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Preface

Ongoing research towards specifications and designs for prospective Exascale
systems highlights daunting challenges: billion-way parallelism, more levels of
parallelism, a very low memory per core ratio, potential for mean-time-between-
failures of less than a day, high potential for silent bit errors even in the presence
of error-correcting code memories, reduced I/O bandwidths per core, and energy
considerations that could require application awareness. Without upcoming dis-
ruptive computer hardware, the operation and usage of such systems will require
extreme diligence. Research in areas such as parallel programming paradigms,
runtime systems, compilers, operating systems, system libraries, and fault-tolerant
algorithms can provide answers to some of these challenges, but will not be able to
hide all of these effects from application developers.
Such a situation motivates the use of specialized tools for high performance
computing (HPC) more than ever. Performance optimizers can aid application
programmers in the identification of additional potential for parallelism, identify
inefficient use of specific levels of parallelism, and incorporate feedback from
energy monitors to identify wasteful resource usage. Debugging and correctness
tools could integrate feedback from the operating system and fault tolerant system
libraries to highlight the presence and impact of system faults. Simulators and
automatic optimizers could identify inefficient data movement patterns, optimize
process/thread mappings, or even highlight potential errors from silent memory
faults.
This year’s International Parallel Tools Workshop in Dresden, the seventh in a
series of workshops that started in 2007, highlights how tools must carefully
consider these challenges. Presentations on the state of the art in HPC tools
both include activities to incorporate advances in programming paradigms, system
libraries, and novel information sources, as well as new concepts for data analysis,
presentation, correlation, prediction, simulation, and visualization in order to ensure
that application developers will not be overwhelmed by the massive amounts of data
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vi Preface

that tools can generate even for the Petascale era. The contributions of this year’s
workshop include the following topics:

• Performance analytics that maximize insight of performance data
• A workflow that captures the essential behavior of existing parallel applications

and automatically generates benchmark codes with the ability to extrapolate said
behavior at Exascale levels

• A simulator to analyze compute node performance and energy usage that
overcomes the scalability limitations of cycle accurate simulators

• A performance prediction framework that both incorporates feedback from
performance counters and energy measurements

• An approach to automatically detect and prioritize performance bottlenecks with
differential analysis

• An evaluation of tool support for the task concept of the OpenMP shared memory
programming paradigm

• Advanced functionality in an online performance analysis framework that
includes an integration with automatic performance tuning

• An approach for holistic I/O analysis that combines application and system
events

• An approach addressing a specific class of memory usage errors in GPGPU
accelerated applications using CUDA

These topics highlight how tools face several of the challenges that increased
hardware complexities impose. At the same time, the workshop presentations
include updates and demonstrations of multiple widely available tools, as well
as success stories on their use. Thus, the workshop serves both as a forum for
application developers that want to apply tools, as well as for tool developers as
a knowledge exchange. This audience combination enables fruitful and engaged
discussions of current and future challenges in order to ensure that tools meet their
requirements on current and future HPC systems.

Dresden, Germany Andreas Knüpfer
2014 José Gracia

Wolfgang E. Nagel
Michael M. Resch
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Chapter 1
Performance Analytics: Understanding Parallel
Applications Using Cluster and Sequence
Analysis

Juan Gonzalez, Judit Gimenez, and Jesus Labarta

Abstract Due to the increasing complexity of High Performance Computing
(HPC) systems and applications it is necessary to maximize the insight of the
performance data extracted from an application execution. This is the mission of the
Performance Analytics field. In this chapter, we present three different contributions
to this field. First, we demonstrate how it is possible to capture the computation
structure of parallel applications at fine grain by using density-based clustering
algorithms. Second, we introduce the use of multiple sequence alignment algorithms
to asses the quality of a computation structure provided by the cluster analysis.
Third, we propose a new clustering algorithm to maximize the quality of the
computation structure detected minimizing the user intervention. To demonstrate
the usefulness of the different techniques, we also present three use cases.

1.1 Introduction

Nowadays, High Performance Computing (HPC) systems provide the scientific
community with hundreds of thousands or even millions of computing cores to
run complex parallel applications. In terms of analysis, complex applications imply
complex analysis work due to the huge amount of elements involved and the volume
of data to process. The Performance Analytics field provides developers and analysts
adapted techniques and methods from the Data Analytics area, giving a valuable
insight to understand how their applications behave and perform. In this chapter,
we introduce three main contributions to this field developed at the Barcelona
Supercomputing Center Performance Tools Team in the last few years.

The first contribution is the use of cluster analysis to detect the fine-grain
computation structure of a parallel application. Cluster analysis has been used to
reduce the analysis data by grouping processes that behave similarly [1, 5, 7]. Our
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2 J. Gonzalez et al.

proposal is to group the behaviour of computation regions defined below the process
granularity, an approach shared with SimPoint [9]. We demonstrate that, at this
granularity level, the density-base clustering algorithm DBSCAN [3] provides better
results than K-means [4], the algorithm typically used in previous works.

The vast majority of applications follow the Single Process Multiple Data
(SPMD) paradigm. The second contribution we detail is the use of Multiple
Sequence Alignment (MSA) algorithms to evaluate if the groups of computation
regions detected, i.e. the computation phases, reflect the SPMD structure. In
bioinformatics, MSAs are widely used to evaluate similarities between DNA chains
or proteins (sequences of nucleic acids or amino acids, respectively). In our context,
the sequences of computations performed by the different processes in a SPMD
application should be similar. The Cluster Sequence Score we propose measures
this similarity, the SPMDiness of the application, using an MSA.

The third contribution is a new density-based clustering algorithm, the
Aggregative Cluster Refinement algorithm. This algorithm overcomes some
problems detected on DBSCAN, such as the sensitivity to its parametrization
and the inability to detect clusters with different densities. The Aggregative Cluster
Refinement iteratively refines the results obtained by DBSCAN using the Cluster
Sequence Score to evaluate the clusters detected on successive steps. In addition, it
generates the hierarchical description of the clusters formation, useful to understand
how the different computation phases behave below the SPMD level.

To demonstrate the usefulness of the three previous contributions, we put in
practice the computation structure detection in three different uses cases. The first
one is a methodology to extrapolate performance data combining the computation
structure detection with a multiplexing scheme to access the performance counters.
The second use case is the application of the structure detected so as to determine
which are the computation regions to be simulated in a multi-scale simulation
framework. The third use case is a quantitative study of the potential gain when
introducing software or hardware improvements that impact not all the execution
but specific computations in the application, defined by the structure detection.

The rest of this chapter is organized as follows: Sect. 1.2 describes the
computation structure detection using cluster analysis; the SPMDiness evaluation of
the computation structure using MSAs is detailed in Sect. 1.3; Sect. 1.4 introduces
the Aggregative Cluster Refinement algorithm; Sect. 1.5 contains the three different
use cases introduced; finally, Sect. 1.6 presents the conclusions of our current work
as well as opportunities for future research.

1.2 Computation Structure Detection Using Cluster Analysis

The target of the technique we present in this section is to group the behaviour of
different CPU bursts executed by a parallel application. A CPU burst is the region in
a parallel application between an exit to the parallel runtime and the following entry.
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for (int i = 0; i < 50; i++)
{

Receive(Partner)
f1();
if (condition)

f2();
else

f3();
Send(Partner)

}

Fig. 1.1 Visual definition of a CPU burst based on the pseudo-code of a simple SPMD message-
passing application and a single iteration timeline when executed the code with two processes. The
CPU bursts cover the f1 sub-routine and, depending on the condition value, f2 or f3 sub-routines

Figure 1.1 illustrates an example of the pseudo-code of a SPMD application and the
corresponding CPU bursts in a timeline representation when executing the code
with two processes. CPU bursts reflect the dynamic application behaviour observed
during the execution, e.g. alternate execution paths, as opposite to the static code
structure. We will discuss this later in this Section.

Each CPU burst is characterized with a vector of performance hardware counters,
erasing the time and space (process) components. Current processors offer a wide
variety of performance counter metrics. To select the counters (or metrics derived
from the counters) used by the clustering algorithm, we follow the approach
proposed by Joshi et. al [6]: to choose those counters with a clear physical inter-
pretation by the analyst. In the experiments we present, we mainly used the metrics
of “Completed Instructions”, as a measure of the computational complexity of each
burst, and “Instructions per Cycle” (IPC, derived from Completed Instructions and
Total Cycles), as a measure of the achieved performance.

As usual in any data analysis process, a first pre-process of the data improves
the analysis both in quality and execution time. In our case, we filter those bursts
whose duration is less than a small threshold. This filtering avoids the analysis of
those regions that do no represent effective computation, for example the bursts
that appear in sequences of back-to-back MPI calls. We also apply a logarithmic
normalization to the metrics whose dynamic range is wide, such as Completed
Instructions, and a range normalization to all metrics, to guarantee that all of them
have the same weight in the clustering process.

Finally, we apply the DBSCAN [3] algorithm, a density-based cluster algorithm,
to the pre-processed data. The DBSCAN algorithm requires two parameters, Epsilon
(or Eps for short) and MinPoints. The resulting clusters are the different subsets of
the data space where distances between points are less or equal to Eps with more
than MinPoints individuals. The points that do not fall into any cluster are marked
as noise.

The choice of DBSCAN responds to the fact that performance counters data can
have an arbitrary shape. Clustering algorithms such as K-means, used in previous
works [1,5,7,9], are not able to capture the desired groups due to certain assumptions
about the data distribution that are no longer true in our data. Figure 1.2 compares
the clusters obtained with X-means [8] (a variant of K-means that automatically
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Fig. 1.2 Detected clusters and computation structure timelines using X-means algorithm (left) and
DBSCAN (right)

guesses the number of clusters) and the ones obtained with DBSCAN. The data used
corresponds to three iterations of an execution of CPMD (Car-Parinello Molecular
Dynamics) with 128 processes.

The scatter plots axes represent the metrics used to apply the cluster analysis.
These plots display clouds of points with different shapes: spherical and elliptical
clusters with a strong horizontal or vertical component. In this example, we used
L1 and L2 data cache misses for illustrative purposes, but other metrics also present
similar shapes. In the example, X-means (left plot) tends to partition the ellipses, e.g.
the cloud inside the black box was divided into two clusters. In fact, the uppermost
points of this cloud were assigned to the same cluster as the cloud on the right.
Applying DBSCAN (right plot), the cloud within the black box is detected as a
single cluster. The blue box (on the bottom-right area of both plots) highlights
a cloud with a strong horizontal component where, again, X-means detected two
clusters while DBSCAN detects just one.

In terms of the computation structure, the data partition generated by DBSCAN
is better than the X-means cluster assignment. This can be seen in the timelines
at the bottom of Fig. 1.2. In these timelines, the X axis represents the time, the
Y axis represents the 128 processes involved in the application execution, and the
colour identifies the cluster of each CPU burst. In the left timeline, the clusters
detected by X-means reflect a pattern that repeats three times, capturing the three
iterations of the application. On each iteration, we see an initial SPMD phase in
dark green, where all process are performing the same computations. On the other
hand, the second phase of each iteration does not present the regular SPMD structure
expected. The bursts contained in this phase are the ones marked with red boxes in
the left plot, where X-means divided small compact clouds into different clusters.
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DBSCAN detects these small clouds as single clusters (red boxes on the right
plot). This partition of the data leads to a clear detection of the different SPMD
computation phases as can be seen on the right timeline.

1.2.1 Application’s Syntactic Structure and Behaviour
Structure

The application syntactic structure is the structure of the application’s source code.
It represents the static division in different sub-routines, loops or lines the developer
decided while coding the algorithms of the application. Many performance tools use
this view to report their results. In particular, profiling tools present basic statistics
for each component of the syntactic structure, e.g. average duration of each sub-
routine. With the structure detection proposed, we detect the behaviour structure
of the application. The behaviour structure captures the variability in time and
space (i.e. between processes) of the performance metrics, achieved by the different
sections of the program. These two structures are complementary, as they provide
two different points of view in the analysis process. The following two examples
demonstrate that there is not a bijective relationship between the syntactic structure
and the behaviour structure.

In the first example we show how different routines of the syntactic structure
present a common behaviour in the behaviour structure. This is the case of
three main sub-routines of the NPB BT benchmark (x_solve, y_solve
and z_solve). The top timeline in Fig. 1.3 shows how these sub-routines are
distributed along four iterations of the main application loop (plus the minor
routine copy_face). The bottom timeline presents the computation phases
detected by our cluster analysis. Comparing both timelines, one can see that sub-
routine copy_faces corresponds unequivocally to Cluster 4, the y_solve and
z_solve routines present exactly the same behaviour (Cluster 3 plus Cluster 1
phases), and x_solve has two phases: the first detected as Cluster 2 and the latter
detected as Cluster 1. This common behaviour corresponds to the actual semantics
of the algorithm, which applies the same solvers (with the same behaviour) on each
dimension of a three-dimensional space.

The second example shows that a single sub-routine of the Hydro Solver
exhibits two different behaviours. In Fig. 1.4, the top timeline depicts the application
sub-routines. We have marked two executions of the same sub-routine, update-
ConservativeVars. Observing the behaviour structure detected in the bottom
timeline, we can see that the first execution of this sub-routine was detected as
Cluster 11 (dark grey) and second execution as Cluster 10 (olive), indicating a multi-
modal behaviour of this routine. The scatter-plot on the right shows that the main
difference between both clusters is the total number of instructions executed. We
observed in the application source code that in the first invocation of the routine, it
traverses a 2D data mesh by rows, and in the second invocation, by columns. This
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Fig. 1.3 Comparison of the syntactic structure of the NPB BT benchmark (top) an the behaviour
structure detected with DBSCAN (bottom)

Fig. 1.4 Comparison of the Hydro Godunov Solver sub-routines (top timeline) the computation
structure detected using DBSCAN (bottom timeline) and plot detail of the Clusters 10 and 11

different data access patterns take different execution paths in the routine, resulting
in a different number of instructions executed.
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1.3 Sequence Analysis

As stated before, the vast majority of parallel applications follow the SPMD
paradigm. When using DBSCAN, the parameter selection plays a crucial role to
capture this structure. The plot and timeline on the left of Fig. 1.5 show the results
of clustering a single iteration of the NPB BT benchmark with fixed MinPoints D 10

and low Eps, resulting in high density clusters. This restrictive value of Eps leads to
a very fine detection of the computation structure showing an initial SPMD phase
but patterns below the SPMD structure in the rest of the execution. The plot and
timeline on the right show the results obtained with the same data, same MinPoints
parameter but a higher Eps value, that clearly reveals the SPMD structure. Both
structures are correct, but the second approach makes the tasks of the analysis
easier focusing on clear phases of the application. This claim constitutes our expert
criterion to asses the quality of a given structure: it must show a series of fine-grain
SPMD phases where all processes of the application execute the same cluster at the
same time. The Cluster Sequence Score is the technique we propose to apply this
criterion automatically, measuring what we call the SPMDiness of an application
computation structure.

To implement the Cluster Sequence Score we made the following observation:
if in a SPMD application all processes perform the same computations at the
same time, the sequence of computations in all processes should be the same.
Consequently, the sequence of clusters detected should also be the same for all
processes. To compare these sequences we use a Multiple Sequence Alignment

Fig. 1.5 Comparison of the structure detection results using DBSCAN with the same value of
MinPoints and a low Eps value, on the left hand, and higher one, on the right hand
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(MSA) algorithm, typically used in bioinformatics, for example to check similarities
between proteins. The analogy is simple: each cluster is represented as an amino-
acid, each process is represented as a protein, and the whole application is the set of
proteins to compare.

The output of the MSA algorithm is a matrix of modified sequences with possible
gaps to maximize the similarities between them. Traversing this matrix column
by column we compute all the Scores per Cluster, the average percentage of the
total number of tasks that execute that cluster on each position in the sequence
where the cluster appears, i.e. how well it represents a SPMD phase. Finally, we
compute the Global Score, a sum of all the Scores per Cluster weighted by
their aggregated duration. The Global Score determines the SPMDiness of a given
application structure.

1.4 Computation Structure Refinement

In addition to the difficulty on selecting the appropriate DBSCAN parameters
discussed in the previous section, we also observed an important issue with this
algorithm: it fails to detect the correct clusters when the density varies across
the data space. This is caused by the use of a single Eps parameter to define the
neighbourhood searches.

Figure 1.6 shows an example of this issue. The left plot and timeline show the
results of using a high Eps value. With this parameter, the algorithm distinguished
correctly four clusters with high density inside the black box. Those clusters
correspond to four clear SPMD phases located at the second half of the timeline.

Fig. 1.6 Resulting clusters and phases of two executions of DBSCAN for the same application
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Contrarily, the algorithm did not detect as a single cluster the cloud points inside the
blue box, which actually correspond to a single SPMD phase with high variability
in terms of duration, located at the initial section of the timeline, depicted in brown.

Increasing the value of Eps (maintaining the same value for MinPoints) also leads
to an improper detection of SPMD phases. On the right plot, the points inside the
blue box are now detected as a single cluster, representing the desired SPMD phase
at the initial part of the right timeline. On the other hand, two of the clusters inside
the black box have merged into a single one, which in terms of the computation
structure implies a loss of detail, as two distinct SPMD phases are detected as a
single one. This effect is known as over-aggregation.

1.4.1 Aggregative Cluster Refinement

The Aggregative Cluster Refinement addresses the problems observed in DBSCAN.
It is an iterative algorithm that executes DBSCAN n times (n is the only parameter to
the algorithm), with a fixed value of MinPoints and a different Eps on each iteration
to detect clusters with different densities. The Eps values are generated traversing
the k-neighbour distance plot described in [3] and sorted increasingly to search for
dense clusters first, which is computationally cheaper. After running DBSCAN, the
clusters are evaluated using a quality score (in our case, the Cluster Sequence Score
described in Sect. 1.3). Those clusters whose Score per Cluster is higher than a
given value do not take part in further iterations, reducing the volume of data as the
algorithm progresses. The algorithm converges when all clusters represent SPMD
regions or when there are no more Eps values to explore. This algorithmic scheme is
equivalent to the one used by X-means to refine the clusters obtained using K-means.

In addition to the iterative clusters formation, the Aggregative Cluster Refine-
ment builds the refinement tree, which depicts the hierarchical relationship between
the clusters obtained using different Eps values. This tree is similar to the dendro-
gram produced by the agglomerative hierarchical clustering methods, and provides
a view of the application structure below SPMD.

Figure 1.7 shows the results of applying the Aggregative Cluster Refinement to
the same data set of Fig. 1.6. The algorithm was executed with parameter n D 10.
On the left, each level of the refinement tree corresponds to one iteration of the
algorithm where the nodes represent the clusters detected by DBSCAN using the
selected Eps for that level (low to high values from top to bottom); the filled
nodes mark those clusters that represent SPMD phases; the empty nodes represent
those clusters that still do not capture the desired SPMD phases and require further
refinement; the values inside the nodes indicate the cluster identifier and its Score
per Cluster.

Comparing the refinement tree and clusters in the scatter plot on the right, we
can observe that in the first level the algorithm detected the Clusters 1, 2, 3 and 4.
These clusters have high density and appear as the compact clouds in the upper-
right region of the plot. Clusters 4 and 5 appear at level 3 and 4 respectively, which
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Fig. 1.7 Results of applying the Aggregative Cluster Refinement algorithm to the Hydro Solver
input data also used in Fig. 1.6

imply that are less dense and have more variability. Finally, the algorithm detected
the least dense Clusters 7 and 8 at level 10. These cluster are the sparse clouds at the
center-bottom and right-bottom regions of the plot. Looking at the timeline at the
bottom of Fig. 1.7 it is easy to verify that the clusters detected perfectly represent
the SPMD structure of the application at fine grain, surpassing the results obtained
by DBSCAN and just requiring the number of Eps to explore, which is far more
understandable to the user than selecting Eps and MinPoints.

1.5 Uses Cases

In this Section we illustrate three different scenarios where the computation
structure detection based on the Aggregative Cluster Refinement is used to aid in
the performance analysis process.
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1.5.1 Performance Data Extrapolation

Performance hardware counters provide an invaluable information for the perfor-
mance analysis task. However, as discussed by Sprunt in [10], there are always
limitations on the amount of counters that can be read simultaneously and the
combinations of different counters. For example, the available registers in current
processors for performance accounting typically range from 4 to 8, and the way
to access them is in fixed groups of counters defined during the processor design.
We present in this section an extrapolation methodology to characterize the different
computation phases detected using cluster analysis with more performance counters
than the ones that can be read simultaneously, with minimum error and avoiding
multiple executions of the application.

This methodology is based on combining the structure detection and a multi-
plexed acquisition of the performance counters data. Figure 1.8 shows four different
elements that intervene in the extrapolation process. The upper timeline depicts
the time multiplexing data acquisition, where the processes shift between two
counters groups every certain time (other multiplexing schemes are also applicable).
The second timeline depicts the computation structure detected using the cluster

Fig. 1.8 Scheme of the performance data extrapolation methodology
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Fig. 1.9 CPI breakdown model of two computation phases detected in PEPC computed from a
single execution of the application using the performance extrapolation methodology

analysis. To perform this cluster analysis it is required that all counters groups share
a common subset of counters. In all processors we used in our experiments we found
that Completed Instructions and Total Cycles are always available in all counters
groups. Next, the bottom left plot shows the detected clusters using the counters
common to all groups. Finally, the bottom right plot is the key to understand the
methodology: as we have multiplexed the counters groups, different CPU bursts of
each cluster have measurements from the different counters groups. Combining the
data from the different bursts, we compute the average value of all counters present
in all groups for all the clusters detected.

Figure 1.9 shows the CPI breakdown model defined in [11] of the two main
phases of PEPC application, a plasma physics parallel-tree code. To compute this
model, it is necessary to read six different counters groups. Using the extrapolation
methodology we can compute it with a single execution of the application, saving
five extra executions.

1.5.2 Multi-scale Simulation Framework

The multi-scale simulation methodology we propose consists in combining two
simulators to predict the behaviour of message-passing parallel applications. We
use an application-level simulator, Dimemas, to predict the network behaviour of
the application and a micro-architecture simulator, MPSim, to predict the behaviour
of the application computation regions. This combination of simulators is similar to
the approach presented in [2].

In Fig. 1.10 you can see the scheme of our multi-scale simulation methodology.
Starting with a trace of a parallel application (step 1), we produce a sub-trace (or
trace cut) containing information of just two iterations (step 2). A cluster analysis
is applied to the information of the computation regions present on this reduced
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Fig. 1.10 Scheme of the multi-scale simulation framework

Fig. 1.11 Predicted execution times of the NPB using the multi-scale simulation methodology

trace, and a set of representatives per cluster is selected (step 3), adding cluster
information to the trace cut (step 4). The set of representatives is traced (step 5) and
simulated using a low-level simulator to obtain the ratios on other possible processor
configurations (step 6). Finally, using a full-system-scale simulator, we combine the
communication information present in step 3 and the cluster instructions per cycle
(IPC) ratios (step 6) to predict the total runtime of the whole application (step 7).

The main difference between our methodology and the one presented in [2]
is the addition of the process to reduce the total number of instructions to
simulate in the micro-architecture simulator, the most time-consuming element
of the whole framework (marked as “Information reduction” in the methodology
scheme). Thanks to this reduction process, we can perform very detailed analyses
in a reasonable time. For example, in Fig. 1.11 we predict the execution time of the
NPB BT benchmark using networks with different bandwidths and processors with
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different cache sizes. Simulating all instructions in this application would have been
absolutely unfeasible (months or even years of simulation time) but it just took less
than a day of to simulate these scenarios with our methodology.

1.5.3 Fine-Grain Performance Prediction

In this use case, we also apply the Dimemas simulator, combined with the
computation structure detection provided by the cluster analysis to bring up new
studies of the potential of software and hardware modifications that were not
possible to evaluate before. To illustrate these new studies, we present the analysis
of the PEPC application, previously used in the data extrapolation methodology.
The application was executed using 256 MPI processes.

As a result of the cluster analysis, we detected two different computation phases,
perfectly SPMD. Table 1.1 shows a a profile of different performance metric for
each cluster. Cluster 1 covers 57.02 % of the total computation time and Cluster 2
the 40.98 %. The remaining 2 % corresponds to the filtered CPU bursts. We are
particularly interested two of the metrics presented to define the studies of the
following subsections. The first metric we focus on is the AverageIPC, which points
that the performance of Cluster 1 is around 25 % less than Cluster 2. The second
metric is the duration load balancing (LBdur), computed as the division between
the maximum burst duration and the average burst duration for a given cluster. It
expresses, in a range between 0 (poor) and 1 (perfect), the computational balance
of such a region. In this case, the values obtained indicate that there is a slight
imbalance in both clusters.

1.5.3.1 Evaluation of Software Improvements

In this first study we measure, in terms of application execution time reduction, two
potential software improvements without requiring any code modification. These
improvements are based on the observations regarding the clusters performance
highlighted previously.

The first improvement we consider is what would happen if we increased Cluster
1 IPC to 0.8 (similar to the average IPC of Cluster 2). To simulate this, we apply in

Table 1.1 PEPC clusters
characterization

Metric Cluster 1 Cluster 2

Total computation time (%) 57.02 40.98

Average burst duration (ms) 57.954 41.892

Average completed instructions 8:130 � 107 8:260 � 107

Average IPC 0.619 0.870

LBdur 0.859 0.841
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Fig. 1.12 Comparison of nominal (top), improved IPC of Cluster 1 (middle) and duration
balancing (bottom) simulations of PEPC

Dimemas a duration scale factor to all bursts belonging to Cluster 1. This ratio is
computed as the division between the average IPC obtained for such cluster and 0.8
(the target IPC). The second improvement is what would happen if we were able to
perfectly balance the duration of both clusters. To perform this second simulation,
we use a Dimemas feature to substitute the durations of all bursts inside a cluster
by a fixed duration. In this case, we used the average burst duration listed in the
Table 1.1.

Figure 1.12 shows the timelines of these simulations. Top timeline is the nominal
simulation, i.e. simulation with the parameters of the original machine. It serves as a
reference to quantify the reductions in the execution time. Middle timeline shows the
IPC improvement simulation. Bottom timeline corresponds to the duration balance
simulation. The results show that improving the IPC of Cluster 1 we will obtain a
13 % reduction of the total application execution time. This reduction grows up to
a 19 % when balancing both clusters. With these figures, the application developer
could take a decision about where to put the resources so as to maximize the return
of the optimization efforts.
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1.5.3.2 Evaluation of the Use of New Hardware

The second study correspond to a measure, in terms of speedup, of two potential
changes in hardware elements in the system where the application is executed: first,
to use faster general purpose CPUs, and hence all the computations speedup; second,
to use hardware accelerators, where just the computations of specific clusters are
improved.1 In both cases, we consider a CPU/accelerator speedup factor in the range
from 1 to 64. Additionally, we also increase the interconnection network bandwidths
in a range from 256 MBps to 16 GBps. In this study, the structure detection is
required when simulating the gain provided by the accelerators, to define which
regions of the application will be get benefited of using this hardware.

Figure 1.13 shows two surface plots with the results of the different simulations.
The left plot presents the speedups obtained with general purpose CPUs and the
right plot using accelerators. Comparing both, we can observe that the maximum
speedup in the accelerator (right plot) is close to 8, when using a 16 GBps network
and 64� CPU ratio accelerators. The same improvement is reached when using a
general purpose CPU of ratio 8, indifferently to the network bandwidth (left plot).
Current CPUs are easily 8� faster than the PowerPC 970MP processor where the
application was executed, but obtaining a 64� speedup with acceleration hardware
can be costly, taking into account that the speedup requires not just the hardware,
but also a code refactoring. In terms of the network, the application does not get
any benefit from having an available bandwidth larger than 1–2 GBps in the case
of general purpose CPUs, while when using accelerators there are no speedup
improvements at all. As in the software improvement study, these predictions are
useful to evaluate which elements on a HPC facility would be more profitable to
update, without requiring the actual hardware.

Fig. 1.13 PEPC speedups achieved by using different network bandwidths and general purpose
CPUs of different speeds, left, and accelerators of different speeds, right

1This scenario also mimics using OpenMP to parallelize the large computation regions.
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1.6 Conclusions and Future Work

In this chapter, we have presented the contributions to the Performance Analytics
area developed in the last few years at the BSC Performance Tools Team. These
contributions are based on cluster and sequence analysis, and face the challenge
of automatically detecting parallel applications computation phases. With this
knowledge, we facilitate the tasks of analysis by providing an intuitive and
understandable insight about how the applications behave.

Our current research interests move forward to higher scales and to an on-line
scenario, with the aim of maximizing the insight we can extract from large-scale
applications during their execution while minimizing the volume of data recorded.
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Chapter 2
Tools for Simulation and Benchmark
Generation at Exascale

Mahesh Lagadapati, Frank Mueller, and Christian Engelmann

Abstract The path to exascale high-performance computing (HPC) poses several
challenges related to power, performance, resilience, productivity, programmability,
data movement, and data management. Investigating the performance of parallel
applications at scale on future architectures and the performance impact of different
architecture choices is an important component of HPC hardware/software co-
design. Simulations using models of future HPC systems and communication traces
from applications running on existing HPC systems can offer an insight into the
performance of future architectures. This work targets technology developed for
scalable application tracing of communication events and memory profiles, but
can be extended to other areas, such as I/O, control flow, and data flow. It further
focuses on extreme-scale simulation of millions of Message Passing Interface (MPI)
ranks using a lightweight parallel discrete event simulation (PDES) toolkit for
performance evaluation. Instead of simply replaying a trace within a simulation,
the approach is to generate a benchmark from it and to run this benchmark within
a simulation using models to reflect the performance characteristics of future-
generation HPC systems. This provides a number of benefits, such as eliminating
the data intensive trace replay and enabling simulations at different scales. The
presented work utilizes the ScalaTrace tool to generate scalable trace files, the
ScalaBenchGen tool to generate the benchmark, and the xSim tool to run the
benchmark within a simulation.

2.1 Introduction

This decade is projected to usher in the period of exascale computing with the
advent of systems of up to one billion tasks and possibly as many cores. Scaling
applications to such levels poses significant challenges that cannot be met with
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current hardware technologies. To assess the requirements for exascale hardware
platforms and to gauge the potential of novel technologies, hardware simulation
plays an important role in exascale projections. Significant challenges exist even
at the single node level, the network interconnect and at the system level when
trying to orchestrate the execution of such extensive numbers of cores as projected
for exascale. Hardware simulators are vital in assessing the potential of different
approaches under these challenges. Yet, these simulators need to be subjected
to realistic application workloads that originate in the HPC realm. Currently, no
such realistic workloads derived from large-scale HPC applications exist. This
reduces simulation to studies of micro-kernels and assessment of peak metrics
(bandwidth/latencies) without any notion of sustained application performance.

2.2 Overall Goal

This effort is targeted at alleviating the shortcomings of current hardware simulation
practice by developing a universal skeleton generation capability that accurately
reflects communication workloads for large-scale HPC codes.

The objective of this work is to complement the xSim simulator from Oak Ridge
National Laboratory (ORNL) with benchmark generation capabilities.

To this end, the following approach has been taken:

1. ScalaBenchGen from North Carolina State University (NCSU) has been
extended to auto-generate source code suitable for evaluation under xSim.

2. We have combined the ScalaBenchGen and xSim capabilities for sample HPC
benchmarks/applications.

2.3 Our Prior Work and Related Work

Our work builds on ScalaTrace, an MPI tracing toolkit with aggressive and scalable
trace compression. ScalaTrace’s compression can result in trace file sizes orders of
magnitude smaller than previous approaches or, in some cases, even near constant
size regardless of the number of nodes or application run time [4].

ScalaTrace collects communication traces using the profiling layer of MPI
(PMPI) [1] through Umpire [7] to intercept MPI calls during application execution.
On each node, profiling wrappers trace all MPI functions, recording their call param-
eters, such as source and destination of communications, but without recording the
actual message content.

ScalaTrace performs two types of compression: intra � node and inter � node.
For the intra node compression, the repetitive nature of timestep simulation in
parallel scientific applications is used. Intra-node compression is performed on-
the-fly within a node. Further, the inter-node merge exploits the homogeneity



2 Tools for Simulation and Benchmark Generation at Exascale 21

in behavior across different processes running the application due to the HPC-
prevalent single-program-multiple-data (SPMD) programming style. Inter-node
compression is performed across nodes by forming a radix tree structure among all
nodes and sending all intra-node compressed traces to respective parents in the radix
tree. At the parent, the respective trace representations are merged, reduced and then
compressed exploiting domain-specific properties of MPI. Once propagated to the
root of the radix tree, this results in a single compressed trace file capturing the entire
application execution across all nodes. The compression algorithms are discussed in
detail in other papers [5, 6].

As a result of these techniques, ScalaTrace produces near constant size traces by
applying pattern based compression. It uses extended regular section descriptors
(RSD) to record the participating nodes and parameter values of multiple calls
to a single MPI routine in the source code across loop iterations and nodes in a
compressed manner [2]. Power-RSDs (PRSD) recursively specify RSDs nested in a
loop [3].

Another important feature of ScalaTrace is the time preservation of captured
traces. Instead of recording absolute timestamps, the tool records delta time of
computation duration between adjacent communication calls. During RSD forma-
tion, instead of accumulating exact delta timestamps, statistical histogram bins
are utilized to concisely represent timing details across the loop. These bins are
comprised of statistical timing data (minimum, maximum, average and standard
deviation). ScalaTrace records histograms of delta times for each instance of a
particular computation, i.e., distinguishing disjoint call paths by separate histogram
instances.

We also developed ScalaExtrap, a trace extrapolation tool [9]. It contributes a set
of algorithms and techniques to extrapolate a trace of a large-scale execution of an
application from traces of several smaller runs. We further developed a probabilistic
replay capability based on approximate matching of communication events and
parameters across nodes [11]. This technique reduces trace sizes for non-SPMD
codes where lossless compression techniques fail. For large-scale applications with
non-SPMD or ARM-based communication patterns, such techniques could also be
employed for single-node replay in the future. Another interesting direction would
be to assess if receiver message content can also be replayed in a probabilistic
manner for a subset of messages and, if so, how to automatically identify such
messages.

Most relevant to this project is the ScalaBenchGen work [8]. It contributes an
automated approach to the creation of communication benchmarks. Given an MPI
application, we utilize ScalaTrace to obtain a single trace file of an HPC application
run that reflects the behavior of all nodes. The trace subsequently expanded to
C source code by a novel code generator. This resulting benchmark code is
compact, portable, human-readable, and accurately reflects the original application’s
communication characteristics and runtime characteristics. Experimental results
demonstrate that generated source code of benchmarks preserves both the commu-
nication patterns and the wallclock time behavior of the original application. Such
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automatically generated benchmarks not only shorten the transition from application
development to benchmark extraction but also facilitate code obfuscation, which is
essential for benchmark extraction from commercial and restricted applications.

2.4 Design and Implementation

We have complemented ORNL’s xSim simulator with benchmark generation capa-
bilities. To this end, ScalaBenchGen from NCSU was extended to auto-generate
source code suitable for evaluation under xSim. The xSim simulator already has
ample network topology support. ScalaBenchGen complements these capabilities
with the ability to extract communication benchmark skeletons from actual HPC
runs of applications. These skeletons include timings for computational parts
and actual MPI communication calls. We have combined the ScalaBenchGen
and xSim capabilities for sample HPC benchmarks/applications. Timings for the
computational part have been enhanced to allow adaptation with respect to future
(exascale) architectures. This co-design exploration supports the research path
toward exascale.

Our initial version of ScalaBenchGen [8] is based on the first version of Scala-
Trace [5] which produces lossless constant size traces for Single Program, Multiple
Data (SPMD) parallel applications. ScalaTrace-2 [10] enhances the base version to
achieve better compression for Multiple Program, Multiple Data (MPMD) parallel
applications. ScalaTrace-2 is redesigned in every aspect such that data elements in
trace are elastic and self explanatory. Because of these changes ScalaBenchGen
is incompatible with the trace format produced by ScalaTrace-2. Hence, we
have redesigned the ScalaBenchGen tool to generate benchmarks from traces of
ScalaTrace-2.

As shown in Fig. 2.1, the application is linked with the ScalaTrace library to
produce a trace file. The benchmark generator takes this trace file as an input
and outputs the benchmark program. The benchmark generator can be run on a
standalone machine. For every event present in trace, corresponding MPI event code
is generated. Each event in the trace is reflected with its parameters and also the time
elapsed between current and previous events. The benchmark generator introduces
a sleep for the corresponding delta time before the event. This allows the wall clock
time of the benchmark program to closely resemble that of the original application.
Generated benchmarks can be combined with xSim, ORNL’s extreme scale network
interconnect simulator, for evaluation.

HPC application
with MPI

communication
ScalaTrace Benchmark

Generator
Application

Trace

Communication
Benchmark

(C /w MPI calls)

Fig. 2.1 Benchmark generation workflow
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2.5 Early Results

ARC, a cluster with 1,728 cores on 108 compute nodes, 32 GB memory per node
and a QDR Infiniband Interconnect is used for evaluating our benchmark generator.
Benchmarks are generated for the IS and FT codes of the NAS parallel benchmark
suite (NPB v3.3). Generated benchmark runtimes are compared to the execution
time of the original code’s execution time.

Execution times of both the original application and the generated benchmarks
are similar for the FT benchmark (see Fig. 2.2a). The maximum error is 10 %
for FT while 30 % maximum error is observed for IS (see Fig. 2.2b). The higher
error for IS is due to replacement of MPI_Alltoallv by MPI_Alltoall within the
tracing framework, which allows a more concise trace representation (at the expense
of accuracy). Figure 2.2c compares the execution times of the original code and
generated benchmark on both ARC and a simulated ARC environment using xSim.
Currently, xSim is not supporting a fat tree configuration, which is the topology of
ARC. Hence, a fat tree is loosely approximated via a star topology. This could be
the reason for the differences in observed execution times but is subject to further
investigation, as is the evaluation of more NPB codes.
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2.6 Conclusions

This work has demonstrated the capability to utilize ScalaTrace to generate concise
and near lossless scalable communication traces to drive HPC archectural simula-
tions. The resulting traces are transformed by ScalaBenchGen into a benchmark
code. This code is subsequently fed into xSim to run the benchmark within a
simulation environment. Ongoing work focuses on handling more benchmarks
during the generation process and novel simulation techniques to handle exascale
size workloads.
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Chapter 3
Suitability of Performance Tools for OpenMP
Task-Parallel Programs

Dirk Schmidl, Christian Terboven, Dieter an Mey, and Matthias S. Müller

Abstract In 2008 task based parallelism was added to OpenMP as the major
update for version 3.0. Tasks provide an easy way to express dynamic parallelism
in OpenMP applications. However, achieving a good performance with OpenMP
task-parallel programs is a challenging task. OpenMP runtime systems are free to
schedule, interrupt and resume tasks in many different ways, thereby complicating
the prediction of the program behavior by the programmer. Hence, it is important for
a programmer to get support from performance tools to understand the performance
characteristics of his application.

Different performance tools follow different approaches to collect this infor-
mation and to present it to the programmer. Important differences are the amount
of information which is gathered and stored and the amount of overhead that is
introduced. We identify typical usage patterns of OpenMP tasks in application
codes. Then we compare the usability of several performance tools for task-parallel
applications. We concentrate our investigations on two topics, the amount and use-
fulness of the measured data and the overhead introduced by the performance tool.

3.1 Introduction

In recent years task based parallel programming paradigms became an alternative
to classical thread based techniques for shared memory parallel programming.
Task based paradigms for example are Cilk, Intel Threading Building Blocks
and OmpSS. Also in OpenMP, which is the de-facto standard for thread parallel
applications in HPC, tasking has been added in version 3.0 of the OpenMP
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specification as an alternative way to express parallelism. A task is a code region
which can be executed independently from other tasks. Data sharing attributes are
used to specify which data is shared, private or firstprivate for the
task. The OpenMP runtime is free to execute the task immediately or to defer the
execution, and the task may be scheduled later on the current or a different thread.
This level of freedom in task scheduling by the runtime complicates to understand
the performance behavior of an application, in particular because different OpenMP
runtimes deliver highly different performance for application codes (as was shown
in [13]). To better understand the performance of a program a variety of performance
analysis tools exist, all using different techniques to analyze and present the
behavior of an application. Shortly after tasks were introduced in OpenMP in 2008
several ideas were presented to support OpenMP tasks in performance analysis
tools. Fürlinger et al. showed support for task profiling in the OpenMP profiling tool
OMPP [2] and Lin et al. introduced prototypical support for tasks in the Sun Studio
Performance Analyzer [8]. However, not all of these ideas have been adopted in the
released product versions of these tools. Still nowadays some tools do not support
tasks at all and even the tools supporting tasks differ a lot in the data measured
and how it is displayed. This work analyzes the ability of performance tools to
handle task-parallel programs and to investigate the usefulness of the presented data
for performance optimization. Therefore we investigate task-parallel programs to
identify most commonly used patterns for task creation and performance problems
coming along with these patterns. Afterwards we investigate representative example
applications with performance analysis tools to find out if these tools observe the
mentioned performance problems. The rest of this work is structured as follows:
first we shortly introduce the investigated tools in Sect. 3.2. Then in Sect. 3.3 we
inspect common patterns to use tasks in parallel programs to identify representative
example codes which we further investigate with all selected performance tools.
Here we highlight strengths and weaknesses of all tools for the different applications
before we finally draw our conclusions in Sect. 3.4.

3.2 Investigated Performance Tools

In the following sections production versions of performance analysis tools installed
on our cluster are investigated with respect to their applicability for task-parallel
OpenMP programs. The tools are:

3.2.1 The Intel VTune Amplifier XE

The Intel VTune Amplifier XE [5] is a sampling based performance measurement
tool. It supports C/C++, Fortran, Java, C# and assembly and a variety of parallel
programming paradigms for single node performance, like OpenMP, Pthreads or
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Intel Threading Building Blocks. MPI or hybrid programs can be investigated, but
no MPI specific data like messages sent is investigated. Instead, the tool delivers
a single node profile for every MPI process. The Amplifier XE also supports
measurements of hardware performance counters on Intel CPUs.

3.2.2 The Oracle Solaris Studio Performance Analyzer

The Oracle Solaris Studio Performance Analyzer [11] is also a sampling tool
to investigate the performance of serial, OpenMP or PThread parallel or hybrid
MPI/OpenMP applications. The tool can be used on Intel, AMD and Sparc CPUs
and also supports hardware performance counters. The supported programming
languages are C/C++, Fortran and Java.

3.2.3 The Score-P Measurement Infrastructure

In contrast to the previously mentioned analysis tools the Score-P measurement
infrastructure [7] uses an event based technique instead of sampling to gather
performance data of an application. At certain events, like the entry and exit of a
function, data is measured and either directly stored in an event-trace or accumulated
and finally stored in a profile, depending on the usage mode of Score-P. Score-
P also allows online analysis of the data in combination with the Periscope tool
[4]. Events can be instrumented in different ways, most compilers for example can
automatically instrument function entry and exit events. For OpenMP pragmas the
source-to-source instrumentation tool Opari [9] is used. If the data is stored in a
profile it can be visualized with the Cube GUI and the trace data can be visualized
with Vampir [10], as we have done it in the following sections. The gathered data
can alternatively be analyzed with the TAU tool [12] or the Scalasca tool [3] can be
used to automatically detect certain performance problems.

3.3 Investigating Task-Parallel Programs

To identify typical task creation patterns in applications the Barcelona OpenMP
Benchmark Suite [1] (BOTS) and a set of task-parallel applications used at RWTH
Aachen University are examined.

Table 3.1 shows if the codes use recursive functions to generate tasks or if the
tasks are created iterative in a loop and if tasks are created nested inside of other
tasks or not. Creating tasks in a recursive way is the most common task creation
pattern used in 9 of 14 codes, followed by the iterative creation of tasks. Next we
look at three example applications and analyze them with the performance tools.
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Table 3.1 Task generation behavior of the BOTS benchmarks and several applications from
RWTH Aachen University

Barcelona OpenMP Task Suite RWTH Aachen University

Application Task creation Nested tasks Application Task creation Nested tasks

Alignment Iterative No Sudoku Recursive Yes

FFT Recursive Yes SparseCG Iterative No

Fib Recursive Yes FIRE Iterative Yes

Floorplan Recursive Yes NestedCP Iterative Yes

Health Recursive Yes KegelSpan Recursive Yes

NQueens Recursive Yes

Sort Recursive Yes

SparseLU Iterative No

Strassen Recursive Yes

The applications are a Sudoku solver, a Conjugate Gradient Method implementation
and the KegelSpan application code, an application developed at the Laboratory for
Machine Tools and Production Engineering at RWTH Aachen University.1

3.3.1 Sudoku

First a very simple application, namely a task-parallel Sudoku solver, is inspected.
For a given Sudoku board the solver determines all possible solutions of the Sudoku
puzzle in a brute force manner. Figure 3.1 shows the initial configuration of the
board used in this experiment on the left-hand side and the algorithm in used pseudo-
code at the right-hand side. For every empty field the solver tries to insert every
possible number. Only if the number is not yet used in the same row, column or
block it creates a task to insert the number and with that then check the rest of the
board, otherwise no task is created. In both cases the algorithm continues with the
next number for the current field or with the next possible field. Every task which
founds a valid number and is on the last empty field, stores the current solution as
a valid solution for the puzzle. After all tasks have finished, all valid solutions are
found. Note, even if the algorithm is fairly simple, it is hard to fully understand
the runtime behavior. For example determining the number of used tasks highly
depends on the initial board and even if the board is known, like the one in Fig. 3.1,
it is difficult to determine this number a-priori. Since tasks are very useful for such
dynamic algorithms this is a representative problem for task-parallel programs.

Figure 3.2 shows the runtime (dark-blue bars) and speedup (red curve) of the
Sudoku solver for the board shown in Fig. 3.1 on a two-socket server equipped with
Intel Sandy Bridge processors clocked at 2 GHz. The application achieves a best
speedup of less than 5 with 32 threads.

1http://www.wzl.rwth-aachen.de/

http://www.wzl.rwth-aachen.de/
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Algorithm3.3.1: SUDOKU ()

for each empty field f⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each possible number i⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if i is already used
in row, column or block

then continue with i + 1
else⎧⎪⎪⎪⎨

⎪⎪⎪⎩

copy the sudoku board
insert i in f
create a task to check
the new board
continue with i +1

wait for all tasks to finish

Fig. 3.1 A 16 � 16 Sudoku board with initial entries (left) and our algorithm in pseudocode to
solve the sudoku puzzle (right)

Fig. 3.2 Runtime and speedup of the Sudoku solver for the simple version and for the version
with a cut-off mechanism

Obviously this is far from optimal. Next, we have a look at the performance
information gathered by the investigated performance tools. With all tools we focus
on execution time for our analysis. All tools allow to measure additional metrics
with hardware performance counters but we are more interested how these metrics
are assigned to OpenMP tasks and therefore the time metric is sufficient and by far
the most important metric.

3.3.1.1 VTune

We compiled the executable with the Intel Compiler (version 13.1.1) and did several
performance measurements with the Intel VTune Amplifier XE 2013 update 10. The
most relevant information for the analysis of the tasking performance is shown in
Fig. 3.3. First, the overview (Fig. 3.3a) presents the OpenMP tasks in line number
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Fig. 3.3 Analysis results of the Sudoku solver with the Intel VTune Amplifier XE. (a) Hotspots.
(b) Callstack. (c) Overhead for functions. (d) Overhead for sourcelines

106 as the most time consuming region in the code, the so called hotspot. Second,
the callstack view (Fig. 3.3b) gives further details on this hotspot and presents that
the task regions are nested recursively one inside the other. It also presents time
spend on different levels of the call stack and we can observe that the time shrinks
noticeably for lower levels. This shows that computation is done inside the tasks and
not only in the leaf tasks at the lowest level. Third, the finest granularity is displayed
at the function or source code level (Fig. 3.3c, d) where the average runtime spent
on every source line can be observed, as well as a metric called “Overhead and Spin
Time” which indicates time spend in the OpenMP runtime waiting or scheduling
threads or tasks. For the task region 1.2 s out of 9 s are overhead, which indicates a
potential performance problem.

3.3.1.2 Oracle Solaris Studio Performance Analyzer

The measurements were done with the Oracle Solaris Studio Performance Analyzer
version 7.9 for Linux. The analyzed executable was compiled with the Oracle Studio
12.3 compiler for a better interoperability between the OpenMP runtime and the
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Fig. 3.4 Analysis results of the Sudoku solver with the Oracle Solaris Studio Performance
Analyzer. (a) Hotspots. (b) Callstack. (c) Overhead for functions. (d) Overhead for sourcelines

performance tool. The tool delivers results similar to the Intel VTune tool. The
solve_parallel function is identified as the hotspot (Fig. 3.4a) which is the
recursive function spawning all the tasks. Also a callstack is given which indicates
the recursive invocation of this function, but in contrast to VTune the Analyzer
tool does not show tasks in the callstack (Fig. 3.4b), so the information that tasks
are created on all these levels is not explicitly given. The time spend at each
level is not presented here. Additionally to the call-stack the Analyzer presents an
“OpenMP task” view (Fig. 3.4c) where the overhead, wait and work time for each
task construct in the code is shown. Here we can see that the overhead for the task
region overall is roughly 80 s, whereas the work time is only 12 s. This ratio is
worse than the previous result when VTune was used, the reason is that a different
OpenMP runtime (provided with the Oracle Compiler) was used which obviously
incurs more overhead. Whereas the overhead of 15 % for the Intel runtime might be
seen as acceptable, the overhead of 666 % here is clearly a performance problem.
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The tool also gives information at the sourceline level (Fig. 3.4d), but because of the
very small function we could not get any additional value from this view.

3.3.1.3 Score-P/Profiling

The Score-P measurement infrastructure (version 1.2) was used with the executable
compiled by the Intel Compiler. The profiling mode was used and only OpenMP
constructs were instrumented, to avoid overhead by function instrumentation. Also
this tool identifies the task region in line 106 as the hotspot of the application.
Figure 3.5 shows information related to task-instances which were not presented in
the other tools. The direct instrumentation allows for example to identify the number
of visits for the task region, meaning the number of created tasks. This is about ten
million tasks in this case. Given also the overall time spent in task execution of
46 s, we can calculate an average task-instance duration of 4.6 �s. This detailed
information cannot be measured by the sampling based tools, since sampling might

Fig. 3.5 Analysis results of the Sudoku solver with Score-P in profling mode. Visualization is
done with the cube GUI. (a) Number of visits. (b) Time
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miss task instances depending on the sampling rate. However, Score-P is not able
to show information on a finer granularity as an instrumented region, so we cannot
see source line information. Since Score-P can also not get information from the
runtime, we can only see how much time was spent in a barrier or taskwait construct,
but we cannot determine which amount is overhead and which is waiting time.

3.3.1.4 Score-P/Tracing

In tracing mode Score-P measures and stores the most detailed information of
all tools. Beside all information of the profiling mode, additional information on
individual regions is stored. Figure 3.6 shows the Vampir timeline view, where

a

b

Fig. 3.6 Analysis results of the Sudoku solver with Score-P in tracing mode. Visualization is done
with Vampir. (a) Timeline. (b) Callstack
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we can see time spent in user code (red) and in taskwait regions (turquoise) on
all threads. Looking more into details, the callstack view presents individual task-
instances on different nesting levels. In Fig. 3.3b it can be observed, that a task in
the second nested level has a duration of 0.16 s, whereas a deeper nested task has a
duration of only 2.2 �s.

All tools show some overhead in the task, taskwait or barrier construct related
to the task execution. The event based tools furthermore showed that the execution
time of the tasks is very low and in the tracing tool we could also observe that tasks
in the lower levels of the callstack are much smaller than higher ones. Therefore,
we implemented a cut-off strategy for the Sudoku solver to stop creating tasks after
the first two rows of the Sudoku board are processed. The resulting performance
is also shown in Fig. 3.2. Obviously the performance problem is solved and the
performance is much better in this optimized version, reaching a speedup of about
16 with 32 threads.

3.3.1.5 Overhead

The different measurement techniques (sampling or event based) and the different
details of stored data (profile or trace) result in a different runtime overhead and
amount of stored data. Table 3.2 shows the overhead and the amount of stored
data for the different tools for a testrun with 16 threads. It can be seen that the
overhead for the event based tools is really significant with about 150 %. The
generated data should be interpreted with care, but as has been shown before the
information provides useful hints on performance problems. Even if the average
task duration would be 2 �s instead of the measured 4.6 �s, the problem would be
more significant. The generated amount of data for the trace might also be a problem
for larger programs, so our recommendation is to generate detailed traces for parts
of the application which are critical. Other measurements then may help to identify
the critical parts in advance.

Table 3.2 Overhead and
generated amount of data for
all investigated tools for the
Sudoku code

Runtime overhead Data volume

16 Threads (setup routine) (complete program)

Oracle Analyzer <1 % 28 MB

Intel VTune 7 % 8.5 MB

Score-P (profiling) �150 % 44 KB

Score-P (tracing) �150 % 1.2 GB
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3.3.2 Conjugate Gradient Method

Next we investigated a conjugate gradient solver (CG) where the sparse matrix
vector multiplication was parallelized with OpenMP tasks. The tasks are spawned
in a loop and one task processes cs rows of the matrix. The parameter cs can be
adjusted to spawn more and smaller tasks, which is better for load balancing if the
sparsity pattern is irregular, or to spawn only a few large tasks which introduces less
overhead. We used all performance tools for different values of cs. Again all tools
found the task region as a hotspot. The sampling tools also showed information
on the source code level, but since the task region is only four lines long, this
did not give any additional information. Again the event based tools delivered
also the number of tasks and execution time for individual instances, but also this
information was not very useful, since the number of matrix rows and the parameter
cs is known, this can easily be computed by the programmer. For extremely large
tasks, all tools identified load imbalance in the CG kernel. Overall, finding the best
value for cs comes down to increase cs until the overhead spent in the OpenMP
runtime is negligible. Since the sampling tools deliver this information directly due
to the better cooperation with the vendor OpenMP runtimes, the sampling tools were
preferable.

3.3.3 KegelSpan

The last investigated application is KegelSpan, a code simulating gearwheel cutting
processes. KegelSpan is developed at the Laboratory for Machine Tools and Pro-
duction Engineering at RWTH Aachen University. We investigated an experimental
version of the code which has been parallelized with OpenMP tasks [6]. This
experimental version differs from the production version. In the analyzed version
a BSP tree is used to better handle the geometry which is adaptively refined at
the cutting edge during the simulation. In particular the routine to setup the BSP
tree recursively was investigated here. The problem of too small tasks has been
observed for this code before and a cut-off mechanism was implemented which
stops the creation of tasks at a certain configurable depth. We also investigated
this application with all mentioned performance tools and found two performance
weaknesses. First, with Score-P (tracing) we observed that even on the upper levels
empty tasks are created. The reason therefore is that the BSP tree distributes the cell
in two equal parts on every level. In some areas where only a few points reside, this
can quickly lead to empty volumes, whereas at the refined area around the cutting
edge a lot of points fall into an equal sized volume. We therefore changed the cut-
off mechanism to stop creating tasks if the number of tasks in a cell is smaller
than a certain threshold (version opt1). Second, the sampling based tools showed
the hotspot on a sourcecode level at lines 4,717–4,744. In these lines points are
resorted in an array. This process was never regarded as a hotspot and a simple
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Fig. 3.7 Runtime of KegelSpan for different cut-off depths and both optimized versions opt1
and opt2

sorting strategy was used. We optimized this sorting to further optimize the routine
(version opt2). The event based tools highlighted the task region as a hotspot which
is several hundred lines in length, so the more detailed sampling based analysis
was useful to find the hotspot here. Figure 3.7 shows the runtime of the original
code version for different cut-off depths and both optimized versions. The optimized
versions could save about 5 % (opt1) and additional 10 % (opt2) of execution time.
The overhead for all investigated tools for this application was below 4 %, so even
for the event based tools the observed runtime was nearly undisturbed.

3.4 Conclusion

In this work we looked at several codes employing OpenMP tasks to express
parallelism and tried out different performance analysis tools to investigate the code
performance and search for possible performance problems. The codes use recursive
or iterative creation of tasks. Both sampling based tools presented roughly the same
kind of information and the same level of detail. The strength of these tools was
to give detailed statistical information at fine granularity, even on the source-code
level. This information was proven useful to identify a hotspot within a task for the
KegelSpan code. The information on the amount of runtime overhead was shown
in both tools which helped to identify inefficient task constructs. The downside was
that the construct was investigated, not the task-instance. When tasks created within
the same construct had different behavior, which particularly happens with recursive
task creation, this phenomenon was not observed by the tools. The event based
tools provided more detailed information on a task-instance level which helped to
identify the average task duration for profiling or even the duration of task-instances
on different call-stack levels for tracing. This information also provided valuable
insights in the execution behavior of the KegelSpan application. The overhead for
event based tools was sometimes significantly higher than for sampling based tools,
but still the information was very useful in many cases.
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Chapter 4
Recent Advances in Periscope for Performance
Analysis and Tuning

Yury Oleynik, Robert Mijaković, Isaías A. Comprés Ureña,
Michael Firbach, and Michael Gerndt

Abstract State of the art High Performance Computing (HPC) systems pose
considerable programming challenges to application developers when tuning their
applications. Periscope toolkit is one of a number of performance engineering
instruments supporting application programmers in meeting those challenges. Due
to the variety of architectures, programming models, runtime environments, and
compilers on those systems, programmers need to apply multiple tools to understand
and improve program performance. In this paper, we present the latest developments
in Periscope aiming at (1) improving its interoperability and integration with other
tools, (2) integrating automatic tuning support with performance analysis and (3)
further extending performance analysis capabilities. The add-on for Periscope,
called PAThWay, allows for the integration of multiple tools into performance
tuning workflows. Further, Periscope is currently being extended with the ability to
automatically tune parallel applications with respect to execution performance and
energy consumption. And finally, new analysis capabilities were added to Periscope
for the automatic evaluation of the temporal performance behavior of long-running
applications.

4.1 Introduction

Programmers have always been required to write correct algorithms and, depending
on the problem, this may already be challenging and time consuming. When
working in projects where performance is part of the requirements, additional
challenges rise from heterogeneity, non-uniform memory access and parallelism of
the modern High Performance Computing (HPC) systems. Programmers need to
find ways to map the software to the available memory and computing elements.
Initially, the application is mapped to the hardware based on previous experience
and guesswork.
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The tuning process of a parallel application involves several tools that specialize
on different aspects that affect performance. These tools may be hardware or
programming model specific. Even under a specific hardware and programming
model, it is common that a tool will target only a subset of aspects that affect
performance. For these reasons, programmers rely on a larger collection of tools
to optimize their parallel applications.

The overall performance of a parallel application depends on its single node
performance, its scalability and how well its load is balanced. On a single node,
its performance will depend on the compilers available, the compiler flags and
the programming models. In some systems, especially if heterogeneous, several
compilers and programming models are used; this multiplies the tuning effort
required (although it is not easy to quantify this effort, since it is a human factor).
Typically, the scalability of the application depends on how much information has
to be shared across nodes and the performance of the communication library and
network. Finding a good partitioning scheme to balance the load and minimize
communication is also essential.

Furthermore, the majority of scientific codes perform simulations iteratively,
where a main loop of an application, sometimes referred to as the progress loop, exe-
cutes the same computational kernel many times. Though the code being executed is
often identical, application performance across the iterations vary significantly. As
a consequence, the impact and location of performance bottlenecks, or degradations
in this case, are time dependent. Taken into account that some simulations are run
for several days and even month, performance analysis tools should be able to
efficiently handle temporal dimension of performance measurements.

Recent developments in Periscope are focused on assisting application develop-
ers in overcoming the challenges described above. This is achieved

by enabling Periscope to answer the following typical user questions:

1. How to integrate the use of various tools in a single, well-defined workflow?
2. What is the optimal combination of tunable parameters for an application?
3. What are the most relevant runtime performance degradations?

In Sect. 4.2 we present PAThWay, which is part of the Periscope toolkit. It
automates performance engineering workflows and is designed to methodically
provide answers to the first question. Section 4.3 is dedicated to the Periscope
Tuning Framework (PTF), which implements multiple specialized tuning plugins
in order to automatically search for optima and thus answer the second question.
Periscope’s performance dynamics analysis, described in Sect. 4.4, answers the third
question by searching for temporal degradations of performance in long running
applications. We present an overview of the related work in Sect. 4.5 and, finally,
we draw conclusions and perspectives for future work in Sect. 4.6.
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4.2 Cross-Experiment Analysis and Tuning Using Workflows

A considerable challenge in optimizing HPC applications is the management of
the overall optimization process. Which tools are used, and when? How is the
collected performance data analyzed and archived? What were the performance
characteristics of the application 3 weeks ago? With PAThWay, we are reaching
out for the next level of integration, abstracting details of the HPC system and
integrating the tools usage with human tasks.

PAThWay is a high-level tool that uses formal workflow definitions to provide
structure to the overall optimization process. Major goals of this development are:

• Workflow automation
• System and Tools abstraction
• Experiment history

4.2.1 Workflow Automation

Whether formally defined or not, the process of performance tuning usually follows
a specific workflow, which itself can be broken down into several activities. For
example, typical activities involve making a snapshot of the source code for
future reference, code instrumentation, job submission on the HPC system, etc. A
simplified example of a performance tuning workflow is illustrated in Fig. 4.1.

The goal of the PAThWay development is to automate these activities to a large
extent. This helps the application developer in two ways: First, by automating these
repetitive and tedious tasks, time is saved and the number of unnecessary errors

Take 
Snapshot

Prepare
Experiement
Instrument

Schedule Jobs
Monitor 

performance

Analyze
Measurements

Optimize
Bottlenecks

Verify

Fig. 4.1 Performance tuning workflow
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is reduced. Second, the use of such automated workflows provides structure to the
optimization process, encouraging methodical performance engineering.

Workflows can be defined using the standard Business Process Model and
Notation (BPMN) format, for which there are graphical editors. Workflows have
successfully been defined for common tasks, such as scalability analysis, cross-
platform analysis and single-core profiling. Ideally, all activities that are performed
during optimization, have a representation within the workflow. Once defined,
the workflows can be executed, which triggers its individual activities. Workflow
execution itself is performed by the jBPM workflow engine,1 whereas the individual
activities can invoke arbitrary tools or even human tasks.

By integrating all optimization steps in a single workflow, we emphasize
structured and methodical performance engineering, which we believe is currently
under-utilized in real-world HPC application development.

4.2.2 System and Tools Abstraction

The variety of tools that need to be integrated in an optimization workflow is a
major complication for HPC application developers. The development of the joint
measurement infrastructure Score-P [11] was motivated by this issue. Invoking
tools from a workflow defined in PAThWay allows non-experts to use these tools
and optimize their application, which more likely represents their actual area of
expertise, e.g. physics simulation. In addition, workflows can use the tools to build
higher-level constructs like scalability analysis, without requiring the user to have
in-depth knowledge of the tools used on a low-level.

There are also several differences between HPC systems, which make cross-
platform analysis difficult. We use the Parallel Tools Platform from Eclipse to
provide the means to communicate with a variety of platforms. Jobs can be
scheduled and monitored transparently on SLURM, LoadLeveler and MPICH2-
enabled systems at the time of this writing.

Some tasks, such as analyzing tools output and optimizing the application, can
only be done by humans. We call these tasks human tasks and alert the user when
such a task needs to be performed according to the current state of workflow
execution.

4.2.3 Experiment History

PAThWay records so-called experiments that result from workflow execution. An
experiment is the notion of a job scheduled on an HPC system, its status and output,

1http://www.jboss.org/jbpm/

http://www.jboss.org/jbpm/
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combined with a source snapshot and tools configuration. The experiment browser
allows for later inspection of the experiments’ outcome. There are plans for creating
a variety of tools that can automatically draw conclusions from the experiment
history in the future, such as analyzing cross-experiment performance dynamics.

4.3 Periscope Tuning Framework

Parallel software usually has several parameters that can be adjusted for better
performance while keeping results correct. Examples of such parameters are com-
piler flags used during compilation and configuration parameters of communication
libraries. Parallel software can also include tuning parameters, such as: algorithm
selection, block sizes, partition factors, etc. There are also hardware settings that
can be manipulated, such as performance governors and CPU frequencies (usually
only available to administrators, but exposed in some systems through user level
services).

The right combination of software and hardware parameters, that are best or
at least good enough, is not always clear. There is typically a time consuming
process of guesswork and collection of empirical data, that is done manually by the
application developers. Given the large number of degrees of freedom, and therefore
the large amount of time to empirically search for optimal or good combinations of
these software and hardware parameter combinations, automated tools for this task
are currently a necessity.

In this section we present an extension to Periscope, called the Periscope Tuning
Framework (PTF). This framework allows for the implementation of plugins that
automate the analysis and tuning process of parallel software. The plugins are built
as shared objects that are loaded at runtime. With this approach, companies or
individuals can develop custom plugins independently of the PTF core developers.

PTF follows the main Periscope principles, i.e., the use of formalized expert
knowledge in form of performance properties and strategies, automatic execution,
online search based on program phases, and distributed processing.

Periscope is extended by a number of tuning plugins that fall into two categories:
online and semi-online plugins. An online tuning plugin is one that performs trans-
formations to the application and/or the execution environment without requiring a
restart of the application. In contrast, a semi-online tuning plugin will require one
or more restarts of the application to achieve these effects.

Figure 4.2 illustrates the control flow of PTF. The tuning process is started
with a preprocessing step. In this step, the application source files are instru-
mented and static analyses are performed on them. Periscope applies source level
instrumentation for C/C++ and Fortran. The instrumenter generates a SIR file
(Standard Intermediate Representation) that includes static information such as the
instrumented code regions and their nesting information. The instrumentation and
the static analysis process have been extended to support HMPP, OpenCL, and
common parallel patterns (such as master-worker and pipelines).
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Fig. 4.2 Tuning control flow
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The tuning is started via the Periscope frontend, either interactively or in a batch
job. As done in Periscope, the application is started by the frontend along with
the required agent hierarchy (given the size of the application and the hardware
platform).

Periscope uses analysis strategies (e.g., MPI, OpenMP or single core analysis
strategies) to guide the search for performance properties. This overall control
strategy has now become part of a higher level tuning strategy. The tuning strategy
controls the sequence of analyses and tuning steps.

Typically, an analysis can be used to determine application properties that will
allow the plugin to restrict its search space. The search space can also be restricted
by other plugin specific means, such as expert knowledge or machine learning
approaches.

Once the search is done and an optimum or good enough solution is found, the
tuning process is finished. A tuning report is then generated and presented to the
user through standard output or files. This report documents the found performance
properties as well as the tuning actions recommended by PTF. These tuning actions
can be integrated into the application such that subsequent production runs will be
more efficient.

Several plugins are being developed concurrently with the PTF. These include:

Compiler Flags Selection: Improves single node performance by evaluating pos-
sible valid compiler flags for a parallel application. The flags can be specified
per file in the build and depend on the compilers available in the target system.
For applications where their correctness depends on specific flags, these can be
enforced.

High-Level Parallel Patterns for GPGPU Systems: Optimizes common parallel
patterns on GPU based accelerators. Currently focuses on the pipeline pattern
with OpenCL or CUDA. The total pipeline length and with of specific stages are
optimized.

Hybrid Manycore HMPP Codelets: Evaluates the best selection of HMPP
codelets for a specific application and hardware combination. In the HMPP
application, several codelets that perform the same operation are prepared. The
specific codelets and parameters are then evaluated and the best chosen.

Energy Consumption via DVFS: Performs a multi-objective optimization of per-
formance and energy. For measurement, it relies on the use of hardware counters,
timers and energy measurement hardware. The result selected will depend on the
target desired performance and energy budget.

Master-Worker Pattern with MPI: Optimizes MPI applications that use the
master-worker pattern. It evaluates the number of workers, the number of masters
and the size of work packets.

MPI Runtime Parameters: Optimizes MPI communication performance for an
application. It first analyses the application to find the location and MPI
operations that take the most time. It then proceed to tune runtime parameters that
are specific to these operations. The parameters include limits for the different
communication protocols used by the library, as well as the selection of internal
algorithms. Depends heavily on the available MPI implementations.
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4.4 Runtime Performance Dynamics

Runtime Performance Dynamics Analysis is a new type of analysis supported by
Periscope. It is based on dynamic phase profiling [13] and scale-space filtering
[19] with consequent summarization of the resulting multi-scale representation. The
algorithm can be split in the following steps: measurements collection, preprocess-
ing, qualitative summarization and property detection. We explain the techniques
used and the analysis algorithm in the following paragraphs.

4.4.1 Measurement Collection

Dynamic profiles collected using Score-P are used as an input for the algorithm.
A dynamic profile is a time-series of measurements of some metric m sampled for
each iteration of the application’s progress loop, measured in a source-code region r

on a process p. Such representations capture the evolution of the performance over
the iterations of the simulation and attributes a time-series with a specific source-
code location and process. An example dynamic profile time-series is plotted with
blue color on Fig. 4.3.

Fig. 4.3 Dynamic profile time-series overlaid with the extracted maximum-stability intervals and
properties search results. The red, green and yellow curves highlight the results found for the
queries “all peaks”, “the most distinctive valley” and “the tallest increase”, respectively
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4.4.2 Preprocessing

Though the dynamic profiles capture dynamic behavior of the application perfor-
mance, this information is implicit and requires manual interpretation by the user.
A representation in terms of the intervals enclosed by zero-crossings of the first
and second order derivatives offers an alternative qualitative semantic which is
natural for the human comprehension. We apply alphabetical notation to denote
the seven possible intervals defined by the combination of the signs of the first and
second derivative: “concavely increase” – A, “concavely decrease” – B, “convexly
decrease” – C, “convexly increase” – D, “linear increase” – E, “linear decrease” – F,
“constant” – G.

However, the process of local extrema detection requires proper selection of
the scale or the neighborhood over which the derivative is taken. A systematic
way of handling the scale issue can be obtained by scale-space filtering. Scale-
space filtering is a process of incremental low-pass filtering with the Gaussian filter
of variable standard deviation, also known as the scale parameter. The resulting
sequence of smoothed versions of the original time-series at different scales form a
scale-space image. An important property of the scale-space image is that extrema
persist over multiple scales and form a tree. Therefore, by detecting local extrema
and connecting them from coarse to fine scales we can build a multi-scale hierarchy
of intervals enclosed by two nearest extrema, called an interval tree.

4.4.3 Qualitative Summarization

In the next step we classify each interval in the tree to one of the seven possible
shape types, defined above, and build a tree of qualitatively described segments.
Each node of the tree is represented by a character denoting the shape of the interval
and additional quantitative information, such as location, duration and magnitude of
the corresponding interval.

It was shown empirically [19] that the number of scales over which an interval
persists corresponds to the perceptual salience. We rely on this parameter, called
stability, in order to quantify the relevance of the corresponding segments in the
tree. Furthermore, we use the stability value to perform additional summarization
by descending the tree in a breadth-first fashion and selecting the level with the
maximum stability.

4.4.4 Automatic Search for Performance Dynamics Properties

The maximum stability level represents a dynamic profile time-series as a sequence
of segments, each characterized by a qualitative shape descriptor, a stability value
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Table 4.1 Example performance dynamics properties, corresponding queries and the color used
to highlight resulting segment on the Fig. 4.3

Property Query Color

Local peaks Select all “AB” sequences Red

The most distinctive valley Select “CD” sequence with max(stability) Green

The tallest increase Select “DA” sequence with max(magnitude) Yellow

and supplementary quantitative information. Such representation allows efficient
search for patterns specified with the following parameters:

• Qualitative shape specification (i.e. combination of shape descriptors)
• Perceptual salience (i.e. stability value)
• Magnitude and/or duration of the segment
• A combination of the parameters above

We demonstrate our technique on an example dynamic profile time-series
plotted with blue color on the Fig. 4.3. The time-series represents samples of the
metric “Execution time” measured for the body of the main loop for the first
128 iterations. The qualitative descriptors, represented with red characters, of the
extracted maximum stability segments and their borders are overlaid on top of the
time-series.

The proposed algorithm automatically answers the third question stated in the
introduction section. In this case, the phrase “relevant degradation” can be defined
in terms of the parameters described above. This allows very flexible specification
of the performance dynamics properties, which can then be automatically searched
in time-series. Table 4.1 shows three example properties and the corresponding
queries. The resulting segments are highlighted with red, green and blue color on
the Fig. 4.3.

4.5 Related Work

The complexity of today’s parallel architectures has a significant impact on appli-
cation performance. In order to avoid wasting energy and money due to low
utilization of processors, developers have been investing significant time into tuning
their codes. However, tuning implies searching for the best combination of code
transformations and parameter settings of the execution environment, which can
be fairly complicated. Thus, much research has been dedicated to the areas of
performance analysis and auto-tuning.

The explored techniques, similar in approach to ours, can be grouped into the
following categories:

• Tools that utilize techniques (such as optimization-space exploration [18], non-
parametric inferential statistics [8], optimization orchestration [15] and machine
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learning [6, 12]) to automatically analyze alternative compiler optimizations and
search for their optimal combinations; and

• Auto-tuners (such as Active Harmony [4, 17] and MaSiF [5]) that search a
space of application-level parameters that are known to impact performance.
The search can be directed with the use of modeling or machine learning
techniques [14]; and

• Frameworks that combine ideas from all the other groups (such as Autopilot [16]
and the Insieme Compiler and Runtime infrastructure [10]).

Performance analysis and tuning are currently supported via separate tools.
Periscope Tuning Framework aims at bridging this gap and integrating support for
both steps in a single tuning framework.

Dynamic performance behavior is typically a subject for analysis using tracing
techniques. However, due to scalability issues, profiling becomes a more attractive
alternative. In particular, dynamic phase profile is used for performance dynamics
evaluation and was first introduced in TAU [13]. Though the technique captures
temporal performance evolution, the information about the relevant changes is
implicit and requires manual interpretation by the user. In our work we build on
top of this approach and apply scale-space filtering [19] with consequent qualitative
summarization of dynamic profiles in order to automatically extract relevant
performance changes. A different combination of signal processing algorithms is
used in [3], where wavelet, morphological analysis and autocorrelation is used to
extract periodical application phases from traces. Also in [7] clustering analysis
and Multiple Sequence Alignment algorithm were used to automatically detect the
computational structure of an SPMD program.

Using workflow engines to guide the overall performance tuning process and to
integrate all individual tools with human tasks seems to be a rather unique approach
within the HPC community. Although workflows are today more commonly used in
scientific work in general [2], their use is much more common in business applica-
tions, which is why standards are usually centered around those. Popular standards
include BPEL (Business Process Execution Language) [9], XPDL (XML Process
Definition Language) and BPMN (Business Process Modeling and Notation) [1], of
which the latter is also used by PAThWay.

4.6 Conclusion and Future Work

While working on performance analysis and optimization of HPC applications,
programmers are faced with a wide spectrum of issues. These range from questions
on how to organize performance experiments, choice of optimal configurations for
the application and the runtime, to tracking and pinpointing dynamically appearing
and disappearing performance bottlenecks. Recent developments in Periscope
toolkit are aimed at assisting the programmer in handling these challenges by a
number of technologies.
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A new performance engineering automation tool, called PAThWay, is designed
to assist the programmer in defining and automating the typical workflows involved
in this process. The tool automates tasks like job submission, monitoring and
retrieving results of the jobs on remote HPC systems; book-keeping of the carried
out experiments and their configurations, maintenance of the documentation. In the
future, we plan to extend the functionality of PAThWay for supporting analysis of
cross-experiment performance dynamics.

In order to support programmers in configuring the application and the execution
environment, Periscope is extended with a tuning interface and a number of plugins.
The latter will automatically analyze application performance and based on the
detected inefficiencies perform a search for the optimal parameters settings, where
the parameters range from compiler flags to MPI runtime settings. In the future
work, we plan to implement meta-plugins that will orchestrate other plugins in
tuning multiple orthogonal parameter sets.

Finally, we present a new analysis algorithm which is aimed at supporting
programmers in analyzing performance of long-running applications. A particu-
lar challenge of such analyses is that the location and severity of performance
bottlenecks is time dependent. Using dynamic profiling and multi-scale analysis
techniques we are able to search for complex patterns in the temporal performance
behavior. For the future work we plan to extend the algorithm to search for
similarities in temporal behavior observed on different processes of the parallel
applications.
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Chapter 5
MuMMI: Multiple Metrics Modeling
Infrastructure
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Abstract MuMMI (Multiple Metrics Modeling Infrastructure) is an infrastructure
that facilitates systematic measurement, modeling, and prediction of performance
and power consumption, and performance-power tradeoffs and optimization for
parallel systems. MuMMI builds upon three existing frameworks: Prophesy for
performance modeling and prediction of parallel applications, PAPI for hardware
performance counter monitoring, and PowerPack for power measurement and
profiling. In this paper, we present the MuMMI framework, which consists of
an Instrumentor, Databases and Analyzer. The MuMMI Instrumentor provides
automatic performance and power data collection and storage with low overhead.
The MuMMI Databases store performance, power and energy consumption and
hardware performance counters’ data with different CPU frequency settings for
modeling and comparison. The MuMMI Analyzer entails performance and power
modeling and performance-power tradeoff and optimizations. For case studies, we
apply MuMMI to a parallel earthquake simulation to illustrate building performance
and power models of the application and optimizing its performance and power for
energy efficiency.
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5.1 Introduction

The burgeoning revolution in high-end computer architecture has far reaching
implications for the software infrastructure of tools for performance measurement,
modeling, and optimization, which has been indispensable to improved productivity
in computational science over the past decade. Significant work has been done on
exploring power reduction strategies for large-scale, parallel scientific applications
[2–4,6,7,16]. The problem is that much of this work required manual data collection
and analysis to explore the different power reduction techniques. Very little work
has been done with respect to providing an infrastructure for automating as much of
this process as possible in addition to archival of the data. The MuMMI (Multiple
Metrics Modeling Infrastructure) [11] was developed to provide an infrastructure
that facilitates systematic measurement, modeling, and prediction of performance
and power consumption, and performance-power tradeoffs and optimization for
multicore systems.

MuMMI is depicted in Fig. 5.1, as a multi-level infrastructure for integrated per-
formance and power modeling for large-scale parallel systems. MuMMI builds upon
an established infrastructure for performance modeling and prediction (Prophesy
[20, 21, 25]), hardware performance counter measurement (PAPI [13]), and power
profiling (PowerPack [4]). MuMMI extends these existing infrastructures in the
following ways:

• Extension of Prophesy’s well-established performance modeling interface to
encompass multicores and to incorporate power parameters and metrics into
the performance models and optimizations called E-AMOM (Energy-Aware
Modeling and Optimization Methodology). A database component enables the
modeling system to record and track relevant benchmark codes and results for
characterizing multicore architectures.

• Building on top of PAPI’s multi-component architecture, MuMMI provides a
user-configurable layer for defining derived higher level metrics relevant to the
performance modeling task at hand and mapping these to available native events
on a given platform.

Fig. 5.1 Multiple metrics modeling infrastructure (MuMMI)
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• Extension of an emerging power-performance measurement, profiling, analysis
and optimization framework, called PowerPack, to multicore architectures. This
work enables MuMMI to measure and predict power consumption at compo-
nent (e.g. CPU, memory and disk) and function-level granularity for parallel
architectures.

As a result of these combined efforts, MuMMI is able to offer an integrated and
extensible performance modeling and prediction framework for use by application
developers, system designers, and scientific application users, helping them to
make key choices for configuring and selecting appropriate parallel systems and
to evaluate and optimize power/performance on these systems.

In this paper, we discuss the MuMMI framework which consists of three
main components: Instrumentor, Databases and Analyzer in detail. The MuMMI
Instrumentor provides for automatic performance and power data collection and
storage with low overhead. The Instrumentor has been used for our recent research
work in [8–10]. MuMMI Databases extend the databases of Prophesy to store power
and energy consumption and hardware performance counters’ data with different
CPU frequency settings. The MuMMI Analyzer (called E-AMOM) extends the
data analysis component of Prophesy to support power consumption and hard-
ware performance counters, and it entails performance and power modeling, and
performance-power tradeoff and optimizations.

The remainder of this paper is organized as follows. Section 5.2 discusses
the MuMMI framework in detail. Section 5.3 presents the MuMMI Instrumentor
framework. Section 5.4 applies MuMMI to a parallel earthquake simulation to
illustrate building performance and power models of the application and optimizing
its performance and power for energy efficiency. Section 5.5 summarizes the paper.

5.2 MuMMI Framework

In this section, we discuss the four main components of the MuMMI framework
shown in Fig. 5.1: PAPI, PowerPack, MuMMI database and E-AMOM.

5.2.1 PAPI

Hardware performance monitors can provide a window on the hardware by exposing
detailed information on the behavior of functional units within the processor, as
well as other components of the system such as memory controllers and network
interfaces. The PAPI project designed and implemented a portable interface to the
hardware performance counters available on most modern microprocessors [1, 13].
The PAPI specification includes a common set of PAPI standard events considered
most relevant to application performance evaluation – cycle and operation counts,
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cache and memory access events, cache coherence events, and branch prediction
behavior – as well as a portable set of routines for accessing the counters. Moreover,
performance monitors can now be found in memory controllers, network fabrics,
and thermal monitors, as well as on special purpose accelerators such as GPUs.
The work to restructure the PAPI library contains the exposed API and platform
independent code, and a collection of independently loadable components, with one
component for each set of hardware monitoring resources. As part of MuMMI, this
work allows the simultaneous monitoring and correlation of performance data from
multiple components and levels of the system.

5.2.2 PowerPack

PowerPack [4] is a collection of software components, including libraries and APIs,
which enable system component-level power profiling correlated to application
functions. PowerPack obtains measurements from power meters attached to the
hardware of a system. The framework includes APIs and control daemons that
use DVFS (dynamic voltage and frequency scaling) to enable energy reduction
with little impact on the performance of the system. As multicore systems evolve,
the framework can be used to indicate the application parameters and the system
components that affect the power consumption on the multicore unit. PowerPack
allows the user to obtain direct measurements of the major system components’
power consumption, including the CPU, memory, hard disk, and motherboard. This
fine-grained measurement allows power consumption to be measured on a per-
component basis.

5.2.3 MuMMI Database

The MuMMI database facilitates contributions from and sharing among the high
performance computing research community. In particular, MuMMI leverages from
the Prophesy database [23, 24] that allows for web-based entry of data in addition
to automatic upload of data via SOAP[17]. MuMMI database is the extension of
the Prophesy database, which includes additional information relevant to power
profiling, energy and hardware counters’ performance on multicore platforms.

The MuMMI database schema is shown in Fig. 5.2. The MuMMI database
is organized into four areas: application information, executable information,
run information, and performance statistics. The application information includes
details about the application and its developer. The executable information includes
all of the entities related to generating an executable of an application. The run
information includes all of the entities associated with running an executable
and the system used for execution. Lastly, the performance statistics includes the
performance data generated during the application execution.
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Fig. 5.2 MuMMI database schema

PAPI Multiplexing [13] allows a user to count more events than total physical
counters simultaneously by a system. We collected the data for 40 hardware perfor-
mance counters with different CPU frequency settings. The power and energy data
from PowerPack includes system energy, CPU energy, memory energy, motherboard
energy, disk energy, and power over time for each component (CPU, memory,
motherboard and disk). The power and energy data are for an entire application
or functions of the application.

5.2.4 E-AMOM

Based on hardware performance counters’ data and power data from the MuMMI
Database, we present the Energy-Aware Modeling and Optimization Methodology
(E-AMOM) framework, which develops models of runtime and power consumption
based upon performance counters and uses these models to identify energy-
aware optimizations for scientific applications. These performance counters-based
modeling methods [9,10] identify the different performance counters that are needed
to accurately predict the application performance, and provides insight to improve
the application performance.

During each application execution, we capture 40 performance counter events
utilizing the PAPI. All performance counter events are normalized using the total
cycles of the execution to create performance event rates for each counter. Using
Spearman correlation and principal component analysis, we identify around five
important performance counters for the multiple metrics of the application. The mul-
tiple metrics include runtime, system power consumption, CPU power consumption,
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and memory power consumption. Then we use multivariable regression analysis to
obtain the model equations for them based on these important performance counts
and CPU frequencies.

E-AMOM utilizes these predictive models to employ run-time Dynamic Voltage
and Frequency Scaling (DVFS) and Dynamic Concurrency Throttling (DCT) to
reduce power consumption of the scientific applications, and uses cache optimiza-
tions to further reduce runtime and energy consumption of the applications.

5.3 MuMMI Instrumentor

Generally, collecting consistent performance and power data is difficult because
it requires multiple executions of an application using each PAPI, PowerPack and
Prophesy. Our goal for the MuMMI Instrumentor is to make performance and power
data collection easy and automatic requiring only one application execution for the
collection of performance and power data. To the best of our knowledge, this is
the first tool to support automatic and simultaneous performance, power and energy
data collection.

The MuMMI Instrumentor provides a way to do source-code level automatic
instrumentation for Fortran77, Fortran90, C and C++ programs. It is an extension
of Prophesy data collection component [23] with the addition of power and
hardware counters data collection and dynamic CPU frequency scaling support.
The basic framework of the MuMMI Instrumentor is illustrated in Fig. 5.3, which
entails automatically inserting instrumentation code into a source code file. The
Instrumentor supports the following instrumentation options:

Fig. 5.3 MuMMI instrumentor framework
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-a: Instrument all procedures and outer loops
-p: Instrument all procedures
-l: Instrument all loops
-n: Instrument all procedures not nested in loops
-F: Use Perl SOAP scripts to automatically transfer performance data to the

MuMMI database
-W: Use PowerPack to collect power data
Default: Instrument procedures and outer loops

These instrumentation options (-a, -p, -l, -n, or default) can be used to instrument
a source code at different levels based on the user, ranging from only procedures
and outer loops to nested loops. The user also can select the source files to be
instrumented. However, the following routines must be instrumented: the main file
such as main() function for a C program or the PROGRAM for a Fortran program.
The MuMMI Instrumentor counts each procedure and loop in the source code, and
labels it with a unique instrumentation point number (or called event identifier).

For the case when the “-W” option is used, the MuMMI Instrumentor records the
starting and end timestamps of the program, and at the end of a program execution,
it sends these timestamps to PowerPack server to retrieve the power profiling data
for the program, and appends the power and energy data to the output performance
data files.

For the case when the “-F” option is used, at the end of the program execution,
all performance data files are automatically transferred to the MuMMI database
by the MuMMI Instrumentor. We use SOAP Lite package to develop Perl SOAP
scripts to upload these data files to the MuMMI database (locally or remotely).
Prior to invoking the SOAP client side to transfer the data files, the data files are
converted to SQL scripts based on MuMMI database schema shown in Fig. 5.2 so
that the SOAP server side receives the data files, and uploads the data to the MuMMI
database. Further, the MuMMI Instrumentor is able to provide automatic upload of
the information obtained from widely used performance analysis tools such as gprof,
IPM [5], TAU [19] or Score-P [15] to the MuMMI database via some Perl SOAP
scripts as well.

When the instrumented source code is generated, it requires the following
compiler options to support different functionalities:

-DMPI: Support MPI programs
-DPAPI: Allow collecting hardware counters’ data using PAPI
-DFS: Support dynamic frequency scaling

It also requires PAPI library link -lpapi to support collecting hardware counters’
data using PAPI. If the “-DFS” option is used, the MuMMI Instrumentor can support
dynamic frequency scaling by adjusting the CPU frequency to what a user sets in
the system file scaling_setspeed. It requires the user to specify CPU frequencies for
scaling up or down in advance.
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5.4 Case Studies

In this section, we apply MuMMI to a parallel earthquake simulation to illustrate
building performance and power models of the application and optimizing its
performance and power for energy efficiency.

5.4.1 A MuMMI Testbed and a Parallel Earthquake Simulation

In this section, we describe a MuMMI testbed system, and deploy the MuMMI
Instrumentor on the system. Our experiments utilize one multicore system from
Virginia Tech, SystemG [18], which has 325 Mac Pro computer nodes. This system
is the largest PowerPack-enabled research system with each node containing more
than 30 thermal sensors and more than 30 power sensors. Each node has two quad-
core 2.8 GHz Intel Xeon processors and 8 GB memory. The CPU frequency for the
Intel Xeon processor can only be adjusted to 2.4 and 2.8 GHz.

Our experiments utilize a parallel earthquake simulation developed in [26, 27]
with the SCEC/USGS benchmark problem TPV210. The benchmark problem
TPV210 is the convergence test of the benchmark problem TPV10 [22]. In TPV10,
a normal fault dipping at 60ı (30 km long along strike and 15 km wide along
dip) is embedded in a homogeneous half space. Pre-stresses are depth dependent
and frictional properties are set to result in a sub-shear rupture. In the benchmark
problem TPV210, we conduct the convergence test of the solution by simulating
the same problem at a set of element sizes, i.e., 200, 100, 50 m, and so on, where
m stands for meters. The simulation is memory-bound. Our hybrid MPI/OpenMP
finite element earthquake simulations discussed in [26, 27] target the limitation to
reduce large memory requirements. For the sake of simplicity, we only use TPV210
with 200 m element size in this paper.

5.4.2 Performance and Power Modeling

In this section, utilizing MuMMI Instrumentor, we develop application-centric
models for the runtime and power consumption of the system, CPU, and memory.

To build a model, we create a typical training set for various configuration points
first. The configuration M � N stands for M nodes with N cores per node. In the
case of our hybrid MPI/OpenMP finite element earthquake application with the
resolution of 200 m, M is the number of nodes and N is the number of cores with one
OpenMP thread per core. For the hybrid application, a configuration 2 � 8 means
that 2 MPI processes with 8 OpenMP threads per node with a total of 16 cores
used.The training set for inter-node performance uses six data points consisting of
configurations for points at 1 � 8, 3 � 8, 5 � 8, 7 � 8, and 9 � 8, 10 � 8. Performance
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Fig. 5.4 Average prediction error rate using models for the hybrid earthquake simulation

counters’ data and power profiling data for these training points are used to build
performance and power models, then these models are used to predict performance
and power consumption on larger number of processor cores (up to 64 � 8).

Figure 5.4 shows the average prediction error rate resulting from the modeling
of the hybrid earthquake application. The average error rate for predicting the
application runtime is 1.90 %.The average error rate for predicting the system
power consumption is 2.18 %.The average error rate for predicting the CPU power
consumption is 3.21 %.The average error rate for predicting the memory power
consumption is 1.73 %. Overall, the models for the hybrid application have an
average prediction error of less than 4 %.

Figure 5.5 shows the average prediction error rate resulting from the modeling
of the MPI-only earthquake application. The performance components modeled for
the MPI-only earthquake application had the smallest error for predicting the system
power consumption (1.56 %) and the highest error rate occurred in modeling the
memory power consumption (4.18 %).

Overall, our modeling method identifies the different performance counters
that are needed to accurately predict the application performance and power
consumptions.

5.4.3 Performance-Power Trade-off and Optimization

In this section, we incorporate two common software-based approaches for reducing
power consumption in large-scale parallel systems, Dynamic Voltage and Frequency
Scaling (DVFS)[6] and Dynamic Concurrency Throttling (DCT) [2]. DVFS can be
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Fig. 5.5 Average prediction error rate using models for the MPI-only earthquake simulation

used to scale down the CPU frequency for a HPC application’s workload resulting in
lower power consumption. DVFS is most beneficial when applied to regions within
an application where communication does not overlap with computation. DCT is
used to control the number of threads assigned to a segment of a parallel code. DCT
can be applied to a code region with a reduced workload that would not benefit from
using the maximum number of cores on a chip.

Before applying DCT and DVFS to the application executed on SystemG, we
investigated how the settings of having 1, 2, 4, 6, or 8 OpenMP threads per node
impact the application performance by utilizing the MuMMI Instrumentor to collect
the performance and power consumption data, and found using 2 OpenMP threads
per node for the functions qdct3 and hourglass results in the best application
performance. So DCT is applied to the functions hourglass and qdct3 so that they are
executed using 2 OpenMP threads per node during the application execution. DVFS
is applied to the functions input, communication, and final for the communication
slacks by adjusting CPU frequency from 2.8 to 2.4 GHz.

As we discussed before, the hybrid earthquake application is memory bound.
From our experiments, we found that L2 cache behavior is a major factor for
memory power consumption. So additional loop optimizations such as using loop
blocking with a block size of 8�8 and unrolling nested loops four times are applied
to the application in order to improve cache utilization.

Figure 5.6 shows the performance, power, and energy consumption comparison.
2�8 stands for 2 nodes with 8 cores per node. For the hybrid application executions,
we use 1 MPI process per node with 8 OpenMP threads per node as default.
“Optimized-Hybrid” stands for applying DVFS, DCT and loop optimization to the
hybrid application for execution. “System Energy” means the total energy consumed
by the number of nodes used, and its unit is kilojoule. “System Power” means
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Fig. 5.6 Performance, power and energy consumption comparison

the total power consumed by the number of nodes used. “CPU Power” means the
total power consumed by all CPUs used. “Memory Power” means the total power
consumed by all memory components used. Overall, we reduce the execution time
and lower power consumption of the hybrid application by applying DVFS, DCT
and loop optimizations. This is a good improvement in performance and power
consumption.

As shown in Fig. 5.6, the Memory Power consumption is larger than the CPU
Power consumption for the hybrid earthquake application because the application is
memory-bound, and applying DVFS, DCT and loop optimizations to the hybrid
application benefit the CPU power consumption more than the Memory power
consumption because we used 2 OpenMP threads per node when applying DCT
to the hybrid application. It means that there are 6 idle cores per node during the
execution of the dominated function qdct3 and hourglass. This results in a big
CPU power saving. However, loop optimizations just improve cache utilization a
little bit. For instance, on 512 cores (64 � 8), the optimized hybrid application
execution results in 4.14 % improvement in Runtime, 16.15 % improvement in
System Energy consumption, 11.52 % improvement in System Power consumption,
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19.98 % improvement in CPU Power consumption, and 1.48 % improvement in
Memory Power consumption. So the System Energy has the best improvement
percentage because the System Energy is the product of Runtime and System Power.
Overall, applying DVFS, DCT and loop optimizations to the hybrid MPI/OpenMP
earthquake application reduced up to 8.5 % the execution time and lowered up to
18.35 % energy consumption.

5.5 Summary

In this paper, we discussed the MuMMI framework which consists of an Instru-
mentor, Databases and Analyzer. The MuMMI Instrumentor provides for automatic
performance and power data collection and storage with low overhead. The MuMMI
Databases store performance, power and energy consumption and hardware per-
formance counters’ data with different CPU frequency settings for modeling and
comparison. The MuMMI Analyzer entails performance and power modeling
and performance-power tradeoff and optimizations. For case studies, we applied
MuMMI to a parallel earthquake simulation to illustrate building performance and
power models of the application and optimizing its performance and power for
energy efficiency. Further work will extend MuMMI Instrumentor to support addi-
tional power management techniques such as IBM EMON API on BlueGene/P/Q
[28], Intel RAPL[14], and NVIDIA’s Management Library for power measurement
[12], and will focus on performance and power modeling for CPU C GPU systems
and exploring the use of correlations among performance counters to provide further
optimization insights.

Acknowledgements This work is supported by NSF grants CNS-0911023, CNS-0910899, and
CNS-0910784.

References

1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface
for performance evaluation on modern processors. Int. J. High-Perform. Comput. Appl. 14(2),
189–204 (2000)

2. Curtis-Maury, M., Dzierwa, J., et al.: Online power-performance adaptation of multithreaded
programs using hardware event-based prediction. In: The International Conference on Super-
computing, Santa Fe (2006)

3. Ge, R., Feng, X., Cameron, K.W.: Performance-constrained distributed DVS scheduling for
scientific applications on power-aware clusters. In: IEEE/ACM SC 2005, Seattle (2005)

4. Ge, R., Feng, X., Song, S., et al.: PowerPack: energy profiling and analysis of high-performance
systems and applications. IEEE Trans. Parallel Distrib. Syst. 21(5), 658–671 (2010)

5. Integrated Performance Monitoring (IPM). http://ipm-hpc.sourceforge.net/
6. Kappiah, N., Freeh, V., Lowenthal, D.: Just in time dynamic voltage scaling: exploiting

inter-node slack to save energy in MPI programs. In: The 2005 ACM/IEEE Conference on
Supercomputing (SC05), Seattle (2005)

http://ipm-hpc.sourceforge.net/


5 MuMMI: Multiple Metrics Modeling Infrastructure 65

7. Li, D., de Supinski, B., Schulz, M., Cameron, K., Nikolopoulos, D.: Hybrid MPI/OpenMP
power-aware computing. In: Proceedings of the 24th IEEE International Conference on Parallel
& Distributed Processing Symposium, Atlanta, May 2010

8. Lively, C., Wu, X., Taylor, V., Moore, S., Chang, H., Cameron, K.: Energy and performance
characteristics of different parallel implementations of scientific applications on multicore
systems. Int. J. High Perform. Comput. Appl. (IJHPCA) 25(3), 342–350 (2011)

9. Lively, C., Wu, X., Taylor, V., Moore, S., Chang, H., Su, C., Cameron, K.: Power-aware
predictive models of hybrid (MPI/OpenMP) scientific applications on multicore systems.
Comput. Sci. Res. Dev. 27(4), 245–253 (2012). Springer

10. Lively, C., Taylor, V., Wu, X., Chang, H., Su, C., Cameron, K., Moore, S., Terpstra, D.: E-
AMOM: an energy-aware modeling and optimization methodology for scientific applications
on multicore systems. In: International Conference on Energy-Aware High Performance
Computing, Dresden, Sep 2–3, 2013

11. Multiple Metrics Modeling Infrastructure (MuMMI) project. http://www.mummi.org
12. NVIDIA, NVIDIA’s Management Library (NVML) API Reference Manual (2012)
13. PAPI (Performance API). http://icl.cs.utk.edu/papi/
14. Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann, E.: Power-management

architecture of the intel microarchitecture code-named sandy bridge. IEEE Micro. 32(2), 20–27
(2012)

15. Score-P, Scalable Performance Measurement Infrastructure for Parallel Codes.
http://www.vi-hps.org/projects/score-p/

16. Singh, K., Bhadhauria, M., McKee, S.A.: Real time power estimation and thread scheduling
via performance counters. In: Proceedings of the Workshop on Design, Architecture, and
Simulation of Chip Multi-Processors, Lake Como, Nov 2008

17. SOAP (Simple Object Access Protocol). http://www.w3.org/TR/soap/
18. SystemG at Virginia Tech. http://www.cs.vt.edu/facilities/systemg
19. TAU (Tuning and Analysis Utilities). http://www.cs.uoregon.edu/research/tau
20. Taylor, V., Wu, X., Geisler, J., Stevens, R.: Using kernel couplings to predict parallel

application performance. In: Proceedings of the 11th IEEE International Symposium on High-
Performance Distributed Computing (HPDC 2002), Edinburgh, 24–26 July 2002

21. Taylor, V., Wu, X., Stevens, R.: Prophesy: an infrastructure for performance analysis and
modeling of parallel and grid applications. ACM SIGMETRICS Perform. Eval. Rev. 30(4),
13–18 (2003)

22. The SCEC/USGS Spontanous Rupture Code Verification Project. http://scecdata.usc.edu/cvws
23. Wu, X., Taylor, V., Stevens, R.: Design and implementation of prophesy automatic instrumen-

tation and data entry system. In: The 13th International Conference on Parallel and Distributed
Computing and Systems (PDCS2001), Anaheim (2001)

24. Wu, X., Taylor, V., et al.: Design and development of prophesy performance database for
distributed scientific applications. In: Proceedings of the 10th SIAM Conference on Parallel
Processing for Scientific Computing, Virginia (2001)

25. Wu, X., Taylor, V., Geisler, J., Stevens, R.: Isocoupling: reusing coupling values to predict
parallel application performance. In: 18th International Parallel and Distributed Processing
Symposium (IPDPS2004), Santa Fe (2004)

26. Wu, X., Duan, B., Taylor, V.: Parallel simulations of dynamic earthquake rupture along
geometrically complex faults on CMP systems. J. Algorithm Comput. Technol. 5(2), 313–340
(2011)

27. Wu, X., Duan, B., Taylor, V.: Parallel earthquake simulations on large-scale multicore super-
computers, (Book Chapter). In: Furht, B., Escalante, A. (eds.) Handbook of Data Intensive
Computing. Springer, New York (2011)

28. Yoshii, K., Iskra, K., Gupta, R., Beckman, P., Vishwanath, V., Yu, C., Coghlan, S.: Evaluating
power monitoring capabilities on IBM Blue Gene/P and Blue Gene/Q. In: IEEE Conference
on Cluster Computing, Beijing (2012)

http://www.mummi.org
http://icl.cs.utk.edu/papi/
http://www.vi-hps.org/projects/score-p/
http://www.w3.org/TR/soap/
http://www.cs.vt.edu/facilities/systemg
http://www.cs.uoregon.edu/research/tau
http://scecdata.usc.edu/cvws


Chapter 6
Cudagrind: Memory-Usage Checking
for CUDA

Thomas M. Baumann and José Gracia

Abstract The Memcheck tool, build on top of the popular Valgrind framework,
offers a reliable way to perform memory correctness checking in arbitrary x86 pro-
grams. At runtime Valgrind dynamically transforms the program into intermediate
code which is then being executed on an emulated CPU. Due to a full shadow copy
of the memory used by each program the Memcheck tool is able to perform various,
bitwise precise runtime checks. These include, but are not limited to, detection
of memory leaks, checking the validity of memory accesses and tracking the
definedness of memory regions. But despite the wide applicability of this approach,
it is bound to fail when accelerator based programming models are involved. Kernels
running on such devices, like NVIDIA’s Tesla series, are completely separated from
the host. The memory on the device is only accessible through an API provided
by the driver or from inside the kernels. Due to this indirect approach Valgrind
is not able to understand, instruments or even recognize memory operations being
executed on the device. Freeing Valgrind from this limitation has been the focus of
the work presented here. A set of wrappers for a subset of the CUDA driver API
has been introduced. These allow tracking of (de-)allocation of memory regions on
the device as well as memory copy operations needed to place and retrieve data in
device memory. This provides the ability to check whether memory is fully allocated
during a transfer and, thanks to the host memory checking performed by Valgrind,
whether the memory transferred to the device is fully defined and addressable on
the host. This techniques allows detection of a number of common programming
mistakes, many of which can be rather difficult to debug by other means. These
wrappers, combined with Valgrind’s Memcheck tool, is being called Cudagrind.

6.1 Introduction

Many parallel programming models require the user to provide so-called memory
buffers which are used as transient storage area for message passing. Similar
usage of buffers appears in programming accelerators, like GPGPUs, where data
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is transferred between host and accelerator device. Maintaining consistency of such
memory operations in an asynchronous environment is a complex task. Failure to
properly manage the usage of memory buffers can give rise to erratic and undefined
behavior. This includes, but is not limited to, reading data from undefined memory
regions and crashes from writing into forbidden parts of the memory. In a worst
case scenario, incorrect usage of memory buffers can even lead to serious security
concerns. In the right circumstances not only the user’s applications but also the
operating system might be affected when memory buffers are shared between
different parts of the system.

One approach for debugging these kinds of memory operations are runtime
correctness-checks, e.g. by using frameworks like Valgrind [4] and specifically it’s
tool Memcheck. A solid understanding of their correct usage can potentially save
hundreds of hours spent on locating subtle problems like a misaligned pointer or
prematurely freed memory regions. Despite the importance of runtime correctness-
checking, however, the existing tools do not support accelerators as for instance
CUDA-based GPGPUs. In such a setting, so called kernels are running on the
accelerator device and operate on their own dedicated device memory, which is not
shared with the host. The device memory can be accessed from the device’s compute
cores with a high bandwidth which, together with the manyfold parallelism of
the GPGPU, gives rise to exceptional performance boost for certain computational
problems. On the down side, however, CUDA programs are very difficult to debug,
as kernels running on the device are not accessible to typical debugging tools, nor
in fact the main program, that are running on the host. The host can access memory
on the device only indirectly through a specific set of API1 functions offered by the
CUDA driver. Due to this indirect access pattern classical tools, like Valgrind, are
unable to work with and on device memory. While there are some tools that work
on the device, e.g. NVIDIA’s cuda-memcheck, they often do not check the memory
transactions between host and device.

In this paper, we present Cudagrind, a tool which relying on the rich features
of Valgrind aims to fill the gap of correctness-checks on the host, the device, and
transaction between those.

6.2 Memory Checking

Manually checking source code, even if only a couple of handful of lines against
only a few most common memory buffer related programming errors, is already a
complex and tedious task. Doing the same for hundreds of thousands of lines of code
is next to impossible. There is a wide range of tools available that aim to assist the
programmer in such a task. In general these fall into one of three categories: (1) static
analysis tools, as for instance Lint [3], which work on the source level, (2) runtime

1http://docs.nvidia.com/cuda/cuda-driver-api/index.html

http://docs.nvidia.com/cuda/cuda-driver-api/index.html
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correctness-checkers, as for instance Valgrind [5], that examine buffer usage during
execution, and (3) post-mortem analysis as offered by some tracing tools or online
debugging after the fact. Naturally, these tools cannot offer full protection against
memory-related errors, else they would solve the halting problem; however, they
offer a simple practical method to increase the confidence in one’s own code.

6.2.1 Valgrind: Heavy Weight Dynamic Binary
Instrumentation

Valgrind is a framework for dynamic binary instrumentation of arbitrary programs.
In a nutshell, it consists of a just-in-time compiler, which translates the program’s
binary into Valgrind’s intermediate representation (IR) as the program executes.
This architecture-neutral IR is then executed on an emulated generic x86 processor.
Thus, the JIT compiler makes sure that every machine instruction in the original
binary is translated into an equivalent sequence of IR instructions to be executed
on the virtual processor. This approach, in principle, allows for dynamic runtime
instrumentations of arbitrary architectures, but requires a functional JIT compiler
for each target architecture.

Tools based on the Valgrind framework, as for instance the well known Mem-
check tool [5], can then use the dynamic instrumentation for any kind of runtime
checks. Specifically, Memcheck keeps a full shadow copy of the application’s
memory and registers. Access to memory regions and de-/allocation of memory is
tracked in the shadow copy. This allows various checks on every memory or register
access. For example, an access, to a memory region which has not yet been marked
as allocated, will be reported as an error; similarly, reading from a memory region,
which has been allocated but not yet initialized, will also be reported as an error.
Having a full shadow copy allows Memcheck to operate with bitwise precision.

A serious disadvantage, though, is the large runtime overhead incurred by
this approach. The emulated code is executed by the Valgrind runtime already
roughly four times slower compared to the native execution. When using a tool
like Memcheck the overhead can results in a 100-fold slowdown of the application.
Another limit of this approach is the additional memory required by the shadow
memory, which leaves only half of the total memory available to the application.

6.3 Cudagrind Internals

The CUDA stack depicted in Fig. 6.1 shows the various ways of accessing a CUDA
enabled device. Ultimately every access to a device is being reduced to a CUDA
driver call. This holds true for programs based on the low level CUDA driver API
as well as the streamlined CUDA runtime API. So a call to cudaMemcpy(..)
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Fig. 6.1 The placement of Cudagrind in the CUDA stack. There is a wrapper for every memory
related function on the CUDA driver level. Functions calls from an application on a higher level,
e.g. a CUDA library function, are handled when the respective driver function is called from the
library or runtime level

Fig. 6.2 Internal list of memory regions that have been allocated on the device. Each allocation
generates a new entry into the list of linear memory or device arrays of the respective CUDA
context ctx. Both lists contain information about the device pointer returned by the allocation and
either the size of the linear memory or device array descriptor

implicitly leads to a call of any of the cuMemcpyXtoY(..) functions provided
by the driver. Conveniently the same is true for programing models based on
higher abstraction levels. Pragma based models, like for example OpenACC, rely
on the functionality exposed by the CUDA driver or, implementation dependent, the
CUDA runtime. Finally CUDA libraries rely on any of the aforementioned methods
to access a device. Hence every access to a CUDA device will eventually reach the
CUDA driver.

This makes the CUDA driver level a natural choice for the wrappers provided
by Cudagrind. Every time a program handles device memory or transfers data
between the device and/or the host the respective Cudagrind wrapper is being called
instead. No matter the programing model or abstraction layer used. Depending on
the requested operation several things will then happen. The internal list of memory
regions allocated on the device being updated (Fig. 6.2). The parameters of the
function called are cross checked against this list as well as Valgrind’s knowledge
about the host memory. This allows detection of various errors like
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• Data being copied into or from unallocated memory regions.
• Undefined data being copied from host onto the device.2

• Copying more data than there’s previously allocated memory.
• Concurrent access related to asynchronous operations.

6.4 Software Requirements

To compile the Cudagrind wrappers the following components need to be installed
and available

• Valgrind 3.6.0 or newer.
• CUDA SDK 4.0 or newer.
• CUDA driver that works with installed SDK.
• GCC or compatible compiler that supports the GNU ‘constructor’ attribute.

Additionally the location of the respective driver’s libcuda.so and Valgrind’s
valgrind.h needs to be known and passed to the linker when compiling
Cudagrind.

To execute a program with the Cudagrind wrappers the same Valgrind
version used during the compilation needs to be present. The generated
libcudagrind.so and the libcuda.so from the respective CUDA driver
needs to be added to LD_PRELOAD in this order. The addition of libcuda.so
to LD_PRELOAD is only needed in cases where the original program has not been
fully linked against it. This is the case when using certain OpenACC compilers,
where running the program with the Cudagrind wrappers would lead to unknown
references to functions called only from within the wrappers but not the main
program itself.

Now the executable that is to be run with Cudagrind can simply be called with
valgrind <executable>. Every time one of the wrapped functions in the
CUDA driver is executed Valgrind will replace it with the respective Cudagrind
wrapper and perform all needed checks at runtime. Optionally a suppression file
can be generated and passed to Valgrind at runtime. This suppresses certain spurious
errors reported by Valgrind in the CUDA driver.3 In certain rare cases the lib path of
the Valgrind installation /path/to/valgrind/lib/valgrind needs to be
added to LD_LIBRARY_PATH.

2This might not be an error in cases where the host memory is accessed in a strided way.
3See the Valgrind manual that comes with your installation or at the Valgrind homepage at http://
valgrind.org/ for more information about suppression files.

http://valgrind.org/
http://valgrind.org/
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6.5 Usage Example

This section offers a brief overview about how Cudagrind is able to assist in
detecting and solving memory related errors in a CUDA program. Let ‘vecsum’
in Listing 6.1 be a kernel that performs a basic vector addition of two input vectors
a and b and writes the result into the vector c.

Listing 6.1 Basic vector sum in CUDA C

_ _ g l o b a l _ _ vo id vecsum ( double �c , double �a , double �b ) {
s t a r t = t h r e a d I d x . x +( b l o c k I d x . x�b l o c k S i z e . x ) ;
s i z e = b l o c k S i z e . x� g r i n d S i z e . x ;
f o r ( i n t i = s t a r t ; i < s i z e ; i += b l o c k S i z e . x ) {

c [ i ] = a [ i ]+ b [ i ] ;
}

}

Further assume the following excerpt from a program utilizing this kernel in
Listing 6.1. Instead of enough memory to hold size values of type double, only an
amount able to hold as many values of type float is being allocated.

Listing 6.2 Part of a CUDA C program utilizing the vecsum kernel from Listing 6.1. Note the
faulty allocation of the result variable c using float instead of double

. . .
double �c , �a , �b ;
double � c _ h o s t ;
i n t s i z e = 1000000 ;
. . .
cudaM al loc ( ( vo id��)&c , s i z e � s i z e o f ( f l o a t ) ) ;
cudaM al loc ( ( vo id��)&a , s i z e � s i z e o f ( double ) ) ;
cudaM al loc ( ( vo id��)&b , s i z e � s i z e o f ( double ) ) ;
. . .
vecsum <<< g r i d S i z e , b l o c k S i z e >>>(c , a , b ) ;
. . .
cudaMemcpy ( c_hos t , c , s i z e � s i z e o f ( double ) ,

cudaMemcpyDeviceToHost ) ;
. . .

The following sections show the results of executing this code with various types
of error checking or lack thereof.

6.5.1 No Error Checking

Running the code without external tools or utilization of error values returned by
the API might lead to this error going unnoticed. Formally the result of the kernel
execution will be undefined due a buffer overflow (i.e. writing into the unallocated
memory regions beyond the first size/2 double values). Additionally the call to
cudaMemcpy will fail, but not necessarily crash the program, due to the wrong
amount of memory scheduled for copying. In the best case the undefined behavior
will lead to a crash. But it is more likely for the bug to go unnoticed, leading to the
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program’s execution with the undefined values stored in the host memory pointed
at by c_host. On the bright side, this method of error detection does not ask for
recompilation of nor debug information being present in the binary and causes no
overhead in execution time!

6.5.2 API Error Value Checking

The most basic, yet still often underutilized, way of error checking relies on the
error values returned by any of the CUDA runtime API functions. This also works
in the case of asynchronous operations, although special care has to be taken.
Namely a call to either cudaGetLastError or cudaPeekAtLastError is
needed after a synchronization point that guarantees the asynchronous execution
being completed. To simplify the process in the synchronous case a preprocessor
macro, like the one shown in Listing 6.3, can be used. For asynchronous operations
a synchronization point would have to be added to the macro to get the error message
generated by the operation.

Listing 6.3 Preprocessor macro to simplify runtime API error value checking. Use cudaVerify
with every call to the CUDA runtime. Similar principle applies to CUDA driver API error checking.
This and similar macros are included in the cutil.h header file of CUDA SDKs prior to 4.2

# d e f i n e c u d a V e r i f y ( x ) do { \
c u d a E r r o r _ t _ _ c u _ r e s u l t = x ; \
i f ( _ _ c u _ r e s u l t != cudaSucces s ) { \

f p r i n t f ( s t d e r r , \
"%s :% i : e r r o r : cuda f u n c t i o n c a l l f a i l e d : \ n " \
" %s ; \ nmessage : %s \ n " , __FILE__ , __LINE__ , \
#x , c u d a G e t E r r o r S t r i n g ( _ _ c u _ r e s u l t ) ) ; \

e x i t ( 1 ) ; \
} \

} whi le ( 0 )

With the help of cudaVerify the output shown in Listing 6.4 is being
generated when the call to CudaMemcpy in Listing 6.2 happens. It contains
the location in the source code where the error is being recorded. The runtime
overhead is negligible in most cases, as the actual amount of manual calls to the
CUDA runtime is small compared to the time spend in kernel executions, memory
transfers and even operations on the host. On the other hand the ‘invalid argument’
error message, generated by cudaGetErrorString, is very undescriptive. This
method is also rather error prone, as it relies on manual use of cudaVerify by the
programmer with every call to any CUDA runtime function. Finally it needs to be
adapted to be used with different CUDA based programing models, including the
CUDA driver API.
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Listing 6.4 Running the faulty code shown in Listing 6.2 with verbose runtime error checking
produces the following output. Location of the error is shown, but the error message is non-
descriptive

hpc43598 n093302 306 $ . / a . o u t
example01 . cu : 6 0 : e r r o r : cuda f u n c t i o n c a l l f a i l e d :

cudaMemcpy ( c_hos t , c , ( v e c t o r _ s i z e )� s i z e o f ( double ) ,
cudaMemcpyDeviceToHost ) ;
message : i n v a l i d a rgumen t

6.5.3 Valgrind/Memcheck

Utilizing only the Valgrind tool Memcheck produces no warnings or error messages,
except possibly spurious errors inside the CUDA driver library libcuda.so. As
mentioned in Sect. 6.4 these are not connected to actual errors in the program being
run and can be either ignored or suppressed with a Valgrind suppression that’s
tailored to CUDA driver being used. In this case Valgrind is unable to detect the error
since the problem only occurs on the device and inside the kernel being executed.
This part of the program is effectively invisible to the Valgrind framework. At the
current time it is unable to translate and run the PTX or CUBIN code that is being
transferred to and run on the device by the CUDA driver.

6.5.4 Cuda-Memcheck

NVIDIA’s tool cuda-memcheck provides an alternative for runtime memory
checks. A given program is executed through cuda-memcheck and every error
detected is printed to stdout. Conveniently this functionality is tightly integrated
into cuda-gdb, NVIDIA’s CUDA extension to the GNU debugger. Setting
‘set cuda memcheck on’ inside a debugging session enables the same func-
tionality provided by the standalone cuda-memcheck.

If being used on the code from Listing 6.2 cuda-memcheck produces the
output shown in Listing 6.5. It reports the location of the error in the call stack
as well as the internal error code reported by the CUDA runtime. Alas, the actual
string representation or description of the error is missing from the output. As is the
location in the actual source of the program, that’s only reported as an address in the
binary. The latter even holds true if the program has been compiled with -g -G,
i.e. with full debug information.
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Listing 6.5 Running the faulty code shown in Listing 6.2 with cuda-memcheck produces this
output. Location of the error is only shown inside the binary and only the error number is reported

hpc43598 n093302 307 $cuda�memcheck . / a . o u t
CUDA�MEMCHECK
Program h i t e r r o r 11 on CUDA API c a l l t o cudaMemcpy
Saved h o s t b a c k t r a c e up t o d r i v e r e n t r y p o i n t a t e r r o r
Host Frame : / . . / l i b c u d a . so [0 x26a180 ]
Host Frame : / . . / l i b c u d a r t . so . 5 . 0 ( cudaMemcpy + 0 x28c ) [0 x3305c ]
Host Frame : . / a . o u t [0 xc55 ]
Host Frame : / l i b 6 4 / l i b c . so . 6 ( _ _ l i b c _ s t a r t _ m a i n + 0 xfd ) [0 x1ecdd ]
Host Frame : . / a . o u t [0 x9f9 ]
ERROR SUMMARY: 1 e r r o r

6.5.5 Cudagrind

Running the code snippet in Listing 6.2 through Cudagrind will produce the
output shown in Listing 6.6. It contains a detailed error message that gives precise
information about the encountered problem. The user learns that the target memory
region on the device only features half the amount of memory needed for the
operation. This gives a strong hint at the actual error in code, where the result
vector c has been allocated for float instead of the needed double values. With
added debug information the output also shows the exact location of the error in
the source code as can be seen in Listing 6.6. Otherwise, as always the case when
using cuda-memcheck, the call stack contains only reveals the address in the
binary of the program.

Listing 6.6 Running the faulty code shown in Listing 6.2 with the Cudagrind wrappers produces
this output. Location of the error in the source code is only shown when compiled with debug
informations. A detailed error message gives a hint about the potential problem

hpc43598 n093302 307 $ v a l g r i n d . / a . o u t
E r r o r : A l l o c a t e d d e v i c e memory t o o s m a l l f o r dev ice �>h o s t copy .
E xpec ted 8000000 a l l o c a t e d b y t e s b u t on ly found 4000000 .

a t 0x4C18E79 : VALGRIND_PRINTF_BACKTRACE ( v a l g r i n d . h : 4 4 7 7 )
by 0x4C19261 : cuMemcpyDtoH_v2 ( cuMemcpyDtoH . c : 5 8 )
by 0x5A1E531 : ??? ( i n / . . / l i b c u d a r t . so . 5 . 0 . 3 5 )
by 0x5A40E43 : cudaMemcpy ( i n / . . / l i b c u d a r t . so . 5 . 0 . 3 5 )
by 0x400C54 : main ( example01 . cu : 6 0 )

6.6 Runtime Overhead

Using Valgrind and specifically Cudagrind always incurs a runtime overhead. While
potential high in case of Valgrind, due to the JIT and emulation approach, Cudagrind
itself has nearly no effect on the runtime of a program. Additionally for Valgrind the
slowdown also depends on the ratio of pure CPU and GPU code being executed, as
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Fig. 6.3 Relative runtime of just the CMD code (‘plain’) compared to running it with cuda-
memcheck (‘cu-mem’), the Valgrind none-tool (‘none’), Memcheck (‘mem’) and Cudagrind (‘cg’)

the latter is not handled by Valgrind. To illustrate this effect a CUDA-based MD
code, developed at HLRS, is being used.

This code has been executed on the HLRS’ Sandy Bridge based ‘Laki’ cluster.4

The nodes contain E5-2670 Sandy Bridge processors, 12 GB of RAM and a GeForce
GTX 680 accelerator. 72 % of the runtime is spent on kernel execution, 28 % on
host code, including driver API calls. This version of the code features almost no
overlapping of host and device code.

Figure 6.3 shows the relative, average runtime without any tools (plain, baseline
100 %), with cuda-memcheck (cu-mem), the Valgrind ‘none’ tool (none), the
Valgrind Memcheck tool (mem) and finally Cudagrind (cg). Note that running
Cudagrind implies using the Valgrind Memcheck tool. The ‘none’ tool shows the
basic overhead of running a program with Valgrind, as it does not perform any
nor changes the code being executed. Each variant has been run 20 times with the
variation between runs being less than 5 %.

As Fig. 6.3 shows, the overhead of using Cudagrind over checking a program
with Valgrind’s Memcheck tool is less than 3 %. The overhead of Memcheck itself
is 175 % and for simply running the tool through Valgrind, without performing any
checks, 60 %. For NVIDIA’s cuda-memcheck, which only works on the accelerator
side, it is 120 %.

4https://www.hlrs.de/systems/platforms/nec-cluster-laki-laki2/

https://www.hlrs.de/systems/platforms/nec-cluster-laki-laki2/


6 Cudagrind 77

6.7 Summary

Cudagrind offers a novel approach to close the missing link between host side
memory checking, e.g. through Valgrind based tools, and device side memory
checking with cuda-memcheck. The provided set of wrappers allow runtime
tracking of allocation status and definedness of memory during transactions between
host and/or device. All without the need for recompilation, except for the exact
location of errors in the source code, and depending only on the existence of a valid
Valgrind installation and the CUDA driver API.

With Cudagrind operating on the CUDA driver level it works with ‘everything
CUDA’. This includes programs relying on high level constructs like CUDA enabled
libraries and pragma based programming models, e.g. OpenACC. But also the still
very common method of directly utilizing the CUDA runtime API and even the
low level approach of accessing the device directly through the CUDA driver or it’s
respective API.

Section 6.6 has shown that there is virtually no overhead when running Cuda-
grind on top of Valgrind’s Memcheck tool. Additionally, due to the way Valgrind
dynamically loads wrappers at runtime, there is no overhead when running the
program on it’s own. The original program does not need to changed or recompiled/-
linked in any way.

At the time of writing a beta Version of Cudagrind has been released.5

6.7.1 Outlook

The work presented in this paper offers a solid foundation for memory transaction
checking on CUDA enabled programs.Future versions might incorporate additional
wrappers that check the arguments of kernels that are started on the device. One way
to achieve this is a wrapper for cuLaunchKernel that unpacks the parameter list
passed to the function in order to retrieve and check the variables passed to the
kernel.

Another possible approach would be a thorough integration of CUDA into the
Valgrind framework. Akin to how Valgrind provides a virtual x86 CPU, to execute
arbitrary binary programs, it would be possible to extend it’s core with a virtual
device able to execute PTX or CUBIN code. This would allow handling of code
produced by the NVIDIA CUDA compiler as well as third party products. This
would allow full control and complete memory checking capabilities. Alas, it’s
no trivial task. One possible way to achieve this goal lies in the extension and
integration of a dynamic CUDA compilation frameworks like ‘GPU Ocelot’ [1].
These provide a runtime promising efficient execution of PTX and CUBIN code

5https://www.hlrs.de/organization/av/spmt/research/cudagrind/

https://www.hlrs.de/organization/av/spmt/research/cudagrind/
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on multi-core architectures. A reversed approach, as proposed in [2], would be to
include the instrumentation in Ocelot itself. But in this case the host side memory
checking capabilities, offered by Valgrind, would have to be integrated into GPU
Ocelot.

Acknowledgements This work was supported by the H4H project funded by the German Federal
Ministry for Education and Research (grant number 01IS10036B) within the ITEA2 framework
(grant number 09011).
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Chapter 7
Node Performance and Energy Analysis
with the Sniper Multi-core Simulator

Trevor E. Carlson, Wim Heirman, Kenzo Van Craeynest,
and Lieven Eeckhout

Abstract Two major trends in high-performance computing, namely, larger num-
bers of cores and the growing size of on-chip cache memory, are creating significant
challenges for evaluating the design space of future processor architectures. Fast and
scalable simulations are therefore needed to allow for sufficient exploration of large
multi-core systems within a limited simulation time budget. By bringing together
accurate high-abstraction analytical models with fast parallel simulation, architects
can trade off accuracy with simulation speed to allow for longer application runs,
covering a larger portion of the hardware design space. Sniper provides this balance
allowing long-running simulations to be modeled much faster than with detailed
cycle-accurate simulation, while still providing the detail necessary to observe
core-uncore interactions across the entire system. With per-function advanced
visualization and coupled power and energy simulations, the Sniper multi-core
simulator can provide a fast and accurate way both to understand and optimize
software for current and future hardware systems.

7.1 Sniper Overview

Sniper is a next generation parallel, high-speed and accurate x86 simulator. This
multi-core simulator is based on the interval core model and the Graphite simulation
infrastructure [11], allowing for fast and accurate simulation and for trading off
simulation speed for accuracy to allow a range of flexible simulation options when
exploring different homogeneous and heterogeneous multi-core architectures.

The Sniper simulator allows one to perform timing simulations for both multi-
program workloads and multi-threaded, shared-memory applications running on 10s
to 100C cores, at a high speed when compared to existing simulators. The main
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feature of the simulator is its core model which is based on interval simulation, a
fast mechanistic core model [4]. Interval simulation raises the level of abstraction
in architectural simulation which allows for faster simulator development and
evaluation times; it does so by ‘jumping’ between miss events, called intervals [8].
Sniper has been validated against multi-socket Intel Core 2 systems and provides
average performance prediction errors within 25 % at a simulation speed of up to
several MIPS [2].

This simulator, and the interval core model, is useful for uncore and system-level
studies that require more detail than the typical high-level models, but for which
cycle-accurate simulators are too slow to allow workloads of meaningful sizes to
be simulated. As an added benefit, the interval core model allows the generation of
CPI stacks, which show the number of cycles lost due to different characteristics
of the system, like the cache hierarchy or branch predictor, and lead to a better
understanding of each component’s effect on total system performance. This extends
the use for Sniper to application characterization and hardware/software co-design.
The Sniper simulator is available for download at http://snipersim.org and can be
used freely for academic research.

7.2 Speeding Up Simulation

In this section we describe a number of strategies that, when used together, provide
the methods where we speed up micro-architectural simulation in Sniper while still
maintaining accuracy.

7.2.1 Interval Simulation

Interval simulation is a recently proposed simulation approach for simulating
multi-core and multiprocessor systems at a higher level of abstraction compared
to current practice of detailed cycle-accurate simulation [8]. Interval simulation
leverages a mechanistic analytical model to abstract core performance by driving the
timing simulation of an individual core without the detailed tracking of individual
instructions through the core’s pipeline stages. The foundation of the model is
that miss events (branch mispredictions, cache and TLB misses) divide the smooth
streaming of instructions through the pipeline into so called intervals [4]. The branch
predictor and cache models are simulated in detail. The cache hierarchy, cache
coherence and interconnection network simulators determine the miss events; the
analytical model derives the timing for each interval. The cooperation between the
mechanistic analytical model and the miss event simulators enables the modeling
of the tight performance entanglement between co-executing threads on multi-core
processors.

http://snipersim.org
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The multi-core interval simulator models the timing for the individual cores.
The simulator maintains a ‘window’ of instructions for each simulated core. This
window of instructions corresponds to the reorder buffer of a superscalar out-
of-order processor, and is used to determine miss events that are overlapped by
long-latency load misses. The functional simulator feeds instructions into this
window at the window tail. Core-level progress (i.e., timing simulation) is derived
by considering the instruction at the window head. In case of an I-cache miss,
the core simulated time is increased by the miss latency. In case of a branch
misprediction, the branch resolution time plus the front-end pipeline depth is added
to the core simulated time, i.e., this is to model the penalty for executing the chain
of dependent instructions leading to the mispredicted branch plus the number of
cycles needed to refill the front-end pipeline. In case of a long-latency load (i.e., a
last-level cache miss or cache coherence miss), we add the miss latency to the core
simulated time, and we scan the window for independent miss events (cache misses
and branch mispredictions) that are overlapped by the long-latency load—second-
order effects. For a serializing instruction, we add the window drain time to the
simulated core time. If none of the above cases applies, we dispatch instructions at
the effective dispatch rate, which takes into account inter-instruction dependencies
as well as their execution latencies. We refer to [8] for a more elaborate description
of the interval simulation paradigm.

7.2.2 Parallel Simulation

An additional way to speed up architectural simulation in the multi/many-core
era is to parallelize the simulation infrastructure in order to take advantage of
increasing core counts. This is needed because most of the improvement in
processor performance recently has come from increasing the number of cores per
processor, and therefore parallelizing the simulator allows us to take advantage of
this performance trend.

One of the key issues in parallel simulation is the balance of accuracy versus
speed. Cycle-by-cycle simulation advances one cycle at a time, and thus a parallel
simulator’s threads (which map directly to the application threads) would need to
synchronize every cycle to maintain accuracy. The resulting performance of this
approach is not very high because it requires barrier synchronization between all
simulation threads at every simulated cycle. If the number of simulator instructions
per simulated cycle is low, parallel cycle-by-cycle simulation is not going to yield
substantial simulation speed benefits and scalability will be poor.

There exist a number of approaches to relax the synchronization imposed
by cycle-by-cycle simulation [7]. A popular and effective approach is based on
barrier synchronization. The entire simulation is divided into quanta, and each
quantum comprises multiple simulated cycles. Quanta are separated through barrier
synchronization. Simulation threads can advance independently from each other
between barriers, and simulated events become visible to all threads at each barrier.
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The size of a quantum is determined such that it is smaller than the critical
latency, or the time it takes to propagate data values between cores. Barrier-based
synchronization is a well-researched approach, see for example [13].

More recently, researchers have been trying to relax multi-threaded simulation
even further, beyond the critical latency. If done correctly, the idea would be to
gain a simulation speed while accepting a small amount of simulation error. When
taken to the extreme, no synchronization is performed at all, and all simulated cores
progress at a rate determined by their relative simulation speed. This will introduce
skew, or a cycle count difference between two target cores in the simulation. This
in turn can cause causality errors when a core sees the effects of something that—
according to its own simulated time—did not yet happen. These causality errors can
be corrected through techniques such as checkpoint/restart, but they are allowed to
occur and are accepted as a source of simulator inaccuracy. Chen et al. [3] study
both unbounded slack and bounded slack schemes; Miller et al. [11] study similar
approaches. Unbounded slack implies that the skew can be as large as the entire
simulated execution time. Bounded slack limits the slack to a preset number of
cycles, without incurring barrier synchronization.

In the Graphite simulator [11], a relaxed synchronization scheme has been
adopted, trading off causality errors in the simulation for the ability to speed up
the simulator even further. The simulation infrastructure presents a number of
different synchronization strategies. The barrier method provides the most basic
synchronization, requiring cores to synchronize after a specific time interval, as
in quantum-based synchronization. The most loose synchronization method in
Graphite (lax synchronization) does not synchronize at all except when explicitly
performed by the application. The random-pairs synchronization method is in the
middle between these two extremes and is implemented by random choosing two
simulated target cores to synchronize. If the two target cores are out of sync, the
simulator stalls the core that runs ahead waiting for the slowest core to catch up.

We evaluated these synchronization schemes in terms of accuracy and simulation
speed [2] and have determined that lax synchronization can result in a very high
simulation error. In Sniper, we therefore use barrier synchronization with a 100 ns
quantum to minimize error.

7.3 Sniper Components

Sniper [2] is the combination of three main components. In Fig. 7.1, we provide an
illustration of how these pieces fit together (Note that the simulation infrastructure
itself is not shown). The first is the functional execution model which provides
the dynamic instruction stream of the running application. It is this stream of
instructions that Sniper uses to determine the timing effects of a particular microar-
chitecture.

The second component is the timing simulation component. The timing models
interact with the dynamic instruction stream to determine the rate of forward
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Fig. 7.1 A high-level diagram of the functional and timing components used in Sniper. There are
a number of different options to connect an instruction trace to Sniper such as (a) compiling Sniper
as a pintool, (b) using stored SIFT traces in a single- or multi-program configuration, (c) using a
number of single- or multi-threaded Pin program with the dynamic bidirectional SIFT protocol, or
(d) using PinPlay to replay a number of application pinballs. When using (a), the core and memory
timing models are integrated into a single Pin tool. When using (b), (c) or (d), the timing models
operate in their own process, while the Pin tool attaches to the application directly. Orange arrows
represent communication inside of a process, while blue arrows are bidirectional UNIX pipes that
connect the Pin process to the Sniper timing process

progress that is being made. The Sniper Multi-Core Simulator brings together
the interval core timing model (as outlined in Sect. 7.2.1) with a number of
detailed microarchitecture models, such as the Pentium M (Dothan) style branch
predictor [14], and instruction and data caches, to model timing in the core and
memory subsystems. The data cache models support a large number of configuration
options, such as private, and shared last-level caches, multiple DRAM controllers (to
support NUMA architectures) and hardware prefetchers. Some timing models are
simulated at a higher level of abstraction to speed up simulation. The interconnects
between the cache components are modeled as queues, with the total latency
consisting of two parts: a minimum access latency and a queuing delay that increases
as the link’s bandwidth is consumed.

The third component in the Sniper multi-core simulator is the event simulation
infrastructure that keeps track of events in the system and keeps them in sync with
one another. This component is largely based on the Graphite simulator [11]. For
more details on the parallel simulation aspect of Sniper, see Sect. 7.2.2.
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The functional front-end provides a dynamic instruction stream of instructions
to the timing models of the simulator. However, Sniper is not a functional-first
simulator, but most closely resembles a functional-directed simulator with timing-
feedback [1], where the timing models can cause back-pressure on the functional
models to control the rate of progress.

Traditionally, Sniper was used as a standalone Pin [10] tool. One drawback of
these earlier versions of Sniper was that it was restricted to simulating just a single
application at a time, preventing Sniper from running multi-program or multiple
multi-threaded workloads. To address this issue, we developed the SIFT protocol.
SIFT, the Sniper instruction trace format, is an optionally compressed binary format
that contains instruction information along with dynamic execution results of the
instruction execution (branch taken information, conditionally executed instruction
information, and other details). The SIFT protocol can serve as either a file format
for single-threaded traces or as a bi-directional communication channel between the
functional trace generator and the timing simulator.

As an alternative to stored SIFT traces, Sniper also supports replaying single-
threaded PinPlay [12] application snapshots (pinballs) via the SIFT protocol.
Pinballs are deterministic execution snapshots where dynamic execution traces are
replayed by executing the application directly instead of storing a dynamic trace of
the running application. All communication with the operation system (such as file
I/O and system calls) and the results of relevant instructions (such as CPUID and
RDTSC) are captured and played back to the application to enforce deterministic
application replay. One added benefit when using pinballs as an application file
trace is the small file sizes that can be produced. The size of the pinballs generated
are related to the size of the application binary and input data instead of the total
number of dynamic instructions that are executed in the trace. This can significantly
reduce the size of the files stored.

Apart from single-threaded traces, Sniper supports multiple single-threaded
applications (from any combination of inputs, either stored SIFT traces, pinballs
or single-threaded applications), as well as more complex configurations, such as
multi-threaded applications and multiple processes that can consist of multiple
threads themselves. In addition, we support MPI applications that use shared-
memory to communicate, and we do this through virtual-to-physical mapping of
the native application addresses. Additionally, applications that use OpenMP inside
MPI ranks are also supported.

To support these configurations, especially for multi-threaded applications, a bi-
directional SIFT channel is required as the channel enforces timing back-pressure
making sure that the functional execution of each thread across all processes are kept
in sync relative to one another. The SIFT channels are also used to communicate
events such as thread spawning, important system calls (such as OS/pthread
synchronization requests) and other out-of-band requests, such as reading or writing
to memory.
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7.4 Software Analysis and Visualization

To aid in hardware/software co-optimization we have developed application- and
hardware-level software analysis extensions in Sniper to help the application
designers better understand the interactions of their software with modern or future
hardware designs.

Through an extension of interval analysis [6], the CPI stack for out-of-order
cores [5] was developed to provide a new level of insight into the causes of
performance loss when running an application in an out-of-order processor. The
CPI stack shows the cycles lost due to different events in the system, such as LLC
cache misses or branch misprediction penalties. As described in Sect. 7.2.1, each
stall event triggers a corresponding penalty from the interval simulation model,
which corresponds directly to each of the CPI stack components. The base CPI
component measures the obtainable performance according to the amount of ILP
that can be extracted from the application by the reorder buffer.

A straight-forward extension to the single-threaded CPI stack is a multi-threaded
version, normalized by percent of run time, where the causes of slowdown for each
thread can be seen easily. In the example in Fig. 7.2, we present both a homogeneous
application along with a homogeneous microarchitecture. Though the use of CPI
stacks, we can determine that the longer run time of the first processor is caused
by waiting for a barrier to return. The barrier waiting time is about equal to the
extra time that the second processor needs to access the memory hierarchy on
the other processor. Changing this initial allocation policy, therefore, could reduce
the off-socket latency and improve the performance of the application. CPI stacks
allows a software developer to directly determine the causes of performance loss
and therefore helps the developer to choose where to optimize the software next.

While applications with a few cores are relatively easy to reason about in this
form of multi-threaded CPI stack, it becomes more difficult to understand how

Fig. 7.2 A CPI stack of the homogeneous multi-threaded application, SPLASH-2, FFT (left) on
a homogeneous architecture (right). Because of NUMA effects, where the initial data has been
allocated to the L3 of the first processor, threads from another processor need to wait for the data
to be transferred from the remote socket
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Fig. 7.3 Sniper visualization output of the CPI stack components of an application in detail. The
website view is dynamic (one can zoom into regions of interest) and automatically generated from
the Sniper simulation

Fig. 7.4 Sniper visualization output of the power stack components of an application in detail

hundreds or more CPI stacks come together to contribute to overall run time. A more
insightful way to view this data is to view how the CPI stacks change over time,
not for a single thread, but for all threads in aggregate. In this way, we can better
understand how the phase behavior affects the progress of the application for a given
time slice.

With the visualization features recently added to version 4.1 of Sniper, this
ability to view how the aggregate CPI stacks for the entire system changes over
time was added. Examples of these features are shown in Figs. 7.3 and 7.4 which
shows an example CPI stack from an HPC application, and the corresponding
power breakdown over time for each component in the system, respectively. Each
simulation can now be augmented with an automatically generated website that
allows the user to dynamically change the view of the data at hand: by zooming and
providing more or less detail as needed. In addition to CPI stack data, power stacks
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can also be created using this aggregate view to provide similar insights. Since
version 3.2 of Sniper, we have integrated McPAT and demonstrated that accurate
power and energy numbers can be obtained with higher-level core models [9].

Although CPI stack visualization provides the necessary data to broadly optimize
a particular benchmark, knowing where to look inside of a benchmark to find
and correct the problem can be a bit more difficult. Most programmers would
prefer to understand the breakdown of each CPI component on a per-function basis
instead of being broken-down on a per time quantum basis. As a potential solution,
we integrated per-function statistics that go beyond what a typical performance
analysis tool can provide, even when using performance counters. Examples of
data items that can now be exposed are individual CPI stack components on a per-
function basis. Additional data that can be more useful in bandwidth-constrained
environments include monitoring cache-line use efficiency.

One recently developed application visualization method is called the Roofline
model [15]. The Roofline model represents the intersection of two lines, the
maximum bandwidth that can be exposed by a given machine, as well as the peak
floating-point performance of that machine. By plotting applications on the Roofline
model, one can determine how close your application is to the maximum available
bandwidth and computational resources. These two resources tend to be the largest
limiting factors for many compute-intensive applications like those found in HPC-
style workloads. In Fig. 7.5 we show an example of an automatically generated
Roofline model in Sniper. In the Roofline plot, each function of an application under
study can be easily evaluated to measure how it performs compared to the maximum
performance of a given simulated microarchitecture.

Fig. 7.5 Sniper visualization output of the Roofline model. Using the theoretical maximum
bandwidth and floating-point operations per second, we can compare the performance of each
function to determine how close we are to the theoretical maximum performance of that function
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7.5 Accuracy and Validation

When viewing the results of a software application simulation run or hardware
update to improve performance, it is important to understand how well the underly-
ing tools compare to current, state of the art technologies that they are attempting
to model. When developing the Sniper simulator, we wanted to focus on accuracy
through white-box modeling of the different components of the system. We
therefore used the mechanistic interval simulation technique which allows one to
configure the system based on micro-architectural parameters. This provides the
benefit of being able to update the system configuration for potential future design
points. We then combined this model along with the other essential components of
a modern processor to form the Sniper Multi-Core Simulator.

Sniper has been validated against real hardware models. In a recent paper [2]
we have demonstrated good accuracy compared to real hardware. On the Splash-2
benchmarks [16], we achieve an average absolute error of 25 %, with relative scaling
numbers performing even better, tracking the hardware results closely. In addition,
we demonstrated the accuracy of Sniper combined with McPAT through validation
against real hardware; we reported average power prediction errors of 8.3 %, for a
set of SPEC OMP2001 benchmarks [9].

7.6 Conclusion

The increasing complexity of software (with multi-threaded applications and ever-
increasing data set sizes) coupled with increasingly complex microarchitectures
(with 60C cores in the Xeon Phi and larger LLC sizes), simulation of new software
on next generation hardware is becoming increasingly difficult to perform in a
timely manner. Coupling traditional performance simulations with energy and
power simulations only exacerbates the problems moving forward.

By providing a detailed understanding of both the hardware and software, and
allowing for a number of accuracy and simulation performance trade-offs, we show
that Sniper can be a useful complement to traditional performance analysis tools for
evaluating and optimizing software for high-performance multi-core and many-core
systems.
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Chapter 8
A Comparison of Trace Compression Methods
for Massively Parallel Applications in Context
of the SIOX Project

Alvaro Aguilera, Holger Mickler, Julian Kunkel, Michaela Zimmer,
Marc Wiedemann, and Ralph Müller-Pfefferkorn

Abstract The analysis and optimization of HPC I/O is a daunting task that is
still unaddressed at large. The SIOX project aims to help HPC users and system
administrators alike to improve the I/O performance of the applications by gaining
awareness of the I/O operations taking place on the system and launching corrective
measures when a problem is encountered. Given the size of modern HPC clusters
and the corresponding amount of I/O they generate, the SIOX project faces a
series of scalability challenges that need to be resolved. Beyond presenting the
architecture and functioning of the SIOX system, this paper examines one of its
biggest challenges, namely the transmission and management of large amount
of event-based I/O trace information as well as the benefits the use of the trace
compression techniques like ScalaTrace and C3G may convey.

8.1 Introduction

The main objective of the Scalable I/O for Extreme Performance (SIOX) project [9]
is to obtain an overview of all I/O calls occurring on a given High Performance Com-
puting (HPC) system, and use this information to conduct run time optimizations of
the I/O subsystem. This requires among other things, the continuous and undelayed
transmission of trace data from the SIOX clients to the SIOX servers. One of the
biggest challenges the project faces to ensure the scalability of its architecture, is
to adequately reduce the size of this data flow, allowing the SIOX servers to keep
pace with large numbers of clients sending them data. If we consider the fact that
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Fig. 8.1 SIOX’s data collection and optimization workflow

most HPC applications follow the Single Program, Multiple Data (SPMD) paradigm
[7] and that because of this the I/O operations are mostly symmetrical among the
nodes executing a parallel application, it is reasonable to expect that the use of
compression algorithms at appropriately chosen points of SIOX’s data collection
and optimization workflow (see Fig. 8.1) can significantly reduce the amount of data
that needs to be transmitted to the servers without losing information content.

In this paper we begin by offering a general overview of the SIOX architecture in
Sect. 8.2. This is followed in Sect. 8.3 by introducing the problem of I/O tracing by
means of a concrete example at the German Climate Computing Center (DKRZ). In
Sect. 8.4, we characterize the type of tracing information that is relevant for SIOX.
This is done by examining public trace data originated from scientific applications
during production use. In Sect. 8.5, we present the functioning of two specialized
compression methods: ScalaTrace and the C3G library. These two methods are
used to compress the previously presented trace data and the results are presented
in Sect. 8.6. We conclude the paper in Sect. 8.7 by giving our thoughts about the
usability of these trace data compression methods in SIOX as well as by hinting at
further research in this topic.

8.2 SIOX Architecture

Let’s dive straight into the architecture and workflow of the SIOX system, which
is depicted in Fig. 8.1. The whole system consists of five main software parts: the
monitoring library, the daemons, the transaction system, the data warehouse, and
the knowledge base. It is designed to allow the system to propose optimization calls
at runtime using an automatic, iterative improvement procedure.

At first, SIOX needs some data to work with. This data is gathered both by
means of the sioxlib and SIOX daemons that run on every node taking part in
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carrying out I/O operations. While a SIOX daemon collects statistics-like data
(e.g. network throughput, CPU utilization), the applications or libraries augmented
by sioxlib yield I/O events (e.g. “PID 4857 starts POSIX read() operation on fd
5 at 1373028159.784392937UTC”). Augmenting arbitrary programs is realized
by using wrapper libraries which are interposed between the program and the
original library that contains the actual functionality (e.g. read() inside libc). The
interpositioning can be realized at link-time (using ld’s wrap capabilities) or at run-
time using library preloading. SIOX contains a wrapper generator which can be used
to facilitate creating wrapper libraries for both flavors.

All data from instrumented programs is funneled into the node-local SIOX
daemon which is responsible for forwarding data to the transaction system where
it is stored for further analysis.

The data warehouse holds consolidated information that is produced by extract,
transform, and load (ETL) processes from the data in the transaction system.

The knowledge base contains the knowledge about aggregated information
of the data warehouse, the hardware topology (i.e. network connections) and
characteristics, and the parameters for optimization (e.g. “A drop in I/O throughput
was observed for packets smaller than 4 MiB; therefore aggregation of smaller
packets to 4 MiB packets is proposed by the SIOX system”).

8.2.1 Inner Structure

Now that the main components of the SIOX system have been described, we can
take a closer look on how the augmented processes interact with their daemon. The
data captured by sioxlib will be assembled into so-called activities and handed over
to an activity multiplexer (AMux, see Fig. 8.2). The AMux as well as almost all
inner parts are laid out as plug-ins so that it is easy to extend the system.

When receiving activities from sioxlib, the AMux feeds them to all plug-ins that
have subscribed. Here, the activity forwarding plug-in must always be present –
the AMux of the node-local SIOX daemon subscribes to it for further processing;
at this point being aware of all the activities of the other augmented processes on
this node. Additionally, the SIOX daemon is equipped with a statistics multiplexer
(SMux) which handles the aforementioned node performance data.

Each SIOX daemon itself has an AMux with activity forwarder, which makes
it possible to create a cascading hierarchy of daemons. This helps reducing the
pressure on the transaction system, e.g. by compressing the oftentimes very similar
data from different nodes.

The reasoner module finally has a twofold task: At runtime, it receives the reports
of the various anomaly detection plug-ins within its scope (process, node or system-
wide) and compiles an assessment of every subsystem’s health status from them.
Neighbouring reasoners will communicate periodically to relate local to global
health, and use this data to adjust SIOX’s monitoring (e.g., throttle granularity at the
forwarders or deactivate analysis plug-ins) or issue warnings to the administrator.
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Fig. 8.2 Interactions between process and daemon plug-ins

Upon job completion, the reasoner will compile a human-readable performance
report from the data gathered, indicating problems and possible improvements to
the user.

8.3 The Data Deluge of Constant Monitoring

The SIOX system aims to monitor the parallel I/O in the data center on a 24/7
basis, extracting knowledge through the use of machine learning techniques, and
ultimately using it to optimize I/O. The monitoring and knowledge cycle is illus-
trated in Fig. 8.1 and further described in [9]. Unfortunately, constant monitoring
leads to an unbearable volume of data. Let’s exemplify this issue for the Blizzard
supercomputer hosted by the DKRZ. Delivering a maximum throughput of 30 GB/s
on its 9 PB storage, it consists of 12 I/O servers controlling about 7,000 hard disks.
Assuming a program writes 1 GB of data to a file; if we monitor all block accesses on
the hard disks in a granularity of 4 KB blocks, this would lead to roughly 250,000
events. If each monitored event has a space requirement of about 20 bytes, then
about 5 MB of data must be recorded – corresponding to an overhead of 0.5 %.

While this volume seems insignificant and bearable, it accounts neither for the
subsequent reading or re-writing of data, nor for the multitude of software layers
involved in the operations. This analysis would look different if we begin with the
observed I/O rate: The I/O servers at DKRZ process in average about 10 GB/s of
data, thus an additional stream of 50 MB/s would be needed to store the trace data.
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Over a year this would accumulate to about 1.6 PB or 17 % of the total storage.
One might argue that nobody should record individual block accesses on disk but
just higher-level I/O. Unfortunately, mainly small files are stored on the file system
and many applications also access data in small chunks. Therefore, we consider
the space overhead of 0.5 % a conservative estimate when monitoring I/O across
software layers on clients and servers.

8.4 Characterization of I/O Traces

In general, the I/O trace logs to be sent to the SIOX servers are event-based and
have the form of a list in which the logged I/O functions of different instrumented
layers appear together with the parameters that were used to call them. The
format of this list must preserve the causal relations of the entries, so that for
instance the parent-child correspondence between different function calls can be
reconstructed. Additionally, a timestamp is added to each logged function call to
allow a subsequent temporal correlation, and since a spatial correlation is also
required, context information such as node-id, process number, user-id, etc. is also
transmitted along the trace entries.

Parallel applications running on HPC systems normally exhibit three distinct
phases of I/O: an input phase when the application is started and it reads the data
required to do the computations, the periodically occurring writing of checkpointing
data to resume the application in case its execution is aborted, and finally the output
phase in which the results are written to disk. Some classes of applications also
periodically flush their internal state for later inspection. Examples of this class
are climate applications, which record the temporal and spatial changes of oceanic,
atmospheric and land climate over decade frequencies. This also involves particle
transfer from one layer the other, varying the I/O load. The state flushing behavior
is quite similar to regular checkpointing and thus needs no special treatment.

Even though the characteristics of an I/O trace will obviously depend on the
application producing it, as well as on its use case, we can examine previously
published I/O traces produced during real runs of scientific applications to get an
idea of the magnitude and features to expect in the traces to be produced by SIOX.
One such example are the I/O traces published in 2009 by the Scalable I/O project
at Sandia National Laboratories [8]. These trace files are listed in Table 8.1 and
they contain the I/O calls that were realized during production runs of the parallel
applications Alegra, CTH and S3D.

The rest of this section briefly describes the general features exhibited by these
traces. A more detailed analysis of them is given by their creators in [5].
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Table 8.1 I/O trace files

Application Description Cores Running time Size (MB)

Alegra Shock simulator 2,744 10 min 15 s 169

Alegra 5,830 15 min 43 s 352

CTH Shock simulator 3,360 3 h 29 min 23 s 829

S3D Navier-Stokes solver 6,400 7 min 51 s 210

S3D 6,400 14 min 35 s 99

S3D 1,024 5 min 17 s 15
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Fig. 8.3 Entry lengths found in the I/O traces from Sandia Labs

8.4.1 Average Entry Length and Their Temporal Distribution

Insight about the expected average and maximal size of the entries composing the
I/O traces is important when dimensioning the SIOX system since they help us make
a first estimation about the bandwidth that will be required to transport the tracing
information to the servers as well as the space needed for its storage. A histogram
showing the different entry sizes inside the analyzed traces is shown in Fig. 8.3.
The size of individual entries in these traces varied between 57 and 265 bytes with
an arithmetic mean of 83 bytes. The biggest entries corresponded to the open()
function calls due to the ASCII paths contained in them.

Now that a plausible size range for the trace events has been determined, we are
interested in estimating the rate at which they will arrive at the SIOX servers. The
temporal distribution of the I/O calls is characterized by intervals of intense activity
corresponding to one of the three I/O phases we’ve already mentioned, followed
by some idle time in which the nodes are busy computing or communicating. This
behavior can be clearly seen in Fig. 8.4, where the number of I/O calls occurring
in the traces is visualized over time. Compared to others, Alegra performs most
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Table 8.2 Estimation of the network load due to trace information

Calls/s/core Size (ø) Load/core (ø) Load/core (max.)

Application Cores (max.) (bytes) (KB/s) (KB/s)

Alegra 2,744 32.18 81 2.54 8.04

Alegra 5,830 12.28 81 0.97 3.07

CTH 3,300 88.87 80 6.94 22.21

S3D MPI I/O 6,400 11.05 85 0.91 2.76

S3D pNetCDF 1,024 11.08 80 0.86 2.77

S3D Fortran 6,400 11.24 94 1.03 2.81

operations during the input and output phase while the others are dominated by
their periodical I/O. The observation has lead to several optimizations such as the
concept of burst buffers, which absorb the write intense load quickly and drain it
during the compute phase of applications [3]. With these estimations about the size
and frequency of the tracing events, we can derive the network bandwidth required
to transmit the tracing events as shown in Table 8.2. Note that this estimation
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corresponds only to the I/O events at the POSIX layer and the SIOX system will
certainly require more bandwidth than that when logging is turned on for more
layers than just POSIX.

8.5 Data Compression Methods

The basic principle behind all data compression methods is the substitution of
repeated symbols or groups thereof by shorter ones that act as synonyms. This is
done in a way that the most frequently found symbols get replaced by the shortest
synonyms available. Because of this, conventional data compression methods con-
sist of at least two components: a model responsible for calculating the probability
distribution of the input symbols, and an encoder which uses this probability
distribution to optimally assign the synonyms. While the optimal encoding problem
has already been solved (e.g. using Huffman Coding, Arithmetic Coding, etc.),
determining an optimal model for generic input data is proven to be unsolvable [4].
Consequently, advanced input models could improve compression rate and thus
there is a need for specialized data compression methods depending on the data
domain.

8.5.1 Specialized Compression Methods for Trace Data

In contrast to general purpose data compression methods like the well known
Lempel-Ziv family [10] or those based on Prediction by Partial Matching (PPM) [1]
that accommodate generic input data by sacrificing compression ratio, there exist
compression algorithms that specialize in the compression of data for an specific
domain. Such algorithms take advantage of a priori knowledge about the structure
of the input data to achieve much better compression ratios or performance than
those obtained with the former compression methods. In the next sections we will
examine the use of two specialized methods for the compression of distributed
event-based traces, namely ScalaTrace and C3G, as well as their applicability in
the SIOX project.

8.5.2 ScalaTrace

ScalaTrace [6] is a library written in C/CCC that can be used to create, transmit,
compress and replay MPI traces. It was created together by the Lawrence Livermore
National Laboratory (LLNL) and the North Carolina State University (NCSU).
In this paper we will only focus on the compression capabilities of the library.
ScalaTrace compresses event-based traces located on distributed nodes and outputs
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a single unified trace file. This happens in two steps: the first one is called intranode
compression and happens every time an event is appended to the local trace of a
computing node. The second one is referred to as internode compression and it
merges and compresses all the traces produced by the previous step. This latter
procedure is launched after program termination.

The compressed traces produced by ScalaTrace consist of a list of Regular
Section Descriptors (RSDs), with each RSD having the following form:

< repetitions, event1, . . . , eventn >

The repetitions field is the number of times the events 1 to n are repeated, and
the events themselves represent either the MPI functions that were called or another
RSDs (e.g. to describe nested loops).

8.5.2.1 Intranode Compression

ScalaTrace’s algorithm for intranode compression uses a backward search to look
for repeated patterns every time a new event is appended to the trace, as illustrated
in Fig. 8.5. Since this approach would have a prohibitive time complexity of O.n2/,
the range of the search is limited to a window of a user-defined size m. This reduces
the complexity of ScalaTrace’s intranode compression to a manageable O.n � m/,
where the window size can be optimized depending on the scenario.

In best-case scenarios, the intranode compression is able to create a mostly
constant-length representation of a repeating function call pattern independently of
the number of times the pattern occurs. However, if the timing information of each
function call is to be kept (as required by projects like SIOX), it will augment the
RSD in an incompressible manner as shown in Fig. 8.6. This would lead to a linear
growth in the size of the RSD whose magnitude is determined by the repetition
number � the number of events in the RSD.

8.5.2.2 Internode Compression

The algorithm for internode compression unifies the separate traces located
on different computing nodes into one single trace. ScalaTrace launches the
internode compression as soon as the involved application terminates (call to
MPI_Finalize()). When this happens, half of the nodes receive the local traces
of the other half, merge them with their own local traces, subdivide into two groups
and repeat the process until only one node is left with the complete trace. This
binary unification process is shown in Fig. 8.7 and detailed in [6]. The merge of
two traces has a worst-case time complexity of O.n2/ assuming each of them has n

elements.
As with the intranode compression, the use of this approach in projects like

SIOX, demands the RSDs to be enriched with spatial information about the events



100 A. Aguilera et al.

Fig. 8.5 Illustration of ScalaTrace’s intranode compression algorithm for m D 12

Fig. 8.6 Intranote compression with added timing information

(e.g. node-id, process number, etc.), which again reduces the compressibility of the
RSD. ScalaTrace supports the separate compression of the spatial information to
help mitigate this effect.
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Fig. 8.7 Illustration of
ScalaTrace’s internode
compression

8.5.3 The C3G Library

C3G is a small CCC library that allows the creation and manipulation of com-
pressed complete call graphs. The idea originated in [2] and the library itself is being
developed at the Center for Information Services and High Performance Computing
(ZIH) of the TU Dresden with the aim of replacing the central data structure of the
Vampir software.1 Current versions of the library support input traces in OTF(2)
format. However, given its simplicity, the library is easily extended to support any
input format desired.

8.5.3.1 Compressed Complete Call Graphs

A Complete Call Graph (CCG), as defined in [2], is a type of call graph whose
nodes describe all function calls, their hierarchy as well as the parameters used
when issuing the call. The CCG of a single process takes the form of a partially
balanced call tree, where the balancing is achieved by limiting its branching factor.
Parallel applications possess one call tree per participating process or thread. The
CCG corresponding to the trace shown in Fig. 8.5 is illustrated in Fig. 8.8a. This call
graph has two prominent features:

1http://www.vampir.eu

http://www.vampir.eu
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a

b

Fig. 8.8 Complete call graph for one process and branching factor 3. (a) Uncompressed. (b)
Compressed

1. The function calls are represented by the tree’s leaves.
2. There is a significant number of nodes between the root and the leaves.

In the case of this particular example, function calls are atomic I/O operations
that don’t trigger any suboperation and that is why they are shown as leave nodes.
The additional nodes between the root node and the leaves are inserted on demand to
enforce the branching factor and play an important role when optimizing searches.
An node with n children contains the following 2n C 1 timing fields (d1 : : : d2nC1):

1 start time of the first child call
n durations of the children’s calls
n � 1 delays between the end and begin of subsequent child calls
1 completion time of the last child call

The compression of a CCG consists of the substitution of repeated nodes (or
trees) by pointers to a single instance of the node (or tree). This can be accomplished
in O.log n/ using conventional tree search algorithms. Figure 8.8b shows the
Compressed Complete Call Graph (cCCG) for the previous example.
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a b

dc

e f

Fig. 8.9 Compression of three different traces using ScalaTrace and C3G. (a) S3D pNetCDF. (b)
S3D pNetCDF (log.). (c) Alegra. (d) Alegra (log.). (e) CTH. (f) CTH (log.)

8.6 Evaluating the Compression of ScalaTrace and C3G

The compression of the two libraries was compared using the I/O traces presented
in Sect. 8.4. We were interested to see how the size of the final traces evolves as
we increase the number of computing nodes producing trace data. This represents
one of the main scalability challenges SIOX is facing as explained in Sect. 8.3. For
simplicity, we omitted the function parameters when reading the trace data. The
window size of ScalaTrace was set to 500 and C3G’s branching factor to 30 since
bigger values did not improve the compression ratios of these traces.

The results of this experiment are shown in Fig. 8.9a–f, where the x axis is given
in logarithmic scale and represents the number of nodes running the application.
The red line in the graphics represents the size of the uncompressed trace file used
containing the trace information in ASCII format. The green and magenta lines show
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the sizes of the output traces compressed using the ScalaTrace algorithm with and
without timing information respectively. Finally, the size of the traces compressed
with the C3G library is presented in blue. Since the C3G library does not have output
capability so far, the sizes presented here refer to the amount of memory occupied
by the cCCG structure residing in main memory.

From the results we can clearly see that the best compression is achieved using
ScalaTrace without timing information. In this case the trace size stayed almost
constant as the number of clients increased and the small growth it experienced
was mainly due to the increased spatial information added with each increment
in the number of clients. Once we added the incompressible timing information,
the optimality of ScalaTrace’s compression was compromised and in most cases
C3G performed better than ScalaTrace. Using ScalaTrace with timing, the achieved
compression ratios2 varied between 5.5 and 7.0. The C3G library showed a bigger
variation range going from 7 for the S3D pNetCDF trace up to 24 for the Alegra
trace. The difference in ratios between ScalaTrace and C3G can be explained by
the lack of a search window limiting C3G’s searches as well as the advantage when
comparing the binary space requirements of the cCCG against the ASCII output of
ScalaTrace. Figs. 8.9b, d, f present the data using double logarithmic axes to better
appreciate the differences between the compression approaches.

8.7 Conclusion and Outlook

In this paper we briefly introduced the problematic of system-wide I/O tracing
on HPC systems, characterized the kind of data that has to be managed in such
scenario, and examined two specialized compression libraries that might help the
SIOX project tackle the problem. Both ScalaTrace and C3G offered promising
results that could greatly improve the scalability of SIOX by reducing the size of
its traces by an order of magnitude without compromising information content.
While ScalaTrace is mainly designed to create a compact trace log that can be
used later on to replay the execution of an application, the focus of C3G is to
create a compact memory structure to analyze the data. Insofar, the use of one
library does not necessarily exclude the other. Further work could be aimed at the
integration of the best aspects of both libraries to create a highly scalable framework
to manage distributed event-based traces. In our particular case of SIOX, however,
the use of either approach would require among other things the modification of the
post-mortem components to make them work online. Additionally, the performance
overhead incurred by the compression should be tuned to stay within tolerable
limits, both regarding the CPU cycles, as well as the transmission delay. It remains

2The compression ratio is defined as the uncompressed size divided by the compressed size of the
trace [2].
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to be seen to which extent the use of trace compression can be achieved within the
time frame of the SIOX project.
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Chapter 9
PAMDA: Performance Assessment Using
MAQAO Toolset and Differential Analysis

Zakaria Bendifallah, William Jalby, José Noudohouenou,
Emmanuel Oseret, Vincent Palomares, and Andres Charif Rubial

Abstract Identifying performance bottlenecks in applications is crucial to improve
their efficiency, but it might be difficult to precisely assess their impact on per-
formance: in particular, two performance problems can interact making it difficult
to isolate and therefore to correct them. We propose PAMDA, a methodology
to single out performance problems through hierarchical bottlenecks detection.
Important potential performance issues are classified in a ‘Performance Breakdown
Tree’ which is used to drive our iterative analysis cycle, prioritizing the most
relevant problems. Our system relies on MAQAO toolset and code’s differential
analysis. While MAQAO is a performance analysis and optimization tool suite, the
differential analysis approach, which is implemented through DECAN tool, consists
in quantifying performance changes when applying controlled transformations to
the target code. Our focus will be on performance issues raised by processors and
memory sub-systems in multicore architectures. We will demonstrate the approach
on loops extracted from real life HPC applications.

9.1 Introduction

The recent progress of high performance architectures generate new challenges for
performance evaluation tools: more complex processors (larger vectors, manycores),
more complex memory systems (multiple memory levels including NUMA, mul-
tiple level prefetch mechanisms), more complex systems (large increase in core
counts up to several hundred of thousands now) are all key issues which need to
be simultaneously optimized to get a decent performance level.

To work properly, all of these mechanisms require specific properties from
the target code. For example, good exploitation of memory hierarchies relies
on good spatial and temporal locality within the target code. The lack of such
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properties induces variable performance penalties: such combinations (mismatch
between hardware and software) are denoted performance pathologies. Most of
them have been identified (cf. Table 9.1) and efficient workarounds are well known.
The current generation of performance tools (TAU [21], PerfExpert [7], VTune
[12], Acumem [1], Scalasca [10], Vampir [19]) is excellent at detecting such
pathologies although some are fairly specialized: for instance, Scalasca/Vampir
mainly addresses MPI/OpenMP issues, requiring the combined use of several tools

Table 9.1 A few typical performance pathologies

Pathologies Issues Workarounds

ADD/MUL balance ADD/MUL parallel execution (of
fused multiply add unit)
underused

Loop fusion, code rewriting e.g. Use
distributivity

Non pipelined
execution units

Presence of non pipelined
instructions: div and sqrt

Loop hoisting, rewriting code to use
other instructions e.g. x86: div and sqrt

Vectorization Unvectorized loop Use another compiler, check option
driving vectorization, use pragmas to
help compiler, manual source rewriting

Complex control
flow graph in
innermost loops

Prevents vectorization Loop hoisting or code specialization

Unaligned memory
access

Presence of vector-unaligned
load/store instructions

Data padding, use pragma and/or
attributes to force the compiler

Bad spatial locality
and/or non stride 1

Loss of bandwidth and cache
space

Rearrange data structures or loop
interchange

Bad temporal
locality

Loss of perf. due to avoidable
capacity misses

Loop blocking or data restructuring

4K aliasing Unneeded serialization of
memory accesses

Adding offset during allocation, data
padding

Associativity
conflict

Loss of performance due to
avoidable conflict misses

Loop distribution, rearrange data
structures

False sharing Loss of bandwidth due to
coherence traffic and higher
latency access

Data padding or rearrange data
structures

Cache leaking Loss of bandwidth and cache
space due to poor physical-virtual
mapping

Use bigger pages, blocking

Load unbalance Loss of parallel perf. due to
waiting nodes

Balance work among threads or
remove unnecessary lock

Bad affinity Loss of parallel perf. due to
conflict for shared resources

Use numactl to pin threads on physical
CPUs

High number of
memory streams

Too many streams for hardware
prefetcher or conflict miss issues

See conflict misses

Lack of loop
unrolling

Significant loop overhead, lack of
instruction-level parallelism

Try different unrolling factors, unroll
and jam for loops nest, try classical
affinities (compact, scatter, etc.)
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to get a global overview of all of the performance pathologies present in an
application.

Most of the current tools do not provide any direct insight on the potential cost
of a pathology. Furthermore, the user has no idea about what the potential benefit of
optimizing his code to fix a given pathology is. These two points prevent him from
focusing on the right issue. For example, let us consider a program containing two
hot routines A and B, respectively consuming 40 and 20 % of the total execution
time. Let us further assume that the potential achievable performance gain on A
is 10 % while on B it is up to 60 %. The overall performance impact on B is up
to 60 % * 20 % D 12 % while on routine A, it is at best 10 % * 40 % D 4 %. As a
consequence, it is preferable to focus on routine B. Additionally, the user has no clue
of what the current performance level is, compared with the best one achievable, i.e.
he may not know when optimizing is worth the investment.

In general, the situation is even worse since a simple loop may simultaneously
exhibit several performance pathologies. In such cases, most of the tools cited above
give no hint to the user of which ones are dominant and really worth fixing. For
instance, a loop can suffer from both a high miss rate and the presence of costly
Floating-Point (FP) operations such as div/sqrt: trying to improve the hit rate does
not improve the performance if the dominant bottleneck is the div/sqrt operations.

In this paper, we present a coherent set of tools (MicroTools [6], CQA [4, 14,
17], DECAN [13], MTL [8]) to address this lack of user’s guidance in the tedious
and difficult task of program optimization. These tools are integrated in a unified
environment (PAMDA) to help the user to quickly identify performance pathologies
and to assess their cost and impact on the global performance. Depending upon
which performance pathologies is to be fixed, different techniques (static analysis,
value profiling, dynamic analysis) appear to be more appropriate and give a more
accurate answer: for example, detecting a badly strided access is immediate through
value tracing of array addresses while the same task is extremely tedious when only
using static analysis or hardware counters. Anyway, such array access tracing should
only be triggered when necessary due to its high cost. In this paper, we focus on
providing performance insight at the core level and parallel OpenMP structures.
Our analysis can be combined with MPI analysis provided by tools such as Scalasca,
TAU or Vampir.

Through the integrated environment PAMDA, we aim at providing the following
contributions:

• Getting a global hierarchical view of performance pathologies/bottlenecks.
• Getting an estimate of the impact of a given performance pathology taking into

account all other present pathologies.
• Demonstrating that different specialized tools can be used for pathology detec-

tion and analysis.
• Performing a hierarchical exploration of bottlenecks according to their cost: the

more precise but expensive tools are only used on specific well chosen cases.
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Section 9.2 presents a motivating example in detail. Section 9.3 details the
various key components of PAMDA while Sect. 9.4 describes the combined use
of these different tools. Section 9.5 describes some experimental use of PAMDA.
Section 9.6 gives an overview of related works and the added value of the PAMDA
system. Finally, Sect. 9.7 gives conclusions and future directions for improvement.

9.2 Motivating Example

Figure 9.1 presents the source code of one of the hottest loops extracted from
POLARIS(MD) [20]: a molecular dynamics application developed at CEA DSV.
POLARIS(MD) is a multiscale code based on Newton equations: it has been
successfully used to model Factor Xa involved in thrombosis.

This loop simultaneously presents a few interesting potential pathologies:

• Variable loop trip count.
• Fairly complex loop body which might lead to inefficient code generation by the

compiler.
• Presence of div/sqrt operations.
• Strided and indirect access to arrays (scatter/gather type).
• Multiple simultaneous reduction operations leading to inter iteration

dependencies.

Fig. 9.1 A Fortran source code sample and its main performance pathologies highlighted in pink
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All these pathologies can be directly identified by simple analysis of the source
code. The major difficulty is to assess the cost of each of them and therefore to
decide which should be worked on.

A first value profiling of the loop iteration count reveals that the trip count is
widely varying between 1 and 2,000. However the amount of time spent in the small
(less than 150 iterations) loop trip count instances remains limited to less than 10 %.
The remaining interval of loop trip counts is further divided into 10 deciles and one
representative instance is selected for each of them. Further timings on analyzing
loop trip count impact indicate that the average cost per iteration globally remains
constant independently from the trip count. Therefore, the data size variation seems
to have no impact on performance: the same optimization techniques should apply
for instances having a loop trip count between 150 and 2,000.

The static analyzer (see Fig. 9.3) provides us with the following key information:
in the original version, neither Load/Store (LS) operations nor FP ones are
vectorized. It further indicates that due to the presence of div/sqrt operations, the FP
operations are the main bottlenecks. It also points out that even if the FP operations
were vectorized, the bottlenecks due to div/sqrt operations would remain. However
this information has to be taken with caution since the static analyzer assumes that
all data accesses are ideal, i.e. performed from L1.

Dynamic analysis using code variants generated by DECAN is presented in
Fig. 9.2. Initially, the original code (in dark blue bars) shows that FP operations
(see FP versus LS DECAN variants) clearly are the dominating bottlenecks.
Furthermore, the good match between CQA and REF clearly indicates that analysis

Fig. 9.2 Comparing static estimates obtained by CQA with dynamic measurements performed
on different code variants generated by DECAN of both of the original and vectorized versions:
REF is the reference binary loop (no binary modifications introduced by DECAN), FP (resp. LS)
is the DECAN binary loop variant in which all of the Load/Store (resp. FP) instructions have
been suppressed, REF_NSD (resp. FP_NSD) is the DECAN binary loop variant in which only FP
div and sqrt instructions (resp. all of the Load/Store and FP div and sqrt instructions) have been
suppressed. The y-axis represents the number of cycles per source iteration: lower is better
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made by CQA is valid and pertinent. Optimizing this loop is simply obtained by
inserting the SIMD pragma ‘!DEC$ SIMD’, which forces the compiler to vectorize
FP operations. However, the compiler does not vectorize loads and stores due to
the presence of strides and indirect access. Rerunning DECAN variants of this
optimized version (see light blue bars in Fig. 9.2) shows that even for this optimized
version FP operations still remain the key bottleneck (comparison between LS
and FP). Therefore, there is no point in optimizing data access, the only hope of
optimization lies in improving div/sqrt operations: for example SP instead of DP.
Unfortunately, such a change would alter the numerical stability of the code and
cannot be used.

The major lesson to be drawn from this case study is that a combined use of
CQA and DECAN allows us to quickly identify the optimization to be performed
and also gives us a clear halt on tackling other pathologies without impacting overall
performance.

9.3 Ingredients: Main Tool Set Components

Performance assessment issues require robust methodologies and tools. Therefore,
in order to systematically provide programmers with a performance pathology
hierarchy and its related costs, the current work considers two toolsets: MicroTools,
for microbenchmarking the architecture, and the MAQAO [4, 14, 17] framework,
which is a performance analysis and optimization tool suite.

MAQAO’s goal is to analyze binary codes and to provide application developers
with reports to optimize their code. The tool mixes both static (code quality
evaluation) and dynamic (profiling, characterization) analyses based on the ability
to reconstruct low level (basic blocks, instructions, etc.) and high level structures
such as functions and loops. Another MAQAO key feature is its extensibility. Users
easily write plugins thanks to an embedded scripting language (Lua), which allows
fast prototyping of new MAQAO-tools.

From MAQAO, PAMDA extensively uses three tools including the Code Quality
Analyzer tool (CQA) exposed in Sect. 9.3.2, the Differential Analysis framework
(DECAN) presented in Sect. 9.3.3, and finally the Memory Tracing Library (MTL)
in Sect. 9.3.4. We briefly present the main contribution of each of these tools to
PAMDA and then describe their major characteristics.

9.3.1 MicroTools: Microbenchmarking the Architecture

Microbenchmarking [3, 16, 23] is an essential tool to investigate the real potential
of a given architecture: more precisely, in PAMDA, microbenchmarking is first
used to determine both FP units performance and achievable peak bandwidth of
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various hardware components such as cache/RAM levels, and second to estimate
the potential cost of various pathologies (unaligned access, 4K aliasing, high miss
rate, etc.).

For achieving these goals, PAMDA relies on MicroTools, consisting of
two main components: MicroCreator tool automatically generates a set of
benchmark programs, while MicroLauncher framework executes them in a
stable and closed environment.

9.3.2 CQA: Code Quality Analyzer

In PAMDA, the CQA framework is used first for providing a performance target
under ideal data access conditions (all operands are supposed to be in L1),
second for providing a bottleneck hierarchy analysis between the various hardware
components of the core (FP units, load/store ports, etc.) and third for detecting
some performance pathologies (presence of inter iterations dependencies, div/sqrt
operations) which are worth investigating via specialised DECAN variants. The
ideal assumption (all operands in L1) is essential for CPU bound codes such as
the POLARIS(MD) loop studied in the previous section. For memory bound loops,
it needs to be complemented with a dynamic analysis.

CQA is a static analysis tool directly dealing with binary code. It extracts key
characteristics, and detects potential inefficiencies. It provides users with general
code metrics such as details on basic loop characteristics, the number of instructions,
�ops, and used XMM/YMM vector registers. CQA also allows users to obtain
more in-depth information on the loop execution on the target architecture. For
example, the tool provides a reliable front-end pipeline execution report, which
is an estimated number of cycles spent during each front-end pipeline stage. The
tool gives the same type of report for the back-end. Finally, CQA provides a cycle
estimate of loop body performance under ideal conditions: all operands in L1, no
branches and infinite loop count (steady state behavior).

CQA is able to report both low and high level metrics/reports (Fig. 9.3). For
example, when a loop is not fully vectorized, the high level report provides a
potential speedup (if all instructions were vectorized) and corresponding hints
(compiler flags and source transformations). For the same loop, some low level
metrics/reports show the breakdown of vectorization ratios per instruction type
(loads, stores, ADDs, etc.) giving the user a more in-depth view of the issue.

CQA supports Intel 64 micro-architectures from Core 2 to Ivy Bridge.

9.3.3 DECAN: Differential Analysis

In PAMDA, DECAN is used for quantitatively assessing performance pathologies
impact. The general idea is fairly simple: a given pathology is associated with
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Fig. 9.3 CQA output

the presence of a given subset of instructions, for example div/sqrt operations,
then DECAN generate a binary version of the loop in which the corresponding
instructions are deleted or properly modified. This altered binary is measured and
compared with the original unmodified version.

The resulting binary does not in general preserve semantics, i.e. numerical values
generated with DECAN variants are not identical to the original ones. For our
performance analysis objective, this is not a critical issue but for the subsequent
program execution, control behavior might be altered. To avoid such problems, the
original loop is systematically replayed after the execution of the modified binary in
order to restore correct memory values.

DECAN starts by using static analysis on the target loop produced by CQA.
The goal is to select instruction subsets to be transformed, as the selection process
is driven by the desired type of behavior to highlight. Afterward, instructions
are carefully transformed in a manner that minimizes unwanted side effects that
may disturb the observations, such as changes in the code layout and instruction
dependencies. It also inserts some monitoring probes to be able to accurately
compare the modified part of the code with the original one. Also, and as stated
earlier, DECAN is built on top of the MAQAO framework, hence, it uses the
MAQAO disassembler/patcher to forward modifications on the instructions.

Using DECAN’s features, PAMDA generates altered binaries, thereby splitting
performance problems between CPU, memory, and OpenMP issues. Table 9.2
presents a range of loop variants used within the methodology discussed in Sect. 9.4.
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Table 9.2 DECAN variants and transformations

Type of SSE/AVX

Variant instructions involved Transformation

LS All arithmetic instructions Instruction deleted

FP All memory instructions Instruction deleted

DL1 All memory instructions Instruction operands modified to

target a unique address

NODIV All division instructions Instruction deleted

NORED All reduction instructions Instruction deleted

S2L All store instructions Converted into load instructions

NO_STORE All store instructions Instructions are deleted

9.3.4 MTL: Memory Tracing Library

Within PAMDA, MTL provides specific analysis of pathologies related to data
access patterns in particular stride values, alignment characteristics, data sharing
issues in multi-threaded codes, etc. MTL works by tracing addresses and by
generating compact representations of data access patterns. MTL is not limited
to innermost loops but directly deals with multiple nested loops, allowing to
detect more subtle pathologies: for example, row major instead of column major
accesses for a Fortran array (stored column wise) are automatically detected. To
perform these analysis, MTL uses the MAQAO Instrumentation Language (MIL)
[9]. This language makes the development of program analysis tools based on
static binary instrumentation easier. In fact, MIL is a specific language for object-
oriented and event-directed domains to perform binary instrumentation at a high
level of abstraction using structural objects (functions, loops, etc.), events, filters,
and probes.

9.4 Recipe: PAMDA Tool Chain

Individual tools are the building blocks that PAMDA glue together through a
set of scripts (cf. all the diagrams). These scripts are under development but
most of the principles have been already evaluated. Figure 9.4 presents PAMDA
overall organization, which includes application profiling, cost analysis, structural
checks, CPU and memory subsystems evaluation, and finally OpenMP evaluation
for parallel applications. The current section describes PAMDA’s components.
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Fig. 9.4 PAMDA overview

9.4.1 Hotspot Identification

To limit the processing cost, we focus on the most time consuming portions
of the code. Our target loops are defined as the loops with a cumulated exe-
cution time exceeding 80 % of the total execution time. It should be noted that
with such an aggregated measurement, we can end up with a large number of
loops with small individual contributions. Such target loops are identified using
MAQAO sampling.

9.4.2 Performance Overview

The PAMDA approach divides performance bottlenecks into two main categories
(Fig. 9.5): memory subsystem and CPU. Then, their respective contribution to the
overall execution time is quantified using DECAN transformations LS (assessing
memory subsystem performance) and DL1 (assessing CPU subsystem perfor-
mance). The ratio of these contributions reveals whether the loop is memory or/and
CPU bound. Ideally, pipeline and out of order mechanisms insure that cycles spent
for memory accesses and for arithmetic operations perfectly overlap: as a result,
the time taken by REF should be the maximum time taken either by LS or DL1.
In such a case, only the slower component needs optimizing. If the time taken
by LS and DL1 is similar, the workload is said to be balanced: optimizing both
components is necessary to improve the loop’s performance. Finally, when cycles
taken by the memory and CPU components are poorly covered by one another
(unsaturation), optimizing either of them can be sufficient to gain overall
performance.
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Fig. 9.5 Performance
investigation overview. ‘?’
represents a condition and ‘T’
means the condition is True,
otherwise it is False (‘F’)

Fig. 9.6 Detecting structural
issues. ‘Iter_count’ illustrates
iteration counts from the
main loop

9.4.3 Loop Structure Check

Loop structure issues can be detrimental to performance, and may be detected
using DECAN’s loop trip counting feature. Indeed, in the case of unrolling or
vectorization, peel and tail scalar codes may have to be generated to cover for
remaining iterations. If too much time is spent in these peel and tail codes, this
might indicate the unroll factor is too high with respect to the source loop iteration
count. To detect such cases, loop trip counts for each version (peel/tail/main) are
determined, and we check whether the main loop is processing at least 90 % of the
source code iterations (Fig. 9.6).
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In some cases, the number of iterations per loop instance may not be large
enough to fully benefit from unrolling or vectorization. This is easily highlighted
by comparing the dynamic execution time of the DL1 DECAN variant with the
CQA estimate, as the latter assume an infinite trip count. The difficulty to optimize
such loops is exacerbated when the loop trip counts are not constant.

9.4.4 CPU Evaluation

Besides data accesses, CPU performance may be limited by other pathologies such
as long dependency chains (deps), reductions (RED), scalar instructions or long
latency floating point operations (div): these pathologies can be detected through
the combined use of CQA and DECAN (Fig. 9.7). The front-end can also slow down
the execution by failing to provide the back-end with micro-operations at a sufficient
rate. Comparing their contribution to L1 performance (DL1) is a cost-effective way
to identify such problems. Finally, CQA can provide us with estimations of the
effect of vectorizing a loop. We precisely quantify CPU related issues, enabling
us to reliably assess potential for optimizations such as getting rid of divisions,
suppressing dependencies or vectorizing. This information can guide the user’s
optimization decisions.

Fig. 9.7 DL1 subtree: CPU
performance evaluation.
Except DL1 and NORED,
others metrics used by
conditioners are extracted
from CQA static analysis
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Table 9.3 Various
vector/scalar load bandwidths
estimation in bytes per cycle
for each memory level (Sandy
Bridge E5-2680)

Instruction L1 L2 L3 RAM

AVX vmovaps 31.74 15.05 10.81 5.10
vmovups 31.73 14.96 10.81 5.10

SSE movaps 30.72 18.16 10.80 5.14
movups 29.53 17.07 10.79 5.23
movsd 15.67 11.55 10.61 5.36
movss 7.91 6.65 6.39 4.97

9.4.5 Bandwidth Measurement

Data access rates from different cache levels/RAM highly depend on several factors,
such as the instructions used or the access pattern.

To this end, we generate microkernels loading data in an ideal stream case,
testing different configurations for load operations, with or without various software
prefetch instructions, and/or splitting the accessed data in streams accessed in
parallel. We also force misaligned addressing for vmovups and movups. Finally,
we use Microlaunch to run these benchmarks for each level of the memory
hierarchy.

On our target architecture, 128-bit SSE load instructions could roughly achieve
the same bandwidth as 256-bit AVX (Table 9.3) throughout the whole memory
hierarchy. Except for movss, all instructions could attain similar bandwidths in
L3 and RAM: only the type of instruction really matters for data accesses from L1
or L2, and data alignment is not as relevant as it once was.

9.4.6 Memory Evaluation

Memory performance can be quite complex to evaluate. We use MTL to find
the different access patterns and strides for each memory group (as defined by
the grouping analysis [13]). Memory accesses typically are more efficient when
targeting contiguous bytes, while discontiguous accesses reduce the spatial locality
of data. The worst case scenario is having large and unpredictable strides, as
hardware prefetchers may not be able to function properly. MTL also provides the
data reuse distance, allowing the temporal locality evaluation of groups (Fig. 9.8).

Once potential performance caveats are identified, we can use DECAN transfor-
mation del-group to single out offending groups and quantify their contribution
to the LS variant global time. Comparing the bandwidth measured for each group
with the bandwidth obtained in ideal conditions in the bandwidth measurement
phase may then provide us with an upper limit on achievable performance.
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Fig. 9.8 LS subtree: Memory performance evaluation

Fig. 9.9 OpenMP performance tree: STD represents the standard deviation between threads while
the OVH branch stands for OpenMP Overhead evaluation

9.4.7 OpenMP Evaluation

Some issues are specific to parallel programs using OpenMP (Fig. 9.9). The
standard deviation (STD) of the execution time for each thread points out workload
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imbalances. It is particularly important that no thread takes significantly longer than
others to compute its working set, as loop barriers may then highly penalizing stalls.
Another issue is excessive cache coherency traffic generated by store operations
on shared data. Transformation S2L converts all stores to loads: we can quantify
coherency penalties by comparing S2L with REF. Furthermore, the OpenMP
Overhead (OVH) module of MAQAO is able to measure the portion of time spent
in OpenMP routines, providing an OpenMP overhead metric.

9.5 Experimental Results

We applied our methodology on two scientific applications: PN and RTM. The
analysis processes and test results are presented below.

9.5.1 PN

PN is an OpenMP/MPI kernel used at CEA (French Department of Energy).
Hot loops are memory bound and are ideal to stress tools dedicated to memory
optimizations.

All tests are performed on a two-socket Sandy-Bridge machine, composed of two
Intel E5-2680 processors with eight physical cores each.

The profiling done on the initial MPI version of the code presents four loops
consuming more than 8 % of the global execution time each. Because of a lack of
space, we only study the first one, but the three other loops have a similar behavior.

According to the methodology, the next step consists in gaining more insight
on the loop characteristics through performance overview, hence, the LS and DL1
DECAN variants are used. The corresponding results shown in Fig. 9.10 indicate
a strong domination of data accesses, with the LS curve being well over the DL1
curve and matching the REF one. Consequently, the investigation follows the LS
subtree.

In order to get more information on data accesses, we use MTL. Six instruction
groups are detected but only three of them contain relevant SSE instructions dealing
with FP arrays. Experimental results in Table 9.4 illustrates MTL output, which
uses i1, i2, and i3 to represent loop indices leading to conclude the considered
piece of code contains at least a triple-nested loop. Table 9.4 analysis indicate a
simple access pattern for group G1 (stride 1) and, for groups G6 and G5, more
complicated patterns which need to be optimized. As a result, in this step we are able
to characterize our memory accesses with precision. Though, it leaves us with two
accesses and no possibility to know which one is the most important. At this point,
we return to our notion of ROI provided through Differential analysis and apply
the DECAN del-group transformation for each of the three selected groups. The
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Fig. 9.10 Streams analysis on PN. The REF curve correspond to performance of the original code.
The LS (resp. DL1) curve corresponds to the DECAN variant where all FP instructions have been
suppressed (resp. all data accesses are forced to come out of L1)

Table 9.4 PN MTL results
for the three most relevant
instruction groups. i1, i2, and
i3 represent loop indices

Group Instructions Pattern

G1 Load (Double) 8*i1

G6 Load (Double) 8*i1C217600*i2C1088*i3

G5 Store (Double) 8*i1C218688*i2C1088*i3

Fig. 9.11 Group cost analysis on PN. Each group curve corresponds to performance of the loop
while the target group is deleted. The original code performance (REF) is used as reference

del-group results shown in Fig. 9.11 clearly indicate that G6 is the most costly
group by far: it should be our first optimization target.

With the finding of the delinquent instruction group, the analysis phase comes
to its end. The next logical step is to try and optimize the targeted memory access.
Fortunately, the information given by MTL reveals an interesting pathology. The
access pattern of the instruction of interest has a big stride in the innermost loop
(1088*i3) and a small one in the outermost loop (8*i1). In order to diminish the
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access penalty we perform loop interchange between the two loops, which results
in a considerable performance gain at the loop level with a speedup of 7.7 � and
consequently a speedup of 1.4 � on the overall performance of the application.

9.5.2 RTM

Reverse Time Migration (RTM) [5] is a standard algorithm used for geophysical
prospection. The code used in this study is an industrial implementation of the RTM
algorithm by the oil & gas company TOTAL.

Our RTM code operates on a regular 3D grid. More than 90 % of the application
execution time is spent in two functions, Inner and Damping, which execute
similar codes on two different parts of the domain: Inner is devoted to the core of
the domain while Damping is used on the skin of the domain. Standard domain
decomposition techniques are used to spread the workload on multicore target
machines. Since the grid is uniform, load balancing can be easily tuned by using
rectangular sub-domain decomposition and by properly adjusting the sub-domain
size.

All experiments are done on a single socket machine, which contains a quad-core
Intel Xeon E3-1240 processor with a cache hierarchy of 32 KB (L1), 256 KB (L2)
and 8 MB (shared L3).

Step 1: The original version of the code is provided with a default non-optimized
blocking. The first analysis on the OpenMP subtree reveals an imbalanced work
sharing. A second analysis done at the level of the performance overview subtree
shows that the code is highly bounded by memory operations. In order to fix
this, we focus on the blocking strategy. As a result it turns out that the default
block size is responsible for both the load imbalance between threads and the bad
memory behavior. We can then select a strategy which provides a good balance
at the work sharing level as well as a good trade-off between the LS and FP
streams. However, we note that, to obtain an optimal strategy, a more dedicated
tool should be used.

Step 2: The second step of the analysis consists of going further in the OpenMP
subtree and checking how the RTM code performs in term of coherency. As
explained earlier, the structure of the code induces a non-negligible coherency
traffic. Figure 9.12 shows experimental results after applying the S2L trans-
formation on RTM. While the x-axis details loops respectively identified from
Inner and Damping functions, the y-axis represents speedups over the original
loops. The results indicate a negligible gain due to canceling potential coherency
modifiers and a minimal gain, observed on two loops, due to a complete
deletion of the stores. Consequently, we can conclude that maintaining the overall
coherency state remains negligible, therefore, there would be no point in going
further in this direction.
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Fig. 9.12 Evaluation of the cost of cache coherence protocol. The S2L variants show similar
performance as their corresponding reference versions. The NO_STORE variants show similar
performances also, except for two loops which present a relatively non negligible store cost

9.6 Related Work

Improving an application’s efficiency requires identifying performance problems
through measurement and analysis but assessing bottlenecks impact on performance
is much harder. To achieve that, most researchers consider a qualitative approach.
TAU [21] represents a parallel performance system that addresses diverse require-
ments for performance observation and analysis. Although performance evaluation
issues require robust methodologies and tools, TAU only offers support to the
performance analysis in various ways, including instrumentation, profiling and trace
measurements.

Tools such as Intel VTune [12], GNU profiler (Gprof) [11], Oprofile [15],
MemSpy [18], VAMPIR [19], and Scalasca [10] provide considerable insight on
the application’s profile. In term of methodology Scalasca, for instance, proposes
an incremental performance-analysis procedure that integrates runtime summaries
based on event tracing. While these tools help hardware and software engineers
find performance pathologies, significant manual performance tuning remain for
software improvements, for example, selecting instructions in particular part of a
program.

PerfExpert [7], HPCToolkit [2], and AutoSCOPE [22] pinpoint performance
bottlenecks using performance monitoring events. Furthermore, while PerfExpert
suggests performance optimizations, AutoSCOPE extends PerfExpert by auto-
matically determining appropriate source-code optimizations and compiler flags.
Contrary to PAMDA, the considered tools do not provide a methodology presenting
the cost related to the identified bottleneck. ThreadSpotter also helps a programmer
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by presenting a list of high level advice without addressing return on investment
issues: what to do in case of multiple bottlenecks? How much do bottlenecks cost?

Interestingly in [24,25], the authors present an automated system that fingerprints
the pathological patterns of the hardware performance events and identifies the
pathologies in applications, allowing programmers to reap the architectural insights.
The proposed technique is close to the current work and includes pathology
description through microbenchmarks as well as pathology identification using a
decision tree. However, in order to evaluate usual performance pathologies, PAMDA
additionally integrates pathology cost analysis.

The above survey indicates that performance evaluation requires a robust
methodology, but traditional methods do not help much with coping with the overall
hardware complexity and with guiding the optimization effort. Also, previous
works focus on performance bottleneck identification providing optimization
advice without providing potential gains. The previous factors motivate to consider
PAMDA as the only methodology combining both qualitative and quantitative
approaches to drive the optimization process.

9.7 Conclusion and Future Work

Application performance analysis is a constantly evolving art. The rapid changes in
the hardware mixed with new coding paradigms force analysis tools to handle as
many pathologies as possible. This can only be achieved at the expense of usability.
At the end, application developers work with extremely powerful tools but they have
to face significant differences and difficulties to use them.

This paper illustrates the usefulness of performance assessment combining static
analysis, value profiling and dynamic analysis. The proposed tool chain, PAMDA,
helps the user to quickly identify performance pathologies and assess their cost and
impact on the global performance.

The goal in using PAMDA is to make sure that the right effort is spent at each step
of the analysis and on the right part of the code. Furthermore, we try to create some
synergy between different tools by combining them in a unified environment. We
provide some case studies to illustrate the overall analysis and optimization process.
Experimental results clearly demonstrate PAMDA’s benefits.

Obviously, the provided methodology is far from being finished. Our constant
challenge is to keep improving it as well as working towards full automation. We
also aim to enlarge it for other kind of paradigms through the integration of analyses
provided by complementary tools such as Scalasca, Vampir and TAU. Additionally,
refining optimization investigations is crucial in order to make it more user-friendly.
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