Chapter 6
High Temperature and Density in Lattice QCD

Carleton DeTar

Abstract These lectures provide an introduction to lattice gauge theory calcu-
lations of the properties of strongly interacting matter at high temperatures and
densities. Such an environment is produced in heavy ion collisions and was most
likely present in the early universe. Emphasis is placed, not on formalism, rather
on an intuitive understanding of the nature of the crossover from the confined,
chiral-symmetry-broken phase to the deconfined, chiral-symmetry-restored phase.
Illustrations are taken from results of recent numerical simulations. Connections
with phenomenology are discussed.

Lecture 1: The strong-coupling, high-temperature limit and the Potts
model paradigm

In this first lecture we survey the phenomenology and offer an intuitive understand-
ing of the phase transitions by appealing to approximate models of lattice QCD
applicable at high temperature, strong coupling, and large mass.

6.1 Introduction

6.1.1 Why Study High T and High Density QCD?

Moments after the “big bang”, before the formation of hadrons, the universe passed
through a phase in which quarks and gluons (as well as leptons and photons) existed
in a plasma-like phase. It is conceivable that, even today, a deconfined state of
matter occurs at the cores of very dense stars. This form of strongly interacting
matter is not well understood and surely holds interesting surprises. Understanding
the properties of matter under such extreme conditions involves both experiment
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and theory. To study strongly interacting matter under these conditions, we try to
recreate it in a microcosm in heavy-ion accelerator laboratories at the Relativistic
Heavy Ion Collider at Brookhaven, the Large Hadron Collider at CERN, and at the
Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. What we
learn provides insights into the origin of matter and the phenomenology of dense
stars.

6.1.2 Phenomenology of the Quark-Gluon Plasma

Theoretical studies of the “quark-gluon plasma” have used approximate models,
resummed perturbation theory, and nonperturbative numerical simulation to develop
some understanding of the properties and behavior of quark-gluon matter at high
temperature and density. Some of what we know is well founded in theory and
experiment, but much is speculative. Here is a list of the main phenomenologocial
properties:

* Deconfinement. At high temperature or density, quarks and gluons are no longer
confined in distinct color-singlet combinations.

* Phase transition or crossover. The transition between confined and deconfined
matter at zero baryon density is only a crossover and not a true phase transition
at physical values of the quark masses.

e Chiral symmetry restoration. The loss of confinement is accompanied by an
approximate restoration of chiral symmetry.

* Phase diagram 1. Figure 6.1 gives a speculative phase diagram as a function
of temperature and baryonic chemical potential. The figure indicates a phase
boundary between confined matter (hadron gas) and deconfined matter (quark-
gluon plasma) as well as some unusual and highly speculative phases at very high
density. Sketched are the paths taken as matter evolves in a heavy-ion collision
and in the cooling of the early universe.

* Phase diagram 2. Figure 6.2 shows the phase structure as a function of quark
mass at zero chemical potential. In this case the regions show for what ranges of
quark masses a phase transition of any sort is possible at some temperature. One
should imagine a third, temperature axis extending out of the plane. Then what is
shown is a projection of phase diagram surfaces onto the quark mass plane. What
we see is that at very high quark masses, a first-order phase transition occurs at
some temperature. This region is bounded by a second-order line in the Z(2)
universality class. At quite low quark masses, there is, again, a first-order phase
transition, also bounded by a second order line. This line merges with the m axis
and extends to infinity. Between these first-order regions there is only a crossover.

As we have emphasized, these figures mix some solid theoretical results with
considerable speculation. So far, there is fairly good agreement about what happens
at low baryon number density. There are several open questions: (1) What happens
at high density is not well established. (2) At moderately low density, Fig.6.1
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Fig. 6.1 Speculative phase diagram for QCD as a function of temperature and baryonic chemical
potential. (right) phase structure as a function of the degenerate up/down quark mass and the
strange quark mass
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Fig. 6.2 Speculative phase structure for QCD as a function of the degenerate up/down quark mass
and the strange quark mass

shows a critical point at the end of the first-order line. Is this correct? Is it
experimentally accessible? (3) At low up and down quark masses, Fig. 6.2 indicates
some uncertainty about whether, at fixed physical strange quark mass, we should
encounter a first order phase transition at a nonzero value of the up/down quark
mass. Present indications are that, if so, that mass is quite small.

How can we make further progress addressing these questions? They all require
a nonperturbative treatment of quantum chromodynamics (QCD). Although the
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underlying field theory for QCD is well-known and widely accepted, the only
reliable method we have for answering nonperturbative questions is through
numerical simulation via lattice QCD. This approach is properly called ab initio,
since the reliability of its results can be improved indefinitely by decreasing the
lattice size (and finding a larger computer!). The lattice version of QCD is not just an
approximation. It is a well-defined regularization procedure with a high-momentum
cut off that can be removed in the same way as in any standard regularization
scheme.

Some disclaimers are in order, however. The numerical methods used to date
have their limitations. First, lattice QCD is most naturally designed to describe
matter in thermal equilibrium with small perturbations from there. But heavy ion
collisions are naturally dynamic. Thus, for example, lattice QCD is not designed
for modeling the expansion and cooling of the quark-gluon plasma. Instead, lattice
QCD can provide the equilibrium properties of the plasma, which then become
inputs to phenomenological models (e.g. hydrodynamic models) of the expansion.

These lectures are intended to give an overview of lattice QCD applied to quark
and gluon matter at high temperature and high density. To help develop some
intuition about high-temperature lattice QCD, we begin in this lecture by discussing
the strong-coupling, high-temperature limit of the theory, making connection with
the statistical mechanical three-state, three-dimensional Potts model.

6.2 Lattice QCD at Strong Coupling

We assume familiarity with the basics of lattice gauge theory from chapter “Lattice
QCD: A Brief Introduction”.

6.2.1 Partition Function

The imaginary-time Feynman path integral formulation is ideally suited for ther-
modynamics. With suitable boundary conditions in the imaginary (Euclidean) time
dimension, namely, periodic for bosonic fields and antiperiodic for fermionic fields,
the integration over classical histories naturally gives us the quantum partition
function

Z = Trexp(—H/T) = /[dU][dl//dI/_/]eXp(—S). 6.1)

In this notation H is the QCD hamiltonian, 7 is Ehe temperature, [dU] is the Haar
measure over the gauge-field (gluon) links, [dvyd v/] is the Grassmann measure over
the quark and antiquark fields, and S is the classical Euclidean action for QCD.
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The temperature is related to the Euclidean time extent of the lattice:
T =1/(N:a), (6.2)
where the lattice spacing is @ and the number of lattice sites in the Euclidean time

direction is N;. Thus we can vary the temperature by varying N; and by varying a.
The latter approach is most widely used.

6.2.2 Wilson Action and Noether Current

The Wilson lattice action S consists of a gauge-field part and a fermion part:

S =58;+SF, (6.3)
where!
Sg = % > [ =ReTrUp(x: . v)/3], (6.4)
X, u<v
Sk =) V(@)V(x) 6.5)

€D W1+ 7D UV (x + 2) + ¥ (x + D) (1 = y) UL 0)Y ()]

X,

The gauge coupling is denoted by g, the lattice sites, by the four-vector x, the
coordinate directions by p and v, the plaquette at site x and plane pu,v, by
Up(x; u,v) and the hopping parameter, by «, which is related to the bare quark
mass M through the relationship k = 1/(2aM + 8).

As discussed in chapter “Lattice QCD: A Brief Introduction”, the fermion action
is bilinear in the fields, so it can be written in compact form as

Sk =Y VM )Y (x). (6.6)

We saw that the path integral over the fermion fields in Eq. (6.1) could be carried
out explicitly, resulting in the determinant of the fermion matrix M (U), leading to
an integral over just the gauge field:

Zy = / [dU] expl—S (U)] det[M(U)] 6.7)

'Note that the fermion field has been rescaled by a factor +/2i relative to the notation of
chapter “Lattice QCD: A Brief Introduction”. This normalization is convenient for numerical
implementations.
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For Monte Carlo integration it is important that the fermionic determinant be real
and positive so it can be used as a probability weight for importance sampling. This
is true for all fermion formulations commonly used in numerical simulation. The
Wilson action in Eq. (6.5) satisfies M = ysMys, from which we can infer that
det M = det M so the determinant is, indeed, real.

For later reference we write the conserved Noether current for Wilson fermions,
which follows in the usual way from the U(1) symmetry of the action:

Ju(x) = kY ()1 +y,) U ()Y (x+2) =¥ (x+ ) A=y ) UL )P (x)]. - (6.8)

6.2.3 External Point Current

Let us consider introducing an external point charge g in the fundamental represen-
tation of SU(3) into the action. Let it move along the world line C. It modifies the
continuum action through the source term

88 = / d*x AL () (x) = —igsﬁ A4 Aldxy, . (6.9)
C

Gauge invariance requires that C be closed. When this term is inserted into the path
integral for the partition function we get a path-ordered exponential of the integral
over the vector potential.

P exp[—iggg A Aldx,]. (6.10)
c

On the lattice this turns into a path-ordered product of gauge links:

Z = /[dU][dl/fdlﬂ] exp(—S)L¢ (6.11)
Le="Te [] A+ y)Usp. (6.12)
x,n€C
(For backward hopping we use the convention, y_,, = —y, and U_,(x) = UJ

(x—4).)

Now we consider placing a static charge in the statistical ensemble. The static
charge worldline C is fixed at x, moving forward only in imaginary time t. The
term L ¢ is then

Ne—1
Le o< Tr [ ] Usao - (6.13)
=0

It is called a “Polyakov loop” (also, sometimes “Wilson line”).
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6.2.4 Gauge Theory at Strong Coupling, High T

Taking soluble limits provides insights into the workings of a theory. We recount
an old story that bears repeating for its intuitive value: [402,403]. We consider the
strong-coupling, high-temperature limit of the Wilson action for just the gluons, in
other words, pure SU(3) Yang-Mills theory.

The temperature is the inverse of the lattice extent in the imaginary time direction,
asin Eq. (6.2). To get a very high temperature we consider an anisotropic lattice, i.e.,
with different lattice constants in time and space (a; # da;). Then the Wilson action
takes the form

6 6
So = s DM =TUp(0.0/3+ 55 3 (1= Tr (i )/3). - (614
15 xi 56 xi>j

where the space-time oriented plaquettes (first term) get a larger weight than the
space-space ones (second term). For high temperature we set N, = 1 soa, = 1/T,
and we want @, /a; < 1. So we may drop the space-space term. We then have only
Up(x,0) and Up(x, i) and the space-time-oriented plaquette becomes

TrUp (x:0,i) = TrlUp(x. 0)U; (x) U] (x + DU (x) . (6.15)

The trace takes its maximum value of 3 when Uy(x,0) = zxI € Z(3), the center of
SU(3): {1,exp(£2ni/3)}. The center elements commute with the space-like link
matrices, which then cancel, leaving only the Z(3) elements. So we approximate
the integral over the gauge fields by a sum over elements of Z(3):

6a, .
Z— / TTiev, ()l exp(se) — 3 exp gz—ﬁ;ZRe @) | 616)
X, x x,i

Our approximation has become the classical three-state, three-dimensional Potts
model, a popular toy model in statistical mechanics.

The Potts model is a generalization of the familiar Ising model, but here there
are three orientations of each spin, rather than just two. Note that the model has
a global Z(3) symmetry: zx — Yzx for Y € Z(3). Just as with the Ising model,
the Potts model has a ferromagnetic phase transition from a magnetized (ordered)
phase at low temperature where the global symmetry is spontaneously broken to
a disordered phase at high temperature. The order parameter is the magnetization,
proportional to the expectation value of the spins, (z). In this Potts model the phase
transition is first order.

In the spin system, we interpret the factor 6a;/(g2a,) as the ratio J / Tpyys Where
J is the coupling strength between neighboring spins, and Tpoys is the spin-lattice
temperature. So the Potts temperature 7Tpyys is proportional to g2 atfixed a, /a;. Now
in QCD the renormalization group tells us that the lattice spacings @, and a; must
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decrease as we decrease g. So at fixed a, /ay, small g2 corresponds to a high QCD
temperature Tocp = 1/a; and a low Potts model temperature Tpoyys.

So from these considerations we expect to find a first order phase transition in
SU(3) Yang-Mills theory with an ordered phase at high (QCD) temperature and
a disordered phase at low temperature. The order parameter of the transition is
TrUy(x), the Polyakov loop in this N; = 1 example. For a more extended lattice, it
is still the “Polyakov loop”:

L(x) = Pexp |:/ igAp(x, ‘L')d‘L’]:| . (6.17)

This quantity should have a zero expectation value in the low-temperature, disor-
dered phase and a nonzero expectation value in the spontaneously broken, ordered
high-temperature phase.

6.2.5 Chemical Potential

Before extending the strong-coupling, high-temperature analysis to fermions, we
show how to introduce chemical potentials so we can discuss the high temperature
approximation at nonzero baryon number density as well.

The conserved charges on the lattice are the flavor numbers (Q ) (including
baryon number). In the grand canonical ensemble, the partition function is

Zy = Trexp | —H/T +> pusQs/T| . (6.18)
i

The Noether current in Eq. (6.8) gives us the conserved charge density

pr(x) = k¥ () (1 + y)Up(x) ¥ s (x +0) — ¥ p(x + 0)(1 — yo) Uy ()9 7 (x)]
(6.19)

from which we may calculate the contribution to the exponential in the partition
function as

prQr/T = py / 0= nspsx). (6.20)

Note that this term is just like the time-like kinetic term in the action except for a
sign. We get a factor (1 + au) for forward hopping and (1 — ap) for backward. It
is more natural to use e*#¢ for these factors. So we replace

Y )1+ y0)Uo ()Y (x + 0) — ¥ (x)(1 + yo)Uo(x)¥ (x + 0)e"*, (6.21)
P (x 4+ 0)(1 = y) U ()Y (x) = ¥ (x +0)(1 — yo) Ul ()9 (x)e ™" . (6.22)
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An important consequence of a nonzero chemical potential is that the fermionic
determinant det M (p) is no longer real. We can guess this would happen if we
observe that the ys symmetry we used to prove reality now reads MT(u) =
ysM(—p)ys. So det[M(w)]* = det[M(—p)]. It cannot be used directly as a
Monte Carlo probability weight. A common expedient is to use the magnitude
of the determinant as a probability weight and average over the phase. But the
phase oscillations grow with the volume of the system V. So one cannot take the
thermodynamic limit V' — oo with that method.

This vexing problem is called the “sign” problem. It appears in strongly-coupled
electron systems as well, when one considers doping to move away from a half-filled
conduction band.

6.2.6 Fermions at Strong Coupling, Large Mass, High T

Let’s see what happens to the Potts model approximation when we include fermions.
We write the Wilson fermion action for an anisotropic lattice (a; # a;), and we
include the chemical potential o for completeness:

SF

Y VY (6.23)

kY [ @)1+ yo)Up(x)e ™ (x + 0)

+9 (x + 0)(1 — yo) U] (x)e" yr(x)]
Kd;

— = WA+ U@+ 1) + P+ D=y U Y (0]

The relationship between bare quark mass and hopping parameter is now
1/k = 6a,/a; + 2+ 2Ma, . (6.24)
At very high temperature with N. = 1 we have a,/a; = 1/(a;T) — 0, so we drop

the space-like term in the action. The fermion matrix is then diagonal in space-time
with values on each spatial site

1—k(1 4+ yo)ze ™ — k(1 —yo)z*e’, (6.25)

where we have introduced the Z(3) variable as before.
At large mass (small k) the fermionic determinant becomes

exp |:h0(/<, w) + hix, ) X:RezX + ik’ (k, ) Zlmzx] , (6.26)



204 C. DeTar
where
h(k,u) ~ 24k cosh(a, ), h (x, 1) ~ 24« sinh(a, ) . (6.27)
So our modified Potts model is now
H=-JY Re(z,;) — Y [hRez — il Imzy] (6.28)
X

x,i

for values of h,h’ given by Eq.(6.27). So the fermions introduce “external”
magnetic fields into the spin system. In the Ising system there is only one magnetic
field, but because there are three states in this Potts model, we can have two. In this
case the two fields combine to make a complex field. The quark mass introduces an
external real magnetic field, and the chemical potential gives rise to an imaginary
magnetic field. In the Ising system any nonzero external magnetic field removes
the continuous phase transition, resulting in a crossover. At zero field the Potts
system has a first order transition, which weakens as the external field is turned on.
Eventually, it, too becomes a continuous transition at a critical point and, at higher
fields, a crossover. These properties are demonstrated in a numerical simulation of
the Potts model [403]. Results are shown in Fig.6.3. The imaginary field further
weakens the transition.

10 10 = -
h =0 h = 0001 o
307 B os| 30%.— -
08 / 3 /
20° 25 s . 20 y
/ K
06 / 06
L ! L i H
0.4} £, ] 04 j’
0z . 1 ozl
\a) L \C)
o , J—
00— e 00 § ) ]
02 03 0.4 05 oz 03 0.4 05
A A
B 8
1O —r—r : ———————) W —— v — e
— h =0l "
h = 00! oo 3 s
0Bl Aot s . j 08| 30 "
20%: 1 » z'/ /
06| / 06
L i /
041 04| / ]
(9) vd
L
o2} 0 J ozr .~
0.0 = s 1 . 00 | N i :
02 03 0.4 05 02 03 04 0.5

s

W

Fig. 6.3 Magnetization vs. inverse Potts temperature in the presence of an external field /. Notice

that the first order phase transition disappears with increasing field [403]
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The Potts model gives a good understanding of the large-mass portion (upper
right corner) of the phase diagram of Fig.6.2. The first order phase transition
degrades into a crossover as the quark masses are decreased. These suggestive
features of the approximate model are confirmed in simulations of QCD [404].

6.2.7 Three-Dimensional Flux-Tube Model of QCD

Some years ago, Appoorva Patel introduced an intuitively appealing toy model
that imitates strong-coupling, large mass, high-temperature lattice QCD [405, 406],
called the “flux-tube model”. The model is equivalent to the three-dimensional
three-state Potts model that we have been discussing, but the degrees of freedom
are quite different.

The flux-tube model on a cubic lattice places quantized Z(3) electric fluxes £y ;
on next-neighbor links and Z(3) charges ny on sites. A charge of +1 on a site
represents a quark, —1, an antiquark, and O is an empty site. Fluxes and charges are
required to satisfy Gauss’ law mod 3:

> (Uxi — lx—i) mod 3 =ny. (6.29)

i

The hamiltonian is, then simply

H=0) |uil+m) |ny. (6.30)

where o is the energy of a flux link and m is the mass of a quark. States of the model
must be “singlets” because of the Gauss’ law constraint. As illustrated in Fig. 6.4,
there are meson-like states, baryon-like states, and glueball-like states consisting of
only a flux loop.

o O O O

baryon meson
glueball

Fig. 6.4 Possible “hadrons”
in the flux tube model. Shown

are a “meson”, “baryon”, and
“glueball”
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The grand-canonical ensemble for this classical flux-tube model is defined by the
partition function

Z =) expl-(H — uN)/T]. (6.31)

nx.Lxi
where the sum is over configurations that satisfy Gauss’ law and N = ) ny.
Note that there is no complex phase problem at nonzero chemical potential in this

representation.

The equivalence between the flux-tube model and three-dimensional three-state
Potts model is easy to show. The essential step in the derivation replaces the Gauss’
Law constraint in the partition function with the Z(3) identity on each lattice site:

1
3 > =5 (6.32)

The z’s become the Potts spins. The flux-tube parameters o, m, and  map to the
Potts model parameters.

There are some amusing features of the deconfined phase of the flux-tube model.
At very large quark mass, most of the configurations consist of a continuous fabric of
flux links. At low temperature, there are not enough flux links to create a continuous
fabric. So one could say at low temperature we have a gas of hadrons, which grow
in size as the temperature increases until they connect, leading to the deconfined
phase. Quarks terminate flux lines. At lower quark mass there are enough quarks
that the fabric is not connected at any temperature, so the phase transition is lost.

We learn from this example that we can solve at least part of the sign problem by a
change of basis. In the field basis (gauge links), the complex phase comes from the
imbalance between forward time-like and backward time-like hopping, combined
with the presence of complex time-like gauge links. Integration over the time-like
gauge links enforces Gauss’ Law at each lattice site. Changing from the field basis
to the hadron basis eliminates the complex phase.

With SU(3) it is much more difficult to formulate the path integral with a basis
change because there are an infinite number of irreducible representations of SU(3).
Moreover, there will still be a fermion sign problem, just as with electrons in
condensed matter physics. Our simple models don’t expose it. Finally, and probably
most importantly, while the Potts and flux-tube models capture the deconfinement
aspects of the high temperature phase transition, the strong coupling and large mass
approximation doesn’t capture chiral symmetry or its restoration, aspects of the
transition that are most important for high temperature physics at physical quark
masses.

Exercise 1 In mean field theory we consider the statistical mechanics of a single
site, assuming that the neighbors of the site take on the same mean value. So for the
Potts model we have a single-site partition function
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Z() =) exp[~H(z.2)/ Trous] (6.33)
Z

where the single-site H(z,z) is obtained from the full H by setting all spins to the
mean value z, except for one site, which carries variable spin z.

We then impose self-consistency by calculating the output mean value of the spin
on the single site and requiring that it equal the input mean value.

Do this for the 3D 3-state Potts model with # = h’ = 0, and show that there is
one real solution for low J/ T and three real nonzero solutions for sufficiently high
J/T. (In the latter case, the middle one happens to be unstable.) Then show that the
transition is first order.

Maple, Mathematica, or gnuplot can help with the numerics here.

Lecture 2: Deconfining transition

In this second lecture we consider a variety of deconfinement features of the
high temperature transition, including the free energy of a static charge, the
strange quark number susceptibility, insights from dimensional reduction, and the
survivability of hadrons at high temperature. The equation of state is another, but
we defer discussion of that to the last lecture.

6.3 Signals for Deconfinement

6.3.1 Free Energy of a Static Charge

The free energy of a static charge at position x is measured through the expectation
value of the Polyakov loop operator, which we introduced in the first lecture:

L(x) = Pexp [/ igAp(x, T)d{|

Here Ao(x) = Y, Ao A§(x)/2 is the time component of the color vector potential
and P represents path ordering. Its expectation value on the lattice is

(L) = / [dUIL(x) expl—Ser(U)]/ / [dU] expl—Seir(U)] (6.34)

As we observed in the first lecture, this operator inserts a static external point source
at position X, so its expectation value gives the difference Fy in free energy between
the ensemble plus an additional static charge and the unmodified ensemble:

exp(—Fy/T) = (L) . (6.35)
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Actually Fy = Fy(a,T) depends on the lattice spacing and temperature. It is
ultraviolet divergent (~ const/a), just as in quantum electrodynamics. Usually, we
renormalize it so

Fy(T) = Fy(a,T) — Fy(a, Ty) + const. (6.36)
Exercise 2 The Wilson fermion action for a fermion of bare mass m is

Sp =Y YOM, W) =D g (6.37)

— Y W)+ y) U Y (x + 2) + ¥ (x + (1= y)U ()Y ()],

X

where Kk = 1/(8 + 2ma). The fermion propagatoris M ~!(x, x’).

Note that M = 1 — xH, where H is called the “hopping matrix”. For large bare
mass (small k) the propagator, [I — Kk H]™', can be evaluated as a geometric series
(hopping parameter expansion). Find the propagator in leading order in « for a static
quark over the time interval [0, ¢].

The partition function in the presence of a static quark at x is

/ [dU] exp[—Se(U)] TrM ~1(x,1/T:x,0), (6.38)

where the trace of the propagator is over color and spin.

So show that exp(—Fy/ T') is proportional to the Polyakov loop operator, where
Fy is the free energy of a static quark, i.e., the difference in the free energies of the
ensembles with the static quark and without.

6.3.2 Free Energy of a Pair of Static Charges

The free energy of a pair of static charges is constructed in an obvious way from the
product of Polyakov loops:

exp[-F(R, T,a)/T] = (L(x)L*(x + R)) . (6.39)
At zero T this is the same as the potential V(R) of separation of a static
quark/antiquark pair. Numerical results are shown in Fig.6.5. If there are no sea

quark-antiquark pairs, confinement requires that at large separation

lim F(R) = oR. (6.40)
R—o00
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Fig. 6.5 Free energy of a static quark/antiquark pair as a function of separation in units of
the string tension R./o for a variety of temperatures [407]. Results were calculated with three
degenerate flavors of light quarks with masses am, = 0.1 fixed in lattice units. o is the
string tension. The band of lines indicates the Cornell phenomenological heavy quark potential,
appropriate at zero temperature. Deviations from this potential with increasing temperature can be
interpreted as a weakening of confinement

This form of the free energy is equivalent to the statement that the expectation value
of the product of two Polyakov loops at separation R falls exponentially with the
area of the region between the loops. Since they are as long as the temporal extent
1/T of the lattice, the areais R/ T. So exp[-F (R, T,a)/T] — exp(—oR/T).

When sea quark-antiquark pairs are included in the ensemble, they screen
the static charges, as illustrated in Fig.6.6 (upper left), so we always have,
asymptotically, twice the free energy of a single static quark. The result is finite
at any temperature:

F(R,T,a) — 2Fy(a,T). (6.41)

When sea quark-antiquark pairs are absent, as in pure Yang-Mills theory, there
is no screening, as sketched in Fig. 6.6 (lower right) so Fy(a, T') is infinite at low
temperature. Above the deconfinement temperature the free energy is finite. In pure
Yang-Mills theory there is a first-order phase transition separating the deconfined
and confined phases. The static quark free energy is an order parameter for the
transition.

If we introduce dynamical sea quarks into the ensemble, the static quark free
energy is finite at any temperature, but, as long as the quark masses are large, we still
see a dramatic decrease in the free energy as we cross the transition temperature. For
sufficiently large masses, the transition is still first-order, but as the sea quark masses
are decreased, the transition weakens, and eventually there is only a crossover, as
shown in Fig.6.7. In that case the static quark free energy is only a qualitative
indicator of deconfinement.



210 C. DeTar

Low T High T
R R
K- =
Low T High T

— KA
[ e——
Fig. 6.6 Yellow indicates sea quarks. Brown lines indicate color electric flux. Left, upper: static
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Right, upper: static quark at high temperature, screened in the presence of sea quarks and lower,
screened by thermal gluon fluctuations in the absence of sea quarks
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Fig. 6.7 Free energy of a static quark F,(7) as a function of temperature in the presence of sea
quarks [408]. It drops steadily through the transition temperature between 150 and 200 MeV. There
are light sea quarks, so the transition is only a crossover

6.3.3 Strange Quark Number Susceptibility

The number of strange quarks in the ensemble N; can fluctuate. A measure of
fluctuation is the strange quark number susceptibility,

xs =(N2)/(VT). (6.42)

It is another qualitative indicator of deconfinement, since fluctuations are controlled
by the Boltzmann factor. In the low temperature, confined phase, strangeness
fluctuations come from fluctuations in the number of strange hadrons. At high
temperature they come from fluctuations in the number of strange quarks. Since
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Fig. 6.8 Strange quark number susceptibility [408], showing a rapid rise in the transition region
between 150 and 200 MeV

strange hadrons are heavier than strange quarks, we expect the fluctuations to
increase with deconfinement. Results from a numerical simulation are shown in
Fig.6.8.

6.3.4 Dimensional Reduction

Since temperature is determined by the inverse temporal extent of the lattice, high

temperature corresponds to a small temporal extent. At sufficiently high temper-

ature, the four-dimensional Euclidean space-time lattice becomes, effectively, a

three-dimensional Euclidean lattice. This is called “dimensional reduction.”
Euclidean time boundary conditions

Ay (x,7) = A (x,T + 1/T) periodic (6.43)
q(x,7) = —q(x,7 + 1/T) antiperiodic, (6.44)
lead to different behavior for bosons and fermions in the dimensionally reduced

lattice. This can be seen from a Fourier decomposition in imaginary time t:

o0
Ay (x, 1) = Z expiwput) A}, ,(X) forwp, =2xnT (6.45)

n=—oo
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o0

q(x,0) = Z exp(iws,1)q,(x) forwys, =2x(n+ 37T . (6.46)

n=—0oo

For free fields the mass-shell condition becomes
pi—i—pi—i—pf—i—wﬁ—}-mzzo, (6.47)

where the fermion Matsubara frequencies are wy,, and the boson Matsubara
frequencies are wy,,.

In a Euclidean world, any direction can be called imaginary time. So we swap z
and 7 and let E = ip,. Then the free-field mass-shell condition becomes

E>=pi+p, + o +m>. (6.48)

We get a tower of 3D bosonic fields, one for each Matsubara frequency:
E, = py + p; +mj + 2unT)*. (6.49)
Likewise, we get a tower of 3D fermionic fields, one for each Matsubara frequency:
E} = pl+ps+my + 2x(n+ DT (6.50)

The result is a three-dimensional Euclidean field theory in which the original time
components of the vector potentials Aj , become scalar fields, the original spatial
components Ay, ; become 3D vector fields and the fermions g, have effective masses
that increase with 7'. At high T all fermion fields have high mass regardless of m ¢,
and they are rare. Only the n = 0 bosons are massless when m; = 0.

So at high temperature we get a confining zero-temperature 3D Euclidean gauge-
Higgs field theory! The 3D coupling is g«/T . Since it is confining, we get an area
law for the Wilson loop, which corresponds to a space-like Wilson loop in 4D. We
expect confinement effects for momenta less than g27'. The confined states in 3D
correspond to spatial screening in 4D:

(A(0)B(r)) — exp(—ur)/r. (6.51)

For a quark bilinear, A = qI"q, the screening mass at high 7 is twice the effective
mass of the lightest 3D quark (n = 0), or & ~ 27 T. Note, also that QCD exhibits
“spatial confinement” even at the highest 7'!

The thermodynamic potential can be calculated in low order QCD perturbation
theory. It has the form

Q(T) = co(T) + ase1(T) + a2/ ?c30(T) + a?er(T) + ... . (6.52)
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Because of spatial confinement, we expect nonperturbative contributions to enter at
order . A simple way to see that is to note that confinement affects states moving
with low momenta, such that p < g>T'. The corresponding volume of phase space
goes like g°T3.

6.3.5 Hadrons in the Thermal Medium

Another anticipated aspect of deconfinement is that hadrons dissociate. Given
that the transition is a crossover, the dissolution should occur gradually as the
temperature is increased through the transition. Indeed hadrons might persist
as quasi-bound states or resonances at temperatures above the transition. (In a
statistical ensemble at any temperature, there are no true bound states because
scattering with the medium destroys any initial state.)

The static quark potential in Fig. 6.5 shows short-range attraction even at 1.157.
Of course these results are for static quarks, so they do not account for the response
of the medium to the motion of light quarks. Still, they suggest, at least, that heavy
quarks might bind, since they move slowly in a bound state, in which case the Born-
Oppenheimer approximation might apply.

There is a way, albeit difficult, to study the survival of a hadronic state in
a thermal plasma without making the Born-Oppenheimer approximation. This
method involves extracting the real-frequency spectral response from the Euclidean
time correlator that excites the hadronic state in question. We start with the thermal
correlator

(07(x.0)0(y. 1)) (6.53)
and do the spatial Fourier transform (using momentum conservation)
C(p.7.T) = (0" (p.0)O(p. 7)) . (6.54)

where p = |p|. The real-frequency spectral decomposition of the correlator reads

C(p,1) = %/0 dop(w, p, T)K(w,t,T), (6.55)

where the kernel function is

__coshw(r —1/2T)
K(w,7,T) = sinh(w/2T) . (6.56)

The spectral density p(w, p, T) has peaks in @ marking resonances that couple to
the operators in the correlator. An example for the J /v is shown in Fig. 6.9.
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Fig. 6.9 Charmonium spectral density as a function of frequency (energy) at 1.27, (left) and 2.4T,
(right) from [409], suggesting that charmonium survives at 1.27, but possibly not at 2.47,

Although the method is interesting, it is numerically extremely challenging. The
correlator C(p, t, T) is measured only for discrete t = 0, 1,..., N; — 1. In fact,
because of symmetries under t — N, — t, there are only N,/2 + 1 independent
points (for even N;). But p(w, p, T') has values on the real @ line. Thus solving
for the spectral density is an ill-posed problem. To get a meaningful resolution
in frequency, one needs a high precision determination of the correlator and many
imaginary time points. (An anisotropic lattice with a, < a; helps.) To reduce the
ambiguity in the result, it is popular to add extra constraints. A common one goes
by the name “maximum entropy” [410]. Essentially, it favors a spectral density that
deviates from a default spectral density only as much as required by the data —
essentially an Occam’s razor or Bayesian prior. Of course, the result then depends
to some extent on the choice of the default spectral density.

The same method is used to extract transport coefficients, such as the electrical
conductivity and shear and bulk viscosity, important for hydrodynamics [411,412].
These quantities control the behavior of the spectral density of the correlator of
the electromagnetic current and the stress-energy tensor, respectively, close to zero
frequency.

Lecture 3: Chiral symmetry restoration

In this third lecture we consider features of the high temperature transition
related to the partial restoration of chiral symmetry, including the behavior of the
chiral condensate, the chiral susceptibility, and the hadron spectrum. Also discussed
is the question of the restoration of the gauge anomaly and an analysis of the
universal critical behavior.
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6.4 Signals for Chiral Symmetry

Let us recall what is meant by “chiral symmetry”. We start with the continuum
Euclidean fermion action for Ny flavors in the presence of a color vector field:

Ny
Sp=>) / d*x [ ()@ +HigALA 20V r () +m Y ()Y (X)] . (6.57)
/=1

If all masses are degenerate, the action is invariant under an SU(Ny) x U(1)
transformation. That is, the action is invariant under an infinitesimal change in the
fermion fields ¥ (x) — ¥ (x) + §¥(x), given by

Sy(x) = (i6°/2 +i0" 7" /2) y(x), (6.58)
where t* are generators of SU(N ). A consequence of this symmetry is that hadrons
appear in degenerate flavor multiplets.

When the fermion masses are zero the symmetry increases to SU(Ny)p x
SU(Ny¢)r x U(1) x Uy(1). The action is invariant under the infinitesimal change

Sy(x) = (160°/2+i0%c" /2 +i¢%ys/2 +ighchys/2) w(x),  (6.59)
Sy (x) = P(x) (—i0°/2—i0%c* /2 +i¢%ys/2 +i¢* T ys/2) . (6.60)

One might expect larger hadron multiplets as a consequence of this symmetry, but
how it is realized in the hadron spectrum depends on mechanisms that break it, as
we discuss next.

At zero temperature the Uy(1) symmetry (¢ term) is broken by the gauge
anomaly, a quantum effect that appears at one-loop order. Then the axial chiral
symmetry (¢ terms) is broken spontaneously at zero temperature. The breaking of
the symmetry results in a nonvanishing expectation value of the “chiral condensates”
for each flavor:

(Wryy) #0. (6.61)

The spontaneous breaking of the ¢* symmetry gives rise to N }2, — 1 Goldstone
bosons. Had the U4 (1) symmetry been spontaneously broken, we would have had
one more Goldstone boson.

Since, in nature, the up and down quarks are nearly massless, let us examine in
more detail the Ny = 2 case and consider the transformation of quark bilinears
under the chiral symmetry. We define the interpolating operators ( fo = 0; ap = §)

=9y, fo=9v, (6.62)
ak =9y, =9y, (6.63)
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Table 61 Mixing pattern of SUQ). x SUQ2)z

quark bilinears for two flavors U — —=
under SU(2), x SU(2)x and a) [ yrysy (o [ for Yy
U 4(1) transformations ¢ $

ap: Yty | |n: yysy

Then under an SU(2) axial transformation
Sak =ig* foy, Sfy =i¢knk, (6.64)
Sak =igkn, Sn=i¢pkak, (6.65)
and under a U4(1) (axial) transformation
Sth =ik, Sfo =id"n, (6.66)
Sak =i¢®7*, Sn=i¢’fy. (6.67)

The mixing of the bilinears under both transformations is mapped in Table 6.1.

6.4.1 Chiral Effective Theory and Symmetry Restoration

When quark masses are not zero, but only small, the Goldstone bosons still have
small masses, and they dominate the physics of QCD at low temperature and long
wavelength. This observation leads to a low-energy description of QCD, the “chiral
effective theory” based on N2 — 1 Goldstone bosons, 7*. The nonlinear version of
this theory is usually formulated in terms of the SU(N ;) fields:

U= exp (i]%k‘l,'k/f) . (6.68)

Here f is a low energy constant (closely related to the pion decay constant). In
terms of these fields the chiral effective Lagrange density is

2
L= fT Tr(3,U9,U") + f?BReTr(MU), (6.69)
where M = diag{m,,m,,...} contains the quark masses. B is another low-

energy constant. When M = 0, the Lagrange density is invariant under the chiral
transformation

U— VrUV] . (6.70)



6 High Temperature and Density in Lattice QCD 217

If we put the low energy theory on a lattice with spacing a and make the masses
degenerate, we can approximate the partial derivatives with

30,U(x) ~ [U(x + aft) — U(x — ap)]/(2a) . 6.71)

If for Ny = 2 we write U(x) = uo(x) +1i Zz=1 ui (x)oy, where u-u = 1, then the
kinetic energy term in the Lagrange density becomes

2
r |:2 -2 Z u(x) - u(x + a,tl)] + 2£2Bmuy(x) . (6.72)

4a
n

This is the Lagrange density for a 3D O(4) ferromagnet. The external field is
proportional to the quark mass m, and the magnetization is proportional to uy =
TrU/2. These observations lead to some important consequences for the chiral
effective theory and, therefore, for QCD:

1. The chiral model behaves like a ferromagnetic spin system. For Ny = 2 it is
equivalent to an O(4) model.

2. Quark masses play the role of a magnetic field. Re TrU plays the role of
magnetization. It is the analog of (1&1&)

3. At low temperatures we expect spontaneous symmetry breaking, and at high
temperatures we expect symmetry restoration, just as with a ferromagnet.

4. Restoration of SU(Ny); x SU(Ny)g athigh T in QCD, therefore seems certain.

5. Restoration of the chiral symmetry is certainly associated with a phase transition.
At nonzero quark masses there need not be a phase transition, and the restoration
is found to be gradual (a ‘crossover’); at sufficiently high mass we expect no
chiral phase transition.

Whether the U4(1) symmetry is restored is a separate question and depends on
the fate of the anomaly at high 7'. We have not included this symmetry in the simple
chiral effective theory above. Pisarski and Wilczek [413] did this and concluded that
the nature of the chiral phase transition depends on Ny and on whether the U4(1)
symmetry is simultaneously restored:

1. For Ny > 3 the phase transition is first order.

2. The U4(1) symmetry should be restored at least asymptotically at high 7', but
its restoration need not occur at the same temperature as that of SU(Ny) x
SU(Ny)r-

3. For Ny = 2, the nature of the phase transition depends on what happens with
Ua(1).

4. If U4(1) is effectively restored at the same temperature as SU(N ) x SU(Ny)g,
the transition can be a fluctuation-driven first-order transition.

5. Otherwise, it is continuous (second order).

These observations allow us to characterize the QCD high temperature phase
transition as a function of the light quark masses, as shown in Fig. 6.10. The figure
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Fig. 6.10 A cartoon showing the character of the QCD high temperature phase transition as a
function of the light, degenerate (up and down) quark masses and the strange quark mass [414].
Key features are the expected first-order phase transition when all three quark masses are small, the
second-order phase transition at zero light quark masses (left axis) when the strange quark mass
is large, the first order deconfinement transition when the quark masses are so large, we recover,
approximately, the Yang-Mills theory, and the crossover region for intermediate quark masses.
Where the physical masses are located in this picture is uncertain, as indicated. In one case, at
fixed strange quark mass, there is a first order phase transition at low light quark mass. In the other
case there is only a second order transition at zero light quark mass

is only a sketch. To make it quantitative requires a lattice QCD simulation, which
can tell us (1) whether there is a phase transition at the physical (nonzero) values of
the light (up and down) quark masses or only at zero quark masses, (2) how large
the masses can be before the phase transition is lost, and (3) at what temperature the
U4(1) symmetry is (at least effectively) restored?

6.4.2 Signals of Chiral Symmetry Restoration

We list a variety of indicators of chiral symmetry restoration:

1. Chiral condensates (/;v//) The light quark chiral condensate is an order
parameter for chiral symmetry. At zero mass it should vanish when the symmetry
is restored. If quark masses are not zero, we can still use it as an indicator, even
if it is not, strictly, an order parameter.

2. Chiral susceptibility x ; = 3 (', /) /dm The susceptibility should peak at the
transition (or crossover) temperature.
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3. Hadron correlators Hadron correlators, which imply, also, hadron masses,
should become equal. For SU(2);, x SU(2)g we have C,(x) = Cy(x).

Ch(x) = {fo(x) /o(0)) 6.73)
Cx ()i = (7 (07 (0)). 6.74)

Similarly C;(x) = Cg4,(x). With restoration of U4 (1) we also have C;(x) =
Cao (x) and Cﬁ) x) = Cﬂ(x)-

We turn, now, to results from lattice simulations that reflect restoration of chiral
symmetry. The lattice implementation of chiral symmetry depends on the fermion
formulation: The Wilson/clover fermionic actions break chiral symmetry explicitly.
The staggered (asqtad, HISQ) fermions preserve a remnant of chiral symmetry.
Finally, the overlap and domain wall fermions aim to treat chiral symmetry exactly.
For illustration, here, we discuss results for staggered fermions.

The chiral condensate at nonzero quark mass is ultraviolet divergent, which can
be seen at one-loop order in QCD perturbation theory:

(Uryp)=mypja®+.... (6.75)

Since this divergence appears for each flavor, it can be removed at this order by
subtracting the light quark (m, = m,) and strange quark condensates, leading to
the “subtracted condensate”.

Duas(T) = [(Y ), — mua/ ms (V7). (6.76)

The chiral condensate is also subject to a multiplicative renormalization (indepen-
dent of temperature). This effect can be removed in the ratio

Auas(T) = Duas(T)/ Duas(T = 0), (6.77)

before comparing results from different calculations. The resulting quantity from
a lattice simulation is shown in Fig.6.11. We see a rapid decrease in the chiral
condensate as temperature is increased through the crossover region. Results for the
chiral susceptibility are shown in Fig. 6.12.

As we have remarked above the restoration of the U, (1) symmetry leads to the
equality of the = and ag correlators (of the corresponding local bilinears), Cy (x)
and C,,(x). There is a particularly useful connection between the symmetry of the
correlators and the spectral density of the Dirac matrix at zero eigenvalue [416].
This is seen by considering the related susceptibilities,

Xs = < / Cuo(x)d4x> Coar= < / cﬂ(x)d4x> , (6.78)
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Fig. 6.11 Subtracted, normalized chiral condensate as a function of temperature [415]. We see
a rapid decrease in the crossover region 150-180 MeV, indicating a partial restoration of chiral
symmetry
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Fig. 6.12 Unrenormalized chiral (disconnected) susceptibility as a function of temperature [415].
We see a peak in the crossover region 150-180 MeV, an indication of partial restoration of chiral
symmetry

which must also be equal. The susceptibilities are particularly useful, because they
are related to the eigenspectrum of the lattice Dirac matrix:

A
/ dA Affr ;)nz (6.79)



6 High Temperature and Density in Lattice QCD 221

2mp(A
xp— s = / d\ (A;" f}fﬂ))z (6.80)

where m is the degenerate up and down quark mass and p(A) is the eigenvalue
density. These expressions can be derived from a spectral decomposition of the
quark propagators involved in the correlators. As the quark masses are decreased
to zero, we get

lim (yy) = —mp(0), (6.81)

also known as the Banks-Casher relation [31]. Restoration of the SU(2);, x SU(2)r
symmetry implies that (1/_/ 1//) = 0, so then p(0) = 0. If a gap opens in the spectrum
at A = 0, then certainly yp — ys = 0 in the limit of zero mass. If, instead, the
spectral density vanishes as p(1) = AA%, with suitable o, we can have vanishing
(¥¥) and nonvanishing yp — xs.

Thus a study of the eigenvalue density at small eigenvalue can help in testing the
restoration of the U4 (1) symmetry. An example of a numerical test of these ideas
is given in Figs. 6.13 and 6.14 [416]. Lattice results thus far suggest that the U4 (1)
symmetry is not restored at the same temperature as SU(2); x SU(2)g, but more
work is needed [417]. For a recent domain wall study on smaller lattices, see [418].
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Fig. 6.13 Eigenvalue density as a function of eigenvalue for various temperatures [416]. There
appears to be a zero for T > 168 MeV indicating restoration of the SU(2); X SU(2)g chiral
symmetry
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Fig. 6.14 Eigenvalue density as a function of eigenvalue for various temperatures [416]. Whether
the apparent gap for 7 > 240 MeV is significant remains to be studied further [417]

Exercise 3 In terms of the Euclidean Dirac matrix M = m + ), the chiral
condensate is

(Yy)=TeM™". (6.82)

The eigenvalues and eigenvectors of ) satisfy Mu, = iA,u,. Assume that the
antihermitian ) operator also satisfies the anticommutation relation {9, ys} = 0.
Prove that (Banks-Casher)

2
/ dA xzpfr ;)nz (6.83)

where the spectral density is constructed from 1/V )" — [ dAp(R).
Then show that at zero mass (1/“#) = —mp(0).

6.4.3 Universality and Critical Behavior

The theory of critical phenomena places systems in universality classes according to
their symmetries and spatial dimension. They alone determine the critical exponents
and universal scaling functions that control scaling and the functional dependence
of key quantities close to the critical point.

For the remainder of this lecture we will assume that the critical point appears
only at T = T? and m,; = 0. Since the relevant chiral symmetry is SU(2); x
SU(2)g, equivalent to O(4), QCD is expected to fall into the 3D O(4) universality
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class. Staggered fermion implementations preserve a reduced symmetry, suggesting
an O(2) behavior at nonzero lattice spacing. The critical behavior of these two
universality classes is very similar.

We discuss the critical behavior in QCD by rescaling T and m,, to give ¢ and h:

t—lT_TCO (6.84)
n In TCO ’ '
1
h=—H for H=m,/m;, (6.85)

0

where m,;/ m; is the ratio of light to strange quark masses. The quantities 7o and &
are constants. These variables correspond to the temperature and magnetic field in
the O(4) spin system.

The free energy density as a function of quark masses and temperature in the
vicinity of a critical point has two contributions, a universal singular part and a
regular part.

T
f = _V 10g zZ = fsing([v h) + freg(Ts Myd, ms) . (6.86)

Up to a rescaling of the variables (via k¢ and fy), the singular part is universal. It can
be expressed in terms of a universal function of a single scaling variable z = ¢/ h'/#
where § and B are universal critical exponents. The singular part is then

Fang(t, ) = 1'° £(2) (6.87)

where f;(z) is universal. (In the condensed matter literature, it is often called the
“equation of state”.) So, for example, the scaling function f;(z) in the 3D O(4)
model is the same as the QCD scaling function.

The free energy is thermodynamically fundamental, since most physical observ-
ables can be expressed as derivatives of the free energy. For many observables the
singular part dominates over the regular part close to the critical point. Where this
happens is called the Landau region. The size of this region is not universal.

The chiral condensate plays the role of magnetization in QCD. We define

M, = % (6.88)

where
(V) ,=T/VdlogZ/dm,,. (6.89)

Then

My(T, H) = h'"? f(t/ h'P%) + farree(T. H), (6.90)
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where the function fg is universal. The chiral susceptibility is the derivative

0

8mud

(V). - (6.91)

Xud =

We get a scaling expression for it by differentiation

" T? (1, st reo (T, H
= (h—oh”‘S )+ Lutrea T H) 5}3 )) : (6.92)
where
1
@ = [fc (- %fé(z)} . 6.93)

So the behavior of (Iﬁw)u , and xuq is governed by the same singular function.

A fit to lattice measurements using this analysis is shown in Fig.6.15. The
universal scaling function used in the fit was taken from a separate study of the
O(4) spin model. To obtain the agreement shown, it was necessary to include a
regular part, parameterized with its leading-order Taylor expansion in the scaling
variables. A byproduct of this analysis was the value 7, = 154(9) MeV for the
crossover temperature at physical quark masses

Lecture 4: Connection with phenomenology

In this fourth and last lecture we consider a variety of observables of more direct
interest to the phenomonology of heavy ion collisions, including the equation of
state at zero and nonzero density, the charm quark contribution to the equation of
state, and fluctuations in conserved charges.

T T T T T T T T T T

s HISQ/tree: N, =8, 0(4) A
HISQ/tree: N, = 8, O(4) sy T2 K “

1 25 my/ mg = 0.050

1 200} %, 0.037 weeeee ]

My m;/mg= 0.050 —=~
8 I [IXo Ky ue— 4 175 F il
0.025 o~
6 1 150 + 4
125 + W 4

100

T [MeV] 75 -
L

! ! I n

n
130 140 150 160 170 180 190 200 210 220 230 240 250 130 140 150 160 170 180 190 200 210 220

Fig. 6.15 Fit to the chiral condensate (left) and susceptibility (right) to the same scaling function
plus a small regular part [415]
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6.5 Equation of State

6.5.1 Models at Low and High Temperature

At extremes of temperatures some approximations are possible. We discuss the
hadron resonance gas model, applicable at low temperature and the Stefan-
Boltzmann gas model, at high temperature.

6.5.1.1 Hadron Resonance Gas Model

The hadron resonance gas model is a simple (simple-minded!) model often used
as an approximation to the low temperature behavior of QCD. Introduced by
Hagedorn, it approximates the QCD ensemble as a noninteracting gas of mesons and
baryons, including resonances. All particles (and resonances) listed in the Particl
Data Group summary are included. One stops at some cut off mass M . Interactions
are treated only in the sense that resonances are included. One expects the model
to be good for T <& m,, the lowest mass. If the density of states grows as
dN/dm = C exp(m/ T,) then the partition function diverges for T > T, (Hagedorn
limiting temperature). At this point one has to change the model by switching to
quark and gluon degrees of freedom for 7 > T..

In the low temperature limit we get an explicit expression for the partition
function for mesons/baryons (M/B):

logZ =Y logZM+) logZ5. (6.94)
i i

For the ith meson or baryon we have

M/B _ Vd’ 00 k2 —&i/T
logle_ = :Fﬁ A dk 10g(1 F zie )
VP (M) S 7
=22 i(T) D ENHLE KM/ T), (695
k=1

where d; is a multiplicity factor.

6.5.1.2 Stefan-Boltzmann Limit

In the high temperature limit the QCD running coupling is expected to be small, so
we can treat the quarks and gluons as approximately noninteracting and massless,
leading to the relativistic ideal gas limit (Stefan-Boltzmann gas). In the presence
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of a chemical potential 1 s for conserved flavor number N ¢, the Stefan-Boltzmann
pressure is

pss _ 8m*  Tx? 1 /pry2 Lorpry®
F_EJFEJFI,;S[E(T)JFW(?)] (696)

6.5.2 Equation of State at Zero Density

More generally, at any temperature thermodynamic identities relate the energy
density and pressure to the partition function as follows:

T? dlogZ
= — 6.97
TV Tar |, 657
7 2 ogz (6.98)
p=T gploeZ| :

To calculate them separately on the lattice is a bit involved. It is more convenient to
calculate the “interaction measure”

[=e—3p=—— . (6.99)

For the Wilson gauge action we get
I =—-T/V(dlogg?/dloga) (Sg) . (6.100)

We must subtract the vacuum value to remove an ultraviolet divergence. From now
on, we assume this has been done and drop the A.

Al = I(T) — 1(0). (6.101)

Exercise 4 The previous discussion gives the thermodynamic identities that relate
the energy density and pressure to derivatives of the ensemble free energy with
respect to temperature and volume, respectively. On a lattice of a fixed number
of sites N2 x N;, the volume is given in terms of the spatial and temporal lattice
constants a; and a; by N, f’af,, and the inverse temperature is given by a; N;. So we
can relate the derivatives in the thermodynamic identities to derivatives with respect
to ay; and a,. To relate these derivatives to the lattice action, one must take care to
include the appropriate factors of a, and g, in the expression for the lattice action
and to remember that the gauge coupling g also depends on the lattice constants.
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With these preliminaries in mind, show that

I =¢—3p=-T/V(dlogg®/dloga) (Sg) . (6.102)

For sufficiently large volume the pressure is independent of volume:

logZ =pV/T. (6.103)
so the interaction measure is
T dpVv/T)
[=———7—— 6.104
V dloga ( )

and, if the temperature is varied by varying a with fixed N;, we can determine
the pressure from it by integrating from low temperature (large a = ag) to high
temperature (small a).

loga

p(a)a* — p(ap)ay = —/ Al(a')(a')* d logd’ . (6.105)

logag

At sufficiently low 7, we may take p(ap) = 0, or take its small value from the
hadron resonance gas model.

Exercise 5 Derive the integral expression for the pressure in Eq. (6.105).

For illustration we show some lattice results for a variety of thermodynamic
quantities obtained in the past few years. To find the most recent results, the
proceedings of the annual Lattice conferences are a good place to start.’

Results for the interaction measure are shown in Fig. 6.16. The corresponding
energy density and pressure are shown in Fig. 6.17. Next, the entropy density s =
(¢ + p)/ T is shown in Fig. 6.18. Finally, the speed of sound is

d d
297 _ (p/€)+g

= . 6.106
§ de de € ( )

2Recent proceedings of the Lattice conference series are published by SISSA: http://pos.sissa.it/
and can be found under the search term “Lattice Field Theory.”
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Fig. 6.16 Interaction measure ¢ — 3p as a function of temperature [408]. As the lattice spacing is
decreased the peak softens a bit
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Fig. 6.17 Energy density and three times pressure as a function of temperature from [408]. We see
a strong increase in the temperature range 150-200 MeV. These results are for higher than physical
mass and for nonzero lattice spacing

It is illustrated in Fig. 6.19. All of these quantities are of importance for hydrody-
namic modeling of the quark-gluon plasma. However, it should be noted that these
results are for higher than physical mass and for nonzero lattice spacing and require
extrapolation to physical values to be realistic.
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Fig. 6.18 Entropy density as a function of temperature from [408]
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Fig. 6.19 Speed of sound from [408]

6.5.3 Equation of State at Nonzero Density

We observed in the first lecture that we cannot simulate directly at u # O,
because the fermion determinant is complex. For heavy ion collisions, the chemical
potentials are small. Therefore, one is led to a Taylor series expansion for small p.
For the 2 4 1 flavor case, the expansion reads

oo

L= 2 e (B0) (2)" (6.107)

n,m=0
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The coefficients are evaluated at w,; = s = 0

111 I+ log Z
ntm! T3V 0(uua/ T)" s/ T)"

cm(T) = (6.108)

Hud.s=0

The derivatives are expectation values of combinations of traces of the inverse of
the lattice Dirac matrix. An example of a calculation at nonzero chemical potential
is given in Fig. 6.20. As in this figure, the results are often shown at fixed ratios of
entropy density to baryon density. Since in heavy ion collisions the strange number
density n; is zero, it is necessary to tune yuy = W, = g and p, to get ngy = 0
at fixed s/np. The tuned trajectories are shown in Fig. 6.21. One often assumes an
isentropic formation and expansion of the plasma. The equation of state at constant
entropy along the trajectories plotted in Fig. 6.21 is shown in Fig. 6.20.

T T
L sf o & 5
® 3 s ¢ T
i w3z T i3 3 |
10 - : e
-
g
[ L ]
sk Filled: NI =6 o .~.a'nh =30 |
Empty: N, =4 O s, = 45
o w'n“ =300
[ o sy = )
0 i | | | |
100 200 300 400 500 600
T [MeV]

Fig. 6.20 Isentropic equation of state: energy density as a function of temperature at three constant
ratios s/n g of entropy density to baryon number density from [419]
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Fig. 6.21 Tuned values of the light quark chemical potential p, and strange quark chemical
potential u;, as a function of temperature giving zero strangeness density at three fixed ratios s/n g
of entropy density to baryon number density [420]
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Fig. 6.22 Contribution of the charm quark to the equation of state [419]

6.5.4 Charm Quark Contribution

It is interesting to consider how charm quarks contribute to the equation of state.
Whether the quark plasma in a heavy ion collision has time to equilibrate charm is
an open question, but in the early universe it certainly does. The charm contribution
to the equation of state can be done without including charm quarks explicitly in the
statistical ensemble (quenched charm) with the result shown in Fig. 6.22. We see
that charm effects start to become visible above about T = 200 MeV. The stout and
p4 action results are a bit smaller than the result from the asqtad action.

6.6 Fluctuations of Conserved Charges
In a neutral ensemble, conserved charges still fluctuate about zero.

8Nx = Nx — Ny . (6.109)
So we define susceptibilities of the generic form,

Xy = ((6Nx)?)/(VT?), (6.110)
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Fig. 6.23 Fluctuations in
baryon number B, electric
charge Q, and strangeness S
as a function of temperature
from [421]. Plotted is the
lattice susceptibility divided
by the hadron-resonance-gas
susceptibility. The magenta
bars and cyan bands show
results of two extrapolations
to zero lattice spacing. We see
that the HRG agrees
reasonably well for B and Q,
but not S
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for X = baryon number B, strangeness S, and electric charge Q. They can be
derived from the second-order Taylor coefficients in the expansion of the pressure
in terms of the chemical potentials:

azp/T4
o= i . (6.111)
Hx  lp=0
?p/T*
e I (6.112)
Ifx Oy | ,=o

where fix = px/T. Results for these quantities are shown in Fig. 6.23.

Conclusions
What has lattice QCD taught us about the behavior of QCD at high tempera-
ture and density?

1. We have learned a great deal about the qualitative behavior of QCD in
thermal equilibrium at low chemical potential for a few flavors and nonzero
quark masses. This reach of lattice QCD is illustrated in Fig. 6.24.

2. We have fairly good control of a variety of important quantities needed for
hydrodynamic modeling.

3. We have good quantitative predictions for fluctuations in conserved
charges.

(continued)
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Fig. 6.24 A speculative phase diagram for high temperature and density QCD. The shaded region

indicates the current reach of lattice QCD

What might lattice QCD still teach us?

N =

experiment.

3. We expect to learn more about transport properties: viscosity, electric

. We need better ideas/methods for dealing with higher baryon density.
. We hope to learn more about whether the critical endpoint is accessible to

conductivity, etc. This is difficult, though.

4. We do not yet have a completely satisfactory understanding of what
happens at the chiral critical point at low m, = m, but this will come.
5. We expect to learn more about the behavior of the QGP in strong magnetic

fields.
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