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Part I
Joint CRM-Imperial College Workshop

in Complex Systems

Editors

Álvaro Corral
Anna Deluca
Francesc Font-Clos
Pilar Guerrero
Francesco A. Massucci

Preface

In April 2013, during six intensive days, the Centre de Recerca Matemàtica hosted
the organization of the Joint CRM-Imperial College School and Workshop in
Complex Systems, which involved more than 100 participants from all over the
world, coming from disciplines as diverse as biology, computer science, or social
science (in addition, of course, to physics and mathematics).

Kim Christensen, Henrik Jensen, and Gunnar Pruessner, all three from Imperial
College, London, presented highly motivating lectures on percolation theory,
dynamics of complex systems, and stochastic processes. Marián Boguñá and
Mariángeles Serrano, both from the University of Barcelona, talked enthusiastically
about the structure of complex networks, and Antonio Turiel, from the Consejo
Superior de Investigaciones Científicas, gave deep coverage of multifractals and
their applications. Stefan Thurner, from the Medical University of Vienna, was the
keynote speaker of an evening session addressed to the general public, which took
place at the Institut d’Estudis Catalans, dealing with subtle extensions of the concept
of entropy for non-equilibrium systems.

After the school, a workshop allowed not only participants of the school but
also external attendants to present their research topics. We had more than 30 talks
and lectures, including topics such as non-linear dynamics, chemical reactions,
metabolic networks, climatology, economics, linguistics, statistics of music, cancer
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evolution, game theory, earthquakes, neuroscience, Bayesian inference, etc. It is
a sample from these communications what constitutes our contribution to the
present volume of the subseries Research Perspectives CRM Barcelona, included
in Birkhäuser’s series Trends in Mathematics. These seventeen Extended Abstracts
present, in an agile way, some new results not yet available through the standard
publication channels.

The atmosphere of the school and the workshop was very pleasant, and the
participants enjoyed not only the lectures but also the discussions during the coffee
breaks and lunches (food itself was a subject of debate), as well as the social
activities. A consensus emerged that the event should be repeated in the next future,
and the organizers will do their best to make that possible. That could be an occasion
to improve upon some mistakes that participants generously forgave in this first
edition.

No doubt that without the altruistic participation of the lecturers no school would
have been possible. A key role was played by the co-organizer Tomás Alarcón. The
CRM administration, where Nuria Hernández found herself over-saturated by the
success of applications in the last days before the beginning of the school, gave also
an important support. Finally, we appreciate the encouragement of Joaquim Bruna
as well as the financial contribution from AGAUR.

Barcelona, Catalonia, Spain Álvaro Corral
Dresden, Germany Anna Deluca
Barcelona, Catalonia, Spain Francesc Font-Clos
London, UK Pilar Guerrero
Tarragona, Catalonia, Spain Francesco A. Massucci



Mesoscopic Models for the Overstretching
Transition of DNA

Ana Elisa Bergues Pupo, Alessandro Fiasconaro, and Fernando Falo

1 Introduction

One of the most intriguing and only partially clear phenomenon concerning the
mechanical properties of DNA is the so-called overstretching transition [2, 7]. It
consists in a sudden elongation of the DNA chain of about 70 % more than the native
length (B-DNA), when a force around 70 pN is applied. Three main mechanisms
have been proposed to explain this transition. Two of them involve breaking of
the bonds that hold the two strands together: peeling from nicks or free ends of
the chain; and inside-strand separation (M-DNA) [10–12]. In the third mechanism,
the base pairs remain bonded (S-DNA), and the overstretching appears from a
cooperative chain unwinding [2, 3, 6–8]. In this work we present two mesoscopic
descriptions of the DNA overstretching transition. The first one, is a model based
in a discrete version of a worm-like chain (WLC) model with a modification of
the elastic interaction. This model does not enter into the microscopic details of
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4 A.E.B. Pupo et al.

the mechanisms responsible of the transition (Model 1). In the second one, we
extend the above approach to describe the mechanism of force induced melting in
the framework of the Peyrard–Bishop–Dauxois (PBD) model [4] (Model 2).

2 Model and Methods

2.1 Model 1: Double Well Potential

DNA molecule is modeled by a three-dimensional polymeric chain of N monomers
connected by springs [5]. The potential energy V associated to the model is

V D Vel.li / C Vbend.�i /:

Here, Vel.li / D 1
2
ke

PN
iD1.li �l0/

2.li �l1/
2Ckl li is a non-harmonic elastic potential

energy, where ke is the elastic parameter, ri is the position of the i -th particle, li D
jriC1 � ri j is the distance between the monomers i C 1 and i , and l0 and l1 are
the minima of the potential representing approximately the equilibrium distance
between adjacent monomers, in the B-DNA and the overstretched state, respectively.
And Vbend.�i / D 1

2
kb

PN
iD1Œ1 � cos.�i � �0/� is the bending energy, where kb is the

bending elastic constant, and �i is the angle between the link liC1 and the link li .
Then the overdamped equations of motion are

Pri D �r i Vel.li / � r i Vben.�i / �
p

2kBT �.t/; (1)

where � is the damping, T is the temperature and �.t/ represents a Gaussian
uncorrelated noise. Two forces, F and �F , are added on the first and last monomer
respectively in order to stretch the chain.

2.2 Model 2: Melting Mechanism – PBD

The same description of the previous model is kept but the energy potential is taken
harmonic: Vel.li / D 1

2
ke

PN
iD1.li � l0/

2. We add an additional variable di that
describes the strand separation at each monomer site [1]. In order to couple the
melting and the stretching, the equilibrium separation between monomers has been
modeled as dependent on di , i.e., l0 D l0.di ; diC1/: if di < Qd1, the equilibrium
distance l0 D Ql1 (B-DNA state), while for di > Qd2, l0 D Ql2 (overstretched DNA).
Between these two values, a linear dependence is used:

l0.di ; diC1/ D Ql1 C 1

2

Ql2 � Ql1
Qd2 � Qd1

Œ.diC1 � Qd1/ C .di � Qd1/�:
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The dynamics of di is modeled in the framework of the standard PBD (see [4]
and a modified version in [9]). The potential energy associated to this variable
is composed of two terms: the on-site potential V.di / and the staking interaction
W.di ; di�1/. They are given by

V.di/ D D.e�˛di � 1/2 C Ge�.di �y0/2=b; (2)

W.di ; di�1/ D 1

2
kW .1 C �e�ı.di Cdi�1//.di � di�1/

2: (3)

The first term in the sum of (2) is the Morse potential, where the D is the energy
needed to dissociate the strands at each monomer site, and ˛ is the width of the well.
The second term is a Gaussian barrier, whose height, width and position are given
by G, b and y0 respectively [9]. The non linear term of (3) changes the effective
coupling constant from kw.1 C �/ to kw when one of the bps is displaced far away
from its equilibrium position. The parameter ı sets the scale length for this behavior.
To induce melting in the system, we assume that D decreases when increasing the
stretching force as shown in the inset of Fig. 1.
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Fig. 1 Left panel: Scheme of the model (variable di is only valid for model 2). Upper right panel:
A harmonic elastic interaction at different forces for model 1. Lower right panel: Morse potential
used in model 2. Inset: dependence of D on F
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3 Results and Discussion

3.1 Model 1: Double Well Potential

The left panel of Fig. 2 shows the dependence of the length on the stretching force.
There is a good agreement between experimental data and simulation. The full
line represents the prediction of the WLC model. A good correspondence is also
observed at low force values. When the simulation time is decreased, a symmetric
hysteresis is obtained, due to the slow convergence to equilibrium states (right
panel of Fig. 2). This behavior has been observed in out equilibrium experiments
on overstretching transition. Different stretching curves are obtained when changing
parameter kl (not shown). This parameter can be related to those whose magnitudes
affect the transition as the salt concentration, pH or temperature.

3.2 Model 2: Melting Mechanism (PBD)

The dependence of the length on stretching force when melting mechanism is
included is shown in the left panel of Fig. 3 for G D 0 and � D 0. The experimental
data is also well reproduced with this model. The results for different simulation
times are shown in the right panel of Fig. 3. Different to the previous description, an
asymmetric hysteresis is obtained with the inclusion of the melting. This happens
because during the backward experiment the closing kinetics of the bases is much
slower than that one of the opening. A more realistic description is obtained by
including the solvent interaction barrier in the Morse potential (G ¤ 0).
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Fig. 2 Left panel: DNA length vs force for model 1. Right panel: Hysteresis in the forward and
backward curves when decreasing the simulation time
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Fig. 3 Left panel: DNA length vs applied force F for model 2 with G D 0 and � D 0. Inset: the
mean displacement Ndi as a function of the monomer index i for three selected values of the force.
Right panel: Hysteresis in the forward and backward curves when decreasing the simulation time

We have presented two mesoscopic descriptions that allow to study the over-
stretching transition. Although the model oversimplifies the DNA structure, it still
contains the main ingredients of the molecule dynamics, especially the phenomena
related to non-equilibrium properties. For instance, an important feature of the
model is its ability to reproduce the hysteric behavior of the transition. The model
can be extended to include other mechanisms as the stretch-twist coupling.
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Criticality on Rainfall: Statistical Observational
Constraints for the Onset of Strong Convection
Modelling

Anna Deluca, Álvaro Corral, and Nicholas R. Moloney

1 Introduction

A better understanding of convection is crucial for reducing the intrinsic errors
present in climate models [4]. Many atmospheric processes related to precipitation
have large scale correlations in time and space, which are the result of the
coupling between several non-linear mechanisms with different temporal and spatial
characteristic scales. Despite the diversity of individual rain events, a recent array
of statistical measures presents surprising statistical regularities giving support
to the hypothesis that atmospheric convection and precipitation may be a real-
world example of Self-Organised Criticality (SOC) [2, 16]. The usual approach
consists of looking at the occurrence of rain by days or months. For “episodic”
rain events, similar to avalanches in cellular-automaton models, scale-free rain event
distributions are found [13]. However, a power-law distribution (i.e., scale-free)
of the observable is not sufficient evidence for SOC dynamics, as there are many
alternative mechanisms that give rise to such behaviour (see for example [7, 11]).

Further support for the SOC hypothesis was given by Peters and Neelin [14],
who found a relation between satellite estimates of rain rate and water vapour
over the tropical oceans compatible with a phase transition, in which large parts

A. Deluca (�)
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10 A. Deluca et al.

of the troposphere would be in a convectively active phase. In addition, it was
shown that the system was close to the transition point. They also related it
to the concept of atmospheric quasi-equilibrium [1], which argues that, since
driven processes are generally slow compared to convection, the system should
typically be in a far-from equilibrium statistically stationary state, where driving
and dissipation are in balance. In addition, recent works have shown that local event
size distributions present signs of universality in the system, as was expected in the
SOC framework [5, 6, 12]. The resulting rain event size distributions were found to
be well approximated by power laws of similar exponents over broad ranges, with
differences in the large-scale cutoffs of the distributions. The possible consequences
of this framework for the prediction of atmospheric phenomena still remain unclear.

2 Data and Methods

In this contribution we use very high-resolution (1 min) local rain intensities across
different climates described in [12], stochastic convective models [15] and SOC
models such as the BTW model and the Manna model, for investigating how
predictable the time series of rain activity and rain event sizes are [2, 10].

We use the hazard function Hq as a decision variable, which is sensitive to
clustering or repulsion between events in the time series. The conventional precursor
pattern technique requires a large amount of data, does not capture long memory and
has been found to perform worse than the hazard function in similar analysis [3].
The function Hq is defined as the probability that a threshold-crossing event will
occur in the next �t , conditional on no previous event within the past tw, i.e.,

Hq.twI �t/ D
R twC�t

tw
Pq.�/ d�

R 1
tw

Pq.�/ d�
; (1)

where q corresponds to the different thresholds on sizes and �t is set to 1 min for
the rain data and one parallel update for the SOC models. The various quantities are
illustrated in Fig. 1.

Note that the hazard function gives us a probabilistic forecast and in order
to perform a deterministic prediction we will need to consider a discrimination
threshold.

Fig. 1 Sketch of the hazard
function variables
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We also evaluate the quality of the prediction with the receiver operating
characteristics method (ROC) [8]. For any binary prediction (occurrence or non-
occurrence of an event) four possible outcomes can occur: true positive (TP), false
positive (FP), true negative (TN) and false negative (FN); see Fig. 2.

ROC curves compare sensitivity and specificity. The sensitivity is defined as
the number of correctly predicted occurrences divided by the total number of
actual occurrences, and the specificity as the number of correctly predicted non-
occurrences divided by the total number of actual non-occurrences:

sensitivity D TP

TP C FN
; specificity D TN

FP C TN
: (2)

Each threshold on the decision variable will give a different point on the ROC
curve. If we consider the minimum possible threshold we will always predict the
occurrence of an event, for which the sensitivity is one and the specificity zero.
The diagonal in Fig. 3 corresponds to random prediction. Points above the diagonal
represent good predictions (better than random) and points below poor predictions.

Fig. 2 Four possible outcomes of a binary prediction in a contingency table
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Fig. 3 Example of ROC curves data on the slow time scale for rainfall data (a) and for the 2D
BTW SOC model simulated data (b)
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3 Results

We find that on the events scale (slow time scale), rain data renormalise to a trivial
Poisson point process for large thresholds, while for small thresholds events cluster.
This is in contrast to the anti-clustering of high-threshold events in the 2D BTW
model as a result of finite-size effects and the building up of correlations, seen
previously by Garber et al. [9]; see Fig. 3a, b.

However, rain data has an unavoidable threshold on intensity due to the device
resolution that blurs the interpretation of the results on the event scale. At the level
of intensities (slow time scale), we find that prediction is insensitive to all but very
high thresholds.
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Testing Universality and Goodness-of-Fit
Test of Power-Law Distributions

Anna Deluca, Pere Puig, and Álvaro Corral

Power-law distributions contain precious information about a large variety of
physical processes [10]. Although there are sound theoretical grounds for these
distributions, the empirical evidence giving support to power laws has been
traditionally weak.

Here we present an alternative procedure, valid for truncated as well as for
non-truncated power-law distributions, based on maximum likelihood estimation
of the exponent, the Kolmogorov–Smirnov goodness-of-fit test, and Monte Carlo
simulations [5, 7, 11]. In addition, we also present procedures for testing the
existence of a single universal exponent in a collection of different data sets, based
on the definition of a statistic that contains the weighted sum of the differences of
the values of the exponents for all pairs of data sets.

1 Power-Law Fitting

A continuous variable x, where a � x � b with b finite or infinite and a > 0, is
power-law distributed if its probability density is given by
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f .x/ D ˛ � 1

a1�˛ � b1�˛

�
1

x

�˛

: (1)

If b ! 1 and ˛ > 1, the distribution is called a non-truncated power-law
distribution, while for finite b the distribution is called a truncated power law, for
which no restriction exists on ˛.

The key to fit properly power-law distributions to real-world data is to have an
objective criterion to decide at which point the power law starts (and, in the truncated
case, at which point it ends); this is the fitting range.

1.1 The Method

Given a sample of the random variable x with N elements as x1; x2; : : : ; xN , we
want to estimate the parameter ˛ and determine the interval defined by a and b

where the power law holds.
In order to obtain a reliable estimate of the exponent ˛ we use maximum

likelihood estimation. For that, we assume a and b as known. We compute the log-
likelihood function for our particular case,

`.˛/ D ln
˛ � 1

1 � r˛�1
� ˛ ln

g

a
� ln a; if ˛ ¤ 1; (2)

where r D a=b and g is the geometric mean. Holding a and b fixed, the value of ˛

which maximizes `.˛/ is the maximum likelihood of the exponent.
Then, the quality of the fit is assessed by a Kolmogorov–Smirnov (KS) test [12].

The KS statistic, or KS distance, de , is defined as the maximum difference in
absolute value between the theoretical cumulative distribution and the empirical
cumulative distribution, which is estimated by ne.x/=N , see [3].

The KS distance allows us to calculate the p-value, the probability that, under
the null hypothesis, the KS statistic takes a value larger than the one obtained
empirically. As the exponent ˛ is obtained from the data, we need to determine
the distribution of the KS distance using Monte Carlo simulations. Next, we apply
the same procedure for all possible ranges Œa; b� and compare the results. We keep
the fits, i.e., the triples fa; b; ˛g such that the corresponding p-values are larger than
a certain pc .

Finally, we need to select objectively one fitting range among all the listed
triples. For a non-truncated power law (b D 1) we select the largest interval, i.e.,
the smaller a. If the power law is truncated we consider two different criteria for
choosing the range: selecting the interval that maximizes the number of data in it,
or selecting the larger log-range b=a. In fact, many true truncated power laws can
be contained in the data [4]. Maximizing N tends to select power laws in the initial
range on values, while maximizing the log-range tends to select power laws nearer
to the tail of the distribution.
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1.2 Application for the Seismic Moment of Earthquakes

In Fig. 1 one can see an illustration of the method performance results for the seismic
moment (M ) of earthquakes worldwide and in Southern California. Starting with
the non-truncated power-law distribution, we always obtain significant power-law
fit, valid for several orders of magnitude. In both cases the exponent ˛ is between
1.61 and 1.71, but for Southern California it is more stable. For the worldwide CMT
catalog restricted to shallow earthquakes the largest value of a is 3 � 1018 Nm,
corresponding to a magnitude m D 6:25. For Southern California, the largest a

found (for pc D 0:5) is 1:6 � 1015 Nm, giving m D 4. This value is somewhat
higher in comparison with the completeness magnitude of the catalog; this can be
attributed to this catalog specific characteristics [7]. When a truncated power law is
fitted, using the method of maximizing the number of data leads to similar values
of the exponents, although the range of the fit is in some cases moved to smaller
values (smaller a, and b smaller than the maximum M on the data set). The method
of maximizing b=a leads to results that are very close to the non-truncated power
law.

Fig. 1 Estimated probability densities and corresponding power-law fits of the seismic moment
M of shallow earthquakes in the worldwide CMT catalog and of the estimated M in the Southern
California catalog
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2 Universality Verification

As we have just seen, the determination of the exponents of power-law distributions
is not a straightforward task. However, determining the critical exponents as
accurately and unbiasedly as possible, together with their associated uncertainties, is
not enough for verifying universality. The exponents need to be properly compared,
in order to test if they are statistically compatible.

2.1 Confidence Intervals for Exponent Differences

In the case in which one only has two different data sets with estimated exponents
˛e;1 and ˛e;2, the difference ˛e;1 � ˛e;2 will have zero mean, under the null
hypothesis. Also if data sets are independent, the standard deviation of the difference

of the estimators will be
q

	2
e;1 C 	2

e;2.

As, asymptotically, power-law MLE exponents are normally distributed [1], so
will be their difference. Then, it is straightforward to obtain a confidence interval
for the difference. If the interval includes the observed difference value, the null
hypothesis cannot be rejected and the exponents can be considered to take the same
value.

Nevertheless, the situation is not so simple when one needs to analyse three or
more systems. In order to avoid the rejection of the null hypothesis by chance,
corrections of the significance level, as the Bonferroni correction or the Šidák
correction [2], need to be applied. However, these corrections are too generous in
order to claim for universality.

2.2 The Permutation Test

For multiple testing we propose a permutation test [9]. We define a test statistic such
that the larger its value, the stronger the evidence against the null hypothesis H0. The
null hypothesis will be that for the common range a � xj � b all exponents are the
same, i.e., ˛e;i D ˛e;j , for all i and j .

We choose, for example,

O‚ D
M�1X

iD1

MX

j DiC1

.˛e;i � ˛e;j /2; (3)

where M is the number of data sets. More complex and powerful alternatives are
considered in [8].
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The scale for O‚ is provided by the achieved significance level or p-value of
the test, which is defined as the probability that, under the null hypothesis H0, the
random variable O‚ is larger than the value we obtained for the observed data O‚data,
i.e.,

p D Probf O‚ � O‚data j H0 is trueg; (4)

so the smaller the p-value, the stronger the evidence against H0.
We will use a permutation test as a way to compute the p-value. It is based

on the idea that, if the null hypothesis is correct, any data value could correspond
to any data set and the data values (the size of the events in our case) are therefore
interchangeable. First, we combine the n1 Cn2 C� � �CnM observations from all data
sets into a single meta-data set (ni is the number of data a � xj � b for each data
set) and take M random samples of sizes n1; n2; : : : ; nM without replacement. This
generates M new data sets with the same number of data than the initial ones. Next,
we fit the power-law exponents (in the common fitting range) for each permuted
or reshuffled data set and from their values we compute the new test statistic O‚sh

(where sh stands for shuffled).
The distribution of the test statistic under the null hypothesis is obtained by

repeating the process a large enough number of times. With that we can easily
compute an approximation of the p-value by

p-value � #f O‚sh � O‚datag
Nsh

; (5)

where #f O‚sh � O‚datag is the number of permutations for which O‚sh � O‚data.

2.3 Application for Rainfall Data

We apply the method to rain data from the Atmospheric Radiation Measurement
(ARM) Program (www.arm.gov) used in [11], excluding the three sites that were
found problematic there. For the rain event sizes, defined as in [11], we obtain
O‚data D 0:051, which leads to p D 0:26. So we cannot rule out the universality
of the exponents.

3 Conclusions

For power-law distributions, the fitting and testing the goodness-of-fit is a difficult
but very relevant problem in complex-systems science, in particular in geoscience.
The most critical step is to select automatically (without introducing any subjective

www.arm.gov
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bias) where the power-law regime starts and where it ends. We present a procedure
that overcomes some problems found in the method introduced by Clauset et al.
(2009); see [6].

We tested the performance of the method with synthetic power-law data sets and
real-world data. The results for the power-law exponent of the distribution of seismic
moments worldwide and in Southern California are in agreement with previous
estimates, but in addition our method provides a reliable way of determining the
minimum seismic-moment value for which the Gutenberg–Richter law holds.

Moreover, we present procedures for comparing the estimated critical exponents
in order to test the existence of a single universal exponent [8]. The results for the
rainfall data are consistent with theoretical expectations [11].
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Stability of Strength and Weight Distributions
for Time-Evolving Word Co-occurrence
Networks

Francesc Font-Clos and Álvaro Corral

1 Introduction

The most intriguing and celebrated empirical law in quantitative linguistics is Zipf’s
law [6], which in one of its forms states that the distribution of word frequencies in
a text follows a power law with exponent � � 2. At least in a qualitative sense, the
fulfillment of Zipf’s law is astonishing, being valid no matter the author, style, or
language [4–6]. An important problem of Zipf’s law is the variation of the exponent
� among different samples. Although the dependence of � with system size was
firstly acknowledged by Zipf himself [6], and later on other authors have confirmed
it [1,2], few systematic studies on these dependence have been performed. This can
be formulated within the framework of (directed) networks, where words (types) are
nodes, and consecutive appearances of word tokens increase the weight wij of a link
between the two nodes by an amount equal to one. In this way, the frequency of a
word is equivalent to the strength si D P

j wij of its corresponding node.

2 Results

We propose a novel and simple scaling form for the strength distribution PN .s/,
Eq. (1), which uncovers the robustness of this distribution as the network size N is
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varied [3]. In this way, the shape of the distribution is always the same and it is only
a scale parameter what increases linearly with system size,

PN .s/ D g.s=S/

NS
; S D

NX

iD1

si : (1)

By analyzing the google’s n-gram data set we verify this scaling and show that the
strength distribution of the English language network has been extremely stable over
the past 200 years; see Fig. 1. We also study the distribution of individual weights
PN .!ij/, reaching an analogous scaling form,

PN .w/ D h.w=S/

W S
; W D

NX

i;j D1

ı.wij/: (2)

In addition, the growth of PN .s/ and PN .w/ with system size N allow us to
estimate the number of nodes N and links W as a function of the total strength S ,
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Fig. 1 PN .s/ (top) and DN .w/ (bottom) corresponding to the English language over the past
200 years before the rescaling process (left) and after it (right). The data collapse can be considered
excellent, and the scaling functions g.x/ and h.x/ become apparent, uncovering the invariance over
time of the English language network, both at the level of the strength distribution as well as at the
level of the weight distribution
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N.S/ D
Z 1

1=S

g.x/ dx; (3)

W.S/ D
Z 1

1=S

h.x/ dx: (4)

These equations provide a straightforward way to relate N and W , that is, the
relation between the number of links and the number of nodes of language networks
as time grows.

3 Discussion

Our findings suggest that the previous observation that the Zipf’s exponent �

depends on system size [1, 2], might be an artifact of the increasing weight of
a second regime in the strength distribution beyond a certain system size. The
robustness of Zipf-like parameters under changes in system size opens the way
to more practical applications of network science in linguistics. In particular, we
provide a consistent way to compare statistical properties of language networks of
different sizes.
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Single Infection Epidemic Spreading Model

Wojciech Ganczarek

1 Introduction

It has been admitted, that the most appropriate models of epidemic spreading are
those based on dynamical processes on particular graph models of networks, rather
than those defined by phenomenological differential equations [1, 8]. Within this
approach the nodes of a network are usually considered as individuals, who are
connected with each other by vertices corresponding to social links. Although
some authors use continuous time simulations (see e.g., [12]), the approach
presented commonly (see [2] for a review) is based on the idea that at each
discrete time step a particular node of the network can contaminate each of its
neighbours with some finite probability p. The whole set of vertices is being
divided into compartments, usually referred to susceptible (S), infected (I) and
recovered (R) individuals, but the general mechanism stays more or less unchanged.
There has been a broad range of methods developed in order to analyse such
models. In the most basic approach people assume individuals to be identical
and homogeneously mixed (homogeneous assumption [2]). In order to take into
account heterogeneity of the system a kind of block approximation has been
used [9], treating nodes with the same degree as statistically equivalent. This is
not always enough, as some real networks manifest degree correlations [10]. The
next step thus is to take into account those correlations [3]. Finally, one can employ
whole adjacency matrix describing the graph we analyse [6]. The validity of all
these approaches is still under investigation; see e.g., [5]. Note however, that all
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these variations listed above work on equations describing relationships between
probability vectors. The problem, however, is that there is not a single moment
when a particular vertex is, say, 0.41 infected. A vertex can be either infected
(1) or not (0). This problem has been already noticed by Petermann and De Los
Ríos [11].

In our paper [4] we introduce another model of epidemic spreading and analyse
it with completely different approach. For instance, in case of sexual transmitted
diseases the assumption that a particular node is able to contaminate more then
one of its neighbours during a time step seems not to be the most suitable one.
Bearing this idea in mind we developed a single infection epidemic spreading
model.

2 Model Description

Consider a connected, unweighted graph with n vertices enumerated by indices i D
1; : : : ; n, described by transition matrix fPijg,

Pn
j D1 Pij D 1. The model is of SIS

kind: all the individuals are at the beginning considered as susceptible (S). After
contamination they become infected (I) but they still have a chance to recover and
be susceptible again.

We start thus with the all but one nodes susceptible. The one which is infected
is chosen at random. At each time step we choose randomly a node, say the i -th
one, with identical probability 1=n. Then we choose its neighbour according to
the transition matrix fPijg, i.e., there is Pij chance that we point j -th vertex. If
one of these two individuals i; j is infected, it contaminates the second one with
probability z. At the end of each time step we recover each infected node with
probability r .

What could be a real-life realisation of such a model? In large, academic
cities there are often big flats situated in old tenement houses, settled by quite
large amounts of students, who live with 3–4 roommates per chamber. As
there is no space for privacy in this way of living, they sometimes devote
one room in the flat to be a so-called sex-room, so contamination by sexually
transmitted diseases can take place at most once per time step (say: per night).
This seems to be a good example of a system which can be described by our
model.

3 Model Analysis

In order to mathematically describe the model we define Xj .t/ which takes the
value 1 if the node j is being contaminated by one of its neighbours at the time
step t , and 0 otherwise. Furthermore, we denote the set of all infected nodes at the
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time step t by I.t/. The equation for D.t/ describing the evolution of the process
reads

D.t/ D E.jI.t C 1/j � jI.t/j2/ D z

n

� X

k2I.t/; j …I.t/

Pjk C
X

k2I.t/; j …I.t/

Pkj

�
� r jI.t/j:

(1)

The full reasoning can be found in [4].

3.1 Epidemic Threshold

Our first aim is to find out the epidemic threshold for the process described above.
We are interested in a relation of model parameters n; z; r that defines a border
between two situations: dropping and rising of the number of infected nodes in the
beginning of the process. However, classical epidemic threshold is defined in the
limit of large size of a network [2]. Here, as we focus on finite networks only and
the impact of their size onto the process, we need a different definition of epidemic
threshold. In order to construct it, we follow the method of computing thresholds for
infinite networks. In continuous approximation one obtains the epidemic threshold
using assumption of small number of infected nodes, which is true in the vicinity of
t D 0. The smallest finite number of infected nodes we can take is 1, so we define
epidemic threshold as follows:

Definition 1. Epidemic threshold for the single infection epidemic spreading model
is the relation between parameters z; r and network size n such that D.0/ D 0.

Theorem 2. Epidemic threshold for the single infection epidemic spreading model
is given by

z

r
D n

2
:

Proof. By definition of the model jI.0/j D 1. Denote the only infected node by l ,
we have P.I.0/ D flg/ D 1=n. Then also

P
k2I.0/; j …I.0/ pkj D P

j ¤l plj D 1 (as
P -stochastic) and

P
k2I.0/; j …I.0/ pjk D P

j ¤l pjl, hence

D.0jflg/ D z

n

�
1 C

X

j ¤l

pjl

�
� r:

Furthermore, using the fact that for all j there is pjj D 0, we have
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D.0/ D 1

n

nX

lD1

z

n

�
1 C

nX

j D1

pjl

�
� r D z

r

�
1 C 1

n

nX

j D1

nX

lD1

pjl

�
� r D 2z

n
� r:

Condition D.0/ D 0 indicating the epidemic outbreak completes the proof. ut

3.2 Stationary State

The stationary fraction of infected nodes (not specifying any particular shape of the
graph) is not as easy reachable as the threshold calculated in the last section. We
basically need to find the solution for the equation D.t/ D 0 without the constraint
jI.t/j D 1. The problem is to compute the sum

P
k2I.t/; j …I.t/ Pjk, which in general

depends on I.t/. We will thus estimate only the stationary state in the general case
(see [4]) by using the notion of graph conductance; see e.g., [13]. Here we focus on
exact solutions for special cases of complete graph and uncorrelated homogenous
graph.

Complete Graph

For complete graphs, i.e., graphs with all possible links present, we easily find the
exact solution of stationary state problem. Note that, for this special case,

X

k2I.t/; j …I.t/

Pjk D
X

k2I.t/; j …I.t/

Pjk D jI.t/j.n � jI.t/j/
n � 1

(2)

as each of the jI j infected nodes is linked to each of the .n � jI j/ susceptible nodes
by an edge chosen with probability 1=.n � 1/ as each node has n � 1 neighbours.
We can thus find an explicit and exact condition for D.t/ D 0. From (1) and (2) we
get

i.t/s D 1 � r.n � 1/

2z
: (3)

Uncorrelated Homogeneous Graph

For uncorrelated and homogeneous sums in (1) also simplify in a sense, such that
we obtain [4] the stationary infected nodes density of the form

is D 1 � r.n � 1/

2zh 1
k
ihki ; (4)
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where we denote hki D E.k/ and h1=ki D E.1=k/. Specifically, for G.n; p/

random graph (with the well-known binomial degree distribution) the product
h1=kihki goes to 1. In this case the latter result (4) recovers the solution for complete
graphs (3). Moreover, G.n; p/ graphs are indeed uncorrelated in the limit of large
n [7], so we expect G.n; p/ behaving like complete graphs for large n.

3.3 Mixing Time

In this section we will be interested in mixing time, i.e., the time needed by the
process to reach the stationary state. Strictly speaking, this is some kind of meta-
stable stationary state, as in simulations on finite networks the only absorbing, stable
state is the situation when the number of infected nodes is zero. We prove [4] a
theorem, that mixing time scales like log n.

Theorem 3. Let P be a stochastic transition matrix of a graph G of the size n.
Mixing time, T , is linear with inverse of the distance, 
, from the epidemics threshold
and logarithm of size n of the network, i.e.,

T .
; n; �/ D O
�1



.log n C log ��1/

�
:

This means that the probability that the time t needed to reach the stationary state
is greater than some

tc D O
�1



.log n C log ��1/

�

is smaller than �, i.e., P.t > tc/ � �. Here, 
 stands for distance from epidemic
threshold in units of critical value of the ratio z=nr; see [4] for more details.

3.4 Simulations

All of the theoretical results described above has been examined by computer
simulations showing perfect agreement [4]. Here we present, as an example,
dependence on contamination probability z of stationary fraction of infected nodes
for complete graphs; see Fig. 1.
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Fig. 1 Plot of stationary state value of infected nodes density is for complete graphs versus
contamination probability z: simulation (blue dots) and theoretical result (3) (green line). We fix
here n=100, r=0.002
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Niche Dimension as an Emergent Property
of Food-Web Structure

Virginia D. Ganfornina, Samuel Johnson, and Miguel Ángel Muñoz

Ecosystems are often described as food webs: networks in which nodes are species
and links stand for predation. The research in the field of these ecological networks
is becoming more and more relevant given the increasing pressure the ecosystems
are facing, which makes the study of their topology specially interesting due to its
interconnection with the dynamical processes taking place in it. The concept of the
ecological niche of a species has been discussed for a long time. The term was
originally used to refer to a species habitat or ecological role. It was then re-defined
by Hutchinson as a position in a multi-dimensional hyperspace—each dimension
being some biologically relevant magnitude [2]. When Cohen first compiled a
database of empirical food webs and studied them quantitatively, he discovered that
many of the networks had the property he called intervality: the columns of the
adjacency matrix representing the ecosystem could be ordered in such a way that the
prey of any predator were all contiguous (they form an unbroken interval) [1]. This
could be interpreted as meaning that a given species would eat every species within
a particular compact hyper-volume of the niche space, and that this hyper-volume
could be projected onto only one dimension, a single niche-axis. More recently
the degree of intervality of food webs has been measured with several continuous
magnitudes that are close to unity if most of the prey form unbroken intervals or
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Fig. 1 Left panel: Adjacency matrix corresponding to the food web of Coachella Valley. A red
square means that the predator (vertical axis) eats the prey species (horizontal axis) in question.
An ordering of the species has been sought which maximises prey-intervality �: the prey of any
predator tend to be contiguous (� D 0:89). Central panel: The same for a random null-model
corresponding to the Coachella food web, in which links have been allocated randomly (� D 0:51).
Right panel: Adjacency matrix for a network generated with the Preferential Preying Model (PPM),
with the same parameters as the food web of Coachella Valley, ordering species to maximize
intervality: � D 0:91

approach zero when very few do, with most ecosystems being nearly interval. This
is a highly non trivial feature of real food webs, which are indeed significantly more
interval than the random graph as can be seen in Fig. 1.

The fact that only one niche dimension could account for the intervality of food
webs was the central idea behind many models that were put forward to show that
the evident complexity of food webs could come about via simple rules. All these
niche-based models make the same assumption implicit in the Niche Model—that
some hidden niche dimension lies behind the formation of intervals, and so of the
structure of food webs [3, 4]. That is, if the niche dimension corresponded to body
size, then it would mean that a given species were capable of eating only prey within
a particular range of body sizes. But neither body size, nor longevity, nor any other
magnitude studied nor combinations thereof have been found to explain this order-
ing satisfactorily. Hence, the meaning of this dimension has remained a mystery.

We wondered if this dimension is needed to explain the network features for
which it was originally invoked, and if the ordering that maximises intervality
necessarily reflect some natural hierarchy among species.

We propose a model (Preferential Preying Model) in which species are added
sequentially to the network and prey are selected according to a pure topological
property—their trophic level—in order to study the intervality of ecosystems.
Analyzing a set of 16 food webs from literature we show the empirical values of
intervality for these food webs contrasted with those obtained with the PPM after
adjusting its parameter to better simulate each ecosystem. In most of the cases the
observed intervalities are significantly high when compared to the null-models and
they can usually be reproduced by the PPM with the right choice of its parameter.
Analysis of some structural features that are of particular ecological relevance (the
distributions of degrees, the modularity, the mean chain length, and the distribution
of trophic levels) are also performed.
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The agreement is very good in all cases, indicating that this simple model
generates networks which are remarkably similar to food webs. We show that
a simple mechanism for network assembly that does not make use of a niche
axis, but only of information in the emerging structure of the network itself,
generates networks that are realistically interval. Intervality emerges naturally from
structural features of food webs, features that can be easily generated in biologically
plausible yet fairly simple ways. That the only parameter has been tuned so as
to best approximate intervality, with no regard for these other features, suggests
that preferential preying according to trophic distance may actually reflect some
essential mechanism behind the formation of food webs.

If our model generates networks that resemble real food webs this is most
likely because the trophic level of a species is a sufficiently good proxy of its
characteristics. This does not mean that the best ordering is somehow encoded in
the biological characteristics themselves. On the contrary, in our model and, we
argue, probably also in nature this ordering is only determined once the links have
been (stochastically) established. Thus, networks that are highly stratified (well
defined trophic levels) will have higher values of intervality than those lacking this
structure. This is illustrated in Fig. 2. In the network in the top panels (generated

Fig. 2 (a) PPM network generated with 12 species and T ! 1 (the height of each node is
proportional to its trophic level). (b) As A but for T D 0. (c) Adjacency matrix corresponding to
the network in (a), with rows and columns placed according to the ordering that maximises prey
intervality: � D 0:88. (d) As (c) but for the network in (b), which has � D 1 ((a) and (b) generated
with Pajek)
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with T ! 1, not well defined levels), an ordering must be sought for all 12 species
simultaneously, whereas in the one underneath (T D 0, with a well defined stratified
structure), the three blocks can be put in order almost independently. It follows that
stratification is not the only structural feature to induce intervality. Any network
characteristic that reduces the extent to which the ordering of one group of nodes
constrains the orderings available to other groups will have this effect.

There is probably no reason to search for a hidden niche dimension as the cause
behind the structure of food webs. This does not imply that the concept of niche
space as a representation of ecosystems looses any of its utility but that the most
interval ordering for a given food web does not necessarily reflect the niche in
any way. However, the fact that all the non-trivial network features analysed are
reproduced so well by a simple model, which only imposes on predators a measure
of trophic-level specialization, suggests that much of the complexity of food webs
might come about from mechanisms that are simpler than has so far been presumed.
With this is mind we can conclude therefore that the niche dimension—in the sense
used for modelling—is in fact an emergent property of food-web structure, which
calls for a fundamental change in perspective as to how ecosystems arise and persist.
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Modelling the Population Dynamics in a Cell
Culture at Two Different Scales

M. Gokhan Habiboglu and Yagmur Denizhan

1 Introduction

The main purpose of this study is to model the population dynamics in a eukaryotic
cell culture. Besides providing an insight into the important aspects of modelling at
different scales and the relation between these models, the study is supposed to allow
the prediction of the time profile of the total population size within an admissible
tolerance.

For this purpose the growth, proliferation and death dynamics of a cell culture is
studied, where the cells are assumed to belong to a genetically modified eukaryotic
mammalian cell line, as widely used in many cell culture experiments. As a result
of genetic modification the behaviour of such cells is confined to two different
modes:

1. Active Mode: A cell remains in active mode as long as its neighbourhood is not
too crowded. In this mode the cell keeps on growing until it reaches a mature size
and undergoes mitotic division.

2. Quiescent Mode: A cell enters the quiescent mode as a reaction to an over-
crowded neighbourhood. In this mode growth and proliferation is halted.

Cells can switch between these modes depending on local population. Another
cell activity which is independent of these modes is toxicity release. Without loss
of generality cell deaths in a cell culture can be ascribed to the lethal effects of
toxicity accumulated in the flask. It should be noted that death of some cells in a
neighbourhood will reduce local population density and allow quiescent cells in the
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Table 1 Different scales at which population dynamics can be modelled

Scale Focus Modelling approach Source of knowledge

Micro Intracellular
dynamics

Not modelled in this study

Meso Dynamics of
individual cells

Agent-based Biological knowledge and
experimental observations

Macro Global dynamics
of the cell culture

Differential equation-based Concepts derived from the
meso-scale model

vicinity switch to the active mode. The population dynamics of such a cell culture
can be modelled at different scales as summarised in Table 1.

In this study, an agent-based meso-scale model and a differential-equation based
macro scale model have been developed.

2 Meso-scale Model

In the meso-scale model the flask is represented as a n � n grid. Each mesh in the
grid is called a “locus” and it is assumed that it can accommodate only a single
cell. The mesh size is chosen appropriately to make this assumption admissible.
This discrete-time model (�k D 1 is equivalent to 15 min in real life dynamics)
represents the cell dynamics as follows: nutrition concentration in the flask remains
constant and uniform; and growth, mitotic division, toxicity release, aging and death
of a cell are related to and represented in terms of the cells energy:

• Cell growth, due to nutrient intake, is represented in terms of energy increase.
Each cell can take in only a constant quantity of energy (A) at each time step.

• When a cell attains the level of “division energy” (Ediv) it divides into two
daughter cells, each receiving half of the division energy (Ediv=2). Daughter cells
are placed at any random 2 empty loci among the locus of the mother cell and
its 8 nearest neighbourhood of the mother cell. (The random choice of the loci
of daughter cells within this narrow neighbourhood constitutes the only non-
deterministic element in the meso-scale model.)

• The toxicity is related to the cell dynamics via the damage it causes in the cells.
Therefore; the amount of toxicity at a locus (i; j ) is expressed as the amount of
energy (Erem.xi;j /) a cell would have to spend in order to remedy the damage
caused by being exposed to such a toxicity (xi;j ). Each living cell releases
a constant amount of toxicity per time step, which diffuses with some given
diffusion constant. For the sake of convenience, the amount of toxicity released
per time step is expressed as a fraction of the constant energy intake per time
step.
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• Cell aging is represented as loss of energy when the remediation expenditures
due to local toxicity exceeds the constant energy intake.

• Cell death is represented as vanishing of the cell energy due to aging.

This model represents the state of the cell culture system in terms of the instanta-
neous local toxicity (xi;j .k/) at locus (i; j ) and the instantaneous energy (Ei;j .k/)
of the cell at locus (i; j ) for all i; j D 1; : : : ; N .

3 Macro-scale Model

Since the main modelling task is to predict the evolution of the population size,
the total population is the most obvious state variable of the macro scale model.
Furthermore, with the insight gained from the meso-scale model, total toxicity
in the flask and the distribution of energy across the cell culture have been
identified as the most important factors affecting the population dynamics. Although
simulations of the meso-scale model reveal a non-uniform energy distribution across
the population with time-varying statistical properties, as a first approximation the
energy distribution has been modelled as uniform between time-variable lower and
upper boundaries. Hence, the macro scale model is based on the following four state
variables: p.t/, the total population; �.t/, the total toxicity; and 
low and 
high, the
lower and upper boundaries of the energy distribution, respectively.

Table 2 shows the assumptions and intermediate variables used in the derivation
of the following set of differential equations (1)–(4), describing the macro scale cell
culture dynamics:

dp

dt
D Œp.t/ � q.t/� �highu.�high/ � p.t/�lowu.�high/; p.0/ D p0; (1)

Table 2 Assumptions and intermediate variables used in Eqs. (1)–(4)

Variable Assumption

Total population p.t/ Uniformly distributed across the flask 8t � 0

Total toxicity �.t/ No initial toxicity
uniformly distributed across the flask
(high enough diffusion rate)

Total quiescent population
q.t/

Define: average # of blank loci per living cellDb.t/D n2
�p.t/

p.t/

b.t/ � 1 , n2

2
� p.t/ � n2 ) q.t/ � 0

0 � b.t/ < 1 , 0 � p.t/ < n2

2
) q.t/ � 2p.t/ � n2

Energy distribution fE.Eo/ Initially uniformly distributed between OEdiv=2 and OEdiv

uniformly distributed between 
L and 
H 8t � 0

Average rate of remediation
energy N�rem

Define: average toxicity per locus D �.t/ � �.t/

n2

N�rem � Oc �.t/ � Oc �.t/

n2 (high enough diffusion rate)
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Fig. 1 Illustrations of �high and �low used in Eq. (1)

d�

dt
D Ǒ OAp.t/; �.0/ D 0; (2)

d
H

dt
D

(
0 if N�rem.t/ � OAh OA � N�rem.t/

i
u.
H .t// if N�rem.t/ > OA;


H .0/ D OEdiv; (3)

d
L

dt
D

(
0 if N�rem.t/ � OAh OA � N�rem.t/

i
u.
L.t// if N�rem.t/ > OA;


L.0/ D
OEdiv

2
: (4)

Here, OA, Ǒ, Oc, OEdiv are the estimates of the macro-scale model parameters and
obtained from observed population data under simplifying assumptions (Fig. 1).

4 An Emergent Oscillation

Simulations of the meso-scale model reveal that the energy distribution exhibits
unexpected oscillatory characteristics during population growth (Fig. 2). These sim-
ulation results correspond to oscillatory characteristics in the cell size distribution
across the cell culture.

Whether such emergent oscillations in cell size distribution are indeed observed
in cultures with asynchronous cell division needs further investigation.
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Fig. 2 The evolution of the mean (solid line) and standard deviation (dashed line) of the
population-wide energy distribution

5 Results and Conclusion

An agent-based meso-scale model and a differential equation-based macro scale
model have been developed for cell cultures containing genetically modified
eukaryotic mammalian cell lines (no differentiation unless specially treated).

Under assumptions mentioned above, meso and macro scale models provide
similar results for total population and total toxicity. Provided that the macro-scale
parameters are properly estimated using some simple empirical measurements the
macro-scale model allows the prediction of the population size as a function of time
for a reasonable range of initial conditions.

During the simulation of the meso-scale model emergent oscillatory character-
istics have been observed in the distribution of energy across the cell population.
This behaviour has not been accounted for in the macro scale model because it is
not relevant for the specific practical purpose of this study (Fig. 3).
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Fig. 3 Time evolution of the macro scale state variables (solid) and their counterparts obtained
from the meso-scale model (dashed) for a uniformly distributed initial population filling the 44 %
of the flask and a diffusion rate of D D 0:2



Assessing the Significance and Predicting
the Effects of Knockout Cascades in Metabolic
Networks

Oriol Güell, Francesc Sagués, and M. Ángeles Serrano

We explore the effects of different forms of structural stress on the robustness of
metabolic networks and we use two different kinds of randomization methods [4,5].
We also explore the effects of single and multiple gene knockouts in the metabolic
network of a genome-reduced bacterium.

1 Methods

The cascading failure algorithm is applied to spread the initial perturbation through
the network and to compute the corresponding damage. Crucial to the algorithm
is the concept of viability. A metabolite is considered viable if it has at least one
incoming and one outgoing connection, so as to prevent depletion or accumulation.
On the other hand, reactions are viable if and only if all of the participating
metabolites are viable.

Benchmark cascades are computed by first randomizing the original network
and then performing the cascade algorithm on the randomized version. Damage
distributions are obtained for a hundred realizations, then averaged, and finally
compared to the original damage distribution to assess the statistical significance
and quantitative behavior of the observation.
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The degree preserving randomization (DP) method works by choosing a pair of
links of the network at random and swapping their targets, unless this would lead to
the repeated occurrence of a metabolite in a reaction [4].

Mass-balanced randomization (MB) generates randomized networks by rewiring
the links corresponding to substrate-reaction or product-reaction relationships,
while preserving atomic mass balance of the reactions [1]. As biological systems
and their properties evolve under physical constraints and evolutionary pressure, a
null model which satisfies physical principles but does not account for evolutionary
pressure differs from a metabolic network only in the properties which are affected
by evolutionary pressure. Thus, a property deemed statistically significant following
mass-balanced randomization is beyond basic physical constraints and it is likely to
be a result of evolutionary pressure [2].

2 Results

2.1 Failures of Single and Pairs of Reactions

We study cascades triggered by individual removal of reactions by removing each
reaction of the network individually. We define the size of a cascade, dr , or damage
caused by the removal of a reaction r as the number of resulting non-viable
reactions. We use the metabolic networks of Mycoplasma pneumoniae, Escherichia
coli and Staphylococcus aureus.

The cumulative probability distributions P.d 0
r � dr/ give the probabilities

that a damage is at least as large as dr , and may be interpreted as a measure of
the robustness of a network with respect to reaction removal. We determine the
cumulative probability distributions of the damages in the three metabolic networks
and compare them to the averaged distributions associated to their randomized
variants from degree preserving randomization for M. pneumoniae and degree
preserving and mass-balanced randomization for E. coli and S. aureus; see Fig. 1.

We observe that the distributions of the original networks lie in between the
distributions of the two null models. Thus, the robustness of the analyzed networks
cannot be explained by the distribution of degrees or by basic physical constraints.
For the DP null model, this finding indicates that robustness is positively influenced
by factors which are independent of the degrees. The results from the MB null model
suggest that evolutionary pressure leads to larger cascades of non-viable reactions,
and thus lower robustness.

To check whether or not the cumulative probability distributions significantly
differ between the original networks and their randomized variants, we perform
Kolmogorov–Smirnov tests; see Table 1. In this case, the compared distributions
are considered significantly different.
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Fig. 1 Distributions of damage caused by removal of reactions. M. pneumoniae (blue), S. aureus
(green) and E. coli (red). Averaged distributions are shown for DP (continuous line) and MB
(dashed line). (a)–(c) Single reaction failures. (d)–(f) Pairs of reactions failures

Table 1 Kolmogorov–Smirnov tests for single reaction (SR) and pairs of reactions (PR) failure
cascades. Values of the KS statistic/associated significance level are given

SR PR
Organism MB DP MB DP

S. aureus 0:19/0 0:085/0:0002 0:27/0 0:15/0

E. coli 0:19/0 0:082/2 � 10�12 0:21/0 0:13/0

2.2 Impact of Gene Knockouts in Metabolic Structure

We coupled the metabolic network of M. pneumoniae to its gene co-expression
network through the activity of enzymes and we considered knockouts of individual
genes and clusters of co-expressed genes.

Genes with large associated damages in metabolism turn out to be essential or
conditionally essential for M. pneumoniae (see Table 1), with a unique exception.
We use a classification given in [6], where essentiality is defined according to the
measured metabolic map and the definition of a minimal medium which allows M.
pneumoniae to grow. Essential genes are those that are required for the survival
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Table 2 Largest structural
damages produced in
metabolism by gene
knockouts and
correspondence with gene
essentiality

Gene Essentiality Damage

mpn429 Yes 49

mpn606 Yes 32

mpn628 Yes 32

mpn017 Yes 25

mpn303 Yes 18

mpn062 No 17

mpn576 Cond 16

of the organism, while conditional means that essentiality depends on the media
composition available (Table 2).

To detect functional clusters, we use three different strategies applied to a
correlation matrix of dependencies between the expression level of pairs of genes
in M. pneumoniae. We first consider clusters as defined in [3], where a technique
of average distance hierarchical clustering (HC) is used and clusters are defined
as groups of nodes which are close to each other. Alternatively, we apply a
random walk based algorithm called Infomap (I), where groups comprise nodes
among which information flows quickly and easily. And finally, we use the method
of Recursive Percolation (RP), that identifies clusters as strongly interconnected
groups of nodes.

We find that the three detection methods result in qualitatively similar power-
law-like cluster size distributions, with most clusters having small size while some
are relatively big. Interestingly, genes related to high damage spreading reactions
are secluded into mono-component clusters. The fact that these genes appear
isolated pinpoints them as potentially important metabolic regulator targets, since
the alteration of only one gene may affect a large number of metabolic reactions.

Knockouts of co-expression clusters produce a damage on metabolic structure
that increases with the number of affected metabolic and with the number of
associated reactions (Fig. 2). We compare these results with those measured on
randomized versions (DP) of the metabolic network of M. pneumoniae. As evi-
denced in Fig. 2, all cluster detection methods identify clusters that produce lower
damages in the real metabolic network of M. pneumoniae as compared to the
randomized network. This supports the idea that the regulatory machinery that
controls the coupled-to-metabolism co-expression of genes has evolved towards
robustness.
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Fig. 2 Damages as a function of the number of metabolic genes and reaction failures in gene
co-expression cluster knockouts (HC, I and RP). Results are compared with damages produced in
randomized versions of the metabolic networks (DP)

3 Conclusions

Our results indicate that evolutionary pressure favors the ability of efficient
metabolic regulation at the expense of robustness to reaction failures, pointing
at the necessary integration of trade-offs from various cellular functions. On what
respects to the analysis of gene knockouts, we observe that genes related to high-
damage reactions are essential for the organism and that their expression tends to be
isolated from that of other genes. This hints at the interplay between metabolism and
genome, apparently evolved to favor the robustness of this organism by avoiding
the potentially catastrophic effect of coupling the co-expression of structurally
vulnerable metabolic genes.
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Stochastic Amplification in Neural Networks

Jorge Hidalgo, Luís F. Seoane, Jesús M. Cortés, and Miguel A. Muñoz

The phenomenon of Stochastic Amplification comes out to describe the oscillations
of a community of interacting individuals, as for example, the fluctuations of
two species in a prey-predator system. It has been put forward in the context of
Theoretical Ecology [7] and Epidemiology [1], giving a simple explanation to the
temporal patterns found in nature. In a nutshell, the phenomenon operates as follow:
when the system is poised nearby a stable fixed point of the dynamics, noise can
amplify some specific frequencies and produce quasi-oscillations.

As in [4, 5], we examine the role of this phenomenon in brain dynamics.
Deciphering the diverse patterns of global activity recorded in the brain and
associating them with behavioural states are major challenges in Neuroscience [2].
High-frequency neural activity (10–100 Hz) has been related to a collection of
cognitive tasks such as working memory [10] and selective attention [8]. On the
other hand, slow waves (0.5–2 Hz) appear during the deepest stages of sleep, under
anaesthesia or even during quiet wakefulness and might play an important role in
neural plasticity and in the consolidation of new memories [9].

Specifically, we focus our study on the so-called up and down oscillations, in
which a large fraction of neurons alternate between two different stable membrane-
potential states: the down-state, with a very low activity, and the up-state, with high
synaptic activity [12]. These waves appear in the low band (�1 Hz), and have been
observed both in vivo and in vitro. Remarkably, recent experiments have analysed
the fluctuations of the voltage in both up and down states, finding specific temporal
patterns operating only in ups—in the form of a pronounced peak nearby 30 Hz in
the power spectrum—but not in downs [3].
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Trying to give a qualitative and quantitative explanation to these findings, we
employ minimalistic models able to generate up and down states. In this paper we
restrict on the mean-field Tsodyks–Markram (TM) model of short-term synaptic
plasticity (STSP) with two variables [6, 11]. A more realistic model based on the
implementation of the TM model in a network of Integrate-and-Fire neurons is also
studied in [4].

In the TM model, the mean voltage potential v evolves according to the amount of
available resources u (neurotransmitters). The voltage grows owing to both external
and internal inputs and decreases owing to leakage processes; synaptic resources are
consumed in the process of generating internal outputs and spontaneously recover
to a target maximum value, fixed here to u D 1,

Pu D gu.u; v/ D 1 � u

�R

� U0uf .v/; (1)

Pv D gv.u; v/ D vr � v

�L

C uf .v/ C I0; (2)

where �L and �R are the characteristic times of voltage-leakage and synaptic-
recovery, respectively, vr is the resting potential,  takes account of the strength
of the internal inputs, U0 is the release probability of neurotransmitters, I0 is the
external input, and the firing rate function, f .v/, is assumed to be of the form
f .v/ D ˛.v � T / if v � T , where T is a threshold value, and f .v/ D 0 otherwise.

For the chosen parameters (see Fig. 1), there are two stable fixed points. One
of them corresponds to a sustained up-state, and the other to a down-state. This
set of equations is deterministic. Then, following [6], we add noise to have into
account some possible stochastic sources (such as irregular external inputs, finite
size, or irregular and limited connectivity to name but a few). For simplicity, we add
uncorrelated Gaussian white noises 
u.t/, 
v.t/ with respective variances 	u, 	v.
However, our principal results do not depend crucially on this choice. When noise
is switched on, the system becomes bistable and exhibits up and down oscillations.

To analyse the fluctuations around each of the stable fixed points, ı.u; v/ D
.u; v/ � .u�; v�/, we linearise Eqs. (1) and (2) to obtain

Fig. 1 Average potential (left) and synaptic utility (right) in computer simulations of the model
of Markram and Tsodyks; the system exhibits up and down transitions in the presence of noise.
Parameter values are: �L D 0:05 s, �R D 0:8 s, vr D �70 mV, ! D 12:6 mV/Hz, u D 0:5,
T D 2:0 mV, and ˛ D 1:0 Hz/mV. Noise variance are 	v D 2:2 mV/

p
� , 	u D 0. The time step is

10�4 s
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Pıu D auuıu C auvıv; (3)

Pıv D avuıu C avvıv; (4)

where azz0 D @gz
z0

.u�; v�/ correspond to the elements of the Jacobian matrix
evaluated at the fixed points, z and z0 standing for either u and v. A standard lineal
stability analysis for the used parameters reveals that the down-state has two real
negative eigenvalues, while the up-state has two complex eigenvalues with negative
real part.

Defining Qız.!/ D F Œız.t/� as the Fourier transform of the fluctuations of either
u and v, it is straightforward to compute their power spectrum, Pz.!/ D hjz.!/j2i,

Pz.!/ D ˛z C 	2
z !2

Œ�2 � !2�
2 C �2!2

; (5)

where ˛z D a2
zz0

	2
z0

C a2
z0z0

	2
z and 	2

z D h
2
z i; while �2 D det .A/ and � D Tr.A/

do not depend on the noise amplitude. The resulting Pv.!/ is represented in Fig. 2.
In the limit of small noise amplitude, both spectra exhibit a maximum nearby the

denominator minimum (assuming that the solution of the previous equation exists),
specifically at

!peak D
p

�2 � �2=2: (6)

Considering �˙ the associate eigenvalues of the stability (Jacobian) matrix at a
given stable fixed point, the condition for a non-trivial maximum to exist is

Im.�˙/ > Re.�˙/: (7)

In other words, the stable fixed point has to be a focus with its respective complex
eigenvalues. Having real eigenvalues or complex eigenvalues with a weak imaginary
(oscillatory) part implies a negative argument of the square root of Eq. (6), and
hence, no peaks appear.

The power spectrum of the fluctuations around each of the two (up and down)
states is plotted in Fig. 2. Observe the presence of a non-trivial peak for the up-
state spectrum, indicating the existence of noise-induced quasi-cycles. This is the
so-called effect of stochastic amplification of fluctuations. The mechanism works
as follows: the system tries to relax to the fixed point, but noise “kicks” it away,
amplifying some frequencies which are closely related to that of the deterministic
damped oscillations; the peak results to be slightly shifted from the damping
frequency, which is !damping D p

�2 � �2=4. On the other hand, if the system
decays towards a deterministic node (i.e., with real eigenvalues), no frequencies are
amplified whatsoever; see Fig. 2. This is what happens in the down-state, where
the crossed coupling terms vanish when f .v/ D 0, and then the stability matrix is
already diagonalised after the linearization.
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Fig. 2 Right: Power spectrum of fluctuations in up- and down-states for average membrane
potential v. A marked peak appears for the up-state (green curves) near �1:5 Hz. Instead, there is
no track of similar peaks for down states (blue curves). Observe the excellent agreement between
simulation results (noisy curves) and analytical results (black dashed lines). The inset represents
double-logarithmic plots of the same quantities as in the main plots. Left: deterministic trajectories
for the model using different initial conditions. The up-state is a focus (complex eigenvalues),
while the down-state is a node (real eigenvalues)

We have verified that the mechanism is robust against the incorporation of
synaptic facilitation to the model [5]. Similarly, the same framework explains why
(owing to the effective decoupling of equations) a similar resulting frequency cannot
be observe in down states (in accordance with experiments).

These results agree qualitatively with experimental results (e.g., [3]). However,
in order to improve the result for the characteristic frequency and obtain a result
closer to the empirical values, more detailed models are required. This path has
been followed in [4] where—by considering a simple network-version of the model
above in which the role of individual neurons can be explicitly followed—we have
shown that the peak frequency shifts towards empirically observed values.

Summing up, a simple deterministic model able to reproduce up and down states,
does also include non-trivial oscillations within the up state but not in the down state
when some noise source is switched on. The mechanism of stochastic amplification
of fluctuations can explain the structure of the power spectra and other highly non-
trivial features of cortical oscillations in a simple, elegant and parsimonious way.
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Evolutionary Dynamics
of the Genotype-Phenotype Map

Esther Ibáñez-Marcelo and Tomás Alarcón

1 Introduction

Our aim is to study the evolutionary properties of a model of the genotype-
phenotype. The relation between genotype and phenotype is very complicated. Such
complexity is a consequence of the fact that the phenotype emerges from networks
of interactions between genes and their products, which regulate gene expression
and give rise to non-linear, high-dimensional dynamical systems. In addition, these
gene regulatory networks (GRNs) are shaped by evolution by natural selection. As
a consequence, the genotype-phenotype map exhibits a number of features: the map
is not a one-to-one map (many genotypes produce the same phenotype), robustness,
evolvability and convergence, among others [2, 3].

We focus here in the characterisation of the genotype-phenotype map as a
bipartite graph. We define the phenotype as the attractors of the dynamics of the
gene regulatory network. Moreover, a bipartite network has been introduced to
study genotype-phenotype relation (genotype-phenotype space) and their structural
relationship. We also define some emergent biological properties such as robustness,
evolvability, canalisation and convergence in terms of network or graph-theoretical
properties such as the clustering coefficient and resilience of the giant connected
component (percolation).
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2 Network Representation of Properties
of the Genotype-Phenotype Map

The four emergent properties of the genotype-phenotype map that we are going to
focus on are: Robustness, evolvability, canalisation and convergence. For each one
of these properties, we propose a metric in terms of properties of the (bipartite)
genotype-phenotype network and analyse their evolutionary dynamics.

Robustness, which measures phenotypic resilience to gene mutations and evolv-
ability, i.e., the ability of the system to innovate, can be considered to be opposites:
whereas robustness is related to the ability of maintaining biological identity,
evolvability measures the capability to change and adapt to varying conditions.
The question arises as to whether these two concepts co-evolve. The quantitative
analysis of these properties is associated with the a generalisation of the concept of
neutral network which consists of a network where all genotypes (nodes) carrying
the same phenotype connected by an edge if only if they differ by one gene mutation
alone. We further add a second type of nodes, the phenotypes. Links are established
between phenotypes and those genotypes that belong to the basin of attraction of
the former.

We propose the clustering coefficient within the bipartite network to quantify
phenotypic robustness, remember that the clustering coefficient for a (phenotype)
node u is

cu D 2T .u/

deg.u/.deg.u/ � 1/
;

where T .u/ is the number of triangles through phenotype u and deg.u/ is the degree
of u, i.e., the number of genotypes belonging to the basin of attraction. cu is a
measure of robustness of u since it quantifies how many genotypes connected by
single-mutation events exhibit the same phenotype.

Evolvability is measured in terms of metrics related to percolation, i.e., the
existence of a giant connected component and its resilience against attacks (i.e.,
removal of nodes). Since evolvability is defined as the ability of an organism to
adapt to changing conditions by modifying its phenotype, it is natural to define
evolvability in terms of global connectivity and navigability of the genotype-
phenotype space.

Canalisation is a term coined by Conrad Waddington and it can be defined as the
tendency of phenotypes to increase robustness as time progresses or, as Waddington
referred to it buffering of the genotype [5]. We will therefore quantify it in terms
of the time evolution of the average clustering coefficient. Convergence, on the
other hand, refers to the phenomenon whereby different species of disparate lineages
evolve to acquire similar biological traits (phenotypes).

In order to analyse convergence in our model, we calculate the Hamming distance
between genotypes linked to the same phenotype. The Hamming distance between
genotypes (g1; g2) is measured as the number of mutations between two genotypes,
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d.g1; g2/. Each phenotype has associated an average Hamming distance defined as
the mean Hamming distance between every possible pair of genotypes connected
to it.

3 The Model

In order to study the evolutionary dynamics of the genotype-phenotype map, we
consider a multi-scale population dynamics model for a cell population where we
consider two levels or scales:

Microscopic scale. It accounts for the intracellular dynamics of each cell, where
we consider that each cell individual is characterised by a pair .G; g.0//, where G is
a matrix accounting for the GRN (i.e., how a gene product affects the activation of all
other genes), and g.0/ corresponds to the initial condition which can be interpreted
as the heritable developmental program. The GRN defines a dynamical system such
that, with g.0/ as an initial condition, and according to the rules (1), can either reach
a fixed point or a periodic steady state,

Ii D
X

hj iin
i

Gjigj ; (1)

where hj iin
i is the set of in-neighbours of i , and

�
gi .t C 1/ D 1; if Ii .t/ � 0

gi .t C 1/ D �1; if Ii .t/ < 0:

The corresponding steady state g.1/ is our representation of the phenotype.
Viability conditions are introduced that deem as lethal genotypes that induce
oscillations with long cycles [4]. Thus, the intracellular dynamics of each cell
determines whether the cell survives and, if it does, what its phenotype is.

Macroscopic scale. In order to obtain our evolving bipartite genotypes-
phenotypes graph, we prescribe a population dynamics consists of a multi-type
Wright–Fisher model with mutation [1]. In our case, each type corresponds to
a genotype: when proliferation is attempted a mutation (consisting in changing
the sign of a randomly chosen non-zero entry of the matrix G, leading to G0)
occurs with probability pmut. Then, we run the intracellular dynamics as per the
microscopic scale. If the corresponding phenotype is viable, two descendants are
added to the population with genotype .G0; g.0// and the corresponding phenotype.
If the mutation leads to a non-viable phenotype on a previously viable individual,
this is eliminated from the population and we go through another Wright–Fisher
step. From this process the bipartite graph is constructed as the population dynamics
proceeds. Every time a new genotype is generated by mutation a genotype node
is added to the network, as well as the corresponding edges, and the same occurs



54 E. Ibáñez-Marcelo and T. Alarcón

with the phenotypes. Finally, the pseudo-bipartite graph have two types of nodes:
genotype nodes and phenotype nodes, and their corresponding two kinds of edges:
edges between genotypes if the distance is 1, edges between genotype to the
phenotype associated to it.

4 Results and Conclusions

After studying the properties described in the previous section, we have ran
numerical simulations of our model and found the following results. When we
analyse the phenotypic clustering coefficient, we observe that there is a strong
inverse correlation between clustering coefficient and phenotype degrees, as shown
in Fig. 1a. This implies the existence of, essentially, two kinds of phenotypes: (i)
phenotypes with a big basin of attraction (high degree) but little robustness, and (ii)
robust phenotypes (high clustering) but with low degree.

Also, we observe co-evolution of canalisation and evolvability: as time pro-
gresses, both the average clustering coefficient increases (see Fig. 1b), and a giant
connected component emerges as shown in Fig. 2a.

Another, interesting result concerns the correlation between the average Ham-
ming distance between genotypes associated with a phenotype and the clustering
coefficient (robustness) of the latter. We observe that convergence occurs in non-
robust phenotypes (see Fig. 3): Average Hamming distance is systematically bigger
for phenotypes with low clustering coefficient (low robustness).

Finally, another result concerns the influence of the GRN parameters in the
structure of the bipartite graph. For example, Fig. 2b shows how microscopic
parameters such as the rewiring probability and the viability conditions affects the
resilience of the giant connected component, and therefore, the evolvability of the
system.

Fig. 1 (a) Strong inverse relation between phenotype clustering coefficients and phenotype
degrees. (b) Time evolution of the average clustering
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Fig. 2 (a) Simulation results for the size distribution of connected components as a function of
time. We observe that, as time progresses, a macroscopic proportion of nodes accumulate in a few
components which eventually leads to the formation of a giant connected component. (b) How the
microscopic parameters, i.e., those related to determining the structure of the GRN and its viability,
affect the resilience of the giant connected component and can be thus used to control evolvability
of the system

Fig. 3 Relation between Hamming distance and clustering coefficient. Left: clustering vs
Hamming distance. Right: log.clustering/ vs log.Hamming distance/
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Spatio-Temporal Patterns in a Large-Scale
Discrete-Time Neuron Network

Oleg V. Maslennikov� and Vladimir I. Nekorkin�

1 Introduction

The formation of spatio-temporal patterns is one of the most important forms of
collective electrical activity of neural networks. Such forms of activity have been
detected experimentally in different neural structures, including the structures in
visual [4] and somatosensory [11] cortex, in the temporal lobe [7], in the inferior
olives [5], etc. Modeling of the network structure and dynamics can be a possible
way of identifying mechanisms of the pattern appearance and disappearance in such
large-scale systems. Here we show some results of modeling the olivo-cerebellar
system (OCS), which is a special part of brain in vertebrates (for more details,
see [8]). A large number of experimental data indicate the important role of this
system in the control of motor systems, adaptation under varied external conditions,
and motor learning [3, 10].

Neurons of the OCS are combined into highly ordered groups, each playing its
own functional role in the formation and destruction of the motor patterns [6]. Our
model consists of three layers (Fig. 1) of units each described by the same nonlinear
map [1, 9] with different parameter values. The first one is the layer of inferior
olive (IO) neurons, which we will call the main layer, since its dynamics is the
output of our model. The second layer consists of Purkinje cells (PC). The third layer
comprises the cerebellar nuclei (CN) neurons. The neighboring elements of the main
layer are coupled with each other via electrical synapses with changeable strength.
Each IO neuron with indexes i; j has an axon (climbing fiber) branching in two;
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Fig. 1 Schematic structure of the OCS model. Examples for the individual element waveforms of
corresponding layers are shown

see Fig. 1. Both axonal branches (collaterals) terminate with excitatory synapses,
one on a PC with the number .i; j / and another on the CN neuron .i; j /. Each
PC .i; j / has an axon ending with an inhibitory synapse on the corresponding CN
neuron with indexes .i; j /. Thus, each CN neuron receives signals of different types
via its synaptic inputs, namely, excitatory from the IO neurons and inhibitory from
the PC. In turn, each CN neuron .i; j / has an axon with inhibitory synaptic terminals
which suppress the electrical couplings of the corresponding IO neuron .i; j / with
the neighboring elements of the main layer, i.e., with the neurons .i � 1; j /, .i C
1; j /, .i; j � 1/, and .i; j C 1/.

In what follows we briefly discuss some dynamical properties of the elements
and their collective activity. We present the main results of numerical simulations of
the proposed discrete-time model and associate them with the real prototype.

2 Individual Dynamics

IO. There are some exclusive dynamical properties of IO neurons important for
the whole OCS functioning [2, 6]. Firstly, in a resting state these cells generate
(subthreshold) quasi-sinusoidal oscillations with a small amplitude and frequency
about 10 Hz. The action potential is generated at the peak of these oscillations
once the membrane potential reaches some threshold value. Secondly, IO neurons
interact with each other via electrical synapses (gap junctions), and their strength
is controlled by the CN activity. One of the key IO properties reproduced in our
model is its ability to switch from the subthreshold oscillation mode to the action
potential generation mode on the oscillation peaks during the action of varying
synaptic current; see Fig. 1, waveform for layer 1.
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PC and CN. In accordance with our scheme of the OCS, PC and CN neurons
are the elements of the second and third layers, respectively. When modeling these
cells, we took into account their key properties which give the main contribution
to the operation of the OCS. Elements of the second layer (PC) are excitable units,
which generate bursts of spikes during the excitation. Elements of the third layer
(CN) turn into the active spiking state during excitation via the synaptic terminal
of the corresponding collaterals of the IO-axons and come back to the resting state
during inhibition by the synaptic terminals of the PC-axon.

Axons. Axons (nerve fibers) are represented in our model by chains of elements
coupled electrically with the nearest neighbors. Each element is excitable, i.e.,
generates an action potential during stimulation. Successive excitation of the
neighboring elements of the chain models the propagation of a pulse along the nerve
fiber.

Dynamic coupling between IO neurons. IO neurons interact via gap junctions,
or electrical synapses, the strength of which is controlled by the synapses of
the CN-axons. This control is inhibitory: in the absence of control pulses, the
coupling strength is equal to some positive value, which results in synchronization
of subthreshold oscillations of the interacting IO neurons. On the contrary, the
coupling is suppressed and the electrical coupling between neurons breaks if the
signal is fed.

3 Qualitative Description of the Model Dynamics

Let us assume the membrane potential of an IO neuron has reached a threshold value
at some instant of time. This results in the action potential excitation in the neural
axon. Propagating along both branches of the climbing fiber, this spike evokes the
PC and CN activity. A burst is generated in the PC and a long sequence of action
potentials is excited in the CN neuron. The PC burst causes the inhibitory action
potential to propagate through the PC-axon to the CN neuron. A long spike series
in the latter is interrupted due to the inhibition by the action potential coming from
the PC. A burst of spikes transmitted through the CN-axon to synaptic couplings of
the corresponding IO neuron leads to the suppression of the latter. Thus, synaptic
couplings of the IO neuron with the neighboring elements of the main layer break
for a time equal to the duration of the CN-burst.

4 Spontaneous Patterns in the OCS

The pattern formation in the IO layer is controlled primarily by the maximum
strength of coupling between the IO neurons and by duration of the break of
synaptic couplings between them. In our model, the latter is controlled by the
length of the PC-axons. Figure 2a, c shows snapshots of the IO-activity for two
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Fig. 2 Pattern dynamics of the 30 � 30 IO-layer for (a) small and (c) large coupling strength. (b,
d) Histograms of the corresponding Markov parameter. (e) Stimulated pattern dynamics

different values of the maximum coupling strength. It is seen that for a small
coupling value, the size of patterns is also small (see Fig. 2a), and the characteristic
time for their spatial position to change is equal approximately to the oscillation
period. In case with a larger value of the maximum coupling strength (Fig. 2c), the
pattern size increases on the average, and their spatial position remains constant
during several oscillation periods. These qualitative results are confirmed by the
quantitative analysis of the Markov parameter ˇ [5] for the IO-layer. The more the
absolute value of ˇ is different from zero, the higher the level of spatial order of
the layer. This means that if the membrane potentials of IO-elements are randomly
distributed, then ˇ tends to zero. The case is opposite when the membrane potentials
are the same for all elements, i.e., all the IO-elements form one single pattern.
Then ˇ takes its maximum value. The more ˇ is different from zero, the larger
the characteristic pattern size. Figure 2b, d shows ˇ-histograms for two values of
the coupling strength. It is seen that for a small strength, ˇ varies over relatively
wide limits, but its absolute values are close to zero; see Fig. 2b. For a larger
strength, the mean value of ˇ increases and its variance decreases; see Fig. 2d. This
result is in good agreement with the experimental measurements of the Markov
parameter for different levels of blocking the electrical coupling between the inferior
olive neurons. For a weak coupling between neurons, the layer is divided into
a set of small patterns, whose structure changes drastically with time. As the
coupling is enhanced, the patterns increase in size and the spatial configuration is
preserved in time.
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5 Stimulated Patterns

For a motor control, the OCS generates and preserves in time the spatio-temporal
patterns, and changes them depending on the input signals. According to these
signals, sub-groups of inferior olive neurons with synchronous or phase-shifted
oscillations are formed, and this spatial structure is maintained for several oscillation
periods. When a new pattern comes, oscillations of the elements are rearranged in
accordance with it. Such behavior of the system is the basis for control of the motor
function of the body [6].

Figure 2e shows the pattern dynamics of the IO neurons in our model. Initially,
variables of IO-units were randomly chosen. Then an external stimulus in the form
of a spatial pattern is fed to the layer. As an example, this pattern is taken in the form
of five circles. The stimuli acting on all the IO-elements have the same amplitude
and duration. The difference is that the stimulation acts on the different circles
in different instants of time, thereby creating a phase shift of oscillatory activity
between different circles. Since the spikes are generated at the peaks of subthreshold
oscillations, the phase shift of them corresponds one-to-one to the phase shift of the
action potentials transmitted into the climbing fiber and then to the PC and CN
neurons.

6 Conclusion

In conclusion, we developed a model of a very complex neural structure, the OCS,
using the same map [9] as a basic unit. In our discrete-time model three layers of
neurons interact with each other through axonal connections, and the propagation
of nerve impulses along the axons is modeled by the chains of excitable elements.
Dynamic properties of individual elements are examined, and the parameters are
found corresponding to the dynamics adequate to the biological prototypes. A model
of dynamic coupling between the IO neurons is proposed and the pattern formation
processes in the layer they form are explored. The relation between the size of
spatio-temporal patterns and the maximum coupling is established. It is shown that
stimulated patterns of a certain configuration can be formed in the system and can
be reset by an external stimulus. The latter property underlies the neuronal systems
of the motor function control.
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A Cavity Method Approach to DNA Stretching

Francesco A. Massucci�, Isaac Pérez Castillo�, and Conrad Pérez Vicente�

1 Introduction

Single molecule manipulation experiments are becoming increasingly important,
for they aim at understanding the mechanical properties of molecules such as
nucleic acids and proteins. Here, in particular, we are interested in DNA stretching
experiments [13]. We present a model that reproduces the main features observed
when pulling DNA, namely the elastic elongation at small forces, the resistance
to bending and the enthalpic response to strong stretching forces [1, 5]. We also
study the overstretching transition of B–DNA (i.e., the DNA in its double helical
configuration) into S–DNA1 observed at around 65 pN, when the molecule reaches
an extension of about 1.7 times its natural length [2, 12]. Our aim is to improve
upon the phenomenological models in literature [1, 6, 7] by revisiting the Discrete

�The authors would like to thank Felix Ritort, Joan Camunas and Josep Maria Huguet for providing
the experimental measurements carried out at the Small Biosystems lab in Barcelona and for
discussions.
1Such transition, after years of debate [3, 8, 11, 15, 16], seem to have found recently a coherent
explanation that links the formation of S–DNA to the experimental setup [4].
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Persistent Chain (DPC) [14], a model featuring both the coarse-grained nature of
real molecules and the bending stiffness observed in the experiments. We solve the
problem analytically with the cavity method and fit it to experimental measurement,
without making any approximation.

2 The Model

In the DPC model [14, 17] the single stranded DNA is considered as a chain of N

interacting monomers with Hamiltonian

� ˇH.Ot/ D fbB

NX

iD1

Oti � Oz C JB

N �1X

iD1

Oti � OtiC1; (1)

where Ot D �Ot1; : : : ; OtN
�
, f is the stretching force, bB the monomer length and JB

the interaction between the monomers, which modulates the bending stiffness of
the chain. Vector Oz points to the direction of the stretching force, while each fOtigN

iD1

points to the direction in space of monomer i . Both Oz and Oti are unitary vectors.
The preceding model can be extended so as to capture the behaviour of double

stranded B-DNA and to reproduce its well known overstretching transition [2, 12].
We thus modify the Hamiltonian (1) and we allow the monomers to be into two
possible states: native B-DNA and denatured S-DNA [14]. This yields the following
Hamiltonian

� ˇH .t; � / D f

NX

iD1

b	i
Oti � Oz C �B

NX

iD1

ı	i ;B C
N �1X

iD1

�
J	i ;	iC1

Oti � OtiC1 C �	i ;	iC1

�
;

(2)

where 	i 2 fB; Sg is the state of monomer i . Here b	 is the monomer’s length in
state 	 and J	;	 0.D J	 0;	 / the interaction between two neighbouring monomers in
states 	 and 	 0. In what follows we assume �		 D 0 and denote J	 D J		 . As
the fundamental blocs of real DNA are extensible themselves, the stretched DNA is
longer than its contour length. To consider this we introduce a stretching modulus
and rewrite the native monomer length as bB D b

.0/
B .1 C f =Y /, with Y the Young

modulus. The elongation of the molecule reads for model (1) and (2), respectively,

L .f I �/ D cB

N

NX

iD1

˝Oti � Oz˛ ; L .f I �/ D cB

N

NX

iD1

ı	i ;B

˝Oti � Oz˛ C bS

N

NX

iD1

ı	i ;S

˝Oti � Oz˛ :

(3)

Here cB D b
.0/
B .1 C 2f =Y /, h� � � i is the usual thermal average, and � are the

parameters of model (1) and (2), respectively.
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2.1 Fit Procedure

Both in the case of ss-DNA and ds-DNA one aims to fit the model to some
experimental measurements. These consist in a set Sexp WD f.f .exp/

a ; L
.exp/
a /gNaD1 of

N points expressing force f .exp/ and polymer elongation L.exp/. Therefore given
Sexp one wants to find the best value of the model parameters by minimizing
the square distance �2 between the model predictions and the measurements.
Minimisation of �2 implies the calculation of L and of its derivatives with respect
to the parameters, which, in turn, are simply correlation functions. For the ss-DNA
model, for instance, one needs ultimately to compute the following correlation
functions

@L

@JB

D cB

N

NX

iD1

N �1X

kD1

˝�Oti � Oz� �Otk � OtkC1

�˛
c

;
@L

@bB

D fcB

N

NX

i;kD1

˝�Oti � Oz� �Otk � Oz�˛
c

;

(4)

where h� � � ic denotes connected correlation in the thermal average. Thus, in order to
minimise efficiently the function �2, we need to find a way to deal with the thermal
average appearing in Eqs. (3) and (4). Luckily, a simple set of equations can be
found to perform those thermal averages efficiently.

3 Analytical Solution with Cavity Method

We propose here to use the cavity method [9] to write exact solutions for the
constrained local partition function, the molecular elongation and the correlations
involved in the minimisation of �2. Let us explain the method briefly in the case of
ss-DNA. We start by making the only basic assumption that the chain is very long, so
that boundary effects are negligible. We then consider a monomer at site 0 in the bulk
and observe that the Hamiltonian (1) can be written as H.Ot/ D H0.Ot/ C H .0/.Ot/,
where H .0/ does not depend on site 0. We define Q.Ot@0/ as the trace of the
Boltzmann weight e�ˇH .0/.Ot/ over all Ot except 0 and its neighbourhood @0, and build
the constrained partition function

Z
�Ot0

� D e fbB Ot0�Oz
Z

S2

d2Ot@0e
JB Ot0�Pi2@0 Oti Q.Ot@0/: (5)

When variables Ot@0 are correlated only through site 0, i.e., for open chains, or for
very long closed ones, one has Q.Ot@0/ D Q

i2@0 Q.Oti /. This allows us to write
the following expressions for the partition function Z

�Ot� in terms of its cavity
counterpart Q

�Ot�, viz:
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Q
�Ot� D e fbB Ot �Oz

Z

S2

d2 Ou eJB Ot �OuQ .Ou/ ;

Z
�Ot� D e fbB Ot �Oz

�Z

S2

d2 Ou eJB Ot �OuQ .Ou/

�2

:

(6)

The expression (3) for the elongation L.f / simply becomes

L .f / D cB

Z

S2

d2 Ot P
�Ot� �Ot � Oz� ; (7)

where P
�Ot� D Z

�Ot� =Z and Z is a normalisation constant. A solution of Q
�Ot�

can be found iteratively, so that once Q
�Ot� is known, we can calculate Z

�Ot� and
L.f / by using Eqs. (6) and (7), respectively. At the same time we can compute the
correlation functions (4) involved in the fit procedure by evaluating the derivatives
@JB ;bB Q

�Ot�.
The model (2) for ds-DNA can be solved similarly by using the cavity method.

Although the procedure is slightly more involved, as one has the continuous
variables Ot and discrete ones � , it is still possible to follow a similar path. Once
again, the key quantity one needs to compute is the cavity constrained partition
function

Q	

�Ot� D e�B ı	;B C fb	 Ot �Oz X

�2fB;Sg
e"	�

Z

S2

d2 Ou eJ	� Ot �OuQ� .Ou/ (8)

and its derivatives with respect to the parameters. This allows in turn to estimate
L .f / and its gradient so as to minimize the function �2.

3.1 Fit to Experimental Measurements

We first fit model (1) to experimental measurements of ss-DNA stretching. Since
forces are below 40 pN, the monomers remain rigid and we keep Y �1 	 0, reducing
the number of fitting parameters. The fit, shown in Fig. 1a with Monte Carlo
simulations [10], closely agrees with the experiments. The values of the parameters
are reported in the caption of Fig. 1. We interestingly find that the model’s monomer
length corresponds to the actual DNA base distance measured by X-Ray diffraction.
We are therefore able to capture the real scaling of the molecule’s monomers by
solving the problem analytically.

We then proceed to fit model (2) to ds-DNA stretching measurements. Figure 1b
shows the very good agreement between the measurements and the fitted model. The
value of the parameters returned by the fit is reported in the caption of Fig. 1. We
find in this case a native monomer length which is of the order of 10 bases, which
curiously corresponds to the DNA helix period. The length bS is 1.75 times bigger
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a b

Fig. 1 Fits of the model (solid line) to experimental measurements (full squares) together with
Monte Carlo simulations (open circles). Left: Fit of ss-DNA stretching measurements. Experimen-
tal data is reported in full squares, theoretical solution in straight line while open circles are Monte
Carlo simulations. Values of the fit: b

.0/
B D 0:63 nm, JB D 7:68 pN nm, �2 D 1:3 � 10�4. Right:

Fit of ds-DNA stretching measurements.The data shows the typical behavior of ds-DNA stretched
by high forces, the double plateau and the jump around 65 pN are easily recognizable. Values of the
fit: b

.0/
B D 3:22 nm, bS D 5:63 nm, Y D 4570:38 pN, JB D 56:26 pN nm, JBS D 26:35 pN nm,

JS D 0:81 pN nm, �B D 106:61 pN nm, �BS D 2:75 pN nm, �2 D 9 � 10�5. In both fits we
assume room temperature kBT D 4:04738 pN nm

than the native one, giving back the known ratio between S-DNA and B-DNA. We
finally get that the native strand is much stiffer than the denatured portion of the
molecule.

4 Conclusions

In this work we applied the cavity method to solve and fit to experimental data
a phenomenological model of DNA stretching. The approach adopted ease the
calculation of the elongation and the fit by allowing to understand changes of the
fitting parameters as perturbations of the cavity equations. We believe that the results
obtained here can be naturally extended to study heterogeneous polymers, block
copolymers and protein helix-coil transitions in general.
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Idiosyncrasy as an Explanation for Power Laws
in Nature

Salvador Pueyo

1 Idiosyncrasy in Nature

One central theme of complex systems theory is the identification of the mechanisms
behind power laws in nature. Most attention has focused on simple mechanisms.
Here I show that, in broad conditions, power laws with exponent close to � D 1

also arise from complex combinations of mechanisms that, in isolation, would not
necessarily produce scale invariance. This contribution is a synthesis of papers by
the author in journals of ecology and of climatology (the main ones being [12, 13]),
which have, however, implications beyond these fields.

A fundamental difference between empirical research and simulations is the
role of noise. Typically, empirical data result from the combination of the studied
phenomenon with a myriad of other factors, whose joint effect is effectively random
because of its high dimensionality. A major challenge of empirical research is
separating these two components. In contrast, computers are unable to produce
noise, with pseudo-random number generators being used to reproduce it imper-
fectly. In this aspect, simulation models give a biased view of nature.

In some empirical observations there might be no fundamental difference
between signal and noise, if no single factor dominantes in the ocean of mechanisms
contributing to each datum. This could well be the case e.g., for the species
abundance distribution (SAD), i.e., the frequency distribution P.n/ of the number
n of individuals belonging to each of the species in an ecological community or
in a sample. Many simple mechanisms have been proposed to explain the shape
of SADs [9], but naturalists are often skeptical about them. A huge number of
elements affect the abundance of one given species (among them, its life cycle,
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its potential longevity and reproduction rate, the kinds of resources it consumes and
the proportions in which they are needed, the types of places used e.g., for refuge
or for laying eggs, its physiological response to a variety of environmental factors,
the types of predators, parasites and infectious agents that can affect it and how
they respond to its abundance, its capacity and patterns of movement, its propensity
or not to form colonies or flocks or to more complex forms of cooperation, the
peculiarities of its sexual reproduction if any, etc.).

The variety of factors acting differently on different species suggests that each
species could be ecologically idiosyncratic, i.e., different from the rest in ways that
cannot be described with a few words or a few parameter values. In fact, groups
of related species will often share some features, but will differ in others. While
biological species are not 100 % idiosyncratic, they appear to be so to a large extent.
This is the basis of the idiosyncratic theory of biodiversity by Pueyo et al. [12].
There could be many more instances of idiosyncrasy in other contexts.

This leads us to the need of identifying probability distributions that represent
noise alone, with no signal. This could make us think of the normal or the log-
normal, because of the central limit theorem. However, this theorem presumes a
specific way of combining the causative factors (either additive or multiplicative)
and these factors have some requirements in terms of mean and variance. We are
interested in distributions that are even freer of information.

2 Non-informative Probability Distributions

Non-informative distributions have been an object of controversy for more than one
century, and caused statistics to split into several schools [8]. While they interest us
for other reasons, this controversy is motivated by their role in statistical inference.
In Bayesian statistics, a variable or a parameter is assigned a probability distribution
over a range of values even when only one can be correct (e.g., we can assign a
distribution to a physical constant), expressing the plausibility of each possible value
when the real one is unknown. For some data D, the PDF of a parameter � is

f .� jD/ / f .�/f .Dj�/; (1)

where f .�/ is the prior distribution, meaning the distribution of probability
(plausibility) that we would assign to � if we did not know the data D. Equation (1)
can be applied recursively, taking f .� jD1/ as the prior probability density when
introducing a second data set D2. Ideally, before introducing any data at all, the
prior distribution should be non-informative. In fact, in this (and in our) context,
this adjective is attributed to distributions that may not be completely free from
information, but give no information that is not contained in the enunciate of the
problem. Many statisticians do not think that such a distribution exists, which is
the reason why mainstream or frequentist statistics avoids Eq. (1) by not assigning
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probabilities to parameters. Also among Bayesian statisticians there are a variety of
positions about this issue [8].

Edwin T. Jaynes (best known for the maximum entropy principle [4]) introduced
a criterion known as group invariance to determine non-informative distribu-
tions [5]. It is especially appealing because it consists of a simple requirement of
logical coherence. Its logic has similarities to that of relativity theory.

Consider e.g., the case in which we only know that the variable x expresses a
position. Let us introduce a new variable y D xCc (where c is a constant), differing
from x only in a change of coordinates. Again, the only thing we know about y is
that it expresses a position, so we are forced to assign to it the same distribution as
to x. The relation between the PDFs of reparameterized variables is well known,
namely

f .y/ D f .x/

ˇ
ˇ
ˇ
ˇ
dx

dy

ˇ
ˇ
ˇ
ˇ : (2)

The only distribution that leaves the PDF unchanged when introducing y D x C c

into (2) is the uniform one, in agreement with intuition.
In contrast to the case of positions, for other variables and parameters there is no

ambiguity in the origin of coordinates, because zero has a well-defined meaning.
However, in some of these cases a change of scale y D cx (e.g., a change of
units [1]) leaves the enunciate of the problem unchanged. Then, the distribution
that remains invariant under Eq. (2) is a power law with exponent � D 1,

f .x/ / x�1: (3)

For example, the author proposed to apply this criterion in the inference of
climate sensitivity S [13], which quantifies the roughly linear relation between
climate forcing �F (e.g., due to emitted CO2) and global warming �T after
reaching a steady state,

�T D S�F: (4)

Note that, if our distribution is to encode only the form of Eq. (4), it should not
change when inverting it, because it follows from (4) that

�F D ��T;

where � is the climate feedback parameter � D S�1. This is true whenever the PDF
of z D ln.S/ (i.e., z D � ln.�/) is symmetric about z D 0, but z D 0 corresponds
to S D 1, whose physical meaning depends on the units. As units are arbitrary
(and do not alter the form of Eq. (4)), the PDF of z should be symmetric not only
about z D 0 but also about any other value of z, i.e., the distribution of z should be
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uniform, which translates to the power law in Eq. (3) when expressed in terms of
S (or of �) [13],

f .S/ / S�1: (5)

3 Frequency Distributions with Little Information

The two previous sections give us the two key ingredients for the theoretical frame-
work presented in this paper: idiosyncrasy (Sect. 1) and Jaynes’ group invariance
criterion (Sect. 2). Besides using the distributions obtained with this criterion as a
tool for inference, Jaynes [6] noted that they could have a translation to frequency
distributions in some cases, but he does not seem to have developed the notion of
idiosyncrasy as a condition for this correspondence.

We obtain the prior in Eq. (3) as an intermediate step to estimate a parameter with
a single value, S . However, the parameters of other equations with the same shape
as (4) can take more than one value. Consider e.g., Fourier’s equation of thermal
conductivity

q D �krT:

Different materials have different k, so, unlike S , we can obtain an empirical
frequency distribution for k. While it is highly plausible that the abundances of
different biological species can be considered idiosyncratic because of the variety
and complexity of factors determining them, this is not so clear for the case of the
thermal conductivities of different materials. However, starting from this hypothesis,
the empirical PDF of k in 189 solid materials was analyzed by the author ([13],
§ 4.3) and did result into a distribution very close to (3) in a broad range. Note that
this is an instance of empirical power law that can be hardly interpreted as the result
of any process of self-organization. Grandison and Morris [3] also found a figure
close to Eq. (3) for the frequency distribution of biochemical pathway kinetic rate
parameters.

In the case of SADs, if species are fully idiosyncratic, knowing n for an
unidentified species should give us no information about anything else. Since an
SAD contains no reference to e.g., location, whichever distribution we choose will
remain invariant when changing location. However, for most types of distribution,
the value of n would give us some clue whether it refers to a whole continent or to
the researcher’s backyard. There is only one distribution for which the SAD does
not change when changing spatial scale. Even though n is a discrete variable, Pueyo
et al. [12] proved that this distribution is the direct analogue of Eq. (3),

P.n/ / n�1: (6)
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However, if, as usual, we are dealing with sets of species with a characteristic
size (e.g., insects), Eq. (6) cannot be our final answer, because the total number of
individuals of all the species in the community is limited for physical reasons, while
Eq. (6) would imply that some species would exceed this number of individuals,
whichever it is.

There is a well-known method to obtain a distribution with the least possible
information subject to some specified constraints: the maximum entropy formalism
(MaxEnt), also due to Jaynes [4]. Even though Jaynes [7] was clear about this point,
there is little awareness that the non-informative distribution is a needed input for
MaxEnt.

In the case of SADs, starting from Eq. (6) and applying MaxEnt to constrain the
mean n, we obtain a power law with � D 1 and an exponential bending function

P.n/ / n�1 exp��nI (7)

see [12]. This equation corresponds to the log-series distribution, which was one of
the first ever used to fit an empirical SAD [2] and is still widely applied. While some
empirical SADs are well fitted by Eq. (7), others display small departures, which is
not surprising because species are not fully idiosyncratic. The author showed that
sharing resources or predators among species does not, in principle, alter Eq. (7),
but similarities in the shape of the equations describing their population dynamics
can have an effect [12]. However, using Taylor series, Pueyo [11] also found that
most empirical SADs can be explained from small perturbations around Eq. (7).
The simplest deviation consists of a truncated power law with an exponent close to
� D 1.

4 Conclusions

Probably, there are many instances in which an empirical power law results from
some specific mechanism that can be reproduced by simple models, e.g., self-
organized criticality [10]. However, some hyper-complex systems can produce
observables that are effectively noise, and, in many cases, noise implies a distri-
bution close to a power law with exponent � D 1. It is essential to take this option
into account when studying complex systems in the real world.
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Symmetric Division Model of Cell
Differentiation Systems

Daniel Sánchez-Taltavull and Tomás Alarcón

1 Introduction

Tissues in higher multi-cellular organisms, have a hierarchical structure where
we find different types of cells. These different types are structured from non-
specialised cells which only proliferate to specialise, fully-differentiated cells which
have a specific function but have completely lost the ability to proliferate. A special
type of cell, the so-called stem cells, is the only one that have the ability for self-
renewal, i.e., the ability of, upon proliferation, producing cells of its own type
(more stem cells). In addition, stem cells have also the ability of differentiating
into more specialised cells which have lost the ability to self-renew and therefore
when they proliferate they produce cells that have moved one step further down
the differentiation cascade. This cascade culminates with fully differentiated cells
which have lost the ability to proliferate: They perform a specific function within the
organism during their life-time and then they die. The intermediate stages between
stem cells and fully differentiated cells are sometimes referred to as transient
amplifying cells.

This work is mainly motivated by the role stem cells play in cancer since the
ability of normal stem cells for self-renewal can be subverted and used by the
tumour to proliferate and invade the normal tissue. There is also the possibility
that the so-called cancer stem cells, i.e., cells that after undergoing a number of
gene mutations acquire the ability for self-renewal, exist. Since invasion of a healthy
tissue by a growing tumour can be understood in terms of the competition between
two populations where one or the other may go extinct the study of the stability of
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the corresponding populations is an appropriate starting point for the mathematical
modelling of this process.

One particular issue we would like to analyse is the effect of regulation by the
fully differentiated cells on the proliferation of the stem cells. The purpose of the
aforementioned differentiation cascade is to replenish the fully differentiated cell
compartment as they die. Since fully differentiated cells are carrying a particular
function within the tissue they belong to, their numbers are usually tightly regulated
and thus must be the proliferation of stem cells. In addition, since stem cells are
self-renewing dis-regulation of such mechanisms can lead to uncontrolled growth
and therefore to cancer.

Regarding the effects of dis-regulation of stem cell proliferation on cancer, we
study the effect of symmetric division on the evolution of the cell population. It is
commonly believed that stem cells normally divide asymmetrically so that their pool
stays roughly constant in size. This means that when a stem cell divides one of the
daughter cells remains a stem cell whereas the other differentiates. However, many
stem cells can divide symmetrically, i.e., producing two stem-cell descendants,
specially in conditions such as injuries which involve the need for high cell turn over.
The mechanisms controlling the transition between these two modes of division
must be under strict controls since its dis-regulation may induce abnormal growth
of the stem cell population and therefore lead to cancer.

Related to this issue of symmetric and asymmetric division, another aspect of the
problem that we would like to address is the effect of the length of the differentiation
cascade on the stability of the population. For most tissues the differentiation
cascade is not characterised so the number of TAC stages remains unknown.

2 Hierarchical Model

The variables that our model will take into account are x0, which represents
the number of stem cells, xi for i D 1; : : : ; n � 1 representing the number of
differentiated cells at the stage i of the differentiation cascade, xn which represents
the number of mature cells, and xnC1 representing the amount of signal generated
by the mature cells, which controls the size of the stem cells compartment. The
possible reactions are described in the following table:

Rate .x0; x1; : : : ; xn/ Description

W1 D x0p .1; 0; : : : ; 0/ Duplication

W2 D x0d0 .�1; 2; 0; : : : ; 0/ Differentiation

W3 D x0xnC1�0 .�1; 0; : : : ; 0; �1/ Death of stem cell

W2C2i D xi �i .0; : : : ; �1; : : : ; 0/ Death of xi

W3C2i D xi di .0; : : : ; �1; 2; 0; : : : ; 0/ Differentiation xi

W2C2n D xn�n .0; 0; : : : ; �1; 0/ Death of mature cell

W3C2n D xns .0; 0; : : : ; 0; 1/ Mature cell produces signal

W4C2n D xnC1�nC1 .0; 0; : : : ; 0; �1/ Clearance of signal
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Then, the behaviour of our model is described by the following master equation

@PX

@t
.t/ D

X

r

W.X � r; r; t/P.X � r; t/ � W.X; r; t/P.X; t/:

The mean-field behaviour of this system is described by the following system of
ordinary differential equations:

8
ˆ̂
<

ˆ̂
:

Px0 D px0 � x0d0 � x0xnC1�0

Pxi D 2xi�1di�1 � xi �i � xi di i D 1; : : : ; n � 1

Pxn D 2xn�1dn�1 � xn�n

PxnC1 D xns � xnC1�nC1 � xnC1x0�0:

There are two fixed points namely .0; 0; : : : ; 0/, which corresponds to the
extinction of the system, and a positive fixed point of the form xnC1 D .p �d0/=�0,
for some realistic parameters.

3 Stability

In order to ascertain how the long term-survival of the population depends on the
length of the chain, the duplication probability of the stem cells and the death rate
of the mature cells we made some simulations in Fig. 1.

The extinction are produced for two different reasons, the more typical is that
there is a small number of stem cells for p < 0:55, the second one is more
interesting, an small increase in the number of stem cells causes big fluctuations
in the whole system; see Fig. 2.

A larger chain has the following three effects, small number of stem cells required
to keep a population of matures of size M . Fluctuations in stem cells compartment

Fig. 1 This plot (two different points of view of it) represents the extinction time of the system
depending on the parameters �n and p. The length of the differentiation cascade is 5, the x-axis
is the death rate of the mature cells, the y-axis is the duplication probability of the stem cells, the
z-axis is the days needed to get an extinction, the white colour means that more than 10,000 days
are needed to get an extinction
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Fig. 2 Gillespie simulation of a system with some values of p and �0 that kill in a short time the
population

Fig. 3 Two different systems with the same number of mature cells at the meta-stable state, one
has a differentiation chain of length 4, the other one 6, we can see that the length 4 system is more
stable

has a bigger effect on whole system. If the number of stem cells decreases, more
time is required to have a decrease in the signal compartment. This increases the
extinction probability; see Fig. 3.
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4 Conclusions

We present a new mechanism of extinction in which the delay between the changes
in the stem cells compartment and the changes in mature cells compartment
contributes to unstabilize the population. The length of the differentiation cascade
contributes to protect the tissues against mutations who led to symmetric division.

We have identified a new extinction mechanism in which the coupling between
fluctuations that increase the pool stem cells and the delay in stem cell regulation
leads to the extinction of the stem cell population and, therefore, to the eventual
extinction of the whole. If there is an increase in the number of stem cells due to
fluctuations, such fluctuation in the number of stem cells will propagate along and be
amplified by the differentiation cascade in an amount which typically scales as 2L,
where L is the length of the cascade. Since the regulation of stem cell proliferation
by the fully differentiated cells has a delay of L-time units, the negative feed-back
between both populations may lead to extinction of the stem cells and therefore of
the whole population.

A larger chain has three different effects. Small number of stem cells required to
keep a population of matures of size M . Fluctuations in stem cells compartment has
a bigger effect on whole system. If the number of stem cells decreases, more time is
required to have a decrease in the signal compartment. This increases the extinction
probability.

Biologically, our result seems to indicate that longer chains, which favour
extinction, would protect the tissue against mutations leading to symmetric stem
cell division. From the perspective of the evolutionary dynamics of cancer, this
model leads to a scenario where two mutations are needed for tumour evolution:
One disregulating stem cell differentiation (identically to the previous case) and
another one disregulating stem cell death.



Free Energy Landscape Analysis of Mesoscopic
Model for Finding DNA-Protein Binding Sites

Rafael Tapia-Rojo, Juan José Mazo, Andrés González, M. Luisa Peleato,
Maria F. Fillat, and Fernando Falo

1 Introduction

The physical modelization of biomolecules requires a careful choice of the scale
of work depending on the problem we wish to study. All-atom simulations allow
an accurate description of the system but within small time scales and severe size
limitations subject to the available computational power. Coarse-grained models
gather groups of atoms in point particles simplifying greatly the system but keeping
the essence of the important interactions in the problem of study. At this level, the
free energy landscape (FEL) of the system appears as a powerful tool to extract
relevant information from a system with a high number of degrees of freedom.

We propose here a coarse-grained model for DNA-protein interaction problem.
Transcription from DNA to RNA appears as a complex problem that requires
regulation via DNA-protein interaction. Our model considers a particle as a generic
protein that diffuses along the DNA chain with an interaction term that is coupled
to local openings (bubbles). By applying an algorithm we are able to extract the
FEL of the system and identify possible binding sites as those states with lower free
energy. We focus mainly on the so called Transcription Starting Site (TSS), where
the RNA-polymerase binds before transcription starts.
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2 The Model

We base our model on a modified Peyrard–Bishop–Dauxois (PBD) model [1, 4].
PBD model reduces the complexity of DNA to a set of N point particles that
represent the base pairs of the chain. The only degrees of freedom are the
coordinates fyng which stand for the distance between each base pair. The total
Hamiltonian of the model accounts for two phenomenological interactions, the
intra-base and inter-base potentials,

H D
NX

nD1

	
p2

n

2m
C V.yn/ C W.yn; yn�1/




;

where pn D m dyn=dt is the linear momentum of the n-th base pair and m

is its reduced mass. The potential W.yn; yn�1/ describes the inter-base pair or
stacking interactions and its model by an anharmonic interaction. The intra-base
pair potential V.yn/ takes the form of a Morse potential (usual in chemical bonds)
with an entropic barrier to account for solvent interaction.

Inspired in the one-dimensional diffusion of DNA-binding proteins, we include
now a new degree of freedom to the traditional PBD model, a Brownian particle that
slides along the DNA chain [5]. This particle interacts with the DNA through the
phenomenological potential

Vint.Xp; fyng/ D � Bp
�	2

X

n

tanh.�yn/e�.Xp�na/2=	2

;

which depends on the particle position Xp and the DNA instantaneous configuration
fyngN

nD1. This potential is just a sum of gaussian wells, each centered at the n-th base
(na) and whose amplitude depends on the opening of the base pair. The hyperbolic
tangent term just saturates the interaction strength. In this sense, the particle interacts
more intensely with open regions of the sequence. In addition, the base pairs are also
affected by the particle, so that they are more likely to be opened if the particle is
within its range of interaction.

3 Methods

Langevin dynamics simulations: The model is simulated by integrating numerically
N C 1 Langevin equations (N base pair plus the particle) using an stochastic
Runge–Kutta algorithm. Each of the DNA sequences we study is simulated in
five different realizations each one covering 40 �s, with a preheating time of
1 �s, reasonable times from a biological perspective. The simulation temperature
is T D 290 K. We use periodic boundary conditions for the diffusing particle and
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fixed boundary conditions for the sequence, adding 10 CG base pair clamps of at
the end of each sequence to provide “hard-boundaries” and avoid end effects.

Analysis: We aim to find the most important conformational states in the
dynamics in order to obtain a biological interpretation. To do so we apply an
algorithm that allows us to obtain the Free Energy Landscape (FEL) of the
system [3] so that the most relevant states can be identified and quantified. We
start applying Principal Component Analysis to the trajectories to reduce greatly the
dimensionality of the system but keeping most of the information. Next we translate
the five reduced trajectories and the particle trajectory into a Conformational
Markov Network (CMN). This coarse-grained picture is constructed by discretizing
the conformational space explored by the system in order to define the nodes
(microstates) of the network. Next, the links between the nodes are set according
to the jumps between the microstates in the trajectories. In this sense, nodes are
weighted (Pi ), and the links directional and weighted (Pij). In order to define
the conformational states of the system, we split the CMN into its basins of
attraction, i.e., regions in which the probability fluxes (Pij ) converge to a common
state (attractor) of the network. To do so we apply the stochastic steepest descent
algorithm, developed in [3]. Each basin corresponds to a coarse-grained macrostate
of the system. From the basin network we can build FEL of the system represented
as a hierarchical tree diagram (dendrogram), by assigning to each node a free energy
according to its weight Fi =kT D log PW � log Pi , where PW is the weight of the
weightiest node. This magnitude is used as a control parameter, increasing it step
by step from the weightiest node, so that new nodes arise, together with their links.
Most relevant states can now be identified as those more populated and, in addition,
the topology of the network informs us about possible transitions between them.

Study of cyanobacterial genome: In this work, we focus on a concrete genome,
analyzing promoters from Anabaena PCC 7120 [2]. Cyanobacteria constitute an
interesting model as they show differentiated cells (heterocysts) that need several
transcriptional changes to develop. In addition, several well characterized promoters
are available so that our computational results can be clearly compared with
experimental works.

4 Results

We show now provisional results of some cyanobacteria promoters we have
analyzed so far. TSS finding and base-pair opening: We analyze promoter sequences
comprising between 100 and 200 base-pairs. Figure 1 shows the base-pair opening
profile for each promoter sequence with the TSS site highlighted. We find in any
case a peak located around the TSS site. This means that, on average, this site is
likely to be open, this is, bubbles form with high probability around the TSS.

Promoters with different characteristics have been chosen for the analysis.
As Fig. 1 shows, some of the analyzed sequences contain a single TSS while others
more than one. Even though in every case all the TSSs can be identified with
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Fig. 1 Mean base-pair position for each of the six analyzed promoters. We can find a peak around
the tss in every case meaning that bubbles are likely to be formed around this site

this representation, it is interesting to extract further information from the model.
Specifically, different TSSs may show different activity levels depending on the
amount of RNA they produce. We refer to this as the strength of each promoter.
The relative height of the peaks in Fig. 1 may be a qualitative indicative of this
behavior, but a quantitative study motivates the use of the algorithm described in
Sect. 3. Another remarkable point in Fig. 1 is the appearance of multiple peaks apart
from the ones marked as TSS, revealing the possibility of additional binding sites
or just the existence of “false positives”. Further discussion can be also done in this
point, as the relative strength of the TSS compared to other possible binding sites
found in our model can be studied and related with the known biological behavior.

FEL analysis of highlighted promoter: We choose the most interesting promoter
we have analyzed so far in order to illustrate the analysis method exposed above.
The interest of ntcA promoters lies in the fact that it displays more than one TSS and
so it is subject to further biological interpretation. Figure 2 shows the free energy
dendrogram for the ntcA promoter, with the set of basins and their accumulated
weight corresponding to its TSS sites highlighted. In addition we draw the typical
macrostate of the branch.

Promoter ntcA contains three different TSSs. The interpretation of the free
energy dendrogram matches with the biological studies of ntcA. TSS3 and TSS1 are
just transcribed when there is no nitrogen in the environment. TSS3 is a stronger site,
as transcription last for a longer time and the site is still active when the heterocyst
is mature. On the other hand, TSS1 is just active transitorily. TSS2 is a constitutive
site, so it is always transcribed. This may explain the relative importance found in
our analysis.
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Fig. 2 Free energy dendrogram for ntcA. The TSSs appear as populated branches with relative
occupations that inform about the importance of each site

5 Conclusions and Further Work

In this work we use a previously developed mesoscopic model for DNA-protein
interaction to analyze the genome of a cyanobacteria organism. The goal is to
identify and characterize the TSSs of each of the analyzed promoters. This site
is observed to show a larger mean opening due to the formation of bubbles. This
behavior is greatly influenced by the dynamics of the generic protein. In order
to analyze quantitatively the sequences we apply an algorithm that translates the
trajectories onto a complex network so that the free energy dendrogram can be
obtained. From this analysis, most relevant sites in the dynamics can be found and
related to the biological behavior of each promoter.

This work is to be continued in two main directions. First, further biological
interpretation can should be done from the basin networks and the free energy
dendrogram. Each of the chosen genes show different regulation features that may
be related to the physical parameters found in our analysis. Additionally, more
promoters are to be simulated and analyzed in order to complete the work and
validate our model and method.
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Are First Order Phase Transitions Possible
in Disordered Low-dimensional
Non-equilibrium Systems?

Paula Villa and Miguel Ángel Muñoz

1 Introduction

Quenched disorder has a dramatic effect on both the statics and the dynamics of
phase transitions [5,7,10]. An argument by Imry and Ma explains why symmetries,
in low dimensional systems, cannot be spontaneously broken in the presence of
quenched random fields [9]. In a nutshell, the argument is as follows. Suppose a
discrete symmetry (e.g., Z2 or up-down) was actually spontaneously broken in a
d -dimensional system and imagine a region of linear size L with a majority of
random fields opposing the broken-symmetry state. As a direct consequence of
the central limit theorem, by reversing the state of such a region the bulk free
energy would decrease proportionally to Ld=2, but this inversion would also lead
to an interfacial energy cost proportional to Ld�1. Confronting these two opposing
contributions for large region-sizes it follows that for d � 2 the first dominates,
making the broken-symmetry state unstable (if the distinct phases are related by
a continuous symmetry, soft modes reduce the effect of the boundary conditions
to Ld�2 and the marginal dimension is d D 4 [1]). Thus, the energetics of
low-dimensional systems is controlled by the random field and this is symmetric,
thus preventing symmetries from being spontaneously broken. Instead, in higher
dimensional systems, the situation is the opposite, symmetries can be spontaneously
broken and phase transitions do exist.
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The Imry–Ma argument (i) is backed by more rigorous renormalization group
calculations, which prove that no symmetry-breaking occurs even at the marginal
case d D 2 (where rough interfaces could potentially break the argument above [1]),
(ii) holds for equilibrium systems (where the free energy is well defined), (iii) has
been verified in countless examples both experimentally and numerically, and
(iv) has been extended to quantum phase transitions [4, 16].

Remarkably, a recent work by Barghathi and Vojta [2], has shown that—in blatant
contrast with the equilibrium case—in genuinely non-equilibrium systems including
absorbing states [6, 8, 12, 14], for which there is not such a thing as a free energy,
second-order phase transitions do survive to the presence of random fields even in
one-dimensional cases; see also [13,15]. The Imry–Ma does not apply to these non-
equilibrium systems owing to the presence of absorbing states, and states of broken
symmetry can exist in the presence of random fields.

Let us shift the discussion to first-order phase transitions, at which system prop-
erties such as the magnetization, energy, density, etc, change abruptly as a control
parameter crosses a threshold value, at which two different phases coexist. As shown
by Aizenman and Wehr, first-order phase transitions in low-dimensional equilibrium
systems are rounded (made less sharp) by disorder and, even more remarkably,
the rounding may result in a critical point, i.e., first-order/discontinuous phase
transitions become second-order/continuous ones upon introducing (random-field)
disorder [1]. A similar conclusion applies to the case of random interactions [1, 3];
indeed, a random distribution of interactions (e.g., bonds) locally favors one of the
two phases and thus, it has the same effects as random fields. In close analogy
with the argument above for the absence of symmetry-breaking, also in this case,
regions (or “islands”) of arbitrary size of one of the phases appear in a stable
way within the other. Therefore, islands exist within islands on any of the two
phases in a nested way, leading always to hybrid states. Hence, two distinct states
cannot possibly coexist and first-order transitions are precluded in disordered low-
dimensional equilibrium systems.

2 Analysis

In the light of the discussion above on how, shifting to the non-equilibrium realm,
some fundamental cornerstones of equilibrium Statistical Mechanics are shattered,
one could wonder if first-order phase transitions, and hence, phase coexistence,
might be possible in low-dimensional non-equilibrium disordered systems; see
Table 1 for a synthetic summary. Aimed at shedding some light on this issue we
study non-equilibrium models with absorbing states in the presence of disorder.

More specifically, we study one particular model, similar in spirit to the well-
known “contact process” [8,11,12,14], in which two particles are needed to generate
an offspring while isolated particles can spontaneously disappear. As a first step, we
verify that the pure (or “clean”) version of the model exhibits a first-order transition
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Table 1 Random fields in low-dimensional disordered systems. Summary of the effects of
quenched random fields on the existence of: continuous/second-order (with a concomitant spon-
taneously symmetry breaking), and discontinuous/first-order (with associated phase coexistence)
phase transitions in d � 2 systems, both in equilibrium and in non-equilibrium cases (these last
with one or more absorbing state)

2nd order spontaneous 1st order

System with random fields d � 2 symmetry breaking (phase coexistence)

Equilibrium NO [9] NO [1, 3, 9]

Non-equilibrium (abs. states) YES [2] ?

separating an active phase from an absorbing one. Then we introduce disorder and
scrutinize its effects.

After a careful analysis of such system we observe that the discontinuous
transition do not survive to the introduction of disorder and becomes rounded!

3 Discussion

We conjecture that first-order phase transitions cannot appear in low-dimensional
disordered systems with an absorbing state. In other words, the Imry–Ma–
Aizenman–Wehr–Berker argument for equilibrium systems can be extended to
non-equilibrium situations including absorbing states. The underlying reason for
this is that, even if the absorbing phase is fluctuation-less and hence is free from the
destabilizing effects the Imry–Ma argument relies on, the other phase—that should
coexist with it—is active, and hence, intrinsic fluctuations destabilize it as predicted
by the Imry–Ma–Aizenman–Wehr–Berker argument, precluding phase coexistence.

Remarkably, in the case studied by Barghathi and Vojta, in which the Imry–Ma
is violated (for a second-order phase transition) the two broken-symmetry states
are absorbing ones: once the symmetry is broken in any of the two possible ways,
the system becomes completely free from fluctuation effects and, consequently,
the Imry–Ma argument breaks down. Thus, the only possibility to have first-order
phase transitions in low dimensional disordered systems would be to have (in its
pure-version counterpart) a discontinuous phase transition from one absorbing state
to another, different, absorbing state. We are not aware of any such transition.
Therefore, we conclude with a negative answer to the question in the title, at least,
for non-equilibrium systems with absorbing states.
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Labquakes: Acoustic Emission During
the Compression of Porous Materials

Eduard Vives�, Jordi Baró�, Xavier Illa�, and Antoni Planes�

It has recently been shown [1, 5] that there might be a strong relation between the
statistics of the acoustic emission AE detected during the compression of porous
materials in the lab and the statistics of real earthquakes. In this extended abstract
we discuss details of this comparison and what would be the consequences if the
two phenomena turn out to be in the same universality class.

Small samples (with an initial transversal section A of few mm2 and a height h

of few mm) of a porous material are compressed in the vertical direction between
two plates by increasing the applied load F at a constant compression rate, i.e.,
P.t/ D F.t/=A D Rt. Results are reported for Vycor which is known to have
a skeleton of almost pure quartz (SiO2) and pores of sizes in the nm range.
The porosity is of the order of 30–40 %. Preliminary results with other natural
porous materials have also been presented [6]. By using AE sensors attached to
the compression plates it has been possible to detect the ultrasonic signals (in the
range 20 kHz–2 MHz) generated when small portions of the skeleton break. The
signals are amplified and treated by well-known avalanche analysis techniques: by
means of an imposed threshold one can separate individual events and measure their
properties (time of occurrence ti , energy Ei , amplitude, duration, : : :) in a way very
similar to what is done in seismology to characterize earthquakes. The study of
different specimens compressed at different rates R D 0:2, 1:6 and 12:2 kPa/s has
rendered three catalogues of data ti ; Ei ; i D 1; : : : ; N with sizes N D 11;022,
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28;202 and 2;431 signals respectively. Given the different compression rates R,
the full durations of the catalogues are also very different: �t D 132;705, 18;948

and 2;296 s respectively. The data sets have been analyzed in order to check four
different statistical laws that are known to apply to real earthquake data and that are
briefly summarized below.

Gutenberg–Richter law. It states that the distribution of energies obeys to the
power-law probability density

dP.E/ D g.E/dE / E��dE: (1)

The exponent was found to be � ' 1:66 ˙ 0:15 for the major earthquake catalogue.

Modified Omori law. After a big event, called main-shock (MS), one can define
the sequence of aftershocks (AS) as those events with an energy smaller than the
energy of the MS. The rate of aftershocks (number of AS events per unit time)
decays as [7]

PNAS.t/ D K

.t � c/p
; (2)

where c is a constant, t is the time since the MS, p is an exponent that takes values
typically close to 1, and K is defined below. This is the a law that shows the existence
of correlations in the occurrence of earthquakes. If the times of occurrences of
earthquakes were a Poisson process one would get p ' 0. In practice, in order to
gain statistics, the Omori law can be evaluated not only after the very few big MSs,
but by considering as MSs, all those events in a certain energy window .E; EC�E/.

Productivity law. This law also refers to the sequence of aftershocks and estab-
lishes that the constant K depends on the energy of the MS as [3]

K / E2˛=3; (3)

with ˛ in the range .0:7; 0:9/. Aftershock activity decays in time, but it is larger the
larger the energy of the MS.

Universal scaling law for the waiting times. One decade ago, a different way to
study earthquake correlations was proposed, which is independent of the definition
of MS and AS (which is, to some extent, controversial). It consists of studying the
distribution of waiting times ı between consecutive events. For a given catalogue
corresponding to a certain Earth region and time interval (t0; t0 C�t), one considers
all the events above a certain threshold E and evaluates the sequence of waiting
times between them. The distributions of waiting times dP.ı/ D D.ı/dı exhibit
a strong dependence with the region, the time period and the threshold E . But,
interestingly, these distributions can be scaled into a universal function ˆ defined
by the following scaling property [2]
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D.ı/ D 1

rE

ˆ.ırE/; (4)

where rE is called the average activity rate and is computed as the number of signals
above E , divided by the catalogue duration �t . In other words, all the dependencies
with the cutoff E , the region and the specific time interval, are taken into account
by the average rate rE . Corral showed [2] that, if one considers regions and time
intervals in which the rate rE is stationary (it does not change in time subintervals),
the function ˆ is a gamma function. But, if one considers catalogues obtained for the
same time period t; t C �t but mixing waiting times corresponding to regions with
very different activity rates the function ˆ displays a double power-law behavior,

ˆ.x/ D
8
<

:

x�.1��/ if x 
 1

x�.2C�/ if x � 1;
(5)

where .1 � �/ ' 0:9 and .2 C �/ ' 2:2. Heuristic arguments were given in order to
show that these two exponents are related to the distribution of earthquake activities
in the different regions of the Earth crust.

The above four laws (1)–(4) have been tested in labquakes. Note that in the AE
experiments there is no access to the location of the events, so there is no mechanism
to separate the catalogues into different regions. Figure 1a shows the analysis of the
Gutenberg–Richter behavior of the experimental data. It can be observed that the
power-law behavior extends several orders of magnitude. We have also confirmed
the stationarity of the histograms by reanalyzing the data after dividing the duration
�t in intervals of 3;000 s. Figure 1b shows the test of both the Omori law and the
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Fig. 1 Left: Energy distribution of AE events during the compression of Vycor at three different
compression rates. Right: Analysis of the AS production after every MS in different energy
windows and for different compression rates
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Fig. 2 Universal scaling law for the distribution of earthquakes. The plot shows data correspond-
ing to different compression rates R and different energy thresholds E , scaled by the average
activity rate rE;R that depends on the energy threshold and the compression rate

Table 1 Summary of the
main exponents
characterizing the different
power-law behaviours
observed in earthquakes and
labquakes

Earthquakes Labquakes

Gutenberg–Richter � 1:67 ˙ 0:15 1:40 ˙ 0:05

Omori p 0.9–1.8 0.75

Productivity ˛ 0.7–0.9 0:5 ˙ 0:1

Waiting times 1 � � 0.9 0.93

Scaling law 2 C � 2.2 2.45

productivity law. Data corresponding to different compression rates R and MS in
different energy windows (as indicated) are well overlapped. Note that the temporal
scale has been normalized by the average activity rate of every catalogue (N=�t)
since, for every experiment, there is an unknown factor in the energy measurement
that depends on the coupling of the specimen with the compression plates. Figure 2
shows the universal scaling behavior for the distribution of waiting times. As it can
be seen, an overlap of all the data corresponding to different compression rates R,
and energy thresholds E (as indicated) is also very good.

Table 1 shows the values of the exponents found in the compression experiments
and the values found for earthquakes.

The first point to be discussed is the fact that the exponents characterizing the
Universal Scaling function behaviour show a good agreement. This result clearly
suggests that this scaling extends many orders of magnitude (from the energies of
earthquakes in the range of 1010–1018 J to the energies of our AE events in the range
10�18–10�11 J).
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The agreement with earthquake data is even more remarkable since one should
take into account that the exponents 1 � � and 2 C � for earthquakes are obtained
from the scaling of data from catalogues mixing regions with very different activity
rates r . In our case we have three catalogues, each of them considered as a unique
region, that display strong fluctuations in the activity rate along time. Typically,
in the beginning of the compression experiment activity (measured along 1 min
intervals) is very low �10�2 events/s, but one can find intervals close to big failure
events in which the activity reaches 102 events/s. This means that the activity in
our “regions” is not stationary is not stationary, but spans 4 orders of magnitude.
This result reflects the existence of a spatio-temporal symmetry in the distribution
of rates.

A second interesting issue to be discussed refers to whether or not the values of
the exponents characterizing the three laws (1)–(3) are universal or not. A priory,
from the table, one would conclude that some of the values are not in complete
agreement. But, one should take into account that the determination of energies for
earthquakes is not a straightforward procedure. First, there are different definitions
of energy; second different seismometers are used depending on the energy ranges,
the different regions on Earth, and also instruments have evolved very much in
time (some catalogues in Japan extend for one century). For this reason the exact
value of the Gutenberg–Richter � exponent for earthquakes has sometimes been
questioned. For instance Kagan has suggested [4] that it could be close to 1.50. Note
that, contrarily, the AE signals from labquakes are measured with a single detection
setup for all energies and during the whole experiment. Uncertainties in the energy
determination and the incompleteness of the catalogues could also justify that the �,
p and ˛ exponents are not in full agreement.
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Part II
Emergence, Spread and Control

of Infectious Diseases

Editor

Andrei Korobeinikov

Preface

The Workshop on Emergence, Spread and Control of Infectious Diseases was held
on June 10–11, 2013, at the Centre de Recerca Matemàtica. This interdisciplinary
workshop, which was organized in the framework of the Mathematics of Planet
Earth 2013 (MPE2013) programme, attracted more than 30 scientists, mathemati-
cians and biologists, affiliated in Spain, Europe and around the world, and proved to
be highly successful. The invited lectures were delivered by Dolors Vaqué (Institut
de Ciències del Mar, CSIC), Andreas Meyerhans (Universitat Pompeu Fabra), Josep
Sardanyés (Institut de Biologia Evolutiva, CSIC-UPF) and Valery Perminov (Tomsk
Polytechnical University, Rusia).

The objective of the workshop was to bring together biologists and mathemati-
cians to exchange ideas and, most importantly, challenges arising in biology and
epidemiology and where the involvement of mathematical methods and participa-
tion of mathematicians can be particularly beneficial. The organizers also hoped that
the workshop gave to young researchers an opportunity to present their results and
findings and to learn from more experienced colleagues. In the organizers’ view, the
best possible outcome of the workshop would be forming on-going interdisciplinary
collaborations between mathematicians and biologists. This workshop was the first
of a series of planned events at CRM on Mathematics in Life Sciences.

We present in this volume six Extended Abstracts coming from a selection of the
talks given at the workshop.
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The organizers would like to thank all participants and authors, who contributed
to the workshop’s success. We would also like to thank the CRM for financial
support, and the CRM’s administrative staff for wonderful organization of this event.

Barcelona, Catalonia, Spain Andrei Korobeinikov



Global Properties of a Core Group Model
for Sexually Transmitted Infections

Carles Barril and Andrei Korobeinikov

1 Introduction

We refer to sexually transmitted diseases as the illnesses caused by pathogens which
are transmitted mostly via sexual contacts. Although STDs are a very heterogenous
set of diseases, there is a common property closely related to their dissemination: the
spread of STDs over the population is not homogenous, but it depends on the sexual
habits of the population. More precisely, population splits in two groups: those who
have a risky sexual behaviour and those who take care during sexual contacts, which
is known as the core.

Despite its important role in the epidemic’s development, the dynamics of the
core haven’t been considered in many STDs models and it have been treated as
a population group of constant size. Some exceptions are those given in [1]. Our
objective in this paper is to study how the social behaviour affects the dynamics of
the core.

2 The Core Model

We now are ready to propose a first model. We consider three population groups, A,
S and I , representing the non-core individuals, the susceptible core individuals that
are not infected, and the infected ones. The total population N is the sum of these
three subpopulations, two of which form the sexual network core (S and I ). Given
the nature of the infectious process, it is reasonable to consider that new infections
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occur at a rate proportional to the product of susceptible by infected (SI ). According
to this model, people in the A compartment cannot become infectious. However, we
assume that there is a exchange of people from the A and the S compartments due,
for instance, as a result of education, the infection state or the social environment.
Although the processes that have a role in this flow can be very complex, as a first
approximation we consider that it only depends on the A, S and I variables. As an
example, one might think that an increase in the number of the infected may have
a dissociative effect on the individuals who are about to enter into the core. In this
sense, we will consider a general function that reflects the recruitment of individuals
from A to S , or vice versa, and that this recruitment rate has the form r.A; S; I /.
Thus, the system of differential equations that summarizes these relations between
the compartments A, S and I is

PA D b � r.A; S; I / � mA

PS D r.A; S; I / � ˇSI C ˛I � dS (1)

PI D ˇSI � ˛I � cI;

where m; d and c are the per capita mortality rates associated to A; S and I

respectively, and ˛ is the recovery rate.
We should be aware that everything can be much more complex and that here

we are considering a simplified situation in order to understand some aspects of
the STDs dynamics. Therefore, we do not consider processes such as vertical
transmission from mother to child, nor the fact that there may be a time lag during
which the infected are not infectious (the latency). We neither distinguish between
individuals exposed to the pathogen and infected ones. These and other factors have
to be addressed separately.

As A, S and I represent individuals, they should be positive. The function r has
to satisfy the following two consistency conditions:

0 � PA.0; S; I / D b � r.0; S; I / H) r .0; S; I / � b;

0 � PS.A; 0; I / D r.A; 0; I / C ˛I H) r .A; 0; I / � �˛I:

These two conditions ensure that the first octant is a positive invariant set. From now
on, we restrict our analysis to the first octant and the statements related to stability
are done considering the restricted topology on this space.

3 General Results of the Model

By means of mathematical analysis tools we have proven a series of properties
satisfied by system (1). In order to expose all of them in a condensed manner, we
summarize these results in the list below.
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1. The set 4 D f.A; S; I / 2 R
3C j b=max � A C S C I � b=ming is a positively

invariant set and a global attractor of the model. Here, max D maxfm; d; cg and
min D minfm; d; cg. Biologically, it means that the total population, N , tends
to the interval Œb=max; b=min�.

2. In the plane S D S� D .˛ C c/=ˇ equation PI D 0 holds. If S < S� then PI < 0,
and if S > S� then PI > 0.

3. If R00 D b=minS� � 1 then a subset of the plane I D 0 is a global attractor of
the model. That is, the infected individuals tend to disappear in this case.

4. If R0 D b=dS� � 1, then there are no endemic equilibria (there are no fixed
points in I > 0).

5. If r .A; S; 0/ � dS� > 0 for all A; S � 0, then there is at least one endemic
equilibrium in I > 0.

6. If r .0; S; 0/ � dS� > 0, @r=@A > 0 and @r=@I < 0 hold, then there is just one
endemic equilibrium.

4 Global Properties of the Model for Particular
Recruitment Rates

It seems that a comprehensive study of the general system (1) is a challenging task,
as we have observed that there is a strong dependence between the function r and
the number of fixed points. For this reason, we focus on two families of recruitment
rates:

• r.A/ > 0 with @r=@A > 0,
• r.A; S/ D k C pA C qAS, with k; p; q � 0 and k < b.

For these recruitment rates, we proved the following results related to the asymptotic
behaviour of theirs orbits.

Theorem 1. If r.A/ > 0 with @r=@A > 0; there is a basic reproduction number

R0 D r�

dS� ;

and the following holds:

1. If R0 > 1, then the system has a unique endemic equilibrium which is a global
attractor in the first octant’s interior Int.R3C/.

2. If R0 � 1 then the system has no endemic equilibria and the only fixed point of
the model is in the I D 0 plane, and it is a global attractor in the first octant R3C.

Theorem 2. For the case r.A; S/ D k C pA C qAS, with k; p; q � 0 and k < b,
there is a basic reproduction number
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R0 D mk C p .b � dS�/

mdS� C q
.b � dS�/

md
;

and the following holds:

1. If R0 > 1 then the system has a unique endemic equilibrium, which is a global
attractor in the first octant’s interior Int.R3C/.

2. If R0 � 1 then the system has no endemic equilibria and the only fixed point of
the model is over the I D 0 plane. The question about if this equilibrium is a
global attractor of the first octant R3C remains open.

Both proofs are based on the Lyapunov’s Second Method and La Salle’s
Invariance Principle [3] and use the Volterra type Lyapunov Function (cf. [2, 4]).
Under hypothesis of Theorem 1, the system (1) becomes uncoupled, and to proof
the global stability of the endemic fixed point .A�; S�; I �/ for R0 > 1 we have used
the Lyapunov function

V.S; I / D S � S�lnS C B.I � I �lnI /;

where B D c=.˛ C c/. Under the hypotheses of Theorem 2, for R0 > 1 we have
used the Lyapunov function

V .A; S; I / D A � A�lnA C B
�
S � S�lnS

� C D
�
I � I �lnI

�
;

where B D pA�S�=.qA� C pA�S�/ and D D cB=.˛ C c/.
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Incorporating Landscape Heterogeneities
in the Spread of an Epidemic in Wildlife

Luca Gerardo-Giorda, Joshua Keller, and Alessandro Veneziani

1 Introduction

One of the main difficulties in the modeling and numerical simulation of the spread
of an infectious disease in wildlife resides in properly taking into account the
heterogeneities of the landscape. Forests, plains and mountains present different
levels of hospitality, while large interstates, lakes and major waterways can provide
strong natural barriers to the epidemic spread. A canonical approach has been to
discretize both population and geography into geopolitical units and consider the
movement of individuals from unit to unit [4]. This approach, however, does not well
represent the biological realities of animal movement, since animals do not move at
the scale of geopolitical units. We combine a standard SEI epidemiological model
with a diffusion process to account for movement as a continuous process across
a continuous region [1]. This results in a system of parabolic reaction-diffusion
equations with nonlinear reaction term. Landscape heterogeneities are accounted
for by including in the computational domain the significant geographical features
of the area. We discretize the resulting model in time by an IMEX scheme and
in space by finite elements. To show the effectiveness of the method, we present
numerical simulation for rabies epidemics among raccoons in New York State.
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2 Continuous Model for Movement

Let x 2 � � R
2. The SEI model subdivides the population individuals at time t

into Susceptibles S.t/, Exposed E.t/, and Infectious I.t/. We consider as unknown
the vector u.x; t/ D Œs.x; t/; e.x; t/; i.x; t/�T of their densities in location x at time
t . Thus,

S.t/ D
Z

�

s.x; t/ dx; E.t/ D
Z

�

e.x; t/ dx; and I.t/ D
Z

�

i.x; t/ dx:

In more general cases, a fourth group of Recovered individuals could be considered
(SEIR models), but in our case study this class is empty, as rabies is lethal for
raccoons. However, the extension of the following arguments to SEIR models is
straightforward.

We model the spread of an epidemic in � by a vector generalization of the
normalized Fischer’s equation, a nonlinear system of reaction-diffusion equations
of parabolic type

@t u � div .�ru/ D .A � B.u// u in � � Œ0; T �; (1)

where

� D
0

@
�s 0 0

0 �e 0

0 0 �i

1

A ; A D
0

@
˛ ˛ 0

0 �	 0

0 	 ��

1

A ; B.u/ D
0

@
�0 n �ˇs 0

ˇi �0 n 0

0 0 �0 n

1

A ;

n D s C e C i being the total population, ˛ the reproduction rate, ˇ the
infectiveness of a contact between a susceptible and an infectious individual, 1=	

the latency period, and 1=� the life expectancy of a rabid animal. We assume a
density dependent natural mortality rate 0n. System (1) is completed by a suitable
initial value u0, and suitable boundary conditions on @�. In general homogeneous
Neumann boundary conditions are used to model an isolated environment, but other
boundary conditions can be considered as well: an homogeneous Dirichlet boundary
condition would model an hostile environment, while a Robin boundary condition
would model a migratory dynamics.

3 Modeling Landscape Heterogeneities

We consider here two kinds of geographical heterogeneity in the region of interest,
that are modeled in two different ways. Localized heterogeneities, such as the
presence of major waterways and roads, locally drive the movement of the wild
animals. Extended heterogeneities are particular features significantly affecting the
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eτ
en

2ε

Fig. 1 Left: .e� ; en/ reference frame along the river. Right: diffusion coefficient in the normal
direction to the river, with �H D 100, �L D 1, and � D 0:2 (Figures reproduced from [1], with
permission)

dynamics of the infection in a whole region. This is the case, for instance, of lakes,
forests and mountains.

The effect of localized heterogeneities on the population dynamics are included
by locally modifying the diffusivity tensors. In each point of the river we identify
a local frame of reference .e� ; en/; see Fig. 1 (left). In a neighborhood † of width
2" of the river the diffusivity is gradually decreased, from the regular value �H to
a lower value �L, as plotted in Fig. 1 (right). By denoting with Oy is the distance
from the river along en, the compartmental diffusion tensor �k (k D s; e; i ) is first
computed in the .e� ; en/ reference frame, then referred to the Cartesian global frame
of reference, by means of a rotation matrix R aligning the local frame of reference
to the global one

�k D R O�kRT ; O�k D
0

@
�H 0

0 �H � .�H � �L/ exp

�

1 � �2

�2 � Oy2

�

1

A : (2)

Strong heterogeneities between different areas naturally induce a partition of the
computational domain into homogeneous subregions. To take into account different
levels of hospitality, we act on both the carrying capacity of the region, and the
diffusion coefficients. For instance, in a unhospital area, we both lower the carrying
capacity to reduce the presence of animals at the disease-free equilibrium, and the
diffusion coefficient to avoid massive migration towards such area.

4 Finite Dimensional Approximation

Let �t be a time step and let tn D n�t . System (1) is advanced in time by
mixed implicit/explicit (IMEX) finite differences, where the nonlinear term is
treated explicitly, while the principal part of the operator is treated implicitly. Space
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discretization is based on finite elements (for an introduction to the method see
e.g., [3]), since the latter are particularly suitable for complex geometries as real
geographic regions can be. On a regular triangular mesh of the domain � with N

nodes, the unknown is the vector

Un D �
Œsl .t

n/�lD1;:::;N ; Œel .t
n/�lD1;:::;N ; Œil .tn/�lD1;:::;N

�

of the nodal values at time tn. At each time step, we solve the algebraic system

.M C �tA/Un D �tF.Un�1/ C MUn�1; (3)

where M and A are block-diagonal

M D
0

@
M 0 0

0 M 0

0 0 M

1

A ; A D
0

@
As 0 0

0 Ae 0

0 0 Ai

1

A ;

and where M and Ak .k D s; e; i/ are the classical finite elements mass and stiffness
matrices, and where F.Un�1/ is obtained from the right hand side of (1); see [1] for
details.

5 Numerical Simulation

For illustrative purpose we apply the method to the spread of a fictitious epidemic of
raccoon rabies in the state of New York. A simulation of the actual spread of rabies
among raccoons in the area (1990–1996) can be found in [1], where the proposed
method proves its effectiveness in qualitatively capturing the early dynamics of the
epidemic.

A geographically detailed computational domain of the area of interest can be
reconstructed from satellite images or recovered from other similar sources (GIS
data, for instance), and suitably triangulated. The strongly heterogeneous regions
are then identified directly on the mesh, while the localized heterogeneous effects
are included by forcing mesh points in the areas of interest, such as major waterways
and highways. We include in the geography the Hudson and Mohawk rivers as
barriers, and the mountains in the northern part of the state as a reduced hospitality
region.

The coefficients of the model used in the simulation refer to raccoon rabies.
The epidemiological parameters (˛, ˇ, 	 , �) are drawn from literature, while the
mortality term 0 is estimated indirectly to produce a disease-free equilibrium
corresponding to the mean of reported densities for raccoons in the eastern US. We
initiate an epidemic cluster in the vicinity of Oneonta (Otsego County), and we plot
in Fig. 2 the difference between the infectious density computed with the inclusion



Incorporating Landscape Heterogeneities in the Spread of an Epidemic in Wildlife 107

Fig. 2 Effect of the presence of rivers and the reduced capacity region on the infectious density
after 12, 24, and 36 months (Figures reproduced from [1], with permission)

of the rivers and the one obtained without the presence of rivers at different times.
The barrier effect is clearly appreciable.

The algebraic system (3) does not present any significant difficulty from the
numerical standpoint. Its 3N � 3N matrix is symmetric, and the solution at each
time step can be computed by a Conjugate Gradient (CG, [3]) method, for which
standard, very effective preconditioners are available.

6 Conclusion

The proposed space-continuous model features a double advantage. Geographic
details are easily incorporated, and, at the same time, the overall computational cost
is very competitive. As a matter of fact, the proposed model requires the tuning of
a smaller number of parameters with respect to SEI models based on geopolitical
units commonly used in the domain [4]. So far, the diffusion coefficients have been
tuned empirically. To improve the knowledge of the model parameters, an estimation
procedure of Bayesian type, based on the available observed data, is currently under
investigation [2].

References

1. J. Keller, L. Gerardo-Giorda, A. Veneziani, Numerical simulation of a susceptible-exposed-
infectious space-continuous model for the spread of rabies in raccoons across a realistic
landscape. J. Biol. Dyn. 7(Suppl 1), 31–46 (2013)

2. G. Puggioni, L. Gerardo-Giorda, L.A. Waller, L.A. Real, Hierarchical models for parameter
estimation of SEIR models with application to raccoon rabies spread (In preparation)

3. A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations (Springer,
Berlin, 1994)

4. L.A. Real, J.E. Childs, Spatial-temporal dynamics of rabies in ecological communities,
in Disease Ecology: Community Structure and Pathogen Dynamics, ed. by S.K. Collinge,
A.C. Ray (Oxford University Press, Oxford/New York, 2006), pp. 168–185



The Phenomenon of Apparent Disappearance
in the Marine Bacteriophage Dynamics

Andrei Korobeinikov� and Vladimir Sobolev��

1 Introduction

In marine microbial biosystems, high magnitude variations in abundance and an
unstable dynamics, such as planktonic blooms alternating with extended periods of
low abundances, are quite common. In many cases, such blooms are immediate
consequences of seasonal variations in temperature, light and other conditions.
However, variations in abundance, which are not directly associated with seasonal
forcing, are also common; Anderson and May [1] provided numerous examples
of observations, where irregular explosions in abundance of clearly non-seasonal
nature.

To explain this phenomenon, a number of hypotheses was suggested. In
particular, Wommack et al. [13] suggested that the observed dramatic changes
in the abundance of a single phage genotype is a consequence of infection by the
phage of a blooming bacterial strain (“killing the winner population” concept).
A certain drawback of this conjecture is that these authors, as well as Thingstad
and Lignell [10] earlier, assumed that a external forcing (such as the influx of a
particular limiting nutrient, which create favorable conditions for growth of this
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particular species) triggered the bloom of this single bacterial species. Nevertheless,
the hypothesis that for aquatic bacteria and phages, the observed high magnitude
variations in abundance can be a result of phage parasitism on this particular
bacterial species, is appealing. This concept was further developed by Hoffmann
et al. [6], who suggested that the interaction of a couple “target bacteria-phage” is
sufficient for the arising of high-magnitude self-sustained oscillations in abundance
of both species, and that no external factor is needed. Unfortunately, this idea was
to some extend handicapped by shortcomings of a mathematical model, which
assumes the unlimited Malthusian growth of bacteria, and, as a result, is structurally
unstable and its outcome crucially depends on the initial conditions. A few years ago
V. Sobolev proposed a hypothesis that in predator-prey type models the phenomenon
of apparent disappearance does not require seasonal forcing and can be explained
with the existence of so-called canard trajectories; see [5, 7] and references therein.

To explain high magnitude irregularities in abundance in a seemingly regular
system and the phenomenon of apparent disappearance, we considered a simple
autonomous model of bacteria-phage interaction, which assumes neither seasonal
or periodic forcing, nor external factors of another nature. Despite its simplicity,
this model is capable to produce a result which explains the phenomenon.

2 Bacteriophages

Bacteriophages are small viruses which infect and kill bacteria, and which were
discovered independently by Frederick Twort in 1915 and by Félix d’Herelle in
1917. Phages are one of the most widespread and diverse entities in the biosphere.
The richest sources of phages, as well as other viruses, is oceans, where about
ten million phages per milliliter found in sea water; this figure grows up to 9�108

virions per milliliter found in microbial mats at the surface [12]. As much as 70 %
of marine bacteria may be infected by phages [8,12], and it is currently believed that
a contribution of viral lysis in controlling marine bacterial abundance is comparable
with protist grazing [3, 11].

Bacteriophages are mostly specific for target bacteria, thus forming stable
phage-bacteria pairs. There is no direct interaction between these pairs, or, where
there is some interaction, it is negligibly weak. (However, there is indirect inter-
action between pairs, because bacteria of different pairs can compete for the same
resource; for simplicity, we disregard this factor.) We assume that the dynamics of
these pairs are identical in the sense that for all pairs it is governed by the same
principles and depends on the same factors, while the current states of these pairs
are independent and randomly distributed.

By their mode of reproduction, phage can be divided into two major types. The
first type, the so-called lytic phages, are highly virulent type. The phage of this
type begin reproduction immediately after infecting a bacterium, and after a short
time lyse the host bacterium, releasing new free phages. Phages of the second type,
which are known as the non-lytic, or temperate phages, are either integrating their
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genetic material into the chromosomal DNA of the host, or establishing themselves
as plasmids. These endogenous phages are then copied with every cell division.
They do not kill the host cell, until it starts to show signs of stress. At this stage the
endogenous phages become active and start their reproductive cycle, resulting in the
lysis of the host cell.

3 The Model

We consider the phages with a lytic reproduction cycle. To describe the interaction
of a pair lytic phage-bacteria, we employ a mathematical model with a free-living
infective stage of phage. The model is comprised of three populations, namely
susceptible bacteria, infected bacteria and free phage, of concentrations x.t/, y.t/

and v.t/, respectively, and postulates that the free-living virus infect the susceptible
hosts, that after an instance of infection the infected host moves into the infected
class where remains until death, and that the infected hosts produce the free phage.
We assume that the proliferation of bacteria is limited by the carrying capacity of
environment K , that only uninfected bacteria are able to reproduce, and that all the
offspring are susceptible. The infective incidence occur according to the law of mass
action, and that the other functional responses are linear. Under these assumptions,
the model is

Px D ax .1 � .x C y/=K/ � ˛xv;

Py D ˛xv � dy; (1)

Pv D 	y � mv:

Here, a is the per capita bacteria reproduction rate, K is the currying capacity, and
1=d and 1=m are average life spans of the infected bacteria and the free phage,
respectively.

The origin E0 D .0; 0; 0/ is an equilibrium state of the model, and it
is always a saddle point with two negative and one positive eigenvalues.
The system also has a phage-free equilibrium state EK D .K; 0; 0/. A
type of this equilibrium, as well as the system general global properties,
depends on the basic reproduction number R0 D 	˛K=md; the phage-
free equilibrium EK is asymptotically stable if R0 � 1, and is unstable
(a saddle point) if R0 > 1. The system can also have a positive equilibrium state E�
with coordinates x� D md=˛	 , y� D am.R0 � 1/=˛	.R0 C a=d/, v� D 	y�=m;
R0 > 1 is necessary and sufficient for the existence of equilibrium E�. Further in
this paper we assume that R0 > 1 holds, and hence E� exists.

A remarkable property of this model is that it admits a supercritical
Andronov–Hopf bifurcation: a decrease of a; d or m, or, alternatively, an increase
of ˛; 	 and carrying capacity K , eventually leads to the loss of stability of the
equilibrium state E� and to the appearance of a stable limit cycle. In some aspects,
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Fig. 1 Appearance and expansion of a limit cycle, and arising of apparent disappearance; here
a D 1:0; ˛ D 1:0; d D 1:0; 	 D 1:0 and m D 0:3; K D 3:33 in the upper figures, and K D 20

in the lower ones

this phenomenon is similar to the effect of enrichment [9]; the principal difference
with the effect of enrichment is that a nonlinearity of the incidence rate with respect
to the prey population x.t/ is essential for the latter, whereas for model (1) the
bifurcation occurs even for the bilinear incidence rate (Fig. 1).

Values of a; d; m; ˛ and 	 are specific for a particular phage-bacteria pair and
remain nearly constant, whereas the carrying capacity K can vary to a large extend.
Moreover, it is commonly believed that food is not a limiting factor for bacterial
growth [2, 4, 12, 13]; these consideration makes K the most important parameter
for the page-bacteria system dynamics and indicates that significant changes of this
dynamics are possible in response to variations of environmental conditions. With an
increase of K , the size of the limit cycle grows, and the cycle is squeezed to the yv-
plane. As a result, it comes into the vicinity of the origin, where all three populations
and their rates of changes are very low. The larger K becomes, the closer it comes
to and the longer remains in the vicinity of the origin. This implies that the system
dynamics changes to large extends in response to variations (for instance, seasonal)
of K . This also implies that this system can exhibit the dynamics with long periods
of low abundance (“apparent disappearance”), alternating with comparatively short
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periods of high abundance. Figures illustrate appearance and development of the
limit cycle, and the apparent disappearance phenomenon.

We have to mention that alternations of abundance, when fast explosions of a
population followed by equally fast declines, as well as the phenomenon of apparent
disappearance, are not uncommon in the population dynamics in general, including
terrestrial ecosystems and host-parasite systems. It is likely that in many other cases,
where the phenomenon of apparent disappearance cannot be explained by seasonal
or external forcing, the mechanism behind this dynamics is the same as, or similar
to that described. An essential element of this dynamics is the existence of a stable
limit cycle, which passes near a saddle type equilibrium point.
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Viral RNA Replication Modes: Evolutionary
and Dynamical Implications

Josep Sardanyés

1 Introduction

RNA viruses are obligate parasites infecting bacteria, fungi, plants and animals.
Upon infection, RNA viruses replicate within the host cells generating a highly
heterogeneous population of viral genomes named quasi-species [4]. Generally,
the viral replicase copies the initially infecting positive-sense or genomic strand,
producing the negative or antigenomic one. How these templates are then processed
for further replication has been a subject of research, and different replication modes
(RMs) have been proposed. For instance, if the produced negative template is mainly
used as a template for the production of the whole progeny of genomic strands, the
linear stamping machine replication (SMR) mode is at play. On the contrary, if both
genomic and antigenomic strands are copied with the same efficiency, geometric
replication (GR) takes place.

The RM has important evolutionary and dynamical consequences in RNA viruses
since it will involve different rates at which mutations accumulate thus affecting the
statistical properties of the quasi-species [9]. Roughly, the distribution of mutations
per genome within an infected cell for SMR is expected to be Poisson because
mutants do not replicat [5]. Consequently, the fraction of mutation-free genomes
produced is given by the Poisson null class e�L, being  the per-site mutation rate
and L the genome length. However, if all produced strands are used as templates,
thus following GR, the distribution of mutant genomes conforms to the Luria–
Delbrück distribution [3]. Here, the fraction of mutation-free genomes produced
would depend on the number of replication rounds experienced, � , according to
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e��L. Therefore, it is straightforward to see that GR will produce f more mutant
genomes than SMR according to the equation f D .1 � e��L/=.1 � e�L/. If
only a fraction of the genomic strand progeny replicates, then the RM will be a
mixture of SMR and GR that deviates from the Poisson expectation as much as the
GR contribution.

Experimental data support different RMs for different viruses. For instance,
bacteriophage T2 is thought to replicate mostly by GR because the number of
mutants per infected cell fails to fit a Poisson distribution [5]. However, phage
�X174 data fit well the Poisson distribution, suggesting a SMR model [2]. Within
these two extremes, phage �6 slightly deviated from the Poisson expectation, an
observation interpreted as a result of a mixed model in which some progeny of
positive strands was also able to replicate [1].

In this article I review recent advances in the dynamics of the RM for positive-
sense single stranded RNA viruses. Then, previous results on a mathematical model
describing the amplification dynamics of viral genomes with asymmetries due to
different RMs are extended. Specifically, it is proved that the interior equilibrium of
the phase plane is globally and asymptotically stable.

2 Viral Replication Modes: Recent Advances

The dynamics of viral RNA amplification was recently quantified for Turnip mosaic
virus, and a simple mathematical model was used to fit the experimental data
and infer the RM [6]. The same mathematical model was investigated considering
natural infections and the fixed points and stability properties of the model were
studied analytically and numerically [8]. The next Section extends the results
presented in [8].

2.1 Dynamical Evolution Equations

The mathematical model describing the within-cell amplification dynamics of both
positive- and negative-sense strands investigated by Sardanyés and coauthors in [8],
is given by the next system of differential equations, Px D f .x/, where x D .p; m/

and

dp

dt
D rm

�

1 � p C m

K

�

� ıp;
dm

dt
D ˛rp

�

1 � p C m

K

�

� ım: (1)

The state variables p and m denote, respectively, the concentration of plus (positive)
and minus (negative) viral RNA genomes. Parameter r is the replication rate, K

corresponds to the cellular carrying capacity and ı is the genomes degradation rate.



Viral RNA Replication Modes: Evolutionary and Dynamical Implications 117

a b

Fig. 1 (a) Dynamics of RNA genomes for Turnip mosaic virus. The dots and the triangles
correspond to experimental data for positive and negative strands, respectively. The solid and
the dashed lines are the simulated dynamics using the mathematical model; see [6] for further
details. (b) Phase portrait for Eqs. (1): the black circle is the fixed point involving coexistence
of viral genomes. The open circle is an unstable equilibrium. The dashed line is the boundary
p C m D K D 1. The arrows indicate the direction of the flow

The variables span the two-dimensional phase space � WD fp; m 2 R
C W 0 �

p C m � K D 1g.
Previous research on Eqs. (1) computed local stability of the interior fixed point,

given by P � D .p�; m�/, which involves coexistence of both viral genomes
polarities; see the phase portrait in Fig. 1b and [8]. Let us now extend the previous
results by analyzing if such a fixed point is globally stable. We claim that � is
positively invariant. For that we analyze the direction of the vector field on the
borders of � . On .0; m/ the vector field is Pp D rm.1 � m=K/ and Pm D �ım.
On .p; 0/ the vector field is Pp D �ıp and Pm D ˛rp.1 � p=K/. Furthermore, on
.p; K � p/ the vector field is Pp D �ıp and Pm D �ı.K � p/. Finally, we need
to analyze the vector field on the corners of � , i.e., .K; 0/ and .0; K/. On the point
.K; 0/, the vector field is Pp D �ıp and Pm D 0. Since the second component of the
vector field is 0, we do not have enough information to state that solutions will enter
into � . Then, we analyze how an initial condition will evolve in time near the point
.K; 0/. To do so we use a local analysis of the behavior of a given initial condition
around that point by using a Taylor expansion. On the point .K; 0/, the solution is

'.t/ D '.0/ C P'.0/t C 1

2
R'.0/t2 C � � � (2)

D .K; 0/ C .�ıK; 0/t C 1

2

�
ı2K; �˛r.1 � 2K/ıK

�
t2 C � � � ;

since the border in � is given by K D 1. It turns out that the second-order term of
the Taylor expansion is

.ı2K; �˛r.1 � 2K/ıK/jKD1D .ı2; ˛rı/;
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with ı2 > 0 and ˛rı > 0. The previous calculations indicate that initial conditions
near this point will enter into � . Analogously, the same behavior is found for point
.0; K/ (results not shown). Hence, all previous calculations show that trajectories
will enter into Q1 from the three borders of � given by .0; m/, .p; 0/, and .p; K�p/.
By Poincaré–Bendixson theorem, the !-limit set of any initial condition on � is not
void and it is contained in � . By Dulac’s criterion we will now prove that the interior
equilibrium is not a periodic orbit. For an autonomous planar vector field, Dulac’s
criterion states: let Px D f .x/ be a continuously differentiable vector field defined on
a simply connected subset � of the plane, i.e., � � R

2. If there exists a continuously
differentiable, real-valued function g.x/ such that r � .g.x/f .x// has constant sign
throughout �, then there exist no closed orbits lying entirely in �. Now we apply
Dulac’s criterion to our system, with g D 1 so,

r � f .x/ D @

@p
Pp C @

@m
Pm

is defined in our system as

r�f .x/ D @

@p

�
rm.1�m�p/�ıp

�C @

@m

�
˛rp.1�m�p/�ım

� D �r.mC˛p/�2ı:

Note that since r; m; ˛; p; ı > 0, the signum of r�f .x/ is constant (i.e., r�f .x/ < 0)
and, since the domain � D � is simply connected and g and f satisfy the required
smoothness conditions, we can conclude that there are no closed orbits in � .

Since we have a unique fixed point in � , and we discarded the existence of a
periodic orbit, according to the Poincaré–Bendixson then it must be the !-limit set
of every initial condition and hence P � is globally asymptotically stable in � .

3 Conclusions and Prospectives

The dynamics of mutation accumulation in viral pathogens is a key evolutionary
parameter that still remains poorly understood. Such a subject has been addressed
experimentally [1, 2, 5] and both computationally and theoretically [6–9]. Despite
these previous investigations, several theoretical questions concerning the dynam-
ics and the evolutionary consequences of different RMs still remain open. For
instance:

(i) What are the impacts of stochasticity in the dynamics of positive and negative
strands in natural infections in terms of dynamical robustness?

(ii) What are the expected deterministic dynamics in spatially-extended models of
asymmetric replication? Do different RMs generate deterministically-driven
spatial self-structuring?
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(iii) What is the interplay between epistasis and stochasticity or space in terms of
dynamical robustness?

Question (i) may be addressed by extending the model here presented to stochas-
tic differential equations (e.g., Fokker–Planck equations). Question (ii) could be
tackled with partial differential equations, and question (iii) should consider both
previous theoretical approaches also incorporating mutant classes and different
nonlinear interactions among mutations.
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System Order Reduction Methods
with Application to a Bacteriophages
Dynamics Model

Vladimir Sobolev� and Andrei Korobeinikov��

1 Introduction

The theory and applications of singularly perturbed systems of differential equa-
tions, traditionally connected with the problems of fluid dynamics and nonlinear
mechanics, has been developed intensively and the methods are applied actively
to the solution of a wide range of problems from other areas of natural science.
This can be explained by the fact that such singularly perturbed systems appear
naturally in the process of modelling various processes, that are characterized by
slow and fast motions simultaneously. In many cases it is necessary to consider the
behaviour of the system as a whole and not of separate trajectories, and to investigate
the system by means of a qualitative analysis. This is what is done in this talk. In
the present talk asymptotic and geometrical techniques of analysis are combined
for the investigation of singularly perturbed systems. The essence of this approach
consists in separating out the slow motions of the system under investigation. Then
the order of the differential system decreases, but the reduced system, of lesser
order, inherits the essential elements of the qualitative behaviour of the original
system in the corresponding domain when the slow integral manifold is attracting.
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The construction of simplified models is achieved and these simpler models reflect
the behaviour of the original models to a high order of accuracy. A mathematical
justification of this method can be given by means of the theory of integral manifolds
for singularly perturbed systems Note that the pioneering papers were published
during the period 1957–1970 by K. Zadiraka [4], V. Fodchuk and Y. Baris, who
followed on the work of N. Bogolyubov and Y. Mitropolsky. The existence of slow
integral manifolds, stable, unstable and conditionally stable, occur in these papers.

2 Singularly Perturbed System

Consider the system of ordinary differential equations

Px D f .t; x; y; "/; (1)

" Py D g.t; x; y; "/; (2)

with x 2 Rm, y 2 Rn, t 2 R: Such systems are called singularly perturbed systems,
since when " D 0 the ability to specify an arbitrary initial condition for y.t/ is lost.
The usual approach to the qualitative study of (1) is to consider first the limiting
system (" D 0)

dx

dt
D f .t; x; y; 0/; (3)

0 D g.t; x; y; 0/; (4)

and then to draw conclusions about the qualitative behavior of the full system (1), (2)
for a sufficiently small ". For many applied problems, the use of the limiting system
instead of the full equations gives acceptable results. However, in some cases the
approximation (3), (4) is too crude. We use more exact method for the qualitative
asymptotic analysis of singularly perturbed ordinary differential equations. The
method relies on the theory of integral manifolds, which essentially replaces the
original system by another system on an integral manifold whose dimension is equal
to that of the slow subsystem.

Recall that a smooth surface S in R � Rm � Rn is called an integral manifold
of the system (1), (2) if any integral curve of the system that has at least one point
in common with S lies entirely on S . Formally, if .t0; x.t0/; y.t0// 2 S , then the
integral curve .t; x.t; "/; y.t; "// lies entirely on S . The only slow integral manifolds
of system (1), (2) discussed here are those of dimension m (the dimension of the
slow variable x) that can be represented as graphs of vector-valued functions y D
h.x; t; "/. Moreover, we consider here the attractive integral manifolds, only. It is
important that any trajectory of (1), (2) can be represented as a trajectory on the
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attractive slow integral manifold plus an asymptotically negligible terms. The flow
on the slow integral manifold is described by the equation

Px D f .t; x; h.t; x; "/; "/: (5)

2.1 Asymptotic Expansions

When the method of integral manifolds is being used to solve a specific problem,
then a central question is the calculation of the function h.x; t; "/ in terms of
the manifold described. An exact calculation is generally impossible, and various
approximations are necessary. One possibility is the asymptotic expansion of
h.x; t; "/ in integer powers of the small parameter

h.t; x; "/ D h0.t; x/ C "h1.t; x/ C � � � C "khk.t; x/ C � � � (6)

Substituting this formal expansion into the invariance equation

"
@h.t; x; "/

@t
C "

@h.t; x; "/

@x
f .t; x; h.t; x; "/; "/ D g.t; x; h.t; x; "/; "/; (7)

we obtain the relationship

"
X

k�0

"k @hk

@t
C "

X

k�0

"k @hk

@t
f .t; x;

X

k�0

"khk; "/ D g.t; x;
X

k�0

"khk; "/: (8)

We use the formal asymptotic representations

f .t; x;
X

k�0

"khk; "/ D
X

k�0

"kf .k/.t; x; h0; : : : ; hk/; (9)

g.t; x;
X

k�0

"khk; "/ D B.t; x/
X

k�1

"khk C
X

k�1

"kg.k/.t; x; h0; : : : ; hk�1/; (10)

where the matrix gy.t; x; h0.t; x/; 0/ D B.t; x/, and g.t; x; h0.t; x/; 0/ D 0.
Substituting these formal expansions into the invariance equation

"
@�

@t
C "2 @h1

@t
C � � � C "k @hk�1

@t
C � � �

C
�

"
@�

@x
C "2 @h1

@x
C � � � C "k @hk�1

@x
C � � �

�

.f0.x; �; t/ C "f1.x; �; h1; t/ C � � �

C "kfk.x; �; : : : ; hk; t/ C � � � / D B.x; t/."h1 C "2h2 C � � � C "khk/ C � � �

C "g1.x; �; t/ C "2g2.x; �; h1; t/ C � � � C "kgk.x; �; : : : ; hk�1; t/ C � � � ;
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and equating powers of ", we obtain

@�

@t
C @�

@x
f0.x; �; t/ D Bh1 C g1;

@h1

@t
C @�

@x
f1 C @h1

@x
f0 D Bh2 C g2; : : :

@hk�1

@t
C

X

0�p�k�1

@hp

@x
fk�1�p D Bhk C gk; k D 2; 3; : : : ;

and then

h1 D B�1

	
@�

@t
C @�

@x
f0.x; �; t/ � g1




; (11)

h2 D B�1

	
@h1

@t
C @�

@x
f1 C @h1

@x
f0 � g2




: (12)

In general

hk D B�1

2

4@hk�1

@t
C

X

0�p�k�1

@hp

@x
fk�1�p � gk

3

5 ; k D 2; 3; : : : (13)

We recall that �.x; t/ is determined by g.x; �.x; t/; t; 0/ D 0. Now we can
calculate an approximation to h.x; t; "/. Asymptotic expansions of slow integral
manifolds were first used in [3]. A a more detailed description of the method can be
found in the book [1].

3 Bacteriophages Interaction Model

Consider the model of host-microparasite interaction with a free-living infective
stage of a parasite [2]

Px D ax � bx.x C y/ � ˛xv;

Py D ˛xv � dy; (14)

Pv D 	y � mv:

The system can have a positive equilibrium state E� with coordinates

x� D md=˛	; y� D am

˛	

R0 � 1

R0 C a=d
; v� D 	y�=m:
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The condition R0 > 1 is necessary and sufficient for the existence of this
equilibrium state. We assume R0 > 1 and, hence there is a unique positive
equilibrium state E�.

The limiting system is

Px D ax � bx.x C y/ � ˛xv;

Py D ˛xv � dy; (15)

0 D 	y � mv;

or

Px D ax � bx.x C y/ � ˛x	y=m;

Py D ˛x	y=m � dy: (16)

The last system can have a positive equilibrium state NE� with coordinates

x� D md=˛	; y� D am

˛	

R0 � 1

R0 C a=d
:

This equilibrium state NE� is asymptotically stable whereas the corresponding
equilibrium state E� of the full system is unstable! Moreover, the full system
possesses the limit cycle [2].

This apparent contradiction is easily removed if instead of the limiting system
we consider the first-order approximation of the system on the integral manifold
v D 	y=m � "	.	ˇx=m � d/y=m2:

Px D ax � bx.x C y/ � ˛x	y

m
C "

ˇx	

m2

�	ˇx

m
� d

�
y;

Py D
�˛x	y

m
� dy

��
1 � "

ˇx	

m2

�
: (17)

This system possesses the periodic solution!
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Viruses and Their Role in the Ocean:
Bacteriophages and Bacteria Interactions

Dolors Vaqué, Elisabet Laia Sà, Elena Lara, and Silvia G. Acinas

1 Introduction

Aquatic microorganisms are responsible for a variety of biogeochemical cycles that
fuel our planet [5, 6]. In particular, viruses that could infect all marine organisms
(from bacteria to whales) play a key role in marine systems [7]. Virus are the most
abundant biological particles, ca. 107 ml�1 in surface waters Suttle 2007 and a large
proportion are bacteriophages which together with protists are the main source of
microbial mortality (viral shunt) returning dissolved nutrients and organic matter
from lysed bacteria to the water column [3, 14] and contributing to the recycling
production of the systems; see Fig. 1. Viruses are mostly considered as killers,
releasing from 20 to 300 virus particles per host-cell [2,17]. However they can insert
part of their genome in the chromosome of the prokaryotic host or in the chloroplast,
mitochondrial or nuclear genetic systems in the eukaryotic algae host.

The inserted viral genome conforms the lysogenic temperate virus (prophage [9])
that is maintained silent, until an environmental factor triggers the temperate virus
to become lytic (a process termed induction) which introduce changes in the virus
infection life-strategy and implications in the biogeochemical cycles in the Ocean.
Thus, virus acts as manipulating the microbial metabolism, and are the highest
reservoir of genetic diversity (horizontal gene transfer) of the Oceans [4, 11]. Each
infection has the potential to introduce new genetic information into an organism or
progeny virus, thereby driving the evolution of both host and viral assemblages [11].
The most common phages in the Ocean are double stranded DNA and belongs to
the families of Podoviridae, with short and no contractile tail, Myoviridae with
long and contractile tail, and Siphoviridae with curled and no contractile tail; see
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Fig. 1 Diagram showing the importance of virus as key players in the marine food-web (Drawing
by Clara Ruiz-González)

Fig. 2 Families of bacteriophages. Left: Podoviridae (Picture by S. Casjens and E. Lenk, repro-
duced with permission of the American Society for Microbiology). Middle: Myoviridae (Picture
by E. Lara). Right: Siphoviridae (Picture by E. Lara)

Fig. 2. However, there are more and more evidences showing the presence of RNA
bacteriophages in the water column [10].

2 Marine Bacteriophages Dynamics

Bacteriophages disappear from the water and lose their infectivity due to its
adsorption to particles produce at the same time the disappearance of virus (and
perhaps losses of infectivity, because cannot find a host) the UV radiation suppose
losses of infectivity due to damage in the genetic material, without producing
any morphological change of the virions under the microscope. However, some
virus can be re-activated,restoring their DNA using the machinery of the host
cell [15]. Other processes like the ingestion of viruses by nano-flagellates are not
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Fig. 3 Diagram showing the
disappearance or inactivation
and appearance of phages in
aquatic systems, and the
importance of each one of
them according to Suttle and
Chen (1992)

really quantitatively important as a loss factor [1]. Finally, once viruses get the
cell-host, after replication the rate of phage appearance is quite similar to their
disappearance; see Fig. 3. Then, the abundances of total phages in the ocean remain
quite stable [12].

3 Host-Phage Interactions

Virus infection on bacteria seems to be favored by host density and it is assume
that they are host specific. Thus the “Kill the Winner” hypothesis [13, 16] predicts
that the most abundant and active bacterial population is controlled by phage lyses,
which would allow the co-existence of less competitive populations and even sustain
bacterial diversity. But, it is not clear if this hypothesis is relevant for natural and
complex systems.

Further, this view assumes that virus-host relationship is specific but some studies
showed that marine phages could have broad host ranges [8]. In our lab we have iso-
lated 18 phages infecting 7 highly similar strains of Pseudoalteromonas spp., which
allowed us to increase the knowledge of the richness of the Pseudoalteromonas spp.
phages characterizing them and comparing the whole-genome fingerprint with host
range richness within an ecological context. The host range analysis also let us to
address a better understanding of the microdiversity within specific phylogenetic
groups of marine bacteria. Our results demonstrate a high diversity of bacteriophage
infecting phylogenetically identical bacteria based in the 16S rRNA and variability
in the specificity of infection. Understanding the dynamics of phages in natural
environment is crucial to predict the impact on bacterial dynamics and diversity
in microbial communities.
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