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Preface

Nonsmooth optimization refers to the general problem of minimizing
(or maximizing) functions that are typically not differentiable at their minimizers
(maximizers). These kinds of functions can be found in many applied fields, for
example in image denoising, optimal control, neural network training, data mining,
economics, and computational chemistry and physics. Since classical theory of
optimization presumes certain differentiability and strong regularity assumptions
for the functions to be optimized, it cannot be directly utilized. The aim of this
book is to provide an easy-to-read introduction to the theory of nonsmooth
optimization and also to present the current state of numerical nonsmooth opti-
mization. In addition, the most common cases where nonsmoothness is involved in
practical computations are introduced. In preparing this book, all efforts have been
made to ensure that it is self-contained.

The book is organized into three parts: Part I deals with nonsmooth optimi-
zation theory. We first provide an easy-to-read introduction to convex and non-
convex analysis with many numerical examples and illustrative figures. Then we
discuss nonsmooth optimality conditions from both analytical and geometrical
viewpoints. We also generalize the concept of convexity for nonsmooth functions.
At the end of the part, we give brief surveys of different generalizations of sub-
differentials and approximations to subdifferentials.

In Part II, we consider nonsmooth optimization problems. First, we introduce
some real-life nonsmooth optimization problems, for instance, the molecular
distance geometry problem, protein structural alignment, data mining, hemivari-
ational inequalities, the power unit-commitment problem, image restoration, and
the nonlinear income tax problem. Then we discuss some formulations which lead
to nonsmooth optimization problems even though the original problem is smooth
(continuously differentiable). Examples here include exact penalty formulations.
We also represent the maximum eigenvalue problem, which is an important
component of many engineering design problems and graph theoretical applica-
tions. We refer to these problems as semi-academic problems. Finally, a com-
prehensive list of test problems—that is, academic problems—used in nonsmooth
optimization is given.



vi Preface

Part III is a guide to nonsmooth optimization software. First, we give short
descriptions and the pseudo-codes of the most commonly used methods for non-
smooth optimization. These include different subgradient methods, cutting plane
methods, bundle methods, and the gradient sampling method, as well as some
hybrid methods and discrete gradient methods. In addition, we introduce some
common ways of dealing with constrained nonsmooth optimization problems. We
also compare implementations of different nonsmooth optimization methods for
solving unconstrained problems. At the end of the part, we provide a table enabling
the quick selection of suitable software for different types of nonsmooth optimi-
zation problems.

The book is ideal for anyone teaching or attending courses in nonsmooth
optimization. As a comprehensible introduction to the field, it is also well-suited
for self-access learning for practitioners who know the basics of optimization.
Furthermore, it can serve as a reference text for anyone—including experts—
dealing with nonsmooth optimization.
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Introduction

Nonsmooth optimization is among the most difficult tasks in optimization. It deals
with optimization problems where objective and/or constraint functions have
discontinuous gradients. Nonsmooth optimization dates back to the early 1960s,
when the concept of the subdifferential was introduced by R.T. Rockafellar and W.
Fenchel and the first nonsmooth optimization method—the subgradient method
was developed by N. Shor, Y. Ermolyev, and their colleagues in Kyev, Ukraine (in
the former Soviet Union at that time). In the 1960s and in early 1970s, nonsmooth
optimization was mainly applied to solve minimax and large linear problems using
decomposition. Such problems can also be solved using other optimization
techniques.

The most important developments in nonsmooth optimization started with the
introduction of the bundle methods in the mid-1970s by C. Lemarechal (and also
by P. Wolfe and R. Mifflin). In its original form, the bundle method was introduced
to solve nonsmooth convex problems. The 1970s and early 1980s were an
important period for new developments in nonsmooth analysis. Various general-
izations of subdifferentials were introduced, including the Clarke subdifferential
and Demyanov—Rubinov quasidifferential. The use of the Clarke subdifferential
allowed the extension of bundle methods to solve nonconvex nonsmooth
optimization problems.

Since the early 1990s, nonsmooth optimization has been widely applied to solve
many practical problems. Such applications, for example, include mechanics,
economics, computational chemistry, engineering, machine learning, and data
mining. In most of these applications, nonsmooth optimization approaches allow
the significant reduction of the number of decision variables in comparison with
any other approaches, and thus facilitate the design of efficient algorithms for their
solution. Therefore, in these applications, optimization problems cannot be solved
by other optimization techniques as efficiently as they can be solved using
nonsmooth optimization techniques. Undoubtedly, nonsmooth optimization has
now become an indispensable tool for solving problems in diverse fields.

Nonsmoothness appears in the modeling of many practical problems in a very
natural way. The source of nonsmoothness can be divided into four classes:

xvii



XViii Introduction

inherent, technological, methodological, and numerical nonsmoothness. In inher-
ent nonsmoothness, the original phenomenon under consideration itself contains
various discontinuities and irregularities. Typical examples of inherent non-
smoothness are the phase changes of materials in the continuous casting of steel,
piecewise linear tax models in economics, cluster analysis, supervised data
classification, and clusterwise linear regression in data mining and machine
learning. Technological nonsmoothness in a model is usually caused by extra
technological constraints. These constraints may cause a nonsmooth dependence
between variables and functions, even though the functions were originally
continuously differentiable. Examples of this include so-called obstacle problems
in optimal shape design and discrete feasible sets in product planning. On the other
hand, some solution algorithms for constrained optimization may also lead to a
nonsmooth problem. Examples of methodological nonsmoothness are the exact
penalty function method and the Lagrange decomposition method. Finally,
problems may be analytically smooth but numerically nonsmooth. That is the case
with, for instance, noisy input data or so-called “stiff problems,” which are
numerically unstable and behave like nonsmooth problems.

Despite huge developments in nonsmooth optimization in recent decades and
wide application of its techniques, only a very few books have been specifically
written about it. Some of these books are out of date and do not contain the most
recent developments in the area. Moreover, all of these books were written in a
way that requires from the audience a high level of knowledge of the subject. Our
aim in writing this book is to give an overview of the current state of numerical
nonsmooth optimization to a much wider audience, including practitioners.

The book is divided into three major parts dealing, respectively, with theory of
nonsmooth optimization (convex and nonsmooth analysis, optimality conditions),
practical nonsmooth optimization problems (including applications to real world
problems and descriptions of academic test problems) and methods of nonsmooth
optimization (description of methods and their pseudo-codes, as well as
comparison of different implementations). In preparing this book, all efforts have
been made to ensure that it is self-contained.

Within each chapter of the first part, exercises, numerical examples and
graphical illustrations have been provided to help the reader to understand the
concepts, practical problems, and methods discussed. At the end of each part, notes
and references are presented to aid the reader in their further study. In addition, the
book contains an extensive bibliography.



Part 1
Nonsmooth Analysis and Optimization

Introduction

Convexity plays a crucial role in mathematical optimization. Especially, convexity
is the most important concept in constructing optimality conditions. In smooth
(continuously differentiable) optimization theory, differentiation entails locally
linearizing the functions by the gradients, leading to a lower approximation of a
convex function. These ideas can be generalized for nonsmooth convex functions
resulting in the concepts of subgradients and subdifferentials. A subgradient
preserves the property of the gradient, providing a lower approximation of the
function, but in the nonsmooth case it is not unique anymore. Thus, instead of one
gradient vector we end up with a set of subgradients called subdifferentials.

Unfortunately, convexity is often too demanding an assumption in practical
applications, and we have to be able to deal with nonconvex functions as well.
From a practical point of view, locally Lipschitz continuous functions are proved
to be a suitable and sufficiently general class of nonconvex functions. In a convex
case, differentiation is based on the linearization of a function. For nonconvex
functions, the differentiation can be seen as convexification. All of the concepts of
convex analysis can be generalized for a nonconvex case in a very natural way. As
in the convex analysis, the links between nonconvex analysis and geometry are
strong: subgradients and generalized directional derivatives have a one-to-one
interpretation to the tangent and normal cones of epigraphs and level sets.

Our aim here is to present the theory of nonsmooth analysis for optimization in a
compact and “easy-to-understand” form. The reader is assumed to have some
basic knowledge of linear algebra, elementary real analysis, and smooth nonlinear
optimization. To give as self-contained a description as possible, we define every
concept used and prove almost all theorems and lemmas.

This part is organized as follows: after recalling some basic results and notions
from smooth analysis, we concentrate on “Convex Analysis” in Chap. 2. We start
our consideration with geometry by defining convex sets and cones. The main
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result—and foundation for the forthcoming theory—is the separation theorem
stating that two convex sets can always be separated by a hyperplane. Next we turn
to analytical concepts, by defining subgradients and subdifferentials. Finally, we
show that those geometrical and analytical notions can be connected utilizing
epigraphs, level sets, and the distance function.

Chapter 3 is devoted to “Nonconvex Analysis.” We generalize all of the convex
concepts to locally Lipschitz continuous functions. We also show that nonsmooth
analysis is a natural enlargement of classical differential theory by generalizing all
of the familiar derivation rules such as the mean-value theorem and the chain rule.
The price we have to pay when relaxing the assumptions of differentiability and
convexity is that instead of equalities, we only obtain inclusions in most of the
results. However, by posing some mild regularity assumptions, we can turn the
inclusions back into equalities. After the analytical consideration, we generalize, in
a similar way to the convex case, all of the geometrical concepts, and give links
between analysis and geometry. At the end of the chapter, we recall the definitions
of quasidifferentials, codifferentials, and limiting subdifferentials all of which can
be used to generalize the subdifferential of convex functions to the nonconvex case.

Chapter 4 concentrates on the theory of nonsmooth optimization. Optimality
conditions are an essential part of mathematical optimization theory, heavily
affecting, for example, the development of optimization methods. We formulate
the necessary conditions for locally Lipschitz continuous functions to attain local
minima both in unconstrained and constrained cases. These conditions are proved
to be sufficient for convex problems, and the found minima are global. We for-
mulate both geometrical and analytical conditions based on cones and subdiffer-
entials, respectively. We consider both general geometrical constraint sets and
analytical constraints determined by functions and inequalities. In the latter case,
we end up to generalizing the classical Fritz John (FJ) and Karush-Kuhn-Tucker
(KKT) conditions.

The question, “Can we still attain sufficient optimality conditions when relaxing
the convexity assumptions?” has been the initiating force behind the study of
generalized convexities. In Chap. 5, we define and analyze the properties of the
generalized pseudo- and quasiconvexities for locally Lipschitz continuous func-
tions. Finally, we formulate relaxed versions of the sufficient optimality conditions,
where the convexity is replaced by generalized pseudo- and quasiconvexities.

The last chapter of this part, Chap. 6, deals with “Approximations of Subdif-
ferentials.” We introduce the concept of continuous approximations to subdif-
ferential, and a discrete gradient that can be used as an approximation to the
subgradient at a given point.
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Chapter 1
Theoretical Background

In this chapter, we first collect some notations and basic results of smooth analysis.
We also recall fundamentals from matrix calculus.

1.1 Notations and Definitions

All the vectors x are considered as column vectors and, correspondingly, all the
transposed vectors ! are considered as row vectors (bolded symbols are used for
vectors). We denote by a2’y the usual inner product and by ||x| the norm in the
n-dimensional real Euclidean space R”. In other words,

n
2
2’y =z and |a| = ("2)"

i=1
where x and y are in R" and z;, y; € R are the ith components of the vectors x and
y, respectively.
_Anopen (closed) ball with center © € R" and radius 7 > 0 is denoted by B(x; )
(B(x; r)). That is,
B@:ir) ={yeR"|lly—a| <r} and B@:r)={ycR"||y—z| =)
We also denote by .S the sphere of the unit ball. That is,
Si={y eR" [ llyl =1}
We denote by [z, y] the closed line-segment joining x and vy, that is,
[m,y]:{zeR"lz:)\m+(l—)\)y for 0 <\ < 1},
and by (x, y) the corresponding open line-segment.

Every nonzero vector p € R™ and a scalar « € R define a unique hyperplane

© Springer International Publishing Switzerland 2014 3
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4 1 Theoretical Background
Hp.a)={z eR" |p'z=a}
or equivalently
H(p, o) ={xz eR" | p" (x — x0) =0},

where p’xo = « and p is called normal vector of the hyperplane. A hyperplane
divides tho whole space R" into two closed (or open) halfspaces

H(p, o) ={z e R" | p"(x — z9) > 0} and
H™(p,a) ={z e R" | p’(x — z9) < 0}.

Example 1.1 (Hyperplane). If n = 1 the hyperplane H(p, o) = {z € R |
px = a} is the singleton {c/p} and the halfspaces are H ™ (p, o) = [a/p, 00)
and H™ (p, @) = (—o0, a/p].

If n = 2 the hyperplane is a line and in the case n = 3 it is a plane.

The closure, interior and boundary of a given set S € R" are denoted by cl .9, int .S
and bd S, respectively. Notice that we have

bd S=clS\int S.

The power set of S € R" is denoted by P(S) and it is the set of all subsets of .S
including the empty set and S itself.

Example 1.2 (Power set). Let S be the set {x, y, z}. Then the subsets of S are
{} (also denoted by ¥, the empty set), {z}, {y}, {2}, {z, y}, {, 2}, {y, 2}, and
{z, y, 2}, and hence the power set of .S is

PS) = {{} {=h, {yh =z {z, ) {=, 2 {y, 2} {= g, 23).

1.2 Matrix Calculus

A matrix, for which horizontal and vertical dimensions are the same (thatis, ann xn
matrix) is called a square matrix of order n.
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A square matrix A € R"*" is called symmetric if A = AT, that is, (A)ij = (A)ji
forall4,j € {1,...,n} and (A);; is the element of matrix A in row ¢ of column j.
The matrix AT € R™ " is called the transpose of A.

A square matrix A € R™*" is called positive definite if

2T Ax >0 forall zeR", x#0
and negative definite if
2l Ax <0 forall z e R", =z +0.
Correspondingly, a square matrix A € R"*" is called positive semidefinite if
2l Az >0 forall = eR"
and negative semidefinite if
2l Az <0 forall z e R".

A matrix which is neither positive or negative semidefinite is called indefinite.

If the matrix A € R™*" is positive definite, then all the submatrices of the matrix
A obtained by deleting the corresponding rows and columns of the matrix are also
positive definite and all the elements on the leading diagonal of the matrix are positive
(thatis, (A);; > Oforalls € {1, ..., n}). If the square matrices A and B are positive
definite, then sois A + B.

An inverse of matrix A € R™ " is a matrix A~! € R™*" such that

AAT = A7 TA =1,

where I € R™ " is the identity matrix. If a square matrix has an inverse it is called
invertible or nonsingular. Otherwise, it is called singular. A positive definite matrix
is always nonsingular and its inverse is positive definite.

A scalar A is called an eigenvalue of the matrix A € R™*" if

Ax = \x

for some nonzero vector € R™. The vector x is called an eigenvector associated
to the eigenvalue \. The eigenvalues of a symmetric matrix are real and a symmetric
matrix is positive definite if and only if all its eigenvalues are positive. A matrix is
said to be bounded if its eigenvalues lie in the compact interval that does not contain
Zero.

The trace of matrix A € R"*" is denoted by tr A and it is the sum of the diagonal
elements of the matrix, that is,
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n
tr A= Z(A)”-.
i=1

The trace of a matrix equals to the sum of its eigenvalues. For square matrices A and
B,wehavetr(A+ B)=tr A+1tr B.

1.3 Hausdorff Metrics

Let A, B C R" be given sets. The Hausdorff distance dry (A, B) between the sets A
and B is defined as follows:

di (A, B) = max {sup inf ||la — b|, sup inf |b —all .
acA beB beB A€A

Consider a set-valued mapping G: R” — 2R" This mapping is called Hausdorff
continuous at a point € R", if for any € > 0 there exists § > 0 such that

dg(G(y),G(x)) <e forall y e B(x;)).

1.4 Functions and Derivatives

In what follows the considered functions are assumed to be locally Lipschitz con-
tinuous. A function f:R" — R is locally Lipschitz continuous at a point x € R™ if
there exist scalars K > 0 and € > 0 such that

lf(y) — f(2)| < Kly —z|l forall y,ze B(x;e¢).

Function f:R" — R is said to be locally Lipschitz continuous on a set U € R" if it
is locally Lipschitz continuous at every point belonging to the set U. Furthermore,
if U = R" the function is called locally Lipschitz continuous.

Function f:R"™ — R is said to be Lipschitz continuous on a set U C R" if there
exists a scalar K such that

If(y) — f(2)] = Klly —z| forall y,zeU.

If U = R" then f is said to be Lipschitz continuous.
A function f:R" — R is positively homogeneous if

fQx) = Af(x)
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for all A > 0 and subadditive if

f@+y < f(@)+ f(y)

for all  and y in R". A function is said to be sublinear if it is both positively
homogeneous and subadditive.

A function f:R" — R is said to be upper semicontinuous at x € R" if for every
sequence (xj) converging to x the following holds

lim sup f(xy) < f(x)

k—o00

and lower semicontinuous if
f(x) < liminf f(xp).
k—o00

A both upper and lower semicontinuous function is continuous. Notice that a locally
Lipschitz continuous function is always continuous.

A function f:R" — R is said to be differentiable at x € R" if there exists a
vector V f(x) € R" and a function e: R — R such that for all d € R"

fl@+d) = f@) + Vf@)'d+|dled)

and e(d) — 0 whenever ||d|| — 0. The vector V f(x) is called the gradient vector
of the function f at « and it has the following formula

o o r
Vi) = (8_1‘1f(w)’ cees %f(iﬂ)) ,

where the components 8%1 f(x) fort = 1, ..., n, are called partial derivatives of
the function f. If the function is differentiable and all the partial derivatives are
continuous, then the function is said to be continuously differentiable or smooth
(f € C'(R™)). Notice that a smooth function is always locally Lipschitz continuous.

Lemma 1.1 If a function f:R"™ — R is continuously differentiable at x, then f is
locally Lipschitz continuous at x.

Proof Continuous differentiability means that the linear valued derivative mapping
Vf:R" - L(R",R) is continuous on a neighborhood of . It follows that there
exist constants € > 0 and M > 0 such that

IVf(w)|| < M forall w e B(x;e).

Suppose now that y, y' € B(x; €). Then, by the classical Mean-Value Theorem,
there is z € (y, y') C B(x; €) such that
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f@) —f@) =vity-y).

We now have

f@) = fI = IVf@IHy =yl < Mlly = y'll,
which is the Lipschitz condition at . O

The limit

f(x+td) — f(x)
t

"(x; d) =i
fi(z; d) tlfg

(if it exists) is called the directional derivative of f at x € R™ in the directiond € R".
If a function f is differentiable at «, then the directional derivative exists in every
direction d € R" and

f(x;d) = Vf)d.

Lemma 1.2 Let x € R" be a point, where f:R" — R is locally Lipschitz con-
tinuous and differentiable. Let K be the Lipschitz constant of the function f at the
point x. Then the function d — f'(x; d) is positively homogeneous and Lipschitz
continuous with the constant K.

Proof Since f is differentiable at the point x the directional derivatives f’(x; d)
exist for all d € R™. Let A > 0, then

flx+tAd) — f(x) )\f(w+t>\d)—f($)

ro i i
f(x; \d) tlllol . tlfg ¥
. f®+tAd) — f(x) /
lim v Af(z; d),

which proves the positive homogeneity.

Let uw, w € R" be arbitrary. Since f is locally Lipschitz continuous there exists
€ > 0 such that the Lipschitz condition holds in B(x; €). Furthermore, there exists
t% > 0 such that © + tw, x + tu € B(x;e) when0 < t < t0. Then

f@+tw) — f(x+iw) < Ktllu—wl,

and, thus,

. flx+ut) - f(®) . f(z+wt)— f(x)
im < lim
tl0 t 10 t

+ K ||lu — w||

whence
fl@iw) — f(z;w) < K |u—wl.
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Reversing the roles of w and w we obtain
fl(@;w) — fl(@;u) < K |u—wl.

Thus
|/ (@ w) — f(x;w)| < K llu—w]|

completing the proof of the Lipschitz continuity. (]

A function f: R™ — Ris said to be twice differentiable at x € R" if there exists a
vector V f(x) € R", asymmetric matrix V2 f(x) € R™" andafunctione: R” — R
such that for all d € R"

f@+d) = f@) + Vi@ d+ %dTsz(:v)d T IdIPe(d),

where e(d) — 0 whenever ||d|| — 0. The matrix V2f(x) is called the Hessian
matrix of the function f at x and it is defined to consist of second order partial
derivatives of f, that is,

f@) . gt @)
Vi f(@) = :

9? 2? '
o) (®) ... @f(w)

If the function is twice differentiable and all the second order partial derivatives are
continuous, then the function is said to be twice continuously differentiable (f €
C2 (R™)).

To the end of this chapter we give the famous Weierstrass’ Theorem, which guar-
antees the existence of the solution of the general optimization problem.

Theorem 1.1 (Weierstrass) If S C R" is a nonempty compact set and f:R" — R
is continuous, then f attains its minimum and maximum over S.



Chapter 2
Convex Analysis

The theory of nonsmooth analysis is based on convex analysis. Thus, we start this
chapter by giving basic concepts and results of convexity (for further readings see also
[202, 204]). We take a geometrical viewpoint by examining the tangent and normal
cones of convex sets. Then we generalize the concepts of differential calculus for
convex, not necessarily differentiable functions [204]. We define subgradients and
subdifferentials and present some basic results. At the end of this chapter, we link
these analytical and geometrical concepts together.

2.1 Convex Sets

We start this section by recalling the definition of a convex set.

Definition 2.1 Let S be a subset of R"™. The set .S is said to be convex if
Ax+ (1 —XNy €S,

forall z,y € Sand A € [0, 1].

Geometrically this means that the set is convex if the closed line-segment [z, y]
is entirely contained in .S whenever its endpoints « and y are in .S (see Fig. 2.1).

Example 2.1 (Convex sets). Evidently the empty set @, a singleton {x}, the
whole space R”, linear subspaces, open and closed balls and halfspaces are
convex sets. Furthermore, if S is a convex set also ¢l S and int S are convex.

Theorem 2.1 Let S; € R" be convex sets fori = 1, ..., m. Then their intersection
m
e 2.1)
i=1

© Springer International Publishing Switzerland 2014 11
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(a) (b)

Fig. 2.1 Illustration of convex and nonconvex sets. (a) Convex. (b) Not convex

is also convex.

Proof Letx,y € (-, S; and \ € [0, 1] be arbitrary. Because z, y € S; and S; is
convex foralli =1, ..., m,wehave A+ (1 — Ny € S;foralli =1, ..., m. This
implies that

A+ (1= Ny e[S

i=1

and the proof is complete. (|

Example 2.2 (Intersection of convex sets). The hyperplane
H(p,a) = {x e R" | p! (x — xo) =0},

where g, p € R"” and p # 0 is convex, since it can be represent as an
intersection of two convex closed halfspaces as

H(p,a) = H (p,a) N H™ (p, a)
={z eR" | pT(z —z0) 20} N{z € R" | p’ (x — x) < O}

The next theorem shows that the space of convex sets has some linear properties.
This is due to fact that the space of convex sets is a subspace of the power set P(R")
consisting of all subsets of R".

Theorem 2.2 Let Sy, S» C R"™ be nonempty convex sets and |11, 1o € R. Then the
set (11 S1 + 25> is also convex.

Proof Let the points @,y € u1.S1 + w252 and A € [0, 1]. Then x and y can be
written
{:13 = x| + ppxy, where x; € S;and @y € S

Y =y +p2yy, wherey, € Syandy, € S,
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and
AT + (1 = Ny = Aizr + pz2) + (1 = N (yy + 12y»)
= 1Az + (1 =Ny + A2 + (1 = Nyy)
€ (151 + p2Ss.
Thus the set 111.51 + 1257 is convex. [l

2.1.1 Convex Hulls

A linear combination Zle \;x; is called a convex combination of elements xy, .. .,

xy € R"if each \; > 0 and Zf: 1 Ai = 1. The convex hull generated by a set is
defined as a set of convex combinations as follows.

Definition 2.2 The convex hull of aset S C R" is

k k
convS:{ace]R”M::Z/\ixi, Z)\i=1, xz;, €5, \i>0,k> 0}

i=1 i=1
The proof of the next lemma is left as an exercise.

Lemma 2.1 If S C R", then conv S is a convex set and S is convex if and only if
S =conv S.

Proof Exercise. (I

The next theorem shows that the convex hull is actually the intersection of all the
convex sets containing the set, in other words, it is the smallest convex set containing
the set itself (see Fig. 2.2).

Theorem 2.3 IfS C R", then

conv S = ﬂ S,
8c§

S convex

Proof ALet 5’ be convex such that S C S. Then due to Lemma 2.1 we have conv S -
conv S = S and thus we have

conv S C ﬂ S.

sc8

S convex
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On the other hand, it is evident that S C conv S and due to Lemma 2.1 conv S'is a
convex set. Then conv S is one of the sets S forming the intersection and thus

ﬂ S = ﬂ S'ﬂconngconVS

sc8 5cd
§ convex g convex
and the proof is complete. (]

2.1.2 Separating and Supporting Hyperplanes

Next we consider some nice properties of hyperplanes. Before those we need the
concept of distance function.

Definition 2.3 Let S C R" be a nonempty set. The distance function dg: R™" — R
to the set S is defined by

ds(x) :=inf {||x —y| |y € S} forall = e R". 2.2)

The following lemma shows that a closed convex set always has a unique closest
point.

Lemma 2.2 Let S C R" be a nonempty, closed convex set and x* ¢ S. Then there
exists a unique y* € bd S minimizing the distance to x*. In other words

dg(@®) = [lz* — y*|.

Moreover, a necessary and sufficient condition for a such y* is that

(" -yl (@ —y*) <0 forallz e S. (23)
° S
S
conv §

Fig. 2.2 Examples of convex hulls
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Proof First we prove the existence of a closest point. Since S # ¢, there exists
x € S and we can define S := S Ncl B(x*; r), where r := ||z* — &| > 0. Then
S # (since & € S. Moreover, S is closed, since both S and ¢l B(x*; r) are closed,

and bounded, since S C cl B(x*; r), thus Sisa nonempty compact set. Then, due
to Weierstrass’ Theorem 3.1 the continuous function

9(y) = llz* -yl
attains its minimum over S at some y* e S and we have
dg(x™) = g(y") = =" — y"|.
IfyeS)\ S, it means that y ¢ cl B(x*; r), in other words
9y >r = gy")
and thus
ds(@®) = g(y") = =" — y*|.
In order to show the uniqueness, suppose that there exists another z* € S such

that z* # y* and g(z*) = g(y*). Then due to convexity we have %(y* +2z*)e S
and by triangle inequality

| | |
le* — 5 (y" + 291 < zllz* —y*l + 5 llz” — 27|

Sa(®) + 39(z") = g(y).

g (A@*+29)

The strict inequality cannot hold since g attains its minimum over S at y*. Thus we
have

I@* —y") + (@ — 2] = llz" —y*ll + " — 27|

which is possible only if the vectors * — y* and «* — z* are collinear. In other
words * — y* = A(ax™ — z*) for some \ € R. Since

z* —y*| = [l* — 2"
we have A = £1. If A = —1 we have
T = %(y* +2" eS8,

which contradicts the assumption * ¢ S, and if A = 1, we have z* = y*, thus y*
is a unique closest point.
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Next we show that y* € bd S. Suppose, by contradiction, that y* € int S. Then
there exists € > 0 such that B(y*; ) C S. Because g(y*) = |[* — y*|| > 0 we
can define

ko ok £ * %
w =y +2g(y*)(w y)

and we have w* € B(y*; ) since

€
l[w* —y*|l = |y* + (x* —y*) —y*
v+ 5 ||
g 13
= e —y*|l = <.
29(y*) 2
Thus w* € S and, moreover
gw*) = |o* —y* — —— @ —y")|
29(y*)
g g
=(- )9(y*) = 9" — = < 9(y"),
29(y*) 2

which is impossible, since g attains its minimum over S at y*. Thus we have y* €
bd S.
In order to prove that (2.3) is a sufficient condition, let € S. Then (2.3) implies

9@ = |z* —y* +y* — x|’
= llz* — y*II* + lly* — =] + 2(=z* — y") ' (" — )
> lz* — y*|?
= g(y")%,

which means that y* is the closest point.
On the other hand, if y* is the closest point, we have

g(x) > g(y*) forallz € S.
Let « € S be arbitrary. The convexity of S implies that
v+ Nz —yH) = x+ (1 —-Ny*eS forall A e]0,1]
and thus
9 (W + Az —y") = g(yH). (2.4)

Furthermore, we have
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2
g (Y + Mz —yH) = lz* —y* — Az —yH)|?
=g+ Mz —y*1? - 2A@* — yH T (@ — y")

and combining this with (2.4) we get
22" —yH T (@ — y*) < N|la — y*||> forall X € [0, 1]. (2.5)

Dividing (2.5) by A > 0 and letting A | 0 we get (2.3). (]
Next we define separating and supporting hyperplanes.

Definition 2.4 Let S, S2 C R" be nonempty sets. A hyperplane
H(p,a)={x e R" | p! (x —xo) =0},

where p # 0 and p’'xy = a, separates S and S» if S| € Ht(p, @) and S> C
H™ (p, o), in other words

pT(a: —x9) >0 forallz € S; and

pT(a: —x9) <0 forall z € 5,.

Moreover, the separation is strict if S| N H(p, «) = @ and S, N H(p, o) = .

Example 2.3 (Separation of convex sets). Let S1 := {x € R? | %x%—}-x% <1}
and S; := {x € R? | (z1 — 4)? + (2 — 2)> < 1}. Then the hyperplane
H((1, DT, 3%), in other words the line vp = —xz; + 3% separates S| and .S,
(see Fig. 2.3). Notice that H ((1, DT, 3%) is not unique but there exist infinitely
many hyperplanes separating .S7 and .S5.

Definition 2.5 Let S C R" be a nonempty set and ¢ € bd .S. A hyperplane
H(p, ) = {z € R" | p" (& — z0) = 0},

where p # 0 and p’xg = «, supports S at x if either S € HT(p, ), in other
words

pT(w —x9) >0 forallz e S
or S € H™ (p, a), in other words

pT(m —x9) <0 forallz € S.
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Fig. 2.3 Separation of convex
sets

Example 2.4 (Supporting hyperplanes). Let S := {x € R? | x% aF x% < 1}
Then the hyperplane H ((0, 1), 1), in other words the line x5 = 1 supports S
atzo = (0, 1)”. Notice that H((0, 1)”, 1) is the unique supporting hyperplane
of S atzg = (0, DT,

Theorem 2.4 Let S C R" be a nonempty, closed convex set and x* ¢ S. Then there
exists a hyperplane H (p, ) supporting S at some y* € bd S and separating S and

{x*}.

Proof According to Lemma 2.2 there exists a unique y* € bd S minimizing the
distance to x*. Let p := * — y* # 0 and o := p” y*. Then due to (2.3) we have

plx—y) =@ —y) ' (@—y*) <0 forallz € S, (2.6)

in other words S' € H ™ (p, ). This means that H (p, ) supports S at y*. Moreover,
we have

ple* =pl@ —y)+p 'y =IplI*+a>a (2.7)

in other words {x*} C H¥(p, o) and thus H (p, ) separates S and {x*}. O

Next we prove a little bit stronger result, namely that there always exists a hyper-
plane strictly separating a point and a closed convex set.

Theorem 2.5 Let S C R" be a nonempty, closed convex set and x* ¢ S. Then there
exists a hyperplane H (p, 3) strictly separating S and {x*}.

Proof Using Lemma 2.2 we get a unique y* € bd S minimizing the distance to x*.
As in the previous proof let p := x* — y* # 0 but choose now 3 := p’ w*, where
w* = %(:c* + y*). Then due to (2.3) we have
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Fig. 2.4 Supporting hyper-
planes

p'@—w") =p’ (@—y* - ip)
=@ —yH'(@-y)-ip'p
< -Jlpl* <0 forallz e S,

in other words S C H~ (p, ) and S N H(p, ) = #. Moreover, we have

1

T 1

@' —w") = p(

p
= 1pl@* —y")
1 2
= 5llpll© > 0,

which means that {x*} C H" (p, §) and {z*} N H (p, 3) = @. Thus H (p, 3) strictly
separates .S and {x*}. |

Replacing S by cl conv S in Theorem 2.5 we obtain the following result.

Corollary 2.1 LetS C R™ be anonempty set and x* ¢ cl conv S. Then there exists
a hyperplane H (p, 3) strictly separating S and {x*}.

The next theorem is very similar to Theorem 2.3 showing that the closure of
convex hull is actually the intersection of all the closed halfspaces containing the set.

Theorem 2.6 IfS C R", then

cl conv § = ﬂ H™ (p, a).

SCH™ (p,a)
p#0, aeR

Proof Due to Theorem 2.3 we have

conv S = ﬂ §g ﬂ H (p,a)=:T.

5c8 SCH™ (p.a)
§ convex p#0, aeR

Since 71 is closed as an intersection of closed sets, we have
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clconv SCclT=T.

Next we show that also 7" € cl conv S. To the contrary suppose that there exists
x* € T'butx* ¢ cl conv S. Then due to Corollary 2.1 there exists a closed halfspace
H~(p, B) suchthat S € H™ (p, B) and x* ¢ H™ (p, B),thusx* ¢ T'C H™ (p, ),
which is a contradiction and the proof is complete. ([

We can also strengthen the supporting property of Theorem 2.4, namely there
exists actually a supporting hyperplane at every boundary point.

Theorem 2.7 Let S C R" be a nonempty convex set and xo € bd S. Then there
exists a hyperplane H (p, «) supporting cl S at x.

Proof Since xy € bd S there exists a sequence (xj) such that x; ¢ cl .S and
xj — xo. Then due to Theorem 2.4 for each xj, there exists y; € bd S such that
the hyperplane H(q;,, B1), where q;, :== =}, — y;, and (), := qkT,yk supports cl S at
y;.. Then inequality (2.6) implies that

0> q;‘f(az —Yyp) = q,{w — O forallxz ecl S,
and thus

q;‘fw < B forallz €clS.

On the other hand, according to (2.7) we get q%mk > (3, thus we have

qgw < q{wk forallxz ecl S. (2.8)
Next we normalize vectors g, by defining p;. := q;./|/q.|l- Then ||p.| = 1, which
means that the sequence (p;,) is bounded having a convergent subsequence (ij)’ in
other words there exists a limit p € R such that pr, —> P and ||p|| = 1. Itis easy

to verify, that (2.8) holds also for P in other words

pfjw < p{jazkj forallz e cl S. (2.9)

Fixing now & € cl S in (2.9) and letting j — oo we get p’ & < p’ xg. In other
words

p’ (x — x0) <0,

which means that cl S € H™ (p, «), where « := pTa:o and thus H (p, «) supports
cl S at x. O

Finally we consider a nice property of convex sets, namely two disjoint convex
sets can always be separated by a hyperplane. For strict separation it is not enough
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to suppose the closedness of the sets, but at least one of the sets should be bounded
as well.

Theorem 2.8 Ler Sy, 5> C R" be nonempty convex sets. If S| NS> = 0, then there
exists a hyperplane H (p, o) separating S\ and Sy. If, in addition, S| and S, are
closed and S| is bounded, then the separation is strict.

Proof 1t follows from Theorem 2.2, that the set
S=51-S={xecR"|x=x — x>, ©1 €51, 22 € 5>}

is convex. Furthermore, 0 ¢ S, since otherwise there would exist ; € S| and
x> € S> such that 0 = x; — x>, in other words ; = x> € S;1 NS> = ¥, which is
impossible.

If0 ¢ cl S, then due to Corollary 2.1 there exists a hyperplane H (p, «) strictly
separating S and {0}, in other words

ple <a<p'0=0 forallz € S.
Since x = x| — x», where 1 € S| and x; € Sy, we get
T T
px<a<p x; forallz; € S1,xy €5,
and thus H (p, «) strictly separates S| and 5.

On the other hand, if 0 € cl S it must hold that 0 € bd S (since 0 ¢ int S).
Then due to Theorem 2.7 there exists a hyperplane H (p, (3) supporting cl S at 0, in
other words

pT(as —0) <0 forallz eclS.
Denoting again @ = x| — x3, where | € 5] and > € 5>, we get
T T

px <p x forallx; € S|,z € 5,.
Since the set of real numbers {p’ z; | &; € S} is bounded above by some number
pTazz, where xy € S # (it has a finite supremum. Defining o := sup {pTa; 1
x| € S1} we get

T T

pxi<a=<p xy forallx; € S1,xr € 57,

and thus H (p, «) separates S| and .S5.

Suppose next, that S; and .Sy are closed and S} is bounded. In order to show
that S is closed suppose, that there exists a sequence (x;) C S and a limit x € R”
such that & — x. Then due to the definition of S we have x;, = x|, — x2,,

where 1, € S1 and xp, € S>. Since S} is compact, there exists a convergent
subsequence (x1 kj) and a limit 1 € S such that x; p > Tl Then we have
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Xy = T1y; — XT; —> T — & = @2. Since 5y is closed x> € 55. Thus x € S and
S is closed. Now the case 0 ¢ cl S = S given above is the only possibility and thus
we can find H (p, o) strictly separating .S and S>. ]

The next two examples show that both closedness and compactness assumptions
actually are essential for strict separation.

Example 2.5 (Strict separation, counter example ). Let S; = {x € R? |
z1 > 0and 2y > 1/z1} and S, := {& € R? | 2 = 0}. Then both S; and
S, are closed but neither of them is bounded. It follows that S| — S» = {x €
R? | 5 > 0} is not closed and there does not exist any strictly separating
hyperplane.

Example 2.6 (Strict separation, counter example 2). Let S; = {x € R? |
2} +23 < 1}and S := {z € R? | (¥1 —2)> + 23 < 1}. Then both S} and
S> are bounded but S is not closed and it follows again that S| — 5S> = {x €
R? | (z1 +2)% + x% < 4} is not closed and there does not exist any strictly
separating hyperplane.

2.1.3 Convex Cones

Next we define the notion of a cone, which is a set containing all the rays passing
through its points emanating from the origin.

Definition 2.6 A set C € R"™ is a cone if A € C forall x € C and A > 0.
Moreover, if C'is convex, then it is called a convex cone.

Example 2.7 (Convex cones). It is easy to show that a singleton {0}, the whole
space R", closed halfspaces H T(p,0) and H™ (p, 0), the nonnegative orthant
RY ={x e R" | z; > 0, i = 1...,n} and halflines starting from the origin
are examples of closed convex cones.
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(a)
b
(b) ©

Fig. 2.5 Tllustration of convex and nonconvex cones. (a) Convex. (b) Not convex. (¢) Not convex

Theorem 2.9 A set C C R" is a convex cone if and only if
A+ puy e C forallx,ye Cand, u>0. (2.10)

Proof Evidently (2.10) implies that C' is a convex cone.
Next, let C' be a convex cone and suppose that ,y € C and A, u > 0. Since C
is a cone we have \x € C and py € C. Furthermore, since C' is convex we have

Dz + (11— HuyeC (2.11)
and again using the cone property we get
e+ py=2Me+ 1 - bHuy)ec (2.12)

and the proof is complete. (]

Via the next definition we get a connection between sets and cones. Namely a set
generates a cone, when every point of the set is replaced by a ray emanating from
the origin.

Definition 2.7 The ray of aset S C R" is

ray S=| JAS={MxeR" |z €S, A>0)
A=0

The proof of the next lemma is left as an exercise.
Lemma 2.3 IfS C R", thenray S is a cone and C' C R" is cone if and only if
C =ray C.
Proof Exercise. (I

The next theorem shows that the ray of a set is actually the intersection of all the
cones containing S, in other words, it is the smallest cone containing .S (see Fig. 2.6).
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Theorem 2.10 If.S C R", then

ray S = ﬂ C.

ScC

C cone

Proof Let C be a cone such that S € C. Then due to Lemma 2.3 we have ray S C
ray C' = C and thus we have

ray S C ﬂ C.

scc
C' cone

On the other hand, it is evident that S € conv S and due to Lemma 2.3 ray S is a
cone. Then ray S is one of the cones C' forming the intersection and thus

ﬂ C= ﬂ CNray S Cray S

sce sco
C' cone C' cone

and the proof is complete. (]

It can be seen from Fig. 2.6 that a ray is not necessarily convex. However, if the
set is convex, then also its ray is convex.

Theorem 2.11 [f S C R" is convex, thenray S is a convex cone.

Proof Due to Lemma 2.3 ray S is a cone. For convexity let ,y € ray S and
A, 0 > 0. Then x = au and y = (v, where u,v € S and o, B > 0. Since S is
convex we have

o (1o 222 Yoes
zi=———u - ——Jves.
Ao+ pf Ao+ B

The fact that ray S is cone implies that (A« + p3)z € ray S, in other words
Aa+ pf)z = dau + pfv = Ax + py €ray S.
According to Theorem 2.9 this means, that ray S is convex. (|

(@ (b) (0 (d)

L]
N . cok

Fig. 2.6 Convex hull, ray and conic hull of a set. (a) Set. (b) Convex hull. (¢) Ray. (d) Conic hull
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It is also easy to show that a ray is not necessarily closed. However, if the set is
compact not including the origin its ray is closed.

Theorem 2.12 If .S C R" is compact such that 0 ¢ S, then ray S is closed.

Proof Let (x;) C ray S be a sequence such that ; — x. Next we show that
x € ray S. The fact that ; € ray S means that ; = \;y; where A\; > 0 and
y; € Sforall j € N. Since S is compact the sequence y; is bounded, thus there
exists a subsequence (y;,) C .S such that y; — y. Because S is closed, it follows
that y € S. Furthermore, since 0 ¢ .S one has y # 0, thus the sequence )}, is also
converging to some A > 0. Then )‘ji'!/ji — Ay = x, which means that « € ray S5,
in other words S is closed. O

Similarly to the convex combination we say that the linear combination Zf‘zl i
is a conic combination of elements x|, ..., x; € R" if each \; > 0 and the conic
hull generated by a set is defined as a set of conic combinations as follows.

Definition 2.8 The conic hull of aset S C R" is

k
cone S={z eR" [z =D Naj, z; €5, A =0k> 0}

i=1
The proof of the next lemma is again left as an exercise.

Lemma 2.4 [fS C R", then cone S is a convex cone and C' C R" is convex cone
if and only if

C = cone C.

Proof Exercise. O

The next theorem shows that the conic hull cone S is actually the intersection
of all the convex cones containing .S, in other words, it is the smallest convex cone
containing S (see Fig. 2.6).

Theorem 2.13 IfS C R", then

cone S = ﬂ C.

scc
C' convex cone

Proof Let C be a convex cone such that S € C. Then due to Lemma 2.4 we have
cone S C cone C = C and thus we have

cone S C ﬂ C.

sccC
C' convex cone
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On the other hand, it is evident that S C cone S and due to Lemma 2.4 cone S is a
convex cone. Then cone S is one of the convex cones forming the intersection and
thus

ﬂ C = ﬂ C' Ncone S C cone S

ScC scC
C' convex cone C' convex cone

and the proof is complete. (]

Note, that according to Lemma 2.1, Theorems 2.10 and 2.13, and Definitions 2.7
and 2.8 we get the following result.

Corollary 2.2 If S C R", then
cone S = conv ray S.

Finally we get another connection between sets and cones. Namely, every set
generates also so called polar cone.

Definition 2.9 The polar cone of a nonempty set S C R" is
S°={yeR"|y'z <0forallx € S}.

The polar cone ¢ of the empty set ¢ is the whole space R™.

The next lemma gives some basic properties of polar cones (see Fig. 2.7). The
proof is left as an exercise.

Lemma 2.5 [fS C R", then S° is a closed convex cone and S C 5°°.

Proof Exercise. O

Theorem 2.14 The set C C R" is a closed convex cone if and only if
C=C°.

Proof Suppose first that C = C°° = (C°)°. Then due to Lemma 2.5 C'is a closed
convex cone.

Suppose next, that C'is a closed convex cone. Lemma 2.5 implies that C' € C°°.
We shall prove next that C°° C C'. Clearly #°° = (R"™)° = ¢ and thus we can assume
that C' is nonempty. Suppose, by contradiction, that there exists @ € C°° such that
x ¢ C. Then due to Theorem 2.4 there exists a hyperplane H (p, o) separating C'
and {x}, in other words there exist p # 0 and « € R such that

ply<aforalye C and p'z > a.
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A
Soo
s
g
Fig. 2.7 Polar cones of the set
Since 0 € C' we have o > pTO = 0 and thus
plz > 0. (2.13)

If p ¢ C° then due to the definition of the polar cone there exists z € C' such that
p’z > 0. Since C is cone we have Az € C for all A\ > 0. Then p”(\z) > 0 can
grow arbitrary large when A\ — 0o, which contradicts the fact that p’ y < « for all
y € C. Therefore we have p € C°. On the other hand

mec"":{yeR”|yTv§0f0rall'ueC°}

and thus pTa: < 0, which contradicts (2.13). We conclude that € C and the proof
is complete. U

2.1.4 Contingent and Normal Cones

In this subsection we consider tangents and normals of convex sets. First we define
a classical notion of contingent cone consisting of the tangent vectors (see Fig. 2.8).

Definition 2.10 The contingent cone of the nonempty set S at x € S is given by
the formula
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Kg(x) ;= {d € R" | there exist t; | 0 and d; — d such that x + t;d; € S}.
(2.14)
The elements of Kg(x) are called rangent vectors.
Several elementary facts about the contingent cone will now be listed.

Theorem 2.15 The contingent cone Kg(x) of the nonempty convex set S at x € S
is a closed convex cone.

Proof We begin by proving that Kg(x) is closed. To see this, let (d;) be a sequence
in Kg(x) converging to d € R". Next we show that d € Kg(x). The fact that
d; — d implies that for all € > 0 there exists ¢p € N such that

ld—d;|| <e/2 forall > 1.
On the otherhand, d; € Kg(x), thus foreach € N there exist sequences (d;;) C R"
and (tij) C R such that dz-j — d;, ti J 0and x + tijdz-j € S forall j € N. Then
there exist jiy € Nand jf € N such that for all 7 € N

ldi —di;|| <e/2  forall j=> ;¥

and
ti;| <1/i  forall j> ji.

Let us choose j; := max {j;, j;}. Then ¢;; |, 0 and for all i > io
ld—di |l <ld—dill +lldi —di, || <e/2+¢/2 =k,

which implies that d;; — d and, moreover, x +t;; d;; € S. By the definition of
the contingent cone, thls means that d € Kg(x) and thus Kg(x) is closed.

Fig. 2.8 Contingent cone K g(x) of a convex set
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We continue by proving that Kg(x) is acone. If d € Kg(x) is arbitrary then there
exist sequences (d;) C R" and (¢;) C Rsuchthatd; — d,t; | Oandxz+t;d; € S
forall j € N.Let A > 0 be fixed and define d/j = Adj and t’j :=t;/A. Since t; 10,

||d’j — M| = \A|d; —yll — 0 whenever j — 00

and
j

oy

-)\djES

it follows that A\d € Kg(x). Thus Kg(x) is a cone.

For convexity let A € [0, 1] and d',d?> € Kg(z). We need to show that d :=
(1=Nd'+\d? belongs to Kg(x). By the definition of K g(x) there exist sequences
(d}), (d) C R" and (t}), (3) C R such thatd; — d', ! | O and = + t'd} € S
forall j € Nand ¢ = 1, 2. Define

dj:=(1—Nd}+Ad; and t;:=min{t] t5).

Then we have
o+ tid; = (1 — N + t;d)) + \@ + t;d}) € §
because S is convex and

. t; t; Py
T+ tjd; = (1 — t—])a: + t—J(:c +td) e S
J J

ti .
because t—f € [0, 1] and S is convex. Moreover, we have
J

Id; — dll = (1 = Ndj + Adj — (1 — )d' — \d?||
< (1=Ndj —d'll + Ald} — d*|| — 0,

when j — 00, in other words d; — d. Since t; | 0 we have d € Kg(x) and thus
Kg(x) is convex. U

The following cone of feasible directions is very useful in optimization when
seeking for feasible search directions.

Definition 2.11 The cone of globally feasible directions of the nonempty set S at
x € S is given by the formula

Gg(x) := {d € R" | there exists ¢ > 0 such that  + td € S}.
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The cone of globally feasible directions has the same properties as the contingent
cone but it is not necessarily closed. The proof of the next theorem is very similar to
that of Theorem 2.15 and it is left as an exercise.

Theorem 2.16 The cone of globally feasible directions Gg(x) of the nonempty
convex set S at x € S is a convex cone.

Proof Exercise. U

We have the following connection between the contingent cone and the cone of
feasible directions.

Theorem 2.17 If S is a nonempty set and x € S, then
Kg(x) € cl Gg(x).
If, in addition, S is convex then
Kg(x) =cl Gs(x).

Proof If d € Kg() is arbitrary, then there exist sequences d; — d and ¢; | 0 such
that x +t;d; € Sforall j € N, thus d € cl Gg(x).

To see the equality, let S be convex and d € cl G g(x). Then there exist sequences
d; — dandt; > 0 such that © + ¢;d; € S for all j € N. It suffices now to find

a sequence t} such that t; J Oand = + t;-dj € S. Choose t;- := min {%, t;}, which
implies that

, 1
ltjl <= —0
J
and by the convexity of S it follows that
t. t
z+thd;=(1- t—?)a: + #(w +tidj) € S,
J J

which proves the assertion. (I

Next we shall define the concept of normal cone (see Fig. 2.9). As we already
have the contingent cone, it is natural to use polarity to define the normal vectors.

Definition 2.12 The normal cone of the nonempty set S at x € S is the set
Ng(x) := Kg(x)° = {z € R" | 2T'd <0Oforalld e Kg(x)}. (2.15)

The elements of Ng(x) are called normal vectors.

The natural corollary of the polarity is that the normal cone has the same properties
as the contingent cone.
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Fig. 2.9 Contingent and
normal cones of a convex set

Theorem 2.18 The normal cone Ng(x) of the nonempty convex set S atx € S'isa
closed convex cone.

Proof Follows directly from Lemma 2.5. [

Notice that if € int S, then clearly Kg(x) = R"™ and Ng(x) = ¢J. Thus the
only interesting cases are those when « € bd S.
Next we present the following alternative characterization to the normal cone.

Theorem 2.19 The normal cone of the nonempty convex set S at € S can also be
written as follows

Ng(x) ={zeR" | 2T (y —x) <0 forally € S}. (2.16)

Proof Let us denote
Z:={zeR"| 2T (y—x) <Oforally € S}.
If z € Ng(x) is an arbitrary point, then by the definition of the normal cone we have
z'd <0 forall de Kg(z).
Now let y € S, set d := y — « and choose ¢ := 1. Then
r+td=x+ty—tr=yes,

thus d € Gg(x) C cl Gg(x) = Kg(x) by Theorem 2.17. Since z € Ng(x) one
has zT(y — a:)T =2Td <0,

thus z € Z and we have Ng(x) C Z.
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On the other hand, if z € Z and d € Ks(x) then there exist sequences (d;) C R"
and (t;) C Rsuchthatd; — d,t; > O and ¢ + t;d; € S forall j € N. Let us set
yj = +t;d; € S.Since z € Z we have

tjodj = zT(yj —x) <0.
Because t; is positive, it implies that szj < 0 forall j € N. Then

2'd=2"d;+ 2" (d - d))
< lzlllld — djll,

where ||d — d;|| — 0 as j — oo. This means that
2'd <0 forall de Kg(z).

In other words, we have z € Ng(x) and thus Z € Ng(x), which completes the
proof. (]

The main difference between the groups of cones ray .S, cone .S, S° and Kg(x),
Gs(x), Ng(z) is, that the origin is the vertex point of the cone in the first group and
the point € S in the second group. If we shift « to the origin, we get the following
connections between these two groups.

Theorem 2.20 If S is a nonempty convex set such that 0 € S, then

(i) Gs(0) =ray S,
(i) Kg(0) =clray S,
(iii) Ng(0) = S°.

Proof Exercise. O

2.2 Convex Functions

A function f:R" — R is said to be convex if

JQz+ 1 =Ny < Af(@) + 1 - Nfy) 2.17)

whenever x and y are in R" and A € [0, 1]. If a strict inequality holds in (2.17) for
all z,y € R" such that x # y and A\ € (0, 1), the function f is said to be strictly
convex. A function f:R" — R is (strictly) concave if — f is (strictly) convex (see
Fig. 2.10).

Next we give an equivalent definition of a convex function.

Theorem 2.21 (Jensen’s inequality) A function f:R"™ — R is convex if and only if
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(a) (b)

X X X

Fig.2.10 Examples of different functions. (a) Convex. (b) Concave. (¢) Neither convex or concave

f (i /\m) < i Aif(x;), (2.18)
i=1 i=1

whenever x; € R", \; € [0, 1] foralli =1,...,mand Y/~ \i = L.
Proof Follows by induction from the definition of convex function. [
Next we show that a convex function is always locally Lipschitz continuous.

Theorem 2.22 Let f:R" — R be a convex function. Then for any x in R", f is
locally Lipschitz continuous at x.

Proof Let u € R" be arbitrary. We begin by proving that f is bounded on a neigh-
borhood of u. Let € > 0 and define the hypercube

Se={yeR" ||y, —ui| <eforalli=1,...,n}.
Letuy, ..., u,, denote the m = 2" vertices of S and let
M =max{f(u;) |i=1,...,m}.

Sinceeachy € S. canbeexpressedasy = > /" | Aju; with \; > Oand > | N\ = 1,
by Theorem 2.21. we obtain

fy) = f(z)\iui) <D Nif(u) <MD N=M.
i=1 i=1 i=1

Since B(u; e) C S;, we have an upper bound M of f on an e-neighborhood of wu,
that is
f@)y<M forall x' € B(u;e).

Now let x € R"”, choose p > 1 and y € R" so that y = px. Define
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A:=1/p and
Vi={v|v=>0-N(@ —u)+x, where ' € B(u; ¢)}.

The set V is a neighborhood of = Ay with radius (1 — \)e. By convexity one has
forallv e V

f) = f((1 =N (@ —u) + \y)
= f((1 =Nz + Ay +u— tu))
<A =Nf@E@)+ My +u-— .

Now f(z') < M and f(y +u — %u) = constant =: K and thus
f(v) <M+ \K.
In other words, f is bounded above on a neighborhood of x.
Let us next show that f is also bounded below. Let z € B(x; (1 — A)e) and define
2z :=2x — z. Then
12 =zl = |z — 2| < (1 = Ne.
Thus 2’ € B(x; (1 — Me) and = (z + 2’)/2. The convexity of f implies that
f@) = f(z+2)/2) < 53f(2) + 53 (=),

and
f(z)=2f(@) — f(z) =2f(@x) — M — \K

so that f is also bounded below on a neighborhood of x. Thus we have proved that
f is bounded on a neighborhood of x.
Let N > 0 be a bound of | f| so that
|f(x)] <N forall =’ e B(x;26),
where § > 0, and let x|, x; € B(x; d) with | # x,. Define

x3 1= x2 + (§/a)(x2 — T1),

where « := ||@> — x]|. Then
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lzs — x|l = lx2 + (6/) (@2 — 1) — ||
<z —z| + (6/) |x2 — 1]
lz2 — 1|

|z — 1|
=26,

thus 3 € B(x; 20). Solving for x, gives

6:34— *
ato VT age

T =
and by the convexity we get

1)
f@n) = —fla)+ QL_H;J”(TG)-
Then
f@2) — f(x)) < a%a[f(‘”” — f(z)]
< §|f<m3> — f(@)]

= S(f @)+ If @)
Since x1, 3 € B(x; 20) we have | f(x3)| < N and | f(x)| < N, thus
J(@2) — f(x1) = %Ilwz -zl
By changing the roles of | and x> we have
F@) — @l = 2 s — il

showing that the function f is locally Lipschitz continuous at x.

35
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Fig. 2.11 Absolute-value

function f(z) = |z| f(x) A
3
2 \//\*\
;\(%
1
|
-3 -2 -1 1 2 3 X

The simplest example of nonsmooth function is the absolute-value function on
reals (see Fig. 2.11).

Example 2.8 (Absolute-value function). Let us consider the absolute-value
function

f(@) = ||
on reals.
The gradient of function f is
1, when z > 0,
\V4 =
f@ {—1, when z < 0.

Function f is not differentiable at z = 0.
We now show that function f is both convex and (locally) Lipschitz con-
tinuous. Let A € [0, 1] and z, y € R. By triangle inequality we have

FOz+ 0 =Ny = Az + (1 = Nyl
< [Az|+ [(1 = ANyl
= [Allz] + 11 = Allyl
= Alz| + (1 = Nyl
=M@+ 1 =N f@.

Thus, function f is convex. Furthermore, by triangle inequality we also have

If @) = f@l = llz] = Iyl < o -yl
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for all z, y € R. In space R, the right-hand side equals to the norm ||z — y||.
Thus, we have the Lipschitz constant X = 1 > 0 and function f is Lipschitz
continuous.

2.2.1 Level Sets and Epigraphs

Next we consider two sets, namely level sets and epigraphs, closely related to convex
functions.

Definition 2.13 The /level set of a function f:R" — R with a parameter o € R is
defined as
levy f:={x e R" | f(x) < a}.

We have the following connection between the convexity of functions and level
sets.

Theorem 2.23 [f f:R" — R is a convex function, then the level set lev,, f is a
convex set for all o € R.

Proof If ¢,y € lev, f and A € [0, 1] we have f(x) < « and f(y) < «. Let
z:= Az + (1 — A)y with some A € [0, 1]. Then the convexity of f implies that
@ =A@+ A-Nfy =ra+(-Na=a,

in other words z € lev, f and thus lev,, f is convex. O

The previous result can not be inverted since there exist nonconvex functions with
convex level sets (see Fig. 2.12). The equivalence can be achieved by replacing the
level set with the so called epigraph being a subset of R" x R (see Fig. 2.13).

Fig. 2.12 Nonconvex func-
tion with convex level sets
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Fig. 2.13 Epigraph of the fx)
function

epif

Definition 2.14 The epigraph of a function f:R"™ — R is the following subset of
R™ x R:

epi fi={(x,7) e R" xR | f(x) <r}. (2.19)

Theorem 2.24 The function f:R"™ — R is convex if and only if the epigraph epi f
is a convex set.

Proof Exercise. U

Notice, that we have the following connection between the epigraph and level sets
of a function f:R"” — Ratx € R"

levi@) [ ={y € R" | (y, f(®)) € epi f}.

2.2.2 Subgradients and Directional Derivatives

In this section we shall generalize the classical notion of gradient for convex but not
necessarily differentiable functions. Before that we consider some properties related
to the directional derivative of convex functions.

Theorem 2.25 If f:R" — R is a convex function, then the directional derivative
[ (x; d) exists in every direction d € R" and it satisfies

. f@+td) — f(z)
inf .
t>0 t

f(x; d) =

(2.20)

Proof Let d € R” be an arbitrary direction. Define p: R — R by

td) —
o= LT D= I@
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We begin by proving that ¢ is bounded below at ¢ when ¢ | 0. Let ¢ > 0 and let
constants ¢ and ¢, be such that 0 < t; < ¢, < . By the convexity of f we have

1
o(t2) — o(t1) = E[tlf(ﬂ3 +trd) —taf(x+t1d) + (t2 — t1) f(2)]

1
=%

t1 t1
—~ f(g(w +td) + (1 — 5)3:)}

207

¢ ¢
{(if(:c ttad)+ (1 — é)f(a:))

thus the function ¢(t) decreases as ¢ | 0. Then for all 0 < £ < € one has

Hf@+td) + 5@+ Lf@—5d) + (1 — DHf(x) —2f(x)

) —p(=¢/2) =

t/2
_yf@4id+5f@—5d) — @)
- t/4
> M — 0’

= 14

which means that the function ¢ is bounded below for 0 < ¢ < ¢. This implies that
there exists the limit

1fi&)1 o) = f'(z;d) forall deR"

and since the function ¢(t) decreases as ¢ | 0 we deduce that

f(@: d) = inf ft t‘? —J@ 0

Theorem 2.26 Let f:R" — R be a convex function with a Lipschitz constant K at
x € R™ Then the function d — [’ (x; d) is positively homogeneous and subadditive
on R" with

If'(x: d)| < K||d].

Proof We start by proving the inequality. From the Lipschitz condition we obtain

|f(x+td) — f(z)]
t
. K|x+td—=x|
<lm——
t,0 t
< K|d]|l.

"(x; d)| < 1i
If' (x )I_tlfg
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Next we show that f/(x; -) is positively homogeneous. To see this, let A > 0. Then

f@x+tAd) — f(x)

"(x; \d) = li
f(x; \d) tlﬁ)l

t
. f(x+tAd) — f(x)
=limA\ -
t10 tA
. f®+tAd) — f(x)
= \-lim
10 tA
=\ fl(z; d).

We turn now to the subadditivity. Let d, p € R" be arbitrary directions, then by
convexity

f'(x; d + p) = lim f@+td+p) - f=)

t
_ fh@+2td) + L@ +2tp) - f2)
= lim
tL0 t
< lim fx+2td) — f(x) + lim f(x+2tp) — f(x)
tl0 2t tl0 2t

= f'(z; d) + f'(x; p).

Thus d — f'(x; d) is subadditive. O
From the previous theorem we derive the following consequence.

Corollary 2.3 If f:R" — R is a convex function, then the function d — f'(x; d)
is convex, its epigraph epi f'(x; -) is a convex cone and we have

fl(x; —d) > —f'(x;d) forall z € R".

Proof Exercise. O

Next we define the subgradient and the subdifferential of a convex function. Note
the analogy to the smooth differential theory, namely if a function f:R" — R is
both convex and differentiable, then for all y € R" we have

f@) > f@) + V@) (y—=).

Figure 2.14 illustrates the meaning of the definition of the subdifferential.

Definition 2.15 The subdifferential of a convex function f:R" — R atx € R" is
the set J.f (x) of vectors & € R" such that

Ocf@) = [€ R | f@) = f@) + €' (y — @) forall y e R"}.
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Fig. 2.14 Subdifferential

>

Each vector & € O, f(x) is called a subgradient of f at x.

Example 2.9 (Absolute-value function). As noted in Example 2.8 function
f(x) = |z| is convex and differentiable when « # 0. By the definition of
subdifferential we have

£€0.f(0) <> |yl > 0] +&-(y—0) forally e R
— |yl =€ -y forally e R
<= ¢<1 and &> —1.

Thus, 0.f(0) = [—1, 1].

Theorem 2.27 Let f:R" — R be a convex function with a Lipschitz constant K at
x* € R"™. Then the subdifferential O.f(x*) is a nonempty, convex, and compact set
such that

Ocf(x*) € B(0; K).

Proof We show first that there exists a subgradient £ € 0. f(x*), in other words
O.f(x*)isnonempty. By Theorem 2.24 epi f isaconvex setand by Theorem 2.22 and
Exercise 2.29 it is closed. Since (z*, f(x*)) € epi f itis also nonempty, furthermore
we have (x*, f(x*)) € bd epi f. Then due to Theorem 2.7 there exists a hyperplane
supporting epi f at (z*, f(x*)). In other words there exists (£, 1) # (0, 0) where
&* € R" and p € R such that for all (x, r) € epi f we have

& (@, — @, f@) = € (@ —2*) +per - f(*) <0. (2:21)
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In the above inequality r can be chosen as large as possible, thus ;2 must be nonpos-
itive. If 4 = 0 then (2.21) reduces to

€)@ —a*) <0 forallz € R".
If we choose @ := x* + £* we get (£€")T€* = ||€*||> < 0. This means that £* = 0,
which is impossible because (€%, 1) # (0, 0), thus we have 1 < 0. Dividing the
inequality (2.21) by |u| and noting & := £*/|u| we get
@ —a*)—r+ f(@*) <0 forall (z,r) € epi f.
If we choose now 7 := f(x) we get

f(x) > f(z*) + & (@ — x*) forallz € R,

which means that £ € 0, f (x*).
To see the convexity let £, &, € O.f(x*) and A € [0, 1]. Then we have

fy) = f@) + &y —x*) forally e R" and
f) = f@) + &y —a*) forally e R"

Multiplying the above two inequalities by A and (1 — \), respectively, and adding
them together, we obtain

F@) = f@)+ (A& + (1= N&) (y—a*) forally € R”,

in other words

A+ (1= Ng € 0.f(ah)

and thus O, f (™) is convex.
If d € R" we get from the definition of the subdifferential

pt) = fa@+ tci) — /@ > £Titd) =¢T'd forall € € O.f(x").
Since p(t) — f'(x*; d) when t | 0 we obtain
fl@*; d) > ¢''d forall & € O.f(x¥). (2.22)
Thus for an arbitrary £ € J.f(x*) we get
IEI? = 1671 < If @ &) < K€l
by Theorem 2.26. This means that J, f (x*) is bounded and we have

d.f(x*) € BO; K).
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Thus, for compactness it suffices to show that d.f(x*) is closed. To see this let
(&) C O.f(x*) such that £, — £. Then for all y € R™ we have

f@)—f@) =& y—z) - ¢ y—m),
whenever i — o0, thus & € 0. f(x*) and 0. f (x*) is closed. O

The next theorem shows the relationship between the subdifferential and the
directional derivative. It turns out that knowing f’(x; d) is equivalent to knowing
Theorem 2.28 Let f: R — R be a convex function. Then for all x € R"

(i) Ouf(x) ={€ eR"| fl(x,d) > & dforall d € R}, and
(i) f'(z;d) =max{¢'d | & € d.f(x)} forany d € R™.

Proof (i) Set
S:={¢ eR"| fl(x;d) > ¢"dforalld e R"

and let & € S be arbitrary. Then it follows from convexity that, for all d € R", we
have

¢hd < f'(@: d)
f(A=dz+tx+d)— f(x)

= lim

t,0 t
<1 (1 -=Df(@) +tf(x+d) — f(x)
< lim

tL0 t

= f®+d) — f(o),

whenever ¢t < 1. By choosing d := y — « we derive & € O, f(x). On the other hand,
if £ € 0. f(x) then due to (2.22) we have

f'(@;d) > £'d foralld e R".

Thus & € S, which establishes (i).

(i1) First we state that since the subdifferential is compact and nonempty set
(Theorem 2.27) the maximum of the linear function d £Td is well-defined due
to the Weierstrass” Theorem 1.1. Again from (2.22) we deduce that for each d € R"
we have

fl(@; d) > max {¢7d | € € O.f(x)}.
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Suppose next that there were d* € R" for which

fl(@; d*) > max (¢7d* | € € 0.f (@)). (2.23)
By Corollary 2.3 function d + f’(x; d) is convex and thus by Theorem 2.24
epi f'(x; -) is a convex set and by Theorem 2.22 and Exercise 2.29 it is closed.
Since (d*, f'(x; d*)) € epi f/(x; -) it is also nonempty, furthermore we have
(d*, f'(x; d*)) € bd epi f'(x; -). Then due to Theorem 2.7 there exists a hyper-
plane supportingepi f'(x; -) at (d*, f'(x; d*)), in other words there exists (£*, ) #
(0, 0) where £* € R™ and i € R such that for all (d, ) € epi f'(x; -) we have

&, wh(d.r) — @, f'(x;d)) = €)' d—-d +puer — f(x: d)) (2.24)
<0.

Just like in the proof of Theorem 2.27 we can deduce that ;1 < 0. Again dividing the
inequality (2.24) by |u| and noting & := £€*/|u| we get

eNd—d") —r+ f'(x; d*) <0 forall (d,r) € epi f'(x; -).
If we choose now r := f'(x; d) we get
(@ d) — f'(z: d*) > €7(d — d*) foralld € R". (2.25)
Then from the subadditivity of the directional derivative (Theorem 2.26) we 