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Abstract. At signalized intersections there is a significant saving potential of 
emissions by an energy-efficient and fuel-optimized approach to the stop line. For 
this purpose, various assistance systems have already been developed. Among 
other things these systems provide the driver with speed recommendations to cross 
the next traffic light without stopping. However, accurate information about 
forthcoming traffic signal switching times is required. Modern traffic signal 
systems adapt their switching times depending on the current traffic flow. So a 
predicted phase transition will only occur with a smaller probability than 100%. 
The paper identifies specific challenges by developing an algorithm for a 
prediction of traffic actuated signal controls and it presents its mathematical 
foundations and the results of the prediction. 
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1 Background and Motivation 

Stops at signalized intersections and resulting acceleration processes on restarting 
have a significant impact on fuel consumption and emissions of motorized traffic. 
The cooperation between infrastructure and vehicles via an exchange of data and 
information is a promising way in order to improve traffic efficiency in urban 
areas with simultaneous reduction of emissions. For several years the number of 
driver assistance and information systems in mass-production vehicles has been 
increasing more and more. Because these systems were previously largely 
autarkical working, future systems to be developed should be interconnected with 
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the infrastructure for a preferable energy-efficient driving. The potentials 
concerning the reduction of emissions by an exchange of data and information 
between infrastructure and vehicles have already been shown in [1]. Especially 
with the information about forthcoming switching times of fixed timed traffic 
signals, the driver is able to drive through the signalized road network in an 
energy- and emission-optimal way. The supply of future switching times of fixed 
timed traffic signals is trivial. However, modern traffic signal systems adapt their 
phases and phase transitions to the current traffic situation. So their switching 
times may vary cycle by cycle. Consequently, a prediction of the switching times 
is required. This is an indispensable prerequisite for the realization of vehicle 
functions which shall support a fuel-efficient and a low-pollution driving in urban 
areas. However, a predicted phase transition, respectively a switching time, will 
only occur with a probability smaller than 100%. Several approaches for a 
prediction of traffic actuated switching times already exist. The mathematical 
approach of Markow chains was used in [2] to calculate the probability of 
occurrence of different states which are represented by different phases and phase 
transitions. In [3], the past circuit information of the traffic lights are used to 
generate a prediction. By additional information, such as predicted arrival times of 
public transport vehicles and traffic demand prognosticated in the traffic 
management center, an enhancement of the prediction is possible. Furthermore, an 
approach based on the theory of a finite state machine is presented in [4]. Here, all 
detector data like time headways or degree of occupation were used to model the 
correspondent traffic actuated signal control. For the development of driver 
assistance systems, which shall enable an energy-efficient driving in urban areas, 
the supply of the switching times is not only required for individual traffic signal 
systems but also for their extensive availability in the road network. Therefore, an 
easy transferability of the prediction algorithms to other traffic signal systems has 
to be noted while being developed. Regardless of the methods utilized for the 
prediction, some important constraints have to be considered in the development 
process, which have a direct impact on the quality of the prediction. 

2 Boundary Conditions for a Prediction of Switching Times 

The modality of traffic dependency has the greatest influence on the quality of the 
prediction. In Germany, it can be divided into signal program adaption and signal 
plan generation as generic terms. With a signal program adaption, modifications 
of green periods may be carried out depending on the fulfilment of certain criteria. 
Furthermore, a request of a demand phase is possible. Here, irregular phase 
insertions for temporary traffic streams like public transport vehicles are 
conducted. With a signal program adaption several temporal core areas for red and 
green still exist in a cycle. With a signal plan generation, the phase sequence and 
cycle time vary in addition to the number of phases and green periods. In these 
cases, a recurring pattern of the phases is hard to discern. In addition, the demand 
on a comprehensive supply of switching times complicates the development of 
algorithms in this context.  
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The latency period given by the technical system is another important factor. 
The latency is defined as a time lag between the times of data acquisition by the 
devices in the field and the availability in the traffic management center. The 
mathematical approach of Markow chains mentioned above requires short 
latencies in the low single-digit range of seconds. The implementation of an online 
prediction is more and more impeded with increasing latency because essential 
system correlations are occasionally not identified in time by the algorithms.  

The application-specific horizon of the prediction is a third condition to be 
considered. An efficient routing, which depends on the mode of drive, requires a 
prediction of switching times of all traffic lights on possible links with a forecast 
of several minutes. However, to reduce emissions by switching off the engine 
while stopping at a red signal head, a horizon in the range of a phase length is 
sufficient. The larger the horizon is, the worse the quality of the prediction will be, 
since the switching times depend on the future traffic situation which cannot be 
predicted exactly. Furthermore, a once calculated prediction can immensely vary 
during the access to a traffic light system by using updated data. So the driver´s 
acceptance would be affected regarding the resulting policy proposal. 

3 Approach for a Prediction 

3.1 Preliminary Remark 

The simplest method to predict future switching times is a calculation of their 
relative frequencies using switching times of passed cycles. With a large 
population of data, those frequencies correspond to an occurrence probability (law 
of large numbers). Figure 1 shows the signal layout plan of an intersection in the 
German City of Duesseldorf. As an example, a prediction of the end of green 
period of signal head named DR is used. 

 

 

Fig. 1 Signal layout plan of an intersection in the city of Duesseldorf 
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The cycle time is constant at 70 seconds. The green period of the signal head 
will be extended for a certain time slice which depends on two occupancy criteria 
of the marked detectors. Traffic signal systems occasionally provide different 
signal programs for different times of day. So the observed switching times are 
analysed by their corresponding signal programs in order to get a preferably good 
result. The signal control of the chosen example consists of three different signal 
programs. As population for a calculation of occurrence probabilities of possible 
ends of green period, the switching times of about 1,700 cycles were evaluated 
(approximately 33 h). Due to the relation of the observed switching times to the 
total number of cycles for the appropriate signal programs, following occurrence 
probabilities arose. 

Table 1 Occurrence probabilities of end of green period with separated signal programs 

End of Green Period [Cycle Second] 17 20 23 24 

Occurrence Probability [%] 0 15 76 9 
Signal Program 1 

Occurrence Probability [%] 33 21 0 46 
Signal Program 2 

Occurrence Probability [%] 46 18 27 9 
Signal Program 3 
 
This approach is not a satisfactory solution due to partly significant uniformly 

distributed values. For this reason, the inclusion of traffic data, in particular the 
detector data, is the obvious next step. For this purpose, the so called Support 
Vector Machines (SVM) are used as a mathematical approach. This algorithm 
divides a set of objects into classes. Thereby, a widest possible area around the 
class limits remains free of objects. The class limit is called hyperplane in this 
context. Thus, SVM can be considered as a classifier. In this particular case, the 
objects are represented by different detector data. The basis for the classification is 
an appropriate training data set used by the algorithm to learn the formation of the 
class limits. Afterwards, the accuracy of the prediction can be verified by a test 
data set. This approach has already been used in [5] to predict switching times of 
traffic actuated signal controls in Singapore. Thereby, phase lengths and traffic 
volumes of the last five cycles were used as training data. The general 
functionality of SVM will be briefly outlined below. 

3.2 Support Vector Machines 

A set of feature vectors x1, x2, …, xn ∊ X and the respective class labels y1, 
y2, …, yn with yi ∊ {+1, -1} constitutes the basis for this machine learning 
algorithm. The dimension of the feature vectors corresponds to the number of 
input variables respectively detector data, used for a prediction. To find the  
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best possible parting plane for the feature vectors, an edge is inserted on both sides 
of the plane. This edge is widened until it contacts feature vectors of the two 
classes which are called support vectors. The resulting plane is called hyperplane. 
Figure 2 shows the principle of separation of the feature vectors by a hyperplane. 

 

Fig. 2 Separation of feature vectors by a hyperplane 

To find the best hyperplane, SVM maximize the distance between the planes H1 
and H2 (Figure 2). Finally, the classification of a new feature vector is calculated by 
a decision function that only depends on the support vectors. Due to shortage of 
space, [6] is referred for a more detailed description of the derivation of this decision 
function at this point. In reality, however, the training data are often not linearly 
separable. Accordingly, a suitable non-linear hyperplane has to be found. For this 
purpose SVM use the so called kernel trick. Thereby, the data are mapped into a 
space of higher dimension which is called feature space. In such a space, a linear 
hyperplane can be calculated by scalar products. The hyperplane becomes non-linear 
by transforming the data back into the lower dimensional space. Figure 3 illustrates 
this principle with the input space on the left and the feature space on the right. 

 

Fig. 3 Principle of generating a complex hyperplane by transforming data into a feature space 
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At this point [6] and [7] are referred for a more detailed description of the 
kernel trick. 

3.3 Generation of Data Models 

The underlying data model is decisive for the classification and consequently for the 
prediction accuracy. With its help the algorithm learns the relationships between the 
various data. For instance, these data could be time gaps, traffic volumes or even 
logons and logoffs of public transport vehicles as well. The data have to be prepared 
in various ways according to the required horizon of prediction. For the example in 
Figure 1, detector data are used in addition to signal specific states to train the 
classifier, because these have a direct impact on the signal control. The detector data 
are handled as input variables within the data model, while the resulting switching 
times are treated as target variables. As already described, a horizon of several cycles 
is required for an effective routing which depends on the mode of drive. So the 
switching times in combination with the traffic volumes (q) of three cycles before 
(q_U(i-3)) are used for a first prediction. Its accuracy can be improved by using 
updated data subsequently. For this purpose, the traffic volumes of the previous cycle 
(q_U(i-1)) are used as input variables. The traffic volume may change cycle by cycle 
whereby different switching times may occur too. However, the traffic volume which 
depends on the time of day, can be approximately classified by using detector data of 
cycles U(i-3) and U(i-1). So a prediction can be improved. An advantage of the 
approach shown here is that the data from all detectors of the considered intersection 
are included into the data model. Thus, an assignment of detectors to the individual 
signal heads is not necessary in advance. So the prediction approach can be easily 
transferred on other signalized intersections. Seven detectors exist for the example in 
Figure 1. It means that seven different input variables will arise for each horizon of 
the prediction. Table 2 summarizes the variables for a prediction of the end of green 
period (t_EG) of signal head (SH) DR for one, respectively three cycles in the future. 
By using detector data of the current cycle, a further correction of the calculated 
prediction is possible. For this purpose, traffic volumes are not used but detection 
events are transferred into a data model. For the example shown, the end of green 
period depends on two certain occupancy criteria of the marked detectors in Figure 1. 
In this way, the particular cycle second for the last detection event before the  
 
Table 2 Data model for a prediction with different horizons 

  Training Data Prediction data 

Horizon of
Prediction 

U(i+1) U(i+3) U(i+1) U(i+3) 

Target 
Variable 

t_EG 
(SH DR)_U(i) 

t_EG 
(SH DR)_U(i) 

t_EG 
(SH DR)_U(i+1) 

t_EG 
(SH DR)_U(i+3) 

Input 
Variables 

q (Det 1)_U(i-1) q (Det 1)_U(i-3) q (Det 1)_U(i) q (Det 1)_U(i) 

… … … … 

q (Det 7)_U(i-1) q (Det 7)_U(i-3) q (Det 7)_U(i) q (Det 7)_U(i) 
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Table 3 Data model for a short-term correction of prediction 

  Training Data Prediction Data 

Horizon of 
Prediction 

U(i) U(i)  with i, k ∊  

Target 
Variable 

t_EG (SH DR)_U(i-k) t_EG (SH DR)_U(i) 

Input 
Variables 

t_LDG (Det 1)_U(i-k) t_LDG (Det 1)_U(i) 

… … 

t_LDG (Det 7)_U(i-k) t_LDG (Det 7)_U(i) 

 
occurred end of green period of each cycle (t_LDG) is used as input variable. 
However, because of the very short horizon in this case, a preliminary calculated 
policy proposal of a driver assistance system cannot be corrected in time. Table 3 
summarizes the variables for this data model. 

3.4 Results of Prediction 

In advance, it has to be mentioned that the results described below, using a data 
model according to Table 2, exclusively refer on a horizon of U(i+1), because the 
results of U(i+3) are very similar. For examining the prediction accuracy, real data 
of the intersection shown in Figure 1 were used with a basic population of about 
5,600 cycles. An automatic classification of the input variables according to the 
principle of SVM was implemented using the statistical program R. The algorithm 
uses 70% of data to generate a hyperplane and 30% to test the classification. The 
results shown below refer to the test data. Table 4 shows a comparison of 
predicted switching times and actual occurred ones for the end of green period 
(t_EG) of signal head DR and a horizon of one cycle for signal program 1 
(compare table 1). It must be noted, that the switching times of DR have the 
greatest variance for that intersection. So the results for the remaining signal heads 
are considerably better. 

Table 4 Comparison of predicted and occurred wwitching times for one signal program 

t_EG predicted   

[Cycle Second] 20 23 24 

oc
cu

re
d 20 19 99 0 

23 19 933 0 

24 9 32 1 
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Altogether, there are 1,112 predictions for this example. In this case the 
algorithm classifies 19 (cycle second 20) + 933 (23) + 1 (24) = 953 times the end 
of green period correctly. This corresponds to a prediction accuracy of about 86%. 
This is an improvement compared to the best value of table 1 which has been 
calculated on the same database. The prediction values of the remaining signal 
programs are similar to the presented, so their depiction is disclaimed at this point. 
For a further improvement of the prediction in the current cycle, the algorithm 
uses training data according to the data model of table 3. However, the use of this 
data model is only possible if very short latencies are available. Furthermore, an 
additional benefit for a fuel-efficient access is hard to achieve due to the very low 
horizon of the prediction. Table 5 shows appropriate results for the same signal 
program. 

Table 5 Comparison of predicted and occurred switching times for low latencies 

t_EG predicted   

[Cycle Second] 20 23 24 

oc
cu

re
d 20 105 5 1 

23 8 918 4 

24 15 2 35 
 
Here, an accuracy of about 97% has been achieved by referring the matches of 

predicted and occurred switching times on the total number of cycles. This is a 
significant increase compared with the values of table 4. The prediction of 
switching times of the remaining signal heads is carried out analogous to the 
example presented here. The results were even better in these cases, since the 
switching times of signal head DR have the greatest variance. For each data 
model, only the target variable had to be modified. It then corresponded to the 
switching times of the signal head to be predicted.  

Because the algorithm does not generate a correct prediction in each case, a 
calculation of a probability of green for each cycle second is necessary for a 
corresponding policy proposal. This probability is obtained by the distributions of 
the occurred switching times for each column according to the tables shown here. 
So for each switching point predicted by the algorithm, there is an appropriate 
probability of green for each cycle second. 

4 Conclusions 

The knowledge of forthcoming switching times is an important prerequisite for the 
development of applications for an energy-efficient driving in urban areas. 
However, since modern traffic lights adjust their phases and phase transitions to 
the current traffic volume, a prediction of switching times is required. The 
accuracy of a prediction depends on various boundary conditions, at which the 
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modality of traffic dependency is of basic importance. However, the application-
specific horizon of prediction and the latency period make different demands on 
the algorithm and have direct impact on the prediction quality as well. The 
algorithmic approach of Support Vector Machines (SVM) was investigated 
regarding its suitability for a prediction of switching times. The data model which 
is used by the algorithm to learn relationships between detector data and switching 
times is crucial for the success of the prediction. Assuming different latencies and 
horizons, data models have been generated using different traffic parameters as 
input variables. Subsequently, the achieved prediction quality was evaluated. An 
advantage of the examined approach is its easy transferability to other signalized 
intersections, since the use of input variables which have no direct influence on 
the target variable, is largely harmless. The influence of time headway criteria and 
public transport vehicles can also be learned by the algorithm using specific data 
models. For reasons of space, this aspect has not been discussed in this paper. For 
a provision of application-specific information, a preparation of prediction values 
into a probability distribution of green-occurrence is still required. 
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