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Abstract In this article we present a short survey of frame theory in Hilbert spaces.
We discuss Gabor frames and wavelet frames and set the stage for a discussion
of various extension principles; this will be presented in the article Frames and
extension problems II (joint with H.O. Kim and R.Y. Kim).
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1 Introduction

Frames provide us with a convenient tool to obtain expansions in Hilbert spaces
of a similar type as the one that arise via orthonormal bases. However, the frame
conditions are significantly weaker, which makes frames much more flexible. For
this reason frame theory has attracted much attention in recent years, especially
in connection with its concrete manifestations within Gabor analysis and wavelet
analysis.

In this article we give a short overview of the general theory for frames in Hilbert
spaces, as well as its concrete realizations in Gabor analysis and wavelet analysis.
We set the stage for a discussion of various extension principles to be presented in
the article Frames and extension problems II (joint paper with H.O. Kim and R.Y.
Kim).
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2 A Survey on Frames and Operators

General frames were introduced already in the paper [18] by Duffin and Schaeffer in
1952. Apparently it did not find much use at that time, until it got re-introduced by
Young in his book [31] from 1982. After that, Daubechies, Grossmann and Morlet
took the key step of connecting frames with wavelets and Gabor systems in the
paper [15].

2.1 General Frame Theory

Let H be a separable Hilbert space with the inner product h�; �i linear in the first
entry. A countable family of elements ffkgk2I in H is a

1. Bessel sequence if there exists a constant B > 0 such that

X

k2I
jhf; fkij2 � Bjjf jj2; 8f 2 HI

2. frame for H if there exist constants A;B > 0 such that

Ajjf jj2 �
X

k2I
jhf; fkij2 � Bjjf jj2; 8f 2 HI (1)

The numbers A;B in (1) are called frame bounds.
3. Riesz basis for H if spanffkgk2I D H and there exist constants A;B > 0 such

that

A
X

jckj2 �
ˇ̌
ˇ
ˇ̌
ˇ
X

ckfk

ˇ̌
ˇ
ˇ̌
ˇ
2 � B

X
jckj2: (2)

for all finite sequences fckg.

Every orthonormal basis is a Riesz basis, and every Riesz basis is a frame [the
bounds A;B in (2) are frame bounds]; a frame which is not a Riesz basis is said to
be overcomplete or redundant. Riesz bases and frames are natural tools to gain more
flexibility than possible with an orthonormal basis. For an overview of the general
theory for frames and Riesz bases we refer to [2] and [3]; a deeper treatment is given
in the books [4, 6]. Here, we just mention that the difference between a Riesz basis
and a frame is that the elements in a frame might be dependent. More precisely, a
frame ffkgk2I is a Riesz basis if and only if

X

k2I
ckfk D 0; fckg 2 `2.I / ) ck D 0; 8k 2 I:
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Associated with a Bessel sequence ffkg1
kD1; the pre-frame operator or synthesis

operator is

T W `2.N/ ! H; T fckg1
kD1 D

1X

kD1
ckfk:

The operator T is bounded for any Bessel sequence ffkg1
kD1: The adjoint operator

of T is called the analysis operator and is given by

T � W H ! `2.N/; T �f D fhf; fkig1
kD1:

Finally, the frame operator is defined by

S W H ! H; Sf D T T �f D
1X

kD1
hf; fkifk:

The following classical result shows that any frame leads to an expansion of the
elements in H as a (infinite) linear combinations of the frame elements. It also shows
that the general expansion simplifies considerably for tight frames. Finally, the last
part of the result shows that for frames that are not Riesz bases, the coefficients in
the series expansion of an element f 2 H are not unique:

Theorem 2.1. Let ffkg1
kD1 be a frame with frame operator S: Then the following

holds:

(i) Each f 2 H has the decompositions

f D
1X

kD1
hf; S�1fkifk D

1X

kD1
hf; fkiS�1fk:

(ii) If ffkg1
kD1 is a tight frame with frame bound A, then S D AI; and

f D 1

A

1X

kD1
hf; fkifk; 8f 2 H: (3)

(iii) If ffkg1
kD1 is an overcomplete frame, there exist frames

fgkg1
kD1 ¤ fS�1fkg1

kD1 for which

f D
1X

kD1
hf; gkifk; 8f 2 H: (4)

Any Bessel sequence fgkg1
kD1 satisfying (4) for a given frame ffkg1

kD1 is called
a dual frame of ffkg1

kD1. The special choice fgkg1
kD1 D fS�1fkg1

kD1 is called the
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canonical dual frame. In order to avoid confusion we note that if (4) holds for two
Bessel sequences ffkg1

kD1 and fgkg1
kD1 ; they are automatically frames:

Lemma 2.2. If ffkg1
kD1 and fgkg1

kD1 are Bessel sequences and (4) holds, then
ffkg1

kD1 and fgkg1
kD1 are dual frames.

Note that duality between Bessel sequences ffkg1
kD1 and fgkg1

kD1 can be
expressed entirely in terms of operators. In fact, if T;U denote the pre-frame
operators for ffkg1

kD1; respectively, fgkg1
kD1 ; the sequences are dual frames if and

only if

T U � D I:

2.2 Operators on L2.R/

In order to construct concrete frames in the Hilbert space L2.R/; we need to
consider some important classes of operators.

Definition 2.3 (Translation, Modulation, Dilation). Consider the following
classes of linear operators on L2.R/ W

(i) For a 2 R; the operator Ta; called translation by a; is defined by

.Taf /.x/ WD f .x � a/; x 2 R: (5)

(ii) For b 2 R; the operator Eb; called modulation by b; is defined by

.Ebf /.x/ WD e2�ibxf .x/; x 2 R: (6)

(iii) For c > 0; the operator Dc; called dilation by c; is defined by

.Dcf /.x/ WD 1p
c
f .
x

c
/; x 2 R: (7)

(iv) The dyadic dilation operator is defined by

.Df /.x/ WD 21=2f .2x/; x 2 R:

All the above operators are linear, bounded, and unitary. We will also need the
Fourier transform, for f 2 L1.R/ defined by

Of .�/ WD
Z 1

�1
f .x/e�2�i�xdx:

The Fourier transform is extended to a unitary operator on L2.R/ in the usual way.
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The operators Ta;Eb;D; and F are related by the following commutator
relations:

TaEb D e�2�ibaEbTa; TbD D DTb=a; DEb D Eb=aD

FTa D E�aF ; FEa D TaF ; FD D D�1F :

3 Gabor Systems

Gabor systems in L2.R/ have the form

fe2�imbxg.x � na/gm;n2Z

for some g 2 L2.R/; a; b > 0. Using operator notation, we can write a Gabor
system as fEmbTnaggm;n2Z:

We will not go into a general description of Gabor analysis and its role in time–
frequency analysis, but just refer to the books [19–21].

Letting �Œ0;1� denote the characteristic function for the interval Œ0; 1�; it is easy to
show that fEmTn�Œ0;1�gm;n2Z is an orthonormal basis for L2.R/: But the function
�Œ0;1� is discontinuous and has very slow decay in the Fourier domain, so this
function is not suitable for time–frequency analysis. For the sake of time–frequency
analysis we want the frame generator g to be a continuous function with compact
support. The following classical result shows that this more or less forces us to work
with frames.

Lemma 3.1. If g is be a continuous function with compact support, then

(i) fEmbTnaggm;n2Z cannot be an ONB.
(ii) fEmbTnaggm;n2Z cannot be a Riesz basis.

(iii) fEmbTnaggm;n2Z can be a frame if 0 < ab < 1I
In addition to (iii), if 0 < ab < 1; it is always possible to find a function g 2

Cc.R/ such that fEmbTnaggm;n2Z is a Gabor frame. We also note that no matter
whether g is continuous or not, Gabor frames fEmbTnaggm;n2Z for L2.R/ only exist
if ab � 1:

Bessel sequences of the form fEmbTnaggm;n2Z will play a central role in some of
the open problems to be considered in this article, so let us state a classical sufficient
condition that is easy to verify.

Lemma 3.2. Let g be a bounded function with compact support. Then
fEmbTnaggm;n2Z is a Bessel sequence for any a; b > 0.

For a Gabor system fEmbTnaggm;n2Z; the frame operator commutes with the
operators Emb; Tna; m; n 2 Z: We will need the result below, which is almost
identical to Lemma 9.3.1 in [6].
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Lemma 3.3. Let g; h 2 L2.R/ and a; b > 0 be given, and assume that
fEmbTnaggm;n2Z and fEmbTnahgm;n2Z are Bessel sequences. Then the following
holds:

(i) Letting T and U denote the preframe operators for fEmbTnaggm;n2Z and
fEmbTnahgm;n2Z;

T UEmbTna D EmbTnaT U; 8m; n 2 Z:

(ii) If fEmbTnaggm;n2Z is a frame with frame operator S D T T �; then

S�1EmbTna D EmbTnaS
�1; 8m; n 2 Z:

Lemma 3.3 (ii) implies that for a Gabor frame fEmbTnaggm;n2Z with associated
frame operator S , the canonical dual frame also has Gabor structure, in contrast
with the situation we encountered for wavelet frames. However, even for a nice
frame fEmbTnaggm;n2Z it is nontrivial to control the properties of the canonical dual
frame fEmbTnaS�1ggm;n2Z; so often it is a better strategy to construct dual pairs
fEmbTnaggm;n2Z,fEmbTnahgm;n2Z such that g and h have required properties. Dual
pairs of Gabor frames have been characterized by Ron and Shen [26] and Janssen
[23]:

Theorem 3.4. Two Bessel sequences fEmbTnaggm;n2Z and fEmbTnahgm;n2Z form
dual frames for L2.R/ if and only if

X

k2Z
g.x � n=b � ka/h.x � ka/ D bın;0; a:e: x 2 Œ0; a�:

One of the most important results in Gabor analysis is the so-called duality
principle. It was discovered almost simultaneously by three groups of researchers,
namely Daubechies et al. [16], Janssen [22], and Ron and Shen [26]. It concerns
the relationship between frame properties for a function g with respect to the lattice
f.na;mb/gm;n2Z and with respect to the so-called dual lattice f.n=b;m=a/gm;n2Z:

Theorem 3.5. Given g 2 L2.R/ and a; b > 0; the following are equivalent:

(i) fEmbTnaggm;n2Z is a frame for L2.R/ with bounds A;BI
(ii) f 1p

ab
Em=aTn=bggm;n2Z is a Riesz sequence with bounds A;B .

The intuition behind the duality principle is that if fEmbTnaggm;n2Z is a frame
for L2.R/; then ab � 1; i.e., the sampling points f.na;mb/gm;n2Z are “sufficiently
dense.” Therefore the points f.n=b;m=a/gm;n2Z are “sparse,” in the sense that
1
ab

� 1: Technically, this implies that the functions f 1p
ab
Em=aTn=bggm;n2Z are

linearly independent and only span a subspace of L2.R/: The reason for the
importance of the duality principle is that in general it is much easier to check that
a system of vectors is a Riesz sequence than to check that it is a frame. The duality
principle is clearly related with the Wexler–Raz theorem stated next, which was
discovered in 1994.
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Theorem 3.6. If the Gabor systems fEmbTnaggm;n2Z and fEmbTnahgm;n2Z are
Bessel sequences, then the following are equivalent:

(i) The Gabor systems fEmbTnaggm;n2Z and fEmbTnahgm;n2Z are dual frames;
(ii) The Gabor systems f 1p

ab
Em=aTn=bggm;n2Z and f 1p

ab
Em=aTn=bhgm;n2Z are

biorthogonal, i.e.,

h 1p
ab
Em=aTn=bg;

1p
ab
Em0=aTn0=bhi D ım;m0ın;n0 :

Theorem 3.4 characterizes pairs of dual Gabor frames, but it does not show how
to construct convenient pairs of Gabor frames. A class of convenient dual pairs of
frames are constructed in [5, 8]:

Theorem 3.7. Let N 2 N. Let g 2 L2.R/ be a real-valued bounded function for
which supp g � Œ0; N � and

X

n2Z
g.x � n/ D 1: (8)

Let b 2�0; 1
2N�1 �. Define Qg 2 L2.R/ by

h.x/ D
N�1X

nD�NC1
ang.x C n/;

where

a0 D b; an C a�n D 2b; n D 1; 2; � � � ; N � 1:

Then g and h generate dual frames fEmbTnggm;n2Z and fEmbTn Qggm;n2Z for L2.R/.

Let us apply Theorem 3.7 to the classical B-splines BN ; N 2 N; given
inductively by

B1.x/ WD �Œ0;1�.x/; BNC1.x/ WD BN � B1.x/ D
Z 1

0

BN .x � t / dt: (9)

Example 3.8. The conditions in Theorem 3.7 are satisfied for any B-spline
BN ; N 2 N: Some choices of the coefficients an are given by (Fig. 1):

1) Take

a0 D b; an D 0 for n D �N C 1; : : : ;�1; an D 2b; n D 1; : : : N � 1:

This choice gives the dual frame generated by the function with shortest support.
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Fig. 1 The generators B2 and B3 and some dual generators

2) Take

a�NC1 D a�NC2 D � � � D aN�1 D b W

if g is symmetric, this leads to a symmetric dual generator

Qg.x/ D b

N�1X

nD�NC1
g.x C n/:

�
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4 Wavelet Systems in L2.R/

A wavelet system in L2.R/ has the form faj=2 .aj x � kb/gj;k2Z for some
parameters a > 1; b > 0 and a given function  2 L2.R/: Introducing the
scaling operators and the translation operators, the wavelet system can be written
as fDaj Tkb gj;k2Z:

There are also characterizing equations for dual wavelet frames; see [11]. They
are formulated in terms of the Fourier transform:

Theorem 4.1. Given a > 1, b > 0, two Bessel sequences fDaj Tkb gj;k2Z and
fDaj Tkb Q gj;k2Z, where  ; Q 2 L2.R/; form dual wavelet frames for L2.R/ if and
only if the following two conditions hold:

(i)
P

j2Z O .aj �/ OQ .aj �/ D b for a.e. � 2 R:

(ii) For any number ˛ ¤ 0 of the form ˛ D m=aj , m; j 2 Z;

X

.j;m/2I˛
O .aj �/ OQ .aj � Cm=b/ D 0; a:e: � 2 R;

where I˛ WD f.j;m/ 2 Z
2 j ˛ D m=aj g:

We will present a few aspects of wavelet theory, beginning with the dyadic
wavelet systems and classical multiresolution analysis.

4.1 Dyadic Wavelet Systems

A systems of functions of the form fDjTk gj;k2Z; where  2 L2.R/ is a fixed
function, is called a dyadic wavelet system. Note that DjTk .x/ D 2j=2 .2j x �
k/; x 2 R: Given a frame fDjTk gj;k2Z for L2.R/; the associated frame
operator is

S W L2.R/ ! L2.R/; Sf D
X

j;k2Z
hf;DjTk iDjTk ;

and the frame decomposition reads

f D
X

j;k2Z
hf; S�1DjTk iDjTk ; f 2 L2.R/:

In order to use the frame decomposition we need to calculate the numbers
hf; S�1DjTk i for all j; k 2 Z; i.e., a double-infinite sequence of numbers. One
can show that

S�1DjTk D DjS�1Tk ;
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so in practice it is enough to calculate the action of S�1 on the functions Tk ; and
then apply the scaling Dj : Unfortunately, in general

DjS�1Tk ¤ DjTkS
�1 :

Thus, we cannot expect the canonical dual frame of a wavelet frame to have
wavelet structure. As a concrete example (taken from [10, 13]), let fDjTk gj;k2Z
be a wavelet orthonormal basis for L2.R/. Given � 2�0; 1Œ, let � D  C �D :

Then fDjTk�gj;k2Z is a Riesz basis, but the canonical dual frame of fDjTk�gj;k2Z
does not have the wavelet structure. Since the dual is unique for a Riesz basis, this
example demonstrates that there are wavelet frames where no dual with wavelet
structure exists. On the other hand, Bownik and Weber [1] have given an interesting
example of a wavelet frame fDjTk gj;k2Z for which the canonical dual does not
have the wavelet structure, but other dual frames with wavelet structure exist.

4.2 Classical Multiresolution Analysis

Multiresolution analysis is a tool to construct orthonormal bases for L2.R/ of the
form fDjTk gj;k2Z for a suitably chosen function  2 L2.R/: Such a function  
is called a wavelet. Its original definition of a multiresolution analysis was given by
Mallat and Meyer [24, 25] is as follows:

Definition 4.2. A multiresolution analysis for L2.R/ consists of a sequence of
closed subspaces fVj gj2Z of L2.R/ and a function � 2 V0 such that

(i) � � �V�1 � V0 � V1 � � �
(ii) \j Vj D f0g and [j Vj D L2.R/

(iii) f 2 Vj , Df 2 VjC1:
(iv) f 2 V0 ) Tkf 2 V0; 8k 2 Z:

(v) fTk�gk2Z is an orthonormal basis for V0.

A multiresolution analysis is in fact generated just by a suitable choice of the
function � W if the conditions in Definition 4.2 are satisfied, then necessarily

Vj D spanfDjTk�gk2Z; 8j 2 Z:

The following result, due to Mallat and Meyer [24,25], shows how to construct a
wavelet based on a multiresolution analysis. Other proofs can be found in [7,14,30].

Theorem 4.3. Assume that the function � 2 L2.R/ generates a multiresolution
analysis. Then the following holds:

(i) There exists a 1-periodic function H0 2 L2.0; 1/ such that

O�.2�/ D H0.�/ O�.�/; � 2 R: (10)
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(ii) Define the 1-periodic function H1 by

H1.�/ WD H0.� C 1

2
/ e�2�i� : (11)

Also, define the function  via

O .2�/ WD H1.�/ O�.�/: (12)

Then  is a wavelet.

The definition in (12) is quite indirect: it defines the function  in terms of
its Fourier transform, so we have to apply the inverse Fourier transform in order
to obtain an expression for  . This actually leads to an explicit expression of the
function  in terms of the given function �:

Proposition 4.4. Assume that (12) holds for a 1-periodic function H1 2 L2.0; 1/;

H1.�/ D
X

k2Z
dke

2�ik� : (13)

Then

 .x/ D p
2

X

k2Z
dkDT�k�.x/ D 2

X

k2Z
dk�.2x C k/; x 2 R: (14)

The classical example of a wavelet generated by a multiresolution analysis is the
Haar wavelet,

 .x/ D
8
<

:

1 if x 2 Œ0; 1
2
Œ

�1 if x 2 Œ 1
2
; 1Œ

0 otherwise

It is generated by the function � D �Œ0;1�: In 1989 Daubechies managed to construct
an important class of compactly supported wavelets with very good approximation
properties. We will not go into a detailed discussion of these, but just refer to, e.g.,
[14, 30].

4.3 The Unitary Extension Principle

In this section we present results by Ron and Shen, which enables us to construct
tight wavelet frames generated by a collection of functions  1; : : : ;  n: Our
presentation is based on the papers [27–29]. Note also that a more flexible tool, the
oblique extension principle, has later been introduced by two groups of researchers,
see [12, 17].
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The generators  1; : : : ;  n will be constructed on the basis of a function which
satisfy a refinement equation, and since we will work with all those functions
simultaneously it is convenient to change our previous notation slightly and denote
the refinable function by  0.

General Setup: Let  0 2 L2.R/. Assume that lim�!0
O 0.�/ D 1 and that there

exists a function H0 2 L1.T/ such that

O 0.2�/ D H0.�/ O 0.�/: (15)

Let H1; : : : ;Hn 2 L1.T/, and define  1; : : : ;  n 2 L2.R/ by

O `.2�/ D H`.�/ O 0.�/; ` D 1; : : : ; n: (16)

Finally, let H denote the .nC 1/ 	 2 matrix-valued function defined by

H.�/ D

0

BBBBB@

H0.�/ T1=2H0.�/

H1.�/ T1=2H1.�/

� �
� �

Hn.�/ T1=2Hn.�/

1

CCCCCA
: (17)

We will frequently suppress the dependence on � and simply speak about the
matrix H . The purpose is to find H1; : : : ;Hn such that

fDjTk 1gj;k2Z [ fDjTk 2gj;k2Z [ � � � [ fDjTk ngj;k2Z (18)

constitute a tight frame. The unitary extension principle by Ron and Shen shows
that a condition on the matrix H will imply this:

Theorem 4.5. Let f `;H`g`D0;:::;n be as in the general setup, and assume that the
2 	 2 matrix H.�/�H.�/ is the identity for a.e. � . Then the multi-wavelet system
fDjTk `gj;k2Z;`D1;:::;n constitutes a tight frame for L2.R/ with frame bound equal
to one.

As an application, we show how one can construct compactly supported tight
spline frames.

Example 4.6. Fix any m D 1; 2; : : : , and consider the function

 0 D �Œ� 1
2 ;
1
2 �

� �Œ� 1
2 ;
1
2 �

� � � � � �Œ� 1
2 ;
1
2 �
.2m factors/:

The function  0 is known as a B-spline of order 2m; although it is defined using the
function �Œ� 1

2 ;
1
2 �

rather than �Œ0;1� as we did in (9). Note that
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O 0.�/ D sin2m.��/

.��/2m
:

It is clear that lim�!0
O 0.�/ D 1, and by direct calculation,

O 0.2��/ D cos2m.��/ O 0.�/:

Thus  0 satisfies the refinement equation with

H0.�/ D cos2m.��/:

Let

�
2m

`

�
denote the binomial coefficients .2m/Š

.2m�`/Š`Š and define the 1-periodic

bounded functions H1;H2; : : : ;H2m by

H`.�/ D
s�

2m

`

�
sin`.��/ cos2m�`.��/:

Then

H.�/ D

0

BBBBB@

H0.�/ T1=2H0.�/

H1.�/ T1=2H1.�/

� �
� �

Hn.�/ T1=2Hn.�/

1

CCCCCA

D

0

BBBBBBBBBBBBBBB@

cos2m.��/ sin2m.��/s�
2m

1

�
sin.��/ cos2m�1.��/ �

s�
2m

1

�
cos.��/ sin2m�1.��/

s�
2m

2

�
sin2.��/ cos2m�2.��/

s�
2m

2

�
cos2.��/ sin2m�2.��/

� �
� �s�

2m

2m

�
sin2m.��/

s�
2m

2m

�
cos2m.��/

1

CCCCCCCCCCCCCCCA

:
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Now consider the 2 	 2 matrix M WD H.�/�H.�/. Using the binomial formula

.x C y/2m D
2mX

`D0

�
2m

`

�
x`y2m�`

we see that the first entry in the first row of M is

M1;1 D
2mX

`D0

�
2m

`

�
sin2`.��/ cos2.2m�`/.��/ D 1:

A similar argument gives that M2;2 D 1. Also,

M1;2 D sin2m.��/ cos2m.��/

�
1 �

�
2m

1

�
C

�
2m

2

�
� � � � C

�
2m

2m

��

D sin2m.��/ cos2m.��/.1 � 1/2m D 0:

Thus M is the identity on C
2 for all � ; by Theorem 4.5 this implies that the 2m

functions  1; : : : ;  2m defined by

O `.�/ D H`.�=2/ O 0.�=2/

D
s�

2m

`

�
sin2mC`.��=2/ cos2m�`.��=2/

.��=2/2m

generate a multiwavelet frame for L2.R/.
Frequently one takes a slightly different choice of H`, namely,

H`.�/ D i `

s�
2m

`

�
sin`.��/ cos2m�`.��/:

Inserting this expression in O `.�/ D H`.�=2/ O `.�=2/ and using the commutator
relations for the operators F ;D; Tk shows that  ` is a finite linear combination with
real coefficients of the functions

DTk 0; k D �m; : : : ; m:

It follows that  ` is a real-valued spline with support in Œ�m;m�, degree 2m � 1,
smoothness class C2m�2, and knots at Z=2. Note in particular that we obtain
smoother generators by starting with higher order splines, but that the price to pay
is that the number of generators increases as well. �



Frames and Extension Problems I 233

Note that the unitary extension principle has a more convenient (but mathe-
matically equivalent) formulation in the oblique extension principle, which was
discovered independently and simultaneously by Daubechies et al. [17] and Chui
et al. [12]. We will not go into a discussion of this, but just refer to the original
articles, as well as the compressed presentation in [4, 6] for a quick overview.
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