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Abstract. Previous studies of the Iterated Prisoner’s Dilemma Game
(IPDG) focus on the optimal strategies for accumulating points against
another player or the evolution of cooperation. Instead, this paper ex-
pands upon the possible complexity in interactions by using a Cellular
Automaton (CA) model to simulate large numbers of players competing
within a limited space. Unlike previous works, we introduce a method
for creating a wide variety of deterministic rules by mapping each pos-
sible interaction to a binary number. We then prove the computational
universality of the resulting IPDG CA. An analysis of the number of in-
teractions leads to the discovery of interesting properties when allowing
only enough iterations for a strategy to use its “transient” instructions.
The implications of universal computation (UC) are also discussed.

Keywords: Cellular Automata, Iterated Prisoner’s Dilemma Game, Uni-
versal Computation, Universal Turing Machine.

1 Introduction

Studies about cooperation and optimal strategies abound for the Prisoner’s
Dilemma Game (PDG). As an approximation of interactions found in nature
these studies impact our understanding of biology; however, to date few studies
focus on the computational potential for the PDG when implemented in a cellu-
lar automaton (CA). Furthermore, none of the studies known presently provide
a proof of universal computation in the aggregate interactions of players when
situated in a lattice. In this paper, we introduce a memory based labeling scheme
for strategies that allows 215 different strategies to compete with each other. We
report on the surprising effect of iterations on interactions and strategy. We then
show interesting examples of self organization and a proof for Turing Universality
in the iterated PDG CA.

The PDG [1] gets its name from the following scenario: Players A and B
recently robbed a store, but the police do not quite have enough evidence to
prove it. Players A and B know that they will both receive minor sentences
of two months if they do not confess. Aware of this, the police put A and B
in separate interrogation rooms and offer them each a deal. If A (or B) gives
evidence on the other to the interrogators, A (or B) will get to leave without
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receiving any charges, but the person who does not confess will receive a harsher
sentence of five months. If both provide evidence on each other, both will spend
at least four months in prison. This scenario creates the rewards in Table 1.

Table 1. The Prisoner’s Dilemma Game

Player B
cooperate defect

Player A
cooperate R = 3/R = 3 S = 0/T = 5

defect T = 5/S = 0 P = 1/P = 1

In addition to the basic scenario, the PDG includes any interactions between
two players creating Table 1 with the rewards T,R, P, and S ∈ R having the
properties T > R > P > S and R > (S + T )/2 [2].

Previous works have implemented multiple iteration PDG (IPDG) simulations
in CA. CA allow for the study of simple nearest neighbor interactions in a
lattice on a discrete set of states [3]. Studies of the IPDG CA use strategies for
playing the game as states, while the choice to cooperate or defect, along with
a replacement rule, allows the states to interact.

Axelrod [2] was the first to use CA to study the IPDG, finding that a strategy
called Tit for Tat did not perform as well as other strategies in CA despite Tit
for Tat’s dominance in other computer tournaments he designed. Nowak et al.
[4] have studied simulations with and without memory, where the agents either
always defected or cooperated. Nakamaru et al. [5], Brauchli et al. [6],and Szabó
et al. [7] performed similar experiments on IPDG CA. Newth and Cornforth
[8] extended the work of Nowak et al. on an asynchronous grid. Tanimoto and
Sagara [9] studied alternating reciprocity in infinite length simulations on 2× 2
grids. Gelimson et al. [10] investigated the effects of mobility on the evolution of
cooperation. Alonso-Sanz [11][12], implemented an IPDG with memory of each
player’s points on a Moore lattice; however, though he found gliders, he did not
find universal computation in his simulations. Finally, Pereira and Martinez [13]
studied the IPDG on a 1D lattice. They also found emergent complexity in their
random simulations with objects such as gliders [14] and “fingers”.

In Sect. 2 we introduce a scheme for memory and interaction in the IPDG
CA, while Sect. 3 reveals interesting results of our scheme. The paper concludes
with a proof of Turing Universality in Sect. 4 and a short discussion in Sect. 5.

2 Implementation of the Prisoner’s Dilemma Game

For a detailed explanation of the CA, one can refer to the original thesis [15].
The IPDG CA used in this paper creates strategies that can remember the

past three iterations of an opponent. A strategy is described using binary by
assigning cooperation the value 1, and defection 0. Using binary, we can define
a unique history of three iterations from least recent (left bit) to most recent
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Table 2. 3 memory transient strategy for Tit for Tat

Opponent’s History 111 110 101 100 011 010 001 000

Cooperate / Defect 1 0 1 0 1 0 1 0

(right bit). Table 2 uses a robust strategy called Tit for Tat [2] to demonstrate
the numbering scheme.

Table 2 will work when it has played at least three iterations of the PDG with
an opponent. Tit for Tat only considers the most recent move (the rightmost bit),
copying it, but it ignores the previous two moves. This strategy lacks information
for what to do for its first, second, and third iteration. After a strategy has
played three or more iterations, it can use the past three moves of the opponent
to determine what to do. Thus Table 2 describes the long term, asymptotic
behavior. In order to define the initial behavior we need something that describes
the transient. Table 3 includes the missing information.

Table 3 contains both the asymptotic, and the transient instructions. The
leftmost 1’s position defines to which iteration a strategy responds. The col-
umn with “0001”, represents the first iteration. Two columns have “001x1” to
represent the second iteration, because the opponent will have one of two op-
tional histories, x1 = 0 or x1 = 1. Similarly four columns have “01x1x2” for
the third iteration (x2 is the opponent’s most recent move), and eight columns
have “1x1x2x3” for the eight possible histories for iterations four and beyond
(x3 is the most recent). The column with “0000” is always a “0” and isn’t used.
Rather, it lets us think of the strategies as 2n+1 bit numbers, where n is the
longest sequence of iterations a player can remember.

Table 3. Complete 3 memory strategy 10818

Opponent’s History 1
1
1
1

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
1
0

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
1

0
0
0
0

Cooperate / Defect 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0

To get the strategy number, or 10818 in this example, we convert the bottom
row of Table 3 from binary to base 10. We order our bits to get 0010101001000
0102 = 1081810. Using this method we represent each possible strategy with its
own unique number. For graphic simulations we assign each strategy a unique
24 bit-color by using the strategy bits for the green and blue hue while giving
initial defecting strategies a red hue. Using this method, the IPDG CA has a
total of 32,768 different strategies.

The IPDG CA simulations implement a Moore neighborhood on a 2D lattice.
Each cell, representing a player, must interact with the eight cells closest to it
(the northwest cell, the north, the northeast, east, etc.). In addition to choosing a
lattice, we must also have a simple rule that determines how a cell changes states
between rounds. For this research, cells use a “Darwinian” rule [7][13], picking
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the next state/strategy by changing a cell’s current state to that of the neighbor
with the highest points. If a neighbor does not have a higher point value, then
the cell will not change states. Therefore, in the case of a tie between a cell and
its neighbor, a cell will keep its own strategy. In order to keep our simulations
deterministic and symmetrical around the square, the rule ignores all other ties.
Ties do not arise often in simulations and have no noticeable effects.

In order to run the IPDG CA we need to define T , R, P , and S (Table 1) as
well as the number of iterations. All simulations here will use the generic values
T = 5, R = 3, P = 1, and S = 0 [4]. Further in this section we will determine
the number of iterations.

Initial state After 1 round After 10 rounds
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Fig. 1. The effects of the second neighbor

The Darwinian rule has the non-intuitive effect of creating second neighbor
interactions. In a round, a cell plays the game with its eight neighbors for n
iterations and sums up the points it receives. At the end of a round, it looks
at all of its neighbors, and it picks the one with the most points and copies its
strategy. Multiple rounds comprise a simulation. Suppose we have rules A (Fig. 1
circled in white), B, and C (Fig. 1 circled in black) where A is B’s neighbor, B
is C’s neighbor, but A is not C’s neighbor. C always defects, which brings down
B’s score. When A compares scores surrounding it, it will see that B has a lower
score, and A will pick a different strategy for its next state. Thus, even though
A is not C’s neighbor, C affects whether or not A takes on B’s strategy. Thus,
the neighbors of the neighbors of a cell, also known as a cell’s second neighbors,
affect its next state and strategy. Figure 1 demonstrates this case example.

Both of the initial configurations for this simulation are the same except for
the cell circled in black. Both start with a 10 × 10 lattice, and each cell plays
10 iterations with its neighbors each round. In the bottom simulation, the cell
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circled in black has the strategy 0 instead of strategy 18078. The cell with
strategy 0 always defects, bringing down the score of the cells next to it. This
affects the next state of the cell circled in white. In the first simulation, the cell
circled in white takes on the strategy of its neighbor to the left, strategy 36020.
Strategy 36020 goes on to take over the whole lattice after just 10 rounds. In
the second simulation, strategy 0 brings down the score of strategy 36020, which
leads our cell circled in white to take on the strategy 9268 instead. After ten
rounds, strategy 17540 takes over the lattice instead.

3 Initial Results

Data on the Hamming distance and strategy populations was gathered on ran-
dom initial states (Fig. 2a) over the 215 different strategies.

a. b.

Fig. 2. a. A 800x600 random initial config, b. 4 iteration simulation after 750 rounds

The number of iterations for a simulation affected the outcome of the simula-
tions by controlling how much a cell relied on either its asymptotic or transient
memory. For a strategy with a memory of 3, a simulation must require the cells
to do at least 4 iterations to take advantage of all of the transients: 1 iteration
for the first move followed by 3 iterations to use the transient memory. After
4 iterations, the cell relies on its asymptotic memory for the past three moves.
Thus, when we set the number of iterations, we inadvertently affect the ratio of
transient to asymptotic iterations.

First, examine the Hamming distance (HD) in Fig. 3, which measures how
many cells switch strategies each round. The following graphs show the HD for
different simulations run on an 800 × 600 random initial state (where each cell
contains a randomly chosen strategy). The x-axis and the y-axis represent the
time step and number of cells that have changed strategy, respectively.

We observe that the HD for playing the game with only 4 iterations converges
at a much higher number of cells than the simulation with 9 iterations. After
750 rounds, the six simulations sampled for 4 iterations averaged a HD of 2538
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Fig. 3. The Hamming distance with a log-log plot approximation (the thick line)

or .0053% of the total number of cells. From 5 to 9 iterations, the simulations
averaged a HD of 211, 295, 89, 63, and 77 after 750 rounds.

In all of the 4 iteration simulations, a log-log plot of the HD suggested that
one can approximate the HD over rounds with the function, f(x) = 393560 ·
x−0.79645. When the HD decreases, one can interpret this as an increase of static
neighborhoods in the system. Accordingly, we hypothesize that if the IPDG
CA contains a model of computation then the optimal number of iterations for
finding UC in a random initial configuration exploits only the transient and none
of the asymptotic. Simulations with a high HD might represent more dynamic
groups. Figure 2b shows a 4 iteration simulation converging to a steady state
that coincidentally contains a glider gun [14]. The simulations that follow all use
only 4 iterations unless specified otherwise.

4 Iterations 10 Iterations
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Fig. 4. Cooperating instructions over rounds

We next consider the number of strategies that cooperate or defect on a
particular opponent’s history. Figure 4 shows two graphs that trace the number
of cells that cooperate for a particular history over time (rounds) on a 800× 600
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lattice. The vertical axis represents the number of cells cooperating for a certain
history (the maximum is 480,000). The horizontal axis represents the history
as defined in Sect. 2 earlier. The depth represents rounds, with the most recent
round in front.

This method of gathering data on simulations provides insight into an ideal
composite strategy made up of the most popular instructions for a lattice of
cells. In both the 4 iteration and 10 iteration simulations successful strategies
almost always cooperate initially as well as whenever the strategy remembers
that the opponent has always cooperated ; furthermore in both simulations, we
should always defect when the opponent has defected three times in a row.

Contrasting the transient (4 iter.) to the more asymptotic (10 iter.) simulation
reveals a difference in strategy. As the number of iterations increases, a strategy
needs to cooperate more in the transient stage in order to survive; however, it
should also cooperate less when the opponent has not cooperated historically for
the past three moves in the asymptotic memory. Using this information, we can
create a potentially optimal (for points) ad hoc strategy that cooperates more
initially, but still defects as long as it remembers an opponent defecting.

Looking at Fig. 2b, one can see that simulations eventually reach a stable
state where many different groups of strategies persist side by side. In order to
understand how groups form we must look carefully at the borders between two
competing strategies. Figure 5a shows a stabilized group of strategies, and the
points that they attain in grey-scale (b). The lighter the area is, the more points
cells received.

a. b. c.

Fig. 5. a. A border, b. Point view of border, c. A natural “gun”

The cells with the lighter blue color in the middle of the trapezoidal shape use
the strategy 38538 (A). The green colored cells have the strategy 41058 (B),
and the darker blue color on the right border of that has strategy 33418 (C).
The line of B cells attains less points than most of the A or C cells. However,
the B cells drag down the points of surrounding A and C cells, preventing A or
C from invading. The inability of cells to invade results in many groups, despite
high points between similar cells.

When running random simulations, strategies sometimes self-organize into
useful structures for computation. In Fig. 2 towards the bottom there is an
interesting patch of red and navy blue dots on a teal background. Figure 5c
zooms in on the patch to reveal a glider gun [14] and an arrow shaped glider.
With enough space, interesting patterns emerge, similar to Conway’s Game of
Life [14].
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Isolating certain strategies together increases the chances for formations like
the glider gun. By combining strategies 11196, 36866, and 1088 in a specific
initial configuration one can make a “program” that recursively builds the Sier-
pinski triangle. Figure 6 shows the initial setup on the left, and different time
steps of the simulation as the triangle forms itself.

Fig. 6. An emergent Sierpinski triangle

Another example comes from the two-memory strategies 8748 (in red), 34954
(in blue), and 8746 (in black). This versatile set of strategies can make many
patterns, the first of which can produce little “bullet” and “wave” like objects.
Figure 7 shows these three strategies competing with only three iterations in
order to avoid asymptotic behavior.

In both these simulations, the black-colored strategy separates the red and
the blue creating borders and movement based on how one strategically places
the cells. Figure 7a relies on making small walls of blue and black in order to
produce a bullet. The borders keep in a spiral at the top that periodically shoots
out a bullet, whose width the borders determine. Upon leaving the borders, they
spread in all directions forming a wave. Figure 7b uses the same three strategies,
but with a slightly different approach. Using the blue strategy (34954 ) for the
background instead of the red one (8748 ), one can easily make something that
looks more like a glider gun, repeatedly spitting out little arrow shaped gliders.

a. b.

Fig. 7. Two different “guns” made with different config. of the same strategies.

4 Proof of Universal Computation

The glider guns observed while running random simulations prompted a search
for a set of strategies capable of UC. We eventually found one set, strategies
10818, 5218, 3464, and 33002. The following proof of UC uses glider guns to
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create a NAND gate and memory in a similar style to the proof of UC in Con-
way’s Game of Life [14].

Figure 8 shows the basic configurations capable of UC. The setup of strategies
in Fig. 8a to make a glider follows. Using strategy 10818 as a background, the
slightly lighter 5218 forms a head that replaces 10818 each round. The pink
strategy 3464 replaces 5218, preventing it from traveling diagonally in both
directions. Figure 8b shows the point view (lighter gray = more points). The
head of the glider moves by lowering the points of the background strategy in
front of it, while giving the lower-right most cell of the head just slightly more
points than the other cells around it.

a. b. c. d.

Fig. 8. a. A glider, b. Glider’s point view, c. A pin, d. Pin’s point view

The pin in Fig. 8c is made up of strategy 33002 which cooperates with itself.
The center of the pin achieves a high number of points each round. Figure 8c
shows a basic 3×3 square of 33002. The point view of the same object (d) shows
the high points of the center cell.

If a glider runs into two pins placed carefully, the background strategy 10818
will replace the glider due to a border of high points the background attains from
strategy 33002. Figure 9a shows a glider eater[14] in action. If two gliders collide
as in Fig. 9b, they destroy each other. Finally, Fig. 9c shows a glider colliding
with the edge of a pin. The pin pulls the glider around itself, making the glider
swerve around the edges of the pin. The glider swerving around the pin then
starts to produce another glider on every corner of the pin. This creates a glider
gun, and with some strategic placing of more pins we can control its output.

Now that we know how the gliders interact and how to make a glider gun,
we can start making logic gates. In order to prove UC we only need to show one
kind of logic gate, the NAND [14]. Figure 10 shows the before (a) and after (b)
of a NAND gate simulation. (The lines help in understanding the data streams
and their direction, but are not part of the simulation.) The absence of a glider
also conveys information. We assign a glider the binary value 1, and the absence
of a glider a 0. Figure 10a feeds in a stream 0, 1, 0, 1 starting from right to left.
The bottom row will feed in 1, 1, 0, 0.

The first glider gun creates gliders that will collide with the incoming streams.
If only one glider enters, the glider gun will block it, making the output a 0.
Similarly if no gliders enter, none will come out. In the special case when two
gliders try to enter at the same time, the glider gun will only block one of them,
letting the other slip through. Thus we must have two 1’s entering to get a 1 out.
This is an AND gate. The second glider gun creates a NOT gate. The gliders
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a.

b.

c.

Fig. 9. a. A glider eater, b. A collision, c. A glider hooked on a pin

a. b.

Fig. 10. A NAND gate made out of IPDG players

from this gun not only block the gliders input into it, but also create the output.
If a glider enters, it will destroy a glider from the gun. Thus, a 1 will create a
0, and if nothing enters it outputs a 1. After going through the AND and the
NOT gate, we have in Fig. 10b 1, 0, 1, 1.

Now we need to show that we can also store memory in this simulation.
Figure 11 shows a D latch in CA form. One can create a register holding a unit
of memory by placing two D latches together back to back. A register forms
a safe way to store and retrieve bits with consistent results. However, half a
register (a D latch) suffices for proving that the IPDG can hold memory.

The major gates and streams are labeled. The clock and the input each get
split into two paths, with XOR gates crossing them. At the bottom we NOT
the inputs and then AND them with the clock input. The clock has a cycle of
11 gliders “on” then 11 gliders “off”. At the top, the input and the clock get
ANDed together as well. This guarantees that the leftover latch will receive only
one signal at a time. If it receives a signal from the top, the latch ORs it and
then NOTs it, saving the value 1 in a loop. The same happens when a signal
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Fig. 11. D latch with a “0”

gets fed from the bottom, except that the opposite side of the loop will turn
on. Figure 11 shows the D latch in its initial configuration. Eventually, since it
has no input going into it, this latch will save a 0. To store a 1, instead put a
stream of gliders on the input path. Now that we have found a way to construct
memory, we have proved that the IPDG CA has UC.

5 Discussion

This proof shows the existence of UC in a subset of the strategies for playing the
IPDG by the construction of a NAND gate and a D latch. The proof does not
show all the possible ways to create a Universal Turing Machine (UC), as several
sets of strategies seem to create similar gliders or other ways of transmitting
information.

Furthermore, the IPDG CA introduced here contains persistent groupings
of strategies that defect rather than cooperate in their interactions with each
other and their surroundings. This model may help explain diversity in strate-
gies present in nature. These defections were important for organizing larger
structures within the CA, but perhaps most interesting is that this CA may
also simulate a potential social interaction evident in human interactions [2].
Where other studies have focused on simpler strategies and the evolution of
cooperation, this paper shows that complex players with history not only prop-
agate themselves but also organize themselves through the adoption of strate-
gies with higher points and through the imitation of more successful cells in a
self-interested manner. Similar to Axelrod [2] which explains the “Evolution of
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Cooperation”, universal computation in IPDG cellular automata suggests the
evolution of complexity and organization.
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7. Szabó, G., Antal, T., Szabó, P., Droz, M.: Spatial evolutionary prisoners dilemma

game with three strategies and external constraints. Phys. Rev. E 62(1), 1095
(2000)

8. Newth, D., Cornforth, D.: Asynchronous spatial evolutionary games. Biosys-
tems 95(2), 120–129 (2009)

9. Tanimoto, J., Sagara, H.: A study on emergence of alternating reciprocity in a 2×2
game with 2-length memory strategy. Biosystems 90(3), 728–737 (2007)

10. Gelimson, A., Cremer, J., Frey, E.: Mobility, fitness collection, and the breakdown
of cooperation. Phys. Rev. E 87(4), 042711 (2013)

11. Alonso-Sanz, R.: The historic prisoner’s dilemma. Int. J. Bifurcat. Chaos 9(06),
1197–1210 (1999)

12. Alonso-Sanz, R.: Memory versus spatial disorder in the support of cooperation.
Biosystems 97(2), 90–102 (2009)

13. Pereira, M.A., Martinez, A.S.: Pavlovian prisoner’s dilemma-analytical results, the
quasi-regular phase and spatio-temporal patterns. J. Theor. Biol. 265(3), 346–358
(2010)

14. Berlekamp, E., Conway, J., Guy, R.: Winning Ways for Your Mathematical Plays,
vol. 4. A.K. Peters (2004)

15. Nakayama, B.: Universal computation in the prisoner’s dilemma game. Undergrad-
uate honors thesis, Regis U (2013)


	Universal Computation in the Prisoner’s
Dilemma Game

	1 Introduction
	2 Implementation of the Prisoner’s Dilemma Game
	3 InitialResults
	4 Proof of Universal Computation
	5 Discussion
	References




