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Preface

Fractal geometry is a young field. It was initially developed in the 1980s, driven by
the motivation to model rough phenomena in nature, and by new opportunities of
computer visualization. Towards the end of the 1980s, wavelets were introduced for
the needs of signal and image processing. Today, the field of fractals and wavelets
has grown into a respected mathematical discipline with specific concepts and
techniques, and with plenty of applications inside and outside mathematics.

In November 2013 a workshop and the first International Conference on Fractals
and Wavelets in India took place at Rajagiri School of Engineering and Technology,
Kochi, Kerala.

In the workshop, from November 9 to 12, leading experts from all over the
world gave comprehensive survey lectures on the state of the art in their areas.
In the International Conference from November 13 to 16, new research results
were presented by mathematicians from ten countries. There were more than 100
participants from India, revealing that research in fractals and wavelets has taken
root at many Indian universities, with an emphasis on applications to engineering,
medicine, Internet traffic, hydrology, and other fields.

This volume contains all invited lectures of the workshop as well as selected
contributions to the conference. Providing readable surveys, it can be used as a
reference book for those who want to start work in the field. It documents the present
state of research in the area, both in India and abroad, and can help to develop
cooperation among widely scattered groups.

The organizers of the conference would like to thank the management of Rajagiri
School of Engineering and Technology, Cochin, Kerala, India for the inspiration and
support provided to conduct the conference.

The organizers acknowledge the financial support given by the International
Centre for Theoretical Physics, the International Mathematical Union, the Inter-
national Council for Industrial and Applied Mathematics, the National Board for
Higher Mathematics India, the Department of Science & Technology India, the
Defence Research & Development Organisation India, the Indian National Science
Academy, the Kerala State Council for Science Technology & Environment, and
The South Indian Bank Limited.
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Introduction

This book is divided into three parts: Fractal Theory, Wavelet Theory, and Applica-
tions. Each part begins with survey papers written for a general audience, followed
by surveys on more advanced topics and by contributed papers presenting recent
results.

In the first part, C. Bandt gives an introduction to basic fractal concepts and
methods, followed by an introduction to self-similar sets. Self-similar sets are
generated by similitudes and form the most simple class of fractals. Another
important class, known from appealing computer visualizations, is generated by
iteration of polynomials, rational functions, and entire functions of a complex
variable. S. Sutherland presents the theory of Julia and Fatou sets, and R.L. Devaney
discusses their topological intricacies.

Four other invited lectures provide new concepts and techniques which were
developed by the authors. The concept of fractal homeomorphism is introduced
by M. Barnsley, B. Harding, and M. Rypka. Dimension results on self-affine sets
and measures are simplified by K. Simon by introducing the concept of almost self-
affine set. M. Urbariski treats the more complicated class of self-affine sets over an
infinite alphabet, and A. Tetenov studies projection and rigidity properties of fractal
curves in n-dimensional space.

The contributed lectures of Part I deal with new three-dimensional fractals,
projections of Mandelbrot percolation sets, and approaches to fractals in more
general topological spaces.

Wavelet Theory and fractal functions are studied in Part II. Roughly speaking,
wavelets are basis functions with self-similarity properties which ensure an efficient
coding of signals and images. General bases in Hilbert spaces called frames are the
fundamental concept here. O. Christensen gives an introduction to frame theory. In
a second lecture with Hong Oh Kim and Rae Young Kim he presents recent trends
and open problems in the field. P.R. Massopust introduces a new class of fractal
functions, using the new concept of a local iterated function system.

The contributed talks of Part I concern a variety of different constructions
of fractal functions and wavelets with good approximation properties, such as
preservation of convexity.

xi



xii Introduction

Part I1I starts with an invited lecture of N. Cohen, the inventor of fractal antennas.
Taking examples from his field, he discusses the problems and difficulties which
arise on the way before new inventions can be implemented into practice.

The contributed lectures in this part deal with application to cancer detection and
brain signal analysis, chemical engineering and hydrology, Internet traffic, image
processing, and tomography. They illustrate the rapid development and wide range
of applied fractal research in India.



Part I
Fractal Theory



Introduction to Fractals

Christoph Bandt

Abstract This non-technical introduction tries to place fractal geometry into the
development of contemporary mathematics. Fractals were introduced by Mandel-
brot to model irregular phenomena in nature. Many of them were known before as
mathematical counterexamples. The essential model assumption is self-similarity
which makes it possible to describe fractals by parameters which are called
dimensions or exponents. Most fractals are constructed from dynamical systems.
Measures and probability theory play an important part in the study of fractals.

Keywords Fractal ¢ Self-similarity ¢« Box dimension

1 Mandelbrot’s Vision of Fractals

1.1 Potential Applications

Benoit B. Mandelbrot coined the term “fractal” and created fractal geometry with
his groundbreaking monography “The Fractal Geometry of Nature” [5] in 1982.
He begins this work with some words which have become famous: “Clouds are not
spheres, mountains are not cones, coastlines are not circles, and bark is not smooth,
nor does lightning travel in a straight line.”

Workshop on Fractals and Wavelets at Rajagiri School, Kochi, India, 9 Nov 2013.

C. Bandt (<)
Institut fiir Mathematik und Informatik, Universitit Greifswald, 17487 Greifswald, Germany
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© Springer International Publishing Switzerland 2014
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4 C. Bandt

Mandelbrot clearly saw the need of modelling irregular phenomena in science
and economy, since he had worked on this field for many years. He knew that
traditional methods do not work—a view which the majority of his colleagues did
not share. But his main message was positive: there are mathematical concepts
which can be applied to all of these phenomena.

Meanwhile fractal geometry is established as a mathematical area with deep
theorems and exciting intrinsic problems. Nevertheless, we must not forget that if is
the diversity of potential applications which makes our field so attractive.

1.2 Mandelbrot’s Way

As a rule, new ideas and their inventors do not get accepted right away. Actually,
Mandelbrot got his first tenure professorship at the age of 75. In his autobiography
[6] which appeared after his death in 2010, he characterizes himself as a “scientific
maverick.” He was born in 1924 in the Jewish quarter of the Polish capital which
became known as Warsaw ghetto during the Nazi occupation in World War II. Many
relatives, all neighbors and friends of his childhood were killed by the Germans.
Fortunately, his family emigrated to France before the war. When Nazi occupation
came to France, Mandelbrot had to cover his identity and live under continuous
threat for several years.

After the war, Mandelbrot became a mathematics student, proved his exceptional
geometrical talent, and gained scholarships at elite universities in France and the
USA. But then, instead of joining mainstream research, he became interested
in various obscure phenomena and strange applied problems. Mandelbrot had to
struggle 25 years to get recognized. In 1975, he wrote the initial French version of
his book which collected his views and results. Physicists started to accept and apply
his ideas. And then, within few years, fractals became very popular, and Mandelbrot
got a lot of honors.

2 Fractals in Contemporary Mathematics

Before we come to details, let me point out some personal views. In my opinion,
fractals form one important facet in the development of twenty-first century
mathematics.

2.1 Classical Mathematics

Classical mathematics, centered around analysis, was triggered by applications in
astronomy, physics, and engineering, by problems with a moderate amount of data.
Some ingenious ideas of Gauss are difficult to comprehend even today, and the
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Riemann hypothesis is still not solved—but most questions with impact outside
mathematics had a relatively simple structure. Up to the middle of the twentieth
century we had no calculators. All numerical calculations were done by hand,
with the help of tables. Nevertheless, classical mathematics was a driving force for
the development of all our achievements in science and technology: mechanical
watches, cars, railways, the atom bomb, the first computers, and the first studies
on global change. Mathematics also played a leading role in education. It was
considered necessary to understand the modern world.

2.2 New Challenges

Now we live in a world which is extremely complex and difficult to understand.
Nobody can oversee all structures he/she is involved in. Computers and huge
amounts of data are virtually everywhere. Life sciences, economy, and climate
research investigate processes of incredible complexity. They cannot do anything
without advanced mathematical methods. At the same time, public reputation of
mathematics has shrunk, and mathematical communication and education are in a
worldwide crisis.

In my mind, the basic challenge of today’s mathematical education is to give
people an orientation in a complex world. People must find strategies to comprehend
and influence their environment. We must remain masters of computers and not
become their slaves. We have to decide the essential things and leave routine work
to the machines.

Mathematics has the chance to shape the future, in research as well as in
education. Tremendous efforts are required to meet this challenge. Communication
practice and curricula must be thoroughly revised and changed. We need classical
mathematics as well as new concepts and techniques.

Fractals and networks are among the new concepts. It is no surprise that both
are strongly connected with computers. Complex networks became a research field
around 2000 in connection with the fast development of the world wide web. The
study of fractals was greatly enhanced by the development of computer graphics
facilities in the 1980s. Mandelbrot was a long-term fellow at IBM, the leading
computer enterprise in the time of mainframe computers.

3 Self-similarity
3.1 Fractal Symmetry

There is no precise mathematical definition of the word “fractal”. Most experts
agree that negative properties like “something very strange” or “very irregular,”
or Mandelbrot’s first definition “sets with non-integer dimension” are not helpful.
The essential property is self-similarity: small parts and big parts of the figure
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look similar. When we see a piece of the figure, we cannot conclude where we
are, nor can we say something on the size of the piece. This property is also called
scale-invariance. The structure of a fractal is nearly the same at every corner, on
large scale and on small scale.

Self-similarity is a kind of symmetry which simplifies the analysis of fractals.
Every kind of symmetry simplifies problems. To determine the volume of a solid, for
instance, we need a triple integral, but for a solid of revolution, we need only a single
integral. The real line, one of the fundamental sets in mathematics, is symmetric
with respect to translations and reflection. It is also self-similar in the above sense,
so it can be called a fractal. The same holds for R".

3.2 The Benefit of Self-similarity

In order to study the whole structure of a fractal, it is enough to study small pieces,
because the structure is everywhere similar. An everyday example is the process
of distribution of public money. When you know how this works in small scale, in
a town or university, then you can become a minister—since the mechanisms and
problems in the government are similar, only at larger scale.

When we consider a cloud, a mountain scenery, a satellite image of a coastline, a
tree or lightning, we can agree that self-similarity is present, at least to some extent.
So the definition should apply to reality. However, self-similarity is not a property
of nature. It is a model assumption, like the concept of a straight line or a circle.
In practice, lines are never infinite and they are never straight, but calculations with
lines have been successful. When we find sufficiently simple theoretical classes of
self-similar figures, we can try to use them as models of reality.

In the sequel we shall consider different relations between small and big pieces
of certain sets which lead to different classes of fractals with a rigorous definition.
For introductory reading, we recommend the classical treatments which convey
fascination in fractals: Mandelbrot’s original work [5], Barnsley’s well-illustrated
textbook [1], and Falconer’s mathematical treatment [3]. One may also consult the
introduction by Peitgen et al. [7], Schroeder’s view of a physicist [9], and Edgar’s
collection of seminal papers [2]. The web also contains a lot of stimulating material.

4 The Cantor Set

4.1 The Topological Viewpoint

The Cantor set is the basic example of a fractal. It comes in different disguise,
see Fig. 1. The topology of R" characterizes it as an uncountable compact (closed
and bounded) set without isolated points which is totally disconnected—there is
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Fig. 2 The mathematical picture of the Cantor set

no continuous curve which connects points within the set. The last property is
emphasized by Mandelbrot’s name Cantor dust.

In some of the examples of Fig. 1, self-similarity is obvious to the eye. In a more
abstract way, self-similarity can be introduced to the Cantor set C in many ways.
We divide C into two closed and disjoint subsets Cy and C;. In the plane, this is
done by enclosing the pieces into domains Dy, D| bounded by curves which do
not intersect C, as indicated in Fig. 2. Next, we divide the set Cy into two closed
disjoint sets Cyg and Cy;, and Cj into two closed disjoint subsets Cjo, C;;. Then we
do the same with the new sets C,, = C,,,,,, Where wi, w, € {0, 1}, and so on. It is
clear that all these subsets are Cantor sets again. From the viewpoint of topology,
the pieces C,, are equal to C.

In mathematical constructions of a Cantor set C, one starts with a surrounding
set D, which may be an interval, rectangle, or ball, and continues with surrounding
sets D,,, so that D, and D, are disjoint for every word w. This abstract
construction of a Cantor set is shown in Fig. 2.
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Fig. 3 The binary tree—another picture of the Cantor set

4.2 Algebraic Description of the Cantor Set

We consider the alphabet A = {0, 1} with two letters. Each piece C,, and its
surrounding set D,, is given by a word w = wiw, ... w, € A" of some length n.
The set of all words of the alphabet addresses the pieces of C which we constructed,
and their surrounding sets.

Next consider a point x € C. It is contained in some D,,,, then in some D,,,,,,
in some D, ,,w,; and so on. These sets are nested: D D D,,, D Dy, D ... If we
construct the D,, in such a way that their diameter tends to zero with n — oo (this
is not difficult to arrange), then x will be the intersection of the nested sequence:

o0
(x} = ﬂ Dy vy, O some sequence s = wiw;...

n=1

Thus each point x of the Cantor set corresponds to a unique sequence s in the
alphabet A. This is the abstract concept of a Cantor set:
C is the set of all sequences s = wiwy ... over some finite alphabet A.

4.3 The Binary Tree

The binary tree is another strong picture of the Cantor set (Fig. 3). Each node of the
tree is denoted by a word w = wy ... w,, and is connected to its parent wy ... w,_ as
well as to its children w0 and w1. The root of the tree is denoted by the empty word e.
The points of C correspond to infinite non-intersecting paths starting in e, which can
be written in the form s = ww; ... Such trees appear in the analysis of algorithms
and in programming. Of course this tree is usually modified by assigning varying
numbers of children to the nodes or by identifying certain words, as indicated in
Fig. 4. The structure of many algorithms, as well as the structure of languages, the
structure of human thinking and society, show some self-similarity—certainly not
as regular as our figures.
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4.4 Description of Self-similarity

How is the whole set C related to Cy, or any other piece C,,? The sequences of points
in Cy are those which start with 0. When we assign to each sequence s = s;5;. ..
the sequence Os = 0s;s, ... then we get a one-to-one correspondence between C
and Cy. More generally, for every word w = w, ... w, we have a function f,,(s) =
WS = Wy ... w5152 ... which maps C onto C,, in a one-to-one way. It is not difficult
to show that this function is a homeomorphism with respect to the product topology,
or to the usual topology of sets in Fig. 1. Adding letters in front of a sequence will
lead us from the whole set to subsets.

4.5 The Number System

When you feel uncomfortable with the use of an alphabet, think of our decimal
number system. Each real number between 0 and 1 has a decimal expansion
x = 0.a1a; ... Here the alphabet is A = {0, 1, ... 9}. One instance of the Cantor
set is defined by those decimal numbers which involve only digits 0 and 9. It is too
tiny to draw, try it! Cantor’s original middle-third set from 1888 takes all numbers
with digits O and 2 in the ternary expansion:

C={xel0.1]|x=>7 a3 withar €{0,2}}. (1)

4.6 The Interval

If we do not exclude digits, we get the unit interval, with ten basic pieces for
the decimal system and two pieces for the binary system. We can call it C,
but it is not a Cantor set, it is connected. The reason is that some points have
two addresses, for instance 0.1000... = 0.0999... in the decimal system and
% = 0.1000... = 0.0111... in the binary system. Thus the two pieces Cy and C;
have a common point. Moreover, the pieces C, and C,,; are also connected since in
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the binary system O0.w; ... w,0111... = O.w;...w,1000... So the self-similarity
is preserved, and the unit interval [0, 1] is a fractal.

5 Some Fractal Curves

5.1 A Nowhere Differentiable Curve

As modifications of [0, 1], we obtain some fractals which were known as mathemat-
ical counterexamples around 1900. Von Koch suggested in 1904 to lift the middle
third of an interval [a, b] instead of deleting it. He replaces the middle third of the
interval by two intervals of the same length with a common endpoint ¢, and repeats
this procedure with all small intervals again and again. The result is a continuous
curve K which does not possess a tangent in any of its points.

5.2 A Proof with Self-similarity

We assume there is a tangent in some point x € K and derive a contradiction. For
each ¢ > 0 there must be a little piece K,, which is inside the double cone around
the tangent line with vertex x and angle £e¢. But since the piece K, is geometrically
similar to K (see Sect. 6), the same must hold for K and a line through some point
y € K. Since y is inside the triangle T = Aabc, every side of the triangle is seen
from y under an angle of at least 30°. If a double cone through y contains K, then at
least two of the vertices a, b, ¢ are on one side of the cone. Thus the opening angle
of the cone is at least 30° which contradicts the assumption for ¢ < 15°. We proved
that K has no tangent.

Mandelbrot did not consider the non-differentiability of K as a bad property. On
the contrary, he recommended Koch’s curve as a model for coastlines. They have
(almost) infinite length when we measure them precisely enough.

The construction of K can also be rephrased as a “decreasing set construction.”
We delete from the triangle 7' a maximal equilateral triangle, delete from each of
the remaining triangles again an equilateral triangle, etc. Now we can also delete
isosceles triangles with a smaller base b and will get wilder Koch curves, cf. Fig. 5.

5.3 A Plane-Filling Curve

One can ask what happens in the limit » — 0. We still have a curve, but with
a lot of double points. This curve will cover the whole triangle 7" which is now
right-angled. Such plane-filling continuous curves were constructed by Peano and
by Hilbert around 1890, and they were quite disturbing for the mathematical concept
of dimension. Mandelbrot turned the property into the positive: look here, this is a
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Fig. 5 The Koch curve and an almost plane-filling modification

good model for the system of human blood circulation. This must consist of vessels,
but must be space-filling. Because whenever you hurt you anywhere, blood will
come out.

5.4 A Simple Curve with Positive Area

There is another variation due to Knopp 1915: we can consider triangle bases b,
which decrease with the level n of construction, in such a way that the sum of the
triangle areas which we cut out at level » is half as large as at level n — 1. In that case
we are left with a proper continuous curve K with no double points. But since the
sum of deleted areas is less than the area of T, the curve has positive area! A more
complicated proof for the existence of such curves was given by Osgood in 1905.

5.5 Different Types of Self-similarity

The pieces of Koch’s curve are all geometrically similar to each other. So we call it
a self-similar set. The right-angled triangle which comes as the limit Peano curve is
also a self-similar set. Knopp’s curve with positive area is not self-similar, but there
are continuous bijective maps between the pieces K,, and K, and we also consider
it a fractal. The Koch and Knopp curves are homeomorphic to the unit interval—
but not the Peano curve, due to double points. So the topological relation between
pieces and the whole is the same, but the metric properties differ. As a matter of
fact, the fractal dimension of the curve with deleted base b is ... (see Sect. 7).

5.6 The Graph of Brownian Motion

To conclude this section, we mention a very important curve construction which
introduces random self-similarity. We assume that we have a device which yields
independent random numbers with standard normal distribution. Any mathematical
software on your computer will do, even Excel. Those numbers are between —5
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Fig. 6 The Lévy curve and its basic triangle

and 5. Our basic interval I will start at (0,0) and end at (1, z) where z is the first
random number. The midpoint of the interval is (%, 5)- Now the midpoint is shifted

by ze/+/2 in vertical direction, up or down, depending on the random number z,.
Next, we shift the midpoints of the resulting intervals [y and 7, by zo/2 and z;/2
in vertical direction, getting four intervals /,,,,,,. We proceed by induction: on level

n the midpoints intervals /,, are moved up or down by z,,/ ﬁn—H. This random
construction will converge, with probability one, to the graph of a continuous
function f. Of course we get different functions for different random numbers, as
shown in Fig. 7 below. The construction is self-affine, not self-similar, since in each
step, horizontal direction shrinks by the factor % and vertical direction by 1/ V2.

5.7 Lévy and His Curve

This is the midpoint displacement algorithm for Brownian motion, the most
fundamental stochastic process which was suggested as a model for the financial
market by Bachelier in 1905 [5]. The construction was known to the great probabilist
Paul Lévy in the 1940s. Mandelbrot considered himself as a student of Lévy: he
“came closest to being my mentor” [5, p. 398]. Incidentally, Lévy also discovered
a plane-filling curve which is obtained when we repeatedly replace an interval 1,
by two intervals I, I,,; which form an isosceles triangle with right angle over 1,
(Fig. 6). This curve is self-similar and it is plane-filling, which is rather difficult
to prove. As a young man, Lévy reported this result to a meeting of the French
academy in 1912. Probably he was discouraged by the reaction of the audience
since he published his work only in 1937 [2]. Thus the dimension of the Lévy curve
is 2. The dimension of its boundary was found to be 1.955 by several authors only
around 2000, which confirms the fact that the interior of Fig. 6 is very fragmented.
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Fig. 7 Tllustration for random self-similarity: three graphs of Brownian motion on [0, 1] and their
rescaled left and right parts

5.8 Random Self-similarity

For the graphs of Brownian motion constructed in Sect. 5.6 and illustrated in Fig. 7,
self-similarity is more complicated. All pieces are realizations of the same random
process, after rescaling. Rescaling here means that the graph of f(x) with x € [a, b]
is replaced by the graph of [f(a +x(b—a))— f(a)] for x € [0, 1]. The rescaled

piece is a realization of Brownlan motion on [0, 1], probably not the one with which
we started. This holds for the graphs of the function over arbitrary intervals [a, b],
not only for the dyadic construction intervals. It is this random kind of relation
what we observe in clouds and mountains. Random constructions are much more
realistic models of nature than the Koch curve, but their study is also much more
difficult. Two-dimensional midpoint displacement constructions were used to model
mountain scenery in [5] and in various computer games.

6 Fractal Constructions by Mappings

6.1 Hutchinson’s Equation

Self-similarity can be understood best when it is defined by mappings. The middle-
third set 1 of Cantor is transformed into its left piece Cy by the map fo(x) = 3,
and into its right piece C; by fi(x) = ";Lz. Both maps are similarity maps, so C is

self-similar, and can be characterized as solution of the equation

C = fH(C)U A(C). 2)
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Since fy and f; map the whole set onto a subset, it is natural to assume that they
are contractive maps. That means, the distance of the images of two points x, y is
strictly smaller than the distance of the points themselves. A bit more rigorously, f
is a contraction if there is a number r < 1 such that

[f() = fO) <r-lx—y].

Hutchinson [4] proved that for any two contractions fj, fi on R” there is a unique
compact non-empty set C which fulfils Eq. (2). Thus we have a lot of self-similar
sets, one for any choice of two contractions. We can also take three or more, but we
stick to the simplest case.

6.2 The IFS Algorithm

Barnsley [1] came up with a computer construction for C. Take one point ¢ of
C, for instance the fixed point of fy. Then the images ¢; = fi(c) must also be
in C, because of Eq. (2). The same holds for f,, = f,, -+ fu, (c) for each 0-1-word
w = wj ...,. Since the pieces C,, have diameter smaller r” times the diameter of C,
the collection of these 2" points for some moderate n, say 15, will be a perfect
computer approximation of the fractal C. This requires five lines of code.

A random algorithm for approximating C starts with ¢¢ = ¢, and takes
independent random numbers z,, € {0, 1} forn = 1,2, ... (this is like coin-tossing:
head is 1 and tail is 0). Then define

¢y = folen—1)ifz, =0and ¢, = fi(cp—1)ifz, = 1.

This requires only two lines of code, and with high probability, it will soon generate
points in all C,,. As a rule, already 30,000 points give a reasonable picture for
the eye. Barnsley suggested the name “iterated function system,” or IFS, for such
algorithms.

6.3 An Exercise in Complex Numbers

Let us model a tree 7" in the complex plane, with a stem S from O to 2/ and two
branches from 2i to 3i + 1 and 3i — 1. The mappings from the stem to the branches
will be fo(z) = 5 - (1 —i) +2i and fi(z) = 5 - (1 + i)+ 2i. When we turn
on the IFS algorithm, we get the Lévy curve! That is too much, so we shall later
decrease the ratios of the f;, replacing % by 0.4, say. First we have to care for the
branches which are not drawn by the IFS algorithm. Only the leaves of the tree form
the self-similar set. One has to add a third map, f>(z) = % - Im 7 to obtain stem and
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Fig. 8 A fractal measure

branches. The tree is not strictly self-similar, since f; is not a similarity map, but it
fulfils the equation T = S U fo(T) U f1(T) (cf. [1]). Much more natural trees were
constructed by Prusinkiewicz [8] with the related concept of L-systems.

6.4 Fractal Measures

In our first experiment with random IFS in 1987, we tried to draw a triangle with
vertices 0, 1, and (1++/3i)/4. Any right-angled triangle is self-similar, as you know
from high-school. The mappings have the form f;(z) = a;z + b;. The random IFS
with 500,000 points yields the surprising Fig. 8.

After a while, we found that the picture is correct. The IFS will indeed fill the
whole triangle, if it runs long enough. But the picture shows what today is called
a fractal measure or multifractal, with an uneven distribution of the points. The
areas of the right piece 7; of the triangle is three times larger than the area of the
left piece Tp, but the number of IFS points in both pieces is the same. What is
worse, the area of n-th level pieces 71,1 and Ty o are related by the factor 3"
and still both get the same number of IFS points. With nonlinear maps, we get
even more impressive examples of fractal measures. Fractal measures have become
a separate area of fractal geometry. Actually, measure theory is the mathematical
toolbox which has most often been used by mathematicians in the field. Hausdorff
defined measures of fractional dimension already in 1918 (cf. [2]), which can be
considered as the starting point of fractal geometry. It took more than 10 years before
colleagues started to understand Hausdorff’s ingenious idea.

6.5 Dynamical Systems

This is another key concept connected with fractals. A dynamical system consists
of a set X with some mathematical structure and a mapping g : X — X which
preserves that structure. For a Cantor set C fulfilling Eq. (2), the mapping g : C —
C can be defined as inverse of fy and fi,

glc) = fo_l(c) forc € fo(C) and g(c) = fl_l(c) forc € f1(C).
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If the f; are contracting, then g is expanding. The fractals best-known to the public
are the Julia sets of complex quadratic maps g(z) = z> + b with various constants
b € C. Here fy, fi can be considered as the quadratic roots f;(z) = £+/z— b, the
two inverse branches of g, and the Julia set as the solution of (2). The Mandelbrot
set, that well-known logo of fractal geometry, is the set of all constants b for which
the Julia set is not a Cantor set. The situation is somewhat involved, however.
Among others, the f; are not contractive.

6.6 Attractors

There are important fractals which are generated by a single map g which provides
the self-similarity, but in such a way that there is no obvious structure of pieces.
One example is the Hénon map on X = R? given by the simple formula
h(x,y) = (y+1—ax?, bx) [7, Sect. 12.1]. The fractal which is obtained by repeated
application of such a map is called an attractor of the dynamical system (X, g). The
structure of the Hénon attractors, even for the standard valuesa = 1.4,6 = 0.3,
is not yet mathematically understood although famous mathematicians have tried
their best. Also some properties of the Mandelbrot set are not yet resolved. Even in
the unit interval, it is not exactly known for which parameters r between 3.5 and
4 the quadratic mappings g(x) = rx(1 — x) have Cantor set or interval attractors.
There are lots of open mathematical problems in this field.

7 Dimensions and Exponents

7.1 The Concept of an Exponent

When we adopt the topological viewpoint, there is only one Cantor set, up to
topological equivalence. This viewpoint is now too general. We want to study metric
properties, we want to distinguish thick and thin Cantor sets in Fig. 1.

How can we describe, measure and classify fractals? There is one important
principle: size does not matter. Geometrically similar sets are considered to be equal,
only shape is important. The type of self-similarity is studied: how much does the
structure change if we pass to smaller pieces? Even though we are more specific than
topologists, our parameters will be more general than those of Euclidean geometry.
They are called dimensions or exponents.

The paradigm of classical mathematics is the differential equation. Give me the
equation, give me the initial values, and I tell you all details about the system for
all times up to infinity. This paradigm is not valid anymore. Even for rather simple
differential equations, the tiniest deviation from the initial conditions can completely
change the development of the system.
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More importantly, nobody wants to care about every detail when the system is
complicated. And it is not good to care about too many details of a complex system,
because the system can organize itself when the essential parameters are properly
regulated. This can be seen in everyday life, for instance in the education of small
children. We need a robust but not too detailed description. For fractals, exponents
are the appropriate parameters.

7.2 Box Dimension

Probably the simplest exponent is box dimension of a fractal F in the plane. Draw
a mesh of squares with side length s, and count the number N (s) of squares which
intersect F. If you want, you can do this several times, shifting and rotating the
mesh, and take N (s) as average. The number N (s) itself, however, is not interesting
since size does not matter.

The trick is to do this for different s and study the function s — N(s). When F
is a line segment, or a rectifiable curve, then N(s) ~ ]f for some constant k. When
F is a rectangle, or, more general, F contains interior points, then N(s) ~ sk_2 for
some constant k. Thus a general assumption will be

k
N(s) ~ 5 or equivalently log N(s) ~ logk — Blogs 3)
s

for some number 8 € [0, 2] which is called the box dimension of F . Since rectifiable
curves have dimension 1 and open sets have dimension 2, and the empty set has
dimension 0, the name is justified.

7.3 How to Continue?

If you are a theoretical mathematician, you will now look for examples where the
approach does not work, will define box dimension as a limit—or better, upper and
lower limit so that it always exists and then find classes of sets where upper limit and
lower limit coincides. You can also read Hausdorff’s beautiful old paper in [2] which
presents a mathematically clean dimension concept, using arbitrary sets instead of
boxes, and infinite coverings.

If you are a physicist or more applied mathematician, you will look for nice
model sets where you can try the method numerically, by determining concrete
values N(s), drawing points (s, N(s)) into a logarithmic plot and calculating 8 from
a linear regression.
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Fig. 9 Exponent of disconnectedness for groups of islands

7.4 An Illlustrative Example

We conclude by presenting a small example in the physicists’ way. We shall not
count boxes, but connected components of the fractal F'. The number N(s) will be
the number of connected components of F* with diameter larger than or equal to s.
The corresponding B in (3) is some measure of fragmentation of F which could be
called exponent of disconnectedness. Connected fractals will have § = 0. Note that
B is not defined when F is a Cantor set.

Here we take two maps, from Sri Lanka and from the Lakshadweep islands, and
count the number of islands according to diameter (length). Probably my count is
not very accurate. You can improve it. For Sri Lanka, I found islands with diameter
210, 12, 8, 7, 6, two times 5 mm, four times 3 mm, twelve times 2 mm and twenty
times 1 mm. One millimeter is about 1.65 km in reality, but for the exponent this is
not relevant. For Lakshadweep islands, I got diameters 6, 5, four times 3 mm, four
times 2 mm, eleven times 1 mm and twelve times % mm. Here 1 mm is almost 2 km,
but as we said, size does not matter. We draw the values N(s) into the logarithmic
plot of Fig. 9 and determine the two regression lines corresponding to Eq. (3).

It turns out that Sri Lanka does not provide a good linear approximation, because
of the big main island. If we drop that point, we get a regression line with slope
—1.27. The Lakshadweep islands have no mainland, so they have a more fractal
appearance. The exponent is 8 & 1.35, only slightly larger than 1.27. The line does
not approximate too well, perhaps due to inaccurate counting. When we neglect the
mainland of Sri Lanka, the degree of fragmentation for the two groups of islands is
more or less the same.
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Geometry of Self-similar Sets

Christoph Bandt

Abstract Self-similar sets form a well-defined class of fractals which are relatively
easy to study. This talk introduces their main features with a lot of examples. We
explain the need of a separation condition for the tangential structure. Hausdorff
measure is the natural concept of volume. Under certain conditions Hausdorff
measures define also the “surface” of the boundary and the interior distance.
A number of open problems are mentioned.

Keywords Self-similar measure ¢ Fractal ¢ Hausdorff dimension e Interior
distance

1 The Concept of Self-similar Set

Hutchinson’s equation. The idea that small pieces of a fractal are similar to the
whole figure led Hutchinson [16] to the definition of a mathematically tractable
class of fractals. A self-similar set in Euclidean R¢ is determined by a finite set of
contractive similarity mappings. A map f from R? to itself is called contractive if
there is a constant r < 1 with

[ f(xX)—fOD)| <r-|x—y| for all points x, y € R? | (1)
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Fig. 1 Self-similar sets with finite intersection of pieces

and it is a contractive similarity if equality holds for all x and y. The self-similar
set F' with respect to fi,..., fi, is a non-empty compact set F' which fulfils the
equation

F=fi(F)Uu...U fu(F). 2

It is a beautiful thing that fractal sets can be characterized by such an intuitive
equation which specifies how F is composed of similar copies of itself. And there
is a rather simple theorem:

Existence and Uniqueness: For any finite set of contractions fi on RY, Eq.(2)
has a unique solution F in the family of compact non-empty subsets of R?.

The standard proof uses the fact that ®(E) = |J;'—; fk(E) is a contractive
transformation on the space of all compact subsets of R¢, with Hausdorff metric
[10, 13, 16]. Below we give a more elementary proof from [1]. First we consider
examples. Of course, a square, parallelogram or triangle is self-similar, with n?
pieces, for arbitrary n > 1. Right-angled triangles and rectangles with side ratio
V2 1 1 are self-similar with two pieces. A triangle with angles 30°,60°, 90°
[4, Fig. 8] is self-similar with four congruent pieces as well as with three congruent
pieces (try it).

Problem 1. Ts there any other self-similar set with this property?

Two examples of self-similar sets with two pieces are given in Fig. 1. As an
exercise, you may try to describe the mappings f; which transform the set F to its
pieces Fy = fi(F). The matrix form of a similarity map f is f(x) = Ax + v
with a vector v € RY and a matrix A = rO which is the product of an orthogonal
d x d matrix O with the similarity factor r. Since f is contractive, r is smaller
than 1. In two dimensions, we better write f as a linear mapping of the complex
plane: f(z) = az+ b or f(z) = az + b where a, b are complex numbers, and the
modulus of a is |a|] = r < 1. The first formula gives a rotation with angle arga
around the center z* = % which fulfils the fixed-point equation z* = f(z*). The
second formula gives a reflection or glide reflection at a line which is a bit more
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difficult to determine. For simplicity, we shall often concentrate on two rotational
mappings with fixed points 0 and 1 for which our master student Kirsch wrote a nice
program [19]:

folz) = az and fik)=bz+1-b with |al,|b| < 1. (3)

Aim of this talk. Self-similar sets seem too artificial to be good models of nature.
But they can be treated rigorously, like manifolds in analysis, and their appeal
can stimulate our geometric intuition. We shall demonstrate the rich mathematical
structure which self-similar sets can possess and mention some of the numerous
open problems which arise as soon as we consider the structure a bit more carefully.

2 Addresses and Symbolic Dynamics

Pieces. The fact that a self-similar set consists of smaller and smaller pieces leads
to some symbolic notation. Let I = {1,...,m}. For two mappings, we prefer
I = {0,1}. Words w from the alphabet / have the form w = wyw,...w, € I".
By substitution of F' on the right-hand side of Eq. (2) we can express F' as a union
of smaller pieces:

F = U Sefi(F) and F = U fw(F) foreveryn > 1,

i,jel weln

where fi, = fu,-...: fw,.- We shall write Fy, = fi(F) and F,, = f,,(F). The length
n = |w| of the word is called the level of the piece F,.

Points. Since each point x € F is determined by a nested sequence of pieces F,,, D
Fyw, D ..., it corresponds to a sequence s = wiwy ... as its address [10]. If F is
a Cantor set, this correspondence is one-to-one [4, Sect.4]. However, when x is in
the intersection of two pieces F),, F,, of the same level, then there will be at least
two addresses of the point x. Thus in order to get a mathematical function, we have
to assign addresses to points, and not conversely. Let S = 7°° denote the set of all
sequences s of symbols from /.
The address map 7w : 1°° — F is defined as follows.

w(s) = lim So oo f5, () fors = s155...€ S 4

where y is an arbitrary point in R¢. A good choice for y is the fixed point z* of f
which is certainly in F. Then we are sure that application of the f;, will only lead
to points of F', because of Eq. (2).

Justification of definition (4). We show that the limit exists and is independent of
y. First we note that by compactness of F, the sequence with starting point z* has
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a subsequence which converges to some point x € F. For any starting point y, the
subsequence will converge to the same x because of (1). The difference on level n,

oo oo S ) = S oo S, @I = 7" - [y — 2 )

for z = z* converges to zero with n — oo. Here r denotes the maximum of the
contraction factors of fi, ..., f,, which is smaller than one.

We now show that the whole sequence with starting value z* converges to x.
Since F is compact, there is a constant ¢ with |y — z*| < ¢ forall y € F. Now let
So oo fs, (&) and f, - ... f5, (2%) withm > n be two members of our sequence.
We define y = f;, ., -... f,(z"), and use the estimate (5) with z = z* to see that
the difference is smaller than r"c. Thus we have a Cauchy sequence in ' which
converges. This completes the proof that r is well defined by (4).

Proof of Hutchinson’s theorem. So far we have only used the compactness of F,
which is an assumption in the definition of self-similar set. We now show that 7z (S)
is the unique solution of (2). Equation (2) implies that all points f;, -...- f;, (z*) are
in F. By compactness, this holds for their limits, so 7(S) € F. On the other hand,
each pointin x € F canbe represented as f;,-...- f;, (y,) forasequence s = 557 ...
and points y, € F, by repeated application of Eq.(2) for y,,n = 1,2,... With
another use of (4) for y = y,, this implies F € 7(S) and completes the proof of

uniqueness.

We still have to convince ourselves that F = x(S) fulfils Hutchinson’s
equation (2). To this end, we consider the maps 7z : S — S with 7 (s152...) =
ks1sy ... which shift the symbol k before the sequence, for k = 1,...,m. It is

obvious that
S =1(S)VU...U,(S) and 7m(t(s)) = fi(w(s)) for all sequencess. (6)

This implies that ' = 7(S) is a solution of (2) and concludes the proof of existence.

Remark on topology. For every number y € (0, 1) we can introduce a metric on S
by p(s,t) = y" where n is the length of the common initial word of the sequences
sand . Thus p(s,t) = 1if s; # £, and p(s,t) = y if 51 = t; but s, # 1, etc. With
respect to this metric, the tx are similarity maps with contraction factor y, and S is
a proper self-similar set, although not a subset of R¢.

Moreover, the metric p induces the usual product topology on S for which S is a
compact space—in fact a Cantor set, see [4, Sect.4]. The addressmap 7 : § — F
is continuous: p(s, t) < y" implies

[ foy oo fo, (X)) = foy o oos [, ()] <r'c forx € Fandeachm > n.

This follows from (5) with y = f . --- fi,(x) and z = f, , -~ f;, (x). (If we
take y > r, we even have a Lipschitz map.)

A continuous map from a compact space to a subset of R? is always a quotient
map. That is, the self-similar set F as a topological space is obtained by identifying
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Fig. 2 Addresses of points in two self-similar sets

certain points of S with each other. We write s ~ ¢ for 7(s) = 7x(t). This is an
equivalence relation, and from (6) it follows that

s ~t implies ks ~ kt for all symbols k € I and ws ~ wt for all words w € I".

In other words, we need to only define the intersection of the big pieces Fy, then
the identification of the smaller pieces will be done automatically. In particular,
identification of two points plus self-similarity always yields a connected space
[6, 10].

Topological spaces from a simple formula. In cases like Fig. 1 when the pieces Fj
intersect only in a few points, the identification can be described by remarkably
simple formulas [6, 10, 18]. We demonstrate this for Fig. 2 where Fy N Fj is a single
point x for which we can easily identify both addresses. Both pictures show the same
topological space, although the geometry is different. The fixed point of mapping fj
has address kkk ... = k. While (1), the fixed point of f;, is the “right endpoint of
the right-hand piece”, the point with address 0 is the branching point which divides
the tree into three big components. According to (6), the point f,,(7r(k)) has address
wk. Thus the endpoint 1 is mapped by the rotational similarity map f; onto the
endpoints with addresses 01 and 001. The last point is mapped by both f; and
/i to the intersection point x of the pieces. This gives the formula 0001 ~ 1001
which defines the topology of both spaces. (The example on the left of Fig. 1 can
be analyzed similarly, for the example on the right we have to locate the point with
address 01. See Sect. 5.)

In this case, f;~!(x) = f;7'(x) which means that f; and f; can be considered as
the two inverse branches of a mapping g : F — F. Such topological spaces appear
as Julia sets of quadratic mappings. This connection was studied by Kameyama [17].
The following question is open.

Problem 2. For which sequences s = s;5, ... can the topological formula Os ~ 1s
be realized by a self-similar set in the plane? Or in three-dimensional space?
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How to determine the mappings. When we use the mappings (3), the topological
formula allows to determine the parameters a and b for Fig. 2. The fixed points are
0and 1, so f@(1) = a® has address 0001, and f; f2(1) = ba® + 1 — b has address
1001. This leads to the equation

1—a° a?

=—=1
1—a? +1+a

for which two solutions were shown in Fig. 2. Note that the equation only guarantees
the existence of an intersection point with prescribed addresses. There can be further
intersection points. To avoid them, small @ and b must be chosen.

3 The Separation Condition

Although every set of mappings f,..., fn leads to a self-similar set F, it is not so
easy to construct examples with interesting geometry. When the contraction factors
ry of the mappings are small (r; 4 ... + r,, < 1 is sufficient but not necessary) then
F is a Cantor set [4, Fig. 1]. When the factors are large, as in Fig. 3, the intersections
of pieces will also become large, and the fine structure of F will be lost. Even an
apparently small overlap as in Fig. 4 can turn out to be extremely complicated under
magnification. Already in 1946 Moran [21] defined the proper separation condition
which has to be required for F in order to have reasonable mathematical structure.

Open set condition. There exists an open set U such that

f(U)CU and fi(U)N f;(U) =0 fork,j e .k #j. 0)

Fig. 3 Self-similar sets with large overlap
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Fig. 4 A small overlap can become large under magnification

The idea is that the pieces Uy = f;(U) and smaller pieces U,, = f,,(U) will form
a disjoint net, as in the construction of a Cantor set in [4, Fig. 2]. However, these
open sets can touch at their boundaries. The pieces F,, are subsets of the closure U,,.
They can intersect within the boundaries of the respective open sets which restricts
the size of the overlaps.

The condition is a bit mysterious since it does not say how to obtain the open
set. U is certainly not unique. If F' has interior points we know that U = int F is
a possible open set, and the maximal one. In general there is no maximal U, and U
cannot be required to be convex or connected. For some time it was not even clear
whether we can require that U intersects F'. This was proved by Schief [23] in 1992.

Problem 3. s the open set condition fulfilled for every self-similar set for which
the pieces intersect in finite sets?

For connected sets F in the plane, Bandt and Rao [8] gave an affirmative answer.
But when F C R? is a Cantor set (for example, three pieces, but only two of them
intersect), or if F C R* has two pieces intersecting in a single point, the question
remains open.

The neighbor map condition. The open set condition can be replaced by an
algebraic condition on the f; which allows to study separation by computer
programs [5]. To this end, Bandt and Graf introduced the concept of a neighbor
map h = f,7! f,, where v, w are words from the alphabet I with v; # wy.

The idea is that 2 maps the intersection of pieces F, and F;, to standard size,
even for very long words which address tiny pieces. Typically, we take words v, w
which describe pieces of about the same size—if the factors of the f; are all equal,
we take words of the same length. f,~! maps F, to F, and F, to a “neighbor set”
h(F) which has the same position with regard to F as F,, hasto F),.

The neighbor maps of fi,..., f, are similarity maps on R¢. Actually, & is
a congruence map if f, and f, have the same contraction factor. The natural
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Fig. 5 Exact overlaps. Left: the golden gasket [11]

concept of convergence of a sequence £, to a limit map g is pointwise convergence:
h,(x) — g(x) for all x € R?. The following condition for f, ..., f, is equivalent
to the open set condition [5]:

No sequence of neighbor maps converges to the identity map id(x) = x.  (8)

Exact overlaps. There are two cases for which the condition does not hold. Either
some neighbor map & = f,7! f,, fulfils » = id. This means f, = f,, and F, =
F, and U, = U, for any open set U, as in Fig.5. Since two of the pieces do
exactly coincide, the open set condition cannot be true. This case is not so bad,
however. If this is the only obstacle to (8), we can change notation, consider pieces
of different types F/ and replace the Eq.(2) by a system of equations for which
Hutchinson’s theorem is also valid. See [11] for the golden gasket shown in Fig. 5,
and Ngai and Wang [22] for a general proof. For system of equations of type (2), see
Barnsley [10, Chap. 10] or Edgar [12]. Many other papers can be found under the
keywords “weak separation condition,” “recurrent iterated function systems,” and
“graph-directed constructions”.

Problem of tangential structure. Serious overlaps occur when there exist neighbor
maps different from id in every neighborhood of the identity map. Figure 4 shows
what happens in that case: magnification of the set will reveal an ever increasing
clustering of the pieces, cf. [23].

In presence of the open set condition as well as for exact overlapping as in Fig. 5,
magnification will not change the view. A set of limit pictures or “tangential views
for infinite magnification” can be defined, which do not look essentially different
from what we see at large scales [3]. Such fractals can be considered as linear objects
of fractal geometry—Ilike lines and planes in Euclidean geometry.

For serious overlaps, this does not remain true. Even the concept of volume
defined in the next section seems not to exist. Although the global view of such
fractals may look harmless, their mathematical structure is a mess.

Crystallographic fractals. In some cases we can be sure that no serious overlaps
can occur, just because the neighbor maps are all contained in a discrete group.
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For example, when A is an integer matrix such that all eigenvalues have modulus
larger one, and vy are integer vectors, and f;(x) = A7'x + vy, then all neighbor
maps are translations by integer vectors. Only exact overlaps are possible, and
it is easy to give conditions which ensure that there are no overlaps at all [2].
A generalization to crystallographic groups was found by Gelbrich [14]. Thus it
is easy to give examples of mappings with open set condition.

4 Measure and Dimension

Uniform distribution. How can we define a volume measure x, or uniform distribu-
tion, on a fractal with three congruent pieces, as shown in Fig. 67 We use the same
method as for Lebesgue measure on [0, 1], just replacing intervals by pieces of F. If
we want to have a probability measure, each of the three pieces should have measure
w(Fy) = % When the open set condition holds, the measure of the overlap should
be zero. The pieces Fy; would have measure pu(Fy;) = é, and all pieces of level n
would have measure (F,,) = 37". Once we have the measure of all pieces, we can
define a metric outer measure [13,20] for all subsets C C F as usual, looking at the
most efficient coverings of C by pieces F,,:

W I*fulfis ) F,2Cp . 9)
wew

wH(C) = inf{ > u(E)

wew

Here I* = [ J72, 1" denotes the set of all words from the alphabet /. On the algebra
of Borel sets and the larger algebra of measurable sets C C F, the outer measure
w* is a measure. Note that for compact sets C, we can restrict ourselves to finite
coverings.

Fig. 6 Two modifications of Sierpinski’s gasket
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The concept of dimension. If there are m pieces instead of 3, we define u(F,) =
m~" for words w = w; ... w,. We are going to compare volume and diameter of
F,,. The diameter of a set E is |E| = sup, ,cg |x — y|. We still assume that the
pieces are congruent, so the similarity ratio is r for all maps fi, and r" for all f,,
on level n. Thus a piece F,, of level n has diameter |F,,| = r" - | F'|. We assume that
|F| = 1, otherwise the following conclusion will hold only approximately. Since
m = rlogm/logr, we get

w(F,) = |F,|* fora = S (10)

The number « is called the dimension of F. If F = [0, 1] with pieces [0, %] and
[%, 1],thenm = 2,r = %, and ¢ = 1. In dimension 1, the measure of an interval
equals the diameter. For the unit square with m = 4 pieces and r = % we geta = 2.
In two dimensions, the area of a square is the square of its diameter. For cubes in R*
we geta = 3, so our definition is consistent with the ordinary concept of dimension.

Dimension is the exponent which connects volume with diameter.

Different similarity ratios. Now consider similarity maps f; with different ratios
re,k = 1,...,m. We want to determine the volume p(Fy) of the pieces. We put
w(F) = |F| = 1so that |F;| = ry. We try with p(F;) = r and assume that
intersections F; N Fj have measure zero. Then

=1 (an

defines the dimension o« of the self-similar set F, and the measure is given by
W(Fy) = ry = ry, -+ Fy, for words w = wy ... w,, and by (9) for arbitrary sets C.
Using monotonicity, we can easily prove that (11) has a unique solution « € [0, d].

Hausdorff dimension. Hausdorff introduced already in 1918 a much more general
theory, taking coverings of C with arbitrary sets B;, and assigning the value
> |B;|* to the covering. Beside (9) we need one more limit for the definition
of Hausdorff measure. Moran proved in 1946 that the «-dimensional Hausdorff
measure H(F) of a self-similar set with open set condition is positive and finite.
This implies that H = ¢ - p for a positive constant ¢ [5, 13, 20] so that we can
use our simplified construction (9). Actually, ¢ is difficult to determine—even for
the Sierpifiski gasket only estimates are available. For self-similar sets, Hausdorff
dimension coincides with box (Minkowski) dimension and with local dimension of
the volume measure, so we shall not define these concepts here.

Measure for exact overlaps. When exact overlaps occur, the dimension is strictly
smaller than the o in Eq. (11). We take the example of the golden gasket, Fig. 5, to
show how a uniform distribution can be defined in the presence of exact overlaps.
The similarity of the three mappings is r = %(ﬁ — 1), the golden mean. We have
Fyjj = Fjj for k # j, that is, any two pieces of first level intersect in a piece
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of level 3. Now let u(F,) = rﬁ and assume that the outer triangular boundaries of
the F,, have measure zero. When we calculate w(F) we now have to subtract the
overlaps:

3
= u(F) =) u(Fo) =y u(F) =3rf =3r% .
k=1 Jj<k

Thus y = P is a positive root of the polynomial 3y* — 3y + 1. Since F contains
lines, the dimension 8 must be at least 1, thus y < r. This rootis y & 0.395, and

the dimension of the golden triangle is f = ; é‘g’gl}/’r ~ 1.93, rather near to 2. The nice

sinzr/9
sinm/3

analytic expression y = can easily be checked dividing the formula for sin 3x

with x = 7/9 by sin3x = +/3/2. Algebraic numbers often pop up in connection
with special self-similar sets.

Dimension and measure in the presence of overlaps. Hochman [15] has recently
shown that at least in one dimension, Eq. (11) yields the Hausdorff dimension of
the fractal F for many families of mappings f;, when there are no exact overlaps.
When the open set condition fails, the Hausdorff measure of dimension « of every
piece will be infinite [5,23].

Problem 4. Can the f; be chosen in such a way that the open set condition is not
true and there is no exact overlap, but still a uniform probability measure on F can
be defined?

5 Further Structure

We now discuss structures from mathematical analysis which exist on certain self-
similar sets.

Boundary. We defined a volume measure ;1 on F. Is there also something like
surface? What is the boundary of a self-similar set? With the neighbor concept,
there is a simple answer. A point x € F is a boundary point when a potential
neighbor /4 (F) touches F in x. Since the boundary should be a closed set, we define
itas B =, F N h(F), where h runs over all neighbor maps.

Post-critically finite sets. If the open set condition holds, B is a subset of F' with
w(B) = 0. We now define a “surface measure” o on B. In the case when B is
finite, o will be the point-counting measure. Such cases will be determined by
finitely many identifications of eventually periodic addresses, as described in Sect. 2.
Such fractals were called post-critically finite by Kigami [18], following a similar
terminology of Thurston for Julia sets.

On the left of Fig. 1, the formulas for the two intersection points are 010*1 ~
1021 and 0°1 ~ 10°1. Deleting leading symbols from these addresses, we get the
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Fig. 7 Octagasket and pansy: boundary of linear Cantor sets

six_boundary_ points 101 and OF1 with k = 4,3,2,1,0. Similarly, the formula
0301 ~ 10201 for the figure on the right gives four boundary points. In Fig.2 we
have 3 boundary points, and on the left of Fig. 6 there are 18 boundary points.

Cantor boundary. Figure 7 shows two cases where the intersections of neighboring
pieces are Cantor sets within a line. When we speak of the boundary of F, we mean
those Cantor sets where F can meet an outer neighbor in a larger set £, ' (F). In the
octagasket on the left the boundary B is contained in eight line segments. In the
pansy example on the right B is contained in three line segments. Each of the linear
Cantor boundary sets is a self-similar set with respect to two mappings fi, fi+1

of the original construction. Thus the dimension of B is § = % where the

contraction factor r of the f is 1/4 for “pansy” and 1/(2 4+ +/2) for the octagasket.

In both cases, the surface measure o can be taken as Hausdorff measure of
dimension 8 on the boundary set. A similar result is true whenever the open set
condition holds [7]. The right-hand part of Fig. 6 shows a more complicated case
where the Cantor set is not contained in a line.

Fractal tiles. When F fulfils the open set condition and the interior of F is
nonempty, then R can be tiled by copies of F. In that case, the boundary defined
above is indeed the topological boundary F \ int F. The Lévy curve ([26,27], see
[4, Fig.6]) is a prominent example with a complicated boundary. If a plane self-
similar tile is homeomorphic to a disk, the boundary sets F' N A (F) will be intervals
or singletons, and there are only few neighbor maps. The neighbor concept is very
intuitive for tiles since all kinds of neighbors are represented in original size in the
tiling. There is no place here to review the vast literature by Lagarias and Wang,
Solomyak, Kenyon, Akiyama, Lau and many others on fractal tiles. See [26,27] for
a start.

Minimal separation. Let us assume that F is connected, and let us say that a closed
subset C separates F if F \ C is disconnected. We are looking for separating sets
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with minimal dimension which we call the separating dimension. For the closure of
an open set in RY, the separating dimension is d — 1, and each separating set has
positive (d — 1)-dimensional Hausdorff measure.

The boundary of a piece F), in a self-similar set is always a separating set.
However, it need not be minimal as the Sierpifiski carpet [13, 18,25] shows. There
the boundary consists of intervals but the separating dimension is log2/log 3. The
boundary of octagasket and pansy in Fig. 7 has the separating dimension, however.
It can be shown that each separating set C fulfils 6 (C') > 0.

For overlapping constructions, as in Fig. 5, the boundary in the above sense is
the whole set F. The same holds for the topological boundary. Perhaps we can
consider minimal separating sets instead of a boundary. For the example in the
middle of Fig. 5, there are finite separating sets (one point will do). So the separating
dimension is zero, as for all post-critically finite sets. For the golden triangle on the
left, it seems that an altitude A is a minimal separating set. 4 is a self-similar set
with two mappings with contraction factors r = (+/5 — 1)/2 and 7.

Problem 5. Given a self-similar set F' with open set condition or only exact
overlaps, does there exist a self-similar subset (or graph-directed construction) C
which separates F' and has the separating dimension?

Geodesics and interior distance. On a manifold, two points x, y can be connected
by a geodesic—a rectifiable curve of minimal distance. Do there exist geodesics on
fractals? Many self-similar sets contain lines, such that any two points x,y € F
can be connected by a rectifiable curve—a polygonal path consisting of infinitely
many line segments. This is true for the Sierpinski triangle and the Sierpifiski
carpet, for the right-hand part of Fig. 1 and the golden triangle in Fig. 5. The interior
distance p(x, y) on such fractals can be defined in the same way as on differentiable
manifolds. It is the minimum one-dimensional Hausdorff measure of a connected set
C which contains both x and y. This is called interior distance since we must walk
within F'. No shortcuts through the complement are allowed.

For post-critically finite sets F, as in Figs. 1, 2, and 6 left, we have the structure
of a graph, with vertices on the intersection of pieces, see [18]. Given x and y,
we need only compare finitely many possible connecting curves. (More precisely,
we first consider the construction on level n, where we definitely have a finite graph,
and replace x, y by the nearest boundary points. Then we let n run to infinity. Since
the addresses of vertices are eventually periodic, we can stop at finite n.) It turns
out that the connecting curves of boundary points form themselves a self-similar set
or graph-directed construction [9, 24]. Actually, neighbor maps can directly used to
establish the graph-directed construction [7]—by computer if necessary.

We explain the method for Fig.2 where we have a tree—only one possible
connection between any points x, y. Let “base” B the arc connecting the vertices
with address 001 and 1, and “diagonal” D the arc connecting 01 with 1. In Fig. 8
we see that D is the union of bases of the pieces: D = fy(B) U f1(B). Moreover,
B = fo(D) U f1(B). Putting both equations together, we get

B = fooo(B) U foor1(B) U fi(B)
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Fig. 8 Left: geodesics B and D (approximation) in Fig.2. Right: an example with two different
exponents of geodesics

which means that B is a self-similar set with three mappings with contraction factors
rg, rgrl, r1. The open set condition is inherited from the system { fy, f1}. So B and
D have positive finite Hausdorff measure fi of dimension § given by (11). For the
left of Fig.2 we have rg = r; = r = (v/5 —1)/2 and r® 4+ 2,3 = 1 which results
in§ ~ 1.10. See Fig. 8.

Once we have geodesics connecting the boundary points, we can define arcs
connecting arbitrary points x, y as countable unions of copies of the basic arcs. For
the theory, it is enough to know that we have a dimension § of basic geodesics.
As the example on the right of Fig.8 shows, we need an irreducibility condition
for the graph of our basic geodesics—otherwise we may have different exponents
§ for different directions. When § is known, we can define the interior distance of
x,y € F as minimal §-dimensional Hausdorff measure of a connecting set:

p(x,y) = inf{’(C) | C C F connected, x,y € C} . (12)

Problem 6. How to define geodesics when intersections of pieces are infinite? Will
they have a self-similar structure? Is there a dimension § of geodesics?

Remarks on analysis. We have seen that in certain cases we can define not only
volume, but also surface and interior distance by means of Hausdorff measures
of self-similar constructions. The next thing would be proper analysis: harmonic
functions, the Dirichlet problem, heat transfer, eigenvalues of the Laplace operator.
For post-critically finite self-similar sets this has been accomplished—see the books
of Kigami [18] and Strichartz [25] and their references. One key concept is the
resistance metric instead of an interior metric, which takes account of the number of
parallel connections from x to y, which may vary on the way. The results for post-
critically finite fractals are nearer to analysis of the interval than to analysis in the
complex plane. Among others, the vector space of harmonic functions on F is finite-
dimensional. For physically meaningful examples it should be infinite-dimensional.
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It would be nice to have such examples, even though a general analysis on metric
spaces is being developed on the base of Dirichlet forms and heat kernel estimates.
This motivates our last problem which will conclude this little survey.

Problem 7. Can harmonic functions and a Laplace operator be constructed for the
fractals in Fig. 77

References

—

10.
11.

12.
13.

14.
15.
16.
17.

18

21.

22.

23.

24.

. Bandt, C.: Self-similar sets 1. Topological Markov chains and mixed self-similar sets. Math.

Nachr. 142, 107-123 (1989)

. Bandt, C.: Self-similar sets 5. Integer matrices and fractal tilings of R". Proc. Am. Math. Soc.

112, 549-562 (1991)

. Bandt, C.: Local geometry of fractals given by tangent measure distributions. Monatshefte

Math. 133, 265-280 (2001)

. Bandt, C.: Introduction to fractals, talk in Kochi, India. 9 Nov 2013
. Bandt, C., Graf, S.: Self-similar sets 7. A characterization of self-similar fractals with positive

Hausdorff measure. Proc. Am. Math. Soc. 114, 995-1001 (1992)

. Bandt, C., Keller, K.: Self-similar sets 2. A simple approach to the topological structure of

fractals. Math. Nachr. 154, 27-39 (1991)

. Bandt, C., Mesing, M.: Self-affine fractals of finite type. Banach Center Publ. 84, 131-148

(2009)

. Bandt, C., Rao, H.: Topology and separation of self-similar fractals in the plane. Nonlinearity

20, 1463-1474 (2007)

. Bandt, C., Stahnke, J.: Self-similar sets 6. Interior distance on deterministic fractals. Greifswald

(1990, preprint)

Barnsley, M.E.: Fractals Everywhere, 2nd edn. Academic, Cambridge (1993)

Broomhead, D., Montaldi, J., Sidorov, N.: Golden gaskets: variations on the Sierpiriski sieve.
Nonlinearity 17, 1455-1480 (2004)

Edgar, G.A.: Measure, Topology, and Fractal Geometry. Springer, New York (2008)

Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley,
New York (1990)

Gelbrich, G.: Crystallographic reptiles. Geometriae Dedicata 51, 235-256 (1994)

Hochman, M.: Self-similar sets, entropy and additive combinatorics (2013). arXiv:1307.6399
Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713-747 (1981)
Kameyama, A.: Julia sets of postcritically finite rational maps and topological self-similar sets.
Nonlinearity 13, 165-188 (2000)

. Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)
19.
20.

Kirsch, B.: Julia-Mengen linearer Abbildungen. Diplomarbeit, Greifswald (2000)

Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press,
Cambridge (1999)

Moran, P.A.P.: Additive functions of intervals and Hausdorff measure. Proc. Camb. Philos. Soc.
42, 15-23 (1946)

Ngai, S.M., Wang, Y.: Hausdorff dimension of self-similar sets with overlaps. J. Lond. Math.
Soc. 63, 655-672 (2001)

Schief, A.: Separation properties for self-similar sets. Proc. Am. Math. Soc. 122, 111-115
(1994)

Strichartz, R.S.: Isoperimetric estimates on Sierpinski gasket type fractals. Trans. Am. Math.
Soc. 351, 1705-1752 (1999)



36 C. Bandt

25. Strichartz, R.S.: Differential Equations on Fractals: A tutorial. Princeton University Press,
Princeton (2006)

26. Strichartz, R.S., Wang, Y.: Geometry of self-affine tiles I. Indiana Univ. Math. J. 48(1), 1-24
(1999)

27. Vince, A.: Self-replicating tiles and their boundary. Discrete Comput. Geom. 21, 463-476
(1999)



An Introduction to Julia and Fatou Sets

Scott Sutherland

Abstract We give an elementary introduction to the holomorphic dynamics of
mappings on the Riemann sphere, with a focus on Julia and Fatou sets. Our main
emphasis is on the dynamics of polynomials, especially quadratic polynomials.

Keywords Julia set * Fatou set * Holomorphic dynamical systems ¢ Normal
family ¢ Bottcher coordinate ¢ Parabolic orbit » Siegel disk ¢ Cremer point

1 Introduction
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Holomorphic dynamics is the study of the iterates of a holomorphic map f on
a complex manifold. Classically, this manifold is one of the complex plane C, the
punctured plane C*, or the Riemann sphere C=cu {oo}.

In these notes, we shall primarily restrict our attention to the last case, where f
is a rational map (in fact, most examples will be drawn from quadratic polynomials
f(z) =% + ¢, withzand ¢ € C).

Based on the behavior of the point z under iteration of f, the Riemann sphere ¢
is partitioned into two sets

* The Fatou set F s (or merely F), on which the dynamics are tame, and
» The Julia set J ¢ (or [J), where there is sensitive dependence on initial conditions
and the dynamics are chaotic.

We shall define these sets more precisely in Sect.5, but will use these informal
definitions for the present to give some intuition.

Given the focus of this conference, we should point out that there is an inverse
relationship between the approach of holomorphic dynamics and that of iterated
function systems (IFS). More specifically, the Julia set of a rational map f : C->C
corresponds to the attractor for the IFS consisting of {g1, g2, ..., gq}, where the g;
are branches of the inverse of f restricted to a suitable domain. For example, the
Julia set of z2 — 1 is the attractor of the IFS {w VW Lwe —JVw+ 1}.

2 Linear Maps

Before turning to the dynamics of rational maps, let us first discuss iteration of a
single linear map. Much of the theory of holomorphic dynamics doesn’t apply in
this case, so it is always excluded. However, a brief overview of what happens will
be helpful. . .

The case of iteration of a single linear map f : C — C is very simple. Such an f
is a Mobius transformation of the form

az+b
= ith ad — bc #0,
f@ oyq |Vithad-—be #
which can be viewed as an element of PSL(2,C), and has easily understood

dynamics.

Except for the identity and the trivial map z + 1/z, these mappings have two
fixed points, counted with multiplicity. If the fixed points are distinct, we may make
a holomorphic change of coordinates moving one of them to infinity and the other
to zero. In this case, the mapping becomes of the form z +— Az with A € C.
See Fig. 1.

e If |A] # 1, the mapping z + Az is called loxodromic (or hyperbolic): under
iteration, points move away from one of the fixed points (which is repelling) and
toward the other (which is attracting).
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Fig. 1 Left: under iteration of a loxodromic linear map, points spiral away from one fixed point
(not visible) and towards the other. Center: an elliptic transformation corresponds to rotation of the
Riemann sphere. Right: A parabolic transformation corresponds to z = 1 + z. Here points leave
infinity from one side (the negative half-plane) and return on the other

o If |A| = 1, z — Az has two elliptic fixed points: nonzero finite points orbit
around the fixed points at zero and oo along an elliptic path. This corresponds to
a rotation of the Riemann sphere by the angle Arg A.

» If the two fixed points of f coincide, the mapping is conjugate to z — z + 1.
Here, the point at infinity is a parabolic fixed point: orbits leave from one side,
and return on the other.

3 First Examples

Now we turn to our main subject, beginning with some simple examples. First,
we remark that in holomorphic dynamics, we only consider mappings f which
have degree at least two. The notion of “degree” of a rational mapping of C is
unambiguous (unlike in the case of higher-dimensional complex manifolds): the
algebraic degree (i.e., the highest power of z in the numerator and denominator
of f) and the topological degree (i.e., the number of pre-images of a typical point)
coincide.

3.1 The Map 7 — z

We begin with an elementary analysis of the simplest rational map, f(z) = z>.
If we write z in polar coordinates with r = |z|, § = Argz, then the mapping is
(r,0) — (r?,20), and it is easy to make the following conclusions.

¢ There are three fixed points for f: 0, 1, and co.
o If |z| < 1, then f"(z) — O0;if |z > 1, then f"(z) — oo. Thus, 0 and oo
are attracting fixed points (in fact, superattracting; see Definition 5.5). A point
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Fig. 2 For f(z) = 2%, the Julia set J is the unit circle (black), and the Fatou set has two
components: Bas(00) (red and orange) and Bas(0) (blue)

of

p is called an attracting fixed point if for z in a neighborhood of p, we have
J"(@) — p.

If |z} = 1, then | f"(z)] = 1 for all n. For this mapping, the unit circle is
forward- and backward-invariant. That is, for each point on the unit circle, the
entire forward orbit of that point and all of its preimages are also on the unit
circle. Furthermore, every point in a deleted neighborhood of 1 will eventually
leave that neighborhood under some iterate of /. The point 1 is a repelling fixed
point.

In fact, any small neighborhood of a point z on the unit circle contain points
which tend to oo, points which tend to 0, and points which remain on the unit
circle. As we shall see, such behavior characterizes membership in the Julia set.

In the case of f(z) = 2T '+ is the unit circle, and the Fatou set F has two

components: the set of points in the unit disk, which iterate to 0, and those outside
the disk, all of which iterate to infinity. (See Fig. 2.)

Even though behavior of f on the Julia set is merely that of angle doubling, there

is a surprisingly rich collection of behaviors. For example, there are periodic points

all periods and the pre-images of any point are dense in the unit circle. There are

also points whose forward orbit is dense in the circle.

We will refer to the set of points which iterate to co as the basin of co and denote

it by Bas(co). More generally, for p € C we shall use the notation

Bas(p) = {z € €| /"(p) > p|.

If p is a periodic point of period m, we can extend this definition as

Bas(p) = U {ze@|fn+j(p)—>p},

0<j<m
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or, equivalently, as the union of the basins of each point in the orbit of p under .
Because oo plays a special role for polynomial maps f(z), it is common and
useful to define the filled Julia set of [ as

K; = C~Bas(co) = {z € C| f"(z) is bounded} .

It is worth noting that for f(z) = z?, we can change coordinates to interchange
the roles of oo and 0 since 1/ f(z) = f(1/z).

Bas(00) —f> Bas(00)

L 1/z L 1/z
f

Bas(0) — Bas(0)

That is, f acting on Bas(0) is holomorphically conjugate to f on Bas(oco) via
z+> 1/z. Note also that f'(0) = 0, f’(1) = 2, and the derivative at co is also
0 (in the 1/z coordinate chart).

32 TheMapzw— 7>+ ¢

Now let’s change things a little, and consider f(z) = z> + €. How does this affect
the dynamics?

* We still have three fixed points in C:
oo (with derivative 0), « = (1 — v/1 —4¢€)/2,and B = (1 + V1 —4¢)/2.

» For |z] large (i.e., near co), we still have f"(z) — oo, and (as long as € is not too
big), for z near o, we have f"(z) — «.

+ As in the case of z2, B is a repelling fixed point (since | f'(B)| = [28| > 1).
As such, it lies in the Julia set Jy.

* Furthermore (with a bit more effort), we can show that we have a conformal map
¢ so that

S
Bass(00) ——— Bas;(c0)

However, things are a little more complicated near the fixed points « and S.
In a neighborhood U of the attracting fixed point o, we have a conformal map ¢
so that
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Fig. 3 Julia and Fatou sets for f(z) = z> — 1/2. As in Fig.2, the Fatou set F, consists of two
components shown in reds and blues and Jy is in black, forming the boundary between the two
components of F s

7> f(a)z
- >

O <—GC
<

O ~<~—c
<

This neighborhood U cannot include 0, since f is not one-to-one on any
neighborhood of 0. This means we cannot hope to extend the local conjugacy above
to the whole of Bas(«), unlike in the case of Bas(co).

One can show that in this case, the Julia set (which is the complement of
Bas(a) and Bas(c0)) is a Jordan curve with Hausdorff dimension greater than one.
See Fig. 3.

4 Some History

The study of the iteration of complex analytic functions began more than a century
and a quarter ago. In the 1870s, Schroder [29, 30] investigated the convergence
of iterative algorithms for solving equations, with a particular interest in the
convergence of Newton’s method, which corresponds to the iteration of the function
Nys(z) = z— f(2)/f'(z). He discovered that a root p of f corresponds to a
super-attracting fixed point of Ny; this led him to generalize Newton’s method
to other numerical methods. In addition, Schroder showed that Newton’s method
for f(z) = z2 — 1 converges globally in the right half-plane to the root 1, in the
left half-plane to —1, and observed sensitive dependence to initial conditions along
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Fig. 4 The dynamics of Newton’s method for the polynomial z3> — 1. The basins of each of the
three roots are colored in shades of blue, green, and orange; the Julia set is the boundary between
the colors

the imaginary axis. Later, Cayley independently (and via quite different methods)
obtained similar results in [12]. While both Cayley and Schrdder had hopes of
extending their understanding to higher degree polynomials, they were unable to
do so. Figure 4 might give an idea as to the source of some of their difficulties.

Later, Kcenigs [23] greatly extended Schroder’s work to further generality,
studying the Schroder functional equation (SFE) ¢(f(p)) = f'(p)¢(p) in the
neighborhood of a fixed point p. Kcenigs was able to show that the mapping f was
locally conjugate to multiplication by its derivative at the fixed point p, in the case
where | f'(p)| was not 1 or 0. The more complicated case of f/(p) a root of unity
was studied 1897 by Leau [24], and the case of f’(p) = 0 was treated by Bottcher
in 1904 [8]. (Bottcher was one of the first, if not the first, researchers concerned with
developing a general, global theory of iteration of rational maps.) The very difficult
cases where | f'(p)| = 1 with f’(p) not a root of unity were not understood until
the work of Cremer in 1927 [14, 15] and Siegel in 1942 [32]. We will summarize
these results in Sect. 8.

In the time immediately after World War I, Fatou [19,20] and Julia [22] laid down
the foundations of complex dynamics, looking at the theory of iterated rational func-
tions from a global point of view. Both of them had recently encountered Montel’s
theory of normal families [26,27] and realized its importance to complex dynamics
Fatou and Julia independently proved that the domain of normality must either be
empty, or have one, two, or infinitely many components. Each showed that Julia
sets are typically fractal, and clearly were able to visualize and understand the very
complicated structure of Julia sets, studying and explaining complicated behavior.

The huge amount of interest in the field of iteration of functions of one complex
variable, led by the work of Fatou and Julia, continued until the 1930s when it
inexplicably faded into obscurity. Although a few important mathematicians worked
in this field during that time, it wasn’t until the 1980s that it revived, probably
due to the advent of accessible computers which enabled others to visualize the
extraordinary beauty and complexity that Julia and Fatou obviously understood.
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5 Normal Families

The key tool that enabled Fatou and Julia’s breakthrough was their realization of the
relevance of Montel’s work on normal families to the theory of iteration.

Definition 5.1 (Normal Family). Let U be an open subset of the Riemann sphere
and § = {f; |i € I} be a family of meromorphic functions indexed by I and
defined on U with values in C. The family § is a normal family if every sequence f,
contains a subsequence f,; which converges uniformly on compact subsets of U.

Arzela’s theorem gives us an equivalent, and often more useful, condition for
checking normality. If X is a metric space with metric d, a family of functions
{fi : X — X} is equicontinuous if for every € > 0, there exists § > 0 so that
d(x,y) < e implies d(fi(x), fi(y)) < § forall i.

Theorem 5.2 (Arzela). A family of meromorphic functions {f, U — @} is nor-

mal if and only if it is equicontinuous on every compact subset of U.

Corollary 5.3. If a family of holomorphic functions {f; :U — C} is locally uni-
formly bounded, then it is a normal family.

The concept of normal families enables us to define the Julia set 7 and the Fatou
set Fr.

Definition 5.4. A point z is in the Fatou set for f if there is a neighborhood U of z
such that the family of iterates { f”|y} is normal. The complement of the Fatou set
is called the Julia set.

If p is a periodic point of period n, the multiplier A of the periodic orbit is
A = (f™)(p); by the chain rule, this is the product of the derivatives of f along the
periodic orbit.

Definition 5.5. A periodic orbit p with multiplier A is
e superattracting if A = 0,
e attracting if 0 < |A| < 1,
e neutral if |A| = 1, and
e repelling if |A| > 1.
The next result follows easily from the definitions and Arzela’s theorem.

Proposition 5.6. If p is an attracting or superattracting periodic point, then
Bas(p) C F.
If p is a repelling periodic point, then p € J.

The Fatou set is sometimes called “the domain of normality” or “the domain of
equicontinuity.”

Corollary 5.7. The Fatou set F is an open set which is completely invariant. That
is, ifz € F, then f(z) € Fand f~'(z) C F.

The Julia set J is a completely invariant and compact set in C.
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Fig. 5 Pictured are J¢ (in black) and Fy (in reds and blues) for several examples. (top left)
“The basilica” corresponds to f(z) = z> — 1, and has an attracting period 2 orbit. (top right)
“The airplane,” which has an attracting period 3 orbit. (bottom left) “Douady’s rabbit,” also has an
attracting period 3 orbit. (bottom right) A map with an attracting period 72 orbit

Proof. The fact that F is open follows immediately from the definition. We have the
invariance of F s since f is a continuous, open mapping. Since J is the complement
of a completely invariant, open set, its invariance and compactness follows. O

A few examples of J and F for polynomials with attracting periodic points are
shown in Fig. 5.

While the previous examples have all had attracting periodic orbits, for many
polynomials, all finite periodic orbits are repelling. As examples, consider the
mappings f(z) =z —2and f(z) = 2> +1i.

Since infinity is always an attracting fixed point for a polynomial, we have
Bas(oo) C F. Butif all orbits in C are repelling, there can be no other components
of F. That is, the filled Julia set is equal to the Julia set, i.e. X = 7. In such a
situation, if 7 is connected it will be a dendrite. See Fig. 6.

In the case of a polynomial where the Julia set is not connected, it consists of
infinitely many components. We will examine this case shortly.
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Fig. 6 The Julia sets for z> — i and the limit of period doubling (z* — 1.4011552. ..), which are
connected but have no attracting periodic orbits

6 The Local Theory

As mentioned in Sect. 4, the behavior in a neighborhood of a fixed point or periodic
point was, in most cases, well known to Fatou, Julia, and their predecessors. In this
section, we briefly address those situations.

6.1 Bottcher coordinates

In the case where f(z) is a polynomial, we have Bas(co) C F. Furthermore, since
polynomials have no poles, Bas(oco) is a completely invariant subset of the Fatou set.

For |z| large, f(z) is conjugate to w > w?, where d is the degree of f.Let U be
a neighborhood of oo; there is a holomorphic map ¢ so that
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f

U—> U
N wewd ~
C~D — C~D

where d is the degree of the polynomial f.!
We now explain how to extend this conjugacy to a larger neighborhood. Choose

r large so that Ay = qb_l (ﬁrd ~ ]D),.) is contained in U. Here D, denotes the disk

of radius r centered at the origin. Now define A; = f~!(Ay). As long as there is
no critical point of f in Ay, the map f: 4] — Ao will be a d-fold covering map.

We can extend the conjugacy ¢ to U U A; by setting ¢(z) = ¢>(f(z))1/dk,
where we take care to choose the appropriate branches of the inverses. There is
no problem doing this, since both maps are covering maps. This process can be
continued inductively as long as A does not contain a critical point of f. This
gives us a set of coordinates on {oo} U | 72, Ax; these are usually called Bottcher
coordinates.

The preimages of curves of constant radius under ¢ are called equipotentials; the
preimage of the radial line re>*'? (t > ry) is called the external ray of angle 6 (where
6 is measured in turns); we denote it by Ry, and use Rg(¢) as a parameterization,
with ¢ (Re(t)) = te? %,

If the orbits of all critical points for the polynomial f are bounded, these
coordinates will extend to all of Bas(oo); see Figs. 7 and 8. Even in the case where
a finite critical value lies in Bas(co), equipotentials and all but a countable number
of external rays can be defined on the whole of Bas(co), as we shall see shortly.

If lim,—; Ry (¢) exists, we say that the ray Ry lands at a point z in the Julia set.
If all rays land, then the Julia set must be locally connected (since then we have ¢!
extending as a continuous mapping from I to Bas(oc)).

k
"More precisely, we set ¢(z) = (limy— oo f* (z))l/d .
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Fig. 7 Béottcher coordinates on Bas(oo), with equipotential lines and external rays shown

Fig. 8 On Bas(co), preimages of the annulus Ay (as described earlier) are shown, where points z
for which f"(z) € Ay has positive imaginary part are colored in shades of red, and those where
Im(f"(z)) < 0 are colored green. This coloring enables one to read off equipotentials and external
angles of the form p/2"

It should be apparent that the previous construction can be immediately adapted
to a bounded Fatou component in the case of a fixed (or periodic) point p with
f'(p) = 0. In this situation, the mapping will be conjugate to w*, where k is the
smallest integer such that the kth derivative f % (p) is nonzero (k > 2). In this case,
the corresponding ray R is called an internal ray.

For all points z € Bas(c0), the escape rate (|¢(z)]) is well defined, since we have

1/d*
o1 = (Jim I74@1)

and the dth root is unambiguous for non-negative numbers.
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Fig. 9 Two quadratic Julia sets homeomorphic to the Cantor set

This enables us to define the Green’s function for the filled Julia set Ky
(sometimes also called the canonical potential function) as

_)loglp@)| z¢ Ky
0

Gf(Z) zGICf

One sees easily that Gy is continuous everywhere and harmonic, and that
Gr(f(2) =dGs(2).

The level curves G y(z) = constant > 0 are equipotentials for f; observe that
f sends one equipotential to another equipotential. While we won’t go into details
here, one can use Gy to define a measure on the Julia set which corresponds to the
harmonic measure on K ;.

Observe that if there is a critical point which lies in Bas(co), we cannot extend
the conjugacy ¢ without ambiguity to the entire basin of infinity, since there will be
at least two rays which land at the critical point. (Of course, we should not expect
to be able to extend the conjugacy, since w’ has no nonzero finite critical points.
Instead, the conjugacy will correspond to a Blaschke product.)

By analytically continuing the inverse of ¢ we can define external rays and
equipotentials on the whole of Bas(co), although rays which contain preimages of
the critical point(s) will not be disjoint.

Consider f(z) = z> + ¢ with ¢ < —2. In this case, f"(0) — oo, so 0 € Bas(c0).
The equipotential Gs(z) = log|c| will be an (analytic) circle, but its preimage
G (z) = log|c|/2 will branch at the origin, making a figure-8 shape. Note that the
two preimages of the ray passing through ¢ must cross at the origin (since it is a
critical point), although all other rays extend without ambiguity to the interior of the
figure-8. Of course, there will be two more rays which branch at the pre-image of 0,
and so on. See Fig. 9.

Observe the close similarity to the classical construction of a Cantor set: the Julia
set must lie in the interior of the nested figure-8 shapes. If these figure-8s contract
to points, the result will be homeomorphic to a Cantor set.
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Fig. 10 Another quadratic Cantor Julia set, and a cubic with only one critical point which escapes

This is indeed what happens if all the critical points of f lie in the basin of co. For
quadratic polynomials, since there is only one critical point, we have the following.

Lemma 6.5 (Dichotomy for Quadratic Polynomials). Let f(z) be a quadratic
polynomial with critical value c.

» Ifthe orbit of ¢ is unbounded, then J ¢ is homeomorphic to a Cantor set.
» Ifthe orbit of ¢ is bounded, then [J; is connected.

Using this dichotomy, one can define the Mandelbrot set as
M = {c € C | the orbit of 0 under z — z* + c is bounded} .

Of course, for a polynomial of degree three or higher there can be an intermediate
case where the Julia set consists of infinitely many components but is not a Cantor
set; see Fig. 10.
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7 Montel’s Theorem and Its Consequences

One powerful tool to understanding the Julia set 7 is Montel’s theorem.

Theorem 7.1 (Montel). Let § be a family of meromorphic functions defined on a
domain U. If there exist three points a, b, ¢ € C so that

@hein(Jsrw) =

fEF

then § is a normal family.

Corollary 7.2. Let z € Jy. Then for any neighborhood U of z, the exceptional set

& =C~J s

n>0

contains at most two points.

The points in &y are called exceptional points.

Note that for a polynomial p(z), oo is an exceptional point. We have
p~!(00) = {oo}. Furthermore, since co is a superattracting point, Bas(co) C F,
and the Julia set 7 lies in a bounded region of C. Since p has no poles, p(C) = C;
thus oo is an exceptional point.

Theorem 7.3. Suppose z € Jy, and let E, = | J Ey, where U ranges over all
neighborhoods of z. Then

o If &, contains exactly one point, then f is conjugate to a polynomial.
o If &, contains two points, then either f is conjugate to z% or 1/z%, where d is the

degree of f.
In both cases, E, does not depend on the choice of z € J, and £, C F.

The proof follows from conjugating f by a Mobius transformation which moves
&, to {oo} (in the first case) or {0, oo} in the second. An easy calculation finishes the
proof.

Corollary 7.4. If Jy has nonempty interior, then Jy is the entire Riemann
sphere C.

Proof. Suppose there is a domain U C J. Since J is forward invariant,
Jsrwycg and | Jrf@)=C~é.

n>0 n>0

A

But J is closed and &, contains at most two points, so J = C. O
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The map

(@4
T 4z(22-1)

is known as a Lattés’ example. L(z) corresponds to multiplication by 2 on the torus
T? via the Weierstrass g function. Furthermore, the Julia set of L is all of C. For
further details, a good reference is [25]. Other examples of rational maps where J
is the entire Riemann sphere can be found in [28].

L(z)

Corollary 7.5. If z is any point in the Julia set of f, then preimages of z are dense
inJy:

Jr=U .

n>0

Proof. Observe that for any w € C which is not an exceptional point, the preimages
of w accumulate on the Julia set:

Jr <l m.

This follows since for any z € J and any neighborhood U of z, we havew € f"(U)
for some n.
Since J is a completely invariant set and 7 is closed, we also have

Uf_”(z)cj foranyz € J.

Theorem 7.6. The Julia set is a perfect set. That is, it has no isolated points.

Proof. Let z € J. We can find another pointa € J so that f"(a) = z for some n,
but a is not a forward image of z. (If z is not periodic, any inverse of z will do. If z is
periodic of period m, consider g = f, and choose a so that g(a) = zbuta # z.)

Now let U be a neighborhood of z. Since a € J, a is not an exceptional point,
so there is a k > 0 so that f¥(U) contains a.

J Koo

A

Let b be another point of U for which f*(b) = a. Then b # z since z is not
in the forward orbit of a. Since J is completely invariant, @ and b are in 7. Thus,
every point z of 7 is an accumulation point of other points of 7. O
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We now show that the Julia set is the closure of the repelling periodic points.
Lemma 7.7. J C {periodic points}.

Proof. We give the proof for polynomials p: C — C; a similar idea works for
rational functions.

Let Jp be the Julia set with any critical values of p removed, and let w € Jy.
Since Jy contains no critical values, there is a neighborhood U of w and a local
inverse S:U — C~ U. Let

P2 —z

, 0.
So—z "'~

gn(2) =

Observe that g, is bounded and takes the values 0 and 1 only on periodic orbits z.
Consequently, the family {g,} is normal if and only if {p, } is normal.”

Since w € J, the family {p,} and hence {g,} cannot be normal on any
neighborhood of w. But unless there is a sequence of periodic orbits accumulating
to w, the family {g,} omits the values O, 1, and oo on a neighborhood of w,
contradicting Montel’s theorem. O

To prove the inclusion the other way, we show that there are only finitely many
non-repelling orbits. Then the previous lemma, coupled with the fact that 7 is a
perfect set, will give the result.

Let B(p) denote the immediate basin of p, that is, the connected component of
Bas(p) which contains p.

Theorem 7.8. If p is an attracting fixed point, then B(p) contains a critical value.

Proof. Suppose there is no critical value in B(p). Then if U is a simply connected
neighborhood of p contained in B(p), we can construct a local inverse S| for f |y
so that S;(p) = p.

Observe that U; = S;(U) is a simply connected subset of B(p), so we can repeat
the process using U; to construct S5. Indeed, since there is no critical value in B(p),
it can be repeated infinitely often, giving a family {Si} on U, which is normal (by
Montel’s theorem) since Sx(U) C B(p) C F.

But p is a repelling fixed point for each S, so the family cannot be normal. O

We can extend this result to the a count on attracting periodic orbits: if p is of
period k, apply the theorem to f*.

2To adapt this proof to a rational function R(z), instead one sets J, to be the Julia set with infinity,
all critical values, and all poles of R removed. Then, for a neighborhood U of a point w € K, let
S1, S», and S3 be three local inverses of R? and take

R"(z) — Sl(Z)) (Sa(Z) - S2(Z))
R'(2) = 82(2) ) \ S3(2) = S1(2) )

gn(@d) = (

The family {g,} is normal if and only if {R"} is normal.
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From Theorem 7.8, we get an upper bound of 2d — 2 on the number of attracting
orbits of a rational map f of degree d. Fatou and Julia showed (by means of a
perturbation argument) that the number of neutral cycles is at most 4d —4. However,
in 1987 Shishikura [31] used quasiconformal surgery techniques to give the sharp
bound of at most 2d — 2 non-repelling orbits for any rational map of degree d. This
bound is commonly called the Fatou-Shishikura inequality. Applying the Fatou-
Shishikura inequality (or the larger Fatou/Julia bound) gives the following.

Theorem 7.9. The Julia set J is the closure of the repelling periodic orbits of f.

Proof. To prove this, we merely combine the fact that J C {periodic points} with
the fact that there are only finitely many non-repelling periodic orbits. Since 7 is a
perfect set, each point in it must be the accumulation of some sequence of repelling
periodic points. O

8 Neutral Periodic Orbits

We have seen that repelling periodic orbits always lie in the Julia set, and that
attracting orbits lie in the Fatou set. If p is part of a periodic cycle with multiplier
on the unit circle, p may either lie in the Julia set or in the Fatou set.

Theorem 8.1. Let p be a fixed point with multiplier f'(p) = A, |A| = 1. Then
p € F if and only if the SFE ¢(f(2)) = A¢(z) has an analytic solution in a
neighborhood of p.

Proof. If SFE has a solution in a neighborhood of p, then p € F follows
immediately.

Conversely, suppose p € F and let U be the maximal domain such that p € U
and U C F. Since U is disjoint from J, its complement in C contains more than
three points, so the universal cover U is conformally equivalentto .

Thus, we have a cover ¢ : D — U with ¢(0) = p, and we canlift f to /:D — D
with f(0) = 0. Since | f/(0)] = |A| = 1, then by the Schwarz lemma, f(z) = Az.
The mapping ¢ is the solution ¢ to SFE. O

Corollary 8.2. If p is a periodic point with multiplier A a root of unity, then p € J.

Proof. Replacing f by an iterate if necessary, we may assume p is a fixed point.
Suppose A¥ = 1 and p € F. Then if SFE has a solution ¢ in some neighborhood
U of p, we have ¢ o f¥ o ¢~ is the identity on U. But since f is analytic, it is the
identity on C, and thus [ is of degree 1, a contradiction. O

Theorem 8.3 (Fatou-Leau Flower Theorem). Suppose A" = 1 with A/ # 1 for
1 < j <n. Let f(z) = Az+axz> + ... be analytic in a neighborhood of the origin.
If f" #£1d, there is an integer k for which there are nk attracting petals bounded by
analytic curves which are tangent at the origin. The union of the petals is forward
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Fig. 11 On the left is the “cauliflower” (z +> 72 + 1/4) with a cardioid-shaped attracting petal in
green, arepelling petal in violet, and the forward orbits of several points shown. At right is the “fat
rabbit” with attracting petals indicated in green

invariant, and any orbit in a petal is asymptotic to the origin. Any compact set within
a petal converges uniformly to the origin under f".

In addition, there are nk repelling petals; in each, every orbit eventually leaves
the petal (alternatively, in each petal there is a branch of the inverse for which the
petal is attracting). See Fig. 11.

8.1 Rotation Domains

In 1942, Siegel [32] found a full measure subset of the unit circle A such that
whenever the multiplier at p is in A, the SFE has a solution, so p € F.

Theorem 8.4. Let p be a fixed point for f with multiplier A = ¢*™% where 0 is
irrational. Suppose also there exist constants a and b such that

’9 - —’ > ib for all rationals E
q q

Then SFE has a solution and p € F.

The condition above is roughly that “6 is badly approximated by rationals.” For

example, the golden mean # is such a number, as is any number for which the

terms in its continued fraction expansion are bounded. In this case, the topological
disk around p on which f is conjugate to an irrational rotation is called a Siegel
disk.

The Julia set of a polynomial with a Siegel disk can be extremely complicated,
despite the fact that the dynamics on the Siegel disk is conjugate to a “simple” rigid
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rotation. For example, there are quadratic polynomials with Siegel disks whose Julia
set is a non-computable set (see [9]), as well as Julia sets with no interior but nonzero
Lebesgue measure (see Sect. 10).

Related to Siegel disks are Herman rings. A Herman ring is a domain which
is conformally equivalent to an annulus, on which the dynamics is conjugate to an
irrational rotation. Thus, a Herman ring is a subset of the Fatou set. Herman showed
their existence in 1979.

Siegel disks and Herman rings are collectively referred to as rotation domains.

Because of the maximum principle, Herman rings cannot occur for polynomials.
Shishikura has shown that the degree of a rational map with a Herman ring must be
at least three. For any odd degree at least 3, we can construct a Blaschke product
f which sends the unit circle to itself by an orientation-preserving diffeomorphism
with any desired rotation number p. If p is Diophantine (i.e., badly approximated by
rationals), then f will have a Herman ring.

For example, the map ezmtzz—lZ _:Z, with ¢ ~ 0.6151732, has a Herman ring
with rotation number (+/5 — 1)/2. See Fig. 12.

8.2 Cremer Points

The condition of a Diophantine rotation number for the existence of a Siegel disk is
sufficient, but not sharp. For the map z> + Az, if A is Brjuno (i.e., if the convergents
DPn/qn of A satisfy Y (logqn+1)/gn < 00), then the map will have a Siegel disk
about zero.

Yoccoz (see [21,35]) showed that this condition is sharp for quadratic polynomi-
als: if it fails to hold, the map cannot be linearized in a neighborhood of the fixed
point. Indeed, it has the small cycles property: every neighborhood of the origin
contains infinitely many periodic orbits.

A point with this property is called a Cremer point, and is of necessity in the
Julia set.

We know of no good means of making a picture of a map with a Cremer point,
although topological models exist and such Julia sets are always computable [5]
when they have empty interior (which is necessarily true for quadratics). Julia
sets with Cremer points are not locally connected sets [33] and can have positive
Lebesgue measure (see Sect. 10). See [7] for more details and further references.

9 Fatou-Sullivan Classification of Fatou Components

In 1983, Sullivan [33] classified the possibilities for a Fatou component which is
eventually periodic. While most of these possibilities were known to Fatou and Julia,
Sullivan’s work completed the classification.
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Fig. 12 On the left is the Julia set of a polynomial which has a Siegel disk with a rotation number
of the golden mean (the Siegel disk and its preimages are shown in blue; the light—-dark bands
indicate orbits within the Siegel disk). On the right is a rational map with a Hermann ring with a
golden-mean rotation (Bas(0o) is in reds and yellows, Bas(0) in shades of blue, with the Hermann
ring and its preimages shown in black)

Let U be an eventually periodic such a component of the Fatou set. Then,
after passing to an iterate, we can view U as being fixed. There are only four
possibilities:

(1) U is the immediate basin of an attracting (or super-attracting) point p.
(2) U is the immediate basin of one petal of a parabolic point.

(3) U is a Siegel disk.

(4) U is a Herman ring.
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Furthermore, Sullivan [34] showed that every Fatou component is eventually
periodic, that is, there are no wandering domains for rational maps.3

Theorem 9.1 (Sullivan’s Non-wandering Theorem). Every Fatou component U
for a rational map is eventually periodic. That is, there exist integers n > 0
and p > 1 so that the forward image ["(U) is mapped onto itself by f?. In
particular, it follows that every Fatou component is either a branched covering or a
biholomorphic copy of some periodic Fatou component, which necessarily belongs
to one of the four types described above.

10 A Julia Set of Positive Measure

Earlier, we noted that either J has no interior or it is the entire Riemann
sphere. However, recently Buff and Chéritat [10] showed that there is a quadratic
polynomial with a Julia set of positive measure which is not the entire Riemann
sphere.

They did this by constructing a sequence of perturbations of Siegel disks with an
increasingly complicated boundary, such that the loss of measure in the filled Julia
set is controlled. The Siegel disks become “digitated,” with deep channels entering
towards the center of the disk. Informative pictures of the process can be found on
Arnaud Chéritat’s web page [13].

More precisely, Buff and Chéritat showed the following.

Theorem 10.1. Let P,(z) = e*™%z + 7%. Then

* there exists a such that Py has a fixed point of Cremer type and Jp, has positive
measure;
* there exists B such that Pg has a Siegel disk and Jp, has positive measure.

11 Conclusion

In this brief note, I hope I have given you some idea of the beauty and complexity
related to holomorphic dynamics in one variable. Of course, due to limited space
many details and interesting, relevant topics were omitted. I hope I have inspired
the reader to follow up and learn more about this vibrant and exciting area of
mathematics.

3This result is not valid for transcendental maps, since z + sin(277z) has a wandering domain.
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Parameter Planes for Complex Analytic Maps

Robert L. Devaney

Abstract In this paper we describe the structure of the parameter planes for
certain families of complex analytic functions. These families include the quadratic
polynomials z> + ¢, the exponentials A exp(z), and the family of rational maps
7" + A/7". These are, in a sense, the simplest polynomial, transcendental, and
rational families, as each has essentially one critical orbit.

In this paper we give a brief overview of the structure of the parameter plane for
three different families of complex analytic maps, namely quadratic polynomials
(the Mandelbrot set), singularly perturbed rational maps, and the exponential
family. The goal is to show how these objects allow us to understand almost
completely the different dynamical behaviors that arise in these families as well
as the accompanying bifurcations.

Keywords Mandelbrot set * Julia set * Singular Perturbations
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1 The Mandelbrot Set

The Mandelbrot set M is one of the most interesting and beautiful objects in all of
mathematics. Amazingly, it arises as the parameter plane for the seemingly simple
quadratic family P.(z) = z> + c. See Fig. 1. This is a picture in the c-plane (the
parameter plane) that describes the fate of the orbit of the only critical point for
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Fig. 1 The Mandelbrot set. Colored points are c-values for which the orbits of 0 escape to co;
black points are c-values for which this does not happen. So the Mandelbrot set is the black region
in these images

this family, namely 0. If the orbit of 0 does not tend to oo, then the corresponding
parameter c¢ lies in M and we color this point black. If the orbit does escape to oo,
then ¢ is not in the Mandelbrot set and we color ¢ according to how quickly the
orbit of 0 reaches the exterior of a large disk surrounding the origin (with red points
escaping fastest, followed in order by orange, yellow, green, blue, and violet).

In complex dynamics, the object of central interest in the dynamical plane is the
Julia set. For the family P., there is an open neighborhood of co in the Riemann
sphere consisting of points whose orbits tend to co. The set of all points whose
orbits tend to oo is called the basin of co. Then the Julia set, denoted by J(P.) is the
boundary of this basin. There are other equivalent definitions of J(P,). For example,
it is known that J(P,) is also the closure of the set of repelling periodic points of
P.. As a consequence, we see that the Julia set is the chaotic set, for arbitrarily close
to any point in J(P,), we have points whose orbits are periodic and other points
whose orbits tend to co. In fact, via Montel’s Theorem, given any point in the Julia
set, then any open neighborhood of this point, no matter how small, is eventually
mapped over the entire complex plane, minus at most one point. So the family of
iterates of P, on the Julia set is very sensitive to initial conditions. The filled Julia
set is, by definition, the set of all points whose orbits do not tend to co. So J(P,)
is also the boundary of the filled Julia set. The Fatou set is then the complement of
J(P.) in the Riemann sphere.

The natural question is: Why are we interested in the fate of the orbit of the
critical point? Well, in short, the critical orbit “knows it all” in complex dynamics.
In particular, for the family P,, if the orbit of 0 tends to oo, then the Julia set
of P, is a Cantor set. If the orbit of 0 does not escape to oo, then J(P,) is a
connected set. So there are only two possible types of Julia sets for P.: those that
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Fig. 2 The Julia sets for z> — 1 (the basilica) and z2 — 0.12 + .75i (the Douady rabbit). The filled
Julia sets are the black regions, so the Julia sets here are the boundaries between the black and
colored regions

consist of uncountably many point components, and those that consist of exactly
one component. There are no Julia sets for quadratic polynomials that consist of 2
or 20 or 200 components.

The large black open regions visible in the Mandelbrot set are regions for which
P. has an attracting cycle of some given period. It is known that, if P, has an
attracting cycle, then the orbit of the critical point must tend to this cycle. Hence
there can be at most one attracting cycle for a quadratic polynomial. For example,
any c-value drawn from the central cardioid has an attracting fixed point. For ¢
in the large open disk just to the left of this cardioid, P, has an attracting 2-
cycle. We therefore call this the period 2-bulb. And, for ¢ in the northernmost and
southernmost bulbs off the main cardioid, P, has an attracting cycle of period 3,
so these are the period 3-bulbs. Such open disks are called hyperbolic components,
since it is known that P, must then be hyperbolic on the Julia set, i.e., in some
suitable metric, P, is everywhere expanding.

As ¢ moves from one hyperbolic component to another, the map undergoes a
bifurcation. The simplest part of this bifurcation is the fact that we move from
having an attracting cycle of some period when we are in one hyperbolic component
to having an attracting cycle of some other period in the subsequent hyperbolic
component. But, in fact, much more happens: the topology of the Julia sets changes
dramatically. For example, if we move from the main cardioid to the period-2 bulb,
the Julia set, which is just a simple closed curve when c is in the main cardioid,
becomes a “basilica” when c is in the period 2-bulb. What happens is a repelling 2-
cycle that lies in J(P,) when c is in the cardioid suddenly merges with the attracting
fixed point and thereby makes it neutral when the parameter reaches the boundary
of the cardioid. So two points in J(P.) become identified to one point. Meanwhile,
infinitely many pairs of preimages of this point also become identified. This is
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what accounts for the infinitely many “pinch-points” visible in the basilica. Or, as
we move from the main cardioid to the period 3-bulbs, a period 3-cycle becomes
identified and the Julia set transforms into the “Douady rabbit.” See Fig. 2. You may
construct an animation to view these bifurcations by using the Mandelbrot Movie
Maker applet at the website http://math.bu.edu/DYSY S/applets.

Along the boundaries of these hyperbolic components is where things get
complicated. At each c-value on the boundary, P, has a neutral cycle, i.e., a periodic
point z of period n for which (P!)(z) = exp(27if). As ¢ winds once around the
boundary of this hyperbolic component, 6 winds once around the unit circle. As a
consequence, there is a dense set of such ¢’s for which 6 is rational. In this case,
the neutral cycle lies in the Julia set but there are still regions in which all points
tend to the neutral cycle (although these regions no longer surround the points on
the cycle). These types of periodic points are called parabolic points.

The case where 6 is irrational is much more complicated. If 6 is highly irrational
(i.e., “far” from rationals), then there is an open disk around each point on the cycle
on which P is conjugate to the irrational linear rotation of angle 6. These disks are
called Siegel disks. When 6 is close to rationals, the structure of the Julia set near
this cycle is still not completely understood. This is one of the major open problems
in complex dynamics. See [16] for details.

A natural question is how do we understand how all of the bulbs and other smaller
Mandelbrot sets are arranged in M. Amazingly, if we zoom in to any portion of the
boundary of the Mandelbrot set, it turns out that this zoom is very different from
any other zoom that is non-symmetric with respect to ¢ — ¢. More importantly,
with a keen eye for geometry, one can deduce exactly where in the boundary of M
this zoom is, and, more importantly, what the corresponding dynamical behavior
in the associated bulb is. It turns out that there are several different geometric and
dynamical ways to understand the structure of these bulbs. First we will look at this
geometrically, and then, using complex analysis, we will indicate how to prove this.

For simplicity, let’s concentrate on the bulbs attached to the main cardioid. How
do we know what their period is? One way is easy: look at the bulb. There is an
antenna attached to this bulb. This antenna has a junction point from which a certain
number of spokes emanate. The number of these spokes tells us exactly what the
period is. For example, in Fig. 3, we display two bulbs having periods 5 and 7. Note
that this is the exact number of antennas hanging off the junction point in the antenna
of each bulb.

There is another way to read off the periods of these bulbs. Choose a parameter
from the interior of a period n bulb and plot the corresponding filled Julia set. There
is a central disk in these filled Julia sets that surrounds the origin. Then there are
exactly n — 1 smaller disks that join this main disk at certain junction points. For
example, in Fig. 2, we see that the rabbit has two “ears” attached to the central disk
and the period of this bulb is 2 + 1 = 3. Similarly, the basilica has just 1 ear and the
period here is 1 +1 = 2. In Fig. 4, we display Julia sets from the above period 5 and
period 7 bulbs, and we see the same phenomenon. The Mandelbrot/Julia Set applet
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Fig. 3 Period 5 and 7 bulbs hanging off the main cardioid

Fig. 4 Julia sets drawn from the above period 5 and 7 bulbs hanging off the main cardioid. Note
that there are 4 and 6 “ears” hanging off the central disks of these filled Julia sets

at the website http://math.bu.edu/DYSY S/applets allows you to view and zoom in
on the Mandelbrot and Julia sets of P, to see more examples of these phenomena.

Now let us turn to the arrangement of the bulbs around the main cardioid. Recall
that, on the boundary of the main cardioid, P, has a fixed point whose derivative
is given by exp(2wi6). Then a little algebra shows that a parametrization of the
boundary of this main cardioid is given by

eZﬂiQ e47n'0

c=c(0) = 5 2
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So when 8 = 0, ¢ = 1/4 and we are at the cusp of the main cardioid; when
0 = 1/2, ¢ = —3/4, and we are at the point where the period 2-bulb meets
the main cardioid. In general, when 0 is a rational number p/q in lowest terms,
the corresponding c-value lies at the meeting point (also called the root point) of the
main cardioid and a period g-bulb which we now call the p/g-bulb. So we see that
the bulbs are arranged around the main cardioid in the exact order of the rational
numbers. In particular, we can count exactly how many period g-bulbs are there.
For example, there are 6 period 7-bulbs and 4 period 10-bulbs touching the main
cardioid.

But there are several other geometric and dynamical ways to understand this.
Look at the period five bulb in Fig.3. We call the spoke of the antenna that
extends down to the bulb from the junction point the principal spoke. Note that
the “shortest” spoke (that is not the principal spoke) is located 2/5 of a turn in
the counterclockwise direction from the principal spoke. And this bulb is exactly
the 2/5-bulb. In that same figure, we also see that the period 7-bulb is, in fact, the
3/7-bulb.

A second way to see this is to turn to the filled Julia set. In Fig. 4, each of the
filled Julia sets has a main component that surrounds the origin together with g — 1
ears attached at one point. Note where the “smallest” ear is located; it is exactly p/g
of a turn in the counterclockwise direction from main component.

And then there is a third way to read off p/q. Simply plot the points on the
attracting cycle of period ¢ in the Fatou set. What you see is that this cycle moves
around the ears and the main component, rotating by p/q of a turn at each stage.
So there is a very nice connection between the geometry of the Mandelbrot set and
Julia sets and the dynamics of P..

One natural question that arises is: What is meant by the “shortest” spoke or
the “smallest” ear? To make these ideas precise, we turn to the Riemann Mapping
Theorem.

First recall that we have a basin of oo that is an open disk in the Riemann sphere
whenever c¢ is chosen to lie in M. Call this basin B.. Then it is known that we can
construct and analytic homeomorphism ¢, that takes B, to the open unit disk D and
maps oo to 0. Moreover, ¢, conjugates P, on B, with the simple map z > z> on .
That is,

¢e(Pe(2) = (¢ (2))*.

In particular, the map z> takes the straight ray of angle 6 given by te’? for 0 < ¢ < 1
to the ray te’??, the ray of angle 26. Then the preimage under ¢! of the straight
ray of angle 6 in B, is called the external ray of angle 8, and P, interchanges these
external rays just as z > z° interchanges the straight rays.

Now it is a fact that, when P, has an attracting cycle, each of these external rays
lands at a unique point in J(P.). The reason for this is that P, is hyperbolic on
J(P.) and consequently the Julia set is locally connected. When c is chosen from
the main cardioid, each external ray has a unique landing point, so this says that P,
is conjugate to z > z2 on its Julia set. But, when ¢ lies in other bulbs, certain of
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Ray 0

Fig. 5 The orbit 8y — 6, — 6, ... of the rays landing at the fixed point J(P.) when ¢ is in the
2/5 bulb

these rays land at the same point. It is true that the external ray of angle 0 always
lands at a particular fixed point in J(P,) and this is the only such ray landing at
this point. Similarly, the external ray of angle 1/2 is the unique ray landing at the
preimage of this fixed point. But, when ¢ is chosen from the p/g-bulb, there is a
fixed point that lies on the boundary of the main Fatou component containing 0 and
is the connection point for the ¢ basins of the attracting cycle. Now there are exactly
q rays that land at this fixed point. Moreover, P, must interchange these rays just as
above, by angle-doubling.

So, for example, when c is in the 2/5-bulb, there must be five rays of angle
6o, . .., 04 that land on this fixed point. And they must be mapped around just as P,
interchanges the ears in the Julia set, so

90!—)91!—)92!—)93!—)94“—)90....

Then a little computation shows that 6, = 9/31, so that 6; = 18/31, 6, = 5/31,
03 = 10/31, and 64 = 20/31. In similar fashion, the external rays that land at the
fixed point on the main component of a Julia set when c is in other p/g-bulbs may
also be calculated.

So, how do we determine the size of the “ears” on these Julia sets? Using what
is called harmonic measure, we define the size of the ears just to be the difference
of the angles of the two landing external rays that separate this ear from the other
components containing the attracting cycle. So, in the 2/5 case, we see that the
smallest ear is contained between the external rays of angles 6, = 9/31 and 6; =
10/31, so this ear has “size” 10/31 — 9/31 = 1/31, whereas all the other ears are
larger (Fig. 5).

Now how do we determine the size of the spokes of the antennas in the
Mandelbrot set? We use essentially the same technique, but now in the parameter
plane. Using a celebrated result of Douady and Hubbard [11], there is a similar
“uniformization” of the exterior of M in the Riemann sphere which again maps oo
to 0. Let C denote this external region. To construct this map, for each ¢ € C, we
have that the critical value ¢ for P. now lies in B.. So we can consider the function
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P(c) = ¢(c). Just as in the previous case, @ is now an analytic homeomorphism
that takes C onto ID. So again we have external rays, but now they are in the
parameter plane. It is known that all rational rays land at a unique point on the
boundary of the Mandelbrot set. Some land at root points of bulbs or cusp points
on the cardioids of small copies of the Mandelbrot set. Others land at the endpoints
of the spokes of the antennas or at the junction points. And one can use similar
techniques as above to determine exactly where certain of these external rays land.
See [3,8]. For example, it is known that if an external ray of angle 6 lands at the root
point of a period g-bulb, then the angle & must have period ¢ under angle-doubling.
So, for example, the two rays landing at the root point of the period 2-bulb must be
1/3 and 2/3. The rays landing at the northern period 3-bulb are 1/7 and 2/7 and
at the southern period 3-bulb are 5/7 and 6/7. So the rays 3/7 and 4/7 must also
land on a period 3-bulb that is somewhere to the left of the northern and southern
period 3-bulbs. Indeed, as is well known, there is a small Mandelbrot set lying along
the negative real axis whose main cardioid contains parameters for which there is
an attracting 3-cycle. So these two external rays both land at the cusp of this main
cardioid.

One curious fact that relates to the Farey tree involves the size of the bulbs
hanging off the main cardioid. To begin, we think of the root point of the main
cardioid as being the cusp at ¢ = 1/4. Then we call the main cardioid the 0/1-bulb.
Which is the largest bulb between the root points of the 0/1 and 1/2-bulbs (in, say,
the upper portion of M)? It is clearly the 1/3-bulb. And note that 1/3 is obtained
from the previous two fractions by Farey addition, i.e., adding the numerators and
adding the denominators

o, ,1 1
1 P27y

Similarly, the largest bulb between the 1/3 and 1/2-bulbs is the 2/5-bulb, again
given by Farey addition. As above, we again measure the size of these bulbs by
determining the interval of external rays that land on the bulb. So the size of the
period 3-bulb is 2/7 — 1/7 = 1/7 while the 2/5-bulb has size 1/31, as seen in
Fig. 6. Note that the 2/5-bulb is the largest bulb between the 1/2 and 1/3-bulbs.
Then this process continues. The largest bulb between the 2/5 and 1/2-bulb is the
3/7-bulb and the largest bulb between the 2/5 and 1/3-bulbs is the 3/8-bulb and so
on along the “Farey tree [4]”.

One of the most interesting and important open problems in complex dynamics
is the question of whether or not the boundary of the Mandelbrot set is locally
connected. If this is the case, then all of the external rays land at unique points along
the boundary of M. As a consequence, we would understand everything about the
Mandelbrot set. However, it is not at all clear that this boundary is locally connected.
Think about the period one-millionth bulb—the antenna here has a million spokes!
And as the denominators of p/q get larger, the antenna structure also becomes
even more “complex.” It is true that the size of these bulbs gets smaller as ¢
increases, so it is possible that the boundary is locally connected. However, a result
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Fig. 6 Rays landing on the Mandelbrot set

of Shishikura [19] shows that the boundary of M has Hausdorff dimension 2, so,
indeed, this boundary is pretty “crazy.” Furthermore, a result of Buff and Chéritat [2]
shows that Julia sets of P, that contain fixed points that are close to rationals have
positive Lebesgue measure, something that also indicates that things are getting
quite complicated along the boundary of M.

2 Singularly Perturbed Rational Maps

We now consider a very different type of map, namely rational maps of the form
A
FLx=7+ Z_”

where n > 2. While the degree of these maps can be quite large, there is really only
one “free” critical orbit just as in the case of quadratic polynomials. Indeed, one
checks easily that there are 2n critical points given by A!/2". However, there are
only two critical values +2+/A; n of the critical points map to one critical value and
the other critical points map to the second critical value. But, when » is even, both
critical values then map to the same point, whereas, if n is odd, we have F)(—z) =
—F)(2), so the two critical values have orbits that are symmetric under z — —z. We
call this the free critical orbit, since co and 0 are also critical points, but oo is fixed
and 0 is mapped by Fj onto co.

Just as in the case of z> + ¢, the point at oo is an attracting fixed point when
n > 2, so we have an immediate basin of attraction B of oo that lies in the Fatou
set. Also, 0 is a pole, so there is a neighborhood of 0 that is mapped into B,. If the
component of the Fatou set containing 0 is disjoint from B), we denote this set by
T) and call it the trap door since any orbit that eventually ends up in B) must pass



70 R.L. Devaney

Fig. 7 The Sierpinski carpet

through 7). This follows since Fjy maps both B, and T) n-to-1 onto B; and the map
F) has degree 2n.

Unlike the quadratic polynomial case, where we had only one possibility for the
structure of the Julia set when the critical orbit escapes, here we have an escape
trichotomy. As shown in [10],

1. If the critical values lie in B;, then J(F}) is a Cantor set;

2. If the critical values lie in T}, then J(F)) is a Cantor set of simple closed curves;

3. In all other cases, the Julia set is connected. If the critical orbit enters B) at
iteration 2 or later, then J(F)) is a Sierpinski curve.

The second result here is due to McMullen [15]. Incidentally, case 2 does not
occur when n = 2; indeed, the situation when n = 2 is very different from (and
much more complicated than) the case n > 2 [6,7].

A Sierpinski curve is any planar set that is homeomorphic to the well-known
Sierpinski carpet fractal displayed in Fig. 7. These sets are important for three rea-
sons. First, by a result due to Whyburn [20], there is a topological characterization of
any such set: any planar set that is compact, connected, nowhere dense, locally con-
nected, and has the property that any pair of complementary domains are bounded
by simple closed curves that are pairwise disjoint is necessarily homeomorphic to
the carpet. Second, as proved by Sierpini, the carpet is a universal plane continuum:
any planar, one-dimensional, compact curve can be homeomorphically manipulated
to fit inside the carpet. And finally, Sierpinski curves occur all the time as Julia sets
for rational maps.

In Fig.8, we display the parameter planes (the A-planes) for the cases where
n = 3 and n = 4. In both cases, the external region is where the Julia sets are
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Fig. 8 The parameter planes whenn = 3 and n = 4

Cantor sets; this is the Cantor set locus. The central disk surrounding the origin
contains parameters whose Julia sets are Cantor sets of simple closed curves; we call
this region the McMullen domain. All of the other red regions contain parameters
whose Julia sets are Sierpinski curves; these are Sierpinski holes.

The arrangement of the Sierpinski holes in the parameter plane is fairly well
understood. It is known that there are exactly (n — 1)(2n)“3 Sierpinski holes with
escape time « (the number of iterates it takes for the critical orbits to enter B)).
Each Sierpinski hole contains parameters for which the corresponding maps all have
conjugate dynamics on their Julia sets. However, most of the maps drawn from
different Sierpinski holes have very different dynamics. In fact, only parameters
drawn from Sierpinski holes that are symmetric under either complex conjugation
or rotation by an (n — 1)* root of unity have conjugate dynamics. Then it follows
that, when 7 is odd, there are exactly (21n)~3 conjugacy classes of maps drawn
from Sierpinski holes. When 7 is even, there are (2n)*~3/2 — 2~* such holes. The
discrepancy between n odd and even arises because there are no Sierpinski holes
along the negative axis when 7 is odd, whereas there are such holes when 7 is even.
So, when n is odd, there are exactly 2(n — 1) Sierpinski holes in each conjugacy
class, but when n is even, certain conjugacy classes have only n — 1 Sierpinksi
holes. See [9]. In Fig. 9, we display four different Sierpinski curve Julia sets drawn
from the family when n = 2. All of these Julia sets are homeomorphic, but it turns
out that all have very different dynamics.

One way that Sierpinski curve Julia sets have non-conjugate dynamics occurs
when the escape times are different. If F) is a map with a Sierpinski curve Julia set
for which the critical orbits escape to oo, then the Fatou components that contain
the critical points are the only ones that have boundaries that are mapped 2 to 1
onto their images. So if F), has a different escape time, then F cannot be conjugate
to F), since the boundaries of the escape components containing the critical points
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Fig. 9 The Julia sets for various values of A whenn =d =2

would have to be mapped to each other. For escape time Julia sets with the same
escape times, many still have non-conjugate dynamics. Proving this involves using
Thurston’s Theorem [9]. Moreno Rocha [17] has recently produced a dynamical
invariant that explains why two such maps have non-conjugate dynamics.

As mentioned earlier, the case n = 2 is very different from the case n > 2. One
reason for this is apparent in Fig. 9. Note that, as A — 0, the Julia sets of F) seem
to converge to the unit disk. Of course, when A = 0, we have the very simple map
Fy(z) = 7* for which the Julia set is just the unit circle. By Montel’s Theorem, if
the Julia set ever contains an open set in the plane, then it must be the entire plane.
So here we see Julia sets getting closer and closer to the unit disk as A — 0, but,
when A = 0, things change dramatically. This is why these maps are called singular
perturbations.

It is known that there are infinitely many small copies of the Mandelbrot set in
each of these parameter planes. Certain of the Mandelbrot sets extend out to the
boundary of the Cantor set locus while others do not. In these “buried” Mandelbrot
sets, Julia sets drawn from the main cardioids are also Sierpinski curves. Since these
Julia sets have an attracting cycle of some given period, the dynamics on these
Sierpinski curves is quite different than on the escaping Sierpinski curves described
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above. For parameters in the main cardioids of the Mandelbrot sets that touch the
boundary of the Cantor set locus, the structure of the Julia sets is quite different. See
[1] for details.

Unlike the Mandelbrot set, these parameter planes have much simpler bound-
aries. Indeed the boundaries of the Cantor set locus, the McMullen domain, and all
of the Sierpinski holes are known to be simple closed curves [18] (when n > 2).
Of course, as mentioned above, there are also infinitely many small copies of the
Mandelbrot set included in these sets, so the full structure in the parameter plane is
still at least as complicated as the Mandelbrot set.

3 Complex Exponential Maps

In this final section, we consider another, very different, family of maps, the complex
exponential family, £, (z) = A exp(z). These are entire transcendental maps, so 0o
is no longer an attracting fixed point. Rather, co is an essential singularity. For the
exponential maps there is no longer a critical point. However, 0 is an asymptotic
value (the only one), and hence this point plays the same role as the critical points
did for the previous two families. A point z is an asymptotic value if there is a curve
y(¢) which tends to the essential singularity as ¢ — oo but whose image tends to z
as t — 0o. Any curve whose real part tends to —oo has this property for E.

Because E), has an essential singularity at oo, the Julia set has one slightly
different definition. In the previous cases, the Julia set was the boundary of the
set of points whose orbits tend to co. Now the Julia set, J(E}), is the closure of the
set of points that escape to co. So any point whose orbit tends to co is now in the
Julia set.

When A > 0, the dynamical behavior on the real axis is pretty simple. The graph
of E) shows that there is a simple saddle-node bifurcation when A = 1/e. See
Fig. 10. When A < 1/e, there is an attracting fixed point a, and a repelling fixed
point r) in RT. All points to the left of r;, in R have orbits that tend to a, and
hence do not lie in the Julia set, while the half-line [r), co0) is in J(E}). In fact,
all points in C to the left of the vertical line through r, lie in the Fatou set. To see
this, let x; be the point in R for which Ej(x3) = 1. So x; lies in the open interval
(ax, ry). Then the vertical line through x, is mapped infinitely often around a circle
centered at the origin which includes a, in its interior. Thus the open half-plane
to the left of this vertical line is contracted inside the disk bounded by this circle.
Hence, by the Contraction Mapping Principle, all points in this open half-plane have
orbits that tend to @, . Then one checks easily that all points to the left of the vertical
line through r; eventually map inside this half-plane as well and so are also in the
Fatou set.

When A = 1/e, the two fixed points a, and r) merge and again all points to the
left of this now neutral fixed point in R do not lie in the Julia set, while the fixed
point and all points to the right of it in R again do lie in J(E}). A similar argument



74 R.L. Devaney

Ex(2)
A=1/e
.1 /
A< 1/e
14+ A
-1 ax 1 x L)

Fig. 10 The graphs of £, for A = 1/eand A < 1/e

as above then says that all points to the left of a vertical line through this fixed point
in C also tend to the neutral fixed point and so are in the Fatou set.

When A > 1/e, the fixed points in R disappear (they actually become complex),
and now all points in R tend to co under iteration and so lie in J(E;). So it looks
like the Julia set undergoes an abrupt change when A increases through 1/e. In fact,
much more happens: a result of Goldberg and Keen [12] states that if the orbit of the
asymptotic value 0 tends to oo, then the J(E}) is the entire complex plane. So, for
A < 1/e, the Julia set is contained in the right half-plane, but, as soon as A > 1/e,
the Julia set becomes the entire complex plane.

Interestingly, no new periodic points are born as A increases through 1/e; all
of the periodic points simply migrate continuously but do so in a way that they
suddenly become dense in the plane when A > 1/e. This is quite an interesting
bifurcation!

In Fig. 11, we display the Julia set for a value of A € (0, 1/¢). Black points are in
the basin of attraction of a) and colored points escape to co. So the colored region
is the Julia set. It appears that the Julia set contains open strips that tend off to oo,
but, By Montel’s Theorem, this cannot happen. In fact, the Julia set in this case is a
Cantor bouquet, a collection of uncountably many smooth curves which tend off to
oo in the right half-plane and each of which has a distinguished endpoint. See [5].
These curves are called “hairs” and all points (except the endpoints) have orbits that
tend to oo and so are in the Julia set. For example, one hair is the subset of the real
axis given by (r;, 00); the endpoint is then the fixed point r,. Since the bounded
orbits must lie in the set of endpoints, we have that the repelling periodic points
must lie in the set of endpoints. Therefore this set is much more intricate than it at
first seems: these endpoints must be everywhere dense in the Julia set. An interesting
result of Mayer [14] shows that the only points that are accessible from the Fatou
set are these endpoints; there is no curve contained in the Fatou set that limits on



Parameter Planes for Complex Analytic Maps 75

Fig. 11 The Julia set for E( 3 and a magnification along the real axis

Fig. 12 The Julia set for E ¢ near the real axis

any single point in the hairs. Moreover, a result of Karpinska [13] shows that the
Hausdorff dimension of the set of all points on the hairs is 1 whereas the Hausdorff
dimension of the supposedly much smaller set of endpoints is 2!

In Fig. 12 a portion of the Julia set for A = 0.6 is displayed; here J(Eo¢) = C.
The two spirals actually converge down to the pair of repelling fixed points that
appear after a and r) coalesce and disappear off the real line.

As in the case of the other families discussed in this paper, we now turn briefly
to the parameter plane for the complex exponential. In Fig. 13 we display a portion
of this parameter plane and a magnification near the origin. The cardioid shaped
region is where E; has an attracting fixed point. The cusp of this cardioid is the
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Fig. 13 The parameter plane for £

parameter A = 1/e. The large black region to the left of the cardioid actually
extends to oo in the left half-plane and contains parameters for which E) has an
attracting cycle of period 2. Hanging off the cardioid are strips that all tend to co
in the right half-plane and contain parameters for which there is an attracting cycle
of some period greater than 2. The two largest strips are regions where E has an
attracting cycle of period 3.

As in the case of the Julia sets, the colored regions contain parameters for which
the orbit of O tends to oo and so the Julia set for these parameters is the entire
complex plane. Again as in the dynamical plane, these colored regions are really
curves. For example, one such curve is the interval in R given by (1/e, c0).
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Abstract The basic theory of fractal transformations is recalled. For a fractal
homeomorphism generated by a pair of affine iterated function systems (IFSs),
a condition under which the transformation is measure (i.e. area, volume, etc.)
preserving is established. Then three families of fractal homeomorphisms, two of
them entirely new, generated by pairs of affine IFSs, are introduced. It is proved that
they admit subfamilies that preserve n-dimensional Lebesque measure, where n is
2 or 3. Several examples are illustrated and applications to computer aided design
and manufacture, via three-dimensional printing, are envisaged.
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1 Introduction

The main goal of this paper is to introduce three special families of fractal
homeomorphisms, two of them unexpected, generated by pairs of affine iterated
function systems (IFSs). Using a new result (Theorem 3.1) we prove that these
families admit subfamilies that preserve n-dimensional Lebesgue measure, where n
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is 2 or 3. We show explicitly how to construct these transformations and we present
some examples. Applications to computer aided design and manufacture, via three-
dimensional printing, are envisaged.

A measure preserving fractal homeomorphism is a type of fractal transformation.
Fractal transformations have attracted our attention because they lead to innovative
practical tools that may be used to model rough phenomena, such as digital images
and biological objects. In place of using recursive structures and iteration to model
rough objects, we consider instead the use of recursively generated transformations
to model rough objects, (see, e.g., [7, 12]). Fractal transformations provide us with
new tools in fractal theory (see, for example, [3—6,8,10,11,13]). They are generated
using matched pairs of affine, projective, or bi-affine IFSs.

Affine IFSs have been used for image compression [2], where image objects,
digital images for example, are represented by attractors of IFSs. Our goal, using
fractal transformations, is different: we aim to relate simple objects to complicated
objects via algorithmically simple (but geometrically complicated) transformations.

Why is the topic of this paper interesting? Measure preserving fractal homeo-
morphisms might be used to model area and volume preserving deformations of
incompressible objects, for example to represent metamorphic rocks in geology,
such as those described in, e.g., [17]; also, they are related to area preserving
piecewise affine maps [15] used in image animation. But our interest is driven
by other factors. (i) Area and volume preserving affine fractal homeomorphisms
were a surprise to us: for a while we did not know how to construct them, and
we had begun to suspect that they did not exist—if they did exist, then they
would be in some sense both rare and natural. (ii) Area preserving affine fractal
homeomorphisms applied to digital images produce visually appealing transformed
images with applications to multimedia, for example [14]. (iii) Three-dimensional
volume preserving affine fractal homeomorphisms can be used to deform malleable
materials such as clay, metal, and plastic, to make new shapes out of familiar ones,
and thus lend themselves to a role in computer aided design and manufacture, as we
illustrate in Figs. 12 and 13.

In Sect.2 we summarize the key ideas needed to understand fractal transfor-
mations, including basic notions related to IFSs. In Sect.3 we establish a new
result, Theorem 3.1, that gives a condition under which measure preserving fractal
homeomorphisms would exist. Then in Sect.4 we show that they do exist: we
construct the explicit families of two- and three-dimensional measure preserving
fractal homeomorphisms that lie at the core of this work, and give examples.

2 Point-Fibred IFSs

We recall some basic ideas concerning IFSs, code space, and fractal homeomor-
phisms. We follow terminology and results presented in the review article [11].

Definition 2.1. An /FS is a topological space X together with a finite set of
continuous functions f, : X - X,n=1,2,...,N.
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‘We use the notation

]::{X;flvaM"va}

to denote an IFS. Throughout we assume that X is a (complete) metric space with
metric d. Let H = H(X) denote the collection of nonempty compact subsets of X
and let dy denote the Hausdorff metric induced by d. The metric space (H, dg) is
complete. We define the Hutchinson operator I : H — H by

F(S)=J )

feF

forall S € H.For S C X, define FO(S) = S and let F¥(S) denote the k-fold
composition of F applied to S, namely, the union of f;, o fi, o---0 f;, (S) over all
finite words i1i, - - - i of length k.

Definition 2.2. An attractor of the IFS F is a set A € H(X) such that there is an
openset U C X suchthat A C U and limy oo F¥(S) = A, forall S € H with
S C U, where the limit is with respect to the Hausdorff metric on H. The basin
B(A) of an attractor A of the IFS F is the largest open set U such that the latter
assertion holds.

Since X is a metric space, we have F : H(A) — H(A) is continuous (w.r.t. the
dp) so it is necessarily true that if A4 is an attractor, then F(4) = A.

An IFS F on a metric space (X, d) is contractive if there is a metric d , inducing
the same topology on X as the metric d, with respect to which the functions in F
are contractions. If F is a contractive IFS on a nonempty complete metric space
(X, d), then F has a unique attractor A and the basin of A4 is X.

If X = RM and the functions in F are affine functions, represented in the form
f(x) = Lx + a, where L is an M x M matrix and a € R™, then F is called an
affine IFS. A fundamental result is that an affine IFS possesses an attractor if and
only if there is a metric, inducing the same topology on RM as the Euclidean metric,
such that F is contractive, for precise information, see [1].

Let ¥ = {1,2,...,n}* denote the set of all infinite sequences 0 € X, 0 =
010203+, where 0; € {1,2,...,N} foralli = 1,2,... We have that (X, dy),
which we refer to as code space, is a compact metric space, where, for o # w,

ds(o,w) = y—min{keN: o #wy}

We will denote by Ekf the space of “first” k-tuples from X . For ol :=
0103 ...0% € T we write f5, = f5, 0 fr, 000 0 fo.

An attractor A of F is said to be point-fibred if there is a continuous coding map
m: ¥ — A thatis well defined by

JT(CT) =kli>n;of61 Ofaz o---of,,k(x)
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independently of x € B(A). The coding map is uniformly continuous in o and
onto. If F is contractive, then it possesses a unique point-fibred attractor. If A4 is an
attractor of an affine IFS, then is point-fibred.

The set of addresses of a point x € A is defined to be

a'(x) ={we:xen(w).

If A is a point-fibred attractor of F, then the coding map = : ¥ — A assigns
a point in the attractor A of F to each infinite string. A section of a coding map
mw: X — Aisafunctiont : A — X such that 7 o 7 is the identity on A. For
X € A, the string 7(x) is referred to as the address of x with respect to the section t.
The set X, := t(A) is called the address space of the section t.

Properties of sections of coordinate maps are discussed in [12, Sect. 3].

Here it is assumed that all IFSs have point-fibred attractors, each of which
possesses a coding map. Given two point-fibred IFSs F and G with respective
attractors Ar and Ag, a fractal transformation is a mapping 4 : Ar — Ag that
maps a given point in A  to the point in Ag with the same address. We assume that
F and G have the same number of functions, and let 7 and m¢g be the respective
coordinate maps.

Definition 2.3. A transformation & : Ar — Ag is called a fractal transforma-
tion if

h=mgotr
for some shift invariant section 7z of F. If & is a homeomorphism, then # is called
a fractal homeomorphism.

The following result is proved in [10].

Proposition 2.4. If a fractal transformation h = g o tr : Ar — Agisa
homeomorphism, then there exists a shift invariant section tg of mg such that the
following diagram commutes:

Ar _h) Ag
TF N\ v g
b

Conversely, if there exist sections tx and tg and a homeomorphism h such that the
above diagram commutes, then h = g o tr and h™' = 7r o 1g.

AnIFS F = {X; fi, f2,..., fn} is said to be injective if the map f; : X —>X is
injective, fori = 1,2,..., N.

Definition 2.5. For an IFS F with attractor A, a mask is a partition M = {M;,1 <
i < N} of Asuchthat M; C f;(A) for all f; € F. Given an injective IFS F and a
mask M, consider the function T : A — A defined by

T(x) = f7'(x)
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F
H(B(A,) > H(B(A,)
G c
b | L J
Y >
G

Fig. 1 Semiconjugacy of IFSs

when x € M;. The itinerary tj;(x) of a point x € A is the string wy w; w; --- € X,
where wy is the unique integer 1 < w; < N such that

T"(x) € M,,.

A particular mask for an IFS with N functions and attractor A is defined by
M, = f1(A4) and

k—1

M = fi)\ | £(4),

i=1

fork =2,3,..., N. This is called the tops mask.
The following theorem states that any shift invariant section is constructed from
a mask.

Theorem 2.6. Let F be a contractive and injective IFS.

(1) If M is a mask, then tyy is a shift invariant section of 1.
(2) If © is a shift invariant section of , then t = Ty for some mask M .

The section from a tops mask is given by
7(x) = max 7' (x),

where the maximum is with respect to the lexicographic order on X.
The relationship of attractors of IFSs under continuous mappings is captured in
Proposition 2.7 and Lemma 2.8.

Proposition 2.7. Let Ar be an attractor of IFS F = {X; f1, fa,..., fn}. Let
Y be a topological space. Let c: X — Y be continuous, let gi:' Y — Y be
continuous and such that cf; = gic for alli = 1,2,...,N. Then the IFS
G:=1{Y, 81,82, ...,.8n} possesses the invariant set Ag = cAr, and the diagram
in Fig. 1 is commutative.
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Proof. Observe that the attractor A of F has the following property,
N
Ar = fi(4p).
i=1
Since A r is compact and ¢ f; = g;c then
N N N
cdr =c|J fitdr) = Jefitar) = |J gic(45).
i=1 i=1 i=1

This means that cAx = Ug; (cAr) is an invariant set of G.
Notice also that

cF = Ge,

where F(A) = U, fi(A).
Let D € H(BF), then

lim F¥(D) = Ax.
k—>o00
It follows that
¢ lim F¥(D) = cAzx.
k—o00
We can write that
¢ lim F¥(D) = lim ¢FF*'(D) = lim GeF* (D)
k—o00 k—o00 k—00
and similarly
lim GeFF*2(D) = lim G*cF*2(D).
k—>o00 k—o00
Finally we obtain
¢ lim F*(D) = lim G*¢(D) = c(4F) = Ag.
k—00 k—o00

|

Consider, for example, two IFSs S = {{1,2,..., N}*; sy, 52, ..., Sy} such that
s,(0) = noVo € L,n € {1,2,...,N}and G’ = {X;g1,82....,gn}. Then the
continuous mapping is obviously ¢ = g (see Fig. 2). Replacing continuous map ¢
with homeomorphism / we obtain the following.
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E — > L
J'EG ‘[G
A\ A\
X > X
gn
Fig. 2 Semiconjugacy between the symbolic IFS {Z;s,52,. .., sy} acting on code space, its

attractor, and the IFS G = {X; g1, g2, ..., gn} acting on its attractor. The latter is a factor of the
former

Lemma 2.8. Let Ax be an attractor of IFS {X C RM, fi, f>...., fn} with basin
B(Ar) andleth: X — Y C RM be a homeomorphism. Then Ag := h(AFx) is
an attractor of G = {Y hfih=\ hfsh ™), ... hfyh™'). All topological properties
of the two systems are shared; in particular

(1) dim(Ax) = dim Ag
(2) Ax is point-fibred if and only if Ag is point-fibred
(3) B(Ag) = h(B(AF))

Next, we will be concerned with the opposite problem. Given two IFSs, we
look for conditions sufficient for the existence of a homeomorphism between their
attractors.

In what follows we assume that all attractors are point-fibred. This is because
here we are concerned exclusively with attractors of affine IFSs and their children,
obtained by topological conjugation, as in Lemma 2.8.

Definition 2.9. Let F and G be IFSs with attractors Ar and Ag, respectively.
A transformation T': Ar — Ag is called a fractal transformation if it can be written
in the form

Trg =mgortr

where tr: Ax — X is a shift invariant section for F and ng: Xg — Ag is the
coding map for G. A fractal transformation 7T x¢ is called a fractal homeomorphism
when it is a homeomorphism between the attractors A and Ag.

Theorem 2.10 gives conditions under which a fractal transformation is either
continuous or a homeomorphism.

Theorem 2.10 ([12, Theorem 3.4, p. 6]). Let F and G be IFSs, as above. Let
tr: Ar — X be a section for F and let mg: g — Ag be the coding map for G.
The fractal transformation Trg = mg o Tr has the following properties:

(1) If forall o, € 7, nr(0) = nr(w) = ng(0) = mg(w), then the fractal
transformation Trg is continuous.
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() If forallo,w € X7, nr(0) = nr(w) & ng(0) = ng(w), and in addition
X r is the address space for G, then Trg is a homeomorphism and Tf_é =Tgr.

The following lemma follows immediately from Theorem 2.10 and Lemma 2.8.

Lemma 2.11. If Ax is an attractor of IFS F = {R", f1, f2,..., v} and G =
(R, hfih= Y hfah™Y, . hfyh™'}, then Trg := h|AFx is a fractal homeomor-
phism.

Remark 1. 1f the conditions in Theorem 2.10 (2) are satisfied, we say that A r and
Ag have the same address structure.

3 Lebesgue Measure Preserving Fractal Homeomorphism

A pair of IFSs F and G with respective attractors A r and Ag, satisfying conditions
in Theorem 2.10 (2), yields a fractal homeomorphism. It is, in general, quite difficult
to find pairs of affine IFSs that generate fractal homeomorphisms. Some such
families of pairs, say F and G with attractors Ar and Ag, respectively, have been
established [6], in R? but, until this paper, no truly three-dimensional “non trivial”
examples had been reported. Why are we interested in affine systems? Affine trans-
formations in R” play a special role: they preserve ratios of n-dimensional Lebesgue
measures of subsets of sets upon which they act. As an analogy, if subsets are defined
in terms of colours, then affine transformations preserve histograms. Using this
property, Theorem 3.1 asserts that if a fractal homeomorphism Trg: Ar — Ag
is generated by a pair of IFSs F and G with the property

L(fi(AF)) = L(gi(Ag))Vi € {1.2,.... N}, (1)

then Lebesgue n-dimensional measure is invariant under 7'rg.
In Sect. 4 we will establish that Theorem 3.1 is far from vacuous, by exhibiting
interesting families of pairs of affine IFSs.

Theorem 3.1. Let Ar and Ag be respective attractors of affine IFSs F =

{R", fi, fo,..., fn} and G = {R",g1,82,...,8n}, such that Trg = mg o
tr: A — Ag is a homeomorphism, and such that L(Ar) > 0, where L is
n—dimensional Lebesgue measure. If

L(fi(Ar)) = L(gi(Ag)) foralli =1,2,...,N
then

L(S) = L(Trg(S)VS C Ar.
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Proof. Let the assumptions of the theorem hold. Observe that since affine
transformations scale uniformly and L£( f;(Ax)) = L(gi(Ag)) fori = 1,2,... N,
then

L(fo1,(AF)) = L(&61,(4g))

forall o, € %,k > 1.
In order to prove the equation

L(S) = L(TFg(3))

we will show two inequalities with the help of Vitali covering (see, e.g.,
[16, p. 128]),

L(S) = L(TFg(S)) + 6

and
L(Trg(S)) < L(S) +6

for any § > 0.

First, we will prove that S C Ar, then { f;|,(Ar) : ok € Kk > 1}is a Vitali
covering of S. Let us pick x € §. Since S C Ar, there exists 0 € X such that
wr(0) = x. Hence,

wF(o) = klirr;o Jol )

is independent of y. In particular, we have x € f;|, (AF) forallk =1,2,3,... and
{x} = limg o0 fo|, (AFr). Therefore, for any € > 0 there exists k > 1 such that
diam( f;|,(A7)) < € and hence { f,|, (Ar) C Ar : 0% € Z% k > 1} is a Vitali
covering of §.

Hence, we may apply the Vitali covering lemma. For any § > 0, we can find
finitely many disjoint sets {By, Ba, ..., B,} C {f5,(AFr): 0|k € ¥k k > 1} such
that

L(S) <8+ ) L(B).

j=1
Furthermore, these sets may be chosen such that B; C § for j =1,2,...,r.
Now, consider the sets Trg(B;), for j = 1,2,...,r. Since Trg is a homeomor-

phism then
B; C S = Trg(Bj) C Trg(S)
and the sets Trg(B;) are disjoint. Observe that

L(Trg(B))) = L(B})
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since B; = fy|,(Ar) for some o|x € Y&,k > 1and Trg(B)) = go|, (Ag). We
arrive to

L(S) <8+ ) L(B)) =8+ L(Trg(B))=8+L| | |Tre(B))
j=1 j=1 ji=1
This means
L(S) < 8 + L(Trg(S)).

The second inequality may be obtained in the similar way. Performing the
previous construction for 7xg(S) C Ag, we find that

L(Trg(S)) <8+ L(S).
Therefore, we have that
|L(S) — L(Trg(S))| <6

for any 6 > 0.
We arrive to

L(S) = L(Trg(S)).

|

Corollary 1. Let Ar and Ag be respective attractors of affine IFSs F =

{R", fi, fo,..., fn}and G = {R",g1,82,...,8n}, such that Trg = mg o
tr: A — Ag is a homeomorphism, and such that L(Ar) > 0, where L is
n—dimensional Lebesgue measure. If

L(fi(Ar))/L(AF) = L(gi(Ag))/L(Ag) foralli =1,2,..., N,
then

L(S)/L(AF) = L(TFg(S))/L(Ag)VS C AF.

Proof. We will consider the image of A¢g under a similitude on R”. Let F, G and
S C R” satisfy the assumptions of the corollary. Consider the similitude 2: ¥ — Y,

lc(A
h(y) = { ﬁiAgy




Measure Preserving Fractal Homeomorphisms 89

which is an affine homeomorphism. Observe that L(Ay) = L(Ax), where Ay is an
attractor of the IFS H = {R", hgih~', hgh™', ... hgyh~'} given by Lemma 2.8.
The existence of fractal homeomorphism & o Trg: Ax — Ay follows from
Lemma 2.11. Hence £(S) = L(h o Trg(S)). Since A is affine, it follows that

L(S)/L(AF) = L(h o Trg(8))/L((An)) = L(TFg(S))/L(Ag).

4 Existence of Nontrivial (Measure Preserving) Fractal
Homeomorphisms in R? and R?

In this section we exhibit three families of pairs of IFSs that generate fractal
homeomorphisms. We also show that sub-families can be chosen so that the
corresponding fractal homeomorphism is measure preserving. The first family acts
on R? and is already known, but the formal application of Theorem 3.1 to it is new.
The second and third families acting in R?® are new in all aspects.

Example 4.1. This example of an area preserving fractal homeomorphism was
suggested but not established in [6, pp. 292-293]. Let ABC be an equilateral
triangle in R2. Let o € (0,1) and a, b, c denote points on BC, AC, and AB,
respectively, such that | Bc|/|AB| = |Ca|/|BC| = |Ab|/|AC| = a.Let fi: R?> —
R? denote the unique affine transformation such that

fi(ABC) = caB,
which means fi(4) = ¢, fi(B) = a and f1(A) = B. Similarly, let
f(ABC) = Cab, f3(ABC) = cAb, f4(ABC) = cab.

Then the attractor of F = {R2, £}, f>, f3. f4} is the filled triangle ABC (see Fig. 3).

Next, let us consider points r € AB,q € AC, p € BC, such that |Br|/|AB| =
|Cq|/|AC| = |Ap|/|BC| = 1 — a. Let G denote the IFS {R?; g, g2, g3, g4} such
that

g1(ABC) =rpB,g:(ABC) = Cpq,g3(ABC) =rAq, g4(ABC) = rpq.

Observe that the attractor Ag is again the filled triangle ABC and L( f;(ABC)) =
L(gi(ABC)) foranyi =1,2,3,4.

In [6, p. 300] it is proven that the address structures of both attractors are
the same. Hence, there exists a fractal homeomorphism 7rg: ABC — ABC.
Since for any i = 1,2,3,4 we have that L(f;(ABC)) = L(gi(ABC)), it
follows from Theorem 3.1 that the homeomorphism 7'z¢g is area preserving, that
is L(S) = L(Txg(S)) forany set S C ABC.



90 M.F. Barnsley et al.

A r B

Fig. 3 The two self-affine tilings of the filled triangle ABC shown here generate a measure
preserving fractal homeomorphism under appropriate conditions (see Sect. 4 Example 4.1)

Fig. 4 Transformation of a surface obtained by applying a two-dimensional area preserving
homeomorphism to the (x, y) coordinates of a surface

We note the following. We can represent a surface over the equilateral triangle in
the obvious manner, regarding it as the graph of a function f : ABC — R. Then
we can apply Trg to ABC, yielding a new surface, the graph of fi: Trg(ABC) C
R? — R, defined by

fix) = f(TF(x)).

Clearly, if Tr¢ is sufficiently extreme, the new surface will be rough. An example
of such transformation is shown in Fig. 4.

Remark 2. Since the Lebesgue measure is preserved it follows that

/fdﬁ:/ fTr5dL
s Trg(S)

for any measure preserving fractal homeomorphism 7zg.
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Fig. 5 Transformation of a picture obtained by applying an area preserving fractal homeomor-
phism (Example 4.1)

Figure 5 illustrates application of a fractal homeomorphism to a picture. Any
picture may be regarded as amap P: S C R*> — C, where C is a colour space.
Applying a homeomorphism 7'zg, we obtain amap P;: Trg(S) C R> — C,

Pi(x) = PTzj(x).

Area preserving homeomorphism ensures the same amount of each colour on the
original and transformed picture.

Next, we will provide examples of a volume preserving fractal homeomorphism.

Example 4.2. Let us denote by A, B,C,D the vertices of a regular tetra-
hedron. Let us consider « € (0,1) and points a € BC,b € AC,c €
AB such that |aC|/|BC| = |bA|/|AC| = |cB|/|AB| = «a. Let F
denote IFS {R3; f1, f>, f3. fa}, where fi(ABCD) = cbhDA, /L,(ABCD) =
¢BDa, s3(ABCD) = CbDa, fu(ABCD) = cbDa as illustrated by Fig.6.
Notice that an attractor of F is filled tetrahedron ABCD. Let us denote by
G the IFS {R* g1, g, g3, g4} such that g (ABCD) = rqDA,g,(ABCD) =
rBDp,g3(ABCD) = CqDp,gs(ABCD) = rqDp, wherer € AB,q € AC,p €
BC and |pC|/|BC| = |qA|/|AC| = |rB|/AB = 1 — «. Again, attractor Ag is
the filled tetrahedron ABCD. For the details of the IFS see Fig. 6, where we write
fi(ABCD) = A’B’C'D’ foranyi = 1,...,4.

The fact that this example possesses a unique point-fibred attractor is quite subtle:
the key point is that the maps are all non-antipodal, see [1].

In the same way as in [6] for the previous example, it may be shown that the
attractors have the same address structure, and hence, by Theorem 2.10, Trg is a
fractal homeomorphism. Since L(f;(ABCD)) = L(gi(ABCD)),i = 1,2,3,4,1it
follows by Theorem 3.1 that 7¢ is volume preserving. For any set S C ABCD
we have L(S) = L(Trg(S)), as illustrated, for example, in Figs.7 and 8.
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Fig. 6 A pair of self-affine tilings of a tetrahedron used to generate a volume preserving fractal
homeomorphism, as explained in Sect. 4 Example 4.2

e e e _ N

Fig. 7 Ball, original and transformed under a volume preserving fractal homeomorphism of the
type explained in Sect. 4 Example 4.2

Fig. 8 Ball, original and transformed by an Example 4.2 type volume preserving fractal
homeomorphism
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Remark 3. For the visualization of transformed sets and images we use the chaos
game and perpixel algorithm. These are described in detail in [9].

Example 4.3. Finally, we will introduce a second tiling of a tetrahedron which
also generates volume preserving fractal homeomorphisms. Consider the regular
tetrahedron ABCD A = (0,0,0),B = (1,0,0), C = (1/2, \/§/2, 0),D =
(1/2, \/§/6, \/m). Given six parameters &4p, ®4c, ®4p, CBC,UBD,Kcp WE can
split the regular tetrahedron into the eight smaller tetrahedrons characterized by the
following sets of vertices

{A, A+ aup(B—A), A+ asc(C—A), A+ aap(D—A)},
{B, A+ a4p(B—A),B +apc(C—B),B+app(D— B)},

{C, A+ aac(C—A),B+apc(C—B),C+acp(D—-C)},
{D,A+asp(D—A),B+apgp(D — B),C +acp(D —C)},
{A+aap(B—A), A+ asc(C—A), A+ aap(D — A), B+ apc(C — B)},
{A+asc(C—A4),A+aup(D—A),B+apc(C—B),C+acp(D—C)},
{A+as8(B—A),A+ayp(D—A),B+ apc(C —B),B + apgp(D — B)},

{A+asp(D —A),B+apc(C—B),B+app(D—B),C+acp(D—C)}.

Let us consider an affine IFS which maps a regular tetrahedron to itself by
mapping it to the eight smaller tetrahedrons described above (see Fig.9). Such an
IFS is characterized by six o parameters (assuming we match up all of the vertices
in a particular way). In particular we note that if wyp = wsc = @up = apc =
app = oacp = 0.5 then the eight affine mappings map the regular tetrahedron to
eight smaller tetrahedrons which all have the same volume. Furthermore, four of the
mappings are similitudes. From now on we will denote an IFS of the above form
by F(aap,®ac,®ap,Apc,®pp,cp) With each of the six parameters in the open
interval (0, 1). For instance, the IFS F(0.5,0.5,0.5,0.5,0.5,0.5) is the special case
mentioned above.

Proposition 4.4. The homeomorphism between two IFSs F,G which map the
tetrahedron into itself as described above is a volume preserving if

111 1 11 1
= Y A A A 71_ d = ) 7_7_51_ ’ T~
F .7:(61222 a)ang g(2a22 az)

N =

or

11 11
f:f(a,l—a,z,z,a,l—a) andQ:Q(l—a,a,E,E,l—a,a)

for some a € (0,1)
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Fig. 9 A diagram that represents the eight tetrahedron used to generate the family of volume
preserving fractal homeomorphisms explained in Sect. 4 Example 4.3

Proof. In order to show that the homeomorphism is measure preserving, we will
investigate the volumes of f; (A BC D) and express them with the help of parameters
OAB,OAC, ¥4AD, OBC,OBD, cp. The volume of the tetrahedron ABCD is given by

(D -4 (B-A)x(C-A))|

V(ABCD) = -

Note that the volume is unchanged under permutation the ordering of the vertices.
Letoyp, ac,®ap,pc,®pp,dcp € (0, 1), and define points by

PAB=A+O£AB(B—A), PAC=A+O[Ac(C—A),
Psp=A+asp(D—A), Ppc =B +oapc(C —B),
Pgp =B +agp(D —B), Pcp =C +acp(D—C).

Now the volume of AP4p P4c P4p is given by

[(Pap — A) - (Pap — A) x (P4c — A))|

V(AP4pPac Pap) = ;
_ laap(D = A) - (¢ap(B — 4) X (2ac (C — A4)))]|
6
(D —A4)-((B—A4)x(C—A))|

= QABOACOAD 6

= (XABC(ACc{ADV(ABCD).
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Similarly we have

|(Pgp — B) - (Pap — B) x (Ppc — B))|

6

(D —B)-((A— B) x (C — B))|
6

V(BP4pPpc Ppp) =

= (1 —a4B)apcapp
= (1 —aap)apcapgpV(ABCD),

[(Pcp —C) - ((Pac —C) x (Ppc — C))|
6

V(CP4c Ppc Pcp) =

I(D-C)-(A-C)x(B-C))]
6

= (1 —asc)(1 —apc)acp
= (1 —asc)(1 —apc)acpV(ABCD),

[(Pcp — D) - ((Pap — D) x (Pgp — D))|

V(DP4p Pgp Pcp) = 5

I(C—D)-((A-D)x(B - D))
6

= (1 —a4ap)(1—app)(l—acp)

= (1 —aup)(1 —app)(1 —acp)V(ABCD).
Let us study the remaining four cases. Note that

Pyp— Pgc = A+ aup(B—A)— B —apc(C — B)
= (1 —a4p)(A—B)—apc(C —B)

Pac — Ppc = A+ auc(C —A)— B —apc(C —B)
=(A—B)+asc(C —A)—apc(C —B)

Pyp — Ppc = A+ aup(D —A)— B —apc(C — B)
=(A—-B)+asp(D—A)—apc(C —B),

and therefore

(Pas — Ppc) x (Pac — Ppc)

= (1 —a4p)(A—B) —apc(C = B)) x (A= B) + asc(C — A) —apc(C — B))
= (I —aup)aac(A—B) x(C —A) — (1 —aup)apc(4A— B) x (C — B)
—apc(C —B)x(A—B) —apcasc(C —B) x(C —A)

= [-(1 —aap)aac + (1 —aap)apc —apc + aacapcl(B — A) x (C — A)

= [-(I —aap)aac + (@ac —aap)apc](B — A) x (C — A).

Further, we note this is perpendicular to the plane containing A, B, and C. It follows
that
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(Pap — Ppc) - (B — A) x (C — A))
=((A=B)+asp(D—A)—apc(C —B))-((B—4) x(C—A4))
=aup(D —A)-((B—A)x(C—-4),

and hence

|(Pap — Ppc) - (Pap — Ppc) x (Pac — Ppc))|
6
=|—(1 —a4p)aacoap + (04ac —asp)tapaspc|

(D= A)-((B—4)x(C—A4)/6

V(Ppc PapPac Pap) =

= |(1 —ogp)asc@ap + (€4 —oac)aapopc|V(ABCD).

Let us consider Ppc Pcp Pac Pap. Observe that we can reuse some of the previous
quantities, in addition we also have

Pcp — Pgc = C +acp(D—-C)—B —apc(C —B)
=1 —apc)(C—B)+acp(D—-C).

Furthermore, we can rewrite P4c — Ppc as

Pic —Ppc=C+(1—0yc)(A—-C)—C —(1—apc)(B—-C)
=(l-a4c)(A=C)— (1 —-apc)(B-C).

It follows

(Pcp — Ppc) x (Pac — Pc)

= (1 =apc)(C =B)+acp(D=C)) x (1 —aac)(4—C) = (1 —apc)(B—C))
= —aac)(I —apc)(C = B)x(A—-C)+ (1 —auc)acp(D —C) x (4—-C)

— (I —apc)acp(D —C) x (B —-C).

In the same way we obtain

(Pap — Pgc) - (Pcp — Ppc) X (Pac — Ppc))

= (I —asc)oaap(l —apc)(D —A)- ((C - B) x(A-C))

+ (I —auc)acp((A—=B) —apc(C—B))- (D —-C) x(A-C))
— (I —apc)acp((A—B) +aap(D —A4))- (D - C)x(B-C))
= (1 —aac)aap(l —apc)(D —A)-((C — B) x (A —-C))
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+ (I —asc)acp(4—B)- (D - C) x(4-C))

— (I —asc)apcacp(C —B) - ((D - C) x(A-C))
— (I —apc)acp(A—B)- (D -C)x(B-C))
—asp(l —apc)acp(D —A)- (D —C)x(B-C)).

‘We now note that

(D—A)-(C—=B)x(A—=C))=(D—A4)-(C—B)x (A—D + D —C))
—(D—A4)-(C=D+D—B)x(D—C))
=—(A-D)-((B—-D)x(C-D)),

(A=B)-(D-C)x(A-=C))=(A—-B)-((A— D) x(C—-D))
—(A—=D+D—B)-((A= D) x (C — D))
=(D—-B)-((A-D)x(C-D))
=(A4-D)-((B—D)x(C—-D)),

(C=—B)-(D-C)x(A-C))=(C—D+D-B)-(D-C)x(A-0C))
=D -B)-(D-C)x(4-0C))
=(D—-B)-(A-D)x(C-D))
=(A4-D)-((B—D)x(C—-D)),

(A=B)-(D-C)x(B-C))=(A-B)-((B—D)x(C-D))
=(A—-D+D—-B)-(B—D)x(C—-D))
=(A4-D)-((B—D)x(C—-D)),

(D—A)-(D—C)x (B—C))=(D—A)-(D—C)x(B—D +D—C))
=(D—-4)-((D-C)x(B-D))
=—(A-D)-((B-D)x(C-D)).

Therefore

(Pap — Pgc) - ((Pcp — Ppc) % (Pac — Ppc))
= [-(I —aac)aap(l —apc) + (1 —aac)acop

— (1 —oa4c)apcacp — (1 —apc)aco

+oasp(1 —apc)acpl(A— D) - ((B— D) x (C — D))
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and hence the volume is given by

V(Ppc Pcp Pac Pap) = V(ABCD)| —aap + aapapc + dacap
— QACAADOBC + XADOCD
— 0 clcp + 0acUBCOCD
— aupapcacpl-
Calculations for Pgc P4 Ppp P4p and Pgc Ppp Pcp P4p are similar to the first
two. For Pgc P4 Ppp P4p we first note that
Pgp — Ppc = B +app(D — B)— B —apc(C — B)
=app(D — B) —apc(C — B).

and hence

(Pas — Ppc) X (Pgp — Ppc)
= ((1 —a4p)(A— B) —apc(C — B)) x (app(D — B) —apc(C — B))
= (1 —aup)app(A—B) x (D — B) = (1 —asp)apc(A— B) x (C — B)
—apcapp(C — B) x (D — B).
It follows that
(Pap — Ppc) - ((Pap — Ppc) X (Pgp — Psc))
= —(1 —a4p)apcapp(C —B)-((A— B) x (D — B))
— (1= asp)aspagc(D — A)- (A— B) x (C — B))
—agcapp((A—B) +asn(D — A)) - (C — B) x (D — B))
— (1 —aup)agcagn(A— B)-((C — B) x (D — B))
— (I —aup)aapapc(A—B) - ((C — B) x (D — A))
—apcagp(A—B)-((C — B) x (D — B))
—aapagcagp(D —A)- ((C — B) x (D — B))
= [(1 —aap)apcapp — (1 —aap)oaapapc
—apcapp + aapapcapp](A—B) - ((C — B) x (D — B)),

and therefore

V(Pgc PapPep Pap) = V(ABCD)|(aap —oap)apcogp — (1 —aap)aapasc].
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Finally we calculate the volume for Pgc Ppp Pcp Pap-

(Pgp — Ppc) x (Pcp — Ppe)

= (gp(D — B) —apc(C — B)) x (acp(D — C) + (1 —apc)(C — B))
= agpacp(D — B) x (D —C) + (1 —apc)app(D — B) x (C — B)
—agcacp(C —B)x (D —=C)

= lagpacp — (1 —apc)app —apcacp)(B — D) x (C — D).

Noting that

(A=B)-((B—-D)x(C—=D))=(A-D)-((B—-D)x(C—D))
(D—A)-(B—=D)x(C=D))=—(A=D)-((B—-D)x(C—D))
(C—=B)-(B-D)x(C-D)) =0,

it follows that

(Pap — Ppc) - (Ppp — Ppc) X (Pcp — Pgc))
= [appocp — (1 —apc)app — apcacp

—aypappacp +osp(l —apc)app + aspapcacp](A— D) - ((B— D) x (C — D)).
Therefore we have

V(Ppc Ppp Pcp Pap) = V(ABCD)|appacp — (1 —agc)app — apcacp
— Q4pUBDUCD
+aap(l —apc)app + aapapcacnl.

In order to finish the proof it suffices to substitute the parameters and to verify
that the volumes match for F and G.

We except that the proposition admits additional families of solutions. However,
finding these is not so simple, for a general solution we need to reduce the following
simultaneous equations

1 ioapaacaap

= BapBacPap
2:(1 —aap)apcapp

= (1 —PBag)BrchsD
3:(I —aac)(I —apc)aco

= (1= Bac)(1 = Bgc)Becp
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Fig. 10 Two illustrations of volume preserving fractal homeomorphisms (Example 4.3 type)
applied to a cylinder

4:(1—=aap)(I —app)(l —acp)

= (I =Bap)(1 = Bsp)(1 = Bcp)
5:(1 —a4p)aac@ap + (¥ap — Aac)dapepc

= (1= Bap)BacBap + (Bag — Pac)BapBsc
6:—aup + @apdpc + Xac@ap — AacUapApc + AapQcD

—qclcp + XacUBCcOcD — XADUBCOCD

—Bap + BapBsc + BacBap — BacBapBsc + PapBcp
—BacBep + BacPscBep — BapPrcBep
7 (aap —aap)apcapp — (1 —aap)aapasc
= (Bap — Bas)BrcBsp — (1 — Ba)BapPrc
8 :appacp — (1 —apc)agp —apccp — @apApplcp
+aap(1 —apc)agp + @apagcacop
= PspPcp — (1 = Bsc)Brp — BecPep — BapBapPep
+ Bap(1 — Bgc)Bap + BapBrcBep

|

Further examples of fractal homeomorphisms on pictures and three-dimensional
objects are illustrated in Figs. 10, 11, 12 and 13.
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Fig. 11 Tllustration of a tri-affine fractal homeomorphism, after and before, applied to a nested
family of coloured hemispherical shells, see [9]

Fig. 12 Before and after an Example 4.1 type area preserving fractal homeomorphism

Fig. 13 Photograph of a bowl and saltshaker, both physical objects having been produced by a
three-dimensional printer applied to Example 4.2 type volume preserving fractal homeomorphisms
of simple three-dimensional computer graphical objects



102

M.F. Barnsley et al.

References

1.

2.
3.
4.

W

10.

11.

12.

13.

14.
15.

16.

17.

Atkins, R., Barnsley, M., Wilson, D.C., Vince, A.: A characterization of point-fibred affine
iterated function systems. Topol. Proc. 38, 189-211 (2010)

Barnsley, M.E.: Fractal functions and interpolation. Constr. Approx. 2, 303-329 (1986)
Barnsley, M.F.: Fractal image compression. Not. Am. Math. Soc. 43 , 657-662 (1996)
Barnsley, M.F.: Theory and applications of fractal tops. In: Levy-Vehel, J., Lutton, E. (eds.)
Fractals in Engineering: New Trends in Theory and Applications. Springer, London (2005)

. Barnsley, M.F.: SuperFractals. Cambridge University Press, Cambridge (2006)
. Barnsley, M.F.: Transformations between self-referential sets. Am. Math. Mon. 116, 291-304

(2009)

. Barnsley, M.E.: The life and survival of mathematical ideas. Not. Am. Math. Soc. 57, 10-22

(2010)

. Barnsley, M.F.: Fractals Everywhere. Academic, Boston (1988); 2nd edn., Morgan Kaufmann

(1993); 3rd edn., Dover Publications (2012)

. Barnsley, M.F,, Harding, B.: Three-Dimensional Fractal Homeomorphisms. World Scientific,

in a volume dedicated to Benoit B. Mandelbrot (to appear)

Barnsley, M.E,, Vince, A.: Fractal homeomorphism for bi-affine iterated function systems. Int.
J. Appl. Nonlinear Sci. 1, 3-19 (2012)

Barnsley, M.E,, Vince, A.: Developments in fractal geometry. Bull. Math. Sci. 3, 299-348
(2013)

Barnsley, M.F,, Harding, B., Igudesman, K.: How to transform and filter images using iterated
function systems. SIAM J. Imaging Sci. 4(4), 1001-1028 (2011)

Barnsley, M.F., Harding, B., Vince, A.: The entropy of a special overlapping dynamical system.
Ergodic Theory Dyn. Syst. (2012). doi: 10.1017/etds.2012.140

FrangoCamera, iPad (2012) and iPhone (2013) applications. www.frangostudio.com

Saalfeld, A.: Area-preserving piecewise affine mappings. In: Proceedings of the Seventeenth
Annual Symposium on Computational Geometry. ACM, New York (2001)

Stein Elias, M., Shakarchi, R.: Real Analysis: Measure Theory, Integration, and Hilbert Spaces.
Princeton University Press, Princeton (2005)

Touret, J.L.R.: Fluids in metamorphic rocks. Lithos 55(1), 1-25 (2001)


www.frangostudio.com

The Dimension Theory of Almost Self-affine
Sets and Measures

Karoly Simon

Abstract A self-affine IFS 7 = {fj(x) = A;x +}/—, is a finite list of
contracting affine maps on R?, for some d > 1. The attractor of F is
o0
A=) fio-o fi(B) ©.1)
n=1iy v

where B is a sufficiently large ball centered at the origin. In most cases we cannot
compute the dimension of A. However, if we add an independent additive random
error to each f; in (0.1) then the dimension of this random perturbation (called
almost self-affine system) is almost surely the so-called affinity dimension of the
original deterministic system. The dimension theory of almost self-affine sets and
measures were described in Jordan et al. (Commun. Math. Phys. 270(2):519-544,
2007). The multifractal analysis of almost self-affine measures has been studied in
some recent papers (Falconer, Nonlinearity 23:1047-1069, 2010; Barral and Feng,
Commun. Math. Phys. 318(2):473-504,2013). In the second part of this note I give
a survey of this field but first we review some results related to the dimension theory
of self-affine sets.
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1 Introduction

Let A; be d x d non-singular matrices with | 4;|| < 1and#; € RY fori = 1,...,m.
Let

Fi={fiYic, ={4i-x +t}i_,. ey

We study the attractor A of the IFS F which is defined as follows: let B =
B(0, r) be a sufficiently large closed ball such that: f;(B) C B foralli = 1,...,m.
We set

A=) U fioofi(B). )

n=011 ..... i,,

Then A is the unique nonempty compact set satisfying

A=A 3)

i=1

is called self-affine set.

Our understanding of the dimension theory of self-affine sets is far from
complete. This is so even in the diagonal case that is when all of the matrices A4;,
i = 1,...,m are diagonal. Most of the results about the dimension theory of self-
affine sets can be divided in to two fields:

(a) The cylinders are aligned in some ways similar to the ones in Fig. 1. Namely,
for example let d = 2 and Q := [0, 1]?, all matrices A; are diagonal and the
sets fi(Q) = {Aix+t;:xe Q}fori = 1,...,m are the gray squares in
Fig. 1. The attractors generated by these three IFS in Fig.1 are (from left to
right) members of the families called Bedford—McMullen carpets [21], Lalley—
Gatzouras carpets [19], and Baranski carpets [1].

(b) The geometric position of the cylinders is general.

+-

I

Fig. 1 Bedford-McMullen, Gatzouras—Lalley, and Bararski carpets (in this order). This figure is
from [1]
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A good account about the case (a) is available in forthcoming book by Bishop
and Peres. Although there are very important recent developments related to the
multifractal analysis of the Bedford—McMullen carpet in this note we only review
some results related to case (b) that is when the geometric position of the cylinders
is general.

2 Self-affine Sets and Measures

The following classical theorem of Falconer [5] was improved by Solomyak [30].

Theorem 1 (Falconer and Solomyak). Let F be a self-affine IFS of the form (1).
If |4l < % holds for all i = 1,...,m then for Lebesgue almost all
(t1, ..., tw) € RY™ the Hausdorff dimension and the box dimension of the attractor
of F is the same and is equal to the affinity dimension defined below.

2.1 The Affinity Dimension

The affinity dimension is a generalization of the similarity dimension [7]. It gives the
best guess for the Hausdorff dimension of a self-affine attractor based only on the
linear parts A; of the maps f;. Recall that for a > 0 the ¢-dimensional Hausdorff
measure of the attractor is

H'(A) = supinf | D |Ei|"|: A C| JEi. |E| <8, (4)

§—0 i=1 i=1

where | E;| is the diameter of the set E;.

Assume that we are in R® and B in the definition of the attractor is actually
Q = [0,1]>. Then the most natural cover of A is the cover by the n-cylinders
fi(Q),i = (i1,...,iy). If we are looking for the most economic cover of A [the
one that minimizes the boxed sum in (4)] without taking into consideration the
translation parts ¢; of f; then we need to cover each n-cylinder fi(Q) individually.
For simplicity here we assume that f;(Q) is a box with side lengths

o = o (Ai) = ar(Ai -+ 4i,), )
——
Ai

where o (A;) the k-th biggest singular value of 4; = A;, -+ 4;,.
In Fig. 2 we indicated the three sensible ways to cover f;(Q). The contributions
o0
of these coverings of fi(Q) to > |E;|" are
i=1
t a1 g t—1 ooy

=2
o, —o, = oo, — 03 = o000y
o2 o3 O3
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gy s
@y
y
Qg g
Fig. 2 Three ways of covering the red cylinder
respectively. Observe that fora0 <t < d
: e t—[t] 6
mimal—--a,aiﬂ =0 Oy (6)

o0
Therefore to estimate 7' (A), we estimate the boxed sum Y |E;|" in (4) with the
i=1
[t] + 1-th cover in Fig. 2. By this cover, the contribution of the n-th cylinder f£[0, 1]
to the boxed sum in (4) is

@' (4) = "'Ol[t]aft]_ﬂ-

This ¢ (4;) is called singular value function (for A; = A;, --- 4;,).

Definition 2. For A := (A4y,...,A,) € (GL;(R))™) and s > 0 the subadditive
topological pressure function is: P(A,-) : [0,00) — R

— : 1 t
P(A,1) = nlglgo - log Z o' (A4i) ] - @)
li|=n
Fix A. The map t — P(A,?) is strictly decreasing and
P(A,0)=m >0, lim P(A,t)=—oc.
—>00
Hence there is a unique zero of P(A,t).
Definition 3. The affinity dimension s(.A) of the self-affine IFS
F={fitis) =4 -x + 1)L,

is defined as the zero of P (A, s).
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Using earlier results of Falconer and Solan [9], Feng and Shmerkin [11] proved
recently that

Theorem 4 (Feng and Shmerkin (2012)). (A,t) — P (A, 1) is continuous.

So, the affinity dimension is also continuous.

2.2 When Does dim(A) = s(A) Hold for All Translations?

Falconer—Solomyak Theorem says that the Hausdorff dimension is equal to the
affinity dimension:

(a) if all contractions are stronger 1/2,
(b) only for Leb,,.q almost all (¢1,--- ,t,) € R™,

It is easy to see that the bound 1/2 is sharp. On the other hand, there are some results
which give further conditions under which the assertion of Falconer—Solomyak
Theorem remains valid. For example in R?, Hueter and Lalley [13] proved that
this is the case assuming that the smaller singular value is greater than the square of
the bigger one (the so-called one-bunched property holds) and the self-map of S'
generated by A;!,..., A preserves the negative quadrant and satisfies a kind of
strong separation property. More precisely:

Theorem 5 (Hueter and Lalley). Given a self-affine IFS F on R?. The linear parts
of the maps of F are A = {Ay, ... A;}. We assume that

(1) (()zl(A,-))2 < or(A;) <ai(Ay) foralli = 1,...,m. (1-bunched property.)

(2) Let Q, be the closed second quadrant of R? \ (0,0). Then we assume that for
everyi =1,...,m: A7'Q, Cint(Q») and A7'(Q) ﬂAj_l(Q) =@ ifi #£j.

(3) det(A;) > 0.

(4) Open set V such that for the closure of the sets AV, ..., A,V are pairwise
disjoint subsets of V.

Then
dimg A = dimg A = s(F)

We remark that the conditions of Hueter and Lalley Theorem can hold only if
dimg A < 1. If we require only that dimg A = s(A) we may have a chance to
apply another theorem of Falconer [6].

Theorem 6 (Falconer). Assume that

(a) F, defined as in (1), satisfies the Open Set Condition (see [T]) with a connected
open set.

(b) For some ¢ > 0 we have Leby_iprojy(A) > ¢ for all d — 1 dimensional
subspaces T1.
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Ba

12(Q) &

Fig. 3 The self-affine IFS: the diagonal case. (a) PU-set. (b) Generalized PU-set. (¢) Generalized
four corner set

Then
dimg(A) = s(F). (3

We remark that assumption (b) in the previous theorem holds if A has a connected
component that is not contained in any straight line. Kdnméki and Shmerkin [17]
proved a theorem having the same conclusion as Theorem 6 for the so-called self-
affine sets of Kakeya type but without assuming any separation properties.

Kidenmaki [16] proved that under the conditions of Theorem (1) there is an
ergodic self-affine measure with maximal dimension:

Theorem 7 (Kdenmiiki). Let F be a self-affine IFS of the form (1). Assume that

l4: ] < % hods for all i = 1,...,m. Then there exists an ergodic measure
W on the symbolic space ¥ = {1,... ,m}N such that for Lebesgue almost all
(t1,....tn) € RY™ we have

dimg(A) = s(F) = dimg (T p). C)

2.3 The Diagonal Case

Here we assume that all of the matrices 4;, i = 1,...,m are diagonal. The first
result in this direction is due to Przytycki and Urbanski [25].

Example 8. See Fig. 3a. Przytycki and Urbanski introduced a one-parameter family
of self-affine IFS on the plane

Fpi={filx) = A;-x +0}'_,, Agis the attractor of Fp (10)
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where

o

A1=A2=|:'§l:|, 1 = (0,0), 12=(1—,3’%)
2

That is for each parameter 8 € (%, 1) the fixed point of f; and f> are the opposite

corners of the unit square Q = [0, 1]2 as shown in Fig. 3a. Its attractor Ag is called
PU-set.

Pollicott and Weiss [24], and Neunhauserer [23] considered a generalization of
this system that we call Generalized PU system:

Example 9. See Fig. 3b.

Fpe = %fl(x)z ['301 2}-x+|:1_’31]f2(x)= [%g}x} (11

1— T
where B := (81, B2), T := (11, 1) satisfying 0 < B;,7;,,i = 1,2, B1 + B> > l and
n+n<l.
Finally B. Bardny considered the generalized four corner set:

Example 10 (Generalized Four Corner Set). (See Fig.3c.) Let B := (B1,...,B4)
andt := (11,...,74)

4
i 0
FB.e ::{f,-(x):[’% ]x—}-t,-,} (12)
ti i=1
where #; is chosen in such a way that the fixed point of fi,..., fs is

(1,1),(0,0),(1,0), (0, 1), respectively. The parameters B,t are chosen so that
fi(Q)N fi(Q) =0 fori # jand Q = [0, 1]%.

2.3.1 Przytycki and Urbanski Theorem

To get an upper bound for the box dimension of the attractor Ag of the Przytycki
Urbaski system (Example 8) we follow the argument related to Fig.2. Clearly the
projection to the x-axis of the attractor proj,(Ag) contains [0, 1] (since for all n
we have proj, (Uil---in fir.in(Q)) D [0,1]). Hence the argument related to Fig.2
suggests that the most natural system of covers of Ag is as follows: for an arbitrary
n first we cover Ag by the level n cylinders: f;, ;, (Q) (which are translated copies
of [0, "] x [0,27"]), then to get the desired cover of A we cover each of these 2"
rectangles by | (28)" | 41 squares of side length 8". This cover consists of altogether
2" x (28)" squares of size 27". This yields the trivial upper bound

. ]
Tma(A) <2+ 028 (13)
log?2
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To prove that the right-hand side of (13) is also a lower bound on the Hausdorff
dimension of A, Przytycki and Urbanski considered the natural measure p of
the IFS F = {fi, f2} which is the unique probability measure supported by A
satisfying

w(H) = %H(fl_l(H)) + %M(fz_l(H)) for all Borelset H C Q.  (14)

Using that dimg () < dimg(A), to get a lower bound on dimy(A) it is enough to
compute dimy(i).

The Ledrappier—Young [20] formula for the dimension of invariant measures
(Sect.4.2) would yield the required conclusion but this formula was proved only
for measures which are ergodic and invariant for a smooth diffeomorphism (in the
time when [25] was prepared) as opposed to p which is the invariant measure of
a self-affine IFS. So, Przytycki and Urbanski verified that the Ledrappier—Young
formula was valid for p defined in (13). This Ledrappier—Young formula yields that

log$

di =2
imy (1) + log2

- dimy (px ), 5)
where ji, g is the invariant measure with respect to the IFS

S={Si1(x) =B -x.5(x) = px+1-p}.

Note that S is the orthogonal projection to the x axis of the original system F.
That is

typ(A) = %,U«x,ﬂ (Sl_l(A)) + %,ux,lg (SZ_I(A)) for all Borel A C [0,1]. (16)

It happened only in 2009 when Feng and Hu [10] verified that Ledrappier and Young
formula holds for self-affine IFS in the diagonal case. Formulas (14) and (15) imply
the first part of the following theorem

Theorem 11 (Prytyzcki, Urbanski).
(1) Ifdimy(px,g) = 1 holds, then

1
dimy A = dimg A = 2+ °8P 17)
log2
(2) If B is the reciprocal of a PV number, then
log B

dimg A <dimg A =2+ .
log2
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It is a very hard open problem to characterize those 8 for which dimu(p, ) = 1
holds. Actually this question was asked by P. Erdds in 1930s. A very important
achievement was made by Solomyak [29] in 1995:

Theorem 12 (Solomyak). Let j1g be the invariant measure of the self-similar IFS
on the line

Spi={Si1(x) = B-x.5(x) = x + 1 — B}. (18)

Then g is absolute continuous with respect to the Lebesgue measure with L?
density for Lebesgue almost all B € (%, 1).

Here we remark that at least the absolute continuity part of Solomyak Theorem has
been extended by Shmerkin [28, Theorem 1.1] to all but a set of zero Hausdorff
dimension 8 € (%, 1). For B < % the measure g is supported by a Cantor set.
So, ug is singular in this case. The following extraordinarily important recent result
of Hochman [12, Theorem 1.8] implies that dimgug = 1 for all but a set of
Hausdorff dimension zero of 8 € (%, 1). Since this theorem can be used in many
related more general examples in combination with the Ledrappier—Young formula

here we give further details about it.

2.3.2 Hochman Theorem

Let I C R be a compact parameter interval and m > 2. For every parameter ¢ € [
given a self-similar IFS on the line:

@ = {1 (0) = 1)+ (v — @O,

where

ri:l - (=1,1)\{0} andg; : I - R
are real analytic functions. Let I1, be the natural projection from ¥ := {1,... ,m}N
to the attractor A, of ®,. For every probability vector p = (pi,..., pm) the

associated self-similar measure is

vps 1= ()« (p").

Its similarity dimension is defined by
2. pilogpi
i=1

> pilogri(1)

i=1

dimg(vp,) 1=
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The similarity dimension of A; is the solution s(¢) of
RO+ 40 = 1.

We say that a parameter ¢ € [ is exceptional if either dimyg A; < min{l,s(¢)}
or there exists a probability vector p := (p1,..., pm) such that dimg(vp;) <
min {1, dimg (vp,,)}

Theorem 13 (Hochman). Assume that
if I, (i) = I1,(j) holds forall t € I theni = j.
Then both the Hausdorff and the packing dimension of the set of exceptional

parameters are equal to 0.

Combining this with Theorem 24 we obtain that (17) holds for all but a set of
Hausdorff dimension zero § € (3. 1).

2.3.3 A Generalization with Different Contraction Ratios

In the Przytycki—Urbanski Theorem above the idea was

(a) Use Ledrappier—Young formula [20] to express the dimension of the self-affine
natural measure with the dimension of the projection of the natural measure.

(b) The projected measure is a self-similar measure with overlapping cylinders.
Apply Solomyak or Hochman Theorem to compute its dimension.

To generalize Przytycki—Urbanski Theorem, a similar plan was carried out for the
case of different contraction ratios (see the IFS on Fig. 3b) by Neunhéuserer [23].

More precisely, first we define two open triangles 73, T; C [0, 1]%. Their product
Tg . will be the parameter space. Let

Tp:=1{B = (B1.B2) € (0,1)*: B1 + B> > 1}
and
T, = {‘L’ =(t,n):n+n< 1}
For an arbitrary (B, t) € Tg, := T), x T; let Ag be the attractor of F , defined
in (11).
Using a similar argument as above one can easily see that the upper box
dimension of the attractor satisfies:

dimp(Age) <1+ 1, (19)

where ¢ is the solution of
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Bitl + Both = L. (20)

This equation naturally defines a Bernoulli measure {p, 1 — p}" with p = B 17
on the symbolic space ¥ := {I, Z}N . Let uP7 be its push forward measure to the
attractor by the natural projection IT : ¥ — Ag_,

g := lim fir.i, (0), 21
wherei = (i1,i2,...)and f;, i, := fi, o---o fi,. Thatis for
pPT(H) = p - BTSN HD)) + (1= p) - PR (fy ' (H) (22)

for all Borel set H C Q. The natural measure for Fg, is ubBT. To estimate its

dimension we consider its projection to the direction of weaker contraction that is

to the x-axis. The projected measure p,e’r is the invariant measure of the projected

IFS
Sg :={B2-x,B1-x+ (1 — B1)}, with probabilities (p, 1 — p). (23)
Using the Ledrappier—Young formula (see Sect.4.2) we obtain that
dimp (7)) = 1 + ¢ iff dimp(uf?) = 1. (24)

The heart of the matter is the application of Hochman Theorem mentioned above.
This together with (24) and (19) yields that

Theorem 14 (Neunhauserer (Improved by Hochman Theorem)). Fix an arbi-
trary T € T;. Then for Lebs-almost all B € Tg we have

dimy () = 1 + 1, (25)
consequently,

dimg(A) = dimg(A) = 1 + 1. (26)

2.3.4 Four-Corner Sets

Here we show a family of self-affine IFS for which even the box dimension of the
typical element is smaller than its affinity dimension.

Bérany [3] studied the so-called generalized four-corner set which is the attractor
of a self-affine IFS like the one in Fig.3c. We consider the IFS Fpg,, defined
in (12). The only assumption made is that the rectangles in Fig.3c are disjoint.
More precisely, let

T:={(B.7) € (0.1)*: fi(Q)N f3(Q) = Ofori # j}.
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@0, 1) (0, 1)

i | q+1
p+1 g0, 1)

@,(0. 1)
Fig. 4 IFS with some functions sharing the same fixed point. The figure is from [3]

where Q = [0, 1]%. In the sequel we always assume that (8, 7) € T. The generalized
four corner set is the attractor Ag, of Fg.. To compute its box dimension we
consider the two IFS which are the projections of Fg ; to the coordinate axis:

Fp= = g1 =gl o {fw=pa) @)

J=2,

and

Fr={ff M =nuy+1-u},_,U {sz(” = ’fy} 0 B

J=2,

Clearly, for k = 1, 2 there are two-two functions in F k both sharing the same fixed
point zero and also two-two functions which share the fixed point 1. For this reason
the box (and the Hausdorff dimension) for the corresponding attractor A}, and A2
are smaller than the minimum of their similarity dimension and 1.

As in the previous two examples we have to find the dimension of the projected
attractors. In order to do that Barany [3] proved the following more general theorem
about a p 4 g-parameter family of IFS on the line containing functions which share
the same fixed point (Fig. 4).

Theorem 15 (Barany).
Let p,q € N such that at least one of them is positive. Let A, be the attractor of
the IFS

S = 1{pi (x) 1= yiex}_g UAW; () = yix + L=y,

Without loss of generality we may assume that yo, = max y; ¢ and yo, = maxy; .
We define § = §(F) as the solution of

p q

[TO=v)+TT(1-v)=1 (29)

i=0 Jj=0
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Then for Leb pyq almost all (Y14, ..., VpesVips---Vqr) € (0,900) % (0,%0,) we
have

(a) dimy(A,) = min{l,§}
(b) If§ > 1 then Leb(A,) > 0.

Observe that § is smaller than the similarity dimension of the system S. If yo, +
Yo, > 1, then A, = [0, 1], so in this case the assertion is trivial. We compute the box
dimension of the four-corner set Ag, for typical (B, T) using the previous theorem
for the two projected IFS F é and F2. Namely,

Theorem 16 (Barany). Assume that B,t € T. Let
s1 = §(]—'é) and sy 1= §(}'f)
be defined as in (29). Moreover, let dy, d, be the solution of
4 4

Z'Bmin{l,sl} . Tfil—min{l,sl} — 1and Z Tmin{l,sz} . Ig{iz—min{l,sz} -1

i=1 i=1
Then for Leby-almost all B, T € T we have

dimB (Aﬂ,‘l) = max {dlv dz} < S(]:ﬂ,l’)v (30)

where s(Fpz) is the affinity dimension (see Definition 3).

2.4 The Dimension of Self-affine Measures

Given the self-affine IFS F := {fi(x) = 4; -x +#;}/_, on RY, where A :=
(Ay,...,A,) € (GL;(R))™) and ||A;]] < 1 foralli = 1,...,m. We denote
the attractor by A. Recall that the affinity dimension and the pressure for this
system was defined in Sect. 2.1. The natural projection IT from the symbolic space
¥i={1,.. .m}N to the attractor A is defined by T1(i) := nll)ngo fir..i,(0), where the

i = (ip,i1,...). Let £ be the set of ergodic invariant measures on X.

2.4.1 Thermodynamical Formalism

Let v € &. To define the Lyapunov exponents A;(v) > --- > A;(v) of v, first we
introduce the map A : ¥ — GL;(R),

A(l) = AT

"
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Consider the stationary process given by the measure v and

(Pi(Ai) = AT .- AT} €2

0)n=1

Using Oseledec Theorem for this process we obtain the Lyapunov exponents (see
[18, Sect. 1.5])

0>A1(v) = A2(v) = -+ = Aa(v). (32)

For a v € £ we can think of the k-th biggest Laypunov exponent A, (v) as the limit
1

Ar(v) = lim —logay(4;,) forvaaic X, (33)
n—oon

where ay (4, ) is the k-th biggest singular value of the n-fold matrix product 4;), =
A; -+ A;,.Forapu € &£, following Kaenmaki [16], we define the ¢-energy of p for
t > 0 by

1
Ap(r) = lim — % ju() log ' (4y). (34)

i|=n

We write £, for the entropy of . The following variational principle is due to
Kaenmaki [16]:

Theorem 17 (Kaenmaki). Fort > 0 we have

P (A1) = sup {hy + Au(0)} (35)
HEE

where the corresponding topological pressure function P (A, t) was defined in (7).

For a given ¢ > 0, the ergodic measures where the supremum in (35) u € & are
attained are called 7-equilibrium measures. Kaenmaki proved [16, Theorem 2.6]
that for every ¢+ > 0 such a 7-equilibrium measure always exists. However, T.
Jordan pointed out that the 7-equilibrium measures are not necessarily unique. The
same idea appeared in the paper of Rams [26] who studied the same problem for
horseshoes.

Now we derive another formula for A, (t). Fixap € £andat > 0. We write
£ := |t] in the argument below. In the first step of the argument we will use the
Sub-additive Ergodic Theorem [31] for the sub-additive function sequence v, (i) :=

log o' (4;,):
1
Au(t) = lim —log¢'(Aj,) p-aaieX (36)
n—oon

n—00
k=1

l
= lim (Z’%logak(Ai) + (¢ —E)%logaHl(Ai))

¢
Z/\k(ﬂ) + (= OAer1(p).

k=1

Thatis # — A, (¢) is the blue function in Fig. 5.
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Lyapuno vexponents: 0 > A\ > Ay > A\3 > Ay
Au(t)

h;/ """"""""""""""" H

| H
T 44—
1 o D(p) 3 4

Fig. 5 The definitions of D(w) and A, (¢) in R*

We will see later that under some conditions, generically (in some sense,
specified later) the Hausdorff dimension of the push forward measure IT.v is the
Lyapunov dimension D(v) of v € €.

Definition 18 (Lyapunov Dimension of Ergodic Measures). If
ki=max{i :0<h, + A (v)+---+ AW} <d—-1, (37)
then we define the Lyapunov dimension of v:

hy +A1(v) + -+ Ak (v)

D) :=k+ ) ;

Ifh, +A1(v) + -+ As(v) > 0, then we define

hy

D(v):=d - “a) + 1 A(0)

where £, is the entropy of the measure v.
It is immediate from (36) that

Fact 19 Fora u € &, an alternative way to define D(1) is as follows:
=N (D(w)) = hy. (38)

This is shown in Fig. 5.
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Recall that Falconer—Solomyak Theorem stated that the dimension of a typical
self-affine set is equal to the affinity dimension, if all contractions are stronger than
1/2. The corresponding theorem for the dimension of ergodic measures was proved
in [15].

Theorem 20 (Jordan, Pollicott, and Simon). Fix an arbitrary A := (Ay,..., An)
€ (GL4(R))™) satisfying || A; || < %for alli =1,...,m. Fort .= (t1,...,ty) €
R™ we define

Flo={ffx) =A - x+t...., f5(X):=Ap-x + 1}, (39)
and the corresponding natural projection TI' : & — A'is

1) = lim L (0). (40)

i1...0p
Then for Leb,,q almost all t we have

dimu(IT5,(v)) = D(v). (41)

3 Dimension Theory of Almost Self-affine Sets and Measures

In this section we always consider some families of function systems that are
derived from a given self-affine IFS (like its random perturbations). We conclude
that whenever this family satisfies the so-called self-affine Holder- and transversality
conditions (see conditions (a) and (b) in Sect.3.1.2) then we have a complete
understanding about the dimension theory of a typical element of the family. The
canonical example of the systems for which these conditions hold, are the so-called
almost-self affine system. These are random perturbations of a deterministic self-
affine system.

Namely, to have a chance to get rid of the rather restrictive condition || 4; || < % in
Theorems 1 and 20, we consider the so-called almost self-affine sets instead of the
self-affine one. The almost self-affine sets are random sets which can be considered
as a random perturbation of deterministic self-affine sets like the one in (2). Starting
from a deterministic self-affine system like (1) in the construction (2) of the attractor
A on the right-hand side of (2) we add an independent additive random error to each
function which appears. A version of the resulted random set which is called almost
self-affine set in the case of the golden gasket is presented in Fig. 6.

For the sake of the reader first we summarize both the definition and the results
in a more intuitive way.
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25 T T T 25

0.5

0 0.5 1 1.5 2 25 3

Fig. 6 The golden gasket with and without random errors in the translation

3.1 Self-affine Transversality Condition

In this subsection we introduce two conditions among which the self-affine transver-
sality condition is the more important one. The self-affine Holder condition basically
always holds.

3.1.1 The Definition and Results Presented Heuristically

These definitions were introduced by Jordan et al. in [15]. We consider a one
parameter family of self-affine IFS { £;“}"_,, on R¢, where the parameter u € U
a compact set which is endowed with a Borel measure M. We introduce a so-called
self-affine Holder condition and self-affine transversality condition. Assuming these
for M-a.a.parameter u € U we have a complete understanding of the dimension

theory of such a system:

e The Hausdorff dimension of the attractor is minimum of the dimension of the
ambient space d and the affinity dimension.

 If the affinity dimension s(F) > d, then Leb;(A) > 0.

¢ The dimension of the push forward of an ergodic measure p is min {d, D(u)}.

e If D(u) > d, then the push forward measure of p is absolute continuous.

Then we need to know which system satisfy both the self-affine Holder and
transversality conditions. Actually we know a number such families including

* Self-affine systems having all contractions stronger than 1/2

e Almost self-affine systems.

* Some graph directed systems motivated by fractal image recognition [15,
Sect. 6].

We get these results by assuming only that || 4| < 1 (instead of |A{]| < 1/2)in
Theorems 1 and 20 but, on the other hand, our system is a random system.
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Fig. 7 The function p — Zinj(p), ox 1= ax (i A j) in R?

3.1.2 The Precise Definitions

We are given a compact o-invariant @ C . Mostly @ = ¥ := {1,...,m}"
except when we use graph directed construction.) We assume that we are also given
a continuous map IT : U x @ — R? which for a fixed u gives us the natural
projection from IT" : Q — A", where A" is the attractor for parameter u.

(a) Self-affine Holder condition: There exists a constant K > 0 such that for every
u e U andi € Q and for every n € N we can find an isometry G = G(i, n) :
R? — R with

T*(iln) C K - G ([0, o (i[n)] x -+ x [0, a (i|m)]) (42)
where i|n denotes the truncation of i € X to a word of length n.

(b) Self-affine transversality condition: There is a constant C > 0 (independent of
i,j) such that for all i, j € Q2,1 # j we have

MAu e U : [IT() — G| < p} < C - Zinj(p). (43)
where
d
Zipj(p) := [ [ min{p, ax (i A J)} - (44)
k=1
See Fig. 7.

These conditions were motivated by the Generalized projection scheme of
Solomyak [30].
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3.2 Almost Self-affine Systems

Given the self-affine IFS on R" by F := {fi}/L, = {4, -x+1;}/—,, where
A; are supposed to be contracting for all i = 1,...,m and as usual we write
A = {A,,..., An}. We assume that with each application of the functions from
the given IFS we make a random additive error Y. We assume that these errors have
distribution 7, where 7 is an absolutely continuous distribution with bounded density
supported on a compact disk D which is centered at the origin and can be chosen

to be arbitrarily small. Let 7 be the m-array tree. For an i, := (ig,...,i,—1) €
{1,...,m}" let
i:i” = (fio + yiy) © (fll + Yigiy) 00 (finfl + Yigoin_1)> (45)

and we assume that

Yi, := Dig» Vigirs -+ + s Vigeoin_y) € D X === x D

n

are i.i.d. with distribution 7. Let

The attractor is defined by

o0
A =\ A B). (46)
n=0 i,
where B is a large ball centered at the origin.
So, forani = (ip,...,ig,...) € {1,...,m}>N
——
b
Yi) = 1 : Lt
G = lim (&, + };A,O,,,,,,k_l t 47)

+ Vi, + k; Aig..iv—y * Vio..dk )

The black part is the deterministic part and the yellow part is the random part.
Finally, on D7 we define the infinite product measure:

P::nx...xn...

It was proved in [15, Lemma 5.1] that
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Lemma 21. The family of almost self-affine maps defined above satisfy both the
self-affine Holder and Transversality conditions.

Hence we obtain

Theorem 22 (Jordan, Pollicott, and Simon). Let v be an ergodic measure on 3.
For P-almost ally € D we have:

(1) If s(A) < d, then dimy AY = s(A);
(2) If s(A) > d, then Leby(AY) > 0.
(3) dimy II%(v) = min{d, D(v)}.

(4) If D(v) > d, then TI(v) < Leby.

(5) The measure T1%(v) is exact dimensional:

log I} (v) B(x,
lim M = D) for 11} a.a. x.
40 logr
T. Jordan observed that last statement follows by a little modification of a proof
of [15, Theorem 4.3].

4 Recent Developments

4.1 Non-compactly Supported Random Perturbations

In a very recent paper Jordan and Jurga [14] considered a construction which is
similar to the almost-self affine case but here the random perturbations are non-
compactly supported. That is the distribution 7 of additive the random error Y is not
supported by a disk. In this case it is already a question how to define the attractor
because (46) clearly does not work. A definition of the attractor which is equivalent
to (46) when 7 is compactly supported and may work also in the general case is:

AY = {II¥(i) :ie ).

Theorem 23. Assume that n decays super-polynomially, (e.g., 1 is the normal
distribution) then assertions (1) and (2) of Theorem 22 hold.

4.2 Multifractal Analysis

Exciting recent papers of Falconer [8], Barral and Feng [4] obtained partial
results about the multifractal analysis of almost self-affine systems. A conference
proceedings paper (International Conference on Fractals and Related Topics, 2012,
Hong Kong) will be published by K. Falconer about this topic.
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Appendix

This section is devoted to the Ledrappier—Young formula for self-affine IFS in the
diagonal case on the plane. This was proved by Feng and Hu [10] in 2009 in full
generality. Given the self-affine IFS on R?:

Fpr = {f,-(x) = |:’?)’ 0:| -x—i—t,-} ,where0 < 1,8, <1,i=1,...,m.
(48)
The projection on the plane to the x-axis is denoted by proj,.. As always in this
paper IT is the natural projection from the symbolic space X := {1, ... ,m}N to the

attractor A defined by (21). Let . be an ergodic measure on ~. We define the push
forward measures of p by IT and proj,. o IT:

v := I1,p and vy := (proj, o IT)«pu. (49)

Let us consider the Lyapunov exponents 0 > A; () > A,(u). Since the matrices A;
are diagonal, the corresponding eigenspaces [18, Sect. 1.5] are the coordinate axes.
Moreover, between the two Lyapunov exponents A1 (i), A2 (i) one of them is A, ()
the other one is A, (), where

1 m
Ac) 1= lim —log(By, -+ i,) = > u((i]) log fi. (50)
i=1
and
1 m
Ay(p) = lim —log(zi,-+7,) = Y pu(li]) log . (51)

i=1
where the limits above are meant to be limits for w-almost all i € X.
With Ledrappier—Young formula, we can express max (dimH(vX), dimp(vy)) by

dimy(vy). The following Theorem is an immediate corollary of Feng—Hu [10,
Theorems 2.8 and 2.11]:

Theorem 24 (Ledrappier—Young Formula for IFS). Assume that the IFS Fg,
satisfies the strong separation property (that is all cylinders are disjoint). Further,

we assume that A () > Ay (@). That is A1 () = Ac() and Ao(p) = A, (). Then

hy ( ()
e T\ L

dimg(v) =

) - dimg (vy). (52)

From this we get

Corollary 25. Under the assumption of the Theorem 24,

D(v) = dimy(v) <= dimg(v,) = min % 1, 2l } . (53)
—Ai(w)
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Yy (1,1, 1)

Py=1(0,1,05) : P, = (1, 1, 0.5)

Fig. 8 A is the box with opposite vertices (0, 0,0) and P,. B is the box with opposite vertices P,
and (1,1, 1)

Ledrappier—Young [20, p. 545] proved a formula for the dimension of measures
that are ergodic and invariant with respect to some C? diffeomorphisms of a
compact C*° manifold without boundary. In order to see how to apply this for self-
affine IFS on the plane, in the diagonal case, we associate a baker map in dimension
three in a natural way. Namely, if the IFS is the generalized PU set of Example 9,
then the associated baker map is the map which appears in Fig. 8. In this case (using
the definition of Example 9)

(B2x, 12y, 22), if (x,y,2) € A;
F(x,y.2) = : 54
(3.9 Bix+1-B1,uy+1—1,2z—-1), if(x,y,z) €B. (4

In the general case the corresponding baker map in dimension three is defined
analogously. This is a map with singularities (see the square S in Fig. 8). If there
were no singularities in the associated baker map, then we would apply Ledrappier—
Young formula (see [20, p. 545, (i)—(iii)]) for the baker map, and that would
immediately imply that (52) holds. I explain everything in the special case of
Example 9 and the corresponding baker map F [defined in (54) and in Fig. 8]. Let A
be the attractor of the baker map. The natural projection I1:= %, > A is defined
forani = ( ..i_z,i_l,io,il,iz,...) €3 by

o0 .
o . . .. . Iy
(- igigsipipo+) = (nlglgo Jizy o0 fi,(0,0), E: 2n+l) :
n=0

Let [ be the canonical ergodic measure on ¥, := {1,... ,m}Z which corresponds
to i and we write D := (IT)«/ for the push forward measure on A. The Lyapunov
exponents of D are
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Ao =1log2, A1 = A () and A, = A, (),

where A, (i), A, (u) where defined in (50) and (51).
2
Then the decomposition € E; corresponding to the Lyapunov exponents 1o >
i=0

A1 > A, are the lines through the point (x, y, z) which are parallel to the z, x, and
y axes in this order. We call them unstable, stable and strong stable directions and
denote them by Eo(x, y,z), Ei(x, y,z) and E>(x, y, z), respectively. The unstable
manifold W"(x, y,z) of a point (x,y,z) € A is Ey(x, y,z), the stable manifold
is Wl(x,y,2) := Ei(x,y,2) x Ey(x,y,z) and the strong stable manifold is
W2(x,y,z) := E»(x,y,z). Observe that

A=Ax[0,1], d=vx][01]. (55)

Further, for every (x,y,z) € Az let 7% be the conditional measure of ¥ to
Wk(x, v,2), k = 0,1,2. Observe that by (55) we have

l(x,y.2) = dI(x, ¥, 7)., forany (x,y,2), (x",y'7) € A (56)

and this measure can be naturally identified by v. This and formulas [20, p. 545
(i)—(iii)] applied to the system (A D, F) would imply immediately that Theorem 24
holds if we knew that formulas [20, p. 545 (i)—(iii)] can be applied not only for the
ergodic invariant measures invariant for C? diffeomorphisms of C* manifolds but
also for the system (A, D, F) which has singularities.

So, we need to prove that the presence of singularities do not influence the way
to compute the dimension of the invariant measure.

This (in a much higher generality) was done first by Feng and Hu [10]. They
proved this (beside other important things) with making all the proofs from sketch,
basically following the idea of Ledrappier—Young’s proof. The proofs in [10] are
completely self-contained in a sense that they do not refer back to Ledrappier—
Young [20]. In particular they do not use the baker map above.

On the other hand, Jérg Neunhiuserer showed in his Ph.D. thesis [22, p. 30]
that it follows from [27, Sect. 4] that Ledrappier—Young formula can be applied for
self-affine IFS in the diagonal case. His argument was that the associated baker
map has Lyapunov exponents and Lyapunov charts almost everywhere. Using this
and invertibility, it follows from Schmeling and Troubetzkoy [27] that Theorem 24
holds. This idea was worked out completely with all of the details in a more general
case than that of considered by Neunhauserer in the M.Sc. thesis of B. Barany [2,
pp. 21-38] providing an alternative proof to Theorem 24. In this proof, Bardny
checked only those details which are different in the case of the IFS and referred
to Ledrappier—Young [20] at all steps of the proof which were the same. In either
way, there is no short proof for Theorem 24.

Acknowledgements The research was supported by the grant OTKA # K 104745.



126 K. Simon

References

1. Baranski, K.: Hausdorff dimension of the limit sets of some planar geometric constructions.
Adv. Math. 210(1), 215-245 (2007)

2. Barany, B.: Dimension theory of non-conformal attractors (2008) http://www.math.bme.hu/~
balubs/

3. Bérany, B.: Dimension of the generalized 4-corner set and its projections. Ergodic Theory Dyn.
Syst. 32(4), 1190 (2011)

4. Barral, J., Feng, D.J.: Multifractal formalism for almost all self-affine measures. Commun.
Math. Phys. 318(2), 473-504 (2013)

5. Falconer, K.J.: The hausdorff dimension of self-affine fractals. In: Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 103, pp. 339-350. Cambridge University Press,
Cambridge (1988)

6. Falconer, K.J.: The dimension of self-affine fractals ii. In: Mathematical Proceedings of
the Cambridge Philosophical Society, vol.111, pp. 169-179. Cambridge University Press,
Cambridge (1992)

7. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New
York (2007)

8. Falconer, K.J.: Generalised dimensions of measures on almost self-affine sets. Nonlinearity 23,
1047-1069 (2010)

9. Falconer, K.J., Sloan, A.: Continuity of subadditive pressure for self-affine sets. Real Anal.
Exchange 34(2), 413-428 (2008)

10. Feng, D.J., Hu, H.: Dimension theory of iterated function systems. Commun. Pure Appl. Math.
62(11), 1435-1500 (2009)

11. Feng, D.J., Shmerkin, P.: Non-conformal repellers and the continuity of pressure for matrix
cocycles Geometric and Functional Analysis, 1-28, Springer (2013)

12. Hochman, M.: On self-similar sets with overlaps and inverse theorems for entropy. Preprint
(2012). arXiv:1212.1873

13. Hueter, ., Lalley, S.P.: Falconer’s formula for the hausdorff dimension of a self-affine set in r2.
Ergodic Theory Dyn. Syst. 15(01), 77-97 (1995)

14. Jordan, T., Jurga, N.: Self-affine sets with non-compactly supported random perturbations.
Preprint (2013). arXiv:1310.0944

15. Jordan, T., Pollicott, M., Simon, K.: Hausdorff dimension for randomly perturbed self affine
attractors. Commun. Math. Phys. 270(2), 519-544 (2007)

16. Kédenmiki, A.: On natural invariant measures on generalized iterated function systems. Ann.
Acad. Sci. Fenn. Math. 29, 419-458 (2004)

17. Kédenmiki, A., Shmerkin, P.: Overlapping self-affine sets of kakeya type. Ergodic Theory Dyn.
Syst. 29(3), 941-965 (2009)

18. Krengel, U., Brunel, A.: Ergodic Theorems, De Gruyter Studies in Mathematics, vol. 59. W.
de Gruyter, Cambridge Univ Press, Berlin (1985)

19. Lalley, S.P., Gatzouras, D.: Hausdorff and box dimensions of certain self-affine fractals. Indiana
Univ. Math. J. 41, 533 (1992)

20. Ledrappier, E., Young, L.S.: The metric entropy of diffeomorphisms: part ii: relations between
entropy, exponents and dimension. Ann. Math. 122(3), 540-574 (1985)

21. McMullen, C.: The hausdorff dimension of general sierpiriski carpets. Nagoya Math. J. 96, 1-9
(1984)

22. Neunhauserer, J.: Dimensional theoretical properties of some affine dynamical systems. Ph.D.
thesis, Free University Berlin (1999)

23. Neunhauserer, J.: Properties of some overlapping self-similar and some self-affine measures.
Acta Math. Hung. 92, 143-161 (2001)

24. Pollicott, M., Weiss, H.: The dimensions of some self-affine limit sets in the plane and
hyperbolic sets. J. Stat. Phys. 77(3—4), 841-866 (1994)


http://www.math.bme.hu/~balubs/
http://www.math.bme.hu/~balubs/

Almost Self-affine Sets and Measures 127

25. Przytycki, F., Urbaniski, M.: On the hausdorff dimension of some fractal sets. Stud. Math. 93(2),
155-186 (1989)

26. Rams, M.: Measures of maximal dimension for linear horseshoes. Real Anal. Exchange 31(1),
55-62 (2005)

27. Schmeling, J., Troubetzkoy, S.: Scaling properties of hyperbolic measures. Preprint (1998)

28. Shmerkin, P.: On the exceptional set for absolute continuity of bernoulli convolutions. Preprint
(2013). arXiv:1303.3992

29. Solomyak, B.: On the random series A n (an erdés problem). Ann. Math. 142(3), 611-625
(1995)

30. Solomyak, B.: Measure and dimension for some fractal families. In: Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 124, pp. 531-546. Citeseer (1998)

31. Walters, P.: An Introduction to Ergodic Theory, vol. 79. Springer, New York (2000)



Countable Alphabet Non-autonomous
Self-affine Sets

Mariusz Urbanski

Abstract We extend Falconer’s formula from Falconer (Math. Proc. Camb. Philos.
Soc. 103:339-350, 1988) by identifying the Hausdorff dimension of the limit sets
of almost all contracting affine iterated function systems to the case of an infinite
alphabet, non-autonomous choice of iterating matrices, and time-dependent random
choice of translations.

Keywords Self-affine sets * Hausdorff dimension ¢ Non-autonomous systems

1 Introduction

In the seminal paper [1], given k contracting matrices Aj, Ay, .. ., A, Ken Falconer
has provided a close formula which gives the Hausdorff dimension of the limit sets
of the iterated function system

Sa = {Rq S X > Aix +ai}f:1

for Lebesgue almost every vector a = (a,-)i;l € R In our article we extend
Falconer’s result in several directions.

e We allow k to be infinite; instead of Lebesgue measure we then consider
appropriately defined product measure with infinitely many factors.

¢ Being in the iterating process we allow all the matrices A; to depend on the time,
i.e. making a new composition at a step n, we take the contracting matrices from

an entirely new collection A(l”) e, A,({") .
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*  We choose the vectors (a,-)ff=1 randomly according to some random process.
Roughly speaking we have either a finite or countable infinite alphabet E, the system
S, consists now of maps

¢ (x) = A"x +a,, e€E,

we have also a measurable transformation 6 : X — X preserving some Borel
probability measure X, and smooth transformations S, : Gf — Gf (G C R9),
x € X, with some additional technical properties. Each point x € X generates a
non-autonomous iterative scheme

sn
¢(§)ll,a) o ¢L(l)22,sx(a)) o...0 ¢c(z)’;l7 (a)) 0..., w€ EN,
where
S;’ = SX o Sg(x) o...0 S@nfl(x).

This determines (see (2) for a rigorous definition) the limit set J(, ), and our
main result identifies the Hausdorff dimension of J(, 4 for m-ae. x € X and
“Lebesgue”-a.e.a € G£. We do this by introducing the Falconer dimension FD(S),

which depends only on matrices Ag") ,e € E,n € N, and is independent of the maps
S, : GE — GE. We prove the following main result

Theorem 1.1. If S is an affine scheme on RY, then

HD(J(y.)) = min{g, FD(S)}.

form-a.e. x € X and AE-a.e. a € GE.

which is Theorem 5.3 from the last section of our paper. We would like to add
that another extension of Falconer’s result, incorporating a different randomizing
procedure, was treated in [3].

2 Affine Schemes

Fix E, a countable set, either finite or infinite; it will be called an alphabet in the
sequel. Fix an integer ¢ > 1 and two real numbers «, & € (0, 1). For every n > 1
and every e € E let Ag") : R? — R be an invertible linear map with

[49] < and | (40)7 | =& M)
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Let G C R? be a bounded Borel subset of R? with positive Lebesgue measure. Let
A be the normalized (so that Ag (G) = 1) g-dimensional Lebesgue measure on G
and let A% be the corresponding infinite product measure on G . This measure is
uniquely determined by the requirement that

Ag (]‘[ Fy % GE\F) =[[re(Fo)

a€rl’ a€l’

for every finite subset I' of £ and all Borel sets F, C G, a € I'. Denote by R¢ the
largest radius r > 0 such that G C B(0,r). For every n > 1, every e € E, and
every a € G% consider the maps ¢(n 4RI — RY given by respective formulas

P (x) = A"x + a,.

Since all the maps AE,") are uniform linear contractions and since the set G is
bounded, there exists B, a sufficiently large closed ball in R? centered at the origin,
such that

¢ (B) C B

foralln > 1,alle € E,and all a € GE. Let [2°(IR?) be the Banach space of all
bounded functions from E to R?, endowed with the supremum norm, i.e.

llalloo = supilla.|| : e € E}.

Of course, G© is a subset of [2°(R?). Let (X, F,m) be a probability space and let
6 : X — X be an invertible measurable map preserving the measure m. For every
x € X let S, : GE — G¥ be a map for which there exists a bounded convex open
set G C R? with the following properties.

(p1) G C G and dist(G,R? \ G) > 0; then G¥ C Inty, ze) (GF).
(p2) There exists a continuous map S, : GE — GE such that

(P3) S is differentiable throughout Int;E(Rq)(G )
P4
IDS, |00 = sup{|| DuSs|| @ € GF} < 00
and
B :=esssup{||DSy|lec : X € X} < 00

is so small that

kB < 1/3.
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(p5) Form-a.e.x € X there exists a Borel probability measure jt, on G equivalent
(with bounded Radon—Nikodym derivatives) to )Lg such that

o) = px o S7.

Note that if the space X is a singleton, then we are talking about one mapping
S : GF — GF (and its extension S : G — GF) preserving a Borel probability
measure ;1 on GZ equivalent (with bounded Radon—Nikodym derivatives) to AE .
This of course comprises the case of S being the identity map on GZ. This case
is referred to as translation deterministic. S = Idgr was a part of Falconer’s setup
in [1]. He was also assuming that the alphabet E is finite and the linear contractions
Ag") : R? — RY are independent of n. We do not assume any of these. Now, the
collection of maps

{¢§n,a):Rq_)Rq:nzl’aeGEaeeE}

along with the map 6 : X — X and described above maps S, : G — GE,x € X,
are referred to as an affine scheme S. We classify affine schemes as follows.

(1) Autonomous if the affine contractions AE,") : RY — R? are independent of .
(1’) Finitely autonomous if S is autonomous and the alphabet F is finite.

(2) Non-autonomous if S is not autonomous.

(3) Of dynamically deterministic type if the maps S, : Gf — Gf, x € X, are
independent of x € X. Then the action § : X — X is irrelevant, and we may
assume without loss of generality that X is a singleton.

(4) Deterministic if S is of dynamically deterministic type and S : G* — GF is
the identity map on G%.

(5) Of dynamically random type if S is not of dynamically deterministic type,
meaning that S, : G¥ — G* dodependon x € X.

(6) A Falconer scheme if S is finitely autonomous and of dynamically determinis-
tic type.

From now on § is an arbitrary affine scheme. As in the introduction, for every
integer k > 1 and every x € X let

Sf = SX o Sg(x) 0...0 S@k—l(x).
Givenn > 1, w € E", and a € GE, we define the maps
Ay = ASI)OAL?Z)O‘”OALZ,) :RT — R?
and

¢£(Ux,a) = ¢£(ull,a) ° ¢£(022,Sx(a)) o...0 ¢L(U;:,an—l(a)) B —> B.
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Note that A, is the linear part of the affine map q&ff’“). For every infinite word
€ EN and every integer n > 1 we put

Oy = ows ... wy.

Then (q&fjl’l“) (B))’-, is a descending sequence of nonempty compact subsets of B
and

diam (¢}’ (B)) < diam(B)«".

So, the intersection

o0
(x.a)
ﬂ oly (B)

n=1

is a singleton, and we denote its only element by 7, o) (@). So, for every x € X and
every a € G we have defined the projection map

T(xay: EN — B.

Slightly more generally, given any integer k > 1, we consider the maps
P — gl 6 GUHLS@) o o Ut @) g p

and the corresponding projections

Teew t EN — B.
In particular,

]T(lx,u) = T(x.a)-
The set
Jxa) = T(xa)(EY) C B CRY 2)

is called the limit set (or the attractor) of the affine scheme S at the point (x, a).
Our goal is to determine the Hausdorff dimensions of these limit sets. Indeed, we

will show that these dimensions are equal for m-almost all x € X and A%-almost

alla € G¥, and the resulting common value is directly expressible in terms of the
o0
n=1

sequence alone ({Ag") ce € E})_
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3 The Singular Value Function

Let A : R? — R? be an invertible linear contraction and let
> 201 2>2...20,>0

be the square roots of (necessarily positive) eigenvalues of the self-adjoint map
A*A : RY — RY. Geometrically, the numbers oy, . ..o are the lengths of the
(mutually perpendicular) principal semi-axes of A(B(0, 1)), where B(0, 1) is the
closed ball in RY centered at 0 and of radius 1. These numbers are called singular
values of the map A : R? — RY. Following Falconer [1] we define

ad'(A) :i=aa;. .. ak_loz]i_(k_l)

if 0 <t < g, where k is the least integer greater than or equalto s,i.e. k—1 <t <k,
and

o' (A) == (a1 . .. ag—1ay)"

if t > ¢g. Denote by L. (R?) the set of all invertible linear contractions from R? onto
itself. Note that L. (R?) is closed under the compositions of maps. We quote from
[1] the following two lemmas.

Lemma 3.1. For each t > 0 the function L«(R?) by (0, 4-00) is submultiplicative,
meaning that

a'(AC) < a' (A)a' (C)
forall A,C € L(R).
and

Lemma 3.2. Given a non-integral real number 0 < t < q and a real number
R > 0 there exists a constant ¢ < 400 (depending on all of then g, t, and R) such
that

/ d Ay(x) __c
Bon [[Ax]|" ~ o' (A4)

forall A € Ly(R?), where A, denotes q-dimensional Lebesgue measure on R,

4 Falconer Dimension

Let S be an affine scheme. Fix ¢ > 0. Define the metric pg) on EN as follows.

a’(Awm) if w#1

)
pr (@, 7) 1=
£ 0 if w=r1.
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To check that pg) is a metric indeed only triangle inequality requires an argument.
For this take also y € EN. Then |w A t| > min{|w A [, |t A y|}. Assume without
loss of generality thatw A7 > |w A y|. Thenw A T = (w A y)0 with some 6 € E*,
say 6 € E*. Denote n := |w A t|. We then have

P @.7) = 0 () = o (Aipnpg) < o (g )a (A5 AGH A+
< &' (Auny) = PP (@, 7)
< max{pf (@.7). oy (7. 1)}.
So, pg) is a metric indeed, in fact we have proved the following.

Proposition 4.1. For everyt > 0, pg) is an ultra-metric on EY.

Let H’. be the 1-dimensional Hausdorff measure on £ generated by the metric pg) .
Of course if s < ¢ and H};(E™) < +o0, then H% (E™) = 0. Therefore,

inf{t > 0: HR(EY) = 0} = sup{t > 0: Hx(E") = +00}.

Call this common number the Falconer dimension of the scheme S and denote it
by FD(S). Note that it in fact depends only on the sequence ({AE,") teel }):il
and is entirely independent of the vectors a., e € E, or the maps S : GE > GE.

We now define an auxiliary dimension FD, (S). For every / > 1 and every set
I' C EN define

Fy(T) :=infq ) o' (4o) ¢ .
wEA
where the infimum is taken over the family A; of all countable covers of I' by
cylinders [w] of length > [. The sequence (Ff(l“));’il is monotone increasing, and
therefore the following limit
F(I') = lim F/(T)
=00
exists and is equal to
sup{F)(T) : [ > 1}.
Note that if s < ¢ and F¥(EY) < 400, then F'(EY) = 0. Therefore,

inf{t > 0: F(EY) = 0} = sup{r > 0: F(E") = 400}
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Denote this common number by FD, (S). Note that as in the case of FD(S) it in fact
depends only on the sequence ({4 : e € E })7< | and is entirely independent of
the vectors a,, e € E, or the maps S, : G — G%. We shall prove the following.

Proposition 4.2. If S an affine scheme and
lim |42 > 0
e—>00
foralln > 1, then
FD.(S) = FD(S).
Proof. Obviously,
FD(EY) < FD.(EY).

In order to prove the opposite inequality fix § > 0 and consider .4, an arbitrary cover
of EN by sets of diameters (with respect to pg) )<4.ForeveryI' € Aletw, € E}
be a longest word such that

I' [a)[‘]
Then of course
dlamp(;_)(l") < dlamp(b{) ([wp]) 3)

but, more importantly for us at the moment, there exist two elements 8,y € I' such
that Bljjwr)+1 7 ¥ ljwr]i+1- As also Bliwr) = ¥ ||, We thus get

diamp(b{) T) > Pg)(ﬂ, y) =o' (Apay) = ' (Auy) = diamp(b{)([wr]).
Along with (3) this yields
diampg) (lor]) = diamp%) (T 4)

Hence {[wr]}rc4 is also a cover of EN by sets with diameter (with respect to the

metric pg) ) < . Therefore, we are done since, by our hypothesis, sup{|wr| : y € A}
converges to zero if § — 0. O

As an immediate consequence of this proposition we get the following.

Corollary 4.3. If S is a finitely autonomous affine scheme, then

FD.(S) = FD(S).
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We also define

1
Pg(r) := lim ~log ) o' (4y).
n—>o0
lw|=n
and call Pg(#) the lower topological pressure of the affine scheme S at the
parameter ¢. Let

05 = inf{t > 0:Ps(t) < 400}
and
9;' :=inf{t > 0: Ps(¢t) = —oo}.

Since for 0 < s < t, we have o' (4,) < o/ (4y)’(An) < k' *a*(Ay), we
immediately get the following.

Proposition 4.4. If S is an affine scheme, then

(a) the function [0, +00) 3 t = Pg(t) € [—00, +-00] is monotone decreasing,
(b) the function (05, 6’;’) > t = Pg(t) is strictly decreasing.

Proposition 4.5. If S is a finitely autonomous affine scheme, then the following
numbers are equal.

(a) FD(S),
(b) FD«(S)
(c) inf{r > 0: Ps(r) <0},
(d) inf{t > 0: ) cpx ' (Ay) < +oo} =sup{t > 0: ) p« ' (4A,) = +00}.
Proof. Because of Corollary 4.3 it suffices to prove that the numbers in (b), (c), and
(d) are all equal. Indeed, if s < ¢ and ) g« 0*(A,) < 400, then inf{t > 0 :
> wepx ¢ (Ay) < +oo}. Therefore, the equality in (d) is proved. The equality of
numbers in (c) and (d) is a direct consequence of Proposition 4.4(b). Now, if I' :=:
> wepx 0 (Ay) < +oo, then forevery I > 1, )" . a'(A,) < T, and therefore
F/(EN) < T. Consequently, F'(E") < T < +00, and so (b)<(d). The implication
(c)<(b) requires the system S to be finitely autonomous and is established in [1].

O

The proof of the following lemma is an adaptation of the proof of Lemma 3 in [3].

Lemma 4.6. If S is an affine scheme and F'(EY) = +oo, then there exist a finite
Borel measure v on EN and a constant C > 0 such that

v([]) < Ca'(40)

forallw € E*.
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Proof. Because of Proposition 4.1 it follows from Theorem 57(c) in [5] that there
exists a compact set I' C EN such that

0 < H (') < +o00.

Since dlampm([w]) = «'(Ay), the proof is thus completed by invoking
Theorem 8.17 in [4]. O

5 Main Theorem: The Proof

The proof of our main theorem, Theorem 1.1 will consist of several lemmas. We
start with the following.

Lemma 5.1. Let S be an affine scheme acting on R?. Let 0 < t < g be a non-
integral number. Then there exists a constant C € (0, +00) such that

/ / dAE(a)dm(x) __C
x JoE |17 (ea) (@) = Ty (O T @ (Apnc)

forallw,tv € EN withw # 1.

Proof. Let

PI=WAT

andletk := | A | < 400. Let ' := 0% (w) and ' := o* (7). Then

I, 1) = /X/G dpx(a) dm(x)

E ||7T(x.,a)(w) - ”(x,a)(f)”t

:// duy(a) dm(x) t
x JgE (a)( (k+1) (@ /)) (a)( (k+1) (,))H

POk (x),Sk (a) o \T gk (x).5k (a)

_/ / dpg—k(xy(a) dm(x)
B E || (SF@) o (k+1) (S k@) ;_ (k+1) 5
xJG p ( (\fa) ( /)) ( (xu) ( /))H ( )

T(x.a) T(x.a)

x// dpx(a) dm(x) .
xJor | 4 (%D (@) - (k+l)(l_/))Ht

T(xa) T(xa)

:// dig—r vy (a) dm(x)
0 | 4yl s @) = mi @)
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Now,

k+1 k+1
n((x.’a) )(a)/)) - JT((x,u) )(r’) =a, —ay + F(a),

where F : GF — RY is given by the formula:

Fa) =) Ayjorn ((S{@)y, ) = D Avjjusn ((SL@)er, ). (6)
j=1

Jj=1
Now consider the product measure

ewf = Arq ® 1_[ — Aq ® Ag\{wl}
eEE\{wi}

on RY, where, we recall, A, is the g-dimensional Lebesgue measure on R?. Let
H:GE > RY x GEMot} pe given by the following formula:

ay —ay + F(a) if j = w]
H(a)j =y " @ 7=

(7
aj if j # oy.

We shall prove the following.
Claim 1. Themap H : GE — RY x GEMe} s injective.

Proof. Suppose that H(a’) = H(a). Then immediately a, = a, foralle € E \
{w1}. Since 7] # wy, this entails a’, = a,;. So,
1

F(d')— F(a) = a, _a'/ﬂi'

It then follows from (6), (p4), linearity of the maps A,/ ;«+n and A,;«+y, and
0 -quasi-convexity of G, that

la’ — alloo =

= lla;; —au |l = [|F(a) — F(a)]]

= H 2:1 Aw/lj(k+l)((S){(a/))w;.+l) _ (S;i (a))w}_H)_
j=
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— Z Ao ((ST(@h) +1) (s] (a))T//'+1)H

j=1

3

< > NSL@N, ) = SL@)ur, N1+ D k1181 @)), ) = S@)e |
j=1

j=1

K111 (a’) = S (@)lloo

'M8

1

J
(o]

<2) «/Blla’ - alloo
j=1

= 201B(1 — k)"l — al oo

<lla" = alloo.

®)
where the last equality followed from the assumption (see (p4)) that k8 < 1/3. This
contradiction finishes the proof of Claim 1. O

In the same vein let us prove now the existence and estimate the norm of the partial
derivative D, F(a) at every pointa € G”. Indeed, it again follows from (6), (p4),
and linearity of both Aw/|j(k+1> and AT,U(HU, that

1D, F(a)|| =

o0 o0
=122 Auen 0 Dypuy ,, 0 SH@= Y Ao © Dy oy, 0 SH@)|
j=l1 =1

<2) K(IDS]leo < ZZ(Kﬁ)’
j=1
2kp

- 1 —«p’
)

ie. Dw;F (a) exists and (9) holds. So, because of the special form (7), we now

conclude that the map H : GE - RY x GEMel} jg non-singular with respect to the
measure Zw;, and its Jacobian is given by the formula

* 2kB \¢
(@) = | det(ldrs + Doy F(@))| = (1 = || Dy F@))? = (1 N 1—/</8) '

So, if we consider the measure £,; on H (GF) but the measure A% on G%, then
Jy—1(a), the corresponding Jacobian of the map H ™' : H(G?) — GF is
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1 2 N
Ju—1(b) = mfg—l(b) <y:= (M(G) (1 1 _KI'BC’B) )

for all b € H(GF). Therefore, we can single out the inner integral in (5) to get
dME(a
I:(w, 1) ::/ 6@ -
H=(H(GE)) HAp((n,(k+l)(a)/)) (k+l)(1,/)) H

(x.a) T T xa)

Ty (b)
= — - dl (b
/H«;E) A, @t @)

/ dl,;(b)
=7 Juar) TA@uIF
dAg(y) ) E\(of
= — " dA '),
’ /p*<H(GE>> /pw;w*‘(b» 14, 7°

where py : (R)E — (R’f)E\{’”{} is the canonical projection onto (R’f)E\{’”i}, ie.
Px(be)ece = (be)eer\iu)}> and, we recall, p,; : (R9)E — RY is the canonical
projection onto w{th coordinate. Now, if ¢ € G%, then

[(H (@) || = llaw, —ay + Fa)l| = llay || + llag |l + [|F(a)l|
<2Rg + Rgr(1 —k)™!
=@2+«(1—-Kk)")Rg,

where the estimate || F(a)|| < Rk (1 —k)~! is a simplification of the calculation
from (8). Therefore, for every b € p«(H(GF)), we have that Do, (px' (b)) C

B(0,(2 + «(1 — k)" Rg). So, by virtue of Lemma 3.2, there exists a constant
C > 0 such that

drg(y) ., E\te]}
L) < y/ / Ay Vel )
e (HGEY) JBO.@+c(1—0-1)Re) 1AW ¢
C o
< - dAE\{ 1}
a'(Ap) Jp.(rGE))
C | E\)} E
= A Y(p«(H(G
Ot’(Ap) G (p (H( )))
C

= @A)
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Therefore,

// d/\g(a)dm(x) x// duy(a)dm(x)
X JGE Iln(x,u)(w)_”(x,u)(f)”t X JGE ||7T(x,a)(w)_”(x,a)(f)||t

= / I.(w,7)dm(x)
X

C
= @ (Aon) /X"’”(x)

= / I.(w,t)dm(x).
X

The proof of our lemma is complete. O

The proof of the following proposition goes, with almost no changes, as the proof
of Proposition 5.1 in [1]

Proposition 5.2. If S is an affine scheme and H(EY) < +o0, then H' (J(x.q)) <
+ooforall x € X and alla € GE.

Proof. Begin in the same way as in the proof of Proposition 4.2. Fix § > 0 and
consider A, an arbitrary cover of E™ by sets of diameters (with respect to the metric
pg)) <4.Forevery I' € Aletw, € E} be alongest word such that

I' C [wr].
Then of course

diamp<F,> (T) < diamp%) (lwr]) (10)

but, more importantly for us at the moment, there exist two elements 8,y € I' such
that Bliwr)i+1 7 ¥ ljfwr)l+1- As als0 Bliwr)) = ¥ljfor)) we thus get

diamp%) (M) > pP(B.y) =o' (Apny) = @' (Auy) = diamp%)([wp]).
Along with (10) this yields
diamp(ff_) (lwr]) = diamp(;) (T (11)

Hence {[wr]}re 4 is also a cover of E N by sets with diameter (with respect to the

metric pg) ) < 8. Therefore, for all x € X and all a € G¥ we have that

J(x,u) C U ¢L(u:-a)(B)

reA
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But each set q&c(jfi“) (B) is contained in a rectangular box with sides of length
2diam(B)a;(Ay), 2diam(B)az(Ay), . . ., 2diam(B)a, (Aw).

If k is the least integer greater than or equal to ¢, then each such box can be divided
into at most

(4diam(B)Ziij;) : (4diam(B)Zi§j"’;) - (4diam(3)22§iw;) .

- (4diam(B))7~*+!

rectangular cubes with sides of length ay, that is of diameter ,/gay. Therefore,
fixing n > 0, there exists, because of (1) and (11), §, > 0 such that diam(¢>wy(B))
<nforall T € A. Hence,

H (Jxa) <

< a1 (Aw) . az(Aw) . az(Aw)
> (4d el Aa))) . (4d1am(3)m) (4d1am(B)ak (Aa))) :

TeA
- (4diam(B)) T F 1 (Jgay )’

< 37 or(dar)ea(Aur) - oemt (Ao )y (Aur)

reA
=) o (Awy).

reA

Therefore,
H' (Jra) < HE(EY).
So,
H (Jioa) = }]L%H;(J(X,a)) < %ER)H%(E ) < 4o00.

The proof is complete. O

Now we can prove the main theorem of our paper.

Theorem 5.3. If S is an affine scheme on R4, then

HD(J(X,Q)) = min{q, FD(S)}.

form-ae.x € X and Af-ae.a € GE.
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Proof. Because of the previous proposition we only have to prove that
HD(J(x)) = min{g, FD(S)}.

for m-a.e. x € X and Ag-a.e. a € G¥.Indeed, fix a non-integral number 0 < s <
min{g, FD(S)}. Take then arbitrary 0 < s < ¢ < min{g, FD(S)}. So, F'(EY) =
400, and, by Lemma 4.6, there is a finite Borel measure v on E N such that

v([w]) < Ca'(Aw) (12)

forall w € E*. Applying Lemma 5.1, formula (12), and the observation that v ® v
does not charge the diagonal, we get

dm(x)dAE(a) dv(w) dv(z) dv(a))dv(t)
I :=
/;( /I;N /Z;N /C;E Iln(x,u)(w) n(x,u)(f)”‘ /EN /I;N as w/\r

255> /[ (4" dv(@) dv(x)

curEl:N
n=01y|=n"" onr=y

—ZZ “lvev(4,)

n=0|y|=n

<Z Y@ (4) V(D
n=0|y|=n

<Z >t (47 e (A)v(lyD.
n=0|y|=n

13)

Now, with k being the least integer greater than or equal to s and / being the least
integer greater than or equal to 7, we get

o' (Ay)a (4) 7 =i (4))aa (A -1 (Ay) . .. a (A akt1(Ay) . . .1 (A, ey (4,) !
a(4)7 o (A (4,) TR

= ax(A) a1 (4y) i (Ay ey (4,) 7T
Sincet — [ + 1 > 0 and since k — s > 0, we further get

o (Ay)er (4,) 7" = en(A))' T = |4y [0 < kETW
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Hence, we can continue (13) as follows.
o0 o0
F=CY okt Y vy = C 3 k™" = C1 =)™ < oo
n=0 lyl=n n=0

Hence, for m-a.e. x € X and Ak-ae.a € G, we have that

Lo = / / dv(w) dv(t) < 4oo.
EN JEN Iln(x,u)(w) - ”(x,u)(f)”s

This means that

/ / d(o n(;,lu))(z) d(vo n(;,lu))(g) .
Jva) ¥ Jxa) [lz—E||° )

and this in turn (see [2], comp. [4]) implies that HD(J(x 4)) > 5. Thus, HD(J(x ) >
min{g, FD(S)}, and the proof is finished. O
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On Transverse Hyperplanes to Self-similar
Jordan Arcs

Andrey Tetenov

Abstract We consider self-similar Jordan arcs y in R?, different from a line
segment and show that they cannot be projected to a line bijectively. Moreover,
we show that the set of points x € y, for which there is a hyperplane, intersecting y
at the point x only, is nowhere dense in y.

Keywords Self-similar set ¢ Zipper ¢ Projection e Rigidity theorems
* Transverse foliation

MSC classification: Primary 28A80

1 Introduction

The first examples of self-similar fractals which appeared in the beginning of
twentieth century were the constructions of self-similar curves with predefined
geometrical properties [11, 13]. Though the study of geometrical properties of self-
similar curves is so close to historical origins of fractal geometry, some of their
elementary geometric properties were established only in recent times.

For example, it was a common opinion that self-similar curves have no tangent
at any of their points. But in 2005 Kravchenko [7] found that there are self-affine
curves which are differentiable everywhere and therefore have a tangent at any of
their points. In 2011 the problem of differentiability for self-affine curves with two
generators and the problem of existence of tangent subspaces for self-similar sets
found their exhaustive solution in the paper of Bandt and Kravchenko [3].
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In this note we study the projections of self-similar Jordan arcs in R? to the
real line along families of parallel hyperplanes. Analysing the case when there is a
bijective projection of a self-similar Jordan arc y to a straight line segment, we show
that this is possible only when the arc is a straight line segment itself.

Theorem 1. Let y be a self-similar Jordan arc in R?. Suppose there is such
hyperplane o, that for any x € y the parallel copy of o passing through the point x
intersects y only once, then y is a straight line segment.

Really, we prove a much more general statement, in which transverse hyper-
planes o(x) at different points x of y need not be parallel to each other, and
transversality is understood in the sense of Definition 6:

Theorem 2. Let y be a self-similar Jordan arc in RY. Suppose there is a dense
subset DCy such that for any x € D there is a hyperplane o, which is weakly
transverse to y at the point x, then y is a straight line segment.

The proof is based on a simple and almost obvious observation (Theorem 5) that
the invariant set of a multizipper of similarity dimension 1 is always a collection of
straight line segments. We prove it in Sect. 3.

The author is thankful to V.V. Aseev for numerous fruitful discussions of the
topic.

2 Preliminaries

We give some definitions needed in current paper. Some of them are slightly
different from generally accepted ones, but they are best fit for our further argument.

2.1 Self-similar Arcs

A contraction similarity S in R? is a map of the form S(x) = ¢ - O(x — xo) + Xo,
where xq is the fixed point of S, g € (0, 1) is the contraction ratio, and O is the
orthogonal transformation called the orthogonal part of S.

Let 8§ = {Sj,..., Sy} be a system of contraction similarities in RY. A compact

m
set K is called the invariant set or the attractor of the system 8, if K = [ S;(K).
i=1
If this invariant set is an arc y we call y a self-similar arc defined by the system 8.
We denote the semigroup generated by S, ..., S, by G(8).
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2.2 Directed Multigraphs

A directed multigraph (or digraph) I is defined by a set of vertices V(I"), a set of
edges E(I") and maps o, w : E(I") — V(I'). Here e (e) is the beginning of the edge
e and w(e) is its end.

By E,, we denote the set of all edges e € E for which a(e) = u, w(e) = v, and
by E, = | E.,,—the set of all edges with the starting point at u.

veV
To make the further argument more convenient, the set V' will be supposed to
be equal to {1,2,...,n}, where n = #V/. In this case u € V means the same as

1 < u < n. We also denote the numbers #E,, by m,, and #E, by m,,.
A path o from a vertex «(e;) = u to w(e,) = v in a digraph I' is a sequence of
edgeso = eje;...e,, withw(e;) = a(e;+1) forevery 1 <i <n —1. The set of all

paths o of the length n with the beginning u# and the end v is denoted by Ef,ﬁ) and

o
EL(,:) =U EL%) is the set of all paths from u to v.
n=1

A digraph T is strongly connected if for every two vertices u and v it has a path
from u to v.

2.3 Graph-Directed Systems of Contraction Similarities

A graph-directed system of contraction similarities § with structural graph T’ =
(V,E,a,w) is a finite collection of metric spaces {X,},ey, together with a
collection of contraction similarities {S, : Xe@) = Xa(e) feck-

We denote the contraction ratios of the similarities by g, = Lip(S,).

Throughout this paper all the spaces X, will be different copies of the same space
R? for certain d.

A graph-directed system of similarities S is called regular, if its structural graph
I" is strongly connected.

A finite collection of compact subsets { K, },ey is called the invariant set, or the
attractor of the system S, if for every v € V

Ki= | Se(Kue) ()

ae)=u

The sets { K, },ev are called the components of the attractor of the system 8.
We use the following definition of a similarity dimension of graph-directed
system of similarities [4, 10]:

Definition 3. Let § be a regular graph-directed system of similarities with a
structure graph I' = (V, E, «, w). For each positive real number s, let B(s) be the

matrix (with rows and columns indexed by V) with entry Byy(s) = > ¢ in row
e€kyy
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u column v. Let ®(s) = r(B(s)) be the spectral radius of B(s). The unique solution
51 > 0 of ®(s) = 1 is the similarity dimension of the system 8.

3 Multizippers of Similarity Dimension 1

A method of construction of self-similar curves, used by many authors [6, 9, 11]
was studied in 2002 by Aseev [1] as a zipper construction. This construction proved
to be an efficient tool in the investigation of geometrical properties of self-similar
curves and continua [2]. Its graph-directed version was introduced by the author in
2006 and was called a multizipper construction; it gives a complete description of
self-similar Jordan arcs in R? [12, Theorem 4.1]:

Theorem 4. Let 8 be a regular graph directed system of similarities in R with
Jordan attractor . If one of the components y, of the attractor y is different
from a straight line segment, then there is a multizipper Z such that the set of the
components of the attractor of Z contains each of the arcs y,,.

Consider a graph-directed system Z of similarities with structural graph I', which
satisfies the following conditions:

MZ1. In each of the spaces X,,u € V, a chain of points {zé”),...,zfﬁg} is
specified. These chains are defined in such a way that

||z§”) —z(”) | < ||z(v) z(()v)|| forany u,veV,i=1,...,m,.

MZ2. There is a bijection € from the set of all pairs {(u,i),u € V,1 <i < m,}
to the set E.
MZ3. For any pair (u, i), the map S,, corresponding to the edge e = €(u, i) with

v = w(e), sends two-point set {zO ), 2 to the set {z,(")l, (")}.

The graph-directed system 2, satisfying the conditions MZ1-MZ3 is called a

multizipper with structural graph I' and node points z( “

Let L™ be the polygonal line specified by the sequence {z\”, 2\, ..., 2%} of

the nodes of the multizipper Z. Denote the distance ||z(”) ") || by 1,. Observe that

u

if Se({z(()v),sz}) = {zl(“)l, (")} then ||z(”) - = . So, the length of the

polygonal line L® is equal to Z 3 qely.

v=1e€Ey,

Theorem 5. Let Z be a regular self-similar multizipper whose similarity dimension
is 1. Then all the components y™ of its invariant set are line segments.
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Proof. Suppose there is a component y® of the attractor of Z, which is not a line
segment. Since Z is regular, for any v € V thereisapatho =e;...e; € El(,Z), SO
the similarity S, = S,, - ... Se, maps the arc y™ to a subarc of y®). Therefore,
each y® is also different from a straight line.

Then, choosing appropriate refinement of the multizipper Z, we may suppose that
all the polygonal lines L™ are different from a straight line. For each component
y® we have:

n

v = U So™.

v=I1e€E,,

The similarity dimension of the multizipper Z is equal to such value of a
parameter s, that the spectral radius of the matrix B(s) whose entries are B, (s) =

> ¢, isequalto 1.

e€Ey,
So, the spectral radius of the matrix B(1) with entries B,,(1) = Y. ¢, is equal
e€E,,
to 1.

Since all the polygonal lines L™ are not straight lines, they obey the inequality

<Y Y gy = B,

v=1e€Ey,
Therefore, for a vector [ = (ly,...,1,) and for the matrix B(1) we have the
inequality
BI),
min (B1) > 1.
1<u<n

u

The structural graph of the system Z is strongly connected. Then the matrix B(1)
is a positive irreducible matrix. According to [5, Remark 4, Sect. 2, Chap. XIII] its
spectral radius is equal to

. (B
r =max min .
7750 1<u<n u

(BI),

So, if r = 1, then for any f, there is such u, that

<1
u
The contradiction shows that all L® are straight line segments, so all y® are

straight line segments too.l
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4 Theorem on Transverse Hyperplanes

4.1 Jordan Arcs and Transverse Hyperplanes

Let y : [0,1] — R? be a Jordan arc in R. For any point x = y(¢) we define the
half-open subarcs y = y((z, 1]) and y; = y([0,1)).

Let x,y € y, and y € . We denote the open subarc y N ¥y by (x,y) and
70y by [x, ).

A hyperplane containing the origin 0 is denoted by o, while ¥V (¢) and V(o)
are open half-spaces, defined by o. A hyperplane parallel to o and containing x is
denoted by o(x) or 0 + x. The open half-spaces defined by o (x) are denoted by
V*(o,x)and V= (0,x) or V(o) + x and V™ (0) + x.

Definition 6. We say a hyperplane o is weakly transverse to the arc y at the point
x,if yF V¥ (o, x), y7CV (0, x).

We say a hyperplane o is transverse to the arc y at the point x, if 7 CV T (0, x),
vy, CV (0, x).

4.2 The Cones Q% and Q~

By O (x.y) (respectively, Q™ (x, y)) we denote the intersection of all closed half-
spaces V¥ (0,z) (resp. V™ (0,z)) corresponding to the hyperplanes o (z), weakly
transverse to y at the points z € [x, y]. These sets are convex and closed and they
satisfy the relations

yt(»)COT(x,y) andy (x)CO ™ (x.).

Taking x = y we come to the sets QT (x) (Q~(x)) which are the intersections
of all closed half-spaces V1 (o, x) (V™ (0, x)) corresponding to hyperplanes o (x),
weakly transverse to y at the point x. We can also consider the set QT (x) U Q™ (x)
as the intersection of all unions Q ,+ U Q; of pairs of convex closed cones symmetric
with respect to x which satisfy relations y *(x)C Q l+ and y~ (x)CQ; .

Lemma 7. Let y be a Jordan arc in R". Suppose a sequence of points x, € y
converges to a point xo, while a sequence of hyperplanes o,, weakly transverse to y
at points x,, converges to a hyperplane oy. Then oy is weakly transverse to y at the
point x.

Proof. For any n, f;;cV*’(crn,x,,). Since x, — Xxo, 0, converge to oy if and

only if 0, (x,) converge to 0o(xo). Taking the closed half-spaces, corresponding to

ou(xn), we get lim V7 (0,.x,) = V1 (00, X0). At the same time, lim 7 = .
n2>00 n—>o0 " " !

Therefore, ?;;CV+(UO, Xo). The same way we get )7X_OCI7_(00, Xxp). W
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Denote by X (x) the set of all hyperplanes, weakly transverse to the arc y at the
point x € y. This set is a compact subset of RPY. It follows from the Lemma 7, that

2 (x)D limsup X(y).

y—>X,y€y

This inclusion implies that the cones QT (x) and O~ (x) satisfy the following
semicontinuity condition:

Lemma 8. Let y be a Jordan arc in R? and x € y. Then,
0*(x)C liminf Q% (y).
y—>x.y€y
Proof. Since

0T = () V¥,

0EX(X)

using basic properties of upper and lower limits [8, Sect. 29], we can write

0 ) =( |J V(x)°c (limsup | J V7 (0.3)° =

y—>Xx,y€y

GEZ(x) oEX(y)

T — C o i +

= Jiminf ( LEJ()V ()" = liminf 07 (y).H
oEX(y

Lemma9. Lety be a self-similar Jordan arc. If for any x € y there is a hyperplane,
weakly transverse to y at the point x, then there is a hyperplane o, which is
transverse to y at any point x € y.

Proof. Suppose the affine hull of y is R so it is not contained in a hyperplane.

Take some § > 0.

Consider the family of all the cones 4 = {Q 1 (x),x € y}. Taking the parallel
copy of each cone Q1 (x) having the vertex at the center 0 of the unit ball BCR?,
we denote its intersection with the ball B by Q(x). This turns the family 4 to a
subset of the hyperspace Conv(B) of compact convex subsets of the unit ball B.
Observe that the inclusion Q (x)C yli_)nl 1yn€fy Q(y) in the statement of Lemma 8 holds

for the cones Q(x) as well.

Let S be a contraction similarity, for which S(y)Cy. Let x, be its fixed point.
Let O be the orthogonal part of the similarity S.

Since Q(x¢)C 11Xn_1) 1)(1(1)f Q(x), there is an open subarc (y,z) > Xxo such that for

any x € (y,z), the cone Q(xp) is contained in §-neighborhood Ns(Q(x)) of a
cone Q(x).

For some sufficiently large k, the subarc S¥(y) is contained in (y,z). Then
for any £ € vy, the point x = S¥(&) lies in (y,z) and Ns(Q(x))DQ(xo).
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Since Q(x) = OF(Q(£)), and Q(xo) = OF(Q(xo)) and OF is an isometry,
Ns(Q(&)) must also contain Q(xp).

Thus, if S : y — y is a similarity and fix(S) = x, then for any § > 0 and
any £ € y, Ns(Q(£))DQ(x). Therefore, Q(§)DQ(x) for all £ € y. If we take for
¢ a fixed point of some other similarity S’ : y — y, we get that Q(§) = Q(x).
Thus, the minimal cone Q(x) is the same, no matter which fixed point x we choose,
and we denote it by Q. If x is not a fixed point of any S € G(8), then Q(x)CQ.
If o'(x) is a support hyperplane to the cone Q*(x) at some fixed point x, then for
any £ € y parallel hyperplane o (£) is a support hyperplane for Q ™ (£) and is thus
weakly transverse to y at the point .

Suppose for some x and win y, w € yT(x) and w € o(x). Then o(x) = o(w)
and V1 (0,x) = V*T(o,w). By weak transversality of o at the points x and w,
the subarc [x,w] lies in VT (o,x) N V= (0,w) = o. Then the whole arc y lies
in a hyperplane. The contradiction shows that the hyperplanes parallel to o (x) are
transverse to y at any point.ll

Lemma 10. Let y be a self-similar Jordan arc, which has a hyperplane transverse
to y at any of its points. Then there is such transverse hyperplane o, that for any
similarity S; € §, O;(0) = 0.

Proof. Let Gp be a group generated by orthogonal parts O; of the similarities
S; € 8. Forany O € Gy, the image O(Q) is either Q or —Q. The space RY is
a direct sum of two orthogonal subspaces Xo & X, where X, is the space of all
such x that for any O € G, O({x,—x}) = {x,—x} and X = XOJ-.

Consider the intersection Xy N Q. This intersection is a convex cone Q' in X,.
Take a support hyperplane Y to the cone Q' at the point 0 in the space Xo. Then
Y + X is a support hyperplane for Q in R¥.

Suppose contrary. Then there is some z € (Y + X;) N Q. The point z has unique
representation in the form z = x + y, where x € X, x # 0 and y € Y. Consider
the convex hull W of the orbit Gy (x). It’s barycenter is fixed by the group Go,
therefore it is 0. Then the barycenter of the convex hull of the orbit G (z) is y.

Take a ball B(z,£)CQ. The convex hull of aset |J O(B(z,¢)) contains the
0€Go

ball B(y, ¢), therefore y € Q, which is impossible. So O N (Y + X;) = @.
At the same time, for any O € G the transformation O sends the hyperplane
Y + X toitself.l

The proof of Theorem 2. Let y be a self-similar Jordan arc, which is not a line
segment. By Theorem 4.1 in [12], the arc y may be represented as a component y )
of the invariant set of some multizipper Z , for which the maps S,,e € E are the
elements of the semigroup G(8). Let zf“) be the node points and I' = (V, E, o, w)
be the structural graph of Z. Passing, if necessary, to a subarc of y, we may suppose
that the graph I is strongly connected and the multizipper Z is regular.

If y contains such dense subset D Cy, that for any x € D there is a hyperplane
o (x), weakly transverse to y, then by Lemma 7, such hyperplane o (x) exists for
any x € y. By Lemma 9, there is a hyperplane o, transverse to y atany x € y.
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By Lemma 10 there is a hyperplane o, transverse to y at any of its points, which
is preserved by any of O; € Ggp. Then the duplicates of o are transverse to the
components Y™, u € V of the attractor of the multizipper Z at any of their points
and are preserved by the orthogonal parts O, of the similarities S,.

Let A® be a line, orthogonal to o in the copy X ™ of the space R?. Let y®
be the component of the invariant set of Z lying in X ™. Consider the orthogonal
projection 7 of each arc y™ to the A™.

Since the similarities S, send the hyperplanes, parallel to o, to the hyperplanes,
parallel to o, for each similarity S, € Z, S, : y® — y® there is a similarity
Se : AW — AW _satisfying the condition

moS,=S8,0m.

Due to this condition each map S, sends the set {JT(Z(U) ), JT(Z(U))} to the set
@) m@")).
The system 2 is a linear multizipper with node points z;” = 7 (z
Since for any S, Lip(§e) = Lip(S.) the similarity dimension of the multizipper
Z is equal to the similarity dimension of Z and therefore it is equal to 1.
By Theorem 5, its invariant set is a collection of straight line segments. l

~(u) (“))
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Fractals in Product Fuzzy Metric Space

R. Uthayakumar and A. Gowrisankar

Abstract The purpose of this paper is to prove the Hutchinson—Barnsley operator
on the product fuzzy metric space is fuzzy B-contraction. We also present the fuzzy
B-contraction properties of HB operator in product fuzzy metric space. The notion
of product fuzzy fractal is introduced in product fuzzy metric space in the sense of
the fuzzy B-contraction.

Keywords Fractals * Fuzzy metric space ¢ Fuzzy Iterated Function System
* Hutchinson—Barnsley operator * Hausdorff fuzzy metric ¢ Product fuzzy metric
space

AMS Classification Codes: 26E50; 28A80; 47H10

1 Introduction

Fuzzy set theory was introduced by Zadeh in 1965 [17]. Many authors have
introduced and discussed several notions of fuzzy metric space in different ways
and also proved fixed point theorems with interesting consequent results in the fuzzy
metric spaces [3-6,9, 11, 13].

Fractal Analysis was introduced by Mandelbrot in 1975 [10] and popularized
by various mathematicians. A fractal is an object which appears self-similar
under varying degrees of magnification. Mathematically, sets with non-integral
Hausdorff dimension which exceeds its topological dimension, are called Fractals
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by Mandelbrot. Hutchinson [7] introduced the formal definition of Iterated Function
Systems (IFS) and Barnsley [1] developed the theory of IFS called the Hutchinson—
Barnsley theory (HB Theory) in order to define and construct the fractal as a
compact invariant subset of a complete metric space generated by the Iterated
Function System (IFS) of contractions. That is, Hutchinson introduced an operator
on hyperspace of non-empty compact sets called as Hutchinson—Barnsley operator
(HB operator) to define a fractal set as a unique fixed point by using the Banach
Contraction Theorem in the complete metric space. Kramosil and Michalek [9]
introduced the notion of fuzzy metric space. George and Veeramani [4] imposed
some stronger conditions on the fuzzy metric space in order to obtain a Hausdorff
topology.

In this paper, we introduce the concepts and properties of HB operator in the
product fuzzy metric space and we present the fuzzy contraction properties of HB
operator on the product fuzzy metric space with respect to the Hausdorff product
fuzzy metric. Also we introduce the notion of product fuzzy fractal in product fuzzy
metric space with respect to the fuzzy B-contraction.

2 Preliminary

2.1 Metric Fractals

In this section, we recall the Hutchinson—Barnsley theory (HB theory) to define and
construct the fractals in the complete metric space.

Definition 2.1 ([1,7]). Let (X, d) be a metric space and (X ) be the collection
of all non-empty compact subsets of X. Define d(x, B) := inf,ep d(x,y) and
d(A,B) 1= sup,c4d(x,B) forall x € X and A,B € J#(X). The Hausdorff
metric or Hausdorff distance (Hy) is a function Hy; : £ (X) x Z(X) — R
defined by Hy (A, B) - max{d(A, B), d(B, A)}. Then Hy is a metric on ¢ (X)
and hence (¢ (X), Hy) is called a Hausdorff metric space.

Theorem 2.1 ([1,7]1). If (X,d) is a complete metric space, then (J (X), Hy) is
also a complete metric space.

Definition 2.2 ([1,7]). The function f : X —> X is said to be a contraction or
Banach contraction mapping on a metric space (X, d), if there exists k € [0, 1)
such that d(f(x), f(v)) < kd(x,y), Vx,y € X.Herek is called a contractivity
ratio of f.

Definition 2.3 ([1, 7]). Let (X,d) be a metric space and f, : X —X,
n = 1,2,3,...,N (N € IN) be N-contraction mappings with the cor-
responding contractivity ratios k,, n = 1,2,3,...,N. Then the system
{X; fp,n=1,2,3,...,N} is called an Iterated Function System (IFS) or
Hyperbolic Iterated Function System with the ratio k = rnaxflv=1 kn.
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Definition 2.4 ([1,7]). Let (X, d) be a metric space. Let {X; f,, n = 1,2,3,...,
N; N € IN} be an IFS of Banach contractions. Then the Hutchinson-Barnsley
operator (HB operator) of the IFS of Banach contractions is a function F :
H (X) — #(X) defined by F(B) = \J\_, f,(B), for all B e % (X).

Theorem 2.2 ([1,7]). Let (X,d) be a metric space. Let {X; f,, n =1,2,3,...,
N; N € IN} be an IFS of Banach contractions. Then, the HB operator (F) is a
Banach contraction mapping on (¢ (X), Hy).

Theorem 2.3 ([1, 7] HB Theorem for Metric IFS). Let (X,d) be a complete
metric space and {X; f,, n =1,2,3,...,N; N € IN} be an IFS of Banach con-
tractions. Then, there exists only one compact invariant set Aoo € H# (X) of the HB
operator (F) or, equivalently, F has a unique fixed point namely Ao € H (X).

Definition 2.5 ([1,7] Metric Fractal). The fixed point Ao, € #(X) of the HB
operator F described in Theorem 2.3 is called the Attractor (Fractal) of the IFS.
Sometimes A, € £ (X) is called as Metric Fractal generated by the IFS of Banach
contractions.

2.2 Fuzzy Metric Space

Definition 2.6 ([14]). A binary operation  : [0, 1]x[0, 1] — [0, 1] is a continuous
t-norm, if ([0, 1], %) is a topological monoid with unit 1 such thata * b < ¢ x d
whenevera <c,b <d anda,b,c,d € [0,1].

George and Veeramani modified the Kramosil and Michalek [9] fuzzy metric
space as follows:

Definition 2.7 ([4,5]). The 3-tuple (X, M, %) is said to be a fuzzy metric space if X
is an arbitrary set, * is a continuous t-norm and M is a fuzzy seton X x X x (0, 00)
satisfying the following conditions:

M(x,y,t) >0,

M(x,y,t) = lif and only if x = y,
M(x,y.1) = M(y,x.1),

M(x,y.1) « M(y.z,5) = M(x,z,1 +5),
5. M(x,y,-) :(0,00) —> [0, 1] is continuous,

b

x,y,z€ Xand?t,s > 0.

Definition 2.8 ([4,5]). Let (X,d) be a metric space. Define a * b = a - b, the
usual multiplication for all a,b € [0, 1], and let M, be the function defined on
X x X x (0,00) by

t
Maleored) = macy
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forall x,y € X and ¢ > 0. Then (X, My, x) is a fuzzy metric space called standard
fuzzy metric space, and M is called as the standard fuzzy metric induced by the
metric d.

Definition 2.9 ([6]). Let (X, M, %) be a fuzzy metric space. The mapping [ :
X — X is fuzzy contractive if there exists k € (0, 1) such that

1 1
()
M(f(x). f(y).1) M(x.y.1)
foreach x, y € X and ¢ > 0. Here, k is called the fuzzy contractivity ratio of f.

Definition 2.10 ([6,15]). A fuzzy B-contraction (Sehgal contraction) on a fuzzy
metric space (X, M, %) is a self-mapping f on X for which M(f(x), f(y),kt) >
M(x,y,t), forall x,y € X and ¢t > 0, where k is fixed constant in (0, 1).

Definition 2.11 ([13]). Let (X, M, x) be a fuzzy metric space. Let Z (X)) be set of
all non-empty compact subsets of X. Define, M (x, B,t) := SUp e p M(x,y,t) and
M(A, B,t) ;= infyeq M(x, B,t) forall x € X and A, B € # (X). Then Hausdorff
fuzzy metric (Hyy) is a function Hyy : # (X) x # (X) x (0, 00) — [0, 1] defined
by

Hy(A, B,1) = min{M(A, B.1), M(B, A, z)}.

Then Hy, is a fuzzy metric on J£(X), and hence (J4,(X), Hy, *) is called a
Hausdorff fuzzy metric space.

Definition 2.12 ([2,16]). Let (X, M, %) be a fuzzy metric space and f, : X — X,
n=12,3,...,N (N € N) be N fuzzy B-contraction mappings. Then the system
{X; fn,n=1,2,3,..., N} is called a Fuzzy Iterated Function System (FIFS) of
fuzzy B-contraction on the fuzzy metric space (X, M, *).

Definition 2.13 ([2,16]). Let (X, M, x) be a fuzzy metric space. Let {X; f,,n =1,
2,3,...,N;N € IN} be a FIFS of fuzzy B-contractions. Then the Fuzzy
Hutchinson-Barnsley operator (FHB operator) of the FIFS is a function
F: X (X) — 2 (X) defined by

N
F(B) = fu(B). for all Be .7 (X).

n=1

Theorem 2.4 ([6] Fuzzy Banach Contraction Theorem). Let (X, M, *) be a
complete fuzzy metric space in which fuzzy contractive sequence are Cauchy. Let
f : X —> X be a fuzzy contractive mapping with contractivity ratio k. Then f has
a unique fixed point.
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3 Product Fuzzy Metric Space

Uthayakumar and Easwaramoorthy investigated the fuzzy IFS fractals in the fuzzy
metric space [2, 16]. In this paper we implement their result into product fuzzy
metric space.

Definition 3.1 ([8,12]). Let (X, M., *) and (Y, M,, *) be a fuzzy metric spaces
and let Z = X x Y. For z=(x1,y1),22 = (x2,¥2) € Z and define t > 0,
M (z1,22,1) = My(x1,x2,1) * M, (y1,¥2,1). Then (M, *) is a fuzzy metric on
Z, and the triple (Z, M_, x) is called the product fuzzy metric space of X and Y.

Definition 3.2. Let (Z,d) be a product space. Define a * b = a.b, the usual
multiplication  for all a,b € [0,1], and let M,, be the function defined on
Z x Z x (0,00) by M;,(z1,22,t) = m forall z;,zp € Z and ¢t > 0. Then
(Z, M,,, *) is a fuzzy metric space called standard product fuzzy metric space, and
M., is called as the standard product fuzzy metric induced by the metric d .

In the following theorem we use Z = X x X

Theorem 3.1. Suppose (X, M., *) be a fuzzy metric space. Let f be a fuzzy
B-contractionon X and (Z, Mz, x) be a fuzzy product space of X then the mapping
g 1 Z — Z defined by g(z) = (f(x), f(y)) forall z = (x,y) € Z, is fuzzy

B-contraction mapping on Z.

Proof. Let Z = X x X and (Z,M,,*) be a product fuzzy metric space.
MZ(Z17127I) = MX(xlsXZsZ)*My(yls stZ) foraHZ] = ()Cl, YI),ZZ = ()Cz, J’Z) € Z
and ¢ > 0. For given k € (0, 1), we have

M.(g(z1). 8(z2). k1) = M((f(x1), f(y1)). (f(x2). f(¥2)). k1)
= M. (f(x1). f(x2). kt) * M (f(31), f(y2). k1)

> My(x1,x2,0) * Mc(f(01), f(y2).1)
= MZ(ZlaZ2vt)‘

Definition 3.3. Let (X, M,,*) be a fuzzy metric space. Let f be a fuzzy
B-contraction on X and (Z, M_, %) be a product fuzzy metric space of X and
gn:Z — Z,n=12,...,N € N be N-fuzzy B-contraction mappings defined
by g.(x,y) = (fu(x), fu(»)). Then the system {Z;g,,n = 1,2,...,N € IN}
is called a Fuzzy Iterated Function System (FIFS) of fuzzy B-contraction on the
product fuzzy metric space (Z, M_, *).

Definition 3.4. Let (Z, M, x) be a product fuzzy metric space. Let {Z; g,,
n=123...... ,N € IN} be a FIFS of fuzzy B-contraction on (Z, M_, *). Let
J (Z) be set of all non-empty compact subsets of Z. Then the Fuzzy Hutchinson—
Barnsley operator (FHB operator) of the FIFS of fuzzy B-contraction on (Z, M, %)
is a function G : # (Z) —> # (Z) defined by
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N
G(B) =) gu(B). for all Be.#(X).

n=1

That is,

N
G(B) = | J (fu(x). £s(3). for all z=(x.y) € B € #(X)

n=1

Definition 3.5. Let (Z, M_, x) be a complete fuzzy metric space. Let {Z; g,,n =
1,2,3...... ,N € IN} be a FIFS of fuzzy B-contraction on (Z, M, *) and G be
the FHB operator of the FIFS of fuzzy B-contraction on (Z, M, *). We say that
the set Ao € # (Z) is product fuzzy Attractor (Product fuzzy fractal) of the given
FIFS of fuzzy B-contractions, if A is a unique fixed point of the FHB operator G.

Such A € #(Z) is also called as Product Fuzzy Fractal generated by the FIFS of
fuzzy B-contractions.

Theorem 3.2. Let (Z, M., x) be a product fuzzy metric space and let (¢ (Z),
Hy,, %) be the corresponding Hausdorff product fuzzy metric space. Suppose g :
Z —> Z is a fuzzy B-contraction function on (Z, M, x). Then for k € (0, 1)

Hy, (g(A), g(B),kt) > Hy (A, B,t)
forall A,B € #(Z)andt > 0.

Proof. Let Z = X x X and (Z,M,, %) be a product fuzzy metric space.
M (21,22,1) = M (x1,x2,8) * My (y1, y2,t) for all z; = (x1,y1),22 = (x2,y2) €
Z andt > 0. Fixt > 0. Let A, B € J#(Z). By using Theorem 3.1 for given
k € (0,1), we get
M (g(z1), g(z2), kt) = M(z1,22,1), for all z,2 € Z
M(g(z1), g(z2), kt) = M.(z1,22,1).
for all z;7 € A and 2z, € B

sup M,(g(z1), g(z2), kt) > sup M,(z1,22,t), for all 7€ A

2€EB 2€EB

M (g(z1),g(B),kt) > M(z1, B,t), for all z; € A
inf M.(g(z1),g(B).kt) > inf M.(z;, B,t), for all z; € A
71€A 71€A

M (g(A),g(B),kt) > M,(A, B,1)
M (g(B),g(A), kt) > M,(B, A,1)

min (M (g(A), g(B),kt), M;(g(B), g(A),kt)) = min (M (4, B,1), M. (B, A,1))
i.e.. M.(g(A),g(B).kt) > M.(A, B.1).
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Theorem 3.3. Let (Z, M., x) be a product fuzzy metric space and let (J (Z),
Hyp,, %) be the corresponding Hausdorff product fuzzy metric space. Suppose
g+ Z — Z,n = 1,2,...,N € N be N fuzzy B-contractions functions on
(Z, M, x). Then the HB operator is fuzzy B-contraction on (X (Z), Hy,, *).

Proof. Fixt > 0. Let A, B € ¥ (Z), for given k € (0, 1). Using Theorem 3.2
we get

N N
Hy(G(A). G(B).k1) = Hy, (U(gn(A), U(gn(B),kr)

n=1 n=1

%

min Hy,(2,(4). 2,(B). k1)
Hy. (A, B.1)
HM;(G(A)ﬂ G(B)s kl) = HMZ(A’ B’ t)

v

Above theorems are proved in the product fuzzy metric space Z = X x X. Also it
can be extended up to finite case Z = X| X Xy X X3... X X,,.

4 Conclusion

In this study, we have introduced the concepts and properties of HB operator in the
product fuzzy metric space. Also we have presented the fuzzy contraction properties
of HB operator on the product fuzzy metric space with respect to the Hausdorff
product fuzzy metric. Besides that we have introduced the notion of product fuzzy
fractal in product fuzzy metric space with respect to the fuzzy B-contraction.
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Some Properties on Koch Curve

R. Uthayakumar and A. Nalayini Devi

Abstract Many physical problems on fractal domains lead to nonlinear models
involving reaction—diffusion equations, problems on elastic fractal media or fluid
flow through fractal regions, etc. The prevalence of fractal-like objects in nature
has led both mathematicians and physicists to study various processes on fractals.
In recent years there has been an increasing interest in studying nonlinear partial
differential equations on fractals, also motivated and stimulated by the considerable
amount of literature devoted to the definition of a Laplace-type operator for
functions on fractal domains. The energy of a function defined on a post critically
finite (p.c.f) self-similar fractal can be written as a sum of directional energies.
A general concept of graph energy defined on a finite connected graph is given.
A work about the graph energy is mainly concerned on a Koch curve. First graphs
on this Koch curve are built. These graphs produced from the initial graph by
iteration repeatedly. Find the energy renormalization constant. Second we find the
non-normalized and Normalized Laplacian of a Koch Curve. With the help of this
we examine the Laplacian Renormalization constant and forbidden eigenvalues.
Finally we develop the Spectral decimation function of Koch Curve.
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1 Introduction

Laplacian on fractal was defined on the Sierpinski gasket SG as a diffusion
process by Kusuoka [4] and Goldstein [2]. Kigami [3] constructed the Laplacian
analytically, both as a renormalized limit of difference operators and through a weak
formulation using the theory of Dirichlet forms. Later, the theory of Laplacians
was extended to other fractals, including nested fractals and p.c.f. self-similar sets
by Lindsrom and Kigami. Analysis on fractals has bloomed since then and many
classical results of smooth analysis have found their analogues on the “rough”
objects. It has been first observed by Fukushima and Shima [5] and Teplyaev
[7] that the eigenvalues of the Laplacian on the Sierpinski gasket and its higher
dimensional analogues exhibit the phenomenon of spectral decimation. In particular,
the spectrum and eigen functions of the Laplacian on the Sierpinski gasket were
studied by Fukushima[l] and Shima and using the so-called spectral decimation
method, which originated in physics literature and was generalized by Shima and
Teplyaev. In particular, the eigenvalues of the Laplacian on the fractal, which admits
spectral decimation, can be calculated by means of a certain polynomial or rational
function. Using that we obtain the spectral decimation function, normalized and
non-normalized Laplacian for Koch curve at level 1.

2 Basic Definitions

Definition 1 (Spectral Decimation). [6]

The Laplace operator on a post critically finite self-similar fractal G admits spectral
decimation, if there exists a rational function R, a finite set A and a constant A > 1
such that all eigenvalues of A can be written in the form

A" lim MR (w),we A,m e N (1)
n o

where the pre-images of w under n-fold iteration of R have to be chosen such that
the limit exists.

Definition 2 (Laplacian on Finite Graphs). For any set S, we use /(S) to denote
the set of real valued functions on S and

lo(Vi) =S €1(Vin) : f(p) =0 for p € Vo} )
For two sets U and V, we define
LU, V)={A:l(U) = I(V)and A is linear}

In particular, L(V) means L(V; V)



Some Properties on Koch Curve 167

Definition 3 (Vertex Degree). Let G be a simple, finite graph with the set of
vertices V (G) and the set of edges E(G).We say that two vertices x; y are neighbors
if they are connected by exactly one edge, denoted by x y, in the graph. For any
vertex x, deg x is called the vertex degree of x in the graph and

degx = Z 1

x~y€V(G)

Definition 4 (Normalized and Non-normalized Laplacian). Given a function
u € [(V(G)), the graph (non-normalized) Laplacian of u at a vertex is defined as

Au(x) = > (u(x) —u(y)) 3)

x~y€eV(G)
and the normalized (probabilistic) Laplacian is defined as

1

Au(x) - degx

Y @) —uy) )

x~y€eV(G)

The symmetric matrix D corresponding to A is called the Laplacian matrix and
it has the expression

1ifi # j,
D;; = —degx; ifi = J, (®)]
0 if otherwise.

for x;, x; in V(G).
The normalized Laplacian on V,, satisfies

Hiyp (u(x))

Bun() = 7 )

Joruel(Vy) ©6)

Here we choose the measure factor

-1 __ —1
o = Z’M

SES

where (ro_l, rl_l, r2_1 e, r‘;II> € I(S). (Hp, r) is the generalized non-normalized

Laplacian with weight r on the Graph G,,. We decompose the matrix H,, into

Tn J}!
Hm:(J X’”) (N

where Ty, € L(Vo), I € LV \ Vo) Xon € L(Vyy \ Vo).
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3 The Koch Curve

It is this similarity between the whole and its parts, even infinitesimal ones that
makes us consider this curve of von Koch as a line truly marvelous among all. If
it were gifted with life, it would not be possible to destroy it without annihilating
it whole, for it would be continually reborn from the depths of its triangles, just as
life in the universe is. Begin with a straight line (the blue segment in the top figure).
Divide it into three equal segments and replace the middle segment by the two sides
of an equilateral triangle of the same length as the segment being removed (the two
red segments in the middle figure). Now repeat, taking each of the four resulting
segments, dividing them into three equal parts and replacing each of the middle
segments by two sides of an equilateral triangle. Continue this construction. The
Koch curve is the limiting curve obtained by applying this construction an infinite
number of times. For a proof that this construction does produce a “limit” that is an
actual curve, i.e. the continuous image of the unit interval. The first iteration for the
Koch curve consists of taking four copies of the original line segment, each scaled
by r = 1/3. Two segments must be rotated by 60°, one counterclockwise and one
clockwise (Figs. 1 and 2).

wes

Fig. 1 Koch curve

(0,0} (1,0)

Fig. 2 Koch curve graph of I'y
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Along with the required translations, this yields the following IFS

fix) = (0.333 0 )x

0 0.333

scale by r
0.167 —0.289 x4 0.333
0.289 0.167 0
scale by r,rotation by 60°

) = (
A ( 0.167 0. 289) P (0.500)
3 0.289 0.167 0.289

scale by r,rotation by —60°
0. 333 0.667
Jax) = 0333) +( 0 )
scale by r

The fixed invariant set of these IFS is the Koch curve.

4 Renormalized Energy

Renormalized Energy: We define the renormalized graph energy ¢, by
em(u) = o " E,y(u) (8)
For ¢,, and E,, are bilinear
emu,v) = a " E,(u,v). 9)

Here 0 < || < 1, which is called renormalization factor.

S Energy Renormalization Constant

Strong Harmonic Structure: We define the diagonal matrix M;; = —X;;. The
generalized Laplacian is said to have a strong harmonic structure if there exists
rational functions K p(A) and K7 (1) such that X + AM is invertible then

T—J (X +AM)"'J =Kp(M)D + Kr(M)T (10

Here K (0) is the energy renormalization constant.
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A P A x z ]
ulA) u(B) ulA) ulx) ulz) u(B)

Fig. 3 Graph of I'y, I'}

Using the graphs Iy and I'; of Koch curve (Fig.3) the boundary points Vy =
{A, B}. Let D be the Laplacian matrix on Vj

D= (—1 1 )
1 —1
and measure factor r = (1,1, 1, 1)
Let H, be the standard Laplacian on V; is

-10 1 0 O
0-10 0 1
H=]1 0-21 0
0 0 1 -21
01 0 1 =2
-2 1 0
From H, Wegetle(_1 0),J1=(100),X1= 1 =2 1 | and M; =
0 —1 001
0 1 -2
200
020
002
2L —=22—-1-21-2) 1
(X+AM)—1=2)L 5 —2A=2) (2r-2)* —(21-2)
1 —Q2A—=2) 2A—2)2—1

1
(A —2)(4A2—8A +2)

5 (-4(1 —1DEAZ=30) + 1 ~1 )
~1 4= 1D2A2=30) + 1

T—-J'(X+AM)'J =



Some Properties on Koch Curve 171

From the above equation we get

-1

Ko@) = (2 —2)(4A2—8A + 2)

and

Q1) (21 —3)
(A —2)(4A2— 81 +2)

Kr(A) =

Then the energy renormalization factor Kp(0) = %
and the renormalized energy at level m €, (u) = (%)_’" E,(u).

In general €11 (1) = (7)™ Eppt1 (1) = €o(u).

Hence the sequence {¢,,(u)}is a non-decreasing sequence. It is constant when u
is a linear function. Then if

€)= lim eu() = (%)_m ()

exists we say that u has a finite energy.

6 Laplacian Renormalization Factor

The spectral decimation function defined and denoted by

_A—Kr(})
R(A) = “Kp(h) (11)

that is

_ enEea-d)
(22—2)(4A2—81+2)
—1
(2A—2)(412—81+2)

R(A) = (12)

= RA) =-81(A—1)>(A—2).

Proposition 5.1 (Shima). The spectral decimation function R satisfies R(0) = 0

1

—1
and R'(0) = Krg_(o) where r " is a measure factor.



172 R. Uthayakumar and A.N. Devi

Proof.
RA) =—-81(A—1)>(A—2)= R0)=—-80)(0—1)>0—-2)=0

and R’(0) = 16 and the right-hand side oo

4
Kp(0) — 1/4 — 16.

Hence R satisfies Proposition 5.1.
The Laplacian renormalization constant is R'(0) = 16.

7 Normalized Laplacian

We define the diagonal matrix W = (_OT 181) and the normalized Laplacian Ao
and AI are as follows:
Ap=-T7'D
Al =-W™'H,
normalized Laplacian for I'y and I'} of Koch curve.
We have
10000
01000
W=]100200
00020
00002
10\ (=11 11
A():— =
0 —1 1 —1 1 —1
10000y (=10 1 0 O -1 0 1 0 O
01000 0-10 0 1 0 -1 0 0 1
Ai=—-100200 1 0-210]|=|1/20 —-11/2 0
00020 0 0 1 =21 0 0 1/2-11/2
00002 01 0 1 =2 0 1/2 0 1/2 —1
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8 Forbidden Eigenvalues

Definition 6 (Forbidden Eigenvalues). We denote W = {1 € R: Kp(4) =0 or
det(X 4+ AM) = 0} and the elements in W are the forbidden eigenvalues.

v, = {/\ € W : 1 is an eigenvalue of —Ak} and the elements in W, are the
initial eigenvalues at step k or forbidden eigenvalues at step k.

To obtain the forbidden eigenvalues put Kp(AL) = 0 ordet(X + AM) = 0. But
here Kp(A) = 0 is not possible. So we consider det (X + AM) =0

Thatis A =1, Zizﬁ

Therefore ¥ = 1, #

To find the forbidden eigenvalues at step 1 or initial eigenvalues at step 1 is an
eigenvalue of -A and also in W.

The eigenvalues of -A; is 0.0761, 0.6173, 1.9239, 1.3827, 1.

Therefore forbidden eigenvalues at step 1 is 1 only.
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Projections of Mandelbrot Percolation
in Higher Dimensions

Karoly Simon and Lajos Vagé

Abstract We consider the fractal percolations which are one of the most
well-studied examples of random Cantor sets. Rams and Simon studied the
projections of fractal percolation sets on the plane. We extend the scope of their
theorem and generalize it to higher dimensions. An extended version of this note is
avaible on the arxiv [7].

Keywords Random cantor sets ¢ Fractal percolation * Mandelbrot percolation
* Projection of fractal sets

1 Introduction

Fractal percolations, or Mandelbrot percolations on the plane are defined in the
following way: Fix an integer M = 2 and probabilities 0 < p;; < 1,i,j =
1,..., M. Then partition the unit square K into M ? congruent squares of side length
1/M ,letuscall these K; ;,i, j = 1,..., M. Thenretain all small squares K; ; with
probability p; ; independently from each other, or discard them otherwise. Repeat
this procedure in the retained squares ad infinitum to finally get a random set E
called fractal percolation.

It is well known that if all the probabilities p; ; are greater than 1/M, then
conditioned on non-emptiness E has Hausdorff dimension greater than 1 a.s. [3, 5],
and if the probabilities p; ; are smaller than a critical probability p., then itis totally
disconnected [2]. However, in [6] the authors gave a rather complicated technical
condition under which the orthogonal projection of E (which is a random dust) in
all directions contains some interval, conditioned on E being nonempty.
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In our work, we generalize this result to higher dimensions, i.e. for fixed d = 2
and d > k = 1 we consider orthogonal projections of d-dimensional fractal
percolation to all k-dimensional planes containing the origo at once, and obtain the
same result as in dimension 2. We adapt the same random inverse Markov operator
as in [6]. Also some geometrical issues have to be handled in the higher dimensional
case.

1.1 Notations

We use the higher dimensional analogues of the notations of [6]. We denote by
E = E(w) the d-dimensional Mandelbrot percolation on the unit cube K, with
(a(l), ey a(k)), a ai.(];) orthogonal unit vectors in RY let P, be the plane
spanned by the vectors in o:

P, = span{aV, ... a®}.

We consider the orthogonal projections proj, of E to each k-dimensional planes P, .
Note that this projection is the higher dimensional pair of projection proj, of [6]. Our
goal is to determine the parameters p;u) _;« for which almost surely int{proj, E} #
@ for all o, conditioned on E being nonempty.

In addition, we consider radial projections as well, i.e. given t € R, the radial
projection with center ¢ of set E is denoted by Proj,(E) and is defined as the set of
vectors under which points of E \ {t} are visible from .

Given o = (aV,...,a®) let y, = (cV,...,c"™) be collection of unit
vectors such that o U y,, consists of pairwise orthogonal vectors in R?. It will be
useful to handle projections parallel to some sides of the unite cube separately from
other directions.

Assumption 1.1 Let us first consider only the nonparallel planes, i.e. for which
there exists a vector v € PaJ' such that v; # Oforalli =1,...,d.

1.2  Results

Later we will define Condition A(«) on the set of probabilities p;a)__;w, iV =
1,..., M, which is the most important tool for the following theorems. At this point
it is enough to know that if p;a) ;@ > M~€7F forall iU) = 1,..., M, then

Condition A(«) holds for all «.

Theorem 1.2. Let d and 1 < k < d be fixed, and suppose that Condition A(a)
holds for all o satisfying Assumption 1.1. In addition, to control parallel directions
we suppose that for all distinct jy, ..., jx € {1,...,d} and for all iUV, ... iU e
{0,....,.M —1}
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M—1

E P > 1,

iUk+D  iUa) =0

where {jr+1,...,Ja} = {1,...,d} \ {Jj1,..., jx}. Then almost surely for all «
orthogonal projections proj, (E) have nonempty interior, conditioned on E being
nonempty.

Theorem 1.3. Suppose that the conditions of Theorem 1.2 hold. Then almost surely
for all @ and all t orthogonal projections proj, (E) and radial projections Proj,(E)
have nonempty interior, conditioned on E being nonempty.

The case of parallel directions is fully covered by the paper of Falconer and
Grimmett [4], so now on we suppose that Assumption 1.1 holds.

The rest of the paper is organized as follows. In Sect.2 we consider orthogonal
projections of the fractal percolation and prove Theorem 1.2. Then in Sect. 3 we turn
our attention to radial projections and using the same argument as in [6] we show
that Theorem 1.3 holds.

2 Orthogonal Projections

2.1 Notations

2.1.1 Projection IT,,
It is useful to consider another linear projection called I1, of E instead of proj,.

To define it let ) stand for the vector with all 0 entries except for the i-th, which
is 1. Let ([Z]) stand for the k element subsets of [d] = {1,...,d}. Then, for S =

{it,... ik} € ([Z]) let Ps stand for the coordinate-plane spanned by the unit vectors
corresponding to S:

Pg = span{e(i‘),...,e(i")}. (1)

Then I, is the linear projection to Pg (with a suitable S defined later), in
direction Y, that is for x € R?

My (x) = {span{c“’, Ry x} N Ps e RY, )

where ¢, ..., ¢ % are the vectors of Yo Let

C = [e®].. Jeh].
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One can easily describe the projection defined in (2) by matrix operations as well.

Let h be defined by
—-C
[ = } h=x, 3)

G
where i is the k x k identity matrix; 0 is a (d — k) x k matrix with all zero entries;
Ciis a k x (d — k) matrix with the rows of C corresponding to S (in the order of

E. ..,Ix); and 9 isa(d —k)x(d—k) ma_trix formed by the rest of the rows of

[lf=) IIN

g (in order, let us denote these by ik+1,...,iq). Then
I, (x) = Zh el = Z h; U0 4 x 4
j=k+1

if h is well defined. Using the Cauchy-Binet formula [1, Sect. 4.6, pp. 208-214] we
obtain that

I=det(C’C)= Y (det (2(5’)))2.
sre ()
Thus for any « there exists S’ € ([Z]) such that
1
O

Let us choose this S’ and denote the matrix in (3) by %a . Since det% ) =
— det(C3(S)), hence h exists and unique.

et (Ca(51) >

By symmetry, without any loss of generality we fix § = {1,...,k} and restrict
the set of directions to

As =

der(Cx(9)] >

2\/1@} )

Then let I1, be the projection to Ps for @ € Ag. Then all @ belongs to some of the
possible coordinate planes Pgss, so now on we can restrict ourselves to S and Ag.

As it is argued in [6], for any « int{proj, E} # @ iff int{I1, E} # @. In addition,
[T, E lays in the same plane for all @, which will be useful when considering several
directions at once, e.g. when considering nonlinear projections.
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2.1.2 Condition A

Let us denote by A, the I1, projection of the unit cube K. Let .0y @ : R? —
RY, iV, i'D e{0,..., M — 1}" be defined by

1 S (d
. L(«d)(x):Mnx+zw<ll()""’ll( )).
I=1

of Ha o 905(11).... i(fi)'
The following operator is defined on functions from A, to nonnegative reals,
vanishing on the boundary of A,. This is one of the main tools of this paper, and is

defined by

Fo f(x) = > pi i@ - f oY im i@ (x).

Ff(x) = > Py - fov o w(Xx),

---------- In

n
where pﬂ«” @) = | |j=1 P,y @-
J J

------------

Definition 2.1 (Condition A). We say that the percolation satisfies condition A («)
if there exist sets I{, Iy C A, which are similar to A, and which have the same
central as A, and a positive integer r such that

I Cintly, I CintA,,
(i) Fye L e = 2145

This is the place where the geometrical complexity of the problem differs from
that of the original case in [6]: If d = 2 and k = 1, then A, is simply a section.
However, if, for example, d = 3 and k = 2, then A, is a hexagon, which carries
some extra technical difficulties in the proof in the next section. The left side of
Fig. 1 shows the mutual position of A,, I3 and I} for a fixed « and for d = 3,
k=2
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Fig. 1 We project from d = 3 to k = 2 dimension. (a) A(continuous), I (dashed) and
I (dotted). (b) W, with n = 1, M = 3. The big bold faced green contour is W,. The blue
and the red small contours correspond to cubes K3 ;1 and K3 3, respectively. As their coordinates
show, these cubes are separated from each other, however after projection their top and bottom
faces intersect. Hence we have at least two rational classes (see the definition in the proof of
Lemma 2.4): the sides on the fop and on the bottom

The following condition is stronger than Condition A, but it is easier to check it.

Definition 2.2 (Condition B). We say that the percolation satisfies condition B(«)
if there exists a nonnegative continuous function f : A, — R such that f vanishes
exactly on the boundaries of A, and 3¢ > 0:

Ffz0+¢f (6)

In the following sections we show that condition B implies 4 (Sect.2.2), which
implies that int{I1,E} # @ conditioned on E being nonempty (Sect.2.3), and

Condition B(«) for all o (Sect.2.4).

2.2 Condition B Implies Condition A

Proposition 2.3. For all o satisfying Assumption 1.1 condition B(a) implies
condition A(x).

Lemma 2.4. For all o satisfying Assumption 1.1 there exists an integer n > 0
and there exist sets I{*, I3 C A, with the same properties as in the definition of

Condition A except for (ii), which is replaced by (ii*):

((i*)Vx ely Flgi(x)= (1+¢)ga(x).

where g1 = fl1,, &2 = flb-
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Proof of Proposition 2.3. Using Lemma 2.4 Condition A holds with the smallest
multiple 7 of n satisfying

maxyer, g1(x)

(14+¢)/"=2—= .
min,.ez, g2(x) O

To prove Lemma 2.4 we need the following definition. Let us denote by W, the
boundary of A, and by W, the projection of the union of the boundaries of the
1/M" size (level n) cubes. The right side of Fig. 1 shows W, withd = 3,k = 2,
n=1,and M = 3.

Sketch of the Proof of Lemma 2.4: Basically we would like to follow the idea
of the proof of [6, Lemma 8], but since the projection onto the k-dimensional plane
is geometrically more complicated, now we explain how the proof is carried out.
The main difference is that while the proof of case d = 2, k = 1 uses the fact
that the sets Wy and W, \ W, are separated, the same is not true if k& > 1. This
difficulty is handled by splitting the sides of W, to rational and irrational classes
and by showing that for rational classes some kind of periodicity occurs, while for
irrational classes there is a separation similar to that of case k = 1 and therefore we
can use the continuity of function f.

Proof of Lemma 2.4. Fix a and suppose that Condition B(«) holds for some f and
e > 0. By Assumption 1.1 the IT, image of the k — 1-dimensional sides of K are
k — 1-dimensional. Some of these form W), call these the sides contained in W,.
Let us say that each of these sides forms a class, so totally we have 2(ki 1) classes.
In addition, for any n = 1 the sides contained in W, can be ordered into these
classes in such a way that the sides with given relative position to the projection
of their cube are ordered into the same class. Note that each side belongs to two
different cubes and hence to two different classes. In this proof two types of classes
are handled separately which are called rational and irrational. To define these it
will be useful to use another indices to denote the level n cubes: forl = 1,...,d,
iD=1,...,M"let

Ko, =MD —1,iV] oo (@D —1,i D).
If we do not specify the level of a cube given by these coordinates, then it can be
any leveln = 1.
We denote by Q:.‘(l) ;@ the k — 1-dimensional plane containing the class u side

of y(K;y  jw@))- Let us call a class u rational if for n big enough there exists two
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irrational.
First we discuss rational classes. For any n = 1 we give a uniform lower bound
in x € A, on the ratio of the number of level n cubes K;u) ;@ for which x €

I1, (K i)
greater than 7,/ M" with some 7; > 0, compared to the number of those cubes for
which x € TI, (K,-m

Suppose that Qli‘m @y = :!(1) - Then for any n = 1 and for any level n

""" ,-(,1)) and the distance between x and any rational side of K;a) ;@ is

,'(d))-

indices iV, ... ,i@

u _ u
il =1 W), i @D ke (D =]y T 2 i) fey (DD, i (@) ey (T ())

for any ky,k, € Z aslongas 0 < i) + kj(f(l) —iDy < M"foralll =1,....d,
j = 1,2. Hence for all x € A, and for any indices i i@

holds since the planes are the same, where dis?( . ; . ) is the usual distance in R4,
We can prove that the same is true while considering all rational classes at once:
There exist ;. ..., /@) e Z4 such that for all rational class u, for all level n, for
all D, .. i@ and forall k

. . u —_ : . u
dist (X ; Qi“%...,i(d)) = dist (X DO 4k FOLLi@ 4k f(d)) , (7)

aslongas 0 < i® +kf(’) <M"foralll =1,...,d.

We show that there exist 7; > 0 such that forall x € A\ By, /a (Wp) for all level
n cube Ko = K;n)__;w such that x € I1,(Kj) the projection of one of the level
n neighbors of K or the projection of K itself contains the 1;/M" neighborhood
of x. To see this let us denote by K;,i = 1,...,2d the level n cubes which have a
common d — 1-dimensional side with K. Fori = 0,...,2d we denote by V; the
open shadows of these cubes, i.e.

Vi = int Tu(K;).

Using Assumption 1.1 it is easy to see that the sets V; cover I1,(Ky). Figure 2
shows I1,(Kp) and the covering for d = 3 and k = 2. Hence we can choose 7, to
be smaller than M" times the Lebesgue number of the finite open covering {V; }izio,
which is always positive [8, Theorem 0.20] and by similarity proportional to M ~".
For the definition of the Lebesgue number of a covering, see [8]. Note that if one of
the cubes K;,i = 1,...,2d is out of the unit cube, then we don’t need that cube
for the cover, since our goal is to cover Ko \ By, /» (Wy). Another note is that the
same argument remains valid for any 7 such that ; > n > 0 holds.
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Fig. 2 We project fromd = 3 tok

= 2 dimension. The covering of I1,(Ky) (continuous) with
the open sets V; (dotted),i = 0,...,6

Now we are able to handle rational classes. For € > 0 and for x € R? let us
denote by B.(x) the € neighborhood of x, i.e.

B(x) = {y e R’ | [x—yl, <¢}.

;@ such that

By the definition of 7 for all x € Ay \ By, m(Wo) and for all n there exists a level
n cube K;q)

In addition, using the periodicity described in (7), cubes with such property follow
each other periodically, with period independent of x. Hence we conclude that there

exists ¥ > 0 such that for any ; > 1 > 0, for any level n and for all x € A, \
By/m (Wo)

®)
Note that ¥ does not depend on 7, only the length of a period has effect on it. This
equation will be sufficient to handle rational classes.
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To handle irrational classes as well let us say that the number of these classes
is C,. It is clear that there exists an integer n such that

(1 +6e)"—Cy>1+e¢, 9)
where ¢ was defined in Condition B(«). Choose 1, > 0 to be small enough to be

smaller than the half of the smallest distance between any two level n sides falling
in the same irrational class and to have

inf fx = sup  f(x), (10)
XeAu\an/M(VVO) xGan/Mn (Wo)

which can be easily achieved by the continuity of f. Setting = min{7;, 72}, we
define the sets needed by

I, := Ay \ B,(Wp)andbyl, := Ay \ By/u (Wo).

When showing that the assertion of the lemma holds we distinguish two cases:

* Ifx e Ay \ By/mn(W,), then using the definition of F;, and (6) we obtain

Fia(x) = Ff(x) = (148" f(x) > (1 +¢) ga2(x).

* The other case is when x € By y» (Wy,) \ By (Wp). Using (8) and the definition
of n

#{(0,5,) | x € o (05,1, (B, W) | <
<=, ) [xe Mo (K )| +Co
Putting this together with (10) and with the definition of F, we get
Figix) = F fx)—(1=9)F; f(x)—Cf(x) = 0F) f(x)—C, f(x) Vx € (?Tj
Then by (11), (6), and (9) we have

Fa®=0+e) f)+@0+e)"—1-e-C) f(x) = (1 +¢) g20%).
u]
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2.3 Condition A Implies Nonempty Interior

2.3.1 Robustness

To handle all directions at once we show that the robustness property described in
[6, Sect. 4.3] holds in the higher dimensional case as well. Suppose that condition
A(a) holds for some o = (a(l), R a(k)) with I, I5 and r. Let § be the Hausdorff
distance between I{* and I and let ] be the §/2 neighborhood of I*. Let the

distance between « and 8 = (b(l), .. ,b(k)) be

o= Il = max, Ha<"> —p® (12)

Proposition 2.5 (Robustness). Fix o, I{, I3, § and 1 1’ as before. Then there exists
a constant 0 < c(«) < oo such that if |a — B < c(@), then

I, o QDL(rl) (d)(l ) C Hf; o qo (1) (d)(lll).

L(l) -(d)

Note that IT,x was defined in (4), and that given o (and S’) we denote the matrix in

(3) by M,,. Then
adj L) adj ( ) Ji

b= (o)~ aer (1)

< L:@ adj (ﬁ) —adj (ﬁ)” +Vd

|max— x| < HM—1 M

1

1
det@) - det(ﬁ) ’

13)

adj (Mp) H

where |.|| denotes the induced norm of |.||,. Since the determinants are uniformly
separated from zero (5) and My has entries in [0, 1], hence the expression on the
right-hand side of (13) can be arbitrarily small with c¢(«) small enough. O

Corollary 2.6. Similarly for any ¢ > 0 if
e = Bl < cla)e/2,

, we obtain that

then by roughly estimating H%_l - Mﬁ_l
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Corollary 2.7. An immediate consequence of Proposition 2.5 is that Condition A
holds for all directions in

J = Bc(a)(a) NAg

with the same 1|, I3 and r.

2.3.2 The Proof

Hence we can restrict ourselves to one such range J. The proof follows the proof of
[6, Sect. 5].

Note that it is enough to prove that the nonempty interior in Theorem 1.2 exists
with positive probability. This is because almost surely conditioned on E being
nonempty for any N there exists n such that there are at least N many retained
level n cubes which will not vanish totally. In addition, events happening in different
cubes are independent and statistically similar. Hence if the interior of all orthogonal
projections is nonempty with positive probability, then the same holds almost surely.

Proof of Theorem 1.2. Let us write I for I{, I, for I3 and §’ for the new Hausdorff
1stance .ASSUmMeE X,y € Ay, |[X — < - ,and that for o, p €
di 8§/2. A yeA Y, <8 M~""/2, and that f J
o— B < cl@yM—=Dd’rp=d>,
le = Bl < cla)yM =D

Then from Corollary 2.6 with ¢ = M ="~ /2 it follows that \Ha (x) — Ig(y) \2 <
8'M~"" /2, and hence

Gpln(V,0) @) = Gl (Y0 @ (). (14)

For given n let X, be a §' M ™" /2 dense subset of I; and Y, be a ¢(cr) M ~=Dd’r
274" dense subset of J such that

#(X, x Y,) <M,

with some constant c. For any (x,6) € I] x J we define a sequence of random
variables

------

where £, = &,(w) stands for the set of retained level n cubes. We prove that with
positive probability V,,(x, 6) = (3/2)" for all n,x, 8. Let us use induction on » and
note that the n = 0 case is obvious. For (y, k) € X,+1 X Y, 41 let
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Z(y,k)=1(x,0) € I/ x J||x=y| < M~V /2 & |0—k| < M2 ().
1

Clearly the sets Z(y, k) cover I{ x J.
By the inductive hypothesis with positive probability V,,(x,6) = (3/2)". For

The expected value of this random variable is 2, and it is bounded below by 0,
above by M“". Moreover, random variables coming from different level nr cubes
are independent.

By Azuma—Hoeffding inequality

3 n+1 3\" .\
Pl X Gy pw=(3) [neoz(3) |z

.(1 .(d
(1.0

€enrNDyyr(x,12,0)

where 0 < € < 1 is fixed. Hence using the notation

E, =

(Vx € X,)(V0 € Y,) Vi (x.0) = (g) }

we have

i cMknr
P(Enri | ) = (1-€%2")

Summation in n converges, hence for any p;n @, i U = 1,...,M satis-
fying Condition B, a.s. I1,(E(w)) has nonempty interior for all o satisfying
Assumption 1.1, conditioned on E being nonempty. O

2.4 How to Choose f?

The case of equal probabilities can be handled as in [6]: Suppose that p;1) ;@) =

p > 1/M9 ¥ forallindices iV, ...,i?. Then let us define the function f : A, —
R™* needed in Condition B(«) by
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M

)

where |.| denotes the d-dimensional Lebesgue measure. This f vanishes continu-
ously on the borders of A, and strictly positive inside. In addition, it is obvious that

FocfZMd_kp'f-

Therefore the requirements of Condition B(«) are satisfied for all & and hence we
can apply Theorem 1.3.

3 Radial Projections

In this section we consider the radial projections Proj,(E) with center t € R of
the percolation fractal. Recall that Proj, (E) is the set of vectors under which points
of E \ {t} are visible from ¢. Our goal is to prove Theorem 1.3. We do this as it
is done in [6] for the two-dimensional case: We introduce a notion called Almost
linear family of projections for which, using the robustness property, it is easy to
show that almost surely for all member of the family the interior of the projection
of the percolation fractal is nonempty. Then we show that radial projections can be
viewed as an Almost linear family of projections.

3.1 Almost Linear Family of Projections

We fix the dimensions d and k and recall that Ay
a parametrized family of projections

) was defined in (5). Consider

Si(x): K — U A, C span{eV, ... e®}, (15)

a€Aq gyt
Assumption 1.1 holds

t € T.Forall x € K we define o, (x) by
SI(X) = Ha[(x)(x). (16)

Note that span{e; (x)} = Su, (v is not always well defined, since the only restriction
on it is to have (S;(x) — X) € Py, x) and o;(X) € Ay . We suppose that «; (X) is
such that S, (x) is not a coordinate plane.
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Definition 3.1 (Almost Linear Family of Projections). We say that a family
{S;}ier (S; satisfies (15)) is an almost linear family of projections if we can choose
o, (x) (defined by (16)) in such a way that the following properties are satisfied.
We set J as the range of vectors for which Condition A(«) is satisfied with the
same /1, I, and r. We denote by § the Hausdorff distance between /; and 1.

i) o;(x) € J forallt € T andx € K.
il) a,(x) is a Lipschitz function of x, with the Lipschitz constant not greater
than 8/3. This guarantees in particular that S,(K 0 m) is connected.

iii) For any n we can divide T into subsets Z l-( ") such that whenevert,s € Z l-(") and
X,y € Ki“’ [@, We have

ot (%) =y (Y)| < ey M~ D=

Moreover, we can do that in such a way that #{Z i(") } grows only exponentially
fast with .

In the following we show that for an almost linear family of projections {S;};er
almost surely S;(E) has nonempty interior for all ¢ conditioned on E being
nonempty. The proof follows the proof of [6, Theorem 14] and is a modified version
of the proof in Sect.2.3.2.

Proof. Let

seeeskn

We prove inductively that with positive probability V,,(x, 8) = (3/2)" for all n, x, 6.
The n = 0 case is obvious, a.s. Vy(x,0) = 1 for all x, 6. For given n let X, be a
8M ~"" /2 dense subset of 71. Then we can cover Iy x T with at most exponentially
many sets of the form By —u-+1r /5 (X;) X ZUtr i€ Xpp.

By the inductive hypothesis with positive probability V, (x,¢) = (3/2)". For each
level nr cube K; @ in V,(x, t) the number of its sub-cubes in V4 (x, ) can be

Ga,(xm (d))]thm (o (Xi)),

Z(n-l—l)l

where t € is arbitrary. Note that now o (x 0 (d)) is fixed, i.e. we

approximate by a linear projection, so we can apply Condmon A(a, X0 @)).

The expected value of this random variable is 2, and it is bounded bélow by 0,
above by M“". Moreover, random variables coming from different level nr cubes
are independent. So we can apply Azuma-Hoeffding inequality as above in the
proof of Theorem 1.2, thus we are done. O
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3.2 Mandelbrot Umbrella

Proof of Theorem 1.3. 1t is easy to see that instead of radial projection Proj,, it is
equivalent to consider the projection R; defined by

R;(x) = Line(t,x) N Py,

where Line(t, x) is the line through ¢ and x. Moreover, as explained in [6, Sect. 3],
we only need to consider radial projections with center separated from parallel
directions (as in Assumption 1.1) and arbitrary big distance from K. This ensures
that conditions ii) and iii) of Definition 3.1 hold. Condition i) also holds if we
subdivide the family of centers to at most countably many subfamilies. Hence
Theorem 1.3 holds. O
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Some Examples of Finite Type Fractals
in Three-Dimensional Space

Mai The Duy

Abstract By choosing the contraction functions in the Iterated Function System
we extend the construction from two-dimensional space to three-dimensional space
to build self-similar sets in 3-space. We also extend the neighbor map concept to
Iterated Function Systems with different contraction factors in order to identify
examples with finite type. Some interesting examples of self-similar sets in three-
dimensional space are given.

Keywords Self-similar set * Fractal * Finite type * Self-affine tile

1 Introduction

A fractal in general is a rough or fragmented geometric shape that can be split into
parts, each of which is a reduced-size copy of the whole. This essential property
is called self-similarity. A fractal usually has Hausdorff dimension which is greater
than its topological dimension. Now with the aid of computer programs, fractal
geometry has recently grown and is continuing to grow and we can visualize the
beauty of many of the images that they have discovered.

Self-similar sets are a class of fractals which can be rigorously defined and treated
by mathematical methods. In 1981 Hutchinson [14] rigorously defined self-similar
sets by this equation

F=f(F)U f(F)U...U fu(F),
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. _, gapis large
h
h
T——
Fig. 1 Using the neighbor maps we can magnify infinitely any self-similar sets
where f;, i = 1,...,m are contracting maps (IFS) on R¢. Hutchinson proved

that for given maps there is exactly one compact nonempty set, F, which fulfils
the equation. This set F is called fractal or attractor of IFS. See [7, 12] for details.

Neighbor maps can be considered as a representation of relative position of
pairs of nonempty intersecting sub-pieces. They were first introduced by Bandt and
Graf [3]. We extend the definition of Bandt on neighbor maps and neighbor graphs.
Two sub-pieces are neighbors if they intersect each other and the relation between
their sizes must be the same with the relation between the sizes of the pieces on the
original fractal. We also extend fractal constructions from two-dimensional space
to three-dimensional space. There are many fractal shapes in nature, such as fern
leafs, clouds, and mountains. We try to find the self-similar or self-affine structure
of those things. From the geometric point of view, the interesting self-similar sets is
the self-similar sets that have the sub-pieces just touching or have exact overlap. So
we have to enlarge them to see whether they are Cantor sets or they have overlap,
as indicated in Fig. 1. We use the strong conept of neighbor map to decide such
questions analytically.

2 Magnify Fractals: The Neighbor Maps

Fractals are sets or entities that look the same under magnification. Small pieces of
such a set are similar to the whole set. Such sets are “self-similar.”

To obtain an interesting structure in the self-similar sets, it is often required that
overlaps between pieces are sufficiently thin or just touching, which is expressed by
the open set condition (OSC):

Definition. We say that the /F'S { f1,..., fi} satisfies the OSC, if there exists an
open set V' such that
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JA cvand (V)N f;(V) =0, Vi #je{l.....m}.

i=1
We call such open set V' a feasible open set of the f;, or of F'.

The OSC controls the overlap of the sub-pieces F; of fractal F'. If an IFS satisfies
the OSC, then the Hausdorff dimension and the self-similarity dimension of the
attractor coincide.

However, it is not easy to check the OSC. In 1992 Bandt and Graf introduced
an algebraic equivalent for OSC [3]. We take some notations, let f; : RY — R?
contractive similarities with contraction factor r,i € I = {l,...,m}and F =
U?:l f,(F), 1" = {(ui)i=l,...,n I u; € 1Vi = 1, .. .,I’l}, I* = U;.,ozl In, for
uw:=uy...u, € 1", define f, := f,, o...0 f, and F, := f,(F). Given an IFS
{fi,..., fm}, foreachu,v € I'*,u = ujuy ... and v = vyv, ..., where ug, vy € I,
keN LetN ={h = f£7'f, | u,v € I*,u; # v}. The algebraic formulation of
OSC reads as following theorem

Theorem ([3]). The iterated function system { f1, ..., fn} satisfies the OSC if and
only if there exists § > 0 such that | h —id ||> 6, forallh € N.

The norm in this theorem is the norm on affine maps, which can be || g ||:=||
A | +|b|if g = Ax + b, where

| A |= max{|| Ax || |x € R? with || x [|<1}.

In 2001, Bandt [2] described an algorithm deciding on separation, when all the
contraction factors are equal to r. The algorithm is as followed: starting with identity
map id, we applied the automorphism

hij(g) == f g fi, i,j=1,,m,andi # j

Repeat this process with the obtained maps belonging to a neighborhood U of id
until all the maps run out of U. The reality of this algorithm is confirmed by the
following proposition:

Proposition ([2, Lemma 4.1]). Given similarities f; = rA;(x + a;), where r €
(0,1), and A; are orthogonal matrices. Let U be the neighborhood of id in the
space of similarities defined as
1
U:={sBx+b]|l|b|l < (1-1——s)c} where c = ma
—r i

la;].
€{l,.m}

m

Then the complement of U is mapped into itself by each h;;.

Neighbor maps can be considered as a representation of relative position of pairs
of nonempty intersecting sub-pieces. They were first introduced by Bandt and Graf
[2]. We take the Sierpinski gasket to explain the neighbor maps. Suppose that our
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Fig. 2 The relative position of sub-pieces

Sierpinski gasket has three sub-pieces in the origin (see Fig. 2) and the IFS has three
contraction functions { f1, f2, f3}. The relative position of sub-pieces Fj and F, was
represented by the map g = fl_l f>(F). The relative position between sub-pieces
F and F; is the same with the relative position between the fractal F' and its image
7' f2(F). Suppose that F; () F> have very small gap (they do not touching when
the contraction factors r are smaller than 0.5, let us take r = 0.499). Because the
relative position between sub-pieces F and F; is the same with the relative position
between the fractal F and its image f,~! f2(F) then F () f;~' f2(F) also has a gap.
Because F is larger than F; then the gap of F ) fl_lfz(F) is bigger than the gap
of F) () F>. When we go to the next level the relative position between Fj and
F> is the same with the relative position between the fractal F and f;' fo1(F).
On a deeper level, the relative position between Fi, and F111; coincides with
the relative position between the fractal ' and fﬁzlzz JSarn1(F). So we can imagine
that we enlarge Fi2, equal to F so the gap between Fis:; and F»1q17 also to be
enlarged that we can see in Fig. 1. It leads us to understand that when we apply
the Bandt’s algorithm this example then the algorithm will never stop because the
gap goes bigger and bigger out of the neighborhood U and never come back to £;;.
Bandt and Graf have given the definition of neighbor map for the maps which have
the same contraction factors. Given fi, ..., f, a neighbor map is an element of the
set {7V fu | EA(\Fo #0,u#v el

We extend the definition of Bandt on neighbor maps and neighbor graphs. Two
subpieces are neighbors if they intersect each other and the relation between their
sizes must be the same with the relation between the sizes of the pieces on the
original fractal. A type is a standardized relative position of two intersecting pieces
of the fractal.

Definition. We say two pieces F, and F,, are neighbors if

LTk Tk
F,NF,#0,u,vel* u #v;,mn— <r,, <max —

ki€l 1, kiel 1y
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where u = wujup....,v = vvy..., and r,, is the contraction factor of the
contracting map £, fy, ruy = 2.
u

With above definition two pieces F,, and F), are neighbors if they intersect each
other and their sizes can be comparable that they are not big different.

Definition. A neighbor map is an element of the set

V ={f"'"f,| F.N F, # 0, F, andF, are neighbors}

3 The Neighbor Graph-Finite Type Fractals

The two pieces f, and F, are neighbors, and the type of that relation between f,
and F, is presented by the neighbor map h = f,! f,. Every fractal that has a finite
type neighbor map is called a finite type fractal. A type is a standardized relative
position of two intersecting pieces of the fractal and the neighbor graph will show

the relation between types. More detail we have

Definition. The neighbor graph G = (V, E) of an I FS { f;}7_, is given by the sets
V ={f""f, | F.NF, # 0, F, and F, are neighbors},

E ={(g,h,ij) € VxVx12|h=fl-_1gfj min & <r §maxr—k}
kIl 1] kl€l 1]

.. rj
wherei, j € I,ry = Jtryy.
1

The fractals that have finite type neighbors are finite fractals. If a self-similar
set is a finite type fractal, then the Bandt’s algorithm will stop after sometime and
we get the number of types. In the following part of this paper we give many new
examples of finite type fractals in three-dimensional space.

4 Some Three-Dimensional Examples: The Choice of IFS

Until now there are just a few examples of fractals in R¢ with d > 3. We have two
examples that are well known: the Menger sponge and the fractal tetrahedron (http://
www.mathpaint.blogspot.com) and recently, the three-dimensional twindragon [5]
and the fractal octahedron, the three-dimensional modification of Sierpinski’s
triangle [6, 16]. Rendering the pictures in this paper we use software packages
from France [9] and Russia [13, 15] for three-dimensional fractals. These new
visualization tools enhance the study of three-dimensional fractals.
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Fig. 3 The rectangular cuboid in Example 2

In this paper, we follow [11] to turn fractals in plane to fractals in space.
Sometimes we change the number of functions in the IFS (Example 6) but in most
cases the number of functions is the same in the 2D and 3D version (Examples 1-5).

A similarity map in the plane is specified by a rotation matrix. When we go to
space we have to combine many rotation. In this paper we use three rotation matrices

. . 3w, . . . .
M ,M’,M" where M is the rotation by > in the X-axis combined with the rotation

3 3
by 771 in the Y-axis and M’ is the rotation by 771 in the X-axis combined with the

. V2 .
rotation by el in the Y-axis, more exactly:

010 0 —-10 0 01
M={001|,M=|0 01|,andM"=|~100
100 -1 00 0 —-10

Example 1. The simplest 3D fractal is the rectangular cuboid
F =[0,n] x [0, ¥/n] x [0, ¥/n?]
withthe IFS: {fi(x) =rMx+ (k—1)},k=1,2,...,nandr = 1/.¥/n.

Example 2. The rectangular cuboid can be made by different sizes of sub-pieces
(Fig. 3):

F = [0,2] x [0+/2] x [0, V4]

The IFS has three functions:
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Fig. 4 The spiral fractal

fi(x) = rMx, fo(x) = r2M2x+(1,0,0) and f3(x) = r2M"x+(1, 2, J4),
r = 1/\3/5

Example 3 (See Fig. 4). The spiral fractal is made of three sub-pieces of equal size.
The IFS: fi(x) = rMx —v, fo(x) = —rMx —v, f3(x) = rMx where r = 1//3,
v = (1,0,0)". To decide whether the spiral fractal is of finite type, we investigate
Fig.5 and count the numbers of sub-pieces around F'. When neighboring pieces
meeting in a single point or a line are neglected we can see eight-face neighbor
types. Other versions of spiral fractals with different sizes of sub-pieces can be seen
in Fig. 6.

Example 4 (See Fig.6). The spiral fractals made of three different sizes of sub-
pieces. The IFS: f(x) = rMx +v, fo(x) = r>M?>x, f3(x) = —r>M?x + v where
r=1/42,v = (=1/3,32/3,4/3) . It follows from [1] that all these examples
are tiles, that is, the whole space can be tiled by congruent copies of F. See also
[10].

Example 5 (See Fig.7). The new Menger sponge uses only four contraction
functions in the IFS: fi(x) = rMx + v,f2(x) = rMx + (2,0,0), f3(x) =
r2M2x 4 (1,0,0), fa(x) = r2M2x + (1,0,2/~/3) where r = 1//3.
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Fig. 5 Eight-face neighbor types of the spiral fractal

)

Fig. 6 The spiral fractal with three different sub-pieces

Example 6 (See Fig.8). The two-dimensional ‘golden pentagasket’ is a combina-
tion of the overlapping ‘golden gasket’ presented in [8] and the fractal n-gons in [4].
Its 3-dimensional counterpart will be called ’golden dodecahedron’. It is produced
from an IFS with 50 similarity maps fx(x) = 6(x —ax) +ar ifk = 1,...,20, and
fr(x) = 8*(x —ay) + ay, if k = 21,...,50, where § is the golden ratio and a;, are
the vertex points on the dodecahedron and the midpoints of the lines which connect
that vertex points (see Fig. 9).
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Fig. 7 The new Menger sponge with four contraction functions in /F'S

Fig. 8 The golden dodecahedron fractal

When cutting the golden dodecahedron fractal we have slices as we can see in
Figs. 10 and 11. My friend Ruediger Zeller told me that the golden dodecahedron
fractal contains plane segments and in the center there is a hole. We can imply that
holes exist almost everywhere, but it need to be proved so there is much left to
explore about this golden dodecahedron fractal.
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ar an

Fig. 9 The 50 fixed points of the functions in IFS of the golden dodecahedron

Fig. 11 There is a hole in the center of the golden dodecahedron fractal
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Fractals in Partial Metric Spaces

S. Minirani and Sunil Mathew

Abstract Partial metric space is a generalisation of metric space due to non zero
self-distance. In this paper, we discuss the nature of fractals in a partial metric space.

Keywords Partial metric space * Complete space * Fractals ¢ Iterated function
system

2000 AMS Subject Classification: Primary ; 28A80, 54E50, 54E99

1 Introduction

The notion of Partial Metric Space was introduced by Steve G. Mathews in 1992
[4] as a part of the study of denotational semantics of dataflow networks. It was
originated from a program in Computer Science known as Gilles Kahn’s Model
of parallel computation. Partial Metric Space is a generalisation of metric space
with non-zero self-distances. Whenever the self-distance becomes zero, it is a
metric space. S.G. Mathews established the precise relationship between partial
metric space and the weightable quasi-metric spaces, and proved a partial metric
generalisation of Banach’s contraction mapping theorem. S.J. O’Neil proposed one
significant change to Mathews’ definition of the partial metrics, and that was to
extend their range from R to R [3].
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2 Partial Metric Space

This section discusses some of the basic definitions in the area which is by Mathews.
Definition 2.1. A partial metric space is a pair (X, p : X x X — R) such that

Pi: p(x,x) < p(x,y) (nonnegativity and small self-distances)
Pi: Ifp(x,x) = p(x,y) = p(y,y), then x = y (indistance implies equality)
Py: p(x,y) = p(y,x) (symmetry), and
Pyr o p(x,2) = p(x,y) + p(y,2) = p(y, y) (triangularity).

If p(x,y) = 0, then Py and P, imply that x = y, but the converse does not hold
always.

A trivial example of a partial metric space is the pair (R, p), where p : RT x
R* — R™ defined as p(x,y) = max{x, y}

2.1 Contraction Fixed Point Theorem

We now consider how a familiar theorem from the theory of metric spaces can
be carried over to partial metric spaces. Complete Spaces, Cauchy sequences, and
the contraction fixed point theorem can be generalised to partial metric spaces as
follows.

Definition 2.2. A sequence x = (x,) of points in a partial metric space (X, p) is
Cauchy, if there exists @ > 0 such that for each ¢ > 0 there exists k such that for all
n,m>k,| p(x,,xn) —al|<e.

In other words, x is Cauchy if the numbers p(x,, x,,) converge to some a as n
and m approach oo, that is, if lim p(x,,x,) = a. Then lim p(x,,x,) = a,
n,m—o0 n,m—o0

and so if (X, p) is a metric space a = 0.

Definition 2.3. A sequence x = (x,) of points in a partial metric space (X, p)
convergesto y in X if

lim p(x,,y) = lim p(xp, x.) = p(y,y)
n,m—o0 n,m—o0
Thus if a sequence converges to a point, then the self-distances converge to the self-

distance of that point.

Definition 2.4. A partial metric space (X, p) is complete if every Cauchy sequence
in X converges in X.

Definition 2.5. A set A is closed in (X, p) if A = A, where A is the closure of A.

Definition 2.6. A set A is a bounded subset in (X, p) if there exist an x € X and
M > O such thatforalla € A, we have p(x,a) < p(a,a) + M.
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Definition 2.7. For a partial metric space (X, p), the open ball with center x and
radius € > O is defined as B,(x,€) ={y € X : p(x,y) < p(x,x) + €}.

Definition 2.8. A subset A of (X, p) is said to be totally bounded if for every € > 0,
n

there are xi, ..., x, in X such that 4 C UBp(xi,e).

i=1
Definition 2.9. For a partial metric space (X, p), a contraction is a function
f + X — X for which there exists a ¢ € [0, 1) such that for all x,y € X,

p(f(x). f(») = c.p(x. ).

Theorem 2.10. For each contraction f over a complete partial metric space (X, p)
there exists a unique x € X such that x = f(x). Also, p(x,x) = 0.

Thus the contraction fixed point theorem is extended to partial metric spaces.
It says that the fixed point has self-distance 0, which is trivial in the case of metric
spaces.

If p is a partial metric on X, then the functiond : X x X — R™ defined by

dp(x,y) =2p(x,y) — p(x.x) — p(y.y)

is a metric on X . Also, a sequence x = (x,) converges to a point x in (X, d,) if and
only if

lim p(x,,x,) = lim p(x,,x) = p(x,Xx).
n.m—>00 n—00

Lemma 2.11. (i) A sequence (x,) in X is a Cauchy sequence in (X, p) if and
only if it is a Cauchy sequence in metric space (X, d ).
(ii) A partial metric space (X, p) is complete if and only if the metric space (X, d )
is complete.

3 Fractals in Partial Metric Spaces

We work in a partial metric space (X, p) and H,(X) denote the set of all nonempty
compact subsets of the partial metric space (X, p). The compact subsets are the
closed and bounded subsets of X induced by the partial metric p. Now we discuss
the nature of fractals in a partial metric space.

Definition 3.1. Let (X, p) be a partial metric space. For A, B € H,(X)andx € X,
let us define

rp(x,A) =inf{p(x,a):a e A}
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and
pp(A, B) = supi{r,(a,B) :a € A}
Similarly we define
pp(B, A) = sup{p(b,A) :b € B}
Then the Hausdorff partial metric h, on H,(X) is defined by
hy(A. B) = max{p,(A. B). p,(B. 4)}
Remark. For nonempty set A in (X, p), an element a € A if and only if p(a, A) =

p(a,a). Before that we will prove some important results required for later proofs.

Result 1: Let (x,) and (y,) be sequences in a partial metric space (X, p). If (x,)
converges to x and (y,) converges to y, then the sequence (p(x,, y,)) converges to

p(x,y).

Proof. Let € > 0. Since sequence (x,) converges to X, by definition, there exists an
N such that for all n > Ny, p(x,,x) — p(x,x) < €/2. Similarly, there exists an N,
such that for alln > N,, p(y,, y) — p(y,y) < €/2.

Thus

PXn, yn) < p(xn,x) + p(x,y) + p(y, yn) — p(x,x) — p(y,y)
<€/2+¢€/24+ p(x,y)
= p(xy,yn) — p(x,y) < €. Therefore by definition, the sequence (p(x,, Vn))
converges to p(x, y). O

Result 2: If (zx) is a sequence in a partial metric space (X, p) with the property
that p(zk, zk+1) — p(zk, zx) < 1/2]‘ for all k and for some a > 0, then the sequence
(z«) is a Cauchy sequence.

Proof. Let € > 0 and choose a positive integer N such that ZN—I,I < €. Then for all
n > m > N we find that

p(st Zn) = p(vaZm+l) + p(Zm+lem+2) + e+ p(Zn—lsZn)

= P@n+1,Zm+1) — P@mt2, Zmg2) — - — P(Zn—1,Zu—1)
1 1 1
<om T omm Tt e + p(zms 2m)

1
< Z]?J:mz_k + p@m.7m)
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om—1 + p(@ms2m)

1
< N1 + p(zm» zm)

<e+b

where b = p(z;n,zm) = 0.
Thus it follows that (zx) is a Cauchy sequence in (X, p). O

Lemma 1. Let (X, p) be the metric space and let A be a closed subset of X. If a
sequence (a,) converges to x and a, € A for all n, then x € A.

Proof. Suppose (a,) is a sequence that converges to x and a, € A for all n. If there
exists a positive integer n such that @, = x, then it is clear that x € A. If there does
not exist a positive integer n such that a, = x, then x is a limit point of A and since
A is closed, x € A. O

Theorem 3.2. Letx € X and A, B,C € H,(X).

(1) rp(x,A) = p(x,x) ifand only if x € A.

(2) pp(A,B) =h,(A, A) ifand only if A C B.

(3) There exists a, € A suchthatr,(x, A) = p(x,ay).

(4) There exist a* € A and b* € B such that p(A, B) = p(a*,b™).
(5) If A C B, thenr,(x,B) <r,(x, A).

(6) If B € C, then py(A,C) < pp(A, B).

(7) pp(A U B.C) = max{p,(A.C). p,(B.C)}.

(8) pp(4, B) = pp(4.C) + pp(C, B) — inf p(c. c).

Proof. (1) Letx € A, then inf{p(x,a) : a € A} = p(x,x), since p(x,x) <
p(x,y) for all x € X. This implies r,(x, A) = p(x,x). Conversely, let
rp(x, A) = p(x,x). Then for each positive integer n, there exists a, € A4 :
p(x,a,) — p(x,x) < % Then by definition (a,) — x. Since A4 is compact, it
is closed. So by Lemma 1, x € A.

(2) LetAC Banda € A. Thena € B. Then by Property 1, r,(a, B) = p(a,a).
So p,(A, B) =sup{p(a,a):a € A} = h,(A, A). Conversely,leta € A. We
have

pp(A, B) = hy(4, A)
i.e.
sup{ry(a,B) :a € A} = sup{p(a,a):a € A}

=rp(a,B)=pla,a)=>acB=ACB
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By definition of infimum, let (a,) be a sequence in A such that p(x,a,)
convergesto r,(x, A). Since A is compact, there exists a subsequence (a,, ) of
(an) that converges to some a, € A. Then the sequence (p(x, a,,)) converges
to p(x,ayx). Since the limit is unique, we have r,(x, A) = p(x,ax).

By definition of supremum, let {a,} be a sequence in A such that r,(a,, B)
converges to p,(A, B). Then by Property 3, there exists a sequence {b,}
in B such that r,(a,, B) = p(a,,b,). Since A is compact, there exists a
subsequence (a,, ) of (a,) that convergesto some a* € A. Since B is compact,
there exists a subsequence (b, ) of (b,) that converges to some b* € B. Then
(p(an,, by, )) converges to p(a*, b*) which implies p(a*,b*) = p,(4, B).
Suppose A € B and x € X.Leta € A, thena € B. Hence it follows that
p(x,a) > inf{p(x,b) : b € B} = rp(x, B). This is true for all a € A. So we
have r,(x, A) = inf{p(x,a) :a € A} > r,(x, B)

Suppose B € C. Then by Property 5, r,(a,C) < r,(a, B) forall a € A.
Taking supremum over A on both the sides gives p,(A4,C) < p,(4, B).

We have

pp(AU B,C) =sup{r,(x,C):x € AU B}

= max{sup{r,(x,C) : x € A},sup{r,(x,C) : x € B}}
= max{p, (4. C). p,(B.C)}

We know that

pla.b) < p(a.c) + p(c.b) — p(c.c)

which implies
rp(a,B) = p(a,c) +r,(c. B) — p(c.c),

by taking infimum over B. i.e.,
rp(a, B) + p(c.c) = pla.c) + p(c, B)

Sorp(a, B) + p(c.c) < pla,c) + p,(C. B)
= rp(a, B)+ incﬁp(c,c) <rp(a,C)+p,(C, B), by taking infimum over C.
ce

Since a is an arbitrary element in A, the result follows.
O

Proposition 3.3. %, is a partial metric on H,(X).

Proof. We have to prove the following axioms:

P()I
Pll
Pz!
P3I

hp(A. 4) < hy(A, B)
(A, B) = h,(B. )

If i, (A, A) = h,(A, B) = h,(B. B), then A = B
hp(A.C) < hy(A, B) + hy(B. 4) = inf p(b.b)
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Py : By definition, p,(A, A) = sup{p(a, A) : a € A} which implies p,(4, A) =
sup{p(a,a) :a € A}.Since p(a,a) < p(a,b)foralla € Aandb € B

pp(A, A) < pp(A, B)

Similarly

pp(A,A) < pyp(B. A)
Hence by definition
hp(A, A) < hy(A, B)
P : By definition of /1, (A, B), it is symmetric, since p(a,b) = p(b,a).
Py hy(A,B)=h,(A,A) = h,(B, B)
-max{p,(A, B). pp(A, B)} = max{p,(A, A)} = max{p,(B. B)}

pP(AvB) = pP(AvA) = pp(BvB)

rp(a,B) =ry(a,A) =r,(b,B) foralla € Aand b € B
pla,b) = p(a,a) = p(b,b) = a=>bforalla c Aandb € B
A= B.

i.

(¢

P; . We will prove this using Property 8 of Theorem 3.2

hp(A. B) = max{pp(A, B). pp(B. A)}
<max{pp(A,C)+p,(C, B)—inf p(c,c)+pp(B,C)+pp(C, A) —inf p(c,c)}
— max{py(4.C) + pp(C. B). pp(B.C) + pp(C. A)} —inf p(c.c)
< max{pp(A, C). pp(C. A)} + max{p,(C. B). pp(B.C)} — inf p(c.c)
= h,(A.C) + h,(C. B) —inf p(c.c)

Hence the proof. O
Proposition3.4. 7,(A,B)=0=A=8
Proof.

hP(AvB) = O = pp(AsB) = pp(BvA) = 0

pp(A,B) =0=r,(a,B) =0,Ya € A
= pla,a) <p,(A,B)=0,Ya e A
= pla,a) =0,Yae A
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= rp(a,B) = pla,a),Ya € A
=ae€B=B
= ACB

Similarly, starting with p,(B, A) = 0 gives B C A.
Thus we have A = B O

Proposition 3.5. If A = B, then H,(A, B) = supp(a,a)
a€A

Proof. f A= B, Hy(A,B) = Hy(A,A) = pp(A, A) = sup{p(a.A) 1a € A} =
sup{p(a,a) :a € A} O

To be a complete partial metric space, every Cauchy sequence in (H,(X), & ,) must
converge to a point in (H,(X). Therefore, in order to prove that the partial metric
space (H,(X), h,) is complete, we will choose an arbitrary Cauchy sequence (A4,)
in (H,(X) and show that it converges to some A in (H,(X).

Definition 3.6. Given a set A € (H,(X) and a positive number ¢, the set A + € is
defined as {x € X :r,(x,A) < h,(A4, A) + €}.

Now we need to show that this set is closed for all possible choices of A and €.
Proposition 3.7. A€ is closed for all possible choices of A € (H,(X) and € > 0.

Proof. Let A € (H,(X)) and € > 0. Let us assume that x is a limit point of 4 + €.
Then there exists a sequence (x,) of points in A + € that converges to x. Since
X, € A+ € for all n, by definition r,(x,, A) < h,(A, A) + € for all n. By Property
3 of Theorem 3.2, there exists a, € A such that r,(x,, A) = p(x,,a,). Thus
P(Xn,a,) < h,(A, A) + € for all n. Since A is compact, each sequence (a,) has a
subsequence (x,, ) which converges to some a € A. Since (x,) converges to x, any
subsequence (x,,) of (x,) also converges to x. Then, the sequence (p(xy, ., axs,))
converges to p(x,a). Since (x,,) and (a,,) are the subsequences of (x,) and (a,),
respectively, p(X,,, an,) < h,(A, A)+e€ forall k. Therefore, p(x,a) < h,(A, A)+
€. By definition, r,(x, A) < h,(A, A)+€,50 x € A+ €. Since x is arbitrary, A 4 €
is closed. O

To show (H,(X), h,) is complete, we will have to show that there exist an N
such that foralln > N, h,(A,, A) — h,(A, A) < €. The following theorem gives
an alternate way of proving convergence.

Theorem 3.8. For A,B € H,(X) ande > 0. Then h,(A,B) —h,(A,A) < € if
andonlyif AC B+eand BC A+ €

Proof. By symmetry, it is enough to prove that p,(B, A) < h,(A, A) + € if and
onlyif BC A +e.

Let B € A + €. By definition, forevery b € B, r,(b, A) < h,(A, A) 4+ € which
implies p,(B, A) < h,(A, A) + €.
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Now let p,(B, A) < h,(A, A)+€. Thenforeveryb € B, r,(b, A)<h,(A, A)+e.
By the definition of the set A + € it follows that B C A + €. O

Before proving the Extension Lemma we will see some results and a lemma
which will be used later in the proofs.

Lemma 3.9 (Extension Lemma). Let (A,) be a Cauchy sequence in H,(X) and
let (ny) be an increasing sequence of positive integers. If (xp, ) is a Cauchy sequence
in (X, p) for which x,, € Ay, for all k, then there exists a Cauchy sequence (y,) in
X such that y, € A, foralln and y,, = x,, forall k.

Proof. Let (x,, ) be a Cauchy sequence in (X, p) for which x,, € A,, for all k. For
each n such that ny_; < n < ng, use Property 3 of Theorem 3.2 to choose y, € A4,
such that 7, (x,,, Ay) = p(Xs,, ys). Then, by definition of r, and p, we can see
that

P(xnk, Yn) = rp(xnkyAn) =< pp(AnkyAn) =< hp(Ankv An)

Now, since x,,, € Ay, then p(x,,, yu,) = 7p(xu,, An,) = p(Xn,, Xn, ), by Property
1 of Theorem 3.2. Hence it follows that x,,, = y,,, for all k.

Let € > 0. Since (x,,) is a Cauchy sequence in (X, p), there exists a positive
integer K and a > 0 such that p(x,,, x,;) —a < €/3forall k, j > K. Since (A,)
is a Cauchy sequence in H,(X), by definition there exist a positive integer N > ng
and b > 0 such that ,(A,, Ay) —b < €/3 for all m,n > N. Then there exists
integers j,k > K suchthatn; | <n <ngandn; | <m <n;. Then

Pn,ym) = pnsXn) + PXny s Xn ) + PXnjs Yim) — P(Xngs Xng) — P (X, Xn ;)
=71p(Xngs An) + png s Xn ;) +7p(Xn; s Am) — p(Xngs Xng) — P(Xn;, Xn ;)
< pp(Anys An) + pCngs Xn ;) + pp(Anj . Am) — p(Xng, Xny) — P(Xnj s Xn ;)
< hp(Ang, An) + P, Xn ;) + hp(An; s Am) — pXnge, Xny) = p(Xn ;s Xn ;)
<b+e/3+a+e€/3+b+e€/3— plxn,xn)— pXn;.Xn;)
<e€e+c

where ¢ = 2b +a — p(Xn;, Xn, ) — P(Xn; > Xn;)-
Since p(xn;, Xn,) < hp(An,, hp(Ap,)) forall k and p(xn,, Xn,) < p(Xns Xn;),

we have ¢ > 0. Hence by definition (y,) is a Cauchy sequence in (X, p) such that
yn € A, foralln and y,, = x,, for all k. This completes the proof. O

The following lemma makes use of the Extension Lemma to guarantee that 4 is
closed and nonempty.

Lemma 3.10. Let (A,) be a sequence in H,(X) and let A be the set of all points
X € X such that there is a sequence (x,) that converges to x and satisfies x, € A,
forall n. If Ay, is a Cauchy sequence, then the set A is closed and nonempty.
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Proof. First we will prove that A is nonempty. Since (A,) is a Cauchy sequence, we
can find a sequence of integers n; and b > O such that h,(A4,,, 4,) —b < zik for all
m,n > ng. Let x,,, be a fixed point in A4,,,. By Property 2 of Theorem 3.2, we can
choose x,,, € A4,, such that p(x,,, Xs,) = rp(xs,, An,). Then by definition of r,, p,,
and /1, we find that

1
p(xnwxnz) = rp(xnlﬂ Anz) f pP(AnlvAVlz) 5 hP(AnwAVlz) < b + E

Similarly, we can choose x,, € 4,, such that

P (Xnys Xuy) = 1p(Xny, Any) < pp(Anys Any) < hp(An,, Any) < b + %
Continuing this process we can construct a sequence (x,,) where x,, € A4, for
all k. Then by the Extension Lemma, there exists a Cauchy sequence (y,) in X such
that y, € A, for all n and y,, = x,, for all k. Since X is complete, the Cauchy
sequence (y,) converges to a point y € X. Since y, € A4, for all n, by the definition
of the set, y € A. Therefore A is nonempty.

Now we will prove that A is closed. Suppose a is a limit point of A. There exists
a sequence (ax) in A which converges to a. Since each a; € A, there exists a
sequence (y,) which converges to a, and for each n, y, € A,. Consequently, we
can choose an increasing sequence (1) of integers such that x,,, € A,, p(xu,,ar)—
plak,ar) < % for all k. Then

P(Xnira) < p(xny,ax) + plax,a) — plag, ag).

Thus as n — oo, p(ak,ar) — p(a,a) and hence by definition, (x,,) converges
to a. Every convergent sequence is Cauchy, so (x,, ) is a Cauchy sequence for which
Xp, € Ay, for all k. By the extension lemma, (x,, ) can be extended to a convergent
Cauchy sequence (y,) in X such that y, € A, forallnand y,, = x,,,,anda € A4,
so A is closed. O

Since closed and totally bounded sets are compact, it remains to show that A is
totally bounded. In the next lemma we will prove this.

Lemma 3.11. Let {D,} be a sequence of totally bounded sets in X and let A be
any subset of X. If for each € > 0, there exists a positive integer N such that
A C Dy + €, then A is totally bounded.

Proof. Let € > 0. Choose a positive integer N so that A € Dy + 7. Since Dy is
totally bounded, by definition we can choose a finite set {x; : 1 < i < g} where
Xiepy such that Dy C U?:l B, (x;. §). By reordering the x;s, we may assume that
By(xi,9)NA#¢forl <i <k,and B,(x;,5) N A= ¢ fori > k. Then for each
1 <i <k,lety € By(x;,7) N A. We claim that A C Uf;l B,(yi.e.
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Leta € A.Thena € Dy + §,s0r,(a, Dy) < hy(Dy, Dy) + §. By Property
3 of Theorem 3.2, there exists x € Dy such that p(a,x) = r,(a, Dy). Then

pla,x;) < p(a,x) + p(x,x;) — p(x,x)
pla,x;) — p(xi,x;) < pla,x) + p(x,x;) — p(x;, x;) — p(x,x)

pla.x) = p(xi. ) = pla.x) + 3 = plx.x)

N ™

€ €
pla,x;) — p(xi,x;) < 7 + 1=

€

Since p(x, x;) — p(xi, x;) < 7 and p(a,x) — p(x,x) <
Soa € B,(x;, 2) for some 1 <i < k. Thus we have y; € B,(x;, 2) N A such
that p(x;, y(i)) — p(xi, x;) < 5. It follows that

#1n

pla,yi) < pla,x;) + p(xi, yi) — p(xi, xi)

€
pla,yi) < p(xi,yi) + 3
€
pa,yi) —p(yi,yi) < p(xi,yi) — p(yi, yi) + 3

pa,yi) —p(yi,yi) < % ty =«

Thus for each a € A we found y; for 1 < i < p such thata € B,(y;,¢), then

it follows that A C UBP (yi,€). Thus by definition, A is totally bounded. This
i=1
completes the proof. O
After proving these important results, we are now to prove our main result.

Theorem 3.12. The space H,(X) is complete in the partial metric h

Proof. Let (A,) be a Cauchy sequence in H,(X), and A be the set of all points
x € X such that there is a sequence (x,) that converges to x and x,, € A, for all n.
We have to prove that A € H,(X) and (A4,) converges to A.

By Lemma 3.10, the set A is closed and nonempty. Let € > 0. Since (A4,) is
Cauchy, there exists a positive integer N such that /1 ,(A,, A,,) — h,(A, A) < € for
allm,n > N. By Theorem 3.8, then A,, € A, + e forallm >n > N.Leta € A.
Then we have to show thata € A, + €.

Fix n > N. By definition of the set A, there exists a sequence (x;) such that
x; € A; for all i and (x;) converges to a. By Proposition 3.7, A, + € is closed.
Since x; € A, + € for each i, then it follows that a € A, + €. This shows that
A C A, + €. By Lemma 3.11, A is totally bounded. Also A is complete since it is
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the closed subset of a complete partial metric space. Since A is nonempty, complete,
and totally bounded, then A is compact and thus A € H,(X).

To show that (A4,) converges to A, we need to show that there exists a positive
integer N such that &1 ,(A,, A) — h,(A, A) < €, foralln > N. By Theorem 3.8, we
needtoshow A C A, +eand 4, C A + €.

We have already proved that there exists N such that A € A, + € foralln > N.
To prove A, € A + €, choose an N such that h,(A,, Ay) — hp(4, 4) < % for
all m,n > N. Since (4,) is Cauchy in H,(X), there exist a strictly increasing
sequence n; of positive integers such that ny > N and h,(A,,, A,) — h,(A, A) <
21.% forall m,n > n;.

Using the Property 3 of Theorem 3.2, we have

since Ay C Ay, +5, there exists x,, € Ay, such that p(y, x»,) — p(xp,, X ) < 5

since A, S Ay, <, there exists x,, € Ay, such that p(xn,, Xn,) = p(Xny, Xn,)
< €

4Continuing this process we obtain a sequence (x,,) such that for all positive
integers i, we have x,, € Ay, and p(xy;, X, ) — P(Xn; 4y s Xniyy) < 577 Thus by
Result 2 we see that (x,,) is a Cauchy sequence and so by Extension Lemma the
limit of the sequence a is in A.

Also,

p(ys-xni) = p(ys-xnl) + p(xnwxnz) +- p(xni—l’xni)

- [p(x”l’xnl) + p(Xnys Xnp) - -+ + p(xni—i,xn;_1)]
€
Zi
- [p(‘xnl’x"l) + p(xnz’xnz) e p(xni—laxni—l)]

€ €
fE+p(-xn1s-xn1)+Z+P(xn2sxn2)+"'+ +p(xni’xni)

<€ +p(xn,~axn,~)

Thus p(y, xu,)—p(xs,, Xn;) < € foralli. Hence it follows that p(y,a)—p(a,a) <€
andsoy € A + €.

Thus there exists an N such that for all n > N, h,(A,,A) — h,(A,A) < €
which implies (A4,) converges to A € H,(X). Therefore, if (X, p) is complete,
then (H,(X), h,) is complete. O

Thus the generalisation of Banach’s fixed point theorem to the partial metric
spaces is applicable to the space (H,(X), &), thereby ensuring a unique fixed point
for every contraction mapping in H,(X). This unique fixed point is a deterministic
fractal in the partial metric space which can be defined as an attractor of an I F'S ,.

Definition 3.13. A (hyperbolic) Iterated Function System (IFS,) consists of a
complete partial metric space (X, p) together with a finite set of contraction
mappings w; : X —> X with respect to the contraction factors s; , for j =
1,2,..., N.The notation of the / F'S, just defined is {X;w;, j =1,2,..., N} and
its contraction factor is s = max{s; : j =1,2,...,N}.
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Definition 3.14. An /FS), is said to be homogeneous if the contraction factor
sj=sforall j =1,2,...,N.

Theorem 3.15. Let {X;w;,j = 1,2,...,N} be a hyperbolic IFS, with con-
traction factor s. Then the transformation W : H,(X) — H,(X) defined by
W(B) = UIN=1 w;(B) forall B € H,(X) is a contraction mapping on the complete
metric space (H,(X), h,) with contraction factor s. That is, h,(W(B), W(C)) <
s.hp(B,C) for all B,C € Hy(X). Its unique fixed point, A € H,(X), obeys
A = W) = U?’:le (A) and is given by A = lim,—0c W°"(B) for any
B e Hy(X).

Definition 3.16. The fixed point A € H,(X) described in the Theorem 3.15 is
called the attractor of the I F'S,.

4 Conclusion

The nature of fractals in a partial metric space is studied and all the related results
are discussed. The definition of fractals in partial metric space is done analogous to
that done by Barnsley [2].
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Abstract In this article we present a short survey of frame theory in Hilbert spaces.
We discuss Gabor frames and wavelet frames and set the stage for a discussion
of various extension principles; this will be presented in the article Frames and
extension problems II (joint with H.O. Kim and R.Y. Kim).
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1 Introduction

Frames provide us with a convenient tool to obtain expansions in Hilbert spaces
of a similar type as the one that arise via orthonormal bases. However, the frame
conditions are significantly weaker, which makes frames much more flexible. For
this reason frame theory has attracted much attention in recent years, especially
in connection with its concrete manifestations within Gabor analysis and wavelet
analysis.

In this article we give a short overview of the general theory for frames in Hilbert
spaces, as well as its concrete realizations in Gabor analysis and wavelet analysis.
We set the stage for a discussion of various extension principles to be presented in
the article Frames and extension problems II (joint paper with H.O. Kim and R.Y.
Kim).
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2 A Survey on Frames and Operators

General frames were introduced already in the paper [18] by Duffin and Schaeffer in
1952. Apparently it did not find much use at that time, until it got re-introduced by
Young in his book [31] from 1982. After that, Daubechies, Grossmann and Morlet
took the key step of connecting frames with wavelets and Gabor systems in the
paper [15].

2.1 General Frame Theory

Let H be a separable Hilbert space with the inner product (-,-) linear in the first
entry. A countable family of elements { fj };c; in H is a

1. Bessel sequence if there exists a constant B > 0 such that

STULSIP < BIFIP VS € H:

kel

2. frame for H if there exist constants A, B > 0 such that

ANFIP =D USSP < BISIP Vf € H: (1

kel

The numbers A, B in (1) are called frame bounds.
3. Riesz basis for H if span{ fi }re; = H and there exist constants A, B > 0 such
that

A Il < [S e[ =B ler @)

for all finite sequences {cx }.

Every orthonormal basis is a Riesz basis, and every Riesz basis is a frame [the
bounds A, B in (2) are frame bounds]; a frame which is not a Riesz basis is said to
be overcomplete or redundant. Riesz bases and frames are natural tools to gain more
flexibility than possible with an orthonormal basis. For an overview of the general
theory for frames and Riesz bases we refer to [2] and [3]; a deeper treatment is given
in the books [4, 6]. Here, we just mention that the difference between a Riesz basis
and a frame is that the elements in a frame might be dependent. More precisely, a
frame { fi }res is a Riesz basis if and only if

S efi =0, fay € B > e =0, Vk e 1.
kel
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Associated with a Bessel sequence { f; }7 |, the pre-frame operator or synthesis
operator is

o0
T:0CN) - H, T{alf2, = Y ek fi
k=1

The operator T is bounded for any Bessel sequence { fi }32,. The adjoint operator
of T is called the analysis operator and is given by

FiH - CN), T = (LA

Finally, the frame operator is defined by

StH—-H, Sf=TT*f =Y (f fi) fi

k=1

The following classical result shows that any frame leads to an expansion of the
elements in 7 as a (infinite) linear combinations of the frame elements. It also shows
that the general expansion simplifies considerably for tight frames. Finally, the last
part of the result shows that for frames that are not Riesz bases, the coefficients in
the series expansion of an element f € H are not unique:

Theorem 2.1. Let { fi {32, be a frame with frame operator S. Then the following
holds:

(i) Each [ € H has the decompositions

f=Y LS ) f Z(f,ms—lfk.

k=1 k=1

(ii) If{ fi}o2, is a tight frame with frame bound A, then S = Al, and

fok fi, Ve 3)

(iti) If { fx }22, is an overcomplete frame, there exist frames
{gIre, # {871 fi )22, for which

o

f=) (fg)fi, VI eH. €]

k=1

Any Bessel sequence {gi },—; satisfying (4) for a given frame { f;}7° , is called
a dual frame of { fi.}32 ,. The special choice {gi}re; = {S™' fi}32, is called the
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canonical dual frame. In order to avoid confusion we note that if (4) holds for two
Bessel sequences { f;}7° | and {gx };—, . they are automatically frames:

Lemma 2.2. If { fi}2, and {gi};=, are Bessel sequences and (4) holds, then
{fi}o2, and {gi =, are dual frames.

Note that duality between Bessel sequences {fi}92, and {gx}z—, can be
expressed entirely in terms of operators. In fact, if 7,U denote the pre-frame
operators for { f;}£2,, respectively, {gx }r=, . the sequences are dual frames if and
only if

TU* =1.

2.2 Operators on L*(R)

In order to construct concrete frames in the Hilbert space L?(R), we need to
consider some important classes of operators.

Definition 2.3 (Translation, Modulation, Dilation). Consider the following
classes of linear operators on L*(R) :

(i) For a € R, the operator T, called translation by a, is defined by

(T.f)(x) == f(x—a), x eR. &)

(ii) For b € R, the operator E}, called modulation by b, is defined by
(Ep f)(x) 1= ™" f(x), x e R. (6)

(iii) For ¢ > 0, the operator D, called dilation by ¢, is defined by

wdxm:g%féxxek ™

(iv) The dyadic dilation operator is defined by
(Df)(x) :=2"2f(2x), x € R.

All the above operators are linear, bounded, and unitary. We will also need the
Fourier transform, for f € L!(R) defined by

fww=[ Fx)e 7 dx,

The Fourier transform is extended to a unitary operator on L?(R) in the usual way.
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The operators 7,, Ep, D, and F are related by the following commutator
relations:

T.Ey = e ™" E,T,, TyD = DTyy, DEp = EpjuD
FT,=E_,F, FE,=T,F, FD =D"'F.

3 Gabor Systems

Gabor systems in L?(R) have the form

{2 MPX o (x — na)ymaez

for some g € L?(R), a,b > 0. Using operator notation, we can write a Gabor
system as { E,p Tha €t mnez-

We will not go into a general description of Gabor analysis and its role in time—
frequency analysis, but just refer to the books [19-21].

Letting y[o,1) denote the characteristic function for the interval [0, 1], it is easy to
show that {E,, T}, xj0,1]}m ez is an orthonormal basis for LZ(]R). But the function
X[o.1] is discontinuous and has very slow decay in the Fourier domain, so this
function is not suitable for time—frequency analysis. For the sake of time—frequency
analysis we want the frame generator g to be a continuous function with compact
support. The following classical result shows that this more or less forces us to work
with frames.

Lemma 3.1. If g is be a continuous function with compact support, then

(i) {EmpThagmnez cannot be an ONB.
(it) {EmpThagtmnez cannot be a Riesz basis.
(iii) {EmpThagtmnez can be a frame if 0 < ab < 1;

In addition to (iii), if 0 < ab < 1, it is always possible to find a function g €
C.(R) such that {E,,5T,0g}mnez is a Gabor frame. We also note that no matter
whether g is continuous or not, Gabor frames { E,;5 T4 & } m nez for Lz(R) only exist
ifab < 1.

Bessel sequences of the form { £, T}14 & }m.nez Will play a central role in some of
the open problems to be considered in this article, so let us state a classical sufficient
condition that is easy to verify.

Lemma 3.2. Let g be a bounded function with compact support. Then
{EnpThag}mnez is a Bessel sequence for any a,b > 0.

For a Gabor system {E,,,7T,,8}mnez, the frame operator commutes with the
operators E,p, Tyy, m,n € Z. We will need the result below, which is almost
identical to Lemma 9.3.1 in [6].
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Lemma3.3. Let g,h € L*R) and a,b > 0 be given, and assume that
{EmpThagtmnez and {EpnpTyoh}mnez are Bessel sequences. Then the following
holds:

(i) Letting T and U denote the preframe operators for {EnpThagtmnez and
{Emanuh}m,nEZa

TUEwT,, = EnpTwoTU, Ym,n € Z.
(ii) If {Enp Tnagmanez is a frame with frame operator S = T T*, then
ST EwpTya = EmpTraS™", Ym,n € Z.

Lemma 3.3 (ii) implies that for a Gabor frame {E,,5T,,,€ }m.nez With associated
frame operator S, the canonical dual frame also has Gabor structure, in contrast
with the situation we encountered for wavelet frames. However, even for a nice
frame { £, T,4 & }m nez it is nontrivial to control the properties of the canonical dual
frame {E,pTya S _lg}m,nez, so often it is a better strategy to construct dual pairs
{EmpTragmnezs{ Emb Thahymnez such that g and i have required properties. Dual
pairs of Gabor frames have been characterized by Ron and Shen [26] and Janssen
[23]:

Theorem 3.4. Two Bessel sequences {EmpTnag}mnez and {Epp Thoh}m nez form
dual frames for L*>(R) if and only if

Zg(x —n/b—ka)h(x —ka) = bb,p, a.e. x €[0,4a].
kez

One of the most important results in Gabor analysis is the so-called duality
principle. It was discovered almost simultaneously by three groups of researchers,
namely Daubechies et al. [16], Janssen [22], and Ron and Shen [26]. It concerns
the relationship between frame properties for a function g with respect to the lattice
{(na,mb)},, nez and with respect to the so-called dual lattice {(n/b,m/a)}, nez:

Theorem 3.5. Given g € L*>(R) and a,b > 0, the following are equivalent:

(i) {EmpThagmnez is a frame for L*(R) with bounds A, B;
(ii) {ﬁ EnjaTu/p8}mnez is a Riesz sequence with bounds A, B.

The intuition behind the duality principle is that if {E,,5T,,8}mnez is a frame
for L2(R), then ab < 1, i.e., the sampling points {(na, mb)},, ncz are “sufficiently
dense.” Therefore the points {(n/b,m/a)}, ez are “sparse,” in the sense that

1

- > 1. Technically, this implies that the functions {ﬁ En/aTn/p8 mner are

linearly independent and only span a subspace of L?(R). The reason for the
importance of the duality principle is that in general it is much easier to check that
a system of vectors is a Riesz sequence than to check that it is a frame. The duality
principle is clearly related with the Wexler—Raz theorem stated next, which was
discovered in 1994.
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Theorem 3.6. If the Gabor systems {EunpTha8mnez and {EmpThah}mnez are
Bessel sequences, then the following are equivalent:

(i) The Gabor systems {E b Thagtmnez and {Epp Thoh}m nez are dual frames;
(ii) The Gabor systems {ﬁ EnjaTh/p8mnez and {«/;Tb EnjaTuphymner are
biorthogonal, i.e.,

1 1
<_ EnnT, b8, —— Enja Ty bh) = 8m.m’5n,n’-
\/% fatn/ \/% / / ,

Theorem 3.4 characterizes pairs of dual Gabor frames, but it does not show how
to construct convenient pairs of Gabor frames. A class of convenient dual pairs of
frames are constructed in [5, 8]:

Theorem 3.7. Let N € N. Let g € L*(R) be a real-valued bounded function for
which supp g C [0, N] and

Zg(x—n): 1. (8)

n€z
Let b €]0, ﬁ] Define § € L*(R) by
N—1
W= Y aglx +n),
n=—N+1
where

apy=>b, a,+a_, =2b,n=1,2,---,N—1.

Then g and h generate dual frames { E,;y Ty g ymnez, and { Epp T, 8 m ez for L*(R).

Let us apply Theorem 3.7 to the classical B-splines By, N € N, given
inductively by

1
Bi(x) = x4 (), By41(x) i= By % By(x) = /0 By(x—0di. ()

Example 3.8. The conditions in Theorem 3.7 are satisfied for any B-spline
By, N € N. Some choices of the coefficients a, are given by (Fig. 1):

1) Take
ap=b,a, =0forn =—-N+1,...,—1,a,=2b,n=1,...N — 1.

This choice gives the dual frame generated by the function with shortest support.
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Fig. 1 The generators B, and B; and some dual generators

2) Take

A-N+1 =A-N42 =+ =an—| = b :
if g is symmetric, this leads to a symmetric dual generator

N—1

g)y=b Y glx+m.

n=—N+1



Frames and Extension Problems I 227

4 Wavelet Systems in L*(R)

A wavelet system in L*(R) has the form {a//?y(a/x — kb)};rez for some
parameters @ > 1,b > 0 and a given function ¥ € L?(R). Introducing the
scaling operators and the translation operators, the wavelet system can be written

as {D,i TipV}jkez.
There are also characterizing equations for dual wavelet frames; see [11]. They
are formulated in terms of the Fourier transform:

Theorem 4.1. Given a > 1, b > 0, two Bessel sequences { D, Tkp ¥} jrez and
{Dui Tiv ¥} jkez, where Y, € L*(R), form dual wavelet frames for L*>(R) if and
only if the following two conditions hold:

(i) X ez V(aly)y(aly) = b forae y €R.
(ii) For any number o # 0 of the forma = m/a’, m, j € Z,

Z ‘&(aj)/)l/:f(aj)/ +m/b) =0, ae.y eR,
(jm)€ly
where 1, := {(j,m) € Z* |a = m/a’}.

We will present a few aspects of wavelet theory, beginning with the dyadic
wavelet systems and classical multiresolution analysis.

4.1 Dyadic Wavelet Systems

A systems of functions of the form {D/ Ty ¥} xez, where ¥ € L*(R) is a fixed
function, is called a dyadic wavelet system. Note that D’ Ty (x) = 2/ (27 x —
k), x € R. Given a frame {D/ Tk} jrez for L*(R), the associated frame
operator is

S L*R) > L*(R), Sf = Y (£ D/ Tiy) D/ Tuy,
J.kEZ

and the frame decomposition reads

=Y (LSTIDITY) DI Ty, f € L’(R).

jkez

In order to use the frame decomposition we need to calculate the numbers
(f.87'D/Ti) for all j,k € Z, i.e., a double-infinite sequence of numbers. One
can show that

STIDI Ty = D/ S Ty,
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s0 in practice it is enough to calculate the action of S~! on the functions T}, and
then apply the scaling D/ . Unfortunately, in general

D/ST'Tyy # DIT S~y

Thus, we cannot expect the canonical dual frame of a wavelet frame to have
wavelet structure. As a concrete example (taken from [10, 13]), let {Dj Tk} jkez
be a wavelet orthonormal basis for L?(R). Given € €]0,1[, let § = ¥ + eD.
Then {D/ Ti 0} j kez 1s a Riesz basis, but the canonical dual frame of {DJ Ti0} jkez
does not have the wavelet structure. Since the dual is unique for a Riesz basis, this
example demonstrates that there are wavelet frames where no dual with wavelet
structure exists. On the other hand, Bownik and Weber [1] have given an interesting
example of a wavelet frame {D/ Ty} j.kez for which the canonical dual does not
have the wavelet structure, but other dual frames with wavelet structure exist.

4.2 Classical Multiresolution Analysis

Multiresolution analysis is a tool to construct orthonormal bases for L?(R) of the
form {D/ Ty} kez for a suitably chosen function ¢ € L?*(R). Such a function yr
is called a wavelet. Its original definition of a multiresolution analysis was given by
Mallat and Meyer [24,25] is as follows:

Definition 4.2. A multiresolution analysis for L?(R) consists of a sequence of
closed subspaces {V;} ez of L?(R) and a function ¢ € V; such that

G --VacVoC V-
(i) N;V; = {0}and U;V; = L2(R)
(i) feV; & Df eVy1.
) feVo=Tif € Vo, Yk € Z.
(v) {T;P}kez is an orthonormal basis for V.

A multiresolution analysis is in fact generated just by a suitable choice of the
function ¢ : if the conditions in Definition 4.2 are satisfied, then necessarily

v, = span{ D’ Tiprez. Vi € Z.

The following result, due to Mallat and Meyer [24,25], shows how to construct a
wavelet based on a multiresolution analysis. Other proofs can be found in [7,14,30].

Theorem 4.3. Assume that the function ¢ € L*(R) generates a multiresolution
analysis. Then the following holds:

(i) There exists a 1-periodic function Hy € L*(0, 1) such that

$(2y) = Ho(y)p(y). y € R. (10)



Frames and Extension Problems I 229

(ii) Define the 1-periodic function H; by

| R
H(y) := Ho(y + ) e, (1)
Also, define the function  via

¥ (2y) == Hi(»)(»). (12)

Then  is a wavelet.

The definition in (12) is quite indirect: it defines the function v in terms of
its Fourier transform, so we have to apply the inverse Fourier transform in order
to obtain an expression for . This actually leads to an explicit expression of the
function ¥ in terms of the given function ¢:

Proposition 4.4. Assume that (12) holds for a 1-periodic function H, € L*(0, 1),

H(y) =) dpe™™". (13)
keZ

Then

Y(x) = V2 diDT 4 ¢p(x) =2) dip(2x + k). x € R. (14)

keZ keZ

The classical example of a wavelet generated by a multiresolution analysis is the
Haar wavelet,

1 ifx €0, 5
Y(x) =1 —lifx €[5, 1]
0 otherwise

Itis generated by the function ¢ = o 1j. In 1989 Daubechies managed to construct
an important class of compactly supported wavelets with very good approximation
properties. We will not go into a detailed discussion of these, but just refer to, e.g.,
[14,30].

4.3 The Unitary Extension Principle

In this section we present results by Ron and Shen, which enables us to construct
tight wavelet frames generated by a collection of functions y,...,¥,. Our
presentation is based on the papers [27-29]. Note also that a more flexible tool, the
oblique extension principle, has later been introduced by two groups of researchers,
see [12,17].
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The generators ¥y, ..., ¥, will be constructed on the basis of a function which
satisfy a refinement equation, and since we will work with all those functions
simultaneously it is convenient to change our previous notation slightly and denote
the refinable function by .

General Setup: Let ¥y € L*(R). Assume that lim,— Iﬁo(y) = 1 and that there
exists a function Hy € L°°(T) such that

Vo(2y) = Ho(y)¥o(y). (15)

Let Hy,..., H, € L*°(T), and define ¥,..., ¥, € L*(R) by

Yi2y) = Hi(y)vo(y), £ =1,...,n. (16)

Finally, let H denote the (n + 1) x 2 matrix-valued function defined by

Ho(y) Ti2Ho(y)
Hi(y) Tij2Hi(y)
H(y) = . (17)

Hn (V) Tl/2Hn (V)

We will frequently suppress the dependence on y and simply speak about the
matrix H. The purpose is to find Hy, ..., H, such that

{D/ Ty} jkez UL{D! T} jkez U -+~ U LD’ Tiyin}jkez (18)

constitute a tight frame. The unitary extension principle by Ron and Shen shows
that a condition on the matrix H will imply this:

2 x 2 matrix H(y)* H(y) is the identity for a.e. y. Then the multi-wavelet system
{Dj Tie} jkez e=1...n constitutes a tight frame for Lz(R) with frame bound equal
to one.

As an application, we show how one can construct compactly supported tight
spline frames.

Example 4.6. Fix anym = 1,2, ..., and consider the function

SRR (i (2m factors).

—3.3] 2.3
The function v is known as a B-spline of order 2m, although it is defined using the
function y_ 1y rather than yo ) as we did in (9). Note that
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sin®™ (y)

Vo(y) = (Ty)2"

It is clear that lim,, gﬁo(y) = 1, and by direct calculation,

o@ry) = cos™ (xy)yo(y)-
Thus vy satisfies the refinement equation with

Hy(y) = cos™ (ry).

Let (2;1) denote the binomial coefficients (2(2 and define the 1-periodic

m)!
m—0)10!
bounded functions Hy, H», ..., Hyy by

H(y) = (22") sin’ (ry) cos™" " (y).

Then

Ho(y) Ti2Ho(y)
Hi(y) Tij2Hi(y)
H(y) = :

H,(y) Tij2Hy(y)

cos?™ (mry) sin?" (ry)

(2;71) sin(ry) cos ! (xy) — ( ) cos(my) sian_l(ny)

(2;1 ) sin?(ry) cos? 2 (ry)

N (;Z ) sin?™ ()

1

cos?(mry) sin®" 2 (xy)

2m
2m

~—
NS: [\
~/ ~— 3

) cos?(mry)
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Now consider the 2 x 2 matrix M := H(y)* H(y). Using the binomial formula
< (2
(x + )™ = Z( ;ﬂ) xly2m=t
£=0
we see that the first entry in the first row of M is

2m

M, = Z (2271) sin® () cos??" O (y) = 1.

£=0

A similar argument gives that M, , = 1. Also,

M, = sin™ (y) cos™ (xy) (1 - (2;”) + (2;1) B (;Z))

= sin?"(zry) cos? (y)(1 — 1)*" = 0.

Thus M is the identity on C? for all y; by Theorem 4.5 this implies that the 2m
functions V1, ..., ¥, defined by

Yi(y) = He(y/2)¥0(y/2)

[ {2m\sin?" T (7 /2) cos?" " (my /2)
B ( ¢ ) (ry/2)>"

generate a multiwavelet frame for L?(RR).
Frequently one takes a slightly different choice of H;, namely,

Hi(y) = ié‘/ (221) sin (7ry) cos® ¢ (mry).

Inserting this expression in Iﬁg (y) = He(y/ 2)@()/ /2) and using the commutator
relations for the operators F, D, Ty shows that v is a finite linear combination with
real coefficients of the functions

DTy, k =—m,...,m.

It follows that v, is a real-valued spline with support in [—m, m], degree 2m — 1,
smoothness class C?"~2, and knots at Z/2. Note in particular that we obtain
smoother generators by starting with higher order splines, but that the price to pay
is that the number of generators increases as well. O
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Note that the unitary extension principle has a more convenient (but mathe-
matically equivalent) formulation in the oblique extension principle, which was
discovered independently and simultaneously by Daubechies et al. [17] and Chui
et al. [12]. We will not go into a discussion of this, but just refer to the original
articles, as well as the compressed presentation in [4, 6] for a quick overview.
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Abstract This article is a follow-up on the article Frames and Extension
Problems I. Here we will go into more recent progress on the topic and also present
some open problems.

Keywords Frames ¢ Gabor systems * Wavelet systems ¢ Extension problems

1 Introduction

Based on the article Frames and Extension Problems I, see [3], we discuss recent
progress and open problems concerning extension of Bessel sequences to frames
and dual pairs of frames. We first consider the extension problem in general Hilbert
spaces in Sect. 2. The special case of Gabor frames is discussed in Sect. 3. In Sect. 4
the similar (but much more complicated) problem for wavelet systems is considered,
without use of any assumption of multiresolution structure. Finally, in Sect. 5, we
present a few recent results about extension of wavelet Bessel systems to frames
with two or three generators. These results use the multiresolution structure.
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2 The Extension Problem in Hilbert Spaces

Extension problems have a long history in frame theory. It has been shown by
several authors (see, e.g., [1,14]) that for any Bessel sequence { fi }72, in a separable
Hilbert space H, there exists a sequence {gx };—; such that { fi}32, U {gk }r—, is
a tight frame for H. A natural generalization to construction of dual frame pairs
appeared in [4]; we need to refer to the proof later, so we include it here as well.

Theorem 2.1. Let { f;}ic; and {gi}ic; be Bessel sequences in H. Then there exist
Bessel sequences {pj}icy and {q;}ics in H such that {fi}ie; U {pj}ies and
{gi}ie1 U{q;}ies form a pair of dual frames for H.

Proof. Let T and U denote the preframe operators for {fi}ie; and {g;}ier,
respectively, i.e.,

T,U : @2(1) —H, T{ci}ie; = ZCifis Ulci}ier = Zcigi-

i€l i€l

Let{a;}ics,{b;}ics denote any pair of dual frames for H. Then

f=UT* f+I=UT*f =) (f fi)ei+ Y (I—-UT*) fa;)b;

iel jel
=Y (g + Y (fU=UT**a;)b;
iel jel

The sequences { fi }ies. {8i }icr. and {b;};c are Bessel sequences by definition, and
one can verify that {(/ —UT*)*a; } <, is a Bessel sequence as well. The result now
follows from Lemma 2.2 in [3]. O

The reason for the interest in this more general version of the frame extension
is that it often is possible to construct dual pairs of frames with properties that are
impossible for tight frames. This is illustrated in the next section.

3 The Extension Problem for Gabor Frames

Li and Sun showed in [14] that if ab < 1 and {EnpThag1}mnez is a Bessel
sequences in LZ(]R), then there exists a Gabor systems { E,;5 7,482 }m.nez such that
{EmpTrag1mnez U {EmpThag2}maez is a tight frame for L2(R). However, if we
ask for extra properties of the functions g; and g, such an extension might be
impossible. For example, if the given function g; has compact support, it is natural
to ask for the function g, having compact support as well, but by Li and Sun [14]
the existence of such a function is only guaranteed if [suppg;| < b~!. On the other
hand, such an extension can always be obtained in the setting of dual frame pairs [4]:
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Theorem 3.1. Let {E,,;5T,081}mnez and {Epp Tyahi }mnez be Bessel sequences in
L?*(R), and assume that ab < 1. Then the following hold:

(i) There exist Gabor systems {EnnpTyag2 mnez and {EpnpThahs}mnez in L*(R)
such that

{Emanagl}m,nEZ U {Emanag2}m,n€Z and {Emanahl}m,nEZ U {Emanah2}m,n€Z

form a pair of dual frames for L*(R).
(ii) If g1 and hy have compact support, the functions g, and hy can be chosen to
have compact support.

Proof. Let us give the proof of (i). Let 7 and U denote the preframe operators for
{EnbThag1ymnez and { Epp T, 0l 1 }imnez, respectively. Then

UT*fZ Z (f;Emanagl)Emanuhl‘

mn€Z

Consider the operator & := I —UT™*, and let { E;up Tya?1}mnezs {EmbTnat2}mnez
denote any pair of dual frames for L?(R). By the proof of Theorem 2.1,
{Emb Tnagl }m,nGZ U {CD* Emb Tnu r }m,nGZ and {Emb Tnuhl }m,nEZ u {Emb TnurZ}m,nEZ
are dual frames for L?>(R). By Lemma 2.6 in [3] we know that ®* commutes with
the time-frequency shift operators E,,;T,,,. This concludes the proof. a

4 An Extension Problem for Wavelet Frames

It turns out that the extension problem for wavelet systems is considerably more
involved than for Gabor systems. In order to explain this, consider the proof of
Theorem 2.1 and assume that {f;};e; and {g;}ie; have wavelet structure, i..,
{fiYier = {DITiyn}jkez and {gi}ier = {DITiyn},xez for some Y1, 9, €
L?(R). Assume further that these sequences are Bessel sequences, with preframe
operators T, U, respectively. Then, still referring to the proof of Theorem 2.1,
(I =UT*)*a; = (I — TU*)a;. Unfortunately the operator 7U* in general does
not commute with D/ T, so even if we choose {a;}ies to have wavelet structure,
the system {(/ — TU*)a;};c; might not be a wavelet system. Thus, we cannot
apply the proof technique from the Gabor case. The following partial result was
obtained in [4].

Theorem 4.1. Let {D/ Tk} jkez and {D/ Tklﬁl}; xez be Bessel sequences in
L?(R). Assume that the Fourier transform of V| satisfies

supp Y1 € [—1.1]. )
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Then there exist wavelet systems { D’ Ty} j kez, and { D’ Tk%}j,kez such that
(D) Ty} ke ULD! Ten} jken and { DI Ty} jrez U {DI Tiya} j ke

form dual frames for L*(R). If we further assume that @\1 is compactly supported
and that

supp Y1 € [~1, 1]\ [—€. ]

for some € > 0, the functions Y, and \r, can be chosen to have compactly supported
Fourier transforms as well.

In the Gabor case, no assumption of compact support was necessary, neither for
the given functions nor their Fourier transform. From this point of view it is natural
to ask whether the assumption (1) is necessary in Theorem 4.1.

Question: Let {D’/Tiy}jrez and {D/Tk%}j,kez be Bessel sequences in
[2(R).

(i) Do there exist functions v, % € L*(R) such that
(DI Tivn}jhen U LD Ty} jker and (DY TiY1} ez U LD Tivha}jhen (2)

form dual frames for L?(R)?

— =
(i) If ¢ and ¥ are_compactly supported, can we find compactly supported
functions ¥, and Y, € L?(R) such that the functions in (2) form dual frames?

The problem (i) can also be formulated in the negative way: can we find just
one example of a pair of Bessel sequences { D’ T; 1} xez and {D’ Tk%}j,kez that
cannot be extended to a pair of dual wavelet frames, each with two generators? The
open question is strongly connected to the following conjecture by Han [8]:

Conjecture by Deguang Han. Let {D’ Tiy1} j xez be a wavelet frame with upper
frame bound B. Then there exists D > B such that for each K > D, there exists
V1 € L2(R) such that {D’ Ty} jxez U {D! Ty} jwez is a tight frame for L*(R)
with bound K.

The paper [8] contains an example showing that (again in contrast with the
Gabor setting) it might not be possible to extend the Bessel system {D’ T ¥1 } ; kez
to a tight frame without enlarging the upper bound; hence it is essential that the
conjecture includes the option that the extended wavelet system has a strictly larger
frame bound than the upper frame bound B for { DI T} jkez. We also note that
Han’s conjecture is based on an example where supp @\1 C [-1,1], i.e., a case that
is covered by Theorem 4.1.

Observe that a pair of wavelet Bessel sequences always can be extended to dual
wavelet frame pairs by adding fwo pairs of wavelet systems. In fact, we can always
add one pair of wavelet systems that cancels the action of the given wavelet system,
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and another one that yields a dual pair of wavelet frames by itself. Thus, the issue
is really whether it is enough to add one pair of wavelet systems, as stated in the
formulation of the open problem.

Note that extension problems have a long history in frame theory. Most of the
results deal with the unitary extension principle (UEP) [16, 17] and its variants, and
are thus based on the assumption of an underlying refinable function. The open
problems formulated in this section are not based on such an assumption.

5 Extension Problems via the UEP

In this section we present recent results from [5]; more information and examples
can be found there. We will consider the extension problem for wavelet systems
in L2(R) that are generated from the UEP by Ron and Shen. That is, we consider
wavelet system { D/ Ty v } j.kez generated from a given scaling function and charac-
terize the existence of a UEP-type wavelet system { D/ Ty yr»} j.kez generated by the
same scaling function, such that the system { D/ T v/, }ikezU {DIT; Y2} j kez forms
a Parseval frame for L2(R), i.e., a tight frame with frame bound 1. In the process
of doing so, we identify two conditions on the filters associated with the scaling
function and with y;, which are necessary for any extension of {D/ T;yr} jkez tO
a tight UEP-type frame with any number of generators. Interestingly, we are able to
show that these conditions imply that we can always construct a Parseval frame by
adding at most two wavelet systems.

Let T denote the unit circle which will be identified with [—1/2,1/2]. Also,
for f € L'(R) N L*(R) we denote the Fourier transform by F f(y) = f (y) =
ffzo f(x)e™2"¥¥dx. As usual, the Fourier transform is extended to a unitary
operator on L*(R).

In the rest of the paper we will use the following setup.

General Setup. Consider a scaling function ¢ € L*(R), i.e., a function such that
¢ is continuous at the origin and ¢(0) = 1, and there exists a function my € L*°(T)
(called a refinement mask) such that $(2y) = mo(y)¢(y), a.e.y € R. Given

functions my, my, ..., m, € L°(T), consider the functions ¥, € L*(R) defined by
Viy) = my)éy), L=1,....n. (3)

In the classical UEP-setup by Ron and Shen, one search for functions
my,my,...,m, € L°°(T) such that

{D/ Ty} jkez U+ U{D! T} ke

is a Parseval frame. We will modify this slightly. In fact, we will consider a
given refinement mask m, and a given filter m; € L°(T), and derive equivalent
conditions for the existence of appropriate functions my, ...,m, € L°(T) for the
casesn = 2andn = 3.
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We will base the analysis on the UEP, which is formulated in terms of the (n +
1) x 2 matrix-valued function M defined by

mo (y) mo(y + %)
my (y) my ()’ + 5)

—|

M(y) = 4)

my, (y) my (y + 1)

Proposition 5.1 (UEP by Ron and Shen [16]). Let ¢ € L2*(R) be a scaling
function and my € L°°(T) the corresponding refinement mask. For each { =
1,---,n, let mg € L®(T), and define ¥, € L*(R) by (3). If the corresponding
matrix-valued function M satisfies

M()*M(y)=1,ae.y €T, (5)

then {D'Ty; : j € Z,k € Z,1 < i < n}isa Parseval frame for L*(R).

With the additional constraint that the generating functions should be symmetric,
the issue of constructing Parseval wavelet frames with two or three generators has
attracted quite some attention in the literature, see, e.g., the papers [15] by Petukhov,
[13] by Jiang, [18] by Selesnick and Abdelnour, and the papers [11, 12] by Han
and Mo. For example, in the paper [11] B-splines were used as scaling functions,
while a more general approach, valid for real-valued, compactly supported, and
symmetric scaling functions, was provided in [12]. Other cases where a UEP-based
construction with n generators can be modified to a Parseval frame with two or three
generators have been considered in [6, 7]. These papers are based on the so-called
oblique extension principle, which is known to be equivalent to the UEP. However,
a characterization of the conditions that ensure the possibility of extension with two
or three generators, as provided in the current paper, has not been available before.

Note that the analysis in the current paper is complementary to the one in Sect. 4,
where the key condition for obtaining an extension of a (general) wavelet system
{D’ Ty Y1} kez to a tight frame of the same form is that @\1 is compactly supported.
The extension principle applied in the current paper usually involves functions that
are compactly supported in time (even though this is not strictly necessary).

In the current paper we have restricted our attention to wavelet systems in L?(R).
An interesting discussion of the complexity of the extension problem for wavelet
systems in higher dimensions, together with several deep results, recently appeared
in [2].

In the rest of the paper we assume that we have given functions mg, m; € L (R)
as described in the general setup. Associated with functions my, --- ,m, € L>®(T),
we consider the (n — 1) x 2 matrix-valued function M, , defined by
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my (y) my(y + %)

MZ,n(y) = :
Note that
MZ,n (y)*MZ,n(V)
ma (y) my (V + %)
_ ma(y) o ma(y) :
ma(y +1/2) - myu(y +1/2) :
ma () ma (v + 1)
_ * _ mo(y) mi(y) mo(y) mo(y +1/2) 6
MM (mo(y £ 1/2) T+ 1/2)) (ml(y) mi(y + 1/2)) ©
=M@y)*M(y)—
lmo(y) > + |m1(y)? mo(y)mo(y + 1/2) + mi(y)mi(y + 1/2)
mo(y + 1/2mo(y) + mi(y + 1/2mi(y)  |mo(y + 1/2) + |mi(y + 1/2)]
We define
o Mo(y)  Mp(y)
M (y) = ( P ) 7
D= My y) Mty +172) @
where

Ma(y) 1= 1= [mo()I* = mi(y)[*:
Mpg(y) == —mo(y)mo(y + 1/2) —mi(y)mi(y +1/2).
Then the above calculation shows that
M) M) =1 ¢ Mo, () Mau(y) = MP(p). ®)
The following lemma gives two necessary conditions for the existence of

my, -+ ,m, such that the equivalent conditions in (8) hold.

Lemma 5.2. Suppose that mg,my,--- ,m, € L% (T) satisfy that M(y)*M(y) =
I fora.e. y € T, then the Hermitian matrix M P (y) is positive semidefinite and

@ |mo)I> + lmi(p)* < 1, a.e. yeT:
(b) My(y)Mo(y +1/2) = [Mp(y)|". a.e.y €T.

On the other hand, if (a) and (b) are satisfied then M *P (y) is positive semidefinite.
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We are now ready to state the condition for extension to a UEP-type wavelet
system {D’ Ty} kez to a Parseval frame by adding just one UEP-type wavelet
system.

Theorem 5.3. Let ¢ € L?*(R) be a scaling function and my € L%®(T) the
corresponding refinement mask. Let m; € L%(T), and define ¥, € L*(R)
by (3). Assume that condition (a) in Lemma 5.2 is satisfied. Then the following are
equivalent:

(a) There exists a 1-periodic function m, such that the matrix-valued function M
in (4) with n = 2 satisfies that

M(y)*M(y) =1, ae.y €T; )

(b) Mo(y)Mo(y +1/2) = Mg(y)Mp(y +1/2).

In the affirmative case, the multi-wavelet system {Dj Tiiti=12;j kez, With Y
defined by (3), forms a Parseval frame for L*>(R).

If the necessary conditions in Lemma 5.2 are satisfied, then we can always extend
{D’ Tiyn} kez to a Parseval wavelet frame by adding rwo wavelet systems:

Theorem 5.4. Let ¢ € L*(R) be a scaling function and my € L%®(T) the
corresponding refinement mask. Let m; € L*(T), and define ¥, € L*(R) by (3).
Assume that the functions mo, m satisfy (a) and (b) in Lemma 5.2. Then there exist
my, mz € L®(T) such that { D’ Ty Y1 Yi=123;) kez, With V2, 3 defined by (3), forms
a Parseval frame.

Note that Theorem 5.4 is related with Theorem 1.2 in [12], where it is shown
that certain conditions on a scaling function imply the existence of three functions
that generate a Parseval wavelet frame. However, the spirit of these two results is
different: while the goal of Theorem 1.2 in [12] is to provide sufficient conditions for
wavelet constructions that have attractive properties from the point of applications
(i.e., symmetry properties and a high number of vanishing moments), the purpose of
our result is to guarantee the existence of three functions generating a Parseval frame
under the weakest possible conditions. We also note that for the case where the
refinement mask m, is a trigonometric polynomial, the problem of characterizing
associated Parseval frames generated by two or three symmetric functions has been
solved in [9, 10].
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Local Fractal Functions and Function Spaces

Peter R. Massopust

Abstract We introduce local iterated function systems (IFSs) and present some
of their basic properties. A new class of local attractors of local IFSs, namely
local fractal functions, is constructed. We derive formulas so that these local
fractal functions become elements of various function spaces, such as the Lebesgue
spaces L7, the smoothness spaces C”, the homogeneous Holder spaces C*, and the
Sobolev spaces WP,
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1 Introduction

Iterated function systems (IFSs), for short IFSs, are a powerful means for describing
fractal sets and for modeling or approximating natural objects. IFSs were first
introduced in [4, 12] and subsequently investigated by numerous authors. Within
the fractal image compression community a generalization of IFSs was proposed in
[5] whose main purpose was to obtain efficient algorithms for image coding.
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In [8], this generalization of a traditional IFS, called a local IFS, was reconsidered
but now from the viewpoint of approximation theory and from the standpoint of
developing computationally efficient numerical methods based on fractal method-
ologies. In the current paper, we continue this former exploration of local IFSs and
consider a special class of attractors, namely those that are the graphs of functions.
We will derive conditions under which such local fractal functions are elements of
certain function spaces which are important in harmonic analysis and numerical
mathematics.

The structure of this paper is as follows. We present the traditional IFSs in Sect. 2
in a more general and modern setting and state some of their properties. Section 3
introduces local IFSs and discusses some characteristics of this newly rediscovered
concept. Local fractal functions and their connection to local IFSs are investigated
in Sect.4. In Sect. 5 we briefly consider tensor products of local fractal functions.
Local fractal functions in Lebesgue spaces are presented in Sect. 6, in smoothness
and Holder spaces in Sect. 7, and in Sobolev spaces in Sect. 8.

2 Iterated Function Systems

In this section, we introduce the traditional IFS and highlight some of its
fundamental properties. For more details and proofs, we refer the reader to
[3,4,6,12] and the references stated therein.

Throughout this paper, we use the following notation. The set of positive integers
is denoted by N := {1, 2,3, ...}, the set of nonnegative integers by Ny = N U {0},

and the ring of integers by Z. We denote the closure of a set S by S and its

interior by S. In the following, (X, dx) always denotes a complete metric space
with metric dx.

Definition 1. Let N € N. If f, : X - X, n = 1,2,..., N, are continuous
mappings, then F := (X; fi, fa,..., fn) is called an IFS.

By a slight abuse of notation and terminology, we use the same symbol F for
the IFS, the set of functions in the IFS, and for the following set-valued mapping
defined on the class of all subsets 2* of X. Define F : 2 — 2% by

F(B):= | f(B). Be2~

feF
Denote by H = H(X) the hyperspace of all nonempty compact subsets of X.

The hyperspace (H, dgr) becomes a complete metric space when endowed with the
Hausdorff metric dy (cf. [10])

du(A, B) = max{rgleajcg)rg]rgl dx(a,b), max min dy(a,b)}.
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Since F (H) C H, we can also treat F as a mapping F : H — H. When U C X
is nonempty, we may write H(U) = H(X) N 2Y. We denote by |F| the number of
distinct mappings in F.

A metric space X is termed locally compact if every point of X has a neighbor-
hood that contains a compact neighborhood. The following information, a proof of
which can be found in [6], is foundational.

Theorem 1. (i) If (X, dx) is compact then (H, dy) is compact.

(ii) If (X, dx) is locally compact then (H, dy) is locally compact.

(iii) If X is locally compact, or if each f € F is uniformly continuous, then F :
H — H is continuous.

(iv) If f : X —>Xis a contraction mapping for each f € F, then F : H — Hisa
contraction mapping.

For B C X, let F* (B) denote the k-fold composition of F, i.e., the union of f;, o
fi, 0++-0 f;, (B) over all finite words i1i, - - - i of length k. Define F°(B) := B.

Definition 2. A nonempty compact set A C X is said to be an attractor of the IFS

Fif

(i) F(A) = A4, and if

(ii) there exists an open set U C X such that A C U and limy_, Fk (B) = A, for
all B € H(U), where the limit is in the Hausdorff metric.

The largest open set U such that (ii) is true is called the basin of attraction (for the
attractor A of the IFS F).

Note that if U; and U, satisfy condition (ii) in Definition 2 for the same attractor
A then so does U; U U,. We also remark that the invariance condition (i) is not
needed; it follows from (ii) for B := A.

We will use the following observation [14, Proposition 3(vii)], [9, p. 68,
Proposition 2.4.7].

Lemma 1. Let {By};~, be a sequence of nonempty compact sets such that
Bi+1 C By, for all k € N. Then Ng>1 By = limg—oo By where convergence is
with respect to the Haudorff metric dy.

The next result shows how one may obtain the attractor A of an IFS. For the
proof, we refer the reader to [6]. Note that we do not assume that the functions in
the IFS F are contractive.

Theorem 2. Let F be an IFS with attractor A and basin of attraction U. If the map
F :H(U)— H(U) is continuous then

4= ﬂ U F¥(B), forall B C U such that B € H(U).
K>1k>K

The quantity on the right-hand side here is sometimes called the ropological
upper limit of the sequence {F*(B) | k € N}. (See, for instance, [10].)
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A subclass of IFSs is obtained by imposing additional conditions on the functions
that comprise the IFS. The definition below introduces this subclass.

Definition 3. An IFS F = (X; f1, f2,..., fn) is called contractive if there exists
a metric d* on X, which is equivalent to d, such that each f € F is a contraction
with respect to the metric d*, i.e., there is a constant ¢ € [0, 1) such that

d*(f(x1), f(x2)) < cd(x1,x2),

for all x1, x, € X.

By item (iv) in Theorem 1, the mapping F : H — H is then also contractive on
the complete metric space (H, dg), and thus possesses a unique attractor A. This
attractor satisfies the self-referential equation

A=FA) = r. (1)

feF

In the case of a contractive IFS, the basin of attraction for A4 is X and the attractor can
be computed via the following procedure: Let K, be any set in H(X) and consider
the sequence of iterates

K, = F(K,—1) = F"(Ky), meN.

Then K, converges in the Hausdorff metric to the attractor A as m — oo, i.e.,
du(K,,, A) — 0as m — oo.

For the remainder of this paper, the emphasis will be on contractive IFSs,
respectively, contractive local IFSs. We will see that the self-referential equation (1)
plays a fundamental role in the construction of fractal sets and in the determination
of their geometric and analytic properties.

3 From IFS to Local IFS

The concept of local TFS is a generalization of an IFS as defined above and was first
introduced in [5] and reconsidered in [8]. In what follows, N € N always denotes a
positive integer and Ny := {1,..., N}.

Definition 4. Suppose that {X; |i € Ny} is a family of nonempty subsets of a
metric space X. Further assume that for each X; there exists a continuous mapping
fi :X; > X,i € Ny. Then Fio. := {X; (X}, fi)|i € Ny} is called a local IFS.

Note that if each X; = X, then Definition 4 coincides with the usual definition
of a standard (global) IFS on a complete metric space. However, the possibility of
choosing the domain for each continuous mapping f; different from the entire space
X adds additional flexibility as will be recognized in the sequel.
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Definition 5. A local IFS F. is called contractive if there exists a metric d*
equivalent to d with respect to which all functions f € Fj, are contractive (on their
respective domains).

With a local IFS we associate a set-valued operator Fio. : 2 — 2% by setting

N
Fioe(S) := | (S N X0). )

i=1

By a slight abuse of notation, we use the same symbol for a local IFS and its
associated operator.

Definition 6. A subset A € 2% is called a local attractor for the local IFS
X5 (X, fi) i € Nyjif

N
A = Fioe(4) = | fi(AnX). 3

i=1

In (3) we allow for A N X; to be the empty set. Thus, every local IFS has at least
one local attractor, namely A = @. However, it may also have many distinct ones.
In the latter case, if A; and A, are distinct local attractors, then 4; U A, is also a
local attractor. Hence, there exists a largest local attractor for Fi,c, namely the union
of all distinct local attractors. We refer to this largest local attractor as the local
attractor of a local IFS Fiqc.

Remark 1. There exists an alternative definition for (2). We could consider the
mappings f; as defined on all of X in the following sense: For any S € 2%, let

(SNX;), SNX; (UK .
fi(5) = 1S 0D i # i €Ny,
a, SNX;, =0,

Now suppose that X is compact and the X;, i € Ny, are closed, i.e., compact
in X. If in addition the local IFS {X; (X;, f;) |i € Ny} is contractive then the local
attractor can be computed as follows. Let K := X and set

K, = Foe(Ki) = | fiKi NX)), neN.

i€Ny

Then {K, | n € Ny} is a decreasing nested sequence of compact sets. If each K, is
nonempty then by the Cantor Intersection Theorem,

K:= () K. #0.

n€Ny
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Using [14, Proposition 3(vii)], we see that

K = lim K,,

n—o0

where the limit is taken with respect to the Hausdorff metric on H. This implies that

K = lim K, = lim_ U K nX) = ) A(KNXD) = Fioe(K).

n—>oo
ZGNN i€Ny

Thus, K = Ajec- A condition which guarantees that each K, is nonempty is that
fi(X;) € X;,i € Ny. (See also [5].)

In the above setting, one can derive a relation between the local attractor Aj.
of a contractive local IFS {X; (X, f;) |i € Ny} and the (global) attractor A of the
associated (global) IFS {X; f; |i € Ny}. To this end, let the sequence {K, | n € Ny}
be defined as above. The unique attractor A of the IFS F := {X; f; |i € Ny} is
obtained as the fixed point of the set-valued map F : H — H,

F(B) = £(B), )

i€Ny

where B € H. If the IFS F is contractive, then the set-valued mapping (4) is
contractive on H and its unique fixed point is obtained as the limit of the sequence
of sets {4, | n € Ny} with Ap := X and

A, = F(A,—1), neN.

Note that Ky = A9 = X and, assuming that K, € A,—;, n € N, it follows by
induction that

K, = U fi(Kn—l r-])(i) - U fi(Kn—l) c U fi(An—l) = A,

i€Ny i€Ny i€Ny

Hence, upon taking the limit with respect to the Hausdorff metric as n — oo, we
obtain Aj,c € A. This proves the next result.

Proposition 1. Ler X be a compact metric space and let X;, i € Ny, be closed,
i.e., compact in X. Suppose that the local IFS Fi. := {X;(X;, fi)|i € Ny} and
the IFS F :={X f; |i € Ny} are both contractive. Then the local attractor Ay of
Floc is a subset of the attractor A of F.

Contractive local IFSs are point-fibered provided X is compact and the subsets
Xi, i € Ny, are closed. To show this, define the code space of a local IFS by
Q := [],eny Nnv and endowed it with the product topology ¥. It is known that €2 is
metrizable and that ¥ is induced by the metric dp : © x 2 — R,

dp(0,7) i= Z (';+ f)
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where 0 = (07...0,...) and © = (77...7,...). (As a reference, see for
instance [10], Theorem 4.2.2.) The elements of €2 are called codes.

Define a set-valued mapping y : Q — K(X), where K(X) denotes the
hyperspace of all compact subsets of X, by

y(©0) =) for 00 fo, (X,

n=1

where 0 = (01...0,...). Then y(0) is point-fibered, i.e., a singleton. Moreover,
in this case, the local attractor A equals y(£2). (For details about point-fibered IFSs
and attractors, we refer the interested reader to [13], Chaps. 3-5.)

Example 1. Let X := [0,1] x [0, 1] and suppose that 0 < x, < x; < 1 and
0 < y2 < y; < 1. Define

X1 = [0, x1] x [0, y1] and X = [xo, 1] X [y, 1].

Furthermore, let f; : X; — X, i = 1,2, be given by

Si(x,y) == (s1x,s1y) and  fo(x,y) := (s2x + (1 = 52)x2, 52y + (1 —52) y2),

respectively, where sy, s, € [0, 1).

The (global) IFS {X; fi, f2} has the line segment A = {(x, ch—i X)|0 < x < x}
as its unique attractor. The local attractor of the local IFS {X; (X, f1), Xz, f2)} is
given by A = {(0,0)} U {(x2, y2)}, the union of the fixed point for f; and f,
respectively.

4 Local Fractal Functions

In this section, we introduce bounded local fractal functions as the fixed points of
operators acting on the complete metric space of bounded functions. We will see
that the graph of a local fractal functions is the local attractor of an associated
local IFS and that the set of discontinuities of a bounded local fractal function is
at most countably infinite. We follow the exhibition presented in [8]. For the theory
of (global) fractal functions, the reader may consult [2, 15, 17].

To this end, let X be a nonempty connected set and {X; | € Ny} a family of
nonempty connected subsets of X. Suppose {u; : X; — X |i € Ny} is a family of
bijective mappings with the property that

(P) {u;(X;)|i € Ny} forms a (set-theoretic) partition of X: X = Uf\;l u; (X;) and
ui(Xi) n Mj(Xj) =@, forall i 7é j € Ny.

Now suppose that (Y, dy) is a complete metric space with metric dy. A mapping
f + X — Y is called bounded (with respect to the metric dy) if there exists an
M > 0 so that for all x;,x; € X, dy(f(x1), f(x2)) < M.

Denote by B(X,Y) the set
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B(X,Y):={f: X — Y|f is bounded}.
Endowed with the metric

d(f.g) = sup dy(f(x). g(x)),

(B(X,Y),d) becomes a complete metric space. In a similar fashion, we define
B(X;,Y),i € Ny.

Under the usual addition and scalar multiplication of functions, the spaces
B(X;,Y) and B(X,Y) become metric linear spaces [18]. Recall that a metric linear
space is a vector space endowed with a metric under which the operations of vector
addition and scalar multiplication become continuous.

Fori € Ny, letv; : X; x Y — Y be a mapping that is uniformly contractive in
the second variable, i.e., there exists an £ € [0, 1) so that for all y;, y, € Y

dy(vi(x, y1),vi(x, y2)) < Ldy(y1,y2), VYxeX. ©)

Define a Read-Bajactarevic¢ (RB) operator ® : B(X,Y) — YX by

N
Of(x) := Y vi(u (), fi 07 (%)) Jur ) (%), (6)
i=1
where f; := f|x, and
1, xeM
K (x) = 0. x¢M’

denotes the characteristic function of a set M . Note that ® is well-defined, and since
f is bounded and each v; contractive in its second variable, ®f € B(X,Y).
Moreover, by (5), we obtain for all f, g € B(X,Y) the following inequality:

d(®f. ®g) = sup dy(®f (x), Pg(x))

= sup dy (v (), fi (' (), v (), g3 (7' (x))))

< Lsupdy(fi oui ' (x), g oui ' (x)) < Ldv(f. g). W

x€X

To simplify notation, we had set v(x,y) := Zf\;l v;i(x,y) xx,(x) in the above
equation. In other words, ® is a contraction on the complete metric space B(X,Y)
and, by the Banach Fixed Point Theorem, has therefore a unique fixed point § in
B(X,Y). This unique fixed point will be called a local fractal function §f = fg
(generated by ®).

Next, we would like to consider a special choice of mappings v;. To this end, we
require the concept of an F-space. We recall that a metricd : Y x Y — R is called
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complete if every Cauchy sequence in Y converges with respect to d to a point of
Y, and translation-invariant if d(x + a,y +a) = d(x, y), forall x, y,a € Y.

Definition 2. A topological vector space Y is called an F -space [18] if its topology
is induced by a complete translation-invariant metric d.

Now suppose that Y is an F-space. Denote its metric by dy. We define mappings
v; : Xi xY — Y by

vi(x,y) == 4;(x) + Si(x)y, i €Ny, (8

where A; € B(X;,Y) and S; : X; — R is a function.
If in addition we require that the metric dy is homogeneous, that is,

dy(ayi,ay:) = |aldy(y1,y2), Ya € RVypy, €Y,

then v; given by (8) satisfies condition (5) provided that the functions S; are bounded
on X; with bounds in [0, 1). For then

dy (i (x) + Si (x) y1, i (x) + Si(x) y2) = dv(Si(x) y1, Si(x) y2)
= [Si(x)|dv(y1. y2)
= ISilloo.x; dv(y1.y2)
<sdy(y1, y2).

Here, we denoted the supremum norm with respect to X; by || e || x;, and set
s = max{||Si|loo.x; | I € Ny}

Thus, for a fixed set of functions {1;,..., Ay} and {Sy, ..., Sy}, the associated
RB operator (6) has now the form

N N
Of =Y diouy guwy + ) (Siow) (fiouy ") pucx,

i=1 i=1
or, equivalently,

qu,-ou,-:A,-+S,--f,-, OHXi,ViGNN,

with f; = flx,.

Theorem 3. Let Y be an F-space with homogeneous metric dy. Let X be a
nonempty connected set and {X; |i € Ny} a collection of nonempty connected
subsets of X. Suppose that {u; : X; — X |i € Ny} is a family of bijective mappings
satisfying property (P).
LetA = (A1,..., ) € QIB(X,-,Y) and S = (Si,...,Sy) € QIB(X,-,R).
i= i=

Define a mapping ® - (_QlB(Xi,Y)) x (_QlB(Xi,R)) x B(X,Y) — B(X,Y) by
i= i=
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N N
QA)S)f =D Aiou yuy + Y (Siow) - (fiow") pucxy. (9

i=1 i=1

If max{||Silloo.x; |i € Ny} < 1 then the operator ®(A)(S) is contractive on
the complete metric space B(X,Y) and its unique fixed point | satisfies the self-
referential equation

N N
f=> Aiou yuwy+ Y (Siou) - (Frou™) yucx- (10)

i=1 i=1
or, equivalently

fou,-=/1i+S,--f,‘, on X;,V1ie Ny, (11)
where §; = f|x,.

Proof. The statements follow directly from the considerations preceding the
theorem. O

The fixed point § in (10) is called a bounded local fractal function or, for short,
local fractal function.

Remark 2. Note that the local fractal function § generated by the operator ® defined
by (9) does not only depend on the family of subsets {X; |7 € N N} but also on the
two N -tuples of bounded functions A € x B(X,,Y) and S € x B(X,,R) The

fixed point § should therefore be written more precisely as f(l)(S ) However, for
the sake of notational simplicity, we usually suppress this dependence for both §f
and .

Example 2. Suppose X := [0,1] and Y := R. In Fig. 1, we display the graph of a
randomly generated local fractal function where the A;’s and the S;’s were chosen
to have random constant values.

The following result found in [11] and, in more general form, in [16] is the
extension to the setting of local fractal functions.
Theorem 4. The mapping A +— f(A) defines a linear isomorphism from
N
‘xlB(Xi,Y) to B(X,Y).
i=

Proof. Leta,f € Randlet A, u € ‘x B(X;,Y). Injectivity follows immediately

from the fixed point equation (10) and the uniqueness of the fixed point: A = p

— f(A) =f(n),.
Linearity follows from (10), the uniqueness of the fixed point and injectivity:
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Fig. 1 A randomly generated local fractal function

N
flad + Bu) = > (i + i) o ui" Ju(xy)

i=1

N
+ D (Siou) - (fF @A+ Br) o) fuxy

i=1
and

N

af(A) + Bi(r) = D (@hi + Bui) o Ui Juyxi)

i=1

N
+ ) (Siou) - @fFA) + B () o) fusxiy-

i=1

Hence, f(ad + Bu) = af(4) + Bf(n).

10

255

For surjectivity, we define A; := fou; — S; - f,i € Ny. Since f € B(X,Y), we

have A € _ng(Xi,Y). Thus, f(A) = §.

O

The next results give information about the set of discontinuities of a bounded

local fractal function §. The proof can be found in [8].

Theorem 5. Let ® be given as in (9). Assume that for all i € Ny the u; are

contractive and the A; are continuous on 7, Further assume that

max {||Silleo.x; | i € Ny} <1,

and that the fixed point | is bounded everywhere. Then the set of discontinuities of |

is at most countably infinite.
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Next, we exhibit the relation between the graph G of the fixed point § of the
operator ® given by (9) and the local attractor of an associated contractive local
IFS. To this end, we need to require that X is a closed subset of a complete metric
space, hence complete itself. Consider the complete metric space X x Y and define
mappings w; : X; XY — X x Y by

w,-(x,y) = (ui(x),vi(x,y)), [ El\IN-

Assume that the mappings v; : X; X Y — Y in addition to being uniformly
contractive in the second variable are also uniformly Lipschitz continuous in the
first variable, i.e., that there exists a constant L > 0 so that forall y € Y,

dy(vi(x1,y),vi(x2,¥)) < Ldx(x1,x2), Vxi,x€X;, VieNy.

Denote by a := max{a; |i € Ny} the largest of the Lipschitz constants of the

mappings u; : X; — X and let 6 := IZ;L“ It is straight-forward to show that the

mapping dg : (X xY) x (X xY) — R given by
do :=dx + 0dy

is a metric for X x Y compatible with the product topology on X x Y.

Theorem 6. The family Wi := {X X Y;(X; x Y,w;)|i € Ny} is a contractive
local IFS in the metric dy and the graph G(f) of the local fractal function f
associated with the operator ® given by (9) is an attractor of Whoe. Moreover,

G(Pf) = Wiae (G (). (12)

where Wi denotes the set-valued operator (2) associated with the local IFS Wioc.
Proof. We first show that {X x Y; (X; x Y,w;) |i € Ny} is a contractive local IFS.
For this purpose, let (x1, y1), (x2, ¥2) € X; X Y, i € Ny, and note that
do(wi (x1, y1), wi (x2, ¥2)) = dx(ui (x1), ui (x2)) + Ody (vi (x1, 1), vi (x2, y2))
< adx(x1, x2) + 0dy(vi(x1, y1), vi (x2, y1))
+ 0dy (vi(x2, y1), vi(x2, y2))
< (a + 0L)dx(x1,x2) + 0 sdy(y1,y2)
=< qds((x1,y1), (x2, y2)).

Here we used (5) and set g := max{a + 0L, s} < 1.
The graph G () of § is an attractor for the contractive local IFS W, for
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Wiee(G () = U wi (G() NX;) = Uw, (. F(0) [ x € X}

i=l1 i=1

=

= U{(u, (x), v (x, f(x)) | x € X} = U{(u, (), Fu: () | x € X;}

= i=l1

=

= U{(x f(x)) [ x € i (Xp)} = G(f).

i=l1

That (12) holds follows from the above computation and the fixed point equation
for f written in the form

foui(x) =vi(x,f(x)), xeX;, i€Ny.

5 Tensor Products of Local Fractal Functions

In this section, we define the tensor product of local fractal functions thus extending
the previous construction to higher dimensions.

For this purpose, we follow the notation and of the previous section, and assume
that X and X are nonempty connected sets, and {X; |i € Ny} and {X;|i € Ny}
are families of nonempty connected subsets of X and X, respectively. Analogously,
we define finite families of bijections {u; : X; — X |i € Ny} and {@; : X; —
X |i € Ny} requiring both to satisfy condition (P).

Furthermore, we assume that (Y, || e ||y) is a Banach algebra, i.e., a Banach space
that is also an associate algebra for which multiplication is continuous:

Iyiy2lly < Ivilly Iy2lly, Y yi.y2 €Y.

Let / € B(X,Y) and f € B(X,Y). The tensor product of f with f, written
f® f X x X — Y, with values in Y is defined by

(f ® Nx.3) = [0 f@. Y3 eXxX.
As f and f are bounded, the inequality
I/ ®@ NEDly = 1/ f Elly < 1F @y 1/ @ v,

implies that f ® f is bounded. Under the usual addition and scalar multiplication
of functions, the set

BXX xX.Y):={f®f: X xX - Y|f QF is bounded}
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becomes a complete metric space when endowed with the metric

d(f® 7 887 = s f(0) = g@ly + sup () ~ gD
X€ xeX
Now let ® : B(X,Y) — B(X.Y) and ® : B(X,Y) — B(X.Y) be contractive
RB-operators of the form (6). We define the tensor product of ® with ® to be the
RB-operator ® ® ® : B(X x X,Y) — B(X x X,Y) given by

(@®D)(f ® f):=(2f) ® (Bf).

It follgws that ® ® ® maps bounded functions to bounded f@ctions. Furthermore,
® ® P is contractive on the complete metric space (B(X x X,Y), d). To see this,
note that

sup [(@f)(x) — (D) (x)ly + sup [(f)(X) — (Pg)(X)|v

xex

< Csup [L/(x) = gl + Esup || f(X) — 2@l

XeEX

<max{¢,0}d(f ® f.g ®F).

where we used (7) and denoted the uniform contractivity constant of P by L.
The unique fixed point of the RB-operator ® ® ® will be called a tensor product
local fractal function and its graph a tensor product local fractal surface.

6 Lebesgue Spaces L?(R)

We may construct local fractal functions on spaces other than B(X,Y). (See also
[8].) In this section, we derive conditions under which local fractal functions are
elements of the Lebesgue spaces L? for p > 0. To this end, we assume again that
the functions v; are given by (8) and that X := [0, 1] and Y := R. We consider the
metric on R and X = [0, 1] as being induced by the L'-norm. Note that endowed
with this norm B(X, R) becomes a Banach space.

Recall that the Lebesgue spaces L?[0,1], 1 < p < oo, are obtained as the
completion of the space C |0, 1] of real-valued continuous functions on [0, 1] with

respect to the L”-norm
1/p
71 = ([ 1ferrax)
[0.1]

For 0 < p < 1, the spaces L?(R) are defined as above but instead of a norm, a
metric is used to obtain completeness. More precisely, define
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dp(ﬁg) = ”f —g||ip,

where || ® || .» is the norm introduced above. Then (L”(R), d,) is an F-space. (Note
that the inequality (a + b)? < a? + b? holds for all a, b > 0.) For more details, we
refer to [19].

We have the following result for RB-operators defined on the Lebesgue spaces
L?[0,1],0 < p < oo. The case p € [1, o0] was already considered in [8], but for
the sake of completeness we reproduce the proof.

Theorem 7. Suppose that {X; |i € Ny} is a family of half-open intervals of [0, 1].

Further suppose that {xo := 0 < x; < --- < xy := 1} is a partition of [0, 1]
and that {u; |i € Ny} is a family of affine mappings from X; onto [x;—1,x;), i =
1,...,N—1, and from X;\’,' = Xy Uu&l(l—) onto [xy—1, Xn], where uy maps Xy

onto [xy—1,XN)-
The operator ® : LP[0,1] — R p e (0, oo], defined by

N N
g =Y (Aiou ") quory + Y (Siou ) (giou) yuxy.  (13)

i=1 i=1

where g; = g|x,, Ai € L?(X;,[0,1]), and S; € L*°(X;,R), i € Ny, maps L?[0, 1]
into itself. Moreover; if

N
> ai|SilL,x, < 1. pe(0,1);

i=1

(14)

N 1/p
(Zai ||S,-||§O,XI.) <1 pelloo)

i=1

max {||S|loox;, |i € Ny} <1, p=o0,

where a; denotes the Lipschitz constant of u;, then ® is contractive on L?|0, 1], and
its unique fixed point f is an element of L?[0, 1].

Proof. Note that under the hypotheses on the functions A; and S; as well as the
mappings u;, f is well-defined and an element of L?[0, 1]. It remains to be shown

that under conditions (14), ® is contractive on L?[0, 1].
We start with 1 < p < oo.If g, h € L?[0, 1] then

g — oh|l:" = / |®g(x) — Ph(x)|Pdx
[0,1]
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P

N
/ 3685 0w O(gs © 17 (6) = (hi 0 47 iy (¥)] v

o.1] i=l1

N
=3 [ 16w @l 0w ) = i ou @I dx

=y

N
=Y o [ 1506~ hI” dx
i=l1 X;

N N
<Y ISl [l —h@I dx = 3 a1 x lei = il
i=l1 X; i=l1
N N
=3 4 ISil x, g — Bl < (Z ||si||go,xi) g — AL,
i=1

i=1

The case 0 < p < 1 now follows in similar fashion. We again have after substitution
and rearrangement

i=1

N
40,00 = 3 a [ 15i0lei 0 =i ()] dx
Xi

N N
= a; |Sill5.x, g —hill7, < (Z aj ||Si||g’o,xi) lg =117,
i=1

i=1
N
_ (Z ai IS ngO,X,.) dy(g.h).
i=1

Now let p = oo. Then

N
Y (Siou N8 0w )(x) = (hi 0w )N)] Ly (x) (x)

i=1

< max [|(Si o 1)l 0 7)) = (i 0 17 Y]

[®g — Phlloc =

o

< max [[Sifloo.x; & = illloo,x; = max [[Silleo.x; & = /i]lloo
i€Ny i€Ny

- (mlg ||S,-||oo,x,.) e =l

These calculations prove the claims. O
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Remark 3. The proof of the theorem shows that the conclusions also hold under the
assumption that the family of mappings {u; : X; — X |i € Ny} is generated by the
following functions.

(i) Each u; is a bounded diffeomorphism of class C¥, k € N U {oo}, from X; to

[xi—1, x;) (obvious modification for i = N). In this case, the a;’s are given by

a; = sup{)%(x)) |x € X\,i €Ny.

(i) Each u; is a bounded invertible function in C®, the class of real-analytic
functions from X; to [x;—i,x;) and its inverse is also in C®. (Obvious
modification for i = N.) The a;’s are given as above in item (i).

7 Smoothness Spaces C” and Holder Spaces Cs

Our next objective is to derive conditions on the partition {X;|i € Ny} of
X := [0, 1] and the function tuples A and § so that we obtain a continuous or
even differentiable local fractal function § : [0, 1] — R. To this end, consider the
complete metric linear space C := C°(X) := {f : [0,1] — R|f continuous}
endowed with the supremum norm || @ ||.

7.1 Binary Partition of X

We introduce the following subsets of X = [0, 1] which play an important
role in fractal-based numerical analysis as they give discretizations for efficient
computations. For more details, we refer to [8] and partly to [7].

Assume that N € 2N and let

2(j — 1) 2j 2
Xpjo1 =Xy 1= | ————, = |, =1...,—. 15
2j—1 2j |: v N v (15)
Define affine mappings #; : X; — [0, 1] so that
i—1 i .
M,‘(X,‘) = T,N s I = 1,...,N. (16)

In explicit form, the ;s are given by

X  j-
I/lzj_l(x) = — 4+ — and sz(x) =

J
B N +N, XGij_l ZXZJ'.

N =

Note that here #; (X;) € X;, Vi € Ny. Clearly, {u;(X;)|i € Ny} is a partition
of [0, 1]. We denote the distinct endpoints of the partitioning intervals {u; (X;)} by
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{xo < x1 <...< xy} where xo = 0 and xy = 1, and refer to them as knot points
or simply as knots.

Furthermore, we assume that we are given interpolation values at the endpoints
of the intervals X,; | = Xj;:

I = {(x25., ;)1 =0,1,....N/2}. a7)

Let
Crp={feC|flxy)=y;,¥Vj=01,...,N/2}.

Then C.y is a closed metric subspace of C. We consider an RB operator ® of the
form (9) acting on C .

In order for @ to map C s into itself one needs to require that 4;, S; € C(X;) :=
CX;,R) :={f : X; - R|f continuous} and that

Yi—-1= <I>f(x2(j_1)) A\ Y = CDf(.ij), ] = 1,...,N/2, (18)

where x,; := (2j)/N. Note that the preimages of the knots x»(;_1) and x»; are
the endpoints of X,; 1 = Xj;. Substituting the expression for ® into (18) and
collecting terms yields

Aoj—1(x2(j—1)) + (S2j—1(x2(j—1)) = 1) yj=1 =0,

(19)
A2j(x2j) + (82 (x25) — 1) y; =0,

forall j =1,...,N/2.

To ensure continuity of ®f across [0, 1], the following join-up conditions at the
oddly indexed knots need to be imposed. (They are the images of the midpoints of
the intervals X,; | = Xy;.)

@f(XQj_l—) = CDf(ij_l-l-), j=1,...,N/2. (20)
A simple calculation gives

Azj (X2(j—1)) + S2j (X2 —1)yj—1 = Azj—1(x2;) + S2;—1(x2;) ¥y, 21

forall j = 1,...,N/2.In case all functions A; and S; are constant, (21) reduces to
the condition given in [7, Example 2]. Two tuples of functions A, S € glC (X;) are
said to have property (J) if they satisfy (19) and (21).

We summarize these results in the next theorem.

Theorem 8. Let X := [0,1] and let N € 2N. Suppose that subsets of X are
given by (15) and the associated mappings u; by (16). Further suppose that
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J is as in (17) and that A, S € §1C(X,<) have property (J). Then the RB

operator ® as given in (9) maps C s into itself and is well-defined. If, in addition,
max {|| S |lcox; | i € Ny} < 1, then ® is a contraction and thus possesses a unique
fixed point § : [0, 1] — R satisfying f(x2;) = y;, Vj =0,1,...,N/2.

We call this unique fixed point a continuous local fractal interpolation function.

Proof. It remains to be shown that under the condition max {||S; |lcox, |7 € Ny}
< 1, ® is contractive on C . This, however, follows immediately from the case
p = oo in the proof of Theorem 7. O

Theorem 8 can be adapted to the setting of Holder spaces. For this purpose, we
introduce the homogeneous Hélder space C*(£2), 0 < s < 1, as the family of all
functions f € C(2), 2 C R, for which

|f(x) = f(x)]
[flesig) == sup —————— <00
8 x#x'€Q I.X—.X/|S

| ®|cs (o) 1s @ homogeneous semi-norm making C* into a complete locally convex
topological vector space, i.e., a Fréchet space.

Theorem 9. Let X := [0, 1] and let N € 2N. Assume that subsets of X are given
by (15), associated mappings u; by (16), and that % is as in (17). Assume further

that A € iglés(Xi), S e lglC(Xi), and that have property condition (J). Then the

RB operator (9) maps C* := C*(X) into itself and is well defined. Furthermore, if
2 max {||Silleox; | € Ny} < 1

then ® is contractive on C* and has a unique fixed point | € Cs.

In case the last conclusion of the above theorem holds, we say that the fixed point
f is a local fractal function of class C*.

Proof. First we show that ®f € CS. For x,x’ € [0,1], note that there exist
i,i’ € Ny sothat x € u;(X;) and x" € u;s(X;/). Therefore,

[ (x) = R ()] = |4 (7 (x)) = Air (" (1))
+ (S () - (fi G () = (Sir (i (6 - (S (x) ]
< |G () = Air (uir (37
+ max {[1S; lloo } | £ () = fir (' (x))]

Using the fact that |x — x|* = 27 |u; '(x) —u;," (x")| and employing the properties
of the supremum, we thus obtain
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1Df les 2| D hilesy,y + max {[[Silloos } | fles | < 00

i€Ny

To establish the contractivity of @, note that

[(f = @g)(x) — (Bf — P)(x)| =
|i G () - (s = &)t () = Sirur (1)) - (fir = gir) i (x7)]
< max {[[Silloox, } (i — &) ;' (x)) = (fir = gi1) (' (x"))]

As above, using again |x — x'|* = 27|u; ! (x) — u;,' (x")| and that f is defined on
all of [0, 1], this yields

|Df — Dgles = 2" max {[|Si [l } |/ — &les-
0

Just as in the case of splines, we can impose join-up conditions and choose the
function tuples A and S so that the RB operator (9) maps the space of continuously
differentiable functions into itself. More precisely, suppose that @ < R. Let
C"(Q) := C"(Q,R) == {f : Q - R|D*f € C,Vk = 1,...,n}, where
D denotes the ordinary differential operator. The linear space C"(2) is a Banach
space under the norm

n
1f leniey =D ID* flloog-

k=0

We write C”" for C"(X) and will delete the 2 from the norm notation when Q :=
X =10,1].

As we require C"-differentiability across X = [0, 1], we impose C”-interpolation
values at the endpoints of the intervals X5, | = Xy;:

g . {(xzj,yﬁ”))lj —0. 1,___,N/2}, (22)
where y&") = (y}o), y;l), el y}"))T € R"*! is a given interpolation vector. Let

Cluy i=1{f €C"| D" f(xz) =y Yk =0.1.....n: ¥ j =0.1.....N/2}.

Then C,, is a closed metric subspace of C".
In order for @ to map C'”ﬂn) into itself, choose A;, S; € C"(X;), i € Ny, so that

YW = DRef(agoy) Ay = DRef(xy), (23)
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forallk =0,1,...,nandforall j = 1,..., N/2.
At the midpoints of the intervals X,;_; = Xj;, the function tuples A and S need
to additionally satisfy the C”-join-up conditions

D¥®f(x2j_1—) = D*®f(x2j-14), Vk=0,1,....n;Vj =1,...,N/2.
(24)

Theorem 10. Let X := [0, 1] and let N € 2N. Assume that subsets of X are given
by (15), associated mappings u; by (16), and that %™ is as in (22). Assume further
that A, S € gIC”(X,-), and that they satisfy conditions (23) and (24). Then the RB
operator (9) maps C',,, into itself and is well defined. Furthermore, if

k n—=k + l
n § : lq.

=0

then ® is contractive on C',, and has a unique fixed point | € C" -

We refer to this fixed point f as a local fractal function of class C' .

Proof. The statements that ® is well defined and maps C7 ) into itself is implied by
the conditions imposed on A and S . It remains to be shown that under condition (25)

the RB operator ® is contractive. To this end, consider f,g € C 'y - Then

D*of(x)— DFdg(x) = Y D [Si(u " (x)) - (fi (" (0)) =i (" (D] s

i€Ny

= Z( >2k [(D*(fi—g)) @ () - (D' S0 (" ()] s )+

i€Ny [=0

where we applied the Leibnitz Differentiation Rule. Therefore,

k
k _
ID*®f — D*dglloo <2¢ SO Y (l)nb’sfnoo,xi 15 (f = 8)lloo.

i€Ny [=0

Hence,

n
|of — dgller =Y [ D*Of — D*Dglloo
k=0

n k k
<2y 3N (Z) 1D Silloo s 1" (f = &)loo

i€Ny k=01=0

—k+1
=2" ) ZZ( " )IID’Sflloo,x,- 1D"(f = &)lloo

i€Ny k=0 [=0
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The last equality is proven directly by computation or mathematical induction. Thus,

k
n n—=k + [ !
|®f —dglen < (2 pggik:%%n{lz_g( l )IID Sf||oo,x,-§) If =gller,

and the statement follows. O

7.2 Vanishing Endpoint Conditions for S;

Here, we consider a more general set-up than in the previous subsection. We assume
again that X := [0, 1] and let X; := [a;, b;], fori € Ny, be N different subintervals
of positive length. We further assume that {0 =: xp < x| < ... < Xy—] < Xy =
1} is a partition of X and that we have chosen an enumeration in such a way that the
mappings u; : X; — X satisfy

ui([ai, bi]) := [xi—1,x;], Vi eNy.

In particular, note that a; = x¢, by = xy, and u;(h;) = x; = u;+1(a;+1), for all

interior knots xi, ..., xy—;. We assume that the u; are affine functions but that they
are not necessarily contractive.
Let
S ={(x;,y))1j=0.1,...,N}. (26)

be a given set of interpolation points and let
C]Z:{fGC|f(Xj)=yj,Vj20,1,...,N}. 27)

Our objective in this subsection is to construct a local fractal function that belongs
to C.» and which is generated by an RB operator of the form (9). For this purpose,
we need to impose continuity conditions at the interpolation points. More precisely,
we require that for an f € C.z,

®f(x0) = yo. Df(xn) = yw, 28)
de(xi—):yi:q)f(x,-—i-), i=1,...,N—-1.

Substituting the expression for ® into these equations and simplifying yields
A1(x0) + S1(x0)yo = yo. An(XN) + SN (XN)yN = YN
Ai(bi) + Si(bi) f(bi) = yi = Aiv1(ai+1) + Si+1@@i+1) f@i+1), i=1,....N—-1

Since these equations require unavailable knowledge of f at the points a; and b;,
we impose the following vanishing endpoint conditions on the functions S;:

Si(a,')ZOZS,'(b,'), Vi=1,...,N. (29)



Local Fractal Functions and Function Spaces 267

Thus the requirements on the functions A; reduce to

A1(x0) = yo, An(xn) = YN
Ai(bi) =yi = Aiv1(@iv1), i=1,...,N -1
Function tuples A and S satisfying (28) and (29) are said to have property (S).

A class of functions S; for which conditions (29) hold is, for instance, the class
of polynomial B-splines B, of order 2 < n € N centered at the midpoint of the
interval [a;, b;]. Polynomial B-splines B, have even the property that all derivatives
up to order n — 2 vanish at the endpoints: D¥B, (a;) = 0 = DX B, (b;), for all
k=0,1...,n—2.

The above considerations now entail the next theorem.

Theorem 11. Let X and X;, i € Ny, be as defined above. Let .9 be as in (26).

Suppose that A, S € QIC(Xi) and that they have property (S). The RB operator (9)
i=

maps C ¢ as given by (27) into itself and is well defined. If in addition

max {||S;[leox; [ € Ny} <1,
then ® is contractive on C 4.

The fixed point f of ® is called again a continuous local fractal interpolation
function.

Proof. The assumptions on A and S guarantee that ® is well defined and maps C »
into itself. The contractivity of ® under the given condition follows immediately
from the proof of Theorem 7. O

For the particular setting at hand, one may, of course, also construct fractal
functions of class C* and C" by imposing the relevant conditions on the function
tuples A and S and choose the appropriate interpolation sets. We rely on the diligent
reader to provide these conditions and prove the corresponding results.

8 Sobolev Spaces W™-?

The final type of function space we consider is the Sobolev spaces WP with
m € Nypand 1 < p < oo. To this end, let 2 C R be open and
C"P(Q):={f eC>®Q)|DfeL’(Q),Vk=0,1,....,m}.

Define functionals || ® ||, ,, m € Ngand 1 < p < o0, as follows:
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m 1/p
(Z IID"fIIip) . 1<p<o;
k=0

IS llm.p ==

The closure of C”?(Q) in the norm | e |, , produces the Sobolev space
W™-P(Q). The ordinary derivatives D* in C"?(Q) have a continuous extension
to W™ (L?)(Q). These extensions are then the weak derivatives D*). The Sobolev
space WP () is a Banach space when endowed with the norm || e [|,, ,. For more
details, we refer the reader to [1].

Now suppose X := (0,1) and {X; |i € Ny} is a collection of nonempty open
intervals of X. Further suppose that {x; < --- < xy—;} is a partition of X and
that {u; : X; — X} is a family of affine mappings with the property that u; (X;) =
(xi—1,x;), foralli € Ny, where we set xo := 0 and xy := 1. We write W"? for
WP (X).

Theorem 12. Under the assumptions stated above, let A € ‘QIW’"'P(X ;) and let
iz

S = (51,...,5y) € RN. Then the RB operator ® : W™? — ROV m e Ny and
1 < p < o0, defined by

N N
g =Y (Arou; ") oy + Y si(giou") Xux-

i=1 i=1

has range contained in W7 and is well defined. Moreover, if

1/p
|s; |7 )
lce{lgllaX m} Z akp—l <L l=p<oo; 30)
T ieNny Yi
Z Isi <1 _
_k 3 p = 00,
a:

then ® is contractive on WP,
The unique fixed point f of @ is called a local fractal function of class W™ ?.

Proof. That @ is well defined and has range contained in W”? follows from the
assumption on the function tuple A and the fact that if the weak derivative of a
function f exits and u; is a diffeomorphism, then the weak derivative of f o u;!
exists and equals (DM f)(u; 1) - Du; !

To prove contractivity on W™?, suppose that g, h € W™’ k € {0,1,...,m}.
Denote the ordinary derivative of u; by a;. Note that ¢; > 0 but may be larger than
one. Then, for 1 < p < oo, we obtain the following estimates.
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p

ID®og — DO DR, = / DO 3" si(gr —h) Ui ) (X)) s (xiydx

i€Ny

_ 1\*
=Sl [ D9 = )| (—) dx
€Ny ui (Xi) ai
1\ k P
< Z Isi|” (—) / |D®(g; —hi)(x)|" dx
ieNy di X
1 kp—1
< sl (a—) ID®g — DWR|?,.
i€Ny !
Summing over k = 0,1,...,m, and factoring out the maximum value of the

expression in parentheses, proves the statement.

Similarly, for p = oo, we get

D®g(x) ~ DYR)| = | 3 5: DB (g — b)) (aik) Y ()

i€Ny 4

|si] _
= Z _;{ ‘D(k)(gi — hi)(u; l)(x)Xui(Xi)(x)|
as
ieNy i
EANTN k
=2 7 p®e-0n|.
ieNy i
verifying the assertion. O
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publication (Bolzano’s map for instance). We describe different ways of defining
self-similar curves. We recall the first functions without tangent, but also some
fractal functions having derivative almost everywhere. Most of the models studied
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1 Introduction

In this paper we inquire about the origin and historical evolution of the fractal
functions. We also wish to pay tribute to the men of older generations who, through
their discoveries, led to the current state of the fractal maths. In particular, we want
to describe how the definition of self-similar curves has evolved over time.

The nineteenth century has been called the century of the science due to the
important discoveries made in those days. In the mathematical field we may speak
about a golden century, not only for the numerous contributions made, but also for
their quality. Great efforts were made in order to lay the foundations of the modern
mathematics: logic, good definitions, axiomatic systems, etc. because the intuition
is sometimes misleading. The rigor is fully established. Some creations in the math
field are:

* New geometries: Hyperbolic (Gauss, Lobachevsky, Bolyai), elliptic and Rieman-
nian (Riemann)

* Systems of numbers: reals (Dedekind), naturals (Peano)

e Set theory (Cantor) and logic (Hilbert, Peano, Boole)

¢ Celestial mechanics (Bessel, Poincaré)

¢ New mechanics (Lie, Hamilton), etc.

Huge impetus was given to modern algebra (Abel, Galois, Cayley, etc.) and
analysis (Fourier, Cauchy, Weierstrass, Riemann, Lebesgue, Darboux, etc.).

Paradoxically many mathematicians had a very naive concept of the curves.
Almost all the scientists believed that all the continuous functions had tangent,
except possibly at an isolated set of points. Contradicting this hypothesis some
“monsters” (in the words of Poincaré) began to appear. It is worth emphasiz-
ing the Weierstrass map, followed by those of Riemann and Darboux, as non-
differentiable functions. When these so-called “irregular continua” appeared, some
scientists reacted with irritation. For instance, there is a letter from Hermite to Stielt-
jes (1893) saying [2]: “I turn away with fear and horror from the lamentable plague
of continuous functions which do not have derivatives.” Well into the twentieth
century Dieudonnée (one of the founders of Bourbaki) comments (1975): “Some
mathematical objects, like Peano curve, are totally non-intuitive. . ..extravagant.”

Of course there were defenders of the new continua. Perrin in 1906 says [2]:
“One might encounter instances where using a function without a derivative would
be simpler than using one that can be differentiated. When this happens, the
mathematical study of the irregular continua will prove its practical value. However
this hope is nothing but a daydream, as yet” and Levy (1970) defends the non-
differentiable curves: “I have always been surprised to hear it said that geometric
intuition inevitably leads one to think that all continuous functions are differentiable.
From my first encounter with the notion of derivative, my experience proved that the
contrary is true.”
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2 Nineteenth Century

2.1 Bolzano’s Function (1830)

The map proposed by Bolzano is the first of a long series of curves without
derivative but, being the oldest, is the most modern among the classics. It is defined
as the limit of a sequence of functions. The first element is a line segment. In the
second term the segment is replaced by a polygonal of four edges. In the third item,
every edge is replaced by another piecewise linear function, etc. We observe then a
collection of elements currently in use (self-affine geometry, iterative construction,
limit set).

The manuscript of Bolzano, where this function is studied, remained lost until
its discovery in the National Library of Vienna in 1920 by M. Jasek. It was then
entitled and published. The work does not only contain the map, but it is a complete
treaty of one variable calculus.

Bolzano proved that his function is continuous and non-differentiable in a
dense set of points of the interval where is defined. Later on K. Rychlik (1921)
and V. Jarnik (1922) proved the continuity and the nowhere differentiability.
Moreover:

* The local extremes form a countable set.

* At the local maxima the left derivative is 400 and the right derivative is —co.
At the local minima the left derivative is —oo and the right derivative is 4-c0.

* The side derivatives exist simultaneously only on a countable set, where they are
infinite and with opposite signs.

2.2 Strategy' #1: Definition of a Function as Sum of a Series

Fourier published in 1822 his “Théorie Analytique de la Chaleur” where he exposed
the method of trigonometric series (Chap.III) in the context of an application to
the solution of the heat equation. It is easy to imagine that the mathematicians
of the time would be fascinated by this theory. In this context, many examples
of continuous and non-differentiable functions began to appear, related to Fourier
series.

These are uniformly convergent functional series whose differentiated series does
not converge. We can see that the fractality is closely linked to non-differentiability
from the beginning! Some famous curves of this type are the functions by Riemann,
Weiertrass and Darboux.

'We call “strategies” the different ways of definition of self-similar curves.
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The Riemann’s function (1861 ) is defined as

>, sin(n2x)
REx) =) — 5
n=1
Riemann said that he had a proof for the non-differentiability of R(x) but it was
never found. Hardy (1916) and Gerver (1970) completed the proof and generalized
the model to

+oo .
h(x) = Z“”}E@.
n=1

Ifa < % h(x) has only derivative at the points

2p+1
T,
2qg +1

X g — p.q € Q
whose value is —%. Riemann never published this work, although it is known that
Christoffel knew the results. Neuenschwander found a reference of an application
of the function in the Casorati’s diary.

Weierstrass’s function (1872) is expressed as

+o00
W(x) =) b"cos(a"xx).
n=0

0<b<l1l, ab>14+3n/2, a>1 oddinteger.

It was presented in a lecture given by the author in the Prussian Sciences
Academy (July 18, 1872) and published by du Bois-Reymond (1875) and the
translated version in a collection of works of this time (1895). It was the first model
published (with the consequent impact sometimes negative) and extensively studied
later on, with generalizations reaching our days (Mandelbrot—Berry) so that it is
sometimes called the Weierstrass—Mandelbrot function.

The series converges uniformly, according to the criterion of the author (M)
and thus it is a continuous function. Weierstrass proved that, at every point, the
upper limit of the incremental quotient is +oo and the lower limit is —oo. It
was thoroughly studied by G.H. Hardy (1916). He proved that the map is not
differentiable at every pointif 0 < b < 1,a > 1,ab > 1. The fractal (box-counting)
dimension is

Ina

D=2+ —.
+lnb
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Mandelbrot proposed a variant

fx) = Z b" (1 —cos(a"mx))

n=—0oo

satisfying the self-affine equation: f(x) = b f(ax). It can be randomized introduc-
ing the phases

Wy (x) = Zw_”H cos(W"x + @),

where ¢, is any sequence. The fractal dimension is always 2 — H, independently
of ¢,. It can be used to model random motions.

The original of the article by Weierstrass can be found in the collection of G.A.
Edgar “Classics in Fractals” [1].

3 Turn of the Century (19-20th)

3.1 Strategy #2: Definition of Functions by Means
of the N-Adic Representation of the Variable

In this way of definition, the map is calculated by means of the representation of
the independent variable in a certain base (usually 2, 3 or 4). The fact of using the
digits complicates the differentiability but it does not prevent it. As particular cases
we have the singular functions, with the property that they do not agree with the
integral of their derivative. The best known are the Cantor and Minkowski maps.
The Cantor’s function (1884) [1] is called sometimes the devil’s staircase. It is

defined using a ternary representation of x:
+00

anx .
Letx € [0,1] and x = Z TR anx € {0,1,2}. Let N, be the smallest n with
n=1
a,, = 1 if it exists and N, = oo otherwise, then
| M

C(x) 2N 4+ - Z Anx )

It was discovered by Ludwig Sheffer (student of Cantor). It is monotone
(increasing) and uniformly continuous. According to Cantor’s definition: “Its
geometric image consists of a set of line segments each parallel to the x axis and
some interpolated points making this curve continuous.” The “interpolated points”
correspond with the Cantor set of the line. Its length is equal to 2 and the fractal
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dimension is 1. (A fractal curve with F'D = 1!!). Its derivative is null except in the
Cantor set (almost everywhere) and is self-affine [3].

The Minkowski’s (question mark) function (1911) presents a variant of the
“arithmetic” strategy, since it uses the representation of the variable as a continued
fraction:

If x € [0, 1] is irrational, x = [0;a;,as,...]

( 1)n+l
Q(X) - ZZ 2a1+a2+ Aay

If x € [0, 1] is rational, x = [0;ay,az, ..., dn]

) ( 1)n+1
(x) = ZZ Raitar+..+an

It is another singular function known as “question mark” due to the notation used
in its definition. The question mark function is increasing and Lipschitz continuous.
The derivative only takes the value 0 and 400, but it is null almost everywhere. It
satisfies the functional equations:

()=
x+1 2’

21— x) = 1-2(x).

Minkowski contributed to the fractal theory in many ways. One of them is the
Minkowski—Bouligand (box-counting or fractal) dimension of a set (D /).

Let (X, d) be a metric space and A compact, A C X. For any ¢ > 0 let N'(4, &)
denote the smallest number of closed balls of radius ¢ > 0 needed to cover A. Then
the fractal dimension D, is

L In(V(4,#))
P = 2 A

This number agrees with the Hausdorff dimension D on many sets, otherwise
D M > D.

3.2 Strategy #3: Definition of a Function in a Self-similar
Geometric Way

The turn of the century brought a block of continuous functions given by a geometric
construction of fractal type (space filling curves by Peano, Hilbert, Lebesgue and the
snowflake (Von Koch) curve).



Some Historical Precedents of the Fractal Functions 277

The Hilbert’s function (1891 ) is a space filling curve first published in Mathema-
tische Annalen (38). Its properties are very similar to Peano’s curve (continuous
non-differentiable passing through every point of a square). The definition is
geometrical. The paper has two pages and three figures explaining the first steps
of the geometric construction. It is considered the first visualization of a fractal
geometric definition.

The Peano’s curve was presented on January /890 in Mathematische Annalen:
“Sur una courbe qui remplit toute une aire plane.” Although included in the section
of geometric constructions it was defined analytically by the author. The paper
contains no figures. Peano proved that it is a parametric continuous curve passing
through every point of the unit square.

P :[0,1] = [0,1] x [0, 1]
t = (x(1),y())
is defined

x(t) = 0.bby...by... (3)

if t =0. co.ap... (3
! @z ®) y(t) =0.cica...cp... (3)

b — arp—1 ifa, +as+ ...+ ay,—> is even
n — .
2 —am—1 otherwise.
o = dary, ifay +az + ...+ az,—; is even
n — .
2 —am, otherwise.

The curve does not admit derivative at any point, but Peano did not prove it. P (¢)
is independent of the ternary representation of ¢. It was the first space filling curve
discovered. Peano thought that all the space filling curves were not differentiable
but this is not true!!! The Hausdorff dimension is 2.

The Lebesgue’s curve (1904) is another space filling curve, defined for

X(I) = C(O.a1a3 o Aap—1 .. .),
y(@) =C0.a2a4...az,...),

where C is the Cantor function. Its peculiarity is that it is differentiable ALMOST
EVERYWHERE!!!

The Koch’s curve (1904) is a continuous, self-similar, non-differentiable curve
[1] consisting of four parts, each one similar to the whole curve. Its length is infinite.
It was defined by his author as: “courbe continue sans tangent, obtenue par une
construction géométrique élémentaire.” The definition is illustrated by means of
figures. The fractal dimension is

t =0.a1a2as3...a, ... (3)

_ 2In2
"~ In3

=1.2619....
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Koch was a great defender of the visual mathematics. Referring to Weierstrass’s
function he said: “. .. it seems to me that this example is not satisfactory from the
geometrical point of view since the function is defined by an analytic expression
that hides the geometrical nature of the corresponding curve and so from this point
of view one does not see why the curve has no tangent.” It was studied later by Levy
(1938): “Plane or space curves and surfaces consisting of parts similar to the whole”
who generalized the Koch’s method [1].

4 First Half of the Twentieth Century

At the beginning of the twentieth century there is a return to origins: the series are
taken up in order to provide continuous curves. The difference is in the general term:

+o0
> angwat).
n=0

where a, — 0, g is continuous, periodic and non-smooth and |a, |w, — oco. For the
uniform convergence is sufficient that Y |a,| < +o0 and g bounded. Some authors
working in this line are

» Takagi (1903).

* Knopp (1918).

* Schoenberg (1938).
e Orlicz (1947).

e McCarthy (1953).

4.1 Julia’s Function (1931)

Gaston Julia is the main creator of nonlinear dynamics, chaos theory and fractals.
This author proposed a non-smooth model:

+00
J(@) =) anRu(2)
n=0

n) .
wherea, € C, R, = Ro R o...o R, and R(z) rational. For some a, and R, J(z)
is continuous and non-differentiable on the circle. He uses arguments of nonlinear
dynamics (points attractifs et répulsifs, etc.). The Weierstrass model can be deduced
from it.
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4.2 Fractal Dimension

In the nineteenth century there were many proposals to the concept of dimension.
Concerning the fractal dimension of graphs of continuous functions, it is relevant to
the work by Besicovitch and Ursell (1937): “Sets of fractional dimensions (V). On
dimensional numbers of some continuous functions” [1]:

Let f be a Holder continuous function, that is to say, satisfying the inequality:

|f(x) = )] < Klx = I,

where K € R and 0 < § < 1. The Hausdorff dimension D of the graph of f
satisfies the relation:

1<D<2-34.

The authors resume the Knopp model as well. Due to this fact the Knopp function
is called sometimes Besicovitch—Ursell map.

4.3 Strategy #4: Definition of a Curve as a Random Function

The most important model of this type is the Brownian motion. The name is due
to the botanist Robert Brown who observed in the microscope (1827) that the
movement of the pollen bobbles of a plant was a continuous motion with constant
changes of direction. Louis Bachelier studied mathematically the Brownian motion
in his thesis: “Théorie de la spéculation.” This date (March 29, 1900) is considered
the day of birth of the financial mathematics as the author proposed the Brown
function as a model associated to the stock prices.

It was described and employed furtherly by Einstein, Perrin, Wiener, etc.
Mandelbrot generalized the concept to a fractional Brownian motion.

The time increments of a motion of this type are Gaussian variables. Almost all
the sample paths are continuous (when ¢ varies in a compact interval /). Almost all
the trajectories are in fact Holder continuous and, with probability one, the graph has
both Hausdorff and box dimension equal to 2 — H, where H is the Hurst exponent
of the process (in the ordinary case H = 0.5).

5 Second Half of the Twentieth Century

5.1 Strategy #5: Definition of a Curve by Means
of a Functional Equation

In this case, the maps are determined as solutions of a functional equation. The fact
that, in many cases, they do not have an explicit (closed form) expression makes
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the differentiability difficult. An important contribution is the work by Georges de
Rham [1]: “Sur quelques courbes définies par des équations fonctionnelles” (/957):

Let Fp, F; be two transformations of the plane. One looks for a mapping M :
I = [0, 1] — R? satisfying the functional equations:

M(t/2) = FoM(t):  M((1+1)/2) = F,M(1).

The author proves that if Fy and F; satisfy certain conditions (contractivity for
instance), the problem has a bounded solution, being a unique and continuous curve.
As a particular case of this problem, one obtains the Koch’s curve, among others.
This work has as precedents the articles:

e E. Césaro: “Fonctions continues sans dérivées”, Archiv der Mathematik und
Physik, 10, 57-63, 1906

* G. Faber: “Ueber stetige Functionen II”’, Mathematische Annalen 69, 372-443,
1910.

A variant of this strategy is the definition of a fractal function as fixed point of an
operator:

If (E, d) is complete metric space of continuous functionsand 7 : £ — E is a
contraction then there exists f € E

f=Tr

An important result concerning this equation is the Collage Theorem: If the
contractivity factorisc € [0, 1] and g € E

d(g, Tg)
1—c

d(g. f) =

This inequality is important for Approximation of Functions.

5.2 Strategy #6: Definition of a Curve by Means of an Iterated
Function System

Let K be a complete metric space with respect to the distance d(x, y), forx,y € K,
and a set of continuous mappings:

w,: K—> K for n=1,2,...,N.
Then

{K,wy|n=1,...,N}
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is an Iterated Function System (IFS) on K. If w, are contractions the System is
Hyperbolic.

The set H of all compact not empty subsets of K is a complete metric space. Let
us define the transformation of sets W : H — H as

N
W(A) = Jwa(4) VAeH

n=1

Any set G € H such that
G =W(G)

is an invariant set of the IFS (G is a fixed point of W). Furthermore, G is an
attractor if

G = lim W™(4) VAeH.
m—>00

A typical mapping of this strategy is the Kiesswetter’s curve (1966), that can be
generated as attractor of four affinities (IFS)

()= ()

with the coefficients given in the table.

a b ¢ d e f

025 0 0 —-05 0 0
025 0 O 0.5 025 —0.50
025 0 O 0.5 0.50 0
025 0 O 0.5 0.75 0

It is a continuous non-differentiable function very similar to Bolzano’s map. The
author did not use an IFS to define the curve. His definition is “arithmetic”:
If x =Y x,/4" where x, = 0, 1,2, 3, then

) = (=)Mx, /2",

where

Y = x,—2 for x,>0
"0 for x, =0

and N,, is the number of xj such that x;, = 0and k < n.
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The function is Holder continuous with exponent 1/2 and its fractal dimension

reaches the upper bound provided by this exponent: 3/2.
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Abstract Fractal interpolation functions (FIFs) developed through iterated function
systems prove more general than their classical counterparts. However, the theory
of fractal interpolation functions in the domain of shape preserving interpolation is
not fully explored. In this paper, we introduce a new kind of iterated function system
(IFS) involving rational functions of the form 5 :((j)), where p,(x) are quadratic
polynomials determined through the interpolation conditions of the corresponding
FIF and g,(x) are preassigned quadratic polynomials involving one free shape
parameter. The presence of the scaling factors in our rational FIF adds a layer of
flexibility to its classical counterpart and provides fractality in the derivative of
the interpolant. The uniform convergence of the rational quadratic FIF to the
original data generating function is established. Suitable conditions on the rational
IFS parameters are developed so that the corresponding rational quadratic fractal
interpolant inherits the positivity property of the given data.
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1 Introduction

Mandelbrot [16] coined the term fractal for a new class of mathematical objects that
does not easily fit into the classical Euclidean geometric settings. Fractal curves have
been applied successfully in various problems of natural sciences and engineering
for last 35 years. These curves are constructed deterministically [1, 2] by using
fractal interpolation functions (FIFs) from suitable choices of iterated function
systems (IFSs). Fractal interpolation defined through a functional equation provides
a constructive way to model a prescribed data set, in contrast to the descriptive
ways employed in the traditional interpolation techniques. The functional equation
involved in the definition of a FIF gives self-similarity on small scales. Thus,
FIFs are generally self-affine in nature, and their Hausdorff—Besicovitch dimensions
are non-integers. These features enable FIFs to provide non-smooth approximants
suitable for data that define dynamic relations corresponding to real processes.

Barnsley and Harrington [3] observed that a FIF can be indefinitely integrated
any number of times to yield a hierarchy of smoother functions, and consequently
developed differentiability of a FIF. The above mentioned observation has a
paramount importance in the construction of smooth fractal interpolants, and
initiated a striking relationship between the classical splines and fractal functions.
By allowing the admissibility of various types of boundary conditions, Chand and
Kapoor [4] generalized the above construction of spline FIFs, and developed cubic
spline FIFs through moments. Various classical interpolation schemes emerge as
special cases of smooth fractal interpolants [5-8, 17], and therefore FIFs provide
satisfactory generalization for the classical non-recursive smooth interpolants.
Fractal splines provide a single specification method to obtain a very large class
of interpolants with significant differences in their visual properties, which can be
effectively utilized in the geometric modelling and design environment. Moreover, if
an experimental data set is approximated by a spline FIF, then the fractal dimension
of the graph of a certain derivative of this FIF can be used as an index for the
analysis of the complexity in given data. For a brief review of fractal interpolation
and related developments, the reader is invited to refer a recent short survey article
by the authors [18].

Standard interpolation techniques available in the classical numerical analy-
sis/fractal theory indeed explore a few characteristics of the data, for instance,
scalar/vector nature of the data, scattered/ordered distribution of the data, and
degree of smoothness. However, they often violate many additional qualitative
characteristics hidden in the given data. To obtain a valid physical interpretation
of the underlying process, it is important to develop interpolation schemes that
honor such properties present in the data, particularly when the data are produced
by some scientific phenomena. Examples of prevalent shape features of the data are
positivity, monotonicity, and convexity.

Since an interpolation method which accurately represents physical reality is a
demand in design and manufacturing of products such as car bodies, aircrafts, and
ship hulls, in modelling of paths of particles, in abstract and physical processes,
in economics, in social and physical sciences, in the description of geological and
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medical phenomena, etc., the development of interpolation and approximation tech-
niques that preserve these shape characteristics is inevitable. Preserving positivity
is most common and fundamental requirement especially for the visualization of
data representing physical quantities that cannot be negative. In computer aided
geometric design, modification of the interpolating curve demanded by engineering
applications is a major issue. But, uniqueness of the interpolant makes it impossible
to modify the shape under the condition that the given interpolating data is
unchanged. This gives the importance of functions with shape parameters. A vast
literature is available in the area of shape preserving interpolation, where the
interpolants involved are the classical polynomial and rational splines with or
without shape parameters [10-14, 19, 20]. Rational interpolation is well known for
its better interpolating properties with less oscillatory nature, easiness with which
it fits into shape modification problems and its excellent asymptotic properties
compared to the polynomial models.

In this paper, we develop a new kind of rational quadratic FIF, where interpolant
involves rational functions of the form Z,’: ((:)) , where p, (x) are quadratic polynomials
determined via interpolation conditions of the FIF and g¢,(x) are preassigned
quadratic polynomials containing one free shape parameters. This rational FIF has
zeroth order continuity. The order of continuity is increased up to first order by
appropriate choice of the shape parameters. Despite its implicit nature, some simple
conditions on the scaling factors and shape parameters are developed to enable
automatic generation of positivity preserving rational FIFs. The presence of the
scaling factors provides an additional pliability in the shape modification. It is
observed that the computational complexity for the implementation of the positivity
preserving fractal interpolation scheme is not too high when compared with that of
its classical counterpart.

The rest of the paper is organized as follows: In Sect.?2, the notion of FIF
is briefly reviewed. In Sect.3, we introduce the rational quadratic spline FIFs
with one family of shape parameters. An upper bound of the interpolation error
for the rational quadratic FIF is obtained and as a consequence the uniform
convergence to the original function as the interpolation step tends to zero is proved
in Sect.4. In Sect.5, suitable values of the IFS parameters are identified so that
the FIF generates positive curves for the given positive data. Further, the positivity
preserving rational quadratic fractal interpolation scheme is demonstrated with
some numerical examples.

2 Fractal Interpolation Function

In this section, an overview of FIF is given. For further details, the reader is referred
to the well-known treatise [1,2].
Consider a data set {(x,,y,) € I xR :n = 1,2,..., N}, where x| < x; <
- < xy, N >2and I = [x1,xy] € Ris aclosed interval in R. Forn € J =
{1,2,...,N—1},let I, = [x,, X,+1] and consider the contractive homeomorphisms
L, : I — I, with subinterval end point conditions
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Ln(xl) = Xn, Ln(xN) = Xn+1- (D

Let F, : I xR — R be functions which are continuous in the first variable,
contraction in the second variable with contractive factors 0 < |a,| < 1, and satisfy

Fu(x1,91) = yn, Falxn,yn) = yus1 Vn e J. @

Letw, : I x R — I x R be defined by w, (x, y) = (La(x), Fy(x,y)).

By Barnsley’s theorem [1], the IFS {I x R;w,, n € J} defined above admits
a unique attractor G and G is the graph of a continuous function f : I — R
which satisfies f(x,) = y,, n = 1,2,..., N. This function f is called a FIF
corresponding to the IFS {/ x R;w,(x,y) = (Ln (x), F, (x,y)), n € J}. Let
F ={g : I — R| g iscontinuous, g(x;) = y; and g(xy) = yn} and
a = (a1,0,...,0y—1). Then F endowed with the uniform metric doo(g, g*) :=
max{|g(x) — g*(x)| : x € I} is a complete metric space. The FIF f is the unique
fixed point of the Read—Bajraktarevi¢ operator T, on (F, d) defined by

Tag(x):FH(L;I(X)ngFn_l(x))v xelnv neJ (3)
Therefore the FIF f satisfies the functional equation:
J@) = Fy(L (). f oL (x). x €1y, nel. “)

The IFS {I X R;w,(x,y) = (Ln (x), Fu(x, y)), n € J} arising from the following
special type of mappings L, and F;, is widely studied in the literature.

L,(x) =ayx + by, F,(x,y) =0,y + R,(x), (5)

where |a,| < 1 and R, : I — R are suitable continuous functions such that
conditions prescribed in (2) are satisfied. The free parameters «, are called the
scaling factors. The existence of differentiable polynomial spline FIFs is given
in [3]. This result can be extended in the same lines to the rational functions and
is described in the following:

Theorem 2.1. Let {(x,,y,) : n = 1,2,...,N}, N > 2 be a given data
set. Suppose that L,(x) = ayx + b,, Fy(x,y) = a,y + R,(x), R,(x) =
Un(x)

U,(x), V,(x) are suitably chosen polynomials, and V,(x) # 0 for every

Va(x)’
x € 1. Suppose that for some integer p > 0, |a,| < ab.n € J. Let F, ,,(x,y) =
(m) (m) (m)
Ry 0 Ry (x1) Ry—i(xn) ..
Ty Oy, = al'l”—ai s YNm = —u’,’v’ﬁlia:ﬂ’ m = 1,2,..., p. If the join-

up connditions FoimOGn, yNm) = Fom(x1,yim)n = 2,3,...,N =1, m =
1,2,..., p, are satisfied, then {I x R;w,(x,y) = (Ln(x),F,,(x,y)), n e J}
determines a rational FIF ® € CP(I), and ®" is the rational FIF determined by
{I X R;wym(x,y) = (Ly(x), Fam(x,y)), n € J} form =1,2,....p.
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3 Rational Quadratic FIF with Shape Parameters
3.1 Construction

Let {(x,,y,) : n = 1,2,...,N}, N > 2 be a given set of data points, where
X; < Xp < --- < xy. To construct the rational quadratic FIF with one family of
shape parameters, let us proceed as follows:
Let F = {f € C()| f(x1) = y; and f(xn) = yn}. Then, F endowed with
the uniform metric is complete. Let ¢« = (o1, 02, ...any—1) € (—1,1) x (—1,1) x
..x (=1,1) ¢ RY~!, Suppose the Read—Bajraktarevi¢ operator T}, : F —> F is
defined as

Taf(L,,(x))zoznf(x)+Rn(x), xel, nel, (6)
where L,(x) = a,x + b, satisfies (1) for all n € J. Then we have q, =

b= and b, = w For suitably chosen R, T, is a contraction map
on }' The fixed point § of T is a FIF, and it satisfies the functional equation:

S(Ln(x)):ot,,S(x)—i—R,,(x), xel, nel. @)
For the desired new kind of rational FIF, we choose R, in the following format:

a2 _ 2 _
A,(1-0)+ B,0(1-0)+ C,0 0 — X xl‘ @)

Ra(x) = 1+ (r, —2)0(1 = 0) ’ XN —x1

In order to get differentiability of S, we assume that |o,| < a, ¥V n € J
(see Theorem 2.1). The parameters r, > —2 called shape parameters, ensure a
strict positive denominator in the rational expression R,. The constants A4,, B,
and C, appearing in the numerator of R, are evaluated based on the interpolatory
conditions: S(x,) = Vu, S(Xy41) = Yn+1 and S(”(x,f) = d,. These conditions
determine the constants uniquely as follows. Let h, = x,4+1 — X,. Substituting
x = x in (7) and using (1),

S(Ln(xl)) =, S(x1) + Ay = yn = Y1 + Ay = Ay = yu — )1

Similarly, substituting x = x in (7) and using (1), we obtain: C,, = y,4+1 — 0, YN -
From (7),

an SV (Ly(0)%) = SV () + RV (xT).
Taking x = x; and simplifying the above expression using (8), we obtain B, =

In¥Vn + hpdy — ay[ray1 + (xy — x1)d;]. With these values of 4,, B,, and C,,
Egs. (7)—(8) produce the desired rational quadratic FIF:
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Uy (x)

Vo(x)

Un(x) = 103(8) = {yu=a 1 }(1 = 00+ {1 v+ hdy—ats [ 1 +(xn—x1)dh1 ]}
0 (1-0) + {yur1—ctayn} 62,

Va(x) = 0(6) = 14+(rs —2)0(1 - ), 6 = —

S(Ln(x)) = o S(x)+ )

XN — X1

Remark 3.1. When o, = 0 V n € J, the above rational quadratic FIF reduces to
the classical rational quadratic interpolant C (see [15]), which takes the following

form on [x,, X, +1]:
L7'(x)—x1  x—x,

_P@ _
=gy ¢ =Sl s (0

PX() = ya(1 =) + (rayn + had)p(1 — @) + Yot19°,
0X(¢) =1+ (1, —2)p(1 — ).

When o, = 0andr, = 2V n € J, we obtain the classical quadratic polynomial
interpolant.

C(x)

To implement our rational fractal interpolation scheme, we need derivative param-
eters d,,n € J.If d, are not given, then we estimate them by some numerical
approximation (see, for instance, [9]). In this article, we use arithmetic mean
method (amm) based on the three-point difference approximation. With the notation
A, = 2820y e J, the amm is described as follows.

At the interior pointx, (n =2,3,...,N — 1),

d = 0, if A, =0o0rA,_; =0,
" Dy Ap—1thn—1 Ay A’;;f;lhﬁ‘ A , otherwise.
At the end points x; and x;,,,
d 0, if Ay = 0 or sgn(d,") # sgn(Ay),
1= _
df = Al+%, otherwise.
d = 0, if Ay—; = 0orsgn(dy) # sgn(Ay—_y),
! dv =Ay—1 + %, otherwise.

For a prescribed bounded data, the above derivative approximations are bounded.
Hence, if the values of the scaling factors and shape parameters are fixed, then the
rational quadratic FIF defined in (9) exists, and is unique. The above discussion
leads to the following existence and uniqueness theorem.
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Theorem 3.1. For bounded values of the shape parameters r, > —2, the scaling
factors |a,| < a, (n € J), and with the bounded derivative approximations, the
rational quadratic FIF (9) with one family of shape parameter exists, and for a
fixed set of parameters, the interpolant is unique.

3.2 C'-Smooth Rational FIF

The above rational quadratic FIF preserves only the zeroth order continuity. The
quadratic polynomial involved in the definition of rational FIF S does not provide
sufficient degrees of freedom to make S to be continuous (with arbitrary values
of the shape parameters) by demanding SV (x,) = d,,, SV (x,41) = dpy1,n € J.
We have the following theorem for the fractal interpolant S to be in C' (7).

Theorem 3.2. Let {(x,,y,) : n = 1,2,...,N} be given data and S be the
corresponding rational quadratic FIF definedin (9). Then S preserves C'-continuity
if the scaling factors and shape parameters satisfy the following conditions:

T (dy + dyir) — an(in —x1)(ds + d
| < an, 1y = TnnFdne) man by Z )@ Fdv) gy

Ynt1 = Yn —u(YN — Y1)

Here we assume that the shape parameters r, given by the above equation satisfy
ry > —2.

Proof. The condition |o,| < a, is in accordance with the principle of construction
of C'-FIF (see Theorem 2.1). To get the first order continuity for S, we need to
impose the following interpolatory conditions: Forn € J,

Sn) = Yur SGns1) = Yust, SV =dp, SV y) =dogr. (12)

First three constraints of Eq. (12) are satisfied by the rational quadratic FIF given
in (9). As x — x, we have L, (x) — x,_ 11 » and consequently from (9)

anS(l)(-xn_+1) = Qp S(l)(-x;/)"i' {_ (Fayn+hpdy)tanray1+di(xy — x1)]

XN —X1
+rn(Yn+l_anYN)}- (13)
Now we impose the additional condition prescribed in (12) to achieve desired

smoothness.
With some basic algebraic manipulations, we deduce the condition on 7, as

_ hndn-H + hyd, — Ol,,()CN _xl)(dl + dN)

, (14)
Ynt1 — Yn — (YN — Y1)

'n

where «,, is selected such that y,4+; — y, —a,(yy — y1) # 0. O

As a special case of the preceding theorem, the following corollary is worth singling
out.
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Corollary 3.1. Let {(x,,y,):n =1,2,...,N}beadatasetwith A, 0V n e J.
Then the corresponding classical rational quadratic function C defined in (10)
preserves Cl-continuity if and only if r, = d”"'A‘——'—d” Vnel.

Proof. Sufficiency part follows from the Theorem 3.2 by taking «, = 0 for all
n € J. For the necessary part observe that, if r, is not chosen as specified in the
corollary, then CM(x") # CM(x;}), and hence C fails to be differentiable at the
interior knot points. O

Examples. Consider an equally spaced data set {(0.5,0.4804), (0.6,0.5669),
(0.7,0.7262), (0.8,0.1)}. The estimates for the derivative parameters obtained by
the amm are: d; = 0.5010, d, = 1.2290, d3 = —2.3345, and d4 = —10.1895. The
scaling factors «, satisfying |o,| < a, are selected as follows: o; = 0.32, a0, = 0.1,
a3 = 0.25. The IFS associated with the shape parameters r; = 0.5, r, = 0, and
r3 = —1 is given by the mappings:

0.327(1 — 6)? + 0.1650(1 — ) + 0.53562
Li(x) = 0333x + 0333, q(x) = o2/ =6" + a-9+ ,

1-1.50(1—6)
0.519(1 — 0)> + 0.1086(1 — 0) + 0.71662
Ly(x) = 0.333x + 0.433, = ,
2(x) X+ g2(x) 1—2001—0)
0.606(1 — 6)> —0.8776(1 — 6) + 0.0756>
L3(x) = 0.333x + 0.533, ¢3(x) = ( ) 1_39(1£9) )+ .

where 6 = IOL;S. The iterations of the IFS code generate C°-rational quadratic FIF
in Fig. 1a. Taking o, = 0 for n = 1,2,3, and the shape parameters as in Fig. la
we obtain the classical C*-rational quadratic interpolant in Fig. 1b. With the same
scale vector as in Fig. 1a, and the shape parameters as per the prescription in (14)
(i.e., ri =52975,r, = 09127, r3 = 0.99) the functional equation (9) is iterated to
generate the C'-rational quadratic FIF in Fig. 1c. With ¢; = ap = a3 = 0 and the
shape parameters chosen according to Corollary 3.1 ( ie.,r = 2,r, = —0.6940,
r3 = 2), we generate the corresponding classical C!-rational quadratic spline in
Fig. 1d. Therefore the fractal methodology generalizes the classical interpolant and
produces different types of functions depending on the nature of the scaling factors
and shape parameters. The following differences between rational quadratic FIF S
and its classical counterpart C are worth mentioning. Even with arbitrary choice of
the shape parameters satisfying r, > —2, C € C°([) fails to be differentiable only
at the interior knot points whereas S € C°(I) may fail to be differentiable at an
infinite number of points. Similarly, with special choices of the shape parameters
as described in Theorem 3.2, the derivative S of the rational quadratic FIF
S € C'(I) may be nondifferentiable in a dense subset of /. On the other hand, the
derivative C (" of the classical rational quadratic interpolant C € C'(1) is infinitely
differentiable in each of the open subintervals determined by the knot points. In
fact, as |a,|, n € J, increase from zero the irregularity (fractality) of the derivative
SM of § € C'(I) quantified by means of fractal dimension increases. This can be
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observed from Fig. 1e and f which represent the derivatives of the FIFs in Fig. 1d and
c respectively. Thus our procedure expands the models of C'-smooth interpolation
including the interpolants whose derivatives can even be non-differentiable in a
dense set of points of the domain.

4 Convergence Analysis

Suppose the interpolation data are generated from the original function ® € C'(1).
In this section, we shall prove the uniform convergence of the rational quadratic
FIF S to ®. First we estimate the pointwise error between the classical quadratic
interpolant and @ in the following:

Proposition 4.1. Let ® € C'(I) and let C be the classical rational quadratic
interpolant as described in (10), where d, denotes the exact or approximate
derivative of ® at the knot x,,. Then for x € [x,, Xp+1], n € J,

|P(x) — C(x)| =

T 0]+ 9100 + hild,

where w( f, h) represents the modulus of continuity of the function f, defined as
w(foh) =sup {| f(x) — f(xX)] : |x —x'| <h}, h = max{h, :n € J} and

rmt2

/3;1: 4

1, if r, > 2.

if —2<r, <2,

Proof. For x € [x,, Xy+1], X = X, + ¢h,. Then

Pr(¢)

0x (@)’

_ [+ 00 =290 = $)IP(x) — yu(l =) — (ruyn + hady)p(1 — @) — yup19”

L+ (rn —2)¢(1 — @) '

_ a- 9+ ¢* + rup(1 = P)JP(X) — yu(1 = $)> = (rayn + hadi)p(1 — §) — yu19*
L+ (rn —2)¢p(1 —¢) '

_a — ) (P(x) = yu) + $*(P(x) = yut1) + 1 (1 — ) (P(x) = y) — hudp(1 — )
L+ (rn —2)¢(1 — ¢) '

O(x) —C(x) = D(x) —

Now we calculate a lower bound for Q) (¢) as follows:

2+rn’ if —2 a 2’
10X@)| = Q@) =1+ (ra—p(1—g) =3 + " 7252 (5

1, if r, > 2.
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Using (15) in the expression of ®(x) — C(x), we have

19(x) - C(x)| sﬂi{(l — $)2|0(x) — |

+ % (x) = yuri| + [ralp (1 = ) P(x) =yl
+ hyldyl¢(1 - ¢)}
| |

ﬁn{ o(f.h) + hldl}

Hence, we have the desired estimate. |

Theorem 4.1. Let ® € C'(I) be the original data generating function. Let S and
C, respectively, be the rational quadratic FIF and classical rational quadratic inter-
polant for ® with respect to the interpolation data {(x,,y,) : n = 1,2,...,N}.
Suppose that the rational quadratic function R, (o, ry, x) associated with the IFS
generating the FIF S satisfies |m’(3+;”0| < K for |t,| € (0,a,) andn € J. Then,

o] oo

1
[® = Sloo < ﬁ{ﬂrloo + 8)w(f h) + hldloo} + (ICleo + K).,

_l |oo

where § = min{, : n € J}, |rleoc = max{|r,| : n € J}, and |d|co = max{|d,]| :
1 < n < N}. In particular, S converges to ® uniformly as the interpolation step
tends to zero, if 1, is chosen such that r, > —1 and if |1, |d|co are bounded.

Proof. The rational quadratic FIF § € C(/) is the fixed point of the Read-
Bajraktarevi¢ operator 7, defined on the space F = {f € C(I)| f(x1) =
y1 and f(xy) = yn} such that

To f(x) = o f(L,' (x)) + Ry(cty. 7, L, (), (16)

where R, (ot ra, Ly (x)) = “”v(:‘(”rn":pf) Lo = and v,, described
asin (9). Let [T = [—«kay, kai] X [—/caz,/caz] . .. X [—kay-1,kan—1],0 <k < 1.
For a given @ = (1,2, ...,ay—1) € II € RY~! with at least one o, # 0, the
rational quadratic FIF S is the fixed point of T, and for «* = (0,0,...,0) € II,
the classical rational quadratic C is the fixed point of T+. From (9) and (16), for

x € D,, we have

gs: = l;-:gz))v Un(¢) = _{y1(1_¢)2+[rny1 +(xN_xl)d1]¢(1—¢)+yN¢2},
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Now,

Un@)] < 1y1l(1=¢)* + [ralyi] + 1di|Cen = xD)]p (1 = ) + [yn ¢,

1
< max{|yi|. |yn|} + Z[lrn||YI| + |di|(xn — x1)],

_ 1
= T§}|Un(¢)| < max{|y|, |y~n|} + Z[|r|oo|y1| + |di|(xny — x1)].

K.

OB 511 ) |<max{|y1|, lynl} + 507 loolyi] + 1dil(en — x1)] o
oy, — .

Consequently,
For x € I,, using (16) and the mean value theorem, we have the following
estimation:
|TuC(x) = TyxC(x)| = |0y C(L;, ' (x)) + Ru(@n, 7, $) — Ru(0, 1. )
OR, (T, Tn, @)

3

)

< lanllIClloo + la|

dot,
< lan|([Cllec + K).
From the above inequality we obtain
17aC = ToClloo < let|oo(IC lloo + K). (17)

Since T, is a contractive map with contractive factor ||, for a fixed choice of
scale vector o # a* € I, we have

1728 — ToClloo < letfoollS — Clloo- (18)
Using (17) and (18),

IS = Clloo = ITaS = To+Clloo = [[TaS = TaClleo + 1TaC = Tor C o
< |@loollS = Clloo + |@foo(IC 0 + K.

which on simplification yields

|¢]oo ([Cllec + K)

[S = Clloo < (19)
I— |a|oo
From Proposition 4.1, we have
1
[@ —Clloo < E{(|r|oo+8)w(ﬁh)+h|d|oo}- (20
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Using (19)—(20)in [|® — S|lec < ||® — C|loc + [|C — S|lco, We obtain the desired
estimation. Note that r, > —1 gives 8, > 4—11, preventing that 8 goes to zero as
partition tends to zero. Consequently, by using the boundedness of |r|so, |d |00, and
K in the obtained error bound, it follows that S converges to ® as the interpolation
step tends to zero. O

Remark 4.1. Using a similar extremum computations as in the calculations of K,
we obtain the uniform bound for C as

Voo + (700l loo + hld |oo)

ﬂ ki
where |y|oo = max{|y,| : 1 < n < N}. Thus for a given data and bounded
values for the derivative parameters, the rational quadratic FIF S is always bounded.

An explicit upper bound for uniform norm of S can be obtained from the triangle
inequality [[Sleo < [IS = Clloo + [C[loo, (19) and (21).

[Clloo <

21

5 Positivity Preserving Rational Quadratic FIF

5.1 Sufficient Conditions for Positivity

The rational FIF described in Sect. 3 has deficiency as far as shape preserving issue
is concerned. For example, the quadratic rational FIF generated in Fig. 1a for the
given positive data fails to be positive. So, we derive sufficient conditions for shape
preserving interpolant for positive data in the following theorem:

Theorem 5.1. Let {(x,, y,) :n = 1,2,..., N} be given set of strictly positive data
(i.e., yo» > 0forn = 1,2,...,N)and S be the corresponding rational quadratic
FIF defined as in (9). Then the following conditions on the scaling factors and shape
parameters on each subinterval I,,,n € J are sufficient for the rational FIF S to be
positive on I :

0<a, <min{an,y—n,yn+l}, (22)
Y1 VN
—h,d di(xy —
. >max{—2, ndn + o (X x‘)}. (23)

Yn —0p V1

Proof. For a typical knot point x,,, we can compute S (Ln (xm)) = o, S(xn) +
U (6) where 6 = ==L,
AQ
construction of S to assure desired differentiability, and the condition r, > —2
ensures a strict positive denominator V,(0). Hence, if o, > 0, then sufficient
conditions for S(L,, (xm)) > 0 reducesto 4, > 0, B, > 0, C, > 0, where A4,
B,, and C, are given in Sect. 3.1.

Recall that the condition |a,| < a, is imposed in the
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Ay >0y, —a,y; >0, (24)
B, >0 & ry(yn —any1) + hpydy — aydi(xy — x1) > 0, (25)
C,>0 y,+1 —a,yn > 0. (26)

Ifa, < min{y—” M} then in view of Egs. (24) and (26), we get A, > 0 and C,, >

0. From (25) we infer that r,, > W implies B, > 0. Thus conditions
prescribed on the shape parameters and sc’:ahng factors by (22), (23) yield positivity
of S(L (xm)). Note that [x;, xy] is the attractor of the IFS {/, L, : n € J}. Since
the graph of S is the attractor of an IFS, by property of the attractor it follows that
S(Ly(xm)) > 0 for all knot points x,,, n € J, and S(x,,) = y, > 0 implies the

positivity of the rational FIF S. |

The sufficient condition for the positivity of the classical rational quadratic function
given in [15] can be obtained as a corollary in the following.

Corollary 5.1. Let {(x,,y,) : n = 1,2,..., N} be given set of positive data and
C be the rational quadratic function defined in (10). Then C preserves positivity if
ry > max{—2, #”’”}.

Proof. Proof follows from the above theorem by taking all the scaling factors ¢, to
be zero. a

Remark 5.1. For a given positive data, we can estimate the derivative parameters by
the amm, and then construct a C'- rational quadratic FIF via (11) and (9). However,
for a fixed set of the scaling factors and derivative parameters, the shape parameters
computed from (14) may not meet the conditions of Theorem 5.1, and hence in
general the resulting C!- rational quadratic spline FIF may not be positive. To get a
positive C'- rational quadratic spline FIF, one should concern with the solvability of
the system governed by (14), (22), and (23).

Remark 5.2. In order to avoid the difficulty of preserving positivity in the sub-
sequent iterations and to obtain a viable condition for the positivity preservation,
we have imposed the nonnegativity condition on the scaling factors. However, the
negative scaling factors can also be considered for the construction of positive
rational quadratic FIFs. This can be achieved by identifying the scaling factors and
shape parameters that constrain the graph of the rational quadratic FIF within an
axis-aligned rectangle lying above x-axis (see, for instance, [8]).

5.2 Implementation

To implement our positivity preserving rational quadratic fractal interpolation
scheme, we consider the positive data taken at random displayed in Table 1. Appli-
cation of the three-point difference scheme yields the following values for the
derivative parameters: dy = —6.5, d = —5.5,d3 = —4.24, dy = —0.2328,
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Table 1 A positive data set

x 1 2 3 8 10 11 2 14
fx) 14 8 3 08 05 045 04 037

Table 2 Scaling factors and shape parameters for positive rational quadratic FIFs

Figure no.  Choice of parameters
Figure2a o, 0.076 0.076 0214 0.057 0.035 0.032 0.028

reo 2 3 780 075 1 0.5 2
Figure2b o, 0.076 0.076 0.15 0.057 0.035 0.032 0.028
T'n 2 3 780 0.75 1 0.5 2
Figure 2c o, 0.02 0.076  0.214 0.057 0.035 0.032 0.028
reo 2 3 780 075 1 0.5 2
Figure 2d o, 0.076 0.076 0.214 0.057 0.035 0.032 0.01
reo 2 3 780 075 1 0.5 2
Figure 2e a, 0076 0.076 0.214 0.057 0.035 0.032 0.028
T'n 2 3 5,000 0.75 1 0.5 2
Figure 2f o, 0076 0.076 0.214 0.057 0.035 0.032 0.028
reo 2 3 780 075 1 0.5 50
ds = —0.0833, d¢ = —0.05, and d7 = —0.0383. Theorem 5.1 bounds the

scaling factors as: o € [0,0.0769),p € [0,0.0769),a5 € [0,0.2142), 04 €
[0,0.0571), a5 € [0,0.0357), a6 € [0,0.3214) and a7 € [0, 0.0285). With suitable
choices of the scaling parameters «,, the lower bounds for the shape parameters r,
are computed using (23). For the simplicity of presentation, the parameters involved
in the IFSs generating the positive rational quadratic FIFs are displayed in Table 2.

Owing to the implicit and recursive nature of the rational quadratic FIF, each
curve segment between two node points will have global properties inherited from
the entire set of interpolation points, and consequently a change in a particular
scaling factor may influence the entire FIF. We explore this further, by studying the
nature of change in the interpolant with change in a particular scaling factor, keeping
all other parameters at some fixed values. Figure 2a represents a rational quadratic
spline FIF corresponding to a choice of the parameters as described in Theorem 5.1.
We take this as our reference curve. Now we modify only the scaling factor oz (see
Table 2) with respect to the parameters of Fig. 2a, and the corresponding rational FIF
is generated in Fig. 2b. It is observed that the change in o3 affects the rational fractal
interpolant considerably in the interval [x3, x4] and changes in the other subintervals
are negligible. Next we modify only the scaling factor o, and the corresponding
rational quadratic fractal interpolant is generated in Fig.2c. In comparison with
Fig.2a, we observe that there are variations in the shape of the rational FIF in
[x1,x2] and [x3, x4], variation in [x], x;] being comparatively larger. Similarly,
a modification in the scaling factor a7 (see Table 2) generates the rational quadratic
FIF in Fig. 2d. In this case, there is a significant change only in [x7, xg]. Thus, even
though, theoretically perturbations in a particular o, may be propagated in the entire
curve, in practice change is prominent only in the corresponding interval.
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Now to study the effect of shape parameters, we modify r3 and fix all other
scaling factors and shape parameters as in Fig. 2a. We observe that a change in r3 in
the allowable range [779.25, co) does not produce considerable shape modification.
Figure 2e shows a rational fractal interpolant with a specific value of r3 (see
Table 2). Now a modification of r; with respect to parameters of Fig. 2a generates
the rational quadratic FIF in Fig. 2f which shows considerable difference in the last
subinterval.

Our computational results suggest that the changes in spline parameters pertain-
ing to a particular subinterval do not extremely influence the shape of the curve in
other subintervals, and hence the globality of the FIF does not limit its applications
in the field of shape preservation and shape modification. It is worth to recall that
when scaling factors are taken as zero, our positivity preserving rational quadratic
FIF reduces to the positivity preserving classical rational quadratic interpolant,
which is completely local. From this it follows that our scheme is local or
global depending on the values of the scaling factors. From our experiments with
various data sets, the shape parameters and the scaling factors, we remark that
the sensitivity of the rational quadratic FIF to the changes in the scaling factors
versus changes in the shape parameters is data dependent. For instance, changes
in r3 with fixed values for all other parameters do not make considerable changes
in the curve whereas perturbation in a3 gets reflected in the shape of the curve
(see Fig.2a, b, e). On the other hand, changes in «; with all other parameters
held constant do not modify any important geometric property of the curve in
that subinterval, whereas a modification in r; changes the convexity nature of
the curve (see Fig.2a, d, f). Among the scaling and shape parameters, we can
elect the one which offers more flexibility in the allowable range, for a shape
modification. Thus, the rational quadratic FIF offers more flexibility compared to the
classical quadratic interpolant, and a proper balancing between these scaling, shape
parameters enable us to produce desired shape modification and shape preservation.
The added flexibility offered by the fractal approach in conjunction with suitable
optimization techniques can be effectively utilized in various engineering and
industrial problems. As observed earlier, the classical rational quadratic interpolant
C € C(1) is differentiable except possibly at the knot points whereas the rational
quadratic FIF S may be nondifferentiable in a dense subset of /. It is felt that the
fractal dimension of S or S! may be used to study the complexity of the associated
signal.

Note that the data set considered in these examples also possesses monotonicity
property and hence it would be desirable to produce monotonic and positive FIFs.
However, we reserve the monotonicity of the proposed quadratic FIF for a future
contribution.
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6 Conclusions

A new kind of rational quadratic FIF with one family of shape parameters is
introduced as a tool for the positivity preserving interpolation. The proposed
scheme expands the positivity preserving interpolation and approximation model,
including functions for which functions themselves or their derivatives can even be
non-differentiable in a dense set of points of the domain. It is shown that the problem
of preserving positivity with the rational quadratic FIF depends only on a finite set of
inequalities. These inequalities are shown to be solvable if the nonnegative scaling
factors lie below and the shape parameters lie above some explicitly computable
bounds. Our approach encompasses the classical shape preserving rational quadratic
function analyzed earlier in the literature [15], and thus enlarges the field of shape
preserving rational quadratic interpolants. Uniform convergence of the quadratic
FIF to the data generating function ® € C([/) is established. The developed FIF fails
to be C'-smooth for arbitrary values of shape parameters. However, the parameters
are constrained to increase the order of continuity from zero to one. In general, the
conditions on the parameters that yield C'-smoothness to the rational quadratic FIF
may not be consistent with the conditions for positivity. Hence, the user may have
to compromise between the smoothness and the shape preserving requirements.
This necessitates the development of higher degree rational spline FIFs, where the
additional degree of freedom can be utilized to obtain required C'-smoothness with
suitable values of the scaling factors and seemingly arbitrary values of the shape
parameters. These parameters can then be constrained for preserving fundamental
shape properties inherent in the data.
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Interval Wavelet Sets Determined by Points
on the Circle

Divya Singh

Abstract Having observed that an interval wavelet set corresponds to the points in a
circle, we obtain points in the circle which characterize two-interval wavelet sets and
also those points which characterize three-interval wavelet sets for dilation d > 2.
Further points in the circle characterizing one-interval and two-interval H?-wavelet
sets for dilation d > 2 are obtained. In addition, we discuss three-interval wavelet
sets of R in respect of being associated with a multiresolution analysis (MRA).

Keywords Wavelet set * HZ2-wavelet set « MSF wavelet ¢« Multiresolution
analysis
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1 Introduction

Dai and Larson [5] called a measurable set W of the real line R to be a wavelet set if
the characteristic function yy on W is equal to the modulus of the Fourier transform
1& of some orthonormal wavelet ¥ on L?(R). By an orthonormal wavelet Y, we
mean a function in Lz(R), whose successive dilates by a scalar d other than 0, 1
and —1, followed by all integral translates, form an orthonormal basis for LZ(R).
These definitions were generalized to higher dimensions in [2,4,6,7, 14]. Fang and
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Wang in [9] introduced a minimally supported frequency (MSF) wavelet, the Fourier
transform of which has support of smallest possible measure. MSF wavelets are
indeed those wavelets which are associated with wavelet sets.

One of the earliest wavelets namely Shannon or Littlewood—Paley wavelet for
dilation 2 in L2(R) has W = [-27, —x] U [, 27] as its wavelet set. It is the
union of two disjoint intervals of R. Ha et al. [10] characterized wavelet sets for
dilation 2 in R which are unions of two disjoint intervals and also those which are
unions of three disjoint intervals. Those with two intervals are precisely

2a — 4w, a — 27w U [a, 24a],
for some 0 < a < 2, while those with three intervals are
. _ 2p+1 2p +1
Wij.p) = [—2(1 - m)”’ —(1 - m)”}

U 2(p+ ) 2Q2p+ D)
2/+1—1 7 2itl

2T 2p+ D 272 (p + D
Y B D VRS B

for natural numbers j and p such that j > 2and 1 < p < 2/ — 2, together
with —W(j, p). Further, it has been shown that each of the two-interval wavelet
sets is associated with a multiresolution analysis (MRA) while in case of three-
interval wavelet sets it is found that for odd p and any j it is not associated with
an MRA. It is pertinent to add that Ionascu [12] introduced the notion of wavelet
induced isomorphism to obtain a characterization of wavelet sets with the help of
which we reformulated the characterization of two-interval as well as three-interval
wavelet sets in [8]. Also, Bownik and Hoover [3] characterized two-interval and
three-interval wavelet sets for dilation d greater than 1.

Determining wavelet sets of R which are unions of intervals remained a matter
of interest which got investigated in various papers [1,3,5, 10].

The collection H?(R) of all square integrable functions whose Fourier trans-
forms are supported in (0, oo) is called the Hardy space and an element v € H?(R)
for which the family {y;x = 2//?y/(2/ - —k): j,k € Z} forms an orthonormal
basis for H2(R) is said to be an H?-wavelet. Similar to the L2-case, an H?-wavelet
¥ will be called an MSF wavelet if || = yx for some measurable set K C (0, 00).
The associated K is called an HZ2-wavelet set. In this case, as well, the Lebesgue
measure ((K) of K is 2.

Since a wavelet set is 2m-translation congruent to an interval of Lebesgue
measure 2w, a wavelet set having finitely many components can on different
translations of different components partition [0, 27r) a.e. Thus we have points in
the circle, in number equal to the number of components in the wavelet set, which
determine the wavelet set. Similar is the situation when the wavelet set has infinitely
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many components. However, the converse need not be true. For example any three
points in the circle need not necessarily provide a three-interval wavelet set. Also a
pair of points in the circle, equivalently in (0, 2], containing 27t does not provide
a two-interval wavelet set.

In Sect.3 of this article, we determine the class of those two points in the
circle which provide wavelet sets of R for dilation 2 with two intervals. A class
of three points in the circle has been determined providing three-interval wavelet
sets for dilation d > 2, in Sect.4. The technique involves sets with Lebesgue
measure 2 determined by an element of the unit circle, the parts of which when
translated suitably by integral multiples of 27 on the two sides of the real line
yield desired wavelet sets. Because the sets after such integral translations remain
27 -translation congruent to [0, 27), only dilations determine these wavelet sets.
Indeed, the process re-characterizes such wavelet sets. Similar results are obtained
for one-interval and two-interval H2-wavelet sets, in Sect. 5, which re-characterize
such H2-wavelet sets for dilation 2 obtained in [10]. Further, using a result in [9],
we provide an alternative proof of the fact that a three-interval wavelet set for odd
p and any j > 2 is not associated with an MRA in the last Sect. 6. In addition, we
prove that if p = 2/ — 2, then the wavelet set W(j, p) is associated with an MRA,
where j > 2.

2 Preliminaries

Two measurable sets £ and F of R are said to be translation congruent modulo 2x
if there is a measurable bijection t : E —> F such that (s) — s is an integral
multiple of 2r for each s € E; or equivalently, if there is a measurable partition
{E, :n € Z} of E such that {E, 4+ 2nm : n € Z} is a measurable partition of F.
We call 7 to be a 2z-translation map. Analogously, measurable sets E and F are
dilation congruent modulo 2 if there is a measurable bijection § : E —> F such
that for each s € E, there is an integer n such that §(s) = 2"s; or equivalently,
if there is a measurable partition {E, : n € Z} of E such that {2"E, :n € Z} is a
measurable partition of F.

A measurable set £ C R is translation congruent to [0,27) modulo 27w
iff the sets £ + 2nm = {s+2nmw:s € E}, n € Z are pairwise disjoint and
R\ U,ez (E 4+ 2nm) is a null set. Also, a measurable set £ C R is dilation con-
gruent modulo 2 to the set [-27, —) U [rr, 27) iff the sets 2"FE = {2"s : s € E},
n € Z are pairwise disjoint and R\ | ,,c; 2" E is a null set. For other related notion,
see [5,11].

Among several criteria available for a measurable set £ C R to be a wavelet set,
[2,5,10,12,13] the one we shall use is quoted below:

Let E C R be a measurable set. Then E is a wavelet set iff £ is both
2m-translation congruent to [0, 277) modulo 27 and dilation congruent modulo 2
to [-2m, —m) U [, 27); or equivalently, E is a wavelet set iff
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(@ R= UnEZ (E +2nm), ae.,
) R=1,e,2"E, ae.,

where U denotes the disjoint union.

For a set W in R, W7 denotes W N [0, oo) and W~ denotes W N (—oo, 0].
Since W is a wavelet set of R iff —W = {—w :w € W} is a wavelet set of R, we
shall consider three-interval wavelet sets of R for which W™ has two components.
In the sequel, we denote (0, co) by R™ and (—oo, 0) by R™.

A set K € RY is an H2-wavelet set iff the following two conditions hold:

(a) R= quz (K 4+ 2nm), ae.,
b) RY =,e;2"K, ace.

Consider the map p from R to S! which sends 7 € R to e/’ € S!. We shall
identify ¢ in (0, 2] with ¢'’. Fora, B,y € S',
(a) p* (o) denotes [o, o + 2], where 0 < o < 2.
(b) p (o, B) denotes [, BlU[B, o + 2], where 0 < o < § < 2m.

(©) p“(a, B, y)denotes [, BJU[B, y]U [y, @ +2x], where 0 < @ < B8 <
y <2m.

3 Two-Interval Wavelet Sets

Leta,B € S!besuchthat0 <o < 8 < 2x. Then

< (@, B) =[x, BJU[B, a +27].

We obtain two-interval wavelet sets of R by translating intervals [o, B] and
[B, @ + 27] on opposite sides by integral multiples of 2z. Consider the translates
[, B] + 2ix and [B, @ + 27| — 2kn, where [ € N U {0} and k € N — {1}, to
obtain a wavelet set denoted by W, g) or by W, if there is no confusion. In fact,
W~ would thenbe [8 — 2k7 , a + 2 (1 — k) ] while W be [« + 2[7 , B + 2I7].
Noting that W = W~ U W™ is 2x-translation congruent to [0, 277), we obtain the
values of / and k from the conditions that

. ’ ] + — + . ’ ] —_ — —_
@) Ujezz wt =R*, and (ii) Ujezz W~ =R",
ensuring W to be a wavelet set.
Since the interval [§ + 2/7, 2 (@ + 2/7)] remains uncovered by the family
{22W*:jel}if B+ 2w < 2(a+2lx), and that W+ N 2W* has non-zero

measure if 8 + 2/ > 2 (« + 2/7), from (i) we obtain

20 — B = 2. (1)
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A similar argument applied to (ii) gives

200 — B = 2km — 4m. 2)

From (1) and (2), we obtain k +/ = 2 and hence [ = 0 and k = 2, in view of the
fact that k > 2. Thus 8 = 2«, and the wavelet set W is

Ra—4n, o — 27| U [o, 2],

where o < m. Notice that the Lebesgue measure p (W+) of Wt is « < 7 while
w (W™) > . These points «, B of S! determine another wavelet set —W . It may be
noted that the pair of points o, 8 in S! gives rise to exactly two two-interval wavelet
sets, except when o = 7, in which case W = —W, providing the Shannon wavelet
set.

Remark 3.1. Following similar lines as above, we find that there exist no wavelet
set for dilation d > 2 consisting of two intervals as no k and / are obtainable.

Remark 3.2. It may be noticed that only dilations do the job as we begin with sets
which are 27 -translation congruent to [0, 277). These sets get translated on the two
sides of the real line by integral multiples of 27 and hence the resulting sets remain
2m-translation congruent to [0, 27).

4 Three-Interval Wavelet Sets

Choose three elements o, 8, y in S' suchthat0 < o < B < y < 2. In this Section,
we determine «, 8, y which produce three-interval wavelet sets. Recall that

p- (o, B.y)=[a,BIU[B, y]Uly, a+ 2x].

In view of the fact that W is a wavelet set iff —W is a wavelet set, we obtain
those wavelet sets for which W™ consists of only one interval.
For a natural number j we introduce the following notation,

Fp={0.1,2, ..., [d/—1]}.

where d is a real number greater than 2 and [r] denotes the integral part of a real
number r.

The following Theorem determines all three-interval wavelet sets of R for
dilation d > 2.

Theorem 4.1. Let j € Nandm € F; such thatm < d’ — 1. Then the points

_2m+Dr , (md+d-1) J _(m+d/(d-1)
TP T Ty YT T




308 D. Singh

in S' are such that

(1) O0<a<B<y<2mand

2) pT(a,B.y) =o, BlUIB, Y] Uy, a + 2x] determines a three-interval
wavelet set for dilation d by the translation of [B, y] on the left by —2m and
that of [y , o + 27| on the right by 2m.

Proof. Let a, B, y be points in S' such that @ < B < y. Without any loss of
generality we may assume that @ > 0. Consider, p*~ («, 8, y) = [a, BJU[B, y]U
[y, @ 4+ 27]. We have the following three cases:

Case I.

W~ =la—2kn, B —2kn];

Wt =[B+2n,y+2x|U[y+2mn, a+ 21 +2mn],

where k,I,m e NU {0} and k > 1.
Case IlI.

W—=[B—-2kn,y—2kn];
Wt =la+2lx, B+20x|U[y +2mn, o+ 217 + 2mn],
where k,[,m e NU{0}andk > 1,if y <27 andincase y = 27,k > 2.
Case I11.
W™ =y —2kn,a+2r —2kn)];
Wt =la+2lx, B+20x|U[B+2mm, y+2mn],

where k,I,m € NU {0} and k > 2.

Evidently, in each of the above cases W = W~UW T is 27-translation congruent
to [0, 27). Suppose that W+ = [a, b] U [c,e], where 0 < a < b < ¢ < e.
In order that UjeZdjW+ = R™T, we should have [b, ¢] = Ujex d/ W+, for
some A C Z\ {0}. Therefore, either d/b = ¢ or d /e = c, for some j € N.If
d~/e = c, then j has to be equal to 1 and in that case, R = UjeZ d/c,e] =
U jez d’ [e/d , e]. Thus R* gets disjointly covered only by the dilates of [c, e],
which is not desired. Therefore, d/b = ¢ for some j € N. Similarly, d kg = e for
some k € N. In fact,if d/b = ¢, thenk = j + 1. Hence, d/T'a = e. Thus

W+ =1la,b]U[d/b, d' '], where j €N, 3)

Observe that
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[a. d/*a] = U;O (@ [a. BJUd ™ c. ¢])

and R =,z d™* [, d*a] fork > 1 and @ > 0.
Therefore, W™ given by (3) satisfies Uj ez d/WT =Rt That

W~ =[dc, c], forsome ¢ < 0, 4

follows as the dilates of W™ have to disjointly cover R™.

Casel. When
W~ =la—2kn, p—2kn]
and
W =[B+2n,y+2x|U[y +2mnr, a+ 21 + 2mn],

where k,I,m € NU {0} and k > 1, the intervals in W are disjoint iff m # 1.

Suppose [ < m. Then
W =la—-2kn, —2kr|U[B +2lr, y +2x]Uly +2mrx,a+2(m+ 1) x].

From (3) and (4), we obtain

(@) a —2kmw =d (B —2kmn),

(b) d/ (y +2ln) =y + 2mm, and

() dHB+2n)=a+2(m+1)m.

Hence
2(m+1—d7+ll—d7(d—l)k)7t
o= . ,
d/i—1
g 2m+k+1—d/t —dk)n
- d(d/—1) ’
and
B 2(m—dil)m
Ve T

Sincew > 0, m + 1 > d/ (Id + k (d —1)). Further, since y < 2w, m + 1 <
d’ (I + 1). Hence, [ + k < 1/(d — 1), which is not possible. Next, suppose that
| > m, then
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W =la—-2kn, g —2kx|U[ly +2mr,a+2(m+ ) x|U[B + 2lx, y + 2Ix],

where k > 1 and [,m € N U {0}.
From (3) and (4), we get

_ 2(l—djk—djm—dj —I—dj'Hk)rr

b= TR
and
B 2(l—d/t'm)n
L

As B <y,m+k <1/(d — 1), which is not possible.
Case Il.  'When

W= =[B—-2kn,y—2knx]
and
Wt =la+2ln, B+20x|U[y +2mn, a + 27 + 2mn],
where k > 1and /,m € NU {0}, if y < 27 and in case y = 27, k > 2, for the
intervals in W™ to be disjoint we should have either [ < m + 1,0rl > m + 1.
Suppose that / < m + 1. Then
W=[B—2kn,y—2kn]U[a+2x, B+2=]U[ly +2mrx,a+2(m+ 1) x].

From (3) and (4), we find that

2(m+1—d/+ll)7r

*= ditt—1 '
2(dm—d/ ' +dk—k)n
p= ditl_1 ’
and
, - 2(m—d/l+d' Tk —kd/)w

ditT—1

Since @« > 0, m + 1 > d/*![. Further, since y < 2x, m + 1 <

d’ (d +1—k(d —1)). Therefore, I + k < d/(d — 1), which gives [ = 0,
k = 1 and hence the case y = 2w which requires k > 2 is not possible. Thus
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_2m+Dm , 2md+d-OHrn  2m4+d/T —d))x
TR I R TR B B i1

and

W=[—-2n,y—-2x]|U]a, B]U[y +2mm, a + 21 + 2mmn].

Since B < y,m < d/—1.Thus j > 1and0 < m < d/ —1. Hence, the resulting
wavelet set is

B 2(md +d—d'™)x 2(m+1-d/)x
W= [ e

2m+ D 2(md +d — )=
diti_1° 4t _1

U 2d/(md +d — V) 2d/ ' (m + V)x
di+i—1 oditi -1

with j > 1land0 <m < d/ — 1.
Suppose, next that / > m + 1. Then

W = [—2kn, y=2kr|U[y+2mnx, a+2 (m+1) 7] U [a+2lrx, B + 2Ix].
Now, (3) and (4) give

2(l—dj—md7)7r

*= di—1 ’

and
2(—d/t'm+dik—d/Tk)n
di—1 '

Asa < B, m + k < 1/(d — 1), which is not possible. Therefore, in this case,
W is not a wavelet set.

Case III.  When

B =

W~ =y —2kn, a+2n—2kn|
and
Wt =la+2lx, B+20x|U[B+2mn, y+2mn],

intervals in W™ will be disjoint iff either m < [ or m > [. Similar to the cases
considered above we can find «, B and y with the help of (3) and (4). But, on

applying the condition 0 < & < 8 < y < 2m, we find that neither m < [ nor
m > [ provides a wavelet set. |
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With slight modification in the proof of the above Theorem, setting E; =
{1,2,...,2/ =2} fora j € N— {1}, we obtain the following characterization
of three-interval wavelet sets for dilation 2.

Theorem 4.2. Let (j,m) € Uy, tk} x Ex. Then the points

_2m+Dw . (2m+1) J _(m+2j)
T v P T T ) Y T )

’

in S' are such that

(1) O0<a<pB<y<22m witha <mandy > m, and

2) pT(a,B.y) =x,BlUIB, yY]Uly, a + 2x] determines a three-interval
wavelet set by the translation of [B, y] on the left by —2n and that of
[y, o + 27] on the right by 2m.

Remark 4.1. Above Theorems re-characterize three-interval wavelet sets obtained
ford > 2in[3].

Remark 4.2. Remark 3.2 remains in force here as well.

5 One-Interval and Two-Interval H2-Wavelet Sets

Choose an & € S! such that 0 < a < 2m. Then p* (@) = [, o + 27]. That
W = [a, a + 27] satisfies R = J,; (W + 2nm) is obvious. To have Rt =
UnEZ 2"W, we require 2o = o + 2 which provides o = 2. Therefore, 277, 47]
is the only one-interval H2-wavelet set.

For dilation d > 2, the only one-interval H2-wavelet set can be found to be

2r 2dm
d—1"d-1]
For j € N,d >2,set F; ={1,2,.... [d/ — 1]}, and
, — d(d/ 1)
F]zz{[d]]’[d]]+1”|:ﬁi|}

The following theorem determines all two-interval H2?-wavelet sets of R for
dilation d > 2.

Theorem 5.1. (1) Form € F;l, the points

_2(m+Dxw _ 2mm
= o M=
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in S' are suchthat0 < o < B <2, and[a, BJU[B + 2mm , a + 27 + 2mx]
forms an H?-wavelet set.

(2) Form e F such that m < ( ) , the points

2(m+1-d/)m
o= 71 and B =

2m+ 1w
ditl—1

in S' are such that0 < o < B < 2w, and [B, a +2n]U e +2(m + 1) 7,
B + 2 (m + 1) nr] forms an H*-wavelet set.

Proof. First consider the translate of [, B] by 2/z and that of [, o + 27] by
2mm, where [,m € N U {0} and set

=la+2lnx, +2x]U[B+2mr, o+ 21w +2mmn].

The two intervals in W will be disjoint iff / < m, or/ > m + 1 and in that case
W satisfies R = |, ¢, (W + 2nm). If | < m, then

=loe+2x,B+2x]U[B+2mnr, a+ 21 + 2mn],
and from (3), we have
A’ o +27)=a+2@m+ )7, and d’ (B + 2In) = B + 2mm,

for some j € N.
Therefore,

2m+1-d/ ) x
o= ] and B =

2(m—dil)m
-1
Sincea > 0,m +1>d/*T'andas B < 2w, m + 1 < d/ (I +1). Therefore,

we have / < 1/(d —1). Hence, [ = 0.
Now, since f < 27, m < (d/ — 1), and | < m gives that 0 < m. Therefore,

_2m+ D d8= 2mm
oo M=

Thus

W= 2m+ 1) 2mnw 2d'mn 2d7 ' (m+ D
S diti—1 T di—1 di—1" dit1—1 ’

where j e Nand0 <m < (dj —1).
Incase! > m + 1, we have
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W =I[B+2mnr,a+2x+2mnr|U[a+2lrx, B+ 2nx].
As before, (3) gives

2(l—dj—djm)7t 2(l—dj+lm)7r

*= di —1 and f = =
On applying the condition 0 < o < B < 2w, we getm = 0 and (dj - 1) <l-1<
d(d/—1)
a—1 -
Thus
W= 2(p+ 1) 2pm U 2d/pr 2d7 T (p+Dn
Sl dit =1 di—1 di—1" ditl—1 ’

Wherep:l—l,jENand(dj—l)<p<d(ji:l)' 0

A similar procedure gives the following result for two-interval H?-wavelet sets,
in case of dilation d = 2.

For j € N, define £, = {1, 2,....,2/ —1}and E;, = {2/, 2/ +1, ...,
2/ -3},

Theorem 5.2. (1) Form € E;l, the points

2m+ 1w 2mm
= mor P

inS"are suchthat0 < o < B < 2m,and [, BJU[B + 2mm , a + 27 + 2m]
forms an H?-wavelet set.
(2) Form e E;z, the points

2(m+1-2")x 2 1
a:(.—) and ﬂ:M
2/ —1 2/t —1
in S are suchthat0 < < B <2m,and [B, a +2n]U[a +2(m + 1) 7,
B + 2 (m + 1) nr] forms an H*-wavelet set.

6 MRA Associated Three-Interval Wavelet Sets

In this Section, we consider three-interval wavelet sets and determine if these are
associated with a MRA. In [10], it has been shown that if p is an odd natural number,
then the wavelet set W (j, p) is not associated with an MRA, for j > 2. Using a
result stated below obtained in [9], we provide an alternative proof of this result. In
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addition, we prove that if p = 2/ — 2, then the wavelet set W (j, p) is associated
with an MRA, where j > 2. That each of the two-interval wavelet sets is associated
with a MRA can be settled on the same lines.

Theorem 6.1 ([9]). For an MSF wavelet  with |g@| = xw, the following are
equivalent:

(i) ¥ is associated with an MRA.
(ii) (WS N0 (WS +2km)) =280, k € Z.
(iii) {WS + 2k : k€ Z} forms a partition of R,

where WS = | J%2 | 27"W.

Consider the three-interval wavelet set

oo 2p+1 2p+1 2(p+ D 2Q2p+ D=
W(]’p)_[_2(1_m)n’_(1_2j+1_1)7{|u|:2j+1_1 YT

2T 2p+ D 272 (p + D
U - , -
21 21

denoted by W, for simplicity. Then

2p+1 2(p+ D

s_|_(y_=2PT <+ D

o=~ (1- 22 e o) o, 222
U2]+l [ @Cp+ D 2(p+ Dm

2/+1 1 7 2j+1 1 ’

where j > 2and1 < p <2/ —2.

Theorem 6.2. The wavelet set W(j, p), where p is odd and j > 2 is not associated
with a MRA.

Proof. Since

2/2p + 1)7r 2 (p + D
2+ _ <+ Dr< i+ ]

for j >2and 1 < p <2/ —2, we have

(p+ D e zf+1—k[(2p + D 2(p + 1)71}

2+ —1 7 2/t
when k = 1. Therefore, the 27-translation map ¢ : W5 — [0, 27) cannot
be a bijection, if p is odd. It is because, when p = 2m + 1, where m =

0,1, ..., (2/7'-2),
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r([(p + D, Zj;(fl—i—;)ﬂ}) = [(p + D, Zj;(fl—ti)n} —(p+Dm
intersects
2(p+ D 2(p+ Hm
(0577 ) = (0 55r ]
Thus by (iii) of Theorem 6.1, W(}j, p) is not associated with a MRA. |

Theorem 6.3. The wavelet set W(j, p), where p = 2/ —2 and j > 2, is associated
with a MRA.

Proof. Writing W for W(j,2/ —2), we have
WS — 2 o)u (o 2/+1 2
T A+ -1)7"
2jtl _3 2j+1 _ 9
k
U G) - (i)

Since the map 7 : W5 — [0, 27) defined by

X +2m, ifx €[ - 5H—.0)
i - i+1_ +1_
T(x) = { X, ifx € (O, (ﬁ) n] Uz[(i’ﬂr_l_?) 7, (;fm_?) ﬂ]

x—0Q"=2)nm, if x e2’”[(§j¢—:j)7t, (ﬁ—ij)n]

where m = 2, 3, ..., j is a bijection, {WS +2km ke Z} forms a partition
of R. The proof follows from (iii) of Theorem 6.1. O

Remark 6.1. 1t can be worked out manually that when j is 3 or 5, there is no three-
interval wavelet set which is associated with an MRA except when p = 2/ — 2.
In case j is 7, W (7,36) and W (7, 90) are the other two three-interval wavelet sets
associated with a MRA in addition to that of W (7, 27 — 2).
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Inverse Representation Theorem for Matrix
Polynomials and Multiscaling Functions

M. Mubeen and V. Narayanan

Abstract Wavelet analysis provides suitable bases for the class of L? functions.
The function to be represented is approximated at different resolutions. The
desirable properties of a basis are orthogonality, compact supportedness and
symmetricity. In the scalar case, the only wavelet with these properties is Haar
wavelet. Theory of multiwavelets assumes significance since it offers symmetric,
compactly supported, orthogonal bases for L?(R). The properties of a multiwavelet
are determined by the corresponding Multiscaling Function. A multiscaling function
is characterized by its symbol function which is a matrix polynomial in complex
exponential. The inverse representation theorem of matrix polynomials provides a
method to construct a matrix polynomial from its Jordan pair. Our objective is to find
the properties that characterize a Jordan pair of a symbol function of a multiscaling
function with desirable properties.

Keywords Multiwavelet * Multiscaling function ¢ Jordan pair

1 Introduction

Wavelet analysis is widely used in different areas of science and engineering. The
task of finding a suitable basis to represent the data effectively with lower risk
arises in different types of theoretical as well as practical problems [3, 10, 18].
Wavelet analysis provides better algorithms for such problems. Bases for the class
of square integrable functions L?(R) can be constructed based on the concept of
MultiResolution Analysis, i.e. approximating the given data at different resolutions.
An MRA can be defined as follows:
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Definition 1.1 (Keinert [11, p. 10]). An MRA (Multiresolution Analysis) of L? is
a doubly infinite nested sequence of subspaces of L?

eCcVacWhecvicly.--

with properties

.U, Vau is dense in L?

2., Va=0

. f(x) eV, & f(mx) € Vyyy foralln € Z. Here m € R is the dilation factor
and usually taken as 2.

4. fx)yeV, & f(x—m™"k)e V,foralln,k € Z

5. There exists a function ¢ € L2,¢ : R — C so that

—_—

W

(p(x—k) ke Z}

form a basis for V}.
Then we say that ¢ generates the MRA.

Definition 1.2 (Keinert [11, p. 3]). A function ¢ : R — C is called a scaling
function or refinable function if it satisfies the scaling equation

i
¢(x) = /m Y hip(mx —k) ()

k=0

where k € Z, hy € C and m € R is the dilation factor. Usually we take the value
for the dilation factor m as 2.

Following are some of the desirable properties of a scaling function ¢.

Definition 1.3 (Keinert [11, p. 3]). The refinable function ¢ is orthogonal if

< ()Pl —1) >= / $ (P —Ddx = o @)

Definition 1.4 (Keinert [11, p. 191]). The refinable function ¢ is symmetric about
some pointa € R if

¢a+x)=¢a@a—x)Vx eR 3)
Definition 1.5 (Keinert [11, p. 8]). A function ¢ is said to be L? stable if for any

function f such that f(x) = >, c, fk¢(x —k) there exist constants 0 < A < B <
oo such that

AN WA <15 < BY AL )
k k
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Definition 1.6 (Keinert [11, p. 8]). Support of ¢ is the closure of the set

{x eR:p(x) # 0}

A function ¢ € L? generates an MRA if it satisfies certain properties, of them the
key property is that it satisfies the scaling equation. A class of functions constructed
using ¢ called wavelet functions acts as a basis for L?(RR). Desirable properties of a
good basis can be achieved by a suitable choice of ¢. The desirable properties of ¢
include compact supportedness, symmetricity, orthogonality, higher approximation
order, etc. A compactly supported orthogonal wavelet is symmetric only if it is
the well-known Haar Wavelet function. It is not possible to construct a compactly
supported, orthogonal and symmetric wavelet function other than Haar wavelet [3].
But if we increase the multiplicity, i.e. generate MRA with more than one scaling
function, we can solve this issue [1, 2,4, 14, 15, 19, 20, 23, 24]. Even though the
increase in multiplicity increases computational as well as theoretical complexity,
we have several advantages. The function vector ® € L2,® : R — C" so that

{®;(x—k):1<i<nkelZ}

form a stable basis for V) will be called a multiscaling function and it satisfies the
matrix version of Eq. (1).

Definition 1.7 (Keinert [11, p. 124]). A function vector ® : R — C" is called a
multiscaling function or refinable function if it satisfies the equation

[
O(x) = vm ) He®(mx — k) 5)
k=0

where k € Z, H, € C"" and m € R is the dilation factor.
Following are some of the desirable properties of a multiscaling function .

Definition 1.8 (Keinert [11, p. 124]). The refinable function vector @ is orthogo-
nal if

< ®(x), D(x — 1) >= /dD(x)CD(x —0)*dx = 8,1, (6)

Definition 1.9 (Keinert [11, p. 192]). The refinable function vector ® is symmetric
if each component function ¢;, 1 < i < n is symmetric about some point ¢;. That is

di(ai +x) =¢i(a; —x)Vx,1 <i <n @)

Definition 1.10 (Keinert [11, p. 130]). A function vector @ is said to have linearly
independent shifts if for all sequences of vectors {c;} in C",
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> i d(x —k) = 0= ¢ = 0Vk 8)
k

Definition 1.11 (Keinert [11, p. 130]). A function vector ® is said to be L? stable
if for any function f such that f(x) = > o, f,"®(x — k) there exist constants
0 < A < B < oo such that

A NAI <115 < BY AN ©)
k k

Definition 1.12 (Keinert [11, p. 129]). The support of a function vector @ is
defined as the union of the supports of its component functions.

supp® = | ) suppeu (10)
k

A wavelet basis of multiplicity n will be constructed from & which is called a
Multiwavelet Basis. Theory of Multiwavelets is developed analogous to the theory
of scalar wavelets and most of the results in scalar case can be directly extended to
the vector case. To find a solution vector ® for Eq. (5), we usually switch over to
the frequency domain where the above equation becomes

() = H(E/2)D(E/2) (11)
where
1 < <
HE) = —= Y Hee ™k (12)

which is called a Symbol Function or Mask Function.

A function vector ® generates an MRA if it is an L? stable, compactly supported,
refinable function. ® is a compactly supported L? solution of Eq. (5) with linearly
independent shifts and nonzero integral only if the corresponding symbol function
satisfies certain conditions called Basic Feasibility Conditions as follows.

Theorem 1.1 (Keinert [11, p. 131]). A refinable function vector ® € L*(R) is
compactly supported with linearly independent shifts and nonzero integral only if
the corresponding symbol function satisfies the conditions

1. H(0) has an eigenvalue 1 and all other eigenvalues are less than 1 in absolute
value
2. There exists a nonzero vector y, € C" such that

Yoy —k)=c (13)
k

where c is a nonzero constant
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3. The same vector y, satisfies

2t
y:H(%):&)ty: t=0,1...m—1 (14)

4. The same vector y, satisfies

1
* *
Y, E Hpptr = —=, t=0,1...m—1 (15)
> Jm

The properties of a multiscaling function is dependent on the corresponding
symbol function. Thus our main focus changes to the symbol function H(§) which
is a Matrix Polynomial restricted to the unit circle in the Complex Plane. If H(§) is
the mask function, then its spectral data, eigenvalues and generalized eigenvectors
can be found. Theory of the spectral data of matrix polynomials is discussed in
Sect.2. We can construct a matrix polynomial from the given spectral data using
the inverse representation theorem which is stated in Sect.3 For details on the
underlying theory, see [6, 8,9, 12,13,16,21,22]. In Sect. 3, we have explained the
necessary as well as sufficient conditions a spectral data must possess so that the
corresponding matrix polynomial is the symbol function of a multiscaling function.
We have explained a method to construct the symbol function H (§) by choosing a
suitable spectral data with example.

2 Preliminaries: Spectral Data of Matrix Polynomials

Let
/
L) =) A" A eC™ LeC (16)
k=0

be a matrix polynomial of degree /. Then Ay € C is said to be an eigenvalue of L(1)
if Det L(1g) = 0. Then there exists a nonzero xo € C" such that L(1¢)xo = 0.

Definition 2.1 (Gohberg, Lancaster [5, p. 23]). The chain of vectors xg, Xy ... xx
e C", xo # 0, is a Jordan Chain of length k+1 of the matrix polynomial L(A) if

LA
Zﬁx,_pzo i=0,1,2...k (17)
=0 P

where L?(Ag) is the p'” derivative of L(A) at Ao

This is a generalization of the usual notion of a Jordan chain of a square
matrix. A matrix polynomial L(A) is said to be a regular matrix polynomial
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if DetL(A) # O[Gohberg, Lancaster [5, p. 181]]. Throughout this paper, we will
assume that the matrix polynomial L(A) is regular.

Proposition 2.1 (Gohberg, Lancaster [5, p. 27]). The vectors xg, x| ... x; form
a Jordan Chain of the matrix polynomial L(1) = Zi:o A, A! corresponding to the
eigenvalue A iff xo # 0 and

AoXo + A1 XoJo + A2 XoJZ + ...+ A X0, =0 Xo = [xox1...x¢] (18)

Xois ann x (k + 1) matrix and Jj is a Jordan Block of size (k + 1) x (k + 1) with
Ao on the main diagonal.

Definition 2.2 (Gohberg, Lancaster [5, p. 35]). A set of Jordan chains
(i) 4,0 M . ,
d>j0,<I>j1 ...CD],M;_IJ =1,2,3...5;

of a matrix polynomial L(1) = ) ;A ;A corresponding to the eigenvalue A; with
geometric multiplicity S; and algebraic multiplicity «;, is said to be a canonical set
if the eigenvectors dD(llo), <I>(2’0) oo CIDSI_)O are linearly independent and »7/_ uy) = ;.

For a given matrix polynomial L(A), the canonical set corresponding to an
eigenvalue is not unique. But the set of values of the lengths of the Jordan chains
corresponding to a particular eigenvalue is unique (Gohberg, Lancaster [5, p. 32]).
Now we will define the Jordan pair of a given matrix polynomial L(A). DetL(A)
is a scalar polynomial of degree nl. Let A;,A,...A, be the distinct zeroes of
L (1) with algebraic multiplicities a1, @, . . . &y, respectively, and D, o; = nl. Then
{A1,A2... A} form o (L), the spectrum of L(A). For every A;, choose a canonical
set of Jordan Chains of L(A) corresponding to A;, namely @%, @yl) . @5,’:,.__1, Jj =

1,2,3...S;, where §; is the geometric multiplicity of A;. The number ojf Jordan
chains of L(1) corresponding to A; is given by S; and length of the j'™ chain is
equal to ,uy). Also the equality Z‘;.":l p,;’) = «; holds. Consider the pair (X;, J;),
where

(@) (@) @) @) @) @)
X =[Py “‘cbmfl—l’q)ZO ...QZMQ_I ...... D q)SiMis,-—l]
N—— ——
1 2 S;
is a matrix of size n X «; and
Jin
Jin
Ji = Jis

JiS,'
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is a block diagonal matrix of size ¢;. The pair of matrices (X;, J;) is called a Jordan
pair of L(A) corresponding to A;. For a given L(A), a Jordan pair corresponding
to a particular eigenvalue A; is not unique since the canonical set is not uniquely
defined.

Now we consider a pair of matrices (Xr, Jr) such that X = (X1 X5...X,)
is a matrix of order n x n/ and Jr = Diag[J,,J>...J,] is a block diagonal
matrix of order n/ and each (X;, J;) is a Jordan pair of L(A) corresponding to any
finite eigenvalue A;. Then (X, Jr) is called a finite Jordan pair of L(A). The finite
Jordan pair (X, Jr) does not determine L(A) uniquely. If a matrix polynomial
L(A) has a finite Jordan pair (Xf, Jr), then any matrix polynomial of the form
Q(A)L(X) has the same finite Jordan pair (X7, Jr) if Q(A) is a matrix polynomial
with DetQ(A) = constant # 0 (Gohberg, Lancaster [5, p. 184]). In order to
determine the matrix polynomial uniquely, we consider an additional Jordan pair
(X0, Joo) corresponding to A = 00. (X0, Joo) is @ Jordan pair of the matrix
polynomial L(1) = A'L(A") corresponding to the eigenvalue 0. Thus L(A) has
an eigenvalue at oo if the coefficient matrix of the highest power of A is singular.

Definition 2.3 (Gohberg, Lancaster [5, p. 188]). A pair of matrices

T: 0
X =X X dT =
X1 Xa] an (OTZ)

where X; € C™™.X, € C™0=m and Ty € C™MT, € Chlmmxwl=m) yith
0 < m < nl is called a decomposable pair of degree [ if the matrix

Si—1 = Col[X,T{ X,T)~'1IZ§

is nonsingular. A pair (X, T') satisfying this property is called a decomposable pair
of the regular n x n matrix polynomial L(1) = Zzl:o A AT if

i 1
Y AXT =0.) AXT) 7 =0 (19)
i =0 i=0

Let (X1, T1) and (X3, T3) denote the finite and the infinite Jordan Pair of L(1),
respectively. Then ([X;X,], 71 & T») is a decomposable pair of L(4) (Gohberg,
Lancaster [5, p. 189, Theorem 7.3]). For each matrix polynomial L (1), we can find
the Jordan pair (X,7) = ([X1X2], Ti1 & T»). The inverse question, whether it is
possible to determine L (1) for a given Jordan pair (X, T') has been answered by the
Representation and the inverse theorem of matrix polynomials.
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3 The Inverse Problem

We will state the inverse representation theorem and try to explore the nec-
essary and sufficient properties a spectral data must possess so that the cor-
responding matrix polynomial represents a multiscaling function. The notation
[Col(X,T] X>T}7'7)!Z}] represents the matrix

X1 X, Tzl_l
Xi T, X2T2[_2

Tt X,
Theorem 3.1 (Gohberg, Lancaster [5, p. 197]). Let (X, T) = ([X1X2], T1 & T>)
be a decomposable pair of degree I, and let
Si—2 = Col [X,T{ XoT) 712§
Then, for every n x nl matrix V such that the matrix (SI_VZ) is nonsingular, the
matrix polynomial
L) =VUI=PYIST)A—(T1 & 1)U+ U A+ U A2 +. ..+ Ui A7 (20)

where
P = (I ® Ty)[Col(X,T{ X, T\~ 24! ((I)) Sis 21

and
[UoUL\U, ... U] = [Col (X, T} X, T4~ =)l Zh ! (22)

has (X,T) as its decomposable pair

The matrix polynomial determined by ([X;X>], 71 @ T>) is unique up to the
multiplication by a nonsingular constant matrix Q, i.e. if L(A) and L(A) have the
same decomposable pair, then

L(A) =0 x L) (23)

for some constant nonsingular matrix Q. The converse is also true, if i(k) is defined
as in Eq. (23), then L(A) and L(A) have the same decomposable pair. Now we will
state the necessary properties a Jordan pair must possess so that the corresponding
matrix polynomial satisfies the Basic Feasibility Conditions (Theorem 1.1).
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Proposition 3.1. Let ([ X, X,], T1 ®T3) be a given Jordan pair, then the correspond-
ing matrix polynomial is the mask function of a compactly supported multiscaling
function vector in L* with nonzero integral and linearly independent shifts only if
there exists an n x nl matrix V such that

(*7)

Si—2 = Col [X\T{ XoT) 712§

is nonsingular, where

and

1. The matrix
VU-P)YUIDT)—(Ti& 1)U+ U+ U+ ...+ U-y)]

has a simple eigenvalue 1 and all other eigenvalues are less than 1 in absolute
value, where the matrices P and [UyU U, ...U;_\] are given by Egs. (21)
and (22), respectively. Hence there exists a nonzero column vector yo such that

VWlVI =PI ST)— (i@ D) U+ Ui +Ur+ ...+ U1 =y (24)
2. The same vector Yy satisfies
Yo VUI=P)(—(I & To)—(T1®1))

(Uo—Ui4+Usr— ... +(=1)"Up+ ... +(=D'7'U,_))]=0 (25)

—2mit

In general, for A, = e~ m ,t =0,1...m—1

VeV =PY(IST)M—(T1® D) (Uo+Uid+Us A2 4. . .+ Ui AN = 80,8

(26)
3. The vector yy satisfies
y*ZLk =Ly*t=01 m— 1 where
0 - m+t «/% 0 Lo
Ly =V - P)[(I & T2)Up—1 — (T1 & 1) U] 27)

Proof. From the inverse representation Theorem 3.1, it is known that L(1) given by

L) =VI =P)Y (I ®T)A—(Ty® D) Us+ UA + UsA? + ...+ U A7
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has the decomposable pair ([X1X,],T; @ 7). From Theorem 1.1, a matrix
polynomial H(§) is a mask function of a multiscaling function vector ® with
properties stated above only if it satisfies the Basic Feasibility Conditions.

1. H(O) must have a simple eigenvalue 1 and all other eigenvalues are less than 1 in
absolute value. Consider the matrix polynomial L(A) corresponding to the given
decomposable pair where A = e’¢. Now, L(e’®)|¢=o = L(1). Thus the matrix
L(1) should have a simple eigenvalue 1 and all other eigenvalues are less than 1
in absolute value. But L(1) is given by

L)y=VU-P)USeT)—(T1®1)(U+U+Us+...+U-1)

The matrix L(1) must have a simple eigenvalue 1 and all other eigenvalues are
less than 1 in absolute value. Also there must exist a nonzero vector yq such that

yoL(1) = yi.ie.,
VI —PY I DDL)—(Ti® 1)U+ Ui+ Ur+ ...+ U] =y

2. For the matrix polynomial H (§), the nonzero vector y, satisfies

2t
ng(%)zaofyg t=0,1...m—1 (28)

_ 2mit

Take A, = e m ,t = 0,1...m — 1. For the matrix polynomial L(A)
corresponding to the given decomposable pair, Eq. (28) can be written as

YoL(A) =680y, t=0,1...m—1 (29)
But

L) =V =PI ®T)A—(Ti ® 1)U+ Uik +UpA> 4. .+ U A7)
(30)
Combining Egs. (29) and (30), we get

VeV =P) (I ®T)A—(Ti® 1)) (Uo+Us A+ UaA2+. . +U A7) = 0,32

3. The same vector y satisfies

1
Yo Y Himti=—=y5 t=0,1..m—1
: vm

or

1

yS‘ZLkm+,=—y5" t=0,1..m-1
; Vm
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But
L) =) Lidk =v({I - P)(( & T)A— (T & 1))
k
(Uo + Uih + UhA> + ...+ Ui A7
= Ly =VU - P)[(I & To)Ux_1 — (T & 1) U]
Thus we get

1
* *
Yo E Limy: = —=y4.t =0,1...m —1where
. m

Ly =V{U - P)[( &)U — (T1 & 1) U]

329

|

We have to find the sufficient conditions on the spectral pair so that it represents a
symbol function H (§) for which there exists a solution vector ® for the refinement
equation (5). We will briefly discuss the conditions on H () such that a solution
vector exists. From Eq. (11), the fourier transform of multiscaling equation is

given by
d(§) = H(E/2)D(E/2)
= () = I/ H(E/2)D(E/2)
Taking
P;(§) = I/, H(£/2')
We get
= &) = lim P; ()P0
Taking
P(E) = lim P;(§) =TI H(E/2)
We get

®() = P(E)D(0)

€1y

(32)

(33)

(34)

(35)
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Taking & = 0 in Eq. (35), we get
= ®(0) = P(0)®(0) (36)

It has been established in Heil and Colella [7] that, when the matrix H(0) has a
nondegenerate eigenvalue 1 and all other eigenvalues are less than 1 in absolute
value, the infinite product of matrices P(0) in Eq. (36) converges and the product
P; (&) (32) converges uniformly on compact sets to P(£) (34). Also, the infinite

product P(£) has polynomial growth and CiD(E) is the Fourier transform of a
distributional solution of Eq. (5). Let p be the multiplicity of 1 as an eigenvalue
of H(0), then there exists p independent solution vectors @ corresponding to p
linearly independent 1-eigenvectors of H (0).

Definition 3.1 (Keinert [11, p. 131]). A matrix is said to satisfy condition E(p) if
it has a p-fold nondegenerate eigenvalue 1 and all other eigenvalues are less than 1
in absolute value.

Theorem 3.2 (Keinert [11, p. 220]). The equation

(&) = H(E/2)D(E/2)

corresponding to a symbol function H (&) has a solution vector ® such that D is
continuous at 0 with ®(0) # 0 if H(0) satisfies condition E(p).

Proposition 3.2. Let (X, T) = ([X1X2], T1 ®T3) be a given Jordan pair, then there
exists a symbol function H(§) with Jordan pair (X,T) such that the corresponding
multiscaling equation (5) has a solution vector ® such that  is continuous at 0
with ®(0) # 0, if there exists an n x nl matrix V such that the n X n matrix

VU -P)UTST)— (T &)U+ Ui+ U+ ...+ U]

satisfies condition E(p),with

is nonsingular, where
Si—2 = Col [X\T{ XoT) 712§

and the matrices P and [UyU,U,...U;_|] are given by Egs. (21) and (22),
respectively.

Proof. Given that the n X n matrix

VU -P)UTST)— (T &)U+ Ui+ U+ ...+ U]
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satisfies condition E(p). From Eq. (20), the matrix polynomial H (§) determined by
([X1X2]. T1 ® T>) is given by

H(E) = VI -P) (& T)e s —(Ti®1))(Up+Ure's + Ure™ +.. .+ Up_1e! V%)
(we have taken A = ¢’¢). Then
HO)y=VU-P)(IeT) —(Tho)(U+U +Uy+... + U~

which satisfies condition E(p). By Theorem 3.2, Eq. (5) corresponding to the
symbol function H (&) has a solution vector ® such that ® is continuous at 0 with
d(0) # 0.

We will construct a symbol function by selecting suitable spectral data using the
inverse representation theorem. We need the following Lemmas to find the n x nl
matrix V mentioned in the inverse representation theorem for the construction of
symbol function.

Lemma 3.1 (Predrag Stanimirovic, Miomir Stankovic [17]). Let A be an m x n
rectangular matrix where m > n. Then A has a unique Moore Penrose generalized
inverse A8 such that A5 A = I, if A is of full rank, i.e. A has rank n.

Lemma 3.2. Let A be an m X m square matrix and B be an m X n rectangular
matrix, m > n. Then the m x n product matrix AB has full rank, i.e. rank(AB)=n,
if A has rank m and B has rank n.

Proof. Given that the m x m matrix A has rank m and the m x n rectangular matrix
B has rank n, m > n. Consider the linear transformation 74 : R” — R™ and
Tg : R" — R™ . Since A and B are of full rank, Kernel(T,) and Kernel(Tp) are
{0}. Now let T4 Tg(x) = 0, since A is of full rank we have
TA(TBX) =0=Tgx =0
But the m x n matrix B is also of full rank. Then
Tpx=0=>x=0
Thus
TATB(X) =0=>x=0
or

TAB(X)ZO:>X=0

i.e. Kernel of T4p is {0} = The matrix AB has full rank.
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Now we will construct a symbol function H (&) from a Jordan pair (X, T) =
([X1X2], Ty & T3) such that H(0) satisfies condition E(p). Select a Jordan pair
(X, T) = ([X1X2], T1 & T3) such that the nl x nl matrix (I & T>) — (T} & I) is of
full rank. Since ([X;X>], T1 & T) is a Jordan pair, the columns of n/ x nl matrix

Sic1 = [Col (X, T{ X, T3 7)),

are independent. Then columns of the matrix S,__l1 are also independent. From
Eq. (22), we have

[UoU1Us ... U] = Si}
i.e. columns of the matrix [UyU, U, ... U;—] are independent. Then the columns of
U=[U+U +Uy+ ...+ U]

are also independent, i.e. the 7/ xn matrix U is of full rank. Since (1 & T2)—(T1® 1)
is of full rank, from Lemma 3.2 it follows that the product matrix

F=Uoh)—-TieD)U+U +Uy+...+U-—) (37)

of size nl x n is of rank n. By Lemma 3.1, there exists a unique Moore Penrose
generalized inverse matrix F& € C"™" such that

F¢ExF =1,

()

is nonsingular. For that we will prove two Lemmas.

Now we have to show that

Lemma 3.3. Let A be an (n —m) x n matrix with linearly independent row vectors
V1, V2...V—m € R" and B be an n x m matrix with linearly independent column
vectors uy,uy . .. uy € R" where m,n € N. If A x B = 0, then the n X n matrix

(57)

is nonsingular.
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Proof. Giventhat Ax B =0, thenv; L u; Vi, j wherei € {1,2...n —m} and
Jj €{l,2...m}. Then forany j, u; € R" cannot be written as a linear combination
of the vectors in {v; € R"/i = 1,2...n —m}. Thus the n X n matrix

(s")

is of rank n, i.e. the matrix is nonsingular.

Now, we will prove that S;_,F =0

Lemma 3.4. Let the matrices S;—, and F are given by

Si—2 = Col (X, T{ X2 Ty 7|2}

and
F=UoTh)—-(Tie)U+U+Uy+...4+U~) (38)
where
[UoU U ... U] = S;”\ Eq. (22)
Then
Si2F =0 (39)
Proof. Define a matrix K as
K =S ® 7o) — (T & 1)S; 2} (40)
ie.
K =S8-(&T)— (T & I)[UUU,...U-] (41)

Define the nl x n matrices Ko, K1, K ... K;_ such that
K =[KoKiK; ... K]
Then from Egs. (38) and (41), we get

SioF =Ko+ Ki +Kx+...+ K 42)
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Now
X1 X, T}~ X X7~ \
X\ Ti X, T/ X\ Ti X, T2
K=" ey~ (men| "
XiT[72X, XiTI7'X,

Take XlTli = A; andXszi = B; wherei = 0,1,2...1—1. Then the above product
will be of the form

Ao— A1Bi-1 — B AoB1—
Ay — A2Bj—> — B3 A1 B

AoBi— AoB1— A1B— AoB1—
_| 4B || AiBi— | A2Bi—s | | A1Bi—
A2 By Aj—1 By Aj—1 By Aj—1 By
100..0—-1 0 0 O. 0
010..00 -1 00O0. 0
001..00 0 —-10. 0
000..00 0 10....-10
000..00 0 0100..0 -1
Thus
100..0—-1 0 0 O. 0
010..00 -1 00O0. 0
001..00 O —-10. 0
K =
000..00 0 10....-10
000..00 0 0100..0 —1

But from Eq. (42), we have

SiHoF =Ko+ Ki+K,+...+ Kj—4
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where
100..0
010..0
Ky = 001..0
000..0
000..0
-1 0 0..0
0-10..0
K = 0 0-1..0
0 0 0..0
0 0 0..0
and so on.

Weget Ko+ Ki+ Ko+ ...+ Ki—1 =0, ie.

Si2F =0
Corollary 3.1. If
P = (1 & T)[Col (X, T X,T{ /=] (f)) Sia.

then PF = 0.

Proof. From Lemma 3.4, we have

SioF =0

335

But Kernel(S;—;) = Kernel( P ) (Gohberg, Lancaster [5, p. 191, Proposition 7.4])

Hence

PF =0

From Lemmas 3.3 and 3.4 , we get

(%)
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is nonsingular. The Moore—Penrose generalized inverse of F is given by F§ =
(FT F)=' FT[Predrag Stanimirovic, Miomir Stankovic [17]]. Since (FT F)~! is of

rank n and
(%)
FT

S1—2

F¢
is nonsingular. Define V' = E, F¢ where E, is an n X n full rank diagonal matrix
where 1 occurs once and other entries are less than one absolute value. Since

is nonsingular, we get

Si- is nonsingular, we get
Fe gular, we g

(*7)

Vad-P)YUeT)—-(Tie)U+U +Uy+...+U)]=VU - P)F

is nonsingular. Also

=VF —VPF =VF(Corollary 3.1)
Then
VF = E,F8F = E,
But E, satisfies condition E(p) for p = 1. Thus we have found V such that
VI -P)UST)—(Ti &)U+ Ui+ U+ ...+ U]

satisfies condition E(p). By Proposition 3.2, there exists a symbol function H(§)
with Jordan pair (X,T) such that the corresponding multiscaling equation (5) has a
solution vector ® such that ® is continuous at 0 with CIJ(O) # 0. We will state this
as a theorem as follows.

Theorem 3.3. Let (X, T) = ([X1Xz], T1®T3) be a Jordan pair such that the nl xnl
matrix (I & T,) — (Ty & 1) is of full rank. Then there exist a symbol function H (§)
with Jordan pair (X,T) such that the corresponding multiscaling equation (5) has a
solution vector ® such that ® is continuous at 0 with CiJ(O) # 0.
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_ If we do not choose the matrix V' appropriately, then any matrix polynomial
L(}) having the same Jordan pair (X,T) may not necessarily generate a multiscaling
function which is proved by the following theorem.

Theorem 3.4. Given a Jordan pair (X,T) = ([X1X2],T1 & T,). Let the matrix
polynomial

L) =VI =P)Y(I®T)A—(Ty® D)Us+ UA + UsA? + ...+ U A7

having (X,T) as its Jordan pair, generate a solution vector ® of Eq. (5) such that
@ is continuous at 0 with CD(O) # 0. Then any matrix polynomial L(/X) having the
same Jordan pair (X,T) may not necessarily generate such a multiscaling function.

Proof. Given that
L) =VI =P)Y (I ®T)A—(Ty® D)Us+ UA +UsA? + ...+ U A7

generate a solution vector ® of Eq. (5) such that @ is continuous at 0 with &D(O) # 0.
Then L(1) will have an eigenvalue 1 (Keinert [11, Theorem (11.1), p. 220]). Choose
a > 1 such that any of the eigenvalue of L(1) not equal to 5 Consider

L) =VU -PYUIST)A—(T1 ® 1)Uy + UA +UsA> 4+ ...+ Ui A7

with V.= aV. Then L(X) also have the same Jordan pair (X,T). But L(1) does
not have an eigenvalue I and will have an eigenvalue a which is greater than 1
in absolute value (by the choice of a), which violates the necessary condition that
L(1) must have an eigenvalue 1 to generate a multiscaling function ® [Keinert [11,
Theorem(11.1), p. 220]]. Thus L(k) does not generate a solution vector ® of Eq. (5)
such that ® is continuous at 0 with @(0) # 0 even though it has the same Jordan
pair (X, T).

Definition 3.2 (Keinert [11, p. 143]). The recursion coefficients Hj of a matrix
refinement equation with dilation factor m satisfy the sum rules of order p if there
exist vectors yo,y1...Yp—1 With yo 7# 0 such that

n

2
2 ('Z)m’(—i)""y,D"—’H<£) =SS =0.1.2..m—1  (43)
m

t=0

for n=0...p-1.

We can construct a matrix polynomial which satisfies sum rules of order 1 using
the procedure of construction of a matrix polynomial for a given Jordan pair we
explained above.

Theorem 3.5. Let (X,T)=([X1X3], T\ ® T») be a Jordan pair such that X, € C"™",
X, € CXl=m) gud Ty € C™M Ty, e Cl=mxtl=m) qnd the nl x nl matrix
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(I & Tr)—(T1® 1) is of full rank and —1 is a diagonal entry in T\. Then there exist
a matrix polynomial L) = ZL _o AkAX, Ay € C™" with Jordan pair (X,T) such
that L(A)T = Zk 0 ATA satisfies the sum rules of order 1.

Proof. Given that (I @ T,) — (T @ 1) is of full rank and —1 is a diagonal entry in
T;. Let yo be the eigenvector corresponding to the eigenvalue —1. Now construct a
matrix polynomial L(A) = Zi:o A A¥ with Jordan pair (X,T) using the procedure
above by selecting the matrix E, in such a way that yOT is a left eigenvector of
ET corresponding to the eigenvalue 1 (which is always possible since we can
choose E, to be the identity matrix of order n). Since y, is an eigenvector of L (1)
corresponding to the eigenvalue —1, we get

L(=1)yo=0
Taking transpose, we get
yoL(-D" =0 (44)
Also
Yo L) =y E} =g (45)

From Egs. (44) and (45), we get that L(1)” satisfies sum rules of order 1.

4 Conclusion

We have constructed a symbol function H(£) by selecting a suitable Jordan pair

([X1X2], T1 & T3) such that the corresponding multiscaling equation (5) has a
solution vector ® such that ® is continuous at 0 with CD(O) # 0. It is worth noting
that any matrix polynomial having the same Jordan pair ([ X X,], 71 & T,) may not
generate such a multiscaling function. But a suitable choice of the matrix V in the
construction will guarantee a solution. We have also constructed a symbol function
which satisfies the sum rules of order 1 using this approach.
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A Remark on Reconstruction of Splines
from Their Local Weighted Average Samples

P. Devaraj and S. Yugesh

Abstract In this paper, we study the reconstruction of cardinal spline functions
from their weighted local average samples y, = f x h(n),n € Z, where the weight
function A(¢) has support in [—%, %] We prove that there exists a unique solution
for the following problem: for the given data y, and given degree d, find a cardinal
spline f(t) of degree d satisfying y, = f « h(n),n € Z.

Keywords Regular average sampling * Cardinal spline interpolation
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1 Introduction and Preliminaries

The sampling theorem is one of the most powerful results in signal analysis. The
classical sampling theorem of Shannon gives the following reconstruction formula

fo =31 (%T) M

P Qx — k.

provided supp( f ) C [-£2,Q]. The assumption that a signal is bandlimited
necessitates the signal to be of infinite duration which is not always realistic. Hence
it is natural to consider and investigate other classes of signals for which sampling
theorem holds. We consider the simple model functions.
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Let us introduce some notations. The cardinal central B-spline of degree d is
denoted by B4, and is defined as
Ba = x -

| * A *---*X[_%’%l(d—}-lterms).

1 11
2 —22]

Let S; denote the set of all functions of the form

@)= anBalt —n)

nez

with suitable coefficients a,,, let
Say ={f() € Sa: f(1) = O(|t]") as t — Fo0}
and
Dy = {{yn} : yn = O(In|") as n — Foc}.

Consider the following cardinal spline interpolation problem: Given a sequence
of real numbers {y, },cz, find a spline f € S; such that f(n) = y,,n € Z. When
d = 1 this problem has a unique solution but for d > 1, it has infinitely many
solutions. Moreover, the solution space is a d — 1 dimensional subspace of S; when
d is odd and a d dimensional subspace of S; when d is even. By imposing growth
conditions, Shoenberg [2] proved that for a given sequence of numbers {y,},cz €
D, the following problem:

Find a spline f € Sy, satisfying f(n) = y,,n € Z,
has a unique solution.

In practical applications, the measurements y, of the signal are not always exact
but local weighted average of the signal at n. In [1], the authors have considered one
such average sampling problem:

Problem 1. Given a sequence of numbers {y,},ez, find f € Sy, such that [ *
h(n) = y,, n € Z, where h satisfies

11

supp(h) [—2, 5], h(t) >0,t e R (1)
0 }
0< / 1 h(t)dt <oo and 0 < / h(t)dt < oo. 2)
-1 0
2
They have shown that there is a unique solution when d = 1,2,3,4. The same

problem for d > 5 has been posed as an open problem in [1]. The problem becomes
more complex if the method of [1] is used. We show that the solution to this problem
is unique for all d with some additional realistic conditions on /.
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2 Existence and Uniqueness Theorem

Theorem 2.1 (Main Theorem). Let d € N and h be a nonnegative measurable
Sunction satisfying conditions (1), (2) and the polynomial )", c, h x Ba(n)z™" has
no root on the unit circle, then for a given sequence of real numbers {y,},ez € D,
there exists a unique spline f € Sy, satisfying f = h(n) = y,,n € Z. This unique
solution can be expressed as f(t) =Y,z YnLna(t —n), where the reconstruction
spline Ly q is givenby Lyg = Y, ey ¢nBa(t — n) and ¢, are the coefficients of the
expansion #(2) = Y ez cnz " There exists a constant w,q € (0,1) such that

Lua(t) = O(t|' 1!y,
We define the function

Gpa(2) :i= Zh * Ba(n)z™",

nez

where 4 is a nonnegative measurable function satisfying conditions (1) and (2). Then
G4 (z) is a Laurent polynomial and can be rewritten in terms of exponential splines
considered in [2] as

Gra@ = [ h()Yoa(0)ds,

1
2
where

Yea(t) =Y 7"Ba(n —1).

nez

For the proof of the theorem, we need some properties of Y, 4 (¢) discussed in [1]:
Lemma 2.1 ([1]). Ford € N,n € Z and z € C\ {0}, we have:

(i) Y1 4(=t) = Yoa(t),
(ii) Yoq(t +n) =7"Y,4(2).

Proof. (i) We have

Tera(—1) = Y (@Ban+1) =Y "Ba(—n—1) = " Baln—1) = Yo4(t).

nez nez nez
(i)
Yot +n) =Y K Balk—t—n) =2 7 Balk —1) = 7"V (0).

keZ k€Z
O

We also need some additional properties of Y. 4 :
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Lemma 2.2. Ford,l € N,n € Z and z € C\ {0}, the following holds:

j,(nd(wn» —z—”[( 1)” T d(z)+Z( )(—1)2’+"

nn+1)---(n+k—1) d*
Dl LT + 1)

nn41)--(+1—1)
- . Tz,d(z)}

Proof. We prove by induction on /. First we shall prove the statement for / = 1.

k
diZ(Tz,d(l +m)=-> ;z_kﬂd(k —t—n)

k€L

= Z —(_kz_ n)z_k_"ﬂd (k+n—t—n)

keZ

Y KT Bak =) = 2 Y Btk — 1)

kEZ keZ

=z " I:diTZ’d(t) - sz,d(t)i| .
d e

Assuming the statement for / — 1 and using some simple manipulations of the same,

we obtain

d! d [ d-!
a7 (Yoa(t +n)) = e (F(Tz,d(t + n)))

= ddz( —n |:( 1)2(1 1) — 1l(t) + Z ( ) (_1)2]*2+k

Yoy (1) + (-3 20T D T2 2) nd(z)D

20—

nn+1)--(m+k—1) d='*k
k d—1-F

Z

= diz( (—1)20 1>_71 () + Z( )(_1)21_2+k

1y g1k -
n D) k—1) d) )+ z)mm)

K +n dz—1—k

2[—2
Tl,d(t)—"_(_l) Z(n+lil)

e dzi—*

I =1 . — 1=k
=z" |:(_1)2[;d_lez.d(l) + Z (ll() (_1)2]+kn(n + 1) (n + 1) d — Tz.d(l)
’ k=1

et 1)"1',(" =) Tz.d(z)}.
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In [1], the authors have shown that if & satisfies conditions (1) and (2), then the
set of solutions of f x h(n) = y, in S, is a d+1 dimensional subspace of S; when
d is odd and a d dimensional subspace when d is even.

Lemma23. Let A ={f € S;: f~h(n) =0,n € Z}and 71,2, ...,z be the

roots of Gy 4 with corresponding multiplicities my,mo, ..., m,, respectively. Then
. dl L .

the set of functions d—Zszjfl’d, wherei = 0,1,2,....m; —land j = 1,2,...,r

forms a basis of A.

Proof. Proof of the lemma follows from Lemmas 2.1, 2.2 and some simple
manipulations. O

Lemma 2.4. If G 4(z) has no root on the unit circle and if chz_” is the
nez

1
Laurent’s series expansion of G—()’ then their exists wpq € (0,1) such that
hd (2
e = o (Inl'Gua)").

Proof. Gj,4(z) can be written as Gy 4(z) = 7 p(z), where p(z) is a poly-
nomial of degree /. Let z;,22,...,2 be the roots of Gy 4(z) with multiplicities
miy,my, ..., m,, respectively. Then

Ghd(Z) ZZ(Z—Z)]

i=1j=1
First we consider the case |z;| < 1.

A —_—
(z—zl)j B

Ay Zn(n—l) =]+ D@

1
Z2

= Ay Y nGn =1 = ] + D)

4

In the above series expansion,
1 l r Ll
coefficient of = A;j(n+ )(n + 3~ ---(n+ 3 j+ D)t
= o(ln|'zi " (1))~

= o(n|'2").
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Next we consider the case |z;| > 1.

o

L Ay I ) _i 1
2 — = 24 nnh—-1)---(n — +1 n—j ___
v z;;:j (n=1--(n—j+ 1D z
> ! 1
=A; Yy nn—1)-n—j+ "7 —.
/ Z

n=j

l l [ 1
Coefficient of z"l = Aijm—z+j)n—z+j-1)(n—5)—F—
2 2 2 (Zi)n_§+]

IA

1
I’ll—n(Zz‘)l7
%
1
= 0(|”|lm)-
<j

The above expansions are valid inside the annulus r; < |z] < rp, where rj =
Max{|z| : |zi| < 1} and r, = Min{|z] : |zi] > 1}. Combining the two cases, we

obtainc, = o (|n|l(uh,d)‘”‘), for some up 4 € (0,1).
|
Proof (Main Theorem). Define

Lia =Y caPult —n).

nez

By Lemma 2.4
=0 (|n|l(ﬂh,d)‘n|) :
As B4 has compact support,

O(Lya) = O(lt]'1y)).

Now for || > 2,

Donez Inl"|t _n|l,uZ,;"| 3 S e Inl7 (1] = n| + 1)1%[21_”'_1
(t] + 1)7 - (I[e1Dr
_ Znez(l[t] —n|)(|n| + l)l/’LLn,Id_l
(i
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< >+ Inhr(nl + Dyt
nez

< oQ.

Using this inequality, we obtain

SO =Y yuLnalt —n) = O(lt]"),

nez

ast — +oo.
Since

YaLna(t —n) = O(lt —nl' s " n|"),

the series

Z ynLh,d (t - n)

nez

converges uniformly and absolutely on every compact subset of R. Now

f@) =" yuLnalt —n)

ne€z
= ZynZCk,Bd(l —n—k)
nez keZ
= (Z ynck_n) Ba(t —k).
k€Z \n€Z
Therefore f € S4,.
Define
gn = hx Ba(n).
Then
Gra(z) =) gz "
ne€z
Using

(o) (o) =

347
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we obtain

(h* Lia)(n) = ) exh* Ba(n —k) =Y ckgurk = So(n).

kEZ keZ

Hence

f@) =" yaLna(t—n)

nez

satisfies

(hx f)(n) = y,,n €Z.

Next we show the uniqueness.
Suppose that f, g € S;, and are solutions of Problem 1. Then /' —g € A. Using
Lemma 2.3, there exist constants c¢;; such that

ro mj—

! i
F0 =50 =Y e (o)
j=1i=0

As |z # 1, we get f(1) — g (1) = o(|t]").
Using Lemma 2.1 and the behavior of

;l_; (szl,d) (?)

at =00, we obtain ¢;; = 0 and hence f = g.

|
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Abstract Fractal interpolation is a modern technique for fitting of smooth/non-
smooth data. In the present article, we develop the C'-rational cubic fractal
interpolation surface (FIS) as a fixed point of the Read-Bajraktarevic¢ (RB) operator
defined on a suitable function space. Our C'-rational cubic FIS is effective tool
to stich surface data arranged on a rectangular grid. Our construction needs only
the functional values at the grids being interpolated, therefore implementation is
an easy task. We first construct the x-direction rational cubic FIFs (x-direction
fractal boundary curves) to approximate the data generating function along the
grid lines parallel to x-axis. Then we form a rational cubic FIS as a blending of
these fractal boundary curves. An upper bound of the uniform distance between the
rational cubic FIS and an original function is estimated for the convergence results.
A numerical illustration is provided to explain the visual quality of our rational
cubic FIS. An extra feature of this fractal surface scheme is that it allows subsequent
interactive alteration of the shape of the surface by changing the scaling factors and
shape parameters.
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1 Introduction

Data visualization is a tool to convert data into visual display for gaining under-
standing and insight into the data. Data visualization has proved its dominant role in
many areas including computer graphics, reverse engineering, aerospace industries,
earth and atmospheric science, medical imaging, and architecture design. The data
that is available is only a sample of a phenomena, and it may not explain the
phenomena completely. To overcome this difficulty, data is visualized in the form
of curves/surfaces. In computer graphics there is often the need to construct a
curve/surface from an experimental data whose form can be interactively adjusted
by means of suitable parameters. This requirement cannot ever be reached using a
polynomial spline interpolation because the curve/surface representation is unique
in this procedure. In order to overcome this disadvantage, many investigations have
been directed towards the rational splines with shape parameters. To construct
the polynomial splines, the derivative values are usually needed, along with the
functional values as input data. Unfortunately, in many practical problems, such
as the description of the rainfall in some rainy region and some geometric shapes,
the derivative values are difficult to get. Based only on the values of the function
being interpolated, Duan et al. [10] constructed a rational cubic interpolants with
shape parameters to tackle this problem. Duan et al. [11] extended this univariate
rational spline interpolant to the bivariate rational interpolant.

Fractal functions, namely the functions whose graphs are fractal sets [15], offer
an adequate tool to approximate non-smooth and irregular data. Utilizing the iterated
function system (IFS) theory [13], Barnsley [1] proposed the concept of a FIF such
that it is the attractor of a specific IFS. In general, FIFs are fixed points of the Read-
Bajraktarevi¢ operator, which are defined on suitable function spaces. By imposing
suitable conditions on the scaling factors, Barnsley and Harrington [2] introduced
the construction of k- times differentiable FIFs, if up to k' " order derivative values
of the original function are known at the initial end point of the interval. However,
it is difficult to get all types of boundary conditions for fractal splines in this
iterative construction. Fractal splines with general boundary conditions have studied
recently [4, 8, 16]. The problem of shape preserving interpolation has important
role in various engineering problems, for example car modeling, construction of
mask surfaces, aero-plane and ship design, etc. Including aforementioned FIFs, all
existing polynomial FIFs are not ideal for shape preservation. Owing to this reason,
our group has introduced the shape preserving cubic spline FIF and rational spline
FIF in the literature [6,7,9].

Fractal surfaces are proved to be useful to approximate various type of surfaces
in chemistry, physics, image processing, material science, geology, and ocean
engineering. Fractal surfaces are a natural outgrowth of fractal sets and fractal func-
tions. Fractal interpolation surface was first constructed by Massopust [14]. In this
construction he assumed the surface as triangular simplex and interpolation points
on the boundary to be co-planar. To overcome lack of flexibility in this construction,
Geronimo and Hardin [12] and Zhao [18] have generalized the construction of FIS
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by allowing more general boundary data. Later, with arbitrary contraction factors
and without any condition on boundary data, Xie and Sun [17] constructed bivariate
FIS to stich the interpolation data arranged on the rectangular grid. Further research
and developments in this direction using various thoughts are carried out by Chand
and Navascués [5], and Chand [3]. However, a C' FIS based only on the functional
values being interpolated has not been studied. Thus we attempt to construct a
new class of C!-rational cubic FISs based only on the functional values being
interpolated.

The rest of this paper is organized as follows: In Sect. 2, we review the basics of
IFS theory and its connection with fractal interpolation. In Sect. 3, first we construct
the fractal boundary curves (C'-rational cubic spline FIFs) in x-direction, then we
form a C'-rational cubic FIS using these fractal boundary curves and blending
functions. The approximation properties of the rational cubic FIS are studied in
Sect. 4. The developed rational cubic FIS is applied on a surface data to construct
the desired rational cubic FISs in Sect. 5.

2 Fractal Interpolation Functions

The basics of IFS theory is discussed in Sect. 2.1, and the construction of a FIF from
an IFS is given in Sect. 2.2.

2.1 IFS Theory

Let (X,0), (Y,0™) be two metric spaces. A function ¢ : X — Y is said to be a
contraction map with contractive factor 0 < ¢ < 1 if

o*(o(x),0(y)) <co(x,y) forall x,y € X.

An IFS is considered as a complete metric space (X, o) together with a finite set of
continuous transformationsw; : X — X,i = 1,2, ..., M —1. If w; are contractions
with contraction factors |s;|,i = 1,2,..., M — 1, then the IFS is called hyperbolic.
Let H(X) be the set of all non-empty compact subsets of X. Now H(X) is a
complete metric space with respect to the Hausdorff metric “h”, where h(A4, B) =
max{d,(A, B),d;(B,A)},d;(A,B) = max Iyneig o(x,y). For E € H(X), it can
m—1
be shown that the Hutchinson map on H(X) defined as W(E) = U wi(E) isa
i=1
contraction map with the contractive factor s = max{|s;| : i = 1,2,..., M —1}[1].
By the Banach Fixed Point Theorem, the sequence {W*(E )}r<, has unique limit,
say A ie., kli)n;oWk(E) = A forany E € H(X), and this A is called the



352 A.K.B. Chand and N. Vijender

deterministic fractal or the attractor of the hyperbolic IFS. Such an attractor of
a suitable IFS matches with the graph of a fractal interpolation function, and the
details are given in the following.

2.2 Fractal Interpolation Functions

Let x; < x» < -+ < xpy—1 < Xy be a partition of the real compact interval
I = [x;,xy] Let {(x;, fi) € I xR : i = 1,2,..., M} be a given data set.
Set I; = [x;j,x;41]andlet¢; : I — I;,i = 1,2,..., M — 1, be the contractive
homeomorphisms such that

@i (x1) = xi, ¢i(xp) = Xig1, )]
i (c1) — @i(c)| < liJer —ca] Ve, €1,

for some 0 < /; < 1. Denote C = I x D, D is a compact subset of R such that
fi e Dfori =1,2,..., M. Define the continuous mappings F; : C — D, i =
1,2,..., M — 1, such that

Fi(x1, )= fi. Fi(xm, fu) = fis1, )
|Fi(x,t*) — F;(x,t™)| < |[AMi||t* = ¢**|, xel, t*,t*™ eD, —-1<A; <1.

For the construction of a desired IFS, now define the functionsw; : C — I; xD,i =
1,2,...,M —1,asw;(x,t) = (¢:i(x), Fi (x, t)). The construction of a FIF is based
on the following result:

Proposition 2.1 ([1]). The IFS{C; w;,i = 1,2,..., M — 1} defined above admits
a unique attractor G. G is the graph of a continuous function h* : I — R such
that h*(x;) = fi,i =1,2,..., M .

The above function i2* is called a FIF corresponding to the IFS {C; w;,i =
1,2,...,M — 1}, and the functional equation of i#* is based on the following
discussion that is given in detail in [1].

Suppose G = {g: I — R : g iscontinuous, g(x;) = fi and g(xp) = fu}-
Then G is a complete metric space with respect to the metric d induced by the
uniform norm on C[x], x3]. Define the Read-Bajraktarevic operator T on (G, d) by

(Tg)(x) = Fi(¢;'(x).g(¢;7 ' (x)). xe Lii=1,2,....M—1.  (3)

Using (1) and (2), it is easy to show that T'g is continuous on the intervals /;,i =
1,2,..., M — 1, and at each of the points X, ..., xp—i. Also, it easy to verify that
T is a contraction map on the metric space (G, d), i.e.,

d(Tg, Tg") < |Aeod(g. &), “4)
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where [Aloc = max{|A;|] : i = 1,2,...,M — 1} < 1. Therefore, by the
Banach Fixed Point Theorem, T' possesses a unique fixed point, say #* on G, i.e.,
(Th*)(x) = h*(x) V x € I. According to (3), the FIF h* satisfies the following
functional equation:

h*(x) = Fi(¢;7 ' (x),h* o ¢ (%), xel, i =1,2,....,.M —1. (5)
The most widely studied fractal interpolation functions so far are defined by the IFS

(]5,'()() =a;x + b;,
Fi(x, f) =X f +ri(x),

where —1 < A; < 1,and r; : I — R are suitable continuous functions such that
(2) are satisfied. A; is called a scaling factor of the transformation w;, and A =
(A1, A2, ..., Ay—1) is the scaling vector of the FIF. The existence of a spline FIF is
given in [2], and that result can be extended for the existence of rational spline FIFs
in the following:

(6)

Theorem 2.1. Let {(x;, f;),i = 1,2,..., M} be a given data set, where x; <

- < xp. Suppose that ¢;(x) = a;x + bi, Fi(x, f) = A f +ri(x),ri(x) =
‘;’((j:)) , pi(x), qi (x) are suitably chosen polynomials in x of degree t1, tp, respectively,
and q; (x) # 0 for every x € [x1,xp]. Suppose for some integer p > 0,|A;| <

)
al.i =1,2,... M — 1. Let F"(x, f) = 2220 004y vonresents the m'™

a;

derivative of ri (x),

™ (1)
aﬁ” — Al ’

r]((;lll (xM)

Ay — An—1

f‘lm: f&nz m=l,2,...,p.

If F o, i) = ElL (L f7)i = 1,2, M =2, m=1,2,...,p,

then {R%w;(x, f) = (¢i(x),17i(x,f)), i = 1,2,...,M — 1} determines
a rational FIF ® € CP[xy,xy], and ®"™ is the rational FIF determined by
{Rz;wi(x,f):(¢>,-(x),F,.m(x,f)), i=1,2,...,.M —1}.

Since ¢;(x) # 0 for all x € [x1, xp], the proof of the above theorem follows
through the suitable modifications of the arguments in [2].

3 (Cl-Rational Cubic FIS

Let{(x;,y;,zi;j)i =1,2,....M+1,j =1,2,..., N + 1} be given surface data.
Let

X1 <X < o< Xpm—1 < XM < XM+1,

Yi<yy2<:+<YN-1 <IN < YN+1;



354 A.K.B. Chand and N. Vijender

be the partition of [x1, Xy +1] X [y1. yy+1]. We construct a C'-rational cubic FIS
D : [x1,xp] X [V1, yn] = R such that

S(xi,y)=z,,i=12,....M,j =1,2,...,N.

First in Sect. 3.1, we construct x-direction fractal boundary curves W; : [x1, x,,] —
R,j = 1,2,...,N + 1, such that for j = 1,2,...,N + 1, ¥; interpolates
the data set ¥; = {(x;,z;).i = 1,2,...,M}. Then as a blending of ¥;, j =
1,2,..., N + 1, we construct our C!-rational cubic FIS in Sect. 3.2. Our C'-rational
cubic FIS is a generalization to the rational cubic FIS with two-families of shape
parameters obtained by Duan et al [11].

3.1 Construction of x-Direction Fractal Boundary curves

Based on the condition on the scaling factors given in the Theorem 2.1, we now
construct the C!-rational cubic FIFs in the following manner.

Theorem 3.1. LetX;,j =1,2,..., N +1, be a given data sets. Consider the IFSs
IJ* = {[xl,xM]xKl,j;wi,j(x,f) = ((]5,'()(?),1:,‘,]'()6,5)),1' = 1,2,...,M—1},j =
1,2,....N + 1, where K, ; is a suitable compact subset of R, ¢; (x) = a;x + b;

satisfies (1), Fi j(x,§) = Aij§ +rij(x), rij(x) = f;,’;(())j))’

Ppij(x) = A; j(A; ))(1 = 0)° + B j (X ))(1 = 6)*6 + C; ; (A ;) (1 — 6)6?

+ D; (A )07, (7
oy

i (x) = (1—0)ay; + 6.0 = —

—. X € [x1, XM,
XM — X1

Mgl < aroand Ajle = max{Z:lii = 1,2, M — 1}, Let F!;(x.0) =
B Fori=1,2,... M =1,j =1,2... N+ 1,if

i

Fij(xzy) = zig. FrjGomeamg) = zivng. By, Ay) = A

®)

Zi+1,j —Zi,j
—— h; = Xi+1 — Xi,

FliGon, D) = Digrj. Dij = I

then for j = 1,2,...,N + 1, there exists a rational cubic FIF V; such that
V;(x;) =2z,,1 =1,2,..., M. Moreover, for j = 1,2,..., N + 1, the attractor
of the IFS I7 is the graph of W over [x1, xu].

Proof. For j =1,2,...,N + 1, suppose

Fi={reC'xi.xy] | t(x) = z1j. t(xp) = z2p;. T (x1) = Ay j.and T/ (xp) = Dy s}
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Then for j = 1,2,...,N + 1, (Fj,dc1) is a complete metric space, where d¢ is
the metric induced by the C!'-norm on C![x1, x)/], namely

dei(f.8) = If = 8lloo + 1I(f = 8)lloc-
Define the Read-Bajraktarevié operator T]Tk on F; as

(TiT)(x) = AijT(d (X)) +rij (¢ (X)), x € Lii = 1,2,...,M —1. (9)

hi
XM —X]

Since |A; ;| < a; = < 1 and using (8), it is easy to see that

(i) T;7and (le')/ are continuous on (x;, x;+1),i = 1,2,...,M — 1,
(@) (Tro)(xi—) = (T;00+), (T0)(xi—) = (T;0)'(xi+),i = 1,2,...,
M

-1,
(iii)
de(T; £.T;8) = IT; f = T;glloo + (T} f = T8) lloo
< sl = glloo + 22— )l 10
< 1A} looder (1. 8).
Owing to the above reasons, for j = 1,2,...,N + 1, T;‘ is contraction on J;

with contraction factor |A j |o. Therefore by the Banach Fixed Point Theorem, there
exists a fixed point (say) ¥; of T}, i.e., (T;¥;)(x) = W;(x) forall x € [x1,xpm].
Since W; is fixed point of T}, all the properties of T; automatically transfer to
the ;. In other words, ¥; interpolates X ; and W; € C'[x1, xpr]. Also it is verify
that W satisfies the functional equation

U (x) =4 0(p7 ' (x0) +1i(p ' (X)) x €L, i =1,2... .M —1. (1)
Since ¥, a C'-interpolant over [xy, x], following properties are valid :

Wi (xi) = 20, W (i) = zit1, Wi (0) = Aij, W (X)) = Dy
Now we determine arbitrary constants in p; ;(x), namely A; ;(A;;), Bi (A ),
C; (A, ) and D; ;(A; ;) using the above four properties.

Substituting x = x; in (11), we have

pi.;j (0)
qi.; (0)

= Ai,j(li,j) = Oli,j(Zi,j — /\,-,jzl,j).

V;(x) =AW (x) +
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Substituting x = x; 4 in (11), we have

pij(1)
qi.; (1)
= D;j(Aij) =ziv1,; —Aijimj-

W (xigr) = A j W) (xm) +

The condition W), (x;) = A; ; in (11) leads to

4i.;(0) p; ;(0) — g; ;(0) pi.; (0)
(4i,j(0))*

ai i j = AijV(x1) +
The algebraic manipulation of the above expression gives that

22,j—X1,j
B,-,j (/\,-,j):(ai,j—i-l)zi,j i, jZi+1,) _/\i,j ((20(,‘,}'-}-1)21,]‘ —0 (xpm — xl)—]h Ly )
1

The condition W' (x;41) = A;41,; in (11) leads to

qi.,; (D p; ; (1) — g ; (D) pi; (1)
(gi.; (1)

aiAH-l,j = A,,',j ‘I‘/(XM) +

Simplifying this expression for C; ;, we have
Ci’j(li’j) = (Oli’j =+ 2)Zi+l,j — /\,‘,j (Oli,j + 2)ZM,]‘ — hi(Ai-H,j — Ai’j AM’J').

By using similar arguments as in [1], it can be shown that for each ; =
1,2,...,N +1, the IFS Ij’f‘ has a unique attractor, and it is the graph of the rational
cubic FIF W; € C'[xy, xp]. O

Remark 3.1. The rational cubic FIFs ®;,j = 1,2,...,N + 1, are called
x-direction fractal boundary curves.

Remark3.2. If A;; =0,i =1,2,.... M —-1,j = 1,2,...,N + 1, then for
j = 1,2,...,N + 1, the rational cubic FIF ®; reduces to the classical rational
cubic interpolation function [10] S (x) as

4i,;(0)(1 = p)* 4+ B; ;(0)(1 = p)*p + C; ; (0)(1 = p)p* + Di ; (0)p’
(I=paij+p ’

Si(x) =

X — Xi
p=————,X € [x;, Xi41].
Xi+1 — X
(12)
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3.2 Construction of C'-Rational Cubic FISs

Theorem 3.2. Let {(x;,y;.zi ;)i =1,2,... M +1,j=12,....N+1}bea
given surface data. Let

X1 <X < o< Xpm—1 < XM < XM+1,
Y1 <)y2<:+<YN-1 <YN < YN+1,
be the partition of [x1, Xp+1] X [V1, YN +1]. Consider the IFS

T = {[x1. xp] X [y1, yn] X Ke: Wi j(x, 9,2) = (x. ¥ (), G j (x, y.,2)).
x € xiplyebywli=12,....M—-1,j=1,2,....N -1},

where K. is a suitable compact subset of R, ¥;(y) = ¢;y +d; @ [yi.yn] —
[vj.yj+1] is a contractive homeomorphism such that

Vi) =¥ (yn) = Yj+1s

pii(x,y)

G;i(x,y,2) = A* S y)rti(x,y) = 50—,
l’](x ¥,2) ]Z-i-ru(x y) r,,](x y) ql_*’j(x’y)

Pry(ey) =AT (A A=) + B (x Ay A= 9)*y
+CF (g A = Y)Y+ DE(x hiy AV,
A (A %) = B (W (x) — ATW(x)),
By (2o A) = (B + D () + B9 (x) = 45 ((28) + )W)

Wy (x) — ‘I‘l(x))
L ’
Cri(x,, 40 1, A7) = (B + D Wj41(x) = AT Q2+ B) W (x) — 1 (AT 4, (x)
—ATAN(X)), D (x, Aij AT) = W1 (x) — AT Wx (x),

—B;(yn — 1)

Yy=n"
YN =1

qt;(x) =0 =y)B; +v. ¢ = Yy € v, ynl.

x|
A3 < ¢, B > 0, [\¥|oo = max{=.
W1 ()W) (x)

lA

j =12,...,N—-1} < 1, A?(x) =

,lj = yj41—j, then there exists a C'-rational cubic FIS ® such that
J

O(x;,yj) =z;.i =1,2,...,M, j =1,2,..., N. Moreover the attractor of the
IFS T* is the graph of ® over [x1,xm] X [y1, YN ]-
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Remark 3.3. The functions A;.fj (x,)ki,j,)k}‘), Bi’fj (x,Aij, )\j), Cifj(x,)ki,j,)k;f),
and D:j(x, /\,"j, /\j) are obtained in view of Ai’j (Ai’j), Bi’j(/\,"j), C,'!j (Ai’j), and
D; (A ), respectively, in Theorem 3.2.

Remark 3.4. The scaling factors and shape parameters involved in the rational cubic
IFS Z* are arranged in the matrix form as follows:

A=A A2 A3, Al A = [Aj Ao Au—i 1T = 1,2, N +1,
AT =[AT A3 A AN )

o = [ jJ(M—1)x(v+1)5

ﬂ* = [ﬁlvﬂ25ﬁ3s--'sﬁ]\7—l]
Proof. Suppose

oh(x,y)

F= {h eC'(I x )| h(x,y1) = ¥i(x), h(x,yy) = Uy(x), 3
y (x,31)

= \Ilgl)(x), and
oh(x,y)

=Pl
dy (x.yn) N ( )}

Then (F,d gl) is a complete metric space, where dCT1 is the metric induced by the
C'-norm on C'([x1, xum] X [y1, yn]), namely

dli(h.g) = lIh = glloo + [1(h = 8)'lloo-
Define the Read-Bajraktarevi¢ operator T * on F as
(Taa=m)(x,y) = AThCe, 7 () + 1 (97 (0), (x,9) €

D;; = [xi,xix1] X [y, yj+1l, (13)
i=L2,... M—-1,j=1,2,...,N — 1.

Note that T}, 5+ is continuous inside every D; ;. For (x;, y;) and (x;41,y;+1) €
D;;j N D; j41, itis verified that

lim (Tya=h)(x,y) = lim (Tya*h)(x,y) = zi41,j+1,
(e )= (X 41,y j41) (X)) = (Xi1.Vj41)
(x,y)€Di, (X, y)ED; j41

(14)
lim (Taa*h)(x,y) = lim (Ty a+h)(x,y) =2z j+1-
G =Giyjt1) )=y 41)
(x,y)€D; j (x.»)E€D; j+1

Sinceaty = yy, ¥ = 1, for (x*, y;41) € (xi, Xi+1) X yj41, from (13), it is easy
to verify that
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(i, Vji2} {Xis1, Yji2) {Xir2, ijz}

¢ ¢ @

{(x, yju1)
Dij+1 Disajr1

(x; Vj+1) {Xis1 Vj+1} {Xis2 Vjﬂ)

[ ¢ ®

Di’j I:)i+l,j

[ ] ) ®

{xi, yi) (Xir1, V) {Xir2, V)

Fig. 1 Continuity domain

lim (Toarh)(x.y) = MR Y7 (i) + 5 07 (41)
(e ))=>(x*,yj41)
(x,y)€D; j

= ATh(x™, yn) + W41 (x") = AT ¥ (x¥)
= \IJj+1(x*) = Tx,j+1 (Sa}’)-

Similarly, since at y = yi, ¥ = 0, for (x*, y;4+1) € (xi, Xi41) X ¥, 41, from (13),
it is easy to see that

lim (Tra=h)(x,y)
(. )=>(x*,yj41)

(x,y)€D; j+1
= ’\jh(X*’ wj_-ll—l(yj‘f'l)) + r:j+1(X*» Wj_-fl—l(yj-l—l))
= 2ER(x*y0) + Wy (x%) — A5 ()

=V (X)) =z4 41 = lim (Tya+h)(x. y).
)= (x*yj41)
(x.y)ED; j

Therefore we conclude that the Read-Bajraktarevi¢ operator T} = is continuous
on D;; N D;;,i = 1,2,.... M -1, = 1,2,...,N — 2. In the similar
way, we can verify the continuity of the Read-Bajraktarevi¢ operator T 3= on
D;;j N Diyy;,i = 1,2,.... M —2,j = 1,2,...,N — 1. Thus the Read-
Bajraktarevi¢ operator Tj j+ is continuous on the domain D. Similarly, we can

AT, ,=h(x,y) T, ,=h(x,y)
AA y and AA Yy

o o are continuous over the domain D. Since

verify that
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T = h(x. AT, = h(x, . .
both “‘a;(x Y and Ao ")) are continuous over the domain D, (Ty p+h) (x,y)

exist and it is continuous over the domain D. Also

dch(TA,A*h, T3ax8) = Tansh — Ta*glloo + [[(Taaxh — Trax8) |leo
1
Cj

< IA11h = glloo + =11 — &) lloo (15)

< |A*|ood)i (. 8).

Thus the Read-Bajraktarevi¢ operator T} 3= is a contraction on F. Therefore by
the Banach Fixed Point Theorem, there exists a fixed point (say) ® of T ,=*, i.e.,
(Tya*®)(x,y) = ®(x,y) forall x € [x;,xy] X [y1, yn]. Since ® is fixed point
of T =+, all the properties of T, ,+ automatically transfer to the ®. In other words,
O(xi,y;) = zj,i = 1,2,...,M,j = 1,2,...,N and C' over the domain D.
Also it is easy to verify that ® satisfies the functional equation

qD(xv y) = A;CI)()C, Wj_l(Y)) + rifj(xv wj_l(y))s(xv J’) € Di,jv
i=1,2,....M—1,j=12,...,N—1.

(16)
O

4 Approximation Properties of Rational Cubic FIS

In this section, we study the convergence properties of rational FIS &, by calculating
an upper bound for ||®— F ||, Where F is a data generating function. The following
theorem provides an upper bound for |[¥; —S;|lco, j = 1,2,..., N + 1 based on
the assumptions 4 = h;, i =1,2,... M -1,1=1;,j=1,2,...,N - 1.

Lemma 4.1. Let V; and S;, respectively, be the rational cubic FIF and classical

rational cubic interpolant with respect to the data X ;, j=1,2, ..., N + 1. Suppose
V-1, = QM ' [-xjaik;a;],0 < «; < 1, [Ajleo = max{[A;;| : i =

1,2,...,M—1},]’Z = max{h,- o= 1,2,...,M—1}, Oéi,j = Oéi,j =

1,2,....,N — 1, and
%M)
‘ i, (671 (x) ‘

<U;. 17
0A; / 17

Then

A (M2 4 Uy
W) = Silloo < Aj(h) = = 2
1—14jloo
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where M* = max{Mifj i=02,...M—1,j =1,2,...,N — 1}, Ml-’fj =

max{|zi,j+s| 17 =0,1,2;5 =0,1,2}.

Proof. From (9), the Read-Bajraktarevi¢ operator 7/ : Viy—1,; x F; — F7 isalso

viewed as

Pij (@7 (%), Aij)
qi.j (7' (x))

(T75,0x) = AijT(e ! (X)) + xeli=1,2,....M—1.

(18)

Since ¥; and S, respectively, are the rational cubic FIF and classical cubic spline
with respect to the data set X, it easy to see that ¥; and S; are fixed points of Read-
Bajraktarevi¢ operator T;Aj for A; # 0 and A; = 0, respectively. For A; # 0,
from (18), it is easy to verify that

1775, % = T3, Silloo = A jloo W) = Sjlloo- (19)
Also

Pi,j(d’i—l(x),li,j)_Pi,j(d’,-_l(x)s0)
qi,; (97" (x)) qi,; (97" (x))
|pij (971 (x), Ai) — pij (971 (x),0)]
qi; (97 (x)) ‘

IT75,8i (=TS (X)|=|Ai; S; o (x)+

< [Aijl 1) lloo +

(20)

Using Mean Value Theorem for functions of several variables, there exists n; =
(M1.j:M2.>---» Mm—1,;) € Var—1,j, such that

Opi; (67 (x).mij) 5
aki.j

i (@ (X). Aij) — pij (¢ (x),0) = igo il < |Aijl.
(21
From (20) and (21), we have

(Pi,j(¢171(x)qni))
i, (971 (x)) ‘) 2
0A; ’ @2)

A

72,5100 = T7a ;001 = A loo (IS0 + |

From [11], it is known that

oM *
1S lloo

IA

j=1,2,...,N+1. (23)

Substituting (17) and (23) in (22), we obtain

oM*
4

T/, 8 (0) = TS ()] < A loo (—— +U))-
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This implies

*

oM
775,85 = T7S)lloo = 14100 (—— +U) (24)
Using (19) and (24) together with the inequality

1) =S, o=l T}, Wi =TS oo <N TSs, W =T, S loot 1 T2, =TS oo

(25)
we obtain the desired bound for |[W; — S [|oo- O

Theorem 4.1. Let ® be the rational cubic FIS with respect to the surface data
{xivyj,zig)i=12,....M+1,j =1,2,..., N+1} generated from an original
function F € CY(D). Leth = max{h; : i = 1,2,....,M — 1}, = max{l; : j =
1,2,....,N—1} Leth=h;,i=12,.. M—-1,1l=1;,j=12,...,N—1,
andoa; ; = o; for j =1,2,...,N — 1. Then

9 oF oF
[|® = Flloo < +§(h\|g|\w+l\|$|\w), (26)

where A**(h) = max{A7(h): j =1.2,....N — 1},

A;(h) =A;(WK+1D)+ A1 (B)Q2K +2) + |l**|oo(2A1(h)K + A (WK
+ An(B)(K +2) + Ay41(h)),

K:max{,Bj,Z,Bj +1,2+,3j j=12,...,N + 1},
A oo = max{[A]]:j = 1,2,....N =1},
M* :max{Mifj:i =12,....M—-1,j=1,2,...,N — 1},

M:j = max{|zi4rj+s| 17 =0,1,2;5 = 0,1,2}.

Proof. Since W and S, respectively, are the fixed points of the Read-Bajraktarevié
operator Ty ;= for A # 0, A* # 0 and A = 0, A* = 0, respectively, it is easy to
see that

[|®— Slloo = T2 2* P — To.0S |00

STy ax D=To 2% Plloot+Tor* P—To1*S|loo+11To1*S—T0.0S ||oo-

27)
Now we wish to calculate the bound of each term in the right-hand side of above
inequality. For this purpose it is easy to see that



C'-Rational Cubic Fractal Interpolation Surface Using Functional Values 363

Taar®(x, ) — Ty @(x, y) =B (A (x, Ai j, A7) — AF;(x,0,A9)) (1 — 9)°
+ (B (x, Aij, A7) = B (x,0,A9) ¥ (1 — V)2
+ (G (x A0y AT) = X5 (x, 0.A0)) ¥ (1 — ¥)
+(D};(x. Aij. A%) = D} (x.0,0%)) 9

A=y +vy
(28)
This implies
[To 2 @(Cx,y) = Ty« P(x, )| < |A;fj (x,)ki’j,)k;‘) _ A;'k,j (x.0, 1)
1B (v Ay A7) = B (x.0.47)]
(29)

+ ICifj(x,)Li,j,)L;f) - Cifj(x, O,A;)|
+ |D:j(x,)ki,j,k;f) — D:j(x,O,A*»)I.
Now it is easy to verify that
A7 (0. Ay A7) = A (6, 0,A9)] < [W5(x) — S5 ()] + [A7[[W1(x) — Si(x)]
=) = Sjlloo + 12" ool W1 = Silloo

< Aj(h) + A" |coA1(h)(Using Lemma 4.1).
(30)
Similarly, it is easy to obtain that
IBY (e A j A7) = B (x,0,47) < K (A (h) + A j1(h) + [ oo 2A1(R) + Az (h))),
IG5 (x4 A7) = G (0, 0.47) 1 < (K + DA j41(h) + A [oo (KA N (h) + Ay41(h)).
IDF; (%, Aij A7) = D5 (0, 0,A7)] < Aji(h) + 1A oo Aw ().
(3D
Using (30) and (31) in (29), we get
|Taax®@(Cx,y) = Toa=@(x, »)| < AT(h). (32)

Since the above inequality is true forevery (x,y) € D; ;,i =1,2,.... M —1,j =
1,2,..., N —1, we get the following estimation:

[[Taax® = Ty px Plloo < A™(h). (33)
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Also it is easy to see that

| Toa*® — Toa=Sloo < A" ool |P — S1|oos

e (34)
[1T0.4%S — T0.0S oo < 1A [ool[S]|co-
Substituting (33) and (34) in (27), we obtain
16 Sl < A7) + I leolIS oo )
1 —[A**]oo
Also from [11], it is known that
9 *
ISlleo = 7 M (36)
Using (36) in (35), we have the following estimation:
A* (1) + A" |0y M
d—-S < 4 37
19~ Slloo = ==y (37
Again from [11], it is known that
9 aF aF
F-S < —(h||— | — . 38
1F = Sllo = 2 (4|50 o + 115 Lo G9)
Using (37) and (38) together with inequality
@ — Flloo = [|® = Slloo + [[F = Slloo,
we obtain the desired bound for ||® — F||co. O

Convergence results: Since A** = O(h) and [A\**|o0 = O(l), Theorem 4.1 gives
that the rational cubic FIS & converges uniformly to the original function F as
h—0%tandl — 0t.

S Examples

Consider the surface data with random 25 points given in Table 1. According to the
developed theory, first we construct the x-direction fractal boundary curves ¥;, j =
1,2,3,4,5, for the univariate data sets 3; = {(1.2, 1265.4), (3.6,2324), (6, 567.7),
(7.2,775.01)}, £, = {(1.2,1),(3.6,3784), (6,1342), (7.2, 1543)}, ¥; =
{(1.2,—-4),(3.6,11.3), (6,11.1), (7.2,15.088)}, 4 = {(1.2,7985.8), (3.6, —24),
(6,—17), (7.2, 1118)}, and X5 = {(1.2,-99), (3.6, —89), (6,37),(7.2,17)},
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Table 1 Interpolation data for C!-rational cubic FISs

Ix/y— 4.3 7.1 8.5 11.3 18
1.2 1265.4 1 —4 7985.8 —99
3.6 2324 3784 11.3 —24 —89
6 567.7 1342 11.1 —17 37
7.2 775.01 1543 15.088 1118 17

8 0.01 -3 15 1.1 —180

respectively. Then using these fractal boundary curves in (16), we generate
C!-rational cubic FIS & such that S(xi,y;) =z, = 1,2,3,4,] = 1,2,3,4.
With the choice of scaling and shape parameters A = [0.19]3xs) and & = [6](3xs5).
the x-direction fractal boundary curves are generated in Fig. 2a. By modifying only
scaling matrix A as [0.01];3x5) with respect to the matrices of scaling and shape
parameters of Fig. 2a, we obtain one more set of fractal boundary curves in Fig. 2b.
By comparing fractal boundary curves in Fig.2b with fractal boundary curves in
Fig. 2a, we observe the sensitivity of fractal boundary curves with respect to scaling
factors.

By utilizing fractal boundary curves in Fig.2a, and taking A* = [0.15](1x3),
B = [12]Gx3) in (16) we have generated the C!-rational cubic FIS in Fig.2c.
Next by availing fractal boundary curves in Fig.2b, and taking A* = [0.15](1x3),
B = [12]3x3) in (16), we have generated a C'-rational cubic FIS in Fig.2d.
We found a visually pleasing changes in the C'-rational cubic FIS in Fig.2d in
comparison with the rational cubic FIS in Fig.2c even if A* and § are same in
their construction. From this we observe the sensitivity of rational cubic FIS with
respect to x-direction fractal boundary curves. Finally we constructed rational cubic
FISs in Fig. 2e, f, respectively, by taking A* = [0.01](;x3) and B = [1000](3x3)
with respect to the Fig.2c. An examination of rational cubic FISs in Fig.2e,
with respect to the rational cubic FIS in Fig. 2c explains the sensitivity of rational
cubic FIS with respect to the scaling matrix A* and matrix of shape parameters
B. By analyzing rational FISs in Fig. 2c—f, we reveal that these four rational cubic
FISs are different to each other in nature. By proceeding in the same way we can
construct a wide variety of rational cubic FISs for the given surface data using our
method.

6 Conclusion and Remarks

In this work, we have constructed C!-rational cubic FIS to interpolate a surface data
arranged on a rectangular grid. Our surface interpolant needs only the functional
values being interpolated. More important is that the value of the rational cubic FIS
at any point in the interpolation region can be modified under the condition that
the interpolation data is not changed by selecting suitable scaling factors and shape
parameters. A uniform error bound has been calculated between the rational cubic
FIS and an original function. It is observed that the developed rational cubic FIS
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Fig. 2 Fractal boundary curves and C!-rational cubic FISs. (a) Fractal boundary curves in
x-direction. (b). Fractal boundary curves in x-direction. (Effects of change in A in Fig.2a).
(¢) C!-rational cubic FIS. (d) C!-rational cubic FIS (Effects of change in fractal boundary curves
in Fig. 2¢). (e) C!-rational cubic FIS (Effects of change in A * in Fig. 2c). (f) C'-rational cubic FIS
(Effects of change in B in Fig. 2c)
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has linear convergence rate towards the original function. In this paper, the rational
cubic FIS is developed with x-direction fractal boundary curves. Similarly, one can
construct rational cubic FIS with y-direction fractal boundary curves. As a future
research work, the shape preserving aspects of rational cubic FISs are under active
consideration.
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On Fractal Rational Functions

P. Viswanathan and A.K.B. Chand

Abstract This article introduces fractal perturbation of classical rational functions
via o-fractal operator and investigates some aspects of this new function class,
namely, the class of fractal rational functions. Its specific aims are: (1) to define the
fractal rational functions along the lines of the fractal polynomials (2) to extend the
Weierstrass theorem of uniform approximation to fractal rational functions (3) to
deduce a fractal version of the classical Miintz theorem on rational functions (4)
to prove the existence of a Schauder basis for C(/) consisting of fractal rational
functions.

Keywords Fractal interpolation function ¢ Fractal rational function e Fractal
Miintz rational function ¢ Positive approximant ¢ Schauder basis

AMS Subject Classification: 28A80, 41A20, 41A29,41A30

1 Introduction

Classical Approximation Theory concerns the description of functions using
approximation sets consisting of smooth functions, sometimes infinitely differ-
entiable. However, real-world sampled signals such as financial series, seismic
data, speech signals, and bioelectric recordings show certain degree of irregularity.
Fractal functions, an area championed by Barnsley, and taken up in earnest by a host
of followers, provide an alternative technique for interpolation and approximation.
Fractal functions aim mainly at data which present details at different scales or some
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degree of self-similarity. These characteristics imply irregular, non-smooth structure
that is inconvenient to describe by the traditional interpolation/approximation
techniques.

Barnsley first introduced fractal functions as continuous functions interpolating
a given set of data points [2]. Further, he has proposed the generalization of a
continuous function, say f, defined on a real compact interval / by means of Fractal
Interpolation Functions (FIFs) to obtain «-fractal function f“. This function f¢
retains some properties such as continuity and integrability of f, but in general
does not possess differentiability. However, if the problem is of differential type,
the parameters can be chosen in a specific way and f“ can be made so as to share
the regularity of f. The parameter o present in f* can be adjusted to modify or
preserve the properties of the germ function f. The act of perturbing a continuous
function f to obtain the a-fractal function f* determines an operator, termed o-
fractal operator: 7% : C(I) — C(1); f +— f°.

Having obtained an operator, it is natural to query on its properties like linearity,
boundedness, invertibility, etc. Through a series of papers [5—10] Navascués and
group have studied several properties of the «-fractal operator F*, and extended
it to more general spaces like L,, 0 < p < oo. In particular, by considering the
F*-image of the most fundamental function class in C(/), namely, the space of all
polynomials, Navascués has defined the a-fractal polynomials. Subsequently, some
basic results including the approximation properties of the traditional polynomial
space are extended to the space of a-fractal polynomials. In spite of the difference
in smoothness property, a remarkable analogy between the space of traditional
polynomials and the space of «-fractal polynomials is observed.

The problem of approximation of given functions not by polynomials but by
more general rational functions is studied in the classical approximation theory.
The study of approximation by rational functions is carried out not merely as a
generalization of the problem of approximation by polynomials, but as a problem
involving larger resources than the other. Wide applicability of rational functions
may be attributed to their ability to accommodate a wider range of shapes than the
polynomial family, excellent asymptotic properties, capability to model complicated
structures, better interpolation properties, and excellent extrapolating powers. The
flexibility and versatility gained by extending the traditional polynomials to the
fractal polynomials motivates one to study the non-smooth fractal version of
the class of traditional rational functions. The current article intends to be a
contribution in this vein.

Following the procedure for defining the w«-fractal polynomials adapted in
reference [5], we define the o-fractal rational functions. Thus, the present article
may be viewed as a sequel to [5]. While the two papers share a natural kinship,
the reader will also discern a considerable degree of disparity between them. To be
precise, as in [5], the basic idea is to consider the F*-image of a classical function
class (here the class of rational functions) to obtain a new class of functions with
fractal characteristics (here the class of fractal rational functions). The Weierstrass
theorem for the fractal rational functions is proved exactly as in the case of the
fractal polynomials treated in [5]. Note that the fractal polynomial approximant
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for f € C(I) developed in [5] may not preserve “shape” properties of f.
In this article, we prove that a positive (nonnegative) continuous function can be
uniformly well approximated by a positive (nonnegative) fractal rational function.
Up to our knowledge, the aforementioned theorem is the first result of its kind that
invites fractal methodology to the field of shape-preserving approximation. Further,
in contrast to the fractal polynomials, the fractal rational functions allow the uniform
approximation of continuous functions defined on an infinite interval as well.

The rest of the material of this article is organized as follows. The following
section aims to set out the necessary preliminaries, while in Sect. 3 we introduce
the class of fractal rational functions. In Sect. 4, the Weierstrass theorem for the
fractal rational functions is developed. Further, the existence of a rational fractal
approximant that is copositive with a continuous function and the uniform rational
fractal approximation of a continuous function defined on an infinite interval are
enunciated. The theme of Sect. 5 is to establish the existence of a Schauder basis
consisting of fractal rational functions for C(/). In Sect. 6, a fractal version of the
Miintz theorem for the rational functions is proven.

2 Background and Preliminaries

In this section we shall reintroduce the notion of FIF, and define the corresponding
a-fractal operator which lay the requisite groundwork. Our sources for this material
are [2,4,5,7].

2.1 Rudiments of FIF Theory

Let x; < x3 < -+ < Xy, N > 2 be real numbers and I = [x,xy] be a
closed interval that contains them. Let a set of interpolation points {(x,, y,) : n =
1,2,...,N}begiven.Set J = {1,2,...,N — 1} and I,, = [x,, Xy+1], n € J. For
neJ,letL,: I — I, be contraction homeomorphisms such that:

Ly(x1) = x5, Ly(xy) = Xp41, n € J. (D

Let D be a large enough compactum in R and set K = I x D. Forn € J, let
F, : K — D be mappings satisfying:

Fu(x1,91) = Yns Fa(XN, YN) = Y1

, ned, (2)
|Fu(x,y) — Fo(x, y")| < |||y — y*]

where (x, y), (x,y*) € K,and 0 < |o,| < 1 foralln € J.
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Define W, (x,y) = (Ln(x), Fn(x,y)) for all n € J. It is known [2] that
there exists a metric on R?, equivalent to the Euclidean metric, with respect to
which W,, n € J, are contractions. The collection {K; W,,n € J} is termed
an Iterated Function System (IFS). On H(K), the set of all non-empty compact
subsets of K, endowed with the Hausdorff metric, define the set valued Hutchinson

map W(A) = |J W, (A). Then, W is a contraction map on the complete metric
neJ
space H(K). Thanks to the Banach Fixed Point Theorem, there exists a unique set

G € H(K) such that W(G) = G. This set G is termed the attractor or deterministic
fractal corresponding to the IFS {K; W,,n € J}. For any choices of L, and F,
satisfying the conditions prescribed in (1) and (2), the following theorem holds.

Theorem 2.1 (Barnsley [2]). The IFS {K;W,,n € J} defined above admits a
unique attractor G. Further, G is the graph of a continuous function g : I — R
which obeys g(x,) = y, forn =1,2,...,N.

The function g in Theorem 2.1 is called a FIF corresponding to the IFS
{K; W,,n € J}. The characterization of the graph of g by means of an IFS leads to
a recursive construction of g via the following functional equation:

g(x) = Fy(L,'(x),go L' (x)), x €1y, nel. 3)
The following special class of IFS is well-studied in the literature:

Ln(x) =dayx + bn
,neld, 4)
Fu(x,y) = any + gn(x)

where ¢, : I — R, n € J, are suitable continuous functions satisfying (2).
The multiplier «, is called a scaling factor of the transformation W, and o =
(a1, 00,...,ay—1) is the scale vector of the IFS. If ¢g,, n € J, are polynomials,
then the corresponding FIF is termed polynomial FIF [5]. In an analogous fashion,
in case gq,, n € J, are rational functions, we christen the corresponding FIF as
rational FIF.

2.2 «- Fractal Operator

Let f € C(I). In the IFS (4) we consider, in particular,

qn(x) = f o Ly(x) —ayb(x), (5)

where b : I — R is a continuous map that fulfills the conditions b(x;) =
yi = f(x1), b(xy) = yy = f(xy) and b # f. Here the set of data points is
{(xa, f(xn)) :n = 1,2,...,N}. In view of Theorem 2.1, the corresponding IFS
provides an attractor, which is the graph of a continuous function f* : I — R such
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that f*(x,) = f(x,),n = 1,2,..., N. This case is proposed by Barnsley [2] as a
“generalization” of a continuous function f. Often f¢ is nondifferentiable and its
graph has a noninteger Hausdorff-Besicovitch dimension. Whence, we can treat
as a “fractal generalization” of f.

In particular, we consider the case

b=Lf (6)

where L : C(I) — C(I) is an operator which is linear, and bounded with
respect to the uniform norm || f |0 := max {|f(x)| i X € I} on C([/) satisfying
Lf(x1) = f(x1), Lf(xy) = f(xn), L # Identity. In what follows, two
examples for such an operator are provided. Let us recall here that the operator
norm || LI} := sup{[|Lf oo : ./ lleo = 1}.

(1) Lf(x) = f(x)v(x), where v is continuous on I, v(x;) = v(xy) = 1,and v
is not identically equal to the constant function 1 defined by 1(x) = 1 for all
x € I.Inthiscase, |L|| < ||v|lco-

(2) Lf(x) = f oc (x), where c is a fixed continuous map satisfying c(x;) = xi,
c¢(xy) = xy and ¢ # Identity. Here | L|| = 1.

Definition 2.1. Let A : x| < xp < --+ < xy be a partition of I = [x;, xy]. A scale
vector associated with A is a vector « € (—=1,1)¥~!. Let ¢ be the continuous
function associated with the IFS (4)—(6). The map f“ is called a «-fractal function
associated with f with respect to L and the partition A. For a fixed partition A, a
scale vector «, and an operator L, the map f“ is unique. Further, in view of (3), /¢
satisfies the functional equation:

fO) = f) +an(f—Lf)o L (x) Vxel, nel. (7

Definition 2.2. The transformation which assigns f“ to the function f is called a
a-fractal operator denoted by Fy ; . That is,

Far:CU) = CU); FRp(f) =1 ®)

For brevity, we may suppress the dependence of F on A and L and denote F} ;
by F“.

The following properties of the fractal function f* and the «-fractal operator F*
can be read in the references [7, 8].

Theorem 2.2. Let |a|oo := max{|a,| : n € J}, and let 1; be the identity operator
onC(I).

(a) Forany f € C(I), the perturbation error || f* — floo < ‘““’0”1" Ll II.f oo

(b) The operator F* is linear and bounded with respect to the umform norm on
c).

(c) For|ot|eo < ||[L||7Y, F¥ is bounded below.
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(d) If |etloo < (14 |11a — L||)_1, F has a bounded inverse. Further, ||(F*)™!| <

1+|aloo
I=lafeo IL1"

3 «-Fractal Rational Functions

For k € N U {0}, let P, () be the set of polynomials of degree less than or equal
to k definedon 7, and P(I) = %{JPk(I). Let Rpyn (1) = {r = § :p€ePull),qc<

P.(I);q > 0on [ } be the set of all real-valued rational functions of type (m,n),
and R(I) = UR,,(1).
m.,n

Definition 3.1. Let A, L be as given in Sect. 2.2. An «-fractal rational function is an
element r* € C(I) such that there is a rational function r € R(I) with F*(r) = r*.
Denote R, (1) = F¢ (Rmn (I)) and R*(1) = F¢ (R(I)). Then, R* (1) represents
the class of all a-fractal functions associated with R(7), the family of rational
functions of arbitrary type. Since P(I) C R(I), it follows that the class of fractal
rational functions contains all fractal polynomials.

4 Weierstrass-Type Theorem for «-Fractal Rational
Functions

The celebrated Weierstrass approximation theorem states that continuous functions
on compact intervals can be uniformly approximated by algebraic polynomials.
More generally, we have the Stone—Weierstrass theorem which states: suppose X
is a compact Hausdorff space and A is a subalgebra of C(X) which contains a
non-zero constant function. Then, A is dense in C(X) if and only if it separates
points (i.e., for any two different points x and y in X there exists a function p
in A with p(x) # p(y)). The denseness of the class of rational functions in
C(I) can be deduced either by using the fact that polynomials, which are subsets
of rational functions, are dense in C(/) or by directly appealing to the Stone-
Weierstrass theorem. However, since the class of fractal rational functions defined
on / is not, in general, a subalgebra of C(/'), we cannot adapt the Stone—Weierstrass
theorem directly to obtain the denseness of fractal rational functions in C(7). Since
the fractal polynomials constitute a subset of the fractal rational functions, the
Weierstrass approximation theorem for the fractal rational functions in fact follows
from the Weierstrass theorem for the fractal polynomials. However, for the sake
of completeness and record we give an expanded rendition of the argument in
the following theorem. Our proof relies heavily on the machinery and methods
developed in [5] for establishing fractal polynomial analogue of the Weierstrass
theorem.
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Theorem 4.1. Suppose f is a continuous real valued function defined on a real
interval I. For every € > 0, any partition A of the interval with N points, and
for a bounded linear operator 1; # L : C(I) — C(I) satisfying Lf(x1) =
f(x1), Lf(xn) = f(xn), there exists an a- fractal rational function r® with
0#£ac¢€ RN-! generated via the IFS (4)—(6) such that

|f(x)—r“(x)| <€ forall x €.

Equivalently, || f — r*|lco < €.

Proof. Let € > 0 is given. By Stone—Weierstrass theorem it follows that there is a
rational function r € C(I) with

| £(x) = r(x)] < % forall x € I. )
For a partition A : x; < x5 < --- < xy of I, select 0 # « € RN=! such that
|o]oo < 1 and
|o| €
———|[lg =L Irlleo < - (10)
I —|o]oo 2

Now

/() = ()] = [f(x) = r()] + [r(x) = r(x)].
S 1) =r)+1r =1%o

||
< |1f) —r®)| + ———Ia = L I |0
1_Ic‘floo

<€ N €
—+ - =€

2 2
The first step in the preceding analysis used the triangle inequality, the second step
used the definition of uniform norm, and the third step borrowed Theorem 2.2(a).
The last two steps were consequent upon inequalities (9) and (10). O

Note4.1. Ifin Lf = f oc, ¢ # I is a rational function satisfying c¢(x;) = xi,
¢(xy) = xy, then the FIF r¢ is a rational FIF.

The following statement is a simple consequence of Theorem 4.1.
Theorem 4.2. The set of rational FIFs with non-null scale vector is dense in C(I).

In the following theorem we establish the denseness of a class of fractal functions
which is a proper subset of the one given in Theorem 4.2. We prove that one
single scale vector is sufficient to obtain a fractal rational function approximant
to a continuous function. Our proof is patterned after [8].
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Theorem 4.3. If |a|oo < (1 + |[1s — L)™', RE(I) is dense in C(I).

Proof. Let g € C(I). Since |a|oo < (1 + |14 — L||)_l, Theorem 2.2 (d) ensures
that there exists f € C(I) with F*(f) = g. For f in C(I), the Stone—Weierstrass
theorem implies the existence of a sequence of rational functions r, converging
uniformly to f. Boundedness of the operator F* now yields g = FY(f) =
F¥(limr,) = lim(ry), and with it the proof. O

Note 4.2. 1f |a|oo < (1+ |14 — L||)_l, then P*(1) € R*(I) is dense in C(I), and
consequently R¥([) is dense in C([).

The uniform fractal polynomial approximant for f € C(/) established in [5] and
the uniform fractal rational approximant for f € C(/) obtained in Theorem 4.1
may not respect the shape property of f. For some reasons, perhaps the physical
situation which r is intended to model, finding an approximant r from a prescribed
subset of C(I) to f € C(I) so as to inherit certain properties of f is always of
interest. We now describe a theorem in this direction which is the main offering of
the current section and which is expected to pave way to “shape preserving” fractal
approximants to a continuous function.

Theorem 4.4. Let f € C(I) be such that f(x) > 0 forall x € I. For any € > 0,
there exists a nonnegative a- fractal rational function r® with 0 # o € RN™!
generated through a suitable IFS such that || f — r®||eo < €.

Proof. Lete > 0 and f € C(I) be such that f(x) > 0 for all x € [. Consider
the IFS defined by (4)—(6). We assume further that the operator L involved in the
definition of the IFS fixes the constant function 1 defined by 1(x) = 1 forall x € I.
Thatis, L1 = 1.

First we prove that the a-fractal operator F¢ corresponding to L fixes the
function 1. From the functional equation of [ (cf. (7)) we obtain:

1/ = flleo = letlooll /* = L lloo-

Substituting f* = 1, the fixed point of L, the above inequality manifests:

1/ =1loo =< letfoollf* = Lllco-

Since 0 < |a|oo < 1, we see from the foregoing inequality that || f% — 1]e = 0.
Therefore the «-fractal function correspondingto f = 1is f* = 1. In other words,
1 is a fixed point of F*.
Fore > 0and f € C(I), Theorem 4.1 ensures the existence of a rational function
s and a scale vector 0 # « € RV~ for which s* = F%(s) satisfies || f —s*[loo < 5.
Define:

re(x) = s%(x) + % forall x € I.
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We note that
o o € o € o
ré(x) = s%(x) + El(x) =s5%(x) + 51 (x).
The linearity of the map F* stipulates:
=5 1% = F(s) 4 SFU(L) = F(s + 1),
2 2 2
Consequently, 7 is a fractal rational function, and satisfies
o o € € o € o
P = 870 5 = @)+ 5 510 = () 2 S0+ 5 = 15" = flleo 2 0.

The result follows from the triangle inequality ||/ — r%|lcc < |If — $*[loo +
Is* = 7|l 0o- O

Note 4.3. The operator L : C(I) — C(I) defined by Lf = f oc, where c is a
continuous map satisfying c¢(x;) = x, c(xy) = xy and ¢ # [, fixes all constant
functions, in particular, 1.

In the classical Weierstrass theorem on the uniform approximation of a continuous
function by algebraic polynomials, compactness of the interval plays a crucial
role. In fact, since no sequence of polynomials (with the exception of a stationary
sequence) can be uniformly convergent in an infinite interval, not a single function
other than a polynomial can be the limit of a uniformly convergent sequence of
such polynomials in an infinite interval. The position is quite different, if instead
of the polynomials as approximants on the infinite interval, use is made of the
traditional/fractal rational functions. It may be supposed that the infinite interval
is the whole real axis —oo < x < 4+00. We have the following proposition.

Proposition 4.1 ([13] p. 12). Let f be continuous on the whole real axis and has

the finite limit 111}[1 f(x) = k. For every € > 0 there exists a continuous rational
X—>T o0

Sunction r such that | f —1lleo < €.

Using the above proposition we shall establish the uniform approximation of
continuous functions on an infinite interval by fractal rational functions.

Theorem 4.5. Let f be a function continuous on the whole real axis such that

linI:l f(x) = k. For every € > 0 there exists a piecewise defined fractal rational
X—>T 00

Sfunction r® such that || f —r%|lco < €.

Proof. Let € > 0. By Proposition 4.1, there exists a continuous rational function r
such that:

€
Hf—ww<5. (11)

For this continuous rational function r : R — R, let r,, = r|[m 1) M € 7.

Choose a partition A, with N points on the interval [m, m + 1] and a scale vector
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0 # o™ € RV~ Now we can define a-fractal function of r,, as r&" = F*" (r,,) in
the interval [m, m+ 1]. Let us denote the bounded maps used in the definition of 7"
by L, : C[m,m + 1] — C[m, m + 1] and identity operator on C[m,m + 1] by 1,4,,.
Further, we assume that sup {||L|| : m € Z} = L* is finite. The fractal function

. . . . m . . .
of r is defined in a piecewise manner by r* i[m ] = ry, where o is an infinite

matrix whose rows are the scale vectors «”. Since r%" (m) = r,,(m) = r(m) for all
m € 7Z, it follows that the fractal function r“ is continuous on R.

Choose the scaling matrix o such that |¢|c = sup|a™|e is finite, and
meZ
%(1 + L*)|Ir[leo < 5. With the aid of a series of self-explanatory steps we

have
7% —rlloo = sup{|r°‘(x) —r(x)]:x e R},

= sup{|r2" (x) —r(x)| : x € [m,m + 1]},

meZ
o™ | oo

su l;, — L r ,

_melzl_lambo” d mll 7m lloo (12)
o

<M 4,

1 —|a|oo

€
< —.

2

Now the triangle inequality implies that
If =rl =< I1f = rlloo + 17 = rllco. (13)

and a combination of (11)—(13) completes the proof. O

5 Schauder Basis for C(I) Consisting of Fractal
Rational Functions

As a consequence of the Weierstrass theorem for the fractal rational functions
established in the previous section, we shall prove the existence of a Schauder basis
of fractal rational functions for C(/). Our idea for constructing a basis of fractal
rational functions stems from the well-known idea of a small perturbation argument.
As a prelude to the desired result, let us recall the following definitions and result.

Definition 5.1 ([3] p. 1). A sequence {x;}{2, in a Banach space (X, [I.1l) is called a
Schauder basis of X if for every x € X there is a unique sequence of scalars {a; }72,

o0
sothat x = ) a;x;. A basis {x;}?°, is called normalized if ||x;|| = 1 for all ;.
i=1
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Definition 5.2 ([3] p. 2). Let (X, |.||) be a Banach space with a basis {x;}{2,. The

o 1
projections P; : X — X defined by P; ( Zakxk) = Y agxy are linear operators
k=1
and sup | P;| < oo. The projections {P }l_ , are called the natural projections

assomated with {x;}$2; the number sup || P; || is called the basis constant of {x; }72,
i

Definition 5.3 ([3] p 5). Two bases {x;}2, and {yi}2, are called equivalent

provided a series Z a; x; converges if and only if Z a;y; converges.
i=1 i=1

Proposition 5.1 ([3] p. 5). Let {x;}{2, be a normalized basis of a Banach space X

o0
with basis constant K. Let {y; }?° | be a sequence of vectors in X with )_ || xi—yi | <
i=1

5+ Then, {y;}$2, is a basis of X which is equivalent to {x; }72,.
We are now well equipped to prove the desired theorem.
Theorem 5.1. There exists a Schauder basis of fractal rational functions in C(I).

Proof. Let {x;}?2, be a Schauder basis for C(/) consisting of the traditional rational
functions. The existence of such a basis is already established in the literature (see,
for instance, [12]). Assume further that the basis {x; }$2, is normalized and has the
basis constant K By Theorem 4.1, for each x; there exists a fractal rational function
rf‘i such that Z lx; —r? oo < Z 2l+11< = 5. Appealing to Proposition 5.1,
i=1
it follows that {r? }?il is a Schauder basis of fractal rational functions for C([).
Further, {r® }2° | is equivalent to {x;}?,. |

Recall that a subset A of a metric space (X, d) is said to be nowhere dense if its
closure has empty interior. Further, A is said to be of first category or meagre in X
if it is a union of countably many nowhere dense subsets and of second category or
nonmeagre in X if it is not of first category in X. It would be of interest to examine
the set R, (1) with respect to its Baire property, that is, whether it is first or second
category in C(I). The next remark addresses this for suitable values of the scaling
vector.

Remark 1. We know that R,,,(I) is of first category in C(/) endowed with the
uniform norm. In fact, the set of all continuous functions defined on / that are
differentiable at least at one point in [ is of first category. Since the property of
being first category is a topological invariant, for |a|e < (1 + |74 — L||)™", the set
R, (1) is of first category in C(I).
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6 Fractal Miintz Rational Functions

Recall that a set S is fundamental in a normed linear space X if the set of linear
combinations of elements of S is dense in X. The classical Miintz theorem says
that for a sequence A := {4;}72, with0 = Ay < A1 < A, < ..., the Miintz space

M(A) = Span{x*, x*1, ... }isdensein C[0, 1] if and only if Z 7, = 00. By taking

A; = i we can recover the classical Weierstrass theorem on [0 1], which states
simply that {1, x,x2,...} is fundamental in C[0, 1]. Furthermore, Miintz theorem
is all the more 1nterest1ng because it traces a 10g1cal connectlon between two

apparently unrelated facts: the fundamentality of {1, x, x2, ...} and the divergence
o0

of the reciprocal exponents ) ’l In fact, if we wish to delete functions from this
set whilst maintaining its fuhdgmentality, this divergence is precisely the property
that must be preserved. We would like to remark that the point O is special in the
study of Miintz spaces. Even replacing [0, 1] by an interval [a, b] C [0, oo) in Miintz
theorem is a nontrivial issue.

Concerning the rational case, it has been proved that (see, for instance, [1])
R(A) == {§ 1 p.q € M(A)g # 0} is always dense in C[0, 1]. This surprising result
says that while the set M (A) of Miintz polynomials may be far from dense, the set
R(A) of Miintz rationals is always dense in C[0, 1], no matter what the underlying
sequence A. In words of Newmann [11]: “apparently, rational functions always
want to be dense. There is something magical about performing that one division.”

Next theorem addresses the fractal version of the Miintz theorem concerning the
rational case.

Theorem 6.1. Ler f € C[0, 1] be given. For all € > 0, there exists afractal Miintz

Z Bix*i
, such that

rational function r* = F*(r), where 0 # a € RN and r(x) =
Z Yix x*

i=0
[f =r%lloo <€
Proof. Lete > 0.For f € CJ0, 1], it is known [1] that there exists a Miintz rational
M
Y Bixti
function r(x) = =%— such that:
Z Yi xhi
=0

| f(x) = r(x)] < % for all x € [0, 1. (14)

For a partition A : 0 = x; < xp < --- < xy = 1, we choose ¢ € RV« #0
such that |¢¢|eo < 1 and

|| €
—2 I = L] |Irleo < =- (15)
1 — oo 2
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With the aforementioned choice of partition and scale vector, let r* = F*(r).
The norm estimate || f — r%|loo can be now derived exactly as we did in
Theorem 4.1; the details follow strictly anticipated lines and are therefore omitted.
O

A conclusion is that the theory of approximation by rational functions can be
extended to the fractal rational functions through the o-fractal operator. Further,
this new class of functions shares many of the properties such as denseness in C(/)
and constitution of bases for C(I) with its classical counterpart, while differs in
some others, for instance, the smoothness of the elements in the class. In general,
the article intends to be a small step forward in the knowledge of fractal functions
from the perspective of approximation theory by taking class of rational functions
as a medium.

Let us round off the paper with a few remarks. The fact that P (/) is a finite
dimensional linear space ensures the existence of a best approximant from Py (1)
to f € C(I). That is, there exists a p** € Py(I) such that ||/ — p** | =
inf{||f — Pl : p¥ € 732‘(1)}, in other words PJ (/) is an existence set. On
the contrary, the set R, (/) of all a-fractal rational functions of type (m,n) is
not linear space. As a consequence, the following questions arise: is R, (/) an
existence set? In case R, (/) is an existence set, whether the corresponding best
approximation operator (possibly a multifunction) is continuous? To keep the size
of this article within reasonable limits we have not been able to include the answers
for these questions that naturally arise. We shall return to these questions elsewhere.
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Part 111
Applications of Fractals and Wavelets



Innovation on the Tortuous Path: Fractal
Electronics

Nathan Cohen

Abstract We describe the innovation environment that has limited the onset of
innovations in technology, choosing as an example the use of fractals in electronics.
There is a considerable time delay between the production of these innovations and
their widespread implementation with end-users; this delay is typical in innovation;
underlying and predictable pitfalls in the adoption process are inherent to the
progress of innovation through a “tortuous path.” The paradox of rapid adoption
in pure science and math versus delay in practical applications should be considered
a normal aspect of innovation in fractal technology.

Keywords Innovation * Fractal antennas ¢ Tortuous path ¢ Hibervation

1 Introduction: Understanding Innovation

Innovation has always been a major contributor to the world economy, based upon
the needs of efficiency, low cost, and increasing functionality of processes. It is
this long-term acculturation to innovation that has allowed U.S. President Obama
to assert that the USA is an “innovation economy” [1], and this has in turn set
an example for a global interest and emphasis on innovation, presumably for the
progress of nations.

However, little is understood about the innovation process as it progresses to the
end-user, particularly from the innovator’s point of view. A working contemporary
hypothesis is the notion that innovation succeeds through “disruption,” whereby
standard processes are usurped by usually unanticipated innovations, that first
manifest as lower performance drivers in smaller markets outside those of the
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larger and economically dominant ones [2]. In fact, most key innovations have
not been accepted through disruption, including such obvious ones as: airplanes;
automobiles; wireless and radio; printing; and so on. Such key innovations were
dramatic departures from anything remotely similar and they entered key markets
with no “bootstrap” through smaller ones. Disruption clearly has importance as a
solution to getting the innovation to a dominant set of end-users. However it is not
an all-inclusive explanation that defines innovation’s path to success, nor does it
explain why there exist impediments to reaching the end-user. Rather, disruption
appears as a mechanism for innovation to gather niche end-users until the innovation
passes to a mere improvement of the innovation, when it then can tackle existing
market leaders at their own game.

A further failure of disruption is it does not account for how innovations
themselves can fail, only to come back later, thus leading to the staggering and
common euphemism of “a technology before its time.” Does the lack of immediate
adoption of an innovation indicate its inherent folly? Finally, the theory of disruption
has been primarily used as a means of understanding how large companies get
unexpectedly toppled by outside innovation, as opposed to the perspective presented
here, where the issue of how innovators get their innovations to the end-user, and
what impedes that process.

In the context of fractals, despite wide acceptance in science and math, technol-
ogy in hardware has been lacking. Why has this occurred and what is the outcome
of innovation using fractals? Here, these issues will be addressed by defining the
problems inherent to innovation adoption, and presentation of examples in fractals
in electronics.

2 A Summary of Innovation and Aspects of Innovators

It is important to define innovation and the characteristics of innovators in order to
explore this path to innovation acceptance, particularly with this example of fractals
in electronics. A more detailed discussion of this path will be found elsewhere [3].
And although there are always exceptions to generalized attributes, such attributes
will be enumerated here for a commonality of definition and description.

Starting with innovation, the following definitions and attributes will be used:

e IMPROVEMENT is a process change that follows as slight variation of the
existing art based on feedback from the end-users of the process. It is a
reductionist, incremental change built upon a conventional existing process
structure;

e INNOVATION is a process change that takes the state of the art well beyond an
incremental improvement;

e INNOVATION is not reductionist, it is a jump that does not follow obviously from
the existing art.
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The dynamic between improvement and innovation is the driving force
controlling if and when actual innovative processes get accepted and adopted by
end-users. Improvement, with some exception, is the domain of extant technologies
and their champions (companies; end-users; non-profits’ governments; and so on)
while innovation occurs from outside the arenas that are improvement-driven.

U.S. domination of innovation, at least historically, is squarely manifest by the
enabling of personal traits of the innovators which historically may not have been
tolerated, let alone encouraged, in other cultural or political contexts. As such, a
profile of innovators [3], while encompassing diversity beyond these generalities,
includes a commonality of some key characteristics:

e INNOVATORS MAKE CONNECTIONS—they see the process as being flawed
and incomplete and see unrelated processes from outside the art, and bring them
together;

e INNOVATORS ARE THE “WRONG” PEOPLE—they are bit players inside the
art or come from outside of it. Oftentimes they view the art themselves without
being inculcated into it by its peers. Innovators are (at first) not “leaders in
the field”;

e INNOVATORS ARE END-USERS—They use the process and understand it well
and want to use it differently;

e INNOVATORS ARE SOLO, OR IN SMALL GROUPS—the steps leading the
innovation are not generally a group assemblage;

e INNOVATORS HAVE A NEED—They are interested in how others use the
process, but they themselves feel the process “just has to be a lot better” for
their own use;

* INNOVATORS SELDOM AT/STAY WITH LARGE COMPANIES—their innova-
tion gets no development internally at large companies because it is “off focus”
and any IP dies or gets sold;

e INNOVATORS ARE “KNOW IT ALL’s”—they have an encyclopedic knowledge
of many subjects that extend far being the knowledge related to the process. They
are more “generalists” than “experts”;

o INNOVATORS ARE NAIVE—they do not know about the obstacles to improve-
ment in the state of the art and assume the effort will be minor, and the value lies
in the innovation; they assume the innovation will be obvious in benefit to others,
and that other end-users will want it as much as they do.

Innovators are thus driven to solve problems that they have with the extant pro-
cess, finding it inadequate and produce far more advanced processes as innovation.
Their emphasis is on the solution rather than the effort and method of reaching
the other end-users. Innovators thus misjudge the effort needed, and the dangers
inherent, to the path to the end-users. This becomes the key factor in whether
innovations become adopted by the processes they enhance or replace.
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3 The Tortuous Path

While some innovations require a great deal of money and time to bring the
innovation to reality, most innovators are able to bring the innovation to fruition
with modest to moderate resources. Many would-be innovators assume that the
need for such resources is the entry barrier to acceptance to innovation. The barrier
to acceptance, however, is not the availability of resources, but distinct classes
of deleterious conditions, or pitfalls that transpire externally, that metaphorically
comprise a “tortuous path.” This tortuous path is the process of getting the
innovation to, adopted by, a large end-user base. It is this tortuous path that kills
most innovations during the period of interest or existence of the innovator.

The tortuous path is defined and constricted by the fact that very few innovations
come about without some extant process or technology which dominates in achiev-
ing end-user needs. To wit: There is already a squatter in the territory. For example,
the innovation of electric lighting eventually replaced arc and oil lamp lighting; cars
replaced horse driven transportation; radio replaced wired telegraphy [4]. Because
these processes already possessed vast end-users, work forces dependent upon their
existence; and companies and governments that depend on continued use of the
process, albeit with some opportunity of improvement, innovations are not met with
great interest or desire for implantation of change. In fact, quite the opposite: the
convention is to thwart the innovation.

Surprisingly, these efforts to thwart innovation—pitfalls on the tortuous path—
are neither arbitrary nor so nebulous as to avoid categorization. They all share the
ability to stop innovation, at least for the innovators themselves.

Some key pitfall categories include:

¢ “Cinderella Syndrome” (FAIL-FAST)—Investors are a key factor in thwarting
innovation by demanding its success with end-users in very short time periods,
often as little as 2 years. Analogous to Cinderella returning to her humble roots
by midnight, this is called the “Cinderella syndrome,” also known as “Fail-
Fast.” By example, as over 90 % of venture capital investments fail from the
“Cinderella syndrome” VCs appear poor at choosing innovations with rapid time
to market acceptance (RTMA) over the short time scale they defined for return
on investment (ROI).

* Fear Factor Catastrophies—This tortuous path pitfall has become so ingrained
in American culture that few remember times when it was rare. Here, a
competitor(s) or competitive champion takes an innovation and demonstrates an
apparent high risk or danger that stresses the disadvantage to the innovation.
The fact that ALL innovations have some small risk is not discussed: instead the
notion of “fear of use” is driven by an accident (often staged) that causes damage
using the innovation.

* Patent Napping—The objective of patents is to secure time-limited rights on
exclusivity to make, use, offer, and sell an inventive innovation. Ironically,
patents can and are used (in many cases) to “sleep” innovation so that the
competitors cannot step in, and the owner can continue with existing offerings
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without being usurped by the innovation. Patent napping is also unintentionally
done by patent offices who can take extraordinarily long execution times in
deciding novelty, creating uncertainty on the part of the innovator to push the
innovation forward.

» “Statis Buy-out” by large company—here, a large company buys out the
innovation or the company who owns it, and then summarily stops its competitive
progress by freezing its progress or not taking it to market.

* Paradigm Killers—Leaders in field give innovation a “kiss off.” An “Endorse-
ment of the status Quo.”

o “Statis Buy-in”—is similar to the buy-out, but the large company makes a
partnership with the innovator, who buys-in, but no execution to market occurs
for the innovation.

e Sirens of Titan—Disinformation and defamation are spread in media for
“reasonable cause for doubt.” Intent is to erode credibility of the innovation and
the innovator.

The effect of these tortuous path pitfalls is to slow down, stop, or kill the
innovation for the innovators, long before the ultimate reach and decision by end-
users is even possible.

Oddly, most innovations may die for the innovators, but as contracts and patents
expire, as memory fades, and as corporate priorities change, the innovation goes
out of hibernation—that is “hibervation”—and are resurrected by totally different
groups than the innovators.

The time scales [3] may be quite long; hibervation is typically from 10 to 30
years. A large percent of modern innovations went through a hibervation period.
This is an important point: most innovations do not die, but only appear to be dead
for a period of time after the creation of the innovation.

4 Quick Review of Fractal Electronics

It seems puzzling that applications of fractals should be limited in acceptance
despite their ubiquity in nature [5]. In the context of the tortuous path, it is
enlightening to view an important applied segment of applied fractals in electronics.

In Table 1, several examples of the deliberate and intentional use of fractal
shaping in electronics are given. They include some (otherwise) standard electronic
components, such as transistors, and antennas. Resonators are a generic term for a
tuned circuit and include filters. Notice the year of the innovation’s start and a brief
benefit.

The list is short but select: each of these innovations has been rendered to utility;
poses clear benefits over the existing art; and may ultimately be dominant in the
fields and markets so intended. Figures 1 and 2 show several examples of the above.
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Table 1 Fractal electronic innovations

Device Year References Benefits description

Antenna 1988 [6] Smaller size, broader bands
Resonator 1988 [6] Smaller size, broader bands
Capacitor 1998 [7] Greater capacitance
Transistor 1998 [8] Greater power handling
Diplexer 2009 [9] Greater bandwidth, efficiency
Invisibility cloak 2008 [10] Harry Potter effect

a2 33
27— o —28
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=
FIG 10

Fig. 1 Fractal transistor, and fractal capacitor (see [8] and [7]—(courtesy Michael Frame Yale
University))

Fig. 2 Fractal antenna, cloak, and resonators (courtesy author)

The inspiration for all these devices appears to start with the application of
fractals to antennas [6]. All share the benefit of fractals making smaller sized
components based on greater perimeters in a given area, or areas in a given volume.
None of them are difficult to fabricate; more expensive to make; and so on. Yet only
one on the list could be considered, now, a successful innovation: fractal antennas.
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Table 2 Emergence from Hibervation

Device Year Hibervation period
Antenna 2008 20 years
Resonator - 25+ years
Capacitor - 16+ years
Transistor - 16+ years
Diplexer - 4+ years
Invisibility cloak - 6+ years

You cannot buy an electronic gadget loaded with fractal transistors; you cannot buy a
power storage device using a fractal capacitor. These useful devices are in-waiting.
They are in hibervation. Indeed, we can track the hibervation time scales. This is
listed in Table 2, with the year of general use, and the hibervation period to date.

In other words, there is a wealth of valuable fractal based technology in
electronics which has yet to be used on a large scale, based upon the hibervation
periods shown from Table 2.

5 Discussion

A small data sample may define a trend, but does not prove it. Still, the devices of
Tables 1 and 2 tell some important stories.

For example, fractal antennas and fractal resonators were created as innovations
at the same time, patent applied for at the same time, and published at the same
time, by the author as innovator. For fractal antennas, the author responded to many
of the pitfalls described, but through persistence and fact, finally saw innovation
acceptance, with substantial commercial application, by 2008.

In contrast, fractal resonators were clearly placed into a patent-nap, via dilatory
prosecution at the patent office: 12 years transpired for issuance. This created
a dilemma whereby the innovator was incapable of pushing for product level
applications, as there was no assurance of the holder of the technology. By 2009, the
first step in acceptance of fractal resonators—an entire book [11] on the subject—
occurred, more than 20 years from creation. An increasing number of scientific
papers on fractal resonators may signal the inchoate emergence from hibervation.
The innovator (author) is now identifying niches of use for market products, that is,
a disruptive strategy, to overcome the prolonged hibervation.

In a curious way, the comparison of the story of fractal antennas and fractal
resonators reveals that a key distinction in the navigation of the tortuous path must
be the innovator fighting off the pitfalls. No innovator navigating, and battling the
pitfalls, means no traveling to the destination. Thus the fractal resonators acted as a
“control” in an innovation experiment on the tortuous path, demonstrating that the
innovator must push through the tortuous path for acceptance of the innovation.
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For the fractal transistor, it is unusual that the technology has not entered the
market place. This may be an additional case of patent-napping by the patent holder;
Fairchild Semiconductor, the patent holder, does not have any products with fractal
transistors, despite the patent claims of distinct and unique advantages.

For fractal capacitors, the “sirens” may be preventing cautious acceptance of
the premise, or the paradigm killers may be maintaining the status quo. Clearly
there is some aspect of the Cinderella syndrome occurring. Also, efforts by the
author to discover the hibervation issue suggested a stasis buy-in by some research
groups with corporate sponsors, but such efforts are not recent. Indeed, the patent on
fractal capacitors has lapsed due to non-payment of maintenance fees (see US patent
6084285) so Cinderella has passed the striking of midnight for the innovators. The
basic innovation of fractal capacitors is thus available to any and all parties. There
is clearly a demonstrable need for capacitors and supercapacitors with higher power
storage and higher voltage breakdown. This may be a case where disruption will be
invoked to get the stasis overcome and to establish an initial niche for use.

Diplexers are still too new to have moved out of a possible hibervation stage.
Invisibility cloaks, despite working as advertised, are well on their way to fighting
tortuous path pitfalls and are ongoing.

6 Conclusions

The value of fractals may be self-evident, but accepted fractal innovation, as filtered
by the tortuous path, should not be expected to occur for roughly a generation.
Although this bodes well for future fractal technology, great caution should be
practiced in assumptions about rejection at the present time. To wit: “if fractals are
so good, then why aren’t people using them”? The answer is clear: Some are and
some will.
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Abstract Permutation Entropy (PE) statistic is a measure of self-similarity of the
time series estimated from its ordinal patterns. This measure is used to detect the
dynamical differences between patients with mild cognitive impairment (MCI) and
normal controls. The comparison of PE values of Electroencephalograph (EEG) of
the two groups in the resting eyes closed (EC) state and the short-term memory
task (STM) state reveals altered efficiency of the different lobes of MCI brain in the
compensational dynamical mechanism for task management. In resting EC state,
PE values of MCI group is significantly (p £0.05) lower than that of controls in the
frontal, temporal, and anterior parietal regions. In the STM task state, entropy levels
of MCI group are significantly (p£0.05) lower than that of controls in the frontal
region and the left parietal region. These findings suggest that nonlinear analysis
of EEG using PE can provide important information about EEG characteristic of
cognitively impaired condition that can lead to Alzheimer’s Disease(AD).
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1 Introduction

Alzheimer’s Disease (AD), the most common form of dementia, is a neurodegen-
erative disorder that affects mainly the aged population [14]. The disease course
is characterized by initial mild memory disturbance followed by gradual global
loss of cognition. MCI is a condition with memory problems greater than normal
elderly, but do not fulfill the criteria for clinically probable AD. MCI subjects are at
increased risk of developing AD ranging from 1-25 % per year [10]. Preclinical
discrimination between MCI and normal subjects demands much attention, for
once a subject is diagnosed for MCI and does not present with any features of
AD, the onset of AD could be prevented successfully. A combination of extensive
psychological and physiological tests as well as expensive imaging techniques are
generally employed for the diagnosis of AD. EEG being a noninvasive and relatively
inexpensive technique, several research initiatives have been taken up for studying
the effectiveness of EEG analysis in AD diagnosis.

AD is expected to often produce characteristic changes in EEG as it is a
form of cortical dementia. Linear techniques of spectral analysis have identified
characteristic features of AD as decreased mean frequency and coherence [13, 18]
which are found to be associated with the severity of disease. Investigations on
the EEG band powers of MCI subjects have revealed significant increase in delta
and theta power and decrease in alpha power of MCI EEG compared to controls
[2, 3]. EEG analysis of MCI and controls during memory activation state has
revealed less decrease in the lower alpha band power of MCI than controls [21].
The coherence between spectral bands of EEG of MCI subjects is found to be
greater than that of controls during working memory task [24] indicating increased
coordination between the cortical regions. Similar results are observed from the
analysis of MCI EEG using synchronization likelihood [16]. However, no significant
difference in synchronization likelihood was observed between these groups in
resting condition [20].

Dynamics of brain is highly complex, involving large number of interrelated
variables and their nonlinear interactions, which makes EEG highly nonlinear and
nonstationary in nature. Therefore suitable advanced signal processing techniques
are required for its analysis and with this aim nonlinear dynamical analysis has
been widely used to study the complex nature of EEG. The basis of nonlinear time
series analysis is delay reconstruction which involves the conversion of a scalar time
series into vectors of the state space with appropriate embedding dimension [11].
The evolution of these vectors will represent the state space trajectory of the
dynamical system which may be attracted to a subspace called the attractor.
Most nonlinear techniques depend on analysis and characterization of the attractor
properties to study the underlying dynamics of the system. Several algorithms
have been proposed for the computation of characteristic invariant measures of
the attractor. Conventional nonlinear measures like correlation dimension and
Lyapunov exponent have revealed reduced complexity of AD EEG compared to
that of controls [9, 23]. These conventional measures have the drawback of being
sensitive to nonstationarity, noise contamination, and short data which reduces its
applicability for analysis of real-world signals.
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For better practical applicability, new techniques have been developed in the
recent years which are suitable for the analysis and detection of dynamical
changes from short noisy time series [1, 6]. Entropy is one such measure which
estimates the complexity or predictability of a system from real-world time series
[1,4,6,17]. Results of the existing studies on EEG signals of AD patients using such
measures have identified lowered entropy values indicating lowered complexity
or flexibility for information processing and transmission [1, 7, 8, 19]. Multi-scale
entropy analysis has revealed scale discrepancies in MCI EEG as characteristic
feature [15]. However, multi-scale entropy analysis provides a set of values for each
time series under study which necessitates further parameterization for statistical
analysis of participant groups. New improved measures like PE are found to be
advantageous in terms of simplicity, fast calculation, efficiency, and robustness
against nonstationarity and noise contamination of the signals. PE estimates the self-
similarity of the time series based on the occurrence of order patterns in it [4, 6].
However, the effectiveness of such measures in characterizing cognitive deficit
conditions is not widely studied.

In this study, we focus on nonlinear analysis of the dynamical aspects of MCI
EEG during short-term memory (STM) task using PE. In the higher order cortical
function, memory acts as a slave in the hierarchy. When memory gets affected,
cognitive skills will also get affected, thus disabling the smooth performance of
executive functions. When these functional disabilities are severe enough to inter-
fere with everyday functioning, the patient is said to suffer from a dementing illness.
Mild cognitive impairment (MCI) causes a slight but noticeable and measurable
decline in cognitive abilities, including memory and thinking skills. STM being
the first to get affected in early stages of dementia, it is important to decipher
the dynamical aspects of MCI EEG during STM task and study the characteristic
differences between control and MCI EEG. Most of the current studies on MCI
EEG are conducted in resting eyes closed (EC) condition [2, 3]. Studies conducted
on EEG of MCI subjects during working memory task have suggested the presence
of compensatory processes in MCI which enhances the EEG coherence [16,21,24].
Here we aim to study the characteristic difference in the dynamics of EEG signals
between control and MCI during STM task from the difference in PE of these
groups.

2 Methods

2.1 Subjects

Fifteen controls and 12 MCI patients participated in this study. All subjects
underwent thorough evaluation including clinical history, physical and neurological
examination, and folstien mini mental state examination (MMSE) test. MMSE is
a simple and quick test to evaluate cognitive dysfunction. MCI group consists of



398 L.T. Timothy et al.

seven male and five female right-handed subject with mean age of 67.1 & 7.8 years.
The mean MMSE score of the MCI group is 26.3 & 1.4. The control group consisted
of 15 age matched right-handed controls (nine male and six female) with mean age
65.7 &+ 6.0 years. None of the controls have any neurological disorders. All control
subjects have MMSE score of 30 and are volunteers who gave informed written
consent to participate in the study. Care-givers of patients also gave informed written
consent of participation of their wards in the study.

2.2 Experimental Protocol

EEG background activity of the control and MCI subjects are recorded under two
different cognitive states viz. (1) eyes closed (EC) (2) short-term memory task
(STM). During both task states participants are seated in an armchair in a semi
reclined fixed position to avoid muscle movements. They are also instructed to relax
as much as possible and avoid eye ball movements. Initially, after giving a brief
demo of memory activation task, 5min of EEG recording is acquired when the
subjects are in resting EC state. Giving an intertask interval of 60 s, the audio track
of a small story narration is played back through head phones while the subjects
are in EC state. After this, ten different questions based on the story are asked in a
monotonous tone with 10 s gap while the subjects are still in the EC condition. The
subjects are instructed to give the answer in this gap. This is repeated for two more
stories giving 60 s gap between each story allowing them to relax.

2.3 EEG Recording

EEG are recorded from 19 electrode sites according to the international 10-20
system, with electrodes referenced to linked ear lobes. EEG are recorded using
Neurocare Digital Wingraph EEG system with sampling frequency of 128 Hz and
16 bit A to D conversion. The recorded EEG is digitally filtered with a band pass
filter of cut-off frequencies at 0.4 and 60 Hz.

2.4 Data Analysis

All EEG are visually inspected by a specialist physician for eye movement and
muscle artifacts. Artifact free epochs of 10s duration are chosen from all the
electrodes simultaneously and stored in a PC for further off-line analysis using PE.
Average value of PE of all the epochs for each of these channels is calculated for
the analysis. As the fronto-polar channels FP1and FP2 are the most affected ones
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by even eye-ball movements, these two channels are not included in the study and
only artifact free epochs from the channels F3, F4, F7, F8, T3,T4, TS, T6, C3, C4,
P3, P4, O1 and O2 are used for analysis.

Computation of PE is based on comparison of neighbouring values in the time
series of any dynamical variable of a system. According to the embedding theorem,

[7e L}

any arbitrary time series X = {xj,x, ...,xr} can be mapped on to an “n
dimensional space with vectors X; = {x;, Xi ¢, Xi42c. - - . . Xi4(u—1)c | Where “n” is
the embedding dimension and “t” is the delay time for embedding calculated using
appropriate methods like false nearest neighbour calculation and first minimum
of autocorrelation function [16]. For any arbitrary vector X;, the components are
n number of real values of the time series {X;, X/ 47, X427, ... X 4@u—1)c} from
time instant “¢” to “¢ + (n — 1)t”. Assuming 7 = 1 [4], each point in the
“n” dimensional space represented by its corresponding vector will therefore be
equivalent to a short sequence of the time series consisting of “n” number of
real values as {x,, Xils Xt425 e e ,x,+(,,_1)}. If the components of each vector are
arranged in ascending order, it will represent a pattern of evolution. Thus each of
the vectors can be considered as a symbolic sequence which will be one of the n!
possible permutations of “n” distinct symbols. The probability distribution of each
pattern 7 can be represented as
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PE of order n > 2 is defined as the Shannon entropy of the n! patterns or
symbolic sequences and can be written as

H(n) ==Y p(m)logp(r) )

where the sum runs over all n! permutations or sequences. H(n) lies between 0
and /og(n!). For increasing or decreasing sequence of values, H(n) = 0, whereas
for random series where all n! possible permutations appear with same probability,
H(n) = log(n!). For a time series representing some dynamics, H(n) < log(n!).
Therefore, normalised PE per symbol of order “n” is given by H(n)/log(n!). Thus
PE characterizes the system dynamics, with low values indicating regular behaviour.
Any change in PE value will thus represent a change in irregularity in the dynamics
of the system.

2.5 Statistical Analysis

SPSS for windows is used for statistical analysis. Differences in permutation entropy
between MCI patients and normal controls are analysed on each cognitive state
using One-Way ANOVA. Separate ANOVAs are conducted for each of the different
electrodes.
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3 Results

EEG data of the control and MCI groups are analysed using PE of order 5 and delay
5 for the artifact-free epochs of the channels F3, F4, F7, F§, T3,T4, TS, T6, C3,
C4, P3, P4, Ol and O2. PE values are averaged for the artifact-free epochs of these
channels.

PE analysis is carried out concentrating on the four lobes (1) Frontal represented
by F3, F4, F7, F8 (2) Temporal by T3,T4, TS, T6 (3) Parietal by C3, C4, P3, P4 and
(4) Occipital by O1 and O2. Analysis is carried out in two different cognitive states
(1) resting eyes closed (EC) (2) short-term memory task (STM).

3.1 Resting EC Condition

Figure 1 shows the PE values of the frontal channels F3, F4, F7 and F8 during resting
EC state. Similarly Fig.2 shows the PE values of temporal channels T3,T4, T5, T6
of the above groups for the EC state and Fig. 3 shows that of the parietal channels
C3, C4, P3, P4 and occipital channels O1 and O2. In the resting EC condition, the
PE values of MCI subjects are found to be lower than that of controls in all the lobes.
From these figures it can be observed that the PE of MCI group is globally lower
than that of controls. Statistical analysis performed on the PE values of the different
channels shows significant difference (P £0.05) between MCI and control groups
in all channels except P3, P4, O1 and O2. This result suggests that EEG activity of
MCI patients have lowered complexity than that of controls in all the lobes except
posterior parietal and occipital regions indicating lowered flexibility for information
processing and transmission in the MCI stage also.
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Fig. 1 PE values for control and MCI for frontal channels under EC state
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Fig. 2 PE values for control and MCI for temporal channels under EC state
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Fig. 3 PE values for control and MCI for parietal and occipital channels under EC state

3.2 Short-Term Memory Task

To study the dynamical aspects of MCI EEG and for its effective differentiation
from that of controls, PE analysis is carried out during short-term memory (STM)
task of story recollection in both groups. Figure 4 shows the PE values of the frontal
channels F3, F4, F7, F8 of the control and MCI groups during STM state. Similarly
Fig. 5 shows the PE values of the temporal channels T3, T4, T5, T6 and Fig. 6 that
of parietal and occipital channels C3, C4, P3, P4, O1 and O2 of the above groups for
the STM state. In this state of short-term memory recollection also, the entropy level
of MCI group is found to be globally lower than that of controls. Statistical analysis
is carried out on the PE values of each of the channels. Significant difference
(pZ£0.05) between the PE values of control and MCI groups is observed in all the
frontal channels. In the case of parietal channels significant differences (p £0.05) is
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Fig. 5 PE values for control and MCI for temporal channels under STM state

observed only in the left channels of C3 and P. The right parietal channels do not
show significant differences (p£0.05) between MCI and control groups. Also, no
significant difference (p £0.05) is observed in any of the temporal channels between
the MCI and control groups.

4 Discussion and Conclusion

EEG data of 15 controls and 12 MCI are analysed using PE of order 5 and delay
5 in two different cognitive states of resting EC and STM task conditions. PE is a
complexity measure suitable for application to practical EEG monitoring systems
as it is computationally simple and efficient and robust to artifacts [4].
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Fig. 6 PE values for control and MCI for parietal and occipital channels under STM state

The results of our analysis show that PE can effectively bring out the dynamical
characteristics of MCI EEG. From the PE analysis carried out on resting EEG
of control and MCI subjects, it is found that the complexity of MCI EEG is
significantly lower than that of controls in all the channels of the frontal, temporal,
and the anterior parietal regions. This confirms the findings of lowered complexity
or increased regularity of MCI EEG [15]. No significant lowering of PE is observed
in the occipital channels and the posterior parietal channels. Lack of any clear
distinction between control and MCI group in the occipital region can be due to
the fact that this lobe is involved in visual processing and in the resting EC state this
region is not encountered with any task demand. However, the observed significant
difference (p £0.05) between the MCI and control EEG in the frontal, temporal, and
the anterior parietal channels indicate that even in this task free resting EC condition,
the different cortical regions are working in different activation levels. Therefore it
can be concluded that more effective differentiation between the control and MCI
EEG can be obtained during specific cognitive task states.

The results of PE analysis under STM task state shows significant difference
(p£0.05) between MCI and control groups only in the frontal and left parietal
channels. In contrast to the resting EC condition, no significant difference (p £0.05)
is observed in any of the temporal channels in the STM task state. This indicates
that when the MCI brain is given a task to recollect the recently acquired memory,
the temporal lobes are able to get activated to cope with the task demand. However
the frontal channels of MCI group show significant difference (p £0.05) from that
of controls indicating lack of enough activation during such a task demand. This
lack of activation of the frontal lobe even during a task demand indicates the lack of
attention effected by the inefficient compensational mechanism in the frontal lobe of
MCI brain. Thus, in addition to the presence of compensational mechanism, another
important feature of altered efficiency of compensational mechanism in different
lobes of MCI EEG is also revealed from the PE analysis. In the case of parietal lobe
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also, no significant difference (p £0.05) is observed between the MCI and control
groups in the right channels C4 and P4. This indicates that the right hemisphere of
the parietal lobe is also able to perform fairly well. The left parietal channels show
significant differences (p £0.05) between controls and MCI group during the STM
task demand. This also points towards the altered efficiency in the compensational
mechanism exhibited by different lobes and their hemispheres of the MCI brain.

The damage or reduced efficiency of information processing resulting from
the connectional disturbances and/or localized damage is more evidenced in the
dominant hemisphere of the brain. In our study, all the participants are right-handed
persons and this suggests that both the control and MCI groups are comprised of
left hemisphere dominant subjects. As no preferential dominance of a particular
hemisphere is observed between the lobes during the resting EC state, this result
of lack of activation of left parietal region signifies the importance of dominant
hemisphere and its role in task management. Further studies on other groups with
right hemisphere dominant subjects under the same task condition is necessary to
clearly distinguish whether this is due to preferential damage to the left parietal lobe
or due to the effect of dominant hemisphere in revealing the cortical atrophy. Parietal
lobe acts as the site of multimodal afferent integration centre for the different
inputs like sensory, auditory, etc. In recent studies it is found that inferior parietal
lobe lesions are associated with STM loss and non-dominant parietal lobe lesions
produce impaired attention [5] and that the parietal lobes are highly sensitive to
cognitive tasks [12,22]. Thus use of PE analysis on EEG of STM task state can
effectively bring out the deficient information processing in the parietal lobe of MCI
brain.

The results of our PE analysis confirm the findings of lowered complexity as
well as compensational mechanisms exhibited by MCI brain during resting and
memory task states, respectively. In addition our results of PE analysis have revealed
that although temporal and parietal lobes play important role in STM state, in
MCI condition the parietal lobe may be involved earlier than the temporal lobe.
The lack of activation of dominant hemisphere of parietal lobes to normal levels
and the compensational mechanisms of the temporal lobe evidenced here indicate
the importance of electrophysiological testing and its PE analysis for both the
dynamical investigation of the MCI brain and the characterization of MCI EEG.
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A Multifractal-Based Image Analysis
for Cervical Dysplasia Classification

P. Singh, J. Jagtap, C. Pantola, A. Agarwal, and A. Pradhan

Abstract This paper presents a study on microscopic images to classify cervical
precancers by a multifractal analysis. Since internal structure of tissue is non-
deterministic, multifractal spectrum is required to characterize such structure. The
periodic structure of collagen present in the stromal region of cervical tissue gets
disordered with progress in grade of dysplasia. This disorder is investigated through
the multifractal study, enabling us to discriminate between normal and abnormal
human cervical tissue sections. Holder exponent classifies normal from abnormal
dysplasia by capturing local irregularities present in the image. While mean of
Hausdorff-Besicovich dimension which describes global regularity are used to
classify various grades of dysplasia. The box-counting method is used to estimate
the fractal dimension. The results show, remarkably, the classification feature of
multifractal analysis.

Keywords Multifractal spectrum ¢ Microscopic image analysis ¢ Cervical
dysplasia

1 Introduction

Cervical dysplasia term describes the early stage of cervical cancer, i.e. abnormal
growth of precancerous cells on the surface of cervix. Depending upon growth
of abnormal cells in tissue different grades of dysplasia are classified. Higher
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grade of cervical dysplasia leads to cervical cancer. Statistically, 30-50 % cervical
dysplasia converts into invasive cancer, so early detection of cancer, i.e. detection
at dysplastic stage plays key role to reduce mortality rate. Gold standard technique,
to classify different grades of dysplasia, is histopathology, but it is time consuming
and also requires efficient pathologist, to examine tissue samples on microscope, so
a quantitative computational technique is required. Recent developments in medical
imaging [1, 2, 4, 10] show promise in discriminating different grades of human
cancers due to rapid and continuing progress in image visualization and advanced
computerized analysis. Changes in shape, size, refractive index and irregularity in
fibrous structure in human cervical tissue sections can be probed through multi-
fractal (MF) analysis. Specifically, the breaking of collagen bonds in stromal region
results in disorders in fibrous structure with increasing grades of precancers. This
may give rise to fluctuations in scattering intensity which can be probed through
a multi-fractal study [3, 5, 7]. In general, multiple tasks will be needed to refine
the data of interest from an image so as to de-mask vital information and classify
among anomalies as well as from the normal one. Fluctuation in intensity has been
observed in biopsy images caused by randomness and heterogeneous behavior in
cell which was reported in our earlier study [8]. Multifractal analysis [6,9, 11, 12]
can extract a quantitative parameter from a 2-dimensional image. We report that
MF spectra extracted from simple microscopic images show discriminating features
among various grades of dysplasia as well as from normal human cervical tissue.
This study may provide a new approach for early detection of precancerous stages.

2 Method

GSVM medical college, Kanpur provided H&E stained human cervical tissue
sections which were subsequently imaged with a camera integrated simple micro-
scope. From microscope we have taken an image of stroma region of tissue section.
The original was 2048 x 2048 image, so the microscopic image of stromal region
was cropped to obtain 3 or 4 sub-images (512 x 750). A digital image consists of
intensity values distributed in matrix form and pixel corresponds to an index value
of the matrix. Multifractal analysis of an irregular natural structure (image) needs
to compute a spectrum of fractal dimension, i.e. multifractal spectrum, which is
performed in two steps. At first step, microscopy images are converted to grayscale
images and analysed to find local singularity coefficient, also known as Holder
exponent or a-value, at each pixel. An intensity based measures® (), mutifractal
measure, measured within the square box of size € centered at p'" pixel, varies with
scale € as follows:

Up(e) = Ae@r)
log(pp(€)) = a, log(e) + log(A)
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Thus for a set of measurement, i.e. € =1, 2, 3, 4, 5, holder exponent is calculated by
slope of linear fitting. In the holder exponent image, a range of a-values, with opin
and oy, are distributed. In the next step, the whole range of a-values is discretized
into 100 sub-ranges between oy, and opax. Now we estimate Hausdorff—Besicovich
fractal dimension for each sub-ranged a-value. There are many algorithms to
compute fractal dimension, here we are using box-counting algorithm due to highly
efficient and ease of implementation. This is done by covering the whole image with
non-overlapping boxes of size € and counting the number of boxes N (o) containing
holder exponent value. From a set of sizes of boxes, we calculate fractal dimension
by slope of linear fitting.

In(Ne(wi))
In(e)

felay) = — , fore =1,2,3,4,.....

In this way for a set of Holder exponent values corresponding set of Hausdorff
dimension values are calculated for each sub-image and the mean is taken. Thus the
original stromal image will have a set of 3 or 4 values of mean fractal dimension
corresponding to 3—4 sub-images. Finally this set of mean fractal dimension values
can be expressed by an average value and variance of Hausdorff values for the
original image which shows discriminating features among various grades of
dysplasia and from normal dysplasia.

3 Results, Discussions and Conclusions

There are four types of multifractal measure: maximum measure, minimum
measure, summation measure and iso measure. We have analysed with all measure
and chose maximum measure because of its good classification characteristic.
Maximum box size was fixed at side length 5 to determine the holder exponent at
each pixel. Maximum box size has been selected on the basis of an iterative study
of w-image for different sizes of the box.
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Fig. 1 (a) Microscopic image of normal tissue section (b) Holder exponent image (c¢) Multifractal
spectrum
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Fig. 3 Classification

Clearly multifractal spectrum shows the difference between normal and
abnormal biopsy image. Abnormal tissue image has more irregular singularities
than normal one. We have studied the different grades of dysplasia among abnormal
tissues (Figs. I and 2).

Figure 3 displays the results of the mean value of fractal dimension for the three
classes of dysplasia and one normal. Since we have cropped three sub-image from
an original image, so mean of fractal dimension can be supposed to vary. The error
bars correspond to variance of mean fractal dimension for the original image of each
class. A clear difference in mean values of fractal dimension is seen for normal and
the three grades of dysplasia. Analysis has been performed over three normal, four
grade 1, three grade2, four grade3 patients.

In this study multifractal nature of stroma has been investigated by Hausdorff—
Besicovich dimension. Our main aim is to discriminate the different grades of
dysplasia by probing the internal structure of various grades and normal through
its multifractal nature.
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From the microscopic images, where collagen strands are not clearly visible, one

infers that pattern of collagen fibers changes for different grades of dysplasia by
using this technique (Multifractal analysis). So for higher the grades of dysplasia,
the fractal nature would be higher.

For more accurate prediction of mean value of fractal dimension values for

different grades of dysplasia and normal tissue sections, a large number of samples
of each class are required. Further analysis is under process.
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Self-Similar Network Traffic Modelling Using
Fractal Point Process-Markovian Approach

Rajaiah Dasari, Ramesh Renikunta, and Malla Reddy Perati

Abstract Several recent Internet traffic measurement studies reported that traffic in
modern high-speed networks is a self-similar process. If the stochastic self-similar
network traffic models do not accurately represent the real traffic, then the network
performance may be over estimated or underestimated, and it causes degradation
of Internet router performance. Therefore, it is decisive for an appropriate design
of a router. In this paper, we investigate mean waiting time and tail probability of
network router with pseudo self-similar traffic input. We use Fractal Point Process
(FPP) as input process since it emulates self-similar traffic. However, this process is
asymptotic in nature and has less effective in queueing based performance analysis.
Therefore, for queueing analysis Markov modulated Poisson process (MMPP)
is fitted for FPP. FPP involves another parameter Fractal Onset Time (FOT) besides
Hurst parameter. Effect of FOT on tail probability and mean waiting time is
examined.

Keywords Network router ¢ Self-similar ¢ Fractal point process ¢ Markov
modulated Poisson process * Mean waiting time ¢ Tail probability * Traffic
intensity
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1 Introduction

Rapid growth of Internet traffic and investigation of measurement studies have
shown that the real time networks (e.g. Ethernet LAN, WAN, ISDN, and VBR
Video) are clearly different from the synthesized traffics using traditional Poisson
process or related models. Seminal studies of said traffic revealed the presence of
self-similarity or fractal nature, and its impact on the network traffic [2, 9, 11].
This type of traffic exhibits statistical similarity over different time scales and is
highly correlated, hence drawn significant research interest in modeling the Internet
traffic. Characterizing the statistical behavior of traffic is crucial to proper buffer
design of router in the network traffic to provide the quality of service (QoS).
Various stochastic models have been proposed that emulates the statistical nature
of self-similar network traffic. Traffic models such as Fractional Brownian Motion
(FBM), Fractional Auto Regressive Integrated Moving Average (FARIMA), Chaotic
maps are proposed to characterize the self-similarity. These models describe the
self-similar behavior in a relatively simple manner. Although, these processes are
parsimonious, but are less effective in the case of queueing based performance
evaluation. In order to enhance the resilience to burstiness of traffic, a number of
approaches have been proposed. If the self-similar network traffic models do not
accurately represent the real traffic, then the network performance may be over
estimated or underestimated [10]. On the other hand, the numbers of Markovian
models are proposed to emulate the self-similar network traffic. In [1, 5, 18, 20],
Markovian arrival process (MAP) is employed to model the self-similar behavior
over the different time scales. These fitting models equate the second order
statistics of self-similar traffic and that of superposition of several two-state Markov
modulated Poisson processes (MMPP) over desired time-scales. However, in the
paper [1], covariance function of resultant MMPP is approximated by suppressing
the higher order terms in its Taylor’s expansion. In the paper [20], MMPP emulating
the self-similar traffic is fitted by matching the variance over the desired time-scales.
Resultant MMPP here is superposition of several Interrupted Poisson process (IPPs)
wherein two modulating parameters of each IPP are equal. The fitting method [5,20]
is generalized in the paper [18] by taking distinct modulating parameters in each IPP.
Paulo Salvador et.al [17] proposed a model to fit discrete time MMPP that matches
both autocovariance and marginal distribution of the counting process in such a
way that model can capture self-similar behavior up to the time-scales of interest.
In the said papers, the Markov-modulated Poisson process (MMPP) emulating the
self-similar traffic over the different time scale is fitted, however, the time scale
where self-similar nature actually begins is not considered.

Fractal point process (FPP) is shown to be self-similar process and also provides
novel tools for understanding, modeling, and analyzing the self-similar network
traffic behavior [6,15]. Self-similar processes based on fractal point processes (FPP)
lead to natural models of network traffic that possess attractive properties. FPP
presents a variety of economical computing-effective and very suitable self-similar
processes of the second order. Fractal point process involves another parameter
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fractal onset time (FOT) besides Hurst parameter H. Fractal on set time (FOT)
defines the time scale at which self-similar behavior begins and is denoted by Ty
[6]. The important fractal features such as long-range dependence and the slowly
decaying variance can be characterized by Tj. According to the measurement
studies, FOTs of the network traffic are at the scales in the order of a few hundreds
of milliseconds. However, FPP is not useful in the context of queueing based
performance evaluation.

On the other hand, in general, networks could be divided into two cate-
gories based on their operation modes: slotted synchronous and un-slotted asyn-
chronous [19]. Initial research on networks focused on slotted synchronous for
switching fixed-size packets [4]. Recently, the design of nodes that are capable
of switching variable-size packets has been attracting the researchers. When the
routers are operated under slotted synchronous mode, packets need to be aligned
into a fixed size and are placed in time slots before entering the switching matrix. At
the downside, synchronous networks require packet alignment and synchronization
stages. Hence, implementation of synchronous nodes with high data rates is more
costly. In an unslotted network, the packets may or may not have the same size.
Packets arrive and enter into the router without being aligned in time. Therefore, the
packet-by-packet switch operation could take place at any point of time. On the other
hand, unslotted networks are more flexible compared with slotted networks, since
they are better at accommodating packets with variable sizes. Since IP packets are,
in general, variable in length. Therefore, asynchronous routers are more suitable to
carry variable-size IP packets. For the said reasons, performance analysis of router
by means of queueing system wherein service time is deterministic may not be
appropriate. In the papers [12, 14], routers with the variable length packet traffic are
modeled as MM PP/M/1/K system wherein service time is exponential. That is,
packet length is assumed to follow exponential distribution to make the performance
analysis of router handling self-similar traffic with variable length packets. In the
present paper, first, router is modeled as MM PP /M/1 queueing system; thereby
mean waiting time and tail probability are computed. Here, the input process MMPP
is fitted for FPP which is a pseudo self-similar process.

The rest of the paper is organized as follows. In Sect. 2, we first overview the
fundamentals of Fractal point process. In Sect. 3, we outline the fitting procedure
of MMPP. Analytical results of MM PP/M/1/K queueing system are given in
the Sect. 4. In Sect. 5, we demonstrate the accuracy of proposed model by means of
numerical results. Finally, some conclusions are made in Sect. 6.

2 Fractal Point Process (FPP)

Self-similar processes based on fractal point processes (FPP) lead to natural models
of network traffic that possess attractive properties [15, 16]. FPPs are well suited
for modeling the self-similar traffic in packet data networks. The second order
statistics IDC and ACF of FPP are relatively straightforward to fit the parameters of
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a model emulating self-similar traffic [1]. The parameter 7 defines the lower limit
for indication of scale behavior in IDC and ACF. For this reason, the parameter Ty
is often referred to as the fractal onset time. In order to determine the second-order
statistical characteristics of the fractal point process it is sufficient to have only three
parameters: the average intensity A, the Hurst parameter H and the fractal onset time
T, at the given time scale ranges. As a result, these statistics are exploited by several
authors. In this section, we overview the fundamental concepts of the fractal point
processes in terms of second order statistics.

The process N(¢) describes the number of packet arrivals between the time
interval (0, t]. Define X, as the number of packets arrive during the n'” time interval
of size T sec, ie., X, = N(nT) — N(n — )T then c(n,T) = cov(X,, Xn+x),
is defined as the covariance between the number of arrivals in two counting
windows of counting time 7" and separation k7. Then the index of dispersion for
counts (IDC) is given by [16],

— Var(N(T))
IDC(T) = ENTD)

=1+ (g)"

whereao =2H — l,and0 <o < 1, % < H < 1 in the case of self-similar process.
The autocorrelation function is given by [16]

1+ (£)" k=0

Cov:C(k,T)=AT (1
(£)3V &) k>0
where V2(.) is the second central difference operator.
The auto covariance function (ACF) denoted by r(k; T') is given by
Ck;T)
k:T)= 2
kD = Cor @
T 1
= _— _V(k*t! k>0 3
e KT (k > 0) 3

Recall that X, represents the number of packets during the n” time interval of
m

size T and X,Em) = %Z Xo—tym+i- n = 1,2,3..., is the average of the
i=1

original sequence in m non-_overlapping blocks, then the covariance C” (k; T'), ACF
r"(k; T), and variance Var(X ™) of aggregated processes are, respectively, given
by [16]

C"™(k :T)=m>2C(k;mt), 4)
(m) (.. — ﬂl 2 e+l
r™k;T) = CIESE Zv k"t (k > 0), (5)

(

Var(X = AT[m™" + TTO)“m_“_“)]. (6)
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3 Fitting Procedure

In this section, we summarize the fitting model for FPP which generates the
self-similar traffic using Markovian approach [13]. This procedure is based on
second order statistics variance while taking FOT into consideration. This model
is similar to that of the paper [18] involving superposition of two-state interrupted
Poisson process (IPP) and Poisson process. IPP is a particular case of MMPP. We
can describe i'" PP as follows:

—C1i Ci Ai 0
S e Y I E
Superposition of above d IPPs and a Poisson process is again an MMPP, and is
given by

A
=

0=0100:®.. 80, A=NBND... D Ag, (7

where €P denotes the Kronecker sum, and A p is the arrival rate of the Poisson
process to be superposed. Then the whole arrival rate A is given by

d
C2i
A=A, 4+ ) —A;. (8)
! 5 Cu Tt

Let N,; be the number of arrivals from the i’" IPP during the ¢'" timeslot and N;, »
be the corresponding number of arrivals from the Poisson process, and let Nt(;") and

N,(”Z) be the number of arrivals from the averaged process of i IPP and Poisson
process, respectively. The variance of this averaged process is given by [5, 18],

02 Ai C1i €2 1 —e7mlatar)

Var[N™] = 1— Aol<i<d
arh:;l m(ci; + c2i) * m(ci; +62i)3[ m(ci; + cai) Wiot=is
9
and
A
Var[N"] = . (10)

Hence, the variance of whole process is

2 d
VarlX") =~ + 3 A} (an

i=1
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where

2¢1;Ca; 1= e—m(01i+62i)

m(cy; + ¢2;)3 m(ci; + ¢2;)

ni = ] 12)

To fit MMPP, we match the expressions in (6) & (12) over a time interval [13].

4 The MMPP/G/1 Queueing System

Consider the infinite queueing system MMPP/G/1, where input process is MMPP
parameterized by Q and A and service time follows general distribution. The queue
length at departures may be studied from the embedded Markov chain at departures
with transition probability matrix O [7]. The stationary probability vector x =
(xg, X1, . ..) of transition probability matrix Q [3], where x; = (X;1, X2, Xim),
and x;;=Pr a departure leaves the system with i customers and the MMPP in state ;.
The probabilities x;S are obtained by solving the system of equations

X; = xoB; + Z +1xy4i41—v, i = 0.

v=1

The quantities x;,i > 1 could be determined once the initial vector x(, matrices
of counting function B;, and A;4+,—, are known which can be computed using the
following algorithm [3]:

o0
Step 1. Compute 4, = Y. 7, K", v=>0,

n=v
where
K =1
KO =0,

K" = KyVO7(0 = A) + 11,
— — (n—1) —
K" =K' VO7(Q-nN+ 11+ K 07'A,

K" =0.

Step2. Compute B; = (A — Q)" ' A 4.

Step 3. Compute the stochastic matrix G = (G;;), where G;; is the probability
that a busy period starting in state i and ends in state j.

Step 4. Compute the steady state vector g which satisfies

gG =g, ge=1. (13)
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Step 5. Compute

l—p
A't()l‘

g(A—=0).

X0 =
The queue length distribution at an arbitrary time y; can be computed as follows:

Yo=(1-p)g,
Yi = (Viet A =Aor (xi—1 —x;)(A— Q)L (14)

Mean waiting time could be computed by the formula [3]

MWT 20+ 1P X0 —20((1 = p)g + hTIA)(Q +eIT)'4], (15)

o
- 2(1-p)

where 4, and h® first and second moments of general distribution G.

5 Numerical Results

In this section, we investigate queueing based performance measures, namely mean
waiting time (MWT) and tail probability (queue length distribution) against the
traffic intensity in terms of fractal onset time 7y, Hurst parameter H, number of
IPPs d, and the time scale. First, transition rate matrix Q and arrival rate matrix A
of MMPP are fitted according to the method described in the last section for the self-
similar internet traffic pertaining to the values H = 0.6, A = 1, 02 =0.6, (Sample
1), H=07 1=1, 6> = 0.6, (Sample 2), and H = 08,1 = 1, 6% = 0.6,
(Sample 3), T = 1, and for arbitrary values of FOT over the different time scales
[102, 10°],[10%, 107], and [10%, 10%]. These samples are generated in the paper [8] by
random midpoint displacement algorithm. We use matrix analytic methods [4, 18]
to compute steady state probability distribution of the transition probability matrix
O then we compute the tail probability and mean waiting time using the Eqgs. (14),
and (15), respectively. Numerical calculations are performed using MATLAB and
results are shown in the Figs. 1, 2, 3, 4, 5, 6. Figure 1 illustrates the results for
the case of Hurst parameter H = 0.7 for different values of Tj over the time
scale [102, 108]. From this figure, we conclude that MWT is increasing as fractal
onset time 7y is decreasing. Parameter setting for the Fig.2 are H = 0.7 over
the different time scales [102, 10°], [10%, 107], and [10?, 10%], for the fixed value of
To. Figure 3 depicts the results for the case of fractal onset time 7} for the time
scales [102, 108] over the different Hurst parameters H = 0.6, H = 0.7, and
H = 0.8. Figures 4, 5, 6 illustrate the result for the tail probability, PrL.10, for
Sample 2. Figure4 depicts the results for the case of Hurst parameter H = 0.7
for different values of T over the time scale [10?, 107]. Parameter setting for
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Fig. 1 Mean waiting time of the resultant MM PP /M/1 queues withd = 4, H = 0.7, A =1,
and T = 1 over the time scale [10?, 10%]
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Fig. 2 Mean waiting time of the resultant MM PP/M/1 queues withd =4, H =0.7,A =1,
T =1,and Ty = 0.95
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Fig. 3 Mean waiting time of the resultant MM PP/M/1 queues withd =4, A =1, T =1,
and T, = 0.95 over the time scale [10?, 10%]
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Fig.4 Pr(L > 10) of MMPP/M/1 queues withd = 4, H = 0.7, and T = 1 over the time
scale [10%, 107]
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Fig. 5 Pr(L > 10) of MMPP/M/1 queues withd = 4, H =0.7,T = 1,and Ty = 0.95
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Fig. 6 Pr(L > 10)of MMPP/M/1 queues withd = 4,and T = 1 over the time scale [10?, 10]

the Fig.5 are H = 0.7 over the different time scales [10%, 10°], [10?, 107], and
[102, 108], for the fixed value of Tj. Figure 6 depicts the results for the case of fractal
onset time Ty for the time scales [10%,107] over the different Hurst parameters
H = 06, H = 0.7, and H = 0.8. From this figure, we conclude that tail
probability increases as Tj and Hurst parameter is increase and decreases as the time
scale increases. Moreover, real time data measured at AT&T Bell Labs are used for
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Fig. 7 Mean waiting time of the resultant MM PP /M /1 queues for Bellcore data over the time
scale [10%, 10%]

the numerical process and results are given in Fig. 7. The Parameter setting for the
Fig.7 are H = 0.87,A = 318.2,0% = 838, and Ty = 0.006 (say AT&T 1), and
H =0.92,1=28.1,62 = 133.5,and Ty = 0.033 (say AT&T 2). These parameter
values are pertaining to the traffic measured at AT&T Bell Labs [16]. From this
figure, we conclude that MWT increases as H increases.

6 Conclusion

In this paper, the asynchronous router with the self-similar variable length packet
traffic is modeled as MMPP/M/1 queueing system where pseudo self-similar input
process FPP is modeled as MMPP. In this model, service time distribution (packet
length) is taken to be exponential rather than deterministic, since TCP/IP packets are
variable in length and cost effective. We investigated the mean waiting time and tail
probability of router over a time-scale. Our numerical results reveal the impact of
FOT on mean waiting time and tail probability. Mean waiting time, tail probability
increase as the traffic parameter H, Ty, and traffic intensity increase and decrease
as time-scale increases. Based on the analysis presented here one could select the
appropriate time-scale in the variance based fitting method [13] to provide QoS
guaranteed. This kind of analysis is useful in dimensioning the router under self-
similar input traffic.
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Validation of Variance Based Fitting
for Self-similar Network Traffic

Ramesh Renikunta, Rajaiah Dasari, Ranadheer Donthi,
and Malla Reddy Perati

Abstract Most of the classical self-similar traffic models are asymptotic in nature.
Hence, they are not suitable for queuing based performance evaluation. In this paper,
we have validated further fitting method of CMMPP emulating self-similar traffic
by means of IDC. We conclude from the numerical examples that self-similar traffic
can be well represented by the proposed model.

Keywords Self-similarity * CMMPP ¢ Variance ¢ IDC < Fitting * Time scale
* Markovian approach

1 Introduction

In recent years seminal studies have been shown the presence of self-similarity or
long range dependence (LRD) in LAN, WAN, the variable bit rate (VBR) video
traffic and its influence on network traffic. These types of traffic exhibit statistical
similarity over different time scales and are highly correlated. The self-similarity
in the network traffic has considerable impact on queueing performance. TCP/IP
packet traffic over Ethernet and WAN network providing WWW service is much
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better modeled using Markovian arrival process (MAP) [3,6,7]. If the traffic models
do not accurately represent the real traffic, then the network performance may be
overestimated or underestimated. Characterizing the statistical behavior of traffic is
crucial to proper buffer design of router or switch in the network traffic to provide
the quality of service (QoS). Several authors proposed the various stochastic models,
techniques, and statistical nature of self-similar network traffic. Traffic models
such as Fractional Brownian Motion (FBM), Fractional Auto Regressive Integrated
Moving Average (FARIMA), and Chaotic maps are proposed to characterize the
self-similarity. These models describe the self-similar behavior in a relatively simple
manner. Although, these processes are parsimonious, but are less effective in the
context of queuing based performance evaluation. In [1,5,9, 10], MAP is employed
to model the self-similar behavior over the desired time scales. These fitting models
equate the second-order statistics of self-similar traffic and that of superposition of
several 2-state Markov modulated Poisson Processes (MMPP). Covariance function
of resultant MMPP is approximated by suppressing the higher order terms in
its Taylor’s expansion [1]. MMPP emulating the self-similar traffic is fitted by
matching the variance over the desired time scales [10]. Resultant MMPP in the
said paper is superposition of several Interrupted Poisson Processes (IPPs) wherein
two modulating parameters of each IPP are equal. The fitting method [5, 10] is
generalized in the paper [9] by taking distinct modulating parameters in each IPP.
The said models hold good for voice and data traffic as IPP consists of two states:
talkspurt and silence.

On the other hand, in the case of two state Circulant Markov Modulated
Poisson Process (2-CMMPP) which is the restricted version of Switched Poisson
process (2-state MMPP), two states are active unlike IPP. The Circulant Markov
modulated Poisson process (CMMPP) has several advantages over MMPP in terms
of computational complexity [4]. In the paper [8], CMMPP emulating self-similar
is fitted by equating the variance of packet counts. In the present paper, the said
fitting method is validated further by means of Index of dispersion for counts
(IDC). Moreover, queueing behavior in terms of packet loss probability of resultant
queueing system is examined.

The rest of the paper is organized as follows. In Sect. 2, we first overview the
fundamentals of Self-similar process and CMMPP. In Sect. 3, IDC of the resultant
CMMPP and that of self-similar traffic is derived. Numerical results of fitting model
are given in Sect. 4. Finally, some conclusions are made in Sect. 5.

2 Self-similar Process and CMMPP

The second-order statistics, namely variance and IDC are relatively straightforward
to fit the parameters of a model emulating self-similar traffic and give much
information. As a result, these statistics are exploited by several authors. In this
section, first we overview the definition of the self-similar process and the CMMPP
in terms of the second-order statistics.
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The definition of exact second-order self-similar process is given as follows.
If we consider X as a second-order process with variance 02, and divide time axis
into disjoint intervals of unit length, we could define X = (X,,r =1,2,....)
to be the number of points (packet arrivals) in the ' interval. A new sequence
m
Xm = (x™) where X" = LS Xg—tymti» t = 1,2,3... .. is the average of
i=1
the original sequence in “m” nonoverlapping blocks. Then the process X is said to
be exact second-order self-similar process with Hurst parameter H = 1 — g, if

Var(X(m)) =o*m™P vm > 1. (1

On the other hand, CMMPP is a doubly stochastic process in which arrival rate
is given by A[J;] where J;,t > 0 is an m state Markov process. The arrival rate
can therefore take on only m values, namely A1,A5,A3.....A,. It is equal to A;
whenever the Markov process is in the state j, 1 < j < m. The CMMPP is fully
parameterized by the infinitesimal generator Q (Circulant Markovian) of the Markov
process and the vector A = (41,45, A5.....A,,) of the arrival rates. Let A be the
diagonal matrix with A;; = A;, 1 < j < m. In the case of two state CMMPP, Q
and A are given as follows:

_|—=ca a _ Al 0
Q_[C’l —Cli| 7A_|:0 Azi| (2)

The mean arrival rate A of CMMPP is given by A = 7 Ae, where 7 is the
stationary probability vector of Q, i.e. J_T)Q =0, 7e = 1and e is an all 1 column
vector with designated dimension. If we let N;, ¢ > 0 be the number of arrivals in
(0,t], the mean of N, is

(A1 +42),

E(N,) = )

3
The variance of N, is given as follows:

A A AL — Ao)? AL — Ao)?
(A1 + 2)[+(1 2)t_(1 2)

N,) =
var(No) 2 4¢ 8¢?

= @

the IDC is defined as

IDC(1) = V;E—](é:’)f)

From (3) and (4), we can obtain

(A1 — 12)? (K —X2)*(1 —e72ar)

IDC@) =1+ Qcr)(A1 + A2) (4C12)(Al + A2t

&)
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We then could obtain the following remarks:

(1) IDC(t) - 1 as t — 0, that is, CMMPP tends to a Poisson process.
2) IDC(t) > 1+ %, a constant, as t— 0o

t) is monotonic increasing over a finite time interval and is bounded.
(3) IDC(1) i ic1 ing finite time i 1 and is bounded

(4) Steady state distribution of states of 2-state CMMPP is (0.5,0.5) which is
constant and independent of transition rates.

The IDC of and exact second-order self-similar process is monotonic increasing
and bounded when # < oo and H > 0.5. Hence, it is likely that we could use
appropriate CMMPPs to emulate exact second-order self-similar processes over a
specified time interval according to their second-order statistics.

3 Analytical Results of IDC

Generalized variance-based fitting method is a procedure to find out the traffic model
parameters, in order to match the variance of self-similar traffic. Following [1, 5,
10], the fitted model emulating self-similar traffic consists of a superposition of 'd’
2-CMMPPs and one Poisson process. We describe the i 2-CMMPP as follows:

_ —Ci Ci o Ali 0
o-[] w-[42] 0

Superposition of above “d” CMMPSs and a Poisson process is a Transition rate
matrix, and is given by

0=0190:®..904, A=A DMD... B A DAp, (7)

In (7), @ means the Kronecker sum and A , is the arrival rate of the Poisson process.
The whole arrival rate A is then given by

d
Ai + Az
A=A _ 8
»+ ; > (®)

Let N;,;, N;,, be the number of arrivals packets from the i th CMMPP and
Poisson process, respectively, during the ¢/ time slot, and let Nt(;") and N,(’r;) be the

number of arrivals from the averaged processes of i’ CMMPP and Poisson process,
respectively.

d
put Xt(m) = Z(Nt(;") + Nf(’r;)). 9)

i=1
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Using (4), we obtain the variance of the i’ "CMMPP as

m A i+ A i 1 —2mec
Var(N, (") = =2 + e~ sz (1 )| (Ayy — Aai)?. (10)
Also  Var(N") = A (11)

m

From (9) to (11) and using the fact that superposition of independent sub-processes
preserves the variance, we obtain

d
Al )k,
sy At +Zn,(xl, Do), (12)

i=l1 i=l1

Var(X]") = —p
m

1
4me;  Sm2c 2

Where n; = | ——— (1 — 7 2meiy]. (13)

Using (1) and (12), we can fit the CMMPP emulating self-similar traffic as in the
paper [8]. And, we obtain the mean of the aggregated process is

Var(X]") = % (14)

From (13), (15), the IDC of an aggregated process is

Var(X™)
IDe(x™y = 24D (15)
' E(X[")
PR Y VT W 2
w2 S+ Y ni(Ani — Aai)
IDC(X") = =l = (16)

From (1) and (15), the Index of dispersion for counts of an exact self-similar
process is

Var(X]") o*m=F
E(X)

IDC(X") = (17

3~ 3

Using (16) and (17), we would match the IDC at “d” different points “m;”, and is
given by

mi = mpma' i =1,2,3....4d,
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where

m max

a= (1T d o> .

M pmin

4 Numerical Results

In this section, we investigate the accuracy of the fitting model in terms of the
variance and packet loss probability of resultant queueing system. We have fitted the
CMMPP pertaining to the traffic parameters H = 0.6, A = 1, 0> = 0.6 (Samplel),
H =0.7,1=1,0%=0.6(Sample 2),and, H = 0.8, A = 1,02 = 0.6 (Sample 3).
In all the above cases, the number of superposed two state SPPs, d, is taken to be 4
and the specified time scale ranges are [102, 10°], [10%, 107], [10%, 10%], [5 — 7]. The
IDC-time scale curves of the resultant CMMPP and self-similar traffic are depicted
in Figs. 1, 2, and 3. From these figures, we conclude that proposed fitting is in agree-
ment with that of exact self-similar traffic. Next, we investigate queueing behavior
in terms of a performance measure, namely packet loss probability of the resultant
MMPP/D/1/K queue using the method [5]. Following [9], and [2], we use matrix
analytic methods to compute steady state probability distribution of the transition
probability matrix of buffer occupancy that in turn gives the packet loss probability.

10’
—+— Proposed Fitting
i 8 —+— Self-Similar A
10° | ]
-~
,»'*:
10* L i
- H
[5)
Q . v
= 10 /.*‘ E
35 ? E
10°
10' ;
10° b ;
10° 10° 10* 10° 10°

Log(Time)

Fig. 1 Log(IDC)-log(time) curves of the resultant CMMPPs and self-similar over the time scale
over the time scale range [10%, 10%], and H=0.6, 6> = 0.6
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Fig. 2 Log(IDC)-log(time) curves of the resultant CMMPPs and self-similar over the time scale
over the time scale range [10%,10%], and H=0.7, 6> = 0.6
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—+— Self-Similar

L 1 L

10* 10° 10°
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Fig. 3 Log(IDC)-log(time) curves of the resultant CMMPPs and self-similar over the time scale
over the time scale range [10%, 10%], and H=0.8, 6> = 0.6
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Fig. 4 Probability of the resultant MMPP/D/1/K queues withd =4, A =1, H=0.8, and K= 10
over [102, 10%]

The buffer depth K is taken to be 10. Numerical calculations are performed using
MATLAB and results are shown in Fig. 4. Figure 4 illustrates the results for the case
of Hurst parameter H = 0.8 over the time scales [10?, 10°], [10, 107], [10?, 108].
From this figure we conclude that packet loss probability decreases as the time scale
increases.

Variance-time scale curves of the resultant CMMPP and self-similar traffic are
depicted in Figs. 1, 2, and 3. From these figures, we conclude that proposed fitting
is in agreement with that of exact self-similar traffic.

5 Conclusions

Earlier models for self-similar traffic are asymptotic and are less effective in queuing
based performance evaluation. Therefore, Markovian models emulating self-similar
traffic are proposed, as they hold good for queueing theory. These models are based
on second-order statistics. In this paper, the fitted CMMPP emulating self-similar
traffic is validated by means of IDC. Moreover, queueing behavior is examined by
means of packet loss probability over different time scales over which self-similar
traffic fitted. It is found from the numerical examples that self-similar can be well
represented by the proposed model.
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Self-Similar Network Traffic Modeling Using
Circulant Markov Modulated Poisson Process

Ranadheer Donthi, Ramesh Renikunta, Rajaiah Dasari,
and Malla Reddy Perati

Abstract Most of the classical self-similar traffic models are asymptotic in nature.
Hence, they are not suitable for queuing based performance evaluation. In this
paper, we propose a model for self-similar traffic using Circulant Markov modulated
Poisson process (CMMPP). This model is to match the variance of self-similar
traffic and that of CMMPP over a time-scale. The resultant CMMPP consists of
several two-state CMMPPs. We conclude from the numerical examples that self-
similar traffic can be well represented by the proposed model.

Keywords Self-similarity ¢ CMMPP e Variance ¢ Fitting ¢ Time-scale
Markovian approach

1 Introduction

Because of the growing diversity of services and applications with the network
traffic, there is a strong requirement to measurements of packets and to describe the
traffic through appropriate models. The search for accurate mathematical models
of data streams in modern LAN, WAN, and WWW Internet traffic has attracted a
considerable amount of interest in the last few years. Several studies have shown
that said traffic exhibits properties of self-similarity or long-range dependence
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(LRD) [2,5,6], which has significant impact on network performance. Characterizing
the statistical behavior of traffic is crucial to proper buffer design of router or switch
in the network traffic to provide the quality of service (QoS). Various stochastic
models have been proposed that emulate the statistical nature of self-similar network
traffic. Traffic models such as Fractional Brownian Motion (FBM), Fractional
Auto Regressive Integrated Moving Average (FARIMA), and Chaotic maps are
proposed to characterize the self-similarity. These models describe the self-similar
behavior in a relatively simple manner. Although, these processes are parsimonious,
but are less effective in the context of queuing based performance evaluation. In
[1,4,7,8], Markovian arrival process (MAP) is employed to model the self-similar
behavior over the desired time scales. These fitting models equate the second order
statistics of self-similar traffic and that of superposition of several 2-state Markov
modulated Poisson Processes (MMPP). Covariance function of resultant MMPP is
approximated by suppressing the higher order terms in its Taylor’s expansion [1].
MMPP emulating the self-similar traffic is fitted by matching the variance over
the desired time-scales [8]. Resultant MMPP in the said paper is superposition of
several Interrupted Poisson Processes (IPPs) wherein two modulating parameters
of each IPP are equal. The fitting method [4, 8] is generalized in the paper [7] by
taking distinct modulating parameters in each IPP. The said models hold good for
voice and data traffic as IPP consists of two-states talkspurt and silence.

On the other hand, in the case of two-state Circulant Markov Modulated Poisson
Process (2-CMMPP) which is restricted version of Switched Poisson process
(2-state MMPP), two-states are active unlike IPP. The CMMPP has several advan-
tages over MMPP in terms of computational complexity [3]. In the present paper,
CMMPP emulating Self-Similar is fitted by equating the variance of packet counts.

The rest of the paper is organized as follows. In Sect. 2, we first overview
the fundamentals of Self-similar process and Circulant Markov modulated Poisson
process. In Sect. 3, the generalized fitting procedure is given. Analytical results of
fitting model are given in the Sect. 4. Finally, some conclusions are made in Sect. 5.

2 Self-Similar Process and Circulant Markov
Modulated Poisson Process

The definition of exact second-order self-similar process is given as follows. If we
consider X as a second-order process with variance o2, and divide time axis into
disjoint intervals of unit length, we could define X = (X;,t =1,2,....) to be
the number of points (packet arrivals) in the fth interval. A new sequence X ") =

(X(m)) where X(m) Z X¢—1ym+i>t = 1,2,3... .. is the average of the original

sequence in ‘m’ non- overlappmg blocks. Then the process X is said to be exact

second-order self-similar process with hurst parameter 2H = 2 — 8 and variance
2 .

o-if

Var(X('”)) =o?m P, vm>1. (1
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On the other hand, CMMPP is a doubly stochastic process in which arrival rate
is given by A[J;] where J;,¢ > 0 is an m state Markov process. The arrival rate
can therefore take on only m values, namely Ay, A5, A3.....A,,. It is equal to A;
whenever the Markov process is in the state j ,1 < j < m. The CMMPP is fully
parameterized by the infinitesimal generator Q (Circulant Markovian) of the Markov
process and the vector A = (41,45, A3.....4,,) of the arrival rates. Let A be the
diagonal matrix with A;; = A;, 1 < j < m. In the case of two-state CMMPP,
Q and A are given as follows:

_ = a _ /\1 0
Q_|:C1 —cl]A_[O 12] (2)

The mean arrival rate A of CMMPP is given by A = 7 Ae, where 7 is the
stationary probability vector of Q, i.e. 7Q =0,7e = 1and e is an all 1 column
vector with designated dimension. If we let N;, ¢ > 0 be the number of arrivals in
(0,t], the mean of N, is

(A1 +42),

E(N,) = )

3
The variance of N, is given as follows:

A A A — Ao)? A — Ao)?
(A1 + 2)t+(1 2)t—(1 2)

N =
var(No) 2 4c, 8¢2

[1—e™2], 4)

Since the index of dispersion for counts (IDC) is defined as

IDC(1) = V;E—](é:’)f)

From (3) and (4), we can obtain

(A1 =22) (A=A —e7)
(2e) (A1 + A2) (4eD) (A1 + Aot

IDC(t) =1+ )

We then could obtain the following remarks:

. IDC(t) - 1 as t — 0, thatis, CMMPP tends to a Poisson process.

.IDC(t) > 1+ %, a constant, as t— oo.
. IDC(t) is monotonic increasing over a finite time interval and is bounded.
. Steady state distribution of states of 2-state CMMPP is (0.5,0.5) which is constant

and independent of transition rates.

AW N =

The IDC of and exact second-order self-similar process is monotonic increasing
and bounded when # < oo and H > 0.5. Hence, it is likely that we could use
appropriate CMMPPs to emulate exact second-order self-similar processes over a
specified time interval according to their second-order statistics.
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3 Generalized Variance Based Fitting Procedure

Generalized variance based fitting method is a procedure to find out the traffic
model parameters, in order to match the variance of self-similar traffic. Following
[1,4,8], the fitted model emulating self-similar traffic consists of a superposition of
'd’ 2-CMMPPs and one Poisson process. We describe the i th 2-CMMPP as follows.

i Ci _|Au O
R ) o

Superposition of above 'd’” CMMPSs and a Poisson process is a Transition rate
matrix, and is given by

0=0190®..004 A=ANBND...0 A DA, (7)
In (7), @ means the Kronecker sum, and A, is the arrival rate of the Poisson process.
The whole arrival rate A is then given by
d

A + Ay
WIS Sy ®
i=1

Let N;;, N; , be the number of arrivals packets from the ith CM M P P and Poisson

process, respectively, during the tth time slot, and let N,,,(-m) and N,,(pm) be the
number of arrivals from the averaged processes of i th CMMPP and Poisson process,
respectively.

(m) Z(N (m) + (m) (9)

Using (4), we obtain the variance of the ith CMM PP as

m Ali + Ao 1 1 —ome:
Var(Ne™) = =5 25 4 [ = s (1= )G = hai)?. - (10)
Also Var(N(m)) = —p (11)

m

From (9), (10), (11) and using the fact that superposition of independent sub-
processes preserves the variance, we obtain

d
Z+A’l
Var(xy) = 22 ¢ Z L +Zm<xh—xz,)2 (12)

m
i=1
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1 1
—— (1 —e?")]. (13)

Wh ;= —
ere. i [4mci 8m2c

i

Using (1) and (12), we can match the variance at 'd’ different points m; =
1,2,3,...d. Let [muin, Mumax] Mpmin < m < m,,,) be the time interval over
which we want the process to express self-similarity of the original process, then
m; is given by

mi =mpima i =1,2,3....d, (14)
where a = (M)ﬁ,d > 1. (15)
Mpin

Now, we assume the following relations between ¢; and m;
mic; = const (1 <i <d).
That is, ¢; can be determined using

G="e i=1.23... .4 (16)
mi
This assumption comes from the intuitive understanding that a self-similar process
looks the same in any time-scale. By this assumption, we can reduce the number of
parameters to be determined. That is, if we determine ¢;, we can obtain the values
of ¢; (2 < i < d) by using (16). Furthermore, we can obtain A, from (8) if we
determine A,;,A,;. Now the parameters we need to find are only ¢;,A1; and Ay;.
We describe the following algorithm for determining the said parameters.

3.1 Algorithm for Parameter Fitting

Step 1:  Find the range of ¢, heuristically and fix c;.

Step2: Determine Ay; and Ay; as a function of ¢; from (1) and (14), we have
ml_ﬂ mi! (A1 — A21)?
my" my'! (hi2 = An)?

o>l . |=A|l . |+B ) (17)

m;? my! (A1a = A2a)?
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where B is d Xd the matrix whose (i, j) elements is

1 1
—— (1 —e7>"i%) (18)

2¢

By =g T3
m;c; m;c;

Equation (17) is a non-homogeneous system of equations in (A, — As;)? for

(1 <i < d). Solving this system by any Matrix method, Cramer’s rule (say), we

could express A1; and A,; values in terms of ¢; from the range found in Step 1.
Step 3:  Determine the values of ¢;

Using (16) and the expressions for (4;; — )&2,-)2 obtained in Step 2, consider the

Integral

[02m™ — RHSof(12)]dm.

Mmin

This integral is function of ¢;. Determine the values of ¢; such that value of the
integral is minimum.

Step4:  Compute the values of (A;; —A,;)? for (1 < i < d) for from the equations
obtained in Step 2.

4 Numerical Results

In this section, we investigate the accuracy of the fitting model in terms of the
variance. We have fitted the CMMPP pertaining to the traffic parameters H = 0.6,
A=1,02=0.6(Samplel), H =0.7,A = 1,02 = 0.6 (Sample 2), and, H = 0.8,
A =1, 0% = 0.6 (Sample 3). In all the above cases, the number of superposed two-
state SPPs, d, is taken to be 4 and the specified time scale range is [10%, 10%] [4,7,8].
The variance-time scale curves of the resultant CMMPP and self-similar traffic are
depicted in Figs. 1, 2, 3. From these figures, we conclude that proposed fitting is in
agreement with that of exact self-similar traffic.

5 Conclusions

Earlier models for self-similar traffic are asymptotic and are less effective in queuing
based performance evaluation. Therefore, Markovian models emulating self-similar
traffic are proposed, as they hold good for queueing theory. These models are based
on second-order statistics. In this paper, we have fitted CMMPP emulating self-
similar traffic by equating the variance. It is found from the numerical examples
that self-similar can be well represented by the proposed model.
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Fig. 1 Variance-time curves of the resultants of the self-similar traffic and CMMPPs with d = 4
over the time scale range [10%, 10%], and H = 0.7
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Fig. 2 Variance-time curves of the resultants of the self-similar traffic and CMMPPs with d = 4
over the time scale range [102, 108], and H=0.8
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Fig. 3 Variance-time curves of the resultants of the self-similar traffic and CMMPPs with d = 4
over the time scale range [10%, 10%], and H = 0.9
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Investigation of Priority Based Optical Packet
Switch Under Self-Similar Variable Length
Input Traffic Using Matrix Queueing Theory

Ravi Kumar Gudimalla and Malla Reddy Perati

Abstract In this paper, queueing behavior of the optical packet switch (OPS)
employing priority based partial buffer sharing (PBS) mechanism under asyn-
chronous self-similar variable length packet input traffic is investigated. Markov
modulated Poisson process (MMPP) emulating self-similar traffic is used as input
process. In view of wavelength division multiplexing (WDM)OPS output port
of switch is modeled as multi-server (MMPP/M/c/K) queueing system. Service
times (packet lengths) are assumed to be exponential distributed as traffic under
consideration is unslotted asynchronous. Performance measures, namely, high
priority packet loss probability and low priority packet loss probability against
the system parameters and traffic parameters are computed by means of matrix-
geometric solutions and approximate Markovian model. This kind of analysis is
useful in dimensioning the switch employing PBS mechanism under self-similar
variable length packet input traffic and to provide differentiated services (DiffServ)
and quality of service (QoS) guarantee.

Keywords Optical packet switch * Self-similar ¢ Partial buffer sharing * Multi-
server queue ¢ High priority packets ® Low priority packets ¢ Traffic intensity

1 Introduction

Internet Protocol (IP) traffic of both Ethernet and wide area network (WAN) traffic
are shown to be self-similar and long-range dependent (LRD) [6, 10, 13]. Markov
modulated Poisson process (MMPP) could be used to model the self-similar traffic
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over the desired time-scales [2, 8, 19] to investigate the queueing behavior of
network switches. These models hold good for queueing based performance analy-
sis and are computationally tractable. Optical packet switch (OPS) with wavelength
division multiplexing (WDM) technology is promising a good quality of service
(QoS). In OPS, there are N input fiber lines, N output fiber lines, and each fiber line
has K wavelength channels and a wavelength converter pool of size ¢ (0 < ¢ < K),
dedicated to each output fiber line. In general, OPS networks are classified into
two categories: synchronous (slotted) and asynchronous (unslotted) [15]. In the
case of first one, all the packets have same size [4, 14]. In asynchronous OPS
networks all the packets have variable lengths and are not aligned before they
enter the OPS [5, 16, 18]. The specific output port of asynchronous OPS with self-
similar variable length packet input traffic is modeled as MMPP/M/c/K queueing
system. Therefore, performance analysis of OPS is equivalent to solving a problem
of MMPP/M/c/K queueing system.

The another issue is to provide differentiated service (DiffServ) as Internet
traffic is moving towards DiffServ rather than integrated services. Broadband
integrated services digital network (B-ISDN) has to support different kinds of
communication services such as video phone, video conferencing, data traffic, and
voice sources in more efficient manner. High demand of network traffic results in
congestion problems. Congestion problem in network traffic can be dealt with some
priority mechanisms. One of such mechanisms is buffer access control (BAC), also
called space priority mechanism. There are several strategies by which one can
implement this BAC mechanism; one of such strategies is partial buffer sharing
(PBS) mechanism. In this scheme, a threshold is imposed on both high priority
and low priority packets. The part of buffer on or below the threshold is shared
by all arriving packets. When the buffer occupancy is above the threshold, the
arriving low priority packets will be rejected. High priority packets will be lost
only when buffer is full. If the threshold is relatively high, then the high priority
packets will be lost more than expectedly. Whereas, if the threshold is relatively
low, then low priority packets will be lost excessively [14, 16, 17, 21]. This way,
there is a trade-off between threshold setting and packet loss. Hence, optimal
threshold setting is very important in buffer dimensioning. Priority queue models
are briefly discussed below. In the paper [20], the queueing analysis of infinite
buffer priority system with MMPP as the input process is investigated with an
assumption that the delay sensitive cells and non-delay sensitive cells arrive at
two separate queues. This kind of scheme is not realistic as the buffers consist
of limited number of fiber delay lines (FDLs) with fixed granularity. The loss
behavior of finite buffer space priority queues with discrete batch Markovian arrival
process (D — BMAP) has been analyzed in the paper [21] which is not the case,
since the router under consideration is handling self-similar traffic with continuous
time Markov process. In the papers [14, 16], switch is modeled as single server
queueing system which is not appropriate for the reason mentioned in the first
paragraph. To the best of our knowledge, WDMOPS with self-similar variable
length packet input traffic employing PBS mechanism is not yet investigated. In
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this paper, we model WDMOPS with self-similar variable length packet input traffic
as MMPP/M/c/K queueing system with PBS mechanism.

The rest of the paper is organized as follows: In Sect. 2, queueing model of the
switch employing PBS mechanism is briefly introduced. In Sect. 3, numerical results
are presented graphically. Finally, conclusion is given in Sect. 4.

2  Queueing Model of the Switch Employing
Partial Buffer Sharing Mechanism

Consider the WDM asynchronous N x N OPS with each output fiber line consisting
of K wavelength channels and a wavelength converter pool of size c. Buffer depth
then is K — c. Such a switch with self-similar variable length packet input traffic
can be modeled as MMPP/M/c/K queueing system. The operation and queueing
model of the OPS employing PBS mechanism is shown in Fig. 1. As shown in the
figure, the threshold is set at the level K —2¢ —d, where d is a positive integer. The
low priority packets can only access first K — 2¢ — d — 1 buffer spaces, whereas
the high priority packets can utilize the whole buffer space [14, 20]. For the sake
of simplicity, two priorities are considered. Each priority traffic is characterized
by MMPP. Assume that high priority (classl) packets and low priority (class2)
packets arrive at the system according to MMPPs with number of states 7 and m>,
respectively. These MMPPs are characterized by the matrices {Q(1), A(1)} and
{0(2), A(2)}, respectively. The service time is generally and identically distributed
with distribution function H(¢). Let B,;k) (t),{m = 0,k = 1,2} denote the matrices
whose (7, j)th element is the probability that given departure of class k at time 0,
there is at least one packet left in the system and the process is in state i, the next
departure of class k occurs no later than time ¢ with the arrival process in state k,
and during that service time there are m arrivals. Then BX (¢) satisfies the following
equation

High Priority Only for High Shared by High Priority
packets Priority packets and Low Priority packets

\ d+c+1 K-2¢-d-1
+—>| <«

Threshold at K-2¢-d

v

Low Priority
packets <

v

Buffer Depth K-c ¢ - Servers

Fig. 1 The operation and the equivalent queueing model of a specific output port of OPS
employing PBS mechanism with two different priority input traffic
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t

o0
Y BP0 = /e[ QO—AB+AB AT gH(T), k =1,2. (1)

m=0 0

where H(t) is the service time distribution. When the service time is exponential
with mean service rate i, we have

oo oo

m=0 m=0

It is obvious that the matrices B,(nk) can be evaluated by comparing the coefficient
of 7" on both sides of the Eq. (2) and the procedure is outlined in the paper [16].
We consider the embedded Markov chain {L,, J,/n > 0} at the departure epochs
of the queueing system on the state space U = {(b,i,j)/0 <b <K —c,1 <i <
mi,1 < j < m,}, where L, denotes the buffer occupancy and J,, denotes the phase
of superposed MMPP. For convenience, a queueing system is said to be at level b,
if its buffer occupancy is equal to b (excluding the ones in service). The embedded
Markov chain has an irreducible transition probability matrix P (with the dimension
(K —c 4+ D)mimyx(K — ¢ + 1)mym;) given as follows:

P =[P, : P 3)
where,
[Bo By -~ Bk—3c—d—1 Bk—3c-a -+ Bk—2e—d—1 Cik—2e—d |
By By --- Bx—3c—a—1 Bk—3c—a " Bg—2c—a—1 Cgk—2¢—a
0 Bo -+ Bx—3c—a—2 Bx—3c—a—1 *** Bx—2c—a—2 Ck—2c—d—1
00 - By By B. Cet
P = 4
1 00 --- 0 By e B, C. S
00 0 0 By C
00 0 0 0 B"® B,
0 0 0 0 0 o
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B;<)—12c—d+1 @ B - l(;l%()—zc ® B— - B%;—c—l ® B2  E(K-¢)
By 9y @ B2 - Byly QB By ,Q By E(K—c—1)

P B, ® B, - BY, @B, B ®B, EQe+d+1)
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In (4) and (5),
Lo >
B, = Y (B, ® Bi_ir?)
i=0
o0
2
B_2 — Z Bl()

i=0

1
¢ =Y B"QBL")
i =0

1
E(p) = B(_pl) ® B, p=cc+1,...,K—c.
) & L)
B’ =Y B", k=122

i=l

In the above, the elements of the first (¢ + 1) rows are identical. The fundamental
arrival rate of class k packets is A¥) = w(k)A(k)e, k = 1,2, where m(k) is
the steady state probability vector of Q(k). The traffic intensity p = (A1) +
A@) E[H(t)]. From the PBS mechanism, it is clear that high priority packet loss
occurs if buffer is full, whereas low priority packet loss is due to the threshold
mechanism. Let x = (xo,Xx1,...,Xk—c), Where x; = (Xq.11,X¢,125 - - - » Xgmim»)s
q=0,1,...,K—c,and x4, is the conditional probability that there are ¢ packets
in the system given that embedded Markov chain is in the (/, m) state. Therefore,
we have xP = x, xe = 1 where e is the column vector consisting of all 1. Then, in
the steady state, high priority packet loss probability, P”7, and low priority packet
loss probability,Pll’ , respectively, are [21],

oo
P = %{ Z Y ix (B 1 Q) Boo)e

r=0 i=1
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—2c o0
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; 1) (2)
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r=0 i=1 j=0
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Further, in view of threshold setting we decompose the state space U into two
subsets:

Ue = {(b,i,j)/]0<b< K—-2c—d—-1,1<i<m, 1
= {b,i,j)/] K-2c—d < b< K—c,1<i<m, 1< j< my

This partition of U makes the transition probability matrix Q decomposed as
follows:

an anc
= - 8
Q [QCJIC QC } ( )

The sub-matrices Q¢, Onc.cr Ocne, and Q. are the left upper part, right upper
part, left lower part, and right lower part of the matrix Q with dimensions of
(K=2c—d)mimyx (K—2c—d)mimy, (K—2c—d)mmyx (d+c+ 1)mmy,
(d+c+1)mmyx (K—2c¢—d)ymimsy,and (d +c + D)mimyx (d + ¢ + 1)mm,,
respectively. These sub-matrices govern the transitions from U, into itself, from
U, into U, from U, into U,., and from U, into itself, respectively. Following the
algorithm in the paper [21], we compute the high priority packet loss probability
and low priority packet loss probability.
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3 Numerical Results

Following matrix-geometric solutions, [3,9, 11, 12], we compute the steady state
packet loss probabilities. We follow the generalized variance based Markovian
fitting method proposed in [19] to emulate the second order self-similar variable
length packet input traffic for both high priority and low priority packet traffic.
The mean arrival rate and variance of the self-similar traffic is set to be 1 and
0.6, respectively [19], the interested time-scale range to emulate self-similarity is
over [102, 107], [2,19]. It is shown from [2, 19] that in order to emulate self-similar
traffic well, the minimum number of states of the resultant MMPPs must be greater
than or equal to 16. That is, both m; and m, must be > 16. Therefore, each class
is characterized by 16 x 16 matrices. With such a high dimensional MMPP for
both high priority and low priority traffic, it is a great challenge for the numerical
process. In order to reduce the computation complexity, we use approximate model
[14], which is based on the papers [1, 7]. The resultant 16-state MMPP of low
priority packets is approximated by a 2-state MAP. By applying this approximated
model, the computational complexity is reduced by 8° = 512 times. We employ
two different traffic corresponding to the Hurst parameter values H = 0.7 and
H = 0.8, and the buffer depth, K, of the router and the number of servers, c, are set
to be 24 and 4, respectively, and the results are presented in Figs.2, 3, 4, 5. From
Fig.2, we observe that the high priority packet loss probability decreases and the
low priority packet loss probability increases as the threshold increases. In order
to find out the optimal level of the threshold, we illustrate a plot of high priority
packet loss probabilities against the low priority ones at various d in Fig.3. We
could find out that the optimal level of the threshold is the one located nearest
to the left lower corner of the plot, which is around d = 6. Figures 4, 5 depict
the variation of packet loss probability against traffic intensity and buffer capacity,
respectively. From Fig. 4, it is clear that packet loss probability increases as traffic
intensity increases. From Fig. 5, we observe that of high priority and low priority
packet loss probabilities both decrease as the buffer capacity increases.

4 Conclusion

We investigate the loss behavior of asynchronous router employing PBS mechanism
to provide differentiated services under Markovian modeled self-similar variable
length packet input traffic. The performance measures, namely, the steady state
high priority and low priority packet loss probabilities are computed and presented
graphically. To reduce the computation complexity, the original high dimensional
of the low priority packets is approximated by 2-state. With this analysis, we could
locate the optimal threshold position of buffer to obtain the greatest performance.
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Computationally Efficient Wavelet Domain
Solver for Florescence Diffuse Optical
Tomography

K.J. Francis and 1. Jose

Abstract Estrogen induced proliferation of mutant cells is a growth signal hallmark
of breast cancer. Fluorescent molecule that can tag Estrogen Receptor (ER) can be
effectively used for detecting cancerous tissue at an early stage. A novel target-
specific NIRf dye conjugate aimed at measuring ER status was synthesized by ester
formation between 17-8 estradiol and a hydrophilic derivative of ICG, cyanine dye,
bis-1,1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. In-vitro
studies provided specific binding on ER+ve [MCF-7] cells clearly indicating nuclear
localization of the dye for ER+ve as compared to plasma level staining for MDA-
MB-231. Furthermore, cancer prone cells showed 4.5-fold increase in fluorescence
signal intensity compared to control.

A model of breast phantom was simulated to study the in-vivo efficiency of
dye with the parameters of dye obtained from photo-physical and in-vitro studies.
The excitation (754 nm) and emission (787 nm) equation are solved independently
using parallel processing strategies. The results were obtained by carrying out
wavelet transformation on forward and the inverse data sets. An improvisation
of the Information content of system matrix was suggested in wavelet domain.
The inverse problem was addressed using Levenberg—Marquardt (LM) procedure
with the minimization of objective function using Tikhonov approach. The multi
resolution property of wavelet transform was explored in reducing error and
increasing computational efficiency. Our results were compared with the single
resolution approach on various parameters like computational time, error function,
and Normalized Root Mean Square (NRMS) error. A model with background
absorption coefficient of 0.01 mm-1 with anomalies of 0.02 mm-1 with constant
reduced scattering of 2.0 mm for different concentration of dye was compared in
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the result. The reconstructed optical properties were in concurrence with the tissue
property at 787 nm. We intend our future plans on in-vivo study on developing a
complete instrumentation for imaging a target specific lipophilic dye.

Keywords Estrogen receptor ¢ NIRf dye ¢ Inverse solving ¢ Wavelet transform
* Multi-resolution ¢ Parallel processing

1 Introduction

The progress in photonic technology and methodology to model light transport
in tissue has made Diffuse Optical Tomography a promising modality for faithful
and non-invasive detection of breast cancer. NIR light can penetrate larger depth
inside the tissue due to less absorption and high scattering nature of tissue to
the same. Biocompatible fluorescent agents which can effectively tag specific
molecule, proteins and genes and emits in Near Infrared (NIR) window can charac-
terize molecular events involved in normal and pathologic processes. Hence these
agents can be used to enhance detection of cancerous tissue. Fluorescent molecular
imaging involves reconstructing the location and concentration of injected fluores-
cent dye from the detected emission light. In this work we discuss modeling of a
novel fluorescent dye and methods for efficient reconstruction.

The main estrogenic hormone, 17-estradiol through the E2 action is mediated
by transactional actions of the nuclear estrogen receptors, ERx and ERS causing
excessive cell growth in cancerous adenocarcinoma breast tissue [3, 10]. This
accounts for over 70% of all breast cancers. Thus determination of ER status plays
a vital role in breast cancer detection.

Photon transport using P1 approximation of Radiative Transport Equation (RTE)
is used for modeling excitation of tissue with laser and the reemission from
fluorescent dye. These two coupled equations are made independent and inverted
parallely for faster computation. The obtained optical properties are subtracted to get
back to fluorescent dye location. To improve the photon interrogation modeling and
for better solution a multiresolution algorithm in wavelet domain is used. We also
discuss our works on developing an imaging system for validating the simulation
results with experimental data.

2 Novel Dye Synthesis and Characterization

2.1 Dye Synthesis

For the synthesis of dye, dicyclohexylcarbodidmide (DCC), DimethylAminoPyri-
dine (DMAP), 17-8 Estradiol and dry DMF is stirred in argon atmosphere. The
precipitated urea is filtered out. It is further washed with HCL and saturated
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Fig. 1 Complete reaction for synthesis of NIRDC1
Table 1 Optical Properties of dye (based on ICG as standard (¢ = 0.13))

A'ma)c Ama)( Quantum
Compound Solvent absorption (nm) emission (nm) Strokes’ shift yield ¢*
NIRD1 Con. DMSO 754 787 33 0.114
NIRD1 Con. PBS 750 788 38 0.110

NaHCO3 solution and dried over MgSO4 (anhydrous). Solvent is removed by
evaporation and ester is isolated by distillation. The product is purified as NIRD1
Conjugate (Esterl). A solution of Esterl complex was mixed with dry DMF
containing triethylamine and is cooled to 00C. After 20-30 min of stirring at a
portion of 2mmol of D-glucosamine hydrochloride dissolved in DMF is added to
obtain NIRDC1 as shown in Fig. 1. Thus in this reaction Na+ ion is replaced [10].

2.2 Characterization of Dye

The NIR fluorescent dye NIRD1 conjugate after the replacement has got the
spectrum shown in Fig. 2. The excitation and emission peak of the dye in both
DMSO and PBS solvents are tabulated below (Table 1). NIRD1 Conjugate dye
exhibits a strokes’ shift of 38nm. The quantum yield is calculated relative to a
standard solution of ICG with quantum yield 0.13 and is found to be 0.114 and
0.110 respectively in DMSO and PBS solvent [10].
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Fig. 2 Absorption and fluorescent spectrum of NIRD1 conjugate

3 Methodology
3.1 Forward Solving

Light transfer in tissue is modeled by Diffusion Approximation (P1 approximation)
of Radiative Transport Equation (RTE). For work related to this section, see [5—
9,11,12]. In FDOT we have two diffusion equations one for excitation and the other
for reemission from the fluorescent dye. Fluorescent dye is modeled as excitation
light triggered source as shown in Egs. (1) and (2) [1,2,4].
iw

Vi (Vo (r,w) + (Uaxi + Haxy + C—(r))d)x(rw) = qo(rw) (1)

P (rw)nﬂaxf

=V ko (1) (1. 0) + (Hami + =) (1) = = —

i
2
o) @

)

r
where k7' = 3(axi + Haxs + tsx)s Kt = 3(fami + ®},), modulating RF
frequency w, 1 is quantum efficiency of the dye, t is fluorescent life time, C,, (r)
is speed of light in the domain, u, is absorption coefficient, and mu, is reduced
scattering coefficient. x and m indicate optical properties for excitation and emission
wavelength, respectively. i refers to intrinsic tissue property and f for fluorescent

dye properties. Air-tissue boundary is modeled as index mismatch type III boundary
condition or Robin condition given by (3) [4]

o€, w)+24n.k(E,w) =0 3)

where A accounts for refractive index mismatch at the boundary &. The two coupled
equations (2) and (1) can be made independent [13, 14] under the assumption that
optical properties for both the excitation and emission wavelength can be considered
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equal, that is k,(r) = k,(r) = «k(r), fax = Ham = Ha. Fluorescent probe acts
as an absorptive heterogeneity to excitation light with absorption coefficient piq, s
equal to exc(r), where c(r) denotes the spatially varying fluorescent concentration
and €, is the molar extinction coefficient. Rewriting (1) and (2) under this
assumption we get (4) and (5)

V()Y + (e + £xc(r) + (Jn@0w>—%uw> @)
FVMUV+Mw+g%6MU#O=%@w) )

where ¢,(r,w) = #qﬁm (r,w) + ¢ (r,w). A simple diffusion equation of the
form (6)

[=Vk()V + pa + C - )]¢(r w) = qo(r, ) (6)

can be expressed in Finite Element Method as (7) [4]

(K(k) + C(pa + . ( ))+— )P =¢q (7N
where

Kij = /K(r)Vu,-(r).Vuj(r)d"r )

u—/wu (P (" ©)

Fj = %ui(r)uj(r)d”_lr (10)

a0
qoi = | ui(r)qgoQrd"r (11)
/

If wetake M = (K(k) 4+ C(uq + C”" )+ 31 F ), then the linear system of equation
in FEM framework will be M¢ = ¢. So (4) and (5) can be expressed as

Mg, = q. (12)
My bm = qn (13)
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3.2 Inverse Solving

DOT inversion is used to recover optical properties [, and ) from the measured
light photon fluence from tissue boundary. It is achieved by repeated solving of
forward model. Optical properties are updated at each iteration such as to minimize
the error between measured photon fluence at the tissue surface ¢ to the calculated
data ¢ . Error minimization is carried out using Tikhonov minimization [4] given
by (14)

M N
2= S G = 60 42 Yy~ o (14

i=1 j=l1

where 1 is initial guess of optical properties, A is ratio of variance of measured
data to that of optical properties, M is number of measurement, and N is number of
nodes. Optical property update at each iteration is done using Levenberg—Marquardt
(LM) procedure (15) [4].

(Jrd +AD)op = JT 3¢ (15)

where d¢ is data-model misfit, du is optical property update, J is Jacobian formed
using adjoint method. Taking K = (J7J + AI) and b = JT 3¢ then Eq. (15) can
be written as system of linear equation (16)

Kop =b (16)

Solving Eq. (16) optical property updates are obtained and iteration is continued
until the error becomes less than threshold level. DOT inversion is carried out
for both (12) and (13) and the so obtained optical properties in both the case are
subtracted to get back fluorescent property [14].

3.3 Wavelet Solver for System of Linear Equations

A system of linear equation can be written as
Ax =b a7

where A is coefficient matrix of the system, b is the input vector, and x is the
solution. Equations (12) and (13) in the forward model and Eq. (16) in the inverse
model are system of equation and solution for which we get photon fluence in
the forward model and optical property update in the inverse model, respectively.
In forward model a fine mesh is selected to increase the accuracy of the solution.
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The large sparse matrix is difficult to solve and time consuming. In order to exploit
the multiresolution property of wavelet and to reduce the computational time,
Egs. (12) and (13) are represented in wavelet domain.

1D discrete wavelet transform for a single level decomposition for an N
component vector x is given by (18) [16]

Kui = A_1xnj2x1 (18)
D_1xy/x1

X ~Nx1 1S wavelet transform of original signal where D_; is detail coefficient and
A_, is approximation component for first decomposition level. Similarity single
level decomposition on a 2D matrix is given by (19) [16]

Xvonr = (A—lxM/ZxN/Z D—leM/ZxN/Z) (19)
M =
D_1yxpmpxn2 D—1pXmjoxny2

A_, is the approximation component D_;y,D_,y,D_p are horizontal, vertical,
and diagonal detail coefficient. Higher level decomposition for 1D signal is done as
shown in Fig. 3.

Similarly for 2D higher decomposition is done in Fig. 4. Wavelet transform is
performed on matrix 4 and b in Eq. (17) into L. decomposition levels to form (20)
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Fig. 5 Fine-to-coarse-to-fine solver algorithm

A_ 5 =b_y. (20)

The equation is solved in fine-to-coarse-to-fine algorithm [15] as in Fig. 5. Solution
%_, of system of equation (20) is found for the L”” decomposition level using
Conjugate Gradient Method. Solution of L”” level is appended with zeros to the
size of solution of L — 177 level and is used as initial guess for L — 17" stage. This
procedure is repeated until L less than 1 [16]. Using the above multi-resolution
representation, the forward problem can be solved in a fine-to-coarse-to-fine
procedure. Owing to the fact that some important features are contained in the
coarser resolution and the size of the coarser matrix is small this will help in
increasing the speed of computation and increase resolution in the end result.

In the inverse problem for obtaining property update the same procedure of
solving the system of linear equation in wavelet domain is carried out for Eq. (16).
The forward finer mesh is now interpolated to a coarser mesh to speed up the
repeated solving process [4].

4 Results and Discussions

All the simulations are carried out on a PC with 2.2 GHz, Core 2 Duo CPU, and
3 GB RAM working on Windows platform. In our works we have used a circular
FEM mesh of 40 mm radius with 3,302 node points. Background optical properties
are 0.01 cm-1 and 2 cm-1 for mu, and mu, respectively. Figure 6 shows mesh used
in the experiment.
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Fig. 6 (a) Mesh used (b) Absorber of 0.02 cm_; at location (—10,10)
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Fig. 7 (a) Shows reconstructed p with wavelet solver (b) Projection error for each iteration

In order to demonstrate the efficiency of wavelet solver, A DOT forward
and inverse solving with wavelet solver and normal Conjugate Gradient Descent
(CGD) method is performed. In the wavelet solver three levels of decomposition
is done in wavelet domain, the coarser level solution is taken as initial guess for
next finer mesh. Solving in wavelet domain is done using biconjucate gradient
stabilized method with Jacobian preconditioner. In CGD solver incomplete cholesky
factorization is used as preconditioner and is solved without initial guess. In this
experiment an absorber of twice the background that is 0.02 cm-1 at (—10, 10) as
center with a radius of 5 mm is used as shown in Fig. 6.

DOT inversion is carried out on a coarser mesh of 740 node point to speed up the
inversion process. It is found that wavelet solver gives a better reconstruction in less
number of iteration than CGD method as shown in Figs. 7 and 8.

It is observed that time taken for an individual forward solving for wavelet solver
is more than that of CGD solver but due to more accuracy of solution and less
number of iteration total time for reconstruction gets reduced. Reconstructed results
are compared using error function and Normalized Root Mean Square (NRMS)
error. Error function is given by (21)

E=Y"l¢pu —ocl @1)
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Fig. 8 (a) Shows reconstructed p with CGD (b) Projection error for each iteration

Table 2 Comparison of multiresolution and single resolution solver

Parameter

Wavelet solver (multiresolution)

CGD solver (single resolution)

Number of iteration
Minimum error function
Computation time (s)
NRMS

9

0.0034
20.3114
0.9508 x 103

26

0.0888
47.5796
1.0371 x 1073

Table 3 Optical properties used in the experiment

Back ground Constant scattering ~ Absorber value

Fluorescent dye

Experiment 1, (cm™h) (cm™h) (cm™h) absorption (cm™")
1 0.01 2 0.02 0.02

2 0.01 2 0.02 0.015

3 0.01 2 0.02 0.03

Normalized Root Mean Square error is given by (22)

N ~
Z (i — Mz‘)z

i=1

N
> (i —1)?

i=1

NRMS =

1/2

(22)

where u; and [i; are original absorption value and reconstructed absorption value
at ith node point. z; is the mean of original absorption value at all node points.
Both Error function and NRMS is less in case of Multiresolution solver than single
resolution solver (Table 2).

Reconstruction of fluorescent dye location and its absorption coefficient for
different dye concentration is carried out. In the forward solver fluorescent quantum
yield 7 is taken as 0.114 and fluorescent life time as 1 (Table 3).

Figures 9, 10, 11 show the independent reconstruction of w, + €c(r) and
M, obtained through inversion of equation (4) and (5). The optical properties so
obtained are subtracted and the background optical properties are added to obtain
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Fig. 9 Experiment 1. (a) and (b) are, respectively, independent reconstructed images of ,+e€c(r)
and p,. (a) minus (b) added with background absorption coefficient give fluorescent dye property
given by (c). Here ec(r) is 0.02
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Fig. 10 Experiment 1. (a) and (b) are, respectively, independent reconstructed images of , +
ec(r) and p,. (a) minus (b) added with background absorption coefficient give fluorescent dye
property given by (c). Here ec(r) is 0.015
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Fig. 11 Experiment 1. (a) and (b) are, respectively, independent reconstructed images of p, +
ec(r) and p,. (a) minus (b) added with background absorption coefficient give fluorescent dye
property given by (c). Here ec(r) is 0.03

the exact absorption of fluorescent and hence the concentration of fluorescent dye.
This independent inversion method to retrieve back fluorescent concentration is
valid when the strokes’ shift is small and the optical properties for excitation and
emission do not change much.

When the fluorescent absorption is closer to the background the reconstructed
value is more accurate and as it increases the reconstructed value will deviate from
the desired linear path as shown in Fig. 12.
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Fig. 12 Actual fluorescent value vs reconstructed value

5 Conclusions

In this work we present our pre-clinical study results of ongoing efforts to use the
novel NIR fluorescent dye for early detection of breast cancer. Dye modeling and
reconstruction of location and concentration is carried out. Validity of independent
DOT inversion method to locate fluorescent dye is tested. The result proves that
wavelet based multiresolution solver to solve large system of sparse matrix is very
efficient and less time consuming than the single resolution solvers. In our future
work we intend to develop a complete imaging system to collect experimental data
instead of synthesis data for experiments.
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Implementation of Wavelet Based and Discrete
Cosine Based Algorithm on Panchromatic Image

Jyoti Sarup, Jyoti Bharti, and Arpita Baronia

Abstract In the past few years, there has been a tremendous increase in the
need for the amount of information stored in the form of images especially from
Remote Sensing Satellites. Recently there has been a exponentially conversion of
conventional analog images to digital images. The volume of digitized image being
very high will considerably slow down the transmission and storage of such images.
Therefore there is strong need of compression of the images by extracting the visible
elements which are encoded and transmitted. This paper compares different image
compression techniques such as JPEG (Joint Picture Expert Group), JPEG2000
(Joint Picture Expert Group-2000), and SPIHT (Set Partitioning in Hierarchical
Tree) using a set of objective picture quality measures like Peak Signal to Noise
Ratio (PSNR) and Mean Square Error (MSE) have been used to measure the picture
quality and comparison has been done based upon the results of these quality
measures. Standard test images were assessed with different compression ratios. It is
found that the JPEG2000 based compression has achieved better results as compared
to SPIHT and JPEG for all compressions and images were produced showing better
image quality.
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1 Introduction

Image compression can be of two types (1) Lossless and (2) Lossy compres-
sions. With lossless compression, every single bit of data that was originally in
the image remains after the image is decompressed. On the other hand, lossy
compression reduces an image by permanently eliminating certain information,
especially redundant information [5]. In Still images there are many efficient
compression techniques. Mainly they are JPEG [11] which is based on discrete
cosine transform, SPIHT [8] and JPEG 2000 [10] which is based on discrete wavelet
transform.

JPEG is a popular and continuous tone still image compression mechanism
established by first Joint Photographic expert Group in 1992. JPEG is based
on Discrete Cosine Transformation of encoder and decoder both. It is a block
based technique where the original image is divided into small nxn (usually 8x8)
blocks and then DCT transformation is applied. The data compression is achieved
via quantization followed by Huffman coding. The disadvantage of JPEG is the
blocking artifacts in reconstructed image [7].

Unlike the case of DCT is composed on cosine functions here as DWT can be
composed on function (wavelet) which satisfies the multi resolutions. The choice
of Wavelet depends on contents and resolution of image in recent time, much of
the research activities in image coding have been focused on the Discrete Wavelet
Transform (DWT). DWT offers adaptive spatial-frequency resolution (better spatial
resolution at high frequencies and better frequency resolution at low frequencies)
that is well suited to the properties of Human Visual System (HVS). It can provide
better image quality than DCT, especially at higher compression ratio [4].

The SPIHT algorithm was introduced by [8]. It is a powerful, efficient and
computationally simple image compression algorithm. By using this algorithm, the
highest PSNR values for given compression ratios for a variety of images can be
obtained. SPIHT was designed for optimal progressive transmission, as well as for
compression. One of the important features of SPIHT is that at any point during
the decoding of an image, the quality of the displayed image is the best that can be
achieved for the number of bits input by the decoder up to that moment. The wavelet
coefficients can be referred as ci,j. The main aim in progressive transmission is to
transmit the most important image information at first priority [6].

JPEG 2000 is based on the idea that the coefficients of a transform that decor-
relates the pixels of an image can be coded more efficiently than the original pixel
themselves. If the transform basis function is wavelet then JPEG 2000 pack most of
the visual information into a small number of coefficients, the remaining coefficients
can be quantized coarsely or truncated to zero with little image distortion [2].

The following steps are followed for comparisons of compression techniques:

1. Select the images (like PANCHROMATIC image).
2. Apply the compression techniques (SPHIT, JPEG and JPEG-2000) on these
images.
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3. Evaluate the quality and impact of different technique on image interpretability,
finally, a quantitative evaluation of compressed images in order to estimate the
MSE and the PSNR comparisons with the original images.

2 Indentation and Equation

The quality measure for an image is evaluated by MSE and PSNR shown in Egs. (1)
and (2).

Mean Square Error (MSE): The mean square error measures the error with
respect to the center of the image values, i.e. the mean of the pixel values of the
image, and by averaging the sum of squares of the error between the two images.

_L m n B 5
MSE =—3% % [(x.y —I(x.)] (1)

y=1x=1

where I(x,y) is the original image, I(x,y) is the approximated version (which is
actually the decompressed image), and M,N are the dimensions of the images.
A lower value of MSE signifies lesser error in the reconstructed image [1]. Peak
signal-to-noise Ratio (PSNR): The peak signal-to-noise ratio (PSNR) measures
the estimates of the quality of reconstructed image compared with the original
image and is a standard way to measure image fidelity. Here signal corresponds
to the original image and noise corresponds to the error in reconstructed image due
to compression and decompression. The PSNR is a single number that reflects the
quality of the reconstructed image and is measured in decibels (db) [9].

S
PSNR =20 % logl0(————— 2
*¥Log (sqrt(MSE)) 2)

where PSNR is the Peak Signal to Noise Ratio,

S is the maximum pixel value, and RMSE is the root mean square error of the
image. The actual value of the PSNR is not meaningful but the comparison between
two values between different reconstructed images gives one measure of quality. As
seen from inverse relation between the MSE and PSNR, a low value of MSE/RMSE
translates to a higher value of PSNR, thereby signifying that a higher value of PSNR
indicates higher reconstruction fidelity [3].
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Table 1 Mean Square Error

Compression ratio ~ SPIHT JPEG2000 JPEG
2:1 0.70723  0.34938 6.25778
10:1 1.5086 1.1506 16.0592
12:1 0.89324  0.50849 6.56521
14:1 0.66869  0.29009 6.36022
20:1 0.70716  0.37423 6.36022
Table 2 Peak Signal to Noise Ratio

Compression Ratio ~ SPIHT JPEG2000 JPEG
2:1 12.354 13.5964 11.1657
10:1 11.2309  12.3603 10.1506
12:1 12.354 13.5964 11.1654
14:1 12.354 13.5964 11.1654
20:1 12.354 13.5964 11.1654
18
16
14 +
12 1

w 10
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b - JPEG 2000
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Fig. 1 MSE between original and decompressed images

3 Experimental Result and Analysis

J. Sarup et al.

Experiments are conducted on the test image (PANCHROMATIC) using MATLAB
platform, coded with JPEG, JPEG 2000, SPIHT image compression coder for each
test image with 5 different compression ratios (CR) as 2:1, 10:1, 12:1,14:1,20:1.
Table 1 shows the MSE of three algorithms between original and decompressed
image, Table 2 Shows PSNR value which is always be greater than the MSE for good
result. Figures 1 and 2 show the graphical representation of tables. Figure 3 shows
the original image in Tiff Format. Figures 4, 5, and 6 show different decompressed
images at compression ratio 12:1.
The result consists of comparison between three compression technique methods
on the basis of calculation of MSE and PSNR of original image and decompressed

image.
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Fig. 2 PSNR between original and decompressed image

Fig. 3 Original image

4 Conclusion

Based on the limited testing results obtained in this study due to time constraints, it
is to be concluded that there could be a decrease in image quality with compression
ratio increase. JPEG2000 has better performance than SPIHT and JPEG. JPEG has
poor performance than all the compression methods because all other methods are
Wavelet based. Wavelet-based compression provides substantial improvement in
picture quality because of overlapping basis functions and better energy compaction
property of wavelet transforms that makes images smoother and preserves object
edges, while DCT-based JPEG creates blocking artifacts. JPEG2000 is better than
SPIHT compression technique. These techniques are scene dependent and for this
study area JPEG2000 performs better than the SPIHT.
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Fig. 5 SPIHT (CR 12:1)
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Fig. 6 JPEG (CR 12:1)

References

—

10.

11.

. Avcbas, 1., Sankur, B., Sayood, K.: Statistical evaluation of image quality measures. J. Electron.

Imag. 11(2), 206-223 (2002)

. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an

overview. IEEE Trans. Consum. Electron. 46(4), 1103-1127 (2000)

. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using Matlab, 2nd edn,

p- 374. Tata Mc Graw Hill, New Delhi (2011)

. Jose, G., Murugananth, N.: Image identification using compression technique. In: International

Conference on VLSI. Communication and Instrumentation (ICVCI), pp. 29-31 (2011)

. Paul, PJ., Koteswari, S., Rani, B.K.: A novel VLSI architecture of SOC for image compression

model for multimedia applications. Int. J. Comput. Sci. Tech. 2(3), 130-134 (2011)

. Raja, S.P,, Narayanan, P.N., Arif Abdul Rahuman, S., Kurshid Jinna, S., Princess, S.P.: Wavelet

based image compression: a comparative study. In: International Conference on Advances in
Computing, Control, and Telecommunication Technologies, pp. 545-549 (2009)

. Rani, B., Bansal, R.K., Bansal, S.: Comparison of JPEG and SPIHT image compression

algorithms using objective quality measures. In: International Conference on Muitmedia,Signal
Processing and Communication Technology, IMPACT’ (09, pp. 90-93 (2009)

. Said, A., Pearlman, W.A.: A new fast and efficient image codec based on set partitioning in

hierarchical trees. IEEE Trans. Circ. Syst. Video Tech. 243-250 (1996)

. Santa-Cruz, D., Ebrahimi, T., Askelof, J., Larsson, M., Christopoulos, C.: JPEG 2000 still

image coding versus other standards. In: Proceedings of SPIE, SPIEs 45th Annual Meeting,
Applications of Digital Image Processing XXIII. San Diego, California, vol. 4115, pp. 446-454
(2000)

Skodras, A.N., Christopoulos, C.A., Ebrahimi, T.: JPEG2000: The upcoming still image
compression method. Pattern Rcognit. Lett. 22, 1337-1345 (2001)

Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron.
38, xviii—xxxiv (1992)



Trend, Time Series, and Wavelet Analysis
of River Water Dynamics

Kulwinder Singh Parmar and Rashmi Bhardwaj

Abstract Time series, trend, wavelet and statistical analysis of water quality
parameters Chemical Oxygen Demand (COD), Biochemical Oxygen Demand
(BOD), Dissolved Oxygen (DO) monitored for river Yamuna in India have been
studied. It is observed that COD is highly correlated with BOD. For all auto
regressive integrated moving average model (p,d,q) value of “d,” i.e. middle value
is zero thus process is stationary. It is also observed that RMSE values are
comparatively very low, thus dependent series is closed with the model predicted
level. MAPE, MaxAPE, MAE, MaxAE, Normalized BIC are calculated and have
low value for all parameters. Trend is calculated by using auto correlation function,
partial auto correlation function, and lag. Thus the predictive model is useful at
95 % confidence limits. 1-D discrete and continuous Daubechies Wavelet analysis
explains that the parameters COD, BOD, DO have the maximum value 120, 50, 8
and amplitude (a5) varies between 52 to 78, 10 to 30, 0.2 to 1.4, respectively. The
scale values of Db35, i.e. d5, d4, d3, d2, and d1 range between —20 and +20 for all
parameters. All parameters cross the prescribed limits of WHO/EPA, thus water is
not fit for drinking, agriculture, and industrial use.
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1 Introduction

Water is a base of life on earth and rivers are the most important resources of
water. Adequate supply of safe water is essential for maintaining health and sanitary
conditions. Water as a natural resource has influenced almost every aspect of
development. Natural water always contains dissolved and suspended substances of
organic and mineral origin. The river water draws attention of Government, Public,
NGO’s, and Environmentalists in India and world over. Domestic, industrial, and
agricultural wastes pollute the river water.

Natural water always contains dissolved and suspended substances of organic
and mineral origin [24]. Yamuna is the largest tributary river of the Ganga in
northern India. It originates from Yamunotri glacier at a height of 6,387m on
southwestern slopes of Banderpooch peaks (38° 59° N 78° 27" E) in the lower
Himalayas in Uttarakhand. It travels a total length of 1,376 km by crossing several
states, Uttarakhand, Haryana, Himachal Pradesh, Delhi, Uttar Pradesh and has a
mixing of drainage system of 366,233 km? before merging with Ganga at Allahabad,
i.e. a total of 40.2 % of entire Ganga basin. Yamuna river accounts for more than
70 % of Delhi’s water supplies and about 57 million people depend on river water
for their daily usage (CPCB [7]). Nizamuddin is approximately 14 km downstream
from Wazirabad barrage at Delhi and 410km from Yamunotri. Pollution in river
water is continuously increasing due to urbanization, industrialization, population
growth etc. Many rivers are dying due to pollution which is an alarming signal.
The water quality at Nizamuddin (Delhi) has the impact of industrial, sewerage,
domestic discharge from Haryana and Delhi [3, 11, 13, 14, 17,23].

An industrial, domestic and sewerage discharge mixes with river water and
affects the quality of water. Treatment of domestic wastewater using laboratory scale
Hybrid Upflow Anaerobic Sludge Blanket (HUASB) reactor reduced treatment cost
significantly [1]. The oxidation treatment system constructed under a riverbed of
Nan-men Stream located at Shin Chu City of Taiwan modeled such that it has sig-
nificant efficiency [15]. Trihalomethane compounds were determined in the drinking
water samples that were collected from the selected consumption sites and treatment
plants of both Okinawa and Samoa Islands and observed that the Chloroform,
Bromodichloromethane compound exceeded the level of Japan water quality and
WHO standards [12, 30]. Water quality of watersheds is studied using hydrochem-
ical data that mingle multiple linear regression and structural equation modeling
[6]. Regression equations can be used to estimate constituent concentrations.
Constituent concentrations can be used by water-quality managers for comparison
of current water-quality conditions to water-quality standards. Examination of
stream flow and physical properties of water that act as surrogates for constituents
of interest also helps for collection of water-quality samples [18,25,29,31].

Wavelets are considered as a special characteristic to study the abnormality,
singularity, chaos, turbulence, fractal in the study of financial data, meteorological
data, bioinformatics data such as DNA sequence, protein structure, micro array
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and medical data such as ECG data, mammogram data, etc. In recent centuries,
to maintain quality of water is the main area of research both theoretical and
experimental. Wavelet and wavelet based multifractal formalism have become
very popular for analyzing meteorological data and related problems in different
parts of the world for analysis of monthly and daily temperatures, wind speed
simulations, monsoon variability, surface air temperature, atmospheric structure,
and weather phenomena [5, 10]. The climatic dynamic has been studied using fractal
dimensional, wavelet analysis and analyzed time series data of three major dynamic
components of the climate, i.e. temperature, pressure, and precipitation. Fractal
dimension and predictability analysis is used to predict the behavior of water quality
parameters [2]. It has been observed that regional climatic models would not be able
to predict local climate as it deals, with averaged quantities and that precipitation
during the south-west monsoon is affected by temperature and pressure variability
during the preceding winter [26]. Time series can be modeled by a stochastic process
possessing long range correlation [16,22,27,28].

In this paper, time series analysis, trend analysis, Daubechies wavelet analysis of
water parameters have been estimated at Nizamuddin bridge-mid stream (Delhi) of
Yamuna River in India. The river map is shown in Fig. 1.

l N D I A 7 Site of Study Nizamuddin (Delhi)
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2 Methodology

The monthly average value of last 10 years of water quality parameters Chemical
Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Oxygen
(DO) monitored at Nizamuddin bridge-mid Stream of Yamuna River in Delhi (India)
has been considered for the present study.

2.1 Time Series

Time series is a sequence of data points, measured typically at successive times
spaced at uniform time intervals. Time series analysis comprises methods for
analyzing time series data in order to extract meaningful statistics and other
characteristics of data and to forecast future events based on known past events
to predict data points before these are measured. Time series model reflects that
observations close together in time one closely related than observations further
apart. In addition, time series models will often make use of natural one-way
ordering of time so that values for a given period will be expressed as deriving
in some way from past values, rather than from future values (Fig. 2).

2.1.1 Auto Regressive Integrated Moving Average (ARIMA)

ARIMA model of a time series is defined by three terms (p, d, q). Identification of a
time series is process of finding integer, usually very small (e.g., 0, 1, or 2), values of
p, d, and q model patterns in data. When value is 0, element is not needed in model.
The middle element, d, is investigated before p and q. The goal is to determine if
process is stationary and, if not, to make it stationary before determining the values
of p and q. A stationary process has a constant mean and variance over time period
of study. The representation of an autoregressive model in time series [4,9,21], well
known as AR(p), is defined as

Y=+ Vi t+aYion+ . +oa,Y, 1+ & (1)
where the last term is source of randomness and is called white noise, are constants.
A series may have both auto-regressive and moving average components so both
types of correlations are required to model the patterns. If both elements are present

only at lag 1, the equation is

Y =¢1Y 1 — a1 +a (2)
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2.2 Auto Correlation Functions (ACF) and Partial Auto
Correlation Functions (PACF)

Models are identified through patterns in their ACFs and PACFs. Both autocorrela-
tions and partial autocorrelations are computed for sequential lags in a series. The
first lag has an autocorrelation between Y;_; and Y;, the second lag has both an
autocorrelation and partial autocorrelation between Y;_, and Y;_, and so on. ACFs
and PACFs are the functions across all lags. If plotted residuals are greater than
standard errors and away from a zero mean, then it indicates statistically significant
autocorrelation. Autocorrelation is defined as

L (Y =Y) (Y - Y)

Ty = — (3)
Ly (v -Y)

where N is number of observations in a whole series, k is lag.Y is mean of whole
series. At lag 1, there are no previous autocorrelations, so rg is set to be 0. Standard
error of an autocorrelation depends on squared autocorrelations of previous lags and

is defined as
[14+23 %22
SE,, = # 4)

Standard error for a partial autocorrelation is same at all lags.

1
SEpr = 5)

The relation between ACF and PACEF for first three lags is given as [21]:

PACF (1) = ACF (1) (6)

ACF (2) — (ACF (1))?

PACE @) == " cF )2

(N

If an autocorrelation at some lag is significantly different from zero, the correlation
is included in ARIMA model. Similarly, if a partial autocorrelation at some lag
is significantly different from zero, it is also included in ARIMA model. The
significance of full and partial autocorrelations is assessed using their standard
errors. The boundary lines around functions are 95 % confidence bounds. For large
pattern, negative autocorrelation at lag 1 and a decaying PACF, an ARIMA (0, 0, 1)
model is useful.

In order to detect seasonality, plot the autocorrelation function (ACF) by
calculating and graphing the residuals. The graph of the residual against a specified
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time interval is called a lagged autocorrelation function. In time series analysis,
lag k is defined as difference of an event occurring at time t + k (k > 0) to an event
occurring at time t. The partial autocorrelation function (PACF) is also used to detect
trends and seasonality. PACF is the amount of correlation between a variable and its
lag that is not explained by correlations at all lower-order lags [4,9,21].

2.3 Wavelet Analysis

Wavelet Transform (T,,,) decomposes a signal into several groups (vectors) of
coefficients. Different coefficients vectors contain information about characteristics
of the sequence at different scales. The mother wavelet ¥ satisfying the conditions
(Fig. 3):

Yap () =a~ 7y (%) where a >0 (8)

where Ty f (a, b) is called the wavelet transform of f (¢).

1

+o00 —b
nfah=at [ f(r)w( )dr=<f,wa,b> ©)

It may be observed that wavelet transform is a prism which exhibits properties of
signal such as points of abrupt changes, seasonality, or periodicity. The wavelet
transform is a function of “a” and “b” where a is the scale of frequency, b is spatial
position (translation) or time. Discrete data is obtained in the form of signal. Let “S”
represent the raw signal and an represent the corresponding amplitude at different

levels forn = 1,2,3,....... ,dy, do, d3, dy,.... represent the detail of signal at
different levels.
Let f = (fi. f2, f3,...., fv) N is an even integer. a,, = % ,m =1,
2, 3, ..., N/2. The first trend sub-signal (approximation) d,,, = thm, m =
P _ [ 1
1,2, 3, ..., N/2. These wavelets are defined as W, = [E, 7 0,0....... , O],
1 _ _ 1 1 A1
Wy = (0,0, 25, ~.0......0], and s0 on. Wy = [0.0,0,.....0, - -]
Alsod, = fW/!,dy = fW),dy = fW]....soond,, = le form=1,2,3,

., N/2.

The plane defined by variables (a, b) is called scale-space or time frequency
plane. Wavelet transform Ty f (a, b) measures variation of f in neighborhood of b.
For a compactly supported wavelet (for a wavelet vanishing outside a closed and
bounded interval), value of Ty f (a, b) depends upon value of f in a neighborhood
of b of size proportional to scale a. At small scales, Ty, f (a, b) provides localized
information such as localized regularity (smoothness) of f. The local regularity of
a function (or signal) is often measured with Lipschitz exponent. The global and
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local Lipschitz regularity can be characterized by asymptomatic decay of wavelet
transformation at small scales [8, 19,20]. 1D discrete wavelet is defined as:

Yk (6) =25y (21 —k) (10)

where j,k are integers.

dix (1) = /_ £ @O (1) di an

are called the wavelet coefficients of f (¢) and ik djr (t) Yk (t) is called the
wavelet series of f with every orthonormal wavelet.

3 Results and Discussion

3.1 Chemical Oxygen Demand

Stationary R-squared and R-squared values exhibit the similar behavior, thus model
is better than the baseline model and RMSE values are high, so dependent series is
not closed with its model-predicted level. Using Ljung-Box Q(18) model statistics
is 19.035, significance is 0.327, and degree of freedom is 17. ARIMA (1,0,0) fitted
and boundary lines at 95 % confidence limits. Predicted, LCL, UCL, and residual
value of COD are 64.793,19.273, 110.314, and 0.2645. 1D discrete wavelet analysis
shows that COD has maximum value as 120. The value of amplitude (a5) and scales
at different levels ds, dy4, d3, d», and d, varies between 52 to 78; —10 to +10; —50 to
+50; =50 to +50; —50 to +50; —50 to +50, respectively. Using continuous wavelet
analysis, it is observed that local maximum exists in May 2004, March 2008, and
May 2009 with maximum value of 116, 120, and 103, respectively.

3.2 Biochemical Oxygen Demand

Stationary R-squared and R-squared values exhibit the similar behavior, thus model
is better than the baseline model and RMSE values are low, so dependent series is
closed with its model-predicted level. Using Ljung-Box Q(18) model statistics is
30.005, significance is 0.026, and degree of freedom is 17. ARIMA (1,0,0) fitted
and boundary lines at 95 % confidence limits. Predicted, LCL, UCL, and residual
value of BOD are 21.379, 3.534, 39.224, and 0.178. 1D discrete wavelet analysis
shows that BOD has maximum value as 50. The value of amplitude (as) and scales
at different levels ds, dy4, d3, d», and d; varies between 10 to 30; —5 to +5; —10
to +10; —20 to +20; —20 to +20; —20 to +20, respectively. Using continuous
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wavelet analysis, it is observed that local maximum exists in Feb 2001, Dec 2005,
and May 2009 with maximum value of 50, 33.3, and 32.6, respectively.

3.3 Dissolved Oxygen

Stationary R-squared and R-squared values exhibit the similar behavior, thus model
is better than the baseline model and RMSE values are low, so dependent series is
closed with its model-predicted level. Using Ljung-Box Q(18) model statistics is
22.178, significance is 0.138, and degree of freedom is 16. ARIMA (0,0,6) fitted
and boundary lines at 95 % confidence limits. Predicted, LCL, UCL, and residual
value of DO are 0.6424, —1.9207, 3.2123, and 0.0025. 1D discrete wavelet analysis
shows that DO has maximum value as 8. The value of amplitude (as) and scales
at different levels ds, d4, d3, d», and d; varies between 0.2 to 1.4; —0.5 to +0.5;
—1to+1; =5to +5; =5to +5; —5 to +5, respectively. Using continuous wavelet
analysis, it is observed that local maximum exists in Aug 1999, Sep 2011, and Aug
2008 with maximum value of 7.8, 6.1, and 4.4, respectively.

4 Conclusion

1D Daubechies wavelet, time series, and correlation analysis of water quality
parameters monitored at the Nizamuddin bridge-mid Stream of Yamuna River in
Delhi (India) have been studied. It is observed that the parameters COD-BOD are
highly positive correlated and DO-COD; DO-BOD are highly negative correlated.

For all ARIMA model (p,d,q) value of “d,” i.e. middle value is zero, thus process
is stationary and has constant mean and variance. It is also observed that RMSE
values are comparatively very low which show that dependent series is closed with
the model-predicted level, thus predictive model is useful at 95 % confidence limits.
MAPE, MaxAPE, MAE, MaxAE, normalized BIC are calculated for all parameters
and it is observed that all water quality parameters have low value. It concludes that
the predicted series is close to the original series, thus it is a perfect fit. Predicted,
LCL-UCL values using time series are given as for COD 64.793, 19.273-110.314;
for BOD 21.379, 3.534-39.224; for DO 0.6424, —1.9207-3.2123, respectively.

1-D Discrete Daubechies Wavelet analysis explains that the parameters pH,
COD, BOD, DO have the maximum value 120, 50, 8 and amplitude (as) varies
between 5278, 10-30, 0.2—1.4, respectively. The scale values of Db5, i.e. ds, d4,
ds, d,, and d; range between —20 to +20 for all parameters. Using continuous
wavelet analysis, it is observed that local maxima exists for COD, BOD, DO in
March 2008; Feb 2001; Aug 1999, respectively. It is observed that during summer
session the values of COD and DO are at rise due to high rate of evaporation, thus
water has become concentrated and contaminants increase.
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Therefore, using time series, wavelet and correlation analysis, it is concluded
that all parameters cross the prescribed limits of WHO/EPA and water is not fit for
drinking, agriculture, and industrial use. River is a natural resource of water, thus
the increase of pollution is an alarming situation and preventive measure has to be
taken to control the same.
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An Efficient Wavelet Based Approximation
Method to Film-Pore Diffusion Model Arising
in Chemical Engineering

Pandy Pirabaharan, R. David Chandrakumar, and G. Hariharan

Abstract In this paper, we have established an efficient wavelet based
approximation method to solve film-pore diffusion model (FPDM) arising in
engineering. Film pore diffusion model is widely used to determine study the
kinetics of adsorption systems. The use of wavelet based approximation method
is found to be accurate, simple, fast, flexible, convenient, and computationally
attractive. The present paper focus that FPDM satisfactorily describes the kinetics
of methylene blue adsorption onto the three low-cost adsorbents, guava, teak, and
gulmohar plant leaf powders used in this study.
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1 Introduction

In recent years, adsorption mechanism has been established to be one of the highly
efficient methods for removal of colors, odors, and organic and inorganic pollutants
emanating from various industrial processes. Large amounts of dyes are used by
textile industry and a significant portion of these dyes is not consumed in the process
and therefore let out with the effluent. As the cost of commercial adsorbents is
too high, interest for using low-cost adsorbents for removal of dyes from textile
effluents is continuously growing. A recent survey indicates that, in India, on an
average freshwater consumed and effluent generated per kg of finished textile are
175 L and 125 L, respectively [16]. The presence of dyes in aqueous effluents is
highly objectionable as this affects the photosynthetic activity in receiving water
body by reducing/preventing light penetration. As the dyes are recalcitrant in nature
it is difficult to treat them in conventional biological treatment plant [14, 15].
Therefore, identification of low-cost adsorbents is given more attention by the
researchers recently as commercial adsorbents like activated carbon are too costly.
Few recent studies investigating application of low-cost adsorbents are: jackfruit
peel [2], pineapple stem [5], phoenix tree leaves [6], pomelo peel [4], shells of bittim
[1], orange peel [12], broad been peels [3], etc.

In our previous reports we have established the feasibility and adsorption of MB
onto three plant leaf powders, namely guava leaf powder (GLP), teak leaf powder
(TLP), and gulmohar leaf powder (GUL) [16]. Film-pore diffusion model (FPDM)
was employed successfully to describe the kinetics of methylene blue adsorption
onto GLP, TLP, and GUL. Diffusion based kinetic models are too complex and
require rigorous solution methods. For many of the diffusion models pure analytical
solution is not possible. In our previous paper we had employed method of lines
to solve FPDM and had shown that film-pore model could describe the kinetics of
adsorption of MB onto GLP, TLP, and GUL [16]. In this work, we have proposed a
wavelet based approximation method to FPDM.

There is a growing interest in using various wavelets to study problems of greater
computational complexity. Among the wavelet transform families the Haar and
Legendre wavelets deserve much attention. The basic idea of Legendre wavelet
method (LWM) is to convert the PDEs to a system of algebraic equations by the
operational matrices of integral or derivative. The main goal is to show how wavelets
and multi-resolution analysis can be applied for improving the method in terms of
easy implementability and achieving the rapidity of its convergence.

Hariharan et al. [7-10] had introduced the diffusion equation, convection—
diffusion equation, Reaction—diffusion equation, nonlinear parabolic equations,
fractional Klein—Gordon equations, Sine-Gordon equations, and Fisher’s equation
by the Haar wavelet method. Mohammadi and Hosseini [13] had showed a new
Legendre wavelet operational matrix of derivative in solving singular ordinary
differential equations.

In this work, we have applied a LWM for the numerical solution of the FPDM
equation.
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2 Materials and Methods

Detailed development of FPDM is described earlier by McKay and co-workers
[11, 17]. Solution of FPDM by method of lines is described in paper [16]. In
the present paper development of LWM is described in detail and the results are
compared with previous solution.

2.1 Legendre Wavelets Preliminaries

2.1.1 Wavelets

Wavelets are the family of functions which are derived from the family of scaling
function {¢; .k € Z} where:

P(x) =) arp(2x —k) (1)
k
For the continuous wavelets, the following equation can be represented:
-1 x—b
W, p(x) =lal= Y( ) a,be R,a#0. 2)
a

where a and b are dilation and translation parameters, respectively, such that W(x)
is a single wavelet function.

The discrete values are put for ¢ and b in the initial form of the continuous
wavelets, 1.e:

a=ay’, ap>1,by> 1, 3)
b =kboay’, j.k eZ 4)
Then, a family of discrete wavelets can be constructed as follows:
Wi = lag s W@/ x — k) )
So, W, x(x) constitutes an orthonormal basis in L?(R), where W(x) is a single

function.

2.1.2 Legendre Wavelets

The Legendre wavelets are defined by

1~k k N . R
Wy (1) = § Jm+ 52 @t =i, for il < < h "

0 for others
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where m = 0,1,2,--- ,M —1,andn = 1,2,--- ,251 The coefficient m+ %
is for orthonormality, then, the wavelets Wi ,,(x) form an orthonormal basis for
L?[0,1].

In the above formulation of Legendre wavelets, the Legendre polynomials are in
the following way:

po=1
pr=x
2m + 1 m
Pm+1(x) = mt 1 Xpm(x) — m—_Hpm—l(x) @)

and {p,,+1(x)} are the orthogonal functions of order m, which is named the well-
known shifted Legendre polynomials on the interval [0, 1]. Note that, in the general
form of Legendre wavelets, the dilation parameter is @ = 27 and the translation
parameter is b = n2k.

2.1.3 Block Pulse Functions

The block pulse functions (BPFs) form a complete set of orthogonal functions which
defined on the interval [0, b) by

12 <1< Lp

b;(t) = 8
®) 0  elsewhere ®
fori = 1,2,---,m.Itis also known that for any absolutely integrable function f(z)
on [0, b) can be expanded in BPFs:

f() =" Bu() )

E0 = 1A fooe s Sl Bu(0) = [01(0), ba(t), -+ b (0)] (10)

where f; are the coefficients of the block pulse function, given by
b
m
fi= 4 | JObi(t)dr an
0

Remark 1. Let A and B are two matrices of m x m, then A ® B = (aij X bij)mm-.

Lemma 1. Assuming f(t) and g(t) are two absolutely integrable functions, which
can be expanded in BPF as f(t) = FB(t) and g(t) = GB(t), respectively, then
we have

f(t)g(t) = FB(t)B" (1)G" = HB(t) (12)

where H = F ® G.
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2.1.4 Approximating the Nonlinear Term

The Legendre wavelets can be expanded into m-set of block pulse functions as

V(1) = Gmxm B (1) (13)
Taking the collocation points as following

. l
i — =
2 i = 1,2,---,2 1M (14)

TSy

The m-square Legendre matrix ¢,,x,, is defined as
Pmxm = [W(1)V(12) - - V(1301 M)] (15)
The operational matrix of product of Legendre wavelets can be obtained by
using the properties of BPFs, let f(x,?) and g(x,?) are two absolutely integrable
functions, which can be expanded by Legendre wavelets as f(x,1) = W7 (x) FW(r)

and g(x,1) = WT (x)GW(t), respectively. Then

f(x,t) =W (x)FY(t) = BT (x)$,,,, Fpmm B(1) (16)
g(x.1) = W (0)GU() = BT (x)by,,, Gbmm B(1) (17)

and Fj, = ,Z,;mFd)mm,Gb = ¢£mG¢mmva = F, ® Gp.
Then

f(x,0)g(x,1) = BT Hy B(0),
= BT (X)¢,,,, inv(@,,,,) Hy inv(inv(g,,,) Hy inv(Gmm))bmmB(1)
=W (x)H¥(r) (18)

where H = inv(¢L YHp inv((dmm))

2.2 Function Approximation

A given function f(x) with the domain [0, 1] can be approximated by:

F) =) ckmWem(x) = CT(x) (19)

k=1m=0
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Here C and W are the matrices of size (2/~'M x 1).

T
C =c10.C11, ", CLLM=1,€20,C21,** s COM—15""" s Coi—1 1"+, Coj=1 py—1]
(20)
T
W(x) = [Wi0. Vi1, Y0, ¥ou, o, Wom—1, -+, Woi—t p—1] (2D

3 Method of Solution

First we give a brief introduction of film-pore model. FPDM assumes that both
external film and internal pore diffusion resistances are significant and play a role in
controlling the mass transfer. Thus, the governing equations are:

1. Assuming linear driving force the rate of external mass transfer is given by

dc,; s Ay

dt v

2. Within the pore diffusion of solutes follows Flick’s law of diffusion. Following
equations is obtained by making a mass balance of dye in a spherical

(C,—Cy) (22)

8C,- " aq,- -D 82Ci 1 8C, (23)
o TP TR T T
corresponding initial condition and boundary conditions are
1.C:Att =0,C; =0 for0<r <R (24)
aC;
BCl:—=0atr=90 (25)
ar
aC;
BC2:ks(C—Cy) = Deffa— atr =R (26)
. 1175,

3. Solid phase concentration at any radial location may be expressed as function of
aqueous phase concentration at that location as follows:

q;i = f(C) 27)

Assuming equilibrium within the pore Eq. (27) is described by the relevant
isotherm expression of the system. Substituting Eq. (27) in Eq. (23) we get

e Af(C) PC;, 193G
ot pP ot - eff

oz T (28)

Since the system follows Langmuir isotherm [16]
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q.KiC;

g = f(C) = 11 K.C (29)

Following dimensionless variables were defined to convert the equations into
dimensionless form

- G = G B — kR
Co Co' ' Dy

(30)

After substituting the dimension variables in Eq. (28) can be rewritten as follows:

aC; — 3¢ 193G
LA | —L + =L 31
ar A )[azﬁzaz} G
AG) = : (32)
e )
4 Co (1+bCoCy )2
Consider the equation
. I 1 —
Ci(Z.7) = A(C) [c,- et ()G } (33)
Ci(z.0) =e~?
Ci (Z, 1) — e—z—0.09
Ci(0,7) = e
Ci(l, ‘L’) — e—1—0.09‘[ (34)
We solve Eq. (33) by applying the LWM
C'(z1) = CTP V(1) + G (2,0) (35)
C(z,1) = CTP.P[W(z. 1) — P(1,0)] + g1(z. 7) (36)
Ci(z. 1) = CTPAW(z, 1) — 29(1, 1)] + £2(2,7) (37)

Ci(z,1) = CT PP W(z,7) —2¥(1,7)] + Ci(z,0) — C;(0,0) +
Z[Ci(1.7) = C;i(1,0) + C;(0,0) — C; (0, T)] + C;(0,7) (38)
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Table 1 Comparison between Legendre wavelet method (LWM) and method of lines (MOL) by
obtaining the mass transfer coefficients using film-pore diffusion model adsorption of MB onto
GLlpandk =2and M = 3,1 = 10s

Temperature Co ks (ms™") Dy (m*s™") Error

K) (mg) MOL(M)  LWM@L)  MOLM)  LWM(L) Ev EL

303 50 1.00x107% 423x107°% 1.74x107"° 1.24x107"* 1.197 0.038
100 0.140 0.029
150 0.935 0.283
200 1.610 1.541

313 50 1.71x107% 635x107° 6.46x 10712 7.32x1071% 1462 1.312
100 1,120 0.653
150 1.267 0.120
200 7.570 3.626

323 50 4.27x107% 4.01x107% 3.11x107"% 531 x1071 0.856 0.192
100 0.160 0.001
150 2.168 1.127
200 3.164 1.002

E ) error by Method of lines, E; error by Legendre wavelet method

in which
g1(z.7) = Ci(2.0)— C;(1,0) = C;(0.7) + Ci(1.7) + 1 and
(2, 7) = 2[C,(1,7) — C/(0,7)] + C/(0, 7)

Substitute Egs. (35)-(38) into Eq. (33), we get

CTPW(v) —2¥(L 0] + g2(2.7) =

ACHICT P (1) + G (2,0)) + L(CT P P[W(z 1) — PY(1,7)]
+81(z,7))]

From formula (28) the wavelet coefficients C T can be calculated successfully.
Here A(C;) are constants (linear) and € = 0.5, p = 500.

Table 1 gives a comparison of Legendre wavelet (LW) solutions and method of
lines. It is evident that Legendre wavelet solutions are better than that of the method
of lines. Value of absolute error decreased when k was increased. The results show
that combining with wavelet matrix, the method in this paper can be effectively used
in numerical calculus for constant coefficient differential equations, and that the
method is feasible. We can see that the numerical solutions are in good agreement
with exact solution. The power of the manageable method is thus confirmed. All the
numerical experiments presented in this section were computed in double precision
with some MATLAB codes on a personal computer system with Processor Inter(R)
Core™ 2 Duo CPU T5470 @ 1.60GHz(2CPUs) and 1GB RAM.
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4 Conclusion

In the present paper FPDM model equations had been solved by the LWM. It was
found that the model could predict the concentration decay curve for all adsorption
of methylene blue onto TLP, GUL, and GLP excellently with a small deviation
during initial period. In comparison with existing numerical schemes used to solve
the nonlinear parabolic equations, the scheme in this paper is an improvement over
other methods in terms of accuracy. It is worth mentioning that Legendre wavelet
solution provides excellent results even for small values of k. For larger values of k,
we can obtain the results closer to the real values.
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A New Wavelet-Based Hybrid Method
for Fisher Type Equation

R. Rajaram and G. Hariharan

Abstract In this paper, we have introduced a new wavelet-based hybrid method
for solving the Fisher’s type equations. To the best of our knowledge, until now
there is no rigorous wavelet solution has been addressed for the Fisher’s equations.
With the help of wavelets operational matrices, the Fisher’s equations are converted
into a system of algebraic equations. Some numerical examples are presented to
demonstrate the validity and applicability of the method.

Keywords Fisher’s equation ¢ Operational matrices ¢ Legendre wavelets
* Homotopy analysis method ¢ Haar wavelets

1 Introduction

Wavelet theory possesses many useful properties, such as compact support, orthog-
onality, dyadic, orthonormality, and multi-resolution analysis (MRA). Fractional
Partial Differential Equations (FPDEs) are generalizations of classical partial dif-
ferential equations of integer order. Mathematical modelling of complex process is
amajor challenge for contemporary scientist. Analytical methods enable researchers
to study the effect of differential variables or parameters on the function under
study easily. Recently, there are several new approaches have been proposed for
solving nonlinear PDEs, for example, the Adomian Decomposition Method [20],
the variational iteration method [16], Differential Transform Method [2], reduced
differential transform method [15], Homotopy Analysis method [24, 26], and exp-
function method [29].
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In the numerical analysis, wavelet-based methods and hybrid methods
become important tools because of the properties of localization. In wavelet-
based methods, there are two important ways of improving the approximation
of the solutions: (i) Increasing the order of the wavelet family and (ii) The
increasing the resolution level of the wavelets. There is a growing interest
in using various wavelets [4—12, 14, 19, 21-23, 25, 28] to study problems, of
greater computational complexity. Among the wavelet transform families the
Haar and Legendre wavelets deserve much attention. [because of its simplicity
in its analytical expression]. The basic idea of Legendre wavelet method is
to convert the PDEs to a system of algebraic equations by the operational
matrices of integral or derivative [19, 21-23, 28]. The main goal is to show
how wavelets and multiresolution analysis can be applied for improving the
method, in terms of easy implementation and achieving the rapidity [speed] of
convergence [towards the exact solution.] Razzagi and Yousefi [22, 23] introduced
the Legendre wavelet method for solving variational wavelet method for solving
variational problems and constrained optimal control problems. Hariharan et al.
[4-7] had introduced the diffusion equation, convection—diffusion, Reaction—
diffusion equation, Non-linear parabolic equations, fractional Klein—Gordan
equations, Sine—Gordan equations, and Fisher’s equation by the Haar wavelet
method. Mohammadi and Hosseini [19] had showed a new Legendre wavelet
operational matrix of derivative in solving singular ordinary differential equations.
Jafari et al. [11] had solved the fractional differential equations by Legendre
wavelet method. Parsian[21] introduced two-dimensional Legendre wavelets and
operational matrices of integration. In recent years, many analytical/approximation
methods have been proposed for solving Fisher’s and fractional Fisher’s equations.
For example, Adomian decomposition method [15], the variational iteration method
[16], the Homotopy perturbation method [13, 17], the differential transform method
[2], the homotopy analysis method [24, 26], and other methods [1, 3, 18, 27].
Recently, Hariharan and Rajaraman [9] established a new coupled wavelet-based
method applied to the nonlinear reaction—diffusion equation arising in mathematical
chemistry. Yin et al. [8] introduced a wavelet-based hybrid method for solving
Klein—Gordan equations.

In this work, we have applied a wavelet-based coupled method (LLWM) which
combines the Laplace transform method and the Legendre wavelets method for the
numerical solution of Fisher’s equations.

2 Legendre Wavelets and Its Properties

2.1 Wavelets

Wavelets are the family of functions which are derived from the family of scaling
function {@; x(x), j,k € Z} where
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9(x) = > arp(2x — k). ()
k

For the continues wavelets, the following equation can be represented.

Van() = la)  y (2 )a beR,a#0. 2

where “a” and “b” are dilation and translation parameters, respectively, such that
@(x) is a single wavelet function. The discrete values are put for “a” and “b” in the
initial form of the continues wavelets, i.e.:

azao_j,ao>l,b0>1, 3)

b =kboay’, j.k € Z. )
Then, a family of discrete wavelets can be constructed as follows:

Yk = laol? ¥ (2 x — k) (5)

s0, ¥;x(x) constitutes an orthonormal basis in L?(R), where y(x) is a single
function.

2.2 Legendre Wavelets

The Legendre wavelets are defined by

Ynm(t) = \/”72% 2% —n) forgt <1 < = (6)

0,otherwise.

wherem = 0,1,2,...M —landk = 1,2,..,2/ — 1. The coefficient \/m 4+ % is for
orthonormality, then, the wavelets ¥, m(x) form an orthonormal basis for L2[0, 1].
In the above formulation of Legendre wavelets, the Legendre polynomials are in the
following way:

po=1pr=x

1
o) = = p 1 () )

Pm+1(x) = m+ 1 m+ 1

and pp,+1(x) are the orthogonal functions of order m, which is named the well-
known shifted Legendre polynomials on the interval [0, 1]. Note that, in general
form of Legendre wavelets, the dilation parameter is @ = 27/ and the translation
parameter is b = n2/.
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2.3 Function Approximation

A function f(¢) defined over [0, 1] may be expanded in terms of Legendre series as

FO =D ckmVim(x),

k=1m=0

1
where ¢y = (f(0), Yim(x))yw = / Ff(@)Yrm(x)dx. If the infinite series is
0

truncated, then it can be written as

2/—-1 M

J@O =Y ckmVin(x) = CTy (1)

k=0 m=0

where C and y/(¢) are 2/ (M + 1) X1 matrices are defined by

C = [C0,0C0,1,CO,2,C0,3 ...... COM»>eoovrreeeeeennnnns
T
CZj—l,27C2f—l,37C2f—l,4 ............. C2f—l,M]
V(x) = [Vo0, Vo1, Y02 Y03 -wvvnevnn... YOMs-oenenn

T
1pi—l,Zv 1pi—l,,% WZf—lA """" Ir//2/'—l,M]

3 Method of Solution

3.1 Solving the Fisher’s Equation by the LLWM

We consider the well-known Fisher’s equation

U U

W:W“r‘aU(l—U)

with the initial conditions
Ux,0)= f(x),0<x <1.
Taking the Laplace transforms on both sides of Eq. (11), we get

SL(U) = U(x,0) = L(Uyx +aU —aU?)
SL(U) = U(x,0) + [L(Ugx + aU —aU?)]

®)

€)

(10)

Y

12)

13)
(14)
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L(U) = LUy + U —aU?) (15)

Ux,0 1
(s )Jr

N

Taking inverse Laplace transform to Eq. (15) we get

U(x,t) = U(x,0) + L_l(éL(Uxx +aU —aU?)) (16)
because
L L = 17 ) = D a7
we have
L7's7IL() = /Ot dt (18)
From Eq. (16)
UGx.0) = U(x.0) + L7 G LW +2(0) (19)

where g(U) = aU —aU?

U(x.0) = U(x.0) + L7 G LWt +2(0)
By using the Legendre wavelets methods,
Ux,t) = C'y(x,1),U(x,0) = S'Y(x.1),g(U) = G'y(x,1)  (20)
substituting Eqs. (21) in (16) we obtain
C'=S"+(C'Dx*-G")P? (21)
Here G’ has a nonlinear reaction with C. When we solve a nonlinear algebraic

system, we get the solution in more complex and large computation time. In order to
overcome the above drawbacks, we introduce an approximation formula as follows.

9*U,
Uit1 = U(x,0) + [W + g(Uy)] (22)

where g(U) = aU — aU?. Expanding u(x,t) by Legendre wavelets using the
following relation

Cl,, =C,+I[C.D:-G!]P2. (23)
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4 Illustrative Examples

Example 4.1: We consider the well-known Fisher’s equation

U U
— = ual-u 24
o~ a2 Tovd-U) 24)
subject to the initial conditions
U(x.0) 1 (25)
x,0) =
(1 + exp(/§x))?

Using Homotopy Analysis Method (HAM), the exact solution in closed form is
given by

1
(1 + exp(y/%x) — 221)2

U(x,t) = (26)

X t Uexact ULLWM

025 05 0.81839 0.81855
1.0 098292  0.98305
2.0 0.99988  0.99999
5.0 1.0000 1.0000

0.5 0.5 0.77590  0.77602
1.0 097815 0.97824
2.0 099985 0.99996
5.0 1.0000 1.0000

Our proposed method (LLMW) can be compared with Wazwaz and Gorguis results.
(see [24].)

5 Conclusion

In this work, a new coupled wavelet-based method has been successfully employed
to obtain the numerical solution of Fisher type equations. The proposed scheme is
the capability to overcome the difficulty arising in calculating the integral values
while dealing with nonlinear problems. This method shows higher efficiency than
the traditional Legendre wavelet method for solving nonlinear PDEs. Numerical
example illustrates the powerful of the proposed scheme LLWM. Also this paper
illustrates the validity and excellent potential of the LLWM for nonlinear and
fractional PDEs. The numerical solutions obtained using the proposed method
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show that the solutions are in very good coincidence with the exact solution. In
addition the calculations involved in LLWM are simple, straightforward, and low
computational cost.

References

1.

2.

3

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Al-Khaled, K.: Numerical study of Fisher’s reaction-diffusion equation by the sinc-collocation
method. J. Comput. Appl. Math. 13, 245-255 (2001)

Carey, G.F, Shen, Y.: Least-squares finite element approximationn of Fisher’s reaction-
diffusion equation. Numer. Meth. Part. Differ. Equat. 175-186 (1995)

. Hariharan, G.: The homotopy analysis method applied to the Kolmogorov-Petrovskii-Piskunov

(KPP) and fractional KPP equations. J. Math. Chem. 51, 992-1000 (2013)

. Hariharan, G., Kannan, K., Sharma, K.: Haar wavelet in estimating the depth profile of soil

temperature. Appl. Math. Comput. 210, 119-225 (2009a)

. Hariharan, G., Kannan, K.: Haar wavelet method for solving Fisher’s equation. Appl. Math.

Comput. 211, 284-292 (2009b)

. Hariharan, G., Kannan, K.: Haar wavelet method for solving nonlinear parabolic equations.

J. Math. Chem. 48, 1044-1061 (2010a)

. Hariharan, G., Kannan, K.: A comparative study of a Haar wavelet method and a restrictive

Taylor’s series method for solving convection-diffusion equations. Int. J. Comput. Meth. Eng.
Sci. Mech. 11(4), 173-184 (2010b)

. Hariharan, G., Rajaraman, R.: A new coupled wavele-based method applied to the nonlinear

reaction-diffusion equation arising in mathematical chemistry. J. Math. Chem. 51, 2386-2400
(2013)

. He, J.LH., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos, Solitons

Fractals 30, 700-708 (2006)

Heydari, M.H., Hooshmandasl, M.R., Maalek Ghaini, FM., Mohammadi, F.: Wavelet collo-
cation method for solving multiorder fractional differential equations. J. Appl. Math. 2012,
Article ID 163821 (2012)

Jafari, H., Soleymanivaraki, M., Firoozjaece, M.A.: Legendre wavelets for solving fractional
differential equations. J. Appl. Math. 4(27), 65-70 (2011)

Khan, N.A., Khan, N.-U., Ara, A., Jamil, M.: Approximate analytical solution of fractional
reaction-diffussion equations. J. Kind Saud Univ. Sci. 24, 111-118 (2012)

Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. CRC
Press/Chapman and Hall, Boca Raton (2004)

Maleknejad, K., Sohrabi, S.: Numerical solution of Fredholm integral equations of the first
kind by using Legendre wavelets. Appl. Math. Comput. 186, 836-843 (2007)

Matinfar, M., Ghanbari, M.: Solving the Fisher’s equations by means of variational iteration
method. Int. J. Contemp. Math. Sci. 4(7), 343-348 (2009a)

Matinfar, M., Ghanbari, M.: Homotopy perturbation method for the Fisher’s equation and its
generalized. Int. J. Nonlinear Sci. 8(4), 448-455 (2009b)

Matinfar, M., Bahar, S.R., Ghasemi, M.: Solving the generalized Fisher’s equation by the
differential transform method. J. Appl. Math. Inform. 30(3—4), 555-560 (2012)

Mittal, R.C., Jiwari, R.: Numerical study of Fisher’s equation by using differential quadrature
method. Int. J. Inform. Syst. Sci. 5(1), 143-160 (2008)

Mohammadi, F., Hosseini, M.M.: A new Legendre wavelet operational matrix of derivative
and its applications in solving singular ordinary differential equations. J. Franklin Inst. 348,
1787-1796 (2011)

Olmos, D., Shizgal, B.: A spectral method of solution of Fisher’s equation. J. Comput. Appl.
Math. 193, 219-242 (2006)



508 R. Rajaram and G. Hariharan

21. Parsian, H.: Two dimension Legendre wavelets and operational matrices of integration. Acta
Math. Academiae Paedagogicae Nyireghaziens 21, 101-106 (2005)

22. Razzaghi, M., Yousefi, S.: The Legendre wavelets direct method for variational problems.
Math. Comput. Simulat. 53, 185-192 (2000)

23. Razzaghi, M., Yousefi, S.: The Legendre wavelets operational matrix of integration. Int. J. Syst.
Sci. 32, 495-502 (2001)

24. Wazwaz, A.M., Gorguis, A.: An analytical study of Fisher’s equation by using Adomian
decomposition method. Appl. Math. Comput. 154, 609-620 (2004)

25. Yang, Y.: Solving a nonlinear multi-order fractional differential equation using legendre psedu-
spectral method. Appl. Math. 4, 113-118 (2013)

26. Yildirem, K., Ibis, B., Bayram, M.: New solutions of the nonlinear Fisher type equations by
the reduced differential transform. Nonlinear Sci. Lett. A. 3(1), 29-36 (2012)

27. Yin, E, Song, J., Lu, E.: A coupled method of Laplace transform and Legendre wavelets for
nonlinear Klein-Gordan equations. Math. Meth. Appl. Sci. 2013 (Press)

28. Yousefi, S.A.: Legendre wavelets method for solving differential equations of Lane-Emden
type. App. Math. Comput. 181, 1417-1442 (2006)

29. Zhou, X.W.: Exp-function method for solving Fisher’s equation. J. Phys. Conf. Ser. 96 (2008)



	Preface
	Contents
	Introduction
	Part I Fractal Theory
	Introduction to Fractals
	1 Mandelbrot's Vision of Fractals
	1.1 Potential Applications
	1.2 Mandelbrot's Way

	2 Fractals in Contemporary Mathematics
	2.1 Classical Mathematics
	2.2 New Challenges

	3 Self-similarity
	3.1 Fractal Symmetry
	3.2 The Benefit of Self-similarity

	4 The Cantor Set
	4.1 The Topological Viewpoint
	4.2 Algebraic Description of the Cantor Set
	4.3 The Binary Tree
	4.4 Description of Self-similarity
	4.5 The Number System
	4.6 The Interval

	5 Some Fractal Curves
	5.1 A Nowhere Differentiable Curve
	5.2 A Proof with Self-similarity
	5.3 A Plane-Filling Curve
	5.4 A Simple Curve with Positive Area
	5.5 Different Types of Self-similarity
	5.6 The Graph of Brownian Motion
	5.7 Lévy and His Curve
	5.8 Random Self-similarity

	6 Fractal Constructions by Mappings
	6.1 Hutchinson's Equation
	6.2 The IFS Algorithm
	6.3 An Exercise in Complex Numbers
	6.4 Fractal Measures
	6.5 Dynamical Systems
	6.6 Attractors

	7 Dimensions and Exponents
	7.1 The Concept of an Exponent
	7.2 Box Dimension
	7.3 How to Continue?
	7.4 An Illustrative Example

	References

	Geometry of Self-similar Sets
	1 The Concept of Self-similar Set
	2 Addresses and Symbolic Dynamics
	3 The Separation Condition
	4 Measure and Dimension
	5 Further Structure
	References

	An Introduction to Julia and Fatou Sets
	1 Introduction
	2 Linear Maps
	3 First Examples
	3.1 The Map z→z2
	3.2 The Map z→z2+ε

	4 Some History
	5 Normal Families
	6 The Local Theory
	6.1 Böttcher coordinates

	7 Montel's Theorem and Its Consequences
	8 Neutral Periodic Orbits
	8.1 Rotation Domains
	8.2 Cremer Points

	9 Fatou–Sullivan Classification of Fatou Components
	10 A Julia Set of Positive Measure
	11 Conclusion
	References

	Parameter Planes for Complex Analytic Maps
	1 The Mandelbrot Set
	2 Singularly Perturbed Rational Maps
	3 Complex Exponential Maps
	References

	Measure Preserving Fractal Homeomorphisms
	1 Introduction
	2 Point-Fibred IFSs
	3 Lebesgue Measure Preserving Fractal Homeomorphism
	4 Existence of Nontrivial (Measure Preserving) Fractal Homeomorphisms in R2 and R3
	References

	The Dimension Theory of Almost Self-affine Sets and Measures
	1 Introduction
	2 Self-affine Sets and Measures
	2.1 The Affinity Dimension
	2.2 When Does dim()=s(A)  Hold for All Translations?
	2.3 The Diagonal Case
	2.3.1 Przytycki and Urbanski Theorem
	2.3.2 Hochman Theorem
	2.3.3 A Generalization with Different Contraction Ratios
	2.3.4 Four-Corner Sets

	2.4 The Dimension of Self-affine Measures
	2.4.1 Thermodynamical Formalism


	3 Dimension Theory of Almost Self-affine Sets and Measures
	3.1 Self-affine Transversality Condition
	3.1.1 The Definition and Results Presented Heuristically
	3.1.2 The Precise Definitions

	3.2 Almost Self-affine Systems

	4 Recent Developments
	4.1 Non-compactly Supported Random Perturbations
	4.2 Multifractal Analysis

	Appendix
	References

	Countable Alphabet Non-autonomous Self-affine Sets
	1 Introduction
	2 Affine Schemes
	3 The Singular Value Function
	4 Falconer Dimension
	5 Main Theorem: The Proof
	References

	On Transverse Hyperplanes to Self-similar Jordan Arcs
	1 Introduction
	2 Preliminaries
	2.1 Self-similar Arcs
	2.2 Directed Multigraphs
	2.3 Graph-Directed Systems of Contraction Similarities

	3 Multizippers of Similarity Dimension 1
	4 Theorem on Transverse Hyperplanes
	4.1 Jordan Arcs and Transverse Hyperplanes
	4.2 The Cones Q+ and Q-

	References

	Fractals in Product Fuzzy Metric Space
	1 Introduction
	2 Preliminary
	2.1 Metric Fractals
	2.2 Fuzzy Metric Space

	3 Product Fuzzy Metric Space
	4 Conclusion
	References

	Some Properties on Koch Curve
	1 Introduction
	2 Basic Definitions
	3 The Koch Curve
	4 Renormalized Energy
	5 Energy Renormalization Constant
	6 Laplacian Renormalization Factor
	7 Normalized Laplacian
	8 Forbidden Eigenvalues
	References

	Projections of Mandelbrot Percolation in Higher Dimensions
	1 Introduction
	1.1 Notations
	1.2 Results

	2 Orthogonal Projections
	2.1 Notations
	2.1.1 Projection α
	2.1.2 Condition A

	2.2 Condition B Implies Condition A
	2.3 Condition A Implies Nonempty Interior
	2.3.1 Robustness
	2.3.2 The Proof

	2.4 How to Choose f?

	3 Radial Projections
	3.1 Almost Linear Family of Projections
	3.2 Mandelbrot Umbrella

	References

	Some Examples of Finite Type Fractals in Three-Dimensional Space
	1 Introduction
	2 Magnify Fractals: The Neighbor Maps
	3 The Neighbor Graph-Finite Type Fractals
	4 Some Three-Dimensional Examples: The Choice of IFS
	References

	Fractals in Partial Metric Spaces
	1 Introduction
	2 Partial Metric Space
	2.1 Contraction Fixed Point Theorem

	3 Fractals in Partial Metric Spaces
	4 Conclusion
	References


	Part II Wavelet Theory
	Frames and Extension Problems I
	1 Introduction
	2 A Survey on Frames and Operators
	2.1 General Frame Theory
	2.2 Operators on  L2(R) 

	3 Gabor Systems
	4 Wavelet Systems in  L2(R) 
	4.1 Dyadic Wavelet Systems
	4.2 Classical Multiresolution Analysis
	4.3 The Unitary Extension Principle

	References

	Frames and Extension Problems II
	1 Introduction
	2 The Extension Problem in Hilbert Spaces
	3 The Extension Problem for Gabor Frames
	4 An Extension Problem for Wavelet Frames
	5 Extension Problems via the UEP
	References

	Local Fractal Functions and Function Spaces
	1 Introduction
	2 Iterated Function Systems
	3 From IFS to Local IFS
	4 Local Fractal Functions
	5 Tensor Products of Local Fractal Functions
	6 Lebesgue Spaces Lp(R)
	7 Smoothness Spaces Cn and Hölder Spaces s
	7.1 Binary Partition of X
	7.2 Vanishing Endpoint Conditions for Si

	8 Sobolev Spaces Wm,p
	References

	Some Historical Precedents of the Fractal Functions
	1 Introduction
	2 Nineteenth Century
	2.1 Bolzano's Function (1830)
	2.2 Strategy #1: Definition of a Function as Sum of a Series

	3 Turn of the Century (19–20th)
	3.1 Strategy #2: Definition of Functions by Means of the N-Adic Representation of the Variable
	3.2 Strategy #3: Definition of a Function in a Self-similar Geometric Way

	4 First Half of the Twentieth Century
	4.1 Julia's Function (1931)
	4.2 Fractal Dimension
	4.3 Strategy #4: Definition of a Curve as a Random Function

	5 Second Half of the Twentieth Century
	5.1 Strategy #5: Definition of a Curve by Means of a Functional Equation
	5.2 Strategy #6: Definition of a Curve by Means of an Iterated Function System

	References

	A New Class of Rational Quadratic Fractal Functions with Positive Shape Preservation
	1 Introduction
	2 Fractal Interpolation Function
	3 Rational Quadratic FIF with Shape Parameters
	3.1 Construction
	3.2 C1-Smooth Rational FIF

	4 Convergence Analysis
	5 Positivity Preserving Rational Quadratic FIF
	5.1 Sufficient Conditions for Positivity
	5.2 Implementation

	6 Conclusions
	References

	Interval Wavelet Sets Determined by Points on the Circle
	1 Introduction
	2 Preliminaries
	3 Two-Interval Wavelet Sets
	4 Three-Interval Wavelet Sets
	5 One-Interval and Two-Interval H2-Wavelet Sets
	6 MRA Associated Three-Interval Wavelet Sets
	References

	Inverse Representation Theorem for Matrix Polynomials and Multiscaling Functions
	1 Introduction
	2 Preliminaries: Spectral Data of Matrix Polynomials
	3 The Inverse Problem
	4 Conclusion
	References

	A Remark on Reconstruction of Splines from Their Local Weighted Average Samples
	1 Introduction and Preliminaries
	2 Existence and Uniqueness Theorem
	References

	C1-Rational Cubic Fractal Interpolation Surface Using Functional Values
	1 Introduction
	2 Fractal Interpolation Functions
	2.1 IFS Theory
	2.2 Fractal Interpolation Functions

	3 C1-Rational Cubic FIS
	3.1  Construction of x-Direction Fractal Boundary curves
	3.2 Construction of  C1-Rational Cubic FISs

	4 Approximation Properties of Rational Cubic FIS
	5 Examples
	6 Conclusion and Remarks
	References

	On Fractal Rational Functions
	1 Introduction
	2 Background and Preliminaries
	2.1 Rudiments of FIF Theory
	2.2 α- Fractal Operator

	3 α-Fractal Rational Functions
	4 Weierstrass-Type Theorem for α-Fractal Rational Functions
	5 Schauder Basis for C(I) Consisting of Fractal Rational Functions
	6 Fractal Müntz Rational Functions
	References


	Part III Applications of Fractals and Wavelets
	Innovation on the Tortuous Path: Fractal Electronics
	1 Introduction: Understanding Innovation
	2 A Summary of Innovation and Aspects of Innovators
	3 The Tortuous Path
	4 Quick Review of Fractal Electronics
	5 Discussion
	6 Conclusions
	References

	Permutation Entropy Analysis of EEG of Mild Cognitive Impairment Patients During Memory Activation Task
	1 Introduction
	2 Methods
	2.1 Subjects
	2.2 Experimental Protocol
	2.3 EEG Recording
	2.4 Data Analysis
	2.5 Statistical Analysis

	3 Results
	3.1 Resting EC Condition
	3.2 Short-Term Memory Task

	4 Discussion and Conclusion
	References

	A Multifractal-Based Image Analysis for Cervical Dysplasia Classification
	1 Introduction
	2 Method
	3 Results, Discussions and Conclusions
	References

	Self-Similar Network Traffic Modelling Using Fractal Point Process-Markovian Approach
	1 Introduction
	2 Fractal Point Process (FPP)
	3 Fitting Procedure
	4 The MMPP/G/1 Queueing System
	5 Numerical Results
	6 Conclusion
	References

	Validation of Variance Based Fitting for Self-similar Network Traffic
	1 Introduction
	2 Self-similar Process and CMMPP
	3 Analytical Results of IDC
	4 Numerical Results
	5 Conclusions
	References

	Self-Similar Network Traffic Modeling Using Circulant Markov Modulated Poisson Process
	1 Introduction
	2 Self-Similar Process and Circulant Markov Modulated Poisson Process
	3 Generalized Variance Based Fitting Procedure
	3.1 Algorithm for Parameter Fitting

	4 Numerical Results
	5 Conclusions
	References

	Investigation of Priority Based Optical Packet Switch Under Self-Similar Variable Length Input Traffic Using Matrix Queueing Theory
	1 Introduction
	2 Queueing Model of the Switch Employing Partial Buffer Sharing Mechanism
	3 Numerical Results
	4 Conclusion
	References

	Computationally Efficient Wavelet Domain Solver for Florescence Diffuse Optical Tomography
	1 Introduction
	2 Novel Dye Synthesis and Characterization
	2.1 Dye Synthesis
	2.2 Characterization of Dye

	3 Methodology
	3.1 Forward Solving
	3.2 Inverse Solving
	3.3 Wavelet Solver for System of Linear Equations

	4 Results and Discussions
	5 Conclusions
	References

	Implementation of Wavelet Based and Discrete Cosine Based Algorithm on Panchromatic Image
	1 Introduction
	2 Indentation and Equation
	3 Experimental Result and Analysis
	4 Conclusion
	References

	Trend, Time Series, and Wavelet Analysis of River Water Dynamics
	1 Introduction
	2 Methodology
	2.1 Time Series
	2.1.1 Auto Regressive Integrated Moving Average (ARIMA)

	2.2 Auto Correlation Functions (ACF) and Partial Auto Correlation Functions (PACF)
	2.3 Wavelet Analysis

	3 Results and Discussion
	3.1 Chemical Oxygen Demand
	3.2 Biochemical Oxygen Demand
	3.3 Dissolved Oxygen

	4 Conclusion
	References

	An Efficient Wavelet Based Approximation Method to Film-Pore Diffusion Model Arising in Chemical Engineering
	1 Introduction
	2 Materials and Methods
	2.1 Legendre Wavelets Preliminaries
	2.1.1 Wavelets
	2.1.2 Legendre Wavelets
	2.1.3 Block Pulse Functions
	2.1.4 Approximating the Nonlinear Term

	2.2 Function Approximation

	3 Method of Solution
	4 Conclusion
	References

	A New Wavelet-Based Hybrid Method for Fisher Type Equation
	1 Introduction
	2 Legendre Wavelets and Its Properties
	2.1 Wavelets
	2.2 Legendre Wavelets
	2.3 Function Approximation

	3 Method of Solution
	3.1 Solving the Fisher's Equation by the LLWM

	4 Illustrative Examples
	5 Conclusion
	References



