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1 Introduction

The physical modelization of biomolecules requires a careful choice of the scale
of work depending on the problem we wish to study. All-atom simulations allow
an accurate description of the system but within small time scales and severe size
limitations subject to the available computational power. Coarse-grained models
gather groups of atoms in point particles simplifying greatly the system but keeping
the essence of the important interactions in the problem of study. At this level, the
free energy landscape (FEL) of the system appears as a powerful tool to extract
relevant information from a system with a high number of degrees of freedom.

We propose here a coarse-grained model for DNA-protein interaction problem.
Transcription from DNA to RNA appears as a complex problem that requires
regulation via DNA-protein interaction. Our model considers a particle as a generic
protein that diffuses along the DNA chain with an interaction term that is coupled
to local openings (bubbles). By applying an algorithm we are able to extract the
FEL of the system and identify possible binding sites as those states with lower free
energy. We focus mainly on the so called Transcription Starting Site (TSS), where
the RNA-polymerase binds before transcription starts.
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2 The Model

We base our model on a modified Peyrard–Bishop–Dauxois (PBD) model [1, 4].
PBD model reduces the complexity of DNA to a set of N point particles that
represent the base pairs of the chain. The only degrees of freedom are the
coordinates fyng which stand for the distance between each base pair. The total
Hamiltonian of the model accounts for two phenomenological interactions, the
intra-base and inter-base potentials,
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where pn D m dyn=dt is the linear momentum of the n-th base pair and m

is its reduced mass. The potential W.yn; yn�1/ describes the inter-base pair or
stacking interactions and its model by an anharmonic interaction. The intra-base
pair potential V.yn/ takes the form of a Morse potential (usual in chemical bonds)
with an entropic barrier to account for solvent interaction.

Inspired in the one-dimensional diffusion of DNA-binding proteins, we include
now a new degree of freedom to the traditional PBD model, a Brownian particle that
slides along the DNA chain [5]. This particle interacts with the DNA through the
phenomenological potential
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which depends on the particle position Xp and the DNA instantaneous configuration
fyngN

nD1. This potential is just a sum of gaussian wells, each centered at the n-th base
(na) and whose amplitude depends on the opening of the base pair. The hyperbolic
tangent term just saturates the interaction strength. In this sense, the particle interacts
more intensely with open regions of the sequence. In addition, the base pairs are also
affected by the particle, so that they are more likely to be opened if the particle is
within its range of interaction.

3 Methods

Langevin dynamics simulations: The model is simulated by integrating numerically
N C 1 Langevin equations (N base pair plus the particle) using an stochastic
Runge–Kutta algorithm. Each of the DNA sequences we study is simulated in
five different realizations each one covering 40 �s, with a preheating time of
1 �s, reasonable times from a biological perspective. The simulation temperature
is T D 290 K. We use periodic boundary conditions for the diffusing particle and
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fixed boundary conditions for the sequence, adding 10 CG base pair clamps of at
the end of each sequence to provide “hard-boundaries” and avoid end effects.

Analysis: We aim to find the most important conformational states in the
dynamics in order to obtain a biological interpretation. To do so we apply an
algorithm that allows us to obtain the Free Energy Landscape (FEL) of the
system [3] so that the most relevant states can be identified and quantified. We
start applying Principal Component Analysis to the trajectories to reduce greatly the
dimensionality of the system but keeping most of the information. Next we translate
the five reduced trajectories and the particle trajectory into a Conformational
Markov Network (CMN). This coarse-grained picture is constructed by discretizing
the conformational space explored by the system in order to define the nodes
(microstates) of the network. Next, the links between the nodes are set according
to the jumps between the microstates in the trajectories. In this sense, nodes are
weighted (Pi ), and the links directional and weighted (Pij). In order to define
the conformational states of the system, we split the CMN into its basins of
attraction, i.e., regions in which the probability fluxes (Pij ) converge to a common
state (attractor) of the network. To do so we apply the stochastic steepest descent
algorithm, developed in [3]. Each basin corresponds to a coarse-grained macrostate
of the system. From the basin network we can build FEL of the system represented
as a hierarchical tree diagram (dendrogram), by assigning to each node a free energy
according to its weight Fi =kT D log PW � log Pi , where PW is the weight of the
weightiest node. This magnitude is used as a control parameter, increasing it step
by step from the weightiest node, so that new nodes arise, together with their links.
Most relevant states can now be identified as those more populated and, in addition,
the topology of the network informs us about possible transitions between them.

Study of cyanobacterial genome: In this work, we focus on a concrete genome,
analyzing promoters from Anabaena PCC 7120 [2]. Cyanobacteria constitute an
interesting model as they show differentiated cells (heterocysts) that need several
transcriptional changes to develop. In addition, several well characterized promoters
are available so that our computational results can be clearly compared with
experimental works.

4 Results

We show now provisional results of some cyanobacteria promoters we have
analyzed so far. TSS finding and base-pair opening: We analyze promoter sequences
comprising between 100 and 200 base-pairs. Figure 1 shows the base-pair opening
profile for each promoter sequence with the TSS site highlighted. We find in any
case a peak located around the TSS site. This means that, on average, this site is
likely to be open, this is, bubbles form with high probability around the TSS.

Promoters with different characteristics have been chosen for the analysis.
As Fig. 1 shows, some of the analyzed sequences contain a single TSS while others
more than one. Even though in every case all the TSSs can be identified with
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Fig. 1 Mean base-pair position for each of the six analyzed promoters. We can find a peak around
the tss in every case meaning that bubbles are likely to be formed around this site

this representation, it is interesting to extract further information from the model.
Specifically, different TSSs may show different activity levels depending on the
amount of RNA they produce. We refer to this as the strength of each promoter.
The relative height of the peaks in Fig. 1 may be a qualitative indicative of this
behavior, but a quantitative study motivates the use of the algorithm described in
Sect. 3. Another remarkable point in Fig. 1 is the appearance of multiple peaks apart
from the ones marked as TSS, revealing the possibility of additional binding sites
or just the existence of “false positives”. Further discussion can be also done in this
point, as the relative strength of the TSS compared to other possible binding sites
found in our model can be studied and related with the known biological behavior.

FEL analysis of highlighted promoter: We choose the most interesting promoter
we have analyzed so far in order to illustrate the analysis method exposed above.
The interest of ntcA promoters lies in the fact that it displays more than one TSS and
so it is subject to further biological interpretation. Figure 2 shows the free energy
dendrogram for the ntcA promoter, with the set of basins and their accumulated
weight corresponding to its TSS sites highlighted. In addition we draw the typical
macrostate of the branch.

Promoter ntcA contains three different TSSs. The interpretation of the free
energy dendrogram matches with the biological studies of ntcA. TSS3 and TSS1 are
just transcribed when there is no nitrogen in the environment. TSS3 is a stronger site,
as transcription last for a longer time and the site is still active when the heterocyst
is mature. On the other hand, TSS1 is just active transitorily. TSS2 is a constitutive
site, so it is always transcribed. This may explain the relative importance found in
our analysis.



Free Energy Landscape Analysis of Mesoscopic Model for Finding DNA-. . . 85

Fig. 2 Free energy dendrogram for ntcA. The TSSs appear as populated branches with relative
occupations that inform about the importance of each site

5 Conclusions and Further Work

In this work we use a previously developed mesoscopic model for DNA-protein
interaction to analyze the genome of a cyanobacteria organism. The goal is to
identify and characterize the TSSs of each of the analyzed promoters. This site
is observed to show a larger mean opening due to the formation of bubbles. This
behavior is greatly influenced by the dynamics of the generic protein. In order
to analyze quantitatively the sequences we apply an algorithm that translates the
trajectories onto a complex network so that the free energy dendrogram can be
obtained. From this analysis, most relevant sites in the dynamics can be found and
related to the biological behavior of each promoter.

This work is to be continued in two main directions. First, further biological
interpretation can should be done from the basin networks and the free energy
dendrogram. Each of the chosen genes show different regulation features that may
be related to the physical parameters found in our analysis. Additionally, more
promoters are to be simulated and analyzed in order to complete the work and
validate our model and method.
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