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Abstract A review of results on first order shape-topological differentiability of
energy functionals for a class of variational inequalities of elliptic type is presented.

The velocity method in shape sensitivity analysis for solutions of elliptic
unilateral problems is established in the monograph (Sokołowski and Zolésio,
Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer,
Berlin/Heidelberg/New York, 1992). The shape and material derivatives of
solutions to frictionless contact problems in solid mechanics are obtained. In
this way the shape gradients of the associated integral functionals are derived
within the framework of nonsmooth analysis. In the case of the energy type
functionals classical differentiability results can be obtained, because the shape
differentiability of solutions is not required to obtain the shape gradient of the shape
functional (Sokołowski and Zolésio, Introduction to Shape Optimization: Shape
Sensitivity Analysis, Springer, Berlin/Heidelberg/New York, 1992). Therefore, for
cracks the strong continuity of solutions with respect to boundary variations is
sufficient in order to obtain first order shape differentiability of the associated
energy functional. This simple observation which is used in Sokołowski and
Zolésio (Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer,
Berlin/Heidelberg/New York, 1992) for the shape differentiability of multiple
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eigenvalues is further applied in Khludnev and Sokołowski (Eur. J. Appl. Math.
10:379–394, 1999; Eur. J. Mech. A Solids 19:105–120, 2000) to derive the first
order shape gradient of the energy functional with respect to perturbations of the
crack tip. A domain decomposition technique in shape-topology sensitivity analysis
for problems with unilateral constraints on the crack faces (lips) is presented for the
shape functionals.

We introduce the Griffith shape functional as the distributed shape derivative
of the elastic energy evaluated in a domain with a crack, with respect to the
crack length. We are interested in the dependence of this functional on domain
perturbations far from the crack. As a result, the directional shape and topological
derivatives of the nonsmooth Griffith shape functional are obtained with respect to
boundary variations of an inclusion.

Keywords Conical differential of metric projection • Dirichlet Sobolev space •
Griffith criterium for crack propagation • Hadamard shape differentiability •
Nonsmooth analysis • Shape gradient • Shape Hessian • Signorini variational
inequality

Mathematics Subject Classification (2010). Primary 35J86; Secondary 35R35,
49J40, 74R99.

1 Introduction

First order shape sensitivity analysis of the energy functional for an elliptic boundary
value problem with unilateral constraints defined in domains with cracks is of broad
interest and, therefore, it is named Griffith shape functional. In order to introduce
the Griffith shape functional we make use of

• the crack model within an elastic body, represented by an elliptic variational
inequality with the unilateral constraints representing the first order linear
approximation of the non-penetration condition;

• the energy shape functional defined for the solutions of the variational inequality
depending on the shape of the crack;

• an abstract result on the directional differentiability of the optimal value for
constrained optimization problems over convex sets with respect to a parameter
t ! 0,

t ! j.t; v�.t// WD inf
v2K j.t; v/

which requires only the strong convergence of the minimizers v�.t/ ! v�.0/
with respect to the parameter as well as the existence of the partial derivative of
the mapping R 3 t ! j.t; v/ 2 R;

• a technical result on linear transformations of the displacement field in the
elasticity model obtained in [25] which provides the convex cone K , invariant
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under the change of variables of the velocity method; it means that in order to
apply the abstract sensitivity result for optimal values, we have in hand the linear
transformation of the unknown solution to the variational inequality such that
we could analyze the variational inequality transformed to the fixed geometrical
domain with the parameter independent convex coneK .

Therefore, the Griffith shape functional is the first order shape derivative of the
elastic energy with respect to the perturbation of the crack tip for a given direction
of the velocity vector field. In addition, the second order shape derivative of the
energy functional, whenever it does exist, becomes the first order shape derivative
of the Griffith shape functional. But it is not our primary concern, since we are more
interested in the influence of elastic inclusions far from the crack on the behaviour of
the Griffith shape functional. We believe that such an influence is possible and can be
used for the control of crack propagation in elastic media. Indeed, the dependence of
the Griffith functional with respect to shape changes of an elastic or rigid inclusion
has been considered in [8,17]. This research has been triggered by numerical studies
on optimization an control of crack growth also for the case of cohesive crack
theories in [18, 21, 22]. See also [7, 19].

We recall also that the second order shape differentiability of the energy
functional with respect to the perturbations of the crack tip is known for the
Signorini type variational inequalities which governs frictionless contact problems
[6]. This result can be extended to the crack problems with non-penetration contact
conditions on the crack faces (lips), but this is a subject of the forthcoming paper.

1.1 Interface Problems in Lipschitz Domains

In this paper a class of models with defects in solids is introduced. The defect takes
the form of a cut in the geometrical domain. The cut is a part of a curve in two
spatial dimensions, and the unilateral boundary conditions for displacements and
the tractions are prescribed for the jumps from both sides of the cut. The variational
formulation of the model include the unilateral conditions for the displacements
imposed in the convex cone constraints for admissible displacements. The vari-
ational inequality for displacements is obtained for the minimization problem of
the energy functional over a convex cone. In the specific case of our setting, the
solution operator is Lipschitz continuous with respect to the right-hand side of the
variational inequality. This property leads usually to the Lipschitz continuity of the
solution with respect to the regular boundary variations in the framework of the
velocity method of shape sensitivity analysis. On the other hand, the asymptotic
analysis of solutions to singular perturbations of the geometrical domain can be
performed for linear problems or a restricted class of nonlinear problems. Since
the technique of compound asymptotic expansions cannot be directly applied to the
variational inequalities under considerations, a domain decomposition technique is
used in order to obtain the first order asymptotic expansion of the energy functional
and to obtain the topological derivatives of the energy functionals for the variational
inequalities.
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In this section the framework is introduced for the crack problem in the bounded
domain� in two spatial dimensions. It is assumed [8–17] that a crack in� is a part
†l of the Lipschitz interface †. By an interface we mean a Lipschitz, closed curve
without intersections† b � such that the jumps Œu� of values for traces of Sobolev
functions u from both sides of the interface are allowed.

In addition, in our model the interface, thus, also the crack are supposed to
be sufficiently smooth, say † is a C1;1 closed curves without intersections. This
regularity assumption is added in order to use the standard properties of traces of
Sobolev functions on the interface.

However, the shape sensitivity analysis is performed in our framework by the
bi-Lipschitz changes of variables, we refer to [25] for all details necessary for such
a construction.

Let us consider the Lipschitz domain� with the boundary� D @� decomposed
into two Lipschitz subdomains �0; �00 and the interface † � �, i.e., � WD �0 [
† [�00. For the decomposition of functions in v 2 H1

0 .�/, we use the notation for
restrictions to subdomains v0 2 H1

0 .�
0/ and v00 2 H1

0 .�
00/. Thus, the traces on †

are well defined

vj† WD v0j† D v00j† 2 H1=2.†/ :

Now, we define a broader space H1
0 .�/ � H1

�.�†/ � L2.�/ of functions which
admit the jump

Œv� WD v0j† � v00j† 2 H1=2.†/

over the interface †. This leads also to the boundary value problems in � with
the prescribed jump over the interface, which is not our primary interest. We are
interested in the cracks †l � † modeled by closed subsets of the interface, with
�l WD � n†l , thus, in solutions of the boundary value problems in the convex set

K.�l/ WD fv 2 H1
�.�†/ W Œv� > 0 on †l ; Œv� D 0 on † n†lg :

The primary interest of such a function space setting for the crack problems with
unilateral non-penetration conditions on the crack faces (lips) is the so-called
polyhedricity of the set K.�l/. In other words, polyhedral convex sets admit the
Hadamard differential of the metric projection [6, 25]. This property is inherited
from the polyhedricity of the positive cone in the fractional Sobolev spaceH1=2.†/,
since the space H1=2.†/ is the so-called Dirichlet space with respect to the natural
order. Let us recall the known facts [6].

Proposition 1.1. The scalar product .�; �/† in the Dirichlet spaceH1=2.†/ satisfies
the condition

.vC; v�/† 6 0 8v 2 H1=2.†/;
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therefore, the metric projection in H1=2.†/ onto the positive cone of H1=2.†/ is
conically differentiable.

This implies

Corollary 1.2. The metric projection in H1
�.�†/ onto the closed, convex cone

K.�l/ is conically differentiable.

The above results lead to the first order shape derivatives of the Griffith shape
functional for the cracks with the nonlinear non-penetration conditions prescribed
on the crack lips (or faces in three spatial dimensions).

Remark 1.3. The Griffith shape functional of the crack†l WD f.x1; 0/ 2 R
2; 0 <

x1 < lg at the tip Pl WD .l; 0/ is defined by the shape derivative which is denoted by

J.�l/ WD d….�l I ul /

d l

of the energy functional

l ! ….�l I ul / D inf
v2K.�l/

Z

�l

�
1

2
jrvj2 � f v

�

where ul 2 K.�l/ is the minimizer for a given length l > 0 of the crack, and
f 2 L2.�/ is a given element.

We are going to extend such results to elastic bodies �l with cracks †l
and unilateral conditions on the crack lips (faces) †l̇ . Then, we consider the
differentiability properties of the Griffith functional

• evaluation of the first order shape derivative with respect to the perturbations of
the crack;

• asymptotic analysis of the Griffith functional with respect to singular perturba-
tions of the geometrical domain far from the crack;

2 Modeling of Cracks in Elastic Bodies

2.1 Non-Penetration Conditions on the Crack Faces

It is well known that classical crack theory in elasticity is characterized by linear
boundary conditions which leads to linear boundary value problems. This approach
has a clear shortcoming from a mechanical standpoint, since opposite crack faces
can penetrate each other. We consider nonlinear boundary conditions on crack faces,
the so-called non-penetration conditions, written in terms of inequalities. From
the standpoint of applications, these boundary conditions are preferable since they
provide a mutual non-penetration between crack faces. As a result, a free boundary
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problem is obtained which means that a concrete boundary condition at a given point
can be found provided that we have a solution of the problem.

The main attention in this paper is paid to dependence of solutions of the problem
on domain perturbations, and in particular, on the crack shape.

Let � � R
2 be a bounded domain with smooth boundary � , and �c � � be a

smooth curve without self-intersections,�c D � n �c .
It is assumed that �c can be extended in such a way that this extension crosses

� at two points, and �c is divided into two subdomainsD1 and D2 with Lipschitz
boundaries @D1, @D2, meas.� \ @Di / > 0, i D 1; 2. Denote by � D .�1; �2/ a
unit normal vector to �c . We assume that �c does not contain its tip points, i.e.
�c D �c n @�c .

The equilibrium problem for a linear elastic body occupying�c is as follows. In
the domain �c we have to find a displacement field u D .u1; u2/ and stress tensor
components � D f�ijg, i; j D 1; 2, such that

�div� D f in �c; (1)

� D A".u/ in �c; (2)

u D 0 on �; (3)

Œu�� > 0; Œ�� � D 0; �� � Œu�� D 0 on �c; (4)

�� 6 0; �� D 0 on �ċ : (5)

Here Œv� D vC � v� is a jump of v on �c , and signs ˙ correspond to positive and
negative crack faces with respect to �, f D .f1; f2/ 2 L2.�c/ is a given function,

�� D �ij�j �i ; �� D �� � �� � �; �� D .�1� ; �
2
� /;

�� D .�1j �j ; �2j �j /;

the strain tensor components are denoted by "ij.u/,

"ij.u/ D 1

2
.ui;j C uj;i /; ".u/ D f"ij.u/g; i; j D 1; 2:

Elasticity tensor A D faijklg, i; j; k; l D 1; 2, is given and satisfies the usual
properties of symmetry and positive definiteness

aijkl�kl �ij > c0j�j2; 8 �ij; �ij D �ji; c0 D const;

aijkl D aklij D aj ikl , aijkl 2 L1.�/.
Relations (1) are equilibrium equations, and (2) is Hooke’s law, ui;j D @ui

@uj
,

.x1; x2/ 2 �c . All functions with two below indices are symmetric in those
indices, i.e. �ij D �ji etc. Summation convention is assumed over repeated indices
throughout the paper.
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The first condition in (4) is called the non-penetration condition. It provides a
mutual non-penetration between the crack faces �ċ . The second condition of (5)
provides zero friction on �c . For simplicity we assume a clamping condition (3) at
the external boundary � .

Note that a priori we do not know points on �c where strict inequalities in (4), (5)
are fulfilled. Due to this, the problem (1)–(5) is a free boundary value problem. If we
have �� D 0 then, together with �� D 0, the classical boundary condition �� D 0

follows which is used in linear crack theory. On the other hand, due to (4), the
condition �� < 0 implies Œu�� D 0, i.e. we have a contact between the crack faces
at a given point. The strict inequality Œu�� > 0 at a given point means that we have
no contact between the crack faces.

Hence, the first difficulty in studying the problem (1)–(5) is concerned with
boundary conditions (4)–(5). The second one is related to the general crack problem
difficulty—a presence of nonsmooth boundaries. We refer the reader to [6] for
related results on boundary value problems defined in domains with cracks.

2.2 Existence of Solutions

First of all we note that problem (1)–(5) admits several equivalent formulations. In
particular, it corresponds to the minimization of the energy functional. To check
this, introduce the Sobolev space

H1
�.�c/ D fv D .v1; v2/ j vi 2 H1.�c/; vi D 0 on �; i D 1; 2g

and the closed convex set of admissible displacements

K D fv 2 H1
�.�c/ j Œv�� > 0 a:e: on �cg: (6)

In this case, due to the Weierstrass theorem, the problem

min
v2K

8<
:
1

2

Z

�c

�ij.v/"ij.v/ �
Z

�c

fivi

9=
;

has (a unique) solution u satisfying the variational inequality

u 2 K; (7)Z

�c

�ij.u/"ij.v � u/ >
Z

�c

fi .vi � ui /; 8v 2 K; (8)

where �ij.u/ D �ij are defined from (2).
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Problem formulations (1)–(5) and (7)–(8) are equivalent. We shall use in Sect. 47
the abstract form (144) of the variational inequality (7)–(8).

Remark 2.1. It follows from the coercivity on the energy space H1
�.�c/ of the

symmetric bilinear form

H1
�.�c/ �H1

�.�c/ 3 .u; v/ ! a.u; v/ WD
Z

�c

�ij.u/"ij.v/ 2 R

that the solution u to (7)–(8) is Lipschitz continuous in the energy space with respect
to the right-hand side f in the dual space

�
H1
�.�c/

��
.

Any smooth solution of (1)–(5) satisfies (7)–(8) and, conversely, from (7)–(8) it
follows (1)–(5).

Below we provide two more equivalent formulations for the problem (1)–(5), the
so-called mixed and smooth domain formulations. To this end, we first discuss in
what sense boundary conditions (4)–(5) are fulfilled. Denote by † a closed curve
without self-intersections of the class C1;1, which is an extension of �c such that
† � �, and the domain � is divided into two subdomains�1 and �2. In this case
† is the boundary of the domain�1, and the boundary of �2 is † [ � .

Introduce the space H
1
2 .†/ with the norm

kvk2
H

1
2 .†/

D kvk2
L2.†/

C
Z

†

Z

†

jv.x/� v.y/j2
jx � yj2 dxdy (9)

and denote byH� 1
2 .†/ a space dual of H

1
2 .†/. Also, consider the space

H
1=2
00 .�c/ D

�
v 2 H 1

2 .�c/ j vp
	

2 L2.�c/
�

with the norm

kvk21=2;00 D kvk21=2 C
Z

�c

	�1v2;

where 	.x/ D dist.xI @�c/ and kvk1=2 is the norm in the spaceH1=2.�c/. It is known

that functions from H
1=2
00 .�c/ can be extended to † by zero values, and moreover

this extension belongs to H1=2.†/. More precisely, let v be defined at �c , and v be
the extension of v by zero, i.e.

v.x/ D
�

v.x/; x 2 �c
0; x 2 † n �c:
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Then

v 2 H1=2
00 .�c/ if and only if v 2 H1=2.†/:

With the above notations, it is possible to describe in what sense boundary
conditions (4)–(5) are fulfilled. Namely, the condition �� 6 0 in (5) means that

h��; 
i1=2;00 6 0; 8 
 2 H1=2
00 .�c/; 
 > 0 a:e: on �c;

where h�; �i1=2;00 is a duality pairing between H
�1=2
00 .�c/ and H

1=2
00 .�c/. The

condition �� D 0 in (5) means that

h��; 
i1=2;00 D 0; 8 
 D .
1; 
2/ 2 H1=2
00 .�c/:

The last condition of (4) holds in the following sense

h��; Œu��i1=2;00 D 0:

2.3 Mixed Formulation of the Problem

Now we are interested to give a mixed formulation of the problem (1)–(5). Introduce
the space for stresses

H.div/ D ˚
� D f�ijg j � 2 L2.�c/; div� 2 L2.�c/

�

with the norm

k�k2H.div/ D k�k2
L2.�c/

C kdiv�k2
L2.�c/

and the set of admissible stresses

H.divI�c/ D ˚
� 2 H.div/ j Œ��� D 0 on �cI �� 6 0; �� D 0 on �ċ

�
:

We should note at this step that for � 2 H.div/ the traces .��/˙ are correctly
defined on †˙ as elements of H�1=2.†/. The first condition in the definition of
H.divI�c/ is fulfilled in the following sense

.��/C D .��/� on †

for any curve† with the prescribed properties. Relations � 6 0, �� D 0 on �ċ also
make sense. The values �� , �� are defined as elements of the space H�1=2

00 .�c/.
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The mixed formulation of the problem (1)–(5) is as follows. We have to find a
displacement field u D .u1; u2/ and stress tensor components � D f�ijg, i; j D 1; 2,
such that

u 2 L2.�c/; � 2 H.divI�c/; (10)

�div� D f in �c; (11)Z

�c

C�.� � �/C
Z

�c

u.div� � div�/ > 0 8� 2 H.divI�c/: (12)

The tensor C is obtained by inverting the Hooke’s law (2), i.e.

C� D ".u/:

It is possible to establish the existence of a solution to the problem (10)–(12)
and check that (10)–(12) is formally equivalent to (1)–(5) (see [16]). Existence of
solutions to (10)–(12) can be proved independently of (1)–(5). On the other hand,
the solution exists due to the equivalence, and we already have the solution to the
problem (1)–(5).

2.4 Smooth Domain Formulation

Along with the mixed formulation (10)–(12), the so-called smooth domain formula-
tion of the problem (1)–(5) can be provided. In this case the solution of the problem
is defined in the smooth domain�. To do this, we should notice that the solution of
the problem (1)–(5) satisfies (7)–(8), thus, the condition

Œ��� D 0 on �c

holds, and, therefore, it can be proved that in the distributional sense

�div� D f in �:

Hence, the equilibrium equations (1) hold in the smooth domain�.
Introduce the space for stresses defined in �,

H.div/ D f� D f�ijg j �; div� 2 L2.�/g

and the set of admissible stresses

H.divI�c/ D f� 2 H.div/ j �� D 0; �� 6 0 on �cg:
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The norm in the space H.div/ is defined as follows

k�k2H.div/ D k�k2
L2.�/

C kdiv�k2
L2.�/

:

We see that for � 2 H.div/, the boundary condition �� D 0, �� 6 0 on �c are
correctly defined in the sense H�1=2

00 .�c/. Thus, we can provide the smooth domain
formulation for the problem (1)–(5). It is necessary to find a displacement field
u D .u1; u2/ and stress tensor components � D f�ijg, i; j D 1; 2, such that

u 2 L2.�/; � 2 H.divI�c/; (13)

�div� D f in �; (14)Z

�

C�.� � �/C
Z

�

u.div� � div�/ > 0 8� 2 H.divI�c/: (15)

It is possible to prove existence of a solution to the problem (13)–(15) (see
[14]). Moreover, any smooth solution of (1)–(5) satisfies (13)–(15) and, conversely,
from (13)–(15) it follows (1)–(5). Advantage of the formulation (13)–(15) is that it
is given in the smooth domain. This formulation reminds contact problems with thin
obstacle when restrictions are imposed on sets of small dimensions.

Numerical aspects for the problems like (1)–(5) can be found, for example, in
[2, 3].

2.5 Fictitious Domain Method

In this section we provide a connection between the problem (1)–(5) and the
Signorini contact problem. It turns out that the Signorini problem is a limit problem
for a family of problems like (1)–(5). First we give a formulation of the Signorini
problem. Let �1 � R

2 be a bounded domain with smooth boundary �1, �1 D
�c [ �0, �c \ �0 D ;, meas�0 > 0.

For simplicity, we assume that �c is a smooth curve (without its tip points).
Denote by � D .�1; �2/ a unit normal inward vector to �c . We have to find a
displacement field u D .u1; u2/ and stress tensor components � D f�ijg, i; j D 1; 2,
such that

�div� D f in �1; (16)

� D A".u/ in �1; (17)

u D 0 on �0; (18)

u� > 0; �� 6 0; �� D 0; u� � �� D 0 on �c: (19)
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Here f D .f1; f2/ 2 L2loc.R2/ is a given function, A D faijklg, i; j; k; l D 1; 2 is a
given elasticity tensor, aijkl 2 L1

loc.R
2/, with the usual properties of symmetry and

positive definiteness.
It is well known (see [4, 5]) that the problem (16)–(19) has a variational

formulation providing a solution existence. Namely, denote

H1
�0
.�1/ D fv D .v1; v2/ 2 H1.�1/ j vi D 0 on �0; i D 1; 2g

and introduce the set of admissible displacements

Kc D fv D .v1; v2/ 2 H1
�0
.�1/ j v� > 0 a:e: on �cg:

In this case the problem (16)–(19) is equivalent to minimization of the functional

1

2

Z

�1

�ij.v/"ij.v/�
Z

�1

fivi

over the set Kc and can be written in the form of the variational inequality

u 2 Kc; (20)Z

�1

�ij.u/"ij.v � u/ >
Z

�1

fi .vi � ui / 8v 2 Kc: (21)

Here �ij.u/ D �ij are defined from the Hooke’s law (17). Variational inequality (20)–
(21) is equivalent to (16)–(19) and, conversely, i.e., any smooth solution of (16)–(19)
satisfies (20)–(21) and from (20)–(21) it follows (16)–(19). Along with variational
formulation (20)–(21), the problem (16)–(19) admits a mixed formulation which is
omitted here.

The aim of this section is to prove that the problem (16)–(19) is a limit problem
for a family of problems like (1)–(5). In what follows we provide explanation of this
statement.

First of all we extend the domain �1 by adding a domain �2 with smooth
boundary �2. An extended domain is denoted by �c , and it has a crack (cut) �c .
Boundary of �c is � [ �ċ . Denote †0 D �1 \ �2, † D †0 n � , thus † does not
contain its tip points.

We introduce a family of elasticity tensors with a positive parameter �,

a�ijkl D
�

aijkl in �1

��1aijkl in �2:

Denote A� D fa�ijklg, and in the extended domain�c , consider a family of the crack

problems. Find a displacement field u� D .u�1; u
�
2/, and stress tensor components
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�� D f��ij g, i; j D 1; 2, such that

�div�� D f in �c; (22)

�� D A�".u�/ in �c; (23)

u� D 0 on �; (24)

Œu��� > 0; Œ��� � D 0; ��� � Œu�� D 0 on �c; (25)

��� 6 0; ��� D 0 on �ċ : (26)

As before, Œv� D vC � v� is the jump of v through �c , where ˙ fit positive and
negative crack faces �ċ . All the remaining notations correspond to those of Sect. 1.
We see that for any fixed � > 0 the problem (22)–(26) describes an equilibrium
state of linear elastic body with the crack �c where non-penetration conditions are
prescribed. Hence, the problem (22)–(26) is exactly the problem like (1)–(5), and
we are interested in passage to the limit as � ! 0. In particular, the problem (22)–
(26) admits a variational formulation. Boundary conditions (25)–(26) are fulfilled in
the form as it is explained in Sect. 1. It can be shown that the following convergence
takes place as � ! 0

u� ! u0 strongly in H1
�.�c/; (27)

u�p
�

! 0 strongly in H1.�2/; (28)

where u0 D u on�1, i.e. a restriction of the limit function from (27) to�1 coincides
with the unique solution of the Signorini problem (16)–(19). From (27)–(28) it
is seen that the limit function u0 is zero in �2. On the other hand, there is no
limit passage for �� in �2 as � ! 0. Thus, the domain �2 can be understood
as undeformable body, and the stresses are not defined in �2. This means that
the Signorini problem is, in fact, a crack problem with non-penetration condition
between crack faces, where the crack �c is located between the elastic body�1 and
non-deformable (rigid) body �2. It is worth noting that, in fact, we can write the
problem (22)–(26) in the equivalent form in the smooth domain �c [ �c by using
the smooth domain formulation of Sect. 2.4.

3 Griffith Functionals Evaluation by the Shape Sensitivity
Analysis of Energy Functionals

The velocity method [6, 25] is used in the shape sensitivity analysis of the energy
functionals with respect to perturbations of a crack tip in two spatial dimensions. In
Frémiot et al. [6] the Hadamard structure [25] theorem for the first and the second
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order shape derivatives of differentiable shape functionals in domains with cracks
is given with full proof. We use the distributed form of the shape gradient for the
energy functional with respect to the crack tip perturbations in order to define the
Griffith shape functional which is further considered in Sect. 47. In applications, the
Griffith functional can be used, it seems, to control the crack propagation in elastic
body with elastic and/or rigid inclusions.

In the crack theory, the Griffith criterion can be used for the prediction of crack
propagation. This criterion says that a crack propagates provided that the derivative
of the energy functional with respect to the crack length reaches a critical value. In
this section we discuss the Griffith criterion and the associated Griffith functional
for the model (1)–(5).

The general point of view is that we should consider a perturbed problem with
respect to (1)–(5). In particular, a crack length may be perturbed. Perturbation will
be characterized by a small parameter t , and t D 0 corresponds to the unperturbed
problem, i.e. to the problem (1)–(5). To describe properly a perturbation of the
problem, we should define a perturbation of the domain�c . This can be done in the
framework of the sensitivity analysis by the so-called velocity method (see [25]).
We briefly recall this method in a way useful for our purposes.

Let us consider a given velocity field V defined in R
2 and describe a perturbation

of �c by solving a Cauchy problem for a system of ODE. Namely, let V 2
W 1;1.R2/2 be a given field, V D .V1; V2/. Consider a Cauchy problem for finding
a function ˆ D .ˆ1;ˆ2/, with x the spatial variable,

dˆ

dt
.t; x/ D V.ˆ.t; x// for t ¤ 0; ˆ.0; x/ D x: (29)

There exists a unique solution ˆ to (29) such that

ˆ D .ˆ1;ˆ2/.t; x/ 2 C1.Œ0; t0�IW 1;1
loc .R

2/2/; jt0j > 0: (30)

Simultaneously, we can find a solution ‰ D .‰1;‰2/ to the following Cauchy
problem

d‰

dt
.t; y/ D �V.‰.t; y// for t ¤ 0; ‰.0; y/ D y (31)

with the some regularity

‰ D .‰1;‰2/.t; y/ 2 C1.Œ0; t0�IW 1;1
loc .R

2/2/; jt0j > 0: (32)

It can be proved that for any fixed t , the inverse function of ˆ.t; �/ is the function
‰.t; �/, thus

y D ˆ.t;‰.t; y//; x D ‰.t;ˆ.t; x//; x; y 2 R
2:
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Due to this, we have a one-to-one mapping between the domain�c and a perturbed
domain�t

c , namely

y D ˆ.t; x/ W �c ! �t
c;

x D ‰.t; y/ W �t
c ! �c:

Moreover, by (30), (32), we have the following asymptotic expansions (I denotes
the identity operator)

ˆ.t; x/ D x C tV .x/C r1.t/; (33)

‰.t; y/ D y � tV .y/C r2.t/; (34)

@ˆ.t/

@x
D I C t

@V

@x
C r3.t/; (35)

@‰.t/

@y
D I � t

@V

@y
C r4.t/; (36)

kri .t/kW 1;1
loc .R2/2

D o.t/; i D 1; 2;

kri .t/kL1

loc .R
2/2�2 D o.t/; i D 3; 4:

Hence, in the domain �t
c it is possible to consider the following boundary value

problem (perturbed with respect to (1)–(5)). Find a displacement field ut D .ut1; u
t
2/,

and stress tensor components �t D f�tijg, i; j D 1; 2, such that

�div�t D f in �t
c; (37)

�t D A".ut / in �t
c; (38)

ut D 0 on �t ; (39)

Œut ��t > 0; Œ�t�t � D 0; �t�t � Œut ��t D 0 on �tc; (40)

�t�t 6 0; �t�t D 0 on �t˙c : (41)

Here,

y D ˆ.t; x/ W � ! �t ; �c ! �tc;

and we assume in this section that f D .f1; f2/ 2 C1.R2/ and that aijkl D const,
i; j; k; l D 1; 2. All the rest notations in (37)–(41) remind those of (1)–(5), in
particular, �t D .�t1; �

t
2/ is a unit normal vector to �tc .

We can provide a variational formulation of the problem (37)–(41). Indeed,
introduce the Sobolev space

H1
�t .�

t
c/ D fv D .v1; v2/ j vi 2 H1.�t

c/; vi D 0 on �t ; i D 1; 2g



258 G. Leugering et al.

and the set of admissible displacements

Kt D fv 2 H1
�t .�

t
c/ j Œv��t > 0 a:e: on �tcg:

Consider the functional

….�t
cI v/ D 1

2

Z

�tc

�tij.v/"ij.v/�
Z

�tc

fivi

and the minimization problem

min
v2Kt

….�t
cI v/: (42)

Here, �tij.v/ are defined from Hooke’s law similar to (38). Solution of the prob-
lem (42) exists and it satisfies the variational inequality

ut 2 Kt ; (43)Z

�tc

�tij.u
t /"ij.v � ut / >

Z

�tc

fi .vi � uti / 8v 2 Kt: (44)

Having found a solution of the problem (43)–(44) we can define the energy
functional

….�t
cI ut / D 1

2

Z

�tc

�tij.u
t /"ij.u

t /�
Z

�tc

fiu
t
i :

Note that for t D 0, we have �0
c D �c and u0 D u, where u is the solution of

the unperturbed problem (7), (8). The question arises whether the functional t !
….�t

cI ut / is differentiable at t D 0. Thus, we consider the existence of The question
whether

d

dt
….�t

c I ut /jtD0 D lim
t!0

….�t
cI ut /�….�cI u/

t
:

The answer is positive in many practical situations. We consider two cases, where
the derivative

I D d

dt
….�t

cI ut /jtD0 (45)

can be evaluated.
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3.1 Griffith Functionals for Rectilinear Cracks

Assume for simplicity that the normal vector � to �c keeps its value under the
mapping x ! ˆ.t; x/, i.e. �t D �. In this case,

I D 1

2

Z

�c

˚
divV � "ij.u/� 2Eij.V I u/

�
�ij.u/�

Z

�c

div.Vfi/ui ; (46)

where

Eij.U I v/ D 1

2
.vi;kUk;j C vj;kUk;i /; U D fUijg; i; j D 1; 2:

Note that the assumption concerning the normal vector � holds for rectilinear cracks
�c and vector fields V tangential to �c . In this situation, (46) provides a formula
for the derivative of the energy functional with respect to the crack length what is
practically needed for using the Griffith criterion.

• It will be the case when V D 1 in a vicinity of the right crack tip and the support
denoted by suppV belongs to a small neighborhood of this tip.

• Formula (46) for the shape derivative of the energy functional with respect to
the crack length is called the distributed shape gradient. More precisely, by the
shape gradient we understand the mapping

V ! 1

2

Z

�c

˚
divV � "ij.u/� 2Eij.V I u/

�
�ij.u/�

Z

�c

div.Vfi/ui : (47)

• In Sect. 7 the expression of the distributed gradient (47) is shown to be differen-
tiable with respect to the perturbations of the linear boundary conditions for the
displacement field. In this way the shape derivative of the Griffith functional
with respect to the boundary variations of an inclusion far from the crack is
determined.

3.2 Griffith Functionals for Curvilinear Cracks

The formula for the derivative (45) can be derived for curvilinear cracks if the
simplified assumption on the normal vector � is not fulfilled by using an appropriate
transformation of unknown functions i.e., of the displacement field [25]. We provide
here the formula (45) for the crack �c which is defined by a graph of a smooth
function.
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Let  2 H3.0; l1/ be a given function, l1 > 0, and

† D f.x1; x2/ j x2 D  .x1/; 0 < x1 < l1g:

Consider a crack �l , �l � †, as a graph of the function  ,

�l D f.x1; x2/ j x2 D  .x1/; 0 < x1 < lg; 0 < l < l1:

Here, l is a parameter that characterizes the length of the projection of the crack �l
onto x1 axis. Consider a smooth cut-off function � with a support in a vicinity of
the crack tip .l;  .l//, moreover, we assume that � D 1 in a small neighborhood
of .l;  .l//. We can consider a perturbation of the crack �l along † via a small
parameter t . Denote �l D � n �l . Perturbed crack �tl has a tip .l C t;  .l C t//,

and we consider a perturbed domain �t
l D � n �tl . It is possible to establish a

one-to-one correspondence between�l and �t
l by formulas

y1 D x1 C t�.x/;

y2 D x2 C  .x1 C t�.x// �  .x1/;
.x1; x2/ 2 �l; .y1; y2/ 2 �t

l : (48)

Transformation (48) is equivalent to the following (cf. (33))

y D x C tV .x/C r.t; x/

with the velocity field

V.x/ D .�.x/;  0.x1/�.x//: (49)

In the domain �t
l , we can consider a perturbed problem formulation. Namely, it is

necessary to find a displacement field ut D .ut1; u
t
2/ and the stress tensor components

�t D f�tijg, i; j D 1; 2, such that

�div�t D f in �t
l ; (50)

�t D A".ut / in �t
l ; (51)

ut D 0 on �; (52)

Œut ��t > 0; Œ�t�t � D 0; �t�t � Œut ��t D 0 on �tl ; (53)

�t�t 6 0; �t�t D 0 on �t˙l : (54)

Here, �t D .�t1; �
t
2/ is a unit normal vector to �tl . For a solution ut of (50)–(54) it is

possible to define the energy functional

….�t
l I ut / D 1

2

Z

�tl

� tij.u
t /"ij.u

t /�
Z

�tl

fiu
t
i
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and to find the derivative

…0.l/ D d….�t
l I ut /

dt
jtD0

with the formula

…0.l/ D 1

2

Z

�l

fdivV � "ij.u/� 2Eij.V I u/g�ij.u/

�
Z

�l

div.Vfi/ui C
Z

�l

�ij.u/"ij.w/ �
Z

�l

fiwi ;
(55)

where the vector field V is defined in (49) and w D .0; � 00u1/ is a given function.
Note that the formula (55) contains the function � , but in fact there is no dependence
of the right-hand side of (55) on � . In particular, if  00 D 0, the formula (55)
reduces to (46) with �c D �l . In this case we have a rectilinear crack and �t D �.
Formula (55) defines a derivative of the energy functional with respect to the length
of the projection of the crack �l onto the x1 axis. Hence, the derivative of the energy
functional with respect to the length of the curvilinear crack is as follows

…0.s/ D …0.l/. 0.l/2 C 1/�1=2;

where

s D
lZ

0

p
 0.t/2 C 1

is the length of the crack �l .
To conclude this section we briefly discuss the existence of so-called invariant

integrals in crack theory. It is turned out that the formula (46) for the derivative of
the energy functional can be rewritten as an integral over closed curve surrounding
the crack tip.

Consider the most simple case of a rectilinear crack �c D .0; 1/ � f0g assuming
that �c � �. Let � be a smooth cut-off function equal to 1 near the point .1; 0/,
and supp� belong to a small neighborhood of the point .1; 0/. Then we can take the
vector field

V D .�; 0/

in (29), (31) which, according to (33), corresponds to the following change of
independent variables

y1 D x1 C t�.x/C r11.t/;

y2 D x2:
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In this case the formula (46) (or the formula (55) in a particular case  D 0)
provides a derivative of the energy functional with respect to the crack length. This
formula can be rewritten [13] as an integral over curve L surrounding the crack tip
.1; 0/,

I D
Z

L

�
1

2
�1�ij.u/"ij.u/� �ij.u/ui;1�j

�
(56)

provided that f is equal to zero in a neighborhood of the point .1; 0/. We should
underline two important points. First, the formula (56) is independent of L, and
second, the right-hand side of (56) is equal to the derivative of the energy functional
with respect to the crack length.

In fact, invariant integrals like (56) can be obtained in more complex situations.
For example, we can assume that the crack �c is situated on the interface between
two media which means that the elasticity tensor A D faijklg is as follows

aijkl D
(
a1ijkl for x2 > 0
a2ijkl for x2 < 0:

Here, a1ijkl D const, a2ijkl D const, i; j; k; l D 1; 2, and fa1ijklg, fa2ijklg satisfy the usual
properties of symmetry and positive definiteness. In this case, formula (46) for the
derivative of the energy functional holds true provided that V is tangential to �c .
This formula provides an existence of invariant integral of the form (56). We should
remark at this point that while the integral (56) is calculated, the values �ij.u/ui;1�j
can be taken at �C

c or at ��
c . It gives the same value of the integral (56) due to the

equality

Œ�ij.u/ui;1�j � D 0 on �c:

On the other hand, we can analyze the case when a rigidity of the elastic body part
�c \ fx2 < 0g goes to infinity. Indeed, consider the following elasticity tensor for a
positive parameter � > 0,

a�ijkl D
(

a1ijkl for x2 > 0
��1a2ijkl for x2 < 0:

Then for any fixed � > 0, the solution of the equilibrium problem like (1)–(5) exists,
and a passage to the limit as � ! 0 can be fulfilled. As we already noted in Sect. 3,
in the limit the following contact Signorini problem is obtained. Find a displacement
field u D .u1; u2/ and stress tensor components � D f�ijg, i; j D 1; 2, such that

�div� D f in �c \ fx2 > 0g; (57)
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� D A".u/ in �c \ fx2 > 0g; (58)

u D 0 on @.�c \ fx2 > 0g/ n �c; (59)

u� > 0; �� 6 0; �� D 0; �� � u� D 0 on �c: (60)

For the problem (57)–(60) it is possible to differentiate the energy functional in the
direction of the vector field V D .�; 0/, where the properties of � are described
above. The formula for the derivative has the following form (cf. (46))

I D 1

2

Z

�1

fdivV � �ij.u/� 2Eij.V; u/g�ij.u/�
Z

�1

div.Vfi /ui : (61)

Assume that f D 0 in a neighborhood of the point .1; 0/. In this case, formula (61)
can be rewritten in the form of invariant integral

I D
Z

L1

�
1

2
�1�ij.u/"ij.u/� �ij.u/ui;1�j

�
; (62)

where L1 is a smooth curve “covering” the point .1; 0/. Like for invariant integrals
in the crack problems, formula (62) is independent of a choice of L1.

4 Domain Decomposition Technique for Singularly
Perturbed Elliptic Boundary Value Problems

Our primary concern is the domain decomposition technique [20, 23, 24] in appli-
cation to the shape sensitivity analysis of the Griffith shape functional. However,
the precise results on the shape sensitivity analysis of the Griffith shape functional
are given in a forthcoming paper. In this paper we collect all the results recently
obtained for shape-topological sensitivity analysis of the broad class of variational
inequalities for elastic bodies with cracks. The asymptotic analysis in singularly
perturbed geometrical domain is performed by domain decomposition technique.
The boundary variations are used far from the defect, and the influence of the
domain perturbations is imposed on the variational inequality by means of the
Steklov–Poincaré operator defined within the domain decomposition technique. In
this way the conical differentiability of solutions to the variational inequality with
respect to the regular perturbations of the boundary conditions can be employed
for shape-topological sensitivity analysis of the specific functional defined in
the subdomain which contains the crack. This is the case of the Griffith shape
functional evaluated for a crack with nonlinear boundary conditions prescribed on
the crack lips.
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The reference domain� n �c of the elastic body under considerations is divided
into two subdomains �c with a crack �c inside and �i with an elastic inclusion
! inside. The domains are coupled within the nonlinear elasticity boundary value
problem with the nonlocal boundary conditions defined on the interface �sp WD
�i \�c by an appropriate Steklov–Poincaré operator. In this section, however, we
introduce the domain decomposition technique for the evaluation of the topological
derivatives [20, 23, 24].

Let us consider the linear elliptic boundary value problems, and describe the
domain decomposition technique for asymptotic analysis of the energy functional
in singularly perturbed geometrical domains. The method is presented for simplicity
for circular holes and for the Laplacian with Neumann conditions on the hole, and
the Dirichlet condition on the outer boundary. In such a case the function f ."/ D "2

is used in asymptotic analysis. The shape functional is defined by the associated
energy functional to the boundary value problem.

The domain decomposition technique and the Steklov–Poincaré nonlocal bound-
ary operators are used in the topological sensitivity analysis of nonlinear variational
problems. We start with a scalar linear boundary value problem in order to present
the outline of the method. Therefore, given domains� and �". Ox/ D � n B". Ox/ �
R2, where B". Ox/ is a ball of radius " ! 0 and center at a point Ox 2 � far from the
boundary � D @�, with B" b �. By u" we denote a unique classical solution of
the Poisson equation in singularly perturbed domain:

8̂
<̂
ˆ̂:

Find u" such that
�u" D b in �" ;

u" D 0 on @� ;

@nu" D 0 on @B" ;

(63)

where b 2 C0;˛.�/, with ˛ 2 .0; 1/, is a given element which vanishes in the
vicinity of the point Ox 2 �. The solution u" of the boundary value problem (63) is
variational, since u" 2 V" � H1.�"/ minimizes the quadratic functional

I".'/ D 1

2

Z
�"

kr'k2 �
Z
�"

b' (64)

over the linear subspace V" � H1.�"/, where V" is defined as

V" WD f' 2 H1.�"/ W 'j� D 0g : (65)

The shape functional

J .�"/ WD J .�"I u"/
1

2

Z
�"

kru"k2 �
Z
�"

bu" D �1
2

Z
�"

bu" (66)
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defined by the equality

J .�"I u"/ WD I".u"/ (67)

is the energy functional evaluated for the solution of the boundary value prob-
lem (63) posed in the singularly perturbed domain�".

Proposition 4.1. The energy admits the expansion with respect to the small param-
eter " ! 0 of the following form:

J .�"/ D J�.u/� �"2kru. Ox/k2 C o."2/ ; (68)

where kru. Ox/k2 is the bulk energy density at the point Ox 2 � and u is a solution
to (63) for " D 0.

Remark 4.2. The bulk energy density functional H1.�/ 3 ' 7! kr'. Ox/k2 2 R,
in general, is not continuous at a point Ox 2 �. Therefore, the bulk energy density
is replaced by a continuous bilinear form H1.�/ 3 ' 7! hB.'/; 'i�R 2 R. For
the Laplacian in two spatial dimensions and the solution of unperturbed problem u
which is harmonic in a neighborhood of Ox, the appropriate continuous bilinear form
with respect to H1.�/ norm, such that there is equality for u,

kru. Ox/k2 D hB.u/; ui�R
is given by (72) or (74). This replacement of kr'. Ox/k2 by hB.'/; 'i�R in the
energy functional for problem (63) has been introduced in [23, 24] for the purposes
of topological derivatives evaluation in the framework of domain decomposition
method.

Note 4.1. If we combine (64) with (68), we arrive at the conclusion that the
modified energy functional

H1.�/ 3 ' ! 1

2

Z
�

kr'k2 �
Z
�

b' � �"2hB.'/; 'i�R 2 R

is an approximation of (64) which furnishes the topological derivative (68) but with
the minimization over unperturbed spaceH1.�/. This observation is in fact used in
the domain decomposition method for unilateral problems.

4.1 Domain Decomposition Technique

Now, we are going to decompose the linear elliptic problem (63) into two parts,
defined in two disjoint domains �R and C.R; "/ WD BR n B" � �, R > " > 0.
Two non-overlapping subdomains�R;C.R; "/ of�" are selected�" D �R[�R[
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C.R; "/, where we assume that R > "0, " 2 .0; "0� and �R stands for the exterior
boundary @BR of C.R; "/. Since the gradient of Sobolev functions is not continuous
for test functions inH1.�/, but it is the case for harmonic functions, we replace the
pointwise values of the gradient of test functions by a representation formula valid
only for the pointwise values of the gradient of a harmonic function.

Proposition 4.3. If the function u is harmonic in a ball BR � R2, of radius R > 0

and center at Ox 2 �, then the gradient of u evaluated at Ox is given by

ru. Ox/ D 1

�R3

Z
�R

.x � Ox/u.x/ : (69)

Proof. The proof of this result we leave as an exercise. ut
In view of (69), since b � 0 in BR for sufficiently small R > "0, expansion (68)

can be rewritten in the equivalent form

J .�"/ D J .�/� "2

�R6

"�Z
�R

u x1

�2
C

�Z
�R

u x2

�2#
C o."2/ ; (70)

where x � Ox D .x1; x2/. As observed in [23, 24], it is interesting to note that (70)
can be rewritten as follows

J .�"/ D J .�/� "2hB.u/; ui�R C o."2/ : (71)

with the nonlocal, positive and self-adjoint boundary operator B uniquely deter-
mined by its bilinear form

hB.u/; ui�R D 1

�R6

"�Z
�R

u x1

�2
C

�Z
�R

u x2

�2#
: (72)

From the above representation, since the line integrals on �R are well defined
for functions in L1.�R/, it follows that the operator B can be extended e.g., to a
bounded operator on L2.�R/, namely

B 2 L.L2.�R/IL2.�R// ; (73)

with the same symmetric bilinear form

hB.'/; 
i�R D 1

�R6

	Z
�R

' x1

Z
�R


 x1 C
Z
�R

' x2

Z
�R


 x2



; (74)

which is continuous for all '; 
 2 L2.�R/. We observe that the bilinear form

L2.�R/ � L2.�R/ 3 .'; 
/ 7! hB.'/; 
i�R 2 R (75)
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is continuous with respect to the weak convergence since it has the simple structure

hB.'/; 
i�R D L1.'/L1.
/C L2.'/L2.
/ '; 
 2 L1.�R/ (76)

with two linear forms ' 7! L1.'/ and 
 7! L2.
/, given by the line integrals
on �R.

4.2 Steklov–Poincaré Pseudodifferential Boundary Operators

Note 4.2. We determine the family Steklov–Poincaré boundary operators on the
outer boundary �R of the domain C.R; "/, if there is a hole B" inside of C.R; "/.

We select R > 0 such that the circle (or the ball for d D 3) BR contains the
hole B" and introduce the truncated domain �R. For the boundary value problem
defined in �", we introduce its approximation in �R. The singular perturbation�"

of the geometrical domain � is replaced by a regular perturbation of the Steklov–
Poincaré boundary operator living on the interface, which coincides with the interior
boundary �R of �R.

Definition 4.4. The Steklov–Poincaré boundary operator

A" W H1=2.�R/ ! H�1=2.�R/ (77)

is defined for the Poisson equation in the domain C.R; "/. For a fixed parameter
" > 0 and a given element v 2 H1=2.�R/, the corresponding element in the range of
the operator A" is given by the Neumann trace of a unique solution to the boundary
value problem

8̂
<̂
ˆ̂:

Find w" such that
�w" D 0 in C.R; "/ ;

w" D v on �R ;
@nw" D 0 on @B" :

(78)

Then we set

A".v/ D @nw" on �R ; (79)

where n is the unit exterior normal vector on @C.R; "/.

Remark 4.5. Let us note that, in absence of the source term b, the energy shape
functional in C.R; "/ evaluated for the harmonic function w" coincides with the
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boundary energy of the Steklov–Poincaré operator on �R evaluated for the Dirichlet
trace of the solution w", namely

Z
C.R;"/

krw"k2 D hA".v/; vi�R : (80)

Therefore, the asymptotics of the energy shape functional in C.R; "/ for " ! 0,
gives rise to the regular expansion of the Steklov–Poincaré operator:

A" D A � 2"2B C R" ; (81)

where the remainder denoted by R" in the above expansion is of order o."2/ in the
operator norm L.H1=2.�R/IH�1=2.�R//.

By Remark 4.5 we obtain the strong convergence of solutions in the truncated
domain. In fact, let us state the following important result:

Proposition 4.6. The sequence of solutions u" converges as " ! 0 in the following
sense. For any R > 0,

uR" ! uR strongly in H1.�R/ ; (82)

where �R WD � n BR, " 2 .0; "0�, and R > "0 > 0, where BR is a ball of radius R
and center at Ox 2 �.

Proof. Let uR" be the restriction to �R of the solution u" to (63), namely

uR" 2 H1
�.�R/ W

Z
�R

ruR" � r�C
Z
�R

A".u
R
" /� D

Z
�R

b� 8� 2 H1
�.�R/ : (83)

In the same way, for " D 0 we have

uR 2 H1
�.�R/ W

Z
�R

ruR � r�C
Z
�R

A.uR/� D
Z
�R

b� 8� 2 H1
�.�R/ ; (84)

where uR is the restriction to �R of the solution to (63) for " D 0. In addition,
H1
�.�R/ is a subset of H1.�R/, which is defined as

H1
�.�R/ WD f' 2 H1.�R/ W 'j� D 0g : (85)

By taking � D uR" � uR and after subtracting the second equation from the first one
we get

Z
�R

kr.uR" � uR/k2 C
Z
�R

.A".u
R
" /� A.uR//.uR" � uR/ D 0 : (86)
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By taking into account the expansion (81) we observe that

Z
�R

kr.uR" � uR/k2 D
Z
�R

.2"2B.uR/� R".u
R//.uR" � uR/ : (87)

From the Cauchy–Schwarz inequality we obtain

Z
�R

kr.uR" � uR/k2 6 2"2kB.uR/kH�1=2.�R/
kuR" � uRkH1=2.�R/

C kR".u
R/kH�1=2.�R/

kuR" � uRkH1=2.�R/
: (88)

Taking into account the trace theorem and the compactness of the remainder R", we
have

Z
�R

kr.uR" � uR/k2 6 "2C1kuR" � uRkH1.�R/ : (89)

Finally, from the coercivity of the bilinear form on the left hand side of the above
inequality, namely,

ckuR" � uRk2
H1.�R/

6
Z
�R

kr.uR" � uR/k2 ; (90)

we obtain

kuR" � uRkH1.�R/ 6 C"2 ; (91)

which leads to the result, with C D C1=c. ut
Now, we make use of the Steklov–Poincaré operator defined above for the

annulus C.R; "/ in order to rewrite the energy shape functional in �" as a sum
of integrals over�R and of the boundary bilinear form on �R,

J .�"/ D 1

2

Z
�R

kru"k2 �
Z
�R

bu" C 1

2
hA".u"/; u"i�R ; (92)

which is possible since the source term b vanishes in the small ball BR around the
point Ox 2 �.

In conclusion, another method of evaluation of the topological derivative for the
energy shape functional is now available. We have the energy shape functional in
the form

J .�"/ D inf
'2H1

�.�R/

�
1

2

Z
�R

kr'k2 �
Z
�R

b' C 1

2
hA".'/; 'i�R

�
; (93)
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where H1
�.�R/ is defined trough (85). Taking into account expansion (81),

from (93) it follows by an elementary argument that

J .�"/ D inf
'2H1

� .�R/

�
1

2

Z
�R

kr'k2 �
Z
�R

b' C 1

2
hA.'/; 'i�R

�

� "2hB.u/; ui�R C o."2/ ; (94)

where (94) coincides with (71). The range of applications of the presented method
is not limited to linear problems only. In fact, this is the only available method
without any strict complementarity type assumptions on the unknown solution of
the variational inequality, for evaluation of topological derivatives of the energy
shape functional for unilateral problems.

5 Domain Decomposition Technique for Topological
Derivatives Evaluation

The method of compound asymptotic expansions is usually used for the purposes
of asymptotic analysis of elliptic boundary value problems in singularly perturbed
geometrical domains. The application of this method requires the linearization of
the boundary value problem under considerations which becomes quite involved
in the case of variational inequalities [1]. Therefore, the domain decomposition
technique was proposed and used in [23, 24], as well as used in [20] for the
purposes of topological derivation for variational inequalities which describe the
static frictionless contact between an elastic body and a rigid foundation as well as
for cracks with the unilateral non-penetration condition.

We recall that the Sobolev space H1.�/ is the Dirichlet space for the natural
order, we refer the reader e.g. to Frémiot et al. [6] for further details in the case of
contact problems in linear elasticity. By the Dirichlet-Sobolev space we mean the
ordered Sobolev spaces e.g., H1.�/ or H1=2.@�/ with the following property for
the natural order. If the function x 7! u.x/ is in the Sobolev space, then the function
x 7! uC.x/ WD maxfu.x/; 0g belongs to the Sobolev space.

5.1 Problem Formulation

Let us consider the new boundary value problem, with nonlinear boundary condi-
tions on �c � �. For the domain with a hole B". Ox/, where Ox 2 �, the boundary
value problem takes the following form:



Shape-Topological Differentiability of Energy Functionals for Unilateral. . . 271

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

Find u" such that
�u" D b in �" ;

u" D 0 on � ;
@nu" D 0 on @B" ;

u"
@nu"

u" @nu"

>
6
D

0

0

0

9=
; on �c ;

(95)

where the source term b 2 C0;˛.�/ vanishes in the neighborhood of the point
Ox 2 �. A weak solution u" of problem (95) minimizes the energy functional (64)
over a cone in the Sobolev space, and the shape energy functional takes the form

J .�"/ D inf
'2fV"W'j�c

>0g

�
1

2

Z
�"

kr'k2 �
Z
�"

b'

�
; (96)

where the liner space V" is defined by (65).
Now, let us consider the domain decomposition method for (95), assuming

that �c � �R. In particular, this means that the linear space H1
�.�R/ defined

through (85) is replaced in (93) by the convex and closed subset

K WD f' 2 H1
�.�R/ W 'j�c > 0g ; (97)

and the functional including the Steklov–Poincaré operator is as follows

IR" .uR" / D inf
'2K

�
1

2

Z
�R

kr'k2 �
Z
�R

b' C 1

2
hA".'/; 'i�R

�
: (98)

In order to establish the equality

IR" .uR" / � J .�"/ ; (99)

it is sufficient to show that the minimizer uR" in (98) coincides with the restriction
to �R of the minimizer u" of the corresponding quadratic functional defined in the
whole singularly perturbed domain �", which is left as an exercise. In this way we
obtain

J .�"/ D 1

2

Z
�"

kru"k2 �
Z
�"

bu"

D 1

2

Z
�R

kru"k2 �
Z
�R

bu" C 1

2
hA".u"/; u"i�R

D IR" .uR" /

D inf
'2K

�
1

2

Z
�R

kr'k2 �
Z
�R

b' C 1

2
hA".'/; 'i�R

�
; (100)
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thus, the topological derivative of J .�/ can be evaluated by using the expansion of
IR" .uR" /. The assumption required for the derivation of IR" .uR" / with respect to the
parameter " at " D 0C is only the strong convergence as " ! 0 for fixed R > 0,
namely uR" ! uR strongly in H1.�R/, i.e., there is no need for differentiability
properties of the minimizer uR" 2 H1.�R/ with respect to " (see the proof of
Proposition 4.6).

5.2 Hadamard Differentiability of Minimizer for Parametric
Programming in Function Spaces

The existence of the conical differential for the mapping

Œ0; "0/ 3 " 7! uR" 2 H1.�R/ (101)

is established.
We introduce:

• The quadratic functional

GR.'/ WD 1

2
aR.'; '/ � lR.'/C 1

2
hA.'/; 'i�R � "2hB.'/; 'i�R ; (102)

where

aR.'; '/ D
Z
�R

kr'k2 and lR.'/ D
Z
�R

b' : (103)

• The coincidence set

„ WD fx 2 �c W uR D 0g : (104)

• The linear form (non-negative measure)

h�c; 'i WD aR.uR; '/� lR.'/C hA.uR/; 'i�R : (105)

• The convex cone

SK.uR/ D f' 2 H1
�.�R/ W ' > 0 q.e. on „; h�c; 'i D 0g : (106)

We recall that the symbol q.e. reads “quasi everywhere” and it means, everywhere,
with possible exception on a set of null capacity.
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Theorem 5.1. For fixed R > 0 we have

kuR" � uRkH1
� .�R/

6 CR"
2 : (107)

Furthermore, there is an expansion with respect to " ! 0C,

uR" D uR C "2vR C oR."2/ in H1.�R/ : (108)

The element vR 2 H1.�R/ is uniquely determined by a solution to the following
quadratic minimization problem

GR.vR/ D inf
'2SK.uR/

GR.'/ : (109)

Remark 5.2. The result established in Theorem 5.1 can be obtained as well for a
class of contact problems by an application of general results given in [6, 25].

5.3 Topological Derivatives

In this section the outline of the domain decomposition method for variational
inequalities is given. The topological derivative can be evaluated for the energy
shape functional. The scalar elliptic equation as well as the linear elasticity system
in two spatial dimensions with the unilateral conditions far from the hole are
considered. The case of three spatial dimensions can be described in the same
manner. The unilateral conditions are imposed for the weak solutions of elliptic
boundary value problems by a cone constraint for the minimization of the quadratic
energy functional. We recall that the cone of admissible displacements in contact
problems of linear elasticity is defined by the non-penetration condition. The uni-
lateral condition is only an approximation of the real condition and it is prescribed
for normal displacements in the contact zone. Thus the normal displacements in the
contact zone belong to a positive cone in the space of traces.

In this part we restrict ourselves to the circular holes. Let us recall the notation
for the domain decomposition technique. Given a domain �" D � n B" � R2,
with a small hole B" � BR of radius " ! 0 and center at Ox 2 �, we denote by
�R D � n BR the domain without the hole B", and by C.R; "/ D BR n B" the
ring with the small hole B" inside. It means that the domain�" is decomposed into
two subdomains, the truncated one �R and the ring C.R; "/. The main idea which
is employed here is to perform the asymptotic analysis for a linear problem and
then apply the result to the nonlinear problem in a smaller domain called truncated
domain. This is possible for unilateral conditions prescribed on �c � �R, where
the set �c is far from the hole B", and therefore far from the ball BR.

Under this geometrical assumption it is possible to restrict the asymptotic
analysis to the ring C.R; "/. Then the obtained result on the asymptotic behavior of
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the associated solution to the boundary value problem defined in the ring is applied
to the variational inequality considered in the truncated domain �R. In this way
the singular domain perturbation in the ring influences, by a regular perturbation,
the boundary conditions on the interface for variational inequality. The regular
perturbation is governed by a nonlocal, pseudodifferential, self-adjoint boundary
operator of Steklov–Poincaré type. The nonlocal Steklov–Poincaré operator is
introduced on the interface between two subdomains, it is the exterior boundary
�R of the ring, which is exactly the interior boundary of the truncated domain �R.
The subproblem to be solved in the truncated domain is a variational inequality
associated to the constrained minimization problem over a closed convex cone
K � H1.�R/:

Find a unique minimizer u" 2 K of the quadratic energy functional

IR" .'/ D 1

2
aR.'; '/ � lR.'/C 1

2
hA".'/; 'i�R ; (110)

where A" stands for the Steklov–Poincaré operator for the ringC.R; "/ and h�; �i�R is
the duality pairing defined for the fractional Sobolev spacesH�1=2.�R/�H1=2.�R/

on the interface �R, associated with the corresponding Steklov–Poincaré operator
A" W H1=2.�R/ 7! H�1=2.�R/. We need an assumption on its asymptotic behavior,
which is:

Condition 5.3 The Steklov–Poincaré operator for the ring C.R; "/ admits the
expansion for " > 0, " small enough,

A" D A � 2f ."/B C R" ; (111)

with an appropriate function f ."/ ! 0, when " ! 0, depending on the boundary
conditions on the hole, where the remainder R" is of order o.f ."// in the operator
norm L.H1=2.�R/IH�1=2.�R//.

Remark 5.4. In the scalar case the operator B is defined by the bilinear form (74).
From (81) it follows that f ."/ D "2 for the Neumann boundary conditions on the
hole B". For our specific applications, expansion (111) results from the asymptotics
of the shape energy functional in the ring C.R; "/, as it is for the scalar problem.
If the form of operator B in (111) is known, in order to apply the general scheme
the only assumption to check is the compactness condition for the remainder in the
operator norm L.H1=2.�R/IH�1=2.�R//.

Therefore, the original variational inequality defined in the domain�" is replaced
by the variational inequality defined in the truncated domain �R. In this way, for
the purposes of asymptotic analysis the original quadratic functional defined in the
domain of integration �", namely J .�"I'/, is replaced by the functional IR" .'/
defined in the truncated domain without any hole. Two problems are equivalent
under the following assumption on the minimizers u" and uR" of J .�"I'/ and
IR" .'/, respectively.
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Condition 5.5 For " > 0, with " small enough, the minimizer uR" in the truncated
domain coincides with the restriction to the truncated domain �R of the minimizer
u" in the singularly perturbed domain�".

If Conditions 5.3 and 5.5 are fulfilled, then the topological asymptotic expansion of
the energy functional

J .�"I u"/ D 1

2

Z
�"

kru"k2 �
Z
�"

bu" (112)

can be determined from the expansion of the energy functional in the truncated
domain, namely

IR" .uR" / D 1

2
aR.uR" ; u

R
" /� lR.uR" /C 1

2
hA".u

R
" /; u

R
" i�R ; (113)

where uR" is the restriction to the truncated domain �R of the solution u" to the
variational inequality in the perturbed domain �". Under our assumptions, the
solution u" coincides with the solution obtained by the domain decomposition
method.

The evaluation of the topological asymptotic expansion for the energy func-
tional (112) is based on the equality (99), so we have J .�"I u"/ D IR" .uR" /,
combined with the following characterization of the energy functional

IR" .uR" / D inf
'2K

�
1

2
aR.'; '/� lR.'/C 1

2
hA".'/; 'i�R

�
: (114)

The quadratic term ' 7! 1
2
hA".'/; 'i�R of the functional IR" .'/ is, in view

of assumption (111) or of Condition 5.3, the regular perturbation of the bilinear
form in the quadratic functional IR" .'/. Therefore, we obtain the result on the
differentiability of the optimal value in (113) with respect to the parameter ".

Proposition 5.6. Assume that:

• The Condition 5.3 given by (111) holds in the operator norm.
• The strong convergence takes place uR" ! uR in the norm of the space H1.�R/,

which also defines the energy norm for the functional (114).

Then, the energy in the truncated domain �R has the following topological
asymptotic expansion

IR" .uR" / D IR.uR/� f ."/hB.uR/; uRi�R C o.f ."// ; (115)

where uR is the restriction to the truncated domain �R of the solution u to
the original variational inequality in the unperturbed domain �. Therefore, the
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topological derivative of the energy shape functional is obtained from the asymptotic
expansion

J .�"I u"/ D J .�I u/� f ."/hB.u/; ui�R C o.f ."// : (116)

Proof. There are inequalities

IR" .uR" /� IR.uR" /
f ."/

6 IR" .uR" /� IR.uR/
f ."/

6 IR" .uR/� IR.uR/
f ."/

; (117)

which imply the existence of the limit

lim sup
f ."/!0

IR" .uR" /� IR.uR" /
f ."/

D

lim
f ."/!0

IR" .uR" /� IR.uR/
f ."/

D

lim inf
f ."/!0

IR" .uR/� IR.uR/
f ."/

D hB.uR/; uRi�R : (118)

From (115), in view of (99), it follows (116). ut
We can conclude the analysis for the Signorini problem, and confirm that the

topological derivative of the energy shape functional is given by the same formula
as it is in the linear case.

Theorem 5.7. The energy functional for the Signorini problem admits the expan-
sion

J .�"I u"/ D J .�I u/� �"2kruk2 C o."2/ ; (119)

where the topological derivative T . Ox/ D �kru. Ox/k2 is the negative bulk energy
density at the point Ox 2 �. Since the solution of the Signorini problem is harmonic
in a vicinity of Ox, the expansion is well defined. Therefore, the topological derivative
of the energy shape functional is given by the same expression as it is in the case of
linear problem.

6 Conical Differentiability of Metric Projections in Dirichlet
Spaces onto Positive Cones and Applications to the Shape
Sensitivity Analysis of Variational Inequalities

The conical differentiability of the metric projection onto the positive cone in the
Dirichlet space is considered in [6, 25] with applications to the sensitivity analysis
of variational inequalities. There are numerous applications of such results for
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the shape sensitivity analysis of the Signorini problem and frictionless contact
problems in elasticity [25], crack models with unilateral non-penetration condition
[6]. We recall that the shape differentiability of the energy functional for cracks
with unilateral non-penetration condition which is established in [12], does require
only the appropriate strong shape continuity of solutions to variational inequalities
and can be obtained under mild regularity assumptions on the governing variational
inequality [6]. In Sect. 6.3 the topological derivative of the energy functional is given
for the elastic body with a rigid inclusion, weakened by a crack on the boundary of
the inclusion. It is assumed that on the crack the unilateral non-penetration condition
is prescribed which makes the analysis more involved [20] compared to the linear
case.

For the convenience of the reader we recall here the abstract result [25] which is
a generalization of the implicit function theorem for variational inequalities. We use
the result on the Hadamard differentiability of the metric projection on polyhedral
convex sets in Hilbert spaces due to Mignot and Haraux, we refer the reader to [6]
for a simple proof of such a result.

6.1 Generalization of Implicit Function Theorem
for Variational Inequalities. Hadamard Differentiability
of Solutions to Variational Inequalities.

Let K � V be a convex and closed subset of a Hilbert space V , and let h�; �i denote
the duality pairing between V 0 and V , where V 0 denotes the dual of V . We shall
consider the following family of variational inequalities depending on a parameter
t 2 Œ0; t0/, t0 > 0,

ut 2 K W at .ut ; ' � ut / � hbt ; ' � uti 8' 2 K : (120)

Moreover, let ut D Pt .bt / be a solution to (120). For t D 0 we denote

u 2 K W a.u; ' � u/ � hb; ' � ui 8' 2 K ; (121)

with u D P.b/ solution to (121).

Theorem 6.1. Let us assume that:

• The bilinear form at .�; �/ W V �V ! R is coercive and continuous uniformly with
respect to t 2 Œ0; t0/. Let Qt 2 L.V I V 0/ be the linear operator defined as follows
at .
; '/ D hQt .
/; 'i 8
; ' 2 V; it is supposed that there exists Q0 2 L.V I V 0/
such that

Qt D Q C tQ0 C o.t/ in L.V I V 0/ : (122)
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• For t > 0, t small enough, the following equality holds

bt D b C tb0 C o.t/ in V 0 ; (123)

where bt ; b; b0 2 V 0.
• The set K � V is convex and closed, and for the solutions to the variational

inequality

…b D P.b/ 2 K W a.…b; ' �…b/ � hb; ' �…bi 8' 2 K (124)

the following differential stability result holds

8h 2 V 0 W ….b C sh/ D …b C s…0hC o.s/ in V (125)

for s > 0, s small enough, where the mapping …0 W V 0 ! V is continuous and
positively homogeneous and o.s/ is uniform, with respect to h 2 V 0, on compact
subsets of V 0.

Then, the solutions to the variational inequality (120) are right-differentiable with
respect to t at t D 0, i.e. for t > 0, t small enough,

ut D u C tu0 C o.t/ in V ; (126)

where

u0 D …0.b0 � Q0u/ : (127)

Let us note, that for bt D 0 and ut D Pt .0/ we obtain u0 D …0.�Q0u/.

6.2 Applications to Unilateral Contact Problems

We recall a result on the topological derivatives of the energy functional for elastic
bodies with rigid inclusions with cracks on the interfaces. We refer to [20] for the
proof.

Let us introduce the description of the convex cone SK.u/,

SK.u/ D
�
' 2 H1;!

� .�‡/ W �'� � n > 0 on ‡0I
Z
�n!

�.u/ � r's D
Z
�‡

b � '
�

(128)

where ‡0 D fx 2 ‡ W .u � 	0/ � n D 0g, where 	0 WD uj! . We have the following
result:

Theorem 6.2. Let there be given the right hand side bt D bC th of the variational
inequality which governs the unilateral contact problem under investigations, then
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the unique solution ut 2 K! is Lipschitz continuous

kut � ukH1.�‡ IR2/ 6 C t (129)

and conically differentiable in H1.�‡ IR2/, that is, for t > 0, t small enough,

ut D u C tv C o.t/ ; (130)

where the conical differential solves the variational inequality

v 2 SK.u/ W
Z
�n!

�.v/ � r.� � v/s >
Z
�‡

h � .� � v/ 8� 2 SK.u/ : (131)

The remainder converges to zero

1

t
ko.t/kH1.�‡ IR2/ !

t!0
0 (132)

uniformly with respect to the direction h on the compact sets of the dual space
.H

1;!
� .�‡//

0. Thus, v is the Hadamard directional derivative of the solution to the
variational inequality with respect to the right hand side.

6.3 Example: Topological Derivative of Energy Functional
for the Crack on Boundaries of Rigid Inclusions

We present an example of shape-topological sensitivity analysis for a crack located
on the boundary of a rigid inclusion. The rigid inclusion can be considered as the
limit case of elastic inclusions. In this particular case the general theory applies and
we are able to present the topological derivative of the energy functional following
[20].

Let us now consider a singularly perturbed domain �". Ox/ D � n B". Ox/, where
B". Ox/ is a ball of radius " > 0, " ! 0, and center at Ox 2 � n!. We assume that the
hole B" do not touch the rigid inclusion !, namely B" b � n !.

We are interested in the topological asymptotic expansion of the energy shape
functional of the form

J .�"I'/ D 1

2

Z
�"n!

�.'/ � r's �
Z
�‡

b � ' ; (133)

with ' D u" solution to the following nonlinear system:
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8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

Find u" such that
�div�.u"/ D b in �" n ! ;

�.u"/ D Crus" ;
u" D 0 on � ;

�.u"/n D 0 on @B" ;
.u" � 	0/ � n

�� .u"/
�nn.u"/

�nn.u"/.u" � 	0/ � n

>
D
6
D

0

0

0

0

9>>=
>>;

on ‡C ;

�
Z
@!

�.u"/n � 	 D
Z
!

b � 	 8 	 2 R.!/ :

(134)

Since the problem is nonlinear, let us introduce two disjoint domains �R and
C.R; "/, with�R D �nBR. Ox/ and C.R; "/ D BR nB" b �n!, where BR. Ox/ is a
ball of radiusR > " and center at Ox 2 � n !. For the sake of simplicity, we assume
that b D 0 in BR. Ox/, that is, the source term b vanishes in the neighborhood of the
point Ox 2 � n!. Thus, we have the following linear elasticity system defined in the
ring C.R; "/:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

Find w" such that
�div�.w"/ D 0 in C.R; "/ ;

�.w"/ D Crws" ;
w" D v on �R ;

�.u"/n D 0 on @B" ;

(135)

where �R is used to denote the exterior boundary @BR of the ring C.R; "/. We are
interested in the Steklov–Poincaré operator on �R, that is

A" W v 2 H1=2.�RIR2/ ! �.w"/n 2 H�1=2.�RIR2/ : (136)

Then we have �.uR" /n D A".uR" / on �R, where uR" is solution of the variational
inequality in �R, that is

uR" 2 K! W
Z
�R

�.uR" / � r.�� uR" /C
Z
�R

A".u
R
" / � .� � uR" /

>
Z
�‡nBR

b � .�� uR" / 8� 2 K! : (137)

Finally, in the ring C.R; "/ we have

Z
C.R;"/

�.w"/ � rws" D
Z
�R

A".w"/ � w" ; (138)
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where w" is the solution of the elasticity system in the ring (135). Therefore the
solutions uR" and w" are defined as restriction of u" to the truncated domain �R and
to the ring C.R; "/, respectively.

In particular, in the neighborhood of Ox 2 � n !, the energy in the ring C.R; "/
admits the following topological asymptotic expansion

Z
C.R;"/

�.w"/ �rws" D
Z
BR

�.w/ �rws�2�"2P�.w. Ox// �rws. Ox/Co."2/ : (139)

where w is solution to (135) for " D 0 and P is the polarization tensor. It means that
w is the restriction to the diskBR of the solution u to the nonlinear system defined in
the unperturbed domain�‡ . Therefore, we have that the Steklov–Poincaré operator
defined by (136) admits the expansion for " > 0, with " small enough,

A" D A � 2"2B C o."2/ ; (140)

where the operator B is determined by its bilinear form

hB.w/;wi�R D �P�.w. Ox// � rws. Ox/ : (141)

From the above results, we have that the energy shape functional associated to
the cracks on boundaries of rigid inclusions embedded in elastic bodies has the
following topological asymptotic expansion

J .�"/ D J .�/� �"2P�.u. Ox// � rus. Ox/C o."2/ ; (142)

with the topological derivative T . Ox/ given by

T . Ox/ D �P�.u. Ox// � rus. Ox/ ; (143)

where u is solution of the variational inequality in the unperturbed domain �‡ and
P is the Pólya–Szegö polarization tensor.

Remark 6.3. From equality (138) we observe that the bilinear form (141) represents
the topological derivative of the Steklov–Poincaré operator (136). In addition, since
solution u 2 K! of the variational inequality is a H1.�‡ IR2/ function, then it is
convenient to compute the topological derivative from quantities evaluated on the
boundary �R in similar way as for the scalar case.

7 Shape Sensitivity Analysis of the Griffith Functional

In a forthcoming paper the first order shape-topological sensitivity analysis of
energy functionals is used to establish the shape differentiability of the so-called
Griffith shape functional. We are going to describe briefly a result of this sort.
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Example 7.1. Let � WD �c [ � [�i be an elastic body with the rectilinear crack
�c � † � �c , thus @� WD �c [ @�. We consider the shape functional defined
by (46) which is called the Griffith functional

J.�/ WD 1

2

Z

�c

˚
divV � "ij.u/� 2Eij.V I u/

�
�ij.u/�

Z

�c

div.Vfi/ui ;

where the displacement field u is given by the unique solution of the variational
inequality

u 2 K W a.u; v � u/ > .f; v � u/ 8u 2 K ; (144)

and the velocity vector field V is compactly supported in �c . We need the
decomposition of � into �c and �i for the purposes of the domain decomposition
technique to our problem. Let ! � �i be an elastic inclusion.

Proposition 7.2. Assume that the energy shape functional E.�i / is shape differen-
tiable in the direction of the velocity fieldW compactly supported in a neighborhood
of the inclusion ! � �i , then the Griffith functional is directionally differentiable
in the direction of the velocity field W .

The result is proved by the domain decomposition technique with a linear problem in
�i which is used to determine the expansion of the energy functional with respect
to the boundary variations of an inclusion and the nonlinear problem in cracked
subdomain �c which is used to obtain the conical differentiability of the solution
with respect to the variations of the Steklov–Poincaré operator:

• the differentiability of the energy functional in the subdomain �i implies the
differentiability of the associated Steklov–Poincaré operator defined on the
Lipschitz curve given by the interface �i \ �c with respect to the scalar
parameter t ! 0 which governs the boundary variations of the inclusion !;

• the expansion of the Steklov–Poincaré nonlocal boundary pseudodifferential
operator obtained in the subdomain �i is used in the boundary conditions for
the variational inequality defined in the cracked subdomain �c and leads to the
conical differential of the solution to the unilateral problem in the subdomain;

• the one term expansion of the solution to the unilateral problem is used in the
Griffith functional in order to obtain the directional derivative with respect to the
boundary variations of the inclusion.
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