
Chapter 13
Gradient Sampling Methods

One of the newest approaches in general NSO is to use gradient sampling algorithms
developed by Burke et al. [51, 52]. The gradient sampling method (GS) is a method for
minimizing an objective function that is locally Lipschitz continuous and smooth on
an open dense subset D ⊂ R

n. The objective may be nonsmooth and/or nonconvex.
The GS may be considered as a stabilized steepest descent algorithm. The central idea
behind these techniques is to approximate the subdifferential of the objective function
through random sampling of gradients near the current iteration point. The ongoing
progress in the development of gradient sampling algorithms (see e.g. [67]) suggests
that they may have potential to rival bundle methods in the terms of theoretical might
and practical performance. However, here we introduce only the original GS [51, 52].

13.1 Gradient Sampling Method

Let f be a locally Lipschitz continuous function on R
n, and suppose that f is smooth

on an open dense subset D ⊂ R
n. In addition, assume that there exists a point x̄

such that the level set levf(x̄) = {x | f(x) ≤ f(x̄)} is compact.
At a given iterate xk the gradient of the objective function is computed on a set

of randomly generated nearby points ukj with j ∈ {1, 2, . . . ,m} and m > n + 1.
This information is utilized to construct a search direction as a vector in the convex
hull of these gradients with the shortest norm. A standard line search is then used to
obtain a point with lower objective function value. The stabilization of the method
is controlled by the sampling radius εk used to sample the gradients.

The pseudo-code of the GS is the following:
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Program GS
Initialize x0 ∈ levf(x̄) ∩D, ε0 > 0, m > n + 1, ν0 ≥ 0, θ,μ ∈ (0, 1]

and α,β ∈ (0, 1);
Set k = 0;
While the termination condition is not met

Gradient Sampling
Sample uk1, . . .ukm from B̄(x; 1);
Set xk0 = xk and xkj = xk + εkukj for j = 1, . . . ,m;
If xkj /∈ D for some j STOP;
Set Gk = {∇f(xk1),∇f(xk2), . . . ,∇f(xkm)};

End Gradient Sampling
Compute gk = argmin g∈Gk ‖g‖2;
If νk = ‖gk‖ = 0 Stop with the final solution xk;
If ‖gk‖ > νk then
Set νk+1 = νk and εk+1 = εk;
Compute the search direction dk = −gk/‖gk‖;
Find the step size tk = max αp such that

f(xk + αpdk) < f(xk) − βαp‖gk‖ and p ∈ {1, 2, . . .};
Else
Set tk = 0, νk+1 = θνk, and εk+1 = μεk;

End if
If xk + tkdk ∈ D then Set xk+1 = xk + tkdk;
Else
Let x̂k be any point on B̄(x; εk) satisfying x̂k + tkdk ∈ D
and f(x̂k + tkdk) < f(x̂k) − βtk‖gk‖ (such a point exists
due to continuity of f);

Set xk+1 = x̂k + tkdk;
End if
Set k = k + 1;

End While
Return final solution xk;

End Program GS

Note that the probability to obtain a point xkj /∈ D is zero in the above algorithm.
In addition, it is reported in [52] that it is highly unlikely to have xk + tkdk /∈ D.

The GS algorithm may be applied to any function f : R
n → R that is continuous

on R
n and differentiable almost everywhere. Furthermore, it has been shown that

when f is locally Lipschitz continuous, smooth on an open dense subset D of R
n,

and has bounded level sets, the cluster point x̄ of the sequence generated by the
GS with fixed ε is ε-stationary with probability 1 (that is, 000 ∈ ∂G

ε f(x̄), see also
Definition 3.3 in Part I). In addition, if f has a unique ε-stationary point x̄, then the
set of all cluster points generated by the algorithm converges to x̄ as ε is reduced to
zero.
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