A Framework for Design, Test, and Validation
of Electric Car Modules

Mehmed Yiiksel, Mohammed Ahmed, Benjamin Girault, Timo Birnschein
and Frank Kirchner

Abstract. This paper presents a practical framework and workflow for develop-
ment and implementation of vehicle hardware and software components. It covers
all activities from unit testing of single components to field experiments with the
final constructed car. The described framework is based on the rapid control pro-
totyping approach that is used for development and enables modularity in the de-
sign of subsystems. The framework was successfully used for the development
and implementation of our new electric car concept (EO smart connecting car 2).
Performance is analyzed through detailed simulations and experiments. The
Framework reduces time and costs significantly for implementing component
prototypes of the target system.

Keywords: Electric Vehicle, Hardware-in-the-loop, Software-in-the-loop, real-
time control, rapid control prototyping, framework, path following, simulation, x
by wire.

1 Introduction

In recent years, tremendous progress has been made in the field of intelligent ve-
hicles for regular traffic. Research on vehicle automation for different automatic
driving related tasks and assisted driving has increased during the last years.

Some early developments in electric vehicles include the “Lunar Roving Vehi-
cle” (for Apollo programs 15, 16, and 17) for astronaut mobility on the moon [11].

M. Yiiksel(P<) - M. Ahmed - B. Girault - T. Birnschein

DFKI GmbH - Robotics Innovation Center, Robert-Hooke-Straf3e 5,

28359, Bremen, Germany

e-mail: {mehmed.yueksel,mohammed.ahmed,benjamin.girault,timo.birnschein} @dfki.de

F. Kirchner

DFKI GmbH - Robotics Innovation Center, Department of Mathematics and Computer
Science, University of Bremen, Robert-Hooke-Strafle 1, 28359, Bremen, Germany
e-mail: frank.kirchner @dfki.de

J. Fischer-Wolfarth and G. Meyer (eds.), Advanced Microsystems for 245
Automotive Applications 2014, Lecture Notes in Mobility,
DOI: 10.1007/978-3-319-08087-1_22, © Springer International Publishing Switzerland 2014

246 M. Yiiksel et al.

In that vehicle, maneuverability is provided with all wheel steerable (AWS) and
all wheel electric drive (AWeD) features. Hiriko [13] is another electric car, which
also addresses urban mobility with its foldable construction (2.5-1.5 m), AWeD,
and AWS features. Its design is a realization of the CityCar concept [12].
ROboMObil from the German Aerospace Center is one of the few autonomous
electric car platforms with robotics features [9]. Another direction for autonomous
car implementation is using a conventional car as technology carrier platform (e.g.
Google Car [8] and BRAIVE car [7]).

In this work, we present a practical framework and workflow for development
and implementation of vehicle hardware and software components. This covers all
activities from unit testing of components to field experiments with the car. The
presented platform was successfully used for the development and implementation
of low, middle, and high level control layers.

RS

Fig. 1 EOscc2 (exterior design by David Griinwald) and its SujeeCar test platform [3]

2 EO Smart Connecting Car 2

EO' smart connecting car 2 (EOscc2) (Fig.1) is a high maneuverable all-electric
micro-car designed for crowded cities with very confined parking spaces designed
and constructed with robotic features. Its design is based on the fully functional
technology demonstrator EO smart connecting car 1 (EOsccl) [1][2]. EOscc2 is
developed to demonstrate the possibilities of a sideways driving, turn on the spot
(Fig.3), shrink and dock to charging stations. EOscc2 is designed to be a real car
with respect to practicality, safety, meeting the burden of regulatory compliance,
and cost. Its chassis is a welded lightweight very high precision steel tube frame.
The car has a modular active AWS. Four actuators are used for steering (between
32° to -92°) and changing the vehicle’s ride height (within 16 cm). In addition,
each wheel is equipped with a brushless DC (BLDC) wheel hub motor with inte-
grated brakes for maximum efficiency. This results in a drive by wire vehicle that
has none of the massive and bulky components. The shrink/fold feature results in a
car with footprint of 3.4 m? (~36.6 ft?) through 1.4 m? (~15 ft?) for a minimum
parking space. It is design for driving on test areas and public roads safely with a

" “EO” means in Latin “I go”. The name belongs also to the fully electric vehicle family
with robotic features, developed by DFKI since 2010, that includes EO smart connecting
cars 1 and 2.

A Framework for Design, Test, and Validation of Electric Car Modules 247

maximum speed of 70 km/h (~44 mph). To enter and exit the car in any folding
position, the car is equipped with two scissor-style doors.

Autonomous functions are supported with several sensors and cameras. EOscc2
can dock to power outlets, other cars, or extension modules. EOscc2 is planned to
park itself, dock to charging stations, undock, leave the parking space safely and
realize a pick-up service for the driver within a parking lot. It is highly adaptive with
a coupling mechanism for Car2Car, Car2Extender, or Car2ChargingStation
[11[21(3].

To have a feasible system implementation for such a complex system, it should
be kept as clearly arranged as possible. Therefore, the control layers “perception
and planning” (high-level) and “actuation” (middle/low—level) of EOscc2 are
separated. The actuation layer is developed in MATLAB/Simulink, tested on a
rapid control prototyping (RCP) unit, and runs later on an embedded vehicle con-
trol unit (VCU). Precise multi-body dynamics simulation is used for rapid and cost
efficient development [3][14]. The high-level control will run on the Robot Con-
struction Kit (ROCK) framework®.

3 Framework and Workflow Description

The presented framework used for the development and testing of electric cars
consists of several tools. These tools are described as follows:

Computation, modeling, and simulation software: it is used for the numerical
computations (e.g. kinematics), control of the motors, modeling of the car’s state
machine. It is also used to analyze and visualize log data. For EOscc2 we used
MATLAB/Simulink.

Multi-body dynamics simulation software: to simulate the dynamics of the car and
force/torque estimations. We used Adams/View that can also be interfaced with
MATLAB/Simulink to perform co-simulations [4] using a detailed 3D model of the car.

Rapid control prototyping solutions: For real-time applications, some software
and hardware components are used to control different systems directly. In most
of the commercially available RCP components, a Simulink generated model can
be directly uploaded. The developer can monitor and record the parameters and
modify them online. In our development, we used the dSPACE RTI-Libs and
ControlDeskNG software components on the MicroAutoBox II RCP unit.

Software development tools: used for the micro-controller programming. CooCox
CoIDE was selected. It is specific for ARM Cortex MCU based microcontrollers
and provides debugging tools.

Documentation system: combining the use of doxygen for code documentation
and the wiki and tracking platform trac.

2 www.rock-robotics.org

248 M. Yiiksel et al.

realword @ T=m

| MICRO- DSPACE |

| CONTROLLER E RCP |

: 2 (veu . e | solutions ,
= ine/— B

8 5 P e /onling . . !

SE == -_ offlinefonline |

l P 3~ — C code COOCOX oifiine 1
g - T MATLAB |

| ADAMS multibody .

| ‘ S . offline SIMULINK | !

dynamics simulation
! virtual world y !

Fig. 2 Tools used within the framework divided into virtual (simulation) and real (hardware)

The main advantage of the chosen tools is their interactivity (Fig.2). They can
re-use the code generated by other tools or allow online interaction between them
or with the user/developer. Moreover, software-in-the-loop (SIL) tests can be per-
formed. The code that will be later used for the car can be connected to simulation
for qualitative validation and also for optimization. Hardware-in-the-loop (HIL)
tests are made possible as well.

Thanks to its various I/O interfaces, the RCP unit can be easily connected to
motors or input devices. However, the car- in its final configuration- is so complex
that the provided interfaces (especially CAN interfaces) are not enough to control
the whole system. Despite its many advantages, it was decided not to use the RCP
unit in the final version of the car but to use an in-house designed vehicle control
unit (VCU) running on a microcontroller.

The chosen RCP (and other most commercially available) components generate
code directly for microcontrollers. In theory, this would allow skipping the soft-
ware development and program the microcontroller as it is done with RCP unit.
However, the functionalities are limited and do not cover the hardware specific
interfaces, which are the most demanding parts of the programming.

3.1 Workflow Description

Car development can be split into three major levels: the low—level software and
driver modules that are close to hardware (e.g., motors and electronic devices), the
middle-level software that controls the whole car and finally the high-level algo-
rithms for the autonomous and intelligent features. Those levels do not necessarily
happen sequentially. Thanks to the SIL and HIL possibilities, high fidelity tests
can be performed, independent from each other. This makes the whole develop-
ment time shorter and in addition reduces the costs.

3.1.1 Low-Level Control of Hardware Components

The low-level software modules manage the communication with the BLDC
wheel hub motor controllers and the electric actuators used for the steering,
lifting, morphology, or the docking interface. The interfaces, using different CAN

A Framework for Design, Test, and Validation of Electric Car Modules 249

protocols (device specific, CANopen), were modelled and developed in MATLAB/
Simulink with integrated RCP tools for each device separately and tested on a
specific test bench. The required CAN database container (dbc) files were written
and imported to the model. The properties of the hub motors and actuators were
measured and their control parameters were tuned. Because of its modularity and
scalability, the same software module could be re-used within the main model
controlling the whole car. Thus, the RCP unit could be used for device control and
parameter tuning. The last step is adapting the protocols for the micro-controller,
reusing some parts of the RCP unit’s code that were already written in C.

3.1.2 Middle-Level Control Components

The middle-level software components cover the computation of the wheel kine-
matics and the vehicle drive modes. Based on the steering wheel position, acceler-
ator, and brake values steer angles and wheel speeds are computed according to
desired drive mode (double Ackermann, diagonal steering, sideways or turn on the
spot) (Fig.3).

The wheel suspension kinematics are computed for actuator values to reach the
desired steer angle. The algorithms for kinematics and the drive modes were im-
plemented in MATLAB/Simulink. The correctness of the algorithms was verified
through co-simulation and later with unit testing. The Simulink blocks were con-
nected for the simulation model of the whole car (in Adams/View) and driving
trajectories were tested for each drive mode. These simulations validated the algo-
rithms but were also the base for high-level simulations (e.g., path following) and
evaluations of the dynamics of the vehicle. The developed Simulink blocks were
then integrated in a larger model and tested directly on SujeeCar (Fig.3) test plat-
form (using the RCP unit). Finally, the RCP unit code was ported to the micro-
controller and verified using unit testing. The micro-controller will replace the
RCP unit but there will be still the possibility to combine both of them, and having
for example the RCP unit in silent mode for data logging.

Fig. 3 Ackermann, sideways and turn-on-the-spot drive modes

3.1.3 High Level Algorithms

To provide the driver—assistance systems and go towards the car autonomy, sever-
al high level algorithms need to be developed and tested. This includes in particu-
lar a cruise control and path following system [3]. It can be directly deployed

250 M. Yiiksel et al.

using the modules previously developed and interfaced with the multi-body simu-
lation software.

As an example, a road-tire interaction model is used with Adams/View to obtain
a realistic movement of the car and be able to perform closed-loop testing. Once the
algorithm was evaluated and tuned, thanks to the co-simulation, it can be tested on
SujeeCar. The first step is an open-loop test in which steering wheel and wheel
speed values are generated and loaded on the RCP unit. The scenario can then be run
on the car. Later, the algorithm will be tested in closed-loop on the car. The results
of the drive tests can as well be recorded and replayed with the simulation software,
to verify for instance the accuracy of the dynamics model.

3.2 EOscc2 Test Platform (SujeeCar)

In addition to the several test benches for the wheel hub motors and brake system,
a prototype of the car was built to be able to experiment with a real system at an
early stage of the development (Fig.1). This was possible as the axles were early
finished and fully functional thanks to their modular design. Thus, constructing
the demonstrator platform mainly consisted of connecting these two axles with T-
slot aluminum profiles. The length of the prototype corresponds to the case where
EOssc2 is unfolded. Batteries are placed under the driver’s seat and the electronic
devices are gathered above the axles. To control the car, a laptop is used to inter-
act with the RCP unit.

4 Performance Analysis Tests

4.1 Drive Mode Change

During drive mode changes or folding, it is important that the wheels roll at the
same time to follow the movement. Since the axis of rotation of the steering move-
ment is not perfectly in the middle plane of the wheel, it performs a circle with a
so-called scrub radius (91 mm for EOscc2). Simulations were done to estimate the
actuator forces while folding or switching between Ackermann and Turn-on-the-
spot modes. It was tested with and without the wheels rolling at the same time.
The results (Fig.4) were used to verify the correctness of the equations of movement.

SolidWorks Motion Mechanism

500.0
= 0.0 ==y 7
2 -500.0 I i
§ -1000.0 [P it 0 !
2 45000 e
8 -2000.0
5 -2500.0 —MEA_forcle_FL_heightCylinder.Q|
-3000.0 =MEA_force_FL_steerCylinder.Q

350“'%0 1020304050860 708090100
Analysis: conEO2IK20130222_analysie (sec) 2013-02-25 12:07:39

Fig. 4 Estimation of the forces applied to actuators while folding or switching between
Ackermann and Turn-on-the-spot steering modes

A Framework for Design, Test, and Validation of Electric Car Modules 251

4.2 Path Following Algorithm

A path following module was designed and implemented [3]. It consists of a pro-
portional input-scaling feedback controller that uses the forward velocity and an-
gular acceleration of the vehicle as control inputs. For this controller, a kinematic
vehicle model is used to map from the path curvature specified by the given path
to the vehicle’s actual steering angle. This controller was interfaced to the rigid-
body simulation software and tested in closed loop for different trajectories.

In this simulation, EOscc2 kinematic parameters are: 1.9 m for the wheelbase,
the axle track equals 1.35 m, and the wheel radius is 0.325 m. The controller pa-
rameters were empirically tuned. The car is commanded to move with constant
forward speed of 2.8 m/s. A desired path for the standard test track described in
ISO3888-2 [5] is used. From the results (Fig.5), it can be seen that the system
converges to the reference trajectory asymptotically. Once the vehicle converges,
the vehicle follows the trajectory very closely. The convergence can also be seen
in the error graph. These results show that the controller does not attain extremely
large values, and is bounded which are essential properties for the real systems.

Gesired path
actual path

Yim]
L b omn s oo

R

10 : steering angle {°] |

car orientation angle [°]

time [5] time (s

Fig. 5 Path following controller in Adams/View — MATLAB/Simulink cosimulation results
for ISO3888-2 double lane change test track

4.3 Line Change Experiment

Because of lack of standard tests for autonomous vehicle driving skills, we bor-
rowed tests from the conventional automotive industry as the Carnegie Mellon
Red Team did for DARPA Grand Challenge [10]. We chose the same test method
for EOscc2, in order to be able to compare the future results.

To measure maneuverability and stability of the vehicle with influence of dif-
ferent drivers, a lane change test is performed. A test track was constructed ac-
cording to ISO 3888 Part 2 (Fig.6). For three different drivers, the test scenario
was that each driver begins the run in the right lane, swerves into the left, and then
immediately cuts back into the right. During the experiment, car and driver data

252 M. Yiiksel et al.

were logged by the RCP unit (67 parameters in total) and the drives were recorded
with four cameras (Fig.6). The data can be plotted or exported to the mechanical
simulator for replay. Hence, the dynamic parameters of the car can be estimated
and the accuracy of the multi-body simulation can be verified. A sample of the
results is shown in the Fig.6 for trajectories of three drivers test run.

N

PR

test path

H T
00 - %
E oftpesie g T]
e
> 00s
H Driver 1 trajectory Driver 2 trajectory Driver 3 trajectory

| | |
5 10 15 0 X[m) % E] E3 ©

Fig. 6 Lane change experiments for three drivers and corresponding trajectories from simu-
lation replay

5 Conclusion

In this paper, we present a practical framework and workflow for development
and implementation and evaluation of vehicle software components. It covers all
activities from unit testing of single components to field experiments with the real
car. The described framework is based on RCP approach that is used for system
development and enables modularity in the design of subsystems. The framework
was successfully used for the development and implementation of actuators and
motors low—level control in addition to middle—level algorithms. The performance
of the designed modules is demonstrated through detailed simulations and experi-
ments. In the conducted simulations, the car software modules are used in a SIL
fashion and in the real experiments, the software modules are interfaced to the
hardware, tested and verified.

From the presented performance analysis tests of the framework to validate
hardware and software components and systems of the car, it is verified that this
framework is an effective and adaptive solution as a development and test envi-
ronment. It reduces effort, time, and costs significantly for implementing compo-
nent prototypes of the target system. Because of the benefits of this framework

A Framework for Design, Test, and Validation of Electric Car Modules 253

and its capabilities as a realtime hardware interface, it is selected for the integra-
tion phase of the EOscc2 car as well as the development and optimization of most
software components for the car control. The system will be used for future exper-
iments on autonomous driving and for driver assistance modules especially ad-
dressing users (driver) modeling and adaption.

Acknowledgment. We thank all team members of the ITEM project [6] (in alphabetical
order: Christian Oeckermann, David Griinwald, Haci Bayram Erdinc, Janosch
Machowinski, Roman Szczuka, Sujeef Shanmugalingam, Sven Kroftke, Yong-Ho Yoo)
who provided valuable comments, ideas, and assistance, which were essential to this study.
This work is developed for the EO car which is evolved in the subproject “Innovative
Technologies Electromobility (ITEM)” of main project "Model Region Electric Mobility
(PMC)” — Module 2 “Intelligent Integration of Electric Mobility” and funded by the Ger-
man Federal Ministry of Transport, Building and Urban Development (Grant Nr.
03ME0400G). Program coordination is carried out by the National Organization Hydrogen
and Fuel Cell Technology (NOW GmbH).

References

[1] Jahn, M., Schréer, M., Yoo, Y.-H., Yiiksel, M., Kirchner, F.: Concept of actuation
and control for the EO smart connecting car (EO scc). In: Su, C.-Y., Rakheja, S., Liu,
H. (eds.) ICIRA 2012, Part I. LNCS (LNAI), vol. 7506, pp. 87-98. Springer, Heidel-
berg (2012)

[2] Birnschein, T., Kirchner, F., Girault, B., Yiiksel, M., Machowinski, J.: An innovative,
comprehensive concept for energy efficient electric mobility - EO smart connecting
car. In: ENERGYCON 2012. IEEE (2012)

[3] Ahmed, M., Yiiksel, M.: Autonomous Path Tracking Steering Controller for EO
Smart Connecting Car. In: Proceeding of the World Congress on Multimedia and
Computer Science 2013 (ICIAR-13). IEEE (2013)

[4] Ahmed, M., Yoo, Y.-H., Kirchner, F.: A cosimulation framework for design, test and
parameter optimization of robotic systems. In: Joint Conference of the 41st Interna-
tional Symposium on Robotics and the 6th German Conference on Robotics
(ISR/ROBOTIK 2010). VDE Verlag (2010)

[5] Lundahl, K., Aslund, J., Nielsen, L.: Vehicle dynamics platform, experiments, and
modeling aiming at critical maneuver handling. Technical report, Linkoping Univer-
sity (2013)

[6] ITEM-Project Web Page, http://robotik.dfki-bremen.de/en/research/projects/item.
html (accessed January 08, 2014)

[7] Broggi, A., et al.: Autonomous vehicles control in the VisLab Intercontinental Au-
tonomous Challenge. Annual Reviews in Control (2012)

[8] Guizzo, E., How Google’s Self-Driving Car Works. IEEE Spectrum,
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/how-google-self-
driving-car-works (accessed January 24, 2014)

254

(9]

(10]

(11]

[12]

[13]

(14]

M. Yiiksel et al.

ROboMODbil-System Architecture and Safety - DLR,
http://www.dlr.de/rm/desktopdefault.aspx/tabid-8001/13698_read-34737 (accessed
January 27, 2014)

Urmson, C., Whittaker, W., Harbaugh, S., Clark, M., Koon, P.: Testing driver skill
for high-speed autonomous vehicles. Computer 39(12) (2006)

Wright, M., Jaques, B., Morea, S.: A Brief History of the Lunar Roving Vehicle.
NASA: Marshall Space Flight Center (2002)

Mitchell, W.J., Borroni-Bird, C., Burns, L.D.: Reinventing the Automobile: Personal
Urban Mobility for the 21st Century. The MIT Press (2010)

Hiriko, driving mobility, http://www.un.org/esa/dsd/susdevtop-ics/sdt_pdfs/meetings
2012/statements/espiau.pdf (accessed January 26, 2014)

Ahmed, M., Oekermann, C., Kirchner, F.: Cosimulation Environment for Mechanical
Design Optimization with Evolutionary Algorithms. In: International Conference on
Artificial Intelligence (ICAI 2014). IEEE (2014)

	A Framework for Design, Test, and Validation of Electric Car Modules*
	1 Introduction
	2 EO Smart Connecting Car 2
	3 Framework and Workflow Description
	3.1 Workflow Description
	3.2 EOscc2 Test Platform (SujeeCar)

	4 Performance Analysis Tests
	4.1 Drive Mode Change
	4.2 Path Following Algorithm
	4.3 Line Change Experiment

	5 Conclusion
	References

