
Adil Bagirov · Napsu Karmitsa
Marko M. Mäkelä

Introduction
to Nonsmooth
Optimization
Theory, Practice and Software

Introduction to Nonsmooth Optimization

Adil Bagirov • Napsu Karmitsa
Marko M. Mäkelä

Introduction to Nonsmooth
Optimization
Theory, Practice and Software

123

Adil Bagirov
School of Information Technology and

Mathematical Sciences, Centre for
Informatics and Applied Optimization

University of Ballarat
Ballarat, VC
Australia

Napsu Karmitsa
Marko M. Mäkelä
Department of Mathematics and Statistics
University of Turku
Turku
Finland

ISBN 978-3-319-08113-7 ISBN 978-3-319-08114-4 (eBook)
DOI 10.1007/978-3-319-08114-4

Library of Congress Control Number: 2014943114

Springer Cham Heidelberg New York Dordrecht London

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Nonsmooth optimization refers to the general problem of minimizing
(or maximizing) functions that are typically not differentiable at their minimizers
(maximizers). These kinds of functions can be found in many applied fields, for
example in image denoising, optimal control, neural network training, data mining,
economics, and computational chemistry and physics. Since classical theory of
optimization presumes certain differentiability and strong regularity assumptions
for the functions to be optimized, it cannot be directly utilized. The aim of this
book is to provide an easy-to-read introduction to the theory of nonsmooth
optimization and also to present the current state of numerical nonsmooth opti-
mization. In addition, the most common cases where nonsmoothness is involved in
practical computations are introduced. In preparing this book, all efforts have been
made to ensure that it is self-contained.

The book is organized into three parts: Part I deals with nonsmooth optimi-
zation theory. We first provide an easy-to-read introduction to convex and non-
convex analysis with many numerical examples and illustrative figures. Then we
discuss nonsmooth optimality conditions from both analytical and geometrical
viewpoints. We also generalize the concept of convexity for nonsmooth functions.
At the end of the part, we give brief surveys of different generalizations of sub-
differentials and approximations to subdifferentials.

In Part II, we consider nonsmooth optimization problems. First, we introduce
some real-life nonsmooth optimization problems, for instance, the molecular
distance geometry problem, protein structural alignment, data mining, hemivari-
ational inequalities, the power unit-commitment problem, image restoration, and
the nonlinear income tax problem. Then we discuss some formulations which lead
to nonsmooth optimization problems even though the original problem is smooth
(continuously differentiable). Examples here include exact penalty formulations.
We also represent the maximum eigenvalue problem, which is an important
component of many engineering design problems and graph theoretical applica-
tions. We refer to these problems as semi-academic problems. Finally, a com-
prehensive list of test problems—that is, academic problems—used in nonsmooth
optimization is given.

v

Part III is a guide to nonsmooth optimization software. First, we give short
descriptions and the pseudo-codes of the most commonly used methods for non-
smooth optimization. These include different subgradient methods, cutting plane
methods, bundle methods, and the gradient sampling method, as well as some
hybrid methods and discrete gradient methods. In addition, we introduce some
common ways of dealing with constrained nonsmooth optimization problems. We
also compare implementations of different nonsmooth optimization methods for
solving unconstrained problems. At the end of the part, we provide a table enabling
the quick selection of suitable software for different types of nonsmooth optimi-
zation problems.

The book is ideal for anyone teaching or attending courses in nonsmooth
optimization. As a comprehensible introduction to the field, it is also well-suited
for self-access learning for practitioners who know the basics of optimization.
Furthermore, it can serve as a reference text for anyone—including experts—
dealing with nonsmooth optimization.

Acknowledgments: First of all, we would like to thank Prof. Herskovits for
giving the reason to write a book on nonsmooth analysis and optimization: He
once asked why the subject concerned is elusive in all the books and articles
dealing with it, and pointed out the lack of an extensive elementary book.

In addition, we would like to acknowledge Prof. Kuntsevich and Kappel for
providing Shor’s r-algorithm on their web site as well as Prof. Lukšan and Vlček
for providing the bundle-Newton algorithm.

We are also grateful to the following colleagues and students, all of whom have
influenced the content of the book: Annabella Astorino, Ville-Pekka Eronen,
Antonio Fuduli, Manlio Gaudioso, Kaisa Joki, Sami Kankaanpää, Refail
Kasimbeyli, Yury Nikulin, Gurkan Ozturk, Rami Rakkolainen, Julien Ugon, Dean
Webb and Outi Wilppu.

The work was financially supported by the University of Turku (Finland),
Magnus Ehrnrooth Foundation, Turku University Foundation, Federation Uni-
versity Australia, and Australian Research Council.

Ballarat, April 2014 Adil Bagirov
Turku Napsu Karmitsa

Marko M. Mäkelä

vi Preface

Contents

Part I Nonsmooth Analysis and Optimization

1 Theoretical Background . 3
1.1 Notations and Definitions . 3
1.2 Matrix Calculus . 4
1.3 Hausdorff Metrics. 6
1.4 Functions and Derivatives . 6

2 Convex Analysis . 11
2.1 Convex Sets. 11

2.1.1 Convex Hulls . 13
2.1.2 Separating and Supporting Hyperplanes 14
2.1.3 Convex Cones . 22
2.1.4 Contingent and Normal Cones 27

2.2 Convex Functions . 32
2.2.1 Level Sets and Epigraphs . 37
2.2.2 Subgradients and Directional Derivatives 38
2.2.3 ε-Subdifferentials . 47

2.3 Links Between Geometry and Analysis 49
2.3.1 Epigraphs . 49
2.3.2 Level Sets . 51
2.3.3 Distance Function. 53

2.4 Summary . 57
Exercises . 57

3 Nonconvex Analysis . 61
3.1 Generalization of Derivatives . 61

3.1.1 Generalized Directional Derivative 61
3.1.2 Generalized Subgradients . 64
3.1.3 ε-Subdifferentials . 73
3.1.4 Generalized Jacobians . 76

vii

http://dx.doi.org/10.1007/978-3-319-08114-4_1
http://dx.doi.org/10.1007/978-3-319-08114-4_1
http://dx.doi.org/10.1007/978-3-319-08114-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_1#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_1#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_1#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_2
http://dx.doi.org/10.1007/978-3-319-08114-4_2
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec10
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec10
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec13
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec13
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec14
http://dx.doi.org/10.1007/978-3-319-08114-4_2#Sec15
http://dx.doi.org/10.1007/978-3-319-08114-4_3
http://dx.doi.org/10.1007/978-3-319-08114-4_3
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec5

3.2 Subdifferential Calculus . 77
3.2.1 Subdifferential Regularity . 77
3.2.2 Subderivation Rules . 79

3.3 Nonconvex Geometry . 94
3.3.1 Tangent and Normal Cones 94
3.3.2 Epigraphs and Level Sets . 98
3.3.3 Cones of Feasible Directions 102

3.4 Other Generalized Subdifferentials . 104
3.4.1 Quasidifferentials . 104
3.4.2 Relationship Between Quasidifferential

and Clarke Subdifferential . 109
3.4.3 Codifferentials . 110
3.4.4 Basic and Singular Subdifferentials. 112

3.5 Summary . 112
Exercises . 113

4 Optimality Conditions . 117
4.1 Unconstrained Optimization . 117

4.1.1 Analytical Optimality Conditions 118
4.1.2 Descent Directions . 120

4.2 Geometrical Constraints . 121
4.2.1 Geometrical Optimality Conditions 122
4.2.2 Mixed Optimality Conditions 123

4.3 Analytical Constraints . 126
4.3.1 Geometrical Optimality Conditions 127
4.3.2 Fritz John Optimality Conditions 128
4.3.3 Karush-Kuhn-Tucker Optimality Conditions 130

4.4 Optimality Conditions Using Quasidifferentials 134
4.5 Summary . 135
Exercises . 136

5 Generalized Convexities . 139
5.1 Generalized Pseudoconvexity . 139
5.2 Generalized Quasiconvexity . 150
5.3 Relaxed Optimality Conditions. 161

5.3.1 Unconstrained Optimization. 162
5.3.2 Geometrical Constraints . 163
5.3.3 Analytical Constraints . 164

5.4 Summary . 166
Exercises . 167

6 Approximations of Subdifferentials . 169
6.1 Continuous Approximations of Subdifferential 169
6.2 Discrete Gradient and Approximation of Subgradients 175

viii Contents

http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec10
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec10
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec13
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec13
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec14
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec14
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec15
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec16
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec16
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec17
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec17
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec18
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec18
http://dx.doi.org/10.1007/978-3-319-08114-4_3#Sec19
http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec10
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec13
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec13
http://dx.doi.org/10.1007/978-3-319-08114-4_4#Sec14
http://dx.doi.org/10.1007/978-3-319-08114-4_5
http://dx.doi.org/10.1007/978-3-319-08114-4_5
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_5#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_6
http://dx.doi.org/10.1007/978-3-319-08114-4_6
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec2

6.3 Piecewise Partially Separable Functions and Computation
of Discrete Gradients . 183
6.3.1 Piecewise Partially Separable Functions 183
6.3.2 Chained and Piecewise Chained Functions 185
6.3.3 Properties of Piecewise Partially Separable

Functions. 187
6.3.4 Calculation of the Discrete Gradients 193

6.4 Summary . 196
Exercises . 197

Notes and References . 199

Part II Nonsmooth Problems

7 Practical Problems . 203
7.1 Computational Chemistry and Biology 203

7.1.1 Polyatomic Clustering Problem 203
7.1.2 Molecular Distance Geometry Problem 204
7.1.3 Protein Structural Alignment 207
7.1.4 Molecular Docking . 209

7.2 Data Analysis. 211
7.2.1 Cluster Analysis via NSO . 211
7.2.2 Piecewise Linear Separability in Supervised

Data Classification . 215
7.2.3 Piecewise Linear Approximations in Regression

Analysis . 227
7.2.4 Clusterwise Linear Regression Problems 230

7.3 Optimal Control Problems . 233
7.3.1 Optimal Shape Design. 233
7.3.2 Distributed Parameter Control Problems 234
7.3.3 Hemivariational Inequalities. 235

7.4 Engineering and Industrial Applications 235
7.4.1 Power Unit-Commitment Problem 235
7.4.2 Continuous Casting of Steel. 236

7.5 Other Applications . 237
7.5.1 Image Restoration. 238
7.5.2 Nonlinear Income Tax Problem 239

8 SemiAcademic Problems . 241
8.1 Exact Penalty Formulation. 241
8.2 Integer Programming with Lagrange Relaxation 243

8.2.1 Traveling Salesman Problem 243
8.3 Maximum Eigenvalue Problem . 244

Contents ix

http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_6#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec13
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec13
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec14
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec14
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec15
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec15
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec16
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec16
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec17
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec17
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec18
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec18
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec19
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec19
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec20
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec20
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec21
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec21
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec22
http://dx.doi.org/10.1007/978-3-319-08114-4_7#Sec22
http://dx.doi.org/10.1007/978-3-319-08114-4_8
http://dx.doi.org/10.1007/978-3-319-08114-4_8
http://dx.doi.org/10.1007/978-3-319-08114-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_8#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_8#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_8#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_8#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_8#Sec4

9 Academic Problems . 247
9.1 Small Unconstrained Problems . 248
9.2 Bound Constrained Problems . 269
9.3 Linearly Constrained Problems. 269
9.4 Large Problems . 277
9.5 Inequality Constrained Problems . 283

Notes and References . 287

Part III Nonsmooth Optimization Methods

10 Subgradient Methods . 295
10.1 Standard Subgradient Method . 295
10.2 Shor’s r-Algorithm (Space Dilation Method) 296

11 Cutting Plane Methods . 299
11.1 Standard Cutting Plane Method . 299
11.2 Cutting Plane Method with Proximity Control 301

12 Bundle Methods . 305
12.1 Proximal Bundle and Bundle Trust Methods 305
12.2 Bundle Newton Method . 309

13 Gradient Sampling Methods . 311
13.1 Gradient Sampling Method . 311

14 Hybrid Methods . 313
14.1 Variable Metric Bundle Method . 313
14.2 Limited Memory Bundle Method . 317
14.3 Quasi-Secant Method . 320
14.4 Non-Euclidean Restricted Memory Level Method 322

15 Discrete Gradient Methods . 327
15.1 Discrete Gradient Method . 327
15.2 Limited Memory Discrete Gradient Bundle Method 330

16 Constraint Handling . 335
16.1 Exact Penalty . 335
16.2 Linearization . 336

17 Numerical Comparison of NSO Softwares 339
17.1 Solvers . 340
17.2 Problems . 343

x Contents

http://dx.doi.org/10.1007/978-3-319-08114-4_9
http://dx.doi.org/10.1007/978-3-319-08114-4_9
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_9#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_10
http://dx.doi.org/10.1007/978-3-319-08114-4_10
http://dx.doi.org/10.1007/978-3-319-08114-4_10#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_10#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_10#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_10#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_10#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_11
http://dx.doi.org/10.1007/978-3-319-08114-4_11
http://dx.doi.org/10.1007/978-3-319-08114-4_11#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_11#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_11#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_11#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_12#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_12#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_12#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_13
http://dx.doi.org/10.1007/978-3-319-08114-4_13
http://dx.doi.org/10.1007/978-3-319-08114-4_13#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_13#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_14#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_14#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_14#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_14#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_14#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_14#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_14#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_15
http://dx.doi.org/10.1007/978-3-319-08114-4_15
http://dx.doi.org/10.1007/978-3-319-08114-4_15#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_15#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_15#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_15#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_16
http://dx.doi.org/10.1007/978-3-319-08114-4_16
http://dx.doi.org/10.1007/978-3-319-08114-4_16#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_16#Sec1
http://dx.doi.org/10.1007/978-3-319-08114-4_16#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_16#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_17
http://dx.doi.org/10.1007/978-3-319-08114-4_17
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec2
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec3
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec3

17.3 Termination, Parameters, and Acceptance of Results 344
17.4 Results . 344

17.4.1 Extra-Small Problems . 345
17.4.2 Small-Scale Problems . 346
17.4.3 Medium-Scale Problems . 348
17.4.4 Large Problems . 349
17.4.5 Extra Large Problems . 351
17.4.6 Convergence Speed and Iteration Path 352

17.5 Conclusions . 354

References . 357

Index . 369

Contents xi

http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec4
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec5
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec6
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec7
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec8
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec9
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec10
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec10
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec11
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec12
http://dx.doi.org/10.1007/978-3-319-08114-4_17#Sec12

Acronyms and Symbols

R
n n-Dimensional Euclidean space

N Set of natural numbers
x; y; z (column) Vectors
xT Transposed vector
xT y Inner product of x and y
kxk Norm of x in R

n; k x k¼ ðxT xÞ
1
2

xi ith Component of vector x
(xk) Sequence of vectors
0 Zero vector
a; b; c;α; ε; λ Scalars
t # 0 t! 0þ
A, B Matrices
ðAÞij Element of matrix A in row i of column j

AT Transposed matrix
A�1 Inverse of matrix A
tr A Trace of matrix A
kAkm�n

Matrix norm kAkm�n ¼
Pm

i¼1 kAik2
� �1

2

I Identity matrix
ei ith Column of the identity matrix
diag½θ1; . . .; θn� Diagonal matrix with diagonal elements θ1; . . .; θn

B(x; r) Open ball with radius r and central point x
�Bðx; rÞ Closed ball with radius r and central point x
S1 Sphere of the unit ball
(a, b) Open interval
[a, b] Closed interval
[a, b), (a, b] Half-open intervals
Hðp; αÞ Hyperplane
Hþðp; αÞ; H�ðp; αÞ Halfspaces
S, U Sets

xiii

cl S Closure of set S
int S Interior of set S
bd S Boundary of set S
P ðSÞ Power set
\m

i¼1Si Intersection of sets Si, i ¼ 1; . . .;m
S� U Demyanov difference
conv S Convex hull of set S
cone S Conic hull of set S
ray S Ray of the set S
S� Polar cone of the set S
KS(x) Contingent cone of set S at x
TS(x) Tangent cone of set S at x
NS(x) Normal cone of set S at x
GS(x) Cone of globally feasible directions of set S at x
FS(x) Cone of locally feasible directions of set S at x
DS(x) Cone of descent directions at x 2 S
D
�
SðxÞ Cone of polar subgradient directions at x 2 S

F
�
SðxÞ Cone of polar constraint subgradient directions at x 2 S

levαf Level set of f with parameter α
epi f Epigraph of f
I ;J ;K Sets of indices
jI j Number of elements in set I
f(x) Objective function value at x
arg min f(x) Point where function f attains its minimum value
rf ðxÞ Gradient of function f at x
o

oxi
f ðxÞ Partial derivative of function f with respect to xi

r2f ðxÞ Hessian matrix of function f at x
o2

oxioxj
f ðxÞ Second partial derivative of function f with respect to xi

and xj

CmðRnÞ The space of functions f : Rn ! R with continuous
partial derivatives up to order m

LðRn;RÞ The space of linear mappings from R
n ! R

Dk (generalized) Variable metric approximation of the
inverse of the Hessian matrix

f 0ðx; dÞ Directional derivative of function f at x in the direction d
f 0εðx; dÞ ε-Directional derivative of function f at x

in the direction d
f �ðx; dÞ Generalized directional derivative of function f at x in the

direction d
dHðA;BÞ Hausdorff distance (distance between sets A and B)
dSðxÞ Distance function (distance of x to the set S)
dðx; yÞ Distance function (distance between x and y)
ocf ðxÞ Subdifferential of convex function f at x
of ðxÞ Subdifferential of function f at x

xiv Acronyms and Symbols

ξ 2 of ðxÞ Subgradient of function f at x
oεf ðxÞ ε-Subdifferential of convex function f at x
oG
ε f ðxÞ Goldstein ε-subdifferential of function f at x

of ðxÞ Subdifferential of quasidifferentiable function f at x
�of ðxÞ Superdifferential of quasidifferentiable function f at x
Df ðxÞ Df ðxÞ ¼ ½of ðxÞ; �of ðxÞ� Quasidifferential of function f at x
df ðxÞ Hypodifferential of codifferentiable function f at x
�df ðxÞ Hyperdifferential of codifferentiable function f at x
Df ðxÞ Df ðxÞ ¼ ½df ðxÞ; �df ðxÞ� Codifferential of function f at x
obf ðxÞ Basic (limiting) subdifferential of f at x
o1f ðxÞ Singular subdifferential of f at x
v ¼ Γ ðx; g; e; z; ζ; αÞ Discrete gradient of function f at x in direction g
D0ðx; λÞ Set of discrete gradients
v(x, g, h) Quasi-secant of function f at x
QSecðx; hÞ Set of quasi-secants
QSLðxÞ Set of limit points of quasi-secants as h # 0
P Set of univariate positive infinitesimal functions
G Set of all vertices of the unit hypercube in R

n

Ωf A set in R
n where function f is not differentiable

f̂kðxÞ Piecewise linear cutting plane model of function f at x
~fkðxÞ Piecewise quadratic model of function f at x
r hðxÞ Jacobian matrix of function h : Rn ! R

m at x
o hðxÞ Generalized Jacobian matrix of function h : Rn ! R

m at x
A(x) Real symmetric matrix-valued affine function of x
λiðAðxÞÞ i:th Eigenvalue of AðxÞ
λmaxðAðxÞÞ Eigenvalue of AðxÞ with the largest absolute value
max Maximum
min Minimum
sup Supremum
inf Infimum
div(i, j) Integer division for positive integers i and j
mod(i, j) Remainder after integer division, mod(i, j) = j(i/j - div(i, j))
ln Natural logarithm
DC Difference of convex functions
FJ Fritz John optimality conditions
KKT Karush–Kuhn–Tucker optimality conditions
LOVO Low order value optimization
MDGP Molecular distance geometry problem
MINLP Mixed integer nonlinear programming
NC Nonconstancy
NSO Nonsmooth optimization
PLP Piecewise linear potential
LC, LNC Large-scale convex and nonconvex problems, n = 1000
MC, MNC Medium-scale convex and nonconvex problems, n = 200

Acronyms and Symbols xv

SC, SNC Small-scale convex and nonconvex problems, n = 50
XLC, XLNC Extra–large convex and nonconvex problems, n = 4000
XSC, XSNC Extra-small convex and nonconvex problems, n� 20
BNEW Bundle–Newton method
BT Bundle trust method
CP (standard) Cutting plane method
CPPC Cutting plane method with proximity control
DGM Discrete gradient method
GS Gradient sampling method
LMBM Limited memory bundle method
LDGB Limited memory discrete gradient bundle method
NERML Non-Euclidean restricted memory level method
PBM Proximal bundle method
QSM Quasi-secant method
VMBM Variable metric bundle method

xvi Acronyms and Symbols

Introduction

Nonsmooth optimization is among the most difficult tasks in optimization. It deals
with optimization problems where objective and/or constraint functions have
discontinuous gradients. Nonsmooth optimization dates back to the early 1960s,
when the concept of the subdifferential was introduced by R.T. Rockafellar and W.
Fenchel and the first nonsmooth optimization method—the subgradient method
was developed by N. Shor, Y. Ermolyev, and their colleagues in Kyev, Ukraine (in
the former Soviet Union at that time). In the 1960s and in early 1970s, nonsmooth
optimization was mainly applied to solve minimax and large linear problems using
decomposition. Such problems can also be solved using other optimization
techniques.

The most important developments in nonsmooth optimization started with the
introduction of the bundle methods in the mid-1970s by C. Lemarechal (and also
by P. Wolfe and R. Mifflin). In its original form, the bundle method was introduced
to solve nonsmooth convex problems. The 1970s and early 1980s were an
important period for new developments in nonsmooth analysis. Various general-
izations of subdifferentials were introduced, including the Clarke subdifferential
and Demyanov–Rubinov quasidifferential. The use of the Clarke subdifferential
allowed the extension of bundle methods to solve nonconvex nonsmooth
optimization problems.

Since the early 1990s, nonsmooth optimization has been widely applied to solve
many practical problems. Such applications, for example, include mechanics,
economics, computational chemistry, engineering, machine learning, and data
mining. In most of these applications, nonsmooth optimization approaches allow
the significant reduction of the number of decision variables in comparison with
any other approaches, and thus facilitate the design of efficient algorithms for their
solution. Therefore, in these applications, optimization problems cannot be solved
by other optimization techniques as efficiently as they can be solved using
nonsmooth optimization techniques. Undoubtedly, nonsmooth optimization has
now become an indispensable tool for solving problems in diverse fields.

Nonsmoothness appears in the modeling of many practical problems in a very
natural way. The source of nonsmoothness can be divided into four classes:

xvii

inherent, technological, methodological, and numerical nonsmoothness. In inher-
ent nonsmoothness, the original phenomenon under consideration itself contains
various discontinuities and irregularities. Typical examples of inherent non-
smoothness are the phase changes of materials in the continuous casting of steel,
piecewise linear tax models in economics, cluster analysis, supervised data
classification, and clusterwise linear regression in data mining and machine
learning. Technological nonsmoothness in a model is usually caused by extra
technological constraints. These constraints may cause a nonsmooth dependence
between variables and functions, even though the functions were originally
continuously differentiable. Examples of this include so-called obstacle problems
in optimal shape design and discrete feasible sets in product planning. On the other
hand, some solution algorithms for constrained optimization may also lead to a
nonsmooth problem. Examples of methodological nonsmoothness are the exact
penalty function method and the Lagrange decomposition method. Finally,
problems may be analytically smooth but numerically nonsmooth. That is the case
with, for instance, noisy input data or so-called ‘‘stiff problems,’’ which are
numerically unstable and behave like nonsmooth problems.

Despite huge developments in nonsmooth optimization in recent decades and
wide application of its techniques, only a very few books have been specifically
written about it. Some of these books are out of date and do not contain the most
recent developments in the area. Moreover, all of these books were written in a
way that requires from the audience a high level of knowledge of the subject. Our
aim in writing this book is to give an overview of the current state of numerical
nonsmooth optimization to a much wider audience, including practitioners.

The book is divided into three major parts dealing, respectively, with theory of
nonsmooth optimization (convex and nonsmooth analysis, optimality conditions),
practical nonsmooth optimization problems (including applications to real world
problems and descriptions of academic test problems) and methods of nonsmooth
optimization (description of methods and their pseudo-codes, as well as
comparison of different implementations). In preparing this book, all efforts have
been made to ensure that it is self-contained.

Within each chapter of the first part, exercises, numerical examples and
graphical illustrations have been provided to help the reader to understand the
concepts, practical problems, and methods discussed. At the end of each part, notes
and references are presented to aid the reader in their further study. In addition, the
book contains an extensive bibliography.

xviii Introduction

Part I
Nonsmooth Analysis and Optimization

Introduction

Convexity plays a crucial role in mathematical optimization. Especially, convexity
is the most important concept in constructing optimality conditions. In smooth
(continuously differentiable) optimization theory, differentiation entails locally
linearizing the functions by the gradients, leading to a lower approximation of a
convex function. These ideas can be generalized for nonsmooth convex functions
resulting in the concepts of subgradients and subdifferentials. A subgradient
preserves the property of the gradient, providing a lower approximation of the
function, but in the nonsmooth case it is not unique anymore. Thus, instead of one
gradient vector we end up with a set of subgradients called subdifferentials.

Unfortunately, convexity is often too demanding an assumption in practical
applications, and we have to be able to deal with nonconvex functions as well.
From a practical point of view, locally Lipschitz continuous functions are proved
to be a suitable and sufficiently general class of nonconvex functions. In a convex
case, differentiation is based on the linearization of a function. For nonconvex
functions, the differentiation can be seen as convexification. All of the concepts of
convex analysis can be generalized for a nonconvex case in a very natural way. As
in the convex analysis, the links between nonconvex analysis and geometry are
strong: subgradients and generalized directional derivatives have a one-to-one
interpretation to the tangent and normal cones of epigraphs and level sets.

Our aim here is to present the theory of nonsmooth analysis for optimization in a
compact and ‘‘easy-to-understand’’ form. The reader is assumed to have some
basic knowledge of linear algebra, elementary real analysis, and smooth nonlinear
optimization. To give as self-contained a description as possible, we define every
concept used and prove almost all theorems and lemmas.

This part is organized as follows: after recalling some basic results and notions
from smooth analysis, we concentrate on ‘‘Convex Analysis’’ in Chap. 2. We start
our consideration with geometry by defining convex sets and cones. The main

http://dx.doi.org/10.1007/978-3-319-08114-4_2

result—and foundation for the forthcoming theory—is the separation theorem
stating that two convex sets can always be separated by a hyperplane. Next we turn
to analytical concepts, by defining subgradients and subdifferentials. Finally, we
show that those geometrical and analytical notions can be connected utilizing
epigraphs, level sets, and the distance function.

Chapter 3 is devoted to ‘‘Nonconvex Analysis.’’ We generalize all of the convex
concepts to locally Lipschitz continuous functions. We also show that nonsmooth
analysis is a natural enlargement of classical differential theory by generalizing all
of the familiar derivation rules such as the mean-value theorem and the chain rule.
The price we have to pay when relaxing the assumptions of differentiability and
convexity is that instead of equalities, we only obtain inclusions in most of the
results. However, by posing some mild regularity assumptions, we can turn the
inclusions back into equalities. After the analytical consideration, we generalize, in
a similar way to the convex case, all of the geometrical concepts, and give links
between analysis and geometry. At the end of the chapter, we recall the definitions
of quasidifferentials, codifferentials, and limiting subdifferentials all of which can
be used to generalize the subdifferential of convex functions to the nonconvex case.

Chapter 4 concentrates on the theory of nonsmooth optimization. Optimality
conditions are an essential part of mathematical optimization theory, heavily
affecting, for example, the development of optimization methods. We formulate
the necessary conditions for locally Lipschitz continuous functions to attain local
minima both in unconstrained and constrained cases. These conditions are proved
to be sufficient for convex problems, and the found minima are global. We for-
mulate both geometrical and analytical conditions based on cones and subdiffer-
entials, respectively. We consider both general geometrical constraint sets and
analytical constraints determined by functions and inequalities. In the latter case,
we end up to generalizing the classical Fritz John (FJ) and Karush-Kuhn-Tucker
(KKT) conditions.

The question, ‘‘Can we still attain sufficient optimality conditions when relaxing
the convexity assumptions?’’ has been the initiating force behind the study of
generalized convexities. In Chap. 5, we define and analyze the properties of the
generalized pseudo- and quasiconvexities for locally Lipschitz continuous func-
tions. Finally, we formulate relaxed versions of the sufficient optimality conditions,
where the convexity is replaced by generalized pseudo- and quasiconvexities.

The last chapter of this part, Chap. 6, deals with ‘‘Approximations of Subdif-
ferentials.’’ We introduce the concept of continuous approximations to subdif-
ferential, and a discrete gradient that can be used as an approximation to the
subgradient at a given point.

2 Nonsmooth Analysis and Optimization

http://dx.doi.org/10.1007/978-3-319-08114-4_3
http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_5
http://dx.doi.org/10.1007/978-3-319-08114-4_6

Chapter 1
Theoretical Background

In this chapter, we first collect some notations and basic results of smooth analysis.
We also recall fundamentals from matrix calculus.

1.1 Notations and Definitions

All the vectors x are considered as column vectors and, correspondingly, all the
transposed vectors xT are considered as row vectors (bolded symbols are used for
vectors). We denote by xTy the usual inner product and by ‖x‖ the norm in the
n-dimensional real Euclidean space R

n. In other words,

xTy =
n∑

i=1

xiyi and ‖x‖ =
(
xTx

) 1
2
,

where x and y are in R
n and xi, yi ∈ R are the ith components of the vectors x and

y, respectively.
An open (closed) ball with center x ∈ R

n and radius r > 0 is denoted byB(x; r)
(B̄(x; r)). That is,

B(x; r) = {y ∈ R
n | ‖y − x‖ < r} and B̄(x; r) = {y ∈ R

n | ‖y − x‖ ≤ r}.

We also denote by S1 the sphere of the unit ball. That is,

S1 = {y ∈ R
n | ‖y‖ = 1}.

We denote by [x,y] the closed line-segment joining x and y, that is,

[x,y] = {
z ∈ R

n | z = λx + (1 − λ)y for 0 ≤ λ ≤ 1
}
,

and by (x,y) the corresponding open line-segment.
Every nonzero vector p ∈ R

n and a scalar α ∈ R define a unique hyperplane

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_1

3

4 1 Theoretical Background

H(p,α) = {x ∈ R
n | pTx = α}

or equivalently

H(p,α) = {x ∈ R
n | pT (x − x0) = 0},

where pTx0 = α and p is called normal vector of the hyperplane. A hyperplane
divides tho whole space R

n into two closed (or open) halfspaces

H+(p,α) = {x ∈ R
n | pT (x − x0) ≥ 0} and

H−(p,α) = {x ∈ R
n | pT (x − x0) ≤ 0}.

Example 1.1 (Hyperplane). If n = 1 the hyperplane H(p,α) = {x ∈ R |
px = α} is the singleton {α/p} and the halfspaces are H+(p,α) = [α/p,∞)

and H−(p,α) = (−∞,α/p].
If n = 2 the hyperplane is a line and in the case n = 3 it is a plane.

The closure, interior and boundary of a given set S ⊆ R
n are denoted by cl S, int S

and bd S, respectively. Notice that we have

bd S = cl S \ int S.

The power set of S ⊆ R
n is denoted by P(S) and it is the set of all subsets of S

including the empty set and S itself.

Example 1.2 (Power set). Let S be the set {x, y, z}. Then the subsets of S are
{} (also denoted by ∅, the empty set), {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, and
{x, y, z}, and hence the power set of S is

P(S) = {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.

1.2 Matrix Calculus

A matrix, for which horizontal and vertical dimensions are the same (that is, an n×n
matrix) is called a square matrix of order n.

1.2 Matrix Calculus 5

A square matrix A ∈ R
n×n is called symmetric if A = AT , that is, (A)ij = (A)ji

for all i, j ∈ {1, . . . ,n} and (A)ij is the element of matrix A in row i of column j.
The matrix AT ∈ R

n×n is called the transpose of A.
A square matrix A ∈ R

n×n is called positive definite if

xT Ax > 0 for all x ∈ R
n, x 	= 000

and negative definite if

xT Ax < 0 for all x ∈ R
n, x 	= 000.

Correspondingly, a square matrix A ∈ R
n×n is called positive semidefinite if

xT Ax ≥ 0 for all x ∈ R
n

and negative semidefinite if

xT Ax ≤ 0 for all x ∈ R
n.

A matrix which is neither positive or negative semidefinite is called indefinite.
If the matrix A ∈ R

n×n is positive definite, then all the submatrices of the matrix
A obtained by deleting the corresponding rows and columns of the matrix are also
positive definite and all the elements on the leading diagonal of the matrix are positive
(that is, (A)ii > 0 for all i ∈ {1, . . . ,n}). If the square matrices A andB are positive
definite, then so is A +B.

An inverse of matrix A ∈ R
n×n is a matrix A−1 ∈ R

n×n such that

AA−1 = A−1 A = I,

where I ∈ R
n×n is the identity matrix. If a square matrix has an inverse it is called

invertible or nonsingular. Otherwise, it is called singular. A positive definite matrix
is always nonsingular and its inverse is positive definite.

A scalar λ is called an eigenvalue of the matrix A ∈ R
n×n if

Ax = λx

for some nonzero vector x ∈ R
n. The vector x is called an eigenvector associated

to the eigenvalue λ. The eigenvalues of a symmetric matrix are real and a symmetric
matrix is positive definite if and only if all its eigenvalues are positive. A matrix is
said to be bounded if its eigenvalues lie in the compact interval that does not contain
zero.

The trace of matrix A ∈ R
n×n is denoted by tr A and it is the sum of the diagonal

elements of the matrix, that is,

6 1 Theoretical Background

tr A =
n∑

i=1

(A)ii.

The trace of a matrix equals to the sum of its eigenvalues. For square matrices A and
B, we have tr(A +B) = tr A + tr B.

1.3 Hausdorff Metrics

Let A,B ⊂ R
n be given sets. The Hausdorff distance dH (A,B) between the sets A

and B is defined as follows:

dH (A,B) = max

{
sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖b − a‖
}
.

Consider a set-valued mappingG: Rn → 2R
m

. This mapping is called Hausdorff
continuous at a point x ∈ R

n, if for any ε > 0 there exists δ > 0 such that

dH (G(y),G(x)) < ε for all y ∈ B(x; δ).

1.4 Functions and Derivatives

In what follows the considered functions are assumed to be locally Lipschitz con-
tinuous. A function f : Rn → R is locally Lipschitz continuous at a point x ∈ R

n if
there exist scalars K > 0 and ε > 0 such that

|f(y) − f(z)| ≤ K‖y − z‖ for all y,z ∈ B(x; ε).

Function f : Rn → R is said to be locally Lipschitz continuous on a set U ⊆ R
n if it

is locally Lipschitz continuous at every point belonging to the set U . Furthermore,
if U = R

n the function is called locally Lipschitz continuous.
Function f : Rn → R is said to be Lipschitz continuous on a set U ⊆ R

n if there
exists a scalar K such that

|f(y) − f(z)| ≤ K‖y − z‖ for all y,z ∈ U.

If U = R
n then f is said to be Lipschitz continuous.

A function f : Rn → R is positively homogeneous if

f(λx) = λf(x)

1.4 Functions and Derivatives 7

for all λ ≥ 0 and subadditive if

f(x + y) ≤ f(x) + f(y)

for all x and y in R
n. A function is said to be sublinear if it is both positively

homogeneous and subadditive.
A function f : Rn → R is said to be upper semicontinuous at x ∈ R

n if for every
sequence (xk) converging to x the following holds

lim sup
k→∞

f(xk) ≤ f(x)

and lower semicontinuous if

f(x) ≤ lim inf
k→∞

f(xk).

A both upper and lower semicontinuous function is continuous. Notice that a locally
Lipschitz continuous function is always continuous.

A function f : Rn → R is said to be differentiable at x ∈ R
n if there exists a

vector ∇f(x) ∈ R
n and a function ε: Rn → R such that for all d ∈ R

n

f(x + d) = f(x) + ∇f(x)Td + ‖d‖ε(d)

and ε(d) → 0 whenever ‖d‖ → 0. The vector ∇f(x) is called the gradient vector
of the function f at x and it has the following formula

∇f(x) =
(
∂

∂x1
f(x), . . . ,

∂

∂xn
f(x)

)T
,

where the components ∂
∂xi
f(x) for i = 1, . . . ,n, are called partial derivatives of

the function f . If the function is differentiable and all the partial derivatives are
continuous, then the function is said to be continuously differentiable or smooth
(f ∈ C1(Rn)). Notice that a smooth function is always locally Lipschitz continuous.

Lemma 1.1 If a function f : Rn → R is continuously differentiable at x, then f is
locally Lipschitz continuous at x.

Proof Continuous differentiability means that the linear valued derivative mapping
∇f : Rn → L(Rn, R) is continuous on a neighborhood of x. It follows that there
exist constants ε > 0 and M > 0 such that

‖∇f(w)‖ ≤ M for all w ∈ B(x; ε).

Suppose now that y, y′ ∈ B(x; ε). Then, by the classical Mean-Value Theorem,
there is z ∈ (y,y′) ⊂ B(x; ε) such that

8 1 Theoretical Background

f(y) − f(y′) = ∇f(z)T (y − y′).

We now have

|f(y) − f(y′)| ≤ ‖∇f(z)‖ ‖y − y′‖ ≤ M ‖y − y′‖,

which is the Lipschitz condition at x. �

The limit

f ′(x;d) = lim
t↓0

f(x + td) − f(x)

t

(if it exists) is called the directional derivative of f at x ∈ R
n in the direction d ∈ R

n.
If a function f is differentiable at x, then the directional derivative exists in every
direction d ∈ R

n and

f ′(x;d) = ∇f(x)Td.

Lemma 1.2 Let x ∈ R
n be a point, where f : Rn → R is locally Lipschitz con-

tinuous and differentiable. Let K be the Lipschitz constant of the function f at the
point x. Then the function d �→ f ′(x;d) is positively homogeneous and Lipschitz
continuous with the constant K.

Proof Since f is differentiable at the point x the directional derivatives f ′(x;d)

exist for all d ∈ R
n. Let λ > 0, then

f ′(x;λd) = lim
t↓0

f(x + tλd) − f(x)

t
= lim

t↓0
λ
f(x + tλd) − f(x)

λt

= λ lim
t↓0

f(x + tλd) − f(x)

λt
= λf ′(x;d),

which proves the positive homogeneity.
Let u,w ∈ R

n be arbitrary. Since f is locally Lipschitz continuous there exists
ε > 0 such that the Lipschitz condition holds in B(x; ε). Furthermore, there exists
t0 > 0 such that x + tw,x + tu ∈ B(x; ε) when 0 < t < t0. Then

f(x + tu) − f(x + tw) ≤ Kt ‖u − w‖ ,

and, thus,

lim
t↓0

f(x + ut) − f(x)

t
≤ lim

t↓0

f(x + wt) − f(x)

t
+K ‖u − w‖

whence
f ′(x;u) − f ′(x;w) ≤ K ‖u − w‖.

1.4 Functions and Derivatives 9

Reversing the roles of u and w we obtain

f ′(x;w) − f ′(x;u) ≤ K ‖u − w‖.

Thus ∣∣f ′(x;w) − f ′(x;u)
∣∣ ≤ K ‖u − w‖

completing the proof of the Lipschitz continuity. �

A function f : Rn → R is said to be twice differentiable at x ∈ R
n if there exists a

vector ∇f(x) ∈ R
n, a symmetric matrix ∇2f(x) ∈ R

n×n, and a function ε: Rn → R

such that for all d ∈ R
n

f(x + d) = f(x) + ∇f(x)Td + 1

2
dT∇2f(x)d + ‖d‖2ε(d),

where ε(d) → 0 whenever ‖d‖ → 0. The matrix ∇2f(x) is called the Hessian
matrix of the function f at x and it is defined to consist of second order partial
derivatives of f , that is,

∇2f(x) =

⎡

⎢⎢⎢⎣

∂2

∂x2
1
f(x) . . . ∂2

∂x1∂xn
f(x)

...
. . .

...
∂2

∂xn∂x1
f(x) . . . ∂2

∂x2
n
f(x)

⎤

⎥⎥⎥⎦.

If the function is twice differentiable and all the second order partial derivatives are
continuous, then the function is said to be twice continuously differentiable (f ∈
C2(Rn)).

To the end of this chapter we give the famous Weierstrass’ Theorem, which guar-
antees the existence of the solution of the general optimization problem.

Theorem 1.1 (Weierstrass) If S ⊂ R
n is a nonempty compact set and f : Rn → R

is continuous, then f attains its minimum and maximum over S.

Chapter 2
Convex Analysis

The theory of nonsmooth analysis is based on convex analysis. Thus, we start this
chapter by giving basic concepts and results of convexity (for further readings see also
[202, 204]). We take a geometrical viewpoint by examining the tangent and normal
cones of convex sets. Then we generalize the concepts of differential calculus for
convex, not necessarily differentiable functions [204]. We define subgradients and
subdifferentials and present some basic results. At the end of this chapter, we link
these analytical and geometrical concepts together.

2.1 Convex Sets

We start this section by recalling the definition of a convex set.

Definition 2.1 Let S be a subset of R
n. The set S is said to be convex if

λx + (1 − λ)y ∈ S,

for all x,y ∈ S and λ ∈ [0, 1].
Geometrically this means that the set is convex if the closed line-segment [x,y]

is entirely contained in S whenever its endpoints x and y are in S (see Fig. 2.1).

Example 2.1 (Convex sets). Evidently the empty set ∅, a singleton {x}, the
whole space R

n, linear subspaces, open and closed balls and halfspaces are
convex sets. Furthermore, if S is a convex set also cl S and int S are convex.

Theorem 2.1 Let Si ⊆ R
n be convex sets for i = 1, . . . ,m. Then their intersection

m⋂

i=1

Si (2.1)

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_2

11

12 2 Convex Analysis

(a) (b)

Fig. 2.1 Illustration of convex and nonconvex sets. (a) Convex. (b) Not convex

is also convex.

Proof Let x,y ∈ ⋂m
i=1 Si and λ ∈ [0, 1] be arbitrary. Because x,y ∈ Si and Si is

convex for all i = 1, . . . ,m, we have λx+ (1 −λ)y ∈ Si for all i = 1, . . . ,m. This
implies that

λx + (1 − λ)y ∈
m⋂

i=1

Si

and the proof is complete. �

Example 2.2 (Intersection of convex sets). The hyperplane

H(p,α) = {x ∈ R
n | pT (x − x0) = 0},

where x0,p ∈ R
n and p �= 000 is convex, since it can be represent as an

intersection of two convex closed halfspaces as

H(p,α) = H+(p,α) ∩ H−(p,α)

= {x ∈ R
n | pT (x − x0) ≥ 0} ∩ {x ∈ R

n | pT (x − x0) ≤ 0}.

The next theorem shows that the space of convex sets has some linear properties.
This is due to fact that the space of convex sets is a subspace of the power set P(Rn)

consisting of all subsets of R
n.

Theorem 2.2 Let S1,S2 ⊆ R
n be nonempty convex sets and μ1,μ2 ∈ R. Then the

set μ1S1 + μ2S2 is also convex.

Proof Let the points x,y ∈ μ1S1 + μ2S2 and λ ∈ [0, 1]. Then x and y can be
written {

x = μ1x1 + μ2x2, where x1 ∈ S1 and x2 ∈ S2

y = μ1y1 + μ2y2, where y1 ∈ S1 and y2 ∈ S2

2.1 Convex Sets 13

and

λx + (1 − λ)y = λ(μ1x1 + μ2x2) + (1 − λ)(μ1y1 + μ2y2)

= μ1(λx1 + (1 − λ)y1) + μ2(λx2 + (1 − λ)y2)

∈ μ1S1 + μ2S2.

Thus the set μ1S1 + μ2S2 is convex. �

2.1.1 Convex Hulls

A linear combination
∑k

i=1 λixi is called a convex combination of elements x1, . . . ,

xk ∈ R
n if each λi ≥ 0 and

∑k
i=1 λi = 1. The convex hull generated by a set is

defined as a set of convex combinations as follows.

Definition 2.2 The convex hull of a set S ⊆ R
n is

conv S = {x ∈ R
n | x =

k∑

i=1

λixi,

k∑

i=1

λi = 1, xi ∈ S, λi ≥ 0, k > 0}.

The proof of the next lemma is left as an exercise.

Lemma 2.1 If S ⊆ R
n, then conv S is a convex set and S is convex if and only if

S = conv S.

Proof Exercise. �

The next theorem shows that the convex hull is actually the intersection of all the
convex sets containing the set, in other words, it is the smallest convex set containing
the set itself (see Fig. 2.2).

Theorem 2.3 If S ⊆ R
n, then

conv S =
⋂

S⊆Ŝ
Ŝ convex

Ŝ.

Proof Let Ŝ be convex such that S ⊆ Ŝ. Then due to Lemma 2.1 we have conv S ⊆
conv Ŝ = Ŝ and thus we have

conv S ⊆
⋂

S⊆Ŝ
Ŝ convex

Ŝ.

14 2 Convex Analysis

On the other hand, it is evident that S ⊆ conv S and due to Lemma 2.1 conv S is a
convex set. Then conv S is one of the sets Ŝ forming the intersection and thus

⋂

S⊆Ŝ
Ŝ convex

Ŝ =
⋂

S⊆Ŝ
Ŝ convex

Ŝ ∩ conv S ⊆ conv S

and the proof is complete. �

2.1.2 Separating and Supporting Hyperplanes

Next we consider some nice properties of hyperplanes. Before those we need the
concept of distance function.

Definition 2.3 Let S ⊆ R
n be a nonempty set. The distance function dS : Rn → R

to the set S is defined by

dS(x) := inf {‖x − y‖ | y ∈ S} for all x ∈ R
n. (2.2)

The following lemma shows that a closed convex set always has a unique closest
point.

Lemma 2.2 Let S ⊂ R
n be a nonempty, closed convex set and x∗ /∈ S. Then there

exists a unique y∗ ∈ bd S minimizing the distance to x∗. In other words

dS(x∗) = ‖x∗ − y∗‖.

Moreover, a necessary and sufficient condition for a such y∗ is that

(x∗ − y∗)T (x − y∗) ≤ 0 for all x ∈ S. (2.3)

Fig. 2.2 Examples of convex hulls

2.1 Convex Sets 15

Proof First we prove the existence of a closest point. Since S �= ∅, there exists
x̂ ∈ S and we can define Ŝ := S ∩ cl B(x∗; r), where r := ‖x∗ − x̂‖ > 0. Then
Ŝ �= ∅ since x̂ ∈ Ŝ. Moreover, Ŝ is closed, since both S and cl B(x∗; r) are closed,
and bounded, since Ŝ ⊆ cl B(x∗; r), thus Ŝ is a nonempty compact set. Then, due
to Weierstrass’ Theorem 3.1 the continuous function

g(y) := ‖x∗ − y‖

attains its minimum over Ŝ at some y∗ ∈ Ŝ and we have

dŜ(x∗) = g(y∗) = ‖x∗ − y∗‖.

If y ∈ S \ Ŝ, it means that y /∈ cl B(x∗; r), in other words

g(y) > r ≥ g(y∗)

and thus

dS(x∗) = g(y∗) = ‖x∗ − y∗‖.

In order to show the uniqueness, suppose that there exists another z∗ ∈ S such
that z∗ �= y∗ and g(z∗) = g(y∗). Then due to convexity we have 1

2 (y∗ + z∗) ∈ S
and by triangle inequality

g
(1

2 (y∗ + z∗)
) = ‖x∗ − 1

2 (y∗ + z∗)‖ ≤ 1
2‖x∗ − y∗‖ + 1

2‖x∗ − z∗‖
= 1

2g(y
∗) + 1

2g(z
∗) = g(y∗).

The strict inequality cannot hold since g attains its minimum over S at y∗. Thus we
have

‖(x∗ − y∗) + (x∗ − z∗)‖ = ‖x∗ − y∗‖ + ‖x∗ − z∗‖,

which is possible only if the vectors x∗ − y∗ and x∗ − z∗ are collinear. In other
words x∗ − y∗ = λ(x∗ − z∗) for some λ ∈ R. Since

‖x∗ − y∗‖ = ‖x∗ − z∗‖

we have λ = ±1. If λ = −1 we have

x∗ = 1
2 (y∗ + z∗) ∈ S,

which contradicts the assumption x∗ /∈ S, and if λ = 1, we have z∗ = y∗, thus y∗
is a unique closest point.

16 2 Convex Analysis

Next we show that y∗ ∈ bd S. Suppose, by contradiction, that y∗ ∈ int S. Then
there exists ε > 0 such that B(y∗; ε) ⊂ S. Because g(y∗) = ‖x∗ − y∗‖ > 0 we
can define

w∗ := y∗ + ε

2g(y∗)
(x∗ − y∗)

and we have w∗ ∈ B(y∗; ε) since

‖w∗ − y∗‖ = ∥∥y∗ + ε

2g(y∗)
(x∗ − y∗) − y∗∥∥

= ε

2g(y∗)
‖x∗ − y∗‖ = ε

2
.

Thus w∗ ∈ S and, moreover

g(w∗) = ∥∥x∗ − y∗ − ε

2g(y∗)
(x∗ − y∗)

∥∥

= (1 − ε

2g(y∗)
)g(y∗) = g(y∗) − ε

2
< g(y∗),

which is impossible, since g attains its minimum over S at y∗. Thus we have y∗ ∈
bd S.

In order to prove that (2.3) is a sufficient condition, let x ∈ S. Then (2.3) implies

g(x)2 = ‖x∗ − y∗ + y∗ − x‖2

= ‖x∗ − y∗‖2 + ‖y∗ − x‖2 + 2(x∗ − y∗)T (y∗ − x)

≥ ‖x∗ − y∗‖2

= g(y∗)2,

which means that y∗ is the closest point.
On the other hand, if y∗ is the closest point, we have

g(x) ≥ g(y∗) for all x ∈ S.

Let x ∈ S be arbitrary. The convexity of S implies that

y∗ + λ(x − y∗) = λx + (1 − λ)y∗ ∈ S for all λ ∈ [0, 1]

and thus

g
(
y∗ + λ(x − y∗)

) ≥ g(y∗). (2.4)

Furthermore, we have

2.1 Convex Sets 17

g
(
y∗ + λ(x − y∗)

)2 = ‖x∗ − y∗ − λ(x − y∗)‖2

= g(y∗)2 + λ2‖x − y∗‖2 − 2λ(x∗ − y∗)T (x − y∗)

and combining this with (2.4) we get

2λ(x∗ − y∗)T (x − y∗) ≤ λ2‖x − y∗‖2 for all λ ∈ [0, 1]. (2.5)

Dividing (2.5) by λ > 0 and letting λ ↓ 0 we get (2.3). �
Next we define separating and supporting hyperplanes.

Definition 2.4 Let S1,S2 ⊂ R
n be nonempty sets. A hyperplane

H(p,α) = {x ∈ R
n | pT (x − x0) = 0},

where p �= 000 and pTx0 = α, separates S1 and S2 if S1 ⊆ H+(p,α) and S2 ⊆
H−(p,α), in other words

pT (x − x0) ≥ 0 for all x ∈ S1 and

pT (x − x0) ≤ 0 for all x ∈ S2.

Moreover, the separation is strict if S1 ∩ H(p,α) = ∅ and S2 ∩ H(p,α) = ∅.

Example 2.3 (Separation of convex sets). Let S1 := {x ∈ R
2 | 1

4x
2
1 +x2

2 ≤ 1}
and S2 := {x ∈ R

2 | (x1 − 4)2 + (x2 − 2)2 ≤ 1}. Then the hyperplane
H((1, 1)T , 3 1

2), in other words the line x2 = −x1 + 3 1
2 separates S1 and S2

(see Fig. 2.3). Notice that H((1, 1)T , 3 1
2) is not unique but there exist infinitely

many hyperplanes separating S1 and S2.

Definition 2.5 Let S ⊂ R
n be a nonempty set and x0 ∈ bd S. A hyperplane

H(p,α) = {x ∈ R
n | pT (x − x0) = 0},

where p �= 000 and pTx0 = α, supports S at x0 if either S ⊆ H+(p,α), in other
words

pT (x − x0) ≥ 0 for all x ∈ S

or S ⊆ H−(p,α), in other words

pT (x − x0) ≤ 0 for all x ∈ S.

18 2 Convex Analysis

Fig. 2.3 Separation of convex
sets

Example 2.4 (Supporting hyperplanes). Let S := {x ∈ R
2 | x2

1 + x2
2 ≤ 1}.

Then the hyperplane H((0, 1)T , 1), in other words the line x2 = 1 supports S
at x0 = (0, 1)T . Notice that H((0, 1)T , 1) is the unique supporting hyperplane
of S at x0 = (0, 1)T .

Theorem 2.4 Let S ⊂ R
n be a nonempty, closed convex set and x∗ /∈ S. Then there

exists a hyperplane H(p,α) supporting S at some y∗ ∈ bd S and separating S and
{x∗}.
Proof According to Lemma 2.2 there exists a unique y∗ ∈ bd S minimizing the
distance to x∗. Let p := x∗ − y∗ �= 000 and α := pTy∗. Then due to (2.3) we have

pT (x − y∗) = (x∗ − y∗)T (x − y∗) ≤ 0 for all x ∈ S, (2.6)

in other words S ⊆ H−(p,α). This means that H(p,α) supports S at y∗. Moreover,
we have

pTx∗ = pT (x∗ − y∗) + pTy∗ = ‖p‖2 + α > α (2.7)

in other words {x∗} ⊂ H+(p,α) and thus H(p,α) separates S and {x∗}. �

Next we prove a little bit stronger result, namely that there always exists a hyper-
plane strictly separating a point and a closed convex set.

Theorem 2.5 Let S ⊂ R
n be a nonempty, closed convex set and x∗ /∈ S. Then there

exists a hyperplane H(p,β) strictly separating S and {x∗}.
Proof Using Lemma 2.2 we get a unique y∗ ∈ bd S minimizing the distance to x∗.
As in the previous proof let p := x∗ − y∗ �= 000 but choose now β := pTw∗, where
w∗ = 1

2 (x∗ + y∗). Then due to (2.3) we have

2.1 Convex Sets 19

Fig. 2.4 Supporting hyper-
planes

pT (x − w∗) = pT (x − y∗ − 1
2p)

= (x∗ − y∗)T (x − y∗) − 1
2pTp

≤ − 1
2‖p‖2 < 0 for all x ∈ S,

in other words S ⊂ H−(p,β) and S ∩ H(p,β) = ∅. Moreover, we have

pT (x∗ − w∗) = pT (x∗ − 1
2x∗ − 1

2y∗)
= 1

2pT (x∗ − y∗)
= 1

2‖p‖2 > 0,

which means that {x∗} ⊂ H+(p,β) and {x∗}∩ H(p,β) = ∅. Thus H(p,β) strictly
separates S and {x∗}. �

Replacing S by cl conv S in Theorem 2.5 we obtain the following result.

Corollary 2.1 Let S ⊂ R
n be a nonempty set and x∗ /∈ cl conv S. Then there exists

a hyperplane H(p,β) strictly separating S and {x∗}.
The next theorem is very similar to Theorem 2.3 showing that the closure of

convex hull is actually the intersection of all the closed halfspaces containing the set.

Theorem 2.6 If S ⊂ R
n, then

cl conv S =
⋂

S⊆H−(p,α)
p�=000,α∈R

H−(p,α).

Proof Due to Theorem 2.3 we have

conv S =
⋂

S⊆Ŝ
Ŝ convex

Ŝ ⊆
⋂

S⊆H−(p,α)
p�=000,α∈R

H−(p,α) =: T .

Since T is closed as an intersection of closed sets, we have

20 2 Convex Analysis

cl conv S ⊆ cl T = T .

Next we show that also T ⊆ cl conv S. To the contrary suppose that there exists
x∗ ∈ T but x∗ /∈ cl conv S. Then due to Corollary 2.1 there exists a closed halfspace
H−(p,β) such that S ⊆ H−(p,β) and x∗ /∈ H−(p,β), thus x∗ /∈ T ⊆ H−(p,β),
which is a contradiction and the proof is complete. �

We can also strengthen the supporting property of Theorem 2.4, namely there
exists actually a supporting hyperplane at every boundary point.

Theorem 2.7 Let S ⊂ R
n be a nonempty convex set and x0 ∈ bd S. Then there

exists a hyperplane H(p,α) supporting cl S at x0.

Proof Since x0 ∈ bd S there exists a sequence (xk) such that xk /∈ cl S and
xk → x0. Then due to Theorem 2.4 for each xk there exists yk ∈ bd S such that
the hyperplane H(qk,βk), where qk := xk − yk and βk := qTk yk supports cl S at
yk. Then inequality (2.6) implies that

0 ≥ qTk (x − yk) = qTk x − βk for all x ∈ cl S,

and thus

qTk x ≤ βk for all x ∈ cl S.

On the other hand, according to (2.7) we get qTk xk > βk, thus we have

qTk x < qTk xk for all x ∈ cl S. (2.8)

Next we normalize vectors qk by defining pk := qk/‖qk‖. Then ‖pk‖ = 1, which
means that the sequence (pk) is bounded having a convergent subsequence (pkj), in
other words there exists a limit p ∈ R

n such that pkj → p and ‖p‖ = 1. It is easy
to verify, that (2.8) holds also for pkj , in other words

pTkjx < pTkjxkj for all x ∈ cl S. (2.9)

Fixing now x ∈ cl S in (2.9) and letting j → ∞ we get pTx ≤ pTx0. In other
words

pT (x − x0) ≤ 0,

which means that cl S ⊆ H−(p,α), where α := pTx0 and thus H(p,α) supports
cl S at x0. �

Finally we consider a nice property of convex sets, namely two disjoint convex
sets can always be separated by a hyperplane. For strict separation it is not enough

2.1 Convex Sets 21

to suppose the closedness of the sets, but at least one of the sets should be bounded
as well.

Theorem 2.8 Let S1,S2 ⊂ R
n be nonempty convex sets. If S1 ∩S2 = ∅, then there

exists a hyperplane H(p,α) separating S1 and S2. If, in addition, S1 and S2 are
closed and S1 is bounded, then the separation is strict.

Proof It follows from Theorem 2.2, that the set

S := S1 − S2 = {x ∈ R
n | x = x1 − x2, x1 ∈ S1,x2 ∈ S2}

is convex. Furthermore, 000 /∈ S, since otherwise there would exist x1 ∈ S1 and
x2 ∈ S2 such that 000 = x1 − x2, in other words x1 = x2 ∈ S1 ∩ S2 = ∅, which is
impossible.

If 000 /∈ cl S, then due to Corollary 2.1 there exists a hyperplane H(p,α) strictly
separating S and {000}, in other words

pTx < α < pT000 = 0 for all x ∈ S.

Since x = x1 − x2, where x1 ∈ S1 and x2 ∈ S2, we get

pTx1 < α < pTx2 for all x1 ∈ S1,x2 ∈ S2,

and thus H(p,α) strictly separates S1 and S2.
On the other hand, if 000 ∈ cl S it must hold that 000 ∈ bd S (since 000 /∈ int S).

Then due to Theorem 2.7 there exists a hyperplane H(p,β) supporting cl S at 000, in
other words

pT (x − 000) ≤ 0 for all x ∈ cl S.

Denoting again x = x1 − x2, where x1 ∈ S1 and x2 ∈ S2, we get

pTx1 ≤ pTx2 for all x1 ∈ S1,x2 ∈ S2.

Since the set of real numbers {pTx1 | x1 ∈ S1} is bounded above by some number
pTx2, where x2 ∈ S2 �= ∅ it has a finite supremum. Defining α := sup {pTx1 |
x1 ∈ S1} we get

pTx1 ≤ α ≤ pTx2 for all x1 ∈ S1,x2 ∈ S2,

and thus H(p,α) separates S1 and S2.
Suppose next, that S1 and S2 are closed and S1 is bounded. In order to show

that S is closed suppose, that there exists a sequence (xk) ⊂ S and a limit x ∈ R
n

such that xk → x. Then due to the definition of S we have xk = x1k − x2k ,
where x1k ∈ S1 and x2k ∈ S2. Since S1 is compact, there exists a convergent
subsequence (x1kj) and a limit x1 ∈ S1 such that x1kj → x1. Then we have

22 2 Convex Analysis

x2kj = x1kj − xkj → x1 − x := x2. Since S2 is closed x2 ∈ S2. Thus x ∈ S and
S is closed. Now the case 000 /∈ cl S = S given above is the only possibility and thus
we can find H(p,α) strictly separating S1 and S2. �

The next two examples show that both closedness and compactness assumptions
actually are essential for strict separation.

Example 2.5 (Strict separation, counter example 1). Let S1 := {x ∈ R
2 |

x1 > 0 and x2 ≥ 1/x1} and S2 := {x ∈ R
2 | x2 = 0}. Then both S1 and

S2 are closed but neither of them is bounded. It follows that S1 − S2 = {x ∈
R

2 | x2 > 0} is not closed and there does not exist any strictly separating
hyperplane.

Example 2.6 (Strict separation, counter example 2). Let S1 := {x ∈ R
2 |

x2
1 + x2

2 ≤ 1} and S2 := {x ∈ R
2 | (x1 − 2)2 + x2

2 < 1}. Then both S1 and
S2 are bounded but S2 is not closed and it follows again that S1 − S2 = {x ∈
R

2 | (x1 + 2)2 + x2
2 < 4} is not closed and there does not exist any strictly

separating hyperplane.

2.1.3 Convex Cones

Next we define the notion of a cone, which is a set containing all the rays passing
through its points emanating from the origin.

Definition 2.6 A set C ⊆ R
n is a cone if λx ∈ C for all x ∈ C and λ ≥ 0.

Moreover, if C is convex, then it is called a convex cone.

Example 2.7 (Convex cones). It is easy to show that a singleton {000}, the whole
space R

n, closed halfspaces H+(p, 0) and H−(p, 0), the nonnegative orthant
R
n+ = {x ∈ R

n | xi ≥ 0, i = 1 . . . ,n} and halflines starting from the origin
are examples of closed convex cones.

2.1 Convex Sets 23

(a)
(b)

(c)

Fig. 2.5 Illustration of convex and nonconvex cones. (a) Convex. (b) Not convex. (c) Not convex

Theorem 2.9 A set C ⊆ R
n is a convex cone if and only if

λx + μy ∈ C for allx,y ∈ C andλ,μ ≥ 0. (2.10)

Proof Evidently (2.10) implies that C is a convex cone.
Next, let C be a convex cone and suppose that x,y ∈ C and λ,μ ≥ 0. Since C

is a cone we have λx ∈ C and μy ∈ C. Furthermore, since C is convex we have

1
2λx + (1 − 1

2)μy ∈ C (2.11)

and again using the cone property we get

λx + μy = 2
(1

2λx + (1 − 1
2)μy

) ∈ C (2.12)

and the proof is complete. �

Via the next definition we get a connection between sets and cones. Namely a set
generates a cone, when every point of the set is replaced by a ray emanating from
the origin.

Definition 2.7 The ray of a set S ⊆ R
n is

ray S =
⋃

λ≥0

λS = {λx ∈ R
n | x ∈ S, λ ≥ 0}.

The proof of the next lemma is left as an exercise.

Lemma 2.3 If S ⊆ R
n, then ray S is a cone and C ⊆ R

n is cone if and only if

C = ray C.

Proof Exercise. �

The next theorem shows that the ray of a set is actually the intersection of all the
cones containing S, in other words, it is the smallest cone containing S (see Fig. 2.6).

24 2 Convex Analysis

Theorem 2.10 If S ⊂ R
n, then

ray S =
⋂

S⊆C
C cone

C.

Proof Let C be a cone such that S ⊆ C. Then due to Lemma 2.3 we have ray S ⊆
ray C = C and thus we have

ray S ⊆
⋂

S⊆C
C cone

C.

On the other hand, it is evident that S ⊆ conv S and due to Lemma 2.3 ray S is a
cone. Then ray S is one of the cones C forming the intersection and thus

⋂

S⊆C
C cone

C =
⋂

S⊆C
C cone

C ∩ ray S ⊆ ray S

and the proof is complete. �

It can be seen from Fig. 2.6 that a ray is not necessarily convex. However, if the
set is convex, then also its ray is convex.

Theorem 2.11 If S ⊆ R
n is convex, then ray S is a convex cone.

Proof Due to Lemma 2.3 ray S is a cone. For convexity let x,y ∈ ray S and
λ,μ ≥ 0. Then x = αu and y = βv, where u,v ∈ S and α,β ≥ 0. Since S is
convex we have

z := λα

λα+ μβ
u +

(
1 − λα

λα+ μβ

)
v ∈ S.

The fact that ray S is cone implies that (λα+ μβ)z ∈ ray S, in other words

(λα+ μβ)z = λαu + μβv = λx + μy ∈ ray S.

According to Theorem 2.9 this means, that ray S is convex. �

S conv S
ray S

cone S

(a) (b) (c) (d)

Fig. 2.6 Convex hull, ray and conic hull of a set. (a) Set. (b) Convex hull. (c) Ray. (d) Conic hull

2.1 Convex Sets 25

It is also easy to show that a ray is not necessarily closed. However, if the set is
compact not including the origin its ray is closed.

Theorem 2.12 If S ⊂ R
n is compact such that 000 /∈ S, then ray S is closed.

Proof Let (xj) ⊂ ray S be a sequence such that xj → x. Next we show that
x ∈ ray S. The fact that xj ∈ ray S means that xj = λjyj where λj ≥ 0 and
yj ∈ S for all j ∈ N. Since S is compact the sequence yj is bounded, thus there
exists a subsequence (yji) ⊂ S such that yji → y. Because S is closed, it follows
that y ∈ S. Furthermore, since 000 /∈ S one has y �= 000, thus the sequence λji is also
converging to some λ ≥ 0. Then λjiyji → λy = x, which means that x ∈ ray S,
in other words S is closed. �

Similarly to the convex combination we say that the linear combination
∑k

i=1 λixi
is a conic combination of elements x1, . . . ,xk ∈ R

n if each λi ≥ 0 and the conic
hull generated by a set is defined as a set of conic combinations as follows.

Definition 2.8 The conic hull of a set S ⊆ R
n is

cone S = {x ∈ R
n | x =

k∑

i=1

λixi, xi ∈ S, λi ≥ 0, k > 0}.

The proof of the next lemma is again left as an exercise.

Lemma 2.4 If S ⊆ R
n, then cone S is a convex cone and C ⊆ R

n is convex cone
if and only if

C = cone C.

Proof Exercise. �

The next theorem shows that the conic hull cone S is actually the intersection
of all the convex cones containing S, in other words, it is the smallest convex cone
containing S (see Fig. 2.6).

Theorem 2.13 If S ⊂ R
n, then

cone S =
⋂

S⊆C
C convex cone

C.

Proof Let C be a convex cone such that S ⊆ C. Then due to Lemma 2.4 we have
cone S ⊆ cone C = C and thus we have

cone S ⊆
⋂

S⊆C
C convex cone

C.

26 2 Convex Analysis

On the other hand, it is evident that S ⊆ cone S and due to Lemma 2.4 cone S is a
convex cone. Then cone S is one of the convex cones forming the intersection and
thus

⋂

S⊆C
C convex cone

C =
⋂

S⊆C
C convex cone

C ∩ cone S ⊆ cone S

and the proof is complete. �

Note, that according to Lemma 2.1, Theorems 2.10 and 2.13, and Definitions 2.7
and 2.8 we get the following result.

Corollary 2.2 If S ⊆ R
n, then

cone S = conv ray S.

Finally we get another connection between sets and cones. Namely, every set
generates also so called polar cone.

Definition 2.9 The polar cone of a nonempty set S ⊆ R
n is

S◦ = {y ∈ R
n | yTx ≤ 0 for all x ∈ S}.

The polar cone ∅0 of the empty set ∅ is the whole space R
n.

The next lemma gives some basic properties of polar cones (see Fig. 2.7). The
proof is left as an exercise.

Lemma 2.5 If S ⊆ R
n, then S◦ is a closed convex cone and S ⊆ S◦◦.

Proof Exercise. �

Theorem 2.14 The set C ⊆ R
n is a closed convex cone if and only if

C = C◦◦.

Proof Suppose first that C = C◦◦ = (C◦)◦. Then due to Lemma 2.5 C is a closed
convex cone.

Suppose next, that C is a closed convex cone. Lemma 2.5 implies that C ⊆ C◦◦.
We shall prove next thatC◦◦ ⊆ C. Clearly ∅◦◦ = (Rn)◦ = ∅ and thus we can assume
that C is nonempty. Suppose, by contradiction, that there exists x ∈ C◦◦ such that
x /∈ C. Then due to Theorem 2.4 there exists a hyperplane H(p,α) separating C
and {x}, in other words there exist p �= 000 and α ∈ R such that

pTy ≤ α for all y ∈ C and pTx > α.

2.1 Convex Sets 27

Fig. 2.7 Polar cones of the set

Since 000 ∈ C we have α ≥ pT000 = 0 and thus

pTx > 0. (2.13)

If p /∈ C◦ then due to the definition of the polar cone there exists z ∈ C such that
pTz > 0. Since C is cone we have λz ∈ C for all λ ≥ 0. Then pT (λz) > 0 can
grow arbitrary large when λ → ∞, which contradicts the fact that pTy ≤ α for all
y ∈ C. Therefore we have p ∈ C◦. On the other hand

x ∈ C◦◦ = {y ∈ R
n | yTv ≤ 0 for all v ∈ C◦}

and thus pTx ≤ 0, which contradicts (2.13). We conclude that x ∈ C and the proof
is complete. �

2.1.4 Contingent and Normal Cones

In this subsection we consider tangents and normals of convex sets. First we define
a classical notion of contingent cone consisting of the tangent vectors (see Fig. 2.8).

Definition 2.10 The contingent cone of the nonempty set S at x ∈ S is given by
the formula

28 2 Convex Analysis

KS(x) := {d ∈ R
n | there exist ti ↓ 0 and di → d such that x + tidi ∈ S}.

(2.14)

The elements of KS(x) are called tangent vectors.

Several elementary facts about the contingent cone will now be listed.

Theorem 2.15 The contingent cone KS(x) of the nonempty convex set S at x ∈ S
is a closed convex cone.

Proof We begin by proving that KS(x) is closed. To see this, let (di) be a sequence
in KS(x) converging to d ∈ R

n. Next we show that d ∈ KS(x). The fact that
di → d implies that for all ε > 0 there exists i0 ∈ N such that

‖d − di‖ < ε/2 for all i ≥ i0.

On the other hand, di ∈ KS(x), thus for each i ∈ N there exist sequences (dij) ⊂ R
n

and (tij) ⊂ R such that dij → di, tij ↓ 0 and x + tijdij ∈ S for all j ∈ N. Then
there exist jyi ∈ N and jti ∈ N such that for all i ∈ N

‖di − dij‖ < ε/2 for all j ≥ j
y
i

and
|tij | < 1/i for all j ≥ jti .

Let us choose ji := max {jyi , jti }. Then tiji ↓ 0 and for all i ≥ i0

‖d − diji ‖ ≤ ‖d − di‖ + ‖di − diji‖ ≤ ε/2 + ε/2 = ε,

which implies that diji → d and, moreover, x + tijidiji ∈ S. By the definition of
the contingent cone, this means that d ∈ KS(x) and thus KS(x) is closed.

Fig. 2.8 Contingent cone KS(x) of a convex set

2.1 Convex Sets 29

We continue by proving thatKS(x) is a cone. If d ∈ KS(x) is arbitrary then there
exist sequences (dj) ⊂ R

n and (tj) ⊂ R such that dj → d, tj ↓ 0 and x+ tjdj ∈ S
for all j ∈ N. Let λ > 0 be fixed and define d′

j := λdj and t′j := tj/λ. Since t′j ↓ 0,

‖d′
j − λd‖ = λ‖dj − y‖ −→ 0 whenever j → ∞

and

x + t′jd′
j = x + tj

λ
· λdj ∈ S

it follows that λd ∈ KS(x). Thus KS(x) is a cone.
For convexity let λ ∈ [0, 1] and d1,d2 ∈ KS(x). We need to show that d :=

(1−λ)d1 +λd2 belongs toKS(x). By the definition ofKS(x) there exist sequences
(d1
j), (d

2
j) ⊂ R

n and (t1j), (t
2
j) ⊂ R such that dij → di, tij ↓ 0 and x + tijd

i
j ∈ S

for all j ∈ N and i = 1, 2. Define

dj := (1 − λ)d1
j + λd2

j and tj := min {t1j , t2j }.

Then we have

x + tjdj = (1 − λ)(x + tjd
1
j) + λ(x + tjd

2
j) ∈ S

because S is convex and

x + tjd
i
j = (1 − tj

tij
)x + tj

tij
(x + tijd

i
j) ∈ S

because tj
tij

∈ [0, 1] and S is convex. Moreover, we have

‖dj − d‖ = ‖(1 − λ)d1
j + λd2

j − (1 − λ)d1 − λd2‖
≤ (1 − λ)‖d1

j − d1‖ + λ‖d2
j − d2‖ −→ 0,

when j → ∞, in other words dj → d. Since tj ↓ 0 we have d ∈ KS(x) and thus
KS(x) is convex. �

The following cone of feasible directions is very useful in optimization when
seeking for feasible search directions.

Definition 2.11 The cone of globally feasible directions of the nonempty set S at
x ∈ S is given by the formula

GS(x) := {d ∈ R
n | there exists t > 0 such that x + td ∈ S}.

30 2 Convex Analysis

The cone of globally feasible directions has the same properties as the contingent
cone but it is not necessarily closed. The proof of the next theorem is very similar to
that of Theorem 2.15 and it is left as an exercise.

Theorem 2.16 The cone of globally feasible directions GS(x) of the nonempty
convex set S at x ∈ S is a convex cone.

Proof Exercise. �

We have the following connection between the contingent cone and the cone of
feasible directions.

Theorem 2.17 If S is a nonempty set and x ∈ S, then

KS(x) ⊆ cl GS(x).

If, in addition, S is convex then

KS(x) = cl GS(x).

Proof If d ∈ KS(x) is arbitrary, then there exist sequences dj → d and tj ↓ 0 such
that x + tjdj ∈ S for all j ∈ N, thus d ∈ cl GS(x).

To see the equality, let S be convex and d ∈ cl GS(x). Then there exist sequences
dj → d and tj > 0 such that x + tjdj ∈ S for all j ∈ N. It suffices now to find
a sequence t′j such that t′j ↓ 0 and x + t′jdj ∈ S. Choose t′j := min { 1

j , tj}, which
implies that

|t′j | ≤ 1

j
−→ 0

and by the convexity of S it follows that

x + t′jdj = (1 − t′j
tj

)x + t′j
tj

(x + tjdj) ∈ S,

which proves the assertion. �

Next we shall define the concept of normal cone (see Fig. 2.9). As we already
have the contingent cone, it is natural to use polarity to define the normal vectors.

Definition 2.12 The normal cone of the nonempty set S at x ∈ S is the set

NS(x) := KS(x)◦ = {z ∈ R
n | zTd ≤ 0 for all d ∈ KS(x)}. (2.15)

The elements of NS(x) are called normal vectors.

The natural corollary of the polarity is that the normal cone has the same properties
as the contingent cone.

2.1 Convex Sets 31

Fig. 2.9 Contingent and
normal cones of a convex set

Theorem 2.18 The normal cone NS(x) of the nonempty convex set S at x ∈ S is a
closed convex cone.

Proof Follows directly from Lemma 2.5. �

Notice that if x ∈ int S, then clearly KS(x) = R
n and NS(x) = ∅. Thus the

only interesting cases are those when x ∈ bd S.
Next we present the following alternative characterization to the normal cone.

Theorem 2.19 The normal cone of the nonempty convex set S at x ∈ S can also be
written as follows

NS(x) = {z ∈ R
n | zT (y − x) ≤ 0 for all y ∈ S}. (2.16)

Proof Let us denote

Z := {z ∈ R
n | zT (y − x)T ≤ 0 for all y ∈ S}.

If z ∈ NS(x) is an arbitrary point, then by the definition of the normal cone we have

zTd ≤ 0 for all d ∈ KS(x).

Now let y ∈ S, set d := y − x and choose t := 1. Then

x + td = x + ty − tx = y ∈ S,

thus d ∈ GS(x) ⊆ cl GS(x) = KS(x) by Theorem 2.17. Since z ∈ NS(x) one
has

zT (y − x)T = zTd ≤ 0,

thus z ∈ Z and we have NS(x) ⊆ Z .

32 2 Convex Analysis

On the other hand, if z ∈ Z and d ∈ KS(x) then there exist sequences (dj) ⊂ R
n

and (tj) ⊂ R such that dj → d, tj > 0 and x + tjdj ∈ S for all j ∈ N. Let us set
yj := x + tjdj ∈ S. Since z ∈ Z we have

tjz
Tdj = zT (yj − x) ≤ 0.

Because tj is positive, it implies that zTdj ≤ 0 for all j ∈ N. Then

zTd = zTdj + zT (d − dj)

≤ ‖z‖ ‖d − dj‖,

where ‖d − dj‖ −→ 0 as j → ∞. This means that

zTd ≤ 0 for all d ∈ KS(x).

In other words, we have z ∈ NS(x) and thus Z ⊆ NS(x), which completes the
proof. �

The main difference between the groups of cones ray S, cone S, S◦ and KS(x),
GS(x),NS(x) is, that the origin is the vertex point of the cone in the first group and
the point x ∈ S in the second group. If we shift x to the origin, we get the following
connections between these two groups.

Theorem 2.20 If S is a nonempty convex set such that 000 ∈ S, then

(i) GS(000) = ray S,
(ii) KS(000) = cl ray S,

(iii) NS(000) = S◦.

Proof Exercise. �

2.2 Convex Functions

A function f : Rn → R is said to be convex if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) (2.17)

whenever x and y are in R
n and λ ∈ [0, 1]. If a strict inequality holds in (2.17) for

all x,y ∈ R
n such that x �= y and λ ∈ (0, 1), the function f is said to be strictly

convex. A function f : Rn → R is (strictly) concave if −f is (strictly) convex (see
Fig. 2.10).

Next we give an equivalent definition of a convex function.

Theorem 2.21 (Jensen’s inequality) A function f : Rn → R is convex if and only if

2.2 Convex Functions 33

x x x

(a) (b) (c)

Fig. 2.10 Examples of different functions. (a) Convex. (b) Concave. (c) Neither convex or concave

f

(
m∑

i=1

λixi

)
≤

m∑

i=1

λif(xi), (2.18)

whenever xi ∈ R
n, λi ∈ [0, 1] for all i = 1, . . . ,m and

∑m
i=1 λi = 1.

Proof Follows by induction from the definition of convex function. �

Next we show that a convex function is always locally Lipschitz continuous.

Theorem 2.22 Let f : Rn → R be a convex function. Then for any x in R
n, f is

locally Lipschitz continuous at x.

Proof Let u ∈ R
n be arbitrary. We begin by proving that f is bounded on a neigh-

borhood of u. Let ε > 0 and define the hypercube

Sε := {y ∈ R
n | |yi − ui| ≤ ε for all i = 1, . . . ,n}.

Let u1, . . . ,um denote the m = 2n vertices of Sε and let

M := max {f(ui) | i = 1, . . . ,m}.

Since eachy ∈ Sε can be expressed asy = ∑m
i=1 λiui withλi ≥ 0 and

∑m
i=1 λi = 1,

by Theorem 2.21. we obtain

f(y) = f

(
m∑

i=1

λiui

)
≤

m∑

i=1

λif(ui) ≤ M

m∑

i=1

λi = M .

Since B(u; ε) ⊂ Sε, we have an upper bound M of f on an ε-neighborhood of u,
that is

f(x′) ≤ M for all x′ ∈ B(u; ε).

Now let x ∈ R
n, choose ρ > 1 and y ∈ R

n so that y = ρx. Define

34 2 Convex Analysis

λ := 1/ρ and

V := {v | v = (1 − λ)(x′ − u) + x, where x′ ∈ B(u; ε)}.

The set V is a neighborhood of x = λy with radius (1 − λ)ε. By convexity one has
for all v ∈ V

f(v) = f((1 − λ)(x′ − u) + λy)

= f((1 − λ)x′ + λ(y + u − 1
λu))

≤ (1 − λ)f(x′) + λf(y + u − 1
λu).

Now f(x′) ≤ M and f(y + u − 1
λu) = constant =: K and thus

f(v) ≤ M + λK.

In other words, f is bounded above on a neighborhood of x.
Let us next show that f is also bounded below. Let z ∈ B(x; (1−λ)ε) and define

z′ := 2x − z. Then
‖z′ − x‖ = ‖x − z‖ ≤ (1 − λ)ε.

Thus z′ ∈ B(x; (1 − λ)ε) and x = (z + z′)/2. The convexity of f implies that

f(x) = f((z + z′)/2) ≤ 1
2f(z) + 1

2f(z′),

and
f(z) ≥ 2f(x) − f(z′) ≥ 2f(x) −M − λK

so that f is also bounded below on a neighborhood of x. Thus we have proved that
f is bounded on a neighborhood of x.

Let N > 0 be a bound of |f | so that

|f(x′)| ≤ N for all x′ ∈ B(x; 2δ),

where δ > 0, and let x1,x2 ∈ B(x; δ) with x1 �= x2. Define

x3 := x2 + (δ/α)(x2 − x1),

where α := ‖x2 − x1‖. Then

2.2 Convex Functions 35

‖x3 − x‖ = ‖x2 + (δ/α)(x2 − x1) − x‖
≤ ‖x2 − x‖ + (δ/α)‖x2 − x1‖

< δ + δ

‖x2 − x1‖‖x2 − x1‖
= 2δ,

thus x3 ∈ B(x; 2δ). Solving for x2 gives

x2 = δ

α+ δ
x1 + α

α+ δ
x3,

and by the convexity we get

f(x2) ≤ δ

α+ δ
f(x1) + α

α+ δ
f(x3).

Then

f(x2) − f(x1) ≤ α

α+ δ
[f(x3) − f(x1)]

≤ α

δ
|f(x3) − f(x1)|

≤ α

δ
(|f(x3)| + |f(x1)|).

Since x1,x3 ∈ B(x; 2δ) we have |f(x3)| < N and |f(x1)| < N , thus

f(x2) − f(x1) ≤ 2N

δ
‖x2 − x1‖.

By changing the roles of x1 and x2 we have

|f(x2) − f(x1)| ≤ 2N

δ
‖x2 − x1‖,

showing that the function f is locally Lipschitz continuous at x. �

36 2 Convex Analysis

Fig. 2.11 Absolute-value
function f(x) = |x|

f(x
)=

|x|

f(x)

1 2−1

1

2

3

3− 2− 3 x

The simplest example of nonsmooth function is the absolute-value function on
reals (see Fig. 2.11).

Example 2.8 (Absolute-value function). Let us consider the absolute-value
function

f(x) = |x|

on reals.
The gradient of function f is

∇f(x) =
{

1, when x > 0,

−1, when x < 0.

Function f is not differentiable at x = 0.
We now show that function f is both convex and (locally) Lipschitz con-

tinuous. Let λ ∈ [0, 1] and x, y ∈ R. By triangle inequality we have

f(λx+ (1 − λ)y) = |λx+ (1 − λ)y|
≤ |λx| + |(1 − λ)y|
= |λ||x| + |1 − λ||y|
= λ|x| + (1 − λ)|y|
= λf(x) + (1 − λ)f(y).

Thus, function f is convex. Furthermore, by triangle inequality we also have

|f(x) − f(y)| = ||x| − |y|| ≤ |x− y|

2.2 Convex Functions 37

for all x, y ∈ R. In space R, the right-hand side equals to the norm ‖x − y‖.
Thus, we have the Lipschitz constant K = 1 > 0 and function f is Lipschitz
continuous.

2.2.1 Level Sets and Epigraphs

Next we consider two sets, namely level sets and epigraphs, closely related to convex
functions.

Definition 2.13 The level set of a function f : Rn → R with a parameter α ∈ R is
defined as

levα f := {x ∈ R
n | f(x) ≤ α}.

We have the following connection between the convexity of functions and level
sets.

Theorem 2.23 If f : Rn → R is a convex function, then the level set levα f is a
convex set for all α ∈ R.

Proof If x,y ∈ levα f and λ ∈ [0, 1] we have f(x) ≤ α and f(y) ≤ α. Let
z := λx + (1 − λ)y with some λ ∈ [0, 1]. Then the convexity of f implies that

f(z) ≤ λf(x) + (1 − λ)f(y) ≤ λα+ (1 − λ)α = α,

in other words z ∈ levα f and thus levα f is convex. �
The previous result can not be inverted since there exist nonconvex functions with
convex level sets (see Fig. 2.12). The equivalence can be achieved by replacing the
level set with the so called epigraph being a subset of R

n × R (see Fig. 2.13).

Fig. 2.12 Nonconvex func-
tion with convex level sets

38 2 Convex Analysis

Fig. 2.13 Epigraph of the
function

Definition 2.14 The epigraph of a function f : Rn → R is the following subset of
R
n × R:

epi f := {(x, r) ∈ R
n × R | f(x) ≤ r}. (2.19)

Theorem 2.24 The function f : Rn → R is convex if and only if the epigraph epi f
is a convex set.

Proof Exercise. �

Notice, that we have the following connection between the epigraph and level sets
of a function f : Rn → R at x ∈ R

n

levf(x) f = {y ∈ R
n | (y, f(x)) ∈ epi f}.

2.2.2 Subgradients and Directional Derivatives

In this section we shall generalize the classical notion of gradient for convex but not
necessarily differentiable functions. Before that we consider some properties related
to the directional derivative of convex functions.

Theorem 2.25 If f : Rn → R is a convex function, then the directional derivative
f ′(x; d) exists in every direction d ∈ R

n and it satisfies

f ′(x; d) = inf
t>0

f(x + td) − f(x)

t
. (2.20)

Proof Let d ∈ R
n be an arbitrary direction. Define ϕ: R → R by

ϕ(t) := f(x + td) − f(x)

t
.

2.2 Convex Functions 39

We begin by proving that ϕ is bounded below at t when t ↓ 0. Let ε > 0 and let
constants t1 and t2 be such that 0 < t1 < t2 < ε. By the convexity of f we have

ϕ(t2) − ϕ(t1) = 1

t1t2
[t1f(x + t2d) − t2f(x + t1d) + (t2 − t1)f(x)]

= 1

t1

{(t1
t2
f(x + t2d) + (1 − t1

t2
)f(x)

)

− f
(t1
t2

(x + t2d) + (1 − t1

t2
)x

)}

≥ 0,

thus the function ϕ(t) decreases as t ↓ 0. Then for all 0 < t < ε one has

ϕ(t) − ϕ(−ε/2) =
1
2f(x + td) + 1

2f(x) + t
εf(x − ε

2d) + (1 − t
ε)f(x) − 2f(x)

t/2

≥
1
2f(x + t

2d) + 1
2f(x − t

2d) − f(x)

t/4

≥ f(x) − f(x)

t/4
= 0,

which means that the function ϕ is bounded below for 0 < t < ε. This implies that
there exists the limit

lim
t↓0

ϕ(t) = f ′(x; d) for all d ∈ R
n

and since the function ϕ(t) decreases as t ↓ 0 we deduce that

f ′(x; d) = inf
t>0

f(x + td) − f(x)

t
. �

Theorem 2.26 Let f : Rn → R be a convex function with a Lipschitz constant K at
x ∈ R

n. Then the function d �→ f ′(x; d) is positively homogeneous and subadditive
on R

n with
|f ′(x; d)| ≤ K‖d‖.

Proof We start by proving the inequality. From the Lipschitz condition we obtain

|f ′(x;d)| ≤ lim
t↓0

|f(x + td) − f(x)|
t

≤ lim
t↓0

K‖x + td − x‖
t

≤ K‖d‖.

40 2 Convex Analysis

Next we show that f ′(x; ·) is positively homogeneous. To see this, let λ > 0. Then

f ′(x;λd) = lim
t↓0

f(x + tλd) − f(x)

t

= lim
t↓0

λ ·
{
f(x + tλd) − f(x)

tλ

}

= λ · lim
t↓0

f(x + tλd) − f(x)

tλ

= λ · f ′(x;d).

We turn now to the subadditivity. Let d,p ∈ R
n be arbitrary directions, then by

convexity

f ′(x;d + p) = lim
t↓0

f(x + t(d + p)) − f(x)

t

= lim
t↓0

f(1
2 (x + 2td) + 1

2 (x + 2tp)) − f(x)

t

≤ lim
t↓0

f(x + 2td) − f(x)

2t
+ lim

t↓0

f(x + 2tp) − f(x)

2t

= f ′(x; d) + f ′(x; p).

Thus d �→ f ′(x;d) is subadditive. �

From the previous theorem we derive the following consequence.

Corollary 2.3 If f : Rn → R is a convex function, then the function d �→ f ′(x; d)

is convex, its epigraph epi f ′(x; ·) is a convex cone and we have

f ′(x;−d) ≥ −f ′(x; d) for all x ∈ R
n.

Proof Exercise. �

Next we define the subgradient and the subdifferential of a convex function. Note
the analogy to the smooth differential theory, namely if a function f : Rn → R is
both convex and differentiable, then for all y ∈ R

n we have

f(y) ≥ f(x) + ∇f(x)T (y − x).

Figure 2.14 illustrates the meaning of the definition of the subdifferential.

Definition 2.15 The subdifferential of a convex function f : Rn → R at x ∈ R
n is

the set ∂cf(x) of vectors ξ ∈ R
n such that

∂cf(x) =
{
ξ ∈ R

n | f(y) ≥ f(x) + ξT (y − x) for all y ∈ R
n
}

.

2.2 Convex Functions 41

Fig. 2.14 Subdifferential

Each vector ξ ∈ ∂cf(x) is called a subgradient of f at x.

Example 2.9 (Absolute-value function). As noted in Example 2.8 function
f(x) = |x| is convex and differentiable when x �= 0. By the definition of
subdifferential we have

ξ ∈ ∂cf(0) ⇐⇒ |y| ≥ |0| + ξ · (y − 0) for all y ∈ R

⇐⇒ |y| ≥ ξ · y for all y ∈ R

⇐⇒ ξ ≤ 1 and ξ ≥ −1.

Thus, ∂cf(0) = [−1, 1].

Theorem 2.27 Let f : Rn → R be a convex function with a Lipschitz constant K at
x∗ ∈ R

n. Then the subdifferential ∂cf(x∗) is a nonempty, convex, and compact set
such that

∂cf(x∗) ⊆ B(000;K).

Proof We show first that there exists a subgradient ξ ∈ ∂cf(x∗), in other words
∂cf(x∗) is nonempty. By Theorem 2.24 epi f is a convex set and by Theorem 2.22 and
Exercise 2.29 it is closed. Since (x∗, f(x∗)) ∈ epi f it is also nonempty, furthermore
we have (x∗, f(x∗)) ∈ bd epi f . Then due to Theorem 2.7 there exists a hyperplane
supporting epi f at (x∗, f(x∗)). In other words there exists (ξ∗,μ) �= (000, 0) where
ξ∗ ∈ R

n and μ ∈ R such that for all (x, r) ∈ epi f we have

(ξ∗,μ)T
(
(x, r) − (x∗, f(x∗))

) = (ξ∗)T (x − x∗) + μ(r − f(x∗)) ≤ 0. (2.21)

42 2 Convex Analysis

In the above inequality r can be chosen as large as possible, thus μ must be nonpos-
itive. If μ = 0 then (2.21) reduces to

(ξ∗)T (x − x∗) ≤ 0 for all x ∈ R
n.

If we choose x := x∗ + ξ∗ we get (ξ∗)T ξ∗ = ‖ξ∗‖2 ≤ 0. This means that ξ∗ = 000,
which is impossible because (ξ∗,μ) �= (000, 0), thus we have μ < 0. Dividing the
inequality (2.21) by |μ| and noting ξ := ξ∗/|μ| we get

ξT (x − x∗) − r + f(x∗) ≤ 0 for all (x, r) ∈ epi f .

If we choose now r := f(x) we get

f(x) ≥ f(x∗) + ξT (x − x∗) for all x ∈ R
n,

which means that ξ ∈ ∂cf(x∗).
To see the convexity let ξ1, ξ2 ∈ ∂cf(x∗) and λ ∈ [0, 1]. Then we have

f(y) ≥ f(x∗) + ξT1 (y − x∗) for all y ∈ R
n and

f(y) ≥ f(x∗) + ξT2 (y − x∗) for all y ∈ R
n.

Multiplying the above two inequalities by λ and (1 − λ), respectively, and adding
them together, we obtain

f(y) ≥ f(x∗) + (
λξ1 + (1 − λ)ξ2

)T
(y − x∗) for all y ∈ R

n,

in other words
λξ1 + (1 − λ)ξ2 ∈ ∂cf(x∗)

and thus ∂cf(x∗) is convex.
If d ∈ R

n we get from the definition of the subdifferential

ϕ(t) := f(x + td) − f(x)

t
≥ ξT (td)

t
= ξTd for all ξ ∈ ∂cf(x∗).

Since ϕ(t) → f ′(x∗;d) when t ↓ 0 we obtain

f ′(x∗;d) ≥ ξTd for all ξ ∈ ∂cf(x∗). (2.22)

Thus for an arbitrary ξ ∈ ∂cf(x∗) we get

‖ξ‖2 = |ξT ξ| ≤ |f ′(x∗; ξ)| ≤ K‖ξ‖

by Theorem 2.26. This means that ∂cf(x∗) is bounded and we have

∂cf(x∗) ⊆ B(000;K).

2.2 Convex Functions 43

Thus, for compactness it suffices to show that ∂cf(x∗) is closed. To see this let
(ξi) ⊂ ∂cf(x∗) such that ξi → ξ. Then for all y ∈ R

n we have

f(y) − f(x∗) ≥ ξTi (y − x) → ξT (y − x),

whenever i → ∞, thus ξ ∈ ∂cf(x∗) and ∂cf(x∗) is closed. �

The next theorem shows the relationship between the subdifferential and the
directional derivative. It turns out that knowing f ′(x;d) is equivalent to knowing
∂cf(x).

Theorem 2.28 Let f : Rn → R be a convex function. Then for all x ∈ R
n

(i) ∂cf(x) = {ξ ∈ R
n | f ′(x, d) ≥ ξTd for all d ∈ R

n}, and
(ii) f ′(x; d) = max {ξTd | ξ ∈ ∂cf(x)} for any d ∈ R

n.

Proof (i) Set
S := {ξ ∈ R

n | f ′(x;d) ≥ ξTd for all d ∈ R
n}

and let ξ ∈ S be arbitrary. Then it follows from convexity that, for all d ∈ R
n, we

have

ξTd ≤ f ′(x; d)

= lim
t↓0

f
(
(1 − t)x + t(x + d)

) − f(x)

t

≤ lim
t↓0

(1 − t)f(x) + tf(x + d) − f(x)

t

= f(x + d) − f(x),

whenever t ≤ 1. By choosing d := y −x we derive ξ ∈ ∂cf(x). On the other hand,
if ξ ∈ ∂cf(x) then due to (2.22) we have

f ′(x;d) ≥ ξTd for all d ∈ R
n.

Thus ξ ∈ S, which establishes (i).

(ii) First we state that since the subdifferential is compact and nonempty set
(Theorem 2.27) the maximum of the linear function d �→ ξTd is well-defined due
to the Weierstrass’ Theorem 1.1. Again from (2.22) we deduce that for each d ∈ R

n

we have

f ′(x; d) ≥ max {ξTd | ξ ∈ ∂cf(x)}.

44 2 Convex Analysis

Suppose next that there were d∗ ∈ R
n for which

f ′(x; d∗) > max {ξTd∗ | ξ ∈ ∂cf(x)}. (2.23)

By Corollary 2.3 function d �→ f ′(x; d) is convex and thus by Theorem 2.24
epi f ′(x; ·) is a convex set and by Theorem 2.22 and Exercise 2.29 it is closed.
Since (d∗, f ′(x; d∗)) ∈ epi f ′(x; ·) it is also nonempty, furthermore we have
(d∗, f ′(x;d∗)) ∈ bd epi f ′(x; ·). Then due to Theorem 2.7 there exists a hyper-
plane supporting epi f ′(x; ·) at (d∗, f ′(x; d∗)), in other words there exists (ξ∗,μ) �=
(000, 0) where ξ∗ ∈ R

n and μ ∈ R such that for all (d, r) ∈ epi f ′(x; ·) we have

(ξ∗,μ)T
(
(d, r) − (d∗, f ′(x;d∗))

) = (ξ∗)T (d − d∗) + μ(r − f ′(x; d∗)) (2.24)

≤ 0.

Just like in the proof of Theorem 2.27 we can deduce that μ < 0. Again dividing the
inequality (2.24) by |μ| and noting ξ := ξ∗/|μ| we get

ξT (d − d∗) − r + f ′(x;d∗) ≤ 0 for all (d, r) ∈ epi f ′(x; ·).

If we choose now r := f ′(x;d) we get

f ′(x;d) − f ′(x;d∗) ≥ ξT (d − d∗) for all d ∈ R
n. (2.25)

Then from the subadditivity of the directional derivative (Theorem 2.26) we obtain

f ′(x;d − d∗) ≥ ξT (d − d∗) for all d ∈ R
n,

which by assertion (i) means that ξ ∈ ∂cf(x). On the other hand from Eqs. (2.25)
and (2.23) we get

f ′(x; d) − ξTd ≥ f ′(x;d∗) − ξTd∗ > 0 for all d ∈ R
n,

in other words we have

f ′(x;d) > ξTd for all d ∈ R
n.

Now by choosing d := 000 we get ‘0 > 0’, which is impossible, thus by the contra-
diction (2.23) is wrong and we have the equality

f ′(x;d) = max {ξTd | ξ ∈ ∂cf(x)} for all d ∈ R
n

and the proof is complete. �

2.2 Convex Functions 45

Example 2.10 (Absolute-value function). By Theorem 2.28 (i) we have

ξ ∈ ∂cf(0) ⇐⇒ f ′(0, d) ≥ ξ · d for all d ∈ R.

Now

f ′(0, d) = lim
t↓0

|0 + td| − |0|
t

= lim
t↓0

t|d|
t

= |d|

and, thus,

ξ ∈ ∂cf(0) ⇐⇒ |d| ≥ ξ · d for all d ∈ R

⇐⇒ ξ ∈ [−1, 1].

The next theorem shows that the subgradients really are generalizations of the clas-
sical gradient.

Theorem 2.29 If f : Rn → R is convex and differentiable at x ∈ R
n, then

∂cf(x) = {∇f(x)}. (2.26)

Proof According to Theorem 2.25 the directional derivative f ′(x;d) of a convex
function exists in every direction d ∈ R

n. From the definition of differentiability we
have

f ′(x;d) = ∇f(x)Td for all d ∈ R
n,

which implies, by Theorem 2.28 (i) that ∇f(x) ∈ ∂cf(x). Suppose next that there
exists another ξ ∈ ∂cf(x) such that ξ �= ∇f(x). Then by Theorem 2.28 (i) we have

ξTd ≤ f ′(x;d) = ∇f(x)Td for all d ∈ R
n,

in other words
(ξ − ∇f(x))Td ≤ 0 for all d ∈ R

n.

By choosing d := ξ − ∇f(x) we get

‖ξ − ∇f(x))‖2 ≤ 0,

implying that ξ = ∇f(x), which contradicts the assumption. Thus

∂cf(x) = {∇f(x)}. �

46 2 Convex Analysis

Example 2.11 (Absolute-value function). Let us define the whole subdifferen-
tial ∂f(x) of the function f(x) = |x|. Function f is differentiable in every-
where except in x = 0, and

∇f(x) =
{

1, whenx > 0

−1, whenx < 0.

In Examples 2.9 and 2.10, we have computed the subdifferential at x = 0, that
is, ∂cf(0) = [−1, 1]. Thus, the subdifferential of f is

∂f(x) =
⎧
⎨

⎩

{−1}, whenx < 0
[−1, 1], whenx = 0
{1}, whenx > 0

(see also Fig. 2.15).

We are now ready to present a very useful result in developing optimization methods.
It gives a representation to a convex function by using subgradients.

Theorem 2.30 If f : Rn → R is convex then for all y ∈ R
n

f(y) = max {f(x) + ξT (y − x) | x ∈ R
n, ξ ∈ ∂cf(x)}. (2.27)

Proof Suppose that y ∈ R
n is an arbitrary point and ζ ∈ ∂f(y). Let

S := {f(x) + ξT (y − x) | ξ ∈ ∂cf(x), x ∈ R
n}.

By the definition of subdifferential of a convex function we have

f(y) ≥ f(x) + ξT (y − x) for all x ∈ R
nand ξ ∈ ∂cf(x)

Fig. 2.15 Subdifferential
∂cf(x) of f(x) = |x|

1 2−1

1

2

3− 2− 3 x
−1

ξ

2.2 Convex Functions 47

implying that the set S is bounded from above and

supS ≤ f(y).

On the other hand, we have

f(y) = f(y) + ζT (y − y) ∈ S,

which means that f(y) ≤ sup S. Thus

f(y) = max {f(x) + ξT (y − x) | ξ ∈ ∂cf(x), x ∈ R
n}. �

2.2.3 ε-Subdifferentials

In nonsmooth optimization, so called bundle methods are based on the concept of
ε-subdifferential, which is an extension of the ordinary subdifferential. Therefore we
now give the definition of ε-subdifferential and present some of its basic properties.

We start by generalizing the ordinary directional derivative. Note the analogy with
the property (2.20).

Definition 2.16 Let f : Rn → R be convex. The ε-directional derivative of f at x
in the direction d ∈ R

n is defined by

f ′
ε(x;d) = inf

t>0

f(x + td) − f(x) + ε

t
. (2.28)

Now we can reach the same results as in Theorem 2.26 and Corollary 2.3 also for
the ε-directional derivative.

Theorem 2.31 Let f : Rn → R be a convex function with a Lipschitz constant K at
x ∈ R

n. Then the function d �→ f ′
ε(x;d) is

(i) positively homogeneous and subadditive on R
n with

|f ′
ε(x;d)| ≤ K‖d‖,

(ii) convex, its epigraph epi f ′
ε(x; ·) is a convex cone and

f ′
ε(x;−d) ≥ −f ′

ε(x; d) for all x ∈ R
n.

Proof These results follow immediately from Theorem 2.26, Corollary 2.3 and the
fact that for all ε > 0 we have inft>0 ε/t = 0. �

48 2 Convex Analysis

Fig. 2.16 Illustration of ε-
subdifferential

As before we now generalize the subgradient and the subdifferential of a convex
function. We illustrate the meaning of the definition in Fig. 2.16.

Definition 2.17 Let ε ≥ 0, then the ε- subdifferential of the convex function
f : Rn → R at x ∈ R

n is the set

∂εf(x) = {ξ ∈ R
n | f(x′) ≥ f(x) + ξT (x′ − x) − ε for all x′ ∈ R

n}. (2.29)

Each element ξ ∈ ∂εf(x) is called an ε-subgradient of f at x.

The following summarizes some basic properties of the ε-subdifferential.

Theorem 2.32 Let f : Rn → R be convex function with a Lipschitz constant K at
x ∈ R

n. Then

(i) ∂0f(x) = ∂cf(x).
(ii) If ε1 ≤ ε2, then ∂ε1f(x) ⊆ ∂ε2f(x).

(iii) ∂εf(x) is a nonempty, convex, and compact set such that ∂εf(x) ⊆ B(000;K).
(iv) ∂εf(x) = {ξ ∈ R

n | f ′
ε(x; d) ≥ ξTd for all d ∈ R

n}.
(v) f ′

ε(x;d) = max {ξTd | ξ ∈ ∂εf(x)} for all d ∈ R
n.

Proof The definition of the ε-subdifferential implies directly the assertions (i) and
(ii) and the proofs of assertions (iv) and (v) are the same as for ε = 0 in The-
orem 2.28 (i) and (ii), respectively. By Theorem 2.27 ∂cf(x) is nonempty which
implies by assertion (i) that ∂εf(x) is also nonempty. The proofs of the convexity
and compactness are also same as in Theorem 2.27. �
The following shows that the ε-subdifferential contains in a compressed form the
subgradient information from the whole neighborhood.

Theorem 2.33 Let f : Rn → R be convex with Lipschitz constant K at x. Then for
all ε ≥ 0 we have

∂cf(y) ⊆ ∂εf(x) for all y ∈ B
(
x; ε

2K

)
. (2.30)

2.2 Convex Functions 49

Proof Let ξ ∈ ∂cf(y) and y ∈ B
(
x; ε

2K

)
. Then for all z ∈ R

n it holds

f(z) ≥ f(y) + ξT (z − y)

= f(x) + ξT (z − x) − (f(x) − f(y) + ξT (z − x) − ξT (z − y))

and, using the Lipschitz condition and Theorem 2.27 we calculate

|f(x) − f(y)+ξT (z − x) − ξT (z − y)|
≤ |f(x) − f(y)| + |ξT (z − x) − ξT (z − y)|
≤ K ‖x − y‖ + ‖ξ‖ ‖x − y‖
≤ 2K ‖x − y‖
≤ 2K · ε

2K
= ε,

which gives ξ ∈ ∂εf(x). �

2.3 Links Between Geometry and Analysis

In this section we are going to show that the analytical and geometrical concepts
defined in the previous sections are actually equivalent. We have already showed that
the level sets of a convex function are convex, the epigraph of the directional derivative
is a convex cone and a function is convex if and only if its epigraph is convex. In
what follows we give some more connections, on the one hand, between directional
derivatives and contingent cones, and on the other hand, between subdifferentials
and normal cones in terms of epigraph, level sets and the distance function.

2.3.1 Epigraphs

The next two theorems describe how one could equivalently define tangents and
normals by using the epigraph of a convex function (see Figs. 2.17 and 2.18). First
result show that the contingent cone of the epigraph is the epigraph of the directional
derivative.

Theorem 2.34 If the function f : Rn → R is convex, then

Kepi f (x, f(x)) = epi f ′(x; ·). (2.31)

Proof Suppose first that (d, r) ∈ Kepi f (x, f(x)). By the definition of the contingent
cone there exist sequences (dj, rj) → (d, r) and tj ↓ 0 such that

50 2 Convex Analysis

Fig. 2.17 Contingent cone of
the epigraph

Fig. 2.18 Normal cone of the
epigraph

(x, f(x)) + tj(dj, rj) ∈ epi f for all j ∈ N,

in other words
f(x + tjdj) ≤ f(x) + tjrj .

Now by using (2.20) we can calculate

f ′(x; d) = inf
t>0

f(x + td) − f(x)

t

= lim
j→∞

f(x + tjdj) − f(x)

tj

≤ lim
j→∞ rj = r,

which implies that (d, r) ∈ epi f ′(x; ·).
Suppose, next, that (d, r) ∈ epi f ′(x; ·), which means that

f ′(x;d) = lim
t↓0

f(x + td) − f(x)

t
≤ r.

Then there exists a sequence tj ↓ 0 such that

f(x + tjd) − f(x)

tj
≤ r + 1

j
,

2.3 Links Between Geometry and Analysis 51

which yields

f(x + tjd) ≤ f(x) + tj(r + 1

j
)

and thus (x, f(x))+ tj(d, r+ 1
j) ∈ epi f . This and the fact that (d, r+ 1

j) → (d, r)
shows that (d, r) ∈ Kepi f (x, f(x)) and we obtain the desired conclusion. �
Next we show that the subgradient is essentially a normal vector of the epigraph.

Theorem 2.35 If the function f : Rn → R is convex, then

∂cf(x) = {ξ ∈ R
n | (ξ,−1) ∈ Nepi f (x, f(x))}. (2.32)

Proof By Theorem 2.28 (i) we know that ξ ∈ ∂cf(x) if and only if for any d ∈ R
n

we have f ′(x; d) ≥ ξTd. This is equivalent to the condition that for any d ∈ R
n and

r ≥ f ′(x; d) we have r ≥ ξTd, that is, for any d ∈ R
n and r ≥ f ′(x;d) we have

(ξ,−1)T (d, r) ≤ 0.

By the definition of the epigraph and Theorem 2.34 we have (d, r) ∈ epi f ′(x; ·) =
Kepi f (x; f(x)). This and the last inequality means, by the definition of the normal
cone, that (ξ,−1) lies in Nepi f (x; f(x)). �

2.3.2 Level Sets

In the following theorem we give the relationship between the directional derivative
and the contingent cone via the level sets.

Theorem 2.36 If the function f : Rn → R is convex, then

Klevf(x) f (x) ⊆ lev0 f
′(x; ·). (2.33)

If, in addition, 000 /∈ ∂cf(x), then

Klevf(x) f (x) = lev0 f
′(x; ·). (2.34)

Proof Suppose first that d ∈ Klevf(x) f (x). By the definition of the contingent cone
there exist sequences dj → d and tj ↓ 0 such that

x + tjdj ∈ levf(x) f for all j ∈ N,

in other words
f(x + tjdj) ≤ f(x).

Now by using (2.20) we can calculate

52 2 Convex Analysis

f ′(x; d) = inf
t>0

f(x + td) − f(x)

t

= lim
j→∞

f(x + tjdj) − f(x)

tj

≤ lim
j→∞ rj = r,

which implies that d ∈ lev0 f
′(x; ·).

Suppose, next, that 000 /∈ ∂cf(x) and d ∈ lev0 f
′(x; ·), which means that

f ′(x; d) ≤ 0. Since 000 /∈ ∂cf(x) by Theorem 2.28 (i) we have

f ′(x;d) = lim
t↓0

f(x + td) − f(x)

t
< 0.

Then there exists a sequence tj ↓ 0 such that

f(x + tjd) − f(x)

tj
≤ 0,

which yields
f(x + tjd) ≤ f(x)

and thus x + tjd ∈ levf(x) f . This means that d ∈ Klevf(x) f (x) and the proof is
complete. �

Next theorem shows the connection between subgradients and normal vectors of
the level sets.

Theorem 2.37 If the function f : Rn → R is convex, then

Nlevf(x) f (x) ⊇ ray ∂cf(x).

If, in addition, 000 /∈ ∂cf(x), then

Nlevf(x) f (x) = ray ∂cf(x).

Proof If z ∈ ray ∂cf(x) then z = λξ, where λ ≥ 0 and ξ ∈ ∂cf(x). Let now
d ∈ Klevf(x) f (x), which means due to Theorem 2.36 that d ∈ lev0 f

′(x; ·). Then
using Theorem 2.28 (i) we get

zTd = λξTd ≤ λf ′(x;d) ≤ 0,

in other words z ∈ Nlevf(x) f (x).
Suppose next that 000 /∈ ∂cf(x) and there exists z ∈ Nlevf(x) f (x) such that z /∈

ray ∂cf(x). According to Theorem 2.27 ∂cf(x) is a convex and compact set. Since
000 /∈ ∂cf(x) Theorems 2.11 and 2.12 implies that ray ∂cf(x) is closed and convex,

2.3 Links Between Geometry and Analysis 53

respectively. As a cone it is nonempty since 000 ∈ ray ∂cf(x). Then by Theorem 2.4
there exists a hyperplane separating {z} and ray ∂cf(x), in other words there exist
p �= 000 and α ∈ R such that

yTp ≤ α for all y ∈ ray ∂cf(x) (2.35)

and

zTp > α. (2.36)

Since ray ∂cf(x) is cone the components of y can be chosen as large as possible in
(2.35), thus α ≤ 0. On the other hand 000 ∈ ray ∂cf(x) implying α ≥ pT000 = 0, thus
α = 0. Since ∂cf(x) ⊆ ray ∂cf(x) Theorem 2.28 (ii) and (2.35) imply

f ′(x;p) = max
ξ∈∂cf(x)

ξTp ≤ max
y∈ray ∂cf(x)

yTp ≤ 0.

This means that p ∈ lev0 f
′(x; ·) and thus due to Theorem 2.36 we have p ∈

Klevf(x) f (x). Since z ∈ Nlevf(x) f (x) it follows from the definition of the normal
cone that

zTp ≤ 0

contradicting with inequality (2.36). Thus, z ∈ ray ∂cf(x) and the theorem is
proved. �

2.3.3 Distance Function

Finally we study the third link between analysis and geometry, namely the distance
function defined by (2.2). First we give some important properties of the distance
function.

Theorem 2.38 If S ⊆ R
n is a nonempty set, then the distance function dS is Lip-

schitz continuous with constant K = 1, in other words

|dS(x) − dS(y)| ≤ ‖x − y‖ for all x,y ∈ R
n. (2.37)

If in addition the set S is convex then the function dS is also convex.

Proof Let any ε > 0 and y ∈ R
n be given. By definition, there exists a point z ∈ S

such that
dS(y) ≥ ‖y − z‖ − ε.

Now we have

54 2 Convex Analysis

dS(x) ≤ ‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖
≤ ‖x − y‖ + dS(y) + ε

which establishes the Lipschitz condition as ε > 0 is arbitrary.
Suppose now that S is a convex set and let x,y ∈ R

n, λ ∈ [0, 1] and ε > 0 be
given. Choose points zx,zy ∈ S such that

‖zx − x‖ ≤ dS(x) + ε and ‖zy − x‖ ≤ dS(y) + ε

and define z := (1 − λ)zx + λzy ∈ S. Then

dS
(
(1 − λ)x + λy

) ≤ ‖c − (1 − λ)x − λy‖
≤ (1 − λ)‖zx − x‖ + λ‖zy − y‖
≤ (1 − λ)dS(x) + λdS(y) + ε.

Since ε is arbitrary, dS is convex. �

Lemma 2.6 If S ⊆ R
n is closed, then

x ∈ S ⇐⇒ dS(x) = 0. (2.38)

Proof Let x ∈ Z be arbitrary. Then

0 ≤ dS(x) ≤ ‖x − x‖ = 0

and thus dS(x) = 0.
On the other hand if dS(x) = 0, then there exists a sequence (yj) ⊂ S such that

‖x − yj‖ < 1/j −→ 0, when j → ∞.

Thus, the sequence (yj) converges to x and x ∈ cl S = S. �

The next two theorems show how one could equivalently define tangents and
normals by using the distance function.

Theorem 2.39 The contingent cone of the convex set S at x ∈ S can also be
written as

KS(x) = {y ∈ R
n | d′

S(x;y) = 0}. (2.39)

2.3 Links Between Geometry and Analysis 55

Proof Let Z := {y ∈ R
n | d′

S(x; y) = 0} and let y ∈ KS(x) be arbitrary. Then
there exist sequences (yj) ⊂ R

n and (tj) ⊂ R such that yj → y, tj ↓ 0 and
x + tjyj ∈ S for all j ∈ N. It is evident that d′

S(x; y) is always nonnegative thus it
suffices to show that d′

S(x; y) ≤ 0. Since x ∈ S we have

d′
S(x;y) = lim

t↓0

dS(x + ty) − dS(x)

t

= lim
t↓0

infz∈S{‖x + ty − z‖}
t

≤ lim
t↓0

infz∈S{‖x + tyj − z‖} + ‖ty − tyj‖
t

and

inf
z∈S{‖x + tyj − z‖} = inf

z∈S{‖(1 − t

tj
)x + t

tj
(x + tjyj) − c‖}.

Since x ∈ S, x + tjyj ∈ S and t/tj ∈ [0, 1] whenever 0 ≤ t ≤ tj , the convexity of
S implies that

(1 − t

tj
)x + t

tj
(x + tjyj) ∈ S,

and thus

inf
z∈S ‖(1 − t

tj
)x + t

tj
(x + tjyj) − z‖ = 0.

Therefore
d′
S(x;y) ≤ t‖y − yj‖ −→ 0,

when j → ∞. Thus d′
S(x; y) = 0 and KS(x) ⊆ Z .

For the converse let y ∈ Z and (tj) ⊂ R be such that tj ↓ 0. By the definition of
Z we get

d′
S(x;y) = lim

tj↓0

dS(x + tjy)

tj
= 0.

By the definition of dS we can choose points zj ∈ S such that

‖x + tjy − zj‖ ≤ dS(x + tjy) + tj

j
.

By setting

yj := zj − x

tj
,

we have
x + tjyj = x + tj

zj − x

tj
= zj ∈ S

56 2 Convex Analysis

and

‖y − yj‖ = ‖y − zj − x

tj
‖

= ‖x + tjy − zj‖
tj

≤ dS(x + tjy)

tj
+ 1

j
−→ 0,

as j → ∞. Thus y ∈ KS(x) and Z = KS(x). �

Theorem 2.40 The normal cone of the convex set S at x ∈ S can also be written as

NS(x) = cl ray ∂cdS(x). (2.40)

Proof First, let z ∈ ∂cdS(x). Then by Theorem 2.28 (i)

zTy ≤ d′
S(x;y) for all y ∈ R

n.

If one has y ∈ KS(x) then by Theorem 2.39 d′
S(x;y) = 0. Thus zTy ≤ 0 for all

y ∈ KS(x) which implies that z ∈ NS(x). By Theorem 2.27 ∂cdS(x) is a convex set
and then by Theorem 2.11 ray ∂cdS(x) is a convex cone. Furthermore, by Theorem
2.10 ray ∂cdS(x) is the smallest cone containing ∂cdS(x). Then, because NS(x) is
also a convex cone (Theorem 2.18), we have

ray ∂cdS(x) ⊆ NS(x).

On the other hand, if NS(x) = {000} we have clearly NS(x) ⊆ ray ∂cdS(x).
Suppose next that NS(x) �= {000} and let z ∈ NS(x)\{000} be arbitrary. Since S is
convex due to Theorem 2.19 we have

zT (y − x) ≤ 0 for all y ∈ S

and hence S ⊆ H−(z,zTx). Since dS(y) ≥ 0 for all y ∈ R
n we have

λzT (y − x) ≤ 0 ≤ dS(y) for all y ∈ H−(z,zTx) and λ ≥ 0.

Suppose next that y ∈ H+(z,zTx). Since S ⊆ H−(z,zTx) we have clearly
dH−(z,zTx)(y) ≤ dS(y) for all y ∈ R

n. On the other hand (see Exercise 2.3)

dH−(z,zTx)(y) = 1

‖z‖zT (y − x) for all y ∈ H+(z,zTx).

Thus, for any y ∈ R
n = H−(z,zTx) ∪ H+(z,zTx) we have

2.3 Links Between Geometry and Analysis 57

1

‖z‖zT (y − x) ≤ dS(y) = dS(y) − dS(x).

Then the definition of subdifferential of convex function and the convexity of dS
imply that

1

‖z‖z ∈ ∂cdS(x),

thus NS(x) ⊆ ray ∂cdS(x) and the proof is complete. �
Note that sinceNS(x) is always closed, we deduce that also ray ∂cdS(x) is closed

if S is convex.

2.4 Summary

This chapter contains the basic results from convex analysis. First we have concen-
trated on geometrical concepts and started by considering convex sets and cones. The
main results are the existence of separating and supporting hyperplanes (Theorems
2.4, 2.7 and 2.8). We have defined tangents and normals in the form of contingent
and normal cones. Next we moved to analytical concepts and defined subgradients
and subdifferentials of convex functions. Finally we showed that everything is one
by connecting these geometrical and analytical concepts via epigraphs, level sets and
the distance functions. We have proved, for example, that the contingent cone of the
epigrapf is the epigrapf of the directional derivative (Theorem 2.34), the contingent
cone of the zero level set is zero level set of the directional derivative (Theorem 2.36),
and the contigent cone of a convex set consist of the points where the directional
derivative of the distance function vanish (Theorem 2.39).

Exercises

2.1 Show that open and closed balls and halfspaces are convex sets.

2.2 (Lemma 2.1) Prove that if S ⊆ R
n, then conv S is a convex set and S is convex

if and only if S = conv S.

2.3 Let p ∈ R
n, p �= 000 and α ∈ R. Prove that

dH−(p,α)(y) = 1

‖p‖ (pTy − α) for all y ∈ H+(p,α).

2.4 (Farkas’ Lemma) Let A ∈ R
n×n and c ∈ R

n. Prove that either

Ax ≤ 000 and cTx > 0 for some x ∈ R
n

58 2 Convex Analysis

or
ATy = c and y ≥ 0 for some y ∈ R

n.

2.5 (Gordan’s Lemma) Let A ∈ R
n×n. Prove that either

Ax < 000 and cTx > 0 for some x ∈ R
n

or
ATy = 000 and 000 �= y ≥ 0 for some y ∈ R

n.

2.6 Show that closed halfspaces H+(p, 0) and H−(p, 0), the nonnegative orthant
R
n+ = {x ∈ R

n | xi ≥ 0, i = 1 . . . ,n} and halflines starting from the origin are
closed convex cones.

2.7 (Lemma 2.3) Prove that if S ⊆ R
n, then ray S is a cone and C ⊆ R

n is cone
if and only if C = ray C.

2.8 (Lemma 2.4) Prove that if S ⊆ R
n, then cone S is a convex cone and C ⊆ R

n

is convex cone if and only if C = cone C.

2.9 (Corollary 2.2) Prove that if S ⊆ R
n, then cone S = conv ray S.

2.10 Show that S1 ⊆ S2 implies S◦
2 ⊆ S◦

1 .

2.11 (Lemma 2.5) Prove that if S ⊆ R
n, then S◦ is a closed convex cone and

S ⊆ S◦◦.

2.12 Specify the sets conv S, ray S, cone S and S◦ when

(a) S = {(1, 1)}
(b) S = {(1, 1), (1, 2), (2, 1)}
(c) S = int R

2+ ∪ {(0, 0)}.

2.13 Let C ⊆ R
n be a closed convex cone. Show that KC(000) = C.

2.14 (Theorem 2.16) Prove that the cone of global feasible directionsGS(x) of the
nonempty convex set S at x ∈ S is a convex cone.

2.15 Let S ⊆ R
n be convex. Show that KS(x) = NS(x)◦.

2.16 Specify the sets K
R

2+(000) and N
R

2+(000).

2.17 Let S ⊆ R
n be convex and x ∈ int S. Show that KS(x) = R

n and NS(x) =
∅.

Exercises 59

2.18 Let S1,S2 ⊆ R
n be convex and x ∈ S1 ∩ S2. Show that

(a) KS1∩S2(x) ⊆ KS1(x) ∩KS2(x),

(b) NS1∩S2(x) ⊇ NS1(x) +NS2(x).

2.19 (Theorem 2.20) Prove that if S is a nonempty convex set such that 000 ∈ S, then

(a) GS(000) = ray S,

(b) KS(000) = cl ray S,

(c) NS(000) = S◦.

2.20 Show that the function f : R → R defined by

f(x) := ex
2

is convex.

2.21 By exploiting Exercise 2.20 show that for all x, y > 0 we have

x

4
+ 3y

4
≤

√√√√ln

(
ex

2

4
+ 3ey2

4

)
.

2.22 (Theorem 2.24) Prove that the function f : Rn → R is convex if and only if its
epigraph epi f is a convex set.

2.23 How should the concept of a ‘concave set’ to be defined?

2.24 (Corollary 2.3) Prove that if f : Rn → R is a convex function, then the function
d �→ f ′(x;d) is convex, its epigraph epi f ′(x; ·) is a convex cone and we have

f ′(x;−d) ≥ −f ′(x;d) for all x ∈ R
n.

2.25 Show that the function f : R → R defined by

f(x) := max{|x|,x2}

is convex. Calculate f ′(1;±1) and ∂cf(1).

2.26 Let f : R2 → R be such that

f(x, y) := max {− max {−x, y}, y − x}.

Calculate ∂cf(0, 0).

60 2 Convex Analysis

2.27 Let f : Rn → R be such that f(x) := ‖x‖ and g: R → R such that g(x) := x2.
Calculate ∂cf(0) and ∂cg(f(0)).

2.28 Let f : Rn → R be convex. Show that the mapping x �→ ∂cf(x) is monotonic,
in other words for all x,y ∈ R

n we have

(ξx − ξy)T (x − y) ≥ 0 for all ξx ∈ ∂cf(x), ξy ∈ ∂cf(y).

2.29 Prove that if f : Rn → R is continuous, then epi f and levα f are closed for
all α ∈ R.

2.30 Let the functions fi: Rn → R be convex for all i = 1, . . . ,m and define
f : Rn → R by

f(x) := max {fi(x) | i = 1, . . . ,m}.

Show that

(a) lev f = ⋂m
i=1 lev fi,

(b) epi f = ⋂m
i=1 epi fi.

2.31 Show that the equality does not hold in Theorem 2.36 without the extra assump-
tion 000 /∈ ∂cf(x). In other words, if the function f : Rn → R is convex, then

Klevf(x) f (x) � lev0 f
′(x; ·).

(Hint: Consider the function f(x) := ‖x‖2).

2.32 Let S ⊆ R
n convex and x ∈ S. Show that if 0 /∈ ∂cdS(x), then

(a) KS(x) = KlevdS (x) dS (x) ∩Klev−dS (x) −dS (x),

(a) NS(x) = NlevdS (x) dS (x).

2.33 Let
S = {x ∈ R

2 | x2
1 ≤ x2 and |x1| ≤ x2}.

Calculate KS((1, 1)) and NS((1, 1)).

2.34 Let
S = {x ∈ R

2 | x1 ≤ 2, x1 ≥ −2x2 and x1 ≥ 2x2}.

Calculate KS((0, 0)) and NS((0, 0)).

Chapter 3
Nonconvex Analysis

In this chapter, we generalize the convex concepts defined in the previous chapter
for nonconvex locally Lipschitz continuous functions. Since the classical directional
derivative does not necessarily exist for locally Lipschitz continuous functions, we
first define a generalized directional derivative. Then we generalize the subdifferen-
tial analogously. We use the approach of Clarke in a finite dimensional case. This
is done in Sect. 3.1 In Sect. 3.2 we give several derivation rules to help the calcula-
tion of subgradients in practice. The main result of this chapter is the Theorem 3.9,
which tells how one can compute the subdifferential by using the limits of ordinary
gradients. In addition, in Sect. 2.2.3 we define the so-called ε-subdifferential approx-
imating the ordinary subdifferentials. In addition to the Clarke subdifferential, many
different generalizations of the subdifferential for nonconvex nonsmooth functions
exist. In Sect. 3.4, we briefly recall some of them. More specifically, we give defini-
tions of the quasidifferential, the codifferential, the basic (limiting) and the singular
subdifferentials.

3.1 Generalization of Derivatives

In this section, we give the generalized directional derivative, subdifferentials, ε-
subdifferentials and Jacobian matrices.

3.1.1 Generalized Directional Derivative

We start by generalizing the ordinary directional derivative. Note that this generalized
derivative always exists for locally Lipschitz continuous functions.

Definition 3.1 (Clarke) Let f : Rn → R be a locally Lipschitz continuous function
at x ∈ R

n. The generalized directional derivative of f at x in the direction of d ∈ R
n

is defined by

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_3

61

http://dx.doi.org/10.1007/978-3-319-07920-2_2

62 3 Nonconvex Analysis

f ◦(x;d) = lim sup
y→x
t↓0

f (y + td) − f (y)

t
.

The following summarizes some basic properties of the generalized directional
derivative. Note, that the results are identical to those in convex case (see
Theorem 2.26).

Theorem 3.1 Let f be locally Lipschitz continuous at x with constant K. Then the
function d �→ f ◦(x; d) is positively homogeneous and subadditive on R

n with

| f ◦(x; d)| ≤ K‖d‖.

Proof We start by proving the inequality. From the Lipschitz condition we obtain

∣∣ f ◦(x;d)
∣∣ =
∣∣∣∣∣∣
lim sup

y→x
t↓0

f (y + td) − f (y)

t

∣∣∣∣∣∣

≤ lim sup
y→x
t↓0

| f (y + td) − f (y)|
t

≤ lim sup
y→x
t↓0

K‖y + td − y‖
t

,

whenever y,y + td ∈ B(x; ε) with some ε > 0. Thus

| f ◦(x; d)| ≤ lim sup
y→x
t↓0

Kt‖d‖
t

= K‖d‖.

Next we show that the derivative is positively homogeneous. To see this, let λ > 0.
Then

f ◦(x;λd) = lim sup
y→x
t↓0

f (y + tλd) − f (y)

t

= lim sup
y→x
t↓0

λ ·
{

f (y + tλd) − f (y)

λt

}

= λ · lim sup
y→x
t↓0

f (y + tλd) − f (y)

λt
= λ · f ◦(x;d).

3.1 Generalization of Derivatives 63

We turn now to the subadditivity. Let d,p ∈ R
n be arbitrary. Then

f ◦(x;d + p) = lim sup
y→x
t↓0

f (y + t(d + p)) − f (y)

t

= lim sup
y→x
t↓0

f (y + td + tp) − f (y + tp) + f (y + tp) − f (y)

t

≤ lim sup
y→x
t↓0

f ((y + tp) + td) − f (y + tp)

t

+ lim sup
y→x
t↓0

f (y + tp) − f (y)

t

= f ◦(x; d) + f ◦(x;p).

Thus d �→ f ◦(x;d) is subadditive. �

Based on the previous theorem it is easy to prove the following consequence.

Corollary 3.1 If f : Rn → R is locally Lipschitz continuous at x, then the function
d �→ f ◦(x;d) is convex, its epigraph epi f ◦(x; ·) is a convex cone and we have

f ◦(x;−d) = (− f)◦(x;d).

Proof Exercise. �

We obtain also the following useful continuity property.

Theorem 3.2 Let f be locally Lipschitz continuous at x with constant K. Then the
function (x, d) �→ f ◦(x; d) is upper semicontinuous.

Proof Let (xi), (di) ⊂ R
n be sequences such that xi → x and di → d. By

definition of upper limit, there exist sequences (yi) ⊂ R
n and (ti) ⊂ R such that

ti > 0,
f ◦(x;di) ≤ [f (yi + tdi) − f (yi)]/ti + 1/i

and
‖yi − xi‖ + ti < 1/i for all i ∈ N.

Now we have

f ◦(xi;di) − 1

i
= lim sup

y→xi
t↓0

f (y + tdi) − f (y)

t
− 1

i

≤ f (yi + tidi) − f (yi)

ti

64 3 Nonconvex Analysis

= f (yi + tid) − f (yi)

ti
+ f (yi + tidi) − f (yi + tid)

ti

and, by the Lipschitz condition

| f (yi + tidi) − f (yi + tid)|
ti

≤ K‖tidi − tid‖
ti

= K‖di − d‖ −→ 0,

as i → ∞ provided yi + tidi, yi + tid ∈ B(x; ε) with some ε > 0. On taking
upper limits (as i → ∞), we obtain

lim sup
i→∞

f ◦(xi;di) ≤ lim sup
i→∞

f (yi + tid) − f (yi)

ti
≤ f ◦(x; d),

which establishes the upper semicontinuity. �

3.1.2 Generalized Subgradients

We are now ready to generalize the subdifferential to nonconvex locally Lipschitz
continuous functions. Note that the definition is analogous to the property in The-
orem 2.28 (i) for convex functions, with the directional derivative replaced by the
generalized directional derivative. In what follows we sometimes refer to this subd-
ifferential as Clarke subdifferential.

Definition 3.2 (Clarke) Let f : Rn → R be a locally Lipschitz continuous function
at a point x ∈ R

n. Then the subdifferential of f at x is the set ∂ f (x) of vectors
ξ ∈ R

n such that

∂ f (x) = {ξ ∈ R
n | f ◦(x;d) ≥ ξTd for all d ∈ R

n}.

Each vector ξ ∈ ∂ f (x) is again called a subgradient of f at x.

The subdifferential has the same basic properties than in convex case.

Theorem 3.3 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n

with a Lipschitz constant K. Then the subdifferential ∂ f (x) is a nonempty, convex,
and compact set such that

∂ f (x) ⊆ B(000;K).

Proof By Corollary 3.1 function d �→ f ◦(x;d) is convex and thus by Theorem 2.24
epi f ◦(x; ·) is a convex set and by Theorem 2.22 and Exercise 4.29 it is closed. If
d∗ ∈ R

n is fixed, then (d∗, f ◦(x; d∗)) ∈ epi f ◦(x; ·) is nonempty, furthermore
we have (d∗, f ◦(x; d∗)) ∈ bd epi f ◦(x; ·). Then due to Theorem 2.7 there exists a
hyperplane supporting epi f ◦(x; ·) at (d∗, f ◦(x;d∗)), in other words there exists

3.1 Generalization of Derivatives 65

(ξ∗,μ) �= (000, 0) where ξ∗ ∈ R
n and μ ∈ R such that for all (d, r) ∈ epi f ◦(x; ·)

we have

(ξ∗,μ)T
(
(d, r) − (d∗, f ◦(x; d∗))

)

= (ξ∗)T (d − d∗) + μ(r − f ◦(x;d∗)) (3.1)

≤ 0.

Just like in the proof of Theorem 2.27 we can deduce that μ < 0. Dividing the
inequality (3.1) by |μ| and noting ξ := ξ∗/|μ| we get

ξT (d − d∗) − r + f ◦(x;d∗) ≤ 0 for all (d, r) ∈ epi f ◦(x; ·).

Now choosing r := f ◦(x; d) we get

f ◦(x;d) − f ◦(x;d∗) ≥ ξT (d − d∗) for all d ∈ R
n.

Then from the subadditivity of the generalized directional derivative (Theorem
3.1) we obtain

f ◦(x;d − d∗) ≥ ξT (d − d∗) for all d ∈ R
n,

which by the Definition 3.2 means that ξ ∈ ∂ f (x).
For convexity, let ξ1, ξ2 ∈ ∂ f (x) and λ ∈ [0, 1]. Then for all d ∈ R

n we have

(λξ1 + (1 − λ)ξ2)
Td = λξT1 d + (1 − λ)ξT2 d

≤ λ f ◦(x;d) + (1 − λ) f ◦(x; d)

= f ◦(x; d),

whence λξ1 + (1 − λ)ξ2 ∈ ∂ f (x); thus ∂ f (x) is convex.
For an arbitrary ξ ∈ ∂ f (x) we get by Theorem 3.1 (i)

‖ξ‖2 = |ξT ξ| ≤ | f ◦(x; ξ)| ≤ K‖ξ‖.

In other words, ∂ f (x) is bounded such that

∂ f (x) ⊆ B(000;K).

For the compactness it now suffices to show that ∂ f (x) is closed. To see this, let
(ξi) ⊂ ∂ f (x) be a sequence such that ξi → ξ. Then

ξTd = lim
i→∞ ξTi d ≤ lim

i→∞ f ◦(x; d) = f ◦(x; d),

which means that ξ ∈ ∂ f (x) and thus ∂ f (x) is closed. �

66 3 Nonconvex Analysis

The generalized directional derivative can be calculated from the subdifferential
similarly to the directional derivative in Theorem 2.28 (ii).

Theorem 3.4 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n.

Then
f ◦(x;d) = max {ξTd | ξ ∈ ∂ f (x)} for all d ∈ R

n.

Proof The proof is identical with the proof of Theorem 2.28 (ii) replacing f ′(x; d)

by f ◦(x;d) and ∂c f (x) by ∂ f (x), respectively. �

The upper semicontinuity of the generalized directional derivative implies the
same property of the subdifferential mapping.

Theorem 3.5 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n.

Then the mapping ∂ f : Rn → P(Rn) is upper semicontinuous.

Proof Let (yi) ⊂ R
n and (ξi) ⊂ ∂ f (yi) be sequences such that yi → x and

ξi → ξ. Then for all d ∈ R
n we have

ξTd = lim
i→∞ ξTi d ≤ lim sup

i→∞
f ◦(yi;d).

By Theorem 3.2 the function f ◦(x; ·) is upper semicontinuous, hence

ξTd ≤ f ◦(x;d).

Thus the mapping ∂ f (·) is also upper semicontinuous and the proof is complete. �

The next two theorems show that the subdifferential really is a generalization of
the classical derivative.

Theorem 3.6 Let f be locally Lipschitz continuous and differentiable at x. Then

∇ f (x) ∈ ∂ f (x).

Proof By the definition of differentiability the directional derivative f ′(x;d) exists
for all d ∈ R

n and f ′(x;d) = ∇ f (x)Tv. Since f ′ ≤ f ◦, it follows that

f ◦(x; d) ≥ ∇ f (x)Td for all d ∈ R
n

and thus ∇ f (x) ∈ ∂ f (x). �

Theorem 3.7 If f is continuously differentiable at x, then

∂ f (x) = {∇ f (x)}.

3.1 Generalization of Derivatives 67

Proof In view of the Lemma 1.1 the function f is locally Lipschitz continuous at x.
Then due to Theorem 3.6 we have ∇ f (x) ∈ ∂ f (x). The continuous differentiability
means that if xi → x, then the gradient sequence ∇ f (xi) converges to ∇ f (x) and
for all d ∈ R

n we have

lim
xi→x

f ′(xi;d) = lim
xi→x

lim
t↓0

f (xi + td) − f (xi)

t

= lim
xi→x

∇ f (xi)
Td

= ∇ f (x)Td = f ′(x;d).

Thus for all d ∈ R
n we get

f ′(x; v) = lim
xi→x

f ′(xi;v)

= lim
xi→x

t↓0

f (xi + tv) − f (xi)

t

= lim sup
xi→x

t↓0

f (xi + tv) − f (xi)

t

= f ◦(x; v),

in other words f ◦(x; d) = ∇ f (x)Td for all d ∈ R
n. Suppose now, that there exists

another subgradient ξ ∈ ∂ f (x) such that ξ �= ∇ f (x). Then

ξTd ≤ f ◦(x;d) = ∇ f (x)Td for all d ∈ R
n

and thus
(ξ − ∇ f (x))T d ≤ 0 for all d ∈ R

n.

By choosing d := ξ − ∇ f (x) we get

‖ξ − ∇ f (x)‖2 ≤ 0,

implying that ξ = ∇ f (x), which contradicts the assumption. Thus ∇ f (x) is the
unique subgradient at x. �

The continuous differentiability is critical in Theorem 3.7 as the next example
shows.

68 3 Nonconvex Analysis

−0.2 −0.1 0.0 0.1 0.2

−
0.

01
0.

00
0.

01
0.

02

x

f(
x)

Fig. 3.1 A plot of function f when x ∈ [−0.2, 0.2]

Example 3.1 (Differentiable but nonsmooth function) We now proof that the
function (see Fig. 3.1)

f (x) =
{

0, x = 0

x2 cos(1
x), x �= 0

is locally Lipschitz continuous, differentiable everywhere but nonsmooth (not
continuously differentiable) and there exists a point y ∈ R such that ∂ f (y) �=
{∇ f (y)}.

We first show the differentiability. Function g(x) := x2 cos
(1
x

)
is differen-

tiable everywhere but at 0 and it’s derivative is

g′(x) = sin
(1
x

)+ 2x cos
(1
x

)
. (3.2)

The derivative is also continuous when x �= 0. Thus, f is continuously differ-
entiable when x �= 0. Since

f (0 + x) − f (0) = x2 cos
(1
x

)

and limx→0 |x| cos
(1
x

) = 0 the function f is differentiable at the point 0 and
f ′(0) = 0.

However, from (3.2) we see that the limit limx→0 f ′(x) does not exist
implying that f is not continuously differentiable.

3.1 Generalization of Derivatives 69

Next we prove that f is locally Lipschitz continuous. As stated before
(Lemma 1.1), continuously differentiable function is locally Lipschitz contin-
uous. Hence, f is locally Lipschitz continuous, when x �= 0. We prove that f
is locally Lipschitz continuous also at the point x = 0 by considering Lipschitz
condition with different values of y, z ∈ (−1, 1), y �= z.

Let −1 < y < z < 0. The function f is continuously differentiable on the
interval (y, z). Then,

| f (z) − f (y)| =
∣∣∣∣
∫ z

y
f ′(x)dx

∣∣∣∣ ≤
z∫

y

max
x∈[y,z]

{∣∣ f ′(x)
∣∣} dx

= max
x∈[y,z]

{∣∣∣∣sin(
1

x
) + 2x cos(

1

x
)

∣∣∣∣

}
(z − y)

≤ (1 + 2 · 1 · 1) |z − y| = 3 |z − y| ,

hence the Lipschitz condition holds. Due to the symmetry of the function f
the Lipschitz condition holds also when 0 < y < z < 1.

Now, let −1 < y < 0 and 0 < z < 1. Then |y + z| < |y − z| and the
symmetry implies f (−z) = f (z). Thus,

| f (y) − f (z)| = | f (y) − f (−z)| ≤ 3 |y + z| ≤ 3 |y − z| ,

where the first inequality follows from the consideration of the case −1 < y <

z < 0. Thus, the Lipschitz condition holds when −1 < y < 0 and 0 < z < 1.
Finally, let y = 0 and z ∈ (−1, 1) \ {0}. Then

| f (0) − f (z)| =
∣∣∣∣z

2 cos
(1
z

)∣∣∣∣ ≤ |z| 1 · 1 = |0 − z| ,

and the Lipschitz condition holds for this case too. Thus, the function f
is locally Lipschitz continuous. Consider the subdifferential of the function
f at the point 0. By choosing the sequence xi = (1

2iπ+ π
2

)
, i ∈ N we

see that limi→∞ f ′(xi) = 1. Correspondingly, by choosing the sequence
xi = (1

2iπ− π
2

)
, i ∈ N we see that limi→∞ f ′(x) = −1. By Theorem 3.9

this means that
[−1, 1] ⊆ ∂ f (0).

Particularly, we have ∂ f (0) �= f ′(0).

70 3 Nonconvex Analysis

The following theorem shows that the subdifferential for Lipschitz continuous func-
tions is a generalization of the subdifferential for convex functions.

Theorem 3.8 If the function f : Rn → R is convex, then

(i) f ′(x;d) = f ◦(x; d) for all d ∈ R
n and

(ii) ∂c f (x) = ∂ f (x).

Proof Note first, that due to Theorem 2.22 f is locally Lipschitz continuous at any
x ∈ R

n. Then, if (i) is true, (ii) follows from the definition of subdifferential and
Theorem 2.28 (i), thus it suffices to prove (i). By the definition of the generalized
directional derivative, one has f ◦(x;d) ≥ f ′(x; d) for all d ∈ R

n. On the other
hand, if δ > 0 is fixed, then

f ◦(x; d) = lim sup
x′→x
t↓0

f (x′ + td) − f (x′)
t

= lim
ε↓0

sup
‖x′−x‖<εδ

sup
0<t<ε

f (x′ + td) − f (x′)
t

.

From the proof of Theorem 2.25 we get that the function ϕ(t) = (1/t)(f (x′ + td)−
f (x′)) is nondecreasing and hence we can write

f ◦(x; d) = lim
ε↓0

sup
‖x′−x‖<εδ

f (x′ + εd) − f (x′)
ε

.

Now by the Lipschitz condition, for any x′ ∈ B(x; εδ) with some ε > 0, one has

∣∣∣∣
f (x′ + εd) − f (x′)

ε
− f (x + εd) − f (x)

ε

∣∣∣∣ ≤
∣∣∣∣

f (x′ + εd) − f (x + εd)

ε

∣∣∣∣

+
∣∣∣∣

f (x) − f (x′)
ε

∣∣∣∣

≤ K

ε
‖x′ − x‖ + K

ε
‖x′ − x‖

≤ 2K

ε
εδ = 2Kδ

so that

f ◦(x;d) ≤ lim
ε↓0

f (x + εd) − f (x)

ε
+ 2δK = f ′(x;d) + 2δK.

3.1 Generalization of Derivatives 71

Fig. 3.2 Subdifferential of
nonconvex function

Since δ > 0 is arbitrary, we deduce

f ◦(x;d) ≤ f ′(x;d)

and the proof is complete. �

The following result is essential when calculating subgradients in practice.
Namely the subdifferential can be constructed as a convex hull of all possible limits
of gradients at point xi converging to x. Figure 3.2 illustrates the subdifferential of
nonconvex function. Let

Ω f = {x ∈ R
n | f is not differentiable at the point x

}

be the set of points where f is not differentiable. By Rademacher’s Theorem [82]
a function which is Lipschitz continuous on a set U ⊆ R

n is differentiable almost
everywhere on U , in other words, meas(Ω f) = 0 in U .

Theorem 3.9 Let f : Rn → R be locally Lipschitz continuous at x ∈ R
n. Then

∂ f (x) = conv {ξ ∈ R
n | there exists (xi) ⊂ R

n \ Ω f such that

xi → x and ∇ f (xi) → ξ}.

Proof Let

S := {ξ ∈ R
n | ∃ (xi) ⊂ R

n \ Ω f s.t. xi → x and ∇ f (xi) → ξ
}
.

We shall first show that S is nonempty. It follows from Rademacher’s Theorem that
the measure of the set Ω f is zero. Then there exists a sequence (xi) ⊂ R

n such that
xi /∈ Ω f and xi → x. Since f is locally Lipschitz continuous at x, Theorem 3.3
implies that there exists ε > 0 such that for any xi ∈ B(x; ε)

72 3 Nonconvex Analysis

‖ξi‖ ≤ K for all ξi ∈ ∂ f (xi). (3.3)

This means that the point-to-set mapping ∂ f is locally bounded on B(x; ε). By
Theorem 3.6 we have

∇ f (xi) ∈ ∂ f (xi)

and thus by (3.3) the sequence {∇ f (xi)} is bounded. Then the sequence {∇ f (xi)}
admits a convergent subsequence {∇ f (xik)} and there exists ξ ∈ R

n such that
∇ f (xik) → ξ. From Theorem 3.5 we know that ∂ f is upper semicontinuous which
means that ξ ∈ ∂ f (x).

Now we have proved that S is nonempty, bounded set and S ⊆ ∂ f (x). By
Theorem 3.3 the set ∂ f (x) is convex and thus we have

conv S ⊆ conv ∂ f (x) = ∂ f (x).

For the reverse inclusion we show that S is also closed, hence compact. To see
this, let (ξj) ∈ S be a sequence such that ξj → ξ. Then

ξj = lim
i→∞ ∇ f

(
x
j
i

)
, where x

j
i → x as i → ∞ and x

j
i /∈ Ω f .

Extracting subsequences if necessary, there are points xi ∈ R
n such that

xi := lim
j→∞ x

j
i for each i ∈ N.

Then it holds that xi → x, xi /∈ Ω f and

ξ = lim
j→∞ lim

i→∞ ∇ f
(
x
j
i

) = lim
i→∞ lim

j→∞ ∇ f (x
j
i) = lim

i→∞ ∇ f (xi).

Thus ξ ∈ S and the set S is closed and compact. Then its convex hull conv S is also
compact and we only need to show that

f ◦(x;d) = max
ξ∈∂ f (x)

ξTd ≤ max
η∈conv S

ηTd for all d ∈ R
n.

This follows from the next lemma. �

Lemma 3.1 Let a function f : Rn → R be locally Lipschitz continuous, ε > 0 and
d ∈ R

n be such that d �= 000. Then

f ◦(x; d) − ε ≤ lim sup {∇ f (y)Td | y → x, y /∈ Ω f }. (3.4)

Proof Let α := lim sup {∇ f (y)Td | y → x, y /∈ Ω f }. Then, by definition, there
exists δ > 0 such that the conditions

3.1 Generalization of Derivatives 73

y ∈ B(x; δ) and y /∈ Ω f

imply ∇ f (y)Td ≤ α + ε. We also choose δ small enough so that Ω f has measure
zero inB(x; δ). Now consider the line segments Ly = {y + td | 0 < t < δ/(2|d|)}.
Since Ω f has measure zero in B(x; δ), it follows from Fubini’s Theorem (see e.g.
[202] p. 78) that for almost every y in B(x; δ/2), the line segment Ly meets Ω f in
a set of zero one-dimensional measure. Let y be any point in B(x; δ/2) having this
property and let t lie in

(
0, δ/(2|d|)). Then

f (y + td) − f (y) =
t∫

0

∇ f (y + sd)Td ds,

since ∇ f exists almost everywhere on Ly . Since one has |y + sd − x| < δ for
0 < s < t, it follows that ∇ f (y + sd)Td ≤ α+ ε, whence

f (y + td) − f (y) ≤ t(α+ ε).

Since this is true for almost all y within δ/2 of x and for all t in
(
0, δ/(2|d|)), and

since f is continuous, it is in fact true for all such y and t. We deduce that

f ◦(x;d) ≤ α+ ε,

which completes the proof. �

Example 3.2 (Absolute-value function) Let us again consider the absolute-
value function on reals

f (x) = |x|.

The subdifferential of this function at x = 0 is given by

∂ f (0) = conv {−1, 1} = [−1, 1].

3.1.3 ε-Subdifferentials

It would be possible to generalize the ε-subdifferential for convex functions analo-
gously also for Lipschitz continuous functions by using the generalized directional
derivative. However, the theory of nonsmooth optimization has shown that it will be
more useful to use the Goldstein ε-subdifferential for nonconvex functions. For this
reason we shall now define and examine that instead of the natural generalization.

74 3 Nonconvex Analysis

Definition 3.3 Let a function f : Rn → R be locally Lipschitz continuous at x ∈ R
n

and let ε ≥ 0. Then the Goldstein ε-subdifferential of f is the set

∂Gε f (x) = cl conv {∂ f (y) | y ∈ B(x; ε)}.

Each element ξ ∈ ∂Gε f (x) is called an ε-subgradient of the function f at x.

The following theorem summarizes some basic properties of the Goldstein
ε-subdifferential.

Theorem 3.10 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n

with a Lipschitz constant K. Then

(i) ∂G0 f (x) = ∂ f (x).
(ii) if ε1 ≤ ε2, then ∂Gε1

f (x) ⊆ ∂Gε2
f (x).

(iii) ∂Gε f (x) is a nonempty, convex, and compact set such that ∂Gε f (x) ⊆ B(000;K).
(iv) the mapping ∂Gε f : Rn → P(Rn) is upper semicontinuous.

Proof Assertions (i) and (ii) follow directly from the definition of the Goldstein
ε-subdifferential. We turn now to (iii). Assertion (i) implies that for all ε ≥ 0

∂ f (x) = ∂G0 f (x) ⊆ ∂Gε f (x).

From Theorem 3.3 we know that ∂ f (x) is nonempty and so is ∂Gε f (x). Because
∂Gε f (x) is the convex hull of a set, it is evidently convex and the compactness follows
from the same property of ∂ f (x).

Let ξ ∈ ∂Gε f (x) be arbitrary. Then ξ = ∑m
i=1 λiξi, where ξi ∈ ∂ f (yi), yi ∈

B(x; ε), λi ≥ 0 and
∑m

i=1 λi = 1. Now by Theorem 3.3 we have

‖ξ‖ = ‖
m∑

i=1

λiξi‖ ≤
m∑

i=1

λi‖ξi‖ ≤
m∑

i=1

λi ·K = K,

in other words, ∂Gε f (x) ⊆ B(000;K). Assertion (iv) follows directly from the same
property of ∂ f (x) (Theorem 3.3) and thus the proof is complete. �

As a corollary to Theorem 3.9 we obtain the following result.

Corollary 3.2 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n.

Then

∂Gε f (x) = cl conv {ξ ∈ R
n | there exists (yi) ⊂ R

n \ Ω f such that

yi → y, ∇ f (yi) → ξ, and y ∈ B(x; ε)}.

As in the convex case, the Goldstein ε-subdifferential contains in a compressed
form the subgradient information from the whole neighborhood of x.

3.1 Generalization of Derivatives 75

Theorem 3.11 Let f : Rn → R be locally Lipschitz continuous at x ∈ R
n. Then for

any ε ≥ 0 we have

∂ f (y) ⊆ ∂Gε f (x) for all y ∈ B(x; ε).

Proof This follows directly from definition of the Goldstein ε-subdifferential. �

We conclude this section by considering the relationship between the ε-
subdifferential for convex functions and the Goldstein ε-subdifferential.

Theorem 3.12 Let f : Rn → R be convex with Lipschitz constant K at x. Then for
all ε ≥ 0 we have

∂Gε f (x) ⊆ ∂2Kε f (x). (3.5)

Proof Suppose, that ξ ∈ ∂Gε f (x). Then ξ = ∑m
i=1 λiξi, where ξi ∈ ∂ f (yi),

yi ∈ B(x; ε), λi ≥ 0 and
∑m

i=1 λi = 1. Since ξi ∈ ∂ f (yi), for all i = 1, . . . ,m
one has

f (z) ≥ f (yi) + ξTi (z − yi) for all z ∈ R
n.

We multiply both sides by λi and sum over i to get

f (z) =
m∑

i=1

λi f (z)

≥
m∑

i=1

λi f (yi) +
m∑

i=1

λiξ
T
i (z − yi)

= f (x) + ξT (z − x)

− (f (x) −
m∑

i=1

λi f (yi) + ξT (z − x) −
m∑

i=1

λiξ
T
i (z − yi)

)

and by using the Lipschitz condition and Theorem 3.3 we obtain

| f (x)−
m∑

i=1

λi f (yi) + ξT (z − x) −
m∑

i=1

λiξ
T
i (z − yi)|

≤ | f (x) −
m∑

i=1

λi f (yi)| + |
m∑

i=1

λiξ
T (z − x) −

m∑

i=1

λiξ
T
i (z − yi)|

≤
m∑

i=1

λi| f (x) − f (yi)| +
m∑

i=1

λi|ξTi (x − yi)|

76 3 Nonconvex Analysis

≤
m∑

i=1

λi
(
K ‖x − yi‖ + ‖ξ‖ ‖x − yi‖

) = 2Kε,

which means that ξ ∈ ∂2Kε f (x). �

3.1.4 Generalized Jacobians

In what follows we shall need derivatives of a nonsmooth vector-valued function
h: Rn → R

m, written in terms of component functions as h(x) = (h1(x), . . . ,

hm(x)
)T . Each component function hi for i = 1, . . . ,m (and hence h) is supposed

to be locally Lipschitz continuous. Then, due to the Rademacher’s Theorem [82] we
conclude that h is differentiable almost everywhere. We denote again by Ωh the set
in R

n where h fails to be differentiable and by ∇h(x) for x /∈ Ωh the usual m× n
Jacobian matrix. Based on Theorem 3.9 we generalize now the derivative of h.

Definition 3.4 Let h: Rn → R
m be locally Lipschitz continuous at a point x ∈ R

n.
Then the generalized Jacobian of h at x is the set

∂h(x) := conv
{

A ∈ R
m×n | there exists (xi) ⊂ R

n \ Ωh such that (3.6)

xi → x and ∇h(xi) → A
}
.

The space of m× n matrices is endowed with the norm

‖A‖m×n :=
(

m∑

i=1

‖Ai‖2

) 1
2

, (3.7)

where Ai is the ith row of A. Some basic properties of ∂h(x) will now be listed.

Corollary 3.3 Let hi for i = 1, . . . ,m be locally Lipschitz continuous at x with
constant Ki. Then

(i) h(x) = (h1(x), . . . ,hm(x)
)T

is locally Lipschitz continuous at x with con-

stant K = ‖(K1, . . . ,Km

)T ‖,
(ii) ∂h(x) is a nonempty, convex, and compact subset of R

m×n,
(iii) the mapping ∂h(·): Rn → P(Rn) is upper semicontinuous.

Proof Follows directly from Theorems 3.3, 3.5 and 3.9. �

3.2 Subdifferential Calculus 77

3.2 Subdifferential Calculus

In this section we shall derive an assortment of formulas that facilitate greatly the
calculation of subdifferentials in practice. Note that due to Theorems 3.7 and 3.8 all
the classical smooth and convex derivation rules can be obtained from these results
as special cases. However, for locally Lipschitz continuous functions we have to be
content with inclusions instead of equalities.

3.2.1 Subdifferential Regularity

In order to maintain equalities instead of inclusions in subderivation rules we need
the following regularity property.

Definition 3.5 The function f : Rn → R is said to be subdifferentially regular at
x ∈ R

n if it is locally Lipschitz continuous at x and for all d ∈ R
n the classical

directional derivative f ′(x;d) exists and we have

f ′(x;d) = f ◦(x;d). (3.8)

Note, that the equality (3.8) is not necessarily valid in general even if f ′(x; d)

exists. This is the case, for instance, with concave nonsmooth functions. For example,
the function f (x) = − |x| has the directional derivative f ′(0; 1) = −1, but the
generalized directional derivative is f ◦(0; 1) = 1.

We now note some sufficient conditions for f to be subdifferentially regular.

Theorem 3.13 The function f : Rn → R is subdifferentially regular at x if

(i) f is continuously differentiable at x,
(ii) f is convex, or

(iii) f =∑m
i=1 λi fi, where λi > 0 and fi is subdifferentially regular at x for each

i = 1, . . . ,m.

Proof (i) If f is continuously differentiable, then due to Lemma 3.1 f is locally
Lipschitz continuous at x. Furthermore, the directional derivative f ′(x;d) exists for
all d ∈ R

n and by the proof of Theorem 3.7 f ◦(x;d) = f ′(x;d) for all d ∈ R
n.

(ii) This follows from Theorems 2.25 and 3.8 (i).
(iii) It suffices to prove the formula form = 2; the general case follows by induction.
Clearly f1 + f2 is locally Lipschitz continuous at x. If f is subdifferentially regular
at x and λ > 0, then

(λ f)◦(x;d) = λ · f ◦(x; d) = λ · f ′(x;d) = (λ f)′(x;d) for all d ∈ R
n.

It is evident that (f1 + f2)
′ always exists and (f1 + f2)

′ = f ′
1 + f ′

2. By the definition
of the generalized directional derivative (f1 + f2)

◦ ≥ (f1 + f2)
′. On the other hand

78 3 Nonconvex Analysis

(f1 + f2)
◦(x;d) = lim sup

y→x
t↓0

(f1 + f2)(y + td) − (f1 + f2)(y)

t

= lim sup
y→x
t↓0

f1(y + td) + f2(y + td) − f1(y) − f2(y)

t

≤ lim sup
y→x
t↓0

f1(y + td) − f1(y)

t
+ lim sup

y→x
t↓0

f2(y + td) − f2(y)

t

= f ◦
1 (x;d) + f ◦

2 (x;d).

Then we have

(f1 + f2)
′ = f ′

1 + f ′
2 = f ◦

1 + f ◦
2 ≥ (f1 + f2)

◦,

thus
(f1 + f2)

′ = (f1 + f2)
◦

and the proof is complete. �

Hence, convexity, as well as smoothness, implies subdifferential regularity. Fur-
thermore, we are now able to formulate the following necessary and sufficient con-
dition for convexity.

Theorem 3.14 Let f : Rn → R be subdifferentially regular at all x ∈ R
n. Then f

is convex if and only if for all x,y ∈ R
n we have

f (y) − f (x) ≥ f ′(x;y − x). (3.9)

Proof Suppose first, that f is convex. Then due to the definition of the subdifferential
for any x ∈ R

n we have

f (y) ≥ f (x) + ξT (y − x) for all ξ ∈ ∂c f (x) and y ∈ R
n.

Then Theorem 2.28 (ii) and subdifferential regularity imply that

f (y) − f (x) ≥ f ′(x; y − x) = f ◦(x; y − x).

Suppose next that inequality (3.9) is valid and let x,y ∈ R
n and λ ∈ [0, 1]. Then

due to the subdifferential regularity f ′(λx + (1 − λ)y;d) exists for all d ∈ R
n and

by (3.9) and positive homogeneity of the directional derivative (Theorem 2.26) we
have

f (x) − f (λx + (1 − λ)y) ≥ f ′(λx + (1 − λ)y; (1 − λ)x − y)

= (1 − λ) f ′(λx + (1 − λ)y;x − y). (3.10)

3.2 Subdifferential Calculus 79

Moreover, by Theorem 2.3 we have also

f (y) − f (λx + (1 − λ)y) ≥ f ′(λx + (1 − λ)y;−λ(x − y)

≥ −λ f ′(λx + (1 − λ)y;x − y). (3.11)

Multiplying (3.10) by λ and (3.11) by 1 − λ and summing up them we obtain

λ f (x) + (1 − λ) f (y) ≥ f (λx + (1 − λ)y),

in other words, f is convex. �
Subdifferential regularity guarantees that the gradient is the only subgradient of

a differentiable function.

Corollary 3.4 If the function f : Rn → R is differentiable and subdifferentially
regular at x, then

∂ f (x) = {∇ f (x)}. (3.12)

Proof This follows immediately from subdifferential regularity and the proof of
Theorem 3.7. �

3.2.2 Subderivation Rules

Next we go through classical derivation rules for locally Lipschitz continuous func-
tions.

Theorem 3.15 If the function f : Rn → R is locally Lipschitz continuous at x, then
for all λ ∈ R

∂(λ f)(x) = λ∂ f (x). (3.13)

Proof It is evident that the function λ f is also locally Lipschitz continuous at x. If
λ ≥ 0 then clearly (λ f)◦ = λ · f ◦, so ∂(λ f)(x) = λ∂ f (x) for all λ ≥ 0. It suffices
now to prove the formula for λ = −1. We calculate

ξ ∈ ∂(− f)(x) ⇐⇒ (− f)◦(x;d) ≥ ξTd for all d ∈ R
n

⇐⇒ f ◦(x;−d) ≥ ξTd for all d ∈ R
n

⇐⇒ f ◦(x;−d) ≥ (−ξ)T (−d) for all − d ∈ R
n

⇐⇒ −ξ ∈ ∂ f (x)

⇐⇒ ξ ∈ −∂ f (x)

and the assertion follows. �

80 3 Nonconvex Analysis

Second rule considers the derivation of a linear combination.

Theorem 3.16 Let fi: Rn → R be locally Lipschitz continuous at x and λi ∈ R for
all i = 1, . . . ,m. Then the function

f (x) :=
m∑

i=1

λi fi(x)

is locally Lipschitz continuous at x and

∂ f (x) ⊆
m∑

i=1

λi∂ fi(x). (3.14)

In addition, if fi is subdifferentially regular at x and λi ≥ 0 for all i = 1, . . . ,m,
then f is also subdifferentially regular at x and equality holds in (3.14).

Proof Again, it is evident that the function f is also locally Lipschitz continuous
at x. It suffices now to prove the formula for m = 2; the general case follows by
induction. In the proof of Theorem 3.13 we observed that

(f1 + f2)
◦(x;d) ≤ f ◦

1 (x;d) + f ◦
2 (x;d),

whence, by the definition of subdifferential

∂(f1 + f2)(x) ⊆ ∂ f1(x) + ∂ f2(x).

In view of Theorem 3.15 we have

∂(λ1 f1 + λ2 f2)(x) ⊆ ∂(λ1 f1)(x) + ∂(λ2 f2)(x) = λ1∂ f1(x) + λ2∂ f2(x).

Suppose next that fi is subdifferentially regular at x and λi > 0 for i = 1, 2.
By Theorem 3.13 the function λ1 f1 + λ2 f2 is subdifferentially regular; in other
words

(λ1 f1 + λ2 f2)
◦ = (λ1 f1 + λ2 f2)

′ = λ1 f ′
1 + λ2 f ′

2 = λ1 f ◦
1 + λ2 f ◦

2 ,

and it follows that

∂(λ1 f1 + λ2 f2)(x) = λ1∂ f1(x) + λ2∂ f2(x).

Thus the proof is complete. �

The following results is one the most important results in optimization theory.
However, here we need it only in the proof of forthcoming derivation rules.

3.2 Subdifferential Calculus 81

Theorem 3.17 If the function f : Rn → R is locally Lipschitz continuous and attains
its extremum at x, then

000 ∈ ∂ f (x). (3.15)

Proof Suppose first that f attains a local minimum at x. Then there exists ε > 0
such that f (x + td) − f (x) ≥ 0 for all 0 < t < ε and d ∈ R

n. Now we have

f ◦(x; d) = lim sup
y→x
t↓0

f (y + td) − f (y)

t
≥ lim sup

t↓0

f (x + td) − f (x)

t
≥ 0

and thus
f ◦(x; d) ≥ 0 = 000Td for all d ∈ R

n,

which means by the definition of subdifferential that 000 ∈ ∂ f (x).

Suppose next that f attains a local maximum at x. Then − f attains a local
minimum at x and, as above 000 ∈ ∂(− f)(x). The statement follows then from
Theorem 3.15.

Evidently global minima and maxima are also local minima and maxima,
respectively. �

Next we present one of the key results of differential calculus, namely the mean-
value theorem.

Theorem 3.18 (Mean-Value Theorem) Let x,y ∈ R
n be such that x �= y and let

the function f : Rn → R be locally Lipschitz continuous on an open set U ⊆ R
n

such that the line segment [x,y] ⊂ U . Then there exists a point z ∈ (x, y) such that

f (y) − f (x) ∈ ∂ f (z)T (y − x).

In the proof of mean-value theorem we need the following lemma.

Lemma 3.2 The function g: [0, 1] → R defined by g(t) := f (x + t(y − x)), is
Lipschitz continuous on (0, 1) and

∂g(t) ⊆ ∂ f (x + t(y − x))T (y − x). (3.16)

Proof We denote x + t(y − x) by xt. The function g is Lipschitz continuous on
(0, 1) because

|g(t) − g(t′)| = | f (xt) − f (xt′)|
≤ K ‖xt − xt′ ‖
= K ‖(t− t′)(y − x)‖
= K ‖y − x‖ |t− t′|

82 3 Nonconvex Analysis

= K̃ |t− t′| for all t, t′ ∈ (0, 1),

where K̃ := K ‖y − x‖.
From Theorem 3.3 we get that the sets ∂g(t) and ∂ f (xt)

T (y − x) are compact
and convex. Since they belong to R, they must be closed intervals in R and thus it
suffices to prove that for μ = ±1, we have

max {∂g(t)μ} ≤ max {∂ f (xt)
T (y − x)μ}.

By Theorem 3.3 we have max {∂g(t)μ} = g◦(t;μ) and thus

max {∂g(t)μ} = lim sup
s→t
λ↓0

g(s+ λμ) − g(s)

λ

= lim sup
s→t
λ↓0

f (x + [s+ λμ](y − x)) − f (x + s(y − x))

λ

≤ lim sup
y′→xt
λ↓0

f (y′ + λμ(y − x)) − f (y′)
λ

= f ◦(xt;μ(y − x)).

Furthermore it follows again from Theorem 3.3 that

f ◦(xt;μ(y − x)) = max {∂ f (xt)
T (μ(y − x))},

and thus

max {∂g(t)μ} ≤ max {∂ f (xt)
T (y − x)μ}. �

Proof (Mean-Value Theorem) Let us define the function Θ: [0, 1] → R such that
Θ(t) := f (xt) + t[f (x) − f (y)]. Then it is evident that Θ is continuous and

Θ(0) = f (x0) = f (x)

Θ(1) = f (x1) + f (x) − f (y) = f (x).

Then it follows that there exists t0 ∈ (0, 1) such that Θ attains a local extremum at
t0 and by Theorem 3.17 we have 0 ∈ ∂Θ(t0). Now by using Theorem 3.16 we get

∂Θ(t) = ∂[f (xt) + t(f (x) − f (y))] ⊂ ∂ f (xt) + [f (x) − f (y)]∂(t)

and furthermore by Lemma 3.2 we have

0 ∈ ∂ f (xt)
T (y − x) + [f (x) − f (y)] · ∂(t).

3.2 Subdifferential Calculus 83

Then from the fact that ∂(t) = 1, it follows that

f (y) − f (x) ∈ ∂ f (z)T (y − x),

where z := xt ∈ (x, y), which is the assertion of the theorem. �

Now is the turn of another main result of differential calculus, namely the chain
rule.

Theorem 3.19 (Chain Rule) Let f : Rn → R be such that f = g◦h, where h: Rn →
R
m is locally Lipschitz continuous at x ∈ R

n and g: Rm → R is locally Lipschitz
continuous at h(x) ∈ R

m. Then f is locally Lipschitz continuous at x and

∂ f (x) ⊆ conv
{
∂h(x)T ∂g

(
h(x)
)}

(3.17)

Proof It is evident that f is locally Lipschitz continuous at x. Denote

S :=
{
∂h(x)T ∂g

(
h(x)
)}

.

The fact that ∂h(x) and ∂g(h(x)) are compact sets implies that S is also compact,
and hence its convex hull is a convex compact set (see e.g. [202] p. 78). Then it
suffices to prove that

f ◦(x;d) ≤ max
η∈conv S

ηTd for all d ∈ R
n. (3.18)

To see this let η ∈ conv S. Then we haveη =∑k
j=1 λjsj withsj ∈ S,

∑k
j=1 λj = 1

and λj ≥ 0 and for all d ∈ R
n we obtain

ηTd =
k∑

j=1

λjs
T
j d ≤

k∑

j=1

λj max
s∈S sTd = max

s∈S sTd.

Thus
max

η∈conv S
ηTd = max

s∈S sTd for all d ∈ R
n.

Define

qε(d) := max

{
m∑

i=1

αiξ
T
i d | ξi ∈ ∂hi(xi), α ∈ ∂g(u), xi ∈ B(x; ε),

u ∈ B(h(x); ε)
}

.

84 3 Nonconvex Analysis

Then we have

q0(d) = max

{
m∑

i=1

αiξ
T
i d | ξi ∈ ∂hi(x), α ∈ ∂g(h(x))

}

= max {∂h(x)T ∂g
(
h(x)
)
d}

= max
s∈S sTd.

This will imply (3.18), if we show that for all ε > 0

f ◦(x;d) − ε ≤ qε(d) for all d ∈ R
n, (3.19)

and that qε(d) → q0(d) as ε ↓ 0, for all d ∈ R
n. The last claim is proved in the

following lemma.

Lemma 3.3
lim
ε↓0

qε = q0.

Proof To see this let δ > 0 and d ∈ R
n be given. Because each hi is locally Lipschitz

continuous at x, g is locally Lipschitz continuous at h(x) and the function h◦
i (· ; ·)

is upper semicontinuous by Theorem 3.2, we can choose ε > 0 such that each hi is
Lipschitz continuous on B(x; ε) and g is Lipschitz continuous on B(h(x); ε) with
the same constant K, and such that for all i = 1, . . . ,m one has

h◦
i (xi;±d) ≤ h◦

i (x;±d) + δ/K for all xi ∈ B(x; ε).

If α ∈ ∂g (B(h(x); ε)) then by Theorem 3.3 we have |αi| ≤ K for all i = 1, . . . ,m.
By Theorem 3.1 we know that h◦

i (y; ·) is positively homogeneous. Then multiplying
across by |αi| gives

h◦
i (xi;αid) ≤ h◦

i (x;αid) + |αi| δ/K ≤ h◦
i (x;αid) + δ.

On the other hand, we know by Theorem 3.5 that the mapping ∂g(·) is upper semicon-
tinuous, from which it follows that we can also choose ε small enough to guarantee
that ∂g (B(h(x); ε)) ⊂ B (∂g(h(x)); δ). We may now calculate

q0 ≤ qε(d)

= max
{ m∑

i=1

αiξ
T
i d | ξi ∈ ∂hi(xi), α ∈ ∂g(u),

xi ∈ B(x; ε), u ∈ B(h(x); ε)
}

3.2 Subdifferential Calculus 85

≤ max
{ m∑

i=1

max {αiξTi d | ξi ∈ ∂hi(xi), xi ∈ B(x; ε)} |

α ∈ B (∂g(h(x)); δ)
}

≤ max
{ m∑

i=1

(h◦
i (x;αid) + δ) | α ∈ B (∂g(h(x)); δ)

}

≤ max
{ m∑

i=1

max {αiξTi d | ξi ∈ ∂hi(x)} | α ∈ B (∂g(h(x)); δ)
}

+mδ

≤ q0 +mδK|d| +mδ −→ q0, whenever δ → 0,

which completes the proof of the lemma. �

Now we turn back to the proof of the chain rule. We are going to show that
inequality (3.19) holds. To see this let ε > 0. Then by the definition of the generalized
directional derivative there exist y ∈ R

n and t > 0 such that

f ◦(x;d) ≤ f (y + td) − f (y)

t
+ ε (3.20)

and
{

y, y + td ∈ B(x; ε)
h(y),h(y + td) ∈ B(h(x); ε).

By the mean-value Theorem 3.8 there exists α ∈ ∂g(u) such that u ∈ [h(y +
td),h(y)] ⊂ B(h(x); ε) and

f (y + td) − f (y) = g(h(y + td)) − g(h(y))

= αT (h(y + td) − h(y))

=
m∑

i=1

αi[hi(y + td) − hi(y)].

We apply the mean-value theorem again to the functions hi, i = 1, . . . ,m. Then
there exist subgradients ξi ∈ ∂hi(xi) such that xi ∈ [y + td,y] ⊂ B(x; ε) and

f (y + td) − f (y) =
m∑

i=1

αi[hi(y + td) − hi(y)]

=
m∑

i=1

αiξ
T
i (y + td − y)

86 3 Nonconvex Analysis

=
m∑

i=1

αiξ
T
i (td).

Now it follows from (3.20) that

f ◦(x;d) ≤ f (y + td) − f (y)

t
+ ε

=
∑m

i=1 αiξ
T
i (td)

t
+ ε

= t
∑m

i=1 αiξ
T
i d

t
+ ε (3.21)

=
m∑

i=1

αiξ
T
i d + ε

≤ qε(d) + ε for all d ∈ R
n,

which establishes (3.19) and thus the proof is complete. �
We have several possibilities to achieve equality in (3.17) as the following theorem

advises.

Theorem 3.20 Suppose, that the assumptions of Theorem 3.19 are valid. If

(i) the function g is subdifferentially regular at h(x), each hi is subdifferentially
regular at x and for any α ∈ ∂g

(
h(x)
)

we have αi ≥ 0 for all i = 1, . . . ,m.
Then also f is subdifferentially regular at x and we have

∂ f (x) = conv
{
∂h(x)T ∂g

(
h(x)
)}

.

(ii) the function g is subdifferentially regular at h(x) and hi is continuously differ-
entiable at x for all i = 1, . . . ,m. Then

∂ f (x) = ∇h(x)T ∂g
(
h(x)
)
.

(iii) m = 1 and g is continuously differentiable at h(x). Then

∂ f (x) = g′(h(x)
)
∂h(x).

Proof (i) Suppose first that g is subdifferentially regular at h(x), each hi is subdiffer-
entially regular at x and for any α ∈ ∂g

(
h(x)
)

we have αi > 0 for all i = 1, . . . ,m.
To prove the equality in (3.17) it suffices to show that

f ◦(x; d) = q0(v) for all d ∈ R
n.

From above we found that f ◦(x;d) ≤ q0(d) for all d ∈ R
n. On the other hand, the

fact that αi ≥ 0 for all i = 1, . . . ,m, hi is subdifferentially regular at x and g is

3.2 Subdifferential Calculus 87

subdifferentially regular at h(x) imply

q0(d) = max
{ m∑

i=1

αiξ
T
i d | ξi ∈ ∂hi(x), α ∈ ∂g(h(x))

}

≤ max
{ m∑

i=1

αi max
ξi∈∂hi(x)

ξTi d | α ∈ ∂g(h(x))
}

= max
{ m∑

i=1

αih
◦
i (x;d) | α ∈ ∂g(h(x))

}

= max
{ m∑

i=1

αih
′
i(x;d) | α ∈ ∂g(h(x))

}

= g◦(h(x); h′(x;d)) = g′(h(x); v),

where vi := h′
i(x; d). Then by definition the directional derivative

g′(h(x); v) = lim
t↓0

g(h(x) + tv) − g(h(x))

t

= lim
t↓0

{
g(h(x + td)) − g(h(x))

t
+ T

}
,

where T := g(h(x) + tv) − g(h(x + td))/t. We obtain an upper estimate of T and
show that it goes to zero, when t → 0. Due to the Lipschitz property of the function
g one has

T ≤ |g(h(x) + tv) − g(h(x + td))|
t

≤ K ‖h(x) + tv − h(x + td)‖
t

= K
∥∥∥v − h(x + td) − h(x)

t

∥∥∥ −→ K ‖h′(x,d) − h′(x,d)‖ = 0,

as t → 0. Thus,

q0(d) ≤ lim
t↓0

g(h(x + td)) − g(h(x))

t
= f ′(x;d) ≤ f ◦(x;d)

and by (3.21) we have q0(d) = f ′(x;d) = f ◦(x; d) for all d ∈ R
n. In other words,

f is subdifferentially regular at x and equality holds in (3.17), which establishes (i).
(ii) Suppose next that the function g is subdifferentially regular at h(x) and each

hi is continuously differentiable at x for all i = 1, . . . ,m. Then by Theorem 3.7 we
have

88 3 Nonconvex Analysis

q0(d) = max
{ m∑

i=1

αiξ
T
i d | ξi ∈ ∂hi(x) = {∇hi(x)}, α ∈ ∂g(h(x))

}

= max
{ m∑

i=1

αi∇hi(x)Td | α ∈ ∂g(h(x))
}

= max
{ m∑

i=1

αih
′
i(x, d) | α ∈ ∂g(h(x))

}
.

Now we can continue in the same way as in (i) to get

q0(v) ≤ f ◦(x;d),

which means that
∂ f (x) = conv

{
∇h(x)T ∂g

(
h(x)
)}

.

Then by Theorems 3.4 and 2.2 the set ∇h(x)T ∂g
(
h(x)
)

is convex and thus

∂ f (x) = ∇h(x)T ∂g
(
h(x)
)
.

which proves assertion (ii).
(iii) Finally, if m = 1 and the function g is continuously differentiable at h(x),

then

α = g′(h(x)) = lim
y→x

g(h(x)) − g(h(y))

h(x) − h(y)

and limz→x g
′(h(z)) = α. We may assume that α ≥ 0. Then we calculate

q0(d) = max {αξTd | ξ ∈ ∂h(x)} = α · h◦(x; d)

= lim sup
y→x
t↓0

α[h(y + td) − h(y)]
t

= lim sup
x′→x
t↓0

g′(h(y))[h(y + td) − h(y)]
t

= lim sup
y→x
t↓0

g(h(y + td)) − g(h(y))

t
= f ◦(x; d) for all d ∈ R

n

and the theorem is proved. �

Next we give an example of the chain rule.

3.2 Subdifferential Calculus 89

Example 3.3 (Chain Rule) Let f : Rn → R be defined by

f (x) := ln(‖x‖ + 2).

The subdifferential ∂ f (000) can be calculated as follows:
Let us define h(x) := ‖x‖ + 2 and g(x) := ln x. Then for all x,y,∈ R

n

and λ ∈ [0, 1] we have

h(λx + (1 − λ)y) = ‖λx + (1 − λ)y‖ + 2

≤ λ(‖x‖ + 2) + (1 − λ)(‖y‖ + 2)

= λh(x) + (1 − λ)h(y),

in other words h is convex and by Theorem 2.22 locally Lipschitz continuous
at 000. Let ξ ∈ cl B(000; 1) meaning that ‖ξ‖ ≤ 1. Then for all x ∈ R

n we have

ξTx ≤ ‖ξ‖‖x‖ ≤ ‖x‖ (3.22)

and thus
h(x) = ‖x‖ + 2 ≥ ξTx + 2 = h(000) + ξT (x − 000).

Then by the definition of the subdifferential of the convex function (Defini-
tion 2.15) we have ξ ∈ ∂ch(000), in other words cl B(000; 1) ⊆ ∂ch(000). On the
other hand, if ξ /∈ cl B(000; 1) then ‖ξ‖ > 1. By choosing x := ξ we have

ξTx = ξT ξ = ‖ξ‖2 > ‖ξ‖ = ‖x‖

and thus (3.22) is not valid and ξ can not be a subgradient. This means that
∂h(000) = ∂ch(000) = cl B(000; 1). Furthermore, g is clearly continuously differ-
entiable and

g′(x) = 1

x
.

Then due to Theorem 3.20 (iii) we have

∂ f (000) = g′(h(000)
)
∂h(000) = 1

2 · cl B(000; 1) = cl B
(
000; 1

2

)
.

Based on the chain rule we can prove the generalization of the classical derivation
rules of products and quotients.

Theorem 3.21 (Products) Let f1 and f2 be locally Lipschitz continuous at x ∈ R
n.

Then the function f1 f2 is locally Lipschitz continuous at x and

90 3 Nonconvex Analysis

∂(f1 f2)(x) ⊆ f2(x)∂ f1(x) + f1(x)∂ f2(x). (3.23)

If in addition f1(x), f2(x) ≥ 0 and f1, f2 are both subdifferentially regular at x,
then the function f1 f2 is subdifferentially regular at x and equality holds in (3.23).

Proof Define the function g: R2 → R by g(u1,u2) := uT1 u2. Then g is con-
tinuously differentiable and by Theorem 3.7 it is locally Lipschitz continuous at
(f1(x), f2(x)) with

∂g(f1(x), f2(x)) = {∇g(f1(x), f2(x))} = {(f2(x), f1(x))}.

Next define the function h: Rn → R
2 by h(x) := (f1(x), f2(x)). Now we have

f1 · f2 = g ◦ h. By the chain rule (Theorem 3.19) the function f1 · f2 is locally
Lipschitz continuous at x and

∂(f1 f2)(x) ⊆ conv
{ 2∑

i=1

αiξi | ξi ∈ ∂hi(x), α ∈ ∂g(h(x))
}

= conv { f2(x)∂ f1(x) + f1(x)∂ f2(x)}.

Then by Theorems 3.3 and 2.2 the set f2(x)∂ f1(x) + f1(x)∂ f2(x) is convex and
thus

∂(f1 f2)(x) ⊆ f2(x)∂ f1(x) + f1(x)∂ f2(x).

Suppose next that f1(x), f2(x) ≥ 0 and that f1, f2 are subdifferentially regular at
x. The function g is subdifferentially regular by Theorem 3.13 (i). Then by Theo-
rem 3.20 (i) the function f1 f2 is subdifferentially regular at x and equality holds
in (3.23). �

The proof for quotients is nearly the same as for products.

Theorem 3.22 (Quotients) Let f1 and f2 be locally Lipschitz continuous at x ∈ R
n

and f2(x) �= 0. Then the function f1/ f2 is locally Lipschitz continuous at x and

∂
(f1

f2

)
(x) ⊆ f2(x)∂ f1(x) − f1(x)∂ f2(x)

f 2
2 (x)

. (3.24)

If in addition f1(x) ≥ 0, f2(x) > 0 and f1, f2 are both subdifferentially regular
at x, then the function f1/ f2 is subdifferentially regular at x and equality holds in
(3.24).

Proof Exercise. �

The following theorem deals with a class of functions which are frequently
encountered in nonsmooth optimization, namely max-functions. The problem of
minimizing such a function is usually called the min–max problem.

3.2 Subdifferential Calculus 91

Theorem 3.23 (max-function) Let fi: Rn → R be locally Lipschitz continuous at
x for all i = 1, . . . ,m. Then the function

f (x) := max { fi(x) | i = 1, . . . ,m}

is locally Lipschitz continuous at x and

∂ f (x) ⊆ conv {∂ fi(x) | i ∈ I(x)}, (3.25)

where
I(x) := {i ∈ {1, . . . ,m} | fi(x) = f (x)}.

In addition, if fi is subdifferentially regular at x for all i = 1, . . . ,m, then f is also
subdifferentially regular at x and equality holds in (3.25).

Proof The function f is evidently locally Lipschitz continuous at x (see Exercise
3.5). Define g: Rm → R and h: Rn → R

m by

g(u) := max
i=1,...,m

{ui}
h(x) := (f1(x), . . . , fm(x)

)
.

Now we have f = g ◦ h. For all u,v ∈ R
m and λ ∈ [0, 1] it holds

g(λu + (1 − λ)v) = max
i=1,...,m

{λui + (1 − λ)vi}
≤ λ max

i=1,...,m
{ui} + (1 − λ) max

i=1,...,m
{vi}

= λg(u) + (1 − λ)g(v),

which means that g is convex and by Theorem 2.22 locally Lipschitz continuous at
h(x). Let J (u) = {i ∈ {1, . . . ,m} | ui = g(u)}. Then the directional derivative is

g′(u;d) = lim
t↓0

g(u + td) − g(u)

t
= lim

t↓0
max

i=1,...,m

{ui + tdi} − g(u)

t

= lim
t↓0

max
i∈J (u)

{ui + tdi} − g(u)

t
= lim

t↓0
max
i∈J (u)

{ui + tdi − ui}
t

.

Thus
g′(u;d) = max

i∈J (u)
di

and by Theorem 3.8 (i) we have g◦ = g′, which gives

∂g(u) = {α ∈ R
m | max

i∈J (u)
di ≥ αTd for all d ∈ R

m}.

92 3 Nonconvex Analysis

Now it is easy to see that

α ∈ ∂g(u) ⇐⇒

⎧
⎪⎨

⎪⎩

αi ≥ 0, i = 1, . . . ,m,∑m
i=1 αi = 1,

αi = 0, when i /∈ J (u)

and so we can calculate the subdifferential of g at h(x) ∈ R
m by

∂g(h(x)) = {α ∈ R
m | αi ≥ 0,

m∑

i=1

αi = 1 and αi = 0 if i /∈ I(x)
}
.

By applying Theorem 3.19 to f we get

∂ f (x) ⊆ conv
{ m∑

i=1

αiξi | ξi ∈ ∂hi(x) and α ∈ ∂g(h(x))
}

= conv
{ ∑

i∈I(x)

αi∂ fi(x) | αi ≥ 0 and
∑

i∈I(x)

αi = 1
}

= conv {∂ fi(x) | i ∈ I(x)}.

Suppose next that fi is, in addition, subdifferentially regular at x for all i ∈ I(x).
Because g is convex, it is, by Theorem 3.13 (ii), also subdifferentially regular at
h(x). Then the fact that αi ≥ 0 for all α ∈ ∂g(h(x)) and Theorem 3.20 (i) imply
that f is subdifferentially regular at x and equality holds in (3.25). �

Corollary 3.5 Suppose that the functions fi: Rn → R are continuously differen-
tiable at x and gi: Rn → R are convex for each i = 1, . . . ,m. Define the functions
f : Rn → R and g: Rn → R by

f (x) = max { fi(x) | i = 1, . . . ,m} and

g(x) = max {gi(x) | i = 1, . . . ,m}.

Then we have

∂ f (x) = conv {∇ fi(x) | i ∈ I(x)} and (3.26)

∂cg(x) = conv {∂cgi(x) | i ∈ J (x)},

where I(x) = {i ∈ {1, . . . ,m} | fi(x) = f (x)} and J (x) = {i ∈ {1, . . . ,m} |
gi(x) = g(x)}.
Proof Exercise. �

The next example shows how we can utilize the subdifferential calculus and
subderivation rules in practice.

3.2 Subdifferential Calculus 93

Example 3.4 (Subderivation rules) Let f : R → R be defined by

f (x) := max {|x|,x2}√|x| .

We calculate next ∂ f (1).
Let us define g1(x) := |x| and g2(x) := x2. Then due to Example 2.8 g1

is convex and locally Lipschitz continuous and thus, by Theorem 3.13 (ii) it
is subdifferentially regular at x = 1. Furthermore, g2 is clearly continuously
differentiable and thus, due to Theorem 1.1 it is locally Lipschitz continuous
and by Theorem 3.13 (i) it is subdifferentially regular at x = 1. Then by
Theorem 3.7 we have

∂g1(1) = {∇g1(1)} = {1} and

∂g2(1) = {∇g2(1)} = {2}.

Define next f1(x) := max {|x|,x2}. By Theorem 3.23 f1 is locally Lipschitz
continuous, subdifferentially regular at x = 1 and we have

∂ f1(1) = conv {∂gi(1) | i ∈ I(1)}
= conv {∂g1(1), ∂g2(1)}
= conv {1, 2}
= [1, 2].

Finally, function f2(x) := √|x| is clearly continuously differentiable at
x = 1 and thus, due to Theorem 1.1 it is locally Lipschitz continuous, by
Theorem 3.13 (i) it is subdifferentially regular at x = 1 and by Theorem 3.7
we have

∂ f2(1) = {∇ f2(1)} = { 1
2 }.

Since f1(1) = 1 ≥ 0 and f2(1) = 1 > 0 Theorem 3.22 implies that f = f1/ f2
is subdifferentially regular at x = 1 and

∂ f (1) = f2(1)∂ f1(1) − f1(1)∂ f2(1)

f 2
2 (1)

= [1, 2] − 1
2

1
= [12 , 1 1

2

]
.

94 3 Nonconvex Analysis

3.3 Nonconvex Geometry

This chapter is devoted to geometrical concepts in nonconvex case. We show how
the geometrical concepts can analogously be generalized in nonconvex analysis.

3.3.1 Tangent and Normal Cones

In Definition 2.10 we defined the notation of a contingent coneKS(x) of an arbitrary
nonempty set S at a point x ∈ S and its elements were called tangent vectors. In
Theorem 2.15 we proved that if S is convex, then KS(x) is a convex cone. Due to
the convexity of KS(x) it was possible to define the normal cone NS(x) as a polar
cone to the contingent cone.

For nonconvex sets we cannot guarantee the convexity of KS(x) and thus the
nonemptyness of NS(x), but we need a new concept for tangents. Next we define
the tangent cone by using the distance function. Note that this definition is based on
Theorem 2.39.

Definition 3.6 The (Clarke) tangent cone of the nonempty set S at x ∈ S is given
by the formula

TS(x) := {d ∈ R
n | d◦

S(x;d) = 0}.

The elements of TS(x) are called again tangent vectors.

The tangent cone has the same elementary properties as in the convex case.

Theorem 3.24 The tangent cone TS(x) of the nonempty set S at x ∈ S is a closed
convex cone.

Proof Exercise. (Hint: Use the convexity of the generalized directional
derivative.) �

As in the convex case we can define the normal cone utilizing polarity.

Definition 3.7 The normal cone of the nonempty set S at x ∈ S is the set

NS(x) := TS(x)◦ = {z ∈ R
n | zTd ≤ 0 for all d ∈ TS(x)}. (3.27)

The elements of NS(x) are called again normal vectors.

Also the normal cone now has the same properties as before.

Theorem 3.25 The normal cone NS(x) of the nonempty set S at x ∈ S is a closed
convex cone.

3.3 Nonconvex Geometry 95

Fig. 3.3 Tangent and normal
cones of a nonconvex set

Proof Follows directly from Lemma 4.5. �
Next we present alternative characterizations to the tangent and normal cones.

The following reformulation of the tangent cone is similar to the definition of the
contingent cone (Definition 2.10).

Theorem 3.26 The tangent cone TS(x) of the nonempty set S at x ∈ S can also be
written as

TS(x) = {d ∈ R
n |for all ti ↓ 0 and xi → x with xi ∈ S,

there exists di → d with xi + tidi ∈ S}.

Proof Let

Z := {d ∈ R
n | for all ti ↓ 0 and xi → x with xi ∈ S,

there exists di → d with xi + tidi ∈ S}.

Suppose first that d ∈ TS(x), and that sequences xi → x with xi ∈ S and ti ↓ 0
are given. Then d◦

S(x; d) = 0 due to Definition 3.6 and since xi ∈ S we have

0 ≤ lim
i→∞

dS(xi + tid)

ti
= lim

i→∞
dS(xi + tid) − dS(xi)

ti

≤ lim sup
y→x
t↓0

dS(y + td) − dS(y)

t
= d◦

S(x; d) = 0.

It follows that the limit exists and is zero. Then for all i ∈ N there exists zi ∈ S such
that

‖xi + tid − zi‖ ≤ dS(xi + tid) + ti

i
.

96 3 Nonconvex Analysis

If we now define
di := zi − xi

ti
,

we have

‖d − di‖ =
∥∥∥∥d − zi − xi

ti

∥∥∥∥

= ‖xi + ti − zi‖
ti

≤ dS(xi + tid)

ti
+ 1

i
−→ 0

as i → ∞ and

xi + tidi = xi + ti

(
zi − xi

ti

)
= zi ∈ S,

thus d ∈ Z.
Now for the converse. Suppose that d ∈ Z and choose sequences xi → x and

ti ↓ 0 such that

lim
i→∞

dS(xi + tid) − dS(xi)

ti
= d◦

S(x; d). (3.28)

In order prove that d◦
S(x;d) = 0, it suffices to show that the quantity in (3.28) is

nonpositive. To see this, choose zi ∈ S such that

‖zi − xi‖ ≤ dS(xi) + ti

i
.

Then we have

‖x − zi‖ ≤ ‖x − xi‖ + ‖xi − zi‖ ≤ ‖x − xi‖ + dS(xi) + ti

i
−→ 0

as i → ∞. Then by the assumption there exists a sequence di converging to d such
that di+tidi ∈ S. By Theorem 2.38 the distance function dS is Lipschitz continuous
with constant K = 1 we get

dS(xi + tid) ≤ dS(zi + tidi) + ‖xi − zi‖ + ti‖d − di‖
≤ dS(xi) + ti

(
‖d − di‖ + 1

i

)
.

This implies that the quantity in (3.28) is nonpositive and thus we have d◦
S(x;d) = 0,

in other words d ∈ TS(x). �

Now we are ready to show the connection between contingent and tangent cones,
and that in convex case those concepts are equivalent.

3.3 Nonconvex Geometry 97

Theorem 3.27 If S is a nonempty set and x ∈ S, then

TS(x) ⊆ KS(x).

If, in addition, S is convex then

TS(x) = KS(x).

Proof Suppose that d ∈ TS(x), and we have a sequence ti ↓ 0. Define xi := x for
all i ∈ N. Then by Theorem 3.26 there exists di → d such that xi+ tidi ∈ S, which
means by the definition of the contingent cone (Definition 2.10) that d ∈ KS(x).

Suppose next that S is convex and x ∈ S. Then by Theorem 2.38 the function
dS is convex and by Theorem 3.8 (i) we have d′

S(x; d) = d◦
S(x; d) for all d ∈ R

n.
Then the equality of the sets follows from Theorem 2.39 and Definition 3.6. �

The next reformulation of the normal cone is similar to that of in convex case
(Theorem 2.40).

Theorem 3.28 The normal cone of the set S at x ∈ S can also be written as

NS(x) = cl ray ∂dS(x). (3.29)

Proof Let z ∈ ∂dS(x) be given. Then, by the definition of the subdifferential,

zTd ≤ d◦
S(x;d) for all d ∈ R

n.

If one has d ∈ TS(x) then by the definition of the tangent cone d◦
S(x; d) = 0.

Thus zTd ≤ 0 for all d ∈ TS(x) which implies that z ∈ NS(x). By Theorem 3.3
∂dS(x) is a convex set and then by Theorem 2.11 ray ∂cdS(x) is a convex cone.
Furthermore, by Theorem 2.10 ray ∂dS(x) is the smallest cone containing ∂dS(x).
Then, because NS(x) is also a convex cone (Theorem 3.25), we have

ray ∂dS(x) ⊆ NS(x).

For the converse, denote Z := cl ray ∂dS(x). Suppose that z ∈ NS(x), but z /∈ Z.
Clearly Z is closed and due to Theorems 3.3 and 2.11 convex cone. Because 000 ∈ Z
it is also nonempty and thus, by Theorem 2.4 there exists a hyperplane separating
{z} and Z. In other words there exists d ∈ R

n and α ∈ R such that

dTz > α (3.30)

and
dTy ≤ α for all y ∈ Z. (3.31)

Since Z is a cone the components of d can be chosen as large as possible in (3.31),
thus α ≤ 0. On the other hand 000 ∈ Z implying α ≥ pT000 = 0, thus α = 0.

98 3 Nonconvex Analysis

Furthermore, we have ∂dS(x) ⊂ Z and the inequality (3.31) implies by Theorem
3.4 that d◦(x; d) ≤ 0. Since x ∈ S we have d◦(x; d) ≥ 0. Hence, d◦(x;d) = 0
implying d ∈ TS(x). This contradicts with the inequality (3.30). Thus, z ∈ Z and
theorem is proven. �

In what follows we shall need the next two properties of tangents and normals.

Theorem 3.29 If x ∈ int S, then

TS(x) = R
n and NS(x) = {000}.

Proof Let d ∈ R
n be arbitrary. If x ∈ int S, then there exists δ > 0 such that

B(x; δ) ⊂ S. Choose sequences xi → x and ti ↓ 0 such that

d◦
S(x; d) = lim sup

i→∞
dS(xi + tid) − dS(xi)

ti
.

Then there exists i0 ∈ N such that xi, xi + tid ∈ B(x; δ) ⊂ S for all i ≥ i0.
Thus we have dS(xi) = d(xi + tid) = 0 for all i ≥ i0, so d◦(x; d) = 0 and thus
d ∈ TS(x).

Next suppose that z ∈ NS(x), then by definition we have

zTd ≤ 0 for all d ∈ TS(x) = R
n.

Applying this property for any d ∈ R
n and −d ∈ R

n, we get z = 000 and the proof is
complete. �

Theorem 3.30 If S1,S2 ⊆ R
n are such that x ∈ S1 ∩ S2 and x ∈ int S2, then

TS1(x) = TS1∩S2(x) and NS1(x) = NS1∩S2(x).

Proof Exercise. �

3.3.2 Epigraphs and Level Sets

In this subsection we shall present corresponding results to those of Chap. 2
concerning the concepts of epigraphs and level sets.

The next relationship between the the tangent cone of the epigraph and the epi-
graph of the generalized directional derivative is similar to that in convex case
(Theorem 2.34).

Theorem 3.31 If the function f : Rn → R is locally Lipschitz continuous at x, then

Tepi f (x, f (x)) = epi f ◦(x; ·).

http://dx.doi.org/10.1007/978-3-319-07920-2_2

3.3 Nonconvex Geometry 99

Proof Suppose first that (d, r) ∈ Tepi f (x, f (x)). Choose sequences xi → x and
ti ↓ 0 such that

lim
i→∞

f (xi + tid) − f (xi)

ti
= lim sup

y→x
t↓0

f (y + td) − f (y)

t
= f ◦(x;d).

By the Lipschitz condition we have

‖ (xi, f (xi)) − (x, f (x)) ‖2 = ‖xi − x‖2 + | f (xi) − f (x)|2
≤ (1 +K2)‖xi − x‖2 −→ 0,

as i → ∞, which means that the sequence (xi, f (xi)) ∈ epi f is converging to
(x, f (x)). By Theorem 3.26 there exists a sequence (di, ri) converging to (d, r)
such that

(xi, f (xi)) + ti(di, ri) ∈ epi f for all i ∈ N,

thus we have
f (xi + tidi) ≤ f (xi) + tiri.

Now we can calculate

f ◦(x;d) = lim
i→∞

f (xi + tidi) − f (xi)

ti
≤ lim

i→∞ ri = r,

which implies that (d, r) ∈ epi f ◦(x; ·).
Suppose next that (d, r) ∈ epi f ◦(x; ·), which means that f ◦(x;d) ≤ r.

Define δ ≥ 0 such that
f ◦(x;d) + δ = r

and let ti ↓ 0 and (xi, si) ∈ epi f be arbitrary sequences such that (xi, si) →
(x, f (x)). Define sequences di := d and

ri := max { f ◦(x; d) + δ,
f (xi + tid) − f (xi)

ti
}.

Then the fact that

lim sup
i→∞

f (xi + tid) − f (xi)

ti
≤ f ◦(x; d)

shows that ri → f ◦(x;d) + δ = r and, since (xi, si) ∈ epi f , we have

si + tiri ≥ si + [f (xi + tid) − f (xi)] ≥ f (xi) − f (xi) + f (xi + tid),

100 3 Nonconvex Analysis

which means that (xi, si) + ti(di, ri) ∈ epi f . Now Theorem 3.26 implies that
(d, r) ∈ Tepi f (x, f (x)) and we obtain the desired conclusion. �

The next connection between the subdifferential and normal vectors of the epi-
graph is the same as in convex case (Theorem 2.35).

Theorem 3.32 If the function f : Rn → R is locally Lipschitz continuous at x, then

∂ f (x) = {ξ ∈ R
n | (ξ,−1) ∈ Nepi f (x, f (x))}. (3.32)

Proof By the definition of the subdifferential we know that ξ belongs to ∂ f (x) if
and only if, for any d ∈ R

n we have f ◦(x;d) ≥ ξTd. This is equivalent to the
condition that for any d ∈ R

n and r ≥ f ◦(x;d) we have r ≥ ξTd, that is, for any
d ∈ R

n and r ≥ f ◦(x;d) we have

(ξ,−1)T (d, r) ≤ 0.

By the definition of the epigraph and Theorem 3.31 we have (d, r) ∈ epi f ◦(x; ·) =
Tepi f (x, f (x)). This and the last inequality mean, by the definition of the normal
cone, that (ξ,−1) lies in Nepi f (x, f (x)). �

In the following theorem we give the relationship between generalized directional
derivative and tangent vectors of the level sets. Note that the direction of the inclusion
is opposite to that in convex case (Theorem 2.36).

Theorem 3.33 If the function f : Rn → R is locally Lipschitz continuous at x and
000 /∈ ∂ f (x), then

Tlev f (x) f (x) ⊇ lev0 f ◦(x; ·).

If, in addition, f is subdifferentially regular at x then

Tlev f (x) f (x) = lev0 f ◦(x; ·).

Proof Let d ∈ lev0 f ◦(x; ·), which means that f ◦(x;d) ≤ 0. Suppose first that

f ◦(x; d) = lim sup
y→x
t↓0

f (y + td) − f (y)

t
< 0.

Then there exist ε > 0 and δ > 0 such that

f (y + td) − f (y)

t
< −δ for all y ∈ B(x; ε) and t ∈ (0, ε). (3.33)

Let xi → x and ti ↓ 0 be arbitrary sequences such that xi ∈ lev f (x) f . Then there
exists i0 ∈ N such that xi ∈ B(x; ε) and ti ∈ (0, ε) for all i ≥ i0 and, by the

3.3 Nonconvex Geometry 101

definition of the set lev f (x) f , one has f (xi) ≤ f (x). By (3.33) we have for all
i ≥ i0

f (xi + tid) ≤ f (xi) − δti ≤ f (x) − δti ≤ f (x),

thus xi + tid ∈ lev f (x) f for all i ≥ i0. Then, setting di := d, we deduce from
Theorem 3.26 that d ∈ Tlev f (x) f (x).

Suppose next that f ◦(x;d) = 0. If there were f ◦(x; p) ≥ 0 for all p ∈ R
n, then

by the definition of the subdifferential one would have 000 ∈ ∂ f (x), contradicting
the assertion. Thus there always exists p̂ ∈ R

n such that f ◦(x; p̂) < 0. Now define
the sequence di := d + 1

i p̂. Then di → d and due to subadditivity and positive
homogeneity of the generalized directional derivative (Theorem 3.1) we have

f ◦(x;di) = f ◦
(

x; d + 1

i
p̂

)
≤ f ◦(x;d) + 1

i
f ◦(x; p̂) < 0,

thus, as at the beginning of the proof, we get di ∈ Tlev f (x) f (x). By Theorem 3.24
the tangent cone Tlev f (x) f (x) is closed, which implies that also d ∈ Tlev f (x) f (x).

Finally, suppose that f is subdifferentially regular at x and d ∈ Tlev f (x) f (x). Then
the directional derivative at x exists for d and f ′(x;d) = f ◦(x;d). Let ti ↓ 0, then
by Theorem 3.26 there exists a sequence di → d such that x + tidi ∈ lev f (x) f ,
thus f (x + tidi) ≤ f (x) for all i ∈ N. By the Lipschitz condition we get

f (x + tid) − f (x)

ti
= f (x + tid) − f (x + tidi) + f (x + tidi) − f (x)

ti

≤ f (x + tidi) − f (x)

ti
+ K‖x + tid − x − tidi‖

ti
≤ 0 +K‖d − di‖,

whence taking the limit as i → ∞, one has f ◦(x;d) = f ′(x; d) ≤ 0. In other
words d ∈ lev0 f ◦(x; ·) and the proof is complete. �

To the end of this subsection we give the relationship between subgradients and
normal vectors of the level sets. Note that again the direction of the inclusion is
opposite to that in convex case (Theorem 2.37).

Theorem 3.34 If the function f : Rn → R is locally Lipschitz continuous at x and
000 /∈ ∂ f (x), then

Nlev f (x) f (x) ⊆ ray ∂ f (x).

If, in addition, f is subdifferentially regular at x then

Nlev f (x) f (x) = ray ∂ f (x).

102 3 Nonconvex Analysis

Proof Exercise. (Hint: In the proof of Theorem 2.37 replace ∂c f (x), f ′(x; ·) and
Klev f (x) f (x) by ∂ f (x), f ◦(x; ·) and Tlev f (x) f (x), respectively.) �

3.3.3 Cones of Feasible Directions

To the end of this chapter we will discuss more about the cones of feasible directions.
In Definition 2.11 defined the cone of globally feasible directions GS(x) and due to
Theorems 2.17 and 3.27 we know that for a nonempty set S at x ∈ S it holds

TS(x) ⊆ KS(x) ⊆ cl GS(x)

and if S is convex, then

TS(x) = KS(x) = cl GS(x).

Next we define another cone of feasible directions.

Definition 3.8 The cone of locally feasible directions of the nonempty setS at x ∈ S
is given by the formula

FS(x) := {d ∈ R
n | there exists ε > 0 such that

x + td ∈ S for all t ∈ (0, ε]}.

The cone of locally feasible directions has the same properties as the cone of
globally feasible directions (Theorem 2.16).

Theorem 3.35 The cone of locally feasible directions FS(x) of the nonempty convex
set S at x ∈ S is a convex cone.

Proof Exercise. �

We have the following connection between the cones of feasible directions and
the contingent cone.

Theorem 3.36 If S is a nonempty set and x ∈ S, then

cl FS(x) ⊆ KS(x). (3.34)

If, in addition, S is convex then

FS(x) = GS(x).

Proof If d ∈ FS(x) is arbitrary, then there exists ε > 0 such that x + td ∈ S for
all t ∈ (0, ε]. Define ti := ε/i and di := d for all i ∈ N. Then clearly ti ↓ 0,

3.3 Nonconvex Geometry 103

di → d and x+ tidi ∈ S, and thus by the definition of the contingent cone we have
d ∈ KS(x), in other words

FS(x) ⊆ KS(x). (3.35)

Since, due to Theorem 2.15, KS(x) is closed, we get the assertion (3.34) by taking
the closure from both sides of (3.35).

Due to the definitions it is clear that FS(x) ⊆ GS(x). To see the converse, let
S be convex and d ∈ GS(x). Then there exists t̂ > 0 such that x + t̂d ∈ S. The
convexity of S implies that for all λ ∈ [0, 1] we have

λx + (1 − λ)(x + t̂d) = x + (1 − λ)t̂d ∈ S.

Now we can choose ε := t̂ and t := (1 − λ)t̂ and we have x + td ∈ S for all
t ∈ (0, ε], in other words, d ∈ FS(x), which proves the assertion. �

In order to sum up all the results above for a nonempty set S at x ∈ S we get the
inclusions

cl FS(x) ⊆ KS(x) ⊆ cl GS(x) and TS(x) ⊆ KS(x) ⊆ cl GS(x).

If in addition S is convex, then

cl FS(x) = TS(x) = KS(x) = cl GS(x) and FS(x) = GS(x).

Example 3.5 (Cones) Let S1 ⊂ R
2 defined by

S1 := {x ∈ R
2 | x2 ≤ −x3

1} ∩ {x ∈ R
2 | x2 ≥ x3

1}.

Then it is easy to calculate (also see Fig. 3.4a) that

FS1(000) = TS1(000) = KS1(000) = {d ∈ R
2 | d1 ≤ 0, d2 = 0}

GS1(000) = {d ∈ R
2 | d1 < 0} ∪ {000}.

On the other hand, if S2 ⊂ R
2 is defined by

S2 := {x ∈ R
2 | x2 ≤ −x3

1} ∪ {x ∈ R
2 | x2 ≥ x3

1},

104 3 Nonconvex Analysis

S
S

(a) (b)

Fig. 3.4 Illustration of sets S1 and S2 in Example 3.5. (a) Set S1. (b) Set S2

(see Fig. 3.4b) then we have

TS2(000) = {d ∈ R
2 | d1 ≤ 0, d2 = 0}

FS2(000) = GS2(000) = R
2 \ {d ∈ R

2 | d1 > 0, d2 = 0}
KS2(000) = R

2.

Note in the last case we have KS2(000) ⊃ GS2(000), but KS2(000) = cl GS2(000).

3.4 Other Generalized Subdifferentials

In addition to the Clarke subdifferential (see Definition 3.2), many different gen-
eralizations of the subdifferential for nonconvex nonsmooth functions exist. In this
section we briefly recall some of them. More specifically we give definitions of the
quasidifferential, the codifferential, the basic (limiting) and the singular subdifferen-
tials. We also give some results on the relationship between the Clarke subdifferential
and the quasidifferential. We have omitted the proofs since they can be found in [72].

3.4.1 Quasidifferentials

Let a function f be defined on an open set X ⊂ R
n and be directionally differentiable

at a point x ∈ X . That is, the directional derivative f ′(x; d) exists. We now define
the quasidifferentiable function.

3.4 Other Generalized Subdifferentials 105

Definition 3.9 The function is called quasidifferentiable at x if there exists the pair
of compact convex sets (∂ f (x), ∂ f (x)) such that the directional derivative f ′(x; d)

of the function f at x in the direction d ∈ R
n can be represented in the form:

f ′(x;d) = max
{
ξTd | ξ ∈ ∂ f (x)

}
+ min

{
νTd | ν ∈ ∂ f (x)

}
. (3.36)

The set ∂ f (x) is called the subdifferential of the function f at x and the ∂ f (x) is
called the superdifferential of the function f atx. The pairD f (x) = [∂ f (x), ∂ f (x)]
is called the quasidifferential of the function f at x.

The quasidifferential mapping is not uniquely defined. Indeed, if D f (x) =
[∂ f (x), ∂ f (x)] is a quasidifferential of the function f at a point x, then for any
compact convex set A ⊂ R

n the pair D f (x) = [∂ f (x) + A, ∂ f (x) − A] is also a
quasidifferential of f at x.

The limit

lim
α↓0,d′→d

1

α

[
f (x + αd′) − f (x)

]
(3.37)

is called the Hadamard derivative of a function f at a point x in a direction d.
A function f is called Hadamard quasidifferentiable if in (3.36) the Hadamard
derivative is used instead of the usual directional derivative.

The quasidifferential mapping enjoys the full calculus in a sense that the equalities
can be used instead of inclusions (cf. subdifferentially regular functions with Clarke
subdifferential in Sect. 3.2). The following theorem is presented in [72].

Theorem 3.37 Let f : Rn → R be such that f = g ◦ h, where h = (h1, . . . ,hm):
R
n → R

m, all functions hi, i = 1, . . . ,m are quasidifferentiable at a point x0 ∈ R
n

and g: Rm → R is Hadamard quasidifferentiable at the point y0 = h(x0). Then the
function f is quasidifferentiable at the point x0 and the quasidifferential D f (x0) =[
∂ f (x0), ∂ f (x0)

]
is given by the following formulas

∂ f (x0) =
{
ξ ∈ R

n | ξ =
m∑

i=1

((ui + vi)pi − uipi − μipi)

p = (p1, . . . , pm) ∈ ∂g(y0),ui ∈ ∂hi(x0),vi ∈ ∂hi(x0)

}
,

∂ f (x0) =
{
ν ∈ R

n | ν =
m∑

i=1

((ui + vi)pi + uipi + μipi)

p = (p1, . . . , pm) ∈ ∂g(y0),ui ∈ ∂hi(x0),vi ∈ ∂hi(x0)

}
.

Here p and p are arbitrary vectors such that p ≤ p ≤ p for all p ∈
∂g(y0)

⋃
(−∂g(y0)).

106 3 Nonconvex Analysis

The following theorems about quasidifferential calculus follow from Theorem
3.37.

Theorem 3.38 Let functions f1, f2 : R
n → R be quasidifferentiable at a point x.

Then

(i) The function f1 + f2 is quasidifferentiable at x and

D(f1 + f2)(x) = D f1(x) + D f2(x).

In other words, if [∂ f1(x), ∂ f1(x)] and [∂ f2(x), ∂ f2(x)] are quasidifferentials
of the functions f1 and f2 at x, respectively, then

∂(f1 + f2)(x) = ∂ f1(x) + ∂ f2(x),

∂(f1 + f2)(x) = ∂ f1(x) + ∂ f2(x).

(ii) The function f1 · f2 is quasidifferentiable at x, and

D(f1 · f2)(x) = f1(x)D f2(x) + f2(x)D f1(x)

and

∂(f1 · f2)(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x)∂ f2(x) + f2(x)∂ f1(x), if f1(x) ≥ 0, f2(x) ≥ 0,

f1(x)∂ f2(x) + f2(x)∂ f1(x), if f1(x) ≤ 0, f2(x) ≥ 0,

f1(x)∂ f2(x) + f2(x)∂ f1(x), if f1(x) ≤ 0, f2(x) ≤ 0,

f1(x)∂ f2(x) + f2(x)∂ f1(x), if f1(x) ≥ 0, f2(x) ≤ 0,

∂(f1 · f2)(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x)∂ f2(x) + f2(x)∂ f1(x), if f1(x) ≥ 0, f2(x) ≥ 0,

f1(x)∂ f2(x) + f2(x)∂ f1(x), if f1(x) ≤ 0, f2(x) ≥ 0,

f1(x)∂ f2(x) + f2(x)∂ f1(x), if f1(x) ≤ 0, f2(x) ≤ 0,

f1(x)∂ f2(x) + f2(x)∂ f1(x), if f1(x) ≥ 0, f2(x) ≤ 0.

Proof Exercise. �

Example 3.6 (Quasidifferentials of functions) Applying Theorem 3.38 one can
get formulae for quasidifferentials of functions:

(i) f (x) = λ f1(x) where λ is any real number and f1 is quasidifferentiable
at x;

(ii) f (x) = f1(x) − f2(x) where functions f1 and f2 are quasidifferentiable
at x.

3.4 Other Generalized Subdifferentials 107

(iii) f (x) = f1(x)/ f2(x), where functions f1, f2 are quasidifferentiable at x
and f2(x) �= 0.

Theorem 3.39 Let functions fi, i = 1, . . . ,m be defined on an open set X ⊂ R
n

and quasidifferentiable at a point x ∈ X. Let

ϕ1(x) = max
i=1,...,m

fi(x), ϕ2(x) = min
i=1,...,m

fi(x).

Then the functions ϕ1 and ϕ2 are quasidifferentiable at x and

Dϕ1(x) = [∂ϕ1(x), ∂ϕ1(x)], Dϕ2(x) = [∂ϕ2(x), ∂ϕ2(x)]

where

∂ϕ1(x) = conv
⋃

k∈R(x)

⎛

⎝∂ fk(x) −
∑

i∈R(x),i�=k
∂ fi(x)

⎞

⎠ ,

∂ϕ1(x) =
⋃

k∈R(x)

∂ fk(x),

∂ϕ2(x) =
⋃

k∈Q(x)

∂ fk(x),

∂ϕ2(x) = conv
⋃

k∈Q(x)

⎛

⎝∂ fk(x) −
∑

i∈Q(x),i�=k
∂ fi(x)

⎞

⎠ .

Here [∂ fk(x), ∂ fk(x)] is a quasidifferential of the function fk at the point x, and

R(x) = {i ∈ {1, . . . ,m} | fi(x) = ϕ1(x)}, and

Q(x) = {i ∈ {1, . . . ,m} | fi(x) = ϕ2(x)}.

Proof Exercise. �

108 3 Nonconvex Analysis

Example 3.7 (Quasidifferential of composite functions) Consider the function
f : Rn → R defined as in Theorem 3.37, where the functions hi, i = 1, . . . ,m
are subdifferentially regular functions (see Definition 3.5) and the function g
is continuously differentiable. Take a point x ∈ R

n, put y = h(x) ∈ R
m and

consider the following index sets:

I+(x) =
{
i ∈ I | ∂g(y)

∂yi
> 0

}
, I−(x) =

{
i ∈ I | ∂g(y)

∂yi
< 0

}

I0(x) =
{
i ∈ I | ∂g(y)

∂yi
= 0

}
.

Then the quasidifferential of the function f at the point x is D f (x) =
[∂ f (x), ∂ f (x)] where

∂ f (x) =
{
ξ ∈ R

n | ξ =
∑

i∈I+(x)

∂g(y)

∂yi
∂ fi(x)

}
,

and

∂ f (x) =
{
ν ∈ R

n | ν =
∑

i∈I−(x)

∂g(y)

∂yi
∂ fi(x)

}
.

Example 3.8 (Quasidifferential of convex functions) If a function f : R
n → R

is convex then it is quasidifferentiable and its quasidifferential at a point x ∈ R
n

is
D f (x) = [∂ f (x), {000}].

Example 3.9 (Quasidifferential of DC functions) If a function f : R
n → R

can be represented as a difference of two convex functions

f (x) = f1(x) − f2(x),

then it is quasidifferentiable and its quasidifferential at a point x ∈ R
n is

D f (x) = [∂ f1(x), −∂ f2(x)].

3.4 Other Generalized Subdifferentials 109

3.4.2 Relationship Between Quasidifferential and Clarke
Subdifferential

In order to establish relationship between the quasidifferential and Clarke subdiffer-
ential we consider the so-called Demyanov difference between two compact convex
sets. Given two convex compact sets U ,V ⊂ R

n consider their support functions:

pU (d) = max
u∈U uTd, pV (d) = max

v∈V vTd, d ∈ R
n.

Since both functions pU and pV are locally Lipschitz continuous they are differen-
tiable almost everywhere. Let T be a set of full measure such that at every point
d ∈ T there exist the gradients ∇pU (d) and ∇pV (d). The Demyanov difference
U ÷ V between the sets U and V is defined as follows:

U ÷ V := cl conv {∇pU (d) − ∇pV (d), d ∈ T } .

Now, let us assume that a function f : Rn → R is quasidifferentiable at a point
x ∈ R

n with a quasidifferential D f (x) = [∂ f (x), ∂ f (x)]. We denoteU := ∂ f (x)

and V := ∂ f (x). Let us also assume that d ∈ R
n is such that the linear function

uTd attains its maximal value on the set U at a unique point ū(d), and the linear
function vTd attains its minimal value on the set V at a unique point v̄(d). This
implies that ∇pU (d) = ū(d) and ∇pV (d) = v̄(d).

In addition, we assume that a set T ⊂ R
n satisfies the following conditions:

(1) the Lebesgue measure of the set R
n \ T is zero;

(2) for d ∈ T points ū(d) and v̄(d) are unique.

Let X ⊂ R
n be an open set and x ∈ X . We denote by M(x) the family of functions

f defined on X such that

(i) f is quasidifferentiable at x;
(ii) f is locally Lipschitz continuous in some neighborhood B(x; δ) of the point

x;
(iii) there exists a set Q ⊂ Ω f , where Ω f is the set of points where the gradient of

f exists, of full measure (with respect to B(x; δ)); a quasidifferential [U ,V]
of the function f at the point x; and a set T possessing properties (1) and (2)
with respect to the pair [U ,V] such that the condition

dk → d, αk ↓ 0, xk = x + αkdk ∈ Q, d ∈ T

imply
∇ f (xk) → ū(d) + v̄(d).

Let a function f be locally Lipschitz continuous on B(x; δ), Q ⊂ B(x; δ) and
T ⊂ R

n such that

110 3 Nonconvex Analysis

μ(B(x; δ) \Q) = 0, μ(Rn \ T) = 0,

where μ is the Lebesgue measure. Denote ∂T f (x) := cl conv DT where

DT = {v ∈ R
n | ∃xk = x + αkdk ∈ Q,dk → d ∈ T ,αk ↓ 0,∇ f (xk) → v}.

Theorem 3.40 Let f ∈ M(x),Q ⊂ Ω f and a set T possessing properties (1) and
(2) with respect to a quasidifferential [U ,V] be such that condition (iii) holds. Then

∂T f (x) = ∂ f (x) ÷ ∂ f (x).

Let f ∈ M(x) then
∂ f (x) ÷ ∂ f (x) ⊂ ∂ f (x).

This leads to the following theorem which shows the relationship between the Clarke
subdifferential and quasidifferential.

Theorem 3.41 If f ∈ M(x) and there exists a pair [∂ f (x), ∂ f (x)] such that (iii)
holds for T = R

n, then
∂ f (x) = ∂ f (x) ÷ ∂ f (x).

3.4.3 Codifferentials

The quasidifferential mapping need not to be even upper continuous. The notion
of codifferential can be considered as a modification of the quasidifferential that
enjoys Hausdorff continuity (see Sect. 1.3). Here we briefly recall the definition of
codifferentiable functions.

Definition 3.10 Let X ⊂ R
n be an open set and x ∈ X . Assume that a function

f is defined on X and it is finite. We say that this function is codifferentiable at a
point x ∈ X , if there exist convex compact sets d f (x) ⊂ R

n+1 and d f (x) ⊂ R
n+1

such that

f (x + Δ) = f (x) + Φx(Δ) + ox(Δ), (3.38)

where
Φx(Δ) = max

(η,v)∈d f (x)

[
η + vTΔ

]
+ min

(θ,w)∈d f (x)

[
θ + wTΔ

]
,

http://dx.doi.org/10.1007/978-3-319-07920-2_1

3.4 Other Generalized Subdifferentials 111

ox(αΔ)

α
→ 0, as α ↓ 0 ∀Δ ∈ R

n. (3.39)

Here η, θ ∈ R, v,w ∈ R
n. We assume that conv{x,x + Δ} ⊂ X .

The pair D f (x) = [d f (x), d f (x)] is called a codifferential, the set d f (x) a
hypodifferential and the set d f (x) a hyperdifferential of function f at x.

Note that similarly to quasidifferential mappings the codifferential mapping is not
unique.

If d f (x) = {000} then f is called hypodifferentiable at x and if d f (x) = {000} then f
is called hyperdifferentiable at x. A proper convex function is hypodifferentiable, and
a proper concave function is hyperdifferentiable. The classes of quasidifferentiable
and codifferentiable functions coincide. Moreover, if D f (x) = [∂ f (x), ∂ f (x)] is
the quasidifferential of the function f at the point x then we have

∂ f (x) = {u ∈ R
n | (000,u) ∈ d f (x)}

and

∂ f (x) = {v ∈ R
n | (000,v) ∈ d f (x)}.

Likewise quasidifferential mapping, the codifferential mapping enjoys a full cal-
culus. However, it is not always easy to apply this calculus to compute codifferentials
as it involves operations over polytopes in (n+ 1)-dimensional space.

Definition 3.11 Let X ⊂ R
n be an open set and x ∈ X . Assume that a function f

is defined on X and it is finite. We say that a function f is directionally uniformly
codifferentiable at x ∈ X if (3.39) holds uniformly with respect to Δ ∈ S1, where
S1 is the sphere of the unit ball. In addition, we say that a function f is continuously
codifferentiable at a point x ∈ X , if it is codifferentiable in some neighborhood of
this point and mappings x �→ d f (x), x �→ d f (x) are Hausdorff continuous at x.

The class of functions admitting a Hausdorff continuous codifferentials includes
nonsmooth convex and concave functions as well as functions represented as a max–
min of a finite number of smooth functions.

For some nonsmooth functions computation of codifferentials is straightforward.

Example 3.10 (Codifferentials) Consider the following maximum function:

f (x) = max
i=1,...,m

fi(x),

where functions fi, i = 1, . . . ,m are continuously differentiable. This

112 3 Nonconvex Analysis

function is hypodifferentiable and its hypodifferential at x is as follows:

d f (x) = conv
{
(η,v) ∈ R

n+1 | η = fi(x) − f (x), v ∈ ∇ fi(x), i = 1, . . . ,m
}

.

3.4.4 Basic and Singular Subdifferentials

Another important generalizations of the subdifferential are the so-called basic (lim-
iting) and singular subdifferentials introduced in [182]. The basic and singular sub-
differentials of an extended real-valued function are defined through basic normals
to its epigraph.

Definition 3.12 Consider a function f : X → R, where X ⊂ R
n is an open set and

R = [−∞,∞] extended real line. Let a point x ∈ X be such that | f (x)| < ∞.

(i) The set
∂b f (x) = {ξ ∈ R

n | (ξ,−1) ∈ N((x, f (x)), epi f)
}

is the basic (limiting) subdifferential of f at x, and its elements are basic sub-
gradients of f at this point. We put ∂b f (x) = ∅ if | f (x)| = ∞.

(ii) The set
∂∞ f (x) = {ξ ∈ R

n | (ξ, 0) ∈ N((x, f (x)), epi f)
}

is the singular subdifferential of f at x, and its elements are singular subgradi-
ents of f at this point. We put ∂∞ f (x) = ∅ if | f (x)| = ∞.

The basic (limiting) subdifferential agrees with the classical gradient for strictly
differentiable functions as well as with the subdifferential of convex analysis (see
Definition 2.15) when f is convex. The singular subdifferential is useful for the study
of non-Lipschitzian functions. Both basic and singular subdifferentials can be used
to study general classes of nonsmooth functions.

3.5 Summary

In this chapter we have generalized all the convex concepts defined in the previous
chapter to nonconvex locally Lipschitz continuous functions. We have shown that
nonsmooth analysis is a natural enlargement of the classical differential theory by
generalizing all the familiar derivation rules like the mean-value theorem (Theorem
3.18) and the chain rule (Theorem 3.19). Instead of the equalities we only get inclu-
sions in most of the results. However, the subdifferential regularity assumption can

3.5 Summary 113

guarantee equalities. From practical point of view the main result of this chapter is
the Theorem 3.9, which tells how one can compute the Clarke subdifferential by
using limits of ordinary gradients. After the analytical part we have generalized all
the geometrical concepts and given links between analysis and geometry.

In addition, we have presented three generalizations of the subdifferential: the
quasidifferential, the codifferential and the basic (limiting) and singular subdiffer-
entials. Unlike the Clarke subdifferential all these three generalized subdifferentials
can be considered as nonconvex subdifferentials, because they contain more than
one convex compact set.

The quasidifferential mapping enjoys a full calculus (see Theorem 3.37) in a sense
that equalities can be used instead of inclusions. We also have presented the result
on the relationship between the Clarke subdifferential and the quasidifferential.

Exercises

3.1 (Corollary 3.1) Prove that if f : Rn → R is locally Lipschitz continuous at x,
then the function d �→ f ◦(x;d) is convex, its epigraph epi f ◦(x; ·) is a convex
cone and we have

f ◦(x;−d) = (− f)◦(x;d).

3.2 Let f1 and f2 be locally Lipschitz continuous at x ∈ R
n. Show that

∂(f1 + f2)(x) �= ∂ f1(x) + ∂ f2(x).

(Hint: Consider the functions f1(x) := |x| and f2(x) := −|x|).
3.3 (Theorem 3.22) Let f1 and f2 be locally Lipschitz continuous at x ∈ R

n and
f2(x) �= 0. Prove that the function f1/ f2 is locally Lipschitz continuous at x and

∂
(f1

f2

)
(x) ⊆ f2(x)∂ f1(x) − f1(x)∂ f2(x)

f 2
2 (x)

. (3.40)

If in addition f1(x) ≥ 0, f2(x) > 0 and f1, f2 are both subdifferentially regular at
x, prove that the function f1/ f2 is also subdifferentially regular at x and equality
holds in (3.40).

3.4 (Corollary 3.5) Suppose that the functions fi: Rn → R are continuously differ-
entiable at x and gi: Rn → R are convex for each i = 1, . . . ,m. Define the functions
f : Rn → R and g: Rn → R by

f (x) = max { fi(x) | i = 1, . . . ,m} and

g(x) = max {gi(x) | i = 1, . . . ,m}.

114 3 Nonconvex Analysis

Then we have

∂ f (x) = conv {∇ fi(x) | i ∈ I (x)} and

∂cg(x) = conv {∂cgi(x) | i ∈ J (x)},

where I (x) = {i ∈ {1, . . . ,m} | fi(x) = f (x)} and J (x) = {i ∈ {1, . . . ,m} |
gi(x) = g(x)}.
3.5 (Theorem 3.23) Let fi: Rn → R be locally Lipschitz continuous at x for all
i = 1, . . . ,m. Prove that the function

f (x) := max { fi(x) | i = 1, . . . ,m}

is locally Lipschitz continuous at x.

3.6 Let f : Rn → R be defined by

f (x) := max
i=1,...,n

{xi}.

Show that f is convex and we have

∂c f (x) = {ξ ∈ R
n | ξi ≥ 0,

n∑

i=1

ξi = 1 and ξi = 0, if i /∈ I(x)},

where
I (x) := {i ∈ {1, . . . ,n} | xi = f (x)}.

3.7 Let f : R → R be defined by

f (x) := max {√|x|,x3}
ln(|x| + 2)

.

Calculate ∂ f (0).

3.8 (Theorem 3.24) Prove that the tangent cone TS(x) of the nonempty set S at
x ∈ S is a closed convex cone.

3.9 (Theorem 3.30) If S1,S2 ⊆ R
n are such that x ∈ S1 ∩S2 and x ∈ int S2, prove

that
TS1(x) = TS1∩S2(x) and NS1(x) = NS1∩S2(x).

3.10 Let S1,S2 ⊆ R
n and x ∈ S1 ∩ S2. Show that

(a) TS1∩S2(x) ⊆ TS1(x) ∩ TS2(x),
(b) NS1∩S2(x) ⊇ NS1(x) +NS2(x).

Exercises 115

3.11 If the function f : Rn → R is locally Lipschitz continuous at x, prove that

Nepi f (x, f (x)) = {(λξ,−λ) ∈ R
n+1 | ξ ∈ ∂ f (x),λ ≥ 0}.

3.12 (Theorem 3.34) If the function f : Rn → R is locally Lipschitz continuous at
x and 000 /∈ ∂ f (x), prove that

Nlev f (x) f (x) ⊆ ray ∂ f (x).

If, in addition, f is subdifferentially regular at x prove that

Nlev f (x) f (x) = ray ∂ f (x).

3.13 (Theorem 3.35) Prove that the cone of locally feasible directions FS(x) of the
nonempty convex set S at x ∈ S is a convex cone.

3.14 Let S ⊂ R
2 defined by

S := {x ∈ R
2 | x1 > 0} ∪ {x ∈ R

2 | x2 < 0} ∪ {000}.

Calculate the cones FS(000), TS(000), KS(000), GS(000) and NS(000).

3.15 Prove Theorem 3.38.

3.16 Prove Theorem 3.39.

3.17 Find DC representation of the following functions:

(a) f (x) = max{min{2x1 + x2,−3x1 + 2x2}, min{x1 − 4x2, 3x1 − x2}},
x = (x1,x2)

T ∈ R
2;

(b) f (x) = min{x1 − x2, 3x1 + x2} + min{−x1 + 2x2,−3x1 − x2}},
x = (x1,x2)

T ∈ R
2;

(c) f (x) = | min{x1 − 4x2 + 2x3,x1 − 2x2 − x3}|,
x = (x1,x2,x3)

T ∈ R
3;

(d) f (x) = min{x2
1 − 2x2 − 2x1 − x2

2, 3x2
1 + 5x2 − x1 − x2

2}|,
x = (x1,x2)

T ∈ R
2.

3.18 Find quasidifferentials of the following functions:

(a) f (x) = max{min{x1 − x2, 4x1 − 3x2}, min{2x1 − x2,x1 − x2}},
x = (x1,x2)

T = (0, 0)T ∈ R
2;

(b) f (x) = min{x1 −x2 −1,x1 +x2 −3}+min{−x1 +3x2 +1,−2x1 −x2 +8}},
x = (x1,x2)

T = (3, 1)T ∈ R
2;

(c) f (x) = | min{x1 − 4x2 + 2x3 − 1,−2x1 − x2 − x3 + 2}|,
x = (x1,x2,x3)

T = (1, 0, 0)T ∈ R
3;

(d) f (x) = min{x2
1 − x2 − x1 − x2

2 + 8,x2
1 + 2x2 − x2

1 − x2
2 + 2}|,

x = (x1,x2)
T = (0, 2)T ∈ R

2.

116 3 Nonconvex Analysis

3.19 Find codifferentials of the following functions:

(a) f (x) = max{min{−3x1 +2x2, 2x1 −3x2}, min{4x1 −3x2 −2,x1 −x2 −1}},
x = (x1,x2)

T = (1, 1)T ∈ R
2;

(b) f (x) = min{x1 −2x2 −2, 2x1 +x2}+min{−2x1 +x2 +1,−4x1 −2x2 +6}},
x = (x1,x2)

T = (1,−1)T ∈ R
2;

(c) f (x) = | min{x1 − x2 + 3x3 − 3,−x1 − 2x2 − 2x3 + 3}|,
x = (x1,x2,x3)

T = (1, 0, 1)T ∈ R
3;

(d) f (x) = min{2x2
1 − x2 − 3x1 − 2x2

2 + 3, 3x2
1 + x2 − 2x2

1 − 3x2
2}|,

x = (x1,x2)
T = (2, 1)T ∈ R

2.

Chapter 4
Optimality Conditions

In this chapter, we present some results connecting the theories of nonsmooth analy-
sis and optimization. We first define global and local minima of functions. After
that, we generalize the classical first order optimality conditions for unconstrained
nonsmooth optimization. Furthermore, we define linearizations for locally Lipschitz
continuous functions by using subgradient information, and present their basic prop-
erties. These linearizations are suitable for function approximation and they will be
used in nonsmooth optimization methods in Part III. At the end of this chapter, we
define the notion of a descent direction and show how to find it for a locally Lipschitz
continuous function.
We consider a nonsmooth optimization problem of the form

{
minimize f (x)

subject to x ∈ S,
(4.1)

where the objective function f : Rn → R is supposed to be locally Lipschitz contin-
uous and the feasible region S ⊆ R

n is nonempty. If f is a convex function and S
is a convex set, then the problem (4.1) is called convex.

Definition 4.1 A point x∗ ∈ S is a global optimum of the problem (4.1) if it satisfies

f (x∗) ≤ f (x) for all x ∈ S.

Definition 4.2 A point x∗ ∈ R
n is a local optimum of the problem (4.1) if there

exists δ > 0 such that

f (x∗) ≤ f (x) for all x ∈ S ∩B(x∗; δ).

4.1 Unconstrained Optimization

We consider first the unconstrained version of the problem (4.1), in other words the
case S = R

n. Then we are actually looking for local and global minima of a locally
Lipschitz continuous function.

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_4

117

118 4 Optimality Conditions

4.1.1 Analytical Optimality Conditions

The necessary conditions for a locally Lipschitz continuous function to attain its
local minimum are given in the next theorem. For convex functions these conditions
are also sufficient and the minimum is global.

Theorem 4.1 Let f : Rn → R be a locally Lipschitz continuous function atx∗ ∈ R
n.

If f attains its local minimum at x∗, then

000 ∈ ∂ f (x∗) and f ◦(x∗;d) ≥ 0 f or all d ∈ R
n. (4.2)

Proof Follows directly from the proof of Theorem 3.17. �

In what follows we are seeking for the points satisfying the necessary optimality
condition (4.2).

Definition 4.3 A point x ∈ R
n satisfying 000 ∈ ∂ f (x) is called a stationary point

of f .

Next we formulate the following sufficient optimality condition utilizing
convexity.

Theorem 4.2 If the function f : Rn → R is convex, then f attains its global mini-
mum at x∗ if and only if

000 ∈ ∂c f (x∗) or f ′(x∗;d) ≥ 0 f or all d ∈ R
n.

Proof If f attains its global minimum at x∗, then it follows from Theorem 4.1 that
000 ∈ ∂c f (x∗) and by Theorem 2.28 (ii) we have for all d ∈ R

n

f ′(x∗;d) = max{ξTd | ξ ∈ ∂c f (x∗)} ≥ 000Td = 0. (4.3)

Suppose next, that x ∈ R
n is arbitrary and define d := x − x∗, then due to (4.3) we

have

0 ≤ f ′(x∗;x − x∗) = max{ξT (x − x∗) | ξ ∈ ∂c f (x∗)}

and thus there exists ξ∗ ∈ ∂c f (x∗) such that

0 ≤ f ′(x∗;x − x∗) = ξT∗ (x − x∗).

Then due to the definition of the subdifferential of a convex function (Definition
2.15) we get

4.1 Unconstrained Optimization 119

f (x) ≥ f (x∗) + ξT∗ (x − x∗) ≥ f (x∗),

in other words, f attains its global minimum at x∗. Now we have proved that all
these three conditions are equivalent. �

Example 4.1 (Absolute-value function). Function f (x) = |x| is convex.

The point x = 0 is a global minimum of f .

⇐⇒ 0 ∈ [−1, 1] = ∂ f (0).

A necessary optimality condition can be presented also with the aid of the Goldstein
ε-subdifferential.

Theorem 4.3 Let f : Rn → R be a locally Lipschitz continuous function atx∗ ∈ R
n.

If f attains its local minimum at x∗, then for all ε ≥ 0 and x ∈ B(x∗; ε) we have

000 ∈ ∂Gε f (x).

Proof Let ε ≥ 0 and x ∈ B(x∗; ε), then clearly x∗ ∈ B(x; ε) and according to
Theorems 4.1 and 3.11 we have

000 ∈ ∂ f (x∗) ⊆ ∂Gε f (x). �

The Goldstein ε-subdifferential measures the distance in the variable space, while
the ε-subdifferential of a convex function in the objective space. Due to these differ-
ences we need the following ε-optimality.

Definition 4.4 If ε ≥ 0, then a point x∗ ∈ S is a global ε-optimum of the problem
(4.1) if it satisfies

f (x∗) ≤ f (x) + ε for all x ∈ S.

Note, that similarly we can define also local ε-optimality.

Theorem 4.4 If the function f : Rn → R is convex and ε ≥ 0, then f attains its
global ε-minimum at x∗ if and only if

000 ∈ ∂ε f (x∗) or f ′
ε(x

∗;d) ≥ 0 for all d ∈ R
n.

120 4 Optimality Conditions

Proof Exercise. [Hint: In the proof of Theorem 4.2 replace ∂c f (x∗) and f ′(x∗; ·)
by ∂ε f (x∗) and f ′

ε(x
∗; ·), respectively.] �

4.1.2 Descent Directions

If we have not yet found the optimal solution of the problem (4.1), an essential part of
iterative optimization methods is finding a direction such that the objective function
values improve when moving in that direction. Next we define a descent direction
for an objective function and show how to find it for a locally Lipschitz continuous
function.

Definition 4.5 The direction d ∈ R
n is called a descent direction for f : Rn → R

at x ∈ R
n, if there exists ε > 0 such that for all t ∈ (0, ε]

f (x + td) < f (x).

Theorem 4.5 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n.

The direction d ∈ R
n is a descent direction for f at x if

ξTd < 0 for all ξ ∈ ∂ f (x) or f ◦(x;d) < 0.

Proof Suppose first, that f ◦(x;d) < 0. By the definition of the generalized direc-
tional derivative we have

lim sup
t↓0

f (x + td) − f (x)

t
≤ lim sup

y→x
t↓0

f (y + td) − f (y)

t
= f ◦(x;d) < 0.

Then, by the definition of upper limit, there exists ε > 0 such that f (x + td) −
f (x) < 0 for all t ∈ (0, ε], which means that d is a descent direction for f at x.

Suppose next, that ξTd < 0 for all ξ ∈ ∂ f (x). Then due to Theorem 3.4 we have

f ◦(x;d) = max {ξTd | ξ ∈ ∂ f (x)} < 0

and thus, by the first part of the proof, d is a descent direction for f at x. �

From the above results we get the consequence, that either we have a stationary
point or we can find a descent direction.

Corollary 4.1 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R
n.

Then either 000 ∈ ∂ f (x) or there exists a descent direction d ∈ R
n for f at x.

Proof Exercise. (Hint: Use the Theorems 4.1 and 4.5.) �

4.1 Unconstrained Optimization 121

Note, that in convex case Corollary 4.1 means, that either we have a global mini-
mum point or we can find a descent direction.

Corollary 4.2 Let f : Rn → R be a convex function. Then either f attains its global
minimum at x ∈ R

n or there exists a descent direction d ∈ R
n for f at x.

Proof Exercise. (Hint: Use Corollary 4.1 and Theorem 4.2.) �

To the end of this subsection we define two cones related to descent directions.

Definition 4.6 Consider the optimization problem (4.1). The cone of descent direc-
tions at x ∈ S is

DS(x) := {d ∈ R
n | d = 0 or there exists ε > 0

such that f (x + td) < f (x) for all t ∈ (0, ε]}

and the cone of polar subgradient directions at x ∈ S is

D◦
S(x) := {d ∈ R

n | d = 0 or ξTd < 0 for all ξ ∈ ∂ f (x)}.

It is easy to show (Exercise 4.5), that DS(x) and D◦
S(x) are cones and they are

both convex, if f is a convex function. We left also as an exercise (Exercise 4.6) to
show that

DS(x) ⊆ Flev f (x) f (x) and D◦
S(x) ⊆ ∂ f (x)◦.

Moreover, by Theorem 4.5 we have D◦
S(x) ⊆ DS(x).

Finally, we formulate the following geometrical optimality condition.

Corollary 4.3 Let f : Rn → R be a locally Lipschitz continuous function at x∗ ∈
R
n. If f attains its local minimum at x∗, then

D◦
S(x∗) = DS(x∗) = {000}. (4.4)

If, in addition, f is convex, then the condition (4.4) is sufficient for x∗ to be a global
minimum of f .

Proof Exercise. (Hint: Use the Theorems 4.1 and 4.2, Corollary 4.1 and the fact that
000 ∈ D◦

S(x) ⊆ DS(x).) �

4.2 Geometrical Constraints

Next we consider the problem (4.1) when the feasible set is not the whole space R
n,

in other words S ⊂ R
n. In this subsection we do not assume any special structure of

S, but consider it as a general set.

122 4 Optimality Conditions

4.2.1 Geometrical Optimality Conditions

In unconstrained case we were looking for descent directions, in other words direc-
tions from the cone DS(x), but in constrained case those directions should also be
feasible. In Sect. 3.3.3 we defined the cone of locally feasible directions FS(x).
Thus we are interested in finding directions from the intersection DS(x) ∩ FS(x).

First we generalize the geometrical optimality condition (4.3) to the constrained
problem (4.1) (see also Fig. 4.1).

Theorem 4.6 Let x∗ be a local optimum of the problem (4.1), where f : Rn → R is
locally Lipschitz continuous at x∗ ∈ S �= ∅. Then

D◦
S(x∗) ∩ FS(x∗) = {000}. (4.5)

If, in addition, the problem (4.1) is convex, then the condition (4.5) implies that x∗
is a global optimum of the problem (4.1).

Proof By contradiction, suppose that there exists d ∈ D◦
S(x∗) ∩ FS(x∗) such that

d �= 000. By Theorem 4.5 we haveD◦
S(x∗) ⊆ DS(x∗), which means by the definition

of the cone of descent directions that there exists ε1 > 0 such that

f (x∗ + td) < f (x∗) for all t ∈ (0, ε1]. (4.6)

On the other hand, due to the definition of the cone of locally feasible directions
FS(x∗) there exists ε2 > 0 such that

x∗ + td ∈ S for all t ∈ (0, ε2]. (4.7)

Fig. 4.1 Geometrical opti-
mality condition

FS x
DS x

S

x

http://dx.doi.org/10.1007/978-3-319-08114-4_3

4.2 Geometrical Constraints 123

By choosing ε := min{ε1, ε2} we see that both (4.6) and (4.7) are valid for all
t ∈ (0, ε] and thus, due to Definition 4.2 x∗ can not be a local optimum of the
problem (4.1). Thus D◦

S(x∗) ∩ FS(x∗) = {000}.
Suppose next, that the problem (4.1) is convex and the condition (4.5) is valid.

If x∗ is not a global optimum there exist y ∈ S such that f (y) < f (x∗). Then
d := y − x∗ �= 000 and since S is convex we have

x∗ + td = x∗ + t (y − x∗) = ty + (1 − t)x∗ ∈ S,

whenever t ∈ (0, 1], thus d ∈ FS(x∗). On the other hand, due to the definition of
subdifferential of convex function (Definition 2.15) for all ξ ∈ ∂c f (x∗) we have

0 > f (y) − f (x∗) = f (x∗ + d) − f (x∗) ≥ f (x∗) + ξTd − f (x∗) = ξTd.

By Theorem 3.8 (ii) we have ∂c f (x∗) = ∂ f (x∗) and we conclude that d ∈ D◦
S(x∗).

Thus we have found d �= 000 such that d ∈ D◦
S(x∗) ∩ FS(x∗). This contradicts the

condition (4.5), meaning that x∗ must be a global optimum of the problem (4.1). �

4.2.2 Mixed Optimality Conditions

Next we formulate a mixed-analytical-geometrical optimality conditions. Before
that, we need the following two lemmas.

Lemma 4.1 Let S1 ⊂ S2 ⊆ R
n and f : Rn → R be locally Lipschitz continuous on

S2 with constant K. If x∗ ∈ S1 is a local optimum of the problem

{
minimize f (x)

subject to x ∈ S1,
(4.8)

then, it is also a local optimum of the problem

{
minimize f (x) +KdS1(x)

subject to x ∈ S2.
(4.9)

Proof By contradiction, suppose that there exists y ∈ S2 and ε > 0 such that

f (y) +KdS1(y) < f (x∗) +KdS1(x
∗) −Kε = f (x∗) −Kε.

Let z ∈ S1 be such that
‖y − z‖ ≤ dS1(y) + ε.

124 4 Optimality Conditions

Then due to the Lipschitz continuity we get

f (z) ≤ f (y) +K‖y − z‖
≤ f (y) +K(dS1(y) + ε)

< f (x∗) +Kε−Kε

= f (x∗),

implying that x∗ can not be a local optimum of the problem (4.8). �

For an open feasible region S we get the same optimality conditions than in
unconstrained case.

Lemma 4.2 Let x∗ be a local optimum of the problem (4.1), where f : Rn → R is
locally Lipschitz continuous at x∗ ∈ S �= ∅ and S ⊆ R

n is open. Then

000 ∈ ∂ f (x∗) and f ◦(x∗;d) ≥ 0 for all d ∈ R
n.

Proof Since x∗ is a local optimum of the problem (4.1) there exists δ1 > 0 such that

f (x∗) ≤ f (x) for all x ∈ S ∩B(x∗; δ1). (4.10)

On the other hand, since S is open there exists δ2 > 0 such that B(x∗; δ2) ⊂ S. By
choosing δ := min{δ1, δ2} the condition (4.10) is valid for all

x ∈ S ∩B(x∗; δ) = B(x∗; δ).

Then we have f (x∗ + td) − f (x∗) ≥ 0 for all t ∈ (0, δ] and d ∈ R
n, and thus

f ◦(x∗;d) = lim sup
y→x∗
t↓0

f (y + td) − f (y)

t
≥ lim sup

t↓0

f (x∗ + td) − f (x∗)
t

≥ 0.

Moreover
f ◦(x∗;d) ≥ 0 = 000Td for all d ∈ R

n,

which means by the definition of subdifferential that 000 ∈ ∂ f (x∗). �

Finally we are ready to proof the main results of this subsection, namely the
necessary mixed-analytical-geometrical optimality condition.

Theorem 4.7 Let x∗ be a local optimum of the problem (4.1), where f : Rn → R is
locally Lipschitz continuous at x∗ ∈ S �= ∅. Then

000 ∈ ∂ f (x∗) +NS(x∗).

4.2 Geometrical Constraints 125

Proof Since f is locally Lipschitz continuous at x∗, we can find an open setS∗ ⊂ R
n

such that x∗ ∈ S∗ and f is Lipschitz continuous on the set S∗ with constantK. Now
we have S ∩ S∗ ⊆ S and thus x∗ ∈ S ∩ S∗ is a local optimum of the problem

{
minimize f (x)

subject to x ∈ S ∩ S∗.

Moreover, S ∩ S∗ ⊆ S∗ and due to Lemma 4.1 x∗ is also a local optimum of the
problem

{
minimize f (x) +KdS∩S∗(x)

subject to x ∈ S∗.

Because the feasible region S∗ is open, Lemma 4.2 implies that

000 ∈ ∂(f (x∗) +KdS∩S∗(x∗)).

Due to Theorem 2.38 the distance function dS∩S∗ is locally Lipschitz continuous
everywhere and thus, due to Theorem 3.16

000 ∈ ∂(f (x∗) +KdS∩S∗(x∗)) ⊆ ∂ f (x∗) + ∂KdS∩S∗(x∗).

Moreover, due to Theorem 3.28 we have

NS∩S∗(x∗) = cl ray ∂dS∩S∗(x∗),

implying that

000 ∈ ∂ f (x∗) + ∂KdS∩S∗(x∗) ⊆ ∂ f (x∗) +NS∩S∗(x∗).

Since S∗ is open, x∗ ∈ int S∗ and due to Theorem 3.30 NS∩S∗(x∗) = NS(x∗) and
thus

000 ∈ ∂ f (x∗) +NS(x∗). �

To the end of this subsection we formulate the following necessary and sufficient
mixed-analytical-geometrical optimality condition utilizing convexity.

Theorem 4.8 If the problem (4.1) is convex, then x∗ ∈ S is a global optimum of the
problem (4.1) if and only if

000 ∈ ∂c f (x∗) +NS(x∗).

126 4 Optimality Conditions

Proof The necessity part follows directly from Theorem 4.7. For sufficiency suppose,
that

000 ∈ ∂c f (x∗) +NS(x∗).

This means, that there exist ξ ∈ ∂c f (x∗) and z ∈ NS(x∗) such that ξ = −z. Then
due to the definition of the subdifferential of a convex function (Definition 2.15) we
get

f (x) ≥ f (x∗) + ξT (x − x∗) = f (x∗) − zT (x − x∗) for all x ∈ S.

Since S is convex and z ∈ NS(x∗) Theorem 2.19 implies that

zT (x − x∗) ≤ 0 for all x ∈ S,

and thus

f (x) ≥ f (x∗) − zT (x − x∗) ≥ f (x∗) for all x ∈ S.

In other words, x∗ is a global optimum of the problem (4.1). �

4.3 Analytical Constraints

In this subsection we assume a special structure of S determined with inequality
constraints. Thus we consider a nonsmooth optimization problem of the form

⎧
⎪⎨

⎪⎩

minimize f (x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

x ∈ X,

(4.11)

where the constraint functions gi: Rn → R are supposed to be locally Lipschitz
continuous for all i = 1, . . . ,m and X ⊆ R

n is a nonempty open set. Without
loosing generality, we can scalarize the multiple constraints by introducing the total
constraint function g: Rn → R in the form

g(x) := max {gi(x) | i = 1, . . . ,m}.

Then the problem (4.11) is a special case of (4.1) with

S = {x ∈ X | g(x) ≤ 0} = lev0 g.

4.3 Analytical Constraints 127

4.3.1 Geometrical Optimality Conditions

First we generalize the geometrical optimality condition of Theorem 4.6 to the
analytically constrained problem (4.11). In order to do that, we need one more cone.

Definition 4.7 Consider the optimization problem (4.11). The cone of polar con-
straint subgradient directions at x ∈ S is

F ◦
S(x) := {d ∈ R

n | d = 0 or ξTi d < 0 for all ξi ∈ ∂gi(x) and i ∈ I◦(x)},

where
I◦(x) = {i ∈ {1, . . . ,m} | gi(x) = 0}

is the set of active constraints.

Theorem 4.9 Let x∗ be a local optimum of the problem (4.11), where f : Rn → R

and gi: Rn → R for i = 1, . . . ,m are supposed to be locally Lipschitz continuous
at x∗ ∈ S �= ∅. Then

D◦
S(x∗) ∩ F ◦

S(x∗) = {000}. (4.12)

Proof We show first, that F ◦
S(x∗) ⊆ FS(x∗). Clearly 000 ∈ F ◦

S(x∗) ∩ FS(x∗) and so
we can suppose that 000 �= d ∈ F ◦

S(x∗). Since x∗ ∈ X and X is open, there exists
ε1 > 0 such that

x∗ + td ∈ X for all t ∈ (0, ε1]. (4.13)

Suppose next, that i /∈ I◦(x∗) implying that gi(x∗) < 0. Since locally Lipschitz
continuous function is continuous, there exists ε2 > 0 such that

gi(x
∗ + td) < 0 for all t ∈ (0, ε2]. (4.14)

Finally, if i ∈ I◦(x∗), then we have

ξTi d < 0 for all ξi ∈ ∂gi(x),

which means by Theorem 4.5, that d is a descent direction for gi at x∗. Then there
exists ε3 > 0 such that

gi(x
∗ + td) < gi(x

∗) = 0 for all t ∈ (0, ε3]. (4.15)

By choosing ε := min{ε1, ε2, ε3} the conditions (4.13)–(4.15) imply

x∗ + td ∈ S for all t ∈ (0, ε],

128 4 Optimality Conditions

in other words, d ∈ FS(x∗) and thus F ◦
S(x∗) ⊆ FS(x∗). On the other hand, due

to Theorem 4.6 we have D◦
S(x∗) ∩ FS(x∗) = {000} implying that also D◦

S(x∗) ∩
F ◦
S(x∗) = {000}. �

The next example shows, that even in the convex case the condition (4.12) is not
sufficient for optimality.

Example 4.2 (Necessary but not sufficient condition). Letn = m = 1, f (x) =
−x, g1(x) = x3 − 1 and X = R. Then clearly f is a convex function and
S = (−∞, 1] is a convex set. Furthermore, the global optimum of the problem
(4.11) is x∗ = 1. On the other hand, we have ∂g1(0) = {0} and thus F ◦

S(0) =
{0}. Then the condition (4.12) is trivially valid at a nonoptimal point x = 0.

4.3.2 Fritz John Optimality Conditions

Next we formulate necessary analytical optimality conditions generalizing the clas-
sical Fritz John (FJ) optimality conditions for nonsmooth optimization.

Theorem 4.10 (FJ Necessary Conditions) Let x∗ be a local optimum of the problem
(4.11), where f : Rn → R and gi: Rn → R for i = 1, . . . ,m are supposed to be
locally Lipschitz continuous at x∗ ∈ S �= ∅. Then there exist multipliers λi ≥ 0 for
i = 0, . . . ,m such that

∑m
i=0 λi = 1, λigi(x∗) = 0 for i = 1, . . . ,m and

000 ∈ λ0∂ f (x∗) +
m∑

i=1

λi∂gi(x
∗).

Proof According to Theorem 3.23 function hx∗ : Rn → R defined by

hx∗(x) := max { f (x) − f (x∗), g(x)}

is locally Lipschitz continuous at x∗. Since x∗ ∈ R
n is a local optimum of the

problem (4.1), there exists δ > 0 such that

f (x∗) ≤ f (x) for all x ∈ S ∩B(x∗; δ).

4.3 Analytical Constraints 129

Then

hx∗(x) = max { f (x) − f (x∗), g(x)}
≥ f (x) − f (x∗)
≥ 0 for all x ∈ S ∩B(x∗; δ).

Since x∗ ∈ S we have g(x∗) ≤ 0 implying

hx∗(x∗) = max { f (x∗) − f (x∗), g(x∗)} = 0,

in other words, hx∗ attains its local minimum at x∗. Then due to Theorem 4.1 we
have

000 ∈ ∂hx∗(x∗).

If g(x∗) < 0 we have g(x∗) < f (x∗) − f (x∗) and thus, due to Theorem 3.23 we
get

000 ∈ ∂hx∗(x∗) ⊆ ∂ f (x∗).

Then the assertion of the theorem is proved by choosing λ0 := 1 and λi := 0 for
i = 1, . . . ,m.

On the other hand, if g(x∗) = 0 we have g(x∗) = f (x∗) − f (x∗) and thus, due
to Theorem 3.23 we get

000 ∈ ∂hx∗(x∗) ⊆ conv {∂ f (x∗) ∪ ∂g(x∗)}.

Furthermore, we have

∂g(x∗) ⊆ conv {∂gi(x∗) | i ∈ I(x∗)},

where
I(x∗) = {i ∈ {1, . . . ,m} | gi(x∗) = g(x∗)}.

Then, due to the definition of convex hull (Definition 2.2) there exist λ0 ≥ 0 and
λi ≥ 0 for i ∈ I(x∗) such that λ0 + ∑

i∈I(x∗) λi = 1, λigi(x∗) = 0 for i ∈ I(x∗)
and

000 ∈ λ0∂ f (x∗) +
∑

i∈I(x∗)
λi∂gi(x

∗).

The assertion of the theorem is now proved by choosing λi := 0 for i /∈ I(x∗). �

130 4 Optimality Conditions

4.3.3 Karush-Kuhn-Tucker Optimality Conditions

As in the classical case, the disadvantage of the FJ conditions are, that λ0 can be
zero. Then the conditions tell nothing about the objective function. The conditions are
valid, for example, in those (nonoptimal) points x, where we have 000 ∈ ∂gi(x) = 0
for some i ∈ I(x). In order to get information about the objective function, we need
some regularization assumptions, called constraint qualifications.

Definition 4.8 The problem (4.11) satisfies the Slater constraint qualification if there
exists x ∈ S such that g(x) < 0.

Definition 4.9 The problem (4.11) satisfies the Cottle constraint qualification at
x ∈ S if either g(x) < 0 or 000 /∈ ∂g(x).

Note, that Slater condition is global while Cottle is defined pointwisely. Next we
give the relationship between those two qualifications.

Lemma 4.3 If the problem (4.11) satisfies the Cottle constraint qualification at some
x ∈ S, then it satisfies also the Slater constraint qualification. If the functions gi are
convex for all i = 1, . . . ,m and the problem (4.11) satisfies the Slater constraint
qualification, then it satisfies also the Cottle constraint qualification at every x ∈ S.

Proof Suppose first, that the problem (4.11) satisfies the Cottle constraint qualifi-
cation at x ∈ S. If g(x) < 0, then the Slater condition is fulfilled directly. On the
other hand, if 000 /∈ ∂g(x), then due to Corollary 4.1 there exists a descent direction
d ∈ R

n for g at x, in other words, there exists ε > 0 such that for all t ∈ (0, ε]

g(x + td) < g(x) = 0

and thus, the Slater condition is valid.
Suppose next, that the functions gi are convex for all i = 1, . . . ,m, the problem

(4.11) satisfies the Slater constraint qualification and x ∈ S is arbitrary. If g(x) = 0,
then due to Slater condition there exists y ∈ S such that g(y) < 0 = g(x), thus x is
not a global minimum of function g. Since g is convex, due to Theorem 4.2 we have
000 /∈ ∂g(x). �

Now we are ready to generalize Karush-Kuhn-Tucker (KKT) optimality condi-
tions for nonsmooth optimization.

Theorem 4.11 (KKT Necessary Conditions) Let the problem (4.11) satisfy the Cot-
tle constraint qualification at a local optimumx∗, where f : Rn → R andgi: Rn → R

for i = 1, . . . ,m are supposed to be locally Lipschitz continuous at x∗ ∈ S �= ∅.
Then there exist multipliers λi ≥ 0 for i = 1, . . . ,m such that λigi(x∗) = 0 and

000 ∈ ∂ f (x∗) +
m∑

i=1

λi∂gi(x
∗).

4.3 Analytical Constraints 131

Proof According to Theorem 4.7 we have

000 ∈ ∂ f (x∗) +NS(x∗).

If g(x∗) < 0 we have x∗ ∈ int S and thus, due to Theorem 3.29 NS(x∗) = {000}, in
other words 000 ∈ ∂ f (x∗). Then the assertion of the theorem is proved by choosing
λi := 0 for all i = 1, . . . ,m.

On the other hand, if g(x∗) = 0 we have S = levg(x∗) g and due to the Cottle
constraint qualification 000 /∈ ∂g(x∗). Then by Theorem 3.34

NS(x∗) = Nlevg(x∗) g(x
∗) ⊆ ray ∂g(x∗).

Furthermore, due to Theorem 3.23 we get

∂g(x∗) = conv {∂gi(x∗) | i ∈ I(x∗)},

where

I(x∗) = {i ∈ {1, . . . ,m} | gi(x∗) = g(x∗)}.

Then, due to the definition of ray (Definition 2.7) there exist λi ≥ 0 for all i ∈ I(x∗)
such that λigi(x∗) = 0 and

000 ∈ ∂ f (x∗) +
∑

i∈I(x∗)
λi∂gi(x

∗).

The assertion of the theorem is now proved by choosing λi := 0 for i /∈ I(x∗). �

To this end we formulate sufficient KKT optimality conditions utilizing convexity.

Theorem 4.12 (KKT Sufficient Conditions) Let f : Rn → R and gi: Rn → R for
i = 1, . . . ,m be convex functions. If at x∗ ∈ S �= ∅ there exist multipliers λi ≥ 0
for all i = 1, . . . ,m such that λigi(x∗) = 0 and

000 ∈ ∂c f (x∗) +
m∑

i=1

λi∂cgi(x
∗), (4.16)

then x∗ is a global optimum of the problem (4.11).

Proof As maximum of the convex constraint functions gi: Rn → R the total con-
straint function g is convex and as a level set of a convex function the feasible set
S = lev0 g is convex by Theorem 2.23. If g(x∗) < 0 we have gi(x∗) < 0 for all
i = 1, . . . ,m and since λigi(x∗) = 0 we deduce that λi = 0 for all i = 1, . . . ,m.
Then (4.16) implies that 000 ∈ ∂c f (x∗). Furthermore, x∗ ∈ int S and thus, due to
Theorem 3.29 we have NS(x∗) = {000}, in other words

132 4 Optimality Conditions

000 ∈ ∂ f (x∗) +NS(x∗)

and then x∗ is a global optimum of the problem (4.11) due to Theorem 4.8.
On the other hand, if g(x∗) = 0 we have S = levg(x∗) g and due to Theorem 3.23

we get

∂g(x∗) = conv {∂gi(x∗) | i ∈ I(x∗)},

where

I(x∗) = {i ∈ {1, . . . ,m} | gi(x∗) = g(x∗)}.

Then Theorem 2.37 implies that

m∑

i=1

λi∂cgi(x
∗) ⊆ ray ∂g(x∗) = Nlevg(x∗) g(x

∗) = NS(x∗)

and thus

000 ∈ ∂ f (x∗) +NS(x∗)

which implies that x∗ is a global optimum of the problem (4.11) due to Theorem
4.8. �

Finally, we can combine the necessary and sufficient conditions. Note that here,
unlike in sufficient conditions, we cannot avoid the constraint qualification.

Corollary 4.4 (KKT Necessary and Sufficient Conditions) Suppose, that the prob-
lem (4.11) satisfies the Slater constraint qualification and let f : Rn → R and
gi: Rn → R for i = 1, . . . ,m be convex functions. Then x∗ is a global optimum of
the problem (4.11) if and only if there exist multipliers λi ≥ 0 for all i = 1, . . . ,m
such that λigi(x∗) = 0 and

000 ∈ ∂c f (x∗) +
m∑

i=1

λi∂cgi(x
∗),

Proof The result follows from Theorems 4.11 and 4.12, and Lemma 4.3. �

4.3 Analytical Constraints 133

Example 4.3 (Optimality conditions). Consider the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize f (x1,x2) = max {x1,x2}
subject to (x1 − 3)2 + (x2 − 3)2 − 5 ≤ 0

x1 − x2 + 1 ≤ 0

x2
1 + 2x2 − 14 ≤ 0.

(4.17)

Clearly f is convex and according to Exercise 3.6 we have

ξ ∈ ∂c f (x1,x2) ⇐⇒

⎧
⎪⎨

⎪⎩

ξ = (0, 1)T , if x1 < x2

ξ = (μ, 1 − μ)T , if x1 = x2

ξ = (1, 0)T , if x1 > x2,

where μ ∈ [0, 1]. Let us denote

g1(x1,x2) := (x1 − 3)2 + (x2 − 3)2 − 5,

g2(x1,x2) := x1 − x2 + 1,

g3(x1,x2) := x2
1 + 2x2 − 14.

Since functions gi are convex and differentiable for all i = 1, 2, 3 we deduce
from Theorem 2.29 that

∂cgi(x1,x2) = {∇gi(x1,x2)},

where

∇g1(x1,x2) = (2(x1 − 3), 2(x2 − 3))T

∇g2(x1,x2) = (1,−1)T

∇g3(x1,x2) = (2x1, 2)T .

134 4 Optimality Conditions

Then from Theorem 4.12 we get the following KKT conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 + 2λ1(x1 − 3) + λ2 + 2λ3x1 = 0

ξ2 + 2λ1(x2 − 3) − λ2 + 2λ3 = 0

λ1((x1 − 3)2 + (x2 − 3)2 − 5) = 0

λ2(x1 − x2 + 1) = 0

λ3(x
2
1 + 2x2 − 14) = 0

λ1,λ2,λ3 ≥ 0

If we calculate the conditions at the point x∗ = (1, 2)T , we have x1 < x2 and
thus ξ = (0, 1)T . Then we get

⎧
⎪⎨

⎪⎩

λ1 = 1
6 ≥ 0

λ2 = 2
3 ≥ 0

λ3 = 0 ≥ 0.

In other words we have found λi ≥ 0 for all i = 1, 2, 3 such that λigi(x∗) = 0
and

000 ∈ ∂c f (x∗) +
3∑

i=1

λi∂cgi(x
∗).

Thus due to Theorem 4.12 x∗ = (1, 2)T is a global optimum of the problem
(4.17).

4.4 Optimality Conditions Using Quasidifferentials

The quasidifferential (see Definition 3.9) can be used to formulate optimality con-
ditions for a minimum both in unconstrained and constrained problems. First, we
formulate such conditions for unconstrained optimization problems. That is, we
consider the problem (4.1) with S = R

n. In addition, we assume that the objective
function f is quasidifferentiable on R

n.

Theorem 4.13 For the function f to attain its smallest value on R
n at a point x∗ it

is necessary that
−∂ f (x∗) ⊂ ∂ f (x∗).

4.4 Optimality Conditions Using Quasidifferentials 135

If, in addition, f is locally Lipschitz continuous and

−∂ f (x∗) ⊂ int ∂ f (x∗),

then the point x∗ is a strict local minimizer of f on R
n.

Proof See [72]. �
In order to formulate optimality conditions for constrained minimization problems,
we introduce the notion of a quasidifferentiable set.

Definition 4.10 A set � ⊂ R
n is called a quasidifferentiable set if it can be repre-

sented in the form
� = {x ∈ R

n | h(x) ≤ 0},

where h is a quasidifferentiable function.

Let us now consider the problem (4.1) with S = �. Let us take x ∈ � and
consider the cones

γ1(x) = {d ∈ R
n | h′(x;d) < 0}, γ2(x) = {d ∈ R

n | h′(x;d) ≤ 0}.

Let h(x) = 0. We say that the regularity condition is satisfied at the point x if
cl γ1(x) = γ2(x).

Theorem 4.14 Let functions f and h be locally Lipschitz continuous and quasidif-
ferentiable in some neighborhood of a point x∗ ∈ � and h(x∗) = 0. Assume also
that the regularity condition holds at x∗. For the function f to attain its smallest
value on � at the point x∗ it is necessary that

(
∂ f (x∗) + w

) ⋂ [− cl (cone(∂h(x∗) + w′))
] �= ∅

for all w ∈ ∂ f (x∗),w′ ∈ ∂h(x∗).

Proof See [72]. �

4.5 Summary

In this chapter we have concentrated on the theory of nonsmooth optimization. We
have formulated necessary and sufficient optimality conditions for a Lipschitz func-
tions to attain local and global minima both in the unconstrained and constrained
cases. We have formulated both geometrical and analytical conditions based on cones
and subdifferentials, respectively. We have also considered both geometrical and an-
alytical constraints and generalized the classical Fritz John (FJ) (Theorem 4.10) and
Karush-Kuhn-Tucker (KKT) optimality conditions (Theorems 4.11 and 4.12). In
addition, we have formulated the optimality conditions using quasidifferentials.

136 4 Optimality Conditions

Exercises

4.1 (Theorem 4.4) Prove that if the function f : Rn → R is convex and ε ≥ 0, then
f attains its global ε-minimum at x∗ if and only if

000 ∈ ∂ε f (x∗) or f ′
ε(x

∗;d) ≥ 0 for all d ∈ R
n.

4.2 (Corollary 4.1) Let f : Rn → R be a locally Lipschitz continuous function at
x ∈ R

n. Prove that either 000 ∈ ∂ f (x) or there exists a descent direction d ∈ R
n for

f at x.

4.3 (Corollary 4.2) Let f : Rn → R be a convex function. Prove that either f attains
its global minimum at x ∈ R

n or there exists a descent direction d ∈ R
n for f at x.

4.4 Find the point where the function

f (x1,x2) = max {x2
1 + (x2 − 1)2, 3 − 2x1}

attains its global minimum.
4.5 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R

n. Prove
thatDS(x) andD◦

S(x) are cones and they are both convex, if f is a convex function.
4.6 Let f : Rn → R be a locally Lipschitz continuous function at x ∈ R

n. Prove
that

(a) DS(x) ⊆ Flev f (x) f (x)

(b) D◦
S(x) ⊆ ∂ f (x)◦

(c) D◦
S(x) ⊆ DS(x).

4.7 (Corollary 4.3) Let f : Rn → R be a locally Lipschitz continuous function at
x∗ ∈ R

n. Prove that if f attains its local minimum at x∗, then

D◦
S(x∗) = DS(x∗) = {000}. (4.18)

If, in addition, f is convex, prove that the condition (4.18) is sufficient for x∗ to be
a global minimum of f .
4.8 Let gi: Rn → R be a locally Lipschitz continuous function at x ∈ R

n for all
i = 1, . . . ,m. Prove that F ◦

S(x) is a cone. Is it convex if gi: Rn → R are convex for
all i ∈ I◦?
4.9 Consider the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize f (x1,x2) = max {|x1 − 3|, |x2 − 2|}
subject to x2

1 + x2
2 − 5 ≤ 0

x1 + x2 − 3 ≤ 0

x1,x2 ≥ 0.

Determine the cones DS(x), D◦
S(x), FS(x) and F ◦

S(x) at x = (2, 1)T . What can
you say about the optimality of x?

Exercises 137

4.10 Show that x∗ = (1, 0)T is a global optimum of the problem

⎧
⎪⎨

⎪⎩

minimize f (x1,x2) = |x1| + |x2|
subject to x2

1 + x2
2 − 1 ≤ 0

(x1 − 2)2 + x2
2 − 1 ≤ 0.

However, show that the necessary KKT optimality conditions are not valid. Why?
4.11 Consider the problem

{
minimize f (x) = max {‖x‖, ‖x‖2}
subject to ‖x‖ ≥ 1.

Find the points satisfying the necessary KKT optimality condition. What can you
say about the optimality of them?
4.12 Solve the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize f (x1,x2,x3) = |x1| + x2
2 − 2x3

subject to |x1 + x3| − 2 ≤ 0

max {x2,x3} − 5 ≤ 0

x1 ≥ 1,x2 ≥ 2.

Chapter 5
Generalized Convexities

Convexity plays a crucial role in mathematical optimization theory. Especially, in
duality theory and in constructing optimality conditions, convexity has been the most
important concept since the basic reference by Rockafellar [204] was published.
Different types of generalized convexities has proved to be the main tool when con-
structing optimality conditions, particularly sufficient conditions for optimality. In
this chapter we analyze the properties of the generalized pseudo- and quasiconvex-
ities for nondifferentiable locally Lipschitz continuous functions. The treatment is
based on the Clarke subdifferentials and generalized directional derivatives.

5.1 Generalized Pseudoconvexity

We start this section by recalling the most famous definition of pseudoconvexity for
smooth functions

Definition 5.1 A continuously differentiable function f : Rn → R is pseudoconvex,
if for all x,y ∈ R

n

f(y) < f(x) implies ∇f(x)T (y − x) < 0.

The main result for a smooth pseudoconvex function f is that the convexity assump-
tion of Theorem 4.2 can be relaxed, in other words, a smooth pseudoconvex function
f attains its global minimum at x∗, if and only if ∇f(x∗) = 000 (see Fig. 5.1).

Now we extend the concept of pseudoconvexity for nonsmooth functions.

Definition 5.2 A function f : Rn → R is f◦-pseudoconvex, if it is locally Lipschitz
continuous and for all x,y ∈ R

n

f(y) < f(x) implies f◦(x; y − x) < 0.

Note that due to (3.9) a convex function is always f◦-pseudoconvex. The next result
shows that f◦-pseudoconvexity is a natural extension of pseudoconvexity.

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_5

139

140 5 Generalized Convexities

Fig. 5.1 Pseudoconvex
function f x

x

Theorem 5.1 If f : Rn → R is continuously differentiable, then f is f◦-pseudo-
convex, if and only if f is pseudoconvex.

Proof Follows immediately from Theorem 3.4, since for a smooth f we have
f◦(x;y − x) = f ′(x; y − x) = ∇f(x)T (y − x). �

Sometimes the reasoning chain in the definition of f◦-pseudoconvexity needs to be
converted.

Lemma 5.1 A locally Lipschitz continuous functionf : Rn → R isf◦-pseudoconvex,
if and only if for all x,y ∈ R

n

f◦(x;y − x) ≥ 0 implies f(y) ≥ f(x).

Proof Follows directly from the definition of f◦-pseudoconvexity. �

The important sufficient extremum property of convexity (Theorem 4.2) and pseudo-
convexity remains also for f◦-pseudoconvexity.

Theorem 5.2 If the function f : Rn → R is f◦-pseudoconvex, then f attains its
global minimum at x∗, if and only if

000 ∈ ∂f(x∗).

Proof If f attains its global minimum at x∗, then by Theorem 4.1 we have
000 ∈ ∂f(x∗). On the other hand, if 000 ∈ ∂f(x∗) and y ∈ R

n, then by Definition
3.2

f◦(x∗;y − x∗) ≥ 000T (y − x∗) = 0

and, thus by Lemma 5.1 we have

f(y) ≥ f(x∗).
�

The following example shows, that f◦-pseudoconvexity is a more general property
than pseudoconvexity.

5.1 Generalized Pseudoconvexity 141

Example 5.1 (f◦-pseudoconvexity). Define f : R → R such that f(x) :=
min {|x|,x2} (see Fig. 5.2). Then f is clearly locally Lipschitz continuous
but not convex nor pseudoconvex. However, for all y > x we have

f◦(x; y − x) =

⎧
⎪⎨

⎪⎩

−1, x ∈ (−∞,−1]
2x, x ∈ (−1, 1]
1, x ∈ (1,∞),

and thus, due to the symmetricity of the function f and Lemma 5.1, f is f◦-
pseudoconvex. Furthermore, for the unique global minimum x∗ = 0 we have
∂f(x∗) = {0}.

The notion of monotonicity is closely related to convexity.

Definition 5.3 The generalized directional derivative f◦ is called pseudomonotone,
if for all x,y ∈ R

n

f◦(x;y − x) ≥ 0 implies f◦(y;x − y) ≤ 0

or, equivalently

f◦(x;y − x) > 0 implies f◦(y;x − y) < 0.

Furthermore, f◦ is strictly pseudomonotone, if

f◦(x; y − x) ≥ 0 implies f◦(y;x − y) < 0.

Theorem 5.3 If f : Rn → R is locally Lipschitz continuous such that f◦ is
pseudomonotone, then f is f◦-pseudoconvex.

Fig. 5.2 f◦-pseudoconvex
but not pseudoconvex function

f x

x

142 5 Generalized Convexities

Proof Let us, on the contrary, assume that f is not f◦-pseudoconvex. Then there
exist x,y ∈ R

n such that f(y) < f(x) and

f◦(x; y − x) ≥ 0. (5.1)

Then by the Mean-Value Theorem 3.18 there exists λ ∈ (0, 1) such that z = x +
λ(y − x) and

f(x) − f(y) ∈ ∂f(z)T (x − y).

This means that due to the definition of the Clarke subdifferential there exists ξ ∈
∂f(z) such that

0 < f(x) − f(y) = ξT (x − y) ≤ f◦(z;x − y). (5.2)

On the other hand, from (5.1) and the positive homogeneity of d �→ f◦(x; d) (see
Theorem 3.1) we deduce that

f◦(x;z − x) = f◦(x;λ(y − x)) = λf◦(x;y − x) ≥ 0.

Then the pseudomonotonicity, the positive homogeneity of d �→ f◦(x;d) and (5.2)
imply that

0 ≥ f◦(z;x − z) = λf◦(z;x − y) > 0,

which is impossible. Thus f is f◦-pseudoconvex. �
The converse result is also true, but before we can prove it we need few lemmas.

Lemma 5.2 If the function f : Rn → R is f◦-pseudoconvex, x,y ∈ R
n and z =

λx + (1 − λ)y, where λ ∈ (0, 1), then

f(z) ≤ max {f(x), f(y)} .

Proof On the contrary assume that f(z) > max {f(x), f(y)}. Since f is f◦-
pseudoconvex and d �→ f◦(x;d) is positively homogeneous by Theorem 3.1, we
have

0 > f◦(z;x − z) = f◦(z; (1 − λ)(x − y)) = (1 − λ)f◦(z;x − y)

and thus
f◦(z;x − y) < 0.

Correspondingly, we obtain

0 > f◦(z;y − z) = f◦(z;λ(y − x)) = λf◦(z;y − x)

and thus

5.1 Generalized Pseudoconvexity 143

f◦(z;y − x) < 0.

Since d �→ f◦(x; d) is subadditive by Theorem 3.1, we have

0 > f◦(z;x − y) + f◦(z;y − x) ≥ f◦(z; (x − y) + (y − x)) = f◦(z;000) = 0,

which is impossible. In other words, f(z) ≤ max {f(x), f(y)}. �

Lemma 5.3 If the function f : Rn → R is f◦-pseudoconvex, then for all x,y ∈ R
n

f(y) = f(x) implies f◦(x;y − x) ≤ 0.

Proof On the contrary, assume that there exist points x,y ∈ R
n and α > 0 such that

f(y) = f(x) and f◦(x; y − x) = α > 0. Since f is locally Lipschitz continuous
there exist β,K > 0 such thatK is the Lipschitz constant in the ballB(x;β). Since
f◦(x;y − x) = α Lemma 3.1 implies that there exists a sequence (xi) of points
where f is differentiable and I ∈ N such that xi → x and

f ′(xi;y − x) = ∇f(xi)
T (y − x) >

α

2
(5.3)

holds when i ≥ I . Let
δ = min

{
β,

α

2K

}

and z ∈ B(x; δ) ∩ {(xi) | i ≥ I }. According to Lemma 1.2 f ′(z; ·) is Lipschitz
continuous with the constant K. Hence,

∣∣f ′(z;y − x) − f ′(z;y − z)
∣∣ ≤ K ‖y − x − (y − z)‖
= K ‖z − x‖ < K

α

2K
= α

2
. (5.4)

Thus, f ′(z;y − z) > 0 according to (5.3) and (5.4). Since f ′(z;y − z) > 0 there
exists μ ∈ (0, 1) such that

f(μz + (1 − μ)y) > f(z). (5.5)

Due to Corollary 3.1 f◦(x; ·) is convex, and thus by Theorem 2.22 it is continuous.
Then the fact that f◦(x;y − x) = α implies that there exists ε > 0 such that
f◦(x;d) > 0 when d ∈ B(y − x; ε). Let now v ∈ B(y; ε) be arbitrary. Since

‖v − x − (y − x)‖ = ‖v − y‖ < ε,

it follows that v − x ∈ B(y − x; ε). Thus, f◦(x; v − x) > 0 and the f◦-
pseudoconvexity of the function f implies that f(v) ≥ f(x) = f(y). Thus, y
is a local minimum for the function f and Theorem 4.1 implies that 000 ∈ ∂f(y). Due

144 5 Generalized Convexities

to Theorem 5.2 y is also a global minimum. Thus, we have f(y) ≤ f(z) and the
inequality (5.5) implies that

f(μz + (1 − μ)y) > max {f(z), f(y)} ,

which is impossible by Lemma 5.2. �

Now we are ready to prove the converse result of Theorem 5.3.

Theorem 5.4 The generalized directional derivative of a f◦-pseudoconvex function
f : Rn → R is pseudomonotone.

Proof Let f be f◦-pseudoconvex and, on the contrary, assume that there exist x,y ∈
R
n such that f◦(x; y−x) ≥ 0 and f◦(y;x−y) > 0. Then, by f◦-pseudoconvexity

f(x) ≤ f(y) and f(y) ≤ f(x), hence f(x) = f(y). Thus, we have f◦(y;x−y) >

0 and f(x) = f(y), which contradicts Lemma 5.3. �

Note, that in Lemma 5.3 the differentiability at the points xi is crucial in order
to attain the existence of the directional derivative. Unlike the convexity, the f◦-
pseudoconvexity does not guarantee that directional derivatives exist at every point
as shown in the next example.

Example 5.2 (f◦-pseudoconvex function with no directional derivative).
Consider the following piecewise linear function

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x , if x ≤ 0

2(−1)α 1
10α +

(
5
4 + (−1)α 11

12

) (
x− 1

10α
)

, if 0 < x < 1
10

x− 1
20 , if x ≥ 1

10 ,

where
α = α(x) = ⌊−log10(x)

⌋
.

The function f is drawn in Fig. 5.3. The dashed lines represents lines y = 2x
and y = 1

2x. Function f always lies between these two lines.
We now show that function f is f◦-pseudoconvex, but its directional deriv-

ative f ′(x; d) is not defined at every point.

The function f is not differentiable at points
(

1
10i

)
, i = 1, 2, . . . and 0. From

the definition of the function f we see that everywhere but at 0 the classical
directional derivative f ′(x; 1) has an upper bound

5.1 Generalized Pseudoconvexity 145

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

x

f(
x)

Fig. 5.3 f◦-pseudoconvex function with no directional derivative

max

{
1,

5

4
+ 11

12

}
= 5

4
+ 11

12
= 13

6

and a lower bound

min

{
1,

5

4
− 11

12

}
= 1

3
.

The directional derivative f ′(x;−1) has lower and upper bounds − 13
6 and − 1

3 ,
respectively. When x = 0 we see from the Fig. 5.3 that |f(y)| ≤ 2 |y| for all
y ∈ R. Thus, we see that when x, y ∈ R the inequality

|f(x) − f(y)| ≤ 13

6
|x− y|

holds and f is Lipschitz continuous. Actually, at an arbitrary point x0 the
function lies between the lines

y = 13

6
(x− x0) + f(x0) and y = 1

3
(x− x0) + f(x0).

Next, we prove the f◦-pseudoconvexity of the function f . As stated previously,
for all x ∈ R, t > 0 the inequalities

−13

6
≤ f(x− t) − f(x)

t
≤ −1

3
,

146 5 Generalized Convexities

holds implying f◦(x,−1) ≤ − 1
3 . Now, the f◦-pseudoconvexity follows from

the fact that f(y) < f(x) if and only if y < x.
Finally, we prove that directional derivative f ′(0; 1) does not exist.
Consider the limit

lim
t↓0

ϕ(t) = lim
t↓0

f(0 + t) − f(0)

t
(5.6)

with different sequences (ti). Let the sequence be ti = 1
102i , i ∈ N. Then

α(ti) = 2i

f(ti) = 2
1

102i + 13

6

(1

102i − 1

102i

) = 2
1

102i

ϕ(ti) = 2 1
102i

1
102i

= 2,

and the limit (5.6) is 2. Now, let the sequence be si = 1
102i+1 , i ∈ N.

Then

α(si) = 2i+ 1

f(si) = 1

2

1

102i+1 + 1

3

(1

102i+1 − 1

102i+1

) = 1

2

1

102i+1

ϕ(si) = 1

2

1
102i+1

1
102i+1

= 1

2
,

and the limit (5.6) is 1
2 . The sequences (ti) and (si) generates different limits

and thus, the function f does not have the directional derivative f ′(0; 1).

In what follows we consider how to verify the f◦-pseudoconvexity in practice. Before
that, however, we need the following result.

Lemma 5.4 A locally Lipschitz continuous function g: R → R is f◦-pseudoconvex
and strictly increasing, if and only if α > 0 for all α ∈ ∂g(x) and x ∈ R.

Proof Suppose first that g is both f◦-pseudoconvex and strictly increasing and letd <

0. Then for every x ∈ R we have g(x + d) < g(x) and due to f◦-pseudoconvexity
g◦(x; d) < 0. By the definition of the subdifferential for all α ∈ ∂g(x) we have

αd ≤ g◦(x; d) < 0,

which implies α > 0.

5.1 Generalized Pseudoconvexity 147

On the other hand, let all the subgradients of g be positive. We first prove that g
is strictly increasing. Suppose, on the contrary, that there exist y,x ∈ R such that
y < x and g(y) ≥ g(x). By the Mean-Value Theorem 3.18 there exists z ∈ (y,x)
such that

g(x) − g(y) ∈ ∂g(z)(x− y).

This means that there exists α ∈ ∂g(z) such that α > 0 and

0 ≥ g(x) − g(y) = α(x− y) > 0,

which is impossible. Thus, g is strictly increasing.
Since g is strictly increasing we have g(y) < g(x) if and only if y < x, where

x, y ∈ R. Thus, to prove f◦-pseudoconvexity we need to show that y < x implies
f◦(x; y − x) < 0. Let x, y ∈ R be arbitrary such that y < x. By Theorem 3.4

f◦(x; y − x) = max {α(y − x) | α ∈ ∂f(x)} < 0

which proves the f◦-pseudoconvexity. �

Theorem 5.5 Let h: Rn → R be f◦-pseudoconvex and g: R → R be f◦-pseudo-
convex and strictly increasing. Then the composite function f := g ◦ h: Rn → R is
also f◦-pseudoconvex.

Proof According to Theorem 3.19 function f is locally Lipschitz continuous. Sup-
pose now that f(y) < f(x). Then g(h(y)) = f(y) < f(x) = g(h(x)) and since g
is strictly increasing we have

h(y) < h(x). (5.7)

From Theorems 3.4 and 3.19 we deduce that

f◦(x;y − x) = max {ξT (y − x) | ξ ∈ ∂f(x)} (5.8)

≤ max
{
ξT (y − x) | ξ ∈ conv {∂g(h(x))∂h(x)}}.

Due to the definition of a convex hull the right hand side of (5.8) is equivalent to

max
{(m∑

i=1

λiαiξi

)T
(y − x) |

αi ∈ ∂g(h(x)), ξi ∈ ∂h(x), λi ≥ 0,

m∑

i=1

λi = 1
}

≤ max
{(m∑

i=1

λiαi

)
· max
ξi∈∂h(x)

ξTi (y − x) |

148 5 Generalized Convexities

αi ∈ ∂g(h(x)), λi ≥ 0,

m∑

i=1

λi = 1
}

= max
{(m∑

i=1

λiαi

)
h◦(x; y − x) | αi ∈ ∂g(h(x)), λi ≥ 0,

m∑

i=1

λi = 1
}
.

Moreover, by Lemma 5.4 we have αi > 0 for all i = 1, . . . ,m and thus

m∑

i=1

λiαi > 0.

On the other hand, since h is f◦-pseudoconvex, (5.7) implies that h◦(x; y −x) < 0.
Then

f◦(x; y − x) ≤ max
{(m∑

i=1

λiαi

)
h◦(x;y − x) |

αi ∈ ∂g(h(x)), λi ≥ 0,

m∑

i=1

λi = 1
}

< 0

and, thus, f is f◦-pseudoconvex. �

Theorem 5.6 Let fi: Rn → R be f◦-pseudoconvex for all i = 1, . . . ,m. Then the
function

f(x) := max {fi(x) | i = 1, . . . ,m}

is also f◦-pseudoconvex.

Proof According to Theorem 3.23 f is locally Lipschitz continuous. Suppose that
f(y) < f(x) and define the index set

I (x) := {i ∈ {1, . . . ,m} | fi(x) = f(x)}.

Then for all i ∈ I (x) we have

fi(y) ≤ f(y) < f(x) = fi(x). (5.9)

From Theorems 3.4 and 3.23, the definition of a convex hull, f◦-pseudoconvexity of
fi, and (5.9) we deduce that

f◦(x;y − x) = max {ξT (y − x) | ξ ∈ ∂f(x)}
≤ max

{
ξT (y − x) | ξ ∈ conv {∂fi(x)) | i ∈ I (x)}}

= max
{(∑

i∈I (x)

λiξi

)T
(y − x) | ξi ∈ ∂f(x),λi ≥ 0,

∑

i∈I (x)

λi = 1
}

5.1 Generalized Pseudoconvexity 149

≤ max
{ ∑

i∈I (x)

λi · max
ξi∈∂fi(x)

ξTi (y − x) | λi ≥ 0,
∑

i∈I (x)

λi = 1
}

= max
{ ∑

i∈I (x)

λif
◦
i (x;y − x) | λi ≥ 0,

∑

i∈I (x)

λi = 1
}

< 0.

Thus, f is f◦-pseudoconvex. �

Due to the fact that the sum of f◦-pseudoconvex functions is not necessarily f◦-
pseudoconvex we need the following new property.

Definition 5.4 The functions fi: Rn → R for i = 1, . . . ,m are said to be additively
strictly monotone, if for all x,y ∈ R

n and λi ≥ 0, i = 1, . . . ,m

m∑

i=1

λifi(y) <

m∑

i=1

λifi(x) implies fi(y) < fi(x).

Theorem 5.7 Letfi: Rn → R bef◦-pseudoconvex and additively strictly monotone,
and let λi ≥ 0 for all i = 1, . . . ,m. Then the function

f(x) :=
m∑

i=1

λifi(x)

is f◦-pseudoconvex.

Proof According to Theorem 3.16 f is locally Lipschitz continuous. Suppose that
f(y) < f(x). Then the additive strict monotonicity implies that for all i = 1, . . . ,m
we have

fi(y) < fi(x). (5.10)

From Theorems 3.4 and 3.16, nonnegativity of λi, f◦-pseudoconvexity of fi, and
(5.10) we deduce that

f◦(x; y − x) = max {ξT (y − x) | ξ ∈ ∂f(x)}

≤ max {ξT (y − x) | ξ ∈
m∑

i=1

λi∂fi(x)}

= max
{(m∑

i=1

λiξi

)T
(y − x) | ξi ∈ ∂fi(x)

}

≤
m∑

i=1

λi · max
ξi∈∂fi(x)

ξTi (y − x)

150 5 Generalized Convexities

=
m∑

i=1

λif
◦
i (x;y − x) < 0.

Thus, f is f◦-pseudoconvex. �

5.2 Generalized Quasiconvexity

The notion of quasiconvexity is the most widely used generalization of convexity,
and, thus, there exist various equivalent definitions and characterizations. Next we
recall the most commonly used definition of quasiconvexity.

Definition 5.5 A function f : Rn → R is quasiconvex, if for all x,y ∈ R
n and

λ ∈ [0, 1]
f(λx + (1 − λ)y) ≤ max {f(x), f(y)}.

Remark 5.1 Lemma 5.2 implies that f◦-pseudoconvex function is also quasiconvex.

Note, that unlike pseudoconvexity, the previous definition of quasiconvexity does
not require differentiability or even continuity.

Next we will give a well-known important geometrical characterization to quasi-
convexity, namely that the convexity of the level sets is equivalent to the quasicon-
vexity of the function. In Theorem 2.23 we proved, that the level sets of a convex
function are convex, but the converse was not true as illustrated in Fig. 2.12.

Theorem 5.8 A function f : Rn → R is quasiconvex, if and only if the level set
levα f is a convex set for all α ∈ R.

Proof Let f be quasiconvex, x,y ∈ levαf , λ ∈ [0, 1] and α ∈ R. Then

f(λx + (1 − λ)y) ≤ max {f(x), f(y)} ≤ max {α,α} = α,

thus λx + (1 − λ)y ∈ levαf .
On the other hand, let levα f be a convex set for all α ∈ R. By choosing β :=

max {f(x), f(y)} we have x,y ∈ levβ f . The convexity of levβ f implies, that
λx + (1 − λ)y ∈ levβ f for all λ ∈ [0, 1], in other words

f(λx + (1 − λ)y) ≤ β = max {f(x), f(y)}.
�

We give also a useful result concerning a finite maximum of quasiconvex functions.

http://dx.doi.org/10.1007/978-3-319-08114-4_2

5.2 Generalized Quasiconvexity 151

Theorem 5.9 Let fi: Rn → R be quasiconvex at x for all i = 1, . . . ,m. Then the
function

f(x) := max {fi(x) | i = 1, . . . ,m}

is also quasiconvex.

Proof Follows directly from the definition of quasiconvexity. �

Analogously to the Definition 5.2 we can define the corresponding generalized
quasiconvexity concept.

Definition 5.6 A function f : Rn → R is f◦-quasiconvex, if it is locally Lipschitz
continuous and for all x,y ∈ R

n

f(y) ≤ f(x) implies f◦(x; y − x) ≤ 0.

Note that (3.9) implies that a convex function is always f◦-quasiconvex.
Similarly to f◦-pseudoconvexity, the reasoning chain may be converted.

Lemma 5.5 A locally Lipschitz continuous function f : Rn → R is f◦-quasiconvex,
if and only if for all x,y ∈ R

n

f◦(x; y − x) > 0 implies f(y) > f(x).

Proof Follows directly from the definition of f◦-quasiconvexity. �

There is a way, similar to Definition 5.6, to express locally Lipschitz continuous
and quasiconvex function.

Definition 5.7 A function f : Rn → R is l-quasiconvex, if it is locally Lipschitz
continuous and for all x,y ∈ R

n

f(y) < f(x) implies f◦(x;y − x) ≤ 0.

Remark 5.2 Definitions 5.6 and 5.7 imply that an f◦-quasiconvex function is always
l-quasiconvex.

Next, we prove that l-quasiconvexity coincides with quasiconvexity in locally
Lipschitz continuous case.

Theorem 5.10 If a locally Lipschitz continuous function f : Rn → R is quasiconvex
then it is l-quasiconvex.

Proof Let f be locally Lipschitz continuous and quasiconvex. Let x,z ∈ R
n be such

that f(z) < f(x). Since local Lipschitz continuity implies continuity there exists
ε > 0 such that

152 5 Generalized Convexities

f(z + d) < f(x + d) for all d ∈ B(000; ε). (5.11)

For generalized directional derivative f◦(x; z − x) we have

f◦(x;z − x) = lim sup
y→x
t↓0

f(y + t(z − x)) − f(y)

t

= lim sup
y→x
t↓0

f(y + t(z − x + y − y)) − f(y)

t

= lim sup
y→x
t↓0

f((1 − t)y + t(z + y − x)) − f(y)

t
.

When t ∈ (0, 1) and y − x ∈ B(000; ε) the quasiconvexity of f and (5.11) implies

f((1 − t)y + t(z + y − x)) − f(y)

t

≤ max {f(y), f(z + y − x)} − f(y − x + x)

t

= max {0, f(z + y − x) − f(x + y − x)}
t

= 0

Passing to the limit t → 0 and y → x we get f◦(x; z − x) ≤ 0. Thus, f is
l-quasiconvex. �

Before we can proof the converse, we need the following lemma.

Lemma 5.6 If the function f : Rn → R is locally Lipschitz continuous on [x,y],
where f(x) < f(y). Then, there exists a point z ∈ (x,y) such that

f(z) > f(x) and f◦(z;y − x) > 0.

Proof Consider the set S := levf(x) f ∩ [x,y]. Since level sets of a continuous
function are closed sets (Exercise 2.29) and [x,y] is compact, S is a compact set. It
is also nonempty, because x ∈ S. Since function g(w) := ‖w − y‖ is continuous,
it attains its minimum over the set S according to the Weierstrass Theorem 1.1. Let
this minimum point be v. Then v is the nearest point to y on the set S and the
continuity of function f implies f(v) = f(x). Also, v �= y since f(x) < f(y). The
Mean-Value Theorem 3.18 implies that there exist z ∈ (v,y) and ξ ∈ ∂f(z) such
that

f(y) − f(v) = ξT (y − v).

Since ‖y − v‖ ≤ ‖y − x‖ and v ∈ [x,y), there exists λ ∈ (0, 1] such that y −v =
λ(y − x). Then by the fact f(v) < f(y) and Theorem 3.1 we have

5.2 Generalized Quasiconvexity 153

0 < f(y) − f(v) = ξT (y − v) ≤ f◦(z;y − v)

= f◦(z;λ(y − x)) = λ · f◦(z;y − x) ≤ f◦(z;y − x).

Now z /∈ levf(x) f , because otherwise we would have z ∈ S and

g(z) = ‖z − y‖ < ‖v − y‖ = g(v),

which is impossible, since v was the minimum of g over S. Thus we have f(z) >

f(x) and the lemma has been proven. �

Now we can prove, that l-quasiconvexity implies also quasiconvexity.

Theorem 5.11 If function f : Rn → R is l-quasiconvex then it is quasiconvex.

Proof On the contrary assume that an l-quasiconvex function f is not quasiconvex.
Then there existx,y ∈ R

n andμ ∈ (0, 1) such thatf(v) > max {f(x), f(y)}, where
v = μx+ (1 −μ)y. Without a loss of generality we may assume that f(x) ≥ f(y).
Lemma 5.6 implies that there exists z ∈ (x, v), for which

f(z) > f(x) and f◦(z;v − x) > 0.

Denote z = λx + (1 − λ)y, where λ ∈ (μ, 1). From the definitions of points v and
z we see that

v − x = (1 − μ)(y − x) and y − z = λ(y − x).

Thus,

v − x = 1 − μ

λ
(y − z)

and

0 < f◦(z;v − x) = 1 − μ

λ
f◦(z;y − z).

Thus, 0 < f◦(z;y − z) and f(z) > f(x) ≥ f(y) which contradicts the
l-quasiconvexity of function f . Hence, f is quasiconvex. �

Corollary 5.1 A function f : Rn → R is locally Lipschitz continuous and quasicon-
vex if and only if it is l-quasiconvex.

Proof The result follows directly from Theorems 5.10 and 5.11. �

Corollary 5.2 If f : Rn → R is f◦-quasiconvex, then f is quasiconvex.

Proof The result follows from Remark 5.2 and Theorem 5.11. �

The converse of this corollary is not necessarily true as the next example shows.

154 5 Generalized Convexities

Fig. 5.4 Quasiconvex but not
f◦-quasiconvex function f x

x

Example 5.3 (Quasiconvex but not f◦-quasiconvex function). Define f :
R → R such that (see Fig. 5.4)

f(x) :=

⎧
⎪⎨

⎪⎩

|x|, x ∈ (−∞, 1)

1, x ∈ [1, 2]
x− 1, x ∈ (2,∞).

Then f is clearly locally Lipschitz continuous and quasiconvex. However,
by taking x := 1 and y := 2 we have f◦(x; y − x) = f◦(1; 1) = 1 > 0, but
f(y) = f(2) = 1 ≯ 1 = f(1) = f(x) and thus, due to Lemma 5.5, f is not
f◦-quasiconvex.

Furthermore, f is not f◦-pseudoconvex, since 0 ∈ ∂f(1) = [0, 1] although
x = 1 is not a global minimum (cf. Theorem 5.2).

Likewise the pseudomonotonicity there also exists a concept of quasimonotonicity
(see [138]).

Definition 5.8 The generalized directional derivative f◦ is called quasimonotone,
if for all x,y ∈ R

n

f◦(x;y − x) > 0 implies f◦(y;x − y) ≤ 0

or, equivalently
min {f◦(x; y − x), f◦(y;x − y)} ≤ 0.

Note that we could define the strict quasimonotonicity analogously to the
pseudomonotonicity (see Definition 5.3), but it would be equivalent to the
pseudomonotonicity.

5.2 Generalized Quasiconvexity 155

It turns out that the generalized directional derivative f◦ of the function f : Rn →
R is quasimonotone if and only if the function is locally Lipschitz continuous and
quasiconvex.

Theorem 5.12 If f : Rn → R is locally Lipschitz continuous such that f◦ is quasi-
monotone, then f is quasiconvex.

Proof Let us, on the contrary assume, that f is not quasiconvex. Then there exist
x,y,z ∈ R

n and λ ∈ (0, 1) such that

f(z) > f(x) ≥ f(y),

where z = x + λ(y − x). Then by the Mean-Value Theorem 3.18 there exist
v ∈ (z,y) and w ∈ (x,z) such that

f(z) − f(y) ∈ ∂f(v)T (z − y)

and
f(z) − f(x) ∈ ∂f(w)T (z − x),

where

v = x + μ(y − x), w = x + ν(y − x), 0 < ν < λ < μ < 1.

This means that, due to the definition of the Clarke subdifferential, there exist ξv ∈
∂f(v) and ξw ∈ ∂f(w) such that

0 < f(z) − f(y) = ξTv (z − y) ≤ f◦(v;z − y) = (1 − λ)f◦(v;x − y)

and

0 < f(z) − f(x) = ξTw(z − x) ≤ f◦(w;z − x) = λf◦(w;y − x)

by the positive homogeneity of d �→ f◦(x;d) (see Theorem 3.1). Then we deduce
that

f◦(v;w − v) = (μ− ν)f◦(v;x − y) > 0

and
f◦(w;v − w) = (μ− ν)f◦(w;y − x) > 0,

which contradicts the quasimonotonicity. Thus, f is quasiconvex. �
Theorem 5.13 If function f : Rn → R is locally Lipschitz continuous and quasi-
convex then the generalized directional derivative f◦ is quasimonotone.

Proof On the contrary, assume that f◦ is not quasimonotone. Then there exist x,y ∈
R
n such that f◦(x; y − x) > 0 and f◦(y;x − y) > 0. Let

δ := min
{
f◦(x; y − x), f◦(y;x − y)

}
> 0.

156 5 Generalized Convexities

Let ε1 > 0 be such that the local Lipschitz condition holds in the ball B(x; ε1)

with Lipschitz constant K1 > 0. Correspondingly, let ε2 > 0 be such that the local
Lipschitz condition holds in the ball B(y; ε2) with Lipschitz constant K2 > 0. Let

K := max {K1,K2} and ε := min
{

δ
4K , ε1, ε2

}
. According to Lemma 1.1 there

exists a sequence (zi1), such that f is differentiable, limi→∞ zi1 = x and an index
I ∈ N such that

f ′(zi1;y − x) = ∇f(zi1)
T (y − x) ≥ δ

2

when i ≥ I . Similarly, there exists a sequence (z
j
2), such that f is differentiable,

limj→∞ z
j
2 = y and an index J ∈ N such that

f ′(zj2;x − y) = ∇f(z
j
2)
T (x − y) ≥ δ

2

when j ≥ J . Let

z1 ∈ B(x; ε) ∩ {(zi1) | i ≥ I } and

z2 ∈ B(y; ε) ∩ {(zj2) | j ≥ J}.

Due to symmetry we may assume that f(z1) ≥ f(z2) without a loss of generality.
According to Lemma 3.2

∣∣f ′(z1;z2 − z1) − f ′(z1;y − x)
∣∣ ≤ K ‖z2 − z1 − (y − x)‖
≤ K ‖x − z1‖ +K ‖z2 − y‖ < 2K

δ

4K
= δ

2
.

Since f ′(z1;y − x) > δ
2 also f ′(z1;z2 − z1) > 0. Thus, there exists λ ∈ (0, 1)

such that
f(z1 + λ(z2 − z1)) > f(z1) ≥ f(z2),

which contradicts the quasiconvexity. �

It follows from the previous two theorems, that l-quasiconvexity of the function
is equivalent to quasimonotonicity of the generalized directional derivative.

Corollary 5.3 A function f : Rn → R is l-quasiconvex if and only if f◦ is quasi-
monotone.

Proof The result follows from Corollary 5.1 and Theorems 5.12 and 5.13. �

Corollary 5.4 If the function f : Rn → R is f◦-quasiconvex, then f◦ is quasi-
monotone.

Proof The results follows from Remark 5.2 and Corollary 5.3. �

5.2 Generalized Quasiconvexity 157

By Corollary 5.2 f◦-quasiconvex function is quasiconvex. The next result shows,
that for a subdifferentially regular function quasiconvexity and f◦-quasiconvexity
coincides.

Theorem 5.14 If f : Rn → R is both quasiconvex and subdifferentially regular, then
f is f◦-quasiconvex.

Proof Due to the subdifferential regularity f is locally Lipschitz continuous. Sup-
pose, that f(y) ≤ f(x). Then the subdifferential regularity and quasiconvexity
implies, that

f◦(x; y − x) = f ′(x; y − x) = lim
t↓0

f(x + t(y − x)) − f(x)

t

= lim
t↓0

f(ty + (1 − t)x) − f(x)

t
≤ lim

t↓0

f(x) − f(x)

t
= 0

in other words, f is f◦-quasiconvex. �

Corollary 5.5 A subdifferentially regular l-quasiconvex function f : Rn → R is f◦-
quasiconvex.

Proof The result follows from Corollary 5.1 and Theorem 5.14. �

Corollary 5.6 A subdifferentially regular function f : Rn → R with quasimonotone
f◦ is f◦-quasiconvex.

Proof The result follows from Corollaries 5.3 and 5.5. �

In Theorem 5.14 the subdifferential regularity cannot be omitted, as the next example
shows.

Example 5.4 (Not subdifferentially regular quasiconvex function). Consider
again the function in Example 5.3 (see also Fig. 5.4). As noted in Example 5.3
f is locally Lipschitz continuous and quasiconvex but not f◦-quasiconvex.
Note that f is not subdifferentially regular since f ′(1; 1) = 0 �= 1 = f◦(1; 1).

As stated in Corollary 5.5 the subdifferential regularity ensures that the l-quasi-
convexity implies f◦-quasiconvexity. In sequel we show that also the following
nonconstancy property has the similar consequence.

Definition 5.9 The function f : Rn → R is said to satisfy the nonconstancy property
(in short, NC-property), if there exists no line segment [x,y] along which f is
constant.

158 5 Generalized Convexities

Note that the subdifferential regularity (see Definition 3.5) and the NC-property
are two separate concepts.

Example 5.5 (Subdifferential regularity and NC-property). An example of
function which is subdifferentially regular but does not satisfy the NC-property
is (see Fig. 5.5)

f1(x) =

⎧
⎪⎨

⎪⎩

(x+ 1)2 , if x ≤ −1

0 , if − 1 ≤ x ≤ 1

(x− 1)2 , if x ≥ 1.

On the other hand, the function (see Fig. 5.6)

f2(x) =
{

2x , if x ≤ 0
1
2x , if x ≥ 0

poses the NC-property but it is not subdifferentially regular since f◦
2 (0; 1) =

2 �= 1
2 = f ′

2(0; 1).

For the function with NC-property also the quasimonotonicity and the f◦-quasi-
convexity coincides.

Theorem 5.15 If the function f : Rn → R poses the NC-property and f◦ is quasi-
monotone, then f is f◦-quasiconvex.

Proof Let us, on the contrary, assume that f is not f◦-quasiconvex. Then there exist
x,y ∈ R

n such that f(y) ≤ f(x) and

f◦(x;y − x) > 0. (5.12)

Fig. 5.5 Subdifferentially
regular function not posing
NC-property

f x

x

5.2 Generalized Quasiconvexity 159

Fig. 5.6 Not subdifferentially
regular function posing NC-
property

f x

x

According to Theorem 5.12 f is quasiconvex, which means that f(z) ≤ f(x) for
all z ∈ [y,x]. Thus, due to the NC-property, there exists μ ∈ (0, 1] such that
v = x + μ(y − x) and f(v) < f(x). Furthermore, by the Mean-Value Theorem
3.18 there exists w ∈ (v,x) such that

f(x) − f(v) ∈ ∂f(w)T (x − v),

where w = x + ν(v − x) and ν ∈ (0, 1). This means that there exists ξ ∈ ∂f(w)

such that
0 < f(x) − f(v) = ξT (x − v) ≤ f◦(w;x − v). (5.13)

On the other hand, from the positive homogeneity of d �→ f◦(x;d) (see Theorem
3.1) and (5.12) we deduce that

f◦(x;w − x) = νf◦(x;v − x) = νμf◦(x;y − x) > 0.

Then the quasimonotonicity, the positive homogeneity imply that

0 ≥ f◦(w;x − w) = νf◦(w;x − v) > 0,

which is impossible. Thus f is f◦-quasiconvex. �

Corollary 5.7 A l-quasiconvex function f : Rn → R with NC-property is f◦-
quasiconvex.

Proof The result follows from Corollary 5.3 and Theorem 5.15. �

Corollary 5.8 A locally Lipschitz continuous and quasiconvex function f : Rn → R

with NC-property is f◦-quasiconvex.

Proof The result follows from Theorems 5.13 and 5.15. �

160 5 Generalized Convexities

Example 5.6 (NC-property and f◦-quasiconvexity). Consider the function in
Example 5.3. Its generalized directional derivative is quasimonotone since
the function is quasiconvex and locally Lipschitz continuous. However, the
function does not satisfy the NC-property and, thus, it is not guaranteed to be
f◦-quasiconvex. As shown in Example 5.3 the function is not f◦-quasiconvex.

The next results concerning the verification of the f◦-quasiconvexity are analo-
gous to those of f◦-pseudoconvexity.

Lemma 5.7 A locally Lipschitz continuous function g: R → R is increasing, if and
only if ς ≥ 0 for all ς ∈ ∂g(x) and x ∈ R.

Proof Exercise. (Hint: The proof is similar to that of Lemma 5.4). �

Theorem 5.16 Let h: Rn → R be f◦-quasiconvex and g: R → R locally Lipschitz
continuous and increasing. Then the composite function f := g ◦h: Rn → R is also
f◦-quasiconvex.

Proof Exercise. (Hint: The proof is similar to that of Theorem 5.5). �

Theorem 5.17 Let fi: Rn → R be f◦-quasiconvex for all i = 1, . . . ,m. Then the
function

f(x) := max {fi(x) | i = 1, . . . ,m}

is also f◦-quasiconvex.

Proof Exercise. (Hint: The proof is similar to that of Theorem 5.6). �

As in the case of f◦-pseudoconvexity, the following property guarantees that the
sum of f◦-quasiconvex functions is also f◦-quasiconvex.

Definition 5.10 The functionsfi: Rn → R for i = 1, . . . ,m are said to be additively
monotone, if for all x,y ∈ R

n and λi ≥ 0, i = 1, . . . ,m

m∑

i=1

λifi(y) ≤
m∑

i=1

λifi(x) implies fi(y) ≤ fi(x).

Theorem 5.18 Let fi: Rn → R be f◦-quasiconvex and additively monotone, and
λi ≥ 0 for all i = 1, . . . ,m. Then the function

f(x) :=
m∑

i=1

λifi(x)

is f◦-quasiconvex.

5.2 Generalized Quasiconvexity 161

Proof Exercise. (Hint: The proof is similar to that of Theorem 5.7). �

Finally we study the relations between pseudo- and quasiconvexity. For differen-
tiable functions pseudoconvexity implies quasiconvexity. Next we show that also
f◦-pseudoconvexity implies f◦-quasiconvexity.

Theorem 5.19 An f◦-pseudoconvex function f : Rn → R is f◦-quasiconvex.

Proof On the contrary, assume that an f◦-pseudoconvex function f is not f◦-
quasiconvex. Then, there exist points x,y ∈ R

n such that f◦(x,y − x) > 0 and
f(x) = f(y). According to Lemma 5.3 this is impossible for f◦-pseudoconvex
function. Thus, f is f◦-quasiconvex. �

Corollary 5.9 If f◦ is pseudomonotone then it is also quasimonotone.

Proof The result follows from Corollary 5.4 and Theorems 5.3 and 5.19. �

The next example shows that the result in Theorem 5.19 cannot be converted.

Example 5.7 (f◦-quasiconvex but not f◦-pseudoconvex function). Define
f : R → R such that f(x) := x3 (see Fig. 5.7). Clearly f is quasiconvex
and as a smooth function also subdifferentially regular. Thus, by Theorem
5.14 it is f◦-quasiconvex. However, by taking x := 0 and y := −1 we have
f◦(x; y−x) = f◦(0;−1) = 0, but f(y) = f(−1) = −1 � 0 = f(0) = f(x)
and thus, due to Lemma 5.1, f is not f◦-pseudoconvex.

5.3 Relaxed Optimality Conditions

In this section we consider the sufficient optimality conditions of Chap. 4 in order to
relax the convexity assumptions with generalized convexities.

Fig. 5.7 f◦-quasiconvex but
not f◦-pseudoconvex function

f x

x

http://dx.doi.org/10.1007/978-3-319-08114-4_4

162 5 Generalized Convexities

5.3.1 Unconstrained Optimization

Let us consider first the unconstrained version of the Problem (4.1). In Theorem 5.2
we already generalized the unconstrained sufficient condition 4.2 and proved that
f◦-pseudoconvex f attains its global minimum at x∗, if and only if

000 ∈ ∂f(x∗).

Example 5.8 (Optimality conditions). Consider again Example 3.3, where we
defined f : Rn → R by

f(x) = ln(‖x‖ + 2).

The plot of f can be seen in Fig. 5.8 in the case n = 1. We denoted h(x) =
‖x‖ + 2 and g(x) = ln x and proved that h is convex. Then by (3.9) h is
f◦-pseudoconvex. On the other hand, g is clearly continuously differentiable
when x ≥ 2 and due to Theorem 3.7 we have

∂g(x) = {g′(x)} = { 1
x }.

Since 1
x > 0 for all x ≥ 2 Lemma 5.4 implies that g is f◦-pseudoconvex and

strictly increasing. Then by Theorem 5.5 f = g ◦ h is also f◦-pseudoconvex.
Moreover, in Example 3.3 we calculated that

∂f(000) = cl B(000; 1
2).

Then we have000 ∈ ∂f(000) and thus by Theorem 5.2 f attains its global minimum
at x∗ = 000.

The convexity can be relaxed also in Corollary 4.1, in other words a f◦-pseudoconvex
function either attains its global minimum or we can find a descent direction for it.

Fig. 5.8 A plot of function
f(x) = ln(|x| + 2)

f x

x

http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4

5.3 Relaxed Optimality Conditions 163

Corollary 5.10 Let f : Rn → R be a f◦-pseudoconvex function. Then either f
attains its global minimum at x ∈ R

n or there exists a descent direction d ∈ R
n for

f at x.

Proof Exercise. (Hint: Use Corollary 4.1 and Theorem 5.2.) �

Finally, we get the following relaxed geometrical optimality condition of Theorem
4.3.

Corollary 5.11 Let f : Rn → R be a locally Lipschitz continuous function at x∗ ∈
R
n. If f attains its local minimum at x∗, then

D◦
S(x∗) = DS(x∗) = {000}. (5.14)

If, in addition, f is f◦-pseudoconvex, then the condition (5.14) is sufficient for x∗ to
be a global minimum of f .

Proof Exercise. (Hint: Use the Theorems 4.3 and 5.2, and Corollary 5.10 and the
fact that 000 ∈ D◦

S(x) ⊆ DS(x).) �

5.3.2 Geometrical Constraints

Consider next the Problem (4.1) with a general feasible set S ⊂ R
n. First we formu-

late a relaxed version of the geometrical optimality condition of Theorem 4.6.

Theorem 5.20 Let x∗ be a local optimum of the Problem (4.1), where f : Rn → R

is locally Lipschitz continuous at x∗ ∈ S �= ∅. Then

D◦
S(x∗) ∩ FS(x∗) = {000}. (5.15)

If, in addition, f is f◦-pseudoconvex and S is convex, then the condition (5.15)
implies that x∗ is a global optimum of the Problem (4.1).

Proof The necessity follows directly from Theorem 4.6. For sufficiency suppose that
f is f◦-pseudoconvex, S is convex and the condition (5.15) is valid. If x∗ is not a
global optimum there exist y ∈ S such that f(y) < f(x∗). Then d := y − x∗ �= 000
and since S is convex we have

x∗ + td = x∗ + t(y − x∗) = ty + (1 − t)x∗ ∈ S,

whenever t ∈ (0, 1], thus d ∈ FS(x∗). On the other hand, due to the definition of
f◦-pseudoconvexity and the subdifferential we have

0 > f◦(x∗;d) ≥ ξTd for all ξ ∈ ∂f(x∗),

http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4

164 5 Generalized Convexities

in other words d ∈ D◦
S(x∗). Thus we have found d �= 000 such that d ∈ D◦

S(x∗) ∩
FS(x∗). This contradicts the condition (5.15), meaning that x∗ must be a global
optimum of the Problem (4.1). �

To the end of this subsection we relax the necessary and sufficient mixed-
analytical-geometrical optimality condition of Theorem 4.8.

Theorem 5.21 If f : Rn → R is f◦-pseudoconvex and S is convex, then x∗ ∈ S is
a global optimum of the Problem (4.1) if and only if

000 ∈ ∂f(x∗) +NS(x∗).

Proof The necessity part follows again from Theorem 4.7. For sufficiency suppose,
that

000 ∈ ∂f(x∗) +NS(x∗).

This means, that there exist ξ ∈ ∂f(x∗) and z ∈ NS(x∗) such that ξ = −z. Since
S is convex and z ∈ NS(x∗) Theorem 2.19 implies that

zT (x − x∗) ≤ 0 for all x ∈ S,

and due to the definition of the subdifferential for all x ∈ S we have

0 ≤ −zT (x − x∗) = ξT (x − x∗) ≤ f◦(x∗;x − x∗).

Then by Lemma 5.1 the f◦-pseudoconvexity of f implies that

f(x) ≥ f(x∗).

In other words, x∗ is a global optimum of the Problem (4.1). �

5.3.3 Analytical Constraints

Finally we consider the Problem (4.11) including inequality constraints and general-
ize the necessary and sufficient KKT optimality conditions of Corollary 4.4 utilizing
generalized convexities. Recall, that the total constraint function g: Rn → R is
defined by

g(x) := max {gi(x) | i = 1, . . . ,m}.

Then the Problem (4.11) is a special case of (4.1) with

S = {x ∈ X | g(x) ≤ 0} = lev0 g.

http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4

5.3 Relaxed Optimality Conditions 165

Theorem 5.22 (KKT Relaxed Necessary and Sufficient Conditions) Suppose, that
the Problem (4.11) satisfies the Cottle constraint qualification at x∗ ∈ S. Let
f : Rn → R be f◦-pseudoconvex and gi: Rn → R be quasiconvex and subdiffer-
entially regular at x∗ for all i = 1, . . . ,m. Then x∗ is a global optimum of the
Problem (4.11) if and only if there exist multipliers λi ≥ 0 for all i = 1, . . . ,m such
that λigi(x∗) = 0 and

000 ∈ ∂f(x∗) +
m∑

i=1

λi∂gi(x
∗). (5.16)

Proof Since the functions gi for i = 1, . . . ,m are subdifferentially regular, they are
locally Lipschitz continuous at x∗. Then the necessity follows directly from Theorem
4.11. For the sufficiency suppose that (5.16) is valid and denote

λ :=
m∑

i=1

λi ≥ 0.

Assume first, that λ > 0. Then due to Theorem 3.23 g is subdifferentially regular at
x∗ and (5.16) implies, that there exists ξ ∈ ∂f(x∗) such that

− 1

λ
ξ ∈

m∑

i=1

λi

λ
∂gi(x

∗) ⊆ conv {∂gi(x∗) | i ∈ I (x∗)} = ∂g(x∗),

where
I (x∗) := {i ∈ {1, . . . ,m} | gi(x∗) = g(x∗)}.

Since λ > 0, we have λi > 0 at least for one i ∈ {1, . . . ,m}. Since λigi(x∗) = 0
we deduce that gi(x∗) = 0 and thus we have

0 = gi(x
∗) ≤ g(x∗) ≤ 0,

in other words g(x∗) = 0. This implies due to the Cottle constraint qualification that
000 /∈ ∂g(x∗). Then by Theorem 3.34

∂g(x∗) ⊆ ray ∂g(x∗) = Nlevg(x∗) g(x
∗) = NS(x∗),

and thus

− 1

λ
ξ ∈ NS(x∗).

Because NS(x∗) is a cone and λ > 0 we deduce that

− ξ ∈ NS(x∗). (5.17)

http://dx.doi.org/10.1007/978-3-319-08114-4_4
http://dx.doi.org/10.1007/978-3-319-08114-4_4

166 5 Generalized Convexities

Furthermore, by Theorem 5.9 g is quasiconvex and thus, by Theorem 5.8 S =
levg(x∗) g is a convex set. Then (5.17), Theorem 2.19 and the definition of the subd-
ifferential imply that for all x ∈ S we have

0 ≤ ξT (x − x∗) = f◦(x∗;x − x∗).

Then by Lemma 5.1 the f◦-pseudoconvexity of f implies that

f(x) ≥ f(x∗),

in other words, x∗ is a global optimum of the Problem (4.1).
On the other hand, if λ = 0 we have ξ ∈ ∂f(x∗) and due to Theorem 5.2

f◦-pseudoconvex f attains its global minimum at x∗. Since x∗ ∈ S it is also a
global optimum of the Problem (4.1). �

5.4 Summary

To the end of this chapter we summarize all the relationships presented above:

convex

pseudoconvex f◦-
pseudoconvex

f◦ is
pseudomonotone

f◦-quasiconvex

quasiconvex l-quasiconvex f◦ is quasimonotone

1)

2)

2),3)

3)

3)

(1) demands continuous differentiability,

(2) demands local Lipschitz continuity,

(3) demands NC-property or subdifferential regularity.

Furthermore, we have formulated the relaxed versions of the sufficient optimality
conditions replacing the convexities by generalized convexities in unconstrained

http://dx.doi.org/10.1007/978-3-319-08114-4_
http://dx.doi.org/10.1007/978-3-319-08114-4_4

5.4 Summary 167

case (Theorem 5.2), with general constraints (Theorems 5.20 and 5.21) and with
inequality constraints (Theorem 5.22).

Exercises

5.1 Show that the sum of f◦-pseudoconvex functions is not necessarily
f◦-pseudoconvex.

5.2 (Lemma 5.7) Prove that a locally Lipschitz continuous function g: R → R is
increasing, if and only if ς ≥ 0 for all ς ∈ ∂g(x) and x ∈ R.

5.3 (Theorem 5.16) Let h: Rn → R be f◦-quasiconvex and g: R → R locally
Lipschitz continuous and increasing. Prove that the composite function f := g ◦
h: Rn → R is also f◦-quasiconvex.

5.4 (Theorem 5.17) Let fi: Rn → R be f◦-quasiconvex for all i = 1, . . . ,m. Prove
that the function

f(x) := max {fi(x) | i = 1, . . . ,m}

is also f◦-quasiconvex.

5.5 Show that the sum of f◦-quasiconvex functions is not necessarily f◦-quasi-
convex.

5.6 (Theorem 5.18) Let fi: Rn → R be f◦-quasiconvex and additively monotone,
and λi ≥ 0 for all i = 1, . . . ,m. Prove that the function

f(x) :=
m∑

i=1

λifi(x)

is f◦-quasiconvex.

5.7 Classify the following functions according to their degree of convexity.

(a) f(x) = x+ 2014
(b) f(x) = 2x2 + 3x− 1
(c) f(x) = ex

(d) f(x) = 1
3x

3

(e) f(x) = 1
3x

3 + x
(f) f(x) = ln x, x > 0
(g) f(x) = |x| + ex

2 + x2

(h) f(x) = sin x
(i) f(x) = sin2 x+ cos2 x

168 5 Generalized Convexities

(j)

f(x) =
{

0, x ≤ 0
1
3x

3, x > 0.

(k)

f(x) =
{

0, x = 0

1, x �= 0.

5.8 (Corollary 5.10) Let f : Rn → R be a f◦-pseudoconvex function. Prove that
either f attains its global minimum at x ∈ R

n or there exists a descent direction
d ∈ R

n for f at x.

5.9 (Corollary 5.11) Let f : Rn → R be a locally Lipschitz continuous function at
x∗ ∈ R

n. Prove that if f attains its local minimum at x∗, then

D◦
S(x∗) = DS(x∗) = {000}. (5.18)

If, in addition, f is f◦-pseudoconvex, prove that the condition (5.18) is sufficient for
x∗ to be a global minimum of f .

5.10 Solve the problem

⎧
⎪⎨

⎪⎩

minimize f(x1,x2) = |x1| + x3
2

subject to |x1 + x2| ≥ 1

max {x1,x2} ≥ 0.

5.11 Solve the problem

⎧
⎨

⎩
minimize f(x1,x2) = ln

(√
x2

1 + x2
2 + 1

)

subject to max {−x1 − x2 + 1,−x2 + 1
2 } ≤ 0.

Chapter 6
Approximations of Subdifferentials

In practice, the computation of subdifferential is not an easy task. In this chapter, we
first consider some families of set-valued mappings that can be used to approximate
subdifferentials. Then we define the concept of a discrete gradient that can be used as
an approximation of the subgradient at a given point. We demonstrate how discrete
gradients can be used to compute subsets of continuous approximations. From a
practical point of view, discrete gradients are useful, since only values of a function
are used to compute discrete gradients and no subderivative information is needed.
In Chap. 15 of Part III, two NSO algorithms using discrete gradients are introduced.
At the end of this chapter, we introduce the notion of piecewise partially separable
functions and study their properties. In particular, we describe how to calculate the
discrete gradient for a piecewise partially separable function.

6.1 Continuous Approximations of Subdifferential

In this section, we consider some families of set-valued mappings that can be used
to approximate subdifferentials. Namely, the continuous approximations of subdif-
ferentials, the uniform continuous approximations of subdifferentials, and the strong
continuous approximations of subdifferentials. We will study their basic properties
and present the connections between these different approximations.

Let X be a compact subset of the space R
n. We consider a familyC(x, ε) = Cε(x)

of set-valued mappings depending on a parameter ε > 0, that is,

C(·, ε) : X → 2R
n

for each ε > 0.

We suppose that C(x, ε) is a compact convex subset for all x ∈ X and ε > 0. It is
assumed that there exists a number K > 0 such that:

sup {‖v‖ | v ∈ C(x, ε),x ∈ X, ε > 0} ≤ K. (6.1)

Definition 6.1 The limit of the family C(x, ε) at a point x ∈ R
n is defined by the

set:

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_6

169

http://dx.doi.org/10.1007/978-3-319-08114-4_15

170 6 Approximations of Subdifferentials

CL(x) =
{
v ∈ R

n | ∃ xk → x, εk ↓ 0, k → ∞,vk ∈ C(xk, εk)

such that v = lim
k→∞

vk

}
.

It is possible that the limitCL(x) is not convex even if all the setsC(x, ε) are convex.
Thus, we consider conv CL(x), the convex hull of the limit CL(x). It follows from
the Definition 6.1 and the inequality (6.1) that the mapping conv CL has compact
convex images.

Let f be a locally Lipschitz continuous function defined on an open set X0 ⊆ R
n

which contains a compact set X . This function is Clarke subdifferentiable on X0 (see
Definition 5.2). We now define the continuous approximation of the subdifferential.

Definition 6.2 A family C f (x, ε) is called a continuous approximation of the sub-
differential ∂ f on X , if the following holds:

(i) C f (x, ε) is a Hausdorff continuous mapping with respect to x on X for all
ε > 0;

(ii) The subdifferential ∂ f (x) is the convex hull of the limit of the familyC f (x, ε)
on X . That is, for all x ∈ X we have

∂ f (x) = conv CL f (x).

For a family C f (·, ε) at a point x ∈ X , we define the following mapping

C0 f (x) = conv

{
v ∈ R

n | ∃ εk ↓ 0, vk ∈ C f (x, εk) such that v = lim
k→∞

vk

}
.

We denote by σd the support function of the family C f (·, ε) with ε > 0. That is,

σd(x, ε) = max
v∈C f (x,ε)

vTd.

We also set

C f (x, 0) = C0 f (x), and

σd(x, 0) = max
v∈C0 f (x)

vTd.

Theorem 6.1 Let the family C f (x, ε) be a continuous approximation of the sub-
differential ∂ f (x) and the function σd be upper semicontinuous at the point (x, 0)

for all d ∈ R
n. Then

6.1 Continuous Approximations of Subdifferential 171

∂ f (x) = C0 f (x).

Theorem 6.1 follows from the following assertion.

Theorem 6.2 The function σd is upper semicontinuous at the point (x, 0) for all
d ∈ R

n if and only if
conv CL f (x) = C0 f (x).

Proof We start by proving necessity. Suppose that the function σd is upper semicon-
tinuous at the point (x, 0). It is clear that C0 f (x) ⊆ conv CL f (x). From the upper
semicontinuity of the function σd, we obtain that

lim sup
k→∞

σd(xk, εk) ≤ σd(x, 0)

for any xk → x, εk ↓ 0 as k → ∞. Thus, for all wk ∈ C f (xk, εk), we have

lim sup
k→∞

(wk)
Td ≤ σd(x, 0).

It follows from this inequality that for all w ∈ conv CL f (x):

wTd ≤ σd(x, 0).

Thus, for all d ∈ R
n, we have

max
w∈conv CL f (x)

wTd ≤ max
v∈C0 f (x)

vTd.

Thus, conv CL f (x) ⊆ C0 f (x) and the necessity is proved.
Next we prove the sufficiency. Let conv CL f (x) = C0 f (x) and (xk), (εk) be

arbitrary sequences such that xk → x, εk ↓ 0 as k → ∞. Then there exists
wk ∈ C f (xk, εk) such that

σd(xk, εk) = (wk)
Td.

Assume without loss of generality that there exists limk→∞ wk = w. It is clear that
w ∈ conv CL f (x) = C0 f (x) and therefore

wTd ≤ σd(x, 0).

Thus
lim sup
y→x,ε↓0

σd(y, ε) ≤ σd(x, 0),

so σd(x, ε) is upper semicontinuous at the point (x, 0). �

172 6 Approximations of Subdifferentials

We say that the mapping C f (x, ε) is monotonically decreasing as ε ↓ 0 if
0 < ε1 < ε2 implies that

C f (x, ε1) ⊂ C f (x, ε2) for all x ∈ X.

Corollary 6.1 Let the mapping C f (x, ε) be continuous with respect to x and
monotonically decreasing as ε ↓ 0. Then the support function σd is upper semi-
continuous at the point (x, 0).

Proof The intersection ⋂

ε>0

{C f (x, ε)}

is nonempty and coincides with limε↓0 C f (x, ε) in the Hausdorff metric (see
Sect. 1.3). It is easy to check that

lim
ε↓0

C f (x, ε) = C0 f (x).

Thus, for each τ > 0 there exists ε0 > 0 such that the inequality 0 < ε ≤ ε0 implies

C f (x, ε) ⊂ C0 f (x) +B(000; τ).

Since C f (x, ε) is a continuous mapping with respect to x, it follows that for any
τ > 0 there exists δ = δ(τ) > 0 such that

C f (y, ε) ⊂ C f (x, ε) +B(000; τ)

for all y ∈ B(x; δ). Thus, for y ∈ B(x; δ) we have

C f (y, ε0) ⊂ C0 f (x) +B(000; 2τ).

If 0 < ε < ε0, then C f (y, ε) ⊂ C f (y, ε0). So for all 0 < ε ≤ ε0 and y ∈ B(x; δ)
we have

C f (y, ε) ⊂ C0 f (x) +B(000; 2τ). (6.2)

It follows from (6.2) that conv CL f (x) ⊂ C0 f (x). The reverse inclusion is obvious.
Thus, the desired result follows. �

Let X be a compact subset of the space R
n. For a family C f (x, ε), x ∈ X, ε > 0

we define
Qε(x) :=

⋃
{C f (x, t) | 0 ≤ t ≤ ε},

where C f (x, 0) = C0 f (x).

http://dx.doi.org/10.1007/978-3-319-08114-4_1

6.1 Continuous Approximations of Subdifferential 173

Lemma 6.1 Let the family C f (x, ε) be Hausdorff continuous with respect to
(x, ε), x ∈ X, ε > 0 and conv CL f (x) = C0 f (x). Then for each ε > 0 the
mapping Qε(x) is Hausdorff continuous.

Proof First we will prove that Qε is lower semicontinuous. Let xk → x and v ∈
Qε(x). Then there exists t ∈ [0, ε] such that v ∈ C f (x, t). If t > 0 then we can
exploit the continuity of the mapping C f (x, t) and find a sequence vk ∈ C f (xk, t)
such that vk → v. If t = 0 then the equality conv CL f (x) = C0 f (x) shows that
there exist sequences tk ∈ (0, ε] and vk ∈ C f (xk, tk) such that vk → v. Thus,
lower semicontinuity of Qε has been proved.

Now we will prove that Qε is a closed mapping. Let xk → x, vk ∈ Qε(xk) and
vk → v. It follows from the definition of the mappingQε that there exists a sequence
tk ∈ [0, ε] such that vk ∈ C f (xk, tk). Assume without loss of generality that
tk → t. First assume t > 0. SinceC f (·, ·) is continuous, it follows thatv ∈ C f (x, t)
and so v ∈ Qε(x). Now let t = 0. If there exists a sequence (tki) such that tki > 0 for
all i = 1, 2, . . ., then v ∈ conv CL f (x) and the equality conv CL f (x) = C0 f (x)

shows that v ∈ Qε(x). If tk = 0 for all k then vk ∈ C0 f (xk) = conv CL f (xk).
Since conv CL f is upper semicontinuous, it follows that v ∈ Qε(x). We have
proved that Qε is closed. Since the set Qε(X) is compact, it follows thatQε is upper
semicontinuous. Thus, the mapping Qε is both lower and upper semicontinuous.
Therefore this mapping is Hausdorff continuous. �

Let us denote
Q(x, ε) := conv Qε(x). (6.3)

Since the mapping Qε is closed, it follows that Q is also closed.

Theorem 6.3 Let the family C f (x, ε) be Hausdorff continuous with respect to
(x, ε), x ∈ X, ε > 0 and conv CL f (x) = C0 f (x). Then for each ε > 0 the map-
pingQ(x, ε) is Hausdorff continuous with respect to x and monotonically decreasing
as ε ↓ 0.

Proof Monotonicity ofQ(x, ε) with respect to ε follows directly from the definition.
Lemma 6.1 shows that this mapping is continuous with respect to x ∈ X . �

The set-valued mappingC f (x, ε) need not to be monotonically decreasing as ε ↓
0. However, uniform and strongly continuous approximations of the subdifferential
to be defined next have such a property.

Let f be a locally Lipschitz continuous function defined on an open set which
contains a compact set X . We consider a family of set-valued mappings Aε f : R

n →
2R

n
, ε > 0. Assume that the sets Aε f (x) are nonempty and compact for all ε > 0

and x ∈ X . We denote

∂ f (x + B̄(x; δ)) :=
⋃

{∂ f (y) | y ∈ B̄(x; δ)}.

Definition 6.3 We say that the family {Aε f (·)}ε>0 is a uniform continuous approx-
imation of the subdifferential ∂ f on X , if the following conditions are satisfied:

174 6 Approximations of Subdifferentials

(i) for each given ε > 0, μ > 0 there exists τ > 0, such that for all x ∈ X we
have

∂ f (x + B̄(000; τ)) ⊂ Aε f (x) + B̄(000;μ);

(ii) for each x ∈ X and for all 0 < ε1 < ε2 we have

Aε1 f (x) ⊂ Aε2 f (x);

(iii) Aε f (x) is Hausdorff continuous with respect to x on X ;
(iv) for each x ∈ X we have

⋂

ε>0

{Aε f (x)} = ∂ f (x).

Definition 6.4 We say that the family {Aε f (·)}ε>0 is a strong continuous approx-
imation of the subdifferential ∂ f on X , if {Aε f (·)}ε>0 satisfies properties (i)–(iii)
above and instead of (iv) the following is valid:

(iv’) for every γ,μ > 0 there exists ε > 0 such that for all x ∈ X :

∂ f (x) ⊂ Aε f (x) ⊂ ∂ f (x + B̄(000; γ)) + B̄(000;μ).

As already said the set-valued mapping C f (x, ε) need not to be monotonically
decreasing as ε ↓ 0. However, we can use this mapping to construct uniform and
strongly continuous approximations of the subdifferential. We will now establish
connections between these continuous approximations of the subdifferential.

Theorem 6.4 Let the mapping Aε f be a uniform continuous approximation of the
subdifferential ∂ f on compact set X. Then C f (x, ε) = Aε f (x) is a continuous
approximation of the subdifferential ∂ f in the sense of Definition 6.2.

Proof It follows from Definition 6.3 (iii) that C f (x, ε) is Hausdorff continuous
with respect to x. Since C f (x, ε) is monotonically decreasing as ε ↓ 0 we have,
by applying Corollary 6.1 and Theorem 6.2, the equality conv CL f (x) = C0 f (x).
On the other hand, Definition 6.3 (iv) shows that C0 f (x) = ∂ f (x). Thus, ∂ f (x) =
conv CL f (x). �

Corollary 6.2 A strong continuous approximation is a uniform continuous approxi-
mation. Therefore, a strong continuous approximation is a continuous approximation
in the sense of Definition 6.2.

6.1 Continuous Approximations of Subdifferential 175

Theorem 6.5 Let C f (x, ε) be a continuous approximation of the subdifferential
∂ f on a compact set X and let the mapping C f (x, ε) be continuous with respect to
(x, ε). Assume that conv CL f (x) = C0 f (x) for all x ∈ X. Then the mapping

Q(x, ε) = conv
⋃

{C f (x, t) : 0 ≤ t ≤ ε}

is a uniform continuous approximation of ∂ f (x) on X.

Proof Theorem 6.3 shows that the mapping Q(x, ε) is Hausdorff continuous with
respect to x and monotonically decreasing as ε ↓ 0. Since C f (x, ε) is a continuous
approximation of the subdifferential ∂ f (x) it follows that items (ii), (iii), and (iv)
of Definition 6.3 hold. Let us check the validity of (iv). Assume for the sake of
contradiction that there exist ε > 0 and μ > 0 such that for each sequence τk ↓ 0
we can find xk ∈ X with the following property:

∂ f (xk + B̄(000; τk)) �⊂ Q(xk, ε) + B̄(000;μ).

Since X is a compact set there exists a sequence ki → ∞ and an element x ∈ X
such that xki → x. Upper semicontinuity of the subdifferential∂ f (x) and Hausdorff
continuity of the mapping Q(x, ε) implies

∂ f (x) �⊂ Q(x, ε) + B̄(000;μ).

On the other hand, it follows from the definition of a continuous approximation
and the equality conv CL f (x) = C0 f (x) that ∂ f (x) ⊂ Q(x, ε). Thus, we have a
contradiction which shows that the desired result holds. �

Corollary 6.3 Let the family C f (x, ε) be a continuous approximation of the subd-
ifferential ∂ f on a compact set X and the mapping C f (x, ε) be a continuous with
respect to (x, ε),x ∈ X, ε > 0. Assume conv CL f (x) = C0 f (x) for all x ∈ X.
Then the mapping Q is upper semicontinuous with respect to (x, ε) at the point
(x, 0).

6.2 Discrete Gradient and Approximation of Subgradients

In this section we will introduce the notion of discrete gradient for a locally Lip-
schitz continuous function. Before doing so, we will give some grounding results
that are used in order to prove that the set of discrete gradients approximates the
subdifferential of a quasidifferentiable function.

Let us consider a function f : R
n → R and assume that it is quasidifferentiable

(see Definition 5.36). We also assume that both sets ∂ f (x) and ∂ f (x) are polytopes
at any x ∈ R

n. That is, at a point x ∈ R
n there exist non-empty sets

176 6 Approximations of Subdifferentials

A = {a1, . . . ,am} ⊂ R
n,

B = {b1, . . . , bp} ⊂ R
n

such that ∂ f (x) = conv A, and ∂ f (x) = conv B. We denote by F the class of
all semismooth, quasidifferentiable functions whose subdifferential and superdif-
ferential are polytopes at any x ∈ R

n. This class contains, for example, functions
represented as a maximum, minimum, or max-min of a finite number of smooth
functions.

Let
G = {e ∈ R

n | e = (e1, . . . , en), |ej | = 1, j = 1, . . . ,n}

be a set of all vertices of the unit hypercube in R
n. For e ∈ G we define the

sequence of n vectors ej = ej(α), j = 1, . . . ,n with α ∈ (0, 1], where ej =
(αe1,α

2e2, . . . ,α
jej, 0, . . . , 0).

We introduce the following sets

R0(e) = R0 = A,

Rj(e) = {v ∈ Rj−1(e) | vjej = max{wjej | w ∈ Rj−1(e)}} ,

and

R0(e) = R0 = B,

Rj(e) = {v ∈ Rj−1(e) | vjej = min{wjej | w ∈ Rj−1(e)}} .

It is clear that

Rj(e) �= ∅, for all j ∈ {0, . . . ,n},
Rj(e) ⊆ Rj−1(e), for all j ∈ {1, . . . ,n},

and

Rj(e) �= ∅, for all j ∈ {0, . . . ,n},
Rj(e) ⊆ Rj−1(e), for all j ∈ {1, . . . ,n}.

Moreover,

vr = ur for all v,u ∈ Rj(e), and

wr = zr for all w,z ∈ Rj(e), r = 1, . . . , j. (6.4)

6.2 Discrete Gradient and Approximation of Subgradients 177

Lemma 6.2 Assume that f ∈ F . Then Rn(e) and Rn(e) are singleton sets.

Proof The proof immediately follows from (6.4). �

Now, let us consider the two sets

R(x,ej(α)) =
{
v ∈ A | vTej = max {uTej | u ∈ A}

}
,

R(x,ej(α)) =
{
w ∈ B | wTej = min {uTej | u ∈ B}

}
.

We take any a ∈ A. If a �∈ Rn(e) then there exists r ∈ {1, . . . ,n} such that a ∈
Rt(e), t = 0, . . . , r−1, and a �∈ Rr(e). It follows from a �∈ Rr(e) that vrer > arer
for all v ∈ Rr(e). For a ∈ A, a �∈ Rn(e), we define d(a) = vrer − arer > 0, and
then introduce the following number: d1 = min{d(a) | a ∈ A \ Rn(e)}. Since the
set A is finite and d(a) > 0 for all a ∈ A \Rn(e), it follows that d1 > 0.

We also take any b ∈ B. If b �∈ Rn(e) then there exists r ∈ {1, . . . ,n} such
that b ∈ Rt(e), t = 0, . . . , r − 1, and b �∈ Rr(e). Then we get vrer < brer for
all v ∈ Rr(e). For b ∈ B, b �∈ Rn(e) we define d(b) = brer − vrer > 0 and
introduce the number d2 = min{d(b) | b ∈ B \Rn(e)}. Now, d2 > 0 due to the fact
that the set B is finite and d(b) > 0 for all b ∈ B \ Rn(e). Let d̄ = min{d1, d2}.
Since the subdifferential ∂ f (x) and the superdifferential ∂ f (x) are bounded on any
bounded subset X ⊂ R

n, there exists D > 0 such that ‖v‖ ≤ D and ‖w‖ ≤ D for
all v ∈ ∂ f (y), w ∈ ∂ f (y) and y ∈ X . Let us take any r, j ∈ {1, . . . ,n} such that
r < j. Then, for all v,w ∈ ∂ f (x), x ∈ X and α ∈ (0, 1], we have

∣∣∣∣∣∣

j∑

t=r+1

(vt − wt)α
t−ret

∣∣∣∣∣∣
< 2Dαn.

Let α0 = min{1, d̄/(4Dn)}. Then, for any α ∈ (0,α0], we have

∣∣∣∣∣∣

j∑

t=r+1

(vt − wt)α
t−ret

∣∣∣∣∣∣
<
d̄

2
. (6.5)

In a similar way we can show that for all v,w ∈ ∂ f (x), x ∈ X and α ∈ (0,α0] we
have ∣∣∣∣∣∣

j∑

t=r+1

(vt − wt)α
t−ret

∣∣∣∣∣∣
<
d̄

2
. (6.6)

Lemma 6.3 Assume that f ∈ F . Then there exists α0 > 0 such thatR(x,ej(α)) ⊂
Rj(e) and R(x,ej(α)) ⊂ Rj(e), j = 1, . . . ,n for all α ∈ (0,α0].

178 6 Approximations of Subdifferentials

Proof We will prove the first inclusion. The second inclusion can be proved in a
similar way. Assume the contrary. Then there exists y ∈ R(x,ej(α)) such that
y �∈ Rj(e). Consequently there exists r ∈ {1, . . . ,n}, r ≤ j such that y �∈ Rr(e)

and y ∈ Rt(e) for any t = 0, . . . , r − 1. Take any v ∈ Rj(e). From (6.4) we have

vtet = ytet, t = 1, . . . , r − 1, vrer ≥ yrer + d̄. It follows from (6.5) that

vTej − yTej =
j∑

t=1

(vt − yt)α
tet

= αr

⎡

⎣vrer − yrer +
j∑

t=r+1

(vt − yt)α
t−ret

⎤

⎦ > αrd̄/2 > 0.

Since yTej = max{uTej | u ∈ ∂ f (x)} and v ∈ ∂ f (x), we obtain

yTej ≥ vTej > yTej + αrd̄/2,

which is the contradiction. �

Corollary 6.4 Assume that f ∈ F . Then there exits α0 > 0 such that

f ′(x;ej(α)) = f ′(x;ej−1(α)) + vjα
jej + wjα

jej,

for all v ∈ Rj(e) and w ∈ Rj(e), j = 1, . . . ,n, and for all α ∈ (0,α0].

Proof Lemma 6.3 implies that R(x,ej(α)) ⊂ Rj(e) and R(x,ej(α)) ⊂ Rj(e),

j = 1, . . . ,n. Then there exist v ∈ Rj(e), w ∈ Rj(e), v0 ∈ Rj−1(e), w0 ∈
Rj−1(e) such that f ′(x;ej(α))− f ′(x;ej−1(α)) = (v+w)Tej−(v0 +w0)Tej−1
and the proof follows from (6.4). �

Let e ∈ G and λ > 0, α > 0 be given numbers. We consider the following points

x0 = x, xj = x0 + λej(α), j = 1, . . . ,n.

It is clear that xj = xj−1 + (0, . . . , 0,λαjej, 0, . . . , 0), j = 1, . . . ,n. Let v =
v(e,α,λ) ∈ R

n be a vector with the following coordinates:

vj = (λαjej)
−1 [f (xj) − f (xj−1)

]
, j = 1, . . . ,n. (6.7)

For any fixed e ∈ G and α > 0, we introduce the set

V (e,α) =
{
w ∈ R

n | ∃λk ↓ 0, k → ∞, such that w = lim
k→∞

v(e,α,λk)

}
.

6.2 Discrete Gradient and Approximation of Subgradients 179

Theorem 6.6 Assume that f ∈ F . Then there exists α0 > 0 such that

V (e,α) ⊂ ∂ f (x), for all α ∈ (0,α0].

Proof It follows from the definition of vectors v = v(e,α,λ) that

vj = (λαjej)
−1 [f (xj) − f (xj−1)

]

= (λαjej)
−1 [f (xj) − f (x) − (f (xj−1) − f (x))

]

= (λαjej)
−1
[
λ f ′(x;ej) − λ f ′(x;ej−1) + o(λ,ej) − o(λ,ej−1)

]

whereλ−1o(λ,ei) → 0,λ ↓ 0, i = j−1, j. We take w ∈ Rn(e) and y ∈ Rn(e). By
Lemma 6.2 w and y are unique. SinceRn(e) = R(x,en) andRn(e) = R(x,en) it
follows from Theorem 5.41 in that w + y ∈ ∂ f (x). The inclusions w ∈ Rn(e) and
y ∈ Rn(e) imply that w ∈ Rj(e) and y ∈ Rj(e) for all j ∈ {1, . . . ,n}. It follows
from Corollary 6.4 that there exists α0 > 0 such that

vj(e,α,λ) = (λαjej)
−1 [λαjej(wj + yj) + o(λ,ej) − o(λ,ej−1)

]

= wj + yj + (λαjej)
−1 [o(λ,ej) − o(λ,ej−1)

]

for all α ∈ (0,α0]. Then for any fixed α ∈ (0,α0] we have

lim
λ↓0

|vj(e,α,λ) − (wj + yj)| = 0.

Consequently, limλ↓0 v(e,α,λ) = w + y ∈ ∂ f (x). �

Next we give the definition of the discrete gradient. Let f : R
n → R be a locally

Lipschitz continuous function and let us denote by S1 the sphere of the unit ball and
by

P = {z | z : R+ → R+, λ > 0, λ−1z(λ) → 0, λ → 0}

the set of univariate positive infinitesimal functions. We take any g ∈ S1, e ∈ G, z ∈
P , a positive number α ∈ (0, 1], and we compute i = argmax {|gk|, k = 1, . . . ,n}.
For e ∈ G we define the sequence of n vectors ej(α) = (αe1,α

2e2, . . . ,α
jej,

0, . . . , 0), j = 1, . . . ,n as before, and for x ∈ R
n and λ > 0, we consider the points

x0 = x + λg, xj = x0 + z(λ)ej(α), j = 1, . . . ,n.

Definition 6.5 Let g ∈ S1, e ∈ G, z ∈ P , α ∈ (0, 1], λ > 0 and take
i = argmax {|gk| | k = 1, . . . ,n}. The discrete gradient of the function f : R

n → R

at the point x ∈ R
n in the direction g is the vector Γ i(x, g,e, z,λ,α) =

180 6 Approximations of Subdifferentials

(Γ i
1 , . . . , Γ i

n) ∈ R
n with the following coordinates:

Γ i
j = [z(λ)αjej)]−1 [f (xj) − f (xj−1)

]
, j = 1, . . . ,n, j �= i,

Γ i
i = (λgi)

−1

⎡

⎣ f (x + λg) − f (x) − λ

n∑

j=1,j �=i
Γ i
j gj

⎤

⎦ .

It follows from Definition 6.5 that

f (x + λg) − f (x) = λΓ i(x, g,e, z,λ,α)Tg (6.8)

for all g ∈ S1, e ∈ G, z ∈ P , λ > 0, α > 0.

Remark 6.1 The discrete gradient is defined with respect to a given direction g ∈ S1.
To compute the discrete gradient we first define a a sequence of points x0, . . . ,xn
and compute the values of the function f at these points. That is, we compute n+ 2
values of f including the point x itself. The n−1 coordinates of the discrete gradient
are defined similar to those of the vector v(e,α,λ) in Eq. (6.7) and the ith coordinate
is defined so it satisfies equality (6.8) which can be considered as some version of
the mean-value theorem (Theorem 5.18).

Lemma 6.4 Let f be a locally Lipschitz continuous function defined on R
n and let

L > 0 be its Lipschitz constant. Then, for any x ∈ R
n, g ∈ S1, e ∈ G, λ > 0,

z ∈ P , and α > 0 we have

‖Γ i‖ ≤ C(n)L, C(n) = (n2 + 2n3/2 − 2n1/2)1/2.

Proof It follows from the definition of the discrete gradients that |Γ i
j | ≤ L for all

j = 1, . . . ,n, j �= i. For j = i we obtain

|Γ i
i | ≤ L

⎛

⎝|gi|−1‖g‖ +
n∑

j=1,j �=i
|gi|−1|gj |

⎞

⎠ .

Since |gi| = max{|gj |, j = 1, . . . ,n}, we have |gi|−1|gj | ≤ 1, j = 1, . . . ,n
and |gi|−1‖g‖ ≤ n1/2. Consequently, |Γ i

i | ≤ L(n + n1/2 − 1). Thus, ‖Γ i‖ ≤
C(n)L. �

Next we show the connections between discrete gradients and Clarke subdiffer-
ential. For a given α > 0, we define the following set

D(x,α) = {v ∈ R
n |∃(g ∈ S1, e ∈ G, zk ∈ P , zk ↓ 0, λk ↓ 0, k → ∞),

such that v = lim
k→∞

Γ i(x, g,e, zk,λk,α)}. (6.9)

6.2 Discrete Gradient and Approximation of Subgradients 181

Theorem 6.7 Assume that f ∈ F . Then, there exists α0 > 0 such that

conv D(x,α) ⊂ ∂ f (x), for all α ∈ (0,α0].

Proof Since the function f is semismooth it follows that for any ε > 0 there exists
λ0 > 0 such that v ∈ R(x, g) + B(000; ε) for all v ∈ ∂ f (x + λg) and λ ∈ (0,λ0).
HereR(x, g) = {v ∈ ∂ f (x) | f ′(x; g) = vTg}. We take anyλ ∈ (0,λ0). It follows
from Theorem 6.6 and the definition of the discrete gradient that there exist α0 > 0
and z0(λ) ∈ P such that for any α ∈ (0,α0], z ∈ P , and z(λ) < z0(λ) we can found
v ∈ ∂ f (x + λg) so that |Γ i

j − vj | < ε, j = 1, . . . ,n, j �= i. Semismoothness of f
implies that ‖v − w‖ < ε for some w ∈ R(x, g). Then

|Γ i
j − wj | < 2ε, j = 1, . . . ,n, j �= i. (6.10)

Since w ∈ R(x, g) and the function f is semismooth, f ′(x; g) = wTg and

f (x + λg) − f (x) = λwTg + o(λ, g) (6.11)

where λ−1o(λ, g) → 0 as λ ↓ 0. It follows from (6.8) and (6.11) that

Γ i
i − wi =

n∑

j=1,j �=i
(wj − Γ i

j)gjg
−1
i + (λgi)

−1o(λ, g).

Taking into account (6.10), we obtain

|Γ i
i − wi| ≤ 2(n− 1)ε+ n1/2λ−1|o(λ, g)|. (6.12)

Since ε > 0 is arbitrary, it follows from (6.10) and (6.12) that

lim
k→∞

Γ i(x, g,e, zk,λk,α) = w ∈ ∂ f (x).

�

Remark 6.2 The discrete gradient contains three parameters: λ > 0, z ∈ P and
α > 0. The parameter z ∈ P is used to exploit semismoothness of the function f .
If f ∈ F then for any δ > 0 there exists α0 > 0 such that α ∈ (0,α0] for all
y ∈ B(x; δ). In the sequel we assume that z ∈ P and α > 0 are sufficiently small.

Let us consider the closed convex set of discrete gradients at a point x ∈ R
n. That

is, the set

D0(x,λ) = cl conv{v ∈ R
n |∃(g ∈ S1, e ∈ G, z ∈ P , α > 0)

such that v = Γ i(x, g,e,λ, z,α)}.

182 6 Approximations of Subdifferentials

Lemma 6.4 implies that the setD0(x,λ) is compact and convex for any x ∈ R
n. The

next corollary shows that the setD0(x,λ) is an approximation of the subdifferential
∂ f (x) for sufficiently small λ > 0.

Corollary 6.5 Let f : R
n → R be a semismooth function at x. For λ > 0 and

g ∈ S1 define

o(λ, g) = f (x + λg) − f (x) − λ f ′(x; g).

If λ−1o(λ, g) → 0 uniformly with respect to g as λ ↓ 0, then for any ε > 0 there
exists λ0 > 0 such that

D0(x,λ) ⊂ ∂ f (x) +B(000; ε)

for all λ ∈ (0,λ0).

Proof Takeε > 0 and set ε̄ = ε/Q̄, where Q̄ = (4n2 + 4n
√
n− 6n− 4

√
n+ 3

)1/2
.

It follows from the proof of Theorem 6.7 and upper semicontinuity of the subdiffer-
ential ∂ f (x) that for ε̄ > 0 there exists λ1 > 0 such that

min

⎧
⎨

⎩

n∑

j=1,j �=i

(
Γ i
j (x, g,e,λ, z,α) − vj

)2 | v ∈ ∂ f (x)

⎫
⎬

⎭ < ε̄, (6.13)

for all λ ∈ (0,λ1). Let

A0 = argmin v∈∂ f (x)

n∑

j=1,j �=i

(
Γ i
j (x, g,e,λ, z,α) − vj

)2
.

It follows from the assumption and Eq. (6.12) that for ε̄ > 0 there exists λ2 > 0 such
that

min
{∣∣Γ i

i (x, g,e,λ, z,α) − vi
∣∣ | v ∈ A0

} ≤
(

2(n− 1) + n1/2
)
ε̄ (6.14)

for all g ∈ S1 and λ ∈ (0,λ2). Let λ0 = min(λ1,λ2). Then (6.13) and (6.14) imply
that

min
{‖Γ i(x, g,e,λ, z,α) − vi‖ | v ∈ ∂ f (x)

} ≤ ε

for all g ∈ S1 and λ ∈ (0,λ0). �

As said before, Corollary 6.5 shows that the set D0(x,λ) is an approximation of
the subdifferential ∂ f (x) for sufficiently smallλ > 0. However, this is true at a given
point x ∈ R

n. In order to get convergence results for minimization algorithms based
on discrete gradients (see Part III, Chap. 15), we need some relationship between

http://dx.doi.org/10.1007/978-3-319-08114-4_15

6.2 Discrete Gradient and Approximation of Subgradients 183

the set D0(x,λ) and ∂ f (x) also in some neighborhood of a given point x. We will
consider functions satisfying the following assumption.

Assumption 6.1 Let x ∈ R
n be a given point. For any ε > 0 there exist δ > 0 and

λ0 > 0 such that
D0(y,λ) ⊂ ∂ f (x + B̄(000; ε)) +B(000; ε)

for all y ∈ B(x; δ) and λ ∈ (0,λ0). Here,

∂ f (x + B̄(000; ε)) =
⋃

y∈B̄(x;ε)
∂ f (y).

In what follows, we show the necessary condition to a point x∗ to be a minimizer
of a function f using the set D0(x

∗,λ).

Theorem 6.8 Let x∗ ∈ R
n be a local minimizer of the function f . Then there exists

λ0 > 0 such that 000 ∈ D0(x
∗,λ) for all λ ∈ (0,λ0).

Proof The proof follows from the fact that the setD0(x
∗,λ) is compact and convex

for any λ > 0. �

The last theorem given in this section shows that the set D0(x,λ) can be used to
compute descent directions (see Definition 6.5).

Theorem 6.9 Let x ∈ R
n, λ > 0 and 0 �∈ D0(x,λ). That is, ‖v0‖ = min{‖v‖ |

v ∈ D0(x,λ)} > 0. Then, g0 = −‖v0‖−1v0 is a descent direction at x.

6.3 Piecewise Partially Separable Functions and
Computation of Discrete Gradients

Some important practical problems can be reduced to NSO problems which contain
hundreds or thousands of variables. The cluster analysis problem and the problem of
calculation of piecewise linear function separating two sets are among such problems
(see Sect. 7.2 in Part II). Most of large-scale optimization problems have a special
structure which can be exploited to design efficient algorithms. In this section we will
discuss one of such structures: piecewise partial separability of nonsmooth functions.
In particular, we show how to calculate the discrete gradient for a piecewise partially
separable function.

6.3.1 Piecewise Partially Separable Functions

Let f be a scalar function defined on an open set D0 ⊆ R
n containing a closed set

D ⊆ R
n.

http://dx.doi.org/10.1007/978-3-319-08114-4_7

184 6 Approximations of Subdifferentials

Definition 6.6 The function f is called partially separable if there exists a family
of n × n diagonal matrices Ui, i = 1, . . . ,M such that the function f can be
represented as follows:

f (x) =
M∑

i=1

fi(Uix).

Without loss of generality we assume that the matrices Ui are binary, that is they
contain only 0 and 1. It is also assumed that the number mi of non-zero elements in
the diagonal of the matrix Ui is much smaller than n. In other terms, the function
f is called partially separable if it can be represented as the sum of functions of a
much smaller number of variables. If M = n and diag(Ui) = ei where ei is the ith
orth vector, then the function f is separable.

Any function f can be considered as partially separable if we take M = 1 and
U1 = I , where I is the identity matrix. However, we consider situations where
M > 1 and mi � n, i = 1, . . . ,M .

Example 6.1 (Partially separable function). Consider the following function

f (x) =
n∑

i=1

min{|xi|, |x1|}.

This function is partially separable. Indeed, in this case M = n, mi = 2,

U11
i = 1, Uii

i = 1, all other elements of Ui are zeros for all i = 1, . . . ,n and
fi(Uix) = min{|xi|, |x1|}.

Definition 6.7 The function f is said to be piecewise partially separable if there
exists a finite family of closed sets D1, . . . ,Dm such that

⋃m
i=1 Di = D and the

function f is partially separable on each set Di, i = 1, . . . ,m.

Example 6.2 (Piecewise partially separable function 1). All partially separa-
ble functions are piecewise partially separable.

6.3 Piecewise Partially Separable Functions and Computation of Discrete Gradients 185

Example 6.3 (Piecewise partially separable function 2). Consider the follow-
ing function

f (x) = max
j=1,...,n

n∑

i=1

|xi − xj |.

The function f is piecewise partially separable. It is clear that the functions

ϕj(x) =
n∑

i=1

|xi − xj |, j = 1, . . . ,n

are partially separable with M = n,mi = 2 and Uii
i = U

jj
i = 1 for all

i = 1, . . . ,n. In this case the sets Di, i = 1, . . . ,n are defined by

Di = {x ∈ R
n | ϕi(x) ≥ ϕj(x), j = 1, . . . ,n, j �= i

}
.

The piecewise partially separability of the function f follows from the fact that
the maximum of partially separable functions is piecewise partially separable,
which will be proved later on in Theorem 6.14.

6.3.2 Chained and Piecewise Chained Functions

One of the interesting and important classes of partially separable functions is the
one of the so-called chained functions.

Definition 6.8 The function f is said to be k-chained, k ≤ n, if it can be represented
as follows:

f (x) =
n−k+1∑

i=1

fi(xi, . . . ,xi+k−1), x ∈ R
n.

For example, if k = 2, the function f is

f (x) =
n−1∑

i=1

fi(xi,xi+1).

Theorem 6.10 Any k-chained function is partially separable.

186 6 Approximations of Subdifferentials

Proof Indeed for k-chained functions M = n − k + 1, mi = k and the matrices
Ui, i = 1, . . . ,M are defined by

U
jj
i = 1, j = i, . . . , i+ k − 1

and all other elements of Ui are zeros. �

Lemma 6.5 Any separable function is 1-chained.

Proof Exercise. �

Definition 6.9 The function f is said to be piecewise k-chained if there exists a
finite family of closed sets D1, . . . ,Dm such that

⋃m
i=1 Di = D and the function f

is k-chained on each set Di, i = 1, . . . ,m.

Theorem 6.11 Any piecewise k-chained function is piecewise partially separable.

Proof The proof directly follows from Theorem 6.10. �

The following is an example of piecewise 2-chained function.

Example 6.4 (Chained Crescent I function).

f (x) = max { f1(x), f2(x)}

where

f1(x) =
n−1∑

i=1

(
x2
i + (xi+1 − 1)2 + xi+1 − 1

)
,

f2(x) =
n−1∑

i=1

(
−x2

i − (xi+1 − 1)2 + xi+1 + 1
)

.

Both f1 and f2 are 2-chained functions. We define two sets as follows:

D1 = {x ∈ R
n | f1(x) ≥ f2(x)},

D2 = {x ∈ R
n | f2(x) ≥ f1(x)}.

It is clear that the sets D1 and D2 are closed, f (x) = f1(x) for x ∈ D1 and
f (x) = f2(x) for x ∈ D2. Furthermore D1

⋃
D2 = D. Thus, the function f

is piecewise 2-chained.

6.3 Piecewise Partially Separable Functions and Computation of Discrete Gradients 187

Definition 6.10 The function f is said to be piecewise separable if there exists a
finite family of closed sets D1, . . . ,Dm such that

⋃m
i=1 Di = D and the function f

is separable on each set Di, i = 1, . . . ,m.

Theorem 6.12 Any piecewise separable function is piecewise 1-chained.

Proof Since any separable function is 1-chained (Lemma 6.5) the proof is straight-
forward. �
Corollary 6.6 Any piecewise separable function is piecewise partially separable.

Lemma 6.6 All separable functions are piecewise separable. In this case m = 1.

Proof Exercise. �

Example 6.5 (Piecewise separable function 1). All piecewise linear functions
are piecewise separable. A function f : D → R is said to be piecewise linear,
if there exists a finite family of closed setsQ1, . . . ,Qp such that

⋃p
i=1 Qi = D

and the function f is linear on each set Qi, i = 1, . . . , p. Since any linear
function is separable, the function f is piecewise separable and in this case
m = p.

Example 6.6 (Piecewise separable function 2). One of the simplest piecewise
separable functions is the following maximum function

f (x) = max
i=1,...,n

x2
i .

Here m = n and

Di = {x ∈ R
n | x2

i ≥ x2
j , j = 1, . . . ,n, j �= i}.

f (x) = x2
i for any x ∈ Di. It is clear that

⋃m
i=1 Di = R

n. It should be noted
that function f is neither separable nor piecewise linear.

6.3.3 Properties of Piecewise Partially Separable Functions

We now introduce some interesting properties of piecewise partially separable func-
tions.

188 6 Approximations of Subdifferentials

Theorem 6.13 Let f1 and f2 be partially separable functions on the closed set
D ⊆ R

n. Then the function f (x) = f1(x)+ f2(x) is also partially separable onD.

Proof Since the functions f1 and f2 are partially separable there exist families of
matrices U1

i , i = 1, . . . ,M1 and U2
j , j = 1, . . . ,M2 such that

f1(x) =
M1∑

i=1

f1i(U
1
i x),

f2(x) =
M2∑

j=1

f2j(U
2
j x).

Consider the following sets

I =
{
i ∈ {1, . . . ,M1} | U1

i �= U2
j , for all j ∈ {1, . . . ,M2}

}
,

J =
{
j ∈ {1, . . . ,M2} | U2

j �= U1
i , for all i ∈ {1, . . . ,M1}

}
,

H =
{
(i, j), i ∈ {1, . . . ,M1}, j ∈ {1, . . . ,M2} | U1

i = U2
j

}
.

It is clear that for any i ∈ I there is no j ∈ {1, . . . ,M2} such that (i, j) ∈ H and,
similarly, for any j ∈ J there is no i ∈ {1, . . . ,M1} such that (i, j) ∈ H. Then the
function f can be represented as follows

f (x) =
∑

(i,j)∈H
(f1i(U

1
i x) + f2j(U

2
j x)) +

∑

i∈I
f1i(U

1
i x) +

∑

j∈J
f2j(U

2
j x).

This function is partially separable, that is

f (x) =
M∑

k=1

f̄k(Vkx),

where M = M1 + M2 − |H| and |H| stands for the cardinality of the set H. The
matrices Vk, k = 1, . . . ,M can be defined by

Vk =
⎧
⎨

⎩

U1
i = U2

j , k = 1, . . . , |H|, (i, j) ∈ H
U1
i , k = |H| + 1, . . . ,M1, i ∈ I

U2
j , k = M1 + 1, . . . ,M1 +M2 − |H|, j ∈ J ,

6.3 Piecewise Partially Separable Functions and Computation of Discrete Gradients 189

and

f̄k(Vkx) =
⎧
⎨

⎩

(f1i(U
1
i x) + f2j(U

2
j x)), k = 1, . . . , |H|, (i, j) ∈ H

f1i(U
1
i x), k = |H| + 1, . . . ,M1, i ∈ I

f2j(U
2
j x), k = M1 + 1, . . . ,M1 +M2 − |H|, j ∈ J .

�

We say that two partially separable functions f1 and f2 have the same structure,
if I = J = ∅. These kinds of functions are more interesting from a practical
point of view. If f1 and f2 have the same structure, then also the function f (x) =
f1(x) + f2(x) has the same structure as f1, f2. In addition,

f (x) =
∑

(i,j)∈H
(f1i(U

1
i x) + f2j(U

2
j x)).

For example, if f1 and f2 are k-chained then the function f is also k-chained.

Theorem 6.14 If f and g are piecewise partially separable (piecewise k-chained,
piecewise separable) continuous functions on the closed set D, then

(i) h(x) = α f (x), α ∈ R is piecewise partially separable (piecewise k-chained,
piecewise separable);

(ii) h(x) = f (x) + g(x) is piecewise partially separable (piecewise k-chained,
piecewise separable);

(iii) h(x) = max(f (x), g(x)), h(x) = min(f (x), g(x)) and h(x) = | f (x)| are
piecewise partially separable (piecewise k-chained, piecewise separable).

Proof (i) The proof is straightforward.
(ii) Since the functions f and g are piecewise partially separable there exist

families of closed sets

D
f
i , i = 1, . . . ,m1,

m1⋃

i=1

D
f
i = D

and

D
g
j , j = 1, . . . ,m2,

m2⋃

j=1

D
g
j = D

such that the function f is partially separable on the sets D f
i and the function g is

partially separable on the setsDg
j . We define a family of setsQij, for i = 1, . . . ,m1,

j = 1, . . . ,m2, where
Qij = D

f
i

⋂
D
g
j .

It is clear that

190 6 Approximations of Subdifferentials

⋃

i,j

Qij = D

and the setsQij are closed. Since the sum of partially separable functions is partially
separable, we get that f + g is partially separable on each set Qij .

The proofs for piecewise k-chained and piecewise separable functions are similar.
(iii) Consider the following two sets

P1 = {x ∈ D | f (x) ≥ g(x)}, and P2 = {x ∈ D | g(x) ≥ f (x)}.

It is clear that P1
⋃
P2 = D. Since the functions f and g are continuous, the sets

P1 and P2 are closed. We define the following families of sets:

Q1
i = P1

⋂
D

f
i , i = 1, . . . ,m1, Q2

j = P2

⋂
D
g
j , j = 1, . . . ,m2.

These sets are closed. It can be easily shown that

(
m1⋃

i

Q1
i

)
⋃
⎛

⎝
m2⋃

j

Q2
j

⎞

⎠ = D,

h(x) = f (x), x ∈ Q1
i , i = 1, . . . ,m1, and f is partially separable on each setQ1

i .
Similarly, h(x) = g(x), x ∈ Q2

j , j = 1, . . . ,m2 and g is partially separable on

each set Q2
j . Thus, the function h is piecewise partially separable.

Since h(x) = min(f (x), g(x)) = − max(− f (x),−g(x)), we get that h is piece-
wise partially separable. In addition, since h(x) = | f (x)| = max(f (x),− f (x))

and both f and − f are piecewise partially separable, it follows that function h is
also piecewise partially separable.

Again the proofs for piecewise k-chained and piecewise separable functions are
similar. �

Next we study the Lipschitz continuity and the directional differentiability of
piecewise partially separable functions. Let us first assume that the function f is
partially separable and the functions fi, i = 1, . . . ,M are directionally differen-
tiable. That is, the directional derivative f ′

i (x;d) exists. Then, the function f is also
directionally differentiable and

f ′(x;d) =
M∑

i=1

f ′
i (Uix;Uid). (6.15)

It follows from formula (6.15) that if f separable then

f ′(x;d) =
n∑

i=1

f ′
i (xi; di) (6.16)

6.3 Piecewise Partially Separable Functions and Computation of Discrete Gradients 191

where

f ′
i (xi; di) =

⎧
⎨

⎩

f ′
i+(xi) if di > 0,

0 if di = 0,

− f ′
i−(xi) if di < 0.

and f ′
i+(xi), f ′

i−(xi) are the right and left side derivatives of the function fi at the
point xi.

Now, let f be a piecewise partially separable function on the closed convex set
D ⊂ R

n. That is, there exists a family of closed sets Dj, j = 1, . . . ,m such that⋃m
j=1 Dj = D, f (x) = fj(x), x ∈ Dj and the functions fj are partially separable

on Dj .

Theorem 6.15 Let f be continuous and a piecewise partially separable function on
the closed convex set D ⊂ R

n. In addition, let each function fj be locally Lipschitz
continuous onDj, j = 1, . . . ,m. Then the function f is locally Lipschitz continuous
on D.

Proof We take any bounded subset D ⊂ D. Then there exists a subset of indices
{j1, . . . , jp} ⊂ {1, . . . ,m} such that conv D

⋂
Djk �= ∅, k = 1, . . . , p. LetLjk > 0

be a Lipschitz constant of the function fjk on the set conv D
⋂
Djk , k = 1, . . . , p.

Let
L0 = max

k=1,...,p
Ljk .

Now we take any two points x,y ∈ D. Then there exist indices jk1 , jk2 ∈
{j1, . . . , jp} such that x ∈ Djk1

and y ∈ Djk2
. If k1 = k2 = k then it is clear

that
| f (x) − f (y)| = | fk(x) − fk(y)| ≤ Lk‖x − y‖ ≤ L0‖x − y‖.

Otherwise we consider the segment [x,y] = αx + (1 − α)y, α ∈ [0, 1] joining
these two points and define the following set

Z[x,y] =
{
z ∈ [x,y] | ∃l1, l2 ∈ {1, . . . , p}, z ∈ Djl1

⋂
Djl2

}
.

It is clear that in this case the set Z[x,y] is not empty. Then there exists a sequence
of points {z1, . . . ,zN } ⊂ Z[x,y], N ≤ p such that

(i) {x,z1} ⊂ Djk1
, l0 = k1;

(ii) {zN ,y} ⊂ Djk2
, lN = k2;

(iii) for all i ∈ {1, . . . ,N − 1} there exists li ∈ {1, . . . , p} such that
{zi,zi+1} ⊂ Djli

.

Then taking into account the continuity of the function f we have

192 6 Approximations of Subdifferentials

| f (y) − f (x)| =
∣∣∣∣∣ f (y) +

N∑

i=1

(f (zi) − f (zi)) − f (x)

∣∣∣∣∣

=
∣∣∣∣∣ fjk2

(y) +
N∑

i=1

(fjli−1
(zi) − fjli (zi)) − fjk1

(x)

∣∣∣∣∣

≤ | fjk2
(y) − fjk2

(zN)| +
N−1∑

i=1

| fjli (zi+1) − fjli (zi)|

+ | fjk1
(z1) − fjk1

(x)|

≤ Lj1‖y − zN‖ +
N−1∑

i=1

Lji‖zi − zi+1‖ + Ljk1
‖z1 − x‖

≤ L0(‖y − zN‖ +
N−1∑

i=1

‖zi − zi+1‖ + ‖z1 − x‖).

Then, as all zi are aligned on the segment [x,y], we obtain

| f (y) − f (x)| ≤ L0‖y − x‖.

Since points x and y are arbitrary it follows that the function f is locally Lipschitz
continuous. �
Corollary 6.7 Assume that all conditions of Theorem 6.15 are satisfied. Then the
function f is Clarke subdifferentiable (see Definition 5.2).

Theorem 6.16 Assume that for any two points x,y ∈ D the set Z[x,y] is finite and
all functions fj, j = 1, . . . ,m are directionally differentiable. Then the function f
is also directionally differentiable.

Proof We take any point x ∈ D and any direction d �= 000 such that x + αd ∈
D, α ∈ [0, ᾱ] for some ᾱ > 0. By the definition we have

f ′(x;d) = lim
α↓0

f (x + αd) − f (x)

α
.

Assume that x ∈ ⋂k∈KDk, where K ⊂ {1, . . . ,m}. Let y = x + ᾱd ∈ D. Since
the set Z[x,y] is finite there exists a finite sequence of numbers α1, . . . ,αl such that
αi ∈ (0, ᾱ) and x + αjd ∈ Dkj

⋂
Dkj+1 , j = 1, . . . , l and

[x,x + α1d] ⊂ Dk1 , k1 ∈ K;
[x + αld,y] ⊂ Dkl+1;
[x + αid,x + αi+1d] ⊂ Dki+1 for all i ∈ {1, . . . , l − 1}.

This implies that the segment [x,x + α1g] ⊂ Dk1 . Thus

6.3 Piecewise Partially Separable Functions and Computation of Discrete Gradients 193

f ′(x;d) = f ′
k1

(x;d).

It follows that if the function f is piecewise partially separable then its directional
derivative can be calculated using Eq. (6.15) and if this function is piecewise separable
then its directional derivative can be calculated using Eq. (6.16). �

In general piecewise partially separable functions are not subdifferentiable regular
(see Definition 5.5). The following example demonstrates it.

Example 6.7 (Nonregularity of piecewise partially separable functions). Con-
sider the function

f (x1,x2) = max{|x1| − |x2|,−|x1| + |x2}, (x1,x2) ∈ R
2.

This function is piecewise separable. However, it is not regular. Indeed, for the
direction d = (1, 1) at the point x = (0, 1) we have

f ′(x;d) = 0 and f ◦(x;d) = 2,

that is f ′(x;d) < f ◦(x;d).

This example shows that in general for the subdifferential of piecewise partially
separable functions a full calculus does not exist and therefore the computation of
their subgradients is a difficult task.

6.3.4 Calculation of the Discrete Gradients

In order to demonstrate how the computation of discrete gradients (see Definition
6.5) can be simplified for piecewise partially separable functions, we consider the
following function

f (x) =
M∑

i=1

max
j∈Ji

min
k∈Kj

fijk(x), (6.17)

where functions fijk, i = 1, . . . ,M , j ∈ Ji, k ∈ Kj are partially separable. That
is there exists a family of n× n matrices Uijkt, t = 1, . . . ,Mijk such that

fijk(x) =
Mijk∑

t=1

f tijk(Uijktx).

194 6 Approximations of Subdifferentials

Now the function f is piecewise partially separable. If all functions fijk are l-chained
(separable), then the function f is piecewise l-chained (piecewise separable).

We take any point x ∈ R
n and any direction g ∈ S1, where as before S1 is the

unit sphere. For the calculation of the discrete gradient of f at x with respect to the
direction g first we have to define the sequence

x0
i , . . . ,x

i−1
i ,xi+1

i , . . . ,xni .

Here i ∈ I(g) = {i ∈ {1, . . . ,n} | gi �= 0}. The point x
p
i differs from x

p−1
i , p ∈

{1, . . . ,n}, p �= i by one coordinate only.
We will call functions f tijk term functions. The total number of these functions is

N0 =
M∑

i=1

∑

j∈Ji

∑

k∈Kj

Mijk.

For one evaluation of the function f we have to compute term functions N0 times.
Since for one evaluation of the discrete gradient we compute n+1 times the function
f , the total number of computation of term functions for one evaluation of the discrete
gradient is

Nt = (n+ 1)N0.

For p ∈ {1, . . . ,n} we introduce

Qijk
p =

{
t ∈ {1, . . . ,Mijk} | Upp

ijkt = 1
}

,

Q̄ijk
p =

{
t ∈ {1, . . . ,Mijk} | Upp

ijkt = 0
}

.

It is clear that Mijk = |Qijk
p | + |Q̄ijk

p |. One can assume that |Qijk
p | � |Q̄ijk

p |.

Example 6.8 (The number of term functions 1). If all functions fijk are
l-chained then

|Qijk
p | ≤ l and |Q̄ijk

p | ≥ n− l − 1.

If these functions are separable then

|Qijk
p | = 1 and |Q̄ijk

p | = n− 1.

6.3 Piecewise Partially Separable Functions and Computation of Discrete Gradients 195

The function fijk can be calculated at the point x
p
i using the following simplified

scheme
fijk(x

p
i) =

∑

t∈Qijkp
f tijk(Uijktx

p
i) +

∑

t∈Q̄ijkp
f tijk(Uijktx

p−1
i). (6.18)

That is, we compute only functions f tijk, t ∈ Q
ijk
p at the point x

p
i and all other

functions remain the same as at the point x
p−1
i . Thus, in order to calculate the

function f at the point x
p
i , we compute

Ns =
M∑

i=1

∑

j∈Ji

∑

k∈Kj

|Qijk
p |

times the term functions at this point. Since |Qijk
p | � Mijk, one can expect that

Ns � N0.

Example 6.9 (The number of term functions 2). If all functions fijk, i =
1, . . . ,M , j ∈ Ji, k ∈ Kj are l-chained then

Ns ≤ l
M∑

i=1

∑

j∈Ji

|Kj |.

If all these functions are separable then

Ns =
M∑

i=1

∑

j∈Ji

|Kj |.

In order to compute one discrete gradient at the point x with respect to the direction
g ∈ S1 we have to compute the function f at the points x and x + λg using
formula (6.17) and at all other points x

p
i , p = 1, . . . ,n, p �= i it can be computed

using simplified scheme (6.18). In this case the total number of computation of term
functions is

Nts = 2N0 + (n− 1)Ns

which is significantly less than Nt when n is large.

196 6 Approximations of Subdifferentials

Example 6.10 (Special case from cluster analysis). As a special case of func-
tions (6.17) consider the following function

f (x) =
M∑

i=1

min
k∈K̄

fik(xk) (6.19)

where K̄ = {1, . . . ,K}, xk ∈ R
n, x = (x1, . . . ,xK) ∈ R

K×n and the
functions fik are separable

fik(x) =
n∑

j=1

fijk(xkj).

The function (6.10) can be derived from the function (6.17) when

Ji = {1}, i = 1, . . . ,M , Kj = {1, . . . ,K}.

For the computation of one discrete gradient without using simplified
scheme we have to computeMK(n+ 1) the term functions fijk, however the
use of the simplified scheme allows one to reduce this number to 2MK+n−1.
Since, for instance, in the cluster analysis the numberM is large we can assume
that MK � n and therefore

MK(n+ 1)

2MK + n− 1
≈ n+ 1

2
.

If n is large then we can significantly reduce computational efforts using the
simplified scheme.

6.4 Summary

In this chapter we have introduced the continuous approximations of a subdifferential
and the notion of a discrete gradient. We have demonstrated how discrete gradients
can be used to compute subsets of continuous approximations. From a practical point
of view, discrete gradients may be useful, since only values of a function are used to
compute discrete gradients and no subderivative information is needed. In addition,
we have introduced a class of piecewise partially separable functions which is an
important subclass of general nonsmooth functions. We have demonstrated that for

6.4 Summary 197

such functions the number of function evaluations for the computation of discrete
gradients can be significantly reduced using their specific structures. This is very
important when one applies discrete gradients to design algorithms for minimizing
large-scale piecewise partially separable functions.

Exercises

6.1 Let the mapping C f (x, ε) be continuous with respect to x and monotonically
decreasing as ε ↓ 0. Show that

lim
ε↓0

C f (x, ε) = C0 f (x)

6.2 Determine piecewise partially separable representation of the following func-
tions by defining matrices U :
(a) f (x) = max{min{−4x1 + x2,x1 − 5x2}, min{x1 + 3x2 − 1,x1 − 2x2 − 3}},

x = (x1,x2)
T ∈ R

2;
(b) f (x) = min{x1 − 2x2 − 1, 2x1 + 4x2}+ min{−2x1 + 3x2 + 1,−4x1 − 2x2}},

x = (x1,x2)
T ∈ R

2;
(c) f (x) = | min{x1 − x2 − 2,−x1 − 2x2 + 1}|,

x = (x1,x2)
T ∈ R

2;

6.3 (Lemma 6.5) Prove that any separable function is 1-chained.

6.4 (Lemma 6.6) Prove that all separable functions are piecewise separable and in
these cases m = 1.

Part I
Notes and References

The first part is mainly based on the previous work [168], which in turn was based
on the classic books of Rockafellar [204] and Clarke [61]. Compared to [168], we
have included more theory about cones in general, separation and supporting
hyperplanes, and generalized convexities and optimality conditions. We have also
added illustrative figures and examples in order to make the theory more readable.
Other related works are, for example, [35, 36, 44, 109, 110].

Quasidifferentials were introduced by Demyanov and Rubinov [69] (see, also
[70–73]). The notion of codifferential was first introduced by Demyanov [68] and
further studied in [71, 72]. In addition, in [71, 72], it was proved that the classes of
quasidifferentiable and codifferentiable functions coincide. The basic and singular
subdifferentials were introduced by Mordukhovich [182]. There are many other
generalizations of subdifferentials which were not considered in this book: see, for
example, [108, 112, 113, 127, 128, 137, 195, 227].

There have been numerous attempts to generalize the concept of convexity. The
concept of pseudoconvexity has been extended for nonsmooth cases by many
authors: see, for example, [11, 197] and the references therein. One way to do this
is by using directional derivatives. The Dini directional derivatives were used, for
example, by Diewert [78], Komlósi [136] and Borde and Crouzeix [43]. In [138],
this idea was generalized for lower semicontinuous functions via h-pseudocon-
vexity, where h(x, d) is any real-valued bifunction, that is, for example, any
directional derivative. In this book, we have used the definition by Hiriart-Urruty
[107] for locally Lipschitz continuous functions. For an excellent survey of
generalized convexities, we refer to [197]. In addition, see, [37, 207, 233].

The optimality conditions for generalized convex functions have also been
studied. There exist a wide amount of papers published for smooth singleobjective
cases (see [197] and references therein). For nonsmooth and multiobjective
problems, the necessary conditions were derived, for instance, in [190, 191, 214],
and both necessary and sufficient conditions were derived, for instance, in [162].

Continuous approximations of the subdifferential are discussed in [12, 13], and
the notion of uniform and strong continuous approximations of the subdifferential

was introduced in [231]. The notion of discrete gradient was introduced in [12],
and it was further developed in [13, 24]. Other related works for approximation of
subgradients can be found, for instance, in [186, 215].

Different algorithms have been developed for solving large-scale optimization
problems where both objective and constraint functions are twice continuously
differentiable (see, for example, [62, 63, 94]). These algorithms strongly rely on
the structure of large-scale optimization problems, specifically the sparsity of
Hessians of the objective and constraint functions. The problem of computation of
Hessians of twice continuously differentiable partially separable functions was
discussed by many authors (see, e.g. [1, 62]). Piecewise partially separable
functions were studied in [18].

200 Notes and References

Part II
Nonsmooth Problems

Introduction

We are considering a nonsmooth optimization (NSO) problem of the form

minimize f ðxÞ
subject to x 2 S;

�

where the objective function f : Rn ! R is not required to have continuous
derivatives. We suppose only that f is a locally Lipschitz continuous function on
the feasible set S � R

n.
NSO problems of this type arise in many applied fields, for example in

economics, mechanics, engineering, optimal control, and data mining, as well as in
computational chemistry and biology. The source of nonsmoothness can be
divided into four classes:

physical,
technological,
methodological, and
numerical nonsmoothness.

In physical nonsmoothness, the original phenomenon under consideration itself
contains different kinds of discontinuities and irregularities. Typical examples of
physical nonsmoothness are the phase changes of materials in continuous casting of
steel, and piecewise linear tax models in economics. Although the objective and
constraints functions are originally smooth, some external elements may introduce
nonsmooth components to the problem. Technological nonsmoothness in a model is
usually caused by some extra technological constraints, which affect nonsmooth
dependence between the variables. Examples of this include so-called obstacle
problems in optimal shape design, and discrete feasible sets in product planning. On
the other hand, using certain major methodologies for solving difficult smooth
problems leads directly to the need to solve NSO problems, which are either smaller

in dimension or simpler in structure. Examples of this methodological nonsmooth-
ness include decompositions, dual formulations, and exact penalty functions.
Finally, the problems may be analytically smooth but numerically nonsmooth. That
is the case, for instance, with noisy input data and so-called stiff problems, which
are numerically unstable and behave like nonsmooth problems.

This part is organized as follows: In Chap. 7, we introduce some real-life NSO
problems; that is, some problems from computational chemistry and biology; data
mining and regression analysis; engineering and industrial areas; optimal control;
image denoising; and economics. Then, in Chap. 8, we give some formulations
which lead to NSO problems although the original problem is smooth: exact
penalty formulations and Lagrange relaxation. In addition, we represent the
maximum eigenvalue problem which is an important component of many engi-
neering design problems and graph theoretical applications. Finally, in Chap. 9,
we give a collection of academic test problems that can be and have been used to
test NSO solvers.

202 Nonsmooth Problems

http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_8
http://dx.doi.org/10.1007/978-3-319-08114-4_9

Chapter 7
Practical Problems

In this chapter, we briefly describe several kinds of application problems which
naturally have nonsmooth characteristics or in which a nonsmooth formulation has
proven to yield some improvement for the models. These kinds of problems arise in
computational chemistry and biology, optimal control, and data analysis, to mention
but a few. The interested reader can find more details of each class of problems in
the Notes and References at the end of the part.

7.1 Computational Chemistry and Biology

Several problems arising in molecular modeling lead to nonsmooth optimization
problems. Here we describe four of them, namely: the polyatomic clustering prob-
lem, the molecular distance geometry problem, protein structural alignment, and
molecular docking.

7.1.1 Polyatomic Clustering Problem

A cluster is a group of identical molecules or atoms loosely bound by inter-atomic
forces. The optimal geometry minimizes the potential energy of the cluster, expressed
as a function of Cartesian coordinates

E(x,y,z) =
N−1∑

i=1

N∑

j=i+1

v(rij), (7.1)

where N is the number of atoms (molecules) in the cluster and rij is the distance
between the centers of a pair of atoms (molecules). That is,

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_7

203

204 7 Practical Problems

The simplest (yet extremely difficult to solve) model uses the Lennard-Jones pairwise
potential energy function

v(rij) = 1

r12
ij

− 2

r6
ij

. (7.2)

Variations of this problem include carbon and argon clusters as well as water
molecule clusters. In addition, the Lennard-Jones potential represents an important
component in many of the potential energy models used for complex molecular
conformation and protein folding problems.

The objective function of the Lennard-Jones potential (7.1) and (7.2) is smooth
(supposing that rij > 0) and easy to implement. However, it has an extremely
complicated landscape with a huge number of local minima. One possibility for a
local search method to escape the enormous number of local minima involved in
the Lennard-Jones energy landscape is to use a nonsmooth penalized Lennard-Jones
potential

v̄(r) = 1

r2p − 2

rp
+ μr + βmax{0, r2 −D2}, (7.3)

where p > 0, μ,β ≥ 0 are real constants and D > 0 is an underestimate of the
diameter of the cluster. The local minimum of this modified objective function may
be used as a starting point for the local optimization of the Lennard-Jones potential
function (7.1) and (7.2). Note that by choosing p = 6 and μ,β = 0, the penalized
Lennard-Jones potential v̄ coincides with the Lennard-Jones pairwise potential (7.2).

Parameter p affects the rigidity of the model. By choosing p < 6, the atoms
(molecules) can be moved more freely, and by decreasing p, the infinite barrier at
r = 0, which prevents atoms from getting too close to each other, is also decreased.
The first penalty term μr gives a penalty to distances between atoms of greater than
1.0. The penalty increases linearly as a function of distance. In turn, the second
penalty term adds a penalty to the diameter of the cluster. It has no influence on pairs
of atoms close to each other, but it adds a strong penalty to atoms that are far away
from each other. In Fig. 7.1 the case p = 4, μ = 0.2, β = 1, D = 2 is displayed and
compared with the Lennard-Jones pairwise potential (7.2).

7.1.2 Molecular Distance Geometry Problem

Proteins are essential parts of all living organisms and participate in most cellular
processes. They are large organic compounds formed by chains of α-amino acid
residues bounded by peptide bonds. The chemical structure of a protein is given in
Fig. 7.2. The proteins in a living cell contain 20 different residues with side chains
having 1–18 atoms. The sequence of residues in a protein is defined by a gene.
This sequence is known as the primary structure of a protein. Although the chain of

7.1 Computational Chemistry and Biology 205

1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2
L−J potential
Modified potential

Fig. 7.1 Comparison between Lennard-Jones and modified potentials

H ... N

H

C

H

R

C

O

H

N

H

C

R

O

C ... O Hα α

i

i+1
amide group

carboxyl group

residue residue

side chain

side chain

peptide unit

Fig. 7.2 The chemical structure of a protein

residues seems to be linear in Fig. 7.2, which displays the bond structure, in reality,
it is bent and twisted by inter-atomic forces in a way that is characteristic for each
protein. This three-dimensional configuration is called the folded state or the tertiary
structure of a protein. The alternative structures of the same protein are referred to
as its different conformations.

The determination of the conformation of a molecule, especially in the protein
folding framework, is one of the most important problems in computational chem-
istry and biology. This is because the conformation is strongly associated with the
chemical and biological properties of the molecule. The determination of the molec-
ular conformation can be tackled either by minimizing the potential energy function
(if the conformation corresponds to the global minimizer of this function) or by solv-
ing a distance geometry problem where some or all distances between the pairs of
atoms are known. Both of these methods end in some sort of global optimization

206 7 Practical Problems

problem. The distances required in the distance geometry problem may be obtained
e.g. via nuclear magnetic resonance (NMR) spectroscopy.

The molecular distance geometry problem (MDGP) can be formulated as
follows

Find positions x1, . . . ,xm of m atoms in R
3 such that

‖xi − xj‖ = dij for all (i, j) ∈ S, (7.4)

whereS is a subset of the atom pairs and dij with (i, j) ∈ S is the distance between
atoms i and j.

The above formulation corresponds to the exact MDGP. If there is an error in the
theoretical or experimental data, there may not exist any solution to this problem.
This is the case, for instance, if the triangle inequality

dij ≤ dik + dkj

is violated for atoms i, j and k. Usually, only a small subset of pairwise distances
is known and, in practice, the lower and upper limits for the distances between the
atoms are given instead of the exact distances. Hence, a more practical definition of
the MDGP is the general MDGP, which is formulated as follows

Find positions x1, . . . ,xm of m atoms in R
3 such that

lij ≤ ‖xi − xj‖ ≤ uij for all (i, j) ∈ S, (7.5)

where S is a subset of the atom pairs and lij and uij are the lower and the upper
limits of the distance between atoms i and j, respectively.

This formulation can be reformulated as a NSO problem [211]

minimize f(x) =
∑

(i,j)∈S
max{lij − ‖xi − xj‖, 0}

+ max{‖xi − xj‖ − uij, 0} (7.6)

where x = (x1, . . . ,xm) ∈ R
3m, and

xk ∈ R
3, for all k ∈ {1, . . . ,m}

(some other nonsmooth formulations for both (7.4) and (7.5) are given e.g. in [3, 4]). It
is easy to see that f(x) = 0 if and only if all of the restrictions lij ≤ ‖xi−xj‖ ≤ uij
are satisfied.

7.1 Computational Chemistry and Biology 207

In particular cases, the MDGP can be solved relatively easily: indeed, when all the
distances between all atom pairs of a molecule are known, the exact MDGP (7.4) can
be solved using a linear time algorithm. However, when the upper and lower limits
are close to each other, the MDGP with relaxed distances belongs to the NP-hard
class.

7.1.3 Protein Structural Alignment

The function of different proteins may be the same in spite of different primary
structures when they share the same overall three-dimensional structure. Therefore,
a fundamental task in structural molecular biology is the comparison of the struc-
tures of proteins in the hope of finding shared functionalities. This procedure, called
structural alignment, is carried out on two known structures and is usually based
on the Euclidean distance between corresponding residues. Typically, the model is
simplified by comparing only one atom per residue, generally but not necessary the
Cα-atom (see Fig. 7.2).

Let A = (a1, . . . , an) ∈ R
3n and B = (b1, . . . , bm) ∈ R

3m be proteins repre-
sented by the coordinates of theirCα -atoms. A k-long subchainP = (p1, . . . , pk) ∈
R

3k of protein A is a subset of its atoms, arranged by the order of appearance in
A, whereupon 1 ≤ p1 ≤ . . . ≤ pk ≤ n. Let us denote a subchain P of A by
A(P) = (ap1 , . . . , apk) and a subchainQ ofB byB(Q) = (bq1 , . . . , bqk). We denote
by φ a monotone bijection between a subset of {1, . . . ,n} and a subset {1, . . . ,m}
such that φ(pi) = qi. A “gap” is two consecutive indices pi and pi+1 (or qi and
qi+1) such that pi + 1 < pi+1 (or qi + 1 < qi+1) and a “correspondence” is the
two subchains of equal length, |P | = |Q|. Some examples of gaps, bijections and
correspondences are given in Fig. 7.3. The uppermost correspondence has no gaps,
the central correspondence has two gaps, and the lowest correspondence has one gap.

The protein structural alignment problem can be defined as follows [135]:

Given two proteins A and B, find two subchains P and Q of equal length such
that

1. A(P) and B(Q) are similar, and
2. the correspondence length |P | = |Q| is maximal under condition 1.

A protein can be rigidly transformed (that is, rotated and translated) without affecting
its inherent structure. Since we are interested in the relative position and orientation
of the two proteins, we can keep A fixed and only transform B. Thus, we need to
find a transformation D such that some subchain of D(B) = (D(b1), . . . ,D(bm))

fits into some subchain of A.
In practice, the methods for structural alignment are based on the maximization of

some scoring function. The most commonly used scoring function is the STRUCTAL-
score [216] associated with the transformation D and a bijection φ

208 7 Practical Problems

p 1 p 3

p 2 p 4

p 5

q 1

q 2

q 3

q 4

q 5

p 1

p 2

p 3

q 1 q 2

q 3

p 1

p 2

p 3

q 1

q 2

q 3
sc

or
e

rotation−translation

sc
or

e

rotation−translation

sc
or

e

rotation−translation

φ2S(D,)

φ1S(D,)

φ3S(D,)

A

CorrespondencesStructures Scoring functions

B

Fig. 7.3 Examples of bijective correspondences. Each correspondence has a smooth score that
depends on the rotations and translations of the proteins

S(D,φ) =
k∑

i=1

20

1 + ‖api −D(bφ(pi))‖2/5
− 10ng,

where ng is the number of gaps in a correspondence, that is, in P and Q, and k is
the length of the correspondence.

The transformationD may be represented by three translation variables and three
angles of rotation. Therefore, the rigid transformation may be represented by a vector
D ∈ R

6. Let [φ1, . . . ,φj] be the set of all monotone bijections between subchains
of A and B. For each i = 1, . . . , j and for each rigid transformation D, we define

fi(D) = −S(D,φi)

and
fmin(D) = min{f1(D), . . . , fj(D)}.

Now the structural alignment problem can be written as

minimize fmin(D) subject to D ∈ R
6. (7.7)

7.1 Computational Chemistry and Biology 209

Fig. 7.4 Objective function
in the protein structural
alignment problem

φ2
S(D,)

φ
3

S(D,) φ1
S(D,)

sc
or

e

rotation−translation

objective function

This is the so-called low order value optimization (LOVO) problem, which is a
continuous NSO problem. The objective function is the function that assumes the
maximum value among all of the possibly scoring functions, as shown in Fig. 7.4.

7.1.4 Molecular Docking

Molecular complexes are composed of two or more molecules that are held together
in unique structural relationships by forces other than those of full covalent bonds.
The prediction of a small molecule (ligand) conformation and orientation relative to
the active site of a macromolecular target (receptor, usually a protein) is referred to
as a molecular docking problem. The most important application of the molecular
docking problem is in drug discovery, since molecular docking facilitates structure-
based ligand design. The idea in drug design is to derive drugs that bind more strongly
to a given protein target than the natural substrate.

Molecular docking is basically a conformational sampling procedure in which
various docked conformations are explored in order to identify the correct one. This
conformational sampling must be guided by a scoring function (or energy function)
that identifies the energetically most favorable ligand conformation when bound
to a target protein. The general hypothesis is that lower energy scores represent
better protein–ligand bindings compared to higher energy ones. Therefore, molecular
docking can be formulated as an optimization problem, where the task is to find the
ligand-binding mode (i.e. the orientation and the conformation of the ligand relative
to the receptor) with the lowest energy.

One frequently used scoring function that allows flexible ligand-protein binding
is a piecewise linear potential (PLP) as described by Gehlhaar et al. [92], or some
modification of it (see e.g. [220, 232]). The scoring function Escore is given by

Escore = Etor + Epair.

Here,Etor is the internal torsional energy of the ligand that is restricted to sp3 − sp3

and sp2 − sp3 bonds:

210 7 Practical Problems

A0 A1 R1 R 2 R 3 R 4

R i are in Angstroms. A j are in arbitrary energy units.

R1 R 3 R 4R 2

f(r)ij

A0

A1

E
ne

rg
y

r

Steric

HB

type
Interaction

20.0

20.0

−0.4

−2.0

3.4

2.3

3.6

2.6

4.5

3.1

5.5

3.4

Fig. 7.5 The piecewise linear pairwise potential function used for ligand-protein interactions and
the parameters for different interactions

Table 7.1 Pairwise atomic interaction types used in PLP

Atom type Donor Acceptor Both Nonpolar

Donor Steric HB HB Steric

Acceptor HB Steric HB Steric

Both HB HB HB Steric

Nonpolar Steric Steric Steric Steric

Etor = A · (1 + cos(nφ− φ0))

with A = 3.0, n = 3, φ0 = φ for sp3 − sp3 bonds, and A = 1.5, n = 6, φ0 = 0
for sp2 − sp3 bonds. In turn, Epair may be considered as a kind of van der Waals
interaction of non-bonded terms. That is,

Epair =
∑

i�=j
f(rij),

where f is an interval piecewise linear function of the pairwise atom distance rij
of atoms i and j (see Fig. 7.5). The summation runs over all heavy atoms in the
ligand and all heavy atoms in the protein. The parameters used in the pairwise
potential depend on the atom types involved in the interaction. PLP considers four
different atom types: nonpolar, hydrogen-bond-donor, hydrogen-bond-acceptor, and
both-acceptor-and-donor. These atom types interact through two types of non-bonded
interaction, namely steric and hydrogen bond potentials. The resulting interactions
are given in Table 7.1 and the corresponding parameters are given in Fig. 7.5.

In addition to these terms, the original PLP provides a separate energy term for
the internal non-bonded interactions of the ligand by assigning a penalty of 104 if
two non-bonded ligand atoms come closer than 2.35 Angstrom. However, this kind
of energy barrier can be avoided by using the same term for internal ligand-ligand
interactions as is used for ligand-protein interactions.

7.2 Data Analysis 211

7.2 Data Analysis

Data analysis is a process of gathering, modeling, and transforming data with the goal
of highlighting useful information, suggesting conclusions, and supporting decision-
making. Related problems of supervised and unsupervised data classification and
regression problems arise in many areas, including management science, medi-
cine, chemistry, information retrieval, document extraction, market segmentation,
and image segmentation.

In this section, we first consider cluster analysis via nonsmooth optimization, then
we describe a supervised data classification problem, and finally, we focus on regres-
sion analysis using both piecewise linear and clusterwise linear approximations.

7.2.1 Cluster Analysis via NSO

In this section, we consider data mining as the process of extracting hidden patterns
from data. Clustering is the unsupervised classification of these patterns. Cluster
analysis deals with the problems involved in organizing a collection of patterns into
clusters based on similarity.

There are different types of clustering problems. We consider unconstrained hard
clustering problem which can be formulated as an optimization problem and there
are various such formulations: mixed integer nonlinear programming and nonconvex
nonsmooth optimization formulations are among them.

In cluster analysis we assume that we have been given a finite set of points A in
the n-dimensional space R

n, that is

A = {a1, . . . ,am}, where ai ∈ R
n, i = 1, . . . ,m.

The subject of cluster analysis is the partition of the set A into a given number k of
overlapping or disjoint subsets Aj, j = 1, . . . , k with respect to predefined criteria
such that

A =
k⋃

j=1

Aj .

The sets Aj, j = 1, . . . , k are called clusters. The clustering problem is said to be
hard clustering problem if every data point a ∈ A belongs to one and only one cluster
Aj . Unlike hard clustering problem, in the fuzzy clustering problem the clusters are
allowed to overlap and instances have degrees of appearance in each cluster. Here
we will exclusively consider the hard unconstrained clustering problem; that is, we
assume that

(i) Aj �= ∅, j = 1, . . . , k;
(ii) Aj

⋂
Al = ∅, for all j, l = 1, . . . , k, j �= l;

212 7 Practical Problems

(iii) A =
k⋃
j=1

Aj ;

(iv) no constraints are imposed on the clusters Aj, j = 1, . . . , k.

Each cluster Aj can be identified by its center (or centroid) xj ∈ R
n, j =

1, . . . , k. Data points from the same cluster are similar and data points from different
clusters are dissimilar to each other. The similarity between points can be measured
using different distance functions. In particular, we can define the similarity measure
using the squared Euclidean norm, L1-norm and L∞-norm:

(i) The distance function using the squared Euclidean norm:

d(x,y) =
n∑

i=1

(xi − yi)
2; (7.8)

(ii) The distance function using the L1-norm:

d(x,y) =
n∑

i=1

|xi − yi|; (7.9)

(iii) The distance function using the L∞-norm:

d(x,y) = max
i=1,...,n

|xi − yi|. (7.10)

Note that the distance functions d defined using the L1 and L∞ norms are non-
smooth. The use of different distance functions can lead to the finding of different
cluster structures in the data set.

The problem of finding k clusters in the set A can be reduced to the following
optimization problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize ψk(x,w) = 1
m

∑m
i=1
∑k

j=1 wijd(xj,ai)

subject to x = (x1, . . . ,xk) ∈ R
n×k,∑k

j=1 wij = 1, i = 1, . . . ,m,

wij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , k.

(7.11)

Herewij is the association weight of pattern ai with cluster j (to be found), given
by

wij =
{

1 if pattern ai is allocated to cluster Aj,

0 otherwise.

and w is an m× k matrix.

7.2 Data Analysis 213

The problem (7.11) is called the mixed integer nonlinear programming formula-
tion (MINLP) of the clustering problem. It contains mn integer variables wij, i =
1, . . . ,m, j = 1, . . . , k and kn continuous variables xj ∈ R

n, j = 1, . . . , k.
Cluster centers xj, j = 1, . . . , k can be found by solving the following problem

{
minimize 1

|Aj |
∑

a∈Aj d(y,a)

subject to y ∈ R
n,

(7.12)

where |Aj | is a cardinality of the set Aj . If the squared Euclidean distance (7.8) is
used for the similarity measure then the center xj can be found explicitly as follows:

xj = 1

|Aj |
∑

a∈Aj

a, j = 1, . . . , k. (7.13)

In this case the problem (7.11) becomes an integer programming problem as cluster
centers xj, j = 1, . . . , k are not decision variables.

Problem (7.11) can be reformulated as the following NSO problem

{
minimize fk(x)

subject to x = (x1, . . . ,xk) ∈ R
n×k,

(7.14)

where

fk(x) = fk(x1, . . . ,xk) = 1

m

m∑

i=1

min
j=1,...,k

d(xj,ai). (7.15)

Ifk = 1 then the objective functionf1 in problem (7.14) is convex. Moreover, if the
similarity measure is defined using the squared Euclidean distance (7.8), the function
fk is smooth for any x ∈ R

n. If k > 1, the objective function fk is nonconvex and
nonsmooth due to the minimum operation used. If the similarity measure is defined
using the L1 or L∞ norms [Eqs. (7.9) or (7.10)] then the function fk is nonsmooth
for all k ≥ 1. This is due to the minimum operation and the fact that both L1 and
L∞ norm based distance functions are nonsmooth.

We call objective functions ψk and fk cluster functions. Comparing these two
functions and also two different formulations of the clustering problem one can note
that:

(i) The objective function ψk depends on variables wij, i = 1, . . . ,m, j =
1, . . . , k (coefficients, which are integers) and x1, . . . ,xk, xj ∈ R

n, j =
1, . . . , k (cluster centers, which are continuous variables). However, the func-
tion fk depends only on continuous variables x1, . . . ,xk.

(ii) The number of variables in problem (7.11) is (m+n)×k, whereas in problem
(7.14) this number is only n×k and the number of variables does not depend on
the number of instancesm. It should be noted that in many real-world databases,

214 7 Practical Problems

−60 −40 −20 0 20 40 60 80 100
−100

−50

0

50

100

150

200

Fig. 7.6 Illustration of clusters

the number of instancesm is substantially greater than the number of attributes
n.

(iii) Since function fk is represented as a sum of minima functions it is nonsmooth
for k > 1. Both functions ψk and fk are nonconvex for k > 1.

(iv) Problem (7.11) is MINLP problem and problem (7.14) is nonsmooth global
optimization problem. However, they are equivalent in the sense that their global
minimizers coincide.

Items (i) and (ii) can be considered as advantages of the nonsmooth optimization
formulation (7.14) of the clustering problem. In addition, the objective function fk
in problem (7.14) can be expressed as a difference of two functions as follows:

fk(x) = f1
k (x) − f2

k (x), x = (x1, . . . ,xk) ∈ R
n×k,

where

f1
k (x) = 1

m

m∑

i=1

k∑

j=1

d(xj,ai), f2
k (x) = 1

m

m∑

i=1

max
j=1,...,k

k∑

t=1,t �=j
d(xt,ai).

If the distance function d is convex with respect to x, which is the case when one uses
the squared Euclidean, L1 or L∞ norms, then the functions f1 and f2 are convex
and therefore, the function fk can be represented as a difference of convex (DC)
functions.

Figure 7.6 illustrates two clusters obtained using the incremental discrete gradient
method in the German Town data set which contains 59 points in R

2. The similarity
measure was defined using the squared Euclidean norm. Points from different clusters
are shown using stars and circles.

7.2 Data Analysis 215

7.2.2 Piecewise Linear Separability in Supervised Data
Classification

The aim of supervised data classification is to establish rules for the classification
of some observations assuming that the classes of data are known. To find these
rules, known training subsets of the given classes are used. We start this section
by introducing a concept of piecewise linear separability of sets that can be used
to approximate nonlinear decision boundaries between pattern classes. Then, we
introduce the so-called classification error function which reduces the problem of
piecewise linear separability in supervised data classification to a NSO problem.

7.2.2.1 Piecewise Linear Separability

Piecewise linear functions can be used to approximate nonlinear decision bound-
aries between pattern classes. One hyperplane provides perfect separation when the
convex hull of these pattern classes do not intersect. However, in many real-world
applications this is not the case. In many data sets the classes are disjoint, but their
convex hulls intersect. In this situation, the decision boundary between the classes
is nonlinear. It can be approximated using piecewise linear functions.

Assume that we are given two nonempty disjoint finite point sets A,B ⊂ R
n, that

is A,B �= ∅ and A
⋂
B = ∅ . Let H = {h1, . . . ,hl}, where hj = {xj, yj}, j =

1, . . . , l with xj ∈ R
n, yj ∈ R, be a finite set of hyperplanes. Let J = {1, . . . , l}.

Consider a partition J r = {J1, . . . ,Jr} of the set J such that

(i) Jk �= ∅, k = 1, . . . , r;
(ii) Jk

⋂Jj = ∅, k, j = 1, . . . , r, k �= j;
(iii)

⋃r
k=1 Jk = J .

Let I = {1, . . . , r}. A partition J r = {J1, . . . ,Jr} of the set J defines the
following max-min-type function:

ϕ(z) = max
i∈I

min
j∈Ji

{
(xj)

Tz − yj

}
, z ∈ R

n. (7.16)

Definition 7.1 The sets A andB are max-min linear separable, if there exist a finite
number of hyperplanes {xj, yj} with xj ∈ R

n, yj ∈ R, j ∈ J = {1, . . . , l} and a
partition J r = {J1, . . . ,Jr} of the set J such that

(i) for all i ∈ I and a ∈ A

min
j∈Ji

{
(xj)

Ta − yj

}
< 0;

(ii) for any b ∈ B there exists at least one i ∈ I such that

216 7 Practical Problems

min
j∈Ji

{
(xj)

Tb − yj

}
> 0.

Remark 7.1 It follows from Definition 7.1 that if the sets A and B are max-min
linear separable then ϕ(a) < 0 for any a ∈ A and ϕ(b) > 0 for any b ∈ B, where
the function ϕ is defined by (7.16). Thus, the sets A and B can be separated by a
function represented as a max-min of linear functions.

Next we define the concept of h-polyhedral separability given in [9].

Definition 7.2 The sets A and B are h-polyhedrally separable if there exists a set
of h hyperplanes {xi, yi}, with xi ∈ R

n, yi ∈ R, i = 1, . . . ,h such that

(i) (xi)
Ta − yi < 0 for all a ∈ A and i = 1, . . . ,h;

(ii) for any b ∈ B there exists at least one i ∈ {1, . . . ,h} such that

(xi)
Tb − yi > 0.

The sets A and B are h-polyhedrally separable, for some h > 0, if and only if

(conv A)
⋂

B = ∅.

Linear and polyhedral separability can be considered as particular cases of the
max-min linear separability: if I = {1} and J1 = {1} then we have the linear
separability, and if I = {1, . . . ,h} and Ji = {i}, i ∈ I we obtain the h-polyhedral
separability. Since any continuous piecewise linear function can be represented as
a max-min of linear functions, the notions of max-min linear and piecewise linear
separabilities are equivalent.

Linearly separable sets are illustrated in Fig. 7.7, polyhedrally separable sets are
shown in Fig. 7.8, and Fig. 7.9 illustrates max-min linearly separable sets.

Proposition 7.1 The sets A andB are max-min linear separable if and only if there
exists a set of hyperplanes {xj, yj} with xj ∈ R

n, yj ∈ R, j ∈ J , and a partition
J r = {J1, . . . ,Jr} of the set J such that

(i) minj∈Ji

{
(xj)

Ta − yj
} ≤ −1 for all i ∈ I and a ∈ A;

(ii) for any b ∈ B there exists at least one i ∈ I such that

min
j∈Ji

{
(xj)

Tb − yj

}
≥ 1.

Proof Sufficiency is straightforward.
Necessity. Since A and B are max-min linear separable there exists a set of hyper-
planes {x̄j, ȳj} with x̄j ∈ R

n, ȳj ∈ R, j ∈ J , a partition J r of the set J and
numbers δ1 > 0, δ2 > 0 such that

7.2 Data Analysis 217

Fig. 7.7 Sets A and B are linearly separable

Fig. 7.8 Sets A and B are polyhedral separable

max
a∈A

max
i∈I

min
j∈Ji

{
(x̄j)

Ta − ȳj

}
= −δ1

and

min
b∈B

max
i∈I

min
j∈Ji

{
(x̄j)

Tb − ȳj

}
= δ2.

218 7 Practical Problems

Fig. 7.9 Sets A and B are max-min linear separable

Putting δ = min{δ1, δ2} > 0 we have

max
i∈I

min
j∈Ji

{
(x̄j)

Ta − ȳj

}
≤ −δ, for all a ∈ A, (7.17)

max
i∈I

min
j∈Ji

{
(x̄j)

Tb − ȳj

}
≥ δ, for all b ∈ B. (7.18)

Consider the set of hyperplanes {xj, yj} with xj ∈ R
n, yj ∈ R, j ∈ J , defined as:

xj = x̄j/δ, yj = ȳj/δ, j ∈ J . Then it follows from (7.17) and (7.18) that

max
i∈I

min
j∈Ji

{
(xj)

Ta − yj

}
≤ −1, for all a ∈ A,

and
max
i∈I

min
j∈Ji

{
(xj)

Tb − yj

}
≥ 1, for all b ∈ B,

which completes the proof. �

Now we consider special cases when the sets A and B are max-min linearly
separable.

7.2 Data Analysis 219

Proposition 7.2 Assume that the set A can be represented as a union of sets Ai, i =
1, . . . , q:

A =
q⋃

i=1

Ai

and for any i = 1, . . . , q

B
⋂

conv Ai = ∅. (7.19)

Then the sets A and B are max-min linearly separable.

Proof It follows from (7.19) that b �∈ conv Ai for all b ∈ B and i ∈ {1, . . . , q}.
Then, for each b ∈ B and i ∈ {1, . . . , q} there exists a hyperplane {xi(b), yi(b)}
separating b from the set conv Ai, that is

(xi(b))Tb − yi(b) > 0

and

(xi(b))Ta − yi(b) < 0, for all a ∈ conv Ai, i = 1, . . . , q.

Then we have

min
i=1,...,q

{
(xi(b))Tb − yi(b)

}
> 0

and

min
i=1,...,q

{
(xi(b))Ta − yi(b)

}
< 0, for all a ∈ A.

Thus for any b ∈ B there exists a set of q hyperplanes {xi(b), yi(b)}, i = 1, . . . , q
such that

min
i=1,...,q

{
(xi(b))Tb − yi(b)

}
> 0 (7.20)

and

min
i=1,...,q

{
(xi(b))Ta − yi(b)

}
< 0, for all a ∈ A. (7.21)

Consequently we have pq hyperplanes, where p is the number of points in the setB,

{xi(b), yi(b)} , i = 1, . . . , q, b ∈ B.

220 7 Practical Problems

The set can be rewritten as:

H = {h1, . . . ,hl} ,

where

hi+(j−1)q = {xi(bj), yi(bj)
}
, i = 1, . . . , q, j = 1, . . . , p, l = pq.

Let J = {1, . . . , l}, I = {1, . . . , p} and

x̄i+(j−1)q = xi(bj), ȳi+(j−1)q = yi(bj), i = 1, . . . , q, j = 1, . . . , p.

Consider the following partition of the set J :

J p = {J1, . . . ,Jp
}
, Jk = {(k − 1)q + 1, . . . , kq} , k = 1, . . . , p.

It follows from (7.20) and (7.21) that for all k ∈ I and a ∈ A

min
j∈Jk

{
(x̄j)

Ta − ȳj

}
< 0

and for any b ∈ B there exists at least one k ∈ I such that

min
j∈Jk

{
(x̄j)

Tb − ȳj

}
> 0

which means that the sets A and B are max-min linearly separable. �

Corollary 7.1 The sets A and B are max-min linearly separable if and only if they
are disjoint: A

⋂
B = ∅.

Proof Necessity is straightforward.
Sufficiency. The set A can be represented as a union of its own points. Since the sets
A and B are disjoint the condition (7.19) is satisfied. Then the proof of the corollary
follows from Proposition 7.2. �

Proposition 7.3 Assume that the set A can be represented as a union of sets Ai, i =
1, . . . , q and the set B as a union of sets Bj, j = 1, . . . , d such that

A =
q⋃

i=1

Ai, B =
d⋃

j=1

Bj

and

conv Ai
⋂

conv Bj = ∅ for all i = 1, . . . , q, j = 1, . . . , d. (7.22)

7.2 Data Analysis 221

Then the sets A and B are max-min linearly separable with no more than qd hyper-
planes.

Proof Let i ∈ {1, . . . , q} and j ∈ {1, . . . , d} be any fixed indices. Since conv Ai
⋂

conv Bj = ∅ there exists a hyperplane {xij, yij} with xij ∈ R
n, yij ∈ R such that

(xij)
Ta − yij < 0 for all a ∈ conv Ai

and

(xij)
Tb − yij > 0 for all b ∈ conv Bj .

Consequently for any j ∈ {1, . . . , d} there exists a set of hyperplanes {xij, yij}, i =
1, . . . , q such that

min
i=1,...,q

(xij)
Tb − yij > 0, for all b ∈ Bj (7.23)

and
min

i=1,...,q
(xij)

Ta − yij < 0, for all a ∈ A. (7.24)

Thus we get a set of l = dq hyperplanes:

H = {h1, . . . ,hl}

wherehi+(j−1)q = {xij, yij
}
, i = 1, . . . , q, j = 1, . . . , d.LetJ = {1, . . . , l}, I =

{1, . . . , d} and

x̄i+(j−1)q = xij, ȳi+(j−1)q = yij, i = 1, . . . , q, j = 1, . . . , d.

Consider the following partition of the set J :

J d = {J1, . . . ,Jd} , Jk = {(k − 1)q + 1, . . . , kq} , k = 1, . . . , d.

It follows from (7.23) and (7.24) that for all k ∈ I and a ∈ A

min
j∈Jk

{
(x̄j)

Ta − ȳj

}
< 0

and for any b ∈ B there exists at least one k ∈ I such that

min
j∈Jk

{
(x̄j)

Tb − ȳj

}
> 0,

that is the sets A and B are max-min linearly separable with at most qd hyper-
planes. �

222 7 Practical Problems

7.2.2.2 Classification Error

Given any set of hyperplanes {xj, yj}, j ∈ J = {1, . . . , l} with xj ∈ R
n, yj ∈ R

and a partition J r = {J1, . . . ,Jr} of the set J , we say that a point a ∈ A is well
classified if the following condition satisfied:

max
i∈I

min
j∈Ji

{
(xj)

Ta − yj

}
+ 1 ≤ 0.

Thus, we can define the classification error for a point a ∈ A as follows:

max

[
0, max

i∈I
min
j∈Ji

{
(xj)

Ta − yj + 1
}]

. (7.25)

To a well-classified point this error is zero. Analogously, a point b ∈ B is said to be
well-classified if the following condition is satisfied:

min
i∈I

max
j∈Ji

{
−(xj)

Tb + yj

}
+ 1 ≤ 0.

Then the classification error for a point b ∈ B can be written as

max

[
0, min

i∈I
max
j∈Ji

{
−(xj)

Tb + yj + 1
}]

. (7.26)

Thus, an averaged classification error function can be defined as

f(x,y) = (1/|A|)
∑

a∈A

max

[
0, max

i∈I
min
j∈Ji

{
(xj)

Ta〉 − yj + 1
}]

(7.27)

+ (1/|B|)
∑

b∈B
max

[
0, min

i∈I
max
j∈Ji

{
−(xj)

Tb〉 + yj + 1
}]

where x = (x1, . . . ,xl) ∈ R
l×n and y = (y1, . . . , yl) ∈ R

l. It is clear that
f(x,y) ≥ 0 for all x and y. Then the problem of max-min linear separability
is reduced to the following optimization problem:

{
minimize f(x,y)

subject to (x,y) ∈ R
(n+1)×l.

(7.28)

Proposition 7.4 The sets A and B are max-min linearly separable if and only if
there exist a set of hyperplanes {xj, yj}, j ∈ J = {1, . . . , l} and a partition J r =
{J1, . . . ,Jr} of the set J such that f(x,y) = 0.

7.2 Data Analysis 223

Proof Necessity. Assume that the sets A andB are max-min linearly separable. Then
it follows from Proposition 7.1 that there exists a set of hyperplanes {xj, yj}, j ∈ J
and a partition J r = {J1, . . . ,Jr} of the set J such that

min
j∈Ji

{(xj)Ta − yj} ≤ −1, for all a ∈ A, i ∈ I = {1, . . . , r} (7.29)

and for any b ∈ B there exists at least one t ∈ I such that

min
j∈Jt

{(xj)Tb〉 − yj} ≥ 1. (7.30)

Consequently we have

max
i∈I

min
j∈Ji

{(xj)Ta − yj + 1} ≤ 0, for all a ∈ A,

min
i∈I

max
j∈Ji

{−(xj)
Tb + yj + 1} ≤ 0, for all b ∈ B.

Then from the definition of the error function we obtain that f(x,y) = 0.
Sufficiency. Assume that there exist a set of hyperplanes {xj, yj}, j ∈ J = {1, . . . , l}
and a partition J r = {J1, . . . ,Jr} of the set J such that f(x,y) = 0. Then from
the definition of the error function f we immediately get that the inequalities (7.29)
and (7.30) are satisfied, that is the sets A and B are max-min linearly separable. �

Proposition 7.5 Assume that the sets A andB are max-min linearly separable with a
set of hyperplanes {xj, yj}, j ∈ J = {1, . . . , l} and a partition J r = {J1, . . . ,Jr}
of the set J . Then

(i) xj = 0, j ∈ J cannot be an optimal solution to the problem (7.28);
(ii) if

(a) for any t ∈ I there exists at least one b ∈ B such that

max
j∈Jt

{
−(xj)

Tb + yj + 1
}

= min
i∈I

max
j∈Ji

{
−(xj)

Tb + yj + 1
}

, (7.31)

(b) there exists J̃ = {J̃1, . . . , J̃r} such that J̃t ⊂ Jt, for all t ∈ I, J̃t is
nonempty at least for one t ∈ I and xj = 0 for any j ∈ J̃t, t ∈ I.

Then the sets A andB are max-min linearly separable with a set of hyperplanes
{xj, yj}, j ∈ J 0 and a partition J̄ = {J̄1, . . . , J̄r} of the set J 0 where

J̄t = Jt \ J̃t, t ∈ I and J 0 =
r⋃

i=1

J̄i.

224 7 Practical Problems

Proof (i) Since the sets A and B are max-min linearly separable it follows from
Proposition 7.4 that f(x,y) = 0. If xj = 0, j ∈ J then it follows from (7.27) that
for any y ∈ R

l

f(000,y) = (1/|A|)
∑

a∈A

max

[
0, max

i∈I
min
j∈Ji

{−yj + 1}
]

+ (1/|B|)
∑

b∈B
max

[
0, min

i∈I
max
j∈Ji

{yj + 1}
]

.

Denote R = maxi∈I minj∈Ji{−yj}. Then we have

min
i∈I

max
j∈Ji

yj = − max
i∈I

min
j∈Ji

{−yj} = −R.

Thus

f(000,y) = max [0,R+ 1] + max [0,−R+ 1] .

It is clear that

max [0,R+ 1] + max [0,−R+ 1] =

⎧
⎪⎨

⎪⎩

−R+ 1 if R ≤ −1,

2 if − 1 < R < 1,

R+ 1 if R ≥ 1.

Thus f(000,y) ≥ 2 for any y ∈ R
l. On the other side f(x,y) = 0 for the optimal

solution (x,y), that is xj = 0, j ∈ J cannot be the optimal solution.
(ii) Consider the following sets:

I1 = {i ∈ I : J̄i �= ∅},

I2 = {i ∈ I : J̃i �= ∅}, I3 = I1
⋂

I2.

It is clear that J̃i = ∅ for any i ∈ I1 \ I3 and J̄i = ∅ for any i ∈ I2 \ I3. It follows
from the definition of the error function that

0 = f(x,y) = 1

|A|
∑

a∈A

max

[
0, max

i∈I
min
j∈Ji

{
(xj)

Ta − yj + 1
}]

+ 1

|B|
∑

b∈B
max

[
0, min

i∈I
max
j∈Ji

{
−(xj)

Tb〉 + yj + 1
}]

.

7.2 Data Analysis 225

Since the function f is nonnegative we obtain

max
i∈I

min
j∈Ji

{
(xj)

Ta − yj + 1
}

≤ 0, for all a ∈ A, (7.32)

min
i∈I

max
j∈Ji

{
−(xj)

Tb + yj + 1
}

≤ 0, for all b ∈ B. (7.33)

It follows from (7.31) and (7.33) that for any i ∈ I2 there exists a point b ∈ B such
that

max
j∈Ji

{
−(xj)

Tb + yj + 1
}

≤ 0. (7.34)

If i ∈ I3 ⊂ I2 then we have

0 ≥ max
j∈Ji

{
−(xj)

Tb + yj + 1
}

= max

{
max
j∈J̄i

{
−(xj)

Tb + yj + 1
}

, max
i∈J̃i

{
yj + 1

}
}

which means that

max
j∈J̄i

{
−(xj)

Tb + yj + 1
}

≤ 0 (7.35)

and

max
j∈J̃i

{
yj + 1

} ≤ 0. (7.36)

If i ∈ I2 \ I3 then from (7.34) we obtain

0 ≥ max
j∈Ji

{
−(xj)

Tb + yj + 1
}

= max
i∈J̃i

{
yj + 1

}
.

Thus we get that for all i ∈ I2 the inequality (7.36) is true. (7.36) can be rewritten
as follows:

max
j∈J̃i

yj ≤ −1, for all i ∈ I2. (7.37)

Consequently for any i ∈ I2

min
j∈J̃i

{−yj + 1
} = − max

j∈J̃i

yj + 1 ≥ 2. (7.38)

226 7 Practical Problems

It follows from (7.32) that for any i ∈ I and a ∈ A

min
j∈Ji

{
(xj)

Ta − yj + 1
}

≤ 0. (7.39)

Then for any i ∈ I3 we have

0 ≥ min
j∈Ji

{
(xj)

Ta − yj + 1
}

= min

{
min
j∈J̄i

{
(xj)

Ta − yj + 1
}

, min
j∈J̃i

{−yj + 1
}
}

.

Taking into account (7.38) we get that for any i ∈ I3 and a ∈ A

min
j∈J̄i

{
(xj)

Ta − yj + 1
}

≤ 0. (7.40)

If i ∈ I2 \ I3 then it follows from (7.39) that

min
j∈J̃i

{−yj + 1
} ≤ 0

which contradicts (7.38). Thus we obtain that I2 \ I3 �= ∅ cannot occur, I2 ⊂ I1

and I3 = I2. It is clear that J̄i = Ji for any i ∈ I1 \I2. Then it follows from (7.32)
that for any i ∈ I1 \ I2 and a ∈ A

min
j∈J̄i

{
(xj)

Ta − yj + 1
}

≤ 0. (7.41)

From (7.40) and (7.41) we can conclude that for any i ∈ I and a ∈ A

min
j∈J̄i

{
(xj)

Ta − yj + 1
}

≤ 0. (7.42)

It follows from (7.33) that for any b ∈ B there exists at least one i ∈ I such that

max
j∈Ji

{
−(xj)

Tb + yj + 1
}

≤ 0.

Then from expression

max
j∈Ji

{
−(xj)

Tb + yj + 1
}

= max

{
max
j∈J̄i

{
−(xj)

Tb + yj + 1
}

, max
i∈J̃i

{
yj + 1

}
}

7.2 Data Analysis 227

we get that for any b ∈ B there exists at least one i ∈ I such that

max
j∈J̄i

{
−(xj)

Tb + yj + 1
}

≤ 0. (7.43)

Thus it follows from (7.42) and (7.43) that the sets A and B are max-min linearly
separable with the set of hyperplanes {xj, yj}, j ∈ J 0 and a partition J̄ of the
set J 0. �

The functions f1 and f2 are nonconvex piecewise linear. These functions are
Lipschitz continuous and consequently subdifferentiable. Moreover, both functions
are semismooth.

7.2.3 Piecewise Linear Approximations in Regression
Analysis

One interesting application of nonsmooth analysis and optimization techniques is the
problem of estimating a multivariate regression function using continuous piecewise
linear functions. It is known that each continuous piecewise linear function can be
represented as a maximum of minima of linear functions. Such representations are
used to estimate regression functions.

In applications usually no a priori information about the regression function is
known, therefore it is necessary to apply nonparametric methods for this estimation
problem. The space of continuous piecewise linear functions provide rather a com-
plex function space over which an empirical least squares risk is minimized. Since
continuous piecewise linear functions are, in general, nonsmooth and nonconvex, the
resulting least squares risk is nonconvex and nonsmooth function.

In regression analysis an R
p × R-valued random vector (U ,V) with EV 2 < ∞

is considered and the dependency of V on the value ofU is of interest. Here E stands
for the mean value. More precisely, the goal is to find a function ϕ : R

p → R such
that ϕ(U) is a “good approximation” of V . In the sequel we assume that the main
aim of the analysis is minimization of the mean squared prediction error or L2 risk

E{|ϕ(U) − V |2}. (7.44)

In this case the optimal function is the so-called regression function m : R
p → R,

m(u) = E{V |U = u}. Indeed, let ϕ : R
p → R be an arbitrary (measurable)

function and denote the distribution of U by μ. Then

E{|ϕ(U) − V |2} = E{((ϕ(U) −m(U)) + (m(U) − V))2}
= E{|ϕ(U) −m(U)|2} + E{|m(U) − V |2}
= E{|m(U) − V |2} +

∫
|ϕ(u) −m(u)|2μ(du). (7.45)

228 7 Practical Problems

Since the integral on the right-hand side of (7.45) is always nonnegative, (7.45)
implies that the regression function is the optimal predictor in view of minimization
of the L2 risk:

E{|m(U) − V |2} = min
ϕ:Rp→R

E{|ϕ(U) − V |2}. (7.46)

In addition, any function ϕ is a good predictor in the sense that its L2 risk is close to
the optimal value, if and only if the so-called L2 error

∫
|ϕ(u) −m(u)|2μ(du) (7.47)

is small. This motivates to measure the error caused by using a function ϕ by the L2
error (7.47) instead of the regression function.

In applications, usually the distribution of (U ,V) (and hence also the regression
function) is unknown. But often it is possible to observe a sample of the underlying
distribution. This leads to the regression estimation problem. Here (U ,V), (U1,V1),
(U2,V2), . . . are independent and identically distributed random vectors. The set of
data

Dl = {(U1,V1), . . . , (Ul,Vl)}

is given, and the goal is to construct an estimate

ml(·) = ml(·,Dl) : R
p → R

of the regression function such that the L2 error

∫
|ml(u) −m(u)|2μ(du)

is small.
The regression function minimizes theL2 risk (7.44) over the set of all measurable

functions, so in principle it can be computed by solving a minimization problem.
However, in practical applications the term to be minimized is unknown, because
it depends on the unknown distribution of (U ,V). For least squares estimates the
given data is used to estimate the L2 risk by the so-called empirical L2 risk

1

l

l∑

i=1

|ϕ(Ui) − Vi|2, (7.48)

and the regression estimate is defined by minimizing (7.48). Minimization of (7.48)
with respect to all measurable functions [(as in (7.46)] leads to an estimate, which
usually (at least if the values of U1, …, Ul are distinct) interpolates the given data.

7.2 Data Analysis 229

Obviously, such an estimate is not a reasonable estimate for m(u) = E{V |U = u}.
In order to avoid this so-called overfitting, for least squares estimates, first a class Fl

of functions ϕ : R
p → R is chosen and then the estimate is defined by minimizing

the empirical L2 risk over Fl, that is,

ml(·) = arg min
ϕ∈Fl

1

l

l∑

i=1

|ϕ(Ui) − Vi|2. (7.49)

Here we assume that the minimum exists, however we do not require that it is unique.
We will use continuous piecewise linear functions to define Fl. Since any contin-

uous piecewise linear function can be represented as a max-min of finite number of
linear functions we consider maxima of minima of linear functions. More precisely,
let Kl ∈ N and L1,l, . . . ,LKl,l ∈ N be parameters of the estimate and set

Fl =
{
ϕ : R

p → R | ϕ(u) = max
k=1,...,Kl

min
j=1,...,Lk,l

(
(xk,j)Tu + yk,j

)
,

for some xk,j ∈ R
p, yk,j ∈ R

}
.

For this class of functions the estimate ml is defined by (7.49).
It follows from (7.48) that the estimation of a regression function by continuous

piecewise linear function can be formulated as the following minimization problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize F(x,y) = 1
l

l∑
i=1

(
max

k=1,...,Kl

min
j=1,...,Lk,l

(
(xk,j)TUi + yk,j

)− Vi

)2

subject to xk,j ∈ R
p, k = 1, . . . ,Kl,

yk,j ∈ R, j = 1, . . . ,Lk,l.,

(7.50)

Here

x = (x1,1
1 , . . . ,x1,1

p , . . . ,x
Kl,LKl ,l
1 , . . . ,x

Kl,LKl ,l
p) ∈ R

q×p,
y = (y1,1, . . . , . . . , yKl,LKl ,l

)T ∈ R
q

and

q =
Kl∑

k=1

Lk,l.

The objective function F in Problem (7.50) is locally Lipschitz continuous and
semismooth. It is both nonsmooth and nonconvex, and the number of local minimizers
is large whenever the numbers l and q are large.

230 7 Practical Problems

−2 −1 0 1 2

0
1

2
3

4
5

6

u

m
_1

−2 −1 0 1 2

0
1

2
3

4

u

m
_2

−2 −1 0 1 2

−
4

−
2

0
2

4

u

m
_3

−2 −1 0 1 2
0

2
4

u

m
_4

−
4

−
2

Fig. 7.10 Piecewise linear approximations to univariate functions

Remark 7.2 In general, nonconvex piecewise linear functions are not sub-
differentially regular (see Definition 3.5 in Part I). Thus, the function F , in gen-
eral, is not subdifferentially regular.

Remark 7.3 The function F is quasidifferentiable (see Definition 3.9 in Part I) and
its subdifferential and superdifferential are polytopes. In addition, the function F is
piecewise partially separable (see Definition 6.7 in Part I).

Figure 7.10 illustrates piecewise linear approximations (red dash lines) to uni-
variate functions (black lines). The piecewise linear linear approximation (right) to
the function of two variables (left) is illustrated in Fig. 7.11.

7.2.4 Clusterwise Linear Regression Problems

Clustering or unsupervised classification consists in finding subsets of similar points
in a data set, in order to find patterns in the data. Regression analysis consists in fitting
a function to the data to discover how one or more variables vary as a function of
another. The aim of clusterwise regression is to combine both of these techniques, to
discover trends within data, when more than one trend is likely to exist. Figure 7.12
illustrates one such situation where three linear functions are used to approximate
the data.

Clusterwise regression has applications for instance in market segmentation,
where it allows one to gather information on customer behaviors for several unknown
groups of customers. It is also applied to investigate the stock-exchange data and the

7.2 Data Analysis 231

x1

x2

y

x1

x2

y

Fig. 7.11 Piecewise linear approximations to the function with two variables

20 25 30 35 40 45 50 55 60
20

25

30

35

40

45

50

55

Fig. 7.12 Three linear functions provides good approximation

benefit segmentation. The presence of nonlinear relationships, heterogeneous sub-
jects, or time series in these applications necessitate the use of two or more regression
functions to best summarize the underlying structure of the data.

The simplest case in the clusterwise regression is the use of two or more linear
regression functions to investigate the structure of the data. Such an approach is
called clusterwise linear regression and it is widely used and studied better than
other approaches. This problem can be formulated as an optimization problem.

Given a data set A = {(ai, bi) ∈ R
n × R : i = 1, . . . ,m}, the aim of the

clusterwise linear regression is to find simultaneously an optimal partition of data
in k clusters and regression coefficients {xj, yj}, xj ∈ R

n, yj ∈ R, j = 1, . . . , k
within clusters in order to minimize the overall fit. Let Aj, j = 1, . . . , k be clusters
such that

232 7 Practical Problems

Aj �= ∅, Aj
⋂

At = ∅, j, t = 1, . . . , k, t �= j and A =
k⋃

j=1

Aj .

Let {xj, yj} be linear regression coefficients computed using only data points from
the cluster Aj, j = 1, . . . , k. Then for the given data point (ai, bi) and coefficients
{xj, yj} the regression error h(xj, yj,ai, bi) is:

h(xj, yj,ai, bi) =
∣∣∣(xj)Tai + yj − bi

∣∣∣
p
.

Here p > 0. We associate a data point with the cluster whose regression error at this
point is smallest. Then the overall fit function is:

fk(x,y) =
m∑

i=1

min
j=1,...,k

h(xj, yj,ai, bi), (7.51)

where x = (x1, . . . ,xk) ∈ R
k×n and y ∈ R

k. The function fk is called the k-th
clusterwise linear regression function. One can consider any positive values of p to
define regression errors. However, most widely used values are p = 1 and p = 2.

If p = 1 then the function fk is piecewise linear and nonsmooth for all k ≥ 1.
If p = 2 then it is piecewise quadratic. Moreover, if k = 1 then in both cases the
objective function is convex and if k > 1 it becomes nonconvex.

The function fk in can be represented as a difference of two convex functions as
follows:

fk(x,y) = f1
k (x,y) − f2

k (x,y)

where

f1
k (x,y) =

m∑

i=1

k∑

j=1

h(xj, yj,ai, bi),

f2
k (x,y) =

m∑

i=1

max
j=1,...,k

k∑

t=1,t �=j
h(xt, yt,ai, bi).

If p = 2 then the function f1
k (x,y) is differentiable for any x ∈ R

k×n and y ∈ R
k.

The function f2
k is nonsmooth for both p = 1 and p = 2.

Alternatively, one can define the overall fit function using membership coefficients
of data points:

ψk(w,x,y) =
m∑

i=1

k∑

j=1

wijh(xj, yj,ai, bi), (7.52)

7.2 Data Analysis 233

wherewij = 0 if the data point (ai, bi) does not belong to the cluster Aj andwij = 1
if this point belong to it.

Note that the number of variables in the function fk is (n+ 1)k and this number
in the function ψk is (m + n + 1)k. In many data sets the number of data points
m is significantly larger than the number of attributes n, therefore the number of
variables in nonsmooth function fk is significantly smaller than that in the function
ψk. Moreover, the number of variables in function fk does not depend on the number
of points in a data set. Therefore the nonsmooth nonconvex overall fit function
(7.51) is preferable than the function ψk to design algorithms for clusterwise linear
regression problems.

The k-clusterwise linear regression problem is formulated as follows:

⎧
⎪⎨

⎪⎩

minimize fk(x,y)

subject to x ∈ R
k×n

y ∈ R
k.

(7.53)

The number of clusters k is not always known a priori and this number k should
be specified before solving Problem (7.53).

7.3 Optimal Control Problems

This section is devoted to classical applications of NSO, namely optimal control
problems, where the constraints are often determined via a complicated system of
(partial) differential equations. Here we briefly describe three types of optimal control
problems: optimal shape design problems, distributed parameter control problems,
and hemivariational inequalities.

7.3.1 Optimal Shape Design

The primary problem commonly facing designers of structural systems is determining
the shape of the structure. The goal in optimal shape design (structural optimization,
or redesign) is to computerize the design process and therefore shorten the time that
it takes to design new products or improve an existing design. Structural optimiza-
tion is widely used in certain applications in the automobile, marine, and aerospace
industries, and in designing truss and shell structures (with minimum weights).

The abstract setting of the optimal shape design problem is the following. Let
Ω ∈ Oad (= set of admissible domains) be a domain for which we want to find an
optimal design (an optimal geometrical layout). Our aim is to

234 7 Practical Problems

{
minimize f(Ω, y(Ω))

subject to Ω ∈ Oad,

where the control Ω ∈ Oad and the state y(Ω) ∈ V (Ω) are related by some state
problem (given by equations, inequalities etc. in Ω). Here V (Ω) denotes a Hilbert
space of functions defined on Ω .

Depending on the structure of the state system, we obtain different types of non-
smooth problems that fit into this setting; for instance, the unilateral (Dirichlet–
Signorini) boundary value problem, and the design of optimal covering (packaging)
problem. The discretization of both of the above types of problems leads to solving
NSO problems. In addition, in a multicriteria structural design problem (for instance,
an Euler-Bernoulli beam with varying thickness), the nonsmoothness is caused by
the eigenvalues.

7.3.2 Distributed Parameter Control Problems

In distributed parameter control problems, the state relation is given by equations
or by inequalities, and the control variable appears both in the coefficients and on
the right-hand side. Moreover, we impose additional constraints upon the state of
the system, which are often of a technological nature and cause the problem to be
nonsmooth.

The abstract setting of this problem class reads

{
minimize f(x, y(x))

subject to x ∈ Xad,

where the control x and the state y(x) ∈ Y are related by the state problem

A(x)y(x) + ∂ϕ(y(x)) � Bx+ g

with a state constraint
y ∈ K.

Here X and Y are Banach spaces, Y ′ is a dual space of Y , Xad ⊆ X , K ⊆ Y
are convex, closed and nonempty subsets, A(x) : X → Y ′ and B : X → Y ′ are
linear continuous mappings, g ∈ Y ′ and ϕ : Y → (−∞,+∞] is a convex, lower
semicontinuous, proper function.

In [168] three practical examples fitting into this setting were presented. The
problems were the axially loaded rod with stress constraints, the clamped beam with
displacement constraints, and the clamped beam with obstacle. The exact penalty
technique was utilized for handling the state constraints, which leads to an optimiza-
tion problem with a nonsmooth objective function.

7.3 Optimal Control Problems 235

7.3.3 Hemivariational Inequalities

In an abstract setting our aim is to find y ∈ V and Φ ∈ L1(Ω) ∩ V ′ solving the
nonlinear, nonsmooth elliptic equation

⎧
⎪⎨

⎪⎩

a(y, z − y) + 〈Φ, z − y〉 + h(z) − h(y) ≥ 〈g, z − y〉 for all z ∈ V ,

Φ(x) ∈ ∂yq(x, y(x)) almost everywhere in Ω,

〈Φ, z〉 = ∫
Ω

Φ(x)z(x) dx for all z ∈ V ∩ C∞(Ω),

(7.54)

where Ω ⊂ R
n is a bounded domain with a Lipschitz boundary, V is a real Hilbert

space with a dual space ofV ′,a : V×V → R is a continuous, symmetric and coercive
bilinear form, g ∈ V ′, h : V → R ∪ {+∞} is a convex, lower semicontinuous and
proper functional, and q : Ω × R → R is a locally Lipschitz continuous function
satisfying some conditions (see [61, 194]).

After some approximation and discretization procedures, the hemivariational
inequality (7.54) can be formulated as finding the stationary points (i.e. y ∈ R

n

such that 000 ∈ ∂f(y)) of

f(y) = 1

2
yT Ay − bTy + Ψ (y) + h(y), (7.55)

where A is an n× n matrix, b ∈ R
n and Ψ : R

n → R such that

Ψ (·) =
∫

Ω

q(·,y(·)) dx

is a nonconvex and nonsmooth function. Due to Theorem 5.17, the local minimum
(and maximum) points are stationary points that can be found via NSO.

One practical example which fits into this setting is the problem of an elastic body
subjected to body forces and surface tractions, and obeying a nonmonotone friction
law on some part of the boundary.

7.4 Engineering and Industrial Applications

Next we consider some NSO problems arising in industrial applications.

7.4.1 Power Unit-Commitment Problem

The power unit-commitment problem is a very important practical application aris-
ing in short-term power production planning. The optimal scheduling of many
power units (hydraulic valleys, nuclear plants, and classical thermal units) makes

236 7 Practical Problems

the problem mathematically very complicated. In the abstract form, the problem can
be written as

{
minimize f(x)

subject to x ∈ D ∩ S,
(7.56)

where x = {xti} ∈ R
I × R

T represents the vector of productions, I is a set of
power-generation units, t is a discrete time period t ∈ {1, 2, . . . ,T }, D = ∏i∈I Di

represents the operating dynamic constraints and S =∏T
t=1 St the static constraints.

The cost function f is in the form

f(x) =
∑

i∈I

ci(xi),

where xi = (x1
i , . . . ,x

T
i) is the production vector of unit i for the time period and ci

is the corresponding cost. The feasible set S is described by linear constraints, while
D has a nonconvex and more complicated form.

The problem (7.56) is a large mixed integer nonlinear mathematical programming
problem, but has a highly decomposable structure. By using some Lagrangian relax-
ation techniques (7.56) can be transformed to a nonsmooth unconstrained problem,
which has considerably fewer variables than the original problem.

7.4.2 Continuous Casting of Steel

The main object in the continuous casting process of steel is to minimize the defects
in the final product. The temperature distribution of the strand is calculated by solv-
ing a nonlinear heat transfer equation with free boundaries between the solid and
liquid phases. Because of the piecewise linear approximation of nonlinear terms, the
problem is nonsmooth.

The control variable x represents a heat transfer coefficient, which has an effect
on the temperature distribution y(x) (the state) of the steel strand. Molten steel is
poured down from the tundish into the water-cooled mold, where the metal gains a
solid shell. After the end of the mold (point z0), the strand is supported by rollers
and cooled down by water sprays, so that eventually the solidification is completed
(the maximum length of the liquid pool is denoted by z2). After the water sprays
(point z1), the strand is cooled down only by radiation. The strand is straightened at
the unbending point z3 and it is cut up in z4.

Let Ω ⊂ R
2 denote the cross-section of the strand and Γ = bd Ω its boundary.

We define ti for i = 0, . . . , 3 to be the time events when Ω passes the distances
zi and we consider the time period between t0 and t3, that is, t0 = 0 and t3 = T .
Moreover, we denote Q = (0,T) × Ω , Σ = (0,T) × Γ , Q1 = (t2,T) × Ω and
Σ1 = (0, t1) × Γ . The set of admissible controls is defined by

7.4 Engineering and Industrial Applications 237

Xad = {x ∈ L2(Σ) | 0 < α(t) ≤ x(t, s) ≤ β(t), t ∈ (0,T), s ∈ Γ }. (7.57)

Then for x ∈ Xad the temperature distribution y = y(x) is obtained by solving the
state system

⎧
⎪⎨

⎪⎩

∂
∂t H(y(x)) = ΔK(y(x)) in Q,
∂
∂nK(y(x)) = g(x, y(x)) on Σ,

y(s, 0;x) = y0(s) s ∈ Ω,

where ∂/∂n is a derivative in a direction of normal vector,

g(x, y(x)) =
{
x · (ywat − y(x)) + c · (y4

ext − y(x)4) on Σ1

c · (y4
ext − y(x)4) on Σ \ Σ1,

(7.58)

the enthalpy function H , and the Kirchhoff’s transformation K are piecewise linear
functions, and the constants y0, ywat and yext denote the initial, spray water, and
surrounding environment temperatures, respectively, and c is a physical constant.

On the boundary of the strand, we define some temperature distribution yd =
yd(t, s), which in a technological sense is good, and we want the actual surface
temperature to be as close to yd as possible. Thus, our objective function reads

f(x, y(x)) = ε1

∫ T

0

1

2
‖y(x) − yd‖2

0,Γ dt. (7.59)

Moreover, we have the following technological constraints

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ymin ≤ y(x) ≤ ymax on Σ

y′
min ≤ ∂

∂ty(x) ≤ y′
max on Σ

0 ≤ y(x) ≤ ysol in Q1

yduc ≤ y(·,T ;x) ≤ ysol in Ω,

(7.60)

where the constants ymin, ymax, y′
min, y′

max, ysol and yduc denote certain minimum
and maximum bounds (also for derivatives), the solidus and the ductility tempera-
tures, respectively.

7.5 Other Applications

Several other practical applications lead to NSO problems as well. Here we very
briefly describe two of them, namely the image restoration (or denoising) problem,
which is a fundamental task in image processing; and a nonlinear income tax problem,
which is an important problem that arises in the field of economics.

238 7 Practical Problems

7.5.1 Image Restoration

Image restoration (or denoising) is a fundamental task in image processing. In vari-
ous applications of computer vision, image processing is usually started by removing
noise and other distortions from an image taken by a digital camera or obtained using
some other method, for instance, ultrasound scan or computer tomography. Varia-
tional, optimization based techniques have proven quite efficient in image denoising.
The related optimization formulations are often nonsmooth.

In denoising, the aim is to recover an image u from an observed image z, where
the two are related by z = u + noise. When considering a variational approach,
the denoising problem is formulated as an optimization problem consisting of fitting
and regularization terms, the form of which vary according to noise, image, and
application. Here, we introduce four different formulations, each of which has its
own benefits.

The basic formulation consisting of the least-squares fit and so-called bounded
variational (BV) regularization is written as

min
u∈H1

0 (Ω)

1

2

∫

Ω

‖u − z‖2dx + μ

2

∫

Ω

‖∇u‖2dx + g

∫

Ω

‖∇u‖dx, (7.61)

where z is the noisy data, μ, g > 0 are regularization parameters and Ω ∈ R
2 is

the image domain. The additional smooth regularization term is added to ensure the
unique solvability of the problem in H1

0 (Ω). This kind of formulation is known to be
very efficient in recovering the sharp edges of images. However, the obtained images
have a staircase-like structure, which is not desirable if the true image contains
smooth surfaces. The reduction of this staircase-like structure can be obtained by
using a semi-adaptive formulation

min
u∈H1

0 (Ω)

1

2

∫

Ω

‖u − z‖2dx + μ

2

∫

Ω

‖∇u‖2dx + g

∫

Ω

1

p(∇ū)
‖∇u‖p(‖∇ū‖)dx,

(7.62)

where ū denotes the solution of the BV problem (7.61) and the exact form of function
p is given in [121]. The idea of this formulation is to give BV regularization near the
edges (that is, p(‖∇ū‖) = 1, for large ‖∇ū‖, and smoother regularization on flat
and smooth areas (that is, the smaller ‖∇ū‖, the larger value of p(‖∇ū‖) ≤ 2).

The least squares fit appearing in formulations (7.61) and (7.62) assumes Gaussian
noise and is very sensitive to so-called outliers in the data (that is, large measurement
errors in a small number of pixels). To obtain formulations that are less sensitive to
outliers, one can use robust nonsmooth L1 fitting and smooth regularization

min
u∈H1

0 (Ω)

∫

Ω

‖u − z‖dx + g

2

∫

Ω

‖∇u‖2dx (7.63)

7.5 Other Applications 239

or L1 fitting and BV regularization

min
u∈H1

0 (Ω)

∫

Ω

‖u − z‖dx + g

∫

Ω

‖∇u‖dx, (7.64)

7.5.2 Nonlinear Income Tax Problem

Next, we model the nonlinear income tax problem for a two-dimensional population
as an optimal control problem. We consider the case where individuals differ with
respect to their productivity and work preferences. Thus, each individual is described
by a vector (t, s)T of type parameters that varies among individuals. The distribution
of these parameters in the population is given by a density function h such that
h(t, s) ≥ 0 on a rectangular domain Ω = [t0, t1] × [s0, s1].

An economy comprises two commodities, namely a consumption good q and
labor supply u. The government knows that when it offers a nonlinear income tax
schedule x : R

+ → R, each individual maximizes his utility function of the form

g(u, q, t, s)

subject to
q + x(y) = y, y = tu

in choosing his labor supply behavior. We assume that g ∈ C2,

dg(u, q, t, s)

du
< 0 and

dg(u, q, t, s)

dq
> 0

for allu, q ≥ 0 andu < 1. Given the tax schedulex, the government can calculate the
gross income y(t, s) and the consumption (net income) q(t, s) for an individual who
possesses the personal characteristics (t, s). Now, the objective of the government
in choosing the optimal income tax schedule can be described as follows. Our aim
is to find (t, s), which solves the problem

⎧
⎪⎨

⎪⎩

maximize
∫∫

Ω
g(u(t, s), q(t, s), t, s)h(t, s) dt ds

subject to
∫∫

Ω
x(y(t, s))h(t, s) dt ds =∫∫

Ω
(y(t, s) − q(t, s))h(t, s) dt ds ≥ 0.

But if the government chooses tax schedule x, the individuals react to this schedule
and modify their labor supply behavior. Now we are looking for x, which solves the
following optimization problem

240 7 Practical Problems

{
maximize f(x, y(x)) = ∫

Ω
g(y(x)/t, y(x) − x(y(x)), t, s)h dt ds

subject to
∫
Ω
x(y(x))h ≥ 0,

(7.65)

where y(x) is a solution of the following state problem

y(x)(t, s) = argmax y≥0 g(y/t, y − x(y), t, s) for all (t, s) ∈ Ω. (7.66)

In order to solve the problem (7.65), we need the values of the state mapping
x �→ y(x) and thus each evaluation of y demands the solution of the state system
(7.66). The state constraint y ≥ 0 causes the mapping x �→ y(x) to be nonsmooth.

Chapter 8
SemiAcademic Problems

Using certain important methodologies for solving difficult smooth problems lead
directly to the need to solve nonsmooth problems, which are either smaller in dimen-
sion or simpler in structure. The examples of this kind of methodological nonsmooth-
ness are Lagrange relaxation, different decompositions, dual formulations, and exact
penalty functions. In this chapter, we briefly describe some of these formulations. In
addition, we represent the maximum eigenvalue problem that is an important part of
many engineering design problems and graph theoretical applications. The interested
reader may find more details of each problem class in the Notes and References at
the end of Part II.

8.1 Exact Penalty Formulation

In this section, we consider the exact penalty function formulation for solving the
constrained optimization problems of the form

⎧
⎪⎨

⎪⎩

minimize f (x)

subject to gi(x) ≤ 0, for i = 1, . . . , p,

hj(x) = 0, for j = 1, . . . , q,

(8.1)

where the objective function f : R
n → R and the constraint functions gi : R

n → R

for each i ∈ P = {1, . . . , p} and hj : R
n → R for each j ∈ Q = {1, . . . , q} are

supposed to be locally Lipschitz continuous.
The idea in penalty function formulations is to convert the original constrained

optimization problem (8.1) to a sequence of unconstrained problems by adding
a penalty to the objective that punishes the exit from the feasible region. The
new penalty formulation can then be solved with some unconstrained optimization
method. Indeed, problem (8.1) may be solved by minimizing the penalty function

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_8

241

242 8 SemiAcademic Problems

Fr,m(x) = f (x) + r

⎛

⎝
p∑

i=1

max{0, gi(x)}m +
q∑

j=1

|hj(x)|m
⎞

⎠, (8.2)

where r > 0 is a penalty parameter and m is an exponent for the penalties. When

m > 1 function (8.2) is differentiable and it is smooth whenm ≥ 2. The weakness in
these differentiable formulations is that the penalty parameter r has to tend towards
infinity in order to guarantee the convergence to the minimum.

To avoid this difficulty the so-called absolute value or l1 exact penalty function
can be used; that is, m = 1 in (8.2). In what follows, we omit the index m whenever
it equals to one. In other words, we denote the l1 exact penalty function by

Fr(x) = Fr,1(x) = f (x) + r

⎛

⎝
p∑

i=1

max{0, gi(x)} +
q∑

j=1

|hj(x)|
⎞

⎠ . (8.3)

Note that even if the original objective function f and the constraint functions gi

for all i ∈ P and hj for all j ∈ Q were smooth, the l1 exact penalty function (8.3) is
nonsmooth.

The function (8.3) is exact in a sense that, under mild assumptions, there exist a
finite lower bound rl > 0 such that for all r > rl any local minimizer of problem (8.1)
is also a local minimizer of function (8.3). Moreover, if x∗ is a local minimizer of
(8.3) for some r, such that it is feasible with respect to the original problem (8.1), then
x∗ is also a local minimizer of problem (8.1) assuming that the equality constraints
hj for all j ∈ Q are smooth.

When both the constrained problem (8.1) and the penalty function (8.3) are con-
vex, it is enough to know that any local minimizer of problem (8.1) is also a local
minimizer of function (8.3) with sufficiently large penalty parameter r, since every
local minimum is also global. Thus, the minimizers of the original problem and the
exact penalty formulation are identical. However, in the nonconvex case, it may hap-
pen that a point x∗ is a local minimizer of (8.3) for all r > 0 large enough, while
x∗ is not feasible for the original problem (8.1) for any r > 0, even though feasible
points do exist. As an example, consider the following problem [64]:

8.1 Exact Penalty Formulation 243

Example 8.1 (Exact Penalty Function).

⎧
⎪⎨

⎪⎩

minimize x

subject to x3 − x ≤ 0,

x ≥ 0,

The corresponding penalty function is

Fr(x) = x+ r(max{0,x3 − x} + max{0,−x}),

for which we can show thatx∗ = −1 is a local minimum for all r ≥ 1. However,
this local minimizer is not feasible for the original problem, although feasible
points x ∈ [0, 1] do exists.

Another difficulty may arise when one or more of the equality constraints hj , j ∈ Q,
are nonsmooth. This is due to the fact that, in the presence of nonsmooth equality
constraints, the stationary points of exact penalty function (8.3) that are feasible
for the original problem (8.1) can not, in general, be shown to be stationary for
problem (8.1) if they do not lie in an one dimensional subspace of R

n. Moreover, by
increasing the penalty parameter r, an arbitrary feasible point of (8.1) may become
stationary for (8.3).

More details of the exact penalty function methods for solving the constrained
optimization problems are given in Part III Sect. 16.1.

8.2 Integer Programming with Lagrange Relaxation

Next we consider some discrete optimization problems that can be reformulated as
continuous nonsmooth problems. This is done via the so-called Lagrange relaxation.

8.2.1 Traveling Salesman Problem

The traveling salesman problem is a classical NP-complete combinatorial optimiza-
tion problem. Starting from an arbitrary city we seek the shortest route, such that all
the given n cities belong to the route and we return back to the first city. Mathemat-
ically this can be formulated as a linear programming problem

http://dx.doi.org/10.1007/978-3-319-08114-4_20

244 8 SemiAcademic Problems

{
minimize f (x) = cTx

subject to x ∈ S,
(8.4)

where
S = {x ∈ R

n | Ax = a,Bx ≤ b and xi ∈ {0, 1}}.

There do not exist any efficient algorithms for solving (8.4) exactly; therefore heuris-
tic methods computing an approximate solution are widely used. In order to qualify
the approximation, it is important to know some lower bound for the exact solution.
Such a lower bound can be found by utilizing Lagrangian relaxation technique. By
the duality theory we know that

min
x∈S f (x) ≥ max

y∈Rn
φ(y),

where φ is defined by

φ(y) = min
x∈Ŝ

f (x) + yT (Ax − a)

and S ⊆ Ŝ such that

Ŝ = {x ∈ R
n | Bx ≤ b and xi ∈ {0, 1}}.

It is known from graph theory, that the value φ(y) can be calculated from a
so-called minimum spanning tree. Thus we get a lower bound for the exact solution
of (8.4) by looking for the unconstrained maximum of the φ, which is a nonsmooth,
piecewise linear and concave function.

8.3 Maximum Eigenvalue Problem

Many engineering design problems and graph theoretical applications require the
solution of the eigenvalue optimization problem

{
minimize f (x) = λmax(A(x))

subject to x ∈ R
n,

(8.5)

where

λmax(A(x)) = max
1≤i≤m |λi(A(x))|

8.3 Maximum Eigenvalue Problem 245

denotes the eigenvalue of A(x) with the largest absolute value, A(x) is a real
symmetric m × m -matrix-valued affine function of x, and λi(A(x)) for i = 1,

. . . ,m are its eigenvalues.
The problem (8.5) is convex as the largest eigenvalue of a matrix is a convex

function of the matrix elements. Letx∗ be a locally unique minimizer of f (x). That is,
f (x∗) < f (x) with all x ∈ B(ε;x∗) and some ε > 0, If the eigenvalueλmax(A(x∗))
is simple at x∗, that is, it has the multiplicity of one, then the problem (8.5) is twice
continuously differentiable in a neighborhood of x∗. However, usually this is not the
case but A(x∗) has multiple eigenvalues. Then the problem (8.5) is generally not
differentiable at x = x∗. For example, consider the following problem [193]:

Example 8.2 (Maximum Eigenvalue Problem). Let A(x) be a 2 × 2-matrix

A(x) =
[

1 + x1 x2
x2 1 + x1

]
.

The eigenvalues of A(x) are

λ1 = 1 +
√
x2

1 + x2
2 and λ2 = 1 −

√
x2

1 + x2
2.

Thus, λ1, the largest eigenvalue of A(x), is not a smooth function of x.

Chapter 9
Academic Problems

Many practical optimization problems involve nonsmooth functions. In this chapter,
we give an extensive collection of problems for nonsmooth minimization which
can be used to test nonsmooth optimization solvers. The general formula for these
problems is written by

{
minimize f(x)

subject to x ∈ S,
(9.1)

where the objective function f : R
n → R is supposed to be locally Lipschitz

continuous on the feasible region S ⊆ R
n. Note that no differentiability or convexity

assumptions are made. All the problems given here are found in the literature and
have been used in the past to develop, test, or compare NSO software.

We shall use a classification of test problems modified from that of [111]. That is
we use a sequence of letters

O[O]-C-R-S,

where Table 9.1 give all possible abbreviations that could replace the letters O, C, R,
and S (the brackets mean an optional abbreviation).

We first give a summary of all the problems in Table 9.2, where n denotes the
number of variables and f(x∗) is the minimum value of the objective function. In
addition, the classification and the references to the origin of the problems in each
case are given in Table 9.2. Then, in Sects. 9.1 (small unconstrained problems),
9.2 (bound constraints), 9.3 (linearly constrained problems), 9.4 (large-scale uncon-
strained problems), and 9.5 (inequality constraints), we present the formulation of the
objective function f , possible constraint functions gj (j = 1, . . . , p), and the starting

point x(1) = (x(1)
1 , . . . ,x(1)

n)T for each problem. We also give the minimum point
x∗ = (x∗

1, . . . ,x
∗
n)

T for the problems with the precision of at least four decimals if
possible (in larger cases this is not always practicable).

In what follows, we denote by div (i, j) the integer division for positive integers
i and j, that is, the maximum integer not greater than i/j, and by mod (i, j) the
remainder after integer division, that is, mod (i, j) = j(i/j − div (i, j)).

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_9

247

248 9 Academic Problems

Table 9.1 Classification of
test problems

O Information about the objective

L Piecewise linear objective function

Q Piecewise quadratic objective function

P Generalized polynomial objective function

G General objective function

D Difference of two convex functions (DC)

M Min-max- type objective function

C Information about constraint functions

U Unconstrained problem (S = R
n in (9.1))

B Upper and lower bounds only

(S = {x ∈ R
n | xli ≤ xi ≤ xui for all i = 1, . . . ,n} in (9.1)

L Linear constraint functions

Q Quadratic constraint functions

G General constraint functions

(S = {x ∈ R
n | gj(x) ≤ 0 for all j = 1, . . . , p} in (9.1)

R Regularity of the problem

X Convex problem

Z Nonconvex problem

S Information about the solution

E Exact solution known

N Only approximate numerical solution known

9.1 Small Unconstrained Problems

In this section we describe 40 small-scale nonsmooth unconstrained test problems.
The number of variables varies from 2 to 50.

1 CB2 (Charalambous/Bandler) [59]

Classification: GM-U-X-N,
Dimension: 2,
Objective function: f(x) = max

{
x2

1 + x4
2, (2 − x1)

2 + (2 − x2)
2, 2ex2−x1

}
,

Starting point 1: x(1) = (2, 2)T ,
Starting point 2: x(1) = (1,−0.1)T ,
Optimum point: x∗ = (1.139286, 0.899365)T ,
Optimum value: f(x∗) = 1.9522245.

9.1 Small Unconstrained Problems 249

Table 9.2 Condensed list of all test problems

Problem O[O]-C-R-S n f(x∗) Ref.

1 CB2 GM-U-X-N 2 1.9522245 [59]

2 CB3 GM-U-X-E 2 2 [59]

3 DEM QM-U-X-E 2 −3 [168]

4 QL QM-U-X-E 2 7.2 [168]

5 LQ QM-U-X-E 2 −√
2 [168]

6 Mifflin 1 G-U-X-E 2 −1 [168]

7 Wolfe G-U-X-E 2 −8 [159]

8 Rosen-Suzuki QM-U-X-E 4 −44 [205]

9 Davidon 2 QM-U-X-N 4 115.70644 [159]

10 Shor QM-U-X-N 5 22.600162 [168]

11 Maxquad QM-U-X-N 10 −0.8414083 [146, 168]

12 Polak 2 GM-U-X-E 10 54.598150 [198]

13 Polak 3 GM-U-X-N 11 3.7034924 [198]

14 Wong 1 PM-U-X-N 7 680.63006 [7, 159]

15 Wong 2 QM-U-X-N 10 24.306209 [7, 159]

16 Wong 3 PM-U-X-N 20 133.72828 [7, 159]

17 Maxq QM-U-X-E 20 0 [208]

18 Maxl LM-U-X-E 20 0 [168]

19 TR48 LD-U-X-N 48 −638565.0 [146]

20 Goffin LD-U-X-E 50 0 [168]

21 Crescent QM-U-Z-E 2 0 [131]

22 Mifflin 2 G-U-Z-E 2 −1 [168]

23 WF GM-U-Z-E 2 0 [159]

24 SPIRAL GM-U-Z-E 2 0 [159]

25 EVD52 PM-U-Z-N 3 3.5997193 [159]

26 PBC3 GM-U-Z-N 3 0.42021427 · 10−2 [159]

27 Bard GM-U-Z-N 3 0.50816327 · 10−1 [159]

28 Kowalik-Osborne GM-U-Z-N 4 0.80843684 · 10−2 [159]

29 Polak 6 PM-U-Z-E 4 −44 [198]

30 OET5 QM-U-Z-N 4 0.26359735 · 10−2 [159]

31 OET6 GM-U-Z-N 4 0.20160753 · 10−2 [159]

32 EXP GM-U-Z-N 5 0.12237125 · 10−3 [159]

33 PBC1 GM-U-Z-N 5 0.22340496 · 10−1 [159]

34 HS78 G-U-Z-N 5 −2.9197004 [111, 159]

35 El-Attar G-U-Z-N 6 0.5598131 [159]

36 EVD61 GM-U-Z-N 6 0.34904926 · 10−1 [159]

37 Gill PM-U-Z-N 10 9.7857721 [159]

38 Problem 1 in [21] GD-U-Z-E 2 2 [21]

39 L1 Rosenbrock LD-U-Z-E 2 0 [21]

(Continued)

250 9 Academic Problems

Table 9.2 (Continued)

Problem O[O]-C-R-S n f(x∗) Ref.

40 L1 Wood LD-U-Z-E 4 0 [21]

41 Wong 2C QM-L-X-N 10 24.306209 [159]

42 Wong 3C PM-L-X-N 20 133.72828 [159]

43 MAD1 GM-L-Z-N 2 −0.38965952 [159]

44 MAD2 GM-L-Z-N 2 −0.33035714 [159]

45 MAD4 GM-L-Z-N 2 −0.44891079 [159]

46 MAD5 GM-L-Z-N 2 −0.42928061 [159]

47 PENTAGON GM-L-Z-N 6 −1.85961870 [159]

48 MAD6 GM-L-Z-N 7 0.10183089 [159]

49 Dembo 3 GM-L-Z-N 7 1227.2260 [159]

50 Dembo 5 GM-L-Z-N 8 7049.2480 [159]

51 EQUIL GM-L-Z-N 8 0 [146, 159]

52 HS114 GM-L-Z-N 10 −1768.8070 [159]

53 Dembo 7 GM-L-Z-N 16 174.78699 [159]

54 MAD8 QM-B-Z-N 20 0.50694799 [159]

55 Gen. of MAXL LM-U-X-E any 0 [155]

56 Gen. of L1HILB L-U-X-E any 0 [155]

57 Gen. of MAXQ QM-U-X-E any 0 [98]

58 Gen. of MXHILB LM-U-X-E any 0 [98]

59 Chained LQ G-U-X-E any −(n− 1)21/2 [98]

60 Chained CB3 I G-U-X-E any 2(n− 1) [98]

61 Chained CB3 II GM-U-X-E any 2(n− 1) [98]

62 Number of Active Faces GM-U-Z-E any 0 [95]

63 Gen. of Brown Function 2 G-U-Z-E any 0 [98]

64 Chained Mifflin 2 G-U-Z-N any varies∗ [98]

65 Chained Crescent I QM-U-Z-E any 0 [98]

66 Chained Crescent II G-U-Z-E any 0 [98]

67 Problem 6 in test29 QM-U-Z-N any 0 [155]

68 Problem 17 in test29 GM-U-Z-E any 0 [155]

69 Problem 19 in test29 GM-U-Z-N any 0 [155]

70 Problem 20 in test29 GM-U-Z-N any 0 [155]

71 Problem 22 in test29 GM-U-Z-N any 0 [155]

72 Problem 24 in test29 GM-U-Z-N any 0 [155]

73 DC Maxl LD-U-Z-E any 0 [21]

74 DC Maxq QD-U-Z-E any 0 [26]

75 Problem 6 in [26] LD-U-Z-E any 0 [26]

76 Problem 7 in [26] LD-U-Z-E any 0 [26]

57 + 77 QM-Q-Z-N any 0.500065∗∗ [122, 126]

58 + 77 LM-Q-Z-N any 0.000163∗∗ [122, 126]

(Continued)

9.1 Small Unconstrained Problems 251

Table 9.2 (Continued)

Problem O[O]-C-R-S n f(x∗) Ref.

59 + 77 G-Q-Z-N any −1408.63∗∗ [122, 126]

60 + 77 G-Q-Z-N any 2003.24∗∗ [122, 126]

61 + 77 GM-Q-Z-N any 1998.36∗∗ [122, 126]

62 + 77 GM-Q-Z-N any 0.534851∗∗ [122, 126]

63 + 77 G-Q-Z-N any 5.00248∗∗ [122, 126]

64 + 77 G-Q-Z-N any −680.628∗∗ [122, 126]

65 + 77 QM-Q-Z-N any 1.56604∗∗ [122, 126]

66 + 77 G-Q-Z-N any 5.99059∗∗ [122, 126]

57 + 78 QM-Q-R-N any 0.880569∗∗ [122, 126]

58 + 78 LM-Q-Z-N any 0.008487∗∗ [122, 126]

59 + 78 G-Q-Z-N any −735.874∗∗ [122, 126]

60 + 78 G-Q-Z-N any 2808.45∗∗ [122, 126]

61 + 78 GM-Q-Z-N any 2796.35∗∗ [122, 126]

62 + 78 GM-Q-Z-N any 2.77674∗∗ [122, 126]

63 + 78 G-Q-Z-N any not avail. [122, 126]

64 + 78 G-Q-Z-N any 4466.99∗∗ [122, 126]

65 + 78 QM-Q-Z-N any 483.441∗∗ [122, 126]

66 + 78 G-Q-Z-N any not avail. [122, 126]

57 + 79 QM-G-R-N any not avail. [122, 126]

58 + 79 LM-G-Z-N any 0.007981∗∗ [122, 126]

59 + 79 G-G-Z-N any −1412.14∗∗ [122, 126]

60 + 79 G-G-Z-N any 2001.63∗∗ [122, 126]

61 + 79 GM-G-Z-N any not avail. [122, 126]

62 + 79 GM-G-Z-N any 0.405473∗∗ [122, 126]

63 + 79 G-G-Z-N any not avail. [122, 126]

64 + 79 G-G-Z-N any −705.910∗∗ [122, 126]

65 + 79 QM-G-Z-N any 0.250063∗∗ [122, 126]

66 + 79 G-G-Z-N any 1.85396∗∗ [122, 126]

57 + 80 QM-G-R-N any 0.388891∗∗ [122, 126]

58 + 80 LM-G-Z-N any 0.007981∗∗ [122, 126]

59 + 80 G-G-Z-N any −1412.13∗∗ [122, 126]

60 + 80 G-G-Z-N any 2001.72∗∗ [122, 126]

61 + 80 GM-G-Z-N any not avail. [122, 126]

62 + 80 GM-G-Z-N any 0.405549∗∗ [122, 126]

63 + 80 G-G-Z-N any not avail. [122, 126]

64 + 80 G-G-Z-N any −705.926∗∗ [122, 126]

65 + 80 QM-G-Z-N any 0.250222∗∗ [122, 126]

66 + 80 G-G-Z-N any 1.39342∗∗ [122, 126]

57 + 81 QM-Q-R-N any 0.138009∗∗ [122, 126]

(Continued)

252 9 Academic Problems

Table 9.2 (Continued)

Problem O[O]-C-R-S n f(x∗) Ref.

58 + 81 LM-Q-Z-N any 0.600611∗∗ [122, 126]

59 + 81 G-Q-Z-N any −1153.55∗∗ [122, 126]

60 + 81 G-Q-Z-N any 4043.82∗∗ [122, 126]

61 + 81 GM-Q-Z-N any 4043.82∗∗ [122, 126]

62 + 81 GM-Q-Z-N any 5.81129∗∗ [122, 126]

63 + 81 G-Q-Z-N any 589.469∗∗ [122, 126]

64 + 81 G-Q-Z-N any −660.307∗∗ [122, 126]

65 + 81 QM-Q-Z-N any 490.173∗∗ [122, 126]

66 + 81 G-Q-Z-N any not avail. [122, 126]

* f(x∗) ≈ −34.795 for n = 50, f(x∗) ≈ −140.86 for n = 200, and f(x∗) ≈ −706.55 for
n = 1000.
** f(x∗) for n = 1000.

Table 9.3 Values of vectors
s and d for problem 19

i si di i si di i si di

1 22 61 17 95 32 33 30 52

2 53 67 18 34 21 34 88 66

3 64 24 19 59 61 35 74 89

4 15 84 20 36 21 36 59 65

5 66 13 21 22 51 37 93 63

6 37 86 22 94 14 38 54 47

7 16 89 23 28 89 39 89 7

8 23 46 24 34 79 40 30 61

9 67 48 25 36 38 41 79 87

10 18 50 26 38 20 42 46 19

11 52 74 27 55 97 43 35 36

12 69 75 28 77 19 44 41 43

13 17 88 29 45 10 45 99 9

14 29 40 30 34 73 46 52 12

15 50 29 31 32 59 47 76 8

16 13 45 32 58 92 48 93 67

2 CB3 (Charalambous/Bandler) [59]

Classification: GM-U-X-E,
Dimension: 2,
Objective function: f(x) = max

{
x4

1 + x2
2, (2 − x1)

2 + (2 − x2)
2, 2ex2−x1

}
,

Starting point: x(1) = (2, 2)T ,
Optimum point: x∗ = (1, 1)T ,
Optimum value: f(x∗) = 2.

9.1 Small Unconstrained Problems 253

Ta
bl

e
9.

4
D

at
a

fo
r

sy
m

m
et

ri
c

co
st

m
at

ri
x

A
fo

r
pr

ob
le

m
19

27
3

12
72

74
4

11
38

19
72

15
80

18
78

15
39

14
57

42
9

11
29

12
51

14
21

58
8

33
4

83
7

13
64

22
9

96
1

75
4

11
69

14
88

72
0

12
80

81
6

66
4

11
78

93
9

16
98

98
3

11
19

10
29

18
15

72
1

17
53

33
0

14
99

11
07

15
76

94
2

48
4

61
7

89
6

11
84

10
30

17
18

60
4

99
9

80
9

86
6

17
22

13
38

16
40

12
66

11
85

44
0

89
4

99
2

11
73

33
4

35
8

62
6

11
24

35
8

84
7

53
3

91
5

12
19

48
1

10
09

54
3

93
7

91
5

66
7

14
41

81
2

84
8

77
6

15
60

52
6

14
94

59
8

12
44

13
04

13
06

68
5

66
8

44
4

11
57

13
59

11
76

14
75

33
5

15
19

14
0

93
7

69
7

95
1

26
7

22
7

12
29

58
7

36
9

55
4

72
1

12
12

73
9

59
6

12
91

11
14

70
1

42
6

28
5

67
6

15
5

45
6

19
36

31
9

33
7

60
4

90
7

21
4

42
4

74
8

81
7

66
6

15
92

52
1

21
72

35
6

46
7

15
83

88
2

21
39

21
82

19
61

78
1

67
8

14
25

18
61

14
73

17
13

17
61

16
17

37
0

10
73

13
04

13
69

10
92

45
3

79
8

12
83

97
3

56
5

13
15

12
04

17
96

84
6

14
47

11
43

95
9

12
75

12
13

20
85

74
2

13
09

14
79

17
60

70
3

17
27

87
2

14
79

68
6

16
98

10
57

38
7

12
52

90
4

66
8

44
3

16
00

93
0

10
52

77
6

10
49

40
2

36
1

11
19

57
8

40
6

61
8

58
1

10
95

67
0

64
1

11
52

10
60

56
7

43
3

37
4

57
9

23
5

32
5

18
02

33
1

21
7

66
5

86
2

18
2

31
2

86
4

73
2

78
3

14
56

60
8

20
66

49
1

40
0

14
66

74
4

20
13

20
82

18
65

87
5

55
2

40
0

18
2

82
0

72
1

17
35

85
1

74
0

55
1

15
51

17
69

11
59

61
3

20
72

13
00

16
05

80
7

10
17

12
51

81
8

12
59

25
96

82
6

11
37

12
55

11
23

94
3

13
59

18
8

12
82

27
1

23
00

48
3

25
40

60
9

10
38

20
99

17
66

26
99

24
93

22
66

26
4

13
98

30
4

69
9

53
8

13
35

45
4

39
3

17
3

11
98

13
70

76
0

21
6

16
92

91
9

12
86

43
5

87
9

86
1

54
8

91
3

21
98

48
3

80
3

11
81

73
1

62
7

10
86

29
2

88
3

27
9

19
06

17
8

21
56

49
0

66
2

16
99

14
30

23
00

21
17

18
88

13
8

10
23

88
4

75
5

16
12

74
9

69
0

47
6

15
01

16
54

10
49

51
6

19
95

11
49

15
80

73
9

10
79

11
61

81
5

12
14

24
85

78
0

11
00

13
47

98
5

91
6

13
61

26
0

11
71

32
8

22
02

44
5

23
85

66
5

96
6

19
69

17
29

25
68

23
33

21
08

17
7

13
27

17
7

14
86

75
7

50
6

60
9

98
1

14
74

96
7

68
1

15
52

13
17

93
6

59
4

19
7

92
8

31
6

72
3

22
03

50
0

60
4

48
2

11
04

45
5

63
0

64
1

10
58

56
2

18
57

52
8

24
25

22
0

70
4

18
45

11
22

24
05

24
28

(C
on

tin
ue

d)

254 9 Academic Problems

Ta
bl

e
9.

4
(C

on
tin

ue
d)

22
04

73
8

94
5

13
62

58
7

33
5

43
5

93
0

13
58

81
9

50
4

14
96

11
53

92
7

42
8

34
1

80
3

18
0

64
9

21
19

34
3

52
1

65
2

93
9

34
0

64
9

53
3

91
8

45
1

17
83

36
2

22
90

13
0

56
8

17
27

11
05

23
01

22
85

20
59

59
5

85
3

89
1

10
82

11
99

72
6

96
58

3
11

25

65
3

56
3

94
7

98
6

14
93

56
0

11
83

81
3

88
2

10
33

90
2

17
63

64
2

10
32

11
31

16
04

46
3

15
56

66
3

12
98

94
7

14
61

79
5

37
1

88
2

96
7

97
3

76
8

14
72

58
8

25
2

30
8

80
3

92
0

30
9

23
8

12
52

56
9

94
0

16
5

86
3

41
4

45
4

55
2

17
45

26
9

48
2

11
88

35
5

39
7

83
3

71
3

43
2

66
6

14
53

41
0

17
58

64
2

26
2

12
60

10
51

18
58

17
37

15
08

59
2

59
8

22
2

81
4

10
94

51
0

23
5

13
35

82
0

89
2

10
0

62
6

54
1

21
9

52
4

18
97

90
41

0
95

2
60

5
23

8
70

6
57

0
62

2
50

3
15

81
25

7
19

85
39

6
30

9
14

53
10

39

20
43

19
72

17
44

51
4

66
1

10
25

12
27

61
7

90
15

25
83

5
11

14
26

3
77

0
70

0
40

0

74
0

20
49

31
1

63
0

10
87

63
0

45
9

92
4

40
5

73
9

36
0

17
49

11
5

20
55

42
8

49
2

15
68

12
56

21
66

20
26

17
96

30
3

85
3

66
3

63
2

99
9

57
2

97
2

22
5

76
3

90
8

45
1

76
7

29
3

12
40

72
6

42
0

11
11

86
2

61
7

44
3

13
74

58
6

12
99

88
7

10
70

16
33

10
57

54
7

99
9

25
2

14
83

16
81

14
89

13
26

23
6

61
0

11
56

55
7

64
2

87
9

10
00

14
67

55
8

11
78

78
0

83
1

10
38

87
9

17
26

70
0

10
23

10
82

16
31

48
8

15
79

58
6

13
20

98
2

14
63

79
6

37
1

80
2

94
9

10
21

82
6

15
08

55
0

54
6

98
3

39
7

82
1

41
1

10
23

18
0

65
1

47
8

14
38

47
6

48
5

13
33

23
5

52
5

82
7

10
22

12
3

97
3

11
55

71
5

14
75

90
2

27
3

95
3

88
2

15
50

14
67

12
40

89
8

39
6

14
79

74
5

11
05

24
0

83
1

64
5

44
2

72
3

19
83

31
6

62
3

11
52

54
3

47
0

93
9

48
2

66
9

44
3

16
90

20
5

19
69

51
0

45
5

14
92

12
38

20
91

19
38

17
09

35
4

81
3

11
63

67
6

12
64

14
73

83
9

13
26

84
7

80
1

12
54

97
6

16
43

11
57

11
69

98
3

19
05

87
8

18
36

34
6

15
90

12
86

16
21

10
34

68
9

50
3

99
5

13
76

12
39

18
28

67
4

11
83

72
5

13
99

54
9

10
04

86
9

14
27

81
8

88
2

17
16

21
4

90
2

12
22

12
10

39
0

11
84

12
25

94
9

12
39

12
10

66
0

86
3

12
07

14
46

11
97

96
9

10
42

74
1

86
5

82
1

64
4

79
0

38
8

13
74

80
3

48
4

96
8

10
56

66
5

31
8

14
20

79
4

13
41

10
17

11
37

18
36

(C
on

tin
ue

d)

9.1 Small Unconstrained Problems 255

Ta
bl

e
9.

4
(C

on
tin

ue
d)

10
56

67
9

12
00

18
9

16
45

18
91

17
04

14
03

44
2

69
9

45
3

29
0

48
3

18
09

10
7

38
4

10
24

51
1

25
1

71
2

64
6

52
5

58
5

14
99

33
0

18
85

49
5

23
1

13
56

99
9

19
49

18
72

16
44

56
7

59
1

95
0

41
0

69
0

21
47

59
4

59
0

32
6

11
91

49
9

50
4

83
8

10
98

75
8

17
94

70
3

24
39

41
4

75
1

18
37

10
11

23
74

24
55

22
37

92
8

92
1

62
4

32
5

13
56

48
0

36
9

12
41

41
3

47
3

68
0

10
97

16
6

10
38

10
49

78
1

14
97

90
5

23
8

92
5

70
2

15
06

15
06

12
87

99
8

21
6

47
9

19
41

18
8

35
0

73
6

79
2

16
1

54
7

63
2

74
5

55
2

16
07

37
5

21
15

29
6

39
2

15
47

95
9

21
21

21
14

18
90

64
1

67
6

14
80

43
5

12
9

94
9

70
8

32
5

35
5

10
81

49
2

10
07

11
37

77
9

17
59

77
4

29
1

11
48

51
6

16
88

17
85

15
73

10
38

23
1

18
29

16
03

23
39

15
24

17
80

16
73

24
21

13
15

23
94

35
7

21
36

82
5

22
37

15
89

57
9

12
04

34
7

95
9

94
0

23
36

12
66

32
0

91
9

60
5

15
4

62
3

65
2

58
0

58
2

15
08

34
4

19
50

42
9

24
2

14
02

94
9

19
86

19
43

17
17

60
3

58
2

87
2

69
9

19
7

35
8

95
7

52
9

88
1

12
63

66
0

18
49

64
5

24
0

12
50

63
1

18
02

18
67

16
50

92
3

34
1

15
11

81
5

66
9

10
92

13
97

10
19

19
82

10
10

27
08

69
5

10
61

20
89

11
48

25
94

27
34

25
20

12
12

11
76

69
7

10
51

10
18

29
0

98
5

12
80

74
3

14
27

99
6

46
6

98
7

11
10

15
84

13
95

11
66

86
1

62
6

46
9

76
1

60
7

68
5

14
46

47
2

19
69

45
7

25
4

13
93

82
3

19
63

19
75

17
52

73
9

51
5

11
71

84
7

10
89

13
16

91
9

20
63

77
6

59
8

14
34

50
7

19
26

21
01

18
98

11
87

54
8

11
44

83
21

45
31

7
24

45
42

6
87

5
19

72
15

84
25

71
24

08
21

79
19

4
12

31
10

94
10

36
83

6

13
71

10
08

35
4

83
3

82
8

14
29

13
69

11
46

10
21

35
2

20
83

25
9

24
12

34
5

81
1

19
25

15
07

25
23

23
80

21
51

22
0

11
63

16
28

10
05

19
03

12
72

50
4

84
9

65
3

11
14

10
19

20
44

93
2

21
65

33
0

55
9

16
68

12
91

22
64

21
38

19
08

26
8

91
7

23
77

17
23

63
6

17
20

53
4

14
5

29
0

22
81

15
31

66
7

18
29

12
35

24
10

23
67

21
39

51
9

97
2

11
62

79
2

17
44

17
24

15
00

79
6

36
1

10
87

60
0

70
1

55
0

18
35

91
7

14
90

17
87

16
14

15
53

48
6

67
8

72
7

24
35

14
61

22
9

22
38

15
60

20
10

13
53

11
57

M
at

ri
x

A
is

sy
m

m
et

ri
c,

th
at

is
a
(i

,
j)

=
a
(j

,
i)

.D
at

a
is

gi
ve

n
fo

r
lo

w
er

tr
ia

ng
ul

ar

256 9 Academic Problems

3 DEM [168]

Classification: QM-U-X-E,
Dimension: 2,
Objective function: f(x) = max

{
5x1 + x2, −5x1 + x2, x

2
1 + x2

2 + 4x2
}
,

Starting point: x(1) = (1, 1)T ,
Optimum point: x∗ = (0,−3)T ,
Optimum value: f(x∗) = −3.

4 QL [168]

Classification: QM-U-X-E,
Dimension: 2,
Objective function: f(x) = max1≤i≤3 fi(x),
where f1(x) = x2

1 + x2
2,

f2(x) = f1(x) + 10(−4x1 − x2 + 4),

f3(x) = f1(x) + 10(−x1 − 2x2 + 6),

Starting point: x(1) = (−1, 5)T ,
Optimum point: x∗ = (1.2, 2.4)T ,
Optimum value: f(x∗) = 7.2.

5 LQ [168]

Classification: QM-U-X-E,
Dimension: 2,
Objective function: f(x) = max

{ −x1 − x2, −x1 − x2 + x2
1 + x2

2 − 1
}
,

Starting point: x(1) = (−0.5,−0.5)T ,
Optimum point: x∗ = (1/

√
2, 1/

√
2)T ,

Optimum value: f(x∗) = −√
2.

6 Mifflin 1 [168]

Classification: G-U-X-E,
Dimension: 2,
Objective function: f(x) = −x1 + 20 max

{
x2

1 + x2
2 − 1, 0

}
,

Starting point: x(1) = (0.8, 0.6)T ,
Optimum point: x∗ = (1, 0)T ,
Optimum value: f(x∗) = −1.

9.1 Small Unconstrained Problems 257

7 Wolfe [159]

Classification: G-U-X-E,
Dimension: 2,

Objective function: f(x) = 5
√

9x2
1 + 16x2

2, when x1 ≥ |x2|,
f(x) = 9x1 + 16|x2|, when 0 < x1 ≤ |x2|,
f(x) = 9x1 + 16|x2| − x9

1, when x1 ≤ 0,
Starting point: x(1) = (3, 2)T ,
Optimum point: x∗ = (−1, 0)T ,
Optimum value: f(x∗) = −8.

8 Rosen-Suzuki [205]

Classification: QM-U-X-E,
Dimension: 4,
Objective function: f(x) = max1≤i≤4 fi(x),
where f1(x) = x2

1 + x2
2 + 2x2

3 + x2
4 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10(x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3,

−x4 − 8),

f3(x) = f1(x) + 10(x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10),

f4(x) = f1(x) + 10(2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5),

Starting point: x(1) = (0, 0, 0, 0)T ,
Optimum point: x∗ = (0, 1, 2,−1)T ,
Optimum value: f(x∗) = −44.

9 Davidon 2 [159]

Classification: QM-U-X-N,
Dimension: 4,
Objective function: f(x) = max1≤i≤20 |fi(x)|,
where fi(x) = (

x1 + x2ti − eti
)2 + (x3 + x4 sin(ti) − cos(ti))2 and

ti = 0.2i, for i = 1, . . . , 20,
Starting point: x(1) = (25, 5,−5,−1)T ,
Optimum point: x∗ = (−12.2437, 14.0218,−0.4515,−0.0105)T ,
Optimum value: f(x∗) = 115.70644.

10 Shor [168]

Classification: QM-U-X-N,
Dimension: 5,

Objective function: f(x) = max1≤i≤10

{
bi

∑5
j=1(xj − aij)

2
}

,

258 9 Academic Problems

where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
2 1 1 1 3
1 2 1 1 2
1 4 1 2 2
3 2 1 0 1
0 2 1 0 1
1 1 1 1 1
1 0 1 2 1
0 0 2 1 0
1 1 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and b =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
5

10
2
4
3

1.7
2.5
6

3.5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Starting point: x(1) = (0, 0, 0, 0, 1)T ,
Optimum point: x∗ = (1.1244, 0.9795, 1.4777, 0.9202, 1.1243)T ,
Optimum value: f(x∗) = 22.600162.

11 Maxquad [146,168]

Classification: QM-U-X-N,
Dimension: 10,
Objective function: f(x) = max1≤i≤5 xT Aix + xT bi,
where Aijk = Aikj = ej/k cos(jk) sin(i), j < k,

Aijj = j
10 | sin(i)| + ∑

k
=j |Aijk|, and

bij = ei/j sin(ij),
Starting point: x(1) = (0, 0, . . . , 0)T ,
Optimum point: x∗ = (−0.1263,−0.0344,−0.0069, 0.0264, 0.0673,

−0.2784, 0.0742, 0.1385, 0.0840, 0.0386)T ,
Optimum value: f(x∗) = −0.8414083.

12 Polak 2 [198]

Classification: GM-U-X-E,
Dimension: 10,
Objective function: f(x) = max { g(x + 2e2), g(x − 2e2) },
where g(x) = e10−8x2

1+x2
2+x2

3+4x2
4+x2

5+x2
6+x2

7+x2
8+x2

9+x2
10 ,

e2 = second column of the identity matrix,
Starting point: x

(1)
1 = 100.0 and
x(1)
i = 0.1 for i = 2, . . . , 10,

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 54.598150 = e4.

13 Polak 3 [198]

Classification: GM-U-X-N,
Dimension: 11,

9.1 Small Unconstrained Problems 259

Objective function: f(x) = max1≤i≤10 fi(x),

where fi(x) = ∑10
j=0

1
i+j e(

xj+1−sin(i−1+2j))
2
,

Starting point: x(1) = (1, 1, . . . , 1)T ,
Optimum point: x∗ = (0.0124, 0.2904,−0.3347,−0.1265, 0.2331,−0.2766,

−0.1666, 0.2291,−0.1858,−0.1704, 0.2402)T ,
Optimum value: f(x∗) = 3.7034924.
Note: A different optimal value f(x∗) = 261.08258 has been

given in [159]. This is due to erroneous code used in
calculations.

14 Wong 1 [7,159]

Classification: PM-U-X-N,
Dimension: 7,
Objective function: f(x) = max1≤i≤5 fi(x),
where f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4

3 + 3(x4 − 11)2 + 10x6
5

+ 7x2
6 + x4

7 − 4x6x7 − 10x6 − 8x7,

f2(x) = f1(x) + 10(2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127),

f3(x) = f1(x) + 10(7x1 + 3x2 + 10x2
3 + x4 − x5 − 282),

f4(x) = f1(x) + 10(23x1 + x2
2 + 6x2

6 − 8x7 − 196),

f5(x) = f1(x) + 10(4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7),

Starting point: x(1) = (1, 2, 0, 4, 0, 1, 1)T ,
Optimum point: x∗ = (2.3305, 1.9514,−0.4775, 4.3657,−0.6245, 1.0381,

1.5942)T ,
Optimum value: f(x∗) = 680.63006.

15 Wong 2 [7,159]

Classification: QM-U-X-N,
Dimension: 10,
Objective function: f(x) = max1≤i≤9 fi(x),
where f1(x) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

f2(x) = f1(x) + 10
(
3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4

−120),

f3(x) = f1(x) + 10
(
5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40
)
,

f4(x) = f1(x) + 10
(
0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 ,

−30),

f5(x) = f1(x) + 10
(
x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6
)
,

f6(x) = f1(x) + 10 (4x1 + 5x2 − 3x7 + 9x8 − 105),

f7(x) = f1(x) + 10 (10x1 − 8x2 − 17x7 + 2x8),

f8(x) = f1(x) + 10
(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10

)
,

f9(x) = f1(x) + 10 (−8x1 + 2x2 + 5x9 − 2x10 − 12),

260 9 Academic Problems

Starting point: x(1) = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10)T ,
Optimum point: x∗ = (2.1720, 2.3637, 8.7739, 5.0960, 0.9907, 1.4306,

1.3217, 9.8287, 8.2801, 8.3759)T ,
Optimum value: f(x∗) = 24.306209.

16 Wong 3 [7,159]

Classification: PM-U-X-N,
Dimension: 20,
Objective function: f(x) = max1≤i≤18 fi(x),
where f1(x) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2

+ 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2

+ (x11 − 9)2 + 10(x12 − 1)2 + 5(x13 − 7)2

+ 4(x14 − 14)2 + 27(x15 − 1)2 + x4
16 + (x17 − 2)2

+ 13(x18 − 2)2 + (x19 − 3)2 + x2
20 + 95,

f2(x) = f1(x) + 10
(
3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4

−120),
f3(x) = f1(x) + 10

(
5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40
)
,

f4(x) = f1(x) + 10
(
0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6

−30),
f5(x) = f1(x) + 10

(
x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6
)
,

f6(x) = f1(x) + 10 (4x1 + 5x2 − 3x7 + 9x8 − 105),
f7(x) = f1(x) + 10 (10x1 − 8x2 − 17x7 + 2x8),
f8(x) = f1(x) + 10

(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10
)
,

f9(x) = f1(x) + 10 (−8x1 + 2x2 + 5x9 − 2x10 − 12),
f10(x) = f1(x) + 10 (x1 + x2 + 4x11 − 21x12),
f11(x) = f1(x) + 10

(
x2

1 + 15x11 − 8x12 − 28
)
,

f12(x) = f1(x) + 10
(
4x1 + 9x2 + 5x2

13 − 9x14 − 87
)
,

f13(x) = f1(x) + 10
(
3x1 + 4x2 + 3(x13 − 6)2 − 14x14 − 10

)
,

f14(x) = f1(x) + 10
(
14x2

1 + 35x15 − 79x16 − 92
)
,

f15(x) = f1(x) + 10
(
15x2

2 + 11x15 − 61x16 − 54
)
,

f16(x) = f1(x) + 10
(
5x2

1 + 2x2 + 9x4
17 − x18 − 68

)
,

f17(x) = f1(x) + 10
(
x2

1 − x2 + 19x19 − 20x20 + 19
)
,

f18(x) = f1(x) + 10
(
x2

1 + 5x2
2 + x2

19 − 30x20
)
,

Starting point: x(1) = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10, 2, 2, 6, 15, 1, 2, 1, 2, 1, 3)T ,
Optimum point: x∗ = (2.1752, 2.3529, 8.7665, 5.0669, 0.9887, 1.4310,

1.3295, 9.8359, 8.2873, 8.3702, 2.2758, 1.3586,

6.0772, 14.1708, 0.9962, 0.6557, 1.4666,

2.0004, 1.0466, 2.0632)T ,
Optimum value: f(x∗) = 133.72828.

17 MAXQ [208]

Classification: QM-U-X-E,

9.1 Small Unconstrained Problems 261

Dimension: 20,
Objective function: f(x) = max1≤i≤20 x

2
i ,

Starting point: x
(1)
i = i for i = 1, . . . , 10 and
x(1)
i = −i for i = 11, . . . , 20,

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

18 MAXL [168]

Classification: LM-U-X-E,
Dimension: 20,
Objective function: f(x) = max1≤i≤20 |xi|,
Starting point: x

(1)
i = i for i = 1, . . . , 10 and
x

(1)
i = −i for i = 11, . . . , 20,

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

19 TR48 [146]

Classification: LD-U-X-N,
Dimension: 48,
Objective function: f(x) = ∑48

j=1 dj max1≤i≤48 (xi − aij) − ∑48
i=1 sixi,

Starting point: See Table 9.5,
Optimum point: See Table 9.5,
Optimum value: f(x∗) = −638565.0.

20 Goffin [168]

Classification: LD-U-X-E,
Dimension: 50,
Objective function: f(x) = max1≤i≤50 xi + ∑50

i=1 xi,
Starting point: x

(1)
i = i− 25.5 for i = 1, . . . , 50,

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

21 Crescent [131]

Classification: QM-U-Z-E,
Dimension: 2,
Objective function: f(x) = max

{
x2

1 + (x2 − 1)2 + x2 − 1,−x2
1 − (x2 − 1)2

+x2 + 1
}
,

Starting point: x(1) = (−1.5, 2),

262 9 Academic Problems

Table 9.5 Initialization and optimal point for 19

i Starting point 1 Starting point 2 Optimum point x∗

1 0.0 11.19 144.0

2 0.0 127.20 257.0

3 0.0 −129.70 0.0

4 0.0 344.50 483.0

5 0.0 −40.72 89.0

6 0.0 −295.30 −165.0

7 0.0 −202.30 −72.0

8 0.0 −382.30 −252.0

9 0.0 −217.70 −88.0

10 0.0 −307.70 −178.0

11 0.0 178.10 −311.0

12 0.0 −4.36 126.0

13 0.0 −123.30 7.0

14 0.0 −265.30 −135.0

15 0.0 28.28 158.0

16 0.0 70.57 209.0

17 0.0 −31.81 101.0

18 0.0 −222.30 −92.0

19 0.0 96.19 229.0

20 0.0 −52.79 80.0

21 0.0 −34.71 95.0

22 0.0 −59.16 71.0

23 0.0 −373.70 −244.0

24 0.0 −28.35 102.0

25 0.0 −141.70 −12.0

26 0.0 2.28 132.0

27 0.0 198.50 337.0

28 0.0 −69.16 61.0

29 0.0 −26.35 104.0

30 0.0 −88.72 41.0

31 0.0 130.80 261.0

32 0.0 −12.35 118.0

33 0.0 −30.70 99.0

34 0.0 −376.30 −246.0

35 0.0 23.18 156.0

36 0.0 −400.30 −270.0

37 0.0 197.10 330.0

38 0.0 −260.30 −130.0

39 0.0 813.50 952.0

(Continued)

9.1 Small Unconstrained Problems 263

Table 9.5 (Continued)

i Starting point 1 Starting point 2 Optimum point x∗

40 0.0 −191.70 −62.0

41 0.0 31.29 161.0

42 0.0 345.50 484.0

43 0.0 −7.72 122.0

44 0.0 335.50 474.0

45 0.0 947.50 1086.0

46 0.0 722.50 861.0

47 0.0 −300.30 −170.0

48 0.0 73.20 206.0

Optimum point: x∗ = (0, 0)T ,
Optimum value: f(x∗) = 0.

22 Mifflin 2 [168]

Classification: G-U-Z-E,
Dimension: 2,
Objective function: f(x) = −x1 + 2(x2

1 + x2
2 − 1) + 1.75|x2

1 + x2
2 − 1|,

Starting point: x(1) = (−1,−1)T ,
Optimum point: x∗ = (1, 0)T ,
Optimum value: f(x∗) = −1.

23 WF [159]

Classification: GM-U-Z-E,
Dimension: 2,

Objective function: f(x) = max
{

1
2

(
x1 + 10x1

x1+0.1 + 2x2
2

)
,

1
2

(
−x1 + 10x1

x1+0.1 + 2x2
2

)
, 1

2

(
x1 − 10x1

x1+0.1 + 2x2
2

)}
,

Starting point: x(1) = (3, 1)T ,
Optimum point: x∗ = (0, 0)T ,
Optimum value: f(x∗) = 0.

24 SPIRAL [159]

Classification: GM-U-Z-E,
Dimension: 2,
Objective function: f(x) = max { f1(x), f2(x) },
where f1(x) =

(
x1 −

√
x2

1 + x2
2 cos

√
x2

1 + x2
2

)2

+ 0.005(x2
1 + x2

2),

f2(x) =
(
x2 −

√
x2

1 + x2
2 sin

√
x2

1 + x2
2

)2

+ 0.005(x2
1 + x2

2),

264 9 Academic Problems

Starting point: x(1) = (1.411831,−4.79462)T ,
Optimum point: x∗ = (0, 0)T ,
Optimum value: f(x∗) = 0.

25 EVD52 [159]

Classification: PM-U-Z-N,
Dimension: 3,
Objective function: f(x) = max1≤i≤6 fi(x),
where f1(x) = x2

1 + x2
2 + x2

3 − 1,

f2(x) = x2
1 + x2

2 + (x3 − 2)2,

f3(x) = x1 + x2 + x3 − 1,

f4(x) = x1 + x2 − x3 − 1,

f5(x) = 2x3
1 + 6x2

2 + 2(5x3 − x1 + 1)2,

f6(x) = x2
1 − 9x3,

Starting point: x(1) = (1, 1, 1)T ,
Optimum point: x∗ = (0.3283, 0.0000, 0.1313)T ,
Optimum value: f(x∗) = 3.5997193.

26 PBC3 [159]

Classification: GM-U-Z-N,
Dimension: 3,
Objective function: f(x) = max1≤i≤21 fi(x),
where fi(x) = x3

x2
e−tix1 sin(tix2) − yi,

yi = 3
20 e

−ti + 1
52 e

−5ti − 1
65 e

−2ti (3 sin(2ti) + 11 cos(2ti)),

and ti = 10(i− 1)/20, for i = 1, . . . , 21,
Starting point: x(1) = (1, 1, 1)T ,
Optimum point: x∗ = (0.9516, 0.8761, 0.1623)T ,
Optimum value: f(x∗) = 0.42021427 · 10−2.

27 Bard [159]

Classification: PM-U-Z-N,
Dimension: 3,
Objective function: f(x) = max1≤i≤15 |fi(x)|,
where fi(x) = x1 + i

(16−i)x2+uix3
, for i = 1, . . . , 15,

u = (1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1)T , and

y = (0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58,

0.73, 0.96, 1.34, 2.10, 4.39)T ,
Starting point: x(1) = (1, 1, 1)T ,
Optimum point: x∗ = (0.0535, 1.5106, 1.9894)T ,
Optimum value: f(x∗) = 0.50816327 · 10−1.

9.1 Small Unconstrained Problems 265

28 Kowalik-Osborne [159]

Classification: GM-U-Z-N,
Dimension: 4,
Objective function: f(x) = max1≤i≤11 |fi(x)|,
where fi(x) = x1(u2

i+x2ui)

u2
i+x3ui+x4

− yi,

u = (4.0000, 2.0000, 1.0000, 0.5000, 0.2500, 0.1670, 0.1250,

0.1000, 0.0833, 0.0714, 0.0625)T ,

y = (0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456,

0.0342, 0.0323, 0.0235, 0.0246)T ,
Starting point: x(1) = (0.250, 0.390, 0.415, 0.390)T ,
Optimum point: x∗ = (0.1846, 0.1052, 0.0196, 0.1118)T ,
Optimum value: f(x∗) = 0.80843684 · 10−2.

29 Polak 6 [198]

Classification: PM-U-Z-E,
Dimension: 4,
Objective function: f(x) = max1≤i≤4 fi(x),
where f1(x) = (x1 − (x4 + 1)4)2 + (

x2 − (x1 − (x4 + 1)4)4
)2 + 2x2

3

+x2
4 − 5(x1 − (x4 + 1)4)

− 5
(
x2 − (x1 − (x4 + 1)4)4

) − 21x3 + 7x4,

f2(x) = f1(x) + 10
(
(x1 − (x4 + 1)4)2

+ (
x2 − (x1 − (x4 + 1)4)4

)2

+x2
3 + x2

4 + (x1 − (x4 + 1)4)

− (
x2 − (x1 − (x4 + 1)4)4

)

+x3 − x4 − 8),

f3(x) = f1(x) + 10
(
(x1 − (x4 + 1)4)2

+ 2
(
x2 − (x1 − (x4 + 1)4)4

)2

+x2
3 + 2x2

4 − (x1 − (x4 + 1)4) − x4 − 10
)
,

f4(x) = f1(x) + 10
(
(x1 − (x4 + 1)4)2

+ (
x2 − (x1 − (x4 + 1)4)4

)2

+x2
3 + 2(x1 − (x4 + 1)4) − (

x2 − (x1 − (x4 + 1)4)4
)

−x4 − 5),

Starting point: x(1) = (0, 0, 0, 0)T ,
Optimum point: x∗ = (0, 1, 2,−1)T ,
Optimum value: f(x∗) = −44.

30 OET5 [159]

Classification: QM-U-Z-N,
Dimension: 4,
Objective function: f(x) = max1≤i≤21 |fi(x)|,
where fi(x) = x4 − (x1t

2
i + x2ti + x3)

2 − √
ti and

ti = 0.25 + 0.75(i− 1)/20 for i = 1, . . . , 21,

266 9 Academic Problems

Starting point: x(1) = (1, 1, 1, 1)T ,
Optimum point: x∗ = (0.0876,−0.497, 1.1155, 1.4963,)T ,
Optimum value: f(x∗) = 0.26359735 · 10−2.

31 OET6 [159]

Classification: GM-U-Z-N,
Dimension: 4,
Objective function: f(x) = max1≤i≤21 |fi(x)|,
where fi(x) = x1e

x3ti + x2e
x4ti − 1

1+ti and

ti = −0.5 + (i− 1)/20, for i = 1, . . . , 21,
Starting point: x(1) = (1, 1,−3,−1)T ,
Optimum point: x∗ = (0.0987, 0.9009,−4.0619,−0.6477)T ,
Optimum value: f(x∗) = 0.20160753 · 10−2.

32 EXP [159]

Classification: GM-U-Z-N,
Dimension: 5,
Objective function: f(x) = max1≤i≤21 fi(x),
where fi(x) = x1+x2ti

1+x3ti+x4t
2
i+x5t

3
i

− eti and

ti = −1 + (i− 1)/10, i = 1, . . . , 21,
Starting point: x(1) = (0.5, 0, 0, 0, 0)T ,
Optimum point: x∗ = (0.9999, 0.2536,−0.7466, 0.2452,−0.0375)T ,
Optimum value: f(x∗) = 0.12237125 · 10−3.

33 PBC1 [159]

Classification: GM-U-Z-N,
Dimension: 5,
Objective function: f(x) = max1≤i≤30 |fi(x)|,
where fi(x) = x1+x2ti+x3t

2
i

1+x4ti+x5t
2
i

−
√

(8ti−1)2+1 arctan(8ti)
8ti

and

ti = −1 + 2(i− 1)/29, for i = 1, . . . , 30,
Starting point: x(1) = (0,−1, 10, 1, 10)T ,
Optimum point: x∗ = (1.4136,−10.5797, 40.7117,−4.0213, 27.6150)T ,
Optimum value: f(x∗) = 0.22340496 · 10−1.

34 HS78 [111,159]

Classification: G-U-Z-N,
Dimension: 5,
Objective function: f(x) = x1x2x3x4x5 + 10

∑3
i=1 |fi(x)|,

where f1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10,

9.1 Small Unconstrained Problems 267

f2(x) = x2x3 − 5x4x5,

f3(x) = x3
1 + x3

2 + 1,

Starting point: x(1) = (−2.0, 1.5, 2.0,−1.0,−1.0)T ,
Optimum point: x∗ = (−1.7171, 1.5957, 1.8272,−0.7636,−0.7636)T ,
Optimum value: f(x∗) = −2.9197004.
Note: Function HS78 is unbounded from below. The reported

minimum is a local one.

35 El-Attar [159]

Classification: G-U-Z-N,
Dimension: 6,
Objective function: f(x) = ∑50

i=1

∣∣x1e
−x2ti cos(x33ti + x4) + x5e

−x6ti − yi
∣∣,

where yi = 0.5e−ti − e−2ti + 0.5e−3ti + 1.5e−1.5ti sin(7ti)

+ e−2.5ti sin(5ti),

ti = (i− 1)/10, for i = 1, . . . , 51,

Starting point: x(1) = (2, 2, 7, 0,−2, 1)T ,
Optimum point: x∗ = (2.2407, 1.8577, 6.7701,−1.6449, 0.1659, 0.7423)T ,
Optimum value: f(x∗) = 0.5598131.

36 EVD61 [159]

Classification: GM-U-Z-N,
Dimension: 6,
Objective function: f(x) = max1≤i≤51 |fi(x)|,
where fi(x) = x1e

−x2ti cos(x3ti + x4) + x5e
−x6ti − yi,

yi = 0.5e−ti − e−2ti + 0.5e−3ti + 1.5e−1.5ti sin(7ti)

+ e−2.5ti sin(5ti),

ti = (i− 1)/10, for i = 1, . . . , 51,

Starting point: x(1) = (2, 2, 7, 0,−2, 1)T ,
Optimum point: x∗ = (2.2759, 1.8993, 6.8482,−1.6503, 0.1457, 0.5170)T ,
Optimum value: f(x∗) = 0.34904926 · 10−1.

37 Gill [159]

Classification: PM-U-Z-N,
Dimension: 10,
Objective function: f(x) = max {f1(x), f2(x), f3(x)},
where f1(x) = ∑10

i=1(xi − 1)2 + 10−3 ∑10
i=1

(
x2
i − 1

4

)2
,

f2(x) = ∑30
i=2

[∑10
j=2 xj(j − 1)

(
i−1
29

)j−2

−
(∑10

j=1 xj
(
i−1
29

)j−1
)2 − 1

]2

+x2
1 + (x2 − x2

1 − 1)2,

268 9 Academic Problems

f3(x) = ∑10
i=2

[
100(xi − x2

i−1)
2 + (1 − xi)

2
]
,

Starting point: x(1) = (−0.1,−0.1, . . . ,−0.1)T ,
Optimum point: x∗ = (−0.6022, 0.4907, 0.3096, 0.1416, 0.0542,

0.0287, 0.0197, 0.0137, 0.0087, 0.0045)T ,
Optimum value: f(x∗) = 9.7857721.

38 Problem 1 in [21]

Classification: GD-U-Z-E,
Dimension: 2,
Objective function: f(x) = max1≤i≤3 fi(x) + min4≤i≤6 fi(x),
where f1(x) = x4

1 + x2
2, and

f2(x) = (2 − x1)
2 + (2 − x2)

2,

f3(x) = 2e−x1+x2 ,

f4(x) = x2
1 − 2x1 + x2

2 − 4x2 + 4,

f5(x) = 2x2
1 − 5x1 + x2

2 − 2x2 + 4,

f6(x) = x2
1 + 2x2

2 − 4x2 + 1,

Starting point: x(1) = (2, 2)T ,
Optimum point: x∗ = (1, 1)T ,
Optimum value: f(x∗) = 2.

39 L1 version of Rosenbrock function [21]

Classification: LD-U-Z-E,
Dimension: 2,
Objective function: f(x) = |x1 − 1| + 100|x2 − |x1||,
Starting point: x(1) = (−1.2, 1)T ,
Optimum point: x∗ = (1, 1)T ,
Optimum value: f(x∗) = 0.
Note: DC representation can be found in [21].

40 L1 version of Wood function [21]

Classification: LD-U-Z-E,
Dimension: 4,
Objective function: f(x) = |x1 − 1| + 100|x2 − |x1|| + 90|x4 − |x− 3||

+ |x3 − 1| + 10.1(|x2 − 1| + |x4 − 1|)
+ 4.95(|x2 + x4 − 2| − |x2 − x4|),

Starting point: x(1) = (1, 3, 3, 1)T ,
Optimum point: x∗ = (1, 1, 1, 1)T ,
Optimum value: f(x∗) = 0.
Note: DC representation can be found in [21].

9.2 Bound Constrained Problems 269

9.2 Bound Constrained Problems

Bound constrained problems (S = {x ∈ R
n | xli ≤ xi ≤ xui for all i = 1, . . . ,n} in

(9.1)) are easily constructed from the problems given above, for instance, by inclosing
the bounds

x∗
i + 0.1 ≤ xi ≤ x∗

i + 1.1 for all odd i.

If the starting point x(1) is not feasible, it can simply be projected to the feasible
region (if a strictly feasible starting point is needed an additional safeguard of 0.0001
may be added). The classification of the bound constrained problems is the same as
that of unconstrained problems (see Sect. 9.1 and also Sect. 9.4) but, naturally, the
information about constraint functions should be replaced with B (see Table 9.1).

9.3 Linearly Constrained Problems

In this section we present small-scale nonsmooth linearly constrained test problems
(S = {x ∈ R

n | Ax ≤ b} with the inequality taken component-wise in (9.1)). The
number of variables varies from 2 to 20 and there are up to 15 constraint functions.

41 Wong 2C [159]

Classification: QM-L-X-N,
Dimension: 10,
No. of constraints: 3,
Objective function: f(x) = max1≤i≤6 fi(x),
where f1(x) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

f2(x) = f1(x) + 10(3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120),

f3(x) = f1(x) + 10(5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) = f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30),

f5(x) = f1(x) + 10(x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) = f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10),

Constraint function: g1(x) = 4x1 + 5x2 − 3x7 + 9x8 ≤ 105,

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 ≤ 12,

Starting point: x(1) = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10)T ,

Optimum point: x∗ = (2.1722, 2.3634, 8.7737, 5.0959, 0.9906, 1.4307,

1.3219, 9.8289, 8.2803, 8.3756)T ,
Optimum value: f(x∗) = 24.306209.

270 9 Academic Problems

42 Wong 3C [159]

Classification: PM-L-X-N,
Dimension: 20,
No. of constraints: 4,
Objective function: f(x) = max1≤i≤14 fi(x),
where f1(x) = x2

1 + x2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2

+ (x11 − 9)2 + 10(x12 − 1)2 + 5(x13 − 7)2

+ 4(x14 − 14)2 + 27(x15 − 1)2 + x4
16 + (x17 − 2)2

+ 13(x18 − 2)2 + (x19 − 3)2 − x2
20 + 95,

f2(x) = f1(x) + 10(3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4

− 120),

f3(x) = f1(x) + 10(5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40),

f4(x) = f1(x) + 10(0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6

− 30),

f5(x) = f1(x) + 10(x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6),

f6(x) = f1(x) + 10(−3x1 + 6x2 + 12(x9 − 8)2 − 7x10),

f7(x) = f1(x) + 10(x2
1 + 5x11 − 8x12 − 28),

f8(x) = f1(x) + 10(4x1 + 9x2 + 5x2
13 − 9x14 − 87),

f9(x) = f1(x) + 10(3x1 + 4x2 + 3(x13 − 6)2 − 14x14 − 10),

f10(x) = f1(x) + 10(14x2
1 + 35x15 − 79x16 − 92),

f11(x) = f1(x) + 10(15x2
2 + 11x15 − 61x16 − 54),

f12(x) = f1(x) + 10(5x2
1 + 2x2 + 9x4

17 − x18 − 68),

f13(x) = f1(x) + 10(x2
1 − x9 + 19x19 − 20x20 + 19),

f14(x) = f1(x) + 10(7x2
1 + 5x2

2 + x2
19 − 30x20),

Constraint function: g1(x) = 4x1 + 5x2 − 3x7 + 9x8 ≤ 105,

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 ≤ 12,

g4(x) = x1 + x2 + 4x11 − 21x21 ≤ 0,

Starting point: x(1) = (2, 3, 5, 5, 1, 2, 7, 3, 6, 10, 2, 2, 6, 15, 1, 2, 1, 2, 1, 3)T ,

Optimum point: x∗ = (2.1749, 2.3537, 8.7666, 5.0669, 0.9888, 1.4309,

1.3288, 9.8354, 8.2867, 8.3709, 2.2759, 1.3586,

6.0771, 14.1708, 0.9962, 0.6566, 1.4666, 2.0004,

1.0471, 2.0636)T ,
Optimum value: f(x∗) = 24.306209.

43 MAD1 [159]

Classification: GM-L-Z-N,
Dimension: 2,
No. of constraints: 1,
Objective function: f(x) = max1≤i≤3 fi(x),
where f1(x) = x2

1 + x2
2 + x1x2 − 1,

f2(x) = sin x1,

9.3 Linearly Constrained Problems 271

f3(x) = − cosx2,
Constraint function: g1(x) = x1 + x2 − 0.5 ≥ 0,
Starting point: x(1) = (1, 2)T ,
Optimum point: x∗ = (−0.4003, 0.9003)T ,
Optimum value: f(x∗) = −0.38965952.

44 MAD2 [159]

Classification: GM-L-Z-N,
Dimension: 2,
No. of constraints: 1,
Objective function: f(x) = max1≤i≤3 fi(x),
where f1(x) = x2

1 + x2
2 + x1x2 − 1,

f2(x) = sin x1,
f3(x) = − cosx2,

Constraint function: g1(x) = −3x1 − x2 + 2.5 ≥ 0,

Starting point: x(1) = (−2,−1)T ,
Optimum point: x∗ = (−0.8929, 0.1786)T ,
Optimum value: f(x∗) = −0.33035714.

45 MAD4 [159]

Classification: GM-L-Z-N,
Dimension: 2,
No. of constraints: 1,
Objective function: f(x) = max1≤i≤3 fi(x),
where f1(x) = − exp(x1 − x2),

f2(x) = sinh(x1 − 1) − 1,
f3(x) = − log(x2) − 1,

Constraint function: g1(x) = 0.05x1 − x2 + 0.5 ≥ 0,

Starting point: x(1) = (−1, 0.01)T ,
Optimum point: x∗ = (1.5264, 0.5763)T ,
Optimum value: f(x∗) = −0.44891079.

46 MAD5 [159]

Classification: GM-L-Z-N,
Dimension: 2,
No. of constraints: 1,
Objective function: f(x) = max1≤i≤3 fi(x),
where f1(x) = − exp(x1 − x2),

f2(x) = sinh(x1 − 1) − 1,

f3(x) = − log(x2) − 1,

Constraint function: g1(x) = −0.9x1 + x2 − 1 ≥ 0,

272 9 Academic Problems

Starting point: x(1) = (−1, 3)T ,
Optimum point: x∗ = (1.5436, 2.3892)T ,
Optimum value: f(x∗) = −0.42928061.

47 PENTAGON [159]

Classification: GM-L-Z-N,
Dimension: 6,
No. of constraints: 15,
Objective function: f(x) = max1≤i≤3 fi(x),
where f1(x) = −√

(x1 − x3)2 + (x2 − x4)2,
f2(x) = −√

(x3 − x5)2 + (x4 − x6)2,
f3(x) = −√

(x5 − x1)2 + (x6 − x2)2,

Constraint function: gij(x) = xi cos 2πj
5 + xi+1 sin 2πj

5 ≤ 1,

where i = 1, 3, 5, j = 0, 1, 2, 3, 4
Starting point: x(1) = (−1, 0, 0, −1, 1, 1)T ,
Optimum point: x∗ = (−0.9723, 0.2436, 0.5322, −0.8494, 0.7265, 1.0000)T ,
Optimum value: f(x∗) = −1.85961870.

48 MAD6 [159]

Classification: GM-L-Z-N,
Dimension: 7,
No. of constraints: 9,
Objective function: f(x) = max1≤i≤163 fi(x),
where fi(x) = 1

15 + 2
15

∑7
i=1 cos(2πxj sin ϑi),

ϑi = π
180 (8.5 + i0.5), 1 ≤ i ≤ 163,

Constraint function: g1(x) = x1 ≥ 0.4,

g2(x) = −x1 + x2 ≥ 0.4,

g3(x) = −x2 + x3 ≥ 0.4,

g4(x) = −x3 + x4 ≥ 0.4,

g5(x) = −x4 + x5 ≥ 0.4,

g6(x) = −x5 + x6 ≥ 0.4,

g7(x) = −x6 + x7 ≥ 0.4,

g8(x) = −x4 + x6 = 1.0,
g9(x) = x7 = 3.5,

Starting point: x(1) = (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5)T ,

Optimum point: x∗ = (0.4000, 0.8198, 1.2198, 1.6940, 2.0940, 2.6940,

3.5000)T ,
Optimum value: f(x∗) = 0.10183089.

9.3 Linearly Constrained Problems 273

49 Dembo 3 [159]

Classification: GM-L-Z-N,
Dimension: 7,
No. of constraints: 2 (+ bound constraints),
Objective function: f(x) = max1≤i≤13 fi(x),
where f1(x) = a1x1 + a2x1x6 + a3x3 + a4x2 + a5 + a6x3x5,

f2(x) = f1(x) + 105(a7x
2
6 + a8x

−1
1 x3 + a9x6 − 1),

f3(x) = f1(x) + 105(a10x1x
−1
3 + a11x1x

−1
3 x6

+ a12x1x
−1
3 x2

6 − 1),

f4(x) = f1(x) + 105(a13x
2
6 + a14x5 + a15x4 + a16x6 − 1),

f5(x) = f1(x) + 105(a17x
−1
5 + a18x

−1
5 x6 + a19x4x

−1
5

+ a20x
−1
5 x2

6 − 1),

f6(x) = f1(x) + 105(a21x7 + a22x2x
−1
3 x−1

4 + a23x2x
−1
3

− 1),

f7(x) = f1(x) + 105(a24x
−1
7 + a25x2x

−1
3 x−1

7

+ a26x2x
−1
3 x−1

4 x−1
7 − 1),

f8(x) = f1(x) + 105(a27x
−1
5 + a28x

−1
5 x7 − 1),

f9(x) = f1(x) + 105(a33x1x
−1
3 + a34x

−1
3 − 1),

f10(x) = f1(x) + 105(a35x2x
−1
3 x−1

4 + a36x2x
−1
3 − 1),

f11(x) = f1(x) + 105(a37x4 + a38x
−1
3 x3x4 − 1),

f12(x) = f1(x) + 105(a39x1x6 + a40x1 + a41x3 − 1),

f13(x) = f1(x) + 105(a42x
−1
1 x3 + a43x1 + a44x6 − 1),

Constraint function: g1(x) = a29x5 + a30x7 ≤ 1,

g2(x) = a31x3 + a32x1 ≤ 1,

1 ≤ x1 ≤ 2000, 1 ≤ x2 ≤ 120, 1 ≤ x3 ≤ 5000,

85 ≤ x4 ≤ 93, 90 ≤ x5 ≤ 95, 3 ≤ x6 ≤ 12,

145 ≤ x7 ≤ 162,

Starting point: x(1) = (1745, 110, 3048, 89, 92, 8, 145)T ,
Optimum point: x∗ = (1698.0025, 53.7482, 3031.1493, 90.1212, 95.0000,

10.4870, 153.5354)T ,
Optimum value: f(x∗) = 1227.2260.

50 Dembo 5 [159]

Classification: GM-L-Z-N,
Dimension: 8,
No. of constraints: 3 (+ bound constraints),
Objective function: f(x) = max1≤i≤4 fi(x),
where f1(x) = x1 + x2 + x3,

f2(x) = f1(x) + 105(ax−1
1 x4x

−1
6 + 100x−1

6 + bx−1
1 x−1

6 − 1),

f3(x) = f1(x) + 105(x4x
−1
7 + 1250(x5 − x4)x

−1
2 x−1

7 − 1),

f4(x) = f1(x) + 105(cx−1
3 x−1

8 + x5x
−1
8 − 2500x−1

3 x5x
−1
8 − 1),

a = 833.33252, b = −83333.333, and c = 1250000.0,
Constraint function: g1(x) = 0.0025(x4 + x5) ≤ 1,

274 9 Academic Problems

g2(x) = 0.0025(x5 − x7 − x4) ≤ 1,

g3(x) = 0.01(x8 − x5) ≤ 1,
100 ≤ x1 ≤ 10000, 1000 ≤ x2 ≤ 10000,

1000 ≤ x3 ≤ 10000, 10 ≤ x4 ≤ 1000,

10 ≤ x5 ≤ 1000, 10 ≤ x6 ≤ 1000,

10 ≤ x7 ≤ 1000, 10 ≤ x8 ≤ 1000,

Starting point: x(1) = (5000, 5000, 5000, 200, 359, 150, 225, 425)T ,
Optimum point: x∗ = (581.1358, 1358.8591, 5109.2561, 182.1702,

295.6298, 217.8298, 286.5404, 395.6298)T ,
Optimum value: f(x∗) = 7049.2480.

51 EQUIL [146,159]

Classification: GM-L-Z-N,
Dimension: 8,
No. of constraints: 1 (+ bound constraints),
Objective function: f(x) = max1≤i≤8 fi(x),

where fi(x) = ∑5
j=1

(
aji

∑8
k=1 wjkxk

x
bj
i

∑8
k=1 ajkx

1−bj
k

− wji

)
, for i = 1, . . . , 8,

W = [wjk] =

⎛

⎜⎜⎜⎝

3 1 0.1 0.1 5 0.1 0.1 6
0.1 10 0.1 0.1 5 0.1 0.1 0.1
0.1 9 10 0.1 4 0.1 7 0.1
0.1 0.1 0.1 10 0.1 3 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 11

⎞

⎟⎟⎟⎠,

A = [ajk] =

⎛

⎜⎜⎜⎝

1 1 1 1 1 1 1 1
2 0.8 1 0.5 1 1 1 1
1 1.2 0.8 1.2 1.6 2 0.6 0.1
2 0.1 0.6 2 1 1 1 2

1.2 1.2 0.8 1 1.2 0.1 3 4

⎞

⎟⎟⎟⎠,

b = [bj] = (0.5, 1.2, 0.8, 2.0, 1.5)T ,
Constraint function: g1(x) = ∑8

i=1 xi = 1,
xi ≥ 0, for i = 1, . . . , 8,

Starting point: x
(1)
i = 0.125, for i = 1, . . . , 8,

Optimum point: x∗ = (0.2712, 0.0296, 0.0629, 0.0931, 0.0672, 0.3059,

0.1044, 0.0657)T ,
Optimum value: f(x∗) = 0.

52 HS114 [159]

Classification: GM-L-Z-N,
Dimension: 10,
No. of constraints: 5 (+ bound constraints),
Objective function: f(x) = max1≤i≤9 fi(x),
where f1(x) = 5.04x1 + 0.035x2 + 10x3 + 3.36x5 − 0.063x4x7,

9.3 Linearly Constrained Problems 275

f2(x) = f1(x) + 500(1.12x1 + 013167x1x8 − 0.00667x1x
2
8

− 1
ax4),

f3(x) = f1(x) − 500(1.12x1 + 013167x1x8 − 0.00667x1x
2
8

−ax4),

f4(x) = f1(x) + 500(1.098x8 − 0.038x2
8 + 0.352x6 − 1

ax7

+ 57.425),

f5(x) = f1(x) − 500(1.098x8 − 0.038x2
8 + 0.352x6 − ax7

+ 57.425),

f6(x) = f1(x) + 500(98000x3
x4x9+1000x3

− x6),

f7(x) = f1(x) − 500(98000x3
x4x9+1000x3

− x6),

f8(x) = f1(x) + 500(
x2+x5
x1

− x8),

f9(x) = f1(x) − 500(
x2+x5
x1

− x8),

a = 0.99, b = 0.90,
Constraint function: g1(x) = 0.222x10 + bx9 ≤ 35.82,

g2(x) = 0.222x10
1
b x9 ≥ 35.82,

g3(x) = 3x7 − ax10 ≥ 133,

g4(x) = 3x7 − 1
ax10 ≤ 133,

g5(x) = 1.22x4 − x1 − x5 = 0,
10−5 ≤ x1 ≤ 2000, 10−5 ≤ x2 ≤ 16000,

10−5 ≤ x3 ≤ 120, 10−5 ≤ x4 ≤ 5000,

10−5 ≤ x5 ≤ 2000, 85 ≤ x6 ≤ 93,

90 ≤ x7 ≤ 95, 3 ≤ x8 ≤ 12,

1.2 ≤ x9 ≤ 4, 145 ≤ x10 ≤ 162,

Starting point: x(1) = (1745, 12000, 110, 3048, 1974, 89.2, 92.8, 8.0, 3.6,

145)T ,
Optimum point: x∗ = (1697.8253, 15782.8314, 54.2333, 3031.0044,

2000.0000, 90.1334, 95.0000, 10.4739, 1.5616,

153.5354)T ,
Optimum value: f(x∗) = −1768.8070.

53 Dembo 7 [159]

Classification: GM-L-Z-N,
Dimension: 16,
No. of constraints: 1 (+ bound constraints),
Objective function: f(x) = max1≤i≤19 fi(x),
where f1(x) = a(x12 + x13 + x14 + x15 + x16)

+ b(x1x12 + x2x13 + x3x14 + x4x14 + x5x16)

f2(x) = f1(x) + 103(cx1x
−1
6 + 100dx1 − dx2

1x
−1
6 − 1),

f3(x) = f1(x) + 103(cx2x
−1
7 + 100dx2 − dx2

2x
−1
7 − 1)),

f4(x) = f1(x) + 103(cx3x
−1
8 + 100dx3 − dx2

3x
−1
8 − 1),

276 9 Academic Problems

f5(x) = f1(x) + 103(cx4x
−1
9 + 100dx4 − dx2

4x
−1
9 − 1),

f6(x) = f1(x) + 103(cx5x
−1
10 + 100dx5 − dx2

5x
−1
10 − 1),

f7(x) = f1(x) + 103(x6x
−1
7 + x1x

−1
7 x−1

11 x12

−x6x
−1
7 x−1

11 x12 − 1),

f8(x) = f1(x) + 103(x7x
−1
8 + 0.002(x7 − x1)x

−1
8 x12

+ 0.002(x2x
−1
8 − 1)x13 − 1),

f9(x) = f1(x) + 103(x8 + 0.002(x8 − x2)x13

+ 0.002(x3 − x9)x14 + x9 − 1),
f10(x) = f1(x) + 103(x−1

3 x9 + (x4 − x8)x
−1
3 x−1

14 x15

+ 500(x10 − x9)x
−1
3 x−1

14 − 1),

f11(x) = f1(x) + 103((x−1
4 x5 − 1)x−1

15 x16 + x−1
4 x10

+ 500(1 − x−1
4 x10)x

−1
15 − 1),

f12(x) = f1(x) + 103(0.9x−1
4 + 0.002(1 − x−1

4 x5)x16 − 1),

f13(x) = f1(x) + 103(x−1
11 x12 − 1),

f14(x) = f1(x) + 103(x4x
−1
5 − 1),

f15(x) = f1(x) + 103(x3x
−1
4 − 1),

f16(x) = f1(x) + 103(x2x
−1
3 − 1),

f17(x) = f1(x) + 103(x1x
−1
2 − 1),

f18(x) = f1(x) + 103(x9x
−1
10 − 1),

f19(x) = f1(x) + 103(x8x
−1
9 − 1),

a = 1.262626, b = −1.231060,
c = 0.034750, d = 0.009750,

Constraint function: g1(x) = 0.002(x11 − x12) ≤ 1,

0.1 ≤ x1 ≤ 0.9, 0.1 ≤ x2 ≤ 0.9,
0.1 ≤ x3 ≤ 0.9, 0.1 ≤ x4 ≤ 0.9,
0.9 ≤ x5 ≤ 1.0, 10−4 ≤ x6 ≤ 0.1,
0.1 ≤ x7 ≤ 0.9, 0.1 ≤ x8 ≤ 0.9,
0.1 ≤ x9 ≤ 0.9, 0.1 ≤ x10 ≤ 0.9,
1 ≤ x11 ≤ 1000, 10−6 ≤ x12 ≤ 500,
1 ≤ x13 ≤ 500, 500 ≤ x14 ≤ 1000,
500 ≤ x15 ≤ 1000, 10−6 ≤ x16 ≤ 500,

Starting point: x(1) = (0.80, 0.83, 0.85, 0.87, 0.90, 0.10, 0.12, 0.19, 0.25,

0.29, 512, 13.1, 71.8, 640, 650, 5.7)T

Optimum point: x∗ = (0.8038, 0.8161, 0.9000, 0.9000, 0.9000, 0.1000,

0.1070, 0.1908, 0.1908, 0.1908, 505.0526, 5.0526,

72.6358, 500.0000, 500.0000, 0.0000)T ,
Optimum value: f(x∗) = 174.78699.

54 MAD8 [159]

Classification: QM-B-Z-N,
Dimension: 20,
No. of constraints: 0 (only bound constraints),
Objective function: f(x) = max1≤i≤38 |fi(x)|,
where f1(x) = −1 + x2

1 + ∑20
j=2 xj ,

9.3 Linearly Constrained Problems 277

Table 9.6 Values of a for problem 49

i ai i ai i ai

1 1.715 16 −0.19120592 · 10−1 31 0.00061000

2 0.035 17 0.56850750 · 102 32 −0.0005

3 4.0565 18 1.08702000 33 0.81967200

4 10.0 19 0.32175000 34 0.81967200

5 3000.0 20 −0.03762000 35 24500.0

6 −0.063 21 0.00619800 36 −250.0

7 0.59553571 · 10−2 22 0.24623121 · 104 37 0.10204082 · 10−1

8 0.88392857 23 −0.25125634 · 102 38 0.12244898 · 10−4

9 −0.11756250 24 0.16118996 · 103 39 0.00006250

10 1.10880000 25 5000.0 40 0.00006250

11 0.13035330 26 −0.48951000 · 106 41 -0.00007625

12 −0.00660330 27 0.44333333 · 102 42 1.22

13 0.66173269 · 10−3 28 0.33000000 43 1.0

14 0.17239878 · 10−1 29 0.02255600 44 −1.0

15 −0.56595559 · 10−2 30 −0.00759500

fi(x) = −1 + cix
2
k + ∑20

j=1,j
=k xj for 1 < i < 38,
f38 = −1 + x2

20 + ∑19
j=1 xj ,

k = (i+ 2)/2, ci = 1, for i = 2, 4, ..., 36,
k = (i+ 1)/2, ci = 2, for i = 3, 5, ..., 37,

Constraint function: xj ≥ 0.5 for 1 ≤ j ≤ 10,
Starting point: x

(1)
j = 100 for j = 1, . . . , 20,

Optimum point: x∗ = (0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000,

0.5000, 0.5000, 0.5000, 0.5000,−0.4167,−0.4167,

−0.4167,−0.4167,−0.4167,−0.4167,−0.4167,

−0.4167,−0.4167,−0.5069)T ,
Optimum value: f(x∗) = 0.50694799.

9.4 Large Problems

In this section we present 21 large-scale nonsmooth unconstrained test problems.
The problems can be formulated with any number of variables.

55 Generalization of MAXL [155]

Classification: LM-U-X-E,
Dimension: any,
Objective function: f(x) = max1≤i≤n |xi|,

278 9 Academic Problems

Starting point: x
(1)
i = i/n for i = 1, . . . ,n/2 and
x

(1)
i = −i/n for i = n/2 + 1, . . . ,n,

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

56 Generalization of L1HILB [155]

Classification: L-U-X-E,
Dimension: any,

Objective function: f(x) = ∑n
i=1

∣∣∣
∑n

j=1
xj

i+j−1

∣∣∣,
Starting point: x(1) = (1, 1, . . . , 1)T ,
Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

57 Generalization of MAXQ [98]

Classification: QM-U-X-E,
Dimension: any,
Objective function: f(x) = max1≤i≤n x2

i ,
Starting point: x(1)

i = i for i = 1, . . . ,n/2 and
x

(1)
i = −i for i = n/2 + 1, . . . ,n.

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

58 Generalization of MXHILB [98]

Classification: LM-U-X-E,
Dimension: any,

Objective function: f(x) = max1≤i≤n
∣∣∣
∑n

j=1
xj

i+j−1

∣∣∣,
Starting point: x(1) = (1, 1, . . . , 1)T ,
Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

59 Chained LQ [98]

Classification: G-U-X-E,
Dimension: any,
Objective function: f(x) = ∑n−1

i=1 max { −xi − xi+1,

−xi − xi+1 + (x2
i + x2

i+1 − 1)
}
,

Starting point: x(1) = (−0.5,−0.5, . . . ,−0.5)T ,
Optimum point: x∗ = (1/

√
2, 1/

√
2, . . . , 1/

√
2)T ,

Optimum value: f(x∗) = −(n− 1)
√

2.

9.4 Large Problems 279

60 Chained CB3 I [98]

Classification: G-U-X-E,
Dimension: any,
Objective function: f(x) = ∑n−1

i=1 max
{
x4
i + x2

i+1, (2 − xi)
2 + (2 − xi+1)

2,

2e−xi+xi+1
}
,

Starting point: x(1) = (2, 2, . . . , 2)T ,
Optimum point: x∗ = (1, 1, . . . , 1)T ,
Optimum value: f(x∗) = 2(n− 1).

61 Chained CB3 II [98]

Classification: GM-U-X-E,
Dimension: any,

Objective function: f(x) = max
{ ∑n−1

i=1

(
x4
i + x2

i+1

)
,

∑n−1
i=1

(
(2 − xi)

2 + (2 − xi+1)
2
)
,

∑n−1
i=1

(
2e−xi+xi+1

) }
,

Starting point: x(1) = (2, 2, . . . , 2)T ,
Optimum point: x∗ = (1, 1, . . . , 1)T ,
Optimum value: f(x∗) = 2(n− 1).

62 Number of active faces [95]

Classification: GM-U-Z-E,
Dimension: any,
Objective function: f(x) = max1≤i≤n

{
g

(−∑n
i=1 xi

)
, g(xi)

}
,

where g(y) = ln (|y| + 1),
Starting point: x(1) = (1, 1, . . . , 1)T ,
Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

63 Nonsmooth generalization of Brown function 2 [98]

Classification: G-U-Z-E,
Dimension: any,

Objective function: f(x) = ∑n−1
i=1

(
|xi|x2

i+1+1 + |xi+1|x2
i+1

)
,

Starting point: x
(1)
i = 1.0, when mod (i, 2) = 0 and
x

(1)
i = −1.0, when mod (i, 2) = 1, i = 1, . . . ,n.

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

280 9 Academic Problems

64 Chained Mifflin 2 [98]

Classification: G-U-Z-N,
Dimension: any,
Objective function: f(x) = ∑n−1

i=1

(−xi + 2
(
x2
i + x2

i+1 − 1
)

+ 1.75
∣∣x2
i + x2

i+1 − 1
∣∣),

Starting point: x(1) = (1, 1, . . . , 1)T ,
Optimum point: x∗ not available,
Optimum value: f(x∗) varies:

f(x∗) ≈ −34.795, when n = 50,
f(x∗) ≈ −140.86, when n = 200, and
f(x∗) ≈ −706.55, when n = 1000.

65 Chained crescent I [98]

Classification: QM-U-Z-E,
Dimension: any,

Objective function: f(x) = max
{ ∑n−1

i=1

(
x2
i + (xi+1 − 1)2 + xi+1 − 1

)
,

∑n−1
i=1

(−x2
i − (xi+1 − 1)2 + xi+1 + 1

)}
.

Starting point: x(1)
i = 2.0, when mod (i, 2) = 0 and
x

(1)
i = −1.5, when mod (i, 2) = 1, i = 1, . . . ,n,

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

66 Chained crescent II [98]

Classification: G-U-Z-E,
Dimension: any,
Objective function: f(x) = ∑n−1

i=1 max
{
x2
i + (xi+1 − 1)2 + xi+1 − 1,

−x2
i − (xi+1 − 1)2 + xi+1 + 1

}
,

Starting point: x
(1)
i = 2.0, when mod (i, 2) = 0 and
x

(1)
i = −1.5, when mod (i, 2) = 1, i = 1, . . . ,n,

Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

67 Problem 6 in TEST29 [155]

Classification: QM-U-Z-N,
Dimension: any,
Objective function: f(x) = max1≤i≤n |(3 − 2xi)xi + 1 − xi−1 − xi+1|,
where x0 = xn+1 = 0,
Starting point: x(1) = (−1,−1, . . . ,−1)T ,

9.4 Large Problems 281

Optimum point: x∗ not available,
Optimum value: f(x∗) = 0.

68 Problem 17 in TEST29 [155]

Classification: GM-U-Z-E,
Dimension: any, divisible by five

Objective function: f(x) = max1≤i≤n
∣∣∣5 − (j + 1)(1 − cosxi) − sin xi

− ∑5j+5
k=5j+1 cosxk

∣∣∣,
where j = div (i− 1, 5),
Starting point: x(1) = (1/n, 1/n, . . . , 1/n)T ,
Optimum point: x∗ = (0, 0, . . . , 0)T ,
Optimum value: f(x∗) = 0.

69 Problem 19 in TEST29 [155]

Classification: GM-U-Z-N,
Dimension: any,
Objective function: f(x) = max1≤i≤n ((3 − 2xi)xi − xi−1 − 2xi+1 + 1)2,
where x0 = xn+1 = 0.
Starting point: x(1) = (−1,−1, . . . ,−1)T ,
Optimum point: x∗ not available,
Optimum value: f(x∗) = 0.

70 Problem 20 in TEST29 [155]

Classification: GM-U-Z-N,
Dimension: any,
Objective function: f(x) = max1≤i≤n |(0.5xi − 3)xi − 1 + xi−1 + 2xi+1|,
where x0 = xn+1 = 0,
Starting point: x(1) = (−1,−1, . . . ,−1)T ,
Optimum point: x∗ not available,
Optimum value: f(x∗) = 0.

71 Problem 22 in TEST29 [155]

Classification: GM-U-Z-N,
Dimension: any,

Objective function: f(x) = max1≤i≤n
∣∣∣2xi + 1

2(n+1)2 (xi + i
n+1 + 1)3

−xi−1 − xi+1

∣∣∣,
where x0 = xn+1 = 0,

282 9 Academic Problems

Starting point: x
(1)
i = i

n+1

(
i

n+1 − 1
)

for all i = 1, . . . ,n,

Optimum point: x∗ not available,
Optimum value: f(x∗) = 0.

72 Problem 24 in TEST29 [155]

Classification: GM-U-Z-N,
Dimension: any,

Objective function: f(x) = max1≤i≤n
∣∣∣2xi + 10

(n+1)2 sinh(10xi)

−xi−1 − xi+1

∣∣∣,
where x0 = 0 and xn+1 = 1,
Starting point: x(1) = (1, 1, . . . , 1)T ,
Optimum point: x∗ not available,
Optimum value: f(x∗) = 0.

73 DC Maxl [21]

Classification: LD-U-Z-E,
Dimension: any,
Objective function: f(x) = n max1≤i≤n |xi| − ∑n

i=1 |xi|,
Starting point: x

(1)
i = i for i = 1, . . . ,n/2,
x

(1)
i = −i for i = n/2 + 1, . . . ,n,

Optimum point: x∗ = (α,α, . . . ,α), α ∈ R

Optimum value: f(x∗) = 0.

74 DC Maxq [26]

Classification: QD-U-Z-E,
Dimension: any,
Objective function: f(x) = (n+ 1) max1≤i≤n x2

i − ∑n
i=1 x

2
i ,

Starting point: x(1) ∈ R
n not specified,

Optimum point: x∗ = 0,
Optimum value: f(x∗) = 0.

75 Problem 6 in [26]

Classification: LD-U-Z-E,
Dimension: any,
Objective function: f(x) = 10 max1≤j≤10

{| ∑n
i=1(xi − x∗

i)tj
i−1|}

−∑10
j=1 | ∑n

i=1(xi − x∗
i)tj

i−1|,
tj = max1≤j≤10 {0.001, 0.1j}

Starting point: x(1) ∈ R
n not specified,

9.4 Large Problems 283

Optimum point: x∗ = (1/n, ..., 1/n)T ,
Optimum value: f(x∗) = 0.

76 Problem 7 in [26]

Classification: LD-U-Z-E,
Dimension: any,
Objective function: f(x) = 10 max1≤j≤10

{| ∑n
i=1 |xi − x∗

i |tj i−1
}

−∑10
j=1 | ∑n

i=1 |xi − x∗
i |tj i−1,

tj = max1≤j≤10 {0.001, 0.1j}
Starting point: x(1) ∈ R

n not specified,
Optimum point: x∗ = (1/n, ..., 1/n)T ,
Optimum value: f(x∗) = 0.

Similarly to small-scale problems these problems can be turned to bound con-
strained ones, for instance, by inclosing the additional bounds

x∗
i + 0.1 ≤ xi ≤ x∗

i + 1.1 for all odd i.

9.5 Inequality Constrained Problems

In this section, we describe five nonlinear or nonsmooth inequality constraints (or
constraint combinations). The constraints can be combined with the problems 57–66
given in Sect. 9.4 to obtain 50 inequality constrained problems (S = {x ∈ R

n |
gj(x) ≤ 0 for all j = 1, . . . , p} in (9.1)).

The constraints are selected such that the original unconstrained minimizers of
problems in Sect. 9.4 are not feasible. Note that, due to nonconvexity of the con-
straints, all the inequality constrained problems formed this way are nonconvex.

The starting points x(1) = (x
(1)
1 , . . . ,x

(1)
n)T for inequality constrained problems

are chosen to be strictly feasible. In what follows, the starting points for the problems
with constraints are the same as those for problems without constraints (see Sect. 9.4)
unless stated otherwise. The optimum values for the problems with different objective
functions and n = 1000 are given in Table 9.2.

77 Modification of Broyden tridiagonal constraint I [122,126]

Classification: O[O]-Q-Z-N,
No. of constraints: n− 2,
Dimension: any,
Objective functions: 57, 58, 62, 63, 65, and 66,
Constraint function: gj(x) = (3.0 − 2.0xj+1)xj+1 − xj − 2.0xj+2 + 1.0,

j = 1, . . . ,n− 2,

284 9 Academic Problems

Objective functions: 59, 60, 61, and 64,
Constraint function: gj(x) = (3.0 − 2.0xj+1)xj+1 − xj − 2.0xj+2 + 2.5,

j = 1, . . . ,n− 2,
Starting point: x(1) = (2, 2, . . . , 2)T for objectives 59 and 64,
Starting point: x(1) = (1, 1, . . . , 1)T for objectives 65 and 66,
Starting point: x

(1)
i = −1, i ≤ n and

mod (i, 2) = 0 for objective 63.

78 Modification of Broyden tridiagonal constraint II [122,126]

Classification: O[O]-Q-Z-N,
No. of constraints: 1,
Dimension: any,
Objective functions: 57, 58, 62, 63, 65, and 66,
Constraint function: g1(x) = ∑n−2

i=1 ((3.0 − 2.0xi+1)xi+1 − xi − 2.0xi+2
+ 1.0),

Objective functions: 59, 60, 61, and 64,
Constraint function: g1(x) = ∑n−2

i=1 ((3.0 − 2.0xi+1)xi+1 − xi − 2.0xi+2
+ 2.5),

Starting point: x(1) = (2, 2, . . . , 2)T for objectives 59 and 64.

79 Modification of MAD1 I [122, 126]

Classification: O[O]-G-Z-N,
No. of constraints: 2,
Dimension: any,
Objective functions: 57–66,
Constraint function: g1(x) = max

{
x2

1 + x2
2 + x1x2 − 1.0, sin x1, − cosx2

}
,

g2(x) = −x1 − x2 + 0.5,
Starting point: x

(1)
1 = −0.5 and x

(1)
2 = 1.1 for all objectives,

otherwise, the starting points given in Sect. 9.4 are used.

80 Modification of MAD1 II [122, 126]

Classification: O[O]-G-Z-N,
No. of constraints: 4,
Dimension: any,
Objective functions: 57–66,
Constraint function: g1(x) = x2

1 + x2
2 + x1x2 − 1.0,

g2(x) = sin x1,
g3(x) = − cosx2,
g4(x) = −x1 − x2 + 0.5,

Starting point: x(1)
1 = −0.5 and x(1)

2 = 1.1, for all objectives,
otherwise the starting points given in Sect. 9.4 are used.

9.5 Inequality Constrained Problems 285

81 Simple modification of MAD1 [122,126]

Classification: O[O]-Q-Z-N,
No. of constraints: 1,
Dimension: any,
Objective functions: 57, 58, 62, 63, 65, and 66,
Constraint function: g1(x) = ∑n−1

i=1

(
x2
i + x2

i+1 + xixi+1 − 2.0xi − 2.0xi+1

+ 1.0),
Objective functions: 59, 60, 61, and 64,
Constraint function: g1(x) = ∑n−1

i=1

(
x2
i + x2

i+1 + xixi+1 − 1.0
)
,

Starting point: x(1) = (0.5, 0.5, . . . , 0.5)T

for objectives 57, 58, 62, 63, 65, and 66,
Starting point: x(1) = (0, 0, . . . , 0)T for objectives 60, 61, and 64.

Part II
Notes and References

Practical Problems

Computational Chemistry and Biology

A comprehensive review of mathematics in molecular modeling can be found, for
instance, in [141, 187].

Polyatomic clustering problem: In [153], a smooth penalized modification for
the Lennard-Jones potential function (7.1) and (7.2) was introduced that allows a
local search method to escape from the enormous number of local minima found in
the Lennard-Jones energy landscape. The local minimum of the modified objective
function was then used as a starting point for the local optimization of the
Lennard-Jones potential function (7.1) and (7.2). This procedure was reported to
result in convergence to the global minimum with much greater success than when
starting local optimization with random points [153]. The idea was further mod-
ified in [31], resulting in a nonsmooth penalized Lennard-Jones potential (7.3) with
p = 6.

Molecular distance geometry problem: Reviews and background of the molecular
distance geometry problem (MDGP) in protein structure determination can be
found, for instance, in [65, 140, 184]. The exact MDGP (7.4) can be solved by a
linear time algorithm, as shown in [80], when all distances between all atom pairs of
a molecule are known. However, in [183], it has been shown that when the upper and
lower bounds are close to each other, an MDGP with relaxed distances belongs to the
NP-hard class.

Most approaches to solving a nonsmooth MDGP rely on some kind of
smoothing of the model (see e.g., [3, 183, 211]). In [4], the MDGP problems (7.4)
and (7.5) were modeled as a D.C. (difference of two convex functions) pro-
gramming problem and solved by D.C. programming approach.

Although we have approached the MDGP mainly via a protein folding problem,
this kind of formulation can also be used in other molecular modeling. For
instance, in [171], a nonsmooth MDGP was applied to the modeling of polymer
and composite systems.

http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7

Protein structural alignment: In 1960, Perutz et. al. [196] showed, using structural
alignment, that myoglobin and hemoglobin have similar three-dimensional
structures even though their sequences (e.g., the order of residues) differ. Indeed,
these two proteins are functionally similar, being involved with the storage and
transport of oxygen, respectively. Since 1960, the structural similarity of proteins
has been studied intensely in the hope of finding shared functionalities.

In [135], a method for globally solving the protein structural alignment problem
in polynomial time was introduced. However, this algorithm is not computation-
ally affordable and, in practice, an heuristic procedure called the Structal Method
[216] is generally used. In [134], the Structal Method was reported to be the best
practical method for solving the protein alignment problem. Later, in [5, 169],
different kinds of convergent algorithms for LOVO formulation [6] of the protein
alignment problem were developed and analyzed.

Molecular docking: Finding a solution to the molecular docking problem
involves two critical elements: a good scoring function, and an efficient algorithm
for searching conformation and orientation spaces. In [226], 11 different scoring
functions for molecular docking were compared and evaluated. The above-
mentioned PLP [92] was evaluated as one of the best.

The algorithms used for solving molecular docking problems involve genetic
and evolutionary algorithms (see e.g., [88, 92, 220, 232]), Monte Carlo simulations
(see e.g., [224]), and L-BFGS (see e.g., [87]) to mention but a few. In all of the
references given above, PLP or its modification has been used as a scoring
function. In [87, 88], the energy barrier caused by two nonbonded ligand atoms
being too close to each other was avoided by using the same term for internal
ligand–ligand interactions as for ligand–protein interactions.

A review and comparison of different molecular docking methods can be found,
for instance, in [66, 218].

Data Analysis

Data analysis is a process of gathering, modeling, and transforming data with the
goal of highlighting useful information, suggesting conclusions, and supporting
decision-making. Some elementary books of data and regression analysis include
[229] and [96].

Clustering problem: The clustering problem is considered, for instance, in [39,
40, 213]. There exist different approaches to clustering, including agglomerative
and divisive hierarchical clustering algorithms, as well as algorithms based on
mathematical programming techniques. A survey of some existing approaches is
provided in [101, 116], and a comprehensive list of literature on clustering
algorithms is available in these papers.

The clustering problem (7.11) is an optimization problem. Various optimization
techniques have been applied to solve this problem. These techniques include
branch and bound [77], cutting plane [101], interior point methods [81], the var-
iable neighborhood search algorithm [102], and metaheuristics like simulated
annealing [48] and tabu search [2]. Algorithms based on nonsmooth nonconvex
optimization formulation include the modified global k-means [14], incremental

288 Notes and References

http://dx.doi.org/10.1007/978-3-319-08114-4_7

discrete gradient [17, 20], and hyperbolic smoothing-based clustering [230]
algorithms. A unified approach to cluster analysis problems was studied in [219].
The nonsmooth formulation of the clustering was used, for example, in [25,
39, 40].

Supervised data classification: The problems of supervised data classification
arise in many areas, including management science, medicine, and chemistry
[117]. Many algorithms for solving data classification problems have been
proposed and studied. These algorithms are mainly based on statistical, machine
learning, and neural networks approaches (see e.g., [89, 172, 170]). Algorithms
based on mathematical programming techniques were developed, for example, in
[8, 9, 10, 33, 45, 49, 90, 221, 223].

Regression analysis: It is known that each continuous piecewise linear function
can be represented as a maxima of minima of linear functions [28, 93]. For a
detailed introduction to nonparametric regression, we refer the reader to the
monograph [96].

There are several established methods for nonparametric regression, including
regression trees like CART [47], adaptive spline fitting like MARS [85] and least
squares neural network estimates [105]. All these methods minimize a kind of least
squares risk of the regression estimate, either heuristically over a fixed and very
complex function space as for neural networks, or over a stepwise defined data
dependent space of piecewise constant functions or piecewise polynomials as for
CART or MARS. Results presented in this book on piecewise linear estimators are
given in [15, 16]

Clusterwise regression: Clusterwise regression techniques have been applied to
investigate the market segmentation, the stock-exchange [200], and the benefit
segmentation data [228].

Optimization models for clusterwise linear regression problems include the
mixed integer nonlinear programming [54, 55, 74] and nonsmooth nonconvex
optimization models [19].

Algorithms for solving the clusterwise linear regression problem are based on
generalizations of classical clustering algorithms such as k-means [212], a partial
least square regression [200], a conditional mixture, maximum likelihood
methodology [74], a simulated annealing methodology [75], a logistic regression
clustering [201], mixed logical-quadratic programming [54], the repetitive branch-
and-bound [55], and NSO algorithms [19].

Optimal Control Problems

Optimal shape design: In [167, 168], two types of optimal shape design problems
were considered: the unilateral (Dirichlet–Signorini) boundary value problem, and
the design of optimal covering (packaging) problem. Several practical examples
were solved by the proximal bundle method. A comparison with the results
obtained by the regularization technique and smooth sequential quadratic
programming method was also presented.

A multicriteria structural design problem (Euler-Bernoulli beam with varying
thickness) was considered in [174]. The problem was solved by an interactive

Notes and References 289

multiobjective optimization method utilizing the proximal bundle method as a
nonsmooth single optimization method.

Distributed parameter control problems: In [168], there were presented three
practical examples of distributed parameter control problems: the axially loaded
rod with stress constraints problem, the clamped beam with displacement
constraints problem and the clamped beam with obstacle problem. The exact
penalty technique was utilized for handling the state constraints, which led to an
optimization problem with nonsmooth objective functions. These problems were
solved using the proximal bundle method. By comparing the results with those in
[104] obtained by the exterior penalty technique and smooth sequential quadratic
programming method, we can demonstrate the superiority of the nonsmooth
approach. In [209], the same clamped beam problem with obstacle as in [168] was
solved using the bundle trust region method.

Hemivariational inequalities: The problem of an elastic body subjected to body
forces and surface tractions and obeying a nonmonotone friction law on some part
of the boundary was considered in [176–179]. The NSO problems were
successfully solved using the proximal bundle method. The bundle-Newton
method was also utilized in [103, 166].

Engineering and Industrial Applications

Power unit-commitment problem: In [148], the so-called space-time decomposition
scheme proposed by [29] was utilized for the power unit-commitment problem,
and the resulting nonsmooth problem was solved by the diagonal quasi-Newton
method of [145]. Six different test problems with about 10,000 (dual)variables
were successfully solved. In [46], three types of test problems (two of them from
[27, 235]) with 20–96 variables were solved using two versions of the level bundle
method. More recently, ten test problems with 240–16 800 variables were solved
in [83] using the proximal bundle method.

Continuous casting of steel: The optimization problem arising in the continuous
casting process of steel has been solved by the proximal bundle method in many
publications with different kind of strategy to handle the state constraints (7.60).
The constraints are penalized with quadratic penalty functions in [165], and with
exact penalty functions in [164, 168]. In [173, 175], the constraints are handled as
objective functions, and an interactive multiobjective optimization method is then
applied.

Other Applications

Image restoration: Much effort has been applied in order to develop efficient
solution methods for the basic formulation (7.61) of image denoising [114, 120,
206]. In addition, the reduction of the staircasing effect caused by formulation
(7.61) has been studied in several papers [56, 115, 150], and the semi-adaptive
formulation (7.62) was introduced in [121].

Robust nonsmooth L1 fitting has been studied, for instance, in [188, 189]. L1

fitting with smooth regularization (7.63) was studied in [119], while the more
complex formulation (7.64) with L1 fitting and BV regularization was studied, for

290 Notes and References

http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7

instance, in [188, 57]. However, in both of these articles, only the smoothed
version of formulation (7.64) was solved numerically. In [160], the formulation
(7.64) was finally solved in its nonsmooth form.

Semiacademic Problems

Exact Penalty Function

Nonsmooth exact penalty functions were first introduced in [234] and have been
widely investigated after that point (see e.g. [76, 100, 130, 133, 199, 217]). The
exactness of the exact penalty function is proved, for instance, in [34, 58, 61, 199,
217].

Integer Programming

In [209] several traveling salesman test problems with 100–2116 variables were
solved by the bundle trust region method and the results were compared with those
obtained using the classical subgradient approach of [210]. In [46], test problems
with 6–442 variables were solved by two versions of the level bundle method. In
[147], three test problems up to 3,038 variables were solved with the reversal
quasi-Newton method.

Eigenvalue Optimization

An excellent overview of eigenvalue optimization is given in [152]. The
mathematics behind the problem is considered, for example, in [50, 151, 193]
and the different methods for solving the problem are given, for instance, in [46,
106, 192, 209].

Notes and References 291

http://dx.doi.org/10.1007/978-3-319-08114-4_7
http://dx.doi.org/10.1007/978-3-319-08114-4_7

Part III
Nonsmooth Optimization Methods

Introduction

In this part, we give short descriptions of the most commonly used methods for
NSO. We consider the NSO problem of the form

minimize f ðxÞ
subject to x 2 S;

�

where the objective function f : Rn ! R is not required to have continuous
derivatives. We suppose only that f is a locally Lipschitz continuous function on
the feasible set S � R

n.
There are several approaches for solving NSO problems. The direct application

of smooth gradient-based methods to nonsmooth problems is a simple approach,
but it may lead to a failure in convergence, in optimality conditions, or in gradient
approximation. All of these difficulties arise from the fact that the objective
function fails to have a derivative for some values of the variables. Figure 1
demonstrates the difficulties caused by nonsmoothness.

On the other hand, using a derivative free method may be another approach, but
standard derivative-free methods such as genetic algorithms or Powell’s method
may be unreliable and become inefficient as the dimension of the problem
increases. Moreover, the convergence of such methods has been proved only for
smooth functions. In addition, different kinds of smoothing and regularization
techniques may give satisfactory results in some cases but are not, in general, as
efficient as the direct nonsmooth approach. Thus, special tools for solving NSO
problems are needed.

Methods for solving NSO problems, and described in this part, include
subgradient methods (see Chap. 10), cutting plane methods (see Chap. 11), bundle
methods (see Chap. 12), and gradient sampling methods (see Chap. 13). All of
these are based on the assumption that only the objective function value and one
arbitrary subgradient at each point are available. In addition, there exist some
hybrid methods that combine the features of the previously mentioned methods,

http://dx.doi.org/10.1007/978-3-319-08114-4_10
http://dx.doi.org/10.1007/978-3-319-08114-4_11
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_13

and discrete gradient methods that can be considered as semi-derivative free
methods for NSO problems. These are described in Chaps. 14 and 15, respectively.
Note that NSO techniques can be successfully applied to smooth problems but not
vice versa, and thus we can state that NSO deals with a broader class of problems
than smooth optimization. Although using a smooth method may be desirable
when all the functions involved are known to be smooth, it is often hard to confirm
the smoothness in practical applications, for instance, if function values are
calculated via simulation. Moreover, as already mentioned at the beginning of Part
II, the problem may be analytically smooth but still behave numerically
nonsmoothly, or certain important methodologies for solving difficult smooth
problems may lead directly to the need to solve NSO problems, in which cases
NSO methods are also needed.

In addition to the methods for solving NSO problems, we introduce some
common ways to deal with constraints in NSO in Chap. 16 and, at the end of the
part, in Chap. 17, we test and compare implementations of different NSO methods
for solving unconstrained NSO problems.

In the text that follows (if not stated otherwise), we assume that at every point x
we can evaluate the value of the objective function f ðxÞ and an arbitrary
subgradient n from the subdifferential of ðxÞ. In iterative optimization methods, we
try to generate a sequence ðxkÞ that converges to a minimum point x� of the
objective function; that is, ðxkÞ ! x� whenever k!1. If an iterative method
converges to a (local) minimum x� from any arbitrary starting point x1, it is said to
be globally convergent. If it converges to a (local) minimum in some
neighborhood of x�, it is said to be locally convergent. Note that the methods
described in this book are local methods; that is, they do not attempt to find the
global minimum of the objective function.

Nonsmooth problem:

The gradient does not exist at every
point, leading to difficulties in defining
the descent direction.

Gradient usually does not exist at the
optimal point.

Difference approximation is not useful
and may lead to serious failures

The (smooth) algorithm does not
converge or it converges to a non−
optimal point.

Smooth problem:

Descent direction is obtained at
the opposite direction of the
gradient .

The necessary optimality condition

Difference approximation can be
used to approximate the gradient.

f (x

f (x)

)

=0.

Fig. 1 Difficulties caused by nonsmoothness

294 Nonsmooth Optimization Methods

http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_15
http://dx.doi.org/10.1007/978-3-319-08114-4_16
http://dx.doi.org/10.1007/978-3-319-08114-4_17

Chapter 10
Subgradient Methods

The history of subgradient methods (Kiev methods) starts in the 1960s and they were
mainly developed in the Soviet Union. The basic idea behind subgradient methods
is to generalize the smooth methods by replacing the gradient with an arbitrary
subgradient. Due to this simple structure, they are widely used methods in nonsmooth
optimization although they suffer from some serious drawbacks. Firstly, a nondescent
search direction may occur and thus a standard line search operation can not be
applied. For this reason the step sizes have to be chosen a priori. Secondly, the lack
of an implementable stopping criterion and the poor rate of the convergence speed
(less than linear) are also disadvantages of the subgradient methods. To overcome the
last handicap, the variable metric ideas were adopted to subgradient context in [210]
by introducing two space dilation methods (ellipsoid method and r-algorithm). In
addition, some modified ideas have been proposed in [222], where two adaptive
variable metric methods, deviating in step size control, were derived. For an excellent
overview of the different subgradient methods we refer to [210]. The first method to
be considered here is the cornerstone of NSO, the standard subgradient method [210].
Then the ideas of the more sophisticated subgradient method, the well-known, Shor’s
r-algorithm are introduced.

10.1 Standard Subgradient Method

As already said the idea behind subgradient methods is to generalize smooth methods
(e.g. the steepest descent method) by replacing the gradient with an arbitrary sub-
gradient. Therefore, the iteration formula for these methods is

xk+1 = xk − tk
ξk

‖ξk‖
,

where ξk ∈ ∂ f (xk) is any subgradient and tk > 0 is a predetermined step size.
Due to this simple structure and low storage requirements, subgradient methods

are widely used methods in NSO. However, basic subgradient methods suffer from

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_10

295

296 10 Subgradient Methods

three serious disadvantages: a nondescent search direction may occur and thus, the
selection of step size is difficult; there exists no implementable subgradient based
stopping criterion; and the convergence speed is poor (not even linear) (see e.g. [144]).

The standard subgradient method is proved to be globally convergent if the ob-
jective function is convex and step sizes satisfy

lim
k→∞

tk = 0 and
∞∑

j=1

tj = ∞.

An extensive overview of various subgradient methods can be found in [210].

10.2 Shor’s r-Algorithm (Space Dilation Method)

Now we shortly describe the ideas of the Shor’s r-algorithm with space dilations
along the difference of two successive subgradients. The basic idea of the Shor’s
r-algorithm is to interpolate between the steepest descent and conjugate gradient
methods.

Let f be a convex function on R
n. The Shor’s r-algorithm is given as follows:

Program Shor’s r-algorithm
Initialize x0 ∈ R

n, β ∈ (0, 1), B1 = I, and t1 > 0;
Compute ξ0 ∈ ∂ f (x0) and x1 = x0 − t1ξ0;
Set ξ̄1 = ξ0 and k = 1;
While the termination condition is not met

Compute ξk ∈ ∂ f (xk) and ξ∗
k = BT

k ξk;
Calculate rk = ξ∗

k − ξ̄k and sk = rk/‖rk‖;
Compute Bk+1 = BkRβ(sk), where Rβ(sk) = I + (β − 1)sks

T
k

is the space dilation matrix;
Calculate ξ̄k+1 = BT

k+1ξk;
Choose a step size tk+1;
Set xk+1 = xk − tkBk+1ξ̄k+1 and k = k + 1;

End While
Return final solution xk;

End Shor’s r-algorithm

In order to turn the above r-algorithm into an efficient optimization routine, one
has to find a solution to the following problems: how to choose the step sizes tk
(including the initial step size t1) and how to design a stopping criterion which does
not need information on subgradients.

If the objective function is twice continuously differentiable, its Hessian is
Lipschitz, and the starting point is chosen from some neighborhood of the opti-
mal solution, then the n-step quadratic rate convergence can be proved for the Shor’s

10.2 Shor’s r-Algorithm (Space Dilation Method) 297

r-algorithm [210]. In the nonconvex case, if the objective function is coercive under
some additional assumptions, the r-algorithm is convergent to isolated local mini-
mizers [210].

Chapter 11
Cutting Plane Methods

Subgradient methods described in the previous chapter use only one
arbitrary subgradient at a time, without memory of past iterations. If the information
from previous iterations is kept, it is possible to define a model—the so-called cut-
ting plane model—of the objective function. In this way, more information about
the local behavior of the function is obtained than what an individual arbitrary
subgradient can yield. The cutting plane idea was first developed independently in
[60, 129]. In this chapter, we first introduce the basic ideas of the standard cutting
plane method (CP) and then the more advanced cutting plane method with proximity
control (CPPC) [86]. In addition, the history of the so-called bundle methods (see
Chap. 12) originates from the cutting plane idea.

11.1 Standard Cutting Plane Method

In this section we describe the ideas of the standard cutting plane method (CP)
by Kelley for convex nonsmooth minimization [129] (see also [60]). Due to the
Theorem 2.30 in Part I, a convex function f has the representation

f(x) = max {f(y) + ξT (x − y) | ξ ∈ ∂f(y), y ∈ R
n} for all x ∈ R

n. (11.1)

However, for this representation we need the whole subdifferential ∂f(y), which,
in practice, is too big a requirement. For this reason we have to approximate it
somehow. We now suppose that in addition to the current iteration point xk we have
some auxiliary points xj ∈ R

n and subgradients ξj ∈ ∂f(xj) for j ∈ Jk, where the
index set Jk is such that ∅ �= Jk ⊂ {1, . . . , k}. Now instead of Eq. (11.1) we can
define a finite piecewise affine approximation of f at the current iteration k by

f̂ k(x) := max {f(xj) + ξT
j (x − xj) | j ∈ Jk} for all x ∈ R

n. (11.2)

The minimization of the approximation f̂ k on a convex compact set S containing the
minimum point of f gives a new iterate xk+1. By the definition of the approximation
we have for all k

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_11

299

http://dx.doi.org/10.1007/978-3-319-08114-4_12

300 11 Cutting Plane Methods

f̂ k(x) ≤ f(x), f̂ k(xj) = f(xj), and f̂ k(x) ≤ f̂ k+1(x).

The minimization of (11.2) can be transformed to a problem of finding a solution
(d, v) ∈ R

n+1 to a linearly constrained smooth cutting plane problem

⎧
⎪⎨

⎪⎩

minimize v

subject to −αj + ξT dk ≤ v for all j ∈ Jk
xk + d ∈ S and v ∈ R,

whereαj is the so-called linearization error between the actual value of the objective
function at xk and the linearization generated at xj and evaluated at xk, that is,

αj := f(xk) − f(xj) + ξT
j (xk − xj) for all j ∈ Jk.

and si = ‖xk −xj‖. The cutting planes for some iterations of the CP are illustrated
in Fig. 11.1.

Let us now suppose that we have a convex compact set S containing the minimum
point of f available. The pseudo-code of the CP is the following:

Program CP
Initialize x1 ∈ S, J1 = {1}, and ε > 0;
Set f̂0(x) = −∞, α1 = ∞ and k = 1;
While the termination condition αk ≤ ε is not met

Generate the search direction

dk = argmin xk+d∈S{f̂k(xk + d)};
Find step size tk;

Set xk+1 = xk + tkdk and compute αk+1 = f(xk+1) − f̂k(xk+1);
Update Jk according some updating rules;
Set k = k + 1;

End While
Return final solution xk;

End Program CP

Like in subgradient methods (see Chap. 10) the sequence (xk) generated by the CP
does not necessarily have decreasing objective values f(xk). The step size tk can be
selected by using some kind of line-search procedure or just use a constant step size
(e.g. tk = 1). At the initial iterations the minimization of the cutting plane model
f̂k may be unbounded from below unless a suitable set S is introduced. Thus, the
choice of set S is a key element to overcome the instability of cutting planes.

By the convexity of f , the graph of the cutting plane model f̂k approaches the graph
of f from below with increasing accuracy as k grows. This guarantees the global
convergence of the method (for more details, see e.g. [42] Chap. 9). Furthermore, this
property provides an implementable stopping criterion (note the decreasing values
of the distances αk in Fig. 11.1)

http://dx.doi.org/10.1007/978-3-319-08114-4_10

11.1 Standard Cutting Plane Method 301

Fig. 11.1 Cutting planes f

f

f

α2

α4

(
2

x y−)

f

f

f
f

min

min

α

1

()1

2

3

()3

3

()2 + ξ

y

y
y

T

There are two main disadvantages in the CP: first, the choice of set S such that the
minimization problem has a solution in the set and, second, the method generally
attains rather poor convergence results in practice. However, it is also obvious, that
if the original objective function f is piecewise linear or almost piecewise linear,
then the cutting plane method may convergence in a reliable way and rapidly—in
the piecewise linear case the convergence is finite—to the exact global minimum.

11.2 Cutting Plane Method with Proximity Control

The extension of the cutting plane method for nonconvex functions is not straightfor-
ward. A basic observation is that, in nonconvex case, the first order information does
not necessarily provide the lower approximation of the objective function any longer.
In this section, we briefly introduce the cutting plane method with proximity control
(CPPC) for nonconvex NSO developed by Fuduli, Gaudioso, and Giallombardo. For
more details, see [86].

Let us denote the set of available information—the bundle—as

(xj, f(xj), ξj,αj, sj), j ∈ Jk,

where again xj ∈ R
n are auxiliary points, ξj ∈ ∂f(xj) and αj is a linearization

error. Note that the linearization error αj can be negative in nonconvex case.
The CPPC is based on the construction of both a lower and an upper polyhedral

approximation of the objective function. That is, instead of just one index set Jk (cf.
standard cutting plane method in Sect. 11.1), we have two sets J+ and J− defined
as follows:

J+ = {j | αj ≥ 0} and J− = {j | αj < 0}.

302 11 Cutting Plane Methods

The bundles defined by index sets J+ and J− are characterized by points that
somehow exhibit, respectively, the “convex behavior” and the “nonconvex behavior”
of the objective function relative to point xk. Notice that the set J+ is never empty
since at least the element (xj, f(xj), ξj, 0, 0) belongs to the bundle. The basic idea
of the CPPC is to treat differently the two bundles in the construction of a piecewise
affine model.

The proximity control [132] is introduced by defining the proximal trajectory dγ

of the piecewise affine function maxj∈J+{ξT
j d−αj}. The optimal proximal trajectory

dγ is computed by solving a quadratic direction finding problem (v ∈ R and d ∈ R
n

are variables) parametrized by scalar γ > 0 (see the pseudo-code given below):

⎧
⎪⎨

⎪⎩

minimize γv + 1
2‖d‖2

subject to v ≥ ξT
j d − αj, j ∈ J+,

v ≤ ξT
j d − αj, j ∈ J−.

(11.3)

In what follows we denote by ξt the subgradient computed at xk + tdγ̂ and by αt
the corresponding linearization error, that is, αt = f(xk) − f(xk + tdγ̂) + tξT

t dγ̂ .
The pseudo-code of the CPPC is the following:

Program CPPC
Initialize x1 ∈ R

n, ε > 0, δ > 0, m ∈ (0, 1), ρ ∈ (m, 1), and r ∈ (0, 1);
Compute f(x1) and ξ1 ∈ ∂f(x1) and set k = 1;
Set the bundle (x1, f(x1), ξ1, 0, 0), so that J− = ∅ and J+ = {1};
Main iteration

Initialize θ > 0, γmin > 0 and γmax > γmin;
While the termination condition ‖ξk‖ ≤ ε is not met
Solve (11.3) for increasing values of γ to obtain (v

γ
k ,d

γ
k);

Choose γ̂ = min{γ | γ ∈ (γmin, γmax) and f(xk + d
γ
k) > f(xk) +mv

γ
k }

if it exists, otherwise, set γ̂ := γmax;

If ‖dγ̂k‖ > θ then
Set xγ̂ = xk + dγ̂;
Compute ξγ̂ ∈ ∂f(xγ̂) and αγ̂ = f(xk) − f(xγ̂) + ξT

γ̂ dγ̂;

Bundle insertion
If αγ̂ < 0 and ‖dγ̂‖ > δ then
Insert (xγ̂ , f(γ̂), ξγ̂ ,αγ̂ , ‖dγ̂‖) in the bundle with j ∈ J−;
Set γ̂ = γ̂ − r(γ̂ − γmin);

Else If ξT
γ̂ dγ̂ ≥ ρvγ̂ then

Insert (xγ̂ , f(xγ̂), ξγ̂ , max{0,αγ̂}, ‖dγ̂‖) in the bundle
with j ∈ J+;

Else
Find step size t ∈ (0, 1) such that ξT

t dγ̂ ≥ ρvγ̂;

11.2 Cutting Plane Method with Proximity Control 303

Insert (xk + tdγ̂ , f(xk + tdγ̂), ξt, max{0,αt}, t‖dγ̂‖) in the
bundle with j ∈ J+;

End if
End Bundle insertion
If ‖dγ̂‖ ≤ θ go to Bundle deletion;
If f(xγ̂) ≤ f(y) +mvγ̂ then
Set the new stability center xk+1 = xγ̂;

Else

Solve (11.3) with γ = γ̂ to obtain (v
γ̂
k ,d

γ̂
k);

Go to Bundle insertion;
End if

Else
Bundle deletion
Set J+ := J+\{j ∈ J+ | sj > δ} and J− := J−\{j ∈ J− | sj > δ};
Compute ξ∗ = minξ∈{ξj |j∈J+}‖ξ‖;
If ‖ξ∗‖ ≤ ε then

STOP with the solution xk + d
γ̂
k;

Else
Set γmax := γmax − r(γmax − γmin);

End if
End if

End While
Update J+ and J− with respect to xk+1;
Set k = k + 1 and go to next Main iteration;

End Main iteration
Return final solution xk;

End Program CPPC

The global convergence of the CPPC to a stationary point is proved for weakly
semi-smooth objective functions [86].

Chapter 12
Bundle Methods

At the moment, bundle methods are regarded as the most effective and reliable meth-
ods for NSO. They are based on the subdifferential theory developed by Rockafellar
[204] and Clarke [61], where the classical differential theory is generalized for con-
vex and locally Lipschitz continuous functions, respectively. The basic idea of bundle
methods is to approximate the subdifferential of the objective function by gathering
subgradients from previous iterations into a bundle. In this way, more information
about the local behavior of the function is obtained than what an individual arbitrary
subgradient can yield (cf. subgradient methods). In this chapter, we first introduce
the most frequently used bundle methods, that is, the proximal bundle (PBM) and
the bundle trust methods (BT), and then we describe the basic ideas of the second
order bundle-Newton method (BNEW).

12.1 Proximal Bundle and Bundle Trust Methods

In this section we describe the ideas of the proximal bundle (PBM) and the bundle
trust (BT) methods for nonsmooth and nonconvex minimization. For more details
we refer to [132, 168, 209].

The basic idea of bundle methods is to approximate the whole subdifferential of
the objective function instead of using only one arbitrary subgradient at each point.
In practice, this is done by gathering subgradients from the previous iterations into a
bundle. Suppose that at the kth iteration of the algorithm we have the current iteration
point xk and some trial points yj ∈ R

n (from past iterations) and subgradients
ξj ∈ ∂f(yj) for j ∈ Jk, where the index set Jk is a nonempty subset of {1, . . . , k}.

The idea behind the PBM and the BT is to approximate the objective function f
below by a piecewise linear function, that is, f is replaced by so called cutting-plane
model

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_12

305

306 12 Bundle Methods

f̂k(x) = max
j∈Jk

{f(yj) + ξTj (x − yj)}. (12.1)

This model can be written in an equivalent form

f̂k(x) = max
j∈Jk

{f(xk) + ξTj (x − xk) − αkj },

where

αkj = f(xk) − f(yj) − ξTj (xk − yj) for all j ∈ Jk.

is a so-called linearization error. If f is convex, then αkj ≥ 0 for all j ∈ Jk and

f̂k(x) ≤ f(x) for all x ∈ R
n. In other words, the cutting-plane model f̂k is an

underestimate for f , and the nonnegative linearization error αkj measures how good
an approximation the model is to the original problem. In the nonconvex case, these
facts are not valid anymore and thus the linearization error αkj can be replaced by the
so-called subgradient locality measure (cf. [131])

βkj = max {|αkj |, γ‖xk − yj‖2}, (12.2)

where γ ≥ 0 is the distance measure parameter (γ = 0, if f is convex). Then
obviously βkj ≥ 0 for all j ∈ Jk and minx∈K f̂k(x) ≤ f(xk).

The descent direction in the PBM is calculated by

dk = argmin d∈Rn{f̂k(xk + d) + 1

2
ukd

Td}, (12.3)

where the stabilizing term 1
2ukd

Td guarantees the existence of the solution dk and
keeps the approximation local enough. The weighting parameter uk > 0 improves
the convergence rate and accumulates some second order information about the
curvature of f around xk.

Instead of adding the stabilizing term 1
2ukd

Td to the objective function in (12.3),
the BT utilizes the idea of classical trust region methods keeping it as a constraint for
the cutting plane model. Let σk > 0 be the ray of the trust region. Then the descent
direction in the BT is calculated by

dk = argmin d∈Rn{f̂k(xk + d) | 1

2
dTd ≤ σk}. (12.4)

However, for numerical reasons it is usefull to utilize the exact penalty function
method (see Sect. 16.1) and move the quadratic constraint of the problem (12.4) to
the objective function. Then we end up to the same problem (12.3) as in the PBM.
The main differences between the PBM and the BT consist in strategies for updating
the weight uk.

http://dx.doi.org/10.1007/978-3-319-08114-4_16

12.1 Proximal Bundle and Bundle Trust Methods 307

In order to determine the step size into the search direction dk, we use so-called
line search procedure: Assume that mL ∈ (0, 1

2), mR ∈ (mL, 1) and t̄ ∈ (0, 1] are
some fixed line search parameters. We first search for the largest number tkL ∈ [0, 1]
such that tkL ≥ t̄ and

f(xk + tkLdk) ≤ f(xk) +mLt
k
Lvk, (12.5)

where vk is the predicted amount of descent

vk = f̂k(xk + dk) − f(xk) < 0.

If such a parameter exists we take a long serious step

xk+1 = xk + tkLdk and yk+1 = xk+1. (12.6)

Otherwise, if (12.5) holds but 0 < tkL < t̄, we take a short serious step

xk+1 = xk + tkLdk and yk+1 = xk + tkRdk

and, if tkL = 0, we take a null step

xk+1 = xk and yk+1 = xk + tkRdk, (12.7)

where tkR > tkL is such that

− βk+1
k+1 + ξTk+1dk ≥ mRvk. (12.8)

In short serious steps and null steps there exists discontinuity in the gradient of f .
Then the requirement (12.8) ensures that xk and yk+1 lie on the opposite sides of
this discontinuity and the new subgradient ξk+1 ∈ ∂f(yk+1) will force a remarkable
modification of the next search direction finding problem.

The iteration is terminated if

vk ≥ −εs,

where εs > 0 is a final accuracy tolerance supplied by the user.
Under the upper semi-smoothness assumption [38], the PBM and the BT can be

proved to be globally convergent for locally Lipschitz continuous objective functions,
which are not necessarily differentiable or convex (see e.g. [132, 209]). In addition,
in order to implement the above algorithm one has to bound somehow the number of
stored subgradient and trial points, that is, the cardinality of index set Jk. The global

308 12 Bundle Methods

convergence of bundle methods with a limited number of stored subgradients can be
guaranteed by using a subgradient aggregation strategy [131], which accumulates
information from the previous iterations. The convergence rates of the PBM and
the BT are linear for convex functions [203] and for piecewise linear problems they
achieve a finite convergence [209].

The pseudo-code of bundle methods is the following:

Program PBM and BT
Initialize x1 ∈ R

n, J1 = {1}, t̄ ∈ (0, 1], mL ∈ (0, 1
2), u1 > 0

ε > 0 and v0 ≤ −ε;
Set k = 1;
Evaluate f(x1) and ξ1 ∈ ∂f(x1);
While the termination condition |vk−1| ≤ ε is not met
Generate the search direction

dk = argmin d∈Rn {f̂k(xk + d) + 1
2ukd

Td};
Compute vk = f̂k(xk + dk) − f(xk);
Find step sizes tkL and tkR;
If f(xk + tkLdk) ≤ f(xk) +mLt

k
Lvk then

If tkL > t̄ then
Long serious step

Set xk+1 = xk + tkLdk and yk+1 = xk+1;
Evaluate ξk+1 ∈ ∂f(yk+1);

End Long serious step
Else

Short serious step
Set xk+1 = xk + tkLdk and yk+1 = xk + tkRdk;
Evaluate ξk+1 ∈ ∂f(yk+1);

End Short serious step
End if

Else
Null step
Set xk+1 = xk and yk+1 = xk + tkRdk;
Evaluate ξk+1 ∈ ∂f(yk+1);

End Null step
End if
Update Jk and uk according some updating rules;
Set k = k + 1;

End While
Return final solution xk;

End Program PBM and BT

12.2 Bundle Newton Method 309

12.2 Bundle Newton Method

Next we describe the main ideas of the second order bundle-Newton method (BNEW)
by Lukšan and Vlček [156]. We suppose that at each x ∈ R

n we can evaluate, in
addition to the function value and an arbitrary subgradient ξ ∈ ∂f(x), also an n×n
symmetric matrix G(x) approximating the Hessian matrix ∇2f(x). Now, instead
of piecewise linear cutting-plane model (12.1), we introduce a piecewise quadratic
model of the form

f̃k(x) = max
j∈Jk

{f(yj) + ξTj (x − yj) + 1

2
�j(x − yj)

TGj(x − yj)}, (12.9)

where Gj = G(yj) and �j ∈ [0, 1] is some damping parameter. The model (12.9)
can be written equivalently as

f̃k(x) = max
j∈Jk

{f(xk) + ξTj (x − xk) + 1

2
�j(x − xk)

TGj(x − xk) − αkj }

and for all j ∈ Jk the linearization error takes the form

αkj = f(xk) − f(yj) − ξTj (xk − yj) − 1

2
�j(xk − yj)

TGj(xk − yj). (12.10)

Note that now, even in the convex case, αkj might be negative. Therefore we replace
the linearization error (12.10) by the subgradient locality measure (12.2) and we
remain the property minx∈Rn f̃k(x) ≤ f(xk).

The search direction dk ∈ R
n is now calculated as the solution of

dk = argmin d∈Rn{f̃k(xk + d)}. (12.11)

The line search procedure of the BNEW is similar to that in the PBM (see Sect. 12.1).
The only remarkable difference occurs in the termination condition for short and null
steps. In other words, (12.8) is replaced by two conditions

−βk+1
k+1 + (ξk+1

k+1)
Tdk ≥ mRvk and ‖xk+1 − yk+1‖ ≤ CS,

where CS > 0 is a parameter supplied by the user.
The pseudo-code of the BNEW is the following:

310 12 Bundle Methods

Program BNEW
Initialize x1 ∈ R

n, J1 = {1}, t̄ ∈ (0, 1], mL ∈ (0, 1
2), ρ1 ∈ [0, 1]

CS > 0, ε > 0 and v0 ≤ −ε;
Set k = 1;
Evaluate f(x1), ξ1 ∈ ∂f(x1) and G1 = G(xi);
While the termination condition |vk−1| ≤ ε is not met
Generate the search direction dk = argmin d∈Rn {f̄k(xk + d)};
Compute vk = f̄k(xk + dk) − f(xk);
Find step sizes tkL and tkR;
If f(xk + tkLdk) ≤ f(xk) +mLt

k
Lvk then

If tkL > t̄ then
Long serious step

Set xk+1 = xk + tkLdk and yk+1 = xk+1;
Evaluate ξk+1 ∈ ∂f(yk+1) and Gk+1 = G(yk+1);

End Long serious step
Else

Short serious step
Set xk+1 = xk + tkLdk and yk+1 = xk + tkRdk;
Evaluate ξk+1 ∈ ∂f(yk+1) and Gk+1 = G(yk+1);

End Short serious step
End if

Else
Null step
Set xk+1 = xk and yk+1 = xk + tkRdk;
Evaluate ξk+1 ∈ ∂f(yk+1) and Gk+1 = G(yk+1);

End Null step
End if
Update Jk according some updating rules;
Set k = k + 1;

End While
Return final solution xk;

End Program BNEW

Under the upper semi-smoothness assumption [38] the BNEWhas been proved to be
globally convergent for locally Lipschitz continuous objective functions. For strongly
convex functions, the convergence rate of the BNEW is superlinear.

Chapter 13
Gradient Sampling Methods

One of the newest approaches in general NSO is to use gradient sampling algorithms
developed by Burke et al. [51, 52]. The gradient sampling method (GS) is a method for
minimizing an objective function that is locally Lipschitz continuous and smooth on
an open dense subset D ⊂ R

n. The objective may be nonsmooth and/or nonconvex.
The GS may be considered as a stabilized steepest descent algorithm. The central idea
behind these techniques is to approximate the subdifferential of the objective function
through random sampling of gradients near the current iteration point. The ongoing
progress in the development of gradient sampling algorithms (see e.g. [67]) suggests
that they may have potential to rival bundle methods in the terms of theoretical might
and practical performance. However, here we introduce only the original GS [51, 52].

13.1 Gradient Sampling Method

Let f be a locally Lipschitz continuous function on R
n, and suppose that f is smooth

on an open dense subset D ⊂ R
n. In addition, assume that there exists a point x̄

such that the level set levf(x̄) = {x | f(x) ≤ f(x̄)} is compact.
At a given iterate xk the gradient of the objective function is computed on a set

of randomly generated nearby points ukj with j ∈ {1, 2, . . . ,m} and m > n + 1.
This information is utilized to construct a search direction as a vector in the convex
hull of these gradients with the shortest norm. A standard line search is then used to
obtain a point with lower objective function value. The stabilization of the method
is controlled by the sampling radius εk used to sample the gradients.

The pseudo-code of the GS is the following:

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_13

311

312 13 Gradient Sampling Methods

Program GS
Initialize x0 ∈ levf(x̄) ∩D, ε0 > 0, m > n+ 1, ν0 ≥ 0, θ,μ ∈ (0, 1]

and α,β ∈ (0, 1);
Set k = 0;
While the termination condition is not met

Gradient Sampling
Sample uk1, . . .ukm from B̄(x; 1);
Set xk0 = xk and xkj = xk + εkukj for j = 1, . . . ,m;
If xkj /∈ D for some j STOP;
Set Gk = {∇f(xk1),∇f(xk2), . . . ,∇f(xkm)};

End Gradient Sampling
Compute gk = argmin g∈Gk‖g‖2;
If νk = ‖gk‖ = 0 Stop with the final solution xk;
If ‖gk‖ > νk then
Set νk+1 = νk and εk+1 = εk;
Compute the search direction dk = −gk/‖gk‖;
Find the step size tk = maxαp such that
f(xk + αpdk) < f(xk) − βαp‖gk‖ and p ∈ {1, 2, . . .};

Else
Set tk = 0, νk+1 = θνk, and εk+1 = μεk;

End if
If xk + tkdk ∈ D then Set xk+1 = xk + tkdk;
Else
Let x̂k be any point on B̄(x; εk) satisfying x̂k + tkdk ∈ D
and f(x̂k + tkdk) < f(x̂k) − βtk‖gk‖ (such a point exists
due to continuity of f);

Set xk+1 = x̂k + tkdk;
End if
Set k = k + 1;

End While
Return final solution xk;

End Program GS

Note that the probability to obtain a point xkj /∈ D is zero in the above algorithm.
In addition, it is reported in [52] that it is highly unlikely to have xk + tkdk /∈ D.

The GS algorithm may be applied to any function f : R
n → R that is continuous

on R
n and differentiable almost everywhere. Furthermore, it has been shown that

when f is locally Lipschitz continuous, smooth on an open dense subset D of R
n,

and has bounded level sets, the cluster point x̄ of the sequence generated by the
GS with fixed ε is ε-stationary with probability 1 (that is, 000 ∈ ∂Gε f(x̄), see also
Definition 3.3 in Part I). In addition, if f has a unique ε-stationary point x̄, then the
set of all cluster points generated by the algorithm converges to x̄ as ε is reduced to
zero.

Chapter 14
Hybrid Methods

In this chapter, we describe some methods that can be considered as the hybrids of the
methods described before. They are the variable metric bundle method (VMBM) and
the quasi-secant method (QSM) for solving general small- and medium-scale NSO
problems; the modification of the VMBM for solving large-scale NSO problems,
that is, the limited memory bundle method (LMBM); and the non-Euclidean restricted
memory level method (NERML) for extremely large-scale convex NSO problems.

14.1 Variable Metric Bundle Method

The development of a second order method has been fascinating the researchers in
NSO during its whole history. Already in his pioneering work [142] Lemaréchal
derived a version of the variable metric bundle method utilizing the classical BFGS
secant updating formula from smooth optimization (see [84]). Due to the disappoint-
ing numerical results in [143] this idea was buried nearly for two decades. In [91] the
space dilation updating scheme of [210] was adopted from the subgradient method
context. More recently, a reversal quasi-Newton method based on the Moreau-Yosida
regularization, BFGS update and the curved search technique, was proposed in
[41, 145, 147, 181].

In this section, we present the variable metric bundle method (VMBM) by Lukšan
and Vlček [157, 225] for general possible nonconvex, NSO problems. The method
is a hybrid of the variable metric (quasi-Newton) methods for smooth optimization
and the bundle methods described in Chap. 12. The idea of the method is to use only
three subgradients (two calculated at xk and yk+1, and one aggregated containing
information from past iterations). This means, that the dimension of the normally
time consuming quadratic programming subproblem (12.3) is only three and it can
be solved with simple calculations.

The VMBM uses some properties of bundle methods to improve the robust-
ness and the efficiency of variable metric methods in nonsmooth settings. The main

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_14

313

http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12

314 14 Hybrid Methods

differences when comparing the VMBM with the standard variable metric methods
are the usage of null steps together with the aggregation of subgradients and the
application of subgradient locality measures. Nevertheless, the search direction dk
is calculated using the variable metric approach. That is,

dk = −Dkξ̃k,

where ξ̃k is (an aggregate) subgradient and Dk is the variable metric update that, in
the smooth case, represents the approximation of the inverse of the Hessian matrix.
The role of matrix Dk is to accumulate information about previous subgradients.

In NSO the search direction is not necessarily a descent one. Using null steps
gives more information about the nonsmooth objective function in the case the current
search direction is “not good enough”, that is, some descent condition is not satisfied.
On the other hand, a simple aggregation of subgradients and the application of locality
measures guarantee the convergence of the aggregate subgradients to zero and make
it possible to evaluate a termination criterion.

In order to determine a new step into the search direction dk, the VMBM uses
the so-called line search procedure: a new iteration point xk+1 and a new auxiliary
point yk+1 are produced such that

xk+1 = xk + tkLdk and (14.1)

yk+1 = xk + tkRdk, for k ≥ 1

with y1 = x1, where tkR ∈ (0, tmax] and tkL ∈ [0, tkR] are step sizes, and tmax > 1
is an upper bound for the step size. Notice that this line search procedure is a little
bit different from that used with the proximal bundle method in Sect. 12.1.

A necessary condition for a serious step to be taken is to have

tkR = tkL > 0 and f(yk+1) ≤ f(xk) − εkLt
k
Rwk, (14.2)

where εkL ∈ (0, 1/2) is a fixed line search parameter and wk > 0 represents the
desirable amount of descent of f at xk. If condition (14.2) is satisfied, we have
xk+1 = yk+1. On the other hand, a null step is taken if

tkR > tkL = 0 and − βk+1 + dTk ξk+1 ≥ −εkRwk, (14.3)

where εkR ∈ (εkL, 1/2) is a fixed line search parameter, ξk+1 ∈ ∂f(yk+1), and βk+1
is the subgradient locality measure [149, 180] similar to standard bundle methods.
That is,

βk+1 = max{|f(xk)−f(yk+1)+(yk+1−xk)
T ξk+1)|, γ‖yk+1−xk‖2 }. (14.4)

http://dx.doi.org/10.1007/978-3-319-08114-4_12

14.1 Variable Metric Bundle Method 315

Here, as before, γ ≥ 0 is a distance measure parameter supplied by the user and it
can be set to zero when f is convex. In the case of a null step, we set xk+1 = xk but
information about the objective function is increased because we store the auxiliary
point yk+1 and the corresponding auxiliary subgradient ξk+1 ∈ ∂f(yk+1).

In the convex case there is no need to use any two-point line search procedure.
The procedure can be replaced by a simple step size selection and the resulting step
size is either accepted (serious step) or not (null step).

The aggregation procedure used in the VMBM utilizes only three subgradients
and two locality measures. The procedure is carried out by determining multipliers
λki satisfying λki ≥ 0 for all i ∈ {1, 2, 3}, and

∑3
i=1 λ

k
i = 1 that minimize the

function

ϕ(λ1,λ2,λ3) = [λ1ξm + λ2ξk+1 + λ3ξ̃k]TDk[λ1ξm + λ2ξk+1 + λ3ξ̃k] (14.5)

+ 2(λ2βk+1 + λ3β̃k).

Here ξm ∈ ∂f(xk) is the current subgradient (m denotes the index of the iteration
after the latest serious step, i.e. xk = xm), ξk+1 ∈ ∂f(yk+1) is the auxiliary
subgradient, and ξ̃k is the current aggregate subgradient from the previous iteration
(ξ̃1 = ξ1). In addition, βk+1 is the current subgradient locality measure and β̃k is the
current aggregate subgradient locality measure (β̃1 = 0). The resulting aggregate
subgradient ξ̃k+1 and aggregate subgradient locality measure β̃k+1 are computed by
the formulae

ξ̃k+1 = λk1ξm + λk2ξk+1 + λk3 ξ̃k and β̃k+1 = λk2βk+1 + λk3 β̃k. (14.6)

Due to this simple aggregation procedure only one trial point yk+1 and the cor-
responding subgradient ξk+1 ∈ ∂f(yk+1) need to be stored. Note that the aggre-
gate values are computed only if the last step was a null step. Otherwise, we set
ξ̃k+1 = ξk+1 ∈ ∂f(xk+1) and β̃k+1 = 0.

As mentioned before, the matrices Dk are formed by using the usual variable
metric updates. After a null step, the symmetric rank-one (SR1) update is used, since
this update formula gives us a possibility to preserve the boundedness of the matrices
generated as required for the proof of global convergence. A new SR1 matrix is given
by the formula

Dk+1 = Dk − vkv
T
k

uTk vk
,

where vk = Dkuk − tkRdk and uk = ξk+1 − ξm.
Because the boundedness of the generated matrices is not required after a serious

step, the more efficient Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is used.
This update formula is given by

316 14 Hybrid Methods

Dk+1 = Dk +
(
tkL + uTk Dkuk

uTk dk

)
dkd

T
k

uTk dk
− Dkukd

T
k + dku

T
k Dk

uTk dk
,

where uk = ξk+1 − ξk.
The condition

ξ̃
T
k vk < 0

(or equivalently uTk dk > tkRdTk D
−1
k dk), which implies that uTk vk > 0, ensures the

positive definiteness of the matrices Dk+1 obtained by the SR1 update. Similarly,
the condition

uTk dk > 0

ensures the positive definiteness of the matricesDk+1 obtained by the BFGS update
(note that uTk dk > 0 holds whenever f is convex). If a corresponding condition is
not satisfied at the beginning of the updating procedure, the update is simply skipped
(i.e. Dk+1 = Dk). Therefore, all the matrices generated by the VMBM are positive
definite.

As a stopping parameter, the VMBM uses the value

wk = −ξ̃
T
k dk + 2β̃k

and it stops if wk ≤ ε for some user specified ε > 0. The parameter wk is also used
during the line search procedure to represent the desirable amount of descent (cf. vk
in 12.1).

We now present a pseudo-code for the VMBM. The algorithm is suitable for
minimizing both convex and nonconvex but locally Lipschitz continuous objective
functions.

Program VMBM
Initialize x1 ∈ R

n, ξ1 ∈ ∂f(x1), D1 = I ∈ R
n×n, and ε > 0;

Set k = m = 1 and d1 = −ξ1;
While the termination condition wk ≤ ε is not met
Find step sizes tkL and tkR;
Set xk+1 = xk + tkLdk;
Evaluate f(xk+1) and ξk+1 ∈ ∂f(xk + tkRdk);
If tkL > 0 then

Serious step
Compute the variable metric BFGS update

Dk+1 = Dk +
(
tkL + uTk Dkuk

uTk dk

)
dkd

T
k

uTk dk
− Dkukd

T
k +dku

T
k Dk

uTk dk
,

where uk = ξk+1 − ξk;
Compute the search direction

http://dx.doi.org/10.1007/978-3-319-08114-4_12

14.1 Variable Metric Bundle Method 317

dk+1 = −Dk+1ξk+1;
Update the counter for serious steps m = k + 1;

End Serious step
Else

Null step
Compute the variable metric SR1 update

Dk+1 = Dk − vkv
T
k

uTk vk
,

where vk = Dkuk − tkRdk and uk = ξk+1 − ξm;
Compute the aggregate subgradient ξ̃k+1;
Compute the search direction

dk+1 = −Dk+1ξ̃k+1;
End Null step

End if
Set k = k + 1;

End While
Return final solution xk;

End Program VMBM

Under mild assumptions, it can be proved that every accumulation point of the
sequence (xk) generated by the VMBM is a stationary point of the objective func-
tion.

14.2 Limited Memory Bundle Method

In this section, we shortly describe the limited memory bundle algorithm (LMBM)
by Karmitsa (née Haarala) et al. [97, 98, 99, 126] for solving general, possibly
nonconvex, large-scale NSO problems. The method is a hybrid of the VMBM
[157, 225] (see Sect. 14.1) and the limited memory variable metric methods (see
e.g. [53]), where the first one has been developed for small- and medium-scale NSO
and the latter ones, on the contrary, for smooth large-scale optimization.

The LMBM combines the ideas of the VMBM with the search direction calcula-
tion of limited memory approach. Therefore, the time-consuming quadratic direction
finding problem appearing in the standard bundle methods [see Eq. (12.3)] does not
need to be solved, nor the number of stored subgradients needs to grow with the
dimension of the problem. Furthermore, the method uses only a few vectors to rep-
resent the variable metric approximation of the Hessian matrix and, thus, it avoids
storing and manipulating large matrices as is the case in the VMBM (see Sect. 14.1).
These improvements make the LMBM suitable for large-scale optimization. Namely,
the number of operations needed for the calculation of the search direction and the
aggregate values is only linearly dependent on the number of variables while, for
example, with the original VMBM this dependence is quadratic.

So, the LMBM exploits the ideas of the VMBM, namely the utilization of null
steps, the simple aggregation of subgradients, and the subgradient locality measures,

http://dx.doi.org/10.1007/978-3-319-08114-4_12

318 14 Hybrid Methods

but the search direction dk is calculated using a limited memory approach. That is,

dk = −Dkξ̃k,

where ξ̃k is (an aggregate) subgradient andDk is the limited memory variable metric
update that, in the smooth case, represents the approximation of the inverse of the
Hessian matrix. Note that here the matrix Dk is not formed explicitly but the search
direction dk is calculated using the limited memory approach (to be described later).

The LMBM uses the original subgradient ξk ∈ ∂f(xk) after the serious step and
the aggregate subgradient ξ̃k [cf. Eq. (14.6)] after the null step for direction finding
(i.e. we set ξ̃k = ξk if the previous step was a serious step). The aggregation procedure
is similar to that of the VMBM [see Eqs. (14.5) and (14.6)] but, naturally, instead
of using the explicitly formed matrix Dk we use its limited memory formulation. In
addition, the line search procedure used in the LMBM is similar to that used in the
VMBM.

In the LMBM both the limited memory BFGS (L-BFGS) and the limited memory
SR1 (L-SR1) update formulae are used in calculations of the search direction and
the aggregate values. The idea of limited memory matrix updating is that instead
of storing large n × n matrices Dk, one stores a certain (usually small) number of
vectors sk = yk+1 − xk and uk = ξk+1 − ξm obtained at the previous iterations of
the algorithm, and uses these vectors to implicitly define the variable metric matrices.

Let us denote by m̂c the user-specified maximum number of stored correction
vectors (3 ≤ m̂c) and by m̂k = min { k − 1, m̂c } the current number of stored
correction vectors. Then the n× m̂k dimensional correction matrices Sk and Uk are
defined by

Sk = [
sk−m̂k

. . . sk−1
]

and

Uk = [
uk−m̂k

. . . uk−1
]
.

The inverse L-BFGS update is defined by the formula

Dk = ϑk I + [
Sk ϑkUk

] [
(R−1

k)T (Ck + ϑkUT
k Uk)R

−1
k −(R−1

k)T

−R−1
k 0

] [
STk
ϑkUT

k

]
,

where Rk is an upper triangular matrix of order m̂k given by the form

(Rk)ij =
{

(sk−m̂k−1+i)T (uk−m̂k−1+j), if i ≤ j

0, otherwise,

Ck is a diagonal matrix of order m̂k such that

Ck = diag [sTk−m̂k
uk−m̂k

, . . . , sTk−1uk−1],

14.2 Limited Memory Bundle Method 319

and ϑk is a positive scaling parameter.
In addition, the inverse L-SR1 update is defined by

Dk = ϑk I − (ϑkUk − Sk)(ϑkUT
k Uk −Rk −RTk + Ck)

−1(ϑkUk − Sk)
T .

The similar representations for the direct limited memory BFGS and SR1 updates
can be given but the implementation of the LMBM only needs the inverse update
formulae to be used.

In the case of a null step, the LMBM uses the L-SR1 update formula, since this
formula allows to preserve the boundedness and some other properties of generated
matrices which guarantee the global convergence of the method. Otherwise, since
these properties are not required after a serious step, the more efficient L-BFGS
update is employed. In the LMBM, the individual updates that would violate positive
definiteness are skipped.

As a stopping parameter, the LMBM uses the value

wk = −ξ̃
T
k dk + 2β̃k

and it stops if wk ≤ ε for some user specified ε > 0.
The pseudo-code of the LMBM is the following:

Program LMBM
Initialize x1 ∈ R

n, ξ1 ∈ ∂f(x1), and ε > 0;
Set k = 1 and d1 = −ξ1;
While the termination condition wk ≤ ε is not met
Find step sizes tkL and tkR;
Set xk+1 = xk + tkLdk;
Evaluate f(xk+1) and ξk+1 ∈ ∂f(xk + tkRdk);
If tkL > 0 then

Serious step
Compute the search direction dk+1 using ξk+1 and L-BFGS

update;
End Serious step

Else
Null step
Compute the aggregate subgradient ξ̃k+1;
Compute the search direction dk+1 using ξ̃k+1 and L-SR1
update;

End Null step
End If
Set k = k + 1;

End While
Return final solution xk;

End Program LMBM

320 14 Hybrid Methods

Under the upper semi-smoothness assumption [38] the LMBM can be proved to be
globally convergent for locally Lipschitz continuous objective functions.

14.3 Quasi-Secant Method

In this section we briefly describe the quasi-secant method (QSM) by Bagirov and
Ganjehlou. More details can be found in [22, 23]. The QSM can be considered as a
hybrid of bundle methods and the gradient sampling method (see Chaps. 12 and 13).
The method builds up information about the approximation of the subdifferential
using bundling idea, which makes it similar to bundle methods, while subgradients
are computed from a given neighborhood of a current iteration point, which makes
the method similar to the gradient sampling method.

We start with the definition of a quasi-secant for locally Lipschitz continuous
functions. Let us again denote by S1 = {g ∈ R

n | ‖g‖ = 1} the sphere of the unit
ball.

Definition 14.1 A vector v ∈ R
n is called a quasi-secant of the function f at the

point x ∈ R
n in the direction g ∈ S1 with the length h > 0 if

f(x + hg) − f(x) ≤ hvTg.

We will denote this quasi-secant by v(x, g,h).
For a given h > 0 let us consider the set of quasi-secants at a point x ∈ R

n

QSec(x,h) = {
w ∈ R

n | ∃ g ∈ S1 s.t. w = v(x, g,h)
}

and the set of limit points of quasi-secants as h ↓ 0:

QSL(x) = {w ∈ R
n |∃ g ∈ S1, hk > 0, hk ↓ 0 when k → ∞

s.t. w = lim
k→∞

v(x, g,hk)}.

A mapping x
→ QSec(x,h) is called a subgradient-related (SR)-quasi-secant
mapping if the corresponding set QSL(x) ⊆ ∂f(x) for all x ∈ R

n. In this case
elements ofQSec(x,h) are called SR-quasi-secants. In the sequel, we will consider
sets QSec(x,h) which contain only SR-quasi-secants.

It has been shown in [23] that the closed convex set of quasi-secants

W0(x,h) = cl conv QSec(x,h)

can be used to find a descent direction for the objective with any h > 0. However,
it is not easy to compute the entire set W0(x,h), and therefore we use only a few
quasi-secants from the set to calculate the descent direction in the QSM.

http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_13

14.3 Quasi-Secant Method 321

Let us denote by l the index of the subiteration in the direction finding procedure,
by k the index of the outer iteration and by s the index of inner iteration. We start by
describing the direction finding procedure. In what follows we use only the iteration
counter lwhenever possible without confusion. At every iteration ks we first compute
the vector

wl = argmin w∈V̄l(x)‖w‖2,

where V̄l(x) is a set of all quasi-secants computed so far. If ‖wl‖ < δ with a given
tolerance δ > 0, we accept the point x as an approximate stationary point, the so-
called (h, δ)-stationary point [23], and we go to the next outer iteration. Otherwise,
we compute another search direction

gl+1 = − wl

‖wl‖
and we check whether this direction is descent or not. If it is, we set dks = gl+1, vks =
wl, and stop the direction finding procedure. Otherwise, we compute another quasi-
secant vl+1(x, gl+1,h) in the direction gl+1, update the bundle of quasi-secants

V̄l+1(x) = conv{V̄l(x) ∪ {vl+1(x, gl+1,h)}}

and continue the direction finding procedure with l = l + 1. It has been proved in
[23] that the direction finding procedure is terminating.

When the descent direction dks has been found, we need to compute the next
(inner) iteration point

xks+1 = xks + tksdks ,

where the step size tks is defined as

tks = argmax
{
t ≥ 0 | f(xks + tdks) − f(xks) ≤ −c2t‖vks‖

}
,

with given c2 ∈ (0, c1].
The pseudo-code of the QSM is the following:

Program QSM
Initialize x1 ∈ R

n, d11 ∈ S1 and k = 1;
Outer iteration
Set s = 1 and xks = xk;
Compute the first quasi-secant vk1 (xk1 ,dk1 ,hk) with hk > 0
s.t. hk ↓ 0 when k → ∞;

Set V̄ (xk1) = {vk1 };
While the termination condition is not met

Inner iteration
Compute the vector v̄ks = argmin v∈V̄ (xks)

‖v‖2;

If ‖v̄ks‖ ≤ δk with δk > 0 s.t. δk ↓ 0 when k → ∞ then

322 14 Hybrid Methods

Set xk+1 = xks and k = k + 1;
Go to the next Outer iteration;

Else
Compute the search direction dks = −v̄ks/‖v̄ks‖;
Find a step size tks;
If Descent condition holds then
Construct the following iteration xks+1 = xks + tksdks;
Compute a new quasi-secant vks+1 at xks+1;
Set V̄ (xks+1) = {vks+1 };

Else
Compute a new quasi-secant vks+1 at xks
in direction dks;

Update the set V̄ (xks+1) = conv{ V̄ (xks) ∪ vks+1 };
Set xks+1 = xks;

End If
Set s = s+ 1 and go to the next Inner iteration;

End If
End Inner iteration

End While
End Outer iteration
Return final solution xk;

End Program QSM

The QSM is globally convergent for locally Lipschitz continuous functions under
the assumption that the setQSec(x,h) is a SR-quasi-secant mapping, that is, quasi-
secants can be computed using subgradients.

14.4 Non-Euclidean Restricted Memory Level Method

The non-Euclidean restricted memory level method (NERML) by Ben-Tal and
Nemirovski [32] is developed for solving extremely large-scale convex nonsmooth
problems over simple domains. The NERML is a subgradient type technique that is
adjustable, to some extent, to the geometry of the feasible set and, also, it is capable
to utilize information gathered about the function in previous iterations. Therefore,
the NERML may be considered as a mirror descent method [30, 185] with memory,
which on the other hand, makes it a hybrid of subgradient and bundle types methods.

The NERML solves the problems of the form

{
minimize f(x)

subject to x ∈ X,

where X ⊂ R
n is a convex compact set with a nonempty interior and f is a Lipschitz

continuous convex function on X .
The iteration formula of the NERML is given by

14.4 Non-Euclidean Restricted Memory Level Method 323

xk+1 = argmin x∈X {ω(x) − xT∇ω(pk) | Akx ≤ bk},

where ω : X → R is a smooth strongly convex function on X , pk ∈ X is the current
prox-center, and the linear inequalities Akx ≤ bk, with [Ak, bk] the current bundle
(c.f. bundle methods in Chap. 12), are such that outside of the set Xk = {x ∈ X |
Akx ≤ bk} the value of the objective f is lower or equal to the current level lk ∈ R.
The level may be defined as

lk = fk + λ(fk − fk), (14.7)

where fk is the best value of the objective known so far, fk < fk is a current lower
bound for the objective and λ ∈ (0, 1) is a parameter of the method.

The execution of the NERML is divided to the outer (index k) and inner (index s)
iterations. To initiate the very first outer iteration we set

f1 = f(p1) and f1 = min
x∈X

{f(p1) + (x − p1)
T ξp1

},

where the first prox-center p1 ∈ X can be chosen in an arbitrary fashion and ξp1
∈

∂f(p1).
The search points xs := xk,s, s = 1, 2, . . . are generated as follows. At the outer

iteration we first compute the current level lk by (14.7) and then we initialize the
inner iteration. Hence, at the beginning of the each inner iteration s we always have
in our disposal the (s− 1)th search point xs−1 (x0 = pk), a valid lower bound f̃s−1
of the objective (f̃0 = fk) and a localizer Xs−1 ⊆ X (X0 = X , for more details see
[32] and the pseudo-code given below).

The NERML then solves an auxiliary problem

f̃ = min
x∈Xs−1

{f(xs−1) + (x − xs−1)
T ξxs−1

},

to compute a new candidate for lower bound

f̃s = max{f̃s−1, min lk, f̃}.

To update xs−1 to xs, the NERML solves the auxiliary optimization problem

xs = argmin x∈Xs−1{ω(x) − (x − pk)
T∇ω(pk) |

f(xs−1) + (x − xs−1)
T ξxs−1

≤ lk}.

There are two different reasons to terminate the inner iteration. First, if there is
significant decrease in the lower bound fk or, then, if there is essential progress in the
best objective value fk (see the pseudo-code given below). Otherwise, the localizer
Xs−1 is updated to Xs according to given rules and the next inner iteration is started.

http://dx.doi.org/10.1007/978-3-319-08114-4_12

324 14 Hybrid Methods

On the other hand, the outer iteration (and, thus, the NERML) is terminated when
there is no significant difference between the current best solution and the current
lower bound. That is,

fk − fk ≤ ε

with some predefined ε > 0. The NERML returns the solution xk that corresponds
to the best value fk of the objective obtained so far.

Various versions of the NERML differ from each other mainly by the choice
of ω(·), as well as rules for updating the prox-center, the bundle and the level. The
choice of ω(·) allows to adjust the NERML to the geometry of X For example, it
has turned out that in the case of X = B(x; 1) (unit Euclidean ball in R

n), a good
choice of function ω is ω(x) = 1

2xTx, in which case the NERML becomes similar
to usual bundle methods (see Chap. 12).

The pseudo-code of the NERML is the following:

Program NERML
Initialize k = 1, p1 = x1 ∈ X ⊂ R

n, λ ∈ (0, 1), θ ∈ (0, 1), and ε > 0;
Compute f(p1) and ξp1

∈ ∂f(p1);
Set f1 = f(p1) and f1 = minx∈X {f(p1) + (x − p1)

T ξp1
};

Outer iteration
While the termination condition fk − fk ≤ ε is not met
Set lk = fk + λ(fk − fk);
Initialize x0 = pk, f̃0 = fk, X0 = X, and s = 1;
Inner iteration
Compute

f̃ = minx∈Xs−1 {f(xs−1) + (x − xs−1)
T ξxs−1

},
f̃s = max{f̃s−1, min lk, f̃};

If (f̃s ≥ lk − θ(lk − fk)) then (progress in the lower bound)
Set
fk+1 = min{fk, min0≤τ≤s−1 f(xτ)} and
fk+1 = f̃s;

Choose pk+1 ∈ X and set k = k + 1;
Go to the next Outer iteration;

Else
Compute

xs = argmin x∈Xs−1 {ω(x) − (x − pk)
T∇ω(pk) |

f(xs−1) + (x − xs−1)
T ξxs−1

≤ lk}
and f(xs) and ξxs ∈ ∂f(xs);
If (f(xs) − lk ≤ θ(fk − lk))then(progress in the objective)
Set
fk+1 = min{fk, min0≤τ≤s f(xτ)} and fk+1 = f̃s;

Choose pk+1 ∈ X and set k = k + 1;
Go to the next Outer iteration;

Else
Choose Xs as any convex compact set satisfying

{x ∈ Xs−1 | gs−1(x) ≤ lk} ⊆ Xs

⊆ {x ∈ X | (x − xk)
T∇ωk(xs) ≥ 0},

http://dx.doi.org/10.1007/978-3-319-08114-4_12

14.4 Non-Euclidean Restricted Memory Level Method 325

where gs−1(x) = f(xs−1) + (x − xs−1)
T ξxs−1

;
Set s = s+ 1 and go to the next Inner iteration;

End If
End If

End Inner iteration
End While

End Outer iteration
Return final solution xk that corresponds to fk;

End Program NERML

It has been proved that for every ε > 0 the NERML founds a solution in a finite
number of function (and subgradient) evaluations.

Chapter 15
Discrete Gradient Methods

In this chapter, we introduce two discrete gradient methods that can be considered as
semi-derivative free methods in a sense that they do not use subgradient information
and they do not approximate the subgradient but at the end of the solution process (i.e.,
near the optimal point). The introduced methods are the original Discrete Gradient
Method (DGM) for small-scale nonsmooth optimization and its limited memory
bundle version Limited Memory Discrete Gradient Bundle Method (LDGB) for
medium- and semi-large problems.

15.1 Discrete Gradient Method

The idea of the original discrete gradient method (DGM) by Bagirov et al. [24] is
to hybridize derivative free methods with bundle methods. In contrast with bundle
methods, which require the computation of a single subgradient of the objective func-
tion at each trial point, the DGM approximates subgradients by discrete gradients
(see Part I, Sect. 6.2) using function values only. Similarly to bundle methods the
previous values of discrete gradients are gathered into a bundle and the null step is
used if the current search direction is not good enough.

In what follows we again denote by S1 the sphere of the unit ball and by

P = {z | z : R+ → R+, λ > 0, λ−1z(λ) → 0, λ → 0}

the set of univariate positive infinitesimal functions. In addition, let

G = {e ∈ R
n | e = (e1, . . . , en), |ej | = 1, j = 1, . . . ,n}

be a set of all vertices of the unit hypercube in R
n.

It has been proved in Sect. 6.2 that the closed convex set of discrete gradients

D0(x,λ) = cl conv {v ∈ R
n |∃ g ∈ S1, e ∈ G, z ∈ P

such that v = Γ i(x, g,e, z,λ,α)}

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_15

327

http://dx.doi.org/10.1007/978-3-319-08114-4_6
http://dx.doi.org/10.1007/978-3-319-08114-4_6

328 15 Discrete Gradient Methods

is an approximation to the subdifferential ∂ f (x) for sufficiently small λ > 0 and
α > 0. Thus, it can be used to compute the descent direction for the objective (see
Corollary 6.5 and Theorem 6.9). However, the computation of the whole setD0(x,λ)

is not easy, and therefore, in the DGM we use only a few discrete gradients from
the set to calculate the descent direction.

The procedures used in the DGM are pretty similar to those in the QSM (see
Sect. 14.3) but we use here the discrete gradient instead of the quasi-secant. Thus,
the DGM consists of outer and inner iterations. In turn the inner iteration consists
of serious and null steps.

Let us denote by l the index of the subiteration in the direction finding procedure,
by k the index of the outer iteration and by s the index of inner iteration. In what
follows we use only the iteration counter l whenever possible without confusion. At
every iteration ks we first compute the discrete gradient v1 = Γ i(x, g1,e, z,λ,α)

(see Definition 6.5 and Remark 6.1) with respect to any initial direction g1 ∈ S1 and
we set the initial bundle of discrete gradients D̄1(x) = {v1}. Then we compute the
vector

wl = argmin w∈D̄l (x)‖w‖2,

that is the distance between the convex hull D̄l(x) of all computed discrete gradients
and the origin. If this distance is less than a given tolerance δ > 0 we accept the point
x as an approximate stationary point and go to the next outer iteration. Otherwise,
we compute another search direction

gl+1 = − wl

‖wl‖
and we check whether this direction is descent. If it is, we have

f (x + λgl+1) − f (x) ≤ −c1λ‖wl‖,

with the given numbers c1 ∈ (0, 1) and λ > 0. Then we set dks = gl+1, vks = wl

and stop the direction finding procedure. Otherwise, we compute another discrete
gradient vl+1 = Γ i(x, gl+1,e, z,λ,α) into the direction gl+1, update the bundle
of discrete gradients

D̄l+1(x) = conv {D̄l(x) ∪ {vl+1}}.

and continue the direction finding procedure with l = l + 1. Note that, at each
subiteration the approximation of the subdifferential ∂ f (x) is improved. It has been
proved in [24] that the direction finding procedure is terminating.

When the descent direction dks has been found, we need to compute the next
(inner) iteration point similarly to that in the QSM (see Sect. 14.3 and the pseudo-
code below).

Let sequences (δk), (λk) such that δk ↓ 0, λk ↓ 0 as k → ∞ be given. These
parameters are updated in every outer iterations. In the inner iteration parameters
δk and λk are fixed. In addition, let a function z ∈ P , sufficiently small numbers

http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14

15.1 Discrete Gradient Method 329

ε > 0,α > 0 and a number c1 ∈ (0, 1) be given. The pseudo-code of the DGM is
as follows:

Program DGM
Initialize x1 ∈ R

n, g11
∈ S1, ε > 0, δ1 > ε, λ1 > ε, α > 0, and

z ∈ P;
Set k = 1;
Outer iteration
Set s = 1 and xk1 = xk;
Compute i = argmax {|gk1,j | | j = 1, . . . , n} and
the discrete gradient v1 = Γ i(xk1 , gk1

, e, z, λk, α);
Set D̄(xk1) = {v1};
While the termination conditions δk ≤ ε and λk ≤ ε are
not met
Inner iteration

Least distance computation
Compute the vector v̄ks

= argmin v∈D̄(xks)
v 2;

End Least distance computation
Inner iteration termination

If v̄ks
δk then

Set xk+1 = xks
and k = k + 1;

Update λk and δk;
Go to the next Outer iteration;

End If
End Inner iteration termination
Compute the search direction gks

= −v̄ks
/ v̄ks

and i = argmax {|gks,j | | j = 1, . . . , n};
If Descent condition holds then

Serious step
Find a step size tks

;
Construct the following iteration xks+1 = xks

+ tks
gks

;
Compute a new discrete gradient

vks+1 = Γ i(xks+1 , gks+1
, e, z, λk, α);

Set D̄(xks+1) = {vks+1};
End Serious step

Else
Null step
Compute a new discrete gradient

vks+1 = Γ i(xks
, gks+1

, e, z, λk, α);
Update the set D̄(xks+1) = conv{ D̄(xks

) ∪ vks+1 };
Set xks+1 = xks

;
End Null step

End If
Set s = s + 1 and go to the next Inner iteration;

End Inner iteration
End While

End Outer iteration
Return final solution xk;

End Program DGM

330 15 Discrete Gradient Methods

In [24] it is proved that the DGM is globally convergent for locally Lipschitz con-
tinuous functions under assumption that the set of discrete gradients uniformly ap-
proximates the subdifferential (see Assumption 6.1). Since in the DGM the descent
direction can be computed for any values of λ > 0, one can take λ1 ∈ (0, 1), some
β ∈ (0, 1) and update λk by the formula λk = βkλ1, k > 1. Thus, in this method
approximations to subgradients are used only at the final stage which guarantees
convergence. In most of iterations such approximations are not used. Therefore the
DGM is a derivative-free method.

In a case of piecewise partially separable objective function (see Definition 6.7 in
Sect. 6.3 of Part I) the discrete gradients can be computed very efficiently as shown
in Sect. 6.3.4. For more details, we refer to [18].

15.2 Limited Memory Discrete Gradient Bundle Method

In this section, we introduce the derivative free limited memory discrete gradient
bundle method (LDGB) by Karmitsa and Bagirov [124]. The LDGB is a hybrid of
the LMBM and the DGM (see Sects. 14.2 and 15.1).

The LMBM and the DGM have some similarities in their structures. For instance,
both of these methods wipe out the old information whenever the serious step occurs.
This property is different from standard bundle methods (see Chap. 12) where the old
information is collected near the prevailing iteration point and stored to be used in
the next iterations nonetheless of the step in question. In practice, storing all the old
information may have several disadvantages: first, it needs storage space; second, it
adds computational costs; and, what is the worst, it may store and use information
that is no longer relevant due to fact that it might have been collected far away from
the current iteration point. The last point may be especially problematic in nonconvex
cases.

The LMBM bundles the subgradients that are computed in a small neighborhood
of the iteration point of the moment. This is similar to standard bundle methods
although the LMBM uses this information only after null steps and, at the most,
three subgradients are needed. On the other hand, the DGM computes and gathers
discrete gradients into a bundle only at the current iteration point but in different
directions (see Definition 6.5 in Part I and Sect. 15.1). In the LDGB these ideas
are combined and discrete gradients are computed in a small neighborhood of the
prevailing iteration point and in the different directions.

In the DGM a quadratic subproblem similar to standard bundle methods needs to
be solved to find the discrete gradient with the shortest norm and, as a consequence,
to calculate the search direction. In the LDGB, instead of bundling an unlimited
number of discrete gradients in null steps and computing the shortest norm, the
convex combination of at most three discrete gradients is computed and the search
direction is calculated using the limited memory approach. Thus, a possibly time
consuming quadratic direction finding problem needs not to be solved and also the

http://dx.doi.org/10.1007/978-3-319-08114-4_6
http://dx.doi.org/10.1007/978-3-319-08114-4_6
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_12

15.2 Limited Memory Discrete Gradient Bundle Method 331

difficulty with the unbounded amount of storage needed in the DGM has been dealt
with.

The obvious difference between the LDGB and the LMBM is that the LDGB
uses discrete gradients instead of subgradients of the objective function. In addition,
both inner and outer iterations are used in order to avoid too tight approximations to
the subgradients at the beginning of computation. The inner iteration of the LDGB
is essentially the same as the LMBM. That is, the search direction is computed by
the formula

dks = −Dks ṽks ,

where s and k are the indices of inner and outer iterations, ṽks is an aggregate discrete
gradient and Dks is a limited memory variable metric update. In addition, the line
search procedure [cf. (14.1)–(14.3)] is used to determine a new iteration and auxiliary
points xks+1 and yks+1

, and the aggregation procedure [cf. (14.5) and (14.6)] is used
to compute a new aggregate discrete gradient ṽks+1 and a new aggregate subgradient
locality measure β̃ks+1 .

The first discrete gradient

v11 = Γ i(x, g11
,e, z, ζ,α),

where i = argmax {|gj | | j = 1, . . . ,n}, is computed to an arbitrary initial direction
g11

∈ S1. After that we always use the previous normalized search direction gks+1
=

dks/‖dks‖ to compute the next discrete gradient vks+1 . Parameters z ∈ P , ζ > 0,
and α > 0 are selected similarly to the DGM (see Sect. 15.1).

The inner iteration is terminated if we have

1

2
‖ṽks‖2 + β̃ks ≤ δk

for some outer iteration parameter δk > 0.
The LDGB uses an adaptive updating strategy for the selection of outer iteration

parameter δk. At the beginning, the outer iteration parameter δ1 is set to a large
number. Each time the inner iteration is terminated we set

δk+1 = min{σδk,wks},

where σ ∈ (0, 1) andwks = −ṽT
ks

dks +2β̃ks . Similarly to the LMBM, the parameter
wks is used also during the line search procedure to represent the desirable amount
of descent [cf. (14.2) and (14.3)].

Let us assume that the sequences zk ∈ P , ζk > 0, zk ↓ 0, ζk ↓ 0, k → ∞, a
sufficiently small number α > 0 and the line search parameters εksL ∈ (0, 1/2) and

εksR ∈ (εksL , 1/2) are given. The pseudo-code of the LDGB is the following:

http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14

332 15 Discrete Gradient Methods

Program LDGB
Initialize x1 ∈ R

n, g11
∈ S1, ε > 0, δ1 > ε, ζ1 > 0, and ∈ (0, 1);

Set k = 1;
Outer iteration
Set s = 1 and xk1 = xk;
While the termination condition δk ≤ ε is not met

Inner iteration
Serious step 1
Compute the discrete gradient vks

∈ V0(xks
, ζk) in

direction gks
;

Set m = s, ṽks
= vks

, and β̃ks
= 0;

Compute the search direction dks
using ṽks

and L-BFGS
update;

End Serious step 1
Inner iteration termination

If 1/2 ṽks

2 + β̃ks
≤ δk then;

Set xk+1 = xks
, gk+11

= dks
/ dks

, ζk+1 = k,
δk+1 = min{σδk, −ṽT

ks
dks

+ 2β̃ks
}, and k = k + 1;

Go to the next Outer iteration;
End If

End Inner iteration termination
Find step sizes tks

L and tks

R , and the subgradient
locality measure βks+1;

If tks

L > 0 then
Serious step 2
Construct the iteration xks+1 = xks

+ tks

L dks
;

Set gks+1
= dks

/ dks
;

Set s = s + 1 and go to the next Serious step 1;
End Serious step 2

Else
Null step
Construct the trial point yks+1

= xks
+ tks

R dks
;

Compute new discrete gradient vks+1 ∈ V0(yks+1
, ζk)

at point yks+1
in direction gks+1

= dks
/ dks

;
Compute the aggregate values

ṽks+1 = λks
1 vkm

+ λks
2 vks+1 + λks

3 ṽks
and

β̃ks+1 = λks
2 βks+1 + λks

3 β̃ks
;

Compute the new search direction dks+1 using ṽks+1

and L-SR1 update;
Set xks+1 = xks

and s = s + 1;
Go to the Inner iteration termination;

End Null step
End if

End Inner iteration
End While

End Outer iteration
Return final solution xk;

End LDGB

15.2 Limited Memory Discrete Gradient Bundle Method 333

The discrete gradient is computed according to Definition 6.5 and Remark 6.1. Sim-
ilarly to the LMBM the search direction and the aggregate values are computed
by using the L-BFGS update after serious steps and L-SR1 update otherwise (see
Sect. 14.2). The step sizes tksR ∈ (0, tmax] and tksL ∈ [0, tksR with tmax > 1 are com-
puted such that either condition (14.2) for serious steps or condition (14.3) for null
steps is satisfied. In addition, the subgradient locality measure βks+1 as well as the

multipliers λksi satisfying λksi ≥ 0 for all i ∈ {1, 2, 3}, and
∑3

i=1 λ
ks
i = 1 utilized

in the aggregation procedure are computed similarly to the LMBM (see Eqs. (14.4)
and (14.5) in Sect. 14.1).

It can be proved that the LDGB is globally convergent for locally Lipschitz
continuous semi-smooth functions under assumption that the set of discrete gradients
uniformly approximates the subdifferential (see Assumption 6.1 in Part I).

http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14

Chapter 16
Constraint Handling

Until now we have mainly considered unconstrained optimization problems. How-
ever, many practical optimization problems have restrictions of some kind that can
be modeled as constraint functions to the cost function. In this chapter we introduce
some common ways of dealing with nonsmooth constrained optimization. That is,
exact penalty formulation, and linearization.

16.1 Exact Penalty

As stated in Part II Sect. 8.1 the l1 exact penalty function formulation

Fr(x) = f (x) + r

⎛

⎝
p∑

i=1

max{0, gi(x)} +
q∑

j=1

|hj(x)|
⎞

⎠ (16.1)

with r > 0 may be used to solve the constrained optimization problems of the form

⎧
⎪⎨

⎪⎩

minimize f (x)

subject to gi(x) ≤ 0, for i = 1, . . . , p,

hj(x) = 0, for j = 1, . . . , q,

(16.2)

where all the functions involved are supposed to be locally Lipschitz continuous. For
the simplicity of the presentation, we have used a single scalar penalty parameter
r for all the constraints. In practice, different penalty parameters can be used to
accommodate different scalings for constraints.

The pseudo-code for exact penalty method is given below.

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_16

335

http://dx.doi.org/10.1007/978-3-319-08114-4_8

336 16 Constraint Handling

Program Exact Penalty
Initialize xs1 ∈ R

n, r1 > 0, εr > 0, and k = 1;
While the termination condition is not met
Find an approximate minimizer xk of

Frk (x) = f (x) + rk

(∑p
i=1 max{0, gi(x)} + ∑q

j=1 |hj(x)|
)

starting at xsk;
If Frk (xk) − f (xk) < εr, Then
STOP with the approximate solution xk;

Else
Choose new penalty parameter rk+1 > rk;
Choose new starting point xsk+1 (e.g. set xsk+1 = xk);

End if
End While
Return final solution xk;

End Program Exact Penalty

Note that the approximative minimizer xk of the function Frk (x) can be computed
using any of the nonsmooth solvers introduced in previous chapters. Usually, the
approximative minimizer xk is also used as a new starting point xsk+1.

The main difficulty of the penalty function methods lies in choosing the initial
value and the updating strategy for the penalty parameter. If the value remains too
small, the unconstrained problem (16.1) may produce a solution that is not feasible
for the original problem. On the other hand, if the value becomes too large, the
unconstrained problem (16.1) will be ill-conditioned and special techniques are then
required to obtain an accurate solution. Moreover, both the too large and the too
small penalty parameter could present numerical difficulties. From another point of
view, the advantages of the penalty approach are that it does not require a feasible
starting point and, thus, the difficulty of finding an initial feasible point is avoided.
Moreover, the “best” solutions can be determined even when no feasible point exists
(best in a sense that the l1 norm of the infeasibilities is minimized), and the solution
can be found with a finite rk.

16.2 Linearization

For simplicity we formulate the linearization method only for inequality constraints.
In other words, we consider the problem (16.2) (see Sect. 16.1) with q = 0. In
addition, we suppose that the objective function f : R

n → R and the constraint
functions gi : R

n → R for i = 1, . . . , p are convex.
As in Chap. 4 of Part I we define the total constraint function g : R

n → R by

g(x) := max {gi(x) | i = 1, . . . , p}.

http://dx.doi.org/10.1007/978-3-319-08114-4_4

16.2 Linearization 337

Now we can get rid of the constraints by replacing the objective function f by so
called improvement function defined at y ∈ R

n by

H(x;y) := max { f (x) − f (y), g(x)}.

Like in bundle methods (see Chap. 12) we now form the cutting plane model of the
improvement function by linearizing both the objective and the constraint functions.
That is, we define

Ĥk(x) := max { f̂k(x) − f (xk), ĝk(x)}, (16.3)

where f̂k is defined like in (12.1),

ĝk(x) = max
j∈Jk

{g(yj) + ξTj (x − yj)},

and ξj ∈ ∂g(yj).
The linearized improvement function (16.3) can be used, for instance, in bundle

methods instead of the usual cutting plane model (12.1). In other words, the search
direction finding problem (12.3) can be replaced by

dk = argmin d∈Rn{Ĥk(xk + d) + 1

2
ukd

Td}

causing the inequality constrained problem to be solved.

http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12

Chapter 17
Numerical Comparison of NSO Softwares

In this chapter, we compare implementations of different NSO methods for solving
unconstrained optimization problems of the form

{
minimize f(x)

such that x ∈ R
n,

where the objective function f : R
n → R is supposed to be locally Lipschitz

continuous. Note that no differentiability or convexity assumptions are made.
Most of the NSO methods can be divided into two main groups: subgradient

methods and bundle methods. Usually when developing new algorithms and testing
them, the comparison is made between similar methods. In this chapter, we test and
compare different methods from both groups as well as some methods which may
be considered as hybrids of these two and/or others, and the two discrete gradient
methods, all of which have been described in previous chapters. A broad set of non-
smooth optimization test problems is used for this purpose. A relatable comparison
is also made in [125, 163], but here we have used a larger and partially different set
of test problems and have involved more solvers in the comparison.

The methods included in our tests are the following:

• Subgradient methods:

– standard subgradient method [210] (Sect. 10.1),
– Shor’s r-algorithm [118, 139, 210] (Sect. 10.2),

• Bundle methods:

– proximal bundle method [168] (Sect. 12.1),
– bundle-Newton method [156] (Sect. 12.2),

• Hybrid methods:

– limited memory bundle method [98, 99] (Sect. 14.2),
– quasi-secant method [22, 23] (Sect. 14.3),

• Discrete gradient methods:

– discrete gradient method [24] (Sect. 15.1) and
– limited memory discrete gradient bundle method [123] (Sect. 15.2).

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4_17

339

http://dx.doi.org/10.1007/978-3-319-08114-4_10
http://dx.doi.org/10.1007/978-3-319-08114-4_10
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_15
http://dx.doi.org/10.1007/978-3-319-08114-4_15

340 17 Numerical Comparison of NSO Softwares

All of the solvers tested are so-called general black box methods and, naturally,
cannot beat codes designed especially for a particular class of problem (say, for
example, for piecewise linear, min–max, or partially separable problems). Losing in
comparison to codes designed for specific problems is a weakness, but only if the
problem is known to be of that type. The strength of the general methods is that
they require minimal information on the objective function for their implementation.
Namely, the value of the objective function and, possibly, one arbitrary subgradient
are required at each point.

The aim of this chapter is not to foreground one particular method over the others—
it is a well-known fact that different methods work well for different types of prob-
lems, and none of them is good for all types of problems—but to gain some kind of
insight into which kind of method should be selected for certain types of problems.
Suppose, for instance, that you want to minimize a problem known to be nonconvex
and nonsmooth, with 200 variables. In this chapter, we analyze which is the best
method to use.

Furthermore, in practice, no one will apply approximate (sub)gradients (i.e. a
derivative free method) if (sub)gradient information is available. However, the sit-
uation does arise when obtaining (sub)gradient information requires some effort.
In such a situation, comparison of the performance of an algorithm with exact and
approximate (sub)gradients is important to help users to understand what they lose
(or gain) if they apply only approximate (sub)gradients.

The chapter is organized as follows. Section 17.1 introduces the implementa-
tions of the NSO methods that are tested and compared. Section 17.2 describes the
problems used in our experiments. In Sect. 17.3, we say a few words about the para-
meters and termination criteria used. The results of the numerical experiments are
presented and discussed in Sect. 17.4, and Sect. 17.5 concludes the chapter and gives
our credentials for high-performing algorithms for different classes of problems.

17.1 Solvers

Benchmarking results are dependent on the quality of the method and implementa-
tion. Most methods have a variety of implementations. We have chosen the tested
implementations for their accessibility.1 The tested optimization codes with refer-
ences to their more detailed descriptions are presented in Table 17.1. Then, we say
a few words on each implementation. In Table 17.2 we recall the basic assumptions
needed for the solvers.
SubG is a crude implementation of the basic subgradient algorithm (see Sect. 10.1).

The step length is chosen to be to some extent constant. Let us denote by l the largest
integer, smaller than or equal to itmax/c, where itmax is the maximum number of
iterations and c > 0 is the user-specified maximum number of different step sizes.

1 Most of the solvers used here (i.e. DGM, LDGB, LMBM, PBNCGC, and QSM) are available for
downloading from http://napsu.karmitsa.fi/nsosoftware/. Links to some other NSO solvers (includ-
ing PNEW and SolvOpt used here) can also be found there.

http://dx.doi.org/10.1007/978-3-319-08114-4_10
http://napsu.karmitsa.fi/nsosoftware/

17.1 Solvers 341

Table 17.1 Tested pieces of software

Software Author(s) Method Referencer

SubG Karmitsa Subgradient [210]

SolvOpt Kuntsevich and Kappel Shor’s r-algorithm [118, 139, 210]

PBNCGC Mäkelä Proximal bundle [161, 168]

PNEW Lukšan and Vlček Bundle-Newton [156]

LMBM Karmitsa Limited memory bundle [98, 99]

QSM Bagirov and Ganjehlou Quasi-Secant [22, 23]

DGM Bagirov et al. Discrete gradient [24]

LDGB Karmitsa L-discrete gradient Bundle [123]

We take tk = tinit in the first l iterations and

tk = tj×l
10(j + 1)

for k = j × l + 1, . . . , (j + 1) × l and j = 1, . . . , c.

We use the following three criteria as a stopping rule for SubG: the number of
function evaluations (and iterations) is restricted by parameter itmax and also the
algorithm stops if either it cannot decrease the value of the objective function within
m1 successive iterations (i.e. f(xl) > fbest for all l = k, . . . , k+m1, where fbest is
the smallest value of the objective function obtained so far and k ≥ 1), or it cannot
find a descent direction withinm2 successive iterations (i.e. f(xl+1) > f(xl) for all
l = k, . . . , k+m2, k ≥ 1). Since a subgradient method is not a descent method, we
store the best value fbest of the objective function and the corresponding point xbest
and return them as a solution if any of the stopping rules above is met.
SolvOpt (Solver for local nonlinear optimization problems) is an implementa-

tion of Shor’s r-algorithm (see Sect. 10.2). The approaches used to handle difficulties
with step size selection and termination criteria in Shor’s r-algorithm are heuristic
(for details see [118]). In SolvOpt, one can choose to use either original subgra-
dients or difference approximations of them (i.e. the user does not have to code
difference approximations, but selects one parameter to do this automatically). In
our experiments, we have used both analytically and numerically calculated subgra-
dients. In the following, we denote SolvOptA and SolvOptN, respectively, as the
corresponding solvers.

The MatLab, C and Fortran source codes for SolvOpt are available. In our
experiments, we used SolvOpt v.1.1 HP-UX FORTRAN-90 sources.
PBNCGC is an implementation of the most frequently used bundle method in NSO;

that is, the proximal bundle method (see Sect. 12.1). The code includes constraint han-
dling (bound constraints, linear constraints, and nonlinear/nonsmooth constraints)
and a possibility to optimize multiobjective problems. The quadratic direction
finding problem (Sect. 12.3) is solved by the PLQDF1 subroutine implementing
the dual projected gradient method proposed in [154].

http://dx.doi.org/10.1007/978-3-319-08114-4_10
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12

342 17 Numerical Comparison of NSO Softwares

Table 17.2 Assumptions needed for software

Software Assumptions on objective Needed information

SubG Convex f(x), arbitrary ξ ∈ ∂f(x)

SolvOptA Convex f(x), arbitrary ξ ∈ ∂f(x)

SolvOptN Convex f(x)

PBNCGC Semi-smooth f(x), arbitrary ξ ∈ ∂f(x)

PNEW Semi-smooth f(x), arbitrary ξ ∈ ∂f(x),

(approximated Hessian)

LMBM Semi-smooth f(x), arbitrary ξ ∈ ∂f(x)

QSMA Quasi-differentiable, semi-smooth f(x), arbitrary ξ ∈ ∂f(x)

QSMN Quasi-differentiable, semi-smooth f(x)

DGM Quasi-differentiable, semi-smooth f(x)

LDGB Semi-smooth f(x)

PNEW is a bundle-Newton solver for unconstrained and linearly constrained NSO
(see Sect. 12.2). We used the numerical calculation of the Hessian matrix in our
experiments (this can be done automatically). The quadratic direction finding prob-
lem (Sect. 12.11) is solved by the subroutine PLQDF1 [154].
LMBM is an implementation of a limited memory bundle method specifically

developed for large-scale NSO (see Sect. 14.2). In our experiments, we used the
adaptive version of the code with the initial number of stored correction pairs used
to form the variable metric update equal to 7 and the maximum number of stored
correction pairs equal to 15. The Fortran 77 source code and the mex-driver (for
MatLab users) are available.
QSM is a quasi-secant solver for nonsmooth possibly nonconvex minimization

(see Sect. 14.3). We have used both analytically calculated subgradients and approx-
imated subgradients in our experiments (this can be done automatically by selecting
one parameter). In the following, we denote QSMA and QSMN, respectively, as the
corresponding solvers.
DGM is a discrete gradient solver for derivative free optimization (see Sect. 15.1).

To applyDGM, one only needs to be able to compute the value of the objective function
at every point, and the subgradient will be approximated.
LDGB is a Fortran 95 implementation of the derivative free limited memory dis-

crete gradient bundle method for general, possible nonconvex, nonsmooth minimiza-
tion (see Sect. 15.2). Similarly to DGM, one only needs to compute the value of the
objective function at every point. One can also use this code as a Fortran 95 version
of LMBM (because of some implementational issues, it might use fewer subgradient
evaluations than the previous version).

All of the algorithms except for LDGB and SolvOpt were implemented in
Fortran 77 using double-precision arithmetic. To compile the codes, we used
gfortran, the GNU Fortran compiler. The experiments were performed on an
Intel® CoreTM 2 CPU 1.80 GHz.

http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_12
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_14
http://dx.doi.org/10.1007/978-3-319-08114-4_15
http://dx.doi.org/10.1007/978-3-319-08114-4_15

17.2 Problems 343

17.2 Problems

The test set used in our experiments consists of classical academic nonsmooth
minimization problems from the literature and their extensions (see Part II). This
includes, for instance, minmax, piecewise linear, piecewise quadratic, and sparse
problems, as well as highly nonlinear nonsmooth problems. The test set was grouped
into ten subclasses according to problems convexity and size:

XSC: Extra-small convex problems, n ≤ 20, Problems 1–18 in Part II Chap. 9;

XSNC: Extra-small nonconvex problems, Problems 21–33, and 35–37 in Part II
Chap. 9;

SC: Small-scale convex problems, n = 50 Problems 57–61 in Part II Chap. 9. We
ran each problem five times, the first time using a fixed initial point x(1) given
in Part II Chap. 9 and the remaining four times using a starting point generated
randomly from a ball centered at x(1) with radius ‖x(1)‖/n. Note that x(1) �= 000
for all the problems, so the starting points for each run were unique;

SNC: Small-scale nonconvex problems Problems 62–63 in Part II Chap. 9. Simi-
larly to convex problems, we ran each problem five times;

MC and MNC: Medium-scale convex and nonconvex problems, n = 200 (see SC
and SNC problems);

LC and LNC: Large-scale convex and nonconvex problems, n = 1,000 (see SC
and SNC problems);

XLC and XLNC: Extra-large-scale convex and nonconvex problems, n = 4,000
(see SC and SNC problems);

All of the solvers tested are so-called local methods; that is, they do not attempt
to find the global minimum of the nonconvex objective function. To enable fair
comparison of different solvers, the nonconvex test problems were selected such that
all of the solvers converged to the same local minimum of a problem. However, it
is worth mentioning that when solvers converged to different local minima (i.e. in
some nonconvex problems omitted from the test set), solvers LMBM, LDGB, SubG
and SolvOpt(A+N) usually converged to one local minimum, while PBNCGC,
DGM, andQSM(A+N) converged to another. Solver PNEW sometimes converged with
the first group and other times with the second. In addition, DGM and QSM(A+N)
seem to have an aptitude for finding global or at least smaller local minima than the
other solvers. For example, in Problem 34 (Part II, Chap. 9) all of the other solvers
converged to the reported minimum, but DGM and QSM(A+N) “converged” to minus
infinity.

http://dx.doi.org/10.1007/978-3-319-08114-4_9
http://dx.doi.org/10.1007/978-3-319-08114-4_9
http://dx.doi.org/10.1007/978-3-319-08114-4_9
http://dx.doi.org/10.1007/978-3-319-08114-4_9
http://dx.doi.org/10.1007/978-3-319-08114-4_9
http://dx.doi.org/10.1007/978-3-319-08114-4_9

344 17 Numerical Comparison of NSO Softwares

17.3 Termination, Parameters, and Acceptance of Results

Each implementation of an optimization method involves a variety of tunable
parameters. The improper selection of these parameters can skew any benchmarking
result. In our experiments, we used the default settings of the codes as far as possible.
However, some parameters naturally have to be tuned, in order to obtain reasonable
results.

The determination of stopping criteria for different solvers, such that the compar-
ison of different methods is fair, is not a trivial task. We say that a solver finds the
solution with respect to a tolerance ε > 0 if

fbest − fopt

1 + ‖fopt‖ ≤ ε,

where fbest is a solution obtained with the solver and fopt is the best known
(or optimal) solution.

We fixed the stopping criteria and parameters for the solvers using three differ-
ent problems: problems 25 and 35 (XSNC), and problem 59 with n = 50 (SC).
We sought the loosest termination parameters with all of the solvers, such that the
results for all three test problems were still acceptable with respect to the tolerance
ε = 10−4.

In addition to the usual stopping criteria, we terminated the experiments if the
elapsed CPU time exceeded half an hour for XS, S, M, and L problems, and an
hour for XL problems. With XS, S, and M problems this never happened. For other
problems, the appropriate discussion is given with the results of that problem class.

We accepted the results for XS and X problems (n ≤ 50) with respect to the
tolerance ε = 5 × 10−4. With larger problems (n ≥ 200), we accepted the results
with the tolerance ε = 10−3. In the following, we also report the results for all
problem classes with respect to the relaxed tolerance ε = 10−2 to gain an insight
into the reliability of the solvers (i.e. is a failure a real one or is it just an inaccurate
result which could possibly be prevented with a more tight stopping parameter?).

With all of the bundle based solvers, the distance measure parameter valueγ = 0.5
was used with nonconvex problems. With PBNCGC and LMBM, the value γ = 0 was
used with convex problems and, since with PNEW γ has to be positive, γ = 10−10

was used with PNEW. For those solvers storing subgradients (or approximations of
subgradients)—that is, PBNCGC, PNEW, LMBM, QSM(A+N), DGM, and LDGB—the
maximum size of the bundle was set to min {n + 3, 100}. For all other parameters,
we used the default settings of the codes.

17.4 Results

The results are summarized in Figs. 17.1–17.11 and in Table 17.3. The results are
analyzed using the performance profiles introduced in [79]. We compare the effi-
ciency of the solvers both in terms of computational times and numbers of function

17.4 Results 345

and subgradient evaluations (evaluations for short). In the performance profiles, the
value of ρs(τ) at τ = 0 gives the percentage of test problems for which the corre-
sponding solver is the best; that is, it uses least computational time or evaluations.
On the other hand, the value of ρs(τ) at the rightmost abscissa gives the percent-
age of test problems that the corresponding solver can solve; in other words, the
reliability of the solver. Note that the reliability of the solver does not depend on
its measured performance. In addition, the relative efficiency of each solver can be
directly seen from the performance profiles: the higher the particular curve, the better
the corresponding solver.

17.4.1 Extra-Small Problems

There was not a large difference in computational times of the different solvers when
solving the extra small problems. Thus, only the numbers of function and subgradient
evaluations are reported in Fig. 17.1.
PBNCGC was usually the most efficient solver when comparing the numbers of

evaluations. This is, in fact, true for all sizes of problems. Thus, PBNCGC should
be a good choice as a solver in a case where the objective function value and/or the
subgradient are expensive to compute. In convex cases, the accuracy of PBNCGCwas
one of the best. However, PBNCGC failed to achieve the desired accuracy in 50 % of
the XSNC problems, which means that it had the worst degree of success in solving
these problems (see Fig. 17.1b).

In addition, with all of the other solvers, there was a slight drop in the success
rate when solving nonconvex problems. However, most of these failures are, in fact,
inaccurate results: all of the solvers except PBNCGC, PNEW, and SubG succeeded in
solving all of the XSNC problems with respect to the relaxed tolerance ε = 10−2,
and PBNCGC and SubG succeeded in solving more than 80 % of them. The reason

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ
(τ

)
s

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

ρ
(τ

)
s

(a) (b)

Fig. 17.1 Evaluations for XS problems (n ≤ 20, ε = 5 × 10−4). (a) Convex (18 pcs.). (b)
Nonconvex (16 pcs.)

346 17 Numerical Comparison of NSO Softwares

for the relatively large number of failures with PNEW lies in its sensitivity to internal
parameter XMAX (RPAR(9) in the code) which is also noted in [158]. If we used
a selected value for this parameter, instead of only one (default) value, the solver
PNEW also solved more than 80 % of the XSNC problems.
In XSC problems, PNEWwas the second most efficient solver (see Fig. 17.1a). How-
ever, as already pointed out, it did not do so well in nonconvex cases. On the other
hand, SolvOpt(A+N) were among the most reliable solvers in both convex and
nonconvex settings, although, theoretically, Shor’s r-algorithm is not supposed to
solve nonconvex problems. SolvOptA was also the most efficient method apart
from PBNCGC in nonconvex cases and, when compared to PBNCGC, it was more
reliable.

As was stated at the beginning of this chapter, it is well known that solvers using
the subderivative information usually beat those solvers that do not. However, with
these XS problems, the differences in the efficiency of the solvers with and without
subgradients were insignificant and, in fact,SolvOptNwas one of the most efficient
solvers tested (see Fig. 17.1).

17.4.2 Small-Scale Problems

Already with the small-scale problems, there was a wide diversity in the
computational times of different codes. Moreover, the numbers of evaluations used
with solvers were no longer directly comparable with the elapsed computational
times. For instance, PBNCGC was clearly the winner when comparing the numbers
of evaluations (see Figs. 17.2b and 17.3b). However, when comparing computational
times, SolvOptA, QSMA, and LMBM were equally as efficient as PBNCGC for SC
problems (see Fig. 17.2a), and LMBMwas the most efficient solver for SNC problems
(see Fig. 17.3a).

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

(a) (b)

Fig. 17.2 Time and evaluations for SC problems (25 pcs., n = 50, ε = 5 × 10−4). (a) CPU-time.
(b) Evaluations

17.4 Results 347

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

(a) (b)

Fig. 17.3 Time and evaluations for SNC problems (25 pcs., n = 50, ε = 5×10−4). (a) CPU-time.
(b) Evaluations

Solver LDGB was the most efficient of the derivative free solvers. It also com-
peted successfully with solvers using subderivative information both in SC and SNC
settings when comparing computational times. With respect to evaluations, LDGB
was not as competitive, because it needs n + 2 function evaluations per iteration.
Furthermore, LDGB had some serious difficulties with accuracy, especially in the
convex case: it solved only 64 % of SC problems with the desired accuracy, thus
making it the most unreliable solver tested for this problem class. With the relaxed
tolerance ε = 10−2, LDGB succeed in solving 96 % of the SC problems. In SNC
problems it did a little better, achieving 76 % with ε = 5 × 10−4 and 100 % with the
relaxed tolerance. Also, LMBM and DGM succeeded in solving more nonconvex than
convex problems (see Figs. 17.2 and 17.3).

On the other hand, all of the subgradient solvers SubG and SolvOpt(A+N) had
some difficulties in the nonconvex case. With SolvOpt(A+N), these difficulties
arose mainly from accuracy: SolvOptN solved only 36 % of the SNC problems
with respect to tolerance ε = 5 × 10−4 but as many as 84 % with ε = 10−2.
For SolvOptA, the corresponding values were 72 and 96 %. Note, however, that
with XS problems SolvOpt(A+N) were also the most accurate solvers in the
nonconvex settings. The standard subgradient solver SubG solved only 20 % of the
SNC problems with respect to tolerance ε = 5 × 10−4, and even with the relaxed
tolerance SubG, succeeded in solving only 40 % of the SNC problems.

The quasi-secant solvers QSM(A+N) also had some difficulties with SNC prob-
lems. While solving all of the SC problems successfully, QSMA and QSMN solved
only 60 and 72 % (respectively) of the SNC problems with the desired accuracy.
With the relaxed tolerance, both of these solvers also succeeded in solving all of the
SNC problems.

The most reliable solvers for SC problems were QSMA and QSMN. They were
the only solvers that succeeded in solving all of the SC problems with the desired
accuracy. With the relaxed tolerance, DGM managed as well, and all the other solvers
but SubG succeeded in solving at least 84 % of the problems. In the nonconvex case,
LMBM and DGM were the most reliable solvers, as they solved all of the problems

348 17 Numerical Comparison of NSO Softwares

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

ρ
(τ

)
s ρ
(τ

)
s

(a) (b)

Fig. 17.4 Time and evaluations for MC problems (25 pcs., n = 200, ε = 10−3). (a) CPU-time.
(b) Evaluations

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

ρ
(τ

)
s ρ
(τ

)
s

(a) (b)

Fig. 17.5 Time and evaluations for MNC problems (25 pcs., n = 200, ε = 10−3). (a) CPU-time.
(b) Evaluations

successfully. With the relaxed tolerance, PBNCGC, QSMA, QSMN and LDGB also
succeeded, and all of the solvers except PNEW and SubG managed to solve at least
84 % of the problems. Again, the reason for the failures withPNEW lie in its sensitivity
to internal parameters XMAX.

17.4.3 Medium-Scale Problems

The results for medium-scale problems reveal similar trends to those for small prob-
lems (see Figs. 17.4 and 17.5). Nevertheless, here the efficiency of LMBM may be
better seen, and QSMA also did better than before, especially with MNC problems.

17.4 Results 349

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGBρ
(τ

)
s ρ
(τ

)
s

(a) (b)

Fig. 17.6 Time and evaluations for LC problems (25 pcs., n = 1,000, ε = 10−3). (a) CPU-time.
(b) Evaluations

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGBρ
(τ

)
s ρ
(τ

)
s

(a) (b)

Fig. 17.7 Time and evaluations for LNC problems (25 pcs., n = 1,000, ε = 10−3). (a) CPU-time.
(b) Evaluations

17.4.4 Large Problems

When solving L problems, the solvers divided into two groups in terms of their
efficiency (see Figs. 17.6, 17.7 and 17.8): the first group consists of more effi-
cient solvers; LMBM, PBNCGC, QSMA, and SolvOptA (SolvOptA with respect to
evaluations). The second group consists of solvers using some kind of approximation
for subgradients or Hessian, and SubG. In the nonconvex case (see Fig. 17.7), the
inaccuracy of QSMA almost caused it to slide into the group of less efficient solvers.
In Fig. 17.8, which illustrates the results with the relaxed tolerance, QSMA is clearly
among the more efficient solvers.
LMBM was usually the most efficient method tested when comparing computa-

tional times: for 44 % of LC problems and 40 % of LNC problems (see Figs. 17.6a
and 17.7a). However, in the LC case, the overall efficiency of LMBM was ruined,
because it could not solve piecewise linear and sparse problems (problems 57 and 58
in Part II, Chap. 9); that is, ten problems from the convex test set. These difficulties

http://dx.doi.org/10.1007/978-3-319-08114-4_9

350 17 Numerical Comparison of NSO Softwares

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

ρ
(τ

)
sρ
(τ

)
s

(a) (b)

Fig. 17.8 Time and evaluations for LNC problems with relaxed tolerance (25 pcs., n = 1,000,
ε = 10−2). (a) CPU-time. (b) Evaluations

experienced by LMBM are easy to explain: the approximation of the Hessian formed
during the calculations is dense and, naturally, not even close to the real Hessian in
sparse problems. It has been reported [98] that LMBM is best suited for problems with
a dense subgradient vector whose component depends on the current iteration point.
This result is in line with the noted result that LMBM solves nonconvex problems very
efficiently. As a derivative of LMBM, the derivative free solver LDGB seems to share
both the weaknesses and strengths of LMBM.

In addition to LMBM, PBNCGC was also often the most efficient solver tested: in
36 % of LC and 40 % of LNC problems). However, PBNCGCwas also the solver that
needed the longest time to compute some of the problems. Indeed, PBNCGC used
the whole time limit in all 59, 60 and 64 problems, regardless of the starting point
(the results obtained were within the desired accuracy). The efficiency of PBNCGC is
mostly due to its efficiency in piecewise linear (LC) and piecewise quadratic (LNC)
problems: PBNCGC was superior in solving piecewise linear problems and the most
efficient solver in almost all quadratic problems, in terms of both computational times
and numbers of evaluations.

In addition, solverQSMA solved all of the problems quite efficiently but, as already
stated, it had some difficulties with accuracy in the LNC case. However, in the LC
case,QSMAwas the only solver that succeeded in solving all problems with the desired
accuracy. In fact, this also remains true with the relaxed tolerance. In the LNC case,
none of the solvers succeeded in solving all of the problems with the desired accuracy.
However, with the relaxed tolerance LMBM, QSMA and QSMN managed to solve all
of the problems.

Solvers PBNCGC, QSM(A+N) and DGM were the only solvers that solved those
LC problems in which there is only one nonzero element in the subgradient vector
(i.e. Problem 57 Part II, Chap. 9). With the other methods, there were already some
difficulties with n = 200 (note that for S, M, L and XL settings, the problems are
the same, only the number of variables and the starting point changes). Furthermore,
solvers DGM, LMBM, SubG and QSMN failed to solve (possibly in addition to the five

http://dx.doi.org/10.1007/978-3-319-08114-4_9

17.4 Results 351

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SolvOptA

PBNCGC

LMBM

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SolvOptA

PBNCGC

LMBM

ρ
(τ

)
s ρ
(τ

)
s

(a) (b)

Fig. 17.9 Time and evaluations for XLC problems (25 pcs., n = 4,000, ε = 10−3). (a) CPU-time.
(b) Evaluations

abovementioned problems) five piecewise linear problems (Problem 58 in Part II,
Chap. 9) and also SolvOptN failed to solve some of them.

Naturally, for the solvers using difference approximation, or some other
approximation based on the calculation of the function or subgradient values, the
number of evaluations and, thus, also the computational time, grows enormously
when the number of variables increases. In particular, in L problems, the time limit
was exceeded quite often by all of these solvers. Therefore, the number of failures
with these solvers is probably a little larger than it would be without the time limit.
However, in almost all cases, the results obtained were still far from the optima,
indicating very long computational times.

17.4.5 Extra Large Problems

Finally we tested the most efficient solvers so far, that is SolvOptA, PBNCGC,
LMBM, and QSMA, with the problems with n = 4,000.

In the convex case, solver QSMA, which had kept a rather low profile until that
point, was clearly the most efficient method, although PBNCGC still usually used the
fewest evaluations (see Fig. 17.9). QSMA was also the most reliable of the solvers
tested. In the nonconvex case. LMBM and QSMAwere approximately as good in terms
of computational times, evaluations and reliability (see Fig. 17.10). Here, PBNCGC
was the most reliable solver, although with the tolerance ε = 10−2. QSMA was the
only solver that solved all of the problems (both XLC and XLNC).

Both QSMA and LMBM solved all of the XL problems that they could solve in
a relatively short time, while with the other solvers there was a wide variation in
the computational times that elapsed for different problems. However, the efficiency
of LMBM was again ruined by its unreliability in the piecewise linear and sparse
problems.

http://dx.doi.org/10.1007/978-3-319-08114-4_9

352 17 Numerical Comparison of NSO Softwares

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SolvOptA

PBNCGC

LMBM

QSMA

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

SolvOptA

PBNCGC

LMBM

QSMA

ρ
(τ

)
sρ
(τ

)
s

(a) (b)

Fig. 17.10 Time and evaluations for XLNC problems (25 pcs., n = 4,000, ε = 10−3). (a) CPU-
time. (b) Evaluations

In XL problems (50 problems in total), SolvOptA stopped five times (with very far
from optimum results), QSMA stopped four times (all results were a little inaccurate),
and LMBM stopped two times (in piecewise linear problems with both results far
from the optima), because of the time limit. PBNCGC stopped as many as 15 times.
However, ten of these terminations were within the desired accuracy, indicating that
PBNCGC could be more efficient in terms of the computational time used if it knew
when to stop.

17.4.6 Convergence Speed and Iteration Path

In this subsection, we study (experimentally) the convergence speed and iteration
paths of the solvers. The convergence speed is studied using one small-scale convex
problem (Problem 59 in Part II, Chap. 9). The exact minimum value for this function
(with n = 50) is −49 × 21/2 ≈ −69.296.

The rate of convergence for the limited memory bundle method has not been
studied theoretically. However, at least in this particular problem, solvers LMBM
and PBNCGC converged at approximately the same rate. Moreover, if we study the
number of evaluations, PBNCGC and LMBM seem to have the fastest convergence
speed of the solvers tested (see Fig. 17.11b), although, theoretically, the proximal
bundle method is at most linearly convergent.
SubG converged linearly but extremely slowly. WithPNEW, a large number of sub-

gradient evaluations is needed to compute the approximate Hessian. Although PNEW
finally found the minimum, it did not decrease the value of the function in the first
200 evaluations. Solvers SolvOptA, SolvOptN, DGM, QSMA, and QSMN already
took a very big downwards step in iteration two (see Fig. 17.11a). However, they, as
well as LDGB, used quite a few function evaluations per iteration. In Fig. 17.11, it is
easy to see that Shor’s r-algorithm (i.e. solvers SolvOptA and SolvOptN) is not
a descent method.

http://dx.doi.org/10.1007/978-3-319-08114-4_9

17.4 Results 353

In order to see how quickly the solvers reach some specific level, we studied the
value of the function equal to −69. WithPBNCGC, it took only 8 iterations to go below
that level. The corresponding values for other solvers were 17 with QSMA and QSMN,
20 with LMBM and PNEW, and more than 20 with all of the other solvers. In terms
of function and subgradient evaluations, the values were 18 with PBNCGC, 64 with
LMBM, and 133 with SolvOptA. Other solvers needed more than 200 evaluations
to go below −69. The worst of the solvers were SubG and SolvOptN. SubG
took 7,382 iterations and 14,764 evaluations to reach the desired accuracy and stop,
while SolvOptN never reached the desired accuracy. The final value obtained after
42 iterations and 2,342 evaluations was −68.915.

The iteration paths are studied using an extra small nonconvex problem crescent
(Problem 21 in Part II, Chap. 9). The exact minimum value for this function is zero
at the point (0, 0) and the starting point used is (−1.5, 2). In Figs. 17.12 and 17.13
we have drawn the contour plot of the crescent function and the iteration paths of
different solvers.

2 4 6 8 10 12 14 16 18 20
−80

−60

−40

−20

0

20

40

60

Number of iterations

f(
x)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

0 20 40 60 80 100 120 140 160 180 200
−80

−60

−40

−20

0

20

40

60

Number of evaluations

f(
x)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

QSMA

QSMN

DGM

LDGB

(a) (b)

Fig. 17.11 (a) function values versus 20 first iterations, (b) function values versus 200 first function
and subgradient evaluations

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2
contour plot of crescent problem

SubG
SolvOpt(A+N)

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2
contour plot of crescent problem

PBNCGC
BNEW

(a) (b)

Fig. 17.12 Iteration paths for (a) subgradient methods subG and SolvOpt(A+N), and (b) bundle
methods PBNCGC and PNEW

http://dx.doi.org/10.1007/978-3-319-08114-4_9

354 17 Numerical Comparison of NSO Softwares

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2
contour plot of crescent problem

LMBM
QSM(A+N)

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2
contour plot of crescent problem

DGM
LDGB

(a) (b)

Fig. 17.13 Iteration paths for (a) hybrid methods LMBM and QSM(A+N), and (b) discrete gradient
methods DGM and LDGB

All of the solvers have different iteration paths, except for those that are different
versions of the same method: that is, SolvOptA and SolvOptN, and QSMA and
QSMN. However, the first search direction is the same for subgradient methods, bundle
methods andLMBM. The differences occur at the step sizes and then in the next search
directions. All of the solvers except SubG converged to the minimum of the problem.
SubG was terminated after 500 iterations while the current iteration point was still
very far from optimum (see Fig. 17.12a). The long step sizes taken by QSM(A+N)
and DGM (see Fig. 17.13a, b) may explain the tendency of these solvers to jump over
the narrow local minima. However, a more precise line search could result in faster
convergence.

17.5 Conclusions

We tested the performance of different NSO solvers in solving different nonsmooth
problems. The results are summarized in Table 17.3, where we give our recommen-
dations for the “best” solver for different classes of problems. Since the best result
might be ambiguous, we give credentials in both cases where the most efficient, in
terms of used CPU time, or the most reliable, solver is sought. When there is more
than one recommendation in Table 17.3, the solvers are given in alphabetical order.
The parentheses in the table mean that the solver is not exactly as good as the first
one but is still a possible solver for using with that class of problems.

Although we obtained some extremely good results with the proximal bundle
solverPBNCGC, we cannot say that it is clearly the best method tested. The inaccuracy
in XSNC problems, great variations in computational time in larger problems, and the
earlier results make us believe that our test set favored this solver over the others to a
certain extent. PBNCGC is especially efficient for piecewise quadratic and piecewise
linear problems. Moreover, PBNCGC usually used the fewest number of evaluations

17.5 Conclusions 355

Ta
bl

e
17

.3
Su

m
m

at
io

n
of

th
e

re
su

lts

Pr
ob

le
m

ty
pe

Pr
ob

le
m

si
ze

Se
ek

in
g

fo
r

ef
fic

ie
nc

y
Se

ek
in

g
fo

r
re

lia
bi

lit
y

C
on

ve
x

X
S

P
B
N
C
G
C

,P
N
E
W

a ,(
S
o
l
v
O
p
t
(
A
+
N
)

)
D
G
M

,Q
S
M
(
A
+
N
)

S,
M

,L
L
M
B
M

b
,P
B
N
C
G
C

,(
Q
S
M
A

,S
o
l
v
O
p
t
A

)
P
B
N
C
G
C

,Q
S
M
A

X
L

L
M
B
M

b
,Q
S
M
A

Q
S
M
A

,(
P
B
N
C
G
C

)

N
on

co
nv

ex
X

S
P
B
N
C
G
C

,S
o
l
v
O
p
t
(
A
+
N
)

,(
Q
S
M
A

)
S
o
l
v
O
p
t
(
A
+
N
)

,(
D
G
M

,Q
S
M
(
A
+
N
)

)

S
L
M
B
M

,(
P
B
N
C
G
C

,S
o
l
v
O
p
t
A

)
D
G
M

,L
M
B
M

,(
P
B
N
C
G
C

)

M
,L

L
M
B
M

,(
P
B
N
C
G
C

,Q
S
M
A

)
L
M
B
M

,P
B
N
C
G
C

,(
D
G
M

)

X
L

L
M
B
M

,Q
S
M
A

P
B
N
C
G
C

Pi
ec

ew
is

e
lin

ea
r

or
sp

ar
se

X
S,

S
P
B
N
C
G
C

,Q
S
M
A

,S
o
l
v
O
p
t
A

P
B
N
C
G
C

,Q
S
M
(
A
+
N
)

,S
o
l
v
O
p
t
A

M
,L

,X
L

P
B
N
C
G
C

,Q
S
M
A

c
P
B
N
C
G
C

,Q
S
M
A

Pi
ec

ew
is

e
qu

ad
ra

tic
X

S
P
B
N
C
G
C

,P
N
E
W

a ,(
L
M
B
M

,S
o
l
v
O
p
t
A

)
L
M
B
M

,P
B
N
C
G
C

,P
N
E
W

a ,S
o
l
v
O
p
t
A

S,
M

,L
,X

L
L
M
B
M

b
,P
B
N
C
G
C

,(
Q
S
M
A

)
D
G
M

,L
M
B
M

,P
B
N
C
G
C

,Q
S
M
A

d

H
ig

hl
y

no
nl

in
ea

r
X

S
L
M
B
M

,P
B
N
C
G
C

,S
o
l
v
O
p
t
A

L
M
B
M

,Q
S
M
A

,S
o
l
v
O
p
t
A

S
L
M
B
M

,P
B
N
C
G
C

L
M
B
M

,P
B
N
C
G
C

,Q
S
M
A

d

M
,L

,X
L

L
M
B
M

L
M
B
M

,Q
S
M
A

d

Fu
nc

tio
n

ev
al

ua
tio

ns
ar

e
ex

pe
ns

iv
e

X
S

P
B
N
C
G
C

,(
P
N
E
W

a ,S
o
l
v
O
p
t
A

)
Q
S
M
A

,S
o
l
v
O
p
t
A

S,
M

,L
,X

L
P
B
N
C
G
C

,(
L
M
B
M

e ,S
o
l
v
O
p
t
A

)
P
B
N
C
G
C

,(
L
M
B
M

e ,Q
S
M
A

d
)

Su
bg

ra
di

en
ts

ar
e

no
ta

va
ila

bl
e

X
S

L
D
G
B

,S
o
l
v
O
p
t
N

D
G
M

,Q
S
M
N

,S
o
l
v
O
p
t
N

S,
M

L
D
G
B

,(
S
o
l
v
O
p
t
N

,Q
S
M
N

)
D
G
M

,(
L
D
G
B

e ,Q
S
M
N

f)

L
L
D
G
B

e ,Q
S
M
N

f ,D
G
M

D
G
M

,Q
S
M
N

a P
N
E
W

m
ay

re
qu

ir
e

tu
ni

ng
of

in
te

rn
al

pa
ra

m
et

er
X
M
A
X

b
L
M
B
M

,i
f

no
ta

pi
ec

ew
is

e
lin

ea
r

or
sp

ar
se

pr
ob

le
m

c P
B
N
C
G
C

in
pi

ec
ew

is
e

lin
ea

r
pr

ob
le

m
s,
Q
S
M
A

in
ot

he
r

sp
ar

se
pr

ob
le

m
s

d
Q
S
M
A

in
th

e
co

nv
ex

ca
se

e L
M
B
M

es
pe

ci
al

ly
in

th
e

no
nc

on
ve

x
ca

se
f Q
S
M
N

in
th

e
co

nv
ex

ca
se

356 17 Numerical Comparison of NSO Softwares

for problems of any size. Thus, it should be a good choice for a solver when the
objective function value and/or the subgradient are expensive to compute.

The limited memory bundle solver LMBM suffered from ill-fitting test problems in
the convex S, M, L and XL cases. In the test set, LMBMwas known to have difficulties
in 10 problems (out of 25). LMBM was quite reliable in the nonconvex cases with
all numbers of variables tested, and it solved all of the problems—even the largest
ones—in a relatively short time. LMBM works best for (highly) nonlinear functions.

In convex XS problems, the bundle-Newton solver PNEW was the second most
efficient solver tested. However, PNEW suffers greatly from the fact that it is very
sensitive to the choice of internal parameter XMAX. A light tuning of this parameter
(e.g. using a default value XMAX = 1,000 and subsequently the smallest recom-
mended value XMAX = 2 and then choosing the better result) would have yielded
better results and, in particular, the degree of success would have been much higher.
In [166], PNEW is reported to be very efficient in quadratic problems. Furthermore,
in our experiments it solved (nonconvex) piecewise quadratic problems faster than
non-quadratic ones. However, apart from some XS problems, it did not beat the
other solvers in these problems due to the large approximation of the Hessian matrix
required.

The standard subgradient solver SubG is usable only for XSC problems. In addi-
tion, the implementations of Shor’s r-algorithm SolvOptA and SolvOptN did
their best in XS problems both in convex and nonconvex settings. Nevertheless,
SolvOptA also solved S, M, L, and even XL problems (convex) rather efficiently.
In larger nonconvex problems, both of these methods suffered from inaccuracy.

The quasi-secant solver QSMA was uniformly efficient with all sized problems.
Moreover, it was clearly the most reliable solver tested in convex settings: it failed
to achieve the desired accuracy only in XLC problems. With nonconvex problems,
QSMA had some difficulties with accuracy (with almost all sizes of problems). Thus,
when comparing the reliability in M, L, and XL settings, it seems that one should
select QSMA for convex problems, while LMBM is good for nonconvex problems. On
the other hand, PBNCGC is rather reliable for both convex and nonconvex problems.

The solvers using discrete gradients, that is the discrete gradient solver DGM, the
limited memory discrete gradient bundle solver LDGB, and the quasi-secant solver
with discrete gradients QSMN, usually lost out in efficiency to the solvers that used
analytical subgradients. However, in XS and S problems, the differences were not
significant and, indeed,LDGB competed successfully with the solvers using subderiv-
ative information when comparing computational times. Furthermore, the reliability
of DGM and QSMN seems to be very good with both convex and nonconvex XS and S
problems. In larger cases, the usage of a method employing subgradients is, naturally,
recommended. Nevertheless, if one needs to solve a problem where the subgradient
is not available, the best solver would probably be LDGB or QSMN (convex case)
because of their efficiency, or DGM because of its reliability. Moreover in the case
of highly nonconvex functions (supposing that you seek for global optimum), DGM
or QSM (either with or without subgradients) would be a good choice, since these
methods tend to jump over the narrow local minima.

References

1. Aberick, B., Bicshof, C., Carle, A., More, J., & Griewank, A. (1994). Computing large sparse
jacobian matrices using automatic differentiation. SIAM Journal on Scientific and Statistical
Computing, 15, 285–294.

2. Al-Sultan, K. (1995). A tabu search approach to the clustering problem. Pattern Recognition,
28(9), 1443–1451.

3. An, L. T. H. (2003). Solving large-scale molecular distance geometry problems by a smoothing
technique via the Gaussian transform and D.C. programming. Journal of Global Optimization,
27, 375–397.

4. An, L. T. H., & Tao, P. D. (2003). Large-scale molecular optimization from distance matrices
by a D.C. optimization approach. SIAM Journal on Optimization, 14(1), 77–114.

5. Andreani, R., Martínez, J. M., & Martínez, L. (2008). Trust region superposition methods for
protein alignment. IMA Journal on Numerical Analysis, 28, 690–710.

6. Andreani, R., Martínez, J. M., Martínez, L., & Yano, F. S. (2009). Low order-value optimiza-
tion and applications. Journal of Global Optimization, 43, 1–22.

7. Asaadi, J. (1973). A computational comparison of some non-linear programs. Mathematical
Programming, 4, 144–154.

8. Astorino, A., Fuduli, A., & Gaudioso, M. (2010). Dc models for spherical separation. Journal
of Global Optimization, 48(4), 657–669.

9. Astorino, A., & Gaudioso, M. (2002). Polyhedral separability through successive LP. Journal
of Optimization Theory and Applications, 112(2), 265–293.

10. Astorino, A., & Gaudioso, M. (2005). Ellipsoidal separation for classification problems. Op-
timization Methods and Software, 20(2–3), 267–276.

11. Avriel, M., Diewert, W. E., Schaible, S., & Zang, I. (1988). Generalized concavity. New York:
Plenum Press.

12. Bagirov, A. (1999). Minimization methods for one class of nonsmooth functions and calcu-
lation of semi-equilibrium prices. In A. Eberhard, B. Glover, & D. Ralph (Eds.), Progress in
optimization (pp. 147–175). New York: Kluwer Academic Publishers.

13. Bagirov, A. (2003). Continuous subdifferential approximations and their applications. Journal
of Mathematical Sciences, 115(5), 2567–2609.

14. Bagirov, A. (2008). Modified global k-means algorithm for sum-of-squares clustering prob-
lems. Pattern Recognition, 41(10), 3192–3199.

15. Bagirov, A., Clausen, C., & Kohler, M. (2009). Estimation of a regression function by maxima
of minima of linear functions. IEEE Transactions on Information Theory, 55(2), 833–845.

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4

357

358 References

16. Bagirov, A., Clausen, C., & Kohler, M. (2010). An algorithm for the estimation of a re-
gression function by continuous piecewise linear functions. Computational Optimization and
Applications, 45(1), 159–179.

17. Bagirov, A., & Ugon, J. (2005). An algorithm for minimizing clustering functions. Optimiza-
tion, 54(4–5), 351–368.

18. Bagirov, A., & Ugon, J. (2006). Piecewise partially separable functions and a derivative-
free algorithm for large scale nonsmooth optimization. Journal of Global Optimization, 35,
163–195.

19. Bagirov, A., Ugon, J., & Mirzayeva, H. (2013). Nonsmooth nonconvex optimization approach
to clusterwise linear regression problems. European Journal of Opertaional Research, 229,
132–142.

20. Bagirov, A., & Yearwood, J. (2006). A new nonsmooth optimization algorithm for minimum
sum-of-squares clustering problems. European Journal of Operational Research, 170, 578–
596.

21. Bagirov, A. M. (2002). A method for minimization of quasidifferentiable functions. Opti-
mization Methods and Software, 17(1), 31–60.

22. Bagirov, A. M., & Ganjehlou, A. N. (2009). A secant method for nonsmooth optimization
(Submitted).

23. Bagirov, A. M., & Ganjehlou, A. N. (2010). A quasisecant method for minimizing nonsmooth
functions. Optimization Methods and Software, 25(1), 3–18.

24. Bagirov, A. M., Karasozen, B., & Sezer, M. (2008). Discrete gradient method: A derivative
free method for nonsmooth optimization. Journal of Optimization Theory and Applications,
137, 317–334.

25. Bagirov, A. M., Rubinov, A. M., & Yearwood, J. (2001). Global optimization approach to
classification. Optimization and Engineering, 22, 65–74.

26. Bagirov, A. M., & Ugon, J. (2011). Codifferential method for minimizing nonsmooth dc
functions. Journal of Global Optimization, 50(1), 3–22.

27. Bard, J. F. (1988). Short-term scheduling of thermal-electric generators using Lagrangian
relaxation. Operations Research, 36, 756–766.

28. Bartels, S., Kuntz, L., & Sholtes, S. (1995). Continuous selections of linear functions and
nonsmooth critical point theory. Nonlinear Analysis, TMA, 24, 385–407.

29. Batut, J., & Renaud, A. (1992). Daily generation scheduling with transmission constraints: A
new class of algorithms. IEEE Transactions on Power Systems, 7, 982–989.

30. Beck, A., & Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3), 167–175.

31. Beliakov, G., Monsalve Tobon, J. E., & Bagirov, A. M. (2003). Parallelization of the dis-
crete gradient method of non-smooth optimization and its applications. In Sloot et al. (Ed.),
Computational science—ICCS (pp. 592–601). Lecture Notes in Computer Science. Berlin:
Springer.

32. Ben-Tal, A., & Nemirovski, A. (2005). Non-Euclidean restricted memory level method for
large-scale convex optimization. Mathematical Programming, 102(3), 407–456.

33. Bennet, K. P., & Bredersteiner, E. J. (1997). A parametric optimization method for machine
learning. INFORS Journal on Computing, 9, 311–318.

34. Bertsekas, D. P. (1975). Nacessary and sufficien conditions for a penalty method to be exact.
Mathematical Programming, 9, 87–99.

35. Bertsekas, D. P. (2009). Convex optimization Theory. Belmont: Athena Scientific.
36. Bertsekas, D. P., Nedic, A., & Ozdaglar, A. E. (2003). Convex analysis and optimization.

Belmont: Athena Scientific.
37. Bhatia, D., & Jain, P. (1994). Generalized (f,ρ)-convexity and duality for non smooth multi-

objective programs. Optimization, 31, 153–164.
38. Bihain, A. (1984). Optimization of upper semidifferentiable functions. Journal of Optimiza-

tion Theory and Applications, 4, 545–568.
39. Bock, H. H. (1974). Automatische Klassifikation. Gottingen: Vandenhoeck & Ruprecht.

References 359

40. Bock, H. H. (1998). Clustering and neural networks. In A. Rizzi, M. Vichi, & H. Bock (Eds.),
Advances in data science and classification (pp. 265–277). Berlin: Springer.

41. Bonnans, J. F., Gilbert, J. C., Lemaréchal, C., & Sagastizábal, C. (1995). A family of variable
metric proximal methods. Mathematical Programming, 68, 15–47.

42. Bonnans, J. F., Gilbert, J. C., Lemaréchal, C., & Sagastizábal, C. (2006). Numerical optimiza-
tion: Theoretical and practical aspects. Berlin: Springer.

43. Borde, J., & Crouzeix, J. P. (1990). Continuity properties of the normal cone to the level sets
of a quasiconvex function. Journal of Optimization Theory and Applications, 66, 415–429.

44. Borwein, J. M., & Lewis, A. S. (2006). Convex analysis and nonlinear optimization (2nd ed.).
Berlin: Springer.

45. Bradley, P. S., Fayyad, U. M., & Mangasarian, O. L. (1999). Data mining: Overview and
optimization opportunities. INFORS Journal on Computing, 11, 217–238.

46. Brännlund, U., Kiwiel, K. C., & Lindberg, P. O. (1996). Preliminary computational experience
with a descent level method for convex nondifferentiable optimization. In J. Doležal & J. Fidler
(Eds.), System modelling and optimization (pp. 387–394). London: Chapman & Hall.

47. Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees.
Belmont: Springer, Wadsworth.

48. Brown, D., & Entail, C. (1992). A practical application of simulated annealing to the clustering
problem. Pattern Recognition, 25, 401–412.

49. Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2, 121–167.

50. Burke, J. V., Lewis, A. S., & Overton, M. L. (2001). Optimizing matrix stability. In Proceedings
of the American Mathematical Society, 129, 1635–1642.

51. Burke, J. V., Lewis, A. S., & Overton, M. L. (2002). Approximating subdifferentials by random
sampling of gradients. Mathematics of Operations Research, 27, 567–584.

52. Burke, J. V., Lewis, A. S., & Overton, M. L. (2005). A robust gradient sampling algorithm
for nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15, 751–779.

53. Byrd, R. H., Nocedal, J., & Schnabel, R. B. (1994). Representations of quasi-Newton matrices
and their use in limited memory methods. Mathematical Programming, 63, 129–156.

54. Carbonneau, R., Caporossi, G., & Hansen, P. (2011). Globally optimal clusterwise regression
by mixed logical-quadratic programming. European Journal of Operational Research, 212,
213–222.

55. Carbonneau, R., Caporossi, G., & Hansen, P. (2012). Extensions to the repetitive branch-
and-bound algorithm for globally-optimal clusterwise regression. Computers and Operations
Research, 39, 2748–2762.

56. Chambolle, A., & Lions, P. L. (1997). Image recovery via total variation minimization and
related problems. Numerische Mathematik, 76, 167–188.

57. Chan, T. F., & Esedoglu, S. (2005). Aspects of total variation regularized l1 function approx-
imation. SIAM Journal on Applied Mathematics, 65(5), 1817–1837.

58. Charalambous, C. (1979). On conditions for optimality of the nonlinear l1 problem. Mathe-
matical Programming, 17, 123–135.

59. Charalambous, C., & Conn, A. R. (1978). An efficient method to solve the minimax problem
directly. SIAM Journal on Numerical Analysis, 15(1), 162–187.

60. Cheney, E. W., & Goldstein, A. A. (1959). Newton’s method for convex programming and
Tchebycheff approximation. Numerische Mathematik, 1, 253–268.

61. Clarke, F. H. (1983). Optimization and nonsmooth analysis. New York: Wiley-Interscience.
62. Colson, B., & Toint, P. (2002). A derivative-free algorithm for sparse unconstrained opti-

mization problems. In A. Siddiqi & M. Kocvara (Eds.), Trends in industrial and applied
mathematics (pp. 131–147). Dordrecht: Kluwer Academic Publishers.

63. Conn, A., Gould, N., & Toint, P. (1994). Improving the decomposition of partially separable
functions in the context of large-scale optimization: A first approach. In W. Hager, D. Hearn,
& P. Pardalos (Eds.), Large scale optimization: State of the art (pp. 82–94). Dordrecht: Kluwer
Academic Publishers.

360 References

64. Conn, A. R., & Mongeau, M. (1998). Discontinuous piecewise linear optimization. Mathe-
matical Programming, 80, 315–380.

65. Crippen, G., & Havel, T. (1988). Distance geometry and molecular conformation. New York:
Wiley.

66. Cross, J. B., Thomson, D. C., Rai, B. K., Baber, C., Yi Fan, K., Hu, Y., et al. (2009). Compar-
ison of several molecular docking programs: Pose prediction and virtual screening accuracy.
Journal of Chemical Information and Modeling, 49, 1455–1474.

67. Curtis, F., & Que, X. (2013). An adaptive gradient sampling algorithm for nonsmooth opti-
mization. Optimization Methods and Software, 28(6), 1302–1324.

68. Demyanov, V. (1988). On codifferentiable functions. Vestnik Leningrad University, 2(8), 22–
26.

69. Demyanov, V., & Rubinov, A. (1980). On quasidifferentiable functionals. Doklady of USSR
Academy of Sciences, 250(1), 21–25.

70. Demyanov, V., & Rubinov, A. (1986). Quasidifferential calculus. New York: Optimization
Software.

71. Demyanov, V., & Rubinov, A. (1990). Foundations of nonsmooth analysis. Quasidifferential
calculus (in Russian). Moscow: Nauka.

72. Demyanov, V., & Rubinov, A. (1995). Constructive nonsmooth analysis. Frankfurt am Main:
Verlag Peter Lang.

73. Demyanov, V. F., & Dixon, L. C. W. (1986). Quasidifferential calculus. Mathematical Pro-
gramming Study 29.

74. DeSarbo, W., & Cron, W. (1988). A maximum likelihood methodology for clusterwise linear
regression. Journal of Classification, 5, 249–282.

75. DeSarbo, W., Oliver, R., & Rangaswamy, A. (1989). A simulated annealing methodology for
clusterwise linear regression. Psychometrika, 54, 707–736.

76. Di Pillo, G., & Grippo, L. (1989). Exact penalty functions in constrained optimization. SIAM
Journal on Control and Optimization, 27(6), 1333–1360.

77. Diehr, G. (1985). Evaluation of a branch and bound algorithm for clustering. SIAM Journal
of Scientific and Statistical Computing, 6, 268–284.

78. Diewert, W. E. (1981). Alternative characterizations of six kinds of quasiconcavity in the
nondifferentiable case with applications to nonsmooth programming. In S. Schaible & W. T.
Ziemba (Eds.), Generalized concavity in optimization and economics (pp. 51–95). New York:
Academic Press.

79. Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91, 201–213.

80. Dong, Q., & Wu, Z. (2002). A linear-time algorithm for solving the molecular distance geom-
etry problem with exact inter-atomic distances. Journal of Global Optimization, 26, 321–333.

81. du Merle, O., Hansen, P., Jaumard, B., & Mladenovic, N. (2001). An interior point method for
minimum sum-of-squares clustering. SIAM Journal on Scientific Computing, 21, 1485–1505.

82. Evans, L. C., & Gariepy, R. F. (1992). Measure theory and fine properties of functions. Boca
Raton: CRC Press.

83. Feltenmark, S., & Kiwiel, K. C. (2000). Dual applications of proximal bundle methods.
Including Lagrangian relaxation of nonconvex problems. SIAM Journal on Optimization, 10,
697–721.

84. Fletcher, R. (1987). Practical methods of optimization (2nd ed.). Chichester: Wiley.
85. Friedman, J. (1991). Multivariate adaptive regression splines (with discussion). Annals of

Statistics, 19, 1–141.
86. Fuduli, A., Gaudioso, M., & Giallombardo, G. (2004). A DC piecewise affine model and

a bundling technique in nonconvex nonsmooth minimization. Optimization Methods and
Software, 19(1), 89–102.

87. Fuhrmann, J., Rurainski, A., Lenhof, H.-P., & Neuman, D. (2009). A new method for the
gradient-based optimization of molecular complexes. Journal of Computational Chemistry,
30(9), 1371–1378.

References 361

88. Fuhrmann, J., Rurainski, A., Lenhof, H.-P., & Neuman, D. (2010). A new Lamarckian genetic
algorithm for flexible ligand-receptor docking. Journal of Computational Chemistry, 31(9),
1911–1918.

89. Fukunaga, K. (1990). Introduction to statistical pattern recognition (2nd ed.). Belmont: Aca-
demic Press.

90. Gasimov, R., & Ozturk, G. (2006). Separation via polihedral conic functions. Optimization
Methods and Software, 21(4), 527–540.

91. Gaudioso, M., & Monaco, M. F. (1992). Variants to the cutting plane approach for convex
nondifferentiable optimization. Optimization, 25, 65–75.

92. Gehlhaar, D. K., Verkhivker, G. M., Rejto, P. A., Sherman, C. J., Fogel, D. B., Fogel, L. J., et al.
(1995). Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: Conformationally
flexible decking by evolutionary programming. Chemistry and Biology, 2, 317–324.

93. Gorokhovik, V., Zorko, O., & Birkhoff, G. (1994). Piecewise affine functions and polyhedral
sets. Optimization, 31, 209–221.

94. Griewank, A., & Toint, P. (1982). On the unconstrained optimization of partially separable
functions. In M. Powell (Ed.) Nonlinear optimization (pp. 301–312). Belmont: Academic
Press.

95. Grothey, A. (2001). Decomposition methods for nonlinear nonconvex optimization problems.
PhD thesis, University of Edinburgh.

96. Györfi, L., Kohler, M., Krzyżak, A., & Walk, H. (2002). A distribution-free theory of non-
parametric regression. Heldelberg: Springer.

97. Haarala, M. (2004). Large-Scale nonsmooth optimization: Variable metric bundle method
with limited memory. PhD thesis, University of Jyväskylä, Department of Mathematical In-
formation Technology.

98. Haarala, M., Miettinen, K., & Mäkelä, M. M. (2004). New limited memory bundle method for
large-scale nonsmooth optimization. Optimization Methods and Software, 19(6), 673–692.

99. Haarala, N., Miettinen, K., & Mäkelä, M. M. (2007). Globally convergent limited memory
bundle method for large-scale nonsmooth optimization. Mathematical Programming, 109(1),
181–205.

100. Han, S.-P., & Mangasarian, O. L. (1979). Exact penalty functions in nonlinear programming.
Mathematical Programming, 17, 251–269.

101. Hansen, P., & Jaumard, B. (1997). Cluster analysis and mathematical programming. Mathe-
matical Programming, 79(1–3), 191–215.

102. Hansen, P., & Mladenovic, N. (2001). Variable neighborhood decomposition search. Journal
of Heuristic, 7, 335–350.

103. Haslinger, J., Miettinen, M., & Panagiotopoulos, P. D. (1999). Finite element method for
hemivariational inequalities. Dordrecht: Kluwer Academic Publishers.

104. Haslinger, J., & Neittaanmäki, P. (1996). Finite element approximation for optimal shape,
material and topology design (2nd ed.). Chichester: Wiley.

105. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. New
York: Springer.

106. Helmberg, C., & Rendl, F. (2000). A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization, 10, 673–696.

107. Hiriart-Urruty, J.-B. (1979). New concepts in nondifferentiable programming. Bulletin de la
Sociète Mathèmatiques de France, Mémoires, 60, 57–85.

108. Hiriart-Urruty, J.-B. (1984). Approximating a second-order directional derivative for non-
smooth convex functions. SIAM Journal on Control and Optimization, 11, 43–56.

109. Hiriart-Urruty, J.-B., & Lemaréchal, C. (1993). Convex analysis and minimization algorithms
I. Berlin: Springer.

110. Hiriart-Urruty, J.-B., & Lemaréchal, C. (1993). Convex analysis and minimization algorithms
II. Berlin: Springer.

111. Hock, W., & Klaus, S. (1981). Test examples for nonlinear programming codes, (Vol. 187) of
Lecture Notes in Economics and Mathematical Systems. Berlin: Springer.

362 References

112. Ioffe, A. (1981). Nonsmooth analysis: Differential calculus of nondifferentiable functions.
Transactions of the American Mathematical Society, 255, 1–55.

113. Ioffe, A. D. (1983). New applications of nonsmooth analysis to nonsmooth optimization. In
J. P. Cecconi, & J. P. Zolezzi (Eds.) Mathematical theories of optimization (Vol. 979, pp.
178–201). Lecture Notes in Mathematics.

114. Ito, K., & Kunisch, K. (19991) An active set strategy based on the augmented Lagrangian
formulation for image restoration. M2AN Mathematical Modelling and Numerical Analysisi,
33(1), 1–21.

115. Ito, K., & Kunisch, K. (2000). BV-type regularization methods for convoluted objects with
edge flat and grey scales. Inverse Problems, 16, 909–928.

116. Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: A review. ACM Computing Surveys,
31(3), 264–323.

117. Jurs, P. C. (1986). Pattern recognition used to investigate multivariate chemistry. Science, 232,
1219–1224.

118. Kappel, F., & Kuntsevich, A. (2000). An implementation of Shor’s r-algorithm. Computa-
tional Optimization and Applications, 15, 193–205.

119. Kärkkäinen, T., Kunisch, K., & Majava, K. (2005). Denoising smooth images using l1-fitting.
Computing, 74, 353–376.

120. Kärkkäinen, T., & Majava, K. (2000). Nonmonotone and monotone active-set methods for
image restoration, Part 1: Convergence analysis, Part 2: Numerical results. Journal of Opti-
mization Theory and Applications, 106(1), 61–105.

121. Kärkkäinen, T., & Majava, K. (2005). Semi-adaptive, convex optimization methodology for
image denoising. IEE Proceedings—Vision, Image and Signal Processing, 152(5), 553–560.

122. Karmitsa, N. (2007). Test problems for large-scale nonsmooth minimization. Reports of the
Department of Mathematical Information Technology, Series B. Scientific Computing, B.
4/2007 University of Jyväskylä, Jyväskylä.

123. Karmitsa, N., & Bagirov, A. (2011). Limited memory discrete gradient bundle method for
nonsmooth derivative free optimization. TUCS Technical Report, No. 1011, Turku Centre
for Computer Science, Turku. The report is available online at blue http://tucs.fi/research/
publication-view/?pub_id=tKaBa11a

124. Karmitsa, N., & Bagirov, A. (2012). Limited memory discrete gradient bundle method for non-
smooth derivative free optimization. Optimization: A Journal of Mathematical Programming
and Operations Research, 61(12), 1491–1509.

125. Karmitsa, N., Bagirov, A., & Mäkelä, M. M. (2012). Comparing different nonsmooth opti-
mization methods and software. Optimization Methods and Software, 27(1), 131–153.

126. Karmitsa, N., Mäkelä, M. M., & Ali, M. M. (2008). Limited memory interior point bundle
method for large inequality constrained nonsmooth minimization. Applied Mathematics and
Computation, 198(1), 382–400.

127. Kasimbeyli, R. (2009). Radial epiderivatives and set-valued optimization. Optimization, 58(5),
521–534.

128. Kasimbeyli, R. (2010). A nonlinear cone separation theorem and scalarization in nonconvex
vector optimization. SIAM Journal on Optimization, 20(3), 1591–1619.

129. Kelley, J. E. (1960). The cutting plane method for solving convex programs. Journal of the
SIAM, 8, 703–712.

130. Kiwiel, K. C. (1985). An exact penalty function algorithm for nonsmooth convex constrained
minimization problems. IMA Journal of Numerical Analysis, 5, 111–119.

131. Kiwiel, K. C. (1985). Methods of descent for nondifferentiable optimization (Vol. 1133).
Lecture Notes in Mathematics. Berlin: Springer.

132. Kiwiel, K. C. (1990). Proximity control in bundle methods for convex nondifferentiable
minimization. Mathematical Programming, 46, 105–122.

133. Kiwiel, K. C. (1991). Exact penalty functions in proximal bundle methods for constrained
convex nondifferentiable minimization. Mathematical Programming, 52, 285–302.

134. Kolodny, R., Koehl, P., & Levitt, M. (2005). Comprehensive evaluation of protein structure
alignment methods: Scoring by geometric measures. Journal of Molecular Biology, 346,
1173–1188.

http://tucs.fi/research/publication-view/?pub_id=tKaBa11a
http://tucs.fi/research/publication-view/?pub_id=tKaBa11a

References 363

135. Kolodny, R., & Linial, N. (2004). Approximate protein structural alignment in polynomial
time. Proceedings of the National Academy of Sciences of the United States of America,
101(33), 12201–12206.

136. Komlósi, S. (1983). Some properties of nondifferentiable pseudoconvex functions. Mathe-
matical Programming, 26, 232–237.

137. Komlósi, S. (1989). On a possible generalization of pshenichnyi’s quasidifferentiability. Re-
port: Janus Pannonius University, Pécs, Hungary.

138. Komlósi, S. (1995). Generalized monotonicity and generalized convexity. Journal of Opti-
mization Theory and Applications, 84, 361–376.

139. Kuntsevich, A., & Kappel, F. (1997). SolvOpt—the solver for local nonlinear optimization
problems. Graz: Karl-Franzens University of Graz.

140. Lavor, C., Liberti, L., & Maculan, N. (2009). Molecular distance geometry problem (2nd ed.).
New York: Springer.

141. Leach, A. R. (2001). Molecular modelling: Principles and applications (2nd ed.). Harlow:
Pearson Education Limited.

142. Lemaréchal, C. (1978). Nonsmooth optimization and descent methods. Technical Report 78/4,
IIASA, Laxenburg, Austria.

143. Lemaréchal, C. (1982). Numerical experiments in nonsmooth optimization. In E. A. Nurmin-
ski (Ed.), Proceedings of the IIASA Workshop on Progress in Nondifferentiable Optimization,
Laxenburg, Austria (pp. 61–84).

144. Lemaréchal, C. (1989). Nondifferentiable optimization. In G. L. Nemhauser, A. H. G. Rinnooy
Kan, & M. J. Todd (Eds.), Optimization (pp. 529–572). New York: Elsevier North-Holland
Inc.

145. Lemaréchal, C., & Sagastizábal, C. (1994).An approach to variable metric bundle methods.
In J. Henry, & J. P. Yvon (Eds.) Lecture Notes in Control and Information Sciences (Vol. 197,
pp. 144–162). New York: Springer.

146. Lemaréchal, C., & Mifflin, R. (Eds.). (1978). Nonsmooth optimization, IIASA proceedings
series. Oxford: Pergamon Press.

147. Lemaréchal, C., & Sagastizábal, C. (1997). Variable metric bundle methods: From conceptual
to implementable forms. Mathematical Programming, 76, 393–410.

148. Lemaréchal, C., Sagastizábal, C., Pellegrino, F., & Renaud, A. (1996). Bundle methods applied
to the unit-commitment problem. In J. Doležal & J. Fidler (Eds.), System modelling and
optimization (pp. 395–402). London: Chapman & Hall.

149. Lemaréchal, C., Strodiot, J.-J., & Bihain, A. (1981). On a bundle algorithm for nonsmooth
optimization. In O. L. Mangasarian, R. R. Mayer, & S. M. Robinson (Eds.), Nonlinear pro-
gramming (pp. 245–281). New York: Academic Press.

150. Levine, S., Stanich, J., & Chen, Y. (2004). Image restoration via nonstandard diffusion.
Technical Report 04–01, Dept of Mathematics and Computer Science, Duquesne University.

151. Lewis, A. S. (2003). The mathematics of eigenvalue optimization. Mathematical Program-
ming, Series B, 97, 155–176.

152. Lewis, A. S., & Overton, M. L. (1996). Eigenvalue optimization. Acta Numerica, 5, 149–190.
153. Locatelli, M., & Schoen, F. (2002). Fast global optimization of difficult Lennard-Jones clus-

ters. Computational Optimization and Applications, 21, 55–70.
154. Lukšan, L. (1984). Dual method for solving a special problem of quadratic programming

as a subproblem at linearly constrained nonlinear minmax approximation. Kybernetika, 20,
445–457.

155. Lukšan, L., Tčma, M., Šiška, M., Vlček, J., & Ramešová, N. (2002). UFO 2002. Interactive
system for universal functional optimization. Technical Report 883, Institute of Computer
Science, Academy of Sciences of the Czech Republic, Prague.

156. Lukšan, L., & Vlček, J. (1998). A bundle-Newton method for nonsmooth unconstrained
minimization. Mathematical Programming, 83, 373–391.

157. Lukšan, L., & Vlček, J. (1999). Globally convergent variable metric method for convex
nonsmooth unconstrained minimization. Journal of Optimization Theory and Applications,
102(3), 593–613.

364 References

158. Lukšan, L., & Vlček, J. (2000). NDA: Algorithms for nondifferentiable optimization. Technical
Report 797, Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague.

159. Lukšan, L., & Vlček, J. (2000). Test problems for nonsmooth unconstrained and linearly
constrained optimization. Technical Report 798, Institute of Computer Science, Academy of
Sciences of the Czech Republic, Prague.

160. Majava, K., Haarala, N., & Kärkkäinen, T. (2007). Solving variational image denoising prob-
lems using limited memory bundle method. In W. Liu, M. Ng, & Z.-C. Shi (Eds.), Recent
progress in scientific computing. Proceedings of SCPDE05 (pp. 319–332). Beijing: Science
Press.

161. Mäkelä, M. M. (2003). Multiobjective proximal bundle method for nonconvex nonsmooth
optimization: Fortran subroutine MPBNGC 2.0. Reports of the Department of Mathematical
Information Technology, Series B. Scientific Computing, B. 13/2003 University of Jyväskylä,
Jyväskylä.

162. Mäkelä, M. M., Eronen, V., & Karmitsa, N. (2014). On nonsmooth multiobjective optimality
conditions with generalized convexities. In T. M. Rassias, C. A. Floudas, & S. Butenko (Eds.),
Optimization in science and engineering (pp. 341–366). Berlin: Springer.

163. Mäkelä, M. M., Karmitsa, N., & Bagirov, A. (2013). Subgradient and bundle methods for
nonsmooth optimization. In S. Repin, T. Tiihonen, & T. Tuovinen (Eds.), Numerical methods
for differential equations, optimization, and technological problems (pp. 275–304). Berlin:
Springer.

164. Mäkelä, M. M., & Männikkö, T. (1994). Numerical solution of nonsmooth optimal control
problems with an application to the continuous casting process. Advances in Mathematical
Sciences and Applications, 4, 491–515.

165. Mäkelä, M. M., Männikkö, T., & Schramm, H. (1993). Application of nonsmooth optimization
methods to continuous casting of steel. DFG-Schwerpunktprogramm ”Anwendungsbezogene
Optimierung und Steurung”, Report 421, Universität Bayreuth.

166. Mäkelä, M. M., Miettinen, M., Lukšan, L., & Vlček, J. (1999). Comparing nonsmooth noncon-
vex bundle methods in solving hemivariational inequalities. Journal of Global Optimization,
14, 117–135.

167. Mäkelä, M. M., & Neittaanmäki, P. (1991). Nonsmooth optimization in optimal shape design.
In G. Feichtinger, R. F. Hartl, W. H. Janko, W. E. Katzenberger, & A. Stepan (Eds.), Methods
of operation research 64 (pp. 95–104). Frankfurt am Main: Anton Hain.

168. Mäkelä, M. M., & Neittaanmäki, P. (1992). Nonsmooth optimization: Analysis and algorithms
with applications to optimal control. Singapore: World Scientific Publishing Co.

169. Martínez, L., Andreani, R., & Martínez, J. M. (2007). Convergent algorithms for protein
structural alignment. BMC Bioinformatics, 8, 306–320.

170. McLachlan, G. (1992). Discriminant analysis and statistical pattern recognition. New York:
Wiley.

171. Melnik, R. V. N., Uhlherr, A., Hodgkin, J., & de Hoog, F. (2003). Distance geometry algorithms
in molecular modelling of polymer and composite systems. Computers and Mathematics with
Applications, 45, 515–534.

172. Michie, D., Spiegelhalter, D., & Taylor, C. E. (1994). Machine learning, neural and statistical
classification. London: Ellis Horwood.

173. Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic Pub-
lishers.

174. Miettinen, K., Mäkelä, M. M., & Mäkinen, R. A. E. (1996). Interactive multiobjective op-
timization system NIMBUS applied to nonsmooth structural design problems. In J. Doležal
& J. Fidler (Eds.), System modelling and optimization (pp. 379–385). London: Chapman &
Hall.

175. Miettinen, K., Mäkelä, M. M., & Männikkö, T. (1998). Optimal control of continuous casting
by nondifferentiable multiobjective optimization. Computational optimization and applica-
tions, 11, 177–194.

References 365

176. Miettinen, M. (1995). On constrained hemivariational inequalities and their approximation.
Applicable Analysis, 56, 303–327.

177. Miettinen, M., & Haslinger, J. (1992). Approximation of optimal control problems of hemi-
variational inequalities. Numerical Functional Analysis and Optimization, 13, 43–68.

178. Miettinen, M., & Haslinger, J. (1995). Approximation of nonmonotone multivalued differen-
tial inclusions. IMA Journal of Numerical Analysis, 15, 475–503.

179. Miettinen, M., Mäkelä, M. M., & Haslinger, J. (1995). On numerical solution of hemivaria-
tional inequalities by nonsmooth optimization methods. Journal of Global Optimization, 6,
401–425.

180. Mifflin, R. (1982). A modification and an extension of Lemaréchal’s algorithm for nonsmooth
minimization. Matematical Programming Study, 17, 77–90.

181. Mifflin, R. (1996). A quasi-second-order proximal bundle algorithm. Mathematical Program-
ming, 73, 51–72.

182. Mordukhovich, B. (2006). Variational analysis and generalized differentiation I and II. Hei-
delberg: Springer.

183. Moré, J. J., & Wu, Z. (1997). Global continuation for distance geometry problems. SIAM
Journal on Optimization, 7, 814–836.

184. Moré, J. J., & Wu, Z. (1999). Distance geometry optimization for protein structures. Journal
of Global Optimization, 15, 219–234.

185. Nemirovski, A., & Yudin, D. (1983). Problem complexity and method efficiency in optimiza-
tion. New York: Wiley.

186. Nesterov, Y. (1987). The technique of nonsmooth differentiation. Soviet Journal of Computer
and System Sciences, 25, 113–123.

187. Neumaier, A. (1997). Molecular modeling of proteins and mathematical prediction of protein
structure. SIAM Review, 39, 407–460.

188. Nikolova, M. (2002). Minimizers of cost-functions involving nonsmooth data-fidelity terms.
Application to the processing of outliers. SIAM Journal on Numerical Analysis, 40(3), 965–
994.

189. Nikolova, M. (2004). A variational approach to remove outliers and implse noise. Journal of
Mathematical Imagin and Vision, 20, 99–120.

190. Nobakhtian, S. (2006). Infine functions and nonsmooth multiobjective optimization problems.
Computers and Mathematics with Applications, 51, 1385–1394.

191. Nobakhtian, S. (2009). Multiobjective problems with nonsmooth equality constraints. Nu-
merical Functional Analysis and Optimization, 30, 337–351.

192. Oustry, F. (2000). A second-order bundle method to minimize the maximum eigenvalue func-
tion. Mathematical Programming, 89, 1–33.

193. Overton, M. L., & Womersley, R. S. (1995). Second derivatives for optimizing eigenvalues
of symmetric matrices. SIAM Journal on Matrix Analysis and Applications, 16, 679–718.

194. Panagiotopoulos, P. D. (1993). Hemivariational inequalities. New York: Springer.
195. Penot, J. (1985). Variations on the theme of nonsmooth analysis: Another subdifferential.

In V. Demyanov & D. Pallaschke (Eds.), Nondifferentiable optimization: Motivations and
applications (pp. 41–54). Berlin: Springer.

196. Perutz, M. F., Rossmann, M. G., Cullis, A., Muirhead, H., Will, G., & North, A. C. T. (1960).
Structure if myoglobin: A three-dimensional Fourier synthesis at 5.5. angstrom resolution,
obtained by X-ray analysis. Nature, 185, 416–422.

197. Pini, R., & Singh, C. (1997). A survey of recent [1985-1995] advances in generalized convexity
with applications to duality theory and optimality conditions. Optimization, 39, 311–360.

198. Polak, E., Mayne, D. Q., & Higgins, J. E. (1991). Superlinearly convergent algorithm for
min-max problems. Journal of Optimization Theory and Applications, 69, 407–439.

199. Polak, E., Mayne, D. Q., & Wardi, Y. (1983). On the extension of constrained optimiza-
tion algorithms from differentiable to nondifferentiable problems. SIAM Journal on Optimal
Control and Optimization, 21, 179–203.

200. Preda, C., & Saporta, G. (2005). Clusterwise pls regression on a stochastic process. Compu-
tational Statistics and Data Analysis, 49, 99–108.

366 References

201. Qian, G., Wu, Y., & Shao, Q. (2009). A procedure for estimating the number of clusters in
logistic regression clustering. Journal of Classification, 26, 183–199.

202. Roberts, A. W., & Varberg, D. E. (1973). Convex functions. New York: Academic Press.
203. Robinson, S. M. (1999). Linear convergence of epsilon-subgradient descent methods for a

class of convex functions. Mathematical Programming, 86, 41–50.
204. Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press.
205. Rosen, J. B., & Suzuki, S. (1965). Constructing of non-linear programming test problems.

Communications of the ACM, 8, 113.
206. Savage, J., & Chen, K. (2005). An improved accelerated non-linear multigrid method for total-

variation denoising. International Journal of Computer Mathematics, 82(8), 1001–1015.
207. Schaible, S. (1992). Generalized monotone maps. In F. Giannessi (Ed.), Nonsmooth opti-

mization: Methods and applications (pp. 392–408). Amsterdam: Gordon and Breach Science
Publishers.

208. Schramm, H. (1989). Eine Kombination von Bundle- und Trust-Region-Verfahren zur Lö-
sung nichtdifferenzierbarer Optimierungsprobleme. PhD thesis, Bayreuther Mathematische
Schriften, No. 30, Universität Bayreuth.

209. Schramm, H., & Zowe, J. (1992). A version of the bundle idea for minimizing a nonsmooth
function: Conceptual idea, convergence analysis, numerical results. SIAM Journal on Opti-
mization, 2(1), 121–152.

210. Shor, N. Z. (1985). Minimization Methods for Non-Differentiable Functions. Berlin: Springer.
211. Souza, M., Xavier, A. E., Lavor, C., & Maculan, N. (2011). Hyperbolic smoothing and penalty

techniques applied to molecular structure determination. Operations Research Letters, 39,
461–465.

212. Späth, H. (1979). Algorithm 39: Clusterwise linear regression. Computing, 22, 367–373.
213. Späth, H. (1980). Cluster analysis algorithms. Chichester: Ellis Horwood Limited.
214. Staib, T. (1992). Necessary optimality conditions for nonsmooth multicriteria optimization

problem. SIAM Journal on Optimization, 2, 153–171.
215. Studniarski, M., & Rahmo, E.-D. (2006). Approximating clarkes subgradients of semismooth

functions by divided differences. Numerical Algorithms, 43, 385–392.
216. Subbiah, S., Laurents, D. V., & Levitt, M. (1993). Structural similarity of DNA-binding

domains of bacteriophage repressors and the globin core. Current Biology, 3, 141–148.
217. Pietrzykowski, T. (1969). An exact potential method for constrained maxima. SIAM Journal

on Numerical Analysis, 6, 294–304.
218. Taylor, R. D., Jewsbury, P. J., & Essex, J. W. (2002). A review of protein-small molecule

docking methods. Journal of Computer-Aided Molecular Design, 16, 151–166.
219. Teboulle, M. (2007). A unified continuous optimization framework for center-based clustering

methods. The Journal of Machine Learning Research, 8, 65–102.
220. Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy

molecular docking. Journal of Medicinal Chemistry, 49, 3315–3321.
221. Thorsten, J. (2002). Learning to classify text using support vector machines. Dordrecht: Kluw-

ert Academic Publichers.
222. Uryas’ev, S. P. (1991). New variable metric algorithms for nondifferentiable optimization

problems. Journal of Optimization Theory and Applications, 71, 359–388.
223. Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
224. Verkhivker, G. M., Bouzida, D., Gehlhaar, D. K., Rejto, P. A., Arthurs, S., Colson, A. B., et

al. (2000). Deciphering common failures in moecular docking of ligand-protein complexes.
Journal of Computer-Aided Molecular Design, 14, 731–751.

225. Vlček, J., & Lukšan, L. (2001). Globally convergent variable metric method for nonconvex
nondifferentiable unconstrained minimization. Journal of Optimization Theory and Applica-
tions, 111(2), 407–430.

226. Wang, R., Lu, Y., & Wang, S. (2003). Comparative evaluation of 11 scoring functions for
molecular docking. Journal of Medicinal Chemistry, 46, 2287–2303.

227. Ward, D. E., & Borwein, J. M. (1987). Nonsmooth calculus in finite dimensions. SIAM Journal
on Control and Optimization, 25, 1316–1340.

References 367

228. Wedel, M., & Kistemaker, C. (1989). Consumer benefit segmentation using clusterwise linear
regression. International Journal of Research in Marketing, 6, 45–59.

229. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and tech-
niques (2nd ed.). Amsterdam: Elsevier Inc.

230. Xavier, A. (2010). The hyperbolic smoothing clustering method. Pattern Recognition, 43(3),
731–737.

231. Xu, H., Rubinov, A., & Glover, B. (1999). Continuous approximations to generalized jaco-
bians. Optimization, 46, 221–246.

232. Yang, J., & Chen, C. (2004). GEMDOCK: A generic evolutionary method for molecular
docking. PROTEINS: Structure, Function, and Bioinformatics, 55, 288–304.

233. Yang, X. M., & Liu, S. Y. (1995). Three kinds of generalized convexity. Journal of Optimiza-
tion Theory and Applications, 86, 501–513.

234. Zangwill, W. I. (1967). Non-linear programming via penalty functions. Management Science,
13, 344–358.

235. Zeminger, H. W., Wood, A. J., Clark, H. K., Laskowski, T. F., & Burns, J. D. (1977). Syn-
thetic electric utility systems for evaluating advanced technologies. EM-285, Electrical Power
Research Institute (EPRI).

Index

Symbols
(h, δ)-stationary point, 321
ε-directional derivative, 47
ε-optimality, 119
ε-subdifferential, 48
ε-subgradient, 48, 73
f◦ -pseudoconvex function, 139
f◦ -quasiconvex function, 151
h-polyhedral separability, 216
k-chained function, 185

A
Abbreviations, list of, xiii
Absolute-value function, 36, 41, 45, 46, 73
Acronyms, list of, xiii
Active constraints, 127
Additively monotone function, 160
Additively strictly monotone function, 149
Aggregation procedure, 315

B
Bundle method, 305

bundle Newton, 309, 342
bundle trust, 305
proximal bundle, 305, 341

Bundle Newton method, 309, 342
Bundle trust method, 305

C
Chain rule, 83, 88
Clarke directional derivative, 61
Clarke subdifferential, 64
Classification error, 222

averaged, 222

Cluster analysis, 211
Clustering problem, 203, 211

fuzzy, 211
hard, 211
MINLP formulation, 212
nonsmooth, 213
similarity measure, 212

Clusterwise linear regression function, 232
Clusterwise linear regression problem, 233
Codifferentiable

continuously, 111
directionally uniformly, 111

Codifferential, 110
Cone, 22

contingent, 27, 49, 54
convex, 22
normal, 30, 31, 51, 56, 94
of descent directions, 121
of feasible directions, 29, 102
of polar constraint subgradient direc-

tions, 127
of polar subgradient directions, 121
polar, 26
ray, 23, 52
tangent, 94

Conic combination, 25
Conic hull, 25
Constraint handling, 335

exact penalty, 335
linearization, 336

Constraint qualifications
cottle, 130
slater, 130

Contingent cone, 27, 49, 54
Continuously differentiable, 7
Convergence

global, 300

© Springer International Publishing Switzerland 2014
A. Bagirov et al., Introduction to Nonsmooth Optimization,
DOI: 10.1007/978-3-319-08114-4

369

370 Index

local, 300
Convex

combination, 13
cone, 22
function, 32
hull, 13
set, 11

Cutting plane method, 299
with proximity control, 301

Cutting plane problem, 300
Cutting-plane model, 305

D
Data analysis, 211
Data mining, 211
DC function, 108
Demyanov difference, 109
Denoising, 238
Descent direction, 120
Directional derivative, 8, 38

ε-, 47
generalized, 61

Discrete gradient, 175, 180
Discrete gradient method, 327, 342

limited memory discrete gradient bundle,
330, 342

Distance function, 14, 53
L1-norm, 212
L∞-norm, 212
squared Euclidean norm, 212

Distance measure parameter, 306

E
Eigenvalue, 5
Epigraph, 38, 49
Exact penalty, 241, 335

F
Function

f◦ -pseudoconvex, 139
f◦ -quasiconvex, 151
partially separable, 183
additively monotone , 160
additively strictly monotone, 149
chained, 185
convex, 78
differentiable, 7
differentiable but nonsmooth, 67
directionally differentiable, 8, 38
l-quasiconvex, 151
lower semicontinuous, 7

piecewise k-chained, 186
piecewise partially separable, 184
piecewise separable, 187
positively homogeneous, 6
pseudoconvex, 139
quasiconvex, 150
regular, 77
subadditive, 7
sublinear, 7
upper semicontinuous, 7

G
Generalized directional derivative, 61
Generalized Jacobian, 76
Global optimum, 117
Goldstein ε-subdifferential, 73
Gradient sampling method, 311

H
Hadamard derivative, 105
Hadamard quasidifferentials, 105
Halfspace, 4
Hausdorff continuous, 6
Hausdorff distance, 6
Hessian matrix, 9
Hybrid methods, 313

limited memory bundle method, 317, 342
non-Euclidean restricted memory level

method, 322
quasi-secant method, 320, 342
variable metric bundle method, 313

Hyperdifferential, 110
Hyperplane, 3

separating, 17, 21
supporting, 17

Hypodifferential, 110

I
Image restoration, 238
Improvement function, 337

J
Jacobian, 76
Jensen’s inequality, 32

L
L-quasiconvex function, 151
Lagrange Relaxation, 243
Lennard-Jones potential, 204

Index 371

nonsmooth penalized, 204
Level set, 37, 51
Limited memory bundle method, 317, 342
Limited memory discrete gradient bundle

method, 330, 342
Line search, 306
Linear separability, 216
Linearization, 336
Linearization error, 300, 306
Lipschitz continuous, 6

on a set, 6
Local optimum, 117
Locally Lipschitz continuous, 6

at a point, 6
on a set, 6

Lower semicontinuous, 7

M
Matrix, 4

inverse, 5
negative definite, 5
positive definite, 5
square, 4
symmetric, 5
trace, 5

Max-min linear separability, 215, 216
Maximum eigenvalue problem, 244
Mean-value theorem, 81
Molecular distance geometry problem, 204,

206
exact, 206
general, 206
nonsmooth, 206

Molecular docking, 209
PLP, 209
scoring function, 209

N
NC-property, 157, 158
Non-Euclidean restricted memory level

method, 322
Nonconstancy property, 157
Normal cone, 30, 31, 51, 56, 94
Null step, 307, 314
Numerical comparison, 339

O
Objective function, 117
Optimality conditions

analytical, 118
Fritz John, 128

geometrical, 121, 122, 163
Karush-Kuhn-Tucker, 130, 165
mixed-analytical-geometrical, 124, 164
necessary, 118, 119, 127
relaxed, 162, 165
sufficient, 118

Optimization problem, 117

P
Partially separable function, 183
Penalty function, 241
Performance profiles, 344
Piecewise k-chained function, 186
Piecewise linear separability, 215
Piecewise partially separable function, 184
Piecewise separable function, 187
Polar cone, 26
Positively homogeneous, 6
Power set, 4
Proximal bundle method, 305, 341
Pseudo-code

bundle Newton method, 309
cutting plane method, 300
cutting plane method with proximity

control, 302
discrete gradient method, 328
exact penalty, 335
gradient sampling method, 311
limited memory bundle method, 319
limited memory discrete gradient bundle

method, 333
non-Euclidean restricted memory level

method, 324
proximal bundle method, 308
quasi-secant method, 321
Shor’s r-algorithm, 296
variable metric bundle method, 316

Pseudoconvex function, 139
Pseudomonotone, 141

Q
Quadratic model, 309
Quasi-secant, 320
Quasi-secant method, 320, 342
Quasiconvex function, 150
Quasidifferentiable

function, 104
set, 135

Quasidifferential, 104
Hadamard, 105

Quasimonotone, 154

372 Index

R
Rademacher’s Theorem, 71
Ray, 23, 52
Regression analysis, 227, 230

clusterwise, 230
fit function, 232
piecewise linear approximation, 227

Regression error, 232
Regular, 77

S
Serious step, 307, 314
Shor’s r-algorithm, 296, 341
Smooth, 7
Space dilation method, 296, 341
Stationary point, 118
Structural alignment, 207

LOVO, 208
scoring function, 207

Subadditive, 7
Subderivation rules, 79, 86

linear combination, 80
max-function, 90
products, 89
quotients, 90

Subdifferential, 104
ε-, 48
basic (limiting), 112
Clarke, 64
continuous approximation, 170
convex, 40
Goldstein ε-, 73
nonconvex, 64, 71
singular, 112
strong continuous approximation, 174
uniform continuous approximation, 173

Subdifferentially regular, 77
Subdifferentially regular function, 158
Subdifferentials, 104

approximations, 169

Subgradient, 40, 64
Subgradient locality measure, 306
Subgradient method, 295, 340

Shor’s r-algorithm, 296, 341
space dilation method, 296, 341

Sublinear, 7
Superdifferential, 104
Supervised data classification, 215
Symbols, list of, xiii

T
Tangent cone, 94
Test problems, 247

bound constrained, 269
classification, 247
inequality constrained, 283
large, unconstrained, 277
list of, 247
small, linearly constrained, 269
small, unconstrained, 248

Total constraint function, 126, 336
Traveling Salesman Problem, 243

U
Upper semicontinuous, 7

V
Variable metric bundle method, 313
Variable metric updates

BFGS, 315
L-BFGS, 318
L-SR1, 319
SR1, 315

W
Weierstrass’ Theorem, 9

	Preface
	Contents
	Acronyms and Symbols
	Introduction
	Part I Nonsmooth Analysis and Optimization
	1 Theoretical Background
	1.1 Notations and Definitions
	1.2 Matrix Calculus
	1.3 Hausdorff Metrics
	1.4 Functions and Derivatives

	2 Convex Analysis
	2.1 Convex Sets
	2.1.1 Convex Hulls
	2.1.2 Separating and Supporting Hyperplanes
	2.1.3 Convex Cones
	2.1.4 Contingent and Normal Cones

	2.2 Convex Functions
	2.2.1 Level Sets and Epigraphs
	2.2.2 Subgradients and Directional Derivatives
	2.2.3 ε-Subdifferentials

	2.3 Links Between Geometry and Analysis
	2.3.1 Epigraphs
	2.3.2 Level Sets
	2.3.3 Distance Function

	2.4 Summary

	3 Nonconvex Analysis
	3.1 Generalization of Derivatives
	3.1.1 Generalized Directional Derivative
	3.1.2 Generalized Subgradients
	3.1.3 ε-Subdifferentials
	3.1.4 Generalized Jacobians

	3.2 Subdifferential Calculus
	3.2.1 Subdifferential Regularity
	3.2.2 Subderivation Rules

	3.3 Nonconvex Geometry
	3.3.1 Tangent and Normal Cones
	3.3.2 Epigraphs and Level Sets
	3.3.3 Cones of Feasible Directions

	3.4 Other Generalized Subdifferentials
	3.4.1 Quasidifferentials
	3.4.2 Relationship Between Quasidifferential and Clarke Subdifferential
	3.4.3 Codifferentials
	3.4.4 Basic and Singular Subdifferentials

	3.5 Summary

	4 Optimality Conditions
	4.1 Unconstrained Optimization
	4.1.1 Analytical Optimality Conditions
	4.1.2 Descent Directions

	4.2 Geometrical Constraints
	4.2.1 Geometrical Optimality Conditions
	4.2.2 Mixed Optimality Conditions

	4.3 Analytical Constraints
	4.3.1 Geometrical Optimality Conditions
	4.3.2 Fritz John Optimality Conditions
	4.3.3 Karush-Kuhn-Tucker Optimality Conditions

	4.4 Optimality Conditions Using Quasidifferentials
	4.5 Summary

	5 Generalized Convexities
	5.1 Generalized Pseudoconvexity
	5.2 Generalized Quasiconvexity
	5.3 Relaxed Optimality Conditions
	5.3.1 Unconstrained Optimization
	5.3.2 Geometrical Constraints
	5.3.3 Analytical Constraints

	5.4 Summary

	6 Approximations of Subdifferentials
	6.1 Continuous Approximations of Subdifferential
	6.2 Discrete Gradient and Approximation of Subgradients
	6.3 Piecewise Partially Separable Functions and Computation of Discrete Gradients
	6.3.1 Piecewise Partially Separable Functions
	6.3.2 Chained and Piecewise Chained Functions
	6.3.3 Properties of Piecewise Partially Separable Functions
	6.3.4 Calculation of the Discrete Gradients

	6.4 Summary

	Part INotes and References
	Part II Nonsmooth Problems
	7 Practical Problems
	7.1 Computational Chemistry and Biology
	7.1.1 Polyatomic Clustering Problem
	7.1.2 Molecular Distance Geometry Problem
	7.1.3 Protein Structural Alignment
	7.1.4 Molecular Docking

	7.2 Data Analysis
	7.2.1 Cluster Analysis via NSO
	7.2.2 Piecewise Linear Separability in Supervised Data Classification
	7.2.3 Piecewise Linear Approximations in Regression Analysis
	7.2.4 Clusterwise Linear Regression Problems

	7.3 Optimal Control Problems
	7.3.1 Optimal Shape Design
	7.3.2 Distributed Parameter Control Problems
	7.3.3 Hemivariational Inequalities

	7.4 Engineering and Industrial Applications
	7.4.1 Power Unit-Commitment Problem
	7.4.2 Continuous Casting of Steel

	7.5 Other Applications
	7.5.1 Image Restoration
	7.5.2 Nonlinear Income Tax Problem

	8 SemiAcademic Problems
	8.1 Exact Penalty Formulation
	8.2 Integer Programming with Lagrange Relaxation
	8.2.1 Traveling Salesman Problem

	8.3 Maximum Eigenvalue Problem

	9 Academic Problems
	9.1 Small Unconstrained Problems
	9.2 Bound Constrained Problems
	9.3 Linearly Constrained Problems
	9.4 Large Problems
	9.5 Inequality Constrained Problems

	Part II Notes and References
	Part III
Nonsmooth Optimization Methods
	Part3

	10 Subgradient Methods
	10.1 Standard Subgradient Method
	10.2 Shor's r-Algorithm (Space Dilation Method)

	11 Cutting Plane Methods
	11.1 Standard Cutting Plane Method
	11.2 Cutting Plane Method with Proximity Control

	12 Bundle Methods
	12.1 Proximal Bundle and Bundle Trust Methods
	12.2 Bundle Newton Method

	13 Gradient Sampling Methods
	13.1 Gradient Sampling Method

	14 Hybrid Methods
	14.1 Variable Metric Bundle Method
	14.2 Limited Memory Bundle Method
	14.3 Quasi-Secant Method
	14.4 Non-Euclidean Restricted Memory Level Method

	15 Discrete Gradient Methods
	15.1 Discrete Gradient Method
	15.2 Limited Memory Discrete Gradient Bundle Method

	16 Constraint Handling
	16.1 Exact Penalty
	16.2 Linearization

	17 Numerical Comparison of NSO Softwares
	17.1 Solvers
	17.2 Problems
	17.3 Termination, Parameters, and Acceptance of Results
	17.4 Results
	17.4.1 Extra-Small Problems
	17.4.2 Small-Scale Problems
	17.4.3 Medium-Scale Problems
	17.4.4 Large Problems
	17.4.5 Extra Large Problems
	17.4.6 Convergence Speed and Iteration Path

	17.5 Conclusions

	References
	Index

