic programming principle and can be formulated as

vnC1.x/ D max
ˇ2B

h
� � vn. Of .x; ˇ//C r.x; ˇ/

i
; (9.1)

which computes the value function v�.x/ in the limit n ! 1, see e.g. [1, 25, 26].
Note that in a similar fashion the value function v� for a fixed policy � can be
computed. This formulation for the computation of the value function, the planning,
is valid for both situations, a known model f and a to be learned model Of . In
addition, a numerical discretization of the value function is necessary, in particular
for continuous domains.

For any given value function v, e.g. a suitable numerical approximation Ov of
the optimal value function v� computed by value iteration using a discretization
approach, the corresponding control policy �.x/ determined by v can easily be
obtained, since at each state the optimal action can be chosen depending on the
given value function v as follows

�.x/ 2 arg max
ˇ2B

h
� � v. Of .x; ˇ//C r.x; ˇ/

i
:
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The overall reinforcement learning approach now consists of three parts as
outlined in the following algorithm.
Algorithm 1 Generic model-based reinforcement learning approach

while learning do
interact with system and store observed transitions
learn model Of based on observed transitions
for planning use model Of to determine Ov�

end while

In the following we will describe the model learning using Gaussian process
regression and the planning procedure in the next sections, where for the represen-
tation of the value function v we use a finite element approach, similar to [1,25,26],
but based on a sparse grid.

9.2.1 Model Learning with Gaussian Processes

We now describe how we, following [23], learn the model from samples which
are obtained by interactions with the environment. In its core, model learning is a
regression problem. In this work we aim to concentrate on evaluating sparse grids
for the planning stage, and therefore apply for the model learning a regression
approach successfully used before in reinforcement learning, namely Gaussian
processes (GPs) [13, 23, 32]. As the kernel the squared exponential is employed

k.x; x0I v0; b; �/ D v0 exp
˚�0:5.x � x0/2�

�
;

where v0; b; � are the to be determined hyperparameters. In our view, a main
advantage of Gaussian processes in this application is the possible automatic
determination of the hyperparameters in a controlled fashion using a maximum
likelihood approach. This is here in particular relevant since, as we will see, one
needs to repeatedly compute, or update, regression models. Nevertheless, it would
be interesting to investigate sparse grid regression [16, 31] in the model learning
phase as well.

The input data for the regression algorithm are the taken actions and their
resulting state, i.e. S D fxk; ˇk; xkC1gkD1;2;:::, where xkC1 D f .xk; ˇk/. As
noted before, the transition function f W X � B ! X is d -dimensional:
f .x; ˇ/ D Œf1.x; ˇ/; : : : ; fd .x; ˇ/�

T . One can either estimate f directly, i.e. the
absolute transitions, or the relative change xkC1 � xk , the latter we do as in [23].
We train multiple Gaussian processes, one for each action and output dimension,
and use the combined predictions afterwards. In other words, a GPij is trained for
the output in the i -th dimension of the j -th action, using the data when that action

was taken, i.e. the input data for GPij is Sij D
n
xk; x

.i/

kC1 � x.i/k
o

ˇkDj;kD1;2;:::. The

hyperparameters are computed for each individual GPij by optimizing the marginal
likelihood. For any test point x the GPij gives a distribution over target values
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N .�ij; �ij/ with mean �ij.x/ and variance �2ij .x/. The change in the i -th coordinate
of the state under the j -th action is predicted by the mean�ij, where the variance can
be interpreted as the uncertainty of the prediction. The full learned model consists of
d � jBj Gaussian processes and the predicted successor state Of .x; ˇ/ for any action
ˇ taken in state x is then

Of .x; ˇ/ WD

2

6
4

x.1/

:::

x.d/

3

7
5C

2

6
4

�1ˇ.x/
:::

�dˇ.x/

3

7
5 ;

see [23] for more details on model learning with Gaussian processes.

9.3 Planning with Sparse Grids

We consider in the following the discretization needed for the planner in the case
of a continuous state-space and concentrate on the function approximation aspect.
These techniques are used in the context of Hamilton-Jacobi Bellman equations as a
device for having a numerical representation of the value function. They discretize
an HJB-equation (with a resolution ") into a dynamic programming (DP) problem
for some stochastic Markov Decision Process (MDP). Using DP techniques the
MDP can then be solved. The convergence of the solution V " of the discrete MDP
to the value function V of the continuous problem for " ! 0 can be proven
under assumptions on the discretization scheme, namely it being (using suitable
definitions) a consistent, monotone and uniformly continuous numerical procedure
to solve the underlying HJB-equation. Generalizing these proofs (in regard to the
deterministic or stochastic setting, the regularity of the value function and the
properties of the discretization scheme) is an active field of research [2–4,24,26,28].
Typical discretization schemes are of finite-difference type [7, 8, 25], (operator)
splitting methods [35], or control schemes based on the dynamic programming
principle (e.g. [11]).

The idea of a discretized HJB-equation was adopted to the field of reinforcement
learning [26, 28, 30]. Since the state dynamics and the reinforcement function are
not perfectly known, the original convergence proof [4] for DP was generalized to
the case where only approximations of these are known. Convergence was shown
when the number of iterations of the RL scheme (for the approximation of the state
dynamics and the reinforcement function) goes to infinity and the discretization step
tends to zero. The result applies in a general form to model-based or model-free RL
algorithms, for off-line or on-line methods, for deterministic or stochastic dynamics
and finite element or finite difference discretization [26].

Adaptive finite difference grids and a posteriori error estimates using the method-
ology from the numerical solution of partial differential equations were studied
for the deterministic HJB-equation [19] and later generalized to the stochastic
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case [20]. Adaptive schemes are particularly important since often the value function
is non-smooth. In [28] different spatial refinement strategies were studied, in
particular a heuristic is proposed which refines the grid mostly where there is a
transition in the optimal control. These discretization approaches are limited in the
number of dimensions due to the curse of dimensionality, i.e. the complexity grows
exponentially with the number of dimensions.

An important aspect of these grid based approaches is the inherent locality in
the schemes and its properties. Although, for example, formulated using a finite
element representation, one does not solve a ‘global’ Galerkin-type problem, but
the convergence is due to local properties of a function defined on a simplex (or
box). This local view unfortunately does not hold for sparse grids, which renders the
usual theoretical justifications of these grid approaches for HJB-equations invalid.
Nevertheless, the empirical observations in [6] and this work give evidence that
spatial adaptive sparse grids can be used in this setting, although further detailed
investigations are necessary to provide criteria when this is the case.

In case of a suitably chosen, for now fixed, discretization grid ˝ with corre-
sponding function space V the planning step based on dynamic programming and
using a model Of can be written as

• Suitably initialize v0 2 V .
• Iterate for n D 0; 1; 2; : : : until convergence, e.g. jvnC1.x/ � vn.x/j <

tol 8x 2 ˝ ,

vnC1.x/ D max
ˇ2BŒ� � vn. Of .x; ˇ//C r.x; ˇ/� 8x 2 ˝: (9.2)

Here, vn 2 V is the numerical solution computed by the scheme at DP step n,

which in some cases can be interpreted as a time step, and the value vn
� Of .x; ˇ/

	

denotes the interpolation of vn at point Of .x; ˇ/. Note that for our later experiment
the minimization over the set B can be done in a straightforward way by evaluating
the function values for each possible action b 2 B. In case this number is too
large, or if the set B is infinite, then a minimisation procedure which uses only
evaluations of the objective function, and not its derivatives, could be performed
without changing the main steps of the scheme.

Note that many reinforcement learning algorithms in continuous state-space, e.g.
the ones employing approximate value iteration (AVI) [27, 28, 33] for the dynamic
programming part, use supervised machine learning methods (i.e. regression algo-
rithms [21]) to achieve the function approximation, also called generalization in
this context [5, 33]. For example neural networks [5] or decision trees [12] can be
used. But there is no general convergence of the algorithms, and the combination
of DP methods with function approximation may produce unstable or divergent
results even when applied to very simple problems [33]. Nevertheless, for schemes
which are linear in the model parameters, a convergence proof is available (see [33]).
Finally note that there are recent results indicating that the contribution of the error
due to the approximation of the Bellman operator at each iteration is more prominent
in later iterations of AVI and the effect of an error term in the earlier iterations decays



186 J. Garcke and I. Klompmaker

exponentially fast [14]. To put more emphasis on having a lower Bellman error at
later iterations one could increase the number of samples during the scheme or use
more powerful function approximators in the end.

Having set the background for function approximation for the value function in
the planning stage we now describe our adaptive sparse grid procedure, which is
based on [6].

9.3.1 Sparse Grids

For ease of presentation we will consider the domain ˝ D Œ0; 1�d in this section.
Let l D .l1; : : : ; ld / 2 N

d denote a multi-index. We define the anisotropic grid
˝l on ˝ with mesh width hl WD .hl1 ; : : : ; hld / WD .2�l1 ; : : : ; 2�ld /. It has, in
general, different but equidistant mesh widths hlt in each coordinate direction t ,
t D 1; : : : ; d . The grid ˝l thus consists of the points xl;j WD .xl1;j1 ; : : : ; xld ;jd /;

with xlt ;jt WD jt � hlt D jt � 2�lt and jt D 0; : : : ; 2lt . For any grid ˝l we define the
associated space Vl of piecewise d -linear functions

Vl WD spanf�l;j j jt D 0; : : : ; 2lt ; t D 1; : : : ; d g; (9.3)

which is spanned by the conventional basis of d -dimensional piecewise d -linear hat
functions

�l;j .x/ WD
dY

tD1
�lt ;jt .xt /: (9.4)

The one-dimensional functions �l;j .x/ are defined by

�l;j .x/ D
(
1 � jx=hl � j j; x 2 Œ.j � 1/hl ; .j C 1/hl � \ Œ0; 1�;

0; otherwise:
(9.5)

The multi-index l 2 N
d denotes the level, i.e. the discretization resolution, be it

of a grid ˝l , of a space Vl , or of a function fl , whereas the multi-index j 2 N
d

gives the position of a grid point xl;j or its corresponding basis function �l;j .
We now define a hierarchical difference space Wl via

Wl WD Vl n
dM

tD1
Vl�et ; (9.6)
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where et is the t-th unit vector. In other words,Wl is spanned by all �k;j 2 Vl which

are not included in any of the spaces Vk smaller1 than Vl . To complete the definition,
we formally set Vl WD ;, if lt D 0 for at least one t 2 f1; : : : ; d g. As can be easily
seen from (9.3) and (9.6), the definition of the index set

Bl WD
(

j 2 N
d

ˇ
ˇ
ˇ
ˇ
ˇ

jt D 1; : : : ; 2lt � 1; jt odd; t D 1; : : : ; d; if lt > 1;

jt D 0; 1; 2; t D 1; : : : ; d; if lt D 1

)

(9.7)
leads to

Wl D spanf�l;j jj 2 Blg: (9.8)

The family of functions

n
�l;j

ˇ
ˇ
ˇj 2 Bl

o.n;:::;n/

lD.1;:::;1/ (9.9)

is just the hierarchical basis [36] of Vn.WD V.n;:::;n//, which generalizes the one-
dimensional hierarchical basis to the d -dimensional case with a tensor product
ansatz. Observe that the supports of the basis functions �l;j .x/, which span Wl ,
are disjoint for l > 1.

Zenger [37] introduced so-called sparse grids, where hierarchical basis functions
with a small support, and therefore a small contribution to the function representa-
tion, are not included in the discrete space of level n any more.

Formally, the sparse grid function space V s
n 
 Vn is defined as

V s
n WD

M

jl j1�nCd�1
Wl : (9.10)

Every f 2 V s
n now can be represented as

f s
n .x/ D

X

jlj1�nCd�1

X

j2Bl

˛l;j �l;j .x/: (9.11)

The resulting grid which corresponds to the approximation space V s
n is called sparse

grid and is denoted by˝s
n.

The sparse grid space V s
n has a size of order dimV s

n D O.2n � nd�1/, see [10].
It thus depends on the dimension d to a much smaller degree than a standard
full grid space whose number of degrees of freedom is O.2nd /. Note that for the
approximation of a function f by a sparse grid function f s

n 2 V s
n the error relation

1We call a discrete space Vk smaller than a space Vl if 8t kt � lt and 9t W kt < lt . In the same way
a grid ˝k is smaller than a grid ˝l .
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kf � f s
n k2 D O

�
2�2n � nd�1�

holds, provided that f fulfils the smoothness requirement jf jH2
mix

< 1 [10].
Therefore, sparse grids need much fewer points in comparison to a full grid to obtain
an error of the same size.

9.3.2 Spatially Adaptive Sparse Grids

The sparse grid structure (9.10) defines an a priori selection of grid points that is
optimal if certain smoothness conditions are met, i.e. if the function has bounded
second mixed derivatives, and no further knowledge of the function is known
or used. If the aim is to approximate functions which either do not fulfil this
smoothness condition at all or show strongly varying behaviour due to finite but
nevertheless locally large derivatives, adaptive refinement may be used. There,
depending on the characteristics of the problem and the function at hand, adaptive
refinement strategies decide which points and corresponding basis functions should
be incrementally added to the sparse grid representation to increase the accuracy.

In the sparse grid setting, usually an error indicator stemming directly from the
hierarchical basis is employed [15,18,31]: depending on the size of the hierarchical
surplus ˛l;j it is decided whether a basis function is marked for further improvement
or not. This is based on two observations: First, the hierarchical surplus indicates
the absolute change in the discrete representation at point xl;j due to the addition
of the corresponding basis function �l;j , i.e. it measures its contribution to a given
sparse grid representation (9.11) in the maximum-norm. And second, a hierarchical
surplus represents discrete second mixed derivatives and hence can be interpreted
as a measure of the smoothness of the considered function at point xl;j :

In the adaptive procedure we use an index set I to track the indices of the
employed basis functions and denote the corresponding sparse grid by ˝I and
the associated sparse grid space by VI , respectively. We start with a coarse initial
sparse grid function f s

n 2 V s
n for some given small n as in (9.11). The index set is

thus initialized as I WD f.l; j / j jl j1 � nC d � 1g. We proceed as follows: If, for
any given index .l; j / 2 I , we have

j˛l;j j � k�l;j k > " (9.12)

for some given constant " > 0, then the index will be marked. Here, k � k is typically
either theL1- orL2-norm, but other norms or weighted mixtures of norms are used
in practice as well. If an index is marked, all its 2d so-called children will be added
to the index set I to refine the discretization, i.e. all .Ql ; Qj / with Ql D l C et and
Qj D j C jt et ˙ 1 will be added to I for t D 1; : : : ; d . For the indices added that
way it is possible that not all parents in all dimensions are already contained in the
grid; note that in such cases, for algorithmic and consistency reasons, these missing
parents have to be added to I as well. Thus for any .l; j / 2 I all parents .Ql ; Qj /
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with Ql � l and supp.�Ql;Qj / \ supp.�l;j / ¤ ; are also in the index set I . In other

words, “holes” in the hierarchical structure are not allowed. In Algorithm 2 we give
the adaptive refinement procedure. If the function values at the newly added grid
points are easily available, the refinement step can be repeated until no indices are
added any more [6]. Note that if a global error criterion is available one can perform
an additional outer loop with successively decreasing " until the measured global
error falls below a given threshold "glob.

In a similar way one can use the value j˛l;j j � k�l;jk to coarsen the grid in
case of over-refinement. If this value is smaller than some coarsening constant �,
and no children of .l ; j / are in I , the index will be removed from this set. In
Algorithm 3 we give the coarsening step, where the procedure is repeated until no
indices are being removed. The coarsening will in particular be relevant once we
consider problems where the region in need of a higher resolution changes during
the computation. This is relevant for time-dependent problems, but also for the
planning considered in this work, which in some sense can be viewed as a time-
dependent problem. More importantly, the value function to be represented can
change during the computation due to changes in the learned model.

Algorithm 2 Spatially adaptive refinement step
Data: initial index set I , to be refined function vI , refinement threshold "
Result: refined index set I , refined function vI
for .l ; j / 2 I do

if j˛l;j j � k�l;j k > " then
for t D 1; : : : ; d do

if .Ql; Qj / … I for Ql D l C et and Qj 2 fj C jt et ˙ 1g then

I D I [ .Ql ; Qj / F add children which are not in I
end if

end for
end if

end for
check 8.l; j / 2 I holds: .Ql; Qj / 2 I for Ql � l and supp.�Ql ;Qj /\ supp.�l;j / ¤ ;
for all added indices .l ; j / 2 I do

initialize ˛l;j D 0

end for

Algorithm 3 Spatially adaptive coarsening
Data: index set I , coarsening threshold �, and ˛l;j 8.l ; j / 2 I
Result: coarsened index set I
while indices are removed from I do

for .l ; j / 2 I do
if j˛l;j j � k�l;jk < � then

if 8t D 1; : : : ; d : .Ql ; Qj / … I for Ql D l C et and Qj 2 fj C jt et ˙ 1g then
I D I n.l ; j / F remove if no children in I

end if
end if

end for
end while
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9.4 Sparse Grid Based Scheme for Reinforcement Learning

With these ingredients we now can formulate our approach, which in the end is quite
similar to the semi-Lagrangian scheme for Hamilton-Jacobi Bellman equations
using spatial adaptive sparse grids introduced in [6], but with only an approximate
model for the state dynamics.

The planning scheme is given in Algorithm 4. We perform p steps of the DP
equation (9.2) and then do one refinement step. Note that the initial steps are
randomly chosen since no infomation is exploitable, i.e. no samples from the state
dynamics exist. This is repeated a certain number of times, or stops early in case the
change in a DP step is small. Observe that it is not useful to aim for a convergence
of the DP scheme in the initial stages of the overall RL procedure [14]. Since the
learned model will take some time to be a reasonable approximation of the state
dynamics, and can be quite coarse in the beginning, aiming for convergence of the
planning step can even lead to wrong behaviour. Therefore we limit the number of
DP steps per planning stage. The same reasoning is behind the idea of calling the
refinement algorithm only after everyp DP steps, the resolution of the discretization
of the value function shall only grow slowly. Once the value iteration is finished we
coarsen the obtained sparse grid to reduce the further computational effort.

Algorithm 4 Adaptive SG-planning in reinforcement learning
Data: initial index set I .0/, initial function v0, refinement constant ", coarsening constant �,
model Of , k D 0

Result: adaptive sparse grid solution vke 2 VI .ke /

repeat
k D k C 1

vk.x/ D maxˇ2BŒ� � vk�1. Of .x; ˇ//C r.x; ˇ/� 8x 2 ˝I F DP step (9.2)
if k mod p = 0 then

call Alg. 2 with I .k � 1/, vk , " F refine vk 2 VI .k/ every p steps
end if

until jvk.x/� vk�1.x/j < tol 8x 2 ˝I .k/ and k < kmax

ke D k

call Alg. 3 with I .ke/, � and vke F coarsen vke

The overall reinforcement learning procedure is presented in Algorithm 5. The
algorithm performs a number of interactions with the environment and thereby
observes new state transitions .x; ˇ; f .x; ˇ//. Every T actions first the model is
updated to integrate the newly observed data, and then the value function is updated
in the planning step. Updating after every new transition information would be
a quite costly procedure, which we hereby avoid. Like in [23] the experiment
we are investigating is performed in episodes, i.e. the trajectory through the state
space is re-started once the target state, if defined, is reached or after a certain
number of steps, i.e. T �#epmax. The latter prevents the algorithm from investigating
uninteresting regions of the state space when the transition path does not follow a
‘good’ trajectory after ‘bad’ choices of actions due to model uncertainty or early
stages of convergence to the value function.
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Algorithm 5 SG-GP-scheme in reinforcement learning
Data: suitable initial index set I .0/, refinement constant ", coarsening constant �, initial state
xinit , and episode length #epmax
Result: adaptive sparse grid solution vne 2 VI .ne/

#ep D 0; n D 0; x0 D xinit

repeat
for t D 1; : : : ; T do

action ˇt is chosen according to ˇt D arg max
ˇ2B

Œ� � vn. Of .xt�1; ˇ//C r.xt�1; ˇ/�

interact with system by executing action ˇt
observe next state xt and store transition S D S [ fxt�1; ˇt ; xtg

end for
based on S learn model Of D fGPijgiD1;:::;d;jD1;:::;jBj

call Alg. 4 with I .n/, vn, ", �, Of F for planning compute value function vnC1 on ˝I .nC1/

n D nC 1; #ep D #ep C 1 F count number of chunks
if #ep mod #epmax D 0 or xT is target state then

x0 D xinit

else
x0 D xT

end if
until jvn.x/� vn�1.x/j < tol 8x 2 ˝I .n/

ne D n

9.5 Experiments

We evaluate our approach on a well-known reinforcement learning benchmark,
the mountain car problem [33]. The goal is to drive a car from the bottom of a
valley to the top of a mountain. Since the car is underpowered it cannot climb
the mountain directly, but instead has to build up momentum by first going in the
opposite direction. The state space is two-dimensional, the position of the car is
described by x1 2 Œ�1:2; 0:5� and x2 2 Œ�0:07; 0:07� is its velocity. The actions are
accelerating by a fixed value to the left, right, or no acceleration, encoded by actions
ˇ 2 f�1;C1; 0g. Every step gives a reward of �1, until the top of the mountain on
the right satisfying x1 � 0:5 is reached, the goal is therefore to have as few steps as
possible to reach the top. This experimental setup is the same as in [23], which in
modification to [33] sets a maximal episode length of 500, while model and value
function are relearned every 50 steps, uses a discount factor � D 0:99 and every
episode starts at x0 D .�=6; 0/. The parameters of the sparse grid approach were
" D 0:01 and � D 0:002, while an initial grid of n D 3 was used. In Algorithm 4
we used p D 20 and kmax D 200.

In Fig. 9.1 we give the final value function vne and the employed adaptive sparse
grid ˝I .ne/, which consists of 4,054 grid points. We observe that, as expected, the
majority of the grid points are where the value function has a large gradient. In
context of the problem there is a high gradient, where on one side the mountain can
be reached directly, on the other side only with first gaining momentum by going in
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Fig. 9.1 Results for the mountain car problem. (a) Value function vne . (b) Adaptive sparse grid
˝I .ne /

the opposite direction. The algorithm converged after 5 episodes, with 479 different
states visited in total. The goal was reached in each episode as follows:

Episode 1 2 3 4 5

Steps to goal 159 105 103 104 104

Note that the optimal number of steps for this problem is 103 [23] and the number
steps we observe per episode is essentially (only a graph is shown) as in that paper,
which uses a full grid. The standard online model-free RL algorithm Sarsa(�) with
tile coding [33] needs many more episodes to get below 150 steps and still is a
couple of steps away from 103 even after 1,000 episodes [23]. During the course of
the Sarsa(�) algorithm many more states are visited than in our procedure.

9.6 Conclusion

The combination of the Gaussian processes approach for model learning, which
achieves a low sample complexity, with the adaptive sparse grid procedure, which
breaks the curse of dimensionality to some extent and allows function representation
in higher dimensional state spaces, is applicable for reinforcement learning.

However, due to the lack of monotonicity of the sparse grid approach, the stability
of the scheme presently cannot be guaranteed. In practise, we do observe divergent
behaviour of the proposed scheme with unfavourable settings of the parameters
of the refinement algorithm. Additionally, the initial randomly chosen steps can
lead the algorithm off-track, although this can also happen for other reinforcement
learning approaches. In such a case the combination of adaptivity and a too wrong
model of the state dynamics can lead to divergence, even with otherwise, i.e.
for other initial samples, suitable refinement parameters. In any case, theoretical
investigations are needed to provide criteria, in particular useable for the actual
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computation, under which conditions on the problem and which settings of the
algorithm the scheme can successfully be used in reinforcement learning.

Furthermore, a bottleneck in the time complexity of the algorithm is the
evaluation of the adaptive sparse grid function, which at this stage prevents us from
detailed numerical experiments in higher dimensions, although an adaptive sparse
grid would cope with the higher dimensional setting. Recently it was shown that
using a specific reordering of the steps of the point evaluations together with a
GPU-based parallelisation can achieve speed-ups of almost 50 in comparison to the
standard implementation of adaptive sparse grid [22], employing this procedure in
our scheme would improve the runtime significantly and allow higher dimensional
examples to be finished in reasonable time.
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Chapter 10
A Review on Adaptive Low-Rank
Approximation Techniques in the Hierarchical
Tensor Format

Jonas Ballani, Lars Grasedyck, and Melanie Kluge

Abstract The hierarchical tensor format allows for the low-parametric representa-
tion of tensors even in high dimensions d . On the one hand, this format provides a
robust framework for approximate arithmetic operations with tensors based on rank
truncations, which can be exploited in iterative algorithms. On the other hand, it
can be used for the direct approximation of high-dimensional data stemming, e.g.,
from the discretisation of multivariate functions. In this review, we discuss several
strategies for an adaptive approximation of tensors in the hierarchical format by
black box type techniques, including problems of tensor reconstruction and tensor
completion.

10.1 Introduction

High-dimensional problems are encountered in many areas of practical interest, as
e.g. in stochastics, quantum chemistry, or optimisation. In this review, we consider
high-dimensional data that can be represented or approximated by a tensor

A 2 R
n1�:::�nd

of order (or dimension) d 2 N with n1; : : : ; nd 2 N. As soon as the order d is
large enough, the explicit representation of A in terms of all its entries A.i1;:::;id /,
i� D 1; : : : ; n�,� D 1; : : : ; d , becomes prohibitively expensive. This has motivated
the development of data-sparse tensor representations that can be applied even in
high dimensions d . For a detailed introduction to tensor representations we refer
the reader to [21, 22, 27].

A crucial question in applications is how to find a data-sparse representation
of A from the evaluation of a (small) subset of its entries A.i1;:::;id /. For example,
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this setting arises when the tensor A is given by the values of some function � W
Œ0; 1�d ! R on a tensor grid, i.e.

A.i1;:::;id / WD �.�1;i1 ; : : : ; �d;id /; ��;i� 2 Œ0; 1�; � D 1; : : : ; d:

The function � might, e.g., be induced by a functional ˚ of the solution u W S �
Œ0; 1�d ! R of a parameter-dependent PDE posed on a physical domain S 
 R

3.
In this case, each evaluation of �.y/ WD ˚.u.�; y// for y 2 Œ0; 1�d requires the
(possibly costly) solution of a PDE in S .

The availability of certain entries of A strongly depends on the nature of the
application. In this review, we distinguish three typical scenarios for the data-
sparse approximation of A from a subset ˝ 
 I of its entries, where I WD
�d
�D1f1 : : : ; n�g:

1. Adaptive Tensor Sampling: The user can permanently interact with the appli-
cation. Upon request, the application returns an entry Ai for any i 2 I . The
set ˝ 
 I can therefore be determined adaptively by the user during the
approximation process.

2. Non-adaptive Tensor Sampling: The user can interact with the application only
once. The set˝ 
 I is fixed by the user in advance and given to the application.
The application returns the values Ai for all i 2 ˝ .

3. Tensor Completion: The user cannot interact with the application. The applica-
tion gives a set ˝ 
 I and the corresponding values Ai for all i 2 ˝ to the
user.

Given either of the three policies, the choice of a suitable data-sparse represen-
tation of A is typically up to the user. Here, we are interested in approximations
of A that possess a certain low-rank structure. Low-rank tensor techniques have,
e.g., been used in iterative algorithms for the solution of parametric linear systems
and eigenvalue problems [4,29,40], for the approximation of multivariate functions
and parameter-dependent integrals [2,3,8], and for the solution of parametric PDEs
[5, 25, 31].

A quite general framework for the low-rank representation of tensors has been
introduced in [23] which we further analysed in [18]. In the so-called hierarchical
tensor (or hierarchical Tucker) format, a tensor is represented by a number of
parameters that scales only linearly in the dimension d . As a key ingredient, this
format relies on an appropriate hierarchy of subspaces which can be related to
specific matrix representations of a given tensor. Based on this strong connection
to matrices, powerful tools have been developed that allow for (approximate)
arithmetic operations with tensors even in high dimensions d .

As an application for a hierarchical low-rank representation, we may consider
a problem from the field of uncertainty quantification. Given the function � from
above and a probability density function f W Œ0; 1�d ! R, the aim is to estimate the
expected value
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EŒ�� D
Z

Œ0;1�d
�.y/f .y/ dy:

This value can, e.g., be approximated by Monte Carlo or quasi-Monte Carlo
methods [11] by generating a finite number of random or quasi-random sampling
points yi 2 Œ0; 1�d which yields an approximation of EŒ�� by a simple average.
This sampling strategy falls into the second category from above, but it does not
exploit any structural information from �. A low-rank approximation of � in the
hierarchical tensor format reduces the computation of EŒ�� to the evaluation of a
simple scalar product [5]. Moreover, the low-rank structure can be exploited by
adaptive sampling strategies from the first [7, 34, 36, 37] or second [26] category
from above in order to decrease the number of required samples dramatically to
reach a given target accuracy.

The rest of this review is organised as follows. In Sect. 10.2, we recall the
most important tensor representations from the literature. In Sects. 10.3 and 10.4,
we study the approximation of tensors in the hierarchical format by strategies
that belong to the first and second category from above. The problem of tensor
completion is considered in Sect. 10.5.

10.2 Low-Rank Tensor Representations

Given d 2 N and n1; : : : ; nd 2 N, let I� WD f1; : : : ; n�g for � D 1; : : : ; d and
define

I WD I1 � : : : � Id :

A full representation of a tensor A 2 R
I in terms of all entries typically leads

to a storage complexity of O.nd /, n WD max�D1;:::;d n�, which quickly becomes
intractable if d gets large. Therefore, different data-sparse representations of tensors
have been developed which we shortly introduce in the following.

10.2.1 Canonical (CP) Format

Any tensor A 2 R
I can be represented as the finite sum of elementary tensors

u D u1 ˝ : : : ˝ ud 2 R
I with u� 2 R

I� for all � D 1; : : : ; d . This motivates the
following definition.

Definition 10.1 (canonical format, tensor rank). Let r 2 N0. The subset Cr 

R

I is defined by
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Cr WD
8
<

:

rX

jD1

dO

�D1
u�;j W u�;j 2 R

I� ; j D 1; : : : ; r; � D 1; : : : ; d

9
=

;
:

A tensor A 2 Cr is said to be represented in canonical format with (canonical)
representation rank r . Given A 2 R

I , the integer

rank.A/ WD minfr 2 N0 W A 2 Crg

is called the tensor rank of A.

The storage complexity of a tensor A 2 Cr with n WD n1 D : : : D nd is given by

Nstorage.Cr / D O.drn/;

which remains moderate even for large d provided that r is small.
In general, the determination of the tensor rank of a given tensor A 2 R

I is an
NP-hard problem (cf. [24]). Moreover, the set Cr is not closed for d � 3 and r � 2

(cf. [14]). This may lead to severe difficulties for the usage of the canonical format
in approximation problems. For a discussion on regularisation techniques and local
optimisation algorithms in the canonical format we refer the reader to [15, 27] and
the references therein.

10.2.2 Tucker Format

In linear algebra, matrices are well-understood objects which can be characterised
by a number of important properties like, e.g., the matrix rank. It turns out that the
interpretation of tensors as matrices leads to powerful tools that can be applied even
in high dimensions.

Definition 10.2 (matricisation). Let D WD f1; : : : ; d g. Given a subset t 
 D with
complement Œt � WD D n t , the matricisation

Mt W RI ! R
It ˝ R

IŒt � ; It WD ��2tI�; IŒt � WD ��2Œt �I�;

of a tensor A 2 R
I is defined by its entries

Mt .A/.i�/�2t ;.i�/�2Œt �
WD A.i1;:::;id /; i� 2 I�; � 2 D:

If t D f�g for � 2 D, we shortly write M� instead of Mf�g.

Definition 10.3 (Tucker format, Tucker rank). Let k D .k1; : : : ; kd / 2 N
d
0 . The

subset Tk 
 R
I is defined by
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Tk WD ˚
A 2 R

I W rank
�
M�.A/

� � k�; � D 1; : : : ; d
�
:

A tensor A 2 Tk is said to be represented in Tucker format with Tucker
representation rank k. Given A 2 R

I , the Tucker rank k WD .k1; : : : ; kd / 2 N
d
0 of

A is defined by

k� D rank
�
M�.A/

�
; � D 1; : : : ; d:

The Tucker format has been introduced for d D 3 in [42] in the context of
psychometrics. An explicit representation of a tensor A 2 Tk is often given in the
form

A D
k1X

j1D1
� � �

kdX

jdD1
C.j1;:::;jd /

dO

�D1
u�;j�

with a core tensor C 2 R
k1�:::�kd and u�;j� 2 R

I� , j� D 1; : : : ; k�, � D 1; : : : ; d .
This leads to a storage complexity of

Nstorage.Tk/ D O
�
kd C dnk

�

with n� D n and k� � k for all � D 1; : : : ; d .
For a given tensor A 2 R

I one can compute its Tucker rank by standard linear
algebraic tools. Moreover, a truncation procedure is available [13] that computes a
quasi-best approximationAHOSVD 2 Tk in the sense

kA � AHOSVDk2 �
p
d min
Abest2Tk

kA �Abestk2:

10.2.3 Hierarchical Format

In the Tucker format, we have considered matricisations of tensors with respect
to subsets t D f�g 2 D. In order to allow for a structured and data-sparse
representation of tensors, more general subsets t 
 D which can be organised as a
binary tree are of special interest.

Definition 10.4 (dimension tree). Let D WD f1; : : : ; d g. A tree TD is called a
dimension tree if the following three conditions hold:

(a) The index set D is the root of the tree TD,
(b) All vertices t 2 TD are non-empty subsets t 
 D,
(c) Every vertex t 2 TD with #t � 2 has two sons t1; t2 2 TD with the property

t D t1 [ t2; t1 \ t2 D ;:
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{1 2 3 4 5 6 7}

{1 2 3 4} {5 6 7}

{1 2} {3 4} {5 6} {7}

{1} {2} {3} {4} {5} {6}

{1 2 3 4 5 6 7}

{2 3 4 5 6 7}

{3 4 5 6 7}

{4 5 6 7}

{5 6 7}

{6 7}

{1}

{2}

{3}

{4}

{5}

{6} {7}

Fig. 10.1 Left: Balanced binary tree. Right: Linear TT tree

The set of leaves of TD is defined by L .TD/ WD ft 2 TD W #t D 1g. For all
t 2 TD n L .TD/, we denote the set of sons of t by sons.t/.

Example 10.1. (a) In a balanced binary tree TD, each node t 2 TD n L .TD/ with
t D f�1; : : : ; �qg 
 D, q > 1, has two sons t1; t2 2 TD of the form

t1 D f�1; : : : ; �rg; t2 D f�rC1; : : : ; �qg; r WD dq=2e:

An example for d D 7 is depicted in Fig. 10.1. The balanced tree is of minimal
depth dlog2 de.

(b) In the TT format [33] (or MPS representation [43, 44]), the dimension tree is a
simple linear tree, where all nodes t 2 TD are of the form

t D fqg or t D fq; : : : ; d g; q D 1; : : : ; d:

An example for d D 7 is depicted in Fig. 10.1. The TT tree is of maximal depth
d � 1.

Based on the concept of the matricisation of tensors and the definition of a
dimension tree, we can now introduce the hierarchical tensor format.

Definition 10.5 (hierarchical format, hierarchical rank). Let TD be a dimension
tree and let k WD .kt /t2TD 2 N

TD
0 . The subset Hk 
 R

I is defined by

Hk WD fA 2 R
I W rank.Mt .A// � kt ; t 2 TDg:

A tensor A 2 Hk is said to be represented in hierarchical format with hierarchical
representation rank k. Given A 2 R

I , the hierarchical rank k WD .kt /t2TD 2 N
TD
0

of A is defined by

kt D rank .Mt .A// ; t 2 TD:
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Fig. 10.2 Hierarchical tensor format with a balanced dimension tree for d D 7 with the
nestedness property (10.2)

Given a tensor A 2 Hk , the subspaces Ut WD image.Mt .A// 
 R
It , t 2 TD ,

fulfil the so-called nestedness property

Ut 
 Ut1 ˝ Ut2 ; t 2 TD n L .TD/; sons.t/ D ft1; t2g: (10.1)

This allows for a recursive representation of A by the relation

U t�;j D
kt1X

j1D1

kt2X

j2D1
Bt
j;j1;j2

U
t1�;j1 ˝ U

t2�;j2 ; j D 1; : : : ; kt ; (10.2)

for all t 2 TD n L .TD/ with sons.t/ D ft1; t2g where Bt 2 R
kt�kt1�kt2 and

U t 2 R
It�kt such that MD.A/ D UD�;1 . The nestedness property is illustrated for a

balanced dimension tree in Fig. 10.2.
Due to (10.2), one only needs to store the matrices U t 2 R

I��kt in the leaves
t D f�g 2 L .TD/ and the transfer tensors Bt 2 R

kt�kt1�kt2 for all inner nodes
t 2 TD n L .TD/ in order to represent a tensor in Hk . The storage complexity for
this representation then sums up to

Nstorage.Hk/ D O
�
dk3 C dnk

�
:

with n� D n for all � D 1; : : : ; d and kt � k for all t 2 TD .

Remark 10.1. In the TT format, for each node t 2 TD n L .TD/ with sons.t/ D
ft1; t2g one either has t1 2 L .TD/ or t2 2 L .TD/. Hence, either kt1 � n or kt2 � n

which leads to the bound O
�
dnk2

�
. An explicit representation of a tensor A 2 R

I

in the TT format is often given in the form
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G1(·)
i1 = 1

i1 = 2

i1 = n1

G2(·) Gd−1(·) Gd(·)
id = 1

id = 2

id = nd

Fig. 10.3 TT format with matrices G�.i�/

A.i1;:::;id / D
dY

�D1
G�.i�/

with matrices G�.i�/ of matching sizes defined by

G�.i�/j;` WD
k�X


D1
B

f�;:::;dg
j;
;` U

f�g
i�;

; � D 1; : : : ; d � 1; Gd .id /j;1 WD U

fdg
id ;j
:

A visualisation of the TT format can be found in Fig. 10.3.

Similar to the Tucker format, the hierarchical rank of a tensor A 2 R
I can

be computed by standard linear algebraic tools. Moreover, we have developed a
truncation procedure [18] that computes an approximation of the best approximation
of a tensor A 2 R

I in Hk . This hierarchical singular value decomposition (H -
SVD) yields a tensor AH -SVD 2 Hk with the property that

kA �AH -SVDk2 �
p
2d � 3 min

Abest2Hk

kA �Abestk2:

If the input tensor A is already given in hierarchical format, i.e. A 2 Hk , the H -
SVD can be computed in

O.dk4 C dnk2/:

Similar results have been obtained for the TT format in [33].

10.3 Adaptive Tensor Sampling

In many applications, a tensor A 2 R
I is not already given in a data-sparse

representation and one only knows how to evaluate certain entries Ai for i 2 I . In
this section, we assume that the set˝ 
 I of available entries can freely be chosen
by the user. In a first scenario, the user is able to permanently communicate with
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the application which means that the set˝ can be constructed adaptively during the
approximation process. In the second scenario (Sect. 10.4), the user communicates
with the application only once and gives a predetermined set ˝ to the application
which returns the corresponding entries Ai , i 2 ˝ , to the user.

In both cases, we assume that there exists an approximation of A in Hk which
is unknown to us and which we would like to reconstruct. Since the set Hk is
characterised by certain rank bounds on the matricisations of A, it is a natural
idea to try to approximate the matricisations by low-rank matrices. In [2, 7], we
have developed an adaptive approximation scheme which relies on a thorough
combination of cross approximation techniques with adaptive sampling strategies.

10.3.1 Cross Approximation

Let TD be a dimension tree and let t 2 TD with complement Œt � WD D n t . The
approximation of a matrix M 2 R

It�IŒt � by the outer product of particular rows
and columns ofM has been analysed in [17].

Theorem 10.1 ([17]). LetM 2 R
It�IŒt � . If there exists a matrixR 2 R

It�IŒt � with
the properties kM � Rk2 � " and rank.R/ � k then there exist a subset Pt 
 It

of row indices and a subset Qt 
 IŒt � of column indices with #Pt D #Qt D k and
a matrix St 2 R

Pt�Qt such that

QM WD M jIt�Qt � S�1
t �M jPt�IŒt �

approximatesM with an error of

kM � QM k2 � "
�
1C 2

p
k
�p

#It C
q

#IŒt �

		
:

A practical construction which is based on successive rank-1 approximations
has been introduced in [9]. The idea is to construct rank-1 approximations of the
remainder. For initial pivot elements p1 2 It , q1 2 IŒt �, one defines

X1
t WD M jIt�fq1gM

�1
.p1;q1/

M jfp1g�IŒt �
:

For a given approximation Xj�1
t and pivots p1; : : : ;pj 2 It , q1; : : : ; qj 2 IŒt �,

the next approximationXj
t is defined by

X
j
t WD X

j�1
t CRjIt�fqj gR�1

.pj ;qj /
Rjfpj g�IŒt �

; R WD M �Xj�1
t ; (10.3)

for all j D 2; : : : ; k. The final approximation is then given by QM WD Xk
t . Using the

notation of Theorem 10.1, we have that
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St D M jPt�Qt ; Pt WD fp1; : : : ;pkg; Qt WD fq1; : : : ; qkg:

The construction (10.3) is adaptive in the sense that the absolute value of the pivot
element R.pj ;qj / gives an estimate for the norm kM � X

j�1
t k1. The number of

pivots kt can therefore be chosen adaptively in order to reach some (heuristic) target
accuracy ".

10.3.2 Nested Approximation

Due to the nestedness property (10.1), the approximations of the matricisations
Mt .A/ for all t 2 TD are not completely independent. This property can be ensured
by an a priori restriction on the choice of the pivot elements traversing the tree TD
from the root to the leaves. Let f 2 TD n L .TD/ with sons.f / D fs; tg and let
Qf 
 IŒf � be known column pivots for the father f of t . Then we seek pivots
.pj ; qj / for t such that

pj 2 Pt 
 It ; qj 2 Qt 
 Is � Qf 
 IŒt �: (10.4)

In [7] we prove that by this restriction the matrices St and the index sets Pt ; Qt can
be constructed for all t 2 TD in a recursive way such that the final approximation
QA 	 A fulfils QA 2 Hk . The setup of QA 2 Hk requires only

Nsetup D O

0

@dk4 C depth.TD/k2
dX

�D1
n�

1

A ; k WD max
t2TD

kt ;

operations. Moreover, we show that if

rank.St / D rank.Mt .A//; t 2 TD; (10.5)

then QA is a reconstruction of the original tensor A. The number of entries required
from A crucially depends on how the index sets Pt ;Qt are chosen.

10.3.3 Adaptive Sampling Strategies

The pivot sets Pt ;Qt are best chosen such that St has maximal volume. Since
this is practically impossible, we suggest to seek for large entries in modulus in
the remainder R WD M � X

j�1
t in the incremental construction (10.3). As the

index sets It and IŒt � are typically very large, the remainder cannot be formed
explicitly. However, one can compute entries of R directly from the low-rank
representation (10.3).
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A quite successful strategy proposed in [16] for the canonical format aims at
finding large entries on fibres R.i1;:::;i��1;�;i�C1;:::;id / 2 R

I� . In a greedy approach,
one can alternate through the directions � 2 D such that in each step the quality of
the pivot element increases. Using this construction, the overall number of entries
required from A is given by

N fibres
entries D O

0

@dk3 C depth.TD/k2
dX

�D1
n�

1

A ; k WD max
t2TD

kt :

Alternatively, we suggested in [6] to (randomly) select small index sets Jt 

It , JŒt � 
 IŒt � such that we may consider explicit cross approximations of the
submatrix OM WD M jJt�JŒt �

. Assuming #Jt ; #JŒt � � K , the construction of the
pivot index sets Pt 
 Jt , Qt 
 JŒt � requires the evaluation of O.ktK/ entries of
A. The overall number of entries required from A is then given by

N submatrix
entries D O

0

@dk3 C dkK C k

dX

�D1
n�

1

A ; k WD max
t2TD

kt :

Provided that K D O.k2/, this is slightly less than in the fibre-based strategy.

Example 10.2 ([5]). Let S D .0; 1/2 with circular inclusions S� 
 S as depicted
in Fig. 10.4 (left). Consider the parametric PDE problem

� div.aru/ D 1 in S; uj@S D 0;

with diffusion coefficient ajS� D p�, � D 1; : : : ; d , and a D 1 elsewhere for
parameters p D .p1; : : : ; pd / 2 P D Œ 1

2
; 2�d . Let �.p/ WD R

S
u.x; p/ dx be an
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Fig. 10.4 Parametric diffusion problem from [5] for d D 16. Left: domain S D .0; 1/2 with
circular inclusions S1; : : : ; Sd . Middle: relative error of an approximation of A 2 R

I , I WD
f1; : : : ; 10gd , with Ai WD �.pi / in Hk constructed by an adaptive sampling strategy based on
random submatrices. Right: relative error of expectation EŒ�� for a uniform distribution of p in P
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associated quantity of interest. A discretisation of � on a tensor grid fpi 2 P gi2I
defines a tensorA 2 R

I byAi WD �.pi/. Figure 10.4 (middle) shows the attainable
accuracy of an approximation of A in Hk by an adaptive sampling strategy. In an
a posteriori step, one can then compute approximations of the expected value EŒ��

for a given distribution of p in P , cf. Fig. 10.4 (right).

10.3.4 Tree Adaptivity

Up to now, we have considered the approximation of tensors A 2 R
I in the

hierarchical format given a fixed dimension tree TD . In [19] we have shown that
the hierarchical rank of a tensor A may be very sensitive to the choice of the
tree. Therefore, in general a suitable tree needs to be constructed in dependence
on the given input data. In principle, one needs to solve the following minimisation
problem.

Problem 10.1. Let A 2 R
I and let kt WD rank.Mt .A// for all t 
 D. Among all

possible dimension trees TD find a minimiser of

X

t2TDnL .TD/

sons.t/Dft1 ;t2g

ktkt1kt2 :

Unfortunately, the number of possible trees scales exponentially in the dimension
d which makes a global optimisation of the tree structure too expensive. In [6]
we address this problem by an agglomerative strategy that constructs a suitable
dimension tree from the leaves up to the root. In each agglomerative step we aim at
joining strongly coupled subsets of the directions 1; : : : ; d .

The separability of a subset t 
 D from Œt � WD D n t can be measured in
terms of the rank kt . However, it is not directly obvious whether or not it makes
sense to join two disjoint subsets t1; t2 
 D to a new subset t WD t1 [ t2. In our
agglomerative strategy, we suggest to use the ratio kt=.kt1kt2/ as a cluster criterion.
Since kt D dimUt , Ut WD imageMt .A/, this ratio gives an indication how well the
nestedness property (10.1) at a node t 2 TD is fulfilled. It can therefore be used in
an iterative construction of a dimension tree with a (small) polynomial dependence
on d .

10.4 Non-adaptive Tensor Sampling

If the user can interact with the application only once, all pivot elements fromA have
to be fixed a priori. In this case, one can still use the second approach from above by
a minor modification [26]. Descending from the root of TD down to the leaves, one
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may first fix (randomly chosen) pivot sets Pt 
 It , Qt 
 IŒt � of size #Pt ; #Qt �
K that additionally fulfil the nestedness condition (10.4) for all t 2 TD . Using these
pivot sets, one can directly construct an approximation of A in Hk with kt � K for
all t 2 TD . The overall number of entries required from A is then given by

N fixed
entries D O

0

@dK3 CK

dX

�D1
n�

1

A :

If the selected pivot sets fulfil Eq. (10.5) the reconstruction of the original tensor is
successful.

10.5 Tensor Completion

The challenge of tensor completion is to find a low-rank tensor AF in a certain
tensor format F to a set of a priori given entries fAi 2 R W i 2 ˝g such that

AF D argmin
QAF2F

�
�A � QAF

�
�
˝

with kA� Y k2˝ WD
X

i2˝
.Ai � Yi /

2 :

This task is entirely different from the two scenarios considered in the previous
sections since the tensor entries cannot be freely chosen by the user. Due to this
fact, completion problems are often harder to handle. In order to allow a low-rank
approximation in the hierarchical format we require a certain slice density of the
samples measured by the oversampling factor

cov.j�/ WD ]fi 2 ˝ W i� D j�g � C; j� 2 I�:

In practice, the required oversampling factor depends on the original tensor A and
the desired target accuracy of the approximation. If cov.j�/ D 0 for any j� 2 I�,
then the tensor slice Aji�Dj� 2 R

I1�:::�I��1�I�C1�:::�Id is not determined and
could by completed arbitrarily.

The problem of tensor completion has been studied for the canonical tensor
format in [1, 10, 12, 30, 41] and for the Tucker format in [28, 32, 35, 38]. In the
hierarchical format a promising manifold optimisation strategy is pursued in [39].
In [20] we consider the tensor completion problem in the hierarchical format with
respect to a given TT tree (cf. Example 10.1).

With the representation system G D .G1; : : : ; Gd / from Remark 10.1, the task
is to find

G D argmin
QG

�
�
�A� A

QG
�
�
�
˝
:
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Fig. 10.5 Random TT-tensor of rank k with n D 20, where all entries of the representation system
are uniformly distributed. The completion is successful if the relative error in the test set is<10�3.
Every combination of rank and oversampling factor was tested 20 times. The success is depicted
by the coloured scale from white (0 of 20) to black (20 of 20). Left: d D 4. Right: d D 5. [20]

If the norm were the standard Euclidean norm of the tensor, then this minimisation
problem could be treated by an alternating minimisation of the coresG�, each being
just a linear least squares problem. In order to reduce the problem to this type, an
augmentation by an auxiliary tensor Z is necessary:

.G;Z/ D argmin
QG; QZ

�
�
� QZ �A QG

�
�
�
2

with QZi D Ai 8i 2 ˝:

For this the first order optimality conditions lead to a system of equations that can be
solved by a (block) successive over relaxation (SOR) type iterative method, the so-
called alternating direction fitting (ADF) algorithm [20]. Whereas the convergence
of the adaptive sampling strategies with respect to the number of samples was quasi-
optimal, this is completely different for the tensor completion in this section.

Example 10.3 ([20]). We consider a random generated TT-tensorA of exact rank k
and n D 20, where the entries of the representation system G�.i�/j;` are uniformly
distributed in Œ�0:5; 0:5� for all � D 1; : : : ; d . The completion is successful if the
relative error for a random generated test set ˝T is smaller than 10�3 with ]˝T D
]˝ . In Fig. 10.5 a statistic of the completion success is shown where the algorithm
runs 20 times for every combination of rank k and oversampling factor cov with a
coloured scale from white (0 of 20) to black (20 of 20).

It turns out that the necessary oversampling factor depends on both the rank as
well as the order of the tensor. Moreover, the iterative minimisation is considerably
slower than the direct reconstruction via cross approximation, so that one should
always use a sampling rule when this is possible.
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Chapter 11
A Bond Order Dissection ANOVA Approach
for Efficient Electronic Structure Calculations

Michael Griebel, Jan Hamaekers, and Frederik Heber

Abstract In this article, we present a new decomposition approach for the efficient
approximate calculation of the electronic structure problem for molecules. It is
based on a dimension-wise decomposition of the space the underlying Schrödinger
equation lives in, i.e. R

3.MCN/, where M is the number of nuclei and N is
the number of electrons. This decomposition is similar to the ANOVA-approach
(analysis of variance) which is well-known in statistics. It represents the energy
as a finite sum of contributions which depend on the positions of single nuclei, of
pairs of nuclei, of triples of nuclei, and so on. Under the assumption of locality of
electronic wave functions, the higher order terms in this expansion decay rapidly and
may therefore be omitted. Furthermore, additional terms are eliminated according
to the bonding structure of the molecule. This way, only the calculation of the
electronic structure of local parts, i.e. small subsystems of the overall system, is
necessary to approximate the total ground state energy. To determine the required
subsystems, we employ molecular graph theory combined with molecular bonding
knowledge. In principle, the local electronic subproblems may be approximately
evaluated with whatever technique is appropriate, e.g. HF, CC, CI, or DFT. From
these local energies, the total energy of the overall system is then approximately put
together in a telescoping sum like fashion. Thus, if the size of the local subproblems
is independent of the size of the overall molecular system, linear scaling is directly
obtained. We discuss the details of our new approach and apply it to both, various
small test systems and interferon alpha as an example of a large biomolecule.
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11.1 Introduction

The coupling of the micro- and the mesoscale of chemical reactions is currently a
field of intensive research. Where the microscale is the realm of quantum mechan-
ical effects, the mesoscale is described by statistical mechanics and macroscopic
thermodynamics. Nevertheless, there are additional strong influences onto the
mesoscale by effects from the microscale. Numerically, the microscale is usually
treated with Hartree-Fock (HF), Configuration Interaction (CI), Coupled Cluster
(CC), or Density Functional Theory (DFT) methods which yield approximate
solutions to the underlying quantum-mechanical (QM) Schrödinger equation (SE),
whereas the mesoscale is covered by classical molecular mechanics (MM) methods
which use Newton’s mechanics with empirically fitted potential functions.

The ultimate goal would be a seamless coupling of quantum mechanical
computations where needed and classical molecular mechanics simulations where
sufficient. Such approaches are generally referred to as multi-scale methods, an
extensive overview is given in [28]. Any starting point must be the general
Schrödinger equation for the electrons and nuclei of the system under consideration.
The Schrödinger equation however lives in 3.M C N/ dimensions, where M
denotes the number of nuclei andN denotes the number of electrons. This renders a
direct numerical treatment impossible due to the curse of dimension and one has to
resort to model approximations. As a first step, in the Born-Oppenheimer molecular
dynamics (MD) approach, the wave functions of the nuclei and electrons are sepa-
rated, the subsystem of the nuclei is treated classically with Newton’s mechanics and
the remaining 3N -dimensional electronic Schrödinger equation is further approxi-
mated by one of the aforementioned methods. The potential needed for Newton’s
mechanics is obtained from the electronic solution by the Hellmann-Feynman theo-
rem. This way, QM and MM are globally coupled. However, a global electronic QM
solution is, at least for larger molecules, still too expensive as conventional methods
scale at best with O.M3/ due to the underlying problem of matrix diagonalization.

Thus, general linear scaling electronic structure methods are employed to
overcome the dimensionality problem. As a first step, for the long-range Coulomb
interaction, the use of the fast multipole method [16] has resulted in O.M logM/

complexity. Furthermore, a cutoff radius such as for the MP2 theory [5] was used in
a Divide&Conquer approach to take advantage of the exponential decay properties
of electronic wave functions. Altogether, this resulted in linear scaling [14]. Another
common method is the Density Matrix Minimization technique [8, 27]. There, the
density matrix is unconstrainedly minimized via a conjugate gradient scheme, using
idempotency and normalization. The Fock matrix is the minimized output, after
off-diagonal elements have also been truncated at a cutoff radius. The electronic
localization in non-metallic systems can also be exploited for plane wave basis
sets [34]. Again, a cutoff then allows for linear scaling. Note however that there
is a crossover point up to which the standard cubic scaling approaches still perform
faster due to smaller prefactors in their computational complexity counts [15].

In order to reduce the constants and thus to shift this crossover point, one tries to
somehow further decompose the full global electronic Hamiltonian into local parts
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and employs local QM there. Let us briefly summarize the most common decompo-
sition approaches in the following. One of the first, the Force-Matching Method by
Ercolessi [13], tries to automatically generate empirical potentials by a least-square
fitting of the forces of ab-initio calculations to general many-body potential forms
such as that of the Embedded Atom approach [11] or that of Abell-Tersoff [1, 36].
Then, there is a range of methods which employ a decomposition1 directly in R

3,
like e.g. the SIBFA (Sum of Interactions Between Fragments computed Ab initio)
procedure [17] and its generalization, the so-called Fragmentation Reconstruction
Method (FRM) [2]. Further schemes are the so-called IMOMM ansatz proposed
by Morokuma [30], the ONIOM approach [39] and the well-known Fragment
Molecular Orbital (FMO) method [25]. A scheme for modeling the electrostatic
impact of a passive MM environment on the active QM system is described in [26].
Moreover, in [3] and [33] an interface regime between QM and MM with “link”
atoms is proposed to account for the cutting of bonds. Similar techniques are used
in [37, 38]. The common basic idea of most approaches is to use a telescoping sum
over two regions to describe the total energy, like e.g. ˝1 and ˝2 � ˝1, where the
energy is split as EQM=MM D EMM

˝1
C E

QM
˝2

� EMM
˝2

, where to our knowledge all
procedures involve stringent chemical knowledge to choose the regions (or cuts) as
best as possible but to still keep the ground-state electronic density intact. Another
approach divides time instead of space in order to generate a coupling between QM
and MM. One of these methods is learn-on-the-fly [10], which is similar to the
Force-Matching method, but is run during the computation: At intermittent time
steps certain clusters of the simulation domain are locally computed by QM, and
the obtained local forces are used to correct the MM calculation.

While all of the above methods have promising features, we feel that they
generally either involve too many additional parameters, unchemically cut bonds in
separating active from passive regions, or even worse, add unphysical pseudo-atoms
in order to compensate for the different energy and time scales and to avoid spill-out
effects of electronic density or energy. Moreover, they are plainly too simple or do
not grasp the problem in its full complexity, since only a matching or interpolation
with respect to energy or forces between the QM and MM parts of the overall
approach is employed.

There is one more group of methods that build upon additivity models, well-
known in chemistry, see [19] and references therein. The central idea is to construct
molecular properties of a system by adding up the corresponding known properties
of its fragments. The principal hope is that a high-dimensional system such as a
complex molecule depends strongly only on few input variables. Rabitz et al. [19]
describe a High-Dimensional Model Representation (HDMR) that can also be
understood as an ANalysis Of VAriance (ANOVA), which is well-known from
statistics. They address the problem of the estimation of the enthalpy of formation
of a broad range of organic molecules based on experimental data, but they do not

1Ultimately, the aim would be a decomposition of R3.MCN/, the space where the full Schrödinger
equation lives in.



214 M. Griebel et al.

assess the possibilities of the ansatz in the field of electronic structure calculations.
Deev and Collins [9, 12] use this additivity model ansatz by calculating the total
electronic energy of fragments of a system under consideration to obtain a good
approximation of the energy of the total molecule. They do give an algorithmic
description, however which we feel is not fully consistent with the mathematical
basics, governed by the ANOVA or HDMR scheme.

In this article, we propose a more sophisticated algorithm. The additivity
models place their hope on the same grounds as do many-body potential such
as Tersoff’s [36], where the energy and the forces of an atom are assumed to
depend on its local coordination. Here, for a proof-of-concept, we concentrate on
covalent bonding, hence on charge-neutral molecular systems and subsystems.2 We
will use this knowledge of coordination and bonds between nuclei to decompose
the space R3.MCN/ of the underlying Schrödinger equation in a dimension-wise
fashion. This decomposition is similar to the ANOVA-approach. It represents the
energy as a finite sum of contributions which depend on the positions of single
nuclei, of pairs of nuclei, of triples of nuclei, and so on. Under the assumption
of locality of electronic wave functions, the higher order terms in this expansion
decay rapidly and may therefore be omitted. Furthermore, additional terms are
eliminated according to the bonding structure of the molecule. This way, only
the calculation of the electronic structure of local parts, i.e. small overlapping
subsystems of the overall molecule system, is necessary to approximate the total
ground state energy. To determine the required subsystems, we employ molecular
graph theory combined with molecular bonding knowledge. Here, modern graph
algorithms are used to create proper local subproblems as overlapping fragments of
the overall molecular system. Furthermore, hydrogenization is used to close shells
and saturate bonds that have been cut. We thus also exploit locality, however not
by an explicit cutoff radius as most conventional methods do, but by implicitly
using it in the inherent bond structure of the molecular system. In principle, the
local electronic subproblems may be approximately evaluated with whatever QM
technique is appropriate, e.g. HF, CI, CC, or DFT. From these local energies, the
total energy of the overall system is then approximately put together in a telescoping
sum like fashion. Thus, if the size of the local subproblems is independent of the size
of the overall molecular system, linear scaling is directly obtained. The 3.M CN/-
dimensional full global Hamiltonian is broken down within the Born-Oppenheimer
Approximation to O.M/ components, the i -th of them with M

.k/
i degrees of

freedom, with an upper bound maxifM.k/
i g controlled by a single parameter k which

we name the bond order of the approximation. This ansatz specifically combines the
smaller prefactor of the cubic scaling methods with a general linear scaling behavior.
As the size of each subproblem depends on the bond coordination of the involved
atoms, we coined the method BOSSANOVA (Bond Order diSSection ANOVA).

The remainder of this article is organized as follows: In Sect. 11.2 we briefly
summarize the basics of the underlying Schrödinger equation. In Sect. 11.3 we
describe the ANOVA-like decomposition of the energy of the Schrödinger equation

2Note however that our approach should work equally well also in the non-charge neutral case.
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in the context of molecular graph theory. In Sect. 11.4 we give numerical results for
a broad range of organic molecules. We end with some concluding remarks in the
final section.

11.2 Schrödinger Equation in the Born-Oppenheimer
Approximation

Let us consider a molecular system consisting of M nuclei and N electrons. Its
time-dependent state function can be written in general as

 D .R1; : : : ; RM ; r1; : : : ; rN ; t/;

where Ri and rj denote positions in three-dimensional space R
3 associated to

the i th nucleus and the j th electron, respectively. The variable t denotes the
time-dependency of the state function. The vector space (space of configurations),
in which the coordinates of the particles are given, is therefore of dimension
3.M CN/. In the following we will abbreviate .R1; : : : ; RM / and .r1; : : : ; rN / with
the shorter notation R and r, respectively. Also, we assume that  is normalized toR
�.R; r; t/.R; r; t/dRdr D 1.
Nuclei and electrons are charged particles. The electrostatic potential (Coulomb

potential) of a point charge is 1=r in atomic units, where r is the distance from
the position of the charged particle. An electron moving in this potential possesses
the potential energy V.r/ D �1=r . Neglecting spin and relativistic interactions and
assuming that no external forces act on the system, the Hamilton operator in position
representation associated to the system of nuclei and electrons is given as the sum
over the operators for the kinetic energy and the Coulomb potentials,

H.N;M;Z1;m1; : : : ; ZM ;mM I R; r/ WD

�1
2

NX

kD1
�rk C

NX

k<j

1

jj rk � rj jj �
NX

kD1

MX

jD1

Zj

jj rk � Rj jj C
MX

k<j

ZkZj

jj Rk � Rj jj
„ ƒ‚ …

He.N;M;Z1;m1; : : : ; ZM ;mM I R; r/

� 1

2

MX

kD1

1

mk

�Rk ; (11.1)

where we use a semicolon to distinguish between parameters (i.e. the number M
of atoms, the number N of electrons, the nuclei mass in atomic units mj and the
atomic number Zj ) and the degrees of freedom (i.e. the positions R and r). Here,
krk � rjk are the distances between electrons, krk � Rj k are distances between
electrons and nuclei and kRk � Rjk are distances between nuclei. We will omit
parameters from this list if they are clear from the context. This will later especially
be N;M;Z1;m1; : : : ; ZM ;mM .
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Now, a system of equations for the electronic and for the nuclei degrees of
freedom is usually derived with the Born-Oppenheimer approximation. To this end,
the large difference in masses between electrons and atomic nuclei is exploited to
decouple the motion of the electrons from that of the nuclei.3 Then, one assumes
that the electrons adapt instantaneously to a change in the nuclear configuration and
are thus always in the quantum mechanical ground state denoted by �0.R.t/I r/,
which is associated to the actual position of the nuclei R.t/. Note that this
allows us to write He.R.t/I r/ instead of He.R.t/; r/ since the movement of the
nuclei during the adaptation of the electron positions is negligibly small in the
sense of classical dynamics. This justifies to set .R; r; t/ 	 BO.R; r; t/ WDP1

jD0 �j .R; t/�j .RI r/; which allows to separate the fast from the slow variables.
We then obtain the following set of equations:

Mk
RRk.t/ D �rRk min

j�0.R.t/I�/jD1

�Z

��
0 .R.t/I r/He.R.t/I r/�0.R.t/I r/dr

�

„ ƒ‚ …

DW V BO
e .R.t//

(11.2)

He.R.t/I r/�0.R.t/I r/ D E0.R.t//�0.R.t/I r/: (11.3)

In the end, after time discretization, we have to perform in each time step the
following tasks: First, we have to compute an approximate solution of the electronic
Schrödinger equation in (11.3) for fixed positions R of the nuclei, then we have to
compute from its solution the forces on the nuclei and finally we have to compute the
positions of the nuclei at the next time step by e.g. a Verlet time step for Newton’s
equations of motion of the nuclei in (11.2). To this end, we use the Hellmann-
Feynman Theorem to obtain the electronic forces

Fk.R.t// D �rRk

Z

��
0 .R.t//He.R.t//�0.R.t//dr

acting on the nuclei. Variants of this approach are the Ehrenfest molecular dynamics
and the Car-Parrinello method. For details of the derivation, see [18] and the
references cited therein.

11.3 ANOVA Decomposition Scheme

So far, the Born-Oppenheimer molecular dynamics was employed to split the full
Schrödinger problem into two parts, i.e. a classical Newton’s equation of motion
for the nuclei, and, in each discretized time step, the electronic eigenproblem
(11.3) which may approximately be solved by e.g. the Hartree Fock, Configuration

3The ratio of the velocity vK of a nucleus to the velocity of an electron ve is in general smaller
than 10�2.
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Interaction, Coupled Cluster, or Density Functional method, see [31, 35]. However,
such an overall approach is only feasible for small molecules due to the high
complexity of any approximate solution method for the electronic problem. To
overcome this difficulty, the aforementioned coupling techniques and linear scaling
methods had been developed. They basically all exploit locality of the electronic
wave function in one way or another to reduce the complexity of the electronic
problem.4;5

In the following, we also resort to a certain locality of the electronic wave
function. It is expressed in the bond structure of the molecular system. We
decompose the overall electronic problem into small subproblems which then may
be handled efficiently. To this end, we introduce an ANOVA decomposition scheme
for the energy of a molecular system into local parts by means of the bond order of
the nuclei in the system.

11.3.1 ANOVA Expansion

We will now define the energy function for a molecular system and its ANOVA
series expansion. To this end, we consider a molecular system which consists of N
electrons and M nuclei, each with coordinate vector Ri 2 R

3 and atomic number
Zi 2 N, i 2 f1; : : : ;M g. We restrict ourselves to charge-neutral systems, i.e.
the number of electrons N is equal to

PM
i Zi for reasons of simplicity. Finally,

we consider the systems only in their electronic ground state in the framework
of the Born-Oppenheimer molecular dynamics. To this end, we separate the time-
independent electronic Schrödinger equation as in (11.3) and define a total ground
state energy function EM W .N � R

3/M ! R. It depends on the parameters that
completely identify the system under consideration, namely the coordinatesRi and
the atomic numberZi of each nuclei with fixed and unique label i 2 f1; : : : ;M g, i.e.

EM..Z1;R1/„ ƒ‚ …
DWX1

; : : : ; .ZM ;RM /„ ƒ‚ …
DWXM

/ WD

min
j�0.R.t/I�/jD1

Z

��
0 .R.t/I r/He

�
N D

MX

iD1
Zi ; X1; : : : ; XM /�0.R.t/I r

�
dr; (11.4)

where we further simplify the notation by definingXi WD .Zi ; Ri /. I.e.Xi combines
the atomic number and the coordinates of the nuclei i . Note that, due to the

4This excludes in general metallic systems, whose electrons may be delocalized due to a vanishing
band gap.
5Furthermore, the notion of the locality of the wave function is important as it leads to the general
chemical understanding of molecules from the general bond structure up to nucleophilic sites.
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charge-neutrality conditionN D PM
i Zi , the parameter N may now be eliminated

from the parameter list of the HamiltonianH .
Now we will decompose the function EM in a multivariate telescoping sum,

i.e. in a finite series expansion in the nucleic parameters, in a similar way as the
ANOVA decomposition6 [21]. This decomposition involves a splitting of the M -
dimensional function into contributions which depend on the positions of single
nuclei and associated charges, of pairs of nuclei and associated charges, of triples
of nuclei and charges, and so on. To this end, we consider the subset of the nuclei
parameters fXigi2I described by a set of labels I with cardinality jI j D k and call
it the molecular fragment associated to I with size k. Note that we here do not need
to consider the electronic degrees of freedom r, as the system is assumed to be in
ground state and, hence, the electronic state functions are all fixed by the minimum
condition in (11.4).

First, we define the total electronic ground state energy of lower-dimensional
subsystems of the molecular system under consideration, described by the set of
indices I D fi1; : : : ; ikg,

Efi1;:::;ikg.X1; : : : ; Xk/ WD min
j�0jD1

Z

��
0 .r/He

� kX

jD1
Zij ; Xi1 ; : : : ; Xik /�0.r

�
dr:

(11.5)

Note that this is in form very similar to (11.4). In the notation of the electronic
ground state wave functions �0, the dependency on R.t/ was dropped as it is clear
from the context.

Then, the energy function EM is decomposed analogously to the ANOVA
approach as

EM.X1; : : : ; XM / D F;

C
MX

i1

Ffi1g.Xfi1g/

C
MX

i1<i2

Ffi1;i2g.Xfi1;i2g/

6The ANOVA decomposition of a M -dimensional function f W Œ0; 1�M ! R reads f DP
u�f1;:::;Mg fu with fu depending only on the variables indicated in u. The functions fu satisfy

the recurrence relation f; D Lf1;:::;Mg.f /, fu D Lf1;:::;Mg=u.f / � P
v�u fv with Lw.f / DR

Œ0;1�jwj f .x1; : : : ; xM / dxw. Thus, f is decomposed into a constant, a sum of one-dimensional
functions, a sum of two-dimensional functions, and so on. The involved functions are generated by
proper partial integration and telescopic corrections according to the recurrence relation.
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C
MX

i1<i2<i3

Ffi1;i2;i3g.Xfi1;i2;i3g/

C : : :

C Ffi1;:::;iM g.Xfi1;:::;iM g/

DW
X

U
f1;:::;M g
FU .XU /;

where XU denotes the set of variables fXigi2U and U � f1; : : : ;M g.
Here, each term Ffi1;:::;ikg is defined as follows:

F; D 0

Ffi1g.Xfi1g/ D �fi1g
�
Efi1g.Xfi1g/ � F;

�

Ffi1;i2g.Xfi1;i2g/ D �fi1;i2g
�
Efi1;i2g.Xfi1;i2g/� Ffi1g.Xfi1g/ � Ffi2g.Xfi2g/ � F;

�

: : : : : :

Ffi1;:::;ikg.Xfi1;:::;ikg/ D �fi1;:::;ikg
�
Efi1;:::;ikg.Xfi1;:::;ikg/

�
X

U
I;jU jDk�1
FU .XU /

�
X

U
I;jU jDk�2
FU .XU /

: : :

�
X

U
I;jU jD1
FU .XU /� F;

�

: : : : : : ;

where the constant functionF; is set equal to zero since it corresponds to the energy
of an empty molecular system and a set f�I gI
f1;:::;M g of weights �I 2 f0; 1g is
involved to switch on and off the considered interaction terms. I.e. we have

EM.X1; : : : ; XM / D
X

U
f1;:::;M g
FU .XU /; (11.6)

where

FU .XU / D �U
�
EU .XU /�

jU j�1X

kD0

X

V
U;jV jDk
FV .XV /

�
(11.7)
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and E; D 0. Let us for the moment assume that all �I are set to one. Then
the decomposition is exact and contains 2M different terms due to the power set
construction. In general it might be that all terms are equally important up to the
last, M -dimensional one, or, in the extreme case that the last term might be the
only important one and thus nothing is gained from this decomposition. However,
if the size of the terms decay fast with e.g. the order of the terms, then a proper
truncation of the ANOVA series expansion results in a substantial reduction in
computational complexity. We then only have to deal with a sequence of lower-
dimensional subproblems which are associated to the remaining lower-dimensional
energy terms of the decomposition.

Let us remark that the energy functions Ffi1;:::;ikg in (11.6) may be recognized
as an expansion of many-body interaction contributions, as in [29]. This leads us
to the following assumption which is central to our further approach: There is a
certain decay in the contribution of each order k of the ANOVA expansion and
this results in a monotone convergence of the approximation error with rising order.
Consequently, from a certain order onward, we may neglect the higher higher-order
terms in the ANOVA decomposition. This results in a good approximation to the
true result7 with an accuracy which is related to the order parameter at which the
truncation was executed. This assumption is also strongly supported by the success
of conventional two- and many-body potential functions used in classical molecular
dynamics, such as short range pair-potentials like harmonic springs, the Morse
potential and the Lennard-Jones potential, three- and four-body potential like angle
and dihedral potential functions and more advanced many-body potential functions
which involve a local coordination number (that is the local density of atoms) like
Tersoff’s potential [36], the embedded atom method [11] or Brenner’s reactive bond
order potential for hydrocarbons [7]. Here, in any case, only a small number of
neighboring atoms are involved in the potential forms, for further details see [18].

Our ansatz is as follows: We decompose the total energy function (11.4) in an
ANOVA series expansion as in (11.6) where we include only terms up to a certain
order k, which we call the bond order of the approximation. Now, letG D .P;K/ be
the associated graph that represents the bond structure of the molecular system under
consideration. For reasons of simplicity we assume that this graph is connected.
Then, we neglect in a second step even further interaction terms in the ANOVA
expansion. These terms contain as parameters the degrees of freedom which belong
to nuclei in I that are not connected by a path in the graph GI , i.e. we additionally
eliminate those terms whose induced subgraphGI is not connected by setting �I to
zero. Note here that each set I D fi1; : : : ; ijI jg of nuclei parameters indices for each
term Efi1;:::;ijI jg.Xfi1;:::;ijI jg/ in (11.6) is directly associated to an induced subgraph
GI D .PI ;KI / of the total graph G with PI D fvigi2I and KI D ffv1; v2g 2
K W v1 2 I; v2 2 I g. This second elimination step is motivated by the locality of
the electronic wave functions: Atoms that share a bond to a nearby atom will be

7Note that, in practice, the global electronic problem is only solved approximately anyway, by e.g.
DFT, CC, CI.
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strongly influenced by changes in the chemical vicinity of nearest or next-nearest
bonding partners whereas atoms that share no bond to a nearby atom will not.

Altogether, this can be described by an approximation to the ground state energy
according to (11.6) and (11.7). To this end, let G D .P;K/ be the interaction graph
of the molecular system under consideration. We then define a set of graph-related
weights f�GU gU
f1;:::;M g by

�GU D
(
1; if the subgraph GU of G (induced by U ) is connected;

0; else.
(11.8)

This definition is motivated from the following observation. Let us assume that
EA

S
B.XA;XB/ D EA.XA/ C EB.XB/ for all pairs of disconnected subgraphs

GA and GB which are induced by disjoint subsets A;B � P , A
T
B D ; and for

simplicity let us further assume that all weights are set to one. Then we can derive
the following statement:

Lemma 11.1. Let G D .P;K/ be an interaction graph. Let A;B � P , A
T
B D

; and let the subgraphs GA and GB induced by A and B , respectively, be
disconnected. Then

FA
S
B.XA

S
B/ D 0:

Proof. We use induction: The base case can be easily seen for graphs G D .P;K/

with sets jP j � 2. Let us assume that the statement holds for graphs G D .P 0; K 0/
with jP 0j � n. Now letG D .P;K/ with jP j D nC1. Note that from the recursive
definition of FU it immediately follows that

EU .XU / D
X

u
U
FU .XU /

holds for all U � P . With the assumption EASB.XA
S
B/ D EA.XA/C EB.XB/

and F; D 0, we then obtain

FA
S
B.XA

S
B/ D EA

S
B.XA

S
B/ �

X

a
A;a¤;
Fa.Xa/ �

X

b
B;b¤;
Fb.Xb/

�
X

a�A;b�B
a¤;;b¤;;jaS bj<jASBj

Fa
S
b.Xa

S
b/ � F;

D EA.XA/C EB.XB/ �
X

a
A
Fa.Xa/

�
X

b
B
Fb.Xb/�

X

a�A;b�B
a¤;;b¤;;jaS bj<jASBj

Fa
S
b.Xa

S
b/:
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Now, we apply the induction hypothesis to each FASB : jaS bj < jASBj �
jP j D nC 1 and finally obtain

FA
S
B.XA

S
B/ D EA.XA/ �

X

a
A
Fa.Xa/C EB.XB/�

X

b
B
Fb.Xb/

�
X

a�A;b�B
a¤;;b¤;;jaS bj<jASBj

Fa
S
b.Xa

S
b/

D �
X

a�A;b�B
a¤;;b¤;;jaS bj<jASBj

Fa
S
b.Xa

S
b/ D 0: ut

11.3.2 Saturation with Hydrogen

After the motivation of the basic principles of our decomposition scheme in the last
section, we now have to face a technical difficulty: A cut-out fragment may have
a total spin unequal zero while the molecular system itself has a total spin of zero.
As closed-shell calculations are algorithmically both simpler and more stable, this
situation would complicate the proposed linear-scaling ansatz.

A step to remedy this situation is a saturation of the dangling bonds of the
fragments by adding hydrogen at the places where bonds were cut, causing the
total spin of the fragment system to be zero. Due to our telescopic sum approach
the effect of the hydrogen atoms actually goes unnoticed.

This correction is schematically depicted in Fig. 11.1 where we just show two
atoms and its vertex but omitted for simplicity any further vertices and edges these
atoms might be connected to. Here, let us assume that, after cutting the edge ki ,
Atom1 should belong to an induced subgraph G0, while Atom2 should not. Then,
edge ki D fAtom1, Atom2g is not present in this subgraph. Now, we insert two
new terminal vertices H1 and H2 and two new edges k.H/1 D fAtom1, H1g and

k
.H/
2 D fAtom2, H2g so that all dangling bonds are closed. Hence, the new vertex

H1 and the edge k.H/1 would be added to G0 next to Atom1. By this saturation
procedure, we only calculate closed-shell atoms. In particular, the electronic density
of the cut edges is thus conserved to a higher degree. Note that this approach is still

Atom1 Atom2
k1

a

Atom1 Atom2H1 H2
k(H)

1 k(H)
2

b

Fig. 11.1 Cut of an edge ki between two vertices and replacement with two edges k.H/1 and k.H/2

to two newly introduced terminal vertices (hydrogen atoms H1 and H2). (a) Edge ki before cutting.
(b) Edge ki disconnected
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tunable by the bond length used between new hydrogen vertices and cut-vertices. In
our subsequent implementation we use here the equilibrium hydrogen bond lengths
of certain small molecules taken from [24].

This saturation procedure can be understood as a re-definition of the electronic
Hamiltonian He in (11.5): From the known graph G of the molecular system
l additional hydrogen vertices, bonds and their graph-dependent coordination
RHi .G/, 1 � i � l , are derived and the ground state energy evaluated for this
system is defined as:

OEi1;:::;ik .X1; : : : ; Xk/ WD

min
j�0jD1

Z

��
0 .r/He

�
l C

kX

jD1
Zij ; Xi1 ; : : : ; Xik ; R

H
1 .G/; : : : ; R

H
l .G/

�
�0.r/dr:

(11.9)

Note that this saturated energy function is denoted by OE.
The saturation procedure by means of hydrogen renders the role of hydrogen

special in our approach. Thus, it is is useless to cut out a fragment at an edge
involving only one hydrogen nucleus, as this will only create an additional hydrogen
molecule while leaving the edge as it was before. Here, the best procedure is to
remove the hydrogen nuclei degrees of freedom from the ANOVA decomposition
algorithm, i.e. to drop them completely from the graph G, or to combine them
with their bonding partners since they are always terminal vertices anyway, see
Fig. 11.2 for an illustration. Hence, in the following, we will not take further heed
of the hydrogen atoms which are present in the molecular system. This is also
advantageous since e.g. about half of the atoms in organic molecules are hydrogens.
Thus, we strongly reduce the necessary number of fragments to be evaluated.

Altogether, to a given bond graph G we define the BOSSANOVA approximate
energy up to order k by

EANOVA.k/ D
X

U
f1;:::;M g;jU j�k
FU .XU /; (11.10)

with FU according to the recursive definition (11.7) using energies determined by
(11.9) and weights f�GU gU
f1;:::;M g chosen like in (11.8).

11.3.3 Scaling Behavior

We give some theoretical limits on the scaling behavior of the proposed approach
along with a constructive proof which our actual implementation follows closely.
Here, just the dependence of the number of fragments is to be considered.
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Fig. 11.2 Hydrogen vertices in light gray are combined with their bonding partners in dark gray
to new single vertices. The remaining edges and new vertices have been relabeled, denoted by
single digits

The maximum number of fragments possible for a molecular system consisting
of M nuclei is given by the power set 2M . Generally, we obtain for the power set,
truncated to contain at most k nuclei, the following relation

Pk
lD0 MŠ

lŠ.M�l/Š 	 Mk

for small k. However, in our ansatz many fragments are discarded when they do not
constitute a connected subgraph of the molecular system. Hence, the true number of
fragments is actually a lot smaller as is shown with the following lemma.

Lemma 11.2 (Upper bound on number of connected subgraphs). Let a con-
nected graphG D .P;K/ be given. Let the number of edges per vertex be bounded
from above by c > 0.

Then, the number of induced subgraphs G0 D .P 0; K 0/ containing a specific
vertex s 2 P that are connected, and whose vertex count jP 0j � k is bounded by
the order k, is bounded from above by

k�1X

jD1
2c.k�j / D

k�1X

jD1

�
2c„ƒ‚…

DWC

�k�j D
k�1X

jD1
C k�j <

k�1X

jD0
C j C	2D Ck � 1

C � 1 � Ck:

(11.11)

Proof. We will give a constructive proof by starting from a specific vertex and by
adding further vertices to the current subgraph, moving along connected edges only.
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Fig. 11.3 Depiction of the reduced edge setK 0
s.2/with dashed lines for a given subgraph G0 � G

consisting of vertices in dark gray with root vertex s. The vertices of the graph G are designated
by the distance to s, all edges outside of the full edge Ks.2/ are dotted

Let a vertex s 2 P be given. We split the edges in equidistant levels with respect
to s. To this end, let Ks.j / be the set of terminal edges connecting any v 2 P to s
via a shortest path of distance d.s; v/ D j .

Consider now a possible subgraph G0 with s 2 P 0. Let K 0
s.j / be the reduced

set of edges of Ks.j / for which only one of either associated vertices is in P 0, see
Fig. 11.3 for a depiction of these sets. This set is the exploration boundary of G0 at
distance j with respect to s.

The cardinality of the power set of the reduced set of edgesK 0
s.j / is 2jK0

s .j /j for a
level j . Therefore, we obtain

Pk�1
jD1 2jK0

s.j /j possible sets by summing over all k� 1
levels and ignoring that the number per level is actually not independent. With the
upper bound on the vertex degree it follows that jK 0

s.j /j is bounded from above by
cjIj�1j where Ij�1 denotes the set of vertices added on level j � 1. In Fig. 11.3
these are nodes designated with “1” and colored in dark gray. Furthermore, jIj j is
bounded from above by k � j because at least one vertex has to be added per level
and there is already one root vertex. Putting it all together and using the partial sum
of the geometric series results finally in (11.11). �

Hence, the sum of all possible subgraphs with at most k vertices only depends
on the bond order k and the highest degree c over all vertices v in G. As we go over
all vertices s 2 P as root vertices, the number of fragments scales as O.M � Ck/.

11.4 Numerical Results

Now we present the results of our numerical experiments. This section is divided
into three parts. In the first part, we look at the scaling behavior in terms of runtime
to assure linear complexity. In the second part, we give the approximate total energy
for smaller molecules to indicate the good approximation quality of the approach. In
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a b

Fig. 11.4 Runtimes for the fragmentation and subsequent calculation of the individual fragments
for alkanes of increasing length and varying truncation order k D 1; : : : ; 6. (a) Fragmentation. (b)
Calculation

the third and final part, we look at a large biomolecule and assess the applicability
of the approach for large-scale calculations.

As approximate computational method for the electronic subproblems associated
with the different fragments we have chosen the closed-shell Hartree Fock method
with the Gaussian basis “6-311*G” set as implemented in MPQC [23]. We use
evaluations of the total molecule as reference results (full HF) to compare the
approximation error against.

11.4.1 Scaling Study

In the first part of this subsection we investigate the computational scaling behavior
of our BOSSANOVA implementation with respect to the number of nuclei M and
with respect to the truncation order k. From the theoretical considerations of the
previous section, we here expect a linear scaling complexity with M .

To this end, we studied alkanes of varying length. In Fig. 11.4a the total runtime
for the fragmentation procedure is given and in Fig. 11.4b the cumulative runtime
for the calculation of all fragment problems is depicted. Both show linear scaling
behavior with the number of nuclei M as expected. Additionally, we see that the
time required for the calculation indeed increases polynomially with the truncation
order.

Finally, we measure the crossover point for our ansatz—that is when the fragment
calculations require less time than the reference calculation of the full system.8 To

8As can be seen from Fig. 11.4, the fragmentation times are negligible.
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Fig. 11.5 Measured runtime of the calculation of alkanes of increasing length, via standard closed-
shell HF and via BOSSANOVA for orders k D 1; : : : ; 4. Solid lines give linear regression fits to
overall behavior

this end, we use four solvers for the fragment problems in parallel and compare
against the runtime of MPQC running on four processes for the reference calculation
in Fig. 11.5. The respective crossover point is where the black curve intersects the
other curves associated with the varying truncation order k.

We notice that at order k D 4we obtain a crossover in runtimes atM 	 20which
is roughly an order of magnitude in number of atoms, or three orders in total run
time, lower than that achieved by other linear-scaling schemes, e.g. ONETEP [34],
see also [15].

11.4.2 Qualitative Study

In this section we investigate the approximation quality of the proposed approach.
To this end, let us first give some remarks on what a threshold for a good
approximation would be. HF calculations do not give the so-called correlation
energy. However, due to the finite basis set they also never reach the true HF ground
state energy but only an upper bound. For the employed “6-311G*” basis set we
have estimated this finite basis set error (by employing even larger basis sets) to be
1:81 � 10�4 with respect to the true HF energy of alkanes. Hence, if we find the
relative error�E.k/ of the approximated energy EANOVA according to (11.10),

�E.k/ D ESCF �EANOVA.k/

ESCF
; (11.12)
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Fig. 11.6 Approximation of the total ground state energy for various alkanes over the truncation
order k and absolute value of the energy contribution of each fragment of heptane sorted by
increasing number of nuclei. (a) Alkanes. (b) Heptane

Table 11.1 Relative error
�E.k; n/ for increasing
truncation order k and
varying chain length n of the
alkane molecule

k �E.n D 3/ �E.n D 4/ �E.n D 5/ �E.n D 6/

1 2:47 � 10�2 2:60 � 10�2 2:67 � 10�2 2:72 � 10�2

2 2:02 � 10�5 2:16 � 10�5 2:24 � 10�5 2:29 � 10�5

3 7:01 � 10�6 9:06 � 10�6 1:03 � 10�5 1:12 � 10�5

4 5:95 � 10�7 1:08 � 10�6 1:35 � 10�6 1:55 � 10�6

5 8:50 � 10�8 1:91 � 10�7 3:06 � 10�7 4:26 � 10�7

6 0:0 6:38 � 10�8 1:53 � 10�7 2:13 � 10�7

to be closer than �basis D 10�4 to the reference calculation ESCF, we define the
approximation to be good. As a second threshold value we use�float D 1:19� 10�7
as the output precision of values, i.e. below that value numerical rounding artifacts
may appear.

In the following we give the numerical results for various chain molecules,
namely alkanes, alkenes, alkines, and homologous chains consisting of boron and
nitrogen. Let us remark that, for certain small lengths, we already reach the exact
result for small truncation order k due to the nature of the telescopic sum.

In Fig. 11.6a and Table 11.1 we give the relative error of the energy calculated
for alkanes of length n with formula C2nH2nC4. We notice that we are below the
estimated threshold�basis already for k D 2. Also, the error grows only very slowly
for longer chains. Hence, the approximation works very well for these linear chain
molecules, whose graph forms a tree and each edge represents only a single bond.

Furthermore, we depict the absolute value of the contribution to the total energy
per fragment for heptane in Fig. 11.6b. Due to the symmetry of the molecular system
we clearly see levels of equal values in the graph. The difference between these
levels closely follows the error obtained, e.g. 10�2 between level k D 1 and k D 2

and 10�3 between level k D 2 and k D 3. Hence, we feel that this can be taken as
a rough error estimate when a full calculation is unavailable.
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a b

c d

Fig. 11.7 Approximation of the total energy for hexane with nuclei coordinates under random
perturbation of magnitude �, alkenes and alkines with double and triple bonds, and boron-nitride
chain molecules of varying length n. (a) Hexane with distored nuclei coordinates. (b) Alkenes.
(c) Alkines. (d) Boron-nitrogen chain

The approximation for hexane, alkenes and alkines, and boron-nitrogen chains of
varying lengths with distored coordinates, higher bond degrees or different nuclei
elements are depicted in Fig. 11.7.

We see that perturbation affects the approximation quality only negligibly. A
stronger effect is seen with double and triple bonds as in alkenes and alkines or for
different nuclei elements as with the boron nitrogen chain. However, we still reach
the threshold�basis at k D 3 and notice that the decrease with chain length n is very
small.

Moving on from these simple chain molecules to more complex bond graphs
we come to molecular systems with aromatic rings. These are particularly difficult
as the gain in energy due to the delocalized �-electrons is captured only when
the complete ring is taken into account as a fragment. As an example we take
naphthalene which consists of two interconnected aromatic rings and coronene
which consists of six interconnected aromatic rings. In Fig. 11.8 we have calculated
the approximative energy of these molecules two times: Once, we calculated the
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Fig. 11.8 Relative error of the total energy for molecules with delocalized electrons over the
truncation order k. In the second calculation cycles in the interaction graph are taken into account
irrespectively of the truncation order. (a) Naphthalene. (b) Coronene

energy in the proposed fashion with increasing truncation order. The second time,
however, we took the full cycles in the graph as extra fragments into account.

We immediately notice the effect: While with the first calculation the approx-
imation error decreases up to k D 3, it increases afterwards as higher-order
fragments are strained due to the ring-like geometry of the full system. In the second
calculation this decrease is absent although we never calculate the full system
consisting of multiple interconnected rings. Moreover, we reach the threshold�basis

at around k D 5.

11.4.3 Quantitative Study

As an example of a truly large molecule we have chosen the interferon alpha (1ITF),
taken from the Protein Data Bank [6] and amended it by hydrogens from topological
knowledge via [22] that go undetected in the x-ray spectroscopy of the structure. The
structure consists in total of 2,698 nuclei.

Due to the larger number of nuclei a reference calculation is infeasible. Instead,
we give in Fig. 11.9 the contributions to the telescopic sum from each individual
fragment sorted by the number of nuclei. Each absolute energy value is given as a
tiny dash in the figure that as a whole emphasizes certain levels of similar values,
compare with Fig. 11.6b. Also, we give exemplary fragments to each of the more
prominent levels in Fig. 11.9b.

We notice a similar decay in the absolute magnitude as for alkane. This indicates
a good approximation of the total energy of the structure. Judging from our previous
remarks when investigating the approximation quality with alkane we see that the
obtained ground state energy value of �68;467:41Ht is accurate to relative precision
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a

b

Fig. 11.9 Ball and stick model of interferon alpha (PDB key: 1ITF) combined with a ribbon view
of the main chain. The configuration is split up into fragments of up to k D 3 for which we give
each’s contribution to the total energy and examples of typical fragment subsystems. (a) Ball-stick-
model. (b) Absolute contribution per fragment

of 10�3 to 10�4. This especially underlines the usefulness of the empirical potential
approaches for these large biomolecules, see [32].

We remark that the cumulated solver runtime is 6:28 h for this system. Hence,
we see that our proposed scheme is especially well-suited to large molecules. Note
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furthermore that long-range Coulomb interactions can additionally be computed via
one of the well-known schemes [4] in a first-order perturbation calculation [20]
under the assumption that the wavefunctions do not change significantly anymore.

Concluding Remarks
In this article we presented the BOSSANOVA decomposition approach for
the approximate solution to the electronic Schrödinger equation for a given
molecular system. It involves an ANOVA series expansion of an electronic
energy function in the framework of the Born-Oppenheimer molecular
dynamics. A truncation of this series at a certain bond order and the
elimination of certain further terms by a locality constraint of the electronic
wavefunction plus some additional hydrogen saturation results in a set of
fragments of the overall molecule. Now, each of the associated electronic
subproblems may be solved with e.g. HF, CI, CC, or DFT methods. A
proper combination of these solutions of the subproblems then leads to an
approximate total ground state energy. This is an extension of the so-called
additivity models which are well-known in chemistry.

We gave a description how this truncated BOSSANOVA expansion can be
derived for any given graph. Furthermore we showed theoretically as well as
practically that our new method indeed scales linearly with the numberM of
atoms in the overall problem. We gave numerical results for chain molecules
where the obtained relative accuracy was well below 10�4 for k D 3, which
is the relative precision of the reference calculation with respect to an infinite
basis set. We also investigated aromatic systems with delocalized electrons
where an inclusion of full cycles aids the approximation significantly to also
achieve 10�4 relative precision. This is roughly the precision available to HF
calculations with moderately sized basis sets.

Note that the impact of the neglected long-range Coulomb energy on
the accuracy of the method and ways to recover this contribution is given
elsewhere, see [20]. Note furthermore that our BOSSANOVA approach is not
rid of empirical parameters due to the necessity to saturate dangling bonds
with hydrogen in the fragmentation process. Since the typical bond lengths
and angles of hydrogenated systems are well assessed by measurements, we
hope that a careful collection of robust values into a database may enable a
broad range of application for the BOSSANOVA method.

Let us also point out that our approach is trivial to parallelize since the
evaluation of each fragment by an appropriate solver can be done indepen-
dently, see [20]. Furthermore, since each fragment only contains a number of
atoms which is roughly equal to the bond order k (neglecting hydrogen), the
evaluation of the subproblems is possible already on very small machines with
minimal memory requirements. Of course, also the memory cost scales only
linearly. Thus, if the energy of a single fragment is calculated in seconds by

(continued)
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e.g. a solver which is specifically tailored to the fast but precise evaluation
of small and isolated systems, even a number of 105 or 106 fragments is
within reach and the approximate total ground state energy evaluation of huge
homogeneous molecular systems becomes computationally feasible. This has
been shown by the calculation of the ground state energy of interferon alpha.

Finally, let us remark on how the BOSSANOVA method may be incorpo-
rated into a general coupling scheme of QM and MM. The BOSSANOVA
fragmentation would be executed only in a given local domain, i.e. the
active region where QM is locally needed. The resulting fragments are
then forwarded to a suitable QM solver whereas the surrounding passive
environment would not be fragmented but is directly passed on to a MM
solver. Our BOSSANOVA scheme is closely related to conventional many-
body potentials (however in an ab-initio fashion) with variable many-body
order. Furthermore, due to the fragmentation process, the interface region is
not sharply defined. Therefore, we believe that this approach also remedies
the problems of energy and electron density leaking of other local coupling
methods to a certain extent.
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within the framework of the priority program SPP1324.

References

1. Abell, G.C.: Empirical chemical pseudopotential theory of molecular and metallic bonding.
Phys. Rev. B 31(10), 6184–6196 (1985)

2. Amovilli, A., Cacelli, I., Campanile, S., Prampolini, G.: Calculation of the intermolecular
energy of large molecules by a fragmentation scheme: application to the 4-n-pentyl-4-
cyanobiphenyl (5CB) dimer. J. Chem. Phys. 117, 3003–3012 (2002)

3. Antes, I., Thiel, W.: Adjusted connection atoms for combined quantum mechanical and
molecular mechanical methods. J. Phys. Chem. A 103(46), 9290–9295 (1999)

4. Arnold, A., Bolten, M., Dachsel, H., Fahrenberger, F., Gähler, F., Halver, R., Heber, F.,
Hofmann, M., Holm, C., Iseringhausen, J., Kabadshow, I., Lenz, O., Pippig, M., Potts, D.,
Sutmann, G.: Comparison of scalable fast methods for long-range interactions. Phys. Rev. E
88(6), 063,308 (2013)

5. Ayala, P.Y., Scuseria, G.E.: Linear scaling second-order Moeller-Plesset theory in the atomic
orbital basis for large molecular systems. J. Chem. Phys. 110(8), 3660–3671 (1999)

6. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N.,
Bourne, P.E.: The protein data bank (2000). http://www.pdb.org/

7. Brenner, D.W.: A second-generation reactive bond order (REBO) potential energy expression
for hydrocarbons. J. Phys.: Condens. Matter 14, 783–802 (2002)

8. Challacombe, M.: A simplified density matrix minimization for linear scaling self-consistent
field theory. J. Chem. Phys. 110, 2332–2342 (1999)

9. Collins, M.A., Deev, V.A.: Accuracy and efficiency of electronic energies from systematic
molecular fragmentation. J. Chem. Phys. 125, 104,104 (2006)

http://www.pdb.org/


234 M. Griebel et al.

10. Csyani, G., Albaret, T., Payne, M.C., De Vita, A.: Learn on the fly: a hybrid classical and
quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93(17), 175,503 (2004)

11. Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities,
surfaces and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)

12. Deev, V., Collins, M.A.: Approximate ab initio energies by systematic molecular fragmenta-
tion. J. Chem. Phys. 122(15), 154,102 (2005)

13. Ercolessi, F., Adams, J.B.: Interatomic potentials from 1st-principles calculations – the force-
matching method. Europhys. Lett. 26(8) 583–588 (1994)

14. Fonseca Guerra, C., Snijders, J.G., te Velde, G., Baerends, E.J.: Towards an order-N DFT
method. Theor. Chem. Acc. 99(6), 391–403 (1998)

15. Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71(4), 1085–1123
(1999)

16. Greengard, L., Rokhlin, V.: The fast multipole method for gridless particle simulation. Comput.
Phys. Commun. 48, 117–125 (1988)

17. Gresh, N., Claverie, P., Pullman, A.: Theoretical studies of molecular conformation. Derivation
of an additive procedure for the computation of intramolecular interaction energies. Compari-
son with ab-initio SCF computations. Theor. Chim. Acta 66, 1–20 (1984)

18. Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dynamics –
Numerics, Algorithms, Parallelization, Applications. Springer, Heidelberg (2007)

19. Hayes, M.Y., Li, B., Rabitz, H.: Estimation of molecular properties by high-dimensional model
representation. J. Phys. Chem. 110, 264–272 (2006)

20. Heber, F.: Ein systematischer, linear skalierender Fragmentansatz für das Elektronenstuktur-
problem. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2014)

21. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat.
19(3), 293–325 (1948)

22. Humphrey, W., Dalke, A., Schulten, K.: VMD – visual molecular dynamics. J. Mol. Graph.
14, 33–38 (1996)

23. Janssen, C.L., Nielsen, I.B., Leininger, M.L., Valeev, E.F., Kenny, J.P., Seidl, E.T.: The
Massively Parallel Quantum Chemistry Program (MPQC), Version 2.3.0. Sandia National
Laboratories, Livermore (2008). http://www.mpqc.org/

24. Johnson, R.D., III: NIST computational chemistry comparison and benchmark database, NIST
Standard Reference Database Number 101 (2006). http://srdata.nist.gov/cccbdb

25. Kitaura, K., Ikeo, E., Asada, T., Nakano, T., Uebayasi, M.: Fragment molecular orbital method:
an approximate computational method for large molecules. Chem. Phys. Lett. 313, 701–706
(1999)

26. Laio, A., Van de Vondele, J., Rothlisberger, U.: A Hamiltonian electrostatic coupling scheme
for hybrid Car-Parrinello molecular dynamics simulations. J. Comput. Chem. 116(16), 6941–
6947 (2002)

27. Li, X.P., Nunes, R.W., Vanderbilt, D.: Density-matrix electronic-structure method with linear
system-size scaling. Phys. Rev. B 47, 10,891–10,894 (1993)

28. Liu, W.K., Karpov, E.G., Zhang, S., Park, H.S.: An introduction to computational nanome-
chanics and materials. Comput. Methods Appl. Mech. Eng. 193, 1529–1578 (2004)

29. Marx, D., Hutter, J.: Ab initio molecular dynamics: theory and implementation. In:
Modern Methods and Algorithms of Quantum Chemistry. NIC Series, vol. 1, pp. 301–440.
Forschungszentrum Juelich, Deutschland (2000)

30. Maseras, F., Morokuma, K.: IMOMM – a new integrated ab-initio plus molecular mechanics
geometry optimization scheme of equilibrium structures and transition-states. J. Comput.
Chem. 16(9), 1170–1179 (1995)

31. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford Science
Publications, New York (1989)

32. Ponder, J.W., Case, D.A.: Force fields for protein simulation. Adv. Protein Chem. 66, 27–85
(2003)

33. Sauer, J., Sierka, M.: Combining quantum mechanics and interatomic potential functions in ab
initio studies of extended systems. J. Comput. Chem. 21(16), 1470–1493 (2000)

http://www.mpqc.org/
http://srdata.nist.gov/cccbdb


11 A Bond Order Dissection ANOVA Approach for Efficient Electronic. . . 235

34. Skylaris, C.K., Haynes, P.D., Mostofi, A.A., Payne, M.C.: Introducing ONETEP: linear-scaling
density functional simulations on parallel computers. J. Chem. Phys. 122(8), 84,119 (2005)

35. Szabo, A., Ostlund, N.S.: Modern Quantum Theory – Introduction to Advanced Electronic
Structure Theory. Dover, New York (1996)

36. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems.
Phys. Rev. B 39, 5566–5568 (1989)

37. Van der Vaart, A., Gogonea, V., Dixon, S.L., Merz, K.M., Jr.: Linear scaling molecular orbital
calculations of biological systems using the semiempirical divide and conquer method. J.
Comput. Chem. 21(16), 1494–1504 (2000)

38. Velde, G.T., Bickelhaupt, F.M., Baerends, E.J., Guerra, C.F., Van Gisbergen, S.J.A., Snijders,
J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22(9), 931–967 (2001)

39. Vreven, T., Morokuma, K.: On the application of the IMOMO (integrated molecular orbital +
molecular orbital) method. J. Comput. Chem. 21(16), 1419–1432 (2000)



Chapter 12
Tensor Spaces and Hierarchical Tensor
Representations

Wolfgang Hackbusch and Reinhold Schneider

Abstract In the present report we provide a brief introduction into recently
developed hierarchical tensor representations. The new formats extend the well-
known Tucker format into a hierarchical framework, by combining its favourable
characteristics with low-order scaling properties. We demonstrate the basic concept
of subspace approximation and higher order SVD (HOSVD), and how to extend
this in a hierarchical way. We highlight that the present tensor representations are
constituting smooth manifolds, and give a perspective how these properties can
be used to develop numerical solvers for tensor equations and tensor optimisation
problems.

12.1 Introduction

Supported by the DFG Priority program SPP 1324, we started a joint German/
Russian project in 2008. Independently in 2009 the groups in Leipzig and Moscow
introduced new tensor representations. Since that time strong activities have been
started to develop these ideas further and the relationship to established approaches
in quantum physics has been recognised [49]. Due to the amount of material, we
do not intend to provide a complete overview over all developments since that
time, most can be found in the monograph [20]. We only try to describe the basic
concepts up to the state of the art in a nutshell. Moreover we have left several
topics to the other contributions (see Chaps. 19 and 10 in this volume), e.g. we
do not consider the problem of tensor completion here. To provide a short and
comprehensive introduction we keep the presentation as self-contained as possible.
Nevertheless more detailed information will be required for getting deeper insight
into the material [20]. In our bibliography, we emphasise the citations which has
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been relevant for the present SPP 1324 project, or have been supported by this
project, far of being complete. For an exhaustive collection of articles (until 2012)
we refer to recent survey articles, e.g. [16, 17, 20, 22].

We confine ourselves to the finite-dimensional setting and introduce tensors as
multi-indexed arrays. While real vectors have entries vk 2 R depending on one
index k, the entries of matrices ai;j depend on two indices, tensors vj1;:::;jd of order
d carry d indices. For j 2 f1; : : : ; d g, we fix index sets Ij D f1; : : : ; nj g and the
Cartesian product of these index sets,

I D I1 � � � � � Id ; i WD .i1; : : : ; id / 2 I : (12.1)

A tensor v is defined by its entries vi D vŒi� D vŒi1; : : : ; id �, i.e. the tensor v can be
considered as a mapping

v W I ! R ; .i1; : : : ; id / 7! vŒi1; : : : ; id � :

We may write v D .vŒi�/i2I. Hence, we may express the set of the tensors considered
above by1

R
I D fv W .vŒi�/i2Ig :

The dimension of the linear space RI is ˘d
jD1nj ; where nj D #Ij :

The tensor structure is introduced by the following tensor product. Let uj 2 R
Ij

be vectors for j 2 f1; : : : ; d g: Then the elementary tensor product v D u1 ˝ u2 ˝
: : :˝ ud is defined entry-wise by

vŒi1; : : : ; id � D u1i1 � u2i2 � : : : � udid :

It is easy so see that RI is the span of all elementary products. The fact that the
tensor space R

I is produced by the linear spaces RI1 ; RI2 ; : : : ;RId , is expressed by
the notation

R
I D R

I1 ˝ R
I2 ˝ : : :˝ R

Id D
Od

jD1R
Ij :

For d D 2; the tensor product u ˝ v can be considered as the matrix uvT:

We recall dimR
I D Qd

jD1 nj , where nj D dimR
Ij . Set n WD max1�j�d nj .

Then, the dimension of RI is in general O.nd /, scaling exponentially in d . This
is often referred as the curse of dimensionality, since even for moderate d the
dimension becomes prohibitively large [4,34,36]. Therefore it is impossible to store

1Given a finite index set J , RJ can be considered as the set of tuples w D .wi /i2J with wi 2 R

or, equivalently, as set of mappings w W J ! R. RJ is a vector space of dimension ]J , where ]J
denotes the cardinality of the finite index set J .
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a tensor v. Even for the smallest nontrivial case nj D 2 and d D 500, 2500 is
a number larger than the estimated number of atoms in the universe. In practice,
we cannot deal with these spaces without further approximation or restrictions.
What we can hope for are smaller subclasses which can be parametrised by much
less parameters, e.g. lower dimensional manifolds in which we treat our problems
satisfactorily accurate. Additionally we want to identify ways to increase these
classes in order to achieve any desired accuracy ". As an ultimate goal we intend
to present algorithms which provide an accuracy " by a computational effort �
Cd."

�s/ (storage as well as computational work) with some positive and hopefully
rather small s and moderate Cd which grows at most polynomially in d .

Above we started from Ij D f1; : : : ; nj g. Instead, we can consider Ij D Jj�Kj ,
where Jj D f1; : : : ; nj g and Kj D f1; : : : ; mj g: Now R

Ij D R
Jj�Kj is the vector

space of nj �mj matrices. Note that I D I1 � � � � � Id has the same cardinality as
J � K with J D J1 � � � � � Jd and K D K1 � � � � �Kd: Therefore the tensor space
R

I can be identified with the matrix space R
J�K corresponding to linear mappings

from R
J to R

K: In the latter case, the tensor product is also called the Kronecker
product.

As mentioned above, we consider the real field R. There are some delicate
differences between real and complex tensors, but here they are mostly irrelevant.

The next generalisation replaces the particular vector spaces R
Ij by general

vector spaces Vj of any (also infinite) dimension. The abstract definition of a tensor
space (see [18]) uses the right diagram. Then, the (algebraic) tensor space V D
a

Nd
jD1 Vj and the tensor product ˝ are defined uniquely—up to isomorphism—

by the requirement that for any multilinear mapping ' W V1 � : : : � Vd ! U

(U is an arbitrary vector space), there is a linear map ˚ W V ! U such that
'.v1; : : : ; vd / D ˚

�
v1 ˝ : : :˝ vd

�
for all vj 2 Vj . A constructive proof is given in

[20].

For infinite dimensions, one has to distinguish between algebraic and topological
tensor spaces. The above definition of a

Nd
jD1 Vj yields the algebraic tensor space

(indicated by the left index a). Algebraic tensors are finite linear combinations of
elementary tensors.

Assume now that Vj are normed spaces (norm denoted by k�kj ). We may
equip the algebraic tensor space by some norm k�k such that the tensor product
is continuous, i.e. kv1˝ : : :˝ vdk � C

Qd
jD1 kvjkj : The completion of the normed

tensor space .a
Nd

jD1 Vj ; k�k/ yields the topological tensor space k�k
Nd

jD1 Vj : We
emphasise that choice of k�k is not fixed by the norms kvj kj : A natural condition is

kv1 ˝ : : :˝ vdk D
Yd

jD1 kvj kj for all vj 2 Vj :
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In this case, k�k is called a crossnorm. Since this definition involves only elementary
tensors, it does not uniquely define the norm for all tensors. The situation improves
for Hilbert spaces .Vj ; h�; �ij /: Also here a

Nd
jD1 Vj may be equipped with different

scalar products h�; �i ; but there is one canonical scalar product of the tensor space
defined by

˝
v1 ˝ : : :˝ vd ;w1 ˝ : : :˝ wd

˛ D Qd
jD1

˝
vj ;wj

˛
j
. The corresponding

norm is a crossnorm.

12.2 Subspace Approximation and Tucker Format

We consider the finite-dimensional tensor space

R
I D

Od

jD1 Vj D
Od

jD1R
Ij with #Ij D nj ; j D 1; : : : ; d :

As mentioned above, we identify a tensor u 2 R
I with the d -variate function

x D .x1; : : : ; xd / 7! uŒx� D uŒx1; : : : ; xd � 2 R depending on discrete variables
xj 2Ij (usually called indices). RI is equipped with the inner product

hu; vi WD
X

x2�djD1Ij

u.x/v.x/ D
X

x12I1
� � �

X

xd2Id
uŒx1; : : : ; xd �vŒx1; : : : ; xd �

and the `2-norm kuk D phu;ui.
For each direction j D 1; : : : ; d let fbjxj W xj 2 Ij g be a basis of Vj . Then,

any tensor u 2 R
I D Nd

jD1 Vj can be expanded w.r.t. the tensor product basis

b1x1 ˝ � � � ˝ bdxd :

u D
X

x12I1
: : :

X

xd2Id
cŒx1; : : : ; xd � b1x1 ˝ � � � ˝ bdxd :

A tensor is said to be represented in Tucker format with representation rank s D
.s1; : : : ; sd / if

u D
Xs1

k1D1 � � �
Xsd

kdD1 cŒk1; : : : ; kd � b1k1 ˝ � � � ˝ bdkd : (12.2)

The coefficients cŒ� � � � form the so-called core tensor c 2 R
s1 ˝� � �˝R

sd :Obviously,
sj � nj WD #Ij holds. Setting Uj WD spanfbjk W 1 � k � skg; we obtain
subspaces satisfying u 2 U1 ˝ � � � ˝Ud . In the next subsection we look for an exact
representation (12.2) with minimal representation ranks sj and the corresponding
minimal subspaces Uj .
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12.2.1 Minimal Subspaces

Given an algebraic tensor u 2 Nd
jD1 Vj D R

I, there are uniquely defined subspaces
Umin
j .u/ D Uj 
 Vj of minimal dimension rj such that

u 2
Od

jD1 Uj ; Uj 
 Vj :

This statement also holds for infinite-dimensional vector spaces Vj (cf. [20]). The
dimensions rj D rankj .u/ WD dimUj define the integer tuple r D r.u/ D
.r1; : : : ; rd / which we call the tensor subspace rank or Tucker rank2 rankT .u/ of
the tensor u. Given any tuple r D .r1; : : : ; rd /; we define the set

Tr WD
n
u W dim.Umin

j .u// D rj ; 1 � j � d
o
: (12.3)

Analogously, T�r is defined by dim.Umin
j .u// � rj .

Each subspace Umin
j .u/ can be spanned by some basis fbjk W 1 � k � rj g. We

denote the entries of bjk by .bjk /xj DW bj Œk; xj �. We often cast the basis into a tensor

(matrix) bj D .bjk /kD1;:::;rj 2 R
rj�nj . Among all possible bases, the orthonormal

ones are often convenient:

hbjk ;b
j

k0i D
Xnj

xjD1 bj Œk; xj �bj Œk0; xj � D ık;k0 : (12.4)

12.2.2 Reconstruction

Given a tensor u 2 R
I and a Tucker rank r � rankT .u/, we are searching for rj -

dimensional subspaces Uj 
 Vj (1 � j � d ), which fit best to u. Each subspace
Uj is defined by its basis

˚
bjk W k D 1; : : : ; rj

�
of size rj � nj . These bases allow

us to write u in the form

u D
r1X

k1D1
� � �

rdX

kdD1
cŒk1; : : : ; kd �b1k1 ˝ � � � ˝ bdkd

or in terms of coefficients

uŒx1; : : : ; xd � D
r1X

k1D1
� � �

rdX

kdD1
cŒk1; : : : ; kd �b1Œk1; x1� : : : bd Œkd ; xd � : (12.5)

2Any u with representation rank s D .s1; : : : ; sd / in (12.2) has a Tucker rank r D .r1; : : : ; rd /

satisfying rj � sj :
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For orthonormal basis vectors (cf. (12.4)), the core tensor c can be obtained by
projection:

cŒk1; : : : ; kd � D
n1X

x1D1
� � �

ndX

xdD1
uŒx1; : : : ; xd �b1Œk1; x1� : : : bd Œkd ; xd � :

Next we derive how a basis vector of a minimal subspace can be computed.
We start with the case d D 2. Second order tensors .x1; x2/ 7! uŒx1; x2� can be
identified with matrices Ux1;x2 WD uŒx1; x2�. Spectral theory can be applied to derive
the famous result about the singular value decomposition (SVD; cf. [46]),

uŒx1; x2� D
rX

kD1
b1Œx1; k� �Œk�b2Œx2; k� ; �1 � �2 � : : : > 0 ; (12.6)

where the vectors .bjk /
r
kD1 are orthonormal (cf. (12.4)). The spaces U1 
 V1 and

U2 
 V2 are well defined by the respective basis functions, and the core tensor is
cŒk1; k2� D ık1;k2�k1 ; k1; k2 D 1; : : : ; r1 D r2 D r .

The generalisation to the tensor case uses the matricisation or unfolding, which
maps the tensor u into the matrix Mj .u/ D Mj with entries .Mj /xj ;.x1;:::;6xj ;:::;xd / WD
uŒx1; : : : ; xd � [5]. Then the minimal subspacesUj D Umin

j .u/ are given by the range

of the matrix Mj .u/. The factorisation Mj WD Prj
kD1 �

j

k bjk ˝ vk by SVD,

Mj

xj ;.x1;:::;6xj ;:::;xd / WDuŒx1; : : : ; xd �D
rjX

kD1
bj Œk; xj ��j Œk�vŒk; x1; : : : ; 6 xj : : : ; xd �

with �j Œ1� � �j Œ2� � : : : > 0 yields a particular basis of Uj D Umin
j .u/, which is

called the j -th HOSVD basis . We use the notation

bj WD LSVD Mj .u/

for taking the basis from the left part of an SVD, a procedure frequently used in the
sequel.

12.2.3 Approximation

The representation of a tensor by (12.5) involves a data size depending on the Tucker
ranks, which now are denoted by Rj (instead of rj ). Often, we want to decrease the
data size without perturbing the tensor too much. For instance, we aim at another
representation of the form (12.5) with rj < Rj : An equivalent formulation is the
following. Let u 2 U WD U1 ˝ � � � ˝Ud with dimUj D Rj : Find smaller subspaces
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OUj 
 Uj , dim OUj D rj , and the best approximation Ou of u in OU WD N
j

OUj .
Obviously, Ou is given by Ou D Pu, where P is the orthogonal projection from U
onto OU. Furthermore, P is the Kronecker product3 P1 ˝ � � � ˝ Pd of the orthogonal
projections Pj W Uj ! OUj . Another expression for P is the product P1 � : : : � Pd ,
where Pj D I ˝ � � � ˝ I ˝ Pj ˝ I ˝ � � � ˝ I .

The HOSVD bases defined above allow us to define an easy approximation
procedure. We recall that Uj D Umin

j .u/ is spanned by the HOSVD basis fbjk W k D
1; : : : ; Rj g, where the basis vectors are ordered according to the size of the singular
values. The smaller subspace is defined by OUj WD spanfbjk W k D 1; : : : ; rj g: The
algorithmic realisation of the projection P from above is as follows. Represent u by

u D
R1X

k1D1
� � �

RdX

kdD1
cŒk1; : : : ; kd � b1k1 ˝ � � � ˝ bdkd

with the HOSVD bases bj WD LSVD Mj .u/. Then Ou D Pu is given by

Ou D
r1X

k1D1
� � �

rdX

kdD1
cŒk1; : : : ; kd � b1k1 ˝ � � � ˝ bdkd :

The error of this approximation can estimated by

ku � Ouk2 D k I � P1 � � � Pduk2 D k�.I � P1/C P1.I � P2/C : : :
�
uk2

�
dX

jD1
k.I � Pj /uk2 D

dX

jD1
"2j � d inf

w2T�r
ku � wk2 ; (12.7)

where "2j D P
kj >rj

.�j Œkj �/
2. The infimum denotes the error of the best rank

r approximation. In contrast to d D 2, where the SVD provides the best
approximation (in `2-norm), we obtain only a quasi-optimal error estimate for the
HOSVD approximation if d > 2 [5]. A recent result [26] states that finding the best
rank r approximation in d > 2 is in general an NP hard problem. This negative
results also holds for rank-1 approximation, i.e. r D .1; : : : ; 1/.

12.3 Hierarchical Tensor Representations

The subspace concept introduced above can be interpreted as a generalisation of
SVD to higher dimensions d > 2. It enjoys many important properties, but it
does not prevent exponential scaling of the storage of the entries cŒk1; : : : ; kd �. The

3The application of the Kronecker product P1 ˝ � � � ˝ Pd—as defined in the introduction—to an
elementary tensor v1 ˝ � � � ˝ vd is given by P1v1 ˝ � � � ˝ Pd vd .
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reduction of degrees of freedom results only from the fact that nj is replaced by rj �
nj . In particular, for nj D 2 this concept is not helpful. The Hierarchical Tucker
format (HT) in the form introduced in [24] extends the above idea of subspace
approximation into a hierarchical or multi-level framework. Already earlier this
tensor format has been proposed in the multi-configurational Hartree model [39,51]
as well as in terms of tree tensor network states [49]. Following [20], we proceed in
a hierarchical way.

We may start with defining subspaces Uj 
 Vj , j D 1; : : : ; d; as introduced for
the Tucker representation Uj D spanfbjk W k D 1 : : : ; rj g.

For the representation of u, we do not need, in general, the whole partial tensor
spaceU1˝U2, but only a subspaceUf1;2g 
 U1˝U2 of dimension rf1;2g � r1r2. We
may continue, e.g. by building a subspace Uf1;2;3g 
 Uf1;2g ˝ U3 
 U1 ˝ U2 ˝ U3,
or Uf1;2;3;4g 
 Uf1;2g ˝ Uf3;4g etc.

This approach can be cast into the framework described by a partition tree T

with leaves f1g; : : : fd g, simply abbreviated by 1; : : : ; d , and vertices ˛ 
 D WD
f1; : : : ; d g corresponding to the partitions ˛D˛1 P[˛2, e.g. ˛D f1; 2; 3g D f1; 2g [
f3g, where ˛1 WD f1; 2g and ˛2 WD f3g.D is the root of T.

{1,2,3,4,5}B

{4,5}

U4 5 U

B

B

B

U

UU

3 

2 1

{1,2,3}

{1,2}

U{1,2}

U{1,2,3}

Let ˛1; ˛2 
 D be the two sons of ˛ 
 D, then the condition U˛ 
 U˛1 ˝U˛2
implies that U˛ has basis vectors of the form

b˛k˛ D
r˛1X

k˛1D1

r˛2X

k˛2D1
u˛Œk˛; k˛1 ; k˛2 �b

˛1
k˛1

˝ b˛2k˛2
: (12.8)

The tensors u˛ 2 X˛ WD R
r˛ ˝ R

r˛1 ˝ R
r˛R are called transfer tensors. Finally, the

given tensor u is determined by u D PrD
kD1 cDk bDk . Usually, rD D 1 holds for the

root ˛ D D since UD WD span.v/ is a possible choice.
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Given a partition tree T, the tensor u is completely defined by the transfer
tensors u˛ (#˛ > 1), the leaf bases ufj g (1 � j � d ) and the coefficient vector
cD 2 R

rD . Indeed u 2 R
I can be reconstructed by applying (12.8) recursively. The

reconstruction of the tensor from its components defines a multilinear mapping

� W XT WD .�˛2TX˛/ � R
rD ! R

I ; u D �..u˛/˛2T; cD/ : (12.9)

Note that the data size of the parametrisation is dimXT D O.r3 C nrd/, where
r WD maxfr˛ W ˛ 2 Tg, and n D maxj dimVj .

The minimal ranks r˛, ˛ 2 TnfDg; are characterised by the matricisation M˛.u/
of the tensor u: For a general subset ˛ 
 D; the entries of M˛ D M˛.u/ are defined
by M˛Œx˛; xDn˛� D uŒx1; : : : ; xd �; where x˛ is the index tuple .xk W k 2 ˛/. Then
r˛ D rank˛.u/ WD dim M˛ holds as in the Tucker case. Similarly, there are minimal
subspaces Umin

˛ .u/, whose bases can be used in (12.8), provided that the relations
(12.8) hold with minimal ranks r˛.

The set of all tensors with fixed ranks r˛ is denoted by

Mr WD fu W r˛ D rank˛.u/ for all ˛ 2 Tg ; where r D .r˛/˛2T:

Similarly, M�r is defined by r˛ � rank˛.u/:
We remark that the bases in (12.8) can be constructed to be orthonormal.

Furthermore, the concept can be easily extended to a set of tensors uk , k D
1; : : : ; K: In the latter case, rD may increase to K .

Given a tensor space
Nd

jD1 Vj , there are various possibilities to build partition
trees TDTI. The involved ranks fr˛ W˛2Tg are a subset of all ranks fr˛ W˛
Dg and
the data size dimXT depends severely on the choice of T. The appropriate tree TI

depends on the individual tensor u. Ballani–Grasedyck [3] have developed helpful
methods improving the partitioning of trees.

12.3.1 Matrix Product Representation

We highlight a particular case, namely tensor trains. This tensor train (TT) format
corresponds to an unbalanced tree with nodes ˛ D f1; : : : ; j g, j D 1; : : : ; d � 1,
and root ˛D D f1; : : : ; d g, where one chooses Ufj g WD Vj and Uf1;:::;jC1g 

Uf1;:::;j g ˝ UfjC1g. Throughout this chapter let us abbreviate ˛ D f1; : : : ; j g
simply by ˛ WD j , without any ambiguity. The TT tensors or tensor trains were
developed independently by the authors in [41, 43]. Later it turned out that this
tensor representation has been known in quantum physics as matrix product states,
see e.g. [49] for a recent survey. The transfer tensors uf1;2;:::;j g DW uj are then of the
form uj 2 R

rj�1�nj�rj . Applying the recursive construction introduced above, the
tensor can be written entrywise by
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uŒx1; : : : ; xd � D
r1X

k1D1
: : :

rd�1X

kd�1D1
u1Œx1; k1�u2Œk1; x2; k2� : : : ud Œkd�1; xd �:

Defining r0 D rd WD 1 and introducing matrices Uj Œxj � 2 R
rj�1�rj by

�
Uj Œxj �

�
kj�1;kj

D uj Œkj�1; xj ; kj �; 1 � j � d ;

we can represent the tensor entries by matrix products

uŒx� D uŒx1; : : : ; xd � D U1Œx1� � � � Uj Œxj � � � � Ud Œxd �:

As usual, orthogonal basis vectors are the preferred choice.

12.3.2 Approximation and Tensor Compression

The HOSVD can also be used for approximating tensors by hierarchical tensors of
lower rank. For a brief presentation, we start from an HT representation of a tensor
u by subspaces U˛ of dimension r˛ D rank˛.u/ and seek for smaller subspaces
OU˛ 
 U˛ of given dimension Or˛ D dim OU˛ < dimU˛ D r˛. For all vertices ˛ with

sons ˛1; ˛2, we have to require OU˛ 
 OU˛1 ˝ OU˛2 .
First we describe the truncation procedure from a theoretical point of view. For

all ˛ 2 T we determine the HOSVD basis b˛ D LSVD M˛.u/ together with the
singular value �˛Œ1� � : : : � �˛Œr˛� > 0: Set U 0̨ WD spanfb˛k W 1 � k � Or˛g.
Define P˛ as the orthogonal projection from V˛ WD N

j2˛ Vj ontoU 0̨ and set P˛ WD
P˛ ˝I˛c W Nd

jD1 Vj ! U 0̨ ˝V˛c ; where ˛c WD Dn˛ is the complement of ˛. Then
the product P WD P˛1P˛2 � � � runs over all ˛ 2 T and is ordered so that a father ˛i
and its son ˛j have indices i > j: Then Ou WD Pu is the desired truncated tensor.

The basis vectors b˛k do not appear in the algorithm, but only the transfer
tensors u˛. We assume that the basis fb˛kgk is orthonormal, otherwise it can be
orthonormalised. Then the transformation from the orthonormal bases into the
HOSVD bases can be performed by O.r4 C nr2d/ operations (cf. [20]). This yields
new transfer tensors which again are denoted by u˛ 2 R

r˛ ˝ R
r˛1 ˝ R

r˛2 (˛1; ˛2
sons). The new quantities Ou˛ 2 R

Or˛ ˝ R
Or˛1 ˝ R

Or˛2 corresponding to Ou D Pu are
obtained by restriction to the smaller size, i.e. Ou˛Œk˛; k˛1 ; k˛2 � WD u˛Œk˛; k˛1 ; k˛2 �
for all 1 � k˛ � Or˛; 1 � k˛1 � Or˛1 ; 1 � k˛2 � Or˛2 . The truncation error is similar
as in (12.7) (cf. [14, 24]).

Theorem 12.1 (quasi-optimality). The approximation Ou leads to the error

inf
v2Mr

kv � uk � kOu � uk �
sX

˛

X

k˛>Or˛
.�˛Œk˛�/2 �

p
2d � 3 inf

v2Mr
kv � uk:

This result implies the quasi-optimality of HOSVD.
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The quantity 2d�3 is related to the number of orthogonal projections. If Or˛ D r˛
for some ˛ 2 T; no projection is needed. Since the later TT format avoids proper
subspaces of Vj , the bound becomes

p
d � 1.

The described truncation is characterised by first computing the HOSVD bases
and then performing the truncation. Another variant starts from the root ˛ D D,
determines the HOSVD basis in ˛ and performs the truncation at ˛, before the same
procedure is repeated at the sons of ˛ (cf. [20]).

Instead of fixing the ranks Or˛; we can prescribe a tolerance " > 0 and choose
Or˛ such that Œ

P
˛

P
k˛>Or˛ .�

˛Œk˛�/
2�1=2 � ": This adaptive procedure allows us to

perform operations with exact error bounds.
The theorem above can be used to characterise classes for which the best rank r

approximation converges with an algebraic rate. Consider the tensor space H d DNd
jD1 L2.Ij / for Ij 
 R. A completion w.r.t. theL2.I/ norm with IDI1 � : : :� Id

yields H d D L2.I/: Let u 2 H d : Because of the infinite-dimensional setting,
M˛.u/ (˛ 2 T) is not a matrix, but a Hilbert–Schmidt operator with an infinite
singular value decomposition. In particular, there is a sequence � ˛ WD .�˛Œk�/k2N
of singular values. Theoretically, the HOSVD truncation of tensors is defined as in
the finite-dimensional case. The only difference is that we replace the rank r˛ D1
by a finite rank Or˛ < 1:

The decay behaviour of � ˛ can be quantified by introducing the Schatten classes
L�;p (0 < p < 2) given by

kM˛.u/k�;p WDk� ˛k`p D
hX

k2N
.�˛Œk�/p

i1=p
and kuk�;p D sup

˛2TnfDg
kM˛.u/k�;p:

For u 2 L�;p we can estimate the error of the HOSVD truncation.

Theorem 12.2 ([47]). Let u 2 L�;p for p < 2. Then u 2 H d can be approximated
by a tensor Ou of multi-linear rank r D .r˛/˛2T with an error bound

ku � Ouk � C
�

minfr˛ W ˛ 2 Tg���
p
d kuk�;p with � D 1

p
� 1

2
:

It has been shown that e.g. mixed Sobolev classes are contained in the Schatten
classes [47]. For a more precise formulation and a discussion concerning the
required degrees of freedom we refer to [47].

The HOSVD truncation ensures an error bound w.r.t. the Euclidean norm or,
more precisely, with respect to the canonical scalar product induced by the scalar
products of the spaces Vj . In the case of Vj D L2.Ij /; this is the L2.I/ norm
on I D I1 � : : : � Id (as, e.g. in Theorem 12.2). The arising L2 estimate makes
sense as long as the truncated tensor Ou is used, e.g., in a scalar product. However,
if we want to evaluate the function Ou at a certain point x 2 I, we need an L1
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estimate of the error ıu WD Ou � u; which, unfortunately, cannot4 be obtained
from the L2 estimate. Nevertheless, ıu behaves well also with respect to stronger
norms, provided that u is smooth. The Sobolev semi-norm j�jm can be defined
by Œ

Pd
jD1 k@mu=@mxj k2

L2.I/�
1=2 involving only uni-directional derivatives. Now the

smoothness of f may be characterised by jf jm � C . Then this smoothness is
inherited by the HOSVD approximation Ou; more precisely, also j Oujm � C is valid.
In particular, jıujm � 2 jujm describes that also the error is smooth. Stronger norms
than L2 can be estimated by interpolation inequalities, the so-called Gagliardo–
Nirenberg inequalities. If m > d=2; the uniform norm for I D R

d or I D Œ0;1/d

is bounded by

kıukL1 � cm jujd=.2m/m jıuj1�d=.2m/
L2

:

For a proof, more details and generalisations we refer to [21].

12.4 Hierarchical Tensors as Differentiable Manifolds

The central aim of this chapter is to remove the redundancy in the parametrisation
of our admissible set Mr (the set of tensors of given rank tuple r).

Redundancy in the parametrisation can cause serious difficulties in optimisation.
In particular, for model reduction in dynamical systems it should be avoided
completely. For example, the matrix product representation in the TT format is not
unique. The same holds for the general hierarchical tensor representation, where
basis transformations change the parameters of the representation, but not the
represented tensor. In the case of a TT tensor, basis transformations are described
by regular matrices Gj in

uŒx� D U1Œx1�G1G�1
1 U2Œx2�G2G�1

2 � � � Gd�1G�1
d�1Ud Œxd � D QU1Œx1� � � � QUd Œxd �

yielding two different representations of the same tensor u by either Uj or QUj .
Let us consider the space of parameters XT (cf. (12.9)) and a single vector

U WD ..u˛/˛2T; cD/ 2 XT from the parametrisation space. We define the action
of G WD .G˛/˛2T on U by GU D OU WD .. Ou˛/˛2T; OcD/, for ˛ 2 T

Ou˛Œk˛; k˛1 ; k˛2 � WD
X

j˛ ;j˛1 ;j˛2

u˛Œj˛; j˛1 ; j˛2 �G˛Œj˛; k˛�G�1
˛1
Œj˛1 ; k˛1 �G

�1
˛2
Œj˛2 ; k˛2 �

where ˛1, ˛2 are the sons of ˛. On the leaves ˛ D fj g we define

4Also in the finite-dimensional case, where all norms are equivalent, the corresponding equivalence
constant is too huge for practical purposes.
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Ou˛Œk˛; x˛� WD
Xr˛

j˛D1 u˛Œj˛; x˛�G˛Œj˛; k˛�:

We set OcDŒkD� WD PrD
jDD1 OcDŒjD�G�1

D ŒjD; kD� at the root ˛ D D with sons ˛1; ˛2.
Note that the set G of all operations G˛ constitutes a group. Having observed that
the tensor u remains fixed under this transformation of the component tensors, we
identify two representations U1 and U2, if there exists G such that U2 D GU1,

U1 � U2 if and only if there exits G 2 G with U2 D GU1 :

Standard differential geometry asserts that the equivalence classes ŒU � WD fU1 �
U g form a smooth embedded submanifold in XT. Moreover, the quotient manifold
XT=G is isomorphic to an embedded submanifold in the parameter space. Since all
representations in the parameter space define the same tensor, XT=G is isomorphic
to an embedded submanifold Mr 
 R

I in the ambient tensor space R
I (cf. [27, 39,

40, 50]).
Having this principle in mind, several authors have considered the differential

geometry of rank-r matrices, e.g. [1,8,33] among many others, and of tensors from
the Tucker set Tr from (12.3) (cf. [33]). It can be extended to hierarchical tensor
representations, following the philosophy explained in the previous chapters. Next,
we present important results about the construction of tangent spaces, because they
are required for computations.

For practical computations we need that the tangent space Tu at u 2 Mr, i.e. the
space of all tangent directions, can be computed by the Leibniz rule.

For example consider the curve u.t/ 2 Mr with u.0/ DW u in the tensor train
format. Then ıu WD d

dt u.0/ is of the form

ıuŒx� D ıU1Œx1�U2Œx2� � � �UdŒxd �C : : : C U1Œx1� � � �Ud�1Œxd�1�ıUd Œxd � 2 Tu :

Due to redundancy, the ıUj , j D 1; : : : ; d , are not uniquely defined. In
particular, the ıUj ; j D 1; : : : ; d � 1, can be defined uniquely by imposing gauge
conditions [27] ıUj ? Uj , j D 1; : : : ; d � 1; in the sense

rj�1X

kj�1D1

njX

xjD1
Uj Œkj�1; xj ; kj �ıUj Œkj�1; xj ; k0

j � D 0 for all kj ; k0
j 2 Ij :

We notice that the root tensor Ud 2 R
rd�1�nd is from the manifold of full rank

(i.e. rank rd�1) matrices, which is an open and dense subset in R
rd�1�nd .

For general hierarchical tensors associated to a tree T, we start with U˛ 
 U˛1 ˝
U˛2 of dimension r˛. Then there exists a complementary space Y˛ with Y˛ ˚ U˛ D
U˛1 ˝ U˛2 . Y˛ is spanned by tensors

y˛j˛ D
X

k˛1

X

k˛2

ıu˛Œj˛; k˛1 ; k˛2 �b
˛1
k˛1

˝ b˛2k˛2
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satisfying y˛k˛ ? U˛. If all bases are chosen to be orthogonal, the ıu˛ must satisfy
the following condition:

X

k˛1

X

k˛2

ıu˛Œj˛; k˛1 ; k˛2 �u
˛Œk˛; k˛1 ; k˛2 � D 0 for all k˛; j˛ : (12.10)

For general hierarchical tensors on a tree T, let us define the subspace

W˛ WD fıu˛ 2 X˛ D R
r˛�r˛1�r˛2 W ıu˛ satisfies (12.10)g ; (12.11)

provided that ˛ 6D D is not a leaf. For ˛ D D we set WD WD XD D R
r˛1�r˛2 , i.e.

there is no gauge condition involved. For a leaf ˛, we need the gauge condition, and
W˛ is defined analogously to (12.11).

Given u 2 Mr with components u˛ (˛ 2 T), U D �
u˛
�
˛2T 2 XT together with

the parametrisation u D �.U /, and w˛ 2 R
r˛�r˛1�r˛2 for some ˛ 2 T, we have

.uˇ/ˇ2T WD Xw˛ .U /, where the operator Xw˛ .U / replaces u˛ by w˛ and leaves the
other components unchanged, i.e.

�
Xw˛ .U /

�
�

D u� for � 2 Tnf˛g. Next we define
the map E˛ extending the component tensor w˛ to the larger ambient space:

E˛ W Rr˛�r˛1�r˛2 ! R
I ; E˛w˛ D �.Xw˛ .U // D �

�
Xw˛

�
.u˛/˛2T

��
:

It turns out that a generic tensor ıu 2 Tu in the tangent space of u 2 Mr is of
the form

ıu D
X

˛2T E˛ ıu˛ ; ıu˛ 2 W˛ :

By the assumptions, the hierarchical rank of u is the tuple r, the operators ET
˛E˛ ,

˛ 2 TnfDg, are invertible, and the bases b˛ , ˛ 6D D, are orthonormal bases. Then,

EC̨ WD �
ET
˛E˛

��1
ET
˛ W RI ! R

r˛�r˛1�r˛2

is a Moore–Penrose inverse of E˛ . For the root ˛ D D, we obtain the identity:
ET
DED D I. (The case that ˛ is a leaf can be formulated by obvious modifications.)

Let ˘W˛ W Rr˛�r˛1�r˛2 ! W˛ be the orthogonal projection onto the component ten-
sors satisfying the gauge condition. For the leaves we need obvious modifications.
With these operators at hand, for v 2 R

I, the operator

PTuv WD
X

˛2TnD
E˛˘W˛EC̨v C EDET

Dv DW
X

˛2T
E˛ ıu˛ 2 Tu (12.12)

defines the orthogonal projection onto the tangent space Tu.
Remark: We have noticed that no gauge condition is imposed on the root

component ıuD , i.e. WD D XD . The gauge conditions (12.10) imply that the
tensors E˛ ıu˛ are pairwise orthogonal. Furthermore, the tensor u D EDuD 2 Tu

itself is also included in the tangent space. Easily, it can be shown that a tangent
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vector ıu has a hierarchical rank s where s˛ � 2r˛. Estimates of the Lipschitz
continuity of u 7! PTu are upper bounds for the curvature at u and are given
in [40]. The operators ET

˛ are not difficult to implement, since they require only
the computation of scalar product of tensors. Furthermore, the inverse .ET

˛E˛/�1
is applied only to the small parameter spaces W˛. This makes the projection onto
the tangent space a flexible and efficient numerical tool, allowing the application of
differential geometrical tools [1], see Sect. 12.5.

Remark 12.1 (closedness). The manifold Mr is an open set. It has been shown in
[12] that the closure of Mr is M�r, the set of all tensors with ranks r 0

i � ri .

This result is based on the observation that the matrix rank is an upper semi-
continuous function [20]. For infinite-dimensional spaces it is important that even
weak closedness holds. The singular points of the manifold Mr are exactly those
where r is not the actual rank. In the considerations above the complementary space
Y˛ ? U˛ plays a crucial role. This concept can be easily extended to Hilbert spaces,
but the arguments do not apply easily to Banach spaces. A deep functional analytic
framework for the differential geometry of hierarchical tensors in Banach spaces
has been developed in [13].

12.5 Numerical Methods

12.5.1 Formats and Representation

Here we describe how we can perform operations within the hierarchical tensor
representation. Let X D Nd

jD1 Xj , Y D Nd
jD1 Yj , and Z D Nd

jD1 Zj be three
tensor spaces. We consider binary operations ˘ W X � Y ! Z with the property

�Od

jD1 x
j

�

˘
�Od

jD1 y
j

�

D
Od

jD1
�
xj ˘ yj � (12.13)

with equally denoted bilinear operations ˘ W Xj � Yj ! Zj for 1 � j � d .
Examples of such operations are the following ones.

1. Hadamard product. Set X D Y D Z: The entry-wise multiplication for x; y 2 R
I

is defined by .x ı y/ Œk1; : : : ; kd � WD xŒk1; : : : ; kd �yŒk1; : : : ; kd �. In the case of
functions, it is the usual pointwise multiplication.

2. Convolution. For Xj D R
nj , Yj D R

mj ; and Yj D R
njCmj�1 the convolution of

two tensors x 2 X and y 2 Y is defined by z D x ? y with

zŒk� WD
X

l
xŒl�yŒk � l�; (12.14)
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where the sum is taken over all multi-indices l 2 Z
d so that 0 � lj � nj � 1;

0 � kj � lj � mj � 1; while k satisfies 0 � kj � nj Cmj � 1. Other variants
use periodicity. Also for function spaces, the convolution is well known.

3. Matrix-vector multiplication. Matrix spaces Xj D R
nj�mj lead to the space X

of Kronecker matrices mapping Y onto Z, where Yj D R
mj , Zj D R

nj .
4. Matrix-matrix multiplication. Set Xj DR

nj�mj , Yj DR
mj�`j , Zj DR

nj�`j :
5. Scalar product. Also the scalar product falls into this category, if we setXj D Yj

and Zj D R (note that
Nd

jD1R can be identified with R), but for these trivial
spaces the algorithm can be implemented more directly.

We require the operations ˘ W Xj � Yj ! Zj to be practically implemented. Let
two tensors x 2 Mr.X/ and y 2 Ms.Y/ be given in the hierarchical format with
the same tree T and with the respective rank tuples r and s: Their representation at
the root ˛ D D is given by x D P

k cDx;kbDx;k and y D P
` cDy;`b

D
y;` (the additional

indices x or y refer to the two parameter tuples of x 2 Mr.X/ and y 2 Ms.Y/). By
linearity, x˘y is determined if all expressions bDx;k˘bDy;` can be determined. For any
˛ 2 T with sons ˛1 and ˛2 (in particular for ˛ D D from above) the characteristic
relation (12.8) shows that

b˛x;k ˘ b˛y;` D
" r˛1X

k˛1D1

r˛2X

k˛2D1
u˛xŒk˛; k˛1 ; k˛2 �b

˛1
x;k˛1

˝ b˛2x;k˛2

#

˘

" r˛1X

`˛1D1

r˛2X

`˛2D1
u˛yŒ`˛; `˛1 ; `˛2 �b

˛1
y;`˛1

˝ b˛2y;`˛2

#

D
X

u˛xŒk˛; k˛1 ; k˛2 �u
˛
yŒ`˛; `˛1 ; `˛2 �

�
b˛1x;k˛1

˘ b˛1y;`˛1

	
˝
�

b˛2x;k˛2
˘ b˛2y;`˛2

	

with summation over k˛1 ; k˛2 ; `˛1 ; `˛2 . Define ˇ˛ as the tuple of all b˛x;k ˘ b˛y;`. The
index set consists of all pairs .k; `/ and has the size r˛z WD r˛x r

˛
y . Note that ˇ˛ is

not explicitly evaluated. Instead, we need transfer tensors with respect to a frame.
Here we choose ˇ˛ as a frame spanning the involved subspace (note that the vectors
b˛x;k˘b˛y;` need not be linearly independent). The previous equation is only needed to
obtain the definition of the transfer tensors with respect to the frames ˇ˛;ˇ˛1 ;ˇ˛2 :

u˛y Œ.k˛; `˛/; .k˛1 ; `˛1/; .k˛2 ; `˛2/� WD u˛xŒk˛; k˛1 ; k˛2 �u
˛
yŒ`˛; `˛1 ; `˛2 �:

By assumption, we are able to evaluate the products ˇ˛ for all leaves ˛ D fj g. In a
next step, the frames are transformed into orthonormal bases. In the case of a proper
frame, this procedure leads to a smaller representation rank r˛z : Second, a HOSVD
truncation can be applied to remove the negligible components.

A similar approach is used to compute the sum u WD v C w of v 2 Mrv and w 2
Mrw : Combining the bases b˛v and b˛w we obtain a frame b˛u of size r˛u D r˛v C r˛w :

Now both v and w can be represented simultaneously. In particular, v D P
k cDv;kbDu;k
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and w D P
k cDw;kbDu;k implies u D P

k.c
D
v;k C cDw;k/b

D
u;k ; i.e. cDu;k WD cDv;k C cDw;k :

As above, an orthonormalisation and truncation can follow. The precise cost of the
various operations is described in [20, §13]. Concerning software realising these
operations we refer to [35, 41].

12.5.2 Iterative Thresholding

For simplicity of exposition, let us consider a numerical scheme which produces a
sequence of tensor un, n 2 N, defined by

unC1 WD un C Fn.un/ 2 R
I :

This sequence may come from an (explicit) time stepping, from an iterative scheme
solving a linear or even nonlinear equation. For example it may be a gradient
or a Newton iteration. Suppose that the tensors are represented by some tensor
format, e.g. un 2 M�rn : As seen above, all operations let the representation rank
increase. Therefore we have to expect unC1 2 M�rnC1

with rnC1 � rn. Hence, the
computation is feasible only if we apply truncation to M�r for some r. In particular,
this makes sense when the limit u D lim un can be well approximated in M�r. The
resulting iteration becomes

ynC1 D un C Fn.un/ 2 R
I; unC1 D HOSVDr.ynC1/ ;

where HOSVDr denotes the HOSVD truncation into M�r. In the case of an iteration
with better than linear convergence, an analysis of the limiting behaviour is proved
in [23]. The singular values obtained by HOSVDr also allow for an adaptive
choice of r.

12.5.3 Riemannian Manifold Techniques

Instead of invoking HOSVDr.ynC1/, the reduction step can be simplified by
projecting Fn.un/ first to the tangent space Tun at un, i.e., ynC1 WD unCPTun

Fn.un/.
The projection is defined in (12.12) and can be computed by standard techniques.
However we need only the computation of the components ıu˛ 2 W˛ , ˛ 2 T.
Afterwards one has to project ynC1 2 un C Tun to the manifold Mr, by using
an appropriate retraction Run .ynC1 � un/,

ynC1 WD un C PTun
Fn.un/ D un C �n 2 un C Tun (12.15)

unC1 WD Run.�n/ D Run.ynC1 � un/ : (12.16)
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The retraction R W .u; �/ 7! Ru.�/ 2 Mr in (12.16) is a (local) mapping from the
tangent bundle T .Mr/ to the manifold Mr, which has to satisfy a rigidity condition
at �n D 0:

Run.�n/ D un C �n C O.k�nk2/ :

A prototypical example for a retractionR is the exponential map. A retraction works
as an approximate exponential map, but might be much simpler to implement. The
concept of retractions has been introduced e.g. in [1] for optimisation on manifolds.
We remark that the performance of the above algorithm depends crucially on the
choice of the Riemannian metric and the retraction. One choice of a retraction is
HOSVD, noting that yn 2 M�2r.

Locally we observe the following error bound for the approximation of vn WD
un C Fn.un/:

kunC1 � vnk � min
wn2M�r

kwn � vnk C O.kunC1 � vnk2/

i.e. the best approximation plus a second order term.

12.5.4 Optimisation Problems

In the treatment of unconstrained optimisation problem one is looking for a
minimiser u of a given cost functional J W R

I ! R [9–11]. We are seeking an
appropriate approximation u" 2 M�r being a low rank hierarchical tensor. For this
purpose we ask for a minimiser of the constrained problem

u" WD argminfJ.v/ W v 2 M�rg: (12.17)

The first-order necessary condition for a minimiser of a cost functional J W RI !
R constrained to the manifold Mr can be formulated by (cf. [2, 25, 40])

hrJ.u/; ıui D 0; for all ıu 2 Tu : (12.18)

Constrained optimisation problems can be considered similarly. Many different
high-dimensional problems can be cast into the present variational framework.
Local optimisation methods for the numerical treatment of these problems can be
applied, in particular gradient or gradient like methods. For these methods one
replaces the gradient by the Riemannian gradient, and arrives at a scheme of the
form (12.15).

As a simple alternative, we mention an alternating directional search approach
(ALS—alternating least squares method or alternating linear scheme) [28]. Given
un D �

Un
˛

�
˛2T, we fix all components, except one Un

˛ 2 X˛ and optimise
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argminV˛2X˛J ı ��Xv˛ .Un/
�
. Afterwards we update the tensor and bring the

resulting tensor into a standard form, e.g. by orthogonalisation. Then we repeat the
procedure optimising the other components. The optimisation has to be performed
only on small subspaces. Let us highlight that the present parametrisation is
linear, in contrast to multi-linear tensor parametrisation. Therefore a quadratic
optimisation problems turns into a quadratic optimisation, and linear equations
in the large ambient space turn into linear equations on small parameter spaces.
This simple numerical technique is easy to implement and works quite efficiently.
First convergence analysis has been developed [45], and further results are work in
progress [48].

Local optimisation techniques can be applied to non-symmetric equations, and
more generally to dynamical time-dependent problem in the framework of Dirac–
Frenkel Variational Principle (see Chap. 19 in this volume). We consider the
dynamical problem

d

dt
u D F.u/; u.0/ D u0 2 Mr: (12.19)

There may be various ways to approximate the trajectory of the initial value
problem (12.19). The best approximation ur.t/ WD argminv2M r

kv.t/� u.t/k is not
feasible, because this requires the knowledge of exact trajectory u.t/. The Dirac–
Frenkel variational principle [39] determines the approximate trajectory on a given
manifold ur.t/ 2 Mr, which minimises

k d

dt
u.t/ � d

dt
ur.t/k ! min; ur.0/ D u.0/:

This leads to the weak formulation

h d
dt ur � F.ur/; ıui D 0; for all ıu 2 Tur : (12.20)

In the case that the manifold is a closed linear space, the equations above are sim-
ply the corresponding Galerkin equations. Let us highlight that for the gradient in the
limiting case d

dt u D 0, one obtains the first order condition (12.18). This approach
applies also to non-variational problems, e.g. non-symmetric equations. The Dirac–
Frenkel principle is well-known in molecular quantum dynamics (MCTDH) [39]
for the Tucker format. For hierarchical tensors it has been formulated by [39, 51].
First convergence results have been established recently in [40]. A simple explicit
Euler scheme time stepping [6, 7, 42] for the numerical treatment of (12.20) results
again in (12.15).

Nevertheless, all local optimisation methods share the difficulty that they do not
necessarily provide a global minimum. Let us remark that, in general, if the exact
solution u WD argminv2RI J.v/ is not in M�r, finding the solution of the constraint
optimisation problem (12.17) is NP hard [26]. However, if u 62 M�r, we do not
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need the exact minimiser of (12.17). We need only an appropriate approximation
Qu 2 M�r. We are aiming that a quasi-optimal solution Qu 2 M�r, i.e.

kQu � uk � c infv2M�r ku � vk :

This is much easier to obtain by local optimisation techniques, in particular, if
combined with some a posteriori error control.

12.6 Tensorisation

In the sequel we will use the unbolded notation v and vŒk� for vectors in V D R
n,

and reserve the boldface notation for higher order tensors u 2 ˝d
iD1Vi . What we

have in mind are mainly function based tensors. Given for example f 2 C0.Œ0; 1�/,
sampling f at a uniform grid yields

vŒk� WD f .2�dk/ ; k D 0; 1; : : : ; 2d � 1 :

Alternatively, we may already consider vŒk� WD hf; �ki, k D 0; 1; : : : ; 2d �1, where
�k.x/ WD 2d=2�.2dx�k/. Here � is a one-periodic function, e.g. a scaling function
from a certain multi-resolution analysis.

Let us consider the vector k 7! f Œk�, k 2 �d WD f0; : : : ; 2d � 1g ! R. If we
represent k in the binary form

k WD �.	/ WD
dX

jD1
2j�1�j ; �j 2 Ij WD f0; 1g ; j D 1; : : : ; d; (12.21)

then the inverse map ��1 W I D �d
jD1Ij ! �d is a bijection. Any d -tuple 	 D

.�1; : : : ; �d /, which is a binary string of length d , defines an integer �.	/ 2 �d D
f0; : : : ; 2d � 1g. The tensor v 2 R

I D Nd
jD1R2 of order d associated to the vector

v is defined by

	 7! vŒ	� WD vŒ�.	/� ; 	 2 I : (12.22)

Therefore any vector v 2 R
2d can be converted isomorphically into a tensor

v 2 R
I D Nd

iD1R2. So far no information is lost and no reduction of data is
achieved. The idea is to apply tensor product approximation in a hierarchical tensor
format. Since the ordering of the binary indices �j 2 f0; 1g resembles a multi-scale
decomposition of �j , the special TT format is relatively canonical. We refer to the
definitions in Sect. 12.3.1.

To understand why this compression can be quite useful, we have to show
that the required multi-linear rank r D .r1; : : : ; rd�1/ is small in many important
cases. Indeed these ranks are the ranks of the corresponding matricisations Mj .v/.
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If a vector v D .vŒ0�; : : : ; vŒn � 1�/ 2 R
n, n D 2d , has the tensorisation

v 2 Nd
jD1R2, its matricisation Mj .v/, 1 � j � d � 1, yields

Mj .v/ D

2

6
6
6
4

vŒ0� vŒm� � � � vŒn �m�

vŒ1� vŒmC 1� � � � vŒn �mC 1�
:::

:::
:::

vŒm � 1� vŒ2m � 1� � � � vŒn � 1�

3

7
7
7
5

with m WD 2j :

For vŒk� WD f .2�dk/, the `-th column (0 � ` � 2j � 1) samples the shifted
functions f`.x/ WD f .x � 2�j `/, 0 � x < 2�j .

If, e.g., f is 2�` periodic, the j -th rank is equal to one. If f is a (piece wise)
polynomial orderp�1, the rank is bounded byp. More generally, if the linear spaces
Sp WD spanfg1; : : : ; gpg are 2�j -translation invariant, i.e. f 2 Sp ) f .� � 2�j / 2
Sp, then the j -rank is bound by p. Typical examples of translation invariant spaces
are spaces consisting of all solutions of homogenous constant coefficient differential
equations

g.p�1/ C ap�2g.p�2/ C : : :C a1g
0 C a0 D 0 :

Therefore the trigonometric polynomials fsin 2�nx; cos 2�nx W 1 � n � p=2g are
of rank at most p C 1; while spanfe��xg is translation invariant for any �, leading
to rank 1. Whenever convergence is estimated by local polynomial approximation,
the present approach works as well [15]. Typically, for piecewise analytic functions,
the singular values of the matricisation are decaying exponentially. For example,
Gaussian functions e�˛x2 can be approximated by small rank, widely independent
of ˛. The tensorisation of vectors is heavily used in first numerical experiments with
high-dimensional PDEs. There is a large collection of papers in this regard, which
cannot be discussed completely in the present short survey. Vector tensorisation in
the above form has been applied to Hartree–Fock computations, density functional
theory and the treatment two-electron integrals by [29–31].

For matrices and higher-order tensors we can proceed by combining our previous
tensor techniques with the binary index representation

vŒ�1 : : : ; �d1 ; 
1; � � � ; 
d2 � :

However, this is not the only way and not always recommended. Another ordering
vŒ�1; 
1 : : : ; �d1 ; 
d2 � may be preferred. This case corresponds to the tiling of the
unit square ˝ D Œ0; 1�2 into congruent squares of length 2�j . This way is even
better suited to the treatment of linear operators (matrices) in R

I. For example, the
identity matrix represented in the first case has maximal rank d , in the second case
it has rank 1. Another well-know transformation, the Hadamard–Walsh transform
has rank 1.
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Another interesting transformation is the Fourier transform. It turns out that
it is not of low rank. However, it can be performed as a product of low rank
transformations, as used in the fast Fourier transform (FFT).

Let us remark that for matrices and high-order tensors there is often a more
promising re-ordering of the binary indices. To find these representations, we
need an algorithm which searches for a best ordering, or more generally for a
best tree in the general hierarchical setting. In [3] an adaptive strategy for this
purpose has been developed. The authors demonstrate on the example f˛.x; y/ D
1=
p
" � .x � �y/2; 0 � x; y � 1, that for an arbitrary direction ˛ the function f˛

can be approximated with almost the same ranks.
The HOSVD provides a useful tool to analyse a given function with respect to

tensorised representation, i.e. approximate the tensorised tensor train representation
by low-rank TT tensors. In [32, 44] it has also shown that one can define comple-
mentary spaces with wavelet-like functions. Usually this part, if not neglected at
all, is sparse in many cases. We do not pursue this direction further right now. The
idea of transforming a vector into a tensor, or a low-order tensor into a high-order
tensor, and combining this with the compression techniques of hierarchical tensors
as described above, has not being completely elaborated so far. There is still much
room left for further research in this direction.

Last but not least we would like to mention that with a different technique of
vector tensorisation, particularly suited for fermions, the approximate solution of
the electronic Schrödinger equation can be cast into a high-order tensor over C2

[37, 38].
The present calculus has many links to the numerical treatment of fermions in

the Fock space and to basic techniques in quantum information theory. Both are
dealing with tensor spaces

Nd
jD1C2. However, we do not consider the probabilistic

interpretation of the tensors in the spirit of quantum mechanics. Moreover, we do not
confine to the special case that the operators under consideration have to be unitary.
Indeed the present approach is completely independent of quantum mechanics. The
common features are space of high-order tensors and problems related to this. On the
other hand, we are restricted to low-rank hierarchical representations due to practical
limitations, since otherwise the complexity makes the computations intractable by
our methods. In quantum mechanics the concept of hierarchical tensors existed for
several decades, although not in this pure form and often covered under some other
issues, like in early renormalisation group theory, such that there may be further
results helpful for our purpose, and both communities can benefit from merging
expertise.

12.6.1 Convolution

Let n D 2d : The convolution of v;w 2 R
n is defined as in (12.14). The result

belongs to R
2n�1, which can be embedded into R

2n. If the convolution is based
on the traditional fast Fourier transform, the required work is O.n logn/. Using
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the tensorisation, the data sizes of the corresponding tensors v;w 2 Nd
jD1R2

(or their approximations) are expected to be much smaller thanO.n/; possibly even
of the magnitudeO.logn/. Then an algorithm for u D v ? w should require a work
corresponding to the data sizes of v and w. We have to define an operation v ? w in
such a way that u D v ?w holds.

The convolution of multivariate functions can be separated (see (12.14)
and (12.13)). This leads to a simple algorithm for all tensor formats. In the case of
tensorisation, the d -dimensionality is more artificial. In fact, for v D Nd

jD1 vj and

w D Nd
jD1 wj with vj ;wj 2 R

2, a statement of the form v ? w D Nd
jD1

�
vj ? wj

�

does not make sense since vj ?wj is an element of R3. However, the embedding of
R
2 into `0 , the vector space of all sequences .ai /1iD0 with finitely many ai ¤ 0; can

be extended to an embedding of
Nd

jD1R2 into
Nd

jD1 `0. The interpretation of the

convolution in
Nd

jD1 `0 together with the TT tensor format leads to an algorithm
for u D v ? w whose cost is only related to the data sizes of v and w (details in
[19]).

The hierarchical tensor representation has been introduced in the first funding
period. During the past 5 years, 50 articles for journals and proceedings have
been finished at the MPI Leipzig and are already published. During the same
time 20 articles for journals and proceedings has been finished by the TU Berlin
group about the present subject and related topics. Among them are eight joint
and already published papers with the MPI group. Further papers are published
by I. Oseledets and other authors from the Russian group. J. Ballani, S. Kühn, V.
Khoromskaia, T. Rohwedder, and A. Uschmajew have finished their doctoral theses
about tensor approximation and spectral problems for high-dimensional PDEs. For
sake of brevity, we do not cite all of them. We have mentioned only a selection of
those which are relevant for the present considerations. Prof. R. Schneider presented
the material in a series of John von Neumann Lectures as John von Neumann
Guest Professor at TU Munich in 2012, and thanks for the kind hospitality of the
Mathematical Institute at TUM.

Prof. W. Hackbusch has published a recent monograph about Numerical Tensor
Calculus [20], and a survey article for Acta Numerica is in print [22]. Our research
is strongly related to the projects of L. Grasedyck and C. Lubich, hence we refer to
their articles in this volume for further information.
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Chapter 13
Nonlinear Eigenproblems in Data Analysis:
Balanced Graph Cuts and the RatioDCA-Prox

Leonardo Jost, Simon Setzer, and Matthias Hein

Abstract It has been recently shown that a large class of balanced graph cuts allows
for an exact relaxation into a nonlinear eigenproblem. We review briefly some of
these results and propose a family of algorithms to compute nonlinear eigenvectors
which encompasses previous work as special cases. We provide a detailed analysis
of the properties and the convergence behavior of these algorithms and then discuss
their application in the area of balanced graph cuts.

13.1 Introduction

Spectral clustering is one of the standard methods for graph-based clustering [12].
It is based on the spectral relaxation of the so called normalized cut, which is one
of the most popular criteria for balanced graph cuts. While the spectral relaxation
is known to be loose [7], tighter relaxations based on the graph p-Laplacian
have been proposed in [4]. Exact relaxations for the Cheeger cut based on the
nonlinear eigenproblem of the graph 1-Laplacian have been proposed in [8, 11].
In [9] the general balanced graph cut problem of an undirected, weighted graph
.V;E/ is considered. Let n D jV j and denote the weight matrix of the graph by
W D .wij/

n
i;jD1, then the general balanced graph cut criterion can be written as

arg min
A�V

cut.A;A/
OS.A/ ;

where A D V n A, cut.A;A/ D P
i2A;j2A wij, and OS W 2V ! RC is a symmetric

and nonnegative balancing function. Exact relaxations of such balanced graph cuts
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and relations to corresponding nonlinear eigenproblems are discussed in [9] and
are briefly reviewed in Sect. 13.2. A further generalization to hypergraphs has been
established in [10].

There exist different approaches to minimize the exact continuous relaxations.
However, in all cases the problem boils down to the minimization of a ratio of a
convex and a difference of convex functions. The two lines of work of [2,3] and [8,9]
have developed different algorithms for this problem, which have been compared in
[2]. We show that both types of algorithms are special cases of our new algorithm
RatioDCA-prox introduced in Sect. 13.3.1. We provide a unified analysis of the
properties and the convergence behavior of RatioDCA-prox. Moreover, in Sect. 13.4
we prove stronger convergence results when the RatioDCA-prox is applied to the
balanced graph cut problem or, more generally, problems where one minimizes
nonnegative ratios of Lovasz extensions of set functions. Further, we discuss the
choice of the relaxation of the balancing function in [9] and show that from a
theoretical perspective the Lovasz extension is optimal which is supported by the
numerical results in Sect. 13.5.

13.2 Exact Relaxation of Balanced Graph Cuts

A key element for the exact continuous relaxation of balanced graph cuts is the
Lovasz extension of a function on the power set 2V to R

V .

Definition 13.1. Let OS W 2V ! R be a set function with OS.;/ D 0. Let f 2 R
V ,

let V be ordered such that f1 � f2 � : : : � fn and define Ci D fj 2 V j j > ig.
Then, the Lovasz extension S W RV ! R of OS is given by

S.f / D
nX

iD1
fi

� OS.Ci�1/ � OS.Ci /
	

D
n�1X

iD1
OS.Ci /.fiC1 � fi /C f1 OS.V /:

Note that for the characteristic function of a set C 
 V , we have S.1C / D OS.C /.
The Lovasz extension is convex if and only if OS is submodular [1] and every Lovasz
extension can be written as a difference of convex functions [9]. Moreover, the
Lovasz extension of a symmetric set function is positively one-homogeneous1 and
preserves non-negativity, that is S.f / � 0; 8f 2 R

V if OS.A/ � 0; 8A 
 V . It it
well known, see e.g. [10], that the Lovasz extension of the submodular cut function,
OR.A/ D cut.A;A/, yields the total variation on a graph,

1A function AWRn ! R is (positively) p-homogeneous ifA.
x/ D 
pA.x/ for all 
 2 R (
 	 0).
In the following we will call functions just homogeneous when referring to positive homogeneity.
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R.f / D 1

2

nX

i;jD1
wijjfi � fj j: (13.1)

Theorem 13.1 shows exact continuous relaxations of balanced graph cuts [9]. A
more general version for the class of constrained fractional set programs is given
in [5].

Theorem 13.1. LetG D .V;E/ be an undirected, weighted graph and S W V ! R

and let OS W 2V ! R be symmetric with OS.;/ D 0, then

min
f 2RV

1
2

Pn
i;jD1 wijjfi � fj j

S.f /
D min

A�V
cut.A;A/

OS.A/ ;

if either one of the following two conditions holds

1. S is one-homogeneous, even, convex and S.f C ˛1/ D S.f / for all f 2 R
V ,

˛ 2 R and OS is defined as OS.A/ WD S.1A/ for all A 
 V .
2. S is the Lovasz extension of the non-negative, symmetric set function OS with

OS.;/ D 0.

Let f 2 R
V and denote by Ct WD fi 2 V j fi > tg, then it holds under both

conditions,

min
t2R

cut.Ct ; Ct /
OS.Ct /

�
1
2

Pn
i;jD1 wijjfi � fj j

S.f /
:

We observe that the exact continuous relaxation corresponds to a minimization prob-
lem of a ratio of non-negative, one-homogeneous functions, where the enumerator
is convex and the denominator can be written as a difference of convex functions.

13.3 Minimization of Ratios of Non-negative Differences
of Convex Functions via the RatioDCA-Prox

We consider in this paper continuous optimization problems of the form

minf 2RV F .f /; where F.f / D R.f /

S.f /
D R1.f /� R2.f /

S1.f /� S2.f /
; (13.2)

where R1;R2; S1; S2 are convex and one-homogeneous and R.f / D R1.f / �
R2.f / and S.f / D S1.f / � S2.f / are non-negative. Thus we are minimizing
a non-negative ratio of d.c. (difference of convex) functions. As discussed above the
exact continuous relaxation of Theorem 13.1 leads exactly to such a problem, where
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R2.f / D 0 and R1.f / D 1
2

Pn
i;jD1 wijjfi � fj j. Different choices of balancing

functions lead to different functions S .
While [2, 3, 8] consider only algorithms for the minimization of ratios of convex

functions, in [9] the RatioDCA has been proposed for the minimization of problems
of type (13.2). The generalized version RatioDCA-prox is a family of algorithms
which contains the work of [2, 3, 8, 9] as special cases and allows us to treat the
minimization problem (13.2) in a unified manner.

13.3.1 The RatioDCA-Prox Algorithm

The RatioDCA-prox algorithm for minimization of (13.2) is given in Algorithm 8.
In each step one has to solve the convex optimization problem

minG.u/�1 ˚ck

f k
.u/; (13.3)

which we denote as the inner problem in the following with

˚ck

f k
.u/ WD R1.u/� ˝

u; r2.f
k/
˛C �k

�
S2.u/� ˝

u; s1.f
k/
˛ 	� ck

˝
u; g.f k/

˛

and ck � 0. As the constraint set we can choose any set containing a neighborhood
of 0, such that the inner problem is bounded from below, i.e. any nonnegative convex
p-homogeneous .p � 1/ functionG. Although a slightly more general formulation
is possible, we choose the constraint set to be compact, i.e. G.f / D 0 ,
f D 0. Moreover, s1.f k/ 2 @S1.f k/, r2.f k/ 2 @R2.f k/, g.f k/ 2 @G.f k/, where
@S1; @R2; @G are the subdifferentials. Note that for any p-homogeneous function
A we have the generalized Euler identity [14, Theorem 2.1] that is hf; a.f /i D
p A.f / for all a.f / 2 @A.f /.

Clearly ˚ck

f k
is also one-homogeneous and with the Euler identity we get

˚ck

f k
.f k/ D �ckpG.f k/ � 0 so we can always find minimizers at the boundary.

Algorithm 8 RatioDCA-prox – Minimization of a ratio of non-negative, one-
homogeneous d.c. functions
1: Initialization: f 0 D random with G.f 0/ D 1, �0 D F.f 0/

2: repeat
3: find s1.f k/ 2 @S1.f

k/, r2.f k/ 2 @R2.f
k/, g.f k/ 2 @G.f k/

4: find f kC1 2 arg min
G.u/�1

˚ck

f k
.u/

5: �kC1 D F.f kC1/

6: until f kC1 2 arg min
G.u/�1

˚ckC1

f kC1 .u/

The difference to the RatioDCA in [9] is the additional proximal term
�ck ˝u; g.f k/

˛
in ˚ck

f k
.u/ and the choice of G. It is interesting to note that this
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term can be derived by applying the RatioDCA to a different d.c. decomposition of
F . Let us write F as

F D R0
1 �R0

2

S 0
1 � S 0

2

D .R1 C cRG/ � .R2 C cRG/

.S1 C cSG/ � .S2 C cSG/
(13.4)

with arbitrary cR; cS � 0. If we now define ck WD cR C �kcS , the function to be
minimized in the inner problem of the RatioDCA reads

˚ 0
f k
.u/ D R0

1.u/� ˝
u; r 0

2.f
k/
˛C �k

�
S 0
2.u/� ˝

u; s0
1.f

k/
˛� D ˚

ck
f k
.u/C ckG.u/;

which is not necessarily one-homogeneous anymore. The following lemma implies
that the minimizers of the inner problem of RatioDCA-prox and of RatioDCA
applied to the d.c.-decomposition (13.4) can be chosen to be the same.

Lemma 13.1. For G.f k/ D 1 we have arg min
G.u/�1

˚ 0
f k
.u/ � arg min

G.u/�1
˚ck

f k
.u/.

Moreover,

1. If p > 1; ck > 0 then arg min
u

˚ 0
f k
.u/ � 
 � arg min

G.u/�1
˚ck

f k
.u/ for some 
 � 1,

2. If f k 2 arg min
G.u/�1

˚ck

f k
.u/ then arg min

u
˚ 0
f k
.u/ � arg min

G.u/�1
˚ck

f k
.u/.

Proof. For fixed � � 0 it follows from the one-homogeneity of ˚ck

f k
that any

minimizer of arg min
G.u/D�

˚ 0
f k
.u/ is a multiple of one f kC1 2 arg min

G.u/�1
˚ck

f k
.u/, so let

us look at 
f kC1 with G.f kC1/ D 1. We get from the homogeneity of ˚ck

f k
and G

for 
 > 0 that

@

@


�
˚ 0
f k
.
f kC1/

� D ˚ck

f k
.f kC1/C ckp
p�1 � ckp.
p�1 � 1/;

which is non-positive for 
 2 .0; 1� and with ˚ 0
f k
.0/ D 0 � ˚ 0

f k
.f k/ D ck.1 � p/

it follows that a minimum is attained at 
 � 1. If p > 1; ck > 0 then the global
optimum of ˚ 0

f k
exists and by the previous arguments is attained at multiples of

f kC1 2 arg min
G.u/�1

˚ck

f k
.u/. If f k 2 arg min

G.u/�1
˚ck

f k
.u/ then also the global optimum

of ˚ 0
f k

exists and the claim follows since 
 D 1 is a minimizer of ˚ 0
f k
.
f k/ D

�
ckp C 
pck . ut
Note thatG.f k/ D 1 is no restriction since we get from the one-homogeneity of

˚ck

f k
that G.f k/ D 1 for all k. The following lemma verifies the intuition that the

strength of the proximal term of RatioDCA-prox controls in some sense how close
successive iterates are.
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Lemma 13.2. Let f kC1
1 2 arg min

G.u/�1
˚ck

f k
.u/; and f kC1

2 2 arg min
G.u/�1

˚dk

f k
.u/.

If ck � dk then
D
f kC1
1 ; g.f k/

E
�
D
f kC1
2 ; g.f k/

E
.

Proof. This follows from

˚dk

f k
.f kC1
2 / � ˚dk

f k
.f kC1
1 / D ˚ck

f k
.f kC1
1 /C .ck � dk/

D
f kC1
1 ; g.f k/

E

� ˚ck

f k
.f kC1
2 /C .ck � dk/

D
f kC1
1 ; g.f k/

E

D ˚dk

f k
.f kC1
2 /C .dk � ck/

D
f kC1
2 ; g.f k/

E

C .ck � dk/
D
f kC1
1 ; g.f k/

E
: ut

Remark 13.1. As all proofs can be split up into the individual steps we may choose
different functions G in every step of the algorithm. Moreover, it will not be
necessary that f kC1 is an exact minimizer of the inner problem, but we will only
use that ˚ck

f k
.f kC1/ < ˚ck

f k
.f k/.

13.3.2 Special Cases

It is easy to see that we get for ck D 0 and G D k � k2 the RatioDCA [9]
as a special case of the RatioDCA-prox. Moreover, Lemma 13.1 shows that the
RatioDCA-prox corresponds to the RatioDCA with a general constraint set for the
d.c. decomposition of the ratio F given in (13.4).

If we apply RatioDCA-prox to the ratio cut problem, where OS.C / D jC jjC j,
then R.u/ D R1.u/ D 1

2

Pn
i;jD1 wijjui � uj j and [3] chose S.u/ D S1.u/ D

ku � mean.u/1k1. The following lemma shows that for a particular choice of G
and ck , RatioDCA-prox and algorithm 1 of [3], which calculates iterates Qf kC1 for
vk 2 @S.f k/ by

hkC1 D arg min
u

8
<

:

1

2

X

i;j

wijjui � uj j C �k

2c
ku � . Qf k C cvk/k22

9
=

;
;

Qf kC1 D hkC1=
�
�hkC1��

2
;

produce the same sequence if given the same initialization.

Lemma 13.3. If f 0 D Qf 0, mean.f 0/ D 0, c > 0 and one uses the same
subgradients in each step then, for the sequence Qf k produced by algorithm 1 of [3]
and f k produced by RatioDCA-prox with ck D �k

2c
and G.u/ D kuk22, we have

Qf k D f k for all k.
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Proof. If f k D Qf k and we choose vk WD s1.f
k/ D s1. Qf k/ D .I� 1

n
11T / sign.f k�

mean.f k//. For RatioDCA-prox we get f kC1 by

f kC1 D arg min
kuk22�1

˚ck

f k
.u/

and for the algorithm 1 of [3]

hkC1 D arg min
u

�

R.u/C �k

2c

�kuk22 � 2 ˝u; f k
˛ � 2

˝
u; cvk

˛�
�

D arg min
u

�

˚ck

f k
.u/C �k

2c
kuk22

�

Finally, Qf kC1 D hkC1=
�
�hkC1��

2
and application of Lemma 13.1 then shows that

Qf kC1 D f kC1. As k:k22 is strictly convex, the minimizers are unique. ut
Analogously, the algorithm presented in [2] is a special case of RatioDCA-prox
applied to the ratio cheeger cut where R.u/ D R1.u/ D 1

2

P
i;j wijjui � uj j and

S.u/ D S1.u/ D P
i jui � median.u/j.

13.3.3 Monotony and Convergence

In this section we show that the sequence F.f k/ produced by RatioDCA-prox is
monotonically decreasing similar to the RatioDCA of [9] and, additionally, we can
show a convergence property, which generalizes the results of [2, 3].

Proposition 13.1. For every nonnegative sequence ck any sequence f k produced
by RatioDCA-prox satisfies F.f kC1/ < F.f k/ for all k � 0 or the sequence
terminates. Moreover, we get that ck

˝
f kC1 � f k; g.f k/

˛ ! 0.

Proof. If the sequence does not terminate then ˚ck

f k
.f kC1/ < ˚ck

f k
.f k/ and it

follows

R.f kC1/ � �kS.f kC1/� ck
˝
f kC1; g.f k/

˛ � ˚ck

f k
.f kC1/

< ˚ck

f k
.f k/ D �ck ˝f k; g.f k/

˛
;

where we used that for any one-homogeneous convex function A we have for all
f; g 2 R

V and all a 2 @A.g/

A.f / � A.g/C hf � g; ai D hf; ai :
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Adding ck
˝
f kC1; g.f k/

˛
gives

R.f kC1/� �kS.f kC1/ < ck
˝
f kC1; g.f k/

˛ � ck ˝f k; g.f k/
˛ � 0 (13.5)

where we used that since G is convex

˝
f kC1; g.f k/

˛ � ˝
f k; g.f k/

˛ � G.f kC1/�G.f k/ D 0:

Dividing (13.5) by S.f kC1/ gives F.f kC1/ < F.f k/. As the sequence F.f k/

is bounded from below and monotonically decreasing and thus converging and
S.f kC1/ is bounded on the constraint set, we get the convergence result from

�kC1S.f kC1/ � �kS.f kC1/ � ck
˝
f kC1 � f k; g.f k/

˛ � 0:

ut
If we choose G.u/ D 1

2
kuk22 we get g.f k/ D f k and if ck is bounded from below

kf kC1 � f kk2 ! 0 as in the case of [2, 3] but we can show, that this convergence
holds for any strictly convex functionG.

Proposition 13.2. If G is strictly convex and ck � � > 0 for all k, then any
sequence f k produced by RatioDCA-prox fulfills kf kC1 � f kk2 ! 0.

Proof. As in the proof of Proposition 13.1, we have
˝
g.f k/; f kC1 � f k

˛ � 0 and
G.f kC1/ D G.f k/ D 1. Suppose f kC1 2 G" WD fujG.u/ D 1; ku � f kk � "g. If˝
g.f k/; f kC1 � f k

˛ D 0, then the first order condition yields for 0 < t < 1

G.f k C t.f kC1 � f k// � G.f k/C ˝
g.f k/; t.f kC1 � f k/

˛ D G.f k/ D 1;

which is a contradiction to the strict convexity of G as for 0 < t < 1,

G.f k C t.f kC1 � f k// < .1 � t/G.f k/C tG.f kC1/ D 1:

Thus with the compactness of G" we get

˝
g.f k/; f kC1 � f k

˛ � maxu2G"
˝
g.f k/; u � f k

˛ DW ı < 0:

However, with ck � � > 0 for all k this contradicts for k large enough the result˝
f kC1 � f k; g.f k/

˛ ! 0 as k ! 1 of Proposition 13.1. Thus under the stated
conditions kf kC1 � f kk2 ! 0 as k ! 1. ut
While the previous result does not establish convergence of the sequence, it
establishes that the set of accumulation points has to be connected.

As we are interested in minimizing the ratio F we want to find vectors f with
S.f / ¤ 0
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Lemma 13.4. If S.f 0/ ¤ 0 then every vector in the sequence f k produced by
RatioDCA-prox fulfills S.f k/ ¤ 0.

Proof. AsR2 and S1 are one-homogeneous andG.f k/ D 1, we have for any vector
h with S.h/ D 0 and G.h/ D 1,

˚ck

f k
.h/ � R1.h/ � R2.h/C �k.S2.h/ � S1.h//� ck

˝
h; g.f k/

˛

� R.h/ � ck ˝f k; g.f k/
˛ � �ck ˝f k; g.f k/

˛ D ˚ck

f k
.f k/

where we have used that
˝
g.f k/; h

˛ � G.h/�G.f k/C˝f k; g.f k/
˛ D ˝

f k; g.f k/
˛
.

Further, if f k is a minimizer then the algorithm terminates. ut

13.3.4 Choice of the Constraint Set and the Proximal Term

While the iterates f k and thus the final result of RatioDCA and RatioDCA-
prox differ in general, the following lemma shows that termination of RatioDCA
implies termination of RatioDCA-prox and under some conditions also the reverse
implication holds true. Thus switching from RatioDCA to RatioDCA-prox at
termination does not allow to get further descent.

Lemma 13.5. Let f k
2 , kf k

2 k2 D 1, f k
1 D f k2

G.f k2 /
1
p

, ck � 0, s1.f k
2 / D

s1.f
k
1 /; r2.f

k
2 / D r2.f

k
1 / as in the algorithm RatioDCA-prox and

˝1 D arg min
G.u/�1

˚ck

f k1
.u/; and ˝2 D arg min

kuk2�1
˚0

f k2
.u/:

Then the following implications hold:

1. If f k
2 2 ˝2 then f k

1 2 ˝1.
2. If f k

1 2 ˝1 and either @G.f k
1 / D fg.f k

1 /g or ck D 0 then f k
2 2 ˝2.

Proof. If f k
2 2 ˝2 then ˚0

f k2
.f k
2 / D 0. As ˚0

f k2
is one-homogeneous, f k

2 is also

a global minimizer and thus for all u 2 R
V with G.u/ � 1, ˚ck

f k1
.u/ D ˚0

f k1
.u/ �

ck
˝
g.f k

1 /; u
˛ � �ck ˝g.f k

1 /; u
˛ � �ckp. As

˝
g.f k

1 /; f
k
1

˛ D p, f k
1 is a minimizer

which proves the first part.
On the other hand if

f k
1 2 arg min

G.u/�1
˚ck

f k1
.u/;
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then by Lemma 13.1 also

f k
1 2 arg min

u

n
˚ck

f k1
.u/C ckG.u/

o
:

f k
1 being a global minimizer implies

0 2 @
�
˚ck

f k1
C ckG

	
.f k
1 / D @˚0

f k1
.f k
1 /� ckg.f k

1 /C ck@G.f k
1 / D @˚0

f k1
.f k
1 /;

where we used that by assumption ck.g.f k
1 / � @G.f k

1 // D 0. Thus f k
1 is also

a minimizer of ˚0

f k1
and the result follows with ˚0

f k1
.f k
1 / D ˚0

f k1

�
f k
2

� D 0 and

˚0

f k1
D ˚0

f k2
. ut

13.3.5 Nonlinear Eigenproblems

The sequence F.f k/ is not only monotonically decreasing but we also show now
that the sequence f k converges to a generalized nonlinear eigenvector as introduced
in [8].

Theorem 13.2. Each cluster point f � of the sequence f k produced by RatioDCA-
prox fulfills for a c� and with �� D R.f �/

S.f �/
2 
0; F.f 0/

�

0 2 @�R1.f �/C c�G.f �/
�� @�R2.f �/C c�G.f �/

�� ���@S1.f �/� @S2.f �/
�
:

If for every f with G.f / D 1 the subdifferential @G.f / is unique or ck D 0 for all
k, then f � is an eigenvector with eigenvalue �� in the sense that it fulfills

0 2 @R1.f �/ � @R2.f �/� ���@S1.f �/� @S2.f
�/
�
: (13.6)

Proof. By Proposition 13.1 the sequence F.f k/ is monotonically decreasing. By
assumption S D S1�S2 andR D R1�R2 are nonnegative and henceF is bounded
below by zero. Thus we have convergence towards a limit

�� D lim
k!1F.f k/ :

Note that f k is contained in a compact set, which implies that there exists a
subsequence f kj converging to some element f �. As the sequence F.f kj / is a
subsequence of a convergent sequence, it has to converge towards the same limit,
hence also

lim
j!1F.f kj / D �� :
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Assume now that for all c it holds minG.u/�1 ˚c
f �.u/ < ˚c

f �.f
�/. Then by

Proposition 13.1, any vector f .c/ 2 arg min
G.u/�1

˚c
f �.u/ satisfies

F.f .c// < �� D F.f �/ ;

which is a contradiction to the fact that the sequence F.f k/ has converged to ��.

Thus there exists c� such that f � 2 arg min
G.u/�1

n
˚c�

f �.u/
o

and by Lemma 13.1 then

f � 2 arg min
u

n
˚c�

f �.u/C c�G.u/
o

and we get

0 2 @R1.f �/� r2.f
�/C �� �@S2.f �/� s1.f

�/
� � c�g.f �/C c�@G.f �/:

If ck D 0 for all k then we only need to look at c� D 0. In this case or if we get
from G.f �/ D 1 that @G.f �/ D fg.f �/g it follows that

0 2 @R1.f �/ � r2.f �/C �� �@S2.f �/ � s1.f �/
�

which then implies that f � is an eigenvector of F with eigenvalue ��. ut
Remark 13.2. Equation (13.6) is a necessary condition for f � being a critical point
of F . If R2; S1 are continuously differentiable at f �, it is also sufficient. The
necessity of (13.6) follows from [6, Proposition 2.3.14]. If R2; S1 are continuously
differentiable at f � then we get from [6, Propositions 2.3.6 and 2.3.14] that
0 2 @F.f �/ and f � is a critical point of F .

13.4 The RatioDCA-Prox for Ratios of Lovasz Extensions:
Application to Balanced Graph Cuts

A large class of combinatorial problems [5, 9] allows for an exact continuous
relaxation which results in a minimization problem of a non-negative ratio of Lovasz
extensions as introduced in Sect. 13.1. In this paper, we restrict ourselves to balanced
graph cuts even though most statements can be immediately generalized to the class
of problems considered in [5].

We first collect some important properties of Lovasz extensions before we prove
stronger results for the RatioDCA-prox when applied to minimize a non-negative
ratio of Lovasz extensions.
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13.4.1 Properties of the Lovasz Extension

The following lemma is a reformulation of [1, Proposition 4.2(c)] for our purposes:

Lemma 13.6. Let OS be a submodular function with OS.;/ D OS.V / D 0. If S is the
Lovasz extension of OS then

h@S.f /; 1Ci i D S.1Ci / D OS.Ci /

for all sets Ci D fj 2 V jfj > fi g.

Proof. Let wlog f be in increasing order f1 � f2 � � � � � fn. With f DPn�1
iD1 1Ci .fiC1 � fi /C 1V � f1 we get

nX

iD1
OS.Ci /.fiC1 � fi / D S.f / D h@S.f /; f i D

n�1X

iD1
h@S.f /; 1Ci i .fiC1 � fi /:

Since OS is submodular S is convex and thus h@S.f /; 1Ci i � S.1Ci / D OS.Ci /, but
because fiC1 � fi � 0 this holds with equality in all cases. ut
More generally this also holds if OS is not submodular:

Lemma 13.7. Let OS be a set function with OS.;/ D OS.V / D 0. If S is the Lovasz
extension of OS then

h@S.f /; 1Ci i D OS.Ci /

for all sets Ci D fj 2 V jfj > fi g.

Proof. OS can be written as the difference of two submodular set functions OS D
OS1 � OS2 and the Lovasz extension S of OS is the difference of the corresponding

Lovasz extensions S1 and S2. We get @S.f / � @S1.f / � @S2.f / [6, Propositions
2.3.1 and 2.3.3] and both S1 and S2 fulfill the conditions of Lemma 13.6. Thus

h@S.f /; 1Ci i � h@S1.f / � @S2.f /; 1Ci i D h@S1.f /; 1Ci i � h@S2.f /; 1Ci i
D S1.1Ci / � S2.1Ci / D S.1Ci /

and the claim follows since @S.f / is nonempty [6, Proposition 2.1.2]. ut
Also Lovasz extensions are maximal in the considered class of functions:

Lemma 13.8. Let OS be a symmetric set function with OS.;/ D 0, SL its Lovasz
extension and S any extension fulfilling the properties of Theorem 13.1, that is S is
one-homogeneous, even, convex and S.f C ˛1/ D S.f / for all f 2 R

V , ˛ 2 R

and OS.A/ WD S.1A/ for all A 
 V . Then SL.f / � S.f / for all f 2 R
V .
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Proof. By Lemma 13.7 and using the convexity and one-homogeneity of S we get

SL.f / D
n�1X

iD1
OS.Ci/.fiC1 � fi / D

n�1X

iD1
S.1Ci /.fiC1 � fi /

�
n�1X

iD1
h@S.f /; 1Ci i .fiC1 � fi / D h@S.f /; f i D S.f /

ut
Remark 13.3. By [9, Lemma 3.1] any function S fulfilling the properties of the
lemma can be rewritten by S.f / D supu2U hu; f i where U 
 R

n is a closed
symmetric convex set and hu; 1i D 0 for all u 2 U . The previous lemma implies
that for a given set function OS.C / the set U is maximal for the Lovasz extension SL.
In turn this implies that the subdifferential of SL is maximal everywhere and thus
should be used in the RatioDCA-prox. In [3, 9] the authors use for the balancing
function OS.C / D jC jjC j instead of the Lovasz extension SL.f / D 1

2

Pn
i;jD1 jfi �

fj j the convex function S.f / D kf � mean.f /1k1 which fulfills the properties of
the previous lemma. In Sect. 13.5 we show that using the Lovasz extension leads
almost always to better balanced graph cuts.

13.4.2 The RatioDCA-Prox for Balanced Graph Cuts

Applied to balanced graph cuts we can show the following “improvement theorem”
generalizing the result of [9] for our algorithm. It implies that we can use the result
of any other graph partitioning method as initialization and in particular, we can
always improve the result of spectral clustering.

Theorem 13.3. Let .A;A/ be a given partition of V and let S W V ! RC
satisfy one of the conditions stated in Theorem 13.1. If one uses as initialization
of RatioDCA-prox f 0 D 1A, then either the algorithm terminates after one step or
it yields an f 1 which after optimal thresholding as in Theorem 13.1 gives a partition
.B;B/ which satisfies

cut.B;B/
OS.B/ <

cut.A;A/
OS.A/ :

Proof. This follows in the same way from Proposition 13.1 as in [9, Theorem 4.2].
ut

In the case that we have Lovasz extensions we can show that accumulation points
are directly related to the optimal sets:

Theorem 13.4. If R2 and S1 are Lovasz-extensions of the corresponding set
functions then every accumulation point f � of RatioDCA-prox with ck D 0 fulfills
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F.f �/ D F.1C�/ where C � is the set we get from optimal thresholding of f �.
If also R1 and S2 are the Lovasz-extensions then f � D Pm

iD1 ˛i1Ci C b1V with
˛i > 0, Ci D fj 2 V j f �

j > f �
i g, b 2 R, and

OR.Ci/
OS.Ci/

D �� D R.f �/
S.f �/

; i D 1; : : : ; m:

If �� is only attained for one set C � then f � D 1C� is the only accumulation point.

Proof. In the proof of Theorem 13.2 it has been shown that from f � no further
descent is possible. Assume F.f �/ > F.1C�/. Then

˚0
f �.1C�/ D R1.1C�/� hr2.f �/; 1C�i C ��.S2.1C�/� hs1.f �/; 1C�i/

D R.1C�/ � ��S.1C�/

< R.1C�/ � F.1C�/S.1C�/ D 0 D ˚0
f �.f

�/

which leads to a contradiction. Thus the first claim follows from Theorem 13.1. If
alsoR1 and S2 are the Lovasz-extensions then for f � D Pn�1

iD1 ˛i1Ci C1V �minj f �
j

we get by Lemma 13.6 and the definition of the Lovasz extension that

0 D ˚0
f �.f

�/ D
nX

iD1
˛i˚

0
f �.1Ci /

and if for one ˛i > 0 we have
OR.Ci /
OS.Ci / > �� then ˚0

f �.1Ci / > 0 and we get

˚0
f �.1C�/ < 0 D ˚0

f �.f
�/ which again is a contradiction. ut

Remark 13.4. By Lemma 13.5 this also holds for ck > 0 if G is differentiable at
the boundary.

If we have Lovasz extensions we can also use the reduced version of the RatioDCA-
prox with ck D 0 to guarantee termination. We are thus in the striking situation that
in general we can guarantee stronger convergence properties if ck � � > 0 for all
k by Proposition 13.2 but an even stronger property such as finite convergence can
only be proven when ck D 0.

Theorem 13.5. Let ck D 0 and S1;R2 be Lovasz extensions in the RatioDCA-
prox. Further, let C �

k be the set obtained by optimal thresholding of f k . If in step 5
of RatioDCA-prox we choose, �k D F.1C�

k
/, and in step 4 choose f kC1 D 1� WD

1
C�
k

G.1
C�
k
/
1
p

if 1� 2 arg min
G.u/�1

˚ck

f k
, then the RatioDCA-prox terminates in finitely many

steps.

Proof. With ck D 0 and using Lemma 13.7 and as R1; S2 are convex and one-
homogeneous, we get
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R.f kC1/� F.1C�
k
/S.f kC1/ � ˚ck

f k
.f kC1/

� ˚ck

f k
.1�/ D R1.1�/� ˝

r2.f
k/; 1�˛C F.1C�

k
/
�
S2.1�/� ˝

s1.f
k/; 1�˛ �

D R.1�/� F.1C�
k
/S.1�/ D 0

and thus F.1C�
kC1
/ � F.f kC1/ � F.1C�

k
/ and equality in the second inequality

only holds if f kC1 D 1�, but then in the next step we either get strict improve-
ment or the sequence terminates. As there are only finitely many different cuts,
RatioDCA-prox has to terminate in finitely many steps. ut

13.5 Experiments

The convex inner problem in Eq. (13.3) is solved using the primal dual hybrid
gradient method (PDHG) as in [9]. In the first iterations the problem is not solved to
high accuracy as all results in this paper only rely on the fact that either the algorithm
terminates or

�c
k

f k
.f kC1/ < �ck

f k
.f k/:

13.5.1 Influence of the Proximal Term

First, we study the influence of different values of ck in the RatioDCA-prox
algorithm. We choose G D k � k22 and choose different values for ck .

We compare the algorithms on the wing graph from [13] (62;032 vertices,
243;088 edges) and a graph built from the two-moons dataset (2;000 vertices,
33;466 edges) as described in [4].

In Table 13.1 we have plotted the resulting ratio cheeger cuts (RCC) of ten
different choices of ck D c � �k for RatioDCA-prox. In all cases we use one
initialization with the second eigenvector of the standard graph Laplacian and 99
initializations with random vectors, which are the same for all algorithms. As one
is interested in the best result and how often this can be achieved, we report the
best, average and top10 performance. For both graphs there is no clear trend that a
particular choice of the proximal term improves or worsens the results compared to
ck D 0 which corresponds to the RatioDCA. This confirms the reported results of
[2] where also no clear difference between ck D 0 and the general case has been
observed.
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Table 13.1 Displayed are the averages of all, the 10 best and the best cuts for different values of
ck D c�k on wing (top) and two-moons (bottom)

Graphnc 0 0.1 0.25 0.5 0.75 1 1.5 2 3 4

Wing

Avg 2.6683 2.6624 2.6765 2.6643 2.6602 2.6595 2.6566 2.6565 2.6548 2.6573

Top 10 avg 2.5554 2.5519 2.5625 2.5533 2.5549 2.5514 2.5523 2.5605 2.5555 2.5523

Best cut 2.545 2.5439 2.5532 2.5487 2.5451 2.5471 2.5448 2.5539 2.5472 2.5472

Two-moons

Avg 2.4872 2.4855 2.5017 2.5158 2.4569 2.4851 2.4848 2.7868 3.028 2.929

Top 10 avg 2.448 2.4485 2.4481 2.4487 2.4484 2.4484 2.4481 2.4492 2.4491 2.4483

Best cut 2.4447 2.4473 2.4472 2.4461 2.4457 2.4476 2.4465 2.4482 2.4478 2.4441

Table 13.2 For each graph it is shown how many times for the 11 initializations the RatioDCA-
prox with the Lovasz extension performs better/equal/worse than the previously used continuous
extension and the ratio of the best solutions of Lovasz vs continuous extension is shown (<100 %
means that the Lovasz extension produced a better ratio cut)

Graph two-moons whitaker3 uk 4elt fe_4elt 3elt crack

Better/equal/worse 11/0/0 11/0/0 0/11/0 10/0/1 0/11/0 10/0/1 10/0/1

Ratio of best cuts (%) 99.41 99.95 100 99.98 100 99.97 99.83

13.5.2 Comparing the Lovasz Extension to Other Extensions

In previous work [3, 9] on the ratio cut with the balancing function OS.C / D jC jjC j
not the Lovasz extension SL.f / D 1

2

Pn
i;jD1 jfi � fj j has been used but the

function S.f / D kf � mean .f /1k1. As discussed in Sect. 13.4, this should lead
to worse performance in the algorithm as the subdifferential of SL is maximal. In
Table 13.2 we compare both extensions with the RatioDCA-prox with ck D 0

and G.u/ D kuk22 on seven different graphs [13]. One initialization is done with
the second eigenvector of the standard graph laplacian and the same 10 random
initializations are used for both extensions.

While the differences in the best found cut are minor, using the Lovasz extension
for the balancing function leads consistently to better results.
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Chapter 14
Adaptive Approximation Algorithms for Sparse
Data Representation

Mijail Guillemard, Dennis Heinen, Armin Iske, Sara Krause-Solberg,
and Gerlind Plonka

Abstract We survey our latest results on the development and analysis of adaptive
approximation algorithms for sparse data representation, where special emphasis
is placed on the Easy Path Wavelet Transform (EPWT), nonlinear dimensionality
reduction (NDR) methods, and their application to signal separation and detection.

14.1 Introduction

During the last few years there has been an increasing interest in efficient (i.e.,
sparse) representation and denoising of high-dimensional signals. We have focussed
our research on the development and analysis of adaptive approximation algorithms
for high-dimensional signals, especially (a) scattered data denoising by wavelet
transforms; (b) nonlinear dimensionality reduction relying on geometrical and
topological concepts. This contribution reviews our recent research results on (a)
and (b).

For (a), we present a general framework for the Easy Path Wavelet Transform
(EPWT) for sparse representation and denoising of scattered data taken from
high-dimensional signals (in Sect. 14.2). As regards (b), we continue our research
on nonlinear dimensionality reduction (NDR) methods (cf. Sect. 14.3), where we
combine recent NDR methods with non-negative matrix factorization (NNMF),
for the purpose of separating sources from a mixture of signals without a prior
knowledge about the mixing process. More details on dimensionality reduction
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and NNMF, along with our recent results on signal separation, are discussed in
Sect. 14.4.

The presented results are based on our papers [7–9, 11, 13, 17–21, 25] and have
been achieved in the project “Adaptive approximation algorithms for sparse data
representation” of the German Research Foundation’s priority program DFG-SPP
1324.

14.2 The Easy Path Wavelet Transform

Let ˝ be a connected domain in R
d and let � be a large finite set of points in

˝ . We let h� WD maxy2˝ minx2� ky � xk2 be the fill distance of � in ˝ and its
grid distance is g� WD minx;x02�;x¤x0 kx � x0k2: We say that the set � is quasi-
uniform, if h� < 2g� . Further, let f W ˝ ! R be a piecewise smooth function that
is sampled at � , i.e., the values f .x/, x 2 � , are given. We are now interested
in an efficient approximation of f using a meshless multiscale approach called
Easy Path Wavelet Transform (EPWT). For applications, we usually assume that
� approximates a smooth manifold in R

d . For example, our approach covers the
efficient approximation of digital images, see [16, 20], where � is chosen to be
a set of regular grid points in a rectangle ˝ , and the approximation of piecewise
smooth functions on the sphere, see [18], where˝ D S

2 and � is a suitably chosen
quasi-uniform point set on the sphere S2.

Similar approaches have also been proposed for generalizing the wavelet trans-
form to data defined on weighted graphs, see [22]. In this section, we extend the
EPWT proposed in [16,18,24] to the case of high-dimensional data approximation.

14.2.1 The General EPWT Algorithm for Sparse
Approximation

Let us shortly recall the notions of a biorthogonal wavelet filter bank of perfect
reconstruction. To this end, let ' be a sufficiently smooth, compactly supported,
one-dimensional scaling function, Q' the corresponding biorthogonal compactly
supported scaling function, and  ; Q the corresponding pair of biorthogonal
compactly supported wavelets, see, e.g., [2, 15]. These functions provide us with
a filter bank of perfect reconstruction with sequences .hn/n2Z, . Qhn/n2Z of low-pass
filter coefficients and .gn/n2Z, . Qgn/n2Z of high-pass filter coefficients.

Assume that the number N D j� j of given points x 2 � 
 R
d is a power

of 2, N D 2J , where J � 1. We denote � J WD � and its elements by xJk D xk ,
k D 1; : : : ; N , i.e., we fix some ordering of the points in � J . Now the EPWT works
as follows. In a first step, we seek a suitable permutation pJ of the indices of the
points in � J by determining a path of length N through all points xJk such that
consecutive data points .xJ

pJ .k/
; f .xJ

pJ .k/
// and .xJ

pJ .kC1/; f .x
J
pJ .kC1/// in the path
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Algorithm 9 Decomposition

Let � D fx1; : : : ; xN g D fxJ1 ; : : : ; xJN g D � J � R
d be a given point set. Let f J

k WD f .xk/,
for k D 1; : : : ; N , where N D 2J . Choose a biorthogonal wavelet filterbank with decomposition
filters Qh; Qg, and reconstruction filters h; g, where

P
k2Z

Qh.k/ D p
2, and a low-pass filter Qhp ,

where
P

k2Z
Qhp.k/ D 1.

Iteration: Perform the following 4 steps for ` D J; J � 1 : : : ; J � LC 1 with L < J :

1. Find a suitable path vector p` 2 N
2` consisting of a permutation of the indices of the points in

� ` that describes a fixed order of points .x`
p`.k/

; f `
p`.k/

/, k D 1; : : : ; 2`.

2. Apply the (periodic) low-pass filter Qh to .f `
p`.k/

/2
`

kD1 followed by downsampling by two to obtain

the low-pass data .f `�1
k /2

`�1

kD1 . Apply the (periodic) high-pass filter Qg to .f `
p`.k/

/2
`

kD1 followed

by downsampling by two to obtain the vector of wavelet coefficients .d`�1
k /2

`�1

kD1 .

3. Apply the low-pass filter Qhp to point vector .x`
p`.k/

/2
`

kD1 (component-wise) followed by

downsampling by two to obtain a new vector of scattered points .x`�1
k /2

`�1

kD1:

Determine the new point set � `�1 WD fx`�1
1 ; : : : ; x`�1

2`�1g.

4. Apply a hard-threshold operator T� to the wavelet vector .d`�1
k /2

`�1

kD1 to find

Qd`�1
k D T�.d

`�1
k / D

�
d`�1
k if jd`�1

k j 	 �;

0 if jd`�1
k j < �;

with a predefined threshold parameter � > 0.

Output: low-pass function values .f J�L
k /2

J�L

kD1 , thresholded high-pass function values . Qd`k /2`kD1 ,

` D J � 1; : : : ; J � L, path vectors p`, ` D J; : : : ; J � LC 1.

strongly “correlate”. In the second step, we apply the one-dimensional wavelet filter
bank to the sequence of functions values .f .xJ

pJ .k/
//NkD1, and simultaneously a low-

pass filter to the points .xJ
pJ .k/

/NkD1, where we consider each of the d components
separately. The significant high-pass coefficients corresponding to the function
values will be stored. The N=2 low-pass data will be processed further at the next
level of the EPWT. Particularly, we denote the set of the N=2 points obtained by
low-pass filtering and downsampling of .xJ

pJ .k/
/NkD1 by � J�1, and relate the low-

pass function coefficients to these points. Again, we start with seeking a permutation
pJ�1 of the indices of the points in � J�1 to obtain an appropriate ordering of the
data and apply the one-dimensional wavelet filter bank to the ordered low-pass
function data. We iterate this procedure and obtain a sparse representation of the
original data by applying a hard thresholding procedure to the high-pass coefficients
of the function value components. The complete procedure is summarized by
Algorithm 9.

By construction many high pass values d`k will vanish. An optimal storage of
the path vectors p` depends on the original distribution of the points xJk and on the
applied filter Qhp . Employing a “lazy” filter, we have x`k WD x`C1

p`C1.2k/
, such that at

each level the new point set is just a subset of that of the preceding level of half
cardinality.
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Algorithm 10 Reconstruction

Reconstruct values f .xk/ D f .xJk / by applying the following iteration, where . Qf J�L
k /2

J�L

kD1 WD
.f J�L
k /2

J�L

kD1 .
Iteration: Perform the following three steps for ` D J � L; J � LC 1; : : : ; J � 1:

1. Apply an upsampling by two and then the low-pass filter h to . Qf `
k /

2`

kD1 .

2. Apply an upsampling by two and then the high-pass filter g to . Qd`k /2`kD1 .

3. Add the results of the previous two steps to obtain . Qf `C1

p`C1.k/
/2
`C1

kD1 ; and invert permutation p`C1.

Output: . Qf J
k /

N
kD1 , the approximated function values at scattered points xk 2 � .

14.2.2 Construction of Path Vectors

The main challenge for the application of the EPWT to sparse data representation
is to construct path vectors through the point sets � `, ` D J; : : : ; J � LC 1. This
step is crucial for the performance of the data compression. The path construction is
based on determining a suitable correlation measure that takes the local distance
of the scattered points x`k into account, on the one hand, and the difference of
the corresponding low-pass values f `

k , on the other hand. In the following, we
present some strategies for path construction and comment on their advantages and
drawbacks.

14.2.2.1 Path Construction with Fixed Local Distances

One suitable strategy for path construction [16, 24] is based on a priori fixed local
"-neighborhoods of the points x`k . In R

d , we consider a neighborhood of the form

N".x
`
k/ D fx 2 � ` n fx`kg W kx`k � xk2 � mMn 2.J�`/=d"g;

where " > 2J=d g� depends on the distribution of the original point set � D � J .
For example, starting with a regular rectangular grid in R

2 with mesh size
g� D 2�J=2 (with J even) in both directions, one may think about a constant " withp
2 � " < 2, such that each inner grid point has eight neighbors.
For path construction at level ` of the EPWT, we choose a first point x` 2 � `

randomly, and put x`
p`.1/

WD x`. Let now P `
j WD fx`

p`.1/
; : : : ; x`

p`.j /
g be the set of

points that have already been taken in the path. Now, we determine the .j C 1/-th
point by

x`
p`.jC1/ WD argmin

x2N".x`
p`.j /

/nP`j
jf .x/ � f .x`

p`.j /
/j; (14.1)
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i.e., we choose the point x in the neighborhood of the point x`
p`.j /

with minimal
absolute difference of the corresponding function values. This measure has been
applied in the rigorous EPWT of [16, 18]. The advantage of fixing the local
neighborhood in spatial domain lies in the reduced storage costs for the path vector
that needs to be kept to ensure a reconstruction. The drawback of this measure is that
the set of “admissible points”N".x`p`.j // nP `

j may be empty. In this case a different
rule for finding the next path entry has to be applied.

A special measure occurs if one tries to mimic the one-dimensional wavelet
transform. In order to exploit the piecewise smoothness of the function f to be
approximated, one should prefer to construct path vectors, where locally three
consecutive points x`

p`.j�1/, x
`
p`.j /

, x`
p`.jC1/ lie (almost) on a straight line. This

consideration leads to the following measure: We fix a threshold � for the function
values. For finding the next point in the path, we compute

N";�.x
`
p`.j /

/ WD fx 2 N".x`p`.j // n P `
j W jf .x/ � f .x`

p`.j /
/j � �g; (14.2)

and then let

x`
p`.jC1/ WD argmin

x2N";�.x`
p`.j /

/

hx`
p`.j�1/ � x`

p`.j /
; x`

p`.j /
� xi

kx`
p`.j�1/ � x`

p`.j /
k2 kx`

p`.j /
� xk2

; (14.3)

where h�; �i denotes the usual scalar product in R
d . Note that in (14.3) the cosine

of the angle between the vectors x`
p`.j�1/ � x`

p`.j /
and x`

p`.j /
� x is minimized if

x`
p`.j�1/; x

`
p`.j /

and x are co-linear. This approach is taken in [16, 24] for images
(called relaxed EPWT), and in [10] for scattered data denoising.

Remark 14.1. The idea to prefer path vectors, where the angles between three
consecutive points in the path is as large as possible, can be theoretically validated
in different ways. Assume that the given wavelet decomposition filter Qg D . Qgk/k2Z
in the filter bank satisfies the moment conditions

P
k2Z Qgk D 0 and

P
k2Z k Qgk D 0.

Then we simply observe that for a constant function f .x/ D c for x 2 � and c 2 R

by

dJn D
X

k2Z
Qgk�2nC1f .xJpJ .k// D c

X

k2Z
Qgk�2nC1 D 0

all wavelet coefficients vanish, while for a linear function of the form
f .x/ D aT x C b with a 2 R

d and b 2 R we have

dJn D
X

k2Z
Qgk�2nC1f .xJpJ .k// D aT

X

k2Z
Qgk�2nC1xJpJ .k/ C b

X

k2Z
Qgk�2nC1:
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Consequently, these coefficients only vanish, if the points in the sequence
.xJ
pJ .k/

/k2Z are co-linear and equidistant, see [10]. A second validation for choosing
the path vector using the criterion (14.3) is given by the so-called path smoothness
condition in [17], see also Subsection 14.2.4, Remark 14.4.

Remark 14.2. Our numerical results in Sect. 14.2.5 show that the relaxed path con-
struction proposed in (14.2)–(14.3) is far superior to the rigorous path construction
(14.1), since it produces fewer “interruptions”, i.e., cases whereN".xp`.j //nP `

j D ;,
and a new path entry needs to be taken that is no longer locally correlated to the
preceding point, which is usually leading to large wavelet coefficients and a higher
effort in path coding (see [16, 24]).

14.2.2.2 Path Construction with Global Distances

We want to present a second path construction using a global weight function.
Considering the vectors y`k D y.x`k/ WD ..x`k/

T ; f `
k /

T 2 R
dC1 at each level, we

define a symmetric weight matrix W ` D .w.y`k; y
`
k0//

2`

k;k0D1, where the weight is
written as

w.y`k; y
`
k0/ D w1.x

`
k; x

`
k0/ � w2.f

`
k ; f

`
k0/:

Now the weights for the scattered points x`k can be chosen differently from the
weights for the (low-pass) function values f `

k . A possible weight function used
already in the context of bilateral filtering [25] is

w.y`k; y
`
k0/ D exp

 
�kx`k � x`k0k22
22.J�`/=d �1

!

� exp

 
�jf `

k � f `
k0 j2

2J�`�2

!

;

where �1 and �2 need to be chosen appropriately. The normalization constant
22.J�`/=d in the weight w1 is due to the reduction of the points x 2 � ` by factor 2, at
each level, so that the distances between the points grow. The normalization constant
2J�` in the weight w2 arises from the usual amplification of the low-pass coefficients
in the wavelet transform with filters Qh satisfying

P
k2Z Qhk D p

2.

Having computed the weight matrix W ` D .w.y`k; y
`
k0//

2`

k;k0D1, we simply

compute the path vector as follows. We choose the first component x`
p`.1/

randomly

from � `. Using again the notation P `
j WD fx`

p`.1/
; : : : ; x`

p`.j /
g for the set of points in

� ` that are already contained in the path vector, we now determine the next point as

x`
p`.jC1/ WD argmax

x2� `nP`j
w.y.x/; y.x`

p`.j /
//;

where uniqueness can be achieved by fixing a rule if the maximum is attained
at more than one point. The advantage of this path construction is that no
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“interruptions” occur. The essential drawback consists in higher storage costs for
path vectors, where we can no longer rely on direct local neighborhood properties
of consecutive points in the path vector. Further, computing the full weight matrix
W ` is very expensive. The costs can be reduced by cutting the spatial weight at a
suitable distance defining

w1.x
`
k; x

`
k0/ D

�
exp.�kx`k � x`k0k22=22.J�`/=d �1/ for kx`k � x`k0k2 � 2�`=dD;
0 for kx`k � x`k0k2 > 2�`=dD;

(14.4)

with D chosen appropriately to ensure a sufficiently large spatial neighborhood.

Remark 14.3. This approach has been used in [10] for random path construction,
where the compactly supported weight function w1.x`k; x

`
k0/ above is employed.

Taking the weight function

w1.x
`
k; x

`
k0/ D

�
1 for kx`k � x`k0k2 � 2�`=dD;
0 for kx`k � x`k0k2 > 2�`=dD;

and w2.f `
k ; f

`
k0/ D exp

�
�jf `k �f `

k0 j2
2J�`�2

�

we obtain a distance measure that is equivalent

to (14.1).

14.2.3 EPWT for Scattered Data Denoising

The EPWT can also be used for denoising of scattered data. Let us again assume
� D fx1; : : : ; xN g are scattered points in R

d and let f W R
d ! R be a smooth

function sampled on � 
 ˝ . For the measured data Qf .xj /, we suppose that

Qf .xj / D f .xj /C zj ;

where zj denotes additive Gaussian noise with zero mean and an unknown variance
�2. For the distribution of the points in ˝ we assume quasi-uniformity as before.

We now apply the EPWT, Algorithms 9 and 10 in Sect. 14.2.1, for data denoising.
Note that in case of noisy function values, the construction of path vectors (being
based on the correlation of function values at points with small spatial distance) is
now influenced by the noise. To improve the denoising performance, we have to
resemble the “cycle spinning” method (see [3]) that works as follows. We apply
the (tensor product) wavelet shrinkage not only to the image itself, but also to the
images that are obtained by up to seven cyclic shifts in x- and y-direction. After
un-shifting, one takes the average of the 64 reconstructed images, thereby greatly
improving the denoising result.
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Employing the EPWT algorithm, we use Algorithms 9 and 10, applying them 64
times using different starting values xpJ .1/ as a first path component each time. For
the path construction, we utilize one of the two methods described in Sect. 14.2.2.
After reconstruction of the 64 data sets, we take the average in order to obtain the
denoising result. Similarly as for wavelet denoising, the threshold parameter � in
Algorithm 9 needs to be selected carefully depending on the noise level.

In [10] we have employed two different path constructions for image denoising.
The first one is very similar to the path construction in Sect. 14.2.2.1. The second
one is based on a weight matrix resembling that in Sect. 14.2.2.2. Here, the next
component in the path vector is chosen randomly according to a probability
distribution based on the weight matrix.

For images, the proposed denoising procedure strongly outperforms the usual
tensor-product wavelet shrinkage with cycle spinning, see [10]. Moreover, the
procedure is not restricted to rectangular grids, but can be used in a much more
general context for denoising of functions on manifolds. Numerical examples of the
EPWT-based denoising scheme are given in Sect. 14.2.5.

14.2.4 Optimal Image Representation by the EPWT

In this subsection we restrict ourselves to the EPWT on digital images on a domain
˝ D Œ0; 1/2. For cartoon models, where the image is piecewise Hölder continuous
or even Hölder smooth, we can prove that the EPWT leads to optimally sparse image
representations, see [17, 19]. To explain this, let F 2 L2.˝/ be a piecewise Hölder
continuous image. More precisely, let f˝ig1�i�K be a finite set of regions forming
a disjoint partition of ˝ whose boundaries are continuous and of finite length. In
each region˝i , F is assumed to be Hölder continuous of order ˛ 2 .0; 1�,

jF.x/ � F.x C h/j � Ckhk˛2 ; x; x C h 2 ˝i; (14.5)

where C > 0 does not depend on i . For given samples f.F.2�J=2n//gn2IJ , the
function F can be approximated by the piecewise constant function

F J .x/ D
X

n2IJ
F .2�J=2n/�Œ0;1/2 .2J=2x � n/; x 2 Œ0; 1/2;

where the index set IJ WD fn D .n1; n2/ 2 N
2 W 0 � n1 � 2J=2 � 1;

0 � n2 � 2J=2 � 1g is of cardinality 2J . In this special case ˛ 2 .0; 1� we
can rely on the orthogonal Haar wavelet filter bank in Algorithms 9 and 10. An
optimal image representation is strongly based on an appropriate path construction.
As shown in [19], we need to satisfy the following two conditions.
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Region condition. At each level ` of the EPWT, we need to choose the path vector,
such that it contains at mostR1K discontinuities which are incurred by crossing over
from one region˝i to another region, or by jumping within one region˝i . HereR1
does not depend on J or `, and K is the number of regions.

Diameter condition. At each level ` of the EPWT, we require

kxp`.k/ � xp`.kC1/k2 � D12
�`=2;

for almost all points x`
p`.k/

, k D 1; : : : ; 2` � 1, where D1 does not depend on J
or `. The number of path components which do not satisfy the diameter condition is
bounded by a constant being independent of ` and J .

The region condition suggests that for path construction, we should first collect
all points that belong to one region ˝i before transferring to the next region. The
diameter condition ensures that the remaining points in � ` are quasi-uniformly
distributed at each level ` of the EPWT. Satisfying these two conditions for the
path vectors, we have shown in [19], Corollary 3.1 that the M -term approximation
FM reconstructed from theM most significant EPWT wavelet coefficients, satisfies
the asymptotically optimal error estimate

kF � FM k22 � QC M�˛ (14.6)

with a constant QC and the Hölder exponent ˛ 2 .0; 1� in (14.5).

Remark 14.4. Observe that at each level of the EPWT the path vector .p`.j //2
j

jD1
determines a planar curve that interpolates f `

p`.j /
at the points x`

p`.j /
, j D 1; : : : ; 2`.

By definition, this curve is only piecewise linear. A generalization of the optimal
M -term approximation result (14.6) for piecewise Hölder smooth images with
Hölder exponent ˛ > 1 has been developed in [17]. In this case, one needs
to generalize the idea of a piecewise linear path vector curve to a smooth path
function that satisfies, besides the region condition and the diameter condition, a
third condition called path smoothness condition, see [17]. More precisely, let us
consider a domain ˝ 
 Œ0; 1�2 with a sufficiently smooth boundary and a disjoint
partition˝i of˝ with smooth boundaries of finite length. Further, instead of (14.5),
we assume that F 2 L2.˝/ is a piecewise smooth bivariate function being Hölder
smooth of order ˛ > 1 in each region ˝i , i D 1; : : : ; K . In order to show the
optimal error estimate (14.6) also for ˛ > 1, we need to employ a path function
that approximates the values f `

p`.j /
at the points x`

p`.j /
being a planar curve that is

not only piecewise smooth but smooth of order ˛ inside a region ˝i with suitably
bounded derivatives, see [17], Section 3.2. Particularly, this condition suggests that
one should avoid “small angles” in the path curve.
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Fig. 14.1 Top row: Reconstruction by tensor-product wavelet compression using the 7–9 biorthog-
onal filter bank with 1,000 wavelet coefficients for test image clock (PSNR 29.93), 700 coeffs
for Lenna (PSNR 24.28), and 200 coeffs for sail (PSNR 19.58). Bottom row: Reconstruction by
EPWT wavelet transform using the 7–9 biorthogonal filter bank with 1,000 wavelet coefficients for
clock (PSNR 33.55), 700 coeffs for Lenna (PSNR 30.46), 200 coeffs for sail (PSNR 27.19)

14.2.5 Numerical Results

We shortly illustrate the performance of the proposed EPWT algorithm for sparse
date representation and data denoising. In Fig. 14.1, we illustrate the application of
the EPWT for sparse image representation, see also [16, 24]. The three considered
images are of size 256 � 256. In Algorithm 9, we have used the 7–9 biorthogonal
filter bank for the function values, and the lazy filter bank for the grid points, i.e.,
at each level of the EPWT, we have kept only every other grid point. The path
construction from Sect. 14.2.2.1 is taken, where in (14.2) the parameters " D p

2

and � D 5 are employed. The threshold parameter � in Algorithm 9 is chosen,
such that 1,000 most significant EPWT wavelet coefficients are kept for the clock
image, 700 coefficients are kept for the Lenna image and 200 coefficients are kept
for the sail image. Figure 14.1 shows the reconstructed images, where we compare
the results of a tensor-product wavelet compression with the 7–9 biorthogonal filter
bank with the results of the EPWT reconstruction, using the same number of wavelet
coefficients for the reconstruction in both cases.

In a second example we study the denoising behavior of the EPWT approach
as described in Sect. 14.2.3. In Fig. 14.2, we present the noisy pepper image with a
PSNR of 19:97 and compare the denoising results of different methods. In particular,
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Fig. 14.2 Top row: Peppers with additive white Gaussian noise with � D 25 (PSNR 19.97)
and reconstruction by the Four-Pixel Scheme [28] (PSNR 28.26), Mid row: Reconstruction by 2d
tensor product wavelet transform using the 7–9 biorthogonal filter bank without (PSNR 24.91)
and with cycle spinning (PSNR 28.11) Bottom row: Reconstruction by our approach described in
Sect. 14.2.3 using a relaxed path construction with fixed local distances in (14.2), (PSNR 29.01)
and a random path construction based on (14.4) (PSNR 27.96)
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Fig. 14.3 Cameraman. Data with additive white Gaussian noise with � D 25 (PSNR 19.98), and
EPWT reconstruction using the approach in Sect. 14.2.3 (PSNR 26.31)

we have used the four-pixel denoising scheme based on anisotropic diffusion by
Welk et al. [28] with 76 iterations and step size 0.001 providing a PSNR of 28.26.
Further, we apply the 7–9 wavelet shrinkage with a PSNR of 24.91 and the 7–9
wavelet shrinkage with cycle spinning using 64 shifts of the image and yielding the
PSNR 28.11. Our EPWT denoising approach employing a relaxed path construction
as described in Sect. 14.2.2.1 achieves a PSNR of 29.01 while a random path
construction based on the ideas in Sect. 14.2.2.2 yields the PSNR 27.96. Note that
the repeated application of the EPWT shrinkage method can be done in a parallel
process. While our proposed EPWT denoising is (due to the path constructions)
more expensive than the tensor-product wavelet shrinkage its application is not
restricted to rectangular regular grids.

The third example shows the EPWT denoising to a triangular domain taking the
approach in Sect. 14.2.3, see Fig. 14.3. We use the 7–9 biorthogonal filter bank for
the function values, the lazy filter bank for the grid points, and the path construction
from Sect. 14.2.2.1 with " D 1:3, � D 89 and threshold � D 89.

14.3 Dimensionality Reduction on High-Dimensional Signal
Data

To explain basic concepts on dimensionality reduction, we regard point cloud data
as a finite family of vectors

X D fxi gmiD1 
 R
n

contained in an n-dimensional Euclidean space. The fundamental assumption is that
X lies in M , a low dimensional (topological) space embedded in R

n. Therefore,
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X 
 M 
 R
n with p WD dim.M / � n. Another ingredient is a parameter

domain˝ for M , where˝ is assumed to be embedded in a low dimensional space
R
d with p � d < n. Moreover, we assume the existence of a homeomorphism

(diffeomorphism)

A W ˝ ! M ;

so that˝ is a homeomorphic (diffeomorphic) copy of M . This concept can then be
used for signal analysis in a low dimensional environment. In practice, we can only
approximate˝ by a projection

P W M ! ˝ 0;

where ˝ 0 is a homeomorphic copy of ˝ . The low dimensional structure represent-
ing X is the reduced data Y D fyi gmiD1 
 ˝ 0 
 R

d , according to the following
diagram.

Principal component analysis (PCA) is a classical linear projection method.
Dimensionality reduction by PCA can be described as an eigenvalue problem,
so that PCA can be applied by using the singular value decomposition (SVD).
More precisely, in PCA we consider centered data X (i.e., X has zero mean)
in matrix form X 2 R

n�m. Now the concept of PCA is to construct a linear
projection P W R

n ! R
n, for rank.P / D p < n, with minimal error

err.P;X/ D Pm
kD1 kxk � P.xk/k, or, equivalently, with maximal variance

var.P;X/ D Pm
kD1 kP.xk/k2. These conditions can in turn be reformulated as

an eigenvalue problem, where the p largest eigenvalues of the covariance matrix
XXT 2 R

n�n are sought, cf. [14].
Another classical linear dimensionally reduction method is multidimensional

scaling (MDS), which is also relying on an eigendecomposition of data X 2 R
n�m.

In contrast to PCA, the MDS method constructs a low dimensional configuration
of X without using an explicit projection map. More precisely, on input matrix
X 2 R

n�m, MDS works with the distance matrix D D .dij/i;jD1;��� ;m, of the points
in X to compute an optimal configuration of points Y D .y1; � � � ; ym/ 2 R

p�m,
with p � n, minimizing the error err.Y;D/ D Pm

i;jD1.dij � kyi � yjk/2. In other
words, the low dimensional configuration of points Y preserves the distances of the
higher dimensional dataset X approximately.

In the construction of nonlinear dimensionality reduction (NDR) methods, we
are especially interested in their interaction with signal processing tools, e.g.,
convolution transforms. When applying signal transforms to the dataset X , one
important task is the analysis of the incurred geometrical deformation. To this end,
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we propose the concept of modulation maps and modulation manifolds for the
construction of particular datasets which are relevant in signal processing and NDR,
especially since we are interested in numerical methods for analyzing geometrical
properties of the modulation manifolds, with a particular focus on their scalar and
mean curvature.

We define a modulation manifold by employing a homeomorphism (or diffeo-
morphism) A W ˝ ! M , for a specific manifold ˝ , as used in signal processing.
The basic objective is to understand how the geometry of ˝ is distorted when we
transform ˝ using a modulation map A . More explicitly, let f�kgdkD1 
 H be a
set of vectors in an Euclidean space H , and fsk W ˝ ! CH .H /gdkD1 a family of
smooth maps from a manifold ˝ to CH .H / (the continuous functions from H
into H ). We say that a manifold M 
 H is a f�kgdkD1-modulated manifold if

M D
(

dX

kD1
sk.˛/�k; ˛ 2 ˝

)

:

In this case, the map A W ˝ ! M , ˛ 7! Pd
kD1 sk.˛/�k , is called modulation map.

To make one prototypical example (cf. [7]), we regard a map of the form

A .˛/.ti / D
dX

kD1
�k.˛kti /; ˛ D .˛1; : : : ; ˛d / 2 ˝; ftigniD1 
 Œ0; 1�;

for a set of band-limited functions f�kgdkD1 in combination with a finite set of
uniform samples fti gniD1 
 Œ0; 1�.

Now we use the same notation for the band-limited functions �k and the
above mentioned vector of sampling values f�k.ti /gniD1, as this is justified by the
Whittaker-Shannon interpolation formula as follows.

As the support of the band-limited functions �k is located in Œ0; 1�, the Whittaker-
Shannon interpolation formula allows us to reconstruct each �k exactly from the
finite samples .�k.ti //niD1 2 R

n. This in turn gives a one-to-one relation between
the band-limited functions �k W Œ0; 1� ! R and the vectors .�k.ti //niD1 2 R

n. Note
that the maps sk.˛/ are in our example given by sk.˛/�k.ti / D �k.˛kti /. In other
words, we use the (continuous) map sk.˛/, f .t/ 7! f .˛kt/, as the scaling by factor
˛k , being the k-th coordinate of vector ˛ 2 ˝ 
 R

d .
To explain our analysis of the geometric distortions incurred by A , we restrict

ourselves to the case d D 3 and ˝ 
 R
3 with dim.˝/ D 2. We compute the scalar

curvature of M from the parametrization of ˝ and the modulation map A by the
following algorithm [7].
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Algorithm 11
On input parametrization ˛ D .˛j .�1; �2//

d
jD1 of ˝ and band-limited functions f�j gdjD1 that are

generating the map A , perform the following steps.

(1) Compute the Jacobian matrices J˛ ;

(2) Compute the metric tensor gij D
nP

`D1

t 2`

dP

r;qD1

�
d�r
dt
.˛r t`/

d�q

dt
.˛q t`/

@˛r
@�i

@˛q

@�j

	
I

(3) Compute the Christoffel symbols � k
ij D 1

2

pP

`D1

�
@gj`

@xi
C @gi`

@xj
� @gij

@x`

	
g`kI

(4) Compute the tensors R`ijk D
pP

hD1

.� h
jk�

`
ih � � h

ik�
`

jh/C @� `jk

@xi
� @� `ik

@xj
I

(5) Compute the scalar curvature S D
pP

i;jD1

gijRij, where Rij D
pP

k;`D1

gk`Rkkij.

Output: The scalar curvature S of M D A .˝/.

Fig. 14.4 (a) A sphere ˝ whose colors represent the scalar curvature of M D A .˝/, (b) PCA
projection of M D A .˝/ with Gaussian curvature represented by colors

For further details concerning the construction of Algorithm 11, we refer to [7].

14.4 Audio Signal Separation and Signal Detection

In many relevant applications of signal processing there is an increasing demand
for effective methods to estimate the components from a mixture of acoustic
signals. In recent years, different decomposition techniques were developed to
do so, including independent subspace analysis (ISA), based on independent
component analysis (ICA), see [1, 5, 26], and non-negative matrix factorization
(NNMF), see [6,23,27]. The computational complexity of these methods, however,
may be very large, in particular for real-time computations on audio signals. In
signal separation, dimensionality reduction methods are used to first reduce the
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Fig. 14.5 Signal separation
with dimensionality reduction

spectrograms
of f1 and f2

ICA, NNMF

signal f

X

Y

decomposed data

signals f1, f2

STFT

U
UT

inverse STFT

dimension of the data obtained from a time-frequency transform, e.g., short time
Fourier transform (STFT), before the reduced data is decomposed into different
components, each assigned to one of the source signals. For the application
of dimensionality reduction in combination with NNMF, however, non-negative
dimensionality reduction methods are essentially required to guarantee non-negative
output data from non-negative input data (e.g., a non-negative spectrogram from the
STFT). For the special case of PCA, a suitable rotation map is constructed in [12]
for the purpose of back-projecting the reduced data to the positive orthant of the
Cartesian coordinate system, where the sought rotation is given by the solution of a
constraint optimization problem in a linear subspace of orthogonal matrices.

In this section, we evaluate different decomposition methods for signal separation
in combination with the non-negative PCA projection from [12]. The basic steps of
our method are illustrated in Fig. 14.5.

To explain how we use PCA, let U 2 R
D�d be an orthogonal projection,

satisfying Y D UTX , being obtained by the solution of the minimization problem

min
QUT QUDI

nX

kD1

�
�xk � QU QUT xk

�
�
2
: (14.7)

The solution of (14.7) is given by the maximizer of the variance var.Y / of Y ,
as given by the trace of Y Y T . This observation allows us to reformulate the
minimization problem in (14.7) as an equivalent maximization problem,

max
QUT QUDI

tr. QUTXXT QU /; (14.8)
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where the maximizerU of var.Y / is given by a matrix U whose d columns contain
the eigenvectors of the d largest eigenvalues of the covariance matrix XXT .

For further processing the data in a subsequent decomposition by NNMF, the data
matrix Y is essentially required to be non-negative. Note, however, that even if the
data matrix X (obtained e.g., by STFT) may be non-negative, this is not necessarily
the case for the components of the reduced data matrix Y . Therefore, we reformulate
the maximization problem in (14.8) by adding a non-negativity constraint:

max
QUT QUDI
QUT X	0

tr. QUTXXT QU /: (14.9)

Note that this additional restriction transforms the simple PCA problem (14.8)
into a much more difficult non-convex optimization problem (14.9) with many local
solutions, for which (in general) none of the solutions is known analytically.

We tackle this fundamental problem as follows. We make use of the fact that the
input data set X is non-negative, before it is projected onto a linear subspace, with
the perception that there exists a rotation of the low-dimensional data set Y into the
non-negative orthant. Indeed, as proven in [12], such a rotation map exists, which
motivates us to split the non-negative PCA (NNPCA) problem (14.9) into a PCA
part and a rotation part. This, in turn, gives rise to seek for a general construction of
a rotation matrix W satisfyingW UTX � 0.

To further explain our splitting approach, recall that we already know the solution
U of the PCA part. Since the rotation matrix W is orthogonal, it does not affect the
value of the NNPCA cost functional. Now, in order to determine the rotation matrix
W , we consider solving an auxiliary optimization problem on the set of orthogonal
matrices SO.d/, i.e., we minimize the cost functional

J. QW / D 1

2

X

i;j


� QWUTX
�

�
�2

ij
where ŒZ��ij D

�
zij if zij < 0;

0 otherwise,
(14.10)

as this was proposed in [21] in the context of ICA. However, we cannot solve
this optimization problem directly by an additive update algorithm, since the set
of rotation matrices SO.d/ is not invariant under additions. But an elegant way to
minimize the cost functional J in (14.10) uses the Lie-group structure of SO.d/
to transfer the problem into an optimization problem on the Lie-algebra of skew-
symmetric matrices so.d/. Due to the vector space property of so.d/, standard
methods can be applied to find the minimum (see [9, 11, 21] for details).

14.4.1 Decomposition Techniques

There are different methods for the decomposition of the (reduced) spectrogram Y .
Among them, independent component analysis (ICA) and non-negative matrix
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factorization (NNMF) are commonly used. In either case, for the application of ICA
or NNMF, we assume the input data Y to be a linear mixture of source terms si , i.e.,

Y D AS; (14.11)

where A 2 R
d�r and S 2 R

r�n are unknown. For the estimation of A and S we
need specific additional assumptions to balance the disproportion of equations and
unknowns in the factorization problem (14.11).

14.4.1.1 Independent Component Analysis (ICA)

The basic assumption of ICA is that the source signals are statistically independent.
Furthermore, the data matrix Y is assumed to result from n realizations of a
d -dimensional random vector. In order to estimate S , a random variable S is
constructed, whose n realizations yield the columns of the source matrix S . The
components of S are chosen to be as stochastically independent as possible, where
the stochastical independence can be measured by the Kullback-Leibler distance [4].

In practice, the number of sources is usually unknown. Therefore, we may
detect more independent components than the true number of sources. In this case,
two or more of the separated components belong to the same source. Thus, the
sources are combinations of the independent components. In a subsequent step, the
sources are grouped into independent subspaces, each corresponding to one source.
Finally, the sources are reconstructed from these multi-component subspaces [1].
This procedure is called independent subspace analysis (ISA). The main difficulty
of ISA is to identify components belonging to the same multi-component subspace.

14.4.1.2 Non-negative Matrix Factorization (NNMF)

The factorization of the given data Y into a mixing matrix A and the source signals
(source components) S , i.e., Y D AS, could be done by matrix factorization.
The data we use for signal separation are obtained by taking the modulus of the
signal’s STFT, and so the input data is non-negative. Since the source components
are assumed to be spectrograms, too, we assume them to be non-negative as
well. Therefore, non-negative matrix factorizations (NNMF) are suitable tools for
decomposition.

There are different NNMF algorithms available, all of which are relying on
the non-negativity Y;A; S � 0, where different measures d.Y;AS/ for the recon-
struction error were proposed [6, 23, 27]. We consider using the generalized
Kullback-Leibler distance (proposed in [13] and used for decomposing signal data
in [27]):

d.Y;AS/ D
X

i;j

Yij log
Yij

.AS/ij
� Yij C .AS/ij:
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Fig. 14.6 Two acoustic signals: castanets f1 (top left), cymbal f2 (top right), and corresponding
spectrograms (second row). Signal f D f1 C f2 and spectrogram (third row)

14.4.2 Numerical Results

We present one numerical example comparing the decomposition strategies ICA and
NNMF. We consider a mixture f D f1 C f2 of acoustic transient signals, where f1
is a sequence of castanets and f2 a cymbal signal, shown in Fig. 14.6, where also
the combination f D f1 C f2 of the two signals is displayed. The spectrograms in
these figures are generated with an STFT using a Hamm-window. Since f2 is a high-
energy signal, f has a complex frequency characteristic. Therefore, the extraction
of the castanets signal f1, being active only at a few time steps, is a challenging task.

The obtained separations, resulting from the two different decomposition meth-
ods using NNPCA and PCA, respectively, are displayed in Fig. 14.7. Note that both
methods, NNMF and ICA, achieve to reproduce the characteristic peaks of the
castanets quite well. However, in the case of NNMF strong artifacts of the castanets
are visible in the cymbal signal, whereas the separation by ICA is almost perfect.
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Fig. 14.7 Signal separation by NNPCA & NNMF (left column); PCA & ICA (right column)

000 001 002
003

004

005

006

007

009

00
8

000 001 002
003

004

005

006

007

009

00
8

010

00
9

000 001 002 003

004

005

006

007

008

010

00
9

000 001 002 003

004

005

006

007

008

Fig. 14.8 Reconstruction of f as sum of the decomposed fi by using NNPCA & NNMF (left
column) and by using PCA & ICA (right column)

Likewise, for the reconstruction of the reduced signal, the combination of
PCA and ICA provides an almost complete reproduction of the original signal f
(see Fig. 14.8). Merely at time steps where a high amplitude of the cymbal exactly
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matches the peaks of the castanets, a correct separation is not quite achieved. As for
the NNMF, the spectrogram in Fig. 14.8 shows that information is being lost.

We finally remark that for signal separation without dimensionality reduction,
NNMF is competitive to ICA (see e.g. [27]). This indicates that our use of
NNPCA in combination with NNMF could be improved. Further improvements
could be achieved by the use of more sophisticated (nonlinear) dimensionality
reduction methods. On the other hand, this would lead to a much more complicated
construction of the inverse transform, as required for the back-projection of the data.
We defer these points to future research. Nevertheless, although PCA is only a linear
projection method, our numerical results of this section, especially those obtained
by the combination of PCA and ICA, are already quite promising.
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Chapter 15
Error Bound for Hybrid Models of Two-Scaled
Stochastic Reaction Systems

Tobias Jahnke and Vikram Sunkara

Abstract Biochemical reaction systems are often modeled by a Markov jump
process in order to account for the discreteness of the populations and the stochastic
nature of their evolution. The associated time-dependent probability distribution is
the solution of the Chemical Master Equation (CME), but solving the CME numer-
ically is a considerable challenge due to the high dimension of the state space. In
many applications, however, species with rather small population numbers interact
with abundant species, and only the former group exhibits stochastic behavior. This
has motivated the derivation of hybrid models where a low-dimensional CME is
coupled to a set of ordinary differential equations representing the abundant species.
Using such a hybrid model decreases the number of unknowns significantly but –
in addition to the numerical error – causes a modeling error. We investigate the
accuracy of the MRCE (= model reduction based on conditional expectations)
approach with respect to a particular scaling of the reaction system and prove that
the error is proportional to the scaling parameter.

15.1 Introduction

Biological systems such as gene-regulatory networks and cell metabolic processes
consist of multiple species which are undergoing transformations via a set of
reaction channels. If all populations are sufficiently large, then the evolution of the
concentrations over time can be modeled by the classical reaction-rate equation,
i.e. a system of ordinary differential equations; cf. [23]. In many applications,
however, some of the species occur in low amounts, and it was observed that small
stochastic fluctuations in their populations can cascade large effects to the other
species. Important examples are gene-regulatory networks where the evolution of
the entire system depends crucially on the stochastic behavior of a rather small
number of transcription factors. In order to capture these effects, such systems must
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be described by a Markov jump processes, which respects the inherent discrete
nature of the system and its stochastic interactions.

The associated time-dependent probability distribution is the solution of the
Chemical Master Equation (CME), but solving the CME is a considerable challenge,
as the size of the state space scales exponentially in the number of species (curse
of dimensionality). For this reason, Monte Carlo approaches based on the stochastic
simulation algorithm from [6] or related methods are often used. In an alternative
line of research, numerical techniques have been applied to the CME in order
to reduce the number of degrees of freedom, e.g. optimal state space truncation
[1,26,27], spectral approximation [4], adaptive wavelet compression [16,20], sparse
grids [11], or tensor product approximation [2, 10, 18, 21, 22] among others. But in
spite of the progress achieved with these approaches, many biological systems are
still out of reach of direct numerical approximation.

The size of the problem can be significantly reduced if only species with
low populations are described by a probability distribution, whereas the abundant
species are represented by (conditional) moments. This approach is motivated by
the famous result in [23] which states, roughly speaking, that stochastic fluctuations
in large populations are insignificant. In the last years, this has inspired the
development of hybrid models where a low-dimensional CME is coupled to ordinary
differential equations similar to the classical reaction-rate equation; cf. [5, 9, 11–
13, 17, 25, 28].

In this article, we analyze the accuracy of a hybrid model called MRCE (model
reduction based on conditional expectations). This approach has been proposed in
[9,17,25], and it was demonstrated numerically that MRCE captures the critical bi-
modal solution profiles which appear in certain applications. In [9,17,28], numerical
techniques for MRCE were introduced, and an error bound for the modeling error
was proven in [28]. In the present article, we make the additional assumption that
the reaction system involves two scales, i.e. that the ratio between the small and
large populations is proportional to a scaling parameter 0 < " � 1. For such two-
scaled systems, we prove that the modeling error of the MRCE approximation is
proportional to ". The proof blends ideas and techniques from [19] and [28].

15.2 The Chemical Master Equation of Two-scale
Reaction Systems

We consider a partitioned reaction system with two groups of species denoted by
S1; : : : ;Sd and SdC1; : : : ;SdCD , respectively, with d;D 2 N. Let X.t/ 2 N

d
0 be

the vector whose entries X1.t/; : : : Xd.t/ indicate how many copies of each of the
species S1; : : : ;Sd exist at time t 2 Œ0; tend�, and let Y.t/ D .Y1.t/; : : : ; YD.t//

contain the copy numbers of SdC1; : : : ;SdCD . The species interact via r 2 N

reaction channels, R1; : : : ;Rr , each of which is represented by a scheme
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Rj W
dX

kD1
ajkSk C

DX

kD1
bjkSdCk

cj�!
dX

kD1
OajkSk C

DX

kD1
ObjkSdCk; (15.1)

with ajk; Oajk; bjk; Objk 2 N0 and cj > 0. If the j -th reaction channel fires, then the
population numbers jump from the current state .X.t/; Y.t// D .n;m/ 2 N

d
0 � N

D
0

to the new state .n;m/ C .
j ; �j /, where .
j ; �j / 2 Z
dCD is the stoichiometric

vector associated to Rj , i.e.


j D
�

Oaj1 � aj1; : : : ; Oajd � ajd

	T 2 Z
d

�j D
� Obj1 � bj1; : : : ; Objd � bjd

	T 2 Z
D:

In stochastic reaction kinetics, the function t 7! .X.t/; Y.t// is a realization of
a Markov jump process; cf. [6, 14]. According to [6] the transition rates of this
process depend on the propensity functions of the reaction channels. We assume
that the propensity function of Rj has the form ˛j .n/ˇj .m/ with

˛j .n/ D cj

dY

kD1

 
nk

ajk

!

; ˇj .m/ D "�.j /�1"jbj j
DY

kD1

 
mk

bjk

!

; (15.2)

where jbj j D Pd
iD1 bji, and where 0 < " � 1 is a scaling parameter discussed

below. The value of � depends on whether or not the population numbers of the first
group of species change when Rj fires. To be more precise, we partition the index
set f1; : : : ; rg into

J0 D ˚
j 2 f1; : : : ; rg W 
j D .0; : : : ; 0/T

�
; J1 D f1; : : : ; rg n J0

and let � be the indicator function

�.j / D
�
0 if j 2 J0;
1 if j 2 J1: (15.3)

The reason for this particular scaling is the following: if .X.t/; Y.t// D .n;m/ 2
N
d
0 �N

D
0 with n 2 O.1/ andm 2 O �"�1�, then ˛j .n/ˇj .m/ D O.cj "

�.j /�1/ for all
j D 1; : : : ; r . Hence, the population numbers of SdC1; : : : ;SdCD may change with
a rate of O

�
"�1�, whereas the populations of S1; : : : ;Sd only change with a rate of

O.1/, provided that cj D O.1/ for all j . For initial data X.0/ D O.1/ and Y.0/ D
O
�
"�1�, one can thus expect that E.X.t// D O.1/ and E.Y.t// D O

�
"�1� on

bounded time intervals. Hence, " is roughly speaking the ratio between the small and
the large population numbers of the two groups S1; : : : ;Sd and SdC1; : : : ;SdCD ,
respectively. This scaling was extensively motivated and illustrated in [19], and
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a very similar scaling was considered in [25]. For d D 0 and ˛j .n/ D cj , our
scaling coincides with the thermodynamic limit which has been analyzed in [23].
For " D 1, there is no qualitative difference between the two groups of species, such
that our setting corresponds to the situation in [6] where no partition nor scaling is
considered.

Let p.t; n;m/ be the probability that at time t � 0 the process is in state .n;m/ 2
N
d
0 �N

D
0 , i.e. the probability that there are nk copies of Sk for k D 1; : : : ; d , andml

copies of SdCl for l D 1; : : : ;D. It is well-known (see [6, 7]) that the probability
distribution p evolves according to the Chemical Master Equation (CME)

@tp.t; n;m/ D
rX

jD1

�
˛j .n � 
j /ˇj .m � �j /p.t; n � 
j ;m � �j / (15.4)

� ˛j .n/ˇj .m/p.t; n;m/
	

8.n;m/ 2 N
d
0 � N

D
0

p.0; n;m/ D p0.n;m/ (15.5)

with the convention that p.t; n� 
j ;m��j / D 0 if n� 
j 62 N
d
0 orm��j 62 N

D
0 .

For the sake of a more compact notation we define the shift operators S1j and S2j by

S1j u.n;m/ D
�

u.n � 
j ;m/ if n � 
j 2 N
d
0

0 else

S2j u.n;m/ D
�

u.n;m � �j / if m � �j 2 N
D
0

0 else

for u W Nd0 � N
D
0 �! R. The two shift operators commute, i.e.

S1j S
2
j u.n;m/DS2j S

1
j u.n;m/ D

�
u.n�
j ;m��j / if n� 
j 2 N

d
0 ;m��j 2 N

D
0

0 else.

Products of functions are to be understood entry-wise, and applying a shift operator
to a product u.n;m/v.n;m/ is to be understood in the sense that

�
S1j uv

	
.n;m/ D

�
S1j .uv/

	
.n;m/ D u.n�
j ;m/v.n�
j ;m/ D

�
S1j u

	 �
S1j v

	
.n;m/:

With these operators, the CME (15.4) can be reformulated as

@tp D
rX

jD1
.S1j S

2
j � I / �˛j ˇjp

�
: (15.6)

The chemical master equation (15.6) is considered on the space
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`1 D
n
u W Nd0 � N

D
0 �! R W

X

n2Nd0

X

m2ND0
ju.n;m/j < 1

o
:

of absolutely summable functions on N
d
0�N

D
0 . This is a straightforward extension of

the standard `1-space. For vector-valued functions u D .u1; : : : ; uN / W Nd0 �N
D
0 �!

R
N with some N > 1, u 2 `1 means that uj 2 `1 for all j D 1; : : : ; N . The space

`1 is endowed with the norm

kuk`1 D
X

n2Nd0

X

m2ND0
ju.n;m/j

where j � j D j � j1 is the 1-norm on R
N . We set X 0 D `1 and define the spaces X i

via the recursion

X iC1 D
n
u 2 X i j .n;m/ 7! mku.n;m/ 2 X i for all k 2 f1; : : : ;Dg

o
:

If p.t; �; �/ 2 `1 is the solution of the CME (15.6), then p1.t; n/ D P
m p.t; n;m/ is

the marginal distribution of p.t; �; �/, and if p1.t; n/ 6D 0, then

p2.t;m j n/ D p.t; n;m/

p1.t; n/
(15.7)

is the conditional probability that at time t there are mj particles of Sj given there
are ni particles of Si .i 2 f1; : : : ; d g; j 2 fd C 1; : : : ; d CDg/. If p.t; �; �/ 2 X 2,
then the conditional central moments

�.t; n/ D
X

m2ND0
mp2.t; m j n/ (15.8)

C�.t; n/ D
X

m2ND0

�
m � �.t; n/

��
m � �.t; n/�T p2.t;m j n/

exist provided that p1.t; n/ 6D 0.

15.3 Model Reduction Based on Conditional Expectations

Solving the CME (15.4) or (15.6) numerically is a considerable challenge. First, the
infinite state space Nd0 �N

D
0 has to be truncated; this causes an error which has been

analyzed in [26]. The truncated state space is finite, but still .d CD/-dimensional,
and the total number of states is usually so large that standard numerical schemes
cannot be applied.
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On the other hand, the solution of the CME often provides more information than
actually needed to understand the biological process. In many applications, one is
mainly interested in the question how the stochastic behavior of S1; : : : ;Sd affects
the dynamics of SdC1; : : : ;SdCD . If the population numbers of SdC1; : : : ;SdCD
are sufficiently large, then stochastic fluctuations within their populations can
be neglected according to [23]. In this case, it is sufficient to compute the
marginal distribution p1.t; n/ of the species S1; : : : ;Sd along with conditional
moments which measure the abundance of SdC1; : : : ;SdCD . This has motivated
the construction of hybrid models: Instead of trying to solve the high-dimensional
CME and then extracting the relevant information from the solution p.t; n;m/, one
derives a reduced set of equations, namely a low-dimensional CME for the marginal
distribution coupled with other ODEs; cf. [5, 9, 11–13, 17, 25, 28]. Hybrid models
have the advantage that the huge number of unknowns is significantly reduced,
which makes the problem computationally feasible. The price to pay is that hybrid
models involve structurally more complicated differential equations than the (linear)
CME, and that such a model reduction causes a modeling error in addition to the
numerical error. The following hybrid model has been derived in [17]:

@tw D
X

j2J1
.S1j � I /

�
˛jˇj .�/w

	
DW A.�/w (15.9)

@t .�w/ D
X

j2J1
.S1j � I /

�
˛jˇj .�/�w

	
C

rX

jD1
�j S

1
j

�
˛j ˇj .�/w

	

(15.10)
DW F.�;w/CG.�;w/

For fixed �, (15.9) is again a CME, but on the lower-dimensional state space N
d
0 .

The function w.t; n/ approximates the marginal distributionp1.t; n/ of the full CME
solution, whereas �.t; n/ approximates the conditional expectations �.t; n/ defined
in (15.8). This is why this model was called model reduction based on conditional
expectations (MRCE) in [17]. It was demonstrated by numerical examples that
MRCE captures certain bimodal solution profiles correctly, in contrast to simpler
hybrid models proposed in the literature. Since w and � do not depend on m
any more, the .d C D/-dimensional state space of the CME is replaced by a
d -dimensional state space, which reduces the computational costs considerably.
Similar approaches have been proposed in [8, 9, 13, 15, 24, 25] for the CME and
related differential equations.

Approximating the conditional expectations �.t; n/ has the drawback that (15.7)
and hence (15.8) cannot be properly defined if p1.t; n/ D 0. The same applies to
the approximations w.t; n/ 	 p1.t; n/ and �.t; n/ 	 �.t; n/. The hybrid model
(15.9)–(15.10) is formulated in terms of w and �w, but in order to evaluate the term
ˇj .�/ on the right-hand side, we have to divide �.t; n/w.t; n/ by w.t; n/. This is
only possible if w.t; n/ > 0, and for w.t; n/ 	 0 such a division causes numerical



15 Error Bound for Hybrid Models of Two-Scaled Stochastic Reaction Systems 309

instability. Different strategies to cope with this problem have been proposed in [9,
13,17,25,28]. Since the main goal of the present article is an analysis of the accuracy
of MRCE, we will avoid such technical problems by the following assumption:

Assumption 15.1. We assume that the CME (15.6) with initial condition (15.5) has
a unique classical solution p.t; �; �/ 2 `1 with strictly positive marginal distribution
p1.t; �/, i.e. p1.t; n/ > 0 for all t 2 Œ0; tend� and all n 2 N

d
0 . This implies that p2, �

and C� are well-defined. Moreover, we assume that the hybrid model (15.9)–(15.10)
with initial data

w.0; n/ D p1.0; n/ and �.0; n/ D �.0; n/ (15.11)

has a unique solution, and that w.t; �/ 2 `1 is strictly positive for all t 2 Œ0; tend�.

This assumption seems to be a strong simplification because in typical applications it
can be observed that for every threshold parameter ı 2 .0; 1/, there are only finitely
many states with p.t; n;m/ � ı. Roughly speaking, this means that p.t; n;m/ 	 0

for “most of” the states. However, if p.t?; n?;m?/ D 0 for some t? > 0, then
the state .n?;m?/ 2 N

d
0 � N

D
0 cannot be reached from neither of the states which

had nonzero probability at time t D 0. As a consequence, one could simply
exclude .n?;m?/ from the state space to avoid the problem, and in this sense,
Assumption 15.1 is not a severe restriction. Since numerical methods for solving
(15.9)–(15.10) are not discussed in this article, numerical instabilities are not an
issue here.

15.4 Error Analysis for the Hybrid Model

Since ˇj .m/ defined in (15.2) depends on the scaling parameter " and since
ˇj .m/ appears both in the CME (15.6) and in the hybrid model (15.9)–(15.10),
the functions p.t; n;m/, p1.t; n/, �.t; n/, w.t; n/, and �.t; n/ all depend1 on ",
too. In this section we prove that the modeling error of MRCE is bounded by C"
(see Theorem 15.1 below). Throughout the article, C denotes a generic constant
which may have different values at different occurrences. The proof combines the
arguments from [17, 19] with the analysis from [28] where systems with no scaling
have been investigated. Our error analysis is based on the following assumptions.

Assumption 15.2. For every j 2 f1; : : : ; rg we assume that jbj j � 2:

This is a natural assumption, because the probability of a trimolecular reaction is
negligible according to [7, page 418].

1We do not make this dependency explicit in the notation in order to keep the equations as simple
as possible.



310 T. Jahnke and V. Sunkara

Assumption 15.3. We assume that the solution of the CME (15.6) satisfies
p.t; �; �/ 2 X 3 for t 2 Œ0; tend� and that

.n;m/ 7! ˛j .n/p.t; n;m/ 2 X 3 for all j 2 f1; : : : ; rg:

Assumption 15.4. We assume that

sup
t2Œ0;tend�

sup
n2Nd0

j�.t; n/j � C

"
; sup

t2Œ0;tend �

sup
n2Nd0

jC�.t; n/j � C

"
;

sup
t2Œ0;tend�

sup
n2Nd0

j�.t; n/j � C

"

with a constant which does not depend on ". Moreover, we assume that all third
central moments of p2.t; � j n/ are bounded by C"�2 with a constant which does not
depend on t 2 Œ0; tend�, ", and n 2 N

d
0 .

Assumption 15.5. Suppose that there is a constant C > 0 such that for all t 2
Œ0; tend� and j 2 f1; : : : ; rg the bound

max
jD1;:::;r

�
�˛j .�/u.t; �/

�
�
`1

� C ku.t; �/k`1

holds for each of the following functions:

u D p1; u D ˇj
�
�
�
p1 � ˇj

�
�
�
w; u D ˇj .�/�p1 � ˇj .�/�w:

Note that Assumption 15.4 implies u 2 `1 in each case.
The following error bound for the modeling error of MRCE is the main result of

this article.

Theorem 15.1. Under Assumptions 15.1–15.5, there is a constantCb > 0 such that
the approximation error of MRCE is bounded by

sup
t2Œ0;tend �

kp1.t; �/� w.t; �/k`1 � Cb" (15.12)

sup
t2Œ0;tend �

k�.t; �/p1.t; �/� �.t; �/w.t; �/k`1 � Cb: (15.13)

If in addition

jbj j � 1 for all j 2 J0; jbj j D 0 for all j 2 J1; (15.14)

then MRCE is even exact, i.e. we can choose Cb D 0 in (15.12) and (15.13).

According to (15.13) the error of the approximation �p1 	 �w remains bounded,
but does not decrease when " ! 0. This is not obvious, because Assumption 15.4



15 Error Bound for Hybrid Models of Two-Scaled Stochastic Reaction Systems 311

implies that k�.t; �/p1.t; �/k`1 D O
�
"�1� and k�.t; �/w.t; �/k`1 D O

�
"�1�.

Multiplying both sides of (15.13) by " shows that the relative error converges
linearly in ".

Proof. It will be shown below in Lemmas 15.2 and 15.3 that

kp1.t; �/� w1.t; �/k`1 C " k�p1.t; �/� �w.t; �/k`1
(15.15)

� QCbt"C C

tZ

0

" k.�p1 � �w/ .s; �/k`1 ds C C

tZ

0

kp1.s; �/� w.s; �/k`1 ds:

for all t 2 Œ0; tend� with constants QCb and C which do not depend on t or ". Hence,
the Gronwall lemma yields

kp1.t; �/� w1.t; �/k`1 C " k�p1.t; �/� �w.t; �/k`1 � Cb" with Cb D QCbtende
Ctend

which proves (15.12) and (15.13). Moreover, it will be shown that we can choose
QCb D 0 in the special case (15.14). ut

The remainder of this article is devoted to the proof of the Gronwall inequality
(15.15). As a preparatory step, we prove the following lemma:

Lemma 15.1. Let y W Nd0 �! R
d , z W Nd0 �! R

d with

max
n2Nd0

jy.n/j � C="; max
n2Nd0

jz.n/j � C="; (15.16)

and let u 2 `1 and v 2 `1. Then for every j 2 f1; : : : ; rg, there is a constant C > 0

such that

�
�ˇj .y/u � ˇj .z/v

�
�
`1

� C"�.j /
�kyu � zvk`1 C "�1ku � vk`1

�

with �.j / defined in (15.3). Note that the assumption (15.16) implies that yu �
zv 2 `1.

A similar lemma has been shown in [19, Lemma 4].

Proof. For j�j j D 0 the assertion is obvious, because in this case ˇj .y/ D "�.j /�1
is constant. If j�j j D 1, then there is a k 2 f1; : : : ; d g such that ˇj .y/ D "�.j /yk ,
and the assertion follows. If j�j j D 2, then the propensity ˇj .y/ takes the form

ˇj .y/ D Ocj "�.j /C1ykyl with Ocj D
�
cj if k 6D l
1
2
cj if k D l

for some k; l 2 f1; : : : ; d g. Thus, we have to bound the difference
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ˇj .y/u � ˇj .z/v D Ocj "�.j /C1 .ykylu � zkzlv/

D Ocj "�.j /C1
 

yk .ylu � zlv/C ykzl .v � u/C zl .yku � zkv/

!

:

Since (15.16) implies that j"yk.n/j � C and j"zl .n/j � C , it follows that

�
�ˇj .y/u � ˇj .z/v

�
�
`1

� C"�.j /kyu � zvk`1 C C"�.j /�1ku � vk`1

which proves the assertion. ut
Lemma 15.2. Under the assumptions of Theorem 15.1 there are constants QCb � 0

and C > 0 such that

kp1.t; �/� w1.t; �/k`1 � QCbt" C C

tZ

0

" k.�p1 � �w/ .s; �/k`1 ds

C C

tZ

0

kp1.s; �/ � w.s; �/k`1 ds:

for all t 2 Œ0; tend�. The constants QCb and C do not depend on t or ", and we can
choose QCb D 0 in the special case (15.14).

Proof. From the definition of the marginal distribution p1 it follows that

@tp1 D
X

j2J0

X

m2ND0
.S1j S

2
j � I /˛j ˇjp C

X

j2J1

X

m2ND0
.S1j S

2
j � I /˛j ˇjp:

The first sum vanishes, because S1j D I for j 2 J0, and

X

m2ND0
.S2j � I /˛j ˇj p D 0 (15.17)

by Lemma 2 in [19]. Since S1j S
2
j � I D S1j .S

2
j � I /C .S1j � I / and since (15.17)

implies

X

j2J1

X

m2ND0
S1j .S

2
j � I /˛j ˇjp D 0;

we obtain

@tp1 D
X

j2J1

X

m2ND0
.S1j � I /˛j ˇj p D

X

j2J1
.S1j � I /˛j

X

m2ND0
ˇj p2p1: (15.18)
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Following the ideas of [3] we use the Taylor expansion

ˇj .m/ D ˇj .�/C rˇj .�/T .m � �/C 1

2
.m � �/T �r2ˇj

�
.m� �/ (15.19)

where � D �.t; n/. Since ˇj is at most quadratic by Assumption 15.2, all higher-
order terms vanish. This yields2

X

m2ND0
ˇj .m/p2.t;mjn/ D ˇj .�/CRj .t; n/ (15.20)

with Rj .t; n/ D trace
�
C�.t; n/r2ˇj

�

because
P

m2ND0 p2.t;mjn/ D 1 and
P

m2ND0 .m � �.t; n//p2.t;mjn/ D 0.
Substituting this into (15.18) gives

@tp1 D
X

j2J1
.S1j � I /˛j ˇj .�/p1 C R D A.�/p1 C R (15.21)

with a rest term R D R.t; n/ given by

R D
X

j2J1
.S1j � I /˛jRjp1:

Comparing (15.21) with (15.9) yields

@tp1 � @tw D A.�/p1 � A.�/w C R

and since p1.0; �/ D w.0; �/ according to (15.11), we obtain

kp1.t; �/� w.t; �/k`1 �
Z t

0

�
�A
�
�.s; �/�p1.s; �/ �A��.s; �/�w.s; �/��

`1
ds

(15.22a)

C
Z t

0

�
�R.s; �/��

`1
ds: (15.22b)

Our next goal is to derive a bound for the second term (15.22b). According to
Assumption 15.4 we have

sup
t2Œ0;tend�

sup
n2Nd0

jC�.t; n/j � C

"
;

2The remainder term Rj is not to be mixed up with the reaction channel Rj in (15.1).
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whereas (15.2) yields

r2ˇj D
(
0 if jbj j � 1

"�.j /C1 if jbj j D 2:

By Assumption 15.2, no other cases have to be considered. Hence, it follows that

sup
s2Œ0;tend �

sup
n2Nd0

jRj .s; n/j D sup
s2Œ0;tend�

sup
n2Nd0

ˇ
ˇtrace

�
C�.s; n/r2ˇj

�ˇ
ˇ � C"�.j /;

(15.23)

and Assumption 15.5 and the fact that �.j / D 1 for all j 2 J1 yield the estimate

Z t

0

�
�R.s; �/��

`1
ds � Ct" sup

s2Œ0;t �
sup
j2J1

k˛j .s; �/p1.s; �/k`1 � QCbt": (15.24)

If jbj j 2 f0; 1g for all j D 1; : : : ; r , then r2ˇj D 0 and hence
�
�R.s; �/��

`1
D 0

such that one can choose QCb D 0 in the special case (15.14). The first error term
(15.22a) can be bounded by

�
�A
�
�
�
p1 � A

�
�
�
w
�
�
`1

D �
�
X

j2J1
.S1j � I /

�
ˇj
�
�
�
˛jp1

	
�
X

j2J1
.S1j � I /

�
ˇj
�
�
�
˛jw

	�
�
`1

� C max
j2J1

�
�ˇj

�
�
�
˛jp1 � ˇj

�
�
�
˛jw

�
�
`1

� C max
j2J1

�
�ˇj

�
�
�
p1 � ˇj

�
�
�
w
�
�
`1

(15.25)

due to Assumption 15.5. Applying Lemma 15.1 now yields

�
�ˇj

�
�
�
p1 � ˇj

�
�
�
w
�
�
`1

� C"�.j /
��
��p1 � �w

�
�
`1

C "�1��p1 � w
�
�
`1

�
;

and since the maximum in (15.25) is only taken over J1, it follows that

�
�A
�
�
�
p1 � A

�
�
�
w
�
�
`1

� C
�
"
�
��p1 � �w

�
�
`1

C �
�p1 � w

�
�
`1

�
: (15.26)

Substituting (15.24) and (15.26) into (15.22a) and (15.22b) yields the assertion. ut
Lemma 15.3. Under the assumptions of Theorem 15.1 there are constants QCb � 0

and C > 0 such that
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k.�p1 � �w/ .t; �/k`1 � QCbt C C

tZ

0

k.�p1 � �w/ .s; �/k`1 ds

C C

"

tZ

0

kp1.s; �/� w.s; �/k`1 ds:

for all t 2 Œ0; tend�. The constants QCb and C do not depend on t or ". If jbj j 2 f0; 1g
for all j D 1; : : : ; r , then we can choose QCb D 0.

Proof. With similar arguments as in the proof of Lemma 15.2, it can be shown that

@t .�p1/ .t; n/ D
rX

jD1
�j

X

m2ND0

�
S1j ˛j ˇj p

	
.t; n;m/

(15.27)

C
X

j2J1

X

m2ND0
m
�
.S1j � 1/˛jˇj p

	
.t; n;m/

(see step 1 in the proof of Lemma 6 in [19] for details). For the first term on the
right-hand side, (15.20) yields

X

m2N
D
0

�
S1j ˛j ˇjp

	
.t; n;m/ D ˛j .n� 
j /

0

@
X

m2N
D
0

ˇj .m/p2.t;m j n� 
j /

1

Ap1.t; n� 
j /

D ˛j .n� 
j /
�
ˇj
�
�.t; n� 
j /

�CRj .t; n� 
j /
	
p1.t; n� 
j /

D S1j
�
˛j


ˇj .�/C Rj

�
p1
�
.t; n/:

Moreover, it follows from (15.19) that

X

m2ND0
mˇj .m/p.t; n;m/ D

�
ˇj .�/� C Tj .t; n/

	
p1.t; n/

with � D �.t; n/ and

Tj .t; n/ DC�.t; n/rˇj .�/C 1

2
�Rj .t; n/

C 1

2

X

m2ND0
.m � �/.m � �/T .r2ˇj /.m � �/p2.t;m j n/:

Substituting into (15.27) yields
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@t .�p1/ .t; n/ D
rX

jD1
�j S

1
j

�
˛j ˇj .�/p1

�
.t; n/

C
X

j2J1

�
.S1j � 1/˛jˇj .�/�p1

	
.t; n/C R.t; n/

with defect

R.t; n/ D
rX

jD1
�j S

1
j

�
Rj˛j p1

�
.t; n/C

X

j2J1

�
.S1j � 1/Tj˛j p1

	
.t; n/:

Comparing this with (15.10) shows that

@t .�p1/.t; n/ D F.�; p1/CG.�; p1/C R:

We will now prove that kR.t; �/k`1 � QCb with a constant QCb � 0 which does not
depend on " nor on t 2 Œ0; tend�. In the special case (15.14), we have that rˇj .�/ D 0

for all j 2 J1 and r2ˇj .�/ D 0 for all j D 1; : : : ; r . This impliesRj D 0 for all j ,
Tj D 0 for all j 2 J1 and hence

�
�R.s; �/��

`1
D 0 such that one can choose QCb D 0.

If (15.14) is not true, then according to (15.23) we know that jRj .s; n/j � C for all
j D 1; : : : ; r , and with straightforward calculations and Assumption 15.5 we obtain
the bound

�
�
�

rX

jD1
�jS

1
j

�
Rj˛j p1

�
.t; �/

�
�
�
`1

� C max
jD1;:::;r k˛j .�/p1.t; �/k`1 � C:

Concerning the second term in R, Assumption 15.4 and (15.2) imply that

sup
t2Œ0;tend�

sup
n2Nd0

jTj .t; n/j � C"�.j /�1:

The sum in the second term of R is only taken over j 2 J1 such that �.j / D 1.
With Assumption 15.5, it thus follows that

�
�
�
X

j2J1

X

m2ND0

�
.S1j � 1/Tj ˛jp1

	
.t; �/

�
�
�
`1

� C max
jD1;:::;r k˛j .�/p1.t; �/k`1 � C;

which proves kR.t; �/k`1 � QCb . Now the error �p1 � �w can be estimated by

k.�p1/.t; �/� .�w/.t; �/k`1 �
Z t

0

k@t .�p1/.s; �/ � @t .�w/.s; �/k`1 ds

�
Z t

0

kF.�p1/.s; �/ � F.�w/.s; �/k`1 ds

(15.28)
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C
Z t

0

kG.�p1/.s; �/ �G.�w/.s; �/k`1 ds C QCbt:

It follows from Assumption 15.5 and Lemma 15.1 that

kG.�; p1/.s; �/�G.�;w/.s; �/k`1
� C max

jD1;:::;r
�
�˛j



ˇj .�/p1 � ˇj .�/w

�
.s; �/��

`1

� C max
jD1;:::;r

�
�


ˇj .�/p1 � ˇj .�/w

�
.s; �/��

`1

� C k�p1.s; �/� �w.s; �/k`1 C C

"
kp1.s; �/� w.s; �/k`1 : (15.29)

A corresponding bound has to be shown for F.�p1/ � F.�w/. Assumption 15.5
yields

kF.�p1/.s; �/ � F.�w/.s; �/k`1 � C max
j2J1

�
�
�˛j ˇj .�/�p1.s; �/� ˛j ˇj .�/�w.s; �/

�
�
�
`1

� C max
j2J1

�
�
�ˇj .�/�p1.s; �/� ˇj .�/�w.s; �/

�
�
�
`1
:

We decompose the error into three parts:

kF.�p1/.s; �/� F.�w/.s; �/k`1
� C max

j2J1

��
�
�ˇj .�/Œ�p1 � �w�.s; �/

�
�
�
`1

C
�
�
�ˇj .�/�Œw � p1�.s; �/

�
�
�
`1

C
�
�
��Œˇj .�/p1 � ˇj .�/w�.s; �/

�
�
�
`1

	
:

Since (15.2) and Assumption 15.4 imply that for every j 2 J1

sup
t2Œ0;tend �

sup
n2Nd0

ˇ
ˇˇj

�
�.t; n/

�ˇ
ˇ � C"�.j /�1"jbj j sup

t2Œ0;tend�

sup
n2Nd0

ˇ
ˇ
�
�.t; n/

�ˇ
ˇjbj j

� C"�.j /�1 D C;

and since supn2Nd0 j�.s; n/j � C
"

by Assumption 15.4, we obtain

kF.�p1/.s; �/� F.�w/.s; �/k`1
� C

�
�
�Œ�p1 � �w�.s; �/

�
�
�
`1

C C

"

��
�w.s; �/ � p1.s; �/

�
�
`1

C max
j2J1

�
�
�


ˇj .�/p1 � ˇj .�/w

�
.s; �/

�
�
�
`1

	
:
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Applying Lemma 15.1 to the last term yields

max
j2J1

�
�
�


ˇj .�/p1 � ˇj .�/w

�
.s; �/

�
�
�
`1

� C"k
�p1 � �w
�k`1 C Ckp1 � wk`1

because �.j / D 1 for j 2 J1. Hence, we have shown the estimate

kF.�p1/.s; �/� F.�w/.s; �/k`1 �C���p1.s; �/� �w.s; �/��
`1

(15.30)

C C

"

�
�w.s; �/ � p1.s; �/

�
�
`1

Substituting (15.29) and (15.30) into (15.28) proves the assertion. ut
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Chapter 16
Valuation of Structured Financial Products
by Adaptive Multiwavelet Methods in High
Dimensions

Rüdiger Kiesel, Andreas Rupp, and Karsten Urban

Abstract We introduce a new numerical approach to value structured financial
products. These financial products typically feature a large number of underlying
assets and require the explicit modeling of the dependence structure of these assets.
We follow the approach of Kraft and Steffensen (Rev Finance 11:209–252, 2006),
who explicitly describe the possible value combinations of the assets via a Markov
chain with a portfolio state space. As the number of states increases exponentially
with the number of assets in the portfolio, this model so far has been – despite
its theoretical appeal – not computationally tractable. The price of a structured
financial product in this model is determined by a coupled system of parabolic
PDEs, describing the value of the portfolio for each state of the Markov chain
depending on the time and macroeconomic state variables. A typical portfolio of n
assets leads to a system of N D 2n coupled parabolic partial differential equations.
It is shown that this high number of PDEs can be solved by combining an adaptive
multiwavelet method with the Hierarchical Tucker Format. We present numerical
results for n D 128.

16.1 Introduction

The inadequate pricing of Asset-backed securities (ABS) and in particular Collater-
alized Debt Obligations (CDOs), on which we focus, is widely viewed as a main
trigger of the financial crisis that started in 2007, [7, 17]. The lack of adequate
mathematical models to capture the (dependency) risk structure, [23], of these assets
is consistently identified as the main reason for the inaccurate pricing. Due to the
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complexity of a CDO portfolio, which arises from the high number of possible
default combinations, drastic simplifications of the underlying portfolio structure
had to be made in order to compute a price, [8, 10, 43].

We consider the CDO model of [26] where the value of a CDO portfolio is
determined by a system of coupled parabolic PDEs, each PDE describing the
portfolio value for a specific default situation. These situations are characterized
by a discrete Markov chain, where each state in the chain stands for a default
state of the portfolio. Therefore, for a portfolio of n assets, there are N D 2n

possible combinations of defaults and, therefore, 2n states in the Markov chain.
It will later turn out to be convenient to label the states in the index set N WD
f0; : : : ; N � 1g. The value of the CDO portfolio in [26] is described by the function
u.t; y/ D .u0.t; y/; : : : ; uN�1.t; y//T that satisfies the partial differential equation
for all t 2 .0; T / (T > 0 being the maturity) and all y 2 ˝ 
 R

M . The y variables
are used to incorporate M economic market factors which describe the state of the
economy.

ujt .t; y/ D �1
2

r � .B.t/ruj .t; y//� ˛̨̨T .t/r uj .t; y/C r.t; y/uj .t; y/

�
X

k2N nfj g
qj;k.t; y/.aj;k.t; y/C uk.t; y/ � uj .t; y// � cj .t; y/;

(16.1a)

u.t; y/ D 0; t 2 .0; T /; y 2 @˝; u.T; y/ D .u0T .y/; : : : ; u
N�1
T .y//T ; y 2 ˝;

(16.1b)

for all j 2 N . The differential operator r is to be understood w.r.t. y. Often
the bounded domain ˝ arises from localizing the problem from R

M to a bounded
domain by truncation. This is a generalized Black-Scholes PDE with a linear cou-
pling, homogeneous Dirichlet boundary conditions in y (possibly after localization)
and terminal condition (16.1b). The remaining parameters can be interpreted as
follows:

• The space variables y 2 ˝ 
 R
M describe the current market situation by

means of variables which describe the market influence on the CDO portfolio.
This could be for example interest rates, foreign exchange rates, macroeconomic
factors and other factors depending on the composition of the portfolio. These
space variables are modeled via a market process dY.t/ D ˛̨̨ .t/dt C ˇ̌̌.t/dW.t/,
where W.t/ is a M -dimensional standard Brownian motion, the drift ˛̨̨.t/ is a
M -dimensional vector and the volatility ˇ̌̌ .t/ 2 R

M�M . Then, we abbreviate
B.t/ WD ˇ̌̌ .t/ˇ̌̌.t/T . W.l.o.g., we may assume that ˝ D Œ0; 1�M .

• N is the state space of a Markov chain, where each state is a possible
combination of defaults of the underlying portfolio.

• The function r.t; y/ describes the relevant market interest rate.
• The parameters qj;k � 0 are the transition intensities, which is the instantaneous

change in the transition probabilities, from state j into state k, where
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j; k 2 N . Moreover, for any state j , all intensities sum up to zero, i.e.,
qj;j WD �Pk2N nfj g qj;k . The default probability is assumed to increase over
time, [26].

• The payments cj .t; y/, j 2 N , made by the CDO are continuous in time.
• The recovery payment, i.e., the distribution of the remaining funds of the

defaulted firm, is denoted by aj;k.t; y/. It depends on the transition from state
j to state k, which means on the defaulted firm.

• Final payments at maturity can also be included. They also depend on the state
and the current market situation and are denoted by ujT .y/.

All together, (16.1) is a system of N D 2n coupled time-dependent parabolic
PDEs each in dimensionM . The difficulty of this pricing approach is primarily the
high number N D 2n of states in the Markov chain and, hence, the high number
of coupled partial differential equations. In the following it will be shown, that
under reasonable conditions, the high dimensionality resulting from the Markov
chain can be separated as a time dependent factor from the actual solution of the
partial differential equation. This allows us to represent the system of coupled
partial differential equations in variational form as the variational formulation
of a high dimensional parabolic partial differential equation. We propose to use
orthogonal multiwavelet bases to develop an equivalent discrete but infinite-
dimensional system. This particular choice allows us to write the system as a tensor
product, which in turns leads to decoupling the Markov chain ingredients from the
market parameters, i.e., the high dimensionality is separated from the integrals of
the test and trial spaces. The hierarchical Tucker Format (HTF), is then applied
to this tensor structure. To numerically approximate a solution for this system,
multiwavelets ensure small condition numbers regardless of the dimension of the
process. Moreover, this choice allows us to use asymptotically optimal adaptive
schemes, e.g. [24].

In the context of wavelet approximations of solutions of partial differential
equations, the term “high dimensional” commonly refers to the dimension M of
the space variable, say M � 5. In our problem at hand, we also have a huge
number N D 2n of coupled equations. As already mentioned, we will show that
we can separate both ingredients, namely the Markov chain state space N and
the macroeconomic model ˝ � R

M . The latter one will be discretized by a
tensor product multiwavelet basis. In general, the dimension of the basis grows
exponentially with M . Thus, the number of macroeconomic variables that can be
used is often strongly limited by the available memory. This can be seen in [13],
where the number of degrees of freedom in 10 dimensions is not enough to reach
the optimal convergence rate. In [34] it can also be seen, that the number of degrees
of freedom which can be used in 5 dimensions is strongly limited. By applying
principal component analysis, [35], the authors are able to solve a problem in 30
dimensions essentially by a reduction to 5 dimensions. In [22], 8 dimensions are
reached for a full rank Black Scholes model and 16 dimensions, when a stochastic
volatility model is considered.
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The remainder of this paper is organized as follows. In Sect. 16.2, we derive
a variational formulation to (16.1) and prove its well-posedness. Section 16.3 is
devoted to the description of well-known multiwavelet bases and the collection of
the main properties that are needed here. The discretization in Sect. 16.4 is done
in three steps. First, we use the multiwavelet basis in order to derive an equivalent
discrete but infinite-dimensional system. We also show that this approach allows
us to decouple the market variables from the Markov chain state space in terms
of a tensor product. The next two steps involve the discretization in time and
market variables. Due to the mentioned separation, we can handle large portfolios
of companies by the so-called Hierarchical Tucker Format (HTF) which is briefly
reviewed in Sect. 16.5 concentrating on those properties that are relevant here.
Finally, in Sect. 16.6, we report on some numerical experiments for realistic market
scenarios. We collect some auxiliary facts in Sect. 16.7.

16.2 Variational Formulation

We start by deriving a variational formulation of the original system (16.1). We
begin with some remarks on systems of elliptic partial differential equations. Let
V ,! H ,! V 0 be a Gelfand triple and V WD V N be the tensor product space. For
u D .u0; : : : ; uN�1/T , v D .v0; : : : ; vN�1/T 2 V, let aj W V � V ! R be a bilinear
form and f j W V ! R, j D 0; : : : ; N � 1, a linear form. Then,

u 2 V W aj .u; v/ D f j .v/ 8 v 2 V; j 2 N ; (16.2)

is a coupled linear system of N equations. Defining a W V � V ! R, f W V ! R by
a.u; v/ WD P

j2N aj .u; vj /, f.v/ WD P
j2N f j .vj /, u; v 2 V, we obtain

u 2 V W a.u; v/ D f.v/ 8 v 2 V; (16.3)

which is well-posed provided the Nečas conditions are valid, [32]. Note that (16.2)
and (16.3) are equivalent using the test functions vjıııj , where ıııj D .ıj;j 0/Tj 02N (ıi;j
is the Kronecker delta) in (16.3) yields (16.2); the other direction is trivial.

Next, we need to separate the high dimensional Markov chain parts from the
variational formulation. This means that the state dependent variables are compound
functions of a state dependent part (which might also depend on the time t) and a
mutual factor depending on the space variables y. Hence, we assume that there
exist functions Qqj;k; Qaj;k; Qcj W Œ0; T � ! R, constants Qaj 2 R and functions
hq; ha; hc; ha.T / W ˝ ! R such that

qj;k.t; y/ D Qqj;k.t/ hq.y/; aj;k.t; y/ D Qaj;k.t/ ha.y/; (16.4a)

cj .t; y/ D Qcj .t/ hc.y/; aj .y/ D Qaj ha.T /.y/; (16.4b)
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for all j; k 2 N , t 2 Œ0; T � and y 2 ˝ . This is a reasonable assumption from the
financial point of view since it states that the dependency on the market process is
the same for all points in time and for all states in the Markov chain. The fact, that
changes of the state of the Markov chain cannot alter the dependency of the market
process Y means that default of single firms in the CDO portfolio will not change
the market situation. Finally, we remark that there are methods available in order
to obtain an approximate representation of the form (16.4) even in cases where the
functions do not directly allow such a separation of variables, see e.g. [5, 33].

We are now going to derive a variational formulation. We need one more
abbreviation: If v W .0; T /�˝ ! R is a function in time and space, we will always
abbreviate v.t/ W ˝ ! R, where v.t/.y/ WD v.t; y/, y 2 ˝ .

Definition 16.1. Given assumption (16.4), a function u 2 XWDL2.0; T IH1
0 .˝/

N /\
H1.0; T IH�1.˝/N / is called weak solution of (16.1) if

�
.ut .t/; v/0I˝ C a.u.t/; v/ D .f.t/; v/0I˝ for all v 2 H1

0 .˝/
N ; t 2 .0; T /

u.T; y/ D uT .y/ WD .u0T .y/; : : : ; u
N�1
T .y//T

(16.5)

where .w; v/0I˝DPj2N .wj ; vj /0I˝ , a.w; v/WDPj2N aj.w; vj /with aj.w.t/; v/WD
1
2
.rwj .t/;B.t/rv/0I˝�.˛̨̨ .t/Trwj .t/C���j .t/Tw.t/; v/0I˝ , the reaction coefficient

�
j

k .t; y/ WD .���j .t; y//k WD
(

� Qqj;k.t/ hq.y/ if k 6Dj;
r.t/ �P

k02N nfj g Qqj;k0

.t/ hq.y/ if kDj: .j; k 2N /

and the right-hand side .f.t/; v/0I˝ WD P
j2N .f j .t/; vj /0I˝ with f j .t/ WD

�Qcj .t/ hc.y/�P
k2N nfj g Qqj;k.t/ Qaj;k.t/ ha.y/ hq.y/.

Obviously, (16.5) is a system of instationary convection-diffusion-reaction equa-
tion and the linear coupling is in the zero-order (reactive) term.

Theorem 16.1. Let (16.4) hold. If u 2 C1.Œ0; T �I .C 2.˝//N / is a classical solution
of (16.1), then it is also a weak solution in the sense of Definition 16.1. On the other
hand, if u is a weak solution and additionally u 2 C1.Œ0; T �I .C 2.˝//N /, then u is
also a classical solution of (16.1).

Proof. We multiply (16.1) by vj 2H1
0 .˝/ and obtain .ujt .t/; v

j /0I˝ D .r.t/uj .t/;
vj /0I˝ �.˛̨̨.t/Truj .t/; vj /0I˝ � 1

2
.r � .B.t/ruj .t//; vj /0I˝ �Pk2N nfj g

R
˝ q

j;k �
.t; y/

�
uk.t; y/�uj .t; y/

�
vj .y/ dy�R˝fcj .t; y/CPk2N nfj g qj;k.t; y/ aj;k.t; y/g�

vj .y/ dy. Using assumption (16.4), the (negative of the) last term reads
Qcj .t/ R˝ hc.y/ vj .y/ dy C P

k2N nfj g Qqj;k.t/ Qaj;k.t/ R˝ hq.y/ ha.y/ vj .y/ dy D
.f j .t/; vj /0I˝: Next, integration by parts gives for the last term

1

2
.B.t/ruj .t//;rvj /0I˝ � .˛̨̨.t/Truj .t/; vj /0I˝ (16.6)

C
Z

˝

n
r.t/ uj .t; y/�

X

k2N nfj g
Qqj;k.t/ hq.y/

�
uk.t; y/� uj .t; y/

	o
vj .y/ dy;
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where the last term is equal to .���j .t/T u.t/; vj /0I˝ . Summing over j 2 N yields
(16.5). The above derivation also proves the claim.

Theorem 16.2. If B.t/ has rankM , then (16.5) is well-posed.

Proof. We need to show that the bilinear form a.�; �/ satisfies the Gårding inequality
and is continuous. Then, the claim follows from the Lax-Milgram theorem.

Remark 16.1. Note that (16.4) is not needed for the well-posedness of (16.5).

Finally, consider a space-time variational formulation of (16.5) by integrating
over time. With B.u; v/ WD R T

0
Œ.ut .t/; v1/0I˝ C a.u.t/; v1/� dt C .u.T /; v2/0I˝

and f.v/ WD R T
0
.f.t/; v1.t//0I˝ C .uT ; v2/0I˝ for u 2 X and v 2 Y WD

L2.0; T IH1
0 .˝/

N / � L2.˝/
N , v D .v1; v2/ 2 Y, the space-time variational

formulation reads

u 2 X W B.u; v/ D f.v/ 8 v 2 Y: (16.7)

This latter problem is also well-posed following the arguments e.g. in [38, 46].

16.3 Multiwavelets

Since we want to use multiwavelets for the discretization of the macroeconomic
variables, we briefly recall some facts of these function systems. A (standard,
not multi-) wavelet system is a Riesz basis  WD f � W � 2 J g of L2.˝/,
where � D .`; k/, j�j WD ` � 0 denotes the level (also steering the size of the
support in the sense that diam.supp �/ � 2�j�j/ and k indicates the type as well
as the position of supp �, e.g. the center of the support. Wavelets are (among
other parameters) characterized by a certain order d of vanishing moments, i.e.,R
˝ y

r  �.y/ dy D 0 for all 0 � jr j � d � 1 and all � 2 J ; j�j > 0. This
means that wavelets necessarily oscillate which also explains the name. Note that
the vanishing moment property only holds for j�j > 0. Those functions  � with
j�j D 0 are not wavelets but so-called scaling functions and those are generated by
a generator ' 2 C0.˝/ in the sense that each  �, j�j D 0, is a linear combination
of (possibly to ˝ restricted) shifts '.� � k/, k 2 Z. The wavelets  �, j�j > 0,
are linear combinations of dilated versions of scaling functions. Multiwavelets are
built as linear combinations of shifts of several generators 'i , i D 1; : : : ; m. The
main advantage is that corresponding multiwavelets may be constructed that are
(1) piecewise polynomial, (2) L2-orthogonal and compactly supported with small
support size. These three properties are quite useful for numercial methods since
they allow an efficient evaluation of an approximation as well as well-conditioned
and sparse system matrices.

We use B-spline multiple generators and wavelets as constructed in [16, 19].
These functions are also adapted to finite intervals and allow for homogeneous
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Fig. 16.1 Wavelets generated by the piecewise cubic MRA having one continuous derivative
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Fig. 16.2 Wavelets with homogeneous Dirichlet boundary conditions generated by a piecewise
cubic MRA on Œ0; 1� with one continuous derivative

Dirichlet boundary conditions, the latter construction was introduced in [36].
We faced some difficulties with the realization of the construction in [16] in
particular for higher regularity. However, we finally came up with a realization
using Mathematica® for almost arbitrary regularity. Some functions are shown in
Figs. 16.1 and 16.2. Details can be found in [36]. Let us summarize some properties
that we will need in the sequel.

Proposition 16.1 ([16]). Let  D f � W � 2 J g be a system of multiwavelets
on ˝ D Œ0; 1� from [16] normalized in H1.˝/, i.e., k �k1I˝ � 1. Then, (a) 
is L2-orthogonal, i.e., . �;  �/0I˝ D ı�;�k �k20I˝ , �;� 2 J ; (b)  � 2 H1

0 .˝/,
� 2 J ; (c) The system  is a Riesz basis forH1

0 .˝/ with L2-orthogonal functions.

Finally, denoting JJJ WD f.j; �/ W j 2 N I� 2 J g D N � J , ��� WD .j; �/ 2
JJJ and   ��� WD  �ıııj , ��� D .j; �/ 2 JJJ , the system  WD f   ��� W ��� 2 JJJ g is a tensor
product Riesz basis for H1

0 .˝/
N .



328 R. Kiesel et al.

16.4 Discretization

16.4.1 An Equivalent `2-Problem

The first step towards an adaptive multiwavelet method is to rewrite the variational
problem (16.5) and (16.7) in a discrete equivalent problem on the sequence space
`2.JJJ / for the multiwavelet expansion coefficients. It turns out that the assumption
(16.4) is particularly useful here, since it allows us to separate state and space (and
time), so that the discrete operators are of tensor product form. This also provides an
efficient numerical realization, also for the space-time variational formulation [25]
and, in particular, for larger M . Using  as defined in Sect. 16.3, the solution u of
(16.5) has a unique expansion of the form u.t; y/ D P

���2JJJ x���.t/   ���.y/, t 2 .0; T /,
y 2 ˝ , where x���.t/ D x

j

� .t/, ��� D .j; �/, xj .t/ D .x
j

� .t//�2J 2 `2.J /. The

above sum is to be understood componentwise, i.e., uj .t; y/ D P
�2J x

j

� .t/  �.y/

for j 2 N . Then, for ��� D .j; �/ 2 JJJ , we get

aj .u.t/;  �/ D
X

�2J
x�.t/

n1

2
.r �;B.t/r �/0I˝ � .˛̨̨.t/T r �; �/0I˝

o

C
X

k2N
.�
j

k .t/u
k.t/;  �/0I˝:

Defining A.t/ WD �
1
2
.r �;B.t/r �/0I˝ � .˛̨̨.t/T r �; �/0I˝

�
�;�2J , the first

sum can be abbreviated as A.t/xj .t/. Moreover,
P

k2N .�
j

k .t/u
k.t/;  �/0I˝ D

P
k2N

P
�2J xk�.t/.�

j

k .t/ �;  �/0I˝ D
hP

k2N Cj;k.t/xk.t/
i

�
; where we set

Cj;k.t/ WD ..�
j

k .t/ �;  �/0I˝/�;�2J 2 R
J�J.1 Next, we get .ujt .t/;  �/0I˝ DP

�2J Px�.t/ . �;  �/0I˝ D Px�.t/, if the  � are L2-orthonormalized. Thus, we

obtain Pxj .t/CA.t/ xj .t/CP
k2N Cj;k.t/xk.t/ for j 2 N , or, written as a system

Px.t/C .AAA .t/CCCC .t// x.t/ D f .t/; (16.8)

where AAA .t/;CCC .t/ 2 R
JJJ�JJJ are given by AAA .t/ D diag.A.t/ : : : ;A.t//,

.CCC .t//j;k D Cj;k.t/ and f .t/ D .f.t/;   ���/0I˝/���2JJJ . Obviously, (16.8) is a coupled
system of ODEs in the sequence space `2.JJJ /. We will now show that (16.8) allows
us to use tensor product techniques for the numerical solution. For that, we need to
review some facts on tensor products, which can be found in Sect. 16.7. We detail
the coupling term

1With a slight abuse of notation, we set RI D `2.I / for any countable (possibly infinite) set I
as well as RI�I as the set of linear operators from `2.I / into `2.I /.
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ŒCj;k.t/��;� D .�
j

k .t/ �;  �/0I˝ DW dj;k.t/Mq

�;� C r.t/ ıj;k ı�;�

D
(

� Qqj;k.t/ .hq �;  �/0I˝; if k ¤ j;

r.t/ı�;� �P
k02N nfj g Qqj;k0

.t/ .hq �;  �/0I˝; if k D j;

where .Mq/�;� WD .hq �;  �/0I˝ is a weighted mass matrix and

R 3 dj;k.t/ WD
(

� Qqj;k.t/; if k ¤ j;

�Pm2N nfj g Qqj;m.t/; if k D j:
(16.9)

We denote D.t/ WD .d j;k.t//j;k2N .

Theorem 16.3. Let Assumption (16.4) hold and assume that  satisfies the
properties in Proposition 16.1. Then, (16.5) is equivalent to

.IN˝IJ/Px.t/CŒ.IN ˝ŒA.t/Cr.t/IJ �/C.D.t/˝Mq/� x.t/ D b.t/˝g1�Qc.t/˝g2;
(16.10)

where II denotes the identity w.r.t. an index set I , b.t/ D .bj .t//j2N ,
bj .t/ WD �Pk2N nfj g Qqj;k.t/ Qaj;k.t/, Qc.t/ WD . Qcj .t//j2N , g1 D .g1�/�2J ,
g1� WD .hq ha;  �/0I˝ and g2 D .g2�/�2J with g2� WD .hc;  �/0I˝ .

Proof. Let j 2 N and � 2 J so that ��� D .j; �/ 2 JJJ . Then,

.CCC .t/ x.t//��� D
X

k2N

X

�2J
Œd j;k.t/Mq

�;� C r.t/ıj;kı�;��x
k
�.t/

D
X

k2N

X

�2J
ŒMq

�;�x
k
�.t/d

j;k.t/C r.t/ı�;�x
k
�.t/ıj;k�

D
�
Œ.D.t/˝ Mq/C r.t/.IN ˝ IJ /�x.t/

	

���
;

where we have used Lemma 16.7 in the last step. Note that D.t/ 2 R
N �N Mq 2

R
J�J , thus .D.t/˝ Mq/ 2 R

.N �J /�.N �J / D R
JJJ �JJJ . Finally,

.b.t/˝ g1 � Qc.t/˝ g2/.j;�/D �
X

k2N nfj g
Qqj;k.t/ Qaj;k.t/ .hq ha;  �/0I˝

�Qcj .t/ .hc;  �/0I˝

which equals .f j .t/;  �/0I˝ , so that the claim is proven.
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16.4.2 Temporal Discretization

So far (16.10) is equivalent to the original PDE. As a first step towards a (finite)
discretization, we consider the time interval Œ0; T �, fix someK 2 N and set�t WD 1

K

as well as tk WD k �t , k D 0; : : : ; K . Obviously, (16.10) takes the form MMM Px.t/C
AAA .t/ x.t/ D f.t/, x.T / D xT , to which we apply the standard �-scheme (� 2 Œ0; 1�)
to derive an approximation xk 	 x.tk/ by solving xK D xT and 1

�t
MMM .xkC1�xk/C

�AAA .tkC1/xkC1C.1��/AAA .tk/xk D �f.tkC1/C.1��/f.tk/, for k D K�1; : : : ; 0.
Obviously, the second equation amounts to solving the following linear system in
each time step

.MMM C�t.� �1/AAA .tk//xk D .MMM C�t �AAA .tkC1//xkC1C�f.tkC1/C .1��/f.tk/:
(16.11)

16.4.3 Wavelet Galerkin Methods

The last step towards a fully discrete system in space and time is the discretization
with respect to the economic variable y 2 ˝ . After having transformed (16.5)
into the discrete but infinite-dimensional system (16.10), this can easily be done
by selecting a finite index set 	 
 J . Hence, we obtain MMM	 WD IN ˝ I	,
AAA 	.t/ WD IN ˝ ŒA	.t/ C r.t/I	� C D.t/ ˝ Mq

	, which is then inserted into
(16.11) for MMM and AAA .t/, respectively, in order to get a finite system. We denote
by A	.t/ WD A.t/j	 D .a�;�.t//�;�2	 the restriction of the original bi-infinite
operator A.t/ to a finite index set 	 
 J , j	j < 1 (and similarly I	, Mq

	). The
choice of 	 is done in an adaptive manner, i.e., we get a sequence 	.0/ ! 	.1/ !
	.2/ ! � � � by one of the known adaptive wavelet schemes that have been proven to
be asymptotically optimal, [11, 12, 24, 37, 45].

16.5 The Hierarchical Tucker Format (HTF)

In this section, we briefly recall the main properties of the Hierarchical Tucker
Format (HTF) and describe key features of our implementation. We concentrate
on those issues needed for the pricing problem under consideration and refer e.g.
to [20, 21, 27, 36] for more details. We call w 2 R

KKK , KKK D �j2N Kj with
entries wi 2 R, i D .i0; : : : ; iN�1/T D .ij /j2N , ij 2 Kj , a tensor of order
N .2 Note that we will consider the cases Kj D Ij (a vector-tensor) as well

2The indexation here is adapted to our problem at hand and thus differs from the standard literature
on the Hierarchical Tucker Format.
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as Kj D Jj � Ij (a matrix-tensor), where Ij and Jj are suitable (possibly
adaptively chosen) index sets. Storing and numerically manipulating tensors exactly
is extremely expensive since the amount of storage and work grows exponentially
with the order. Hence, one wishes to approximate a tensor w (or vec.w/, which
denotes the vector storage of w using reverse lexicographical order w.r.t. the indices)
by some efficient format. One example is the Tucker Format, [44], where one aims
at determining an approximation

vec.w/ 	 V vec.c/ D .VN�1 ˝ � � � ˝ V0/ vec.c/; Vj 2 R
Ij�Jj ; j 2 N ;

(16.12)

with the so called core tensor c 2 R
JJJ , JJJ D �j2N Jj . It is known that the

High-Order Singular Value Decomposition (HOSVD) (see (16.13) below) yields a
‘nearly’ optimal solution to the approximation problem (16.12) which is also easy
to realize numerically, [36]. However, the storage amount for the core tensor c still
grows exponentially with N . This is the reason to consider alternative formats such
as the HTF which provides an efficient multilevel format for the core tensor c.
In order to be able to describe the HTF, it is useful to introduce the concept of
matricization as well as to describe the HOSVD in some more detail. The direction
indices 0; : : : ; N � 1 of a tensor w 2 R

III are also called modes. Consider a splitting
of the set of all modes f0; : : : ; N � 1g D N into disjoint sets, i.e., N D t [ s,

t D ft1; : : : ; tkg, s D fs1; : : : ; sN�kg D t{, then the matricization w.t/ 2 R
It�I {

t

of the tensor w w.r.t. the modes t is defined as follows

It WD �k
iD1Iti ; I {

t WD �N�k
iD1 Isi ; .w.t//.it1 ;:::;itk /;.is1 ;:::;isN�k

/ WD wi:

Note that vec.w/ D w.N /. A special case is the �-matricization for � 2 N , where
t D f�g and I {

� D I0�� � ��I��1�I�C1�� � ��IN�1. We set r� WD rank.w.�//

and call r D .r0; : : : ; rN�1/T the rank of w.
One idea to obtain an approximation Qw of w requiring less storage is a low-rank

approximation, i.e., to determine a tensor Qw of rank Qr with Qr� � r� � #I�. This can
be achieved by a truncated SVD of each w.�/ in the sense that w.�/ 	 U�˙�V

T
� ,

i.e., U� 2 R
I��Qr� contains the most significant Qr� left singular vectors of w.�/.

Then

vec.w/ 	 vec. Qw/ WD .UN�1 ˝ � � � ˝ U0/ vec.c/ (16.13)

with the core tensor vec.c/ WD .U T
N�1 ˝ � � � ˝ UT

0 / vec.w/ 2 R
Qr0�QrN�1 and the

mode frames U�, � 2 N . The approximation in (16.13) is precisely the HOSVD
and this choice of c can easily be shown to minimize kw � Qwk2. Moreover, it holds
that kw � Qwk2 � p

N inffkw � vk2 W v 2 R
I ; rank.v.�// � Qr�; � 2 N g. The

main idea of the HTF is to construct a hierarchy of matricizations and to make use
of the arising multilevel structure. It has been shown in [20, Lemma 17] that for
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disjoint t D t` [ tr , t � N , we have span.w.t// � span.w.tr / ˝ w.t`//.3 This
result has the following consequence: If we consider w.t/, w.t`/ and w.tr / as defined
above and denote by Ut , Ut` and Utr any (column-wise) bases for the corresponding
column spaces, then the result ensures the existence of a so called transfer matrix
Bt 2 R

rt` rtr�rt such that Ut D .Utr ˝ Ut`/ Bt , where rt , rt` and rtr denote the ranks
of the corresponding matricizations. Obviously tr and t` provide a subdivision of
a mode t . If one recursively applies such a subdivision to vec.w/ D UN , one
obtains a multilevel-type hierarchy. One continues until t`, tr become singletons.
The corresponding general decomposition is formulated in terms of a so called
dimension tree.

Definition 16.2 ([27, Def. 2.3]). A binary tree TN with each node represented by a
subset of N is called a dimension tree if the root is N , each leaf node is a singleton,
and each parent node is the disjoint union of its two children. We denote by L .TN /

the set of all leave nodes and by I .TN / WD TN n L .TN / the set of inner nodes.

Now, we define those tensors that can exactly be represented in HTF, called
Hierarchical Tucker Tensor (HTT).

Definition 16.3. Let TN be a dimension tree and let r WD .rt /t2TN 2 N
TN ,

rt 2 N be a family of non-negative integers. A tensor w 2 R
I , I D �j2N Ij , is

called Hierarchical Tucker Tensor (HTT) of rank r if there exist families (i) U WD
.Ut/t2L .TN / of matrices Ut 2 R

It�rt , rank.Ut / � rt (a nested frame tree), (ii)
B WD .Bt /t2I .TN / of matrices (the transfer tensors), such that vec.w/ D UN and
for each inner node t 2 I .TN / with children t`, tr it holds that Ut D .Utr ˝Ut`/Bt
with Bt 2 R

rt` rtr �rt .
In order to keep track of the dependencies, we will write w D .T w

N ; rw;Uw;Bw/.

Remark 16.2. (a) By Definition 16.3, we get a Tucker representation vec.w/ D
.UfN�1g ˝ � � � ˝ Uf0g/ vec.c/ with vec.c/ formed as a multilevel product of the
transfer tensors.

(b) For the numerical realization, it is useful to consider different representations of
tensors in terms of different matricizations. This can be seen as different views
on the tensor with the same data: (i) The ‘standard’ view, i.e., Bt 2 R

kt`ktr �kt ;
(ii) The ‘tensor view’, Bt 2 R

kt�kt`�ktr , where Bt D B.f2;3g/
t ; (c) The

storage of an HTT thus requires N matrices U� 2 R
I��k� , � 2 N and

.N � 1/ D #I .TN / transfer tensors Bt , t 2 I .TN /; (d) From (i) it follows
that rank.w.�// � r�; (e) An HTT for a vector w 2 R

I is called HT-vector and
for a matrix a 2 R

I �I HT-matrix.

Computing with hierarchical tensors. We are now going to describe some of the
algebraic operations for HTT’s that are required for the numerical realization of an
adaptive wavelet method. Some issues are similar to existing software [27], some

3By span.A/ we denote the linear span of the column vectors of a matrix A.
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are specific due to our wavelet discretization. Our numerical realization is described
in detail in [36], where also the source code is available.

Lemma 16.1 ([20]). Let v D .TN ; rv;Uv;Bv/ and w D .TN ; rw;Uw;Bw/

be HTT’s of order N w.r.t. the same TN . Then, v C w D .TN ; rv C
rw;UvCw;BvCw/, where U vCw

t D .U v
t U

w
t / 2 R

I v
t [I w

t �.rv
t Crw

t / and BvCw
t 2

R
.rv
t Crw

t /�.rv
t`

Crw
t`
/�.rv

tr Crw
tr / for t D t` [ tr is given by

.BvCw
t /i;j;kD

8
<

:

.Bv
t /i;j;k; 1 � i � rv

t ; 1 � j � rv
t`
; 1 � k � rv

tr
;

.Bw
t /i;j;k; r

v
t < i � rv

t Crw
t ; r

v
t`
< j � rv

t`
Crw

t`
; rv
tr
< k � rv

tr
Crw

tr
;

0; otherwise;

for t 2 I .TN / n N and at the root node t D N

.BvCw
N /1;j;k D

8
<

:

.Bv
N /1;j;k; 1 � j � rv

t`
; 1 � k � rv

tr
;

.Bw
N /1;j;k; r

v
t`
< j � rv

t`
C rw

t`
; rv
tr

� k < rv
tr

C rw
tr
;

0; otherwise:

It is particularly worth mentioning that the HTF of the sum of two HTF only
requires a reorganization of the data and no additional computational work. On the
other hand, however, we see that the rank of the sum is the sum of the ranks. We will
come back to that point later. Let us now consider the matrix-vector multiplication.

Lemma 16.2 ([27]). Let A D .TN ; rA;UA;BA/ 2 R
J�I be a matrix HTT and

w D .TN ; rw;Uw;Bw/ 2 R
I be a vector HTT w.r.t. the same dimension tree TN .

Then, the matrix-vector product reads Aw D .TN ; rAw;UAw;BAw/, where

• rAw
t D rA

t r
w
t , t 2 TN ; BAw

t D BA
t ˝ Bw

t , t 2 I .TN /;

• V
.i/
t 2 R

Jt�It is chosen such that .U A
t /i D vec.V .i/

t / for t 2 L .TN /

(reinterpretation of the columns of the leaf bases as matrices);

• U Aw
t D ŒV

.1/
t U w

t ; : : : ; V
.rA
t /

t U w
t � 2 R

Jt�rA
t r

w
t .

Again, the computational work is almost negligible. Note again, that the rank
grows and is the product of the two original ranks. It should be noted that the HT-
matrix A has to be represented in the same hierarchical order as the HT-vector w
(i.e., w.r.t. the same dimension tree). This might require a conversion of a given
matrix into the HTF given by w, see Fig. 16.3. If we can efficiently realize a
conversion from R

JJJ�III to R
JJJ �III , whereJJJ �III WD �j2N .Jj �Ij /, then we can

use a standard matrix-vector-multiplication for each j 2 N . Such a transformation
can be done by a reverse lexicographical ordering of the indices, i.e., applying the
vec-routine to a matrix-tensor.
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Fig. 16.3 Conversion of a
matrix. The left picture shows
the hierarchical order of the
matrix blocks which have to
be converted into vectors, the
right picture the hierarchical
order of a vector that is
multiplied with the matrix
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Lemma 16.3. Let A D .TN ; rA;UA;BA/ 2 R
III�III be a square HTT-matrix, then

DA D diag.A/ 2 R
III is given as DA D .TN ; rA;UDA ;BA/, where U DA

t 2 R
It�rA

t

is given as U A
t 2 R

.It�It /�rA
t , t 2 TN , by .U DA

t /i;k WD .U A
t /.i;i /;k, k D 1; : : : ; rA

t ,
i 2 It .

Lemma 16.4. Let AAA D Pm
kD1 ��2N Ak;� 2 R

KKK be a Kronecker tensor, then
AAA D .TN ; rAAA ;UAAA ;BAAA /, where (i) UAAA

� WD Ak;�, k D 1; : : : ; m, � 2 L .TN /,

rAAA� WD k; (ii) for t 2 I .TN / n fN g: BAAA
t 2 R

m�m�m, rAAAt WD m, .BAAA
t /i;j;` WD

ıiDjD`; (iii) .BAAA
N /i;j;` D ıj;`, BAAA

N 2 R
1�k�k , rAAAN WD 1.

Remark 16.3. Since the Kronecker sum in Definition 16.7 is a special case of a
Kronecker tensor, Lemma 16.4 also provides an HTF for Kronecker sums.

Truncation of Tensors. We have seen that vector-vector addition and matrix-
vector multiplication can be efficiently done for tensors in HTF. However, by
Lemmata 16.1 and 16.2 the hierarchical rank grows with each addition or mul-
tiplication, so that only a certain number of such operations can be done in a
numerical (iterative) scheme until the resulting HTTs get too large to be handled
efficiently. Thus, a truncation is required. The basic idea is to apply a singular value
decomposition (SVD) on the matricizations w.t/ of the tensor w and restrict these to
the dominant singular values. This can be realized without setting up w.t/ explicitly.
Since, by construction, the columns of the mode frames Ut contain a basis for the
column span of w.t/ there is a matrix Vt 2 R

I .t/�rt such that w.t/ D UtV
T
t . Only

the left singular vectors of the SVD of w.t/ are thus needed. Thus, the symmetric
singular value decomposition of w.t/.w.t//T D UtV

T
t VtU

T
t DW UtGtU T

t yields
the same result. The matrices Gt WD V T

t Vt 2 R
rt�rt are called reduced Gramian.

They are always of small size and can be computed recursively within the tree
structure. In [20, Lemma 4.6] it is shown, that the reduced Gramians correspond
to the accumulated transfer tensors for orthogonal HTTs. This statement also holds
for general HTTs, see also [27].

The truncation of an HTT can then be computed by the computation of the QR
decomposition Ut D QtRt for t 2 L .Td / or . OSTtl Rtl ˝ OSTtr Rtr /Bt D QtRt for
t 2 I .Td /. Subsequently, the symmetric eigenvalue decomposition of RtGtRTt D
St˙

2STt is computed and the truncated matrix is then given by Ut D Qt
bSt ,
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t 2 L .Td /, or Bt D Qt
bSt , t 2 I .Td /, where OSt is a restriction of St to the

first rt columns. Finally, we recall a well-known estimate for the truncation error.

Lemma 16.5. Let w D .TN ; r;U;B/ be an HTT and let Qw D .TN ; Qr; QU; QB/ be
the truncation of w such that rank. Qw.t// D Qrt � rt . Then, for It D f1; : : : ; nt g,

we have kw � Qwk2 � �Pnt
iDrtC1 �

2
i

�1=2 � p
2d � 3 infv2H .Qr/ kw � vk2 ; where

H .r/ WD fv D .TN ; r;U;B/ W rank.v.t// � rt ; t 2 TN g and �i are the sigular
values of w.t/ such that �i � �j if i < j , i D 1; : : : ; nt .

Together with the vector-vector and matrix-vector addition as well as the
truncation, the linear solver can be realized, [3], in particular in an adaptive setting,
[2]. The main difference is that after each addition or multiplication a truncation has
to be made in order to keep the hierarchical rank small, which is not always easy
to realize, [27]. For the HTF a Matlab implementation is available, [27]. We have
developed an HT library in C++ in [36] based on BLAS, [9,14,15,28] and LAPACK
[1] routines, which are efficiently accessed via the FLENS interface, [29, 30]. The
reason for our implementation is that FLENS is the basis of the LAWA library
(Library for Adaptive Wavelet Applications), [40]. The coupling of the proposed
adaptive wavelet scheme with the HT structure could thus be efficiently realized.
All subsequent numerical experiments have been performed with this software.

16.6 Numerical Experiments

We report on numerical experiments, first (in order to describe some fundamental
mechanisms) for a simple CDO and then in a more realistic framework.

16.6.1 Encoding of Defaults

We are given n assets and hence the state dimension is N D 2n. Let j 2 N and let
j 2 N WD f0; 1gn be its binary representation, i.e., a binary vector .j1; : : : ;jn/T of
length n, where ji D 1 means that asset number i is defaulted. For j; k 2 N with
binary representation j;k 2 N and jjk denoting the bitwise XOR, the number of
ones in jjk corresponds to the number of assets that change their state. This easy
encoding is the reason why we used the labeling N D f0; : : : ; N � 1g.

Once defaulted, always defaulted. For our numerical experiments, we assume
for simplicity that an asset that is defaulted, stays defaulted for all future times, it
cannot be reactivated (the theory and our implementation, however, is not restricted
to this case). This means that qj;k.t; y/ D 0 if there exists an index 1 � i � n

such that ji D 1; ki D 0. Both in the usual and in the binary ordering this
last statement means qj;k.t; y/ D 0 if j > k, which in turns means that the
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Q.t; y/ WD .qj;k.t; y//j;k2N is an upper triangular matrix. Moreover, recall that
qj;j .t; y/ D �Pk2N ;k>j q

j;k.t; y/, so that Q can be stored as a strict lower

triangular matrix, i.e., Q D .qj;k/k>j 2 R
N �N .

Independent defaults. We assume that we have independent defaults. If defaults
are independent, the transition of asset i from one state to another is independent of
the state for all other assets as long as their states remain unchanged. Before we are
going to formalize this, the following example may be helpful for the understanding.

Example 16.1. If a portfolio has 3 assets, asset 2 defaults when changing from 0 D
.000/2 to 2 D .010/2, from 1 D .001/2 to 3 D .011/2, from 4 D .100/2 to
6 D .110/2 and from 5 D .101/2 to 7 D .111/2. These are all transitions where
only asset 2 defaults. In case of independent defaults it follows that q0;2 D q1;3 D
q4;6 D q5;7. Note that 0j2 D 1j3 D 4j6 D 5j7 D .010/2.

Let j; k 2 N , then jjk indicates a state change of asset i if the i -th component
of jjk is one. Hence, if j1jk1 D j2jk2, then the same assets change their state. Since
the change 1 ! 0 is not allowed, we obtain that j1jk1 D j2jk2 ! qj1;k1 D qj2;k2 .

Only one default at a time. If only one asset can default at a time, the transition
intensity qj;k is zero if jjk has more than one “1”. On the other hand, if jjk has only
one “1”, then jjk must be a power of 2. Since qj;k.t; y/ D 0 for j > k, it suffices
to consider the case k > j (qj;j is determined by the condition on the sum over all
intensities). For k > j being jjk a power of 2 means that log2.k � j / 2 N. In this
case, we have jjk D 0j.kjj/, so that for j; k 2 N we have qj;k.t; y/ D q0;kjj .t; y/
if k > j and log2.k � j / 2 N and 0 otherwise.

16.6.2 A Model Problem

The idea of our first numerical example is to showcase the numerical manageability,
where the focus is on the combination of the multiwavelet components and the
high dimensional Markov chain components. To this end, we start with a simplified
CDO:

• The macroeconomic process Y is one dimensional with parameters ˛̨̨ and ˇ̌̌ that
are constant in time. This implies that B.t/ � B.

• The interest rate r.t/ � r is constant in time and does not depend on Y .
• The state dependent parameters qi;j .t; y/ and cj .t; y/ are constant in time and

do not depend on Y , i.e., hq.y/ � 1 and hc.y/ � 1, hence qj;k.t; y/ � Qqj;k and
cj .t; y/ � Qcj . This means that Q.t; y/ � Q D QQ, where QQ D . Qqj;k/k>j Ij;k2N .

• There is no recovery and no final payments, i.e., aj;k.t; y/ � 0 for all j; k 2 N
and aj .y/ D 0 for j 2 N .

• There is only one tranche covering the entire CDO portfolio.
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Thus all involved matrices are time-independent. In particular, we have Cj;k.t/ �
�
j

k .. �;  �/0I˝/�;�2J D �
j

k IJ . Moreover .Mq/�;� D .hq �;  �/0I˝ D ı�;�

and D.t/ � D D .d j;k/j;k2N . Next, we have by aj;k.t; y/ � 0 that bj .t/ � 0,
Qcj .t/ � Qcj , g1� D g2� D .1;  �/0I˝ (D 0 for j�j > 0) so that (16.10) simplifies to

.IN ˝ IJ /Px.t/C Œ.IN ˝ ŒA C rIJ �/C .D ˝ IJ /� x.t/ D .�Qc/˝ ..1;  �/0I˝/�2J :

(16.14)

For later reference, recall that (16.9) in this case implies dk;kD�Pm2N nfkg;m>k Qqk;m.
In turns, this means that D D QQ C diag. QQ1N /, where 1N WD .1; : : : ; 1/T 2 R

N .
Note that even though D is time-independent, the huge dimension requires storage
as an HT-matrix (in particular, it is impossible to store D directly). We use a standard
implicit �-scheme for the time-discretization of this Sylvester-type equation, [42].
The Barlets-Steward algorithm [6], is a well-known method for solving such
Sylvester equations. It is based on a Schur decomposition. However, we cannot use
this method here, since, to the best of our knowledge, there is no algorithm for the
QR decomposition of HT-matrices available. Alternatively, an iterative scheme (CG,
GMRES or BiCGStab) may be used. We have used BiCGStab as D is (in general)
not symmetric. While generally GMRES yields faster convergence in terms of
iteration numbers, it requires more computational steps and therefore, in the context
of HT-matrices, more truncations are needed, which is computationally expensive.
For systems with small condition numbers, BiCGStab requires only a few iterations,
[41]. Using any iterative solver requires matrix-vector multiplications, here of the
type .IN ˝ A C D ˝ IJ /x, where x D x1 ˝ x2 is also a Kronecker product of
the appropriate dimension. Then, we obtain .IN ˝ A C D ˝ IJ /.x1 ˝ x2/ D
x1 ˝ Ax2 C Dx1 ˝ x2, which can be represented as a Kronecker product of an
HT-matrix and a matrix. For details of the implementation, we refer to [36].

Construction of the intensity matrix D. We describe the representation of D into
HTF in case of independent defaults and only one default at a time. Recall that
D D QQ C diag. QQ1N / and QQ D . Qqj;k/k>j 2 R

N �N . Hence, we start by deriving
a Kronecker sum representation for QQ.

Theorem 16.4. In case of independent defaults and one default at a time, the matrix
QQ 2 R

N �N can be written as a Kronecker sum (see Definition 16.7 below)

QQ D
nM

kD1

 
0 q0;2

n�k

0 0

!

D
nX

kD1

(
k�1O

`D1
I2�2 ˝

 
0 q0;2

n�k

0 0

!

˝
nO

`DkC1
I2�2

)

;

(16.15)

where I2�2 2 R
2�2 denotes the identity matrix of corresponding size.

Proof. The k-th summand of the Kronecker sum on the right-hand side of (16.15)

reads QQk WD Nk�1
`D1 I2�2 ˝

 
0 q0;2

n�k

0 0

!

˝Nn
`DkC1 I2�2: It is readily seen that QQk
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is a matrix having the entries q0;n�k at the positions .2n�kC1.
�1/C�; 2n�kC1.
�
1/ C � C 2n�k/, for 
 D 1; : : : ; 2k�1, � D 1; : : : ; 2n�k, i.e., 2k�1 � 2n�k D 2n�1
entries. Note that 2n�1 is the number of all combinations with a state change of asset
k. Since 2n�kC1.
� 1/C� ¤ 2n�k for all possible 
 and �, we obtain that jjk has
exactly one “1” at position i D n�k. This, in turns, means that qj;k D q0;n�k . This
shows that QQk contains all transition intensities corresponding to asset k at the right
positions. It remains to show that the sum over all QQk does not cause overlapping
indices. Since

Lk�1
`D1 I2�2 2 R

2k�1�2k�1
, each QQk is a block matrix with blocks at

different positions. Thus
Ln

kD1 QQk collects the transition intensities for all assets k.

Having the Kronecker sum (16.15) at hand, the next step is to derive the HTF
of D. As we have seen in Lemma 16.4 and Remark 16.3, the HTF of QQ can easily
be derived from the Kronecker sum representation. Next, note that RN 3 1N DNn

kD1.1; 1/T , so that the HTF of QQ1N can be obtained via Lemma 16.3 and the
HTF of D by Lemma 16.1. Finally, it is easily seen that Qc D Ln

kD1. Qck; 0/T so that
the HTF of the right-hand side is easily be derived.

Results. We have used fictional data as marked data is generally not publicly
available for CDOs. The fictional CDO portfolio consists of n D 128 assets,
which is a reasonable size. The macroeconomic process is assumed to be one
dimensional. This leads to a system of N D 2128 coupled partial differential
equations. The maturity is assumed to be T D 1 and the time interval is discretized
into 20 time steps. For the Galerkin approximation, piecewise cubicL2-orthonormal
Multiwavelets with Dirichlet boundary conditions. We have fixed the lowest and
highest level to j0 D 2 and J D 4. This turned out to be sufficient in this example
due to the smoothness of the right-hand side. For the �-scheme, the parameter
� D 0:5 has been chosen (Crank-Nicholson). To solve the linear system, BiCGStab
has been used. The stopping criterion of the linear solver has been set as a relative
error of the L2-norm of the residual to 10�13 and HTTs are truncated to a rank of
at most 5. It turned out that a fixed upper bound for the rank is sufficient for this
example, for an adaptive strategy, see e.g. [2].

In Fig. 16.4, left, the portfolio value depending on the time t and the macroeco-
nomic state y of the CDO in the first stage, where no firm has defaulted, is shown.
Whenever a firm defaults, the Markov chain changes its state and the portfolio value
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Fig. 16.4 CDO portfolio value in a portfolio of 128 assets. First state (no defaults, left) and state
(all firms have defaulted, right). Note the scaling of the vertical axis in the right figure
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Fig. 16.5 CDO portfolio value of all states in a portfolio of 2 assets (left) and runtime of the
pricing of a CDO portfolio of N 2 f2; 4; 8; 16; 32; 64; 128g assets

jumps to a lower value due to the immediate loss of all future continuous payments.
To illustrate the jumps of the portfolio value, when a default has occurred, the values
of all states of a portfolio of two assets have been combined in Fig. 16.5, left. The
last stage is used for error analysis, since here the portfolio value has to be zero as
all firms have defaulted. Figure 16.4 shows on the right the portfolio value in the last
state of this simulation. This can be interpreted as the relative error arising from the
Galerkin approximation with the L2-orthonormal multiwavelets and the truncation
of the HTTs after each addition or multiplication. It can be observed, that the relative
error of this computation is smaller than 10�13, which corresponds to the stopping
criterion of the linear solver. In each time step, the BiCGStab algorithm took on
average 54 iterations.

The computations were performed on a Dell XPS with Intel T9300 Dual Core
CPU and 3 GB storage and took about 1 h, the runtime for different portfolio sizes
is summarized in Fig. 16.5, right. We observe a linear scaling with respect to n, i.e.,
only a logarithmic scaling compared to the number of equationsN D 2n.

16.6.3 A Realistic Scenario

The example presented in the previous section corresponds to a simplified and
idealized situation. As we will show now, the extension to a realistic scenario (given
sufficient data), is not too difficult. In fact:

• Observe, that time-dependent parameters do not affect the runtime of the pricing
as the condition number of the matrix is not affected, assuming the parameters
are sufficiently smooth in the time t .

• The matrices A.t/ and D.t/ need to be setup for any time instant tk . For
D.t/, this only amounts to constructing an HTF exactly as described in the
previous section. For the matrix A.t/, we have to compute integrals of the
type .r �;B.t/r �/0I˝ and .˛̨̨.t/T r �; �/0I˝ for any tk followed by a
transformation to HTF. All these operations can be performed efficiently.
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• Space dependent parameters, however, will affect the condition of the linear
system and possibly will require the use of a preconditioner. The construction of
such a preconditioner in HTF will thus be discussed in the following subsection.

Furthermore, independent defaults are a very restrictive assumption. Other HTFs
of dependency structures have to be developed for each given dependency structure.
If no explicit HTF can be set up, the transition matrix can as well be approximated
using the so-called Black Box Algorithm, [4, 18, 36].

Preconditioning. One of the features of wavelet Galerkin schemes is the avail-
ability of asymptotically optimal preconditioners, e.g. [45, Ch. 6]. This means that
A	.t/ from Sect. 16.4 has a uniformly bounded condition number, i.e., �2.A	.t// D
O.1/ as j	j ! 1. This, however, does not immediately imply that A	.t/ is well-
conditioned. We use a simple Jacobi-type preconditioner, i.e.,

D	.t/WDdiag.A	.t//
� 1
2D
�IN ˝ ŒA	.t/C r.t/I	�C D.t/˝ Mq

	

�� 1
2

�;�

�
�2	
(16.16)

One reason for this choice is the fact that the HTF of such a preconditioner
can efficiently be derived. Moreover, the numerical performance has been quite
satisfactory, at least in our experiments. The computation of the HTF of a diagonal
matrix is provided by Lemma 16.3. The sum in (16.16) can be transformed into HTF
by Lemma 16.1 so that we are left with determining the HTF of the four matrices
IN , DN and A	, M	. The first two ones are trivial or have been derived above
and for the second two ones we are using again the Black Box Algorithm. Finally,
also the power �1=2 of a tensor can be transformed into HTF by the Black Box
Algorithm.

Computing CDO tranches. So far, only single tranche portfolios were considered.
However, in practice, a CDO is usually sold in tranches such that the first defaults
only affect a certain tranche. Therefore, by construction, this is the riskiest tranche,
the so called equity tranche. As soon as this first tranche has defaulted completely,
subsequent defaults begin to affect a second trance. Therefore, this second tranche,
called mezzanine tranche, is less risky than the first one. And finally, if this second
tranche also has defaulted, the last tranche, the so called senior tranche is affected.
Sometimes, these three tranches can be further split into sub-tranches. To compute
the price of a CDO tranche, the cash flows of (16.1a) have to be adapted to the
cash flows which affect the tranche under consideration. The construction of these
adapted parameters is described in the following.

Given a portfolio of n assets with nominal values �1; : : : ; �n, the S tranches are
defined by their upper boundary bs , s D 1; : : : ; S , given in percentages b0 D 0 <

b1 < � � � < bS�1 < bS D 1 of the total portfolio nominal˘ WD Pn
iD1 �i . Let Lj be

the accumulated loss in state j 2 N , i.e., Lj D P
i2D.j / �i ; where D.j / WD ˚

i 2
f1; : : : ; ng j 9xk 2 f0; 1g; k D 1; : : : ; n; xi D 1 W j D Pn

kD1 xk2k�1� denotes the
set of all defaulted firms in state j . Then, the cash flows are distributed as follows:
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• The amount of the state dependent continuous payments cj which is assigned to
the s-th tranche, s D 1; : : : ; S , in state j 2 N can be computed as the percentage
of the nominal of the tranche divided by the accumulated nominals of the assets
not in default:

Qcjs .t/ D

8
<̂

:̂

Qcj .t/˘.bs�bs�1/
˘�Lj if Lj < ˘bs�1

Qcj .t/˘.1�bs/�Lj
˘�Lj if ˘bs�1 � Lj < ˘bs;

0 otherwise:

(16.17)

• The final payments ujT are distributed to the tranches in the same way as the
continuous payments Qc, i.e., (16.17) holds with Qcjs .t/ replaced by ujT;s , the final
payment of tranche number s.

• The recovery payments are paid out as a single payment to the tranche in which
the default occurred. If several tranches are affected, the recovery is paid out
proportional to their nominals. This means

Qaj;ks .t/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Qaj;k.t/ if ˘bs�1 < Lj < Lk � ˘bs;

Qaj;k.t/Lk�˘bs�1
Lk�Lj if Lj � ˘bs�1 < Lk � ˘bs;

Qaj;k.t/˘bs�˘bs�1
Lk�Lj if Lj � ˘bs�1 < ˘bs < Lk;

Qaj;k.t/˘bs�Lj
Lk�Lj if ˘bs�1 < Lj � ˘bs < L

k:

In this setting only recoveries are considered, when a default occurs. However,
the model also enables the realization of temporarily defaults of firms. This
means, there can also be payments if Lk < Lj . These cases are omitted in the
following as they can be handled exactly as the cases where Lj < Lk .

The difficulty of computing the payoffs of the s-th tranche is that certain
specific states within the huge amount of states of the Markov chain have to be
found. Therefore, we define vectors 1<s , 1D

s and 1>s , by .1<s /j WD �fLj<˘bs�1g,
.1D

s /j WD �f˘bs�1�Lj<˘bsg, .1>s /j WD �fLj	˘bsg for j 2 N . In order to explain
the realization of some required operations, we introduce the following short-hand
notation for HTTs. Let w 2 R

K be a tensor with HTF w D .TN ; r;U;B/, then
we abbreviate by H .w/ its HTF without specifying the quantities involved in the
HTF. For A 2 R

K �K and b 2 R
K , we indicate by H .A/H .u/ D H .b/

that u 2 R
K is determined as the solution of the linear system Au D b

but only with numerical routines using the HTF-variants. Finally, we abbreviate
D.w/ WD H .diag.w// 2 R

K for w 2 R
K , where .diag.w//i;j WD ıi;j wi, i 2 K .

Now, denote L WD .Lj /j2N . Then, we need to compute the reciprocal value of
each component of the vector R WD ˘ � L 2 R

N in HTF denoted by R.�1/.
This can be achieved by solving the linear system D.H .R//x D H .1/ for x.
Then H .R.�1// WD x and H . Qcs.t// D D.H . Qc.t//D.H .R�1//H .1<�/˘.bs �
bs�1/ C D.H . Qc.t//D.H .R�1//D.H .1D

� //.˘.1 � bs/H .1/ � H .L//. We
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obtain a similar formula for the final payments .ujT;s/j2N . The HTF of the

matrix QAs.t/ WD . Qaj;ks .t//j;k2N can be set up similarly. Therefore, the matrix
S WD .Lk � Lj /j;k2N is required. The HTF of this matrix can be obtained by
H .S/ D H .1 � 1T /D.H .L// � D.H .L//H .1 � 1T /. As before, the HTF of
the matrix S.�1/ containing the reciprocals of the entries of S can be found by
solving D.S/x D H .1/ for x and setting H .S.�1// WD x. Defining A .v;w/ WD
D.H .V//H .. Qai;j .t//i;j2N /D.H .w//, we obtain

H . QAs.t// D A .1D
s ;1

D
s /

C D.A .1<s ;1
D
s //D.H .S.�1///.H .1 � 1T /.D.H .L// � D.H .1//˘bs�1//

C D.A .1<s ;1
>
s //D.H .S.�1///.H .1 � 1T /.D.H .1//˘.bs � bs�1//

C D.A .1D
s ; 1

>
s //D.H .S.�1///.H .1 � 1T /.D.H .1//˘bs/ � D.H .L///:

With these adapted payments, the value of a portfolio tranche can now be deter-
mined. A key point of this approach is the construction of the HTF of the vectors1<s ,
1D
s and 1>s . This can be computed by H .1<s / WD max f˘bs�1H .1/� H .L/; 0g
.˘bs�1H .1/ � H .L//�1, H .1>s / WD max fH .L/ �˘bsH .1/; 0g .H .L/ �
˘bsH .1//�1 and H .1D

s / WD H .1/ � H .1<s / � H .1>s /. The component-wise
maxfH .�/; 0g of any HT-vector can be determined via maxfH .�/; 0g D 1

2
.H .�/C

jH .�/j/. The absolute value jH .w/j can be computed by the component-wise
Newton iteration H .w.nC1// D H .w.n// � D..H .w.n///�1/D.H .w//H .w/.
Note, that each iteration step requires the component-wise inversion of an HT-
vector, i.e., the solution of a linear system. Let 
 be such that w.
/ is of the desired
accuracy, then jH .w/j 	 H .w.
//. Essentially, this corresponds to jxj D p

x2,
the well-known Babylonian method, which converges quadratically for non-zero
values. Moreover, for vectors w.0/ with positive entries, it always converges to the
positive solution.

16.7 The Kronecker Product

The Kronecker product is a well-known technique when dealing with high dimen-
sional problems, as it often provides the decomposition of a high dimensional
problem into a product of problems of low dimension. The following facts can be
found in [31, 39]. We note that all subsequent properties can also be extended to
(infinite) countable index sets J .

Definition 16.4. The Kronecker productA˝B 2 R
mAmB�nAnB ofA 2 R

mA�nA and
B 2 R

mB�nB is defined by .A˝ B/.�1�1/mBC�2;.
1�1/nBC
2 WD A�1;
1B�2;
2 .

Lemma 16.6. Let A 2 R
mA�nA , B 2 R

mB�nB , C 2 R
mC�nC , D 2 R

mD�nD and

 2 R. Then: (1) .A ˝ B/T D AT ˝ BT , (2) .A ˝ B/�1 D A�1 ˝ B�1, (3)
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.A˝ B/.C ˝D/ D AC ˝ BD, if nA D mC and nB D mD , (4) A˝ .B ˝ C/ D

.A˝B/˝C , (5)A˝.BCC/ D A˝BCA˝B and .BCC/˝A D B˝ACC˝A,
(6) 
.A˝B/ D .
A/˝B D A˝.
B/, (7) tr.A˝B/ D tr.A/tr.B/, (8) ifmA D nA
and mB D nB , then det.A ˝ B/ D .det.A//nB .det.B//nA , (9) rank.A ˝ B/ D
rank.A/rank.B/:

Definition 16.5. LetA 2 R
mA�nA . Its vectorization is vec.A/ WD .AT�;1; : : : ; AT�;nA/

T ,
where A�;i , i 2 f1; : : : ; nAg; is the i -th column of the matrix A.

Lemma 16.7 ([31, (2)]). Let A 2 R
mA�nA ; B 2 R

mB�nB ; C 2 R
mB�mA;X 2

R
nB�nA , then .A˝ B/vec.X/ D vec.C / if and only if BXAT D C .

Definition 16.6. Let Ak;� 2 R
K� , � 2 N , k D 1; : : : ; m, m 2 N. Then, we define

the Kronecker tensor as AAA WD Pm
kD1

N
�2N Ak;� 2 R

K .

Definition 16.7. The Kronecker sum of Ak 2 R
nk�nk , k D 1; : : : ; m, is defined asLm

kD1 Ak WD Pm
kD1

˚Nk�1
`D1 In`�n` ˝Ak ˝Nm

`DkC1 In`�n`
� 2 R

.n1���nm/�.n1���nm/.

Obviously, the Kronecker sum is a special case of the Kronecker tensor, where
Ak;� D ık;`Ak C .1 � ık;`/In`�n`
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Chapter 17
Computational Methods for the Fourier
Analysis of Sparse High-Dimensional Functions

Lutz Kämmerer, Stefan Kunis, Ines Melzer, Daniel Potts, and Toni Volkmer

Abstract A straightforward discretisation of high-dimensional problems often
leads to a curse of dimensions and thus the use of sparsity has become a popular tool.
Efficient algorithms like the fast Fourier transform (FFT) have to be customised to
these thinner discretisations and we focus on two major topics regarding the Fourier
analysis of high-dimensional functions: We present stable and effective algorithms
for the fast evaluation and reconstruction of multivariate trigonometric polynomials
with frequencies supported on an index set I 
 Z

d .

17.1 Introduction

Let d 2 N be the spatial dimension and T
d D R

d =Zd ' Œ0; 1/d denote the
torus. We consider multivariate trigonometric polynomials f W T

d ! C with
Fourier coefficients Ofk 2 C supported on the frequency index set I 
 Z

d of finite
cardinality. The evaluation of the trigonometric polynomial

f .x/ D
X

k2I
Ofk e2� ik�x (17.1)

at a sampling set X 
 T
d of finite cardinality can be written as the matrix-vector

product

f D A Of; f D .f .x//x2X 2 C
jX j; Of D . Ofk/k2I 2 C

jIj; (17.2)
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with the Fourier matrix

A D A.X ; I/ D �
e2� ik�x�

x2X ;k2I 2 C
jX j�jIj:

We are interested in the following two problems:

1. Evaluation: given a support I 
 Z
d , Fourier coefficients Ofk 2 C, k 2 I, and

sampling nodes X D fx` 2 T
d W ` D 0; : : : ; L � 1g, evaluate the trigonometric

polynomial (17.1) efficiently, i.e., compute f D AOf by means of a fast algorithm.
2. Reconstruction: given a support of Fourier coefficients I 
 Z

d , construct
a set of sampling nodes X 
 T

d with small cardinality L D jX j which
allows for the unique and stable reconstruction of all multivariate trigonometric
polynomials (17.1) from their sampling values f .x`/. In particular, solve the
system of linear equations AOf 	 f.

As an extension to the reconstruction problem, we considered the efficient approxi-
mate reconstruction of a smooth function from subspaces of the Wiener algebra by
a trigonometric polynomial (17.1), which guarantees a good approximation to the
function, cf. [37, 38].

17.2 Evaluation of Multivariate Trigonometric Polynomials

One cornerstone in numerical Fourier analysis is the fast computation of certain
trigonometric sums. A straightforward evaluation of the trigonometric polyno-
mial (17.1) at all sampling nodes X 
 T

d , or equivalently the matrix vector
multiplication (17.2), takes a quadratic number O.jX j � jIj/ of floating point
operations. For equidistant cartesian grids, the well known fast Fourier transform
(FFT) reduces this complexity to an almost linear scaling and this has proven an
important reason for the success of numerical Fourier analysis in the last century.
More recently, the concept of sparse discretisations has gained a lot of attention
and we discuss three variants for the evaluation of sparse trigonometric sums
subsequently.

17.2.1 Fast Fourier Transform

We consider multivariate trigonometric polynomials with frequencies supported on
the full grid, i.e., with Fourier coefficients Ofk are defined on the full d -dimensional
set I WD OGd

n D Z
d \ �d

jD1.�2n�1; 2n�1� of refinement n 2 N and bandwidthN D
2n with the cardinality jIj D Nd . The evaluation of the trigonometric polynomial

f .x/ D
X

k2 OGdn

Ofk e2� ik�x (17.3)
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at all sampling nodes of an equispaced grid x 2 X D .2�n OGd
n mod 1/, with

the cardinality jX j D Nd , requires only O.2ndn/ D O.N d logN/ floating
point operations by the famous fast Fourier transform (FFT). A well understood
generalisation considers an arbitrary sampling set X D fx` 2 T

d W ` D 0; : : : ;

L � 1g and leads to the so-called nonequispaced fast Fourier transform (NFFT)
which takes O.2ndn C j log "jdL/ D O.N d logN C j log "jdL/ floating point
operations for a target accuracy " > 0, see e.g. [5, 16, 40, 52, 60] and the references
therein. In both cases, already the huge cardinality of the support OGd

n of the Fourier
coefficients Ofk causes immense computational costs for high dimensions d even for
moderate refinement n. Hence, we restrict the index set I to smaller sets.

17.2.2 Hyperbolic Cross FFT

Functions of dominating mixed smoothness can be well approximated by multi-
variate trigonometric polynomials with frequencies supported on reduced frequency
index sets, so called dyadic hyperbolic crosses

I D Hd
n WD

[

j2Nd0kjk1Dn

�
Z
d \ �d

lD1.�2jl�1; 2jl�1�
	

of dimension d and refinement n, cf. [58]. Compared to the trigonometric poly-
nomial in (17.3), we strongly reduce the number of used Fourier coefficients
jHd

n j D O.2nnd�1/ � 2nd. A natural spatial discretisation of trigonometric
polynomials with frequencies supported on the dyadic hyperbolic crossHd

n is given
by the sparse grid

X D Sdn WD
[

j2Nd0kjk1Dn

�d
lD12�jl .N0 \ Œ0; 2jl //:

The cardinalities of the sparse grid and the dyadic hyperbolic cross are jSdn j D
jHd

n j D O.2nnd�1/: Figure 17.1a(left) shows an example for a two-dimensional
dyadic hyperbolic cross and Fig. 17.1a(right) depicts the corresponding sparse grid
of identical cardinality. Based on [3, 27] there exists a fast algorithm for evaluating
the trigonometric polynomial with frequencies supported on the hyperbolic cross
Hd
n at all x 2 Sdn in O.2nnd / floating point operations, called hyperbolic cross fast

Fourier transform (HCFFT). A generalisation to sparser index sets, i.e., to index sets
for so called energy-norm based hyperbolic crosses, is presented in [22].
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Fig. 17.1 (a) Dyadic hyperbolic crossH2
5 (left) and sparse grid S25 (right). (b) Rank-1 lattice (left)

and generated set 	.r;M/ (right), M D 163

17.2.3 Lattice and Generated Set FFT

Using lattices as sampling set X is motivated from the numerical integration of
functions of many variables by lattice rules, see [14, 48, 59] for an introduction.
In contrast to general lattices which may be spanned by several vectors, we
only consider so-called rank-1 lattices and a generalisation of this concept called
generated sets [32]. For a given number L 2 N of sampling nodes and a generating
vector r 2 R

d , we define the generated set

X D 	.r; L/ WD fx` D `r mod 1; ` D 0; : : : ; L � 1g 
 T
d :

For ` D 0; : : : ; L � 1, the evaluation of a d -variate trigonometric polynomial
supported on an arbitrary frequency index set I simplifies dramatically since

f .x`/ D
X

k2I
Ofk e2� ik�x` D

X

k2I
Ofk e2� i`k�r D

X

y2Y
Ogy e2� i`y; (17.4)

with some set Y D fk � r mod 1 W k 2 Ig 
 T and the aliased coefficients

Ogy D
X

k�r�y .mod 1/

Ofk: (17.5)

Using a one-dimensional adjoint NFFT [40], this takes O.L logLC.dCj log "j/jIj/
floating point operations for a target accuracy " > 0. Moreover, given L 2 N

and a generating vector r D z=L, z 2 Z
d , the sampling scheme 	.r; L/

is called rank-1 lattice and the computational costs of the evaluation reduce to
O.L logL C d jIj/ by applying a one dimensional FFT. We stress on the fact that
in both cases, the computational costs only depend on the number L of samples
subsequent to the aliasing step (17.5) which takes d jIj floating point operations.
Figure 17.1b(left) and 17.1b(right) show an example for a two-dimensional rank-1
lattice and generated set, respectively.
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17.2.4 Butterfly Sparse FFT

Another generalisation of the classical FFT to nonequispaced nodes has been
suggested in [1,41,63]. While the above mentioned NFFT still relies on a equispaced
FFT, the so-called butterfly scheme only relies on local low rank approximations of
the complex exponentials – in particular this locality allows for its application to
sparse data. The idea of local low rank approximations can be traced back at least
to [4,21,26,64] for smooth kernel functions and to [13,46,49,62,65] for oscillatory
kernels. In a linear algebra setting, it was pointed out in [17] that certain blocks of
the Fourier matrix are approximately of low rank.

We consider real frequencies I 
 Œ0; 2n/d and nonequispaced evaluation nodes
x` 2 X 
 Œ0; 1/d in

f .x`/ D
X

k2I
Ofk e2� ik�x` ; ` D 0; : : : ; L � 1: (17.6)

For ease of notation, we outline the main idea for the one-dimensional case. We
decompose both domains dyadically starting with the whole interval Œ0; 2n/ and
Œ0; 1/ as root, respectively, see also Fig. 17.2(left, middle). Each pair of a frequency
interval in the .n � j /-th level and a space interval in the j -th level now fulfils
the admissibility condition diam.I 0/diam.X 0/ � 1. These pairs are depicted in
Fig. 17.2(right), where an edge in this butterfly graph is set if and only if the
associated pairs of intervals are connected in both trees.

We note that the properly frequency shifted exponential function is a smooth
function within the admissible region and can be well approximated by a trigono-
metric sum with equispaced frequencies interpolating in Chebyshev nodes, see [41,
Thm. 2.6] for details.

The generalisation to spatial dimension d � 2 is straightforward by decomposing
I 
 Œ0; 2n/d and X 
 Œ0; 1/d dyadically in each coordinate, using a tensor product
ansatz, and interpolate in a product grid. The butterfly scheme now traverses the
butterfly graph top down. We start in the zeroth level, sum frequencies in the finest

X00

X10 X11

X20 X21 X22 X23 I00

I10 I11

I20 I21 I22 I23 X00,I20 X00,I21 X00,I22 X00,I23

X10,I10 X10,I11 X11,I10 X11,I11

X20,I00 X21,I00 X22,I00 X23,I00

Butterfly graphtree.tree.X I

Fig. 17.2 Trees and butterfly graph for N D 4
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decomposition, and approximate on the whole spatial domain. In each subsequent
level, we sum up two predecessors including more frequencies and approximate on
each smaller spatial box. The final approximation is a function piecewise defined
on the finest spatial decomposition. The butterfly scheme guarantees the following
target accuracy.

Theorem 17.1 ([41, Thm. 3.1]). Let d; n; p 2 N, p � 5, I 
 Œ0; 2n/d , X 

Œ0; 1/d , and the trigonometric sum f as in (17.6), then the butterfly approximation
g obeys the error estimate

kf � gk1 � .Cp C 1/.C
d.nC1/
p � 1/

Cp � 1
cpkOfk1:

The constants are explicitly given by

Kp WD
 

2�2�
1�cos 2�

p�1

	
.p�1/2

!p�1
; Kp � �4

16
; lim

p!1Kp D 1;

Cp WD p
Kp

�
1C 2

�
logp

�
; cp WD 1

�p

�
�

p � 1

�p
:

In particular, the butterfly scheme achieves relative error at most " if the local
expansion degree fulfils p � maxf10; 2j log "j; 2d.nC 1/g.

In case 1 � t < d and jX j D jIj D 2nt well distributed sets on smooth
t-dimensional manifolds, the dyadic decompositions of the sets remain sparse.
Consequently, the butterfly graph, which represents the admissible pairs where
computations are performed, remains sparse as well and the computation of (17.6)
takes O.2ntn.nC j log "j/dC1/ floating point operations only.

17.3 Reconstruction Using Multivariate Trigonometric
Polynomials

Beyond the fast evaluation of Fourier expansions, the sampling problem is con-
cerned with the recovery of the Fourier coefficients Ofk 2 C, k 2 I, from
a sequence of function samples f`, ` D 0; : : : ; L � 1. This inverse transform
constructs a trigonometric polynomial f , see (17.1), such that for given data points
.x`; f`/ 2 T

d � C, ` D 0; : : : ; L� 1; the approximate identity

f .x`/ 	 f`

is fulfilled. Thus, we aim to solve the linear system of equations AOf 	 f, i.e., we
compute the vector of Fourier coefficients Of D . Ofk/k2I 2 C

jIj from the given vector
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of function samples f D .f`/`D0;:::;L�1 2 C
L. In contrast to the ordinary Fourier

matrix, its generalized analogue A is in general neither unitary nor square. The
meaningful variants of this reconstruction problem include

1. The weighted least squares approximation

kf � AOfk2W D
L�1X

`D0
w`jf` � f .x`/j2

Of! min; (17.7)

for the over-determined case jIj < L D jX j, where the weights w` compensate
for clusters in the sampling set,

2. The optimal interpolation problem

kOfk2OW�1 D
X

k2I

j Ofkj2
Owk

Of! min subject to AOf D f; (17.8)

for the under-determined case jIj > L D jX j, where the weights Owk damp
high-frequency components, and

3. The sparse recovery problem

kOfk0 D jfk 2 I W Ofk ¤ 0gj Of! min subject to AOf D f; (17.9)

for the under-determined case jIj > L D jX j.
The main tool in iterative methods to solve these three problems is the use of fast
matrix-vector multiplications with the Fourier matrix A and its adjoint A� as well
as bounding involved condition numbers uniformly.

In the following subsections, we focus on the reconstruction of a multivariate
trigonometric polynomial (17.1) from sampling values using different sampling
schemes. Therefor, we consider different types of sampling sets X as introduced in
Sect. 17.2. We discuss necessary and sufficient conditions on the frequency index set
I and sampling set X such that the unique and stable reconstruction is guaranteed.

17.3.1 FFT and NFFT

Analog to Sect. 17.2.1, we consider multivariate trigonometric polynomials with
frequencies supported on the full grid I D OGd

n . The reconstruction of the Fourier
coefficients Ofk, k 2 OGd

n , from sampling values at an equispaced grid x 2 X D
.2�n OGd

n mod 1/, see (17.3), can be realized by the inverse fast Fourier transform,
since the Fourier matrix F WD A.2�n OGd

n ;
OGd
n / has orthogonal columns, and takes

O.N d logN/ floating point operations. This is no longer true for the nonequispaced
Fourier matrix given by
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A WD A.X ; OGd
n / D �

e2� ik�x`�
`D0;:::;L�1;k2 OGdn :

Here, we use an iterative algorithm since the fast matrix times vector multiplication
with the matrix A and A� takes only O.2ndnCj log "jdL/ floating point operations,
see [40]. The conditioning of the reconstruction problems relies on the uniformity
of X , measured by the mesh norm and the separation distance

ı WD 2max
x2Td

min
jD0;:::;L�1 dist.xj ; x/; q WD min

j;lD0;:::;L�1Ij¤l
dist

�
xj ; xl

�
;

where dist .x; x0/ WD minj2Zd k.x C j/� x0k1, respectively.
For the overdetermined case Nd < L, it has been proven in [24] that the

reconstruction problem (17.7) has a unique solution if N < . �
log 2 d ı/

�1. The
solution is computed iteratively by means of the conjugate gradient method in
[2, 18, 23], where the multilevel Toeplitz structure of A�WA is used for fast matrix
vector multiplications. Slightly more stable with respect to rounding errors is the
CGNR method, cf. [6, pp. 288], which iterates the original residual rl D y � AOfl
instead of the residual A�Wrl of the normal equations. Further analysis of the
numerical stability of the least squares approximation (17.7) relies on so-called
Marcinkiewicz-Zygmund inequalities which establish norm equivalences between
a trigonometric polynomial and its samples, see e.g. [19, 39, 45, 61] and references
therein for specific variants.

For the underdetermined case Nd > L, the optimal interpolation problem (17.8)
has been shown to be stable in [42] if the sampling set is well separated with respect
to the polynomial degree and the weights Owk are constructed by means of a so-called
smoothness-decay principle. In particular, we proved that the nonequispaced Fourier
matrix A has full rank L for every polynomial degreeN > 2d q�1 and proposed to
solve problem (17.8) by a version of the conjugate gradient method in combination
with the NFFT to efficiently perform each iteration step.

17.3.2 Hyperbolic Cross FFT

For the HCFFT, see Sect. 17.2.2, there also exists a fast inverse algorithm. This
inverse HCFFT is not an orthogonal transform and is realized by reverting all steps
of the HCFFT, see [3, 27], which makes this spatial discretisation most attractive
in terms of efficiency. Therefore, the inverse HCFFT requires also only O.2nnd /
floating point operations. However, we proved in [35] that this transform is mildly
ill conditioned, since the condition numbers of the Fourier matrices A.Sdn ;H

d
n / are

bounded by

cd2
n
2 n

2d�3
2 � cond2A.Sdn ;H

d
n / � Cd2

n
2 n2d�2; n ! 1;

cnd
2n � cond2A.Sdn ;H

d
n / � Cnd

2n; d ! 1:
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In particular, we loose more than 5 decimal digits of accuracy already for d D 10

and n D 5 in the worst case.

17.3.3 Lattice and Generated Set FFT

As pointed out in Sect. 17.2.3, the evaluation of multivariate trigonometric poly-
nomials with frequencies supported on an arbitrary index set I, i.e., the mapping
from the index set I in frequency domain to the rank-1 lattice in spatial domain
reduces to a single one-dimensional FFT and thus can be computed very efficiently
and stable. For the inverse transform, mapping the samples of a trigonometric
polynomial to its Fourier coefficients on a specific frequency index set, we discuss
the recently presented necessary and sufficient conditions on rank-1 lattices allowing
a stable reconstruction of trigonometric polynomials with frequencies supported on
hyperbolic crosses and the generalisation to arbitrary index sets in the frequency
domain. Based on research results in the field of numerical integration [12], we
suggest approaches for determining suitable rank-1 lattices using a component–by–
component strategy, see [33,34]. In conjunction with numerically found lattices, we
showed that this new method outperforms the classical hyperbolic cross FFT for
realistic problem sizes, cf. [36].

The use of generated sets, a generalisation of rank-1 lattices, as spatial discreti-
sations offers an additional suitable possibility for sampling sparse trigonometric
polynomials. The fast computation of trigonometric polynomials on generated sets
can be realized using the NFFT. A simple sufficient condition on a generated
set 	.r; L/ allows the fast, unique and stable reconstruction of the frequencies
of a d -dimensional trigonometric polynomial from its samples along 	.r; L/. In
contrast to searching for suitable rank-1 lattices, we can use continuous optimization
methods in order to determine generated sets that are suitable for reconstruction,
see [32].

Reconstruction using rank-1 lattices. In the following, a rank-lattice that allows
for the unique reconstruction of all trigonometric polynomials with frequencies
supported on the frequency index set I is called reconstructing rank-lattice for I.
In order to state constructive existence results for reconstructing rank-1 lattices, we
define the difference set

D.I/ WD fk � lW k; l 2 Ig

of the frequency index set I. As a consequence of [34, Cor. 1] we formulate the
following

Theorem 17.2. Let I 
 fk 2 Z
d W k � a 2 Œ0; jIj � 1�d g for a fixed a 2 Z

d being
a frequency index set of finite cardinality. Then there exists a reconstructing rank-1
lattice of prime cardinality L,
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jIj � L � jD.I/j � jIj2; (17.10)

such that all multivariate trigonometric polynomials f with frequencies supported
on I can be reconstructed from the sampling values .f .x//x2	.r;L/. Moreover, the
corresponding generating vector r 2 L�1

Z
d can be determined using a component–

by–component strategy and the reconstruction of the Fourier coefficients can be
realized by a single one-dimensional FFT of length L, and thus takes O.L logLC
d jIj/ floating point operations.

Proof. The result follows from [34, Cor. 1], Bertrand’s postulate, and Eqs. (17.4)
and (17.5). ut

We stress on the fact, that [34, Cor. 1] is a more general result on arbitrary
frequency index sets I. Some simple additional assumptions on L allow to replace
the condition I 
 fk 2 Z

d W k � a 2 Œ0; jIj � 1�d g by I 
 Z
d , jIj < 1.

In fact, the cardinality of the difference set D.I/ is the theoretical upper
bound in (17.10) for the number of samples needed to reconstruct trigonometric
polynomials with frequencies supported on the index set I using a rank-1 lattice.
This cardinality depends mainly on the structure of I.

Example 17.1. Let I D I dp;N WD fk 2 Z
d W kkkp � N g, N 2 N, be the `p-ball, 0 <

p � 1, of size N , see Fig. 17.3. The cardinality of I dp;N is bounded by cp;dN d �
jI dp;N j � CdN

d and cp;dN d � D.I dp;N / � Cd2
dN d , cp;d ; Cd 2 R, 0 < cp;d � Cd .

Consequently, we can find a reconstructing rank-1 lattice of size L � QCp;d jI dp;N j,
QCp;d > 0, using a component–by–component strategy.

On the other hand, we obtain for the limit p ! 0 the frequency index set I WD
fk 2 Z

d W kkk1 D kkk1 � N g, N 2 N, which is supported on the coordinate axis.
We have jIj D 2dN C1 and .2NC1/2 � jD.I/j � .2dN C1/2. Hence, we estimate
Qcd jIj2 � jD.I/j, Qcd 2 R, 0 < Qcd , and the theoretical upper bound on L is quadratic
in jIj for fixed dimension d . In fact, reconstructing rank-1 lattices for these specific
frequency index sets need at least a number of L 2 ˝.N2/ nodes, cf. [36, Thm.
3.5]. ut
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Example 17.2. More useful frequency index sets in higher dimensions d > 2 are
so-called (energy-norm based) hyperbolic crosses, cf. [3, 7, 8, 66]. In particular, we
consider frequency index sets I of the form

Id;TN WD
(

k 2 Z
d W max.1; kkk1/ T

T�1

dY

sD1
max.1; jksj/ 1

1�T � N

)

;

with parameter T 2 Œ0; 1/ and N 2 N, see Fig. 17.4 for illustration. The frequency
index set Id;0N , i.e., T D 0, is in fact a symmetric hyperbolic cross and frequency
index sets Id;TN , T 2 .0; 1/, are called energy-norm based hyperbolic crosses. The
cardinality of Id;TN can be estimated, cf. [37, Lem. 2.6], by

cd;0N logd�1 N � jId;TN j � Cd;0N logd�1 N; for T D 0;

cd;T N � jId;TN j � Cd;TN; for T 2 .0; 1/;

where cd;T ; Cd;T 2 R, 0 < cd;T � Cd;T . Since the axis cross is a subset of the
considered frequency index sets, i.e., fk 2 Z

d W kkk1 D kkk1 � N g 
 Id;TN ,
T 2 Œ0; 1/, we obtain .2N C 1/2 � jD.Id;TN /j. On the other hand, we obtain upper
bounds of the cardinality of the difference set D.Id;TN /

jD.Id;TN /j � QCd;0N 2 logd�2 N; for T D 0; cf. [33, Thm. 4.8];

jD.Id;TN /j � jId;TN j2 � C2
d;T N

2; for T 2 .0; 1/:

Consequently, Theorem 17.2 offers a constructive strategy in order to find recon-
structing rank-1 lattices for Id;TN of cardinality L � jD.Id;TN /j. We would like to
stress that, at least for T 2 .0; 1/, we are able to construct rank-1 lattices of optimal
order in N , cf. [33, Lem. 2.1, 2.3, and Cor. 2.4].

For instance, Fig. 17.1b(left) shows a reconstructing rank-1 lattice for the sym-
metric hyperbolic cross I2;08 and Fig. 17.1b(right) shows an example for a generated
set, which allows the exact reconstruction of multivariate trigonometric polynomials
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with frequencies supported on I2;08 . The condition number of the Fourier matrix
A.X ; I/ is always one when X is a reconstructing rank-1 lattice for I, since the
columns of the Fourier matrix A.X ; I/ are orthogonal. When the frequency index
set I D I2;08 and X is the specific generated set in Fig. 17.1b(right), then the
condition number of the Fourier matrix A.X ; I/ is approximately 2:19. ut
Reconstruction using generated sets. Up to now, we discussed reconstruct-
ing rank-1 lattices. We generalized this concept to so-called generated sets, cf.
Sect. 17.2.3 and determined sufficient and necessary conditions on generated sets
	.r; L/ guaranteeing a full rank and stable Fourier matrix A.	.r; L/; I/ in [32].
In general, the set Y D fk � r mod 1 W k 2 Ig 
 T is of our main interest, where
r 2 R

d is the generating vector of the generated set 	.r; L/. We determined the
necessary condition jYj D jIj in order to obtain a Fourier matrix A.	.r; L/; I/ of
full column rank.

Theorem 17.3. Let I 
 Z
d be an arbitrary d -dimensional index set of finite

cardinality jIj. Then, the exact reconstruction of a trigonometric polynomial with
frequencies supported on I is possible from only jIj samples using a suitable
generated set.

Proof. Let r 2 R
d be a vector such that

k � r mod 1 ¤ k0 � r mod 1 for all k;k0 2 I; k ¤ k0: (17.11)

For instance, Theorem 17.2 guarantees the existence of a reconstructing rank-1 lat-
tice	.r; L/ for the index set I, where r 2 L�1

Z
d fulfills property (17.11). The cor-

responding Fourier matrix A WD .e2� ik�x` /`D0;:::;L�1I k2I D .e.2� ik�r/`/`D0;:::;L�1I k2I
is a transposed Vandermonde matrix of (full column) rank jIj. If we use only
the first jIj rows of the matrix A and denote this matrix by QA, the matrix
QA WD .e.2� ik�r/` /`D0;:::;jIj�1I k2I D .e.2� iyj /`/`D0;:::;jIj�1I jD0;:::;jIj�1 is a transposed
Vandermonde matrix of size jIj � jIj, where yj WD kj � r mod 1 and I D
fk0; : : : ;kjI j�1g in the specified order. Furthermore, the determinant of the trans-
posed Vandermonde matrix QA, cf. [31, Sec. 6.1], is det QA D Q

1�k<j�jI j�1.e2� iyj �
e2� iyk / ¤ 0, since we have e2� ik�r ¤ e2� ik0 �r for all k;k0 2 I, k ¤ k0, due to
property (17.11). This means the transposed Vandermonde matrix QA has full rank
jIj and is invertible. ut

Theorem 17.3 states that L D jIj many samples are sufficient to exactly
reconstruct a trigonometric polynomial with frequencies supported on the index
set I. In general, we obtain a large condition number for the Fourier matrix
QA WD .e.2� ik�r/`/`D0;:::;jIj�1I k2I . Using L > jIj samples, we also obtain matri-
ces A.	.r; L/; I/ of full column rank, since the first jIj rows of the matrix
A.	.r; L/; I/ are linear independent. In practice, growing oversampling, i.e.,
increasing L > jIj, decreases at least an estimator of the condition number of
A.	.r; L/; I/, as published in [32]. In this context, for each generating vector
r 2 R

d bringing jYj D jIj and constant C > 1 we determined a generated set
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of size LC such that the Fourier matrix A.	.r; LC /; I/ has a condition number of
at most C , cf. [32, Cor. 1]. We discuss a nonlinear optimization strategy in [32] in
order to determine generated sets 	.r; L/ of relatively small cardinality bringing a
Fourier matrix A.	.r; L/; I/ with small condition number.

The reconstruction of multivariate trigonometric polynomials with frequencies
supported on an fixed index set I from samples along a generated set can be
realized solving the normal equation, which can be done in a fast way using the
one-dimensional NFFT and a conjugate gradient (CG) method. One step of the
CG method needs one NFFT of length L and one adjoint NFFT of length L.
Consequently, one CG step has a complexity of O.L logL C .d C j log "j/jI j/,
cf. Sect. 17.2.3. The convergence of the CG method depends on the condition
number of the Fourier matrix A.	.r; L/; I/. Hence, generated sets 	.r; L/ with
small condition numbers of the Fourier matrices A.	.r; L/; I/ guarantee a fast
approximative computation of the reconstruction of trigonometric polynomials with
frequencies supported on the index set I.

17.3.4 Random Sampling and Sparse Recovery

Stable deterministic sampling schemes with a minimal number of nodes are
constructed above. For arbitrary index sets of frequencies I 
 Z

d , we showed that
orthogonality of the Fourier matrix necessarily implies jX j � jD.I/j which scales
(almost) quadratically in jIj for several interesting cases. In contrast, injectivity
of the Fourier matrix can be guaranteed for a linear scaling and numerical results
also support that a small oversampling factor suffices for stable reconstruction
generically. Subsequently, we discuss known results for randomly chosen sampling
nodes. Let d 2 N, arbitrary frequencies I 
 Z

d be given, and sampling nodes X
are drawn independently from the uniform distribution over the spatial domain T

d ,
then [25] implies

cond2A.X ; I/ �
s
1C �

1� �
; � 2 .0; 1/; if jX j � C

�2
jIj log

jIj
�
;

with probability 1 � �, where C > 0 is some universal constant independent of
the spatial dimension d . A partial derandomization can be obtained by randomly
subsampling a fixed rank-1 lattice as constructed in Theorem 17.2.

Moreover, random sampling has been applied successfully in compressed sens-
ing [9, 15, 20] to solve the sparse recovery problem (17.9), where both the support
I 
 I0 
 Z

d as well as the Fourier coefficients Ofk 2 C, k 2 I, of the
expansion (17.1) are sought. Provided a so-called restricted isometry condition is
met, the sparse recovery problem can be solved efficiently, cf. [10, 43, 47, 55–57],
and with probability at least 1 � � this is true if
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jX j � C jIj log4 jI0j log
1

�
:

Well studied algorithmic approaches to actually solve the sparse recovery problem
are then `1-minimisation [11], orthogonal matching pursuit [44], and their succes-
sors. Optimal variants of these algorithms have the same arithmetic complexity as
one matrix vector multiplication with A.X ; I0/, which is however worse than the
recent developments [28, 29].

Prony type methods. In contrast to compressed sensing approaches, Prony type
methods aim to recover the finite and real support I within the bounded interval
Œ�N

2
; N
2
� as well as the Fourier coefficients in the nonharmonic Fourier series

f .x/ D
X

k2I
Ofke2� ikx;

from equally spaced samples f . `
N
/, ` D 0; : : : ; L�1, cf. [50,51,53]. If the number

of samples fulfils a Nyquist type relation

jX j � CNq�1
I

with respect to the nonharmonic bandwidth N and to the separation distance
qI WD minfjk � k0j W k; k0 2 I; k ¤ k0g, then a newly developed variant of the
Prony method solves this reconstruction problem in a stable way, see e.g. [54]. The
arithmetic complexity O.jIj3/ has been improved for integer frequencies in [30]
using ideas from [28, 29].
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Chapter 18
Sparsity and Compressed Sensing in Inverse
Problems

Evelyn Herrholz, Dirk Lorenz, Gerd Teschke, and Dennis Trede

Abstract This chapter is concerned with two important topics in the context
of sparse recovery in inverse and ill-posed problems. In first part we elaborate
conditions for exact recovery. In particular, we describe how both `1-minimization
and matching pursuit methods can be used to regularize ill-posed problems and
moreover, state conditions which guarantee exact recovery of the support in the
sparse case. The focus of the second part is on the incomplete data scenario.
We discuss extensions of compressed sensing for specific infinite dimensional ill-
posed measurement regimes. We are able to establish recovery error estimates when
adequately relating the isometry constant of the sensing operator, the ill-posedness
of the underlying model operator and the regularization parameter. Finally, we very
briefly sketch how projected steepest descent iterations can be applied to retrieve
the sparse solution.

18.1 Introduction

Many applications in science and engineering require the solution of an operator
equation Kx D y. Often only noisy data yı with kyı � yk � ı are available, and
if the problem is ill-posed, regularization methods have to be applied. During the
last three decades, the theory of regularization methods for treating linear problems
in a Hilbert space framework has been well developed, see, e.g., [23, 29, 30, 39].
Influenced by the huge impact of sparse signal representations and the practical
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feasibility of advanced sparse recovery algorithms, the combination of sparse signal
recovery and inverse problems emerged in the last decade as a new growing area.
Currently, there exist a great variety of sparse recovery algorithms for inverse
problems (linear as well as for nonlinear operator equations) within this context,
see, e.g., [5–7, 14–16, 25, 26, 41, 44, 45]. These recovery algorithms are successful
for many applications and have lead to breakthroughs in many fields. However, the
feasibility is usually limited to problems for which the data are complete and where
the problem is of moderate dimension. For really large-scale problems or problems
with incomplete data, these algorithms are not well-suited and often far off exact
recovery or fail completely.

Within this chapter we focus on two neighboring questions arising in sparse
recovery of solutions of inverse problems. The first is concerned with exact recovery
conditions in the complete data scenario, and the second is concerned with sparse
recovery in the compressively sensed data scenario.

Exact recovery. The two most widely used recovery methods, namely `1-mini-
mization and matching pursuit methods, can be related to two classical methods for
regularization of ill-posed problems: `1-minimization is a special case of variational
regularization in which the operator equation Kx D y is replaced by a well-posed
minimization problem with a sparsity constraint. Matching pursuit methods are
related to iterative regularization methods in which one uses an iterative method
to solve the operator equation and uses a stopping criterion to prevent noise
amplification. We describe how both `1-minimization and matching pursuit methods
can be used to regularize ill-posed problems and moreover, state conditions which
guarantee exact recovery of the support in the sparse case.

Compressive sensing. For the incomplete data situation, the mathematical technol-
ogy called compressive sensing, which turned out to be quite successful in sparse
signal recovery, was established several years ago by D. Donoho, see [18]. A major
breakthrough was achieved when it was proven that it is possible to reconstruct
a signal from very few measurements under certain conditions on the signal and
the measurement model, see [8–10, 18–20, 24, 42]. In [12] it was shown that if
the sensing operator satisfies the restricted isometry property the solution can be
reconstructed exactly by minimization of an `1 constrained problem, provided
that the solution is sparse enough. Classical formulations of compressed sensing
are finite dimensional. Quite recently, continuous formulations have appeared,
see [1] (full continuous sensing model) and see, e.g., [22, 33, 38] (problem of
analog-to-digital conversion). Within this chapter we summarize extensions of the
infinite dimensional model in [22] to the case of compressively sampling ill-posed
problems and provide iterative sparse recovery principles and corresponding error
estimates, for detailed discussions see [31]. Further extensions towards generalized
and compressive sampling also on the context of ill-posed problems can be found in
[2, 3], and [4].
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18.2 Exact Recovery for Ill-Posed Problems

In this section we describe how both `1-minimization and matching pursuit methods
can be used to regularize ill-posed problems and moreover, state condition which
guarantee exact recovery of the support in the sparse case.

18.2.1 Orthogonal Matching Pursuit

In a Banach space X , we assume that we have a given dictionary of unit-normed
atoms .ei / D E . We assume that the solutions to an operator equation Kx D y (with
K W X ! Y bounded, injective and linear and Y a Hilbert space) can be expressed
sparsely in E , i.e. that

x D
X

i2Z
˛iei with ˛i 2 R; k˛k`0 DW N < 1:

Now assume that instead of y D Kx we are given a noisy measurement y" with
ky � y"k � " and aim to recover a good approximation of x from the measurement
y".

In the following we denote with I the support of the coefficient vector ˛, i.e. I D
fi 2 Z j ˛i ¤ 0g. For any subset J 
 Z we denote E .J / WD fei j i 2 J g.

The above setting is of practical relevance, e.g. in mass spectrometry [32]
where the signal is modeled as a sum of Dirac peaks (so-called impulse trains)
x D P

i2Z
˛i ı.� � ti /. Another example can be found in digital droplet holography,

cf. [43], where images arise as superposition of characteristic functions of balls with
different centers ti and radii rj , x D P

i;j2Z
˛i;j �Brj .� � ti /.

In this section we approach the problem “Kx D y"” by iteratively including more
and more atoms in the representation of x in a “greedy” fashion—an algorithmic
idea which is also known under the name matching pursuit. We define another
normed dictionary

D WD fdigi2Z WD
n Kei

kKeik
o

i2Z:

Note that D is well defined by the injectivity of K . In any step of our iterative
method we select that atom from the dictionary D which is correlates most with
the residual (hence the name “greedy” method). To stabilize the solution of “Kx D
y"” the iteration has to be stopped early enough. We only investigate the so-called
orthogonal matching pursuit (OMP), first proposed in the signal processing context
by Davis et al. in [36] and Pati et al. in [40] as an improvement upon the matching
pursuit algorithm [37]. The algorithm is stated in Fig. 18.1.
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Fig. 18.1 Orthogonal matching pursuit

Necessary and sufficient conditions for exact support recovery by OMP are given
in [46]. Next, we list this result in the language of infinite-dimensional inverse
problems. We define the linear continuous synthesis operator for the dictionary D
via D W `1 ! Y , Dˇ D P

i2Z
ˇidi D P

i2Z
ˇi

KeikKeik . Furthermore, for J 
 Z we denote

with PJ W `1 ! `1 the projection onto J and with A� the pseudoinverse of an
operator A. With this notation we state the following theorem.

Theorem 18.1 (Tropp [46]). Let ˛ 2 `0 with supp˛ D I , x D P
i2Z ˛iei be the

source and y D Kx the measured signal. If the operator K W X ! Y and the
dictionary E D feigi2Z fulfill the Exact Recovery Condition (ERC)

sup
d2D.I{/

k.DPI /
�dk`1 < 1; (18.1)

then OMP with its parameter " set to 0 recovers ˛ exactly.

The necessity of the condition (18.1) is shown in [46], by constructing a signal such
that for � 1 in (18.1), OMP fails to recover it.

A weaker sufficient condition is derives by Dossal and Mallat [21] and Gribonval
and Nielsen [28] and this condition only depends on inner products of the dictionary
atoms of D.I / and D.I {/ only and hence, is simpler to evaluate (although the
condition is not necessary).

Proposition 18.1 (Dossal and Mallat [21], Gribonval and Nielsen [28]). Let ˛ 2
`0 with supp˛ D I ,. If the operator K W X ! Y and the dictionary E D feigi2Z
fulfill the Neumann ERC

sup
i2I

X

j2I; j¤i
jhdi ; dj ij C sup

i2I{

X

j2I
jhdi; dj ij < 1; (18.2)

then OMP with its parameter " set to 0 recovers ˛.

The transfer to noisy signals y" D y C � D Kx C � with kv � v"k D k�k � "

(where OMP has to stop as soon as " � krkk) is contained in the following theorem
from [17].

Theorem 18.2 (ERC in the Presence of Noise). Let ˛ 2 `0 with supp˛ D I . Let
x D P

i2Z ˛iei be the source and y" D Kx C � the noisy data with noise level
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k�k � " and noise-to-signal-ratio

r"=˛ WD
sup
i2Z

jh�; diij
min
i2I j˛i jkKeik :

If the operator K and the dictionary E fulfill the Exact Recovery Condition in
Presence of Noise ("ERC)

sup
d2D.I{/

k.DPI /
�dk`1 < 1 � 2 r"=˛ 1

1 � sup
i2I

P

j2I; j¤i
jhdi; dj ij ; (18.3)

and sup
i2I

P

j2I; j¤i
jhdi ; dj ij < 1, then OMP recovers the support I of ˛ exactly.

To ensure the "ERC (18.3) one has necessarily for the noise-to-signal-ratio r"=˛ <
1=2. A rough upper bound for supi2Z jh�; diij is " and hence, one may use r"=˛ �
"=.min

i2I j˛i jkKeik/.
Similarly to the result of Dossal and Mallat, one can give a weaker sufficient

recovery condition that depends on inner products of the dictionary atoms. It is
proved analogously to Proposition 18.1 (see [17]).

Proposition 18.2 (Neumann ERC in the Presence of Noise). If the operator K
and the dictionary E fulfill the Neumann "ERC

sup
i2I

X

j2I; j¤i
jhdi ; dj ij C sup

i2I{

X

j2I
jhdi ; dj ij < 1 � 2 r"=˛; (18.4)

then OMP recovers the support I of ˛ exactly.

Theorem 18.2 and Proposition 18.2 ensure that the correct support I is identified
and the following proposition additionally shows that the reconstruction error is of
the order of the noise level.

Proposition 18.3 (Error bounds for OMP in presence of noise). If the "ERC is
fulfilled then there exists a constant C > 0 such that for the approximative solution
Ǫ determined by OMP it holds that k Ǫ � ˛k`1 � C".

The proof can also be found in [17]

18.2.2 `1-Minimization

In `1-minimization one promotes sparsity of the approximate solution of Kx D y"

by a sparsity constraint. In this section we assume that x itself is the object which is
sparse, i.e. x 2 `2 with jsuppxj D N < 1. A typical sparsity constraint is given by
the `1-norm and hence, we investigate the minimization problem
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min
x

n
T�.x/ D 1

2
kKx � y"k2 C �kxk`1

o
:

This method is also called Basis Pursuit Denoising [13].
In [27, 34] it has been shown that `1 minimization is indeed a regularization

method and also an error estimate have been derived. A central ingredient is the so-
called Finite Basis Injectivity property (FBI-property) of the operatorK introduced
in [7]. An operatorK has the FBI property if for all finite subsets J 
 Z the operator
K restricted to spanfei j i 2 J g is injective, (in other words, for all x; z 2 `2 with
Kx D Kz and xk D zk D 0, for all k … J , it follows that x D z). Note that the FBI
property can be seen as a variant of the restricted isometry property (introduced in
the next section).

Theorem 18.3 (Error estimate). LetK possess the FBI property, x be sparse with
suppx D I be a minimum-k � k`1 solution of Kx D y, and ky � y"k � ". Let the
following source condition (SC) be fulfilled:

there exists w 2 Y such that K�w D � 2 Sign.x/: (18.5)

Moreover, let � D sup
˚j�kj

ˇ
ˇ j�kj < 1

�
and c > 0 such that for all z 2 `2 with

supp.z/ 
 I it holds kKuk � ckuk. Then for the minimizers x�;" of T� it holds

kx�;" � xk`1 � kKk C 1

1 � �
"2

�
C
�1

c
C kwkkKk C 1

1 � �
	
.�C "/: (18.6)

Especially, with �  " it holds

kx�;" � xk`1 D O."/: (18.7)

In addition to the above error estimate one can give an a priori parameter rule
which ensures that the unknown support of the sparse solution x 2 `0 is recovered
exactly (cf. [35]).

Theorem 18.4 (Lower bound on ˛). Let x 2 `0, supp.x/ D I , and y" D Kx C �

the noisy data. Assume that K is bounded and possesses the FBI property. If the
following condition holds,

sup
i2I{

k.KPI /
�Keik`1 < 1; (18.8)

then the parameter rule

˛ >
1C sup

i2I{ k.KPI /�Keik`1
1 � sup

i2I{ k.KPI /�Keik`1
sup
i2Z

jh�;Kei ij (18.9)

ensures that the support of x�;" is contained in I .
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Theorem 18.4 gives a lower bound on the regularization parameter � to ensure
supp.x�;"/ 
 supp.x/. To even guarantee supp.x�;"/ D supp.x/ we need an
additional upper bound for �. The following theorem from [35] leads to that
purpose.

Theorem 18.5 (Error estimate). Let the assumptions of Theorem 18.4 hold and
choose � according to (18.9). Then the following error estimate is valid:

kx � u�;"k`1 � .�C sup
i2Z

jh�;Kei ij/k.PIK�KPI /
�1k`1;`1 : (18.10)

Remark 18.1. Due to the error estimate (18.10) we achieve a linear convergence
rate measured in the `1 norm. In finite dimensions all `p norms are equivalent,
hence we also get an estimate for the `1 error:

kx � x�;"k`1 � .�C "kKk/ jI j k.PIK�KPI /
�1k`1;`1 :

Compared to the estimate (18.6) from Theorem 18.3, the quantities � and kwk
are not present anymore. The role of 1=c is now played by k.PIK�KPI /�1k`1;`1 .
However, if upper bounds on I or on its size (together with structural information
on K) is available, the estimate can give a-priori checkable error estimates.

Theorem 18.6 (Exact recovery condition in the presence of noise). Let x 2 `0

with supp.x/ D I and y" D Kx C � the noisy data with noise-to-signal ratio

r�=u WD
sup
i2Z

jh�;Keiij
min
i2I jxi j :

Assume that the operator K is bounded and possesses the FBI property. Then the
exact recovery condition in the presence of noise ("ERC)

sup
i2I{

k.KPI /
�Keik`1 < 1 � 2r�=uk.PIK�KPI /

�1k`1;`1 (18.11)

ensures that there is a suitable regularization parameter �,

1C sup
i2I{ k.KPI /�Keik`1

1� sup
i2I{ k.KPI /�Keik`1

sup
i2Z

jh�;Kei ij < � (18.12)

� <

min
i2I ju˙

i j
k.PIK�KPI /�1k`1;`1

� sup
i2Z

jh�;Kei ij;

which provides exact recovery of I .
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18.3 Compressive Sensing Principles for Ill-Posed Problems

Within this section we combine the concepts of compressive sensing and sparse
recovery for solving inverse and ill-posed problems. To establish an adequate
measurement model, we adapt an infinite dimensional compressed sensing setup
that was invented in [22]. As the main result we provide recovery accuracy estimates
for the computed sparse approximations in the language of [11] but now for the
solution of the underlying inverse problem. One essential difference to the classical
compressed sensing framework is the incorporation of joint sparsity measures
allowing the treatment of infinite dimensional reconstruction spaces. Moreover, to
tackle ill-posed operator equations we rely on constrained optimization formulations
that are very close to elastic net type optimizations.

18.3.1 Compressive Sensing Model and Classical Results

Within this section we provide the standard reconstruction space, the compressive
sensing model and repeat classical recovery results for finite-dimensional problems
that can be established thanks to the restricted isometry property of the underlying
sensing matrix.

Let X be a separable Hilbert space and Xm 
 X the (possibly infinite
dimensional) reconstruction space defined by

Xm D
(

x 2 X; x D
mX

`D1

X

�2	
d`;�a`;�; d 2 .`2.	//m

)

;

where we assume that 	 is a countable index set and ˚a D fa`;�; ` D
1; : : : ; m ; � 2 	g forms a frame for Xm with frame bounds 0 < C˚a � C˚a < 1.
Note that the reconstruction space Xm is a subspace of X with possibly large m.
Typically we consider functions of the form a`;� D a`.� � �T /, for some T > 0.
With respect to ˚a we define the map Fa W Xm ! .`2.	//

m through x 7! Fax D
.fhx; a1;�ig�2	; : : : ; fhx; am;�ig�2	/T . Fa is the analysis operator and its adjoint,
given by F �

a W .`2.	//
m ! Xm through d 7! F �

a d D Pm
`D1

P
�2	 d`;�a`;�,

is the so-called synthesis operator. Since ˚a forms a frame, each x 2 Xm can be
reconstructed from its moments Fax through .F �

a Fa/
�1F �

a . A special choice of
analysis/sampling functions might relax the situation a bit. Assume we have another
family of sampling functions˚v at our disposal fulfilling FvF

�
a D I , then it follows

with x D F �
a d

y D Fvx D

0

B
@

fhx; v1;�ig�2	
:::

fhx; vm;�ig�2	

1

C
A D

0

B
@

fhF �
a d; v1;�ig�2	

:::

fhF �
a d; vm;�ig�2	

1

C
A D FvF

�
a d D d ;

(18.13)
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i.e. the sensed values y equal d and therefore x D F �
a Fvx. The condition FvF

�
a D

I means nothing else than ha`;�; v`0;�0i D ı��0ı``0 for all �; �0 2 	 and `; `0 D
1; : : : ; m, i.e. ˚v and ˚a are biorthogonal to each other.

As we focus on reconstructing functions (or solutions of operator equations) x
that have a sparse series expansion x D F �

a d with respect to ˚a, i.e. the series
expansion of x has only a very small number of non-vanishing coefficients d`;�,
or that x is compressible (meaning that x can be well-approximated by a sparse
series expansion), the theory of compressed sensing suggests to sample x at much
lower rate as done in the classical setting mentioned above (there it was m=T )
while ensuring exact recovery of x (or recovery with overwhelming probability).
The compressive sampling idea applied to the sensing situation (18.13) goes now as
follows. Assume we are given a sensing matrix A 2 R

p�m with p � m. Then we
construct p species of sampling functions through

0

B
@

s1;�
:::

sp;�

1

C
A D A

0

B
@

v1;�
:::

vm;�

1

C
A for all � 2 	 : (18.14)

As a simple consequence of (18.14), the following lemma holds true.

Lemma 18.1. Assume for all � 2 	 the sampling functions s1;�; : : : ; sp;� are
chosen as in (18.14) and let y denote the exactly sensed data. If ˚a and ˚v are
biorthogonal to each other, then y D Ad.

Let d� denote the m-dimensional vector .d1;�; : : : ; dm;�/T and y� the p-
dimensional vector .y1;�; : : : ; yp;�/T , then Lemma 18.1 states that for each � 2 	

the measurement vectors are given by y� D Ad�. It has been shown in [12], that for
each individual � 2 	 the solution d�

� to

min
d�2Rm kd�k`1 subject to y� D Ad� ; (18.15)

recovers d� exactly provided that d� is sufficiently sparse and the matrix A obeys a
condition known as the restricted isometry property.

Definition 18.1 (restricted isometry property). For each integer k D 1; 2; : : :,
define the isometry constant ık of a sensing matrix A as the smallest number such
that

.1 � ık/kxk2`2 � kAxk2`2 � .1C ık/kxk2`2 (18.16)

holds for all k-sparse vectors x. A vector is said to be k-sparse if it has at most k
non-vanishing entries.
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Theorem 18.7 (noiseless recovery, Candès [11]). Assume ı2k <
p
2�1. Then for

each � 2 	 the solution d�
� to (18.15) obeys

kd�
� � d�k`1 � C0kdk� � d�k`1 (18.17)

kd�
� � d�k`2 � C0k

�1=2kdk� � d�k`1 (18.18)

for some constant C0 (that can be explicitly computed) and dk� denoting the best
k-term approximation. If d� is k-sparse, the recovery is exact.

This result can be extended to the more realistic scenario in which the measurements
are contaminated by noise. Then we have to solve

min
d�2Rm kd�k`1 subject to kyı� �Ad�k`2 � ı : (18.19)

Theorem 18.8 (noisy recovery, Candès [11]). Assume ı2k <
p
2 � 1 and kyı� �

y�k`2 � ı. Then for each � 2 	 the solution d�
� to (18.19) obeys

kd�
� � d�k`2 � C0k

�1=2kdk� � d�k`1 C C1ı (18.20)

with the same constant C0 as before and some C1 (that can be explicitly computed).

18.3.2 Infinite Dimensional Regime and Joint Sparsity
Measures

In the previous subsection we have summarized results that apply for all individual
sensing scenarios, i.e. that hold true for all individual � 2 	. But as the index set
	 is possibly of infinite cardinality, we are faced with the problem of recovering
infinitely many unknown vectors d� for which the (essential) support can be
different. Therefore, the determination of d by solving for each � an individual
optimization problem is numerically not feasible.

For a simultaneous treatment of all individual optimization problems, we have
to restrict the set of all possible solutions d�. One quite natural restriction is that
all d� share a joint sparsity pattern. Introducing support sets I 
 f1; : : : ; mg, the
reconstruction space is given through

Xk D
8
<

:
x 2 X; x D

X

`2I ;jI jDk

X

�2	
d`;�a`;�; d 2 .`2.	//m

9
=

;
; (18.21)
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i.e. only k out of m sequences fd`;�g�2	 do not vanish. The space Xk is no longer
a subspace since two different x might correspond to two different support sets I
and therefore its sum is not contained in Xk. The space Xk can be seen as a union
of (shift invariant) subspaces.

To solve the recovery problem we propose a constrained optimization approach.
Let therefore the linear sensing operator T be given by T W .`2.	//m ! .`2.	//

p

via T d D T .fd1;�g�2	; : : : ; fdm;�g�2	/T D .f.Ad�/1g�2	; : : : ; f.Ad�/pg�2	/T .
For the purpose of identifying the support set I we restrict the minimization of
kyı � Tdk2.`2.	//p to the sub-domain

B.1;2; R/ D fd 2 .`2.	//m W 1;2.d/ � Rg ;

where q;r is a joint sparsity measure defined by q;r .d / D �Pm
`D1

�P
�2	

jd`;�jr
� q
r
� 1
q . This measure forces the solution d for reasonably small chosen q (e.g.

1 � q < 2) to have non-vanishing rows fd`;�g�2	 only if kfd`;�g�2	k`r .	/ is large
enough. Consequently, the optimization reads then as

min
d2B.1;2;R/

kyı � Tdk2.`2.	//p ; (18.22)

where the minimizing element in B.1;2; R/ can be approached by

dnC1 D P
�
dn C �

C
T �.yı � Tdn/

	
; (18.23)

where � > 0 is a step-length control (determined below) and P is the `2-projection
on B.1;2; R/, which can be realized by the sequence-valued generalized soft-
shrinkage operator. To control the speed of convergence we introduce conditions
on � .

Definition 18.2. We say that the sequence f�ngn2N satisfies Condition (B) with
respect to the sequence fdngn2N if there exists n0 such that:

.B1/ supf�nIn 2 Ng < 1 and inff�nIn 2 Ng � 1

.B2/ �nkTdnC1 � Tdnk2.`2.	//p � CkdnC1 � dnk2.`2.	//m 8n � n0 :

Proposition 18.4. If for arbitrarily chosen d0 assume dnC1 is given by

dnC1 D P

�

dn C �n

C
T �.yı � Tdn/

�

; (18.24)

with �n satisfying Condition (B) with respect to fdngn2N, the sequence of residuals
kyı � Tdnk2.`2.	//p is monotonically decreasing and fdngn2N converges in norm
towards d�, where d� fulfills the necessary condition for a minimum of (18.22).
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18.3.3 Compressive Sensing and Recovery for Ill-Posed
Problems

The objective in the sensing scenario for ill-posed problems is again to recover x,
but now we only have access to Kx and K is supposed to be a linear (possibly ill-
posed) and bounded operator between Hilbert spaces X and Y .

The data y are obtained by sensing Kx through Fs W Y ! .`2.	//
p , i.e. y D

FsKx D FsKF
�
a d . Similarly to Lemma 18.1, we have the following result.

Lemma 18.2. Assume for all � 2 	 the sampling functions s1;�; : : : ; sp;� are
chosen as in (18.14). Then y D AFK�vF

�
a d D AFvF

�
Kad .

An ideal choice to guarantee recovery within the compressive sampling framework
would be to ensure FK�vF

�
a D FvF

�
Ka D Id . For normalized systems ˚a

and ˚v and ill-posed operators K this is impossible to achieve. The simplest
case is that we have systems ˚a and ˚v at our disposal that diagonalize K , i.e.
hKa`;�; v`0 ;�0i D �`;� ı�0�ı`0`. One prominent example is the so-called wavelet-
vaguelette decomposition with respect to K . If ˚a and ˚v diagonalize K , then
the structure of the sensing operator is TD W .`2.	//

m ! .`2.	//
p, where

.TD/.fd1;�g�2	; : : : ; fdm;�g�2	/ D .f.AD�d�/
1g�2	; : : : ; f.AD�d�/

pg�2	/, and D
is defined by �-dependant blocksD� of sizem�m,D� D diag.�1;�; �2;�; : : : ; �m;�/.

Let us first consider the sensing problems for each individual label � (which are
m-dimensional recovery problems),

yı� D AD�d� C z� with kz�k � ı : (18.25)

SinceK is ill-posed, the sensing matrix AD� obeys no longer the restricted isometry
property. Therefore, we propose to minimize the stabilized constrained optimization
problem

min
d�2B.`1;R/

kyı� � AD�d�k2`2 C ˛kd�k2`2 ; (18.26)

where B.`1; R/ D fd� 2 `2 W kd�k`1 � Rg. Let us define L2 WD D�A
�AD� C ˛I ,

if A fulfills the restricted isometry property (18.16), then the operator L obeys a
restricted isometry condition of the following form,

.�2min.1 � ık/C ˛/kd�k2`2 � kLd�k2`2 � .�2max.1C ık/C ˛/kd�k2`2 ; (18.27)

for all k-sparse vectors d� and where �max denotes the largest and �min the smallest
eigenvalue of D�.

Theorem 18.9 (Finite dimensions). AssumeR is such that d� 62 B.`1; R/ and that

0 � ı2k <
.1C p

2/�2min � �2max C p
2˛

.1C p
2/�2min C �2max

: (18.28)
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Then the minimizer d�
� of (18.26) satisfies

kd�
� � d�k`2 � C0k

�1=2kdk� � d�k`1 C C1kL.d�� � d�/k`2 C C2ı C C3
p
˛R ;

(18.29)

where d�� is the B.`1; R/-best approximate solution, dk� the best k-term approxima-
tion, and where the constants C0, C1, C2, and C3 are given explicitly.

As (18.28) serves as a condition for ı2k and ˛ at the same time, it turns out that the
choice of ˛ influences the choice of a suitable sensing matrix A and vice versa.

Let us now investigate the full infinite dimensional measurement model,

yı D .TD/d C z with kzk.`2.	//m � ı :

We propose to solve the following optimization problem,

min
d2B.1;2;R/

kyı � .TD/dk2.`2.	//p C ˛kdk2.`2.	//m : (18.30)

For the minimizing element the following error estimate hold true.

Theorem 18.10 (Infinite dimensions). Assume R is such that d 62 B.1;2; R/ and
ı2k is as in Theorem 18.9. Then the minimizer d� of (18.30) satisfies

kd��dk.`2.	//m � C0k
�1=21;2.dk�d/CC1kL.d��d/k.`2.	//mCC2ıCC3

p
˛R :

The minimizing elements can be iteratively approximated by

dnC1
� D P

�

D�A
�.yı� � AD�d

n
� /
�n

C
C
�

1 � ˛�n

C

�

dn�

�

for problem (18.26) and for the full infinite dimensional case by

dnC1 D P

�

D�T �.yı � TDdn/
�n

C
C
�

1 � ˛�n

C

�

dn
�

:

The norm convergence is ensured by Proposition 18.4.
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Chapter 19
Low-Rank Dynamics

Christian Lubich

Abstract This note reviews differential equations on manifolds of matrices or
tensors of low rank. They serve to approximate, in a low-rank format, large time-
dependent matrices and tensors that are either given explicitly via their increments or
are unknown solutions of differential equations. Furthermore, low-rank differential
equations are used in novel algorithms for eigenvalue optimisation, for instance in
robust-stability problems.

19.1 Introduction

Low-rank approximation of hugh matrices and tensors is a basic model reduction
technique in a wide variety of applications ranging from quantum physics to
information retrieval. In this paper we review the low-rank approximation of
time-dependent matrices and tensors, using differential equations to update low-rank
approximations to given matrices or tensors, and to approximate solutions to matrix
or tensor differential equations in a data-reduced, low-rank format. In Sect. 19.2 we
recapitulate the Dirac–Frenkel time-dependent variational approximation principle
in its abstract form. At every time instant, the time derivative is projected onto
the tangent space of an approximation manifold at the current approximation. In
Sect. 19.3 we consider the dynamical low-rank approximation of matrices, and
in Sect. 19.4 we discuss a suitable numerical integrator for the corresponding
differential equations on the low-rank manifold. In Sect. 19.5 we consider dynamical
approximation of tensors in various formats: Tucker tensors, tensor trains, and
hierarchical Tucker tensors. Section 19.6 considers briefly the MCTDH method
of quantum dynamics, which uses the Dirac-Frenkel time-dependent variational
principle in its original setting, the time-dependent Schrödinger equation. Finally,
in Sect. 19.7 we consider differential equations for matrices of very low rank (rank
1, 2 or 4) that are used to solve optimisation problems for eigenvalues of structured
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or unstructured matrices, such as computing the distance to instability of a stable
complex or real matrix and solving further matrix nearness problems.

19.2 Projecting onto the Tangent Space: The Dirac–Frenkel
Time-Dependent Variational Approximation Principle

The dynamical low-rank approximations of matrices, tensors and multivariate
functions as discussed below are instances of a general approximation principle that
was first used and described, for a particular example, by Dirac [6] and Frenkel [7] in
the early days of quantum mechanics. This time-dependent variational principle can
be viewed, from a numerical analysis viewpoint, as a nonlinear Galerkin method in
which time derivatives are projected onto the tangent space of an approximation
manifold at the current approximation. In this preparatory section we give an
abstract description.

Let H be a (real or complex, finite- or infinite-dimensional) Hilbert space with
inner product h�; �i and associated norm k � k given by kvk2 D hv; vi for v 2 H . Let
M 
 H be a submanifold on which approximations to a time-dependent function
a.t/ 2 H , 0 � t � t , are restricted to lie. While a best approximation x.t/ 2 M
to a.t/ on M is determined by the condition, pointwise in time,

x.t/ 2 M such that kx.t/ � a.t/k D min; (19.1)

we here determine an approximation y.t/ 2 M from the condition that its time
derivative Py.t/ D .dy=dt/.t/, which lies in the tangent space Ty.t/M of M at y.t/,
should satisfy

Py.t/ 2 Ty.t/M such that k Py.t/ � Pa.t/k D min : (19.2)

While the two conditions above look superficially similar, they are fundamentally
different in that (19.1) is in general a non-linear, non-convex optimisation problem
pointwise for every time t , whereas (19.2) requires a linear projection of Pa.t/
onto the tangent space to determine Py.t/ and yields a differential equation on the
approximation manifold M . An equivalent condition is

Py.t/ 2 Ty.t/M such that h Py.t/ � Pa.t/; vi D 0 8 v 2 Ty.t/M ; (19.3)

which can be viewed as a Galerkin condition on the state-dependent space Ty.t/M .
(In the case of a complex Hilbert space the minimisation condition in (19.2) yields
the real part of the inner product in (19.3). This condition remains equivalent to
(19.3) – not just the real part – if the tangent space is complex linear, i.e., with
v 2 Ty.t/M also iv 2 Ty.t/M .)
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Let P.y/ W H ! TyM denote the orthogonal projection onto the tangent space
at y 2 M . Then, (19.2) and (19.3) can be written compactly as

Py D P.y/ Pa: (19.4)

This differential equation on the approximation manifoldM must be complemented
with an initial value y.0/ 2 M , ideally the best approximation x.0/ 2 M . Solving
this initial value problem yields the approximationy.t/ 2 M on the prescribed time
interval. This approach can be viewed as a continuous-time updating technique for
an approximation to a.t/ on M which uses only the increments Pa.t/, starting from
an initial approximation.

In contrast to (19.1), condition (19.2) (or equivalently, (19.3) or (19.4)) extends
readily to the situation where a.t/ 2 H is not given explicitly, but is the unknown
solution of a differential equation on H ,

Pa D f .a/; with given initial value a.0/.

In this situation an approximation y.t/ 2 M to a.t/ 2 H is determined, without
prior computation of a.t/, from the following extension of (19.2),

Py.t/ 2 Ty.t/M such that k Py.t/ � f .y.t//k D min; (19.5)

or equivalently of (19.3),

Py.t/ 2 Ty.t/M such that h Py.t/ � f .y.t//; vi D 0 8 v 2 Ty.t/M ; (19.6)

or equivalently of (19.4),

Py D P.y/f .y/: (19.7)

The above approach was first taken by Dirac [6] in a particular situation for
approximating solutions of the multi-particle time-dependent Schrödinger equation
by a method that is nowadays known as the time-dependent Hartree–Fock method.
For further properties and uses of the time-dependent variational approximation
principle in quantum dynamics we refer to Kramer and Saraceno [23] and Lubich
[26]. Quasi-optimality results for the variational approximation were first shown in
[25], in the context of the time-dependent Schrödinger equation.

In the following sections we consider in some detail the following cases of
particular interest:

• Dynamical low-rank approximation of matrices: H D Rm�n and M is a
manifold of matrices of fixed rank r < minfm; ng (Sects. 19.3 and 19.4);

• Dynamical low-rank approximation of tensors: H D Rn1�����nd and M is a
manifold of tensors of fixed rank in the Tucker format or tensor train format or
hierarchical Tucker format (Sect. 19.5);
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• The multi-configuration time-dependent Hartree (MCTDH) method of
multi-particle quantum dynamics: H D L2.Rd /, M is a manifold of
multivariate functions of fixed rank in the Tucker format (or hierarchical Tucker
format), and the differential equation to be approximated is the time-dependent
Schrödinger equation (Sect. 19.6).

19.3 Dynamical Low-Rank Approximation of Matrices

In this section we follow the lines of Koch and Lubich [20] and present their setting
and main results.

19.3.1 Rank-r Matrices and Their Tangent Matrices

Let Mr denote the manifold of real rank-r matrices of dimension m � n. Every
Y 2 Mr can be written, in a non-unique way, as

Y D USVT ; (19.8)

where U 2 Rm�r and V 2 Rn�r have orthonormal columns and S 2 Rr�r is
nonsingular. The singular value decomposition yields S diagonal, but no special
form of S is assumed in the following. As a substitute for the non-uniqueness in the
decomposition (19.8), we use a unique decomposition in the tangent space. Every
tangent matrix ıY 2 TYMr is of the form

ıY D ıUSVT C UıSVT C USıV T ; (19.9)

where ıS , ıU and ıV turn out to be uniquely determined by ıY under the ortho-
gonality constraints

UT ıU D 0; V T ıV D 0: (19.10)

It is found that

ıS D UT ıYV;

ıU D .I � UUT /ıYVS�1; (19.11)

ıV D .I � VVT /ıY T US�T :

Formulas (19.9) and (19.11) establish an isomorphism between the subspace

f.ıS; ıU; ıV / 2 Rr�r � Rm�r � Rn�r W UT ıU D 0; V T ıV D 0g

and the tangent space TYMr .
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19.3.2 Differential Equations for Dynamical Low-Rank
Approximation

Given time-dependent m � n matrices A.t/, which depend in a continuously
differentiable way on t , the minimisation condition (19.2) on the tangent space of the
rank-r manifold Mr is equivalent to finding PY 2 TYMr (we omit the argument t)
satisfying

h PY � PA; ıY i D 0 for all ıY 2 TYMr : (19.12)

This formulation is used to derive differential equations for the factors in the
representation (19.8).

Theorem 19.1. For Y D USVT 2 Mr with nonsingular S 2 Rr�r and with U 2
Rm�r and V 2 Rn�r having orthonormal columns, condition (19.12) is equivalent

to PY D PUSV
T C U PSV

T C US PV T ; where

PS D UT PAV

PU D .Im � UUT / PAVS
�1

(19.13)

PV D .In � VVT / PAT US�T :

When A.t/ is not given explicitly, but is the unknown solution of a matrix
differential equation PA D F.A/, then PA is replaced by F.Y /.

The differential equations forU; S; V are solved numerically; see Nonnenmacher
and Lubich [32] for numerical experiments for applications ranging from the
compression of time-varying term-document matrices and of series of images to the
computation of blow-up in reaction-diffusion equations. A suitable integrator, which
does not suffer from a possible ill-conditioning of S , is described in Sect. 19.4. That
integrator starts from the formulation (19.4), viz.,

PY D P.Y / PA;

whereP.Y / is the orthogonal projection onto TYMr . Using the above result, in [20]
an explicit expression for this tangent space projection at Y D USV T is found to be

P.Y /Z D ZVVT � UUT ZVVT C UUT Z: (19.14)

Since UUT is the orthogonal projector onto the range R.Y / of Y D USVT ,
and VVT is the orthogonal projector onto the range R.Y T /, this formula can be
rewritten as

P.Y /Z D ZPR.Y T / � PR.Y /ZPR.Y T / C PR.Y /Z: (19.15)
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19.3.3 Curvature Bounds

To obtain approximation estimates for the dynamical low-rank approximation, a key
is to bound the curvature of the rank-r manifold Mr near a given matrix in Mr . The
following bounds are obtained in [20]. Here and in the following the matrix norm
k � k D k � kF is the Frobenius norm, and k � k2 denotes the matrix norm induced by
the Euclidean vector norm. We write P?.Y / D Id � P.Y /.

Lemma 19.1. Let the rank-r matrix X 2 Mr be such that its smallest non-zero
singular value satisfies �r.X/ � � > 0, and let Y 2 Mr with kY �Xk � 1

8
�. Then,

the following bounds hold: for all B 2 Rm�n,

k�P.Y /� P.X/
�
Bk � 8��1 kY �Xk � kBk2; (19.16)

kP?.Y /.Y �X/k � 4��1 kY �Xk2: (19.17)

Note that the curvature bound is inversely proportional to the smallest non-zero
singular value �. When the rank is increased in order to attain a better accuracy of
approximation, the smallest nonzero singular value may become small, so that the
opposing effects of better approximability and higher curvature in the approximation
manifold need to be balanced carefully. This is a major challenge in the analysis of
the approximation properties of the dynamical low-rank approximation.

19.3.4 Approximation Estimates

We state two results from [20]. The first result shows quasi-optimality over a time
interval whose length is inversely proportional to a lower bound of the r th singular
value of A.t/.

Theorem 19.2. Suppose that a continuously differentiable best approximation
X.t/ 2 Mr to A.t/ exists for 0 � t � t , and that k PA.t/k2 � � for 0 � t � t .
Let the r th singular value of A.t/ have the lower bound �r.A.t// � � > 0, and
assume that the best-approximation error is bounded by kX.t/ � A.t/k � 1

16
� for

0 � t � t . Then, the approximation error of (19.12) with initial value Y.0/ D X.0/

is bounded in the Frobenius norm by

kY.t/ � X.t/k � 2ˇ eˇt
Z t

0

kX.s/� A.s/k ds with ˇ D 8���1

for t � t and as long as the right-hand side is bounded by 1
8
�.

Remarkably, small errors over longer time intervals are obtained even in cases of
small singular values and when there is no gap in the singular values. Suppose that
A.t/ can be written as
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A.t/ D X.t/C E.t/; 0 � t � t ; (19.18)

where X.t/ 2 Mr and the derivative of the remainder term is bounded by

k PE.t/k � " (19.19)

with a small " > 0. Suppose further that X.t/ 2 Mr with �r.X.t// � � > 0 has a
decomposition

X.t/ D U0.t/S0.t/V0.t/
T for 0 � t � t ; (19.20)

with nonsingular S0.t/ 2 Rr�r , and with U0.t/ 2 Rm�r and V0.t/ 2 Rn�r having
orthogonal columns, such that the following bounds are valid for 0 � t � t :

�
�
�
d

dt
S�1
0 .t/

�
�
�
2

� c1�
�1; k PU0.t/k2 � c2; k PV0.t/k2 � c2: (19.21)

Under these conditions an O."/ error over times O.1/ is obtained even with � � ".

Theorem 19.3. Under the above conditions and for " � c0�, the approximation
error of the dynamical low-rank approximation (19.12) with initial value Y.0/ D
X.0/ is bounded by

kY.t/ �X.t/k � 2t" for t � t�;

where t� � t depends only on c0, c1, and c2.

We remark that both Theorems 19.2 and 19.3 rely heavily on Lemma 19.1.

19.4 A Projector-Splitting Integrator for Dynamical
Low-Rank Approximation

To integrate the differential equations of dynamical low-rank approximation numer-
ically, Lubich and Oseledets [27] propose a method that is based on splitting the
projector (19.14). This method turns out to have remarkable robustness properties.
It improves on a previously proposed integrator by Khoromskij, Oseledets and
Schneider [18] which is based on splitting according to the differential equations
for U; S; V .

It is observed in [27] that each of the differential equations for Y D USV T

obtained by splitting the projector (19.15),

PY D PAPR.Y T /; PY D �PR.Y /
PAPR.Y T /; PY D PR.Y /

PA;
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can be solved explicitly, and solving them in the indicated order over a time step
yields the following algorithm. Given a factorisation (19.8) of the rank-r matrix
Y0 D U0S0V

T
0 and denoting the increment �A D A.t1/ � A.t0/, proceed as

follows:

1. Set K1 D U0S0 C �AV0 and compute the factorisation U1 OS1 D K1; with U1
having orthonormal columns and with an r � r matrix OS1 (e.g., using a QR
factorisation).

2. Set QS0 D OS1 � UT
1 �AV0:

3. Set L1 D V0 QST0 C �ATU1 and compute the factorisation V1ST1 D L1; with V1
having orthonormal columns and with an r � r matrix S1 (using QR).

The algorithm computes a factorisation of the rank-r matrix

Y1 D U1S1V
T
1 ;

which is taken as an approximation to Y.t1/.
This algorithm is of approximation order 1, and by composing it with the

adjoint method that performs the above substeps in the reverse order, one obtains
a second-order method. Using the standard technique of composing several time
steps of suitably chosen lengths (see, e.g., [15, Chap. V.3]), one obtains methods
of arbitrary order of approximation. The method is also readily extended to the
low-rank approximation of the unknown solution of matrix differential equations
PA D F.A/, in its simplest version replacing�A just by �t F.Y0/.

The above integrator has surprising robustness properties under ill-conditioning
of the matrix factor S , whose inverse appears in the differential equations (19.13).
While standard integrators such as Runge–Kutta methods applied to (19.13) break
down as S approaches a singular matrix, the integrator given above has the following
exactness property, which is proved in [27].

Theorem 19.4. Suppose thatA.t/ has rank at most r for all t . With the initial value
Y0 D A.t0/, the above splitting algorithm is then exact: Y1 D A.t1/.

When A.t/ is a perturbation of a matrix of rank q < r , the favourable behaviour
of the above integrator persists. With a small parameter ", assume that (with primes
just as notational symbols),

A.t/ D A0.t/C "A00.t/ with rank.A0.t// D q < r;

whereA0 and A00 and their derivatives are bounded independently of ". Suppose that
the qth singular value of A0.t/ is larger than some positive constant and factorise

A0.t/ D U 0.t/S 0.t/V 0.t/T

with U 0.t/ and V 0.t/ having q orthonormal columns and with an invertible q � q

matrix S 0.t/.
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We apply the splitting integrator for the dynamical rank-r approximation of A.t/
with starting value

Y0 D A0.0/C "A00
0 ; rank.Y0/ D r;

where A00
0 is bounded independently of ". We compare the result of the rank-r

algorithm with that of the rank-q algorithm starting from

NY0 D A0.0/C " NA00
0 ; rank. NY0/ D q < r:

The following perturbation result is shown in [27].

Theorem 19.5. In the above situation, let Yn and NYn denote the results of n steps
of the splitting integrator for the rank-r approximation and rank-q approximation,
respectively, applied with step size �t . Then, as long as n�t � t ,

kYn � NYnk � C."C�t/;

where C is independent of n, �t and " (but depends on t).

By the standard error estimates of splitting methods, the integration error of the
rank-q approximation is NYn � NY .tn/ D O.�t/, uniformly in ". Furthermore, it
follows from the over-approximation lemma in [20] that the difference of the rank-r
and rank-q approximations is bounded by Y.t/ � NY .t/ D O."/.

The above result is in marked contrast to standard integrators, such as explicit
or implicit Runge–Kutta methods, which break down as " ! 0. Numerical
experiments in [27] illustrate the favourable behaviour of the projector-splitting
integrator.

19.5 Dynamical Low-Rank Approximation of Tensors

In this section the setting is that of Sect. 19.2 in the space of tensors H D Rn1�����nd ,
with the inner product of two tensors given as the Euclidean inner product of the
vectors that carry the entries of the tensors. The norm of a tensor is the Euclidean
norm of the corresponding vector. We consider various approximation manifolds
M 
 H : the manifolds of tensors of fixed rank in the Tucker format, in the tensor
train format and the hierarchical Tucker format.

19.5.1 Dynamical Tensor Approximation in the Tucker Format

Here we look for an approximation of time-dependent tensors

A.t/ 2 Rn1�:::nd with entries A.k1; : : : ; kd I t/
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by tensors Y.t/ 2 Rn1�:::nd of the form

Y.k1; : : : ; kd I t/ D
r1X

j1D1
� � �

rdX

jdD1
sj1;:::;jd .t/ u.1/j1 .k1I t/ : : : u.d/jd .kd I t/;

where for each i D 1; : : : ; d , we have ri < ni (and typically ri � ni ). For a fixed t ,
this is called a tensor in the Tucker format of multilinear rank r D .r1; : : : ; rd / (see
[12, 22]) if the following conditions are satisfied for each i D 1; : : : ; d :

• The i th matrix unfolding of the core tensor S.t/ 2 Rr1�����rd , which aligns all
entries corresponding to the subscript ji (with 1 � ji � ri ) lexicographically in
the ji -th row, has full rank ri .

• The vectors u.i/1 .t/; : : : ; u
.i/
ri .t/ 2 Rni are mutually orthonormal.

The set of all tensors in the Tucker format of rank r D .r1; : : : ; rd / is a manifold,
which we denote again by Mr . In dimension d D 2, tensors in the Tucker format
of rank .r; r/ correspond to matrices of rank r in the factorisation (19.8).

The dynamical approximation of tensors in the Tucker format has been studied
in Koch and Lubich [21]. The theory extends that for the matrix case described in
Sect. 19.3. To describe the results of that paper, it is convenient to use the shorthand
notation (here we omit the argument t)

Y D S �1 U1 �2 U2 � � � �d Ud D S �d
iD1 Ui ;

where Ui is the ni � ri matrix with columns u.i/ji (ji D 1; : : : ; ri ).
Tangent tensors in TYMr are of the form

ıY D ıS �d
iD1 Ui C

dX

iD1
S �i ıUi �d

lD1
l¤i

Ul ;

where ıS and ıUi are shown to be determined uniquely under the gauge conditions

UT
i ıUi D 0 .i D 1; : : : ; d /:

Then, ıS and ıUi are given by the following formulae (cf. (19.11)):

ıS D ıY �d
iD1 U T

i

ıUi D .Ini � UiU
T
i /


ıY �l¤i U T

l

�
.i/
S
�

.i/;
(19.22)

where the subscript .i/ denotes the i th matrix unfolding and S�.i/ D ST.i/.S.i/S
T
.i//

�1
is the pseudo-inverse.

A similar form is taken by the differential equations for S.t/ and Ui.t/ in the
factorisation of Y.t/ 2 Mr determined from the projection of the time derivative
onto the tangent space,
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h PY � PA; ıY i D 0 for all ıY 2 TYMr : (19.23)

Theorem 19.6. For a tensor in the Tucker format Y D S�d
iD1Ui , condition (19.23)

is equivalent to

PY D PS �d
iD1 Ui C

dX

iD1
S �i

PUi �d
lD1
l¤i

Ul ; (19.24)

where the factors in the decomposition satisfy the system of differential equations

PS D PA �d
iD1 U T

i

PUi D .Ini � UiU
T
i /

 PA �l¤i U T

l

�
.i/
S
�

.i/:
(19.25)

It is shown in [21] that the curvature bound of Lemma 19.1 extends to tensors in
the Tucker format of rank r . The corresponding bounds are very similar to those of
the matrix case, now with � denoting a lower bound of the nonzero singular values
of all the matricisations S.i/ of the core tensor. With the curvature bounds at hand,
the approximation results of Theorems 19.2 and 19.3 are extended to the Tucker
tensor case. We omit the precise formulations of these results and refer to [21] for
the details.

19.5.2 Dynamical Tensor Approximation in the Tensor Train
Format and Hierarchical Tucker Format

In the Tucker format, the memory requirements still grow exponentially with the
dimension d . In the last decade, tensor formats with a substantially reduced growth
of data with the dimension have been developed both in mathematics and physics.
The book by Hackbusch [12] gives an excellent account of the various tensor
formats.

A tensor in the tensor train (TT) format, or a matrix product state in the
terminology of physics, has entries of the form

Y.k1; : : : ; kd / D G1.k1/ : : : Gd .kd /;

where the G.ki / are ri�1 � ri matrices, with r0 D rd D 1. Matrix product
states have become very popular in quantum physics in the last decade after it was
realised that they are an appropriate framework for algorithms of renormalisation
group theory; see Verstraete, Murg and Cirac [36] and Schollwöck [34]. We further
refer to Haegeman, Osborne and Verstraete [14] in a time-dependent setting. The
tensor train format was independently proposed and studied by Oseledets [33] in
the mathematical literature.
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The set of tensor trains for which the stacked matrices .Gi .1/; : : : ; Gi .ni // and
.Gi .1/

T ; : : : ; Gi .ni /
T / are of full rank ri�1 and ri , respectively, form a manifold.

Properties of this TT manifold and of its tangent space are studied in Holtz,
Rohwedder and Schneider [16].

A tensor in the hierarchical Tucker (HT) format is built up using a binary tree
with the following data:

• For each leaf i D 1; : : : ; d , there are ri orthonormal vectors u.i/1 ; : : : ; u
.i/
ri 2 Rni .

• For each inner node � of the tree with children nodes �1 and �2, there is a 3-tensor
B� D .b�j;j1;j2 / of dimension r� � r�1 � r�2 .

Define Y iji D u.i/ji for the leaves, and for an inner node � with children �1 and �2 set

Y �j D
X

j1;j2

b�j;j1;j2 Y
�1
j1

˝ Y
�2
j2
;

descending the tree from the leaves to the root. To ensure that Y �j for j D 1; : : : ; r�
remain orthonormal at each node � except the root, it is further required that
the transfer tensors B� satisfy, in their first matrix unfolding, the orthonormality
condition B�

.1/.B
�
.1//

T D Ir� .
Hierarchical Tucker tensors were first described and used in the chemical physics

literature [2, 37] and are proposed and thoroughly discussed in the mathematical
literature by Hackbusch and Kühn [13]; see also Lubich [26, p.45] for a brief
account. The set of HT tensors for which all the transfer 3-tensors are of full Tucker
rank, forms a manifold that has been studied by Uschmajew and Vandereycken [35].

The dynamical approximation in the HT and TT formats has very recently
been studied independently by Arnold and Jahnke [1] and Lubich, Rohwedder,
Schneider and Vandereycken [29]. These papers give the HT versions of the
differential equations for dynamical approximation and derive curvature bounds
similar to Lemma 19.1, with � now a lower bound of the nonzero singular values
of matricisations of the transfer 3-tensors. These bounds allow one to derive
approximation results similar to those known for the matrix and Tucker tensor cases.

The projector-splitting integrator of Sect. 19.5 is extended to the TT format by
Lubich, Oseledets and Vandereycken [28], with similarly favourable properties as
in the matrix case, and it can also be extended to the HT format (B. Vandereycken,
personal communication).

19.6 The MCTDH Method for Quantum Dynamics

Much of the mathematical work on dynamical low-rank approximation was initially
motivated by a model reduction method in molecular quantum dynamics, the
multi-configuration time-dependent Hartree (MCTDH) method that was proposed
by Meyer, Manthe and Cederbaum [30] and has developed into the standard tool for
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accurately computing the quantum dynamics of small molecules; see the book by
Meyer, Gatti and Worth [31].

The MCTDH method uses the Dirac–Frenkel time-dependent variational
principle on the Hilbert space H D L2.Rd / for the Schrödinger equation

i
@ 

@t
D �� C V ; x 2 Rd ; t > 0;

with an approximation manifold M that consists of functions

u.x1; : : : ; xd / D
r1X

j1D1
: : :

rdX

jdD1
aj1:::jd �

.1/
j1
.x1/ � : : : � �.d/jd

.xd /

with orthonormal single-particle functions �
.i/
1 ; : : : ; �

.i/
ri and a core tensor

.aj1:::jd / of full multilinear rank .r1; : : : ; rN /. This is the Tucker format in an
infinite-dimensional setting.

The Dirac–Frenkel time-dependent variational principle yields a nonlinearly
coupled system of ordinary differential equations for the core tensor and
low-dimensional Schrödinger equations for the single-particle functions.
Well-posedness and regularity properties for this coupled system have been derived
in Koch and Lubich [19]. A variational splitting integrator, which is explicit and
unconditionally stable, has been proposed and analysed in [24].

An interesting theoretical question concerns error bounds of the MCTDH
approximation with respect to the solution of the Schrödinger equation and
convergence as the ranks ri ! 1. A quasi-optimality result of the MCTDH
approximation, which bounds the MCTDH error in terms of the best-approximation
error on the MCTDH manifoldM given above, was shown for fixed ranks ri in [25].
However, the length of the time intervals on which the estimates are meaningful,
shrinks to 0 as ri ! 1, because the curvature bounds increase beyond any limit.
While a naive expectation might suggest that one gets an ever better approximation
as more and more terms are added, there are two obstructions:

• The approximation properties of the basis of tensor products of the
time-dependent single-particle functions, which are themselves solution of a
nonlinear system of partial differential equations, are not known a priori.

• As more terms are added, more and more nearly irrelevant terms are added that
lead to small singular values of matrix unfoldings of the core tensor.

Conte and Lubich [5] derive an error bound that nevertheless yields a small error
over a fixed time interval even with small singular values of the matricisations of the
core tensor, in the spirit of Theorem 19.3. We refer to [5] for the precise assumptions
and statement of the result.
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19.7 Low-Rank Differential Equations for Structured Matrix
Nearness Problems

Beyond the approximation of hugh time-dependent matrices and tensors, differential
equations on low-rank manifolds have recently shown up unexpectedly in optimisa-
tion problems for eigenvalues of large structured or unstructured matrices, of which
the following is a typical example:

Given a matrix with all eigenvalues in the left complex half-plane, find a nearest
matrix with an eigenvalue on the imaginary axis.

This asks for the distance to instability of a stable matrix; see Byers [4] and
Burke, Lewis and Overton [3]. The problem can be posed for general complex
matrices or be restricted to real matrices or companion matrices or non-positive
matrices or matrices with some other structure. The notion of “nearest” depends on
the matrix norm chosen, usually the matrix 2-norm or the Frobenius norm.

The above problem is closely related to finding extremal (here: rightmost) points
in pseudospectra: for " > 0, a chosen norm k � k, a set of square matrices S , and a
matrix A 2 S , the (structured) "-pseudospectrum is the set (cf. [17])

	".A; k � k;S / D f� 2 C W � is an eigenvalue of some matrix B 2 S

with kB � Ak � "g:

The approach taken in Guglielmi and Lubich [8,9] for complex and for real matrices
is to determine matrices E.t/ of unit norm such that the rightmost eigenvalue of
A C "E.t/ increases monotonically with t and tends to a (locally) rightmost point
in the complex or real "-pseudospectrum as t ! 1. It turns out that in the extremal
point, the extremiser E� is of rank 1 in the complex case, and of rank at most 2 in
the real case. This motivates to search for a differential equation on the manifolds
of rank-1 and rank-2 matrices, respectively, which has the extremiser as a stationary
point.

For example, in the real case and for the matrix 2-norm, such a differential
equation is derived in [9] for a rank-2 matrixE.t/ with both nonzero singular values
equal to 1. This is factorised as E D UQV T with U; V 2 Rn�2 having orthogonal
columns and with an orthogonal 2 � 2 matrix Q. The differential equations for
U; V;Q read

PU D .I � UUT /XYTVQT

PV D .I � VVT /YXTUQ (19.26)

PQ D Q skew.QTU T XYTV/:

Here, X and Y are n� 2 matrices containing the real and imaginary parts of the left
and right eigenvectors x and y, of unit norm and with x�y > 0, corresponding to
a non-real eigenvalue � of A C "E with E D UQV T . It is shown that Re�.t/
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increases with growing t and that �.t/ runs, for t ! 1, into a point on the
boundary of the real "-pseudospectrum that has a tangent parallel to the imaginary
axis. This system of low-rank differential equations can be solved efficiently also
for large sparse matrices A, since the differential equation requires only the leading
eigenvalue of the low-rank perturbationAC"E.t/ and its left and right eigenvectors.

To determine the distance to instability and the associated extremising matrix,
one then optimises over " until the leading eigenvalue hits the imaginary axis.

In a similar vein, matrix nearness problems for Hamiltonian and symplectic
matrices are approached via rank-2 and rank-4 differential equations in Guglielmi,
Kressner and Lubich [10, 11].
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Chapter 20
Computation of Expectations by Markov Chain
Monte Carlo Methods

Erich Novak and Daniel Rudolf

Abstract Markov chain Monte Carlo (MCMC) methods are a very versatile and
widely used tool to compute integrals and expectations. In this short survey we
focus on error bounds, rules for choosing the burn in, high dimensional problems
and tractability versus curse of dimension.

20.1 Introduction

Consider the following example. We want to compute

EG.f / D 1

vold .G/

Z

G

f .x/ dx;

where f belongs to some class of functions andG belongs to some class of sets. We
assume thatG 
 R

d is measurable with 0 < vold .G/ < 1, where vold denotes the
Lebesgue measure. Thus, we want to compute the expected value of f with respect
to the uniform distribution on G.

The input .f;G/ is given by an oracle: For x 2 G we can compute f .x/ and G
is given by a membership oracle, i.e. we are able to check whether any x 2 R

d is in
G or not. We always assume that G is convex and will work with the class

Gr;d D fG 
 R
d WG is convex; Bd 
 G 
 rBd g; (20.1)

where r � 1 and rBd D fx 2 R
d W jxj � rg is the Euclidean ball with radius r .

A first approach might be a simple acceptance/rejection method. The idea is to
generate a point in rBd according to the uniform distribution and if it is in G it is
accepted, otherwise it is rejected. If x1; : : : ; xn 2 G are the accepted points then we
output the mean value of the f .xi /. However, this method does not work reasonably
since the acceptance probability can be extremely small, it can be r�d .
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It seems that all known efficient algorithms for this problem use Markov chains.
The idea is to find a sampling procedure that approximates a sample with respect
to the uniform distribution in G. More precisely, we run a Markov chain to
approximate the uniform distribution for any G 2 Gr;d . Let X1;X2; : : : ; XnCn0 be
the first nC n0 steps of such a Markov chain. Then

Sn;n0.f;G/ D 1

n

nX

jD1
f .XjCn0/

is an approximation of EG.f /. The additional parameter n0 is called burn-in and,
roughly spoken, is the number of steps of the Markov chain to get close to the
uniform distribution.

20.2 Approximation of Expectations by MCMC

20.2.1 Preliminaries

We provide the basics of Markov chains. For further reading we refer to the paper
[14] of Roberts and Rosenthal which surveys various results about Markov chains
on general state spaces.

A Markov chain is a sequence of random variables .Xn/n2N which satisfies the
Markov property. For i 2 N, the conditional distribution of XiC1 depends only on
Xi and not on .X1; : : : ; Xi�1/,

P.XiC1 2 A j X1; : : : ; Xi/ D P.XiC1 2 A j Xi/:

By B.G/ we denote the Borel �-algebra ofG. Let 
 be a distribution on .G;B.G//
and let KWG � B.G/ ! Œ0; 1� be a transition kernel, i.e. K.x; �/ is a probability
measure for each x 2 G and K.�; A/ is a B.G/-measurable real-valued function
for each A 2 B.G/. A transition kernel and a distribution 
 give rise to a Markov
chain .Xn/n2N in the following way. Assume that the distribution of X1 is given
by 
. Then, for i � 2 and a given Xi�1 D xi�1, we have Xi with distribution
K.xi�1; �/, that is, for all A 2 B.G/, the conditional probability that Xi 2 A is
given by K.xi�1; A/. We call such a sequence of random variables a Markov chain
with transition kernelK and initial distribution 
.

In the whole paper we only consider Markov chains with reversible transition
kernel, we assume that there exists a probability measure � on B.G/ such that

Z

A

K.x;B/ �.dx/ D
Z

B

K.x;A/ �.dx/; A;B 2 B.G/:
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In particular any such � is a stationary distribution of K , i.e.,

�.A/ D
Z

G

K.x;A/ �.dx/; A 2 B.G/:

Further, the transition kernel induces an operator on functions and an operator on
measures given by

Pf .x/ D
Z

G

f .y/K.x; dx/; and 
P.A/ D
Z

G

K.x;A/ 
.dx/;

where f is �-integrable and 
 is absolutely continuous with respect to � . One has

EŒf .Xn/ j X1 D x� D Pn�1f .x/ and P
.Xn 2 A/ D 
P n�1.A/;

for x 2 G,A 2 B.G/ and n 2 N, where 
 in P
 indicates thatX1 has distribution 
.
By the reversibility with respect to � we have d.
P /

d�
.x/ D P. d


d�
/.x/; where d


d�

denotes the density of 
 with respect to � .
Further, for p 2 Œ1;1/ let Lp D Lp.�/ be the space of measurable functions

f WG ! R which satisfy

kf kp D
�Z

G

jf .x/jp�.dx/
�1=p

< 1:

The operator P WLp ! Lp is linear and bounded and by the reversibility P WL2 !
L2 is self-adjoint.

The goal is to quantify the speed of convergence, if it converges at all, of 
P n to
� for increasing n 2 N. For this we use the total variation distance between two
probability measures 
; � on .G;B.G// given by

k
 � �ktv D sup
A2B.G/

j
.A/� �.A/j:

It is helpful to consider the total variation distance as an L1-norm, see for example
[14, Proposition 3, p. 28].

Lemma 20.1. Assume the probability measures 
; � have densities d

d�
;
d�

d�
2 L1,

then k
 � �ktv D 1
2

�
�
� d
d� � d�

d�

�
�
�
1
:

Now we ask for an upper bound of k
P n � �ktv.

Lemma 20.2. Let 
 be a probability measure on .G;B.G// with d

d�

2 L1 and let
S.f / D R

G
f .x/ �.dx/: Then, for any n 2 N holds

k
P n � �ktv � kPn � SkL1!L1

1

2

�
�
�
�
d


d�
� 1

�
�
�
�
1

� kPn � SkL1!L1
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and

k
P n � �ktv � kPn � SkL2!L2

1

2

�
�
�
�
d


d�
� 1

�
�
�
�
2

:

Proof. By Lemma 20.1, by Pn1 D 1 and by the reversibility, in particular
d.
Pn/

d�
.x/ D Pn. d


d�
/.x/; we have

2 k
P n � �ktv D
�
�
�
�
d.
P n/

d�
� 1

�
�
�
�
1

D
�
�
�
�P

n

�
d


d�
� 1

��
�
�
�
1

D
�
�
�
�.P

n � S/

�
d


d�
� 1

��
�
�
�
1

:

Note that the last equality comes from S. d

d�

� 1/ D 0.

Observe that for 
 D � the left-hand side and also the right-hand side of the
estimates are zero.

Let us consider kPn � SkL2!L2
. Because of the reversibility with respect to �

we obtain the following, see for example [16, Lemma 3.16, p. 45].

Lemma 20.3. For n 2 N we have

kPn � SkL2!L2
D k.P � S/nkL2!L2

D kP � SknL2!L2
:

The last two lemmata motivate the following two convergence properties of
transition kernels.

Definition 20.1 (L1-exponential convergence). Let ˛ 2 Œ0; 1/ and M 2 .0;1/.
Then the transition kernelK is L1-exponentially convergent with .˛;M/ if

kPn � SkL1!L1
� ˛nM; n 2 N: (20.2)

A Markov chain with transition kernel K is called L1-exponentially convergent if
there exist an ˛ 2 Œ0; 1/ and M 2 .0;1/ such that (20.2) holds.

Definition 20.2 (L2-spectral gap). We say that a transition kernel K and its
corresponding Markov operator P have an L2-spectral gap if

gap.P / D 1 � kP � SkL2!L2
> 0:

If the transition kernel has an L2-spectral gap, then by Lemmas 20.2 and 20.3 we
have that

k
P n � �ktv � .1 � gap.P //n
�
�
�
�
d


d�
� 1

�
�
�
�
2

:

Next, we define other convergence properties which are based on the total
variation distance.
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Definition 20.3 (uniform ergodicity and geometric ergodicity). Let ˛ 2 Œ0; 1/

and M WG ! .0;1/. Then the transition kernel K is called geometrically ergodic
with .˛;M.x// if one has for �-almost all x 2 G that

kKn.x; �/ � �ktv � M.x/ ˛n; n 2 N: (20.3)

If the inequality (20.3) holds with a bounded functionM.x/, i.e.

sup
x2G

M.x/ � M 0 < 1;

then K is called uniformly ergodic with .˛;M 0/.

Now we state several relations between the different properties. Since we assume
that the transition kernel is reversible with respect to � we have the following:

uniformly ergodic ” L1-exponentially convergent
with .˛;M/ with .˛; 2M/

(
H

(
H

geometrically ergodic L2-spectral gap �
with .˛;M.x// 1 � ˛:

(20.4)

The fact that uniform ergodicity implies geometric ergodicity is obvious. For the
proofs of the other relations and further details we refer to [16, Proposition 3.23,
Proposition 3.24]. Further, if the transition kernel is '-irreducible, for details we
refer to [13] and [15], then

geometrically ergodic ” L2-spectral gap �
with .˛;M.x// 1 � ˛:

(20.5)

20.2.2 Mean Square Error Bounds of MCMC

The goal is to compute

S.f / D
Z

G

f .x/ �.dx/:

We use an average of a finite Markov chain sample as approximation of the mean,
i.e. we approximate S.f / by

Sn;n0.f / D 1

n

nX

jD1
f .XjCn0/:
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The number n determines the number of function evaluations of f . The number n0
is the burn-in or warm up time. Intuitively, it is the number of steps of the Markov
chain to get close to the stationary distribution � .

We study the mean square error of Sn;n0 , given by

e
.Sn;n0 ; f / D .E
;K jSn;n0.f /� S.f /j/1=2 ;

where 
 and K indicate the initial distribution and transition kernel. We start with
the case 
 D � , where the initial distribution is the stationary distribution.

Lemma 20.4. Let .Xn/n2N be a Markov chain with transition kernel K and initial
distribution � . We define

	 D supf˛W˛ 2 spec.P � S/g;

where spec.P � S/ denotes the spectrum of the operator P � S WL2 ! L2, and
assume that 	 < 1. Then

sup
kf k2�1

e�.Sn;n0; f /
2 � 2

n.1 �	/:

For a proof of this result we refer to [16, Corollary 3.27]. Let us discuss the
assumptions and implications of Lemma 20.4. First, note that for the simple Monte
Carlo method we have 	 D 0. In this case we get (up to a constant of 2) what we
would expect. Further, note that gap.P / D 1 � kP � SkL2!L2

and

kP � SkL2!L2
D supfj˛jW˛ 2 spec.P � S/g;

so that gap.P / � 1 � 	. This also implies that if P WL2 ! L2 is positive
semidefinite we obtain gap.P / D 1 � 	. Thus, whenever we have a lower bound
for the spectral gap we can apply Lemma 20.4 and can replace 1 � 	 by gap.P /.
Further note if � 2 Œ0; 1/,M 2 .0;1/ and the transition kernel is L1-exponentially
convergent with .�;M/ then we have, using (20.4), that gap.P / � 1 � � .

Now we ask how e
.Sn;n0; f / behaves depending on the initial distribution. The
idea is to decompose the error in a suitable way. For example in a bias and variance
term. However, we want to have an estimate with respect to kf k2 and in this setting
the following decomposition is more convenient:

e
.Sn;n0; f /
2 D e�.Sn;n0; f /

2 C rest;

where rest denotes an additional term such that equality holds. Then, we estimate
the remainder term and use Lemma 20.4 to obtain an error bound. For further
details of the proof of the following error bound we refer to [16, Theorem 3.34
and Theorem 3.41].
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Theorem 20.1. Let .Xn/n2N be a Markov chain with reversible transition kernelK
and initial distribution 
. Further, let

	 D supf˛W˛ 2 spec.P � S/g;

where spec.P � S/ denotes the spectrum of the operator P � S WL2 ! L2, and
assume that 	 < 1. Then

sup
kf kp�1

e
.Sn;n0; f /
2 � 2

n.1 �	/
C 2C
�

n0

n2.1 � �/2 (20.6)

holds for p D 2 and for p D 4 under the following conditions

1. For p D 2, d

d�

2 L1 and a transition kernel K which is L1-exponentially
convergent with .�;M/ where C
 D M

�
� d

d�

� 1��1 I
2. For p D 4, d


d�
2 L2 and 1 � � D gap.P / > 0 where C
 D 64

�
� d

d�

� 1��
2
:

Let us discuss the results. If the transition kernel is L1-exponentially ergodic,
then we have an explicit error bound for integrands f 2 L2 whenever the
initial distribution has a density d


d�
2 L1. However, in general it is difficult to

provide explicit values � and M such that the transition kernel is L1-exponentially
convergent with .�;M/. This motivates to consider transition kernel which satisfy
a weaker convergence property, such as the existence of an L2-spectral gap. In
this case we have an explicit error bound for integrands f 2 L4 whenever the
initial distribution has a density d


d�
2 L2. Thus, by assuming a weaker convergence

property of the transition kernel we obtain a weaker result in the sense that f must
be in L4 rather than L2. However, with respect to d


d�
we do not need boundedness

anymore, it is enough that d

d�

2 L2.
In Theorem 20.1 we provided explicit error bounds and we add in passing that

also other error bounds are known, see [1, 4, 5, 16].
If we want to have an error of " 2 .0; 1/ it is still not clear how to choose n and

n0 to minimize the total amount of steps nC n0. How should we choose the burn-in
n0? Let e.n; n0/ be the right hand side of (20.6) and assume that 	 D � . Further,
assume that we have computational resources for N D nC n0 steps of the Markov
chain. We want to get an nopt which minimizes e.N � n0; n0/. In [16, Lemma 2.26]
the following is proven: For all ı > 0 and large enough N and C
 the number nopt

satisfies

nopt 2
�

logC

log ��1 ; .1C ı/

logC

log ��1

�

:

Further note that log ��1 � 1�� . Thus, in this setting nopt D d logC

1�� e is a reasonable

and almost optimal choice for the burn-in.
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20.3 Application of the Error Bound and Limitations
of MCMC

First, we briefly introduce a technique to prove a lower bound of the spectral gap
if the Markov operator of a transition kernel is positive semidefinite on L2. The
following result, known as Cheeger’s inequality, is in this form due to Lawler and
Sokal [6].

Proposition 20.1. Let K be a reversible transition kernel, which induces a Markov
operator P WL2 ! L2. Then

'2

2
� 1 �	 � 2';

where 	 D supf˛W˛ 2 spec.P � S/g and

' D inf
0<�.A/�1=2

R
A
K.x;Ac/ �.dx/

�.A/

is the conductance of K .

Now we state different applications of Theorem 20.1.

20.3.1 Hit-and-Run Algorithm

We consider the example of Sect. 20.1. Let G 2 Gr;d , see (20.1), and let �G be the
uniform distribution in G. We define

Fr;d D f.f;G/WG 2 Gr;d ; f 2 L4.�G/; kf k4 � 1g: (20.7)

The goal is to approximate

S.f; 1G/ D 1

vold .G/

Z

G

f .x/ dx;

where .f;G/ 2 Fr;d . The hit-and-run algorithm defines a Markov chain which
satisfies the assumptions of Theorem 20.1. A step from x 2 G of the hit-and-run
algorithm works as follows

1. Choose a direction, say � , uniformly distributed on the sphere @Bd .
2. Choose the next state, say y 2 G, uniformly distributed in G \ fxC � r W r 2 Rg.

After choosing a direction � one samples the next state y 2 G with respect to the
uniform distribution in the line determined by the current state x and the direction
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� restricted to G. The random number, say u 2 Œ0; 1�, for the second part is chosen
independently of the first part and also all steps are independent.

Lovaśz and Vempala prove in [7, Theorem 4.2, p. 993] a lower bound of the
conductance ', see Proposition 20.1 for the definition of the conductance.

Proposition 20.2. Let G 2 Gr;d . Then, the conductance of the hit-and-run
algorithm is bounded from below by 2�25.dr/�1.

It is known that the hit-and-run algorithm induces a positive semidefinite Markov
operator, say H , see [19]. By Proposition 20.1 we obtain

gap.H/ � 2�51

.dr/2

and Theorem 20.1 implies the following error bound for the class Fr;d , see (20.1)
and (20.7).

Theorem 20.2. Let 
 be the uniform distribution on Bd . Let .Xn/n2N be a
Markov chain with transition kernel, given by the hit-and-run algorithm, and initial
distribution 
. Let

n0 D d4:51 � 1015d 2r2.d log r C 4:16/e:

Then

sup
.f;G/2Fr;d

e
.Sn;n0 ; .f; 1G// � 9:5 � 107 drp
n

C 6:4 � 1015 d
2r2

n
:

This result states that the number of oracle calls for f and G to obtain an error
" > 0 is bounded by � d2r2."�2Cd log r/; for an explicit constant � > 0. Hence the
computation of S.f; 1G/ on the class Fr;d is polynomially tractable, see [10–12].
The tractability result can be extended also to other classes of functions, see [17].
Note that we applied the second statement of Theorem 20.1. It is known that the
hit-and-run algorithm is L1-exponentially ergodic with .�;M/, for some � 2 .0; 1/
and M 2 .0;1/. But the best known numbers � and M are exponentially bad in
terms of the dimension, see [20].

20.3.2 Metropolis-Hastings Algorithm

LetG 
 R
d and �WG ! .0;1/, where � is integrable with respect to the Lebesgue

measure. We define the distribution �� on .G;B.G// by

��.A/ D
R
A
�.x/ dx

R
G �.x/ dx

; A 2 B.G/:
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The goal is to compute

S.f; �/ D
Z

G

f .x/ ��.dx/ D
R
G f .x/�.x/ dx
R
G
�.x/ dx

for functions f WG ! R which are integrable with respect to ��.
The Metropolis-Hastings algorithm defines a Markov chain which approximates

��. We need some further notations. Let qWG �G ! Œ0;1� be a function such that
q.x; �/ is Lebesgue integrable for all x 2 G with

R
G
q.x; y/ dy � 1. Then

Q.x;A/ D
Z

A

q.x; y/ dy C 1A.x/
�

1 �
Z

G

q.x; y/ dy

�

; x 2 G; A 2 B.G/;

is a transition kernel and we call q.�; �/ transition density. The idea is to modify Q,
such that �� gets a stationary distribution of the modification. We propose a state
withQ and with a certain probability, which depends on �, the state is accepted. Let
˛.x; y/ be the acceptance probability

˛.x; y/ D
(
1 if q.x; y/�.x/ D 0;

minf1; q.y;x/�.y/
q.x;y/�.x/

g otherwise:

The transition kernel of the Metropolis-Hastings algorithm is

K�.x;A/ D
Z

A

˛.x; y/ q.x; y/dy C 1A.x/
�

1 �
Z

G

˛.x; y/ q.x; y/dy

�

for x 2 G and A 2 B.G/. The transition kernelK� is reversible with respect to ��.
From the current state x 2 G a single transition of the algorithm works as follows:

1. Sample a proposal state y 2 G with respect to Q.x; �/.
2. With probability ˛.x; y/ return y, otherwise reject y and return x.

Again, all steps are done independently of each other. If q.x; y/ D q.y; x/, i.e.
q is symmetric, then K� is called Metropolis algorithm and if q.x; y/ D �.y/ for a
function �WG ! .0;1/ for all x; y 2 G, then K� is called independent Metropolis
algorithm.

Let G 
 R
d be bounded and for C � 1 let

RC D f�WG ! .0;1/ j 1 � �.x/ � C g: (20.8)

Thus, for any � 2 RC holds sup �= inf � � C . If �WG ! .0;1/ satisfies
sup �= inf� � C , then

k�k1
C

� �.x/ � C inf �:
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Thus, C � �= k�k1 2 RC . We consider an independent Metropolis algorithm. The
proposal transition kernel is

Q.x;A/ D �G.A/ D vold .A/

vold .G/
; A 2 B.G/;

i.e. a state is proposed with the uniform distribution in G. Then

K�.x;A/ D
Z

A

˛.x; y/
dy

vold .G/
C 1A.x/

�

1 �
Z

G

˛.x; y/
dy

vold .G/

�

;

where ˛.x; y/ D minf1; �.y/=�.x/g. The transition operator P�WL2.��/ !
L2.��/, induced by K�, is positive semidefinite. For details we refer to [19]. Thus,
gap.P�/ D 1�	�, with	� D 	. Further, for � 2 RC Theorem 2.1 of [9] provides
a criterion for uniform ergodicity of the independent Metropolis algorithm. Namely,
K� is uniformly ergodic with .�; 1/ for � D 1 � C�1=vold .G/. Thus, by (20.4) we
have that it is L1-exponentially ergodic with .�; 2/. Further, by (20.4) we obtain

1 �	� D gap.P�/ � C�1

vold .G/
:

Let

FC;d D f.f; �/W � 2 RC ; f 2 L2.��/; kf k2 � 1g: (20.9)

We apply Theorem 20.1 and obtain for the class FC;d (see (20.8) and (20.9))

Theorem 20.3. Let .Xn/n2N be a Markov chain with transition kernel, given by the
Metropolis algorithm with proposal �G , and initial distribution �G . Let

n0 D dCvold .G/ log.2C /e :

Then

sup
.f;�/2FC;d

e
.Sn;n0; .f; �//
2 � 2C vold .G/

n
C 4C 2 vold .G/2

n2
:

The upper bound in Theorem 20.3 does not depend on the dimension d , as long
as vold .G/ and C do not depend on d . In some applications, however, the upper
bound is rather useless since C D Cd is exponentially large in d . Assume, for
example, that

�.x/ D exp.�˛jxj2/; (20.10)
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i.e. � is the non-normalized density of aN.0;
p
2˛�1/ random variable. We consider

scaled versions of �. If G D Bd , then exp.˛/� 2 Rexp.˛/ and if G D Œ�1; 1�d , then
exp.˛d/� 2 Rexp.˛d/. This is bad, since C , for example exp.˛/ or exp.˛d/, might
depend exponentially on ˛ and d .

This example shows that we would greatly prefer an upper bound where C is
replaced by a power of logC . However, on the class FC;d this is not possible.
The same proof as in [8, Theorem 1] leads to the following lower bound for all
randomized algorithms.

Theorem 20.4. Any randomized algorithm Sn that uses n values of f and �

satisfies the lower bound

sup
.f;�/2FC;d

e.Sn; .f; �// �
p
2

6

8
<

:

q
C
2n

2n � C � 1;

3C
CC2n�1 2n < C � 1:

The class FC;d is too large. Thus the error bound is not satisfying. In the
following we prove a much better upper bound for a smaller class of densities. Let
G D Bd and let � be log-concave, i.e. for all � 2 .0; 1/ and for all x; y 2 Bd we
have

�.�x C .1 � �/y/ � �.x/��.y/1��: (20.11)

Then let

R˛;d D f�WBd ! .0;1/ j � is log-concave; j log �.x/ � log �.y/j � ˛jx � yjg:
(20.12)

We consider log-concave densities where log � is Lipschitz continuous with constant
˛. Note that the setting is more restrictive compared to the previous one. The goal
is to get an upper error bound which is polynomially in ˛ and d . We consider a
Metropolis algorithm based on a ball walk. For ı > 0 the transition kernel of the ı
ball walk is

Bı.x;A/ D vold .A\ Bı.x//

vold .Bı.0//
C 1A.x/

�

1 � vold .G \ Bı.x//
vold .Bı.0//

�

; x 2 G; A 2 B.G/;

where Bı.x/ denotes the Euclidean ball with radius ı around x. Let K�;ı be the
transition kernel of the Metropolis algorithm with ball walk proposal Bı , let P�;ı
be the corresponding transition operator and let 	�;ı be the largest element of the
spectrum of P�;ı � S WL2.��/ ! L2.��/.

In [8, Corollary 1] the following result is proven.

Proposition 20.3. Let � 2 R˛;d and let ı D minf1=pd C 1; ˛�1g. Then, the
conductance of K�;ı is bounded from below by
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0:0025p
d C 1

min

�
1p
d C 1

;
1

˛

�

:

By Propositions 20.1 and 20.3 we have a lower bound of 1 � 	�;ı . However,
to apply Theorem 20.1 we need a lower bound on gap.P�;ı/. Let QK�;ı be the
transition kernel of the lazy version of K�;ı, i.e. for x 2 G and A 2 B.G/

holds QK�;ı.x; A/ D .K�;ı.x; A/ C 1A.x//=2: In words, QK�;ı can be described as
follows: With probability 1=2 stay at the current state and with probability 1=2 do
one step with K�;ı. This transition kernel induces a positive semidefinite operator
QP�;ı WL2.��/ ! L2.��/ with

gap. QP�;ı/ D 1

2
.1C	�;ı/:

Let

F˛;d D f.f; �/W � 2 R˛;d ; f 2 L4.��/; kf k4 � 1g; (20.13)

and recall that R˛;d is defined in (20.12). Note that we assumed G D Bd . Now we
can apply Theorem 20.1 for the lazy Metropolis algorithm with ball walk proposal
QK�;ı .

Theorem 20.5. Let 
 be the uniform distribution on Bd and let us assume that
ı D minf1=pd C 1; ˛�1g. Let .Xn/n2N be a Markov chain with transition kernel
QK�;ı , i.e. the lazy version of the Metropolis algorithm with ball walk proposal Bı ,

and initial distribution 
. Let

n0 D d5:92 � 106.d C 1/maxf˛2; d C 1g.2˛ C 4:16/e:

Then

sup
.f;G/2F˛;d

e
.Sn;n0 ; .f; �// � 1;089

p
d C 1maxf˛;pd C 1gp

n

C 8:38 � 105 .d C 1/maxf˛2; d C 1g
n

:

The last theorem states that the number of oracle calls of f and � to obtain an error
" > 0 is bounded by � d maxf˛2; d g."2 C ˛/. Hence the computation of S.f; �/ is
polynomially tractable. Note that R˛;d might be interpreted as a subclass ofRC with
C D exp.2˛/ and G D Bd , since � 2 R˛;d implies exp.2˛/�= k�k1 2 Rexp.2˛/:

Thus, by Theorem 20.5 we obtain that the number of oracle calls to get an error "
also depends polynomially on logC , since C D exp.2˛/.
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20.4 Open Problems and Related Comments

• We do not know whether an error bound as in Theorem 20.1 holds for f 2 L2 if
gap.P / > 0.

• In [18] error bounds of Sn;n0 for f 2 Lp with 1 < p � 2 are proven. Then one
needs a new error criterion, here the absolute mean error

E
;K jSn;n0.f /� S.f /j

is used. If the Markov chain is L1-exponentially convergent, then the error bound
decreases with n1=p�1. For a Markov chain with L2-spectral gap a similar error
bound is shown.

• The tractability results in Theorems 20.2 and 20.5 are nice since the degree of the
polynomial is small. Nevertheless, the upper bound is not really useful because
of the huge constants. Is it possible to prove these or similar results with much
smaller constants?

• A related question would be the construction of Markov chain quasi-Monte Carlo
methods, see [2, 3]. Here the idea is to derandomize the Markov chain by using
a carefully constructed deterministic sequence of numbers to obtain a sample
x1; : : : ; xnCn0 . However, explicit constructions with small error bounds are not
known.
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Chapter 21
Regularity, Complexity, and Approximability
of Electronic Wavefunctions

Harry Yserentant

Abstract The electronic Schrödinger equation describes the motion ofN electrons
under Coulomb interaction forces in a field of clamped nuclei. The solutions of
this equation, the electronic wavefunctions, depend on 3N variables, three spatial
dimensions for each electron. Approximating the solutions is thus inordinately
challenging, and it is conventionally believed that a reduction to simplified models,
such as those of the Hartree-Fock method or density functional theory, is the only
tenable approach. The situation is, however, more complicated: the regularity of the
solutions, which increases with the number of electrons, the decay behavior of their
mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute
properties that allow these functions to be approximated with an order of complexity
which comes arbitrarily close to that of a system of two or even only one electron.

21.1 Introduction

The approximation of high-dimensional functions, might they be given explicitly
or implicitly as solutions of differential equations, represents one of the grand
challenges of applied mathematics. High-dimensional problems arise in many
fields of application such as data analysis and statistics or machine learning and
computational finance, but first of all in the sciences. One of the most notorious and
complicated problems of this type is the Schrödinger equation. The Schrödinger
equation forms the basis of quantum mechanics and is of fundamental importance
for our understanding of atoms and molecules. It links chemistry to physics and
describes a system of electrons and nuclei that interact by Coulomb attraction and
repulsion forces. As proposed by Born and Oppenheimer in the early times of
quantum theory, the much slower motion of the nuclei is mostly separated from that
of the electrons. This results in the electronic Schrödinger equation, the problem to
find the eigenvalues and eigenfunctions of the differential operator
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H D � 1

2

NX

iD1
�i �

NX

iD1

KX


D1

Z


jxi � a
 j C 1

2

NX

i;jD1
i¤j

1

jxi � xj j ; (21.1)

written here in dimensionless form or atomic units. It acts on functions with
arguments x1; : : : ; xN in R

3 that are associated with the positions of given N
electrons; the positions a
 of the nuclei are kept fixed. The positive values Z
 are
the charges of the nuclei in multiples of the electron charge.

Because of its high-dimensionality, it seems to be completely hopeless to attack
the electronic Schrödinger equation directly. Dirac, one of the fathers of quantum
theory, commented this with the often quoted words, “the underlying physical laws
necessary for the mathematical theory of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty is only that the exact appli-
cation of these laws leads to equations much too complicated to be soluble.” This
situation did not much change since then, and depending on what one understands
by soluble, it will never change. Dirac continued, “it therefore becomes desirable
that approximate practical methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main features of complex atomic
systems without too much computation.” Physicists and chemists followed Dirac’s
advice and invented, during the previous decades, a whole raft of such methods of
steadily increasing sophistication. The most prominent are the Hartree-Fock method
and its many variants, extensions, and successors, and the newer density functional
based methods, that are based on the observation that the ground state energy is
completely determined by the electron density. Modern quantum-chemical approx-
imation methods are based on deep insights into the nature of atoms and molecules.
They are used with much success and form the basis of a steadily expanding branch
of chemistry. Their power and efficiency are impressive. There is, however, no real
mathematical explanation for their often amazing accuracy. From the perspective of
a mathematician, all these methods have a decisive drawback. They either simplify
the basic equation and suffer from a priori modeling errors, or it is unclear how the
accuracy can be systematically improved without that the effort truly explodes with
the number of particles. In other words, they are no true, unbiased discretizations of
the Schrödinger equation in the sense of numerical analysis.

Several groups in the priority program tried to change this unsatisfying situation
and to develop tools aiming to overcome the described complexity barriers. The
present article surveys some theoretical results [7] and [6, 8, 9] by the author and
his coworkers on the mixed regularity of the electronic wavefunctions and the decay
behavior of their mixed derivatives. On the basis of these analytical properties and
the antisymmetry of the wavefunctions enforced by the Pauli principle, one can
surprisingly construct simple, sparse grid or hyperbolic cross like expansions of the
wavefunctions whose convergence rate, measured in terms of the number of basis
functions involved, astonishingly does not deteriorate with the number of electrons.
It comes close to that for the case of two or even only of one single electron [8, 10].
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21.2 The Variational Form of the Equation

The solution space of the electronic Schrödinger equation is the Hilbert space H1

that consists of the one time weakly differentiable, square integrable functions

u W .R3/N ! R W .x1; : : : ; xN / ! u.x1; : : : ; xN / (21.2)

with square integrable first-order weak derivatives. The norm on H1 is composed
of the L2-norm k � k0 and the H1-seminorm, the L2-norm of the gradient. In the
language of physics, H1 is the space of the wavefunctions for which the total
position probability remains finite and the expectation value of the kinetic energy
can be given a meaning. Let D be the space of the infinitely differentiable functions
(21.2) with bounded support. The functions in D form a dense subset of H1. Let

V.x/ D �
NX

iD1

KX


D1

Z


jxi � a
 j C 1

2

NX

i;jD1
i¤j

1

jxi � xj j

be the potential in the Schrödinger operator (21.1). The basic observation is that
there is a constant � > 0 such that for all functions u and v in the space D

Z

V u v dx � � kuk0krvk0 (21.3)

in terms of theL2-norm of u and of the gradient of v holds. The proof of this estimate
is based on the three-dimensional Hardy inequality. The expression

a.u; v/ D .Hu; v/

defines therefore a H1-bounded bilinear form on D , where .� ; �/ denotes the
L2-inner product. It can be uniquely extended to a bounded bilinear form on H1. In
this setting, a function u ¤ 0 inH1 is an eigenfunction of the electronic Schrödinger
operator (21.1) for the eigenvalue � if the relation

a.u; v/ D �.u; v/ (21.4)

holds for all test functions v 2 H1. The weak form (21.4) of the eigenvalue equation
Hu D �u particularly fixes the behavior of the eigenfunctions at the singularities of
the interaction potential and at infinity. For normed u, a.u; u/ is the expectation value
of the total energy. One can deduce from the estimate (21.3) that the total energy of
the system is bounded from below. Hence one is allowed to define the constant

	 D inf
˚
a.u; u/

ˇ
ˇ u 2 D ; kuk0 D 1

�
;
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the minimum energy that the system can attain. Its counterpart is the ionization
threshold. To prepare its definition lets

˙.R/ D inf
˚
a.u; u/

ˇ
ˇ u 2 D.R/; kuk0 D 1

�
;

where D.R/ consists of those functions in D for which u.x/ D 0 for jxj � R. One
can show that the constants ˙.R/ are bounded from above by the value zero. As
they are monotonously increasing in R, one can therefore define the constant

˙� D lim
R!1˙.R/ � 0;

the energy threshold above which at least one electron has moved arbitrarily far
away from the nuclei, the ionization threshold. We restrict ourselves here to the
case that 	 < ˙�, that is, that it is energetically more advantageous for the
electrons to stay in the vicinity of the nuclei than to fade away at infinity. In other
words, we consider cases where the nuclei can bind all electrons. The ionization
threshold is the bottom of the essential spectrum of the Schrödinger operator. This
article discusses properties of eigenfunctions for eigenvalues below the ionization
threshold. Such eigenfunctions u decay exponentially in the L2-sense. That means
there is a constant � > 0, depending on the distance of the eigenvalue under
consideration to the bottom of the essential spectrum, such that the functions

x ! exp

�

�

NX

iD1
jxi j

�

u.x/ (21.5)

are square integrable. Details and references to the literature can be found in [8].

21.3 The Mixed Regularity of the Wavefunctions

The regularity of the electronic wavefunctions increases in a sense with the number
of electrons, the reason being that the interaction potential is composed of two-
particle interactions of a very specific form. To describe this behavior, we introduce
a scale of norms that are given by

jjjujjj2#;m D
Z �

1C
NX

iD1
j!i j2

�m� NY

iD1

�
1C j!i j2

	�#
jOu.!/j2 d! (21.6)

and are defined on the Hilbert spaces H#;m
mix that consist of the square integrable

functions (21.2) for which these expressions remain finite. The !i 2 R
3 forming

together the variable ! 2 .R3/N can be associated with the momentums of the
electrons; the expressions j!i j are their euclidean norms. For nonnegative integer
values m and # , the norms measure the L2-norm of weak partial derivatives. The
parameter m measures the isotropic smoothness that does not distinguish between
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different directions, and the parameter # the mixed smoothness in direction of the
three-dimensional coordinate spaces of the electrons. The spaces L2 and H1 are
special cases of such spaces, with indices m D 0 and # D 0 respectively m D 1

and # D 0. A function in H1;0
mix possesses weak partial derivatives of orderN in L2.

It has been proved in [8] that the physically admissible eigenfunctions of the
electronic Schrödinger operator (21.1), those with symmetry properties as enforced
by the Pauli principle, and their exponentially weighted counterparts (21.5) as well
possess a large number of square integrable mixed derivatives, sufficiently many to
show that they are contained in the space H#;1

mix for # D 1=2. This result has been
improved substantially in [6]. It has been shown there that the eigenfunctions of
the electronic Schrödinger operator and their exponentially weighted counterparts
(21.5) are, independent of these symmetry properties, contained in

H
1;0
mix \

\

#<3=4

H
#;1
mix: (21.7)

The bound 3=4 is optimal and can, except for special cases, probably neither be
reached nor improved further. This shows the example of the function

u.x/ D
�
1 C 1

2
jx1 � x2j

	
exp

�
� 1

4
jx1j2 � 1

4
jx2j2

	

the ground state of the so-called hookium or harmonium atom, an artificial two-
electron system with the Hamiltonian

� 1

2
� C 1

8
j x j2 C 1

jx1 � x2j
in which the potential of the nucleus is replaced by that of a harmonic oscillator.

It is however, possible to prove a higher regularity in weighted L2-spaces [6]. To
describe the corresponding result, we first introduce the set

A D ˚
.˛1; : : : ; ˛N /

ˇ
ˇ˛i 2 Z

3	0; ˛i;1 C ˛i;2 C ˛i;3 � 1
�
; (21.8)

of multi-indices ˛ and the weight function

W.x/ D min
˚

min
i<j

jxi � xj j; 1 �:

The weak derivatives D˛u, ˛ 2 A , of the eigenfunctions u of the Schrödinger
operator, which exist by the result above and are square integrable, are then
themselves one times weakly differentiable outside the singular set where the
positions xi of two or more electrons coincide and it holds

W �rD˛u 2 L2

for all exponents � > 1=2. Again, the bound � D 1=2 cannot be reached.
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21.4 The Transcorrelated Formulation and the Regularity
Proof

A physically admissible wavefunction, that is compatible with the Pauli principle,
vanishes where two electrons of same spin meet, a fact which counterbalances the
singular behavior of the derivatives of the interaction potential. Our original proof
[7, 8] utilized this fact. The more recent proof in [6] is based on the multiplicative
splitting of the eigenfunction u under consideration into a more regular part

u0.x/ D exp

�

�
X

i<j

�.xi � xj /

�

u.x/ (21.9)

in H1;1
mix and a universal factor that covers the electron-electron singularities. This

kind of splitting can be traced back to the work of Hylleraas [5] in the early years of
quantum mechanics and plays an important role in quantum chemistry. It has been
used in [1] and [4] to study the Hölder regularity of the eigenfunctions. There is a
lot of freedom in the choice of the function �. It needs only to be of the form

�.x/ D Q�.jxj/; Q�0.0/ D 1

2
;

where Q� W Œ0;1/ ! R is an infinitely differentiable function behaving sufficiently
well at infinity. The regularity is therefore determined by that of the explicitly known
factor from (21.9) that describes the behavior of the solutions at the singular points
of the electron-electron interaction potential.

The proof starts from the weak form

1

2

Z

ru0 � rv dx C s.u0; v/ D �.u0; v/; v 2 H1; (21.10)

of the so-called transcorrelated equation for the regular part (21.9) of the wave-
functions. The bilinear form s.u; v/ is nonsymmetric and originates from the zero-
and first-order parts of this equation. Its coefficient functions are by one order less
singular than those of the original operator (21.1). An explicit representation of this
bilinear form can be found in [9]. The key to our regularity proof is the estimate

Qs .u; v/ � .1C˝�1/ � jjjujjj1;0jjjvjjj1;1 (21.11)

for the bilinear form Qs .u; v/ D s.u;L v/ on the space of infinitely differentiable
functions with compact support. The high-order differential operator

L D
X

˛2A
.�1/j˛j˝�2j˛jD2˛ D

NY

iD1
. I �˝�2�i /
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is built up of the even-order partial derivatives D2˛ for the multi-indices ˛ in the set
(21.8). The prefactors reflect the different scaling behavior of the derivatives; the
constant˝ will be fixed later. The differential operator induces the norms given by

jjjujjj21;0 D
X

˛2A
˝�2j˛jkD2˛uk20; jjjvjjj21;1 D

X

˛2A
˝�2j˛jkD2˛vk21; (21.12)

that are scaled variants of the norms on the spaces H1;0
mix and H1;1

mix. The constant �
does not depend on the scaling parameter˝ and the positions of the nuclei. A proof
of the estimate (21.11) for the case ˝ D 1 can be found in [9]. It is based on esti-
mates of the single integral expressions of which the bilinear form Qs .u; v/ is com-
posed and relies on careful integration by parts across the singularities of the coef-
ficient functions involved and the three-dimensional Hardy inequality. It is no big
deal to incorporate the scaling parameter˝ into the estimates of the single terms.

The estimate (21.11) allows it to extend the bilinear form Qs .u; v/ from the
space of the infinitely differentiable functions with compact support to a bounded
bilinear form on the corresponding Hilbert spaces with finite norms (21.12) and to
transform equation (21.10) into a high-order equation, basically by replacing the
test functions v by test functions L v, v rapidly decreasing. If one chooses a suitable
scaling parameter ˝ of order � and proceeds as in [8] or [9], one finally obtains
the desired regularity theorem and can show that the regularized parts (21.9) of the
eigenfunctions for eigenvalues below the essential spectrum are contained in H1;1

mix.
Moreover,

Z �

1C
NX

iD1

ˇ
ˇ
ˇ
!i

˝

ˇ
ˇ
ˇ
2
�� NY

iD1

�

1C
ˇ
ˇ
ˇ
!i

˝

ˇ
ˇ
ˇ
2
��

jOu0.!/j2 d! � 4 e ku0k20; (21.13)

with Euler’s number e D exp.1/. The constant˝ fixes a characteristic lengthscale.
It is independent of the eigenfunction under consideration and depends basically
only on the number of electrons. The same type of estimate holds for the corre-
spondingly regularized parts of the exponentially weighted eigenfunctions (21.5).

The spaces H#;1
mix, 0 < # < 1, are interpolation spaces between H1 and H1;1

mix.
Interpolation spaces are defined with help of the K-functional. TheK-functional of
a function u 2 H1 in a version adapted to the given setting is

K.t; u/ D inf
v2H1;1

mix

˚ ku � vk21 C t2 jjjvjjj21;1
�1=2

:

The faster K.t; u/ tends to zero for t ! 0C the smoother u is. The K-functional is
needed to define the interpolation norm of a function u 2 H1, which is given by

kuk2 D
Z 1

0

Œ t�#K.t; u/ �2
dt

t
:
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It remains finite if and only if u is contained in the space H#;1
mix and is in this case a

fixed multiple of the original norm on this space. The proof that the eigenfunctions
under consideration and their exponentially weighted counterparts are contained in
the spaces (21.7) is based on this characterization of the fractional order spaces.

The complete the proof of this regularity property, one needs to estimate the
speed with which the K-functional of functions

u.x/ D exp

� X

i<j

�.xi � xj /

�

u0.x/

tends to zero as t goes to zero, where u0 2 H1;1
mix is here at first not nearer specified.

The approximating functions v in the definition of the K-functional are for this
constructed smoothing the function � in the exponent properly. It turns out [6] that

K.t; u/ . j ln.t/j1=2 t3=4 jjju0jjj1;1; t ! 0C;

and u is thus contained inH#;1
mix for # < 3=4. As theH1;0

mix-norm of u can be estimated
by that of u0, the functions under consideration are therefore contained in the
space (21.7). This holds in particular for the solutions of the electronic Schrödinger
equation and their exponentially weighted counterparts (21.5).

21.5 The Radial-Angular Decomposition

An interesting consequence of these regularity properties is the following observa-
tion. Consider a complete L2-orthonormal system

�n`m.x/ D 1

r
fn`.r/ Y

m
` .x/; n; ` D 0; 1; : : : ; m D �`; : : : ; `; (21.14)

of functions from R
3 to R, where r D jxj has been set and the Y m` are the

spherical harmonics. The joint eigenfunctions of the harmonic oscillator and the
angular momentum operators L2 and L3 known from quantum mechanics represent
an example of such a system. Every square integrable function u W .R3/N ! R can
then be expanded into an orthogonal series

u.x/ D
X

n;`;m

a.n; `;m/

NY

iD1
�ni `imi .xi /;

where n, `, andm are multi-indices here with components ni , `i , andmi . With help
of this expansion, one can define the L2-orthogonal projections
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�
Q.`;m/u

�
.x/ D

X

n

a.n; `;m/

NY

iD1
�ni `imi .xi /

in which the angular parts are kept fixed and the sum extends only over the
radial parts. These projections can in fact be defined without recourse to the given
expansion. They are not only L2-orthogonal but also orthogonal as projections of
many other L2-like Sobolev spaces into themselves. For functions in H1,

kuk21 D
X

`;m

kQ.`;m/uk21:

The point is that the weighted norm defined by the expression

jjjujjj2 D
X

`;m

� NY

iD1

�
1C `i .`i C 1/

	�

kQ.`;m/uk21

can be estimated by theH1;1
mix-norm of the exponentially weighted counterpart (21.5)

of u, as long this exponentially weighted counterpart is in this space. The proof uses
that the functions (21.14) are eigenfunctions of the square of the angular momentum
operator; see [8]. Interpolation theory thus shows that for # < 3=4 the expressions

X

`;m

� NY

iD1

�
1C `i .`i C 1/

	�#
kQ.`;m/uk21

remain finite for the eigenfunctions u of the electronic Schrödinger operator for
eigenvalues below the bottom of the essential spectrum. Thus only comparatively
few of the angular parts make a significant contribution to these eigenfunctions. At
least for atoms this is not truly surprising and reflects their shell structure.

21.6 Sparse Grids, Hyperbolic Cross Spaces,
and Antisymmetry

Electrons have an internal property called spin that behaves similar to angular
momentum. The spin of an electron can attain the two half-integer values ˙1=2.
Correspondingly, the complete wavefunctions are of the form

 W .R3/N � f�1=2; 1=2gN ! R W .x; �/ !  .x; �/; (21.15)
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that is, depend not only on the positions xi 2 R
3, but also on the spins �i D ˙1=2

of the electrons. The Pauli principle, one of the fundamental principles of quantum
mechanics, states that only those eigenfunctions are admissible that change their
sign under a simultaneous exchange of the positions xi and xj and the spins �i and
�j of two electrons i and j , that is, are antisymmetric in the sense that

 .Px;P�/ D sign.P / .x; �/

holds for arbitrary simultaneous permutations x!Px and �!P� of the electron
positions and spins. The Pauli principle forces the admissible wavefunctions to
vanish where xi D xj and �i D �j for i ¤ j , that is, that the probability that
two electrons i and j with the same spin meet is zero. The admissible solutions of
the scalar Schrödinger equation (21.4) are those that are components

u W .R3/N ! R W x !  .x; �/

of an antisymmetric wavefunction (21.15). They are antisymmetric under all
permutations of the particles that leave the spin vector � invariant.

We explain the interplay of these symmetry properties and the mixed regularity
of the wavefunctions for the approximation of the solutions of the Schrödinger
equation in the following by means of a simple model problem, the approximation
of functions u that are odd and 2�-periodic in every coordinate direction on the
axiparallel cube Q D Œ0; ��d by the tensor products

�.k; x/ D
dY

iD1
�ki .xi /; �ki .�/ D

r
2

�
sin.ki �/ (21.16)

of one-dimensional trigonometric polynomials labeled by the components ki of the
multi-indices k. These tensor products form a complete L2-orthonormal system
on the cube Q. Functions of the given kind that are square integrable over Q can
therefore be expanded into a multivariate Fourier series

u.x/ D
X

k

Ou.k/�.k; x/: (21.17)

We measure the speed of convergence of this series in the sense of the L2-norm
which reads in terms of the expansion coefficients

kuk20 D
X

k

jOu.k/j2:

The speed of convergence of the series is thus determined by the speed with which
the expansion coefficients decay. At this place the mixed regularity comes into play.
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Consider functions u that possess corresponding weak partial derivatives and set

j u j21;mix D
Z

Q

ˇ
ˇ
ˇ

@du

@x1 : : : @xd

ˇ
ˇ
ˇ
2

dx

or, in terms of the expansion coefficients,

j u j21;mix D
X

k

� dY

iD1
ki

�2
jOu.k/j2:

Let u" be the function represented by the finite part of the series (21.17) that extends
over the multi-indices k inside the hyperboloid or hyperbolic cross given by

dY

iD1
ki <

1

"
: (21.18)

The L2-error can then be estimated as

ku � u"k0 � " j u j1;mix

and tends like O."/ to zero as " goes to zero. The dimension n of the space spanned
by the functions (21.16) for which (21.18) holds increases for " tending to zero like

n � j log " jd�1"�1:

This shows that already a comparatively slow growth of the smoothness with
the space dimension can help to reduce the complexity of a high-dimensional
approximation problem substantially, an observation that forms the basis of the
sparse grid or hyperbolic cross techniques. Due to the logarithmic term, the
applicability of such methods is, however, in general limited to moderate space
dimensions.

Symmetry properties as enforced by the Pauli principle represent a possibility to
escape from this curse of dimensionality without forcing up the smoothness require-
ments further, a fact that has first been noted by Hackbusch [2]. Consider functions
u that are antisymmetric with respect to the exchange of their variables, i.e., that

u.Px/ D sign.P /u.x/

holds for all permutation matrices P . It is not astonishing that such symmetry
properties are immediately reflected in the expansion (21.17). Let

Q�.k; x/ D 1p
dŠ

X

P

sign.P /�.k; Px/ (21.19)
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be the renormalized, antisymmetric parts of the functions (21.16), where the sums
extend over the dŠ permutation matrices P of order d . The antisymmetrized
functions (21.19) can be written as determinants

1p
dŠ

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�k1.x1/ : : : �kd .x1/
:::

: : :
:::

�k1.xd / : : : �kd .xd /

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

and evaluated in this way. For the functions u in the given symmetry class, many
terms in the expansion (21.17) can be combined. It finally collapses into

u.x/ D
X

k1>:::>kd

�
u; Q�.k; � /� Q�.k; x/;

where the expansion coefficients are the L2-inner products of u with the
corresponding functions (21.19). The number of basis functions needed to reach a
given accuracy is reduced by more than the factor dŠ, a significant gain for larger
dimensions d .

It remains to count the number of the sequences k1 > k2 > : : : > kd of
natural numbers that satisfy the condition (21.18) and with that also the number of
basis function (21.19) needed to reach the accuracy O."/. To study the asymptotic
behavior of the number of these sequences in dependence of the dimension d
and of ", it suffices when we restrict ourselves to the case " D 1=2L, with
positive integers L. That is, we have to give bounds for the number of sequences
k1 > : : : > kd for which

dY

iD1
ki � 2L: (21.20)

The problem to estimate this number has to do with the prime factorization of
integers. To simplify this problem, we group the numbers ki into levels and
decompose the space of the trigonometric polynomials correspondingly. Let

`.ki / D max
˚
` 2 Z

ˇ
ˇ 2 ` � ki

�
:

An upper bound for the number of these sequences is then the number a.d;L/ of
the sequences k1 > k2 > : : : > kd of natural numbers for which

dY

iD1
2 `.ki / � 2L:

The numbers a.d;L/ can be calculated recursively; see [8] for details. A crude
estimate yields a.d;L/ D 0 if LC 1 < d . Thus
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Fig. 21.1 The numbers a�.L/ and a.d; L/ for d D 10; 15; 20; : : : ; 175

a�.L/ WD max
d	1 a.d;L/ D max

d�LC1 a.d;L/: (21.21)

Figure 21.1 shows, in logarithmic scale, how the a.d;L/ behave compared to their
joint least upper bound a�.L/. It becomes obvious from this picture that this upper
bound exceeds the actual dimensions for larger d by many orders of magnitude,
the more the more the number d of variables increases. The joint least upper
bound that is independent of d for the number of the sequences k1 > : : : > kd of
natural numbers ki for which (21.20) holds grows at least like �2L since already
for the case d D 1, there are 2L such “sequences”, namely those with values
k1 D 1; : : : ; 2L. Figure 21.1 suggests conversely that the upper bound (21.21) for
the number of these sequences does not grow much faster than �2L. This is in fact
the case since the number of the decreasing infinite sequences k1 � k2 � k3 � : : :

of natural numbers for which

1Y

iD1
2 `.ki / � 2L; (21.22)

with L a given nonnegative integer, is bounded by

LX

`D0
p.`/ 2 `; (21.23)

where p.`/ denotes the partition number of `, the number of possibilities of
representing ` as sum of nonnegative integers without regard to the order. To
show this, we observe that the number of these sequences is bounded by the
number of sequences k1; k2; k3; : : : of natural numbers for which their levels
`.k1/; `.k2/; : : : decrease and that satisfy (21.22). We show that the expression
(21.23) counts the number of these sequences. Let the integers `i D `.ki / first
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be given. As there are 2 `i natural numbers ki for which `.ki / D `i , namely
ki D 2 `i ; : : : ; 2 `iC1 � 1, there are

1Y

iD1
2 `i D 2 `; ` D

1X

iD1
`i ;

sequences k1; k2; k3; : : : for which the `.ki / attain the prescribed values `i .
The problem thus reduces to the question how many decreasing sequences of
nonnegative integers `i exist that sum up to values ` � L, i.e., for which

1X

iD1
`i D `:

This number is by definition the partition number p.`/ of the nonnegative integer `.
Every sequence k1 > k2 > : : : > kd of natural numbers for which (21.20) holds
can obviously be expanded to an infinite, decreasing sequence k1 � k2 � k3 � : : :

of natural numbers that satisfies (21.22) by setting all ki D 1 for i > d . The sum
(21.23) represents therefore also an upper bound for the number of these sequences.

The partition number plays a big role in combinatorics. Hardy and Ramanujan [3]
have shown that it behaves asymptotically like

p.`/ � exp
�
�
p
2`=3

�

`

as ` goes to infinity. We conclude that the upper bound (21.21) for the number of
determinants needed to reach an error � 2�Ljuj1;mix behaves like

a�.L/ D .2L/1Cı.L/; 0 � ı.L/ � cL�1=2;

where c is a constant that depends neither on L nor on the space dimension d or the
function u. Using the representation (21.21) of a�.L/ and the recursively calculated
values a.d;L/, the exponents 1Cı.L/ can be calculated. They decay forL ranging
from 10 to 1;000 monotonously from 1:406 to 1:079. For L D 100, 1 C ı.L/ D
1:204. That is, the error tends faster to zero in the number n of determinants than

� 1

n1�#

for any given # in the interval 0 < # < 1. Not only does the convergence rate
deteriorate neither with the dimension nor the number of variables, it behaves
asymptotically almost as in the one-dimensional case. Similar results hold for
partially antisymmetric functions as they occur in quantum mechanics.
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21.7 Eigenfunction and Wavelet Expansions

The constructions sketched in the previous section transfer to the more complicated
case of the expansion of the solutions of the electronic Schrödinger equation into
correspondingly antisymmetrized tensor products of three-dimensional Hermite
functions or other eigenfunctions of three-dimensional Schrödinger-like operators
as in [8] or wavelets as in [10]. Indeed, it finally turns out that the convergence rate
measured in terms of the number of basis functions involved does not deteriorate
with the number of electrons and comes close to that for the two- or even
one-particle case. We do not explicate the partly technical details here but explain
how one can utilize the intermediate smoothness of the exponentially weighted
solutions (21.5) to obtain optimal convergence rates.

Let eF be exponential factor in (21.5). The argumentation starts from functions
v whose exponentially weighted counterparts eF v are located in H

1;1
mix, that is,

have in contrast to the solutions of the Schrödinger equation full mixed regularity.
The essential observation is that the norm jjjeF vjjj1;1 can be estimated by the sum
of the weighted L2-norms keFD˛vk0 of the involved derivatives D˛v of v and
vice versa. This comes from the special structure of the function F . The norm
jjjeF vjjj1;1 measures therefore the exponentially weighted L2-norms of the involved
derivatives of v. It is therefore reasonable to start from a sequence Tn W H1 ! H1,
n D 1; 2; : : : , of linear approximation operators that are uniformly H1-bounded
and to require that

kv � Tnvk1 . n�q jjjeF vjjj1;1 (21.24)

for all functions v 2H1 for which eF v 2H1;1
mix. The constant q >0 is an unspecified

convergence rate also depending on what n means. These assumptions form a
proper framework for sparse grid-like approximation methods as those mentioned
above modeled after the example from the last section. Another example is the
expansion into tensor products of three-dimensional functions with given angular
parts as described in Sect. 21.5. The range of the operators Tn is in this case infinite
dimensional. The exponential factor is the tribute paid to the infinite extension
of the domain. The assumption (21.24) implies for the functions u 2 H1 whose
exponentially weighted counterparts eF u are in H#;1

mix for some # between 0 and 1,
the error estimate

ku � Tnuk1 . n�#q jjjeF ujjj#;1:

The proof utilizes the characterization of the spaces H#;1
mix as interpolation spaces.

We conclude that for the case of the solutions u of the Schrödinger equation the
H1-error ku � Tnuk1 tends faster to zero as n�#q for any # < 3=4. An estimate
directly based on an estimate of their K-functional even shows that

ku � Tnuk1 .
p

ln.n/ n�3=4 q
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so that up to the logarithmic term only the factor 3=4 gets lost compared to the case
of full mixed regularity. The estimate is optimal, at least up to the logarithmic factor,
and can in general not be improved further.
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