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Abstract This article is a follow-up on the article Frames and Extension
Problems I. Here we will go into more recent progress on the topic and also present
some open problems.
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1 Introduction

Based on the article Frames and Extension Problems I, see [3], we discuss recent
progress and open problems concerning extension of Bessel sequences to frames
and dual pairs of frames. We first consider the extension problem in general Hilbert
spaces in Sect. 2. The special case of Gabor frames is discussed in Sect. 3. In Sect. 4
the similar (but much more complicated) problem for wavelet systems is considered,
without use of any assumption of multiresolution structure. Finally, in Sect. 5, we
present a few recent results about extension of wavelet Bessel systems to frames
with two or three generators. These results use the multiresolution structure.
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2 The Extension Problem in Hilbert Spaces

Extension problems have a long history in frame theory. It has been shown by
several authors (see, e.g., [1,14]) that for any Bessel sequence ffkg1

kD1 in a separable
Hilbert space H; there exists a sequence fgkg1

kD1 such that ffkg1
kD1 [ fgkg1

kD1 is
a tight frame for H: A natural generalization to construction of dual frame pairs
appeared in [4]; we need to refer to the proof later, so we include it here as well.

Theorem 2.1. Let ffigi2I and fgigi2I be Bessel sequences in H. Then there exist
Bessel sequences fpj gi2J and fqj gi2J in H such that ffigi2I [ fpj gi2J and
fgigi2I [ fqj gi2J form a pair of dual frames for H.

Proof. Let T and U denote the preframe operators for ffigi2I and fgigi2I ;
respectively, i.e.,

T;U W `2.I / ! H; T fcigi2I D
X

i2I
cifi ; U fcigi2I D

X

i2I
cigi :

Let faj gi2J ; fbj gi2J denote any pair of dual frames for H: Then

f D UT �f C .I � UT �/f D
X

i2I
hf; fi igi C

X

j2I
h.I � UT �/f; aj ibj

D
X

i2I
hf; fi igi C

X

j2I
hf; .I � UT �/�aj ibj

The sequences ffigi2I ; fgigi2I ; and fbj gi2J are Bessel sequences by definition, and
one can verify that f.I �UT �/�aj gj2J is a Bessel sequence as well. The result now
follows from Lemma 2.2 in [3]. �

The reason for the interest in this more general version of the frame extension
is that it often is possible to construct dual pairs of frames with properties that are
impossible for tight frames. This is illustrated in the next section.

3 The Extension Problem for Gabor Frames

Li and Sun showed in [14] that if ab � 1 and fEmbTnag1gm;n2Z is a Bessel
sequences in L2.R/; then there exists a Gabor systems fEmbTnag2gm;n2Z such that
fEmbTnag1gm;n2Z [ fEmbTnag2gm;n2Z is a tight frame for L2.R/. However, if we
ask for extra properties of the functions g1 and g2 such an extension might be
impossible. For example, if the given function g1 has compact support, it is natural
to ask for the function g2 having compact support as well, but by Li and Sun [14]
the existence of such a function is only guaranteed if jsuppg1j � b�1: On the other
hand, such an extension can always be obtained in the setting of dual frame pairs [4]:
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Theorem 3.1. Let fEmbTnag1gm;n2Z and fEmbTnah1gm;n2Z be Bessel sequences in
L2.R/; and assume that ab � 1: Then the following hold:

(i) There exist Gabor systems fEmbTnag2gm;n2Z and fEmbTnah2gm;n2Z in L2.R/
such that

fEmbTnag1gm;n2Z [ fEmbTnag2gm;n2Z and fEmbTnah1gm;n2Z [ fEmbTnah2gm;n2Z

form a pair of dual frames for L2.R/.
(ii) If g1 and h1 have compact support, the functions g2 and h2 can be chosen to

have compact support.

Proof. Let us give the proof of (i). Let T and U denote the preframe operators for
fEmbTnag1gm;n2Z and fEmbTnah1gm;n2Z; respectively. Then

UT �f D
X

m;n2Z
hf;EmbTnag1iEmbTnah1:

Consider the operator ˆ WD I �UT �; and let fEmbTnar1gm;n2Z; fEmbTnar2gm;n2Z
denote any pair of dual frames for L2.R/: By the proof of Theorem 2.1,
fEmbTnag1gm;n2Z [fˆ�EmbTnar1gm;n2Z and fEmbTnah1gm;n2Z [fEmbTnar2gm;n2Z
are dual frames for L2.R/: By Lemma 2.6 in [3] we know that ˆ� commutes with
the time-frequency shift operators EmbTna: This concludes the proof. �

4 An Extension Problem for Wavelet Frames

It turns out that the extension problem for wavelet systems is considerably more
involved than for Gabor systems. In order to explain this, consider the proof of
Theorem 2.1 and assume that ffigi2I and fgigi2I have wavelet structure, i.e.,
ffigi2I D fDjTk 1gj;k2Z and fgigi2I D fDjTkf 1gj;k2Z for some  1;f 1 2
L2.R/: Assume further that these sequences are Bessel sequences, with preframe
operators T;U; respectively. Then, still referring to the proof of Theorem 2.1,
.I � UT �/�aj D .I � T U �/aj : Unfortunately the operator T U � in general does
not commute with DjTk; so even if we choose faj gi2J to have wavelet structure,
the system f.I � T U �/aj gj2J might not be a wavelet system. Thus, we cannot
apply the proof technique from the Gabor case. The following partial result was
obtained in [4].

Theorem 4.1. Let fDjTk 1gj;k2Z and fDjTkf 1gj;k2Z be Bessel sequences in
L2.R/. Assume that the Fourier transform of f 1 satisfies

supp cf 1 � Œ�1; 1�: (1)



238 O. Christensen et al.

Then there exist wavelet systems fDjTk 2gj;k2Z and fDjTkf 2gj;k2Z such that

fDjTk 1gj;k2Z [ fDjTk 2gj;k2Z and fDjTkf 1gj;k2Z [ fDjTkf 2gj;k2Z

form dual frames for L2.R/: If we further assume that c 1 is compactly supported
and that

supp cf 1 � Œ�1; 1� n Œ��; ��

for some � > 0; the functions  2 andf 2 can be chosen to have compactly supported
Fourier transforms as well.

In the Gabor case, no assumption of compact support was necessary, neither for
the given functions nor their Fourier transform. From this point of view it is natural
to ask whether the assumption (1) is necessary in Theorem 4.1.

Question: Let fDjTk 1gj;k2Z and fDjTkf 1gj;k2Z be Bessel sequences in
L2.R/.

(i) Do there exist functions  2;f 2 2 L2.R/ such that

fDjTk 1gj;k2Z [ fDjTk 2gj;k2Z and fDjTkf 1gj;k2Z [ fDjTkf 2gj;k2Z (2)

form dual frames for L2.R/‹

(ii) If c 1 and cf 1 are compactly supported, can we find compactly supported
functions  2 and f 2 2 L2.R/ such that the functions in (2) form dual frames?

The problem (i) can also be formulated in the negative way: can we find just
one example of a pair of Bessel sequences fDjTk 1gj;k2Z and fDjTkf 1gj;k2Z that
cannot be extended to a pair of dual wavelet frames, each with two generators? The
open question is strongly connected to the following conjecture by Han [8]:

Conjecture by Deguang Han. Let fDjTk 1gj;k2Z be a wavelet frame with upper
frame bound B: Then there exists D > B such that for each K � D; there exists
f 1 2 L2.R/ such that fDjTk 1gj;k2Z [ fDjTkf 1gj;k2Z is a tight frame for L2.R/
with bound K:

The paper [8] contains an example showing that (again in contrast with the
Gabor setting) it might not be possible to extend the Bessel system fDjTk 1gj;k2Z
to a tight frame without enlarging the upper bound; hence it is essential that the
conjecture includes the option that the extended wavelet system has a strictly larger
frame bound than the upper frame bound B for fDjTk 1gj;k2Z: We also note that
Han’s conjecture is based on an example where supp c 1 � Œ�1; 1�; i.e., a case that
is covered by Theorem 4.1.

Observe that a pair of wavelet Bessel sequences always can be extended to dual
wavelet frame pairs by adding two pairs of wavelet systems. In fact, we can always
add one pair of wavelet systems that cancels the action of the given wavelet system,
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and another one that yields a dual pair of wavelet frames by itself. Thus, the issue
is really whether it is enough to add one pair of wavelet systems, as stated in the
formulation of the open problem.

Note that extension problems have a long history in frame theory. Most of the
results deal with the unitary extension principle (UEP) [16, 17] and its variants, and
are thus based on the assumption of an underlying refinable function. The open
problems formulated in this section are not based on such an assumption.

5 Extension Problems via the UEP

In this section we present recent results from [5]; more information and examples
can be found there. We will consider the extension problem for wavelet systems
in L2.R/ that are generated from the UEP by Ron and Shen. That is, we consider
wavelet system fDjTk 1gj;k2Z generated from a given scaling function and charac-
terize the existence of a UEP-type wavelet system fDjTk 2gj;k2Z generated by the
same scaling function, such that the system fDjTk 1gj;k2Z[ fDjTk 2gj;k2Z forms
a Parseval frame for L2.R/; i.e., a tight frame with frame bound 1. In the process
of doing so, we identify two conditions on the filters associated with the scaling
function and with  1; which are necessary for any extension of fDjTk 1gj;k2Z to
a tight UEP-type frame with any number of generators. Interestingly, we are able to
show that these conditions imply that we can always construct a Parseval frame by
adding at most two wavelet systems.

Let T denote the unit circle which will be identified with Œ�1=2; 1=2�: Also,
for f 2 L1.R/ \ L2.R/ we denote the Fourier transform by Ff .�/ D Of .�/ DR1

�1 f .x/e�2�ix�dx: As usual, the Fourier transform is extended to a unitary
operator on L2.R/.

In the rest of the paper we will use the following setup.

General Setup. Consider a scaling function ' 2 L2.R/; i.e., a function such that
O' is continuous at the origin and O'.0/ D 1; and there exists a functionm0 2 L1.T/
(called a refinement mask) such that O'.2�/ D m0.�/ O'.�/; a:e:� 2 R: Given
functions m1;m2; : : : ; mn 2 L1.T/; consider the functions  ` 2 L2.R/ defined by

c `.2�/ D m`.�/ O'.�/; ` D 1; : : : ; n: (3)

In the classical UEP-setup by Ron and Shen, one search for functions
m1;m2; : : : ; mn 2 L1.T/ such that

fDjTk 1gj;k2Z [ � � � [ fDjTk ngj;k2Z

is a Parseval frame. We will modify this slightly. In fact, we will consider a
given refinement mask m0 and a given filter m1 2 L1.T/; and derive equivalent
conditions for the existence of appropriate functions m2; : : : ; mn 2 L1.T/ for the
cases n D 2 and n D 3:
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We will base the analysis on the UEP, which is formulated in terms of the .nC
1/ � 2 matrix-valued function M defined by

M.�/ D

0

BBB@

m0 .�/ m0

�
� C 1

2

�

m1 .�/ m1

�
� C 1

2

�

:::
:::

mn .�/ mn

�
� C 1

2

�

1

CCCA : (4)

Proposition 5.1 (UEP by Ron and Shen [16]). Let ' 2 L2.R/ be a scaling
function and m0 2 L1.T/ the corresponding refinement mask. For each ` D
1; � � � ; n, let m` 2 L1.T/, and define  ` 2 L2.R/ by (3). If the corresponding
matrix-valued function M satisfies

M.�/�M.�/ D I; a:e: � 2 T; (5)

then fDjTk i W j 2 Z; k 2 Z; 1 � i � ng is a Parseval frame for L2.R/.

With the additional constraint that the generating functions should be symmetric,
the issue of constructing Parseval wavelet frames with two or three generators has
attracted quite some attention in the literature, see, e.g., the papers [15] by Petukhov,
[13] by Jiang, [18] by Selesnick and Abdelnour, and the papers [11, 12] by Han
and Mo. For example, in the paper [11] B-splines were used as scaling functions,
while a more general approach, valid for real-valued, compactly supported, and
symmetric scaling functions, was provided in [12]. Other cases where a UEP-based
construction with n generators can be modified to a Parseval frame with two or three
generators have been considered in [6, 7]. These papers are based on the so-called
oblique extension principle, which is known to be equivalent to the UEP. However,
a characterization of the conditions that ensure the possibility of extension with two
or three generators, as provided in the current paper, has not been available before.

Note that the analysis in the current paper is complementary to the one in Sect. 4,
where the key condition for obtaining an extension of a (general) wavelet system
fDjTk 1gj;k2Z to a tight frame of the same form is that c 1 is compactly supported.
The extension principle applied in the current paper usually involves functions that
are compactly supported in time (even though this is not strictly necessary).

In the current paper we have restricted our attention to wavelet systems inL2.R/:
An interesting discussion of the complexity of the extension problem for wavelet
systems in higher dimensions, together with several deep results, recently appeared
in [2].

In the rest of the paper we assume that we have given functionsm0;m1 2 L1.R/
as described in the general setup. Associated with functions m2; � � � ; mn 2 L1.T/;
we consider the .n � 1/ � 2 matrix-valued function M2;n defined by
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M2;n.�/ D

0

B@
m2 .�/ m2

�
� C 1

2

�

:::
:::

mn .�/ mn

�
� C 1

2

�

1

CA :

Note that

M2;n.�/
�M2;n.�/

D
 

m2.�/ � � � mn.�/

m2.� C 1=2/ � � � mn.� C 1=2/

!
0

BBB@

m2 .�/ m2

�
� C 1

2

�

:::
:::

mn .�/ mn

�
� C 1

2

�

1

CCCA

D M.�/�M.�/ �
 

m0.�/ m1.�/

m0.� C 1=2/ m1.� C 1=2/

! 
m0.�/ m0.� C 1=2/

m1.�/ m1.� C 1=2/

!
(6)

D M.�/�M.�/ �
 

jm0.�/j2 C jm1.�/j2 m0.�/m0.� C 1=2/Cm1.�/m1.� C 1=2/

m0.� C 1=2/m0.�/Cm1.� C 1=2/m1.�/ jm0.� C 1=2/j2 C jm1.� C 1=2/j2
!

We define

M˛;ˇ.�/ WD
�
M˛.�/ Mˇ.�/

Mˇ.�/ M˛.� C 1=2/

�
; (7)

where

M˛.�/ WD 1 � jm0.�/j2 � jm1.�/j2 I
Mˇ.�/ WD �m0.�/m0.� C 1=2/ �m1.�/m1.� C 1=2/:

Then the above calculation shows that

M.�/�M.�/ D I , M2;n.�/
�M2;n.�/ D M˛;ˇ.�/: (8)

The following lemma gives two necessary conditions for the existence of
m2; � � � ; mn such that the equivalent conditions in (8) hold.

Lemma 5.2. Suppose that m0;m1; � � � ; mn 2 L1.T/ satisfy that M.�/�M.�/ D
I for a.e. � 2 T; then the Hermitian matrix M˛;ˇ.�/ is positive semidefinite and

(a) jm0.�/j2 C jm1.�/j2 � 1; a:e: � 2 TI
(b) M˛.�/M˛.� C 1=2/ � ˇ̌

Mˇ.�/
ˇ̌2
; a:e: � 2 T:

On the other hand, if (a) and (b) are satisfied then M˛;ˇ.�/ is positive semidefinite.



242 O. Christensen et al.

We are now ready to state the condition for extension to a UEP-type wavelet
system fDjTk 1gj;k2Z to a Parseval frame by adding just one UEP-type wavelet
system.

Theorem 5.3. Let ' 2 L2.R/ be a scaling function and m0 2 L1.T/ the
corresponding refinement mask. Let m1 2 L1.T/, and define  1 2 L2.R/

by (3). Assume that condition (a) in Lemma 5.2 is satisfied. Then the following are
equivalent:

(a) There exists a 1-periodic function m2 such that the matrix-valued function M
in (4) with n D 2 satisfies that

M.�/�M.�/ D I; a:e: � 2 TI (9)

(b) M˛.�/M˛.� C 1=2/ D Mˇ.�/Mˇ.� C 1=2/:

In the affirmative case, the multi-wavelet system fDjTk lglD1;2Ij;k2Z, with  2
defined by (3), forms a Parseval frame for L2.R/:

If the necessary conditions in Lemma 5.2 are satisfied, then we can always extend
fDjTk lgj;k2Z to a Parseval wavelet frame by adding two wavelet systems:

Theorem 5.4. Let ' 2 L2.R/ be a scaling function and m0 2 L1.T/ the
corresponding refinement mask. Let m1 2 L1.T/, and define  1 2 L2.R/ by (3).
Assume that the functions m0;m1 satisfy (a) and (b) in Lemma 5.2. Then there exist
m2;m3 2 L1.T/ such that fDjTk lglD1;2;3Ij;k2Z, with  2;  3 defined by (3), forms
a Parseval frame.

Note that Theorem 5.4 is related with Theorem 1.2 in [12], where it is shown
that certain conditions on a scaling function imply the existence of three functions
that generate a Parseval wavelet frame. However, the spirit of these two results is
different: while the goal of Theorem 1.2 in [12] is to provide sufficient conditions for
wavelet constructions that have attractive properties from the point of applications
(i.e., symmetry properties and a high number of vanishing moments), the purpose of
our result is to guarantee the existence of three functions generating a Parseval frame
under the weakest possible conditions. We also note that for the case where the
refinement mask m0 is a trigonometric polynomial, the problem of characterizing
associated Parseval frames generated by two or three symmetric functions has been
solved in [9, 10].
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