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Preface

This volume contains contributions on the history, mathematical analysis, and
numerical solution of constrained optimal control and optimization problems where
a partial differential equation (PDE) or a system of PDEs appears as an essential part
of the constraints. The appropriate treatment of such problems requires a fundamen-
tal understanding of the subtle interplay between optimization in function spaces
and numerical discretization techniques and relies on advanced methodologies from
the theory of PDEs and numerical analysis as well as scientific computing. The
contributions reflect part of the work that has been done within the European Science
Foundation (ESF) Networking Programme optimization with PDEs (OPTPDE). The
OPTPDE programme has been launched in October 2008 for a 5-year period and has
been supported by seventeen national science foundations and research institutions
from 12 European countries:

Fonds zur Forderung der wissenschaftlichen Forschung in Osterreich
Austrian Science Research Fund, Austria

Fonds National de la Recherche Scientifique (FNRS)
National Fund for Scientific Research, Belgium

Akademie ved Ceske republiky (GACR)

Academy of Sciences of the Czech Republic, Czech Republic
Suomen Akatemia/Finlands Akademi

Academy of Finland, Finland

Deutsche Forschungsgemeinschaft (DFG)

German Research Foundation, Germany

Istituto Nazionale di Alta Matematica (INdAAM)

National Institute for Advanced Mathematics, Italy,

Scuola Internazionale dei Studi Avanzati (SISSA)

Universita di Roma Tor Vegata (Dip. di Matematica),

Dip di Matematica F. Brioschi di Politecnico di Milano,
Universita di Padova,
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Universita di Roma La Sapienza (Dip. di Matematica), Italy
Fonds National de la Recherche (FNR)

National Research Fund, Luxembourg

Polska Akademia Nauk (PAN)

Polish Academy of Sciences, Poland

Ministerio de Educacion y Ciencia (MEC)

Ministry of Education and Science, Spain

Vetenskapsradet (VR)

Swedish Research Council, Sweden

Schweizerischer Nationalfonds (SNF)

Swiss National Science Foundation, Switzerland
Engineering and Physical Sciences Research Council (EPSRC), United
Kingdom

A primary goal was to bring together experts from the optimization/optimal control
and the numerical PDE communities and to use the emerging synergies to make
significant progress in the mathematical treatment of challenging problems in PDE
constrained optimization. To this end, a series of conferences on general PDE
constrained optimization and workshops on specific topics have been organized
that have both deepened existing cooperations and triggered new scientific relations
between the participants. The contributions in this volume are original, peer-
reviewed research articles by participants of the ESF OPTPDE Programme and their
coworkers:

The contribution by Petr Beremlijski, Jaroslav Haslinger, Jifi L. Outrata, and
Rébert Pathd deals with the numerical solution of shape optimization in frictional
contact mechanics. The essential idea is to transform the discretized problem to
a nonsmooth minimization problem which is then solved by a bundle trust method
using the generalized differential calculus of Mordukhovich. Phase field methods for
the recovery of a binary function from blurred and noisy data are a significant task in
image processing and optimal control of PDEs. The article by Charles Brett, Charles
M. Elliott, and Andreas S. Dedner presents an approach to the numerical solution
of this inverse problem based on a combination of the Mumford-Shah model and a
phase field approximation to the perimeter regularization.

Multigrid methods and adaptive sequential quadratic programming are two novel
techniques for the numerical solution of shape optimization and optimal control
problems associated with evolutionary partial differential equations that are applied
in the contribution by Maurizio Falcone and Marco Verani. The approximation
relies on the coupling between a proper orthogonal decomposition and the classical
dynamic programming approach.

Adaptive finite elements for PDE constrained optimization represent a subject
that emerged from the cooperation between the optimization and numerical analysis
communities. The article by Alexandra Gaevskaya, Michael Hintermiiller, Ronald
H.W. Hoppe, and Caroline Lobhard is concerned with such techniques for the
numerical solution of optimally controlled elliptic variational inequalities. Based
on the equivalence with Mathematical Problems with Complementarity Constraints
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(MPCCs), the convergence of discrete stationary points to a stationary point in
function space is shown. Moreover, a residual-type a posteriori error estimator is
developed which up to data oscillations provides both an upper and a lower bound
for the global discretization error.

The history of constrained optimization is the subject of the contribution by
Martin Gander, Felix Kwok, and Gerhard Wanner. Referring to a lot of original
sources, the authors forge a bridge from the origins in the eighteenth century
(Varignon, Johann Bernoulli, Lagrange) to Pontryagin’s celebrated maximum prin-
ciple and the modern theory of PDE constrained optimization.

Topology optimization using the concept of topological derivatives is a powerful
tool for the optimal design in solid mechanics. The article by S.M. Giusti, Jan
Sokolowski, and Jan Stebel deals with the application of this concept to frictionless
contact problems by minimizing the structural compliance for a given amount of
material. Several numerical examples demonstrate the robustness of the suggested
approach.

The numerical solution of three-dimensional contact problems with orthotropic
friction by using the Coulomb friction cone without any approximation is the
main goal of the contribution by Jaroslav Haslinger, Radek Kucera, and Tom4s
Kozubek. The suggested algorithm relies on an appropriate discretization of the dual
variational formulation involving the Lagrange multipliers on the contact boundary.
Its performance is illustrated by the documentation of numerical results for several
model examples.

The article by Giinter Leugering, Jan Sokolowski, and Antoni Zochowski is
concerned with shape-topological differentiability of energy-type objective func-
tionals for unilateral problems in domains with cracks. Using tools from nonsmooth
analysis, the authors study the dependence of the Griffith shape functional on
domain perturbations far from the cracks and obtain its directional shape and
topological derivatives with respect to boundary variations of an inclusion.

The boundary stabilization for finite difference semidiscretizations of the one-
dimensional wave equation with variable density and diffusion coefficients is the
central theme of the article by Aurora Marica and Enrique Zuazua. Adding a suitable
artificial viscosity to the finite difference approximation, by an application of the
classical multiplier technique at the discrete level it is shown that the discrete decay
rate is uniform as the mesh size tends to zero.

The theory of a posteriori error estimates of functional type is known to provide
guaranteed upper and lower bounds for the global discretization error. In the
contribution by Pekka Neittaanmiki and Sergey Repin, the theory is applied to
finite element discretizations of distributed optimal control problems for second
order elliptic boundary value problems. In this way, guaranteed bounds for the
cost functional as well as computable error estimates for the state and the control
functions are obtained.

A shape sensitivity analysis of the work functional for the compressible Navier-
Stokes equations in a bounded domain with an obstacle is the subject of the
contribution by Pavel I. Plotnikov and Jan Sokolowski. The main tool in the
analysis is the Kuratowski-Mosco convergence of sequences of compact sets.
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Moreover, establishing the continuity of typical cost functionals with respect to the
Kuratowski-Mosco convergence, it is shown that the problem of minimizing the
work of hydrodynamic forces in a class of obstacles with fixed volume admits a
solution.

The contribution by Jean-Pierre Puel provides new results on local exact con-
trollability and null controllability for the incompressible Navier-Stokes equations.
The presented approach is based on new global Carleman estimates for the Stokes
problem associated with the linearized equations and some fine interpolation results.

The editor would like to express his sincere thanks to those who have made it
possible to produce this book. Particular thanks go to the European Science Foun-
dation for including OPTPDE as one of the ESF PESC Networking Programmes and
to the European national science foundations and research institutions listed above
for their financial support. I am also indebted to the editors of the Lecture Notes
in Computational Science and Engineering for considering this book as a volume
within this series and to Claus Ascheron of Springer-Verlag for his continuous
advice and support during the preparation and production of this volume.

Augsburg, Germany Ronald H.W. Hoppe
January 2014
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Numerical Solution of 2D Contact Shape
Optimization Problems Involving
a Solution-Dependent Coefficient of Friction

Petr Beremlijski, Jaroslav Haslinger, Jiii Outrata, and Rébert Pathé

Abstract This contribution deals with numerical solution of shape optimization
problems in frictional contact mechanics. The state problem in our case is given
by 2D static Signorini problems with Tresca friction and a solution-dependent
coefficient of friction. A suitable Lipschitz continuity assumption on the coefficient
of friction is made, ensuring unique solvability of the discretized state problems and
Lipschitz continuity of the corresponding control-to-state mapping. The discrete
shape optimization problem can be transformed into a nonsmooth minimization
problem and handled by the bundle trust method. In each step of the method, the
state problem is solved by the method of successive approximations and necessary
subgradient information is computed using the generalized differential calculus of
B. Mordukhovich.

Keywords Frictional contact * Nonsmooth analysis * Shape optimization
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1 Introduction

Shape optimization is a branch of optimal control theory in which control variables
are related to the geometry of optimized structures (size, shape or topology). By
an appropriate change of the geometry one tries to get a structure with some
desired properties. Usually, its behavior is modeled by partial differential equations.
In practice, however, one can meet situations when physical systems are governed
by variational inequalities. A common feature of such optimization problems is
the fact that the control-to-state mapping might be nonsmooth and, consequently,
the whole optimization problem is generally nonsmooth, as well. If it is so, then
special tools of nonsmooth analysis have to be used to perform sensitivity analysis
which provides necessary gradient-like information for nonsmooth minimization
methods. Contact problems represent one of typical applications of variational
inequalities in mechanics of solids: one tries to find an equilibrium state of a
system of a finite number of loaded deformable bodies which are possibly in
mutual contact taking into account effects of friction on common parts. Just the
presence of friction complicates the analysis. If the friction obeys the Coulomb
law [5], then the respective mathematical model leads to an implicit variational
inequality. Shape optimization with contact problems involving Coulomb friction
in 2 and 3D has been theoretically studied in [1], and [2], respectively, including
numerical experiments. Another type of friction was considered in [8], namely
contact problems with given friction and a solution-dependent coefficient of friction.
Shape optimization with this type of the state problems has been theoretically
analyzed in [7]. The goal of the present chapter is to illustrate applicability of
theoretical results concerning sensitivity analysis for numerical realization of model
examples.

The paper is organized as follows: after introducing the notation, we recall
some basic notions from the theory of generalized differential calculus that will
be used later in Sect. 3. In Sect. 2 we present the state problem, the shape
optimization problem and also quote some results concerning their solvability.
Next, we introduce a suitable discretization and review conditions under which
discrete optimal shapes exist and converge to an optimal one as the discretization
parameter tends to zero. Assuming unique solvability of the discrete state problems
in Sect. 3, we compute shape sensitivities of the cost functional and the discrete
state variable employing modern methods of variational analysis [12]. Using these
results, numerical examples in Sect. 4 illustrate the feasibility of this approach in
solving shape optimization problems involving complicated boundary conditions.

Throughout the paper we use the following notation: the symbol H*(2) (k > 0
integer) stands for the Sobolev space of functions which are together with their
derivatives up to order k square integrable in Q, i.e. elements of L*(Q) (we set
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H(Q) := L*(R)). The norm in H*(2) will be denoted by | - ||x.q. Vector-valued
functions and the respective spaces of vector-valued functions will be denoted by
bold characters. Bold characters will also be used for vectors in R”, with the
Euclidean scalar product (-, ), and corresponding norm || - ||,. Fora set A C X,
A stands for the closure of A with respect to the topology of X. For X = R” and
X € A we denote by N4 (X) the Fréchet (regular) normal cone to A at X:

.o <
lim sup L St < 0},

NA®) = {x* eR" _
P Al

whereas the limiting (Mordukhovich) normal cone to A at X will be denoted by
N4 ()_()

N4(X) := limsup i}_]\A/A(X).

Here the symbol “Limsup” stands for the Kuratowski-Painlevé outer limit of sets
(cf. [16]). Given a multifunction Q : R" — R™, we denote its graph by Gr Q :=
{(x,y) e R" xR" | y € Q(x)}. The regular coderivative of Q at a reference point
(x,y) € Gr Q is given by the multifunction ﬁ*Q(X, y) : R — R”, which is
defined as follows:

D*QR. (") = {x* € R" | (x*,—y*) € NGy o (X.9)}-
Analogously, the multifunction D*Q (X, y) : R” — R”, defined by
D*QEH(*) = (x* € R" | (X", —y") € NGy o &9}

is called the limiting (Mordukhovich) coderivative of Q at (X,y). Further, we will
employ another important notion from the theory of generalized differentiation,
namely that of calmness: a multifunction Q is said to be calm at (x,y) € Gr Q
provided 3L > 0 and 3 neighbourhoods U, V of X and y, respectively, such that:

ox)NV Cc O(X) + L|x—x%|,B, VxeU,

where B, stands for the closed unit ball in R”, centered at the origin.

2 Problem Formulation and Discretization

Throughout the chapter we assume that the positive real parameters a, b and 0 <
Co < b are fixed.

Let us consider an elastic body, represented by the domain Q := {(x,x2) €
R? | x; € (0,a), a(x;) < x» < b}, where @ € C*!([0,4]), 0 < o < Cy. Suppose



4 P. Beremlijski et al.

that the boundary d<2 is decomposed according to the boundary conditions into three
pairwise disjoint, relatively open subsets: along I, C 9€2, meas; [, > 0 the body
is clamped, on I'» C 92 surface tractions of density P = (Py, P,) € L?(I'p) act
and along T, := {(x1,x2) € R? | x; € (0,a), x» = a(x1)} = Gr a, the body may
come in contact with the rigid foundation M = {(x;,x2) € R? | x, < 0}. Due
to the special geometry, the non-penetration conditions on the contact boundary I'.
can be expressed exactly and take the following form:

up(x1,@(x1)) = —a(x1),  Ta(w)(x,a(x1)) =0,

for x; € (0, a). 2.1
(u2(x1, a(x1)) + a(x1)) To(w) (x1, ce(x1)) = 0

Here u = (u;,u;) : Q — R? is a displacement vector and T(u) = (7} (u), T>(u)) :
99 — R? is the stress vector associated with u. In addition to (2.1) we shall consider
effects of friction between 2 and M. We use the friction law of Tresca type, i.e.
with an a-priori given slip bound g : I': — R, but with a coefficient of friction
& : Ry — R, which depends on the solution. Thus the friction conditions on T,
read as follows:

up = 0= |Ti(w)| = F(0)g
w #0 = Ty(w) = —sen(u) F(ug | 2
Finally,  will be subject to body forces of density F = (Fj, F>) € L?*(2). The
equilibrium state of €2 is characterized by a displacement vector u which satisfies the
system of the linear equilibrium equations in €2, the classical boundary conditions
on I'p, I, and the unilateral and friction conditions (2.1) and (2.2), resp., on I'..

In order to give the weak form of the Signorini problem with given friction
and a solution-dependent coefficient of friction, we denote the space of virtual
displacements by V := {v = (v;,v;) € H(Q) | v = 0ae.onT,} and the
closed, convex cone of kinematically admissible displacements by K := {v € V |
va(x1,a(x1)) > —a(xy) a.e.in (0,a)}. Further,leta : VxV —>Rand L : V> R
be defined by:

a(u,v) :=/Qa(u):8(v)dx, L(v) :=/QF-va’x+/F P-vds,

where the stress tensor o (u) is linked to the linearized strain tensor &(u) := %(Vu+
(Vu)”) by a linear Hooke’s law: o (u) = %’e(u). We assume that the fourth order
stiffness tensor ¢ € L°°(K2) satisfies the usual symmetry and ellipticity conditions.

Definition 2.1. By a weak solution to the Signorini problem with Tresca friction
and a solution-dependent coefficient of friction .# we mean any u € K satisfying:

a(u,v—u) + / F(uDg(n| - lulds > Lv—w) YveK. ()

T
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Note that (&) is an implicit variational inequality of the second kind. Its solvability
was addressed in [8] and is summarized in the following theorem.

Theorem 2.2. (i) For any nonnegative g € L*(T'.) and nonnegative, bounded,
continuous .7 there exists a solution to ().

(ii) There exists a constant Cya > 0 such that the solution to (&) is unique,
provided that g € L*°(.) and F is bounded, Lipschitz continuous with
modulus Cy > 0 such that: Cp| g| reor,) < Chax

Up to this point we used one fixed domain €2 and solved the corresponding
problem (<) on it. When optimizing the contact boundary we consider « to be
a parameter, by means of which one can change the shape of 2. Our aim is to
find «* from an admissible set U,, such that the pair (a*, u*), where u* solves the
corresponding problem (%) on (a*), minimizes a given cost functional J on U,,.
To emphasize the fact that Q2 is parametrized by o, we will write « as the argument.
In agreement with this convention, notation Q(«), I'.(«), V(), K(@), Z (), etc.
will be used instead of 2, I'., V, K, (&), etc.

In what follows we shall restrict ourselves to o belonging to the following
admissible set U,:

={eeC"(0.a) [0=<a <Cp |o| < Ci in[0.a],
lo”| < C, ae.in (0,a), meas Q(«) = C3}, (2.3)

i.e. U,4 contains all functions which are together with their first derivatives Lipschitz
equi-continuous in [0, @] and preserve the constant area of Q(«). We assume that the
positive constants Cy, Cy, C; and Cj are chosen in such a way that U,y # @. Further,
we need to clarify the meaning of all functions appearing in the definition of (&) for
various & € Ugg. To this end, let € := (0,a) x (0, ) and assume that the functions
¢, F, P and g are restrictions of some € € L®(Q), Fe LZ(Q) Pe LZ(BQ) and
geH! (Q), g > 0 onto Q(«), I'p(«) and I'¢ (@), respectively.

Let S : Uy 2 ¢ — {u € K(«) | u solves Z(«)} denote the control-to-
state mapping and let J : Gr § — R be a given cost functional. Note that S is
a multivalued mapping, in general.

Definition 2.3. A domain Q(a*) is said to be optimal iff there exists u* € S(a*)
satisfying:

J@*, u*) < J(x,u) VY(x,u)€GrS. (P)

Below we recall the result from [7] stating, that there exists an optimal shape in U,g,
defined by (2.3), for a large class of cost functionals.
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Theorem 2.4. Let the assumptions of Theorem 2.2(i) hold and suppose that J is
lower semicontinuous in the following sense:

oy — o in CY([0,a]), oy, € Uy, o
- ¢ = liminf J (@, Yulo@) = J(@, Ylaw)-
y, =y inHY(Q), y,.y € H(Q) nmee

Then (P) has a solution.

Proof. Ttis sufficient to prove that Gr S is compact in the above defined topology—
see [7, Lemma 1]. O

In the second part of this section we shortly describe a discrete version of (PP)
and provide sufficient conditions ensuring unique solvability of the discretized state
problems and convergence of discrete optimal shapes to an optimal one in the sense
of Definition 2.3.

Every discretization of (IP) is twofold: (i) one has to approximate the admissible
set U,q and (ii) to discretize the state problem. In order to make the forthcoming pre-
sentation more straightforward, we shall use continuous, piecewise linear functions
oy, as design variables. However, they are not practical from the engineering point of
view and therefore will be replaced by Bézier functions in numerical experiments.
For the approximation of (&?) we shall use standard piecewise linear triangular finite
elements.

Let d > 1 be a given integer and set & := a/d. By §, we denote the equidistant
partition of [0, a]:

S O=ap<a <---<agm =a, aj=a+jh j=0,....4d. 2.4)
With any §, we associate the set U, ahd defined by

UM = {ay, € C([0,a]) | ahlr—yar) € Pi(l@i—1,ai]) Vi=1,....d,

0<ap(a;))<Cy Vi=0,...,d,

lon(a;) —ap(ai—))| < Cih Yi=1,...,d,

lan(aisr) — 20 (a;) + apai—)| < CGh%, Vi=1,...,d —1,
meas Q(ay) = Cs},

where Cy, ..., C; are the same as in (2.3). Notice that U", ¢ Uy, i.e. U, is an
external approximation of U,,.

Since for each , € U, the domain Q(ay) is polygonal, one can construct its
triangulation 7 (k, ;) whose nodes lie on the lines {a;} x R, i = 0,1,...,d.
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Moreover, we shall assume that for each 7 > 0 the family {J (h, o) | an €
Uj’d} consists of fopologically equivalent triangulations (cf. [6, p. 32]) and that
{T (h,ay)} are uniformly regular with respect to (h,ay) € (0,00) x U". The
domain £2(a,) with the triangulation .7 (h, o) will be denoted by €2 (o) or just
shortly 2.

On 2, (o) we construct the following piecewise linear approximations of V(o)
and K(ap):

Vion) := {vi € C(Q) | vilr € (PI(T))* YT € T (h, ), vi = 0on T (o)},
and
Ky (ap) := {vi = (Vp1,vi2) € Vi(oy) | via(ai, an(a;)) > —ap(a;) Ya; € N},

respectively, where N, is the set of all contact nodes, i.e. a; € Ny, iff (a;, ap(a;)) €
T'.(ap) \ Ty(a). Observe, that Ky (o) € K(atp)) VR > 0 Vo, € Uahd.

Definition 2.5. By a solution to the discretized Signorini problem with given
friction and a solution-dependent coefficient of friction we mean any function
u, = uy (o) € Ky (o) satisfying:

a
A, (U, Vi — ) + / F (rulup o op])g o ap(|va o apl—
0 (fgzh(ah))

lum o an])y/1 + (@)? dxy > Lo, (Vi —w) Vv, € Kp(ap),

where r, : C([0,a]) — C(]0,a]) stands for the piecewise linear Lagrange
interpolation operator on §;, and for any w € H!(2(«,)) the symbol w o o, denotes
the function x — w(x, oy (x)), x € (0,a).

Theorem 2.6. (i) Let the assumptions of Theorem 2.2(i) be satisfied. Then
(P (ay)) has a solution for any h > 0 and oy, € de.
(ii) There exists a constant C,Zax > 0 such that the solution to (¥, (y,)) is unique,

provided that the following conditions hold: g € C (fZ) and ¥ is nonnegative,

bounded, Lipschitz continuous with modulus Cy > 0 such that Cp||g|| @ <
ch .
Proof. Tt can be found in [8] and [15]. O
Note, that by looking at the explicit form of the constants Cpax and C"  appearing

in Theorems 2.2 and 2.6 we find that: (1) C? can be chosen independently of h

max

and (2) C! < Cpax. Hence, Theorem 2.6(ii) implies Theorem 2.2(ii).
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Analogously to S and (IP) we define the discrete control-to-state mapping Sj and
the discrete shape optimization problem (P):

minimize J (o, ay) ®)
subj.to  (ap,up) € Gr Sy h

c~9

In the next theorem the symbol “~” above a function v € H'(Q(ay)) denotes its
extension to 2 satisfying: [|V[|; o < (:‘||V||1,Q(a,l) Vv € H'(Q(«y)), such that the
constant C is independent of o, and & > 0. Since {Q(op) | o € Uahd, h > 0} is
a system satisfying the uniform cone property, such an extension exists (see [3]).
For details we refer to [7].

Theorem 2.7. Suppose that J is continuous in the following sense:

ap > o inC([0,a]), a, € Uhd .
~ aa = 1 1 s o = I(a, o
w, —u inH'(Q), wp,ue H(Q) pim T, wnla) = 1@ vla@)

and let the assumptions of Theorem 2.6(ii) hold. Then:

(j)  there exists at least one solution (a; ,uy) to (IP,) VYh > 0;

(jj)  for every sequence of discrete optimal pairs {(a; ,uy)}, h — O there exists
a subsequence {(O(Zj , qu)}’ J — oo and functions a* € Uy, u* € Hl(fZ) such
that:

a,’;/_ —a* in C([0,a]) and ﬁ,fj —~u* in HY(Q), j - oo, (2.5)

where (a*,u*|q@*)) solves (P). In addition, every accumulation point of
{(aj ,uy)} in the sense of (2.5) has this property.

Proof. 1t follows from Theorems 6, 7 and Lemma 7 in [7]. O

We conclude this section with the algebraic form of the discrete state prob-
lem (&, (o)), in particular with its reduced version involving only state variables
defined on the contact boundary I'.. In the rest of the paper & > 0 shall be fixed.

Let us set n := dim V,(ap) and p := card .4}, i.e. p is the number of the
contact nodes. For the sake of simplicity let us further assume that p = d(h) + 1
(cf. (2.4)). Then U ahd is isomorphic to a convex, compact set %,y C Rﬁ_ by means
of the mapping o, — a = (a(ao), ..., on(aqm))). Further, the set K, (o) may be
identified with the closed, convex set:

H () ={veR"|v, > —a}, o€ X,
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where v, € R? stands for the subvector of v € R" consisting of the second
components of the displacement vector v at all contact nodes, i.e. (v,); =
vip(ai—1,op(a;—1)) foreachi = 1,..., p. Analogously, v, € R” consists of the
first components of v at the contact nodes. The frictional term in (), («;,)) should
be approximated by a quadrature formula whose integration nodes coincide with the
contact nodes. Hence, the algebraic formulation of the discrete Signorini problem
with a solution-dependent coefficient of friction reads as:

Find u € J# () such that for every v € J# («) :
P
(Al v —u), + Y oi(@).Z (W) ) (|(vo)i| -

i=1

(u);]) > (L(er),v —u),
(Z'(a))

where A € CY(%,q;R™") and L € C'(%,q;R") denote the matrix- and vector-
valued function, resp., associating with any « € %, the stiffness matrix A(ex)
and the load vector L(a). Finally, let us assume that @; € C'(%Zuq; (0,00)) Vi =
1,...,p.

Instead of dealing with (2?'(«)) directly, we shall introduce Lagrange multipliers
A€ Rﬁ_ to release the constraint v e JZ (), and employ the Schur complement
technique to eliminate all internal variables and reduce the state problem to the
contact boundary. Since it will be more convenient for sensitivity analysis, the
resulting variational inequality is formulated as a generalized equation (GE) (for
details the reader is kindly referred to [7] and also [1, 2]):

0c A (0)u; + A ()u, — Lo(a) + O1(a,u;)
0=A()u; + A, (0)u, — L, () — 4 (2.6)
0cu, +a+NRi(A).

In our case the multifunction Q : %, x R? = R” is defined as:

(i@, uy)), = 0 (@) F (|(u); DAl(ur)i| Vi=1,....p,

where “0” denotes the subdifferential of convex functions, NRi (-) is the nor-

mal cone in the sense of convex analysis and submatrices A.., A;,, A,, €
C'(%,q: RP*P) are parts of the Schur complement to the stiffness matrix with
A, = AITV. In addition, note that A, and A, are positive definite uniformly with
respect to o« € .

The next theorem states that GE (2.6) is uniquely solvable and its solution
depends Lipschitz continuously on the shape variable «.

Theorem 2.8. There exists a constant C;, > 0, independent of h and o € %,y such
that if F is Lipschitz continuous with modulus Cy, then the corresponding control-
to-state mapping S : Uw — R¥?, a — {(u;,u,, 1) | (uy,w,,A) solves (2.6)} is
single-valued and Lipschitz continuous.
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3 Discrete Sensitivity Analysis

Introducing the state variable y := (u,,u,,A4) € R*, the GE (2.6) may be written
in the following compact form:

0c F(a,y) + O(a,y), 3.1

with o € %4 being the control variable and

A (o) Ary(a) O L. () Q1(ee, y1)
F(av y) = Avt(a) Avv(a) —I y - Lv(a) ) Q(as y) = 0
0 I o —a Nge (y3)

Note that F is single-valued, continuously differentiable in its domain of definition
and Q is a closed-graph multifunction. The algebraic shape optimization prob-
lem reads as the following Mathematical Program with Equilibrium Constraints
(MPEC):

minimize J(ea,y)
subj.to 0 € F(a,y) + Q(a.y), )
o € Ya,

where J is a given continuously differentiable cost functional. In what follows we
shall assume that the assumptions of Theorem 2.8 are satisfied. Then (P) may be
equivalently reformulated as a nonlinear optimization problem:

minimize 7 () := J(a, S(a))
subj.to o € .

P)

Since ¢ is locally Lipschitz continuous, (P) can be solved by standard methods
of nonsmooth optimization. Such algorithms, however, require typically knowledge
of some subgradient information, usually in the form of one (arbitrary) subgradient
from the Clarke subdifferential 9 F (cf. [4, Theorem 2.5.1]) in each iteration step.
This can be conducted by using the chain rule from [4, Theorem 2.6.6]:

37 (@ =V J@§) + (35@)" v, J (@), (3.2)

valid at any reference point & € %4,y := S(e). Thus, for the required subgradient
information it is sufficient to compute an element from (5S (&))T V,J(e,y), where

35S (@) stands for the generalized Jacobian of Clarke, defined in [4, Definition 2.6.1].
The rest of the section is devoted to this task.



Numerical Solution of 2D Contact Shape Optimization Problems Involving. . . 11

First, observe that Lipschitz continuity of S and formula (2.23) in [11] yield:
@S(&))Ty* = conv D*S(a(y*)) Vy* e R¥.

Comparing with (3.2), we see that it is sufficient to determine one element from
the set D*S(«)(V, J(a,y)) and we are done. The latter task will be accomplished
using the following theorem.

Theorem 3.1. Let (ex,y) € Gr S be fixed and introduce the mapping: ® : R?P x
R¥ — R? x R¥? x R, (a,y) — (et,y, —F (e, y))T. Then the following hold:

(i) The multifunction M : R? xR¥ xR¥ — R?xR¥, p— {(a,y) | p+P(a,y) €
Gr Q}is calmat (0,0,0,0,y)".

(ii) For every p* € D*S(@)(V,J(@.¥)) there exists a vector v* € R¥ such that
(p*, v*) is a solution of the (limiting) adjoint GE:

(—Vygz&, y)) €EVF@y)'V" + DT Q2@ (V). (AGE)

Proof. Part (i) was proved in [7, Lemma 8], whereas part (ii) follows from (i) and
[9, Theorem 4.1]. For details see [7]. |

Note that due to Lipschitz continuity of S, (AGE) attains at least one solution
p* and at points («,y), where Q is normally regular, i.e. NGr Q(CD(E, y) =
NGr o(®(@.y)), every solution p* of (AGE) belongs to D*S(e)(V,J(a,y)). In
the nonregular case, however, the set of solutions of (AGE) is in general larger
than D*S(at)(V, J(e,y)) and so this procedure may lead to a subgradient, which
lies outside of (3§ (@))TV,J(@,y). Nevertheless, numerical experience shows that
this phenomenon occurs very rarely and typically does not negatively influence the
behavior of bundle methods, which we use for the solution of (]f”) (cf. [17]).

In the rest of this section we will devote our attention to the solution of (AGE),
in particular to expression of the coderivative D*Q in terms of the problem data.
To begin with, note that the components of Q are decoupled (this is a consequence
of the assumed model of given friction), hence its coderivative can be computed
componentwise:

D*Q(a.y1,qi)(q})
D*Q(@.y,9)(q") = 0 Vq* € R, (3.3)
D*NRQ (¥3,93)(q3)
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at any given point (¢, y, q) € Gr Q. The third component is standard and the exact
formula for it may be found e.g. in [13, Lemma 2.2]. In order to deal with the first
component, let us write the multifunction Q; : R? x R? — R” as a composition of
an outer multifunction Z; and an inner single-valued, smooth mapping W:

wi(e)-Z (Ju1[)]u|

w(e)-F (Juz]) ||

Ql(asu) = = (Zl o \I/)(a,u), (34)

00 @7 (DOl
where
U= (¥,...,¥,): R’ x R? - R¥, V(e u) := (w) (@), u;)’,
and
Z:RY SR,y (Z)..... Zy,))'.
with
Z:(0,00) xR =R, (x1,x2) = x1.Z(|x2])d|x2].

Now the chain rule from [16, Theorem 10.40] allows us to compute the
coderivative of the composite multifunction (3.4) as follows:

Theorem 3.2. Let (a,u,q) € Gr Q be such that the following condition holds:
Ker V¥(a,)” N D*Z, (¥ (&, 1), q)(0) = {0}. (3.5)

Then:
Vq* €R”: D*Q(@. 0, q)(q*) C V¥(@. 1) D*Z,(¥(& a), §)(q*)

D*Z (¥ (e w).q1)(q7)
—vu@.a) D*Z (¥, (. 1), 42)(35) (3.6)

D*Z(V,(@,11),7,)(qy)

By means of (3.3) and (3.6) we have reduced the computation of D*Q to that
of D*Z. Due to the particularly simple structure of Z, this can be done relatively
easily and has been investigated in detail in [7, Section 6.2]. We summarize these

results in the next theorem.
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Theorem 3.3. Let (X1, X2,2) € Gr Z be a given point and 7* € R arbitrary. Then
exactly one from the following cases holds true:

(]) )_Cz > 0, then: D*Z()_Cl,)_Cz,Z)(Z*) = {Z*y()zz)} X D*y()zz)()_ﬂZ*),'
(2) %2 <0, then: D*Z(31,%,2)(z") = {=2*F (=F2)} x (= D*F (=%2) (=%12"));
(3) X =0, |z] < x1.%(0), then:

D*Z(%.0.2)(") = | IR 7 =0,

@ , otherwise;
(4) X, =0,z =x,.%7(0), then:
C{Z*Z(0)} x D*Z(0)(X12"), ifz* > 0,
D*Z(%,0.%1.7(0)(") | = {Z"F ()} x (=00, X1z*DTF(0)]. if * <0,
= {0} x R, ifz" =0,

where the symbol D% (0) := lim Sup, o, stands for the upper
Dini derivative of % at 0;

(5) %, =0,z =—x1.%(0), then:

ZF (=7 (0)
n

= {2 F(0)} x [}z DFF(0), +00), if ¥ >0,
D*Z(%1,0,=%1.7(0))(2)C {=z*F (0)} x (= D*F(0)(=%12%)), if z* <0,
— {0} x R, if 7* =0.

Using this result one may construct and solve the (AGE). Moreover, one has:
Corollary 3.4. The condition (3.5) holds at each (e, 0, q) € Gr Q.
Proof. See [7, Corollary 2]. ]

4 Numerical Results

The theoretical results of the previous sections will now be used for computation of
model examples. We assume that the friction coefficient .# is defined by

1
F{)=025-—— VieRy, 4.1
(1) e €Ry (4.1)
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and the a-priori given slip bound is g = 150. Further we assume that the cost
functional J is continuously differentiable so that the composite map _¢ is locally
Lipschitzian. Therefore one can use the implicit programming approach [14] to
solve the shape optimization problem (). For the minimization of ¢ we used
the Matlab implementation of the bundle trust method BT (see [17]). This method
is very robust and was designed just for the minimization of nonsmooth functions.
It requires in every step the value of the objective function and its arbitrary Clarke
subgradient (for more details see [4]), i.e., for each admissible & we have to be able
to find a solution of the state problem (u, A) = S(«) and to compute one arbitrary
Clarke subgradient of ¢ at a. This issue was discussed in the preceding section.

Since the Signorini problem with given friction and a solution-dependent coeffi-
cient of friction can be equivalently formulated as a fixed-point problem (see [8]),
the method of successive approximations will be used for its numerical solution.
Each iterative step is represented by the Signorini problem with given friction and
the given coefficient friction computed from the previous iteration.

These techniques were implemented and the following experiments were solved
by MatSol library [10] developed in the Matlab environment.

For the solution of model examples, we slightly modify the set U ahd. The purpose
of this modification is to decrease the number of control variables and, at the same
time, to get a smooth shape of the contact boundary. Therefore, the boundary I', will
be modelled by Bézier functions of order d. The system of points {4;}¢_, where
A; = (ih,o;),; € R,i =0,1,...,d,h = a/d defines the so-called control points
of the Bézier function F, of order d on [0, a]:

d
Fun) = el . By = 5 (1) w0, el
i=0

Discretized shapes are determined by the vector « = («p, ..., &g ), Where ¢; is the
second component of A;,i = 0,...,d. The end points of F, coincide with the
first and last control point. The graph of Fj, itself lies in the convex envelope of
the control points. This means that any upper and lower bounds imposed on the
components of & are automatically satisfied for F,, too.

The new shape optimization problem using this type of the design variables is
defined as follows:

minimize J(e, S(a))

P
subj.to « €%, )

where
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%:{aeRd-‘rllOEalSC(),I.:Oyls---vds
o —al| < Cih, i = 0.1,....d — 1;
Ot 20 4o < G i = 12, d — 1

C31 < meas Q(a) < Cs;}

and Cy, Cy, C,, C3;, C3; are given positive constants. The first d + 1 box constraints
guarantee that |F,(x)] < Cp Yx € [0,a]. The second and the third set of the
constraints take care of the smoothness of the optimal shape. It is well known
that if the control points satisfy these two conditions, then |F,(x)] < C; and
|F/(x)] < C; Vx € [0,a]. The last constraint is added to control the volume of
the domain. Unlike the constant volume constraint considered in the theoretical part
of this paper, this time we use the inequality constraints for the volume of ().
The last constraint has a physical meaning of preserving the weight of the structure
in prescribed limits.

We will present results of two examples solved by the mentioned implicit
programming technique combined with the BT code. In both examples we use
the same data and change only the cost function J. The shape of the elastic body
Q(a),a € %, is defined through a Bézier function F as follows (cf. Fig. 1):

Q) = {(x1,x2) € R? | x; € (0,a), Fy(x)) <x, <b}.

From Fig. 1 one also sees the distribution of external pressures on the boundary I'p,
given as P! = (0; —60 MPa) on (0, 1.8) x {1} and zero on (1.8,2) x {1}, while
P?> = (50 MPa; 30 MPa) on {2} x (0, 1). Further, T, is the part of the boundary
where the zero displacements are prescribed.

The set of the admissible designs % is specified as follows: a = 2, b = 1 and
Co = 0.75, C; = 0.85, C; = 10, C5; = 1.88, C3; = 1.95. In both examples

b

0 ' a py

Fig. 1 The elastic body and applied loads
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the Young modulus £ = 1 GPa and the Poisson constant 0 = 0.3 are used. The
state problems on 2(«) are discretized by isoparametric quadrilateral elements of
Lagrange type. The total number of nodes (vertices of quadrilaterals) is 1,800 for
any & € 7/. The dimension of the control vector &, generating the Bézier function
and defining Q(a), is 20.

Example 1. In the first example we try to smooth down peaks of the normal contact
stress distribution. To this aim, one should minimize the max norm of the discrete
normal contact stress A. The objective function _#, however, must be continuously
differentiable, so we will use (p power of) p-norm of vectors with p = 4. The shape
optimization problem then reads as follows:

minimize ||A|}
subj.to « € %.

In Fig. 2 we depict the initial shape and the distribution of the von Mises stress
in the loaded body. Figure 3 shows the optimal shape and the von Mises stress in

Mesh

Stress hmh

300

250

200

150

lee

50

Fig. 2 Example 1, initial design
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Fig. 3 Example 1, optimal design

the deformed optimal body. Finally, Fig. 4 compares the contact normal stresses for
the initial £(eco) (left) and optimal €2(etop) (right) shape, respectively. The obtained
optimal value of the cost functional _# (etop) = 1.9623- 103 compared to H (o) =
6.0151 - 108 represents a decrease by 67 %. The decrease of the peak stress is also
quite significant.
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Fig. 4 Example 1, normal stress for initial (leff) and optimal (right) design
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Example 2. Here we try to identify the contact normal stress A with a prescribed
value A. The shape optimization problem can be written as

minimize A — A3
subj.to a €.

This vector was chosen to model a function, depicted in Fig. 7 by the dotted line.

The initial design and its deformation with the distribution of the von Mises
stress is presented in Fig. 5, while Fig. 6 shows the optimal design before and
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Fig. 5 Example 2, initial design
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Fig. 6 Example 2, optimal design

after deformation. Finally, Fig. 7 compares the contact normal stresses with the
prescribed values. While the initial contact stresses are far from the prescribed
values, the stresses for the optimal shape follow very closely A. Note that during the
optimization process the initial value _# (ag) = 5.910 - 10* of the cost functional
dropped by two orders of magnitude to _# (etop) = 9.1457 - 10°.

In order to emphasize the importance of proper modelling of contact problems,
let us compute the same example, now with a coefficient of friction which does
not depend on the solution. In particular, we set % (1) = 0.25 for every t > 0,
but keep all other parameters of Example 2 unchanged. Starting from the same
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Fig. 7 Example 2, normal stress for initial (leff) and optimal (right) design
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Fig. 8 Example 2 with .% = const; optimal design Q(a,p)

initial configuration €(eco) as in Example 2, the algorithm converges to a solution
Q(oop)—see Fig. 8.

Then we solve the original contact problem with the coefficient of friction given
by (4.1) on Q(ap) and show the distribution of the normal stress along I'c (€opc)
in Fig. 9. Comparing Fig. 9 with Fig. 7, one can see that the “approximate optimal
design” Q(atop), obtained by replacing the original state problem with a simpler
one, is not optimal at all.
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Fig. 9 Example 2; normal stress distribution on 2 (&)
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Phase Field Methods for Binary Recovery

Charles Brett, Charles M. Elliott, and Andreas S. Dedner

Abstract We consider the inverse problem of recovering a binary function from
blurred and noisy data. Such problems arise in many applications, for example
image processing and optimal control of PDEs. Our formulation is based on
the Mumford-Shah model, but with a phase field approximation to the perimeter
regularisation. We use a double obstacle potential as well as a smooth double well
potential. We introduce an iterative method for solving the problem, develop a
suitable discretisation of this iterative method, and prove some convergence results.
Numerical simulations are presented which illustrate the usefulness of the approach
and the relative merits of the phase field models.

Keywords Binary recovery ¢ Image processing * Mumford-Shah model e
Optimal control * Phase field models
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1 Introduction

A fundamental problem in the field of image processing is the following. Suppose
we have a function i defined on a bounded and piecewise smooth domain @ C RY
for N < 3, which has been transformed by a linear operator S, and then corrupted
by additive noise ¢, such that we have data

ya = Su+¢.

This work was supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) Grant EP/H023364/1 and by the ESF within the Programme OPTPDE.

C. Brett (<) « C.M. Elliott » A.S. Dedner
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
e-mail: c.brett@warwick.ac.uk; c.m.elliott@warwick.ac.uk; a.s.dedner @warwick.ac.uk

© Springer International Publishing Switzerland 2014 25
R. Hoppe (ed.), Optimization with PDE Constraints, Lecture Notes

in Computational Science and Engineering 101,

DOI 10.1007/978-3-319-08025-3_2


mailto:c.brett@warwick.ac.uk
mailto:c.m.elliott@warwick.ac.uk
mailto:a.s.dedner@warwick.ac.uk

26 C. Brett et al.

The problem is to recover i given y;. Two immediate issues are that (a) ¢ is
unknown, so we will not be able to find u even with a good model for the space
in which it lies (b) inverting S may be ill-posed, so it will be difficult to find an
approximation to u even if { = 0.

We investigate this problem in the case that u is a binary function. We develop
the theory with S an abstract operator, but in examples we take S to be the
solution operator of an elliptic PDE. In this case the problem becomes one in PDE
constrained optimal control.

Our approach to modelling the problem is to minimise an energy functional
consisting of an L’ fidelity term plus a phase field approximation to minimal
perimeter regularisation. This can be thought of as a relaxation of the Mumford-
Shah segmentation model. In our phase field approximation we use the Ginzburg-
Landau functional with both the smooth double well and double obstacle potentials.

1.1 Motivating Examples

First we give examples from both image processing and optimal control of PDEs
motivating the study of this problem:

* Image segmentation—We can represent a barcode by a 1D function which takes
the value —1 when the barcode is white and 1 when it is black. When a barcode is
scanned by a barcode reader this function becomes blurred (due to scattering in
the air) and noisy (due to measurement error and imperfections in the barcode).
So the machine only sees a corrupted signal, but from this it needs to determine
the scanned barcode.

 Elliptic source recovery—Suppose we have noisy data of a quantity y, which is
related to another quantity u# by some physical law. For example, let u represent
a heat source, then the long term temperature distribution y may be related to u
by the solution of an elliptic PDE. Our goal could be to find the heat source that
produces a particular temperature distribution.

1.2 Background Material

For the above problems to be tractable we naturally require some knowledge of the
form of the operator S and the noise {. We also usually assume a specific form of
u, as this influences the best model to use. For example, in the barcode problem
we could assume that the function we are trying to recover is a binary function
taking the values —1 and 1, and that the bars have a minimum width. Some sets of
assumptions on S, ¢ and u that are made in the literature are the following:

1. Denoising and deblurring—S is a blurring operator (maybe the identity), ¢ is
Gaussian noise, and u is a piecewise smooth function [11, 13,31].
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2. Segmentation—S is a blurring operator (maybe the identity), { is Gaussian noise,
and u is binary function [16,21,29]. These are the assumptions we make in this
work.

3. Binary image restoration—S is the identity, we have ‘salt and pepper’ noise, and
u is a binary function [14]. This kind of noise gives each point of a binary function
a probability of switching to the other value, so the data y, is also binary.

Note that the above sets of assumptions have been named using terminology
from image processing. Although our problem can be thought of as either an
image processing or PDE constrained optimal control problem depending on the
choice of S, we found most of the relevant literature to be from the image
processing community. This is unsurprising since image processing is one of the
main applications of binary recovery. We end up taking S to be the solution operator
of an elliptic PDE, but try to use neutral language which reflects that our problem
arises in these two fields.

For segmentation, which we focus on in this work, a large proportion of the
literature modifies one of the following two models when formulating the problem
of Sect. | mathematically. We now introduce these models so the reader can see how
our approach fits with the existing literature.

¢ Model 1 (Mumford-Shah). This model, which was introduced in [29], looks for
piecewise smooth functions that minimise an energy functional.

Let 2; be disjoint open subsets with piecewise smooth boundaries such that
the closure of | J2; is €. Let u be a function that is differentiable on | €2;,
but which is allowed to be discontinuous across I' := | J d€2; \ 2. Then the
Mumford-Shah model involves minimising

1
E1<u,r>=E/Q(M—yd)u%\rwmz+o|r|, (L)

where |I'| denotes the N — 1 dimensional Hausdorff measure of I". The |I"| term
encourages minimising the length of the interface over which u is discontinuous.

If we restrict to minimising over binary functions that take the unknown value
a; on 2; (i = 0, 1), then this energy functional becomes

1
E>({a;},T) = 3 Z/Q,(a" —ya)* +o|T|.

For fixed I note that £, is minimised with respect to {a; } by setting

)
a; = —— Yd.
Cul Jg,

So the problem reduces to just finding I', the locations of the discontinuities.
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Due to the spaces of functions we are minimising over, both of the above
variants of the Mumford-Shah model are nonconvex problems. In our work will
use a relaxation of (1.1) based on a phase field approximation.

Model 2 (ROF). The ROF (Rudin-Osher-Fatemi) model of [31] involves solving
the following constrained minimisation problem over a suitable space of func-
tions:

Minimise |u|y

with/ U= / yq and /(u—yd)z =52 (1.2)
Q Q Q

The term |u|,, represents the total variation of u, and it can be defined even if u
is not continuous; the total variation of a function u € L'(R) is

lulry = SUP{—/QMdiV(qﬁ) dx: ¢ € C/(Q.RY), ||l = 1.

Sometimes the notation |, o |Vul is used instead of |u|r, to highlight that the total
variation of u is equal to this quantity when it is well defined. The first constraint
in (1.2) says that the noise has zero mean and the second that it has standard
deviation s.

BV(2,R) is the subspace of functions in L!(£2) which have finite total
variation. Minimising this model over u € BV(2,R) can be related to the
following problem for some value of o'

1
Minimise §||u — yd||iz(m + o |u|py over BV(L2,R). (1.3)

Note that (1.3) can be thought of as a relaxation of (1.1) with & = 0; we minimise
over a larger space of functions in order to get a convex problem.

If we restrict to minimising over binary functions then (1.3) becomes similar
to the Mumford-Shah model. Suppose u only takes the known values ag < a;
(i.e. u € BV(2,{ap,a,})), then

lulzy = (a1 —ao)Per({u = a}) = (a; —ao) |T'|,

where the perimeter function Per(X) := [, |V xx| and I is the set over which u
is discontinuous. So for binary functions, total variation regularisation is equiv-
alent to both perimeter regularisation and the interfacial length regularisation in
the Mumford-Shah model. In fact (1.1) and (1.3) become equivalent.

Suppose that in addition to u € BV (2, {ap, a1}) we have salt and pepper noise.

Then the data is binary and both models reduce to the geometric problem

):rilérsl2 |2, AZ,| 4+ a(a; — ag)Per(Z,).
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Here ¥, and ¥, denote respectively the sets where the unknown u and data y, take
the value ay, || is now the N dimensional Hausdorff measure, and ¥,A X, is the
symmetric difference between the sets.

1.3 Phase Field Model

We base our model on the Mumford-Shah model, but minimise over the space
of functions BV (L2, {ao, a:}), and generalise it to include the blurring operator S,
which we suppose is known a priori. So we have the following nonconvex model
with a parameter o, which we will shortly relax in a different way to (1.3):

. 1
argmin  F(u) := < ||Su— yd”il(g) + oPer({u = a}). (1.4)
uGBV(Q,{ao,al}) 2

We require S : L?(Q) — L?(R2) to be continuous, linear, and have the mean
preservation property i.e. S1 = 1 and hence Sc¢ = ¢ for any constant function c.
Continuity is helpful for proving existence of minimisers. Linearity and the mean
preservation property allow us to recover a function it : 2 — {ao,a;} from data y,;
by recovering a function i : 2 — {—1, 1} from a scaled and shifted copy of y,,
so long as ap and a; are known. We assume this to be the case and will therefore
restrict our attention to ag = —1 and @; = 1 from now onwards.

Some examples of forms S could take are:

1. Solution operator of elliptic PDE—Let Su := y, where y solves the elliptic
boundary value problem

—aAy+y=u inQ
9 (1.5)

Q- 0 onodf2.

av

For any u € L?(2) this equation has a unique weak solution y € H () which
satisfies the stability estimate

Iyll220) = ISull 20y < Cs(@)||ull12(q)- (1.6)

where Cy(o) ﬁ
the required properties. We also observe that evaluating S is well-posed, but
inverting S is ill-posed, which motivates the need for our model. This is the
operator we use for our numerics.

2. Convolution operator—Let

and C, is the Poincaré constant. So § has all

Su = ¢y * u,
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where ¢, is a suitable probability distribution of ‘size’ «, for example the
Gaussian distribution

¢m——waG£)
W var P\ 202

of mean zero and variance «, and * is the convolution operation. Such an operator
is used in the barcode problem of [16,21] and [17].

In both of these examples we have a parameter « which controls the extent of
the blurring effect. Large o corresponds to heavy blurring and small o corresponds
to light blurring. In our work the value of « is known a priori since we assume
complete knowledge of S. However there are applications where we may want to
relax this assumption, for example the barcode problem of [21]. In this application
we do not know a-priori the distance of the barcode from the scanner, which means
the level of blurring is unknown. This can be dealt with by fixing o to be some
reasonable guess, or optimising for o at the same time as u.

We relax the model (1.4) by replacing the perimeter functional by the Ginzburg-
Landau functional G, : L'(Q2) — [0, oc] defined by

Jo S51Vul + 1W@w) ue H(Q)

G.(u) :=
‘ oo} otherwise

for some suitable ¥ : R — R, and then minimising over H'(Q) instead of
BV(Q2,{—1,1}). So we consider

1
arg min F,(u) := —||Su ydlle(Q) + — (0 (/ |Vu|* + E‘I-'(u)). (1.7)

ueH(Q)

We will focus on two different forms for the potential ¥; the smooth double well
potential

1
Uy (u) = —(1 —u?)?,
4
and the double obstacle potential

Wa(w) =5 (1~ ) + I @)

%(1 —u?) |ul <1
oo Jul>1"

This approach, which is called a phase field approximation, results in a diffuse
interface with minimisers no longer just taking the values {—1, 1}, but values in
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the interval [—1, 1]. It is still a nonconvex problem, but it has the advantage of
allowing us to minimise over a smoother space of functions for which there is
better developed theory. We are able to justify this approach with the following
result.

Theorem 1.1. Let W be the smooth double well potential V,. Then G (u) I'-conver-
gesin L'(Q) ase — 0 to

c(W)Perfu=1}) ueBV(Q,{-1,1})

o0 otherwise

where ¢(Wy) = 2 [ 2U (s)ds = £,
Proof. See [28]. O

A similar result holds for the double obstacle potential, and performing a calculation
we get that ¢(W2) = 5 (see [10]). To simplify notation we let 0; = o//c(¥;). This
ensures that the weighting given to the regularisation is asymptotically o for both
potentials.

The different potentials lead to different formulations and we need to use
different approaches to solve them. In particular, W; leads to nonlinearity in the
zeroth order terms, where as W, causes nonlinearity by imposing constraints on the
solution.

1.4 Literature Review

We now mention other parts of the literature which overlap with aspects of this
work.

Barcode Problem. The 1D version of our problem is related to the barcode
problem of Esedoglu in [21]. This work was later extended by Choksi and Gennip
in [16]. Choksi et al. [17] uses similar ideas on QR barcodes. References for more
general image processing literature can be found in Sect. 1.1.

PDE Constrained Inverse Problems. A survey of the literature from the optimal
control perspective can be found in [30]. In addition, [33] describes a number
of applications where we want to recover piecewise constant functions, such as
magnetic resonance imaging (MRI). The thesis [26] discusses a wide range of
techniques for geometric inverse problems. Tai and Li [34] recovers a piecewise
constant diffusion coefficient from an elliptic PDE in 2D using the level set
method.
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Phase Field. In[26] there is a brief discussion of using a phase field approximation
with the smooth double well potential for binary recovery. References [21] and [16]
use this idea for numerical simulations, though they do not justify the approach
analytically. Theory for the phase field approximation with the double obstacle
potential can be found in papers by Blowey and Elliott, including [8, 9] and [10].
In [32] the double obstacle potential is used in the context of image processing, but
without deblurring.

Level Set Method. This is an alternative way of recovering the discontinuities in
our problem. It is discussed in [33] and [34].

Approximation of Mumford-Shah. Chambolle and Del Maso [12] and related
papers prove I'-convergence results for finite element approximations of the
Mumford-Shah functional. These results have some relation to the convergence
results that we obtain using a different approach.

Our work differs from existing work, and hence offers a new contribution, in the
following respects:

* We introduce the phase field approximation to the model right from the start
(rather than at the last minute in order to allow numerical simulations). We
therefore prove rigorous analytical results for this approximate model, which puts
our approach on a much firmer footing than in existing work.

* Not only the smooth double well potential, but also the double obstacle potential
is used for the phase field approximation. Results are proved for both simultane-
ously using an abstract framework.

* We thoroughly investigate the dependency of the model on the parameters and
perform a systematic comparison of the smooth double well potential and the
double obstacle potential on a 1D problem. This highlights some advantages and
attractive features of the latter in this setting.

1.5 Layout

In Sect. 2 we introduce an abstract optimisation problem, an iterative method for
finding critical points of this problem, and prove a convergence result for the
iterative method. In Sect. 3 we show that (1.7) fits into this framework with both the
smooth double well and double obstacle potentials. In Sect. 4 we discuss a gradient
flow formulation of (1.7) and its link to the iterative method. In Sect. 5 we discretise
the iterative method and prove another convergence result. We also look at a finite
element discretisation for a particular choice of S. In Sect. 6 we demonstrate that
implementations of the iterative method work well in 1 and 2 dimensions. In Sect. 7
the performance of using both potentials is compared in detail for a 1D problem.
In Appendix A we describe how we choose the parameters in our model for the
numerics.
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2 Abstract Framework

Rather than developing separate theory for solving (1.7) with the smooth double
well and obstacle potentials, it is advantageous to introduce an abstract framework
that both problems fit into.

To this end let V' and H be real Hilbert spaces with V' compactly embedded in
H, and let W be a closed convex nonempty subset of V. Leth : V x V — R and
¢ : H x H — R be symmetric continuous bilinear forms with the properties

3B st.bn.n) = Blnly VneV
c(n,m =0 VneH.

Let/ : V — R be a bounded linear functional and J : V' — R a continuous convex
functional. With these objects we can define the energy functional / : V' — R by

100 = 3h0m) + J0) = 3. 1) ~ 100,
which for positive constants ap and Cyp we assume satisfies
I(n) = aollnllyy —Co Ve W. 2.1
Remark 2.1. The functional / can be decomposed in different ways into b, J, ¢

and [.

2.1 Optimisation Formulation

Consider the following optimisation problem: Find u € W such that
I(u) = inf I1(n). (2.2)
new

We can show existence of a solution to (2.2) with the following general result.

Proposition 2.2. Let A|(-) : V — R be weakly lower semicontinuous and let
Ax(-) + H — R be continuous. If A(n) := Ai1(n) + A2(n) is bounded below,
then the following optimisation problem has a solution: Find u € W such that

A(u) = niglff A(n).
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Proof. This follows from standard theory; we construct an infimising sequence
which we know is bounded in V, so have a subsequence which weakly converges
to an element of W, and this element is a minimiser of A by the properties of A4,
and A,. O

Corollary 2.3. (2.2) has a solution.

Proof. Take A(n) = %b(n, n) + J(n) — I(n) and Ay(n) = —%c(n, n). Recall
that continuous convex functionals are weakly lower semicontinuous, so 4| and A4,
satisfy the requirements of Theorem 2.2. O

Note that in general there is not a unique solution to (2.2).

2.2 Variational Inequality Formulation

By standard theory, solutions to (2.2) must satisfy the following: Find u € W such
that

bun—u)+Jm) —JWw) =>clw,n—u)+I(n—u) VneWw. (2.3)

Here we have used that J is a convex function, so it has a subdifferential dJ, which
by definition satisfies

J) = Jw) = (v.n—u) Vved(u),

where (-,-) denotes the duality pairing between V* and V. If J is in addition
Gateaux differentiable then (2.3) is equivalent to the following variational inequal-
ity: Find u € W such that

b, n—u)+{J w),n—u)>clun—u)+I1(n—u) VYneW. 2.4

We often call solutions of (2.3) critical points of (2.2).

Remark 2.4. 1f c(n,n) < kb(n,n) forall n € V with k < 1, then (2.3) has a unique
solution. When we fit (1.7) into this framework, we find that this would require ¢ to
be large. We intend to take & small so that (1.7) approximates (1.4), which means
we will not necessarily have uniqueness.

Note that solutions of (2.2) solve (2.3), but the converse is not necessarily true.
We nevertheless aim to solve (2.3), as this is much easier in practice. Once a solution
has been found, additional tests would have to be used to verify that the solution is
a local minimiser of 7.
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2.3 Iterative Method

We apply to (2.3) the following generalisation of the iterative method of Barrett and
Elliott [1]: Given u e W, forn =1,2,...find u" € W such that

b, n—u")y+J(n) —JW") > e, n—u")y+Iln—u") VneWw. (2.5)

If J is in addition Gateaux differentiable then this is equivalent to the following
iterative method: Given u® € W, forn = 1,2, ... find u" € W such that

b, n—u")+(J' "), n—u") = @ n—u") +1(n—u") VneW. (26)

Note that b(n, n) + J(n) is convex and —c(n, n) — /(n) is concave.

Equations (2.5) and (2.6) have unique solutions as they are equivalent to
minimising a convex functional over W. Moreover we can prove the following
convergence result.

Theorem 2.5. Every sequence {u"} generated by (2.5) satisfies
IW") 4+ c(" —u" " —u"™Y) + Bllu" — u”_l||%, <I@" 2.7

and has a subsequence which converges in 'V to a critical point of (2.2) i.e. a solution
of (2.3). Also, the limit of any subsequence of {u"} that converges weakly in V, and
hence strongly in H, is a critical point of (2.2).

Proof. The proof is an extension to that of Theorem 6.1 in [1]. To deduce (2.7) we
test (2.5) with n = u"~! and use the coercivity of b. Because of the assumptions
on I, {u"} is uniformly bounded in V, so we can extract a subsequence, which we
also denote by {"}, that converges weakly in V' and strongly in H to some element
u € W. The assumptions on b, ¢, [ and J allow us to pass to the limit in (2.5) and
deduce that u satisfies (2.3). The same argument applies to any subsequence, which
proves the second part of the theorem.

To see why the convergence in the first part of the theorem is strong in V', note
that now we know u satisfies (2.3), we can combine this inequality with (2.5) to get

1

bu—u" u—u") <clu—u" ", u—u").

The result then follows using the coercivity of b and the strong convergence of u"
in H. O

3 Binary Recovery Application

We now show that (1.7) with both the smooth double well and double obstacle
potentials can be fitted into the framework of the previous section.
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3.1 Smooth Double Well Potential

Set V.W := H'Y(Q),H := L*(Q),let S : H — H satisfy the assumptions in
Sect. 1.3, and take

b(u.n) :

(Su, Sn) + 016(Vu, V)
o
wWy=§wm

I(u) = (S*ya,u)

o1 4
J = — .
() %L“

Here and throughout this document (-,-) denotes the L?(2) inner product. S*
denotes the adjoint operator of S, which is defined as follows: For real Hilbert
spaces U, V the adjoint operator of a continuous linear operator A : U — V is
the operator A* : V' — U such that

(Au,v)y = (u,A*v)y VYueUvev.

The above objects have the properties required in Sect. 2. Coercivity of b can
be shown using a contradiction argument and that SO = 0. J is well defined and
continuous since H (L) is continuously embedded in L®(Q2) for @ C R" with
N < 3.1 satisfies assumption (2.1) since

u? u? u? 1 2
QI‘EZLE‘“iwbw—W’
and so

o1& 5 (o} 2 01
I(M) = THVM”LZ(Q) + ?”u”LZ(Q) - ? |Q| =

e 1 o
almin{-,-}||u||zv——‘|sz| Vue W.
2 ¢ e

Moreover I equals F, from (1.7) with the smooth double well potential (up to an
additive constant), so (2.2) becomes: Given y; € L*(2) find

. 1 € 1
argmin F (u) := §||Su — yd||iz(g) + 01</ 3 |Vul* + —\I-’l(u)>. 3.1
ueH(Q) Q €

J is Gateaux differentiable, so solutions to (3.1) satisfy (2.4), which becomes:
Given y; € L*(Q), find u € H'(Q) such that

o
(8*(Su=ya).m) +01e(Vu Vi) + — (' —u.m) =0 Ve H'(Q).
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In this example we have an equality instead of a variational inequality because W
is the full space V.

Equation (2.6) gives the following iterative method for solving the above
variational inequality, and it converges by Theorem 2.5: Given y;, € L?*(2) and
e HY(Q),forn =1,2,... findu = u" € H'(Q) such that

(e}
(S*(Su—ya),n) +o16(Vu, Vi) + ;‘(u3—un—l,n) =0 VpeH'(Q). (2

3.2 Double Obstacle Potential

Define K := {u € H'(Q) : |u| < lae.inQ}).SetV := HY(Q),W := K. H :=
L*(Q),letS:H — H satisfy the assumptions in Sect. 1.3, and take

b(u,n) := (Su, Sn) + 026(Vu, V)
() =2 (u.)

I(u) := (8% ya.u)
J(u) :=0.

The above objects have the properties required in Sect. 2. As with the smooth double
well potential, / satisfies assumption (2.1) since for u € W we have

2 2
u u o,
[ 5= [ 1= g - 1.

Moreover I equals F, from (1.7) with the double obstacle potential (up to an
additive constant), so (2.2) becomes: Given y; € L*(Q) find

1 & 1
in F>(u) := —||Su— yq|2 Vulr + —0 = ). 3.3
arg min 5 (u) 2|| u Yd||L2(Q)+C72(/92| ul +2€( u’) (3.3)

Solutions to (3.3) satisfy (2.4), which becomes: Given y; € L?(R), findu € K
such that

(S*(Su— ya), 1 — 1) + 026(Vut, Vi) — Vi) — Cyf(w n—u)>0 Vnek.

Equation (2.6) gives the following iterative method for solving the above
variational inequality, which converges by Theorem 2.5: Given y; € L?*(Q2) and
we K, forn=1,2,... findu=u" € K such that

(S*(Su—ya), n—10) +026(V, Vn—Vu)—%(u"_l, 1—u)>0 VpeK. (3.4)
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3.3 Alternative Iterative Methods

In (3.2) and (3.4) the S*S term is taken implicitly, so we need to be able to invert
the operator S*S — o;¢A efficiently, otherwise these iterative methods will be too
computationally expensive. In some cases this may be possible, for example if S is
the identity, but in general this is not the case.

As we remarked earlier, the definitions of b and ¢ that make I correspond to (3.1)
and (3.3) are not unique. For example we can set b(u,n) = B(u,n) + p(u, n) and
c(u,n) = C(u,n) + p(u, n) for some p > 0. The p(u, n) terms cancel out in 7, so
defining B and C the same way b and ¢ were defined earlier in this section gives the
same optimisation problems (3.1) and (3.3). But the corresponding iterative methods
are different. The point of this is that the p(u, ) term is convex (when n = u), so it
gives us more flexibility in how we define B and C while still having b and c¢ satisfy
the coercivity and positivity assumptions.

In particular, for suitably large p we can take the S*S term explicitly (which in
our framework corresponds to moving it from b to ¢), and also take the - (u, ) term
implicitly (i.e. move it from ¢ to b). So for our examples this corresponds to taking

b(a) = pu,m) + 07e(V, V) — (. ).
C(Lt, 77) = p("ts 7’}) - (S*SM, 77)

A restriction such as p > max{%, C2}, where C; is the stability constant from (1.6),
is then sufficient for both b to be coercive and ¢ to be nonnegative. So we have the
following iterative methods, which are in general easier to solve computationally
than (3.2) and (3.4).

Example 3.1 (Smooth Double Well). Given y; € L>(Q) and u® € H'(Q), forn =
1,2,...findu = u" € H'(Q) such that
o
plu—u' ™) + (S*(Su'™" = ya). 1) + 016 (Ve Vi) + — (' —u.m) = 0
3.5)
forall n € H'(Q).

Example 3.2 (Double Obstacle). Given y; € L*>(Q) andu® € K, forn =1,2,...
find u = u" € K such that

plu—u"" = u) + (S*(Su"™ = ya), n—u) + (3.6)
026(Vit, Vi — Vi) — 2 (u, p— u) > 0
&

foralln € K.

When solving Example 3.1 in practice, it is more convenient for us to solve a
linear equation. Therefore we linearise the J'(u) term in (3.5) and consider the
following iterative method.
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Example 3.3 (Smooth Double Well). Given y; € L>(Q) and u® € H'(Q), forn =
1,2,...findu = u" € H'(Q) such that
plu—u"" ) + (S*(Su"™" = ya). 1)
0] (3-7)
+ 016(Vu, Vn) + ;((u"‘l)zu —u,n) =0
forall n € HY(Q).

This iterative method lies outside of our framework, so the convergence theory does
not necessarily hold. However it works well in practice.

To finish this section we show how we can reformulate the iterative methods to
remove S*(Su"~! — y,) when S is defined as in (1.5). For example, (3.6) becomes
the following.

Example 3.4 (Double Obstacle). Given y; € L>(Q) and u® € K, forn = 1,2,. ..
find u = u" € K such that

plu— '™ =)+ (p" 0= w) + 016(Vu, Vi — Vi) = L (un —u) = 0
&
forall n € K, where p"~' € H'(Q) solves

a(Vp" V) + (") = 0" —yan) Ve HY(Q),

and y"~! solves the weak form of (1.5) with u = 1"~

4 Gradient Flow

In this section we investigate the gradient flow method for finding critical points
of (3.1) and (3.3) from an initial guess up. We prove that this method has some
desirable properties, and note the link the to iterative method of the previous
sections.

4.1 Smooth Double Well Potential

Let uo denote the initial guess of the solution and consider the L? gradient flow of
Fiin (3.1).

Problem 4.1. Given y; € L*(Q) and uyp € H'(Q), find u € L*(0,T; H'(Q))
with weak time derivative d,u € L*(0, T; L?>(2)) such that u(0) = u, and

(Ou(t). m)+(S*(Su(t)—ya). m) +o16(Vu(?), Vﬂ)+%(‘lfi(u(f)), m=0 (41)
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forall n € H'(2) and almost all ¢ € (0, T).
Theorem 4.2. Problem 4.1 has a unique solution.

Proof. Note that Problem 4.1 is very similar to the Allen-Cahn equation with the
smooth double well potential, and the proof follows using standard techniques.
See for example the references in Theorem 4.5, where existence and uniqueness
is proved for smooth potentials in order to show existence and uniqueness for the
double obstacle potential in the limit. O

Theorem 4.3. If u is a sufficiently smooth solution of Problem 4.1 then the energy
F1(u(t)) decreases over time.

Proof. For somet € (0,T) we can test (4.1) with n = d,u(z) to get

19:u(®)175q) + (S*(Su(t) = ya), du(t))

o1, 4.2)
+ o1e(Vu(®), Vou(®)) + — (Vi (u(®). du(r)) = 0.
Note that
5* 5 _1d )
(S*(Su(t) = ya), dua(0)) = 5 1Su) = ya [}
1d )
(Vu(r),Vou(t)) = __||Vu(t)||L2(Q)’
Wit 2o = 5 [ wituto
so Eq. (4.2) is equivalent to
d
10,1e(0) 22+ ( ISy =y 10+ S IV 2 )+ i i (w(1)) =0
Therefore as long as d,u(?) is not zero almost everywhere we have
0> _”at“(t)”LZ(Q) = dr F](M(l))
and hence the energy decreases. O

4.2 Double Obstacle Potential

We can formulate a gradient flow for F, from (3.3) in a similar way.
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Problem 4.4. Given y; € L*>(Q) and uy € H'(R), find u € Ky with d,u €
L?(0,T; L*(R2)) such that u(0) = ug and

Bru(®). n —u(®)) + (S*(Su(t) — ya).n — u(t))

o 4.3)
+ 026(Va(t). Vi1 = Vu(t)) = = (u(0). 71— u(t)) = 0

for all » € K and almost all ¢ € (0, T"). Here
Kr:={ueL*0,T:HY(Q)): |u] < lae.in (0,T) x Q}.

Theorem 4.5. Problem 4.4 has a unique solution. Moreover, if u is a sufficiently
smooth solution then the energy F>(u(t)) decreases over time.

Proof. This follows from a slight modification to the arguments for the double
obstacle Allen-Cahn inequality in [6,7,9, 10, 15] to allow for the S*Su term. O

For both potentials it is important to consider whether u(¢) converges to a steady
state as ¥ — o0o. These types of issues are investigated in [27], and in [15] for the
1D double obstacle potential. We do not discuss this as the focus of this work is on
iterative methods.

4.3 Link to Iterative Methods

Particular first order discretisations in time of the gradient flow formulations are
equivalent to the iterative methods of the previous section with p = ﬁ. But we only
want to solve the optimisation problems (3.1) and (3.3); we are not interested in the
accuracy of solutions to (4.1) and (4.3) at each point in time, but rather how well
they approximate minimisers of F; and F; for large ¢. For this reason our method for
solving (3.1) and (3.3) should focus on decreasing the energy. The iterative methods
of the previous sections are designed to have this property, where as discretisations
in time of the gradient flows may not.

The scheme denoted by (2.5) of Barrett and Elliott motivated the convexity
splitting implicit/explicit Euler scheme used in [20]. See also [22].

5 Discretisation

In this section we discretise the abstract iterative method of Sect. 2 in space and
analyse convergence of the discretisation. We then apply this theory to a finite
element discretisation of (3.5) and (3.6) for S defined by (1.5).
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5.1 Discrete Abstract Framework

Suppose we have a family of subspaces V, C V and closed convex nonempty
subsets W, C V;, which approximate functions in W increasingly well as some
parameter i — 0. In particular we suppose we have an approximation operator
P, : W — W, such that

ln— Punlly > 0ash—0 VneW, (5.1
and that every sequence {1, } C W, satisfies
n—=ninVash—-0=— neW. (5.2)

Remark 5.1. Note that we do not require W), C W. If this holds then (5.2) follows
automatically because W is a closed convex subset of a Banach space, and hence is
weakly sequentially closed.

We now assume there exist objects by, ¢, and [;, which satisfy the same assump-
tions as b, ¢ and /, with the boundedness and coercivity constants independent of /.
We define

1 1
() = Sbu(n.m) + I (1) = en(n.m) = L ().

and as in (2.1) we assume that there exist positive constants ¢} and C; independent
of h such that

Litny) = anllmull} — C1 - Y € Wi (5.3)

So minimisers of I, over W), (which exist, since [} satisfies the same assumptions
as ) satisfy the following discrete problem: Find u;, € W}, such that

b (up, np—un)+J(p)—J (un) > cp(up, np—up) +p(Mp—ur)  Ynu € Wy (5.4)

If J is in addition Gateaux differentiable then this is equivalent to the following
discrete variational inequality: Find u;, € W), such that

by (i, i — up) + (J ), mw — upn) > cn(up, mn — up) + (np —up) ¥ € W

We need by, ¢;, and [; to approximate their continuous counterparts as 4 — 0.
So we make the additional assumptions that for any bounded sequence {v,} C W
we have

b ’ _b ’ n
16— b)n e = sup 20 = o m] (5.5)
€V \{0} 7 llv
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le(Vn, mn) — cn(Vi, mn)|

(¢ —cn)n,)lly= = sup -0,
1€V \{0} 7411y
[ -1
1=l = sup 12Gm) = ()l

nn €V \{0} ||nh||V

as h — 0. With these assumptions solutions of the discrete variational inequal-
ity (5.4) approximate solutions of the continuous variational inequality (2.3) as
h — 0, as the following theorem shows.

Theorem 5.2. For any sequence h, — 0 the sequence {u,} of solutions to (5.4)
has a subsequence which converges weakly in V, and hence strongly in H, to a
critical point of (2.2) i.e. a solution of (2.3). Moreover; the limit of any subsequence
of {up,} that converges weakly in V, and hence strongly in H, is a critical point

0f (2.2).

Proof. For a given h we can find u;, = arg min,, ey, I, (np), then for any n, € W,

1) = TaCme) = 3 buCmns ) + ) = e, ) — ).

Fixn € W andset n, = Pyn € Wy. So {5} is bounded in V by (5.1), which means

b (s ) — b(n )| = 11(By — b)(a, ) llv<lmally = C. Here and throughout
this section C denotes a generic constant independent of & which may vary from
line to line. A similar result holds for /;, and ¢;, is nonnegative, so

1
Ln(un) = 20 G ma) + I () + [L(a)| + €.
By the boundedness of b and /,

In(up) < C(llmally + J(w) + llallv).

Combining this with (5.3) we get

lunlly < Cllnallv + J () + 1).

Now (5.1) and the continuity of J give that J(1;,) < C. In addition (5.1) implies
that for / less than some &y, |71y < ||nllv + C, and therefore |uy|y < C.

From the above it follows that for any sequence 7, — 0, {up,} is bounded in
V. So we can find a subsequence, which we also denote by {u;, }, that converges
weakly in V' and strongly in H to some u € V. In fact u € W by (5.2). We now
show that u is a solution of (2.3).
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Note that for all n € W we have
1}}1_1) g.}f by, Wn,, Pn,n —up,)
= timinf (by, (. P, 0 = ) % blun, Pa,n = ) % blun, 1 = n,))

= timinf ((bn, = b)(h, P, — ws,) + blun,. Pa,n =) + bun,.n —w,))
= liminf b (up,, n — up,)

n—>oo
< b(u,n—u).

The final equality follows because lim,,—, oo (by, — b) (s, Pn,n — un,) = 0 by (5.5)
and limy, o0 b (up,, Pr,n —n) = 0 by (5.1). The inequality follows from the lower
semicontinuity of (-, -) and the continuity of (-, ). Similar results hold for the ¢,
and [, terms. This and the continuity and weak lower semicontinuity of J gives

b(u,n—u) + J(n) — J(u) > ljlrggf(bhn (un, s Pn,n — upn,) + J(Pp,n) — J(Mhn))

> liminf (Ch,, (uhn, Ph,, n— uhn) + Zhn (Ph,,ﬂ — uhn))
n—>00
>cu,n—u)+Iln—u) VneWw.

Hence u is indeed a solution of (2.3).
The same argument applies to any weakly convergent subsequence, which proves
the second part of the theorem. O

Remark 5.3. We could also assume we have functionals Jj, satisfying the same
assumptions as J, with the continuity independent of %, plus the additional property
that v, — vin W for h, — 0 implies liminf,— o Ju, (vn,) = J(v). Then a proof
almost identical to the above gives convergence for (5.4) with J replaced by J;.
This allows numerical integration to be used on the J term.

As with (2.3) in Sect. 2, we can consider an iterative method for solving (5.4):
Given uf) € W, forn = 1,2, ... find u}} € W}, such that

by, — ) + J () — J(W)) > cn(uy ™" nn —ull) + Ly(gw — ) Ynu € W

If J is in addition Gateaux differentiable then this is equivalent to the following
iterative method: Given uz € Wy, forn = 1,2,... find u;; € W, such that

by, nn —uf) + (J @), w — ) > cn(uly " nn —ul) + Ly(nw — ) Y € Wi

Since by, ¢, and [}, satisfy the same assumptions as b, ¢, and /, the above iterative
method still has the energy decreasing property, and we get convergence of iterates
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to a solution of (5.4). Then as i — 0 the solutions of (5.4) converge to critical points
of (2.2) by Theorem 5.2.

5.2 Finite Element Discretisation of (3.5) and (3.6)

Assume that €2 is polyhedral and let {7},} be a family of uniform regular triangula-
tions of €2 into disjoint open simplices with a maximal element size &. Associated
with each T}, we have the piecewise linear finite element space

Vi ={veC%Q):v|re P(T) forall T € T} ¢ HY(Q),
where P;(T) is the set of all linear affine functions on 7'. Also define
Ky :={vyeV,:|vw| <1inQ}
so that we have a finite element space analogous to K. Note that K, C K so

Remark 5.1 applies. Take Pj, to be the operator that maps u € W to the unique
Pru € W, such that

(Ppusmn — W gy = (U — W gy Ynn € W

This operator satisfies Eq. (5.1), see e.g. Chapter 2 in [24].

Let S be the solution operator of (1.5), and denote by S, the discrete blurring
operator. We intend this to approximate S, so we define S, to map u € L?(Q2) to the
unique y, € Vj, satisfying

a(Vyn, Vn) + (vw, nn) = w.mn) - Vi € V. (5.6)
A stability estimate the same as (1.6) holds, so
Iyullz2@) = IShull 2@y < Cs(@) lull 2 @), (5.7)

where as before C (o) =
says

%. Also standard error analysis for elliptic PDEs

Iy = yullz2@) < Chllyllm (@)

which combined with (5.7) gives that

(S = Snull2) < ChllSull g1 < ChllullL2q)- (5.8)
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Example 5.4 (Smooth Double Well). Take the same definitions as in Example 3.1.
In addition take V}, as above, W), := V}, and define

o
by (up, mi) = pun, my) + o1e(Vuy, Vi) — ;l(uh, )

cn(un, ) = p(up, nw) — (Shun, Spnn)
In(un) == (Sp Ya.n»un)

(o]
J(up) = E/Quz,

where S, is the discrete elliptic operator defined by (5.6), and y,, is the L>-
projection of y; onto V.

For p > max{ %, CSZ}, where C; is the stability constant from (5.7), all the
assumptions of Theorem 2.5 are satisfied, so we get the decreasing energy property
and convergence of iterates for the following discrete iterative method: Given y; j,
u) € Vi, forn =1,2,... find uy = u} € Vj, such that

pQun —up " ) + (3~ ) + o1e(Vug, V)

01
+ ?(uf, —up,np) =0V € Vp,
where y7~!, pi=! € Vj satisfy

a(Vy V) + 0 e = @ )
(Vo V) + (pp o) = O = yae )

for all n, € Vj.
The assumptions of Theorem 5.2 are also satisfied, since for a weakly convergent
sequence {v;} € V we have

[(by, — b)Y )| = |(Shvis Spnn) — (Svi, Snp)|
< |Spvi, (Sp = S)np)| + 1((Sp — S)vi, Snn)|

< ISwvll 2@ I16Sh = Sl L2y + 1Sk = Svall L2 IS0l L2(0)-

Now using (5.7) and (5.8) we get

|(br — BY(Vi, Il 1 @yx < Chlvallp o)

and so ||(by —b)(vi, )| g1 (@)x — 0as h — 0 by the boundedness of ||vy ||y . Similar
results hold for ¢, and ;. Therefore we have convergence of limit points of the
above discrete iterative method to critical points of (3.1) as A — 0.
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Remark 5.5. As mentioned before Example 3.3, when solving the smooth double
well problem in practice, we solve a finite element discretisation of the linearised
iterative method (3.7): Given yy4 s, u2 € Vp,forn = 1,2,... findu, = u; € V),
such that

p(uy —uy ™" nn) + (P mn) + o1e(Vuy, Vi)

o _ (5.9
+ ?l((uz l)zuh — Up, 7711) =0 Vnh € W,
where y7~1, pi~! € V, satisfy
a(Vyr V) + 0 m) = g ) 510

a(Vpr= V) + (pp ) = O = v i)

forall n;, € V).
We use numerical integration on the linearised term. Note that the theorems do
not necessarily hold for this iterative method, but it performs well in practice.

Example 5.6 (Double Obstacle). Take the same definitions as in Example 3.2. In
addition take Vj, as above, W), := K}, and define

O
b (up, np) = p(un, ) + 02e(Vuy, Vi) — f(uh, )

cn(uns Mn) = pn, M) — (Shttn, Shnn)
In(un) == (Sy Yansun)
J (u;,) =0,
where S, is the discrete elliptic operator defined by (5.6), and y,, is the L2-
projection of y; onto V.
For p > max{%Z, C?} all the assumptions of Theorem 2.5 are satisfied, so we get
the decreasing energy property and convergence of iterates for the following discrete

iterative method: Given y;, € V), and ug € Ky, forn =1,2,...findu, = u; € Ky
such that

p(un — g ™" nn —up) + (P~ mn — up) + 026(Vup, Vg — Vauy,)

s (5.11)
- ;(uh, nn—up) >0 VY, € Ky

where y7~!, pi=! € V satisfy

a(Vy V) + p ) = ) )
a(Vpr V) + (o ) = n = Yahs h)

for all n, € Vj.
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Theorem 5.2 gives convergence of limit points of the above discrete iterative
method to critical points of (3.3) as & — 0.

5.3 Algorithms

The discrete iterative methods in Examples 5.4 and 5.6 lead to the following
algorithms for binary image recovery, which we implement and test in the next
section.

5.3.1 Smooth Double Well Potential

Given y;, € V), and an initial guess ug € Vj, set n = 1 then:

1. Solve (5.10) for y;~! then p}—;

2. Solve (5.9) for uj;

3. 0f [y, — u’;l_l | 22(2) < TOL terminate the algorithm. Else set n = n + 1 and go
to step 1;

An alternative stopping criterion would be to wait until the change in energy
\F 1(uy) — k1 (uz_l)i is sufficiently small. This has the advantage that the energy
decreasing result then guarantees our algorithm terminates. However the stopping
criterion in the above algorithm also gives a strong indication of a steady state, and
it seems to work better in practice.

Note that despite the blurring and noise, 4 still contains a lot of information
about the solution. Therefore it makes sense to scale and threshold y, j in order to
get a good initial guess for ug.

5.3.2 Double Obstacle Potential

The algorithm for this potential is the same as for the smooth double well potential,
but we instead solve the variational inequality (5.11) in step 2.

One method for solving the variational inequalities at each iteration is the primal-
dual active set (PDAS) method. It is applied to solving the variational inequalities
arising in the Allen-Cahn inequality in [6]. We implemented this method and found
it to work well. However, for the numerics in the next sections we use an alternative
method known as the Truncated Nonsmooth Newton Multigrid (TNNMG) method
(see [23,25]), which performs very well.
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6 Numerics

In this section we show some numerical examples of binary recovery in 1 and 2
dimensions. The data is blurred by the solution operator of the elliptic PDE (1.5),
with the parameter o controlling the level of blurring. It also has additive Gaussian
noise of mean zero and variance y.

We do the recovery using the discrete iterative methods of Remark 5.5 (based
on the smooth double well potential) and (5.11) (based on the double obstacle
potential). In practice we observe convergence of the full sequence of iterates to
steady states, which are discrete critical points of (1.7). As we take ¢ and & small,
we believe that these critical points closely approximate a global minimiser of the
model (1.4). This is because the iterative methods give us discrete critical points of
the approximate model (1.7), which seem to be at least discrete local minimisers
of (1.7), as different initial iterates and (valid) values of p do not lead to different
steady states. In addition, for small ¢ (and appropriate %) the critical points are
close to being binary i.e. feasible minimisers of the model (1.4). We cannot be
certain how close they really are to the global minimisers of (1.4) due to the lack
of explicitly known global minimisers for interesting problems. Regardless, by
artificially generating data from a known binary function, the numerical results show
that for small ¢ (and appropriate /) our iterative methods are effective at recovering
something close to the binary function.

The weighting given to the regularisation (the parameter o), which defines the
nonconvex model (1.4), is an important but challenging issue. If we take o too small
then recovered functions still have artifacts of the noise. If ¢ is too large then we
loose some features we actually want to keep. We show some figures and discuss
some results on the choice of o for related problems in Appendix A.1, however the
theory does not apply to our particular problem. In this section we just take values
of o that we have experimentally determined to work well for the problem at hand.

For the implementation we use the Distributed and Unified Numerics Envi-
ronment (DUNE), see [2-5, 18, 19]. DUNE provides interfaces for grids, solvers
and finite element spaces. Therefore once the algorithms are implemented, it takes
minimal effort to change features of the implementation that would usually be fixed,
such as the grid type, the dimension of the problem, and the type of finite elements
used.

6.1 1D Numerics

The test problem in 1D is inspired by the barcode problem of [21], which was
mentioned as a motivating example in Sect. 1.1. We try to recover a binary function
taking the values {—1, 1}, which one can imagine represents a cross section of a
barcode (with values of —1 corresponding to black parts of the barcode and values
of 1 corresponding to white parts). We suppose this binary function is corrupted,
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Fig. 1

a=1le—4,y =04,0 =
le —4,e =5.31le — 4 and
h = 1.67e — 4. (a) Smooth
double well potential. (b)
Double obstacle potential

giving blurred and noisy data that we want to decode. The main difference between
our test problem and the barcode problem in [21] is that we have chosen blurring
caused by the solution operator of an elliptic PDE instead of a convolution. Although
this is not a realistic blurring operator specified by this application, if our approach
is effective for this blurring operator then it is likely to be effective for other blurring
operators.

The recovery using both the smooth double well and double obstacle potentials
can be found in Fig. 1. The black lines represent the binary function that we want
to recover, the blue lines are the artificial data we generate by adding blurring and
noise, and the red lines are the recovered functions for each potential. Even by eye
it is not clear exactly how many ‘bars’ are in the binary functions, or the correct
widths of the bars. But the recovered functions closely match the binary function
we started with (which is why the black lines are almost hidden by the red lines),
showing that our approach is effective. The figure also makes apparent one of the
advantages of the double obstacle potential, which is that recovered functions take
a form closer to what we actually want; binary functions.

6.2 2D Numerics

The test problems in 2D involve recovering binary functions with discontinuities
of various shapes. In this dimension the problems have a natural interpretation
as deblurring and denoising of images, but we also view them as binary source
recovery problems for elliptic PDEs.

Figure 2 shows the recovery of a binary function using (1.7) with the smooth
double well potential. The discontinuity is a ‘blob’ shape and is marked by a black
line. The blurred and noisy data for this function is shown in Fig. 2a,b. Figure 2c
shows the recovered function, with a yellow line marking the zero level set. We can
see that the yellow line closely matches the black line, except for a slight mismatch
at the concave parts of the discontinuity. Note that we cannot make the interface
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Fig.2 « =0.01,y =0.2,0 = le — 4, ¢ = 0.00879 and i1 = 0.00345 using the smooth double
well potential

as small as for the 1D problem as the resolution of the grid needed to resolve it
makes this computationally expensive. Our implementation is capable of adaptivity,
which lessens this cost somewhat, but we will not demonstrate this functionality in
this work. With this simple visualisation the recovered function using the double
obstacle potential looks very similar, so we do not include a figure of it.

Figure 3 (which can be interpreted in the same way as Fig. 2) shows the
recovery of a binary function with a letter ‘A’ shaped discontinuity. This time we
use the double obstacle potential in (1.7), though the recovered function using the
smooth double well potential looks similar. This example shows that the model can
also recover discontinuities with corners reasonably accurately, but there is some
rounding of these corners due to the regularisation.

To finish this section we show an example which relates to an application of
binary image recovery in 2D. Figure 4 shows the recovery of a binary function
representing a QR code with 25x25 blocks (the size typically used to encode a
URL). The yellow lines mark the discontinuity of the binary function. Figure 4a
shows the data with a red line marking the zero level set, and Fig. 4b shows
the recovered function. We see that features which are blurred below the zero
level set (and which therefore would not be recovered by a simple projection) are
nevertheless recovered by the model.
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Fig.3 « =0.01,y = 0.2, 0 = le —4, ¢ = 0.00879 and & = 0.00345 using the double obstacle
potential

Fig.4 @« =5¢—4,y =0,0 = le—5, ¢ = 0.00373 and & = 0.00146 using the double obstacle
potential

7 Comparison of Potentials in 1D

Due to the I'-convergence result of Theorem 1.1, we expect that critical points
of (1.7) for a given value of o using either the smooth double well or double obstacle
potential will converge to critical point of (1.4) in the limit of small e. Of course the
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critical points they converge to are not guaranteed to be the same, but agreement
of the limits is observed in practice, and for very small ¢ the recovered functions
for both potentials are almost indistinguishable. However it is well known that for
phase field type problems, the interface should be well resolved in order for an
accurate spatial approximation. This means that the smaller ¢, the more grid points
needed, and the higher the computational cost of the iterative methods. For many
applications we only want to recover the location of the discontinuities in a binary
function, which we suppose are given by the zero level set of the recovered function.

This motivates us to consider in this section how well we can recover the
locations of the discontinuities with & of moderate size (rather than as small as
possible), which is computationally cheaper. In this case the choice of potential does
not just affect the implementation and speed of the iterative method; the recovered
functions will in general look quite different, and there may be differences in how
accurately or reliably the locations of the discontinuities are recovered.

As in Sect. 6 we consider a problem with blurring caused by the solution operator
of the elliptic PDE (1.5) and additive Gaussian noise of mean zero and variance y.
We use the discrete iterative method of Remark 5.5 for the smooth double well
potential and (5.11) for the double obstacle potential.

At this stage it is helpful to recall the parameters we have introduced so far, as
well as introduce a new parameter @, the width of the smallest bar in the binary
function. The parameters are contained in Table 1, and have been classified as
follows:

* Problem parameters—Define the problem we are trying to solve. In applications
we have no control over these, though we suppose they are known a priori.

* Model parameters—Specify the model we will use to solve the problem.
Different values can lead to the recovery of quite different functions, so they
need to be chosen carefully.

e Approximation parameters—We do not work with the model, but rather an
approximation of it. These parameters control how good the approximation is.

Table 1 Parameter types

Parameter | Description Type of parameter | Optimal value
0} Width of smallest bar in binary | Problem -
function
Level of blurring Problem -
y Level of noise Problem -
o Weighting given to perimeter Model /80
regularisation
& Order of width of interface Approximation w/4w
h Grid width Discretisation /32
u® Initial iterate Iteration -
P Parameter in iterative method Iteration DW: 0.833, DO: 0.588

TOL Stopping criterion Implementation DW: 3¢ — 4, DO: 3.5¢ — 4
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» Discretisation parameters—Affect the accuracy of the spatial discretisation in the
iterative method.

 Iteration parameters—Determine the behavior of the iterative method.

* Implementation parameters—Control the finer details of the implementation.

We also have a number of less significant implementation parameters that handle
the imprecision of computer arithmetic. These will be set to sensible values and
ignored in our discussion.

Motivated by the above discussion we now investigate differences between the
smooth double well and double obstacle potentials in accuracy, reliability, speed,
and implementational complexity.

7.1 Accuracy

Denote the binary function we want to recover by u# and the recovered function by
us ». We measure the accuracy of the recovery by calculating the error quantity

1 _ 1 _
E(uep) = 4_1| | P (ue) 7y — |ulry \ + §||P(“a,h) - “”LI(Q)’

where P is the L? projection onto the space BV(Q,{—1,1}) (i.e. P(uz;,) = 1 when
uep, > 0 and —1 when u.; < 0). |u|py is the total variation of u, as defined in
Sect. 1.2. The integer part of E(u. ) tells us the absolute difference between the
number of bars in the projected recovered function and u. The decimal part tells
us whether the discontinuities in the projected recovered function are in the correct
locations. So E measures the accuracy of the recovery in a sense that matters in
applications.

We project because our best guess of u should lie in BV(2,{—1,1}). The
downside of this is that P(u.;) is not a minimiser of (1.7). It is important to
note that the recovery using the double obstacle potential is naturally much closer
to being binary than with the smooth double well potential, so projection is less
necessary. This is a big advantage of using the double obstacle potential, which
must be remembered when values of E (i, ) seem comparable.

The test problems we use for our comparison use the same binary function as
in Sect. 6.1 (which has v = %), and different levels of blurring and noise i.e.
a range of values of o and y. We first fix o based on the size of w (as described
in Appendix A.1) then choose good values of the approximation and discretisation
parameters (as described in Appendices A.2 and A.3). So we have 0 = le — 4,
& = 7.06e — 4 and h = 2.77e — 4 for both potentials. Each realisation of the noise
will be different, so we calculate an average E over multiple realisations of the
noise. As we observed earlier, we get the same steady state of (1.7) regardless of the
choice of iteration parameters. The same is true for implementation parameters. So
we ignore both these types of parameters in our discussion of accuracy.
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We see in Fig. 5 that neither potential is the most accurate in all circumstances.
For moderate levels of noise (y = 0.2), the double obstacle potential leads to a
slightly more accurate recovery. However for high levels of noise (y = 0.4), the
smooth double well potential seems to perform slightly better. Without projection
the double obstacle potential always leads to a recovery which is significantly more
accurate than the smooth double well potential.

7.2 Reliability

By reliability we refer to the range of problems (i.e. the levels of blurring and noise)
over which a binary function can be recovered with reasonable accuracy; as the
amount of blurring and noise are increased, eventually the recovered function does
not resemble the binary function we wanted. Note that this range will depend on o.
We do not do a detailed comparison of reliability, but feel that it is comparable for
both potentials. For example, we can see in Fig. 5 thata = le —4 and y = 0.4 is
roughly the limit at which the correct number of bars can be recovered using either
potential.

7.3 Speed

The time it takes to recover a function which resembles the binary function is
an important practical consideration. Where as accuracy is independent of the
implementation, this is certainly not the case for speed. All but the inner workings
of each iterative method in our implementation are identical, so we will do our best
to make a fair comparison of speed.
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Table 2 Average runtimes

Time for rough | Time for accurate
foroa = le —4and y = 0.2

recovery (s) recovery (s)
Smooth double well
Average time/it 0.0359 0.181
# iterations 11 170
Runtime 0.41 29.9
Double obstacle
Average time/it 0.0639 0.255
# iterations 9 170
Runtime 0.58 42.6

We perform this comparison for the binary function of Sect. 6.1, one choice of
blurring and noise (¢ = le—4 and y = 0.2), and o as in Sects. 7.1 and 7.2. Choices
of ¢ and & as well as iteration and implementation parameters have a big impact on
speed, so we will test two different combinations of these parameters. Our timings
can be found in Table 2.

The runtimes for ‘accurate recovery’ use & and % as in Sects. 7.1 and 7.2,
and TOL as described in Appendix A.5. These values have been chosen to
ensure robustness. The table also contains timings for ‘rough recovery’, where less
conservative parameter values are used (¢ = %, h = ;‘)—0, and TOL as described
in Appendix A.5). For many problems we can still get a reasonable recovery with
these parameter values, and it lowers the computation time significantly.

The recovery times are comparable for each potential for both rough and accurate
recovery, though the smooth double well potential has a slight advantage for this
size of problem. However we remark that the recovery time of the double obstacle
potential scales better as the number of degrees of freedom in the discretisation
increases, so it has better performance in 2D.

7.4 Implementational Complexity

Implementing the iterative method for the double obstacle potential is less standard
as we are solving variational inequality rather than a PDE. But it is no more
complicated than implementing adaptivity, which is needed for the computational
cost of the iterative method for the smooth double well potential to scale well to
dimensions 2 and higher.

7.5 Summary of Comparison

Both potentials can accurately recover binary functions over the same range of
blurring and noise. If no projection is used, the double obstacle potential produces
significantly more accurate results. Even with projection it is more accurate for
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moderate levels of blurring and noise. Our implementation using the smooth double
well potential is slightly quicker for both accurate and rough binary recovery on our
1D test problem. However our implementation using the double obstacle potential,
which is overall no more complicated, scales better to many degrees of freedom and
so tends to be quicker in higher dimensions.

Appendix A Parameter Choices

In this appendix we describe our methodology for choosing parameter values for
the numerical tests and comparisons in Sects. 6 and 7.

A.1 Choice of Model Parameter o

We recover different functions for different values of o, so it is important to choose
the ‘right’ value. This is illustrated in Fig. 6, where we show the recovered functions
for the same problem as in Fig. 1a for different values of 0. We see that 0 = 5¢ —3
leads to too few bars being recovered. The recovered function for 0 = 1e—6 follows
the noise too much and does not resemble a binary function. With 0 = le — 4
we recover something close to the binary function that generated the data, so we
consider this to be a good value.

Fig. 6 The problem of Fig. la with different values of 0. (a) 0 = 5¢ — 3. (b) 0 = le — 4.
(c)o=1le—6
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It is known that the choice of ¢ in (1.4) should be related to the variance of the
noise. Noise with a large variance requires a large o in order for good recovery. We
could try to figure out the variance of the noise from the data and use this to choose
o, however there is not an explicit form for the relationship. Instead we choose o
based on the length scale of the features that we want to recover (i.e. the parameter
), and use the same o for all levels of noise. In applications this is generally known
a priori e.g. for barcode recovery. This approach works well because we take o be
as large as possible while not removing the features we want to recover, and hence
perform the maximum amount of denoising. We do not seem to pay a significant
price for this large o in cases where the noise is small, and this approach leads to a
simple rule for choosing o. The literature that gives us a heuristic way of choosing
such a o is introduced below.

The following result shows that it is unwise to take o too large.

Proposition A.1. There exists a 0* > 0 such that the minimiser of (1.4) is 0 iff
o>0*

Proof. Proposition 5.7 in [13]. O

But we also need to be careful not to take o too small. In fact, since S is known we
have the following result in the 1D case.

Theorem A.2. Inthe absence of noise there exists a 0« > 0 such that the minimiser
of (1.4) is u whenever 0 < 0.

Proof. Proposition 5 in [21]. O

Another interesting result is Theorem 1.1 part 2 in [16], which proves more
explicit conditions on ¢ to ensure exact recovery in the case that S is a convolution
with a hat function in 1D. Due to our complicated form for S we are forced to use a
more heuristic argument to choose a good value for o.

Chan et al. [14] shows that for the 1D case in the absence of blurring and noise
(i.e. binary data), local and global minimisers of (1.4) can be calculated explicitly for
a given value of 0. These considerations suggest we should take o to be smaller than
a quarter of the size of the smallest object we want to recover. In particular, 0 = ¢
seems like a sensible choice. But this assumes binary data. We have blurring, which
means the differences between the functions in the ||Su—y, ||i2 (q) term can be much
smaller. Hence we take o an order of magnitude smaller i.e. 0 = g5. This o is still
larger than the length scale of the noise (which is of order %), so the results in [14]
say it will be removed. Numerical experiments confirm that this choice of o works

well in practice.

A.2 Choice of

The phase field approximation in (1.7) results in solutions with interfaces of width
o(¢e). In order for an accurate spatial approximation we need a reasonable number
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of grid points across the interfaces. So a smaller ¢ requires more grid points and a
higher computational cost. With this is mind we want to take ¢ as large as we can
while still resolving the finest features of the binary function. So the choice of ¢
should be related to the value of w.

We assume that there is a linear relationship between the optimal choice of ¢ and
o and deduce the constant of proportionality c¢; such that we get a good recovery
with e = cjw. Note that ¢ is the asymptotic width of the interface for minimisers
of the Ginzburg-Landau functional with the double obstacle potential, and a good
approximation with the smooth double well potential. The width of interfaces in
minimisers of (1.7), a perturbed Ginzburg-Landau functional, are approximately the
same size. So c; can be thought of as the relative width of the interface compared to
the width of the smallest bar.

To determine c; we recover a simple binary function which can be seen in Fig. 7.
We take w; = wy, = w3 = 0.2 (i.e. bars of equal widths), as we found the case
where all bars are at the finest length scale to be the hardest for accurate recovery.
We consider different levels of blurring and noise and compute the error E of the
recovered functions. We take o to be the optimal value of g that we decided upon in
Appendix A.1, and take we = 50k to ensure that effects of the spatial discretisation
do not distort our results.

We observe that for a high signal to noise ratio we can take ¢; very large and still
get accurate recovery (¢ = 0.01 in Fig. 8), even though the bars do not separate
properly (see Fig. 9a). For low signal to noise ratios (@ = 0.1 in Fig. 8) we need
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Fig. 9 The interfaces using the smooth double well potential with different values of ¢;. Figure 9b
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Fig. 10 Errors (averaged over many realisations of the noise) for both potentials at different levels
of blurring and y = 0.2 with different values of ¢,

to take ¢; < 0.5 for accurate recovery, though it is not until ¢ < 0.25 that the
interfaces start to look reasonably sharp (see Fig. 9b). As expected there is not an
accuracy penalty for taking c; too small, however it increases computation time by
forcing us to take smaller % in order to resolve the interfaces. This motivates us to
take ¢; = 0.25i.e. me = 7.

A.3 Choice of h

We use the same test problems as in Appendix A.2 to deduce a constant factor c;
such that we get a good recovery with me = c¢,h. Hence ¢, can be thought of as the
number of grid elements across each interface.

With a high signal to noise ratio (@ = 0.0l in Fig. 10) it can actually be
advantageous to have few grid points across the interface. In this case the recovered
function would have to deviate a long way from the binary function in order for
the projection to take an incorrect value on even a single grid point, and the data
does not force sufficient deviation. As a result we can actually get perfect recovery
on coarse grids. However, if we have a poorly resolved interface we are not well
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approximating our model and we may get a bad recovery for low signal to noise
ratios (o = 0.1 in Fig. 10).

We do not want to adjust the relationship between ¢ and /& for different levels
of blurring and noise; we want a relationship for each potential that always works.
This means we must properly resolve the interfaces. Figure 10 suggests that we can
take ¢, = 5 for both potentials, however this leads to slightly jagged interfaces.
Therefore we will again favour robustness and choose ¢, = 8 i.e. e = 8h.

A.4 Choice of Iterative Parameter

The discrete iterative methods of Sect. 5.2 have values p independent of 4 such
that for all p > p the iterates decrease in energy and converge in some sense. For
example, a possible p for the iterative method of Example 5.6 applied to the problem
in Sect. 7.3 is max{?2, C2} = 0.999, where we use the Poincaré constant 1/7.
However in practice we observe that the iterates of this method decrease in energy
and converge for p > 0.833. It is advantageous to take p small, as this results
in fewer iterations and uses less total computational effort. So to maximise speed
we experimentally determine a value of p which is as small as possible while still
reliably giving a decrease in energy and convergence of iterates. This approach also
works for the iterative method of Remark 5.5 for the double well potential, which
lies outside of our framework. So for the speed comparison in Sect. 7.3 we use
p = 0.833 for the smooth double well potential and p = 0.588 for the double
obstacle potential. In the rest of the numerics, where speed is less of a concern, p is
taken large (and larger than p if it is known) to ensure we get the expected behaviour
of the iterative methods.

A.5 Choice of Stopping Criterion

We will never quite reach the steady state of the iterative method, so a decision
needs to be made about when we are sufficiently close. For this purpose we use the
stopping criterion introduced in Sect. 5.3 which terminates the algorithms when the
L? norm of the difference between consecutive iterations is less than TOL.

Mostly we take TOL small so that we are effectively finding the exact steady
state, but for the comparison of speed in Sect. 7.3 we need to avoid unnecessary
iterations. Figure 11 suggests about 170 iterations will take us quite close to the
steady state for the problem under consideration. This corresponds to taking TOL=
3e — 4 for the smooth double well and TOL= 3.5¢ — 4 for the double obstacle, and
we use these values for the ‘accurate recovery’.

In practice we just want a sufficiently accurate recovery as quickly as possible.
Our feeling is that the binary function is usually sufficiently accurately recovered
once the error is below 0.1. At this stage the correct number of bars have formed
and the locations are probably known well enough (e.g. for a different algorithm
to interpret the binary function as a barcode). We see in Fig. 11 that the smooth
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Fig. 11 The error (averaged over many realisations of the noise) after a given number of iterations
for both potentials for the problem of Sect. 7.3. (a) Error. (b) TOL

double well potential achieves this in around 11 iteration, which corresponds to
TOL= 1.5e — 2. The double obstacle potential achieves this in around 9 iterations,
which corresponds to TOL= 4e — 2. We take these values for the ‘rough recovery’.
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Recent Results in Shape Optimization
and Optimal Control for PDEs

Maurizio Falcone and Marco Verani

Abstract In this paper we will present some recent advances in the numerical
approximation of two classical problems: shape optimization and optimal control
for evolutive partial differential equations. For shape optimization we present two
novel techniques which have shown to be rather efficient on some applications.
The first technique is based on multigrid methods whereas the second relies on
an adaptive sequential quadratic programming. With respect to the optimal control
of evolutive problems, the approximation is based on the coupling between a POD
representation of the dynamical system and the classical Dynamic Programming
approach. We look for an approximation of the value function characterized as
the weak solution (in the viscosity sense) of the corresponding Hamilton-Jacobi
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1 Introduction

In this survey we will present some recent advances in the numerical approximation
of two classical problems: shape optimization and optimal control for evolutive par-
tial differential equations. These results have been achieved with the contributions of
the researcher working in the teams at Milano Politecnico and Roma “La Sapienza”
within the ESF OPTPDE project.

Shape optimization problems are ubiquitous in science, engineering and indus-
trial applications. Indeed, starting with the foundation of PDE-based optimization
[30], shape design has became one of the most frequent application in technologies
and it is nowadays one main focus of aerodynamics simulation (see, e.g., [31,42]).

A central role in the formulation and development of computational frameworks
for shape optimization has been played by elliptic shape optimization problems
[36] that correspond to cases of potential flow allowing simpler investigation.
Nevertheless, these problems arise in many important applications as nozzle and
airfoil design, and in the design of beams and plates. Along this development, one
of the most remarkable advances in shape design has been to replace the approach of
parametric optimization with the concept of continuous shape design (see, e.g., the
books [17,22,28,31,36,38]). In fact, in the former approach the control variable (i.e.,
the shape) is restricted to belong to a finite dimensional space spanned by suitable
basis functions, while in the latter case it is an element of an infinite-dimensional
space. This second approach opens enormous perspective in the formulation of more
accurate and sophisticated shape optimization problems.

The possibility of formulating the shape optimization problems at the infinite-
dimensional level poses new challenges to the design and implementation of
numerical optimization schemes that properly accommodate the infinite dimen-
sionality of the control function. In particular, a successful and effective algorithm
must allow the control function to be adaptively approximated and optimized to any
desired degree of accuracy.

With respect to shape optimization, the purpose of this paper is twofold. We
first formulate and analyze a multigrid shape optimization framework that extends
principles and techniques of the multigrid strategy for PDE solvers and accom-
modates the infinite-dimensionality of the control variables; then we introduce an
adaptive strategy able to automatically deal with the approximation of the optimal
geometry combined with the approximation of the underlying PDE. As we said,
our second problem will be the approximation of a finite horizon optimal control
problem for an evolutive partial differential equation, e.g. the advection—diffusion
equation. The basic ingredient of the method is the coupling between an adaptive
reduced basis representation of the solution and a Dynamic Programming scheme
for the evolutive Hamilton-Jacobi equation characterizing the value function. Since
the theory of weak solutions for Hamilton-Jacobi equation is rather complete in
any dimension, the method can in principle solve a rather general class of optimal



Recent Results in Shape Optimization and Optimal Control for PDEs 67

control problems. The approach described here is clearly different from the more
classical approach based on the solution of the system of necessary conditions
obtained via the Pontryagin maximum principle. The main advantage is that we
naturally obtain optimal control in feedback form but the price we pay is related
to the well known curse of dimensionality of Dynamic Programming. We try to
circumvent this problem using new tools which have emerged in recent years to deal
with optimal control problems in infinite dimension. In particular, we will use new
techniques to reduce the number of dimensions in the description of the dynamical
system or, more in general, of the solution of the problem that one is trying to
optimize. These methods are generally called reduced-order methods and include
for example the POD (Proper Orthogonal Decomposition) method and reduced basis
approximation (see [35]). In some particular case, as for the heat equation, even
5 basis functions will suffice to have a rather accurate POD representation of the
solution. Having this in mind, it is reasonable to start thinking to a different approach
based on Dynamic Programming (DP) and Hamilton-Jacobi-Bellman equations
(HJB). In this new approach we will first develop a reduced basis representation
of the solution along a reference trajectory and then use this basis to set-up a control
problem in the new space of coordinates. Then, the corresponding Hamilton-Jacobi
equation will just need 3-5 variables to represent the state of the system. It is well
known that the solution of HJB equation is not an easy task from the numerical point
of view since viscosity solutions of the HIB equation are typically non regular (just
Lipschitz continuous). Optimal control problems for ODEs were solved by Dynamic
Programming, both analytically and numerically (see [4] for a general presentation
of this theory). From the numerical point of view, this approach has been developed
for many classical control problems obtaining convergence results and a-priori error
estimates ([19,21] and the book [20]). We should mention that a first tentative in this
direction has been made by Kunisch and co-authors in a series of papers [23,24,27]
for diffusion dominated equations. In particular, in the paper by Kunisch, Volkwein
and Xie [26] one can see a feedback control approach based on a coupling between
POD basis approximation and HIB equations for the viscous Burgers equation.

Note that restricting the dimension to a rather low number of basis functions
(typically 4) naturally affects the accuracy of the POD approximation. In fact,
under this restriction, the POD method does not always have enough informations
to follow correctly the solution of the evolutive problem. We circumvent this
problem updating our POD basis during the evolution and splitting the problem
into subproblems. Every sub-problem is set in an interval /; = [¢;,¢; ] where we
recompute the POD basis. Behind the adaptive method and the choice of the ¢; there
are two important a-posteriori estimators: the first is related to the computation of
the POD basis function whereas the second takes into account the residual of the
dynamics.
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2 Two Approaches for Shape Optimization: Multigrid
and Adaptivity

Shape optimization problems governed by partial differential equations (PDE) can
be formulated as constrained minimization problems with respect to the shape of a
domain Q in R?. If u = u(2) is the solution of a PDE in €2, the state equation,

Au(Q) = 2.1
and J(£2,u(2)) is a cost functional, then we consider the minimization problem

Q" elUy:  JQu(@) = inf J(Q.u(Q). 2.2)
EUqa

where U, is a set of admissible domains in R“. This is a constrained minimization
problem for J.

In this section we review two different shape optimization algorithms, namely
the Multigrid Sequential Quadratic Programming (MSQP) presented in [3] and
the Adaptive Sequential Quadratic Programming algorithm (ASQP) introduced in
[32]. Such algorithms build a sequence of domains {Q®},, converging to a local
minimizer of the shape optimization problem (2.1)—(2.2). To motivate and briefly
describe the ideas underlying MSQP and ASQP, we need the concept of shape
derivative VJ(€2; w) of J(2) in the direction of a normal velocity w. By resorting
to the celebrated Hadamard-Zolésio structure theorem (see, e.g., [17,38]), it is well
known that the shape derivative V J(£2; w) can be always written as

VJI(Qw) = / G(Q)w, 2.3)
r

for a proper choice of the function G(€2), named the Riesz representation of
the shape derivative, that in general depends on the solution u(£2) of the state
equation (2.1). To review MSQP and ASQP, we preliminary introduce an infinite
dimensional Sequential Quadratic Programming (co-ASQP) algorithm. Let Q©
be the current iterate and Q¢+ be the new one. We let I'® = 9Q® and
V(I'®) be a Hilbert space defined on ', with norm || - [lyr@). We further let
bro () 1 V(I'®) x V(I'®) — R be a continuous and coercive bilinear form with
respect to the norm || - [|yr@), which gives rise to the elliptic self-adjoint operator
B on T'® defined by (BYv, w) o = bre (v, w). We then consider the following
quadratic model Q©© : V(I'Y) — R of J at Q®

0O (w) == J(QY) + vI(QY;w) + %(BWW, w). (2.4)
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We denote by v the minimizer of Q©)(w), namely v(®) satisfies
v e y(Tr®)y . bro(vP, w) = —(GO, wW)pe  YweVT®), (25)

with g := g(Q®). It is easy to check that v(¥) is the unique minimizer of Q ) (w)
and that the coercivity of the form by (-, -) implies that v(¥) is an admissible descent
direction; i.e. VJ(Q©®;v)) < 0.

Once v(¥ has been found, we need to determine a stepsize that is not too small
and guarantees sufficient decrease of the functional J. To accomplish this goal we
identify a range of admissible stepsizes by adapting the classical Armijo-Wolfe
conditions in R”: given constants 0 < a < B < 1, we seek a stepsize 4 € R*
satisfying

J(QY 4+ uv®) < 1(QO) + ap VI(QW;vY), (2.6)
VIQY + uv®; vy > g viQ©;vh), 2.7)

where Q) + uv® = {y e R? : y = x4+ uv9(x), x € Q®} is the updated
domain and v( = v(©p® is a normal vector field.

We are now ready to introduce the infinite dimensional Sequential Quadratic
Programming algorithm (co-ASQP) for solving the constrained optimization prob-
lem (2.1)-(2.2):

00-SQP Algorithm

Given the initial domain Q©@, set £ = 0
and iterate:

(a) compute u® =u(QY) by solving (2.1)

(b) Compute the Riesz representation GY =
G(QW) of (2.3)

(¢) Compute the search direction v by
solving (2.5)

(d) Determine an admissible stepsize u®
satisfying (2.6)-(2.7)

(e) Update: QU+D =Q® 4 OyO: ¢:=¢ 41

It is important to note that, the co-SQP algorithm is not feasible as it stands,
because it requires the exact computation of the following quantities at each
iteration: the solution u(®) to the state equation (2.1); the solution v“) to the linear
subproblem (2.5); the values of the functional J and of its derivative dJ in the
line search routine. In the following, we review the Adaptive Sequential Quadratic
Programming algorithm (ASQP) (see Sect. 2.1) and the Multigrid Sequential
Quadratic Programming (MSQP) (see Sect. 2.2) as possible feasible variants of the
00-SQP algorithm.
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2.1 MSQP: A Multigrid Shape Optimization Algorithm

In this section we sketch the ideas underlying the construction of MSQP, we
present the algorithm and we report some enlightening numerical results (see [3]
for more details). Generally speaking, in MSQP the boundary of the domain, i.e.,
the control variable, is represented at various levels k of discretization and the
resulting multigrid shape optimization scheme acts directly on the geometry of
the domain combining a single-grid shape gradient optimizer with a coarse-grid
correction (minimization) step, recursively within a hierarchy of levels.

As we focus on multigrid concepts, we need to define an iterative optimization
process that can be applied at every level of discretization with the aim of improving
the shape towards the optimum. In our case, this is a shape-gradient optimizer,
denoted by SQPy, that acts similarly to a Jacobi smoother in a classical multigrid
scheme. In practice, SQP; is a feasible variant of the co-SQP stated at the level k of
discretization (see e.g. [16, 18]).

In addition to the iterative scheme mentioned above, the formulation of a
multigrid scheme requires to define a coarse-grid correction step that complements
the action of the single-grid optimization procedure. To construct this step, suitable
intergrid transfer operators are required together with the formulation of a coarse
optimization problem that correctly approximates the fine-level shape optimization
problem. On the other hand, to define the coarse shape optimization problem, the
multigrid optimization framework introduced in [29, 33] is extended to the present
case where the optimization variable is a geometrical object.

The approach presented in [3] is in contrast to previous attempts [7, 11-15]
to define a consistent multigrid framework for shape optimization where the
computational domain is discretized by finite elements and the control boundary is
represented through parameterized shape functions. Therefore, within the hierarchy
of levels defined by the multigrid strategy, the approach of MSQP allows to construct
a coarse-grid correction step that can be understood from the geometrical [40] and
optimization [5,6,29,33,41] point of views, whereas the idea in [7,12] of coarsening
by taking a subset of shape parameters appears based on heuristic consideration.

To prepare the description of the MSQP algorithm, we first introduce the hierarchy
of spaces L{iC , Of discrete admissible configurations. According to this, we denote
by Q an element of Z/l(f , and by T’ the corresponding boundary (see Fig. 1 for an
example where the deformable part of the domain is the graph of a function). Then
we introduce the finite element space to approximate the solution of the PDE on
Qp: let 7 (2;) be a conforming and shape-regular triangulation of € and V(£2y)
denote the associated space of finite elements. If we define the discrete reduced
functional Ji (Ty) at k-level as

Ji(Ty) = J(Qu, yi () (2.8)
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Fig. 1 An example of a8 Ty
discrete control boundary -
represented at different levels
of discretization: I'y (dotted)
and Ty—; = If7'Ty (solid)

then the reduced discrete shape optimization problem at level k reads as follows:
Iy = argminy, uk, Je(Te) . (2.9)

Finally, for multigrid purpose, we need to define intergrid transfer operators
acting on: functions in Z/l(f 1> geometric boundaries I'x; and functions defined on
geometric boundaries (i.e., shape gradients). To simplify the exposition (see [3] for
more rigorous definitions) we will not use different symbols to distinguish among
the above operators: we will always denote by 1 ]f ~! the restriction operators and by
1 15—1 the corresponding prolongation operators, the difference being clear from the
context (see Fig. 1).

Finally, we introduce a hierarchy of nested shape optimization problems that
will be solved at different levels of discretization. At k-level of discretization,
we consider a function gi to be defined iteratively in terms of gy4;, where we
set gxg = 0, being K the finest level of discretization (see below, Step 4 of the
MSQP algorithm, for the precise recursive definition of gi). The corresponding
shape optimization problem at k-level reads as follows:

min Fy(Ty) := fk(rk)—/ g d<Q . (2.10)
Qg

Ty EZ/{[fd

It is clear that at the finest level K, the problem (2.10) corresponds to the original
discrete shape optimization problem. Our aim is to formulate a multigrid shape
optimization scheme for solving the minimization problem (2.10) for all levels k.

Let F,io) be the initial optimization boundary at level k and g; be given. The
(new)
r, =

following steps define one multigrid V'-cycle that will be denoted by
MsQP(I\" ) k, gi).
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If k

minimization problem (2.10) is solved exactly. Else

if k
(1)

>1:

Apply one-grid optimization

Compute the gradient residual

Restrict the residual and the approximate
solution to coarse levels

Setup the coarse-grid problem

Call the MSQP scheme to compute the ~
coarse-grid minimizer for min Fr_j(Tk—): Tk =
MSQP(I'y—1,k — 1, gx—1) such that

Construct the multigrid coarse-to-fine
descent direction

Optimize along yr with o-linesearch

Apply one-grid optimization

End.

MSQP Algorithm

= 1 (coarsest resolution) then the

r'“Y =sop(r?), £=0,1,...,m —1.

= gk — VI (@),

k—1 a k—1p(m1)
Fk— = Ik Fk, Fk—l = Ik Fk .

g1 = V1 (Tkm) + ric.

Tiy ~ argminFy_;(Tx—1).

Vi ==1f_1<fk—1—-fk—1)-

Fliul) — SQPk(F,ie)), L=mi+1,...,m +m,.
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In [3] it is proved that the multigrid coarse-to-fine direction y, built in Step 6 is
indeed a descent direction. Moreover, it should be clear that the MSQP scheme given
above will be applied iteratively, thus resulting in a sequence of V' -cycles with finest
level K and gx = 0. Therefore, we also refer to the following algorithm as the
MSQP scheme.

MSQP Algorithm

Input finest level K, initial 1"1(){, gx = 0,
Tolerance €, iteration counter £ = 0, max number
iterations {,,c and iterate:

(1) compute Ty =MsQP(I'%, K, gx)

(2) Check convergence: if ||V./A(Ff;)|| > € and € < Ly
then £:=¢+4+1 and go to Step 1.

(3) End

In the following, we report some numerical results, originally presented in [3],
where a shape optimization problem governed by an elliptic PDE has to be solved.
In particular, let y = y(2) be the unique solution to the following elliptic partial
differential equation

—Ay=Ff in Q (2.11)
Y= on 0€2 , (2.12)

where y, is a given function defined in R?. Let r be a given function and
A1, A2, A, P > 0 be given positive parameters. We consider the following cost
functional

p) 20 2
J(y,Q)::/r(y)dQ—i—?l(/anF—P) +7(/stz—A) . (2.13)
Q

which depends on the solution y of the problem (2.11)—(2.12), on the difference
between the perimeter of dQ2 and a given target value P and on the difference
between the area of Q2 and a given target value A.

The set U C’f -, of the admissible configurations is obtained by deforming the upper
part of the domain, which is described by the graph of a piecewise linear function
defined on a one dimensional grid. Increasing k amounts to decrease the mesh-size
of the grid. As shown in Fig. 2, the MSQP algorithm, for different values of the finest
level K of discretization, is able to efficiently approximate the optimal domain (in
this case represented by the unitary square).
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Fig. 2 Performance of the MSQP scheme for different values of the finest level K of discretization.
The algorithm converges towards the optimal shape represented by the unitary square. (a) Finest
level of discretization K = 1. Initial configuration (left), after 1 iteration (middle) and 12
iterations (right). (b) Finest level of discretization K = 3. Initial configuration (left), after 1
iteration (middle) and 9 iterations (right)

2.2 ASQP: An Adaptive Shape Optimization Algorithm

An alternative feasible variant of the oco-SQP is represented by the Adaptive
Sequential Quadratic Programming (ASQP) algorithm originally introduced in [32].
The ASQP scheme replaces all the non-computable operations of co-SQP (the
solution to the state equation (2.1), the solution to the linear subproblem (2.5), the
values of the functional J and of its derivative dJ in the line search routine) by
adaptive finite dimensional approximations, whose accuracies are adjusted relative
to the energy decrease for each iteration. It is worth noticing that the adaptive
procedure driving ASQP has to deal with two distinct sources of error:

* PDE Error: this hinges on the approximation of (2.1), the values of the functional
J and its derivative (2.3);

* Geometric Error: this relates to the approximation of (2.5) which yields the new
domain.

Since it is wasteful to impose a PDE error finer than the expected geometric error,
we have a natural mechanism to balance the computational effort.

In the following, we briefly describe the ASQP algorithm (see [32] for more
details). Recall that £ > 1 stands for the adaptive counter and Q) is the current
domain produced by ASQP with deformable boundary I'®. Let S© = S, (2®)
and VO = V1) (I'®) be the finite element spaces on the bulk and boundary, which
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are compatible and fully determined by one underlying mesh 7 of Q). We define
ASQP as follows:

ADAPTIVE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM (ASQP)

Given the initial domain Q©, a triangulation
TO of QO, and the parameters 0 < %) < %, set

y = 3-600+0), k =0, &€ = 400, u® = 1, repeat
the following steps:

[TO,U®, 7O, JO GO] = apPROXI(QO, TO, ¢®)
VO, 7O] = pIRECTION(Q®, 7O GO, )
[Q(K-H)7 T(l+l)7 H(lf-i—l)] — LINESEARCH(Q(D, T(l)7 V(l)’ J(l)7 H(Z))

S+ . )’M(HI)HV(H”HZ(@; (<041

1
2
3
4 r

(1)
(2)
(3)
(4)

In theory this algorithm is an infinite loop giving a more accurate approximation
as the iterations progress, but in practice we implement a stopping criteria in
LINESEARCH.

The modules APPROXJ and DIRECTION are driven by different adaptive
strategies and corresponding different tolerances, say a PDE tolerance y and a
geometric tolerance 0. Their relative values allow for different distributions of the
computational effort in dealing with the PDE and the geometry.

The routine DIRECTION enriches/coarsens the space V( to control the
quality of the descent direction, guaranteeing a geometric error proportional to
OV O, namely

7@+ pOVE) =@ + pOv)| < s @IV O, (2.14)

with § := 0(1 + 0) < %9. On the other hand, the module APPROXJ enriches/

coarsens the space S to control the error in the approximate functional value
JOQO 4+ pOVO) to the prescribed tolerance yu ||V |12,

i](Q(‘f) + “(Z)V(Z)) _ J(U(Q(l) + M(£)v(£)))| < )/M(Z)”V(l)”%(a, (2.15)

where y = % — § > § prevents excessive numerical resolution relative to
the geometric one. This is achieved within the module APPROXJ via the Dual
Weighted Residual method (DWR) [8], taylored to the approximation of the
functional value J. The remaining modules perform the following tasks. The
module SOLVE finds approximate solutions U® € S® of (2.1) and Z®® € S©
of an adjoint equation (necessary for the computation of the shape derivative) while
RIESZ builds on S® an approximation G to the shape derivative. Finally, the
module LINESEARCH enforces an inexact version of Wolfe’s conditions.

We observe that the test (2.15) is not very demanding for DWR. So we expect
coarse meshes at the beginning, and a combination of refinement and coarsening
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later as DWR detects geometric singularities, such as corners, and sorts out whether
they are genuine to the problem or just due to lack of numerical resolution. This
aspect of ASQP is a novel paradigm in adaptivity and is detailed in [32].

In the following, we report some numerical examples originally presented in [32]
to highlight the main features of the adaptive algorithm. In particular, we consider
the drag reduction shape optimization problem governed by Stokes equation (see
e.g. [37]). Let 2 C R? be a bounded domain with its boundary subdivided into an
inflow part I';,,, an outflow part I, a part considered as walls T',,, and an obstacle
I’y which is the deformable part to be optimized. The velocity u := u(£2) and the
pressure p := p(2) solve the following problem:

—div(T(u, p)) =0 in Q
divu =0 in Q

(2.16)
u=uy onl;, U, UT,,
T(u, p)v =0 on [y,
where T(u, p) := 2ue(u) — plis the Cauchy tensor with e(u) = V“+—2V“T, w >0
is the viscosity, and
— {Voo onl},
17 o onT, UTYy,
with Voo = VooVoo, Voo being the unit vector pointing in the direction of the
incoming flow and V4, a scalar function.
We let the cost functional measuring the obstacle drag be
I )] i= [ (T pp) - S, @17)
F.\'

where (u, p) solves (2.16). We would like to minimize the linear boundary func-
tional J subject to the state constraint (2.16) among all admissible configurations
with fixed volume that can be obtained by piecewise smooth perturbations of the
obstacle boundary T.

In Fig. 3 we report the initial and final optimal configuration. As an effect of the
DWR error indicator, the mesh refinement takes place mostly around the deformable
shape, whereas in the rest of the domain €2 the mesh is rather coarse.

In Figs. 4, 5, 6, we show the efficacy of the adaptive ASQP method to sort out
whether a geometric singularity is genuine to the problem or just due to the lack of
numerical resolution. In the first case (genuine singularities) the method preserves
the singularities and further refine them, whereas in the latter case (non-genuine
singularities) the algorithm coarsens the (unnecessarily) over refined regions.
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Fig. 3 Initial (fop) and final (bottom) configuration. The ASQP algorithm obtains the optimal
“rugby ball” shape [37]. The mesh refinement takes place mostly around the deformable shape,
whereas in the rest of 2 the mesh is rather coarse: this is related to DWR mesh refinement (and
coarsening)

Fig. 4 Zoom of the evolution of the deformable shape. The initially refined corners (top) are
subsequently smoothed out and coarsened (see Fig. 5). The new corners of the rugby ball, instead,
are genuine singularities and are preserved and further refined by ASQP (bottom)

Fig. 5 Detection of genuine geometric singularities. Evolution of the initial upper-left corner
of the deformable shape (see top of Figs. 3 and 4). The adaptive ASQP method is able to sort
out whether geometric singularities are genuine to the problem or just due to lack of numerical
resolution and to coarsen overrefined regions of the computational grid

Fig. 6 Detection of genuine geometric singularities. Zoom on the evolution of the left-hand part
of the deformable shape (see top of Fig. 3 and bottom of Fig. 4). The adaptive ASQP method is
able to recognize the corner of the rugby ball as genuine singularity of the problem and to refine
the mesh to improve both the PDE and the geometric approximation
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3 Optimal Control for Evolutive PDEs

Let us now turn our attention to optimal control problems for evolutive partial
differential equations. The classical approach is based on open-loop controls and
on the Pontryagin maximum principle which leads to a backward-forward system
characterizing the optimal couple state-control (see e.g. [34,39]). We have followed
a different idea, trying to apply the Dynamic Programming approach. The results
presented here are illustrated in [1, 2].

3.1 The POD Approximation Method for Evolutive PDEs

We briefly describe some important features of the POD approximation, more
details as well as precise results can be found in the notes by Volkwein [43]. Let
us consider a matrix ¥ € R™", with rank d < min{m,n}. We will call y; the j-th
column of the matrix Y. We are looking for an orthonormal basis {wi}le e R”
with £ < n such that the minimum of the following functional is reached:

2

n l
T, =Y vy =D (v v (3.1)
j=1 i=1
The solution of this minimization problem is given in the following theorem
Theorem 3.1. Let Y = [y,...,y.] € R™" be a given matrix with rank d <

min{m,n}. Further, let Y = WXV be the Singular Value Decomposition (SVD)
of Y, where W = [Y,..., Y] € R™™ V = [vy,...,v,] € R"" are orthogonal
matrices and the matrix . € R™" is diagonal, ¥ = diag{oy,...,0n}. Then, for
anyl € {1,...,d} the solution to (3.1) is given by the left singular vectors {\; }le,
i.e, by the first £ columns of W.

The vectors {; fz , will be indicated as the POD basis of rank £.. This idea is really
useful, in fact we get a representation of a solution for the original dynamics solving
an equation of lower dimension. Whenever it is possible to compute a POD basis of
rank £, we get a problem of lower dimension £ which will be of manageable size
provided £ is very small.

Let us consider the following ODEs system

y(s) = Ay(s) + f(s,y(s)), s € (0,T] (3.2)
y(0) = yo

where yg € R", A € R™™ and f : [0, T] x R — R™ is continuous and locally
Lipschitz to ensure uniqueness.
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The system (3.2) can be also interpreted as a semi-discrete problem, where
the matrix A represents the discretization in space of an elliptic operator, e.g. the
Laplace operator. To compute the POD basis functions, first of all we have to
construct a time grid 0 < #, < ... <, = T and we assume to know the
solution of (3.2) at given time #;, j = 1,..., N. We call snapshots the solution
at those fixed times, they will be used to find a proper POD basis. For the moment,
let us skip the problem of selecting the snapshots sequence to obtain an efficient
POD basis since this is a rather difficult problem, we refer the interested reader to
[25]). Given a snapshots sequence, Theorem 3.1 allows to compute our POD basis,
namely, {y;}%_,.

Assume we can write the solution in reduced form as

14 14
Y =D iy =Y 0@y, Yse[0.T]
j=1

Jj=1

substituting this formula into (3.2) we obtain the equivalent dynamics in the reduced
coordinate space

¢ [/

Y ViV = X VAV + f(s,95(), s €(0,T]
j=1 j=1

¢ (3.3)
Zl Y)Y = yo.
=z

Our new problem (3.3) has £ < m unknown coefficient functions which are
indicated by yf (s), j = 1,...,£. The problem is now in low dimension, using
a compact notation we get:

Yi(s) = A'y(s) + F(s,y'(5))
yH0) =y
where
AL e R with (4% = (Ay, ¥)),
Vi

ye=|: |:[0.T] >R

i

F=(F,....,F)T :[0,T] x R* — R,

14
Ft(ssy):<f svzijj swi> fOI'SE[O,T] y:(J’ls---J’l)GRé,
j=1
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finally obtaining the representation of y, in R

{(vo. ¥1)
yg = . S RZ.

(Vo )

In order to apply the POD method to our optimal control problem, the number £ of
POD basis functions plays a crucial role. In fact, we would like to keep £ as low
as possible still capturing the behavior of the original dynamics. Then, the main
question is: how can we measure the accuracy of our POD approximation? We need
to define an accuracy parameter and a good choice is given by the following ratio

{
> 0
E() = =—, (3.4)

i=1

where the o; are the singular value obtained by the SVD. Clearly, when £({) is
close to one this means that the approximation is rather accurate because it keeps the
main features of the original dynamics. This is also strictly related to the truncation
error due to the projection of y; onto the space generated by the orthonormal basis

{W}le, in fact:

n ¢ 2 d
Ty =Y |y =D | = Y of
=1 i=1 i=t+1

3.2 An Optimal Control Problem via POD Approximation

Following [1] we present this approach for the finite horizon control problem.
Consider the controlled system

y(s) = f(y(s),u(s),s), seT]
y(t)=xeR", 3.5)

with f : R" x R" — R", we will denote by y : [t, T] — R” its solution, by u the
control u : [t,T] — R™, and by

U={wu:[0,T] > U}
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the set of admissible controls where U C R™ is a compact set. Whenever we want
to emphasize the dependency of the solution on the control u we will write y(¢; u).
Assume that there exists a unique solution trajectory for (3.5) provided the controls
are measurable (a precise statement can be found in [4]). For the finite horizon
optimal control problem the cost functional will be given by

T
min /. (1) := / L(y(s, u), u(s), s)e ™ ds + g(»(T)) (3.6)

where L : R” xR™ — R is the running cost, (x, ¢) is the initial condition and A > 0
is the discount factor.

The goal is to find a state-feedback control law u(¢) = ®(y(¢), t), in terms of the
state equation y(¢), where @ is the feedback map. To derive optimality conditions
we use the well-known dynamic programming principle due to Bellman (see [4]).
We first define the value function:

v(x,t) = 125 Jyi(u) 3.7

Proposition 3.2 (DPP). Forall x € R"andt < tv < T then:

v(x.) = min { / L(y(s), u(s),s)e™ ds +v(y(x). T — 1) . (3.8)

Due to (3.8) we can derive the Hamilton-Jacobi-Bellman equations (HJB):

d
— a—:(y, t) =min{L(y,u,t) + Vv(y,t)- f(y,u, 1)}, 3.9)
uelU

complemented by the terminal condition v(x, 7)) = g(x). This is a nonlinear partial
differential equation of the first order which is hard to solve analytically although a
general theory of weak solutions is available [4]. Rather we can solve it numerically
by means of a finite differences or semi-Lagrangian schemes (see the book [20] for a
comprehensive analysis of approximation schemes for Hamilton-Jacobi equations).
For a semi-Lagrangian discretization one starts by a discrete version of (HJIB)
by discretizing the underlined control problem and then project the semi-discrete
scheme on a grid obtaining the fully discrete scheme

VIt = min[Ar L(xi. nAL u) + T"](xi + At F(xi. 1, 0))]
ue

V? =8 (xi)v
with x; = iAx, t, = nAt, v} := v(x;,1,) and I [] is an interpolation operator
which is necessary to compute the value of V" at the point x; + At F(x;,t,,u) (in
general, this point will not be a node of the grid). The interested reader will find
in [21] a detailed presentation of the scheme and a priori error estimates for its
numerical approximation.
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It is also important to note that we need to compute the minimum in order to
get the value v;“'l. Since, in general, V" is not a smooth function, we compute the
minimum by means of a minimization method which does not use derivatives (this
can be done by the Brent algorithm as in [10]).

The main advantage of this approach is that it allows to compute the optimal
feedback via the value function. However, there are two major difficulties: our weak
solutions (in the viscosity sense) are in general non-smooth and the approximation
in high dimension is not feasible due to the huge amount of data required. The
request to solve an HJB in high dimension comes up naturally whenever we want to
control evolutive PDEs. Just to give an idea, if we build a grid in [0, 1] x [0, 1] with
a discrete step Ax = 0.01 we have 10* nodes: to solve an HJB in that dimension
is simply impossible. The POD method allows us to obtain reduced models even
for rather complicated dynamics opening the way to a feasible solution of the HIB
equation.

Consider the following abstract problem:

d
a(y(s)s w)H +a(y(s), (p) = (B(M(S)v @)V’,V V(p ev (310)
y(#)=yo €H,

where B : U — V' is a linear and continuous operator. We assume that a space of
admissible controls U4 is given in such a way that for each u € U4 and yo € H
there exists a unique solution y of (3.10). V' and H are two Hilbert spaces, with
(-, ) we denote the scalar productin H;a : V x V — R :is symmetric coercive
and bilinear. Then, we introduce the cost functional of the finite horizon problem

T
T () = / LO/(s).u(s).s)e™ ds + g((T)).

where L : V x U x [0, T] — R. The optimal control problem is
min 7, () (3.11)
subject to the constraint: y € W, (0, T; V') x U solves (3.10)
with Wi (0, T) = (Nyoo W(0, T), where W(0, T') is the standard Sobolev space:
W(0.T) ={p € L*(0.T:V).¢ € L*(0.T:V")}.

The model reduction approach for an optimal control problem (3.11) is based on
the Galerkin approximation of dynamic with some informations on the controlled
dynamic (snapshots). To compute a POD solution for (3.11) we make the following
ansatz

L
Y s) =D wils)¥i(x), (3.12)

i=1
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where {w}le is the POD basis. The computation of the POD basis functions follows
three easy steps:

1. Computation of the snapshots for the solution at given times, y(s;).

2. Collect the snapshots into a matrix Y and compute the singular value decompo-
sitionof Y = UZVT,

3. Take the first £ columns of U, they will be the POD basis of rank £.

Now let us introduce mass and stiffness matrix:
M = ((my))) € R withmyj = (Y}, ¥idu,
S = ((s;)) € R with m;; = a(y;, ¥),
and the control map b : U — R is defined by:
u— b(u) = (b(u);) € R® with b(u); = (Bu, ¥)g.
The coefficients of the initial condition y¢(0) € R’ are determined by w;(0) =
(wo)i = (yo, ¥)x, 1 <i <, and the solution of the reduced dynamic problem is

denoted by w'(s) € RY. Then, the Galerkin approximation is given by

min J, (u) (3.13)

Wt

with u € U/ and w solves the following equation:

{ Wwh(s) = F(w'(s), u(s),s) s >0, (3.14)

wt(0) = wg.
The cost functional is defined as:
T
7l = [ L)) 07 di 4 g0 (1))
w0 0
with w’ and y* linked to (3.12) and the nonlinear map F : R x U — R is given by
FW'u,s) = MY (=Sw'(s) + b(u(s))).
The value function v¢, defined for the initial state wy € R, reads as
o0 N ¢
Vi(wg, t) = ulgbfl Jwg’t(u)
and w! solves (3.13) with the control « and initial condition wy.

To complete the scenario, let us explain how we have computed the intervals
defining the domain where we are going to solve the HIB equation in reduced
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coordinate. Clearly we need to restrict the computation to a bounded domain Y},
in RY. We would like to find an invariant domain for the discrete dynamics, i.e. a
domain Y} such that y + AtF(y,u) € Y}, foreach y € Y}, and u € U. We can
choose Y}, = [ay, b1] X [az, bs] X ... [a¢, be] withay > a; > ... > a;. How should
we compute the intervals [a;, b;]?

Ideally the intervals should be chosen so that the dynamics contains all the
components of the controlled trajectory. Moreover, they should be encapsulated
because we expect that their importance should decrease monotonically with their
index and that our interval lengths decrease quickly.

Let us suppose to discretize the space control U = {uy,...,up} where U is

symmetric with respect to the origin, i.e. # € U implies —u € U.
¢

Hence, if y‘(s) = Y (y(s), ¥i)¥i = Zf=1 w; ()Y, as a consequence, the
i=1
coefficients w; (s) € [a;, b;]. We consider the trajectories solution y (s, u;) such that
the control is constant u(s) = u; foreacht;, j =1,..., M. Then, we have

L

Y up) =Y (s up), v v

i=1

We write y¢(s,u ;) to stress the dependence on the constant control u;. Each
trajectory y*(s, u ;) corresponds to a set of coefficients w,(.j ) @)fori =1,...,¢, j =
1,..., M. Every coefficient ng )(s) belongs to an interval [wf’ ) ,W;j )] so, fori =
1,...,£,, we define:

a; = min{gfl), ... ,yf-M)}
b = max{W,(.l), .. ,W,(-M)}.

Note that when we do not find an invariant domain to set up our computation we
must introduce appropriate boundary conditions to manage the trajectories leaving
the domain (see [19, 20] for more details on this technical problem).

3.3 Numerical Experiments

In this section we present some numerical tests for the controlled heat equation and
for the advection-diffusion equation with a quadratic cost functional. Consider the
following advection-diffusion equation:

Vs(x,8) —eyxx(x,8) + cye(x,s) = u(s)

3.15
V(x.0) = yo(x). (5:15)

with x € [a,b], s € [0,T], ¢ € Ry and ¢ € R.
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Fig. 7 Test 1: (a) Heat Equation without control; (b) Heat Equation for #(z) = 0, 3 POD basis;
(c) Controlled solution with LQR-MATLAB; (d) Approximate solution POD (3 basis functions)
coupled with HIB

Note that changing the parameters ¢ and ¢ we can obtain the heat equation
(¢ = 0) and the advection equation (¢ = 0).
The functional to be minimized is

T
Syou (u()) = /0 1y (e, s) = 5GP+ Rlluls)||* ds, (3.16)

i.e. we want to stay close to a reference trajectory y while minimizing the norm
of u. Note that we dropped the discount factor setting A = 0. Typically in our test
problems y is obtained by applying a particular control & to the dynamics. The
numerical simulations reported here have been made on a server SUPERMICRO
8045C-3RB with 2 cpu INTEL Xeon Quad-Core 2.4 Ghz and 32 GB RAM under
SLURM (https://computing.lInl.gov/linux/slurm/).

Test 1: Heat Equation with Smooth Initial Data. We compute the snapshots
with a centered/forward Euler scheme with space step Ax = 0.02, and time step
At = 0.012,¢ = 1/60,¢c = 0,R = 0.01 and T = 5. The initial condition
is yo(x) = 5x — 5x2, and $(x,s) = 0. In Fig. 7 we compare four different
approximations concerning the heat equation: (a) is the solution for &(¢) = 0, (b) is
its approximation via POD (non-adaptive), (c) is the direct LQR solution computed
by MATLAB without POD and, finally, the approximate optimal solution obtained
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coupling POD and HIB. The approximate value function is computed for At = 0.1
Ax = 0.1 whereas the optimal trajectory as been obtained with At = 0.01. Test 1,
and even Test 2, have been solved in about half an hour of CPU time.

Note that in this example the approximate solution is rather accurate because the
regularity of the solution is high due to the diffusion term. Since in the limit the
solution tends to the average value, the choice of the snapshots will not affect too
much the solution, i.e. even a rough choice of the snapshots will give us a good
approximation. The difference between Fig. 7c and 7d is due to the fact that the
control space is continuous for 7c¢ and discrete for 7d.

Test 2: Heat Equation with No-Smooth Initial Data. In this section we change
the initial condition with a function which is only Lipschitz continuous: yo(x) =
1 — |x|. According to Test 1, we consider the same parameters. (see Fig. 8).
Riccati’s equation has been solved by a MATLAB LQR routine. Thus, we have used
the solution given by this routine as the correct solution in order to compare the
errors in L' and L? norm between the reduced Riccati’s equation and our approach
based on the reduced HJB equation. Since we do not have any information, the
snapshots are computed for & = 0. This is only a guess, but in the parabolic case it
fits well due to the diffusion term.

a b

1 1

05 05

0 0

~

-05 - 05

5 5 =

4 1 Ty 1
3 05 5 05
2 : 0 2 0
1 05 L 0.5
0 4 0 g

c d

0.5

1 : &

3 T : 05

Fig. 8 Test 2: (a) exact solution for & = 0; (b) Exact solution for #z = 0 POD (3 basis functions);
(c) Approximate optimal solution for LQR-MATLAB; (d) Approximate solution POD (3 basis
functions) coupled with HIB



Recent Results in Shape Optimization and Optimal Control for PDEs 87

Table 1 Test2: L' and L? I 12

errors attimeT'forthe ' JLOR — yPODFLOR | 0.0221 | 0.0172
optimal approximate solution : :
yLOR — ,PODFHIB | () 0204 | 0.0171

As in Test 1, the choice of the snapshots does not affect strongly the approximation
due to the asymptotic behavior of the solution. The presence of a Lipschitz
continuous initial condition has almost no influence on the global error (see Table 1).

4 The Adaptive POD Approximation Method

We now present an adaptive method to compute POD basis. As we have seen in
Sect. 3 we have a big constraint on the number of variables in the state space for
numerical solution of an HJB.

For a parabolic equation, one can try to solve the problem with only three/four
POD basis functions; they are enough to describe the solution in a rather accurate
way. In fact the singular values decay pretty soon and it is rather easy to work with
a really low-rank dimensional problem.

On the contrary, hyperbolic equations do not have this nice property and they
will need more POD basis functions to get accurate results. Then, it is quite natural
to split the problem into subproblems having different POD basis functions. The
crucial point is to decide the splitting in order to have the same number of basis
functions in each subdomain with a guaranteed accuracy in the approximation.

4.1 Numerical Experiments for the Adaptive POD
Approximation Method

Let us first give an illustrative example for the parabolic case, considering a 1D
advection-diffusion equation:

3. 8) = 9 (x.) + ci(x.5) = 0 @1
y(x,0) = yo(x),
with x € [a,b],s € [0,T],&,¢c € R.

We use a finite difference approximation for this equation based on an explicit
Euler method in time combined with the standard centered approximation of the
second order term and with an up-wind correction for the advection term. The
snapshots will be taken from the sequence generated by the finite difference method.
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The final time is T = 5, moreover a = —1, b = 4. The initial condition is
yo(x) = 5x — 5x2, when 0 < x < 1, 0 otherwise.

For ¢ = 0.05 and ¢ = 1 with only 3 POD basis functions, the approximation fails
(see Fig. 9). Note that in this case the advection is dominating the diffusion, a low
number of POD basis functions will not suffice to get an accurate approximation
(Fig. 9b). However, the adaptive method which only uses 3 POD basis functions
will give accurate results (Fig. 9d).

The idea which is behind the adaptive method is rather simple and easy to
implement. Instead of taking into account the whole interval [0, T'], we prefer to
split it in sub-intervals

[0. T] = U o[ Tk Tit1]

where K is a-priori unknown, 7o = 0, Tx = T and T} = ¢; for some i. In this way,
choosing properly the length of the k-th interval [T, Ti+1], we consider only the
snapshots falling in that sub-interval, typically there will be at least three snapshots
in every sub-interval. In this way we will have enough informations in every sub-
interval and we can apply the standard routines (explained in Sect. 3) to get a “local”
POD basis.

Fig. 9 Equation (4.17): (a) solved with finite difference; (b) POD-Galerkin approximation with 3
basis functions; (c) solved via POD-Galerkin approximation with 5 basis functions; (d) Adaptive
POD 3 basis functions
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Now let us explain how to divide our time interval [0, T]. We will choose a
parameter to check the accuracy of the POD approximation and define a threshold.
Above that threshold we loose in accuracy and we need to compute a new POD
basis. A good parameter to check the accuracy is £(€) (see (3.4)), as it was suggested
by several authors. The method to define the splitting of [0, T'] and the size of every
sub-interval works as follows. We start computing the SVD of the matrix Y that
gives us informations about our dynamics in the whole time interval. We check the
accuracy at every ;, 1 = 1,... N, and if at #; the indicator is above the tolerance
we set 71 = t; and we divide the interval in two parts, [0, 77) and (7}, T]. Now
we just consider the snapshots related the solution up to the time 77. We iterate this
idea until the indicator is below the threshold. When the first interval is found, we
restart the procedure in the interval [T}, T'] and we stop when we reach the final time
T. Note that the extrema of every interval coincide by construction with one of our
discrete times #; = i At so that the global solution is easily obtained linking all the
sub-problems which always have a snapshot as initial condition. A low value for the
threshold will also guarantee that we will not have big jumps passing from one sub-
interval to the next. Once we know we got nice POD basis functions we compute the
solution of the problem in each sub-intervals. Moreover, in each intervals [T, Ti+1]
we check the residual of the solution previously computed. If the residual is not
below a given threshold, we split again the problem into two subproblems. This two
subproblems need to update their own basis functions that will satisfy, of course, the
error estimator applied to the POD method, since we are considering only a subset
of the snapshots.

This idea can be applied also when we have a controlled dynamic (see [2]).
First of all we have to decide how to collect the snapshots, since the control u(t)
is completely unknown. One can make a guess and use the dynamics and the
functional corresponding to that guess, by these informations we can compute the
POD basis. Once the POD basis is obtained we will get the optimal feedback
law after having solved a reduced HJB equation as we already explained. Let us
summarize the POD adaptive method in the following step-by-step presentation.
ALGORITHM
Start: Inizialization
Step 1: collect the snapshots in [0, T]

Step 2: divide [0,7] according to £(¥)
For i=0 to N-1
Do

Step 3: apply SVD to get the POD basis in each
sub-interval [ti s ti+1]

Step 4: discretize the space of controls

Step 5: project the dynamics onto the (reduced) POD
space

Step 6: select the intervals for the POD reduced
variables

Step 7: solve the corresponding HJB in the reduced
space
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for the interval [f,ti+1]
Step 8: go back to the original coordinate space
End

Test 3: Controlled Advection-Diffusion Equation. The advection-diffusion equa-
tion needs a different method. We can not use the same y we had in the parabolic
case, mainly because in Riccati’s equation the control is free and is not bounded, on
the contrary when we solve an HIB we have to discretize the space of controls.
We modified the problem in order to deal with bang-bang controls. We get j
in (3.16) just plugging in the control # = 0. We have considered the control space
corresponding only to three values in [—1, 1], then U = {—1,0, 1}. We first have
tried to get a controlled solution, without any adaptive method and, as expected, we
obtained a bad approximation (see Fig. 10). From Fig. 10 it is clear that POD with
four basis functions is not able to catch the behavior of the dynamics, so we have
applied our adaptive method.

We have consider: T = 3,Ax = 0.1,Atr = 0.008, a = —1, b = 4,
R = 0.01. According to our algorithm, the time interval [0, 3] was divided into
[0,0.744]U[0.744,1.496] U [1.496, 3]. As we can see our last interval is bigger than
the others, this is due to the diffusion term (see Fig. 11). The L?-error is 0.0761,
and the computation of the optimal solution via HJB has required about six hours
of CPU time. In Fig. 4 we compare the exact solution with the numerical solution
based on a POD representation. Note that, in this case, the choice of only 4 basis
functions for the whole interval [0, T'] gives a very poor result due to the presence of
the advection term. Looking at Fig. 5 one can see the improvement of our adaptive
technique which takes always 4 basis functions in each sub-interval.

In order to check the quality of our approximation we have computed the
numerical residual, defined as:

R(y) = [lys(x,5) — eyxx(x.8) + cyy(x,s) —u(s)|.

Fig. 10 Test 3: Solution y (left), approximate solution with POD (4 basis functions) (right)



Recent Results in Shape Optimization and Optimal Control for PDEs 91

Fig. 12 Test 4: Solution for # (left), approximate optimal solution (right)

The residual for the solution of the control problem computed without our adaptive
technique is 1.1, whereas the residual for the adaptive method is 2 * 1072, As
expected from the pictures, there is a big difference between these two value.

Test 4: Controlled Advection-Diffusion Equation. In this test we take a different
¥, namely the solution of (3.15) corresponding to the control

-1 0<t<l1
wt) =10 1<tr<?2
1 2<r<3.

We want to emphasize we can obtain nice results when the space of controls has few
element. The parameters were the same used in Test 3. The L2-error is 0.09, and the
time was the same we had in Test 3. In Fig. 12 we can see our approximation.
In Fig. 6 one can see that the adaptive technique can also deal with discontinuous
controls.
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In this test, the residual for the solution of the control problem without our
adaptive technique is 2, whereas the residual for the adaptive method is 3 * 1072,
Again, the residual shows the higher accuracy of the adaptive routine.

5 Conclusions

We presented some recent results concerning the numerical approximation of shape
optimization problems and optimal control problems governed by evolutive partial
differential equations. In particular, with respect to shape optimization problems,
we introduced and discussed two novel techniques, namely a fully geometric
multigrid approach and an adaptive sequential quadratic programming algorithm.
Several numerical experiments assessed the efficacy of the proposed strategies.
Concerning the optimal control of evolutive problems, we detailed how a reasonable
coupling between POD and HJB equation can produce feedback controls for infinite
dimensional problem. For advection dominated equations that simple idea has to be
implemented in a clever way to be successful. It particular, the application of an
adaptive technique is crucial to obtain accurate approximations with a low number
of POD basis functions. This is still an essential requirement when dealing with the
Dynamic Programming approach, which suffers from the curse-of-dimensionality
although recent developments in the methods used for HIB equations will allow to
increase this bound in the next future (for example by applying patchy techniques,
see [9]).

Another important point is the discretization of the control space. In our
examples, the number of optimal control is rather limited and this will be enough for
problems which have a bang-bang structure for optimal controls. In general, we will
need also an approximation of the control space via reduced basis methods. This
point as well as a more detailed analysis of the procedure outlined in this paper will
be addressed in our future work.
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Abstract We are concerned with the numerical solution of distributed optimal
control problems for second order elliptic variational inequalities by adaptive
finite element methods. Both the continuous problem as well as its finite element
approximations represent subclasses of Mathematical Programs with Equilibrium
Constraints (MPECs) for which the optimality conditions are stated by means of
stationarity concepts in function space (Hintermiiller and Kopacka, STAM J. Optim.
20:868-902,2009) and in a discrete, finite dimensional setting (Scheel and Scholtes,
Math. Oper. Res. 25:1-22, 2000) such as (g-almost, almost) C- and S-stationarity.
With regard to adaptive mesh refinement, in contrast to the work in (Hintermiiller,
ESAIM Control Optim. Calc. Var., 2012, submitted) which adopts a goal oriented
dual weighted approach, we consider standard residual-type a posteriori error
estimators.

The first main result states that for a sequence of discrete C-stationary points
there exists a subsequence converging to an almost C-stationary point, provided the
associated sequence of nested finite element spaces is limit dense in its continuous
counterpart. As the second main result, we prove the reliability and efficiency
of the residual-type a posteriori error estimators. Particular emphasis is put on
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heuristically motivated computable quantities and on the approximation of the
continuous active, strongly active, and inactive sets by their discrete counterparts.

A detailed documentation of numerical results for two representative test exam-
ples illustrates the performance of the adaptive approach.

Keywords A posteriori error analysis * Elliptic variational inequalities * Finite
elements * Optimal control ¢ Stationarity

Mathematics Subject Classification (2000). Primary 65K15; Secondary 49M99;
65K10; 90C56.

1 Introduction

This paper is devoted to the study of adaptive finite element methods for the
approximation of optimally controlled elliptic variational inequalities of obstacle
type. Such problems can be formulated as Mathematical Programs with Comple-
mentarity Constraints (MPCCs) representing a subclass of Mathematical Programs
with Equilibrium Constraints (MPECs) which have been investigated both in
function space [4, 18, 27, 30-34] as well as in finite dimensions [10, 26, 29, 36—
38]. Due to the inherent non-convexity and non-differentiability, MPECs are not
amenable to classical approaches from optimal control/optimization theory and
thus require tools from non-smooth analysis such as generalized derivatives. In
particular, this leads to optimality systems in terms of various stationarity concepts
such as C(larke)-stationarity and S(trong)-stationarity (cf., e.g., [18] for MPECs in
function space). For the spatial discretization of the problems we use continuous,
piecewise linear finite elements with respect to an adaptively generated hierarchy
of geometrically conforming simplicial triangulations of the computational domain.
Although adaptive mesh refinement relying on various a posteriori error estimators
has been extensively studied for elliptic variational inequalities (cf., e.g., [2, 6—
8,22,24,35,42,43]) as well as for unconstrained and control and/or state constrained
elliptic optimal control problems (cf., e.g., [5,12,14-17,19,20,23,40,45]), the only
adaptive approach for optimally controlled elliptic variational inequalities we are
aware of is the one in [21] based on goal oriented dual weighted residuals. Instead,
here we study standard residual-type a posteriori error estimators in terms of element
and edge residuals and prove both reliability and efficiency up to consistency errors
and data oscillations.

The paper is organized as follows: After introducing basic notations and some
preliminary results, in Sect. 2 we state the distributed optimal control problem for a
second order elliptic variational inequality of obstacle type, specify the associated
active and inactive sets including a possible set of biactivity in case of a lack of
strict complementarity, and introduce the relevant stationarity concepts in function
space. Section 3 is devoted to the finite element approximation of the problem under
consideration giving rise to a discrete optimally controlled variational inequality,
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the specification of the discrete active and inactive sets, and the discrete stationarity
concepts. Particular emphasis is put on suitable extensions of the discrete Lagrange
multipliers which will play a significant role both in the subsequent convergence
analysis and in the a posteriori error analysis. In Sect.4, we prove the first main
result of this paper. Under the assumption that the sequence of nested finite element
spaces is limit dense in the function space for the continuous state and adjoint state,
we show that for a bounded sequence of discrete C-stationary points there exists
a subsequence which converges to an almost C-stationary point (cf. Theorem 4.2).
Section 5 is concerned with the a posteriori error analysis based on residual-type a
posteriori error estimators.

As the second main result, we establish reliability and efficiency of the error
estimator up to consistency errors due to a mismatch in complementarity and data
oscillations (cf. Theorem 5.1 and Theorem 5.1). Since in the original formulation
the consistency errors are not a posteriori, we provide heuristically motivated fully
computable quantities in terms of approximations of the characteristic functions
of the continuous active and inactive sets as well as of the continuous states and
multipliers (cf. Sect. 5.4). The final Sect. 6 contains a documentation of numerical
results for two representative test examples, one with strict complementarity and
the other without. The numerical results exhibit experimental convergence rates
that asymptotically approach the expected optimal convergence rates. Moreover,
it is shown that at least some of the heuristically derived approximations of the
consistency errors provide close upper bounds.

2 The Optimal Control Problem and Stationarity Concepts

2.1 Notations and Preliminaries

For a bounded Lipschitz domain  C R?, we denote by D(2) the space of infinitely
often continuously differentiable functions with compact support in €2, and we refer
to D(2)’ as the dual space of distributions. Further, we adopt standard notation
from Lebesgue and Sobolev space theory (cf., e.g., [1]). In particular, for D C €,
we denote by L2(D) the Hilbert space of square integrable functions on D with
inner product (-,-)o.p and associated norm || - |lo.p. L?(D)+ refers to the positive
cone of L2(D) with respect to the partial order on L?(D), i.e., L>(D)+ = {v €
L*(D) |v>0ae.in D}. Fork € N, we denote by H*(D) the Sobolev space with
inner product (-, -).p, seminorm | - | p, and norm | - ||x.p. We define Hf (D) as the
closure of D(D) in H*¥(D) and refer to H%(D) as the dual space. In particular,
weset V := H}(Q) so that V* = H~!(Q), and we refer to (-, -) as the dual pairing
between V' * and V. We define V4 as the positive cone of V' with respect to the partial
ordering inherited from L?(R2), i.e., V4 := {v € V | v > 0 a.e. in } and we refer
to V. as the positive cone of V*,ie., VI :={1 € V*|(A,v) > Oforallv € V,}.
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As far as localizations of functionals A € V* are concerned, we note that for a
distribution T € D(2)’ and an open set w C Q itis said that T = Oon w, if T(v) =
0 for all v € D(2) with supp(v) € w (cf., e.g., [41]). Further, denoting by Or the
maximal open set where T = 0, the support of 7 is defined by supp(7) := Q\ Or.
We set V,, := {v € V | supp(v) € @}. Since a functional A € V* can be viewed as
a distribution, we introduce the set

Vo :=1{veV, | vaw =0ae.,v|, € Hi(w)} 2.1

of test functions and say that A = 0 on w, if (A,v) = 0 forall v € V, (for
alternative definitions see [18]). Further, we say that A > 0 (A < 0) on w, if (A, v) >
0({A,v) <0)forallv e V,oN Vy. The support of A € V* is defined by

supp(A) := @\ O,. (2.2)

We note that V,, o € V,,. If w is Lipschitz, we have V,, o = V,, (cf., e.g., [27]).

In the sequel, we will need characterizations of functionals A € V* with
restricted support. To this end, we first consider the question of extension by zero
of v|p,v € V, forw C Q. If w is Lipschitz, we denote by 90’ (v) that part of the
boundary dw such that v = 0 a.e. on dw®(v) and v # 0 a.e. on dow \ dw’(v). Then,
for v € V and an open Lipschitz domain @ C €2 there exist an open Lipschitz set
@ such that w € @ € Q and a function v&" € Vo with v&7|, = v|, a.e. in w. If
0w’ (v) # @, & can be chosen so that 3@ N dw = dw’(v). If @ is non-Lipschitz,
the previous property remains true, if w is replaced by Lip(w) which is the minimal
open Lipschitz set with  C Lip(w).

The following result allows to make use of the restricted support of functionals
in V* to describe their action on functions from V.

Proposition 2.1. For A € V* set A := int(supp(L)), if supp(}) is Lipschitz, and
A := Lip(int(supp(1)), otherwise. For any v € V there exist an open Lipschitz set
Awith A € A C Q,0A NIA = IA°(v) and a function vj(" € Vx.o such that

VA =v|a a.e.in A and
(A, v) = (A,v5). (2.3)

Proof. Since A is an open Lipschitz domain, there exist A with A - A c Q, AN
dA = dA°(v) and a function v§" € V., such that vi[s = v|A a.e.in A. Hence, it
suffices to prove (2.3). Letv € V,, , , be defined according to
0in A,
v—vinint(Q2 \ A).

<i
I
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In view of the construction of A it holds int(2\ A) € O,, where O, is the maximal
open set where A vanishes, and hence, (A, V) = 0.1t follows that (A, v) = (1, v{") +
(A, ¥) = (A, v{). O

Remark 2.2. We note that (A, v) = (A, v|supp()) only if v € Vsupp(a).0- Otherwise,
A ‘reaches’ the values of v slightly outside of int(supp(1)).

2.2 The Optimal Control Problem

Given a domain Q C R? with boundary I' = 92, a bilinear form a(-,-) : V x V —
R, where V := HJ (), a desired state y¢, a shift control u?, a force density f, an
upper obstacle ¥/, and a regularization parameter « such that

Q is a bounded, polygonal Lipschitz domain, (2.4a)
a(-,-): V xV — Ris symmetric, bounded and V-elliptic, i.e.,

lay )| < Cliylhe IVive, v IyIig < a(y, ), v.C >0, (2.4b)
vyl e L2(Q), u e L*(Q), felL*Q), (2.4¢)
veV, a>0, (2.4d)

we consider the following distributed optimal control problem with a variational
inequality constraint:

S 1 o
Minimize — J(y,u) := 2 [y =y l50 + 5 lu—u'liq (2.52)
over (y,u) € V x LX),
subject to a(y,y—=v) <(f +u,y—v)a, ve K, (2.5b)

K:={peV|v=<yae. inQ}.

Here, J is referred to as the objective functional, y and u stand for the state and
the control, and K denotes the constraint set which makes (2.5b) to a variational
inequality of obstacle type. We further denote by A : V — V* the bounded
linear operator associated with the bilinear form a(-,-). Although the subsequent
analysis can be carried out for a general second order elliptic differential operator in
divergence form, in the sequel we will restrict ourselves to the case A = —A.

The optimal control problem (2.5) can be equivalently written in the so-called
control-reduced form by means of the control-to-state map S : L*(Q) — V
which assigns to a control ¥ € L?*(2) the unique solution of the variational
inequality (2.5b):
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1
Minimize J(y) = 2 || Su — ydllé,Q + % || — udlléQ (2.6)
over ue LX(Q).

The existence of minimizers for (2.5) is guaranteed by the following result:

Theorem 2.3. Under the assumptions (2.4) on the data, the optimal control
problem (2.5) admits an optimal solution.

Proof. We refer to [4,31]. ]

By introducing a slack variable ¢ € V*, the variational inequality con-
straint (2.5b) can be equivalently reformulated in terms of a complementarity system
so that (2.5) reads:

S 1 o
Minimize — J(y,u) := 2 [y = lGo + 5 lu—u'lig (2.7a)
over (y,o,u) € V x V* x L3(Q),
subject to a(y,v) =(f +u,vjoa—(o,v), veV, (2.7b)

Y—yeVy, aeVy (o9 —y)=0.

The problem (2.7) is commonly referred to as a Mathematical Program with
Complementarity Constraints (MPCC).

2.3 Continuous Active and Inactive Sets

For given u € L*(Q), (2.5b) represents an obstacle problem which, under the
assumptions (2.4), admits a unique solution (y,0) € V x V* (cf,, e.g., [25]). The
complementary behavior of y and o according to (2.7b) gives rise to the following
definitions:

Definition 2.4. We define the active set .4 as the maximal open subset D € 2 such
that ¥ — y = 0 a.e. in D. We denote by 7 := | J,., B-(¥ — y) the inactive set,
where B.(y — y) is the maximal open set D C 2 such that ¢y — y > g a.e.in D.
Finally, F(y) := Q \ (A U Z) is said to be the free boundary with respect to y.

Obviously, the sets A, Z, and F(y) provide a partition of €, i.e., it holds Q =
AUZU F(y). An alternative partition can be achieved in terms of properties of the
multiplier o:
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Definition 2.5. The zero set Z is defined as the maximal open set D such that
(o,v) = 0 for all v € Vp,, whereas the set C := int(supp(o)) is referred to as
the strongly active set (for the definitions of Vp ¢ and supp(o) see (2.1) and (2.2) in
Sect.2.1). The set F(o) := Q \ (Z UC) is called the free boundary with respect
too.

Remark 2.6. If in addition to the assumptions (2.4) on the data of the problem we
suppose

Q ¢ R? is convex or of class C!', (2.8a)

v eV nHYQ), (2.8b)

the solution of the obstacle problem satisfies (y,0) € V N H?(Q) x L*(R). In this
regular case, we define the active and the inactive set according to Ay, := int({x €
Q| Y(x) —y(x) = 0}), Ly, 1= int(R \ Aprg). Moreover, the zero set 2, is the
maximal open set D € Q such that 0 = 0 a.e. in D, and the strongly active set is
given by Crpe 1= 1int(Q2 \ Zyep).

The special case where ¥ — y and the slack variable o are simultaneously zero
in some subset of 2 is taken care of by the definition of the so-called biactive set:

Definition 2.7. The set 5 := int(A \ C) is called the biactive set. If meas(B) = 0,
the solution of the obstacle problem is said to satisfy the strict complementarity
condition. Otherwise, it is said that the solution exhibits a lack of strict complemen-
tarity.

The following results which were proven in [11] provide characterizations of the
active set, the inactive set, the zero set, and of the slack variable o. They all refer to
the complementarity conditions (2.7b).

Proposition 2.8. For any v € V. let the zero set Q°(v) be the maximal open set
D C Q such thatv = 0 a.e. in D and let QT (v) := |, B:(v) be the positive
set, where B,(v) is the maximal open set D C Q such thatv > ¢ a.e. in D. Then, it
holds

A=Q°(Y—y), I=%y-y). (2.9)
Moreover, for any v € V4 such that (o,v) = 0 it holds

Qtw) c Z. (2.10)

Corollary 2.9. For anyv € V such that (o,v") = 0 and (o,v™) = 0 it holds

v=0inC and (o,v)=0. (2.11)
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Proposition 2.10. The slack variable o satisfies

oc=0inZ, ie, CC A, (2.12a)
o= f4u—Ayin A (2.12b)

Corollary 2.11. A lack of strict complementarity of the solution of the obstacle
problem occurs if and only if there exists a set B € A suchthat f +u— Ay =0
in B. Hence, there must hold (A, v) = (f + u,v)o s, i.e., AV|s € L*(B).

2.4 Stationarity Concepts

In this subsection, we present various concepts of stationarity associated with
the optimal control problem (2.5). We note that for MPCC in function space the
concepts of C(larke)-stationarity and S(trong)-stationarity have been introduced
in [18].

Definition 2.12. For (y,0,u) € V x V* x L?*(Q) assume that there exists a pair
(p, ) € V x V* such that the following conditions hold true

a(y,v) = (f +u,v)oa—{(o,v), veV, (2.13a)
Y—yeVi, aeVl (o,¥—y) =0, (2.13b)
a(p.v) = (" =y Voa — (u.v), ve V. (2.13c¢)
p=ao@—u), (2.13d)
p=0ae.inC, (2.13e)
(. p) =0, (2.13f)
(. ¥ —y) =0. (2.139)

A triple (y,0,u) € V x V* x L*(Q) is called
(i) an e-almost C-stationary point of (2.5), if (2.13a)—(2.13g) hold true and the
pair (p, ) € V x V* satisfies:
For all € > 0 there exists U, C 7 with meas(Z \ U,) < ¢ such that
(n,v) =0, vely, (2.13h)

(ii) an almost C-stationary point of (2.5), if (2.13a)—(2.13g) hold true and the pair
(p, ) € V x V* fulfills

{(m,v) =0, veVry, (2.131)
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(iii) a C-stationary point of (2.5), if (2.13a)—(2.13g) hold true and the pair (p, 1) €
V x V* satisfies

(uv) =0, ve Vs (2.13j)

Definition 2.13. Let (y,0,u) € V x V* x L?>(Q) be an g-almost C-stationary point
(almost C-stationary, C-stationary) point of (2.5). Then, the triple (y, o, &) is said to
be an g-almost S-stationary (almost S-stationary, S-stationary) point of (2.5), if the
pair (p, u) € V x V* additionally satisfies

(m,v)y >0, veVgnVy, (2.14a)
p > 0ae.in B. (2.14b)

Remark 2.14. In the Definitions 2.12 and 2.13, the function p € V is referred to as
the adjoint state and Eq. (2.13c) is called the adjoint state equation. The functional
i € V* is said to be the Lagrange multiplier associated with the adjoint state
equation.

Remark 2.15. In the previous Definitions 2.12 and 2.13, S-stationarity is the stron-
gest and e-almost C-stationarity is the weakest concept. The hierarchy of the above
introduced stationarity concepts is displayed in the commuting diagram below:

S-stationarity ==  almost S-stationarity ==  e-almost S-stationarity

U U U

C-stationarity == almost C-stationarity =  &-almost C-stationarity

The following result reveals local properties of almost C-stationary points with
respect to the sets C, B, and Z defined in Sect. 2.3.

Proposition 2.16. Let (y,0,u) € V x V* x L?(R) be an almost C-stationary point
of (2.5) and let (p,p) € V x V* be the associated adjoint state and Lagrange
multiplier. Then, with regard to the strongly active set C, the biactive set I3, and the
inactive set I it holds

C B T
y =y ae. =y ae. -
14 =0ae. =—a (AY + f +ut)ae. -
u =u ae. =—Ay — f ae. -
o = f+ul + Ay =0 =0
® =y'—vy =y =y +a AAY + [ +u') =0
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Proof. In view of the definitions of the sets .4, C, and B, we obviously have y =

Yae.in A=CUDB.Taking V,,, € V_,and V,, €V into account, it holds
(o,v) =0, velV,,, (o,v) =0, velV,,.
Further, due to (2.13d) and (2.13e)
p=0ae.inC, u=u’ae inC.

Hence, (2.13c) implies
(v) = 0 =Yvoe. ve Ve,
ie., |, = y? —y¥ € L*(C). By (2.13a) it holds
(o.v) = (f +u?,v)oc —a(y,v), ve V.o
whence 0 = f + u? + Ay a.e. in C. Moreover, in B we have

(f +u,viop = VY, Vv)on, ve V-

Consequently, the weak divergence of V¢ in B exists and equals —(f + u)|, €
L?(B). It follows that —Ay = f + u a.e. in B. Hence,

u=—AYy — f ae.in B,
and, due to (2.13d)
p=—a(AY + f +u’)ae inB.
The previous equation gives rise to Ay + f +u¢ € H'(B). Hence, (2.13c) implies
(wov) = 0 —yvos +aa(Ay + f +ulv), veV,,.

O

Stationarity in the Regular Case. If in addition to the assumptions (2.4) on the
data of the problem we suppose

Q is either convex and polygonal or of class C !, (2.15a)

v eV nHYQ), (2.15b)

for fixed u € L?(2) the solution (y,0) of the obstacle problem belongs to V N
H?*(Q) x L*(R). In this regular case, the optimal control problem (2.5) can be
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rewritten according to:

1
Minimize — J(y,u) = 2 |y =y liq + % e — u’ I3 (2.16a)
over (v.o.u) € V x L*(Q) x L*(Q),

subject to ay,y—v)=(f+u—o,v)a,vel, (2.16b)

Y—y>0aeinQ, o0>0ae.inQ, (6,9 —y)a =0.

The stationarity concepts can be formulated as in Definitions 2.12 and 2.13.

3 Finite Element Approximation

For a null sequence H of positive real numbers we assume {7, (£2)},ex to be a
shape regular family of geometrically conforming simplicial triangulations of the
computational domain Q. For D C €, we denote by N, (D), &,(D), and 7, (D) the
sets of nodal points, edges, and triangles of 7,(2) in D. For T € 7,(2), we refer to
hr and |T | as the diameter and the area of T, whereas for E € &,(2) we denote by
h g the length of the edge E. We further introduce the following patches of triangles
of 7,,(2):

w, = | (T € T,(Q) | a € Ny(T)}. (3.1a)
wp = | JIT € T(Q) | E € &(T)}. (3.1b)
or = (JIT" € Tu(Q) [ Nu(T") N Ni(T) # 0} (3.1¢)

and the following set of edges of £,(£2):
& = E € &(Q) | a e Ni(E)}. (3.2)

Moreover, for T € 7,(2) we refer to Pr(T),k € Ny, as the linear space of
polynomials of degree < k on T, and we define

Sy = {wi € C(Q) | wlr € Pi(T), T € T,(Q)} (3.3)
as the finite element space of continuous piecewise linear functions. We set

Vi o= {v € SV | valr = 0} (3.4)



106 A. Gaevskaya et al.
and denote by qo,ia) the nodal basis function associated with a € N} (2) such that
Vi = span({qo,(f) | a € NMy(RQ))) with dim V, = N, := card(NV;,(RQ)). As the
dual space of V}, we consider linear combinations of the Dirac delta functionals 6,
associated with a € N (), i.e.,

My =5 € M(Q) | =Y (@) 8. Ai(a) €R}. (3.5)
a€N(RQ)

Here, M () stands for the space of regular Borel measures.

3.1 The Discrete Optimal Control Problem

For the finite element approximation of the optimal control problem (2.5) we denote
by Y € Vi and uf € S,ﬁl) the interpolants of ¥ € V and u? € L*(Q) in V}, and
SV and refer to yd € S,V and f;, € S\" as the L2-projections of y¢ € L*(2) and
f € L*(R) onto S,il). Approximating the state y € V and the control u € L*(2) by

finite element functions y; € Vj andu;, € S ,il) , the discrete optimal control problem
is given as follows:

L. 1 o
Minimize  Ji (i, un) = 3 llyn = yillee + > Ml — uf 1.6 (3.6)
over (yn,up) € Vi x S,Sl),
subjectto  a(yn, yn —vi) < (fn + un, yn — vidoa. vi € Kp, (3.6b)

Ky :=={vp € Vi | vy < ¥y, in Q}.

We refer to Jj, and K, as the discrete objective functional and the discrete constraint
set and to yj, and uy, as the discrete state and the discrete control.

Denoting by S : S,il) — V}, the discrete control-to-state map which assigns

to a control u, € S,El) the unique solution y;, € V), of the discrete variational
inequality (3.6b), the control-reduced form of (3.6) reads:

o 1 o
Minimize — Ji*w) 1= 3 |Suw = Vi g + 5 I = 4513 g (3.7)
over uy € S,il).

Theorem 3.1. The discrete optimal control problem (3.6) admits an optimal solu-
tion (yp,up) € Vi X S,Sl).

Proof. The proof can be given in much the same way as that of Theorem 2.3. O
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As in the continuous regime, by introducing a slack variable o, € M, the
discrete optimal control problem (3.6) can be equivalently reformulated as the
discrete complementarity problem:

e 1 o
Minimize — Jy(i i) = 5 vn = i g + 5 o — w130 (3.82)
over (VhsOn, up) € Vi X My x S,il),
subject to a(yn,ve) = (fu + un,vi)oo — {({on, va)), v € Vj, (3.8b)

yi € Kp. 05 € My N M4(R), ({(on, ¥ — yn)) =0,

where ((-, -)) refers to the dual pairing between C(£2) and M(L).

3.2 Discrete Active and Inactive Sets

For v, € V}, we denote by
Zy(n) = {a € Ni(Q) |vn(@) = 0}, Cr(vn) == Nu(@)\ Zh(v)  (3.9)
the sets of zero and non-zero nodal points with respect to v, € V}, and we partition

the triangulation 7;,(2) into the sets of zero, non-zero, and mixed triangles with
respect to v, € V}, according to

() = T,;(vi) U T (vi) U T, (v), (3.10)
where
Tivn) = AT € T,(Q) | Ni(T) C 2, (i)}, (3.11a)
Ty (vi) :=AT € Tp(Q) | Niu(T) C Cr(vn)}, (3.11b)
T, ) i= Th () \ (T,;(vi) U T, (0n)). (3.11¢)

Definition 3.2. For y, € K; we denote by A, = Z,(¥;, — yn) N N(R) and
Iy, := Cr, (Y —yn) NN, (2) the sets of active and inactive nodal points. A nodal point
is said to be an isolated active (inactive) nodal point, if AV, (w,) \ {a} C I, UN;,(T)
Ni(wg) \ {a} C A, UN;,(T)). Moreover, the sets

Ay = T € Tiwn -y}, (3.12a)
Tie= | JUT € T n — )}, (3.12b)

Fin) = \ (T € "W — y)} (3.12¢)
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are referred to as the discrete active set, the discrete purely inactive set, and the
discrete free boundary with respect to y;,. The set

Ih = I UFn(yn) (3.12d)

is said to be the discr_ete inactive set.
Anedge E € &,(2) is called active (purely inactive), if N, (E) C A, (M (E) C
7). The sets of active and purely inactive edges will be denoted by € 4, and £7,.

We set Ex,(y) := En(Q) \ (E4,U Ez,) and &z, :=E1, UEF,(y,)- An active edge
E € &4, is called isolated, if E € E4, \ Ex(Ap).

Likewise, for A;, € M}, we denote by
Zh(Ah) = {a € M(Q) | Ah(a) = O}, Ch(Ah) = ./\/},(Q) \Zh(lh) (3.13)

the sets of zero and non-zero nodal points with respect to A;, and we partition 7, (£2)
as follows

Ti(2) = T,/(An) UT, (X)) U T (M), (3.14)
where
Ti(Ap) = AT € Ty(Q) | Nio(T) C Zi(An) UNK(ID)}, (3.152)
TiAp) ={T €eTp(Q) | TNT =G and N}y(T) C Cp(An)} U (3.15b)
{TeT(Q)|TNT £OGAN(T)NNU(RQ) CCr(A) AT C Ay},
T () 1= T(R) \ (T (M) U T (M) (3.15¢)

Definition 3.3. Foro, € M, N M+(S_2) the sets Zj := Z;(oy) and C, := Cp,(0p,)
are said to be the sets of zero and strongly active nodal points. Isolated zero (strongly
active) nodal points are defined analogously to Definition 3.2.

An edge E € £,(Q) is said to be strongly active (purely zero), if N}, (E) € Cj,
(Mi(E) € Zp). The sets of strongly active and purely zero edges are denoted by

Ec, and £z,. We set £z, (o) 1= 8;,(S_Z) \ (€c,U Ez,) and £z, :=E z, UEF, (6))-
Moreover, the sets

2= (T € Tion}. (3.16a)
C = (T € T (on)}, (3.16b)

Filow) = J(T € T"(on)} (3.16¢)
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are referred to as the discrete purely zero set, the discrete strongly active set, and the
discrete free boundary with respect to oy,. The set

Zy = Zyp UF,(on) (3.16d)
is said to be the discrete zero set and the set
By :=cl(Ap \ Cn) (3.16¢)

is called the discrete biactive set. If 3, = @, we say that discrete strict complemen-
tarity holds true. Otherwise, there is a lack of discrete strict complementarity.

Zero (strongly active) edges and isolated zero (isolated strongly active) edges are
defined similarly to Definition 3.2.

3.3 Discrete Stationarity Concepts

The discrete (strongly) active sets Ay, Cp,, the discrete biactive set /5, and the discrete
inactive set 7, will be used to classify stationary points in the discrete regime.

Definition 3.4. For (yy,, 05, up) € Vi x Mj x S,El) assume that there exist (pj, ip) €
Vi, x M}, such that it holds

a(yn.vi) = (f +un.vi)oa — ((on.vr)), vi € Vi, (3.17a)
Y —yn = 0, 0 € My N M4 (), (o0, ¥ — y1)) = 0, (3.17b)
a(pr.vi) = 0 = yividos — ((n.vi)). vi € Vi, (3.17¢)
pn = (uy — uf}), (3.17d)
pn(a) =0, a € Cy, (3.17¢)
un(@a) =0, a €Iy. (3.171)

The triple (yy, o5, up) € Vi x M), x S,il) is called

(i) a discrete C-stationary point of (3.6), if the pair (pp, un) € Vi x M), satisfies
wn(a) pp(a) = 0, a € By, (3.17g)
(i1) a discrete S-stationary point of (3.6), if the pair (py, i) € Vi, x M), fulfills

un(a) =0, pp(a) =0, a € By, (3.17h)
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(iii) a discrete stationary point of (3.6), if B, = 0, i.e.,

Ch = Aj. (3.171)
Remark 3.5. In view of (3.17e) and (3.17f), condition (3.17g) implies

{({ien, pi)) = 0. (3.18)

However, the reverse does not hold true. If ({(s, pr)) = ZaENh(Bh) wn(a)pn(a) >
0, this does not imply that every summand is nonnegative. In other words,
condition (3.18) is weaker than (3.17g).

3.4 Extensions of the Discrete Lagrange Multipliers

In this subsection, we will first derive an explicit representation of the operation of
the discrete Lagrange multipliers 0, and w; on functions v, € V), and then provide
two extensions 6y, fi; and &y, fi; to functionals on V. The extensions 6y, i, will
be used in the convergence analysis of the finite element approximations in Sect. 4,
whereas the extensions 6y, fi, will play an essential role in the a posteriori error
analysis in Sect. 5.

For notational convenience, we introduce the operator Ip, : V, — V;, D), C
N3 (R2), defined by means of

viu(a) ,a € Dy,

, V. 3.19
0.aeNy@\Dy "V ©3.19)

I, )(@) = {

It follows that I¢, is the identity on Cj, vanishes on Zj, whereas for D = T €
Tn(Fr(op)) and D = E € E7,(5):

Ie,(vi)|p = Z vi(a) (p}(l“).

a€N; (D)NC,

Likewise, 14, is the identity on Ay, vanishes on Zj, whereas for D = T €
Ty (Fn(yn)) and D = E € Ex,(yy):

La,0lp= Y @ e’

a€NL(D)NA,;,
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Proposition 3.6. Let oy, 1y be the discrete Lagrange multipliers from Defini-
tion 3.4, let F,(yy), Fn (o) be the discrete free boundaries with respect to y, and oy,
according to (3.12d) and (3.16c), and let Ip, be given by (3.19). Then, for v, € V),
it holds

oo = > ((F +un I, 0n)or — (T, Vie,0i)or ) =
TeTR(CLUFy(on))
(3.20a)
> (f +unIc,0or— Y. e [Vyile. Ic,(m)o.k.
TeT(ChUF)(on)) E€€c, UEF, (o))
Qv = 3 (07 = L GaDor = (Vo VI o) =
T€TR(ARVF,(yn))
(3.20b)
Yo 0 = I, er — Y. e [Voule. L, n)o.k-

TeT) (A UFu(yn)) EEEA;, Ug]'_h(yh)

Proof. In view of (3.17a) and (3.17c) we have

((O—hv @}(,a)>> = (f + uhv %(,a))o,wu - (Vyhs V(p}(lu))(),a)uv ae Chs
U o)) = 0 = v 0s00n — (Vo VoL Nowss @ € A

Due to (3.16d) and (3.17f) 03,(a) = 0,a € Zy, and uy(a) = 0,a € I;, whence

> (¢ + e or = (Vo Ve hor ) ca € Gy

on(a) = | TeT(w) . (32D
0,a€Z
and
> ((yd — 90\ Nor — (Y pi, V%(,a))o,r) .a €A,
un(a) = 3 TeTi(wa) (3.22)

0,ael,

Applying Green’s formula elementwise to the second terms on the right-hand side
in (3.21) and (3.22) yields

Y (f+uwneor— Y e [Voule, 0ok a €Ch
Gh(a) = T €Ty (wq) Eegha N

0 ,a e Zh
(3.23)
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and
O =y or — X e - IVole. 0\ Vo . a € A,
wn(a) = § T€Tn(@a) Eeg& .
0,a€el,
(3.24)

Taking ({0, vh)) = Zue]\f/,(C/,) on(a)vy(a) into account, from (3.21) and (3.23) we
deduce

{{on,vi)) = Z ( Z ((f + up, vi(a) (p,(la))o,r — (Vyh,Vh(a)Vﬁl);(la))O,T))

a€NL(Ch) TeTh(wq)

and

((O—hv Vh)) =

> (X Ftumn@eer— Y - Ve i@ o).

a€Nu(Cp)  TeTp(wa) Ee&y (&)

Regrouping the summands in the above expressions gives (3.20a). The representa-
tion (3.20b) follows similarly. |

The first extensions 6y, i, € V* of the discrete multipliers are defined in a
similar way to the finite element analysis of variational inequalities of obstacle type
(cf., e.g., [6]), whereas the second extensions 6y, ji; € V* are defined in view of
Proposition 3.6.

Definition 3.7. Let (yi, op, up, pn, i) € Vi x My, X S,il) x Vi x My, satisfy (3.17a)-
(3.17f). We define functionals 63, 1, € V* by means of

(6n.v) :== (f +un.v)oo —a(yn,v), vev, (3.25a)
(f,v) == % =y Vo —alpn,v), vev, (3.25b)

and functionals 6y, i, € V* according to
(On,v) = (3.26a)

Yo (S Awor— Y e [Vylevor + B (P, veV,
TeT)(Zp) Ee€€z,

(fn,v) = (3.26b)

Z " = yn,V)or — Z e - [Vpule.v)o.E + Fh(”)(P,va), vev,
TeT,(Ap) EES_Ah
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where P;fz stands for the Scott—Zhang interpolation operator (see, e.g., [9,39]) and

F ) = (3.26¢)
Yo FHwdgor— Y e [Vyile Io,0m)oe,  (3.26)

T €Ty (Fn(on)) Eeg}_h("h)

FM () = (3.26¢)
Yoo O =y Oor — Y e [Vpule La,0n)oe.  (3.260)

TET,(Fi(vn)) E€Eryom

Remark 3.8. For later use in Sect.5, we recall the definition of the Scott—Zhang
interpolation operator: For each a € 7;,(R2) let T € w, be an arbitrarily but
fixed chosen element. Further, let {dD(T“) | a € Ny(T)} be the L?(T)-dual basis

of {(p}(l“) | a € Ny (T)}. Then, PhSZ : L>(R) — V), is defined by means of

PiZvi= Y (P (@)e. (3.27)
a€N(RQ)

where the nodal coefficients (P;#v)(a) are given by

(P5v)(a) := / % (x)v(x) dx. (3.28)
T

Proposition 3.9. The functionals 63, ft, € V* and &y, L, € V* are extensions of
on, Uy € My, i.e., for vy, € Vy, it holds

(6n,vi) = (O va) = ({on, Vi),

(s vn) = (B vn) = ((1n, va)).-
Proof. The results are immediate consequences of (3.17) and Proposition 3.6. O

Remark 3.10. Fine properties of the extensions 6y, i, € V* in terms of localiza-
tions involving the discrete active/inactive sets are difficult to obtain, whereas the
extensions Gy, fi; € V* obviously satisfy

Cn < supp(Gs) S Ci U Fi(on), (3.29a)
supp(fir) S Ap U Fr(yn)- (3.29b)

The precise structure of 6, € V* depends on the definition of the Scott—Zhang
interpolation operator PhSZ . In particular, under the condition

For all a € Cj, there exists T“ C w, such that T c ¢, (3.30)
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we obtain supp(6;,) = Cp, if the triangles satisfying (3.30) are used in the definition
of PhSZ . We note that (3.30) excludes isolated strongly active nodal points and edges.
However, utilizing a Scott—Zhang interpolation operator defined by averaging over
edges instead of triangles (see [39]), allows to show supp(6,) = Cj, if we only
exclude isolated strongly active nodal points. Similar remarks apply to jiy, i.e., it is
possible to achieve supp(it;) € A, instead of (3.29b), if no isolated active nodal
points occur and the modified PhSZ is used.

4 Convergence Analysis of the Finite Element
Approximation

In this section, we prove that for a sequence of discrete C-stationary points there
exists a subsequence converging to an almost C-stationary point. To this end, we
assume:

(A1) {(yn,un,on)}x is a sequence of global minima of (3.7) or the sequences
{yn}2 and {u}7 are uniformly bounded in L?(<2).
(Az) The obstacle v satisfies Ay € L2(R).

Remark 4.1. Under assumption (A;) we may restrict ourselves to the case ¢ = 0,
since otherwise we can replace f by f + Ay and y? by y? — .

Theorem 4.2. Let  {(, 0, un)yr (Vn 0o n) € Ve x My x S\, h e H, be a
sequence of discrete C-stationary points of (3.6). Further, let {(pn, i)}, (Phs n) €
Vix My, h € H, be the sequence of associated discrete adjoint states and multipliers
computed with respect to a sequence {Vj,}1 of nested finite element spaces. Finally,
let 6, € V* and [1, € V* be the extensions of the multipliers o, and puy, as given
by (3.25).

If the assumptions (A1) and (Ay) are satisfied and the sequence {Vy}1 is limit
dense in V, then there exist a subsequence H' C H and an almost C-stationary
point (y*,0*,u*) € V x V* x L2(Q) of (2.5) with associated adjoint state p* € V
and multiplier u* € V* such that for h € H', h — 0 it holds

ypn—y* inV, (4.1a)
yn = y* in LX), (4.1b)
6, —o* inV*, (4.1¢)
wp — u*  in L*(R), (4.1d)
pn—p* inV, (4.1e)
prn— p* in LA(Q), (4.1

fp —=*u* inV*. 4.1g)
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Moreover, if{S,(,l)}H is limit dense in H' (), we have
(W, y*v) =0 forallve CYQ). (4.1h)

Proof. Assume that {(y;, o5, up)}y is a sequence of global minima. The triple
(yn,on,up) = (0,—f,0) is a feasible point for (3.6) and hence, Jj,(yy,up) <
Jn (0, — f1,). By the inverse triangle inequality and Young’s inequality it follows that
the sequences {y,}7¢ and {uy,}7 are bounded in L?(2).

If {(yn, on, un)}n is a sequence of stationary points, the boundedness of {yj}»
and {uy,}3¢ in L*(R2) follows from assumption (Ay).

Choosing v, = y;, in (3.17a) and v;, = pj;, in (3.17¢) and taking (2.4b),(3.17b),
and (3.18) into account, we obtain

v Ivla < au ) = (f +un o = (I g + lulog) Ivulie.
Y lpnll3 o < alpn. pn) = 0C = v, o — (i Pr))

=0 =y s = (9o + Ialo) Pl

In view of the boundedness of {y;}s and {uj}s in L?(R2), the preceding two
inequalities imply the boundedness of {y;}1 and {p,}y in V. Moreover, observ-
ing (2.4b), for v € V we have

6n ) = 1f +unlog IVloe + C lyalie Ve
<\ f +umllog +C lyillie) IVl

() < 1y = yalloe Vloa + C lpallie Ve
<(y* = yallog + C lpallie) Ve

whence

I6nllv < ILf +unlog + C lynlhe).  Naalve < 1y = yallog + C llyallig)-

This implies boundedness of the sequences {6y}, and {{is}7 in V*. Consequently,
there exist a subsequence H' C H and a point (y*,0*,u*, p*, u*) € V x V* x
L*(R) x V x V* such that for h € H', h — 0 it holds
yp—=y* inV, py—p* inV, (4.2a)
wp, = u*  in L*(Q), (4.2b)

6, —~%o* inV* [, —="u* inV* (4.2¢)
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Due to the Rellich-Kondrachov theorem V is compactly embedded in L?($2) and
hence, (4.2a) implies (4.1b),(4.1f).

For another subsequence, still denoted by H’, we further deduce that for i €
H',h — 0 we have y, — y* and p, — p* pointwise almost everywhere. Hence,
yp <0,h € H', implies y* < 0 almost everywhere (a.e.) in Q.

Next, we show that the point (y*,o*,u*, p*, u*) satisfies the state equa-
tion (2.13a), the adjoint state equation (2.13c), and (2.13d). Since {V}}4; is limit
dense in V, for any v € V we find a sequence {v;}1, v, € Vi, h € H, such that
vy, = vfor h — 0. Observing (4.2), for h € H',h — 0, we deduce

a(yn,vi) = a(y*.v), a(pn,vi) = a(p*,v),
(f +un,vi)oe = (f +u*vog, 7 = yvog = 09 = y* Ve,
({on.vi)) = ((Gn.vw)) = (0™ v). (s vn)) = (s vi)) = (™).

Hence, passing to the limit in (3.17a) and (3.17¢), we find that (y*, o *, u*, p*, u™*)
satisfies (2.13a) and (2.13c¢).

The limit density of {V}}4 in V further implies uZ — u?,h — 0. Conse-
quently, (3.17d) and (4.2) imply that (4.1d) holds true and that the pair (p*, u*)
fulfills (2.13d).

Next, we verify 0* € V. Since {(V})+ }# is limit dense in V., for any v € V,
there exists a sequence {v;}w,vih € (Vi)4+,h € H, such that vy, — vash — 0.
Observing 0;, € M () and (4.2¢), we find

0 < ((on,vi)) = (6. vi) = (0™, v),

whence (6*,v) forany v € V.
In order to establish strong convergence of the states in V', due to (3.6b) we have

a(yn,yn) <a(yn,vi) + (f +up, yn —vi)og, veeVinV_. (4.3)

Since the sequence {V;, N V_}4 is limit dense in V_, there exists a sequence
{vitr,vi € Vi N V_,h € H, such that v, — y* € V_as h — 0. Taking (2.4b)
and (4.3) into account, it holds

Yive—y* g <alm—y* . yn—y*) = a(yn. yn) —alyn. y*) —a(y*. yn — y*)
<a(yn.vi) + (f +un.vi)oo —a(yn y*) —a(y™, yn —y*).

Due to the already proven assertions (4.1b),(4.1d) and in view of (4.2a) the right-
hand side in the preceding inequality converges to zero which implies (4.1a).
Moreover, observing (3.17b),(3.17f), and (4.1a), it follows that

0= (5715 yh) - (O-*v y*>v 0= (lahv yh) - (M*v y*>s

whence (0%, y*) = (u*, y*) = 0.
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For the proof of (4.1c), we note that the compact embedding of L?(2) in V*
implies u, — u*in V*as H' 2 h — 0. Since A € L(V, V*) is bounded, we obtain

185 — 0™ llve < ll Ay — Ay* = + s — 1+
<l Alewy= lyn = y*llv + lun — u*[ly+ — 0 (h — 0),
which implies (4.1c). Moreover, due to (3.17e),(4.1c), and (4.1e) we have
0= (6n.pn) —> (0", p*) (H' 5 h — 0),
whence (o*, p*) = 0.
Next, we show (u*, p*) > 0. To this end, setting v, = py in (3.17c) and
>

observing ({iy, pr)) = 0, we find

0> a(ph, Ph) - (yd — Vh, ph)O,Q- (44)

Since the functional v € V + a(v,v) is lower semicontinuous and convex, it is
weakly lower semicontinuous whence due to (4.2a)

a(p*, p*) < liminfa(py, pp).

On the other hand, the already proven assertions (4.1b),(4.1f) imply

O =y p)og = 0 = y*. p*oa (H 3 h —0).

Consequently, passing to the limit in (4.4) and taking into account that the triple
(y*, 0™, u*) satisfies (2.13c), we obtain

0>a(p*, p*) — (" —y* p*)oa = —(1*. p*),

which proves (u*, p*) > 0.
In order to verify that p* satisfies (2.13¢), we show

(@*. (p)T) = (o*. (p*)") =0, (4.5)

which implies p* = 0in C* = int(supp(c*)) by Corollary 2.9. We note that (4.2a)
gives rise to

()t —= T, ()" =~ (") inVasH a3h—0

(cf., e.g., [27]). Together with (3.17¢), this leads to
0={{on. (pn) ")) = (¢*. (P T).  0=({on. (p)7)) = (6*. (p*)7) (H' 5 h - 0),

which proves (4.5).
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It remains to show that (y*,o™,u*) is an almost C-stationary point and to
prove (4.1h). In order to verify (4.1h), let v € C'(Q2). We have y*v € V (cf.,
e.g., [13]). Since the sequence {S}EI)}H is limit dense in H'(S2), there exists a
sequence {v; 3, v € S,(ll),h € H, such that v, — v (H > h — 0). Observing
vy € C(R),yn, € Co(R2), we have vy, € Co(2),h € H, which together with
nyn)lr € HY(T), T € T,(R), implies v,y, € V.h € H. Taking (4.1a) into
account, we deduce y,v;, — y*vin VasH > h — 0. Since (ypvp)(a) = 0,a €
Ay, it follows that

0 = (fun. ynvi) = (u*, y*v) (H' 3 h — 0).

Hence, (1*, y*v) = 0 which proves (4.1h), since v € C'(Q) was chosen arbitrarily.
In order to prove (2.13i), we note that (3.17f) yields
(ﬂh, vh) =0, vieVn VIthhU'h)' 4.6)

On the other hand, due to the pointwise a.e. convergence of {y,}x’ to y*, for
sufficiently small #; € H’ we have

yn<0ae.inZ*, H' 32h<h, 4.7
which shows Z* C 7;, for h < hy. For h < h; we define

Iy =T € Tu() | inu(T) € T*,

such that Z, € 7* C 7, H' > h < hy. Since i may be empty, we choose h, € H’
sufficiently small so that Z,, # @ for H' > h < h,. Setting h3 := min(hy, h,), we
thus have

0+, CI*<Ty, H >h<hs. (4.8)

Now, let v € Czxg := {v € Co(R) | v|z+ € C5°(Z%),v|q\z+ = 0} be chosen
arbitrarily, but fixed. Since supp(v) € Z*, there exists h(v) € H', h(v) < hs, such
that

supp(") €7, CI* €Ty, H 3 h < h(v).

and fh(‘,) C Iy, h < h(v), whence

— I*)0

Obviously, we have v € Vf,,(,) cV

cVv,nNV

VinVz ZyUF ) h <h®).

h(v)
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Observing (4.6), it follows that
(l:l’hs vh) - 07 Vh E I/h n Vi’h(v)’ h E h(v)' (4'9)

Since the sequence {V}, N Vf,(,) Yh<hw) C th( ) is limit dense in th( e there exists a
sequence {Vi }r<i(v), Vh € Vi N Vf, , ,h < h(v),such thatv, — vash(v) > h — 0.
In view of (4.2¢) and (4.9), it follows that

0= (fun, va) = (W*,v) (h(v) = h — 0),

which gives (u*,v) = 0,v € Cr* . The density of Cz* ¢ in V7= o implies (2.13i).
0

5 A Posteriori Error Control

In this section, we want to derive a residual-type a posteriori error estimator for the
discretization errors in the state, the adjoint state, and the control

€hy =Y = Yh, €hp =P Phy €y =U—U, (5.1)
that provides both an upper bound (reliability) and a lower bound (efficiency) up

to consistency errors and data oscillations. The total discretization error e; :=
(en,y, en.p, en.u) Will be measured in the norm

1/2
lewll == (llenyI3q + lenplig + lendlda) 5.2)
and we will show
m - Choff — OSC%,eﬁf S Hllenlll® S 7 + € e + 05C -
Here, n;, is the residual a posteriori error estimator, whereas ez,rel,ez,eﬂ and

0SCp,re» 0SC o stand for the consistency errors and data oscillations associated with
the reliability and efficiency estimates.

5.1 Components of the Reliability and Efficiency Estimates

In this subsection, we introduce the residual-type a posteriori error estimator
consisting of element and edge residuals, discuss the consistency errors due to a
mismatch in complementarity between the continuous and the discrete regime, and
present the data oscillations.
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5.1.1 Residual-Type a Posteriori Error Estimator

The residual-type a posteriori error estimator 7, is given by

pe= (02 + o) (5.3)

where nﬁll) and 7722) consist of element residuals and edge residuals associated with
the state equation (2.13a) and the adjoint state equation (2.13c)

W= Y alre Y a)” (5.4)

TeT,(Z)) Ee€z,

2 2 212\ /2

=X afr+ Y o?) (5.4b)
TETH(Zy) Eegzh

In particular, the element residuals n(v) and the edge residuals r)g) 1 <v <2, are
given by

(1) =hr || f +wllor, ,?’)(TZ) = hr |1y = yallor, (5.5a)

ny o= hyl e - Vylelos. 0% = hy> |ve - [Vpulelos. (5.5b)

5.1.2 Consistency Error (Mismatch in Complementarity)

We distinguish between reliability and efficiency related consistency errors.
Consistency Error for the Reliability Estimate.

_ ,M (2 o (2
eh rel - eh o + eh o + h N + € o (56)

where e,(l”{i, eh”) 1 <v <2, are given by

~ 2 ~
e =Gy —0.y— ). epyi=—(6—0.p— pa). (5.7a)

- ) -
eyl = (i — 1.y — ya)s  epn = {ftn — L. p — pa)- (5.7b)

Consistency Error for the Efficiency Estimate.

ez’eff ::< Z ((7)+ Z (u)+ Z e(”)+ Z ec(olz)), (5.8)

TETi(Z)) TE€Ti(Th) E€€z, Eeéz,
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where e(TU), e(T“ ) and e,(D‘TE), e,(v’z.) are given by

e = |(fi + w) br[Th (0. (fi + un) br), (5.92)
e = |(vfl = yu) brlvy (. (i = ya) br), (5.9b)
e$) :=ve - [Vyule beliL, (0.vE - [Vyale be), (5.9¢)
e = —|vg - [Vpule belh (mve - [V pulE be). (5.9d)

and by, bg stand for the element and edge bubble functions.

5.1.3 Data Oscillations

As in case of the consistency errors, we distinguish between reliability and
efficiency related data oscillations.

Data Oscillations for the Reliability Estimate.

osch,,el::( Z osczT(ud))l/z, (5.10)

TeTy(R)
where oscr (1) is given by
oscr(u?) = |lu? — u[lo.r. (5.11)

Data Oscillations for the Efficiency Estimate.

OSCheff :=( Z osck(f) + Z osczT(yd))l/z, (5.12)

TeT)(Zy) TeTy(Zy)
where oscr ( f) and oscr(y?) are given by

oscr(f) :=hr || f = fullor, oscr(y?) :=hr [|y* =y llor. (5.13)

5.2 Reliability of the Error Estimator

Theorem 5.1. Let (y,o,u, p, i) and (yy, on, un, pn, iLn) be solutions of (2.13a)—
(2.13g) and (3.172)~(3.17f) and let ny,e; ;. 05Chrer be the residual-type error
estimator, the consistency error, and the data oscillations as given by (5.3),(5.6),
and (5.10). Then, it holds
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llenll* < mjp + € e + 0SCh - (5.14)

The proof of Theorem 5.1 will be given by a series of lemmas.

We note that neither e, , nor e, , satisfy Galerkin orthogonality due to the
presence of u,u; in the right-hand sides of the continuous and discrete state
equations (2.13a),(3.17a) and of y, y;, in the right-hand sides of the continuous and
discrete adjoint state equations (2.13c¢),(3.17c). As in the case of the a posteriori
error analysis of finite element approximations of control and/or state constrained
distributed optimal control problems for second order elliptic PDEs, Galerkin
orthogonality can be achieved with respect to an auxiliary state y(uy) € V and
an auxiliary adjoint state p(y,) € V which are defined as the unique solutions of
the variational equations

a(y(up),v) = (f +up,v)oo — (6n.v), veV, (5.152)
a(p(m),v) = 0 =y v)og — (ftn,v), vevV. (5.15b)

In fact, it follows easily from (5.15a),(3.17a) and (5.15b),(3.17c) that

a(y(up) — yn,ve) =0, vy €Vp, (5.16a)
a(p(yn) = pnsvi) =0, vy € V). (5.16b)

Lemma 5.2. Under the assumptions of Theorem 5.1 let y(up), p(yn) be the
auxiliary state and the auxiliary adjoint state as given by (5.15a) and (5.15b) and
let n;ll) and 77512) be the components of the residual a posteriori error estimator

according to (5.4a) and (5.4b). Then, it holds

1y un) = yallie < 03", (5.17a)
lpOm) — prlle < 0y (5.17b)

Proof. Denoting by PhC Clément’s quasi-interpolation operator (cf., e.g., [44]), due
to Proposition 3.9 and (5.16a) for e := y(u;) — y; it holds

lellq < ale.e) =r(e— Pfe), (5.18)
where the residual 7 (-) is given by
r(v):= (f + un,v)oq — (6n,v) —a(yp,v), vew.

In view of the representation (3.26a) of the extension 0 of the discrete multiplier
oy, by straightforward estimation we obtain
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rle—Pfe)<| Y (f+une—Pfeorl (5.19)
TE€TH(Zn)
+ 1 > p - [Vynle.e — PEe)os| + |F7 (P (e — PLe)).
E€&z,

Taking advantage of the properties
C c 1/2
le = Pellor < hr lely,r.  lle—Pellos S hil® lel,

of Clément’s quasi-interpolation operator, for the first two terms on the right-hand
side of (5.19) it follows that

| > (f+une—Pfe)or| < (5.20a)
TE€T(Zp)
1
Yo IS +uwllor lle—Pgelor s Y 05 lel,r,
TG'ZZ(Z;,) TE'Z’;,(Z/I)
| Y e [Vyule.e = PCe)ok| < (5.20b)
EeEz,
1
Y- e [Vaulelos le = Pelloe < D" ng lelyyp-
EESgh EESgh

For the third term on the right-hand side in (5.19), in view of (3.26¢) and the
definition of the Scott—Zhang interpolation operator P,fz we obtain

|F,7(P%(e — Pfe))| < (5.21)
> (I twlor Y IPEe - PEN@e lor)
TE'Z’;,(.'F]I(U]I)) “GMI(T)OCII
(a)
+ Y ve - [Vaulelos (P (e = PEe) @), ok
E€EF,0op)

where a/; stands for the single nodal point in N, (E) N Cy, E € E4(Fi(01)). Using
elementary properties of nodal basis functions

ley”llor < ko a € Nu(T), llgy"los < . a € Ni(E), (5.22)
as well as the following property of PhSZ (see, e.g., [39])

I(PS4v)(a)| < h' IIvllor. a € Niu(T), v € LA(Q), (5.23)
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it follows that

Y e — P @] ey llor < (5.24a)
a€Ny(T)NC),
hr Y |(PFe—Ple))]| 5
a€N;(T)NC),
hr o Y hplle=Plelor, Shr Y el .
a€N(T)NCy aeNy(T)NC, “n
(PS4 (e — PEe) @)ooy = (5.24b)

(P5Z(e — PEe) @) 10" 0.k <

1/2 ;-1 C 1/2
h* b, lle = Plell

<h

@) ~ le] ) s

0,7 E TYE
Lo,

where 7@ denotes the fixed element in w;, which is used in the computation of the
nodal coefficient (P%(e — PCe))(a) (cf. (3.28)). Using (5.24a),(5.24b) in (5.21)
yields

|E (P (e = PEo))| (5.25)
1
oo P lelar + > 0@ lel up.
TET;,(Fi(on)) E€E 7 op) “h

where

~ (a)
= U o

a€N(T)NC,

Combining (5.20a),(5.20b), and (5.25), from (5.19) we deduce

c 1 (1
re—Pfeal < Y oy lelor + Y % leliar. (5.26)
TET(Z)) Eegz,
where
~ (@)
CDT - { o’ U wh; T € 771(-7:11(071)) i c?)E = T U a)h ,E € 5]:,1(5,1)
w,, , otherwise “)h , otherwise

Applying the Cauchy—Schwarz inequality in (5.26) and taking into account that th
and wh have a finite overlap, it follows that
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re—pfels( Y (<1>) ( 5 Ielim)l/z

TeTy(Z) TeTy(Z))
P2 00) (X ki) <
EESgh EESgh
( Y e Y oy )1/2.
TeTy(Zp) Eegz/zugfh("h)
(3 telart X telar)” S0 el
TET;(Z)) E€Ez,
Using the preceding inequality in (5.18) gives (5.17a).
For the proof of (5.17b) we set e := p(y,) — p; and obtain
lel} o < ale,e) =r(e— Py e), (5.27)

where the residual 7 (-) is given by
r@) = (" =y vog — (. v) —alpy,v), veV.

The representation (3.26b) of the extension ji; yields

re—Piey=Y ('—yme—Pieor— Y (e [Vpile.e—Pleos

TET;(Q) E€£,(R)
— (e—Pley= > (' —yne—Ple)or
TE€Tj(Zh)
> e [Vpule.e — PEedor — FV(P(e — PCe)).
EESI,I

The terms on the right-hand side can be estimated from above in much the same
way as before resulting in

Ir(e — PEe) S 1 lelia, (5.28)

which together with (5.27) allows to conclude. O

Lemma 5.3. Under the assumptions of Theorem 5.1 let y, y(uy,) be the state and
the auxiliary state and let p, p(yy) be the adjoint state and the auxiliary adjoint
state. Further, let 77;,1) and 77;,2) be the components of the residual a posteriori error
estimator according to (5.4a) and (5.4b) and let e}(ll()y, € ) be the consistency error
terms given by (5.7a),(5.7b). Then, it holds
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1y =y @)} q < lenaldo + )% + e)l0. (5.292)
2 2
lp = PO g < lenylEq + ()2 + efh.- (5.29b)

Proof. Subtracting (5.15a) from (2.13a) yields
a(y — y(up),v) = (epu-v)oo + (6 —0o.v), veV. (5.30)
Choosing v = y — y(u;) and observing (2.4b), we get
vy —y@)lig <a(y — yn).y — yup) = (5.31)
(€ha ¥ — Y(un)og + (6n — 0. yn — y(ur)) + ).
The Cauchy—Schwarz inequality and Young’s inequality give

y 1
(@hany =y @i)ogl = 1y =y @) lig +  lenulio: (532)

Moreover, if we choose v = y;, — y(u,) in (5.30), we obtain

(0n — 0,y — y(un)) = (enus y(un) — yn)og + a(y — yun), yn — yun)).

Another application of the Cauchy—Schwarz inequality and Young’s inequality yield
[(6n — 0, yn — y(up))| = (5.33)
14 2 14
3 1y =r@lio + 2l =y@lie + 7 lendie.

Using (5.32),(5.33) in (5.31) and setting

244 4 2
=Yt o= =2 (5.34)
2y? y? %
it follows that
ly = y@) g < Ci lendlla + Co lyn — y@)lig + Cs el (5.35)

The second term on the right-hand side in (5.35) can be estimated from above
by (5.17a) which results in (5.29a).

The estimate (5.29b) can be established by using similar arguments. In fact,
subtracting (5.15b) from (2.13c¢) yields

a(p—p(yn),v) = —(eny.vIog + (ith —p.v), veV (5.36)



Adaptive Finite Elements for Optimally Controlled Elliptic Variational. . . 127

Choosing v = p — p(yy) and v = p;, — p(ys), we obtain
vlIp—pOnlia <alp—pn). p—pm)
= (eny. P('1) — Pog + {fn — i i — p(n)) + e

(fn — s pn — p(yn)) = (eny, pr — p(¥n))o +alp — p(yn), pn — p(¥1))-

An application of the Cauchy—Schwarz inequality and Young’s inequality gives

Ip = POl < CillenylRg + Callpn— pOWIig + Csef).  (537)
from which (5.29b) can be deduced in view of (5.17b). O

Lemma 5.4. Under the assumptions of Theorem 5.1 let ny, ez,ml, and osc e be
the residual-type error estimator (5.3), the consistency error term (5.6), and the
data oscillation (5.10). Then, it holds

”eh,u”%,Q 5 77% + e;,rel + Osci,ml' (538)

Proof. Combining (2.13d) and (3.17d) we obtain

lenallda = (enus u—un)og (5.39)
= (enu- ' —u)og + (enu (4 —u?) — (wp — u))og
= (enu>u! —ul)oa + o™t (enus p— p)og-

The first term on the right-hand side in (5.39) can be estimated from above by

1
[(ena u” = uidool < 7 lenalldq + oscj®). (5.40)
The second term can be split according to

(€hu» 0 — Pr)oa = (enus p — P(Yn))o.a + (€nus P(Yr) — Pr)og- (5.41)

For the estimation of the first term on the right-hand side in (5.41) we choose v =
p — p(yy) in (5.30) which gives

a(y —y@n), p — p(yn)) = (enu p — p(Yn))oa + (6n — 0, p — p(¥1)).
(5.42)

On the other hand, choosing v = y — y(up) in (5.36) yields

a(p—pWn).y —ywn) = —(eny,y — yun)og + (itn — .y — y(up)).
(5.43)
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Combining (5.42) and (5.43) and using the symmetry of (-, -), it follows that

hus P — P(Y))oe = —(eny.y — yun)oga + (5.44)

(1 — 0. p(va) — Pa) + (fn — o yi — ¥ (un)) + ey) + e,(f,l

Now, choosing v = p(yx) — pn in (5.30) and v = y, — y(u;) in (5.36), for the
second and third term on the right-hand side in (5.44) we find

(6n — o, p(yr) — pr) = — (enw, (Y1) — Pro +a(y — y(un), p(yr) — pn),
(Bn =, yn — y(un)) = (eny, yn — yWn)o.o +a(p — p(yn), yn — y (un)),

and hence,

(enu- 2 — P02 = —lleny 5.0 — €hu POV1) — Pr)og + (5.45)

2 1
a(p = p(yn). yn — () + a(y = yn). p(ya) = pi) + ey + €.

Using (5.45) in (5.41) results in

(€nus P — P)oe = a(p — p(yn), yn — y(un)) + (5.46)

2 1
a(y = y(un). pw) — pu) — lleny [ + e +ef)).

For the first term on the right-hand side in (5.46), Young’s inequality gives

€ 1
la(p = PO, yn = y@))| = = llyn = y@lig + - 1P = POWIE g
Using (5.37) and choosing ¢ = C/2, we get

la(p — p(yn), yn — y(up))| < (5.47)

C, C G
lensloo + & 1Pn = POWITe + 7 lyn = y@nliie + & ey

The second term on the right-hand side in (5.46) can be estimated from above
similarly:

e 1
la(y =y @), p) = Pl = 5 Ipw = PO o + 52 Iy = Y@ .
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Observing (5.35), we choose ¢ = 2C} /« and obtain

o aC
la(y = y(un), p(yn) — pw)l < = llenullg.o + — lyn — yunlio (5.48)
4 4C,

G | aG )
+ — lpn — pO)llTq + 2, Cho
Using (5.40) and (5.46)~(5.48) in (5.39), it follows that
lenulls.e < Ilpn — PO g + lvn — y i)l o + € e + 05Cs;. (5.49)

The assertion (5.38) follows from (5.49) by taking (5.17a),(5.17b) from Lemma 5.2
into account. O

Proof of Theorem 5.1. In view of
eny =y — y@up) + yun) — yn,
enp =p—pyn)+pOn) — pu

the estimate (5.14) follows from the preceding Lemmas 5.2, 5.3, and 5.4. O

5.3 Efficiency of the Error Estimator

Theorem 5.5. Let (y,o0,u, p, u) and (yu, on, un, pn, Ln) be solutions of (2.13a)—
(2.13g) and (3.17a)—(3.17f) and let nh,e;"eﬁ,osch,eﬁr be the residual-type error
estimator; the consistency error, and the data oscillations as given by (5.3),(5.8),
and (5.12). Then, it holds

T = €l = 05Cha < lllenlll (5.50)
The proof of Theorem 5.5 will be provided by the subsequent two lemmas taking

into account the following well-known properties (cf., e.g., [44]) of the element
bubble functions

lgnlls 7 < (gn.qn br)or. qn € Pi(T), (5.51a)
lign brllor < lgnllor. gqn € Pi(T), (5.51b)
e llgnllor < lgn brhve < by llgnllor.  qun € Pi(T), (5.51¢)

and of the edge bubble functions
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lgnll3 5 < (@n.qn bEYo.E.  an € Pi(E), (5.52a)
lgn bellos <Y llgnllos,  gn € Pi(E), (5.52b)
B Nanlloe S lgn behiws ShE lgnllos.  an € Pi(E). (5.52¢)

Lemma 5.6. Under the assumptions of Theorem 5.5 let n(TV), 1 <v <2 67, e#,
and oscr(f),oscr(y?) be the element residuals (5.5a), the consistency error
terms (5.92),(5.9b), and the data oscillations (5.13). Then, for all T € T,(Zy) it
holds

ny < llenylr +hr lenallor + €f + oser(f), (5.53)

whereas for all T € Ty,(Zy) we have
(2) < h I d 4
nr < llenpllir + hr llenyllor + e + oscr (y9). (5.54)

Proof. Setting Y7 := (fi + up) br, using (5.51a), Ay,|r = 0, Green’s formula,
and ¥7 |37 = 0, we obtain

hi L fi + unllr S hy (U + wn ¥)or = (5.55)
Wy (fo + wn + Ay, ¥9or = hy (fu + un, ¥)or — hy a(yn, ¥3).

On the other hand, since 7 is an admissible test function in (2.13a), we have
a(y.¥7) — (f +u.¥plor + (0. ¥7) = 0. (5.56)
Using (5.56) in (5.55), it follows that
i+ el S0 (a0 v = (f +uyPor + (0.0)) = (557
i (@ ¥ = Ui+ w ¥or) =
1 (@ = v ) = (f = fus ¥dor = (= w Yo + (0. 97)) =
12 (lenshir 10§ + lenallor 193 lor +€f 1517 ).
In view of (5.51b) and (5.51¢), it holds

W N o+ unllor S WS = |(fu +un) br| S h' | fi + wnllor,  (5.58)
1 llor < WL fi + unllor-
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Now, using (5.58) in (5.57), we get

2 2
W o+l r S e+ wnllor (lens i + hr lenallor + e + oser (/).

Combining the preceding estimate with r)(Tl) < hr | fn + unllor + oscr(f)
yields (5.53). The assertion (5.54) can be shown by similar arguments. O

Lemma 5.7. Under the assumptions of Lemma 5.6 let ng) 1 < v < 2, and

egE,eZE be the edge residuals and consistency error terms as given by (5.5b)
and (5.9¢),(5.9d). Further, for E = T4+ N T_, Ty € T;,() let

nG) =gl +nf . osco, (f) = oser, (f) + oscr_(f), (5.59)
) =g 40, 0scu, (b)) 1= oser, (v) + oser_ (). (5.59b)

Then, for E € £z, we have

ms % leny s +he lenalows +n) + €5, + oscu, (). 460

whereas for all E € &7, it holds
1 S Nenplhos + b llewy lows + 0 + els, + 0scu, (). (5.61)
Proof. For E € £z, we set Y, := v - [Vy,]g bg. Then, (5.52a) implies
) = he e - (Vylel e < he O - [Vyale. ¥ o (5.62)
=hg Vary - Vynlary . VE)oory + he (ar_ - Vynlor_ . W )oar_.

where we have used that 7|z = 0, E’ € 0T+ \ { E}. Further, Green’s formula and
Ayp|r, = 0yield

ary (yn, Vg) = (Vyn, VYgory = Wory - Vynlry, ¥E)ory - (5.63)

Using (5.63) in (5.62) gives

(1) S hi oy (0. V5). (5.64)

Taking into account that ¥ is an admissible test function in (2.13a), we get

dop (V. V) = (f +u.¥E)owe + (0. ¥E) = 0. (5.65)
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Combining (5.64) and (5.65), we obtain
(ng))z Shga(yn—y, Iﬁg) +he (fn + un, wg’)O,QE + (5.66)
hE (f - ﬁ‘la wg)o,a)b‘ + hE (M — Up, wg)o,wb - hE (O—s wg)
< e 1y = Wil [VEIop + R 1WElows (/s + willows +
e = tnloaog + 1 = fillows ) +he €5, 1V |1
Moreover, (5.52b) and (5.52c¢) imply
2 v [Vynlelos S WEliws = Ve - [VIale belios (5.67)
S hp " v - [Vyuleloe
W2 lows < h? Ive - [Vynlellos.
Using (5.67) in (5.66) yields
0y < lenyllios + he lenullows + e | fi + tnllows + €5, + 05cuy (f).

Due to the shape regularity of the triangulation, for £ € &,(T) wehave hg < hy <
h g and hence,

he | o+ unllowy < he | fo +unllory + he | fo +unllor. <
hry | fo + unllory + hr_ | fi + unllor— < nS).

The preceding two estimates result in (5.60). The assertion (5.61) can be verified by
similar arguments. O

5.4 Estimation of the Consistency Error

In this subsection, we provide fully computable quantities for the approximation of
the reliability and efficiency related consistency errors.

5.4.1 Approximation of Characteristic Functions

In this paragraph, following [15,17,28] in case of adaptive finite element approxima-
tions of control and/or state constrained optimally controlled second order elliptic
boundary value problems, we provide approximations of the characteristic functions
X and y_ of the active set .4 and the zero set Z by means of the available finite
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element solutions. Here and in the forthcoming paragraphs we will use realizations
0,;, ,u;l € 1}, of the discrete multipliers oy, j, with respect to the finite element
spaces V}, according to

(o5, vido.e = ({onvn))s (s vidoe = ((nsve))s  vi € V.

Moreover, we introduce a mesh function 1 € S }(11) whose nodal values h (a) are given
by averaging over local patches:

h(a) = (card(wg)) ™" Z hr, ae€Ny(Q).

T €Ty (wq)

The approximations of the characteristic functions are defined by means of

(Yn — yn)(a)
yh@) + (i — yn) (@)’
o} (a)
yh(a)" + o} (a)’

Inala) :=1— a € Ny(Q), (5.68a)

Inza)=1- a e Ni(Q), (5.68b)

where 0 < y < 1 and r > O are fixed. In case of uniform meshes with h~h=
maXrer, (&) hr, the following result reflects the approximation properties of y, 4
and yj z.

Proposition 5.8. For0 <& < landy, r asin (5.682),(5.68b) consider the partition
INI, =7, U1,
where the sets 7,,,1 < v < 2, are given by
Tii={x € 2|0 < yu(x) —yn(x) S yh™}, Toi={x € T| Y(x) — yn(x) > yh*"}.

Then, it holds

=0 ,w CAN A,

< min(lw"2, y " h Y — yallog . @ CANT,
X4 = Xiallow { = |w|1/2 Lo CINA, .

< |ow|'? Lo CT

< |ow|"?hr(=8) ,o CI

Proof. Without loss of generality we may assume h# < 1. For the proof we
distinguish several cases.



134 A. Gaevskaya et al.

Case 1 (w C AN Ap): Obviously, ¥ 4 lo = Xy ule = L.
Case 2 (w C ANZy): Wehave y , |, = 1 and hence,

(Wh - yh)lw
Yh" + (n— yi)lw

Xa = 200 =

Since (Y, — yn)|w > 0 and yh" > 0, it follows that

(XA - Xh.A)lw < V_lh_r(% —¥i)lo and (XA - Xh,A)|w <1,

which allows to conclude.
Case 3 (w C Z N Ap): The assertion follows readily from y |, = 0 and

X;l,A|w =L
Case 4 (w C Z NZy): We have y , |, = 0 and

yh"
Yh' + (U — yi)lo

(XA - X/,,A)la) =

For w C Z; this implies (¥, — X, 4)|lo < 1, and we conclude. On the other hand,
for w C I, taking & < 1 into account, we find

= Xp)lo < min(l, A7) = pri=e)

which proves the assertion. O

5.4.2 Approximation of the Continuous Active/Inactive Sets

Based on the approximations y, ,, x,. of the characteristic functions of the
continuous sets A and Z, we derive approximations of the continuous (strongly)
active, biactive, inactive, and zero sets. To thisend, for0 < x < land0 < r’ < r we
first define nodal sets Ay, I, Cy, Zy, and B, as approximations of their continuous
counterparts according to

Ay ={a e Nu(Q) | 1, (@) = 1 —xh(@)}, I := Niu(Q) \ 4y,
Cr = (NW@)\ {a € Ni(@) | 1, (@) = 1= h(@)'}) N 4y,
Zh = M(Q)\éh, Bh = ffhﬂZh.

These sets constitute a suitable basis for the specification of approximations Ay, of
A, I, of Z, Cj, of C, and Z), of Z by means of

Ay =T e Tu@) | T € AT} A} = {T € Tu(Q) | Ni(T) € Au},
(5.69a)
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=T e W) | T €] UF]}. (5.69b)
I =T € Ti(Q) | Ni(T) € I}, FL := T,() \ (A] UI]),

Cri=|JT eTu(Q) | T €C[}. C :=A{T € T(Q) | Nio(T) € Ci} U
(5.69¢)

(T eTH(Q) | TNT#OANUT)NN(Q) #BAT C ALY,
2y =T eT(@) | T ez UFL} (5.69d)
Zl =T € T,(Q) | Ni(T) € Z UNW(D)}, FL = T(2) \ (CF U Z]).

The biactive set 3 and the free boundaries F(y) and F (o) are approximated by

By =\ iT € T,(Q) | T € B}}. B := A\, (5.6%)
Fy= T eTu(Q) | T € FL}, (5.69f)
For =\ T € T(Q) | T € 7} }. (5.69g)

In the documentation of the numerical results in the following Sect.6, we will
measure the quality of the approximation of the active set .4 and the strongly active
set C by the a posteriori quantities

dva

e = X, = x5l @) ezi,vél = xe, = x¢, 1) (5.70)

where the upper index ‘dva’ stands for ‘discrete versus approximate’, and compare
them with the quantities

ez,”;i =X = xa, @ e/‘ZYé‘ = lxe = Xe, L@ (5.71a)
ey = 1llxa— X4, v, ere = Ilxe— Xe, L) (5.71b)

Here, the upper indices ‘evd’ and ‘eva’ mean ‘exact versus discrete’ and ‘exact
versus approximate’. Obviously, these latter quantities are only available, if the
exact solution is known.

5.4.3 Approximation of the Continuous States and Multipliers

We derive approximations of the state y and the adjoint state p as well as various
approximations of the multipliers o and p in terms of the approximations of the
continuous active/biactive, strongly active, inactive, zero nodal points (sets) and
free boundaries provided in the previous paragraph 5.4.2. Motivated by supercon-
vergence results through local averaging (cf., e.g., [3]), we define approximations
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yn € Vj of y and pj, € Vj, of p according to

cardWi(@a))™ Y yula').a €l
yn(a) = @ €N (@) , (5.72a)

wh ((l) ,a € /Ih
card(Niy(@))™' Y. puld’) . a € Z,

pu(a) = ENACH! . (5.72b)
0 ,a e Ch

Likewise, we define approximations o;" and i) of o and u by means of

cardNi(@,)™ Y op(@),a e

oy (a) := a’ NG (@) o (5.73a)
0 ,a e Zh
card(Nj(@a))™ X ppla) a el

/"L;l/(a) = (I/E./\/h(a)u) . (5.73b)
0,a¢€ A,

Remark 5.9. The functions yy, ﬁh will replace y, p in the approximation of the
consistency error ej, . whereas o7, i, will be used in the approximation of e;,eﬂ
and in a further form of the approximation of €}, o (cf. paragraph 5.4.4).

For the approximation of the multipliers o, 14 in the consistency error e;, ., we
will use an alternative approximation which relies on the structural properties of the
multipliers. If the sets C and A are the union of a finite number of connected pairwise
disjoint Lipschitz sets, forany v € V' Proposition 2.1 guarantees the existence of sets
C, A and functions va", v € V such that C € CcQ ACACQand

(o.v) = (0.v¢") = (f +u.vgDee — (VY. Vg e
(v = (1v) = 07 =y vD)oi — (V2. VW) i
Employing the structural information provided in Proposition 2.16, we obtain
(o,v) = (5.74a)
((/ +u" Voe = (V9. Vuoe ) = (A v @ens + (V¥ YV @rerns)
+ <(f +u' + a7 p. véo@venz — (V. V"ecxr)o,(é\cmz)v
(o) = O =¥ o (5.74b)

+ o (VAP + £+ '), W + (0 = .95 aa = (V2. V50 214)-
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In order to provide a fully computable approximation, we replace the unknown sets
C,B, A, 7, and the unknown functions y, p by their previously defined approxima-
tions Cy, By, Aj,, Iy, and jy,, pj. Moreover, C, A are chosen according to

C:=CUF,, A=AUF,, (5.75)

whereas v3", v’ are approximated by

gt =1, (Vh) vi’_{; = IA,}1 vn), vw €V (5.76)

Here, IDh , D, € Ni(R2), is the operator from (3.19).

Using the previous approximations in (5.74) and assuming sufficient regularity
of the data in /3, we obtain the following approximations of the action of o, 4 on
functions in V},:

)~ 6w = Y ((f +uvior — (V. Vor) (5.77a)

T€T;(Ch)

= Y (AW, G0 + (V. VI v )

TEﬁ,(j?gh mB_h)

+ Z ((f + ud + a_lp_hv I@h (vh))(),T - (V)jhs Vléh (vh))O,T)s

TG’Th(]:—(,h ﬂih)

(o~ (o) = > 0 = yver (5.77b)

TG’Th(-Ah)

+oa Y (VAY + f+u'). Vor

T€T;(B))

+ > (0 =Tty Gor = (VB VI o).

TETH(Fy,)

As far as the regularity of the data is concerned, in the proof of Proposition 2.16
we have seen that Ay € L2(B) and Ay + f +u? € H'(B). If B, C B or else
Ay € L*(By) and Ay 4+ f + u? € L?*(By) hold true, (5.77a) and (5.77b) are
well defined. Otherwise, employing the values of y;, and pj, in By, we can use the
following simplification of the approximations of the action of o, 4 on functions
in Vj:
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) ~ @0 = 3 ((F +utovdor = (V9 Vor ) (5.78a)

TE€T;,(Ch)

- Y (VYT Wy

TE%(]_:U;,, ﬁB_h)

+ Y (¢ e p L 0o — (Vi VI )or ).

TG’Th(]:—(,h ﬂih)

(o) ~ (2 = > 0 =vwer— Y (Viw Vdor

TG’Th(-Ah) TG’T/,(B_/«,)
(5.78b)

+ > (0 =Tty Gor = (VB VI ti)or ).
TETH(Fy,)
5.4.4 Approximation of the Consistency Errors

For the consistency error ¢}, we will use three different types of approximations

k 1,(k 2,(k 1,(k 2,(k
eha el = e e 1<k <3, (5.79)

For the first two approximations &; h 1 ,1 <k <2, we use the approximation of the
multipliers by (5.77) and (5.78):

l( Vo= (6 =", 5 — ), e_zjf,k) = (61— 6., ph — Pn), (5.80a)
-1 _(k) - k) -
ehL) . (Mh _MZ s Yh —J’h), eh/(L) = (Mh _/“L;l)s Ph —Ph)- (580b)

The third approximation eh (e) is obtained by using the approximation of the

multipliers by local averaging (cf. (5.73)):

e;l(()“) . (Uh - O—h s yh Yh), e]“(y) . (Uh - Uh Ph — ﬁh>s (5813)

-1
&y =l — piy Fn— yu). &) = {fin — Wi P — pa). (5.81b)

Further, we compute upper bounds e eh ml ,1 <k <3, according to

g < By = By + O+ EyY + BNV 1<k <3, (5.82)
where £ ;: L(Tk) ,E ,‘; /(Lk) ,1 < v <2, are given by summing up the absolute values of the

elementwise contributions of e" ) e'}"l Lk), 1l<v<2.
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For the approximation of the consistency error ¢}, 7 We use the approximation of
the multipliers by local averaging as given by (5.73):

—c Do . 2 2 2 2
Chofp < Epopp = Z hz llog llo.r + Z hz i llo.7- (5.83)
TeTi(Z)) TeTy(Zn)

6 Numerical Results

In this section, we present numerical results for problems with and without
strict complementarity illustrating the performance of the suggested finite element
approximation. We note that for adaptively refined meshes it is appropriate to
measure the decay in the error err in terms of the degrees of freedom (DOF)
provided by the finite element mesh. In particular, if there exists a real number
T > 0 such that err = O(DOF™"), then 7 is said to be the convergence rate of the
error with respect to the degrees of freedom. In the numerical experiments, we are
dealing with a hierarchy {7}, (£2)},en of nested simplicial meshes with associated
degrees of freedom DOF(n). Denoting by err(n),n € N, the error with respect to
the mesh 7, (€2), we refer to

__log(err(n —1)/err(n))
= {oa(DOF(m)/DOF( —1))° " €N ©.1

as the experimental convergence rate in terms of the degrees of freedom. On a
double logarithmic scale, the numbers 7, correspond to the negative slopes of
the lines connecting log(err(n — 1)) and log(err(n)). In the subsequent numerical
examples, we will compare these lines both for uniform refinement and adaptive
refinement. In the regular case, we expect the slopes to be approximately the same,
whereas for less regular solutions the slope for adaptive refinement is expected to
be larger than in case of uniform refinement.

Example 6.1. We consider A = —A on the L-shaped domain Q@ = (—2,2)% \
([0,2] x [-2,0]). In polar coordinates, given

yi(rp) = —y(r) r*?

o2
sm(§<p),
1, r>=r:=05

* %
0, otherwise cow () =y (r.9),

o™ (r) = {

where

O, r>r
16r3 — 12r2 + 1, otherwise ’

y(r) = {
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2 o F
x1

Fig. 1 Example 6.1. Optimal state y* (leff) and inactive set Z*, marked in black (right)
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Fig. 2 Example 6.1. Final mesh (left) and zoom into the vicinity of the singularity at the origin
(right)

it can be easily verified that the triple (y*, o*, u*) with the adjoint state p* = y*
and the multiplier u* = o™ is an S-stationary point of (2.5) with respect to the data

y == Ap*+y*. u! =0,
f=0"=Ay*—p*, a=1, ¥ =0.

Further, we have Z7* = {(r,¢) | r € (0,7),¢ € (0,37/2)}, Z2* = I*, and
hence, B* = . The state y* and the inactive set Z* are displayed in Fig. 1. The
adaptively generated final mesh with 33468 DOFs and a zoom into the vicinity of
the singularity of the state at the origin are shown in Fig. 2.
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errors in state and control
total error and estimator

107*Y o Tl T {UFEM)
—+— lle|I (AFEM)
o lle,Jl (UFEM)
—s— lle,Jl (AFEM)

T

0 1 (UFEM)
——n (AFEM)

- |llelll (UFEM)
L ‘*‘H\ﬂ”(“%W

DOFs DOFs

Fig. 3 Example 6.1. Convergence history: Decrease of the errors in the state [le; ,[|1.¢ and in
the control |lej,..]lo.o as a function of the DOFs on a logarithmic scale (for uniform (UFEM) and
adaptive (AFEM) refinement (left). Decrease of the estimator 1, and the total error |||ep]||| as a
function of the DOFs on a logarithmic scale (for uniform (UFEM) and adaptive (AFEM) refinement
(right)

Table 1 Example 6.1: Experimental convergence rates (uniform and adaptive refinement)

llenyllie llenp e lenullo.c Ilen!ll
n Unif. Adapt. Unif. Adapt. Unif. Adapt. Unif. Adapt.
3 0.26 1.11 0.26 1.11 0.68 2.15 0.28 1.15
4 0.41 0.76 0.41 0.76 0.76 1.48 0.42 0.78
5 0.43 0.56 0.43 0.56 0.88 1.06 0.44 0.57
6 0.44 0.68 0.44 0.68 0.83 1.40 0.45 0.69
7 0.45 0.57 0.45 0.57 0.82 1.15 0.45 0.57
8 0.41 0.64 0.41 0.64 0.82 1.21 0.41 0.64
9 0.42 0.51 0.42 0.51 0.78 1.09 0.43 0.51
10 0.40 0.57 0.40 0.57 0.76 1.07 0.40 0.57
11 0.40 0.49 0.40 0.49 0.75 1.04 0.40 0.50
12 0.39 0.54 0.39 0.54 0.73 1.02 0.39 0.54
13 0.38 0.49 0.38 0.49 0.72 1.03 0.38 0.49

The convergence history is documented in Fig. 3 (left) which shows the decrease
of the errors in the state ||le; ,|1.o and in the control ||ej 4|lo.e as a function of the
DOFs on a logarithmic scale both for uniform refinement (UFEM) and for adaptive
refinement (AFEM). Likewise, Fig.3 (right) shows the decrease of the total error
|llen|l| and of the estimator n; as a function of the DOFs on a logarithmic scale,
again both for uniform refinement (UFEM) and for adaptive refinement (AFEM).

Table 1 contains the computed experimental convergence rates (cf. 6.1) for the
approximation of the state, the adjoint state, the control, and the total error in case
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c.e. in rel. estimates (UFEM)
c.e. in rel. estimates (AFEM)

O -e
2
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DOFs DOFs
Fig. 4 Example 6.1. Decrease of the reliability related consistency error e = |ef, | (dotted line)

and its estimates ef = |E(.'(r/e€,) l,E k= E;'Z{I), 2 < k < 3, (solid lines) as functions of the DOFs on

a logarithmic scale for uniform refinement (left) and adaptive refinement (right)

of uniform and adaptive refinement. We see that asymptotically the expected optimal
convergence rates are achieved.

As far as the consistency errors and their estimates are concerned, we have to
distinguish between the reliability related consistency errors e;, ,, (cf. (5.6)) and the
efficiency related consistency errors eZ’eﬁ (cf. (5.8)). Figure 4 displays the decay of

le¢ | and its estimates |é2’§fl)|, E;’fl), 2 < k < 3, as a function of the DOFs on a

logarithmic scale for uniform refinement (left) and for adaptive refinement (right)

(we note that E;’Sl), E_;gl) and écjgl), E;gl) coincide for problems featuring strict

complementarity which is the case in Example 1).

We observe that |e';$l) | and E_;Sl) provide upper bounds for |ej | with approx-
-c,(3)

imately the same decay rates. On the other hand, |e; ;| slightly underestimates

e}, ;> whereas E_;Sl) grossly overestimates |e}, ;| with an insufficient decay rate in
particular for adaptive refinement.
Similarly, in Fig.5 the decay of the efficiency related consistency errors ej off

and their estimates E_;; are shown as functions of the DOFs on a logarithmic scale
for uniform refinement (left) and adaptive refinement (right). After a pre-asymptotic
phase, the estimates E_Zelﬁ, represent close upper bounds of ¢}, ﬁ, featuring essentially
the same decay rates.
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c.e. in eff. estimates (UFEM)
c.e. in eff. estimates (AFEM)

12)3 10
DOFs DOFs
Fig. 5 Example 6.1. Decrease of the efficiency related consistency error e = ¢}, - (dotted line)

and its estimate £ = E;::ﬂ (solid line) as functions of the DOFs on a logarithmic scale for uniform
refinement (left) and adaptive refinement (right)

active set errors (UFEM)
active set errors (AFEM)

S,
=
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= . . .
10° 10 10
DOFs DOFs

Fig. 6 Example 6.1. Approximation of the active set .A: quantities eZ"i (dotted line) and ez‘j, e’y

(solid lines) as functions of the DOFs on a logarithmic scale for uniform refinement (leff) and
adaptive refinement (right)

Finally, Fig. 6 displays the decay of the errors with regard to the approximation
of the active set A in terms of the quantities ef'%. ef"%. and e}"4 (cf. (5.70),(5.71)).
Recalling that the quantities erj and e;" are the L'-norms of the difference
between the characteristic function of the continuous active set .4 on one hand
and the characteristic function of the discrete active set 4, resp. the characteristic
function of the approximate active set .4;, on the other hand, we see that the a
posteriori quantity eZ,Vj‘ yields a close upper bound with approximately the same

decay rates.
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Example 6.2. The second example which has been considered in [18,21] features a
problem with lack of strict complementarity. We consider 4 = —A on = (0, 1),
Given

—z1(x1)z22(x2) , (x1,x2) € (0,0.5) x (0,0.8)

yH(x1,x0) = 0 . else
0¥ (x1,x2) =2 max(0, —|x; — 0.8] — |[(x2 — 0.2)x; — 0.3] + 0.35),

u*(x1,x2) = y*(x1, x2),
where

21(x1) = —4096 x¢ + 6144 x; — 3072 x} + 512 x3,
22(x2) 1= —244.140625 x5 + 585.9375 x5 — 468.75 x5 + 125 x3,

it can be easily verified that the triple (y*, o*, u™) with the adjoint state p* = y*
and the multiplier u* = o™ is an S-stationary point of (2.5) with respect to the data

yi=pr = Ap*+y*, ul =0,

f=0c*—Ay*—p*, a=1, ¢ =0.

Further, we have 7* = {(x1,x2) | (x1,x2) € (0,0.5) x (0,0.8)}, C* =
{(x1,x2) | |x1 — 0.8] + |(x2 — 0.2)x; — 0.3] < 0.35}, and hence, B* = Q \ (Z* U
C*) # @. The optimal state y* and the optimal multiplier 0* are shown in Fig. 7,
whereas the inactive set Z* and the strongly active set C* are displayed in Fig. 8.
Figure 9 shows the adaptively generated mesh at level n = 7 with 2439 DOFs and
the final mesh (level n = 11) with 34159 DOFs.

x2 00 x2 0o

x1

Fig. 7 Example 6.2. Optimal state y* (leff) and optimal multiplier o * (right)
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08 08 1 o o2 04 08 08 1
x1 x1

Fig. 8 Example 6.2. The inactive set Z* (left) and the strongly active set C*, both marked in black
(right)

o LSLASL %

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 9 Example 6.2. Mesh at refinement level n = 7 (left) and final mesh (right)

As in the first example, Fig. 10 displays the decrease of the errors in the state,
in the control, in the total error, and in the estimator as functions of the DOFs on a
logarithmic scale, whereas Table 2 contains the associated computed experimental
convergence rates. Since the solution is smooth, uniform refinement is already
optimal, i.e., in Table 2 we observe almost the same rates for uniform and adaptive
refinement. However, as can be seen in Fig. 10, the error reductions are slightly less
for adaptive refinement.
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errors in state and control
3
total error and estimator

- o . Il |l (UFEM)
——lle, I (AFEWM)
o lle,]l (UFEM)
—e—ll I (AFEM)

0 1 (UFEM)
—+—n (AFEM)
O llelll (UFEM)

(
¢ —+—lell e |

? 10° 10 10° 10 10

DOFs DOFs

10°

Fig. 10 Example 6.2. Convergence history: Decrease of the errors in the state ||lej, ||, and in
the control |le.,|lo.q as functions of the DOFs on a logarithmic scale (for uniform (UFEM) and
adaptive (AFEM) refinement (left). Decrease of the estimator 1, and the total error |||ey]||| as a
function of the DOFs on a logarithmic scale (for uniform (UFEM) and adaptive (AFEM) refinement

(right)

Table 2 Example 6.2: Experimental convergence rates (uniform and adaptive refinement)

lleny llh.o llen.pllie lenullo.c Ilenlll

n Unif. Adapt. Unif. Adapt. Unif. Adapt. Unif. Adapt.
2 0.24 0.61 0.24 0.61 0.65 1.42 0.25 0.63
3 0.34 0.63 0.34 0.63 0.69 1.33 0.35 0.64
4 0.61 0.47 0.61 0.47 1.20 0.95 0.62 0.47
5 0.39 0.58 0.39 0.58 0.78 1.16 0.39 0.58
6 0.57 0.47 0.57 0.47 1.14 0.88 0.57 0.47
7 0.41 0.53 0.41 0.53 0.81 1.12 0.41 0.54
8 0.57 0.49 0.57 0.49 1.15 0.90 0.57 0.49
9 0.42 0.52 0.42 0.52 0.83 1.07 0.42 0.52
10 0.57 0.47 0.57 0.47 1.15 0.85 0.58 0.47
11 0.44 0.53 0.44 0.53 0.84 1.12 0.42 0.53

Figure 11 shows the decrease of the reliability related consistency error e =
les ;| (dotted line) and its estimates ek = |écj£fl)|, EF = E_;:ffl),l <k < 3, as

functions of the DOFs on a logarithmic scale both for uniform refinement (left) and
for adaptive refinement (right). We see a very similar behavior as in Example 1,
ie., for 1 < k < 2, the quantities e¥ = |EZ’£Z)| and EF = E;’ﬁfl) provide close
upper bounds, whereas |E;Sl)| underestimates and E_;Sl) grossly overestimates the

consistency error |ej |.
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c.e. in rel. estimates (UFEM)
c.e. in rel. estimates (UFEM)

10° 10 10° 10 10
DOFs DOFs

Fig. 11 Example 6.2. Decrease of the reliability related consistency error e = |ej | (dotted line)

and its estimates ef = |E;'(r/e€,) l,E k= E;'Z{I), 1 <k < 3, (solid lines) as functions of the DOFs on

a logarithmic scale for uniform refinement (left) and adaptive refinement (right)

c.e. in eff. estimates (UFEM)
c.e. in eff. estimates (AFEM)

- L L L

10° 10* 10° 10
DOFs DOFs

Fig. 12 Example 6.2. Decrease of the efficiency related consistency error e = |e,‘1'_gﬁp| (dotted line)

and its estimate £ = E_Zil) (solid line) as functions of the DOFs on a logarithmic scale for uniform
refinement (left) and adaptive refinement (right)

Figure 12 displays the decrease of the efficiency related consistency error e,‘l'qeﬁ,

and its estimate E;:gﬁ as functions of the DOFs on a logarithmic scale for uniform
refinement (left) and adaptive refinement (right). As in Example 1, after some pre-
asymptotic phase in the adaptive regime, the estimates provide upper bounds of the
consistency error.

Example 2 features the occurrence of a strongly active set C* and hence, we

are interested in how well the a posteriori quantities eff”jt and e;‘fvg coincide with

eva evd eva ,evd

e, qs € and e;'c, e;'c, respectively. This is reflected in Figs. 13 and 14.
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active set errors (UFEM)
active set errors (AFEM)

10" . . . 107 . . .
10° 10 10 10° 10° 104 105
DOFs DOFs

Fig. 13 Example 6.2. Approximation of the active set .A: quantities eZt’i (dotted line) and

e, e (solid lines) as functions of the DOFs on a logarithmic scale for uniform refinement

(left) and adaptive refinement (right)

—+— dva(C) —+—dva(C)
0 evd(C) 0 evd(C)
—&— eva(C) —8—eva(C)
£ B
3 <
o I3
g <
5 5
3 3
2 2
8 g °
é é
10° : . . 107" . . .
10’ 10° 10° 10 10° 10’ 10° 10° 10¢ 10°
DOFs DOFs
Fig. 14 Example 6.2. Approximation of the strongly active set C: quantities e;"g (dotted line) and

efe. e (solid lines) as functions of the DOFs on a logarithmic scale for uniform refinement (lef?)

and adaptive refinement (right)

Acknowledgements A.G. has been partially supported by a grant from the European Science
Foundation within the Networking Programme ‘OPTPDE’. M.H. acknowledges support by the
German Research Fund (DFG) through the Research Center MATHEON Project C28 and C31
and the SPP 1253 “Optimization with Partial Differential Equations”, and the Austrian Science
Fund (FWF) through the START Project Y 305-N18 Interfaces and Free Boundaries and the SFB
Project F32 04-N18 “Mathematical Optimization and Its Applications in Biomedical Sciences”.
R.H.W.H. has been supported by the DFG Priority Programs SPP 1253 and SPP 1506, by the
NSF grants DMS-0914788, DMS-1115658, by the Federal Ministry for Education and Research
(BMBF) within the projects ‘FROPT’ and ‘MeFreSim’, and by the European Science Foundation
within the Networking Programme ‘OPTPDE’.



Adaptive Finite Elements for Optimally Controlled Elliptic Variational. . . 149

References

[1] R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd edn. (Academic, New York, 2003)

[2] M. Ainsworth, J.T. Oden, C.Y. Lee, Local a posteriori error estimators for variational
inequalities. Numer. Math. Partial Differ. Equ. 9, 23-33 (1993)

[3] I. Babuska, J. Whiteman, T. Strouboulis, Finite Elements: An Introduction to the Method and
Error Estimation. (Oxford University Press, Oxford, 2011)

[4] V. Barbu, Optimal Control of Variational Inequalities. (Pitman, Boston/London/Melbourne,
1984)

[5] R. Becker, H. Kapp, R. Rannacher, Adaptive finite element methods for optimal control of
partial differential equations: basic concept. SIAM J. Control Optim. 39, 113-132 (2000)

[6] D. Braess, A posteriori error estimators for obstacle problems: another look. Numer. Math.
101, 415-421 (2005)

[7] D. Braess, C. Carstensen, R.H.W. Hoppe, Convergence analysis of a conforming adaptive
finite element method for an obstacle problem. Numer. Math. 107, 455-471 (2007)

[8] D. Braess, C. Carstensen, R.H.W. Hoppe, Error reduction in adaptive finite element approxi-
mations of elliptic obstacle problems. J. Comp. Math. 27, 148-169 (2009)

[9] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn.
(Springer, New York, 2008)

[10] E. Facchinei, J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity
Problems. (Springer, Berlin/Heidelberg/New York, 2003)

[11] A. Gaevskaya, Adaptive finite element methods for optimally controlled elliptic variational
inequalities, Ph.D. thesis, Institute for Mathematics, University of Augsburg, 2013

[12] A. Gaevskaya, R.H.W. Hoppe, S. Repin, Functional approach to a posteriori error estimation
for elliptic optimal control problems with distributed control. J. Math. Sci. 144, 4535-4547
(2007)

[13] P. Grisvard, Elliptic Problems in Nonsmooth Domains. (Pitman, Boston/London/Melbourne,
1985)

[14] A. Giinther, M. Hinze, A posteriori error control of a state constrained elliptic control
problem. J. Numer. Math. 16, 307-322 (2008)

[15] M. Hintermiiller, R.H.W. Hoppe, Goal-oriented adaptivity in control constrained optimal
control of partial differential equations. SIAM J. Control Optim. 47, 1721-1743 (2008)

[16] M. Hintermiiller, R.H.-W. Hoppe, Goal oriented mesh adaptivity for mixed control-state
elliptic optimal control problems, in Applied and Numerical Partial Differential Equations.
Scientific Computing in Simulation, Optimization and Control in a Multidisciplinary Context,
ed. by W. Fitzgibbon, Y. Kuznetsov, P. Neittaanmiki, J. Périaux, O. Pironneau. Computational
Methods in Applied Sciences, vol. 15. (Springer, Berlin/Heidelberg/New York, 2009)

[17] M. Hintermiiller, R.H.W. Hoppe, Goal-oriented adaptivity in pointwise state constrained
optimal control of partial differential equations. SIAM J. Control Optim. 48, 5468-5487
(2010)

[18] M. Hintermiiller, I. Kopacka, Mathematical programs with complementarity constraints in
function space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim.
20, 868-902 (2009)

[19] M. Hintermiiller, R.H.-W. Hoppe, Y. Iliash, M. Kieweg, An a posteriori error analysis
of adaptive finite element methods for distributed elliptic control problems with control
constraints. ESAIM Control Optim. Calc. Var. 14, 540-560 (2008)

[20] M. Hintermiiller, M. Hinze, R.H.W. Hoppe, Weak-duality based adaptive finite element
methods for PDE-constrained optimization with pointwise gradient state-constraints. J.
Comp. Math. 30, 101-123 (2012)

[21] M. Hintermiiller, R.H.-W. Hoppe, C. Lobhard, Dual-weighted goal-oriented adaptive finite
elements for optimal control of elliptic variational inequalities. ESAIM Control Optim. Calc.
Var. 20, 524-546 (2014)



150 A. Gaevskaya et al.

[22] R.H.W. Hoppe, R. Kornhuber, Adaptive multilevel methods for obstacle problems. SIAM J.
Numer. Anal. 31, 301-323 (1994)

[23] R.H.W. Hoppe, Y. Iliash, C. Iyyunni, N. Sweilam, A posteriori error estimates for adaptive
finite element discretizations of boundary control problems. J. Numer. Anal. 14, 57-82 (2006)

[24] C. Johnson, Adaptive finite element methods for the obstacle problem. Math. Models Methods
Appl. Sci. 2, 483-487 (1992)

[25] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Its Applica-
tions. (SIAM, Philadelphia, 2000)

[26] D. Klatte, B. Kummer, Nonsmooth Equations in Optimization: Regularity, Calculus, Methods,
and Applications. (Kluwer, Dordrecht, 2002)

[27] 1. Kopacka, Mpecs/mpccs in functional space: first order optimality concepts, path-following
and multilevel algorithms, Ph.D. thesis, Institute of Applied Mathematics, Karl-Franzens
University at Graz, 2009

[28] R. Li, W. Liu, H. Ma, T. Tang, Adaptive finite element approximation for distributed elliptic
optimal control problems. SIAM J. Control Optim. 41, 1321-1349 (2002)

[29] Z.Q. Luo, J.S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints.
(Cambridge University Press, Cambridge, 1996)

[30] E. Mignot, Contrdle dans les inequations variationelles elliptiques. J. Funct. Anal. 22, 130-
185 (1976)

[31] E. Mignot, J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim.
22, 466476 (1984)

[32] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory.
(Springer, Berlin/Heidelberg/New York, 2006)

[33] B.S. Mordukhovich, Variational Analysis and Generalized Differentiation II: Applications.
(Springer, Berlin/Heidelberg/New York, 2006)

[34] P. Neittaanmiiki, J. Sprekels, D. Tiba, Optimization of Elliptic Systems: Theory and Applica-
tions. (Springer, Berlin/Heidelberg/New York, 2006)

[35] R. Nochetto, K.G. Siebert, A. Veeser, Pointwise a posteriori error control for elliptic obstacle
problems. Numer. Math. 95, 163-195 (2003)

[36] J. Outrata, M. Kocvara, J. Zowe, Nonsmooth Approach to Optimization Problems with
Equilibrium Constraints. (Kluwer, Dordrecht, 1998)

[37] J. Outrata, J. Zowe, A numerical approach to optimization problems with variational inquality
constraints. Math. Program. 68, 105-130 (1995)

[38] H. Scheel, S. Scholtes, Mathematical programs with complementarity constraints: stationar-
ity, optimality, and sensitivity. Math. Oper. Res. 25, 1-22 (2000)

[39] L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary
conditions. Math. Comput. 54, 483-493 (1990)

[40] K.G. Siebert, A. Veeser, A unilaterally constrained quadratic minimization with adaptive finite
elements. SIAM J. Optim. 18, 260-289 (2007)

[41] R.S. Strichartz, A Guide to Distribution Theory and Fourier Transforms. (World Scientific,
River Edge, 2003)

[42] ET. Suttmeier, On a direct approach to adaptive FE-discretizations for elliptic variational
inequalities. J. Numer. Math. 13, 73-80 (2005)

[43] A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems.
SIAM J. Numer. Anal. 39, 146-167 (2001)

[44] R. Verfiirth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement
Techniques. (Teubner & Wiley, Stuttgart, 1996)

[45] B. Vexler, W. Wollner, Adaptive finite elements for elliptic optimization problems with control
constraints. SIAM J. Optim. 47, 509-534 (2008)



Constrained Optimization: From Lagrangian
Mechanics to Optimal Control and PDE
Constraints

Martin J. Gander, Felix Kwok, and Gerhard Wanner

Abstract The history of constrained optimization spans nearly three centuries. The
principal warhorse, Lagrange multipliers, was discovered by Lagrange in the Statics
section of his famous book on Mechanics from 1788, by applying the idea of virtual
velocities to problems in statics with constraints. The idea of virtual velocities, in
turn, goes back to a letter of Johann Bernoulli from 1715 to Varignon, in which
he announced a very simple rule for solving hundreds of Varignon’s problems
in the blink of an eye. Varignon then explains this rule in his book published in
1725. Half a century later, Bernoulli’s rule was chosen by Lagrange as the general
principle for the foundation of his mechanics, with the multipliers as the main
tool for treating mechanical constraints. In the second edition of his mechanics,
published in 1811, Lagrange stressed the importance of his multipliers also for
constrained optimization. In particular, they provide spectacular simplifications of
entire chapters of Euler’s treatise on Variational Calculus from 1744. Lagrange
multipliers is however a much farther reaching concept; we show how one can
discover the important primal and dual equations in optimal control and the famous
maximum principle of Pontryagin using only Lagrange multipliers. Pontryagin and
his group, however, did not discover the maximum principle this way, since they
were coming from a completely different area of mathematics. We finally give the
complete formulation of PDE constrained optimization based on duality introduced
by Lions, and conclude with an outlook on more recent applications.

Keywords Constrained optimization ¢ Optimal control * PDE constrained opti-
mization ¢ Variational methods

Our intention is not to write a full historical paper, but to highlight the parts of the historical
development we find interesting as mathematicians. For full details on the history of constrained
optimization with complete references, see [45] and [46].
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1 Lagrange Multipliers Originating from Mechanics

“Le Traité de Dynamique de M. d’Alembert, ...parut en 1743, ...Cette méthode réduit
toutes les loix du mouvement des corps a celles de leur équilibre, & ramene ainsi la
Dynamique a la Statique” [33, Seconde Partie, p. 179]

Lagrange’s method of multipliers originates from Lagrange’s research in mechanics,
more precisely his Mécanique analytique [33], first published in 1788, with a
second, improved edition [34] in 1811/1815. In his long introductions, Lagrange
traces the following history for his work:

1. Archimedes, Pappus, Varignon: For nearly 2,000 years, research in mechanics
concerned mainly Statics, beginning with the discovery of the law of the lever
by Archimedes. Then, mainly by researchers as Pappus, Stevin, Roberval and
Descartes, theories for the equilibria of ever more complicated “machines” were
developed, culminating in the Nouvelle Mécanique by Varignon.

2. Galilei, Newton, Leibniz, the Bernoulli brothers, Euler: The next period then
concentrated on the Dynamics of increasingly complex mechanical systems
(mass points, liquids, rigid bodies) with more and more analytical methods
(differential equations).

3. Lagrange: Finally, the “principle of d’Alembert” from 1743 reduces problems
in dynamics back to problems in statics (see quotation), so that Lagrange’s
Mécanique analytique again started with an extensive “premiére partie” on stat-
ics, comprising nearly 200 pages, as a foundation for the now-called Lagrangian
mechanics in the second part. The main idea there was the Principle of Virtual
Velocities, which first appeared in a letter of Joh.Bernoulli from 1715 to
Varignon. The extension of this idea to constrained mechanical problems then
led to the invention of Lagrange multipliers.

1.1 Archimedes’ Proof for the Lever

The very first great discovery in Statics was made by Archimedes with the law of
the lever: two bodies are in equilibrium if their weights are inversely proportional
to their arm lengths (see Fig. 1 and [1]).



Constrained Optimization: From Lagrangian Mechanics to Optimal Control and. . . 153

APXIMHAOTE' q

EMIEAGN [SOPPO- . [ 73 5 A
. TION, H KENTPABAPQN = 1
(Opera, printed 1615 in Paris, BGE Ka459) Prop. 6 (rat.) and 7 (irrat.)

Fig. 1 Archimedes’ law for the lever
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Fig. 2 Archimedes’ hypothesis

Fig. 3 Archimedes’ proof of his Prop. 6

The proof of Archimedes is very beautiful: He started from the axiom that equal
weights at equal distances are in equilibrium (see Fig. 2).

Then, after more axioms, several preliminary propositions and corollaries, he
proved his Proposition 6, valid for rational ratios of weights, in two pages of Greek
text. His idea was to distribute the weight units left and right in a symmetric way to
obtain an overall symmetric configuration (see Fig. 3 for an illustration in the case
of a 5 : 2 lever). Figure 4 shows the corresponding proposition and figure for the
ratio 3 : 2, which appear in the 1615 edition of Archimedes’ Opera (observe that
the letters L, E,C, G, D, K of the Latinized version correspond to Archimedes’
AN E,T,H,AK).
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Fig. 4 Archimedes’ Prop. 6 with figure from the 1615 edition
1.2 Virtual Velocities and Joh. Bernoulli’s “Regle”

...il n’y a pas un seul cas d’equilibre dans toute la mechanique tant des fluides que des
solides, qui ne puisse etre expliqué par cette regle . ..J’ay donc raison d’appeller le grand et
le premier principe de statique sur lequel j’ay fondé ma regle ... (Joh. Bernoulli in his letter
to Varignon, 1715)

...je crois pouvoir avancer que tous les principes généraux qu’on pourrait peut-étre encore
découvrir dans la science de I’équilibre ne seront que le méme principe des vitesses
virtuelles, envisagé différemment, et dont ils ne différeront que dans 1’expression [34,
Sect. I, §17].

All the efforts during the centuries after Archimedes in generalizing this result to
more and more complicated situations culminated in the work of Pierre Varignon,
who elaborated during many decades his Nouvelle Mécanique [51], consisting of
two heavy volumes published posthumously in 1725,! with hundreds of results
illustrated on 64 plates of figures (see Fig.5).

When this work was nearly completed, Joh. Bernoulli explained in a letter to Mr.
le Chev. Renau, with a copy to Varignon, his “regle” based on the Virtual Velocities,

!On the frontispiece is written “Dont le projet fut donné en M.DC.LXXXVII”.
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Fig. 5 Six out of the 64 figure plates from Varignon [51]; (the upper left figure of the upper left
plate explains the principle of virtual velocities as in Fig. 9 below)

which allowed one to replace all such figures by one general equation. Varignon
had some difficulty in admitting that all his work over decades was declared to be
an “easy game”? and contested the general truth of this rule. Bernoulli then got
angry® and explained his ideas in more detail, written in a second letter, dated
Feb. 26, 1715.* Varignon then included Bernoulli’s “regle” as “Theoreme XL~ in
“Section IX” (“Corollaire general de la Théorie précedente”) of his book, by saying
that, unfortunately, it was too late to rewrite all the rest of the book (see Fig. 6).

2“Votre projet d’une nouvelle mechanique fourmille d’un grand nombre d’exemples, dont quelques
uns a en juger par les figures paroissent assez compliqués; mais je vous deffie de m’en proposer un
a votre choix, que je ne resolve sur le champ et comme en jouant par ma dite regle.”

3¢, .. cependant permettez moy que je vous reproche ici une nonchalance qui vous est arrivé assez

souvent en ce que vous portez quelques fois votre jugement un peu a la legere, sans examiner, si
ce que vous croyez etre une objection en est veritablement une ; ... c’est donc pour une autre fois
que je vous donne cet avertissement a fin que vous soyez a I’avenir sur vos gardes, quand il s’agit
de juger...”

#Varignon gave in his book the wrong date 1717, which was also copied by Lagrange.
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Fig. 6 Bernoulli’s “regle” as published by Varignon [51, Vol. II, p. 176]
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Fig. 7 The Lever (left); Composed levers (right)

We now describe the derivation of Benoulli’s “regle” following the text of
Lagrange [33, Prem.Partie, Sect.II]. However we do not follow the style of
Lagrange, who proudly avoided the use of any figures.

We start with a system containing two forces P and Q, illustrated here by a lever
(see Fig. 7, left) attached at O with arm lengths a and b. We then suppose that the
system receives a virtual velocity during an infinitely small interval of time, such
that the lever arms receive infinitely small displacements dp and dgq proportional
to a and b. Archimedes’ law then tells us that for equilibrium to occur, the virtual
velocities and the forces must be inversely proportional. Thus, if we pay attention
to the signs of the displacements, we obtain

P dg

0

Let us now make the system more complicated by considering three forces P,
Q and R instead of two (Fig.7, right). We decompose the force Q as sum Q =
Q'+ Q" in such a way that both subsystems to the left and right are in equilibrium,
i.e., such that

or Pdp + Qdq = 0.

Pdp + Q'dg=0 and Q"dq -+ Rdr =0,
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Pdp + Qdg—~+ Rdr + & =o.
formule générale de I’équilibre d’'un

Fig. 8 Bernoulli’s rule as published by Lagrange [33]

(f.g,h)

(I,m,n) (I,m,n)

Fig. 9 A point attached by three forces (left); as constrained problem (right)

so we get Pdp 4+ Qdq + Rdr = 0 as condition for an equilibrium. By adding more
and more forces to the system, we obtain

|Pdp+qu+Rdr+...=O| 1.1)

for an equilibrium. This equation, expressed in words and not in formulas, was
precisely Joh.Bernoulli’s “regle” of Fig. 6. The terms Pdp, Qdg, ... were called
“Energies” by Bernoulli. Lagrange calls them “moments” of the forces and calls
(1.1) “la formule générale de 1’équilibre” (see Fig. 8).

Example. The first example Lagrange considers in detail (in Sect. V) is a point
mass attached by several forces P, O, R to fixed points with Cartesian coordinates
(a,b,c),(f, g, h),(,m,n) (see Fig.9, left). Inserting

PR/ ey ey sy ps o} dp=%-((x—a)dx+<y—b>dy+(z—c>dz),

and similarly for dg, dr, formula (1.1) becomes

Xdx + Ydy + Zdz = 0 (1.2)
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where X = P2t 4+ 0L 4 Rl y — P24 Q2E 4 REM and Z =
P %f' +Q % + R%. Since, at the moment, our point mass is completely free, dx,

dy and dz are independent,’ and the condition for equilibrium is
X =0, Y =0 and Z=0. (1.3)

In the case where the forces P, O, R are equal (or proportional) to the distances
P, 4,1, this formula simplifies considerably and the equilibrium position becomes
the barycenter of the triangle spanned by the three fixed points (or of a pyramid in
the case of four forces, a result which Lagrange attributes to Leibniz).

1.3 The Discovery of the Multiplier Method

Suppose now (see Fig. 9, right) that the point mass is restricted to a surface L = 0,
so that in (1.2) the displacements dx, dy, dz are not independent, but are restricted to
the tangent space of L = 0, i.e. they must satisfy

oL aL aL
dL= —dx+ —dy+ —dz=0. (1.4)
0x dy 0z

This means geometrically that, whenever (1.4) holds, i.e. the vector (dx, dy, dz) is
orthogonal to (g—]; ‘2)—5, %—5), we must satisfy (1.2) as well, i.e. the vector (dx, dy, dz)
must also be orthogonal to (X, Y, Z). As a consequence, both vectors must be

parallel so that there exists a constant A such that

L L L
X+A1—=0, Y4+A—=0 and Z+A1— =0. (1.5)
0x dy 0z

However, vectors and scalar products were not yet familiar concepts to Lagrange,
so he argued differently (“Il n’est pas difficile de prouver par la théorie de
I’élimination des équations linéaires. ..”): we eliminate one of the unknowns, say
dz, by multiplying (1.4) with a suitable constant, whichis A = —Z/ %—f, and add it
to (1.2), which gives

L L L
X+ka— -dx + Y+Aa— -dy =0, Z+Aa—=0.
0x dy 0z

Here, dx and dy are independent and equation (1.5) must be satisfied, the last one
being the formula for A.

3dp, dg, dr are not independent at the equilibrium point.
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Pdp+Qdg-+ Rdr+&c+4rd L+pd M+ +d N+ &c=o,
Fig. 10 Lagrange’s “équation générale” for ALL problems of equilibria

§ I
Méthode des Multiplicateurs.

Fig. 11 Heading of §1 in Sect.IV of Lagrange [34]

Condition (1.5) just means that we have applied the virtual velocity argument,
without constraints, to the system

Xdx + Ydy + Zdz + AdL =0 . (1.6)

Lagrange realizes that this “multiplier” A, whose invention originated from the
theory of linear equations, also has a physical meaning: it represents the constant
which, when multiplied with the vector (%, %, %—f), yields the force that holds the
particle onto the surface L = 0.

To include an additional constraint M = 0, we see from linear algebra that we
can simply add another term pudM, and so on. Finally, one can generalize (1.1) to
any system with any number of constraints by writing

Pdp + Qdg + Rdr + ... + AdL + ndM + vdN + ... = 0 (1.7)

(see Fig. 10). This discovery was called “Méthode tres-simple” in Sect. I'V of the first
edition from 1788. Twenty-three years later, in [34], Lagrange stressed the impor-
tance of this idea by giving it the particular name “Méthode des Multiplicateurs”
(see Fig. 11).

2 Problems of Maximum and Minimum

The above problems of virtual velocities are closely related to problems of maxi-
mizing or minimizing a function. This connection is mentioned briefly in Lagrange
[33], but it was only in the second edition from 1811 that Lagrange stresses this
important fact by an entire paragraph (see Fig. 12). If U(x, y,z) is a “potential”
function® satisfying %—[j =X, %—ly/ =Y and 33—[; = Z,where X, Y and Z are as in
(1.2), then the conditions (1.3) mean nothing else than

SUp to now, we have preserved all letters exactly as they appear in Lagrange, but we have changed
this potential, denoted IT by Lagrange, to U, as it is usual now.
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§ 11L

Analogie des problémes de ce genre avec ceux de maximis et minimis,

Fig. 12 Heading of §3 in Sect.IV of Lagrange [34]

Q (z0,y0)
A
" (@1,91) ($0—$1)2+(y0 —y1)? =02 =0
$\\\ (#1 —22)* + (1 —y2)* = =0
g \$(w2,y2> (2 —23)° + (12 —y3)* =2 =0

g\ N $ (%3,y3)
Fig. 13 The Catenary as a constrained mechanical system

U(x, y,z) —> min or max. 2.1

Similarly, in the case where we have to minimize or maximize a function U(x, y, z)
under a constraint L(x, y, z) = 0, the corresponding equations (1.5) and (1.6) would
mean that we have to minimize or maximize

U(x,y,z) + AL(x, y,z) —> min or max 2.2)

without constraints. This is the Lagrange multiplier method for constrained opti-
mization. The geometric meaning of the term AL (x, v, z) is the following: it twists
the function U(x, y, z), without changing its values on the surface L = 0, such that
U + AL becomes flat in all directions at the minimal position.

For additional constraints, we add additional multipliers, and for higher dimen-
sions, we add additional variables.

Example: The Catenary. One of the examples Lagrange discusses in detail (Part I,
Sect. V) is a chain of particles attached by cords of constant length in an arbitrary
force field. If we assume the forces to be constant downwards, we have the situation
as in Fig. 13, for which (1.7) becomes

dy, +dy,+. ..+ Ao-d((xo—x1)* + o—y1)* =€) +A1-d(..)+...=0. (2.3)

Differentiating the constraints and collecting the coefficients of, say, dx,, dy,, we
obtain
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/\2()62—)63):/\1()61—)62) N Y2—Y3 _ Yi—>n
Aa(y2—y3) = Ai(y1 —y2) — 1 Xo—X3  X|— X

+ const.,

which means that the slope is a linear function of the arc length. This fact is in
accordance with “...les formules connues de la chainette”.

The Catenary as Optimization Problem. If we ask for the chain with y; + y, + y3+
. —> min under the same constraints as in Fig. 13, i.e. if we seek the chain with
the lowest center of gravity, (2.2) becomes

yi+y2+.. .+Ao'((Xo—xl)2+(y0—y1)2—£2)+11 ( . )+ .. —> min. 2.4

This equation, when differentiated, gives precisely the formula (2.3). We thus see
that the catenary is the curve with the lowest center of gravity for a given arc length,
a result Euler [20, Chap. V] found in a much more complicated way, as we will see
below.

2.1 Variational Problems

Variational problems are optimization problems where not only some values, but an
entire function y(x), is unknown, for example

b

d
J = / Z(x,y, p) dx —> min or max, where p = d_y 2.5)
a X

and Z(x, y, p) is a given function. We refer to Gander-Wanner ([28] SIREV 2013,
formula (1.3), (1.4) and Sect. 9.1) to see how Euler [20, Chap. 2] turned this problem
into a differential equation

y4 y4
N—1P=0 where N:a—,P—a

==, 2.6
dx dy ap 2.6)

and, in the case where Z(y, p) is independent of x, how this equation can be
simplified to

Z — p-— = Const. 2.7)
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2.2  Variational Problems with Constraints

The oldest problem of this type, the so-called “isoperimetric problem”, was a
challenge from Jakob Bernoulli to his brother Johann in 1697: Given two points
B and C (see Fig. 14), find a curve BaC of a given length L such that the area
BMETNB is maximal; here, for any distance aN =y, the distance MN = g(y) is a
given function of y. In formulas, this means

T T
/ g(y(x))dx — max subject to / V1i+p2de=1L. (2.8)
B B

Solution. Johann, who had accumulated success after success in the years before,
thought that he could solve this seemingly simple problem in “three minutes”. The
3 min turned into decades until Johann Bernoulli published an extensive paper in
1718 (Mémoires de I’ Acad. Roy. des Sciences de Paris, p. 100). The collection of all
the solutions of Jakob and himself fills more than 50 pages in Johann’s Opera Omnia
[4, vol.2, p.214-269]. Finally, Euler ([20], in Chap. 5 of E65) developed his general
theory for such constrained problems. While in Chap. 2, Euler arrived at (2.6) by
“virtual” displacements of the function values of the unknown function one-by-one
(see Fig. 15, left), he was unable to displace the function values independently for
constrained problems of the type (1.4). Instead, he varied the values two by two

E

C 34

Fig. 14 The isoperimetric problem of Jakob (left, the drawing is for g(y) = y?); the same picture
in Johann’s Opera Omnia from 1742, vol. 2, p.270 (right)
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: ]
A HIKLMNOP QRS 2 A IKLMNOPQR ST

Fig. 15 Euler’s solution of variational problems; unconstrained (left), constrained (right)

n +— v,0 — o (see Fig. 15, right) and had to build an entirely new theory (16 pages;
§1 through §39 of Chap. 5).

As Lagrange demonstrates proudly in many examples (in Sect. V), the idea of
using multipliers to deal with constraints extends straightforwardly to these new
problems. For the historical example (2.8), this turns into (for B = 0,7 = 1)

J = /01 (g(y) + A1+ p2— L)) dx —> max. (2.9)

For this problem, condition (2.7) becomes, after simplification,

=C+AL.

()+L
IV

We set C + AL = —K, solve for p = % and separate the variables. This gives the
solution (compared to the one from Johann’s Opera Omnia, vol. 2, p. 244)

g(y)+ K _ Ri (X=+c¢)dx
/\/lz—(g(y)+1<)2 br=xe Jﬂf\/('m‘—’v"-‘lc)")

(2.10)

This integral only has an elementary solution for g(y) = y, i.e. the problem of
finding the maximal area surrounded by a curve of prescribed length. As Euler
shows in §41 of [20] E65, Caput V, the integral then leads, not surprisingly, to
a circular solution (quae est aequatio generalis pro Circulo). The drawing for
g(y) = y? in Fig. 14 (left) has been produced by numerical integrations.

An Example with Two Constraints. For problems with two constraints (‘“Pluribus
Proprietatibus™), Euler developed again an entirely new theory (E65, Chap. VI).
With Lagrange, we just have to add a second multiplier. We demonstrate this
on Euler’s very last example (§24 in Chap.6): We seek a curve y(x) (the curve
DMAMD in Fig. 16, right) of a given length L, as well as a constant a (the distance
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A
M B B
Yy B/ Q
D ¢ \D
D5 H— > D
a = P

Fig. 16 Euler’s problem from E65 with two constraints

CQ), such that the area of NDMAMDNQN has a given value M, and the center of
gravity of this figure should be as low as possible. Expressed in formulas we have
(we choose C as origin and take the curve upside down)

2

1 1 1 _
/ V1+p2dx=1L, /(y+a)dx=M, /(y+a)-y adx—>max.
1 1 1

Here, we introduce two multipliers A and p and get

1
JZ/ ((yz_az)_’_k( 1+p2—L)+,u((y+a)—M))dx—>min0rmax.
-1

Since we have two unknowns y and a here, we cannot work with the simplified
equation (2.7). Instead, we have to use (2.6) for each of them:

d
fory: 2y +pu — —(AL) =

dx* /1 + p?

fora: 2a+pu=0 = u=2a.

This, inserted into the first equation, gives
i(L
dx" /1 + p?

If we think of a water basin, this result expresses the fact that the curvature of the
basin is proportional to the water pressure.

) =k(y +a).
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2.3 Solving Optimal Control Problems with Lagrange
Multipliers

Before explaining the invention of the maximum principle for control problems in
the next section, we first show that the idea of Lagrange multipliers provides an
elegant entry point to the treatment of certain classes of such problems. Let us look
at a problem of the type

b
/ k(x, y,u) dx — min or max, (2.11)

subject to

d
ﬁ::f@dum, y@=A4, yb)=B.

Here we have two types of functions to find: the values of y; (x), which are defined
via a system of differential equations, and the so-called controls u;(x), which
control the movement of the y’s and with the help of which the cost function
k(x,y,u), when integrated over the interval [a, b], is to be optimized.

Idea: since the differential equations in (2.11) represent an infinite number
of constraints as x varies, we introduce Lagrange multipliers A; (x) as functions
multiplying the constraints y; — f;(x, y,u) = 0. Inserting this into the integral, we
thus obtain

b
/ {k(x.y.u) +[p" — f7(x,y,w)]- A(x)} dx —> min or max. (2.12)

bl

This is now an unconstrained variational problem with a “cost function’
Z(x,A,y, p,u). Here we have three sets of unknowns, the Lagrange multipliers
A (x), the differential equation solutions y; (x) together with their derivatives p; (x),
and the control functions u; (x). For each of these, we apply Euler’s equation (2.6):

&=0 DY () = f(x,y.u)
9z _ d , T
T om =0t V) =Ly - L (xyw-Ax) (2.13)

9z . T
W:O 0 :%(x,y,u)—% (x,y,u) - A(x)
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This is a system of differential algebraic equations (DAEs). The first set of
equations are the desired constraints, the second set of equations is the so-called
adjoint system, whose geometric meaning will be discussed below, and the third set
consists of algebraic equations that determine the controls for every value of x.

Example. A body gliding in R? without friction should receive a new direction with
the help of forces (u;(t),u2(¢)),0 < ¢t < T in such a way that this control uses as
little energy as possible: fOT 12 + u3) dt —> min.

Solution. With y;, y, as the positions of the body and y3, y4 as velocities, the
equations of motion together with the equations in (2.13) become

Y1 =13 Ar=0

V2= A2 =0 uy—Az=0
V3 =u Az =—A uy— Ay =0
Vi =u Ay =—Ay

We see that A1, A, are constants, A3 = u;, A4 = u, are linear, y3, y4 quadratic, and
thus yp, y» cubic; the solution curves are thus, not surprisingly, cubic splines. The
time length 7" can be freely chosen. In the picture above, T is chosen to be that of a
uniform circular movement, but the optimal solution is slightly different.

3 Optimal Control and the Maximum Principle

An important case in applications is the one in which €2 [containing the controls] is a closed
region [...]. In the case that €2 is an open set [. .. ], the variational problem formulated here
turns out to be a special case of the problem of Lagrange [47].

In the field of optimal control, there were historically two approaches: in the
western world, researchers tried to tackle these problems using variational calculus
and Lagrange multipliers, as we have already seen for a first example in Sect. 2.3. In
Russia, a group of researchers led by Pontryagin tried to solve these problems using
direct analysis and geometric arguments, with a particular emphasis on handling
the important case of closed and bounded control sets. Their approach led to the
invention of the maximum principle in 1956; they only later noticed the relation
to Lagrange multipliers, see the quote above. To explain these two approaches
historically, we first present the invention of Lagrange from Sect. 1.3 again, but now
using matrix notation in preparation for its use in optimal control problems.
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3.1 Invention of Lagrange Multipliers in Matrix Notation

Lagrange, in his book from 1797: “Théorie des fonctions analytiques, contenant les
principes du calcul différentiel, dégagés de toute considération d’infiniment petits,
d’évanouissans, de limites ou de fluxions, et réduits a I’analyse algébrique des quantités
finies”

Lagrange, who in his youth made his greatest triumphs by free and masterful
manipulations of differentials, later in his life condemned them vigorously by
replacing “differentials” by “derivatives” and “integrals” by “primitives”, see the
quote above. Under the influence of Cayley’s matrix notation, the above theory
subsequently took a different shape, the one we are used to seeing today: we
first consider a finite dimensional optimization problem with constraints, and show
how the Lagrange multipliers are none other than multipliers like in Gaussian
elimination, but without using the notation of differentials that were essential in
their invention, as we have seen earlier. This will also reveal a further advantage over
the direct solution of the complete optimality system in the presence of constraints,
since the system obtained with Lagrange multipliers is much smaller. Suppose we
wish to solve the constrained optimization problem

f(x) — min, g(x) =0, (3.1

where f : R” — R is the objective function and g : R” — R™ are the constraints,
m < n. To eliminate the constraints, we partition the vector x into x = (y,u),
y € R", u € R"™™, and invoke the implicit function theorem to obtain y = y(u)
from the constraint g(x) = 0. Substituting this into the objective function, we
obtain the unconstrained optimization problem

f(y(m),u) —> min. (3.2)
A necessary condition for a local minimum is therefore

9 ya_erg IV, f+ V. = (3.3)
du dy OJu

where Y, : R"™ — R™*("=m) ig the Jacobian of the implicit function y (), and
V,f = fyT and V, f = fI are the gradients (column vectors) of the objective
function with respect to the variables y and u. The necessary optimality condition
(3.3) is a small system involving the n —m unknowns in the vector u# only. However,
only in very simple situations it is actually possible to explicitly form the function
y(u) and differentiate it to obtain Y,. In general, the Jacobian matrix Y, is also
unknown and depends implicitly on the solution y, which must also be calculated.
To obtain equations for y, one can directly use the constraint g(y,u) = 0, and for
the Jacobian, one can write the total derivative with respect to u of g (y (u),u) = 0.
This leads to the complete optimality system
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YV, f +V.f =0, (3.4
Y/Gl +G] =0, (3.5)
g =0, (3.6)

where G, : R" — R™ is the Jacobian matrix of g with respect to y, and
G, : R" — R™=m jg the Jacobian matrix of g with respect to u. Equation
(3.4) contains n —m equations, (3.5) is a matrix equation for the Jacobian matrix Y,
and contains a total of m (n — m) equations, and (3.6) contains m equations from the
constraints. This gives a total of n 4+ m(n — m) equations for the n unknowns in y
and u combined, and the m (n — m) unknowns in the Jacobian Y,, a very big system.
The key idea of Lagrange in this setting is that one can eliminate many of these
equations using Gaussian elimination to arrive at a smaller, but equivalent system.
If the Jacobian G, is invertible, then multiplying the matrix-valued equation (3.5)
by the vector-valued multiplier A := —G, 7V, f from the right yields

Y/ GIA+GI A =-Y]GIGTV, f+G/A=-Y]V,f+GA=0. (37

Adding this equation to (3.4), the cumbersome term with the large Jacobian matrix
cancels and we obtain the smaller but equivalent optimality system

Vof +GI'r =0, (3.8)
Vyf +GIA =0, (3.9)
g =0, (3.10)

which now contains (n —m) +m +m = n + m equations for the n unknowns y and
u combined, plus the m Lagrange multipliers A. The system (3.8-3.10) is equivalent
to (3.4-3.6), and therefore represents the same necessary condition for a minimum
of the original constraint problem (3.1), but it has the advantage of having many
fewer unknowns to solve for. The key observation of Lagrange now was that this
simpler necessary condition for optimality can be easily obtained from the function

L,y A):= f(y.u)+ gy u)A, (3.11)

by simply taking derivatives with respect to its arguments. The function in (3.11),
now known as the Lagrange function or the Lagrangian in honor of its inventor, is
obtained by simply adding to the objective function the sum of the constraints, each
multiplied by a Lagrange multiplier.

The new formulation, however, introduces an important difficulty when the
remaining u variables are not allowed to vary freely, but are constrained to be
in a closed set U. This is often the case in optimal control problems, since the
controls may not be arbitrarily large. Then the necessary condition (3.3) for a
minimum solution of (3.2) is only relevant if the minimum is in the interior of
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U; when the minimum occurs on the boundary, which often happens in practice,
the condition (3.3) need not be satisfied, i.e., the variation of the Lagrangian with
respect to u in (3.8) need not vanish. One possibility in that case is to revert to
the minimization condition of the Lagrangian with respect to u, which leads to the
necessary conditions for optimality

L(y,u,A) — min with respect to u (3.12)
Vif +Gla =0, (3.13)
g = 0. (3.14)

Since the constraint g = 0 must be satisfied at the optimum, we have L(y,u,A) =
f(y,u) there, so (3.12) is equivalent to saying that

f(y,u) — min with respect to u. (3.15)

In this case, however, the equation (3.13) for the Lagrange multipliers is no longer
needed, since they are not used anywhere in the system; if we remove it, we just
get back the original problem formulation (3.1), except that one now sees explicitly
that the minimization is only possible with respect the remaining “control” variables
u, since the other variables y are determined by the constraints. Nevertheless, the
observation to replace the derivative condition again by the minimization condition
points in the direction of results obtained by Pontryagin and his group and leads
to the maximum principle for optimal control problems. We will see later that they
chose a different function, a Hamiltonian, which has the same stationary points in u
as the Lagrangian.’

A different way of characterizing minima on a closed set of controls U is to
ensure that whenever the minimum occurs on the boundary, any variation in u that
moves the point away from the boundary into the interior of the closed set must lead
to an increase in the objective function, i.e.

(Vuf + G A) 8u >0, (3.16)
Vyf+GlA=0, (3.17)
g =0, (3.18)

for all admissible variations du such that # + du remains in the closed set of the
admissible controls U. This approach became known under the name Karush—
Kuhn-Tucker (KKT) conditions, which we will see again in Sect. 4.2.

7See also Carathéodory [16] for a general study of equivalent formulations.
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3.2 Lagrange Multipliers for Optimal Control Problems

Using what I had learned at Columbia about flights of airplanes, I set out to formulate this
problem as a variational problem. I found that the usual variational formulation did not fit
very well. It was too clumsy. And so I reformulated the Problem of Bolza so that it could be
applied easily to the time-optimal problem at hand. It turns out that I had formulated what
is now known as the general optimal control problem. I wrote it up as a RAND report [31]
and it was widely circulated among engineers. (Hestenes, in a letter to Saunders Mac Lane,
see [39])

Optimal control problems were becoming important with the invention of
moving high-tech mechanical devices, especially in the context of war. A typical
example is to guide an airplane along an optimal trajectory to reach a target, and
this was precisely the problem considered by Hestenes in his famous RAND report
[31], see also the quote above. Hestenes, who had obtained his Ph.D. on the calculus
of variations under the direction of Bliss, was a young professor in Chicago during
the Second World War and moved to UCLA afterward. He was also doing research
for RAND, a nonprofit institution with the goal of improving policy and decision-
making through research and analysis, which still exists today (www.rand.org). In
his report, he formulated the problem of guiding an airplane in an optimal way from
an initial position to a final position as an optimization problem with a constraint
given by a differential equation. In modern notation, the problem reads

T
/ f(y,u)dt — min, (3.19)
0
y = gy.uw), (3.20)
y(©) = y° (3.21)
y(T) = yr, (3.22)

where the vector y(¢) contains the position and velocity vectors of the airplane,
and the vector u(¢) contains the angles of the control vanes of the airplane and
the thrust of the engines. Comparing this optimal control problem with the general
constrained minimization problem (3.1), Hestenes noticed the striking similarity,
so he applied the Lagrange multiplier technique we saw in Sect.2.3 to obtain a
necessary condition for optimality: he introduced the Lagrangian as in (3.11),

T T
L(y.u. ) = /0 Flyowydi + /0 (7 — g (y.u)” Adr, (3.23)

where all the variables now depend on time, y = y(¢), u = u(t), A = A(¢)
[this is precisely equation (2.12) in the new notation]. In order to obtain necessary
conditions for optimality, he computed the derivatives with respect to the variables
y, u, and A using variational calculus (as Euler did in E420, see [28]): if y is an
optimum, then for an arbitrary variation y + &z, the derivative of £(y + ez,u, 1)
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with respect to € must vanish at ¢ = 0, regardless of what the variation z is. Thus,
we obtain as the first necessary condition

d T T
%E(y + sz,u,/\)lsz():/ VyfT(y,u)zdt—i— / (i— Gy(y,u)z)T Adt
0 0

T
:/ (Vy f(y,u) —A — GyT(y,u)/\)Tzdt +ATz|) =0,
0

where we used integration by parts to factor out the arbitrary variation z, and the
fact that

(Gy2)"A =2"GIA =@"GI V)" =476z = (G M)z

Now the variation z(¢) must be zero fort = 0 and ¢ = T, since the values of y are
fixed there, see (3.21) and (3.22); thus, we have z(0) = z(T') = 0, so the boundary
terms A TzIOT in (3.24) must vanish as well. However, apart from the initial and final
conditions, the variation z(¢) is otherwise arbitrary, and hence from (3.24), the term
multiplying z(¢) under the integral must be zero. This leads to a differential equation
for A, namely

A=-Gl(y.wA+V,f(y,u). (3.24)
without initial or final condition, since y was fixed at both ends. Similarly, since u
is optimal, we can add an arbitrary variation u + ev and require the derivative of

L(y,u + ev, L) with respect to & to vanish at ¢ = 0 for all variations v. This yields
the next necessary condition

d T T
Eﬁ(y,u+8v,l)|£=0 =/ VMfT(y,u)vdt+/ (=Gu(y,uy)" Adt
0 0

T
- / (Vaf(y,u) — GT (y,0)A) vt = 0.
0

Since the variation u(¢) is arbitrary, from (3.25), the term multiplying v(¢) under the
integral must be zero, which leads to an equation for u, namely

Gi (y.wA =V, f(y,u). (3.25)
Finally, adding an arbitrary variation A + e, the derivative of L(y,u, A +ep) with

respect to ¢ must vanish at ¢ = 0 for all variations u, and we obtain as the last
necessary condition

d T
%E(y,u,k +ep)le=0 = / (y —g(y,w)" pdt =0, (3.26)
0
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and we simply get back the equations of motion. Hence, for an optimal control
problem, we get from the Lagrange multiplier rule a system of necessary conditions
for optimality that is very similar to the classical conditions (3.8-3.10), and identical
to (2.13):

Vuf(ys u) - GL?(ys M)A = Os (327)
Vo f(y,u) =Gl (y.w)d =4, (3.28)
gly,u) =y, (3.29)

the only difference is that the sign is flipped on the G terms, because this is how
we introduced the constraints, and that a term with a time derivative appears on
the right, because the constraint is an ordinary differential equation. This system
contains precisely enough equations for the number of unknowns: there are as many
algebraic equations in (3.27) as unknowns in u(¢) for ¢t € [0, T'], and (3.28)—(3.29)
is a coupled first-order system of ordinary differential equations in y(¢) (optimal
trajectory) and A (¢) (multipliers) with precisely two boundary conditions at t = 0
and ¢t = T (both on the unknown y in our case). Hestenes was therefore able to solve
this coupled system numerically to obtain candidates for the optimal trajectory.

The optimality system (3.27-3.29) reveals a very interesting mathematical
structure.® Defining the Hamiltonian function

H(y.u,A):=—f(y.u)+gy.u'A, (3.30)

we see that the boundary value problem (3.28), (3.29) is in fact given by

j) = VlH(yvusA’)

g(y.u),
A=-V,H(y,u,2) (3-3D)

~GJ(y. WA +V, f(y,u),

where V,H = H yT and V;H = H AT . Therefore, we have a Hamiltonian system,
which has the property that

d .
d—tH(y,u,A) =Hy+Hu+ HA=HV,H+ Hu+ H,(-V,H) =0
(3.32)
along optimal trajectories, since H! = V,H = -V, f(y,u) + GI (y,u)A = 0
whenever the optimality condition (3.27) holds. Thus, the Hamiltonian is conserved

in this case. The fact that the derivative of the Hamiltonian (3.30) with respect to the
controls u coincides with the corresponding derivatives of the Lagrangian in (3.23),

V.H =-V,f +G'A =-V,L, (3.33)

8This was already discovered by Carathéodory [16], see also Sect. 3.7.
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implies that an identical necessary condition for an interior minimum in the controls
u can be obtained from both the Lagrangian and the Hamiltonian. Instead of
minimizing the Lagrangian (3.23) with respect to the controls u, which means
minimizing the objective function on an optimal trajectory satisfying g(y,u) =0

T
/ f(y,u)dt — min  with respect to u(t), (3.34)
0

one could also maximize the Hamiltonian (3.30)
H(y,u,A) — max with respect to u(t), (3.35)

pointwise for each t € [0,7T]. Minimizing the Lagrangian (3.34) just leads
back to the original problem formulation (3.19-3.22), since A disappears from
the optimality system (3.27-3.29) when (3.27) is replaced by (3.34). However,
maximizing the Hamiltonian (3.35) leads to a new problem formulation

H(y,u,A) — max with respect to u(t), (3.36)
y = ViH(y,u,A), (3.37)
A = —V,H(y,u,1), (3.38)

since A does not disappear from this new optimality system (3.36-3.38). This was
already noticed by Hestenes in his famous RAND report from 1950, see Fig. 17.
At the time, due to the lack of computing power, Hestenes was unable to solve the
optimality system numerically. However, it was only a matter of time before digital
computers became available, and Hestenes already anticipated this development in
his manual to engineers, see Plail [46].

There is however a very important issue we did not address so far in the above
attempt for optimizing the controls: the controls u of the airplane may not take on
arbitrary values, but are instead confined to a closed and bounded set, since the
thrust of the engine cannot be arbitrarily large, and the control vanes of the airplane
cannot turn arbitrarily far. The optimality system (3.27-3.29) is therefore only a
necessary condition if the solution lies in the interior of the domain of controls; the
formulation in its present form cannot identify potential optima on the boundary of

H(t,q,p,A) s ift,q,p,a)
must hold for every adpissible glement (t,q,A).

Thus, H has a maximum value with respect to a, aleng a mini-
mizing curve Cg.

Fig. 17 Hestenes’ discovery that the Hamiltonian must be maximized along a minimizing solution
in the RAND report from 1950
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the range of the controls because (3.27), which comes from requiring the derivative
with respect to the controls u to be zero, need not hold on the boundary. We see
however that the new optimality system (3.36-3.38), written with the Hamiltonian,
does not have this problem and deals with the optimal trajectories correctly, even
when the control u lies on the boundary, since the minimization is not characterized
by a derivative. Next, we will see how this insight was found historically, and led to
the famous maximum principle of Pontryagin.

3.3 Early Non-classical Optimal Control Problems

An interesting problem, very much related to the fact that the controls in many
real applications must be bounded, was studied by Feldbaum in Russia in [22]: he
considered the problem of guiding an object from one position to another with a
control that can only take two states, a so-called “bang—bang system” of second
order. This was modeled by the equation of motion

y==xM, (3.39)

and the goal was to determine, for a given control strength constant M, when to
choose the positive and when to choose the negative sign in order to go as quickly
as possible from an initial position y(0) at initial speed y(0) back to the origin at
rest,i.e. y(T) = y(T) = 0. Here, the controls are a discrete set, and depending on
the sign chosen, we get the general solution branches by integration,

yE = +Mr+ CE,

1 1
+ +\2 + - +\2 +
=+—(EFMt+C +CF = £— + C; .
Y ZM( i) 2 ZM(y) 2

Because y™ is a quadratic function of y*, these solution branches are best drawn
in phase space, where y¥ is a parabola as a function of y* centered at y* = 0, as
illustrated in Fig. 18 on the left.

On the red dashed curves, the control —M is active, and we are moving from
the right to the left. On the blue dashed-dotted curves, the control M is active, and
we are moving from left to right. There are only two curves, shown as solid lines,
that pass through the target y(T) = y(T) = 0, namely y* = :tﬁ())i), and
from any point along these curves, the fastest is just to stay on these curves with
the corresponding control. Now from any point in the phase space to the right of
this solid curve, one can use the control —M to arrive as quickly as possible on the
blue solid curve, where the control has to be switched to M to arrive at the origin.
An example of such a trajectory is shown in Fig. 18 in black. Similarly, from any
point in the phase space to the left of the solid curve, one can use the control M
to arrive as quickly as possible on the red solid curve, where the control has to be
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Togex Ha $asoBo¥ NITOCKOCTH

Fig. 18 Solutions of the bang—bang system of Feldbaum from 1949 on the left, and an original
drawing of Feldbaum from 1949 leading to his understanding of the bang—bang solution

switched to —M to arrive at the origin. In a follow-up paper [23] published 4 years
later, Feldbaum made the key step of allowing not only the discrete set of controls
{—M, M}, but the entire continuum of all controls in the closed interval [-M, M],
and the problem (3.39) became

V=%u |u <M. (3.40)

It was at this moment that the notational convention of using u for the control
was born. Feldbaum gave a precise mathematical formulation of the minimum
time problem for (3.40), and proved that for every initial point in the phase space,
there exists a unique time-optimal control #(¢) which is still the bang—bang solution
found for the control problem with only two discrete controls (3.39): on the optimal
trajectory, the control is never used from within the interior of the interval [- M, M ]!
This was the first solution of what Boltyanski calls in his review [8] a non-classical
variational problem. Bushaw made a similar discovery in his Ph.D. thesis [13], see
also [14]. Feldbaum then generalized this result in two follow-up papers [24,25] to
higher order problems of the form

n—1

y = _Zajym +u, |ul <M,
Jj=0

and proved what he called the n-interval theorem, namely that the optimal control is
still piecewise constant with values £, and that there are no more than n distinct
intervals where the control u is constant. Feldbaum was therefore undoubtedly one
of the pioneers in the field of optimal control where the domain of the controls is a
closed set.
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Fig. 19 Lerner’s solution to problem (3.39) with an additional inequality constraint on the
trajectory

Around the same time, Lerner, also in Russia, considered putting a constraint on
the phase coordinates, restricting them to be in a closed set [35,36]. He considered
the same problem as Feldbaum (3.40), but now also with the additional constraint
a; <y < aj. Figure 19 shows the solution in that case from his publication [36].
Note that the trajectory constraint is sometimes active, and sometimes not, whereas
the control is always on the boundary, i.e., its constraint is always active.

3.4 Invention of the Maximum Principle

This fact appears in many cases as a general principle, which we call the maximum principle
(translated from Boltyanski et al. [9], see Fig. 22 for the original)

It was in this context that Pontryagin started to work with his students Boltyanski
and Gamkrelidze on optimal control.’ Pontryagin was known worldwide at the time
for his work on homotopic topology, even though he had become blind after an
accident involving an explosion at the age of twelve. However, around the 1950s,
his results in homotopic topology started to be surpassed by the achievements of
the French school around Leray, Serre and Cartan [8], and Pontryagin decided to
leave this area of research and focus on the very different area of optimal control.
This was in part due to his friendship with A. Andronov, with whom Pontryagin
had worked on rough systems, but also because the university administration and
the communist party organization encouraged more applied research. Together with
his students, Pontryagin started an active research seminar to which engineers were

For more details on the historical context for this development, see Plail [46] and also [45].
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also invited, and where the talks always had to have an applied side. Feldbaum also
spoke several times at this seminar about his research on optimal control problems.
In 1955, Pontryagin’s group met Colonel Dobrohotov from the military academy
of the Russian air force, and this contact led them to the important problem of
guiding a flying object in minimal time in air combat. Even though the problems
were not formulated as such, Pontryagin and his group realized immediately that
the framework of optimal control was mathematically the correct one.

In their first publication in 1956, see [9], Pontryagin, Boltyanski and Gamkre-
lidze present the ideas which led them to formulate the maximum principle. There
is only one reference in this paper, to Feldbaum’s paper from 1955 [24], and the
authors refer to the references given there. The problem they consider is to control
in a time optimal way the system governed by the equations

il—{ =gvw), yO) =y y(T)=yr, (3.41)
which describe the trajectory y : R — R™ of the object for a given set of control
functions u : R — R"™". The precise problem formulation is to find among all
admissible controls u(¢) the one that leads to the shortest travel time, i.e. T = T (u)
should be minimized. The authors say right at the beginning that the controls often
have to satisty further constraints, for example |u;| < 1. They therefore introduce an
open set Q where the controls live, and also its closure Q, and carefully distinguish
these two cases for the control. They start with the control in the open set 2, where
one could easily derive optimality conditions using Lagrange multipliers. However,
since the group of Pontryagin had their roots in a different field from variational
calculus, they derive the optimality conditions with their bare hands: they assume
existence of an optimal control u, and derive a necessary optimality condition by
considering a variation of the control #(z) + Su(¢) and the associated variation in
the trajectory y (t) 4+ 8y (¢). Inserting these variations into the equations of motion
(3.41), we obtain
c;—f + ddity =g(y+déy.u+dbu)=g(y.u)+ G,y + G,u,

and therefore the variation in the trajectory satisfies the linear inhomogeneous
system of ordinary differential equations

@ =G,y + G,du, (3.42)

dt

where G,0u plays the role of the forcing term. Now the initial condition for the
motion is fixed, and therefore the initial variation §y(0) must vanish. Using the
technique of variation of constants, we can solve the system (3.42) as follows: if we
denote by the matrix Y (¢) the solution of the linear homogeneous system

Y =G,Y, Y(0)=1 (I theidentity),
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B cuay JauueifinoctH cucreMmbl (2) ToukH X (f,) + 81x (£,), COOTBETCTBYIOIHE
BCEBO3MOXKHLIM, JIOCTATOYHO MajbiM 1O MOAYJO, BO3MylleHHaM & (f), 3a-
NOJNHSIT 00J1aCTh HEKOTOPOro JIHHEHHOro MHoroo0pasusi P’, NpoXofsiuero
uepe3 Touky x(f,). M3 onTHmasbHOCTH TpaeKTopHH X (f) JIETKO BHITEKAET, YTO
paamepHOCTb MHoroo6pasus P’ He npesocxout n— 1 H P’, BooGlie roeops,
He kacaercs Tpaéktopuu x(t). Ilyets P (t;) — Hekotopas (n— 1)-mepHas
OJIOCKOCTh, cojepxamasi P’ W He Kacawomasncs Tpaektopuu x(f). Kosapuanr-
Hble KCOPAHHATH (7 — 1)-mepHo# nuockoctH P (t,) 0603HAYHM uepe3 a,...,dn;
TOTAa a.ox*(f;) =0.

Fig. 20 Geometric idea of Pontryagin, leading to the adjoint equation without knowing about
Lagrange multipliers (see text for a translation)

the general solution of the homogeneous part of (3.42) is given by Y¢ for an
arbitrary constant vector ¢. Now varying the constant by setting z := Y ¢(¢), we get

i=Yc+Yé=Guz+Yeé,

By letting z = §y and comparing with (3.42), we get Y¢ = G,du, and hence
c=co+ fot Y ~'(¢)G,8u(r)d . The solution of (3.42) is thus given by §y = Y,
and with the zero initial condition, we obtain

Sy(t) = Y(t) /0 t Y Y(2)G,Su(r)dr. (3.43)

Now the end point is fixed as well, y (T') = y, but the time at which the solution
trajectory passes through this endpoint is not. Pontryagin argues as shown in Fig. 20,
which translated to English says (we use in the translation the symbols and equation
numbers used in our presentation, instead of the original ones):

Because of the linearity of system (3.42), the points y(7") 48y (T') which correspond to any
sufficiently small perturbation du fill the whole range of some linear mapping P’, which
passes through y(7"). From the optimality of the trajectory y(¢), it is easy to see that the
dimension of the range of P’ does not exceed m — 1, and P’, in general, does not touch
the trajectory y (¢). Let P(T) be some m — 1 dimensional surface which contains P’ and
does not touch the trajectory y(¢). Let the covariant coordinates of this m — 1 dimensional
surface P(T) be ay,as, ..., a,. Thena’ §y(T) = 0.

It seems that this insight was obtained by Pontryagin very rapidly over two or
three sleepless nights, see [27,46].'° To understand his argument, Fig. 21 is useful:

19Personal communication of Plail with Boltyanski, and explanation by Gamkrelidze in his paper
about the discovery of the maximum principle:

The first and the most important step toward the final solution was made
by L.S. right after the formulation of the problem, during three days, or
better to say, during three consecutive sleepless nights
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Fig. 21 Explanation of )
Pontryagin’s geometric idea

y(0)

1

If the trajectory y (¢) is optimal, no variation §u(¢) is allowed to produce a trajectory
y(¢) with y(T') beyond y(T), since otherwise this trajectory could have arrived at
y(T)atatimet < T. Therefore, variations are only allowed to be orthogonal to the
optimal trajectory,'! in a manifold P’ of dimension at most 1 — 1, where m = 2
in the two dimensional example in Fig.21. There must therefore exist a vector a
orthogonal to this manifold, a” §y(T) = 0. Since we know the solutions for the
variations from (3.43), we can compute

T T
a’8§y(T) = aTY(T)/ Y 1(0)G,8u(r)dt = / v ()G Su(r)dr = 0,
0 0

(3.44)
where we defined the vector ¥ (¢) := Y 7 (¢)Y T(T)a. This vector is solution to a
differential equation: taking a time derivative of the identity Y 'Y = I, we get

Yy +Y'Y=0= ¥ )=-vY"'G, = (¥ )=-GIvT,
and hence ¥ is the solution of the differential equation
¥ =-G(y.wy, (3.45)
with final condition ¥ (7') = a. Since the variation du is arbitrary in (3.44), the

term under the integral sign must vanish, and Pontryagin and his students obtained
the classical necessary conditions for an interior maximum

UTn fact, since the endpoint is fixed as well, no variations are allowed at the endpoint either, but
then Pontryagin could not have obtained the solution (3.43) of the then overdetermined system of
ordinary differential equations (3.42), and thus he decided to first only fix the starting point [27,
p. 442]. This flaw was only later fixed by Boltyanski, see the end of this subsection.
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v Gu(y.u) =0, (3.46)
¥ =-G/(y.wy. (3.47)
y=g.uw, y0 =y y(T) =y (3.48)

which is just a special case of (3.27-3.29),'? with ¥ playing the role of the Lagrange
multiplier A, and with an objective function f that depends neither on y nor on u.
Pontryagin, however, did not know of the relation between this and the Lagrangian
at the time of publication; according to Boltyanski [8], they only learned about this
several months later when reading the Russian translation of Bliss’ monograph [5]
from 1946.

Next, the authors note that the functions ¥ can be multiplied by a convenient
constant in order to obtain ¥’ g(y,u)|;=o > O without causing any changes to
the necessary conditions for optimality (3.46-3.48), since this quantity is conserved
along optimal trajectories, see (3.32). This then implies ¥ g(y.,u) > 0 for all 7.
Now if the control u is only allowed to vary in the closed set €, the authors explain
that the first condition (3.46) needs to be replaced by

v G, (y,u)du <0 (3.49)

for all admissible variations u + 8u that remain in Q. With this modification, the
optimal control may now also be on the boundary. This remark could have led them
directly to the KKT system (3.16).

The second result in [9] is a sufficient condition for optimality, obtained
according to [8] by Gamkrelidze, and again only for points in the interior of the
control domain. The result is based on second variations of the function 7 g (v, u),
whose first derivative with respect to u was in the necessary condition for optimality
in (3.46). With the change in sign such that 7 g (y,u) > 0, Gamkrelidze showed
that if, in addition to (3.46-3.48), the Hessian of ¥ g(y,u) with respect to u is
negative definite at # = 0, then the control u(¢) and associated trajectory y(¢) are
optimal in a neighborhood of # = 0. This sufficient condition was not a new result
either, as it is a particular case of the sufficient condition of the Legendre type [5,
Chap. IX], which the authors did not know at that time. They then however note that
if the Hessian is indefinite, then there is no optimal control in the interior of €2, so
any optimal control inside the closed set 2 of admissible controls must occur on the
boundary.

12To solve the time optimal control problem correctly using Lagrange multipliers, we need to
introduce the time variable as a state variable, yo(¢) := ¢, which implies yo = 1, yo(0) = 0. The
correct Lagrangian then becomes L(y, A,u) = yo(T) + fOT AT (y — g(y,u))dt, where all vectors
are now one element longer. Computing the variational derivative with respect to y, we obtain now
in addition to the earlier equations ).to = 0and zo(T') 4+ Ao(T)zo(T) = 0 for arbitrary variation zo,
which implies 1o(7T) = —1 and hence A¢(z) = —1 to complete the time optimality system with
Yo(t) :=1.
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The authors then conclude, based on the necessary conditions (3.46-3.48) and
the fact that the Hessian of ¥ g (y,u) with respect to u must be negative definite
for optimality, that the Hamiltonian H(y,u, ¥) := ¥ g(y,u) must attain a local
maximum in #(t) for fixed y (¢) and ¥ (¢) satisfying (3.46-3.48): under the condition
that the variations u are admissible and small enough, the inequality

vig(y.uw) =y gy u+du) (3.50)

must hold for all time whenever (3.46-3.48) are satisfied and the Hessian is negative
definite.

This was the historical moment of the invention of the maximum principle.
The Hamiltonian could also be used to define the important differential equations
involved, see Fig. 22 for the original paragraph in Russian, which translates as (we
use again the notation from our text in the translation):

This fact appears in many cases as a general principle, which we call the maximum principle
(we have only proved this principle so far for several special cases): Let H(y,u) =
¥ g(y,u) have, for arbitrary but fixed y, ¥ a maximum as u varies within the closed
set Q. We denote this maximum by M(y,¥). If the 2m-dimensional vector (y, ¥) is a
solution of the Hamiltonian system

y=g(y.u)=VyH,
¥ =—Gly =-V,H,

and a piecewise continuous vector u(¢) satisfies for each point in time

H(y (), ¥ (1), u(t)) = M(y@). ¥@)) >0,

then u(¢) is the optimal control and y () the corresponding (locally) optimal trajectory of
system (3.41).

dror (hakT fABJISETCH YACTHBIM CJydYaeMm cJeAyioulero oOuero npHHuuna,
KOTOPLIii MBI HasbiBaeM MPHHIHNOM MAaKCHMYMa (MPHHLUHI 3TOT JloKasaH
HAMH MOKa JIMIb B Psijie YaCTHHIX ClYyyaes):

ITyemo pynkyua H(x, 9, u) = .f* (x, u) npu A00bIX PUKCUPOBAHHLIX X,
umeem MaKcumym no u, xozd0a 6eKmop u MeHsemcs 6 samxkuymoud obaacmu L2,
o6osnauum smom maxcumym wepes M (x, 9). Ecau 2n-mepuoii sexmop (x, )
ABARCINCA PEUIEHUCM 2AMUNBMOHOB0L CUCIEMbL

. aH

i — i _9d

X —,f(x.u]—a‘h,

S =il canitly (8)
W= ax! T ekt

20e Kycouno-Henpepolaubit eexmop U (t) 8 Kaxcduvld smomenm spemexu ydosaem-
eopsiem ycaoeuro H (x (t), (1), u(t)) = M (x(t), ¥(£)) >0, mo u(t) asasemcs
OnNMUMAsbHLIM  YynpasaeHuem, a X (t)— coomeemcmeyoweli  onmumanrsHotl
(6 maaom) mpaexmopuets cucmemst (1).

Fig. 22 The historical moment when the maximum principle was invented
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This first publication only gave a criterion for the solution of the time optimal
control problem, and it was formulated as a sufficient condition. Pontryagin also
hoped that the criterion would give the global optimal control, and put the word
“locally” in parentheses [8], see also Fig.22. The maximum principle allowed the
authors to immediately solve the Bushaw—Feldbaum problem we have seen earlier,

V=u, |uf =1,
as follows: we first transform the system to first order

V=Y Y2=u,
and the Hamiltonian becomes

H = Y1y, + You.

For the auxiliary functions, we obtain the differential equations

These equations can be easily integrated to give ¥;(t) = C; and ¥ (t) = C, — Ci¢,
where C; and C, are constants. To maximize H under the condition that |u| < 1,
the control must satisfy

u(t) = sign(y(1)) = sign(Cy — Cir),

and is therefore piecewise constant and can change at most once, since ¥,(¢) is
a linear function of 7. We thus obtain precisely the bang—bang solution found by
Feldbaum for this problem, but in a very simple way with the maximum principle.
The maximum principle also worked very well for many similar problems that could
not be solved earlier, which explains the high hopes Pontryagin had for it.

After this first publication, the work was divided by Pontryagin as follows:
Gamkrelidze was asked to generalize the results obtained during the calculation
of examples, and he quickly found the work by Bellman, Glicksberg and Gross [2],
who had established a necessary and sufficient condition for the linear case

y=Ay + Bu, |uj| <1,

and the time optimal control to get to y = 0. For constant matrices A and B,
where the eigenvalues of 4 have negative real parts, the optimal control is u” () =
sign(b” Y (1)), where Y () = X ~!(¢) B and X solves the matrix equation X = AX.
Here b is an appropriately chosen vector, and the result holds under a general
position condition, see [2]. Gamkrelidze managed to show that this necessary and
sufficient condition coincides with the maximum principle, and hence for linear
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problems, the maximum principle is indeed a necessary and sufficient condition for
optimality.

Boltyanski was supposed to work out in detail the results in the first paper
[9], and Pontryagin was supposed to find a general justification of the maximum
principle. Boltyanski started working on the first result in [9] and tried to formulate
it differently from the classical analysis textbook style in which the argument was
given, and searched for a geometrical proof. After a more careful study of the
second, sufficient condition in [9], Boltyanski finally arrived, “in a brilliant half
hour” [8], at the conclusion that the maximum principle was only a necessary
condition. He immediately called Pontryagin in his apartment and told him that the
maximum principle was only a necessary condition, but a global one. Pontryagin
was angry when he received the call because it had woken him up from his afternoon
nap, but he called back 5 min later to say that if Boltyanski had really found a proof,
this would be of great interest, so it had to be checked carefully. Gamkrelidze did
the careful checking, and the argument was correct, so Boltyanski asked Pontryagin
if he could publish the results [8]:

It was proposed to publish it, as a joint paper of four authors. I refused point-blank. Then it
was proposed (i) to name that theorem Pontryagin’s maximum principle, and (ii) to add at
the end of my paper a paragraph dictated by Pontryagin that pointed out his role in creation
of the principle. Pontryagin was the head of the laboratory in the Steklov Mathematical
Institute, and at that time could insist on his interests. I had to agree. After that, my paper
was presented to Doklady AN SSSR [7].

Boltyanski indeed named the maximum principle after Pontryagin in the single
authored paper [7]:
Buickasannwit JI. C. TMowtparmuum B KauecTse
FHNOTE3W NPHHUKHN MAKCHMYMa

The maximum principle suggested by Pontryagin as a hypothesis. . .

and we also show in Fig. 23 the final paragraph dictated by Pontryagin to Boltyanski
from the end of the same paper. The literal translation of this paragraph is:

I got the results which are published in this paper working in the Pontryagin seminar
on the theory of oscillations and automatic regulation. Pontryagin pointed out to me one
simplification in the proof of the maximum principle, and because of that my proof became
applicable to arbitrary topological spaces U (the first variant of the proof contained an
unnecessary, actually nowhere used, construction that forced the restriction on the case,
when U is a closed domain in a vector space with piecewise-smooth boundary and convex
inner corners in breaking points).

As we have seen already in footnote 11, the initial argument of Pontryagin, which
allowed the end point to vary in a lower dimensional manifold, was not quite correct.
To remove this flaw, Boltyanski resorted in [7] to the tool of needle variations,
which already appeared in McShane in 1939 [40]; however, Boltyanski insists that
he was unaware of McShane’s work at the time and came up with the technique
independently [11]. We show in Fig. 24 the hand drawing of Boltyanski from [8].
One can clearly see that a cone appears, instead of the variations orthogonal to the
trajectory, and the role of the manifold is now played by I' at the tip of the cone.
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[MyGankyemule 3fiech pe3y/bTarthl MOAYYeHbl MHOK NMpH padore B PYKOBOAK-
mom JI. C. [TouTpAruibiM ceMunape no TeOPHH KoeGaHHil W aBTOMATHYECKOro
peryauposaius. JI. C. TIoHTpArHH yKa3zaa MHe Ha OfHO ynpouweHHe B J0Ka3a-
TeNLCTBE NMPHHUKNA MakCHMyma, Gsaroflaps 4eMy Moe AOKa3aTelbCTBO CTajlo
NPHrofiibIM A/AA MPOH3BOJbLHOTO TOMOJNOrHYecKOro npocrpaswcrsa U (nepmo-
Haya/ibHbll BapHaHT NOKA3aTe/bCTBA COMEPIKAJ JIHIIHIONW, HHrAe (haKkTHYECKH
He HCMOJB30BABIIYIOCA KOHCTPYKUHIO, KOTOpas 3aCTaB/fNa OrpPaHHYHBATLCA
cayyaeM, Korfa U ectb 3aMKHyTas 06,1acTh BEKTOPHOrO MPOCTPAHCTBA € KYCOY-
HO-TFNAAKOM rpaHnleli H BhIMYKAbIMK BHYTPEHHHMH YIJIaMH B TOYKaX ncpeoMa).

Fig. 23 The last paragraph Boltyanski had to add in his single authored paper, dictated by
Pontryagin (see translation in the text)

Q=)

Fig. 24 Original drawing by Boltyanski removing the initial flaw of variations at the endpoint in
the proof of the maximum principle

The complete original proof also relies on techniques from topology, the field of
origin of the group. It is quite long and technical; details can be found in the
historical book by the four authors from 1962 [48], which was quickly translated
into many languages and made Pontryagin and the Russian school of optimal control
famous with their maximum principle. However, from Boltyanski’s point of view, it
was he who formulated and proved the maximum principle correctly. Pontryagin’s
insistence on publishing the result as a joint paper led to a period of deep bitterness
for Boltyanski, during which he could not even do mathematics any more, as he tells
in [8].

3.5 General Formulation of the Maximum Principle

The times 7y and ¢, in this statement of the problem, are not fixed. We only require that the
object should be in state x( at the initial time, and at state x; at the final time, and that the
functional should achieve a minimum [48].
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Pontryagin and his students then generalized the problem of minimizing travel
time to one of minimizing an arbitrary function [10]. The model for the technical
object is again the system of ordinary differential equations

dy

i gy.u), yo)=y" (3.51)
for the trajectory y : R — R of the object, depending on the control functions
u : R — R"7™. These controls are supposed to be chosen such that when the object
arrives at time ¢, at a given location y(¢;) = y!, the general functional

J = / go(y (). u(t))dr (3.52)

fo

is minimized. Here the scalar function go : R” x R"™™ — R was on purpose
denoted by the index zero, since a first step was then to define an additional ordinary
differential equation

d
% = go(y,u), yo(to) = 0.
t
Appending this equation to the system of ordinary differential equations for the
technical object as the zeroth coordinate, y := (Yo, y1,-- -, Ym), and similarly g :=
(g0, &15--->8m), the new system of ordinary differential equations
dy .- -
L =g, F)=0.5") (3.53)

encodes, in addition to the trajectory, also the current value of the objective function
in its zeroth component:

yo(t)=/ go(y(2), u(t))dr.

The authors now give a geometric interpretation of the optimal control problem
in this higher dimensional space: given an initial point y° and a target y' in R,
as shown in Fig.25, among all the trajectories solution of (3.53) and ending at y'!
(dashed line examples in Fig. 25), find the one that crosses the vertical line in the
yo direction above with the lowest coordinate value y((¢;) possible (see solid line in
Fig. 25). Next, they explain several properties of this optimal control problem: first,
the problem is time invariant, since the right hand side of the state equation and the
objective function do not depend on time. One can therefore do translations in time
without changing the problem, see Fig. 26 from their book [48]. Because of this, one
can also consider several points in phase space, and search for controls separately to
move from one to the next sequentially, and then concatenate the controls in order
to get a single control to go from the first to the last point in phase space. Doing this,
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> optimal y(t
) S y(t)

Fig. 25 Interpretation of the optimal control problem in the higher dimensional space including
the objective function coordinate y,
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Fig. 26 Graph to illustrate time translation invariance from [48]
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u(t)

Fig. 27 Graph to illustrate that the optimal controls are piecewise continuous, from [48]

one just has to sum the local objective function values to obtain the global value of
the objective function. Concatenating the controls this way, however, is not possible
in the space of continuous controls in general, and therefore one must expect the
optimal control to be piecewise continuous only, as illustrated in Fig. 27 from [48].
Finally, in preparation of their proof, they argue that the optimal trajectory must also
be locally optimal: if it were not optimal on a sub-interval, then one could simply
replace the control there by a better one, and since the objective functions are just
summed, the global objective function would decrease, see Fig. 28 from [48] for an
illustration of this.
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Fig. 28 Graph to illustrate
that the solution must be
locally optimal, from [48]

For the formal statement of the maximum principle, the authors introduce as
before the adjoint system (but now without explanation)

dyi N 0gi(y.ow) -
7__28—%%, i=01,....m (3.54)

j=0

and the Hamiltonian

H.5.u) =9 g(y.u), (3.55)

but now the maximum principle is no longer stated as a sufficient condition: a
necessary condition for the control u# and associated trajectory y to be optimal is
that there exist ¥ such that the Hamiltonian system

dy: oH
i T iZ01.....m (3.56)
a9y,
d; 0H
_— = | :0,1,..., 3'57
dt ayi 1 m ( )

holds and that for each admissible control v the inequality

HW.5.v) < HW.5,u) (3.58)

be satisfied, i.e. the optimal control u is the value of v maximizing the Hamiltonian.

Suppose now that the optimum is in the interior of the domain. Then the
inequality (3.58) implies that we are at a stationary point, i.e. the derivative with
respect to # must vanish,

¥ Gyu)=0 < YVugo(y.u)+ G (y.u)p = 0.
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Since the Hamiltonian does not depend on yg, ¥ is just a constant, ¥y = —1
and we find naturally the condition (3.27) from the Lagrange multiplier approach.'?
So the maximum principle stating that the Hamiltonian has to be maximized is
equivalent to stating explicitly that the Lagrangian has to be minimized, and not
just at a stationary point, and the reason why it is a maximum for the Hamiltonian
and a minimum for the Lagrangian comes just from the sign change in the definition
of the Hamiltonian (3.30).

3.6 Example of an ODE Control Problem

We illustrate the use of Pontryagin’s maximum principle on the following example.
Suppose we have a system with a state variable y = y(¢) € R and a control variable
u = u(t) € R governed by

Yy =u, y(0) =0,

subject to the box constraints |u(¢)| < 1 for all . We would like to find the control
u(t) such that y(1) = % and which minimizes the cost

1 1
S0 =5 /0 V.

Without the constraint on the control, the optimality system (3.27-3.29) leads to
y=u ¥ =y,0=1-yandthusy¥ = 0,y = 0and u = 0. Since we must
however have y(1) = %, one can force the solution in the last moment with a very
large control to this value, and make the integral | y2dt arbitrarily small. With the
constraint on the control, the best one can do is use u = 1, and we need to use this
control over the second half of the interval to get y = 1, in order to reach y(1) = %,
which is the optimal solution, see Fig. 29.

Lets now see how Pontryagin’s maximum principle guides us to this solution: it
says that if u(¢) is the optimal control, then for every ¢ € (0, 1), we have

H(y(@),u@®),¥@)) = gl‘eg H(y@),& v (1)),

where y(¢) and v (¢) are the state and adjoint state of the optimal trajectory at time
t, and H is the Hamiltonian

1
H()’a”ﬂﬁ) = K”M—Eyz-

13See also Footnote 12.
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Fig. 29 Solution of the simple optimal control problem

Thus, by inspection, we have

1, ify() >0,

“O=1 1 v <o,

If ¥(t) = 0, then we get no information from the maximum principle. We now
deduce the optimal control and trajectory based on these properties.

1. We know that y(1) = %, s0 by the adjoint equation ¥ = y, we see that ¥ has a
positive slope in a neighborhood of # = 1, so it cannot vanish identically there.
So if we assume that ¥ (1) < 0, then ¥ () < 0 in some interval ¢ € (¢, 1) with
t1 =1-46,8 > 0,s0u(t) = —1 there. This yields

! 3
y(@) =yQ) —/ y@dr=y()+1—1t = > —1. (3.59)

Thus, y(t) > % forall ¢ € (#1,1), so ¥ (¢) is a strictly increasing function with
¥ (1) < 0, implying that y(¢) < O for all ¢ € (¢, 1). In particular, ¥ (z;) < 0,
so continuing this argument now over the interval (f; — §,1;), etc. shows that
(3.59) in fact holds for the whole interval (0, 1). This implies y(0) = %, which
contradicts the initial condition y(0) = 0. Hence (1) cannot be negative (or
Z€ero).

2. Suppose now that ¥(1) = ¥; > 0. Then there exists a neighborhood around
t = 1 in which ¥(¢) > 0. Let t* € [0, 1) be the smallest ¢ such that ¥ (z) > 0
whenever ¢ > t*. Then by the continuity of v, we have ¥ (t*) = 0. Moreover,
u = 1on (t*, 1), which implies

! 1
y(t) = y(1) —/ wtydr =y(1)—1+1t=1— 5 (3.60)

whenever t € (¢*,1].
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3. We show that y(t*) = 0 by excluding both y(z*) > 0 and y(t*) < 0. If
y(@*) > 0, then ¥ (t* —5) < 0 for § > 0 small enough, so u = —1 on
the interval (t* — §,¢*). This means y(t* — §) > y(t*) > 0; continuing this
argument backwards in time, we obtain y(0) > y(¢*) > 0, a contradiction. On
the other hand, if we assume that y(*) < 0, then ¥ (¢*) < 0 and ¥ (t*) = 0
together implies that ¥ (¢* 4+ §) < 0 for § > 0 small enough, which contradicts
the definition of t*. Thus, y(t*) = 0. Since (3.60) is satisfied for all ¢ € (¢*, 1],

1

we deduce that r* = 3.

4. The optimal trajectory and control are now determined for the interval [%, 1].
Since f 11/2 y2 dt is now fixed, we are left with the minimization problem

12
/ y? dt — min st y(0) = y(3) =0,
0

where y = u and |u(r)| < 1. The optimal solution is obviously
y(t) =0, u(t) =0 Vie(0,1).

Note that the adjoint state must also vanish, since # would not be allowed to take
on values different from +1 otherwise.

We thus obtain the same solution from Fig. 29. Note that unlike problems with a
pure bang—bang solution, our optimal control contains both an interior part (v = 0
ont € (0, %)) and a boundary part (u = 1l ont € (%, 1)). We also see that in
this case, the maximum principle is useful in the sense that it guides us towards the
optimal solution bit by bit, but it does not provide an algorithm for computing the
optimal control directly.

3.7 Caratheodory

Auf den folgenden Seiten soll auf das allgemeine Problem der Variationsrechnung in
einem (n + 1)-dimensionalen Raum mit p gewdhnlichen Differentialgleichungen als
Nebenbedingungen die Methode der geoditischen Aquidistanten angewandt werden'* [16]

Constantin Carthéodory had already worked in his Ph.D. thesis on discontinuous
solutions in the calculus of variations [15], and became one of the eminent
researchers in this field. In a paper published in 1926, see also the quote above,
he set out to solve precisely the same type of problem we have seen before, but 30
years earlier. He studied the minimization problem

15)
I::/ L(t,x,x)dt —> min
n

14On the following pages we will solve the general problem of variational calculus in an (n+1)
dimensional space with p ordinary differential equations as constraints, using the method of
geodesic equal distances.
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under the constraints given by implicit differential equations
G(t,x,x) =0, (3.61)

where L : RxR" xR" — R,and G : R x R" x R" — R?. Using geodesic
arguments, he was led to define the scalar quantity

M(@t,x, %, pn) =Lt x,%)+pn G, x,%),

for some parameter functions . He then applied the Legendre transform to M,
which led him to the Hamiltonian

H(t,x,y) = -M(t,x,0,x) +y 0.

Here, ¢ represents the right hand side when the implicit differential equation (3.61)
is solved to obtain an explicit form X; = ¢; (¢, x), and y = u, which gives

H(t.x.y) =—L(t.x.9)— x G(t.x.9) + y"o.

Now along a solution satisfying the constraint, we have G (¢,x,¢9) = 0, and
Carathéodory obtains as the main result,!® as we have seen earlier, that the solution
candidates must satisfy the differential equations

i=V,H y=-V.H, (3.62)

which he says play such a prominent role in mechanics, see also the original formu-
las in Fig. 30. In contrast to Pontryagin later, he does however only consider local
optima in open sets. For more explanations on the derivation of the Hamiltonian
formulation of Carathéodory, see [44], and also the very interesting description of
the history of the maximum principle and optimal control in [46], see also [43,45].

ff(l‘, 3}-}’;) = —M(z, iy Pjr -/.h’> +Z-TJ':P!"
]

1 vy? i

Fig. 30 Formulation of necessary conditions using the Hamiltonian for optimal control problems
already found in the work by Carathéodory from 1926

15Das Hauptresultat besteht darin, dass unsere Gefillkurven mit den Cauchyschen Charakteristiken
zusammenfallen und Losungen der kanonischen Differentialgleichungen (3.62) sind, die in der
Mechanik eine so bedeutende Rolle spielen.
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4 PDE Constrained Optimization

We have seen in the previous section how the desire to optimize the trajectory
of a system governed by ODEs gave birth to the field of optimal control. In
many applications, however, the system is not governed by ODEs, but by partial
differential equations (PDEs), and the desire to optimize certain outputs leads to
PDE constrained optimization problems. This field is nowadays an active research
area, as attested by the many conferences and papers in recent years. Here we
mention only three sample applications; other applications abound and new ones
arise every day, so it is impossible to mention them all.

* Oil reservoir management: the flow of fluids in an oil field satisfies a system
nonlinear PDEs that models the conservation of chemical species transported
by different fluid phases. Here, the only interaction with the subsurface oil field
is through wells, either by injecting fluid (water or gas) into the ground or by
controlling how much fluid (typically a mixture of oil, water and gas) can come
out of it. Thus, the goal could be, for instance, to optimize the oil output over
the lifetime of the reservoir by optimizing over the control variables, such as
the injection rate of water or gas at an injection well, or the fluid pressure
or production rate at the production wells. Here the control variables can be
functions of time, just like in the ODE case.

» Shape and topology optimization: consider the design of an airfoil. Depending
on the purpose of the airfoil, one can maximize the lift, minimize the drag, or
minimize the vortices created by the airfoil when air flows around it. Thus, the
objective function depends on the solution of the PDE governing the flow of air
around the airfoil, e.g., a Laplace-type potential flow equation, or the full Navier—
Stokes equation. Here, the control variable is the “shape” of the airfoil, i.e., the
function that defines the boundary of the domain, and the PDE constraint is the
Laplace or Navier—Stokes equation.

* Inverse problems: consider an underground rock formation, of which we would
like to understand its internal composition (types of rock, existence of layers and
faults, etc.) One way of obtaining information without drilling is to send seismic
or electromagnetic waves into the ground and install detectors on the surface to
measure the reflected waves. If the rock parameters were known ahead of time,
then the reflected waves can by calculated by solving a PDE (elasticity or wave
equation). However, since our goal is precisely to estimate these parameters, we
must solve an optimization problem by choosing the parameters that minimize the
discrepancy between the predicted and measured waves, subject to the constraint
that the waves satisfy a PDE.
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4.1 Early Work

The discovery of Pontryagin’s maximum principle and its ability to explain bang—
bang type solutions generated great interest in the optimal control community. In
particular, starting from the 1960s, there was a push to generalize both results
to systems described by PDE rather than ODE constraints. The earliest reference
appears to be a series of papers by Egorov [18, 19] starting in 1962, which contains
a detailed study of the minimal time problem for the parabolic control problem of
the type

dy
= 1A = Qx0T
a[-1- y+bwy=f+u onQx(0,7T), @1

y=0 on d2 x (0,7),

with initial condition y(ty;u#) = yo and target y(t;;u) = yr, but the arguments
therein are rather opaque.'®

Stateside, a proof of the bang—bang property when b = 0 and u is restricted to
the set

U = {u:|u@)| <1ae}

was given in 1964 by Fattorini [21], who wrote his Ph.D. thesis on the topic under
the supervision of P. D. Lax. The proof proceeds in two steps. First, Fattorini writes
y(t; u) in terms of the Green’s function

y(z;u) = G(v)yo + /Ot G(t —o)u(o) do.

Using this representation, he shows that if |u(z)| < 1 — € for some € > 0 almost
everywhere in the interval (0, 7), then one can produce another control v(¢) such
that [v(¢)] < 1 and y(s;v) = yr with s < 7, so that t is not the optimal time.
He then shows that even in the case where |u(¢)] < 1 — € only on a subset e C
(0, 7) of positive measure, u cannot optimal. To show this, let e be the subset in
which |u(t)] < 1 — €. Then using semi-group theory, Fattorini shows that there
exists a control g(¢#) with bounded values and support in e such that y(r;g) =
y(tr;u) = yr. By taking a weighted average of u and g, one obtains a new control
v = (1 — 0)u + 0g that satisfies |v(¢)] < 1 — € everywhere for some € > 0, but
without changing the target yr, since y(r,v) = (1 — 0)y(t;u) + 0y(r;8) = yr.
Thus, by the previous argument, t is not the shortest time necessary to arrive at yr,

16 According to J.-L. Lions: “Le travail de Yu. V. Egorov contient une étude détaillée de ce
probléme, mais nous n’avons pas pu comprendre tous les points des démonstrations de cet auteur,
les résultats étant trés probablement tous corrects.”
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so u is not time-optimal. This proof does not use any variant of the Pontryagin’s
maximum principle, so none was formulated in the paper.

Proofs of the bang—bang property for other systems, notably boundary control
problems, appeared subsequently, see for instance Friedman [26]. However, it was
a research monograph of Jacques-Louis Lions that launched the systematic study of
optimal control under PDE constraints and shaped the field as we know it today.

4.2 Lions

A new adventure began for Lions in the early 1960s, when he met (in spirit) another of
his intellectual mentors, John von Neumann. By then, using computers built from his early
designs, von Neumann was developing numerical methods for the solution of PDEs from
fluid mechanics and meteorology. At a time when the French mathematical school was
almost exclusively engaged in the development of the Bourbaki program, Lions — virtually
alone in France — dreamed of an important future for mathematics in these new directions;
he threw himself into this new work, while still continuing to produce high-level theoretical
work on PDEs. (R. M. Temam, Obituary of Jacques-Louis Lions (SIAM News, July 10,
2001)

Jacques-Louis Lions (1928-2001) was one of the most influential figures of
his time in applied mathematics in France and throughout the world. Under the
influence of his Ph.D. supervisor, the Fields medalist L. Schwartz, Lions’ early work
was of a theoretical nature, emphasizing the use of distributions and appropriate
function spaces in the study and solution of PDEs. During his time as scientific
director at IRIA,'7 he discovered “systems theory”, which subsequently became a
new component of his research in the form of control theory. Given his expertise
in PDEs and variational formulations, it is no surprise that his theory of PDE
constrained optimization is heavily based on function (especially Sobolev) spaces
and variational arguments.

Lions’ first contribution in PDE constrained optimization was a research mono-
graph entitled “Controle optimal de systémes gouvernés par des équations aux
dérivées partielles” [37]. It was published in 1968 and became the standard reference
of the subject. In this volume, Lions developed his theory systematically by first
considering the control of elliptic problems, and then moving on to time-dependent
problems of the parabolic and hyperbolic types. The stated goals of the volume,
which appear in the introduction, are as follows:

1. to obtain necessary (and maybe also sufficient) conditions for local extrema of
the PDE constrained optimization problems;

2. to study the structure and properties of equations expressing such conditions;

3. to obtain constructive algorithms that can be used to calculate the optimal
controls numerically.

"Institut de Recherche en Informatique et Automatique, the precursor of the modern INRIA.
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This last point was particularly groundbreaking at a time when PDE research
was mostly theoretical, see the quote above. It is especially fitting that variational
formulations and Hilbert spaces play a fundamental role in the monograph, giving
its results a natural algorithmic realization in the form of finite element methods,
cf. [28].

To illustrate his approach, let us consider the problem of minimizing the cost
functional

J(u) = [|Cy(u) = za 3y + Nu,u)o.

Here, the desired state z; belongs to a Hilbert space H, where as the state variable
y = y(u) belongs to a possibly different Hilbert space V. The state variable y (i)
depends on the control variable u via the PDE

Ay = f + Bu, 4.2)

where A : V — V' is generally taken to be a differential operator. The minimization
is done over all controls u lying in the admissible set U,4, a closed convex subset
of a Hilbert space U. The quadratic form (Nu, )y, with N self-adjoint and semi-
positive definite, penalizes large control variables u. From the definition of J(«), we
see that for all v € U,4, we have

J(v) = (Cy(v) —za.Cy(v) —za)u + (Nv.v)y
= [ICy(u) = za |37 + 2(Cy(w) = 24, C(y(¥) = y@))m + |C(y(v) = y @)
4+ (Nu,u)y +2(Nu,v—u)y + (N(v—u),v—u)y
= J() +2(Cy(u) —z4. C(y(v) = y@) ur + 2(Nu,v —u)y
+ICHO) =yl + (NG —u),v—u)y.

Now since u is the minimizer, we must have J(v) — J(u) > 0, so that

2(Cy(u) = 24. C(y() =y + 2(Nu,v — u)y
+ICHO) =yl + (NG —u),v—u)y =0,
which must hold for all v € Uy,. So if ||v — u|| = O(e) and we let € tend to zero,
the two quadratic terms become negligible, so we obtain after division by 2 the
optimality condition

(CyW) —z4, C(y(v) —yW)u + Nu,v —u)y =0 Vv € Uy, 4.3)

which is analogous to (3.16) in the KKT conditions. The inequality (4.3) can be
rewritten as



196 M.J. Gander et al.

(C*ACyW) —24). y) = y@)y + Nuy—w)y =0 VveUw.  (44)

where A : H — H' is the canonical isomorphism from H to its dual space H'.
Lions then defines the adjoint state p(v) € V implicitly via

A p(v) = C*A(Cy(v) — ), (4.5)
where A* : V — V' is the adjoint of A. Then substituting (4.5) into (4.4) yields

(CTA(CYy(u) = 24), y(v) = y )y + (Nu,v —u)y
= (A"pw), y(v) — y@)y + (Nu,v —u)y
= (p(w), Ay (v) — y@)y + (Nu,v —u)y
= (p(w), B(v—w)v + (Nu,v —u)y
= (Ay'B*p(w) + Nu,v—w)y >0 Vv € U, (4.6)

where B* : V — U’ is the adjoint of B, Ay : U — U’ is the canonical
isomorphism from U to U’, and we have used the fact that

A(y() —yW) = f +Bv—(f + Bu) = B(v —u).

In other words, the definition of p(v) in (4.5) can be seen as an intelligent guess that
allows one to eliminate the state y(«) from the optimality condition (4.4), similar to
the way we chose the Lagrange multiplier A in Sect. 3.1 to eliminate the state y in
the finite-dimensional case. Inequality (4.6) can be reformulated as

(A ' B*p(u) + Nu,u)y = ir[l/f (A B* p(u) + Nu,v)y,
veUad

which then looks like an elliptic analogue of Pontryagin’s maximum principle. '8

The advantage of the abstract Hilbert space approach is that the results are
immediately applicable to many different types of control problems. For instance,
consider a problem in which the control function is Neumann data on part of the
boundary I'y C I' = 92, and we want the Dirichlet trace on another part of the
boundary I'y C 92, 'y N I’} = @ to be as close as possible to some desired trace
z4. Then the analogue of (4.6) in the boundary control case states that the optimal
control u € U,y C L?*(T") must satisfy

/ pw)(v—u)dl' >0 Vv e Uy 4.7
r

18<Ta formulation (1.31) peut étre considérée comme un analogue du «principe du maximum
de Pontryagin», pour lequel nous référons [...] 8 PONTRYAGIN-BOLTYANSKI-GAMKRELIDZE-
MISCHENKO” [37].



Constrained Optimization: From Lagrangian Mechanics to Optimal Control and. . . 197

If the set of admissible controls is defined by pointwise box constraints, e.g., if
Uue = {v : Supp(v) C Ty and |v(x)| < 1 a.e. on Iy},

then a standard argument allows one to convert the variational inequality (4.7) into
a pointwise one of the form

pxiu)(§ —u(x)) =0 VEe[-11]. (4.8)

Under some smoothness assumptions on the domain boundary I" and the coefficients
of the elliptic PDE, Lions shows that the optimal control u € U,; satisfies either
p(x;u) = 0, in which case y(u)|r, = z4, or p(x;u) # 0 almost everywhere. Then
(4.8) implies

p(xiu) >0 = u(x) = -1,
px;u) <0 = u(x)=1.

Thus, we have a bang—bang property in the elliptic case, a result which, to Lions’
knowledge, had not been published at the time.

4.3 Derivation by Lagrange Multipliers

It was never explicitly mentioned what motivated Lions to define the adjoint state
p via (4.5). One possibility is that he was influenced by the work of Pontryagin;
another reason could simply be that he wanted to eliminate the state variables y (u)
and y(v) algebraically, just as we did in Sect.3.1. Here, we show that the same
variable p can be obtained using a formal Lagrange multiplier argument. Let the
Lagrangian be defined by

1 1
E(yvus ]7) = EHC))_Zd”%{ + E(Nuvu)U - (Ay— f —BM, p)Vs

where p € V now acts as the Lagrange multiplier. Next, we take the variational
derivative with respect to y, i.e., we calculate

d !
% ‘C(y + €z, u, p)|s=0 = (sz Cy_Zd)H - (sz p)V ; 0

forall z € V. We thus have

(Cz,Cy —za)n — Az, p)v = (2, C*A(Cy —z4))v — (z. A*p)y =0,
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which implies A*p = C*A(Cy — z4). So the adjoint state is nothing but the
Lagrange multiplier for the constrained problem! We check that this formulation
gives the same optimality condition for u: we want u to be a minimizer of L(y, u, p),
i.e., forall v € U,4, we have

1
0< Ly v, p)—L(y,u, p)=(Bv —u), p)v+©Nu,v —u)y + E(N(V_ u),v—u)y
=Wv—u, AElB*p + Nu)y + %(N(v— u),v—uy.

In particular, for v = u + ew € U,4, we have

2
ew,Nu+ Ay ' B*p)y + %(NW,W)U > 0,

so by letting ¢ — 0, we obtain the same condition as (4.6). One can only
speculate whether Lions had this derivation in mind."”

4.4 Later Developments

Lions’ monograph only signaled the beginning of the rapid development of PDE
constrained optimization as a modern field of research. Fueled by practical needs in
industry and advances in other branches of applied mathematics, the field saw major
progress in terms of both theory and algorithms—this is in addition to the number of
application areas to which PDE constrained optimization is applied. The following
list is by no means exhaustive; the goal is to show a sample of achievements in the
intervening decades.

Theory. Much of the theory in Lions” monograph, including the existence and
regularity of optimal controls and the maximum principle, has been extended to
more general problems. For instance, Pontryagin’s maximum principle for linear
parabolic problems has been generalized to semilinear parabolic problems by von
Wolfersdorf [52,53]. It is also possible to include state constraints, i.e., constraints
on the state variables y rather than on the control u. For a comprehensive modern
introduction to the subject, see the recent book by Troltzsch [50].

Another major theoretical development, related to the existence of optimal
controls, is the theory of controllability, where the goal is to determine whether
it is possible to find a control function that steers an object from any initial state yg
to a given target state yr. An important result, which appeared in [38] in 1988, was

19According to J. Blum, it was R. Glowinski, one of the former students of Lions, who once showed
Lions on the board that the adjoint state can simply be interpreted as a Lagrange multiplier. This
was confirmed by R. Glowinski (personal communication).



Constrained Optimization: From Lagrangian Mechanics to Optimal Control and. . . 199

proved by Lions himself: he introduced what is known as the Hilbert Uniqueness
Method. The method takes a linear time-reversible PDE (such as the wave equation),
an initial state y, and a target state yr, and constructs a control u (belonging to some
specially chosen Hilbert space H) that steers yy to yr, provided that the system is
observable and the time horizon is long enough. For a more recent survey, see the
articles by Zuazua [54,55].

Algorithms. There has also been significant development on the algorithmic
front: here, the goal is to discretize the infinite-dimensional PDE constrained
problem, e.g. using finite element methods, in order to obtain a finite dimensional
approximation, which can then be solved numerically. In principle, one can
discretize the KKT formulation (3.16)—(3.18) and then use standard optimization
routines, such as line search, trust region and interior point methods to solve the
finite dimensional problem; however, one must be careful to discretize the forward
and adjoint problems consistently to retain optimality in the discrete setting, see
[12]. Using such routines allows one to take advantage of advances in sparse matrix
factorizations and preconditioners that have been developed for general saddle-point
problems, see for instance [3].

Shooting methods, or more precisely multiple shooting methods, were originally
developed for solving two-point boundary value problems [32,41,42]. While the
finite element method has become the method of choice for most boundary value
problems (especially of the elliptic type), multiple shooting remained a viable
approach for optimal control problems, since they are able to integrate systems
that are highly unstable and very sensitive to changes in initial/final conditions, see
the Ph.D. thesis by Bock [6]. More recently, multiple shooting has been applied
successfully to problems with PDE constraints, see for example [29,30,49], and the
recent work by Rannacher et al. [17].

With the rapid increase in computing power in the form of multi-core processors
and parallel clusters, there is increasing interest in parallel algorithms for solving
PDE constrained optimization and optimal control problems. Methods such as
domain decomposition and multigrid, which have been developed and analyzed
extensively for discretized PDE problems, are particularly suited for this purpose.
For the use of domain decomposition in parabolic optimal control problems, see
Heinkenschloss [29] and references therein.
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1 Introduction

An asymptotic expansion of a given shape functional, when a geometrical domain
is singularly perturbed by the insertion of holes, can be obtained by performing a
topological asymptotic analysis. This analysis is applied in the mathematical model
that represents the physical phenomena under consideration. Asymptotic analysis
of linear and nonlinear models in solid mechanics is considered in details in the
recent monograph [23]. The related results can be also found in [5, 6, 10,12, 13,17,
22,26, 27]. The main result of this analysis is the so-called topological derivative.
This derivative measures the sensitivity of the shape functional when a singularity
is introduced in an arbitrary point of the domain.

Classical shape optimization for contact problems is considered in [28] for the
variational inequalities of the first and the second kind. The shape and material
derivatives are determined in the framework of the conical differentiability of solu-
tions to variational inequalities. Another branch of applied models with unilateral
constraints are the crack models with nonlinear non-penetration conditions on the
crack faces (lips) [19-21]. For such models the elastic energy is differentiated with
respect to the crack length [9]. The stability of solutions to the evolution variational
inequalities is analyzed in [18]. A new class of variational inequalities arises when
a finite interpenetration is allowed in the potential contact region of the body with a
rigid foundation, as proposed in [7].

In this work we present a closed form for the topological derivative when a small
circular disc, with a material different than the surrounding medium, is introduced
in an arbitrary point of the elastic body. We consider the energy shape functional
associated to the frictionless contact problem allowing a finite interpenetration
between an elastic body and a rigid foundation [7].

In order to apply the theoretical results, we present a computational procedure for
topological optimization based on the topological derivative concept. The optimiza-
tion procedure consists in minimizing the structural compliance for a given amount
of material. This constraint in the volume of the optimized structure is introduced
in the formulation of the optimization problem by means of an exact quadratic
scheme. In this procedure, the topological derivative is used as a feasible descent
direction. The robustness of the topological optimization technique presented in
this work is demonstrated by a set of numerical examples, related to the topology
design of elastic structures under this particular nonlinear contact condition. On the
other hand, the formulation of the problem of topology optimization of structures
in unilateral contact, with computational approaches such as SIMP (Solid Isotropic
Microstructure with Penalization) and ESO (Evolutionary Structural Optimization),
can be found in [8, 15,24,29].

This paper is organized as follows. Section 2 describes the frictionless contact
model for finite interpenetration in two-dimensional elasticity. The topological
derivative associated to this problem is presented in Sect.3, where a simple and
analytical formula is given. The compliance topology optimization procedure for
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elastic structures subjected to a volume constraint is outlined in Sect.4. A set of
numerical experiments is presented in Sect. 5. The paper ends in Sect. 6 with some
concluding remarks.

2 Static Contact Model for Finite Interpenetration

We consider the problem of an elastic body having contact with a rigid foundation.
The domain of the body is denoted by @ < R2 The boundary 9 of the
body consists of three mutually disjoint parts with positive measures ['p, I'y
and T'c, where different boundary conditions are prescribed. On the boundary
I'p we prescribe Dirichlet boundary conditions (displacement), on I'y Neumann
boundary conditions (traction) and, finally, on I'c the contact condition with the
rigid foundation that admits an interpenetration, see Fig. 1a. For the contact model,
we consider only a normal compliance law of the type

Fig. 1 Contact problem
formulation. (a) Contact
problem. (b) Example of }
function p(y) a b

<y
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on(u) = —p(uy — g), 2.1

where u, := u - n denotes the normal component of the displacement field u, n is
the unit outward normal vector to the boundary 02 and g the gap on the potential
contact zone. Moreover, in (2.1), 0, (u) represents the normal component to the
boundary of the stress tensor o (), i.e. 0, (u) = o (u)n - n. The Cauchy stress tensor
o (u) is defined as:

o(u) := Ce(u) , (2.2)

where e(u) is the symmetric part of the gradient of the displacement field u, i.e.
1 T
e(u) = E(Vu + (Vu) '), (2.3)

and C denotes the fourth-order elastic tensor. For an isotropic elastic body, this
tensor is given by:

C=2ul+AIQ), (2.4)

with u and A denoting the Lamé coefficients. In the above expression, we use I
and I to denote, respectively, the identities of fourth and second order. In terms of
the engineering constant E (Young’s modulus) and v (Poisson’s ratio) the above
constitutive response can be written as:

— v

The function p : R — R4 = [0,4o00] in (2.1) is used to model the
interpenetration condition between the body and the foundation. This function p
is monotone with the following properties:

0 for y < a, with a constant
+oo fory > a,with b constantand b > a (2.6)

r(y)
lim p(y)
y—>b—

r(y) +oo fory >b

The parameter a indicates the initial contact and the value of b describes a limit
such that no further interpenetration is possible, see Fig. 1b.

The strong form of the equilibrium equation under this contact condition is given
by: find the displacement field u : Q — R? such that

—divo(u) = 0 in  Q

u u on I'p

o(u)n i on Iy . 2.7
o (1) = —pu,—g) on I¢

o (u) = 0 on TI¢
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The last condition in (2.7) indicates that the contact is without friction, where
o.(u) = o(u)n — o, (u)n denotes the tangential component of the stress tensor o (u).

The weak formulation of the problem stated in (2.7) is given by the following
variational equation: find u € U with (u, — g) € dom(p), such that:

/a(u)-(e(v)—e<u>)+/ p(u,,—ngn—un):/ Frv—w Wveld.
Q e

Iy
(2.8)
where the set of admissible functions I/ is given by:
U:={pecH(QR?) : 9p=u on TIp}, (2.9)
and the domain of definition of the function p, namely dom(p), is:
dom(p) := (2.10)

o e L'(Te) : plg) € L'(Te).3C >0 - / P < Clvlmzge! -

T'c

For a detailed description of this model, we refer the reader to [7].

3 Topological Derivative

In this section we obtain an asymptotic expansion for the energy shape functional
when a small disc of radius p, with different constitutive property, is introduced in an
arbitrary point X of the domain €2, far enough from the potential contact region I'c,
and denoted by B, := {x € R? : |x — X| < p}, see Fig.2. Thus, introducing
a characteristic function y = 1g, associated to the unperturbed domain, it is
possible to define the characteristic function associated to the topological perturbed
domain y,. Particularly, when the topological perturbation is an inclusion, we have
1 (%) =1o—(1- y)llm, where y € R is the contrast parameter in the material
property of the medium. Then we assume that a given shape functional ¥ (y, (%)),
associated to the topological perturbed domain €2, admits the following topological
asymptotic expansion

V() =¥ (0 + STy E) +o(f(p) (3.D

where () it is the shape functional associated to the unperturbed domain, f(p) it
is a function such that f(p) — 0, with p — 0. The function £ — T (%) is the
so-called topological derivative of ¥ in the point X. Thus, the topological derivative
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Fig. 2 Perturbed contact problem

can be seen as a first order correction factor over ¥ () to approximate ¥ (x,(X)). In
fact, after rearranging (3.1), we have

V) =V _ o 0D

f(p) f(p)

(3.2)

Taking the limit p — 0 in the above expression, we have the classical definition
of the topological derivative [25] given by

T — tim YO VD

3.3
ST ) G-3)

Note that, the shape functionals ¥ (y,(X)) and () are associated to domains
with different topologies. Then, to calculate the limit p — 0% in (3.3) it is necessary
to perform a asymptotic expansion of the functional v (), (X)) with respect to the
parameter p.

In this work we are interested in the asymptotic expansion for the energy shape
functional associated to the contact problem (2.8), given by [7]:

1 _
Ty () = E/QG(M)-S(M)—/F t-u+/r P(u, —g), (3.4

where the function P(y) is given by:

y
P@y=/ (). (3.5)

—0o0
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Considering the singular perturbation described above and denoted by B,, the
energy shape functional associated to the perturbed domain is given by:

1 _
Ty, (up) := > /Q o,(up) - €(up) _/1" t-up, +/F P(uon — 8), (3.6)

where u,, is the solution of the problem in the singularly perturbed domain given by:
find the displacement field u, : Q@ — R? such that

—divo,(u,) = 0 in
u, = u on I'p
o(up)n t on Iy
On (up) = _p(“pn - g) on I¢c s 3.7
[of3 (Mp) = 0 on FC
[u)] = 0 on 0B,
lop(up)fn = 0 on 0B,

since u,, := u,-n is used to denote the normal component of the displacement field
u,, on the boundary I'c. The symbol [(-)] in (3.7) denotes the jump of function (-)
across the boundary 08, and the stress operator 0,(-) is defined as:

0,(¢) := y,Ce(9), (3.8)

where the parameter y,, is defined as:

{1 in Q\B,
yp.—{ y in B, : (3.9)

Note that the domain 2 is topologically perturbed by the introduction of an
inclusion B, (%) of the same nature as the bulk material, but with contrast y. Finally,
the variational problem associated to (3.7) can be written as: find u, € U, with
(tpn — g) € dom(p), such that:

/ Op(up)'(g(v)_g(up))“' / p(upn _g)(vn_upn)= / t_'(v_up) Vv el,,
Q T'c VY
(3.10)

where the set of admissible functions U, is given by:
Uy={pel : [p] =0 on 0dB,}. (3.11)

For an explicit and analytical formula for the topological derivative 77 (X) of the
functional (3.4) associated to the problem (2.7), we introduce the following result:
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Theorem 1. The energy shape functional of an elastic solid with a disc of radius
o, centered at point X € 2 and with constitutive property characterized by the
parameter y, admits for p — 07 the following asymptotic expansion:

Ty, ) = Ty () + p*rH,o(u(®)) - e(R)) + 0(p®) V% € Q, (3.12)

where u(X) is the solution of the problem (2.7) evaluated at X and H,, is the fourth-
order tensor defined as:

1(1—y)? (.1 —
UL Ut A PR SR A TS (3.13)
41+ By I—y 1+ay

where 1 and 1 are the identities tensors of second- and fourth-order, respectively,
and the parameters o and B depend exclusively on the Poisson’s ratio of the elastic
medium, given by

_1+v
Y

3—v
: d = . 3.14
o an B Ty (3.14)

Proof. The reader interested in the proof of this result may refer to [14, 16,23].

Corollary 2. From the asymptotic expansion presented in Theorem 1, we can
recognize the topological derivative of the functional J,(u) given by:

T7(%) == H,o () - e(u(®)). (3.15)

4 Topological Optimization Procedure

In order to illustrate the applicability of the topological asymptotic expansion (3.15),
here we present an optimization procedure for elastic structures under the contact
condition described in Sect. 2. The optimization procedure is based on the domain
representation in a bi-material fashion, whose constituents properties are character-
ized by the Young modulus E and the phase contrast y*. Thus, as in (3.8) and (3.9),
we have

E VxeQh

E =
) y*E Vx e QY

A.1)

where Q" and Q" denote the domains occupied by the two materials, the hard and
weak materials, respectively.

The optimization problem consists in minimizing the structural compliance for a
given amount of material. It can be written as
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Minimize w(){) = _1.7)( (M)’ (4 2)
Subjectedto  |Q"] < V, ‘

where |Q"| is the Lebesgue measure of the domain Q" and V is the required volume
at the end of the optimization process. In order to solve the above problem, we use an
exact quadratic penalization scheme. Thus, problem (4.2) is re-written as following

Minimize Fo (1) = —J,(u) + As3 4.3)
QCR2

where A is a positive parameter and the function sg is defined as

1 2 4.4)
s i =1——. .
“ Vv

By considering the linearity property of the topological derivative operator, the
topological derivative of the functional Fg can be written as

27
Tr(X) = —T7(%) — Ve 4.5)

From the definition of the Young modulus (4.1), we remark that (4.5) always
measures the sensitivity of 7 when the two materials are interchanged within the
domain. Then, the computation of (4.5) is carried out using the expressions (3.15)
with y = y*if x € Q;and y = 1/y* if x € Q". Having made the previous
consideration and in order to solve the optimization problem (4.3), we use the
topology optimization algorithm proposed in [1]. This algorithm is based on the
concept of level-set domain representation and uses the topological derivative (4.5)
as a feasible descent direction to minimize the cost function. This class of
algorithms has been successfully applied in research areas related to topological
optimization such as: microstructure of materials [2], load bearing structures [1],
thermal conductors [11] and load bearing structures subjected to pointwise stress
constraint [3,4]. For a detailed development of the algorithm we refer to the previous
references.

S Numerical Examples

Here we present five numerical examples associated to the topological optimization
procedure outlined in the previous section. In all examples we set the Young
modulus E = 2.1 GPa, Poisson’s ratio v = 0.3, the contrast parameter y =
1 x 1073 and the force F = 1 x 1° N. In the figures, the topology is identified
by the strong material distribution (in black) and the inclusions of weak material
(in white) are used to mimic the holes. Furthermore, the thick lines that appear
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on the figures are used to denote clamped boundary conditions (u|r, = 0). The
volume constraint is imposed with an exact quadratic penalization scheme. The
function p(y) used in the examples has the same behavior as presented in Fig. 1b.
The variational equation (2.8) was solved using standard finite element technique.
In particular, the three-node triangular elements are used to discretize the domain in
a structured fashion.

5.1 Example 1

In this first example we consider a unit square panel submitted to a force F applied
on its right upper corner, as shown in Fig. 3a. The volume constraint is of 50 %
of the initial volume. In Fig. 3b we show the optimal topology without the contact
condition. Then, a contact condition is applied in the bottom side with a gap of
g = 0.10, see Fig.3a where ¢ = 0.20 and d = 0.20, and the parameter b is such

a F b a

I'p

Vi

Fig. 3 Example 1. Results. (a) Contact problem. (b) Without contact. (¢) With contact
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a F b

7777777777777

Fig. 4 Example 1. Results for different values of the gap. (a) g = 0.15. (b) g = 0.20. (¢)
g =025

that the function p reaches the value of p(y) = 1 x 10", In Fig. 3c is presented the
obtained topology, where the effect of the contact condition is evident.

In Fig. 4, we present the obtained results for three different values for the gap,
i.e. g = {0.15,0.20, 0.25} (the result for the gap g = 0.10 is shown in Fig. 3c).

In order to evaluate the effect of the function p(y) in the optimal topology, in
Fig.5 the obtained results for different values of function p(y) are presented. For
this example, we set the gap in g = 0.10 and the parameter b, in each case, is such
that the function p reaches the values p = {8 x 10'2,1 x 10'3, 1 x 10?°} (the result
for p = 1 x 10" is shown in Fig. 3c).

For the volume fraction and set of parameters studied, the optimal topology
(without the contact condition) is characterized by the classical four bars structure
connecting the load F with the clamped boundary condition. When the contact
condition is applied, the optimal topology shows that only three bars are needed.
The influence of the value of the gap g and the function p(y) is clear in all cases
and tends to modify the shape of the lower bar of the structure.
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F

7777777777777

Fig. 5 Example 1. Results for different values of function p(y). (a) p(y) = 8'2. (b) p(y) = 113.
© p(y)=1°

5.2 Example 2

In this example we present the optimal topology design of a cantilever beam with
a load F applied in the middle right side of its rectangular domain. The domain of
the beam is a rectangular plane with dimensions of 2.00 x 1.00. The contact region
is located in the bottom of the plane with length ¢, as shown in Fig. 6a. The volume
constraint is of 40 % of the initial volume, the gap is g = 0.1 and the parameter b
is such that the function p reaches the value of p = 1 x 10'°. In this example, we
study the influence of the length of the contact region in the optimal topology. In
Fig. 6b, we present the result without considering the contact condition. In Fig. 6c—e
is shown the results for three different values of parameter ¢ = {0.20, 0.50, 0.70}.

In this example, the optimal topology (without consider the contact condition) is
symmetric with respect to horizontal axis where the load is applied. However, when
the contact condition is considered, the obtained structure loses its symmetry and
became more complex. The influence of the length of the potential contact region is
obvious in all studied cases.
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Fig. 6 Example 2. Results
for different lengths of
contact region. (a) Contact
problem. (b) Without contact.
(¢) ¢ = 0.20. (d) ¢ = 0.50.
(e)c =0.70

a

I'p Q
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5.3 Example 3

Now we consider the same domain and boundary conditions as in the previous
example. Here we create a square hole of size 0.25 x0.25 centered at the rectangular
panel and the contact region is located on the top side of the hole, see Fig. 7a. The
volume constraint is of 40 % of the initial volume and the gap is g = 1 x 107>. The
result for the case without the contact condition is presented in Fig. 7b. In Fig. 7c,
we show the obtained topology considering the contact problem. Note the similarity
in the results, without the boundary condition in the contact region, between this
example and the previous (Fig. 6b). The conclusions and comments presented in the
previous example remain valid for this one.

Fig. 7 Example 3. Results.
(a) Contact problem. (b)
Without contact. (¢) With
contact
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5.4 Example 4

In this example, the design of a unit square panel subjected to two forces F' applied
at the corners of the top side with a volume constraint of 30 % of the initial volume is
presented. The contact region is also in the top side of the panel, located a distance
d = 0.25 from the right side and length ¢ = 0.50. The gap considered is g =
1 x 1073 and the parameter b is such that the function p reaches the value of p =
1 x 10", The aim of this example is show the influence of the contact condition
in the complexity of the final topology. The results with and without considering
the contact condition are presented in Fig. 8c and b, respectively. As can be seen,
topology changes from a very simple (two bars in the direction of the applied forces)

a b
F F F F
AAIRTRRITIRINNNNNY
@ d
Q
I'p I'p

I'p

Fig. 8 Example 4. Results. (a) Contact problem. (b) Without contact. (¢) With contact
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to a more complex. The complexity is characterized by a structure of bars (similar
to a small bridge) connecting the two bars in the direction of the applied forces.

5.5 Example 5

In this last example, we consider the topology design of a rectangular panel with
height = 1.2 and width = 1.0, with a square hole in the right side of the domain. The
design domain, boundary condition and the system of applied forces are presented
in Fig. 9a, where ¢ = 0.20 and d = 0.40. This example can be seen as the classical
case of topology design of a gripping mechanism [1]. On the potential contact region
the gapis g = 1 x 17> and the function p reaches the value of 1 x 1'>. The volume
constraint imposed is of 50 % of the initial volume. The results are presented in
Fig.9c and b.

Again, in this example the effect of the contact model is manifested in the
complexity of the optimal topology.

a I'p b Iy

_— o

©

&S
o

F
LU

AAAAAA F
vvvvvv F

Wil
(9}

I'p

Fig. 9 Example 5. Results. (a) Contact problem. (b) Without contact. (¢) With contact



Topology Design of Elastic Structures for a Contact Model 219
6 Final Remarks

An analytical expression for the topological derivative of the energy shape func-
tional associated to a frictionless contact model that allows a finite interpenetration
between a two-dimensional elastic body and a rigid foundation has been presented.
As topological perturbation, a disc with a different material has been considered in
the analysis. The final formula is a general simple analytical expression in terms
of the solution of the state equation and the constitutive parameters evaluated in
each point of the unperturbed domain. The associated topological sensitivity has
been used in a structural design algorithm based on the topological derivative
and a level-set domain representation method. The robustness of the optimization
procedure has been analyzed through some numerical experiments of compliance
topology optimization of elastic structures subjected to volume constraint. Finally,
we remark that the optimization procedure is conditioned by the contact model to
produce more complex topologies that obtained by considering a unilateral contact
condition and approaches such as SIMP-model.
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Convex Programming with Separable
Ellipsoidal Constraints: Application in Contact
Problems with Orthotropic Friction

Jaroslav Haslinger, Radek Kucera, and Tomas Kozubek

Abstract This contribution presents an algorithm for constrained minimization
of strictly convex quadratic functions subject to simple bounds and separable
ellipsoidal constraints. The algorithm is used for numerical solution of discretized
3D contact problems with orthotropic friction. These problems have been solved by
a polygonal approximation of the friction cone. Our algorithm enables us to use the
original friction cone without any approximation. Results of model examples are
shown.

Keywords Contact problems with orthotropic friction * Convex programming *
Separable ellipsoidal constraints
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1 Introduction

Methods for numerical minimization of quadratic functions subject to convex con-
straints have been intensively developed in last decades [1-3,17] and nowadays they
are an inherent part of many packages. These methods, however, are integrated into
the packages in a fairly general setting. Therefore, they usually cannot be directly
used in large scale problems arising, e.g., from finite element approximations.
For this reason, the development of methods which take into account specifics of
problems to be solved is important. Potential features which may be beneficial are
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the following: a) the number of variables subject to constraints is much lower than
the total number of all variables; b) each variable appears in one constraint at most,
i.e., the constraints are separable. In [13, 14], the author introduced and analyzed a
new method for minimization of strictly convex quadratic functions with separable
convex constraints. The separable character of constraints simplified the analysis
that was based on the Karusch-Kuhn-Tucker (KKT) conditions. Their geometrical
interpretation enabled to generalize an idea of the reduced gradient introduced
originally for simple bound problems [4]. The resulting algorithm is closely related
to the Rosen method [16]. Clearly, the efficient implementation of the algorithm
strongly depends on the specific form of the constraint functions.

This study was motivated by necessity to solve numerically 3D contact problems
with friction [10]. So far such problems have been solved by a polygonal approxi-
mation of the Coulomb friction cone [18]. The presented algorithm enables us to use
the original Coulomb friction cone without any approximation. Since the number of
unilateral constraints describing contact conditions is much smaller in comparison
with the total number of all variables (hence a)), one of the efficient approaches
for solving such problems is based on an appropriate discretization of the dual
variational formulation, i.e., the formulation in terms of the Lagrange multipliers
which are defined on the contact boundary. There are two vectors of the Lagrange
multipliers in the discrete setting of frictional contact problems: one, denoted as A,
releases the unilateral constraints and is subject only to a sign condition; the second
one, denoted as }:, = (i,l , }:,2), regularizes the non-smooth frictional term and is
subject to convex constraints imposed on disjoint pairs of its components (hence b)).
For an isotropic friction law, when frictional effects are the same in all directions,
the constraints reduce to simple circular (spherical) ones, i.e., the zero level sets of
the constraint functions are circles in R,

The aim of the contribution is to extend this method to the case of separable
ellipsoidal constraints. A simple change of variables permits to transform the
ellipsoidal constraints to the circular ones. In computations, however, it turns out
that the original setting (i.e., with the ellipsoidal constraints) is usually better for the
performance of the algorithm, especially, in the case of strongly eccentric ellipses.
Again, the minimization of functions with this type of constraints was motivated
by practical needs. Indeed, the dual variational formulation of 3D contact problems
with orthotropic friction (i.e., friction effects are now different in two a-priori given
perpendicular directions) leads to separable ellipsoidal constraints for pairs made of
the components of A,.

The paper is organized as follows. In Sect.2 we shortly recall results from [13,
14]. The main attention will be paid to the numerical computation of the projection
onto the ellipse which is an important ingredient of our algorithm. Unlike the
projection onto the circle, this one is far from to be so simple. Finally in Sect. 3,
we first derive the algebraic form of the dual formulation of 3D contact problems
with orthotropic Coulomb friction and then, in Sect. 4, we apply our algorithms to
several model examples.
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2 Minimization Subject to Separable Ellipsoidal Constraints

In this section, we consider the following problem:

find X* = argmin{g(X) : X € A}, 2.1
where ¢ (X) = % %" AXx—x | b with symmetric, positive definite A € R"*", b, X € R",
X=(x1,....x,) ", n=3m,and A = A| X --- X Ay, defined by

A ={xieR: x; > [;},

2 2
T 2. [ Xi+m —Ci Xi+2m — Ci+m )
Nigm ={(Xigtm, Xitom) €R: ( ) + ( <g}
ai; Ai+m

with given l;,¢;,¢ciym € R, gi,a;,ai4,m € Ry fori = 1,...,m. As q is strictly
convex on the closed covex set A, there is a unique solution X* € A to (2.1). Before
we give ideas of the active-set KPRGP algorithm (KKT Proportioning with Reduced
Gradient Projections) analyzed in [7, 14], we introduce notation.

Let N = {1,...,n} be the set of all indices and let A(X) € N be the subset of
indices of active constraints at X € A:

A(f():{i:x,-:li, lflfm}

2 N 2
U{j;j:i+m’()c’+m—_c’)+(w) =gl 1<i<m
ai

Ai+m

2 2
. — . —
l '{jj P42 ,(-xz+m z) (xt+2m z+m) giz,lfif ;.

ai; Ai+m

Let #(X) = AX — b denote the gradient of ¢ at X € R". The orthogonal projection
P, onto A atx € R” is defined by

PA(x) = argmin [ly — x]|. (2.2)
YEA

As A is separable, P, may be split into single projections P, onto A;. Let us
introduce the reduced gradient of ¢ at X € A for a fixed o > 0 by:

PR = - (5~ Py (5 - 0F(9).

Note that the reduced gradient characterizes the optimality criterion to (2.1). Indeed,
x* is the solution to (2.1) iff ¥*/(X*) = 0. Moreover, if X # X* and & > 0
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is sufficiently small, then the negative reduced gradient —¥"(X) is a decrease
direction at X € A. To change appropriately the active set, we decompose ¥/ :=
f'_’“l()'() into the free reduced gradient ¢ := @(X) and the chopped reduced gradient

¥ := ¥ (%) as follows:

- - = red
P4=0. Pp\a =T A4
'}A = f';fd’ '}M\A =0,

where ¢ 4 and ¢\ 4 denote the sub-vectors of ¢ with components determined by
the indices of A := A(X) and N\ A, respectively (similarly for £ and ¥).

We combine the following three steps to generate a sequence {x)} that approxi-
mates the solution X*:

o the expansion step: X'V = 3D — ap(x?),

« the proportioning step: X'V = 3O — ay (x),

o the conjugate gradient step: X!tV = XV —aDpD), where the step-length oy and
the conjugate gradient directions p"") are computed recurrently [8]; the recurrence
starts from X*) generated by the last expansion or the proportioning step and
satisfies AX(TD) = AEWY).

The expansion step may add while the proportioning step may remove indices
to/from the current active set. The conjugate gradient steps are used to carry out
efficiently the minimization of ¢ in the interior of the face W(X")) = {x € A| X4 =

xfft) , A= AXY)}. Moreover, the algorithm exploits a given constant I" > 0 in the
proportioning criterion

v M) < T o) TrE?") (2.3)

to decide which of the steps will be performed.

Algorithm KPRGP

Letx® e A,T > 0, € (0, 2||A|™"), and & > 0 be given. For %D, ) known,
0 < s < I, where X is computed by the last expansion or proportioning step,
choose X+ by the following rules:

Q). If [rxD)|| < e, return x = x7.

@i). If x? fulfils (2.3), try to generate X!+ by the conjugate gradient step. If
XD e It W(x"®), accept it, otherwise generate X/™! by the expansion
step.

(iii). If X does not fulfil (2.3), generate X by the proportioning step.

The convergence rate of this algorithm derived in [14] does not depend on the
type of convex constraints. However, the implementation requires to compute the
projection P via the single projections Py, and Py, ,, 1 <i < m. In the rest of
this section we show how to compute these projections.
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The set A;,i = 1,...,m represents the simple bound for which the projection
is trivial:

xi ifx; =1,
PAi(xi) =

l;  otherwise.

The projection onto A;4,,, i = 1,...,m is more involved. To simplify our
presentation we denote X; = (x;+m,xi+2m)T e R?and¢; = (ci,ci+m)T e R2
The corresponding projection is given by

2 2
Xi+m — Ci Xi+2m — Ci+m
v ()
PA,'+m (Xl) = ai ai+m

y; otherwise,

where we will specify how to gety;, € R?. We distinguish two situations. If a; =
a;+1,then A; 4, describes the circular constraint for which y; is given by the explicit
formula:
a; gi
vi=e + 28 (x ¢, 2.4)
[x; — ¢l

If a; # ai+1, theny; is the closest point to x; lying on the ellipse e; := e; () (in the
parametric representation):

a; cost
ei(t)zci+gi s 16[0,27'[).
Qj4m Sint
Let t* be the value of 7 such that y; = e;(¢*). Such t* satisfies the following
orthogonality condition:
(xi — (1)) €[(1) =0. (2.5)

Although (2.5) is the equation in R!, its solution is not unique. The reason is
that (2.5) is equivalent to the fourth degree polynomial equation with either two or
four roots. Fortunately, one can recognize correct t* characterized by the fact that y,
belongs to the same quadrant as x;, provided that the local coordinate system (in R?)
coincides with the half-axes of the ellipse. To perform efficiently computations of
t* via (2.5), we combine the Newton and bisection methods (in R'). The resulting
algorithm may benefit from fast convergence of the Newton iterations while the
bisection steps ensure convergence to ¢*. A long sequence of bisection steps are
generated in situations when the root ¢* is close to an inflection point of the function
in (2.5) (that is not excluded in general).
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Remark 2.1. Another way how to solve (2.1) by ALGORITHM KPRGP consists in
transforming the ellipsoidal constraints to the circular ones using the substitution:

y=D"'x,
where D = diag(1,...,1,ay,...,az,) € R"". This leads to the problem in terms
of the new variable y:
find y* = argmin{g(y) : y € A}, (2.6)

where ¢(§) = 1 y"DADy — § 'Dband A = A| x -+ X Ay, is defined by
Ai={yieR: y; 2 1;},
ANigm = {Gitms Vitom) €RY: Yigm —di)* + Yitom — digm)* < g73,

withd; = c¢;/a;, di4m = Citm/ai+m fori = 1,...,m.Problem (2.6) is the special
case of (2.1) for which the projections can be computed by (2.4). On the other
hand, the condition number of DAD is usually greater than the one of A, especially,
when the ellipses in the original problem are strongly eccentric. In this case, the
convergence factor of ALGORITHM KPRGP derived in [14] is smaller for (2.1) that
may result in a better performance of computations.

3 Numerical Solution of 3D Contact Problems
with Orthotropic Coulomb Friction

The minimization algorithm from the previous section will be now used for the
numerical solution of 3D contact problems with orthotropic Coulomb friction.
Recall that contact mechanics is a branch of mechanics of solids which studies
the behavior of loaded systems of deformable bodies being in mutual contact.
Mathematical models of such problems are given by equations involving non-
smooth multivalued mappings due to non-penetration and friction conditions on
common parts of the boundary. In contrast to isotropic friction, effects of orthotropic
friction are different in directions of two orthogonal orthotropy axis. We first
present the weak formulation of such problems, then we give their finite element
discretization and the transformation of the resulting algebraic problem into a new
one having a structure required by the algorithm KPRGP.

Our system consists of two elastic bodies represented by polyhedral domains
QF C R? whose boundaries are split into three disjoint parts I'¥, F’;, and TX, k =
1,2. Denote @ = Q'UQAL T, =T} UTI2 T, = 1"; U Fﬁ, and T, = T!U
I'2. The zero displacements will be prescribed on T, while surface tractions of
density p € (L*(T,))? act on T',,. Both bodies are in contact along I'! and T'? in
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the undeformed state. In what follows we shall suppose that FL’f # 0,k =1,2and
I'! = I'?, i.e. there is no gap between Q' and Q2. On T, unilateral and friction
conditions will be prescribed. Finally, 2 is subject to body forces of density f €
(L*(2))>. Our aim is to find an equilibrium state of this system.

Before we give the weak formulation of this problem, we introduce several
notation and function sets which will be needed. Let u :  + R3 be a deformation
field in © and u* := gy its restriction to %, k = 1,2. By €(u) = J(Vu+(Vu) ")
we denote the linearized strain tensor, while o (u) is the stress tensor linked to € (u)
by means of a linear Hooke’s law whose coefficients satisfy the usual symmetry
and ellipticity conditions [15]. The outward unit normal vector to dQ' at a point
x € I is denoted as v(x). The orthotropy axis of friction at x € T, are given
by a pair of orthogonal vectors t;(x) and t;(x) lying in the tangent plane to I,
at x. The relative normal contact displacement at x € I is defined by u,(x) :=
(u'(x) — v?(x)) "v(x) and o, (u(x)) := v (x)o (u'(x))v(x) is the normal contact
stress. Similarly, u;(X) = (i, (%), ;) . 0, () = (0, W), 0, (X))
are the relative tangential contact displacement and the tangential contact stress at
x € T, respectively, whose components are u;, (x) := (u'(x) — u?(x)) "t;(x) and
oy, (u(x)) := t; T (x)o (u'(x))v(x), i = 1,2. In addition to orthotropy axis, friction
will be characterized by two positive, bounded and continuous functions F; and 7,
whose values at x € I, define coefficients of friction in directions t; (x) and t;(x),
respectively. The diagonal (2 x2) matrix diag{F, F,} will be denoted by F. Finally,
| - || stands for the Euclidean norm of vectors from RZ.

Now we introduce the following function sets:

V={v=("v)eH Q) x(H'(Q%)|v=00nT,},
K={veV|v, <0onTl,.}

X, ={peLl*T)|IveV: ¢ =v,onT,},

X) = dual of X,,

X:_ ={peX,/¢>=00nT,}.
The cone of all non-negative elements of X/ will be denoted by X/ and (-,-) is a
duality pairing on X/ x X,. Next we shall suppose that | Fv; | belongs to X, for
anyvevV.

We start with the following auxiliary problem: given g € X
K satisfying

!

vy findu:=nu(g) €

a(u,v—u) + (g [|Fv| - | Fu ) = L(v-u) VveK, (3.1
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where

a(u,v)z/ﬂa(u):e(v)dx :=/ch,<j(u)6ij(v)dx,

L(v):/fTvdx—i—/ p'vds, uvevV.
Q r

P

It is easy to show that (3.1) has a unique solution for any g € X, . In addition, (3.1)
is equivalent to the following minimization problem:

Find u € K such that
(P(2))

Je(m) < Jg(v) Vvek,

where Jg(v) = %a(v, v) — L(v) + {g, || Fv:|). Problem (P(g)) is the variational
formulation of contact problems with orthotropic friction and a given slip bound g.
Let us suppose that —o, (u(g)) € X, forevery g € X/ . Then one can define the
mapping ¥ : X, — X/ by

U:g>—o,(u(g) VgeX ..

Definition 3.1. By a weak solution of 3D contact problems with orthotropic
Coulomb friction we mean any u € K such that ¥(—o, (0)) = —0, (u), i.e., —0, (u)
is a fixed point of W in X7 .

Remark 3.2. In the weak formulation of this problem, the following unilateral and
friction conditions are hidden:

(unilateral conditions)
u, <0, 0,(w) <0, u,0,(u) =0 on T},
(friction conditions)

w(x) =0 = |F 'o,(uXx)] < —0,u(x)).
Fu, (x)

w(x) # 0= F o/ (u(x)) = GV(U(X))m, x €Tl

We use the method of successive approximation for finding fixed points of W in
X,

giveng©® € X/

3.2)
setg(k+l) — q;(g(k))’ k=0,1,....

To get the new iteration g1 one has to solve problem (P(g®)).
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Remark 3.3. Let us note that convergence of (3.2) in continuous setting of our
problem is not guaranteed. The situation is somewhat different in the discrete case
(for details see [9, 11]).

Since (P(g)). g € X, is the heart of (3.2), we focus in the subsequent part on its
efficient numerical solution. For a discretization of (P(g)) we use a finite element
method. First we choose a finite dimensional space V, C V, dimV, = n(h) of

piecewise polynomial functions of the Lagrange type over partitions ’271" of ﬁk,
which are compatible with the decomposition of 3Q2* into I'¥, I";, and ., k = 1,2.

These partitions will be constructed in such a way that 7;11\1" = Th2|1“ In particular
this means that if v, = (V}l, v%) € Vy;, where vﬁj = Vs then the degrees of

freedom (function values in our case) of V}l and vi on T, are prescribed at the same
nodes of ’];lk on T'.. Typically, V;, is made of P; tetrahedral elements. Finally set
T = Thl U ’];12 which is the partition of the whole Q. By C we denote the set of all
nodes ay, ..., a, of 7, which are located on I'.. To simplify our presentation we

shall suppose that Tf NT. =0,k = 1,2 and T, is a flat part of 2. Then the
discretization of K is defined by

K, = {Vh S Vh| vhv(a,-) <0 Vi=1,... ,m},
where vy, (a;) = (V}l(ai) — vi(ai))Tv, i = 1,...,m, ie., the non-penetration

conditions in K are prescribed at the nodes of C only using the fact that v is constant
along I'.. The approximation of (P(g)) reads as follows:

Find vy, := u;,(g) € K, such that
Jo(uy) < Jo(vi) Vv € Ky

(P()n

Next we rewrite (P(g)), into the algebraic form, i.e. the problem expressed by
means of the nodal displacement vectors v € R" of v, € V), where n := n(h) =
dim V). Since first two terms of J, define the quadratic, coercive functional, its
algebraic form leads to a quadratic function with a positive definite, symmetric,
block diagonal matrix K. The frictional term will be evaluated using an appropriate
cubature formula. Suppose that the slip bound g is represented by a continuous
function. Then

(& NFvmll) = /F glF vl ds ~ ) wrg(a,)| Fla,)vu(a)l, (3.3)

r=1

where w, € R, r = 1,...,m are weights of the used cubature formula. To
express (3.3) and the whole problem (P(g)); in the algebraic form, the following
notation will be used: by N we denote an (m x n) matrix representing the linear
mapping v, = (viv(a1),...,viw(@n)) € R™, v, € V,,. Similarly, T;, j = 1,2
are (m x n) matrices of the linear mappings v, = (v, (a1), ..., var; (am)) € R™,
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Vi € V, where vy, (a,) == (v (a,) — vZ(a,))"t;. Let T, be the r-th row of T;.
Then v, := (T,Vv, Tz,.V)T e R? is the vector of the tangential displacements at the
node a,. Finally set F, := F(a,), g, := g(a,),and g = (g1, ..., gm)T. Using this
notation, (P(g)), can be written as follows:

Find u € C such that

Jg(0) = Fg(v) VveKk,

(P(®@)
where
RS DI _
Jz(V) = EvTKv -V'f+ ;wrg, |7Vl
and
K ={veR'Nv<0j}

To release the constraints in /C and to regularize the non-differentiable frictional
term we use the duality approach. Let

X(®) = RY xX(g)
be the set of the Lagrange multipliers, where
X, (@) = {(t,,. b)) € R" xR | F 7| < orgry v =1,...om}

and it; = (Uyr, tir) T € R? is the vector made of the r-th components of i, and
i,,. Itis easy to verify that

m

m
or —\Tor
o g | FV)I = max_ > (&) V.
; rerim (i, 1)) X @) ; v

Thus

min Jo(®) = min sup £, ),
ver veER” LEX(®)

where L(V, 1) = %VTK\_' — v f+ it "BV is the Lagrangian, ji = (ﬁ\—;r’ ﬁ’;ll—’ I_L;zr)T
€ X(g),and B = (NT, T;r, T;F)T is the (3m x n) matrix. Instead of (P(g)) we shall
use its saddle-point formulation:
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Find (1, 1) € R" x X(g) such that
LG, i) < L@, A) <LV, A) YV, i) € R" xX(@),

or, equivalently,

Find (@, ) € R" x X(g) satisfying
Ka=f-B'1, (M (@)
(R—A)TBu<0 VieX(®.

One can easily show that (M(g)) has a unique solution. Moreover its first
component u solves (P(g)). Now we eliminate u from the first equation: u =
K~'(f — BT 1) and substitute it into the second inequality. The resulting problem
in terms of the Lagrange multipliers is equivalent to the following minimization
problem:

Find A € X(8) such that

_ o _ (D(®)
S(A) =S() Vie € X(®),

where S is the quadratic function with the symmetric, positive definite matrix
BK 'BT and the linear term h = BK™'f. Notice that (D(g)) has already the
structure required by the algorithm KPRGP: the separated lower bounds for the
components of A, and the ellipsoidal constraints for the components of (A 1o A n)
as it follows from the definition of X(g). Having A at our disposal we easily
obtain u.

Remark 3.4. Model examples are solved by MatSol library [12] which uses the
TFETI domain decomposition approach: each QF, k = 1,2 is divided into a finite
number of subdomains involving “floating” blocks. To ensure continuity across
subdomain interfaces and to satisfy the Dirichlet boundary conditions at the nodes
of T, on T',, the additional Lagrange multipliers are introduced. Then the resulting
dual problem is given by the minimization of the quadratic function as in (D(g))
but the set X(g) contains, in addition, linear equality constraints. This fact requires
an extension of the KPRGP algorithm called the SMALSE-M algorithm (for details
see [7]). For realization of the problem with orthotropic Coulomb friction, we use
an inexact implementation of the method of successive approximations (3.2) which
performs only one iteration of the SMALSE-M in each step. In other words, the
SAMLSE-M iterations and the successive approximations are performed by one
outer loop.
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problem

Fig. 1 Geometry of the ‘J_I_’ p?> = (0,0,-30) MPa
V4

E? = 70000 MPa

2 =
1 v =035 p? = (30,0,0) MPa

E'= 212000 MPa
vl=0.277

Fig. 2 Milled contact surface

4 Numerical Examples

Let us consider a 3D contact problem of two cantilever beams of sizes 2x1x 1 [m] in
mutual contact with different coefficients of friction in two orthogonal directions to
describe specially milled contact surface. The geometry, the prescribed boundary
conditions, and material properties are specified in Fig. 1. The milled surface is
depicted in Fig. 2. Finally, the volume forces are neglected and the coefficients of
friction F; and F, on the contact interface are chosen in four different ways:

(a) Frictionless case: friction is neglected (Example 1);

(b) Isotropic case: F; = F, = 0.3 (Example 2);

(c) Orthotropic case: F; = 0.5 in the direction t; = (1, O,O)T and 7, = 0.1 in
t, = (0,1,0) T (Example 3);

(d) Orthotropic case: F; = 0.5 in the direction t; = (+/2/2,—+/2/2,0)T and
Fr=0.1inty = (+/2/2,+/2/2,0)7 (Example 4).

Case (d) corresponds to the real measurements, case (¢) to incorrectly chosen
tangential directions, case (b) to averaged coefficients which is a routinely used
approach in engineering practise, and case (@) is for comparison purposes.
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Fig. 3 Domain
decomposition and the
discretization

Each beam is divided into the same number of cubic subdomains with the decom-
position step H and each subdomain is then decomposed into hexahedrons with the
discretization step h; see Fig.3. To demonstrate the behavior of our algorithms,
we resolved the problem with varying discretizations and decompositions keeping
H/h = 10.

The optimal choice of the parameters in the KPRGP is based on the analysis in
[14] and on numerical experiments: we use I' = 1, @ ~ 2||A|~!, adaptive values
of & depends on the precision achieved in the outer loop, and X is determined by
results from the previous outer iteration. The parameters of the SMALSE-M are
chosen in agreement with [7]. The final relative stopping tolerance terminating the
outer loop is 107 and the initial slip bound value in the discrete version of (3.2)
is 8© := 0. The examples were computed by MatSol library [12] developed in
Matlab environment and parallelized by Matlab Distributed Computing Server. For
all computations we used 24CPUs of the HP Blade system, model BLc7000.

Example 1. We start with the frictionless case. The solution characteristics are
summarized on the top of Table 1. We observe that the number of matrix—vector
multiplications increases only moderately in agreement with the theory of [7].
The distribution of the normal contact stress Example 1 along the contact interface
is depicted in Fig. 4.

Example 2. Let us consider the isotropic case (b). This choice corresponds to the
averaged friction coefficients of the real measurements for the surface from Fig. 2.
The solution characteristics are summarized in the next part of Table 1. One can see
that the number of outer iterations increases modestly with the size of the problem
and the solution is more expensive compared with the previous example as follows
from a higher number of the Hessian multiplications. The distribution of the normal
contact stress along the contact interface is depicted in Fig. 5. In Figs. 6 and 7, we
show the distributions of the Euclidean norm of the tangential contact stress and of
displacements. The behavior of the contact stress inside the contact zone is seen in
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Table 1 Solution characteristics for all examples

Number of subdomains

Primal variables
Dual variables

Equality constraints
Frictionless problem (Example 1)
Bound constraints (active)

Outer iterations

Hessian multiplications
Isotropic case (Example 2)
Bound constraints (active)
Circular constraints (active)

Outer iterations

Hessian multiplications

4 32
15,972 127,776
2,145 24,519
24 192

231 (11) 861 (15)
11 11
87 147

231 (11) 861 (64)
231 (220) | 861 (830)
11 15

121 222

Orthotropic case, circular constraints (Example 3)

Bound constraints (active)
Circular constraints (active)

Outer iterations

Hessian multiplications

231 (11) 861 (63)
231 (211) | 861 (796)
11 11

149 262

Orthotropic case, ellipsoidal constraints (Example 3)

Bound constraints (active)
Ellipsoidal constraints (active)

Outer iterations

Hessian multiplications

231 (11) 861 (63)
231 (213) | 861 (798)
11 10

121 221

Orthotropic case, circular constraints (Example 4)

Bound constraints (active)
Circular constraints (active)

Outer iterations

Hessian multiplications

231 (13) 861 (47)
231(229) | 861 (847)
10 12

126 315

Orthotropic case, ellipsoidal constraints (Example 4)

Bound constraints (active)
Ellipsoidal constraints (active)

Outer iterations

Hessian multiplications

231 (8) 861 (41)
231 (220) | 861 (846)
15 24

208 376

108
431,244
90,957
648

1,891 (20)
9
211

1,891 (135)
1,891 (1,847)
19

415

1,891 (155)
1,891 (1,771)
14
487

1,891 (156)
1,891 (1,784)
16

363

1,891 (113)
1,891 (1,869)
11

332

1,891 (102)
1,891 (1,860)
28

617
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256
1,022,208
225,291
1,536

3,321 (35)
9
210

3,321 (246)
3,321 (3,270)
22

721

3,321 (281)
3,321 (3,141)
15

665

3,321 (284)
3,321 (3,151)
17

469

3,321 (203)
3,321 (3,301)
12

344

3,321 (188)
3,321 (3,301)
29

738

Fig. 8. The radiuses of small circles are given by the slip bound values 4, ;, where
F1 = F, =0.3andA,; is the component of A, at the i-th contact node. The arrows
in the circles represent the tangential contact stress.

Example 3. In this example we consider the orthotropic case (c¢) with the coeffi-
cients of friction 7; = 0.5 and 7, = 0.1 in the incorrectly chosen tangential
directions t; = (1,0,0)T and t, = (0,1,0) T, respectively. The results in Table 1
show that the computations with the circular constraints are more expensive than
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Fig. 4 Normal contact stress

20

18

16

14

12

10

8

6

4

2

'"_ﬁ'—?'_v"_v'_v"fﬁ_"_v'
0 200 400 600 800 1000 1200 1400 1600 1800 2000

X, [m]

0 S TEatE TR

e
0 200 400 600 800 1000 1200 1400 1600 1800 2000

x,m]

Fig. 6 The norm of the tangential contact stress

the ones with the original ellipsoidal constraints. This may be due to worse spectral
properties of the Hessian matrix which increase the bound on the number of
iterations; see Remark 2.1. In Figs. 9, 10, and 11, we depict the distributions of the
normal contact stress and the standard and scaled Euclidean norms of the tangential
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Fig. 7 The norm of the relative tangential contact displacements
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Fig. 8 Contact zone

contact stresses, respectively. The value of the scaled norm at the i-th contact node
is defined as ||.77l-_1):i |, where }:i = (Ayi» i) | € R?is the vector made of the i-th
components of A, and A,,. The Euclidean norm of the relative tangential contact
displacements is seen in Fig. 12. Finally, Figs. 13 and 14 show the behavior inside
the contact zone. The semi-axes of ellipses are oriented by the directions t; and t,
and their lengths are F1A,; and F,A,;, respectively. Again, A,; are the components
of A, and the arrows in the ellipses represent the tangential contact stress.

Example 4. Finally, let us consider the orthotropic case (d) with the coefficients of
friction F; = 0.5 and F, = 0.1 in the directions t; = (+/2/2,—+/2/2,0)7 and
t, = (v/2/2,+/2/2,0)7, respectively. This setting corresponds to the milled surface
depicted in Fig. 2. From Table 1 we can see that the circular constraints require less
computations than the ellipsoidal ones. A heuristic argument explaining this fact is
that the spectral properties of the new matrix after transformation of the ellipsoidal
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Fig. 9 Normal contact stress 22
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Fig. 15 Normal contact stress

constraints into the circular ones are sensitive to the orientation of the ellipses. In
Figs. 15, 16, 17, 18, 19, and 20 we depict the same characteristics of the solution as
in Example 3.
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Fig. 16 The norm of the
tangential contact stress
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Table 2 compares the computed displacements for different friction models. One
can see the significant dependence of the results on the used friction model. Using
the orthotropic friction law with correctly chosen tangential directions we get the
results which are closer to the reality. An industrial application for the isotropic
case may be found in [6].
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Fig. 19 Contact zone
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Fig. 20 Contact zone zoom

Table 2 Characteristic of the displacements for different friction models in the whole configura-

tion

Friction model
Case (a)

Case (b)

Case (¢)

Case (d)

5 Conclusions

max(|u; )
1.93765
1.83178
1.80919
1.89417

max(|uz|)
0.13952
0.12977
0.12659
0.30280

max(|us|)
3.64374
3.02874
2.85510
3.29204

max(||ul])
4.12538
3.53673
3.37758
3.80103

The paper deals with the KPRGP algorithm [14] for constrained minimization
of strictly convex quadratic functions subject to simple bounds and separable
ellipsoidal constraints. Since the algorithm uses the reduced gradient defined by
the projection on the feasible set, the implementation requires to compute the
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projections on ellipses. These projections are computed by a combination of the
Newton and bisection methods.

Our study is motivated by the numerical solution of contact problems in
linear elasticity with orthotropic Coulomb friction. The presented approach uses
the method of successive approximations that requires to solve auxiliary contact
problems with orthotropic Tresca friction in each iterative step. The algebraic dual
formulation of the Tresca problem leads to the constrained minimization for which
the KPRGP may be used. As an alternative to KPRGP one can use MPGP algorithm
described in [5]. In order to increase the computational efficiency, we apply the finite
element discretization based on the TFETI domain decomposition method. Since the
TFETI introduces additional equality constraints in the algebraic problem, we apply
the SMALSE-M algorithm [7] in which the KPRGP is included as the inner loop.
The outer loop of the SMALSE-M is based on the augmented Lagrangian method.
The important property of the SMALSE-M is the fact that the number of iterations
needed to get a solution with a given accuracy is uniformly bounded (with respect
to the size of the problem) provided that the spectrum of the Hessian is confined
in a given interval (i.e., the algorithm is scalable). This assumption is satisfied, if
the ratio between the maximal diameter of the subdomains H and the norm of the
finite element partitions / is fixed and the Hessian is normalized in the spectral
norm [6]. Let us recall that the scalability can be proven only for the frictionless
case and Tresca friction but we observed it experimentally also for some examples
with Coulomb fiction.
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Shape-Topological Differentiability of Energy
Functionals for Unilateral Problems in Domains
with Cracks and Applications

Giinter Leugering, Jan Sokolowski, and Antoni Zochowski

Abstract A review of results on first order shape-topological differentiability of
energy functionals for a class of variational inequalities of elliptic type is presented.

The velocity method in shape sensitivity analysis for solutions of elliptic
unilateral problems is established in the monograph (Sokotowski and Zolésio,
Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer,
Berlin/Heidelberg/New York, 1992). The shape and material derivatives of
solutions to frictionless contact problems in solid mechanics are obtained. In
this way the shape gradients of the associated integral functionals are derived
within the framework of nonsmooth analysis. In the case of the energy type
functionals classical differentiability results can be obtained, because the shape
differentiability of solutions is not required to obtain the shape gradient of the shape
functional (Sokotowski and Zolésio, Introduction to Shape Optimization: Shape
Sensitivity Analysis, Springer, Berlin/Heidelberg/New York, 1992). Therefore, for
cracks the strong continuity of solutions with respect to boundary variations is
sufficient in order to obtain first order shape differentiability of the associated
energy functional. This simple observation which is used in Sokotowski and
Zolésio (Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer,
Berlin/Heidelberg/New York, 1992) for the shape differentiability of multiple
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eigenvalues is further applied in Khludnev and Sokotowski (Eur. J. Appl. Math.
10:379-394, 1999; Eur. J. Mech. A Solids 19:105-120, 2000) to derive the first
order shape gradient of the energy functional with respect to perturbations of the
crack tip. A domain decomposition technique in shape-topology sensitivity analysis
for problems with unilateral constraints on the crack faces (lips) is presented for the
shape functionals.

We introduce the Griffith shape functional as the distributed shape derivative
of the elastic energy evaluated in a domain with a crack, with respect to the
crack length. We are interested in the dependence of this functional on domain
perturbations far from the crack. As a result, the directional shape and topological
derivatives of the nonsmooth Griffith shape functional are obtained with respect to
boundary variations of an inclusion.

Keywords Conical differential of metric projection ¢ Dirichlet Sobolev space ¢
Griffith criterium for crack propagation ¢ Hadamard shape differentiability o
Nonsmooth analysis ¢ Shape gradient ¢ Shape Hessian * Signorini variational
inequality

Mathematics Subject Classification (2010). Primary 35J86; Secondary 35R35,
49J40, 74R99.

1 Introduction

First order shape sensitivity analysis of the energy functional for an elliptic boundary
value problem with unilateral constraints defined in domains with cracks is of broad
interest and, therefore, it is named Griffith shape functional. In order to introduce
the Griffith shape functional we make use of

 the crack model within an elastic body, represented by an elliptic variational
inequality with the unilateral constraints representing the first order linear
approximation of the non-penetration condition;

* the energy shape functional defined for the solutions of the variational inequality
depending on the shape of the crack;

e an abstract result on the directional differentiability of the optimal value for
constrained optimization problems over convex sets with respect to a parameter
t — 0,

t— jt,v*(t)) := inf j(1,v)
veK

which requires only the strong convergence of the minimizers v*(t) — v*(0)
with respect to the parameter as well as the existence of the partial derivative of
the mappingR > ¢t — j(t,v) € R;

* a technical result on linear transformations of the displacement field in the
elasticity model obtained in [25] which provides the convex cone K, invariant



Shape-Topological Differentiability of Energy Functionals for Unilateral. . . 245

under the change of variables of the velocity method; it means that in order to
apply the abstract sensitivity result for optimal values, we have in hand the linear
transformation of the unknown solution to the variational inequality such that
we could analyze the variational inequality transformed to the fixed geometrical
domain with the parameter independent convex cone K.

Therefore, the Griffith shape functional is the first order shape derivative of the
elastic energy with respect to the perturbation of the crack tip for a given direction
of the velocity vector field. In addition, the second order shape derivative of the
energy functional, whenever it does exist, becomes the first order shape derivative
of the Griffith shape functional. But it is not our primary concern, since we are more
interested in the influence of elastic inclusions far from the crack on the behaviour of
the Griffith shape functional. We believe that such an influence is possible and can be
used for the control of crack propagation in elastic media. Indeed, the dependence of
the Griffith functional with respect to shape changes of an elastic or rigid inclusion
has been considered in [8,17]. This research has been triggered by numerical studies
on optimization an control of crack growth also for the case of cohesive crack
theories in [18,21,22]. See also [7, 19].

We recall also that the second order shape differentiability of the energy
functional with respect to the perturbations of the crack tip is known for the
Signorini type variational inequalities which governs frictionless contact problems
[6]. This result can be extended to the crack problems with non-penetration contact
conditions on the crack faces (lips), but this is a subject of the forthcoming paper.

1.1 Interface Problems in Lipschitz Domains

In this paper a class of models with defects in solids is introduced. The defect takes
the form of a cut in the geometrical domain. The cut is a part of a curve in two
spatial dimensions, and the unilateral boundary conditions for displacements and
the tractions are prescribed for the jumps from both sides of the cut. The variational
formulation of the model include the unilateral conditions for the displacements
imposed in the convex cone constraints for admissible displacements. The vari-
ational inequality for displacements is obtained for the minimization problem of
the energy functional over a convex cone. In the specific case of our setting, the
solution operator is Lipschitz continuous with respect to the right-hand side of the
variational inequality. This property leads usually to the Lipschitz continuity of the
solution with respect to the regular boundary variations in the framework of the
velocity method of shape sensitivity analysis. On the other hand, the asymptotic
analysis of solutions to singular perturbations of the geometrical domain can be
performed for linear problems or a restricted class of nonlinear problems. Since
the technique of compound asymptotic expansions cannot be directly applied to the
variational inequalities under considerations, a domain decomposition technique is
used in order to obtain the first order asymptotic expansion of the energy functional
and to obtain the topological derivatives of the energy functionals for the variational
inequalities.
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In this section the framework is introduced for the crack problem in the bounded
domain €2 in two spatial dimensions. It is assumed [8—17] that a crack in 2 is a part
3, of the Lipschitz interface . By an interface we mean a Lipschitz, closed curve
without intersections ¥ € 2 such that the jumps [u] of values for traces of Sobolev
functions u from both sides of the interface are allowed.

In addition, in our model the interface, thus, also the crack are supposed to
be sufficiently smooth, say X is a C!! closed curves without intersections. This
regularity assumption is added in order to use the standard properties of traces of
Sobolev functions on the interface.

However, the shape sensitivity analysis is performed in our framework by the
bi-Lipschitz changes of variables, we refer to [25] for all details necessary for such
a construction.

Let us consider the Lipschitz domain 2 with the boundary I' = 92 decomposed
into two Lipschitz subdomains €', Q" and the interface ¥ C @, ie., Q := Q' U
3 U Q”. For the decomposition of functions in v € HOl (€2), we use the notation for
restrictions to subdomains v/ € HJ (') and v’/ € H}(Q"). Thus, the traces on
are well defined

Vg =]z =V'|z € H/X(D).

Now, we define a broader space HJ () C HL(Qs) C L*(R2) of functions which
admit the jump

bl =5 =l € HA(S)

over the interface X. This leads also to the boundary value problems in 2 with
the prescribed jump over the interface, which is not our primary interest. We are
interested in the cracks ¥; C X modeled by closed subsets of the interface, with
Q=Q\ >, thus, in solutions of the boundary value problems in the convex set

KQ):={eH\Qs) : ]=0 onX, =0 onX\X}.

The primary interest of such a function space setting for the crack problems with
unilateral non-penetration conditions on the crack faces (lips) is the so-called
polyhedricity of the set K(€2;). In other words, polyhedral convex sets admit the
Hadamard differential of the metric projection [6,25]. This property is inherited
from the polyhedricity of the positive cone in the fractional Sobolev space H'/?(X),
since the space H'/?(X) is the so-called Dirichlet space with respect to the natural
order. Let us recall the known facts [6].

Proposition 1.1. The scalar product (-, -)s, in the Dirichlet space H'/*(X) satisfies
the condition

vFv)s <0 Vve HVA(D),
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therefore, the metric projection in H'/*(X) onto the positive cone of H'/?(X) is
conically differentiable.

This implies
Corollary 1.2. The metric projection in HL(Qs) onto the closed, convex cone
K(K2;) is conically differentiable.

The above results lead to the first order shape derivatives of the Griffith shape
functional for the cracks with the nonlinear non-penetration conditions prescribed
on the crack lips (or faces in three spatial dimensions).

Remark 1.3. The Griffith shape functional of the crack ¥; := {(x1,0) € R?, 0 <
x1 < I} atthetip P; := (/,0) is defined by the shape derivative which is denoted by

dT1(S2;up)

JQ) = =

of the energy functional

veK(2))
Q

| — TI(Q;u) = inf /(%Wvlz—fv)

where u; € K(£2;) is the minimizer for a given length [ > 0 of the crack, and
f € L*(Q) is a given element.

We are going to extend such results to elastic bodies €2; with cracks X;
and unilateral conditions on the crack lips (faces) Zli. Then, we consider the
differentiability properties of the Griffith functional

* evaluation of the first order shape derivative with respect to the perturbations of
the crack;

» asymptotic analysis of the Griffith functional with respect to singular perturba-
tions of the geometrical domain far from the crack;

2 Modeling of Cracks in Elastic Bodies

2.1 Non-Penetration Conditions on the Crack Faces

It is well known that classical crack theory in elasticity is characterized by linear
boundary conditions which leads to linear boundary value problems. This approach
has a clear shortcoming from a mechanical standpoint, since opposite crack faces
can penetrate each other. We consider nonlinear boundary conditions on crack faces,
the so-called non-penetration conditions, written in terms of inequalities. From
the standpoint of applications, these boundary conditions are preferable since they
provide a mutual non-penetration between crack faces. As a result, a free boundary
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problem is obtained which means that a concrete boundary condition at a given point
can be found provided that we have a solution of the problem.

The main attention in this paper is paid to dependence of solutions of the problem
on domain perturbations, and in particular, on the crack shape.

Let @ C R? be a bounded domain with smooth boundary I', and I', C Q2 bea
smooth curve without self-intersections, 2, = Q \ T,.

It is assumed that I'. can be extended in such a way that this extension crosses
I at two points, and €2, is divided into two subdomains D and D, with Lipschitz
boundaries dD;, dD,, meas(I' N dD;) > 0,i = 1,2. Denote by v = (v,1,) a
unit normal vector to I'.. We assume that I'. does not contain its tip points, i.e.
. =T,\dl..

The equilibrium problem for a linear elastic body occupying €2, is as follows. In
the domain 2. we have to find a displacement field u = (1, u,) and stress tensor
components 0 = {oj}, 1, j = 1,2, such that

—divo = f in ., (D)

o = Ae(u) in 2)

u=0 on T, (3)

ulp =0, [0,]=0, o,-ulv=0 on T, 4)
0, <0, 0,=0 on Fci. 5)

Here [v] = vt — v~ is a jump of v on I, and signs & correspond to positive and

negative crack faces with respect to v, f = (f1, f>) € L?(.) is a given function,

1 2
Oy = 0jVjVi, Or=0V—0, -V, 0;=(0,,0;),

ov = (01jvj,00,v;),

the strain tensor components are denoted by & (1),

1
gij(u) = E(”i.j tuji), ew) ={e;wi, i) =12

Elasticity tensor A = {au}, i, j,k,l = 1,2, is given and satisfies the usual
properties of symmetry and positive definiteness

ajubki€; = colél’, Y & & =&, co = const,

A = Aklij = ajiki> Qi € L2 ().

Relations (1) are equilibrium equations, and (2) is Hooke’s law, u; ; = D

duj’
(x1,x2) € Q. All functions with two below indices are symmetric in those
indices, i.e. 0;; = 0j; etc. Summation convention is assumed over repeated indices
throughout the paper.
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The first condition in (4) is called the non-penetration condition. It provides a
mutual non-penetration between the crack faces Fci. The second condition of (5)
provides zero friction on I'.. For simplicity we assume a clamping condition (3) at
the external boundary I'.

Note that a priori we do not know points on I'. where strict inequalities in (4), (5)
are fulfilled. Due to this, the problem (1)—(5) is a free boundary value problem. If we
have o, = 0 then, together with o, = 0, the classical boundary condition ov = 0
follows which is used in linear crack theory. On the other hand, due to (4), the
condition 0, < 0 implies [u]v = 0, i.e. we have a contact between the crack faces
at a given point. The strict inequality [#]v > 0 at a given point means that we have
no contact between the crack faces.

Hence, the first difficulty in studying the problem (1)—(5) is concerned with
boundary conditions (4)—(5). The second one is related to the general crack problem
difficulty—a presence of nonsmooth boundaries. We refer the reader to [6] for
related results on boundary value problems defined in domains with cracks.

2.2 Existence of Solutions

First of all we note that problem (1)—(5) admits several equivalent formulations. In
particular, it corresponds to the minimization of the energy functional. To check
this, introduce the Sobolev space

Hll(Qc) ={v=wLwn)|vie H(Q.), vi=0onT, i =1,2}
and the closed convex set of admissible displacements
K={ve H\(Q.)|[v=0 ae.on T.}. (6)
In this case, due to the Weierstrass theorem, the problem
1
min | > oi(e;(v) — | fivi
Qe Qc

has (a unique) solution u satisfying the variational inequality

uek, )

/%M%@—MZ/ﬁM—mL Vv e K, ®)
Qe

Q¢

where 0;;(4) = oj; are defined from (2).
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Problem formulations (1)—(5) and (7)—(8) are equivalent. We shall use in Sect. 47
the abstract form (144) of the variational inequality (7)—(8).

Remark 2.1. Tt follows from the coercivity on the energy space HL(S2.) of the
symmetric bilinear form

H () x HN () 3 (u,v) — a(u,v) = /Uij(u)sij(v) eR
Q.

that the solution u to (7)—(8) is Lipschitz continuous in the energy space with respect
to the right-hand side £ in the dual space (H}(S2.))".

Any smooth solution of (1)—(5) satisfies (7)—(8) and, conversely, from (7)—(8) it
follows (1)—(5).

Below we provide two more equivalent formulations for the problem (1)—(5), the
so-called mixed and smooth domain formulations. To this end, we first discuss in
what sense boundary conditions (4)—(5) are fulfilled. Denote by ¥ a closed curve
without self-intersections of the class C!'!, which is an extension of ', such that
3. C 2, and the domain 2 is divided into two subdomains €2 and €2,. In this case
3 is the boundary of the domain €2, and the boundary of 2, is X U T.

Introduce the space H 2 (X) with the norm

S ) = vO)P
VI, g, = Iy + E/ | R ©)

and denote by H™: (X) a space dual of H:? (X). Also, consider the space
Hyy'(Te) = {v €HI )| —= € L2<n)}
00 NG

with the norm

2 2 —1.2
V2 000 = V125 + / P2,
T,

where p(x) = dist(x; 0T;) and ||v||12 is the norm in the space H '/?(T,). Itis known
that functions from HOIO/ 2(1"0) can be extended to X by zero values, and moreover
this extension belongs to H'/2(X). More precisely, let v be defined at ', and v be
the extension of v by zero, i.e.

v(x), x € T,

T =10 xezE\L.
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Then
ve H()l()/z(rc) if and only if ve Hl/z(z)'

With the above notations, it is possible to describe in what sense boundary
conditions (4)—(5) are fulfilled. Namely, the condition ¢;, < 0 in (5) means that

(0v, 9)1/200 <0, Ve Holo/z(l“c), ¢ =0ae.onl,,

where (-,-)1/200 is a duality pairing between HO_OI/Z(FC) and HOIO/Z(FC). The
condition o; = 0 in (5) means that

(00, 8)1200 =0, V¢ = (¢1,¢2) € Hog (T.).
The last condition of (4) holds in the following sense

(o, [u]v)1/2.00 = 0.

2.3 Mixed Formulation of the Problem

Now we are interested to give a mixed formulation of the problem (1)—(5). Introduce
the space for stresses

H(div) = {o = {0} | 0 € L*(Q.).divo € L*(Q,)}
with the norm
”a“%{(div) = ”a”iz(gt,) + ”diVG”iZ(QU)
and the set of admissible stresses
H(div;T,) = {o € H(div) | [ov] =0onT,; 0, <0, o, =0onTF}.
We should note at this step that for 0 € H(div) the traces (ov)* are correctly
defined on =% as elements of H~'/2(X). The first condition in the definition of
H(div; T',) is fulfilled in the following sense

(ov)t =(ov) " on X

for any curve X with the prescribed properties. Relations 0 < 0, 0; = 0 on 1"6,jE also
make sense. The values o, 0; are defined as elements of the space HOBI/ 2(l“c).
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The mixed formulation of the problem (1)—(5) is as follows. We have to find a
displacement field u = (u1, u) and stress tensor components o = {0y}, i, j = 1,2,
such that

ue L*(Q.), o€ H(div;T,), (10
—dive = f in ., (11
/ Co@@—o0)+ / u(dive — divo) =0 Vo € H(div;T,). (12)

The tensor C is obtained by inverting the Hooke’s law (2), i.e.
Co = e(u).

It is possible to establish the existence of a solution to the problem (10)—(12)
and check that (10)-(12) is formally equivalent to (1)—(5) (see [16]). Existence of
solutions to (10)—(12) can be proved independently of (1)—(5). On the other hand,
the solution exists due to the equivalence, and we already have the solution to the
problem (1)—(5).

2.4 Smooth Domain Formulation

Along with the mixed formulation (10)—(12), the so-called smooth domain formula-
tion of the problem (1)—(5) can be provided. In this case the solution of the problem
is defined in the smooth domain 2. To do this, we should notice that the solution of
the problem (1)—(5) satisfies (7)—(8), thus, the condition

[ov]=0 on T,
holds, and, therefore, it can be proved that in the distributional sense

—divo = f in Q.

Hence, the equilibrium equations (1) hold in the smooth domain 2.
Introduce the space for stresses defined in €2,

H(div) = {o = {0y} | 0, dive € L*(Q)}
and the set of admissible stresses

H(div;T.) ={o € H(div) |6, =0, o, <0onT,.}.
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The norm in the space H(div) is defined as follows
2 2 Y
||U||H(div) = ”U”Lz(g) + ||d1VU||Lz(Q)‘
We see that for 0 € H(div), the boundary condition o6, = 0, 0, < 0 on I, are
correctly defined in the sense H(E/ 2(I‘C). Thus, we can provide the smooth domain

formulation for the problem (1)—(5). It is necessary to find a displacement field
u = (uy, uz) and stress tensor components o = {0y}, i, j = 1,2, such that

ue L*(Q), o e H(div;T,), (13)

—dive = f in £, (14)

/CG(E— o) + / u(divo —divo) = 0 Vo € H(div; ). (15)
Q Q

It is possible to prove existence of a solution to the problem (13)—(15) (see
[14]). Moreover, any smooth solution of (1)—(5) satisfies (13)—(15) and, conversely,
from (13)—(15) it follows (1)—(5). Advantage of the formulation (13)—(15) is that it
is given in the smooth domain. This formulation reminds contact problems with thin
obstacle when restrictions are imposed on sets of small dimensions.

Numerical aspects for the problems like (1)-(5) can be found, for example, in
[2,3].

2.5 Fictitious Domain Method

In this section we provide a connection between the problem (1)-(5) and the
Signorini contact problem. It turns out that the Signorini problem is a limit problem
for a family of problems like (1)—(5). First we give a formulation of the Signorini
problem. Let Q| C R? be a bounded domain with smooth boundary I'j, 'y =
.Ul I' NTy =@, measI'y > 0.

For simplicity, we assume that I'. is a smooth curve (without its tip points).
Denote by v = (v;,v7) a unit normal inward vector to I'.. We have to find a
displacement field u = (u1, u>) and stress tensor components o = {0y}, i, j = 1,2,
such that

—divo = f in i, (16)
o = Aeg(u) in Q, 17
u=0 on Ty, (18)

uw =>0,0,<0,0, =0, uwv-0, =0 on T.. (19)
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Here f = (f1, f2) € LIZOC(Rz) is a given function, 4 = {au}, i, j. k.l =1,21isa
given elasticity tensor, a;i € Ly, (IR?), with the usual properties of symmetry and
positive definiteness.

It is well known (see [4, 5]) that the problem (16)-(19) has a variational

formulation providing a solution existence. Namely, denote
HL(Q) ={v=(1.m) € H(Q) |vi=00nT,, =12}
and introduce the set of admissible displacements
K.={v=(@w,»n)e Hllo(Ql) |vv = 0a.e.onT.}.

In this case the problem (16)—(19) is equivalent to minimization of the functional

5 [ oo - Q/ fiv

Q)
over the set K. and can be written in the form of the variational inequality

ue K., (20)

/oii(u)s,-j(v— u) = /fi(vi —u;) VveK. 2D
Q

Q)

Here 0;j(u) = oj; are defined from the Hooke’s law (17). Variational inequality (20)—
(21) is equivalent to (16)—(19) and, conversely, i.e., any smooth solution of (16)—(19)
satisfies (20)—(21) and from (20)—(21) it follows (16)—(19). Along with variational
formulation (20)—(21), the problem (16)—(19) admits a mixed formulation which is
omitted here.

The aim of this section is to prove that the problem (16)—(19) is a limit problem
for a family of problems like (1)—(5). In what follows we provide explanation of this
statement.

First of all we extend the domain ; by adding a domain 2, with smooth
boundary I';. An extended domain is denoted by €2., and it has a crack (cut) T..
Boundary of Q. is ' U Fci. Denote g = I’ NIy, ¥ = ¥ \ T, thus X does not
contain its tip points.

We introduce a family of elasticity tensors with a positive parameter A,

al _ aijkl in Ql
ik A‘laiﬂd in 5.

Denote A* = {afjkl}, and in the extended domain 2., consider a family of the crack
problems. Find a displacement field u* = (u%, ué), and stress tensor components
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o* = {o}}.i.j = 1.2, such that

—dive* = f in Q.. (22)

ot = A*e(?) in Q. (23)

W =0 on T, (24)

[y =0, 0] =0, 6} -[ulv=0 on T, (25)
0} <0,/ =0 on TI* (26)

As before, [v] = v — v~ is the jump of v through T, where =+ fit positive and
negative crack faces I Ci All the remaining notations correspond to those of Sect. 1.
We see that for any fixed A > 0 the problem (22)—(26) describes an equilibrium
state of linear elastic body with the crack I'. where non-penetration conditions are
prescribed. Hence, the problem (22)—(26) is exactly the problem like (1)—(5), and
we are interested in passage to the limit as A — 0. In particular, the problem (22)-
(26) admits a variational formulation. Boundary conditions (25)—(26) are fulfilled in
the form as it is explained in Sect. 1. It can be shown that the following convergence
takes place as A — 0

u* - u® stronglyin  HM(R,), (27)
I/l)k 1

— — 0 stronglyin H (2,), (28)
\/X &y 2)

where #° = 1 on Q, i.e. a restriction of the limit function from (27) to €, coincides
with the unique solution of the Signorini problem (16)—(19). From (27)—(28) it
is seen that the limit function u° is zero in €5,. On the other hand, there is no
limit passage for o in Q, as A — 0. Thus, the domain Q, can be understood
as undeformable body, and the stresses are not defined in €2,. This means that
the Signorini problem is, in fact, a crack problem with non-penetration condition
between crack faces, where the crack I, is located between the elastic body €2 and
non-deformable (rigid) body £2,. It is worth noting that, in fact, we can write the
problem (22)—(26) in the equivalent form in the smooth domain €, U T'. by using
the smooth domain formulation of Sect. 2.4.

3 Griffith Functionals Evaluation by the Shape Sensitivity
Analysis of Energy Functionals

The velocity method [6,25] is used in the shape sensitivity analysis of the energy
functionals with respect to perturbations of a crack tip in two spatial dimensions. In
Frémiot et al. [6] the Hadamard structure [25] theorem for the first and the second
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order shape derivatives of differentiable shape functionals in domains with cracks
is given with full proof. We use the distributed form of the shape gradient for the
energy functional with respect to the crack tip perturbations in order to define the
Griffith shape functional which is further considered in Sect. 47. In applications, the
Griffith functional can be used, it seems, to control the crack propagation in elastic
body with elastic and/or rigid inclusions.

In the crack theory, the Griffith criterion can be used for the prediction of crack
propagation. This criterion says that a crack propagates provided that the derivative
of the energy functional with respect to the crack length reaches a critical value. In
this section we discuss the Griffith criterion and the associated Griffith functional
for the model (1)—(5).

The general point of view is that we should consider a perturbed problem with
respect to (1)—(5). In particular, a crack length may be perturbed. Perturbation will
be characterized by a small parameter #, and ¢ = 0 corresponds to the unperturbed
problem, i.e. to the problem (1)—(5). To describe properly a perturbation of the
problem, we should define a perturbation of the domain €2.. This can be done in the
framework of the sensitivity analysis by the so-called velocity method (see [25]).
We briefly recall this method in a way useful for our purposes.

Let us consider a given velocity field V defined in R? and describe a perturbation
of Q. by solving a Cauchy problem for a system of ODE. Namely, let V' €
W12 (R?)? be a given field, V = (Vi, V»). Consider a Cauchy problem for finding
a function ® = (&, ®,), with x the spatial variable,

‘ii—ctb(t,x) =V(®(t,x)) for t#0, &0,x)=x. (29)

There exists a unique solution @ to (29) such that

® = (&1, B2)(t,x) € C'([0,16]: W,L°(RD?), 10| > 0. (30)
Simultaneously, we can find a solution ¥ = (¥, ¥,) to the following Cauchy
problem

dw
— G =-V¥(.y) for t#£0. WO.y)=y (€2))

with the some regularity

W= (W), B)(t,y) € C([0,5]: W, (R?)?), o] > 0. (32)

loc

It can be proved that for any fixed ¢, the inverse function of ®(¢,-) is the function
W(t,-), thus

y =@ ¥(.y), x=V(e(rx), x.yeR.
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Due to this, we have a one-to-one mapping between the domain €2, and a perturbed
domain Q%, namely

y=®(@,x): Q. — Q,
x=V(,y):Q - Q..

Moreover, by (30), (32), we have the following asymptotic expansions (/ denotes
the identity operator)

O(t,x) = x +tV(x) + ri(2), (33)

V(t,y) =y —tV(y) + r(1), (34)

920 _ 1+ Lo, (35)
0x 0x

WO _ . (36)
dy dy

l7: (Ol 100 goye = 0(1), 1 = 1,2,
7 (Dl Lge @2y = 0(t), i =3.4.

Hence, in the domain ! it is possible to consider the following boundary value
problem (perturbed with respect to (1)—(5)). Find a displacement field u’ = (i}, u}),
and stress tensor components o’ = {crfj}, i,j = 1,2, such that

—dive’ = f in Q! (37)

o' = Ae(') in Q. (38)

=0 on I, (39

W' =0, [0,]=0, 0, W' =0 on T, (40)
0!, 0,0, =0 on T'* (41)

Here,
y=®@,x): T >TI", T.—>T.,

and we assume in this section that f = (fi, f») € C'(R?) and that ajju = const,
i,j,k,1 = 1,2. All the rest notations in (37)—(41) remind those of (1)—(5), in
particular, v’ = (v}, v}) is a unit normal vector to I'..

We can provide a variational formulation of the problem (37)—(41). Indeed,
introduce the Sobolev space

HL(Q) ={v= () |vie H(Q), v =00onT’, i=1,2}
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and the set of admissible displacements

K'={ve H.(Q) |[]v' =0 ae.on T}
Consider the functional

Q) = %/ oj(V)ey(v) - / Jivi

QL QL

c

and the minimization problem

min IT(Q2;v). (42)

veK!

Here, Ui’j(v) are defined from Hooke’s law similar to (38). Solution of the prob-
lem (42) exists and it satisfies the variational inequality

u' e Kt, (43)
/Ufj(“t)gij("— u') = /fi(Vi —u}) VveK'. (44)
QL Q!

Having found a solution of the problem (43)-(44) we can define the energy
functional

(R u') = %/Ufj(ut)e,;j(ut)—/ﬁuf.
Q.

2

Note that for 1 = 0, we have Q?, = Q. and u° = u, where u is the solution of
the unperturbed problem (7), (8). The question arises whether the functional 1 —
T1(2L; o) is differentiable at # = 0. Thus, we consider the existence of The question
whether

Q') — TR u)

d
—II QI,; ! —o = li
5 1 e 1) ]=0 = lim ;

The answer is positive in many practical situations. We consider two cases, where
the derivative

d
I = EH(QZ§ut)|t=O (45)

can be evaluated.
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3.1 Griffith Functionals for Rectilinear Cracks

Assume for simplicity that the normal vector v to I'. keeps its value under the
mapping x — ®(¢, x), i.e. v = v. In this case,

I = %/ {divV - e;(u) — 2E;(V;iu)} Uij(u)—/div(Vﬁ)ui, (46)
Q

Q¢ c

where
1 ..
E;jU;v) = E(Vi,kUk,j +vixkUi), U={Uy}, i,j=12.

Note that the assumption concerning the normal vector v holds for rectilinear cracks
T'. and vector fields V' tangential to I'.. In this situation, (46) provides a formula
for the derivative of the energy functional with respect to the crack length what is
practically needed for using the Griffith criterion.

» It will be the case when V' = 1 in a vicinity of the right crack tip and the support
denoted by suppV belongs to a small neighborhood of this tip.

* Formula (46) for the shape derivative of the energy functional with respect to
the crack length is called the distributed shape gradient. More precisely, by the
shape gradient we understand the mapping

1
Vo [y ey - 26,00} oyw - [ anh. @)

Q¢ Q

* In Sect. 7 the expression of the distributed gradient (47) is shown to be differen-
tiable with respect to the perturbations of the linear boundary conditions for the
displacement field. In this way the shape derivative of the Griffith functional
with respect to the boundary variations of an inclusion far from the crack is
determined.

3.2 Griffith Functionals for Curvilinear Cracks

The formula for the derivative (45) can be derived for curvilinear cracks if the
simplified assumption on the normal vector v is not fulfilled by using an appropriate
transformation of unknown functions i.e., of the displacement field [25]. We provide
here the formula (45) for the crack I'. which is defined by a graph of a smooth
function.
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Let ¥ € H3(0,[;) be a given function, /; > 0, and
T={(x1,x) [ x2=9(x1). 0<xi <L}
Consider a crack I';, I} C X, as a graph of the function ,
I ={(x1,x) | x2 =v¥(x1), O0<x <}, 0<lI<l.

Here, [ is a parameter that characterizes the length of the projection of the crack T
onto x; axis. Consider a smooth cut-off function 8 with a support in a vicinity of
the crack tip (I, ¥ (/)), moreover, we assume that & = 1 in a small neighborhood
of (I,y(l)). We can consider a perturbation of the crack I'; along ¥ via a small
parameter . Denote ; = Q \ T;. Perturbed crack I/ hasatip (I +¢,y(I + 1)),
and we consider a perturbed domain Q) = @\ T;. It is possible to establish a
one-to-one correspondence between €; and ] by formulas

y1 = x1 +10(x),
Y2 =x2 + Y (x1 +10(x)) — ¥ (x1),

(x1,x2) € Q1. (y1.y2) € Q. (48)
Transformation (48) is equivalent to the following (cf. (33))
y=x+1tV(x)+r(t,x)
with the velocity field
V(x) = (0(x), ¥'(x1)0(x)). (49)
In the domain Qf, we can consider a perturbed problem formulation. Namely, it is

necessary to find a displacement field u’ = (u}, u4) and the stress tensor components
o' ={of}.i,j = 1.2, such that

—dive’ = f in Qf, (50)

o' = Ae(u') in Q, (51)

=0 on T, (52)

Wh' =0, [0,]=0,0, -Wh'=0 on I, (53)
0/, <0,0/, =0 on TIJ* (54)

Here, v’ = (v{, v}) is a unit normal vector to I';. For a solution u’ of (50)—(54) it is
possible to define the energy functional

1
n@j) = 5 [ ofres - [ g

Q Q
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and to find the derivative

AT u')

o = dt

li=0

with the formula

d = %/{divV ~gii(u) = 2E5(V; u) oy (u)
Q

_ /(IiiV(Vfi)Mi +/O’ij(u)gij(w)_/fiWi, (55)

Q Q Q

where the vector field V is defined in (49) and w = (0, 6¢¥"u;) is a given function.
Note that the formula (55) contains the function 6, but in fact there is no dependence
of the right-hand side of (55) on 6. In particular, if " = 0, the formula (55)
reduces to (46) with Q. = ;. In this case we have a rectilinear crack and v! = v.
Formula (55) defines a derivative of the energy functional with respect to the length
of the projection of the crack I'; onto the x; axis. Hence, the derivative of the energy
functional with respect to the length of the curvilinear crack is as follows

I'(s) = 'O ) + D72,

where
1
s = / Y()?+1
0

is the length of the crack I7.

To conclude this section we briefly discuss the existence of so-called invariant
integrals in crack theory. It is turned out that the formula (46) for the derivative of
the energy functional can be rewritten as an integral over closed curve surrounding
the crack tip.

Consider the most simple case of a rectilinear crack I, = (0, 1) x {0} assuming
that T, C Q. Let 8 be a smooth cut-off function equal to 1 near the point (1,0),
and supp# belong to a small neighborhood of the point (1, 0). Then we can take the
vector field

V = (6,0)

in (29), (31) which, according to (33), corresponds to the following change of
independent variables

y1=x1 +10(x) + (1),
Y2 = X3.
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In this case the formula (46) (or the formula (55) in a particular case ¥ = 0)
provides a derivative of the energy functional with respect to the crack length. This
formula can be rewritten [13] as an integral over curve L surrounding the crack tip
(1,0),

1
= / % Evlmj(u)s,j(u) —oy(W)u; 1v; (56)

L

provided that f is equal to zero in a neighborhood of the point (1,0). We should
underline two important points. First, the formula (56) is independent of L, and
second, the right-hand side of (56) is equal to the derivative of the energy functional
with respect to the crack length.

In fact, invariant integrals like (56) can be obtained in more complex situations.
For example, we can assume that the crack I'. is situated on the interface between
two media which means that the elasticity tensor A = {a;u} is as follows

al  for x, >0
Qi = ijkl
ikl = 2
Ay for x, < 0.

Here, a}jkl = const, a?jkl = const, i, j,k,] =1,2,and {az.ljkl}, {afjkl} satisfy the usual
properties of symmetry and positive definiteness. In this case, formula (46) for the
derivative of the energy functional holds true provided that V is tangential to I'..
This formula provides an existence of invariant integral of the form (56). We should
remark at this point that while the integral (56) is calculated, the values oj;(u)u; 1v;
can be taken at 't or at I',". It gives the same value of the integral (56) due to the
equality

[oj(w)u;1v;] = 0on ..

On the other hand, we can analyze the case when a rigidity of the elastic body part
Q. N {x; < 0} goes to infinity. Indeed, consider the following elasticity tensor for a
positive parameter A > 0,

1
A ay  for x; >0

A:..p =
ijkl —1,2
A" ag, for x; < 0.

Then for any fixed A > 0, the solution of the equilibrium problem like (1)—(5) exists,
and a passage to the limit as A — 0 can be fulfilled. As we already noted in Sect. 3,
in the limit the following contact Signorini problem is obtained. Find a displacement
field u = (u1, u») and stress tensor components o = {0y}, i, j = 1,2, such that

—divo = f in Q. N{x; > 0}, (57)
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o =Ae(u) in QN {x; > 0}, (58)
u=0 on IR N{x>0H\T,, (59)
w =0,0,<0,0,=0,0,-uv=0 on TI,. (60)

For the problem (57)—(60) it is possible to differentiate the energy functional in the
direction of the vector field V' = (6, 0), where the properties of 8 are described
above. The formula for the derivative has the following form (cf. (46))

1
1 = E /{divV-crij(u) —2E;(V, u)}crij(u) —/diV(Vf,')ui. (61)
Q)

Q)

Assume that f = 0 in a neighborhood of the point (1, 0). In this case, formula (61)
can be rewritten in the form of invariant integral

1
I = / %Evla,-j(u)e,j(u) —Uij(u)u,-,lvj} , (62)

L

where L is a smooth curve “covering” the point (1, 0). Like for invariant integrals
in the crack problems, formula (62) is independent of a choice of L;.

4 Domain Decomposition Technique for Singularly
Perturbed Elliptic Boundary Value Problems

Our primary concern is the domain decomposition technique [20, 23, 24] in appli-
cation to the shape sensitivity analysis of the Griffith shape functional. However,
the precise results on the shape sensitivity analysis of the Griffith shape functional
are given in a forthcoming paper. In this paper we collect all the results recently
obtained for shape-topological sensitivity analysis of the broad class of variational
inequalities for elastic bodies with cracks. The asymptotic analysis in singularly
perturbed geometrical domain is performed by domain decomposition technique.
The boundary variations are used far from the defect, and the influence of the
domain perturbations is imposed on the variational inequality by means of the
Steklov—Poincaré operator defined within the domain decomposition technique. In
this way the conical differentiability of solutions to the variational inequality with
respect to the regular perturbations of the boundary conditions can be employed
for shape-topological sensitivity analysis of the specific functional defined in
the subdomain which contains the crack. This is the case of the Griffith shape
functional evaluated for a crack with nonlinear boundary conditions prescribed on
the crack lips.
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The reference domain Q \ T, of the elastic body under considerations is divided
into two subdomains . with a crack I'. inside and €2; with an elastic inclusion
o inside. The domains are coupled within the nonlinear elasticity boundary value
problem with the nonlocal boundary conditions defined on the interface I'y, :=
Q; N Q. by an appropriate Steklov—Poincaré operator. In this section, however, we
introduce the domain decomposition technique for the evaluation of the topological
derivatives [20,23,24].

Let us consider the linear elliptic boundary value problems, and describe the
domain decomposition technique for asymptotic analysis of the energy functional
in singularly perturbed geometrical domains. The method is presented for simplicity
for circular holes and for the Laplacian with Neumann conditions on the hole, and
the Dirichlet condition on the outer boundary. In such a case the function f(g) = &2
is used in asymptotic analysis. The shape functional is defined by the associated
energy functional to the boundary value problem.

The domain decomposition technique and the Steklov—Poincaré nonlocal bound-
ary operators are used in the topological sensitivity analysis of nonlinear variational
problems. We start with a scalar linear boundary value problem in order to present
the outline of the method. Therefore, given domains Q2 and Q.(x) = Q \ B:(x) C
R?, where B, (%) is a ball of radius ¢ — 0 and center at a point £ € Q far from the
boundary I' = 9%, with B, € Q. By u, we denote a unique classical solution of
the Poisson equation in singularly perturbed domain:

Find u, such that
—Au, = b in Q. ,
u, = 0 on 02 ,
d,us = 0 on 0B, ,

(63)

where b € C%%(Q), with @ € (0, 1), is a given element which vanishes in the
vicinity of the point X € Q. The solution u, of the boundary value problem (63) is
variational, since u, € V, C H'(Q,) minimizes the quadratic functional

1
Ty =5 [ 1velF = [ by (64

over the linear subspace V. C H'(S2,), where V, is defined as
V.i={p e H(Q): ¢, =0}. (65)

The shape functional

T(Q) = T (et ue) - / Va2 / bu, = — / bu, (66)
2 Ja, Q. 2 Ja,
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defined by the equality
T Qs ue) = Ze(u;) (67)

is the energy functional evaluated for the solution of the boundary value prob-
lem (63) posed in the singularly perturbed domain €2..

Proposition 4.1. The energy admits the expansion with respect to the small param-
eter ¢ — 0 of the following form:

T(Qe) = Ta() — 7&®|Vu@) | + o(e?) | (68)

where |Vu(%)||? is the bulk energy density at the point & € Q and u is a solution
to (63) for e = 0.

Remark 4.2. The bulk energy density functional H'(Q) 3 ¢ — [|[Vo(®)|*> € R,
in general, is not continuous at a point x € . Therefore, the bulk energy density
is replaced by a continuous bilinear form H'(Q) > ¢ — (B(¢),¢)r, € R. For
the Laplacian in two spatial dimensions and the solution of unperturbed problem u
which is harmonic in a neighborhood of X, the appropriate continuous bilinear form
with respect to H () norm, such that there is equality for ,

IVu()|? = (B(u), u)ry

is given by (72) or (74). This replacement of |Vo(%)||> by (B(¢), ¢)r, in the
energy functional for problem (63) has been introduced in [23, 24] for the purposes
of topological derivatives evaluation in the framework of domain decomposition
method.

Note 4.1. If we combine (64) with (68), we arrive at the conclusion that the
modified energy functional

1
H'@ 39— [ 190 = [ bp—7e(Beo).phr, <R

is an approximation of (64) which furnishes the topological derivative (68) but with
the minimization over unperturbed space H ' (). This observation is in fact used in
the domain decomposition method for unilateral problems.

4.1 Domain Decomposition Technique

Now, we are going to decompose the linear elliptic problem (63) into two parts,
defined in two disjoint domains Q2 and C(R,¢) := Brp \ B C 2, R > ¢ > 0.
Two non-overlapping subdomains Q g, C(R, ¢) of Q; are selected 2, = QrUI'xU
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C(R, ), where we assume that R > &g, ¢ € (0, go] and ' stands for the exterior
boundary dBy of C(R, ¢). Since the gradient of Sobolev functions is not continuous
for test functions in H ' (€2), but it is the case for harmonic functions, we replace the
pointwise values of the gradient of test functions by a representation formula valid
only for the pointwise values of the gradient of a harmonic function.

Proposition 4.3. If the function u is harmonic in a ball Bg C R?, of radius R > 0
and center at X € 2, then the gradient of u evaluated at X is given by

Vu(x) = #/F (x — X)u(x) . (69)

Proof. The proof of this result we leave as an exercise. O

In view of (69), since b = 0 in By for sufficiently small R > g¢, expansion (68)
can be rewritten in the equivalent form

2 2 2
j(Qg):J(Q)—%[(/F uxl) —l—(/r uxz):|+o(52), (70)

where x — X = (x1, x2). As observed in [23,24], it is interesting to note that (70)
can be rewritten as follows

T(Q) = T(R) — e*(Bu), u)r, + o(e?) . (71)

with the nonlocal, positive and self-adjoint boundary operator 53 uniquely deter-
mined by its bilinear form

(B(u), u)r, = % [(/m ux1)2 + (/FR uxz)2:| . (72)

From the above representation, since the line integrals on 'y are well defined
for functions in L'(T'g), it follows that the operator B can be extended e.g., to a
bounded operator on L*(I'g), namely

B e L(L*(Tg); L*(Tg)) (73)

with the same symmetric bilinear form

<B(¢),¢>rk=ﬁ[/mwlfrfxwfrkwxz/mqm}, (74)

which is continuous for all ¢, ¢ € L?(I'g). We observe that the bilinear form

L*(Tr) x L*(Tr) 2 (¢.¢) = (B(@). d)ry € R (75)
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is continuous with respect to the weak convergence since it has the simple structure

(B(@), #)rr = Li(@)L1($) + La(@)La2(¢) ¢.¢ € L' (Tr) (76)

with two linear forms ¢ +— L;(p) and ¢ — L,(¢), given by the line integrals
on ['.

4.2 Steklov-Poincaré Pseudodifferential Boundary Operators

Note 4.2. We determine the family Steklov—Poincaré boundary operators on the
outer boundary T'g of the domain C(R, €), if there is a hole B, inside of C(R, ¢).

We select R > 0 such that the circle (or the ball for d = 3) By contains the
hole B, and introduce the truncated domain €2g. For the boundary value problem
defined in €2,, we introduce its approximation in €2 z. The singular perturbation €2,
of the geometrical domain €2 is replaced by a regular perturbation of the Steklov—
Poincaré boundary operator living on the interface, which coincides with the interior
boundary I'g of Qg.

Definition 4.4. The Steklov—Poincaré boundary operator
Aot HYV2(Tg) — H™2(Tg) (77)

is defined for the Poisson equation in the domain C(R, ¢). For a fixed parameter
¢ > 0 and a given element v € H'/?(T'g), the corresponding element in the range of
the operator A, is given by the Neumann trace of a unique solution to the boundary
value problem

Find w, such that
—Aw, =0 in C(R,¢),

78
we =von g, (78)
d,we = 0 on 0B, .
Then we set
A.(v) = d,we on Ty, (79)

where 7 is the unit exterior normal vector on dC (R, ¢).

Remark 4.5. Let us note that, in absence of the source term b, the energy shape
functional in C(R, ¢) evaluated for the harmonic function w, coincides with the
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boundary energy of the Steklov—Poincaré operator on I'r evaluated for the Dirichlet
trace of the solution w,, namely

/ [Vwe > = (Ac(v), V)ry - (80)
C(R.)

Therefore, the asymptotics of the energy shape functional in C(R, ¢) for ¢ — 0,
gives rise to the regular expansion of the Steklov—Poincaré operator:

A =A-2B+ R, , (81)

where the remainder denoted by R, in the above expansion is of order 0(&?) in the
operator norm L(H/?(T'g); H~'/?(T'g)).

By Remark 4.5 we obtain the strong convergence of solutions in the truncated
domain. In fact, let us state the following important result:

Proposition 4.6. The sequence of solutions u, converges as ¢ — 0 in the following
sense. For any R > 0,

ul — u®  stronglyin  H'(Qg) . (82)

where Qg = Q \ Bg, € € (0, &), and R > gy > 0, where By, is a ball of radius R
and center at X € Q.

Proof. Let uf be the restriction to €2z of the solution u, to (63), namely

uf € HM(Qp) : / Vul - Vi + / Ae(uf)n = / by Vne HNQr). (83)
Qr Tr Qr

In the same way, for ¢ = 0 we have

uf e HA(Qp) : / Vu®k .V + / Aw®)n = / bn Vne HN(QR), (84)
Qr Tr Qr

where u® is the restriction to Q of the solution to (63) for ¢ = 0. In addition,
Hll(QR) is a subset of HI(QR), which is defined as

H\(Qg) :={p € H'(Qp) 1 ¢, =0} . (85)

R

By taking n = u® — u® and after subtracting the second equation from the first one

we get

[ IV — Ry + [ (A1) = AR @R —u?) = 0. (86)
Qr Tr
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By taking into account the expansion (81) we observe that
vl =ty = [ @Bt - Rk - k). (87
Qr Cr
From the Cauchy—Schwarz inequality we obtain

/Q ||V(’4§ - MR)||2 < 2€2||B(MR)”H*1/2(FR)””tf _”R”HI/Z(FR)
R
R R R
+ R =120y e — ™ | 172y - (88)

Taking into account the trace theorem and the compactness of the remainder R, we
have

/Q IVGE = uB) P < £2C1 1 — il (89)
R

Finally, from the coercivity of the bilinear form on the left hand side of the above
inequality, namely,

e~ ¥y gy < [ IVGE = u)P (90)
QR
we obtain
luf = u® |l g1 p < Ce, (91)
which leads to the result, with C = Cy/c. O

Now, we make use of the Steklov—Poincaré operator defined above for the
annulus C(R,¢) in order to rewrite the energy shape functional in €, as a sum
of integrals over 2 and of the boundary bilinear form on I'g,

7@ =5 [ IVul = [ b (A, ©2)
2 Jag Qr 2
which is possible since the source term b vanishes in the small ball Bg around the
point ¥ € Q.
In conclusion, another method of evaluation of the topological derivative for the
energy shape functional is now available. We have the energy shape functional in
the form

1 1
g@y=_int [ vl [ bot om0
Qr Qr

PEHL(QR)
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where Hll (2g) is defined trough (85). Taking into account expansion (81),
from (93) it follows by an elementary argument that

o U2 2 _ 1
g@y= it 5[ el = [ bo+ 3000,

peH @R (2

- SZ(B(u), u)rp, + 0(82) , (94)

where (94) coincides with (71). The range of applications of the presented method
is not limited to linear problems only. In fact, this is the only available method
without any strict complementarity type assumptions on the unknown solution of
the variational inequality, for evaluation of topological derivatives of the energy
shape functional for unilateral problems.

S Domain Decomposition Technique for Topological
Derivatives Evaluation

The method of compound asymptotic expansions is usually used for the purposes
of asymptotic analysis of elliptic boundary value problems in singularly perturbed
geometrical domains. The application of this method requires the linearization of
the boundary value problem under considerations which becomes quite involved
in the case of variational inequalities [1]. Therefore, the domain decomposition
technique was proposed and used in [23, 24], as well as used in [20] for the
purposes of topological derivation for variational inequalities which describe the
static frictionless contact between an elastic body and a rigid foundation as well as
for cracks with the unilateral non-penetration condition.

We recall that the Sobolev space H'(Q2) is the Dirichlet space for the natural
order, we refer the reader e.g. to Frémiot et al. [6] for further details in the case of
contact problems in linear elasticity. By the Dirichlet-Sobolev space we mean the
ordered Sobolev spaces e.g., H'(Q) or H'/?(32) with the following property for
the natural order. If the function x > u(x) is in the Sobolev space, then the function
x > u™(x) := max{u(x), 0} belongs to the Sobolev space.

5.1 Problem Formulation

Let us consider the new boundary value problem, with nonlinear boundary condi-
tions on I, C . For the domain with a hole B.(X), where X € €, the boundary
value problem takes the following form:



Shape-Topological Differentiability of Energy Functionals for Unilateral. . . 271

Find u, such that
—Au, = b in Q,,
u. =0 onl,
dyue, = 0 on 0B, , (95)
u,= 0
Opus < 0 ponly,
Ug 0= 0

where the source term b € C%%(Q) vanishes in the neighborhood of the point
X € Q. A weak solution u, of problem (95) minimizes the energy functional (64)
over a cone in the Sobolev space, and the shape energy functional takes the form

1
J(Q) = inf {— / IVell* — / bgo}, (96)
Qe Q.

peVeigi, 20} ( 2

where the liner space V; is defined by (65).

Now, let us consider the domain decomposition method for (95), assuming
that I'. C Qg. In particular, this means that the linear space Hll () defined
through (85) is replaced in (93) by the convex and closed subset

K :={p € H\(QQ) : ¢, =0}, (97)

and the functional including the Steklov—Poincaré operator is as follows

. 1 1
z8al) = ot 15 [ vl = [ bt sta@n . o
pEK 2 Qr Qr 2
In order to establish the equality

IRl = J7(Q0) , (99)

it is sufficient to show that the minimizer uf in (98) coincides with the restriction
to Qx of the minimizer u, of the corresponding quadratic functional defined in the
whole singularly perturbed domain €2, which is left as an exercise. In this way we

obtain
1 2
J@) =3 | IVul*~ | bu.
Q. Q.

1

1
-1 [ Vi / Bite + (A, )y
2 Jag Qr 2

=7 ()

(1 , .
JE;E{E/QR IVel —/QR’?WrE(Ag(@),w)rR . (100)
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thus, the topological derivative of 7 (£2) can be evaluated by using the expansion of
ZR(uR). The assumption required for the derivation of ZX (uX) with respect to the
parameter ¢ at ¢ = 07 is only the strong convergence as ¢ — 0 for fixed R > 0,
namely u® — uf strongly in H!(Qg), i.e., there is no need for differentiability
properties of the minimizer u® € H'(Qg) with respect to & (see the proof of
Proposition 4.6).

5.2 Hadamard Differentiability of Minimizer for Parametric
Programming in Function Spaces

The existence of the conical differential for the mapping
[0,80) 3 & > uf € H'(Qp) (101)

is established.
‘We introduce:

* The quadratic functional

GR(9) = 5a%(6.0) ~ 1%(p) + 3{A@). o)1, — B). @)y . (102)

where

a*(p.g) = [ IVol? and *(p)= [ by (103)
Qr QR

* The coincidence set
E={xel. :uf=0}. (104)
* The linear form (non-negative measure)
(e, @) 1= a® ", ) = 1%(¢) + (AWU"), @)1, - (105)
* The convex cone
Skw®)={p e HN(Qr): 920 ge.on E, (u.9)=0}.  (106)

We recall that the symbol g.e. reads “quasi everywhere” and it means, everywhere,
with possible exception on a set of null capacity.
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Theorem 5.1. For fixed R > 0 we have

R _ R 2
Furthermore, there is an expansion with respect to ¢ — 0%,

ul = uf + 2R 4 oR(?) in HY(Qp) . (108)

£ =
The element vR € H'(QR) is uniquely determined by a solution to the following
quadratic minimization problem

GRoM = e é“f Y G* () . (109)

Remark 5.2. The result established in Theorem 5.1 can be obtained as well for a
class of contact problems by an application of general results given in [6,25].

5.3 Topological Derivatives

In this section the outline of the domain decomposition method for variational
inequalities is given. The topological derivative can be evaluated for the energy
shape functional. The scalar elliptic equation as well as the linear elasticity system
in two spatial dimensions with the unilateral conditions far from the hole are
considered. The case of three spatial dimensions can be described in the same
manner. The unilateral conditions are imposed for the weak solutions of elliptic
boundary value problems by a cone constraint for the minimization of the quadratic
energy functional. We recall that the cone of admissible displacements in contact
problems of linear elasticity is defined by the non-penetration condition. The uni-
lateral condition is only an approximation of the real condition and it is prescribed
for normal displacements in the contact zone. Thus the normal displacements in the
contact zone belong to a positive cone in the space of traces.

In this part we restrict ourselves to the circular holes. Let us recall the notation
for the domain decomposition technique. Given a domain Q, = Q \ B, C R?,
with a small hole B, C By of radius ¢ — 0 and center at X € 2, we denote by
Qr = Q\ By the domain without the hole B,, and by C(R,&) = By \ B, the
ring with the small hole B, inside. It means that the domain €2, is decomposed into
two subdomains, the truncated one Q2 and the ring C(R, ¢). The main idea which
is employed here is to perform the asymptotic analysis for a linear problem and
then apply the result to the nonlinear problem in a smaller domain called truncated
domain. This is possible for unilateral conditions prescribed on I': C Q g, where
the set I'. is far from the hole B,, and therefore far from the ball Bg.

Under this geometrical assumption it is possible to restrict the asymptotic
analysis to the ring C (R, ¢). Then the obtained result on the asymptotic behavior of
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the associated solution to the boundary value problem defined in the ring is applied
to the variational inequality considered in the truncated domain Q2. In this way
the singular domain perturbation in the ring influences, by a regular perturbation,
the boundary conditions on the interface for variational inequality. The regular
perturbation is governed by a nonlocal, pseudodifferential, self-adjoint boundary
operator of Steklov—Poincaré type. The nonlocal Steklov—Poincaré operator is
introduced on the interface between two subdomains, it is the exterior boundary
I'r of the ring, which is exactly the interior boundary of the truncated domain Qg.
The subproblem to be solved in the truncated domain is a variational inequality
associated to the constrained minimization problem over a closed convex cone
K c HY(QR):
Find a unique minimizer u, € K of the quadratic energy functional

1 1
X (p) = EaR(w,w) — ") + 5 (A0), @) (110)

where A, stands for the Steklov—Poincaré operator for the ring C(R, ¢) and (-, ), is
the duality pairing defined for the fractional Sobolev spaces H ~'/2(I'g) x H'/?(T'g)
on the interface I'g, associated with the corresponding Steklov—Poincaré operator
A. : HY2(T'g) — H~'?(I'g). We need an assumption on its asymptotic behavior,
which is:

Condition 5.3 The Steklov—Poincaré operator for the ring C(R,¢e) admits the
expansion for ¢ > 0, ¢ small enough,

A =A=-2f(e)B+ R, . (111)

with an appropriate function f(g) — 0, when ¢ — 0, depending on the boundary
conditions on the hole, where the remainder R is of order o( f(¢)) in the operator
norm L(H'Y*(T'g); H~Y2(Ty)).

Remark 5.4. In the scalar case the operator 13 is defined by the bilinear form (74).
From (81) it follows that f(¢) = & for the Neumann boundary conditions on the
hole B.. For our specific applications, expansion (111) results from the asymptotics
of the shape energy functional in the ring C(R, ¢), as it is for the scalar problem.
If the form of operator 3 in (111) is known, in order to apply the general scheme
the only assumption to check is the compactness condition for the remainder in the
operator norm L(H'/?(T'g);: H='/?(T'g)).

Therefore, the original variational inequality defined in the domain €2, is replaced
by the variational inequality defined in the truncated domain Q. In this way, for
the purposes of asymptotic analysis the original quadratic functional defined in the
domain of integration 2., namely J(S2.; ¢), is replaced by the functional ZX(p)
defined in the truncated domain without any hole. Two problems are equivalent
under the following assumption on the minimizers u. and uX of J(Q.;¢) and
TR (¢), respectively.
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Condition 5.5 For ¢ > 0, with & small enough, the minimizer u® in the truncated
domain coincides with the restriction to the truncated domain Q2 g of the minimizer
ug in the singularly perturbed domain Q..

If Conditions 5.3 and 5.5 are fulfilled, then the topological asymptotic expansion of
the energy functional

T(Quiue) = - / Va2 = / bu, (112)
2 Ja, Qe

can be determined from the expansion of the energy functional in the truncated
domain, namely

TRWE) = 30t u) = 1RGE) + S (A (113)

where uf is the restriction to the truncated domain Qg of the solution u, to the
variational inequality in the perturbed domain €2,. Under our assumptions, the
solution u, coincides with the solution obtained by the domain decomposition
method.

The evaluation of the topological asymptotic expansion for the energy func-
tional (112) is based on the equality (99), so we have J(Q.;u.) = ZR(uk),
combined with the following characterization of the energy functional

1 1
IR WP = inf { za®(p.9) = 1%(¢) + = (A:(@). @)rp( - (114)
pe | 2 2

The quadratic term ¢ %(Ag(q)), @)1y of the functional ZX(p) is, in view
of assumption (111) or of Condition 5.3, the regular perturbation of the bilinear
form in the quadratic functional ISR (¢). Therefore, we obtain the result on the
differentiability of the optimal value in (113) with respect to the parameter &.

Proposition 5.6. Assume that:

* The Condition 5.3 given by (111) holds in the operator norm.
» The strong convergence takes place uf — u® in the norm of the space H'(Qy),

which also defines the energy norm for the functional (114).
Then, the energy in the truncated domain QR has the following topological
asymptotic expansion
I ) = T ) = fEB@").ul)r, +0(f(e) | (115)

where u® is the restriction to the truncated domain Qg of the solution u to

the original variational inequality in the unperturbed domain 2. Therefore, the
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topological derivative of the energy shape functional is obtained from the asymptotic
expansion

TQeiue) = T (Q:u) — f(e)(B(w), uyry + 0(f(e)) . (116)
Proof. There are inequalities

IEud) — IR _ T — TR _ @) — TR w®)
G N AG) N AG) ’

which imply the existence of the limit

(117)

lim sup ISR (uf) —I* (uf) =
f(e)—0 f(e)
IR ) =" W®)
F(e)—>0 f(e) -
IR uR) —IR(MR) _

.. . Ry R
}}gl)glg 10 = (BW"™),u")ryg - (118)

From (115), in view of (99), it follows (116). O

We can conclude the analysis for the Signorini problem, and confirm that the
topological derivative of the energy shape functional is given by the same formula
as it is in the linear case.

Theorem 5.7. The energy functional for the Signorini problem admits the expan-
sion

T Qi ue) = T (25 u) — we?||Vul* + o(e?) (119)

where the topological derivative T(X) = —||Vu(X)|]? is the negative bulk energy
density at the point X € Q. Since the solution of the Signorini problem is harmonic
in a vicinity of X, the expansion is well defined. Therefore, the topological derivative
of the energy shape functional is given by the same expression as it is in the case of
linear problem.

6 Conical Differentiability of Metric Projections in Dirichlet
Spaces onto Positive Cones and Applications to the Shape
Sensitivity Analysis of Variational Inequalities

The conical differentiability of the metric projection onto the positive cone in the
Dirichlet space is considered in [6,25] with applications to the sensitivity analysis
of variational inequalities. There are numerous applications of such results for
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the shape sensitivity analysis of the Signorini problem and frictionless contact
problems in elasticity [25], crack models with unilateral non-penetration condition
[6]. We recall that the shape differentiability of the energy functional for cracks
with unilateral non-penetration condition which is established in [12], does require
only the appropriate strong shape continuity of solutions to variational inequalities
and can be obtained under mild regularity assumptions on the governing variational
inequality [6]. In Sect. 6.3 the topological derivative of the energy functional is given
for the elastic body with a rigid inclusion, weakened by a crack on the boundary of
the inclusion. It is assumed that on the crack the unilateral non-penetration condition
is prescribed which makes the analysis more involved [20] compared to the linear
case.

For the convenience of the reader we recall here the abstract result [25] which is
a generalization of the implicit function theorem for variational inequalities. We use
the result on the Hadamard differentiability of the metric projection on polyhedral
convex sets in Hilbert spaces due to Mignot and Haraux, we refer the reader to [6]
for a simple proof of such a result.

6.1 Generalization of Implicit Function Theorem
Jor Variational Inequalities. Hadamard Differentiability
of Solutions to Variational Inequalities.

Let £ C V be a convex and closed subset of a Hilbert space V, and let (-, -) denote
the duality pairing between V' and V, where V'’ denotes the dual of V. We shall
consider the following family of variational inequalities depending on a parameter
t e [0, lo), to > 0,

w €K 0 ar(u, o —u) = (b, —u) Vo ek. (120)
Moreover, let u;, = P;(b;) be a solution to (120). For t = 0 we denote
uek :alw,p—u) > (b,p —u) Yo e K, (121)

with u = P(b) solution to (121).
Theorem 6.1. Let us assume that:

e The bilinear form a,(-,-) : VxV — R is coercive and continuous uniformly with
respecttot € [0,1o). Let Q, € L(V; V') be the linear operator defined as follows
a; (¢, 9) = (Q(¢), p) Yo, € V; itis supposed that there exists Q' € L(V; V)
such that

Q=0+1tQ +o0(t) in LV;V). (122)
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e Fort > 0, t small enough, the following equality holds
by =b+th +o(t) in V', (123)

where b;, b, b’ € V'.
e The set K C V is convex and closed, and for the solutions to the variational
inequality

b =Pb)eK: a(llb,p —1I1b) > (b, —I1b) Ve e Kk (124)
the following differential stability result holds
VheV' : Mb+sh)=Tb+sIT'h+o(s) in V (125)

for s > 0, s small enough, where the mapping TI' : V' — V is continuous and
positively homogeneous and o(s) is uniform, with respect to h € V', on compact
subsets of V'.

Then, the solutions to the variational inequality (120) are right-differentiable with
respecttot att =0, i.e. fort > 0, t small enough,

w,=u+tu +o() in V, (126)
where
W =TI'0b —-Qu). (127)

Let us note, that for b, = 0 and u, = P,(0) we obtain ' = IT'(—Q'u).

6.2 Applications to Unilateral Contact Problems

We recall a result on the topological derivatives of the energy functional for elastic
bodies with rigid inclusions with cracks on the interfaces. We refer to [20] for the
proof.

Let us introduce the description of the convex cone Sk (u),

S(w) = ¢ € Hr*(Qy) : [¢] -n = 0on To;/ma(u) Vo' :/ﬂ b'w}

(128)

T

where Yo = {x € T : (u— po) -n = 0}, where po := uj,. We have the following
result:

Theorem 6.2. Let there be given the right hand side b, = b + th of the variational
inequality which governs the unilateral contact problem under investigations, then
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the unique solution u, € K, is Lipschitz continuous
lur — ull 1 @yir2) < Ct (129)
and conically differentiable in H'(Q+; R?), that is, fort > 0, t small enough,
uy=u+tv+o(), (130)

where the conical differential solves the variational inequality
veSku): / o)-V(n—v)’' = / h-(m—v) VneSku). (131)
Q\o Qy
The remainder converges to zero

1
7”0([)”H1(QT;R2) el 0 (132)

uniformly with respect to the direction h on the compact sets of the dual space
(Hll”” (R+)). Thus, v is the Hadamard directional derivative of the solution to the
variational inequality with respect to the right hand side.

6.3 Example: Topological Derivative of Energy Functional
Jor the Crack on Boundaries of Rigid Inclusions

We present an example of shape-topological sensitivity analysis for a crack located
on the boundary of a rigid inclusion. The rigid inclusion can be considered as the
limit case of elastic inclusions. In this particular case the general theory applies and
we are able to present the topological derivative of the energy functional following
[20].

Let us now consider a singularly perturbed domain Q.(x) = Q \ B.(X), where
B.(X) is a ball of radius ¢ > 0, ¢ — 0, and center at X €  \ @. We assume that the
hole B, do not touch the rigid inclusion @, namely B, € Q \ @.

We are interested in the topological asymptotic expansion of the energy shape
functional of the form

1
J(Qs;¢)=§/ o(p)- Vo' — b-g, (133)

Q. \o Qy

with ¢ = u, solution to the following nonlinear system:
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Find u, such that
—divo(u,) = b in Q;\w,
o(us) = CVuy ,
u, = 0 onI,
o(u)n =0 on dB; ,
(: —po)-n= 0 (134)
o (u)= 0
aguis of T
oM (ug) (ug — :00) n=20

—/ a(ug)n.pZ/b.pvpeR(w).

dw ®

Since the problem is nonlinear, let us introduce two disjoint domains 2z and
C(R,¢), with Qg = Q\ Br(%) and C(R, &) = Bg\ B, € Q\ @, where Bg(X) is a
ball of radius R > ¢ and center at x € Q \ ®@. For the sake of simplicity, we assume
that b = 0 in Bg(X), that is, the source term b vanishes in the neighborhood of the
point X € Q \ @. Thus, we have the following linear elasticity system defined in the
ring C(R, ¢):

Find w, such that

—divo(w,) =0 in C(R,¢),
o(we) = CVw? | (135)
We =V onI'y,
o(ugn =0 on dB; ,

where 'y is used to denote the exterior boundary 9By of the ring C(R, ¢). We are
interested in the Steklov—Poincaré operator on I'g, that is

Acive H2(Tg:R?) — o(wo)n € H'V2(Tx: R?) . (136)

R

. is solution of the variational

Then we have o(uf)n = A.(uR) on T'g, where u
inequality in Qg, that is

uF e Ky - / o @k) - V(- u®) + / A ) - (= ub)
QR FR
z/ b-(n—u®) Vnek,. (137)
Qv\Br

Finally, in the ring C (R, ¢) we have

/ o(we) - VW; = / AE(WS) *We (138)
C(R.e) Tr
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where w, is the solution of the elasticity system in the ring (135). Therefore the
solutions uf and w, are defined as restriction of u, to the truncated domain 2z and
to the ring C(R, ¢), respectively.

In particular, in the neighborhood of X € Q \ w, the energy in the ring C(R, ¢)
admits the following topological asymptotic expansion

/ o(we)-Vw! = / o(w)-Vw* —21&’Po(w(X))-Vw' (X)+o(e?) . (139)
C(R.¢) Br

where w is solution to (135) for ¢ = 0 and PP is the polarization tensor. It means that
w is the restriction to the disk By of the solution u to the nonlinear system defined in
the unperturbed domain 2. Therefore, we have that the Steklov—Poincaré operator
defined by (136) admits the expansion for ¢ > 0, with & small enough,

A= A—-2’B+o(?) , (140)
where the operator B is determined by its bilinear form
(Bw),w)r, = nPa(w(x)) - Vuw'(X) . (141)

From the above results, we have that the energy shape functional associated to
the cracks on boundaries of rigid inclusions embedded in elastic bodies has the
following topological asymptotic expansion

J(Qe) = T(Q) — ne’Po(u(%)) - Vu' (R) + o(e?) | (142)

with the topological derivative T (X) given by
T(x) = —Po(u(x)) - Vi’ (x) , (143)
where u is solution of the variational inequality in the unperturbed domain 2y and

P is the Pélya—Szegd polarization tensor.

Remark 6.3. From equality (138) we observe that the bilinear form (141) represents
the topological derivative of the Steklov—Poincaré operator (136). In addition, since
solution u € I, of the variational inequality is a H 1(Qy; R?) function, then it is
convenient to compute the topological derivative from quantities evaluated on the
boundary I' in similar way as for the scalar case.

7 Shape Sensitivity Analysis of the Griffith Functional

In a forthcoming paper the first order shape-topological sensitivity analysis of
energy functionals is used to establish the shape differentiability of the so-called
Griffith shape functional. We are going to describe briefly a result of this sort.
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Example 7.1. Let Q := Q. U T U Q; be an elastic body with the rectilinear crack
I, C ¥ C Q, thus 92 := I'; U dQ2. We consider the shape functional defined
by (46) which is called the Griffith functional

J(Q) = %/ {divV - gij(u) — 2E,;,~(V;u)} 0y (u) —/div(Vf,-)u,-,

Q¢ Q¢

where the displacement field u is given by the unique solution of the variational
inequality

ue K :au,v—u)=(f,v—u) Vuek, (144)

and the velocity vector field V is compactly supported in €2.. We need the
decomposition of 2 into €2, and €2; for the purposes of the domain decomposition
technique to our problem. Let @ C 2; be an elastic inclusion.

Proposition 7.2. Assume that the energy shape functional £(2;) is shape differen-
tiable in the direction of the velocity field W compactly supported in a neighborhood
of the inclusion o C 2;, then the Griffith functional is directionally differentiable
in the direction of the velocity field W .

The result is proved by the domain decomposition technique with a linear problem in
2; which is used to determine the expansion of the energy functional with respect
to the boundary variations of an inclusion and the nonlinear problem in cracked
subdomain €2, which is used to obtain the conical differentiability of the solution
with respect to the variations of the Steklov—Poincaré operator:

* the differentiability of the energy functional in the subdomain €2; implies the
differentiability of the associated Steklov—Poincaré operator defined on the
Lipschitz curve given by the interface Q; N Q. with respect to the scalar
parameter t — 0 which governs the boundary variations of the inclusion w;

» the expansion of the Steklov—Poincaré nonlocal boundary pseudodifferential
operator obtained in the subdomain €2; is used in the boundary conditions for
the variational inequality defined in the cracked subdomain €2, and leads to the
conical differential of the solution to the unilateral problem in the subdomain;

 the one term expansion of the solution to the unilateral problem is used in the
Griffith functional in order to obtain the directional derivative with respect to the
boundary variations of the inclusion.
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Boundary Stabilization of Numerical
Approximations of the 1-D Variable Coefficients
Wave Equation: A Numerical Viscosity
Approach

Aurora Marica and Enrique Zuazua

Abstract In this paper, we consider the boundary stabilization problem associated
to the 1 — d wave equation with both variable density and diffusion coefficients
and to its finite difference semi-discretizations. It is well-known that, for the finite
difference semi-discretization of the constant coefficients wave equation on uniform
meshes (Tébou and Zuazua, Adv. Comput. Math. 26:337-365, 2007) or on some
non-uniform meshes (Marica and Zuazua, BCAM, 2013, preprint), the discrete
decay rate fails to be uniform with respect to the mesh-size parameter. We prove
that, under suitable regularity assumptions on the coefficients and after adding an
appropriate artificial viscosity to the numerical scheme, the decay rate is uniform
as the mesh-size tends to zero. This extends previous results in Tébou and Zuazua
(Adv. Comput. Math. 26:337-365, 2007) on the constant coefficient wave equation.
The methodology of proof consists in applying the classical multiplier technique at
the discrete level, with a multiplier adapted to the variable coefficients.
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1 Preliminaries

Let us consider the following initial boundary value problem associated to the 1 —d
wave equation with variable coefficients and with a damping mechanism acting on
the right endpoint of the space interval:

p(X)ve — (o (x)vy)x = 0, x€(0,1),t€(0,T]
v(0,7) =a(D)ve(1,8) +v,(1,1) =0,¢ €[0,T] (1.1)
v(x,0) =02(x), v (x,0) =v(x), xe€(0,1),

where (0, v') € H!' x L?(0,1) and H}'(0,1) = {f € H'(0. 1), £(0) = 0}.
Here we have taken the dissipative boundary condition

o(Mve(1,t) + v, (1,1) =0,
but similar results can be proved for more general feedback terms as, for instance,
o(Dve(1,1) + kv, (1,1) = 0,

with k > 0 and k # 1. In fact, problem (1.1) with the second dissipative condition
can be reduced to (1.1) by scaling the time variable.
The energy corresponding to the solution of (1.1),

1
Epa V(5 1), v (1)) = E(Ilﬁw(-,t)lliz + ||\/va('af)||iz)a

obeys the following dissipation law:

;itsp,(,(v(-,t),v,(-,t)) = (0P o (12)

t

Epa (V) = Epo (W 1), V(1) = / ve (1,2 dr'.

0

When the variable coefficients p and o belong to the BV (0, 1) class of functions
with bounded variation, the following stabilization property holds, ensuring the
exponential decay of the energy &,,(v(-, ), v:(:,t)) of the solutions of (1.1), i.e.,
the existence of two constants M, @ > 0 such that the following estimate holds for
any solution v of (1.1) corresponding to the initial data (\*,v') € H,! x L?(0, 1) and
any ¢ > O:

Epo (W, 1), (-, 1)) < M exp(—t®)Ep s (V' V"). (1.3)
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There is an extensive literature on the exponential decay of solutions of damped
wave equations. In the 1 — d case under consideration, a careful spectral analysis
allows showing that, most often, the eigenfunctions of the associated generator of
the semigroup constitute a Riesz basis. This allows characterizing the decay rate in
terms of the spectral abscissa. In the case p = 0 = 1, the solutions of (1.1) vanish in
finite time for all # > 2. But this only occurs in this very exceptional case as pointed
outin [5].

For multi-dimensional problems, the analysis of the exponential decay rate
cannot be performed by spectral analysis methods and it requires of tools such
as microlocal analysis (see the Appendix 2 of [20] by Bardos—Lebeau—Rauch and
[1] where the exponential decay is proved by microlocal tools under the so-called
Geometric Control Condition), multiplier techniques [18, 29, 30], and Carleman
inequalities [25].

For one-dimensional problems as the one we are considering here, the exponen-
tial decay can also be proved by means of the so-called sidewise energy estimates
or Liouville transformations [13,27,28].

In this paper, we are mainly interested in the exponential decay of the finite
difference approximations and the multiplier technique seems to be the one that is
better adapted to this goal. In [4], in the continuous setting, the variable coefficients
case was analyzed and multipliers adapted to the two variable coefficients p and
o in (1.1) were introduced. Note that the multiplier technique requires some
minimal regularity of the coefficients, say, one derivative. This is not just a technical
requirement, but rather a necessary condition. Indeed, BV is the minimal regularity
assumption on p and o to ensure that stabilization holds since, as proved in [3] and
[12], the observability property may fail at infinite order when o = 1 for some
pathological p € C%%(0, 1) for any a € (0, 1) or at finite order for some p in the
log-Lipschitz or log-Zygmund class.

Consequently, one can say that the exponential decay of solutions of the
dissipative wave equation with variable coefficients can be handled in a satisfactory
manner using multiplier techniques. But this is far from being the case for numerical
approximation schemes and this is the subject we address here. Indeed, the
propagation, controllability, and observability properties of the numerical schemes
for the wave equation are usually much more delicate to be analyzed due to
the existence of fictitious numerical solutions concentrated on the high-frequency
modes. These solutions do not affect the convergence of the numerical solutions in
the classical sense of the numerical analysis since they are highly oscillatory and
weakly converge to zero, but they become important from a stabilization point of
view since the standard feedback mechanisms are not capable of dissipating their
energy efficiently. Roughly, one can say that boundary feedbacks are inefficient
with waves that do not reach the boundary. For the numerical schemes of the
constant coefficients wave equations on uniform meshes, the theory is almost
complete. Indeed, by now the full panorama of the numerical pathologies and the
corresponding remedies to get uniform observability estimates as the mesh size
parameter tends to zero are well-understood (see the survey paper [31] or the more
recent one [10]).
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The paper [26] deals with the finite difference discrete version of the expo-
nential decay estimate (1.3) under the assumptions that the coefficients p,o in
the continuous model (1.1) are constant and the grid is uniform. In particular, an
uniform exponential decay rate is proved to be recovered uniformly as the mesh size
parameter goes to zero by adding an artificial damping in the form of a numerical
viscosity. This artificial viscosity method is similar to the Tychonoff regularization
one introduced by Glowinski—Li—Lions in [15] and proved to be efficient for
computing convergent numerical controls for the wave equation. The efficiency
of the vanishing viscosity method was proved in some other contexts as well. For
example, to recover the uniform controllability properties of a semi-discrete finite
difference scheme for the 1 — d wave equation by means of moment theory tools
(fine biorthogonal estimates) in [23]; to obtain uniform stabilization properties of
the finite difference semi-discretizations for the perfectly matched layer (PML)
approximation of the wave equation in [7] or of some time discretizations of
a general class of exponentially stable systems by using the so-called resolvent
estimates method in [8] and [9].

The aim of the present paper is to extend the results in [26] to the three-point finite
difference semi-discretizations of the wave equation (1.1) with variable and smooth
coefficients p, 0 on uniform meshes. We will also see that a numerical scheme on a
non-uniform mesh obtained as a diffeomorphic transformation of a uniform one can
be written as a numerical scheme for a different variable coefficients wave equation
on a uniform mesh.

Let us also highlight some recent literature on the behaviour of the numerical
waves on quasi-uniform meshes or on non-uniform ones obtained by diffeomorphic
transformations. In [6], uniform observability properties are obtained for mixed
finite element approximations of the constant coefficients wave equation on quasi-
uniform meshes. This analysis uses the particular structure of the numerical scheme
allowing a full description of the spectrum, even in the non-uniform mesh case.
In [2], the spectral distribution of the eigenvalues of sequences of locally Toeplitz
matrices arising in numerical approximations of elliptic operators with variable
coefficients on non-uniform meshes obtained by diffeomorphic transformations is
analyzed. In [22], using pseudo-differential calculus tools, we rigorously define the
Fourier symbol and analyze fine geometric properties of the bi-characteristic rays
for the finite difference approximations of the variable coefficient wave equation on
non-uniform meshes obtained by regular transformations. The spectral distribution
in [2] turns out to be the integral on the phase-space domain of the Fourier symbol
in [22].

This paper is organized as follows. In Sect.2, we recall the stabilization
properties of the continuous model. In Sect. 3.1, we state our main result concerning
the uniform stabilization of the viscous finite difference approximations of (1.1) and
we discuss the analogy between the numerical schemes for the wave equation on
non-uniform meshes and those for variable coefficients wave equations on uniform
meshes. In Sect. 3.2, we prove the main result in Sect. 3, Theorem 1, and in Sect. 3.3,
we test numerically our theoretical result in Sect. 3.1. Finally, in Sect. 4 we provide
some final comments on our results and related open problems. Additionally, for
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the sake of completeness, we have included Appendix A. containing the proof of
the main result in Sect. 2 concerning the continuous model.

2 Stabilization of the Continuous Model

The exact statement of the exponential decay property (1.3) is the following one:

Theorem 2.1 (Appendix in [5]). For any strictly positive coefficients p,o0 €
BV(0, 1) and any initial data (\*,v') € H,l x L2(0, 1), the solution v of the damped
wave equation (1.1) satisfies the estimate (1.3).

By density arguments, it is enough to prove the decay property (1.3) for dense
subsets of coefficients and initial data, with constants M and @ depending on the
total variation of the coefficients p and o. We will consider here the dense subclasses
given by strictly positive coefficients p,oc € C'(0, 1) and initial data (\*,v!) € V,
where

Vi= (/0 f) € B x L20.1), (32, £°.02, 1) € H} x L*(0. 1)},

We denote by 8%,’0 f = (0fy)x/p the weighted Laplace operator involved in the
wave equation (1.1). Indeed, set v, to be the solution of (1.1) corresponding to the
strictly positive coefficients pe,0. € C'(0, 1) and to the initial data (*0,v!) € V
and assume that p. —> p, 0. —> o strongly in BV(0, 1) and (+2,v!) — (10, v1)
strongly in H ll x L%(0,1) as € — 0. Taking into account the dissipation law of the
energy (1.2) and the uniform positivity of the coefficients (o, o.), we see that v, is
uniformly bounded in L*(0, co; H,'(0,1)) N W!*°(0, 00; L*(0, 1)) as € — 0 so
that

ve — v weakly star in L*°(0, 0o; H}'(0, 1)) N W'(0, o0; L*(0, 1)).

For any 6§ € L'(0,T; H/'(0,1)) N W"(0,T: L*(0,1)), with a finite 7 > 0, v,
satisfies the weak formulation

1 T 1
/pevm@ dx‘j —//,ogvg,t@m dxdt
0 00
T T 1
+/v€,t(1,t)9(1,t)dt+//oevg,xee,, dxdt =0. (2.1)
00

0

Since BV(0,1) C L°°(0, 1) continuously, from the strong convergences in BV,
we get strong convergence p. —> p and . —> ¢ in L*°(0, 1). On the other hand,
from the dissipation law (1.2) for v, we see that v, (1, ¢) is bounded in L*(0, T) and



290 A. Marica and E. Zuazua

then, after extracting subsequences, there exists a function f € L?(0, T') such that
ve:(1,-) = f weakly in L2(0, T). To identify f asv;(1,-), observe that v (1,7) =
) vex(x, 1) dx, so that ve(1,-) — v(1,-) weakly in L*(0,T), ve,(1,-) = v,(1,-)
in H71(0,T) and then f = v;(1,-) € L*(0,T). We can now rigorously pass to
the limit into the weak formulation (2.1) and we obtain that the limit v satisfies
the wave equation (1.1) with coefficients p, o and initial data (+°,v'). Taking into
account the weak star convergence of v, to v, we obtain E,,(v(-,1),v/(-,1)) <
liminf, £, 5, (ve(-, 1), Ve, (-, 1)), which, combined with the passing to the limit in
the exponential decay property (1.3) for the regular coefficients p.,o. and data
(12, v}), concludes the exponential decay property (1.3) for all p,o € BV(0,1)
and (°,v') € H' x L*(0,1).

Taking into account the above observation, in what follows, we will focus only
on the decay property (1.3) for strictly positive coefficients p,o € C'(0,1) and
(", v") € V. As we will see, the exponential decay property (1.3) is equivalent to
the existence of a time 7" > 0 and a positive constant C > 0 such that the following
observability inequality holds for any (+*, v!) € V and v the corresponding solution
of (1.1):

T
Epo (V) < C/|v,(1,t)|2dt. (2.2)
0

Also (2.2) is equivalent to a similar observability property for the corresponding
conservative system with initial data (u°, u') € V:

p()uy — (0(X)ux)x = 0, x €(0,1),t € (0,T]
u(0,1) = uy(1,1) =0, 1 €[0,7T] (2.3)
u(x,0) = u(x), u (x,0) = u'(x), x € (0, 1),
namely,
T
Epo W u') < c// |ue (1, 1)) dt. (2.4)

0

We obtain the following result for which we will give two proofs in Appendix A.:

Theorem 2.2. a) For all initial data (u®,u") € V and all strictly positive coeffi-
cients p,o € C1(0, 1), the observability inequality (2.4) for the solution of (2.3)
holds for any time T satisfying

1
T>T, =20, withl = / ,/@dx. (2.5)
o(x)
0
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b) For all initial data (u®,u") € V in (2.3), all strictly positive coefficients p,o €
C'(0,1) and all T > 0 the following direct inequality for the solution of (2.3)
holds:

T
/|ut(l,t)|2dt§ C"Eo(®,u'). (2.6)
0

c) Equivalently, the observability inequality (2.2) and the exponential decay esti-
mate (1.3) also hold.

Remark 1. The optimal time T, := 2 in (2.5) can be obtained by using the
Liouville transformation ¥ = L(x) := [, v/p/o(x')dx" as in [19], [21] or [27].
In this way, (2.3) is transformed into the wave equation it, — itzz — f1 (L™ (¥))itz —
fo(L7'(X))t = 0 on the space interval X € (0,¢). Here, the unknown is
u(x,t) := u(x,t)/f(x) and f can be any strictly positive function such that
fi = ((f/Po) + /po f1)/(fp) and fo := (af")'/(fp) belong to L*(0, 1).
The principal part of this new equation being the d’ Alembert operator, the optimal
observability time is indeed 7:* = 24.

In this paper, the optimal time T, in (2.5) is rigorously obtained by the method
of sidewise energy estimates in Appendix A.. However, since this method does not
seem to be adaptable at the discrete level, we will present a second proof using a
multiplier technique, that can be adapted to the discrete case. Note however that the
multiplier technique provides the observability property (2.4) in a non-optimal time
T>T,,

T, :=2llpvp/ol|Lee. 2.7

In order to define the function ¢ in (2.7), we first introduce some notations
and results concerning the BV(0, 1) class. For strictly positive coefficients p, o €
L*°(0, 1), we denote by p,, p* and o,,0* the four constants with the following
properties:

0<a,:= inf a(X) <a(x) <a*:= sup a(X) < oo (2.8)
x€0,1] %€[0.,1]

forall x € [0,1] and @ € {p,0}. Since p,o0 € BV(0, 1), they admit the Jordan
decomposition a(x) := a(0) + a*(x) —a~(x) forall @ € {p, 0} (cf. [14]), where

at(x):=TV(a,0,x) and a” (x) := —a(x) + a(0) + TV(a,0, x). (2.9)

By TV(a,a, B), we denote the total variation of the function a on the interval
(o, B) C (0, 1). Moreover, p*,0" > 0 and p~,0~ > 0 are increasing functions. If
a e W"(0,1) c BV(0,1),then TV(a,a, B) = ff |a’(X)| d %. Here,’ denotes the
derivative of a function depending on one variable.
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As indicated above, one of the techniques used here to prove the observability
inequality (2.4) with observability time given by (2.7) is the multiplier one (cf. [20]).
For p., o, and pi, oF asin (2.8) and (2.9) and inspired by [4], let us define the
adapted multiplier ¢ (x)u,, where ¢ is given as follows:

ot (x) + p—(x)

o(x) = exp(Y¥(x)), with y(x) := x +
Oy P*

(2.10)

Remark 2. Note that the classical multiplier xu, used to prove observability for
the constant coefficient wave equation in [20] is not appropriate for the variable
coefficients case. Indeed, by multiplying (2.3) by xu, and integrating in (x,?) €
(0,1) x (0, T"), we obtain the following multiplier identity:

T
1 T
TE oW’ u") = ?/Wt(l,z)ﬁdt—xx,,(z) .
0

+

N =

T 1
/ / (0’ (Ot (v, )P/ () s (e )P dedr, - (2.11)
0 0

where

1

Xy (t) := /oz(x)u[(x,t)ux(x,t) dx. (2.12)

0

Using the Cauchy—Schwarz inequality, we get

IXXp(t)I <Ilxv :O/G”LOOE/),G(“O’ “1)7

so that

| X (D15 | < 21Ix v p/0||Lo0Ep e, u). (2.13)

We also easily obtain

N =

T 1
/ / 20" ()it (5. )P — 0 0 te (ra D) vt < g TEp (o), (2.14)
0 0

where

* My :=0,if6’ <0andp’ >0,
* Mye i=max{||xp’/p||ree, ||x0'/0||Lo},if 0’ > 0and p’ <0,
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° mp,U = ||xp//p||L°°’ ifO'/, pl =< 0’
* mpo = ||x0’/0]|ree,if 07, p" > 0.

Combining identity (2.11) with inequalities (2.13) and (2.14), we get

T
1
(1= mpa) =2l /ololoe) €0a i) = 22 [putofar @19
0

so that observability holds under the requirement m,, < 1 on the coefficients. But
this artificially reduces the class of admissible coefficients in Theorem 2.2.

3 Stabilization of the Numerical Approximation Scheme:
A Vanishing Viscosity Method

3.1 Main Result

Consider N € N, i := 1/(N 4 1) > 0 to be the mesh size parameter and G" :=
{x; = jh,0 < j < N 4+ 1} an uniform grid of size 4 of the interval [0, 1]. For o as
in(1.1), setojy1/2 1= O'()Cj.H/z), with0 < j < N,and pj = p(xj), with0 < j <
N + 1. We denote by f" the column vector of components f;,0 < j < N +1. Also
define the forward, backward and centered first-order finite differences 8’_1, 9" and
M as " f; = £(fjx1— f;)/hand & f; := (fj+1— fi—1)/(2h). Let 32 be the
three-points finite difference approximation of the weighted second-order derivative
9% := 0,(0d,) defined as follows:

04120y [ — 0j-120" f

M f = -

3.1

We also set 9?2 := 8}11’2 to be the classical centered three-point finite difference
operator approximating the Laplacian 0.

Let us now consider the following viscous finite difference semi-discretization of
the damped wave equation (1.1) on the uniform grid G”:

pjVi(t) — 32y, (1) = h*3"2V) (1), 1<j<N,te(,T]
V()(t) = CTN+1/23]_1|_VN(I) + V§V+1(t) =0,1¢€ [0, T] (3.2)
vi(0) = VO, (v!) (0) = VI,

In this section, " denotes the time derivative. The energy associated to the damped
wave equation (3.2),
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2

i hd ho h

ho oh AN 2 h 2 2
&y (V1) v, (f))-—§j§=lpj |V/j Q] +§j§=00j+1/2|3+"j O+ 2on+iss Wy O,
is decreasing in time and satisfies the following dissipation law:

L V(@) v (1) = =y (OF = hSZlaﬁ Vi) (3.3)

0,0
dt =

or

&, (vV"(0). v (0)—~E!, (v (). ¥/ (1)= / |vN+1(z)|2dz+h3Z / |90/, (1)

]00

As in the continuous case, we are interested in the exponential decay property
of the discrete wave equation (3.2), i.e., in the existence of two positive constants
M.,& >0 independent of /4 such that the following energy estimate holds for all
t > 0 and for all initial data (v"°, v"!) in (3.2):

EL V(@) V(1)) < M exp(—t&)E] (VMO v, (3.4)

Also, as for the continuous model, the decay property (3.4) is equivalent to the
existence of a finite time 7" > 0 and of a constant C > 0 such that the following
observability estimate holds for any solution v"(z) of the damped system (3.2),
uniformly as 7 — O:

T N T
gL (v"(0).v}(0) = C /|v§\,+1(t)|2dt+h32/|3]_1|_v’j(t)|2dt . (33)
0 J=0%

Consider the following finite difference approximation of (2.3):

0j j(t)—a“u,(t)—o 1<j<N,te(,T]
uo(1) = 3" un () = 0, tel0,T] (3.6)
u"(0) = u"?, (u")'(0) = u*!,

for which the total energy of the solutions given below is time conservative
Pl no
£y ' (0). 0! (0) 1= 5 3 pil(OF + 5 D 010055 (1)
j=1 j=0

At the same time, the decay property (3.4) is equivalent to the fact that the
following observability inequality holds for any solution u” (¢) of the conservative
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system (3.6):

N—1 T

", (0).u](0)) < C’ /IMN+1(1)|2dt+h3 Z/|3ﬁ_u OPdr|. @37

]—00

Let us now state the main result of this paper:

Theorem 1. a) For all strictly positive coefficients p,o € C?(0,1) and all initial
data (W0, u') € RN xRN T in (3.6) such that their total energy Eg’g (0, uh)
is finite, the discrete observability inequality (3.7) holds uniformly in a finite time
T*h that tends to T, in (2.7) as h — O.

b) Equivalently, (3.5) and (3.4) also hold true, uniformly with respect to h > 0.

Remark 3. Consider g : [0, 1] — [0, 1] to be an increasing C3(0, 1) function such
that g’'(x) > g, > 0 for all x € [0, 1], a non-uniform grid g{; of the interval
[0, 1] constituted by the nodes g; := g(x;) and the following viscous numerical
approximation of the constant coefficients wave equation v, — vy, = 0 on the non-
uniform mesh g{;:

6’_’,_ ,(r> R0
h ol g h23h
Vi(r) — s Y= ahv W 1<j<N1eT]
_ +‘N(f) ’ -0 0 T (38)
vol(t) = T ex +Vy (1) =0, t€][0,T]

Vh(()) — Vh,O’ (Vh)/(()) = yhl

Observe that (3.8) can be also seen as a semi-discretization of the variable
coefficients wave equation (1.1) with 3"g ~ g’ =: p and 1/8 g~1/g =0
on the uniform mesh G", so that our result in Theorem 1 also applies to system (3.8)
and to its conservative version in which the two damping mechanisms represented
by the right hand side in the first equation and the second term vy , (¢) in the second
equation on the boundary are eliminated.

3.2 Proof of the Main Result, Theorem 1

a) Set ¢; := @(x;), with ¢ as in (2.10). Let us multiply (3.6) by ¢; ahu,» (t), add in
1 <j < N andintegrate in ¢t € (0, 7). Then

2

=1

P} ()g; " u; () dt — h Z / 2u; (t)p; 8" u; (1) dr = 0. (3.9)

_10

St~
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Step 1. Processing of the first term in the left hand side of (3.9). After
integration by parts in time, taking real parts and using the identity 2ab = |a|* +
|b]?> — |a — b|* for all a, b € R, we obtain

N
hyo
j=1

St~

T
r 1Y
bty 0 dr = 80| =3 Y [0 0110 = wi @)
j=1 0

(3.10)
where w; (1) := |u;(t)]” + [, (1)]> — | (t) — ;_, (1)]* and

N
X)) =hY e (0)0"u; ().

J=1

In what follows, we will often apply the Abel summation by parts formula:

B B
Y (ajy1—a;)bj = agyibpyr —dabarr — Y ajri(bjy1—bj) (3.11)
j=«a j=a—1

forall « < B € Z. We first apply formula (3.11) for the last term in the right hand
side of (3.10) in the particular case of « = 1, 8 = N, a; = w;(¢t) and b; = (¢p);.
Taking into account the boundary conditions in (3.6), we get wy+1 = 2[u)y 12
(since uy = u)y) and wi; = 0 (since u;, = 0). In this way,

N N
> (90) wjr1=w;) = 2(pp)n41luly 41 *= Y ((9p) 11— (0p) ) (1 4y P12 )
Jj=1 j=0
N—1
+ ) () j1— (o) iy — . (3.12)
j =0

Due to the boundary condition u; = 0, the second term in the right hand side of
(3.12) verifies the identity

N

Y (o) j+1 = (@) N1 > + [ 1P) = ((@p)n+1 — (@o)n) |ty 11
j=0

N
+ > ((ep)j 1 — (ep) ;D%
ji=1

so that we get the following expression for the first term in the left hand side of
3.9):
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N r T
By [ byt 00y 0yt = X)) = ELECON [y
0

]—10

3Nl

v T
Z/ah@P)le}(f)lzdt—Rl, Ry = — /3+(<pp), " (1)) dt.
0

Jj=1

NS

+

(3.13)

Step 2. Processing of the second term in the left hand side of (3.9). First, by
simply taking into account that 20"u; = 8" u; + 9, u;_;, we obtain

N T
—hZ/anguj(z)wjahuj(z)dt
0

Jj=1

N T

1

EZ/ (0417210 u; () = 0j—12] " uj—1 (1)]?) dt
j=10

R

EZ/qoj(oj+1/2—(fj_l/z)a’jruj(t)aiiuj(t)dt. (3.14)
]=10

For the first term in the right hand side of (3.14), we use the Abel formula (3.11)
witha = 1,8 = N,a; = 0j_12|9" u;—1|* and b; = ¢;. Taking into account that
an+1 = 0 (since aﬁ_uN = 0), we get

N
Z:<.0j((fj+1/2|3ﬁ.uj|2 —oj_ip|tui ) =
=l
N—1
— po01/2|0% uo|* — Z 0j+1/2(0) 11— @) u; . (3.15)
=0

On the other hand, using the identity 2ab = |a|?> + |b|?> — |a — b|?, holding for
all a,b € R, in the particular case a = crj+1/23ﬁ_uj and b = o,-_l/zaﬁu,», we can
transform the second term in the right hand side of (3.14) as follows:

N N

1
Y 0ioj1—0j 1) u;d"u; = 3 > i 0741 ol + 07y 10" ]?)
j=1 j=1

W& ha 2 Oj+1/2=0j-1/2
— N 10822, with ;=g L2 T2y < <N, (3.16)
) ; J10g Uj j 12012
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Since 0" u; = 8" u;_; and 8" uy = 0, we get

N

h h
Z Vi (07 41841 4 07y |00 u51%) =
j=1

N—1
Y1074 uo? + Y (i1 + v)07 1ol us | (3.17)
j=1

Finally, inserting (3.15)—(3.17) into (3.14), we obtain

N T (plcrz/ 1
—h Y| ouy ()0 () de = —2 /3h 0 dr
0/ M2 () 8w (1) 1 03/2 10" uo(1)]

= 01/2

N—1 T

h / i [‘PJ( 1 1 )} h 2

+ = o 0% + % u;(t)|” dt

2;=1o e Oj+1/2  0j-1/2 1035 )

h o

T Z/y 902 (1) dr. (3.18)
i=1y

Step 3. Equipartition of energy. Note that the last terms in the right hand sides
of (3.13) and (3.18) are reminder terms with respect to formulas (A.4) and (A.5)
(in Appendix A.) corresponding to the continuous case. The last term in (3.13) is
a discrete version of —h? fOT fol (p) (x)|urx (x,1)|?> dxdt/4, while the last one in
(3.18) is of the form

T 1
_}2 / 2
h/O /Ow(X)(l/cr) ()| (oux)x (x, ) |* dxdt/4.

However, in the right hand side of the discrete observability inequality (3.7) only
the discrete version of the term /2 fOT fol |usx (x,1)|? dx dt appears, so that firstly we
have to express the last terms in (3.13) and (3.18) in terms of the last one in (3.7),
modulo eventually some additive reminders. To obtain an equivalent expression of
the last term in (3.18), we multiply (3.6) by y; 8g'2uj (t),addinl1 < j < N and
integrate in ¢ € (0, 7). After integration by parts in time, we get

N T
hzz/ 1082 (1) dt = hZZ/y,p,u (0)"u; (1) dt
j=1 0

_]0
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N . N T
= hZZyjpju/j(t)f)g’zuj(t)‘o —hZZ/)/jpju’j(t)Bﬁ’zu’j(t)dt. (3.19)

j=1 j=1}

If a; is defined only for values of j between 1 and N, then, by applying the Abel
formula 3.11) fora =2, =N — 1,a; = 0,_129" g;—1 and b; = f;, we get:

N N

WY [0 =h Y f5 (04120485 — 0j128g-1)

=l =

= hfy(on4120"gn — on—120", gn—1) + hfi(0329" g1 — 0129, o)
N—1

+h Z @120 g —0j—120" g;-1)
=

= hfy(on11/20" gy — on—1/20" gn—1) + hfi(0329 g1 — 0129, g0)

N—1
+ hfvon—1)2d" gn—1 — hfi0329" g1 — h Z(fj+l — f)oj+120" g,
i=1
and, finally,
N
3 pitrss -
=1
N—1
hfvons120% gy — hfiorpdigo—h Y (fi+1 = f)oj 1204 8. (3.20)
j=1

Apply (3.20) for f; = y;p;u’; and g; = u;. Taking into account that i uy =0,
we transform the first term in the right hand side of (3.19) as follows:

N
Ry yipjuy oy tu; = =Y, (3.21)
j=1
with
N—1
VE (@) 2 = hyipud, (o1 uo(t) +h Y (v p1pj 41y 1y ()
=1

— iU (0)oj 11720 u; ().
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Also apply (3.20) for f; = y;p;u/; and g; = u/;. Taking into account that 9" u)y =
0, from the second term in the right hand side of (3.19) we get:

0 Zy,p,u o2, = —y1pi101y2] 9y up®

N—1

h
—h Z(Vj+1pj+1ulj+1 —yipju;)oj 41208 U
j=1

2 N—1

h
= —h2y1p1012|0" up|* — 5 Z(Vj+lpj+l +¥ip)0j 172100 P

=
=
3 Z(Vj+1,0j+l —yip)0j 1720 1y P = | ). (3.22)
=l

In the last term in the right hand side of (3.22), for the terms of indices from j = 2

to j = N —2, we apply the Abel formula (3.11) fora = 2,8 =N —2,a; = |u’j|2,

bj = (Vj+1Pj+1—Y;P;j)0;+1/2 and, taking into account that uy, = uy_ |, we obtain
N—1

Y (@P)j+1 = (1) )0 +1/2(1u] 4y P = 1)

J=1

= ((yp)v — (YPIn—1)oNn 12ty 1> = ((yP)2 — (¥P)1) 03 2|u} |7

N—1
=Y (p)j+1 = wp);)oj+12 — (o) ; — (¥p)j—1)oj—apl WP (3.23)
j=2

Finally, by inserting (3.20)—(3.23) into (3.19), we get the following equipartition of
energy identity:

N T
h? Z/ 002u; (1) dt = =), (O] + Rz + Rz + Ra. (3.24)
7=1%

where
2 N—1

T
Rzzzhzylplol/zf|a”+u6(z)|2dt+ > /(y,+1p,+1+m)cn+1/z|3+u (0)ar,
0 =1y

h2 " (yp)N—10N—1)2
Ry= LAl /| 1 () dr
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and

h2 9" o 2N .
Ryi=—> M/| l(;)|24;_ /a (o), I (1) dr.

Step 4. The discrete multiplier identity. By putting together (3.9), (3.13),
(3.18) and (3.24), we obtain the following multiplier identity:

_ (pp)n+1+ (po)N
Ec+E,+E, = J / luly 1 ()P dt — X (D)7
R R R
,, 2 3 Ry
_ l R ——— — — —, 3.25

where X(/’}p and y};ﬁ are as in (3.10) and (3.21), the reminder terms R; to R, are
defined in (3.13) and (3.24) and the energy terms E., E,, E, are as follows:

h N oo n V= T X
— ah . /' t zdt, E = / ah
2 2_21/ wh |Mj( ! g 2 Z_: +1/27+ (Uj+1/2
i=1y =
N T
ah (t zdl _/ ah t zdl‘
+C7j—1/2>]| +Mj()| + 2 J 01/2| +”0( )|
and
@102 1 N T
191/2 N 5 )
' 4 (01/2 03/ /l (@) 0/‘71/2| fLuo(t)

Step 5. Estimates on the energy terms E., E, and E,. Due to the structure
of ¢ in (2.10), even if the coefficients p,o in the continuous model are very
smooth, ¢ cannot have more than two derivatives in L*°(0, 1) since ¢’ = ¥'¢
and v’ involves the absolute values of p’ and o’ (excepting the situation when both
p and o are monotonic). By Taylor expansions, for some X; 412 € (x;,Xj41),
Xjt3/4 € (Xj41/2,%j41)s Xjr1/a € (Xj,Xj4172), Xj € (Xj—1/2, Xj41/2), We obtain

I (pp); = (p)' (x;) + — ((wp) (&j11/2) = (@) (Rj-172)).

if (pp)” € L*°(0,1), and

4 1 1
e o]
Oj+1/2 0j—1/2

(AW 1
(E> (xj4172) + 71,
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if ", 0" € L*°(0, 1), where

oy (2) 6o ]

+h—2(§0/);’+1/2[< )(x]+1)+( )//(Aj)]+h—6<—)j+l/2( "(Xj43/4)+0" (X 41/4))

" "
+ 2—2[90 (x 1+3/4)(§) (Xj41) — <P”(5€j+1/4)(é) ()ACj)]-
At the points x € (0, 1) where o’ (x) = 0 or p’(x) = 0, the second-order derivative
¢"”(x) has jumps since it depends on (]o’|)’(x) and (Jo’])’(x). We define then
rigorously ¢”(x) as the generalized derivative (or subderivative, cf. [24], pp. 213)
of ¢’ taking at the jump points x the set value given by the closed convex hull of
{¢"(x—), 9" (x+)}, where f(x=) is the value of f to the left/right of the point x.

Thus, by taking into account that ¢ satisfies the second and third inequalities in
(A.7), we get the following lower bound on E. and E :

N T
Clh . h|l(@p)" || Lo
E. > 5 Z/p»m’j(z)ﬁdt, with C! := 1 — 2 (3.26)
j=1 0 *
and
Chh N—1 T
E,> % /0j+1/2|8’j_uj(t)|2dt, with Cl == 1— p'(h) (3.27)
Jj=0 0
and
h 0o 1 o " 0o h " 0o
PUh) = hlgllLeel[(1/0)"]|L +_Il<p [l L o),
2 o, 4 o2

*

Set C}' := min{C/", C}}} = 1 — O(h). Taking into account (3.26) and (3.27) and
the time conservation of the energy of the solutions of (3.6), we get

E.+E,>C!TE ("’ u"h). (3.28)
Moreover, using the first inequality in (A.7), it is easy to check that, for any
h<(+o0,/0*)/2, we get that E, mimics the positivity of the last term in the left

hand side of (A.6), i.e.,

E, > 0. (3.29)
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Step 6. Estimates on the remainder terms R; and R,. Observe that R; and
R, are of the same nature. Therefore, we can write their sum as follows:

3 N—1 T
]’Z h o/ 2
R —— = T Cj|a+”j(t)| dt, (3.30)
J=07
with
Y10001/2
o = 3 (gp)o — L,
ey 1=t (gp)y — PP ZHONTNE 2 j -,

and ¢ as in (2.10). By taking into account the expression of y;, 1 < j < N, in
(3.16), we obtain the following equivalent expressions of the coefficients c;:

</’1P1——§00P0
co = UMT and
ernpin (14 352) =i (14 522)

¢j = 1<j<N-1.

2h '
By Taylor expansions around x; 41,2, we obtain the following expressions of the

coefficients ¢;, 0 < j < N — 1, in which £j+1/4 € (xj,Xj+1/2), )Qj+3/4 S
(xj+1/2,Xj+1) and X; € (xj—1/2,Xj+1/2):

w=[o(2)], ,+ 30emua(5) G0+ g ln G

o
2

—(pp)" (%174)) + [a(fpp)( )/]1/2 " o (wp)]l/z( )(xl)

—<¢p> Glo(5)],,+ i’; oGy () G 33D

and,for1 < j <N —1,

=[0(D)] .+ 3w (5) G- (5) @)

h
+ 5 ((00)"(Ej434) = (2p) (% 41/4))

%[o(sop) Loa[G) Gron+ (2) 6]
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h? /
+ E(((,o,o) (%) +3/4) + (@)’ (x]+1/4))[ (1) ];+1/2
3

;lz‘fjﬂ/z[(ﬁﬂp) (x]+3/4)< )/(?Afj+1)—(@P)//(?%j+1/4)(é)//()%j)]-

The following inequality shows that the main term in each coefficient c¢; is strictly
positive for any p, o and ¢ as in (2.10). Thus, for 4 small enough, all ¢; are strictly
positive. We use here the fact that p > p, > 0,0 > 0, > 0and |o’|, || — p' = O:

ey’ 4
(;) = ;(W’PU +p'o —pa’) =

Elro+o( D7 o) 2o (W2 L )] g )

* Px

Consequently, we get the following estimate on R} — R, /4:

R, — _2 hh} Z |3h 2
1 e ()| dr, (3.33)

with
el
Chi= Ho( & ) L 0.
Step 7. Estimates on X (t) and Y (¢). Observe first that, since 8"u; =
(a’;u,» + Bﬁ_uj_l)/Z, p N (3.10) can be rewritten as

L p N1
Xl () = 5(¢P)1“’1(I)3ﬁ.uo(f) t3 Z ((@p)j 111 (1) + (pp) july (1)) uj (1)

Jj=1

By applying twice the Cauchy—Schwarz inequality, we obtain

h <pp1
x| < 2\/1 | /pru || /Tr720% ol +

N-1 e /2
pj+1lw; 117+ pjluf]
hZOle/Z\/ ! 5 | o120 |

J=1

N— N
h h
=3 E Bi+1/20+17210" u;|* + > E Bjpjlu; |, (3.34)
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where
2 1+ @2p; 2
o . Y p1Pj+1 T PP 8 — B = I [oip
j+1/2 1= ) i+1/2 1= O0j+1/2, 12 '= =
jt+1/ 207112 jt+1/ i+l / 2\ o1/
foralll <j <N —1,and
1 qolzpl) a1t e 1
B1:= 2(063/2 + o)’ B; = > . By = SON-1/2

forall2 < j < N — 1. We use the following Taylor expansions of « 11,2, the first
one around X y 1/ to estimate 8 11,2 and the second one around x; to estimate f3;:

@*p

2 —_ ("~ 2 N (% 2 NS
Oy = ( 5 )j+1/2 160j+1/2[(¢ p)" (£j+3/4) + (©°p)" (X +1/4)]

and
2
@p h 1y .
“?il/z = (_0 )J, + 5((;)2,0)]- (;) (Xj+174)x

h
201'

@0 ) + ) G (5 G100
jxl/ 4 TR\ & JE1/4)-

Then taking into account that ¢2p/c > 0 on (0, 1), we obtain the following upper
boundforall B;,1 < j < N,and B;11,,0=<j <N —1:

Bijp<Ch = Hgo\/gﬂw +0(h) Y1<j<2N. (3.35)
Consequently,
X )15 <2658 @0 u™h. (3.36)

Remark that 2Cy — T, as h — 0, with T, as in (2.7).

Note that y};ﬁ (t) in (3.21) is of the same nature as X(/’}p(t) we just estimated, so
that the same kind of techniques will be applied. Indeed, by applying the Cauchy—
Schwarz inequality as before, we obtain

[ 2
Y1P101/2
|y,},',g| < h* L= i / INCYAINGIE AT
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N—1 2 112
- Pj+l|u‘+1| +Pj|”'|
+2h25 Olj-H/Z\/ 4 > L | o120 |

j=1
N—1 . N .
<Y Bivippojapldu; P+ 02y Byp I, (3.37)
j=0 i=1

where

s Vpipi+1 +ViP)T 412 5 N ~ 1 [y?pio1)2
Ajt1/2i= e Bivip =i Pip= oy T

foralll <j <N —1,and

= 1/ )’12/)101/2) = it di—yp 5 1L
B = 2(063/2 + h . Bj= > . By = 5 GN—1/2

forall2 < j < N -1 Al ,3]-/2, 1 < j < 2N, are finite as 1 — 0 since y; in
(3.16) approximates y; ~ he;(1/ a)’j = O(h). More precisely, by the same kind
of Taylor expansions used above for o 41,2, we can prove that

_ _ N o(h), iflo’|>0Vxe]0,1]
. h = —_
Biz=Cy: H‘P<U) VPUHLOO + { O(V/h), if |o’| = 0 at some x

(3.38)

forall 1 < j < 2N. Finally, we get

1 ~
Z|ygﬁ(z)|g | <hCPE), M0 uh). (3.39)

Step 8. Estimate on the remainder term R4 and on the energy on the
boundary. The following identity is obvious:

Oi+i1/2+0j—1)2
2

Oj+1/2 —0j—1/2

I (yp); = 3" (vp); + 3" (yp), ; ,

so that
1052 (yp) ;| < o*[8"2(yp),; | + 10" l11=|8"(yp);| V2<j<N-—1.  (3.40)

To estimate the terms |3"%(yp) ;| and |3" (yp) ;|, we first note that, for y; asin (3.16),
we obtain the following identity:
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1 1

Oj+1/2 O0j—-1/2

(vp);j = —(¢p);8;, with §; :=
and then, using the formula for the discrete Laplacian 9" of the product of the

sequences @p and §, we obtain

jH1+ 28+ 8,1
4

5
I*(yp); = —9"*(¢p);

(@p)j+1+2(pp); + (pp)j—1 _

—20"(pp);0"8; — 0"5; ;

Since §; is also a finite difference and, by the hypotheses of Theorem 1, o €

CZ((), 1), we obtain
b h h 1 h 1
9"8; 25[82<c_r)j+1/z + az(c_r)j—l/z]’

9", :ahﬁz(é)ﬁl/z Bl 3h,2<§)j_1/2,

Thus
1 "
h,2 . oo —
9201 = 2ligallz=<|| () ]

sl e[ [(2)]] L + 110t ()

LOO]. (3.41)

L

Similarly, to compute the centered derivative for the product of pp and 6, we use the
identity

8j+1 48—
' (vp); = =" (¢p)8); = —"(pp), LT

gig. @P)i+1+ (9p))—
2 B 2 ’

so that

Loo]. (3.42)

19" (vp), | < h[||(¢p)’||LooH(§,)/ ot ||¢P”L°°H(cly)”

After combining (3.40)—(3.42), we get

h,2 . * o
[0, (yp) | < 20 ||ppl|L H(l)”
* o

pj p

L FOM) V2= jsN-1 (343

In a similar way, we obtain
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03/2|3+()’P)1| H , H 1y
100 < 2 [lpllo||(5) ], + o1 ()] ] + 000
(3.44)
Finally, we obtain the following estimate of Ry:
|T|<hc3T5h 0 uh, (3.45)
it €4 = 2 [allgplli|(2)]], L+ oy e[ () ]| ] + 00y
with G5 o= | 2leello=|[( ) ] o + 110 oo [[(2) ], :

Set Cy := ((pp)n+1 + (pp)n)/4 and C}' := [|(¢p)'|| Lo /4 + hp.C /2. Similarly
to (3.44), we get

T
R 1
CN/|MN+1(I)|2dt+ | 43| ((‘pp;( ) +hcf)/|ugv+l(z)|2dt. (3.46)
0

Replacing the inequalities (3.28), (3.29), (3.33), (3.36), (3.39), (3.45) and (3.46) into
the multiplier identity (3.25), we conclude the part a) of Theorem 1, by taking the
observability time 7 > T/ and the observability constant C’ in (3.7) as follows:

~ ' (o))
Th 2C2h +hC2h dC/ max{T‘, <,0p2 +hC4h}
= ———an = .
* Cl—hC? (Cl—hChHT — Cl + hCh)

3.3 Numerical Experiments

As we pointed out in Remark 3, our result in Theorem 1 is also valid in the context of
numerical discretizations of the constant coefficients wave equation on non-uniform
meshes obtained as diffeomorphic transformations of uniform ones through smooth
mappings g. As we know from [8] or [9], our main result in Theorem 1 applied to
system (3.8) is also true for the implicit midpoint fully discrete scheme

aﬂ_v;‘"’" ahy ”'H o yn=l o ghoyn

vitl_gynyyr—t Mgy o gj e g

812 23hg,~ 23hg,~ -
R2@ vt —ghyi—ty

J 2 ;

hopntl o —1 n+1 1
o= eV VY VN+1 it g,
0 Zaﬁi-g’\’ 25t
Vi=W, VI =V)4+8mvi, 0<j<N+1
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Here, §¢ is the time step, V]” is an approximation of v; (ndt), n > 0, and Vo=
(V;)0§j§N+l are the initial datain (3.8) (i = 0,1, v8 = 0). The total energy of the
solutions of (3.47),

o h& vr—yrtn
gé/;l(vh, ,Vh’ l) = 5 Zahgj) J 5 J )
— t
4 (G )+ SR (G B
1 258y, &g 2\ en &, gw

satisfies the following dissipation law:

Sh (yh.an h,n Shyhn yhn—1
ENQVhH Vi) — g (VR i)
5t

n N pntl n—1 +1 -1
VN+1 Vit ‘ _h Z ‘ Viti = Vit _ Vit =Vt e
26t 26t

prt 281

In the numerical simulations, we will consider
V) = exp(—y(xj — g () cos(x; 10/ h),

y = h™%° h = 1/400, v} = 0, the final time 7 = 20, the time step §¢ = 0.005
and ny € {r/5,7/3,7/2,27/3}. We will take two non-uniform meshes, g(x) =
gi1(x) := tan(wrx/4) and g(x) = g2(x) := 2sin(wx/6). The grid given by g; is
finer close to x = 0 and coarser to the endpoint x = 1, where the natural damping
is acting, while for the grid g, the situation is opposite (see Fig. 1).

In Figs. 2 and 4, on the left column, we consider the numerical scheme without
the artificial damping given by the right hand side in (3.47) (in that case, we also
have to eliminate the last term in the energy 5 ), while on the right column we
plot the quotient of the energies at time t = n8 t and t = O for the numerical
scheme with the artificial damping. Note that, when the artificial damping term is
not added, for both grids, the quotient of energies has a stepped structure which
is due to the fact that the energy of solutions is essentially conserved along the
rays of Geometric Optics, except for those time instances at which the support of
the solution interacts with the endpoint x = 1 of the space interval, where the
dissipative boundary condition is imposed.

Also remark that the size of the flat areas increases with the frequency, so that
the energy of solutions associated to the highest frequency (9 = 7/2, 27 /3) wave
packets remains essentially constant until the final time 7 = 20. This is due to
the fact that, as predicted in [22], the corresponding solutions of (3.47) remain
concentrated along rays that propagate with a negligible group velocity and that,
accordingly, do not interact with the dissipative boundary. In Fig. 3e, we observe
that the initial wave packet splits into two parts, one going to the left and one to
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0 0
0 1 0 1

Fig. 1 The two grids obtained through the applications g (left) and g, (right)

the right, and both of them touch the endpoint x = 1 once, but in a diffractive
manner, so that their behaviour is not influenced by the dissipative boundary. In
Fig. 3g, no one of the two wave packets reaches the dissipative boundary, in Fig. 5e,
g, the right wave packet touches the endpoint x = 1 and is dissipated, while the
left wave packet reaches the dissipative boundary approximately at the final time in
Fig. Se and does not reaches the dissipative boundary until the final time in Fig. 5g.
On the right columns of Figs. 2, 3, 4, 5 we observe that the damping mechanism is
indeed efficient for both grids. Moreover, in the case of added numerical viscosity,
the lowest frequencies o = /5, /3 are dissipated more than exponentially. This
is due to the fact that we considered an approximation of the wave equation (1.1)
with p = o = 1, for which the solutions vanish in finite time.

4 Comments and Open Problems

In this paper, we extend to the numerical approximations of the wave equation with
regular (C?) variable coefficients on smooth non-uniform diffeomorphic meshes
the results in [26] concerning the efficiency of the vanishing viscosity method
to stabilize the numerical schemes for the constant coefficients wave equation on
uniform meshes. The method of proof uses multipliers adapted to the variable
coefficients as in [4].

We list some open problems related to the content of this article:

» The stabilization problem for the numerical approximations of the variable
coefficients multi-dimensional wave equation. Extending the results of this paper
to the multi-dimensional case is a challenging open problem. Some of the diffi-
culties encountered when doing that are related to the fact that sidewise energy
estimates and multipliers do not yield satisfactory results in the continuous
context and that they are hard to adapt to multi-dimensional numerical grids.

» The efficiency of the bi-grid techniques in the stabilization and controllability
of the numerical schemes of the wave equation on non-uniform meshes. Bi-grid
algorithm was shown to be useful for observability and control problems (cf. [10]
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Fig. 2 The quotient between the energy at time nét, 5‘;,‘ (V" Vh1=1) "and the energy at the initial

time, (‘:‘Z,’ (V1 V9) for the tangential mesh g,(x) = tan(wx/4). Each row corresponds to a
high frequency oscillation ny € {7/5, 7/3,7/2,2n/3} and the left/right column to the numerical
approximation without/with numerical viscosity. (a) no = /5, no artificial viscosity, (b) 7o =
7/5, with artificial viscosity, (¢) no = /3, no artificial viscosity, (d) no = /3, with artificial
viscosity, (e) no = /2, no artificial viscosity, (f) no = x/2, with artificial viscosity, (g) no =
27/3, no artificial viscosity, (h) no = 2x/3, with artificial viscosity
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20

0 n.s 1 0 0.5 1

0 0.5 1

Fig. 3 The solutions of (3.47) on the tangential mesh g;(x) = tan(wx/4). Each row corresponds
to a high frequency oscillation ny € {m/5,7/3,7/2,27/3} and the lefi/right column to the
numerical approximation without/with numerical viscosity. (a) no = /5, no artificial viscosity,
(b) no = m/5, with artificial viscosity, (¢) no = /3, no artificial viscosity, (d) no = x/3, with
artificial viscosity, (€) no = 7/2, no artificial viscosity, (f) no = /2, with artificial viscosity, (g)
no = 2m/3, no artificial viscosity, (h) no = 2x/3, with artificial viscosity



Boundary Stabilization of Variable Coefficients Numerical Waves 313

a b
1 1
0.5 1 0.5 k\
0 0
0 5 10 15 20 0 5 10 15 20
c d
1 1
0-5 | 0.5 \K
0 0
0 5 10 15 20 0 5 10 15 20
e f
1 1
: | X
0 0
0 5 10 15 20 0 5 10 15 20
g h
1 1
: | : k
0 0
0 5 10 15 20 0 5 10 15 20

Fig. 4 The quotient between the energy at time nét, 5‘;,‘ (V" Vhn=1) "and the energy at the initial
time, 5;’ (V"1 V0 for the sinusoidal mesh g,(x) = 2sin(rx/6). Each row corresponds to a
high frequency oscillation o € {7 /5, 7w/3, 7/2,27/3} and the lefi/right column to the numerical
approximation without/with numerical viscosity. (a) 7o = /5, no artificial viscosity, (b) ny =
/5, with artificial viscosity, (¢) 7o = /3, no artificial viscosity, (d) no = x/3, with artificial
viscosity, (e) no = m/2, no artificial viscosity, (f) no = /2, with artificial viscosity, (g) no =
27 /3, no artificial viscosity, (h) no = 2z/3, with artificial viscosity
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0 0.5 I 0 0.5 I

Fig. 5 The solutions of (3.47) on the sinusoidal mesh g>(x) = 2sin(wx/6). Each row
corresponds to a high frequency oscillation 79 € {x/5, 7/3, /2,27 /3} and the lefi/right column
to the numerical approximation without/with numerical viscosity. (a) 7o = /5, no artificial
viscosity, (b) no = /5, with artificial viscosity, (¢) no = /3, no artificial viscosity, (d)
no = /3, with artificial viscosity, (€) no = /2, no artificial viscosity, (f) no = n/2, with
artificial viscosity, (g) no = 27/3, no artificial viscosity, (h) no = 2m/3, with artificial viscosity
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and the references therein). But its analysis has been confuted mainly for uniform
grids. On the other hand, its use in stabilization problems is to be developed.

* Construct classes of meshes adapted to the damping or control mechanism, for
which there is no need to filter the high frequency spurious modes to obtain
uniform controllability/stabilization properties of the numerical schemes. For
instance, in [11], we prove that, when the mesh transformation is strictly concave,
the discrete version of the observability inequality for the finite difference
semi-discretization of the 1 — d wave equation with observation on the right
endpoint of the space interval holds uniformly with respect to the mesh size
parameter. Consequently, on this particular class of concave meshes, a similar
uniform result should hold for the boundary stabilization problem from the right
endpoint without necessity of adding a filtering mechanism of the high frequency
components.

*  Numerics for rough coefficients. As explained above, the 1 — d wave equation
with BV coefficients can be observed from the boundary, while here we obtained
uniform observability properties for the numerical approximation of the wave
equation with smoother coefficients (C2(0, 1)). It remains to analyze the uniform
stabilization/control properties of the numerical approximations for the wave
equation with less regular coefficients, between BV (0, 1) and C2(0, 1).

Appendix A. Some Technical Proofs

Proof of Theorem 2.2. a) By the method of sidewise energy estimates as in [13,
16,27] or [28]. Recall that we work under the assumption that the coefficients
and initial data in (2.3) are smooth, i.e., p,o € C'(0,1) and («°,u') € V. For
elu](x.t) := (p(x)|u;(x,1)]> + o(x)|uy(x,1)|*)/2 being the energy density of
the solution u of (2.3), we define the sideways energy

e4(x)
F(x) :=/?) elu](x, 1) dt,

where e > e_ are two functions to be determined. By applying Leibniz formula
for differentiation under the integral sign [17], for which e[u] must belong to
C((0,1) x (0,T))NC'(0,1) and e* € C'(0, 1), we obtain

Fl(x) = A(x) + A4 (x) + A-(x),

where

et (x)

AW = / (P O (. O — 0 ()uy (x )P

e—(x)
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Ax(x) = £ (ex) (¥efu](x, ex(x)) £ p(x)u; (x, ex (x))ux (x, e (x)).
By choosing (e+)’ = +./p/0, we get

Ax = 0.5y/p/o|/pu;(-,ex) £ ou,(-,ex)|* > 0.

Since A > —m F, with m := max{|p’|/p, |0’|/0o}, we get F'(x) > —m(x) F(x).
Thus, F(x) exp(fox m(X) dX) is an increasing function, i.e.,

1
F(x) < F(1)exp (/ m(fc)di)

and, by integration in x € (0, 1), we get

1 1 1

1
F(x)dx < F(1) | exp m(X)dx | dx < F(1)exp m(x) dx
frisscz o oo J

0 X 0

We choose e (0) = T — £ and e_(0) = £, sothat ey (1) = T,e_(1) = 0
and F(1) = p(1) fOT lu; (1,1))?dt/2 (since u,(1,1) = 0). In order to ensure the
positivity of F, we ask ey (0) > e_(0),i.e. T > 2£ (and then, since et and e™
are increasing/decreasing, et > e forall x € (0, 1]). However, in view of the
time conservation of the energy of u, in order to prove the observability inequality
(2.4),itis sufficient to ask the existence of a rectangle of the form (0, 1) x (¢—, 4+),
with 71— < 74, included in the curved trapezoidal region Trap = {(x,t),x €
(0,1),e—(x) <t < e4+(x)} (see the bold curved trapezoidal region in Fig. 6,
left). Then fol F(x)dx > (t4 —1-)E,5u®, u'). Of course, the optimal choice of
this rectangle is given by t+ = e+(0),sothat 0 < ¢ty —¢— = T — 2£. Since
exp(fo1 m(x)dx) <exp(TV(p,0,1)/p. + TV(0,0,1)/0,), (2.4) holds with

_ p()exp(TV(p,0,1)/ps + TV(0,0,1)/0.)

¢ 2T —20)

(A1)

The requirement e[u] € C'(0, 1) is ensured by the extra regularity assumption
imposed on the initial data (uo, ul) and on the coefficients. Indeed, when the initial
data (u°,u') € V), the second-order energy €7, (u(:,1),u; (-, 1)) below is also time
conservative and finite

qua(u(-,t),ut(-,t)) = Epe W, 1), Wi (1)) =

| =

1
/ [p(x)|97 5 us (x, z)|2 + 0 ()@ 5w (x, t)|2] dx. (A2)
0
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THF————

Fig. 6 The two trapezoidal integration domains where the sidewise energy estimates method is
applied to prove the observability inequality (left) or the direct inequality (right)

In particular, there exist two functions f°, f! e L%(0, T; L?(0,1)) such that

(ou)x = f'and (%(aux)x) 7O

X

Thus,

(Oun)s (x.1) = p(x) / £y dd € H'(0, 1),
0

U (x,t) = U(Lx)/fl(x’,z)dx’ e HY(0,1)
0

and, finally, ou,,u; € H?(0,1) C C!(0,1). Since 0,p € C!(0,1), we get
lousl?/o, pluc|. elu] € C'(0,1).

The direct inequality (2.6) can be obtained by applying the same method of
sideways energy estimates within the same class of regular coefficients o,p €
C'(0,1) and initial data (u°,u') € V in (2.3). We only choose e* such that
(ex)’ = F+/p/o and the initial data in (2.3) at time 7y = —£. Thus, Ax < 0
and F’ < mF, so that, at the end, (2.6) holds with

Cc" .= % exp(TV(p,0,1)/p. + TV(0,0,1)/0.)(T + 24).

By the method of adapted multipliers. Let us consider (2.3) with (u®, u') € V
and strictly positive coefficients p, o € C'(0, 1). We multiply (2.3) by ¢ (x)u,, with
@ as in (2.10), and integrate in (0, 1) x (0, T):
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1 T 1

T
0= 0//’O(x)“”(x’t)(p(x)“x(x’t)dth_/O/(GMX)X(xat)@(x)ux(x,t)dxdt,

0 0
(A3)

With X,,(¢) as in (2.12) and using integrations by parts in both time and space
variables in the first term on the right hand side of the above identity, we get:

1

T T 1
[ [ ot gty asd = 20|, <3 [ [ ooy, cen axs
0 0 0

0

T T 1
= 2,0 =20 [wopa+ [ [oorementada @
0 0 0

From the second term in (A.3), we get

T 1 T 1
- [ [eunnewmenaa =3 [ [ (£)@loupe.oda
0 0 0 0

N =

T
_ (‘/"’Z)(O)/mx(o, 02 di +
0

T
//1(Z’_;)/(x)(’z(x””x(x’f)lzdxdt. (A.5)
0 0

Putting together the two identities (A.4) and (A.5), we obtain

| =

T 1
[ [ eorlue.or + (£) o, | aa
0 0

T T
0 1 T
+ (9002)( )/|Mx(0’t)|2dt: (<P,02)( )/|ut(l,t)|2dt—XW(t)‘0_ (A.6)
0 0

Let us verify that, for ¢ as in (2.10), the following three inequalities are verified in
the sense of M (0, 1), the set of Radon measures on (0, 1), which is the dual space
of positive C!(0, 1) functions:

/
p=z1. (@) zpand (£)o=1 vre). (A7)
o

Since the derivative of the total variation function TV(a,0,x) is |a’(x)| in a
measure sense for any a € W!1(0, 1), we note that ¥ in (2.10) is increasing since
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V' =14|0'l/o.+ (o] = p')/ps = 1 and ¥ (0) = 0, so that p(x) > ¢(0) = 1.
On the other hand, since p/p, > 1, then

(p) = (W' p+p) = ¢lp+ (p/p) 0| — ') + 01 = ¢p = p.

Similarly, we get the third inequality in (A.7). Using (A.7) and the time conservation
of the total energy for the solution of (2.3), we get the positivity of the second term
in the left hand side of (A.6) and the following lower bound on the first term:

T 1
1 /
3 [ ey elutenr + (£) o olue,0f | axar = 78,600
0 0
(A.8)
Using the Cauchy—Schwarz inequality, we get
[Xoo O] < Mlev/p/0llLo0Epe (. ub), (A9)
so that
| Xep(Dlg| = 2119V p/0|Lo0Ep g (W, u'). (A.10)
Combining identity (A.6) with the inequalities (A.8) and (A.10), we get
(o)) [
(T =2llpv/p/0l|Lee)Ep s (u,u') < %/ lur(1,0)|* dt, (A.11)
0

which concludes the part a) of our result.

c) Let us prove now that (2.4) implies (2.2). We argue by means of a decompo-
sition argument, i.e. we consider (2.3) with the same initial data (P, vl) asin (1.1)
and the following problem satisfied by the difference z = v — u:

p(X)zy — (0(x)zx)x =0, x€(0,1),t €(0,T]
2(0,1) = o (D)zx(1,2) + v, (1,¢) = 0,1 € [0, T] (A.12)
72(x,0) = z/(x,0) = 0, x € (0,1).

From (2.4) and the fact that u = v — z, we get

T T

Epo (V1) < 20// |v,(1,t)|2dt+2c’/ lz,(1,1)|? dr. (A.13)
0 0

It is enough to prove that
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T T
/|Zt(l,t)|2dt§ C”/ |V,(1,t)|2dt. (A.14)
0 0

To obtain (A.14), we first multiply (A.12) by z;, integrate in x € (0, 1) and from
Oto ¢, witht € (0, T), and, taking into account that the initial data in (A.12) is the
trivial one, we get the identity

Epo (1), 2 (-, 1)) = —/zt(l,t’)v,(l,t’) dr. (A.15)
0

The second step is to use sideways energy estimates. More precisely, set G(x) :=
fOT e[z](x,t) dt, where e[z] = (p|z|* + o|z:|*)/2 is the energy density of the
solution of (A.12). Then, since the initial data in (A.12) are the trivial ones, we
get

T
1
G'(x) = 3 /(,o/(x)Iz,(x,t)|2 — o' () |ze(x, )P dt + p(x)z: (x, Tz (x, T).
0

For m(x) := max{|p’(x)|/p(x), |0’ (x)|/o(x)}, from the previous identity we
obtain

G'(x) =m(x)G(x) + p(x)|z (x, T)l|zx (x, T)| (A.16)
and

1

G(1) = exp ( / m(x) dx) (Gx) + 1Vp/0]120Ep0 (2 T,z TY). (A7)

0
After integrating inequality (A.17) in x € (0, 1), we get

1 T

G(1) < exp(/m(x)dx)(/5p,,,(z(-,z),z,(-,z))dt

0 0

+11Vp/011L5Ep0 (2 T) 2 T)) ). (A.18)

Note that, by using the boundary condition at x = 1 in (A.12), we obtain
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T T

p(1) 2 1 2

G(l))=— | |lz(L,)|"dt + —— | |v:(1,08)|" dkt. (A.19)
2 0/ 20(1) 0/

Using the fact that

1
exp (/0 m(x) dX) <o :=exp (TV(,O, 0,1)/p. + TV(0,0, 1)/0*)

and replacing (A.15) in (A.18), we get

T ¢ T
G(l) < —a[//z,(l,t’)vt(l,tl)dt/dt—i- ||\/p/(7||Loo/zt(l,t)v,(l,t)dt].
0 0 0
(A.20)
By applying Cauchy—Schwarz inequality in (A.20), we get
T T
ce ) ¢ )
G(l) < 5 |z (1,2)|” dt + % [v,(1,)|7dt Ve >0, (A.21)
€
0 0

with ¢ := (T + ||/ p/0||L).

Choosing € = p(1)/(2¢) in (A.21) and taking into account (A.19), we obtain (A.14)
with

2
c - 4 (2_1:0(1))>2||\/:0/G”L00>0

~ () 20(1) P2(1)

To prove that (2.2) implies (2.4), we argue similarly. That is, we consider the same
initial data («°, u') in both problems (1.1) and (2.3) and use the same decomposition
v = u + z as in the direct implication. It is enough to prove the estimate

T T
/|z,(1,z)|24t5 C”/ |u, (1, )% dt. (A.22)
0 0
Since v = u + z, (A.20) becomes

T
(A2 4 o)l Vp/allm) / o (L) +
0

T
2
2 20(1) /luf(l,m dr
0

1
20 (1)
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T t T
+a//|zt(1,t’)|2dt/dt§—%l) z(1, H)u; (1,1) dt—
0 0 0
T t T
—ot(//zt(l,t’)ut(l,t’)dt/dt+ II\/,O/_GIILoo/zt(l,t)ut(l,t)dt).
0 0 0

Then, foralle > 0andc = 1/0(1) + (T + ||/ p/0||L>), Wwe get

T
(B2 4 ol Vp/all) / 2 (L) di +
0

T
2
2 20(1) /luf(l,m dr
0

1
20 (1)

T T
<< / (L) i + i/ lve(1, 1) de.
2 ¢
0 0

By taking ¢ = (p(1)/2 4+ 1/(20(1)) + «||+/p/0]||Le0)/c in the above inequality,
we obtain (A.22) with

4(Cz _ p(l)+1/0(1)+2a\|«/P/0\|Loo)

" 20 (1)

= 0
(p() + 1/a(1) + 2all/plallie)

To prove that (2.2) implies (1.3), first observe that, due to the dissipation law
(1.2) and to (2.2), we get

T

Epo V(. T),vi (-, T))=C / ve(L)Pdt = C(Epo (V) = oo (v(- T), v (- T))),
0

so that

C
Ep,(r(v('v T)v Vi ('v T)) = VEP,G(V('a O)v Vt('v 0))7 y = C ¥ 1 € (Ov 1) (A23)

and we obtain (1.3) with M :=1/y and w := In(1/y)/T.
To prove that (1.3) implies (2.2), we combine (1.3) with the dissipation law (1.2)
and chose T such that M exp(—wT) < 1. O
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Two-Sided Guaranteed Estimates of the Cost
Functional for Optimal Control Problems
with Elliptic State Equations

Pekka Neittaanméki and Sergey Repin

Abstract In the paper, we discuss error estimation methods for optimal control
problems with distributed control functions entering the right-hand side of the
corresponding elliptic state equations. Our analysis is based on a posteriori error
estimates of the functional type, which were derived in the last decade for many
boundary value problems. They provide guaranteed two-sided bounds of approxi-
mation errors for any conforming approximation. If they are applied to approximate
solutions of state equations, then we obtain new variational formulations of optimal
control problems and guaranteed bounds of the cost functional. Moreover, for prob-
lems with linear state equations this procedure leads to guaranteed and computable
error estimates for the state and control functions.

Keywords A posteriori error estimates * Elliptic boundary value problems e
Guaranteed error bounds * Optimal control problems

Mathematics Subject Classification (2010). Primary 65K15; Secondary 49M99,
65K15.

1 Introduction

Optimal control problems with distributed control arises in many scientific and
industrial problems. The corresponding mathematical theory is well developed (see,
e.g., [9] and for numerical methods [1,16]). In the majority of cases, these problems
can be stated in the following abstract form. Consider a functional

J(n,v): ExU — R,
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where E and U are reflexive Banach spaces (associated with state and control
functions, respectively). The goal is to find u € Ky C U such that

J(nu,u) =inf J := inf J(ny,V), (1.1)
VEKy

—~

where Ky is a closed set of admissible control functions and 7, € E solves the
problem

A(ny,v) = 0. (1.2)

Here, A is a certain (linear or nonlinear) differential operator. It is assumed that the
problem (1.2) is well posed and the cost functional J is bounded from below and
continuous with respect to both variables.

We consider a subclass of optimal control problems, in which the control function
Vv enters the source term of the equation, i.e., problems of the type

A(y) =v+ £, (1.3)

where f is a given function in the image space of the operator A. In shape
optimization problems and problems of topological (structural) optimization the
function v may also enter the differential operator. Then, existence of a solution
is not guaranteed and a special closure of the respective operator set (so-called G-
closure) may be necessary to obtain a mathematically correct statement. Here, we
do not consider this class of problems and refer to, e.g., [10,15-18] where the reader
can find a consequent exposition and numerous references.

In the simplest case, (1.3) is generated by the linear boundary value problem:
Find

e Vo(R):={ne H'(Q) | n=00nT}

such that

/AVnV-dexz /(V—i—f)wdx Yw e Vo(2). (1.4)
Q Q

Here Q is a bounded connected domain in R¢ with Lipschitz boundary T, A is
a symmetric positive definite matrix such that v;|£]> < AE - & < v,|£|?, and the
functions v and f belong to L?(R2). Let 6(n) := AVn be the flux associated with
n. For this problem, we consider integral type cost functionals

1
Ji(n,v) = 3 H(f(n)—odﬂi_l + % ||V—ud|2, a>0. (1.5)
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and
I
By =5 ="+ 5 v-u]’. (1.6)

Here || - || denotes the norm of L? (since no confusion may arise we use the same
notation for scalar and vector valued functions), u?, nd, and 0¢ € L* (R, Rd) are
given functions representing the desired flux and the control function, respectively.
In this case, & = V4(Q) and U = L*(Q).

In more complicated cases, .A can be represented by a nonlinear boundary value
problem (e.g., by a variational inequality).

We consider a class of optimal control problems, in which the set of admissible
control functions includes constraints, namely,

Ky :={ve L*(Q)|v<vhae inQ}, v'eL>®Q) (1.7

It is well known that under the above assumptions Problems 1 and 2 have unique
solutions (e.g., see [9]).

Approximation methods, a priori and a posteriori estimates, and adaptive numeri-
cal methods were intensively studied in the last decade. In this short note, we cannot
present a consequent overview of these results and refer to [2-5,7, 8, 12] and other
publications cited in these papers.

Our goal and the corresponding mathematical approach are different. They are
motivated by specific features and difficulties related numerical analysis of optimal
control problems of the considered type. One of them comes from the fact that the
set of admissible pairs 7y is the exact solution of a boundary value problem. In
general this function is unknown and, therefore, the value of J(v, n,v) is difficult
to compute. This fact makes optimal control problems more complicated than
classical variational problems, in which convex functionals are explicitly defined
and minimized on convex sets of admissible functions.

Also, it is worth outlining a specific feature of optimal control problems, which
makes them rather different with respect to variational problems generated by
elliptic type equations. The latter problems are focused on finding the minimizer,
which coincides with the solution of a boundary value problem. For this reason, we
need to find an approximation close in the corresponding energy space. In optimal
control problems we are mainly interested in the function u while 7y (solution of
the differential problem) plays a subsidiary role. Moreover, from the practical point
of view it is often enough to find an e-solution v, € Ky such that

J(Ve,ny,) <inf J + ¢, (1.8)

where € is a small positive number. Indeed, if we can guarantee that a control
function Vv, generates a value of the cost functional, which is very close to the best
possible, then v, can be efficiently used instead of u (even if V. is not close to U in
U). In other words, even if the best function U is unique, it may happen that a wide
variety of “almost optimal” control functions provide practically the same value of
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the cost functional. If v, is much simpler than u (e.g., if U is a complicated function
and V. is a piecewise constant function), then using V., may be preferable from the
practical point of view.

All said above leads us to the following important question: How to guarantee
that an approximate control function found by a certain numerical procedure
provides the value of the cost functional, which is indeed close to inf J ?.

In this paper, we discuss methods able to give an adequate answer to this
question. With the paradigm of the problem (1.5)—(1.7), we show a way to deduce
such estimates. Moreover, we show that they generate guaranteed bounds of errors
associated with the state and control functions.

The key mathematical tools used to establish two-sided and guaranteed bounds
of cost functionals comes from the theory of functional type a posteriori error
estimates, which provides a guaranteed bound of the difference between the exact
solution of a boundary value problem and any conforming approximation from the
corresponding energy class (see [14,20-23]). In terms of (1.1)—(1.2) [and a special
class of problems presented by (1.5)—(1.7)], these estimates reads as follows:

M~ (n.v.D) < oy —nlle < M*(n.v.D). (1.9)

Here M~(5,v,D) and M™ are explicitly computable functionals. They depend
on the control function v, the corresponding approximate solution 7, and other
explicitly known data D. In the last decade, estimates (1.9) has been derived
for many problems generated by elliptic and parabolic differential equations (a
consequent exposition of the mathematical theory is presented in [23] and the book
[11] is focused on the corresponding numerical methods and algorithms).

For example, for the problem (g € L*(2))

divAVn, +g=0 inQ, ns=ponl (1.10)

it was established that the difference between exact solution 7 s and any conforming
approximation n € H'() is controlled by the following estimates (see [20,21,23]).

Letn € ISI '(©2) + 1 be an approximation of n,, which satisfies the Dirichlet
boundary condition. Then,

IV =no|, < 1AV =]l 4=1 + Crallr(@)], (1.11)
where t is an arbitrary vector-valued function in H (€2, div),
r(t) := divt + f,

Il :=/At-rdx, ||t||i,1 = /A_lr-rdx V1 e L*(Q2,RY),
Q Q

and Crg is the constant in the Friedrichs inequality (for functions vanishing at the
boundary).
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If Q is divided into a collection of N nonoverlapping subdomains €2; and t
additionally satisfies the relations

/ (divt + f)dx =0, i=12,...,N (1.12)
Q;

then we have a modified form of (1.11), in which the global constant Crg, is replaced
by a set of local constants

N
[V —no)|, < 1AV =Tl = + | D Cho, v, (1.13)

i=1
where Cpgq, are constant in the Poincaré inequalities for £2;.

For a convex £2;, we know that Cpg, < diaﬂﬁ (see [19]), Then, (1.13) implies
the estimate

[V =no)|, < 14Vn =7l 41 + Crlir(D) | (1.14)
where
1 .
Cp := — max{diam®;}.
T i
We know (see [23]) that the estimate (1.14) is also valid for problems with mixed
boundary conditions.
Estimates (1.11)—(1.14) can be applied to the state equation. For example, if we
apply (1.11) to (1.4), then we obtain
IV =no)| , < 1AVn — || 41 4+ Cralldivt + Vv + f]. (1.15)
By means of (1.14), we deduce another estimate

IV —=ng)| , = 14V — <]l 4=1 + Cpidive +v + f], (1.16)

provided that
/(divr+v+f)dx=0, i=12,....,N (1.17)
Q;

Majorants and minorants of the functional type derived for many linear and also
nonlinear problems possess the following important properties, namely, they are
continuous with respect to both variables and for any v € U and n €

M~ (n,v, D) and M* (1, v, D) are nonnegative functionals; (1.18)



330 P. Neittaanmiki and S. Repin

M~ (. v. D) = M (. v. D) = 0. (1.19)

2 Two-Sided Estimates of the Cost Functional: General Case

First, we present a general result associated with the setting (1.1) and (1.2). Assume
that the cost functional satisfies the following condition: for any v € Ky

J.v) =¥(Pl2) = Jn+9.v) < J(n.v) + O([F =), 2.1

where ® and W are some known (continuous) functions vanishing at zero. We note
that (2.1) can be viewed as a continuity condition with respect to the state function.
In the majority of cases, this condition holds (see Remark 2.2).

Theorem 2.1. Let (2.1) and (1.9) hold. Then

inf J = inf inf JT(n,V) (2.2)
n€EE VEKy
and
inf J > sup inf J™(n,V), 2.3)
neE VEKYyY
where

JT(m.v) = J(n.v) + @M (n,v, D)),
J=(m,v) = J(,v) = ¥(M (n,v,D)).

Proof. For any n € &, we have
inf J = inf J(pv.v) < inf {J(n.V) + (|l —7ll=)} <
VEKYyY VEKYyY

Vi&fu {J(n.v) + @M (n,v. D)} .

Thus,

inf J < Vler}(fU,J (n,v),
NEE
It is easy to see that the above relation holds as equality. Indeed, if v = U and

n = nu, then MT(5,v,D) = 0 and the second term vanishes while the first one
equals inf J.
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Analogously,
inf J = inf J(v,v) = inf {J(n,v) =¥ ([[nv —nllz)}
VEKy VEKy
> inf {J(n.v) =¥ (M~ (n,v,D)}
VEKy
and we conclude that

inf J > sup inf {J(n,v) — V(M (n,v,D)}.

n€EE VEKy
O
Remark 2.2. In many cases, the condition (2.1) is not difficult to verify. For
example, if J is Lipschitz continuous with respect to the state function, i.e., there
exists a constant L such that

IJ(n+9.v) = J(.v)| = L7z,

then (2.1) is obviously satisfied.
Another example is related to the quadratic functional J; [cf. (1.5)], we have

|4V 4+ 9) = o [y = [ AVn =0 [,

= ||AV19||3171 + 2/ VO - (AVn — o)dx < 2k | VO 4 + VO .
Q

where k = |AVn—o?| ,_,. Analogously,
[Vor+9) =0 |5 = [V =0 [ = IV = 2 [V,

Therefore, if the space E is defined as H' endowed with the norm || || 4, then
1, 1,
() = Et —xt and @) = Et + Kt

Similar estimates can be derived for cost functionals satisfying the Holder continuity
condition.

Remark 2.3. In view of (2.2),
infJ <Jt(p,v) VYveKy, ne&,
and the exact lower bound is achieved if we minimize J* (5, v) over Ky x E. This

means that the problem (1.1) and (1.2) can be represented in a form, where the state
and control functions are formally independent.
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Analogously

inf J > inf JY(p,v) Vnek&.
VEKy

If the minimizer can be found analytically, then the corresponding lower bound is
also directly computable. In Sect. 4, we deduce such an computable estimate for the
problem (1.3)—(1.5). For relatively simple problems [e.g., for (1.3)—(1.5)], it is also
possible to derive guaranteed upper bounds for the norms of u—v and ny, — 17, i.e., to
find computable a posteriori estimates for the state and control functions. In Sect. 5,
we discuss these results.

3 Majorant of the Cost Functional: Problem (1.3)-(1.5)

Now, we consider the problem (1.3), (1.5), and (1.7). Let v € Ky be an
approximation of u. By 7y we denote the corresponding exact solution of the state
equation. In general, 7, is unknown and we use a certain approximation n € V,($2)
instead. It is easy to see that

1 2 a
B = 5 (lo) =0 [ i + o) = ol )" + S Iv—u’ |
We apply (1.15) or (1.16) and find that

lo(nv) =a 4= = ol =m =1 = IV =4 (3.D
< iz =Vnll4= + Cldive + v+ £,

where

C = CFQ if‘L’EH(Q,diV)
| Cp; if T e HV(Q,div)

and t € H(R2,div). Here

I:IN(Q,diV) = {‘L’ € H(Q,div) | (divt +v+ fldx=0,i=1,...,N
Q;

In view of (3.1), we find that

Jl (an V)

1 .
<5 (lo@ =0 ;=i + Il = AVl + Clldive +v + /1)’

+g||V—Ud||2, Vn e Vy,veKy.
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For technical reasons, it is convenient to represent the first term in the right-hand
side as the sum of squared norms. Therefore, we introduce positive parameters o
and B > 0, apply Young’s inequalities and obtain

Jl(’]wu) E Jl(nV7V) S J]_:(’ﬂ(tsv)s VV € K, (32)

where

1+
Fapvyi= —= ot - o +

(14+a)1+p8)

e It AVIl +
+_(1 . O;L(; +_'8)C2||divt +v+ fIIF+ %Ilv —u’)?.
Set
v=u, t=AVn,, and n=rn,.
Then

l+oa 2 a
I p (s AV ) 1= lo) = o[ + Flu—u? 3.3)

and we arrive at the important conclusion:

inf Ji = Ji(nu.u) = _inf J@ﬁ(n, ,V). (3.4)
TeH(o div,
aBER

In other words, we have reformulated our problem as an unconstrained minimization
problem for a quadratic functional J, + . This functional is explicitly computable
and its lower bound coincides with the exact minimal value of the cost functional.
Therefore, the functional J+ Lap (n, 7,Vv) can be used for finding guaranteed upper
bounds for the cost functional when the minimization problem is solved by known
direct minimization methods. Indeed, since the functions 7 and Vv are arbitrary,
we can take them as approximate solutions computed by certain optimization
procedure and minimize J 14,:1, 8 (n, T, v) with respect to the function t and parameters
a and B. The respective value of B shows an upper bound of the cost functional
obtained with these data. In order to obtain a sharper bound, the functions and
parameters in the majorant J," Lo ﬁ(r/, 7, V) should be changes, e.g., by minimization
on finite-dimensional subspaces selected for the state and control functions. The
latter subspaces are independent and, in general, may use different meshes and
approximations.
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Guaranteed upper bounds of the cost functional for problems with state relations
defined by the Poisson equation were derived and tested in [6]. The theory applicable
for a more general class of problems is presented in [23].

Remark 3.1. For J,, the majorant can be easily derived by applying the same
techniques.

Finding the sharpest upper bound for the cost functional requires the minimiza-
tion of J 1+ over 1, 7, V, @, and B, where the variables are taken in the above stated
sets and are formally independent. Below, we show that the amount of independent
variables in J 1+ can be reduced. For this purpose, we represent the functional in the
form

Jlf;ﬂ(n, ,V) = ju(o;n) +jiole, Bin, 1) + jis(a, B; 1, V), (3.5)
where
. 1 + (07 d 2
Jll(a; n) = ”0(77) —0 HA—I ’
(1 + a)(l + B)
jia(en Bin.0) i= e T — AV
3 . . Caﬂ : 2 a a2
juisl, BiT,v) = 5 [divt +v + £ +§ lv—u?|".

and Cop = Czw.

It is easy to observe that the minimization of J 1+ with respect to V is equivalent
to the problem

inf jiz(a, BT, V) :=jis(a, B; 7).,
vek

which can be solved by minimizing the integrand of j;3 at almost all x € Q. If
no constraints are imposed on the control function (i.e., Ky = L*(Q)), then the
respective minimizer V,,,; is easy to find. It satisfies the relation

[au? (x) — Cup(dive(x) + f(x))]

0
Vopr (¥) = Cop +a
o

and results in

a Cu
iz, Biv) = E—HleT‘f‘ u’ + £ (3.6)

If Ky is defined by (1.7), then
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vgpt(x) if xeQ,
Vapt(x) =
vh(x) if x € Q,,

where
Qi={xeQ|v),(x)>vi(x)} and Q =Q\ Q.

In this case,

a _Cop : d 2
5 m”le‘C 4+ u® + f”Ql + (37)

jl3(a,.3;f) =
C . a
+%’3 Idive + v + 113, + §||v+ —u|3,.

Thus, we arrive at the following result:

Theorem 3.2. Forany n € Vo, t € H(Q,div) (or t € HY(Q,div)), and positive
aand B

infJ; < ju(o;n) +jia(e, B51,7) +jl3(a,,3; 7,V). (3.8)
Moreover,
inf J; = qevi(gfﬁ>[) {jn(a; n) +jia(e, B51, 1) +jl3(a, B;t, v)}. 3.9
TEH(Q,div)

Remark 3.3. Let v be an approximation of u computed by some numerical proce-
dure and 7 be an approximation of the respective state function 7y. Then (3.5)—(3.7)
show the value of the cost functional, which is definitely achievable. To find it we
should take 7 as a post-processed flux V1, and perform a simple minimization with
respect to @ and B. It is worth noting, that J; (v, n) does not show a guaranteed upper
bound because 7 is not the exact solution of (1.3).

4 Minorant of the Cost Functional: Problem (1.3)—(1.5)

Now, our goal is to deduce a directly computable minorant of the cost functional.
Assume that 0 = Vn?, where n? € V,. This assumption does not lead to a loss of
generality (see Remark 4.1). Then J; has the form

1
BV =5 [Va =]+ SIv—u’ @.1)
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For any n € Vj, we have
1 » 1 N
Dl V) = S IV = Iz + 5 NMUETBIN 4.2)
a
+ [ ATy =) (T = s+ Sy =P
1 1 2
= IVav =5 + 5 [V — D],
2 2
+/(f V(- n")dx—/ AV -V — )
Q Q
a d2
—({V—U .
+5 1 I
Hence,
. 1
Ji(u.u) = inf Ji(nv.v) = = [V(y — n)[15 + 4.3)
VEKYyY 2
1 2
S IVa=a L+ [ (o=t = avn- V= pas+
+ inf {/ V(n—nd)dx+z||v—u”l||2 .
VEKy Q 2

It remains to estimate the first term in the right-hand side of (4.3) from below.
For this purpose, we use the error minorant M~ (#), which for the considered class
of problems reads as follows (see, e.g., [23]): for any w € Vj,

! .
IV =l = M= (2. w),

where

M~ (v, w) := G(n,w) + /dex,
Q

1
G(n,w) = / (—EAVW-VW—AVW'VT]'Ffw) dx.
Q

Moreover,

1
SIV@y =l = sup M™(7.w). (44)

weVy
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We conclude that
1
I w) = 3 [V - | 4.5)
+ /Q (=) = AV -V — 1)dx +

a
+ sup inf {G(n,w)+/v(w+n—nd)dx+ §||v—ud||2
Q

wel V€KY

and for any w € 1},
1 PN
N w = 6w + 3 [V =1 (4.6)

4 / (f(n—n") = AV - V(0 — n))dx +
Q

VEKy

. a
+ inf {/v(w—i—r;—r;"’)dx—irEllv—udn2 .
Q

The right-hand side contains an auxiliary variational problem, which has a simple
solution. Indeed,

inf / (gv + %|V— udlz) dx = / H(a,ud v, g)dx, 4.7
Q Q

VEKy
where
ulg — g’ ifv:=ul— £ <vt,
H(a,u? v, g)dx :=
vig +4(vt —uf)?if v > vt
Thus, (4.3)—(4.7) imply
Ji(nu,u) = Jy(nw)  Vn eV, (4.8)

where
Jr =G v -
r(ow) = G.w) + IV =Dl +
+ [(Fo= ') = 4V V= 1)+ Hlaw v o= )
Q

In other words, for any 1 and w, the functional J;" (1, w) is a lower bound of the cost
functional. Since all the functions entering J,~ are known, this minorant is directly
computable.
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Now we confine ourselves to the case Ky = L*(Q2). Then,
I 0w) = G + 5190 =11, @9
+ [ (r=n" = a¥n- V-
+ulw+n—n" - Zi(w +n— n"’)z)dx
a

Let su be a small variation of u# and the corresponding variation of the state equation
be defined by the integral relation

/AV(VIu 4+ sny) - Vwdx = /(f+u+5u)wdx Yw e V.
Q Q

Then

/AVW)U -Vwdx = /suwdx. (4.10)
Q Q

Since
Ji(u, ) < Ji(U+su, ny + ),

we apply usual variational arguments, neglect the quadratic terms of su and n and
find that

/(AV(nu — %) - Vsny + a(u —u?)su) dx = 0.
Q

Using (4.10), we see that for all su

/((nu %) +a(u—u?))sudx =0,
Q

which implies (ny — n¢) = a(u? — u).
Letusset w = 0 and n = ny in (4.9). We have

_ 1
Iy, 0) = SV (= DIl (@.11)

1
[ (o= = AVn - T =)+ = 1) = =
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1 1

IV = 15 + /Q((ud — (-1 - 77— n"’)z)dx
1

=3 IV = 1D + allu® —ul?) = J(u, nu).

We have proved that the minorant is sharp, i.e., using majorants and minorants we
can find as accurate two sided bounds of the cost functional as it is required.

Remark 4.1. 1f 0 does not have the form AVn?, then the optimization problem can
be reduced to the above considered case. Indeed, let 7¢ € V;(£2) solve the problem

/(AVﬁd —o!)-Vwdx=0 VweV,. (4.12)
Q
Then
[ avi? ot V- ar =0
Q
and we find that
d|? ~dl? A~ d a|?
[avn—o! [y = [avn—avi?| |+ |avi‘—o| .

In view of this fact,

1 N a
Jonw = S AVD = Vi + D fu—ul P + e, (4.13)
where ¢ = ||AVH? — o4 I3, is a certain measure of the distance from 7 to the set

Vo. Since ¢ does not depend on the state and control function, we see that the cost
functional is reduced to the form (4.1).

5 Estimates for the State and Control Functions

In the final section, we derive guaranteed upper estimate indexguaranteed error
boundsfor the error of the approximate solution measured in terms of a combined
norm

1 a
lu=VIP == 5 IV O = )l + 5 lu = VI,

The derivation is based on the following result.
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Theorem 5.1. Let K = L*(R2). For any control function v € K
[u—=VIP? = Ji(w, V) = J1 (1, U).
Proof. Since
(= 1) +a@u—u’) =0,
we have

/ (nu — ﬂd)wdx+ a/ (u— ud)wdx =0, wek.
Q Q
Let iy be such that
/ AViy - Védx = / wédx VEeV,.
Q Q
From (5.3) and (5.4) with £ = ny — ? it follows that for any w € K

/AV(nu—nd)-Vﬁwdera/W(U—ud)dx:0.
Q Q

For arbitrary v € K we have

1 a
J (0. V) = J 01, 0) = 51V 0 = )3 + S IV = ul” +

Q

Set w = v — u. Since

/ A(Viy — Vi) - VEdx = /(v— u)édx,
Q Q

+ / AV (u — 1) - V(i — nu)dx + a / (U— u?)(v — U)dx.
Q

G.D

(5.2)

(5.3)

5.4

we observe that y = ny — ny. Therefore, the last two terms vanish and we arrive

at (5.1).

|

Remark 5.2. The estimate (5.1) can be viewed as a generalization of the Mikhlin’s
estimate, which was derived for variational problems generated by quadratic
functionals %a(v, v) + (f.v) in [13]. In [23], it was shown that analogous estimates
hold for some classes of optimal control problems. Theorem 5.1 is a generalized

version of this result proved by the same method.
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Theorem 5.1 and estimates (3.2) and (4.8) yield the following majorant of the
combined state—control norm:

Theorem 5.3. Foranyv € L*(Q),
Ilv—ull> < M* (@, 8, 1,7, w,V), (5.5)
where T € H(Q2,div), w € V(R2), and
M* (@, 8,7, 7, w,v) == J 5 (1, 7,v) = I (1, w) = 0.

It is not difficult to show that if v = u, then there exist parameters, which make
the majorant zero. Indeed, let n = 1y, T = o(ny), and w = 0. In view of (3.3)

1+
T (o AV W) = —= [V =) [ + 5 Ju— ]

On the other hand, in view of (4.11)

a

d 2
Slu’ = ul.

_ 1
Iy g, u) = SV O = DI +
Thus,
o
M+(057IB7 Nu, AVny, 0,u) = Env(nu - ﬂd)”z‘

We can set o arbitrary small. Therefore the majorant is smaller than any positive
number, i.e., it is equal to zero.
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Shape Sensitivity Analysis of the Work
Functional for the Compressible Navier—Stokes
Equations

Pavel I. Plotnikov and Jan Sokolowski

Abstract The compressible Navier-Stokes equations with nonhomogeneous
Dirichlet conditions in a bounded domain with an obstacle are considered (P.I.
Plotnikov, J. Sokolowski, Compressible Navier-Stokes Equations. Theory and Shape
Optimization, Birkhduser, Basel, 2012). The dependence of local solutions on the
shape of an obstacle is analyzed (P.I. Plotnikov, E.V. Ruban, J. Sokotowski, SIAM
J. Math. Anal. 40:1152-1200, 2008; P.I. Plotnikov, E.V. Ruban, J. Sokotowski,
J. Math. Pures Appl. 92:113-162, 2009; P.I. Plotnikov, J. Sokotowski, Dokl. Akad.
Nauk 397:166-169, 2004; P.I. Plotnikov, J. Sokotowski, J. Math. Fluid Mech.
7:529-573, 2005; PI. Plotnikov, J. Sokotowski, Comm. Math. Phys. 258:567-
608, 2005; P.I. Plotnikov, J. Sokotowski, SIAM J. Control Optim. 45:1165-1197,
2006; P.I. Plotnikov, J. Sokotowski, Uspekhi Mat. Nauk 62:117-148, 2007; P.I.
Plotnikov, J. Sokotowski, Stationary boundary value problems for compressible
Navier-Stokes equations, in Handbook of Differential Equations: Stationary
Fartial Differential Equations, vol. VI, Elsevier/North-Holland, Amsterdam,
2008, pp. 313-410; PI. Plotnikov, J. Sokotowski, SIAM J. Control Optim.
48:4680-4706, 2010; PI. Plotnikov, J. Sokotowski, J. Math. Sci. 170:34-130,
2010). The shape derivatives (J. Sokotowski, J.-P. Zolésio, Introduction to Shape
Optimization. Shape Sensitivity Analysis, Springer, Berlin/Heidelberg/New York,
1992) of solutions to the compressible Navier—Stokes equations are derived. The
shape gradient (J. Sokotowski, J.-P. Zolésio, Introduction to Shape Optimization.
Shape Sensitivity Analysis, Springer, Berlin/Heidelberg/New York, 1992) of
the work functional is obtained. In this way the framework for numerical
methods of shape optimization (P. Plotnikov, J. Sokotowski, A. Zochowski,
Numerical experiments in drag minimization for compressible Navier-Stokes
flows in bounded domains, in Proceedings of the 14th International IEEE/IFAC
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1 Introduction

The shape sensitivity analysis of the work functional for the compressible
Navier—Stokes equations is performed in this paper. The shape derivatives of the
solutions to the equations and the shape gradient of the work functional are obtained
in the framework of boundary variational techniques [11, 15].

The recent monograph [11] is devoted to the study of boundary value problems
for equations of viscous gas dynamics, named compressible Navier—Stokes equa-
tions. The principal significance of the mathematical theory of the Navier—Stokes
equations lies in the central role they now play in fluid dynamics. In [11] we focus
on existence results for the inhomogeneous in/out flow problem, in particular the
problem of the flow around a body placed in a finite domain, on the stability of solu-
tions with respect to domain perturbations, on the domain dependence of solutions
to compressible Navier—Stokes equations, and on the drag optimization problem.
We refer the reader to [2—8, 10, 12—14] for the related results on modeling and shape
optimization for compressible Navier—Stokes equations.

We recall briefly the main topics considered in the mathematical monograph [11]
on compressible Navier—Stokes equations which is our main reference in this paper.

Existence Theory. The problem of the flow of a viscous gas around a moving
rigid body S € RY, d = 2,3, can be formulated as follows. Choose an arbitrary
hold-all B C R3, for instance, a sufficiently large ball, such that S C B. Next,
we transfer the boundary conditions from infinity to dB and arrive at the following
boundary value problem for the velocity v and the density p. Find functions (v, p)
satisfying

1
9 (pv) +div(pv®vVv) — R—ediv S(v)

1
+ WVp(p) +Cv=pf inQx(0,T7),
a

dp+div(pv) =0 inQ2x(0,7),
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v=0 ondSx(0,7), v=V ondBx(0,7T),
P =0c ON Xi,
v(x,0) =V(x,0) in2, p(y,0)=00(y) ing,

where V. f : R? x [0, T] are given smooth vector fields, 0o : R — R7 is a given
nonnegative bounded function, C is a skew-symmetric matrix,

Q=B\S, Zum={(x1)€dBx(0T):V(x,t) -n(y) >0},
S(vV) = Vv + (Vv) T + (A = D)divvL

The peculiarity of this problem is that we deal with the boundary value problem
for the mass balance equations. We prove that for the adiabatic exponent y > d /2,
the problem has a renormalized solution. We follow the multilevel regularization
scheme proposed by P.L. Lions and E. Feireisl, but with a different regularization
technique. We show that the solution admits the energy estimate and the pressure
p(p) is locally integrable with some exponent greater than 1.

Stability of Solutions with Respect to Nonsmooth Data and Domain Perturba-
tions. Propagation of Rapid Oscillations in Compressible Fluids. In compressible
viscous flows, any irregularities in the initial and boundary data are transferred
inside the flow domain along fluid particle trajectories. We develop a new method
for the study of the propagation of rapid oscillations of the density, which can be
regarded as acoustic waves. The main idea is that any rapidly oscillating sequence
is associated with a parametrized family j,, of probability measures on the real line
named the Young measure. We establish that the distribution function f(x,t,s) =
Wyt (—00, 5] satisfies a differential relation named a kinetic equation. A remarkable
property of compressible Navier—Stokes equations is that in this particular case the
kinetic equation can be written in closed form as

N

3, f + div (fv)—as(sfdivv—f— A—+1/(_ V](p(r)—ﬁ)dtf(x,t,r)) =0.

The kinetic equation being combined with the momentum balance equations gives
a closed system of integro-differential equations which describes the propagation
of rapid oscillations in a compressible viscous flow. Notice that oscillations can
be induced not only by oscillations of initial and boundary data, but also by
irregularities of the boundary of the flow domain. We also prove that if the data
are deterministic and the function f satisfies some integrability condition, then
any solution to the kinetic equation satisfying some integrability conditions is
deterministic.

Domain Dependence of Solutions to Compressible Navier—Stokes Equations.
We apply the kinetic equation method to the analysis of the domain dependence of
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solutions to compressible Navier—Stokes equations. We restrict our considerations
to the problem of the flow around an obstacle placed in a fixed domain. Recall that
in this problem, the flow domain = B \ S is a condenser type domain, B is a
fixed hold all domain and S is a compact obstacle. We introduce the notion of the
Kuratowski-Mosco. To this end we denote by C¢°(B) the set of all smooth functions
defined in B and vanishingon S C B. Let WSI’Z(B) be the closure of C°(B) in the
W'2(B)-norm. A sequence of compact sets S, C B is said to converge to S in the
Kuratowski-Mosco sense if

* there is a compact set B’ C B such that S,,, S C B’;

« for any sequence u, — u weakly convergentin W'2(B) with u,, € WSIH’Z(B), the
limit element u belongs to WS1 2 (B);

e whenever u € WSI’2 (B), there is a sequence u, € WSIn’Z(B) with u, — u strongly
in W'2(B).

We show that if a sequence S, of compact obstacles converges to a compact
obstacle S in the Hausdorff and the Kuratowski-Mosco sense, then the sequence
of corresponding solutions to the in/out flow problem contains a subsequence which
converges to a solution to the in/out flow problem in the limiting domain. Moreover,
we prove that the typical cost functionals, such as the work of hydrodynamical
forces, are continuous with respect to S-convergence. As a conclusion we establish
the solvability of the problem of minimization of the work of hydrodynamical forces
in the class of obstacles with a given fixed volume.

2 Boundary Variations Technique for Shape Sensitivity
Analysis of Work Functional

Beside the existence of an optimal obstacle for the work and drag shape optimization
problems [11], it is important for applications to provide necessary optimality
conditions and to devise a numerical method for the solution of the shape optimiza-
tion problems under consideration. The numerical methods of gradient or steepest
descent types require the local information on the behavior of the shape functional to
be minimized. The precise information on the shape gradient of the cost functional
can be obtained as a result from the appropriate shape sensitivity analysis of the
functional. The shape sensitivity analysis requires some regularity of solutions to
the governing equations like the Lipschitz continuity with respect to boundary
perturbations of the obstacle. The shape sensitivity analysis is performed in [11] for
local solutions defined by small perturbations of a class of approximate solutions to
the stationary problem. The shape optimization problem with the drag functional for
stationary problems as well as the work functional are considered for nonstationary
problems in [11].
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2.1 Boundary and Distributed Shape Functionals

We recall here, that the following notation is used for the shape functionals under
consideration for the shape sensitivity analysis.

We consider the integral shape functionals denoted by J(S) or by J(£2), with
S & B a compact obstacle in a hold all domain B, and Q := B\ S. There
are two different cases of governing equations under considerations, the stationary
compressible Navier—Stokes equations and the nonstationary compressible Navier—
Stokes equations. In the stationary case J(S) = J(2), stands for the drag
functional. In the nonstationary case the same symbols J(S) = J(£2) are used for
the work functional. There is however a difference between J(S) and J(£2), e.g., in
the stationary case the drag functional J(S) is given by an integral over the obstacle
boundary 95, and the same drag functional J(£2) takes a form of a volume integral.
Similarly, in the nonstationary case the work functional J(S) contains an integral
over the lateral boundary 95 x (0, T'), and the same work functional J(£2) contains
an integral over the cylinder 2 x (0, 7). Usually, the functional J(€2) is obtained
from the functional J(S) by an integration by parts formulae.

It is clear that the distributed shape functionals J(£2) require less regularity from
the solutions to the governing equations compared to the boundary shape functionals
J(S). On the other hand the distributed shape functionals formally depend on a
choice of a function denoted by 1 which is required in the integration by parts
formulae, however in view of the identity J(S) = J(£2) the values of the shape
functional J(£2) are independent of the choice of 7.

2.2 Shape Sensitivity Analysis Within Boundary Variations
Technique

Our goal now is to develop the shape sensitivity analysis which results in the shape
derivatives of solutions to the governing equations and in the shape gradients of
J(€2) obtained for stationary and nonstationary governing equations by introduction
of appropriate adjoint state equations.

Two different types of velocity fields can be employed. The physical field is
the state variable u := u(2), 2 = B \ S determined from the governing
equations for a given obstacle S. This field is in general non-unique, thus the local
classical solutions of governing equations are considered for the purposes of the
shape sensitivity analysis. The artificial velocity field ¥ := U(e, x), x € B, is
introduced for the purposes of the shape sensitivity analysis with respect to the small
perturbations of the obstacle boundary in the normal direction. This field depends on
the small shape parameter ¢ — 0 and it is associated with the domain transformation
mapping %, : S — S,

V(e, x) = (%s) 0T ' (x). 2.1
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Now, the form of the mapping T, is specified,
Te(x) :=x + eT(x), (2.2)

where the field T(x), x € B, is compactly supported in a small neighborhood of the
obstacle S and the support of T is disjoint with the boundary ¥ = dB. This means
that the boundary X is invariant under transformation (2.2).

In order to evaluate the shape gradient of the functional J(£2) the method
of boundary variations is applied and the Eulerian semi-derivative of the shape
functional dJ(€2; Q) is obtained in the direction of a vector field *J associated with
the change of the variables ..

This means that for the mapping (2.2) the family of perturbed obstacles is defined
by S¢ := T(S), where ¢ — 0 stands for the shape parameter. As a result, the
differentiability of the real valued function ¢ +— J(£2,), with Q, = B\ S, is
considered at ¢ = 0, and the existence of the derivative is established.

2.3 Stationary Navier—Stokes State Equations

We assume that the viscous gas occupies the double-connected domain Q = B\ S,
where B € R?, d = 2,3, is a hold all domain with the smooth boundary ¥ = 9B,
and S C B is a compact obstacle. The boundary of the obstacle is denoted by 9.

Furthermore, we assume that the velocity of the gas coincides with a given
constant vector field U on the surface . The state variables include the velocity
field u and the gas density o, and satisfy the following equations along with the
boundary conditions

div(ou®u) —div S(w) + Vp(o) —of=0 in Q, (2.3a)
div(ou) =0 in 2, (2.3b)

u="Uon X, u=20 on 95, (2.3¢)

0 =00 on X, (2.3d)

with the viscous stress tensor of the form

S(w) = Va4 Vu' + (A — 1)div ul, (2.3e)
where the pressure p = p(p) is a smooth, strictly monotone function of the density,
the Mach, Strouhal, and Reynolds numbers are fixed, Ma?> = Sr = Re = 1, Ais
the viscosity ratio, g is a positive constant, and the inlet X;, and the outlet X, are

defined by

Yn={xeX:U-n<0}, Zu={xeX: U-n>0},
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respectively. To avoid the technical difficulties at this stage of formal analysis we
assume that the intersection of the inlet and of the outlet is an empty set. Here n
stands for the outward normal to 0Q2 = X U S.

2.4 Drag Functional

The boundary value problem (2.3) can be regarded as a mathematical model of
viscous gas flow around an airfoil S tested in a wind tunnel. In our notation the
stress tensor is equal to

T(u) := Vu+ Vu' + (A —1)divul — pI = S(u) — pI,
and the hydrodynamic force acting on the element dS of the obstacle boundary

dS is —TndS. Hence the hydrodynamic force acting on the body S is given by a
boundary integral,

J(S) = — / Tnds = (2.4)
as
—/ (Vu+ (Vu)" + (A — 1) divul — pI) n ds.
as

Note that (2.4) can be equivalently rewritten in the form of a volume integral. To
this end we fix an arbitrary function n € C°(2) such that » = 1 in an open
neighborhood of the obstacle S and 7 = 0 in a vicinity of X. Using the identities

/ Tnds = / (ndiv T+ TVn)dx, divT = puVu,
as Q
we introduce the drag functional
J@) i= U 3(S) = [ 5. Vu.p.. Vi @5)
Q

where 2 := B\ S and

S, Vu, p.n. Vi) = (2.6)
Uso - [~ (Vu+ (Vu)" + (A — 1) divul — pI) Vi — nouVu] ,

here Uy, stands for the airfoil speed. The value of J is independent of the choice of
n. In nonstationary case the drag is a work in unit time developed by the component
of J(S) parallel to the airfoil speed U In the stationary case it is just a component
of the force. The associated shape functional S +— J(£2), 2 := B\ S is considered
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as a shape functional defined for an admissible family of obstacles S € Uyq.
We need a family U4 to assure the existence of an optimal obstacle. It is probable
that the drag functional in stationary case is defined for an obstacle S which is a
closed set included in the open set B, provided that the existence of a solution for
the governing equations in the stationary case with the nonhomogeneous Dirichlet
boundary conditions is shown, which is still an open problem, it seems.

2.5 The Velocity Method of Shape Sensitivity Analysis

In [11] the local strong solutions of stationary compressible Navier—Stokes equa-
tions are considered for the purposes of the shape sensitivity analysis. Such solutions
are uniquely determined and are stable with respect to shape perturbations within
the boundary variations technique.

In this chapter the general framework of shape sensitivity analysis adapted to the
specific case of Navier—Stokes equations is established. This means in particular,
that the Piola transform of the velocity field is employed in order to determine the
material derivatives in a reasonable way.

For the general purposes of shape sensitivity analysis the family of perturbations
S, for an obstacle S € B is introduced, depending on the small parameter ¢ — 0.
To this end the perturbations of the domain 2 are defined by an appropriate change
of variables (2.2),

T, RY5 x> ye,x) e RY, 2.7

or equivalently, the boundary of the obstacle S is given by the perturbation of the
sufficiently smooth boundary dS in the normal direction depending on a function

f(w),w €08,
S ={x =w + ¢ef(w)n(w), o eaiS}, (2.8)

where n stands for the unit outward normal vector on 95, and f(w), w € S is a
given function which defines the boundary variations of dS in normal direction.

Let us observe that f* determines the mapping ¥, only on the boundary 0S. By
the Hadamard representation theorem [15] the knowledge of f is also sufficient for
determination of the shape gradient & of the differentiable shape functional J(£2).
The explicit form of the shape gradient of the drag functional J(2) is required in
particular for the numerical methods of shape optimization. For example, the level
set method of shape optimization is based on the knowledge of the shape gradient
given by a boundary integral in (2.9). It means that, with applications to numerical
methods in mind, we investigate the existence of the following limit possibly given
by a boundary integral

dJ(2:0(0)) := Sli_r}(l)é(J(Qs) —J(Q) = / f(@)Gs(w)ds(w) (2.9)
aS
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where Gs(w),w € S, stands for the so-called boundary shape gradient of drag
functional in the direction of the shape velocity vector field depending on two
variables (g, x) — U(e, x), the first variable is the small shape parameter ¢ — 0,
and x is the spatial variable. We point out that in terms of the mapping ¥, given
in (2.7), the associated shape velocity field [15] takes the form (2.1).

In order to show the existence of the shape gradient given by a function
Gs(w),w € 9§, and to identify its form, the general procedure described in
[15] essentially for linear elliptic equations cannot be directly applied due to the
nonlinear nature of the governing equations. Some modifications of the method are
proposed here, such modifications are in fact necessary in view of the complexity
of nonlinear model. As a result, a new method of shape sensitivity analysis well
adapted to the analysis of compressible Navier—Stokes equations is proposed in the
monograph.

First, the shape sensitivity analysis of the state equation is performed in order
to determine the shape gradient Gs. To this end we evaluate the derivatives of
solutions (u(£2,), 0(£2.)) defined in the domain B \ S, and extended by zero over
the obstacles S,. The solutions are differentiated with respect to the parameter ¢ and
the derivative of the drag functional ¢ — J(£2,) at ¢ = 0 is determined.

The procedure proposed in the monograph for differentiation of the mapping

g > (W(Re), 0(R:)) (2.10)

results in the material derivatives as well as in the shape derivatives of the state
(u, o) with respect to the small shape parameter ¢.

In general, the algorithm for evaluation of material derivatives is simple [15], first
make the change the variables, then differentiate the composed mapping

&> ((2,) 0 %, 0(82,) 0 Ty) (2.11)

in the fixed function space over the unperturbed domain €2 e.g., in the stationary
case. Then the form of shape derivatives can be deduced from the material deriva-
tives. Such a procedure is straightforward for linear partial differential equations
[15], unfortunately it becomes difficult to apply for the nonlinear problems. The
formal evaluation of the shape gradient for an integral shape functional in terms of
the shape derivatives of solutions is easy to apply even in the case of nonlinear
problems, but the obtained result is more difficult to justify when compared to
linear problems. Such formal evaluation uses the direct differentiation of the
mapping (2.10) by only a formal application of the Implicit Function Theorem. We
point out at this point, that for the compressible Navier—Stokes equations there is no
general result on the regularity of solutions, and such a regularity result is required
for the justification of the formal procedure.

Let us introduce the material and the shape derivatives for the density, the same
objects are defined for the velocity field later on. We denote by

1
6 = lim ~(o(2) 0 T. — 0(2) 2.12)
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the so-called material derivative of the density with respect to the shape parameter ¢.
Howeyver, the material derivative is different from the limit

1
o = lim —(e(%2:) — 0(%)) (2.13)

which is the so-called shape derivative of the density with respect to the shape
parameter &, the relation between material and shape derivatives takes the form

0=0+Vo-U. (2.14)

Once, the material derivatives (1, ¢) of the state (u, o) are determined, the first
order necessary optimality conditions for the shape optimization of compressible
Navier—Stokes equations can be obtained. This means that for given (1, ¢) the shape
gradient of the drag functional can be identified.

We can conclude that the shape differentiability of solutions to the governing
equations can be achieved by the material derivative technique developed in [15],
provided some additional regularity of the weak solutions is known. Concerning the
shape differentiability of the velocity field we need an additional transformation,
which is called the Piola transform. To this end the new velocity field u.(x),x €
Q = B\ S (here we assume that S := § is a compact subset in order to simplify
the notation) in the fixed domain is introduced for all sufficiently small ¢ > 0. The
field u, is defined in (5.11) by using the Piola transform for the fluid velocity fields.
The Piola transform assures the invariance of the divergence operator for the change
of variables (2.7) from the fixed domain 2 to the variable domain €2,. Therefore,
by the change of variables combined with the Piola transformation the unknown
velocity field u(2.)(x),x € B\ S., is replaced by the new unknown function u,
defined in the fixed reference domain B \ S. The function u, can be extended to the
hold all domain B. However, the derivative of u, with respect to ¢ is different from
the material derivative u, the relation between such a derivative and the material
derivative depends on the specific choice of matrix N in the transformation of the
velocity fields defined in (2.2) or in (5.11).

It turns out, that in general the material derivatives, ¢ for the density o, and u
for the velocity u, are given by an auxiliary boundary value problem depending on
the shape velocity field (0, x) at ¢ = 0 and for x € 2. On the other hand the
shape derivatives ¢’ and w’, under some regularity assumptions, depend only on the
normal component of the field U (0, w) at ¢ = 0 and for w € 35, i.e. on the function
f(w),w € 0S8 in (2.8). It is clear that the function f defines the normal component
of the shape velocity field on the boundary of the obstacle f(w) = (0, ) - n(w),
w € 0S.

Therefore, the general strategy of shape derivation consists in two steps. First, the
material derivatives are obtained and used in order to show that the drag functional
is shape differentiable. Then, the shape derivatives are employed, possibly with an
appropriate adjoint state, in order to identify the form of the shape gradient of the
drag functional. The shape gradient & is a distribution, obtained by the Hadamard
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representation formula (see e.g., [15] for a proof of the representation formula),
which lives on the boundary dS of the obstacle. In our case & is given by a function
denoted Gg. Such a strategy is in fact applied in [11], where the complete proofs
are given for the stationary governing equations.

2.6 Shape Derivatives of Solutions to Governing Equations

We briefly describe the specific shape optimization problem which is analyzed in
this chapter. The problem is considered in three spatial dimensions, the particular
case of two spatial dimensions is also covered by our framework. The question is
to find an optimal shape of the obstacle S included in a large computational hold
all domain B. The optimal shape if any, minimizes the drag functional J(£2) within
a family of admissible obstacles, or admissible shapes {/,q. The hold all domain B
can be selected e.g., as a ball of the radius R > 1, to fix the ideas. For such an
optimization problem we have already the existence of an optimal shape. Since the
velocity field u is in the Sobolev space H'(B \ S) and vanishes on the boundary
dS of the obstacle, the extension of u by zero over the obstacle S, still denoted by
the same symbol u, is in the Sobolev space H'(B). Therefore, the analysis of the
differential properties of the mapping

Ua> S —uQ) e H(B),

with respect to the shape of the obstacle can be performed in the fixed function
space H'(B) for the extended function u which is defined all over the fixed hold all
domain B and vanishes on S.

Now, the outline of the shape sensitivity analysis of the state equation is
presented. If the shape of the obstacle S is perturbed by the boundary variations
technique, and the perturbed obstacle is denoted by S,, where ¢ — 0 is a shape
parameter, the extended velocity field determined from the governing equations
depends on the small parameter

U > S. ~> u(Q,) € H(B),

where S, = T.(S) is the image of the unperturbed obstacle S under transforma-
tion (2.2). In general, the mapping of (2.2) T, : R* — R3 is associated with the
shape velocity field U(e, x) given by (2.1).

We give more details concerning the specific form of the mapping T,. Let
r = (¢, X) denote the solution to the system of ordinary differential equations
parametrized by the initial condition,

d
S50, X) = B0 X)),

10, X)=X,
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then the mapping associated with the shape velocity field U takes the form
Te(X) i=1(s, X).
Furthermore, by our construction, the hold all domain is invariant for the mapping
B =%.(B),

since T, is reduced to the identity mapping in a neighborhood of the exterior
boundary 0B of the hold all domain B, under the assumption, e.g., that G -n = 0
on ¥ = 0B.

By construction the extended velocity field of Navier—Stokes equations satisfies
u(€2;)(x) = 0 on S, since on the boundary of the obstacle S, the non-slip boundary
condition is prescribed for the velocity field u(£2;). If the shape derivative u’ of
the velocity field u(£2) in the direction of the field 2 does exist, it is given by the
following limit

u'(x) = lim é ((Q:)(x) —u(R)(x)) in B\S,

with the limit passage ¢ — 0 taken with respect to the weak or strong convergence
in the associated Sobolev space, in our case the limit is taken with respect to the
weak convergence only, we refer to [11] for all details.

Therefore, the limit is called the weak (or the strong) shape derivative of
u(Q)(x), x € Q = B\ S, in the direction of the velocity field U(e, x) associated
with the family of mappings ‘T., the family of mappings being parameterized by the
small parameter ¢ — 0. In the similar way, the shape derivative of the density in the
direction of the velocity field U is defined by

¢(x) = lim~ (@(Q)() ~0(@)() in B\S.

2.7 Shape Gradients of Functionals

The knowledge of the shape derivatives u'(x) and o'(x) is sufficient to determine
the shape gradient of the drag functional given by the formula

4I(Q: B(O) = lim ~ (J(20) = /(@)

and to obtain the first order necessary optimality conditions for the drag minimiza-
tion problem. The structure of the shape gradient & for the differentiable shape
functional J(2) is characterized by the so-called Hadamard formula, we refer
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to [15] for a simple proof of the result for C 2 domains, or to [1] for a proof of
such a formula in the case of a class of nonsmooth domains.

Theorem 2.1. If the boundary S of the obstacle is C? and the mapping
C(—8,8:CJ(B;R%) 3V > dJ(2;V(0) eR, §>0,

is continuous, then there is a distribution & € D) (0S) supported on the boundary
of the obstacle, such that

dJ(S:0) = (,0(0) - n)ys .

If the distribution ® is given by a function called the boundary gradient Gs(w),
then there is the boundary integral representation of the shape gradient

dJ(2;0) = /Gg(a)) (U0, w) -n(w))ds(w), (2.15)
as

which implies (2.9).

It is shown in [9] that for the drag functional, the distribution & in (2.9) actually is
given by a function, the function is explicitly determined in terms of an appropriate
adjoint state. The regularity of the shape gradient is an important issue e.g., from
the point of view of numerical methods of shape optimization. Namely, if the shape
gradient is given by a function, then the level set type numerical methods can be
used for computations of an optimal shape, the shape gradient being a coefficient of
the Hamilton—Jacobi equation for the level set function.

2.8 Material Derivatives of Solutions in Reference Domain

The existence of the shape derivatives of the velocity and the density in the
Navier-Stokes equations combines the material derivatives and the formulae of
the type (2.14) for the relation between the shape and the material derivatives.
Therefore, it is convenient to introduce the material derivatives u(£2;0), 0(S2; V)
of u(2,)(x), and 0(2;)(x), x € B, which are intermediary objects determined in
the fixed or reference domain B \ S. The word fixed means that the domain is shape
parameter independent, the word reference means that small boundary variations of
the fixed domain are considered. The knowledge of the material derivatives (u, 0)
is also sufficient in order to determine the shape gradient of the drag functional.
In order to define the material derivatives we use the change of variables (5.7)
parameterized by ¢ — 0, denoted by x — y(e, x) := T (x), with the property
that x = y(0, x), and that the image of the obstacle S under this transformation is
exactly the perturbed obstacle:

Se=y(,S), and Q,=y(, Q).
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In this way, the composed extended velocity vector field
B3 x> u(Q,)(y(e x)) € H(B)
vanishes on the fixed obstacle
u(2)(y(e,x)) =0 for x € S.

The material derivative u(x) of u(£2.)(y (e, x)) is given by the following limit if the
limit exists

u = lim é () (y(e, x)) —u(R)(x)) in B\S. (2.16)

In the same way, the material derivative of the density is given by the formula

o= Sli_rgg)é(g(ﬂs)(y(& ) -o@)) in B\S. 2.17)

By the same change of variables (5.7), denoted for the sake of simplicity of our
notation by

X = y(x),

so the dependence on ¢ is not explicitly indicated, the governing equations are
transformed to the equations defined in the fixed domain B \ S. The material
derivatives are then determined for the transformed equations by the stability
theorem of solutions to governing equations in the reference domain with respect
to the operator coefficients.

3 Decomposition of Shape Gradient

Shape derivatives of weak solutions leads to the decomposition of the shape
gradient of the cost functional into its geometrical and dynamical components. This
decomposition is interesting on its own, since the evaluation of the dynamical part
of the shape gradient requires the solution of the appropriate adjoint state equations
and becomes complicated for practical applications.

Let us consider now the drag functional J(£2,) in the domain Q, := B\ S, =
Te(2), where T, : Q — Q is a smooth mapping, &¢ — 0 is a parameter, and the
shape functional

J(QS) = Uoo . J(Sé‘) = / g(ﬁas Vﬁss ﬁg’ n, V’I)dx (31)
Qe

The obtained formula for the shape gradient is justified in [11].
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3.1 Geometrical and Dynamical Parts of Shape Gradient

Using the Reynolds transport theorem and the shape derivatives u’, o’ of solutions
to the state equations u, 0 we obtain the shape gradient of the drag functional in the
direction of the vector field

d
Ve, x) = (—‘ZE) 0T '(x).
de
given by the expressionc

dJ(2;%0) = /Uoo - [—ouVu] (T - n)ds(x) (3.2)
3

+ / Us - [— (VU + (Vu)T + (A = 1) dive'T— P'(0)0'l) V] dx
Q

+ / Us - [—1(0'uVu + ou'Vu + guVu') | dx,
Q

Itis convenient to integrate by parts the terms depending on the first order derivatives
of the shape derivative o',

_/Uoo (V' + (V)T + (2 = 1) divu'T) V] dx—/Uoo - [nouvu'] dx =

Q Q
(3.3)
/u’ ~div(Vn ® Uso + U ® V) + 0’ - V(tr(Vn ® Ueo))dx+
Q
/div(ngu)u/- Uoodx—/Q(u-n)(u’-Uoo)ds(x),
Q as
and we denote
Lina(¥) = = [ glu-m(v- Une)ds(). (3.4)

as
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The shape derivative becomes

dJ(2;%0) = —/Uoo - [nouVu] (U - n)ds(x) (3.5)
3s
+ / P'(©)0'Vn - Usedx — / NUos - [0'uVu + ou'Vu] dx+
Q Q

/u’ ~div(V) ® Uso + Uoo ® Vi) + 1’ - V(tr(Vy ® Uewo))dx+
Q

/div(ngu)u’- Uoodx—/g(u-n)(u’-Uoo)ds(x).

Q as
The following expression is called the geometrical part of the shape derivative
AJ geom (§2; D) 1= —/Uoo - [ouVu] (U - n)ds(x). (3.6)
3s

We introduce the right hand sides for the adjoint state equations, so we denote

Lens() := /p’(g)nVn «Ugodx — / NUs - [ruVu]dx, 3.7
Q Q
and
Ly (v) := — / NUeo - [oVVu] dx+ (3.8)
Q

/v ~div(VN @ Uso + Uso @ V) + v- V(tr(Vn ® Us))dx+
Q

/ div(nou)v - Ugodx .
Q

The shape derivatives ¢’ := 7 and u’ := v are given by the following system of
linearized equations,

div(Tu®u+ov®u+ou®v)—divS(y)+ Vp'(o)r —xf=0 in Q,
(3.9a)

div(ru +ov) =0 in Q, (3.9b)
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ad
v=0 on X, V= —a—u(‘B-n) on 98, (3.9¢)
n
o0=0 on Xj,, (3.9d)

where S(v) = (Vv + VvT + (X — 1) div vI).

3.2 Linearized and Adjoint State Equations

We multiply (2.3a) and (2.3b) by the smooth test functions ¢, ¢, respectively, ¢
with compact support in €2 and ¢ which vanishes on X, and integrate by parts. It
follows that

/[div(gu@u)—div S(u) + Vp(o) — of] - pdx =
Q

/ [-(cu®u): D¢ +S(): Do — p(o)div e —of-@]dx
Q
and for the mass balance equation

/div (ow)pdx = — / ov-Vodx.

Q Q

Now, denote by (7, v) a solution to the linearized system at the sufficiently smooth
solution (g, u) of the nonlinear system. Hence the linearized balance of momentum
system takes the form of the integral identities satisfied for all test functions ¢,

/[—(nu@u):D¢—(gv®u):D¢—(Qu®v):D¢]dx
Q

+/ [S(v): D¢ — p'(o)w div ¢ — 7w f-¢p]dx.

Q

The linearized balance of momentum system is satisfied by the shape derivatives
(@ ).

It is also useful to perform the integration by parts for the functions v which
vanish on 0B and are non-null on the obstacle boundary 9., this leads to
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/S(v) : D¢dx=/[VV+(VV)T] : D¢dx+(x—1)/divvtr(0¢)dx=
Q Q Q

—/V.div[D¢+D¢T]dx+/[v®n+n®v]:D¢ds(x)
Q as

—-A-=1 / v-V[tr(D¢)]dx + /(V -n) tr (D¢)ds(x).
Q 3s

We denote by

Lagn1(v) := / [ven+n®v]: Deds(x) (3.10)
3s

+/(v-n) tr (D)ds(x).
as

the boundary integrals on dS which furnish one part of the dynamical shape gradient
Lagyn,1(0). It is clear that Ly, 1 (v) depends only on the trace of v on the obstacle
boundary 0.5, and the expression is nontrivial when used with the shape derivative
v := u’. There are the nonhomogeneous Dirichlet conditions on dS for the shape

u
derivative of the velocity field W' = ——— (0 - n), such conditions result from the
n

homogeneous Dirichlet condition for the velocity field u = 0 prescribed on 9.
In the same way, for the mass balance equation and all test functions ¢,

/[—nu-qu—gv-qu]dx:O,
Q

where ¢ is a smooth test function, and ¢ = 0 on X .

We introduce the following notation for the bilinear forms defined for linearized
operators, evaluated for the smooth functions such that, v = 0 on 92, and # = 0
on Xj,, and defined for all smooth test functions ¢, ¢ which satisfy the boundary
conditions ¢ = 0 on Xy, and ¢ = 0 on d$2. The first bilinear form is associated
with the linearized momentum balance equations,

(LT v). (9. 8)) = / [~/ (o) div ¢ — -] dx

Q

+/[—(7Tll®ll)2D¢—(QV®U)ID¢—(QU®V)ZD¢]dx
Q

—/v-div[D¢+D¢T]dx—(x—1)/V-V[tr(D¢)]dx.
Q

Q
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We denote also by

(La(rv). (9. ) = / [~7u- Vg —ov- Vgldv = 0
Q

the bilinear form associated with the linearized mass balance equation.
Now we take the sum of bilinear forms and define its decomposition in order to
identify the adjoint operators £, and Ly,

(Lx(@. @), 7) + (Ly(@. ), V) := (L1(7, V). (9. 9)) + (L2(7. V). (9. 9)) .

@3.11)

In view of decomposition (3.11) we can define the following adjoint operators,
the first is obtained for 7 := 0in (3.11),

(Lv(p,$),v) = (3.12)

—/[QV'V¢+(QV®U)ZD¢+(Qu®V):D¢]dx
Q

—/v-div[D([)+D¢T]dx—()k—1)/v-V[tr(D¢)]dx,
Q

Q

then the second is obtained for v := 0 in (3.11),

(Lr(p.@).7) = (3.13)
—/ [7u-Vo + (ru®u): D¢ + p'(o)wdive + f-¢]dx.
Q
Finally, the adjoint state equations are introduced:
Find ¢ and ¢ with ¢ = 0 on X, and ¢ on 0€2, such that

(Lr(@, @), w) = Lgens(r) for all test functions 7 , (3.14)
(Lv(p, @), V) = Ly (v) for all test functions v, (3.15)

where the bilinear forms are defined by (3.12) and (3.13). The smooth test functions
satisfy the following boundary conditions, 7 = 0 on X;,, v = 0 on 9.
Now, let us note that by the adjoint state equations we have the identity

Ldens(Q/) + Lvel(u/) = (Eﬂ((pv ¢)v Ql) + (EV((p7 ¢)v ll/> ’ (316)

and by the linearized equations written for the shape derivatives (¢’, ') it follows
that we have the second identity



362 P.I. Plotnikov and J. Sokotowski

(L. 9).0") + (Ly(p, @), 0') = (3.17)
(£1(Q/7 ll/), (@s ¢)> + (EZ(Q/s ll/), ((pv ¢)) + Ldyn,l(u/)) .

We can combine the above equalities and as a result the dynamical part of the
shape gradient is obtained in the form

d-]dyn(gz; T) = Ldens(Q/) + Lvel(u/) + Ldyn,Z(u/) = (318)
(L, 9),0") + (Ly(p, ), W) + Layn2(0') =

, , d 0
Lagna (@) + Lagna () = —/ [i ®nine® ﬂ . D ¢ (T -n)ds(x)
as

Ju

—/[a—~n:| tr(D(/))(‘B'n)ds(x)—}—/Q(u-n) [a—“-Uoo} (0 - ) ds(x) .
n on
N

as

4 Shape Sensitivity Analysis of Navier—Stokes Equations

4.1 Preliminaries

In order to perform the shape sensitivity analysis of the work functional for the non-
stationary equations, first, the framework is established. In the governing equations,
most of physical constants are posed to be equal to one, therefore the only constant
is A > 0. It is also assumed at this stage of analysis that there is no intersection
between the inlet and the outlet on the boundary of the hold all domain B. The
boundary variations technique is applied in order to investigate the dependence of
the shape functional J(£2,.) on the shape of the obstacle S in the variable domain
Q. =B\ S, fore — 0.

The tools we are going to discuss in this chapter include the shape derivatives of
the solutions to the non-stationary, compressible Navier—Stokes equations, the shape
gradient of the work functional J(2) and its decompositions into the geometrical
and dynamical parts, and the adjoint state equations associated with the dynamical
part of the shape gradient. The proofs of the results are given in [11] in the case of
local solutions to the stationary, compressible Navier—Stokes equations.

4.2 Navier-Stokes State Equations

In this chapter we are going to consider the general model.
The state equation defined in the reference domain 2 x (0, T') takes the form
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—d;(ou) + Au+ AVdivu =pu-Vu+ Vp(p) —Cu+of in 2 x(0,7),

(4.1a)

d;0 + div(ou) =0 in 2 x(0,7), (4.1b)
u=0 on 4S5 x(0,7),
u="U on dB x(0,7),

0 = 000 ON Xjy, (4.1¢)

u(x,0) = up(x) in €,
0(x,0) = go(x) in .

It is also convenient to introduce the effective viscous pressure
q = p(o) — Adivu,

and rewrite the state equation in the equivalent form useful for numerical methods,

—0;(cu) + Au—Vg =pu-Vu—Cu+ of in @ x(0,7), (4.2a)
1 1

diva = xp(g) — xq, in x(0,7), (4.2b)

d;0 + div(ou) =0 in Q x (0,7), (4.2¢)

u=20 on 39S x(0,7),
u=U on dB x(0,7),
0 = Qoo ON Xip, (4.2d)
u(x,0) =up(x) in €2,
0(x,0) = gp(x) in Q.

4.3 Linearized and Adjoint State Equations: Material
and Shape Derivatives of Solutions

Material and shape derivatives of solutions to the governing equations are given
by solutions to the appropriate linearized equations. We are going to derive the
equations for the shape derivatives of solutions to the Navier—Stokes equations.

For the sake of simplicity we assume that the intersection of the inlet i, with
the outlet X, is empty. We assume also that the primal variables = and v for the
density and the velocity in the linearized equations vanish for # = 0 and on X;, and
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02, respectively. The only exception from the homogeneous initial and boundary
conditions is the nonhomogeneous Dirichlet condition for the shape derivative u’ of
the velocity field on the obstacle boundary dS. The dual variables denoted by ¢ and
¢ for the density and the velocity vanish on X, and on 9€2, respectively.

In order to differentiate the solutions of the state equations with respect to the
shape the linearized and the adjoint equations are introduced. To this end it is
convenient to rewrite equations (4.1a) and (4.1b) in the following form

di(ou) +div(ou®u) —div S(u) + Vp(e) + Cu—pf =0 in Qx(0,7),

(4.3)
d;0+div(ou) =0 in Q x(0,7), 4.4
where S(u) = (Vu+ Vu' + (A — 1)div ul)). (4.5)

We multiply (4.3) and (4.4) by the smooth test functions ¢, ¢, respectively, ¢ with
compact support in € and ¢ which vanishes on Xy, and integrate by parts. It
follows that

T

//[8:(9u)+div(gu®u)—div Su) + Vp(e) + Cu—of]- ¢pdxdt =
0 Q

T
//(—Qu-at(])—(gu@u):D¢+S(u):D¢—p(g)div¢+
0 Q

(Cu=gf)-¢)dsar + [ [o(T)u(T) - $(T) ~ 20 u(®) - $(O)]dx

Q

and for the mass balance equation

T

/ / [0:0 + div (ou)] pdxdt =
Q

0

T
/ / (03¢ — v - V] dudi + / [0(T) ¢(T) — 0(0) 9(0)] dx.
0 Q

Q

Now, denote by (7, v) a solution to the linearized system at the sufficiently smooth
solution (g, u) of the nonlinear system, the same linearized system is derived for the
so-called shape derivatives (¢, u’), hence we obtain the integral identities satisfied
for all test functions ¢,
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T
// (—QV-thB—nu-thB—(nu@u) D¢ —(ov®u): Dp—
0 Q

T
(Qu®V): D¢)dxdt + // (S(v) D¢ — p'(0)m div p+
0

Q

(©v—nt)-¢)ddr+ [ (x(T)u(T)- () +o(T) (1) - $(T)-

Q

7(0)u(0) - $(0) — 0(0) V(0) - $(0) )dx = 0.

It is also useful to perform the integration by parts for the test functions v which
vanish on dB and are non-null on the obstacle boundary 9., this leads to

T T

O/Q/S(v) : D¢ dxdt = O/Q/ [Vv + (VV)T] . Db dudi+
T

T
A-=1) div v tr (D¢) dxdt = — v-div[D¢ + D¢ | dxdt+
I I
T T

//[V@n +n ®V]:D¢ds(x)dt—(k—1)//V-V[tr(D¢)]dxdt+
0 3 0 Q
T

//(v -n) tr (D¢)ds(x)dr .
as

0

We denote by

T
Liyn1(v) := //[V ®n+n®v]: Ddds(x)dt (4.6)

0 as

T
+/ (v-n) tr(D@)ds(x)dt .
0

as

the boundary integrals on dS which furnish one part of the dynamical shape
gradient. It is clear that Lay,;(v) depends only on the trace of v on the obstacle
boundary 0.5, and the expression is nontrivial when used with the shape derivative
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v := u'. There are the nonhomogeneous Dirichlet conditions on dS for the shape

derivative of the velocity field u' = ——u(T - n), such conditions result from the

n
homogeneous Dirichlet condition for the velocity field u = 0 prescribed on 9.

In the same way the linearized equation is obtained for the mass balance
equation,

T
/ / [0, ¢ —ru- Vo — ov- Vo] dxdt + / [7(T)o(T) — 7 (0) 9(0)]dx = 0.
0 Q Q

for all test functions ¢.

We introduce the following notation for the bilinear forms defined for linearized
operators, acting on the smooth functions such that, v = 0 on dQ, and * = 0
on i,

T
i@ 8) = [ [ (~ev-ae-
0 Q

nu-8,¢—(7ru®u):D¢—(Qv®u):D¢—(Qu®v):D¢>dxdt

T T
- -div(D¢ + D¢ )dxdt — (A — 1) -V [tr(D¢)] dxdt
O/Q/V IV( ) X O/Q/V r X

+ / (=P @mdive+(Cv—r1)-¢)dxd+
Q

(7T u(T) - $(T) + o(T) ¥(T) - $(T)—

/
/

7(0)u(0) - $(0) — 0(0) v(0) - ¢(0))dx,

the above expression can be slightly simplified assuming in addition that the initial
values for t = 0 also vanish, 7(0) = 0 and v(0) = 0.
We denote also

(£2(7T7 V)v ((pv ¢)> =

T
/ / [0, ¢ —ru- Vo — ov- Vo] dxdt + / [7(T)o(T) — 7 (0) ¢(0)]dx = 0.
0 Q Q
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Now we take the sum of bilinear form and decompose in the following way in
order to identify the adjoint operators

(ﬁn(qﬁ, ¢)s 7{) + (ﬁv(qﬁ, ¢)s V) = (E](N, V)s (@s ¢)) + (Ez(ﬂ',V), ((pv ¢)> .
(4.7)

Assuming that for t = 0, we have 7(0) = 0, v(0) = 0, and that the values
of ¢(T) and ¢(T') are prescribed, in view of decomposition (4.7) we define the
following adjoint operators, first for 7 := 0 in (4.7),

<aw¢xw:/@wwwwmnw— 38)

Q

T
//[QV-V¢+QV-8;¢+(@V®U)ZD¢+(QU®V)ZD¢—(CV-¢]dxdl‘
0 @

T
—O//V div[D¢ + D¢ | dxdr — (A—l)//v V[ tr (D)) dxdt,

then for v := 0 in (4.7),

(&@@Mﬂ=/ﬂﬂﬂﬁﬁ— 49)

Q
T
//(natqo—i—nu-V(p—i—nu-a,(b—}—
0 Q

(ru®u): D¢ + p'(o)w div ¢ + 7 f- ¢)dxdt. (4.10)

5 Decomposition of the Shape Gradient

The decomposition of the shape gradient into the geometrical and dynamical
components seems to be useful for the numerical methods of shape optimization.
The first component of this decomposition describes the direct influence of the
geometry variations on the variations of the functional. The second dynamical
component of this decomposition measures the influence of the variations of
solutions to the governing equations resulting form the geometry variations on the
variations of the shape functional. The dynamical component actually depends on
the shape derivatives of solutions with respect to the boundary variations.
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5.1 Work Shape Functional

Let us consider a shape functional depending on 2 = B \ S and defined to be the
work J(€2) := W;s of hydrodynamic forces acting on a moving obstacle S

JQ) = - / ] (ou- W) (x.7) ~ o()U(x) - Wik, 0)} dot
Q
(5.1)

T
/ / {Qnu~ »W + (cmw®u) —T) : V(W) + n(of — Cu) -W}dxdt,
0 Q
where 7 is a smooth function with a compact support which contains the obstacle
boundary 95, and n(x) = 1 in a vicinity of the obstacle boundary, furthermore
T =Vu+ (Vu)" + (A —1)divul — p(o) L.

Recall that if an obstacle S moves in atmosphere like a solid body then its physical
position S; at time ¢ is defined by

S, =U(1)S + a(r). (5.2)

Here a unitary matrix U and a vector field a(¢) can be defined by an appropriate
flight planning scenario. In this case the vector field W is given by formulae

W(x, 1) =UT(0)U@)x +UT(0)a(r), (5.3)
and we have
Cu = rotW x u.

It is convenient for our purposes to introduce the following notation for the shape
functional

J(Q) = / 00, U. W(0), m)dx — / Ho(T).u(T). W(T). dxt  (54)
Q Q

T

/ / S, u, T,W,9,W,VW. £, 1, Vn)dxdt,
0 Q

where

f(gv u, Ws 7’}) = ﬂ(x)Q(x)“(x) : W(X), (55)
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5, u, T,W,0,W, VW, £, 1, Vn) = nou-d, W+ (5.6)
nloc@®u)—T): VW + (o(u®u) —T) : (V) ® W) + n(of — Cu) - W.

5.2 State Equation and Shape Functional in a Variable
Domain

We are going to apply the boundary variations technique [15], however in the
framework adapted to our problem. The reference domain 2 = B\ S is transformed
onto the perturbed domain Q2. = B\ S, ¢ — 0, by means of the change of variables

y=x4+eT(x), xeQ, yeQ,, 5.7

with the appropriate vector field T supported in a neighborhood of the obstacle S,
since we are only interested in the boundary variations of the obstacle S. Therefore,
the state equation in 2, takes the same form (4.1) with €2 replaced by 2., with the
new unknown functions denoted by (g., u.), and with g, := p(0.) — A divu,, the
new unknown functions depend on the small parameter ¢ — 0 which is omitted in
the equations,

—0;(ou) + Au+ AVdiva = gu- Vu+ Vp(o) —Cu+ of in Q, x(0,7),

(5.8a)

d;0 + div(ou) =0 in Q2. x(0,7), (5.8b)
u=20 on dS: x (0,T),
u="U on 9B x(0,T),

0 = 0co ON Xip, (5.8¢)

u(x,0) = up(x) in Q,,
Q(x, O) = Q()(x) in Q,.

The expression for the shape functional in 2, := B \ S, takes the form
5@ = [ Fleo U.WOL M~ [ @D AT WDt (59)
Q. Q,

T

/ / g(@g’ ﬁ€7T£s W, atW, VW, f, n, Vn)dxdt s
0 Q.
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where the functions go(x), f(x,#), x € Q.,¢t € (0,T), are given by the restrictions
to 2, of the functions which are defined for x € R?, the plan of the flight for the
deformed obstacle S, takes the form of the matrix function given by (5.3), now W
depends on x € €2.. The functions g,, u,, T, are given by the solutions to state
equations, therefore the functions depend implicitly on ¢ — 0.

5.3 Shape Derivatives of Solutions

We are interested in the form of the derivative for the mapping
e > J(R2).

From the general theory of shape optimization [15] it follows by the Hadamard
structure theorem of the shape gradient 2.1 that the first order derivative of this
mapping, under appropriate regularity assumptions on the domain and on the
solutions is of the form

T

/a[ ®(T - m)ds(x) = lim

0

J(2,) — J(2) (5.10)
&

where the shape gradient & is in general given by a distribution which lives on the
boundary. In [9, 11] it is shown that for the drag functional the shape gradient is
given by a function Gyg.

Therefore, & is the so-called shape gradient of the shape functional J(£2) in the
direction of the vector field T. There are two distinct parts of the shape gradient, the
geometrical part, and the dynamical part, it is shown in [9] that the geometrical part
of the shape gradient vanishes in the case of the drag functional.

Actually, the shape gradient & can be decomposed into two parts, one which is
easy to evaluate numerically which we call the geometrical part, and another which
is very difficult to evaluate by numerical methods which is called the dynamical
part. The reason is that in order to evaluate the dynamical part, it is required to solve
not only the state equation, but also the so-called adjoint state equation which is a
linearized variant of the state equations depending on the right hand sides on the
derivative of the shape functional. This type of decomposition is easy for the linear
problems which are well posed, and extremely difficult for the nonlinear problems
we consider in the monograph. Now, we explain briefly such a decomposition as
well as the concepts of the material and shape derivatives for the solutions of our
state equation. In the description it is assumed that the solutions are sufficiently
smooth which in a specific application should be justified.

The dynamical part of the shape gradient contains the so-called shape derivatives
of the fields o, u. The remaining part of the shape gradient is called the geometrical
part. Roughly speaking, the dynamical part of the shape gradient takes into account
only the variations of the state with respect to the boundary variations of the
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obstacle. In other words, the geometrical part of the shape gradient is obtained for
the solutions of the state equation replaced by restrictions to the variable domain of
given functions defined e.g., in all the hold all domain, which means that the shape
derivatives of the density and of the velocity are set to be null. The decomposition
into two parts of the shape gradient is obtained at the final stage of our procedure.
In order to deduce the shape gradient & some methods are available. One
possibility is the change of variables Q. > y(x) = x + eT(x) = x € Q in
the state equation, and derivation in the reference domain €2 with respect to ¢ — 0.
Now, we give some details on the change of variables. It is convenient to change
also the unknown velocity field using the Piola transformation in the following way

u:(x,t) = Nug(x + eT(x),1), 0:(x,t) =0.(x + eT(x),1), (5.11)
where we denote
N(x) = det(I 4+ ¢éDT(x))(I + eDT(x))"". (5.12)

The new unknown functions 2 3 x — (u.(x), 0:(x)) € R¢*! are defined in the
fixed reference domain, therefore the mapping ¢ + (u,, 0.) can be differentiated
in classical way in an appropriate function space. We use the following notation for
the derivatives with respect to the shape parameter ¢ — 0, the limits are taken with
respect to the strong or the weak convergence in an appropriate function space, the
functions are extended to the hold all domain B if necessary, for the evaluation of
the shape derivatives,

» Derivatives of the solutions to the state equation

d e . e 1) — ) t
Q (x,t) ‘= lim M, (5.13)
de =0 e
d , 1) — ,t
s (x,1) := lim M , (5.14)
de e—0 &
* Material derivatives of the solutions to the state equation
o T ,1) — 1
6(x,1) = lim Q(x +¢ (’2 ) —etn.t). (5.15)
u, T , 1) — 1
a(r. 1) = lim & IO D —uxn o (5.16)
=0 &
* Shape derivatives of the solutions to the state equation
o0.(x,1) — ,t
Q’(x,t) ‘= lim M’ (5.17)
e—0 &
u.(x,1) — ,t
W (r 1) = lim 2D Zux D (5.18)
e—0 £
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There is natural decomposition of the material derivatives ¢, u into the shape
derivatives o', w’ and the remainders [15], which can be written formally for (x,?) €
Q x (0, T) as follows:

o(x,1) := o' (x,1) + Vo(x,t) - T(x), (5.19)
u(x,r) :=v'(x,1) + Vu(x, )T(x), (5.20)

but this decomposition is unfortunately difficult to be used in our context in order to
determine the shape derivatives.

Remark 5.1. Notice that the functions 9,(x,?) and u.(x,?) are only defined for
x € Q,, where ¢ — 0, therefore the limits (5.17) and (5.18) are well defined in the
open set 2. [

Remark 5.2. Formally, the equations for the shape derivatives (o', u’) are obtained
by the linearization of the state equation at the reference domain 2 x (0, 7'), and the
formal system is of the following form

—03;(0'u) — 9, (o) + Au' —Vq' = (5.21a)
du-Vu+ou' -Vu+ou-Vu' —Cu—Cu + of+of in Qx(0,7),
1 1

diva’ = Xp/(g)g/ - Xq/ in Qx(0,7), (5.21b)

9,0" + div(o'u) + div(ou') =0 in Q x (0,7), (5.21¢)
, du

W = —2=(T-n) on 95 x (0.7). (5.21d)
n

w =U on 3B x (0, 7), (5.21e)

0 =0, on i, (5.21f)

u'(x,0) = uy(x) in Q, (5.21g)

0'(x,0) = gy(x) in Q, (5.21h)

where we assume that the data in the state equation in the reference domain f, U, 0o
admit the shape derivatives C', f', U’, 0/, u;,, 0;. O

5.4 Geometrical and Dynamical Components of Shape
Gradient Decomposition

Now, since the data of our state equations are fixed, then the shape derivatives
of the data C',f',U’, o/, u, o are null, and formal differentiation of the shape
functional (5.9), making use of the Reynolds transport theorem, leads to
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I - J(Q
(@) = lim % = A geom (2 T) + dlgyn(:T) |

with the dynamical part of the shape derivative

W agn(:T) = / ¢ (T)fa(@(T) u(T), W(T). n)dx—
Q

/ W (T) - fu(0(T). u(T). W(T). )i+
Q
T
/ / 0'%o(0.w. T. W, 3, W, VW. £, 1, Vi)dxdi-+
Q

/u/ ° gu(Qv us Ts W, atwy VW, f, r}, Vn)dxd[—‘r
Q

Ct~— TT—=~ =

/']T’ - §r(0.w, T, W, 3, W, VW. £, n, Vij)dxdt,
Q

and, in view of (5.5), (5.6), we obtain

dJagn(2;T) = /n(x)g’(x, Tu(x, T) - W(x, T)dx—
Q

/ 1(x)a(r. T (x. T) - W(x, T)dx+
Q

T
// (ng’u- W+ n(du®@u): VW + /(u®u) : (Vn @ W)
0 Q
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(5.22)

(5.23)

(5.24)

T
+o't- W)dxdt + // (ngu’ W4+ no((W ®u) + (ueu)): (VW+
0 @

T
Vi ® W) — nCu’ - W)dxdt / / T : V(yW)dxdt .
0 Q
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The geometrical part of the shape derivative takes the form

AT geom($2; T) := /f(go,U, W(0), n)(T - m)ds(x)— (5.25)
EN

/ Ho(T).u(T), W(T). n)(T - m)ds (x)—
aS

T

//S(g,u,’H‘,W,B,W,VW,f, n, V) (T -n)ds(x)dt ,
0 3S

where we denote

T =S —p'(0)o' 1. (5.26)
S =vVu + (Vu)" + (A —1)div u'L. (5.27)

|
We develop further the last term in (5.24) in view of (5.26), (5.27), so we have

T

/ / T : Fr(o.u, T, W, 9, W, VW, £, 5, V))dxdt =
0 Q
T T

/ / T : V(nW)dxdt = / / [V’ + (VU)T] : V(nW)dxdt+ (5.28)
Q 0 Q

0

T
O=1) [ [ divu & (VW))dxdi— (5.29)
/]
T
/ / 2@ tr (V(W))ddr = (5.30)
0 Q
T

- u - div[V(nW) + V(W) T ] dxdt+

0
T
// [W®n+n@u]: V(nW)ds(x)dt
0 ds
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T
—-(A=1) / / u - V[ tr (V(nW))] dxdt+
0 Q

T
/ / v -ntr (V(nW))ds(x)dt+
3

0
T
[ [ r@e s@awyaa.
0 Q
From the above expression we can deduce the second part of the dynamical shape
gradient,
Ldyn,Z(V) = (531)

T T
//[V ®n—+n®v]: VinW)ds(x)dt + / / v-ntr(V(nW))ds(x)dt .

0 98 0 98

5.5 Adjoint State Equations

The dynamical part of the shape derivative is further simplified by introduction of
an appropriate adjoint state equations. We introduce two linear forms in order to
decompose the dynamical part of the shape gradient. The first linear form for the
density shape derivative,

Lgens() 1= /n(x)n(x,T)u(x,T)-W(x,T)dx— (5.32)
Q

T
// (nnu- W+ n(ru®u) : VW+
0 Q

T
rTa®u): (V@ W) + =nf- W)dxdt + / / P (o) tr (V(nW))dxdt .
0 Q

and the second linear form for the velocity shape derivative

Ly (V) := /n(x)g(x, T)yv(x,T) -W(x, T)dx+ (5.33)
Q
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T
// (nQV-3zW+nQ((v®u)+(u®v)) (VW + V@ W)
0 Q

T
—nCv - W dxdt — / / v div[V(W) + V(W) T ] dxdr
0

T

—(A - 1)//V- VI[tr (V(nW))] dxdt .
Q

(=)

With the notation we have
deyn(Q; T) = Ldens (Q/) + Lvel (ll/) + Ldyn,Z(u/) (534)

Now, the adjoint state equations are defined as follows:
Find ¢ and ¢ such that ¢ = 0 on Xy X (0, 7) and ¢ on 92 x (0, T),

(Lr(@, @), w) = Lgens(r) for all test functions 7 , (5.35)
(Lv(p, @), V) = Ly (v) for all test functions v, (5.36)
e(T) = —Du(T)-W(T), ¢(T)=nW(T), (5.37)

where the bilinear forms are defined by (4.8) and (4.9). The smooth test functions
satisfy the following boundary conditions, 7 = 0 on i, x (0,7), v = 0 on 92 X
(0,7),v(0) =0and 7(0) = 0in .

Now, let us note that by the adjoint state equations we have the identity

Ldens(Q/) + Lvel(u/) = (Eﬂ((pv ¢)v Ql) + (EV((p7 ¢)v ll/> ’ (538)

and by the linearized equations for the shape derivatives it follows that we have the
second identity

(L. 9).0") + (Ly(p, @), W) = (5.39)
(El(Q/, ll/), (@s ¢)) + (£2(le ll/), ((pv ¢)>+

T
//|:—(T n)®n+n®g i|:D¢(T-n)ds(x)dt
0

aS
([
u
+ (_ .n) tr (D¢)(T -n)ds(x)dt ,
0/3[ on
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We can combine the above equalities and in this way we obtain the dynamical
part of the shape gradient in the form

deyn(Q; T) = Ldens(Q/) + Lvel(u/) + Ldyn,Z(u/) = (5.40)
(La(p.9).0") + (Ly(p.9). W) + Layn2(u') =

//|: ®n+n ®g :|:D¢(T-n)ds(x)dt+

0 as
T
// (g—:n) tr (D¢)(T -m)ds(x)dt—

0 aS

T
//[ ®n+n ®g :|:V(W)(T-n)ds(x)dt—
0 as

T

//g—: -n tr (V(W))(T -n)ds(x)dt,

0 aS

where the element ¢ is given by the solution of the adjoint state equations (5.35)—
(5.37).
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Controllability of Navier—Stokes Equations

Jean-Pierre Puel

Abstract These notes correspond to a course taught at BCAM, Bilbao in March-
April 2012 and at CMM, Santiago de Chile in November 2012. Most of them
follow the lines of published articles on the subject, essentially the basic article by
Fernandez-Cara, Guerrero, Imanuvilov, Puel (J. Math. Pures Appl. 83:1501-1542)
and the article by Imanuvilov, Puel, Yamamoto (Chin. Ann. Math. 30:333-378,
2009), and also an article by Imanuvilov, Puel, Yamamoto (Carleman estimates for
second order non homogeneous parabolic equations) which is not yet published.
But, strictly speaking, the results presented here are new in the sense that they are
not written anywhere in this generality. Moreover the method of proof is different
from the ones given in the above articles.

Keywords Carleman estimate ¢ Local exact controllability ¢ Navier—Stokes
equations

Mathematics Subject Classification (2010). Primary 65K15; Secondary 49M99,
65K15.

1 Introduction

The present monograph intends to give a precise description of the latest method
used to study the local exact controllability of Navier—Stokes equations. It relies on
a new global Carleman estimate for the Stokes equations for the linearized problem
and it follows essentially the lines of [3] in a slightly different functional class for
the nonlinear problem. The result obtained here seems quite optimal and is stronger
than the one in [6] and a little stronger than the one obtained in [3].

A relevant objective for the control of a viscous fluid is not straightforward as
the system is dissipative and not reversible. The notion of Exact Controllability to
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Trajectories seems to be the most interesting one and it is described in the first
chapter. In the second chapter we treat the linearized problem, which corresponds
to a null controllability problem and requires the main mathematical tools. The third
chapter deals with the full nonlinear problem, which is studied in a quite complex
functional class even if it is simplified from the one considered in [3]. The argument
uses regularity properties for the Stokes system and some fine interpolation results.

2 Exact Controllability to Trajectories

2.1 Introduction

The physical domain is a regular bounded connected open set  of RY with N = 2
or N = 3, whose boundary is denoted by I". We denote by v the unit exterior normal
vector at a point of I". The time variable ¢ will be taken in the interval (0, T") with
T > 0. We consider the following controlled Navier—Stokes system in vectorial
form

dy

g—Ay+(y.V)y+Vp=f+v11wian(O,T), 2.1
divy =0inQ x (0,7), 2.2)
y=0onT x (0,7), 2.3)
y(0) = yoin . (2.4)

Here y is the velocity of a viscous incompressible fluid satisfying the no-slip
boundary condition on the boundary, p is the pressure, yo is the initial velocity
of the fluid, f is a given external force exerted on the fluid and v is the control
acting on a (small) subdomain @ of the physical domain €2, w being a non empty
open subset of 2. We consider here the case of a distributed control in order to avoid
additional technicalities, but the case of a boundary control, which can be seen as
more realistic, can be treated a posteriori from the present situation. For simplicity
we have taken the viscosity to be equal to 1. Even if the present description is for
the moment formal, we already have to say that, due to the fact that uniqueness is
an open problem for Navier—Stokes equations in dimension 3, for a given control v
we cannot speak of the solution y(v) but of one solution y(v).

The controllability question is then to try to describe the set of reachable states at
time 7, i.e. the set {y(v, T)} when the control v varies in an appropriate functional
class. This question cannot be answered exactly here. The dissipative character
of the system and the “regularizing” effect imply that we cannot expect exact
controllability for this system, which would mean for example that, starting from
an initial data in some Hilbert space H, we could reach any target in H by choosing
adequately the control v. This is hopeless here. Approximate controllability is here
a relevant question. This question corresponds to the following: given any target
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y1 € H, and any neighborhood of y; in H, can we choose a control v such that
y(v, T) reaches this neighborhood? This is an interesting problem which has the
drawback that it does not say what to do after time 7" in order to stay close to the
target. Anyway we will not consider this question here.

Another controllability objective can be introduced. The idea is that by control-
ling the motion of a viscous incompressible fluid we can only hope to obtain another
motion of a viscous incompressible fluid following the same physical laws. This is
the basis of what is now called exact controllability to trajectories (ECT) which
is described below.

Let us consider an “ideal” (uncontrolled) trajectory of the same operator (y, p)
starting from a different initial data y, and satisfying (for simplicity we take the
same external force f for the moment)

g—f—Ay+(y'.V)y'+Vp=finszx(o,T), (2.5)
divy =0inQ x (0,7), (2.6)
7=00onT x(0,T), (2.7)
y(0) = yoin Q. (2.8)

The global exact controllability to trajectory question is the following: can we find
a control v such that we have at time T

yv,T)=y(T)?

The local version of this question is the following: does there exist n > 0 such that
if [|[yo — Jollx < 1, we can find a control v such that

yv.T) =y(T)?

Of course if one of these properties occur, the two trajectories exactly meet at time
T and after time 7" we can switch off the control and follow the/one ideal solution y.

In order to point out the strength of this notion, let us consider the particular case
of y being a stationary solution (with f independent of ¢ of course). It is known
that there might exist an unstable stationary solution, so let us assume that y is such
an unstable stationary solution. Of course in that case we have yo = y. If now we
take y¢ different from y, even close to y and if we do not exert any control, from
the instability of y we see that y(¢) would diverge from y. If we can prove (local)
exact controllability to trajectories, it says that by choosing a suitable control v, not
only the/one solution y (v, t) will stay close to y but at time 7 it will meet exactly
y. This says that we have been able to perform a strong stabilization of the unstable
solution y.

At the moment, global exact controllability for Navier—Stokes equations is
essentially an open problem and a very important one. Only the case of a control



382 J.-P. Puel

acting on the whole boundary I' of the domain can be solved using a result by Coron
on approximate controllability in [2] (when the control acts on the whole boundary
the type of boundary condition which is considered does not change anything) and
a local controllability result like the one which will be given later on here.

The following sections will be devoted to the proof of a result of local exact
controllability to trajectories for Navier—Stokes equations.

2.2 Result and Strategy

We have to introduce the classical functional spaces entering the study of Navier—
Stokes equations. Let us define

H={ye(L*Q)", divy =0, yv=00nT} (2.9)
and
V ={ye (H}(Q)", divy = 0}. (2.10)
We will denote by Q and Q,, the cylinders
0=Q2x(0,T), Q, =w x(0,T),
and by ¥ the cylindrical boundary
X=TIx(0,T).

We will prove the following result of local exact controllability to trajectories

Theorem 2.1. Let us assume that w is a non empty open subset of Q2 and that
T > 0. We suppose that y satisfies y € L*>(0,T;V) N L®(Q)N. Then there exists
n > 0 such that if ||yo — YollL4@)v < 1, there exists a control v € L*(Q,)"N and a
solution y of (2.1) such that y(T) = y(T).

The proof of this result will require several steps. First of all if we write
2=y =V, g=p—DP 2= Yo~ o
we have

9 o
a—f—Az+v-(z®y+y®z) 2.11)
+V.-(z®z)+Vg=vl,inQx(0,T),

divz=0in Q x (0, T), 2.12)



Controllability of Navier—Stokes Equations 383
z=0onT x(0,7), (2.13)
2(0) = z0 in Q. (2.14)

We now want to find v and a corresponding solution z such that
(T) =0. (2.15)

We will first of all consider the following linearized controllability problem. For a
given tensor g (in a functional class which will be made precise later on) and a given
initial data zo, we consider the linearized Navier—Stokes problem

%—Az—FV-(Z@f—i—f)@Z)—f— (2.16)
Vg=V-g+4+vl,inQ2 x(0,7),

divz =0in Q x (0, T), (2.17)
z=0onT x(0,7), (2.18)
2(0) = zpin Q. (2.19)

We want to find the control v such that at time 7" we have
(T)=0.
This linear null controllability problem will be studied in the next chapter.
Next, we will go back to the nonlinear problem. We will then need refined

estimates and regularity results together with a variant of the inverse mapping
theorem.

3 The Linearized Controllability Problem

For g = (gj) € L2(Q)"" and zp € H we consider for every v € L2(Q,)" the
solution z of the following linear problem

%—A2+V-(z®)7+)7®z)+ 3.1
Vg=V-g+4+vl,inQ2 x(0,7),

divz=0in Q2 x (0,7), (3.2)
z=0onT x(0,7), (3.3)

2(0) = z0in Q. (3.4)
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Lemma 3.1. This problem has a unique solution z = z(v) € C([0,T]; H) N
L*(0,T;V).

We leave the proof of this lemma to the reader. Using the assumption y € L®(Q)",
it is a classical extension of the existence result for Stokes problem which can be
found for example in [14] or [11].

We now want to find a control v € L?(Q,,)" such that

z2(T)=0. (3.5)
Of course this will require some conditions on g which will appear along the lines
of the method.

We will give two different methods to obtain admissible controls which rely on
the same key estimate.

3.1 Penalty Method

Let € be a strictly positive number and for € fixed let us consider the following
optimal control problem:

min  J.(v) (3.6)
VE(L2(Quw))V
where
1 2 1 2
J.(v) = ZIz(T)|H + 3 ) |v|“dxdt. (3.7)

From classical arguments (see for example [10]), this optimal control problem has
a unique solution v. to which corresponds a state zz = z(v¢) and the optimality
condition can be written as

DJ.(v)[w] =0 VYw e L*(0,)". (3.8)

If we write the derivative of the (affine) map v — z(v) at the point v, in the direction
w as z,, it satisfies the system

%—Azw—kv'(zw@)i—k)—)@m)—i— (3.9)
Vg, =wl,in Q x (0,7T),

divz, =0in Q x (0, 7), (3.10)
zw=00nT x (0,7), 3.11)

2w(0) = 0in Q. (3.12)
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Using this, the optimality condition can be written as

(éZg(T),ZW(T))H + / vewdxdt = 0 Yw € L*(Q,)"N.

9]

Let us introduce the adjoint state ¢ which, together with a pressure 7 satisfy the
system (in components form)

N
—%—A@—;y‘jmmpwg—;=Oinszx(o,T), (3.13)
divep =0in Q x (0,7), (3.14)
¢=00nT x(0,T), (3.15)
o(T) = ézs(T) in Q, (3.16)
where
% %).

D j(p) = (gj + o,

With the help of this adjoint state, the optimality condition can be written as

/ (ve + @)wdxdt = 0¥Yw € L*(Q,)",
Qo
or
ve + ¢ =0in Q,. (3.17)

Let us now try to pass to the limit when € — 0. Multiplying the state equation for
Ze by ¢, we obtain

N
d¢;
CAT) 0T = Gog O == Y [ gyeanar+ [ vepasa
0 J w

ij=1
so that
1 al g
2 2 — LT
Z'ZE(T)lH + /w |ve|“dxdt = (0, 9(0)) s — UX;/Q&, 7 dxdt.
Let us assume for the moment that we know an estimate (Observability Inequality)

like

|¢(0)|§,+/Qp2|v¢]2dxdtgc ; lg|?dxdt = C , Ve |Pdxdt, (3.18)
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for some suitable weight function p. Then, if we assume that g satisfies
L o
— gl dxdt < +o0,
o P

we have

1 1 1
Lemp, + 1 / v Pdxdr < C(Jzo, + / L g Pduan).
€ 2 0 p

o

Then, v, is bounded in L2(Q,,)" and «/nge (T) is boundedin L?(Q2)" independently

of e.
After extraction of a subsequence we have

ve = vin L*(Q,)" weak,
ze =2(ve) =~ z=12z(v) in C([0,T]; H) N L*(0, T; V) weak,
z2e(T) — z(T) in H weak.

Therefore we must have

Z(T) =0,

and this proves that v is a control solving the null controllability problem.

In fact it is easy to show that v. — v in L?(Q,,)" strongly where v a solution
to the null controllability problem which minimizes the L?(Q,)"-norm among
admissible controls.

We still have to prove the Observability Inequality.

3.2 Observability Inequality

The only way we know to obtain such an inequality is the use of a global Carleman
estimate for the Stokes system. Let us consider the Stokes system

%—AH Vqg=hinQx(0,T), (3.19)
divz=0in Q x (0,7), (3.20)
z=0onT x (0,7T), (3.21)
2(0) = 70 in Q, (3.22)

withzg € V and h € L?(0, T; (L>()V).
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Then, from classical regularity results (see for example [14]), we have
z€ C([0,T];V) N L3O, T; (H*(Q)"),

% (L200)Y, ¢ e L20.T: H'(@).

ot
Let us define
w = curlz.
Then
aw .
5 Aw =curlh in Q x (0,T), (3.23)
Az(t) = curlw(t) in 2, ae.int € (0,7), (3.24)
z(t) =0onT, ae.int € (0, 7). (3.25)

Notice that on I', because z,r = 0 we have
Vz= (Vzv)v.

Therefore, w, can be expressed in terms of (Vz.v). The vector function w satisfies
a system of non homogeneous heat equations. We can use the global Carleman
estimate given in [8] or better the improvement proved in [9]. In order to write
down this estimate we first have to define some suitable weights.

We know from [4] Lemma 1.1 that there exists a function ¢ € C*(2) such that

Yy =0onl, ¥(x) >0VxeQ, |[VY¥|>c)>0in Q\ o.

Let us define [ € C°°([0, T']) such that

T 3T T T 3T
[(t) =t on]0, Z], [(t)y=T —t on [T,T], [(t) > 7 on [Z T]
We now define
AP0 +m)
E(x, 1) = T (3.26)
W) +my) _ pA(Y | 00 (@)+ma)
a(x,t) = "0 , (3.27)

where A > 1 and m; < m, are two constants chosen for the moment such that (it is
easy to show that this is possible)

O s ’a 3
|§| <Cé&%, and |ﬁ| < Cé.
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We use a classical notation to define the space

(ST

H3(S) = Hi(0,T: LX) N L2(0,T; H* (I).
The following result of global Carleman estimate for non homogeneous parabolic
equations has been proved in [9]

Theorem 3.2. There exist Ag > 1, 59 > 0 and C > 0 such that for every A > Ag
and s > 59, we have

1 2sa
- / C  |Vwdxdr + A2 / g% |w|dxdt < (3.28)
sJo § 0

C(sHlg b wl? y, + / e | 2dvdr) +
H#1(5) 0
Cs)? / £e>|w|*dxdt.
Qv
We recall that on I" the trace of w can be expressed in terms of the normal derivative
of z.

Now ¢z is solution of an elliptic equation with right hand side w. We can use the
estimate for elliptic equations given in [7] with the weight

,B(X) — el(lﬁ(x)'f‘ml)_

Theorem 3.3. There exist 9 > 0, Ay > 1 and C > 0 such that for every T > 19
and A > Ag the function z(t) satisfies for almost everyt € (0,T)

[ (V00 + 22 ) < (3.29)
Q

c(f / B2 |w(r)|dx + 1242 / Be P |z(t)|2dx).
Q w

Now let us take 7 = % and after multiplication by a suitable function of time we

integrate in time on (0, ) to obtain
/ 25 ()LZ|Vz|2 n s212$2|z|2)dxdt < (3.30)
0

C(skz / £e25 |y|Pdxds + 520 Szezmlzlzdxdt).
0 Ow
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Combining the above parabolic and elliptic estimates we get
250 |Vw|* 2 2 2 2 294822
e” (—+sk Elw|” + 27| Vz|” + s°A%E7 7] )dxdt§
0 5§
0z

—1e-1 sa %2 2sa|1,12
C(Heten TRy + [ e nraar)

+C / e (skzslwlz + szx4§2|z|2)dxdt.
Qw

We now want to get rid of the boundary terms in the right hand side.
Let us define

etmi _ oMYl o0 @) +ma)

I4(t)

)

a(t) = néiga(x,t) =a/r(t) =

/\ml

E0) = miné(v.0) = §/r() = 335

and let us write
(u, 1) (x, 1) = E(0)7H (2(x, 1)e5D g (x, 1)e’* D).

We have

V(x,1) € 2 x(0,T), &(r) < a(x,1), £(t) < E(x,1), £(t) = Cy > 0,

and
% —Au+Vr = %h + sg—;e”v‘z - %5—;63&27
divu =0,
us =0,
u(0) = 0.

We now use the regularity result for Stokes equation (see [14]) to obtain
2 5612 208,562
||“||H1»2(Q) = C(|emh|Lz(Q) + s Igemzle(Q))7
where

H'2(Q) = H'(0,T;L*(Q)) N L*0,T; H*(Q)).

389

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
(3.36)
(3.37)
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From [12] we know that

o, )
1501 44 ) = CllulBicgy
As
8_u = g_%g‘v&%
av adv
we obtain

—Lg-1 s&az 2 —1 say 2 3.5 sq 2
52| 4e B_UHH%‘%(E) =C(s e h|L2(Q) +s52[Ee Z|L2(Q))'
We use this estimate in (3.31). Taking sy large enough (we have s > sp), we
can absorb the term s2 |§e““’v‘zli2 ) from the left hand side and we obtain the first
Carleman estimate for the Stokes system (recall that w = curl z)

Vw2
/ 623a<| Vgl + S/\2%-|w|2 4 /\2|VZ|2 +52/\4§2|Z|2)dxdt < (3.38)
0 N

c( / 2 h2ddr + / em(sng|w|2+szx4s2|z|2)dxdt.
0 Ow

Now we would like to remove the local term sA? |, 0, e | w|dxdt from the right
hand side.

First of all we obtain the previous inequality with w replaced by wy with wy # 9,
and wy C w. Then we take a function § € C°(w), 0 < 6 < 1,0 = 1 on wy.
We have

skz/ e>E|w|*dxdt < skz/ Oe>*E|w|*dxdt =
Qwo Ouw
sA? Be**Ew.curl zdxdt = skz/ curl (A€e**w).zdxdt =

[ [

skz(/ Géez‘vo‘curlw.zdxdt+/ ey z[2s(Da)0E +

w

(DO)E + A(DY)E|dxar),

where D stands for various first order differential operators. We know that Do =
AED Y, Dy and D6 are bounded and curl w ~ Vw. Therefore
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sAZ/ e |w|dxdt <
%

c( /
c( / Azge2‘“|w|2dxdt) (
(

1 1
c / A2§e25“|w|2dxd)z< / Azéezwlzlzdxdt)z

dedt)é(/ s3k4§3ezm|z|2dxdt)% +

Nl—

1
/ S22 o) +

1 1
c( / snge%ﬂwﬁdxdt)z( / sk4§ezwlz|2dxdt>2 <
QHJ

1 1 eZsa
—/ SA2Ee® |\w|dxdr + —/ |Vw|*dxdr +
2 w 2 w ss

C / sPAE3 e 7 2dxdt.
Qo

We can absorb the first two terms from the left hand side of (3.38) to obtain the
following new Carleman estimate for the Stokes system.

Theorem 3.4. The exist so > 0, Ag > 1 and C > 0 such that for s > so and A > A
and for every solution z of the Stokes system (with w = curl z) we have

\Y
/ (KD ;;' SRR+ AV 4 SN et < (339)
0

C(/ ez““|h|2dxdt+s3k4/ ez““E?’IzIdedt).
0 Qv

Let us now notice that our adjoint system (3.13) can be viewed as the previous
Stokes equation with ¢ replaced by T — ¢ and i = y D(z) with by hypothesis y €
(L>(Q))N. Therefore, by choosing A large enough, we can absorb the term in Vz
from the left hand side in order to obtain the following inequality for the adjoint
state ¢.

Veurl ¢|?
[ e (FEEE 4 sateleunt o + 3209 + 2310
0

< Cs*A? / e &3 |?dxd. (3.40)

From now on we fix s > s and A > A,.
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Let us define

a(t) =a(t)ift € [%, T]. a@t) = a(g) if 1 € [0, g], (3.41)
N T - T T
E(r)=§@)ifr € [3, T], &@) = ?;‘(3) if 7 € [0, 3]- (3.42)

Notice that the new functions & and § are no longer degenerate in the neighborhood
oft =0.

Using standard energy estimates for the (backward) Stokes system, we can obtain
the same inequality replacing « and £ by & and £ so that

- /|Vecurl 0|? - -
/ em(% + sA2|curl g2 + 22| V|2 + s21452|<p|2)dxdt
] S

<Ccsat / X8 g 2dxdt. (3.43)

Again with the help of standard energy estimates we also obtain what is called the
Observability inequality

lp(0)3 + / E2025%| 2dxdt + / 2%\ Vo |*dxdt
o o
=C / ePE3 |2 dxdt. (3.44)
Qw

Going back to our null controllability problem we see that we can solve this problem
provided the initial data zy and the right hand side g satisfy

20 € H, / e 2% g |2 dxdt < +o0.
0

We then obtain the following controllability result for the linearized Navier—Stokes
system.

Theorem 3.5. Ifzy € H and g satisfies fQ e 29| g|2dxdt < +o0, then there exists
v € (L*(Q,))N such that the solution z of (3.1) satisfies

2(T) =0.

3.3 Exponentially Decreasing Controls and Solutions

We will show here that we can find a control v which is exponentially decreasing
when ¢t — T and such that not only z(7") = O but z is also exponentially decreasing
whent — T.
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Let us define
Xo={(z.q) e C®°(Q)" ', divz=0inQ, z=0o0n %,

/ q(t)dx =0a.e.in (0,T)}.

If we set

0z
L*z2=———Az—7.D(2),
z 5 z—9.D(2)

we can define on X the bilinear form

a((z,q), (z.§)) = / e (L*z 4+ Vq)(L*% + V§)dxdt + / X3 Zdxdt,
0

w

As y € (L*®(Q)", because of the Carleman estimate (3.39), we see that this is a
scalar product on Xy. Let us define X to be the completion of X, with respect to
this scalar product. Then of course X is a Hilbert space for this scalar product and
we have

V(z.q) € X, [2(0)[} + /Q (V2 + E[zP)dxdr < Ca((z.9). (2.9))-

Let us now consider the linear form / : X — R defined by
Y 0%
VEDEX. <1.Ga>= @i — Y [ gyadu
=1 0 an
Then, if z0 € H and [, e 2% g|2dxdt < 400, we can see that / is a continuous

linear form on X. From Lax—Milgram Theorem, there exists a unique solution
(z,q) € X of the problem

a((z,9),(z,9) =<1,(z,9) >, V(z,9) € X.
Let us now define

y =e*¥(L*z+ Vq)in O,

y = —ez“'&g?’z/w in Q.



394 J.-P. Puel

Then y € (L*(Q))V,v € (L?(Q,))" and we have

/y.(L*Z—i-Vé)dxdt:

0
Y 0%

EROIEDY / gij——dxdt + / vzdxdt, ¥(Z,4) € X.
o 0 0,

Therefore, y, together with a pressure p is the (unique!) solution defined by
transposition of the problem

dy

5—Ay+v-(y®)7+)7®y)+ (3.45)
Vp=V.-g+4+vl,inQ2x(0,7),

divy =0in Q x (0,7, (3.46)
y=0onT x(0,7), (3.47)
¥(0) = zp in Q. (3.48)

Butas g € (LZ(Q))N2 and v € (L*(Q,)" this problem has a solution (which has
to be the same one by uniqueness) y € C([0, T]; H) N L*(0,T; V).
On the other hand we have

/ e 2% y|2dxdt =

0

/ e UMY L* 2 4 V| dxdt :/ e¥¥|L*z 4 Vg|dxdt < +o0
0 0

and

e~ 2sa .
/ iz |v|2dxdt=/ e 837 Pdxdt < +o0.

Of course this says that y(7) = 0 and that y and v are exponentially decreasing
when ¢ — 7. We can summarize this result as follows.

Theorem 3.6. Ifzy € H and g satisfies fQ e 29| g|2dxdt < +o0, then there exists
a control v and a solution y of (3.1) such that y(T') = 0 and

y —2sa
/ e—2sa|y|2dxdt < 400, and / eg?) |v|2dxdt < 400. (349)
0

9]
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4 The Nonlinear Problem

4.1 Choice of Special Weights

From now on, in order to simplify, we will omit the notation for the weights. In the
weights £ and o we still have some choice for the constants m; and m,. We will
make a special choice for these constants. First of all we define for ¢ € [£, T] (the
caset € [0, %] is straightforward)

ermi _ e/\(W|L°°(Q)+m2)

a(t) = iléiga(x,t) = 0 <0, (4.1)

v Amy

E(I)Zl;leigg(x»l)zms (4.2)
eMWYlLoo@+m) _ oMYl o0 @) +m2)

a(t) = r;lee%(a(x,t) = "0 <0, 4.3)

. AW looy+m)

E(I)ZTE%(g(XJ)ZT (4.4)

We then have.

Lemma 4.1. We can choose the constants m| and m, with my < m, such that for
Ao large enough, we have for A > X

da s 0

3
—| < Cé&%, |—| < CE&2
|51 = C&% |51 = Ck
and
3, . . 3,
—-ada<aor —o<-——x«.
2 2

Proof. Let us take

my = (mo + 4) Y| @) » M2 = m3|Y|Lo0q).

It is easy to see that all conditions are fulfilled if
5
mo+4<my< Zl’)’lo—‘r4

for Ay large enough. Now such a choice of m( and mj3 is obviously possible.



396 J.-P. Puel

4.2 Functional Class and Solution of the Nonlinear Problem

We recall the setting of the nonlinear problem.

%—A2+V-(Z®)7+)7®Z)+ (4.5)
V-z®2z) +Vg=vl,inQ x(0,T),

divz = 0in Q x (0, T), (4.6)
z=0onT x(0,7), 4.7
2(0) = z0 in Q. (4.8)

We now want to find v and a corresponding solution z such that
z2(T) =0. (4.9)

We have to define a correct functional class in order to apply some inverse mapping
argument. Let us define

0z I
LZZE—Az+V~(z®y+y®z)

and

—sa

E ={(@zv). ez e (L2Q)", “rv e (L2 (Q0.)", (4.10)

£3
e~ %9 e L40, T; (L2(Q))Y) N L2(0, T; V) N L™(0, T; H),
3¢.3k, ek € L*(0,T; LS(Q)N), Lz + Vg —vl, = V.k,
2(0) € H N LY(Q)N},

equipped with the norm
2 2 e o
e = e diaigp + 1= Viagun +

-¥a,2 —¥4 112
|e 4 Z|L4(0,T;L12(Q)N)+||e 4 Z||L2(0,T;V)HL°°(O,T;H)+

le™ %k iZ(O,T;L"(Q)NZ) + ||Z(O)||i4(Q)N'

This class E is non empty and is a Banach space.
On the other hand we define

G = {(V.k.z0), ek € L0, T: L5)""), 20 € H N LY(Q)"} (4.11)
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equipped with the norm

2 — 2 2
1074, 20) 13 = 17K,y oiae + 10l By

The space G is a Banach space. We now define the operator A as follows: for
(z,v) € E

A(z,v) = (Lz+ V.(z® z) + Vg —vl,, 2(0)). (4.12)

From the definition of E it is clear that z(0) € H N L*(Q)V.
On the other hand we have

e 20 ®2) € L0, T; LS(Q)N)

and

so that

e (@ ®2) € LX0.T: LYQ)Y).
Therefore, A maps E into G and it is obviously continuous. As the first component
of A(z,v) is linear plus quadratic and this quadratic part comes from a continuous

bilinear map from E x E to G, it is clear that A is a C' map from E to G. Let us
compute the derivative of A at the point (0,0) € E. For (y,w) € E

A0,0)[y.w] = (Ly + Vp —wl,, y(0)).

Given (V.h, yo) € G, we know from Theorem 3.6 that there exists (y, w) such that

Ly+Vp=wl,+V.h inQx(0,T) (4.13)
divy =0, inQ2x(0,7) 4.14)
y=0onT x(0,7T), (4.15)
y(0) = yp in 2. (4.16)

with y(7") = 0 and

y e L*(0,T;V)NL®(0,T; H),
—Ssu

ey e LX(Q)", we L}(Q,)".

£3
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Let us show that (y,w) € E. It remains to prove that

e~ Wiy e L2(0,T: V)N L®(0,T; H) N L*0, T: L(Q)").

Let us define

y = e_%&y, p=e T&p, h=e 7%, w=e 1%
It is easy to show that

he L20,T;L5(Q)""), and w € L2(0,T; L2(Q.)").

On the other hand we have

97

af AF+V.GRF+7®F) +Vp =
_ 35 9@

v.h+w11w—zsa—‘:y~, in Q x (0,7)

divy =0, in Q2 x (0,7)

y=0onT x(0,7),

7(0) = e 80y in Q.
Notice that

oa 0 3

g & 4 8
57 = gre iy = (et ) € L20.T: LA@)Y).

ot ot
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Therefore, from the existence result and as N < 3, we have y € L*(0, T V) C
L2(0,T; L6(Q)V). As § € L*®(Q) we have 7 ® 7 € L2(0,T; L5(Q)"") and
§®7 € L2(0, T; L5(Q)N’) and these terms can be incorporated in /2 so that without

loss of generality we can write (without taking a different notation)

Z—Z—Ay+Vp—Vh+k inQx(0,7)

divy =0, inQx(0,7)
y=0onT x(0,7T),

F(0) = e %Oy in @,

with

4.17)

(4.18)
(4.19)

(4.20)
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and

e L20,T; LS()™).
Lemma 4.2. Let us assume that yo € H N LYQ)N and that h e L*0,T;
L(’(Q)NZ), k € L2(Q)N. Then y € L*(0,T; L">(Q)").

This lemma will be a consequence of the following one by the transposition
method.

Lemma4.3. Letk € L} 0, T; L (V). Then there exists a unique solution (z, q)
to the Stokes system

a
—a—j—Az—}—Vq —k, inQx(0,T)
divz=0, inQ2x(0,T)
z=00nT x(0,7),
z2(T)=01in Q,
with

2e C([0, T L3(Q)Y) N L2(0, T; W (Q)).

Assume Lemma 4.3 is proved. We then have

N
s 2 ~ a i ~
/ Fkdxdt = / e Oy O)dx — Y / By dxdr + / Kzdxdt.
Q Q ij [} ax] (¢

We know that

200) € L3 ()Y, aai € L*(0,T; L5(R)) and W5 (Q) c LA(R).
Xj

As
yo € LY@V, hyj e L*(0,T; L%(Q)) and k € L*(Q)",

the right hand side is a linear continuous form on k and therefore defines a unique
!
element y in (L% 0, T; Lt (Q)N)) = L*(0,T; L'>(Q)"). This gives the proof of
Lemma 4.2.
The proof of Lemma 4.3 follows the proof given in [3].

Proof of Lemma 4.3. From a Giga—Sohr regularity result on the Stokes problem (see
[5]) we have
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ze L3(0,T; W1 (Q)Y), and % e L3(0,T; LT (Q)N).
We have
W2 (Q) c W7 (Q) C LY9Q).
Then
ze L3(0,T; LYQ)N), % € L3(0,T; L1 (Q)V).
By interpolation results (see [13]) we obtain

12 N
ze C([0, T} (LY(Q), Lﬁ(sz))

3
I

4)’
5

and (L*(R2), Lit (Q)) is the Lorentz space L33 (Q) = L3 (). Then

W

el
IS

7€ C([0,T]; L3 (Q)M).

On the other hand we have

12

2e L3O, T; W1 (@)Y n w7 (@)Y, and, z € L®(0,T; LT (Q)V).

By interpolation we have

N
ze L2(0,T; (WZ’%(Q), L%(sz))

But

(qu%(sz),ﬁ(sz)) — Wi

112
3011
As z = 0 on the boundary I" x (0, T"), we finally obtain
6
z€ L20.T: W, > (2)V)

and this finishes the proof of Lemma 4.3 and then of Lemma 4.2.

This also proves that the solution (y, w) to the controllability problem (4.13) is
element of E and therefore that A’(0, 0) is a surjective linear map from E to G. We
can now apply the following epimorphism theorem (see [1]).
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Theorem 4.4. Let E and G be two Banach spaces and let A : E +— G satisfy
A € CY(E;G). Assume that ey € E, A(eg) = ho and A (eo) : E — G is surjective.
Then, there exists § > O such that, for every h € G satisfying ||h — hol|l¢ < 8, there
exists a solution of the equation

A(e)=h, ec€E.
Taking here eg = (0,0) and /o = (0, 0) this theorem gives exactly the conclusions

of Theorem 2.1 if we take & € G of the form (0, zp).

Remark. We could have taken in the equation for y an external force f different
from f. In fact, following the argument it is easy to show that we can take

f=f+f

with <= f

7

finite and small enough.
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