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Preface

The International Conference on Unconventional Computation and Natural Com-
putation, UCNC, is an interdisciplinary meeting where scientists with different
backgrounds, yet sharing a common interest in novel forms of computation,
human-designed computation inspired by nature, and the computational aspects
of processes taking place in nature, present their latest theoretical or experimen-
tal results. The topics of the conference typically include:

Molecular computing
Quantum computing
Optical computing
Chaos computing
Physarum computing
Hyperbolic space
computation

Collision-based
computing

Super-Turing
computation

Cellular automata
Neural computation
Evolutionary
computation

Swarm intelligence
Ant algorithms
Artificial immune
systems

Artificial life
Membrane computing
Amorphous computing

Computational
systems biology:

◦ genetic networks
◦ protein–protein
networks

◦ transport networks
Computational
neuroscience

Synthetic biology
Cellular (in vivo)
computing

The first edition of UCNC (formerly called Unconventional Models of Com-
putation and Unconventional Computation) was held at the Centre for Discrete
Mathematics and Theoretical Computer Science, Auckland, New Zealand, in
1998, and the conference logo became the logo of its first host. Subsequent sites
of the conference were Brussels, Belgium, in 2000, Kobe, Japan, in 2002, Seville,
Spain, in 2005, York, UK, in 2006, Kingston, Canada, in 2007, Vienna, Aus-
tria, in 2008, Ponta Delgada, Portugal, in 2009, Tokyo, Japan, in 2010, Turku,
Finland, in 2011, Orléans, France, in 2012, and Milan, Italy, in 2013.

The 13th edition in this conference series, UCNC 2014, was organized in Lon-
don, Ontario, Canada, in the Deparment of Computer Science of the University
of Western Ontario, during the week of July 14–18, 2014.

The meeting was pleased to have four distinguished invited speakers who
presented talks touching on several UCNC topics:

– Yaakov Benenson (ETH Zürich), “Molecular Computing Meets Synthetic
Biology”

– Charles H. Bennett (IBM T. J. Watson Research Center), “From Quantum
Dynamics to Physical Complexity”

– Hod Lipson (Cornell University), “The Robotic Scientist: Distilling Natural
Laws from Experimental Data, from Cognitive Robotics to Computational
Biology”

– Nadrian C. Seeman (New York University), “DNA: Not Merely the Secret
of Life – Using the Information in DNA to Control Molecular Structure”
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The meeting was also pleased to have three distinguished invited tutorial
speakers:

– Anne Condon (University of British Columbia), “Programming with Chem-
ical Reaction Networks and DNA Strand Displacement Systems”

– Ming Li (University of Waterloo), “Approximating Semantics”
– Tommaso Toffoli (Boston University), “Do We Compute to Live, or Live

to Compute? Entropy Pumps, Evolution vs Emergence, and the Risks of
Success”

This year, in response to the Call for Papers, there were 79 articles submit-
ted by authors from 30 countries. Each paper was reviewed by at least three
referees and discussed by the members of the Program Committee. Finally, 31
papers were selected for oral presentation at the conference and inclusion in
these proceedings.

The conference has a long history of hosting workshops. The 2014 edition in
London hosted three workshops:

– “DNA Computing by Self-assembly,” organized by Matthew Patitz, with
invited speakers Scott Summers and Damien Woods (Tuesday, July 15)

– “Computational Neuroscience,” organized by Mark Daley, with invited speak-
ers Randy McIntosh and William Cunningham (Thursday, July 17)

– “Unconventional Computation in Europe,” organized by Martyn Amos and
Susan Stepney, with invited speaker Ricard Solé (Friday, July 18)

We are grateful for the support of the FIELDS Institute for Research in
Mathematical Sciences, the PERIMETER Institute for Theoretical Physics, the
Department of Computer Science and the Faculty of Science of the University
of Western Ontario, Research Western, IBM, and the Rotman Institute of Phi-
losophy.

We thank all those who have contributed to this meeting. In particular, we
thank the invited speakers, the contributing authors, the referees, the members
of the Program Committee, the members of the Steering Committee, the local
organizers and the Student Volunteer Team, all of whose efforts have contributed
to the practical and scientific success of the meeting.

July 2014 Oscar H. Ibarra
Lila Kari

Steffen Kopecki
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José Félix Costa IST University of Lisbon, Portugal
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Molecular Computing Meets Synthetic Biology

Yaakov Benenson

Synthetic Biology Group
Department of Biosystems Science and Engineering

ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland

Abstract. One of the motivations behind computing with molecules is
to “computerize” living systems, for example to prevent disease or control
artificial tissues. Biology, however, is already very good at computing —
the human brain being one example. Even on a single cell level informa-
tion is constantly being processed, and the development of a functional
organism from a single fertilized cell is controlled by an ingenious if only
partially understood program encoded in DNA. Does this mean that the
efforts to “write” new molecular programs are redundant? Not at all —
natural programs have taken three billion years to evolve and, despite
their beauty, are very difficult to alter in any way.

In my view the optimal approach is to balance the engineering prin-
ciples inspired by computer science and engineering, such as universal
models, reprogrammability, modularity, etc., with the harsh reality of cell
and organismal biology. The simple fact is that we do not know yet, even
at the theory level, whether it is possible to perform reliable information
processing in actual living cells as opposed to idealized “well-mixed re-
actors”. Despite these limitations, the field of molecular computing in
cells, or biological computing, has made significant steps forward with
new design principles, new architectures, and new exciting experimental
results. These developments also inform basic biological research.



From Quantum Dynamics to Physical

Complexity

Charles H. Bennett

IBM Research, Thomas J. Watson Research Center

Yorktown Heights, NY 10598, USA

Abstract. Quantum effects in information processing, aside from mak-
ing possible feats like quantum cryptography and Shor’s factoring algo-
rithm, have led to more coherent and powerful ways of thinking about
information, computation, and cosmology. We review this approach, es-
pecially the uniquely private form of correlation known as entanglement,
whose very pervasiveness makes it hard to detect, allowing it to remain
undiscovered until the 20th century. In combination with thermal dis-
equilbrium, entanglement helps us understand why the future is more
uncertain than the past, and how our world produces structures that
are logically “deep”, having internal evidence of a complicated history,
an idea that can be made precise using the tools of algorithmic informa-
tion and computational complexity. Finally we consider the Boltzmann
brain problem afflicting many modern cosmologies, where
similar structures are predicted to fluctuate into existence even at ther-
mal equilibrium, bearing false evidence of a complicated history that
never happened.



The Robotic Scientist
Distilling Natural Laws from Experimental Data, from

Cognitive Robotics to Computational Biology

Hod Lipson

Sibley School of Mechanical and Aerospace Engineering, Cornell University

Ithaca, NY 14853-7501, USA

Abstract. Can machines discover scientific laws automatically? Despite
the prevalence of computing power, the process of finding natural laws
and their corresponding equations has resisted automation. We will out-
line a series of recent research projects, starting with self-reflecting robotic
systems, and ending with machines that can formulate hypotheses, de-
sign experiments, and interpret the results, to discover new scientific
laws. We will then present examples from psychology to cosmology, from
classical physics to modern physics, from big science to small science.

Reference

1. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)



DNA: Not Merely the Secret of Life
Using the Information in DNA to Control Molecular

Structure�

Nadrian C. Seeman

Chemistry Department, New York University

New York, NY 10003, USA

Abstract. Our laboratory is investigating unusual DNA molecules in
model systems that use synthetic molecules. A major effort in our labora-
tory is devoted to DNA nanotechnology. The attachment of specific sticky
ends to a DNA branched junction enables the construction of stick fig-
ures, whose edges are double-stranded DNA. This approach has already
been used to assemble a cube, a truncated octahedron, nanomechanical
devices and 2D crystals and 3D crystals from DNA. Ultimate goals for
this approach include the assembly of a biochip computer, nanorobotics
and nanofabrication and the exploitation of the rational synthesis of pe-
riodic matter.

Thus, we build branched DNA species that can be joined usingWatson-
Crick base pairing to produce N-connected objects and lattices. We have
used ligation to construct DNA topological targets, such as knots, poly-
hedral catenanes, Borromean rings and a Solomon’s knot. Branched junc-
tions with up to 12 arms have been made.

Nanorobotics is a key area of application. We have made robust 2-state
and 3-state sequence-dependent devices and bipedal walkers. We have
constructed a molecular assembly line using a DNA origami layer and
three 2-state devices, so that there are eight different states represented
by their arrangements. We have demonstrated that all eight products
can be built from this system.

A central goal of DNA nanotechnology is the self-assembly of periodic
matter. We have constructed 2D DNA arrays with designed patterns
from many different motifs. We have used DNA scaffolding to organize
active DNA components. We have used pairs of 2-state devices to capture
a variety of different DNA targets.

One of the key aims of DNA-based materials research is to construct
complex material patterns that can be reproduced. We have built such
a system from bent TX molecules, which can reach 2 generations of
replication. This system represents a first step in self-reproducing
materials. We are making progress towards selection of self-replicating
materials.

* This research has been supported by the NIGMS, NSF, ARO, ONR, DOE and the
Gordon and Betty Moore Foundation.
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Recently, we have self-assembled a 3D crystalline array and have
solved its crystal structure to 3Å resolution, using unbiased crystallo-
graphic methods. We can use crystals with two molecules in the crys-
tallographic repeat to control the color of the crystals. Thus, structural
DNA nanotechnology has fulfilled its initial goal of controlling the struc-
ture of DNA in three dimensions. A new era in nanoscale control and
molecular programming awaits us.
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Programming with Chemical Reaction Networks

and DNA Strand Displacement Systems

Anne Condon

Department of Computer Science, University of British Columbia

Vancouver, BC, V6T 1Z4, Canada

Abstract. Chemical reaction networks (CRNs) and DNA strand dis-
placement systems (DSDs) are widely-studied and useful models of molec-
ular programming. In this tutorial, we introduce the models, illustrating
the expressive power of CRNs as a molecular programming language
and how CRNs can be compiled into lower-level, physically realizable
DNA strand displacement systems. We characterize the power of CRNs
in terms of well known complexity classes, describe connections with
reversible and distributed computing models, and discuss limits to com-
puting with CRNs. Finally, we discuss directions for future research that
could advance our understanding of these models and the possibilities
for efficient molecular programs.

Bio-molecules do remarkable things in our cells, including information process-
ing, communication and transportation. Recent technological advances have en-
abled scientists to design and program simple DNA molecular systems with
a variety of computational and functional capabilities, many of which already
exceed the roles of DNA in the cell. Bio-molecules are interesting to program
because of their dynamic structural and material properties, because they en-
able us to organize matter at the nano-scale and because they can naturally
interact with biological systems at the cellular level. It is hard to imagine a fu-
ture in which programming molecules will not be central to understanding and
mediating cellular and other nano-scale processes.

So, how can we program molecules? Researchers in the field of DNA comput-
ing and molecular programming have developed many creative approaches, along
with experimental demonstrations of the viability of these approaches. In this
tutorial I’ll focus on two such approaches, namely Chemical Reaction Networks
(CRNs) [3, 9, 8] and DNA Strand Displacement Systems (DSDs) [12, 15].

CRNs are a distributed computing model in which, starting from an initial
pool of molecules, consisting of duplicates from a finite set of species, reactions
ensue that consume and produce species, thereby converging on an “outcome”
pool that indicates the result of a computation. CRNs are interesting in part
because they model chemical system kinetics - the basis for biological information
processing - and in part because they provide a very natural level of abstraction
in which to design and reason about molecular processes.

DSD programs model a lower level of abstraction than CRNs. At their core
is a basic primitive whereby an initially unbound input DNA strand I binds to a
template T , thereby displacing an output strand O that was initially bound to T
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so that O becomes unbound. Strand O can in turn act as input for a subsequent
displacement. DSDs are collections of strands that can change configurations,
i.e., which strands are bound and which are unbound, via successive strand dis-
placements in a pre-programmed fashion, ultimately producing unbound strands
that encode the result of a computation. There have been successful experimen-
tal demonstrations of DSD designs that realize logic circuits and even artificial
neurons [5, 6].

In this tutorial, we’ll describe why CRNs and DSDs are interesting program-
ming models, what we know about effective ways to write CRN and DSD pro-
grams, and what are important directions for further progress. For example,
CRNs can be “compiled” into DSDs [1, 9, 10], CRNs and thus DSDs can in prin-
ciple provide an energy efficient realization of CRNs [13, 7, 10, 14].

Several approaches for deterministicially computing with CRNs have been
studied. In this context, resources such as time, volume (i.e., space needed to
store species as a computation proceeds), and energy are important. In some
models, quantities are represented by the number of copies, or count, of a
molecule. A computation is considered to have completed when the count of
designated output species is stable, i.e., will not change regardless of which ap-
plicable reactions ensue. Such models are typically uniform, in the sense that the
number of species needed to specify an algorithm is independent of the input
size. Connections with population protocols, a distributed computing model, has
provided valuable insights on the resources needed to compute with such models.
Variants of these uniform models, in which molecular polymers can represent a
stack data structure, can simulate Turing-general models of computation [7, 4].
In other, non-uniform models, the presence or absence of molecular species rep-
resent bit values and thus, like (non-uniform) circuit models of computation, the
number of species needed for a computation is a function of the input length.
It is possible to design non-uniform DSDs that “recycle” molecules by running
reversible reactions or displacements in both forwards and reverse directions,
so that t steps of the system use just O(log t) molecules [2, 11] and thus have
limited volume.

A limitation of some designed DSDs [4, 2] is that, in order for them to com-
pute correctly, a single copy of some reactants should be present initially. It is
currently impractical to obtain the exact numbers in a wet lab. When multiple
copies of all initial molecules are present, correctness requires that the length
of the shortest sequence of reactions needed to produce any given molecule is
bounded by a polynomial function of the (appropriately measured) size of the
CRN [2].

There are many interesting directions for future research. Techniques are
needed for establishing the correctness of even quite simple CRNs. Better mech-
anisms are needed for translating CRNs to physically realizable DSDs that can
be implemented robustly in the face of errors. More work is needed to under-
stand what can be computed reversibly and with limited volume. Such research,
grounded in an appreciation for and understanding of thermodynamics and
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kinetics, as well as the potential and limitations of experimental systems, can
help lay the foundations of an exciting new discipline.

References

1. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. In: Stefanovic, D., Turberfield, A. (eds.) DNA 18 2012.
LNCS, vol. 7433, pp. 25–42. Springer, Heidelberg (2012)

2. Condon, A., Hu, A.J., Maňuch, J., Thachuk, C.: Less haste, less waste: On recycling
and its limits in strand displacement systems. J. R. Soc. Interface (2012)

3. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
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Approximating Semantics�

Ming Li

David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

Abstract. Latent search engines and question-answering (QA) engines
fundamentally depend on our intuitive notion of semantics and semantic
distance. However, such a semantic distance is likely undefinable, cer-
tainly un-computable, and often blindly approximated. Can we develop
a theoretical framework for this area?

We will describe a theory, using the well-defined information distance,
to approximate the elusive semantic distance such that it is mathemat-
ically proven that our approximation is “better than” any computable
approximation of the intuitive concept of semantic distance. Although
information distance itself is obviously also not computable, it does allow
a natural approximation by compression, especially with the availability
of big data. We will then describe a natural language encoding system
to implement our theory followed by experiments on a QA system.

* This work is supported in part by NSERC Grant OGP0046506, OCRiT Grant
115354, IDRC Research Chair in Information Technology, Project Number:
104519-006, CFI ORF equipment grant, and the CRC Program.



Do We Compute to Live, or Live to Compute?
Entropy Pumps, Evolution vs Emergence,

and the Risks of Success

Tommaso Toffoli

Department of Electrical and Computer Engineering

Boston University, Boston, MA 02215, USA

Abstract. We shall show that, in a “multiuser” world, strict immortal-
ity in the long term is a contradiction in terms. Next best, then, what is
a good strategy for at least some part of me to still be present in a large
proportion of samples of the future? Perhaps long individual life, many
identical clones, continual repair, sexual reproduction, uploading myself
to the cloud, or what else?

Even if for sake of argument I grant that “survival of the fittest”
is a mere tautology, so that ‘fittest’ just means “whoever survives” (a
fatalistic que sera sera; cf. analogous tautological constructs such as “the
invisible hand of the marketplace”), I am still left with the fundamental
question: What kinds of structure have what it takes to survive in my
current environment? In other words, for a given natural or artificial
environment, what properties of a complex structure give it a chance to
enjoy permanence in it? It is remarkable, but perhaps not too surprising,
that this problem may have quite different solutions depending on the
time scale one has in mind (as we shall see, there are “greedy” strategies
that can promise short-term permanence but virtually guarantee long-
term disappearance).

‘Apparition’ and ‘permanence’ are key features of all sorts of emergent
systems — and these are found virtually whenever there is available an
entropy pump. Lifelike systems are emergent systems that have been
caught in a special kind of positive-feedback loop: a runaway (at least
for a while) loop with branching tracks, so that from the same initial
conditions different “historical developments” are potentially available.

Evolution may be seen as a special case of emergence, namely, the
development and interplay of a tangled hierarchy of emergent systems
some of which are lifelike. We shall be specially interested in the nature
of the entropy pumps on which emergent systems are dependent, and in
the hierarchy of entropy pumps — the “entropy cascade” — that drives
evolution. In this context, we shall present a novel way to look at both
entropy and computation.
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Abstract. A hybrid network of evolutionary processors (HNEP) is a
graph where each node is associated with a special rewriting system
called an evolutionary processor, an input filter, and an output filter.
Each evolutionary processor is given a finite set of one type of point mu-
tations (insertion, deletion or a substitution of a symbol) which can be
applied to certain positions in a string. An HNEP rewrites the strings in
the nodes and then re-distributes them according to a filter-based com-
munication protocol; the filters are defined by certain variants of random-
context conditions. HNEPs can be considered both as languages gen-
erating devices (GHNEPs) and language accepting devices (AHNEPs);
most previous approaches treated the accepting and generating cases
separately. For both cases, in this paper we improve previous results by
showing that five nodes are sufficient to accept (AHNEPs) or generate
(GHNEPs) any recursively enumerable language by showing the more
general result that any partial recursive relation can be computed by an
HNEP with (at most) five nodes.

1 Introduction

Networks of Evolutionary Processors (NEPs) were introduced in [10] as a model
of string processing distributed over a graph. The nodes of the graph contain
the processors that carry out operations of insertion, deletion, and substitution,
which reflect basic biological processes known as point mutations. Models based
on these operations are of particular interest in formal language theory due to
the simplicity of these operations. In NEPs, an evolutionary processor is lo-
cated at every node of a graph and processes objects, for example (finite) sets of
strings. The system functions by rewriting the collections of objects present in
the nodes and then re-distributing the resulting objects according to a commu-
nication protocol defined by a filtering mechanism. The language determined by
the network is defined as the set of objects which appear at some distinguished
node in the course of the computation. NEPs are models inspired by cell biology,

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 1–13, 2014.
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since each processor represents a cell performing point mutations of DNA and
controlling its passage inside and outside the cell through a filtering mechanism.
The evolutionary processor corresponds to the cell, the generated string to a
DNA strand, and the operations insertion, deletion, and substitution of a sym-
bol to the point mutations. By using an appropriate filtering mechanism, NEPs
with a very small number of nodes are very powerful computational devices:
already with two nodes, they are as powerful as Turing machines, see [4].

Special variants of these devices are the so-called hybrid networks of evolu-
tionary processors (HNEPs), where each language processor performs only one
of the above operations on a certain position of the strings in that node. Fur-
thermore, the filters are defined by some variants of random-context conditions,
i.e., they check the presence and the absence of certain symbols in the strings.
These constructs can be considered both as language generating and accepting
devices, i.e., generating HNEPs (GHNEPs) and accepting HNEPS (AHNEPs).
The notion of an HNEP, as a language generating device, was introduced in [19],
and the concept of an AHNEP was defined in [18].

In [11] it was shown that, for an alphabet V , GHNEPs with 27 + 3 · card(V )
nodes are computationally complete. For specific variants of AHNEPs, in [16] it
was shown that 31 nodes are sufficient for recognizing any recursively enumerable
language (irrespectively of the size of the alphabet); the result was improved
considerably in [17] where the number of necessary nodes was reduced to 24. In
the following, the results were significantly improved: AHNEPs and GHNEPs of
the specific types as defined above were shown to be computationally complete
already with 10 nodes in [1] and only 7 nodes in [2,3]. Then, in [15] it was claimed
that accepting can be done with 6 nodes.

In this paper, we prove that HNEPs are already computationally complete with
five nodes, i.e., any recursively enumerable language can already be generated or
accepted by an HNEP having at most 5 nodes. In fact, we even show that any
partial recursive relation can be computed by an HNEP with at most five nodes.
This upper bound of five nodes improves previous results, see [3] and [15]. As
it is known that the families of HNEPs with two nodes are not computationally
complete (see [8]), the gap for HNEPs between being computationally complete
or not now has already become very small.

2 Definitions

We start by recalling some basic notions of formal language theory. An alphabet
is a non-empty finite set. A finite sequence of symbols from an alphabet V is
called a string over V . The set of all strings over V is denoted by V ∗; the empty
string is denoted by λ; moreover, we define V + = V ∗ \ {λ}. The length of a
string x is denoted by |x|, and by |x|a we denote the number of occurrences of
a letter a in a string x. For a string x, alph(x) denotes the smallest alphabet
Σ such that x ∈ Σ∗. For more details of formal language theory the reader is
referred to the monographs and handbooks in this area as [22] and [21].
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Remark 1. In this paper, string rewriting systems as Turing machines, Post
systems, etc. are called computationally complete if these systems are able to
compute any partial recursive relation R on stings over any alphabet U , i.e.,
R ⊆ (U∗)m × (U∗)n, for some m,n ≥ 0. As input and output alphabet for these
systems we assume to take T = U ∪ {$}, where $ is a special delimiter sepa-
rating the components of an input vector (w1, . . . , wm) and an output vector
(v1, . . . , vn), wi ∈ U∗, 1 ≤ i ≤ m, vj ∈ U∗, 1 ≤ j ≤ n. In that sense, any relation
R ⊆ (U∗)m × (U∗)n can also be considered as a special relation R′ ⊆ T ∗ × T ∗.

Remark 2. Computational completeness in the usual sense with respect to ac-
ceptance and generation directly follows from this general kind of computa-
tional completeness, as any recursively enumerable language L can be viewed
as partial recursive relation L × {λ} (acceptance) and {λ} × L (generation); λ
can be replaced by any arbitrary string. For the accepting case, we can even
take any relation R whose second component is L, which corresponds to take
{u ∈ U∗ | uRv, v ∈ U∗} as the accepted language and also is the usual way
how acceptance is defined in the previous papers on networks of evolutionary
processors. The results proved in this paper, establishing acceptance even when
restricting the second component, obviously also hold true for the case when
taking the more relaxed original definitions.

2.1 Hybrid Networks of Evolutionary Processors

For introducing the notions concerning evolutionary processors and hybrid net-
works, we mainly follow [11] . These language processors use so-called evolution-
ary operations, simple rewriting rules which abstract local gene mutations.

For an alphabet V , let a → b be a rewriting rule with a, b ∈ V ∪ {λ}; we
call this rule a substitution rule if both a and b are different from λ; we call
it a deletion rule if a 	= λ and b = λ and an insertion rule if a = λ and
b 	= λ. The set of all substitution rules, deletion rules, and insertion rules over
an alphabet V is denoted by SubV , DelV , and InsV , respectively. Given such
rules π ≡ a → b ∈ SubV , ρ ≡ a→ λ ∈ DelV , and σ ≡ λ→ a ∈ InsV as well as
a string w ∈ V ∗, we define the following actions of π, ρ, σ on w:

π∗(w) = {ubv | w = uav, u, v ∈ V ∗},
πl(w) = {bv | w = av}, πr(w) = {ub | w = ua},
ρ∗(w) = {uv | w = uav, u, v ∈ V ∗,
ρl(w) = {v | w = av}, ρr(w) = {u | w = ua},
σ∗(w) = {uav | w = uv, u, v ∈ V ∗},
σl(w) = {aw}, σr(w) = {wa},

with the following exception: if some set, i.e., π∗(w), πl(w), πr(w), ρ∗(w), ρl(w),
ρr(w), results to be empty (i.e., no strings u, or u and v, satisfy the indicated
condition, because symbol a for substitution or deletion is not present in w, or
it is not found in the expected position), the resulting set for the corresponding
operation is defined to be its argument, i.e., w.
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The symbol α ∈ {∗, l, r} denotes the mode of applying a substitution, insertion
or deletion rule to a string, namely, at any position (α = ∗), on the left-hand
end (α = l), or on the right-hand end (α = r) of the string, respectively. For
any rule β, any mode α ∈ {∗, l, r}, and any L ⊆ V ∗, we define the α-action of β
on L by βα(L) =

⋃
w∈L βα(w). For a given finite set of rules M , we define the

α-action of M on a string w and on a language L by Mα(w) =
⋃

β∈M βα(w)
and Mα(L) =

⋃
w∈LMα(w), respectively.

We notice that, as in previous papers on HNEPs, substitutions in the following
will only be used at arbitrary positions, i.e., with α = ∗.

For two disjoint finite subsets P and F of an alphabet V and any string w
over V , the two predicates ϕ(1) and ϕ(2) are defined as follows:

ϕ(1)(w;P, F ) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅,
ϕ(2)(w;P, F ) ≡ (P = ∅ ∨ alph(w) ∩ P 	= ∅) ∧ (F ∩ alph(w) = ∅).

The idea of these predicates is based on random-context conditions defined by
sets P (permitting contexts) and F (forbidding contexts). Moreover, we define

ϕi(L, P, F ) = {w ∈ L | ϕi(w;P, F )}, i ∈ {1, 2}, for any L ⊆ V ∗.

An evolutionary processor consists of a set of evolutionary operations (sub-
stitutions, insertions, deletions) and a filtering mechanism, i.e., we define an
evolutionary processor over V as a 5-tuple (M,PI, FI, PO, FO) where
– either M ⊆ SubV or M ⊆ DelV or M ⊆ InsV , i.e., the set M represents

the set of evolutionary rules of the processor (notice that every processor is
dedicated to only one type of the evolutionary operations);

– PI, FI ⊆ V are the input permitting and forbidding contexts of the proces-
sor and PO,FO ⊆ V are the output permitting and forbidding contexts of
the processor.

The set of evolutionary processors over V is denoted by EPV .

Definition 1. A hybrid network of evolutionary processors (an HNEP for short)
over V is a construct Γ = (V, T,H,N , Cinit, α, β, Cinput, i0) where

– V is the alphabet of the network;
– T is the input/output alphabet, T ⊆ V ;
– H = (XH , EH) is an undirected graph with set of vertices or nodes XH and

set of (undirected) edges EH ; H is called the underlying graph of the network;
– N : XH −→ EPV is a mapping which with each node x ∈ XH associates the

evolutionary processor N (x) = (Mx, P Ix, F Ix, POx, FOx);
– Cinit : XH → 2V

∗
is a mapping which identifies the initial configuration of

the network; it associates a finite set of words with each node of graph H;
– α : XH −→ {∗, l, r}; α(x) defines the action mode of the rules performed on

the strings occurring in node x;
– β : XH −→ {(1), (2)} defines the type of the input and output filters of a

node; for every node x, x ∈ XH , and for any language L we define μx(L) =
ϕβ(x)(L;PIx, F Ix) and τx(L) = ϕβ(x)(L;POx, FOx), i.e., μx(L) and τx(L)
are the sets of strings of L that can pass the input and the output filter of x,
respectively;
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– Cinput : XH −→ 2V
∗
defines a finite set of “initial strings for the input”: for

any (x,w0(x)) ∈ Cinput, the input string is concatenated to w0(x) and added
to node x of the graph H, as described below;

– i0 ∈ XH is the output node of Γ .

The size of Γ is defined to be the number of nodes in XH . An HNEP is said
to be a complete HNEP if its underlying graph is a complete graph.

Looking at HNEPs as devices computing partial recursive relations R on an
alphabet U , i.e., R ⊆ (U∗)m × (U∗)n, for some m,n ≥ 0, we take T = U ∪ {$},
where $ is a special delimiter separating the components of an input vector
(w1, . . . , wm) and an output vector (v1, . . . , vn), wi ∈ U∗, 1 ≤ i ≤ m, vj ∈ U∗,
1 ≤ j ≤ n.

A configuration of an HNEP Γ , as defined above, is a mapping C : XH −→
2V

∗
which associates a set of strings over V with each node x of the graph. A

component C(x) of a configuration C is the set of strings that can be found
in the node x in this configuration, hence, a configuration can be considered as
a list of the sets of strings which are present in the nodes of the network at a
given moment. For a given input vector (w1, . . . , wm), wi ∈ U∗, 1 ≤ i ≤ m, the
initial configuration C0 of the HNEP is obtained by adding to Cinit the string
w0(x)w1$ . . . $wm in node x, for any (x,w0(x)) ∈ Cinput: C0(x) = Cinit(x) ∪
{w0(x)w1$ . . . $wm | (x,w0(x)) ∈ Cinput}.

A configuration can change either by an evolutionary step or by a commu-
nication step. When it changes by an evolutionary step, then each component
C(x) of the configuration C is altered in accordance with the set of evolution-
ary rules Mx associated with the node x and the way of applying these rules,
α(x). Formally, the configuration C′ is obtained in one evolutionary step from

the configuration C, written as C =⇒ C′, if and only if C′(x) = M
α(x)
x (C(x))

for all x ∈ XH . When the configuration changes by a communication step, then
each language processor N (x), where x ∈ XH , sends a copy of each of its strings
to every node y the node x is connected with, provided that this string is able
to pass the output filter of x, and receives all the strings which are sent by the
processor of any node y connected with x provided that these strings are able
to pass the output filters of y and the input filter of x. Those strings which are
not able to pass its output filter, remain at the node x. Formally, we say that
configuration C′ is obtained in one communication step from configuration C,
written as C � C′, if and only if

C′(x) = (C(x) − τx(C(x))) ∪
⋃

(x,y)∈EG

(τy(C(y)) ∩ μx(C(y)))

holds for all x ∈ XH . A computation in Γ is a sequence of configurations C0,
C1,C2, . . . where C0 is the initial configuration of Γ , C2i =⇒ C2i+1 and C2i+1 �
C2i+2, for all i ≥ 0. Note that each configuration Ci+1 is uniquely determined
by the configuration Ci, i ≥ 0. The result of a computation in Γ for an input
vector (w1, . . . , wm), wi ∈ U∗, 1 ≤ i ≤ m, i.e., for the initial configuration
{(x,w0(x)w1$ . . . $wm) | x ∈ XH}, is the set of all strings (of the form v1$ . . . $vn,
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vj ∈ U∗, 1 ≤ j ≤ n) arriving in the output node i0 at any computation step of
Γ , i.e.,

L(Γ )((w1, . . . , wm)) = {(v1, . . . , vn) | vj ∈ T, 1 ≤ j ≤ n,
v1$ . . . $vn ∈ Cs(i0), s ≥ 0)}.

Remark 3. Consider any input win = w1$ . . . $wm. We first note that, since
different strings do not influence each other, the strings in Cinit do not affect
the evolution of the strings in Cinput concatenated with win and vice-versa.
The results thus are the union of the strings obtained from Cinit, which do not
depend on the input, and the strings obtained from win, which do not depend
on the strings in Cinit. Therefore, for the results elaborated in this paper we may
always assume Cinit to be empty, and even exclude it from the tuple defining the
network. Moreover, we may also assume that Cinput only consists of one string
in one node, i.e., Cinput = {(x0, w0)}.

As special cases, HNEPs can be considered either as language generating
devices (generating hybrid networks of evolutionary processors or GHNEPs) or
language accepting devices (accepting hybrid networks of evolutionary processors
or AHNEPs). In the case of GHNEPs, the relation to be computed is {λ} × L,
i.e., the initial configuration always equals {(x0, w0)}; the generated language
is the set of all strings which appear in the output node at some step of the
computation, i.e., the language generated by a generating hybrid network of
evolutionary processors Γ is Lgen(Γ ) =

⋃
s≥0 Cs(i0). In the case of AHNEPs,

the relation to be computed is L×{λ}, i.e., starting from the initial configuration
{(x0, w0w1)}, we accept the input string w1 if and only if at some moment of
the computation the empty string appears in the output node, i.e., the language
accepted by Γ is defined by Lacc(Γ ) = {w1 ∈ V ∗ | ∃s ≥ 0(Cs(i0) = {λ})}.

2.2 Post Systems and Circular Post Machines

The left and right insertion, deletion, and substitution rules defined in the pre-
ceding subsection are special cases of string rewriting rules only working at the
ends of a string; they can be seen as restricted variants of Post rewriting rules
as already introduced by Emil Post in [20]: for a simple Post rewriting rule
Πs ≡ u$x→ y$v we define

πs(w) = {yzv | w = uzx, z ∈ V ∗}.

A normal Post rewriting rule πn ≡ $x → y$ is a special case of a simple
Post rewriting rule u$x→ y$v with u = v = λ; this normal Post rewriting rule
$x → y$ is the mirror version of the normal form rules u$ → $v as originally
considered in [20] for Post canonical systems; yet this variant has already been
used several times for proving specific results in the area of P systems, e.g., see
[12]. A Post system of type X is a construct (V, T,A, P ) where V is a (finite) set
of symbols, T ⊆ V is a set of terminal symbols, A ∈ V ∗ is the axiom, and P is a
finite set of Post rewriting rules of type X ; for example, X can mean simple or
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normal Post rewriting rules. In both cases it is folklore that these Post systems
of type X are computationally complete.

The basic idea of the computational completeness proofs for Post systems is
the “rotate-and-simulate”-technique, i.e., the string is rotated until the string
x to be rewritten appears on the right-hand side, where it can be erased and
replaced by the string y on the left-hand side, which in total can be accomplished
by the rule $x→ y$. By rules of the form $a→ a$ for each symbol a the string
can be rotated. In order to indicate the beginning of the string in all its rotated
versions, a special symbol B (different from all others) is used; B is to be erased
at the end of a successful computation.

Circular Post machines are machine-like variants of Post systems using specific
variants of simple Post rewriting rules; several variants named CPM i, 0 ≤ i ≤ 4,
were introduced in [6], and the variants of CPM 5 we use in this paper were
investigated in [5]. It was stated in [5] that CPM5 is an interesting model that
deserves further attention; in the present paper we confirm that this is the case.

Definition 2. A (non-deterministic) CPM5 is a construct

M = (Σ, T,Q, q1, q0, R),

where Σ is a finite alphabet, T ⊆ Σ is the set of terminal symbols, Q is the set
of states, q1 ∈ Q is the initial state, q0 ∈ Q is the only terminal state, and R is
a set of simple Post rewriting rules of the following types (we use the notation
Q′ = Q \ {q0}):

– px$ → q$ (deletion rule) with p ∈ Q′, q ∈ Q, x ∈ Σ; we also write px → q

and, for any w ∈ Σ∗, the corresponding computation step is pxw
px→q−→ qw;

– p$→ q$y ( insertion rule) with p ∈ Q′, q ∈ Q, x ∈ Σ; we also write p→ yq

and, for any w ∈ Σ∗, the corresponding computation step is pw
p→yq−→ qwy.

The CPM5 is called deterministic if for any two deletion rules px → q1 and
px→ q2 we have q1 = q2 and for any two insertion rules p→ q1y1 and p→ q2y2
we have q1y1 = q2y2.

The name circular Post machine comes up from the idea of interpreting the
machines to work on circular strings where both deletion and insertion rules
have local effects, as for circular strings the effect of the insertion rule p$→ q$y
is the same as the effect of p → yq directly applied to a circular string, which
also justifies writing p$→ q$y as p→ yq.

Definition 3. A CPM5 M = (Σ, T,Q, q1, q0, R) is said to be in normal form if

– Q \ {q0} = Q1 ∪Q2 where Q1 ∩Q2 = ∅;
– for every p ∈ Q1 and every x ∈ Σ, there is exactly one instruction of the

form px→ q, i.e., Q1 is the set of states for deletion rules;
– for every insertion rule p→ yq we have p ∈ Q2, i.e., Q2 is the set of states

for insertion rules, and moreover, if p→ y1q1 and p→ y2q2 are two different
rules in R, then y1 = y2.
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In [5], CPM5 in normal form even obeying the constraint that for each p ∈ Q2

there are at most two different rules p→ yq1 and p→ yq2 in R (and, again, M
is called deterministic if q1 = q2) were shown to be computationally complete.
The following result can be derived from the theorems proved in [5]:

Theorem 1. (see [5]) Circular Post machines of type 5 (CPM5), even in nor-
mal form, are computationally complete.

3 Computational Completeness of HNEPs with Five
Nodes

HNEPs are defined as deterministic distributed string-processing devices where
the evolution rules are simultaneously applied in all possible ways to (different
copies of) all possible strings. However, since there is no interaction between the
strings, it is sufficient to consider any possible behavior of an HNEP as a non-
deterministic distributed device processing one string. Therefore, in the proof
below, we consider configurations as (region, string), i.e., one string in one
node, for any possible evolution.

Theorem 2. Any (non-deterministic) CPM 5 M in normal form can be simu-
lated by a complete HNEP Γ of size 5.

Proof. LetM = (Σ, T,Q, q1, q0, R) be a (non-deterministic) CPM5 in the normal
form as defined in Definition 3, with symbols Σ = {aj | 1 ≤ j ≤ m} and states
Q = {qi | 0 ≤ i ≤ n}, where q1 is the initial state and the only terminal state
is q0 ∈ Q. We now construct a complete HNEP Γ = (V, T,H,N , α, β, C0

0 , 5) of
size 5 which simulates the given CPM5 M . The following sets are used in its
description:

J = {−1, 0, 1 . . .m}, U = {ui | qi ∈ Q1}, U ′ = {u′
i | qi ∈ Q1},

P = {pi | qi ∈ Q}, P ′ = {p′i | qi ∈ Q}, P ′′ = {p′′i | qi ∈ Q},
A = Σ ∪ {a−1, a0}, A′ = {a′j | aj ∈ A}, A′′ = {a′′j | aj ∈ A},
Ā = {ās,t | qs ∈ Q1, t ∈ J}, Â = {âs,t | qs ∈ Q1, t ∈ J},
Q̃ = {q̃i | qi ∈ Q2}, Q̄ = {q̄i | qi ∈ Q1}, Q̂ = {q̂i | qi ∈ Q1},
Q′ = {q′s,t | qs ∈ Q2, t ∈ J}, Q′′ = {q′′s,t | qs ∈ Q2, t ∈ J},
V = A ∪ A′ ∪ A′′ ∪ Ā ∪ Â

∪ Q ∪ P ∪ P ′ ∪ P ′′ ∪ U ∪ U ′ ∪Q′ ∪Q′′ ∪ Q̃ ∪ Q̄ ∪ Q̂ ∪ {ε}.

We take H to be a complete graph with 5 nodes; C0
0 = {(1, q1)}, i.e., for the

input string w1, the initial configuration is {(1, q1w1)}; the output node of Γ for
collecting the results of a computation is node 5. Moreover, we take β(i) = 2 for
all 1 ≤ i ≤ 5 as well as α(1) = α(2) = α(5) = ∗, α(3) = r, and α(4) = l. The
evolutionary processors N (i) = (Mi, P Ii, F Ii, POi, FOi), 1 ≤ i ≤ 5, are defined
as follows (for the different kinds of rules, we use labels for identifying them later
in the explanations given below).
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M1 = {1.1 : qi → q̃i | qi ∈ Q2} ∪ {1.2 : q′′s,t → q′s,t | q′′s,t ∈ Q′′, q′s,t ∈ Q′}
∪ {1.3 : a′′l → a′l | l ∈ J} ∪ {1.4 : a′′l → al | al ∈ Σ} ∪ {1.5 : q0 → ε}
∪ {1.6 : ql → pl | ql ∈ Q1} ∪ {1.7 : aj → ā0,j | aj ∈ Σ}
∪ {1.8 : q̂l → q̄l | ql ∈ Q, l > 0} ∪ {1.9 : âs,t → ās,t | âs,t ∈ Â, ās,t ∈ Ā}
∪ {1.10 : p′l → p′′l | ql ∈ Q} ∪ {1.11 : up → u′

p | qp ∈ Q},
P I1 = Q ∪Q′ ∪Q′′ ∪ P ′′ ∪ Q̂ ∪ P ′ ∪ U, FI1 = Q̃ ∪ A′ ∪ U ′ ∪ Q̄ ∪ Ā ∪ {ε},
PO1 = ∅, FO1 = Â,

M2 = {2.1 : q̃i → q′′k,j−1 | qi → ajqk ∈ R}
∪ {2.2 : q′s,t → q′′s,t−1 | t > 0, q′s,t ∈ Q′, q′′s,t ∈ Q′′}
∪ {2.3 : a′l → a′′l+1 | a′l ∈ A′, a′′l ∈ A′′}
∪ {2.4 : q′s,0 → qs | q′s,0 ∈ Q′, qs ∈ Q}
∪ {2.5 : q̄l → q̂l−1 | q̄l ∈ Q̄, q̂l−1 ∈ Q̂, l > 0}
∪ {2.6 : ās,t → âs+1,t | ās,t ∈ Ā, âs,t ∈ Â} ∪ {2.7 : q̄1 → ε}
∪ {2.8 : ās,t → up | qs+1at → qp ∈ R, s > 0} ∪ {2.9 : pl → p′l | ql ∈ Q}
∪ {2.10 : t′p → qp | qp ∈ Q} ∪ {2.11 : p′′i → q̂i−1 | qi ∈ Q, i > 2}
∪ {2.12 : p′′1 → ε},

P I2 = A′ ∪ P ∪ Ā ∪ U ′, F I2 = Q ∪A′′ ∪Q′′ ∪ P ′ ∪ Â ∪ Q̂ ∪ {ε} ∪ U,

PO2 = ∅, FO2 = P ∪ Q̄ ∪ Ā ∪ Q̃ ∪ P ′′ ∪Q′ ∪A′,

M3 = {3.1 : λ→ a′−1 | a′−1 ∈ A′}, P I3 = Q̃,

F I3 = A′ ∪ A′′ ∪ Q̄ ∪ {ε} ∪ Ā ∪ Â ∪ Q̂ ∪ U ∪ U ′ ∪ P ∪ P ′ ∪ P ′′ ∪Q ∪Q′ ∪Q′′,

PO3 = {a′−1}, FO3 = ∅,
M4 = {4.1 : ε→ λ}, P I4 = {ε},
F I4 = Ā ∪ Â ∪ Q̂ ∪ U ′ ∪ P ∪ P ′ ∪ P ′′ ∪Q ∪Q′ ∪Q′′ ∪ Q̃ ∪ A′ ∪A′′,

PO4 = ∅, FO4 = {ε},
M5 = ∅, P I5 = ∅, F I5 = V \ T, PO5 = ∅, FO5 = ∅.

Let q1w1, w1 ∈ T ∗, be the initial configuration of CPM5 M and q0w0 the
final configuration of M , i.e., M starts with q1w1 and ends with q0w0, w1 ∈ T ∗,
w0 ∈ T ∗. Then the HNEP Γ starts the simulation with the initial configuration
C0 = {(1, q1w1)}, and we show that the simulation in Γ only yields string w0

in the output node 5 of Γ , and moreover, if M never stops when starting with
q1w1, then Γ generates nothing in the output node.

Without loss of generality, we assume that CPM5 M starts with a rule
of type q1 → ajqk with qk ∈ Q2 and halts after applying a rule of type
qiaj → q0, and thus any sequence of consecutive rules qi1 → aj1qi2 , qi2 →
aj2qi3 , · · · , qit → ajtqkt+1 with qkt+1 ∈ Q2 from any halting computation ends
with a rule qkt+1as → qkt+2 with qkt+2 ∈ Q1.
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Case 1. Consider any insertion rule qi → ajqk ∈ R, qi ∈ Q2, qk ∈ Q \ {q0}, aj ∈
Σ, and let qiw =⇒ qkwaj be a computation step in M , i.e., rule qi → ajqk
is applied to the string qiw yielding qkwaj . Starting with the string qiw being
situated in node 1 of Γ , we now describe the possible evolutions of this string qiw

in Γ . If (1, qiw)
1.1
=⇒ (1, q̃iw) � (3, q̃iw)

3.1
=⇒ (3, q̃iwa

′
−1), then string q̃iwa

′
−1 can

only go to node 2. Notice that if rule 1.7 is applied, i.e., (1, qiw = qiw
′asw

′′)
1.7
=⇒

(1, qiw
′ā0,sw

′′), then the string qiw
′ā0,sw

′′ is lost as it cannot enter any node.
In node 2 only the two rules 2.1 : q̃i → q′′k,j−1 and 2.3 : a′l → a′′l+1 (for l = −1)

can be applied, i.e.,

(3, q̃iwa
′
−1) � (2, q̃iwa

′
−1)

2.1,2.3
=⇒ (2, q′′k,j−1wa

′′
0 ) � (1, q′′k,j−1wa

′′
0 )

(if more than one evolution step is necessary in a node, we do not indicate the
intermediate communication step leaving the string in the node). Again, if rule
1.7 is applied to q′′k,j−1wa

′′
0 in node 1, the resulting string q′′k,j−1w

′ā0,sw
′′a′′0 is

lost, and moreover, if rules 1.2, 1.4, and 1.7 are applied in any combination,
then the developing strings are lost, too. Thus, only the rules 1.2 and 1.3 should

be applied in node 1, i.e., (1, q′′k,j−1wa
′′
0 )

1.2,1.3
=⇒ (1, q′k,j−1wa

′
0). Back in node 2,

only the rules 2.2 and 2.3 are to be applied, i.e.,

(1, q′k,j−1wa
′
0) � (2, q′k,j−1wa

′
0)

2.2,2.3
=⇒ (2, q′′k,j−2wa

′′
1 ) � (1, q′′k,j−2wa

′′
1 ).

The computation now can be continued in the same way as above, i.e.,

(1, q′′k,j−2wa
′′
1 )

1.2,1.3
=⇒ (1, q′k,j−2wa

′
1) (recall that the application of rules 1.4 and

1.7 leads to strings that will not lead to any result); in sum, we obtain

(1, q′′k,j−2wa
′′
1 )

1.2,1.3
=⇒ . . . � (1, q′k,1wa

′
j−2) � (2, q′k,1wa

′
j−2)

2.2,2.3
=⇒

(2, q′′k,0wa
′′
j−1) � (1, q′′k,0wa

′′
j−1)

1.2,1.3
=⇒ (1, q′k,0wa

′
j−1) � (2, q′k,0wa

′
j−1).

The main idea of this construction is to decrease the index h for the state
symbols q′′k,j−2/q

′
k,j−2 while increasing the index g for the symbols a′′g/a

′
g; by

construction, h reaches 0 at the same moment when g reaches j− 1. At the end,
in node 2, only the rules 2.3 and 2.4 are to be applied, and the resulting string

qkwa
′′
j enters node 1, i.e., (2, q′k,0wa

′
j−1)

2.3,2.4
=⇒ (2, qkwa

′′
j ) � (1, qkwa

′′
j ).

It is easy to see that in node 1, strings resulting from applying rules 1.3
(qkwa

′
j), 1.1 (q̃kwa

′′
j ), 1.6 (pkwa

′′
j ), and 1.7 (qkw

′ã0,sw
′′a′′j ) will be lost. Hence,

only the application of rule 1.4 : a′′l → al leads to the desired correct string

qkwaj , i.e., (1, qkwa
′′
j )

1.4
=⇒ (1, qkwaj). In sum, we conclude that Γ has correctly

simulated the application of the insertion rule qi → ajqk in M .

Case 2. Consider any deletion rule qiaj → qk ∈ R, qi ∈ Q1, qk ∈ Q, aj ∈ Σ,
and let qiajw =⇒ qkw be a computation step in M , i.e., rule qiaj → qk is
applied to the string qiajw yielding qkw. Starting with the string qiajw being
situated in node 1 of Γ , we now describe the possible evolutions of this string
qiajw in Γ . At the beginning of the computation in Γ , the application of rule
1.7 : aj → ā0,j leads to a string that will get lost; instead, we have to take

(1, qiajw)
1.6
=⇒ (1, piajw) � (2, piajw)

2.9
=⇒ (2, p′iajw) � (1, p′iajw). Notice that

now rule 1.7 may not only be applied to a symbol aj at the second position in
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the developing string, but at any position, yet if we apply rule 1.7 at the correct
second position in the developing string, we get the following computations:

(1, p′iajw)
1.10,1.7
=⇒ (1, p′′i ā0,jw) � (2, p′′i ā0,jw)

2.6,2.11
=⇒ (2, q̂i−1â1,jw) �

(1, q̂i−1â1,jw)
1.8,1.9
=⇒ (1, q̄i−1ā1,jw) � (2, q̄i−1ā1,jw)

2.5,2.6
=⇒ (2, q̂i−2â2,jw).

If during the computation instead of rule 2.6 : ās,t → âs+1,t we apply rule
2.8 : ās,t → up, the resulting string q̂supw is lost: in node 1, there are only three
possibilities for a rule to be applied to the string q̂supw, namely rule 1.8 : q̂l → q̄l,
rule 1.11 : up → u′

p, and rule 1.7 : aj → ā0,j, but the resulting strings q̄supw,

q̂su
′
pw, and q̂supw1ā0,sw2 (where w = w1asw2, ā0,s ∈ Ā) are not able to enter

another node.
The sequences of rules 1.8,1.9 and 2.5,2.6 then are iterated until we reach

q̄1āi−1,jw, i.e., for h = i− 1, . . . , 2 we have the following computations:

(1, q̂hâi−h,jw)
1.8,1.9
=⇒ (1, q̄hāi−h,jw) � (2, q̄hāi−h,jw)

2.5,2.6
=⇒ (2, q̂h−1âi−h+1,jw).

Finally, to q̄1āi−1,jw the rules 2.6 and 2.7 : q̄1 → ε might be applied, but
then the obtained string εâi,jw is lost. Thus, only the sequence of rules 2.7
and 2.8 : āi−1,j → uk is to be applied; the simulation of the derivation step
qiajw =⇒ qkw in M correctly ends in node 1 with the string qkw after the fol-
lowing computation steps in Γ :

(2, q̄1āi−1,jw)
2.7,2.8
=⇒ (2, εukw) � (4, εukw)

4.1
=⇒ (4, ukw) �

(1, ukw)
1.11
=⇒ (1, u′

kw) � (2, u′
kw)

2.10
=⇒ (2, qkw) � (1, qkw).

If we apply rule 1.7 at a position i > 2 , i.e., to the aj in qiw
′ajw

′′ with |w′| > 0,
then, at the end of the simulation (carried out as described above) we have
the string w′qkw

′′ in node 1. First consider qk ∈ Q1; then w′qkw
′′ has to be

transformed into w1εw2, w1, w2 ∈ V ∗, |w1| > 0, and at the end the derived
string is lost, as the rule ε → λ can only be applied at the left end of a string
in node 4. Notice that the symbol ε may appear in string w1 (in this case the
developing string also will be rejected by node 4), but it is not possible that two
symbols ε simultaneously appear in w1εw2, as immediately the developing string
will be rejected in node 4 when moved there. If qk ∈ Q2, then in several circles
of the computation the developing string will look as w1qtw2, |w1| > 0, qt ∈ Q1,
and we return to the case considered before. In sum, we conclude that Γ correctly
simulates the application of rule qiaj → qk in M .

Case 3. As soon as a string q0w0 with the final node q0 at its beginning (and
w0 ∈ T ∗) appears in node 1, which in fact means that the circular Post machine
M has stopped with having computed w0, we can apply rule 1.5 : q0 → ε and
send the resulting string εw0 to node 4 where ε is erased by rule 4.1 : ε → λ;
the resulting terminal string w0 ∈ T ∗ then can enter the terminal node 5, i.e.,
we get w0 as the result of this computation in Γ :

(1, q0w0)
1.5
=⇒ (1, εw0) � (4, εw0)

4.1
=⇒ (4, w0) � (5, w0).

In sum, we observe that every computation of the CPM5 in normal form M
can be simulated correctly by the HNEP Γ , yielding exactly the same results;



12 A. Alhazov, R. Freund, and Y. Rogozhin

any other computation paths in Γ not correctly simulating the computation
steps of M do not yield any result, which observation completes the proof.

Corollary 1. Complete hybrid networks of evolutionary processors with 5 nodes
are computationally complete.

Proof. As the circular Post machines of type 5 (CPM5) in normal form are
computationally complete (see Theorem 1), the result directly follows from our
main result, Theorem 2.

The following two results are immediate consequences of Corollary 1, as any
recursively enumerable language L can be viewed as partial recursive relation
L× {λ} (acceptance) and {λ} × L (generation), see Remark 2.

Corollary 2. Any recursively enumerable language L can be accepted by a com-
plete AHNEP of size 5.

Corollary 3. Any recursively enumerable language L can be generated by a
complete GHNEP of size 5.

4 Conclusions

We have improved previous results for hybrid networks of evolutionary proces-
sors (HNEPs) showing that computational completeness can already be obtained
with only 5 nodes. Any partial recursive relation can be computed by a (com-
plete) HNEP with 5 nodes, and any recursively enumerable language can be
accepted by a complete AHNEP with 5 nodes or even generated by a complete
GHNEP with only 5 nodes.
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1. Alhazov, A., Csuhaj-Varjú, E., Mart́ın-Vide, C., Rogozhin, Y.: About Universal
Hybrid Networks of Evolutionary Processors of Small Size. In: LATA 2008. LNCS,
vol. 5196, pp. 28–39. Springer, Heidelberg (2008)
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Abstract. The current biochemical information processing systems
behave in a pre-determined manner because all features are defined dur-
ing the design phase. To make such unconventional computing
systems reusable and programmable for biomedical applications, adap-
tation, learning, and self-modification based on external stimuli would
be highly desirable. However, so far, it has been too challenging to im-
plement these in wet chemistries. In this paper we extend the chemical
perceptron, a model previously proposed by the authors, to function as
an analog instead of a binary system. The new analog asymmetric sig-
nal perceptron learns through feedback and supports Michaelis-Menten
kinetics. The results show that our perceptron is able to learn linear
and nonlinear (quadratic) functions of two inputs. To the best of our
knowledge, it is the first simulated chemical system capable of doing so.
The small number of species and reactions and their simplicity allows
for a mapping to an actual wet implementation using DNA-strand dis-
placement or deoxyribozymes. Our results are an important step toward
actual biochemical systems that can learn and adapt.

Keywords: Chemical perceptron, analog perceptron, supervised learn-
ing, chemical computing, RNMSE, linear function, quadratic function.

1 Introduction

Biochemical information processing systems, which are crucial for emerging
biomedical applications, cannot typically be programmed once built. After an
in vitro or in vivo injection, the behavior, i.e., the program of such nano-scale
chemical machines [1] cannot be changed. That limits their applicability and re-
usability. To address this limitation, future biochemical machinery should func-
tion not only in uniform, well-known lab settings but also in previously unknown
environments. Such adaptive chemical systems would decide autonomously and
learn new behaviors through reinforcements in response to external stimuli.

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 14–26, 2014.
DOI: 10.1007/978-3-319-08123-6_2, c© Springer International Publishing Switzerland 2014
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We could imagine that in the future millions of molecular agents would help our
immune system fight viruses, deliver medications [2], or fix broken cells. Adap-
tive chemical systems may also simplify the manufacturing and design processes:
instead of designing multiple systems with predefined functionality embedded in
their species and reactions one could train and recycle a single adaptive machine
for a desired functionality.

Neural network theory [3] inspired numerous chemical implementations [4–6],
however, only the input-weight integration part of a single perceptron model [7]
was successfully mapped to chemistry. Learning (i.e., weight adaptation) was
either not addressed or delegated to an external non-chemical system [6, 8] that
calculated new weights values (i.e., chemical concentrations) to achieve a desired
system behavior.

Our previous work [9] introduced the first simulated artificial chemical system
that can learn and adapt autonomously to feedback provided by a teacher. We
coined the term chemical perceptron because the system qualitatively mimics a
two-input binary perceptron. In a second step we aimed to simplify the model to
make wet biochemical implementations feasible. We achieved that by employing
the asymmetric representation of values and by using thresholding. The new
asymmetric signal perceptron (ASP) model [10] requires less than a half of the
reactions of its predecessors with comparable performance (i.e., 99.3 − 99.99%
success rates). The flip side of the more compact design is a reduced robustness
to rate constant perturbations due to a lack of structural redundancy.

In real biomedical applications one is often required to distinguish subtle
changes in concentrations with complex linear or nonlinear relations among
species. Such behavior cannot easily be achieved with our previous binary percep-
tron models, thus, several improvements are necessary. In this paper we present
a new analog asymmetric signal perceptron (AASP) with two inputs. We will
refer to the original ASP as a binary ASP (BASP). The AASP model follows
mass-action and Michaelis-Menten kinetics and learns through feedback from
the environment. The design is modular and extensible to any number of inputs.
We demonstrate that the AASP can learn various linear and nonlinear functions.
For example, it is possible to learn to produce the average of two analog values.
In combination with a chemical delay line [11], the AASP could also be used to
predict time series.

2 Chemical Reaction Network

To model the AASP we employ the chemical reaction network (CRN) formal-
ism. A CRN consists of a finite set of molecular species and reactions paired
with rate constants [12]. CRN represents an unstructured macroscopic simulated
chemistry, hence, the species labeled with symbols are not assigned a molecu-
lar structure yet. More importantly, since the reaction tank is assumed to be
well-stirred, CRN lacks the notion of space. The state of the system does there-
fore not contain any spatial information and is effectively reduced to a vector of
species concentrations. Without losing generality we treat a concentration as a
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dimensionless quantity. Depending on the required scale, a wet chemical imple-
mentation could use mol ·L−1 (M) or nmol ·L−1 (nM) with appropriate (scaled)
rate constant units, such as M · s−1 or M−1 · s−1, depending on the order of a
reaction.

The reaction rate defines the speed of a reaction application prescribed by
kinetic laws. The mass-action law [12] states that the rate of a reaction is pro-
portional to the product of the concentrations of the reactants. For an irreversible
reaction aS1 + bS2 → P , the rate is given by

r =
d[P ]

dt
= −1

a

d[S1]

dt
= −1

b

d[S2]

dt
= k[S1]

a[S2]
b,

where k ∈ R+ is a reaction rate constant, a and b are stoichiometric constants,
[S1] and [S2] are concentrations of reactants (substrates) S1 and S2, and [P ] is
a concentration of product P .

Michaelis-Menten enzyme kinetics [13] describes the rate of a catalytic re-
action E + S � ES → E + P , where a substrate S transforms to a product
P with a catalyst E, which increases the rate of a reaction without being al-
tered. A species ES is an intermediate enzyme-substrate binding. By assuming
quasi-steady-state approximation, the rate is given by

r =
d[P ]

dt
=

kcat[E][S]

Km + [S]
,

where kcat,Km ∈ R+ are rate constants. By combining kinetic expressions for
all species, we obtain a system of ODEs that we simulate using a 4th order
Runge-Kutta numerical integration with the temporal step 0.1.

3 Model

The AASP models a formal analog perceptron [7] with two inputs x1 and x2,
similar to an early type of artificial neuron [3]. The perceptron is capable of
simple learning and can be used as a building block of a feed-forward neural
networks. Networks built from perceptrons have been shown to be universal
approximators [14].

In a CRN we represent each formal variable with one or several species. While
the previous BASP models a perceptron with two inputs and a binary output
produced by external or internal thresholding, the new AASP is analog and does
not use thresholding. Instead of a binary yes/no answer, its output is analog,
which requires much finer control over the weight convergence. As a consequence,
the AASP consists of more species, namely 17 vs. 13, and more reactions, namely
18 vs. 16.

3.1 Input-Weight Integration

A formal perceptron integrates the inputs x with the weights w linearly as
Σn

i=0wi ·xi, where the weight w0, a bias, always contributes to an output because
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Table 1. (a) The AASP’s species divided into groups according to their purpose and
functional characteristics; (b) the AASP’s reactions with the best rate constants found
by the GA (see Section 3.3), rounded to four decimals. Groups 1 − 4 implement the
input-weight integrations, the rest implement learning. The catalytic reactions have
two rates: kcat and Km

Group Name Species
Inputs X1, X2

Output Y
Weights W0,W1,W2

Target output Ŷ
Input (clock) signal Sin

Learning signal SL

Input contributions X1Y,X2Y,SinY
Weight changers W�,W⊕ ,

W�
0 ,W�

1 ,W�
2

Total 17

Group Reaction Catalyst Rates
1 Sin + Y → λ .1800
2 Sin → Y + SinY W0 .5521, 2.5336
3 X1 + Y → λ .3905

X2 + Y → λ
4 X1 → Y + X1Y W1 .4358, 0.1227

X2 → Y + X2Y W2

5 Ŷ → W⊕ .1884

6 Y → W� SL .1155, 1.9613

7 Y + Ŷ → λ 1.0000

8 W� → W0� SinY 0.600, 1.6697
9 W0 + W0� → λ .2642

10 W⊕ → W0 SinY .5023, 2.9078

11 W� → W�
1 X1Y .1889, 1.6788

W� → W�
2 X2Y

12 W1 + W�
1 → λ .2416

W2 + W�
2 → λ

13 W⊕ → W1 X1Y .2744, 5.0000

W⊕ → W2 X2Y

Total 18

its associated input x0 = 1. An activation function ϕ, such as a hyperbolic
tangent or signum, then processes the dot product to produce the output y.

The reactions carrying out the chemical input-weight integration are struc-
turally the same as in the BASP. The only difference is an addition of the partial
input-weight contribution species, which are, however, required for learning only,
and will be explained in Section 3.1. The AASP models a two-input perceptron
where the output calculation is reduced to y = ϕ(w0+w1x1+x2w2). The concen-
tration of input species X1 and X2 corresponds to the formal inputs x1 and x2,
and the species Y to the output y. A clock (input) signal Sin is always provided
along the regular input X1 and X2, since it serves as the constant-one coefficient
(or the constant input x0 = 1) of the bias weight w0.

The AASP represents the weights by three species W1,W2, and W0. As op-
posed to the formal model, the input-weight integration is nonlinear and based
on an annihilatory version of the asymmetric representation of the values and
the addition/subtraction operation as introduced in [10]. Since the concentra-
tion cannot be negative, we cannot map a signed real variable directly to the
concentration of a single species. The weights require both positive and nega-
tive values, otherwise we could cover only functions that are strictly additive.
The asymmetric representation uses a single species E that catalyzes a trans-

formation of substrate S to a product P (S
E−→ P ) and competes against an

annihilation of the substrate and the product S + P → λ. For a given threshold
concentration of the product we can determine the associated catalyst threshold,
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so all concentrations of catalyst [E]0 to the left of this threshold represent neg-
ative numbers while all concentrations to the right represent positive numbers.
The final product concentration [P ]∞ is monotonically increasing and asymp-
totically reaches the initial concentration of the substrate [S]0 for [E]0 →∞.

Using the asymmetric comparison primitives, we map the AASP’s weights to
catalysts (E), the inputs to substrates (S), and the output to product (P ) and
obtain 6 reactions as shown in Figure 1(a) and Table 1(b), groups 1 − 4. Each
weight species races with its substrate’s annihilation but also with other weights.
Since the output Y is shared, this effectively implements a nonlinear input-weight
integration. Note that by replacing annihilation with a decay of input species,
we would end up having three independent races with additive contributions
instead of one global race. An alternative symmetric representation embedded
in the previously reported weight-loop perceptron and the weight-race perceptron
[9] encodes the values by two complementary species, one for the positive and
one for the negative domain. We opt for the asymmetric approach because it
reduces the number of reactions by half compared to the symmetric one.

Because of the complexity of the underlying ODEs, no closed formula for
the output concentration exists and theoretical conclusions are very limited. Al-
though we cannot analyze the input-weight integration dynamics quantitatively,
we can still describe the qualitative behavior and constraints. The weight concen-
tration represents formally both positive and negative values, so the weights to-
gether with annihilatory reactions can act as both catalysts and inhibitors. More
specifically a low weight concentration, which strengthens its input-specific an-
nihilation, could impose a negative pressure on a different weight branch. Hence,
we interpret a weight that contributes to the output less than its input consumes
as negative. In an extreme case, when the weight concentration is zero, its branch
would consume the same amount of output as its input injected. The relation
between the concentration of weights and the final output [Y ]∞ has a sigmoidal
shape with the limit [X1]0 + [X2]0 + [Sin]0 reaching for all weights [Wi] → ∞.
Clearly the output concentration cannot exceed all the inputs provided.

Figure 2 shows the relation between the concentration of weightW1 and weight
W2 and the final output concentration. For simplicity the bias processing part
is not considered ([Sin] = 0), so we keep only two branches of the input-weight
integration triangle. Note that in the plots the concentration of weights span
the interval 0 to 2 because in our simulations we draw the weights uniformly
from the interval (0.5, 1.5). On the z-axis we plotted the ratio of the output
concentration [Y ] to [X1]0 + [X2]0. For learning to work we want the gradient
of the output surface to be responsive to changes in the weight concentrations.
Therefore, we restrict the range of possible outputs so it is neither too close
to the maximal output, where the surface is effectively constant, nor too close
to zero, where the surface is too steep and even a very small perturbation of
the weight concentration would dramatically change the output. Note that we
optimized the AASP’s rate constants to obtain an optimal weight-output surface
by genetic algorithms (discussed in Section 3.3).
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(a) input-weight integration (b) output comparison

(c) positive adaptation (d) negative adaptation

Fig. 1. (a) The AASP’s reactions performing input-weight integration. Similarly to
the BASP, cross-weight competition is achieved by the annihilation of the inputs
Sin, X1, X2 with the output Y , an asymmetric strategy for representation of real val-
ues and subtraction. (b-d) the AASP’s reactions responsible for learning. They are
decomposed into three parts: (b) comparison of the output Y with the target-output
Ŷ , determining whether weights should be incremented (W⊕ species) or decremented
(W� species), and (c-d) positive and negative adaptation of the weights W0,W1, and
W2, which is proportional to the part of the output they produced SinY,X1Y , and
X2Y respectively. Nodes represent species, solid lines are reactions, dashed lines are
catalysts, and λ stands for no or inert species.
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(f) x1 = .6, x2 = .6
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(g) x1 = 1, x2 = 1
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(h) x1 = .2, x2 = .8

Fig. 2. The relation between the weight concentrations [W1] and [W2] and the final
output concentration [Y ]∞ normalized by [X1]0+[X2]0 for the input-weight integration
(excluding the bias W0 part) showing various inputs. The rate constant of annihilatory
reactions Xi + Y → λ, i ∈ {1, 2} is k = 0.2 in the top and k = 1 in the bottom row.

3.2 Learning

In the previous BASP model, learning reinforced the adaptation of weights by
a penalty signal, whose presence indicated that the output was incorrect. Since
the output is analog in the new AASP model, a simple penalty signal is not
sufficient anymore. We therefore replaced the reinforcement learning by classical
supervised learning [15]. Formally, the adaptation of a weight wi for the training
sample (x, ŷ), where ŷ is a target output, and x a input vector, is defined as
�wi = α(ŷ−y(t))xi, where α ∈ (0, 1] is the learning rate. The AASP’s, similarly
to the BASP’s input-weight integration, does not implement the formal �wi

adaptation precisely, rather, it follows the relation qualitatively.
The learning is triggered by an injection of the target output Ŷ provided some

time after the injection of the input species. The part presented in Figure 1(b)
compares the output Y and the target output Ŷ by annihilation. Intuitively a
leftover of the regular output Y implies that the next time the AASP faces the
same input, it must produce less output, and therefore it needs to decrease the
weights by producing a negative weight changer W� from Y . In the opposite
case, the AASP needs to increase the weights, hence Ŷ transforms to a positive
weight changer W⊕. Since the AASP can produce output also without learning,
just by the input-weight integration, we need to guard the reaction Y → W�

by a learning signal SL, which is injected with the target output and removed
afterwards. To prevent creation of erroneous or premature weight changers, the
annihilation Y + Ŷ → λ must be very rapid. Note that the difference between
the actual output Y and the desired output Ŷ , materializing in the total concen-
tration of weight changers W⊕ and W�, must not be greater that the required
weight adaptation, otherwise the weights would diverge. The learning rate α is
therefore effectively incorporated in the concentration of W⊕ and W�.



Learning Two-Input Linear and Nonlinear Analog Functions 21

In the formal perceptron, the adaptation of a weight wi is proportional to
the current input xi. Originally, the BASP distinguished which weights to adapt
by a residual concentration of inputs X1 and X2. Because the inputs as well
as an adaptation decision were binary, we cared only about whether some of
the unprocessed input were still left, but not about its precise concentration.
Thus, an injection of the penalty signal could not happen too soon, neither too
late. Because the AASP’s learning needs more information, the input-weight
integration introduced three additional species, namely the partial input-weight
contributionsX1Y ,X2Y , SinY , which are produced alongside the regular output
Y . A decision which weights to update based on the input-weight contributions
could be made even after the input-weight integration is finished. That allows
to postpone an injection of the target output Ŷ and the learning signal SL.

Let us now cover a positive adaptation as shown in Figure 1(c), where the
total amount of W⊕ is distributed among participating weights. The input con-
tribution species X1Y,X2Y, SinY race over the substrate W⊕ by catalyzing the
reactions W⊕ → Wi, i ∈ {0, 1, 2}. Note that the traditional weight adaptation
formula takes into count solely the input value, so here we depart further from
the formal perceptron and have the combination of input and weights compete
over W⊕. Since larger weights produce more output they get adapted more. In
addition, once a weight reaches zero, it will not be recoverable.

The negative adaptation presented in Figure 1(d) is analogous to the positive
one, but this time the input-weight contributions race over W� and produce
intermediates W�

0 ,W�
1 ,W�

2 , which annihilate with the weights. Again, because
the magnitude of a weight update depends on the weight itself, this feedback
loop protects the weight from falling too low and reaching zero (i.e., a point of
no return). This is beneficial because as opposed to the formal perceptron, a
weight value (concentration) cannot be physically negative.

To implement the entire learning algorithm, the AASP requires 12 reactions
as presented in Table 1(b), groups 5− 13.

3.3 Genetic Search

Since a manual trial-and-error setting of the rate constants would be very time-
consuming, we optimize the rate constants by a standard genetic algorithm
(GA). Possible solutions are encoded on chromosomes as vectors of rate con-
stants, which undergo cross-over and mutation. We use elite selection with elite
size 20, 100 chromosomes per generation, shuffle cross-over, per-bit mutation,
and a generation limit of 50. The fitness of a chromosome defined as the RN-
MSE reflects how well the AASP with the given rate constants (encoded in the
chromosome) learns the target functions k1x1 + k2x2 + k0, k1x1, and k2x2. The
fitness of a single chromosome is then calculated as the average over 300 runs
for each function. We included the k1x1 and k2x2 tasks to force the AASP to
utilize and distinguish both inputs x1 and x2. Otherwise the GA would have a
higher tendency to opt for a greedy statistical approach where only the weight
W0 (mean) might be utilized.
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4 Performance

We demonstrate the learning capabilities of the AASP on 6 linear and nonlinear
target functions as shown in Table 2. During each learning iteration we inject
inputs X1 and X2 with concentrations drawn from the interval (0.2, 1) and set
the bias input Sin concentration to 0.5. We chose the target functions carefully,
such that the output concentration is always in a safe region, i.e., far from the
minimal (zero) and the maximal output concentration [Sin]0+[X1]0+[X2]0. We
then inject the target output Ŷ with the learning signal SL 50 steps after the
input, which is sufficient to allow the input-weight integration to proceed.

For each function family we calculated the AASP’s performance over 10, 000
simulation runs, where each run consists of 400 training iterations. We define
performance as the root normalized mean square error (RNMSE)

RNMSE =

√
〈(y − ŷ)2〉

σ2
ŷ

.

A RNMSE of 1 means chance level. The AASP’s RNMSE settles down to the
range (0.117, 0.0.388) (see Figure 3), which implies that it learns and generalizes
all target functions sufficiently. When we include only the functions that utilize

Table 2. Target functions with uniform constant k1, k2, k0 intervals

ŷ k1 k2 k0
k1x1 + k2x2 + k0 (0.2, 0.8) (0.2, 0.8) (0.1, 0.4)
k1x1 − k2x2 + k0 (0.2, 0.8) (0.0, 0.3) (0.4, 0.7)
k1x1 (0.2, 0.8) − −
k2x2 − (0.2, 0.8) −
k1x1x2 + k0 (0.2, 0.8) − 0.25
k0 − − (0.1, 0.4)
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Fig. 3. RNMSE for 6 linear and nonlinear functions over 400 learning iterations
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both inputs x1 and x2, as well as the bias, i.e., the scenario the AASP was
primarily designed for, RNMSE drops to the range (0.117, 0.298). Note that we
do not distinguish between the training and testing set. During each iteration
we draw the inputs with the target output for a given function independently.

Among all the functions, k1x1+k2x2+k is the easiest (RNMSE of 0.117) and
the constant function k0 the most difficult (RNMSE of 0.388) one. The function
k0 is even more difficult than the nonlinear function k1x1x2 + k0 (RNMSE of
0.298). Compared to the formal perceptron, the constant function does not reach
zero RNMSE because the AASP cannot fully eliminate the contribution (or
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Fig. 4. AASP learning examples for selected functions. The left column shows concen-
tration traces of the weights, the right column the filtered output, the target output,
and the absolute error.
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consumption) of the X1 and X2 input-weight branches. The formal perceptron
could simply discard both inputs and adjust only the bias weight, however, the
AASP’s weights W1 and W2 with zero concentration would effectively act as
inhibitors, thus consuming a part of the output produced by the bias. On the
other hand, a nonlinear k1x1x2 + k0 function with fairly low RNMSE would be
impossible to calculate for the formal perceptron. Therefore it is an open question
what function classes can be learned by the AASP. Note that for the nonlinear
function we set k0 = 0.25, which does not increase the variance, i.e., only the
nonlinear part counts toward the error. Figure 4 shows the weight concentration
traces as well as the output, the target output, and the absolute error for selected
functions.

5 Conclusion

In this paper we extended our chemical asymmetric design introduced for the
asymmetric signal perceptron to an analog scenario. We demonstrated that our
new AASP model can successfully learn several linear and nonlinear two-input
functions. The AASP follows Michaelis-Menten and mass-action kinetics, and
learns through feedback provided as a desired output.

In related work, Lakin et al. [16] designed and simulated a system based on
enzymatic chemistry, capable of learning linear functions of the form k1x1+k2x2.
Compared to the AASP, the system lacks cross-weight competition, meaning the
weights could not formally represent negative numbers, and so the system could
model only strictly additive functions with k1, k2 ≥ 0. Besides regular inputs
x1 and x2 the AASP utilizes also the bias (constant shift), hence it can model
linear functions of a more general form k1x1 + k2x2 + k0 as well as nonlinear
(quadratic) functions of the form kx1x2 + k0, where k1, k2, k0 ∈ R. The AASP
uses 18 reactions, however, by excluding the bias (k0) part, it would need just
13 as opposed to 27 reactions employed in Lakin’s system. On the other hand,
Lakin’s system targets a specific wet implementation based on deoxyribozyme
chemistry, so the higher number of reactions is justifiable. Last but not least, we
evaluated the performance more precisely over 10, 000 instead of 10 trials.

Because the number of species and reactions employed is fairly low, a wet
chemical implementation is plausible. More precisely, we suggest that the AASP
could be mapped to catalytic DNA chemistry [17, 18] by having each catalysis
carried out by deoxyribozime-substrate cleavage. The most problematic part for
this mapping would be the feedback reactions, where each of three enzymes,
X1Y,X2Y, and SinY , catalyzes two reactions, which is non-trivial to implement
in practice. To address that we would need to introduce two variants of a feedback
enzyme XiY

⊕ (SinY
⊕) and XiY

� (SinY
�) to separate these two reaction path-

ways. Alternatively we could obtain a wet chemical implementation of the AASP
automatically by Soloveichik’s transformation [19], which compiles mass-action
driven CRN to DNA-strand displacement reactions [20]. That would produce a
chemical circuit with around 80 different DNA strands, which is in the range of
other state-of-the-art DNA circuits.
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As opposed to our previous designs using simple binary signals, the AASP
allows to adapt to precise concentration levels. By integrating the AASP with a
chemical delay line as proposed in [11], we could also tackle time-series predic-
tion. Consequently, chemical systems would be able monitor concentrations of
selected molecular species and respond if a severe event, defined as a linear or
nonlinear temporal concentration pattern, occurs. Such a system would be highly
relevant where the quantity or type of the drug required could be adjusted in
real-time with complex relations among species, e.g., produced by cancer cells.

Acknowledgment. This material is based upon work supported by the Na-
tional Science Foundation under grant no. 1028120.
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Abstract. In this paper, we show that any scaled-up version of any
discrete self-similar tree fractal does not strictly self-assemble, at any
temperature, in Winfree’s abstract Tile Assembly Model.

1 Introduction

The stunning, often mysterious complexities of the natural world, from nanoscale
crystalline structures to unthinkably massive galaxies, all arise from the same
elemental process known as self-assembly. In the absence of a mathematically
rigorous definition, self-assembly is colloquially thought of as the process through
which simple, unorganized components spontaneously combine, according to lo-
cal interaction rules, to form some kind of organized final structure. A major
objective of nanotechnology is to harness the power of self-assembly, perhaps for
the purpose of engineering atomically precise medical, digital and mechanical
components at the nanoscale. One strategy for doing so, developed by Nadrian
Seeman, is DNA tile self-assembly [8, 9].

In DNA tile self-assembly, the fundamental components are “tiles”, which are
comprised of interconnected DNA strands. Remarkably, these DNA tiles can be
“programmed”, via the careful configuration of their constituent DNA strands,
to automatically coalesce into a desired target structure, the characteristics of
which are completely determined by the “programming” of the DNA tiles. In
order to fully realize the power of DNA tile self-assembly, we must study the
algorithmic and mathematical underpinnings of tile self-assembly.

Perhaps the simplest mathematical model of algorithmic tile self-assembly
is Erik Winfree’s abstract Tile Assembly Model (aTAM) [11]. The aTAM is a
deliberately over-simplified, combinatorial model of nanoscale (DNA) tile self-
assembly that “effectivizes” classical Wang tiling [10] in the sense that the former
augments the latter with a mechanism for sequential “growth” of a tile assembly.
Very briefly, in the aTAM, the fundamental components are un-rotatable, trans-
latable square “tile types” whose sides are labeled with (alpha-numeric) glue
“colors” and (integer) “strengths”. Two tiles that are placed next to each other
interact if the glue colors on their abutting sides match, and they bind if the
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strengths on their abutting sides match and sum to at least a certain (integer)
“temperature”. Self-assembly starts from a “seed” tile type, typically assumed to
be placed at the origin, and proceeds nondeterministically and asynchronously
as tiles bind to the seed-containing assembly one at a time.

Despite its deliberate over-simplification, the aTAM is a computationally ex-
pressive model. For example, Winfree [11] proved that the model is Turing uni-
versal, which means that, in principle, the process of self-assembly can be di-
rected by any algorithm. In this paper, we will specifically study the extent to
which tile sets in the aTAM can be algorithmically directed to “strictly” self-
assemble (place tiles at and only at locations that belong to) shapes that are
discrete self-similar tree fractals.

There are examples of prior results related to the self-assembly of fractals in
the aTAM, in general [1, 2, 6], as well as the strict self-assembly of tree fractals
in the aTAM, specifically [3, 4]. In fact, a notable example of the latter is [3],
Theorem 3.2 of which bounds from below the size of the smallest tile set in which
an arbitrary shape X strictly self-assembles by the depth of X ’s largest finite
sub-tree. Although not stated explicitly, an immediate corollary of Theorem 3.2
of [3] is that no tree fractals strictly self-assemble in the aTAM.

While the strict self-assembly of tree fractals in the aTAM is well-understood
(via Theorem 3.2 of [3]), nothing is known about the strict self-assembly of
“scaled-up” versions of tree fractals (“scaled-up” meaning each point in the
original shape is replaced by a c × c block of points). After all, the scaled-up
version of any shape – tree or otherwise – is not a tree in the sense of the “full
connectivity graph” of the shape, i.e., each point in the shape is represented by
one vertex and edges exist between vertices that represent adjacent points in
the shape. This means that prior proof techniques, which exploit the intricate
geometry of tree fractals (e.g., [3, 4]), simply cannot be applied to scaled-up
versions of tree fractals. Thus, in this paper, we ask if it is possible for a scaled-
up version of a tree fractal to strictly self-assemble in the aTAM.

The main contribution of this paper provides an answer to the previous ques-
tion, perhaps not too surprisingly to readers familiar with the aTAM, in the
negative: we prove that there is no tree fractal that strictly self-assembles in the
aTAM – at any positive scale factor. Thus, our main result generalizes Theorem
3.4 of [3], which says that the Sierpinski triangle, perhaps the most famous, well-
studied example of a tree fractal, does not strictly self-assemble at scale factor 1.
Our proof makes crucial use of a recent technical lemma developed by Meunier,
Patitz, Summers, Theyssier, Winslow and Woods [5], known as the “Window
Movie Lemma” (WML), which gives a sufficient condition for taking any pair
of tile assemblies, at any temperature, and “splicing” them together to create
a new valid tile assembly. The WML is, in some sense, a pumping lemma for
self-assembly that mitigates the need to use overly-complicated, convoluted case-
analyses that typically arise when doing impossibility proofs in self-assembly.
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What follows is a list of the main technical contributions presented in – and
the general outline of – this paper:

– In Section 2.2, we exhibit a natural characterization of a tree fractal in
terms of a few simple, easily checkable geometric properties of its generator.
While perhaps well-known, this type of characterization, to the best of our
knowledge, has yet to be explicitly documented or proved in the literature.

– In Section 2.3, we develop a modified version of the general WML. Our ver-
sion of the WML, which we call the “Closed Window Movie Lemma”, allows
us to replace one portion of a tile assembly with another, assuming certain
extra “containment” conditions are met. Moreover, unlike in the original
WML that lacks the extra containment assumptions, the replacement of one
tile assembly with another in our Closed WML only goes “one way”, i.e.,
the part of the tile assembly being used to replace another part cannot itself
be replaced by the part of the tile assembly it is replacing.

– In Section 3, we use our closed WML to prove that any scaled-up version of
any tree fractal does not strictly self-assemble in the aTAM at any temper-
ature. Our main result generalizes the claim that every tree fractal, at scale
factor 1, does not strictly self-assemble in the aTAM (an implicit corollary
to the main negative result of [3]).

2 Definitions

In this section, we give a formal definition of Erik Winfree’s abstract Tile Assem-
bly Model (aTAM), define and characterize tree fractals and develop a “Closed”
Window Movie Lemma.

2.1 Formal Description of the Abstract Tile Assembly Model

This section gives a formal definition of the abstract Tile Assembly Model
(aTAM) [11]. For readers unfamiliar with the aTAM, [7] gives an excellent in-
troduction to the model.

Fix an alphabet Σ. Σ∗ is the set of finite strings over Σ. Let Z, Z+, and N de-
note the set of integers, positive integers, and nonnegative integers, respectively.
Given V ⊆ Z2, the full grid graph of V is the undirected graph Gf

V = (V,E),
such that, for all x,y ∈ V , {x,y} ∈ E ⇐⇒ ‖x− y‖ = 1, i.e., if and only if x
and y are adjacent in the 2-dimensional integer Cartesian space.

A tile type is a tuple t ∈ (Σ∗ ×N)4, e.g., a unit square, with four sides, listed
in some standardized order, and each side having a glue g ∈ Σ∗ × N consisting
of a finite string label and a nonnegative integer strength.

We assume a finite set of tile types, but an infinite number of copies of each
tile type, each copy referred to as a tile. A tile set is a set of tile types and is
usually denoted as T .

A configuration is a (possibly empty) arrangement of tiles on the integer lattice
Z2, i.e., a partial function α : Z2 ��� T . Two adjacent tiles in a configuration
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interact, or are attached, if the glues on their abutting sides are equal (in both
label and strength) and have positive strength. Each configuration α induces a
binding graph Gb

α, a grid graph whose vertices are positions occupied by tiles,
according to α, with an edge between two vertices if the tiles at those vertices
interact. An assembly is a connected, non-empty configuration, i.e., a partial
function α : Z2 ��� T such that Gf

dom α is connected and dom α 	= ∅.
Given τ ∈ Z+, α is τ-stable if every cut-set of Gb

α has weight at least τ ,
where the weight of an edge is the strength of the glue it represents.1 When
τ is clear from context, we say α is stable. Given two assemblies α, β, we say
α is a subassembly of β, and we write α � β, if dom α ⊆ dom β and, for
all points p ∈ dom α, α(p) = β(p). For two non-overlapping assemblies α and
β, α ∪ β is defined as the unique assembly γ satisfying, for all x ∈ dom α,
γ(x) = α(x), for all x ∈ dom β, γ(x) = β(x), and γ(x) is undefined at any
point x ∈ Z2\ (dom α ∪ dom β).

A tile assembly system (TAS) is a triple T = (T, σ, τ), where T is a tile set,
σ : Z2 ��� T is the finite, τ -stable, seed assembly, and τ ∈ Z+ is the temperature.

Given two τ -stable assemblies α, β, we write α →T
1 β if α � β and |dom β \

dom α| = 1. In this case we say α T -produces β in one step. If α →T
1 β,

dom β \ dom α = {p}, and t = β(p), we write β = α + (p �→ t). The T -frontier
of α is the set ∂T α =

⋃
α→T

1 β(dom β \ dom α), the set of empty locations at

which a tile could stably attach to α. The t-frontier ∂T
t α ⊆ ∂T α of α is the set{

p ∈ ∂T α
∣∣ α→T

1 β and β(p) = t
}
.

Let AT denote the set of all assemblies of tiles from T , and let AT
<∞ denote

the set of finite assemblies of tiles from T . A sequence of k ∈ Z+∪{∞} assemblies
α0, α1, . . . over AT is a T -assembly sequence if, for all 1 ≤ i < k, αi−1 →T

1 αi.
The result of an assembly sequence α, denoted as res(α), is the unique limiting
assembly (for a finite sequence, this is the final assembly in the sequence).

We write α→T β, and we say α T -produces β (in 0 or more steps) if there is
a T -assembly sequence α0, α1, . . . of length k = |dom β \ dom α| + 1 such that
(1) α = α0, (2) dom β =

⋃
0≤i<k dom αi, and (3) for all 0 ≤ i < k, αi � β. If k

is finite then it is routine to verify that β = αk−1.
We say α is T -producible if σ →T α, and we write A[T ] to denote the set of

T -producible assemblies. The relation →T is a partial order on A[T ] [3, 7].
An assembly α is T -terminal if α is τ -stable and ∂T α = ∅. We write A�[T ] ⊆

A[T ] to denote the set of T -producible, T -terminal assemblies. If |A�[T ]| = 1
then T is said to be directed.

We say that a TAS T strictly (a.k.a. uniquely) self-assembles X ⊆ Z2 if, for
all α ∈ A�[T ], dom α = X ; i.e., if every terminal assembly produced by T places
tiles on – and only on – points in the set X .

In this paper, we consider scaled-up versions of subsets of Z2. Formally, if X
is a subset of Z2 and c ∈ Z+, then a c-scaling of X is defined as the set Xc ={
(x, y) ∈ Z2

∣∣ (⌊x
c

⌋
,
⌊
y
c

⌋)
∈ X

}
. Intuitively, Xc is the subset of Z2 obtained by

1 A cut-set is a subset of edges in a graph which, when removed from the graph,
produces two or more disconnected subgraphs. The weight of a cut-set is the sum of
the weights of all of the edges in the cut-set.
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replacing each point in X with a c × c block of points. We refer to the natural
number c as the scaling factor or resolution loss.

2.2 Discrete Self-similar Tree Fractals

In this section, we introduce a new formal characterization of discrete self-similar
tree fractals. The proof of Theorem 1 below is omitted from this version of the
paper due to lack of space.

Notation 1. We use Ng to denote the subset {0, . . . , g − 1} of N.

Notation 2. If A and B are subsets of N2 and k ∈ N, then A + kB = {m +
kn | m ∈ A and n ∈ B}.

The following definition is adapted from [6].

Definition 1. Let 1 < g ∈ N and X ⊂ N2. We say that X is a g-discrete self-
similar fractal (or g-dssf for short), if there is a set {(0, 0)} ⊂ G ⊂ N2

g with at

least one point in every row and column, such that X =

∞⋃
i=1

Xi, where Xi, the

ith stage of X, is defined by X1 = G and Xi+1 = Xi + giG. We say that G is
the generator of X.

Intuitively, a g-dssf is built as follows. Start by selecting points in N2
g satis-

fying the constraints listed in Definition 1. This first stage of the fractal is the
generator. Then, each subsequent stage of the fractal is obtained by adding a
full copy of the previous stage for every point in the generator and translating
these copies so that their relative positions are identical to the relative positions
of the individual points in the gnerator.

In this paper, we focus on tree fractals, that is, fractals whose underlying
graph is a tree. We introduce terminology and notation that will help us in
formulating a complete characterization of tree fractals in terms of geometric
properties of their generator.

Definition 2. Let S be any finite subset of Z2. Let l, r, b, and t denote the
following integers:

lS = min
(x,y)∈S

x rS = max
(x,y)∈S

x bS = min
(x,y)∈S

y tS = max
(x,y)∈S

y

An h-bridge of S is any subset of S of the form hbS(y) = {(lS, y), (rS , y)}.
Similarly, a v-bridge of S is any subset of S of the form vbS(x) =
{(x, bS), (x, tS)}. We say that a bridge is connected if there is a simple path
in S connecting the two bridge points.

Notation 3. Let S be any finite subset of Z2. We will denote by nhbS and nvbS,
respectively, the number of h-bridges and the number of v-bridges of S.

The following theorem is a new characterization of tree fractals in terms of
simple connectivity properties of their generator.
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Theorem 1. T =

∞⋃
i=1

Ti is a g-discrete self-similar tree fractal, for some g > 1,

with generator G if and only if
a. G is a tree, and
b. nhbG = nvbG = 1

Notation 4. The directions D = {N,E, S,W} will be used as functions from
Z2 to Z2 such that N(x, y) = (x, y+1), E(x, y) = (x+1, y), S(x, y) = (x, y− 1)
and W (x, y) = (x − 1, y). Note that N−1 = S and W−1 = E.

Notation 5. Let X ⊆ Z2. We say that a point (x, y) ∈ X is D-free in X, for
some direction D, if D(x, y) 	∈ X.

Definition 3. Let G be the generator of any g-discrete self-similar fractal. A
pier is a point in G that is D-free for exactly three of the four directions in D.
We say that a pier (p, q) is D-pointing if D−1(p, q) ∈ G. Note that a pier always
points in exactly one direction

Finally, the following observation follows from the fact that a tree with more
than one vertex must contain at least two leaf nodes.

Observation 1. If G is the generator of any discrete self-similar fractal and G
is a tree, then it must contain at least two piers.

2.3 The Closed Window Movie Lemma

In this subsection, we develop a more accommodating (modified) version of the
general Window Movie Lemma (WML) [5]. Our version of the WML, which we
call the “Closed Window Movie Lemma”, allows us to replace one portion of
a tile assembly with another, assuming certain extra “containment” conditions
are met. Moreover, unlike in the original WML that lacks the extra containment
assumptions, the replacement of one tile assembly with another in our Closed
WML only goes “one way”, i.e., the part of the tile assembly being used to
replace another part cannot itself be replaced by the part of the tile assembly it
is replacing. We must first define some notation that we will use in our closed
Window Movie Lemma.

A window w is a set of edges forming a cut-set of the full grid graph of
Z2. For the purposes of this paper, we say that a closed window w induces a
cut2 of the full grid graph of Z2, written as Cw = (C<∞, C∞), where C∞ is
infinite, C<∞ is finite and for all pairs of points x,y ∈ C<∞, every simple path
connecting x and y in the full grid graph of C<∞ does not cross the cut Cw.
We call the set of vertices that make up C<∞ the inside of the window w, and
write inside(w) = C<∞ and outside(w) = Z2\ inside(w) = C∞. We say that a
window w is enclosed in another window w′ if inside(w) ⊆ inside(w′).

2 A cut is a partition of the vertices of a graph into two disjoint subsets that are joined
by at least one edge.
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Given a window w and an assembly α, a window that intersects α is a parti-
tioning of α into two configurations (i.e., after being split into two parts, each
part may or may not be disconnected). In this case we say that the window w
cuts the assembly α into two configurations αL and αR, where α = αL∪αR. For
notational convenience, if w is a closed window, we write αI for the assembly
inside w and αO for the assembly outside w. Given a window w, its translation
by a vector c, written w + c is simply the translation of each of w’s elements
(edges) by c.

For a window w and an assembly sequence α, we define a window movie M to
be the order of placement, position and glue type for each glue that appears along
the window w in α. Given an assembly sequence α and a window w, the associ-
ated window movie is the maximal sequence Mα,w = (v0, g0), (v1, g1), (v2, g2), . . .
of pairs of grid graph vertices vi and glues gi, given by the order of the appear-
ance of the glues along window w in the assembly sequence α. Furthermore, if k
glues appear along w at the same instant (this happens upon placement of a tile
that has multiple sides touching w) then these k glues appear contiguously and
are listed in lexicographical order of the unit vectors describing their orientation
in Mα,w.

Let w be a window andα be an assembly sequence andM = Mα,w. We use the
notation B (M) to denote the bond-forming submovie ofM , i.e., a restricted form
of M that consists of only those steps of M that place glues that eventually form
positive-strength bonds in the assembly α = res(α). Note that every window
movie has a unique bond-forming submovie.

Lemma 1 (Closed Window Movie Lemma). Let α = (αi | 0 ≤ i < l),
with l ∈ Z+∪{∞}, be an assembly sequence in some TAS T with result α. Let w
be a closed window that partitions α into αI and αO, and w′ be a closed window
that partitions α into α′

I and α′
O. If B(Mα,w)+c = B(Mα,w′) for some c 	= (0, 0)

and the window w + c is enclosed in w′, then the assembly α′
O ∪ (αI + c) is in

A[T ].

Proof. Before we proceed with the proof, the next paragraph introduces some
notation taken directly from [5].

For an assembly sequence α = (αi | 0 ≤ i < l), we write |α| = l (note that
if α is infinite, then l = ∞). We write α[i] to denote x �→ t, where x and t
are such that αi+1 = αi + (x �→ t), i.e., α[i] is the placement of tile type t at
position x, assuming that x ∈ ∂tαi. We write α[i] + c, for some vector c, to
denote (x+ c) �→ t. We define α = α + (x �→ t) = (αi | 0 ≤ i < k + 1), where
αk = αk−1 + (x �→ t) if x ∈ ∂tαk−1 and undefined otherwise, assuming |α| > 0.
Otherwise, if |α| = 0, then α = α + (x �→ t) = (α0), where α0 is the assembly
such that α0 (x) = t and is undefined at all other positions. This is our notation
for appending steps to the assembly sequence α: to do so, we must specify a
tile type t to be placed at a given location x ∈ ∂tαi. If αi+1 = αi + (x �→ t),
then we write Pos (α[i]) = x and T ile (α[i]) = t. For a window movie M =
(v0, g0), (v1, g1), . . ., we write M [k] to be the pair (vk, gk) in the enumeration of
M and Pos (M [k]) = vk, where vk is a vertex of a grid graph.
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We now proceed with the proof, throughout which we will assume that M =
B (Mα,w) and M ′ = B (Mα,w′). Since M + c = M ′ for some c 	= (0, 0) and w
and w′ are both closed windows, it must be the case that the seed tile of α is in
dom αO ∩ dom α′

O or in dom αI ∩ dom α′
I . In other words, the seed tile cannot

be in dom αI\ dom α′
I nor in dom α′

I\ dom αI . Therefore, assume without loss
of generality that the seed tile is in dom αO ∩ dom α′

O.
The algorithm in Figure 1 describes how to produce a new valid assembly

sequence γ.

Initialize i, j = 0 and γ to be empty
for k = 0 to |M | − 1 do

if Pos(M ′[k]) ∈ dom α′
O then

while Pos(α[i]) �= Pos(M ′[k]) do
if Pos(α[i]) ∈ dom α′

O then
γ = γ +α[i]

i = i+ 1
γ = γ +α[i]
i = i+ 1

else
while Pos(α[j]) �= Pos(M [k]) do

if Pos(α[j]) ∈ dom αI then
γ = γ + (α[j] + c)

j = j + 1
γ = γ +α[j]
j = j + 1

while inside(w) ∩ ∂res(γ) �= ∅ do
if Pos(α[j]) ∈ dom αI then

γ = γ + (α[j] + c)
j = j + 1

while i < |α| do
if Pos(α[i]) ∈ dom α′

O then
γ = γ +α[i]

i = i+ 1
return γ

Fig. 1. The algorithm to produce a valid assembly sequence γ

If we assume that the assembly sequence γ ultimately produced by the al-
gorithm is valid, then the result of γ is indeed α′

O ∪ (αI + c). Observe that αI

must be finite, which implies that M is finite. If |α| < ∞, then all loops will
terminate. If |α| =∞, then |α′

O| =∞ and the first two loops will terminate and
the last loop will run forever. In either case, for every tile in α′

O and αI + c, the
algorithm adds a step to the sequence γ involving the addition of this tile to the
assembly. However, we need to prove that the assembly sequence γ is valid. It
may be the case that either: 1. there is insufficient bond strength between the
tile to be placed and the existing neighboring tiles, or 2. a tile is already present
at this location.
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Case 1: In this case, we claim the following: at each step of the algorithm, the
current version of γ is a valid assembly sequence whose result is a producible
subassembly of α′

O ∪ (αI + c). Note that three loops in the algorithm iterate
through all steps of α, such that at any time when adding α[i] (or α[j] + c)
to γ, all steps of the window movie occurring before α[i] (or α[j]) in α have
occurred. Similarly, all tiles in α′

O (or αI + c) added to α before step i in the
assembly sequence have occurred.

So, if the tile T ile (α[i]) that is added to the subassembly of α produced after
i − 1 steps can bond at a location in α′

O to form a τ -stable assembly, then the
same tile added to the producible assembly of γ must also bond to the same
location in γ, as the neighboring glues consist of (i) an identical set of glues
from tiles in the subassembly of α′

O and (ii) glues on the side of the window
movie containing αI + c. Similarly, the tiles of αI + c must also be able to bind.

Case 2: Since we only assume that B (Mα,w)+ c = B (Mα,w′), as opposed to
the stronger condition B (Mα,w+c) = B (Mα,w′), which is assumed in the original
WML, we must show that dom (αI + c) ∩ dom α′

O = ∅. To see this, observe
that, by assumption, w + c is enclosed in w′, which, by definition, means that
inside (w + c) ⊆ inside(w′). Then we have x ∈ dom α′

O ⇒ x ∈ outside(w′) ⇒
x 	∈ inside (w′) ⇒ x 	∈ inside (w + c) ⇒ x 	∈ dom (αI + c). Thus, locations in
αI + c only have tiles from αI placed in them, and locations in α′

O only have
tiles from α′

O placed in them.
So the assembly sequence of γ is valid, i.e., every addition to γ adds a tile to

the assembly to form a new producible assembly. Since we have a valid assembly
sequence, as argued above, the finished producible assembly is α′

O∪(αI + c). ��

3 Main Result: Scaled Tree Fractals do not Strictly
Self-assemble

In this section, we first define some notation and then prove our main result.

3.1 Notation

Recall that each stage Xs (s > 1) of a g-dssf (scaled by a factor c) is made up
of copies of the previous stage Xs−1, each of which is a square of size cgs−1. In
the proof of our main result, we will need to refer to one of the squares of size
cgs−2 inside the copies of stage Xs−1, leading to the following notation.

Notation 6. Let c ∈ Z+, 1 < s ∈ N and 1 < g ∈ N. Let e, f, p, q ∈ Ng.
We use Sc

s(e, f, p, q) to denote {0, 1, . . . , cgs−2 − 1}2 + cgs−1(e, f) + cgs−2(p, q)
and W c

s (e, f, p, q) to denote the square-shaped, closed window whose inside is
Sc
s(e, f, p, q).

In Figure 2 below, the small and large red windows are W 1
2 (0, 1, 3, 2) and

W 1
3 (0, 1, 3, 2), respectively.
Next, we will need to translate a small window to a position inside a larger

window. These two windows will correspond to squares at the same relative
position in different stages i and j of a g-dssf.
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Notation 7. Let c ∈ Z+, i, j ∈ N \{0, 1}, with i < j, and e, f, p, q ∈ Ng. We use
tci→j(e, f, p, q) to denote the vector joining the southwest corner of W c

i (e, f, p, q)
to the southwest corner of W c

j (e, f, p, q). In other words, tci→j(e, f, p, q) =(
c
(
gj−1 − gi−1

)
e+ c

(
gj−2 − gi−2

)
p, c
(
gj−1 − gi−1

)
f + c

(
gj−2 − gi−2

)
q
)
.

For example, in Figure 2 below, t12→3(0, 1, 3, 2) = (9, 18).
Finally, to apply Lemma 1, we will need the bond-forming submovies to line

up. Therefore, once the two square windows share their southwest corner after
using the translation defined above, we will need to further translate the smallest
one either up or to the right, or both, depending on which side of the windows
contains the bond-forming glues, which, in the case of scaled tree fractals, always
form a straight (vertical or horizontal) line of length c. We will compute the
coordinates of this second translation in our main proof. For now, we establish
an upper bound on these coordinates that will ensure that the translated window
will remain enclosed in the larger window.

Lemma 2. Let c ∈ Z+, i, j ∈ N \{0, 1}, with i < j, e, f, p, q ∈ Ng, and x, y ∈ N.
Let m = c(gj−2 − gi−2). If x ≤ m and y ≤ m, then the window W c

i (e, f, p, q) +
tci→j(e, f, p, q) + (x, y) is enclosed in the window W c

j (e, f, p, q).

Finally, the following lemma establishes that any scaled tree fractal Tc con-
tains an infinite number of closed windows that all cut the fractal along a single
line of glues.

Lemma 3. Let T be any tree fractal with generator G. If c ∈ Z+, then it is
always possible to pick one pier (p, q) and one point (e, f), both in G, such that,
for 1 < s ∈ N, W c

s (e, f, p, q) encloses a configuration that is connected to Tc via
a single connected (horizontal or vertical) line of glues of length c.

The proofs of the lemmas in this sub-section are omitted from this version of
the paper due to lack of space.

3.2 Application to Scaled Tree Fractals

The main contribution of this paper is the following theorem.

Theorem 2. Let T be any tree fractal. If c ∈ Z+, then Tc does not strictly
self-assemble in the aTAM.

Proof. Let T be any tree fractal with a g× g generator G, where 1 < g ∈ N. Let
c be any positive integer. For the sake of obtaining a contradiction, assume that
Tc does strictly self-assemble in some TAS T = (T, σ, τ). Further assume that
α is some assembly sequence in T whose result is α, such that dom α = Tc.

According to Lemma 3, we can always pick one pier (p, q) and a point (e, f),
both in G, such that, for 1 < s ∈ N, the window W c

s (e, f, p, q), which we will
abbreviate ws, encloses a configuration that is connected to Tc via a single
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Fig. 2. First three stages (s = 1, 2, 3) of an unscaled (c = 1) 4-dssf tree fractal with
an east-pointing pier at position (3, 2) (the green square). The E-free point (0, 1) is at
the tip of the green arrow. In other words, (p, q) = (3, 2), and (e, f) = (0, 1).

line of glues of length c.3 The maximum number of distinct combinations and
orderings of glue positionings along this line of glues is finite.4 By the generalized
pigeonhole principle, since |{ws | 1 < s ∈ N}| is infinite, there must be at least
one bond-forming submovie such that an infinite number of windows generate
this submovie (up to translation). Let us pick two such windows, say, wi and
wj with i < j, such that B(Mα,wi) and B(Mα,wj) are equal (up to translation).
We must pick these windows carefully, since as stated in the proof of Lemma 1,
the seed of α must be either in both windows or in neither. This condition can
always be satisfied. The only case where the seed is in more than one window
is when it is at position (0, 0) and e = f = p = q = 0, which implies that all
windows include the origin. In all other cases, none of the windows overlap. So,
if the seed belongs to one of them, say wk, then we can pick any i greater than k
(and j > i). Finally, if the seed does not belong to any windows, then any choice
of i and j > i will do.

3 Without loss of generality, we will assume that this line of glues is positioned on the
western side of the windows and is thus vertical (see the orange circles in Figure 2,
where s = 2 and s = 3 for the small and large red windows, respectively, and (p, q) =
(3, 2) and (e, f) = (0, 1)), because the chosen pier in our example points east. A
similar reasoning holds for piers pointing north, south or west.

4 This number is (Tglue)
2c · (2c)!, where Tglue is the total number of distinct glue types

in T .
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Fig. 3. (x, y) translation needed to align wi and wj on their east side once their south-
west corners already match. Example with a west-pointing pier (not shown) and g = 3,
i = 5, j = 9, (a, b) = (2, 0).

We will now prove that wi and wj satisfy the two conditions of Lemma 1.
First, we compute c such that B(Mα,wi) + c = B(Mα,wj ). We know that

wi + tci→j(e, f, p, q) and wj share their southwest corner. We need to perform
one more translation to align the bond-forming glues of wi and wj . We use
(a, b) to denote the position of the western point in the horizontal bridge of
the generator. In our example (east-pointing pier), a = 0 and b is a variable
with domain Ng (b = 2 in Figure 2). To align the bond-forming glues of wi

and wj , we must translate wi + tci→j(e, f, p, q) by (x, y) =
(
0, bc

∑j−3
k=i−2 g

k
)
.

The general computation for this translation is illustrated in Figure 3. Since
x ≤ m (as defined in Lemma 2) and bc

∑j−3
k=i−2 g

k ≤ (g − 1)c
∑j−3

k=i−2 g
k =

c
(∑j−2

k=i−1 g
k −
∑j−3

k=i−2 g
k
)
= c
(
gj−2 − gi−2

)
= m, we can apply Lemma 2 to
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infer that, with c = tci→j(e, f, p, q) + (x, y), wi + c is enclosed in wj . Therefore,
the second condition of Lemma 1 holds.

Second, by construction, B(Mα,wi) + c = B(Mα,wj ). Therefore, the first con-
dition of Lemma 1 holds.

In conclusion, the two conditions of Lemma 1 are satisfied, with αI and α′
O

defined as the intersection of Tc with the inside of wi and the outside of wj ,
respectively. We can thus conclude that the assembly αI ∪ (α′

O−c) is producible
in T . Note that this assembly is identical (up to translation) to Tc, except that
the interior of the large window wj is replaced by the interior of the small window
wi. Since the configurations in these two windows cannot be identical, we have
proved that T does not strictly self-assemble Tc, which is a contradiction. ��

4 Conclusion

In this paper, we made three contributions. First, we gave a new characterization
of tree fractals in terms of simple geometric properties of their generator. Second,
we proved a new variant of the Window Movie Lemma in [5], which we call the
“Closed Window Movie Lemma.” Third, we proved that no scaled-up version
of any discrete self-similar tree fractal strictly self-assembles in the aTAM. In
future work, we plan to extend this result to larger classes of non-tree fractals
similar to the class of pinch-point fractals in [6].
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Abstract. The field of synthetic biology is looking forward principles and
tools tomake the biological devices inter-operable andprogrammablewith,
as long-term goal, the design of de-novo synthetic genome [14].

In this endeavour, computer-aided-design (CAD) environments play
a central role by providing the required features to engineer systems:
specification, analysis, and tuning [9,17,20,12]. Scaling up the complexity
of devices necessitates to harness the development of CAD environments
based on an automatic conversion of the design specification into DNA
sequences, like compilers for programming languages.

Currently, domain specific languages for synthetic biology mainly ad-
dress the design of structure, namely the biological component assembly,
where programming relates to DNA sequence description. Although the
structural description is an indispensable step in thedesign-to-manufacture
chain and provide an accurate description of devices, the required size of
program for sequence description likely makes the task error-prone and in-
feasible.

In this context, high level programming language for synthetic biology
is announced as a key milestone for the second wave of synthetic biology
to overcome the complexity of such large synthetic system design.

We have proposed a domain specific language, Gubs [5] (Genomic Uni-
fied Behaviour Specification), dedicated to the behavioural specification
of synthetic biological devices, viewed as discrete open dynamical sys-
tems. Gubs is a rule-based declarative language. In contrast to a closed
system, a program is always a partial description of the behaviour of the
system. The semantics of the language accounts the existence of some
hidden non-specified actions (trigged by the environment for example)
that possibly alter the behaviour of the programmed devices.

Here we describe in detail the compilation framework,Ggc(Gubs

Genetic Compiler), an automated compiler translating a program into
biological components usable in living cells. The compilation process
assemble biological components from a database to behaviourally cover
the behaviour described by a program.

Introduction

Synthetic biology is an emerging research field at the intersection of several
fields ranging from biochemistry to computer science. Synthetic biology aims at

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 40–53, 2014.
DOI: 10.1007/978-3-319-08123-6_4, © Springer International Publishing Switzerland 2014
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synthesizing large biological network based on assembly of biological components
such as BioBricks[19]. Synthetic biology projects were first focusing on the design
and the improvement of small genetic devices comparable to logical gates for
electronic circuits [18,11]. Recently, projects have attempted to develop large bio-
systems integrating different devices with as a long-term goal, the design of de-
novo synthetic genome [14]. To this end, synthetic biology is seeking to develop
engineering methods for providing rational framework for design in biology.

Despite the technological progress made in the field of gene characterization
and their interaction into networks, the complete understanding of an organism
remains out of our knowledge, then limiting the scope of the control action
on the organism. In addition, biological systems are open systems, which raise
the question: how to define a model of a system where interactions with the
environment are multiple and potentially unknowns ?

Development of such a tool is based on the definition of a language to describe
the system and components as well as assembly and modelling tools dedicated to
circuits. They are currently under development and used for synthetic biology[8].
The “manufacture” of the synthetic biological function could be carried on di-
rectly by “plugging” a synthesiser transforming the designed DNA sequence to
a real one.

In this context, we propose a tool for automatically generating set of biologi-
cal components which, once assembled, generates a behaviour previously defined
in a specification language dedicated to synthetic biology. To this end we have
previously introduced a DSL1 specification language, called Gubs aiming at pro-
viding a framework for behavioural description of biological component, taking
into account the openness of such a system by describing the behaviour as a
trace of observable atomic behaviours.

In this article, we introduce Ggc, a compiler for Gubs that compiles a pro-
gram into a set of biological components extracted from a database. The goal
of Ggc is to provide tools lying at the core of the chain of biological assembly,
indeed, it can translate a model into a set of biological components that can
then be synthesized.

We begin by presenting the Gubs language, then in a second part we will
present the challenges of compilation in synthetic biology, next, we introduce the
Ggc compiler and finish on several compilation examples, finally we conclude on
the opportunity offered by this tool as well as optimizations in order to match
biological needs.

1 Gubs

In this section we briefly define Gubs language. The reader can refer to the
following articles [5,6] for a complete description of the language. First we ex-
plain how the notion of variables and constant are interpreted in Gubs. Then
we introduce concepts specific to this language for the description of biological
systems.

1 Domain Specific Language.
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1.1 Programming Language Objects

Gubs uses variables and constants. Variables correspond to generic elements
such as a gene whereas constants correspond to existing biological objects in a
database. Variables and constants are defined as agents which can have quali-
tative attributes such as low or high. We differentiate them with an uppercase
letter at the beginning of a constant. For instance, gene1(low) is a variable with
the attribute low where TetR(high) is a constant with the attribute high.

Pieces of a program are enclosed in compartments and may depend on a
context. Compartment describes a workspace with its own set of agents (con-
stants and variables), these compartments being recursively included. They may
model sub part of a cell, or two separate organisms for instance. A context
meanwhile describes a set of behaviours that are triggered after a particular
intervention on the external environment of the system such as the presence
of a given enzyme in the cellular vector or the presence of light. For exam-
ple, cell{[light]{gene1, T etR(high)}} describe a compartment named cell with
gene1 and TetR(high) triggered when there is light.

1.2 Traces

A GUBS program describes a behaviour that can be observed in a trace. We fo-
cus on the notion of a trace that symbolically represents the evolution of some
quantities related to the agents of interest by the evolution of these agent states.
Formally, a trace, (Tt)1≤t≤m, is a finite sequence of agent state sets where each set
contains all observed agent states at a given instant. For instance, the evolution of
a concentration evolving from Low toHigh forGmay be described by the following
trace of 6 instants2: ({G(Low)},{G(Low)},{G(Mid)},{G(Mid)},{G(Mid)},{G(High)}), .

1 2 3 4 5 6 7

A trace can be obtained from experiments by establishing a correspondence be-
tween measurements of some quantities (e.g., Rna transcript concentration) and
attributes of agents.We define an history as a trace condensed to relevant element.

1.3 Causal Representation

In a Gubs program, instructions describing behaviours are causal relations. The
description of open systems raise the question of taking into account the causality
in the context of openness where some causes may be unknown. More precisely
two notion should be accounted: the notion of pre-emption (an outer member
system triggers inhibition behaviour induced by the system), and the principle
of over-determination (events in the environment generate additional or already
active behaviour in the system).

Proposition 1 (Over-determination Principle). The over-determination
case can be considered negligible considering that the behaviours described by
the user are not naturally existing behaviours, and therefore cannot be triggered

2 Step 7 is inserted as an extra step to comply with the definition of the chronological
division.
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by the environment. The case of additional behaviour can for its part be checked
to ensure that they are not harmful.

To provide an interpretation of causality accounting the pre-emption, we use the
notion of reverse causation[16] defined as:

if the effect is observable, then the cause has occurred.

This representation allows us to ensure that in all cases, if we observe the ex-
pected behaviour, then the causal chain described by the program is executed
and otherwise, one element of this chain has been locked by the environment
preventing the occurrence of the behaviour that we want to observe.

For example, gene1 ◯→ TetR(high) describe a behaviour where gene1 acti-
vate TetR(high).

Three behavioural dependences are defined in GUBS: the normal denoted
by ◯→, persistent by ⊙→, and residual by ⊕→. These dependences are primitive
in the sense that they cannot be expressed by the others without weakening
their properties. Informally, for normal dependence the cause precedes the ef-
fect providing the effect is observed; for persistent dependence the cause still
precedes the effect but it is maintained while the effect is observed; and for
residual dependence, the effect is maintained despite the cause has disappeared.
These dependences symbolize common biological interactions. For instance, in
genetic engineering, a recombination enables the emergence of a regulated gene
or an hereditary trait permanently. Such a mechanism typifies the residual de-
pendence in biology. The relations between gene expressions at steady state are
symbolized by persistent dependence, finally the simple causation is a simplified
representation of the principle of protein synthesis by a gene.

1.4 Remarks on Semantic

Gubs is a behavioural description formalization language based on modal logic.
In order to effectively represent the notion of temporally ordered causal chain
without owning a notion of unity of time, more, hybrid modal logic HL brings
the concept of classical observation point during an experiment biological as
described above. Each Gubs program can be translated into logic, and then in
the form of a Kripke model.

The semantics formalizes the observed behaviour and used to: insure the cor-
rectness of the compilation process (Section 2.1), and to check the satisfiability
of the program, interpreted here as the ability to observe a result.

2 Compilation

In this section, we describe the main features of Gubs. Informally, a Gubs

program describes the expected observed behaviour of a biological component.
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Usually, compilation consists in a translation of a programming language into
computer’s code using a compiler [1,2]. As explained previously, we introduces
this scheme in order to adapt this principle to synthetic biology [7] where binary
code is replaced DNA sequences.

In this endeavour, we define Ggc compiling Gubs program [6] to an assem-
bly of biological components insertable in a cellular vector. The result of the
compilation is a set of components having at least the behaviour described by
the program. This means that the final component assembly potentially has
additional properties.

A central notion governing the compilation design is the notion of behavioural
inclusion. Informally an assembly of components Q behaviourally including the
behaviour of a program P .

Formally, by considering that the interpretation of P and Q (⟦P ⟧,⟦Q⟧) pro-
vides an hybrid logic formula and are modelled by a Kripke model [10], the
behavioural inclusion denoted by P �Q is defined as a logical consequence (Def-
inition 1).

Definition 1 (Behavioural inclusion). A program Q behaviourally includes
another program P , if and only if the interpretation of the latter is a logical
consequence of the interpretation of the former:

P � Q ≜ ∀M ∶M ⊩ ⟦Q⟧ 
⇒ M⊩ ⟦P ⟧ .whereM is a model (Krypke structure)

The behavioural inclusion is a pre-order3 such that the empty program, denoted
by ε, is a minimum, meaning that a program with no expected behaviour can be
observed in all traces. A program whose interpretation equals �, is a maximum.
Figure 1 illustrates the behavioural inclusion on a particular model P .

P Q

{@Behaviour {@Behaviour
g1 ◯→ g2; G6 ◯→ G7;
[k1]{g2 ◯→ g3}; [k1]{G7 ◯→ G8};
@Obs G7 ◯→ G9

obs1 ∶∶ g3;} @Obs
obs1 ∶∶ G8;
obs2 ∶∶ G9;}

obs1

g1

g2

g3 obs1 G8 obs2 G9

G7

G6

k1 k2

Fig. 1. Behavioural inclusion example. In the figure, each node correspond to a Kripke
world of the model. k stand for a context and we define observer as obs ∶∶. Histories of
P necessarily contains worlds coloured in grey. From the observation spots, the model
corresponding to worlds in grey validate the original model. Hence, the behaviour of
P is included in the model of Q represented by the entire graph.

3 A reflexive and transitive relation.
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Compilationwill therefore be based on twoprinciples, resulting in two questions:

1. Given a set of components Q, does it behaviourally include P?

2. Given a set of components Q, is it the smallest component satisfying 1?

To answer the first question, we define the functional synthesis principle,
describing rewriting rules used in the compilation process.

2.1 Functional Synthesis

Functional synthesis is the operation whereby biological components of a li-
brary are selected and assembled to generate a device behaviourally including
the designed function. The behaviour of each component is described by a Gubs

program. At its simplest, the functional synthesis could be considered as a sub-

stitution of variables by constants. For example, in the following activation (
+

�→)

{G1
+

�→ g2}, g2 will be substituted by gene G2, providing that component Q

describes the activation {G1
+

�→ G2}. However, more complex situations may

arise during component selection. For example, if the activation G1
+

�→ G2 oc-

curs with another regulation only i.e., Q = {G1
+

�→ G2,G3
+

�→ G4} then the
selection of Q adds a supplementary regulation.

Functional synthesis is defined by rules (Table 1) governing the component
assembly. To ensure the correctness, each transform must preserve the behaviour.
Hence, each program resulting from the application of a rule must behaviourally
include the previous one. Formally, the functional synthesis is modelled by a
relation on programs denoted by �, i.e., Q�σ P where P is the initial program
and Q the transformed one, such that each rule insures that: Q�σ P is correct
in regard to a substitution σ, that is P [σ] � Q[σ] and Q[σ] is observable.

A finite substitution is a set of mappings, σ = {vi/bi}i, on variables and
constants such that a variable can be substituted by a variable or a constant, and
a constant can only substituted by itself4. For instance, we have: {Obs::G(l) +
b2, b1 ◯→ G(l)}[{b1 ↦ B1, b2 ↦ B2, l ↦ Low}] = {Obs::G(Low) + B2,B1 ◯→
G(Low)}.

Also notice that the behavioural inclusion is preserved by substitution (Propo-
sition 2 - proof in [5]).

Proposition 2. For all substitutions σ, we have: P �Q 
⇒ P [σ] � Q[σ].

Table 1 describes the functional synthesis rules5. Γ is a set of components rep-
resenting the library. P ⊆Asm Q denotes the fact that program Q corresponds to
an assembly including P i.e., Q = (Q1, P,Q2) where Q1 or Q2 may be an empty
program.

4 Pσ or P [σ] represents its application on program P and identity substitutions are
omitted.

5 Rules are of the form: .
hypothesis

conclusion
.
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- Instantiation -

P [σ] ⊆Asm Q[σ] obs (Q[σ]) Q ∈ Γ
(Inst.)

Q�σ P

- Commutativity, Contraction -

Q�σ P,P ′
(Com.)

Q �σ P ′, P

Q�σ P
(Cont.)

Q �σ P,P

- Assembly -

Q �σ P Q′ �σ′ P
′ σ∣VA(P )∩VA(P ′) = σ

′∣VA(P )∩VA(P ′) obs (Q[σ],Q′[σ′])
(Asm.)

Q,Q′ �σ∪σ′ P,P
′

Table 1. Functional synthesis rules VA(P) stands for the set of variables of the program
and σ∣V is the restriction of the substitution on a set of variables V

Rule (Inst.) describes the fact that an observable instance of a part of a
component in the library is functionally synthesized. Rule (Com.) expresses the
commutativity of the assembly. Rule (Cont.) contracts the redundant formula-
tion of programs. Finally, Rule (Asm.) details the conditions for an assembly
of two components, each representing a functional synthesis of a part of the
designed function.

- Dependences -

Q �σ S1 ⊙→ S2, S2 ⊙→ S3,Δ
(Trans.)

Q�σ S1 ⊙→ S3,Δ

Q �σ S1 ⊙→ S2,Δ
(N2P.)

Q �σ S1 ◯→ S2,Δ

Q �σ S1 ◯→ S2,Δ
(R2N.)

Q �σ S1 ⊕→ S2,Δ

- Agent states -

S1 + S2 (SCom.)
S2 + S1

S + s (SCont.)
S + s + s

S + s (Incl.)
S

Table 2. Rules for the dependences and the agent states. Si stands for a collection,
s1+. . .+sn, of agent states, including negation, andΔ stands for the rest of the program.

Another set of rules, more specifically devoted to dependences (Table 2), de-
fines the alternate possibilities to express similar behaviours. The table also
includes the rules for agent sets. Rule (Trans.) expands the chain of the persis-
tent dependences (S1 ⊙→ S3) by adding intermediary dependence (S2) to refine
a pathway. Rule (N2P.) weakens a normal dependence (S1 ◯→ S2) to a persistent
one (S1 ⊙→ S2) since the latter is a normal dependence with an additional prop-
erty. And Rule (R2N.) weakens a residual dependence(S1 ⊕→ S2) to a normal
dependence (S1 ◯→ S2), since normal dependence is also residual dependence
with a repetition of the effect restricted to one step. According to these rules, all
the dependence chains can be implemented with persistent dependences. Final
rules are devoted to agent states. Rule (SCom.) and (SCont.) describe the pro-
priety of + operator. Finally (Incl.) specifies that a behaviour can be extended
with another unless the original one still present.
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Basically, the compilation consists in the iterated application of rule, until the
behaviour of the assembled component cover the original program.

Technically, the algorithm of rule application corresponds to an unification [15]
where the causal relation are assimilated to terms. The unification is an ACI-
unification [4,3] : Associative (rule Asm.), Commutative (rules Com. and SCom.)
and idempotent (rules Cont. and SCont.). ACI-unification is a NP-complete
problem, so we will use some specific properties of the Gubs program to improve
the algorithm efficiency.

2.2 Normal Form

For the compilation, we consider a normal form of the causal rules, ℵ(P ), with
the following properties:

1. Unity: the normal form is unique
2. Idempotents: ℵ ○ ℵ(P ) = ℵ(P )
3. Semantics correctiveness: ∀P ∶ M ⊩ ⟦P ⟧ ⇔M⊩ ⟦ℵ(P )⟧
4. Normalization: ∀P1, P2 ∶ ℵ(P1) = ℵ(P2) ⇔ (M ⊩ ⟦P1⟧ ⇔M⊩ ⟦P2⟧

The transformation from a program P to its normal form relies on classical
rules (distributivity, commutativity), that are not described here. In the normal
form, the context is applied to each cause and there is only one compartment
encapsulating all the causes.

[k1, ...kn]{
m

∑
i=1

Ci ⍟→
l

∑
j=1

Ej}

For instance, the normal form of [k]{C{a ◯→ b}D{c ◯→ d}} is
[k]{C.a ◯→ C.b}, [k]{D.c ◯→D.d}
The normal form [k1, ...kn]{∑

m
i=1Ci ⍟→∑

l
j=1 Ej} can be interpreted as term:

(⍟→)({K},{C},{E}), where K = {k1, ...kn}, C = {c1, ...cm} and E = {e1, ...el}
are agents sets of variables and constants in P and only constants for components
Q of the database.

2.3 Getting the Smallest Component

In this section, we assume that we have an assembly of component covering
the behaviour of a program, indeed, Q is a component potentially comprising
several other components extracted from a database, so it can exists a multitude
of assembled components covering P . Based on this premise, how to generate
the smallest component Q unifying P ?

The problem actually depends on the size of the database. For small database,
ACI-unification will compute the functional synthesis by identifying which com-
ponents own causal rules unified with the program. For large database, the uni-
fication may be too time-consuming to be effective. In this case, the unification
will operate on a part of database.
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Finding the appropriate components for the unification appears crucial. Hence,
we select the component insuring that they will not obviously cause the unifica-
tion failure. Selection process operates heuristically by considering the following
requirements.

1. A set of components must have a sufficient number of causes with the right
type.

2. Each cause have a sufficient number of agent in the both sets.
3. they have at least constants present in the original program.

Amongst the set of components we select a sub-part using a directed evolution
algorithm. By directed we mean that we proceed to a pre selection, checking
that each individuals (subset of components) comply to the above mentioned
requirement.

2.4 GGC(Gubs Genetic Compiler) Algorithm

The functional synthesis algorithm is structured in two stage: the ACI-unification
algorithm and the directed evolutionary algorithm. Depending on the size of the
database, the evolutionary algorithm will be used or not. In the case of a small
database, the P program will be directly unified with the whole database, and for
large database, several subsets of components will be selected for the unification.
A genetic algorithm is used to select the best subsets of component with respect
to a fitness function. An individual (subset of components) is viable if and only
if it is observable (namely there exists a model satisfying the assembly). The
fitness function accounts two characteristics:

– The number of components used for the unification in an individual.
– The number of unified rules in the original program.

The best individuals have the minimal number of unified components and max-
imize the number of unified rules in the program.

Minimizing the number of component is motivated by the fact that, in biology
the stability and the understanding of pathway directly depends on the number
of involved components. Notice that: for each individual of a population, the
unification could be partial and some components of an individual may not be
used during the unification process, in this case, they are removed in the com-
pilation result. The compilation process may fail if all the rules of the original
program are not unified by a best individual. To attempt to overcome the fail-
ure, two optimisations are applied: variant of some individuals are generated by
combining the extension (Rule Trans. Table 2) and the weakening (Rules N2P.
and R2N. Table 2) of their causal rules. Those variants are then included in the
population.

Figure 2 describes the compilation process of a Gubs program. Although the
use of evolutionary algorithm in Gubs differs, it supports the same objective
and opens up the possibility of an integration based on the same optimization
framework.
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GUBS program

Observability
verification

Directed selection

Evolution

Terminate

P’
Internal normal form

Normalisation

NoYes

Fittest observable 
component Q

behaviourally covering P

Substitution of P variables 
by biological agents

• Observability
• Behaviour inclusion
• Fitness

Compilation

• Number of causes
• Type of causes
• Number of agents
• Same constants

Population of components

Database

Q
components

Yes

Selection

Fig. 2. Overview of the Ggc compiler modules

3 Example

In this section we introduce the Repressilator [13] compilation with Ggc For
this example, we use the database described in the Appendix 5 defined as an
XML document.

3.1 Repressilator

The Repressilator was designed to exhibit a stable oscillation which is reported
via the expression of green fluorescent protein, and acts like an electrical oscilla-
tor system with fixed time periods. The network was implemented in Escherichia
coli using standard molecular biology methods and observations were performed
that verify that the engineered colonies do indeed exhibit the desired oscillatory
behaviour. here we detailed the compilation of such a system, the first step con-
sist in translating this model into Gubs as described in the first figure (figure 3).

We define two compartments each one describing one plasmid. The first one
describes the behaviour of the inhibition loop with three causal relations and
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Lacl

TetR λcl

−−

−

TetR

GFP

−

Repressilator{

@Observer{obs1:TetR_lite; obs2:!TetR_lite;}

@Behavior{g1 -> !g2; g2 -> !TetR_lite; TetR_lite -> !g1;}

};

Reporter{

@Observer{obs1:GFP; obs2:!GFP;}

@Behavior{TetR_lite -> !GFP;}

};

Fig. 3. Repressilator Gubs program

Parts list: Substitution:

Q4, Q5, Q6, Q15, Q16 g1::> LambdaCL_lite

g2::> Lacl_lite

Details:

Q4: Lambda Cl Added genes:

Q5: Lacl_lite add1::> LambdaPr

Q6: Tetr_lite add2::> PLlac01

Q15: PLtet01 add3::> PLtet01

Q16: activation tetr add4::> PLtet01

Fig. 4. Repressilator Ggc output. notice that, in order to find a solution, the compiler
uses the extension rule (Trans.) in order to add 4 genes.

two observation spots which are the presence or absence of TetRlite. The second
one simply describe the activation of GFP .

After compilation we obtain the result in figure 4.

4 Conclusion

Gubs language is a language dedicated to the design of synthetic biological
systems. Hence, the proposed features were adapted to this domain. A program
in Gubs describes the observation of a trace expressed by causal relations.

Actually, the semantics based on the observation instead of a model formaliz-
ing the behaviour appears to be the most suitable approach for addressing bio-
device specification in synthetic biology by considering that a living organism is
an open system where some rules governing its processes remain incomplete and
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even unknown. In Ggc, we propose a new approach for synthetic biology design
based on the compilation of a program describing the behaviour of biological
functions to an assembly of biological components stored in a database.

<name>Q4</name><meta>Lambda Cl</meta>

<prog>@B{LambdaCL_lite -> LambdaPr; LambdaPr -> !Lacl_lite;}</prog>

//===================================================================

<name>Q5</name><meta>Lacl_lite</meta>

<prog>@B{Lacl_lite -> PLlac01; PLlac01 -> !TetR_lite;}</prog>

//===================================================================

<name>Q6</name><meta>TetR_lite</meta>

<prog>@B{TetR_lite -> PLtet01; PLtet01 -> !LambdaCL_lite;}</prog>

//===================================================================

<name>Q7</name><meta>sensor</meta>

<prog>@B{[Light]{Detect -> Tetr};}</prog>

//===================================================================

<name>Q8</name><meta>Tetr</meta>

<prog>@B{Tetr -> Luxl;}</prog>

//===================================================================

<name>Q9</name><meta>Luxl</meta>

<prog>@A{AHL:[][low != mid != high];}

@B{Luxl -> AHL(low); !Luxl -> !AHL(low); Luxl -> AHL(mid);

!Luxl -> !AHL(mid); Luxl -> AHL(high); !Luxl -> !AHL(high);}</prog>

//===================================================================

<name>Q10</name><meta>Ahl</meta>

<prog>@A{AHL:[][low != mid != high]; LuxR:[mid < high][low != mid];}

@B{AHL(mid) -> LuxR(mid); AHL(high) -> LuxR(high);}</prog>

//===================================================================

<name>Q11</name><meta>luxr</meta>

<prog>@A{LuxR:[mid < high][low != mid];}

@B{LuxR(mid)->Cl,!LaclM1; LuxR(low)->!Cl; LuxR(high)->Cl,LaclM1;}</prog>

//===================================================================

<name>Q12</name><meta>Cl</meta>

<prog>@B{Cl -> !Lacl; !Cl -> Lacl;}</prog>

//===================================================================

<name>Q13</name><meta>laclm1</meta>

<prog>@B{LaclM1 -> !GFP; !LaclM1 -> GFP;}</prog>

//===================================================================

<name>Q14</name><meta>gfp inhibitor lacl</meta>

<prog>@B{Lacl -> !GFP; !Lacl -> GFP;}</prog>

//===================================================================

<name>Q15</name><meta>PLtet01</meta>

<prog>@B{PLtet01 -> !GFP;}</prog>

//===================================================================

<name>Q16</name><meta>activation tetr</meta>

<prog>@B{TetR_lite -> PLtet01;}</prog>

Fig. 5. Components database. The XML code correspond to the description of a set
of selected biological components in Gubs.
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The compilation principle relies on the notion of behavioural covering of the
initial program by the assembly. We define a compilation algorithm based on
the ACI-unification algorithm adapted to the features of the Gubs language. We
have developed a prototype of compiler (in Ocaml language) and demonstrate
its feasibility on some examples coming from synthetic biology literature. The
compiler combines the ACI-unification algorithm with a directed evolutionary
algorithm in order to tackle with the complexity of the compilation for large
biological databases. In dedicated domain specification language, the possibility
to extend the language easily is required for refining some domain specific feature.
The compilation principles of GGC enable the swift extension of the causal rules
since they are considered as new terms treated in the same way than the other
causal rules. However, specific algorithmic methods must be devised for their
optimizations such as ”causal rule weakening” because the optimizations are
based on the semantics of the rules an not merely on their syntactic structure.

The perspectives is to improve the component selection by identifying relevant
biological parameters. The parameters extend the notion of attributes of agents
without replacing it, to quantitatively assess the adequacy of the selection of
an agent to a variable. The issue is in twofold: finding some relevant biological
parameters for the synthetic biology design, and appropriately accounting these
parameters to improve the compilation process.

Acknowledgements. The funding for most of this work is granted by the Anr
synbiotic (Anr blanc 0307 01) and we would like to thank the colleagues of this
project for their fruitful discussions.
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Abstract. Membrane systems have been applied to several branches of
linguistics, taking advantage of their possibilities when describing con-
texts and environments. However, not much research has been performed
in the field of modeling syntax. The paper introduces a preliminary ap-
proach to syntactic complexity using the basic operations of membranes.

1 Introduction

As stated by Marcus in [10], language is at the crossroad of computation and
biology. The two last disciplines were the pivotal sciences of the XXth century,
whereas language is a universal paradigm like time, space, error, and others.

There are various traditional and unconventional models for natural languages
[11–13]. Mathematics and computation provided the first formal models for natu-
ral language. Following Marcus [10] we can say that computation became a cogni-
tive model for natural languages with the pioneering word of Chomsky. Chomsky’s
hierarchy of formal grammars and languages was motivated by needs of the study of
syntax of natural languages. Since each type of formal grammars in Chomsky’s hi-
erarchy is equivalent to a specific type of automata, which, in their turn, are specific
types of a Turing machine, it follows that Chomsky’s hierarchy leads to a hierarchy
of computational models for natural languages.

However, these models could never totally cover the phenomena of natural
language. At the end of the century, with the increasing development of biology
and bioinformatics, the issue of tackling natural language with biological models
arose as a direct consequence of the scientific scenario.

From the XIXth Century it has been highlighted that both, natural languages
and species, shared a key feature: evolution. In biology, the idea was developed
by Darwin [8] in the work The origin of the species; in historical linguistics,
August Schleicher [16] introduced the theory of the Stammbaum, with very
similar parameters as that of Darwin. Roughly speaking, if species (DNA) and

� First author’s research has been supported by a IEF Marie Curie Fellowship.

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 54–66, 2014.
DOI: 10.1007/978-3-319-08123-6_5, c© Springer International Publishing Switzerland 2014



Modeling Syntactic Complexity with P Systems 55

verbal languages are natural evolving entities, they should be approached with
similar methods.

Nowadays, the theory of complex adaptive systems (CAS) [9] gives a new
perspective to the problem. Several natural and artificial entities in the world
seem to share the same features: emergency, evolution, self-organization and
collective behavior. Natural language is certainly one of these structures, as well
as the genetic code and the immune system. In this framework, the idea to tackle
natural languages by means of formal models coming from biology, especially
molecular biology becomes even more relevant.

From the works of Chomsky, the main goal of linguistics has been explaining
the syntax of natural languages [7]. But in the last years, the incapability of
formal models and the arising of statistic models has led to a different way
to tackle linguistics, more centered in applications like automatic translation,
data mining, summarization, etc. Natural computing in general, and membrane
systems in particular, have followed the same tendencies when used for modeling
a language. Indeed they have been applied mainly to semantics and pragmatics,
as can be seen in [4].

Nonetheless, some attempts to model the structure of natural language by
means of membranes have been performed. The first authors connecting P sys-
tems and syntax were Gramatovici & Bel-Enguix [6], who explored the way of
parsing natural languages using P automata. Although this was a promising line
of research, this possibility has not been developed in subsequent studies.

There are other branches of natural computing that have approached syntax.
The best example is [5], that offers a general method to tackle complexity and
sentence composition using only DNA recombination methods. The results ob-
tained in this research clearly indicate that natural formalisms can be a very
suitable model for natural language, encouraging the development of other nat-
ural approaches to syntax.

Some fields that can be related to syntax have been approached by P systems.
Some attempts have been made to define logic gates and logic operations by
means of SN P systems [1]. Other researchers [3] have introduced a rewriting
logic framework for operational semantics of membrane systems. Even though
modelization of logic environments and logic gates can be very useful for syntax,
the perspective of these papers is still far from being able to deal with natural
language structure.

This paper introduces a preliminary way to represent syntactic relations with
general membrane operations. Our aim is to give some clues on how P sys-
tems can be a good support for approaching syntax with a simple and intuitive
formalization. The work may have several benefits for linguistics and language
production. On one hand, we show how there are alternative models to rewriting.
On the other, we offer a system that can be analyzed and implemented more
easily than current models. Finally, we pose the question of the boundaries and
classification of complex syntactic structures, that could be revised according
with the membrane operations that are needed to generate them.
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In section 2 we explain the main features of Syn(tactic) P Systems, and give
a definition. Section 3 deals with Syn P Systems that generate different types
of complex sentences. Section 4 deals with P systems that are able to simulate
non-context free structures in natural languages. Finally, in section 5 we give
some final remarks and outline the future work.

2 Syntactic P Systems

We use the name Syntactic P Systems (Syn P Systems) for specific type of P
systems with the following features:

– The objects of the system, O, belong to two different groups: a) sentences
s1, . . . , sn predefined in a pool of sentences S; b) words from the set C, that
corresponds to ‘conjunctions’.

– In the final configuration, every membrane of the system can only have one
sentence from S.

– The system uses basic membrane operations. Membrane rules do not belong
to any membrane, but to the system.

First, we explain which basic membrane operations the Syntactic P Systems
are using.

2.1 Basic Membrane Operations

P systems with active membranes were introduced by Păun [14], and membrane
operations were clearly defined by Alhazov and Ishdorj [2]. Paun [15] takes into
account four operations (actually seven, because for three of them reverse oper-
ation is also defined) with membranes:

– Creation / Dissolution: Creation is an operation that generates a new mem-
brane that can contain objects inside. Dissolution is the reverse operation;
by means of that a membrane can be deleted, generating the objects defined
by the rule.

– Divide / Merge: By division a membrane is split in two new ones. The
contrary operation is merging, that consists in joining two membranes in
the new one generated. In both cases the membrane or membranes initially
existing disappear.

– Endocytosis / Exocytosis: Endocytosis is a rule producing an elementary
membrane i to enter an adjacent membrane j. The reverse operation is
exocytosis, by means of which an elementary membrane j nested in i is
sent out of i. The objects in the membranes can be modified during the
process.

– Gemmation: By this operation a membrane i is created with some objects
inside and later sent into an adjacent membrane j. The moving membrane i
is dissolved inside j releasing its contents there. This is a way of transporting
objects between membranes.
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2.2 Formalization of Syntactic P Systems

A syntactic P system (Syn P System) can be formalized as follows:

Π = {L, μ,O,W,R},

where

L is the finite set of labels that can be used to label membranes;
μ is the initial membrane structure;
O = S ∪ C, where S = {s1, ..., sn}, C = {c1, ..., cn}, S ∩ C = ∅;
W contains wi ∈ O∗ for every i ∈ L that is included in μ: it is the initial
content of each membrane i;
R = {r1, ..., rn} is the set of rules of the system.

The basic idea of this paper is that some complexity phenomena in natural lan-
guages can be explained using the basic operations on membranes. The approach
we are taking assumes some basic statements.

– In our representation, every elementary membrane stands for a simple sen-
tence. Simple means that it has only one inflected verb.

– In two nested membranes we consider the main to be the outer.
– Skin membrane stands for the text or the oral speech production.

3 P Systems for Complex Sentences

In linguistics, complex sentences are defined as the ones including two or more
simple sentences, that we will call clauses along the paper. Classical grammar
assumes that complex sentences can only be created by joining two simple sen-
tences, and generative grammar follows this idea. Therefore, this paper is not
dealing with the generation of simple sentences in any language, but with how
simple syntactic units combine in order to get a new complex item.

We define three types of complex structures that are being tackled in this
piece of work:

– Coordination. Composition of sentences with no dependence relation be-
tween them. Clauses of a coordinate sentence are usually joined by logical
relations, mainly ∧, ∨, or express a contrast with what has been said, like
but. Coordination is the co-referent of concatenation in formal languages.
The conjunctions that are used in English to coordinate sentences are: and,
but, for, nor, or, so, and yet.

– Relative sentences. Joining two sentences sharing a common element. Rela-
tive subordination is built with the particles that, which, whom.

– Subordination. One sentence is inside another one with a given syntactic
function or one clause is dependent on another one. Examples of subordi-
nation conjunctions are: after, although, as, as if, because, before, even if,
even though, if, if only, rather than, since, that, though, unless, until, when,
where, whereas, wherever, whether, which, and while.
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3.1 Coordination

In terms of membranes, to generate coordinate sentences the only thing we
need is a creation rule. [b]s → [[ ]ib]s. The rule can be applied recursively, in a
sequential manner, producing systems like: [[ ]i[ ]j [ ]k...[ ]nb]s.

It is also possible to obtain these results in a parallel manner. Since here
we do not go inside the structure of a clause we use object-alphabet including
the clauses and connectives that are intended to use in the sentence. The label
alphabet should be {s} ∪ {1, . . . , n} where n is the number of clauses that we
want to use in our sentence.

To generate coordinate sentences we can use a ‘pool’ of simple statements,
for example: s1= John went to the house, s2= Mary plays tennis, s3= They eat
pizza. The restriction can be established that every clause can be used only once.

A P system capable of generating coordinated sentences could be the following:

Πc = (L, μ,O,W,R)

where

– L = {s, 1, 2, 3}
– μ = [ ]s
– O = {s1, s2, s3} ∪ {and, but}
– ws = s1s2s3
– R = {s1 → [s1]1, s2 → [ and s2]2, s3 → [ but s3]3}

This system generates the sentence John went to the house and Mary plays
tennis but they eat pizza.

Note that assuming all the sentences of the pool given in the initial config-
uration, the sentence can be generated in one step applying every membrane
creation rule in a parallel manner. These systems are uniform in the sense that
they are entirely the same for every sentence based on n clauses, however the
objects s1, . . . , sn and also the connectives and, but, etc. should be fixed ‘by the
input’, and thus in this way the system can only be counted as a semi-uniform
system.

3.2 Relative Clauses

Rules for generation of relative clauses can be simulated using the membrane op-
eration of endocytosis. However, this can only be applied in restrictive contexts,
so that it could be called ‘selective’ endocytosis. The rule can be triggered only if
the two sentences have a common element, that has to be labelled with the same
symbol. For example, given two sentences s1:abc and s2:cde, the endocytosis can
be applied only if the common element in both sentences, c, is labelled with the
same symbol, in this case u. Therefore, a rule can be defined: [abcu]j [cude]k →
[abc[ucde]k]j , uc being a trace of c. In natural language, the trace is always one of
these pronouns: that, which, who, whose. In the paper, for the sake of simplicity,
we always use that.
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Relative clauses are generated in natural language when two different sen-
tences have some common ‘referent’, i.e., they have the common element refer-
ring to the same object. Syntax deals with the process of generation of sentences
and does not deal with ‘referents’. In our examples, if two items are labelled we
assume the operation can be performed and, for that example, we assume the
object of reference is the same. Anyway, this fact is not relevant for syntax, but
for other fields like pragmatics or semantics.

Given two sentences with labelled common elements, the endocytosis can work
in both ways, so as, having the two sentences above, the process could also be
defined as follows: [abcu]j [cude]k → [cde[abuc]j ]k.
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Fig. 1. Example for a configuration scheme for relative sentences

We establish the condition that, when an object has been used in a rule, it
cannot be used again, even though the element is repeated. By these we avoid,
at this stage, results with two relative clauses depending on the same word.
Therefore, the element is used will not be labelled in the right part of the rule;
instead the labelled trace is used.

First, a store of simple sentences is considered, containing the following ele-
ments: s1=The boyt eats an appleu (atbcu), s2= The boyt runs the marathonw

(atdew), s3= I bought an appleu (fgcw), s4 = The marathonw was organized by
the City Hall (ewhi).

Then, a system can be defined, as follows:

Πr = (L, μ,O,W,R)

where

– L = {s, 1, 2}
– μ = [[ ]1 [ ]2]s
– O = {a, at, b, c, cu, d, e, ew, f, g, h, i} ∪ {thatx | x ∈ {a, c, e}}
– w1 = s1 = atbcu, w2 = s2 = atdew
– R = {[atdcu]1 [atdew]2 → [adcu[thata dew]2]1}

The system generates the sentence: The boy that runs the marathon eats an
apple.

But some systems can be defined in a bit more sophisticated way (where we
allow subsequent use of these endocytosis rules):

Π ′
r = (L, μ,O,W,R)
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where

– L = {s, 1, 2, 3}
– μ = [[ ]1 [ ]2 [ ]3]s
– O = {a, at, b, c, cu, d, e, ew, f, g, h, i} ∪ {thatx | x ∈ {a, c, e}}
– w1 = s1 = atbcu, w2 = s2 = atdew, w3 = s3 = fgcu
– R = {[atdcx]1 [atdey]2 → [adcx[thata dey]2]1, where x ∈ {u, λ}, y ∈ {w, λ}

and [azdcu]1 [fgcu]3 → [azdc[thatc fg]3]1, where z ∈ {t, λ}}.

Applying both types of rules the system produces:
The boy thatboy runs the marathon eats an apple thatapple I bought.
The final P system configuration would be the one seen in Figure 2.

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

s

1 2 3
The boy eats

an apple

thatboy runs

the marathon

thatapple

I bought

Fig. 2. Syntactic structure of a sentence with two relative clauses inserted by endocy-
tosis at the same level

With some of the ‘clauses’ of the pool, many different sentences can be gen-
erated in a similar way, for instance:

– The boy that runs the marathon eats an apple.
– The boy that eats an apple runs the marathon.
– The boy eats an apple I bought.
– The boy runs the marathon that was organized by the city hall.
– The marathon that the boy runs is organized by the city hall.
– The boy that runs the marathon that was organized by the city hall eats an

apple that I bought.
– I bought an apple that the boy that runs the marathon that was organized by

the city hall eats.
– ...

An easy way to generate some of these sentences is by defining enchained
rules, that simply provide an order for the endocytosis. The rules can be applied
only if there is a common element. We may also use endocytosis in a more general
way allowing not only elementary membranes to enter into another one. Using
these new features we can obtain more complex sentences in a similar way as
we have shown in the previous examples, as we describe briefly (using only the
abbreviation si for the sentences):

Let us have a P system with as many adjacent membranes inside the skin as
‘clauses’ in the pool. In our example we have four clauses, therefore the system
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has the structure μ = [[ ]1 [ ]2 [ ]3 [ ]4]s. Every one of the adjacent membranes
contains one of the sentences: w1 = s1, w2 = s2, w3 = s3, w4 = s4. The set of
objects includes every one of the classes plus the trace-word, that. Then, a chain

of endocytosis can be described, in the following way: Rμ= {s3 endo−−−→ s1
endo−−−→

s2
endo−−−→ s4}. The initial configuration of the system is seen in Figure 3.
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Fig. 3. Initial configuration of a system with several sentences that can start a process
of recursive endocytosis

If the chain of endocytosis s3
endo−−−→ s1

endo−−−→ s2
endo−−−→ s4 is applied, we obtain,

in the first step: The boy eats an apple that I bought, in the second step: The boy
that eats an apple that I bought runs the marathon. The final outcome is: The
marathon that the boy that eats an apple that I bought runs was organized by the
City Hall. This is shown in Figure 4.

3.3 Subordination

Subordination means joining two sentences, in the case in which one is dependent
on the other one. This definition is very general and rough, but it can be enough
for a preliminary paper like this to show the main idea how this phenomenon
can be modeled.

Subordination can be modeled by endocytosis, being the inner clause of the
resultant sentence the subordinate one and the outer the main one. The relation
main-subordinate is a dependence relation that places the sentences in different
levels. Two main types of subordination are considered:

– Noun and adverbial clauses. The ones that have a function inside the main
clause. Some examples: I think [that you are clever], He will come [when he
wants].

– Complex sentences. The ones syntactically independent but with a logical
subordination. Some examples I will eat it [although I do not like], If you go,
[I don’t].

Noun and adverbial clauses can allow recursive processes; they allow insertion
of one clause into the other several times. An example could be: I thought [that
John liked [me to think [that the girl wanted [what we saw]]]].

Complex sentences have usually a binary structure. Conditional sentences
belong to this type, as well as the ones with the particles: although, as, as if,



62 G. Bel Enguix and B. Nagy

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

s

1
3 2 4

The boyt eats

an apple

thatapple

I bought

The boyt

runs the

marathonw

The

marathonw

...by the CH
=⇒

�

�

�

�

�

�

�

�

�

�

�

�




�

�




�

�

�

�

s

1
3

2

4
thatboy eats

an apple

thatapple

I bought

The boy runs

the marathonw

The

marathonw

...by the CH
=⇒

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�




�

�




s

2 1
4

3
thatboy eats

an apple

thatapple

I bought

Thatmarathon

the boy runs

The marathon

...by the CH

Fig. 4. Evolution of the system with several rules of endocytosis to reach the final
structure of the sentence

because, even if, even though, if, if only, rather than, since, though, unless...
As an example, we state that structures like IF (IF... THEN)... THEN are not
possible in natural language. Actually by considering the logical structure of
these sentences they are very close to the ones that we have seen at Subsection
3.1. This is the type of subordination that we are considering in this preliminary
introduction. This could also be useful to built some type of logical rules with
membranes.

The process can be very simply illustrated with only two sentences s1: Jane
sold the apartment, s2: The crisis is deep.

Πs = (L, μ,O,W,R)

where

– L = {s, 1, 2}
– μ = [[ ]1 [ ]2]s
– O = {s1, s2} ∪ {although}
– w1 = s1, w2 = s2,
– R = {[s1]1[s2]2 → [[althought s1]1s2]2, [s1]1[s2]2 → [[although s2]2s1]1}
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This system can generate two very different results when applying the first or
the second rule. With the first, the sentence obtained is Although Jane sold the
apartment the crisis is deep. The main clause in the outcome is The crisis is
deep. However, applying the second one, the result is Jane sold the apartment
although the crisis is deep, where the main clause is Jane sold the apartment.
This difference can be seen in Figure 5.
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Fig. 5. Two different results obtained by the system

4 P Systems for Non Context-Free Structures

A challenging problem of the formalization of natural languages by formal lan-
guages, is the modeling of non context-free structures. P systems can provide a
way to deal with such structures. The present work deals with the generation
of syntactic complexity starting from simple clauses. Therefore, the question
we pose is whether starting with elementary membranes each one of them con-
taining a simple sentence a complex structure can be created with the form
s1s2s3vp1p2p3, where s1 is correlated with v and p1, an so on.

To model a P system converting n1v1p1n2v2p2n3v3p3 → n1n2n3vp1p2p3, let
us define a sentence pool with j elements: s1:n1v1p1, s2:n2v2p2, s3:n3v3p3, . . . ,
sj :njvjpj , where v1 = v2 = v3 = ... = vj .

A system generating such structure could be the following:

Πn = (L, μ,O,W,R)

where

– L = {s, n, p} ∪ {k | k ∈ N, 1 ≤ k ≤ j}
– μ = [[ ]1[ ]2[ ]3 . . . [ ]j ]s
– O = {ni, pi | i ∈ N, 1 ≤ i ≤ j} ∪ {v}
– wi = nivpi, for 1 ≤ i ≤ j
– R = { r1: [v]i → v, out, for every 1 ≤ i ≤ j

r2: v
n → v

r3: [pi]i → pi, out
r4: p1, ..., pj → [p1, ..., pj ]p
r5: [n1]1, [n2]2...[nj ]j ,→ [n1, n2...nj ]n }
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Fig. 6. Pool of sentences

The system includes a merging rule to put together elements form different
membranes. In this process the indices of the nouns and verbs are also very
important, because they keep the order and connections in the sentence.

An example can be given starting with the sentences s1: John eats a sandwich,
s2: Ann eats pizza, s3: Peter eats chicken. Applying the rules that have just been
defined, we obtain: John, Ann and Peter eat sandwich, pizza and chicken. The
process is shown in Figure 7.
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Fig. 7. Process of representation of non-CF sentence structures with membranes

5 Conclusions and Future Work

In this paper, we have shown that membrane systems are capable to mimic
various complex syntactical forms of natural language.

When coordination is used to form a complex sentence we do not need to
go into the structure of clauses. Moreover, depending on the logical relations
between the clauses, free order can be used, so that there is a very suitable and
easy way to model this type of linguistic supra-structures by membranes.

Using relative sentences we need a higher resolution. They present a phe-
nomenon that is not very ‘frequent’ in membrane systems, two membranes shar-
ing the same copy of an element. When this happens, a process of endocytosis
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is triggered, suggesting that one of the clauses must be inside the other in order
to make possible to have a common object.

Concerning subordination, only some very simple cases have been tackled,
and the topic should be more carefully approached if we want to enable P sys-
tems to describe the many types of relations between clauses/membranes that
subordination implies.

Finally, to show non context-free nature of natural languages we need to use
the verbs and nouns of the clauses and reorder them. In these sentences we
needed to go inside the structure of the clauses.

The model we are offering, however, has several restrictions when approaching
natural language. One of them is recursivity. Three of the clause structures that
have been tackled in this paper allow recursivity: coordination, relatives and
non context-free structures. However, human mind has a limit in the number of
levels that a syntactic construction can have. At this stage, P systems present
the same problems than formal languages have to model cognition and natural
languages. Actually by the term of syntax a sentence can be well formed by
allowing any depth of recursion. However in real life practice (and more strictly in
the spoken language) it is not a valid assumption to require that a listener/reader
can (easily) get the meaning of a sentence in which recursion of depth, let us say,
12 is used. This question can also be connected to the question whether there
are infinitely many possible sentences in a natural language.

Membrane systems generally work with multisets, without ordering their ele-
ments. In one side, to describe languages, where the order takes matter, we need
special indices that keep tracking this order, in other cases, if the word order
is strict in a language there is only one way to form a sentence from the given
words. On the other side, in some languages the word order is free, and this prop-
erty can also be represented by the membrane systems: the order of the words
of some regions can be written in any order to obtain a syntactically correct
sentence. These are some phenomena that can also be used in the model later.
Natural languages are very complex and therefore to have a better description
of them we need much complex systems. Therefore the next steps could be to
restrict ourself to some given languages (sharing some important features, e.g.,
they have free word order) and to some specific parts of the syntax and/or to
specific domains.

The utility of the work like the one that has been presented in this paper is
twofold. On one hand, if every type of complex structure of natural language
can be ‘simulated’, then probably formal linguistics will be able to develop new
syntactic theories based on the results that such systems can provide. The cur-
rent distribution of complexity in natural languages does not seem very consis-
tent when analyzed under the methods of natural computing. For example, the
boundaries between coordination and subordination seem to be more semantical
than structural. On the other hand, modeling clauses with molecular methods
can help to built better syntactic analyzers in the future, capable to overcome
the wall of shallow parsing.
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15. Păun, Gh.: Membrane Computing, An Introduction. Springer, Berlin (2002)
16. Schleicher, A.: Die ersten Spaltungen des indogermanischen Urvolkes. Allgemeine

Zeitung fuer Wissenschaft und Literatur (1853)

http://www.infidels.org/library/historical/charles_darwin/origin_of_species/
http://www.infidels.org/library/historical/charles_darwin/origin_of_species/


Simulating Cancer Growth Using Cellular

Automata to Detect Combination Drug Targets

Jenna Butler1, Frances Mackay2, Colin Denniston2, and Mark Daley1,3

1 Department of Computer Science
2 Department of Applied Mathematics

3 Department of Biology
University of Western Ontario

London, Ontario, Canada

Abstract. Cancer treatment is a fragmented and varied process, as
“cancer” is really hundreds of different diseases. The “hallmarks of can-
cer” were proposed by Hanahan and Weinberg in 2000 and gave a frame-
work for viewing cancer as a single disease - one where cells have acquired
ten properties that are common to almost all cancers, allowing them to
grow uncontrollably and ravage the body. We used a cellular automata
model of tumour growth paired with lattice Boltzmann methods mod-
elling oxygen flow to simulate combination drugs targeted at knocking
out pairs of hallmarks. We found that knocking out some pairs of cancer-
enabling hallmarks did not prevent tumour formation, while other pairs
significantly prevent cancer from growing beyond a few cells (p=0.0004
using Wilcoxon signed-rank adjusted with Bonferroni for multiple com-
parisons). This is not what would be expected from models of knocking
out the hallmarks individually, as many pairs did not have an additive
effect but either had no effect or a multiplicative one. We propose that
targeting certain pairs of cancer hallmarks, specifically cancer’s ability
to induce blood vessel development paired with another cancer hallmark,
could prove an effective cancer treatment option.

1 Introduction and Previous Work

As of 2009, cancer was the leading cause of death in Canada [30]. While much
time, money and research are dedicated to cancer the statics are grim, with
little to no progress in some cancers - for example, there was no significant
improvement in survival rates of pancreatic cancer for two decades (between the
80s and 90s) [27]. We have created a highly abstract cellular automaton model
of early cancer growth and a lattice Boltzmann model of oxygen flow in blood
that investigates the impact of knocking out pairs of “cancer hallmarks”.

While the traditional reductionist approach to studying cancer has been suc-
cessful in targeting some forms of the disease, new approaches are needed that
can study cancer across scales [23]. In silico modelling of cancer is an nascent
approach available to attack this problem. Multiscale modelling is a powerful
tool for cancer simulation as it allows modelling at the cellular level, and at the
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fluid level in order to accurately model oxygen flow. Since oxygen availability is
critical for cancer progression, modelling both scales provides a more realistic
model. Many cancer models currently exist, including: Anderson et al.’s mul-
tiscale mathematical model of 2-dimensional tumour growth [4]; Lloyd et al.’s
computational framework for solid tumour growth, which comprised models at
the tissue, cellular and subcellular levels [19]; and Ramis-Conde et al.’s hybrid-
discrete model which looked at tissue invasion by cancer cells [22]. Models focus
on different aspects of tumour growth (including the use of the glycolytic phe-
notype [11], evolution of cell motility [12] and confined environments [13]) and
employ different modelling approaches (mathematical, [17], [22], hybrid, [25],
and [10], agent-based [20], [31]). Readers who wish to know more are directed
to the following review articles: [2], [3], [24].

Currently the state of the art in cancer modelling is spread across these differ-
ent modelling techniques. A recent review paper looking at cancer invasion dis-
cusses the use of both hybrid discrete-continuous (HDC) and immersed boundary
model of a cell (IBCell) models. HDC allows for cells to be modelled discretely
but microenvironmental variables such as nutrients and oxygen to be modelling
using reaction-diffusion equations. The IBCell model is beneficial for capturing
the morphology of a tumour cell as the cells in this model are deformable [18].
In addition to these two types of agent based models, cellular automata models
are also used frequently. Gerlee and Anderson [10] created an evolutionary hy-
brid cellular automata model where the cancer cells are modelled using cellular
automata to capture the behaviour of the tissue as a whole, while using an ar-
tificial neural network for cell decisions. This type of hybrid cellular automata
model has recently been built on by Shrestha et al. who used a similar model to
look at large-scale growth of tumours [28]. Recently, cellular automata models
have been used to look at the hallmarks of cancer [1], [5], [26] as proposed by
Hanahana and Weinberg [14], [15].

Today survival rates and treatment options for cancers vary widely. Hanahan
and Weinberg proposed that almost all cancers actually share eight phenotypic
changes and two unique characteristics: self sufficiency in growth signals;

ignoring growth inhibition; avoidance of programmed cell death

(apoptosis); limitless reproductive potential; sustained angiogene-

sis; tissue invasion and metastasis; reregulated metabolism; evading

the immune system; inflammation; and genetic instability [14], [15]. The
ubiquitous nature of these hallmarks in cancer suggests that treatments able to
target them may be useful against multiple types of cancer.

Both Abbott et al. [1] and Santos et al. [26] have developed models looking at
these hallmarks. Abbott et al. primarily focused on looking at the order in which
hallmarks were acquired in the growing tumour. Abbott’s results differed from
the pathway to cancer proposed by Hanahan and Weinberg, as did the results
of an ordinary differential equation model looking at the pathway [29]. Abbott’s
model was an agent based model that simulated the progression of cancer from
a single healthy cell to a tumour with at least 90% cancer cells. They found that
hallmarks that confer an advantage to all cells (such as sustained angiogene-
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sis which creates blood vessels carrying oxygen into the tumour which all nearby
cells can benefit from), do not dominate a cancer clone, whereas hallmarks such
as limitless replication appear early and dominate as they turn over very
quickly.

Santos et al. built on the work of Abbott by using a similar modelling ap-
proach, but focused on the impact of removing different hallmarks on tumour
growth. They investigated how critical to growth each hallmark was by removing
it from the system and comparing the total number of cancerous and healthy cells
present with and without the hallmark. They used a cellular automata model
which determined cell division and apoptosis (programmed cell death) based
on internal rules and acquired hallmarks. They found that with high mutation
rates, the most critical hallmark is apoptosis, while in tumours with little room
to grow the ignore growth inhibition hallmark proved most impactful on
overall growth.

We have used similar model parameters and methods outlined in Abbott
et al.’s work to build upon Santos et al.’s hallmark relevance study. We have
implement five of the six original hallmarks as well as two of the newly introduced
hallmarks and enabling characteristics (focusing on those relevant during initial
tumour growth), and knocked them out in pairs to see which have the greatest
combined effect.

Henderson [16] stated that “in the most general sense, combinations of ther-
apies, whether drugs and/or other modalities, will always play an important
role in the management of diseases for which there exists no single specific and
totally effective treatment”. Combination treatment involves pairing multiple
drugs with the hope that two in combination will not just be an additive advan-
tage but a multiplicative one. Targeted therapy involves identifying key pathways
involved in cancer progression and creating drugs to target these pathways. This
model simulates targeted combination therapy as we remove key cancer prop-
erties in pairs and compare cancer growth rates to tumours with all hallmarks
active. We hypothesize that knocking out pairs of hallmarks will not necessarily
have the additive effect of knocking the hallmarks out separately but rather will
sometimes have an even greater, potentially multiplicative, combined impact.

2 Methods

We have chosen to model two dimensional cancer growth where the biological
cells are represented by cellular automata and the oxygen in the environment is
modelled as a two-phase fluid using the lattice Boltzman method. Most models
in the literature currently restrict themselves to two dimensions as it is more
computationally feasible and since cancer does not grow in a sphere but rather
an oblate spheroid. In order to compare findings with both existing models and
2D biopsy slices we have done a 2D simulation. Here we will present a high level
outline of the method, and each section will be covered in more detail below. The
simulation begins with a single healthy cell at the center of a 2-dimensional grid.
An event queue keeps track of cellular events, and initially a single mitotic event
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is placed on the queue for the healthy cell. Each event popped from the queue
is another loop in the model and puts that cell through a life cycle. The cell is
checked for whether it still has enough oxygen to survive, is in a location with
growth factor, has access to blood, has space to grow, and has sufficiently long
telomeres. If all of these checks are successful, or if mutations make the checks
unnecessary, the cell enters a mitotic event. This creates a daughter cell and
potentially introduces mutations into the daughter or parent. Both cells have
events scheduled for some point in the future and are added to the event queue,
then the next event is popped. Oxygen is consumed by cells when they divide
or every 25 time steps if they are not actively dividing.

2.1 Modelling the Hallmarks

The “hallmarks of cancer” proposed by Hanahan and Weinberg [14], [15] are
changes to cell phenotype (characteristics of the cell based on its genotype and
the environment - in our model, the collection of hallmark mutations it has along
with the parameter values) that seem to be consistent across a variety of cancers.
These hallmarks give a structure and common signature to a disease that is ac-
tually a combination of hundreds of different types of diseases. The six hallmarks
originally proposed were: sustained growth; evading growth suppressors; avoid-
ing programmed cell death (apoptosis); enabling replicative immortality; inducing
angiogenesis and activating tissue invasion and metastasis. In 2011, Hanahan and
Weinberg added two characteristics that underlay these hallmarks: genetic insta-
bility and inflammation. They also added two “emerging hallmarks”: reprogram-
ming of energy metabolism and evading immune destruction. We have simulated
5 of the 6 original hallmarks and two of the recently added characteristics and
hallmarks. This model is specifically interested in pre-metastatic growth, when
a patient has the greatest chances of survival. Therefore, we have not modelled
the sixth hallmark, tissue invasion and metastasis. To keep our results credibly
comparable with previous work in this field, we have not included inflammation
or energy metabolism in our model. Our model is inspired by work in artificial
life [21], [8] where agent based and mathematical models are used to simulate can-
cer growth and angiogenesis. Here we will briefly describe the implementation of
each hallmark. The parameters described can be found in Table 1.

Sustained Growth: SG. To model SG, healthy cells can only grow within a
predefined boundary of growth factor (all cells can grow in the inner boundary,
then three consecutive inner boundaries allow for growth with 50%, 30% and
10% chances of survival). Outside of this cells can not actively divide unless
they have the SG mutation.

Ignoring Growth Inhibition: IGI. Cancer cells in our system can have the
IGI hallmark activated, allowing cells to grow even without space around them
on the grid. If a cell with the IGI hallmark attempts to grow and is out of space,
it competes for growth, with a 1/c likelihood of success, with its neighbouring
cells then takes over the space if successful.
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Table 1. Parameters used in simulations

Description Symbol Value Ref

Initial telomere length t 100 [1]
Evade apoptosis factor ev 10 [1]

Mutation rate m 500
Chosen to lay between
two used in [26]

Random death rate d 10000 Simulation
Competition likelihood c 10 Simulation
Angiogenesis immunity ai 10 Simulation
Avoid immunity aip 10 Simulation

Immunity death i 1000
Simulation (equal to
random cell death in [26])

Genetic instability factor gif 10 Simulation

Avoiding Apoptosis: AA. In our simulation, apoptosis can occur to any cell
that has a single mutation. Since apoptosis is initiated when aberrant activity
is detected, the chances of a cancer cell dying via apoptosis increases with each
subsequent mutation (m/a likelihood of death). Cells with AA mutation in this
mechanism cannot die by apoptosis.

Enabling Replicative Immortality (by Ignoring Telomeres): IT. We
have modelled telomeres as an integer in each cell that decreases by one after
every division, and must be greater than zero for division to occur. Cells with
the IT hallmark turned on will replicate regardless of telomere length.

Inducing Angiogenesis: A. Similar to growth factor, lattice sites have to be
within a gradually reducing predefined boundary in order to access nutrients
from the blood. Cells with the A mutation induce new vasculature, and these
cells and any neighbouring cells can survive outside the blood boundary. A cells
also have a higher ((ai) ∗ (1/i)) chance of being killed by the immune system.

Genetically Unstable: GU. GU cells have an increased chance of mutation
in each mitotic event by a factor of (1/gif) where gif is the genetic instability
factor parameter.

Avoids Immune System: AI. AI cells have lowered chances of being killed
by the immune system by a factor of aip, the avoids immune system parameter.

2.2 Event Queue

Mitotic events are the driving force in this model. An event queue keeps track
of all events scheduled for the simulation. Initially, the cell has a mitotic event
scheduled for 5-11 time steps in the future. When the event is popped the time
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is checked. If the time for the event is beyond the current time in the simulator
the current time is updated. If the cell is to grow in a North, East, South or
West direction, the time is scheduled 5-11 time points in the future (chosen by
random number). If the cell is growing on a diagonal on the grid then the event
is scheduled for 7-14 (

√
2 of the normal mitotic time) time points in the future

as it takes longer to move on the diagonal.
Since the cells in the simulation (the biologic cells, not necessarily “cells” in

the classical cellular automaton sense) are impacted by rules that use probability,
this model deviates slightly from standard cellular automata. Also, at every time
step only a handful of cells are actually updated (those that were scheduled for
a mitotic event). As pointed out by Abbott et al., the cells could instead have a
counter that is updated each time through the life cycle, but since real biological
cells are not updating that often it makes sense to schedule their events for some
time in the future and save computation time [1].

2.3 Oxygen

Oxygen is modelled as a two phase fluid, oxygen molecules in blood, using lattice-
Boltzmann algorithms. Every time a cell completes a division it consumes oxy-
gen. Cells that are not actively dividing consume oxygen every 25 time steps. We
have assumed that: biological cells consume a constant amount of oxygen regard-
less of phenotype, die if they ever fail an attempt to consume oxygen (because
there isn’t enough present at the lattice site), and that oxygen consumption by
a healthy or cancerous cell removes that oxygen from the overall system.

3 Results

With all hallmarks active, every simulation run produced a tumour using pa-
rameters described in Table 1. A “tumour” is classified as a mass in which 99%
or more of its alive cells have at least one mutation. The growth over time for a
simulation with all hallmarks available can be seen in Figure 1.

Figure 1a shows total cell counts throughout growth. Initially healthy cells
grow rapidly, however around event 8000 they sharply decline. Then, around
event 10000 cancer cells rapidly start to increase. This corresponds to a sharp
increase in angiogenic cells as well as cells that avoid apoptosis, and relatively
stable numbers of healthy cells. Figure 1c through h shows the images produced
from the same simulation. It can be seen in Figure 1c that initially healthy cells
dominate the clone. Death is occurring, most likely due to random cell death or
the initial fast killing of any cancerous cells by apoptosis and the immune system.
By 1d we can already see the emergence of different cancer phenotypes. There
are three major phenotypes present in the tumour from early on. The center of
the tumour also begins to die at 1d. This is due to a lack of oxygen getting to the
center of the tumour (called necrosis). At 1g the outside of the tumour is also
dying, as regular cells can go no further as they are outside the growth factor and
blood range. In 1h we see the tumour is almost entirely cancerous, with a few
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Fig. 1. a and b: Total cell count for cancerous, non cancerous, and each hallmark is
shown for an entire simulation with all hallmarks available for activation. a) Regular
vs cancerous cell growth b) Growth of cells with each individual hallmark and total
cancer cell growth. c - h: Simulation of a colony of cells with all hallmarks available
for activation at event steps 400 to 12800. Dead cells are black, healthy cells are blue,
all other colours represent some kind of unique cancer phenotype. Event points: c) 400
events d) 2400 e) 4800 f) 7200 g) 9600 h) 12800.

different phenotypes protruding from the mass. This “fingering morphology”,
where the border is not smooth but rough, is consistent with other models [6],
[4], [7]. It is believed that there are two forms of tumour invasion - either tumour
cells outgrow normal tissue and expand as a bulk mass, or they form invasive
contingents by intermingling with stromal cells. The fingering morphology is a
consequence of this intermingling [18]. It was noted in [18] that this fingering
morphology looks like a crab, from which the word cancer was derived. The
fingering morphology is correlated with harsher microenvironments where only
cells with particular phenotypes survive. This behaviour is evident in our model
where certain subclones and phenotypes dominate the tumour.

Knocking out some hallmark pairs had very little effect on the growth of
the tumour. In fact, knockout pairs SG & IGI, SG & AA, SG & IT, IGI &
AA, IGI & GU, IGI & AI, AA & GU, AA & AI, IT & GU and GU & AI

had no significant effect (all p values greater than 0.05 using Wilcoxon signed-
rank test Bonferroni corrected for multiple comparisons) (see Figure 2 b and c
for examples of final simulation image when cancer took over despite hallmark
pair knockouts). Other pairs of hallmark knockouts had such a large effect that
a cancerous tumour never took over and the simulation ended prematurely as
not enough cells survived. The normal cells continued to grow to the edge of
the growth factor barrier, and then eventually consumed all of the oxygen in
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the system and the healthy cells died off. This can be seen in Figure 2 d and
e. The following hallmark pairs significantly (p=0.0004 using Wilcoxon signed-
rank test, Bonferroni corrected) decreased cancer growth: SG & A, SG & GU,
SG & AI, IGI & A, AA & A and A & GU. Other pairs, AA & IT and A &
AI had a smaller but still significant effect (0.017 and 0.019 respectively using
Wilcoxon signed-rank test, Bonferroni corrected).

Fig. 2. End of simulation images for 5 different hallmark-knockout pairs. a) no hall-
marks knocked out b) IGI & AA c) IGI & IT d) SG & A e) IGI & A.

The effect of various hallmark pairs can be seen in Figure 3a. This shows that
some hallmark knockouts (A & GU, IGI & A, IT & A, SG & A, A & AI, SG &
AI) do not result in a tumour. Cancer growth is fairly consistent across all of the
simulations, regardless of knockout, until event 8000. Here, all cell populations
take a dip however certain simulations show strong growth after this point. The
knockout pairs listed above however die off at this point, and these simulations
do not result in a cancerous tumour.

Figure 3b shows a histogram of phenotypes that were in the top 10 pheno-
types by cell count during the last stage of simulation for 14 unique simulations
(knockout pairs that still resulted in a tumour). While it is obvious that dead
cells will be present in large numbers in all runs, it is interesting that phenotype
A and D,A are also present in every run in large numbers - these are cells with
the angiogenesis hallmark activated and no other hallmarks, both alive and
dead. Also, by the end of simulation almost all tumours have a large population
of dead self growth cells and avoids apoptosis cells. It is interesting that
the dominate angiogenic cells are alive, while the self growth and apop-

tosis dominant clones are dead. Also present in the majority of simulations in
large numbers are dead cells with ignores growth inhibition activated and
ignores telomeres activated, as well as alive cells that are both angiogenic

and avoid apoptosis.

4 Discussion

As expected, when all hallmarks are available for activation the tumour grows to
the largest extent, presumably as these tumours can take advantage of all hall-
marks and the different abilities each confers. It was also expected that knocking
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Fig. 3. a) Total alive cancer cell count every 400 simulation steps is shown. Each
hallmark-knockout pair simulation was run 10 times. The average cell count from these
runs was calculated and plotted. b) Each tumour at the end of the simulation had
different phenotypes present. The top 10 phenotypes, by total number in the tumour,
in each separate simulation were recorded at the end of simulation and totals were
plotted. All hallmark abbreviations are these used in the text, with the addition of H
for healthy cells and D for dead cells.

out 2 hallmarks would significantly lower the growth of cancer. We hypothesized
that certain pairs would perform better than others, and that knocking out
hallmarks in pairs could have more than just an additive effect.

Half of all tumours with self growth knocked out did not result in a tumour.
SG allows a tumour to extend beyond the normal boundary of growth. In areas
of the body where growth factor is limited, this would be a very important
hallmark. However if a tumour is growing where there is ample growth factor
the hallmark may be less effective as a drug target.

All simulations with angiogenesis knocked out failed to result in a tumour.
Similar to SG, angiogenesis allows a cell to live outside the predefined blood
boundary. One reason the angiogenesis hallmark is more powerful is because
it conveys benefit to not just the cell with the mutation, but surrounding cells,
as all nearby cells benefit from the new vasculature.

The last hallmark that was knocked out in more than one pair that did not
lead to a tumour is genome instability. Since genome instability can lead
to all of the other mutations being activated more this is understandable.

As is evident in Figure 3a, there is a bifurcation in total cell count - either
similar to when all hallmarks are active, or almost no growth. This is because
cell populations which result in a tumour show almost exponential growth and
are not limited by oxygen or space due to acquired mutations. Cell populations
that do not result in a tumour are limited by both of these factors, and so
eventually almost all cells die as this slight overpopulation cannot be sustained
by the normal vasculature.
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It is interesting that of the phenotypes that dominated clones at the end of
simulation (shown in Figure 3b), those with a single mutation grew quickly but
died off. Single mutation phenotypes were largely present, but in dead cells. In
contrast, the phenotypes that dominated and were still alive had multiple mu-
tations. While multiple mutations increase the chances of death by the immune
system and apoptosis, this suggests it still conveys a very strong advantage over-
all. This supports the hypothesis that knocking out multiple hallmarks, if you
can find the correct pairs, will be better than single treatments.

It is interesting that many knockouts did not prevent the tumour from form-
ing. For example, all knockouts that included ignoring growth inhibition

still resulted in a tumour, except for one (IGI & A). In our model IGI allows
cells to grow even when there is no space around them, but this only conveys
an advantage to internal cells. Cells on the proliferating edge always have space,
and therefore removing it does not seem to hurt growth to a significant degree.
This could be a limitation of the model as in reality the proliferating rim of a
tumour may have space constraints from surrounding tissue.

Some limitations of the model are present, and include the fact that an-

giogenesis only provides a benefit to itself or cells immediately around it. In
addition, it only provides an advantage while the cell is living. In reality angio-
genic cells start the creation of blood vessels and those remain even if the cells
die.

5 Conclusions

We have modelled the impact of knocking out pairs of cancer hallmarks, as
proposed by Hanahan and Weinberg [14], [15], on early tumour growth using a
cellular automaton model of cancer cells and lattice Boltzmann methods for two
phase fluids (oxygen in the blood). Our results show that knocking out pairs of
hallmarks does not necessarily have an additive effect. Santos et al. found that
avoiding apoptosis and ignoring growth inhibition were the most critical
hallmarks independently when cells had a high rate of mutation, and they also
found that ignoring telomeres and self growth had a small impact [26].
Looking at the impact of knocking out both avoiding apoptosis and ignoring

growth inhibition, we did not see a significant decrease in tumour growth.
This is interesting as it is not what would be expected from the findings of
knocking out singular hallmarks.

We found that knocking out the ability for a cancer cell to self grow and
avoid the immune system, as well as self grow and be genetically un-

stable, prevents a tumour from growing. Neither self growth nor genetic
instability had a great effect in the simulations done by Santos et al. (the
immune system was not modelled in this work) however in combination they
had a strong and significant effect. This supports our hypothesis that knowing
the impact of individual hallmarks, which can be extended to individual drugs,
does not necessarily give insight into the impact of combining those knockouts
and drugs.
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Lastly, we found that knocking out the ability for cells to induce angiogen-

esis combined with any other hallmark prevented tumour growth. Research has
been done into anti-angiogenesis drugs however the conclusions were not always
positive. Often patients still died from small tumours throughout the body as
opposed to one large tumour, which was seen without the drugs [9]. It is hy-
pothesized that without angiogenesis, other factors became important, such as
metastasis and the glycolytic phenotype. Perhaps the key is preventing cells from
inducing angiogenesis and limiting other cancerous abilities. Currently trials are
under way to test pairing anti-angiogenesis drugs with current chemotherapy
drugs (La Roche Limited onging trial).

We have found that the effect of knocking out cancer hallmarks in pairs can
have varying levels of success. This suggests that clinical research should be
done into combination drug treatment as not all drugs that are strong individ-
ually will necessarily be strong in combination. Since cancer treatments can be
physically and emotionally challenging for patients, knowing in advance what
combinations will not be successfully could greatly enhance the quality of life of
people undergoing cancer treatment.
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modelling solid tumour growth. Philosophical transactions, Series A, Mathemati-
cal, physical, and engineering sciences 366(1879), 3301–3318 (2008),
http://www.ncbi.nlm.nih.gov/pubmed/18593664

20. Macklin, P., Edgerton, M.E., Thompson, A., Cristini, V.: Patient-calibrated agent-
based modelling of ductal carcinoma in situ (DCIS) I: Model formulation and
analysis. Journal of Theoretical Biology 301, 122–140 (2011)

21. Maley, C.C., Forrest, S.: Modelling the role of neutral and selective mutations in
cancer. In: Artificial Life VII: Proceedings of the Seventh International Conference
on Artificial Life, pp. 395–404 (2000)

22. Ramis-Conde, I., Chaplain, M.A.J., Anderson, A.R.: Mathematical modelling of
cancer cell invasion of tissue. Mathematical and Computer Modelling 47(5-6),
533–545 (2008),
http://linkinghub.elsevier.com/retrieve/pii/S0895717707001823

23. Rejniak, K.A., Anderson, A.R.A.: State of the art in computational modelling of
cancer. Mathematical Medicine and Biology 29(1), 1–2 (2012),
http://www.ncbi.nlm.nih.gov/pubmed/22200587

24. Rejniak, K.A., Anderson, A.R.: Hybrid models of tumor growth. Wiley Interdisci-
plinary Reviews: Systems Biology and Medicine 3(1), 115–125 (2011)

25. Ribba, B., Alarcón, T., Marron, K., Maini, P.K., Agur, Z.: The use of hybrid cel-
lular automaton models for improving cancer therapy. In: Sloot, P.M.A., Chopard,
B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 444–453. Springer,
Heidelberg (2004)

http://www.ncbi.nlm.nih.gov/pubmed/19249681
http://www.ncbi.nlm.nih.gov/pubmed/18824788
http://www.ncbi.nlm.nih.gov/pubmed/20176032
http://www.ncbi.nlm.nih.gov/pubmed/21465465
http://www.ncbi.nlm.nih.gov/pubmed/18593664
http://linkinghub.elsevier.com/retrieve/pii/S0895717707001823
http://www.ncbi.nlm.nih.gov/pubmed/22200587


Simulating Cancer Growth Using Cellular Automata 79
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Abstract. A first dynamical model is given to explain maturation steps
of B limphocytic cells in human body, based on Metabolic P systems with
genetic regression of regulation maps. In humans, B cell development con-
stitutes the steps that lead to B cell commitment and to expression of
surface immunoglobulin, which is essential for B cell survival and func-
tion. Mature and fully functional B cells population (CD19+) include
phenotypically and functionally different subgroups which persist during
all stages of B-cell maturation. Quantities of eight different subgroups of
B cells, identified by presence or absence of given receptors, were mea-
sured in about six thousands patients of all ages. Here we present a long
work of preparation and analysis of (ex-vivo) data, and a preliminary
model to explain the eight statistically refined time series, which opened
up interesting questions about network inference and methodologies to
analyze cross sectional data.

Keywords: B lymphocytic cells maturation, cross sectional data, ge-
netic algorithms, parameter regression, MP systems.

1 Introduction

Immunological system is one of the most complex and adaptive known systems
in nature, which is basically responsibile for our health, since most of the human
diseases are induced by some fall or misplay in our body defence system. Immune
system provides us with lots of complex and intriguing open problems of recog-
nition and coordination, based on distributed signaling and phisycal cell inter-
action, that may be tackled by approaches typical of systems biology [4]. From
an experimental viewpoint, immunology is dominated by a stimulus-response
model, currently concealed by an interest in the mechanism of single regulatory
responses, induced by ad hoc in vitro experiments. Alternatively, important aims
of immunology could be a description of invariants of the global immune sys-
tem organization, and a description of interfaces and interactions between the
immune system and the organism. A systems biology view of immune activity
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mainly focuses on modeling the dynamics of reciprocal interactions between the
immune system and the physiology of the organism of which it is a compo-
nent [19].

In this paper, we started a work aimed to understand the order of matura-
tion steps through which B cells may pass, since when they enter circulation
in human body until they die (usually by apoptosis). Cells in the spleen and
lymphonodes, with the help of T cells forming the germinal-centre, prolifer-
ate rapidly, by undergoing on somatic hypermutation of their immunoglobulin
variable gene segments and isotype-switching recombination of immunoglobulin
genes, and are mainly responsible for generating humoral immune responses to
protein antigens. At about day ten after immunization, the germinal-centre re-
action reaches its peak (as also confirmed by our model, see curves in Figure 3
representing observed dynamics of B cell quantities). Mechanisms and factors
that guide some germinal-centre B cells to become memory B cells and others to
become plasma cells are not yet clear. Such a stepwise sort of differentiation has
been first characterized in mice. For humans, it has been understood that in vitro
these cells are capable of stepwise differentiation into mature-näıve-phenotype
B cells, although their obligate precursor-progeny relationships in-vivo await
confirmation.

During recent years, a tremendous effort has been devoted to characteriza-
tion of phenotype and function of distinct lymphocyte subpopulations and B
lymphocytes in humans, as well as to their pathway(s) of differentiation and
role in immune responses. Despite the great results obtained with regard to the
mechanisms involved in the maturation of B lymphocytes and the related phe-
notype these studies seem to have also generated more questions than definitive
answers.

The immunological self as a structural cellular organization could provide new
insight and/or tools in fields as autoimmunity and/or cancer immunology that
within the classical immunological paradigm struggling to find definitive answers.
For example, the cellular origin of Chronic Lymphocytic leukemia (CLL) is still
debated, although some information about the adaption of cellular immunolog-
ical network is critical to understanding its pathogenesis [17]. Un-mutated CLL
(immunoglobulin variable region gene) are more aggressive than mutated CLL
in clinical terms, and aggressive CLL derives from mature CD5+ B cells (näıve
B cells) whereas mutated CLL derives from a distinct, previously unrecognized
CD5+CD27+ post-germinal center B cell subset (memory B cells). Notably,
both these CD5+ B cell populations include oligoclonal expansions that were
also found in young healthy adults [17].

We here present an MP system to model a possible sequence of (ex-vivo
observed) B cell maturation steps, which has found some confirm in experi-
ments from the immunological literature. MP systems are discrete dynamical
systems [12,13], arisen in the context of membrane computing [9,2], introduc-
ing a deterministic perspective where multiset rewriting rules are equipped with
state functions that determine the quantities of transformed elements. They had
successful applications in the analysis of biological phenomena. In particular, an
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algebraic formulation of their dynamics, combined with methods of statistical
regression, provided systemetic solutions to complex Inverse Dynamical Prob-
lems of biological systems [14], by determining MP systems able to generate
observed time series of given phenomena. When such a kind of inverse processes
find some possible MP models, very often hidden mechanisms are made evident
that reveal an internal logics. In [7] statistical methods were replaced by genetic
algorithms, by obtaining, in many cases, the same level of accuracy in the solu-
tion of inverse problems. A great number of concepts and algorithms developed
within MP theory were implemented in public software platforms equipped with
examples and technical documentation1.

In next section our current knowledge about the biological process under
investigation is given, while in its subsections 2.1 and 2.2 data collection and
analysis are described in details. In section 3 the model is presented, with a
discussion in section 4.

2 The Biological Process

New B cells are generated throughout life in humans, first in the liver, during
gestation, and thereafter in the bone marrow. Early B cell development consti-
tutes the steps that lead to B cell commitment and the expression of surface
immunoglobulin, which is essential for B cell survival and function. B cells un-
dergo selection for self-tolerance and ability to survive in the peripheral lymphoid
tissues. These events culminate in the production of transitional B cells, which
leave the marrow and migrate to secondary lymphoid tissues, such as the lymph
nodes, the spleen, and the Peyer’s patches of the gut. Subsequent steps occur
after B cells interact with exogenous antigen and/or T helper cells; these con-
stitute the “antigen dependent phase” that results in the generation of plasma
cells, antibodies and memory B cells. Newly formed B cells, after entering into
the spleen first remain immature. They are referred to as transitional (T1 and
T2), based on their phenotypes and ontogeny, and have been characterized pri-
marily in the mouse.

All B-lymphocytes are characterized by the expression of CD19 surface anti-
gen, which is present early on bone marrow progenitor cells and persists during
all stages of B-cell maturation [15]. Mature and fully functional B cells popula-
tion (CD19+) include phenotypically and functionally different subgroups. The
largest subgroup is formed of B2 cells, or conventional B cells, which account for
about 10% of peripheral blood lymphocytes in humans. Marginal-zone B cells
and B1 cells are Thymus-independent (TI) antigens (Ag) and, by many micro-
bial constituents are activated to antibody production in the absence of helper
T-cells [11].

Marginal-zone B cells represent the 10% of mature splenic B cells and are
strategically positioned at the bloodlymphoid tissue interface whereas B1 mi-
grate preferentially in body cavities [16] and can be distinguished by the presence

1 See some related links: mptheory.scienze.univr.it/, mplab.sci.univr.it/,
www.cbmc.it/software/Software.php
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of CD5 (B1-a cells) or absence (B1-b cells). In mice, B1 cells represent a unique
cell population distinguished from follicular B cells (B-2 cells) by their surface
marker expression, developmental origin, self-renewing capacity, and functions
whereas the identity and existence of the human counterpart of murine B-1 cells
have been in doubt for many years, mainly because of the absence of known cell
surface markers to identify this population.

In humans, most of the mature B cells in fetal circulation express CD5, but
they decrease to 11–49% in the adult circulation [1]. Recently, human transitional
T1 B cells were shown to express CD5, although the murine counterpart does
not express this molecule [18]. However, human transitional B cells account for
only 1–2% of total circulating B cells, suggesting the existence of other CD5+ B
cell subsets. To address this issue, some authors have identified a distinct pre-
naive B cell population in human peripheral blood, that exhibits an intermediate
phenotype between transitional and naive B cells (having some B cell functions in
common with naive B cells, including the capacity to differentiate into plasma
cells and Ag presentation) [18]. Of interest, this pre-näıve B cell population
accounted for the majority of circulating human CD5 B cells, and an increase
of this population was found in peripheral blood of patients with systemic lupus
erythematosus (SLE). It was also suggested that increased production or lack of
further maturation of these pre-näıve B cells can occur in autoimmune diseases,
and may contribute to the development of autoimmunity [18].

More than half of näıve-phenotype B cells express the molecules CD23 that is
released by stimulated B cells as soluble CD23. Receptor CD23 is also involved
in B-cell proliferation and apoptosis [3]. An additional receptor CD27 indicates
the transition from näıve B cells to memory cells, even if some memory B cells
do not express CD27 molecules. In addition, some not conventional memory B
cells that reassemble marginal zone B cells express the molecules CD27 [8].

In this work we focused on the analysis of eighth specific B cell subsets:

Cell phenotype Variable in MP model
CD19+ CD5- CD23+ CD27- N2
CD19+CD5- CD23+ CD27+ C
CD19+ CD5- CD23- CD27- F
CD19+ CD5- CD23- CD27+ M5-
CD19+ CD5+ CD23+ CD27- N1
CD19+ CD5+ CD23+ CD27+ D
CD19+ CD5+ CD23- CD27- E
CD19+ CD5+ CD23- CD27+ M5+

Quantities of above types of B cells in the blood of a population of patients
of all ages have been collected (as a cross sectional dataset) at one specific
point of time. By Flow-Cytometry we used antibodies panels to determinate
lymphocytes subsets, and in order to define some B lymphocytes subsets gating
strategies were established, resulting in diagrams such as that in Figure 1. We
search for a possible time order of maturation of such phenotypes. The ultimate
goal is to describe time relations among these eight different gruops of B cells.
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Fig. 1. Data recovery. Top-left: by means of heterogeneous gate (CD45/SS) all lym-
phocytes were recovered from other blood cells. Top-right: B lymphocytes expressing
CD19 antigen were recovered. Bottom Left-Rigth: B-cells with expressed and down-
modulate CD5 are partitionated respectively in four classes, depending on the expres-
sion or down-modulation of CD23 and CD 27.

2.1 Collection of Ex-vivo Data

Between January 2001 and December 2012, University Hospital of Verona, we
assessed the cell surface expression of CD19, CD5, CD23 and CD27 on peripheral
blood lymphocytes from 5,955 subjects of all ages undergoing peripheral blood
immunophenotyping for a variety of reasons. The median age of the patients
was 37 years (range: 0-95 years). There were 2,910 males and 3,045 females
(male/female ratio: 0.95). Broadly speaking, the majority of infants were born
from HIV-positive mothers; the children were affected by recurrent infections,
allergies, autism and Down’s syndrome; the young adults suffered from recurrent
infections, allergies, fever, and autoimmune diseases; the middle-aged adults and
elderly people were affected by autoimmune diseases and, to a lesser extent, by
cancer. Subjects with known HIV infection, those with evidence or a history
of haematological malignancies, and/or subjected to biological therapies with
drugs that target B cells, were excluded from evaluation.

2.2 Data Processing

Data matrix from which we start our analysis has 8 columns (one for each type
of B cell) and almost 6000 rows (corresponding to the number of patients). Our
goal has been to find main relationships among these 8 types of B cells, starting
from the assumption that patients can be sorted by age and a median cell value
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can be computed from patients having a similar age, so that the columns of
our matrix could be seen as time series coming from a single macro-patient. In
other words, for each type of B cell, we have a different chart, where the median
of measured values is plotted for each age, according to a sliding window which
defines the range of ages to be aggregated. Values have been computed by taking
into account i) average and standard deviation of observed amounts of cells, ii)
number of patients having those ages (for example, we have numerous babies
and very few being 80-90 years old), iii) statistical distribution of patients.

After testing several window dimensions (i.e., 3 months, 6 months, 1 year, 2
years) and sliding window step (6 months and 1 year) we obtained good results
by using a window of 1 year and a step of 6 months. Our time series have thus
185 points each, since the older patients are about 90 years old. Unfortunately
these time evolutions were still quite noisy, as shown in the second chart of
Figure 2, which represents the median time evolution of cells M5+. In order
to smooth these curves we interpolated them with splines, obtaining the curves
shown in Figure 3. Pearson correlations have been computed between couples
of time series and also cross-correlations have been calculated to understand if
some delays between these signals can be observed, with no significant results.

Fig. 2. On top: Original data for cells M5+, where patients are sorted by age (x axis).
In the middle: median values computed from patients having a similar age, according
to a sliding window which defines the range of ages to be aggregated. In this case a
window of 1 year has been used and moved by 0.5 years at every step. In the bottom:
number of valid and NaN (i.e., not a number) points in the sliding window. This chart
enables to assess the quality of the time series for each age of patients. In this case, no
NaN values are present, while it is clear that several patients are just one or two years
old (beginning of x axis) and very few of them are 90 years old (right x axis).
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After the necessary phase of data preparation [5], and a ponderate choice of the
eight variables to analyze (as size of specific groups of B cells, characterized by
having different receptors), a first problem has been encountered when applying
a time-series based modeling tool as an MP system to simulate cross sectional
data. In other terms, rather than variables observed in time (i.e., time series)
here we have clinical data, collected by observing some variables in a population
of patients at one specific point of time (the moment when individuals gave their
blood for medical controls). In our case, we have numerous patients eventually
affected by various diseases, as reported in section 2.1.

MP modeling framework requires time-series having fixed time intervals, and
this is why we chose to fix the window size and the window temporal step during
the generation of our time series. Another possibility which we considered was to
fix the number of patients from which to compute the median. In this case, for
instance, we would compute the median among the first 100 patients (in terms
of age), then the median between the second 100 patients and so on. However,
this methodology would have brought time series with different time intervals,
because patients are not uniformly distributed with respect to age.

Fig. 3. Time series after data processing

As reported previously, numbers of B2 (CD19+ CD5-) and B1-a (CD19+
CD5+) peripheral blood B lymphocytes vary with age [20]. There is a sharp
increase of B cells mainly in the first year of life, followed by a progressive
decrease (as it results in the dynamics reported in Figure 3). In addition to the
functional changes of B cell subsets due to antigen encounters, a decrease in the
absolute number of B lymphocytes in elderly men has been reported, perhaps
due to precursor depletion in the bone marrow and altered T-cell activity. The
dynamics of the expression of CD23 and CD27 on peripheral blood B cells with
ageing is similar when analyzed in the whole B-cell compartment or in the B2
and B1-a subsets separately, indicating a uniform pathway of maturation, and
although CD23 and CD27 surface antigens are co-expressed in a small group of
B cells, the majority of memory cells (CD27+) are CD23 negative [21].

The immune system as an organized determined structure is maintained
throughout the life span and shared by all human [19]. Here we have defined
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an observational domain as the space represented by B lymphocytes subsets
(cellular count) of numerous subjects of different age versus time (age of the
subjects). Once we have found the curves in Figure 3, we consider them as time
series of a “macro-patient”, who is the human being.

3 An MP Model

An MP system is a dynamical system specified by a grammar M = (X ;R;Φ, δ),
where X is a set of variables, R is a set of multiset rewriting rules over X, and
Φ is a set of regulators, that is, functions assigned to the rules (each rule has its
regulator). A state s is an assignment of values to variables, and in any state a
regulator of a rule r specifies a quantity us, called flux, such that any left variables
x of r is decreased of p ∗ us (where p denotes the multiplicity of x), while any
right variable is increased of q ∗us (if q is the multiplicity of y). Starting from an
initial state, the dynamics δ ofM , provides the next state by changing the values
of every variable, according to the increase-decrease updating due to the values
of fluxes (if a variable does not occur in a rule r, its multiplicity in r is zero).
An MP grammar becomes an MP model when time/mass values are specified
(step interval, measurement quantities) that provide physical intepretations of
the discrete dynamics specified by the grammar (for more details, the reader
may refer to chap 3 in [12]). In this case, the set of rewriting rules has been
not given, while it actually being the goal of this modeling. We started from the
simplest MP system simulating a given dynamics, that has the eight substances
regulated by only input and output rules, as in Figure 4.

Fig. 4. MP model as an MP graph

We have tried several attempts to simplify the model , by reducing to only
eight rewriting rules (rather than sixteen) with eventual negative fluxes, but
simulation performances were not as good. A best model has been selected, by
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computing regulators by genetic regression, where polynomials of at most second
degree have been choosen, as parsimonious (with few monomials) as possible,
and with a relatively small fitting (quadratic) error [6]. The following set of
regulators has been found, having simulation performances reported in Figure 5.

F0 = 4.48282 ∗ F − 0.01102 ∗ F 2 − 4.89806 ∗ (M5−)
F1 = 0.06516 ∗D + 0.03127 ∗D2 + 0.01317 ∗ (M5+)2 − 0.00213 ∗N1 ∗D

+24.73 ∗ 10−6 ∗N12

F2 = 0.06707 ∗D ∗ (M5−)− 0.01183 ∗ E ∗ (M5+) + 26.31 ∗ 10−4 ∗ F 2

F3 = 18.71 ∗ 10−4 ∗ C ∗ F + 1.458 ∗ 10−4 ∗ E2 − 0.11809 ∗ (M5+)
F4 = 0.68022 ∗ E
F5 = 1.44946 + 0.42814 ∗ (M5+)
F6 = 6.673 ∗ 1−−4 ∗N1 ∗ E
F7 = 0.03146 ∗D2 + 9.519 ∗ 10−4 ∗ (M5+) ∗ F
F8 = 0.7723 ∗N1
F9 = 0.01933 ∗D ∗ C + 70.53 ∗ 10−6 ∗N1 ∗ (M5−)
F10 = 0.01712 ∗ (M5+) ∗N2
F11 = 0.02883 ∗ (M5+)2

F12 = 4.11056 ∗D + 79.27 ∗ 10−4 ∗N1 ∗ (M5+)
F13 = 0.36253 ∗ C + 8.616 ∗ 10−4 ∗ C ∗ (M5−)
F14 = 80.2 ∗ 10−4 ∗N1 ∗ (M5+)
F15 = 0.01011 ∗D ∗ (M5−)− 0.00369 ∗ (M5−)

Fig. 5. Model simulation performances, evaluated by means of MP software [6]

Single regulators have been studied analytically, in order to select only the
monomials (here called regressors) determinant for the variation of each sub-
stance, either as an input (in the increasing of the substance quantity) or as an
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output (in the descresing). This study opened up a problem of network infer-
ence, which has been here solved with a simple assumption: any variable A such
that its increment induces an increment of variable B is modeled as if cells A
mature into cells B, and any variable A whose increment induces a decrement
for B is modeled as A has a regulative role for B. Indeed, it is known that cells
mature into other phenotypes, while this process is slowed down by the pres-
ence of other cells (and signals). This is a first modeling attempt, which however
gave some interesting preliminary results. Future extension (including interac-
tion with other lymphocytes, such as T and NK cells) and refinements will be
carried on to complete this study.

According to the assumptions above, we have inferenced the network reported
in Figure 6 of maturation and regulation relations among different groups of B
cells. Basic arrows represent cell maturation from one type of B cell to another,
while dotted arrows represent regulations, where the increment in size of one
type of B cells effects (positively or negatively) the increment of another one.
An explanation of the this infered network is reported in more details.

19+5+23+27- 

19+5-23-27- 

19+5-23-27+ 

19+5-23+27+ 

19+5+23+27+ 
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Fig. 6. B cellular immunological network

Maturation of cells N1. Cells N1=23+27- (19+ 5+) are the most näıve,
maturing into F = 23 - 27 - (19+ 5-), that is, during their life they down modulate
both receptors CD23 and CD5, along with a rate which is proportional to their
quantity. Cells N1 are self-ruled (meaning that any increment of themselves slows
down the next increment), and decrease by massive presence of (memory) cells
M5-= 23- 27+ (19+ 5-). Their maturation into cells F is slowed down by the
increasing of M5- and is alimented by the increment of cells F themselves.

Maturation of cells F. Cells F= 23 - 27 - (19+ 5-) may mature either into
M5-=23 - 27 + (19+ 5-), that means they can express CD27, or into E=23-
27-(19+5+), that means they can express CD5. Both the maturation ways are
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slowed down by the quantitity of M5- (which even slows down the immission
N1=23+27- (19+ 5+) into the blood).

Maturation of cells E. Cells E=23- 27-(19+5+) may express CD27, and
mature into M5+ =23-27+(19+5+), or, if they down modulate CD5, they ma-
ture into N2= 23+27- (19+ 5-). The last maturation way is self-regulated, that
is, it is slowed down with the increasing of N2 (which in turn decreases with
the increasing of D=23+27+ (19+ 5+) or both N1 with M5+). The expression
of CD27, that is the maturation of E into M5+, is alimented by the increasing
of both C= 23+ 27+ (19+ 5-) and F= 23 - 27 - (19+ 5-), both having CD19
expressed.

Maturation of Cells M5- and M5+. Cells M5-=23-27+(19+5-) mature
into C= 23+ 27+ (19+ 5-) and D=23+27+ (19+ 5+), both self-ruled. In other
terms, they tend to express CD23 (in one case together with CD5). Also cells
M5+ are self-regulated, and when changing phenotype they express CD23 (in
one case they down modulate CD5).

4 Discussion and Conclusions

Cells pass the majority of their life time in their differentiate state and their
behavior, seen from outside, could be summarized in activation and prolifera-
tion. An understanding of the internal rules and dynamics inside the cellular
network with additional information about immunological cells proliferation as
seen from outside could be a new perspective, respect the traditional immunolog-
ical way of seeing. Our model seems to confirm some maturation steps reported
in literature [18,8], and to suggest interesting and reasonable new facts.

Our results have shown that, the first B cells undergoing cell maturation
is N1 (CD19+CD5+ CD23+CD27-) described in literature as a pre-näıve B
cell [18]. These cells, when isolated in vitro are able to differentiate into memory
B cells and Plasma cells with specific antibody production. In our model N1
subset maturates into conventional memory B cells (M5-) [8,10,19], as reported
in literature, passing by the subset of F cells (which are circulating “transient”
not much studied B cells). In addition, memory B cells (M5-) mature versus
subsets C and D, that share some markers with mutated CLL, whereas N1 share
some markers present in un-mutated CLL. In our model N2 is the most regulated
class of cells, which interestingly it is also the subset on which more fluctuations
are observed in case of deseases. There were not found interactions which do not
heppen in the physiology of the immune system, such as retro-differentiation (a
reversible maturation), and it is perfectly logic (even if not known in literature)
that memory cells M5- (which are highly mutated cells producing emoglobulines)
may mature in small populations like C and D, the last one representing the
phenotype of CLL. Indeed, during cellular proliferation the somatic accumulation
of mutations can be seen as a natural process of the human life cycle and we
think that this aspect and the determination of somatic accumulated mutation in
ex-vivo isolated lymphocytes subsets could be an interesting tool and an effective
investigation to validate oriented maturational steps found in our model [17].
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Targeted immunological research approaches could help in the understanding
mechanisms involved in the early phases preceded CLL origin. Our model is
obviously only preliminary, it is to be considered in progress with early future
up-grading. In traditional immunology, function and mechanisms of lymphocytes
phenotype usually was described in association to cell function and/or diagnos-
tics purpose. Lymphocyte phenotype analysis as determined by Flow-Cytometry
has received improvements over time in both technological (the ability to stain
more than one marker on the same cell) as well as in terms of mechanisms
understanding (know what to look for). Our future intentions are oriented on
define increasingly effective Flow-Cytometry protocols looking for unambigu-
ous markers (cellular phenotype) with a well defined separation of lymphocyte
subsets in their physical and differentiate state (structure) as observed in their
existence domain [19]. In our model we have exclusively used observational data
(structure) that mean not derived from functional experiments in the contest of
stimulus/response model. By doing in this way we have obtained oriented mat-
uration (structural relations) and cellular mechanism effects as seen by cellular
count modulation (regulators, represented in the graph by dotted relations).

Materials and Methods. As blood specimens, peripheral blood samples
were collected into EDTA Vacutainers (K2E) between 9 and 12 a.m. and pro-
cessed within 4 h of being taken.

Flow cytometry protocols and samples preparation used in this study included
one of a six-color protocol routinely applied in the Section of Immunology of
University hospital of Verona for lymphocyte phenotyping, using the follow-
ing fluorochrome-labeled monoclonal antibodies (mAbs): CD27-FITC, CD23-
PE, CD45-PerCP, CD5-PECy7, CD3-APC, CD19-APCCy7 (Becton Dickinson
Pharmingen, Franklin Lakes NJ, USA). Fifty microliters of each blood sample
were incubated for 15 min in the dark at room temperature. Combination of
mAbs 1 ml of lysing/fixative reagent was added to each tube before the flow-
cytometry assay. The strategy used to determine the absolute lymphocyte count
was referred to as a double-platform, and Lyse/No-Wash protocol was used to
avoid potential cell loss during washing stages [21]. Flow analysis was performed
using a 488/633 nm two-laser BD FACScanto Flow cytometer, an instrument
that has a 10,000 events/s capability, six-color detection and 0.1% sample car-
ryover. All combinations and gating regions as shown in Figure 1 were manually
setup without applying automatic software features.

Software to compute genetic regression and estimation of best MP regulators
according to several parameters may be downloaded on the MP Virtual labora-
tory website [6]: http://mplab.sci.univr.it/plugins/mpgs/index.html.
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Abstract. We consider the pseudo-inversion operation inspired by a bi-
ological event as a result of the partial inversion. We define the pseudo-
inversion of a string w = uxv to consist of all strings vRxuR, where
uv �= λ and consider the operation from a formal language theoretic
viewpoint. We show that regular languages are closed under the pseudo-
inversion operation whereas context-free languages are not. Furthermore,
we consider the iterated pseudo-inversion operation and establish the
basic properties. Finally, we introduce the pseudo-inversion-freeness and
examine closure properties and decidability problems for regular and
context-free languages. We establish that pseudo-inversion-freeness is de-
cidable in polynomial time for regular languages and undecidable for
context-free languages.

1 Introduction

There have been many approaches that relate biological phenomena to formal
languages. This makes it possible to study biological phenomena using tools of
formal language theory [7, 8]. Several researchers investigated the algebraic and
code-theoretic properties of DNA encoding based on formal language theory [11,
13, 14, 17]. Jonoska et al. [13] introduced involution codes based on the Watson-
Crick complementarity, and Kari and Mahalingam [17] investigated the algebraic
properties of DNA languages that avoid intermolecular cross hybridization. Kari
et al. [16] also studied the DNA hairpin-free structure with respect to algebraic
and decision properties.

A DNA sequence undergoes various transformations from the primitive se-
quence through the biological operations such as insertions, deletions, substitu-
tions, inversions, translocations and duplications. This motivates researchers to
investigate the genetic operations for tracing the evolution process on a DNA
sequence [1, 3–6, 18, 21, 23, 25]. For the DNA evolutionary analysis, an inver-
sion—an operation to reverse an infix (substring) of a sequence—is one of the
well-studied operations in both DNA computing and formal language theory.
Yokomori and Kobayashi [25] showed that the inversion can be simulated by the

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 93–104, 2014.
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set of primitive operations and languages using GSM mapping. Dassow et al. [6]
noticed that regular and context-free languages are closed under the inversion.
They also proved that regular and context-free languages are not closed under
the iterated inversion. Daley et al. [4, 5] investigated the closure and decidability
properties of some language classes with respect to biological operations includ-
ing the hairpin inversion, which is an extended variant of the inversion. Since
the inversion is an important operation in biology, researchers investigated the
string matching and alignment problems considering inversions [1, 18, 21, 23].

Here we define a new operation called a pseudo-inversion operation. While
the inversion operation reverses an infix of an input sequence, a pseudo-inversion
operation reverses only the outermost parts of the sequence and the middle part
of the sequence is not reversed. See Fig. 1 for an example.

We notice that there are two possible situations where a pseudo-inversion
occurs in practice. The first case is—an inversion operation itself is a mutational
process—that the inversion process may not be completed in the sense that the
sequence of the central part is not fully reversed in the process. The second case
is that an inversion is carried out once and the central part of the reversed part
is reversed once again; this makes the sequence of the central part where the
inversion is applied twice the same as the original sequence. Given two strings
of the same length, we design a linear-time algorithm that determines whether
or not one string is a pseudo-inversion of the other string.

(a) Inversion (b) Pseudo-inversion

Fig. 1. The left figure describes the inversion operation and the right figure describes
the pseudo-inversion operation. Note that the sequence in the dotted box is not reversed
in pseudo-inversion.

We also introduce an iterated pseudo-inversion operation based on the pseudo-
inversion. We establish some closure properties of the pseudo-inversion and the
iterated pseudo-inversion on regular languages and context-free languages. More-
over, we demonstrate that the iterated pseudo-inversion of a context-free lan-
guage is recognized by a nondeterministic reversal-bounded multicounter ma-
chine. Furthermore, we investigate the decision problems regarding the proposed
operations. In particular, we study the question whether a given language L is
pseudo-inversion-free, that is, no string of L contains a pseudo-inversion of an-
other string of L as a substring. Analogous properties have been studied in the
theory of codes [15] and pseudo-inversion-free languages have potential applica-
tions in DNA encoding.

We give basic definitions and notations in Section 2. We define the pseudo-
inversion operation and the iterated pseudo-inversion in Section 3. Some closure
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properties of the proposed operations are also studied in Section 3. Then, we con-
sider the decision problems—whether or not a given language is pseudo-inversion-
free—and the closure properties of pseudo-inversion-free languages in Section 4
and conclude the paper in Section 5.

2 Preliminaries

We briefly present definitions and notations. Let N be the set of positive integers
and N0 be the set of non-negative integers. Let S be a set and k be a positive
integer. We use [S]k to denote the set of all k-tuples (s1, s2, . . . , sk), where si ∈ S.

Let Σ be a finite alphabet and Σ∗ be the set of all strings over Σ. A language
over Σ is any subset of Σ∗. The symbol ∅ denotes the empty language, the
symbol λ denotes the null string and Σ+ denotes Σ∗ \ {λ}. Given a string w, we
denote the reversal of w by wR. Let |w| be the length of w. For each a ∈ Σ, we
denote the number of occurrences of a in w by |w|a. Given a language L ∈ Σ∗, L̄
denotes the complement of L—Σ∗ \ L. Given an alphabet Σ = {a1, a2, . . . , ak},
let Ψ : Σ∗ → [N0]

k be a mapping defined by Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak
).

This function is called a Parikh mapping and Ψ(w) is called the Parikh vector of
w. We denote the symbol of the string w at position i by w[i] and the substring
w[i]w[i + 1] · · ·w[j] of w by w[i · · · j], where 1 ≤ i ≤ j ≤ |w|. We say that
languages L1 and L2 are letter-equivalent if {Ψ(w) | w ∈ L1} = {Ψ(w) | w ∈ L2}.

A nondeterministic finite automaton with λ-transitions (λ-NFA) is a five-tuple
A = (Q,Σ, δ,Q0, F ) where Q is a finite set of states, Σ is a finite alphabet, δ
is a multi-valued transition function from Q × (Σ ∪ λ) into 2Q, Q0 ⊆ Q is the
set of initial states and F ⊆ Q is the set of final states. By an NFA we mean
a nondeterministic automaton without λ-transitions, that is, A is an NFA if δ
is a function from Q × Σ into 2Q. The automaton A is deterministic (a DFA)
if Q0 is a singleton set and δ is a (single-valued) function Q × Σ → Q. The
language L(A) recognized by A is the set of strings w such that some sequence
of transitions spelling out w takes an initial state of A to a final state.

It is well known that λ-NFAs, NFAs and DFAs all recognize the regular lan-
guages [22, 24]. Note that any regular language recognized by a λ-NFA of size n
can be also recognized by an NFA with the same number of states [24].

Proposition 1 (Wood [24]). The language recognized by a λ-NFA A can be
also recognized by an NFA (without λ-transitions) of the same number of states
as A.

A context-free grammar (CFG) G is a four-tuple G = (V,Σ,R, S), where V
is a set of variables, Σ is a set of terminals, R ⊆ V × (V ∪Σ)∗ is a finite set of
productions and S ∈ V is the start variable. Let αAβ be a string over V ∪ Σ,
where A ∈ V and A → γ ∈ R. Then, we say that A can be rewritten as γ
and the corresponding derivation step is denoted by αAβ ⇒ αγβ. The reflexive,
transitive closure of⇒ is denoted by

∗⇒ and the context-free language generated
by G is L(G) = {w ∈ Σ∗ | S ∗⇒ w}.
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A context-sensitive grammar (CSG) G is a four-tuple G = (V,Σ,R, S), where
V is a set of variables, Σ is a set of terminals, R ⊆ (V ∪Σ)∗V (V ∪Σ)∗×(V ∪Σ)∗

is a finite set of productions and S ∈ V is the start variable.
A nondeterministic reversal-bounded multicounter machine (NCM) [2, 12]

consists of a finite state control that reads input one-way from the input tape
and a finite number of counters, that is a pushdown store over a one-letter al-
phabet. Furthermore, the counters are reversal-bounded, that is, the number of
alternations between the non-decreasing and the non-increasing mode for each
counter is bounded by a constant.1 Thus, an NCM is a λ-NFA equipped with a
finite number of reversal-bounded counters.

The reader may refer to the textbooks [10, 22, 24] for complete knowledge of
formal language theory.

3 Pseudo-inversion

The pseudo-inversion reverses a given string, but the central part of the string
may not be reversed. This is the reason why we call the operation the pseudo-
inversion. Fig. 2 depicts an example of a pseudo-inversion of a string.

w[1] w[i] w[j] w[n]w

PI(w) w[n] w[j] w[1]w[i]

u x v

vR x uR

Fig. 2. Given a string w = uxv, the pseudo-inversion PI(w) of w is defined as vRxuR,
where vu �= λ

Formally, we define the pseudo-inversion as follows:

Definition 1. For a string w ∈ Σ∗, we define the pseudo-inversion of w to be

PI(w) = {vRxuR | u, x, v ∈ Σ∗, w = uxv, and vu 	= λ}.

As a special case, the pseudo-inversion of λ is λ. We can extend the pseudo-

inversion of strings to languages. Given a language L, PI(L) =
⋃
w∈L

PI(w). We

also define an iterated pseudo-inversion operation, which is an iterated version of
the pseudo-inversion. First, we set PI1(w) = PI(w). Given a string w, we define
PIi+1(w) = PI(PIi(w)) for a positive integer i > 0.

Definition 2. Given a string w, we define the iterated pseudo-inversion PI∗(w)

of w to be PI∗(w) =
∞⋃
i=1

PIi(w).

1 Unrestricted two-counter machines accept all recursively enumerable languages [9].



Pseudo-inversion on Formal Languages 97

Furthermore, given a languageL, we define the iterated pseudo-inversion PI∗(L)

of L to be PI∗(L) =
⋃
w∈L

PI∗(w).

Next we define a pseudo-inversion-free language L (or code) where there is
no pair of strings in L such that a string is a pseudo-inversion substring of the
other string.

Definition 3. Let L ⊆ Σ∗ be a language. We define L to be pseudo-inversion-
free if no string in L is a pseudo-inversion substring of any other string in L.
In other words, L is pseudo-inversion-free if Σ∗ · PI(L) ·Σ∗ ∩ L = ∅.

3.1 Closure Properties of Pseudo-inversion

It is well-known that regular languages are closed under the reversal operation.
Given an NFA recognizing a regular language L, we can easily obtain an NFA
of the same size for the reversal of L by flipping the transition directions and
exchanging the set of initial states and the final states [10, 24]. We may need
one more state if we do not allow the multiple initial states.

We show that regular languages are also closed under the pseudo-inversion
operation.

Theorem 1. If L is a regular language, then PI(L) is also regular.

Theorem 1 shows that regular languages are closed under the pseudo-inversion
operation. Based on the result, we have the following observation.

Observation 2. Given a regular language L, PIn(L) is regular for any inte-
ger n ≥ 1.

Notice that context-free languages are closed under reversal operation [10].
However, we demonstrate that context-free languages are not closed under the
pseudo-inversion operation.

Theorem 3. Context-free languages are not closed under the pseudo-inversion.

Proof. We prove the statement by the context-free pumping lemma [10, 24].
Consider the context-free language L = {aibjcjdi | i, j ≥ 1}.

We pick a string w = d2nc2nanb2nan ∈ PI(L), where n is the pumping con-
stant, see Fig. 3. According to the pumping lemma we can split w into five parts,
w = uvxyz, where the parts u, v, x, y and z satisfy the conditions of the pumping
lemma. By the pumping lemma |vxy| ≤ n, and hence vxy cannot contain both
a’s and d’s and vxy cannot contain both b’s and c’s.

Remember that if a stringw is in PI(L), then |w|a = |w|d and |w|b = |w|c should
hold. However, since vy 	= λ, the string uv2xy2z does not satisfy this condition.
Therefore, uv2xy2z 	∈ PI(L) and we conclude that PI(L) is not context-free. ��
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a2n b2n c2n d2n

d2n c2n an anb2n

reverse

Fig. 3. For a language L = {aibjcjdi | i, j ≥ 1}, we pick a string d2nc2nanb2nan ∈
PI(z), where z = a2nb2nc2nd2n ∈ L

3.2 Iterated Pseudo-inversion

We investigate the closure properties of the iterated pseudo-inversion operation.
It turns out that the iterated pseudo-inversion is equivalent to the permutation
operation. Given a string w, let π(w) be the set of all permutations of w, that
is, π(w) = {u ∈ Σ∗ | (∀a ∈ Σ)|u|a = |w|a}.

We establish the following result:

Theorem 4. Given a string w over Σ, the iterated pseudo-inversion of w is the
same as the set of all possible permutations of w; namely, PI∗(w) = π(w).

Based on Theorem 4, we show that regular and context-free languages are not
closed under the iterated pseudo-inversion.

Lemma 1. Regular languages and context-free languages are not closed un-
der the iterated pseudo-inversion operation. Furthermore, the iterated pseudo-
inversion of a regular language need not be context-free.

Proof. Consider a regular language L = {(abc)∗}. For L, the iterated pseudo-
inversion PI∗(L) of L is

PI∗(L) = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}.

We note that
PI∗(L) ∩ a∗b∗c∗ = {aibici | i ≥ 0}

is not context-free. Since the regular languages and the context-free languages
are closed under intersection with regular languages, the claim follows. ��

Below in Proposition 2 we see that the family of context-sensitive languages
is closed under the iterated pseudo-inversion, and consequently it follows that
the iterated pseudo-inversion of a regular or a context-free language is always
context-sensitive.

In fact, as a consequence of Theorem 4 we see that the iterated pseudo-
inversion of a context-free language can be recognized by a reversal-bounded
multicounter machine NCM that defines a considerably more restricted language
family than the context-sensitive languages. The Parikh set of any language
recognized by an NCM is semi-linear and the emptiness problem for NCMs is
decidable [12]. Furthermore, the NCMs cannot recognize, for example, the set of
marked palindromes {w#wR | w ∈ {0, 1}∗} [2].
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Corollary 1. If L is a context-free language over an alphabet Σ, PI∗(L) can be
recognized by an NCM with |Σ| counters that each makes only one reversal.

Proof. There exists a regular language L′ that is letter equivalent to L ([20],
part I, Theorem 7.2) and let A be an NFA for L′. On an input w, the NCM
stores the value |w|a for each a ∈ Σ in the available counters. After that, using
λ-transitions, the NCM simulates the NFA A for L′. For a transition of A on
input b ∈ Σ, the counter corresponding to symbol b is decremented and at the
end of the computation the NCM checks that all the counters are empty.

By Theorem 4, the NCM recognizes the language PI∗(L). ��

Corollary 1 uses only Theorem 4 and the observation that the Parikh set of
a context-free language is semi-linear, which means that the corollary can be
stated as:

Corollary 2. If the Parikh set of L is semi-linear, then PI∗(L) can be recognized
by a reversal-bounded multicounter machine.

Corollary 2 implies, in particular, that the family of languages recognized
by reversal-bounded multicounter machines is closed under iterated pseudo-
inversion. To conclude this section we examine the closure properties for context-
sensitive languages and establish the following result. A similar result for inver-
sion of context-sensitive languages is known from Dassow et al. [6].

Proposition 2. Given a context-sensitive languageL,PI∗(L) is context-sensitive.

4 Pseudo-inversion-Freeness

We investigate the decidability problem for pseudo-inversion-freeness and estab-
lish the closure properties of pseudo-inversion-free languages.

4.1 Decidability of Pseudo-inversion-freeness

We say that a language L is pseudo-inversion-free if no string in L is a pseudo-
inversion substring of any other string in L. We consider the decidability problem
of pseudo-inversion-freeness when L is regular or context-free.

We first consider a simple case when we are given two strings of the same
length. We determine whether or not a string is not a pseudo-inversion of the
other string. In other words, given two strings u and v, is u in PI(v)? We present
a linear-time algorithm in the size of u for the question. We rely on the following
observation to simplify the presentation of the algorithm.

Observation 5. Let u and v be two strings of the same length. Then, u ∈ PI(v)
if and only if u = wxy and vR = wxRy, where wy 	= λ.

The main idea of the linear-time algorithm is to scan two strings vR and
u from both end-sides until we find an index where two strings have different
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Algorithm 1. A linear-time algorithm for deciding v ∈ PI(u)

Input: Two strings u and v of the same length n
1 i ← 0
2 j ← n

3 while i ≤ n ∧ u[i] = vR[i] do i ← i+ 1

4 while 1 ≤ j ∧ u[j] = vR[j] do j ← j − 1
5 if i ≥ j then return false
6 else
7 for k = i to j do
8 if u[k] �= vR[i+ j − k] then return false

9 return true

characters. Let ML denote the left maximum matching index, where the first
discrepancy occurs and MR denote the right maximum matching index where
the last discrepancy occurs. Lastly, we check whether or not u[ML · · ·MR]

R =
vR[ML · · ·MR]. See Algorithm 1 for the whole procedure.

Theorem 6. Given two strings u and v of length n, we can determine whether
or not v ∈ PI(u) in O(n) time.

We can also determine if v ∈ PI∗(u) by checking whether or not the two
Parikh vectors Ψ(u) and Ψ(v) are the same.

Corollary 3. Given two strings u and v of length n, we can determine whether
or not v ∈ PI∗(u) in O(n) time.

Next, we consider the regular language case. Recalling from Definition 3 the
notion of pseudo-inversion-freeness, we can decide whether or not a regular lan-
guage L is pseudo-inversion-free by checking whether or notΣ∗·PI(L)·Σ∗∩L = ∅.
Theorem 7. Given an FA of size n recognizing a regular language L, we can
determine whether or not L is pseudo-inversion-free in O(n4) time.

Proof. Based on the NFA construction in Theorem 1, we can construct an NFA
of size O(n3) recognizing PI(L). Since we can check the intersection emptiness
of two NFAs of size m and n in O(mn) time [24], we can determine whether or
not L is pseudo-inversion-free in O(n3 × n) = O(n4) time. ��

Theorem 7 shows that it is decidable whether or not a given language L
is pseudo-inversion-free in polynomial time when L is regular. We prove that
pseudo-inversion-freeness is undecidable for context-free languages.

First we recall the following undecidability result. An instance of the Post’s
Correspondence Problem (PCP) [19] consists of n ∈ N and two ordered n-tuples
of strings (U, V ), where U = (u0, u1, . . . , un−1) and V = (v0, v1, . . . , vn−1),
ui, vi ∈ Σ∗, 0 ≤ i ≤ n − 1. A solution for the PCP instance (U, V ) is a se-
quence of integers i1, . . . , ik, 0 ≤ ij ≤ n− 1, j = 1, . . . , k, k ≥ 1, such that

ui1ui2 · · ·uik = vi1vi2 · · · vik .
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Proposition 3 (E. Post [19]). The decision problem of determining whether
or not a given PCP instance has a solution is unsolvable.

Now we can prove that deciding the pseudo-inversion-freeness of a given
context-free language is undecidable by reducing PCP to this problem.

Theorem 8. It is undecidable to determine whether or not a given context-free
language L is pseudo-inversion-free.

Proof. Let Σ be an alphabet and (U, V ) be an instance of Post’s Correspon-
dence Problem, where U = (u0, u1, . . . , un−1) and V = (v0, v1, . . . , vn−1). As-
sume that the symbols 0, 1,#, $,%, φ, � and � are not in Σ. Let Σ′ = Σ ∪
{0, 1,#, $,%, φ, �, �}. For any nonnegative integer i, let βi be the shortest binary
representation of i.

We define a linear grammar G = (N,Σ′, R, S), where

– N = {S, TU , TV } is a nonterminal alphabet,
– Σ′ is a terminal alphabet,
– S is the sentence symbol, and
– R has the following rules:

• S → βiφTUui##%��� | ��%�##vRi TV φβi,
• TU → βiφTUui | βi$ui, and
• TV → vRi TV φβi | vRi $βi

for i ∈ {0, 1, . . . , n− 1}.

Then L(G) consists of the following strings:

βin−1φ · · ·φβi0$ui0 · · ·uin−2uin−1##%��� (1)

and
��%�##vRin−1

vRin−2
· · · vRi0$βi0φ · · ·φβin−1 . (2)

We now show that L(G) is not pseudo-inversion-free if and only if the PCP
instance (U, V ) has a solution.
(⇐=)We prove that L(G) is not pseudo-inversion-free if the PCP instance (U, V )
has a solution. Assume that the PCP instance (U, V ) has a solution. Let z = vwx
and z′ = uxRwvRy, where xv 	= λ. Then, L is not pseudo-inversion-free if both
z′ and z exist in L. Since the PCP instance has a solution by the assumption,
there should be a sequence i0, i1, . . . , in−2, in−1 satisfying

ui0 · · ·uin−2uin−1 = vi0 · · · vin−2vin−1 .

Now we decompose (1) into uvwxy such that

– v = βin−1φ · · ·φβi0$ui0 · · ·uin−2uin−1##,
– w = %�,
– x = ��, and
– u, y = λ.
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Then, xRwvR = ��%�##uin−1uin−2 · · ·ui0$βi0φ · · ·φβin−1 ∈ L(G). Therefore,
L(G) is not pseudo-inversion-free.
(=⇒) If L(G) is not pseudo-inversion-free, then there exist two strings z =
vwx and z′ = uxRwvRy in L(G), where xv 	= λ. Then, there are two possible
decompositions as follows:

C1. u = λ, v = βin−1φ · · ·φβi0$ui0 · · ·uni−1##, w = %�, x = ��, and y = λ.
C2. u = λ, v = ��, w = %�, x = ##vRin−1

vRin−2
· · · vRi0$βi0φ · · ·φβin−1 , and y = λ.

It implies that the PCP instance (U, V ) has a solution since

v = βin−1φ · · ·φβi0$ui0 · · ·uni−1##

should be equal to

xR = βin−1φ · · ·φβi0$vi0 · · · vni−1##.

Thus, L(G) is not pseudo-inversion-free if and only if the PCP instance (U, V )
has a solution. Since PCP is undecidable [19], it is also undecidable whether or
not L is pseudo-inversion-free when L is context-free. ��

We summarize the results for decision properties of pseudo-inversion-freeness:

(i) It can be decided in polynomial time whether or not a given regular language
is pseudo-inversion-free (Theorem 7).

(ii) It is undecidable whether or not a given linear context-free language is
pseudo-inversion-free (Theorem 8).

4.2 Closure Properties of Pseudo-inversion-free Languages

We first consider closure properties of the pseudo-inversion-free languages under
the basic operations.

Theorem 9. Pseudo-inversion-free languages are closed under intersection but
not under catenation or union.

We note that the pseudo-inversion free languages are not closed under com-
plementation nor Kleene star. Moreover, the complementation or the Kleene star
of any pseudo-inversion-free language is not pseudo-inversion-free.

Theorem 10. For any pseudo-inversion-free language L ⊆ Σ∗, L̄ is not pseudo-
inversion-free.

Theorem 11. For a nonempty language L ⊆ Σ∗ \ {λ}, Lm ∪Ln is not pseudo-
inversion-free, for 1 ≤ m < n. Moreover, L∗ is not pseudo-inversion-free, either.

Proof. Let w = au be a string in L, where a ∈ Σ and u ∈ Σ∗. Then, we have
wm ∈ Lm and wn ∈ Ln. Then, wm = av and wn = avwn−m, where v = uwm−1.
Since w = au, wn = avauwn−m−1 in which va appears as a substring. Since
va ∈ PI(wm), Lm ∪ Ln is not pseudo-inversion-free. It is easy to see that L∗ is
not pseudo-inversion-free since L∗ = L0 ∪ L1 ∪ L2 ∪ · · · . ��
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5 Conclusions

We have defined a biologically inspired operation called the pseudo-inversion.
Informally, the pseudo-inversion incompletely reverses the order of strings while
the inversion operation reverses the order of infix of strings. Given a string
w = uxv, we define the pseudo-inversion of w to be the set of strings vRxuR,
where uv 	= λ.

We have investigated the closure properties of the pseudo-inversion operation
and the iterated pseudo-inversion operation. While regular languages are closed
under the pseudo-inversion, context-free languages are not closed. Moreover, we
have established that the iterated pseudo-inversion is equivalent to the permu-
tation operation. We also have considered the problem of deciding whether or
not a given language is pseudo-inversion-free. We have designed a polynomial-
time algorithm for regular languages and established an undecidability result for
linear context-free languages.
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Abstract. The design of analog circuits by hand is a difficult task, and
many successful approaches to automating this design process based on
evolutionary computation have been proposed. The fitness evaluations
necessary to evolve linear analog circuits are relatively straightforward.
However, this is not the case for nonlinear analog circuits, especially for
the most general class of design tasks: reverse-engineering an arbitrary
nonlinear ‘black box’ circuit. Here, we investigate different approaches
to fitness evaluations in this setting. Results show that an incremental
algorithm outperforms naive approaches, and that it is possible to evolve
robust nonlinear analog circuits with time-domain output behavior that
closely matches that of black box circuits for any time-domain input.

1 Introduction

Analog circuit design is a challenging task that typically requires a domain expert
with years of experience [14]. As a result, the costs associated with developing
circuits for new applications can be very high. Many studies reported in the
literature have attempted to automate the circuit design process in an attempt
to reduce the human effort required [4,5,7,13]. Approaches involving evolutionary
computation have been particularly successful, and these generally allow both
the topology and component sizes of a circuit to be optimized. Perhaps the
earliest work in this area was by Koza and colleagues, who employed genetic
programming and a developmental encoding [8]. Later work showed that simpler
methods based on genetic algorithms could also obtain good results [1,9,10,19].

All approaches to the automation of analog circuit design involving evolution-
ary computation rely on fitness evaluations in which the behavior of a candidate
circuit is simulated and compared with a design specification. For linear circuits,
such as those comprised only of passive resistors, capacitors, and inductors, these
fitness evaluations are relatively straightforward as the behavior of a linear cir-
cuit is fully characterized by its frequency and phase responses [16]. In a typical
application, the AC frequency response of an evolved circuit can be compared
with the desired frequency response using a measure such as the mean-squared
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error [8]. This error then serves as the basis for assigning a fitness value to the
evolved circuit (Fig. 1A.). For nonlinear circuits, such as those with transistors,
diodes or other nonlinear components, fitness evaluations can be considerably
more difficult, as it is generally not possible to fully characterize the behavior
of a nonlinear circuit with a single measurement such as AC frequency or phase
response.

unknown
nonlinear circuit

B

A

Fig. 1. Fitness evaluations for linear and non-linear circuits. A. The fitness of an
evolved linear circuit can easily be assessed by comparing its frequency response (red)
to a desired frequency response (blue). In this case the desired behavior is that of a
low pass filter. B. To reverse-engineer an unknown ‘black box’ nonlinear circuit, time
domain inputs (black) are used to probe the black box. The resulting outputs (red) are
compared with the outputs of an evolved circuit in response to the same inputs as a
means of assigning a fitness value to the evolved circuit.

Despite this complicating factor, some studies have successfully ‘forward-
engineered’ nonlinear analog circuits with evolutionary computation [8, 15]. In
these studies, a problem-specific design specification is developed and the task
is to evolve a circuit that meets this design specification. Depending on the na-
ture of the target design, Fourier analysis, DC sweeps, time-domain transient
analysis, or other analyses are applied to an evolved circuit and used to compare
its behavior to the design specification. Although time-domain analyses are the
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most computationally expensive, these are often considered necessary to evolve
the most robust circuit designs [11, 15].

The forward-engineering tasks considered in previous studies of nonlinear ana-
log circuit evolution are fundamentally different from a reverse-engineering task
in which a nonlinear circuit must be evolved without a design specification.
Instead, the circuit is evolved to match the behavior of an unknown ‘black box’
nonlinear circuit (Fig. 1B.). The black box circuit must be probed with different
voltage or current inputs in order to obtain information used as the basis for
evaluating the fitness of evolved circuits, yet the appropriate type of stimuli to
use for these probes would generally not be known in advance. This is especially
true if the goal is to evolve a circuit that generalizes well and reproduces the
time-domain output behavior of a black box circuit for arbitrary time-domain
inputs not used during evolution.

In this study, we investigate different algorithms for selecting the type of probe
stimuli to use for the efficient evolutionary design of nonlinear analog circuits in
the most general reverse-engineering setting. Many possibilities exist for such an
algorithm, including the incremental approaches that have proven very powerful
in other applications of evolutionary hardware [18]. Using randomly-generated
nonlinear circuits in order to evaluate different approaches in as unbiased a man-
ner as possible, our results show that incrementally presenting probe stimuli is a
particularly efficient means of guiding nonlinear circuit evolution. Importantly,
the evolved circuits generalize well and match target circuit behavior for arbi-
trary stimuli.

2 Methods

2.1 Genetic Algorithm

We use a genetic algorithm in which circuits are represented as variable-length
linear chromosomes, where each gene contains four elements (Fig. 2). The cir-
cuits considered in this work were composed of five component types: resistors,
capacitors, inductors, pnp bipolar transistors, and npn bipolar transistors. In
the case of resistors, capacitors, and inductors, the elements in a gene specify
the type, connection nodes, and parameter value of the component. To mimic
the limitations of physical hardware, these components had one of 96 possible
parameter values taken from a log10 scale with 12 values per decade. These
values ranged from 1.0 – 8.2x107 pF, nH, and Ω for capacitors, inductors, and
resistors respectively. In the case of bipolar transistors, NG-Spice default models
are used and the four-element gene specifies transistor type (pnp or npn) and
the connection nodes for emitter, base, and collector.

Each individual in the population of 64 circuits was initialized by concatenat-
ing 1-9 randomly chosen genes. The resulting circuit was checked for topological
validity. This included checks for dangling nodes, disconnected subcircuits, in-
ductor loops, the lack of capacitor paths to ground, and other common problems
that would make the circuit unsimulatable in Spice.
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...
resistor3   n3    n9  123.45Ω
resistor8   n8    n2  31.1112Ω
inductor4   n4 n5 1.132H 
capacitor3  n5    n2 1361.8F
resistor7   n3    n4 45.0Ω
inductor9   n16   n8 0.2529H
inductor3   n3    n12 6.3H
resistor5   n9    n2 19.9054Ω
capacitor1  n15   n6 26.37F
...
Fig. 2. Circuit representation. Circuits were represented as linear chromosomes, with
each gene (such as the one highlighted in red) corresponding to one component. This
list specifies the components in a variable portion of an otherwise invariant embryonic
circuit. Note that the embryonic circuit contains both a voltage source and an output
node at which voltage measurements are made.

As in standard genetic algorithms, crossover and mutation were used to create
new members of the population. Parents were selected at random from the pop-
ulation of 64 and used to generate two offspring with a 90% chance of crossover.
Instead of one point, two point, uniform or another standard type of crossover
for linear chromosomes, we used the topology-aware crossover described in [3].
Regardless of whether the two offspring were generated by crossover, each gene
in each offspring was mutated with a probability of 5%. A mutation consisted of
the change from one type of element to another, a change of connections from one
node to another, or a change in parameter values. We did not find it necessary
to use mutations to add or delete genes as crossover in the variable-length chro-
mosomes provided sufficient variation in offspring size. Offspring were created
in this manner until 64 offspring were obtained. Both crossover and mutation
ensured that topologically valid circuits resulted from the operation.

We used genotypic age to perform survival selection with the Age-fitness
Pareto algorithm [17] for some experiments. Survival selection was performed
by culling the combined population of parents and offspring using tournament
selection with replacement and tournaments of size 2. This process was imple-
mented with a Pareto tournament scheme in which two random members of the
combined population were selected. If one of the pair had both lower fitness and
higher age than the other, it was thrown out. The survivor was then returned
to the pool. This continued until the population size was reduced back to 64.
Age was defined as the number of generations in which an individual had been
present in the population. Offspring inherited the age of the older parent in the
case of crossover. One new, randomly generated individual with an age of 0 and
created in the same way as members of the initial population was added to the
population each generation.

When evaluating the fitness of a circuit, the linear chromosome was translated
into a netlist recognizable by the NG-Spice circuit simulator [12]. This netlist



Reverse-Engineering Nonlinear Analog Circuits 109

specified the variable portion of an otherwise invariant embryonic circuit common
to all evolved and target circuits (Fig. 2). Time-domain transient analysis was
used to measure the voltage of the circuit at the output node in response to a
voltage source with an arbitrary waveform as the input. The differences between
evolved circuit outputs and target outputs were compared by calculating the
sum of squared errors in the time domain. Random voltage source waveforms
were specified by 20 parameters: 18 random parameters corresponding to the
first nine coefficients of the Fourier series, one parameter controlling the scaling
of the waveform with respect to time, and one parameter controlling the phase
offset of the waveform.

2.2 Stimulus Selection

As the focus of this study was on comparing different methods of selecting probe
stimuli for obtaining information about target circuits and evaluating the fitness
of evolved circuits, we employed several methods for doing so. The simplest
method (‘fixed single’) was to probe the target black box circuit with a single
randomly generated voltage source waveform. The resulting voltage output was
then used as the basis for assigning fitness values to evolved circuits. Each fit-
ness evaluation consisted of applying the same input to the evolved circuit and
comparing the resulting output in the time domain with that output originally
obtained for the target circuit. Fitness was calculated as the sum of squared
errors between target output and the output of the evolved circuit.

A second method for stimulus selection, ‘fixed four’, was inspired by the fact
that voltage ramp and step functions are very common hand-designed waveforms
used to probe circuits [11]. Two fixed but different voltage ramps and two fixed
but different step functions were each used to probe the target and evolved
circuits. Fitness was assigned as the sum of the errors on each of the four targets.

The third stimulus selection method, ‘switching single’, was the same as fixed
single except that a new randomly generated target input/output pair was gen-
erated periodically. In other words, the stimulus switched at regular intervals
during evolution. This method was used to determine whether overfitting to a
fixed single input/output pair was a significant problem.

Finally, we also employed incremental stimulus selection. Inspired by work in
digital circuit evolution [18] and other evolvable hardware domains, this method
involved periodically generating a new random stimulus, applying it to the black
box target circuit, and then adding this new input/output pair to the set of test
cases used to evaluate fitness of an evolved circuit. The fitness of an evolved
circuit was then defined simply as the sum of its fitnesses for each individual
stimulus. The ‘switching incremental’ algorithm employed this approach without
Age-fitness Pareto optimization whereas the ‘age-fitness incremental’ algorithm
was identical except that Age-fitness Pareto optimization was used.

For all five algorithms, the time required to evolve circuits was almost entirely
spent on the computationally expensive Spice simulations required for fitness eval-
uation. As there are significant differences in the number of fitness evaluations re-
quired for the five algorithms for a given number of evolutionary generations, all
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experiments below account for these differences and use the same total number of
fitness evaluations (Spice simulations) for all algorithm comparisons. Given the
computational expense of Spice simulations, we performed evolutionary runs for
a predetermined number of fitness evaluations instead of following the standard
practice of letting the genetic algorithm run until stagnation. However, we found
that the number of fitness evaluations used was sufficient to draw preliminary con-
clusions about the performance of the various algorithms.

2.3 Target Circuits

We initially used a hand-designed RTL inverter circuit as a reverse-engineering
target. A RTL inverter is a simple transistor switch that implements logical
negation. Not counting the elements of the embryonic circuit, this circuit had
three elements as shown in (Fig. 3). Each of 40 evolutionary trials used this same
simple circuit as a target to obtain baseline information about the performance
of the algorithms.
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Fig. 3. RTL inverter target and evolved circuits. The target circuit is shown at the top.
The other circuits are those evolved to match the behavior of this target circuit using
a fixed single stimulus (middle) and the age-fitness incremental algorithm (bottom).

In order to evaluate different stimulus selection methods in as unbiased a
manner as possible, we also used randomly-generated nonlinear circuits as the
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black box targets. An example of such a random circuit is shown in (Fig. 4).
These random circuits were generated by creating random netlists with 3–11
elements and at least one nonlinear element (bipolar transistor). The elements
specified by a netlist were inserted into the variable portion of the embryonic
circuit and the resulting circuit was simulated. If the circuit was simulatable and
for 25 randomly chosen input stimuli the outputs of the circuit were of sufficient
variability, the circuit was included in the set of black box targets. Otherwise, it
was discarded and a new random circuit was generated. This process continued
until 40 random circuits with a variety of sizes were generated.
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Fig. 4. Random target and evolved circuits. One randomly generated target circuit is
shown at the top. The other circuits are those evolved to match the behavior of this
target circuit using a fixed single stimulus (middle) and the age-fitness incremental
algorithm (bottom).

3 Results

Each of the five stimulus selection algorithms were applied to the target circuits
in 40 trials. The results summarizing evolutionary progress across all 40 trials
for all five algorithms with the RTL inverter as the target are shown in Fig. 5.
Similar results were obtained for random circuits as shown in Fig. 6. In both
cases, presenting stimuli with the incremental algorithm was clearly the most
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effective method of evolving circuits that generalized well and that matched the
performance of the target circuits for several random stimuli not used during
evolution. In contrast, little benefit was gained by using different non-incremental
approaches given a fixed computational budget.
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Fig. 5. Generalization error for the five stimulus selection methods with the RTL in-
verter target. At regular intervals (approximately once every 2.1x104 fitness evalua-
tions), each member of the current population of circuits was evaluated on 25 randomly
chosen stimuli not seen during training. The circuit with the lowest total error was then
recorded. The mean value of this error across each of 40 trials is plotted, with error
bars representing plus or minus the standard error of the mean.

Fig. 3 shows two examples of circuits obtained with a fixed single stimulus
and with the age-fitness incremental algorithm, as well as the RTL inverter
target circuit whose behavior they were evolved to match. Although the evolved
circuits do not match the target circuit in size or structure, the circuit evolved
using the age-fitness incremental algorithm closely matched the behavior of the
target circuit for arbitrary stimuli (Fig. 7). A similar conclusion can be drawn
from the results for random circuits as shown in Fig. 4 and Fig. 8.

4 Discussion and Conclusion

In this study, we compared different methods of fitness evaluation for reverse-
engineering nonlinear analog circuits with a genetic algorithm. Stimulus presenta-
tion with an incremental algorithm proved to be a particularly effective means of
performing these fitness evaluations. This method successfully produced circuits
that closely matched the behavior of black box target circuits.
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Fig. 6. Generalization error for the five stimulus selection methods with random tar-
gets. Axes and bars are the same as in Fig. 5.
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Fig. 7. RTL inverter target and evolved circuit behavior. Four randomly chosen stimuli
not used during training (top row) were applied to the target circuit, which generated
the responses shown in the second row. The response of the circuit evolved with a
fixed single stimulus shown in Fig. 5 to those same four stimuli is shown in red in the
third row. These red curves are plotted over the target responses for reference. The
response of the circuit evolved with the age-fitness incremental algorithm shown in
Fig. 5 to those four stimuli is shown in green in the bottom row plotted over the target
responses.
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Fig. 8. Random target and evolved circuit behavior. Panels are the same as in Fig. 7
except that results are for circuits shown in Fig. 6.

One weakness of the approaches studied here is that the evolved circuits fail
to match their respective target circuits in size and structure, even when they
match them in behavior. It could then be argued that the evolved circuits are no
more valuable as models of the target circuit than a neural network or other uni-
versal function approximator that can also reproduce the input/output behavior
of the target circuit. However, we argue that using circuits as the function ap-
proximator confers two advantages. First, circuits are almost certainly the most
useful function approximators for a reverse-engineered circuit if the function
approximator is to be implemented in hardware. Second, we hypothesize that
circuits and electrical components, although computationally expensive to sim-
ulate, are a natural representation with which to approximate the input/output
functions embodied by the target nonlinear circuits and are therefore easier to
identify than neural networks or other non-domain specific representations. We
are currently testing this hypothesis and preliminary results are supportive.

For future work, we intend to extend the results here in several ways. First,
we are studying random target circuits of larger sizes, as reverse engineering
targets in real life applications tend to contain considerably more components
than 3-11 as in the circuits considered here. Second, we will consider physical
circuits implemented in hardware as targets as an important means of confirm-
ing the results obtained here with simulations. Third, we intend to investigate
the prospect of coevolving stimuli instead of randomly generating them as in
the current study. Such an approach has proven effective in other evolutionary
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computation problem domains such as symbolic regression [2]. Fourth, formally
characterizing the complete input/output behavior of nonlinear dynamical sys-
tems such as the analog circuits in this work would be feasible with enough
computational effort [6]. Such steps will be important to provide a firm theo-
retical basis for concluding that the evolved circuits are robust under real-life
operating conditions, a conclusion that was only informally demonstrated with
the experiments described in the present work. Finally, the approaches here will
be applied to additional circuits with specific, known functions such as cube root
circuits [8]. Although the results will not be as general as when the targets are
random circuits, this will be useful as a baseline comparison of the approaches
considered here to the more common evolutionary hardware methods oriented
to forward-engineering tasks.
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Abstract. Cell signaling mechanism provides robust immune response
and protects our body from a wide variety of pathogens. This work at-
tempts to develop an artificial signaling model inspired by biological
signaling process and derived abstractions. In this paper, we described
various aspects of immune cell signaling and their integration towards
a system-level response. Based on these abstractions, we synthesized a
simple artificial cell signaling model in order to solve fault detection with
the objective to provide early detection of faulty system components, as
well as the overall analysis of the distributed system.

Keywords: Artificial Immune Systems, Bio inspired Models, Cell
Signaling.

1 Introduction

Artificial Immune System (AIS) is a research field of Computational Intelligence
which aims to provide more efficiency, robustness and accuracy in real-world
problem solving. Applications of AIS include Anomaly Detection, Optimization,
Clustering and Machine Learning, among others [7, 8]. Different computation
models such as negative selection, clonal selection and immune networks have
been developed, inspired by immunological features such as robustness, adapt-
ability, memory, diversity and pattern recognition abilities. These algorithms
were developed based on shape-space concepts [23], as the shape-space is a ge-
ometrical representation in which biological phenomena are described and sim-
ulated [22]. Other AIS approaches were developed from different perspectives
such as the Conserved Self Pattern Recognition Algorithm [27], the Dendritic
Cell Algorithm [11], and the T-Cell Receptor Density Algorithm [20] which are
inspired on different immune models and have some immune signaling concepts
applied to problem solving.

Inter and Intra-cellular signaling play a major role in the biological processes
and in phenotypic behavior of cells. In AIS, cell signaling features were intro-
duced but most aspects are yet to be exploited and successfully applied.
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2 Biological Signaling Concepts

In biology, most cells communicate with their environment and with other cells,
and this communication provides all basics mechanisms for cell survival, as well
as its functions. These mechanisms are provided through electro-chemical sig-
nals, each signal is able to cause different effects on the cell and its phenotypic
behavior. The process involving these signals and their effects on cells is called
Cell Signaling.

Immune signaling occurs often by direct contact between cells which can pro-
vide distributed response throughout the immune system. For example, interfer-
ons (IFNs) are a large family of multifunctional secreted cytokines involved in
antiviral defense, cell growth regulation and immune activation.

Basically, immune cell signaling processes have three phases: Reception, Trans-
duction, and Response. Throughout these processes the converted signal changes
actions in the cell. In the reception phase, the signal binds to the cell receptor and
is associated to the cell membrane, assuming that the cell is intact. The trans-
duction phase is a fundamental step in cell signaling, in which signals travel into
the cell until they reach the final destination, where these cause changes to the
cell. Finally, response phase involves the effects of a signal in the cell behavior;
the interesting lessons to learn from these signals are:

– How these signals propagate, and;
– How signals cause or change actions in cells.

Among various signaling mechanisms in the immune system, the following
provide an abstract view according to their functions, as mentioned [18]:

1. The presence of nonself antigens which provides specificity and memory of
antigen;

2. Costimulatory signals providing magnitude, longevity and nature of response,
and;

3. The expressed cytokines work in concert with others in the costimulation,
differentiation and generation of memory cells.

For the immune response, signals 1 and signal 2 are required for Self-Nonself
Discrimination by the T-helper cell where the antigen recognition is considered
as primary function to identify the pathogen during an immune response. Signals
from 3 have different effects on each cell, depending on their concentration. These
signals can be described in Figure 1.

The second signal is also required for immune response [17], being associated
with Antigen Presenting Cells (APCs) as a part of costimulation process which
involves a family of receptors resulting from concentration of costimulatory and
coinhibitory signals and is fundamental for regulation and maintenance of im-
munity [3].

The third signal considered is a family of cytokines, which are chemical messen-
ger molecules that transmit information between cells. Essentially, these signals
develop key roles in the immune system according to Borish et al. [2], by locally
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Fig. 1. Antigen and costimulatory signals [21] and cytokine roles, as described in [19]

controlling the amplitude, duration and determining nature of immune responses.
They provide different functions such as the T-helper cell differentiation [16] or the
inflammation control among others.

Nature-inspired computational systems are developed aiming to solve a par-
ticular problem by exploiting biological analogies and extrapolating their func-
tionalities.

3 From Biological Signaling to Artificial Models

In biological systems, cell signals are responsible for the species survival. Based
on this view, some abstractions were derived and incorporated in artificial mod-
els; in particular, the signaling mechanism provided a source of inspiration to
develop abstract models for solving complex problems.

According to Goldstein et al. [10], mathematical or computational models of
cell signaling may be developed by two ways: Simple models, where some features
represent most important phenomena by one or more arbitrary transitions. In
Detailed models, some realistic and detailed interactions between components
are modeled. Some influence mechanisms are provided to assure that signals
propagate and achieve their objective by providing cell actions and perform
represent decision making mechanisms.

Scheider et al. [24] provided mathematical insights of intra-cellular signaling
transduction where signals undergo various transformation in order to propagate
and cause changes to cells:

1. Magnitude - the strength of a given signal in order to perform changes. A
signal must be strong enough (exceeding a given threshold) to cause changes
and efficacy in respect to its relevance and context.

2. Duration - only signals whose effects persist in long-term are able to perform
changes to cells. A short-term signal, even if its strength is high, is unable
to produce cellular changes. Duration of signals is related to how long the
lifetime of a signal is and such signaling feature implies in robustness to
noise, among other advantages.
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The magnitude can be deducted by signal concentration, while the duration
defines if a signal is good enough to activate responses during its lifetime within
a cell. Figure 2 illustrates how both concepts are applicable to the development
of an artificial model.

Fig. 2. Features of a signal in a given time and some examples: (A) The signal is strong
enough to trigger some effects, as the signal is higher than a given threshold. (B) The
signal cannot reach the given threshold and has no effect. (C) The signal is strong, but
has a short duration and is unable to trigger its desirable effect within its lifetime.

4 The Artificial Signaling Model

The proposal of an artificial model is aimed to solve problems through biological
inspiration provided by abstractions. The artificial model of cell signaling can
be proposed after some definitions regarding how to use abstractions and the
application environment in which the model will be applied. In order to provide
a suitable model, some features are proposed for the signaling model as follows:

– Hierarchical - Signals are processed through the environment in a similar
way to the one in Granular Computing [26];

– Distributed - Signals and responses are processed by different in cells in
the same environment. Both features may provide cascading effects in cell
behavior;

– Asynchronous - Signals collection processes are time-independent and there
is no interdependence among processing units;

– Dynamic - where signals change with environmental conditions and internal
states similar to the biological system.

The hierarchical model provides a processing environment that deals with
signals analyzing them through a bottom-up leveling, where low level signals
may lead to highly relevant signals in terms of information and representation
as described in Figure 3. The highest(nth) level of the signaling is the classifica-
tion step. This strategy can provide continuous refinement and amalgamation of
singals for decision-making and meaningful information processing.

Moreover, the distributed environment can provide collaborative environment
for information spreading, where the hierarchical signaling may provide some
cascading effects of signal analysis of different cells in each level, as illustrated
in Figure 4.
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Fig. 3. The hierarchy of the artificial signaling model

Fig. 4. Signals or messages are spreading in a distributed way

Different rules of signal spreading and propagation are defined in order to
send information in a homogeneous (components have the same structure) or
heterogeneous (components have different structures and treat information dif-
ferently) way, according to the model so that information can be combined and
also reinforced providing effectiveness and precision throughout the processing.

These abstractions also require the model to be asynchronous, which means
that signals does not depend on time restrictions, however, in some cases, the
order of signal arrival may be important while processing.

Each signal is subject to magnitude and duration conditions during its life-
time, these features aim to improve decision making tasks in the monitored
system. Each signal is defined by the concentration of their stimuli through time
and is tagged based on its intended destination.

For this purpose, two thresholds are calculated: Magnitude (φ) and Duration
(ψ). Both thresholds define if a signal will produce its desirable effect in response
variables.

In the first level, input signal is evaluated and then converted into numerical
domain variables according to conditions, representing the information gathering
based on the number of detected components. Another signal type to be consid-
ered is a categorical signal, analogous to costimulation, which acts as propagator
of these responses through next levels of signal processing hierarchy.

In Figure 5, the main idea of the first Signal Processing Unit (SPU) is shown.
The number of SPUs in the first level may be dependent on the amount of eval-

uated data and can also be used for parallel processing. Hierarchical levels and the
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Fig. 5. Illustration of SPU from level 1 of signaling method

evolution of signals are analogous to Granular Computing (GrC), in which lower
levels (granules) are processed and converted into higher levels (abstractions) in
a feed-forward processing, we used a similar concept in our signaling model.

Intermediate level SPUs are called Signal Differentiation Unit (SDU) which
are responsible for detecting and isolating faults from different system compo-
nents. The distributed mechanism allows to define type of SDUs to analyze
signals and differentiate them according to the type of fault they can identify in
the system.

Responses from this level are modeled according to the signals from faulty
components are reorganized and combined as a part of the decision making
process; multiple levels may be involved during this processing. As presented in
Figure 6. In addition, each signal may have more categories as needed and the
strength of the resulting signals are calculated accordingly.

Fig. 6. Illustration of SDUs from intermediate levels of signaling method, in which
fault isolation is properly processed. The relation between levels are also illustrated.

The upper level (highest) of the signaling component is called Signal Amal-
gamation Unit (SAU) which indicates the system status, as well as the type of
fault. The SAUs identify faults according to all information processed through
the environment as shown in Figure 7.

A feedback mechanism is considered, as in the biological system which is used
to provide the system status. In the simple model, when all signals are discarded
(as the normal), the second level SDU sends a feedback in order to inform the
normal status of the monitored system.
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Fig. 7. Illustration of SAU features

Further details of this sigaling model and its different levels are discussed
below.

4.1 Signaling Level 1

In this level, input signal is obtained and evaluated through the first SPU. Sig-
nals propagate according to Eq. 1, which stimulates the effects of signaling for
each component monitored, where f(Xi(k)) is the transformation occurred to
input signal X and integration in signal S, usually representing the quantitative
variation X̄i(k) of component i ∈ X during the instant k, and θ represents the
signaling decay rate. This equation is applied to all SPUs for collecting signals.

Si(k)(1) = Si(k−1)(1) ∗ (1 − θ) + f(Xi(k)) (1)

After their calculation, signals are evaluated according to their magnitude
and their duration of higher level of concentration. If a signal satisfies these
conditions, it will propagate further.

The activation of responses is analogous to transcription factors in the bio-
logical system, and the equation is defined in (2) for N components where Ai

is a boolean variable which defines the signaling activation conditions (3) for
component i at duration k̄i in the transcription factor F , which regulates the
response.

Yo(k) =
∑

∀i∈Fo

Si ∗Ai (2)

Ai =
{
1, If Si(k) > φ AND k̄i � ψ
0, Otherwise

(3)

When a signal associated with input data (or a set of these) is activated, it
generates a response of a one kind, but if integrated with another signal, this
will generate a response of different kind. The example in Fig. 8 illustrates this
model for two different signals but may apply applicabe to multiple levels.

In some cases, inactive factors in first level may be presented as a complemen-
tary response signal, which also propagates through other SPUs. Another signal
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Fig. 8. Example of signaling in which different responses are generated

produced is the categorical signal, defined by positive and negative forms, based
on the number of activated components, which allows the further propagation
of a particular signal through the environment.

The co-stimulation signal which influences the response, allowing a signal
transition through levels and reinforces further signals, is defined by the presence
of faulty component evaluation and can assume positive or negative values, as
defined in Eq. 4.

υ(k) =

{
−1,∑N

∀i∈Fj
= 0

+1, Otherwise
(4)

Each output from this level is distributed through signaling environment, in
order to produce a proper response within the system components.

4.2 Intermediate Levels

According to our signal hierarchy model, signals propagate and are processed
by SPUs at different levels. When processing requires multiple cells in the same
level, a distribution matrix κco should be provided Eq.(5), which defines the
signal propagation Eq.(6) for each input i and output o, and the signaling rule
applied to level X(l) is defined in Eq. 7.

κco(l) =
{
1, If an output o is destined to the cell c
0, Otherwise

(5)

Xci(l) = Yo(l − 1)κco(l) (6)

Si(k)(l) = Si(k−1)(l)(1 − θ) + f(Xi(k))(l) (7)

For propagation, the categorical signal may follow a binding rule Ω(c), as
defined in Eq. 8, where f(υ) corresponds to a binding value, analogous to co-
stimulation, which allows the propagation of these signals, once received by the
SDU. The value of categorical signal is useful to define how signal will propagate
within SDUs, as the 0 value implies that signal will not propagate.

Ω(c) =
{
1, If υl−1 = f(υ)
0, Otherwise

(8)
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Feedback of signaling is based on how successful was the propagation of signals
once occurred. However, in this simple model, the feedback variable informs only
if signals have propagated within the SPU, as a binary value. This scheme is
applied to all levels of this proposed signaling model.

4.3 Upper Level of Signaling

The last level processes all signals collected from previous levels reorganized into
a final outcome. The initial processing is similar to the previous levels, through
the activation of signal conditions during the processing.

Once transcribed, all activated signal patterns take part in a decision process
of the overall system fault detection. In SAU the signal integration plays an
important role for determining the system state, fault identification, and clas-
sification depending primarily on activated signals during their processing, as
shown in Fig. 9.

Fig. 9. Mechanism adopted in the Signal Amalgamation Unit (SAU) after activation
of signal conditions

In simple systems, this processing is done at once, in a centralized way, based
on the iterative processing of all hierarchies and the differentiation of cells pro-
vided by cytokines in the biological model. In more complex systems, various
cells can process these information in order to provide a robust and distributed
data evaluation, useful in communication-based systems.

The main ideas regarding the evaluation of components and combination of
signals are the integration among signals, evaluation, and further decision about
the classification of the anomaly considering the number of components and their
collective behavior.

5 Possible Applications of the Model

The development of the cell signaling based approach aims to provide detec-
tion and classification tasks in distributed and complex systems, in which the
component fault detection and analysis for a large-scale system are difficult.

In particular, the proposed model seems suitable for fault detection, specially
in those systems whose components and its subcomponents are interlinked be-
tween each other. This application paradigm can be seen in some distributed
system works [1, 6]. Some application examples include Power Systems [4, 25];
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Smart Grid Systems [12, 14]; Distributed File Systems, as fault tolerance sys-
tems [5]; Cloud Computing Systems [9, 15] among others.

A typical description of Fault Detection problems is given in [13]. According to
the study, some services may provide useful abstractions for building distributed
systems, whose faults can be easily isolated and repaired. Some aspects such as
the detection of arbitrary faults are discussed and most of these aspects have
features in common with the signaling model.

These problems require the detection and isolation of faulty components, once
noticed in different sections of a large scale system. Such a detection of compo-
nent failure is very important before a critical fault occurs which may lead to a
catastropic system failure.

This also implies in a Modularity-based strategy, in which the number of
extreme signals are higher than mid-level ones, as well as a Divide-and-conquer
strategy, in which distributed environment and signal combination provide more
robustness.

The final outcome of the model is the detection flag or the fault category in
which the processed information are associated to. Another expected feature is
regarding some signaling metrics, which may also help on diagnosis by a pos-
sibility of level decomposition. The diagnosis depends on the complexity of the
system and their monitored components as well.

6 Summary

In the immune system, signaling plays a major role in sharing and transmitting
information during an immune response and is essential to the effectiveness of the
immune defense. In immune diffusion, the message is passed from one immuno-
component to others without any feedback. Another mechanism called immune
dialogue exhibits continuous exchange of molecular signals with its counter parts.
The immune reactivity is determined by context, where self and foreign agents
play upon each other. Signaling also allows a cell to transfer information about
its internal state to the outside, where it can be recognized by cells in the Im-
mune system. Furthermore, signaling results in changes to the cell, allowing it
to appropriately respond to a stimulus.

The proposed approach may provide a robust scheme of signaling, able to
detect different types of faults with increase reliability. The method aims to
gather relevant components statu signals from the monitored system and then
use these signals in order to perform detection and/or fault classification.The
main goal of the signaling method is to provide a distributed detection in which
most components are coupled and the early detection of a fault is important.The
practical effects of the novel approach may be seen in further evaluation in large
and distributed systems. In summary, this signaling model will be able to discover
the unknown Fault, and can also be applied in the monitoring state or health of
the monitored system so to diagnose fault earlier.

Acknowledgements. The second author has received support from the Brazil-
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Abstract. We present the design-scheme and physical implementation for a 
Dynamic Adaptive Neural Network Array (DANNA) based upon the work by 
Schuman and Birdwell [1,2] and using a programmable array of elements con-
structed with a Field Programmable Gate Array (FPGA). The aim of this paper 
is to demonstrate how a single programmable neuromorphic element can be de-
signed to support the primary components of a dynamic and adaptive neural 
network, e.g. a neuron and a synapse, and be replicated across a FPGA to yield 
a reasonably large programmable DANNA of up to 10,000 neurons and syn-
apses. We describe element programmability, how the dynamic components of 
a neuron and synapse are supported, and the structure used to support the moni-
toring and control interface. Finally, we present initial results from simulations 
of the hardware, the projected performance of the array elements and the physi-
cal implementation of a DANNA on a Xilinx FPGA.  

Introduction  

Artificial Neural Networks (ANNs) constitute a powerful computational methodology 
that can outperform von Neumann schemes in numerous data-processing applications 
[11, 12, 13]. They have been shown effective in tasks such as pattern recognition, 
sensory reconstruction, image processing, streaming data analytics and deep learning 
applications, but they do not exhibit emergent dynamic behaviors.  Rather, dynamic 
elements are typically incorporated with ANNs in architectures pre-defined by devel-
opers (using, for example, unit delay elements), and the ANNs are subsequently 
trained using machine learning (ML) methods.  In contrast, biological neural systems 
are parallel and distributed information processing systems that incorporate state in-
formation (memory) and dynamics (enabling behaviors that depend upon past stimuli) 
in a distributed fashion using the charge states of individual neurons and propagation 
delays along axons. Spiking ANNs, which are event-based or event-driven networks, 
are the subject of continuing research and overcome some of these issues but appear 
to suffer from the need for large interconnection networks [14]. We use spiking beha-
vior, and we believe our approach requires fewer interconnections between network 
components due to state information captured within the interconnections, as  
described in [1,2]. 

ANNs have been implemented in both software (modeling and simulation) and 
hardware (analog or digital circuit) constructs. ANNs implemented in software typi-
cally leverage a model of the target network components and structures, and simulate 
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the operation of the network on general-purpose sequential computers. This approach 
allows emulation of a wide range of environments and applications. The constraints 
of software simulated ANNs cause them to require large computing systems for per-
formance or large run-times to complete a specific analysis. Specific-purpose fixed 
hardware implementations have also been used to implement ANNs for real-time, 
mission critical and/or streaming data environments. Many implementation examples 
using analog or digital circuits, and continuous, spiking, pulse-mode and/or discrete-
event operation exist. But most hardware implementations for ANNs have static, or 
non-adaptive, structures, and are application specific.  Many hardware implementa-
tions are also constrained by the use of components and structures commonly used in 
von Neumann based systems (such as RAM, buses, processors, and sequential  
instruction processing). There is still much room for improvement before artificial 
constructs approach the capabilities and efficiencies realized by the brain. 

We have created a viable model for the components, connectivity, and adaptability 
of a dynamic neural network (implementing both distributed memory elements and 
distributed dynamic components): a neuron, a synapse, their associative operating 
characteristics, and a connection matrix. The goal is to enable not only a dynamic but 
also an adaptive network structure using these characteristic components.  The struc-
ture and simplicity of this Dynamic Adaptive Neural Network model enable an effi-
cient digital representation to be created and implemented in a single digital element 
that can be programmed to represent either a neuron or a synapse in a network. This 
digital element can then be replicated across a logic chip to enable an adaptive and 
programmable array of elements. This array of programmable elements creates a Dy-
namic Adaptive Neural Network Array, DANNA, which enables the creation of any 
neural network sized to fit within the capacity provided by the array. This provides 
one of the first physical implementations of a programmable adaptive and dynamic 
array of neuromophic elements not using traditional digital processing mechanisms. 

There have been previous efforts in implementing neural networks with spiking 
neurons in VLSI. Examples of analog VLSI implementations include [15,16]. There 
have also been digital VLSI implementations of neural networks using FPGAs that 
provide a baseline comparison for our approach. These range from their use as an ac-
celeration engine [17], to a multiplexing SIMD architecture [18], to a spiking neural 
array with a Leaky-Integrate and Fire (LIF) neuron model with variable synapse 
weights and delays [19]. We will show that the programmability, adaptive behavior, 
flexibility and scalability provided by DANNA enable support for more complex and 
larger target applications. 

This paper explores how to implement an array of programmable adaptive neuro-
morphic elements using a FPGA and the DANNA component models. The capacity, 
logic structures, functions and layout of Xilinx Virtex-7 FPGAs provide the potential 
to support useful array sizes, up to 10,000 programmable elements. Programming, 
control and I/O interfaces are described to enable the creation of a target neural net-
work and the monitoring of its operation. Finally, we provide a perspective on the po-
tential performance of the FPGA-based DANNA and project what we believe will be 
feasible with a VLSI-based DANNA implementation.  
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An Artificial Neural Network 

The concept of ANNs emerged from knowledge of the principle constructs of the 
brain. The design of our dynamic adaptive neural networks draws inspiration from bi-
ological neural networks [5,6] and traditional ANNs [7,8] from machine learning. Our 
goal is not to directly implement or simulate a biological network or to represent what 
occurs in the brain. Our network model and the elements used within the network are 
highly simplified compared to higher fidelity models of the biological components. 
Our model of a neuron merely accumulates a quantity analogous to (and we call it 
this) charge, and the spiking output is an event, occurring in the hardware synchron-
ously with a clock. Connections between neurons have limited fan-out and fan-in  
capabilities, and there are thus typically many fewer synaptic connections than are 
observed in biological networks. We believe, however, that the simple implementa-
tion used to represent neurons, synapses and their communications with each other is 
still sufficient to support complex behavior and applications environments. 

In most ANN simulations or implementations the component elements, neurons 
and synapses, are unique and have specific designs and operating parameters. These 
components and their placement in a network often must be predetermined and con-
structed to support a specific task or problem. These networks, while effective for 
their targeted intent, lack the flexibility to adjust to changing conditions, problem 
space and/or the information input to the network. The networks we construct are 
“designed” using evolutionary optimization tools, which train both component (neu-
ron and synapse) placement and interconnections, and the parameters of the compo-
nents. This dynamic adaptability and configuration flexibility is one of the key 
attributes of our element design and array structure.   

Communication paradigms for ANNs vary from continuous to discrete, spiking to 
pulse-mode excitation signaling for the networks’ inputs/outputs or for signaling be-
tween elements. We implement a “spiking neural array” using a discrete event-driven 
signaling model where each communication between elements carries a “fire” signal 
and a “weight” signifying the strength or impact the communicated event must have 
on the receiving network components. Signal weights are most important as inputs to 
a neuron where they are used as input values to its excitation function.   

Most ANNs have a physical implementation or “layout” driven by the specific cha-
racteristics of the networks function and the physical characteristics and constraints of 
the devices being used to construct the network. In most cases a von Neumann com-
puter is used to create a virtual representation of the network and its components. In 
some cases special hardware is constructed to implement the network’s components 
and function (e.g. analog and/or digital devices). In contrast, we build a 2-dimensional 
array or grid of identical “elements” where each element has input and output connec-
tions to its eight nearest neighbors (left, right, top, bottom and diagonal neighbor ele-
ments). Each element in the array can be programmed to be a neuron or a synapse.   

We use a model of a neuron inspired by the Hodgkin-Huxley model [3]. Key oper-
ating components like neuron charge accumulators, thresholds and refractory periods, 
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and synaptic propagation delays and weights all introduce dynamic behaviors in the 
network, serving as memory and influencing system dynamics. Unlike most proposed 
ANN architectures, but similar to natural neural processes, these dynamic effects are 
distributed throughout the network, and are directly influenced in our ANNs by the 
evolutionary programming methods we utilize to construct and adapt the ANNs for 
specific purposes [1,2]. 

A Neuron 

The primary function of a DANNA neuron is to accumulate “charge” by adding the 
“weights” of firing inputs (synapses) to its existing charge level until that level reach-
es a programmable threshold level.  Each neuron has an independently programmable 
threshold.  When the threshold is reached, if the neuron is not in its refractory period, 
the neuron fires, and the neuron’s charge is reset to a bias level, dependent on the de-
sign parameters for the network.  If the neuron is within its refractory period, then the 
neuron maintains its charge but does not fire. Thus, a neuron can accumulate charge 
during its refractory period, but it cannot fire during this period.  As soon as a neuron 
fires, it enters its refractory period.  The refractory period for all neurons is a constant 
value set for a given application or operational characteristic. 

We have chosen a weighted-sum threshold activation function for the neuron 
charge given its implementation simplicity and functionality, but other activation 
functions could be implemented (e.g. linear, sigmoid or Gaussian). 

The neuron charge function ܪ௞௝ሺݐሻ can be expressed as: 

ሻݐ௞௝ሺܪ ൌ  ෍ ௜ேݓ
௜ୀଵ ሺݐሻ ݔ௜ሺݐሻ ൅ ܪ௞௝ሺݐ െ 1ሻ 

where kj is the location address in the 2-dimensional array, N is the number of neuron 
inputs, ݓ௜  is the weight of input ݔ௜ and t is the discrete sample time for network se-
quencing. Weights can be negative or positive discrete values with minimum and 
maximum limits set by the functional requirements of the target applications. For this 
implementation we chose to use signed 8-bit weights (-128 to +127) and a 9-bit 
charge accumulator. 

The neuron activation function ܽ௞௝ሺݐሻ (the point at which a neuron will fire its out-
put) can be expressed as: ܽ௞௝ሺݐሻ ൌ  ݂ ቀܪ௞௝ሺݐሻቁ ൌ  ቊ1   ݂݅   ܪ௞௝ሺݐሻ ൒ ሻݐ௞௝ሺܪ   ݂݅   ሺtሻ 0ߠ ൏  ሻݐሺߠ

where ߠ is the neuron’s programmable threshold.  When the neuron’s charge reaches 
its threshold level the charge of the neuron is reset to a predetermined bias level be-
fore starting a new accumulation cycle. The bias value is the same for all neurons  
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in the network in the current design. For this implementation the thresholds are li-
mited to binary values from 0 to +127.  This neuron model follows the computational 
model for a neuron proposed by Rosenblatt [4]. 

Additional key features of our neuron model are the number of inputs/outputs and 
its firing refractory period. Our present implementations support 8 input/output (I/O) 
ports connecting to nearest neighbor elements. Note that each port can be pro-
grammed as an input and/or an output, and each port that is enabled must connect to 
an element programmed as a synapse. Input port sampling is done sequentially and 
must be randomized to avoid having a single synapse dominate the interactions with 
the neuron. This is done by having the first port address sampled in a network cycle 
be random and each subsequent port address be in a binary ordered sequence from the 
first address. 

The neuron refractory period is the amount of time, measured in network cycles, 
which a neuron must hold off firing from a previous firing condition. We have set the 
neuron refractory period to one network cycle, meaning if the input firing rate and 
weights are sufficiently high, a neuron can fire on every network cycle.  With further 
testing if we find the firing rate for neurons needs to be programmable, we have a  
design which implements a programmable firing refractory period. 

Our model for neurons allows them to be either input neurons or internal neurons. 
Input neurons are placed along specified edges of an array to facilitate routing. Neu-
rons are connected to other neurons via synapses. These synapses are directed, so 
each neuron has a set of synapses to other neurons and a set of synapses from other 
neurons. 

A Synapse 

Synapses are defined by the neurons they connect; each synapse goes from one neu-
ron to another neuron. Each synapse represents the distance between two neurons and 
the weight (or strength) of the synaptic connection. The distance between the two 
neurons is represented as a delay, implemented using a first-in/first-out (FIFO) shift 
register clocked at the network cycle rate, and affects how long it takes for charge to 
travel along the synapse. The weight of the synaptic connection determines how much 
charge arrives at the second neuron after the first neuron fires. Our network model 
does not currently include the concept of myelination; if two synapses are each of 
length d, then it takes the same amount of time (delay) for charge to travel from one 
end of each synapse to the other. Synapses capture selected features of both axons and 
synapses found in biological neural networks. 

The primary function of a DANNA synapse is to adapt and transmit a weighted fir-
ing signal based on: 1) the firing rate of its input neuron, 2) the firing conditions of its 
output neuron and 3) its programmable distance which represents the effective length 
of the synapse. Two of the unique characteristics of our synapse model are: 1)  
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the weight value held by the synapse can automatically potentiate (long-term poten-
tiation, or LTP) or depress (long-term depression, or LTD) depending on the firing 
condition of its output neuron and 2) the ability to store a string of firing events in its 
“distance FIFO” to simulate a synapse transmitting a set of firing events down its 
length. Note we are translating a synapse’s length into a representative number of dis-
crete time periods through a programmable shift register. 

A synapse can have one (out of eight) I/O ports enabled as an input and  one (out 
of eight) I/O ports enabled as an output.  When a synapse receives a firing event from 
an input neuron it places this event on its distance FIFO.  The distance FIFO is a pro-
grammable shift register that can store from 1 to 256 firing events (one per network 
cycle programmed as the “distance” of the synapse).  When each firing event reaches 
the output of the distance FIFO the present weight value stored in the synapse is 
transmitted as a firing event on its output port. 

As mentioned, the synapse weight will automatically adapt based on its firing con-
dition and the firing response of its output neuron.  LTP and LTD occur in biological 
brains; it is speculated that they play a major role in learning [9].  The adaptive  
synapse weight function, ݓ௞௝ሺݐሻ, can be expressed as follows: 
 ݂݅ ܵ௞௝ሺݐሻ ൌ 1, ݐ௞௝ሺݓ  ݄݊݁ݐ ൅ 1ሻ ൌ 
 ቐ ሻݐ௞௝ሺݓ  ൅ ௦ሻݐ௡௘௨௥௢௡ሺܽ  ݂݅  ܦܶܮ ൌ ሻݐ௞௝ሺݓ 1 ൅ ௦ሻݐ௡௘௨௥௢௡ሺܽ  ݂݅  ܲܶܮ ൌ 0 ܽ݊݀  ܽ௡௘௨௥௢௡ሺݐ௦ ൅ 1ሻ ൌ ௦ሻݐሻ  ݂݅  ܽ௡௘௨௥௢௡ሺݐ௞௝ሺݓ 1 ൌ 0 ܽ݊݀ ܽ௡௘௨௥௢௡ሺݐ௦ ൅ 1ሻ ൌ 0  

 
where ܵ௞௝ሺݐሻ is the synapse output firing condition, ܽ௡௘௨௥௢௡ሺݐ௦ሻ is the activation func-
tion or firing condition of the neuron connected to the synapse’s output at the time 
during the network cycle it samples the synapse output, LTD is the “long term depres-
sion” value for the synapse, and LTP is the “long term potentiation” value for the syn-
apse. Note that ሺݐ௦ ൅ 1ሻ is the next input sample cycle after the neuron has sampled 
the synapse output; given eight inputs, the network cycle is divided into eight input 
sample cycles.   

For our implementation the LTP and LTD values are set at +1 and -1, respectively. 
Therefore, a synapse’s weight is increased by one if it causes its output neuron to fire 
and is decreased by one if it fires when its output neuron is already firing. It is  
unchanged in all other conditions. 

Finally, a synapse has a programmable LTP/LTD refractory period. This pro-
grammable value (ranging from 0 to 15) represents the number of network cycles a 
synapse must wait from its last weight potentiation or depression before it can adjust 
its weight again.  This function limits the rate of potentiation/depression of a syn-
apse’s weight.  All potentiation and/or depression conditions experienced during the 
LTP/LTD refractory period are ignored; they have no effect on the synapse weight. 
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* Signals provided from programmable registers implemented in each element. 

Note: All signals shown are connections to other elements or global clocks in the array except for: Inc/Dec 

Weight, LTD/LTP Refrac, Fire and signals from the elements programmable registers. 

Fig. 1. Element block diagram 

An Element 

An array element implements all the functions necessary to support its operation as  
a neuron or a synapse. To minimize the physical implementation size of the array 
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element, as many functional components as possible are used to support portions of 
each neuromorphic function.  To maximize performance and minimize size we use a 
very simple state-machine design and avoid the use of digital signal processors, float-
ing-point units, arithmetic-logic units, memory arrays and other common micropro-
cessor units.   

The states used to sequence the array element are defined as follows: 

• Select an input port (1 of 8) and acquire input fire condition (Note: all 8 ports of an 
element are sampled during a single network cycle).  Check the fire condition of 
the element assigned to the output port (used to determine LTD/LTP if the element 
is configured as a synapse).  Load the synapse FIFO with the input fire condition if 
the element is a synapse. 

• Accumulate the acquired input weight with the current charge state and compare 
the accumulated charge with the programmed threshold if the element is confi-
gured as a neuron. The accumulator holds the LTD/LTP weight if the element is a 
synapse.  Depress or potentiate synapse the weight based on the firing condition of 
the element assigned to the output port. 

• Fire the output and reset the accumulator to the bias value if the charge ൒ the thre-
shold if the element is a neuron.  Fire the output if a fire event is at the output of 
the synapse FIFO if the element is a synapse. 

We overlap the “Fire Output” and “Acquire Input” states, reducing the state machine 
to two states.  A network cycle consists of eight element cycles, and the element sam-
ples all eight inputs during a single network cycle.  Therefore, it takes eight element 
cycles to complete one network cycle.  The following list of functional components is 
implemented in the array element; these components are illustrated in the block  
diagram of the element in Figure 1. 

• Programmable Registers: 
o 8-bit Threshold/Weight Register (stores threshold for neuron, or weight 

for synapse). 
o 8-bit Synapse Distance Register (synapse mode only) 
o 8-bit Input Enable Register 
o 4-bit Mode/Output Select Register (Neuron/Synapse; 3-bit output port 

select if a synapse, which is used to determine which connected ele-
ments output should be monitored for LTD/LTP). 

o 4-bit LTD/LTP Refractory Period Register (synapse mode only) 
• 8x9-bit I/O port.  Each port includes an 8-bit uni-directional I/O data interface to 

communicate “weights” and a “fire” signal.  An I/O can communicate a “fire 
event” from a neuron to a synapse or a “weight” from a synapse to a neuron.   

• 8-to-1 input port multiplexer and latch.  Each input port is 9-bits wide (1-bit “fire” 
and 8-bit “weight” signals).  The network provides global input select signals to 
support sequencing through all connected inputs.  A pseudo-random number gene-
rator is used to randomize the input sampling sequence during each network cycle. 

• 9-bit accumulator (adder, comparator and latch). This holds and calculates 
“charge” for a neuron or “weight” for a synapse. It also compares “charge” to 
“threshold” for a neuron. The accumulator accumulates input firings from all 
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enabled inputs to the neuron. The weight of each input firing event is stored and 
added to the “charge” in the order it is sampled. Each weight is an 8-bit signed in-
teger. When an element is a synapse, its weight will be depressed or potentiated, 
by adding -1 or +1 respectively, depending on the effect the synapse firing event 
has on its connected neuron. 

• 8-bit output register to hold output communications to connected array elements 
(the “threshold” when configured as a neuron and the “weight” when configured as 
a synapse). The output register value is driven onto the output port during a “firing 
event” and held active for one network cycle.  At all other times the output is zero. 

• A Synapse Distance FIFO stores input firing events to a synapse and maintains the 
firing delays between those events. This is implemented via a 1-bit wide x 256 en-
try shift register. The Synapse Distance Register selects the appropriate “tap” off 
the event shift register to implement the “distance” (a delay) associated with the 
configured synapse. 

• 4-bit counter and register (or 16-bit shift register) with programmable length. This 
holds and implements the LTP/LTD refractory period for a synapse. A global pro-
grammable refractory period register is used to drive a 4-bit refractory period 
“length” to all elements. 

• Clock inputs (created by a network clocking circuit and distributed to manage fan-
out and minimize clock skew), including a Global Network Clock (Net_Clk), an 
Acquire/Fire Clock (Acquire_Clk), and an Accumulate Clock (Accum_Clk). The 
Global Network Clock sets the network cycle time. Acquire/Fire Clock controls 
the element cycle time and Accumulate Clock enables the accumulator to perform 
two operations every element cycle (load and accumulate). 

• Programing/monitoring interface to enable register reads/writes from/to the exter-
nal interface. In the current implementation, each element in the array is directly 
addressed via a multiplexed 8-bit address/data port (which supports a 16-bit global 
element address and an 8-bit data port), a 3-bit element register select, a read/write 
signal, a strobe, a clock, a Run/Halt signal and Reset (16 signals total).  

An Element Array 

Figure 2 provides a high-level block diagram of the array of elements and the pro-
grammatic and control functional elements. This may be modified in future imple-
mentations to provide additional control and monitoring functions. The element array 
is structured as a 2-dimensional array that is k elements wide by j elements high. Each 
element connects to eight of its nearest neighbor elements (directly above, below, to 
the right and left, and diagonal), except for elements on the edge of the array, which 
have a limited number of connections. Some of the edge elements are used as in-
puts/outputs to external signals and devices. We have also placed static “pass-thru” 
elements throughout the array. These pass-thru elements provide a static connection 
between corresponding horizontally, vertically and diagonally connected ports. The 
pass-thru element provides additional flexibility to the network configuration soft-
ware, allowing it to avoid creating chains of connected elements that block access to 
other parts of the array. 
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Fig. 2. Array block diagram 

The FPGA connects to a PCIe interface that is used for external programming and 
adaptive “learning” algorithms that monitor and control the configuration and charac-
teristics of the network. Each element must sample all eight of its input ports within a 
network cycle. This is accomplished using a global input select function. A 63-bit li-
near-feedback shift register (LFSR) is used with a loadable 3-bit counter to generate 
random starting address sequences for the input selects which guarantee that the first 
element selected during each network cycle is randomly chosen with roughly uniform 
probability. All eight element-inputs are sequentially sampled beginning with the ran-
domly chosen one within a single network cycle.  Randomization of input sampling is 
important to prevent the domination by one input of the behavior of a neuron. 

A key design feature of the element array is the numbering scheme used for the I/O 
ports. Connected I/O ports on adjacent network elements must have the same port 
number to facilitate implementation of the synapse’s LTD/LTP function. The element 
I/O port number scheme used is shown in Figure 2.   
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Results 

The Xilinx Vivado™ Design Suite was used for the design, implementation, simula-
tion and layout of the DANNA element array. VHDL was used as the description lan-
guage for all designed components.  We targeted the Virtex-7 series of Xilinx FPGAs. 
The main logic resource used on the Xilinx 7-series FPGAs is the “configuration log-
ic block” or CLB. Each CLB contains two Slices, which each have four 6-input 
“look-up tables” (LUTs), eight flip-flops and arithmetic carry logic. There is also log-
ic to implement wide multiplexers and long shift registers. 

The element implementation required 84 LUTs and 64 flip-flops. We were able to 
fit the element in a tightly arranged 28 Slices or 14 CLBs using the Vivado floor 
planning and placement tools. Note that none of the on-chip DSPs or Distributed Ram 
Blocks was used in the element design. 

Our element simulations verified full functionality for both neuron and synapse 
modes. Our target clock rate for the network was 1MHz and 8MHz for the element 
(sample rate for the inputs). Further timing simulations showed we could clock the 
network at 8MHz and the element at 64MHz. We believe we can achieve a 10MHz 
network clock and 80MHz element clock rate. The higher clock rates are important 
because evolutionary optimization (EO) is typically used to design a DANNA for a 
specific implementation. EO requires the configuration of multiple DANNAs, simula-
tion or execution of them against the application (for example, for signal detection or 
classification, or to control a (possibly simulated) physical object’s behavior, and the 
limiting factor in the optimization is usually execution and evaluation of the perfor-
mance of individual DANNAs. Higher clock rates translate directly to more rapid 
convergence of the EO design steps. 

The global functions were implemented and tested using the same design tools and 
simulation models as the element. This included the Clocks, Input Select, PCIe, pro-
gramming interface, and programmable registers for network control and LTD/LTP 
refractory period. The PCIe and programming interface took the most logic to imple-
ment. By reducing the PCIe interface to a single lane (1x) this significantly reduced 
the logic required to interface the array to an external computer. 

The final design was then configured, loaded and tested on two different Xilinx 
evaluation boards: the VC709 evaluation board featuring the XC7VX690T FPGA and 
the VC707 evaluation board featuring the XC7VX485T. The 485T FPGA has 75,900 
Slices, and the 690T FPGA has 108,300 Slices. We were able to place an array of ap-
proximately 2500 elements on the 485T FPGA and approximate 3500 elements on the 
690T FPGA. We believe using Xilinx’s largest Virtex-7 FPGA, the XC7V2000T, we 
will be able to build an element array of approximately 10,000 elements. With the ar-
ray sizes achieved, many solutions needing a neural network array can be supported. 

Conclusion 

We have developed and constructed a dynamic and adaptive neural network array 
(DANNA) using the neural network model proposed by Schuman/Birdwell [1,2],  
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a programmable element design that can be configured to be a neuron or a synapse, 
and a 2-dimensional array structure and interface to allow neural networks to be 
created and dynamically modified. Synapse distance and LTP/LTD functions were al-
so implemented. We have demonstrated the functionality, capacity and performance 
of this DANNA structure on Xilinx Virtex-7 FPGAs and project the maximum per-
formance and capacity expected on Xilinx’s largest FPGA. By moving the design to a 
custom VLSI design in the same CMOS process as the Xilinx FPGAs (28nm), we be-
lieve we can increase capacities by two orders of magnitude (1 million elements) and 
network clocking rates by at least one order of magnitude (100 MHz).  Our next effort 
will be to interface the array to the physical world (sensors, actuators, imaging devic-
es, etc.) via ADCs and DACs on its input and output elements, and configure the ar-
ray to perform selected tasks (detection, classification, pattern recognition, control, 
and image and video processing such as edge and feature detection, classification, and 
tracking). This will help to evaluate and establish the effectiveness, adaptability and 
flexibility of the DANNA structure. We will also continue work on learn-
ing/programming schemes and tools to optimize configuring and routing of elements 
and their connections. It may, for example, be the case that a programmable “pass-
thru” function for the element will be required to route larger network configurations. 
We have proven that a programmable neural network can be constructed using a sim-
ple array of elements built on an FPGA. More work is required to apply this concept 
to real world problems. 
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Abstract. Three results are shown on producibility in the hierarchical
model of tile self-assembly. It is shown that a simple greedy polynomial-
time strategy decides whether an assembly α is producible. The algo-
rithm can be optimized to use O(|α| log2 |α|) time. Cannon, Demaine,
Demaine, Eisenstat, Patitz, Schweller, Summers, and Winslow [4] showed
that the problem of deciding if an assembly α is the unique producible
terminal assembly of a tile system T can be solved in O(|α|2|T |+|α||T |2)
time for the special case of noncooperative “temperature 1” systems. It
is shown that this can be improved to O(|α||T | log |T |) time. Finally, it
is shown that if two assemblies are producible, and if they can be over-
lapped consistently – i.e., if the positions that they share have the same
tile type in each assembly – then their union is also producible.

1 Introduction

1.1 Background of the Field

Winfree’s abstract Tile Assembly Model (aTAM) [16] is a model of crystal growth
through cooperative binding of square-like monomers called tiles, implemented
experimentally (for the current time) by DNA [3,18]. In particular, it models the
potentially algorithmic capabilities of tiles that can be designed to bind if and
only if the total strength of attachment (summed over all binding sites, called
glues on the tile) is at least a parameter τ , sometimes called the temperature.
In particular, when the glue strengths are integers and τ = 2, this implies that
two strength 1 glues must cooperate to bind the tile to a growing assembly.
Two assumptions are key: 1) growth starts from a single specially designated
seed tile type, and 2) only individual tiles bind to an assembly, never larger
assemblies consisting of more than one tile type. We will refer to this model
as the seeded aTAM. While violations of these assumptions are often viewed as
errors in implementation of the seeded aTAM [14,15], relaxing them results in a
different model with its own programmable abilities. In the hierarchical (a.k.a.
multiple tile [2], polyomino [12, 17], two-handed [4, 7, 10]) aTAM, there is no
seed tile, and an assembly is considered producible so long as two producible
assemblies are able to attach to each other with strength at least τ , with all
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individual tiles being considered as “base case” producible assemblies. In either
model, an assembly is considered terminal if nothing can attach to it; viewing
self-assembly as a computation, terminal assembly(ies) are often interpreted to
be the output. See [8, 13] for an introduction to recent work in these models.

The hierarchical aTAM has attracted considerable recent attention. It is coNP-
complete to decide whether an assembly is the unique terminal assembly pro-
duced by a hierarchical tile system [4]. There are infinite shapes that can be
assembled in the hierarchical aTAM but not the seeded aTAM, and vice versa,
and there are finite shapes requiring strictly more tile types to assemble in the
seeded aTAM than the hierarchical aTAM, and vice versa [4]. Despite this in-
comparability between the models for exact assembly of shapes, with a small
blowup in scale, any seeded tile system can be simulated by a hierarchical tile
system [4], improving upon an earlier scheme that worked for restricted classes
of seeded tile systems [12]. However, the hierarchical aTAM is not able to simu-
late itself from a single set of tile types, i.e., it is not intrinsically universal [7],
unlike the seeded aTAM [9]. It is possible to assemble an n × n square in a
hierarchical tile system with O(log n) tile types that exhibits a very strong form
of fault-tolerance in the face of spurious growth via strength 1 bonds [10]. The
parallelism of the hierarchical aTAM suggests the possibility that it can assem-
ble shapes faster than the seeded aTAM, but it cannot for a wide class of tile
systems [5].

1.2 Contributions of This Paper

We show three results on producibility in the hierarchical aTAM.

1. In the seeded aTAM, there is an obvious linear-time algorithm to test whether
assembly α is producible by a tile system: starting from the seed, try to at-
tach tiles until α is complete or no more attachments are possible. We show
that in the hierarchical aTAM, a similar greedy strategy correctly identifies
whether a given assembly is producible, though it is more involved to prove
that it is correct. The idea is to start with all tiles in place as they appear
in α, but with no bonds, and then to greedily bind attachable assemblies
until α is assembled. It is not obvious that this works, since it is conceivable
that assemblies must attach in a certain order for α to form, but the greedy
strategy may pick another order and hit a dead-end in which no assemblies
can attach. The algorithm can be optimized to use O(|α| log2 |α|) time. This
is shown in Section 3.

2. The temperature 1 Unique Production Verification (UPV) problem studied
by Cannon, Demaine, Demaine, Eisenstat, Patitz, Schweller, Summers, and
Winslow [4] is the problem of determining whether assembly α is the unique
producible terminal assembly of tile system T , where T has temperature 1,
meaning that all positive strength glues are sufficiently strong to attach any
two assemblies. They give an algorithm that runs in O(|α|2|T | + |α||T |2)
time. Cannon et al. proved their result by using an O(|α|2 + |α||T |) time al-
gorithm for UPV that works in the seeded aTAM [1], and then reduced the
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hierarchical temperature-1 UPV problem to |T | instances of the seeded UPV
problem. We improve this result by showing that a faster O(|α| log |T |) time
algorithm for the seeded UPV problem exists for the special case of temper-
ature 1, and then we apply the technique of Cannon et al. relating the hier-
archical problem to the seeded problem to improve the running time of the
hierarchical algorithm to O(|α||T | log |T |). This is shown in Section 4. Part
of the conceptual significance of this algorithm lies in the details of the proof.
In particular, we show a relationship between deterministic seeded assembly
at temperature 1 and biconnected decomposition of the binding graph of an
assembly using the Hopcroft-Tarjan algorithm [11]. This relationship makes
more precise the intuitive notion that determinism in temperature 1 systems
with glue mismatches is enforced by “blocking.” In particular, the tile that
does the blocking must be a cut vertex of the binding graph and must be an
ancestor of the blocked tile in the Hopcroft-Tarjan tree decomposition.

3. We show that if two assemblies α and β are producible in the hierarchi-
cal model, and if they can be overlapped consistently (i.e., if the positions
that they share have the same tile type in each assembly), then their union
α ∪ β is producible. This is trivially true in the seeded model, but it re-
quires more care to prove in the hierarchical model. It is conceivable a priori
that although β is producible, β must assemble α ∩ β in some order that is
inconsistent with how α assembles α ∩ β. This is shown in Section 5.
This result is most interesting for the open question it raises: what happens
if a tile system produces an assembly that overlaps consistently with a trans-
lation of itself ? We conjecture, via a “pumping” argument, that this results
in infinite producible assemblies, which would resolve an open question on
lower bounds on the assembly time of hierarchical systems [5].

2 Informal Definition of the Abstract Tile Assembly
Model

We give an informal sketch of the seeded and hierarchical variants of the abstract
Tile Assembly Model (aTAM).

A tile type is a unit square with four sides, each consisting of a glue label (often
represented as a finite string) and a nonnegative integer strength. We assume a
finite set T of tile types, but an infinite number of copies of each tile type, each
copy referred to as a tile. If a glue has strength 0, we say it is null, and if a
positive-strength glue facing some direction does not appear on some tile type
in the opposite direction, we say it is functionally null. We assume that all tile
sets in this paper contain no functionally null glues. An assembly is a positioning
of tiles on the integer lattice Z2; i.e., a partial function α : Z2 ��� T . We write
|α| to denote |dom α|. Write α � β to denote that α is a subassembly of β,
which means that dom α ⊆ dom β and α(p) = β(p) for all points p ∈ dom α.
In this case, say that β is a superassembly of α. We abuse notation and take a
tile type t to be equivalent to the single-tile assembly containing only t (at the
origin if not otherwise specified). Two adjacent tiles in an assembly interact if
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the glue labels on their abutting sides are equal and have positive strength. Each
assembly induces a binding graph, a grid graph whose vertices are tiles, with an
edge between two tiles if they interact. The assembly is τ-stable if every cut of
its binding graph has strength at least τ , where the weight of an edge is the
strength of the glue it represents.

A seeded tile assembly system (seeded TAS) is a triple T = (T, σ, τ), where T
is a finite set of tile types, σ : Z2 ��� T is a finite, τ -stable seed assembly, and
τ is the temperature. If T has a single seed tile s ∈ T (i.e., σ(0, 0) = s for some
s ∈ T and is undefined elsewhere), then we write T = (T, s, τ). Let |T | denote
|T |. An assembly α is producible if either α = σ or if β is a producible assembly
and α can be obtained from β by the stable binding of a single tile. In this case
write β →1 α (α is producible from β by the attachment of one tile), and write
β → α if β →∗

1 α (α is producible from β by the attachment of zero or more
tiles). An assembly is terminal if no tile can be τ -stably attached to it.

A hierarchical tile assembly system (hierarchical TAS) is a pair T = (T, τ),
where T is a finite set of tile types and τ ∈ N is the temperature. An assembly
is producible if either it is a single tile from T , or it is the τ -stable result of
translating two producible assemblies without overlap. Therefore, if an assembly
α is producible, then it is produced via an assembly tree, a full binary tree
whose root is labeled with α, whose |α| leaves are labeled with tile types, and
each internal node is a producible assembly formed by the stable attachment
of its two child assemblies. An assembly α is terminal if for every producible
assembly β, α and β cannot be τ -stably attached. If α can grow into β by the
attachment of zero or more assemblies, then we write α→ β.

Our definitions imply only finite assemblies are producible. In either model,
let A[T ] be the set of producible assemblies of T , and let A�[T ] ⊆ A[T ] be
the set of producible, terminal assemblies of T . A TAS T is directed (a.k.a.,
deterministic, confluent) if |A�[T ]| = 1. If T is directed with unique producible
terminal assembly α, we say that T uniquely produces α.

3 Efficient Verification of Production

Let S be a finite set. A partition of S is a collection C = {C1, . . . , Ck} ⊆ P(S)
such that

⋃k
i=1 Ci = S and for all i 	= j, Ci ∩ Cj = ∅. A hierarchical division

of S is a full binary tree Υ (a tree in which every internal node has exactly two
children) whose nodes represent subsets of S, such that the root of Υ represents
S, the |S| leaves of Υ represent the singleton sets {x} for each x ∈ S, and each
internal node has the property that its set is the (disjoint) union of its two
childrens’ sets. The following lemma is proven in the full version of this paper.

Lemma 3.1. Let S be a finite set with |S| ≥ 2. Let Υ be any hierarchical division
of S, and let C be any partition of S other than {S}. Then there exist C1, C2 ∈ C
with C1 	= C2, and there exist C′

1 ⊆ C1 and C′
2 ⊆ C2, such that C′

1 and C′
2 are

siblings in Υ .
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Lemma 3.1 will be useful when we view Υ as an assembly tree for some pro-
ducible assembly α, and we view C as a partially completed attempt to construct
another assembly tree for α, where each element of C is a subassembly that has
been produced so far.

When we say “by monotonicity”, this refers to the fact that glue strengths
are nonnegative, which implies that if two assemblies α and β can attach, the
addition of more tiles to either α or β cannot prevent this binding, so long as
the additional tiles do not overlap the other assembly.

We want to solve the following problem: given an assembly α and temperature
τ , is α producible in the hierarchical aTAM at temperature τ?1 The algorithm
Is-Producible-Assembly (Algorithm 1) solves this problem.

Algorithm 1. Is-Producible-Assembly(α, τ)

1. input: assembly α and temperature τ
2. C ← { {v} | v ∈ dom α } // (positions defining) subassemblies of α
3. while |C| > 1 do
4. if there exist Ci, Cj ∈ C with glues between Ci and Cj of total strength at least

τ then
5. C ← (C \ {Ci, Cj}) ∪ {Ci ∪ Cj}
6. else
7. print “α is not producible” and exit
8. end if
9. end while
10. print “α is producible”

Theorem 3.1. There is an O(|α| log2 |α|) time algorithm deciding whether an
assembly α is producible at temperature τ in the hierarchical aTAM.

Proof. Correctness: Is-Producible-Assembly works by building up the ini-
tially edge-free graph with the tiles of α as its nodes (the algorithm stores the
nodes as points in Z2, but α would be used in step 4 to get the glues and
strengths between tiles at adjacent positions), stopping when the graph becomes
connected. The order in which connected components (implicitly representing
assemblies) are removed from and added to C implicitly defines a particular as-
sembly tree with α at the root (for every C1, C2 processed in line 5, the assembly
α � (C1 ∪ C2) is a parent of α � C1 and α � C2 in the assembly tree). Therefore,
if the algorithm reports that α is producible, then it is. Conversely, suppose
that α is producible via assembly tree Υ . Let C = {C1, . . . , Ck} be the set of
assemblies at some iteration of the loop at line 3. It suffices to show that some
pair of assemblies Ci and Cj are connected by glues with strength at least τ . By
Lemma 3.1, there exist Ci and Cj with subsets C′

i ⊆ Ci and C′
j ⊆ Cj such that

C′
i and C′

j are sibling nodes in Υ . Because they are siblings, the glues between

1 We do not need to give the tile set T as input because the tiles in α implicitly define
a tile set, and the presence of extra tile types in T that do not appear in α cannot
affect its producibility.
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C′
i and C′

j have strength at least τ . By monotonicity these glues suffice to bind
Ci to Cj , so Is-Producible-Assembly is correct.
Running Time: Letn = |α|.The running timeof the Is-Producible-Assembly

(Algorithm1) is polynomial inn, but the algorithmcanbeoptimized to improve the
running time to O(n log2 n) by careful choice of data structures. Is-Producible-
Assembly-Fast (Algorithm 2) shows pseudo-code for this optimized implemen-
tation, which we now describe. Let n = |α|. Instead of searching over all pairs of
assemblies, only search those pairs of assemblies that are adjacent. This number is
O(n) since a grid graph has degree at most 4 (henceO(n) edges) and the number of
edges in the full grid graph ofα is an upper bound on the number of adjacent assem-
blies at any time. This can be encoded in a dynamically changing graphGc whose
nodes are the current set of assemblies and whose edges connect those assemblies
that are adjacent.

Each edge of Gc stores the total glue strength between the assemblies. When-
ever two assemblies C1 and C2, with |C1| ≥ |C2| without loss of generality, are
combined to form a new assembly, Gc is updated by removing C2, merging its
edges with those of C1, and for any edges they already share (i.e., the neigh-
bor on the other end of the edge is the same), summing the strengths on the
edges. Each update of an edge (adding it to C1, or finding it in C1 to update its
strength) can be done in O(log n) time using a tree set data structure to store
neighbors for each assembly.

We claim that the total number of such updates of all edges is O(n log n) over
all time, or amortized O(log n) updates per iteration of the outer loop. To see
why, observe that the number of edges an assembly has is at most linear in its
size, so the number of new edges that must be added to C1, or existing edges in
C1 whose strengths must be updated, is at most (within a constant) the size of
the smaller component C2. The total number of edge updates is then, if Υ is the
assembly tree discovered by the algorithm,

∑
nodes u∈Υ min{|left(u)|, |right(u)|},

where |left(u)| and |right(u)| respectively refer to the number of leaves of u’s
left and right subtrees. For a given number n of leaves, this sum is maximized
with a balanced tree, and in that case (summing over all levels of the tree) is∑logn

i=0 2i(n/2i) = O(n logn). So the total time to update all edges is O(n log2 n).
As for actually finding C1 and C2, each iteration of the outer loop, we can

look at any pair of adjacent assemblies with sufficient connection strength. So in
addition to storing the edges in a tree-backed set data structure, store them also
in one of two linked lists: H and L in the algorithm, for “high” (strength ≥ τ)
and “low” (strength < τ), with each edge storing a pointer to its node in the
linked list for O(1) time removal (and also to its node in the tree-backed set for
O(log n) time removal). We can simply choose an arbitrary edge from H to be
the next pair of connected components to attach. We update the keys containing
C1 whose connection strength changed and removing those containing C2 but
not C1. The edges whose connection strength changed correspond to precisely
those neighbors that C1 and C2 shared before being merged. Therefore |C2| is
an upper bound on the number of edge updates required. Thus the amortized
number of linked list updates is O(log n) per iteration of the outer loop by the
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same argument as above. Since we can have each edge {C1, C2} store a pointer
to its node in the linked list to which it belongs, each list update can be done in
O(1) time. Thus each iteration takes amortized time O(log n).

Algorithm 2. Is-Producible-Assembly-Fast(α, τ)

1. input: assembly α and temperature τ
2. Vc ← { {v} | v ∈ dom α } // (positions defining) subassemblies of α
3. Ec ← {{{u}, {v}} | {u} ∈ Vc and {v} ∈ Vc and u and v interact}
4. H ← empty linked list // pairs of subassemblies binding with strength ≥ τ
5. L ← empty linked list // pairs of subassemblies binding with strength < τ
6. for all {{u}, {v}} ∈ Ec do
7. w({u}, {v}) ← strength of glue binding α(u) and α(v)
8. append {{u}, {v}} to L if w({u}, {v}) < τ , and append to H otherwise
9. end for
10. while |Vc| > 1 do
11. if H is empty then
12. print “α is not producible” and exit
13. end if
14. {C1, C2} ← first element of H // assume |C1| ≥ |C2| W.L.O.G.
15. remove {C1, C2} from H
16. remove C2 from Vc

17. for all neighbors C of C2 do
18. remove {C2, C} from Ec and H or L
19. if {C1, C} ∈ Ec then
20. w(C1, C) ← w(C1, C) + w(C2, C)
21. if w(C1, C) ≥ τ and {C1, C} ∈ L then
22. remove {C1, C} from L and add it to H
23. end if
24. else
25. w(C1, C) ← w(C2, C)
26. add {C1, C} to Ec and to H if w(C1, C) ≥ τ and to L otherwise
27. end if
28. end for
29. end while
30. print “α is producible”

The algorithm Is-Producible-Assembly-Fast (Algorithm 2) implements
this optimized idea. The terminology for data structure operations is taken
from [6]. Note that the way we remove C1 and C2 and add their union is to
simply delete C2 and then update C1 to contain C2’s edges. The graph Gc dis-
cussed above is Gc = (Vc, Ec) where Vc and Ec are variables in Is-Producible-

Assembly-Fast.
Summarizing the analysis, each data structure operation takes time O(log n)

with appropriate choice of a backing data structure. The two outer loops (lines 6
and 10) take O(n) iterations. The inner loop (line 17) runs for amortized O(log n)
iterations, and its body executes a constant number of O(log n) and O(1) time
operations. Therefore the total running time is O(n log2 n). ��
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4 Efficient Verification of Temperature 1 Unique
Production

This section shows that there is an algorithm, faster than the previous known al-
gorithm [4], that solves the temperature 1 unique producibility verification (UPV)
problem: given an assembly α and a temperature-1 hierarchical tile system T ,
decide if α is the unique producible, terminal assembly of T . This is done by
showing an algorithm for the temperature 1 UPV problem in the seeded model
(which is faster than the general-temperature algorithm of [1]), and then apply-
ing the technique of [4] relating producibility and terminality in the temperature
1 seeded and hierarchical models.

Let the decision problems sUPV1 and hUPV1 be represented by the language
{(T , α)|A�[T ] = {α}}, where T is a temperature 1 seeded TAS in the former
case and a temperature 1 hierarchical TAS in the latter case. To simplify the
time analysis we assume |T | = O(|α|). The following is the only result in this
paper on the seeded aTAM.

Theorem 4.1. There is an algorithm that solves the sUPV1 problem in time
O(|α| log |T |).

Proof. Let T = (T, s, 1) and α be a instance of the sUPV1 problem. We first
check that every tile in α appears in T , which can be done in time O(|α| log |T |)
by storing elements of T in a data structure supporting O(log n) time access. In
the seeded aTAM at temperature 1, α is producible if and only if it contains the
seed s and its binding graph is connected, which can be checked in time O(|α|).
We must also verify that α is terminal, which is true if and only if all glues on
unbound sides are null, checkable in time O(|α|).

Once we have verified that α is producible and terminal, it remains to verify
that T uniquely produces α. Adleman, Cheng, Goel, Huang, Kempe, Moisset
de Espanés, and Rothemund [1] showed that this is true (at any temperature) if
and only if, for every position p ∈ dom α, if αp � α is the maximal producible
subassembly of α such that p 	∈ dom αp, then α(p) is the only tile type attachable
to αp at position p. They solve the problem by producing each such αp and
checking whether there is more than one tile type attachable to αp at p. We use
a similar approach, but we avoid the cost of producing each αp by exploiting
special properties of temperature 1 producibility.

Given p, q ∈ dom α such that p 	= q, write p ≺ q if, for every producible
assembly β, q ∈ dom β =⇒ p ∈ dom β, i.e., the tile at position p must
be present before the tile at position q can be attached. We must check each
p ∈ dom α and each position q ∈ dom α adjacent to p such that p 	≺ q to see
whether a tile type t 	= α(p) shares a positive-strength glue with α(q) in direction
q − p (i.e., whether, if α(p) were not present, t could attach at p instead). If we
know which positions q adjacent to p satisfy p 	≺ q, this check can be done in
time O(log |T |) with appropriate choice of data structure, implying total time
O(|α| log |T |) over all positions p ∈ dom α. It remains to show how to determine
which adjacent positions p, q ∈ dom α satisfy p ≺ q.
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Recall that a cut vertex of a connected graph is a vertex whose removal
disconnects the graph, and a subgraph is biconnected if the removal of any single
vertex from the subgraph leaves it connected. Every graph can be decomposed
into a tree of biconnected components, with cut vertices connecting different
biconnected components (and belonging to all biconnected components that they
connect). If p is not a cut vertex of the binding graph of α, then dom αp is
simply dom α \ {p} (i.e., it is possible to produce the entire assembly α except
for position p) because, for all q ∈ dom α \ {p}, p 	≺ q. If p is a cut vertex, then
p ≺ q if and only if removing p from the binding graph of α places q and the seed
position in two different connected components, since the connected component
containing the seed after removing p corresponds precisely to αp.

Run the linear time Hopcroft-Tarjan algorithm [11] for decomposing the bind-
ing graph of α into a tree of its biconnected components, which also identifies
which vertices in the graph are cut vertices and which biconnected components
they connect. Recall that the Hopcroft-Tarjan algorithm is an augmented depth-
first search. Root the tree with s’s biconnected component (i.e., start the depth-
first search there), so that each component has a parent component and child
components. In particular, each cut vertex p has a “parent” biconnected compo-
nent and k ≥ 1 “child” biconnected components. Removing p will separate the
graph into k+1 connected components: the k subtrees and the remaining nodes
connected to the parent biconnected component of p. Thus p ≺ q if and only if
p is a cut vertex and q is contained in the subtree rooted at p.

This check can be done for all positions p and their ≤ 4 adjacent positions q in
linear time by “weaving” the checks into the Hopcroft-Tarjan algorithm. As the
depth-first search executes, each vertex p is marked as either unvisited, visiting
(meaning the search is currently in a subtree rooted at p), or visited (meaning
the search has visited and exited the subtree rooted at p). If p is marked as
visited or unvisited when q is processed, then q is not in the subtree under p. If
p is marked as visiting when q is processed, then q is in p’s subtree.

At the time q is visited during the Hopcroft-Tarjan algorithm, it may not yet
be known whether p is a cut vertex. To account for this, simply run the Hopcroft-
Tarjan algorithm first to label all cut vertices, then run a second depth-first
search (visiting the nodes in the same order as the first depth-first search), doing
the checks described previously and using the cut vertex information obtained
from the Hopcroft-Tarjan algorithm. ��

Theorem 4.2. There is an algorithm that solves the hUPV1 problem in time
O(|α||T | log |T |).

Proof. Cannon, Demaine, Demaine, Eisenstat, Patitz, Schweller, Summers, and
Winslow [4] showed that a temperature 1 hierarchical TAS T = (T, 1) uniquely
produces α if and only if, for each s ∈ T , the seeded TAS Ts = (T, s, 1) uniquely
produces α. Therefore, the hUPV1 problem can be solved by calling the algorithm
of Theorem 4.1 |T | times, resulting in a running time of O(|α||T | log |T |). ��



Producibility in Hierarchical Self-assembly 151

5 Consistent Unions of Producible Assemblies Are
Producible

Throughout this section, fix a hierarchical TAS T = (T, τ). Let α, β be as-
semblies. We say α and β are consistent if α(p) = β(p) for all points p ∈
dom α ∩ dom β. If α and β are consistent, let α ∪ β be defined as the assembly
(α ∪ β)(p) = α(p) if α is defined, and (α ∪ β)(p) = β(p) if α(p) is undefined. If
α and β are not consistent, let α ∪ β be undefined.

Theorem 5.1. If α, β are producible assemblies that are consistent and dom α∩
dom β 	= ∅, then α∪β is producible. Furthermore, α→ α∪β, i.e., it is possible
to assemble exactly α, then to assemble the missing portions of β.

Proof. If α and β are consistent and have non-empty overlap, then α ∪ β is
necessarily stable, since every cut of α ∪ β is a superset of some cut of either α
or β, which are themselves stable.

(a) First operation to combine the assem-
bly trees for α and β. l1 and l2 are two
leaves representing the same position in
dom α ∩ dom β.

(b) Operation to eliminate one of two
leaves l1 and l2 representing the same tile
in the tree while preserving that all at-
tachments are stable.

Fig. 1. Constructing assembly tree for α ∪ β from assembly trees for α and β

Let Υα and Υβ be assembly trees for α and β, respectively. Define an assembly
tree Υ for α ∪ β by the following construction. Let l1 be a leaf in Υα and let l2
be a leaf in Υβ representing the same position x ∈ dom α ∩ dom β, as shown in
Figure 1(a). Remove l2 and replace it with the entire tree Υα. Call the resulting
tree Υ ′. At this point, Υ ′ is not an assembly tree if α and β overlapped on more
than one point, because every position in dom α ∩ dom β \ {x} has duplicated
leaves. Therefore the tree Υ ′ is not a hierarchical division of the set dom α ∪
dom β, since not all unions represented by each internal node are disjoint unions.
However, each node does represent a stable assembly that is the union of the
(possibly overlapping) assemblies represented by its two child nodes. We will
show how to modify Υ ′ to eliminate each of these duplicates – at which point all
unions represented by internal nodes will again be disjoint – while maintaining
the invariant that each internal node represents a stable assembly, proving there
is an assembly tree Υ for α∪β. Furthermore, the subtree Υα that was placed under
p2 will not change as a result of these modifications, which implies α→ α ∪ β.

The process to eliminate one pair of duplicate leaves is shown in Figure 1(b).
Let l1 and l2 be two leaves representing the same point in dom α ∩ dom β, and
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let a be their least common ancestor in Υ , noting that a is not contained in Υα

since l2 is not contained in Υα. Let pa be the parent of a. Let r1 be the root
of the subtree under a containing l1. Let r2 be the root of the subtree under a
containing l2. Let p2 be the parent of l2. Remove the leaf l2 and the node a. Set
the parent of r1 to be p2. Set the parent of r2 to be pa.

Since we have replaced the leaf l2 with a subtree containing the leaf l1, the
subtree rooted at r1 is an assembly containing the tile represented by l2, in the
same position. Since the original attachment of l2 to its sibling was stable, by
monotonicity, the attachment represented by p2 is still legal. The removal of a
is simply to maintain that Υ is a full binary tree; leaving it would mean that it
represents a superfluous “attachment” of the assembly r2 to ∅. However, it is
now legal for r2 to be a direct child of pa, since r2 (due to the insertion of the
entire r1 subtree beneath a descendant of r2, again by monotonicity) now has all
the tiles necessary for its attachment to the old sibling of a to be stable. Since
a was not contained in Υα, the subtree Υα has not been altered.

This process is iterated for all duplicate leaves. When all duplicates have been
removed, Υ is a valid assembly tree with root α ∪ β. Since Υ contains Υα as a
subtree, α→ α ∪ β. ��

It is worthwhile to observe that Theorem 5.1 does not immediately follow
from Theorem 3.1. Theorem 3.1 implies that if α ∪ β is producible, then this
can be verified simply by attaching subassemblies until α ∪ β is produced. Fur-
thermore, since the hypothesis of Theorem 5.1 implies that α is producible, the
greedy algorithm of Theorem 3.1 could potentially assemble α along the way to
assembling α∪ β, which implies that if α ∪ β is producible, then it is producible
from α. However, nothing in Theorem 3.1 guarantees that α∪β is producible in
the first place. There may be some additional details that could be added to the
proof of Theorem 3.1 that would cause it to imply Theorem 5.1, but those details
are likely to resemble the existing proof of Theorem 5.1, and it is conceptually
cleaner to keep the two proofs separate.

6 Open Question

Theorem 5.1 shows that if assemblies α and β overlap consistently, then α∪β is
producible. What if α = β? Suppose we have three copies of α, and label them
each uniquely as α1, α2, α3. (See Figure 2 for an example.) Suppose further than
α2 overlaps consistently with α1 when translated by some non-zero vector v.
Then we know that α1 ∪ α2 is producible. Suppose that α3 is α2 translated by
v, or equivalently it is α1 translated by 2v. Then α2 ∪ α3 is producible, since
this is merely a translated copy of α1 ∪α2. It seems intuitively that α1 ∪α2 ∪α3

should be producible as well. However, while α1 overlaps consistently with α2,
and α2 overlaps consistently with α3, it could be the case that α3 intersects α1

inconsistently, i.e., they share a position but put a different tile type at that
position. In this case α1 ∪ α2 ∪ α3 is undefined.

In the example of Figure 2, although α1 ∪ α2 ∪ α3 is not producible (in fact,
not even defined), “enough” of α3 (say, α′

3 � α3) can grow off of α1 ∪ α2 to
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Fig. 2. (a) A producible assembly α. Gray tiles are all distinct types from each other,
but red, green, and blue each represent one of three different tile types, so the two
blue tiles are the same type. (b) By Theorem 5.1, α1 ∪ α2 is producible, where α1 = α
and α2 = α1 + (2,−2), because they overlap in only one position, and they both have
the blue tile type there. (c) α1 and α3 both have a tile at the same position, but the
types are different (red in the case of α1 and green in the case of α3). (d) However,
a subassembly α′

i of each new αi can grow, enough to allow the translated equivalent
subassembly α′

i+1 of αi+1 to grow from α′
i, so an infinite structure is producible.

allow a fourth copy α′
4 to begin to grow to an assembly to which a fifth copy α′

5

can attach, etc., so that an infinite assembly can grow by “pumping” additional
copies of α′

3. Is this always possible? In other words, is it the case that if α is a
producible assembly of a hierarchical TAS T , and α overlaps consistently with
some non-zero translation of itself, then T necessarily produces arbitrarily large
assemblies? If true, this would imply that no hierarchical TAS producing such an
assembly could be uniquely produce a finite assembly. This would settle an open
question posed by Chen and Doty [5], who showed that as long as a hierarchical
TAS does not produce assemblies that consistently overlap any translation of
themselves, then the TAS cannot uniquely produce any shape in time sublinear
in its diameter.
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Abstract. This paper examines a scheme to perform arithmetic and
logic computation using time delays inspired by neuronal Action Poten-
tials. The method is reliant on a simple abstraction which utilises very
little logical infrastructure, in fact, the only requirements necessary to
carry out computation are a binary channel, a clock, and a rudimentary
instruction look-up table.

The conclusions are that the method is viable for all forms of arith-
metic and logical computation including comparison, however one prac-
tical aspect that hinders a full move to a time delay based architecture
is the inability to perform random memory access without waiting for
the data to recirculate.

1 Introduction

It is not an overstatement to say we are fixated with digital processing. Since
Shannon’s initial exposition of methods to perform digital operations [1] a Her-
culean effort has been applied both academically and commercially to construct
ever more sophisticated methods for performing digital arithmetic and logical
operations. This paper takes a step back from that research, and addresses the
problem from a fundamentally different starting point, that of using time to rep-
resent data rather than the manipulation of transistors which expose themselves
as states within a processing unit. The theme of the work is that time is a free
resource and is only limited in resolution by the accuracy of the clock one is us-
ing, unlike electronics which require matter (atomic states) to be manipulated.
We demonstrate surprisingly simple methods to perform all major arithmetic
and logical operations using a single general processing unit which can be easily
replicated.

The paper is structured as follows: Initially the action potential method is
described in detail, this is demonstrated in the context of computation with ex-
amples for each of the arithmetic and logic operations. The paper then presents
a more complex example which demonstrates the chaining of operations. Fol-
lowing this, we examine practical considerations, most notably the crucial issue
of clock synchronisation. The paper concludes with a summary, which revisits
the deep-rooted debate comparing analogue (often biological) systems with our
predominant implementation of computation via digital methods.

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 155–163, 2014.
DOI: 10.1007/978-3-319-08123-6_13, c© Springer International Publishing Switzerland 2014



156 J. Edwards, S. O’Keefe, W.D. Henderson

2 Time Delay Processing

Models of neuronal activation are central to the description of function in the
brain, they are broadly split between statistical measures of firing rates called
Rate Codes or codes that are related to the delay between two spikes, often
referred to as Pulse Codes ([2] chapter 1).

The Action Potential model proposed by [3] is a pulse code. In the Action
Potential model the signal is transferred via spikes along a channel, and the
information is contained in the time between spikes. In this work we describe
an abstract model which is inspired by this “delay timing” value representation.
The model consists of a processing unit with a binary channel, which has the
capacity to carry unit impulses, and a clock with a variable speed, relative to an
underlying synchronising, system wide, clock. The processing unit sends operand
values as a time delay between pulses, so two unit impulses act as the “head”
and “tail” of a time based value. The resultant signal is analogue in time. Figure
1 explains this visually, the value two is represented by passing an impulse de-
limited signal across the channel, with the clock scaled to the value 1. This has
similarity with Pulse Width Modulation (PWM) [2], but with only the “head”
and “tail” impulses.

Importantly, a continuous stream of these values can exist on one processing
unit. Using this as our model for processing, all arithmetic and logical operators
can be derived.

Fig. 1. A Time Delay Unit representing the value 2 as a delay between two impulses

3 Requirements for a Realisable Computing Architecture

At the lowest level, the major functions of a processing unit are to move data
within memory and to perform simple mathematical computation ([4] page 11).
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Typically an operation requires a specific hardware part, so for instance addition
is performed using the half and full adder circuitry ([4] page 90).

Different architectural approaches have been explored. The simplest is the
Minimal Instruction Set Architecture (MISC), similar to the Java Virtual Ma-
chine (JVM)1. This sets a minimum level for the infrastructure necessary to
perform computation, and again reduces down to simple arithmetic and mem-
ory manipulation. The following section describes the architecture necessary for
all the arithmetic operations including comparison, it demonstrates that these
can be built with relative ease on a general simple binary channel and clock
architecture. The channel forms a flow from left to right, hence in the figures
below the result is calculated at the right hand side.

3.1 Addition

Addition is the simplest operation to perform with the processing unit, sim-
ply “forgetting” the “tail” of the first operand and the “head” of the second
operand. The signal then becomes the conglomeration of the two values, and
hence addition is performed. Figure 2 gives an example of this for the sum 1+1:

Fig. 2. Addition: 1+1, two values are added by ignoring the middle impulses, the full
concatenation forms the addition. The flow of the processing is the signal moving from
left to right.

3.2 Subtraction

Subtraction relies on the processing unit sending two signals starting with the
same “head”, so both the signals are sent at the same time. Absolute subtraction
then becomes the time between the two “tails”, whilst performing true subtrac-
tion requires attaching a “tag” pattern of impulses, to ascertain order. This tag

1 http://docs.oracle.com/javase/specs/jvms/se7/html/

http://docs.oracle.com/javase/specs/jvms/se7/html/
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is in effect a known pattern in the look-up table that is indicative of the order
of presentation of the operands. Figure 3 visualises 2 − 1, the two signals are
overlaid and subtraction becomes their difference:

Fig. 3. Subtraction: 2-1. The header indicates order and the resultant difference be
calculated through timing. The processing flows from left to right.

3.3 Multiplication and Division

Multiplication and division can be performed by manipulating the clock speed
relative to the system wide clock. To perform multiplication we slow the clock
down by the first operand (op1 ∗ op2: 1

op1T ) synchronised to the System wide
clock so that the second operand takes longer to transmit across the channel.
Conversely, for division, we speed the transmission up by increasing clock speed
by the first operand and hence the second operand becomes shorter. Figures 4
and 5 visualise how this works for 2 ∗ 1 and 4/2:

3.4 Logical Operators

Once arithmetic operators are implemented it is trivial to implement the AND
(addition) and OR (multiplication). The NOT operator is performed by look-up,
with a send/don’t send switch in the operator look-up table.

3.5 Comparison Operators

The implementation of the minus operator gives rise to a natural method of
comparing operands. A similar operation to negation occurs but the arrival of
the tag impulse is recorded, if it arrives before the second impulse the first
operand is the greatest, if it arrives after then the first operand is smaller and if
they arrive at the same time then there is equality. Figure 6 demonstrates this
with a comparison between the values 2 and 1:



Unconventional Arithmetic: A System for Computation 159

Fig. 4. Multiplication: 2*1. Changing the clock speeds relative to a central clock allows
the signal to be scaled and hence multiplied. Processing is again performed from the
left to the right.

Fig. 5. Division: 4/2. Using the relative clock speed, clock scaling can perform division
as well as multiplication.

3.6 Multiple Operations

To build more complex statements, the operations can be arranged into the tra-
ditional Reverse Polish queue. The whole calculation then becomes a procession
through a general processing unit. Figure 7 shows how this queue might work,
implicit in this is a method to deliver the multiplication and division operand
to the clock. The figure presents an example for the expression (3+1)/2:
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Fig. 6. A comparison operator, here we compare the values 2 and 1. Given that sub-
traction can be performed natively it is easy to implement comparison using a similar
method.

Fig. 7. A more complex arithmetical operation. However processing is still performed
on one channel proceeding from left to right with the right acting as a receiver.

4 Time Delay Storage

Time delay storage through the re-circulation of a signal is not a new idea -
in fact it was the pre-eminent storage method before transistors and integrated
circuitry [5]. Several implementation methods exist [6]. The main disadvantage of
this approach is that re-circulation slows down read/write access, and electrical
circuitry requires fast op-amps2. Additionally, and more recently, alternative

2 http://electronicdesign.com/analog/accurate-analog-delay-circuit

http://electronicdesign.com/analog/accurate-analog-delay-circuit
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work with memory enabled resisitors, so-called memristors, has also focused on
strategies for non-transistor based computation [7].

5 Practical Considerations

5.1 Large Values

Large values present a problem for processing as they are formed from long
delays, this is akin to large amounts of infrastructure to store large values in
traditional processors. One way to mitigate against this is to use more channels
to represent large numerical values, so effectively have an analogue equivalent of
a bit-width, which we will refer to as the resolution.

As a trivial example we could arbitrarily set the resolution of a time-delay
channel to one thousand, so a channel will have a time interval of a thousand
clock cycles, and hence any number up to a thousand can be represented. Two
channels could be used to encode all values up to one million by representing the
upper and lower 3 digits (0-999) by individual time-delay channels. Addition and
subtraction will function with a carry operation, and only a slight modification of
interleaving the multiplication/division operands, for example 12 ∗ 12 will equal
10 ∗ 10 + 2 ∗ 10 + 10 ∗ 2 + 2 ∗ 2.

5.2 Clock Drift

It may be necessary in this system to use more than one clock, and the limits
on the precision of the transmitter and receiver clocks are readily computed. N
is limited as follows:

– Rx clock is faster than Tx clock:

N <
1

2(ρTx

ρRx
− 1)

(1)

Table 1. Table of maximum usable values against clock tolerances

Tolerance Rx faster Tx faster
ppm than Tx than Rx

10 25000 25000
20 12500 12500
30 8333 8334
40 6250 6250
50 5000 5000
60 4166 4167
70 3571 3572
80 3125 3125
90 2778 2778
100 2500 2500
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– Rx Clock is slower than Tx clock:

N <
1

2(1− ρTx

ρRx
)

(2)

Surprisingly, the limits on N are independent of δT , the time quantum or
the nominal clock frequency and depend only on the relative clock drift rate
(ρTx/ρRx). Table 1 records the calculated limiting values against clock toler-
ances:

6 Conclusions and Further Work

The high level architecture described above represents a strong deviation from
current Von-Neumann implementations, however it has several advantages. The
above method blurs the lines between storage and processing. The circuitry re-
quired to process and store data is essentially homogeneous as memory units
are similar to computation units (apart from the concept of re-circulation). Fur-
thermore, there is also no need to implement specialist hardware for individ-
ual processing operations (e.g. multiplicative circuitry). However, there are still
strong disadvantages. Speed of processing is relative to data value size (even with
multiple channels for numerical encoding) and conditional on clock resolution.
Storage requires amplification and is limited to re-circulation time.

In the short term, our next avenue for investigation is to implement the meth-
ods described in this paper as a virtual MISC processor. It is hoped that this
will enable direct comparison with alternative architectures, and illuminate the
selection of a medium for hardware implementation.

Longer term aims are to assess in more detail, and on a more practical level,
the comparative advantages of this approach compared to the established norm.
There are clearly areas of computation [3] that lend themselves to analogue in-
terpretation and the authors are interested in developing systems that model
these in greater detail. Many biological system perform tasks that are presently
proving difficult for digital technology. Perhaps moving to a fundamentally dif-
ferent representation as offered by encoding in time will make these problems
more amenable and we will arrive at the best of both worlds - analogue and
digital processing where best suited.
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Abstract. As we approach the physical limits of CMOS technology, advances in
materials science and nanotechnology are making available a variety of uncon-
ventional computing substrates that can potentially replace top-down-designed
silicon-based computing devices. Inherent stochasticity in the fabrication process
and nanometer scale of these substrates inevitably lead to design variations, de-
fects, faults, and noise in the resulting devices. A key challenge is how to harness
such devices to perform robust computation. We propose reservoir computing
as a solution. In reservoir computing, computation takes place by translating the
dynamics of an excited medium, called a reservoir, into a desired output. This
approach eliminates the need for external control and redundancy, and the pro-
gramming is done using a closed-form regression problem on the output, which
also allows concurrent programming using a single device. Using a theoretical
model, we show that both regular and irregular reservoirs are intrinsically robust
to structural noise as they perform computation.

1 Introduction

The approaching physical limits of silicon-based semiconductor technology are making
conventional top-down designed computer architecture prohibitive [1]. Recent advances
in materials science and nanotechnology suggest that unconventional computer archi-
tectures could be a viable technological and economical alternative. Some proposed al-
ternative architectures are based on molecular switches and memristive crossbars [2, 3]
that possess highly regular structure. Another emerging approach is self-assembly of
nanowires and memristive networks [4, 5], which results in irregular structure. Major
obstacles to using such architectures are design variations, defects, faults, and suscep-
tibility to environmental factors such as thermal noise and radiation [6]. How should
one program an unreliable system with unknown structure to perform reliable compu-
tation? Here we use a novel implementation of reservoir computing with sparse input
and output connections to model self-assembled nanoscale systems and analyze their
robustness to structural noise in the system.

Most approaches assume knowledge of the underlying architecture and rely on re-
configuration and redundancy to achieve programming and fault tolerance [7–10]. There

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 164–176, 2014.
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have been two recent proposals on how to program such devices to perform classifica-
tion and logic operation using a “black-box” approach [11, 12]. Both approaches are
based on a theoretical model, called a randomly assembled computer (RAC), realized
by a network of interacting nodes with sparse and irregular connectivity. All nodes are
initialized to zero and update their state according to a global clock, and each node cal-
culates its next state using its transfer function and connections to other nodes. Three
types of external signals are connected to randomly chosen nodes: inputs, outputs, and
controls. The task is to program the device to compute the desired output for a given
input using a proper control signal. The optimal control signal will modify the propa-
gation of input across the network so that input is processed as required and the desired
result is presented at the output. The optimal control signals are computed using sim-
ulated annealing. The key property of this model is sparse random external interfaces,
i.e., input, output, and controls. The model’s only fundamental and reasonable assump-
tion is that there is enough connectivity that the input and control signals can propagate
through the network and reach the output. This model has shown impressive perfor-
mance and inherent robustness to noise [11]. In RAC, the computation takes place by
initializing the network with a fixed state and presenting the input signal to the network,
and then the network runs until the output is produced. This cycle is repeated for each
new input pattern. The computation is therefore sensitive to the initial state of the net-
work and the control signals must be calculated based on the desired computation, the
structure, and the initial state of the network.

We propose the reservoir computing (RC) paradigm [13] as an alternative program-
ming approach to unconventional and irregular architectures. RC lets the network dy-
namics be perturbed by the input signal and maps the network states to the desired
output using closed-form linear regression. In addition to the connectedness assump-
tion from RAC, we require the network to have a slowly converging dynamics. RC
provides several advantages over RAC. In RC, the computation is not sensitive to the
initial state of the system and there is no need for control signals, which leads to sim-
pler design and implementation. Also, the training is done in a closed-form regression
and does not need an iterative process. Moreover, nonlinear computation is inherently
enabled by the network dynamics acting as a recursive kernel and extracting nonlinear
features of the input signal [14]. Noise in the input, the network states, and the interac-
tions between the nodes can be treated using a regularization term and can be scaled to
achieve the best performance. This is particularly attractive, because RC depends on the
dynamics to compute, and structural change may have adverse effects on the dynamical
regime of the system, which would normally require retraining the network. In addi-
tion, the programming is performed on the output instead of the task-specific control
of the network, and therefore we can compute multiple functions simultaneously using
the same device. In contrast to existing RC implementations [15, 16], the novelty of
our work is the consideration of sparse input and output to model unconventional com-
puter architectures, and the analysis of robustness in the presence of structural noise
in the network, possibly due to thermal noise and radiation that change the electrical
properties of the network. In classical implementations of RC, the input and output are
connected to all the internal nodes and the system is assumed to operate in a noise-free
environment. We demonstrate the performance and robustness of RC using regular and
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irregular networks and analyze the memory capacity and nonlinear computational per-
formance of the system subject to structural noise. Our results show that RC can be a
viable approach to using self-assembled and nanoscale substrates to implement robust,
special-purpose signal processing devices.

reservoir state x(t)

Win

input weights

Wout

output weights

actual output y(t)input signal u(t)

target output ŷ(t)

E

update old weights

Fig. 1. Computation in a reservoir computer. The reservoir is an excitable dynamical system with
N readable output states represented by the vector X(t). The input signal u(t) is fed into one or
more points i in the reservoir with a corresponding weight win

i denoted with weight column vector
Win = [win

i ].

2 Background

Reservoir computing was independently introduced by Maass, Natschläger, and
Markram [17] and by Jaeger [18]. Echo state networks (ESN) are one of the most pop-
ular RC paradigms, and have shown promising results in time series computing and
prediction [19, 20], voice recognition [21], nonlinear system identification [22], and
robot control [23]. An ESN [16, 22, 24, 25] consists of an input-driven recurrent neu-
ral network, which acts as the reservoir, and a readout layer that reads the reservoir
states and produces the output. Unlike a classical recurrent neural network, where all
the nodes are interconnected and their weights are determined during a training pro-
cess, in an ESN the nodes are interconnected using random weights and random sparse
connectivity between the nodes. The input and reservoir connections are initialized and
fixed, usually with no further adaptation.

Figure 2 shows a schematic of an ESN. The readout layer is usually a linear com-
bination of the reservoir states. The readout weights are determined using supervised
learning techniques, where the network is driven by a teacher input and its output is
compared with a corresponding teacher output to estimate the error. Then, the weights
can be calculated using any closed-form regression technique [25] in offline training
contexts, or using adaptive techniques if online training is needed [22]. Mathemati-
cally, the input-driven reservoir is defined as follows. Let N be the size of the reservoir.
We represent the time-dependent inputs as a column vector u(t), the reservoir state
as a column vector x(t), and the output as a column vector y(t). The input connectivity
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u(t)

Wres
b

reservoir state x(t)

Win Wout

y(t)

Fig. 2. Schematic of an ESN. A dynamical core called a reservoir is driven by input signal u(t).
The states of the reservoir x(t) extended by a constant 1 and combined linearly to produce the
output y(t). The reservoir consists of N nodes interconnected with a random weight matrix Wres.
The connectivity between the input and the reservoir nodes is represented with a randomly gener-
ated weight matrix Win. The reservoir states and the constant are connected to the readout layer
using the weight matrix Wout . The reservoir and the input weights are fixed after initialization,
while the output weights are learned using a regression technique.

is represented by the matrix Win and the reservoir connectivity is represented by an
N×N weight matrix Wres. For simplicity, we assume one input signal and one output,
but the notation can be extended to multiple inputs and outputs. The time evolution of
the reservoir is given by:

x(t + 1) = f (Wres ·x(t)+Win ·u(t)), (1)

where f is the transfer function of the reservoir nodes that is applied element-wise to
its operand. This is usually the hyperbolic tangent, but sigmoidal or linear functions
can be used instead. The output is generated by the multiplication of an output weight
matrix Wout of length N +1 and the reservoir state vector x(t) extended by a constant 1
represented by x′(t):

y(t) = Wout ·x′(t). (2)

The output weights Wout must be trained using a teacher input-output pair using
regression [16, 26, 27]. This regression can be performed in closed form and therefore
ESN training is very efficient compared with classical recurrent neural network training,
which requires a time-consuming iterative process [28].

In ESN, the reservoir acts as a recursive kernel which creates an expressive spa-
tiotemporal code for the input signal [14]. In ESNs, to create the required spatiotempo-
ral feature space, the reservoir must enjoy the so-called echo state property [24] (ESP):
over time the asymptotic state of the reservoir depends only on the history of the in-
put signal u(t), i.e., the dynamics is independent of the initial state of the network.
Jaeger [24] showed that to satisfy this condition, the reservoir weight matrix Wres must
have the spectral radius λ max < 1 and the largest singular values σmax < 1.
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3 Experimental Setup

3.1 Reservoir Generation and Inducing Noise

(a) (b)

Fig. 3. Schematic for structure of a SCR reser-
voir (a) and a random sparse reservoir (b)

Similar to [27], we use RC with a sim-
ple cycle reservoir (SCR) and ESNs with
sparse randomly generated reservoirs for
our experiments. We specify the number
of reservoir nodes by N. We use the hy-
perbolic tangent transfer function in both
models. In SCR, the reservoir nodes are
connected in a cycle and have identical
weights r, 0 < r < 1. It has been shown
[27] that despite the simplicity of this
model its performance is comparable to
sparse random reservoirs. In an ESN, a fraction l of all possible connections are chosen
to have non-zero weights and the rest of the connections are assigned zero; half of the
non-zero weights are assigned−0.47 and the other half are assigned +0.47. The choice
of±0.47 ensures ESP, which otherwise can be achieved by scaling the reservoir weight
matrix as Wres ← λ Wres/λ max , where λ max is the spectral radius of Wres and λ is the
desired spectral radius 0 < λ < 1. The non-zero weights are chosen independently and
randomly, which results in an Erdös-Rényi network structure [29]. Figure 3 illustrates
the structure of SCR and random sparse reservoirs. For both models, the input signal
is connected to half of the nodes that are picked randomly and the input weights are
chosen from the set {−v,+v} according to Bernoulli distribution, where v is the in-
put coefficient. For our experiments, we use sets of input coefficients V , SCR reservoir
weights R, and ESN spectral radii Λ varying in the range [0.1,0.9] with 0.1 increments.

To study the effect of structural noise on RC performance, we add a white noise
term, with standard deviation σ , to n randomly chosen non-zero entries of Wres at each
time step t. This will cause the non-zero entries of Wres to vary around their initial
value according to a normal distribution. Our motivation for this is to model short term
temporal variations in the structural properties of nanoscale networks. These variations
are known to follow a normal distribution [30]. We choose n for each experiment to
make sure the fraction of noisy weights is constant across all reservoirs.

3.2 Simulation, Training, and Evaluation

To evaluate the performance of each model, we generate 50 streams of random numbers
picked uniformly from the interval [−1,+1]. For each stream a new ESN or SCR was
instantiated with randomized states uniformly picked from the interval [−1,+1]. The
system was then driven for T + 2,000 time steps. The first T steps were then discarded
to account for the transient period, where T is chosen to be half of the reservoir size
N. We randomly chose half the reservoir nodes to read reservoir states; the states of
these nodes were then collected and augmented with a constant 1 as inductive bias and
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arranged row-wise into a matrix X, which was used for calculating the output weights
Wout given by:

Wout = M · ŷ, (3)

where ŷ is the expected output. The matrix M is usually calculated using either an
ordinary linear regression technique as (XT ·X)−1 ·XT , or a ridge regression technique
as (XT ·X+ γ2I)−1 ·XT , where γ is the regularization factor, and I is the identity matrix
of order N+1. In general the spectra of XT X should be studied to choose an appropriate
inversion technique. We found that using the Penrose-Moore pseudo-inverse of X for
M, which minimizes its norm, produces the most stable results. We calculated this using
MATLAB’s pinv function. To test performance, we drove the system for another T +
2000 time steps of each stream, created the matrix X as before, and calculated the output
as in Equation 2. We evaluate the robustness of SCR and ESN as percent change in their
performance for two different tasks described below.

Memory Capacity (MC). Jaeger [24] defined the memory capacity task to quantify
the short-term memory of the reservoir in ESN by measuring how well the network
can reconstruct the input after τ number of time steps. The coefficient of determination
between the input and a τ-delayed version of the input as output of ESN is:

MCτ =
cov2(u(t− τ),y(t))
var(u(t))var(y(t))

. (4)

The total memory capacity of a network is then given by:

MC =
∞

∑
τ=1

MCτ . (5)

Assuming a zero-centered uniformly random stream as input, the memory capacity for
ESN is bounded by the size of the reservoir MC < N [24] , and N− 1 < MC < N for
SCR [27]. However, the empirical values vary based on experimental conditions. We
derive the networks with the input streams as described previously in this section and
we measure the MC for both ESN and SCR of size N = 50, using a finite sum of MCτ up
to τ = 200. We can then measure memory robustness as the ratio of memory capacity
of noisy systems MC to the noise-free systems MC∗ for ESN and SCR as follows:

Γ ESN
MC (v,λ ) =

MC(v,λ )
MC∗(v,λ )

and Γ SCR
MC (v,r) =

MC(v,r)
MC∗(v,r)

(6)

where k is the fraction of noise-induced connections and σ is the standard deviation
of the noise. We let MC(v,λ ) and MC(v,r) denote the memory capacity of ESN with
parameters v and λ , and memory capacity of SCR with parameters v and r, respectively.

Nonlinear Autoregressive Moving Average (NARMA). NARMA is a nonlinear task
with long time lag designed to measure neural network capability to compute nonlinear
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functions of previous inputs and outputs. The 10-th order NARMA system NARMA10
is defined as follows:

y(t) = 0.3y(t− 1)+ 0.05y(t− 1)
10

∑
i=1

y(t− i)+ 1.5u(t− 10)u(t− 1)+ 0.1. (7)

The input ut is drawn from a uniform distribution in the interval [0,0.5]. To generate
the input for this task, we shift our input streams by 2 and divide them by 4 to ensure
the values are in the internal [0,0.5]. We calculate the performance of ESN and SCR
on this task by the test error measured by the normalized mean squared error (NMSE)
given by:

NMSE =

〈
(y(t)− ŷ(t))2

〉
var(ŷ(t))

. (8)

If the mean squared error of the output is larger than the variance of the target output
then NMSE > 1, in which case we consider the NMSE = 1 to simplify our analysis.
Once again we measure robustness with respect to the error as the ratio between the
error of a noisy system NMSE to the error of a noise free-system NMSE∗ as follows:

Γ ESN
NMSE(v,λ ) =

NMSE∗(v,λ )
NMSE(v,λ )

and Γ SCR
NMSE(v,r) =

NMSE∗(v,r)
NMSE(v,r)

, (9)

using NMSE(v,λ ) and NMSE(v,r) as shorthand for the performance of ESN with pa-
rameters v and λ , and the performance of SCR with parameters v and r, respectively.

4 Results

First we analyze the memory capacity in SCR and ESN under structural noise. All the
results in this section are the average value over 60 runs as described in Section 3. Fig-
ure 4a shows the memory capacity of SCR for reservoirs of size N = 50 without any
structural noise. The MC shows a nonlinear increase for increasing r and decreasing v
up to r = 0.8 and v = 0.1, where the MC reaches its maximum MC = 17.15. Figure 4b
shows the memory capacity of SCR under noisy conditions where at each time step a
single randomly chosen node is perturbed with a white noise with standard deviation
σ = 0.01. For suboptimal r and v, the noise distorts the memory of the system, result-
ing in lower memory capacity, whereas for optimal parameters, the memory capacity
increases due to the regularization effect of noise terms on the regression; in fact, at its
peak memory capacity is MC = 19.74. According to the ratio Γ SCR

MC , shown in Figure 4c,
for r > 0.6 and v ≥ 0.1 the noise improves the memory capacity. Figure 4d shows the
memory capacity of ESNs of size N = 50 and connection fraction l = 0.2. Due to the
variation inside the reservoir, the memory capacity surface for ESNs is not as smooth
as the MC surface for SCRs. In ESNs, the memory capacity increases nonlinearly with
increasing λ and decreasing v and reaches its maximum MC = 17.15 at λ = 0.8 and
v = 0.1. Figure 4e shows the memory capacity of ESNs under noisy conditions. At
each step n = 10 connections are perturbed using a white noise of standard deviation
σ = 0.01 to achieve the same noise level as for SCR. The effect of noise in ESN is
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Fig. 4. Memory capacity (MC) in noise-free SCR (a) and SCR with structural noise (b). The ratio
Γ SCR

MC (v,r) showing the overall variation of the MC between noisy and noise-free conditions (c).
MC in noise-free ESN (d) and ESN with structural noise (e). The ratio Γ ESN

MC (v,λ ) showing the
overall variation of the MC between noisy and noise-free conditions (f). SCR memory is robust
to noise for r > 0.6 and v≥ 0.1 and ESN memory is robust to noise for λ > 0.8 and v≥ 0.1.

slightly higher. The memory capacity changes slowly from MC = 3.40 to its maximum
MC = 16.72 for λ = 0.9. According to Figure 4f for all v and λ > 0.8 the MC is not
decreased significantly in noisy conditions. In summary, both SCR and ESN are highly
robust to structural noise.

For the nonlinear computation NARMA10, we used SCRs of size N = 100 and plot-
ted the testing error as a function of v and r (Figure 5a). The best observed SCR perfor-
mance (NMSE = 0.16) occurs for r = 0.9 and v= 0.1. Figure 5b shows the performance
of noisy SCRs for which at every time step n= 2 connections are perturbed with a white
noise with standard deviation σ = 0.01. For low r and any v the system performs poorly
with NMSE ≈ 0.8. For r > 0.4, there is a sharp drop in NMSE and the system achieves
an average optimal error of NMSE = 0.16 for r = 0.9 and v = 0.1. Figure 5c shows
the general effect of noise on SCR performance using the ratio Γ SCR

NMES. We observe
that for all v = 0.1 and for r = 0.4 this significantly reduces the performance to below
50% of the original values while for r > 0.8 the performance is virtually unaffected.
Figure 5d shows the performance result of NARMA10 task for noise-free ESNs of size
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Fig. 5. Performance of ESN and SCR in solving the NARMA10 task measured using NMSE. The
NMSE in noise-free SCR (a) and SCR with structural noise (b). The ratio Γ SCR

NMSE(v,r) showing
the overall variation of the performance between noisy and noise-free conditions (c). NMSE in
noise-free ESN (d) and ESN with structural noise (e). The ratio Γ ESN

NMSE(v,λ ) showing the overall
variation of the performance between noisy and noise-free conditions (f). For r > 0.8, the SCR
nonlinear task solving performance is completely robust to structural noise. ESN performance is
also robust to noise for a critical spectral radius λ > 0.8.

N = 100 and connection fraction l = 0.2. Similar to SCRs, the optimal performance is
in the region λ = 0.9 and v = 0.1 with an average error of NMSE = 0.16. To test the
performance of noisy ESNs when computing the NARMA10 task, n= 40 reservoir con-
nections are perturbed at each time step using identical white noise as before to achieve
the same noise level. Figure 5e shows the result of this experiment. The optimal spec-
tral radius for noisy ESN does not change (λ = 0.9 with average error NMSE = 0.19).
However, performance is very sensitive to spectral radius and for λ < 0.8 shows a sharp
increase in error. The effect of noise on the ESNs is summarized in Figure 5f. Networks
with spectral radius λ = 0.5 are affected the most and networks with λ = 0.9 are robust.
Compared with SCR, ESN is more sensitive to noise. We can summarize the compari-
son between SCRs and ESNs using the following aggregate measures:

̂NMSE
SCR

= ∑
v∈V

∑
r∈R

NMSE(v,r), ̂NMSE
ESN

= ∑
v∈V

∑
λ∈Λ

NMSE(v,λ ), (10)
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Fig. 6. Performance on the NARMA10 task as a function of standard deviation of noise σ . Under
fixed size N = 100, networks with higher connection fraction l lose their performance more
quickly than sparser networks (a). Under fixed connection fraction l = 0.1, the performance does
not show significant sensitivity to network size as the noise level increases.

and aggregate measures:

Γ̂ SCR
NMSE = ∑

v∈V
∑
r∈R

log(Γ SCR
NMSE (v,r)), Γ̂ ESN

NMSE = ∑
v∈V

∑
λ∈Λ

log(Γ ESN
NMSE(v,λ )). (11)

For noise-free systems ̂NMSE
SCR

= 28.71 and ̂NMSE
ESN

= 32.02, showing that SCR

outperforms ESN by 10.3%. For noisy systems, ̂NMSE
SCR

= 36.10 and ̂NMSE
ESN

=
42.62 which suggests the simple structure of SCR makes it perform 15% better than
ESN in noisy environment. Finally, Γ̂ SCR

NMSE = −17.40 and Γ̂ ESN
NMSE = −25.74, indicating

that SCRs are 1.47 times more robust than ESNs for nonlinear task solving over the
parameter space that we studied.

Finally, we studied the sensitivity of ESN performance in the NARMA10 task under
different noise levels σ , different network size N, and reservoir sparsity l (Figure 6).
For fixed network size, as we increase the connection fraction, the error increases more
quickly as a function of noise (Figure 6a). This is expected since in denser networks,
variations in the state of one node propagate to many downstream nodes. We hypoth-
esize that if we control for node out-degree, we can contain this effect. We did not
find any significant variation in the performance of networks with different sizes as a
function of changing noise σ (Figure 6b).

5 Discussion

We used theoretical models to investigate robustness of reservoir computing as an ap-
proach to computation in emerging nanoscale and self-assembled devices. An example
of such networks is Atomic switch networks (ASN). These were based on a technology
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developed by Terabe et al. [31] aimed at reducing the cost and energy consumption of
electronic devices. They can achieve a memory density of 2.5 Gbit cm−2 without any
optimization, and a switching frequency of 1 GHz. Recently, Sillin et al. [32] combined
bottom-up self-assembly and top-down patterning to self-assemble ASN. These net-
works are formed using deposition of silver on pre-patterned copper seeds. They have
a three-dimensional structure that contains cross-bar-like junctions, and can be trans-
formed into metal-insulator-metal (MIM) atomic switches in the presence of external
bias voltage [32]. The morphology of this self-assembled network can be directed by
the pitch and the size of the copper seeds, which control the density and wire lengths,
respectively. We studied ESN and SCR with varying connection fraction, input weights,
and spectral radius to model the controllable variables in ASNs. We also used a white
noise to model variations in the electrical properties of nanowire networks due to radi-
ation or thermal noise. The normal distribution is known to be suitable to model varia-
tions in nanoscale devices [30]. We showed that one can use the dynamical properties
of a self-assembled system to perform computation without changing the microscopic
structure of the system itself. The only modification to the structure of ESN and SCR
is to adjust the spectral radius and therefore dynamical regime of the system, which
is independent of the specific computation and can be done using external control sig-
nals [33].

6 Conclusions

We presented reservoir computing as an alternative approach to randomly assembled
computers for implementing computation on top of emerging nanoscale computing sub-
strates. Using RC, we can compute with such devices assuming only enough connectiv-
ity in the system to propagate signals from the input to the output. This approach elimi-
nates the need for control signals and redundancy for programming and fault-tolerance
in emerging architectures, which simplifies its implementation and makes the training
more efficient. In addition, because the programming takes place in the output layer, the
same device can be used to compute multiple functions simultaneously. We showed that
the system resists noise in the interaction between nodes. This is a surprising feature be-
cause structural change in the system affects the long-term dynamics of the network.
In RC with full input-output connectivity, the performance of SCR is similar to ESN.
However, with sparse input-output connectivity the readout layer only has limited ob-
servation of the reservoir dynamics, therefore the dynamics of different nodes in the
reservoir have to be as independent as possible to represent independent spatiotempo-
ral features of the input signal. In ESN, the reservoir nodes have more interactions and
therefore their dynamics are more correlated resulting in a lower performance. In addi-
tion, with higher interactions between nodes, noise in a single connection can propagate
to several other nodes, which distorts the dynamics of the ESN. In SCR, on the other
hand, each node is only connected to one downstream node which limits the propaga-
tion of noise to only one other node. This result in higher robustness to noise in SCR.
In future work, we will study this hypothesis by controlling the out-degree of ESN
reservoir nodes. This is the first time RC has been used to solve nonlinear tasks with
sparse readout and structural noise. Exact characterization of performance and robust-
ness under varying sparsity and weight distribution conditions is left for future work.
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Another future direction is implementation of a “detect-and-recompute” schema as a
fault-tolerance mechanism against one or more permanently failed nodes or connec-
tions.
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Abstract. We propose the notion of gellular automata and their pos-
sible implementations using DNA-based gels. Gellular automata are a
kind of cellular automaton in which cells in space are separated by gel
materials. Each cell contains a solution with designed chemical reactions
whose products dissolve or construct gel walls separating the cells. We
first introduce the notion of gellular automata and their computational
models. We then give examples of gellular automata and show that com-
putational universality is achieved through the implementation of rotary
elements by gellular automata. We finally examine general strategies for
implementing gellular automata using DNA-based gels and report results
of preliminary experiments.

Keywords: DNA computing, molecular computing, molecular robotics,
cellular automata, gel, DNA gel, soft matter.

1 Introduction

Since the innovative founding of DNA computing, a great deal of effort has
been devoted to building molecular computing systems in a test tube. It has
been increasingly recognized that the realization of more sophisticated molecular
systems with information processing capabilities, such as molecular robots [1],
will necessitate the organization of molecular devices in two- or three-dimensional
structures.

In order to organize and coordinate molecular devices in space, it is necessary
to control communication among devices in terms of signaling molecules that
diffuse in space. Although principles of reaction-diffusion kinetics have been ex-
tensively investigated in the theory of complex systems, it is still not easy to
design and control reaction-diffusion systems as intended for applications like
molecular robots. In contrast, their discrete counterparts, i.e., cellular automata,
have also been investigated and are relatively easy to design and control.

Soft materials, including various kinds of gels, have been well-studied in chem-
istry, and such materials can be controlled by products of reactions that are ac-
tive inside the materials. Some of such gel materials are based on DNA molecules
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and can be controlled by reactions involving DNA, e.g., DNA computations [2–
6]. In particular, gelation and solation of polyacrylamide gels cross-linked by
double strands of DNA can be controlled by DNA reactions [3, 5].

Another recent technological progress related to this research is that of three-
dimensional printers, among which so-called gel printers can build three-
dimensional structures out of various gel materials and solutions [7].

Against the background described above, we propose the concept of gellular
automaton in this paper and examine its possible implementations. Gellular
automata are cellular automata in which cells in space are separated by gel
materials. Each cell contains a solution with designed chemical reactions whose
products dissolve or form gel walls separating the cells. We expect that gellular
automata can actually be constructed by next generation gel printers.

Recently, artificial membranes made of lipid and artificial channels penetrat-
ing such membranes have been investigated, and artificial channels made of DNA
origami have been implemented [8]. Based on these results, vesicles enclosed by
artificial membranes can in principle communicate with one another via artifi-
cial channels. It will also become possible to control the activity of channels by
reactions inside vesicles. However, it is still difficult to implement such control-
lable artificial membrane channels. We therefore assume that gels are currently
the most promising materials that can implement artificial cellular systems as
proposed in this paper.

In the rest of this paper, we first introduce the notion of gellular automata
and their mathematical models followed by related work on P systems. In Sec-
tion 3, we give examples of gellular automata in which a signal is propagated in
a controlled manner, and a rotary element is implemented. Universality is not
the main issue of the paper, but we touch upon computational universality as a
consequence of the examples. We then give general strategies for implementing
gellular automata using DNA-based gels in Section 4, and report results of pre-
liminary experiments in Section 5. We conclude the paper in Section 6 by giving
some future perspectives.

2 Gellular Automata

2.1 Intuitive Idea

Gellular automata consist of cells that are separated by walls made of gels. Each
cell is filled with a liquid solution containing molecular species that obey certain
chemical reactions. Each wall is associated with two molecular species. One of
the two species dissolves the wall or makes a hole through it. After a wall is
dissolved or a hole is made, the cells separated by the wall are merged and
their solutions are mixed, possibly triggering new reactions. The other species
constructs the wall or fills the hole. The merged cells are separated again when
the wall is reconstructed or the hole is filled.

As a very simple example, consider the following one-dimensional cellular space.
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A X X X X X X X

Each cell consists of a solution filled with molecular species A and/or X .
All the walls are assumed to be dissolved by A. The following reaction is also
assumed.

A,X → A,A

Firstly, the solution in the leftmost cell dissolves its right wall and merges the
two cells.

A,X X X X X X X

Since the merged cells still contain A, while the concentration of A increases
due to the reaction, the next wall is also dissolved.

A,X X X X X X

Eventually, all the walls are dissolved and the resulting large cell contains
only A.

A

2.2 Mathematical Models

Various mathematical models are derived from the intuitive idea presented in the
previous subsection, and they can be categorized with respect to the following
aspects.

A solution in a cell can be modeled either as a tuple of continuous real-valued
concentrations of molecular species, or as a multiset of molecular species. In
more abstract models, a solution might be regarded simply as a set of molecular
species that exist in it.

Reaction rules reflect chemical reactions in a solution. They are modeled based
on how solutions are formalized. If molecular species have continuous concen-
trations, it is natural to adopt mass action kinetics for reaction rules, where
a reaction rate is assigned to each rule. Concentrations are then continuously
changed over time in accordance with differential equations derived from the
rules and their reaction rates.

On the other hand, if a solution is regarded as a multiset of molecular species,
reaction rules are considered rewrite rules of multisets. The result of applying a
reaction rule to a multiset is obtained by subtracting the left hand side of the
rule from the multiset and adding the right hand side to it. There are a few
strategies to apply rewrite rules to a multiset. In the maximally parallel strategy,
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(possibly duplicated) rewrite rules are applied to a multiset in parallel in such
a way that no more application of a rewrite rule is possible. In the sequential
strategy, rewrite rules are applied to a multiset one by one sequentially, possibly
stopping application at any time. In both strategies, rewriting is instantaneous
and nondeterministic. One can also introduce a probability for applying a rewrite
rule to a multiset, resulting in stochastic simulation such as Gillespie’s [9].

Each wall separating cells has two states, the closed and open states, and is
associated with two molecular species, the decomposer and composer of the wall.
In the closed state the wall separates two adjacent cells and their solutions are
not mixed. If the decomposer exists in one or both cells, the wall is dissolved
and changed to the open state. The cells are then merged and their solutions are
mixed. In the open state, if the composer exists in the merged cells, the wall is
constructed and changed to the closed state.

The time required for a state change of a wall depends on how solutions
and reaction rules are modeled. In a continuous model, it is natural to assume
that the time is proportional to the temporal integral of the concentration of
the decomposer or composer. When the integral exceeds a certain limit, a state
change occurs and the adjacent solutions are mixed or separated instantaneously.
(If both the decomposer and the composer exist, they may compete with each
other in contributing to the integral.) While contributing to the integral, the
decomposer or composer may be consumed to a certain degree, as a result of
which its concentration will decrease.

In a discrete model, a state change of a wall should be instantaneous just as
an application of a rewrite rule to a cell. State changes of walls and applications
of rewrite rules are interleaved and coordinated under a certain strategy.

The number of times each wall can be dissolved or constructed strongly de-
pends on the implementation of walls and is also crucial to the computational
power of gellular automata. One can classify gellular automata according to
this parameter. In the extreme case, a wall is dissolved at most once and never
reconstructed in the course of a computation.

a b a b a b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

c c c c c c c

d d d d d d d

c c c c c c c

d d d d d d d

c c c c c c c

d d d d d d d

Fig. 1. Two-dimensional cellular
lattice

The topology of cells depends on how gellu-
lar automata are used. It is natural to imag-
ine a regular mesh structure of one-, two- or
three-dimensional cellular space. The initial so-
lutions in cells are defined according to some
regular pattern over the space. The walls sepa-
rating cells are also defined according to some
pattern. It is natural to assume a block of cells
and walls that is repeated and fills the cellular
space. For example, in Fig.1, four kinds of walls
are repeated in two-dimensional cellular lattice
space. In this space, each cell is enclosed by four kinds of walls, so the solution
in the cell can determine which wall to dissolve.
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2.3 Related Work

Tissue P systems consist of cells connected by synapses [10]. Rewrite rules for a
cell transform a multiset of symbols in the cell. They can also specify symbols
that are sent to adjacent cells through synapses. Although synapses do not have
states, cells have states that can control application of rewrite rules. Therefore,
discrete models of gellular automata introduced in the previous subsection can
in principle be simulated by tissue P systems. Since molecules in each cell are
represented by symbols in a multiset and they can be counted, it is usually the
case that a small number of cells suffices to gain computational power.

It is possible to compare continuous models of gellular automata and tissue P
systems with a set of symbols (not a multiset of symbols) in each cell. Alhazov
showed that even if multiplicity of symbols is ignored, it is possible to achieve
computational universality by allowing one to create and dissolve arbitrarily
many membranes [11]. Giavitto, et al. studied Cayley P systems where cells
are organized on a Cayley graph [12]. They also care only about existence or
non-existence of a symbol in a cell, and characterize the final configuration of
symbols under rewrite rules that are restricted to moving symbols between cells.
Our work in the next section can be placed in this line of research because we
only care which molecular species exist in a cell (though we adopt a continuous
model).

3 Continuous Model and Signal Propagation

3.1 Continuous Model

In this section, we assume a continuous model of gellular automata, where each
molecular species within a cell has a (possibly zero) real-valued concentration
which changes in accordance with mass action kinetics defined by the reaction
rules and their rates. As we pointed out in the previous section, we also think
that being able to count the number of molecules is unrealistic and underlying
mathematical models should be based on continuous kinetics for real-world ap-
plications. (But of course theoretical studies on various mathematical models
are important.)

In the following, we allow a set of reaction rules that does not necessarily
satisfy conservation of energy or mass as a whole. This means that some hidden
molecules are supplied to or discharged from the entire system. For example, we
assume that small molecules, such as ATP, can freely diffuse though gel walls.
In this way, we can supply energy to the system.

Although behaviors of continuous models depend on concrete parameters such
as reaction rates, they often allow qualitative reasoning based on big differences
between parameters. For example, we sometimes assume that certain reactions
are sufficiently fast compared with other reactions so that their reactants are
consumed up almost instantaneously.
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As we wrote in Section 2.2, the time to dissolve or construct a wall depends on
the temporal integral of the concentration of the decomposer or composer of the
wall with an appropriate coefficient. We assume that even while the decomposer
or the composer contribute to the integral, their concentrations are not affected.
We also assume that when a wall is dissolved, the adjacent solutions are mixed
instantaneously.

3.2 Unidirectionally Propagating Signal

We consider a one-dimensional cellular space separated by gel walls. The i-th
cell in the space is filled with a solution containing molecular species Xi. The
concentrations of all Xi’s are assumed to be identical. For example, they are
initialized with 1.0. The i-th and i+1-th cell is separated by wall wi.

wi wi+1

Xi Xi+1 Xi+2

We prepare another molecular species that dissolves wall wi and constructs
wall wi−1 if wi−1 is absent, i.e., Ai is the decomposer of wi as well as the composer
of wi−1. Now, assume that the solution of the i-th cell has been replaced with a
solution containing Ai (of the same concentration 1.0), which dissolves wall wi

so that the i-th and i+1-th cells are merged.

Ai Xi+1 Xi+2

Ai, Xi+1 Xi+2

We then assume two reaction rules: Ai, Xi+1 → Ai+1, Ai+1 and Ai+1 → Xi.
The first reaction is assumed to be fast, so the solution will soon consist of only
Ai+1 and Xi. It is further assumed that Ai+1 reconstructs wi faster than it
dissolves wi+1. So, the i-th and i+1-th cells are separated again.

Ai+1, Xi Xi+2

Ai+1, Xi Ai+1, Xi Xi+2

The i+1-th cell will then be merged with the i+2-th cell because wall wi+2

will be dissolved by Ai+1.
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Ai+1, Xi Ai+1, Xi, Xi+2

We expect that the contents of the i+2-th cell will become Ai+2, Xi+1, and
the above process will repeat. The i-th cell will eventually consist of only Xi due
to the reaction Ai+1 → Xi.

We therefore assume the following three rules for each index i.

Ai, Xi+1 → Ai+1, Ai+1 Xi−1, Xi+1 → Ai+1, Ai+1 Ai+1 → Xi

The first two rules are assumed to be fast. For example, in our tentative
numerical simulation, we assigned 0.1, 0.2, and 0.01 as reaction rates to the
three rules, respectively.

For each wall, we assign a variable, say w, that ranges from 0 to 1. In the closed
state, w is initialized as 1 and decreases by the temporal coefficient 0.03d, i.e.,
dw/dt = −0.03d, where d is the average of the concentrations of the decomposer
in the adjacent cells. When w reaches 0, the wall changes to the open state, and
it increases with the temporal coefficient 0.03c, i.e., dw/dt = 0.03c, where c is
the concentration of the composer. When it reaches 1, the wall changes to the
closed state.

In order to repeat the above process, we need at least five kinds of Xi, Ai and
wi for avoiding unintended interactions because Xi+2 can interact with Xi and
Xi+4. In other words, Xi+5, Ai+5 and wi+5 can be identical to Xi, Ai and wi,
respectively.

3.3 Rotary Element

The construction in the previous subsection can be extended to implement a ro-
tary element, which was introduced by Morita et al. for achieving computational
universality in reversible computing [13]. As in Fig.2, a rotary element has four
inputs and four outputs. The state of the rotary element, which is either 0 or 1,
determines how the inputs are propagated to the outputs as shown in Fig.2. It
is assumed that at most one of the four inputs is 1 and the others are 0. The
input 1 can therefore be interpreted as a particle or a token. In the following,
we use a propagating signal in the previous subsection to implement it.

1

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

Fig. 2. A rotary element and its input/output
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Fig. 3. Implementation of a rotary element

We assume two-dimensional cellu-
lar space. Our implementation of a
rotary element consists of the central
cell that is adjacent to four input cells
and four output cells (Fig.3). A signal
is propagated through the element as
in the one-dimensional cellular space
in the previous subsection. Let us re-
gard one of the input cells as the i-
th cell in the previous subsection, the
central cell as the i+1-th cell, and one
of the output cells as the i+2-th cell. Since the rotary element has two states
0 and 1, we prepare two molecular species X0

i+1 and X1
i+1, respectively. For

four input cells, we use superscript j (1 ≤ j ≤ 4) to identify the corresponding
molecular species.

When a signal comes from the j-th input cell, it should consist of Aj
i and

Xj
i−1 and the central cell undergoes the following reaction rules.

Aj
i , X

b
i+1 → Abj

i+1, A
bj
i+1 Xj

i−1, X
b
i+1 → Abj

i+1, A
bj
i+1 Abj

i+1 → Xbj
i

Molecular species Abj
i+1 and Xbj

i are prepared for each b and j. (Since the

old state b of the rotary element is kept in Xbj
i , we should have introduced two

versions of Xj
i . They behave identically when a signal comes from the i−1-th

cell and produce Aj
i and Xj

i−1.)

Fig. 4. Signal propagation through a rotary element (left to right)

The output cell to which the signal is propagated and the next state of the
rotary element are determined by b and j. Let us assume that the k-th output
is chosen and the next state of the rotary element is c. In this case, Abj

i+1 is
assumed to reconstruct the wall from the j-th input cell and dissolves the wall
to the k-th output cell, so the following reaction rules are prepared.

Abj
i+1, X

k
i+2 → Ack

i+2, A
ck
i+2 Xbj

i , Xk
i+2 → Ack

i+2, A
ck
i+2 Ack

i+2 → Xc
i+1
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Note that the new state c of the rotary element is kept in Ack
i+2 for determining

the next state of the rotary element in Xc
i+1. In this way (Fig.4), the signal is

propagated according to the definition of the rotary element, and the element
changes its state properly.

3.4 Computational Universality

Computational universality is not a major goal of the research on gellular au-
tomata, but it is a milestone to examine the computational power of various
models of gellular automata.

As shown in the previous subsection, rotary elements can be implemented
in a continuous model of gellular automata. Since it is possible to implement a
universal (reversible) Turing machine by rotary elements, computational univer-
sality is achieved [13]. Note that in order to achieve universality, it should be
possible to dissolve and reconstruct walls repeatedly, i.e., for an undetermined
number of times.

4 DNA-Based Implementations

4.1 DNA-Based gels

Fig. 5. Displacement of cross links in a DNA-based gel

Acrylamide gels can be
constructed by cross links
made of DNA strands that
are tethered with polyacry-
lamide via acrydite modi-
fication [2, 3]. It is possi-
ble to control such a gel by
displacing strands of DNA
as in Fig.5. A cross link in
a gel is made of a double
strand, and a single strand
that is complementary to
one of the strands in a cross link displaces the other and breaks the link. Conse-
quently, the gel is transformed to a sol and diluted in the surrounding solution.
Conversely, if two sols containing complementary single strands tethered with
polyacrylamide are mixed, they form a gel cross-linked by the double strands.

Another kind of acrylamide gel can be made of two kinds of cross links. One
is by double strands of DNA as above, and the other is by bis-acrylamide as in
ordinary acrylamide gels used for electrophoresis. This kind of gel can be swollen
by destroying cross links by DNA because it absorbs water when it partially loses
cross links [5].

On the other hand, shrinkable gels are not so easy to implement. Murakami
and Maeda report a gel with single strands of DNA as cross links can be shrunk
with complementary single strands that make links doubly stranded [6]. How-
ever, the gel cannot be swollen, and it is in general difficult to implement both
shrinkable and swellable DNA-based gels.
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4.2 Implementation of Walls

Fig. 6. Decomposable and composable walls

Using DNA-based gels as ex-
plained above, one can pro-
pose several approaches to
dissolve or construct walls by
DNA molecules. Decompos-
able walls are easy to imple-
ment. Acrylamide gels cross-
linked by double strands of
DNA can be dissolved by sin-
gle strands of DNA that break
the cross links.

On the other hand, com-
posable walls are not so easy
to implement. One possible
approach is to use a swellable
gel that has a small hole. When the gel is swollen, the hole disappears and the
gel becomes a wall [14].

Fig. 7. Combination
of walls

Walls that are both decomposable and composable (and
even repeatedly) are more difficult to implement. It is easy
to combine a decomposable and composable gels to make
a single wall, which can be decomposed once and com-
posed once. By further combining such gels as in Fig.7, it
is possible to implement a wall that can be decomposed n
times and composed n times (but with different decom-
posers and composers). However, since both shrinkable
and swellable gels are not easy to implement, it remains
to design a wall that can be decomposed and composed
for an undetermined number of times.

5 Preliminary Experiments

5.1 Dissolution of a Wall

A preliminary experiment was conducted to confirm that a DNA-based gel can
be used as a decomposable wall.

Materials and Methods. A PVC tube (Tygon R© tube from Saint-Gobain
in Japan) with 3mm inside diameter and 5mm outside diameter (the thick tube)
and another tube with 1mm inside diameter and 3mm outside diameter (the
thin tube) were connected as in Fig.8. Two complementary DNA strands (F and
LB from [15]) with acrydite at their 5′-end were mixed at concentration about
300μM in a TAE solution of 10μL containing 12.5mM Mg2+, 5% acrylamide,
0.21% TEMED and 0.42% APS. The solution was annealed (before APS was
put) from 95◦C to the room temperature in about 70 minutes. The solution
(after APS was put) was injected at the junction of the two tubes as in Fig.8.
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Another TAE solution of 40μL containing 12.5mMMg2+ with or without 300μM
of the displacing DNA strand (complementary to LB and denoted by Comp-LB)
was then placed inside the thick tube. In addition, a 6x loading buffer of 8μL
was placed in the thin tube.

6x loading buffer 8uL

Gel 10uL (F+LB)

Solu�on 40uL (TAE/Mg2+ or Comp-LB+TAE/Mg2+)

Thick tube (inside diameter 3mm, outside diameter 5mm)

Thin tube (inside diameter 1mm, outside diameter 3mm)

Fig. 8. Decomposable wall

101 min (with Comp)

115 min (with Comp)

101 min (without Comp)

115 min (without Comp)

Fig. 9. The wall dissolved only by the
solution with Comp-LB (left)

Result. After 115 minutes, the gel was
dissolved only by the solution containing
Comp-LB, and the loading buffer diffused
to the side of the thick tube. In the case
of the solution without Comp-LB, the gel
remained even after a few days.

5.2 Construction of a Wall

A preliminary experiment was conducted to confirm that a swellable DNA-based
gel can be used for making a composable wall.

Materials and Methods. Two complementary DNA strands (S and B8
from [5]) with acrydite at their 5′-end were mixed at concentration 4.42mM in a
TAE solution of 20μL containing 12.5mM Mg2+, 10% acrylamide, 1.4% (9mM)
bis-acrylamide, 0.2% TEMED and 0.2% APS. The solution was annealed (before
APS was put) from 95◦C to the room temperature in about 70 minutes. The
solution (after APS was put) was injected into a thick tube and a tiny tip (from
Watson R© used for gel loading) was inserted into the solution. After the gel was
formed in one hour, the tip was removed and a small hole was made in the gel. A
TAE solution of 30μL containing 12.5mM Mg2+ was placed in the tube and the
gel was incubated in the solution for 3 hours. The solution was then removed.
Two thin tubes, one is long and the other is short, were put inside the thick
tube with narrow gaps between the gel and the thin tubes as in Fig.10. A TAE
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solution of 30μL containing 12.5mM Mg2+ and 4.42mM of the displacing DNA
strand (P18 from [5]) was then placed inside the tubes. At this point, it was
checked that the two thin tubes were connected via the gaps and the hole in the
gel. After about 15 hours, a 6x loading buffer of 5μL was placed in the thick
tube at the side of the short thin tube.

Gel 20uL (BIS+S+B8) with a hole Solu�on 30uL (P18+TAE/Mg2+)

Thick tubeLong thin tube Short thin tube

Gap

Gap

Hole

Fig. 10. Composable wall

Fig. 11. The gaps filled

Result. As in Fig.11, the loading buffer could
not diffuse to the long thin tube. This indicated
that the gel was swollen and the gaps disappeared
so that the two thin tubes were separated. The hole
in the gel made by the tip was not filled (as checked
with eyes). Although we put the loading buffer after
about 15 hours, the gaps seemed to be filled in less
than five hours.

6 Concluding Remarks

With the future progress of gel materials and gel printers, it will be possible
to make more and more complex cellular space, and with the progress of DNA
computing, it will also be possible to implement more and more sophisticated
reaction rules. Alt-hough we used PVC tubes in our preliminary experiments,
in the future it should be possible to construct the entire cellular space out of
merely gels of various kinds. If walls in the cellular space shrink and swell, they
not only control the flow of solutions but also lead to conformational changes
of the entire structure. We therefore think that gellular automata are a good
candidate for a chassis of a molecular robot.

We also think that gellular automata can be easily combined with electronics
(cf. the fourth generation of molecular robots [1]) because circuits can be dis-
tributed over cellular space, and small chips can be embedded inside cells [16].

Acknowledgements. This research is supported by Grant-in-Aid for Scientific
Research on Innovative Areas “Molecular Robotic” from MEXT, Japan.



On DNA-Based Gellular Automata 189

References

1. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular
Robotics: A New Paradigm for Artifacts. New Generation Computing 31, 27–45
(2013)

2. Liu, J.: Oligonucleotide-functionalized hydrogels as stimuli responsive materials
and biosensors. Soft Matter 7, 6757–6767 (2011)

3. Lin, D.C., Yurke, B., Langrana, N.A.: Mechanical Properties of a Reversible, DNA-
Crosslinked Polyacrylamide Hydrogel. J. Biomech. Eng. 126, 104–110 (2004)

4. Lee, J.B., Peng, S., Yang, D., Roh, Y.H., Funabashi, H., Park, N., Rice, E.J.,
Chen, L., Long, R., Wu, M., Luo, D.: A mechanical metamaterial made from a
DNA hydrogel. Nature Nanotech. 7, 816–820 (2012)

5. Gao, M., Gawel, K., Stokke, B.T.: Toehold of dsDNA exchange affects the hydrogel
swelling kinetics of a polymerdsDNA hybrid hydrogel. Soft Matter 7, 1741 (2011)

6. Murakami, Y., Maeda, M.: DNA-Responsive Hydrogels That Can Shrink or Swell.
Biomacromolecules 6, 2927–2929 (2005)

7. Villar, G., Graham, A.D., Bayley, H.: A Tissue-Like Printed Material. Science 340,
48–52 (2013)

8. Langecker, M., Arnaut, V., Martin, T.G., List, J., Renner, S., Mayer, M., Dietz,
H., Simmel, F.C.: Synthetic Lipid Membrane Channels Formed by Designed DNA
Nanostructures. Science 338, 932–936 (2012)

9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

10. Martn-Vide, C., Pun, G., Pazos, J., Rodrguez-Patn, A.: Tissue P systems. Theo-
retical Computer Science 296, 295–326 (2003)

11. Alhazov, A.: P systems without multiplicities of symbol-objects. Information Pro-
cessing Letters 100(3), 124–129 (2006)

12. Giavitto, J.-L., Michel, O., Cohen, J.: Accretive Rules in Cayley P Systems. In:
Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC-CdeA. LNCS,
vol. 2597, pp. 319–338. Springer, Heidelberg (2003)

13. Morita, K.: A simple universal logic element and cellular automata for reversible
computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055,
pp. 102–113. Springer, Heidelberg (2001)

14. Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.-
H.: Functional hydrogel structures for autonomous flow control inside microfluidic
channels. Nature 404, 588–590 (2000)

15. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering Entropy-Driven
Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)

16. McCaskill, J.S., et al.: Microscale chemically reactive electronic agents. Interna-
tional Journal of Unconventional Computing 8, 289–299 (2012)



Doubles and Negatives are Positive

(in Self-assembly)

Jacob Hendricks�, Matthew J. Patitz��, and Trent A. Rogers� � �

Abstract. In the abstract Tile Assembly Model (aTAM), the phenome-
non of cooperation occurs when the attachment of a new tile to a grow-
ing assembly requires it to bind to more than one tile already in the
assembly. Often referred to as “temperature-2” systems, those which
employ cooperation are known to be quite powerful (i.e. they are com-
putationally universal and can build an enormous variety of shapes and
structures). Conversely, aTAM systems which do not enforce cooperative
behavior, a.k.a. “temperature-1” systems, are conjectured to be relatively
very weak, likely to be unable to perform complex computations or algo-
rithmically direct the process of self-assembly. Nonetheless, a variety of
models based on slight modifications to the aTAM have been developed
in which temperature-1 systems are in fact capable of Turing univer-
sal computation through a restricted notion of cooperation. Despite that
power, though, several of those models have previously been proven to be
unable to perform or simulate the stronger form of cooperation exhibited
by temperature-2 aTAM systems.

In this paper, we first prove that another model in which temperature-
1 systems are computationally universal, namely the restricted glue TAM
(rgTAM) in which tiles are allowed to have edges which exhibit repulsive
forces, is also unable to simulate the strongly cooperative behavior of the
temperature-2 aTAM. We then show that by combining the properties
of two such models, the Dupled Tile Assembly Model (DTAM) and the
rgTAM into the DrgTAM, we derive a model which is actually more
powerful at temperature-1 than the aTAM at temperature-2. Specifically,
the DrgTAM, at temperature-1, can simulate any aTAM system of any
temperature, and it also contains systems which cannot be simulated by
any system in the aTAM.

1 Introduction
Composedof large collections of relatively simple componentswhichautonomously
combine to form predetermined structures, self-assembling systems provide a
framework in which structures can grow from the bottom up, with precise place-
ment of individualmolecules. Natural self-assembling systems, the results of which
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include structures ranging from crystalline snowflakes to cellular membranes and
viruses, have inspired a large body of research focused on both studying their prop-
erties and creating artificial self-assembling systems tomimic them. As experimen-
tal and theoretical research into self-assembly has increased in sophistication, par-
ticular attention has been focused upon the domain of algorithmic self-assembly,
which is self-assembly intrinsically directed by algorithms, or step-by-step proce-
dures used to perform computations. An example of a model supporting algorith-
mic self-assembly is the abstract Tile Assembly Model (aTAM) [16], which has
spawned much research investigating its powers and limitations, and even more
fundamentally those of algorithmic self-assembly in general.

In the aTAM, the fundamental components are square tiles which have sticky
glues on the edges which allow them to bind with other tiles along edges sharing
matching glues. Self-assembly begins from special seed assemblies, and progresses
as tiles attach one at a time to the growing assembly. As simple as the aTAM
sounds, when initially introducing it in 1998 [16], Winfree showed it be to capable
of Turing universal computation, i.e. it can perform any computation possible by
any computer. It was soon also shown that the algorithmic nature of the aTAM
can be harnessed to build squares [14] and general shapes [15] with (information
theoretically) optimal efficiency in terms of the number of unique kinds of tiles
used in the assemblies. The rich set of results displaying the power of the aTAM
(e.g. [4, 9, 13] to name just a few), however, have appeared to be contingent
upon a minimal value of 2 for a system parameter known as the temperature.
The temperature of an aTAM system is the threshold which, informally stated,
determines how many glues a tile must bind to a growing assembly with in order
to remain attached. Temperature-2 systems have the property that they can en-
force cooperation in which the attachment of a tile requires it to correctly bind
to at least two tiles already in the assembly (thus, those two tiles cooperate to
allow the new tile to attach). This cooperation allows for each tile to effectively
perform a primitive logical operation (e.g. and, or, xor, etc.) on the “input”
values supplied by the tiles they bind to, and careful combination of these oper-
ations, just as with the gates in a modern electronic processor, allow for complex
computations to occur. In contrast, the requirement for cooperation cannot be
enforced in temperature-1 systems which only require one binding side, and it
has thus been conjectured that temperature-1 aTAM systems are “weak” in the
sense that they cannot perform universal computation or be guided algorithmi-
cally [5]. While this long-standing conjecture remains unproven in the general
case of the aTAM, a growing body of work has focused on attempts to circum-
vent the limitations of temperature-1 self-assembly by making small variations
to the aTAM. For instance, it has been shown that the following models are
computationally universal at temperature-1: the 3-D aTAM [1], aTAM systems
which compute probabilistically [1], the restricted glues TAM (rgTAM) which
allow glues with repulsive (rather than just attractive) forces [12], the Dupled
aTAM which allows tiles shaped like 2× 1 rectangles [8], and the Signal-passing
Tile Assembly Model [11] which contains dynamically reconfigurable tiles.
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While such results may seem to indicate that those computationally universal
models are as powerful as the temperature-2 aTAM, in [10] it was shown that
3-D temperature-1 aTAM systems cannot possibly simulate very basic “glue
cooperation” exhibited in the temperature-2 aTAM where a new tile actually
binds to two already placed tiles. Essentially, the weaker form of cooperation
exploited by the 3-D temperature-1 aTAM to perform computation does allow
for the restriction of tile placements based on the prior placement of two other
tiles, but that form of cooperation seems to be fundamentally restrictive and
“non-additive”, meaning that the previously placed tiles can only prevent certain
future tile bindings, but not cooperate to support new binding possibilities.
In fact, that lesser form of cooperation now appears to be the limit for those
temperature-1 models which can compute (with perhaps the exception of the
active signal-passing tiles), as it was shown in [8] that the DaTAM also cannot
simulate glue cooperation. It appears that the landscape modeling the relative
powers of models across various parameters is more subtle and complicated than
originally recognized, with the original notion of cooperative behavior being more
refined.

The contributions of this paper are threefold. First, we show that the rgTAM
is also not capable of simulating glue cooperation. Second, we introduce the
Dupled restricted glue TAM (DrgTAM) which allows for both square tiles and
“duple” tiles, which are simply pre-formed pairs of 2 tiles joined along one edge
before assembly begins, and it allows for glues with negative strength (i.e. those
which exert repulsive force). However, it is restricted similar to the rgTAM in
that the magnitude of glue strengths cannot exceed 1 (i.e. only strengths 1 and
−1 are allowed). Third, we show that by creating the DrgTAM by combining two
models (the rgTAM and the Dupled aTAM) which are computationally universal
at temperature 1 but which cannot independently simulate glue cooperation, the
result is a model which in some measures is greater than the sum of its parts.
That is, the resulting DrgTAM is capable of both universal computation and the
simulation of glue cooperation. This is the first such result for passive (i.e. non-
active) tile assembly systems. In fact, we show the stronger result that there is
a single tile set in the DrgTAM which can be configured to, in a temperature-1
system, simulate any arbitrary aTAM system, making it intrinsically univer-
sal for the aTAM. Coupled with the result in [8] which proves that there are
temperature-1 systems in the DTAM, which are thus also in the DrgTAM, that
cannot be simulated by the aTAM at temperature-2, this actually implies that
the DrgTAM is more powerful than the temperature-2 aTAM.

The paper is organized as follows. In Section 2 we give high-level sketches of
the definitions of the models and of the concepts of simulation used throughout
the paper. In Section 3 we prove that rgTAM systems cannot simulate the glue
cooperation of temperature-2 aTAM systems, and in Section 4 we present the
proof that the DrgTAM can simulate the temperature-2 aTAM and in fact con-
tains a tile set which is intrinsically universal for it. Due to printing constraints,
the formal definitions, color images, and proofs can be found in [7].
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2 Preliminaries

Throughout this paper, we use three tile assembly models: 1. the aTAM, 2. the
restricted glue TAM (rgTAM), and 3. the dupled rgTAM (DrgTAM). We now
informally describe these models. Due to space limitations, the formal definitions
can be found [7].

Informal Description of the Abstract Tile Assembly Model. A tile type
is a unit square with four sides, each consisting of a glue label, often represented
as a finite string, and a nonnegative integer strength. A glue g that appears on
multiple tiles (or sides) always has the same strength sg. There are a finite set
T of tile types, but an infinite number of copies of each tile type, with each copy
being referred to as a tile. An assembly is a positioning of tiles on the integer
lattice Z2, described formally as a partial function α : Z2 ��� T . Let AT denote
the set of all assemblies of tiles from T , and let AT

<∞ denote the set of finite
assemblies of tiles from T . We write α � β to denote that α is a subassembly of
β, which means that dom α ⊆ dom β and α(p) = β(p) for all points p ∈ dom α.
Two adjacent tiles in an assembly interact, or are attached, if the glue labels on
their abutting sides are equal and have positive strength. Each assembly induces
a binding graph, a grid graph whose vertices are tiles, with an edge between two
tiles if they interact. The assembly is τ-stable if every cut of its binding graph
has strength at least τ , where the strength of a cut is the sum of all of the
individual glue strengths in the cut. When τ is clear from context, we simply
say that a τ -stable assembly is stable.

A tile assembly system (TAS) is a triple T = (T, σ, τ), where T is a finite
set of tile types, σ : Z2 ��� T is a finite, τ -stable seed assembly, and τ is the
temperature. An assembly α is producible if either α = σ or if β is a producible
assembly and α can be obtained from β by the stable binding of a single tile. In
this case we write β →T

1 α (to mean α is producible from β by the attachment
of one tile), and we write β →T α if β →T ∗

1 α (to mean α is producible from β
by the attachment of zero or more tiles). When T is clear from context, we may
write →1 and → instead. We let A[T ] denote the set of producible assemblies
of T . An assembly is terminal if no tile can be τ -stably attached to it. We
let A�[T ] ⊆ A[T ] denote the set of producible, terminal assemblies of T . A
TAS T is directed if |A�[T ]| = 1. Hence, although a directed system may be
nondeterministic in terms of the order of tile placements, it is deterministic in
the sense that exactly one terminal assembly is producible (this is analogous to
the notion of confluence in rewriting systems).

Since the behavior of a TAS T = (T, σ, τ) is unchanged if every glue with
strength greater than τ is changed to have strength exactly τ , we assume that
all glue strengths are in the set {0, 1, . . . , τ}.

Informal Description of the Restricted Glue Tile Assembly Model.
The rgTAM was introduced in [12] where it was shown that the rgTAM is com-
putationally universal even in the case where only a single glue has strength
−1. The definition used in [12] and the definition given here are similar to the
irreversible negative glue tile assembly model given in [3].
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The restricted glue Tile Assembly Model (rgTAM) can be thought of as the
aTAM where the temperature is restricted to 1 and glues may have strengths
−1, 0, or 1. A system in the rgTAM is an ordered pair (T, σ) where T is the
tile set, and σ is a stable seed assembly. We call an rgTAM system an rgTAS.
Producible assemblies in an rgTAS can be defined recursively as follows. Let
T = (T, σ) be an rgTAS. Then, an assembly α is producible in T if 1. α = σ, 2.
α is the result of a stable attachment of a single tile to a producible assembly,
or 3. α is one side of a cut of strength ≤ 0 of a producible assembly.

In [3], Doty et al. give a list of the choices that can be made when defining
a model with negative glues. These choices are (1) seeded/unseeded, (2) single-
tile addition/two-handed assembly, (3) irreversible/reversible, (4) detachment
precedes attachment/detachment and attachment in arbitrary order, (5) finite
tile counts/infinite tile counts, and (6) tagged result/tagged junk. Here we have
chosen the rgTAM to be a seeded, single-tile addition, irreversible model that
uses infinite tiles. We also assume that attachment and detachment in the model
occur in arbitrary order, however the results presented here also hold in the case
where detachment precedes attachment. Finally, the definition of simulation (see
Section 2.1) implicitly enforces a notion of tagged result and tagged junk. In
particular, if detachment occurs in a simulating system, of the two resulting
assemblies one contains the seed and represents some assembly in the simulated
system, while the other resulting assembly must map to the empty tile.

Informal Description of the Dupled Restricted Glue Tile Assembly
Model. The DrgTAM is an extension of the rgTAM which allows for systems
with square tiles as well as rectangular tiles. The rectangular tiles are 2 × 1 or
1×2 rectangles which can logically be thought of as two square tiles which begin
pre-attached to each other along an edge, hence the name duples. A DrgTAM
system (DrgTAS) is an ordered 4-tuple (T, S,D, σ) where, as in a TAS, T is a
tile set and σ is a seed assembly. S is the set of singleton (i.e. square) tiles which
are available for assembly, and D is the set of duple tiles. The tile types making
up S and D all belong to T , with those in D each being a combination of two
tile types from T .

It should be noted that the glue binding two tiles that form a duple must
have strength 1, and the glues exposed by a duple may have strength −1, 0, or
1. Also notice that for an assembly α in a DrgTAS, a cut of strength ≤ 0 may
separate two nodes of the grid graph that correspond to two tiles of a duple.
Then, the two producible assemblies on each side of this cut each contain one
tile from the duple.

2.1 Informal Definitions of Simulation

In this section, we present a high-level sketch of what we mean when saying that
one system simulates another. Please see [7] for complete, technical definitions,
which are based on those of [10].

For one system S to simulate another system T , we allow S to use square (or
rectangular when simulating duples) blocks of tiles called macrotiles to repre-
sent the simulated tiles from T . The simulator must provide a scaling factor c
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which specifies how large each macrotile is, and it must provide a representation
function, which is a function mapping each macrotile assembled in S to a tile in
T . Since a macrotile may have to grow to some critical size (e.g. when gathering
information from adjacent macrotiles about the simulated glues adjacent to its
location) before being able to compute its identity (i.e. which tile from T it rep-
resents), it’s possible for non-empty macrotile locations in S to map to empty
locations in T , and we call such growth fuzz. We follow the standard simula-
tion definitions (see [2, 4, 6, 10]), and restrict fuzz to being laterally or vertically
adjacent to macrotile positions in S which map to non-empty tiles in T .

Given the notion of block representations, we say that S simulates T if and
only if (1) for every producible assembly in T , there is an equivalent producible
assembly in S when the representation function is applied, and vice versa (thus
we say the systems have equivalent productions), and (2) for every assembly
sequence in T , the exactly equivalent assembly sequence can be followed in S
(modulo the application of the representation function), and vice versa (thus
we say the systems have equivalent dynamics). Thus, equivalent production and
equivalent dynamics yield a valid simulation.

We say that a tile set U is intrinsically universal for a class C of tile assembly
systems if, for every system T ∈ C a system UT can be created for which: 1. U is
the tile set, 2. there is some initial seed assembly consisting of tiles in U which is
constructed to encode information about the system T being simulated, 3. there
exists a representation function R which maps macrotiles in the simulator UT
to tiles in the simulated system, and 4. under R, UT has equivalent productions
and equivalent dynamics to T . Essentially, there is one tile set which can be
used to simulate any system in the class, using only custom configured input
seed assemblies. For formal definitions of intrinsic universality in tile assembly,
see [4, 6, 10].

3 A Temperature-2 aTAM System That Cannot Be
Simulated by Any rgTAS

In this section we show that there exists a temperature-2 aTAM system that
cannot be simulated by any rgTAM system. Here we give an overview of the
TAS, T , that we show cannot be simulated by any rgTAS, and an overview of
the proof. For sake of brevity, more rigorous details of the following proof can
be found in [7].

Theorem 1. There exists a temperature-2 aTAM system T = (T, σ, 2) such that
T cannot be simulated by any rgTAS.

Let T = (T, σ, 2) denote the system with T and σ given in Figure 1. The glues
in the various tiles are all unique with the exception of the common east-west
glue type used within each arm to induce non-deterministic and independent
arm lengths. Glues are shown in part (b) of Figure 1. Note that cooperative
binding happens at most once during growth, when attaching the keystone tile
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Fig. 1. (Figure taken from [10]) (a) An overview of the tile assembly system T =
(T, σ, 2). T runs at temperature 2 and its tile set T consists of 18 tiles. (b) The glues
used in the tileset T . Glues g11 and g14 are strength 1, all other glues are strength 2.
Thus the keystone tile binds with two “cooperative” strength 1 glues. Growth begins
from the pink seed tile σ: the top and bottom arms are one tile wide and grow to
arbitrary, nondeterministically chosen, lengths. Two blue figures grow as shown. (c) If
the fingers happen to meet then the keystone, flagpole and flag tiles are placed, (d) if
the fingers do not meet then growth terminates at the finger “tips”.

to two arms of identical length. All other binding events are noncooperative and
all glues are strength 2 except for g11, g14 which are strength 1.

The TAS T was used in [10] to show that there is a temperature-2 aTAM
system that cannot be simulated by a temperature-1 aTAM system. To prove
that there is no rgTAS that simulates T , we use a similar proof to the proof for
aTAM systems, however, we must take special care to show that allowing for
a single negative glue does not give enough strength to the model to allow for
simulation of cooperative glue binding.

The proof is by contradiction. Suppose that S = (S, σS) is an rgTAS that
simulates T . We call an assembly sequence α = (α0, α1, . . . ) in an rgTAS de-
tachment free if for all i ≥ 0, αi+1 is obtained from αi by the stable attachment
of a single tile. The following lemma gives sufficient conditions for the existence
of a detachment free assembly sequence.

Lemma 1. Let S = (S, σS) be an rgTAS and let α ∈ A[S] be a finite stable
assembly. Furthermore, let β be a stable subassembly of α. Then there exists a
detachment free assembly sequence α = (α1, α2, . . . , αn) such that α1 = β, and
αn = α.

A corollary of this lemma is that if an rgTAS gives a valid simulation of T ,
it can do so using detachment free assembly sequences. Using detachment free
assembly sequences, it is possible to use a technique for “splicing” subassem-
blies of producible assemblies of S. This technique uses a lemma referred to as
the “window movie lemma”. For aTAM systems, this lemma is shown in [10]
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Fig. 2. An example assembly formed by S simulating T – (a) and (b), and the resulting
producible assembly (c) constructed via a “splicing” technique that uses the window
movie lemma. The assembly in (c) shows that S is incapable of valid simulation of T .

(Lemma 3.1). We give a version of the window movie lemma that holds for de-
tachment free assembly sequences. See [7] for the formal definitions of windows
and window movies, and for a formal statement of the window movie lemma that
we use. Figure 2 gives a depiction of this splicing technique. Here we use this
lemma for detachment free assembly in the rgTAM. Then, using this splicing
technique, we show that if S can simulate T , it can also produce assemblies that
violate the definition of simulation. In other words, we arrive at our contradiction
and conclude that there is no rgTAS that can simulate T .

4 Simulation of the aTAM with the DrgTAM

In this section, given an aTAM system T = (T, σ, 2), we describe how to simulate
T with a DrgTAS at temperature 1 with O(1) scale factor and tile complexity
O(|T |). It will then follow from [4] that there exists a tile set in the DrgTAM at
τ = 1 which is intrinsically universal for the aTAM at any temperature, i.e. it
can be used to simulate any aTAM system of any temperature.

Theorem 2. For every aTAM system T = (T, σ, 2), there exists a DrgTAS
D = (TD, S,D, σ′, 1) such that D simulates T with O(1) scale factor and |S ∪
D| = O(|T |).

We now provide a high-level overview of the construction. For the remainder
of this section, T = (T, σ, 2) will denote an arbitrary TAS being simulated, D =
(TD, S,D, σ′, 1) the simulating DrgTAS, and R the representation function which
maps blocks of tiles in D to tiles in T . The system T is simulated by a DrgTAS
through the use of macrotiles which consist of the components shown in Figure 3.
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Note that macrotiles are not necessarily composed of all of the components shown
in Figure 3, but will consist of at least one of the subassemblies labeled probe.
Informally, the subassemblies labeled probe, which we will now refer to as probes,

Probe N

Probe S

Probe EProbe W 1 2 3

4

5

7

6 8

9

10

11

Arm 1 Arm 2

Fig. 3. Macrotile probes, points of cooperation, and points of competition

“simulate” the glues of the tiles in T . If a probe is simulating a glue which is
of strength 2, then it does not require the assistance of any other probes in
order to complete the macrotile containing it. On the other hand, if the glue
which the probe is simulating is of strength 1, then the probe cannot assemble
a new macrotile until another probe arrives which simulates a glue with which
the other glue can cooperate and place a new tile in T . Before probes can begin
the growth of a new macrotile, they must claim (i.e. place a tile in) one of the
points of competition (shown as red in Figure 3) depending on the configuration
of the macrotile. Once a special tile is placed in one of the points of competition,
the representation function R maps the macrotile to the corresponding tile in T ,
and the growth of the macrotile can begin.

We use the following conventions for our figures. All duples are shown in
darker colors (even after they are broken apart) and singletons are shown in
lighter colors. Negative glues are represented by red squares protruding from
tiles, and positive glues are represented by all other colored squares protruding
from tiles. We represent glue mismatches (a glue mismatch occurs when two
different glues are adjacent or a glue is adjacent to a tile side that does not
have a glue) by showing the mismatching glues receded into the tiles from which
they would normally protrude. A red box enclosing a subassembly indicates that
subassembly has total binding strength 0.

The cooperator gadget is the underlyingmechanism that allows for theDrgTAM
to simulate the cooperative placement of a tile in a τ ≥ 2 TAS. We consider two
cases of cooperative tile placement: 1) the tiles that cooperatively contribute to
the placement of a tile have adjacent corners (e.g. one is north of the location to
be cooperatively tiled while the other is to the east or west), and 2) the tiles that
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(a) (b) (c) (d) (e)

Fig. 4. An assembly sequence of an adjacent cooperator gadget

cooperatively contribute to the placement of a tile are non-adjacent, that is there
is a tile wide gap between the two tiles. We create a cooperator gadget for each of
these two cases. Not surprisingly, we call the cooperator gadget that mimics the
former case the adjacent cooperator gadget and the cooperator gadget that mimics
the latter case the gap cooperator gadget. Each of these two gadgets is asymmetric
in nature and consists of two parts: 1) a finger and 2) a resistor. The function of
the resistor is to cause a duple that is attached to the finger gadget to break apart
and expose the internal glue of the duple which can then be used for binding of
another tile.

An adjacent cooperator gadget is shown in Figure 4. Part (a) of this figure
depicts the finger part of the gadget, and the subassembly labeled (b) is the
resistor. Note that the only tiles which have the ability to bind to the exposed
glues are duples with a negative glue that is aligned with the negative glue
that is adjacent to the exposed glues. This means that neither subassembly can
grow any further until its counterpart arrives. In Figure 4 parts (c) - (e) we
see the assembly sequence showing the interaction between the two parts of the
cooperator gadget. In this particular assembly sequence we have assumed that
the resistor piece of the gadget has arrived first. In part (c), we see the arrival of
a tile (presumably from a probe) which allows for the duple that is a part of the
finger gadget to bind with total strength 1. The 0 strength cut that is induced
by this binding event is shown by the red box in part (d) of the figure. Since
the tile encapsulated in the red box is bound with total strength 0, it eventually
detaches which leads us to part (e) of the figure. Notice that the dissociation
event has caused a new glue to be exposed. This glue now allows for the binding
of a duple as shown in part (e) of Figure 4.

(a) (b) (c) (d) (e)
Fig. 5. An assembly sequence of a gap cooperator gadget
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Figure 5 shows a gap cooperator gadget which is a simple extension of the
adjacent cooperator gadget. This extension of the adjacent cooperator gadget
allows for a crosser gadget (described below) to grow a path of tiles in between
the two parts of the gadget. This gadget allows a new glue to be exposed upon
the arrival of a negative glue (Figure 5 part (c)) which causes half of the duple to
detach (shown in part (d) of the figure). This allows a duple to attach as shown
in Figure 5(e) which depends on both of the glues exposed by the two parts of
the gadget. Notice that the binding of this tile cannot occur unless both parts
of the gadget are present.

The previous gadgets showed that in order for two probes to cooperate, they
must be connected by a path of tiles. In order for other probes to cross in between
these connected probes we utilize what we call a “crosser gadget”. The assembly
sequence for a crosser is shown in Figure 6. Growth of the gadget begins with the
placement of a singleton which is prevented from growing further. This singleton
exposes glues which allow for duples to bind (Figure 6(b) and (c)) that cause
the path of tiles blocking the singleton’s growth to detach (Figure 6(d)). Note
that the attachment of these duples cannot occur before the singleton arrives
since they would only have total binding strength zero. [7] offers a more in-depth
description of the gadgets described above.

We can now use these gadgets to give a more complete description of the
probes which are shown in Figure 3. All of the numbered regions represent
gadgets. Gadgets labeled 1-3 in the figure represent gap cooperator gadgets
which allow for cooperation between the probes to which they are attached.
The gadgets labeled 5-9 denote adjacent cooperator gadgets which allow for the
potential of cooperation between the probes to which they are attached. Finally,
the gadgets labeled 10 and 11 are cooperator gadgets which allow for Probe W
to trigger the growth of the second arms of Probe N and Probe S. See [7] for
more details about the structure of probes and their accompanying gadgets.

(a) (b) (c) (d)
Fig. 6. An assembly sequence of a crosser gadget

The output of the representation function for a particular macrotile depends
on the three regions labeled 1-3 in Figure 3. If a special tile is placed in region
1, then the macrotile region is mapped to the tile in T that corresponds to the
special tile regardless of the tiles in the other regions. Similarly, region 3 takes
precedence over region 2. Finally, if a special tile has not been placed in either
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region 1 or 3, then the output of the representation function depends on the tile
placed in region 2.

The seed of our simulator is formed from a set of tiles in S ∪ D which have
been hardcoded. For a more detailed explanation of the representation function
and regions 1-3 see, a case analysis of how our construction handles all possible
binding scenarios, and a more detailed explanation about the construction of the
seed in the simulator, see [7].

Corollary 1. There exists a DrgTAM tile set U which, at temperature-1, is
intrinsically universal for the aTAM. Furthermore, the sets of singletons and
duples, S and D, created from U are constant across all simulations.

As mentioned above this result follows from [4]. See [7] for more details.
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Abstract. Spiking neural P systems (SN P systems, for short) are a
class of distributed parallel computing devices inspired from the way
neurons communicate by means of spikes. In this work, we consider SN
P systems with the restriction: at each step the neuron with the max-
imum number of spikes among the neurons that can spike will fire (if
there is a tie for the maximum number of spikes stored in the active
neurons, only one of the neurons containing the maximum is chosen
non-deterministically). We investigate the computational power of such
sequential SN P systems that are used as language generators. We prove
that recursively enumerable languages can be characterized as projec-
tions of inverse-morphic images of languages generated by that sequen-
tial SN P systems. The relationships of the languages generated by these
sequential SN P systems with finite and regular languages are also in-
vestigated.

Keywords: Membrane computing, Spiking neural P system, Sequen-
tiality, Maximum spike number.

1 Introduction

Spiking neural P systems were introduced in [4] as a class of distributed parallel
computing models which were abstracted from the way neurons process infor-
mation and communicate to each other by sending spikes along synapses. Since
then, many computational properties of SN P systems have been studied. SN
P systems were proved to be computationally complete as number generating
or accepting devices [3,4,12,13], language generators [1,2,14], and function com-
puting devices [8,9,15]. SN P systems can be also used to (theoretically) solve
computationally hard problems in a feasible time [5,7]. Readers can refer to the
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handbook [10] for the details of SN P systems, and the up-to-date information
is available at the membrane computing website http://ppage.psystems.eu.

Briefly, an SN P system consists of a set of neurons, which are placed in the
nodes of a directed graph whose arcs represent the synapses. Each neuron can
contain a number of copies of a single object type, called the spike, spiking rules
and forgetting rules. Using its rules, a neuron can send information (in the form of
spikes) to all neurons connected by an outgoing synapse from it. The applicability
of a rule is determined by checking the total number of spikes contained in the
neuron against a regular expression associated with the rule. One of the neurons
is the output neuron and its spikes are sent to the environment. The moments
of time when a spike is emitted by the output neuron are marked with 1, the
other moments are marked with 0. This binary sequence is called the spike train
of the system. A result can be associated with a computation in various ways:
for example, as the number of spikes sent to the environment or as the time
elapsed between the first two consecutive spikes sent to the environment by the
system. An SN P system can be used as a computing device in various ways, for
example, as an acceptor, a transducer or as a language generator.

In [3], SN P systems were used as number generating devices and as number
accepting devices with the restriction: at each step the neuron with the max-
imum number of spikes among the neurons that can spike will fire; if there is
a tie for the maximum number of spikes stored in the active neurons, only one
of the neurons containing the maximum is chosen non-deterministically. Such
restriction under which SN P systems work is called “max-sequentiality”. The
computational power of SN P systems working in the max-sequentiality manner
used as number generating devices and as number accepting devices was already
investigated [3].

In this work, we investigate the computational power of SN P systems work-
ing in the max-sequentiality manner used as language generators. We prove
that recursively enumerable languages can be characterized as projections of
inverse-morphic images of languages generated by sequential SN P systems. The
relationships of the languages generated by sequential SN P systems with finite
and regular languages are also investigated.

2 SN P Systems Working in Max-sequentiality Manner

We recall the definition of SN P systems working in max-sequentiality manner.
In the definition of the systems, the notion of regular expression is used, readers
can refer to [11] for the details.

An SN P system working in max-sequentiality manner, of degree m ≥ 1, is a
construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, out), where:

• O = {a} is a singleton alphabet (a is called spike);
• σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri) with 1 ≤ i ≤ m, where

a) ni ≥ 0 is the initial number of spikes contained in σi;
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b) Ri is a finite set of rules of the following two forms:

(1) firing (or spiking) rules : E/ac → a; d, where E is a regular expression
over O and c ≥ 1, d ≥ 0;

(2) forgetting rules : as → λ, for some s ≥ 1, with the restriction that
as /∈ L(E) for any rule E/ac → a; d from Ri;

• syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

• out ∈ {1, 2, . . . ,m} indicates the output neuron of the system.

Firing rules are applied as follows. If the neuron σi contains k spikes, and
ak ∈ L(E), k ≥ c, then the rule E/ac → a; d ∈ Ri can be applied. This means
consuming c spikes (thus only k − c spikes remain in neuron σi), the neuron
is fired, and it produces one spike after d time units (as usual in membrane
computing, a global clock is assumed, marking the time for the whole system).
If d = 0, then the spike is emitted immediately, if d = 1, then the spike is emitted
in the next step, etc. If the rule is used in step t and d ≥ 1, then in steps t, t+1,
. . . , t+d−1 the neuron is closed (this corresponds to the refractory period from
neurobiology), so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send some spikes along it, then these particular
spikes are lost). In the step t+ d, the neuron spikes and becomes again open, so
that it can receive spikes (which can be used starting with the step t + d + 1,
when the neuron can again apply rules).

If neuron σi contains exactly s spikes, then the forgetting rule as → λ from Ri

can be used, meaning that all s spikes are removed from neuron σi. Note that,
by definition, if a firing rule is applicable, then no forgetting rule is applicable,
and vice versa.

Since two firing rules, E1/a
c1 → a; d1 and E2/a

c2 → a; d2, can have L(E1) ∩
L(E2) 	= ∅, it is possible that two or more spiking rules can be applied in a
neuron, and in that case only one of them is chosen non-deterministically.

A system works in max-sequentiality manner if, at each step, the neuron with
the maximum number of spikes among the neurons that can spike will fire; if
there is a tie for the maximum number of spikes stored in the active neurons,
only one of the neurons containing the maximum is chosen non-deterministically.

The configuration of the system is described by both the number of spikes
present in each neuron and by the number of steps to wait until the neuron
becomes open (this number is zero if the neuron is already open). Thus, the ini-
tial configuration is 〈n1/0, n2/0, . . . , nm/0〉. Using the rules as described above,
we can define transitions from one configuration to another. Any sequence of
transitions starting from the initial configuration is called a computation. A
computation halts if it reaches a configuration where all neurons are open and
no rule can be used. With any computation, halting or not, we associate a spike
train, the sequence of symbols 0 and 1 describing the behavior of the output
neuron: if the output neuron spikes, then we write 1, otherwise we write 0. The
result of a halting computation is defined as the spike train associated with the
computation. Note that, in order to associate a language of finite strings with
an SN P system, we take into consideration only halting computations.
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We denote by L(Π) the language generated by system Π , and by LSNmseqPm

(rulek, consp, forgq) the family of all languages generated by SN P systems
working in the max-sequentiality manner, with at most m ≥ 1 neurons, using
at most k ≥ 1 rules in each neuron, with all spiking rules E/ac → a; d having
c ≤ p and all forgetting rules as → λ having s ≤ q (the subscript mseq stands
for the max-sequentiality manner). When any of the parameters m, k, p, q is not
bounded, then it is replaced by ∗.

3 The Computational Power of SN P Systems as
Language Generators

In this section, we investigate the computational power of SN P systems working
in the max-sequentiality manner as language generators.

3.1 Relationships with Finite Languages

It is known that the finite languages {0k, 10j}, k ≥ 1, j ≥ 0, cannot be generated
by any standard SN P system [1]. However, in the next theorem, we will prove
that such finite languages can be generated by SN P systems working in the
max-sequentiality manner.

Theorem 1. If Lk,j = {0k, 10j}, for k ≥ 1, j ≥ 0, then Lk,j ∈ LSNmseqP4

(rule1, cons1, forg0).

Proof. For any k ≥ 2 and j ≥ 1, the finite language Lk,j = {0k, 10j} can be
generated by the SN P system shown in Fig. 1, working in the max-sequentiality
manner.

a
a→ a; 0

1

a
a→ a; 0

out

a→ a; k − 2

2

a→ a; j − 1

3

Fig. 1. A system generating the language {0k, 10j}, k ≥ 2, j ≥ 1

The system works as follows. Initially, each of neurons σ1 and σout contains
one spike. Both of them can fire, and both of them have the maximum number
of spikes among the active neurons, so one of neurons σ1 and σout must fire at
the first step, which is non-deterministically chosen.

– If neuron σ1 fires, it sends a spike to each of neurons σ2 and σout, then neuron
σout becomes inactive after receiving this spike and neuron σ2 is enabled to
fire at the next step. Because neuron σ2 has a delay of size k − 2 associated
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with its rule, neuron σ2 fires, but its spike is lost, the system halts after step
k. During this computation, the system sends no spike into the environment,
so the system generates the string 0k.

– If neuron σout fires at the first step, it sends one spike into the environment
and one spike to each of neurons σ1 and σ3. At the next step, neuron σ1

becomes inactive, and neuron σ3 fires, with a delay of size j − 1 associated
with its rule, so the system halts after step j + 1. During this computation,
the system sends only one spike into the environment at the first step. So,
the system generates the string 10j.

If we remove neuron σ2 and synapse (1, 2) from the system given in Fig. 1,
then we can check that the obtained system generates L1,j = {0, 10j}, j ≥ 1.

If we remove neuron σ3 and synapse (out, 3) from the system given in Fig. 1,
then we can check that the obtained system generates Lk,0 = {0k, 1}, k ≥ 2. If
we remove neurons σ2 and σ3, and their related synapses from the system given
in Fig. 1, then we can check that the obtained system generates L1,0 = {0, 1}.

Theorem 2. If L = {x}, x ∈ {0, 1}+, |x|1 = r, r ≥ 0, then L ∈ LSNmseqP2

(rulemax{1,r}, cons1, forg0).

Proof. The string x = 0n110n2 . . . 0nr10nr+1 , nj ≥ 0, 1 ≤ j ≤ r + 1, r ≥ 1, and
nr+1 ≥ 1 can be generated by the SN P system given in Fig. 2, working in the
max-sequentiality manner. The output neuron σout initially contains r spikes.
At the first step, the rule ar/a → a;n1 is applied consuming one spike, and at
step n1 + 1 one spike is sent to both the environment and neuron σ1. Neuron
σout continues firing until the rule a/a→ a;nr is applied, i.e., until all spikes in
neuron σout are consumed. At step n1+n2+. . .+nr+r, the last spike is sent into
the environment. At this moment, neuron σ1 accumulates r spikes and becomes
active. Neuron σ1 fires, which makes the computation last for nr+1 more steps
without any spikes sent into the environment. That is, the system halts after
having generated nr+1 more occurrences of 0.

ar/a→ a;nr+1 − 1

1

ar

ar−j+1/a→ a;nj

j = 1, . . . , r

out

Fig. 2. A system generating a singleton
language

a
a→ a;n1 − 1

1out

Fig. 3. A system generating the language
{0n1}

If we remove neuron σ1 and synapse (out, 1) from the system given in Fig. 2,
then we can check that the obtained system generates the string x = 0n110n2 . . .
0nr1, nj ≥ 0, 1 ≤ j ≤ r, r ≥ 1 (i.e., for the case nr+1 = 0).

The string x = 0n1 (i.e., for the case r = 0) can be generated by the system
given in Fig. 3.
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Theorem 3. If L ∈ FIN , L ⊆ {0, 1}+, then L{1} ∈ LSNmseqP1(rule∗, cons∗,
forg0).

Proof. Let us assume that L = {x1, x2, . . . , xm}, with |xj1| = nj ≥ 2, 1 ≤ j ≤ m;

denote αj =
∑j

i=1 ni, for 1 ≤ j ≤ m. We write xj1 = 0sj,110sj,21 . . . 10sj,rj 1, for
rj ≥ 1, sj,k ≥ 0, 1 ≤ k ≤ rj .

The finite language L{1} can be generated by the SN P system shown in Fig.
4, working in the max-sequentiality manner. The output neuron σout initially
contains αm + 1 spikes. At the first step, only a rule aαm+1/aαm+1−αj → a; sj,1
can be used, and in this way we non-deterministically choose the string xj we
want to generate. After sj,1 steps, for some 1 ≤ j ≤ m, the system outputs a
spike, hence, in this way the prefix 0sj,11 of the string xj is generated. Because αj

spikes remain in the neuron σout, we have to continue with rules aαj−t+2/a →
a; sj,t, for t = 2, and then for the respective t = 3, 4, . . . , rj − 1; in this way,
we introduce the substrings 0sj,t1 of xj , for all t = 2, 3, . . . , rj − 1. The last
substring, 0sj,rj 1, is introduced by the rule aαj−rj+2 → a; sj,rj , which concludes
the computation.

aαm+1

aαm+1/aαm+1−αj → a; sj,1
1 ≤ j ≤ m

aαj−t+2/a→ a; sj,t
2 ≤ t ≤ rj − 1, 1 ≤ j ≤ m

aαj−rj+2 → a; sj,rj , 1 ≤ j ≤ m
out

Fig. 4. A system generating the language
L{1}

a→ a; 0

1

a2

a2/a→ a; 0

a2 → a; 0
out

Fig. 5. A system generating an infinite
language

Theorem 4. LSNmseqP2(rule2, cons2, forg0)− FIN 	= ∅.

Proof. We can check that the system given in Fig. 5 generates the infinite lan-
guage (10)+.

3.2 Relationships with Regular Languages

As shown in Theorem 4, SN P systems with two neurons working in max-
sequentiality manner can generate an infinite language. Similar with Lemma 7.1
from [2], we can also prove that an SN P system with two neurons working in
the max-sequentiality manner can never generate a language which goes beyond
regular languages; that is, we have LSNmseqP2(rule∗, cons∗, forg∗) ⊆ REG.

Theorem 5. LSNmseqP3(rule2, cons2, forg0)−REG 	= ∅.



On String Languages Generated by Sequential SN P Systems 209

a2

a2/a→ a; 1

a2 → a; 0
1

a
a→ a; 0

2

a2

a(a2)+/a2 → a; 0

out

Fig. 6. A system generating a non-regular language

Proof. We can check that the SN P system given in Fig. 6 working in the max-
sequentiality manner can generate the language {02n−11n | n ≥ 1}, which is
non-regular.

Theorem 6. For every alphabet V = {a1, a2, . . . , as}, there is a morphism h :
V ∗ → {0, 1}∗ such that for each language L ⊆ V ∗, L ∈ REG, there is an SN P
system Π working in the max-sequentiality manner such that L = h−1(L(Π)).

Proof. Let V = {a1, a2, . . . , as} and L ⊆ V ∗, L ∈ REG. Consider a regular
grammar G = (N, V, S, P ) such that L(G) = L with N = {A1, A2, . . . , An},
n ≥ 1, S = An, and the productions in P are of the forms Ai → akAj or Ai → ak,
1 ≤ i, j ≤ n, 1 ≤ k ≤ s. Then we consider the morphism h : V ∗ → {0, 1}∗ defined
by h(ak) = 0k10n+1, 1 ≤ k ≤ s. The language h(L) is regular. We modify the
regular grammar G to obtain a regular grammarG′ = (N, {0, 1}, S, P ′) such that
L(G′) = h(L), where the productions in P ′ are of the forms Ai → 0k10n+1Aj

or Ai → 0k10n+1, 1 ≤ i, j ≤ n, 1 ≤ k ≤ s. In what follows, we prove that
L(G′) can be generated by the SN P system Π given in Fig. 7 working in the
max-sequentiality manner.

The system Π works as follows. Initially, neuron σ2 contains n − 1 spikes,
neuron σ3 contains n − 2 spikes, . . . , neuron σn contains 1 spike and neuron
σout contains 2n spikes. At the first step, only the output neuron σout can use
its rule a2n/a2n−j → a; k or a2n → a; k, non-deterministically chosen, which are
associated with the production An → 0k10n+1Aj or An → 0k10n+1, respectively.

If the rule a2n/a2n−j → a; k is used, then one spike is produced and sent to
neuron σ1 and the environment in step k+1, 2n− j spikes are consumed, and j
spikes remain in neuron σout. At the next step, neuron σ1 fires sending a spike
to each of neurons σ2, σ3, . . . , σn+1, then all of these neurons are active. Due to
the max-sequentiality strategy, neurons σ2, σ3, . . . , σn+1 fire in order one by one.
Because these neurons have a delay of different size associated with their rules,
n spikes from neurons σ2, σ3, . . . , σn+1 will arrive at the same time in σout. Thus
σout accumulates n+ j spikes, and a rule for Aj → 0k10n+1Aj′ or Aj → 0k10n+1

can be used. In this way, the simulation of rules in G′ continues.
When a rule an+j → a; k (initially, j = n) is applied, i.e., Aj → 0k10n+1 is

simulated, the output neuron σout will receive n spikes eventually from neurons
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a→ a; 0

1

an−1

an/a→ a;n− 1
2

an−2

an−1/a→ a;n− 2
3

· · · a→ a; 0

n+ 1

a2n

an+i/an+i−j → a; k

for Ai → 0k10n+1Aj ∈ P ′

an+i → a; k

for Ai → 0k10n+1 ∈ P ′
out

Fig. 7. The SN P system from the proof of Theorem 6

σ2, σ3, . . . , σn+1 and no rule can be used, which means that the computation
halts. The generated string is one from h(L). Therefore, we have L = h−1(L(Π)).

3.3 A Characterization of Recursively Enumerable Languages

Theorem 7. For every alphabet V = {a1, a2, . . . , as}, there are a morphism
h1 : (V ∪ {b, c})∗ → {0, 1}∗ and a projection h2 : (V ∪ {b, c})∗ → V ∗ such that
for each language L ⊆ V ∗, L ∈ RE, there is an SN P system Π ′ working in the
max-sequentiality manner such that L = h2(h

−1
1 (L(Π ′))).

Proof. The two morphisms are defined as follows:

h1(ai) = 103i+11, i = 1, 2, . . . , s, h1(b) = 0, h1(c) = 01,
h2(ai) = ai, i = 1, 2, . . . , s, h2(b) = h2(c) = λ.

For a string x = ai1ai2 . . . aik ∈ V ∗, 1 ≤ il ≤ s, 1 ≤ l ≤ k, we denote
vals(x) = i1(s+ 1)k−1 + i2(s+ 1)k−2 + · · ·+ ik. We can extend this notation in
the natural way to sets of strings, i.e., denote vals(L) = {vals(x)|x ∈ L}. For
any language L ⊆ V ∗, obviously L ∈ RE if and only if vals(L) ∈ NRE [6]. In
turn, a set of numbers is recursively enumerable if and only if it can be accepted
by a deterministic register machine of the form M = (m,H, l0, lh, I), where m is
the number of registers, H is the set of instruction labels, l0 is the start label, lh
is the halt label, and I is the set of instructions labeled in a one-to-one manner
by the labels from H . The instructions are of the following forms:

• li : (ADD(r), lj) (add 1 to register r, then go to the instruction with label lj),
• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go

to the instruction with label lj, otherwise go to the instruction lk),
• lh : HALT (the halt instruction).
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In what follows, we give a specific SN P system Π ′ working in the max-
sequentiality manner to generate the language L, which is given in Fig. 8.

The subsystem M in Fig. 8 corresponds to a deterministic register machine
such that N(M) = vals(L). The subsystem M0 corresponds to another register
machine M0. The role of register machine M0 is to produce the number vals(x)
and put it in the common register c1, for each x ∈ L. Once the register machine
M is triggered, the system passes to the phase of checking whether the number
vals(x) stored in register c1 is accepted. We assume that the register machines
M0 = (m0, H0, l0,0, lh,0, I0) and M = (m,H, l0, lh, I) have H0 ∩H = ∅.

M0

M

c0 l0,0 lh,0

c1 l0 lh

a3

a3/a→ a; 2

a4 → λ

2

a2

a2 → a; 1

a3 → λ

3

a
a→ a; 0

a2 → λ

4

a4

a4/a→ a; 3i
i = 1, 2, · · · , s

1

a→ a; 0

a2 → λ

5
a→ a; 0

a2 → λ

6

a→ a; 0
7

a
a2/a→ a; 1

8

a→ a; 0
9

a5

a5/a→ a; 0

a6/a→ a; 0
out

Fig. 8. The structure of the SN P system from the proof of Theorem 7

For each register r of the register machines M0 and M , a neuron σr is associ-
ated in Π ′ whose contents correspond to the contents of the register. Specifically,
if the register r holds the number n ≥ 0, then neuron σr will contain 3n+3 spikes;
thus, the number zero (corresponding to the fact that the register is empty) is
represented by a neuron with 3 spikes inside. Therefore, in the initial configura-
tion, each of neurons σc0 and σc1 associated with registers c0 and c1 have three
spikes. In order to produce the number vals(x) in the common neuron σc1 , the
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subsystem corresponding to register machine M0 needs to perform the following
operations: multiply the number stored in neuron σc1 by s + 1, then add the
number from neuron σc0 (initially, having 3 spikes). Specifically, if neuron σc0

holds 3t + 3 spikes and neuron σc1 holds 3n + 3 spikes, for some t ≥ 0, n ≥ 0,
then we end this step with (3n + 3)(s + 1) + 3t + 3 spikes in neuron σc1 and 3
spikes in neuron σc0 . In all cases below, i ∈ {1, 2, . . . , s}.

The system Π ′ works as follows. Initially, neurons σ1, σ2, σ3, σ4 and σout con-
tain 4, 3, 2, 1, 5 spikes, respectively. All of these neurons are active; due to the
max-sequentiality manner, neuron σout fires by the rule a5/a→ a; 0 sending the
first spike into the environment. At the next step, the rule a4/a → a; 3i can
be used in neuron σ1, non-deterministically choosing the number i. At the next
three steps, neurons σ2, σ3 and σ4 fire in turn. As long as neurons σ2, σ3, σ4 do
not receive a spike from neuron σ1, they spike in turn and send a spike to each
other and three spikes to neuron σc0 . After 3i steps a spike is sent from neuron
σ1 to each of neurons σ2, σ3, σ4 (which stop working), σl0,0 (which starts the
simulation of the register machine M0), and σout. At the next step, neuron σout

fires by the rule a5/a→ a; 0 sending the second spike into the environment.
Now, the subsystem corresponding to the register machine M0 works for a

number of steps (at least one); after a while the computation in M0 stops, by
activating the neuron σlh,0

. Neuron σlh,0
fires sending one spike to each of neurons

σ5 and σ6. Then both neurons σ5 and σ6 have exactly one spike inside, so the
system will non-deterministically choose one of them to fire.

a→ a; 0

li

a2

a3/a→ a; 2

l
(1)
i

a
a2/a→ a; 1

l
(2)
i

a→ a; 0

l
(3)
i

a→ a; 0

lj

a3

r

Fig. 9. Module ADD (simulating li : (ADD(r), lj))

If neuron σ5 fires at the next step, then it sends one spike to each of neurons σ6

and σ7, making the forgetting rule in neuron σ6 applicable, and making neuron
σ7 active. At the next step, neuron σ7 fires sending one spike to each of neurons
σ2, σ8 and σ9. Then, neurons σ8 and σ9 fire in order, the two spikes from σ8 and
σ9 arrive at the same time in the neurons σ2, σ3 and σout, because of the delay.
Now, neurons σ1, σ2, σ3, σ4 and σout contain 4, 3, 2, 1, 6 spikes, respectively.
Due to the max-sequentiality manner, neuron σout fires by the rule a6/a→ a; 0
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sending a spike into the environment. At the next step, neuron σout fires again
by the rule a5/a→ a; 0 sending a spike outside, and the system returns neurons
σ1, σ2, σ3, σ4 to the initial state. This means that a sequence of two spikes is sent
out, and the process continues by introducing another substring 03i+110j in the
string produced by the system.

a→ a; 0

li

a4

a5/a→ a; 1

l
(1)
i

a
a2 → λ
a3 → λ

a4/a3 → a; 0

l
(2)
i

a3

a(a3)+/a4 → a; 0

r

a→ a; 0

a2 → λ

l
(3)
i

a→ a; 0

l
(4)
i

a→ a; 0

l
(5)
i

a→ a; 0

lj

a→ a; 0

lk

a
a2 → λ
a3 → λ

a4/a3 → a; 0

l
(2)
s , ls 	= li, ls ∈ Lr

· · ·

Fig. 10. Module SUB (simulating li : (SUB(r), lj , lk)) for the register machine M0,
where Lr = {l | l is a label of a SUB instruction acting on the register r}

If neuron σ6 fires, then it sends one spike to neuron σ5, making the forgetting
rule in σ5 applicable, and another spike to neuron σl0 that is associated with the
initial label of the register machine M . Thus we have got the number vals(x)
stored in neuron σc1 for a string x ∈ V ∗ such that the string produced by
Π ′ up to now is of the form z = 103i1+110j11103i2+110j211 . . .1103ik+110jk , for
1 ≤ il ≤ s, jl ≥ 1, 1 ≤ l ≤ k, whereas, h1(x) = 103i1+11103i2+11 . . . 103ik+11.
The system starts to simulate the work of the machine M in recognizing the
number vals(x). The subsystem M works for a number of steps (at least one),
and the computation in M stops if and only if the number vals(x) is accepted,
which means that x ∈ L. After receiving a spike from neuron σlh , the output
neuron σout fires and then the system halts. Therefore, the previous string z
is continued with a suffix of the form 0p1 for p ≥ 1. In this way, a string of
the form y = 103i1+110j11103i2+110j211 . . . 1103ik+110jk0p1 is produced by Π ′

if and only if x ∈ L. Moreover, it is obvious that x = h2(h
−1
1 (y)) ∈ L: we have

h−1
1 (y) = ai1b

j1−1cai2b
j2−1c . . . aikb

jk+p−1c; the projection h2 simply removes
the auxiliary symbols b, c.

In order to complete the proof we have to show how the two register machines
M0 and M are simulated, using the common neuron σc1 but without mixing the
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computations. To this aim, we consider the modules ADD and SUB from Figs.
9, 10 and 11. Because the constructions are similar to those used in the proof of
Theorem 1 from [9], we do not enter into details here.

a→ a; 0

li

a
a2/a→ a; 1

l
(t1)
i

a→ a; 0

l
(t2)
i

a5

a6/a→ a; 1

l
(1)
i

a
a2 → λ
a3 → λ

a4/a3 → a; 0

l
(2)
i

a3

a2(a3)+/a5 → a; 0

r

a→ a; 0

a2 → λ

l
(3)
i

a→ a; 0

l
(4)
i

a→ a; 0

l
(5)
i

a→ a; 0

lj

a→ a; 0

lk

a
a2 → λ
a3 → λ

a4/a3 → a; 0

l
(2)
s , ls 	= li, ls ∈ Lr

· · ·

Fig. 11. Module SUB (simulating li : (SUB(r), lj , lk)) for the register machine M , where
Lr = {l | l is a label of a SUB instruction acting on the register r}

4 Conclusions and Remarks

In this work, we investigated the computational power of SN P systems working
in a max-sequentiality manner. We gave a characterization of recursively enu-
merable languages, and the relationships of the languages generated by such SN
P systems with finite and regular languages. It still remains open how we can
give a characterization of regular languages by that sequential SN P systems.

The sequentiality considered in this work is induced by the maximum number
of spikes among the active neurons. In [3], another way of sequentiality was con-
sidered, which is induced by the minimum number of spikes among the active
neurons, and it was shown that there is a difference in the universality results
of SN P systems working in these two kinds of sequentiality. Used as language
generators, it is still of interest to give a characterization of recursively enumer-
able languages by SN P systems working in the sequentiality induced by the
minimum number of spikes among the active neurons.
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Abstract. We establish a relationship between periodic graphs repre-
senting crystallographic structures and an infinite hierarchy of intersec-
tion languages DCLd, d = 0, 1, 2, . . ., within the intersection classes of
deterministic context-free languages. We introduce a class of counter ma-
chines that accept these languages, where the machines with d counters
recognize the class DCLd. Each language in DCLd is an intersection of
d languages in DCL1. We prove that there is a one-to-one correspon-
dence between sets of walks starting and ending in the same unit of a
d-dimensional periodic (di)graph and the class of languages in DCLd.

1 Introduction

We consider periodic digraphs that are often associated with periodic (or crys-
tallographic) nano structures such that vertices of the graph correspond to the
molecular (or atomic) arrangement in the structure and the edges, or arcs, rep-
resent their bonds. Often these structures are obtained by different building
blocks (tiles) periodically arranged on a lattice with possibly different inter-
connecting bonds. Figure 1 depicts an example where the vertices of a two-
dimensional lattice could be populated with hexagonal components which bond
with other hexagonal tiles in one direction but requires another building block
(star-shaped tiles) to connect in the other direction. Although the development
of X-ray diffraction analysis of crystals [9,21] enabled physicists and chemists
to develop graphical representations of crystals (“crystal nets”) found in na-
ture, or in the lab, the “de novo” generation of crystal nets appear to have
begun in earnest in the 1970s and 1980s, especially with the cataloguing work
of A. Wells [25] (see also [22]). A variety of crystallographic structures have
been obtained by allowing self-assembly of chemical building blocks varying
from DNA [26] to metal-organic frameworks [24]. However, a systematic the-
oretical study and analysis of self-assembled nanostructures seems to be lagging
behind. Even the notion of a periodic structure seems to have different mean-
ings in different contexts (see for example [6,8,17]). With this paper we sug-
gest an approach to study periodic structures through formal language theory.
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Fig. 1. Red irregular hexagonal tiles and
orange pentagram-shaped tiles in a 2-
periodic array. Edges mark bonds or lig-
ands between hexagonal molecular building
blocks.

What languages can describe walks
in a given (crystallographic) nano
structure? One way to answer this
question is by considering walks in
the underlying (periodic) (di)graphs.
We label the edges of the graphs with
appropriate labels indicating the dis-
tinct bonds within the structure. The
set of labels of all such walks repre-
sents a language over the alphabet of
bonds. In [14,15], the computational
power of molecular bondings without
the geometric constraints imposed by
their spacial imbedding was consid-
ered, and it was shown that there is
a hierarchy of complexity classes that
can be associated with these construc-

tions. In this paper we address periodic nano structures only, and examine the set
of languages associated with cyclic walks in periodic digraphs, thereby consider-
ing also the spacial embedding of the structures. We show that these languages
are closely related to nested families of deterministic context-free languages.

We introduce a new class of languages, a proper subclass of the Determin-
istic Context Free Languages (DCFL), recognized by machines with counters.
Ibarra et al ([11,12]) introduced PDA-like multi-counter machines with counters
instead of stacks. As it is known that a two-counter machine has computational
power equivalent to a universal Turing machine, the authors in [11] restricted
the number of permitted “reversals” in the counters for each computation (i.e.,
the number of counter changes from incremental to decremental and vice versa
was restricted). In this paper, we bar communication between the counters, there
are no ε-moves, and the machine accepts only if all counters are at zero at the
termination of the computation. Denote DCLd as the class of languages accepted
by such deterministic counter machines with d counters. We find that DCLd is
the intersection of d languages in DCL1.

Intuitively, a periodic (di)graph is a graph that is, or can be, embedded in a
Euclidean space so that it is periodic in the requisite number of axial directions.
As mentioned above, we suppose that the vertices of such embedding can be
populated with chemical building blocks. The space that a Euclidean graph
is embedded in can be regarded as being partitioned into unit cells, with the
subgraph of each unit cell isomorphic to the subgraph of any other unit cell. The
vertices in each unit cell could represent distinct chemical building block, such
that vertices in each unit belonging to the same orbit represent the same chemical
building block. Periodic digraphs capture the DCL hierarchy in the following way
(Theorem 2): For any language L ⊆ Σ∗ in DCLd, there is a periodic digraph
that can be embedded in d-dimensional Euclidean space, with a distinguished
vertex v and arcs periodically labeled by letters in Σ, such that the words of L
correspond precisely to labels of paths from v back to an appropriate vertex in
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v’s unit cell. Conversely, for any labeled periodic digraph that can be embedded
in d-dimensional Eucledean space with a distinguished vertex v, there exists a
DCLd language whose words correspond precisely to labels of paths from v back
to v’s unit cell.

After notational and algebraic preliminaries (Section 2.1), we review the no-
tion of a periodic graph (Section 2.2). In order to establish the relationship
between counter machines and periodic graphs, we show how to construct a
periodic graph that has as a quotient a given finite weakly connected digraph
(Section 3.1). We define deterministic counter machines and their languages de-
noted DCLs (Section 3.2). Because of the requirement that the counters have
no ε-moves and the computation terminates with all counters at value 0, it fol-
lows that DCLs form a proper subset of DCFLs (Proposition 3). We consider
the DCL intersection hierarchy: we verify that it is of the same “height” if not
the same “width,” as the DCFL and CFL hierarchies. Section 3.3 contains the
main theorem verifying that the cyclic walks in (appropriately labeled) periodic
digraphs capture the DCL hierarchy.

2 Periodic Digraphs

2.1 Preliminaries and Nomenclature

A function f : X → Y is partial if its domain is a proper subset of X ; it is total
if X is its domain. A digraph structure is a tuple Γ = 〈V,A, τ, ι〉, where V is
the set of vertices, A is the set of arcs, ι: A→ V is a (possibly partial) function
assigning initial vertices to arcs and τ : A → V is a (possibly partial) function
assigning terminal vertices to arcs. We write a−1 for an arc a ∈ A to indicate
an arc with opposite orientation of a, that is, τ(a) = ι(a−1) and ι(a) = τ(a−1).
Call Γ a digraph if ι and τ are total.

Let Γ = 〈V,A, τ, ι〉 be a digraph structure. A digraph substructure of Γ is
a structure 〈V ′, A′, ι′, τ ′〉, where V ′ ⊆ V , A′ ⊆ A, and for each arc a ∈ A′ if
ι(a) ∈ V ′ =⇒ ι′(a) = ι(a) and τ(a) ∈ V ′ =⇒ τ ′(a) = τ(a). Notice that
a digraph substructure of a digraph need not have total initial and terminal
functions, hence a digraph substructure need not be a digraph.

Given a digraph Γ = 〈V,A, τ, ι〉, a walk in Γ is a string of arcs a1a2 · · · an
such that for each i, τ(ai) = ι(ai+1); ι(a1) is the initial vertex of the walk while
τ(an) is the terminal vertex of the walk. The number of arcs, n, is the length of
the walk a1a2 · · ·an. The walk is trivial if it’s length is zero, meaning, it starts
and ends at the same vertex and has no edges. There is one trivial walk for each
vertex v. We say that a walk is a walk from its initial vertex to its terminal
vertex. A walk in which the initial and terminal vertices are the same is cyclic.

A semi-walk in Γ is a string of arcs a1a2 · · · an such that there is a subsequence

ai1 · · ·aik and a walk aε11 · · ·aεnn where εj =

{
1 if j 	= is for all s = 1, . . . , k
−1 if j = is for some s = 1, . . . , k

for each j = 1, . . . , n. Below we write aε11 aε22 · · · aεnn for the semi-walk where the
negative exponent for an arc indicates walking across the arc in an opposite
direction. A semi-walk is from u to v if u = ι(aε11 ) and v = τ(aεnn ). A digraph
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structure Γ is weakly connected if, for any vertices u, v, there is a semi-walk from
u to v.

An automorphism of Γ is a bijection f : V → V : A → A such that for
any a ∈ A, f(ι(a)) = ι(f(a)) and f(τ(a)) = τ(f(a)). Given any group G of
automorphisms, and any v ∈ V , the G-orbit of v is the set of vertices G(v) =
{g(v): g ∈ G}; similarly, given any arc a ∈ A, the G-orbit of a is the set of
arcs G(a) = {g(a): g ∈ G}. If V ′ ⊆ V , let G(V ′) =

⋃
v∈V ′ G(v), and similarly

if A′ ⊆ A, let G(A′) =
⋃

a∈A′ G(a). Say that a group G of automorphisms of a
digraph Γ = 〈V,A, τ, ι〉 acts freely on Γ if, for every g ∈ G besides the identity,
every v ∈ V satisfies g(v) 	= v.

Given an alphabet Σ, the set of all words over Σ is denoted Σ∗, and the set
of all words of positive length is Σ+. For a word w = a1 · · · ak ∈ Σ∗, k = |w| is
the length of w, and (w)j = aj so that the last symbol ak is (w)|w|. Similarly, if
S is a set, |S| is the cardinality of S.

2.2 Periodic Digraphs and Units

There are several definitions of “periodic graphs” in literature, but we focus
on one which turns out to be equivalent to a widely spread intuition. Given a
digraph Γ with vertices V and arcs A, an injective map π: V → Rd is uniformly
discrete if there exist δ > 0 such that for any u,v ∈ π[V ], ‖v − u‖ > δ. The
following definition seems to have emerged from a thread including [2] and [5];
see [7].

Definition 1. A digraph 〈V,A, ι, τ〉 is d-periodic if there exists an injection
π: V → Rd and a basis {v1, . . . ,vd} of Rd such that the image π[V ] is uniformly
discrete, and the translations corresponding to the basis map the digraph onto
itself.

This notion of periodicity includes nets like those called rods and layers in
the chemical literature (see, e.g., [7]): these are 1-periodic and 2-periodic nets,
respectively, that do not lie in any plane in R3.

Proposition 1. A digraph Γ is d-periodic if and only if there is a group G of
automorphisms that is isomorphic to the free abelian group Zd and satisfies the
following two conditions: (a) G acts freely on V and (b) there are finitely many
orbits of vertices and edges under G.

The equivalence in Proposition 1 appears to be lore, although we do not know
of any place that it has appeared in print. We will use both characterizations of
periodic graphs as needed.

Given a d-periodic digraph Γ = 〈V,A, ι, τ〉, a unit is a weakly connected
digraph substructure of Γ , Γ0 = 〈V0, A0, ι0, τ0〉, that intersects every Zd-orbit
exactly once.

Proposition 2. [20] For every weakly connected d-periodic digraph Γ and auto-
morphism group G ∼= Zd such that there are finitely many G-orbits, there exists
a unit for Γ .
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ab

b
a

Fig. 2. (left) A digraph with two orbits of vertices, squares and spheres, (right) an
isolated unit

Example 1. A 2-periodic digraph Γ is depicted in Figure 2 to the left. Its group
of automorphisms contains a group isomorphic to Z2 generated by vectors α and
β. There is no translation in Aut Γ sending square vertices to spherical vertices,
or vice versa. One can consider the spherical vertices as being above the plane
fixed by the square vertices. Similarly, there are six orbits of arcs: there is no
translation sending arcs of one color onto arcs of another.

Units of periodic graphs and digraphs are not unique, as one can see from
Figure 3. To the left, in Figure 3, an undirected 2-periodic graph is depicted
with four types of units shown in red, blue, yellow, and green.

Lemma 1. The vertices and arcs of a d-periodic digraph can be partitioned into
units.

Fig. 3. (left) Units in a 2-periodic graph, (right) the periodic graph being partitioned
by units

3 Walks in a Periodic Digraph

In this section we construct a machinery for navigating through periodic di-
graphs. We first demonstrate that every periodic digraph can be expressed as a
“product” of a finite digraph and a copy of Zd for some d. We define a counter
machine that uses the finite digraph as a transition diagram and show one-to-one
correspondence between sets of cyclic walks in a d-periodic graphs and languages
recognized by d-counter machines.
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3.1 Building a Periodic Digraph of a Given Quotient

Let Γ be a periodic graph with G being an abelian group of automorphisms
acting freely on Γ , with finitely many orbits. A labeled digraph is a pair (Γ, ξ)
where Γ = 〈V,A, ι, τ〉 is a digraph and ξ: A→ G is a labeling function. We extend
arc labels to labels on semi-walks p = aε11 aε22 · · ·aεnn with ξ(p) =

∑n
k=1 εkξ(ak).

Definition 2. Let Γ be a periodic graph with G being an abelian group of auto-
morphisms acting freely on Γ , with finitely many orbits. A G-labeling ξ of Γ is
consistent with G (or G-consistent) if, for every pair of vertices v and v′ such
that v′ ∈ G(v), if p is a semi-walk from v to v′, then ξ(p)(v) = v′.

Here is one consequence of consistency.

Lemma 2. Let Γ be a periodic graph with G being an abelian group of auto-
morphisms acting freely on Γ , with finitely many orbits. Let ξ be a G-consistent
labeling of Γ . If a′ ∈ G(a), then ξ(a′) = ξ(a).

Proof. Assuming consistency and G acting freely on Γ , if a′ ∈ G(a) and p a semi-
walk from ι(a) to ι(a′), ξ(p) is the only group element mapping ι(a) to ι′(a). It
follows that ξ(p) is the only map sending a to a′, so ξ(p)(τ(a)) = τ(a′). Similarly,
if q is a semi-walk from τ(a) to τ(a′), ξ(q)(ι(a)) = ι(a′), and again asG acts freely
on Γ , ξ(q) = ξ(p). By consistency, ξ(p) + ξ(a′) = ξ(pa′) = ξ(aq) = ξ(a) + ξ(q),
so ξ(a) = ξ(a′). ��

Definition 3. Let Γ = 〈V,A, ι, τ〉 be a digraph and let G ⊆ Aut Γ . The quotient
digraph Γ/G is the digraph 〈V/G,A/G, ι/G, τ/G〉 defined as follows.

– The vertices and edges of Γ/G are the sets of orbits V/G = {G(v): v ∈ V }
and A/G = {G(a): a ∈ A}.

– For each a ∈ A, let (ι/G)(G(a)) = G(ι(a)) and (τ/G)(G(a)) = G(τ(a)).

Definition 4. Let ξ be a G-consistent labeling of Γ and ξΓ/G: A/G → G be a
G-labeling for Γ/G. We say that ξ honors ξΓ/G if for each a′ ∈ G(a), we have
ξ(a′) = ξΓ/G(G(a)).

For a semi-walk p = aε11 · · ·aεnn in Γ , the semi-walk G(aε11 ) · · ·G(aεnn ) in Γ/G
is denoted G(p).

Example 2. Let Γ be the digraph depicted in Figure 2, where G is the group
generated by the translations α and β, then the quotient graph Γ/G is the one
shown to the right in Figure 4. Notice that as G acts freely on Γ , ξ is well-defined,
and by construction, ξ is G-consistent. The labeling ξΓ/G is also honored by ξ.

The theorem below is stated for abelian groups only (and as such was an-
nounced in [4]), although the statement holds for all groups [13].

Theorem 1. Let G be an abelian group, and let (Δ, ξΔ) be a G-labeled weakly
connected digraph. There exists a unique (up to isomorphism) digraph Γ with G-
consistent labeling ξ such that G acts freely on Γ , and there is an isomorphism
λ : Γ/G→ Δ with G-labeling ξΓ/G = ξΔλ such that ξ honors ξΓ/G.
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Fig. 4. (left) The graph Γ of Figure 2, (right) the quotient graph Γ/Z2

Proof. (Idea) Given Δ = 〈VΔ, AΔ, ιΔ, τΔ〉, abelian group G, and G-labeling
ξΔ: AΔ → G, the desired graph Γ is obtained as follows. Let V = VΔ × G
and A = AΔ × G and for each (a, g) ∈ A, let ι(a, g) = (ιΔ, g) and τ(a, g) =
(τΔ(a), g + ξΔ(a)). Then define ξ(a, g) = ξΔ(a). Let γ: V → VΔ, A → AΔ, and
observe that by construction, γ is a homomorphism of Γ onto Δ. ��

Example 3. Consider the digraph depicted to the left in Figure 5 containing Z-
labeling. The construction in Theorem 1 gives a graph Γ (to the right) where
each vertex in Δ appears in Z copies, as labeled. The arcs are obtained such that
each arc a from vertex v to vertex v′ in Δ corresponds to an orbit of the set of
arcs in Γ consisting of arcs that start at vertices (v, z) (z ∈ Z) and terminate at
vertices (v′, ξ(a) + z). The labels of the arcs are indicated in red. Clearly, Γ is
1-periodic.

(c,2)

a

b

c0

2

1

−1

−1

(a,2)(a,−2)

(b,−2) (b,−1) (b,0) (b,1) (b,2)

(a,0) (a,1)(a,−1)

2 2 22
−1−1 −1 −1 −1

00 000

−1 −1 −1 −1

1 1 1 1 1

(c,1)(c,0)(c,−1)(c,−2)

Fig. 5. A weakly connected digraph Δ with Z-labeling to the left and the graph Γ
obtained from the construction in Theorem 1. A unit in Γ is indicated in red.

We observe that every periodic digraph may be obtained by the above con-
struction. Let Γ = 〈V,A, ι, τ〉 be a periodic digraph and let G be the group
of translations preserving Γ . Let Γ0 = 〈V0, A0, ι0, τ0〉 be a unit of Γ , and by
Lemma 1, {g(Γ0): g ∈ G} partitions Γ into units isomorphic to Γ0. For each
a ∈ A, if ι(a) ∈ g(V0) and τ(a) ∈ h(V0), let ξ(a) = hg−1. Then we can let
Δ = Γ/G and ξΔ(G(a)) = ξ(a) for each a; by construction, ξΔ is well-defined.
We obtain Γ ∼= Δ×G, with ξ being the labeling derived from ξΔ.

3.2 Counter Machines and an Intersection Hierarchy

We presume familiarity with the notion of a regular language - a language ac-
cepted by some deterministic finite automaton (DFA) - and the notion of a
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context-free language (CFL) - a language accepted by some (nondeterminis-
tic) pushdown automaton (PDA). For background on these notions we refer the
reader to [1,10]. We introduce a variant of the standard counter machines [11,12]
with the following.

Definition 5. A Deterministic d-Counter Machine (d-DCM) is a tuple

M = (Q,Σ, δ, q0, F )

where Q is a finite set of states, Σ is a finite set of symbols, called the alphabet,
δ: Q × Σ → Q × Zd is a transition function, q0 ∈ Q is an initial state, while
F ⊆ Q is a set of accepting states.

We follow the standard approach of defining computations as a sequence of
configurations of the machine. The computation is analogous to that of a push-
down automaton except there are d counters instead of a stack, the content of
the counters is not consulted for making a transition, and the counters must all
be zero in order to accept.

Definition 6. Let M = (Q,Σ, δ, q0, F ) be a d-DCM. A configuration for a given
state q ∈ Q and word w is a triple

(q, w, z) ∈ Q×Σ∗ × Zd.

A configuration (q0, w, (0, . . . , 0)) is initial on input w, while a configuration
(q, ε, z) for some z ∈ Zd, where ε is the empty word, is terminal. A terminal
configuration (q, ε, z) is accepting if q ∈ F and z = (0, . . . , 0).

For two configurations C = (q, aw, z) and C′ = (q′, w, z′), we say C′ succeeds
C if δ(q, a) = (q′, z′−z). A computation of a d-DCM on an input w = s1s2 · · · sn
is a sequence of configurations C0, . . . , Cn such that C0 is initial on input w,
Ci+1 succeeds Ci for i = 0, . . . , n − 1, and Cn is terminal. The computation is
accepting if Cn is accepting; it is rejecting otherwise.

A word w is accepted by a d-DCM if there is an accepting computation on
input w. The set of all words accepted by a d-DCM M is called the language
recognized by M , and is denoted L(M). The class of languages recognized by
d-DCMs is called the class of deterministic d-counter languages and it is denoted
DCLd.

Our first observation is that languages recognized by 1-DCMs are determin-
istic context-free.

Proposition 3. All languages in DCL1 are deterministic context-free.

Given a class of languages L, an intersection hierarchy for L is the set of
classes

Ld =

{
d⋂

k=1

Lk: Lk ∈ L, k = 1, . . . , d

}
.
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This hierarchy collapses if, for some N , LN+1 = LN ; otherwise L1 � L2 � · · · .
By definition, L1 = L, and frequently one adds some natural subclass L0 of L.
If L is closed under intersection, then the hierarchy collapses at N = 1.

One of the non-collapsing intersection hierarchies is the context-free language
hierarchy. For each d > 0, let CFLd be the class of intersections of d context free
languages, and let DCFLd be the class of intersections of d deterministic context
free languages. Let CFL0 = DCFL0 be the class of regular languages. Then Liu
and Weiner ([18], see also [16]) proved that for each d > 0, the language

Ld = {ak1
1 ak2

2 · · · akd

d bk1
1 bk2

2 · · · bkd

d : k1, k2, . . . , kd ≥ 0}
⊆ {a1, a2, . . . , ad, b1, b2, . . . , bd}∗

satisfies Ld+1 	∈ CFLd. But as Ld =
⋂d

i=1 Ld,i where

Ld,i = {ak1
1 ak2

2 · · · a
kd

d bl11 b
l2
2 · · · b

ld
d : k1, k2, . . . , kd, l1, l2, . . . , ld ≥ 0 & ki = li},

and Ld,i is a DCFL for each i, we have Ld+1 ∈ DCFLd+1−CFLd for each d. As
DCFLd ⊆ CFLd (we do not know if it has been determined whether this inclusion
is strict for each d), we have a non-collapsing DCFL intersection hierarchy within
a non-collapsing CFL intersection hierarchy.

In this subsection, we consider the intersection hierarchy of deterministic d-
counter languages for d = 0, 1, . . ..

Proposition 4. For each d, DCLd is the set of languages that are intersections
of d languages in DCL1.

Proposition 5. The language Ld is in DCLd

Proof. Because Ld =
⋂d

i=1 Ld,i, the statement follows from Proposition 4 and
the following observation that Ld,i ∈ DCL1. For each i there is a deterministic
one-counter machine M that recognizes Ld,i with 2d states. The first d states
are used to read the a-symbols and the next d states are used to read the b-
symbols such that the first encounter of symbol aj (j = 1, . . . , d) changes the
state of the machine to qj where it remains until a different symbol is read.
Similarly the first encounter of bj changes the machine to state qd+j where it
remains until a different symbol is read. If aj (or bj) is followed by ak (resp.
bk) with k < j, then machine rejects. Also, if any a’s are encountered after a b
(states qd+1, . . . , q2d) then the machine rejects. If a symbol read is not ai nor bi,
the counter is left unchanged. With each reading of a symbol ai (moving to, or
remaining at a state qi) the counter is increased by 1, and with each reading of
symbol bi (moving to, or remaining at a state qd+i) the counter is decreased by
1. Then a word w in {a1, . . . , ad, b1, . . . , bd}∗ is accepted if and only if the indexes
of the a-symbols and the indexes of the b-symbols in w appear in ascending order
and also w = ak1

1 ak2
2 · · · a

kd

d bl11 b
l2
2 · · · b

ld
d where kj , lj ≥ 0 and ki = li. ��
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By Proposition 3, DCL1 ⊆ DCFL, from which it follows that for each d,
DCLd ⊆ DCFLd. Liu and Weiner’s languages Ld show that for each d, DCLd+1−
CFLd is nonempty. We conclude the section with another observation. LetDCL∞
=
⋃∞

k=0 DCLk.

Proposition 6. There exists a language in DCFL1 but not in DCL∞.

Seki [23], show that an n-DCM can be simulated by a nondeterministic 1-
reversal counter machine as in [11] with 2n counters. Hence, the construction in
[3] showing existence of a language in DCFL1 that cannot be accepted by any
nondeterministic 1-reversal counter machine can be also used to show Proposi-
tion 6.

3.3 Cyclic Walks in Periodic Graphs and Counter Machines

In the following, Σ is a set of symbols.

Definition 7. Given a d-DCM M = (Q,Σ, δ, q0, F ), its transition diagram is
a pair (ΔM , ζ) where ΔM = 〈Q,A, ι, τ〉 is a digraph having arcs A = Q × Σ
with ι(q, s) = q, τ(q, s) = q′ if δ(q, s) = (q′, z) for some z, and ζ : A → Σ an
arc-labeling ζ(q, s) = s.

Notice that in such a transition diagram, due to determinism of M , for each
q ∈ Q and s ∈ Σ, there exists at most one a ∈ A such that ι(a) = q and ζ(a) = s.

Let Γ = 〈V,A, ι, τ〉 be d-periodic and let G ≤ Aut Γ be isomorphic to Zd.
A labeling ζ: A → Σ is G-invariant if, for each a1, a2 ∈ A, a1 ∈ G(a2) implies
ζ(a1) = ζ(a2). In addition, a set F ⊆ V is G-invariant if it is a union of G-orbits
of vertices.

If FΓ ⊆ V is a set of vertices in Γ with a G-invariant labeling ζ, the language
that consists of labels of walks in Γ that start at a vertex v0 and terminate in
FΓ is denoted with L(Γ, FΓ , ζ, v0). We state the main theorem connecting DCLd

with d-periodic graphs.

Theorem 2. A language L is in DCLd if and only if there exists a d-periodic
digraph Γ with a translation group Zd, Zd-invariant labeling ζ and a set of
vertices F0 in a Zd-unit containing a vertex v0 such that L = L(Γ, F0, ζ, v0).

Proof. (Sketch) Suppose that L is in DCLd and let M = 〈Q,Σ, δ, q0, F 〉 be a
d-counter machine with L(M) = L. Consider the transition diagram (ΔM , ζM )
of M . Let ξΔ: Q × Σ → Zd be defined by ξΔ(q, s) = z for δ(q, s) = (q′, z),
where vector z changes the counters. By Theorem 1, there exists a digraph
Γ = 〈Q × Zd, Q × Σ × Zd, ι, τ〉 with Γ/Zd isomorphic to ΔM and labeling
ξ : Q × Σ × Zd → Zd honoring ξΔ. As A = Q × Σ × Zd is the set of arcs
of Γ , we define ζ((a, z)) = ζM (a) = s for each arc a = (q, s) in ΔM . Then
ζ : Q × Σ × Zd → Σ is Zd-invariant by definition. The natural homomorphism
Γ → Γ/Zd ∼= ΔM preserves the labels. Furthermore, F × Zd is a union of Zd-
orbits. Consider the Zd-unit Γ0 with vertices V0 = Q×{0}, arcsA0 = Q×Σ×{0}
and v0 = (q0,0) ∈ V0. We set F0 = F × {0}.
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Conversely, suppose L = L(Γ, F0, ζ, v0) as stated in the theorem. Let Γ0 =
〈V0, A0, ι0, τ0〉 be the Zd-unit containing v0 and F0.

Consider Γ/Zd. Let Q = V/Zd and we set q0 = Zd(v0). Since ζ is a Zd-
invariant labeling on the arcs of Γ , all arcs in the same orbit have the same
label, hence we set ζΔ : A/Zd → Σ with ζΔ(Zd(a)) = ζ(a). For each a ∈ A0, let

ξ(Zd(a)) =

⎧⎨⎩ (0, . . . , 0) if ι(a), τ(a) ∈ V0

z = (i1, . . . , id) if for some v ∈ V0, τ(a) = z(v)
−z = −(i1, . . . , id) if for some v ∈ V0, ι(a) = z(v).

Observe that by Lemma 1, ξ is well-defined. If a ∈ A0, let δ(Z
d(ι0(a)), ζ(a)) =

(τ(a), ξ(Zd(a))). We set F = {Zd(v): v ∈ F0}. We claim thatM = (Q,Σ, δ, q0, F )
is the desired DCM. ��

Corollary 1. Given a d-periodic digraph Γ = 〈V,A, ι, τ〉 and automorphism
group G ∼= Zd, and given v ∈ V , the corresponding d-DCM 〈V/G,A/G, δ,G(v),
{G(v)}〉 accepts precisely those strings of arcs from Γ/G corresponding to cyclic
walks starting and ending at v.

Example 4. Observe that in Figure 5, the digraph Δ to the left is the transition
diagram of a 1-counter DCM corresponding to the 1-periodic digraph at right.
Conversely, given the periodic digraph to the right with the indicated unit with
red arrows and vertices, the construction in Theorem 2 produces the 1-counter
DCM to the left. In both cases the ζ-labelings are omitted.

4 Concluding Remarks

By showing how periodic structures represented by periodic digraphs may be
described with types of cyclic walks that appear in these structures, we initi-
ate a study of discrete geometric objects using formal language theory. These
families of walks are associated with languages from the context free language
intersection hierarchy and are recognized by a special class of devices, called
here deterministic d-counter machines. This hierarchy of deterministic counter
languages does not collapse, and it would be interesting to know how distinct
this hierarchy is from the hierarchy of deterministic context-free languages.

We expect that the study of languages associted with (periodic) structures
would give insight into the structures they are associated with. In particular, we
expect that in certain cases equality of languages associated with the structures
(digraphs) may imply the digraphs are isomorphic. We point out that several
properties, such as Theorem 1, hold for arbitrary groups (groups that are not
necessarily free abelian) [13], while we do not know what types of languages
could be associated with more general structures including finite, or aperiodic
structures. These studies may facilitate the implementation of the resulting the-
ory in software for nanostructure design (results in this report are used in the
“crystal turtlebug” program described in [19]).
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Abstract. This paper presents an energy-efficient neuromorphic com-
puting approach by filling the connectome gap between algorithm, brain,
and VLSI. The gap exists in structural features such as the average num-
ber of synaptic connections per neural node as well as in dimensional fea-
tures. We argue that the energy dissipation in complex computing tasks
is more predominantly bounded by the control processes that synchronize
and redirect both computing processes and data rather than the comput-
ing processes themselves. Therefore, it is crucial to fill the connectome
gap and to avoid excessive interactions of the computing process and data
with the control processes when achieving energy-efficient computing for
large-scale cognitive computing tasks. The use of freespace optics is pro-
posed as a means to efficiently handle sparse but still heavily entangled
connections.

Keywords: Neuromorphic computing, low power, freespace optics.

1 Introduction

There have been a number of profound theoretical discussions on the ultimate
lower bounds of the energy dissipation in computing systems. Landauer’s prin-
ciple [1] deals with the lower theoretical limit of energy consumption associated
with bit erasure as kT ln 2 [1]. Bennett claims that as long as no information is
erased, computation may in principle be achieved in a thermodynamically re-
versible manner, and thus not even requires any release of heat [2]. The Margolus
Levitin theorem [3] gives a fundamental limit on the performance of quantum
computation for a quantum system of energy E. Quantum computations as well
as inherently classical ones, need at least a time of h/4E to go from one state
to an orthogonal state.

In discussing a practical energy dissipation bound, the energy per computa-
tion is an important metric. The metric itself can change, as requirements for
computing shift from conventional computation-centric tasks to cognitive ones.
The metric in conventional computing has been often evaluated in closed and
noninteractive environments, while cognitive tasks will more frequently deal with
streamed unstructured data sets in open and interactive environments. As the
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size of the working set increases, entropic aspects associated with appropriate
control and selections of processing information [4] will require more significant
attention in comparison to the computing counterpart in discussing the computa-
tional complexity and the associated power consumption. We are already facing
this situation even in conventional computing tasks [5]. Here, we can consider a
simple example: When calculating

C = A+ B, D = A− B

the complexity and energy consumption is not determined by how much energy is
required in manipulating the two numbers, but by howmuch energy is required in
selecting and transferring the data of interest out of an often unstructured sea of
data encoded with physical degrees of freedom in Minkowski spacetime. Moving
the computations to the data does not always help, since the computations often
still require multiple data inputs that are entangled and that lack space-time
locality. However, even though the performance and the power-efficiency bound
can be more relevant to the entropic aspects as the scale increases, many existing
neuromorphic device research activities (for example, refer to [6, 7]) focused on
how to design limited size neural systems rather than how to interconnect a large
number of neurons in a scalable manner until recently [8]. As CMOS scaling is
approaching to its fundamental limits [9], we cannot expect that the orders of
magnitude energy-efficiency gap between humans and computers in handling
cognitive tasks can be filled only by further technology miniaturization.

Here we present an energy-efficient neuromorphic computing approach by fill-
ing the connectome gap between algorithm, brain, and VLSI. We argue that the
practical energy dissipation bound is more relevant to the external control pro-
cesses that synchronize and redirect both computing processes and data. Thus,
in order to realize energy-efficient computing for large-scale cognitive computing
tasks, it is quite important to fill the connectome gap between algorithm, brain,
and VLSI such that we can minimize the excessive interactions of computing pro-
cesses and data with controls. The use of a freespace crossconnect is proposed
as a means to handle sparse but still heavily entangled connections efficiently.
We also explore unconventional neural node implementation concepts.

2 Connectome Gap between Algorithm, Brain, and VLSI

Fig. 1 illustrates the interconnect scaling as a function of the number of unit
nodes such as neurons or gates for algorithm, brain, and VLSI. In discussing
the connectome gap (here we mean various, i.e., statistical, topological, dimen-
sional etc., gaps in the interconnect diagrams), we should note that the brain
connection matrix actually consists of structural and functional aspects [10]. For
the neurosynaptic structural connections inside brains, the connectome projects
is in progress [13, 14], and some statistical universal scaling laws that govern
the interconnections of brains have been discovered. For example, it was found
that there is a scaling law between the volumes of gray matter and white matter
of the brains for various animal species [15]. Gray matter is composed of cell
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Fig. 1. Interconnect scaling for algorithm, brain, and VLSI as a function of the number
of unit nodes such as neurons or gates. Note that many learning algorithms have
prerequisites of fully-connected mesh topologies, while the interconnect capabilities in
VLSIs are relatively limited.

bodies, dendrites, and short axons for information processing and white matter
is consists of long axons for long-range communications between cortical areas.
The strikingly simple relationship indicates that there exists a scaling law similar
to Rent’s rule [11] for brain interconnections as discussed in [12].

The dilution factor, D, is an appropriate statistical metric to analyze the gap
as an indicator for the sparseness in the network [16, 17]. It is defined as

D = NS/N
2
N ,

where NS is the total number of synapses (or switches) and NN is the total num-
ber of neurons (or nodes). As NN increases, the required NS increases quadrat-
ically as O(N2

N ) if D is kept at 1 for full mesh connectivity. If the number of
connected synapses per neuron is low and constant, then D has to be reduced
significantly as NN increases, and signals typically need to make multiple hops
to reach an arbitrarily selected neuron. When NN = 1010 and NS = 1014, each
neuron contains 104 synapses on average and D = 10−6. Thus, the connections
are significantly diluted compared to a fully-connected situation. In contrast,
in the present CMOS VLSI viewpoint, it is still a very-densely-connected net-
work system, even when the redundancy and modularity aspects of the brain
connectome are considered.

Many neural network algorithms, such as Hebbian rule [18, 19] and Hopfield
network [20], are often based fully-connected nodes in the algorithm formulation,
even though functionally significant paths tend to be more sparsely distributed.
These algorithms, when implemented in real hardware, work efficiently with
fully-connected nodes, but in reality, this is rarely possible since the number of
required interconnect resources can increase rapidly as O(N2

N ). Thus, the gap
between algorithm, brain, and VLSI has to be filled in implementing scalable
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Fig. 2. Three key aspects in computing tasks: Structure, dynamics, and control. The
structure defines the paths for information processing flow. There is no theoretical lower
bound in energy dissipation in dynamics as long as the dynamics is thermodynamically
reversible. The energy dissipation in computing is bounded by the control, particularly
in open and interactive settings.

and efficient neuromorphic computing systems. The VLSI hardware will need to
be flexible so that it can efficiently handle communications in unstructured and
entangled connections.

In addition to the gap in the average number of connections per node, there
exist gaps in the structural and dimensional arrangements as well. At an algo-
rithmic level, every node is often treated in an isotropic manner without much
considering the wiring constraints, while at the VLSI level, the regular and hi-
erarchical structures are typically used to deal with a large number of node con-
nectivities in a finite spatial dimension. The brain network is not likely to have
precisely defined regular structures as those found in VLSIs, but is arranged in
a more unstructured way to flexibly route within a given volume of space. Since
there are many unknowns in the fine-grain structural and functional features in
the brain and the exact connectome and underlying rules are still under investi-
gation, a detailed argument needs to wait until the complete connectome of the
brain is identified. The VLSI hardware needs to be flexible in emulating brain
structure and functionalities.

3 Energy Dissipation for Control

We consider the role of control on the lower bound of energy dissipation by focus-
ing on a computing framework interacting openly with external environments,
which is increasingly the case for neuromorphic computing systems.

Let us start by representing the essence of the computing systems in three
high-level aspects, as depicted in Fig. 2. First, the structure defines the static
part of the computer systems by describing both the device and interconnect
physical arrangements in space. The device structure defines primitive building
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Fig. 3. Power saving strategy at function block level. (a) Present CMOS VLSI con-
sumes power at every gate but allows for fine-grain control at an arbitrary location; (b)
Natural or quantum computing does not require per-gate dissipation but offers very
limited control options; (c) Trade off between control vs. energy dissipation by allowing
control on a coarse-grain scale.

blocks as functional components such as switches, while the interconnect struc-
ture defines the system architecture by appropriately arranging and connecting a
set of the building blocks. Second, the dynamics takes care of performing the ac-
tual computing tasks with an appropriate set of initial conditions and equations
of motions as well as with encoding strategies for information and functions. A
set of equations of motion determine the time evolution of the system. Theoreti-
cally, a system is known to work in a reversible manner as long as the operations
under given structures and dynamics can support both the logical and physical
reversibility.

When computing is performed in closed systems, the control functions remain
internal and the external controls are rather irrelevant as long as the spatial and
temporal separations of information encoding states are maintained to isolate
the influences arising from noise and other disturbances. The system can evolve
by itself to compute with an appropriately-configured set of initial conditions
and the equations of motion. Quantum computing or natural computing often
performs computational tasks in this manner. 1 On the other hand, in more prac-
tical computing systems, the computing is performed in open and interacting
environments with a set of appropriate external control and feedback interfaces.
The computing actions are expected to be appropriately controlled and fed-
back by dynamically-changing external IO signals. The performance bounds in
quantum information processing with time-dependent Hamiltonian control were
discussed recently [22]. Though it is argued that the external control system can
be redefined as a part of the system for computing so now the whole system can

1 Retaining the required precision of the system without appropriate control is not
easy. An interesting analogy can be found in [21] on making a rocket to the moon.
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be considered as a closed system without explicit control, this does not always
work particularly when computing systems are interacting with living creatures,
unless the whole system is considered at an astronomical scale.

We argue that the energy dissipation in open and interactive environments is
predominantly bounded by the control processes since the reversible arrangement
is limited particularly for the external control processes. In other words, the lower
bound of the energy dissipation in the computing systems is more caused by the
control part, not by the computing part, as it has been known that the computing
will not necessarily dissipate energy. Energy dissipation has to occur as a result of
changing the course of action while executing a series of computing processes, by
dynamically redirecting computing processes and data to perform the computing
as desired rather than computing the results by statically mapping specific or
entire portions of computer processes into natural systems with a given set of
initial conditions and equations of motions.

Fig. 3 compares various strategies for how the control paths can interact with
the computing paths for optimum energy efficiency. Conventional computing
such as that done with CMOS VLSI logic gates requires energy dissipation at
every gate but this is a very controllable system both logically and physically by
inserting the control points almost everywhere. In contrast, many approaches in
natural as well as quantum computing cannot rely on per-gate energy-dissipative
control and thus it is often limited to arrange the control paths. It is not easy
to change the course of computing in the middle of action as desired by using
initially unpredicted external controls. The approach with coarse-grain control
options for modular blocks can trade off the two extreme cases by arranging that
energy dissipation occurs only when necessary [23].

The control paths inherently require crossconnect betweenmodular blocks. The
overhead associated with the crossconnect can be considered using two extreme
cases. One extreme is a completely serial approach where the crossconnect is
realized with time-multiplexed bus connections only requiring O(NN ) resources.
Here, though the resources are relatively more efficiently used, the shared serial-
ized connection can become a performance bottleneck. If the resources at the two
sides are processing units and memory units, this is viewed as the von-Neumann
bottleneck. The other extreme is a completely parallel approach where both sides
are connected in a parallel and fully meshed topology. This can perform at high
performance without blocking though it requires O(N2

N ) resources. In reality,
something in between such as a fat tree, butterfly, multi-dimensional torus, or
hypercube, is often chosen [24].

As NN increases, the entropic aspects in the crossconnect become more dom-
inant than the computational aspects. Figure 4 compares the connection matrix
and its modular implementation using crosspoint elements of size NC , In this
connection matrix, “0” means no connection and “1” means connection (with
whatever weight). When the connection matrix can be arranged in a block di-
agonal form with using a size smaller than NC , the breakdown of the connec-
tion matrix into fine-grain crosspoint elements is a straight forward task. How-
ever, the implementation of the connection matrix will become inefficient if the
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Fig. 4. Comparing connection matrices and their crosspoint element implementations.
When the connection matrix can be arranged in a block diagonal form of a size smaller
than NC , the breakdown of the connection matrix into fine-grain crosspoint elements
is a straight forward task. However, the implementation of the connection matrix will
become inefficient if the connection matrix is heavily entangled and no block diagonal
representation of a size smaller than NC exists.

connection matrix is heavily entangled and no block diagonal representation of
a size smaller than NC exists. In that case, additional communication paths will
be needed between crosspoint elements. Heavily entangled situations can occur
even when the locality exists in the problem. For example, when there exists
the dimensional gap between algorithmic requirements and implementation con-
straints, the locality in the algorithm will not be effectively mapped into that in
the implementation. Fig. 5 shows the implementation efficiency of the connec-
tion matrix as a function of NC . As NC increases, the efficiency start to drop
when NC > 1/D, since multiple cycles are required to perform all of the required
connections digitally.

The above argument is a good example to show that the efficiency of the large-
scale neuromorphic computing is significantly affected by the connectome gap
between algorithm requirements for fully-connected mesh topology and VLSI
implementation constraints for the wiring. Though this gap needs to be filled
using innovations in both algorithms and implementation techniques, we will
propose freespace crossconnect to fill the gap mainly from the implementation
perspective in section 4.
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and energy consumption comparisons. Note that the congestion due to shared multi-
hop paths is a serious performance bottleneck since now the nodes, each consisting
of a crosspoint element, are arranged in 2D, while the neurons within the crosspoint
element are arranged in 1D in Fig. 4.

4 Energy-Efficient Neuromorphic Computing with
Freespace Crossconnect

Freespace interconnect has been studied for several decades, and its advantages
are known [25–27], but to the present authors’ knowledge, it has never been
considered in a neuromorphic computing context. The bandwidth, latency, and
energy consumption advantages in freespace networking are illustrated in Fig. 6.
In a wired network, the effective bandwidth decreases and the latency and en-
ergy consumption increases as the distance (the number of hops) increases un-
less the nodes are fully connected. The average distance increases as the neural
network scale increases and as the dilution factor decreases. However, the band-
width, latency, and energy consumption in freespace networks can remain almost
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Fig. 7. Hybrid architecture option for general cognitive computing devices. Freespace
connection can efficiently and flexibly remap brain connection matrix and also provide
nonblocking reach for neuromorphic signals.

constant as long as nonblocking crossconnect can allow peer-to-peer connections
effectively when needed. VLSI implementations of neuromorphic computing de-
vices should satisfy both synapse-dendrite fan-in/fan-out conditions and axon
reach requirements of the actual neurons and should flexibly support not very
regular connectome connections. This results in limited scalability with conven-
tional wired crossconnect, while freespace crossconnect can realize nonblocking
crossconnect for large numbers of nodes, as long as the interference can be man-
aged appropriately.

Fig. 7 shows a hybrid architecture considered for neuromorphic systems. Here,
freespace is suitable for efficiently realizing sparsely connected network without
prior knowledge of where each link will be connected. Another example, in which
the freespace interconnect is used for deep belief neural networks [28], is illus-
trated in Fig. 8. In this example, three hidden layers are sandwiched by input
and output layers. The freespace interconnect can be used between the modules
as well as between the boards, racks, etc. Assuming each chip contains arith-
metic components for processing each layer of the deep belief network, then
reconfigurable module-to-module freespace interconnect can optimize connec-
tions and bandwidth between the layers according to the probabilistic message
passing requirements between the nodes in peer to peer. In particular, freespace
interconnect can reduce the in-plane traffic by appropriately connecting the in-
terlayer nodes in peer to peer to significantly improve performance and power
consumption at the same time. The performance of multilayer neural network
implementations using wired connections significantly depends on the network-
ing optimization [29].
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Fig. 8. A deep belief network architecture with freespace interconnect in inter-layer net-
working. Freespace interconnect can avoid excessive in-plane traffic by appropriately
connecting the interlayer nodes in peer to peer, thus significantly improving perfor-
mance and power consumption at the same time. The freespace interconnect can be
used between the modules as well as between the boards, racks, etc.

Freespace connection efficiently remap brain connection matrices with recon-
figurable extensions. Table 1 shows dimensional comparison of the interconnects
between brain, wired, freespace, and hybrid. The hybrid architecture shown here
takes advantage of the wired and freespace interconnect. Note that the straight-
forward parallel approach for wired crossconnect with 2D inputs and correspond-
ing 2D outputs is not possible since it requires peer-to-peer wiring connections
in 4D.

Table 1. Dimensional comparison

Neuron node dimension Utilization Integration

Brain 3D High Good
Wired crossconnect 1D Low Good
Freespace crossconnect 2D Medium Challenging
Hybrid crossconnect 3D High Good

Fig. 9 compares the normalized bandwidth of the structure shown in Fig. 8 and
that of a conventional chip stack as a function of the number of neurons in each
plane. For chip stacks in which chips are connected using TSVs (Through Silicon
Vias), the normalized bandwidth decreases sharply as the number of neurons in
each plane increases because of the average number of required in-plane hops
increases with the square root of the number of neurons in each plane. With
freespace optical interconnect, the in-plane hopping does not matter much, so the
normalized bandwidth can stay constant. Peer to peer transmission of freespace
interconnect should also have latency and energy consumption advantages.
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consumption advantages, as already seen in Fig. 6.

Once the connectome aspects are appropriately handled, the node implemen-
tation has various options. Fig. 10 explores what we think is an unconventional
way of implementing a neural node. First, we assume that neuromorphic systems
mainly deal with statistical information processing of PIN’s and POUT’s (they could
be either p or p = 1− p) over a wide dynamic range.

POUT &
n−1∏
i=0

P
Wj

INj

Then hardware deals with LLR(Log likelihood Ratio) [30] of such operations
with time-dependent spike signals as 1-bit digital rate coding as the population
coding [31]. Our brain can deal with wide dynamic range inputs [32] so log scale
conversion is consistent with this feature.

logPOUT &
n−1∑
j=0

Wj logPINj

Multiplicative gates can constitute universal logic gates as long as signals are
represented in a dual rail as p and 1 − p, which may correspond to excitatory
and inhibitory neural connections. Since the output signal is the weighted sum of
the input signals if the shaping function for signal regeneration can be ignored,
a series of this kind of arithmetic operations can be implemented as an efficient
combinational arithmetic. S/N degradation as a result of large fanout can be
compensated for using an appropriate integrate and fire averaging mechanism
with a large number of fanin signals.
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5 Conclusion

In this paper, an energy-efficient neuromorphic computing approach by filling
the connectome gap between algorithm, brain, and VLSI is presented. We argued
that the energy dissipation in complex computing tasks is more predominantly
bounded by the control processes that synchronize and redirect both comput-
ing processes and data rather than the computing processes themselves. There-
fore, it is crucial to fill the connectome gap and to avoid excessive interactions
of the computing process and data with the control processes when achieving
energy-efficient computing for large-scale cognitive computing tasks. The use of
freespace optics was proposed as a means to efficiently handle sparse but still
heavily entangled connections. We acknowledge profs. T. Chikayama, G. Tanaka,
R. Nakane, K. Aihara, M. Hagiya, and A. Hirose of the University of Tokyo for
discussions.
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Abstract. In this paper we consider the time complexity of adding two
n-bit numbers together within the tile self-assembly model. The (ab-
stract) tile assembly model is a mathematical model of self-assembly in
which system components are square tiles with different glue types as-
signed to tile edges. Assembly is driven by the attachment of singleton
tiles to a growing seed assembly when the net force of glue attraction
for a tile exceeds some fixed threshold. Within this frame work, we ex-
amine the time complexity of computing the sum of 2 n-bit numbers,
where the input numbers are encoded in an initial seed assembly, and
the output sum is encoded in the final, terminal assembly of the system.
We show that this problem, along with multiplication, has a worst case
lower bound of Ω(

√
n) in 2D assembly, and Ω( 3

√
n) in 3D assembly. We

further design algorithms for both 2D and 3D that meet this bound with
worst case run times of O(

√
n) and O( 3

√
n) respectively, which beats the

previous best known upper bound of O(n). Finally, we consider average
case complexity of addition over uniformly distributed n-bit strings and
show how we can achieve O(log n) average case time with a simultane-
ous O(

√
n) worst case run time in 2D. As additional evidence for the

speed of our algorithms, we implement our algorithms, along with the
simpler O(n) time algorithm, into a probabilistic run-time simulator and
compare the timing results.

1 Introduction

Self-assembly is the process by which systems of simple objects autonomously
organize themselves through local interactions into larger, more complex ob-
jects. Self-assembly processes are abundant in nature and serve as the basis for
biological growth and replication. Understanding how to design and efficiently
program molecular self-assembly systems to harness this power promises to be
fundamental for the future of nanotechnology. One particular direction of interest
is the design of molecular computing systems for efficient solution of fundamen-
tal computational problems. In this paper we study the complexity of computing
arithmetic primitives within a well studied model of algorithmic self-assembly,
the abstract tile assembly model.

� This author’s research was supported in part by National Science Foundation Grant
CCF-1117672.

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 242–253, 2014.
DOI: 10.1007/978-3-319-08123-6_20, c© Springer International Publishing Switzerland 2014
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Table 1. Summary of results

Time Complexity Average Case

Addition(2D) Θ(
√
n) (Thm. 1,Thm. 4) O(log n) (Thm.4)

Addition(3D) Θ( 3
√
n) (Thm. 1,Thm. 6) O(log n) (Thm.6)

Previous Best(2D) O(n) [5] -
Multiplication(d-D) Ω( d

√
n) (Thm. 2) -

Fig. 1.

The abstract tile assembly model (aTAM) models system monomers with four
sided Wang tiles with glue types assigned to each edge. Assembly proceeds by
tiles attaching, one by one, to a growing initial seed assembly whenever the net
glue strength of attachment exceeds some fixed temperature threshold (Figure 2).
The aTAM has been shown to be capable of universal computation [21], and has
promising computational potential with a DNA implementation [19]. Research
leveraging this computational power has lead to efficient assembly of complex
geometric shapes and patterns with a number of recent results in FOCS, SODA,
and ICALP [1, 6, 7, 10–17, 20]. This universality also allows the model to serve
directly as a model for computation in which an input bit string is encoded into
an initial assembly. The process of self-assembly and the final produced terminal
assembly represent the computation of a function on the given input. Given this
framework, it is natural to ask how fast a given function can be computed in
this model. Tile assembly systems can be designed to take advantage of massive
parallelism when multiple tiles attach at distinct positions in parallel, opening
the possibility for faster algorithms than what can be achieved in more tradi-
tional computational models. On the other hand, tile assembly algorithms must
use up geometric space to perform computation, and must pay substantial time
costs when communicating information between two physically distant bits. This
creates a host of challenges unique to this physically motivated computational
model that warrant careful study.
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In this paper we consider the time complexity of adding two n-bit numbers
within the abstract tile assembly model. We show that this problem, along with
multiplication, has a worst-case lower bound of Ω(

√
n) time in 2D and Ω( 3

√
n)

time in 3D. These lower bounds are derived by a reduction from a simple problem
we term the communication problem in which two distant bits must compute the
AND function between themselves. This general reduction technique can likely
be applied to a number of problems and yields key insights into how one might
design a sub-linear time solution to such problems. We in turn show how these
lower bounds, in the case of 2D and 3D addition, are matched by corresponding
worst case O(

√
n) and O( 3

√
n) run time algorithms, respectively, which improves

upon the previous best known result of O(n) [5]. We then consider the average
case complexity of addition given two uniformly generated random n-bit numbers
and construct a O(log n) average case time algorithm that achieves simultaneous
worst case run time O(

√
n) in 2D. To the best of our knowledge this is the first

tile assembly algorithm proposed for efficient average case adding. Our results
are summarized in Table 1. Also, tile self-assembly software simulations were
conducted to visualize the diverse approaches to fast arithmetic presented in this
paper, as well as to compare them to previous work. The adder tile constructions
described in Sections 4, 5 and 6, and the previous best known algorithm from [5]
were simulated using the two timing models described in Section 2.4. These
results can be seen in the graphs of Figure 1.

2 Definitions

2.1 Basic Notation

Let Nn denote the set {1, . . . , n} and let Zn denote the set {0, . . . , n−1}. Consider
two points p, q ∈ Zd, p = (p1, . . . pd), q = (q1, . . . , qd). Define the maximum norm
to be ‖p− q‖∞ � max1≤i≤d{|pi − qi|}.

2.2 Abstract Tile Assembly Model

(a) Incorrect binding. (b) Correct binding.

Fig. 2. Cooperative tile binding in the aTAM
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Tiles. Consider some alphabet of symbols Π called the glue types. A tile is a
finite edge polygon (polyhedron in the case of a 3D generalization) with some
finite subset of border points each assigned some glue type from Π . Further,
each glue type g ∈ Π has some non-negative integer strength str(g). For each
tile t we also associate a finite string label (typically “0”, or “1”, or the empty
label in this paper), denoted by label(t), which allows the classification of tiles
by their labels. In this paper we consider a special class of tiles that are unit
squares (or unit cubes in 3D) of the same orientation with at most one glue type
per face, with each glue being placed exactly in the center of the tile’s face. We
denote the location of a tile to be the point at the center of the square or cube
tile. In this paper we focus on tiles at integer locations.

Assemblies. An assembly is a finite set of tiles whose interiors do not overlap.
Further, to simplify formalization in this paper, we further require the center
of each tile in an assembly to be an integer coordinate (or integer triplet in
3D). If each tile in A is a translation of some tile in a set of tiles T , we say
that A is an assembly over tile set T . For a given assembly Υ , define the bond
graph GΥ to be the weighted graph in which each element of Υ is a vertex,
and the weight of an edge between two tiles is the strength of the overlapping
matching glue points between the two tiles. Note that only overlapping glues
that are the same type contribute a non-zero weight, whereas overlapping, non-
equal glues always contribute zero weight to the bond graph. The property that
only equal glue types interact with each other is referred to as the diagonal glue
function property and is perhaps more feasible than more general glue functions
for experimental implementation (see [8] for the theoretical impact of relaxing
this constraint). An assembly Υ is said to be τ-stable for an integer τ if the
min-cut of GΥ is at least τ .

Tile Attachment. Given a tile t, an integer τ , and a τ -stable assembly A, we say
that t may attach to A at temperature τ to form A′ if there exists a translation t′

of t such that A′ = A
⋃
{t′}, and A′ is τ -stable. For a tile set T we use notation

A →T,τ A′ to denote that there exists some t ∈ T that may attach to A to
form A′ at temperature τ . When T and τ are implied, we simply say A → A′.
Further, we say that A→∗ A′ if either A = A′, or there exists a finite sequence
of assemblies 〈A1 . . . Ak〉 such that A→ A1 → . . .→ Ak → A′.

Tile Systems. A tile system Γ = (T, S, τ) is an ordered triplet consisting of a set
of tiles T referred to as the system’s tile set, a τ -stable assembly S referred to as
the system’s seed assembly, and a positive integer τ referred to as the system’s
temperature. A tile system Γ = (T, S, τ) has an associated set of producible as-
semblies, PRODΓ , which define what assemblies can grow from the initial seed S
by any sequence of temperature τ tile attachments from T . Formally, S ∈ PRODΓ
is a base case producible assembly. Further, for any A ∈ PRODΓ , if A →T,τ A′,
then A′ ∈ PRODΓ . That is, assembly S is producible, and for any producible as-
sembly A, if A can grow into A′, then A′ is also producible. We further denote a
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producible assembly A to be terminal if A has no attachable tile from T at tem-
perature τ . We say a system Γ = (T, S, τ) uniquely produces an assembly A if all
producible assemblies can grow into A through some sequence of tile attachments.
More formally, Γ uniquely produces assembly A ∈ PRODΓ if for any A′ ∈ PRODΓ it
is the case that A′ →∗ A. Systems that uniquely produce one assembly are said
to be deterministic. In this paper, we focus exclusively on deterministic systems,
and our general goal will be to design systems whose uniquely produced assem-
bly specifies the solution to a computational problem. For recent consideration of
non-determinism in tile self-assembly see [6, 7, 10, 13, 17].

2.3 Problem Description

We now formalize what we mean for a tile self-assembly system to compute a
function. To do this we present the concept of a tile assembly computer (TAC)
which consists of a tile set and temperature parameter, along with input and
output templates. The input template serves as a seed structure with a sequence
of wildcard positions for which tiles of label “0” and “1” may be placed to
construct an initial seed assembly. An output template is a sequence of points
denoting locations for which the TAC, when grown from a filled in template, will
place tiles with “0” and “1” labels that denote the output bit string. A TAC then
is said to compute a function f if for any seed assembly derived by plugging in a
bitstring b, the terminal assembly of the system with tile set T and temperature
τ will be such that the value of f(b) is encoded in the sequence of tiles placed
according to the locations of the output template. We now develop the formal
definition of the TAC concept. We note that the formality in the input template
is of substantial importance. Simpler definitions which map seeds to input bit
strings, and terminal assemblies to output bitstrings, are problematic in that
they allow for the possibility of encoding the computation of function f in the
seed structure. Even something as innocuous sounding as allowing more than
a single type of “0” or “1” tile as an input bit has the subtle issue of allowing
pre-computing of f1.

Input Template. Consider a tile set T containing exactly one tile t0 with label
“0”, and one tile t1 with label “1”. An n-bit input template over tile set T
is an ordered pair U = (R,B(i)), where R is an assembly over T − {t0, t1},
B : Nn → Z2, and B(i) is not the position of any tile in R for any i from 1 to n.
The sequence of n coordinates denoted by B conceptually denotes “wildcard”
tile positions for which copies of t0 and t1 will be filled in for any instance of the
template. For notation we define assembly Ub over T , for bit string b = b1, . . . bn,
to be the assembly consisting of assembly R unioned with a set of n tiles ti for i
from 1 to n, where ti is equal a translation of tile tb(i) to position B(i). That is,
Ub is the assembly R with each position B(i) tiled with either t0 or t1 according
to the value of bi.

1 This subtle issue seems to exist with some previous formulations of tile assembly
computation.
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Output Template. A k-bit output template is simply a sequence of k coordinates
denoted by function C : Nk → Z2. For an output template V , an assembly A
over T is said to represent binary string c = c1, . . . , ck over template V if the tile
at position C(i) in A has label ci for all i from 1 to k. Note that output template
solutions are much looser than input templates in that there may be multiple tiles
with labels “1” and “0”, and there are no restrictions on the assembly outside of
the k specified wildcard positions. The strictness for the input template stems
from the fact that the input must “look the same” in all ways except for the
explicit input bit patterns. If this were not the case, it would likely be possible
to encode the solution to the computational problem into the input template,
resulting is a trivial solution.

Function Computing Problem. A tile assembly computer (TAC) is an ordered
quadruple ' = (T, U, V, τ) where T is a tile set, U is an n-bit input template,
and V is a k-bit output template. A TAC is said to compute function f : Zn

2 →
Zk
2 if for any b ∈ Zn

2 and c ∈ Zk
2 such that f(b) = c, then the tile system

Γ
,b = (T, Ub, τ) uniquely assembles an assembly A which represents c over
template V . For a TAC ' that computes the function f : Z2n

2 → Zn+1
2 where

f(r1 . . . r2n) = r1 . . . rn + rn+1 . . . r2n, we say that ' is an n-bit adder TAC with
inputs a = r1 . . . rn and b = rn+1 . . . r2n. An n-bit multiplier TAC is defined
similarly.

2.4 Run Time Models

We analyze the complexity of self-assembly arithmetic under two established
run time models for tile self-assembly: the parallel time model [4, 5] and the
continuous time model [2–4,9]. Informally, the parallel time model simply adds,
in parallel, all singleton tiles that are attachable to a given assembly within a
single time step. The continuous time model, in contrast, models the time taken
for a single tile to attach as an exponentially distributed random variable. The
parallelism of the continuous time model stems from the fact that if an assembly
has a large number of attachable positions, then the first tile to attach will be an
exponentially distributed random variable with rate proportional to the number
of attachment sites, implying that a larger number of attachable positions will
speed up the expected time for the next attachment. Technical definitions for
each run time model can be found in [18], along with an analysis for how different
the two models might be. When not otherwise specified, we use the term run
time to refer to parallel run time by default. The stated asymptotic worst case
and average case run times for each of our algorithms hold within both run time
models.

3 Lower Bound for Long Distance Communication

In this section we formulate a class of problems we term the communication
problems in which the goal is to compute a simple AND function on a 2-bit
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input function given that the input template separates the 2 input bits some
specified distance Δ. We formulate this problem for the purposes of providing
lower bounds on the worst-case time complexity for this problem. We then reduce
this problem to addition and multiplication problems in 2D and 3D to provide
worst case lower bounds for addition and multiplication. In this extended ab-
stract we provide a sketch of the lower bound arguments and refer the reader
to [18] for a detailed proof.

3.1 High-Level Sketch of Lower Bound Proofs

To prove lower bounds for addition and multiplication in 2D and 3D, we do
the following. First, we consider two identical tile systems with the exception of
their respective seed assemblies which differ in exactly one tile location. It can be
shown that after Δ time steps, all positions more than Δ distance from the point
of initial difference of the assemblies must be identical among the two systems.
We then consider the communication problem in which we compute the AND
function of two input bits under the assumption that the input template for the
problem separates the two bits by distance Δ. For such a problem, we know that
the output position of the solution bit must be at least distance 1

2Δ from one
of the two input bits. As the correct output for the AND function must be a
function of both bits, we get that at least 1

2Δ steps are required to guarantee a
correct solution to the distance Δ communication problem.

With the lower bound of 1
2Δ established for the communication problem,

we move on to the problems of addition and multiplication of n-bit numbers.
We show how the communication problem can be reduced to these problems,
thereby yielding corresponding lower bounds. In particular, consider the addi-
tion problem in 2D. As the input template must contain positions for 2n bits, in
2D it must be the case that some pair of bits are separated by at least Ω(

√
n)

distance. Focussing on this pair of bit positions in the addition template, we
can create a corresponding communication problem template with the same two
positions as input. To guarantee the correct output, we hard code the remain-
ing bit positions of the addition template such that the addition algorithm is
guaranteed to place the AND of the desired bit pair in a specific position in the
output template, thereby constituting a solution to the Δ = Ω(

√
n) commu-

nication problem, which implies the addition solution cannot finish faster than
Ω(
√
n) in the worst case. A similar reduction can be applied to multiplication.

The theorem statements for these lower bounds are provided below.

Theorem 1. Any d-dimension n-bit adder TAC has worst case run-timeΩ( d
√
n).

Theorem 2. Any d-dimension n-bit multiplier TAC has worst case run-time
Ω( d
√
n).

4 Addition in Average Case Logarithmic Time

Our first upper bound result is an adder TAC that achieves an O(log n) average
case run-time. Our construction resembles an electronic carry-skip adder in that
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a)

b) LSBMSB

MSB of A

MSB of B

LSB of A

LSB of B

Fig. 3. Arrows represent carry origination and propagation direction. a) Represents
previously described O(n) worst case addition for addends A and B [5]. b) Average
case O(log n) construction where addends A and B populate the linear assembly with
bit Ai immediatly adjacent to Bi. Carry propagation is done in parallel.

the carry-out bit for addend pairs where each addend in the pair has the same
bit value is generated in a constant number of steps and immediately propagated
(Figure 3). When each addend in a pair of addends does not have the same bit
value, a carry-out cannot be deduced until the value of the carry-in to the pair
of addends is known. When such addend combinations occur in a contiguous
sequence, the carry must ripple through the sequence from right-to-left, one
step at a time as each position is evaluated. Within these worst-case sequences,
our construction resembles an electronic ripple-carry adder. We show that using
this approach it is possible to construct an n-bit adder TAC that can perform
addition with an average runtime of O(log n) and a worst-case runtime of O(n).

Theorem 3. For any positive integer n, there exists an n-bit adder TAC (tile
assembly computer) that has worst case run time O(n) and an average case run
time of O(log n).

5 Optimal 2D Addition

Our next result is an adder TAC that achieves a run time of O(
√
n), which

matches the lower bound from Theorem 1. This adder TAC closely resembles
an electronic carry-select adder in that the addends are divided into sections
of size

√
n and the sum of the addends comprising each is computed for both

possible carry-in values (Figure 5(b)). The correct result for the subsection is
then selected after a carry-out has been propagated from the previous subsection.
Within each subsection, the addition scheme resembles a ripple-carry adder.

The input and output templates for our construction are shown in Figures
4(a)and 4(b) with the input bit strings interleaved as green and orange tiles,
and the output sum denoted with blue tiles. In parallel, each row of the input
assembly computes the sum of a size

√
n portion of the input strings to grow

one additional layer for each row of the initial assembly in O(
√
n) time. A sec-

ond layer for each row is then assembled which computes the previous value
incremented by 1. Finally, a vertical chain of tiles grows from the bottom of the
assembly up to the top which selects from each row either the original sum for
the given row, or its increment, dependent on whether the previous row passed
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(a) Addition input template. (b) Addition output tem-
plate.

Fig. 4. These are example I/O templates for the worst case O(
√
n) time addition

introduced in Section 5.

on a carry bit. The details of this construction along with a proof of correct-
ness and run time analysis can be found in [18]. The final result is the following
theorem.

Theorem 4. There exists an n-bit adder TAC with a worst case run-time of
O( 2
√
n).

6 Towards Faster Addition

Our next result combines the approaches described in Sections 4 and 5 in order to
achieve both O(log n) average case addition and O(

√
n) worst case addition with

the same algorithm (Figure 5(a)). This construction resembles the construction
described in Section 5 in that the numbers to be added are divided into sections
and values are computed for both possible carry-in bit values. Additionally, the
construction described here lowers the average case run time by utilizing the
carry-skip mechanism described in Section 4 within each section and between
sections.

Theorem 5. There exists a 2-dimensional n-bit adder TAC with an average
run-time of O(log n) and a worst case run-time of O(

√
n).

Given this 2D construction, it is possible to stack multiple linked instances
of this construction into the third dimension to achieve an analogous optimal
result for 3D addition. A high-level sketch of the stacking is shown in Figure 6.
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MSB

LSB

(a)

MSB

LSB

(b)

Fig. 5. Arrows represent carry origination and direction of propagation for a) O(log n)
average case, O(

√
n) worst case combined construction and b) O(

√
n) worst case con-

struction
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LSBMSB

Fig. 6. An overview of the process to add two number in optimal time in 3D

Theorem 6. There exists a 3-dimensional n-bit adder TAC with an average
run-time of O(log n) and a worst case run-time of O( 3

√
n).

For a detailed presentation of these results please see [18].

7 Future Work

The results of this paper are just a jumping off point and provide numerous
directions for future work. One promising direction is further exploration of the
complexity of multiplication. Can O(n1/3) or O(n1/2) be achieved in 3D or 2D,
or can a better lower bound be found? In [18] we show how to achieve O(n5/6)
time multiplication in 3D. Can this bound be improved? Is sublinear multipli-
cation possible in 2D, or is there a Ω(n) lower bound? What is the average case
complexity of multiplication? What about other computational problems such
as sorting?
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Another direction for future work is the consideration of metrics other than
run time. One potentially important metric is the geometric space taken up by
the computation. Our intent is that fast function computing systems such as
those presented in this paper will be used as building blocks for larger and more
complex self-assembly algorithms. For such applications, the area and volume
taken up by the computation is clearly an important constraint. Exploring trade-
offs between run time and imposed space limitations for computation may be a
promising direction with connections to resource bounded computation theory.
Along these lines, another important direction is the general development of de-
sign methodologies for creating black box self-assembly algorithms that can be
plugged into larger systems with little or no “tweaking”.

A final direction focusses on the consideration of non-deterministic tile assem-
bly systems to improve expected run times even for maniacally designed worst
case input strings. Is it possible to achieve O(log n) expected run time for the
addition problem regardless of the input bits? If not, are there other problems for
which there is a provable gap in achievable assembly time between deterministic
and non-deterministic systems?
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Abstract. Pattern formation is a topic of great interest in biology and nanotech-
nology. In this paper we investigate a system of spatially-organized reactions in-
spired by a well-known distributed algorithm for approximate majority voting,
and demonstrate that this system can lead to pattern formation from a randomly
initialized starting state. We also show that the approximate majority reaction
scheme can preserve an existing pattern in the face of noise, and that exerting
control over reaction rates can influence the generated pattern. This work has
potential applications in the rational design of pattern-forming systems in DNA
nanotechnology and synthetic biology.

1 Introduction

Pattern formation is a fundamental topic in many areas of developmental biology. Tur-
ing [1] showed that certain systems of reaction-diffusion equations may give rise to
spatiotemporal patterns, which can account for certain features of plant morphogenesis.
Since nature has repeatedly found programmed pattern formation to be a robust means
of directing the development of biological structures, the implementation of synthetic
biochemical systems with similar spatial behavior has been a key goal of molecular
programming [2,3].

Spatiotemporal patterning systems such as those discovered by Turing depend on
a balance between diffusion timescales: short-range inhibition and long-range activa-
tion are required for pattern formation. This fact has made it challenging to engineer
synthetic biological systems for programmed pattern formation, because suitable dif-
fusible molecules must be chosen to set up the morphogen gradients. In this paper we
investigate the formation and preservation of spatial patterns by purely local reaction
rules, which could form the basis of simplified synthetic patterning systems. The reac-
tion rules in question are the approximate majority reaction scheme of Angluin et al.
[4], which were originally developed as a distributed voting algorithm but which we
employ as a set of spatial reaction rules to enable pattern formation.

The remainder of this paper is structured as follows. We introduce the approximate
majority reaction scheme in Section 2 and use it as the basis for a spatial reaction system
in Section 3. We present the results of simulations of the spatial approximate majority
system in Section 4 and conclude with a discussion in Section 5.
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2 The Approximate Majority System

The approximate majority (AM) system was introduced by Angluin et al. [4] as a lead-
erless algorithm for rapidly converging to a consensus between distributed agents with
limited computing power. In its simplest form, the AM system is a chemical reaction
network comprising three species (A, B, and X) and three reactions:

A+B −→ X +X (1)

A+X −→ A+A (2)

B+X −→ B+B (3)

From an initial state consisting of just species A and B, the intent of the AM reaction
system is to convert all of the individuals into whichever species was initially present
in the majority. When an A and a B meet, they are each converted into an X by reaction
(1). When an X subsequently encounters an A or a B, the X is converted into another
copy of the species it encountered, by either reaction (2) or reaction (3). The original
formulation of the AM system assumes that the system is dilute and well-mixed, and
therefore obeys the laws of mass action chemical kinetics. In this situation, the intuition
behind the AM algorithm is that when an X species is created, it will be more likely
to subsequently encounter whichever of A and B is present in the majority. Hence it is
more likely for the initial majority species to catalyze the conversion of the minority
species into the majority than for the initial minority species to catalyze the conversion
of the majority species into the minority.

Implementations of the AM system using DNA strand displacement reactions have
been studied both theoretically [5,6] and in the laboratory [7], and networks with similar
dynamic behavior have been observed in the regulatory systems that govern the cell
cycle [8]. Hence this system of chemical reactions is of theoretical and practical interest
as an object of study.

3 Spatially-organized Approximate Majority Reactions

In this paper we consider the AM reactions in the context of a spatially-organized re-
action system. To our knowledge, this is the first paper to consider the approximate
majority system in a spatial context. As shown in Figure 1, we consider a grid of hexag-
onal cells in which every cell is labeled with a species: either A, B, or X . If two neigh-
bouring cells are labeled with species that are reactants for one of the AM reactions
from Section 2, then those cells can be relabeled with the products from the corre-
sponding reaction, as shown in Figure 1. Our scheme is essentially a hexagonal cellular
automaton—we choose to work in a hexagonal structure to avoid the potentially thorny
issue of whether a given cell should be able to interact with a diagonally adjacent cell. In
the interest of simplicity, we do not consider diffusion, which is required for alternative
models of pattern formation, such as Turing patterning.

The rationale behind the use of AM reactions for spatial pattern formation is as fol-
lows. When species A and B occur in proximity, reaction (1) converts them both into
X . Then, depending on whether A or B is predominant in that part of the grid, the oc-
currences of X will be preferentially converted to either A or B by reaction (2) or (3).
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X X

(a) A grid with two cells selected to in-
teract (identified by an “X”).

X X

(b) The grid after relabeling the se-
lected cells according to reaction (1).

Fig. 1. Hexagonal reaction grids with AM species and reactions. Here and henceforth, white cells
represent species A, black cells represent species B, and light grey cells represent species X .

By this mechanism, patterning in the occurrence of species A and B should be, roughly,
preserved by the AM reactions. The AM reactions may also provide a means to generate
a stable, spatially heterogeneous pattern from a uniformly-distributed, random starting
state. Furthermore, if there is a possibility of noise that causes species A and B spon-
taneously to interconvert, the AM reactions may enable us to prevent a heterogeneous
pattern from degenerating towards a uniform species distribution due to the effects of
noise. Below we present the results of simulations designed to investigate these proper-
ties of the spatial AM reaction system.

4 Results

4.1 Pattern Formation

We investigated the pattern formation capabilities of spatially organized AM reac-
tions by running stochastic simulations starting from randomly-initialized, non-periodic
grids, using a Gillespie-style algorithm [9]. In all simulations we used grids that are 40
cells wide and 40 rows tall. Each cell was initialized to either species A or B with equal
probability—we did not include any cells of the intermediate species X in the initial
grids. In these initial simulations, we fixed a uniform rate constant of 1.0 for all three
AM reactions, throughout the grid. We ran all simulations for 100,000 time units, as
this was empirically found to be a suitable timescale to observe the phenomena under
study.

The simulation algorithm can be summarized as follows. At the beginning of the sim-
ulation, the set of all possible reactions between cells in the initial grid was enumerated.
The next reaction to occur was selected at random, with the probability of selecting a
given reaction proportional to its rate constant. Simulation time was advanced by the
time until the next reaction, which was drawn from an exponential distribution with
mean 1/ρ , with ρ being the rate constant of the selected reaction. The grid was trans-
formed by applying the selected reaction, the select of possible reactions was updated to
reflect the changes in the grid. The simulation loop was iterated until either the time limit
was reached or the grid reached a state from which no further reactions were possible.
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(a) Initial grid. (b) Final grid #1.

(c) Final grid #2. (d) Final grid #3.

Fig. 2. An initial grid and three example final grids generated from the initial grid via stochastic
simulations.

Figure 2 shows a randomly-initialized grid together with three example grids derived
from the initial grid by stochastic simulations using the AM reactions. In each case, we
observe that the grid pattern evolves towards a state in which cells of a particular species
accumulate into uniform patches, with the only subsequent reactions occurring at the
borders between patches. These examples demonstrate that spatially-organized AM re-
actions can introduce long-distance order into a grid via purely localized reactions. This
happens because the AM reactions allow the species that is dominant in a particular area
of the grid to convert neighbouring cells of the other species to the dominant species,
leading to the development of uniform patches.

To quantify this pattern-forming effect, we define a metric to measure the uniformity
of the pattern around a given cell in a grid. We assume that each cell in the grid is
labelled with a unique index i, and write G(i) for the species of the cell in G that is
labeled with i. We say that a path, p, is a finite list [i1, . . . , in] of indices such that the
grid cell labeled with ik+1 is a direct neighbour of the grid cell labeled with ik and write
pathsG(i1, i2) for the set of paths that start from cell i1 and end at cell i2 in grid G. The
length, len(p), of a path p is the number of steps in the path, i.e., len([i1, . . . , in]) = n−1.
For two indices i1 	= i2 in the grid G, we write distG(i1, i2) for the length of the shortest
path from i1 to i2 in grid G, i.e.:

distG(i1, i2) = min({len(p) | p ∈ pathsG(i1, i2)})
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We write spG(i1, i2) for the set of paths from pathsG(i1, i2) that have length distG(i1, i2).
Then, we can define the n-neighbour metric, μn,G, as follows:

μn,G(i) = {i′ | distG(i, i
′) = n∧∃p ∈ spG(i, i

′). ∀i′′ ∈ p. G(i′′) = G(i)}

The set μn,G(i) contains the indices of all cells at distance n from i in the grid G that
contain the same species as cell i and are connected to i by a path of length n that only
traverses cells that also contain the same species as cell i. This set excludes cells that are
either not part of the same contiguous patch as i or are in the same contiguous patch but
not directly connected by a minimal-length path within the patch. This gives a robust
measure of the uniformity of the pattern around cell i, because circuitous routes and
non-connected cells are not counted. To account for the fact that cells near the edge
of the grid may have fewer neighbours, in practice we report the size of μn,G(i) as a
percentage of the total number of cells at distance n from i, i.e.:

πn,G(i) =

(
|μn,G(i)|

|{i′ | distG(i, i′) = n}|

)
× 100

If πn,G(i) is close to 100% then the region of radius n around cell i has a highly uniform
pattern containing the same species as i. If πn,G(i) is close to 0% then the pattern in the
region of radius n around cell i is either highly fragmented or dominated by a different
species than the species in i. The distribution of the values of πn,G(i) for all of the
cells in a grid allows us to visualize the extent to which the pattern has separated out
into well-defined, uniform patches. Figure 3 shows a worked example of computing the
value of this metric for an example grid.

To measure the changes between grids G1 and G2 of the same size and shape, we
use the Hamming distance, H(G1,G2), which is the number of cells that have different
species in G1 and G2. Since the grids have the same size, this can be straightforwardly
expressed as a percentage of the total number of cells in the grid, which we write as
Hp(G1,G2).

We ran simulations starting from 200 randomly-initialized grids, with 50 stochastic
runs from each initial grid. Figure 4a plots the percentage Hamming distance between
the grid states at time t and 1,000 time units earlier, i.e., Hp(G(t),G(t− 1000)). The
mean value of this metric decreases towards zero over time, showing that the rate of
change of the pattern slows over time. Figure 4b quantifies the change in structure of
the grid patterns by plotting the aggregated values of the π3,G metric for each cell in
the initial and final grids from all 10,000 grid simulations. Here and henceforth, we
report the values of neighbour metrics for n = 3 because the metric computation masks
features of size less than n, so for larger values of n we may fail to detect some pattern
features. Conversely, for smaller values of n the metric may be overly sensitive to small-
scale pattern features in the computation. The initial grids show a broad distribution
of π3,G values between 0% and 40%, which corresponds to a chaotic initial pattern.
Conversely, the vast majority of the final grid cells have π3,G values between 95% and
100%, which means that almost all cells are surrounded by a highly homogeneous patch
with a radius of at least 3 cells. Together, these results demonstrate that the grids tend to
evolve towards a pattern consisting of homogeneous patches, where further interactions
can only occur at patch boundaries, which causes the rate of change of the pattern to
slow over time.
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0 1 2 3 4 5
6 7 8 9 10

11 12 13 14 15 16
17 18 19 20 21

22 23 24 25 26 27
28 29 30 31 32

33 34 35 36 37 38
39 40 41 42 43

44 45 46 47 48 49
50 51 52 53 54

X
μ3,G(35) = {14,20,42}.

|{i′ | distG(35, i′) = 3}|= 13.

Hence, π3,G(35) = 3
13 ×100 ≈ 23%.

Fig. 3. Computing the value of the π3,G metric for cell 35 (identified by an “X”) in an example
grid. Note that 12,17,39 	∈ μ3,G(35) because those cells are not connected to cell 35 by any path
of cells with the same species as cell 35, i.e., species A. Furthermore, note that 8 	∈ μ3,G(35)
because it is not connected to cell 35 by a path of A cells with length 3 (the shortest such path is
[8,14,25,30,35], which has length 4).

4.2 Pattern Preservation in the Face of Noise

The ability of the spatial AM reaction scheme to generate patterns from randomized
starting conditions should also make it well suited to preserve an existing pattern in the
face of noise. To test this hypothesis, we augmented the standard AM reactions with
two “noise” reactions that enable cells to unilaterally switch between species A and B
with a noise rate ν , as follows:

A
ν−→ B B

ν−→ A.

Instead of starting from a grid with uniformly-distributed species, we generated a uni-
form grid of A cells and added a number of hexagonal patches of B cells at random
positions and with random sizes. We fixed the rates of the standard AM reactions at 1.0,
and ran a total of 1,000 simulations (50 repetitions from 20 initial grids) to observe how
well the spatial AM reactions preserved the initial pattern over 100,000 time units in the
face of noise reactions with rate ν = 0.1. Example initial and final grids from these sim-
ulations are presented in Figure 5, where we see that noise reactions alone completely
obliterate the initial pattern. However, the inclusion of AM reactions preserves the pat-
tern as well (or better) than in the noise-free case where only AM reactions may occur.
This may be explained by the observation that, when noise reactions are included, some
time is spent suppressing noise instead of altering the overall grid pattern, meaning that
the overall pattern may be modified less in a given period of simulation time.

Figure 6a plots the percentage Hamming distance between the grid state at time t
and the initial grid state, i.e., Hp(G(t),G(0)). With just noise reactions, the mean value
of this metric converges to 50%, which is to be expected because the end result in this
case will be a grid in which species A and B are uniformly distributed across the grid,
so each cell has a 50% chance of being in a different species than in the initial grid.
With both noise and AM reactions, however, the mean value rises more slowly. With
just AM reactions, the mean value is in between the two, but with a larger variance
due to the wide range of possible final states of the AM system. Figure 6b plots the
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Fig. 4. Statistics from simulations with randomly-initialized grids. (a) Solid line is the mean from
10,000 simulations, and dotted lines are one standard deviation above and below the mean. (b)
Values of π3,G were computed for all cells in the initial and final grids of 10,000 simulations and
combined into two histograms.

distribution of π3,G values across all initial grids and final grids. In the initial grids, we
see that almost all cells have π3,G values close to 100%, representing the highly ordered
initial grid states. With just AM reactions, the final grid state is even more ordered,
with an even higher percentage of cells whose π3,G values are close to 100%. With
just noise reactions, the distribution in the final states is shifted significantly, such that
almost all π3,G values are between 0% and 50%, which represents the expected highly
fragmented pattern. With the inclusion of AM reactions, however, the final states retain
a significant proportion of cells with π3,G values between 50% and 100%, with the
highest frequency between 90% and 95%. There is an additional peak between 0% and
5% which we interpret as cells whose species have been flipped by noise but which have
not yet been flipped back by the AM reactions. These results demonstrate that the AM
reactions significantly slow pattern degradation by noise and help to preserve regions of
homogeneity in the initial pattern. As simulation time tends to infinity, we expect that
the combination of noise and AM reactions would eventually disrupt the initial pattern,
but this process should be slowed by the AM reactions.

4.3 Controlling Pattern Formation

In the reactions studied in Section 4.1, we observed pattern formation but without a
means of controlling or predicting the resulting pattern. To demonstrate some control
over the resulting pattern, we ran simulations starting from randomized initial grids with
non-uniform reaction rates across the grid. We set the rate of the reaction B+X −→ B+B
to ρ < 1.0 when one or both reactants are on the left-hand side of the grid (defined by
a vertical line between the 20th and 21st columns of cells, which splits the grid into
halves) and 1.0 when both reactants are on the right-hand side. The positions of the two
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(a) Initial grid. (b) Final grid with just noise.

(c) Final grid with just AM reactions. (d) Final grid with noise and AM reactions.

Fig. 5. An initial grid and final grids generated under different reaction schemes from the initial
grid via stochastic simulations. The noise rate was ν = 0.1 in all cases.

reactants relative to each other were not used when computing these rates, only their
absolute position on the grid. Similarly, we set the rate of the reaction A+X −→ A+A
to be 1.0 when one or both reactants are on the left-hand side of the grid and ρ < 1.0
when both reactants are on the right-hand side. The rate of the reaction A+B−→ X +X
was fixed at 1.0 across the whole grid. Since the reaction to replace X with B will be
slower than the other reactions on the left-hand side of the grid, and the reaction to
replace X with A will be slower than the other reactions on the right-hand side of the
grid, the expected result of the simulations would be to generate a pattern in which the
left-hand side of the grid is dominated by species A and the right-hand side of the grid
is dominated by species B.

We ran a total of 1,000 simulations (50 repetitions from 20 initial grids, initialized
with a uniform distribution of A and B) with non-uniform reaction rates as described
above, using ρ = 0.9 as the slower reaction rate. Figure 7 shows an initial grid and
example grids derived from it by a single stochastic simulation, at various time points.
We observe that the grid pattern gradually moves from the chaotic initial grid towards
a state in which the grid is split in half, with the left-hand side dominated by species
A and the right-hand side dominated by species B. This supports our hypothesis that
modifying the reaction rates as described above would produce a pattern of this kind.

Figure 8a plots the percentage Hamming distance between the grid state at time t
and the expected grid GAB (split exactly in half with the left-hand side containing only
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Fig. 6. Statistics from noise simulations. (a) Central lines are the mean from 1,000 simulations,
and dotted lines are one standard deviation above and below the mean. (b) Combined values of
π3,G for all cells in the initial grids for 1,000 simulations, and for the final grids in the presence
of just AM reactions, just noise, and both noise and AM reactions. The noise rate was ν = 0.1 in
all cases.

species A and the right-hand side containing only species B), i.e., Hp(G(t),GAB). The
mean value of this metric is initially around 50% due to the uniform initial distribution
of species in the grid, rises as cells are initially converted to the intermediate X species,
and subsequently decreases towards zero, indicating that the simulations are tending to
converge towards the expected pattern. Figure 8b plots the distribution of π3,G values
across all initial grids and final grids. As discussed above, the distributions are indica-
tive of a chaotic initial state and a well-ordered final state with well-defined patches.
These results show that increasing the relative rate of the reaction that converts X into a
given species in one part of the grid biases the pattern towards that species in that area,
demonstrating that we can control pattern formation by controlling reaction rates.

5 Discussion

To summarize, we have demonstrated that the AM reaction scheme of Angluin et al. [4]
provides a simple means for large-scale pattern generation via local interaction rules.
The reactions enable the emergence of long-range order from random initial condi-
tions and can preserve an established pattern in the face of noise. Manipulating reaction
rates provides a possible means of controlling the generated pattern. This work has
potential applications in morphogenetic engineering for synthetic biology [10], and in
autonomous generation of patterned surfaces for DNA-templated nanofabrication [11].

Pattern formation is a well-developed field of study in many areas of science [12]. In
statistical physics, a particular emphasis is placed on Ising spin models [13], which are
capable of pattern generation [14]. In biology, reaction-diffusion systems were proposed
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(a) Initial grid. (b) Example grid after 25,000 time units..

(c) Example grid after 50,000 time units. (d) Example grid after 75,000 time units.

Fig. 7. An initial grid and example grids generated by a stochastic simulation using non-uniform
reaction rates to control pattern formation, with ρ = 0.9. The choice of reaction rates causes the
chaotic initial pattern to move towards a pattern in which the left and right sides of the grid are
dominated by species A and B, respectively.

by Turing [1] as the basis for various naturally-occurring patterns [15], and were first
observed by Castets et al. [16]. Spatiotemporal patterns of predator and prey species are
well-known in ecology, most famously predicted by the Lotka-Volterra model [17,18].
Pattern formation in chemistry is known to occur in a number of systems, in particular
the Belousov-Zhabotinsky reaction [19,20], which can exhibit non-trivial spatiotempo-
ral behaviour [21,22]. In DNA nanotechnology, similar spatiotemporal waves have been
observed in synthetic genetic oscillators [3]. To our knowledge, the pattern formation
scheme proposed in this paper is novel in that it specifically exploits the properties of
the AM reactions as a rationally designed method to impose spatial order via local com-
munication, as opposed to long-range coordination. Our work has clear links to recent
attempts to understand the role of the AM reaction scheme in cell biology [8] and to
implement the AM reactions in mass action chemistry using two-domain DNA strand
displacement [7].

For future work, it will be important to investigate the robustness of the pattern for-
mation process to changes in the experimental conditions. Our results from Section 4.3
suggest that variations in reaction rates can have dramatic effects on the generated pat-
tern, which may be challenging for a practical implementation. It will also be interest-
ing to investigate other methods of exerting control over the resulting pattern, and the
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Fig. 8. Statistics from simulations to control pattern formation. (a) The expected grid is split
in half, with the left-hand side containing only species A and the right-hand side containing
only species B. Solid line is the mean from 1,000 simulations and dotted lines are one standard
deviation above and below the mean. (b) Values of π3,G were computed for all cells in the initial
grids for 1,000 simulations, and for the final grids obtained via stochastic simulations, using
non-uniform reactions with ρ = 0.9.

classes of patterns that can be formed or preserved by this mechanism, e.g., patterns
with complicated shapes such as mazes with thin walls of species A overlaid on a back-
ground of species B. As an alternative to modulating reaction rates, it may be possible
to augment the basic AM reaction set with additional reactions to favour certain kinds
of pattern. A detailed theoretical study of this pattern formation mechanism, e.g., to
prove properties of the way the patterns evolve over time, may shed light on these is-
sues. In particular, incorporating a temperature parameter and expressing reaction rates
as functions of temperature may reveal non-linear, temperature-dependent effects in the
pattern formation process. It may also be enlightening to simulate spatial AM reactions
on larger grids, and in a toroidal cellular automaton framework with periodic boundary
conditions. These would reduce any edge effects, as discussed in Section 4.1.

From a practical perspective, spatial reaction grids such as those described in this pa-
per could be constructed in the laboratory using hexagonal DNA origami assembled on
a pre-formed scaffold [23] or on tethered microspheres [24,25]. The pattern-generating
interactions could be implemented using DNA strand displacement reactions [26,7]. Al-
ternatively, spatial AM reaction systems could be constructed within networks of com-
municating bacteria [27,28,29,30], providing a means for rationally designed pattern
generation [31,32] via local interactions, without a reliance on long-range diffusion.
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Abstract. Evolution in Materio (EIM) exploits properties of physical
systems for computation. “Designs” are evolved instead of a traditional
top down design approach. Computation is a product of the state(s) of
the material and input data. Evolution manipulates physical processes
by stimulating materials assessed in situ. A hardware-software platform
designed for EIM experimentation is presented. The platform, with fea-
tures designed especially for EIM, is described together with demon-
stration experiments using carbon nanotubes in a thick film placed on
micro-electrode arrays.

1 Introduction

Unconventional computation and unconventional machines try to move beyond
the Turing/von Neumann [7,11] concept of computing and computer architec-
ture [9]. Evolution in Materio (EIM) [5,3,6] is such an unconventional approach
where the underlying physical properties of bulk materials are explored and ex-
ploited for computation. In contrast to a traditional approach where a substrate,
e.g. silicon, is meticulously designed, produced and programmed, the essence of
EIM is neatly phrased as “bulk processes” producing “logic by the pound” by
Stewart [8] when introducing his experimental electrochemical system.

Figure 1 illustrates a possible scenario for an EIM experimental set-up. The
configurable material can be seen as a black box. Incident data are applied, the
response is measured and evaluated against a predefined function. The search
algorithm can manipulate physical properties of the material by applying con-
figuration data vectors.

The format of input data, response and configuration data are material spe-
cific. As such, any experimental EIM set-up must be capable to produce con-
figurations with properties capable of manipulating physical properties in the
material. Incident data properties must be of a type capable of produce an ob-
servable response, i.e. output data.
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DOI: 10.1007/978-3-319-08123-6_22, c© Springer International Publishing Switzerland 2014



268 O.R. Lykkebø et al.

configurable 
material

incident data
configurable 
material

output data
test for 
desired 
response

population of data 
vectors subject to 
search algorithm

configuration 
data vector

calculate 
fitness

Fig. 1. Principle of evolution in materio

In Thompson’s work [10] unconstrained evolution of configuration data for a
Field Programmable Gate Array (FPGA) was used to evolve a tone discrimi-
nator. The FPGA may be considered as the material. The input signal to this
digital circuit was analogue, the response was digital sampling of a captured
analogue measurement. The configuration data for the chip was a digital bit
stream. Even though Thompson exploited the physical properties of the chip,
the configuration vector itself was digital. Harding and Miller [2] did a similar ex-
periment with liquid crystal as material. In contrast to Thompson’s experiment
the configuration data signal property for the liquid crystal was evolved, the
configuration data was unconstrained with regards to signal type, e.g. analogue,
digital and time dependent.

In most EIM work an intrinsic approach has been taken, i.e. evaluation is
performed on the physical material. An intrinsic approach allow access to all
inherent physical properties of the material [6]. Intrinsic evolution requires an
interface that can bridge the gap between the analogue physical world of ma-
terials and the digital world of EAs. We propose and demonstrate a flexible
platform, Mecobo, designed to interface a large variety of materials. Flexible
hardware allows for the possibility to map input, output and configuration ter-
minals, signal properties and output monitoring capabilities in arbitrary ways.
The platform’s digital side, i.e. EA and software stack, is as important as the
hardware. A flexible software platform including hardware drivers, support of
multiple programming languages and a possibility to connect to hardware over
the internet makes Mecobo a highly flexible platform for EIM experimentation.

Mecobo is part of a the NASCENCE project [1] targeting engineering of
nano-scale units for computation. The demonstration experiments presented use
single-walled carbon nanotubes mixed with poly(methyl methacrylate) (PMMA)
dissolved in anisole (methoxy-benzene) as computational material.

The article is laid out as follows: Section 2 presents the nanoscale material
and the physical electrical terminals. In Section 3 the architecture of the hard-
ware of the interface is presented. Section 4 presents the software of Mecobo.
Experiments demonstrating the platform are presented in Section 5. Discussion
and conclusions are given in Section 6.
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2 Nano Material as Computational Resource

The demonstration experiments in Section 5 show computation in carbon nan-
otubes. The material samples used are all part of the ongoing NASCENCE
project. At present time micro electrode arrays are used to connect electrically
to a thick film containing nanotube structures.

Figure 2 show two different glass slides. In Figure 2(a) a slide with 64 elec-
trodes is shown. Left; the glass slide with contacts on the rim. On the right a
microscope image of the array covered with the thick film. A second micro elec-
trode array is shown in Figure 2(b) the glass slide include a 12 electrode array.
The micro electrode array slides was produced by Kieran Massey at the Univer-
sity of Durham by depositing a solution of carbon nanotubes onto a slide and
letting the solvent dry out, leaving a random distribution of nanotubes across
the probes in the micro electrode array.

In the demonstration of the interface in Section 5 the sample used was of
the type shown in Figure 2(b). As the main topic here is hardware and soft-
ware properties to interface a variety of materials, details regarding the physical
properties are not presented in detail.

(a) Left: 64 electrode glass slide with contacts on the rim
and electrode array in center. Right: close-up of the elec-
trode array covered with a carbon nanotube thick film

(b) Left: 12 electrode glass slide with contacts on one side.
Right: close-up of the electrode array covered with a car-
bon nanotube thick film

Fig. 2. Samples of materials placed on micro electrode arrays



270 O.R. Lykkebø et al.

3 Hardware: Interfacing the Black Box

Evolutionary exploration of computation by manipulation of physical systems
is an intrinsic [10] approach. If the system is considered as a lump of matter,
as illustrated in Figure 1, the selection of signal types, i.e. inputs, outputs and
configuration data, assignment to I/O ports may not relate to material specific
properties. As such, any I/O port can be assigned any signal type. Further, the
signal properties, e.g. voltage/current levels, AC, DC, pulse or frequency, needed
to unveil potential computational properties of different materials are unknown.
To be able to explore and exploit a material’s physical properties an experimental
platform must have access to explore in as unconstrained a way as possible.
However, in an evolutionary search the representation of genetic information,
e.g. available voltage levels, will constrain the available search space.

3.1 Interface

The interface is designed to handle all the physical/electrical properties as men-
tioned above. To be able to ease the process of providing input data to any
computational problem the interface also provides the possibility to provide in-
put data. That is, a set of input data signals can be defined as part of the
experimental set up to simulate external signals.

Fig. 3. Overview of the complete system

Figure 3 shows an overview of the hardware interface. In the figure an example
set up is shown in the dotted box. The example genome defines pin 2 to be the
output terminal, pin 1 to be the data input and pin 3 - 12 to be configuration
signals. The architecture is controlled by a scheduler controlling the following
modules: Digital I/O can output digital signals and sample responses. Analogue
output signals can be produced by the DAC module. The DAC can be configured
to output static voltages or any arbitrary time dependent waveform. Sampling
of analogue waveforms from the material is performed by the ADC. Pulse Width
Modulated (PWM) signals are produced by the PWM module.
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The system’s scheduler can set up the system to apply and sample signals
statically or produce time scheduled configurations of stimuli/response. The
recorder stores samples, digital discrete values, time dependent bit strings, sam-
pled analogue discrete values or time dependent analogue waveforms. Note that
the recorder can include any combination of these signals.

As stated, in a bulk materials there is no specific defined input and output
locations, e.g. in the carbon nanotube PMMA samples is just distributed over
the micro-electrode array. Thus it is desirable that the choice of data I/O and
configuration terminals should be put under evolutionary control. In the interface
all signals passes a crossbar, i.e. pin routing. Pin routing is placed between the
signal generator modules and the sampling buffer (PWM, ADC, DAC, Digital
I/O and Recorder) making it possible to configure any terminal of a material to
be input, output or configuration.

The presented material signal interface in Figure 3 supports all our objectives.
It is possible to evolve the I/O terminal placement. A large variety of configu-
ration signals are available to support materials with different sensitivity, from
static signals to time dependent analogue functions. The response from materials
can be sampled as purely static digital signals, digital pulse trains or analogue
signals. Further the scheduler can schedule time slots for different stimuli when
time dependent functions are targeted or to compensate for configuration delay,
i.e. when materials needs time to settle before a reliable computation can be
observed.

3.2 Interface Physical Realization

The described system shown in Figure 3 is implemented as an autonomous inter-
face hardware platform. The platform can communicate with a host computer
over USB. The host can run an EA or stand as a bridge (server) connected to
the internet.

The hardware implementation of the interface, which we call ‘Mecobo’, is
shown as a block diagram in figure 4(a). Mecobo is designed as a PCB with an
FPGA as the main component. The system shown in Figure 3 is part of the
FPGA design together with communication modules interfacing a micro con-
troller and shared memory. As shown in Figure 4(a) the digital and analogue
designs are split into two. All analogue components are placed on a daughter
board; such as crossbar switches and analogue-digital converters. This split en-
ables redesign of the analogue part of the system without changing the digital
part of the motherboard. The system shown in Figure 4(a) is an example of
the current system, the Mecobo and an analogue daughter board. However, it
is possible to include other extension boards to the Mecobo. The FPGA of-
fers a possibility to include new modules adapted to any extension that can be
connected to the digital I/O pin headers. The micro controller stands as a com-
munication interface between the FPGA and the external USB port. The SRAM
is available for the FPGA through the micro controller.
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(a) Mecobo block diagram. (b) Picture of Mecobo.

Fig. 4. Hardware interface implementation overview

Figure 4(b) show the motherboard with the Xilinx LX45 FPGA, Silicon Labs
ARM based EFM32GG990 micro controller connected to a 12 terminal material
sample.

The motherboard is capable of controlling 80 digital I/O signals, which can
be connected directly to a material sample or used for controlling resources on
a daughter board. The FPGA drives the I/O pins at LVCMOS33 level, giv-
ing a minimum input voltage level for switching to digital ‘high’ at 2.0V, and
maximum 0.8 corresponding to ’low’.

The software interface sends commands to the scheduling unit (implemented
in the micro controller). The scheduler takes care of controlling the various pin
controllers. A pin controller is the abstract term we use to describe a unit that
drives or sources a physical I/O pin. Each pin controller has a slice of the global
address space of this bus and can be programmed individually by the scheduling
unit by outputting the command and data on the bus.

The scheduler accepts a sequence of commands from the user software. Each
sequence item consists of parameters that describe the state of the pin at a given
point in time. In Figure 3 for example, pin 2 is set as a ‘recording’ pin from time
0 (it also has a duration, and sampling frequency attached that is not shown
here). Pin 1 is set to output a pulse width modulated version of the value 33,
and pin 3 is set to output the analogue voltage level corresponding to 837, which
could for instance map to analogue voltage level -2.3V relative to the daughter
board analogue ground. In this case the scheduler would issue commands to one
of the DAC controllers and to two of the PWM controllers.

4 Software

As there is no known, and hence no standard programming model for in-materio
computation, we developed a system inspired by the track based model of music
or video editing applications. An example of this is shown in Figure 5. Each
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Fig. 5. Illustration of a genotype described in the ’track based’ programming model.
Each row is an output from the FPGA (and hence an input to the material). The
horizontal axis is time. The model aligns closely with the hardware architecture, and
also hints at a possible genotype representation.

track corresponds to an output pin of the FPGA, and on each track an action
(or set of actions) are scheduled. Once the tracks are configured onto the FPGA,
the sequence is ‘played’ back. As can be seen in the illustration, ‘recordings’ can
also be scheduled. A recording in this case is the data captured from an input
of the FPGA.

From this model, an Application Programming Interface (API) was developed
that allows users to interact with the hardware. The main purpose of the API
is to expose the functionality of the EM in a consistent and easy to use manner.
Additional APIs provide support for data collection and for processing the data
itself.

Client applications (i.e. software for performing the evolutionary algorithm),
connects to a the EM via control software running on a PC. The control software
is responsible for communicating at a low level to the EM, and translating the
track based model into the FPGA’s internal model.

The control software implements the API as a Thrift Server. Thrift1 is a tech-
nology maintained by Apache that is designed to allow applications running on
different operating systems, written in different languages and running on dif-
ferent computers to communicate with each other. Thrift provides a language
that is used to define the functionality exposed by the server. This language is
then compiled by the Thrift compiler into skeleton code that contains all the
functionality needed to act as a server and accept connections, but is missing
the functional components. These are then added to complete the server imple-
mentation.

On the client side, the interface can be compiled by Thrift into a library that
exposes all the methods in the API. Thrift is able to generate the client and
server code for many languages including C++, C#and Java. The client library

1 http://thrift.apache.org/

http://thrift.apache.org/
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Fig. 6. Overview of the complete software architecture. Here the EA (user application)
is run on a client PC. Communicating over TCP/IP to the EM host PC. The Mecobo
platform is connected to and communicates with the host PC over USB. The log servers
communicate with the client PC.

is then connected via TCP (or shared memory if the client/server are both on
the same PC) to the server. Client applications then only need to implement
their functionality, and no knowledge of the underlying protocols or workings of
the EM or server software is required.

As the communication between Thrift Server and Client applications is based
on TCP, there is no necessity for all components to run on the same computer.
We have successfully tested the API over the internet, and have found that it is
feasible for one institute to run the evolutionary algorithm, and another to host
the EM.

Figure 6 shows the complete software architecture for the system. On the left
we see the hardware (i.e. Mecobo), on the right is the client application. In the
middle we see the main API components. Although only one EM is shown, it is
possible to add more. Client applications can connect to multiple servers (and
hence Mecobos), and hence can control a number of systems in parallel. We
envisage this as being useful for robustness testing, investigating repeatability,
and allowing multiple Mecobos to work together on a single problem.

5 Initial Experiments

To demonstrate the Mecobo platform, two experiments are presented. The ex-
periments are executed on the presented hardware/software platform using a
12 electrode array similar to the shown example in Figure 2. The presented ex-
periments only demonstrate a fraction of the capabilities of our hardware and
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software platform, and those that we expect the material to have. In the ex-
periments an exhaustive search and a Genetic Algorithm (GA) was used. The
exhaustive search was chosen to explore the potential functionality of the mate-
rial at a coarse level. The GA approach is an example of how a search method
can exploit the properties of materials toward achieving useful computation.
However, other search/learning methods can also be used.

5.1 Exhaustive Sweep

If only digital time-independent logic is considered, then it is possible to run
an exhaustive search mapping all possible configurations to the 12 pin sample.
To take this into a more “computational” relevance, and to show the effect of
interpreting the results when “programming” the material, we interpret two pins
as input to a logic gates, the recording pin as gate output and the remaining 9
pins as configuration. This approach will leave 9 pins for configuration data. To
represent functions a gate output sum can be constructed. The gate sum is the
output of the truth table as shown in in table 1.

Table 1. Gate sum mapping. XOR. The gate sum is the decimal representation of the
output column. 0110 binary give the gate sum 6.

Input Config Output

0,0 1,0,1,1,0,1,0,1,1 0

0,1 1,0,1,1,0,1,0,1,1 1

1,0 1,0,1,1,0,1,0,1,1 1

1,1 1,0,1,1,0,1,0,1,1 0

A ‘1’ represents 3.3V and ‘0’ represents 0V. All possible pin combinations for
input, configuration and output are tested and mapped to a functionality plot.
If a gate is found it is plotted as a gate output sum, e.g. XOR: 0110 (6). An
example of such a plot is presented in Figure 7(a). The plot show all found two
input logical functions for all possible input output mappings.

The gate output sums are represented in decimal on the vertical axis. The
configuration vector is given (decimal) on the horizontal axis. Interesting cases
include XOR (gate sum 6 (0110)) and NAND (gate sum 8) are present together
with all other possible 2 input logic function. Figure 7(b) show one of the pos-
sible I/O configuration. Here all possible gate configurations are shown for one
particular I/O mapping, i.e. pin 1 output and pin 3 and 11 as input.

5.2 Genetic Search for Logic Functions

In Section 5.1 it was shown that the nanotube sample was capable of producing
logic gates. However, to be able to evolve a desired functionality the EA must
be able to exploit and explore the genetic representation and the search space,
i.e. evolvability [4] must be present.
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(a) Sweep all I/O combinations. The plot
show all possible logical gates available in
the material for all possible combinations
of configuration and I/O pin mappings.

(b) Sweep fixed I/O combination. The plot
show all possible logical gates available in
the material if the configuration and I/O
pin mapping is fixed.

Fig. 7. Example of logic gates found using exhaustive sweep. The x-axis uses a decimal
representation of the 9 configuration bits. The resulting gate sum for each configuration
is plotted. The decimal gate sum is given on the y-axis.

To explore evolvability, a Genetic Algorithm was used to search for stable
XOR gates. The GA was quite standard; 25 individuals, two crossover points
and tournament selection with 5 individuals as elite. Two different material
samples was tested.

To demonstrate the platform’s possibility to generate time dependent signals
a genotype that allows dynamic PWM signals was chosen. The GA can adjust
each configuration pin within a frequency range of 400Hz - 25MHz. The mapping
of which material terminal to use as input, output or configuration was placed
under genetic control. Figure 8(a) illustrates the representation. The first two
genes assign the input signals, e.g. pin 0 and 2. The third gene gives the output,
e.g. pin 11 is sampled by the recorder. The remaining 9 pins are mapped to
configuration genes specifying frequency values. A restriction must be added to
ensure that the same pin is not used for both input and output. To ensure “legal”
gates, offspring with “illegal” pin mapping are not put back in the population.
I/O and configuration genes were crossed over separately; hence the need for two
point crossover.

The GA was set up to search for a stable 2-input XOR logic gate. The re-
sponse is measured by setting up the gate input pins (i.e. the two first fields of
the genome) to constant voltage levels at 0V or 3.3V. The configuration genes
are frequencies of square waves, remaining fixed over the 22 possible inputs.
The response is sampled from the GA-chosen output pin for 100ms at 10KHz.
Referring to table1, the number of correct samples in each sample period for
each row is further multiplied by a constant, indicating how hard this case is to
find: (0,0): 0.3, (1,0): 0.5, (0,1): 0.5, (1,1): 1.15. Particularly promising cases are
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(a) Representation mapping from the
EA genetic information to configu-
ration and input/output signals con-
nected to the material sample.
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(b) Evolved XOR function in two different
material samples.

Fig. 8. Experimental set-up. EA representation with unconstrained pin mapping and
dynamic configuration signals are shown (left) with results for two different material
samples (right).

further given a 0.5 bonus, giving a total possible fitness of 2.95 for a ’perfect’
gate, and 1.95 for a functioning gate.

Figure 8(b) shows the evolution of fitness for these experiments. The horizontal
line at 1.95 indicate the threshold for a functioning XOR gate where the majority
of the samples in a sample buffer is over 55%. Note that a functioning XOR was
found in both material samples, and in material sample 1 a near-perfect gate was
discovered after 150 generations. The difference between the elite best and the
average case is quite large. This can be explained by the relatively few XOR gates
in the material, which can also be observed in figure 7(a).

6 Discussion and Conclusions

The presented hardware and software platform for EIM experimentation, known
as Mecobo, is a tool enabling exploration and exploitation of materials for com-
putation purposes. The flexibility in signal levels and types together with the
possibility to put the mapping of input, output and configuration terminals un-
der evolutionary control offers a possibility of relatively unconstrained material
evolution.

The presented results demonstrate how the platform can be used. There are
several interesting aspects worthy of note. In the exhaustive sweeps presented in
Section 5.1 the gate sum plots are a course mapping of possible computational
properties of the material. The plot in Figure 7 show that this sample is capa-
ble of solving problems beyond simple threshold functions. As such, results for
such exhaustive sweeps can be used to coarsely classify a material and be used to
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measure the closeness/distance between materials samples within a batch or
batches with different physical properties.

Even if a material is capable of implementing a function, like the XOR, it
is not necessarily easy to evolve. Further, as indicated by earlier EIM work,
the stability of discovered solutions may be problematic. The example given
shows two important factors. Stability can (and should be part) of the problem
definition. The change of representation shows the possibility to provide a variety
of signal types. The material used in the example show computational properties
for static and dynamic configuration data.

As stated in Section 1 this work is part of a bigger project. The platform is in
use by several researchers in the NASCENCE project consortium, e.g. University
of York for function optimization and machine Learning classification problems.

Software, HDL code, schematics and PCB production files for the platform
can be downloaded from the download resources at: http://www.nascence.eu.
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Abstract. A reversible logic element with memory (RLEM) is a primi-
tive by which reversible computing systems can be constructed. Different
from a reversible logic gate, it has a finite memory, and thus is defined
as a kind of reversible sequential machine (RSM). It is known that any
reversible Turing machine (RTM) can be built in a simple way using a
rotary element (RE), a typical 2-state RLEM (i.e., having 1-bit mem-
ory) with four input/output lines. In this paper, we show another com-
pact realization of an RTM using a 2-state RLEM No. 4-31 with four
input/output lines. Since RLEM 4-31 can be simulated by a circuit com-
posed of only two copies of 2-state RLEM 3-7, we also obtain another
compact realization by an RLEM with three input/output lines.

1 Introduction

A reversible computing system is a backward deterministic one, and has a close
relation to physical reversibility. It is also one of the bases of quantum computing
since evolution of a quantum system is reversible. So far, many kinds of reversible
computing models have been proposed and investigated. There are several levels
of models ranging from a microscopic one to a macroscopic one. In the bottom
level, there is a physically reversible model like the billiard ball model (BBM)
of computing [2]. In the next level, there are reversible logic elements, from
which reversible logic circuits are built, such as Fredkin gate [2], Toffoli gate
[13,14], and reversible logic elements with memory [4]. In the still higher level,
there are reversible logic circuits that are used as building modules for reversible
computers. In the top level, there are models of reversible computers such as
reversible Turing machines, reversible cellular automata, and others.

Here, we investigate a problem how reversible Turing machines can be built
compactly using reversible logic elements with memory (RLEM). In the con-
ventional design theory of logic circuits, logic gates are used as primitives for
composing logic circuits. On the other hand, in the case of reversible comput-
ing, RLEMs are also known to be useful. The main reason is that if we use
an appropriate RLEM, we can construct various kinds of reversible computing
models in a simple manner. In particular, if we use a rotary element (RE), a
typical 2-state RLEM (i.e., having 1-bit memory) with four input/output lines,
we can construct reversible Turing machines (RTMs), and reversible sequential
machines (RSMs) very easily [4,5,7]. It has also been proved that RE can be
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simulated by a circuit composed of “any” one of non-degenerate 2-state RLEMs
except only four RLEMs with two input/output lines [9]. Therefore, we can build
RTMs using any of such RLEMs. However, besides RE, it is not known which
RLEMs are useful for realizing RTMs simply.

In this paper, we show that a compact realization of an RTMs is possible if
we use a 2-state RLEM No. 4-31 with four input/output lines. The total number
of elements is comparable with the case of using RE. In addition, since RLEM
4-31 can be simulated by a circuit composed of only two copies of 2-state RLEM
3-7, we can obtain another compact realization for the case of RLEM with three
input/output lines.

2 Reversible Logic Element with Memory (RLEM)

Definition 1. A sequential machine (SM) is defined by M = (Q,Σ, Γ, δ). Here,
Q is a finite set of internal states, Σ and Γ are finite sets of input and output
symbols, and δ : Q×Σ → Q×Γ is a move function. If δ is injective, M is called
a reversible sequential machine (RSM). Note that, if M is reversible, |Σ| ≤ |Γ |
must hold. A reversible logic element with memory (RLEM) is an RSM such
that |Σ| = |Γ |, and it is also called a |Q|-state |Σ|-symbol RLEM.

The move function δ determines the behavior of M as follows: if the present
state is p, the input symbol is ai, and δ(p, ai) = (q, sj), then the next state is q,
and the output is sj (Fig. 1 (a)). To use an SM as a primitive for logic circuit, we
interpret the SM as a machine having “decoded” input and output ports as in
Fig. 1 (b). Namely, for each input symbol, there corresponds a unique input port,
to which a signal (or particle) can be given. Likewise, for each output symbol,
there corresponds a unique output port, from which a signal can appear. Note
that, in a logic circuit composed of such SMs, fan-out of an output of each SM
is not allowed. Therefore, each output port of an SM can be connected to only
one input port of another (maybe the same) SM.

Here, we investigate 2-state RLEMs. We give two examples of 2-state 4-
symbol RLEMs with ID numbers 4-31 and 4-289 (the numbering method will
be explained later). They are M4-31 = ({0, 1}, {a, b, c, d}, {s, t, u, v}, δ4-31) and
M4-289 = ({0, 1}, {a, b, c, d}, {s, t, u, v}, δ4-289). The move functions δ4-31 and
δ4-289 are given in Table 1. It is easy to see that δ4-31 and δ4-289 are injective.
In the following, we describe the move functions of 2-state RLEMs by pictorial
notations as shown in Fig. 2 instead of tables as in Table 1. Each of two states
is represented by a rectangle having input ports and output ports. The relation
between input and output is indicated by solid and dotted lines. We assume a
signal is given to at most one input port at a time. If a signal is given to some
input port, it travels along the line connected to the port. In the case that a
signal goes through a dotted line, the state does not change (Fig. 3 (a)). On
the other hand, if it goes through a solid line, the state changes to the other
(Fig. 3 (b)).
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Fig. 1. (a) A sequential machine M = (Q, {a1, . . . , am}, {s1. . . . , sn}, δ) such that
δ(p, ai) = (q, sj), and (b) an interpretation of a sequential machine as a system having
decoded input ports and output ports

Table 1. The move functions δ4-31 and δ4-289 of the 2-state RLEMs 4-31 and 4-289

Input
Present state a b c d

State 0 0 s 0 t 0 u 1 s
State 1 1 t 0 v 1 v 1 u

Input
Present state a b c d

State 0 0 s 0 t 1 s 1 t
State 1 0 u 0 v 1 v 1 u
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Fig. 2. A pictorial representation of the 2-state RLEMs 4-31 and 4-289

We now classify 2-state RLEMs. Since the move function δ of a 2-state k-
symbol RLEM M = ({0, 1}, Σ, Γ, δ) is identified by a permutation of {0, 1}×Γ ,
the total number of 2-state k-symbol RLEMs is (2k)!. They are numbered from
0 to (2k)!− 1 in the lexicographic order of permutations [10]. To indicate it is a
k-symbol RLEM, the prefix “k-” is attached to its serial number like RLEM 4-31.
We say that two RLEMs are equivalent if one can be obtained by renaming the
states and/or the input/output symbols of the other [6,10]. It has been shown
that the numbers of equivalence classes of 2-state 2-, 3-, and 4-symbol RLEMs
are 8, 24, and 82, respectively [10].

Among RLEMs, there are degenerate ones, each of which is either equivalent
to simple connecting wires, or equivalent to an RLEM with fewer symbols. The
precise definition is in [9]. Thus, non-degenerate k-symbol RLEMs are the main
concern of the study. It is known that the numbers of non-degenerate 2- 3- and
4-symbol RLEMs are 4, 14, and 55, respectively.
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Fig. 3. Examples of operations of the 2-state RLEM 4-31. (a) If a signal passes a dotted
line, then the state remains to be the same. (b) If a signal passes a solid line, then the
state changes to the other.

A rotary element (RE) [4] is a 2-state 4-symbol RLEM defined by MRE =
({H,V}, {n, e, s, w}, {n′, e′, s′, w′}, δRE), where δRE is given in Table 2. RE is
equivalent to RLEM 4-289, since the latter is obtained by the following renaming
of states and input/output symbols: H �→ 0, V �→ 1, n �→ c, s �→ d, e �→ a, w �→
b, n′ �→ u, s′ �→ v, e′ �→ t, w′ �→ s. Its behavior can be very easily understood,
since it has the following interpretation on its operation. RE is depicted by
a box that contains a rotatable bar inside (Fig. 4). Two states of an RE are
distinguished by the direction of the bar corresponding to states H and V. There
are four input lines and four output lines corresponding to the sets of input
symbols {n, e, s, w} and output symbols {n′, e′, s′, w′}. The rotatable bar is used
to control the move direction of an input signal (or particle). When no particle
exists, nothing happens on the RE. If a particle comes from the direction parallel
to the rotatable bar, then it goes out from the output line of the opposite side
without affecting the direction of the bar (Fig. 4 (a)). If a particle comes from
the direction orthogonal to the bar, then it makes a right turn, and rotates the
bar by 90 degrees (Fig. 4 (b)).
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Fig. 4. Operations of rotary element (RE): (a) the parallel case, and (b) the orthogonal
case

We now give a remark how RLEMs are related to reversible physical systems.
The billiard ball model (BBM) proposed by Fredkin and Toffoli [2] is an idealized
model of Newtonian mechanics in which reversible logic gates can be embedded.
In [6,8], it is shown that RE can be directly and simply simulated in BBM
without using reversible logic gates. It is also proved that any m-state k-symbol
RLEM can be realized in BBM in a systematic way if k ≤ 4 [11].
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Table 2. The move function δRE of rotary element (RE)

Input
Present state n e s w

H Vw′ Hw′ V e′ H e′

V V s′ Hn′ Vn′ H s′

3 Universality of 2-state RLEMs

In this section, we give known results on universality of 2-state RLEMs. First,
we define the notion of universality as follows.

Definition 2. An RLEM is called universal if any RSM is realized by a circuit
composed only of copies of the RLEM.

Note that universal RLEMs can simulate each other, since RLEMs are RSMs.
In [5], it is shown that for any given RSM we can construct a circuit out of REs
that simulates the RSM. Hence, we have the following theorem.

Theorem 1. [5] RE is universal.

In [9], it is proved that for each non-degenerate 2-state k-symbol RLEM there
is a circuit composed of it that simulates RE if k > 2. Hence, the following
theorem is derived.

Theorem 2. [9] Every non-degenerate 2-state k-symbol RLEM is universal if
k > 2.

On the other hand, it is proved that among four non-degenerate 2-state 2-
symbol RLEMs, three of them are not universal [12] (see Fig. 5). However, it is
an open problem whether RLEM 2-17 is universal or not.

Theorem 3. [12] RLEMs 2-2, 2-3, and 2-4 are not universal.

It is also shown that RLEM 2-2 is the weakest 2-state RLEM, i.e., it cannot
simulate any other non-degenerate 2-state RLEM, but can be simulated by any
of them [12]. Furthermore, RLEMs 2-3 and 2-4 cannot simulate each other [12].
Fig. 5 summarizes the above results. On the other hand, if we extend the notion
of universality for an RLEM to a set of RLEMs, we obtain the following theorem.

Theorem 4. [3,12] Any combination of two among RLEMs 2-3, 2-4 and 2-17
is universal.

4 Constructing Reversible Turing Machines by
RLEM4-31

In this section we show a new compact realization method of a reversible Turing
machine (RTM) by RLEM 4-31. First, we give a definition on RTM.
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Fig. 5. A hierarchy among non-degenerate 2-state RLEMs. Here, A → B (A �→ B,
respectively) indicates that A can (cannot) be simulated by B

Definition 3. A one-tape Turing machine (TM) is defined by T = (Q,S, q0, F,
s0, δ). Here, Q is a set of states of the finite control, S is a set of tape symbols,
q0 ∈ Q is an initial state, F ⊂ Q is a set of final states, and s0 ∈ S is a blank
symbol. δ is a move relation, which is a subset of (Q× S × S × {L,N,R} ×Q),
where L,N, and R stand for left-shift, no-shift, and right-shift of the head.

Each element of δ is a quintuple of the form [p, s, s′, d, q]. It means if T reads
the symbol s in the state p, then write s′, shift the head to the direction d, and
go to the state q. Here, we assume there is no quintuple of the form [p, s, s′, d, q0]
in δ. Let α, β ∈ S∗ and q ∈ Q. Then, αqβ is called a computational configuration
(or total state) of T , which means that the contents of the tape is αβ, and T is
reading the leftmost symbol of β (or s0 in the case β is empty) in the state q.

T is called deterministic iff the following holds for any pair of distinct quin-
tuples [p1, s1, s

′
1, d1, q1] and [p2, s2, s

′
2, d2, q2] in δ: if p1 = p2, then s1 	= s2.

T is called reversible iff the following holds for any pair of distinct quintuples
[p1, s1, s

′
1, d1, q1] and [p2, s2, s

′
2, d2, q2] in δ: if q1 = q2, then s′1 	= s′2 ∧ d1 = d2.

Hereafter, by RTM we mean a deterministic and reversible TM.

In [1] RTM was defined in the quadruple form, since an “inverse” RTM is
easily obtained from a given RTM of this form. Here we define RTM in the
quintuple form, because it makes a description of RTM shorter. It should be
noted that if we use the quadruple form, determinism and reversibility can be
defined in a symmetric way, and thus they are dual notions. Even in the case of
the quintuple form as above, we can see they are symmetrically defined except
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the head shift operation. As for capability of an RTM, it has been shown that
any irreversible TM can be converted into an equivalent RTM that leaves no
garbage information. Thus RTMs are computationally universal [1].

Example 1. Let Tparity be an RTM defined by Tparity = (Q, {0, 1}, q0, {qa},
0, δ), where Q = {q0, q1, q2, qa, qr}, and δ = {[ q0, 0, 1, R, q1 ], [ q1, 0, 1, L, qa ],
[ q1, 1, 0, R, q2 ], [ q2, 0, 1, L, qr ], [ q2, 1, 0, R, q1 ]}. Tparity checks if a given unary
number n is even or odd. If it is even, Tparity halts in the accepting state qa,
otherwise halts in qr. All the symbols read by Tparity are complemented. For
example, if T starts from the configuration q0011, then it eventually halts in
10qa01. It is easily verified that Tparity satisfies the reversibility condition.

In [4,7], it is shown that any reversible Turing machine (RTM) can be realized
as a circuit composed of RE. A circuit for RTM Tparity is shown in Fig. 6. At
the left end of the circuit, there is a circuit module that simulates a finite-state
control of Tparity. To the right of it, an infinite number of copies of a circuit
module for a memory cell, which simulates one square of the tape, are attached.

Fig. 6. A circuit made of RE that simulates RTM Tparity in Example 1. The state of
the above circuit corresponds to the computational configuration q0011 of Tparity. An
example of its whole computing process is shown in 4406 figures in [7].

Since any universal RLEM can simulate RE, we can construct a circuit from
the RLEM that simulates an RTM. This is done by replacing each occurrence of
RE in a circuit that realizes an RTM (like the one shown in Fig. 6) by a circuit
that simulates RE. However, if we use the systematic construction method of
RE given in the proof of Theorem 2 [9], we need many copies of the RLEM.
For example, 16 copies of RLEM 4-31 are required to simulate one RE. So far,
besides RE, it is not known which RLEMs are useful for constructing RTMs
compactly. Here, we give a new direct method of realizing 2-symbol RTMs by
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RLEM 4-31. The numbers of elements for making a finite-state control and a
memory cell by RLEM 4-31 are comparable with those numbers by RE.

We first prepare a circuit module called an RLEM-column made of n copies
of RLEM 4-31 that are used both in a memory cell and a finite-state control
to keep a head position or an internal state, and to control an incoming signal.
Fig. 7 (a) shows an RLEM-column with n = 3. Though it has 2n states in total,
we consider only two “macroscopic” states 0 and 1. Here, 0 (1, respectively)
is the state such that all the elements are in state 0 (1). Then, the behavior of
the RLEM-column in Fig. 7 (a) is described by a 6-symbol RLEM as shown in
Fig. 7 (b).
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Fig. 7. (a) An RLEM-column with n = 3. (b) A 6-symbol RLEM that describes a
macroscopic behavior of the RLEM-column.

A memory cell (MC) is a module that simulates one square of the tape. Here,
we design an MC for 2-symbol RTM. It keeps a tape symbol s ∈ {0, 1}, and
the information h whether the head of the RTM is on this cell (h = 1) or not
(h = 0). Hence, its state set is {(h, s) |h, s ∈ {0, 1}}. It has ten kinds of input
symbols listed in Table 3, which are the same as the case of constructing MC
by RE [7]. For each input symbol x, there is an output symbol x′, e.g., for the
input symbol W0, there corresponds an output symbol W0′. These input/output
symbols are interpreted as instruction signals to the tape unit or response signals
to the finite-state control. From Table 3, MC is formalized as the following RSM
MMC.
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MMC = (QMC, ΣMC, ΓMC, δMC)

QMC = {(h, s) |h, s ∈ {0, 1}}
ΣMC = { W0, W1, R0, R1, SL, SLI, SLc, SR, SRI, SRc }
ΓMC = {x′ |x ∈ ΣMC}
δMC((0, s), y) = ((0, s), y′) (y ∈ ΣMC − {SLI, SRI})
δMC((0, s), SLI) = ((1, s), SLc′)
δMC((0, s), SRI) = ((1, s), SRc′)
δMC((1, 0),W0) = ((1, 0),R0′)
δMC((1, 1),W0) = ((1, 0),R1′)
δMC((1, 0),W1) = ((1, 1),R0′)
δMC((1, 1),W1) = ((1, 1),R1′)
δMC((1, s), SL) = ((0, s), SLI′)
δMC((1, s), SR) = ((0, s), SRI′)

Table 3. Ten kinds of input symbols of a memory cell, and their meanings

Symbol Instruction/Response Meaning
W0 Write 0 Instruction of writing the symbol 0 at the head position.

By this instruction, read operation is also performed.
W1 Write 1 Instruction of writing the symbol 1 at the head position.

By this instruction, read operation is also performed.
R0 Read 0 Response signal telling the read symbol at the head is 0.
R1 Read 1 Response signal telling the read symbol at the head is 1.
SL Shift-left Instruction of shift-left operation.
SLI Shift-left immediate Instruction of placing the head on this cell by shifting left.
SLc Shift-left completed Response (completion) signal of shift-left operation.
SR Shift-right Instruction of shift-right operation.
SRI Shift-right immediate Instruction of placing the head on this cell by shifting right.
SRc Shift-right completed Response (completion) signal of shift-right operation.

The RSM MMC is implemented by a circuit composed of RLEM 4-31 shown
in Fig. 8 (a). Here, the top RLEM keeps a tape symbol s, i.e., if s = 0 (s = 1,
respectively), then the state of the top RLEM is set to 0 (1). The remaining eight
RLEMs form an RLEM-column. If the head is absent (present, respectively) at
this MC, then the state of the RLEM-column is set to 0 (1).

To construct a finite-state control (FSC) of RTM M , we prepare a qi-module
for each state qi of M as shown in Fig. 8 (b). It has two RLEM-columns labeled
by qi and q̂i. The RLEM-column labeled by q̂i is used to read the tape symbol and
branch the program of the RTM, i.e., it determines which quintuple [qi, 0, t, d, qj ]
or [qi, 1, t

′, d′, qj′ ] should be applied. The RLEM-column labeled by qi is used to
write a symbol, shift the head, and enter the state qi.
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Fig. 8. (a) A memory cell (MC) for 2-symbol RTMs. (b) qi-module. Here, we assume
qi is a right-shift state. If it is a left-shift state, then the bottom RLEM of the left
RLEM-column should be placed at the position of the dotted rectangle.
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Assume M is in state qi. Then a signal should be given to the first input line
of the second RLEM of the right column of the qi-module as shown by • in
Fig. 8 (b). Then, the RLEM-column enters the state 1, and gives a signal on the
command line W0′. By this, the tape symbol s ∈ {0, 1} at the head position is
read, and its response is obtained from Rs. Then, a signal goes out from the line
labelled by qis setting this column to state 0. If there is a quintuple [qi, s, t, d, qj ],
this line is connected to the line labelled by tdqj of the qj-module. At the qj-
module, after setting the left RLEM-column to the state 1, write instruction
Wt is given. Its response must be R0, since the last instruction just before the
instruction Wt was W0. Then, the qj module executes the shift instruction Sd,
and finally a signal is transferred to the second RLEM of the right column of
the qj-module. By above, the operation of [qi, s, t, d, qj ] is performed.

Fig. 9 shows a circuit realizing FSC of Tparity in Example 1. Note that for
the initial state q0 only the right column is necessary, and for the halting states
qa and qr only the left column is necessary. Also note that lines with open ends
are not used to simulate Tparity. The whole circuit for RTM Tparity is shown in
Fig. 10. By giving a signal to the port “Begin,” the circuit starts to compute.
Finally the signal comes out from the output port “Accept” or “Reject.”

We now consider how we can construct RTMs by 3-symbol RLEM. We can
see RLEM 4-31 is simulated by a circuit composed of two copies of RLEM 3-7 as
shown in Fig. 11. Hence, from the above method, another compact realization
method of RTMs by RLEM 3-7 can be derived.
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Fig. 9. A finite-state control of RTM Tparity in Example 1 realized by RLEM 4-31
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Fig. 10. A circuit made of RLEM 4-31 that simulates RTM Tparity in Example 1
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Fig. 11. A circuit composed of RLEM 3-7 that simulates RLEM 4-31

Table 4. Number of elements needed for composing a memory cell and a finite-state
control of m-state 2-symbol RTM

RLEM Memory cell Finite-state control

4-289 (RE) 11 ≤ 3m
4-31 9 ≤ 5m
3-7 18 ≤ 10m

5 Concluding Remarks

In this paper, we gave a method of realizing RTMs by RLEM 4-31. The num-
ber of RLEM 4-31 needed for composing RTMs is comparable with the case of
using RE. As shown in Table 4, a memory cell composed of RLEM 4-31 is less
complex than that of RE. On the other hand, a finite-state control composed of
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RLEM 4-31 is more complex than the case of RE. Here, we constructed 2-symbol
RTMs, but the proposed method can be easily extended to a general case. Since
RLEM 4-31 can be simulated by a circuit composed of two copies of RLEM 3-7,
a construction method using 3-symbol RLEM is also derived. Further research
is needed on the construction of RTMs using simpler RLEMs, i.e., RLEMs with
three or two symbols.

Acknowledgement. This work was supported by JSPS KAKENHI Grant
Number 24500017.
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Abstract. Previous studies of the Iterated Prisoner’s Dilemma Game
(IPDG) focus on the optimal strategies for accumulating points against
another player or the evolution of cooperation. Instead, this paper ex-
pands upon the possible complexity in interactions by using a Cellular
Automaton (CA) model to simulate large numbers of players competing
within a limited space. Unlike previous works, we introduce a method
for creating a wide variety of deterministic rules by mapping each pos-
sible interaction to a binary number. We then prove the computational
universality of the resulting IPDG CA. An analysis of the number of in-
teractions leads to the discovery of interesting properties when allowing
only enough iterations for a strategy to use its “transient” instructions.
The implications of universal computation (UC) are also discussed.

Keywords: Cellular Automata, Iterated Prisoner’s Dilemma Game, Uni-
versal Computation, Universal Turing Machine.

1 Introduction

Studies about cooperation and optimal strategies abound for the Prisoner’s
Dilemma Game (PDG). As an approximation of interactions found in nature
these studies impact our understanding of biology; however, to date few studies
focus on the computational potential for the PDG when implemented in a cellu-
lar automaton (CA). Furthermore, none of the studies known presently provide
a proof of universal computation in the aggregate interactions of players when
situated in a lattice. In this paper, we introduce a memory based labeling scheme
for strategies that allows 215 different strategies to compete with each other. We
report on the surprising effect of iterations on interactions and strategy. We then
show interesting examples of self organization and a proof for Turing Universality
in the iterated PDG CA.

The PDG [1] gets its name from the following scenario: Players A and B
recently robbed a store, but the police do not quite have enough evidence to
prove it. Players A and B know that they will both receive minor sentences
of two months if they do not confess. Aware of this, the police put A and B
in separate interrogation rooms and offer them each a deal. If A (or B) gives
evidence on the other to the interrogators, A (or B) will get to leave without
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DOI: 10.1007/978-3-319-08123-6_24, © Springer International Publishing Switzerland 2014
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receiving any charges, but the person who does not confess will receive a harsher
sentence of five months. If both provide evidence on each other, both will spend
at least four months in prison. This scenario creates the rewards in Table 1.

Table 1. The Prisoner’s Dilemma Game

Player B
cooperate defect

Player A
cooperate R = 3/R = 3 S = 0/T = 5

defect T = 5/S = 0 P = 1/P = 1

In addition to the basic scenario, the PDG includes any interactions between
two players creating Table 1 with the rewards T,R, P, and S ∈ R having the
properties T > R > P > S and R > (S + T )/2 [2].

Previous works have implemented multiple iteration PDG (IPDG) simulations
in CA. CA allow for the study of simple nearest neighbor interactions in a
lattice on a discrete set of states [3]. Studies of the IPDG CA use strategies for
playing the game as states, while the choice to cooperate or defect, along with
a replacement rule, allows the states to interact.

Axelrod [2] was the first to use CA to study the IPDG, finding that a strategy
called Tit for Tat did not perform as well as other strategies in CA despite Tit
for Tat’s dominance in other computer tournaments he designed. Nowak et al.
[4] have studied simulations with and without memory, where the agents either
always defected or cooperated. Nakamaru et al. [5], Brauchli et al. [6],and Szabó
et al. [7] performed similar experiments on IPDG CA. Newth and Cornforth
[8] extended the work of Nowak et al. on an asynchronous grid. Tanimoto and
Sagara [9] studied alternating reciprocity in infinite length simulations on 2× 2
grids. Gelimson et al. [10] investigated the effects of mobility on the evolution of
cooperation. Alonso-Sanz [11][12], implemented an IPDG with memory of each
player’s points on a Moore lattice; however, though he found gliders, he did not
find universal computation in his simulations. Finally, Pereira and Martinez [13]
studied the IPDG on a 1D lattice. They also found emergent complexity in their
random simulations with objects such as gliders [14] and “fingers”.

In Sect. 2 we introduce a scheme for memory and interaction in the IPDG
CA, while Sect. 3 reveals interesting results of our scheme. The paper concludes
with a proof of Turing Universality in Sect. 4 and a short discussion in Sect. 5.

2 Implementation of the Prisoner’s Dilemma Game

For a detailed explanation of the CA, one can refer to the original thesis [15].
The IPDG CA used in this paper creates strategies that can remember the

past three iterations of an opponent. A strategy is described using binary by
assigning cooperation the value 1, and defection 0. Using binary, we can define
a unique history of three iterations from least recent (left bit) to most recent
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Table 2. 3 memory transient strategy for Tit for Tat

Opponent’s History 111 110 101 100 011 010 001 000

Cooperate / Defect 1 0 1 0 1 0 1 0

(right bit). Table 2 uses a robust strategy called Tit for Tat [2] to demonstrate
the numbering scheme.

Table 2 will work when it has played at least three iterations of the PDG with
an opponent. Tit for Tat only considers the most recent move (the rightmost bit),
copying it, but it ignores the previous two moves. This strategy lacks information
for what to do for its first, second, and third iteration. After a strategy has
played three or more iterations, it can use the past three moves of the opponent
to determine what to do. Thus Table 2 describes the long term, asymptotic
behavior. In order to define the initial behavior we need something that describes
the transient. Table 3 includes the missing information.

Table 3 contains both the asymptotic, and the transient instructions. The
leftmost 1’s position defines to which iteration a strategy responds. The col-
umn with “0001”, represents the first iteration. Two columns have “001x1” to
represent the second iteration, because the opponent will have one of two op-
tional histories, x1 = 0 or x1 = 1. Similarly four columns have “01x1x2” for
the third iteration (x2 is the opponent’s most recent move), and eight columns
have “1x1x2x3” for the eight possible histories for iterations four and beyond
(x3 is the most recent). The column with “0000” is always a “0” and isn’t used.
Rather, it lets us think of the strategies as 2n+1 bit numbers, where n is the
longest sequence of iterations a player can remember.

Table 3. Complete 3 memory strategy 10818

Opponent’s History 1
1
1
1

1
1
1
0

1
1
0
1

1
1
0
0

1
0
1
1

1
0
1
0

1
0
0
1

1
0
0
0

0
1
1
1

0
1
1
0

0
1
0
1

0
1
0
0

0
0
1
1

0
0
1
0

0
0
0
1

0
0
0
0

Cooperate / Defect 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0

To get the strategy number, or 10818 in this example, we convert the bottom
row of Table 3 from binary to base 10. We order our bits to get 0010101001000
0102 = 1081810. Using this method we represent each possible strategy with its
own unique number. For graphic simulations we assign each strategy a unique
24 bit-color by using the strategy bits for the green and blue hue while giving
initial defecting strategies a red hue. Using this method, the IPDG CA has a
total of 32,768 different strategies.

The IPDG CA simulations implement a Moore neighborhood on a 2D lattice.
Each cell, representing a player, must interact with the eight cells closest to it
(the northwest cell, the north, the northeast, east, etc.). In addition to choosing a
lattice, we must also have a simple rule that determines how a cell changes states
between rounds. For this research, cells use a “Darwinian” rule [7][13], picking
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the next state/strategy by changing a cell’s current state to that of the neighbor
with the highest points. If a neighbor does not have a higher point value, then
the cell will not change states. Therefore, in the case of a tie between a cell and
its neighbor, a cell will keep its own strategy. In order to keep our simulations
deterministic and symmetrical around the square, the rule ignores all other ties.
Ties do not arise often in simulations and have no noticeable effects.

In order to run the IPDG CA we need to define T , R, P , and S (Table 1) as
well as the number of iterations. All simulations here will use the generic values
T = 5, R = 3, P = 1, and S = 0 [4]. Further in this section we will determine
the number of iterations.

Initial state After 1 round After 10 rounds
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Fig. 1. The effects of the second neighbor

The Darwinian rule has the non-intuitive effect of creating second neighbor
interactions. In a round, a cell plays the game with its eight neighbors for n
iterations and sums up the points it receives. At the end of a round, it looks
at all of its neighbors, and it picks the one with the most points and copies its
strategy. Multiple rounds comprise a simulation. Suppose we have rules A (Fig. 1
circled in white), B, and C (Fig. 1 circled in black) where A is B’s neighbor, B
is C’s neighbor, but A is not C’s neighbor. C always defects, which brings down
B’s score. When A compares scores surrounding it, it will see that B has a lower
score, and A will pick a different strategy for its next state. Thus, even though
A is not C’s neighbor, C affects whether or not A takes on B’s strategy. Thus,
the neighbors of the neighbors of a cell, also known as a cell’s second neighbors,
affect its next state and strategy. Figure 1 demonstrates this case example.

Both of the initial configurations for this simulation are the same except for
the cell circled in black. Both start with a 10 × 10 lattice, and each cell plays
10 iterations with its neighbors each round. In the bottom simulation, the cell
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circled in black has the strategy 0 instead of strategy 18078. The cell with
strategy 0 always defects, bringing down the score of the cells next to it. This
affects the next state of the cell circled in white. In the first simulation, the cell
circled in white takes on the strategy of its neighbor to the left, strategy 36020.
Strategy 36020 goes on to take over the whole lattice after just 10 rounds. In
the second simulation, strategy 0 brings down the score of strategy 36020, which
leads our cell circled in white to take on the strategy 9268 instead. After ten
rounds, strategy 17540 takes over the lattice instead.

3 Initial Results

Data on the Hamming distance and strategy populations was gathered on ran-
dom initial states (Fig. 2a) over the 215 different strategies.

a. b.

Fig. 2. a. A 800x600 random initial config, b. 4 iteration simulation after 750 rounds

The number of iterations for a simulation affected the outcome of the simula-
tions by controlling how much a cell relied on either its asymptotic or transient
memory. For a strategy with a memory of 3, a simulation must require the cells
to do at least 4 iterations to take advantage of all of the transients: 1 iteration
for the first move followed by 3 iterations to use the transient memory. After
4 iterations, the cell relies on its asymptotic memory for the past three moves.
Thus, when we set the number of iterations, we inadvertently affect the ratio of
transient to asymptotic iterations.

First, examine the Hamming distance (HD) in Fig. 3, which measures how
many cells switch strategies each round. The following graphs show the HD for
different simulations run on an 800 × 600 random initial state (where each cell
contains a randomly chosen strategy). The x-axis and the y-axis represent the
time step and number of cells that have changed strategy, respectively.

We observe that the HD for playing the game with only 4 iterations converges
at a much higher number of cells than the simulation with 9 iterations. After
750 rounds, the six simulations sampled for 4 iterations averaged a HD of 2538
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Fig. 3. The Hamming distance with a log-log plot approximation (the thick line)

or .0053% of the total number of cells. From 5 to 9 iterations, the simulations
averaged a HD of 211, 295, 89, 63, and 77 after 750 rounds.

In all of the 4 iteration simulations, a log-log plot of the HD suggested that
one can approximate the HD over rounds with the function, f(x) = 393560 ·
x−0.79645. When the HD decreases, one can interpret this as an increase of static
neighborhoods in the system. Accordingly, we hypothesize that if the IPDG
CA contains a model of computation then the optimal number of iterations for
finding UC in a random initial configuration exploits only the transient and none
of the asymptotic. Simulations with a high HD might represent more dynamic
groups. Figure 2b shows a 4 iteration simulation converging to a steady state
that coincidentally contains a glider gun [14]. The simulations that follow all use
only 4 iterations unless specified otherwise.

4 Iterations 10 Iterations

00
01

00
11

01
11

10
11

11
11History

0
150

300
450

600
750

R
ou
nd
s

10
00
0020

00
0030

00
0040

00
0050

00
00

#
o
f
co
o
p
er
a
to
rs

00
01

00
11

01
11

10
11

11
11History

0
150

300
450

600
750

R
ou
nd
s

10
00
0020

00
0030

00
0040

00
0050

00
00

#
o
f
co
o
p
er
a
to
rs

Fig. 4. Cooperating instructions over rounds

We next consider the number of strategies that cooperate or defect on a
particular opponent’s history. Figure 4 shows two graphs that trace the number
of cells that cooperate for a particular history over time (rounds) on a 800× 600
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lattice. The vertical axis represents the number of cells cooperating for a certain
history (the maximum is 480,000). The horizontal axis represents the history
as defined in Sect. 2 earlier. The depth represents rounds, with the most recent
round in front.

This method of gathering data on simulations provides insight into an ideal
composite strategy made up of the most popular instructions for a lattice of
cells. In both the 4 iteration and 10 iteration simulations successful strategies
almost always cooperate initially as well as whenever the strategy remembers
that the opponent has always cooperated ; furthermore in both simulations, we
should always defect when the opponent has defected three times in a row.

Contrasting the transient (4 iter.) to the more asymptotic (10 iter.) simulation
reveals a difference in strategy. As the number of iterations increases, a strategy
needs to cooperate more in the transient stage in order to survive; however, it
should also cooperate less when the opponent has not cooperated historically for
the past three moves in the asymptotic memory. Using this information, we can
create a potentially optimal (for points) ad hoc strategy that cooperates more
initially, but still defects as long as it remembers an opponent defecting.

Looking at Fig. 2b, one can see that simulations eventually reach a stable
state where many different groups of strategies persist side by side. In order to
understand how groups form we must look carefully at the borders between two
competing strategies. Figure 5a shows a stabilized group of strategies, and the
points that they attain in grey-scale (b). The lighter the area is, the more points
cells received.

a. b. c.

Fig. 5. a. A border, b. Point view of border, c. A natural “gun”

The cells with the lighter blue color in the middle of the trapezoidal shape use
the strategy 38538 (A). The green colored cells have the strategy 41058 (B),
and the darker blue color on the right border of that has strategy 33418 (C).
The line of B cells attains less points than most of the A or C cells. However,
the B cells drag down the points of surrounding A and C cells, preventing A or
C from invading. The inability of cells to invade results in many groups, despite
high points between similar cells.

When running random simulations, strategies sometimes self-organize into
useful structures for computation. In Fig. 2 towards the bottom there is an
interesting patch of red and navy blue dots on a teal background. Figure 5c
zooms in on the patch to reveal a glider gun [14] and an arrow shaped glider.
With enough space, interesting patterns emerge, similar to Conway’s Game of
Life [14].
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Isolating certain strategies together increases the chances for formations like
the glider gun. By combining strategies 11196, 36866, and 1088 in a specific
initial configuration one can make a “program” that recursively builds the Sier-
pinski triangle. Figure 6 shows the initial setup on the left, and different time
steps of the simulation as the triangle forms itself.

Fig. 6. An emergent Sierpinski triangle

Another example comes from the two-memory strategies 8748 (in red), 34954
(in blue), and 8746 (in black). This versatile set of strategies can make many
patterns, the first of which can produce little “bullet” and “wave” like objects.
Figure 7 shows these three strategies competing with only three iterations in
order to avoid asymptotic behavior.

In both these simulations, the black-colored strategy separates the red and
the blue creating borders and movement based on how one strategically places
the cells. Figure 7a relies on making small walls of blue and black in order to
produce a bullet. The borders keep in a spiral at the top that periodically shoots
out a bullet, whose width the borders determine. Upon leaving the borders, they
spread in all directions forming a wave. Figure 7b uses the same three strategies,
but with a slightly different approach. Using the blue strategy (34954 ) for the
background instead of the red one (8748 ), one can easily make something that
looks more like a glider gun, repeatedly spitting out little arrow shaped gliders.

a. b.

Fig. 7. Two different “guns” made with different config. of the same strategies.

4 Proof of Universal Computation

The glider guns observed while running random simulations prompted a search
for a set of strategies capable of UC. We eventually found one set, strategies
10818, 5218, 3464, and 33002. The following proof of UC uses glider guns to
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create a NAND gate and memory in a similar style to the proof of UC in Con-
way’s Game of Life [14].

Figure 8 shows the basic configurations capable of UC. The setup of strategies
in Fig. 8a to make a glider follows. Using strategy 10818 as a background, the
slightly lighter 5218 forms a head that replaces 10818 each round. The pink
strategy 3464 replaces 5218, preventing it from traveling diagonally in both
directions. Figure 8b shows the point view (lighter gray = more points). The
head of the glider moves by lowering the points of the background strategy in
front of it, while giving the lower-right most cell of the head just slightly more
points than the other cells around it.

a. b. c. d.

Fig. 8. a. A glider, b. Glider’s point view, c. A pin, d. Pin’s point view

The pin in Fig. 8c is made up of strategy 33002 which cooperates with itself.
The center of the pin achieves a high number of points each round. Figure 8c
shows a basic 3×3 square of 33002. The point view of the same object (d) shows
the high points of the center cell.

If a glider runs into two pins placed carefully, the background strategy 10818
will replace the glider due to a border of high points the background attains from
strategy 33002. Figure 9a shows a glider eater[14] in action. If two gliders collide
as in Fig. 9b, they destroy each other. Finally, Fig. 9c shows a glider colliding
with the edge of a pin. The pin pulls the glider around itself, making the glider
swerve around the edges of the pin. The glider swerving around the pin then
starts to produce another glider on every corner of the pin. This creates a glider
gun, and with some strategic placing of more pins we can control its output.

Now that we know how the gliders interact and how to make a glider gun,
we can start making logic gates. In order to prove UC we only need to show one
kind of logic gate, the NAND [14]. Figure 10 shows the before (a) and after (b)
of a NAND gate simulation. (The lines help in understanding the data streams
and their direction, but are not part of the simulation.) The absence of a glider
also conveys information. We assign a glider the binary value 1, and the absence
of a glider a 0. Figure 10a feeds in a stream 0, 1, 0, 1 starting from right to left.
The bottom row will feed in 1, 1, 0, 0.

The first glider gun creates gliders that will collide with the incoming streams.
If only one glider enters, the glider gun will block it, making the output a 0.
Similarly if no gliders enter, none will come out. In the special case when two
gliders try to enter at the same time, the glider gun will only block one of them,
letting the other slip through. Thus we must have two 1’s entering to get a 1 out.
This is an AND gate. The second glider gun creates a NOT gate. The gliders
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a.

b.

c.

Fig. 9. a. A glider eater, b. A collision, c. A glider hooked on a pin

a. b.

Fig. 10. A NAND gate made out of IPDG players

from this gun not only block the gliders input into it, but also create the output.
If a glider enters, it will destroy a glider from the gun. Thus, a 1 will create a
0, and if nothing enters it outputs a 1. After going through the AND and the
NOT gate, we have in Fig. 10b 1, 0, 1, 1.

Now we need to show that we can also store memory in this simulation.
Figure 11 shows a D latch in CA form. One can create a register holding a unit
of memory by placing two D latches together back to back. A register forms
a safe way to store and retrieve bits with consistent results. However, half a
register (a D latch) suffices for proving that the IPDG can hold memory.

The major gates and streams are labeled. The clock and the input each get
split into two paths, with XOR gates crossing them. At the bottom we NOT
the inputs and then AND them with the clock input. The clock has a cycle of
11 gliders “on” then 11 gliders “off”. At the top, the input and the clock get
ANDed together as well. This guarantees that the leftover latch will receive only
one signal at a time. If it receives a signal from the top, the latch ORs it and
then NOTs it, saving the value 1 in a loop. The same happens when a signal
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Fig. 11. D latch with a “0”

gets fed from the bottom, except that the opposite side of the loop will turn
on. Figure 11 shows the D latch in its initial configuration. Eventually, since it
has no input going into it, this latch will save a 0. To store a 1, instead put a
stream of gliders on the input path. Now that we have found a way to construct
memory, we have proved that the IPDG CA has UC.

5 Discussion

This proof shows the existence of UC in a subset of the strategies for playing the
IPDG by the construction of a NAND gate and a D latch. The proof does not
show all the possible ways to create a Universal Turing Machine (UC), as several
sets of strategies seem to create similar gliders or other ways of transmitting
information.

Furthermore, the IPDG CA introduced here contains persistent groupings
of strategies that defect rather than cooperate in their interactions with each
other and their surroundings. This model may help explain diversity in strate-
gies present in nature. These defections were important for organizing larger
structures within the CA, but perhaps most interesting is that this CA may
also simulate a potential social interaction evident in human interactions [2].
Where other studies have focused on simpler strategies and the evolution of
cooperation, this paper shows that complex players with history not only prop-
agate themselves but also organize themselves through the adoption of strate-
gies with higher points and through the imitation of more successful cells in a
self-interested manner. Similar to Axelrod [2] which explains the “Evolution of
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Cooperation”, universal computation in IPDG cellular automata suggests the
evolution of complexity and organization.
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Abstract. We introduce a method of true orbit generation that allowed
us to perform, with digital computers, exact simulations of discrete-time
dynamical systems defined by one-dimensional piecewise linear and lin-
ear fractional maps with integer coefficients by generalizing the method
proposed by Saito and Ito (Physica D 268, 100-105 (2014)). The salient
features of the new method are that it can use algebraic numbers of an
arbitrarily high odd degree to represent numbers, and that it only in-
volves integer arithmetic to compute true orbits. We demonstrated that
it succeeded in generating true chaotic and intermittent orbits, respec-
tively, by applying the method to a tent map and a map associated with a
mediant convergents algorithm, in contrast with conventional methods of
simulation. We particularly demonstrated through simulations regarding
invariant measures that the statistical properties of the generated true
orbits agreed well with those of the typical orbits of the two maps.

Keywords: Dynamical system, Exact simulation, True orbit, Chaos,
Algebraic number, Integer arithmetic, Piecewise linear fractional map,
Typical behavior.

1 Introduction

Dynamical systems, especially chaotic dynamical systems, have attracted atten-
tion as devices to achieve real or analog computation, and also as objects to be
simulated with super-Turing models (e.g., see Refs. [1, 2]). However, as digital
computers can, at most, perform computation that can be done by Turing ma-
chines, it is thus natural to expect difficulties in simulating a dynamical system
that achieves super-Turing computation with such computers. This raises an in-
teresting question of: To what extent can dynamical systems be simulated with
digital computers? In fact, it has been well known that simulations of chaotic
dynamical systems are very hard to deal with at various levels.

1. For example, it has been difficult thus far to reproduce the chaotic behav-
ior of maps by using digital computers even for tent and Bernoulli maps,
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i.e., even for one of the best known maps in chaotic dynamics [3, 4]. (Ac-
tually, the cause of this is the fact that conventional simulation methods
use finite binary numbers and rational numbers as numbers. We will later
show that we can generate chaotic orbits of these maps by using the method
proposed in this paper even with digital computers.)

2. Also, if we use a number representation with fixed precision, such as double-
precision floating-point numbers usually used in computer simulations, then
we cannot perform exact simulations of dynamical systems due to inevitable
numerical errors. This especially becomes a serious problem when we deal
with chaotic dynamical systems, which have sensitive dependence on initial
conditions as a hallmark of chaos. Indeed, issues concerning the validity of
such computer-generated pseudo-orbits have been constantly discussed since
the early years of simulation studies on chaotic dynamics [5–11].

Based on this background, we recently proposed a method of true orbit gen-
eration that allowed us to perform exact simulations of discrete-time dynamical
systems defined by one-dimensional piecewise linear fractional maps with integer
coefficients with digital computers [12]. The most salient feature of the method
was that it used cubic irrationals to represent numbers and it only involved inte-
ger arithmetic to compute true orbits. We have generalized that method in this
study by using algebraic numbers of an arbitrarily high odd degree, where alge-
braic numbers are probably among the most basic computable real numbers [13].

This paper is organized as follows. Section 2 introduces a method of true orbit
generation that can be applied to one-dimensional piecewise linear fractional
maps with integer coefficients, which was extended to treat algebraic numbers
of an arbitrarily high odd degree. Section 3 reports the results obtained with the
method by performing exact simulations of two maps: a tent map and a map
associated with a mediant convergents algorithm. We particularly demonstrated
that it was possible for our method to generate typical orbits of the two maps,
in contrast with conventional methods of simulation. Section 4 is devoted to the
conclusion.

Before we proceed to the main subject, we need to remark on the following:
We require simulations of a dynamical system to be able to compute (long) typi-
cal orbits of the dynamical system because simulations usually need to reproduce
typical behaviors of target systems. Thus, we do not consider that simulations
are properly carried out in cases where only atypical orbits can be generated or
in cases where only the first several tens of time steps of orbits can be generated,
possibly due to high computational cost. (As it is difficult to discuss the statis-
tical properties of generated orbits in the latter cases, we cannot argue whether
they are typical or not. It is well known that high computational cost is required
to generate true orbits of general rational maps whose coefficients are algebraic
numbers [14, 15].)
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2 Our Method

We focused on discrete-time dynamical systems in the present study that were
defined by a one-dimensional piecewise linear fractional map [16]:

M(x) = Mi(x) =
aix+ bi
cix+ di

if x ∈ (ei, ei+1) , i = 0, 1, · · · , N − 1, (1)

where Mi is the linear fractional map on the ith subinterval (ei, ei+1) where ai,
bi, ci, and di are integers satisfying aidi − bici 	= 0 (i.e., each Mi is invertible).
For simplicity, we consider the case where the number N of subintervals parti-
tioning the interval (e0, eN ) is finite. We also consider all the endpoints of the
subintervals to be rational numbers satisfying e0 < e1 < · · · < eN to simplify
the domain determination that will be explained later.

It should be noted that the eventually periodic points of M are usually ra-
tional numbers and quadratic irrationals (i.e., the roots of irreducible quadratic
polynomials with integer coefficients). Thus, if one uses algebraic numbers whose
degree is greater than two for computing true orbits of M , then one can usually
guarantee the aperiodicity of the obtained true orbits.

Let us consider an algebraic equation

p0x
m + p1x

m−1 + · · ·+ pm = 0, (2)

where degree m is an odd number greater than one, coefficients p0 (	= 0), p1, · · ·,
pm are integers, and polynomial p0x

m + p1x
m−1 + · · · + pm is irreducible. We

assume that Eq. (2) has a unique real root α. That is, α is a real algebraic number
of degree m, all of whose conjugates, other than α itself, are non-real complex
numbers. Let Sm be the set of such real algebraic numbers. Number α ∈ Sm

satisfying Eq. (2) can be represented by a vector (p0, p1, · · · , pm) ∈ Zm+1. Note
that such a representation of α is not unique: For example, (p0, p1, · · · , pm) =
(−p0,−p1, · · · ,−pm).

We can easily see that M becomes a map from Sm∩ (e0, eN ) to Sm.1 Further-
more, we can easily obtain a representation of M(α) with α ∈ Sm ∩ (e0, eN ) by
using a matrix operation: Suppose that α ∈ Sm ∩ (ei, ei+1) has a representation
(p0, p1, · · · , pm). Then, α′ = M(α) = Mi(α) has a representation (p′0, p

′
1, · · · , p′m)

with
(p′0, p

′
1, · · · , p′m)T = Ami (p0, p1, · · · , pm)T, (3)

1 Let α ∈ Sm ∩ (e0, eN) and let α′ = M(α) = Mi(α). It is obvious that α′ ∈ Q(α),
where Q(α) denotes the algebraic number field obtained by adjoining α to the
rational number field Q. On the other hand, since Mi is invertible, we have
α = (diα

′− bi)/(−ciα
′ +ai), so that α ∈ Q(α′). Thus, we have Q(α) = Q(α′), which

implies that the degree of α′ is equal to m. Now, let us consider the conjugates of α′.
We can express a conjugate of α (denoted by ασ) as ασ = (diα

′σ−bi)/(−ciα
′σ+ai),

by using the corresponding conjugate of α′ (denoted by α′σ). From the fact that
α′σ ∈ R implies ασ ∈ R, it follows that all the conjugates of α′, other than α′ itself,
must be non-real complex numbers. Therefore, we see α′ ∈ Sm. Note that, since
α′ ∈ Sm, the polynomial p′0x

m+p′1x
m−1+ · · ·+p′m with coefficients given by Eq. (3)

has a unique real root α′.
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where the superscript T denotes the transpose and Ami is the matrix correspond-
ing to Mi. We can obtain Eq. (3) and the explicit form of Ami by substituting
α = (diα

′ − bi)/(−ciα′ + ai) into Eq. (2). For example, the form of A3i is given
as

A3i =

⎛⎜⎜⎝
d3i −cid2i c2i di −c3i

−3bid2i aid
2
i + 2bicidi −2aicidi − bic

2
i 3aic

2
i

3b2idi −2aibidi − b2i ci a2i di + 2aibici −3a2i ci
−b3i aib

2
i −a2i bi a3i

⎞⎟⎟⎠ . (4)

Thus, if we can determine that α ∈ Sm represented by (p0, p1, · · · , pm) is in-
cluded in the ith subinterval (ei, ei+1), then we can obtain Ami (p0, p1, · · · , pm)T

as a representation of M(α) from Eq. (3). Therefore, we need to errorlessly per-
form such domain determination to generate a true orbit of M (Eq. (1)). We can
exactly determine the subinterval including α, and thus the matrix that should
be applied to (p0, p1, · · · , pm) as follows: Because α ∈ Sm is the only real root of
p0x

m + p1x
m−1 + · · ·+ pm, we see that α ∈ (ei, ei+1) if and only if the signs of

p0e
m
i +p1e

m−1
i + · · ·+pm and p0e

m
i+1+p1e

m−1
i+1 + · · ·+pm are different. Thus, we

only need to evaluate the sign of the polynomial at the endpoints of each subin-
terval sequentially, until we find a unique subinterval where the polynomial has
different signs at its endpoints to determine the matrix to be applied to a given
(p0, p1, · · · , pm). Note that such determination can be errorlessly performed only
by using integer arithmetic because the endpoints of the subintervals are taken
from rational numbers, and that the subinterval including α can be found in
finite time because the number N of subintervals is finite.

3 Simulation Results

This section presents the results from applying the method of true orbit gener-
ation to two maps on the unit interval [0, 1]: a tent map and a map associated
with a mediant convergents algorithm [17]. We particularly report the results
from generating true orbits of these maps by using cubic and quintic irrationals,
as the simplest cases. We also describe why conventional methods of simulation
have great difficulties in generating orbits of the two maps.

3.1 Tent Map

The tent map,

x(n+ 1) =

{
2x(n) if x(n) ∈ [0, 1/2]
−2x(n) + 2 if x(n) ∈ [1/2, 1]

,

where x(n) is a state at discrete times n = 0, 1, 2, · · ·, is a piecewise linear map
often considered in the field of chaotic dynamics, but it is also a piecewise linear
fractional map, which is obvious by considering the denominator to be one. The
map is illustrated in Fig. 1. As was previously described, this tent map is well
known to be a difficult map to simulate. We can cite two characteristics of the
tent map as reasons for that.
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Fig. 1. Tent map

The first characteristic of the tent map is that the set of eventually fixed points
of x = 0 (i.e., the set of initial points from which the orbit eventually maps
directly onto the fixed point at x = 0) is identical with the set of finite binary
numbers on [0, 1]. Therefore, if one uses the double-precision binary floating-
point numbers usually used in the simulations of dynamical systems, then, even
without numerical errors, one can only generate those orbits that eventually
reach the unstable fixed point, and one cannot generate chaotic orbits typical
for the tent map.

The second characteristic of the tent map is that the set of eventually periodic
points (i.e., the set of initial points from which the orbit eventually maps directly
onto a periodic orbit) is identical with the set of rational numbers on [0, 1].
The fractional representation of numbers can be cited as the next standard
number representation other than fixed-precision ones, but we can only generate
atypical orbits that eventually become periodic, even if we improve the number
representation to the fractional representation.

Now let us explain the concrete application of the method of true orbit genera-
tion to the tent map. First, we will explain a case where we use cubic irrationals,
i.e., algebraic numbers of degree m = 3. From Eq. (4), the matrices A30 and A31

that correspond to the left and right branches of the tent map, i.e.,M0(x) = 2x/1
and M1(x) = (−2x+ 2)/1, are given as

A30 =

⎛⎜⎜⎝
1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 8

⎞⎟⎟⎠ , A31 =

⎛⎜⎜⎝
1 0 0 0
−6 −2 0 0
12 8 4 0
−8 −8 −8 −8

⎞⎟⎟⎠ .
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We choose x(0) = α ∈ S3 satisfying x(0)3 + 3x(0)2 + 3x(0) − 1 = 0 as an
initial point. That is, we take (p0(0), p1(0), p2(0), p3(0)) = (1, 3, 3,−1) as an
initial condition. The following is the specific procedure for true orbit generation:
Suppose that (p0(n), p1(n), p2(n), p3(n)) is a representation of x(n). The signs of
the polynomial p0(n)x

3 + p1(n)x
2 + p2(n)x + p3(n) are evaluated at x = 0 and

x = 1/2. If the two signs are different (and therefore x(n) ∈ (0, 1/2)), we obtain
a representation of x(n+ 1) as

(p0(n+ 1), p1(n+ 1), p2(n+ 1), p3(n+ 1))T = A30 (p0(n), p1(n), p2(n), p3(n))
T.

Otherwise (and therefore x(n) ∈ (1/2, 1)), we obtain a representation of x(n+1)
by

(p0(n+ 1), p1(n+ 1), p2(n+ 1), p3(n+ 1))T = A31 (p0(n), p1(n), p2(n), p3(n))
T.

By repeating this procedure, we can generate the true orbit (p0(n), p1(n), p2(n),
p3(n)) (n = 0, 1, 2, · · ·). Note that it is easy to obtain the value of x(n) from
(p0(n), p1(n), p2(n), p3(n)); Because the equation p0(n)x

3 + p1(n)x
2 + p2(n)x+

p3(n) = 0 has the single real root x(n), we can obtain its value with arbitrary
precision, e.g., by using the bisection method.

When we use quintic irrationals, i.e., algebraic numbers of degree m = 5, the
matrices A50 and A51 corresponding to M0 and M1 of the tent map are given as

A50 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 2 0 0 0 0
0 0 4 0 0 0
0 0 0 8 0 0
0 0 0 0 16 0
0 0 0 0 0 32

⎞⎟⎟⎟⎟⎟⎟⎠ , A51 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
−10 −2 0 0 0 0
40 16 4 0 0 0
−80 −48 −24 −8 0 0
80 64 48 32 16 0
−32 −32 −32 −32 −32 −32

⎞⎟⎟⎟⎟⎟⎟⎠ .

In this case, we choose x(0) = α ∈ S5 satisfying x(0)5 + 5x(0)4 + 10x(0)3 +
10x(0)2 +5x(0)− 1 = 0 as an initial point. The specific procedure for true orbit
generation for m = 5 is almost the same as that explained for m = 3.

Figures 2(a) and (b) show the true orbits of the tent map, generated by using
cubic irrationals for the former and quintic irrationals for the latter. These figures
clearly indicate chaotic behavior, which implies that our method successfully
generates true chaotic orbits of the tent map, in strong contrast with conventional
methods of simulation.

Next, we demonstrate the statistical properties of the generated true orbits by
estimating the invariant density of the tent map. The tent map has an invariant
measure with the density ρ(x) = 1 for x ∈ [0, 1]. Figure 3 plots the results
obtained from estimating the invariant density by using the true orbits treated
in Figs. 2(a) and (b), where the length of each true orbit is taken to be equal
to 106. As a result, the estimated densities take values very close to one, which
agree well with the density of the tent map.
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Fig. 2. True orbits of tent map. (a) x(n) versus n of true orbit, generated by
using cubic irrationals, starting from (p0(0), p1(0), p2(0), p3(0)) = (1, 3, 3,−1). (b)
x(n) versus n of true orbit, generated by using quintic irrationals, starting from
(p0(0), p1(0), p2(0), p3(0), p4(0), p5(0)) = (1, 5, 10, 10, 5,−1).
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Fig. 3. (Color online) Estimation of invariant density of tent map by using true
orbits with length 106. Dots represent estimated density obtained from true or-
bit generated by using cubic irrationals, starting from (p0(0), p1(0), p2(0), p3(0)) =
(1, 3, 3,−1). Crosses represent that by using quintic irrationals, starting from
(p0(0), p1(0), p2(0), p3(0), p4(0), p5(0)) = (1, 5, 10, 10, 5,−1). Line represents density
ρ(x) = 1.
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3.2 Map Associated with Mediant Convergents Algorithm

Next, we treat the map associated with the mediant convergents algorithm
(MCA) [17]:

x(n+ 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(n)

1− x(n)
if x(n) ∈ [0, 1/2]

1− x(n)

x(n)
if x(n) ∈ [1/2, 1]

.

The map is illustrated in Fig. 4, which exhibits intermittent behavior due to
the neutral (indifferent) fixed point at x = 0. Similar to the tent map, it is very
difficult to simulate this map because of the following characteristics of the map.

0 1�2 1
0

1

x�n�

x�
n�

1�

Fig. 4. Map associated with mediant convergents algorithm (MCA)

The first characteristic of the map associated with MCA is that the set of
eventually fixed points of x = 0 is identical to the set of rational numbers on
[0, 1]. This implies that one cannot generate intermittent orbits typical for the
map associated with MCA by using fractional representation, which is similar
to the case of the tent map.

Another difficulty in simulating this map can be seen from a different view-
point. This map exhibits a 1/f spectrum. That is, the power spectral density
S(f) of this map diverges at low frequencies with a power law S(f) ∝ 1/f , where
f denotes frequency. This property stems from the local structure around the
fixed point at x = 0. The use of fixed-precision number representations, however,
breaks the property, since unavoidable round-off errors break the local structure,
at least theoretically.

Matrices necessary to generate true orbits of the map associated with MCA
can be obtained similarly to the case of the tent map. In fact, the matrices A30
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and A31, that are necessary to generate true orbits by using cubic irrationals,
that correspond to the left and right branches of the map associated with MCA
are given as

A30 =

⎛⎜⎜⎝
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎞⎟⎟⎠ , A31 =

⎛⎜⎜⎝
0 0 0 −1
0 0 −1 −3
0 −1 −2 −3
−1 −1 −1 −1

⎞⎟⎟⎠ .

Similarly, when generating true orbits by using quintic irrationals, we use ma-
trices A50 and A51:

A50 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , A51 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 −1
0 0 0 0 −1 −5
0 0 0 −1 −4 −10
0 0 −1 −3 −6 −10
0 −1 −2 −3 −4 −5
−1 −1 −1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We can use the same initial condition and procedure that were used before for
true orbit generation.

Figures 5(a) and (b) show the true orbits of the map associated with MCA
generated by using cubic irrationals for the former and quintic irrationals for the
latter. We can see clear intermittent behavior from these figures, and that our
method succeeded in generating true intermittent orbits of the map associated
with MCA, in contrast to conventional methods of simulation.
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Fig. 5. True orbits of map associated with MCA. (a) x(n) versus n of true orbit, gener-
ated by using cubic irrationals, starting from (p0(0), p1(0), p2(0), p3(0)) = (1, 3, 3,−1).
(b) x(n) versus n of true orbit, generated by using quintic irrationals, starting from
(p0(0), p1(0), p2(0), p3(0), p4(0), p5(0)) = (1, 5, 10, 10, 5,−1).
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Now, we will again consider whether the statistical properties of the generated
true orbits are good. The map associated with MCA has a σ-finite but infinite
invariant measure with the density ρ(x) = 1/x for x ∈ [0, 1] [17]. Figure 6 plots
the estimated densities obtained from the true orbits treated in Figs. 5(a) and
(b), where the length of each true orbit is taken to equal 106. As a result, the
estimated densities coincide well with that of the map associated with MCA.
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Fig. 6. (Color online) Estimation of invariant density of map associated with MCA by
using true orbits with length 106. Dots represent estimated density obtained from true
orbit generated by using cubic irrationals, starting from (p0(0), p1(0), p2(0), p3(0)) =
(1, 3, 3,−1). Crosses represent that by using quintic irrationals, starting from
(p0(0), p1(0), p2(0), p3(0), p4(0), p5(0)) = (1, 5, 10, 10, 5,−1). Curve represents density
ρ(x) = 1/x.

4 Conclusion

We introduced a method of true orbit generation that allowed us to perform ex-
act simulations with digital computers of one-dimensional piecewise linear and
linear fractional maps with integer coefficients by generalizing Saito and Ito’s
method [12]. The main characteristics of the new method were as follows. First,
it could use algebraic numbers of an arbitrarily high odd degree to represent
numbers, where algebraic numbers could be expressed exactly with digital com-
puters. Second, the method only involved integer arithmetic to compute true
orbits, where integer arithmetic could also be precisely calculated with digital
computers. We found that it could successfully generate true chaotic orbits by
applying the method to a tent map and that it could successfully generate inter-
mittent orbits by applying it to a map associated with the mediant convergents
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algorithm, in contrast to conventional methods of simulation. We have demon-
strated through simulations concerning invariant measures that the statistical
properties of the generated true orbits agreed well with those of typical orbits
of the two maps.
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Abstract. Recent findings in neurophysiology provided evidence that
not only neurons but also networks of glia-astrocytes are responsible for
processing information in the human brain. Based on these new find-
ings, information processing in the brain is defined as communication
between neurons-neurons, neurons-astrocytes and astrocytes-astrocytes.
Artificial neural networks (ANNs) model the neuron-neuron communi-
cations. Artificial neuron-glia networks (ANGN), in addition to neuron-
neuron communications, model neuron-astrocyte connections. This re-
search introduces a new model of ANGN that captures these three pos-
sible communications. In this model, random networks of artificial glia
astrocytes are implemented on top of a typical neural network. The net-
works are tested on two classification problems, and the results show
that on certain combinations of parameter values specifying astrocyte
connections, the new networks outperform typical neural networks. This
research opens a range of possibilities for future work on designing more
powerful architectures of artificial neural networks that provide more
realistic models of the human brain.

1 Introduction

The human brain consists of neurons and glia cells. It is estimated that there
are 10 to 50 times more glia cells than there are neurons in the brain [6]. Until
two decades ago, it was widely believed that glia cells only performed passive
functions and they did not interfere with processing information [20]. New evi-
dence supports the conception that glia-astrocytes affect learning by modulating
synapses. This led to a new concept in neurophysiology, the tripartite synapse,
which consists of three parts: presynaptic elements, post-synaptic elements, and
surrounded astrocytes (Figure 1). While neurons communicate by electrical sig-
nals, astrocytes use chemicals for propagating information; therefore, astrocytes
are slower than neurons in processing information [14,3,2,15,16,19,17,18,4,25,7].

Inspired by the manner in which glia astrocytes communicate, researchers
developed a novel type of neural network termed “artificial neuron-glia network”
(ANGN) [23,1]. In ANGNs, each neuron is connected to an astrocyte cell, and
activation (inactivation) of the neuron for a specific period of time will make the
connected astrocyte active; as a result, the connected weights will be increased

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 316–326, 2014.
DOI: 10.1007/978-3-319-08123-6_26, c© Springer International Publishing Switzerland 2014
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Fig. 1. A representation of a tripartite synapse (The figure is drawn based on the
definition of tripartite synapse in [27]). The astrocyte (star-shaped cell) is able to
modulate the synapse by releasing transmitters.

(or decreased) by a pre-defined factor [1]. Section 2 provides greater details on
the architecture and algorithms of ANGNs.

From a physiological perspective, single astrocytes do not capture the whole
story. Recent studies suggest that not only neurons, but also astrocytes are
connected into networks. While neurons exchange information through synapses,
gap junctions are the path of communication for astrocytes [5,20,13,21,12]. Some
other studies have taken a further step and assigned the conscious processing
to astrocyte networks [20,24]. Pereira, Jr. and Furlan in their 2010 paper stated
that “the division of work in the brain is such that the astrocyte network conveys
the feeling, while neural networks carry information about what happens”. They
believed consciousness is the result of integration of data by means of wavelike
computing in the astrocytic networks [20].

In continuation of the research on neuron-glia networks, we designed a new
type of ANGN in which artificial astrocyte networks (AANs) are connected to
neurons rather than single astrocytes. The networks of astrocytes are imple-
mented on top of a multi-layer back propagation ANN, and the resulting net-
work is tested for classifying breast cancer cells and ionosphere data sets. The
results show that having an attached network of astrocytes on top of a typical
neural network improves the performance. The exact structure and algorithms
of AANs and the results will be discussed in section 3 and section 4.

This paper is organized into the following sections: section 2 provides some
background information on ANGNs; section 3 introduces the new network of glia
astrocytes and how it can be connected to neurons; section 4 presents the imple-
mentations of the network and the results; section 5 summarizes the conclusions
of the study, and the possible future work.
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2 Previous Work on Neuron-Glia Networks

The concept of artificial neuron-glia networks was initially introduced by Porto
in 2004 [22]; later, it was implemented in different ANN architectures [26,11,1,8],
and was successfully tested on real world problems [11,23]. The results showed
that adding artificial astrocytes to typical ANNs improves performance of the
network, but it is highly dependent on the complexity of the problem [23]. The
architecture of an ANGN can be described as an extension of a typical ANN.
ANGN includes a novel type of processing element, the artificial glia astrocyte.
Each neuron is associated with one astrocyte. Figure 2 shows how an astrocyte
can modify the weights of a neuron.

Fig. 2. The figure above illustrates the main idea described in [1], and it displays a
neuron and its associated artificial astrocyte

The exact biological interactions between neurons and astrocytes have not
been completely elucidated; therefore, different algorithms for describing the be-
havior of artificial astrocyte have been proposed. However, the key concept of
all of the algorithms is the same: the lower processing speed in glia astrocytes
in comparison to neurons leads to the decay of astrocyte activation [23,1,9,8]. In
this paper, we have used a modified version of the most common model of artifi-
cial glia astrocytes. In this model, astrocytes are defined as a set of functions and
parameters. The parameters are k ∈ N\0, θ ∈ [1, k], ft ∈ R and a, b ∈ [0, 1]. The
training data will be executed on the network for k times; if the corresponding
neuron to astrocyte fired (output > ft, where ft represents firing threshold)
for θ times in this k cycles, the astrocyte will be turned on and increase the
connected weights of its associated neuron by a percentage. The inactivation of
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the neuron in θ iterations will result in the decrease of the associative weights
by b percentage [1]. The artificial astrocyte does not affect the ANN algorithm.
The astrocyte model is only executed once in every k cycles and based on the
recorded activity of the associative neuron, decreases, increases or does not affect
the weights.

3 Artificial Astrocytes Networks(AAN)

Inspired by the recent physiological findings, which claims activation of one glia-
astrocyte propagate to other astrocytes through gap junctions [5,20,13,21,5,12],
we designed a novel neural network architecture that benefits from a network
of artificial astrocytes on top of a neuron-glia network. The remainder of this
section introduces the architecture and the algorithms of this new network.

3.1 Structure of Artificial Astrocytes Networks

The structure of the astrocyte networks is founded on the neuron-glia networks;
each neuron is associated with one astrocyte and the sufficient activity of the cor-
responding neuron turns the astrocyte on or off. This structure mimics the release
of transmitter by glia astrocytes in the brain [21,3,23]. In this research, in addition
to the components of neuron-glia networks, there are connections between astro-
cytes that comprise the astrocyte networks. An active astrocyte results in the ac-
tivation of all other astrocytes in the same network. This behavior is inspired by
the propagation of calcium wave through gap junctions in the brain [20].

The exact connection between biological astrocytes is not yet clear. The model
we suggest for astrocyte networks is based on connecting random astrocytes. A
set, which is composed of n randomly chosen astrocytes, will be determined.
Then, each pair of astrocytes in the set will be connected by an edge. The
result will be a complete (where there is an edge between all nodes) astrocyte

Fig. 3. Glia-astrocytes are shown with stars. The left image depicts a neuron-glia
network (adapted from Figure 3 in [23]) and the image on the right is a neuron-glia
network with artificial astrocyte network, the solid lines in the image shows one possible
astrocyte network.
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network. Having a complete network is inspired by the work of Pereira and
Furlan [20]. Each astrocyte network may contain two to n astrocytes1, where the
maximum value for n is the summation of the number of neurons in all layers.
The efficient number of astrocytes participating in an AAN can be determined
by experiments. Figure 3 presents an ANGN and a possible structure for its
corresponding AAN.

3.2 Learning Algorithm of Artificial Astrocytes Networks

Artificial astrocyte networks can be defined as a set of nodes, parameters and
functions. All astrocytes run the same algorithm, and the behavior of an as-
trocyte can be divided into two phases. In the first phase, if the activation
conditions of the astrocyte are satisfied, it will become activated and sends an
activation signal to all the connected astrocytes. The second phase is responsible
for modifying the weights of the active astrocyte.

In the first phase, the functions and parameters are analogous to the former
algorithms of neuro-glia networks [22] explained in section two, where a single
astrocyte is defined as k ∈ N\0, θ ∈ [1, k], a, b ∈ [0, 1] and ft ∈ R. The activity of
the corresponding astrocyte to each neuron will be represented by the following
functions:

– u : R→ Z, determines whether the corresponded neuron to the astrocyte is
fired or not, and is defined as follows:

u(x) =

{
−1 x ≤ ft
1 x > ft

where x is the output of the corresponding neuron, ft is the threshold of
firing, and the output of u indicates whether the neurons has fired (u(x) = 1)
or not (u(x) = −1).

– r : N → [−θ,+θ], where r represents how many times the neuron was fired
in the k consecutive cycles. The output of −θ or +θ results in the activation
of the astrocyte. −θ means that in the the k cycles, the corresponded neuron
did not fire for θ times, and +θ represents the firing of the neuron for +θ
times.

If the output of r is θ then the astrocyte become activated and it will send a
“+” connected astrocytes in the AAN. The astrocytes that receive the signal are
then activated. The same behavior will be repeated for −θ; if the output of r is
−θ, then the astrocyte become activated and sends a “-” activation signal to all
astrocytes connect to the current active astrocyte. The behavior of an astrocyte
that received a “+” activation signal is similar to the case that the output of its
r function is +θ; receiving a “-” signal also gives the same result to the output
−θ for r.

1 In each portion of the brain, generally more than one astrocyte network is connected
to neurons, but for simplicity of the artificial networks, we assume that only one
astrocyte network can be implemented on top of an ANN.
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In the second phase, the associated weights to active astrocytes2 will be mod-
ified as follows:

w(t +Δt) = w(t) +Δw(t)

where Δw(t) is defined as
Δw(t) = |w(t)|z(t)

and function z : N\0→ R indicates the percentage of the change of the weights
based on the astrocyte activation.

z(t) =

{
a r(t) = θ
−b r(t) = −θ

Figure 4 depicts a flow chart of the AAN algorithm.

4 Artificial Astrocyte Networks and Their Application to
a Classification Problem

For testing the performance of AAN, we answer the following question:

Are there possible connections between astrocytes of a neuron-glia
network that produce more accurate classification results?

We implement AAN to solve two classification problems. The first problem is
classifying breast cancer cells and the second one is a classification of ionosphere
data. The breast cancer and the ionosphere data sets used in this work were the
UCI data sets provided based on real world data and has repeatedly appeared in
the machine learning literature [30,28,29,31,10]. The breast cancer data set in-
cludes 201 instances of one class and 85 instances of another class. The instances
are described by nine attributes, some of which are linear and others are nomi-
nal. The available 286 breast cancer instances in the data set were organized into
146 training and 146 testing instances. The ionosphere data set consisted of 351
instances, with each instance having 34 attribute classified as either “good” or
“bad”. The 351 instances of ionosphere data set were divided into 175 training
and 176 testing instances; both problems were binary classification tasks. The
training and testing of the networks were implemented on a system with a 1.30
GHz processor and 2 GB of RAM using the Windows 8 operating system, Java
language source code and the Eclipse compiler.

The experiments aimed to test the performance of the proposed artificial as-
trocyte networks and to compare them with typical ANNs and ANGNs. The
typical ANNs were designed as multi-layer back propagation network, which is
composed of three layers. For the breast cancer problem, the input layer consists
of nine neurons, each of which receives one feature of the cells. The output layer

2 The associated weights to an astrocyte is defined as the weights connecting the
astrocyte’s corresponded neuron and the neurons in the next layer.
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Fig. 4. A flowchart of the AAN algorithm. This algorithm is executed by every single
astrocyte in each cycle. For simplicity, -θ is omitted from the algorithm.
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Table 1. The first four columns define the ANN. The other columns present the
parameters related to astrocytes.

Parameters
Neurons in
first Layer

Neurons in
2nd Layer

Neurons in
3rd Layer

α k θ a b ft

Breast cancer 9 8 2 0.1 100 40 1.25 0.75 0.75

Ionosphere 9 8 2 0.1 90 27 1.25 0.75 0.6

Table 2. The accuracy of classification on test data for ANN, ANGN and AAN

Network
Test Accuracy
(Breast Cancer)

Test Accuracy
(Ionosphere)

ANN 0.87 0.80

ANGN 0.91 0.86

AAN 0.93 0.88

consists of two neurons, which represents healthy and unhealthy cells. The hidden
layer consists of eight neurons. The number of neurons in the hidden layer was
determined by experiments that adjusted the number of neurons in the hidden
layer from 1 to 14. For the ionosphere problem, the input layer consisted of 34
neurons, each neuron corresponded to one attribute and the output layer had
two neurons, representing “good” and “bad”. The number of neurons in the
hidden layer was also experimentally determined to be 18.

The neuron-glia network was implemented on top of the networks by includ-
ing the following astrocyte parameters: k, θ, a,b and ft ∈ R. The values of these
parameters were experimentally determined. Table 1 gives the final parameter
values chosen for the training and testing of the networks. The network of interest
in this research, the artificial astrocyte network, was implemented by employing
the same parameters of the ANGN (Table 1). The astrocyte networks were de-
fined based on the random selection of the astrocytes as explained in section 3.
The astrocyte network for breast cancer data set was tested by involving three
random astrocytes, and for ionosphere data with 5 astrocytes; The accuracy of
classification in these experiments is reported3 in Table 2. The accuracy value
was obtained by executing the trained network on the testing data.

Table 2 shows a comparison between typical neural networks, neuron-glia
networks and artificial astrocyte networks. It can be seen that the inclusion of
the single astrocytes (ANGNs) improves the performance of the typical neural
network(as also discussed in [23]), the performance of ANGNs can also be en-
hanced by connecting astrocytes and forming astrocyte networks. It should be
noted that the common parameters have the same value in all models. There-
fore, the variations of the accuracy between ANN and ANGN is solely for the

3 Here, we show that there are random astrocyte networks that provide more accurate
results. The impact of the number of astrocytes and their connection in an AAN on
the classification results will be discussed in future work.
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inclusion of single astrocyte elements and between ANGN and AANs is for the
connections established between some astrocytes.

5 Conclusion and Future Work

The higher computing power achieved by the inclusion of the artificial astrocyte
networks can be explained in two ways. Firstly, there is some similarity between
AANs, liquid state machines, and recurrent neural networks, which results in
the reception of time-varying inputs from external astrocyte sources, as well
as neurons. In the AAN algorithm, astrocytes are randomly connected to each
other. The recurrent nature of the connections turns the time varying input
into a spatio-temporal pattern of activation in the network nodes that enables
the network to compute a large variety of non-linear functions on the input. In
other words, the astrocytes serve as a memory that records information of past
k cycles and use this information to shape the network in a way that reduces
error. Secondly, from a physiological point of view, astrocyte networks give a
simple interpretation of data integration in the brain. Physiologists believe that
the neurons’ digital processes provide contents of the information, while the
calcium waves generated by astrocytes provide integration of the contents [20].
Therefore, having an AAN on top of typical neural networks add the benefit of
data integration; this gives us a more realistic model of the human brain that
is able to provide a more detailed analysis and yields a more powerful artificial
neural network.

Possible future work in this area can be divided into four main directions.
The first will focus on designing more accurate models for describing artificial
astrocytes and astrocyte networks. Since 2009, when artificial astrocytes were
introduced until now, new physiological studies revealed other aspects of the
functionality and structure of astrocytes and their networks; a simplified version
of these aspects, specifically astrocyte networks with the ability to learn can be
added to current astrocyte models. Secondly, the future research in this area
needs to address the theoretical issues regarding the computational complexity
of the network. Analyzing the network from the computational complexity per-
spective in general and parametrized complexity in particular, will help us to
recognize the aspects that reduce the efficiency and will suggest new restricted
models that operate more quickly. The third direction will implement AANs on
different neural network architectures and evaluate their performance with and
without the added astrocyte networks. Finally, the fourth direction will evaluate
possible astrocyte networks. In this work, we only test the performance of one
random astrocyte network. It is possible to evaluate the performance by con-
sidering all types of astrocyte networks, which are represented in the form of
trees, bi-partite or other types of graphs. Then, a delay in transmitting data on
astrocyte connections could be considered in these networks.
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ida, M.: Glutamate released spontaneously from astrocytes sets the threshold for
synaptic plasticity. European Journal of Neuroscience 33(8), 1483–1492 (2011)

5. Giaume, C., Koulakoff, A., Roux, L., Holcman, D., Rouach, N.: Astroglial net-
works: a step further in neuroglial and gliovascular interactions. Nature Reviews
Neuroscience 11(2), 87–99 (2010)

6. Hatton, G.I., Parpura, V.: Glial neuronal signaling, vol. 1. Springer (2004)
7. Haydon, P.G.: Glia: listening and talking to the synapse. Nature Reviews Neuro-

science 2(3), 185–193 (2001)
8. Ikuta, C., Uwate, Y., Nishio, Y.: Chaos glial network connected to multi-layer per-

ceptron for solving two-spiral problem. In: Proceedings of 2010 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1360–1363. IEEE (2010)

9. Ikuta, C., Uwate, Y., Nishio, Y.: Performance and features of multi-layer percep-
tron with impulse glial network. In: The 2011 International Joint Conference on
Neural Networks (IJCNN), pp. 2536–2541. IEEE (2011)

10. Kim, H., Park, H.: Data reduction in support vector machines by a kernelized ionic
interaction model. In: SDM. SIAM (2004)

11. Konishi, E.: Modeling quantum mechanical observers via neural-glial networks.
International Journal of Modern Physics B 26(09) (2012)

12. Lallouette, J., Berry, H.: Topology drives calcium wave propagation in 3d astrocyte
networks. In: Proceedings of the European Conference on Complex Systems 2012,
pp. 453–463. Springer (2013)
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1 Introduction

Computation models based on real or complex numbers are much more powerful
than conventional Turing machines that define recursively enumerable languages.
Since there is a possibility that some of these models, like the quantum model,
will become physically available for experiments in the nearest future, it is quite
important to know the limitations of the models. In the paper, we focus on
the power of very small probabilistic, generalized, and quantum automata. In
his seminal paper, Rabin [Rab63] showed that 2-state PFAs define uncountably
many binary languages. Since GFAs and QFAs are generalizations of PFAs, the
same result holds for them as well. However, to get a complete picture, more
restricted cases for these automata, like 1-state automata or unary languages,
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states are sufficient to recognize uncountably many unary languages? which lan-
guages can be recognized by one state?

Our results are as follows. We show that a rotation operator implemented by
a 2-state unary GFA or QFA generates uncountably many languages depending
on the choice of cutpoint. For QFAs, the result holds even for the most restricted
model of such an automaton, described in [MC00]. This fact also allows us to
answer an open question stated in [YS10]. Then we use a different technique to
prove that there are uncountably many 4-state unary PFAs recognizing different
languages with the same cutpoint 1

4 . We left open the question whether this
bound can be lowered to 3 states, but we guess that the answer is no. Note that
2-state unary PFAs recognize only regular languages [Paz71].

1-state PFAs and QFAs define trivial languages but the situation is completely
different for GFAs. In the unary case, 1-state GFAs recognize a proper subclass
of regular languages, while the set of binary languages recognized by 1-state
GFAs is uncountable. In the last part of the paper we introduce three classes of
languages (solution, parity, and indicator languages) and fully characterize the
languages recognized by 1-state GFAs in terms of these classes.

2 Background

Let Σ be a finite alphabet, Σ∗ be the set of all words over Σ, and Σ+ = Σ∗\{ε},
where ε denotes the empty word. The end-markers ¢ (left) and $ (right) do not
belong to Σ.

Let us recall different models of finite automata. All models in the paper
read inputs from the left to the right symbol by symbol. A deterministic finite
automaton (DFA) is a quintuple A = (Q,Σ, δ, s, F ) containing a set of states
Q = {q1, . . . , qn}, a transition function δ : Q ×Σ → Q, an initial state s, and a
set F of final states. The transition function can be naturally extended to Q×Σ∗

and the acceptance condition for a word w is δ(s, w) ∈ F . Nondeterministic and
ε-nondeterministic automata [resp., NFA and ε-NFA] are obtained by replacing
the initial state by a set S and the transition function by an arbitrary relation
δ ⊆ Q × Σ × Q [resp., δ ⊆ Q × (Σ ∪ {ε}) × Q]. The acceptance condition is
(s, w, f) ∈ δ for some s ∈ S, f ∈ F . These three models are equivalent in the
sense that they recognize the same class of regular languages.

The acceptance conditions above can be easily restated in terms of matrix
multiplication, making DFA’s and NFA’s particular cases of a general model
called generalized finite automaton (GFA) [Tur69, Paz71]. A GFA is a quintuple
G = (Q,Σ, {Aσ | σ ∈ Σ}, v0, f), where Aσ ∈ R|Q|×|Q| is the transition matrix
for the symbol σ ∈ Σ, v0 ∈ R|Q|×1 is the initial vector, and f ∈ R1×|Q| is the
final vector. For an input word w ∈ Σ∗, the computation of G is traced by a |Q|-
dimensional column vector vi = Awivi−1, where 1 ≤ i ≤ |w| and the accepting
value of G on w is calculated as

fG(w) = fv|w| = fAw|w|Aw|w|−1
· · ·Aw2Aw1v0.

A probabilistic finite automaton (PFA) [Rab63] is a special case of GFA where
each transition matrix is (left) stochastic, v0 is a 0-1 stochastic vector, and f is
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a 0-1 vector. Note that the entry of 1 in v0 corresponds to the initial state and
the entries of 1’s in f correspond to final states.

A PFA can be defined to start its computation in a distribution of states
instead of a single state. Then any stochastic vector can serve as the initial
vector. Similarly, instead of fixed accepting states, each state contributes to the
accepting probability with some weight from [0, 1]. Formally, one can assume
that a PFA (i) reads the end-marker ¢ for preprocessing before reading the
input (and so the new initial vector is A¢v0 for a stochastic matrix A¢) and (ii)
reads the end-marker $ for post-processing after finishing the whole input (and
so the new final vector is fA$ for a stochastic matrix A$).

In the literature, there are differentmodels of quantum finite automata (QFAs).
The most general one [Hir10, YS11] can, in particular, simulate PFAs exactly. In
this paper, we use a more restrictive model which is sufficient to follow our results.
It is due to Moore and Crutchfield [MC00] and is called MCQFA.

We begin with a concise review of quantum computation. We refer the reader
to [SY14] for further details. Conventionally, any vector is represented in “ket”
notation, e.g. |v〉. Its conjugate transpose is denoted by 〈v| and the inner prod-
uct of 〈u| and |v〉 is denoted by 〈u|v〉. A quantum state of a quantum system
M with the set of states Q = {q1, . . . , qn} is a norm-1 (column) vector in the
n-dimensional Hilbert space Hn:

|v〉 =

⎛⎜⎝α1

...
αn

⎞⎟⎠ , where

n∑
j=1

|αj |2 = 1.

The entries α1, . . . , αn are called amplitudes of the states q1, . . . , qn, respectively,
while |αj |2 is viewed as the probability of the system being in the state qj . The
quantum state containing 1 in the jth entry (and hence zeroes in the other
entries) is denoted by |qj〉. Clearly, |q1〉, . . . , |qn〉 form a basis of Hn.

There are two fundamental quantum operations: unitary and measurement
operators. A unitary operator U applicable to M is an n × n complex-valued
matrix preserving the norm. Such an operator transforms a quantum state |v〉 to
a new state |v′〉 = U |v〉. Measurement operators are used to retrieve information
from quantum systems. We use simple measurement operators defined as follows.
The set of states Q is partitioned into sets Q1, . . . , Qk (k > 1) inducing the
decomposition of Hn into the sum H = H1 ⊕ · · · ⊕ Hk of orthogonal subspaces
Hl = span{|q〉 | q ∈ Ql}. A measurement operator P has k operation elements
Pl =

∑
q∈Ql

|q〉〈q| and forces the system to collapse into one of k quantum
subsystems corresponding to the subspaces Hl. We denote the outcomes of P
with the indices “1”, . . . ,“k”. The probability of getting the outcome “l” is

pl = 〈ṽl|ṽl〉 =
∑

qj∈Ql

|αj |2, where |ṽl〉 = Pl|v〉.
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If M collapses to this subsystem (pl > 0), the new quantum state is obtained
by normalizing |ṽl〉:

|vl〉 =
1
√
pl
|ṽl〉.

A MCQFA is a quintuple M = (Q,Σ, {Uσ | σ ∈ Σ}, |v0〉, P ), where Q =
{q1, . . . , qn}, Uσ ∈ C|Q|×|Q| is the unitary transition matrix for the symbol σ ∈ Σ,
|v0〉 ∈ {|q1〉, . . . , |qn〉} is the initial state, and P = {Pa, Pr} is the measurement
operator applied after reading the whole input. An input is accepted if the out-
come “a” of P is observed. For any given input w ∈ Σ∗, the computation of M
can be traced by a |Q|-dimensional quantum state:

|vi〉 = Uwi |vi−1〉,

where 1 ≤ i ≤ |w|. The accepting probability of M on w is

fM(w) = 〈ṽa|ṽa〉, where |ṽa〉 = Pa|v|w|〉.

MCQFAs can also be defined with the end-markers to perform pre- and post-
processing of the input. Then the initial state can be an arbitrary quantum state
U¢|v0〉 for a unitary operator U¢, and the measurement turns out to be a general
one with two outcomes, {PaU$, PrU$}, for a unitary U$.

The language recognized by a GFA/PFA/QFA M with cutpoint λ is defined
by

L(M, λ) = {w ∈ Σ∗ | fM(w) > λ},
where λ ∈ R for GFAs and λ ∈ [0, 1) for PFAs and QFAs. Any such language
recognized by an n-state GFA [PFA, QFA] is called (n-state) pseudo stochastic
[resp., stochastic, quantum automaton] language. The class names are given in
Table 1. For class C, one can define a new class using up to three parameters
in brackets C[¢n$], where ¢ ($) means the automaton reads the left (resp., the
right) end-marker and n means that the class is defined by the automata with
≤ n states.

Table 1. The models and their class names

model general alphabet unary alphabet

GFA PseudoS UnaryPseudoS
PFA S UnaryS

QFA QAL UnaryQAL

MCQFA MCL UnaryMCL

3 Cardinality of Classes of Unary Languages

GFAs, PFAs, and QFAs define the same class [Tur69, YS09, YS11]:

S = PseudoS = QAL and UnaryS = UnaryPseudoS = UnaryQAL. (3.1)
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In other words, any pseudo stochastic or any quantum language is a stochastic
language. Note that using end-markers does not change the classes. On the other
hand, MCL[¢$] � S and UnaryMCL[¢$] � UnaryS because MCQFA’s cannot
recognize non-empty finite languages [BC01].

In [Rab63], Rabin proved that the cardinality of S[2] (and then of S) is un-
countable for any non-unary alphabet. To the best of our knowledge, such a car-
dinality problem for unary languages has been open up to now. In this section,
we solve this problem and provide state bounds for all considered models of au-
tomata. We use rotations of the unit circle as transition matrices. Let θ ∈ [0, 2π);
the rotation automaton Rθ is the 2-state GFA on the alphabet Σ = {a} with the
initial vector

(
1
0

)
, the transition matrix Rθ =

(
cos θ − sin θ
sin θ cos θ

)
of the operator of the

counter-clockwise rotation of the plane by the angle θ, and the final vector ( 1 0 ).
The accepting value of Rθ on the input ak (k ≥ 0) is then equal to cos(kθ). Let
α be an irrational number. Note the following simple fact.

Fact 1. The set {cos(kαπ) | k ∈ N ∪ {0} } is dense in [−1, 1].

By Fact 1, for any given λ1 < λ2 ∈ (−1, 1) there is an integer k > 0 such that
λ1 < cos(kαπ) < λ2. Hence ak ∈ L(Rαπ, λ1)\L(Rαπ, λ2) and

L(Rαπ , λ2) � L(Rαπ , λ1)

Thus, any λ ∈ (−1, 1) produces a different language L(Rαπ, λ). We have proved

Theorem 1. The cardinality of UnaryPseudoS[2] is uncountable.

Remark 1. Since the sequence {cos(kαπ)}∞k=0 is aperiodic for irrational α, the
language L(Rαπ, λ) is nonregular for any λ ∈ (−1, 1).

By (3.1), UnaryS and UnaryQAL also have uncountable cardinality. Moreover,
the automaton Rθ is also a MCQFA with the accepting probability cos2(kθ) on
the input ak. So, for any given λ1 < λ2 ∈ [0, 1), there is some k > 0 such that
λ2
1 < cos2(kθ) < λ2

2. Repeating the rest of the proof of Theorem 1, we get

Theorem 2. The cardinality of UnaryMCL[2] (and hence of UnaryMCL and of
UnaryQAL[2]) is uncountable.

The classes S and QAL remain the same when the cutpoint is fixed to a
value between 0 and 1. But with cutpoint 0, PFAs recognize only regular lan-
guages [Paz71] and QFAs recognize “exclusive” stochastic languages but not all
stochastic languages [YS10]. Note that unary “exclusive” stochastic languages
are regular [SS78].

It was an open question whether with cutpoint 0 MCQFAs recognize a proper
subset of MCL [YS10]. Now we answer this question in the affirmative. All unary
languages recognized by MCQFAs with cutpoint 0 are regular as mentioned
above, while UnaryMCL contains uncountably many unary nonregular languages.

We continue with unary PFAs with few states. Contrary to GFAs and QFAs,
2-state unary PFAs recognize only regular languages [Paz71, Exercise 15, P. 170].
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Another deep distinction of PFAs is the following. A single unary GFA or QFA
can define uncountably many languages by selecting different cutpoints. On the
other hand, a unary n-state PFA can define at most n nonregular languages,
and hence, countably many languages at all [Paz71, Exercise 11, P. 170]. Thus,
in order to prove that the cardinality of UnaryS[n] is uncountable for some n, we
need a different argument.

Unary PFAs with three states recognize some nonregular languages [Paz71].
But it is still unknown whether the cardinality of UnaryS[3] (or UnaryS[¢3$]) is
countable or not. Using a result by Turakainen [Tur75, Theorem 1(i)], we show
that the cardinality of UnaryS[4] is uncountable. Adopting Turakainen’s proof
for unary automata, we get

Fact 2. For any n-state unary GFA G = (Q, {a}, A, (1, 0, . . . , 0)t, (1, 0, . . . , 0) ),
there exists an (n+2)-state unary PFA P such that fP(ε) = 1 and

fP(w) =
fG(w)

b|w| +
1

n+2
(3.2)

for some positive constant b and any word w ∈ Σ+.

Let G and P be the automata given in Fact 2. By (3.2) we have fG(w) > 0 if
and only if fP(w) >

1
n+2 for any w ∈ Σ+. Since fG(ε) = 1 > 0 and fP(ε) = 1 >

1
n+2 , we obtain L(G, 0) = L(P , 1

n+2 ).
Now we fix the cutpoint to 0 and present an uncountable family of languages

recognized by 2-state GFAs. For any θ ∈ (0, π), we can build the rotation au-
tomaton Rθ as described before. It is straightforward that ak ∈ L(Rθ, 0) if and
only if the corresponding state vector ends in the right hemisphere of the unit
circle, i.e., if cos(kθ) > 0. Let θ1 and θ2 be two irrational multiples of π such
that 0 < θ1 < θ2 = θ1 +Δ < π. Consider the rotational automata Rθ1 and Rθ2 .

Let m < min(θ1,Δ)
2 be a positive number. Suppose that Δ = θ2 − θ1 is an

irrational multiple of π. Then, there is an integer k > 1 such that

kΔ mod 2π ∈ [π−m,π+m].

Denote the state vectors of Rθ1 and Rθ2 after reading ak by v1k and v2k, respec-
tively. The minimum angle between these vectors is at least π−m. If exactly one
of these vectors lies in the right hemisphere of the unit circle, then ak separates
the languages L(Rθ1 , 0) and L(Rθ2 , 0). (One of the accepting probabilities is
positive and the other is negative and so the languages are different.)

If both v1k and v2k lie in the right hemisphere, then we have one of the pictures
drawn in Fig. 1. (The case of two vectors in the left hemisphere is symmetric.)
Note that in both pictures β1 + β2 ≤ m. In the left picture, v2k−1 must be in the
left hemisphere since m ≤ θ2 ≤ π. On the other hand, v1k−1 must be in the right

hemisphere since θ1 ≤ π−2m. So, ak−1 separates L(Rθ1 , 0) and L(Rθ2 , 0). In
a similar way, the situation in the right picture provides us with the separator
string ak+1: we rotate both vectors counterclockwise, and the vector v1k stays in
the right hemisphere while v2k moves to the left one.
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Fig. 1. State vectors in the same hemisphere: two possibilities

Since any language L(Rθ, 0) satisfies the condition fv0 = 1, from Fact 2
we know that L(Rθ, 0) can be recognized by some 4-state unary PFA Pθ with
cutpoint 1

4 .

Lemma 1. There is an uncountable set I of irrational numbers between 0 and 1
such that all their pairwise differences are irrational, i.e., for any α1 	= α2 ∈ I,
α1 − α2 /∈ Q.

Proof. Let ρ be a binary relation on (0, 1) such that (α1, α2) ∈ ρ means α1−α2

is rational. Then ρ is an equivalence relation, and each class of the corresponding
partition is countable. Hence, the number of classes is uncountable. Taking one
representative from each class, one gets the required set. ��

Let I be the set described in Lemma 1. Then the cardinality of the set

{L(Rαπ, 0) | α ∈ I} = {L(Pαπ,
1
4 ) | α ∈ I}

is uncountable. So we have proved

Theorem 3. The cardinality of UnaryS[4] is uncountable.

4 One-State Pseudo Stochastic Languages

In the previous section, we have shown that 2-state GFAs and QFAs can define
uncountably many languages. So, it can be interesting to consider the case of
1-state automata. But the languages defined by 1-state QFAs (and so PFAs)
are trivial. Indeed, the transition matrix of a 1-state QFA is (eiθ) for some real
number θ and then all words have the same accepting probability. On the other
hand, 1-state GFAs recognize many nontrivial languages. For example, the GFA
({q}, {a, b}, {Aa = (12 ), Ab = (2)}, v0 = 1, f = 1) recognizes the language of all
words containing more b’s than a’s with cutpoint 1.
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In this section, we completely describe the languages contained in PseudoS[1]
and relate them to regular and context-free languages. As a corollary, we get a
characterization of UnaryPseudoS[1]. For convenience, we write PseudoS[1,Σ] if
the alphabet Σ is fixed.

Suppose Σ = {a1, . . . , an}, w ∈ Σ∗, and |w|ai denotes the number of occur-
rences of the letter ai in w. The vector π(w) = (|w|a1 , . . . , |w|an) is called the
Parikh vector of w. For a language L, π(L) = {π(w) | w ∈ L} is the Parikh set
of L. A language L is Parikh closed if π−1(π(L)) = L. In other words, a Parikh
closed language contains a word w if and only if it contains all anagrams of w.

Let us introduce three types of Parikh closed languages. For arbitrary α ∈
R ∪ {+∞}, b1, . . . , bn ∈ R, the solution language Sol(Σ, b1, . . . , bn, α) is the lan-
guage whose Parikh set coincides with the set of all nonnegative integer solutions
to the linear inequality (b,x) = b1x1+· · ·+bnxn < α. The numbers b1, . . . , bn are
coefficients of the language. For a given Y ⊆ Σ, the parity language Par(Σ, Y, 0)
[resp., Par(Σ, Y, 1)] consists of all words from Σ∗ having even [resp., odd] num-
ber of occurrences of letters from Y . Finally, the indicator language Ind(Σ, Y )
consists of all words containing at least one letter from Y . In particular, one
has Par(Σ,∅, 0) = Σ∗, Par(Σ,∅, 1) = Ind(Σ,∅) = ∅. It is easy to see that all
parity languages and indicator languages are regular. On the other hand, most
of the solution languages are not regular. For example, the inequality x1−x2 < 0
generates the above mentioned binary language {w ∈ {a, b}∗ | |w|a < |w|b}.

Theorem 4. For a fixed finite alphabet Σ, let Λ be the set of all languages of
the form

Sol(X, b1, . . . , b|X|, α) ∩ Par(X,Y, i), (4.1)

where Y ⊆ X ⊆ Σ, i ∈ {0, 1}. Further, let V be set of all languages of the form

Sol(X, b1, . . . , b|X|, α) ∪ Par(X,Y, i) ∪ Ind(Σ,Σ\X), (4.2)

where Y ⊆ X ⊆ Σ, i ∈ {0, 1}, and α 	= +∞. Then

PseudoS[1,Σ] = Λ ∪V. (4.3)

Proof. The 1×1 matrices are just real numbers, so we replace “transition matri-
ces” with “transition numbers” in our terminology. The multiplication of tran-
sition numbers is commutative, and this fact has two consequences. First, any
L ∈ PseudoS[1] is Parikh closed. Second, the individual values of v0, f , and λ do
not matter; namely, one can put λ′ = λ

fv0
and consider two possible acceptance

conditions1:

A
|w|a1
a1 A

|w|a2
a2 · · ·A|w|an

an < λ′ and A
|w|a1
a1 A

|w|a2
a2 · · ·A|w|an

an > λ′. (4.4)

So, below we assume that a 1-state GFA over an n-letter alphabet Σ is given by
an n-tuple A = (A1 = Aa1 , . . . , An = Aan) of real numbers. The cutpoint λ = λ′

and an additional bit to choose among the conditions (4.4) are given separately.

1 A GFA with v0 = 0 or f = 0 recognizes either ∅ or Σ∗. The same effect can be
achieved by setting all transition numbers to 0. Hence we assume without loss of
generality v0, f �= 0.
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We say that a 1-state GFA G is positive if all numbers Ai and λ are positive.
If π(w) = (x1, . . . , xn), then the acceptance condition

Ax1
1 · · ·Axn

n < (>)λ (4.5)

for a positive GFA can be rewritten as

x1 logA1 + · · ·+ xn logAn < (>) logλ, (4.6)

where the logarithms are taken at any base greater than 1. But this linear in-
equality defines either the language Sol(Σ, logA1, . . . , logAn, logλ) (for the “<”
sign in (4.6)) or the language Sol(Σ,− logA1, . . . ,− logAn,− logλ) (for the “>”
sign)2.

Now we proceed with the general case. We assume the “<” sign in (4.5);
the case of the “>” sign admits a completely similar proof, so we omit it. For
convenience, we reorder the alphabet such that the numbers A1, . . . , Ak are
nonzero, while the other transition numbers, if any, are zero. We also put X =
{a1, . . . , ak} and denote by the set of letters with negative transition numbers
by Y . There are two possibilities. If λ ≤ 0, the inequality (4.5) for the Parikh
vector (x1, . . . , xn) of a word w is equivalent to the conjunction of the following
conditions:

– w contains no letters from outside X ;
– the number of letters from Y in w is odd;
– |A1|x1 · · · |Ak|xk > |λ|.

The first two conditions define the language Par(X,Y, 1), and the first and
the third conditions define Sol(X,− log |A1|, . . . ,− log |Ak|,− log |λ|) (assuming
log 0 = −∞). Thus, we get a language from Λ.

The second possibility is λ > 0. Here (4.5) is equivalent to the disjunction of
the conditions

– w contains a letter from outside X ;
– the number of letters from Y in w is odd;
– |A1|x1 · · · |Ak|xk < λ.

Similar to the above, these conditions define a language in V (note that α is
finite because λ > 0). Hence we obtain PseudoS[1,Σ] ⊆ Λ ∪V.

In order to show the reverse inclusion, we use the above considerations to
build 1-state GFAs with appropriate acceptance conditions from the elements of
Λ∪V. Let us first take a language Sol(X, b1, . . . , bk, α) ∩Par(X,Y, i) (as above,
we assume X = {a1, . . . , ak}). We put

Aj =

⎧⎪⎨⎪⎩
0, if j > k,

2bj , if aj ∈ X\Y,
−2bj , if aj ∈ Y.

(4.7)

2 From the geometric point of view, a 1-state positive GFA defines a hyperplane in
Rn and accepts exactly the words having the ends of their Parikh vectors on the
prescribed side of this hyperplane.
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If i = 1, then we use the acceptance condition “<−2−α”. For i = 0, the condi-
tion is “>2−α”. In the case of a language Sol(X, b1, . . . , bk, α) ∪ Par(X,Y, i) ∪
Ind(Σ,Σ\X) we also use (4.7) to define a GFA, but the acceptance condi-
tions are different: “>2α” for i = 1 and “<−2α” for i = 0. Thus we have
PseudoS[1,Σ] ⊇ Λ ∪V. The theorem is proved. ��

Corollary 1. All languages in UnaryPseudoS[1] are regular. Moreover, the class
UnaryPseudoS[1] consists of ∅, a∗, E = {an | n is even}, Ē = a∗\E, and all
languages of the forms

Si = {an | n ≤ i}, S̄i = a∗\Si, (Si or S̄i) ∪ (E or Ē), (Si or S̄i) ∩ (E or Ē).

Proof. The possible cases are X = ∅, X = Y = {a}, and (X = {a} ∧ Y = ∅).
The required list of languages can be obtained directly from (4.1)–(4.3). ��

Corollary 2. The cardinality of PseudoS[1, {a, b}] is uncountable.

Proof. On a plane, there are uncountably many pairwise non-parallel lines, and
each of them defines a different binary solution language. ��

Now we are going to relate the 1-state pseudo stochastic languages to the
classes of the Chomsky hierarchy. We need some additional notions. Real num-
bers b1, . . . , bn are called rationally equivalent if there exist γ ∈ R, q1, . . . , qn ∈ Q

such that bi = qiγ for all i. Let L = Sol(Σ, b1, . . . , bn, α), N ⊆ Σ be the set of
letters corresponding to zero coefficients bi. By decimation dec(L) of L we mean
the language over Σ\N obtained from L by deleting all letters of N from all
words (if N = ∅, then dec(L) = L). The following lemma is crucial.

Lemma 2. 1) A solution language is regular if and only if all its nonzero coef-
ficients have the same sign.
2) A nonregular solution language is context-free if and only if its coefficients
are rationally equivalent.

Proof. First we note that the decimation of a solution language is a solution
language defined by the same linear inequality in a vector space of a smaller
dimension.

Next, a solution language L is regular if and only if dec(L) is regular. Indeed,
if L is regular, one can take its recognizing DFA and replace all labels from N
by ε, getting a ε-NFA recognizing dec(L). For the converse, note that

L =
⋃

w=c1···ck∈dec(L)

N∗c1N
∗c2 · · ·N∗ckN

∗.

So, one can take a DFA recognizing dec(L) and add loops labeled by all letters
from N to each its state. The resulting automaton will recognize L.

Let D be the decimation of some solution language. The Parikh vectors of
its words satisfy an inequality b1x1 + · · · + bkxk < α, where all coefficients bi
are nonzero. If all these coefficients are positive [resp. negative], then D is finite
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[resp., cofinite]. As was proved above, in this case any solution language with
the decimation D is regular. Now assume that some coefficients have different
signs; without loss of generality, b1 > 0 > b2. Let the letters a1 and a2 correspond
to b1 and b2, respectively. If D is regular, then it is recognized by a DFA A with,
say, t states. This DFA accepts all words from D including all words ax1

1 ax2
2 such

that b1x1 + b2x2 < α. Such words exist for any x1, in particular, for x1 > t.
Then A has a cycle labelled by some ai1, i ≤ t. Iterating this cycle appropriate
numbers of times, we will get a word of the form ax1+ri

1 ax2
2 which is recognized

by A but does not belong to D. Thus, D is not regular, and we finished the
proof of statement 1.

Now we turn to the proof of statement 2. Take a solution language L with
the decimation D = Sol(Σ, b1, . . . , bk, α). Since L is not regular, we know from
above that some bi’s have different signs; without loss of generality, b1 > 0 > b2.

Both L and D are determined by the inequality b1x1 + · · · + bkxk < α. If
the coefficients are rationally equivalent, we transform this inequality, dividing
both sides by the common irrational factor of all coefficients and than multiplying
both sides by the least common multiple of denominators of the obtained rational
coefficients. As a result, we get a linear inequality

b̂1x1 + · · ·+ b̂kxk < α̂

with integer coefficients and the same set of solutions. Finally, we replace α̂ by
+α̂, preserving the set of integer solutions of the inequality. To check whether
the Parikh vector of a word satisfies the resulting diophantine inequality, one can
implement a counter in the stack of a pushdown automaton. Hence, the solution
languages with rationally equivalent coefficients are context-free.

Now consider a solution language L having rationally non-equivalent coeffi-
cients. If any positive coefficient is equivalent to any negative one, then all coef-
ficients are equivalent; so, L has a pair of rationally non-equivalent coefficients
of different signs, say, b1 and b2. Then the value of the expression b1x1+ b2x2 for
the word ax1

1 ax2
2 ∈ L can be arbitrarily close from below to α. Thus, (b, π(w))

for w ∈ L can be arbitrarily close from below to α (and the supremum can-
not be reached by the definition of solution language). Let us show that this is
impossible for context-free languages. Aiming at a comtradiction, assume that
L is context-free. By Parikh’s Theorem [Par66] there exists a regular language
L′ such that π(L′) = π(L). Since L is infinite, π(L) and L′ are infinite as well.
Consider the minimal DFA A with partial transition function, recognizing L′.
This DFA must contain cycles; let z be the label of some cyclic walk in the graph
of A. Then for some u, v ∈ Σ∗ the language L′ contains the words uztv for all
nonnegative integers t. Hence we have

(b, π(uztv)) = (b, π(uv)) + t(b, π(z)) < α,

implying (b, π(z)) ≤ 0. Since this inequality holds for the label of any cyclic walk,
the function (b, π(w)) reaches its maximum for w ∈ L′ on some short word w.
Thus, the maximum of (b, π(w)) for w ∈ L is also reachable, a contradiction.
Hence, L is not context-free. ��
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Now we are able to relate PseudoS[1] to the classes of the Chomsky hierarchy.

Theorem 5. 1) A 1-state pseudo stochastic language is regular if and only if
the logarithms of absolute values of all nonzero transition numbers of the gener-
ating 1-state GFA have the same sign.
2) A nonregular 1-state pseudo stochastic language is context-free if and only if
the logarithms of absolute values of all nonzero transition numbers of the gener-
ating 1-state GFA are rationally equivalent.

Remark 2. It is easy to check that the properties “to have the same sign” and
“to be rationally equivalent” for logarithms are independent of the base of the
logarithm.

Proof. By (4.3), a language L ∈ PseudoS[1] is given either by (4.1) or by (4.2).
In both cases, L is regular [context-free] if and only if the corresponding solution
language is regular [resp., context-free]. As was shown in the proof of Theorem 4,
the coefficients of this solution language are logarithms of absolute values of
the transition numbers of the GFA recognizing L. The result now follows from
Lemma 2. ��

Remark 3. The proof of Lemma 2 shows, in fact, that solution languages can
be recognized by deterministic pushdown automata. Hence, if a 1-state pseudo
stochastic language is context-free, it is deterministic context-free.

5 Concluding Remarks

In this paper, we show that 2-state GFAs, 2-state QFAs (even restricted ones),
and 4-state PFAs define uncountably many unary languages. In addition, we
completely characterize the class of languages recognized by 1-state GFAs.

Our results were stated for languages without end-markers; however, the only
case where end-markers can, in principle, improve the result, in the case of 3-
state unary PFAs. Nevertheless, it is interesting to study the general problem
whether C[n] and C[¢k$] are incomparable for some k < n, where C is one of
the (probabilistic or quantum) classes from Table 1. Another related problem is
whether the inclusion C[n] ⊆ C[n+1] is always strict.

As aforementioned before, QFAs with cutpoint 0 define exclusive stochastic
languages, a superset of regular languages, and it is still open whether the car-
dinality of this class is uncountable or not [YS10].

Acknowledgements. We are grateful to anonymous referees for their construc-
tive comments.
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Abstract. The statistical mechanical interpretation of algorithmic in-
formation theory (AIT, for short) was introduced and developed in our
former work [K. Tadaki, Local Proceedings of CiE 2008, pp.425–434,
2008], where we introduced the notion of thermodynamic quantities into
AIT. These quantities are real functions of temperature T > 0. The val-
ues of all the thermodynamic quantities diverge when T exceeds 1. This
phenomenon corresponds to phase transition in statistical mechanics. In
this paper we introduce the notion of strong predictability for an infi-
nite binary sequence and then apply it to the partition function Z(T ),
which is one of the thermodynamic quantities in AIT. We then reveal a
new computational aspect of the phase transition in AIT by showing the
critical difference of the behavior of Z(T ) between T = 1 and T < 1 in
terms of the strong predictability for the base-two expansion of Z(T ).

Keywords: Algotithmic information theory, statistical mechanics, tem-
perature, phase transition, predictability, partition function.

1 Introduction

Algorithmic information theory (AIT, for short) is a framework for applying
information-theoretic and probabilistic ideas to computability theory. One of
the primary concepts of AIT is the program-size complexity (or Kolmogorov
complexity) H(x) of a finite binary string x, which is defined as the length of the
shortest binary program for a universal decoding algorithm U , called an optimal
prefix-free machine, to output x. By the definition, H(x) is thought to represent
the amount of randomness contained in a finite binary string x. In particular,
the notion of program-size complexity plays a crucial role in characterizing the
randomness of an infinite binary sequence, or equivalently, a real. In [3] Chaitin
introduced the Ω number as a concrete example of random real. The first n
bits of the base-two expansion of Ω solve the halting problem of U for inputs of
length at most n. By this property, Ω is shown to be a random real, and plays
a central role in the development of AIT.

In this paper, we study the statistical mechanical interpretation of AIT. In a
series of works [14–19], we introduced and developed this particular subject of
AIT. First, in [14] we introduced the thermodynamic quantities at temperature
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T , such as partition function Z(T ), free energy F (T ), energy E(T ), statistical
mechanical entropy S(T ), and specific heat C(T ), into AIT. These quantities
are real functions of a real argument T > 0, and are introduced in the following
manner: Let X be a complete set of energy eigenstates of a quantum system
and Ex the energy of an energy eigenstate x of the quantum system. In [14] we
introduced thermodynamic quantities into AIT by performing Replacements 1
below for the corresponding thermodynamic quantities in statistical mechanics.

Replacements 1

(i) Replace the complete set X of energy eigenstates x by the set domU of all
programs p for U .

(ii) Replace the energy Ex of an energy eigenstate x by the length |p| of a
program p.

(iii) Set the Boltzmann Constant kB to 1/ ln 2. ��

For example, in statistical mechanics, the partition function Zsm(T ) at tem-
perature T is given by

Zsm(T ) =
∑
x∈X

e
− Ex

kBT .

Thus, based on Replacements 1, the partition function Z(T ) in AIT is defined
as

Z(T ) =
∑

p∈domU

2−
|p|
T . (1)

In general, the thermodynamic quantities in AIT are variants of Chaitin Ω num-
ber. In fact, in the case of T = 1, Z(1) is precisely Chaitin Ω number.1

In [14] we then proved that if the temperature T is a computable real with
0 < T < 1 then, for each of the thermodynamic quantities Z(T ), F (T ), E(T ),
S(T ), and C(T ) in AIT, the partial randomness of its value equals to T , where
the notion of partial randomness is a stronger representation of the compression
rate by means of program-size complexity. Thus, the temperature T plays a
role as the partial randomness (and therefore the compression rate) of all the
thermodynamic quantities in the statistical mechanical interpretation of AIT.
In [14] we further showed that the temperature T plays a role as the partial
randomness of the temperature T itself, which is a thermodynamic quantity of
itself in thermodynamics or statistical mechanics. Namely, we proved the fixed
point theorem on partial randomness,2 which states that, for every T ∈ (0, 1), if
the value of partition function Z(T ) at temperature T is a computable real, then
the partial randomness of T equals to T , and therefore the compression rate of
T equals to T , i.e.,

lim
n→∞

H(T�n)
n

= T,

where T�n is the first n bits of the base-two expansion of the real T .

1 To be precise, the partition function is not a thermodynamic quantity but a
statistical mechanical quantity.

2 The fixed point theorem on partial randomness is called a fixed point theorem on
compression rate in [14].
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In our second work [15] on the statistical mechanical interpretation of AIT,
we showed that a fixed point theorem of the same form as for Z(T ) holds also for
each of F (T ), E(T ), and S(T ). In the third work [16], we further unlocked the
properties of the fixed points on partial randomness by introducing the notion of
composition of prefix-free machines into AIT, which corresponds to the notion
of composition of systems in normal statistical mechanics. In the work [17] we
developed a total statistical mechanical interpretation of AIT which attains a
perfect correspondence to normal statistical mechanics, by making an argument
on the same level of mathematical strictness as normal statistical mechanics
in physics. We did this by identifying a microcanonical ensemble in AIT. This
identification clarifies the meaning of the thermodynamic quantities of AIT.

Our first work [14] showed that the values of all the thermodynamic quantities
in AIT diverge when the temperature T exceeds 1. This phenomenon might be
regarded as some sort of phase transition in statistical mechanics. In the work [19]
we revealed a computational aspect of the phase transition in AIT. The notion
of weak truth-table reducibility plays an important role in recursion theory [5, 9].
In the work [19] we introduced an elaboration of this notion, called reducibility in
query size f . This elaboration enables us to deal with the notion of asymptotic
behavior of computation in a manner like in computational complexity theory,
while staying in computability theory. We applied the elaboration to the relation
between Z(T ) and domU , where the latter is the set of all halting inputs for the
optimal prefix-free machine U , i.e., the halting problem. We then revealed the
critical difference of the behavior of Z(T ) between T = 1 and T < 1 in relation to
domU . Namely, we revealed the phase transition between the unidirectionality
at T = 1 and the bidirectionality at T < 1 in the reduction between Z(T ) and
domU . This critical phenomenon cannot be captured by the original notion of
weak truth-table reducibility.

In this paper, we reveal another computational aspect of the phase transition
in AIT between T = 1 and T < 1. We introduce the notion of strong predictability
for an infinite binary sequence. Let X = b1b2b3 . . . be an infinite binary sequence
with each bi ∈ {0, 1}. The strong predictability of X is the existence of the
computational procedure which, given any prefix b1 . . . bn of X , can predict the
next bit bn+1 in X with unfailing accuracy, where the suspension of an individual
prediction for the next bit is allowed to make sure that the whole predictions are
error-free. We introduce three types of strong predictability, finite-state strong
predictability, total strong predictability, and strong predictability, which differ
with respect to computational ability. We apply them to the base-two expansion
of Z(T ). On the one hand, we show that the base-two expansion of Z(T ) is not
strongly predictable at T = 1 in the sense of any of these three types of strong
predictability. On the other hand, we show that it is strongly predictable in the
sense of all of the three types in the case where T is computable real with T < 1.
In this manner, we reveal a new aspect of the phase transition in AIT between
T = 1 and T < 1.
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Note that the notion of pseudorandomness plays an essential role in mod-
ern cryptography and computational complexity theory. One of the equiva-
lent characterizations of pseudorandomness is the notion of unpredictability in
polynomial-time (see Goldreich [7, Chapter 3] for these notions and their his-
torical detail). As we explained above, our three types of notions of strong pre-
dictability are all applied to an infinite binary sequence. By contrast, the notion
of unpredictability in polynomial-time is applied not to such a sequence but to
an infinite sequence {Vn}n∈N of random variables such that Vn is distributed over
the set of finite binary strings of length �(n) for every n ∈ N, where � is some
fixed polynomial. Moreover, the notion of unpredictability in polynomial-time
is defined using probabilistic polynomial-time Turing machines whose computa-
tions are allowed to make an error. On the other hand, our notions of strong
predictability are defined based on exact computations by two extremes of com-
putational models: The one extreme is a general deterministic Turing machine
without restriction on its computational resource, and the other is a deterministic
finite automaton. Thus, the notions of strong predictability which we investigate
in this paper are not considered to have an explicit relationship to the notion of
unpredictability in polynomial-time.

2 Preliminaries

We start with some notation and definitions which will be used in this paper.
For any set S we denote by #S the cardinality of S. N = {0, 1, 2, 3, . . .} is the
set of natural numbers, and N+ is the set of positive integers. Q is the set of
rationals, and R is the set of reals. {0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, . . .} is
the set of finite binary strings, where λ denotes the empty string, and {0, 1}∗ is
ordered as indicated. We identify any string in {0, 1}∗ with a natural number in
this order. For any x ∈ {0, 1}∗, |x| is the length of x. A subset S of {0, 1}∗ is
called prefix-free if no string in S is a prefix of another string in S.

We denote by {0, 1}∞ the set of infinite binary sequences, where an infinite
binary sequence is infinite to the right but finite to the left. Let X ∈ {0, 1}∞. For
any n ∈ N+, we denote the nth bit of X by X(n). For any n ∈ N, we denote the
first n bits ofX byX�n∈ {0, 1}∗. Namely,X�0= λ, andX�n= X(1)X(2) . . .X(n)
for every n ∈ N+.

For any real α, we denote by -α. the greatest integer less than or equal to α.
When we mention a real α as an infinite binary sequence, we are considering the
base-two expansion of the fractional part α − -α. of the real α with infinitely
many zeros. Thus, for any real α, α�n and α(n) denote X�n and X(n), respec-
tively, where X is the unique infinite binary sequence such that α− -α. = 0.X
and X contains infinitely many zeros.

A function f : N→ {0, 1}∗ or f : N→ Q is called computable if there exists a
deterministic Turing machine which on every input n ∈ N halts and outputs f(n).
A real α is called computable if there exists a computable function f : N → Q

such that |α− f(n)| < 2−n for all n ∈ N. We say that X ∈ {0, 1}∞ is computable
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if the mapping N / n �→ X�n is a computable function, which is equivalent to
that the real 0.X in base-two notation is computable.

Let S and T be any sets. We say that f : S → T is a partial function if f is a
function whose domain is a subset of S and whose range is T . The domain of a
partial function f : S → T is denoted by dom f . A partial computable function
f : {0, 1}∗ → {0, 1}∗ is a partial function f : {0, 1}∗ → {0, 1}∗ for which there
exits a deterministic Turing machine M such that (i) on every input x ∈ {0, 1}∗,
M halts if and only of x ∈ dom f , and (ii) on every input x ∈ dom, M outputs
f(x). We write “c.e.” instead of “computably enumerable.”

2.1 Algorithmic Information Theory

In the following we concisely review some definitions and results of algorithmic
information theory (AIT, for short) [3–5, 9]. A prefix-free machine is a par-
tial computable function M : {0, 1}∗ → {0, 1}∗ such that domM is prefix-free.
For each prefix-free machine M and each x ∈ {0, 1}∗, HM (x) is defined by
HM (x) = min

{
|p|
∣∣ p ∈ {0, 1}∗ &M(p) = x

}
(may be ∞). A prefix-free ma-

chine U is called optimal if for each prefix-free machine M there exists d ∈ N

with the following property; if p ∈ domM , then there is q ∈ domU for which
U(q) = M(p) and |q| ≤ |p|+d. It is then easy to see that there exists an optimal
prefix-free machine. We choose a particular optimal prefix-free machine U as
the standard one for use, and define H(x) as HU (x), which is referred to as the
program-size complexity of x or the Kolmogorov complexity of x [3, 6, 8].

Chaitin [3] introduced Ω number by

Ω =
∑

p∈domU

2−|p|.

Since domU is prefix-free, Ω converges and 0 < Ω ≤ 1. For any X ∈ {0, 1}∞,
we say that X is weakly Chaitin random if there exists c ∈ N such that n− c ≤
H(X �n) for all n ∈ N+ [3, 4]. Chaitin [3] showed that Ω is weakly Chaitin
random. Therefore 0 < Ω < 1.

2.2 Partial Randomness

In the work [12], we generalized the notion of the randomness of a real so that
the partial randomness of a real can be characterized by a real T with 0 ≤ T ≤ 1
as follows.

Definition 1 (Tadaki [12]). Let T ∈ [0, 1] and let X ∈ {0, 1}∞. We say that
X is weakly Chaitin T -random if there exists c ∈ N such that, for all n ∈ N+,
Tn− c ≤ H(X�n). ��

In the case of T = 1, the weak Chaitin T -randomness results in the weak
Chaitin randomness.
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Definition 2 (Tadaki [19]). Let T ∈ [0, 1] and let X ∈ {0, 1}∞. We say that
X is strictly T -compressible if there exists d ∈ N such that, for all n ∈ N+,
H(X �n) ≤ Tn + d. We say that X is strictly Chaitin T -random if X is both
weakly Chaitin T -random and strictly T -compressible. ��

In the work [12], we generalized Chaitin Ω number to Z(T ) as follows. For
each real T > 0, the partition function Z(T ) at temperature T is defined by
the equation (1). Thus, Z(1) = Ω. If 0 < T ≤ 1, then Z(T ) converges and
0 < Z(T ) < 1, since Z(T ) ≤ Ω < 1. The following theorem holds for Z(T ).

Theorem 1 (Tadaki [12, 19]). Let T ∈ R.

(i) If 0 < T < 1 and T is computable, then Z(T ) is strictly Chaitin T -random.
(ii) If 1 < T , then Z(T ) diverges to ∞. ��

This theorem shows some aspect of the phase transition of the behavior of
Z(T ) when the temperature T exceeds 1.

2.3 Martingales

In this subsection we review the notion of martingale. Compared with the notion
of strong predictability which is introduced in this paper, the predictability based
on martingale is weak one. We refer the reader to Nies [9, Chapter 7] for the
notions and results of this subsection.

A martingale B is a betting strategy. Imagine a gambler in a casino is pre-
sented with prefixes of an infinite binary sequence X in ascending order. So far
she has been seen a prefix x of X , and her current capital is B(x) ≥ 0. She bets
an amount α with 0 ≤ α ≤ B(x) on her prediction that the next bit will be 0,
say. Then the bit is revealed. If she was right, she wins α, else she loses α. Thus,
B(x0) = B(x) + α and B(x1) = B(x) − α, and hence B(x0) + B(x1) = 2B(x).
The same considerations apply if she bets that the next bit will be 1. These
considerations result in the following definition.

Definition 3 (Martingale). A martingale is a function B : {0, 1}∗ → [0,∞)
such that B(x0) + B(x1) = 2B(x) for every x ∈ {0, 1}∗. For any X ∈ {0, 1}∞,
we say that the martingale B succeeds on X if the capital it reaches along X is
unbounded, i.e., sup{B(X�n) | n ∈ N} =∞. ��

For any subset S of {0, 1}∗×Q, we say that S is computably enumerable (c.e.,
for short) if there exists a deterministic Turing machine M such that, on every
input s ∈ {0, 1}∗ ×Q, M halts if and only if s ∈ S.

Definition 4 (C.E. Martingale). A martingale B is called computably enu-
merable if the set {(x, q) ∈ {0, 1}∗ ×Q | q < B(x)} is c.e. ��

Theorem 2. For every X ∈ {0, 1}∞, no c.e. martingale succeeds on X if and
only if X is weakly Chaitin random. ��



346 K. Tadaki

For any subset S of {0, 1}∗×Q, we say that S is computable if there exists a
deterministic Turing machine M such that, on every input s ∈ {0, 1}∗ × Q, (i)
M halts and (ii) M outputs 1 if s ∈ S and 0 otherwise.

Definition 5 (Computable Randomness). A martingale B is called com-
putable if the set {(x, q) ∈ {0, 1}∗ × Q | q < B(x)} is computable. For any
X ∈ {0, 1}∞, we say that X is computably random if no computable martingale
succeeds on X. ��

Definition 6 (Partial ComputableMartingale).A partial computable mar-
tingale is a partial computable function B : {0, 1}∗ → Q∩ [0,∞) such that domB
is closed under prefixes, and for each x ∈ domB, B(x0) is defined iff B(x1) is de-
fined, in which case B(x0) + B(x1) = 2B(x) holds. ��

Definition 7 (Partial Computable Randomness). Let B be a partial com-
putable martingale and X ∈ {0, 1}∞. We say that B succeeds on X if B(X�n) is
defined for all n ∈ N and sup{B(X�n) | n ∈ N} =∞. We say that X is partial
computably random if no partial computable martingale succeeds on X. ��

Theorem 3. Let X ∈ {0, 1}∞.

(i) If X is weakly Chaitin random then X is partial computably random.
(ii) If X is partial computably random then X is computably random. ��

The converse direction of each of the implications (i) and (ii) of Theorem 3
fails.

3 Non Strong Predictability at T = 1

The main result in this section is Theorem 5, which shows that partial com-
putable randomness implies non strong predictability. For intelligibility we first
show an easier result, Theorem 4, which says that computable randomness im-
plies non total strong predictability.

Definition 8 (Total Strong Predictability). For any X ∈ {0, 1}∞, we say
that X is total strongly predictable if there exists a computable function
F : {0, 1}∗ → {0, 1, N} for which the following two conditions hold:

(i) For every n ∈ N, if F (X�n) 	= N then F (X�n) = X(n+ 1).
(ii) The set {n ∈ N | F (X�n) 	= N} is infinite. ��

In the above definition, the letter N outputted by F on the input X�n means
that the prediction of the next bit X(n+ 1) is suspended.

Theorem 4. For every X ∈ {0, 1}∞, if X is computably random then X is not
total strongly predictable.
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Proof. We show the contraposition of Theorem 4. For that purpose, suppose
that X is total strongly predictable. Then there exists a computable function
F : {0, 1}∗ → {0, 1, N} which satisfies the conditions (i) and (ii) of Definition 8.
We define a function B : {0, 1}∗ → N recursively as follows: First B(λ) is defined
as 1. Then, for any x ∈ {0, 1}∗, B(x0) is defined by

B(x0) =

⎧⎨⎩
B(x) if F (x) = N,
2B(x) if F (x) = 0,
0 otherwise,

and then B(x1) is defined by B(x1)=2B(x)−B(x0). It follows thatB : {0, 1}∗ →
N is a computable function and

B(x0) +B(x1) = 2B(x)

for every x ∈ {0, 1}∗. Thus B is a computable martingale. On the other hand,
it is easy to see that

B(X�n) = 2#{m∈N |m<n & F (X�m) �=N}

for every n ∈ N. Since the set {n ∈ N | F (X�n) 	= N} is infinite, it follows that
limn→∞ B(X�n) =∞. Therefore, X is not computably random, as desired. ��

Definition 9 (Strong Predictability). For any X ∈ {0, 1}∞, we say that X
is strongly predictable if there exists a partial computable function F : {0, 1}∗ →
{0, 1, N} for which the following three conditions hold:

(i) For every n ∈ N, F (X�n) is defined.
(ii) For every n ∈ N, if F (X�n) 	= N then F (X�n) = X(n+ 1).
(iii) The set {n ∈ N | F (X�n) 	= N} is infinite. ��

Obviously, the following holds.

Proposition 1. For every X ∈ {0, 1}∞, if X is total strongly predictable then
X is strongly predictable. ��

Theorem 5. For every X ∈ {0, 1}∞, if X is partial computably random then
X is not strongly predictable.

Proof. We show the contraposition of Theorem 5. For that purpose, suppose
that X is strongly predictable. Then there exists a partial computable function
F : {0, 1}∗ → {0, 1, N} which satisfies the conditions (i), (ii), and (iii) of Defini-
tion 9. We define a partial function B : {0, 1}∗ → N recursively as follows: First
B(λ) is defined as 1. Then, for any x ∈ {0, 1}∗, B(x0) is defined by

B(x0) =

⎧⎪⎪⎨⎪⎪⎩
B(x) if F (x) = N,
2B(x) if F (x) = 0,
0 if F (x) = 1,
undefined if F (x) is undefined,
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and then B(x1) is defined by

B(x1) =

{
2B(x)−B(x0) if B(x0) is defined,
undefined otherwise.

It follows that B : {0, 1}∗ → N is a partial recursive function such that

(i) domB is closed under prefixes,
(ii) for every x ∈ domB, x0 ∈ domB if and only if x1 ∈ domB, and
(iii) for every x ∈ {0, 1}∗, if x, x0, x1 ∈ domB then B(x0) +B(x1) = 2B(x).

Thus B is a partial computable martingale. On the other hand, it is easy to see
that, for every n ∈ N, B(X�n) is defined and

B(X�n) = 2#{m∈N |m<n & F (X�m) �=N}.

Since the set {n ∈ N | F (X�n) 	= N} is infinite, it follows that

lim
n→∞

B(X�n) =∞.

Therefore, X is not partial computably random, as desired. ��

Theorem 6. For every X ∈ {0, 1}∞, if X is weakly Chaitin random then X is
not strongly predictable.

Proof. The result follows immediately from (i) of Theorem 3 and Theorem 5. ��

Thus, since Z(1), i.e., Ω, is weakly Chaitin random, we have the following.

Theorem 7. Z(1) is not strongly predictable. ��

4 Strong Predictability on T < 1

In this section, we introduce the notion of finite-state strong predictability. For
that purpose, we first introduce the notion of finite automaton with outputs. This
is just a deterministic finite automaton whose output is determined, depending
only on its final state. The formal definitions are as follows.

Definition 10 (Finite Automaton with Outputs). A finite automaton with
outputs is a 6-tuple (Q,Σ, δ, q0, Γ, f), where

(i) Q is a finite set called the states,
(ii) Σ is a finite set called the input alphabet,
(iii) δ : Q×Σ → Q is the transition function,
(iv) q0 ∈ Q is the initial state,
(v) Γ is a finite set called the output alphabet, and
(vi) f : Q→ Γ is the output function from final states. ��

A finite automaton with outputs computes as follows.



Phase Transition and Strong Predictability 349

Definition 11. Let M = (Q,Σ, δ, q0, Γ, f) be a finite automaton with outputs.
For every x = x1x2 . . . xn ∈ Σ∗ with each xi ∈ Σ, the output of M on the input
x, denoted M(x), is y ∈ Γ for which there exist q1, q2, . . . , qn ∈ Q such that

(i) qi = δ(qi−1, xi) for every i ∈ {1, 2, . . . , n}, and
(ii) y = f(qn). ��

In Definitions 10 and 11, if we set Γ = {0, 1}, the definitions result in those of
a normal deterministic finite automaton and its computation, where M(x) = 1
means that M accepts x and M(x) = 0 means that M rejects x.

Definition 12 (Finite-State Strong Predictability). For any X ∈ {0, 1}∞,
we say that X is finite-state strongly predictable if there exists a finite automa-
ton with outputs M = (Q, {0, 1}∗, δ, q0, {0, 1, N}, f) for which the following two
conditions hold:

(i) For every n ∈ N, if M(X�n) 	= N then M(X�n) = X(n+ 1).
(ii) The set {n ∈ N |M(X�n) 	= N} is infinite. ��

Since the computation of every finite automaton can be simulated by some
deterministic Turing machine which always halts, the following holds, obviously.

Proposition 2. For every X ∈ {0, 1}∞, if X is finite-state strongly predictable
then X is total strongly predictable. ��

Theorem 8. Let T be a real with 0 < T < 1. For every X ∈ {0, 1}∞, if X is
strictly Chaitin T -random, then X is finite-state strongly predictable. ��

In order to prove Theorem 8 we need the following theorem. For completeness,
we include its proof.

Theorem 9 (Calude, Hay, and Stephan [1]). Let T be a real with 0 < T <
1. For every X ∈ {0, 1}∞, if X is strictly Chaitin T -random, then there exists
L ≥ 2 such that X does not have a run of L consecutive zeros.

Proof. Based on the optimality of U used in the definition of H(x), it is easy to
show that there exists d ∈ N such that, for every x ∈ {0, 1}∗ and every n ∈ N,

H(x0n) ≤ H(x) +H(n) + d. (2)

Since T > 0, it follows also from the optimality of U that there exists c ∈ N+

such that H(c) + d ≤ Tc− 1. Hence, by (2) we see that, for every x ∈ {0, 1}∗,

H(x0c) ≤ H(x) + Tc− 1. (3)

Now, suppose that X ∈ {0, 1}∞ is strictly Chaitin T -random. Then there
exists d0 ∈ N such that, for every n ∈ N,

|H(X�n)− Tn| ≤ d0. (4)

We choose a particular k0 ∈ N+ with k0 > 2d0.
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Assume thatX has a run of ck0 consecutive zeros. ThenX�n0 0ck0 = X�n0+ck0

for some n0 ∈ N. It follows from (3) that

H(X�n0+ck0)− T (n0 + ck0) + k0 ≤ H(X�n0)− Tn0.

Thus, using (4) we have −d0+ k0 ≤ d0, which contradicts the fact that k0 > 2d.
Hence, X does not have a run of ck0 consecutive zeros, as desired. ��

Proof (of Theorem 8). Suppose that X ∈ {0, 1}∞ is strictly Chaitin T -random.
Then, by Theorem 9, there exists d ≥ 2 such that X does not have a run of d
consecutive zeros. For each n ∈ N+, let a(n) be the length of the nth block of
consecutive zeros in X from the left. Namely, assume that X has the form

X = 1b(0)0a(1)1b(1)0a(2)1b(2)0a(3)1b(3) · · · · · ·

for some natural number b(0) and some infinite sequence b(1), b(2), b(3), . . . of
positive integers. Let L = lim supn→∞ a(n). Since 1 ≤ a(n) < d for all n ∈ N+,
we have L ∈ N+. Moreover, since {a(n)} is a sequence of positive integers, there
exists n0 ∈ N+ such that

a(n) ≤ L (5)

for every n ≥ n0, and
a(n) = L (6)

for infinitely many n ≥ n0. Let m be the length of the prefix of X which lies
immediately to the left of the n0th block of consecutive zeros in X . Namely,
m =

∑n0−1
k=0 b(k) +

∑n0−1
k=1 a(k).

Now, we define a finite automaton with outputs M =
(Q, {0, 1}∗, δ, q0, {0, 1, N}, f) as follows: First, Q is defined as {q0, q1, . . . , qm+L}.
The transition function δ is then defined by

δ(0, qi) = δ(1, qi) = qi+1 if i = 0, . . . ,m− 1,

δ(0, qi) = qi+1 if i = m, . . . ,m+ L− 1,

δ(1, qi) = qm if i = m, . . . ,m+ L,

where δ(0, qm+L) is arbitrary. Finally, the output function f : Q → {0, 1, N} is
defined by f(q) = 1 if q = qm+L and N otherwise.

Then, it is easy to see that, for every x ∈ {0, 1}∗,

(i) M(x) = 1 if and only if there exists y ∈ {0, 1}∗ such that |y| ≥ m and
x = y0L, and

(ii) M(x) 	= 0.

Now, for an arbitrary n ∈ N, assume that M(X �n) 	= N . Then, by the
condition (ii) above, we have M(X �n) = 1. Therefore, by the condition (i)
above, there exists y ∈ {0, 1}∗ such that |y| ≥ m and X�n= y0L. It follows from
(5) that X(n + 1) = 1 and therefore M(X�n) = X(n + 1). Thus the condition
(i) of Definition 12 holds for M and X . On the other hand, using (6) and the
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condition (i) above, it is easy to see that the set {n ∈ N | M(X �n) = 1} is
infinite. Thus the condition (ii) of Definition 12 holds for M and X . Hence, X
is finite-state strongly predictable. ��

Theorem 10. Let T be a computable real with 0 < T < 1. Then Z(T ) is finite-
state strongly predictable.

Proof. The result follows immediately from (i) of Theorem 1 and Theorem 8. ��

In the case where T is a computable real with 0 < T < 1, Z(T ) is not com-
putable despite Theorem 10. This is because, in such a case, Z(T ) is weakly
Chaitin T -random by (i) of Theorem 1, and therefore Z(T ) cannot be com-
putable.

It is worthwhile to investigate the behavior of Z(T ) in the case where T is not
computable but 0 < T < 1. On the one hand, note that Z(T ) is of class C∞ as
a function of T ∈ (0, 1) [12] and d

dT Z(T ) > 0 for every T ∈ (0, 1). On the other
hand, recall that a real is weakly Chaitin random almost everywhere. Thus, by
Theorem 6, we have L(S) = 1, where S is the set of all T ∈ (0, 1) such that
T is not computable and Z(T ) is not strongly predictable, and L is Lebesgue
measure on R.
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Abstract. In this paper we take a fresh look at Goto and von Neu-
mann’s phase-based logic ideas, provide enhancements that can over-
come major limitations of their previous implementations. We show that
with injection locking serving as the central mechanism, almost any
DC-powered, self-sustaining nonlinear oscillator — including electronic,
spintronic, biological, optical and mechanical ones — can be used to
build fundamental components — including latches and combinatorial
elements in a phase logic based computing architecture. We also discuss
noise immunity and potential power dissipation advantages that can be
achieved under this scheme.

Keywords: Phase-based logic, nonlinear oscillators, injection locking.

1 Introduction

In the 1950s, Eiichi Goto and John von Neumann invented a new paradigm for
computing: temporal encoding of logical states using phases of oscillatory signals
[39,36,41,9]. Phase logic schemes corresponding to it have been implemented
physically [13,28,27,35,25], indeed were popular in Japan in the 1950s due to
their simplicity and reliability. However, the advent of transistors and integrated
circuits led to their demise, since the devices and circuits they were based on
could not compete with level-based logic using transistors.

A key reason for their lack of competitiveness was size and miniaturizabil-
ity. Specifically, they normally require inductors and large capacitors, which are
bulky compared to semiconductor transistors, particularly today’s nano-scale
MOS devices. Another related reason was lower operating speed, stemming not
only from larger component sizes, but also from inherent features of von Neu-
mann’s scheme (e.g., periodic turn-on transients and delays in logic gates) that
made phase-based logic slower than transistorized level-based logic. Later at-
tempts (from the 1980s to the present) used superconducting Josephson-junction
devices [15], which are fast, but still limited in terms of miniaturizability and
practical deployment at room temperature. Therefore, these implementations
were quickly overshadowed by the rise of transistorized level-based logic, which
has dominated logical computing for decades.

With power dissipation, variability and noise having emerged as serious barri-
ers to semiconductor scaling and Moore’s law — both synonymous with progress
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in computing — there has been renewed interest in Goto and von Neumann’s
phase-based logic ideas. Recently MEMS-based replacement for von Neumann’s
circuit has been proposed [21]. It could perform bit storage and bit flip operations
under AC power and its success in implementing computation and large-scale
integration is yet to be seen. In this paper, we propose enhancements (collec-
tively termed PHLOGON) to Goto and von Neumann’s schemes that employ
self-sustaining oscillators as basic phase logic elements to eliminate the size
and integrability limitations of the previous implementations, opening possibili-
ties for robust, general-purpose computing substrates that offer significant noise
immunity and potential power dissipation advantages over level-based CMOS
computing.

We describe how the core computational block— a finite-state machine (FSM)
can be built using phase-based logic. As an example, we show how it can be re-
alized using CMOS ring oscillators in standard existing technologies. However,
PHLOGON is not limited to electronic oscillators. Indeed, it can use almost
any self-sustaining nonlinear oscillator — including spintronic, biological, op-
tical and mechanical ones – as the underlying logical element, expanding the
implementation scope of Goto and von Neumann’s phase logic ideas greatly.

To better explain our ideas, we provide background on Goto and von Neu-
mann’s phase-based computing scheme by summarizing von Neumann’s related
works in Sec. 2. In Sec. 3.1 we illustrate how sub-harmonic injection locking leads
to multiple stable phase states, serving as the key mechanism for encoding phase
logic. We show that phase logic offers inherently greater immunity to noise, in-
terference and variability (Sec. 3.2). We then describe our implementation of
phase-based computing architecture using self-sustaining nonlinear oscillators
(Sec. 3.3) and discuss its potentially lower power/energy operation compared
with traditional level-based CMOS computing scheme (Sec. 3.4). Conclusions
are provided in Sec. 4.

2 John von Neumann’s Phase Logic Scheme

In his patent [39,36,41], von Neumann outlined fundamental ideas and a complete
scheme for phase-based computing. We provide a brief sketch of the main ideas
here.

von Neumann started with a key observation: the circuit in Fig. 1(a) can
feature two (or more) distinct oscillating steady states, which can be used to
store two (or more) logical states stably. The circuit features a lossless, nonlin-
ear, charge-controlled capacitor (shown towards the left of Fig. 1(a)), together
with bandpass filters used to isolate an AC power source or pump (Vg), and
an output load (RL), from the several frequencies simultaneously present in the
capacitor’s terminal voltage. When the amplitude of the AC pump voltage wave-
form, assumed sinusoidal at frequency f0, is larger than a critical threshold Vc

(Fig. 1(b)), the voltage waveform across the capacitor can feature components
that are integer sub-multiples of f0, i.e., sub-harmonics of f0. Furthermore, as
depicted in Fig. 1(c), a generated sub-harmonic can be in one of several distinct
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(a) AC-powered subharmonic gener-

ator features multiple phase-shifted

stable states [41, Fig. 2].

(b) Multistability beyond

a critical pump amplitude,

Vc [41, Fig. 4].

(c) Example: discriminating be-

tween subharmonic steady states

[41, Fig. 6].

Fig. 1. von Neumann’s basic phase-based latch: a nonlinear AC-pumped circuit with
multiple subharmonic steady states

phase relationships with respect to the waveform of the AC pump. Each distinct
phase relationship can be used to encode a logic state. The circuit functions,
effectively, as a latch that can store a logic value. The sub-harmonic and multi-
stability properties of the circuit in Fig. 1(a) can be inferred from an elegant
formula, the Manley-Rowe relationships [39,23,41].

(a) Amplitude modulation of

the AC pump to capture an in-

put logic value [41, Fig. 7].

(b) A ring of latches can retain

a phase-logic state permanently

[41, Fig. 11].

(c) Phase-shifted amplitude

modulation waveforms driving

the ring of latches [41, Fig. 11].

Fig. 2. von Neumann’s scheme for setting a latch to an input state and retaining it

Setting a phase-encoded latch to an input logic state: Having devised a latch cir-
cuit capable of storing logical values encoded in phase, von Neumann considered
the question of setting a latch to a desired logic state supplied as input. He pro-
posed a scheme based on modulating the amplitude of the AC pump slowly with
a waveform similar to the uppermost graph of Fig. 2(a). When this modulation
waveform is low, the latch is, effectively, turned off; as the modulation increases
and magnitude of the AC pump crosses the critical threshold Vc, the latch turns
on and settles to one of the possible logic states. von Neumann suggested that
if a desired logic value (encoded in phase) were to be introduced as an input to
the latch just as it was turning on, the latch would settle to (the sub-harmonic
phase corresponding to) the same logic value. This is depicted in the middle and
bottom graphs of Fig. 2(a).

Holding on to the logic state: A problem with the above input-latching scheme
is, of course, that the latch is turned off periodically, thereby losing its stored
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state. von Neumann’s solution was a ring of latches (Fig. 2(b)), with each latch’s
AC pump modulated by a phase shifted version of its predecessor’s AC modu-
lation (Fig. 2(c)). The ring operates in merry-go-round fashion, with each suc-
ceeding latch turning on, capturing its predecessor’s logic state and retaining it
as the predecessor subsequently turns off. At any given time, one latch is always
on, hence the logic state is never lost.

Combinatorial operations for phase-encoded logic: Next, von Neumann turned
to the problem of realizing arbitrary Boolean operations using phase-encoded
logic. Noting that two operations, NOT and MAJORITY, constitute a logically
complete set 1, he provided especially elegant means of realizing them [41]. NOT
is obtained simply by a through connection between latches with different pump
modulation phases while MAJORITY is obtained simply by adding the wave-
forms of the three inputs together.

Having devised phase-based realizations of the latch-ring and the logically
complete combinatorial function set NOT and MAJORITY, together with a
consistent timing scheme provided by the phase shifted pump modulation wave-
forms, von Neumann had developed all the basic components needed to make
state machines and general computing architectures.

3 PHLOGON: Key Concepts

As discussed before in Sec. 1, previous implementations of von Neumann’s scheme
suffer from limitations and have not, to date, been miniaturisable or large-scale
integrable. In this section, we detail our ideas for PHLOGON, explain their
novelty and significance.

3.1 Sub-harmonic Injection Locking (SHIL) Enables Phase Logic

A central paradigm in PHLOGON is that DC-powered nonlinear self-sustaining
oscillators can be used as phase logic elements. This paradigm relies on the fact
that such oscillators inherently feature a property known as injection locking
[16,2,19], which enables the oscillator’s waveforms to move in lock-step with –
i.e., become phase locked to – a small external signal injected into it2. Injection
locking is responsible for many sychronization phenomena in nature (e.g., the
synchronized flashing of fireflies [4,34,33]) and is exploited in engineering (e.g.,
injection locked frequency dividers [30]).

A specific type of injection locking, known as sub-harmonic injection locking
(SHIL), is the key mechanism involved in phase logic encoding. We have de-
veloped theory that shows how SHIL leads to multiple stable phase states[1],
as depicted in Fig. 3(b). We have also been able to distill the essential prop-
erties needed in an oscillator for it to be an effective sub-harmonically locked
oscillator-latch. We provide a sketch of our ideas and results here.

1 i.e., any Boolean function can be realized using compositions of functions in this set.
2 Phase locking also ensures that the frequency of the oscillator becomes identical to
that of the input.
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(a) When SHIL happens, the oscillator’s

frequency locks to the sub-harmonic of

the input.

(b) When SHIL happens, phase lock features

multi-stability. In this case where f1 ≈ 2f0, there

are two stable states with 180◦ phase difference.

Fig. 3. Illustration of frequency and phase lock of sub-harmonic injection locking

The phase response of any amplitude-stable nonlinear oscillator to small ex-
ternal inputs can be captured via a so-called Phase Response Curve (PRC)
[22,42,17] or Perturbation Projection Vector (PPV) [7] equation as in (1).

d

dt
α(t) = vT

1 (t+ α(t)) · b(t). (1)

In (1), α(t) is a changing time shift or jitter in the oscillator’s waveform caused
by b(t), containing small inputs to the oscillator. α(t) is related very simply to
the phase shift to the oscillator’s response.

The importance of the PPV equation3 (1) for oscillator-latches lies in that it
can model and predict injection locking effectively [20]; however, though easily
solved using numerical methods, analytical solution of (1) is usually not pos-
sible. To obtain insights into injection-locking properties, and for visualisation
and design, we have developed a simplified approximation of (1) known as the
Generalized Adler Equation (GAE) [3,2]. Given specific periodic inputs to the
oscillator, the GAE governs the dynamics of the oscillator’s phase as it evolves;
in particular, the equilibrium states of the GAE provide good approximations
to injection-locked solutions of the PPV equation (1).

Suppose that the PPV of an oscillator-latch consists of a fundamental sinu-
soidal component (at the oscillator’s natural frequency, f0) of strength k1, plus
a second harmonic component of strength k2. For the oscillator to develop multi
stable phase states, we apply a small input SYNC of amplitude A1 at frequency
f1 & 2f0

4. With SHIL, the oscillator changes its frequency to f2 � f1
2 (Fig.

3(a)) and its phase becomes bi-stable (Fig. 3(b)). To control which stable phase
the oscillator will latch, we apply another input of amplitude A2 at frequency
f2, with phase shift (relative to SYNC) θ5. This input corresponds to one of
the stable states thus can be encoded to have a logic value (0 or 1 in binary

3 Well-established computational techniques are available [8,7] to obtain the quantity
vT
1 (·), known as the PPV or PRC, of any nonlinear oscillator described in differential

equations.
4 We have shown that when SYNC is at f1 � mf0, the phase of the oscillator may
featurem distinct stable states and the analysis performed here is still applicable[3,1].
We will henceforth take m = 2 (binary encoding) to illustrate all the main ideas.

5 θ = 0 and θ = π correspond to the two logic states for binary phase logic.



358 T. Wang and J. Roychowdhury

logic). We have shown that the GAE equilibrium equation corresponding to this
situation is (2).

f1 − 2f0
2f0

= k1A2 sin(φ− θ) + k2A1 sin (2φ) . (2)

Solutions φ of (2) are the possible phase shifts of the oscillator-latch’s wave-
forms when it is sub-harmonically injection locked. Considerable insight into the
number, nature and behaviour of these solutions can be obtained graphically,
by plotting its left- and right-hand-sides separately and looking for intersection
points.

(a) (2) has 2 stable solutions in the ab-

sence of a (logic) input.

(b) Acquisition of input phase: phase bi-

stability of (2) vanishes.

Fig. 4. GAE equilibrium equation (2) establishes multi-stability and input phase ac-
quisition properties of oscillator-latches

Fig. 4(a) plots the left- and right-hand-sides (flat red and sinusoidal blue
traces, respectively) of (2) when A2 = 0 and no logic input is present at the
oscillator-latch. There are 4 intersections between the two traces, corresponding
to 4 solutions of (2). Of these, the first and third intersections (from the left) can
be shown to be dynamically unstable6; but the second and fourth intersections
correspond to two distinct stable oscillations, sub-harmonically locked to SYNC
with phases separated by π radians. Thus, in the presence of SYNC, the oscillator-
latch features bi-stability.

Fig. 4(b) plots the same left-hand-side (flat red trace), but overlays several
traces for the right-hand-side of (2), corresponding to A2 values 0, 0.035 and 0.1,
with the latter two values representing two different strengths of an incoming
logical signal at f2 with θ = 0. As can be seen, the first stable intersection
remains relatively unaffected as the strength of the incoming input changes, but
the second intersection vanishes, structurally, for A2 value 0.1. This implies that
the oscillator acquires the input’s logic state. After acquisition, as A2 is reduced
to zero, the GAE can be used to analyze the dynamics of φ and show that
the acquired logic state is held, even though the second stable intersection is
restored.

In summary, the SHIL phenomenon enables the oscillator to develop multiple,
well-defined, stable states that can be used to encode logic. It also shows how

6 i.e., they are physically unrealizable in the presence of perturbations, noise or vari-
ability.
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the oscillator-latch can acquire phase and switch between logic states according
to external logic inputs.

3.2 Inherent Noise Immunity of Phase-Based Logic

One of the key attractions of encoding logic in the phase of oscillatory signals is
that, compared to level-based schemes, phase encoding provides inherent resis-
tance to errors caused by additive noise and interference. There are two aspects
to phase encoding that provide intrinsic resistance to additive noise/interference:
1) the effective SNR7 for phase is increased by a factor of π

2 over SNR for level-
based encodings, and 2) the oscillatory nature of the signal whose phase encodes
the information makes much of the additive noise/interference average out, lead-
ing to smaller bit error rates than for the level-based case. These mechanisms
are explained below.

(a) 1st mechanism: vector addi-

tion increases noise immunity in

the phase domain.
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(b) 1st mechanism:
1

“phase SNR” (blue) vs.
1

(level-based) SNR
(red).

(c) 2nd immunity mech-

anism: averaging over θ

reduces bit error rate.

Fig. 5. Mechanisms enhancing the noise resistance of phase-encoded logic

Fig. 5(a) depicts an oscillatory signal as a phasor [12] S, superimposed upon
which is a noise (or interference) component, N . The impact of this noise on
the phase of the signal is shown by the phase error φ = ∠(S +N ). Given fixed
amplitudes8 S = |S| and N = |N |, φ depends on the relative angle θ between S
and N , i.e., φ = g(θ, N

S )9. For N < S and fixed N/S, there is a maximum phase

error over all θ, i.e., φmax = sin−1(N/S), as depicted in Fig. 5(a). The “phase

SNR” is given by SNRφ =
π
2

φmax
; it is the fraction, in angular terms, of the first

quadrant taken up by the maximum phase error. This is to be compared against
S/N , the SNR for level-based logic (for which, in Fig. 5(a), N is collinear with
S). As can be seen from Fig. 5(b), 1

SNRφ
is always smaller than 1

SNR , i.e., the

“phase SNR” is always improved over the standard level-based SNR. For small
S/N (i.e., a large level-based SNR), this improvement is a factor of π

2 & 1.6.
This is the first mechanism by which phase encoding improves noise immunity.

7 Signal to noise ratio.
8 For illustrative simplicity, we consider noise of only a fixed magnitude. In reality, of
course, the magnitude of N has a probability distribution, e.g., a Gaussian one.

9 For example, g(0, ·) = g(π.·) = 0 and g( pi
2
, N

S
) = tan−1(N

S
).
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A second mechanism, conferring additional noise immunity, stems from that
the phasors S and N are not necessarily always at the same frequency (as
assumed implicitly in the analysis of the first mechanism, above), but can rotate
at different speeds10. Consider now the case where the rotation speeds are very
different. The rapid relative change in the angle θ between S and N suggests
that the worst-case phase error φmax, from the first mechanism above, is unduly
pessimistic; and that, instead, the phase error averaged over all values of θ is
the appropriate measure. More precisely, the standard deviation σφ that results
from, e.g., uniformly distributed θ, is an appropriate measure of the phase error.
This quantity can be substantially smaller than the worst-case phase error φmax,
implying considerable additional immunity to noise.

Indeed, this second mechanism makes phase encoding useful even when the
noise magnitude is greater than that of the signal, a situation where level-based
logic encoding becomes largely useless. This situation is illustrated in Fig. 5(c).
Observe that for most values of θ, the phase error is less than π

2 , the threshold
for a bit error. The probability of logical error in the case of phase encoding is
θc
π = cos−1(S/N)

π , which can be very small if N is only slightly greater than S (as
depicted); and reaches its maximum, 50%, only as the noise increases to infinity.
In contrast, the probability of logical error for level-based encoding is always
50% when N > S, since a logical error always results when the noise subtracts
from the signal (rather than adding to it).

These noise immunity features of phase encoding do not come as a surprise; the
superior noise properties of phase and frequency modulation (PM and FM), over
those of amplitude modulation (AM), have long been known [24] and exploited
in practice, e.g., in radio communications. However, the authors are not aware
of their prior realization, or application, in the context of logic encoding for
general-purpose computing.

3.3 Computation with Phase Logic

With phase-based logic encoding, we describe ideas on the implementation of
phase-based computing in this section.

Fig. 6. A general FSM. SYNC is used to de-
velop multi-stability for encoding phase logic;
NOT/MAJORITY gates are for combinatorial
operations.

The central unit of a computer
is a finite-state machine (FSM)
[36]. As is shown in Fig. 6, latches
and combinational logic blocks
are the key components of an
FSM. We first describe how to
build combinational logic blocks
using phase logic.

We realize combinatorial oper-
ations in a manner almost identi-
cal to von Neumann’s technique,

10 The phasor N can be thought of as one component, at frequency f , of a spectral
expansion [14] of a stochastic process.
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using NOT and MAJORITY operations. Phase logic enables elegant implemen-
tation of these two operations: NOT is simply inversion and MAJORITY can be
implemented by addition. These can be explained using phasors, as is demon-
strated in Fig. 7.

(a) Inverting input signal performs

NOT operation in phase logic.

(b) A three-input MAJORITY gate uses addition to per-

form MAJORITY operation of input signals in phase logic.

Fig. 7. Phase-domain plots illustrating NOT and MAJORITY operations

With oscillator-latches to store phase-based bits and logic gates to perform
combinatorial operations, we now have all the components to build general-
purpose computing systems using phase logic. Without loss of generality, here
we use CMOS ring oscillators as an example to show how such computing systems
can be built.

Fig. 8(b) shows a diagram of a D latch implemented using phase logic. The
design is analogous to that of a level-based D latch (Fig. 8(a)) except that
information is latched in phase. Fig. 8(c) shows waveforms from SPICE-level
simulation of the implementation of phase-based D latch with ring oscillators.
By aligning the waveforms of Q, D, EN with REF, we see that it achieves the
functionality of a transparent D latch in phase logic.

(a) Level-based D latch derives from

bi-stable level-latching device.

(b) Phase-based D latch derives from bi-stable phase-

based bit storage device (e.g.CMOS ring oscillator).

(c) Simulation results of phase-based D latch implemented as a CMOS ring oscillator.

Fig. 8. Design and implementation of phase-based D latch
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Tying two such transparent D latches together results in an edge-triggered
master-slave D flip-flop. With this we build a simplest FSM just to show a
flavour of how computation systems operate in phase logic.

Fig. 9. Serial adder

Fig. 9 shows a serial adder made of the D flip-
flop and a full adder. Just as in the D latch, here we
use only MAJORITY and NOT operations in the de-
sign for their simplicity of implementation using phase
logic. We emphasize again that such a system can be
realized using oscillators from various domains. Here
we demonstrate its viability using CMOS ring oscilla-
tors only as an example and provide simulation results
in Fig. 10. We add a = 101 with b = 101 sequentially
during three clock cycles. From Fig. 10 we can see cin
is held stable everytime CLK level is low (translates
to having opposite phase as REF). During this time
cout = 101 and sum = 010 can be read out sequentially. In the full system
design their values can then be latched using other registers and connected to
following stages in the system, or transformed to level-based logic if connected
to other computation or display blocks.

Fig. 10. Waveforms from adding a = b = 101 with serial adder in Fig. 9 implemented
using ring oscillator

Even though our scheme is fundamentally different from the conventional
computation framework in the way logic is encoded, as we have seen in the
examples, the system-level design (FSM design) can be quite analogous to that of
level-based logic systems. In this way, all the logic synthesis and timing analysis
theories and tools can potentially still be used with only minor modifications,
immediately enabling complex, large-scale system design based on phase logic.

3.4 Potential Power/Energy Advantages of PHLOGON

PHLOGON offers significant energy-efficiency benefits over von Neumann’s orig-
inal scheme. It uses continuously-running oscillators, which can be much more
energy-efficient than von Neumann’s latch-rings. Moreover, neither distribution
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nor modulation of AC power is involved for running a PHLOGON architecture11.
This reduces parasitic-related losses especially for large, intricately-routed sys-
tems, resulting in significant power savings over von Neumann’s scheme.

Compared with level-based CMOS computation architecture, the circuits and
nanodevice embodiments of PHLOGON can potentially still be considerably
more energy efficient. Dynamic (capacitive charging/discharging) and continu-
ous (sub-threshold leakage) power consumption in level-based CMOS are both
strongly determined by the supply voltage. The lowest practical supply volt-
age today for level-based CMOS is about 0.8V; this number is unlikely to drop
significantly in future years, due to threshold voltage, variability and noise bar-
riers [37,38]. In contrast, ring oscillators in standard CMOS technologies oper-
ate in sub-threshold mode at supply voltages as low as 80mV [6,10,5]; while in
III-V technologies, ring oscillators running at 0.23V were demonstrated almost
30 years ago [11]. 10× lower supply voltage translates to 100× lower dynamic
(CV 2) power, and more than 20, 000× lower leakage power (exponential in sup-
ply voltage). We emphasize that these power savings result simply by moving
from level-based to phase-based logic architectures, without any change in the
underlying CMOS technology.

Such large power savings can result even with ring oscillators, which dissi-
pate most or all of their energy every cycle. When harmonic oscillators, with Q
factors appreciably greater than 1, are used, further energy savings12 can be re-
alized. On-chip CMOS LC oscillators with spiral inductors, though considerably
larger in area than ring oscillators, are available today with Q factors greater
than 10, making them an interesting candidate to explore for additional power
efficiency. Integrated MEMS resonators, though even larger in area, feature Q
factors of 104-105 [26], potentially making them extremely attractive for low
power computation with easily available and well-developed conventional tech-
nologies. Resonant Body Transistor (RBT), a silicon-based resonator compati-
ble with standard CMOS process, has been demonstrated to achieve >10GHz
frequency with Q factor of 1830 [40], making it another promising candidate.
Spin-torque nano-oscillators (STNOs) feature Q factors of more than 104 at fre-
quencies of 25GHz [31,18,32]; as such, they offer very exciting power, as well as
speed, possibilities.

4 Conclusions

In this paper we re-examined Goto and von Neumann’s phase-based logic ideas
and limitations of their previous implementations. We proposed enhancements
to them, showing that almost any DC-powered, self-sustaining nonlinear oscil-
lator can be used to build latches and combinatorial elements, enabling phase-
based computing. We provided mathematical tools for analysing SHIL as the

11 Note that SYNC and CLK can be weak, dissipating negligible power.
12 i.e., an energy advantage of roughly Q over ring oscillators using the same technology

and supply voltage.
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mechanism for phase-based logic encoding. We showed that phase logic offers in-
herent resistance to noise and variability and also discussed the potential energy-
efficiency our scheme may achieve. These features have made PHLOGON an in-
teresting and promising alternative to the conventional level-based computation
architecture. We are currently exploring design details and tradeoffs involved in
the practical manifestation of PHLOGON in post-CMOS and standard digital
CMOS technologies.
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Abstract. We introduce a new property of tile self-assembly systems
that we call size-separability. A system is size-separable if every terminal
assembly is a constant factor larger than any intermediate assembly. Size-
separability is motivated by the practical problem of filtering completed
assemblies from a variety of incomplete “garbage” assemblies using gel
electrophoresis or other mass-based filtering techniques.

Here we prove that any system without cooperative bonding assem-
bling a unique mismatch-free terminal assembly can be used to construct
a size-separable system uniquely assembling the same shape. The proof
achieves optimal scale factor, temperature, and tile types (within a fac-
tor of 2) for the size-separable system. As part of the proof, we obtain
two results of independent interest on mismatch-free temperature-1 two-
handed systems.

Keywords: 2HAM, hierarchical, aTAM, glues, gel electrophoresis.

1 Introduction

The study of theoretical tile self-assembly was initiated by the Ph.D. thesis of
ErikWinfree [18]. He proved that systems of passive square particles (called tiles)
that attach according to matching bonds (called glues) are capable of universal
computation and efficient assembly of shapes such as squares. Soloveichik and
Winfree [16] later proved that these systems are capable of efficient assembly
of any shape, allowing for an arbitrary scaling of the shape, used to embed a
roving Turing machine. In this original abstract Tile Assembly Model (aTAM),
tiles attach singly to a growing seed assembly.

An alternative model, called the two-handed assembly model (2HAM) [1,2,4,5],
hierarchical tile assembly model [3,13], or polyomino tile assembly model [8,9],
allows “seedless” assembly, where tiles can attach spontaneously to form large
assemblies that may attach to each other. This seedless assembly was proved by
Cannon et al. [2] to be capable of simulating any seeded assembly process, while
also achieving more efficient assembly of some classes of shapes.

� A full version of this paper can be found at http://arxiv.org/abs/1404.7410

O.H. Ibarra et al. (Eds.): UCNC 2014, LNCS 8553, pp. 367–378, 2014.
DOI: 10.1007/978-3-319-08123-6_30, c© Springer International Publishing Switzerland 2014
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A generalization of the 2HAM called the staged tile assembly model introduced
by Demaine et al. [4] utilizes sequences of mixings, where each mixing combines
a set of input assemblies using a 2HAM assembly process. The products of the
mixing are the terminal assemblies that cannot combine with any other assembly
produced during the assembly process (called a producible assembly). This set
of terminal assemblies can then be used as input assemblies in another mixing,
combined with the sets of terminal assemblies from other mixings.

After a presentation by the author of work [19] on the staged self-assembly
model at DNA 19, Erik Winfree commented that the staged tile assembly model
has a unrealistic assumption: at the end of each mixing process, all producible
but non-terminal assemblies are removed from the mixing. A similar assumption
is made in the 2HAM model, where only the terminal assemblies are considered
to be “produced” by the system.

Ignoring large producible assemblies is done to simplify the model definition,
but allows unrealistic scenarios where “nearly terminal” systems differing from
some terminal assembly by a small number of tiles are presumed to be elimi-
nated or otherwise removed at the end of the assembly process. While filtering
techniques, including well-known gel electrophoresis, may be employed to obtain
filtering of particles at the nanoscale, such techniques generally lack the resolu-
tion to distinguish between macromolecules that differ in size by only a small
amount.

Our Results. In this work, we consider efficient assembly of shapes in the 2HAM
model under the restriction that terminal assemblies are significantly larger than
all non-terminal producible assemblies. We call a system factor-c size-separable
if the ratio between the smallest terminal assembly and largest non-terminal
producible assembly is at least c. Thus, high-factor size-separable systems lack
large but non-terminal assemblies, allowing robust filtering of terminal from
non-terminal assemblies in these systems.

Our main result is an algorithm for converting 2HAM systems of a special
class into size-separable 2HAM systems. A 2HAM system S = (T, f, τ) consists
of a set of tiles T that attach by forming bonds according to their glues and
a glue-strength function f , and two assemblies can attach if the total strength
of the bonds formed meets or exceeds the temperature τ of the system. If a
system is temperature-1 (τ = 1), then any two assemblies can attach if they
have a single matching glue. An assembly is said to be mismatch-free if no two
coincident tile sides in the assembly or any assembly in the system have different
glues. We prove the following:

Theorem 1. Let S = (T, f, 1) be a 2HAM system with a mismatch-free unique
terminal assembly A. Then there exists a factor-2 size-separable 2HAM system
S ′ = (T ′, f ′, 2) with a unique mismatch-free finite terminal assembly A′ such
that |S ′| ≤ 8|S| and A′ has the shape of A scaled by a factor of 2.

Along the way, we prove two results of independent interest on temperature-1
mismatch-free systems. The bond graph of an assembly A, denoted G(A), is the



Size-Separable Tile Self-assembly 369

dual graph of A formed by a node for each tile, and an edge between two tiles
if they form a bond. We show that any system with a unique mismatch-free
finite terminal assembly whose bond graph is not a tree can be made so without
increasing the number of tile types in the system:

Lemma 7 (Tree-ification Lemma). Let S = (T, f, 1) be a 2HAM system with
unique mismatch-free finite terminal assembly A. Then there exists a 2HAM
system S ′ = (T ′, f ′, 1) with unique mismatch-free finite terminal assembly A′

and |S ′| ≤ |S|, where A′ has the shape of A and G(A′) is a tree.

The proof of the Tree-ification Lemma yields a simple algorithm for obtaining
S ′: while a cycle in G(A) remains, remove a glue on this cycle from the tile type
containing it. The challenge is in proving such a process does not disconnect
G(A), regardless of the glue and cycle chosen.

We also prove that the tile types used only once in a unique terminal assembly,
called 1-occurrence tiles, form a connected subgraph of G(A). That is, these tiles
taken alone form a valid assembly.

Lemma 9. Let S = (T, f, 1) be a 2HAM system with unique mismatch-free
finite terminal assembly A. Then the 1-occurrence tiles in A form a 1-stable
subassembly of A.

For some questions about temperature-1 systems, results have been far eas-
ier to obtain for mismatch-free systems than for general systems allowing mis-
matches. For instance, a lower bound of 2n − 1 for the assembly of a n × n
square by any temperature 1 aTAM system was conjectured by Rothemund and
Winfree [15], and proved for mismatch-free systems by Maňuch, Stacho, and
Stoll [10]. Meunier [11] was able to show the same lower bound for systems per-
mitted to have mismatches under the assumption that the seed tile starts in the
lower left of the assembly, and removing this restriction remains open. In a simi-
lar vein, Reif and Song [14] have shown that temperature-1 mismatch-free aTAM
systems are not computationally universal, while the same problem for systems
with mismatches permitted is a notoriously difficult problem that remains open,
despite significant efforts [7,6,17,12].

In spite of such results, constructing high-factor size-separable versions of
temperature-1 mismatch-free systems remains challenging. One difficulty lies in
the partitioning the assembly into two equal-sized halves that will come together
for the final assembly step. Note that for many assemblies, such a cutting is
impossible (e.g. the right assembly in Figure 1). Even if such a cutting is possible,
removing the bonds connecting the two halves by modifying the tiles along the
boundary may require a large increase in the number of tile types of the system.

Another challenge lies in coping with cycles in the bond graph. Factor-2 size-
separability requires that the last assembly step consists of two completely as-
sembled halves of the unique terminal assembly attaching. Cycles in the bond
graph (e.g. the left assembly in Figure 1) prevent communication between the
tiles inside and outside of the cycles, risking the possibility that the portion of
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Fig. 1. Unique mismatch-free terminal assemblies of two different temperature-1 2HAM
systems. Constructing high-factor size-separable versions of these systems is challenging
due to the existence of cycles (left) and lack of equal-sized halves (right).

the assembly inside a cycle still has missing tiles as the exterior takes part in
the supposed final assembly step.

Loosely speaking, our approach is to first construct a version of A where the
bond graph is a tree and a vertex cut of G(A) consisting of a path of 1-occurrence
tiles exists. This modified version of A is then scaled in size and temperature by a
factor of 2, using special 2×2 macrotiles that only assemble along the boundary
of the scaled assembly via mixed-strength bonds. Finally, the 1-occurrence tiles
forming a vertex cut are given weakened glues such that only completely formed
subassemblies on both sides of the cut can attach across the weak-glue cut.

2 Definitions

Here we give a complete set of formal definitions of tile self-assembly used
throughout the paper. All of the definitions used are equivalent to those found
in prior work on the two-handed tile assembly model, e.g. [1,2,3,13].

Assembly Systems. In this work we study the two-handed tile assembly model
(2HAM), and instances of the model called systems. A 2HAM system S =
(T, f, τ) is specified by three parts: a tile set T , a glue-strength function f ,
and a temperature τ ∈ N.

The tile set T is a set of unit square tiles. Each tile t ∈ T is defined by 4-
tuple t = (gn, ge, gs, gw) consisting of four glues from a set Σ of glue types, i.e.
gn, ge, gs, gw ∈ Σ. The four glues gn, ge, gs, gw specify the glue types in Σ found
on the north (N), east (E), south (S), and west (W) sides of t, respectively. Each
glue also defines a glue-side, e.g. (gn, N). Define gD(t) to be the glue on the side
D of t, e.g. gN(t) = gn.

The glue function f : Σ2 → N determines the strength of the bond formed
by two coincident glue-sides. For any two glues g, g′ ∈ Σ, f(g, g′) = f(g′, g). A
unique null glue ∅ ∈ Σ has the property that f(∅, g) = 0 for all g ∈ Σ. In this
work we only consider glue functions such that for all g, g′ ∈ Σ, f(g, g′) = 0 and
if g 	= ∅, f(g, g) > 0. For convenience, we sometimes refer to a glue-side with
the null glue as a side without a glue.



Size-Separable Tile Self-assembly 371

Configurations and Assemblies. A configuration is a partial function C :
Z2 → T mapping locations on the integer lattice to tiles. Define LD(x, y) to be
the location in Z2 one unit in direction D from (x, y), e.g. LN(0, 0) = (0, 1). For
any pair of locations (x, y), LD(x, y) ∈ C, the bond strength between the these
tiles is f(gD(C(x, y)), gD−1(C(LD(x, y)))). If gD(C(x, y)) 	= gD−1(C(LD(x, y))),
then the pair of tiles is said to form a mismatch, and a configuration with no mis-
matches ismismatch-free. If gD(C(x, y)) = gD−1(C(LD(x, y))), then the common
glue and pair of directions define a glue-side pair (gD(C(x, y), {D,D−1}).

The bond graph of C, denoted G(C), is defined as the graph with vertices
dom(C) and edges {((x, y), LD(x, y)) : f(gD(C(x, y)), gD−1 (C(LD(x, y)))) > 0}.
That is, the graph induced by the neighboring tiles ofC forming positive-strength
bonds.

A configuration C is a τ-stable assembly or an assembly at temperature τ if
dom(C) is connected on the lattice and, for any partition of dom(C) into two
subconfigurations C1 and C2, the sum of the bond strengths between tiles at
pairs of locations p1 ∈ dom(C1), p2 ∈ dom(C2) is at least τ , the temperature of
the system. Any pair of assemblies A1, A2 are equivalent if they are identical up
to a translation by 〈x, y〉 with x, y ∈ Z. The size of an assembly A is |dom(A)|,
and t ∈ T is a k-occurrence tile in A if |{(x, y) ∈ dom(A) : A(x, y) = t}| = k.
The shape of an assembly is the polyomino induced by dom(A), and a shape is
scaled by a factor k by replacing each cell of the polyomino with a k × k block
of cells.

Two τ -stable assemblies A1, A2 are said to assemble into a superassembly A3

if A2 is equivalent to an assembly A′
2 such that dom(A1)∩ dom(A′

2) = ∅ and A3

defined by the union of the partial functions A1 and A′
2 is a τ -stable assembly.

Similarly, an assembly A1 is a subassembly of A2, denoted A1 ⊆ A2, if A2 is
equivalent to an assembly A′

2 such that dom(A1) ⊆ dom(A′
2).

Producible and Terminal Assemblies. An assembly A is a producible as-
sembly of a 2HAM system S if A can be assembled from two other producible
assemblies or A is a single tile in T . A producible assembly A is a terminal as-
sembly of S if A is producible and A does not assemble with any other producible
assembly of S.

We also consider seeded versions of some 2HAM systems, where an assembly
is producible if it can be assembled from another producible assembly and a
single tile of T . Note that for any temperature-1 2HAM system S, the seeded
version of S has the same set of terminal assemblies as S.

If S has a single terminal assembly A, we call A the unique terminal assembly
(UTA) of S. In the case that |A| is finite and mismatch-free, we further call A
the unique mismatch-free finite terminal assembly (UMFTA) of S.
Size-Separability. A 2HAM system S = (T, f, τ) is a factor-c size-separable
if for any pair of producible assemblies A, B of S with A terminal and B not
terminal, |A|/|B| ≥ c. Since this ratio is undefined when S has infinite producible
assemblies, we define such a system to have undefined size-separability. Every
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system with defined size-separability has factor-c size-separability for some 1 ≤
c ≤ 2.

3 Tree-ification

First, we prove that any τ = 1 system producing a unique terminal assembly
can be converted into a system with another unique terminal assembly with the
same shape but whose bond graph is a tree.

Lemma 1. Let S = (T, f, 1) be a 2HAM system. Every 1-stable assembly con-
sisting of tiles in T is a producible assembly of S.

Lemma 2. Let S = (T, f, 1) be a 2HAM system with UTA A. Let a glue-side
pair appear twice on a simple cycle of G(A) between tiles t1 and t2, and t3 and
t4. Then |{t1, t2, t3, t4}| 	= 4.

Lemma 3. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Let a glue-side
pair appear twice on a simple cycle of G(A) between tiles t1 and t2, and t3 and
t4. Then |{t1, t2, t3, t4}| 	= 2.

Lemma 4. Let S = (T, f, 1) be a 2HAM system with UTA A. Let a glue-side
pair appear twice on a simple cycle of G(A) between tiles t1 and t2, and t3 and
t4. Then |{t1, t2, t3, t4}| 	= 3.

Lemma 5. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Then no
glue-side pair appears twice on a simple cycle of G(A).

Lemma 6. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Let (g, p) be
the glue-side pair of an edge e in G(A). Then if e lies on a simple cycle in G(A),
all edges with glue-side pair (g, p) lie on simple cycles of G(A).

Lemma 7 (Tree-ification Lemma). Let S = (T, f, 1) be a 2HAM system with
UMFTA A. Then there exists a 2HAM system S ′ = (T ′, f ′, 1) with UMFTA A′

and |S ′| ≤ |S|, where A′ has the shape of A and G(A′) is a tree.

4 1-Occurrence Tile Types

In addition to tree-ification, we also make use of the existence of 1-occurrence tile
types : tile types that appear only once in the terminal assembly of the system.

Lemma 8. Let S = (T, f, 1) be a 2HAM system with UMFTA A with G(A) a
tree and |A| ≥ 2. Then A has at least two 1-occurrence tiles.

Lemma 9. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Then the
1-occurrence tiles in A form a 1-stable subassembly of A.

Lemma 10. Let S = (T, f, 1) be a 2HAM system with UTA A. For any glue-
side pair (g, p) occurring between a pair of 1-occurrence tiles in A, (g, p) occurs
only once in A.
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Lemma 11. Let S = (T, f, 1) be a 2HAM system with UMFTA A with G(A) a
tree. For any tile t ∈ T , the simple path in G(A) between any two occurrences of
t uses the same glue-side of t on both occurrences.

Lemma 12. Let S = (T, f, 1) be a 2HAM system with UMFTA A with G(A) a
tree. Let edges e, e′ ∈ G(A), with e′ between a pair of 1-occurrence tiles. Then
there exists a second 2HAM system S ′ = (T ′, f ′, 1) with |T ′| ≤ 2|T | and UMFTA
A′ with G(A′) = G(A) and the unique path from e′ to e in G(A′) consisting
entirely of 1-occurrence tiles in A′.

5 A Size-Separable Macrotile Construction

A simple barrier to general high-factor size-separability is the fact that any
system with a tree-shaped unique terminal assembly A cannot be factor-c size-
separable for any c > 1 + 1/|A|. A more subtle challenge is how to partition
assemblies into equal-sized 1-stable halves that will come together in the final
assembly step. We resolve both of these issues by creating a temperature-2 2HAM
system with a unique terminal assembly whose shape is the shape of A scaled
by a factor of 2, and whose bond graph has an edge cut of two temperature-1
bonds that partitions G(A) into two subgraphs of equal size.

Lemma 13. Let S = (T, f, τ) be a 2HAM system with P and P ′ producible
assemblies of S with P a proper subassembly of P ′. Then P is not a terminal
assembly.

Lemma 14. Let S = (T, f, 1) be a 2HAM system with UMFTA A with G(A)
a tree. Then there exists a 2HAM system S ′ = (T ′, f ′, 2) with UMFTA A′ and
|S ′| ≤ 4|S| such that A′ has the shape of A scaled by a factor of 2.

Proof. We start by describing common properties of all occurrences of each tile
type t ∈ T . Since G(A) is a tree, Lemmas 8 and 9 imply that there exists an edge
e′ in G(A) between two 1-occurrence tiles and Lemma 11 implies that any path
between two occurrences of t use the same glue-side pair. So any breadth-first
search G(A) starting at a 1-occurrence tile incident to e′ visits all occurrences of
t exactly once, and all via incoming edges from the same side of t. Then since A
is mismatch-free, if a direction is applied to each edge of G(A) according to the
direction of traversal during the breadth-first search, all occurrences of t have
the same set of incoming and outgoing edges. So all occurrences of t have their
corners visited in the same order during a traversal of the boundary of A.

We use these conditions to construct unique macrotile versions of each tile
type according to their incoming and outgoing edges induced by the breadth-
first search starting at e′. All possible macrotile constructions (up to symmetry)
are shown in Figure 2. For each glue-side pair in the original system, we use
two glue-side pairs in the scaled system, one with strength-2 and the other with
strength-1. The glue-side pair visited first in the counterclockwise traversal of
the boundary starting at e′ has strength 2, while the other pair has strength 1.
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Fig. 2. The individual tiles enumerate (up to symmetry) all combinations of incom-
ing and outgoing edges (large arrows) induced by a breath-first search of G(A). The
corresponding 2 × 2 macrotiles are used in the proof of Theorem 1 to construct a
temperature-2 system that carries out the assembly of A at scale 2 in the order that
the tiles appear along the boundary (small arrows). All internal macrotile glues are
unique to the tile type, while all external macrotile glues correspond to the glues found
on the surface of the inducing tile.

There are also three glues internal to each macrotile attaching each pair of
adjacent tiles forming a macroedge whose corresponding edge of the tile either
has an outgoing edge induced by the breadth-first search, or has no edge. These
glues are unique to the macrotile type. The strengths of each of these glues is
determined by whether the closest macroside has glues. If not, then the glue is
strength-2, otherwise the glue is strength-1.

If the closest macroside does not contain a glue, then the strength-2 internal
glue is necessary to allow assembly to continue along the boundary of the assem-
bly in the counterclockwise direction (e.g. from the northwest to the southwest
tile). If the closest macroside does contain a glue, then the strength-1 internal
glue prevents the placement of the next tile in the macrotile (e.g. the southwest
tile after the northwest tile) until a second tile from an adjacent macrotile (e.g.
the southeast tile of the macrotile to the west) has been placed. As a result,
no pair of tiles in a macrotile can be present in a common assembly unless all
tiles between them along a counterclockwise traversal of the boundary of the
macrotile assembly are also present.
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Scaled assembly of A.We claim that this scaled version of the system has a
unique terminal assemblyA′ obtained by replacing each tile in the original unique
terminal assembly with the corresponding 2×2 macrotile. First we prove that any
subassembly of A′ corresponding to a subtree of G(A) is producible. A subtree
of size 1 corresponds to a leaf node, the lower-rightmost case in Figure 2, and is
clearly producible. For larger subtrees, the assembly can be formed by combining
the 4 tiles of the root macrotile to the (up to) three subtrees assemblies. Grow
the assembly in counterclockwise order around the boundary, attaching either
a subtree assembly (if the macroside has a glue) or the next tile of the root
macrotile. In both cases, placing the second root tile along the macroedge is
possible, as either the internal glue shared with the previous root tile is strength-
2 or a second glue is provided by the subtree assembly. Then by induction, the
assembly A′ corresponding to the subtree rooted at the root of the breadth-first
search is producible.

By construction, A′ is terminal because it corresponds to a mismatch-free
terminal assembly in the original system that necessarily has no exposed glues.
So A′ is a terminal assembly of the scaled system. Next, we prove that A′ is the
unique terminal assembly of the system.

Terminal assembly uniqueness.We start by proving that every producible
assembly can positioned on a 2× 2 macrotile grid, where every tile in the south-
west corner is a southwest tile of some macrotile, every tile in the northwest
corner is the northwest tile of some macrotile, etc. Start by noticing that each
glue type appears coincident to only one of 12 edges of the grid: the 4 internal
edges of each macrotile, and the 8 external edges. Suppose there is some small-
est producible assembly that does not lie on a grid. Then this assembly must
be formed by the attachment of two smaller assemblies that do lie on grids, and
whose glues utilized in the attachment are coincident to only one of 12 edges of
the grid. So if these assemblies are translated to have coincident matching glue
sides, then their grids must also be aligned and the assembly resulting from their
attachment also lies on the grid, a contradiction.

Let A′
p be a producible assembly of the macrotile system that is not A′.

Construct an assembly Ap of the original input system S in the following way:
replace each macrotile region with a single tile corresponding to one of the tiles
in the macrotile region. If such a replacement is unambiguous, meaning that all
tiles in each macrotile region belong to a common macrotile, then the resulting
assembly is a 1-stable (and thus producible) assembly of S.

We also claim that such a replacement is always unambiguous. Suppose, for
the sake of contradiction, that there is some A′

p such that replacement is am-
biguous. The ambiguity must be due to two tiles in the same macrotile region
bonded via external strength-2 glues on different macrosides to tiles in adjacent
macrotiles, since no macroside has two strength-2 glues (see Figure 2). So there
is some path in G(A′

p) from the external glue of one of of these tiles to the exter-
nal glue to the other consisting of length-2 and length-3 subpaths through other
macrotile regions, each consisting of tiles of a common macrotile. So this path
can be unambiguously replaced with a path from tiles in S from one side of a
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tile location to the other side, with some tile of S able to attach at this location.
But this yields a producible assembly of S (and thus a subassembly of A) with
a cycle, a contradiction. Since constructing Ap from A′

p is always unambiguous,
and Ap is a subassembly of A, A′

p is a subassembly of A′. Then by Lemma 13,
A′

p is not terminal. ��
Theorem 1. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Then there
exists a factor-2 size-separable 2HAM system S ′ = (T ′, f ′, 2) with UMFTA A′

and |S ′| ≤ 8|S|. Furthermore, A′ has the shape of A scaled by a factor of 2.

Proof (Sketch). We modify the construction used in the proof of Lemma 14 in
two ways. First, we use Lemma 12 to create a path of 1-occurrence tiles in A
that partitions A into two 1-stable subassemblies, each containing a contigu-
ous, equal-sized half of the boundary of A. This is done to the original system
S, before the macrotile conversion is performed. Second, after constructing the
macrotile system S ′, we modify some of the glues of the macrotiles correspond-
ing to this path of 1-occurrence tiles to give the unique terminal assembly A′ of
the macrotile system a 2-edge cut. These two edges occur at opposite ends of
the path of 1-occurrence tiles, and reducing their strength to 1 enforces that A′

can only assemble from two equal-sized halves. ��

6 Open Problems

For temperature-1 systems with mismatch-free unique terminal assemblies, our
result is nearly as tight as possible. Scaling to at least a factor of 2 and using
temperature of at least 2 are both necessary, since any temperature-1 system or
system with a tree-shaped assembly is at most factor-(1+ 1/|A|) size-separable.
The only remaining opportunity for improvement is to reduce the number of tile
types used to less than 8|S|.

We contend that our result is a first step in understanding what is possible in
size-separable systems, and a large number of open problems remain. Perhaps
the most natural problem is to extend this result to the same set of systems,
except permitting mismatches. We conjecture that a similar result is possible
there:

Conjecture 1. Let S = (T, f, 1) be a 2HAM system with unique finite terminal
assembly A. Then there exists factor-2 size-separable system S ′ = (T ′, f ′, 2) with
a unique finite terminal assembly A′ and |S ′| = O(S). Furthermore, A′ has the
shape A scaled by a factor of O(1).

Extending the result to mismatch-free systems at higher temperatures also
is of interest because these systems are generally capable of much more effi-
cient assembly. Soloveichik and Winfree [16] prove that one can construct a
temperature-2 system that uses an optimal number of tiles (within a constant
factor) to construct any shape, provided one is allowed to scale the shape by an
arbitrary amount, and it is likely their construction can be modified to be factor-
2 size-separable. However, it remains open to achieve high-factor size-separable
systems at temperature 2 using only a small scale factor.
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Conjecture 2. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Then there
exists factor-2 size-separable system S ′ = (T ′, f ′, 2) with a unique terminal as-
sembly A′ and |S ′| = O(S). Furthermore, A′ has the shape A scaled by a factor
of O(1).

In the interest of applying size-separability to system in the staged model
of tile self-assembly, we pose the problem of developing size-separable systems
with multiple terminal assemblies. Of course, one can construct systems where
the smallest terminal assembly is less than half the size of the largest terminal
assembly, ensuring that the system cannot even be factor-1 size-separable. But
given a system whose ratio of smallest to largest terminal assembly is c, is a
size-separable system with optimal factor 2

c always possible?

Conjecture 3. Let S = (T, f, 1) be a 2HAM system with finite terminal assem-
blies A1, A2, . . . , Ak with A1 and Ak the smallest and largest terminal assem-
blies. Then there exists factor-|Ak|/|A1| size-separable system S ′ = (T ′, f ′, 2)
with |S ′| = O(S) and mismatch-free terminal assemblies A′

1, A
′
2, . . . , A

′
k where

A′
i has the shape of Ai scaled by a factor of O(1).

We close by conjecturing that not every system can be made size-separable
by paying only a constant factor in scale and tile types. We ask for an example
of such a system:

Conjecture 4. There exists a 2HAM system S = (T, f, τ) with a unique finite
terminal assemblyA such that any factor-2 size-separable system S ′ = (T ′, f ′, τ ′)
with unique finite terminal assembly A′ with the shape of A either has |S ′| ≥
100|S| or the scale of A′ is at least 100.

Acknowledgments. We thank the anonymous UCNC reviews for their com-
ments that improved the presentation and correctness of the paper.
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CiE 2008. LNCS, vol. 5028, pp. 349–358. Springer, Heidelberg (2008)

8. Luhrs, C.: Polyomino-safe DNA self-assembly via block replacement. In: Goel, A.,
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Abstract. In the 1930s, mathematician Alan Turing proposed a mathematical 
model of computation now called a Turing Machine to describe how people fol-
low repetitive procedures given to them in order to come up with final calcula-
tion result.  This extraordinary computational model has been the foundation of 
all modern digital computers since the World War II. Turing also speculated 
that this model had some limits and that more powerful computing machines 
should exist. In 1993, Siegelmann and colleagues introduced a Super-Turing 
Computational Model that may be an answer to Turing’s call.  Super-Turing 
computation models have no inherent problem to be realizable physically and 
biologically. This is unlike the general class of hyper-computer as introduced in 
1999 to include the Super-Turing model and some others.  This report is on re-
search to design, develop and physically realize two prototypes of analog recur-
rent neural networks that are capable of solving problems in the Super-Turing 
complexity hierarchy, similar to the class BPP/log*. We present plans to test 
and characterize these prototypes on problems that demonstrate anticipated Su-
per-Turing capabilities in modeling Chaotic Systems.  

Keywords: Neural Networks · Analog Computing · Super-Turing Computation 
· Hypercomputing 

1 Introduction 

This paper describes a project to design, physically realize, and test Super-Turing 
Machines that are Analog Recurrent Neural Networks (ARNNs). After introducing 
the Theoretical Foundation, we discuss the design of two ARNN machines—a larger, 
optical, analog/digital hybrid machine and a smaller, fully analog electronic device. 
Next, we propose a method to test the Super-Turing characteristics of these machines. 
Finally, we discuss future research of Super-Turing computers.  

2 Theoretical Foundation 

In mid-20th Century, Mathematician and World War II Code Breaker, Alan Turing 
created a mathematical model of ‘computers’ - the human clerks of his time, who 
performed repetitive calculations; his model provides the theoretical basis for modern 
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computers. This model, known as the Turing Machine, has guided the development of 
virtually all computer hardware and software for the last seventy years. 

However, Turing himself recognized that his model had limitations. For instance, 
the famous halting problem [1] cannot be solved by a Turing Machine. Turing sug-
gested that the brain works in an analog manner [2] and while he was looking for 
superior implementations, the technology of his time did not allow for it. In a series of 
publications [3-5], Siegelmann and colleagues introduced a Super-Turing Computa-
tional Model based on Analog Recurrent Neural Networks.  

• Recurrent Neural Networks with Rational Numbered Synaptic Weights (RNN [Q]) 
are equivalent to Turing Machines and can solve problems of complexity class P. 

• Recurrent Neural Networks with Real Numbered Synaptic Weights (RNN[R]) can 
compute beyond the Turing Limit, and can efficiently solve problems of complexi-
ty class P/Poly, a strict super-set of P, which also includes non-recursive functions.  

• In [5], the computational model was extended to RNNs with rational-valued 
weights and signals with real-valued probability binary noise. These networks can 
solve problems of complexity class BPP/log*, where BPP/log* is strictly stronger 
than P and strictly weaker than P/poly.  

• Finally, plastic ARNNs (where the synaptic weights change over time) with adap-
tability and flexibility – can best model systems with more Brain-Like Intelligence 
(BLI), even when constrained to rational values throughout. 

It is perhaps surprising that Recurrent Neural Networks with rational synaptic 
weights and signals, and with real-valued probability noise are mathematically 
stronger than a Turing Machine, given that any physically realizable system can read 
the noise signals only as binary. However, a long sequence of measurements allows 
indirect access to the real-valued (continuous) stochastic process. More accurately, 
the stochastic nature of the noise facilitates the approximation of the real value to high 
precision. This is in contrast to a hypercomputing machine with real-numbered sig-
nals, where access to the real values is direct and immediate. Thus, the computation 
class (BPP/log*) is of intermediate power. It contains some non-recursive functions.  

The noise benefits in Digital Neural Networks have been studied by several re-
searchers. A recent example is [6], where the effects of different types of noise on 
various learning algorithms and problem sets are presented.  We expect similar  
benefits in our Analog Neural Networks.  

We take our inspiration from networks of the BPP/log* complexity class and the 
plastic network. We have no formal proof our hardware is exactly simulating these, 
but their noise and plasticity support the similarity. It is our conjecture that physical 
devices inspired by this model can exhibit some Super-Turing computational abilities.  

3 Design of Physically Realizable ARNN Prototypes  

We have designed and constructed two different prototype systems based on the 
above Computational Model. At the time of this writing, both prototypes are nearing 
completion of development. Experimental validation, testing and characterization 
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phases are expected to start soon. Both prototypes are continuous in signal intensity 
but discrete-in-time. That is, they are clocked devices. Going to continuous-in-time 
devices is very difficult, and not required by the ARNN model. Discrete time steps 
also allows for the control of the systems by conventional digital means.  

For both prototypes, a “real noise generator” component will not be required. 
Noise will be generated by the physics of the devices, and will be naturally present in 
the neural signals. This mimics biological neural systems, where noise is inherent in 
the physical and chemical processes of life.  

Backpropagation is a supervised learning method used by both prototypes. The re-
current system will be providing its output to chaos calculating circuitry to provide 
the training data. The circuitry is switchable in real time between providing training 
data for either the Logistic or Hénon map. A single-input, single-output feedforward 
network should be able to learn the Logistic map, but an Elman-type network would 
be required to remember the previous input for learning the Hénon map. Having the 
network switch its learning back and forth between the two supervising functions will 
show its plasticity. Recording its output for many iterations will allow for testing its 
chaotic nature. As discussed below, we have already shown that limited-precision, 
digital simulations repeat, thereby, negating any claim they mimic chaos. We expect 
neural networks trained to mimic chaos will not repeat and, therefore, show they are 
calculating at a super-Turing level. 

3.1 OpticARNN 

The first prototype, called OpticARNN, is based on an opto-electronic computing 
hardware platform. It is a hybrid system; while its main computing operations are 
analog, it does have some digital components. While it is possible to implement all of 
the computing operations in analog optical hardware, the cost in money, speed, size, 
and complexity would be large.  

We believe that the analog computational part of our machine is sufficient to dem-
onstrate Super-Turing capabilities. It is designed to be able to move additional  
computations into the “analog path” as necessary. For example, the neural squashing 
function is currently done in by digital hardware on a Field Programmable Gate Array 
(FPGA) device. It could be done by analog electronics (as we do on the e-ARNN 
below), or even by an optical non-linear threshold device.  

The noise presented in this prototype stems from primarily from optical photon 
count statistics and exhibits a Poisson distribution. It is also called “shot noise.” For 
large numbers of photon counts (such as we have in our device) the Poisson distribu-
tion becomes identical to a Gaussian distribution. The standard deviation of the mean 
(standard error) is reduced by the square root of the number of photons counted. 

The current optical prototype can implement a moderate-sized ARNN of about 30 
neurons and 1000 synapses and is described below.  

Stanford Matrix Multiplier. Our first prototype is based on an Opto-Electronic 
Stanford Matrix-Vector Multiplier [7]. The main matrix multiplication operation of 
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the device is an analog process. However, there are some digital electronic compo-
nents in the data pathway, namely the neuron squashing function and recurrent signal 
pathways. The neural network input and output are also digital signals. We believe 
that these limited digital operations will not interfere with the Super-Turing capabili-
ties of the device. Future versions of the OpticARNN may move these digital opera-
tions into the analog pathway. 

The principle of the Stanford Matrix Multiplier is that light from each of the inten-
sity-modulated horizontal lasers (xi) is expanded by optics to project onto a Spatial 
Light Modulator (SLM) as a vertical bar. The SLM attenuates the light according to 
the pattern of the Matrix Elements (Wji), performing the (analog) Wji*xi computation.  
After the attenuation, the light is focused onto a vertical linear array of photodetec-
tors. This performs an analog summation of the attenuated signals, with each sj = 
ƩiWji*xi corresponding to a region of interest along the linear photodetector array. 

Inhibitory and Excitatory Synapses. One issue is that this process can only compute 
positive signals and matrix elements, since light intensities cannot be easily sub-
tracted. Neural network computations require that some matrix elements be inhibito-
ry: that is negative synaptic weights. We solve this problem by locating positive and 
negative matrix elements on alternating rows, and performing the final subtraction 
after the light signals have been converted to electronic ones.  Currently, this is done 
by digital hardware, but may be done with analog electronics (op-amps, etc.) in future 
versions of the prototype device.  

Figure 1 is a schematic of the prototype. Input data to the device is sent from a 
Host Computer to a Xilinx ML605 Field Programmable Gate Array (FPGA) board. 
The board, programmed with VHDL Hardware Description Language, generates (in 
parallel hardware) intensity modulated signals for a linear horizontal array of 60 neur-
al signal source lasers. This laser array consists of five Finisar V850-2092 ICs, each 
having 12 Vertical Cavity Surface Emitting Lasers (VCSELs). The entire array is only 
15 mm in length, and each laser can be independently modulated at high frequencies 
(~ 1GHz). The laser light is 850mn, which is in the near–infrared region of the spec-
trum. While not visible to the naked eye, it can be easily detected by photodetectors 
and also behaves like visible light when interacting with optical components.  

Internally, the VHDL architecture is mostly in the form of several Finite State Ma-
chines (FSM). One FSM controls the operation and calibration modes. Another FSM 
controls the communication between the FPGA and the LC1 CCD light sensor array. 

Neural Signal Encoding. The OpticARNN can be configured to use a variety of 
neural signal encoding schemes. Currently, we have implemented Pulse-Width-
Modulation (PMW) and Stochastic Pulse Encoding [8], PWM encodes intensities by 
varying the proportion of 'on' time of the laser during a forward propagation cycle. 
This should create a very linear response of the CCD-based analog light detector. The 
time accuracy of the system can be increased by increasing the total number of clock 
cycles that form a forward propagation cycle.  



 Development of Physical Super-Turing Analog Hardware 383 

The second method, Stochastic Pulse encoding, is more similar to the method used 
by biological neural networks. Neural activations are encoded in a train of ON and 
OFF pulses. The probability that a given pulse is ON is proportional to the neural 
activation value. The precision of the signal depends on the length of the pulse train, 
which is easily adjustable. Pulse based encoding allows for easy extension of the in-
tensity resolution to almost any number of significant bits by changing the length of 
the pulse trains.  

 

Fig. 1. Schematic of Prototype 1: Optical Analog Recurrent Neural Network (OpticARNN) 

Currently, the OpticARNN uses a Linear-Feedback Shift Register based determi-
nistic pseudo-random number generator to produce the pulse train. Note that this en-
coding method is preferred when one wants a more biologically plausible pulse-based 
encoding scheme. It is not meant to be the source of the stochastic enhancement  
required by the BPP/log* Super-Turing properties of the prototype. 

The pulses are attenuated (reduced in intensity) by the Spatial Light Modulator 
(SLM), which encodes the synaptic weight matrix as a 2-Dimensional geometric pat-
tern of pixels that resolve to gray intensity values. Each synaptic weight has a pre-
scribed region of interest at the intersection of the source laser vertical bar and the 
terminal neuron receptive region on the terminal linear neuron sensor array. 
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Component Hardware. The SLM used in the prototype is a reflective-mode Digital 
Micro-Mirror Device (DMD), the same technology used in DLP projectors. It consists 
of an array of 1024 x 738 tiny mirrors. The mirrors can rapidly and independently flip 
between ON and OFF positions under software control from the Host Computer.  
Since each synaptic region of interest consists of more than 256 pixels, several signif-
icant bits of attenuation can be devoted per synaptic weight. Future versions may 
replace the DMD with continuous grey scale devices, such as photographic film or an 
analog SLM. 

The terminal neuron photodetectors are a 2048 x 1 linear array of photodetectors. 
The (attenuated) optical pulse trains from each appropriate SLM synaptic area are 
focused onto a range of CCD photodetectors by postsynaptic optical components. The 
net intensity of the pulse trains is temporally (analog) integrated within the sensor 
pixels by the physics of the CCD device. As noted above, each terminal neuron ac-
tually has two Regions of Interest—one for the excitatory dendrite signals and another 
for the inhibitory dendrite signals. They are combined digitally within the FPGA Con-
troller.  

The internal digital pathways for the recurrent signals (usually 32 bit) can be  
increased to very large precision as required. The VHDL code can be modified to 
accommodate 128 or more significant bits. It can even be made to be dynamically 
adjustable, growing in precision as the system requires it. This is a feature which ex-
ists on very few (if any) software-based neural networks.  

The prototype can perform higher-order signal-times-signal multiplications by ei-
ther using a Ʃ-^ (SIGMA-AND) method [9], by implementing (digital) product, or  

Ʃ-Π (SIGMA-PI) [10] neurons in the FPGA.  

Alignment and Calibration. The OpticARNN has many free-space optical light 
signals, each interacting with several devices. Alignment and calibration of all of 
these signals is of paramount importance. This is especially true for analog signals, 
where proper functioning requires not just deciding whether each signal is ON or 
OFF, but also accurately measuring the intensity level of the signal. Substantial de-
velopment effort was spent in developing alignment and calibration procedures.  
We believe that these procedures insure the proper accuracy and functioning of the 
prototype. 

3.2 Electronic Analog Recurrent Neural Networks (e-ARNN) 

The second prototype, called e-ARNN, is based on analog electronics. All of its com-
puting operations are analog with no digital components except for interfacing to a 
host computer system. It implements a fully analog recurrent neural network and a 
Backpropagation of Errors learning algorithm. Although not the normal mode of  
operation, external learning algorithms can provide the e-ARNN synaptic weights. 
These weights will be rational if provided by a digital-to-analog converter. The Back-
propagation synaptic weights will be fully analog. However, we can only implement a 
small ARNN in its current configuration—3 neurons and 11 synapses. It uses analog 
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multipliers, summers, op amps, and other components to perform both neural network 
forward propagation and the Backpropagation learning algorithm.  

This device will have stochastic noise via Johnson–Nyquist noise, which stems 
from the thermal agitation of the electrons inside the wires and components of the 
system. This noise, like shot noise, also tends to have a Gaussian distribution.  

Siegelmann’s theoretical results [3-5] depend on an Analog Recurrent Neural Net-
work. Her example theoretical network to construct circuits implements a specific 
algorithm; it cannot learn as does other neural network implementations. It also quick-
ly consumes resolving power which cannot be accommodated in real circuitry. 

Integrated circuit (IC), analog voltage multipliers coupled with Younger’s analysis 
[11] of the back propagation learning algorithm allows a fully analog, learning neural 
network to be designed. Regardless of the layer (input, hidden, or output), the back 
propagation learning algorithm has similar equations for neurons or synapses. Follow-
ing Fiesler’s notation [10], a 3-layer network has H input neurons, R hidden neurons, 
and K output neurons.  

Back Propagation Synapses. In a three-layer network, between the input and hidden 
layers are H*R synapses of which one is denoted with 1,h;2,r. Between the hidden 
and output layers are R*K synapses of which one is denoted 2,r;3,k. Figure 2 shows 
these in the two colored boxes on the left. In both cases, the forward propagated sig-
nal is input at the upper left, multiplied by the synaptic weight, and output at the up-
per right. The learning algorithm combines specific signals to change the weight  
depending on how close the network’s previous output and its true value are. The 
synapse’s weight is updated by multiplying a signal backpropagating from the down-
stream neuron (input at lower right) and a one-step-delayed input and, then, adding 
the previous weight. While the 1,h;2,r synapse needs do nothing else, the 2,r;3,k syn-
apse also has to multiply the signal back-propagating from its downstream neuron and 
its weight. This signal is output at the lower left and is connected to its upstream (hid-
den) neuron. In practice, more complex networks (i.e. those with synapses that skip 
around layers or that recur to their own layer) can be built with these synapses, but the 
discussion above does not need those complications.  Such a network will be illu-
strated later. 

Back Propagation Neurons. A hidden layer neuron (denoted by 2,r) and an output 
layer neuron (denoted by 3,k) are in the colored boxes on the right of Fig. 3. Both 
collect outputs from their upstream synapses at their upper left input, sum them, and 
squash the output that is then presented at the upper right. Both supply a delayed out-
put signal to multiplying and summing circuitry that combines a signal input on the 
lower right with it. This lower-right (input) signal contains external, error-correcting 
information. The circuitry uses the external and delayed internal signals to generate 
the output at lower left. This output is connected to all upstream synapses for their 
weight-updating calculations discussed above. Except for two items, an output neuron 
is the same as a hidden neuron; the output neuron must supply the learning rate, η, 
and proper delay and processing of the previous true value. 
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For simple summing and squashing operations in the neurons, an AD711 opera-
tional amplifier with a specific Zener diode/resistor feedback network is used. Hidden 
neurons use an op amp to sum the error signals from their downstream synapses.  

 

 

Fig. 2. Functional Schematic of Prototype 2: Electronic Analog Recurrent Neural Network (e-
ARNN). Blocks: Upper Left: Input<=>Hidden Synapse, Upper Right: Hidden Neuron, Lower 
Left: Hidden<=>Output Synapse. Lower Right: Output Neuron. 

Analog Elman Network. Figure 4 shows three neurons and eleven synapses imple-
menting a single-input (not counting the bias), two hidden-neuron, single-output  
Elman neural network[12]. 
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Its output recurs back to the single input. The output is also connected to circuitry 
which calculates the non-recurring Logistic [13] or Hénon [14] map function. The 
function provides its output to the T input of the Backpropagation electronics and 
implements supervised learning. The chaos calculating circuitry will switch between 
the two maps on external command. The Y output will be tested for consistency with 
chaos.  

The circuitry fills up the circa 1975 computer prototyping board (Fig. 5). The wir-
ing is near completion. Several components in each neuron and synapse must be 
tuned before training. Part of the Selectable Logistic or Hénon Map Function circuitry 
is shown in the lower left of the component side of figure.  

4 Validation and Measuring Super-Turing Capabilities 

Validating and measuring any Super-Turing capability is problematic, similar to the 
problem of estimating a Turing power (over finite automata), since any data set has is 
finite precision, while the proofs require infinite precision. The best that can be done 
are approximation statements of the kind: this data set can be generated by a super-
Turing of size X or else by a Turing machine of size Y, or by automata of size Z.  

Super-Turing test problems have been suggested, such as the Halting Problem [1] 
and non-recurrent functions. However, it was not clear to us how to apply these tests 
to a physically realized machine.  

We decided to focus on an area where ARNNs Super-Turing capabilities are ex-
pected to manifest: the improved modeling of certain Chaotic systems. The prototype 
machines’ behaviors will be compared with the behaviors of similar Digital Recurrent 
Neural Networks (DRNN). 

4.1 Initial Digital Simulations and DRNN Learning of Chaotic Systems 

Much work has been done on simulating Chaotic Systems, mostly on Digital Com-
puters (Turing Machines). One characteristic of Chaotic Systems is that their behavior 
is sensitive to small perturbations of system’s parameters. Because these are physical 
parameters, the system dynamics are defined on a continuous space rather than dis-
crete phase space, and cannot be fully described in the Turing Model [3, p. 155]. The 
continuous nature (ignoring quantum effects) of the ARNN neural signals should 
remove this problem. We have developed digital simulations of the ARNNs learning 
the chaotic Hénon Map [14]. A Turing machine will not exhibit ‘sensitive dependence 
on initial conditions’-- with the same starting point, it identically reproduces the exact 
same time series. 

Figure 5 shows the results from some of these digital simulations.  Figure 5(a) is 
the plot of the Hénon Map as generated by the formula in Eq. (1). All calculations are 
done in single precision floating point arithmetic in MATLAB to make digital effects 
observable. The map is also scaled so it fits in the neural network output signal range 
of [-1,+1].  Figure 5(b) is the map as learned by a digital neural network with 2 input-
layer neurons, 2 hidden-layer neurons, and 2 output-layer neurons; and Fig. 5(c) is  
the map as learned by a neural network with 2 input-layer neurons, 14 hidden-layer  
neurons, and 2 output-layer neurons. 
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Fig. 5. Results of Digital Neural Networks learning Hénon Map. (a) is the scaled Hénon Map as 
presented in Eq. (1), (b) is the map as learned by a 2 hidden-neuron neural network, (c) the map 
as learned by a 14 hidden-neuron neural network. 

 xn+1 = 1.31 +0.3yn –xn
2,          yn+1 = xn (1) 

These networks were trained in feed-forward mode; the training input data (xn,yn) was 
generated by selecting random pairs from the basin of attraction of the scaled map 
with absolute values < 2; training target data pairs (xn+1,yn+1) were calculated by Eq. 
(1). Training data was scaled into the [-1,+1] range of the network.  After training, 
the feed-forward networks were tested by connecting the network outputs back to the 
inputs, producing inputs for step n+1 from the results of step n.   

As one may expect, the larger network produced a more complete and accurate 
learning of the Hénon Map but was not a big improvement over results from seven 
hidden nodes. However, the small network did (perhaps unexpectedly) well over the 
part of the map that it learned.    

When we tried to train the networks just on data from the curve (vs. the entire ba-
sin of attraction) both networks failed to learn the mapping. This underscores the 
importance of using training data that is fully representative of the domain of interest. 
Even though the Eq. (1) recurrently generates data which rapidly converges and stays 
on the curve, a neural network trained on just the curve data does not learn how to 
converge onto the curve and will not return to the curve if it gets off.  

Autocorrelation analysis of the Fig. 5 data shows an important property not re-
vealed by the plots. All of the data sets repeat exactly after they run long enough. Eq. 
(1) repeats after 9099 iterations, the 2 hidden-neuron network repeats after 1342 itera-
tions, and the 14 hidden-neuron network repeats after 4631 iterations. We believe this 
is due to the limited-precision nature of the digital simulation of neural networks. This 
is an artifact and limitation of the Turing nature of the digital computer. This artifact 
would be negligible in a real-valued computation of Eq. (1) and in physical systems 
that it models (neglecting thermodynamic and quantum effects). Increasing the num-
ber of significant bits of the computation can increase the length of the limit cycle, but 
not eliminate it. Single precision makes repeat lengths manageable and represent 
noise at -145 dB. This is still more precise than the available analog circuitry, which 
represent noise at about -90 dB.  
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4.2 A Proposed Super-Turing Test 

It is our expectation that the BPP/log* prototype machines that we are developing will 
not have the repeating series artifact. We are very near to training the prototype and 
expect it to learn chaos and its non-reproducible time series. This will provide a side-
by-side comparison of DRNNs with ARNNs, illustrating expected Super-Turing  
characteristics of the ARNN.  

One could build special-purpose analog electronics to perform these chaotic calcu-
lations that would be limited to a particular chaotic problem, or set of problems. 
However, the ARNN is a general-purpose Super-Turing computer – it can be trained 
(or programmed) to perform a very wide range of problems. It is a general tool for 
studying Chaos and related problems. 

5 Discussion and Future Work 

We reported on the design and development of computing machines based on Sie-
gelmann’s Analog Recurrent Neural Network Super-Turing Computational Model. 
We are physically realizing two prototype machines to measure and characterize the 
properties of such machines. We developed a plan to test these machines on problems 
which illuminate their expected Super-Turing characteristics in the Modeling of 
Chaotic Systems.  

Future work will be to experimentally characterize the prototypes, and to design 
and develop larger and more capable ARNN systems. We plan to use these systems to 
further explore Super-Turing computation and apply the increased computer power to 
a variety of problems.  
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