
Chapter 4
Recent Advances in Periscope for Performance
Analysis and Tuning
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Abstract State of the art High Performance Computing (HPC) systems pose
considerable programming challenges to application developers when tuning their
applications. Periscope toolkit is one of a number of performance engineering
instruments supporting application programmers in meeting those challenges. Due
to the variety of architectures, programming models, runtime environments, and
compilers on those systems, programmers need to apply multiple tools to understand
and improve program performance. In this paper, we present the latest developments
in Periscope aiming at (1) improving its interoperability and integration with other
tools, (2) integrating automatic tuning support with performance analysis and (3)
further extending performance analysis capabilities. The add-on for Periscope,
called PAThWay, allows for the integration of multiple tools into performance
tuning workflows. Further, Periscope is currently being extended with the ability to
automatically tune parallel applications with respect to execution performance and
energy consumption. And finally, new analysis capabilities were added to Periscope
for the automatic evaluation of the temporal performance behavior of long-running
applications.

4.1 Introduction

Programmers have always been required to write correct algorithms and, depending
on the problem, this may already be challenging and time consuming. When
working in projects where performance is part of the requirements, additional
challenges rise from heterogeneity, non-uniform memory access and parallelism of
the modern High Performance Computing (HPC) systems. Programmers need to
find ways to map the software to the available memory and computing elements.
Initially, the application is mapped to the hardware based on previous experience
and guesswork.
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The tuning process of a parallel application involves several tools that specialize
on different aspects that affect performance. These tools may be hardware or
programming model specific. Even under a specific hardware and programming
model, it is common that a tool will target only a subset of aspects that affect
performance. For these reasons, programmers rely on a larger collection of tools
to optimize their parallel applications.

The overall performance of a parallel application depends on its single node
performance, its scalability and how well its load is balanced. On a single node,
its performance will depend on the compilers available, the compiler flags and
the programming models. In some systems, especially if heterogeneous, several
compilers and programming models are used; this multiplies the tuning effort
required (although it is not easy to quantify this effort, since it is a human factor).
Typically, the scalability of the application depends on how much information has
to be shared across nodes and the performance of the communication library and
network. Finding a good partitioning scheme to balance the load and minimize
communication is also essential.

Furthermore, the majority of scientific codes perform simulations iteratively,
where a main loop of an application, sometimes referred to as the progress loop, exe-
cutes the same computational kernel many times. Though the code being executed is
often identical, application performance across the iterations vary significantly. As
a consequence, the impact and location of performance bottlenecks, or degradations
in this case, are time dependent. Taken into account that some simulations are run
for several days and even month, performance analysis tools should be able to
efficiently handle temporal dimension of performance measurements.

Recent developments in Periscope are focused on assisting application develop-
ers in overcoming the challenges described above. This is achieved

by enabling Periscope to answer the following typical user questions:

1. How to integrate the use of various tools in a single, well-defined workflow?
2. What is the optimal combination of tunable parameters for an application?
3. What are the most relevant runtime performance degradations?

In Sect. 4.2 we present PAThWay, which is part of the Periscope toolkit. It
automates performance engineering workflows and is designed to methodically
provide answers to the first question. Section 4.3 is dedicated to the Periscope
Tuning Framework (PTF), which implements multiple specialized tuning plugins
in order to automatically search for optima and thus answer the second question.
Periscope’s performance dynamics analysis, described in Sect. 4.4, answers the third
question by searching for temporal degradations of performance in long running
applications. We present an overview of the related work in Sect. 4.5 and, finally,
we draw conclusions and perspectives for future work in Sect. 4.6.
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4.2 Cross-Experiment Analysis and Tuning Using Workflows

A considerable challenge in optimizing HPC applications is the management of
the overall optimization process. Which tools are used, and when? How is the
collected performance data analyzed and archived? What were the performance
characteristics of the application 3 weeks ago? With PAThWay, we are reaching
out for the next level of integration, abstracting details of the HPC system and
integrating the tools usage with human tasks.

PAThWay is a high-level tool that uses formal workflow definitions to provide
structure to the overall optimization process. Major goals of this development are:

• Workflow automation
• System and Tools abstraction
• Experiment history

4.2.1 Workflow Automation

Whether formally defined or not, the process of performance tuning usually follows
a specific workflow, which itself can be broken down into several activities. For
example, typical activities involve making a snapshot of the source code for
future reference, code instrumentation, job submission on the HPC system, etc. A
simplified example of a performance tuning workflow is illustrated in Fig. 4.1.

The goal of the PAThWay development is to automate these activities to a large
extent. This helps the application developer in two ways: First, by automating these
repetitive and tedious tasks, time is saved and the number of unnecessary errors
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Fig. 4.1 Performance tuning workflow



42 Y. Oleynik et al.

is reduced. Second, the use of such automated workflows provides structure to the
optimization process, encouraging methodical performance engineering.

Workflows can be defined using the standard Business Process Model and
Notation (BPMN) format, for which there are graphical editors. Workflows have
successfully been defined for common tasks, such as scalability analysis, cross-
platform analysis and single-core profiling. Ideally, all activities that are performed
during optimization, have a representation within the workflow. Once defined,
the workflows can be executed, which triggers its individual activities. Workflow
execution itself is performed by the jBPM workflow engine,1 whereas the individual
activities can invoke arbitrary tools or even human tasks.

By integrating all optimization steps in a single workflow, we emphasize
structured and methodical performance engineering, which we believe is currently
under-utilized in real-world HPC application development.

4.2.2 System and Tools Abstraction

The variety of tools that need to be integrated in an optimization workflow is a
major complication for HPC application developers. The development of the joint
measurement infrastructure Score-P [11] was motivated by this issue. Invoking
tools from a workflow defined in PAThWay allows non-experts to use these tools
and optimize their application, which more likely represents their actual area of
expertise, e.g. physics simulation. In addition, workflows can use the tools to build
higher-level constructs like scalability analysis, without requiring the user to have
in-depth knowledge of the tools used on a low-level.

There are also several differences between HPC systems, which make cross-
platform analysis difficult. We use the Parallel Tools Platform from Eclipse to
provide the means to communicate with a variety of platforms. Jobs can be
scheduled and monitored transparently on SLURM, LoadLeveler and MPICH2-
enabled systems at the time of this writing.

Some tasks, such as analyzing tools output and optimizing the application, can
only be done by humans. We call these tasks human tasks and alert the user when
such a task needs to be performed according to the current state of workflow
execution.

4.2.3 Experiment History

PAThWay records so-called experiments that result from workflow execution. An
experiment is the notion of a job scheduled on an HPC system, its status and output,

1http://www.jboss.org/jbpm/

http://www.jboss.org/jbpm/


4 Performance Analysis and Tuning with Periscope 43

combined with a source snapshot and tools configuration. The experiment browser
allows for later inspection of the experiments’ outcome. There are plans for creating
a variety of tools that can automatically draw conclusions from the experiment
history in the future, such as analyzing cross-experiment performance dynamics.

4.3 Periscope Tuning Framework

Parallel software usually has several parameters that can be adjusted for better
performance while keeping results correct. Examples of such parameters are com-
piler flags used during compilation and configuration parameters of communication
libraries. Parallel software can also include tuning parameters, such as: algorithm
selection, block sizes, partition factors, etc. There are also hardware settings that
can be manipulated, such as performance governors and CPU frequencies (usually
only available to administrators, but exposed in some systems through user level
services).

The right combination of software and hardware parameters, that are best or
at least good enough, is not always clear. There is typically a time consuming
process of guesswork and collection of empirical data, that is done manually by the
application developers. Given the large number of degrees of freedom, and therefore
the large amount of time to empirically search for optimal or good combinations of
these software and hardware parameter combinations, automated tools for this task
are currently a necessity.

In this section we present an extension to Periscope, called the Periscope Tuning
Framework (PTF). This framework allows for the implementation of plugins that
automate the analysis and tuning process of parallel software. The plugins are built
as shared objects that are loaded at runtime. With this approach, companies or
individuals can develop custom plugins independently of the PTF core developers.

PTF follows the main Periscope principles, i.e., the use of formalized expert
knowledge in form of performance properties and strategies, automatic execution,
online search based on program phases, and distributed processing.

Periscope is extended by a number of tuning plugins that fall into two categories:
online and semi-online plugins. An online tuning plugin is one that performs trans-
formations to the application and/or the execution environment without requiring a
restart of the application. In contrast, a semi-online tuning plugin will require one
or more restarts of the application to achieve these effects.

Figure 4.2 illustrates the control flow of PTF. The tuning process is started
with a preprocessing step. In this step, the application source files are instru-
mented and static analyses are performed on them. Periscope applies source level
instrumentation for C/C++ and Fortran. The instrumenter generates a SIR file
(Standard Intermediate Representation) that includes static information such as the
instrumented code regions and their nesting information. The instrumentation and
the static analysis process have been extended to support HMPP, OpenCL, and
common parallel patterns (such as master-worker and pipelines).



44 Y. Oleynik et al.

Fig. 4.2 Tuning control flow
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The tuning is started via the Periscope frontend, either interactively or in a batch
job. As done in Periscope, the application is started by the frontend along with
the required agent hierarchy (given the size of the application and the hardware
platform).

Periscope uses analysis strategies (e.g., MPI, OpenMP or single core analysis
strategies) to guide the search for performance properties. This overall control
strategy has now become part of a higher level tuning strategy. The tuning strategy
controls the sequence of analyses and tuning steps.

Typically, an analysis can be used to determine application properties that will
allow the plugin to restrict its search space. The search space can also be restricted
by other plugin specific means, such as expert knowledge or machine learning
approaches.

Once the search is done and an optimum or good enough solution is found, the
tuning process is finished. A tuning report is then generated and presented to the
user through standard output or files. This report documents the found performance
properties as well as the tuning actions recommended by PTF. These tuning actions
can be integrated into the application such that subsequent production runs will be
more efficient.

Several plugins are being developed concurrently with the PTF. These include:

Compiler Flags Selection: Improves single node performance by evaluating pos-
sible valid compiler flags for a parallel application. The flags can be specified
per file in the build and depend on the compilers available in the target system.
For applications where their correctness depends on specific flags, these can be
enforced.

High-Level Parallel Patterns for GPGPU Systems: Optimizes common parallel
patterns on GPU based accelerators. Currently focuses on the pipeline pattern
with OpenCL or CUDA. The total pipeline length and with of specific stages are
optimized.

Hybrid Manycore HMPP Codelets: Evaluates the best selection of HMPP
codelets for a specific application and hardware combination. In the HMPP
application, several codelets that perform the same operation are prepared. The
specific codelets and parameters are then evaluated and the best chosen.

Energy Consumption via DVFS: Performs a multi-objective optimization of per-
formance and energy. For measurement, it relies on the use of hardware counters,
timers and energy measurement hardware. The result selected will depend on the
target desired performance and energy budget.

Master-Worker Pattern with MPI: Optimizes MPI applications that use the
master-worker pattern. It evaluates the number of workers, the number of masters
and the size of work packets.

MPI Runtime Parameters: Optimizes MPI communication performance for an
application. It first analyses the application to find the location and MPI
operations that take the most time. It then proceed to tune runtime parameters that
are specific to these operations. The parameters include limits for the different
communication protocols used by the library, as well as the selection of internal
algorithms. Depends heavily on the available MPI implementations.
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4.4 Runtime Performance Dynamics

Runtime Performance Dynamics Analysis is a new type of analysis supported by
Periscope. It is based on dynamic phase profiling [13] and scale-space filtering
[19] with consequent summarization of the resulting multi-scale representation. The
algorithm can be split in the following steps: measurements collection, preprocess-
ing, qualitative summarization and property detection. We explain the techniques
used and the analysis algorithm in the following paragraphs.

4.4.1 Measurement Collection

Dynamic profiles collected using Score-P are used as an input for the algorithm.
A dynamic profile is a time-series of measurements of some metric m sampled for
each iteration of the application’s progress loop, measured in a source-code region r

on a process p. Such representations capture the evolution of the performance over
the iterations of the simulation and attributes a time-series with a specific source-
code location and process. An example dynamic profile time-series is plotted with
blue color on Fig. 4.3.

Fig. 4.3 Dynamic profile time-series overlaid with the extracted maximum-stability intervals and
properties search results. The red, green and yellow curves highlight the results found for the
queries “all peaks”, “the most distinctive valley” and “the tallest increase”, respectively
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4.4.2 Preprocessing

Though the dynamic profiles capture dynamic behavior of the application perfor-
mance, this information is implicit and requires manual interpretation by the user.
A representation in terms of the intervals enclosed by zero-crossings of the first
and second order derivatives offers an alternative qualitative semantic which is
natural for the human comprehension. We apply alphabetical notation to denote
the seven possible intervals defined by the combination of the signs of the first and
second derivative: “concavely increase” – A, “concavely decrease” – B, “convexly
decrease” – C, “convexly increase” – D, “linear increase” – E, “linear decrease” – F,
“constant” – G.

However, the process of local extrema detection requires proper selection of
the scale or the neighborhood over which the derivative is taken. A systematic
way of handling the scale issue can be obtained by scale-space filtering. Scale-
space filtering is a process of incremental low-pass filtering with the Gaussian filter
of variable standard deviation, also known as the scale parameter. The resulting
sequence of smoothed versions of the original time-series at different scales form a
scale-space image. An important property of the scale-space image is that extrema
persist over multiple scales and form a tree. Therefore, by detecting local extrema
and connecting them from coarse to fine scales we can build a multi-scale hierarchy
of intervals enclosed by two nearest extrema, called an interval tree.

4.4.3 Qualitative Summarization

In the next step we classify each interval in the tree to one of the seven possible
shape types, defined above, and build a tree of qualitatively described segments.
Each node of the tree is represented by a character denoting the shape of the interval
and additional quantitative information, such as location, duration and magnitude of
the corresponding interval.

It was shown empirically [19] that the number of scales over which an interval
persists corresponds to the perceptual salience. We rely on this parameter, called
stability, in order to quantify the relevance of the corresponding segments in the
tree. Furthermore, we use the stability value to perform additional summarization
by descending the tree in a breadth-first fashion and selecting the level with the
maximum stability.

4.4.4 Automatic Search for Performance Dynamics Properties

The maximum stability level represents a dynamic profile time-series as a sequence
of segments, each characterized by a qualitative shape descriptor, a stability value
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Table 4.1 Example performance dynamics properties, corresponding queries and the color used
to highlight resulting segment on the Fig. 4.3

Property Query Color

Local peaks Select all “AB” sequences Red

The most distinctive valley Select “CD” sequence with max(stability) Green

The tallest increase Select “DA” sequence with max(magnitude) Yellow

and supplementary quantitative information. Such representation allows efficient
search for patterns specified with the following parameters:

• Qualitative shape specification (i.e. combination of shape descriptors)
• Perceptual salience (i.e. stability value)
• Magnitude and/or duration of the segment
• A combination of the parameters above

We demonstrate our technique on an example dynamic profile time-series
plotted with blue color on the Fig. 4.3. The time-series represents samples of the
metric “Execution time” measured for the body of the main loop for the first
128 iterations. The qualitative descriptors, represented with red characters, of the
extracted maximum stability segments and their borders are overlaid on top of the
time-series.

The proposed algorithm automatically answers the third question stated in the
introduction section. In this case, the phrase “relevant degradation” can be defined
in terms of the parameters described above. This allows very flexible specification
of the performance dynamics properties, which can then be automatically searched
in time-series. Table 4.1 shows three example properties and the corresponding
queries. The resulting segments are highlighted with red, green and blue color on
the Fig. 4.3.

4.5 Related Work

The complexity of today’s parallel architectures has a significant impact on appli-
cation performance. In order to avoid wasting energy and money due to low
utilization of processors, developers have been investing significant time into tuning
their codes. However, tuning implies searching for the best combination of code
transformations and parameter settings of the execution environment, which can
be fairly complicated. Thus, much research has been dedicated to the areas of
performance analysis and auto-tuning.

The explored techniques, similar in approach to ours, can be grouped into the
following categories:

• Tools that utilize techniques (such as optimization-space exploration [18], non-
parametric inferential statistics [8], optimization orchestration [15] and machine
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learning [6, 12]) to automatically analyze alternative compiler optimizations and
search for their optimal combinations; and

• Auto-tuners (such as Active Harmony [4, 17] and MaSiF [5]) that search a
space of application-level parameters that are known to impact performance.
The search can be directed with the use of modeling or machine learning
techniques [14]; and

• Frameworks that combine ideas from all the other groups (such as Autopilot [16]
and the Insieme Compiler and Runtime infrastructure [10]).

Performance analysis and tuning are currently supported via separate tools.
Periscope Tuning Framework aims at bridging this gap and integrating support for
both steps in a single tuning framework.

Dynamic performance behavior is typically a subject for analysis using tracing
techniques. However, due to scalability issues, profiling becomes a more attractive
alternative. In particular, dynamic phase profile is used for performance dynamics
evaluation and was first introduced in TAU [13]. Though the technique captures
temporal performance evolution, the information about the relevant changes is
implicit and requires manual interpretation by the user. In our work we build on
top of this approach and apply scale-space filtering [19] with consequent qualitative
summarization of dynamic profiles in order to automatically extract relevant
performance changes. A different combination of signal processing algorithms is
used in [3], where wavelet, morphological analysis and autocorrelation is used to
extract periodical application phases from traces. Also in [7] clustering analysis
and Multiple Sequence Alignment algorithm were used to automatically detect the
computational structure of an SPMD program.

Using workflow engines to guide the overall performance tuning process and to
integrate all individual tools with human tasks seems to be a rather unique approach
within the HPC community. Although workflows are today more commonly used in
scientific work in general [2], their use is much more common in business applica-
tions, which is why standards are usually centered around those. Popular standards
include BPEL (Business Process Execution Language) [9], XPDL (XML Process
Definition Language) and BPMN (Business Process Modeling and Notation) [1], of
which the latter is also used by PAThWay.

4.6 Conclusion and Future Work

While working on performance analysis and optimization of HPC applications,
programmers are faced with a wide spectrum of issues. These range from questions
on how to organize performance experiments, choice of optimal configurations for
the application and the runtime, to tracking and pinpointing dynamically appearing
and disappearing performance bottlenecks. Recent developments in Periscope
toolkit are aimed at assisting the programmer in handling these challenges by a
number of technologies.
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A new performance engineering automation tool, called PAThWay, is designed
to assist the programmer in defining and automating the typical workflows involved
in this process. The tool automates tasks like job submission, monitoring and
retrieving results of the jobs on remote HPC systems; book-keeping of the carried
out experiments and their configurations, maintenance of the documentation. In the
future, we plan to extend the functionality of PAThWay for supporting analysis of
cross-experiment performance dynamics.

In order to support programmers in configuring the application and the execution
environment, Periscope is extended with a tuning interface and a number of plugins.
The latter will automatically analyze application performance and based on the
detected inefficiencies perform a search for the optimal parameters settings, where
the parameters range from compiler flags to MPI runtime settings. In the future
work, we plan to implement meta-plugins that will orchestrate other plugins in
tuning multiple orthogonal parameter sets.

Finally, we present a new analysis algorithm which is aimed at supporting
programmers in analyzing performance of long-running applications. A particu-
lar challenge of such analyses is that the location and severity of performance
bottlenecks is time dependent. Using dynamic profiling and multi-scale analysis
techniques we are able to search for complex patterns in the temporal performance
behavior. For the future work we plan to extend the algorithm to search for
similarities in temporal behavior observed on different processes of the parallel
applications.
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