
Chapter 11
Cutting Plane Methods

Subgradient methods described in the previous chapter use only one
arbitrary subgradient at a time, without memory of past iterations. If the information
from previous iterations is kept, it is possible to define a model—the so-called cut-
ting plane model—of the objective function. In this way, more information about
the local behavior of the function is obtained than what an individual arbitrary
subgradient can yield. The cutting plane idea was first developed independently in
[60, 129]. In this chapter, we first introduce the basic ideas of the standard cutting
plane method (CP) and then the more advanced cutting plane method with proximity
control (CPPC) [86]. In addition, the history of the so-called bundle methods (see
Chap. 12) originates from the cutting plane idea.

11.1 Standard Cutting Plane Method

In this section we describe the ideas of the standard cutting plane method (CP)
by Kelley for convex nonsmooth minimization [129] (see also [60]). Due to the
Theorem 2.30 in Part I, a convex function f has the representation

f(x) = max {f(y) + ξT (x − y) | ξ ∈ ∂f(y), y ∈ R
n} for all x ∈ R

n. (11.1)

However, for this representation we need the whole subdifferential ∂f(y), which,
in practice, is too big a requirement. For this reason we have to approximate it
somehow. We now suppose that in addition to the current iteration point xk we have
some auxiliary points xj ∈ R

n and subgradients ξj ∈ ∂f(xj) for j ∈ Jk, where the
index set Jk is such that ∅ �= Jk ⊂ {1, . . . , k}. Now instead of Eq. (11.1) we can
define a finite piecewise affine approximation of f at the current iteration k by

f̂ k(x) := max {f(xj) + ξT
j (x − xj) | j ∈ Jk} for all x ∈ R

n. (11.2)

The minimization of the approximation f̂ k on a convex compact set S containing the
minimum point of f gives a new iterate xk+1. By the definition of the approximation
we have for all k
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f̂ k(x) ≤ f(x), f̂ k(xj) = f(xj), and f̂ k(x) ≤ f̂ k+1(x).

The minimization of (11.2) can be transformed to a problem of finding a solution
(d, v) ∈ R

n+1 to a linearly constrained smooth cutting plane problem

⎧
⎪⎨

⎪⎩

minimize v

subject to −αj + ξT dk ≤ v for all j ∈ Jk

xk + d ∈ S and v ∈ R,

where αj is the so-called linearization error between the actual value of the objective
function at xk and the linearization generated at xj and evaluated at xk, that is,

αj := f(xk) − f(xj) + ξT
j (xk − xj) for all j ∈ Jk.

and si = ‖xk −xj‖. The cutting planes for some iterations of the CP are illustrated
in Fig. 11.1.

Let us now suppose that we have a convex compact set S containing the minimum
point of f available. The pseudo-code of the CP is the following:

Program CP
Initialize x1 ∈ S, J1 = {1}, and ε > 0;
Set f̂0(x) = −∞, α1 = ∞ and k = 1;
While the termination condition αk ≤ ε is not met

Generate the search direction

dk = argmin xk+d∈S{f̂k(xk + d)};
Find step size tk;

Set xk+1 = xk + tkdk and compute αk+1 = f(xk+1) − f̂k(xk+1);
Update Jk according some updating rules;
Set k = k + 1;

End While
Return final solution xk;

End Program CP

Like in subgradient methods (see Chap. 10) the sequence (xk) generated by the CP
does not necessarily have decreasing objective values f(xk). The step size tk can be
selected by using some kind of line-search procedure or just use a constant step size
(e.g. tk = 1). At the initial iterations the minimization of the cutting plane model
f̂k may be unbounded from below unless a suitable set S is introduced. Thus, the
choice of set S is a key element to overcome the instability of cutting planes.

By the convexity of f , the graph of the cutting plane model f̂k approaches the graph
of f from below with increasing accuracy as k grows. This guarantees the global
convergence of the method (for more details, see e.g. [42] Chap. 9). Furthermore, this
property provides an implementable stopping criterion (note the decreasing values
of the distances αk in Fig. 11.1)
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Fig. 11.1 Cutting planes f
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There are two main disadvantages in the CP: first, the choice of set S such that the
minimization problem has a solution in the set and, second, the method generally
attains rather poor convergence results in practice. However, it is also obvious, that
if the original objective function f is piecewise linear or almost piecewise linear,
then the cutting plane method may convergence in a reliable way and rapidly—in
the piecewise linear case the convergence is finite—to the exact global minimum.

11.2 Cutting Plane Method with Proximity Control

The extension of the cutting plane method for nonconvex functions is not straightfor-
ward. A basic observation is that, in nonconvex case, the first order information does
not necessarily provide the lower approximation of the objective function any longer.
In this section, we briefly introduce the cutting plane method with proximity control
(CPPC) for nonconvex NSO developed by Fuduli, Gaudioso, and Giallombardo. For
more details, see [86].

Let us denote the set of available information—the bundle—as

(xj, f(xj), ξj,αj, sj), j ∈ Jk,

where again xj ∈ R
n are auxiliary points, ξj ∈ ∂f(xj) and αj is a linearization

error. Note that the linearization error αj can be negative in nonconvex case.
The CPPC is based on the construction of both a lower and an upper polyhedral

approximation of the objective function. That is, instead of just one index set Jk (cf.
standard cutting plane method in Sect. 11.1), we have two sets J+ and J− defined
as follows:

J+ = {j | αj ≥ 0} and J− = {j | αj < 0}.
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The bundles defined by index sets J+ and J− are characterized by points that
somehow exhibit, respectively, the “convex behavior” and the “nonconvex behavior”
of the objective function relative to point xk. Notice that the set J+ is never empty
since at least the element (xj, f(xj), ξj, 0, 0) belongs to the bundle. The basic idea
of the CPPC is to treat differently the two bundles in the construction of a piecewise
affine model.

The proximity control [132] is introduced by defining the proximal trajectory dγ

of the piecewise affine function maxj∈J+{ξT
j d−αj}. The optimal proximal trajectory

dγ is computed by solving a quadratic direction finding problem (v ∈ R and d ∈ R
n

are variables) parametrized by scalar γ > 0 (see the pseudo-code given below):

⎧
⎪⎨

⎪⎩

minimize γv + 1
2‖d‖2

subject to v ≥ ξT
j d − αj, j ∈ J+,

v ≤ ξT
j d − αj, j ∈ J−.

(11.3)

In what follows we denote by ξt the subgradient computed at xk + tdγ̂ and by αt

the corresponding linearization error, that is, αt = f(xk) − f(xk + tdγ̂) + tξT
t dγ̂ .

The pseudo-code of the CPPC is the following:

Program CPPC
Initialize x1 ∈ R

n, ε > 0, δ > 0, m ∈ (0, 1), ρ ∈ (m, 1), and r ∈ (0, 1);
Compute f(x1) and ξ1 ∈ ∂f(x1) and set k = 1;
Set the bundle (x1, f(x1), ξ1, 0, 0), so that J− = ∅ and J+ = {1};
Main iteration

Initialize θ > 0, γmin > 0 and γmax > γmin;
While the termination condition ‖ξk‖ ≤ ε is not met
Solve (11.3) for increasing values of γ to obtain (v

γ
k ,d

γ
k);

Choose γ̂ = min{γ | γ ∈ (γmin, γmax) and f(xk + d
γ
k) > f(xk) + mv

γ
k }

if it exists, otherwise, set γ̂ := γmax;

If ‖dγ̂
k‖ > θ then

Set xγ̂ = xk + dγ̂;
Compute ξγ̂ ∈ ∂f(xγ̂) and αγ̂ = f(xk) − f(xγ̂) + ξT

γ̂ dγ̂;

Bundle insertion
If αγ̂ < 0 and ‖dγ̂‖ > δ then
Insert (xγ̂ , f(γ̂), ξγ̂ ,αγ̂ , ‖dγ̂‖) in the bundle with j ∈ J−;
Set γ̂ = γ̂ − r(γ̂ − γmin);

Else If ξT
γ̂ dγ̂ ≥ ρvγ̂ then

Insert (xγ̂ , f(xγ̂), ξγ̂ , max{0,αγ̂}, ‖dγ̂‖) in the bundle
with j ∈ J+;

Else
Find step size t ∈ (0, 1) such that ξT

t dγ̂ ≥ ρvγ̂;
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Insert (xk + tdγ̂ , f(xk + tdγ̂), ξt, max{0,αt}, t‖dγ̂‖) in the
bundle with j ∈ J+;

End if
End Bundle insertion
If ‖dγ̂‖ ≤ θ go to Bundle deletion;
If f(xγ̂) ≤ f(y) + mvγ̂ then
Set the new stability center xk+1 = xγ̂;

Else

Solve (11.3) with γ = γ̂ to obtain (v
γ̂
k ,d

γ̂
k);

Go to Bundle insertion;
End if

Else
Bundle deletion
Set J+ := J+\{j ∈ J+ | sj > δ} and J− := J−\{j ∈ J− | sj > δ};
Compute ξ∗ = minξ∈{ξj |j∈J+}‖ξ‖;
If ‖ξ∗‖ ≤ ε then

STOP with the solution xk + d
γ̂
k;

Else
Set γmax := γmax − r(γmax − γmin);

End if
End if

End While
Update J+ and J− with respect to xk+1;
Set k = k + 1 and go to next Main iteration;

End Main iteration
Return final solution xk;

End Program CPPC

The global convergence of the CPPC to a stationary point is proved for weakly
semi-smooth objective functions [86].
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