
Chapter 4
Chiral Perturbation Theory

Brian C. Tiburzi

Abstract The era of high-precision lattice QCD has led to synergy between lattice
computations and phenomenological input from chiral perturbation theory. We pro-
vide an introduction to chiral perturbation theory with a bent towards understanding
properties of the nucleon and other low-lying baryons. Four main topics are the
basis for this chapter. We begin with a discussion of broken symmetries and the
procedure to construct the chiral Lagrangian. The second topic concerns specialized
applications of chiral perturbation theory tailored to lattice QCD, such as partial
quenching, lattice discretization, and finite-volume effects. We describe inclusion of
the nucleon in chiral perturbation theory using a heavy-fermion Euclidean action.
Issues of convergence are taken up as our final topic. We consider expansions in
powers of the strange-quark mass, and the appearance of unphysical singularities
in the heavy-particle formulation. Our aim is to guide lattice practitioners in
understanding the predictions chiral perturbation theory makes for baryons, and
show how the lattice will play a role in testing the rigor of the chiral expansion
at physical values of the quark masses.

4.1 Introductory Remarks

Prior to lattice-QCD computations, chiral perturbation theory (�PT) was the only
method for doing high-precision low-energy QCD phenomenology. One crowning
achievement of �PT is a procedure for the determination of ratios of the light-
quark masses. These ratios can be determined using the experimentally measured
hadron spectrum with small effects, such as isospin breaking from both strong and
electromagnetic sources, treated in a systematic fashion, see [173]. In essence, �PT
provides the tool to study the light-quark mass dependence of low-energy QCD
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observables. As such, it is a tool that furnishes considerable insight for lattice
QCD computations. The success of this model-independent description of low-
energy QCD is limited in practice by the size of the physical light-quark masses
compared to strong interaction scales. Lattice QCD computations are confronting
predictions made by �PT. For the strange quark, there has been considerable debate
about the efficacy of the SU.3/ chiral expansion, even in the meson sector. The
chiral dynamics of the nucleon has not been conclusively exposed from lattice QCD
computations. As lattice collaborations worldwide attain light quark masses, the
chiral dynamics of low-lying hadrons will be rigorously tested.

We undertake the task of making a user-friendly introduction to �PT aimed at
lattice practitioners, with a particular focus on the nucleon. From the outset, we
stress that this chapter is not meant to be a comprehensive review of the field. By
contrast, our aim is to provide a pedagogical introduction that will arm the reader
with the tools necessary to investigate further. We hope to familiarize readers with
the predictions that �PT makes for hadrons, and to advertise the role lattice QCD
will play in assessing the chiral expansion at physical values of the quark masses.
It is useful for the reader to be accustomed to the concept of an effective field
theory, the study of which is possible through a number of excellent references.
We recommend the textbooks [174, 175], and the summer school lectures [176].
For the specific topics covered in this chapter, we will suggest a few references
for further study rather than provide an exhaustive list of the possibilities. Various
exercises are scattered throughout the presentation. Some are simple and meant only
as reminders, whereas others require more thought.

Our presentation is organized around four central topics. The first topic in
Sect. 4.2 is key to the entire chapter and concerns the construction of the chiral
Lagrangian. We consider the symmetry-breaking pattern of QCD for two light quark
flavors, discuss the emergent Nambu-Goldstone bosons, and expose their universal
low-energy dynamics through the effective chiral Lagrangian. The second topic is
taken up in Sect. 4.3, where applications geared toward lattice QCD are the focus.
Beyond providing quark-mass extrapolation formulae, �PT has been extended in
various ways that are relevant for lattice gauge theory simulations. In particular, we
address extensions needed to account for the partially quenched approximation to
QCD, and modifications necessary to describe the effects of finite volume, as well
as the effects of lattice discretization. Chiral dynamics of the nucleon is pursued
in Sect. 4.4. Using a heavy-fermion Euclidean action, we show how to include
the nucleon in �PT. Particular attention is paid to the quark-mass dependence of
the nucleon mass, and to the phenomenology of the pion-nucleon sigma term. The
issue of convergence is taken up as our final topic in Sect. 4.5. We remind the reader
about the nature of asymptotic expansions, and the challenges inherent to assessing
the convergence of the chiral expansion using phenomenology and lattice data. With
such concerns in mind, we extend �PT to include the strange quark. We investigate
how the chiral expansion of certain hyperon properties can be reorganized into
a better perturbative expansion by re-summing strange-quark mass contributions.
Finally, we address the appearance of unphysical singularities in the heavy-nucleon
formulation and the need for threshold re-summations.
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4.2 The Chiral Lagrangian

The possibility of building a phenomenological theory of low-energy QCD exists
because there are unusually light particles in the hadron spectrum. Pions are the
lightest hadrons, and they are well separated in energy from any other states
or resonances. There is an elegant explanation, moreover, for the lightness of
pions due to spontaneous breakdown of chiral symmetry. The physics underlying
this explanation is the Nambu-Goldstone mechanism [177, 178], and allows us
to construct systematically a phenomenological theory of pions. Chiral symmetry
breaking and the construction of the chiral Lagrangian are the topics of this section.

4.2.1 Symmetries and Symmetry Breaking

The spectrum and properties of low-energy QCD are indicative both of its sym-
metries, and of its symmetry breaking. We begin with the case of QCD with two
massless quark flavors, which will be identified as the up and down quarks. The
action density for QCD can be written as the sum of contributions from matter and
radiation fields, LQCD D L CLYM, where the latter is the Yang-Mills action, LYM.
Our concern lies with the matter part of the action, L , which has the form

L D
2X

iD1
 i D=  i : (4.1)

Written this way, the action obviously possesses a global U.2/ flavor symmetry,
but there is a larger symmetry group. To expose the further symmetries of the
action, we define chiral projection matrices, PL;R D 1

2
.1 � �5/, which have all

the usual properties expected of projectors. Right- and left-handed quark fields are
then defined using chiral projectors,  L;R D PL;R . Consequently, the matter part
of the QCD action can be written as

 D=  D  LD=  L C  RD=  R; (4.2)

for the flavor-doublet quark field. This simple decomposition seems to make a
profound statement: the chirality of a massless quark cannot be changed by gluon
interactions. This is not exactly the full story, as we shall shortly see.

On account of the handed decomposition of the quark fields in Eq. (4.2), the sym-
metry group of the massless QCD action is chiral, having the form U.2/L ˝U.2/R.
Specifically for matrices .L;R/ 2 U.2/L ˝ U.2/R, we have the transformations
 L ! L L and independently  R ! R R. This transformation appears quite
complicated in terms of the original Dirac fermion,  ! .LPL C RPR/ , but is
nonetheless a symmetry of Eq. (4.1). An important subgroup of the chiral symmetry
group is the vector subgroup, U.2/V , which is the naïve flavor symmetry of the
massless action. For a transformation with L D R � V , we have simply  ! V .
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Additional subgroups of the chiral symmetry group are important. Consider the
trivial group decomposition,U.2/L˝U.2/R D U.1/L˝U.1/R˝SU.2/L˝SU.2/R,
achieved by removing the overall phase from each U.2/ transformation. Under the
U.1/L˝U.1/R subgroup, we have the simple phase transformations L ! ei�L L,
and  R ! ei�R R. In terms of the Dirac fermion field, we see

 !
�
1

2

�
ei�R C ei�L

�C 1

2

�
ei�R � ei�L

�
�5

�
 : (4.3)

The vector subgroup U.1/V � U.1/L ˝ U.1/R is specified by all phase trans-
formations under which the left- and right-handed fields are re-phased identically,
�R D �L � � , and consequently  ! ei� . This global symmetry leads to the
conservation of quark number (or equivalently baryon number). The orthogonal
choice of phases, namely �R D ��L � �5, leads to the axial transformation of
the quark field,  ! ei�5�5 , and generates the U.1/A symmetry of the action.

1 Consider the non-singlet axial transformation of the quark field, specified
by  i ! .ei�

a�a �5 /ij j , with �a as isospin matrices. Is there a corresponding
symmetry group for the massless QCD action?

As already alluded to, global symmetries generate classically conserved currents.
According to the discussion so far, there should be three non-singlet left-handed
currents, J a�;L D  L�

a�� L, three non-singlet right-handed currents, J a�;R D
 R�

a�� R, in addition to the singlet vector current, J� D  �� , and singlet
axial-vector current, J�5 D  ���5 . The regulated theory, however, is not invariant
under flavor-singlet axial transformations. This is referred to as the chiral anomaly;
because, at the quantum level, the singlet axial current is not conserved:

@�J�5.x/ D @�J�;L.x/ � @�J�R.x/ D � ˛s

8�
	�
��F

A
�
F

A
�� ; (4.4)

in four dimensions. Of course, this is a subject well-known to lattice QCD. The
chiral anomaly presents an essential obstacle in devising chirally invariant lattice
regularizations for fermions. We suggest that readers unfamiliar with these issues
consult [50].

Due to the chiral asymmetry in Eq. (4.4), we shall merely dismiss U.1/A from
our discussion of symmetries. The definition of a regulated theory of massless
QCD has a U.1/V ˝ SU.2/L ˝ SU.2/R symmetry, but this is not the final
story. Pairing of quark chiralities is preferred by the vacuum state of QCD. This
state should be viewed as the ground state of the quantum field theory, and the
ground state generally need not respect the symmetries of the underlying theory.
While perturbative QCD dynamics does not distinguish between quark chiralities,
nonperturbatively, the ground state actually does, through the formation of a nonzero
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vacuum expectation value (vev) of the chiral condensate, h  i D h L Ri C
h R Li ¤ 0. Indeed, massless quarks can change their chirality by scattering off a
vacuum condensate of quarks and antiquarks paired by handedness. In this case,
we refer to the chiral symmetry as being spontaneously broken by the vacuum.
The formation of the condensate completely breaks the chiral symmetry of the
theory, moreover, as the vev h  i is not invariant under any chiral subgroup of
SU.2/L ˝ SU.2/R. The condensate is invariant under the vector subgroup, and
thus, we have the symmetry breaking pattern U.1/V ˝ SU.2/L ˝ SU.2/R �!
U.1/V ˝ SU.2/V .

At this point, we do not dismiss the non-singlet chiral symmetries as we did with
the axial symmetry. It turns out that the case of spontaneously broken symmetries is
considerably rich in physics. In fact, spontaneously broken global symmetries lead
to massless excitations of the vacuum. This is the Nambu-Goldstone mechanism.
In Fig. 4.1, we use a cartoon to elucidate the Nambu-Goldstone mechanism. The
cartoon depicts the potential energy of a theory on a group manifold. The lowest-
energy states are degenerate and form a circularly symmetric valley that reflects the
rotational invariance of this theory; however, the physical vacuum of the theory is
located at a particular angle. In this case, the rotational symmetry is spontaneously
broken. When quantized, fluctuations about the vacuum state will correspond to
particles. There are two distinct types: fluctuations up the hill are energetically
costly and will correspond to massive excitations of the theory; on the other hand,
fluctuations along the circular valley are energetically free and will correspond to
massless excitations. For each of the broken generators, there is a flat direction in
the vacuum manifold, and hence a massless particle. In QCD with two massless
quarks, there should thus be three Nambu-Goldstone bosons.

Fig. 4.1 Cartoon depicting a
spontaneously broken global
symmetry. The global
symmetry corresponds to
rotations in the plane, for
which the vacuum manifold
exhibits a circular valley of
energetically equivalent
states. The physical vacuum
sits in the valley at a
particular angle



112 B.C. Tiburzi

4.2.2 Chiral Dynamics

The dynamics governing Nambu-Goldstone modes is universal, depending only on
the pattern of spontaneous symmetry breaking. To write down such a theory, we
need to parameterize fluctuations associated with the broken generators. Mathemat-
ically we are parameterizing a coset of the group manifold. While our presentation
is specific to the symmetry-breaking pattern of two-flavor QCD, we keep sufficient
generality to allow extension to other cases of interest.

A nonzero value of the condensate specifies the location of the vacuum within
the group manifold. Let us write the vev in the form

h jR iLi D �ıij: (4.5)

Under an SU.2/L ˝ SU.2/R transformation, we see that the condensate is not
invariant, h jR iLi ! �.LR�/ij. However, the restriction of the condensate to
the flavor identity, ıij, maintains invariance under the vector subgroup, SU.2/V .
The preservation of vector symmetries can be argued rigorously [179]. The value
of the condensate  is real, which implies that parity is not spontaneously broken.
While we know experimentally that this is the case for QCD, the argument against
spontaneous breaking of parity [180] does not have the status of a theorem because
known loopholes exist. Nonetheless the form of the condensate in Eq. (4.5) dictates
the pattern of spontaneous symmetry breaking.

To describe the Nambu-Goldstone modes, we treat the condensate as a locally
valued field ˙.x/ that picks up a vev. The fluctuations about this value encode the
Nambu-Goldstone bosons. Thus we promote

ıij �! ˙ij.x/ D ıij C � � � : (4.6)

Because ˙.x/ describes the local fluctuations, we must have ˙ij.x/ D
ŒL.x/R�.x/�ij D Œei�

a
L�

a
e�i�bR�b �ij for the most general, local SU.2/L ˝ SU.2/R

fluctuation. Our concern, however, is not with all fluctuations, but with those
corresponding to broken generators. As the vector subgroup remains intact, we
seek to parameterize the coset SU.2/L ˝ SU.2/R=SU.2/V . This can be achieved by
simply restricting ˙.x/ not to lie in SU.2/V . As such matrices are characterized
by �aL D �aR, choosing the orthogonal combination �aL D ��aR produces a
parameterization of the coset. Writing �aL�

a � �=f , we have the desired matrix

˙ D e2i�=f D 1C 2i�

f
C � � � : (4.7)

The Nambu-Goldstone modes appear in the coset field through �, which is a
traceless Hermitian 2 � 2 matrix, which we write in the form
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� D
 

1p
2
�0 �C

�� � 1p
2
�0

!
: (4.8)

From the transformation property of the coset under global chiral transformations,
namely˙ ! L˙R�, we can infer the transformation rule of the Nambu-Goldstone
modes under the vector subgroup SU.2/V . They transform as � ! V�V �, which
establishes the isospin quantum numbers of �; it contains an isotriplet of pions.

2 Deduce the discrete symmetry properties of the Nambu-Goldstone modes
by analyzing the transformations of the coset field ˙ .

In describing the vacuum fluctuations, we introduced a dimensionful parameter
f . This parameter needs to be determined from experiment, and we will explain how
at the end of this section. From a purely theoretical perspective, f controls whether
fluctuations about the vacuum are Gaußian, hence, whether the Nambu-Goldstone
modes are weakly interacting particles. To see this explicitly, we construct the action
for the coset field. It is determined from all possible chirally invariant operators
involving ˙ , and derivatives of ˙ . When the coset is expanded about its vev, the
dynamics of massless pions should emerge. Using the transformation rule ˙ !
L˙R�, and realizing that ˙�˙ D 1, the chirally invariant combination involving
the fewest number of derivatives is

L�PT D f 2

8
Tr
�
@�˙

�@�˙
� D 1

2
@��

0@��
0 C @��

C@��� C O.1=f 2/: (4.9)

Expanding to quadratic order in the fields, we see that the numerical prefactor
appended to the action ensures that the kinetic terms are canonically normalized, and
indeed the theory describes three massless pions. This should come as no surprise;
it is basically by design. Because the theory is nonlinear, however, expanding to a
higher order produces multipion interactions. We will explain shortly how to treat
these systematically.

So far our discussion has focused on QCD with two massless quarks, and there
appear to be no such quarks found in nature. The up and down quarks have mass,
however, their masses are considerably small compared to �QCD. We can think
about the discussion above as an approximation for the up and down quarks, and
the natural question to ask becomes how to address the effect of nonvanishing quark
masses. To answer this question, we return to the matter part of the QCD action,
which has a mass term of the form

�L D mq  D mq

�
 R L C  L R

�
; (4.10)
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for degenerate up and down quarks. This term breaks chiral symmetry in precisely
the way the chiral condensate does, SU.2/L ˝ SU.2/R ! SU.2/V . The theory
of the Nambu-Goldstone modes should include terms which encode the explicit
symmetry breaking introduced by the quark mass. The correct term to add to
Eq. (4.9) is

�L�PT D �mqTr
�
˙� C˙

� D 4mq

�
�1C 2

f 2

�
1

2
�0�0 C �C��

��
C � � � :

(4.11)

A few comments are in order. This term is not chirally invariant but maintains
invariance under the vector subgroup, and thus shares precisely the same symmetries
as the quark mass term in the QCD action. A new dimensionful parameter  was
introduced when writing down this term. It is not fixed by symmetries. We include
here only a term at linear order in the quark mass. While there are terms proportional
to m2

q which we will meet below, we are considering the perturbative expansion
about the chiral limit, mq D 0, and the linear-order term represents the leading
contribution. From expanding out �L�PT to quadratic order in the fields, we see
there is a contribution to the vacuum energy, and also a mass term for the pions,
m2
� D 8mq=f

2. Indeed, the pions are not exact Nambu-Goldstone bosons; the
explicit breaking of chiral symmetry introduced by the quark mass term of the QCD
action leads to a nonvanishing mass for the pions.

The vacuum energy must be due to the chiral condensate, the existence of
which was an essential ingredient in our construction thus far. To expose this fact,
we realize that the chiral condensate can be determined from the QCD partition
function, �@ logZQCD=@mq D h  i. In order that the chiral Lagrangian be an
effective theory for low-energy QCD, it must be that their partition functions match,
Z�PT ' ZQCD. Of course this relation is not an equality, rather a statement about
matching Green functions between the two theories (such foundational aspects to
�PT are elucidated in [181]). As a result, we must have

h  i D �@ logZ�PT=@mq: (4.12)

On the left-hand side is the QCD vacuum expectation value, and on the right-
hand side is the �PT expression evaluated in terms of the effective pion degrees
of freedom. In order that the theories match in the chiral limit, we require
h  i D �2Nf . Because of parity and flavor invariance, this condition is simply
h jR iLi D �ıij; hence  is exactly the same parameter introduced in Eq. (4.5) for
the chiral condensate. Combining this identification with the expression for the pion
mass, we have the Gell-Mann–Oakes–Renner relation, f 2m2

� D 2mqjh  ij.
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4.2.3 Leading Order and Beyond

Let us summarize our findings so far. The dynamics of the approximate Nambu-
Goldstone bosons of chiral symmetry breaking is described by the chiral
Lagrangian, which has the form

L�PT D f 2

8
Tr
�
@�˙

�@�˙
� � mq Tr

�
˙� C˙

�
(4.13)

and includes the leading terms involving the lowest number of derivatives and a
single insertion of the quark mass. Up to quadratic order, we find the vacuum
energy due to the chiral condensate and a theory of pions whose masses squared are
linear in the quark mass. Beyond quadratic order, there are interaction terms, such
as the quartic terms � mq

f 4
�4 and � 1

f 2
.�@��/

2. As always, these higher-order
interactions renormalize lower-order terms. For example, the four-pion interaction
terms lead to a renormalization of the pion mass, which is shown in Fig. 4.2. Using
the pion propagator, we schematically evaluate the contribution to the pion self-
energy from the four-pion vertex with quark mass insertion,

�m2
� � mq

f 4

Z

k

1

k2 Cm2
�

� mq

f 4

�
�2 C mq

f 2

�
log�2 C finite

��
; (4.14)

where � is a dimensionful ultraviolet cutoff scale. This result features a power-law
divergence, which can be absorbed into a definition of the renormalized parameter
; and, if we use dimensional regularization, this contribution will automatically be
subtracted. Additionally, there is a logarithmic divergence which cannot be absorbed
into a renormalization of the parameters we have thus far written down. The reason
is that the divergence is proportional to the second power of the quark mass. To
work at one-loop order, we require additional counterterms than the leading-order
chiral Lagrangian can supply.

The requirement of additional terms should not be surprising, since the chiral
Lagrangian represents a nonrenormalizable theory. This is not a fundamental
limitation, however, because we expect its validity only at low energies. In order
to make the theory useful in practice, we desire a scheme for organizing the infinite

Fig. 4.2 Graphical depiction of the four-pion vertex. Forming a pion loop by contracting two of
the external legs produces a divergent self-energy correction



116 B.C. Tiburzi

number of local operators needed to renormalize the theory. Without such a power-
counting scheme, the theory is of no practical use. In our exploration, we have been
tacitly assuming a power counting. We have written down terms with the fewest
number of derivatives, and the lowest number of quark mass insertions.

To make this formal, consider p to be a small momentum scale. A consistent
loop expansion can be devised by counting the powers of derivatives and quark
mass insertions as follows: derivatives count as one power, @� � p, and quark
masses count as two powers, mq � p2. The leading chiral Lagrangian written in
Eq. (4.9) contains two terms both of orderp2. As a consequence, the pion propagator
counts as order p�2, and each of the four-pion interactions counts as order p2.
The remaining powers of momenta in a general Feynman diagram arise from loop
integrals, which each contribute p4 to the counting of powers of p. Now consider a
Feynman diagram havingL loops, I internal lines, and V vertices from the leading-
order Lagrangian. The diagram must scale with the power p4L�2IC2V . This power
can be simplified using the Euler formula,L D I � V C 1, which gives the scaling
p2LC2. Thus, there is an ordered expansion in powers of p2 if we consider the
number of loops.

3 What happens to the power-counting argument in d D 2 and 6 dimen-
sions? Do the results surprise you? Why is this question not asked about
d D 3 or 5?

In considering part of the one-loop correction to the pion self-energy in
Eq. (4.14), we found the result scales as m2

q � p4, which is consistent with
the general argument. At one-loop order, all contributions are of order p4. To
renormalize one-loop diagrams, we need higher-order local operators that also scale
with four powers of p. These operators can only be formed from four derivatives,
two derivatives and a quark mass insertion, or two quark mass insertions. At any
order in the loop expansion, one requires only a finite number of higher-order
counterterms to renormalize the theory. With this power counting, we can hence
make sense of the nonrenormalizable theory.

To construct higher-order terms of the chiral Lagrangian with ease, the spurion
trick proves useful. Let us first reconsider the leading-order effect of the quark
mass in the chiral Lagrangian. The quark mass introduces explicit breaking of
chiral symmetry and to include its effects, we wrote down a term which breaks the
symmetry in precisely the same manner. Beyond leading-order, this task becomes
rather difficult. Instead of this procedure, we promote the quark mass to a complex
scalar field, denoted by s

�L D mq

�
 R L C  L R

� �!  Rs
� L C  Ls  R; (4.15)
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and endow this field with a spurious transformation rule, s ! LsR� which renders
the quark mass term invariant. The procedure is then to construct all possible
operators involving s that are invariant under chiral transformations. For example,
with one insertion of s, the term Tr

�
˙�s C s�˙

�
is chirally invariant. At the end

of the day, giving the scalar field a vev, s D mq C � � � , breaks chiral symmetry in
precisely the way the quark mass does.

To construct the order p4 chiral Lagrangian, we have the fields ˙ and s, which
have the transformations˙ ! L˙R�, and s ! LsR�. Using these fields, we write
down all possible p4 terms that are chirally invariant. We also impose Euclidean
invariance, and invariance under C , P and T transformations. Finally we replace
the spurion field with its vev. The result is an effective Lagrangian encompassing
the pattern of spontaneous and explicit symmetry breaking of QCD.

It is easy to construct invariant terms, for example
�

Tr
�
˙�s � s�˙

�	2
is

invariant under chiral transformations. When s picks up a vev, however, this term
becomes m2

q

�
Tr
�
˙� �˙

�	2
, which vanishes because ˙ is an SU.2/ matrix. The

difficult task becomes finding the minimal set of required terms. For two degenerate
quarks, the corresponding fourth-order chiral Lagrangian can be written in the form

L.4/�PT D L1
�

Tr
�
@�˙

�@�˙
�	2 C L2 Tr

�
@�˙

�@
˙
�

Tr
�
@
˙

�@�˙
�

(4.16)

CL3mq

f 2
Tr
�
@�˙

�@�˙
�

Tr
�
˙� C˙

�C L4
.mq/

2

f 4

�
Tr
�
˙� C˙

�	2
:

The dimensionless coefficients of the operators, fLi g, are free parameters referred to
as low-energy constants. Often they are also called Gasser-Leutwyler coefficients,
because the systematic investigation of chiral perturbation theory to one-loop order
was carried out by them, see [182]. It is important to note that our Gasser-Leutwyler
coefficients are not Gasser and Leutwyler’s coefficients because of our differing
parameterization of the coset manifold. The four low-energy constants provide
the counterterms necessary to renormalize all one-loop graphs in �PT. When one
considers external currents, additional terms become necessary.

4 Determine the effects of strong isospin breaking, md ¤ mu, on the chiral
Lagrangian. At what order does the pion isospin multiplet split?

To illustrate the features of a one-loop computation in �PT, we perform the
simplest possible one. This calculation is the chiral correction to the condensate.
Beyond leading order, we have the operator expression

h  i D �@Z�PT

@mq

D �4
�
1 � 1

f 2
Tr
�
�2
��C c.t.; (4.17)
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where c.t. denotes contributions from counterterms. Contracting the pions to form
the bubble diagram yields a correction to the condensate

�h  i D 12

f 2

Z

k

1

k2 Cm2
�

D �12m
2
�

.4�f /2

�
1

"
� �E C log 4� C log

�2

m2
�

C 1

�
;

(4.18)

where we have computed the integral in d D 4 � 2" dimensions with " 	 1.
The contribution from the counterterm can be determined using the fourth-order
Lagrangian at tree level. Only the L3 and L4 terms survive differentiation with
respect to the quark mass; furthermore, only the L4 term contributes to the vacuum
energy without requiring pion loops. Assembling the loop and local contributions
after MS, we arrive at the final result

h  i D h  imqD0
�
1C 3m2

�

.4�f /2

�
log

�2

m2
�

C 1

�
� m2

�

f 2
L4.�/

�
: (4.19)

Long-range corrections to the chiral-limit value of the condensate come with a chiral
logarithm. The renormalization-scale dependence introduced by the logarithm is
exactly compensated by the running of the Gasser-Leutwyler coefficient, L4.�/;
specifically, it must satisfy the renormalization group equation, �2 d

d�2
L4 D 3

16�2
.

Generally, �PT can be used to compute the quark-mass corrections to vari-
ous low-energy observables. Expressions for these observables will involve their
chiral-limit values plus chiral logarithms that are calculable from the one-loop
(and higher) diagrams. Additionally, there are local contributions from higher-
dimensional operators that are required to renormalize the theory. The low-energy
constants introduced require experimental data or lattice calculations to determine.
Beyond the chiral condensate, which we found has a chiral expansion of the form
h  i D A

�
1CB mq

�
logmq C C

�	
, a few examples are the pion mass, which

has a chiral expansion of the form m2
� D Amq

�
1C B mq

�
logmq C C

�	
, and the

scattering length for I D 2 pion scattering, which has a chiral expansion of the form
aID2
�� D A

p
mq

�
1C B mq

�
logmq C C

�	
.

4.2.4 External Fields

The determination of further quantities, such as electroweak observables, requires
the inclusion of external fields. To accomplish this, we return to the QCD action and
use the gauge principle to include external left- and right-handed fields

L D  LD= L L C  RD= R R; (4.20)

with the handed gauge-covariant derivatives specified by .D�/L D @�CigA�CiL�,
and .D�/R D @� C igA� C iR�. For example, an external electromagnetic field is
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included by choosing the left- and right-handed gauge fields asL� D R� D QeAem
� ,

with Aem
� the photon field, Q the electric-charge matrix, and e the unit of electric

charge. The gauged theory has a local chiral invariance under which the quark
fields transform as  L ! L.x/ L, and  R ! R.x/ R. The external fields
must correspondingly transform according to the rules: L� ! L.x/L�L

�.x/ C
i Œ@�L.x/�L

�.x/ for the left-handed gauge field, and R� ! R.x/R�R
�.x/ C

i Œ@�R.x/�R
�.x/ for the right-handed gauge field.

To include external fields in �PT, we promote the global chiral invariance to a
local one. The coset field consequently has the transformation˙ ! L.x/˙R�.x/,
and it becomes efficacious to define a chirally covariant derivative that satisfies the
transformation rule D�˙ ! L.x/ŒD�˙�R

�.x/. Using the transformations of the
external gauge fields, the chirally covariant derivative must have the form

D�˙ D @�˙ C iL�˙ � i˙R��: (4.21)

If we count the external gauge fields as order p in the power counting, then
D� � p, and the leading-order chiral Lagrangian has exactly the same form as
in Eq. (4.9), with the replacement @� ! D�. At higher orders, one carries out this
replacement to ensure gauge invariance; however, there are additional operators that
are required too.

As an application of including external fields in �PT, we shall consider the weak
decay of the pion. The charged pion decay process, � ! �C
�, arises from theW -
boson of the weak interaction, as shown in Fig. 4.3. The left-handed quark current
that couples to the weak boson is contained in the interaction Lagrangian

�LW D W �
� J

C
�;L; with JC

�;L D  L�
C�� L: (4.22)

The strong interaction part of the decay factorizes into a matrix element between the
left-handed current and the pion,

h0jJC
�;Lj�.p/i D ip�f� ; (4.23)

where we have parameterized the matrix element based on Euclidean invariance
and discrete symmetries. As a result, the parameter f� , known as the pion decay
constant, is a real-valued parameter. While the weak interaction occurs at the scale
� � MW , the nonperturbative QCD matrix element should be evaluated at a
scale � � �QCD. In quark-mass–independent renormalization schemes, however,
the non-singlet left-handed current is conserved and, therefore, has vanishing
anomalous dimension. Consequently, the pion decay constant is independent of
scale.

Fig. 4.3 Weak decay of the
charged pion through the
W -boson and its subsequent
decay
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With the nonperturbative physics parameterized, evaluating the decay process is
a standard quantum field theory exercise, which gives the decay width

��!�C
� D G2
F

8�
f 2
� m

2
�m� jVudj2

 
1 � m2

�

m2
�

!2
; (4.24)

from which we infer the value f� D 132MeV. We can use this value to fix one
of the low-energy constants of �PT. The left-handed quark current matches onto
operators in the effective theory. Using the order-p2 chiral Lagrangian, we have

J a�;L D @L�PT

@La�

ˇ̌
ˇ
L�DR�D0 D f 2

4
Tr
�
i�a˙@�˙

�
� D f

2
Tr
�
�a@��

�C � � � (4.25)

Computing the pion decay constant in the effective theory at tree level gives us
the matching condition, f� D f . A one-loop computation will produce chiral
corrections to the matching of the form f� D f

�
1C Bmq

�
logmq C C

�	
, whereby

we see f is the chiral-limit value of the pion decay constant.
While f happens to show up in the weak decay of the charged pion, this

parameter plays an important role in strong-interaction physics. The size of f
controls the efficacy of the chiral expansion, because it governs the size of non-
Gaußian fluctuations about the vacuum. Let us define the chiral symmetry breaking
scale �� D 2

p
2�f 
 1:2 GeV. Because our power-counting scheme gives us

an expansion in the number of loops, we see each loop in four dimensions will
be accompanied by a factor of 1=�2

�. Thus dimensionless parameters governing
the size of chiral corrections are m2

�=�
2
�, and p2=�2

�, where p is the momentum
involved in a typical process.

5 The masses of hadrons are affected by electromagnetism (Fig. 4.4).
Construct all leading-order electromagnetic mass operators by promoting the
electric charge matrix to fields transforming under the chiral group. (Notice
that no photon fields will appear in the electromagnetic mass operators,
because there are no external photon lines.) Which pion masses are affected
by the leading-order operators? Finally, give an example of a next-to-leading-
order operator, or find them all.

Fig. 4.4 Feynman diagrams depicting long-range QED corrections to the pion mass
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4.3 Applications Tailored to Lattice QCD

Above, we have detailed the construction of the chiral Lagrangian, and investigated
the computation of low-energy QCD observables using this effective theory. The
results of such computations are parametrizations of the quark-mass dependence of
low-energy observables, with coefficients that must ultimately be determined from
phenomenology or lattice QCD computations. The parameterizations, moreover,
can be used for the extrapolation of lattice-QCD data at unphysical light-quark
masses to their physical values. There are additional applications of chiral per-
turbation theory tailored to lattice QCD. In this section, we consider the partially
quenched approximation to QCD, effects of finite lattice volumes, and effects of
finite lattice spacings.

4.3.1 Partially Quenched QCD

Treating the valence and sea quarks in QCD differently is unphysical; however,
it can be quite natural from a practical, numerical point of view. Consider the
evaluation of the matrix element of an operator O between hadron states H and
H 0. On the lattice, one computes Wick contractions between source and sink, which
schematically have the form

hH 0jOjH iQCD D
Z

DA� Det
�
D= Cmq

�
e�SŒA�� 1

D= Cmq

� � � 1

D= Cmq

: (4.26)

In the early days of lattice QCD, one encountered the quenched approximation, in
which the above matrix element is calculated without the quark determinant,

hH 0jOjH iQQCD D
Z

DA� e�SŒA�� 1

D= Cmq

� � � 1

D= Cmq

: (4.27)

This approximation has various theoretical complications; however, a number of
physical observables are insensitive to effects of the QCD vacuum polarization. One
way to view the quenched approximation to QCD is a version of QCD with valence
and sea quarks, where the latter have masses that are above the ultraviolet cutoff
scale. This view suggests another approximation to QCD, the partially quenched
approximation, in which the hadronic matrix element of O is calculated as

hH 0jOjH iPQQCD D
Z

DA� Det .D= Cmsea/ e
�SŒA�� � (4.28)

1

D= Cmval
� � � 1

D= Cmval
:
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Matrix elements calculated in this approximation reduce to QCD matrix elements by
choosing the valence and sea quark masses to be degenerate,mval D msea. The par-
tially quenched paradigm is useful to have in mind when considering mixed-action
simulations, where in essence one replaces Det

�
D= Cmq

� ! Det
�
D= sea Cmq

�
, and

when considering the effects of neglecting quark-disconnected diagrams.
For PQQCD computations, the natural questions are whether the quark-mass

dependence can be addressed in a model-independent fashion, and whether artifacts
of the approximation can be removed in order to connect with QCD physics. The
theoretical technique to address such questions was first suggested for QQCD in
[183]. The basic idea is as follows. A theory that reproduces the matrix element in

Eq. (4.28) contains bosonic quarks, Q D
� Qu

Qd
�

, in addition to fermionic quarks, the

valence quarks  D
�

u
d

�
, and the sea quarks  0 D

�
u0
d 0
�

, namely

LPQQCD D  .D= Cmval/ C  0 .D= Cmsea/  
0 C Q .D= Cmval/ Q 

� �
�
D= CmPQ

�
�; (4.29)

where � is the graded vector, � D
0

@
 

 0
Q 

1

A, whose upper components  and  0

are Grassmann fields, and lower components Q are bosonic fields. The bosonic
functional integration produces a factor of Det .D= Cmval/

�1 which cancels the
determinant produced from the fermionic valence quark functional integration. As a
result, a net determinant factor is produced only from the sea quarks. In computing
operator matrix elements, the external sources are built from valence quarks, and
their contribution to the vacuum polarization is exactly canceled by the degenerate
bosonic quarks. The vacuum polarization arises solely from sea quarks, see Fig. 4.5.

These observations were employed to construct PQ�PT [184–186]. The relation
of parameters in the partially quenched chiral Lagrangian to those in �PT was
rigorously established in [187, 188], where further technical details can be found.
As a caveat, we will summarize the approach with less rigor, and the careful reader
will want to review the technical details in order to confidently utilize the results.

Fig. 4.5 Partially quenched QCD vacuum polarization at one loop. Thin lines depict valence
quarks  , dashed lines depict bosonic quarks Q , and thick lines depict sea quarks  0. Due to
mass degeneracy between valence and bosonic quarks, the net contribution arises solely from the
sea
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In the massless limit, the partially quenched Lagrangian exhibits graded sym-
metries. These are symmetries under which bosonic and fermionic fields transform

into one another. We write the partially quenched quarks as �A D
�
 a
�˛

�
, with all

fermionic quarks packaged in  a, and bosonic quarks in �˛. Under a graded unitary
transformation, U 2 U.4j2/V , we have the quark transformation �A ! UAB �B .
Written in blocks, U must have the form

UAB D
�A4�4 B4�2
C2�4 D2�2

�

AB

; (4.30)

where A and D are ordinary matrices, while B and C are matrices with Grassmann
entries. This grading ensures that the transformed fermionic fields, for example,
remain fermionic. Suppose MAB is a supermatrix transforming under the adjoint,
MAB ! ŒUMU��AB, then the invariant graded trace (supertrace) is given by

Str .M/ �
X

A

.�/g.A/MAA D
X

a

Maa �
X

˛

M˛˛; (4.31)

where the grading factors are defined by g.a/ D 0 and g.˛/ D 1.

6 Show that the graded trace is invariant under graded unitary transforma-
tions.

The partially quenched �PT Lagrangian is constructed by taking into account
the pattern of spontaneous and explicit breaking of chiral symmetry in PQQCD.
Schematically the massless PQQCD Lagrangian possesses a graded chiral symme-
try of the form SU.4j2/L˝SU.4j2/R that we assume is spontaneously broken down
to the vector subgroup, SU.4j2/V . The emerging Nambu-Goldstone bosons live in
the coset, ˙ D e2i˚=f , where we take ˚ to be a U.4j2/matrix

˚ D

0
B@
�  �  0 � Q 
� 0 � 0 0 � 0 Q 
� Q  � Q  0

� Q Q 

1
CA ; (4.32)

which contains both bosonic and fermionic mesons. Taking into account the explicit
chiral symmetry breaking due to the PQQCD mass matrix mPQ, we arrive at the
chiral Lagrangian

LPQ�PT D f 2

8
Str
�
D�˙

�D�˙
� �  Str

�
mPQ˙

� C˙mPQ
�C 1

2
�20 ŒStr .˚/�2 :

(4.33)
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Notice we retain the singlet meson in the theory, ˚0 D Str .˚/ D �0
val C �0

sea � Q�0.
This is only a convenient device. In PQQCD, the U.1/A symmetry is anomalous
just as in QCD, and the flavor-singlet meson needs to be integrated out of the low-
energy theory. Computation of the flavor-neutral meson two-point functions can be
carried out easily with the mass term, �20, treated as an interaction and summed
to all orders. The limit �0 ! 1 produces the correct theory corresponding to
SU.4j2/L ˝ SU.4j2/R. The resulting neutral-meson propagators have double poles,
which indicate unitary violation in the partially quenched theory. Unitarity is never
demanded of an effective theory, and the claim is that the peculiar lack of unitarity
of PQQCD is captured at low energies by PQ�PT.

After the singlet meson has been integrated out, one can establish that the
parameters f and  of the leading-order PQ�PT Lagrangian are numerically
identical to those in �PT. The proof utilizes a trick. One considers the computation
of quantities involving mesons flavored only with sea quarks. In this sector of
the theory, PQQCD Green functions are identical to QCD Green functions with
mq D msea. As a result, the exact parameters of �PT must appear in PQ�PT,
although the latter also contains additional parameters. These further terms must
be accounted for, and their effects removed to recover QCD physics from PQQCD.
Additionally, the valence- and sea-quark mass dependence is described by PQ�PT,
and must be utilized to extrapolate lattice data to the unitary point,msea D mval.

7 Find the tree-level masses of all charged mesons using partially quenched
chiral perturbation theory.

4.3.2 Effects of Finite Volume

Lattice QCD computations by necessity utilize finite volumes. Because pions
are the lightest hadrons, the long-range physics of low-energy QCD is modified
predominantly due to pion effects. In considering finite-volume field theories, we
must specify boundary conditions and choose them to be periodic for simplicity.
Such boundary conditions lead to a number of salient features: the finite volume
action is single valued on a hypertorus, consequently there are no surface terms;
discrete translational symmetry is maintained, consequently periodic boundary
conditions are not renormalized.

Let � be a generic field satisfying �.x C L/ D �.x/, where L is the length of
each spacetime direction. The Fourier-mode expansion, �.x/ D R

k
eikx�k , coupled

with periodicity leads to momentum quantization, k D 2�n
L

, where n is any integer.
This simplicity is quite profound. All of the effects of finite volume follow from
the quantization condition. As an example, consider Euclidean SO.4/ invariance.
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On a finite periodic volume, this continuous invariance is reduced to a discrete
permutation symmetry. The rest-frame matrix element measuring the electric charge
of a particle, h�.0/jJ�j�.0/i D Qı�4, does not lead to the usual current in a
frame moving with velocity v, so that h�.v/jJ j�.v/i ¤ Qv, due to the lack of
boost covariance. This may seem paradoxical, because gauge invariance, the Ward-
Takahashi identity, and the Ward identity place constraints on the matrix elements
of conserved currents. Ordinarily these three notions are used interchangeably;
however, the Ward identity ceases to be valid. This finite-volume effect is exposed
in [189]. Here, we explore finite-volume effects on pion dynamics in two distinct
regimes.

4.3.2.1 Zero Pion Momentum

Strictly speaking, spontaneous symmetry breaking does not occur in finite volume.
The reason is that spontaneous symmetry breaking is a classical phenomenon
requiring infinitely many degrees of freedom. In quantum mechanics, a state
prepared in one of a few degenerate ground states will acquire an admixture of
the other states due to quantum tunneling. The dynamics of the theory governs
tunneling, and over time the state will end up in a symmetric superposition of the
degenerate ground states. In quantum field theory, the tunneling probability depends
on the transition from two configurations on the group manifold, a and b. For

uniform configurations, the tunneling probability, P � exp


�V R b

a
V.�/d�

�
, is

exponentially suppressed by the infinite spacetime volume V . At finite volume,
such tunneling occurs, and the vacuum state will tunnel symmetrically, thereby
completely respecting the symmetric dynamics of the underlying action. In QCD,
chiral symmetry can be restored at finite volume, and the effect can be deduced by
carefully considering the effect of momentum quantization on pion dynamics.1

To expose the mechanism behind chiral symmetry restoration, we consider the
computation of the chiral condensate in finite-volume �PT at one-loop order. To use
�PT in a finite volume, the box size cannot be smaller than the chiral symmetry
breaking scale, that is L � ��1

� , otherwise there is no low-energy dynamics
in the theory. Above, in Eq. (4.19), we calculated the infrared chiral logarithm,
� m2

� logm2
� , which modifies the value of the chiral condensate away from the

chiral limit. In finite volume, the one-loop diagram now requires a momentum mode
sum rather than a momentum integral:

1Analogous to the situation at finite volume is the finite-temperature case, ˇ D 1=T < 1. The
equilibrium quantum field theory has a path-integral representation in terms of the QCD action
defined with a compact Euclidean time, 0 < x4 < ˇ. Statistics demands periodic boundary
conditions for bosons, and anti-periodic boundary conditions for fermions. In �PT, the restoration
of chiral symmetry at finite temperature is linked with the Matsubara modes of the pions.
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1

f 2L4

1X

n�D�1

1


2�n�
L

�2 Cm2
�

D 1

.fL/2

2

4 1

.m�L/2
C
X

n�¤0

1

4�2n2� C .m�L/2

3

5 :

(4.34)

In the sum, we have separated out the contribution from the zero-momentum
mode, n� D .0; 0; 0; 0/. The one-loop correction vanishes in infinite volume when
m� D 0, while in finite volume the zero mode leads to singular behavior in the
infrared.

The longest-range piece of the pions, their zero-momentum mode, has become
strongly coupled. The effect must be treated nonperturbatively and requires refor-
mulating the power counting at finite volume [190]. Let " denote a generically small
quantity. We assign the counting of physical parameters as follows. The length L is
considered large, and so 1

L
counts as ". The pion mass is chosen to count asm� � "2.

This creates a dichotomy in the leading-order Lagrangian: the derivative vertices
count as @�@� � "2, unless they are zero modes, whereas the quark mass insertion
is considered smaller, mq � m2

� � "4. As a consequence, the pion propagator
has two very distinct pieces. The propagation of zero modes counts as "�4, while
nonzero modes count as "�2. The enhancement of zero modes over nonzero modes
in the power counting encapsulates the chiral limit at finite volume.

To count powers of " for a generic Feynman diagram, we further require the
counting of loop factors. Each loop requires the mode summation 1

L4

P
n�

which

counts as "4. For a diagram with I internal lines, V vertices from the leading-
order Lagrangian, and L loops, we have now various scalings with " possible
depending on whether derivatives or quark mass insertions are at each vertex, and
whether zero or nonzero modes are propagating. Diagrams having a quark-mass
insertion at each vertex and only zero modes propagating count as "4LC4V�4I , which
simplifies dramatically to "4 on account of the Euler identity. On the other hand,
diagrams with only derivative vertices and nonzero modes propagating count as
"4LC2V�2I D "2LC2. The nonzero momentum modes of the pion still obey a loop
expansion. Diagrams with only zero modes, however, are all equally important.

8 Do the leading-order four-pion interactions allow mixing of zero and
nonzero modes? Draw all one- and two-loop diagrams for the chiral conden-
sate and count powers of ".

The "-regime power counting requires that the zero-momentum mode be treated
nonperturbatively. Fortunately, the zero-momentum mode is the simplest mode, and
can be separated out from the coset using the decomposition ˙.x/ D ˙0e

2i Q�.x/=f ,
where ˙0 is the zero mode, and the nonzero modes reside in Q�.x/. Taking into
account only the zero mode, the partition function for �PT becomes a matrix model,
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Z�PT D
Z

D˙0 e
1
2 sTr



˙
�
0C˙0

�

; (4.35)

where the matrix integral represents averaging the direction of the chiral condensate
over the coset manifold. The scaling variable s includes the spacetime volume V ,
and is defined by s D 2mqV D 1

4
. fL/2.m�L/

2. In SU.2/, the matrix integral can
be evaluated in terms of a modified Bessel function, Z�PT D 1

s
I1.2s/. This result,

in turn, can be used to find the behavior of the chiral condensate as a function of s
in the "-regime via Eq. (4.12). We plot this dependence in Fig. 4.6. If one takes the
chiral limit at finite volume, chiral symmetry is restored. Chiral symmetry breaking
can be achieved in a finite volume provided the pion Compton wavelength is small
compared to the lattice size, 1

m�
	 L, for which s is large and the identity matrix

becomes the preferred direction for the condensate to point.

4.3.2.2 Zero Pion Winding

To avoid finite-volume restoration of chiral symmetry, we require m�L � 1

to ensure the zero-momentum modes of pions do not become strongly coupled.
Provided this condition is met, finite-volume corrections should be perturbatively
small, as pions only interact weakly with their periodic images. With small pion
Compton wavelengths, we need to focus on corrections near zero pion winding
number, rather than on zero pion momentum. This can be achieved systematically
using p-regime power counting [191].

In the p-regime, we no longer distinguish between zero and nonzero momentum
modes of pions. As a result, we count the pion mass and derivatives at the same
order, m� � p, and @� � 1

L
� p. This is the same power counting as in infinite

volume. The only exception is that the quantization condition restricts available
momenta. Consequently, the pion propagator and leading-order vertices scale with
the same power of p as in infinite volume. Each loop brings along the momentum
mode sum, 1

L4

P
n�

, and counts as p4. A general Feynman diagram with I internal

lines, V leading-order vertices, and L loops counts as p4L�2IC2V D p2LC2. This
power counting leads to a loop expansion identical to that in infinite volume. The

Fig. 4.6 Modification of the
chiral condensate in the
"-regime. Shown as a
function of the scaling
variable, s D 1

4
. fL/2.m�L/

2 ,
is the finite-volume depletion
of the chiral condensate
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essential difference is that the evaluation of Feynman graphs requires momentum-
mode sums rather than momentum integrals.

Now in the p-regime, momentum-mode sums are not ideal. We prefer that
contributions from loop graphs be expressed in a winding number expansion,
rather than in terms of periodic momentum modes. Indeed, the external states are
assumed to be projected onto good momenta; however, virtual quantum fluctuations
span the range of all available momenta. Their contribution to observables is best
expressed in position space. The Poisson re-summation formula allows us to recast
the momentum mode sums into an expansion in winding number. Before deriving
this formula, we recall the definition of the Dirac-delta function on a compact space,

ıL.x � y/ D 1

L

1X

nD�1
e2� in.x�y/=L; for x; y 2

�
�L
2
;
L

2

�
; (4.36)

which by inspection has the correct L ! 1 limit.
In considering loop sums, we can enforce the quantization of momentum using

the Dirac comb,

1

L

1X

n�1
ı.k � 2�n=L/ D

Z 1

�1
dx

2�
e�ikx 1

L

1X

nD�1
e2� inx=L; (4.37)

where k is a continuous variable, and accordingly has a Fourier transform in terms
of a noncompact variable x. We can partition the real line in terms of an infinite
number of cells having length L, that is

R1
�1 f .x/dx D P1


D�1
R 
LCL=2

L�L=2 f .x/dx.

Translating the latter integrals so that they are all centered about x D 0, we haveR1
�1 f .x/dx D P1


D�1
R CL=2

�L=2 f .x � 
L/dx. Applying this partition to the Dirac
comb, we have the Poisson formula

1

L

1X

n�1
ı.k � 2�n=L/ D

Z C L
2

� L
2

dx

2�
e�ikx

1X


D�1
eik
L ıL.x/

D 1

2�

1X


D�1
eik
L: (4.38)

To utilize the Poisson formula to compute finite-volume corrections, we first
observe the momentum-mode expansion of the finite-volume propagator

DFV.x; 0/ D 1

L

1X

nD�1
e2� inx=LG.2�n=L/; (4.39)

whereG.k/ D Œk2Cm2��1 is the Euclidean momentum-space propagator in infinite
volume. In light of Eq. (4.38), we have the winding-number expansion
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DFV.x; 0/ D
1X


D�1
D1.x C 
L; 0/; (4.40)

in terms of the infinite-volume coordinate-space propagatorD1.x; 0/. The infinite-
volume limit arises from 
 D 0, whereas nonzero winding numbers account for
volume corrections from periodic images.

The functional form of the coordinate-space propagator is all we need to
derive finite-volume corrections in the p-regime. In Euclidean space, we have the
propagator

D1.x; 0/ D m

4�2
p
x2
K1.m

p
x2/

x2!1�! m2

2.2�m
p
x2/3=2

e�mp
x2 C � � � (4.41)

To compute the finite-volume modification to the chiral condensate, for example, we
realize that the bubble diagram is proportional to DFV.0; 0/, which can be written
in the winding-number expansion using Eq. (4.40). Taking into account the 
 D ˙1
images in each spatial direction gives us the result

h  i D h  i1
mqD0

�
1C 3m2

�

.4�f /2

�
log

�2

m2
�

C 1 � 12
p
2�

e�m�L

.m�L/3=2

�

�m
2
�

f 2
L4.�/

�
: (4.42)

In this regime, corrections to the condensate are exponentially suppressed due to the
propagation of pions around the world.

9 In addressing finite-volume corrections, one typically considers lattices
with a finite spatial volume and infinite temporal extent. Why is this done?
How would the above results be modified? Now consider the pion mass. How
does it scale with volume for asymptotically large spatial volumes?

4.3.3 Lattice Discretization Effects

As a final application of �PT tailored to lattice QCD, we consider effects of the
lattice discretization. In order to connect lattice data to QCD physics, one needs to
take the continuum limit. Because �PT is a low-energy effective theory, taking the
lattice spacing to zero naïvely does not play a role in the long-range physics. Most
solutions to the fermion doubling problem, however, break chiral symmetry at zero
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quark mass. In this way, properties of the theory’s most infrared modes results from
the nature of the short-distance regularization.

Near the continuum, the lattice spacing is small compared to strong-interaction
scales, a 	 ��1

QCD, and the lattice action can be described by an effective continuum
theory, know as the Symanzik effective action [18]. This theory shares all of the
symmetries of the lattice action (gauge invariance, hypercubic invariance, C , P ,
T , : : :), but is written in terms of continuum operators and organized in powers of
the lattice spacing:

SSymanzik D S0 C aS1 C a2S2 C � � � : (4.43)

At each order, there is a finite set of operators, Si D P
j c

.i/
j O.i/

j , with contributions
from higher-dimensional operators becoming less relevant in the continuum limit.
Coefficients c.i/j run weakly with logarithms of the lattice spacing. The leading-order

term is just the QCD action, namely S0 D  
�
D= Cmq

�
 , although fine tuning may

be required to remove relevant contributions of the form 1
a
S�1, so that the continuum

limit exists. By writing Eq. (4.43), we assume any necessary fine tuning has been
carried out. Notice that at leading order, Euclidean invariance accidentally appears.
Operators breaking Euclidean invariance, e.g.  ��D�D�D� , become irrelevant
in the continuum limit.

To account for the effects of discretization on low-energy physics, we must
understand how operators of the Symanzik effective action map into �PT. For
illustrative early references on the subject, see [192, 193]. The Wilson action, for
example, eliminates fermion doubling at the cost of explicitly breaking chiral sym-
metry. As a result, chiral symmetry is not imposed on the operators of Symanzik’s
effective action. This allows for a relevant operator, 1

a
  , that necessitates fine

tuning in order to attain light quarks. After such tuning, the leading chiral symmetry
breaking operator is contained in the term [194]

S1 D cSW
�
 L��
F�
 R C  R��
F�
 L

�
: (4.44)

This term breaks chiral symmetry precisely the way the quark mass does, and its
effects can be incorporated into �PT by including the operator

�L�PT D �acSWa Tr
�
˙� C˙

�
: (4.45)

As a result, the pion mass depends on the lattice spacing,

m2
� D 8

f 2

�
mqC a cSWa

�
:

Infrared enhancements due to chiral logarithms now take the form

� logŒm2
�.mq; a/�:
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One should note that improvement of the action will diminish the size of the
coefficient cSW, and hasten the approach to the continuum limit. Furthermore, our
discussion tacitly assumes the product cSWa is positive, otherwise one can enter
the Aoki phase [195].

Another example of discretization effects concerns mixed-action simulations.
For computational economy, one can employ different lattice fermion actions for
valence and sea quarks. Lattice collaborations have chosen various options so far:
domain-wall valence quarks on staggered sea quarks, overlap valence quarks on
domain-wall sea quarks, etc. The effects of a mixed action on low-energy physics
can be deduced by accounting for the symmetry breaking pattern [196]. Because
mixed actions distinguish between valence and sea quarks, the Symanzik effective
action is a partially quenched theory. In the combined chiral and continuum limits,
the partially quenched theory possesses a graded chiral symmetry, SU.4j2/L ˝
SU.4j2/R. At finite lattice spacing, however, this chiral symmetry is explicitly
broken because no symmetry relates valence and sea quarks. Dimension-6 operators
in the Symanzik action lead to a reduction of the chiral symmetry down to
SU.2j2/L ˝ SU.2j2/R ˝ SU.2/L � SU.2/R. Consequently the masses of mesons
formed from one valence and one sea quark, �  0 and � 0 from Eq. (4.32), are not
protected from additive renormalization. As a result their masses have a shift

�.m2
�  0

/ D �.m2
� 0 

/ D a2�mix (4.46)

that depends quadratically on the lattice spacing. The behavior of chiral logarithms
is modified, but only for those generated by valence-sea meson propagation. Mixed-
action �PT can be employed to understand the combined quark-mass and lattice-
spacing dependence of mixed-action lattice-QCD data. For a general discussion of
applications, see [197, 198].

10 Write down all dimension-6 four-quark operators in the Symanzik
effective action for a general mixed-action theory. Classify the operators
according to symmetry. Which ones are absent in a theory describing Wilson
valence quarks and overlap sea quarks?

4.4 Including the Nucleon

To include the nucleon and other baryons in �PT, we are confronted with a puzzle.
The nucleon mass is not a low-energy scale. By contrast, it is on the order of the
chiral symmetry breaking scale, MN 
 ��. The presence of this large scale would
seem to complicate the inclusion of the nucleon into �PT. One is not deriving
the nucleon from chiral dynamics, however, one is investigating the effect chiral
dynamics has on the nucleon. With this view in mind, we include the nucleon as an
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external source of isospin and describe small energy fluctuations about the nucleon
mass, p 	 MN � ��, as first suggested in [199].

To account for the quark-mass dependence of nucleon properties using �PT,
we require the chiral-limit value of the nucleon mass, M . This quantity requires a
digression. How can the chiral-limit mass M arise from nothing? In QCD, we have
the energy-momentum tensor T�
 , whose matrix element between nucleon states
must have the form

hN.k/jT�
 jN.k/i D �k�k

MN

(4.47)

on account of Euclidean invariance and dimensional analysis. The trace of the
energy-momentum tensor thus has a matrix element equal to the nucleon mass,
hN.k/jT��jN.k/i D MN . At the classical level, the energy-momentum tensor’s
trace is simply T�� D mq  . Consequently,M D 0 in the chiral limit.

While these considerations apply at the classical level, QCD exhibits a trace
anomaly, which is tied to the fact that QCD cannot be defined without a scale. Taking
into account quantum corrections, the trace of the energy momentum tensor has the
form

T�� D ˇ

2g3
F A
�
F

A
�
 Cmq  (4.48)

with ˇ as the QCD beta function. Due to the trace anomaly, the chiral-limit mass
is nonvanishing, M D hN.k/j ˇ

2g3
F A
�
F

A
�
 jN.k/i. The Higgs mechanism does not

have a monopoly over all the mass in the universe. Furthermore, on account of
the trace of the energy-momentum tensor’s form, we can hazard a guess about the
quark-mass dependence of the nucleon mass,MN D MC� mqC�2 m2

qC� � � , which
corresponds to pion-mass dependence of the formMN D M CAm2

� CB m4
� C� � �

up to logarithms. This guess is not too far off, however, we will find further non-
analytic dependence on the quark mass.

11 Is the trace of the energy-momentum tensor the divergence of a current?

4.4.1 Heavy Fermions

To work with small fluctuations about the chiral-limit value of the nucleon mass,
we treat M as a large energy scale and write the nucleon momentum as k� D
Mv� C p�, with p 	 M . The uncertainty relation �k�x � 1

2
becomes �v�x �

1
2M

for particles of large mass, and simultaneously specifying position and velocity
becomes possible.
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We can see the consequences at the level of the nucleon propagator. For the free
action, we have

1

ik=CM
D �iMv=CM � ip=

2Mv � p C p2
D 1

v � pPC C O

 p
M

�
(4.49)

with the nonrelativistic projectors given by P˙ D 1
2
.1� iv=/. These projectors

can be used to simplify the spin algebra; for example, one can easily demonstrate
the identity �P˙��P˙ D ˙iv�P˙. Heavy-fermion propagators lead to dramatic
simplifications in Feynman diagrams. Rather than rediscover these simplifications
for each diagram, it is convenient to separate out the nonrelativistic modes directly
at the level of the nucleon action. The relativistic fluctuations can then be integrated
out of the functional integral.

To make explicit the separation of scales, we decompose the nucleon field into
two parts,

N.x/ D eiMv�x ŒPCNv.x/C P�Nv.x/� : (4.50)

Because of the explicit phase factor, derivatives acting on the nucleon field will
produce either the large momentum, Mv�, or the small residual momentum p�. At
the level of the free nucleon action, we have

L D N .@=CM/N

D N viv � @PCNv � N v .iv � @ � 2M/P�Nv C mixing: (4.51)

The positive projection of the nucleon,Nv, corresponds to a nonrelativistic nucleon
whose energy is measured relative to zero. The negative projection, Nv, on the other
hand, corresponds to the negative-energy solution which lies 2M away from the
positive-energy solution, see Fig. 4.7. The mixing terms between these two fields
give rise to a tower of recoil corrections after the field Nv is integrated out.

12 Integrate out the remaining massive component of the nucleon field to
find the first-order correction to the static-nucleon Lagrangian. The result
should not surprise you.

Fig. 4.7 The heavy-fermion
approach repositions the zero
energy level at the fermion
mass M
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13 The nonrelativistic projectors reduce the spin algebra to that of Pauli
matrices. Show that the axial-vector fermion bilinear reduces to the spin
density operator up to a constant, that isN v���5Nv D cN vS�Nv. The relation
PCNv D Nv will prove useful, as will the definition of the spin vector
S� D � i

4M
"�
���
�k� , which satisfies S�S� D 1

2

�
1
2

C 1
�
. What are v�S�

and ŒS�; S
�?

4.4.2 Heavy-Nucleon �PT

With the large chiral-limit mass of the nucleon M phased away, the derivative
expansion is valid: @�Nv � p with p 	 M � ��. From this point forward,
we work exclusively with the heavy-nucleon field Nv, and for notational simplicity
we strip away the velocity subscript. The goal is to combine the heavy-nucleon limit
with chiral perturbation theory to build a tool with which we can address the quark-
mass dependence of nucleon properties, pion-nucleon interactions, and so forth.

The nucleon field is an isodoublet of the proton and neutron, N D
�
p

n

�
.

This translates into the transformation property, Ni ! VijNj under an SU.2/V
transformation. On the surface, it appears that we need to know how the nucleon
transforms under SU.2/L ˝ SU.2/R in order to take into account the pattern of
spontaneous and explicit chiral symmetry breaking in QCD. This situation would be
unfortunate, because it is unknown to which chiral multiplets the nucleon belongs.
A nice discussion and a conjecture are given in [200].

Let us temporarily assume a simple scenario for the nucleon. In the chiral limit,
imagine that the nucleon has the charge assignment . 1

2
; 0/˚ .0; 1

2
/ under SU.2/L ˝

SU.2/R. That is, the nucleon can be written as the sum of left- and right-handed
fields, NL and NR, which transform as NL ! LNL and NR ! RNR under chiral
transformations. These fields can then be dressed with pions. For example, taking
QNL � ˙NR, and QNR � ˙�NL, we have defined fields with exactly the same

transformation properties as the original nucleon. Because pions are massless in the
chiral limit, moreover, it is not possible to discern between these two possibilities.
The nucleon will always be dressed with soft pion radiation, and this presents an
infrared ambiguity in distinguishing between a nucleon, and a nucleon plus any
number of soft pions.

To exploit the infrared ambiguity, we define the field � D p
˙ . Under a chiral

transformation, we have � ! p
L�2R� � L�U �, where U is a complicated

coordinate-dependent matrix, U D .L;R; �.x//. It is simple to show that L�U � D
U�R�. Under the vector subgroup of transformations, we have � ! V �V �. Now
one can use the � field to dress the nucleon differently with pions. From our
original chiral multiplet, we can define the fields MNL D �NR and MNR D ��NL,
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which both transform the same way, MNL ! U MNL and MNR ! U MNR under
SU.2/L ˝ SU.2/R. Thus to whichever chiral multiplets the nucleon belongs, we
can always suitably dress with pions to define a physically indistinguishable nucleon
field that transforms asN ! UN under chiral transformations. This transformation,
moreover, respects the known vector transformation of the nucleon doublet.

We are now in a position to build the �PT Lagrangian including a heavy nucleon
field. The theory described by this Lagrangian is heavy-nucleon chiral perturbation
theory (HN�PT). To aid in its construction, we form the parity even and odd
combinations

A� D i

2

�
��@�� � �@��

�
� ! UA�U

�

V� D 1

2

�
��@�� C �@��

�
� ! UV�U � C U@�U

�; (4.52)

where their chiral transformations are also given. From the vector-field built from
mesons, V�, we can form a covariant derivative that acts on the nucleon, D�N �
@�N C V�N , which satisfies D�N ! U.D�N/. The O.p/ HN�PT Lagrangian is
specified by two terms

LHN�PT D N�iv �DN C 2gAN
�S � AN: (4.53)

The first term is the chirally covariant static-nucleon operator, which contains vector
couplings of the nucleon to even numbers of pions. These couplings are exactly
fixed by chiral symmetry. The second term contains spin-dependent axial-vector
couplings to odd numbers of pions. These couplings are not uniquely determined
in �PT, and therefore, we have assigned a low-energy constant gA to this term
(Fig. 4.8).

There are two further invariant terms at O.p/ that we did not write down.
These are N�v�N Tr

�V�
�

and N�S� N Tr
�A�

�
. These happen to vanish, but

could become relevant when flavor-singlet external fields are turned on. To include
external fields, we promote the global symmetries to local ones. From left- and
right-handed gauge fields, L� and R�, we form the left- and right-handed gauge-
covariant derivatives,DL;� D @�C iL�, andDR;� D @� C iR�. These are then used
to gauge the vector and axial-vector fields built from mesons:

Fig. 4.8 Graphical depiction
of terms from the HN�PT
Lagrangian expanded to

O


1
f 2

�
. Solid lines denote

nucleons, while the dashed
lines denote pions
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A� D i

2

�
��DL;�� � �DR;��

�
� ! UA�U

�

V� D 1

2

�
��DL;�� C �DR;��

�
� ! UV�U � C U@�U

�; (4.54)

which have the same transformation properties as their zero-field counterparts. The
leading-order HN�PT Lagrangian in external fields thus has exactly the same form
up to possible flavor-singlet couplings. Turning on flavor-singlet external fields, we
have simply Tr

�V�
� D i

2
Tr
�
L� CR�

� D i Tr
�
V�
�

with V� the flavor-singlet
vector field, and Tr

�A�

� D � 1
2

Tr
�
L� � R�

� D Tr
�
A�
�

with A� the flavor-
singlet axial-vector field. The flavor-singlet vector coupling is exactly fixed by the
nucleon charge assignments,D�N D �

@� C V� C Tr
�V�

�	
N .

14 In the chiral limit, the isovector axial current is a conserved current.
Is there a constraint on the quark isovector axial charge due to the non-
renormalization of this current? What about on the nucleon axial chargegA?

4.4.3 Quark-Mass Dependence of the Nucleon

To include explicit chiral symmetry breaking introduced by the quark mass, we
follow the spurion trick above. It is convenient to introduce the operators

M˙ D 1

2

�
�s�� ˙ ��s ��

� ! UM˙U �; (4.55)

which have the simple chiral transformations in terms ofU listed. When the spurion
picks up a vev, the operators become M˙ D mq.˙ ˙˙�/. The leading effects of
the quark mass on the nucleon are contained in the O.p2/ term

LM D � N �MCN: (4.56)

Expanding this term to tree level, we find the expected linear quark-mass depen-
dence of the nucleon mass, MN D M C � mq C � � � . Beyond tree-level, there are
spin-independent nucleon interactions with an even number of pions contained in
the above term. Pion-nucleon scattering provides an avenue to determine � .
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15 Write down all strong-isospin–breaking mass operators up to second
order in the quark mass. What effect does isospin breaking in the pion mass
have on the nucleon mass? Deduce the behavior of the nucleon mass splitting
as a function of the quark masses.

The coefficient � is related to an important parameter called the pion-nucleon
sigma-term, which is defined by

�N D 1

2MN

hN.k/jmq  jN.k/i: (4.57)

In HN�PT, we have just established that �N D �mq
2MN

C � � � . Determination of the
sigma term is relevant for the nucleon-mass spectrum, the strangeness content of
the nucleon, quark mass ratios, pion-nucleon scattering, and new-physics searches.

The sigma term is at the heart of the quark-mass dependence of the nucleon
mass. Using the Feynman-Hellmann theorem, we have the relation �N D mq

2MN

@MN

@mq
,

which expresses the sigma term as the incremental change in nucleon mass with
respect to the quark mass. A quantity not-too-distantly related to the sigma term is
the strangeness fraction in the nucleon. This fraction is defined from the ratio of
matrix elements of scalar quark bilinear operators

y D hN.k/jssjN.k/i
1
2
hN.k/juu C dd jN.k/i : (4.58)

With some algebraic rearrangement, we can produce the relation

�
ms

mq

� 1
�
.1 � y/ �N D ms �mq

2MN

hN.k/juu C dd � 2ssjN.k/i (4.59)

between quark masses, the strangeness fraction, and the pion-nucleon sigma term.
The strange quark will be considered further in the next section, and we will estimate
the matrix element on the right-hand side from phenomenology.

The sigma term makes an appearance in pion-nucleon scattering. In the isospin
zero channel, the scattering amplitude is constrained by low-energy theorems at the
Cheng-Dashen point, namely

1

2
f 2DID0.
 D 0; t D 2m2

�/� Born D �N C large corrections; (4.60)

where the Born subtraction refers to removing contributions from nucleon inter-
mediate states, �N ! N ! �N , and the large corrections scale as

p
mq . The

low-energy theorem can be reformulated in a faster-converging form by considering
the form factor of the sigma term, �N .t/. In this case [201], the right-hand side can
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be replaced by �N .t D 2m2
�/C �R, where �R � m2

q , and can be estimated using
HN�PT [202]. The problem is then to compute �N .2m2

�/��N .0/ in order to extract
the sigma term from data.

Finally, the sigma term is relevant for the detection of dark matter. In a typical
direct-detection experiment, one seeks to measure the recoil of nuclei that have
scattered elastically with dark matter. The scattering could be mediated through a
spin-independent interaction of the form � .��/

�
  

�
, where by the dark matter

particle � is coupled to light quarks. Another potential mechanism is from dark
matter coupling to the Higgs, and nuclear recoil arises from the Higgs coupling
to heavy quarks, � mQ

�
QQ

�
H . The Higgs coupling grows with quark mass,

however, the heavy-quark scalar density in the nucleon decreases with the mass
of the heavy quark. As a result, the product of the two is roughly constant for the
heavy quark flavors:

hN jmQQQjN i � 80 MeV

"
1 � 2�N

 
1C

Z ms=mq

0

y.x/dx

!#
; (4.61)

where the dominant uncertainty is not from perturbative treatment of the heavy
quarks but rather from subtracting out the contribution from light quarks, see [203]
for a clear discussion.

4.4.4 Beyond Leading Order

The linear quark-mass dependence of the nucleon mass is at O.p2/, and quadratic
dependence enters at O.p4/ from higher-order local operators. Loop diagrams
will produce non-analytic dependence on the quark mass, and the leading such
contribution arises from the sunset diagram, which counts at O.p3/, see Fig. 4.9.

To evaluate the sunset diagram, we recall the form of the heavy-nucleon
propagator in the rest frame, v� D .0; 0; 0; i/, namely

DN .x; 0/ D e�Mx4ı.x/�.x4/PC; with �.x4/ D
Z 1

�1
dp4
2�i

eip4x4

p4 � i	 ; (4.62)

which is thus nonvanishing only for x4 > 0. For the heavy-particle formulation,
the pole prescription is required in Euclidean space. The heavy-nucleon propagator
must be treated as 1

p�v D �i
p4�i	 D �iPV 1

p4
C �ı.p4/ for nucleons to propagate

forward in time. From this observation, we can evaluate the sunset diagram

Fig. 4.9 One-loop diagram
contributing to the nucleon
self energy at O.p3/
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/ g2A
f 2

Z

p

.p � S/2
p � v Œp2 Cm2

��
/
Z

p

.p � S /2

p2 Cm2
�

/
Z

p

1 �m2
�

Z

p

1

p2 Cm2
�

� �3 Cm2
� �Cm3

�; (4.63)

where in the second line, we have introduced an ultraviolet cutoff �. The cubic
divergence can be absorbed into the renormalized chiral-limit nucleon mass M ,
while the linear divergence can be absorbed into the renormalization of � . Both of
these power-law divergences are automatically subtracted in dimensional regulariza-
tion. The finite piece makes a contribution to the nucleon mass that is m3

� / m
3=2
q .

Exhibiting this contribution, we see the nucleon mass has the expansion

MN D M C Am2
� � 3�g2A

.4�f /2
m3
� C B m4

�

�
log

�2

m2
�

C C

�
C � � � (4.64)

away from the chiral limit. From lattice-QCD computations of the nucleon mass, it
has proven challenging to expose this behavior, see Fig. 4.10.

Chiral perturbation theory can be used to compute chiral corrections to a variety
of nucleon observables, we refer the reader to an early review on the subject [205].
Of particular importance are matrix elements of quark bilinear operators,  �  .
These matrix elements can be parameterized in terms of various form factors, which
we generically denote by G.q2/, where q is a spacelike momentum transfer. The
value at zero momentum transfer, G.0/, is often a charge or a moment. The slope
of the form factor away from zero momentum transfer can be used to define an rms
radius, G.q2/ D G.0/� 1

6
q2hr2Gi C � � � .

One such bilinear operator is the isovector vector current, JC
� . Matrix elements

of this current are parameterized by

hN.p0/jJC
� jN.p/i D u0�

�
v�G

C
E .q

2/C i"ijkqj �k

2MN

GC
M.q

2/

�
u; (4.65)

Fig. 4.10 Pion mass
dependence of the nucleon
mass calculated with lattice
QCD. To a very good
approximation, the lattice
data lie along the straight line
MN D 0:80 GeV Cm� . We
thank A. Walker-Loud for
providing an updated version
of the plot in [204]
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where GC
E and GC

M are just differences between proton and neutron electric
and magnetic form factors, respectively. The isovector charge is protected from
renormalization by the Ward identity. The isovector electric radius has the behavior
hr2Ei D A

�
logmq C B

�
and diverges in the chiral limit. The isovector magnetic

moment has the expansion �I D �0 C Am
1=2
q C B mq

�
logmq C C

�
, while the

isovector magnetic radius hr2M i D Am
�1=2
q C B

�
logmq C C

�
also diverges in the

chiral limit.
One can carry out the same analysis for the isovector axial-vector current, JC

�5.
Nucleon matrix elements of this current can be parameterized in terms of two form
factors, GA and GP ,

hN.p0/jJC
�5jN.p/i D 2 u0� �S�GA.q2/ � q�S � qGP .q

2/
	

u: (4.66)

The axial charge of the nucleon, GA � GA.0/, has a chiral expansion of the form
GA D gA C Amq

�
logmq C B

�
, while the axial radius has the expansion hr2Ai D

r2CAmq

�
logmq C B

�
. The pseudoscalar form factorGP .q2/ exhibits a pion pole

GP .q
2/ D gA

q2 Cm2
�

� 1

6
hr2Ai C O �m2

�

�
; (4.67)

because the derivative of the isovector axial-vector current has the quantum numbers
of a charged pion. Conservation of this current in the chiral limit, moreover,
produces a relation between GA.q2/ and GP .q2/ at vanishing quark mass [206].
To contrast the behavior of axial-vector and vector form factors, we see the axial-
vector size of the nucleon should be smaller than the vector size as one nears
the chiral limit. The axial-vector size arises from local interactions, whereas the
vector size is dominated by long-distance, charged pion loop contributions. Some
credence to this picture is provided by the experimental values: hr2Ai D 0:42 fm2,
and hr2Eip�n D 0:88 fm2.

The low-energy expansion of hadronic observables is limited by the nearest-lying
states that have been excluded. For pions, such higher-lying states are reasonably
well separated in energy; however, for the nucleon, the nearby�.1232/ resonances
often undermine the expansion of certain nucleon observables. The mass splitting,
� � M� �MN D 290 MeV, is not considerably greater than the pion mass. If one
imagines the strict chiral limit, m� 	 �, then these resonances can be integrated
out to arrive at HN�PT. On the other hand, for physical values of the parameters,
we might imagine m� � �, and these degrees of freedom should be retained. The
size of the axial couplings g�N and g�� gives a further phenomenological reason
to include Delta-resonance degrees of freedom explicitly. Systematic inclusion of
the �.1232/ in �PT is reviewed in [207]. While one might expect the inclusion of
further higher-lying resonances would improve the description of observables, these
higher resonances cannot be included in a low-energy theory. Such resonances have
strong decays which produce energetic pions that necessarily preclude a power-
counting scheme.



4 Chiral Perturbation Theory 141

4.5 Issues of Convergence

To begin this section, we remind the reader that perturbative expansions are assumed
asymptotic until proven otherwise. In expanding about the chiral limit, changing the
sign of the quark mass leads to vacuum instability from which we infer the chiral
expansion has zero radius of convergence. This is further evidenced by the non-
analyticities of �PT expressions. While the success of QED perturbation theory is
set by the smallness of ˛ D 1

137
, the chiral expansion is far from this ideal. Often

one is confronted with the need, either from lattice QCD or from phenomenology,
to consider expansion parameters not considerably less than unity. For this reason,
one should be aware of the limitations inherent to asymptotic series.

To illustrate these limitations, we consider a toy model provided by the integral

F.x/ D
Z 1

0

ds
e�s

1C sx
; (4.68)

where it is assumed that 0 < x 	 1. For negative values of x, the integrand has
a non-integrable singularity, thus any expansion about x D 0 has zero radius of
convergence. Ignoring this fact and blindly expanding the integrand gives the series

FN .x/ D
NX

nD0
.�/nnŠ xn; (4.69)

which diverges asN ! 1. Depending on the size of x, however, the first few terms
nevertheless give a good approximation to the function F.x/, as shown in Fig. 4.11.

For small values of x, namely x < 1
4
, increasing the number of terms in the

expansion from N D 1 to N D 3 gives a better approximation to the function
F.x/. Adding further terms, however, eventually breaks the trend. Because the
series has zero radius of convergence, adding further terms to the expansion limits
one to a smaller range of x for which a good approximation can be obtained. For

Fig. 4.11 Relative error in
approximating F.x/ by its
asymptotic expansion FN .x/
for N D 1–3
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the function at hand, the best approximation is attained for N � 1
x

. Thus to make
a better approximation for larger values of x, one should actually drop higher-order
terms in the expansion.

In �PT, one often goes to higher orders in the power counting to test the
convergence of the expansion. Doing so, however, brings along unknown low-
energy constants. If one knew the chiral-limit values of these parameters a priori,
then one could assess the convergence. When one uses phenomenology or lattice
data to fit the parameters, this task becomes considerably challenging.

In two-flavor �PT, we found that the chiral expansion of pion dynamics is
governed by the small parameter m2

�=�
2
� � 0:02, which should still be suitably

small for pion masses larger than physical. This is too idealistic in certain channels
where there are resonance contributions, and more realistic expansion parameters
that underlie �PT are m2

�=m
2
� � 0:03 and m2

�=m
2
� � 0:08. When considering the

chiral dynamics of the nucleon, we need the chiral limit value of the nucleon mass,
which is M D 0:80 GeV, see Fig. 4.10. The heavy-nucleon expansion is controlled
bym�=M � 0:2, and Delta-resonance contributions are controlled bym�=� � 0:5

if excluded, and
p
�2 �m2

�=M � 0:3 if included. We now investigate the state of
the three-flavor chiral expansion.

4.5.1 Including Strange Mesons

The strange-quark mass is smaller than the strong-interaction scale, ms=�QCD �
0:3, but not considerably so. Nevertheless, we can understand the low-energy
dynamics of QCD that emerges from having three nearly massless quarks, and
compare with nature.

Returning to the analysis of Sect. 4.2, the pattern of symmetry breaking in the
massless three-flavor case is SU.3/L ˝ SU.3/R ! SU.3/V , due to the formation
of the chiral condensate h  i ¤ 0. The coset SU.3/L ˝ SU.3/R=SU.3/V is
parameterized similarly to before, ˙ D e2i�=f , where ˙ ! L˙R� under a
three-flavor chiral transformation. The vector transformation can be used to deduce,
� ! V�V �, and so � describes an octet of mesons. These are conventionally
packaged as

� D

0

B@

1p
2
�0 C 1p

6
� �C KC

�� � 1p
2
�0 C 1p

6
� K0

K� K0 � 2p
6
�

1

CA : (4.70)

The quark masses, mq and ms , explicitly break chiral symmetry from SU.3/L ˝
SU.3/R down to SU.2/V ˝ U.1/V . This effect can be accounted for by the spurion
trick used above. Treating each of the quark masses as O.p2/, the leading-order
chiral Lagrangian has the form
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L�PT D f 2

8
Tr
�
@�˙

�@�˙
� � Tr

�
m˙� Cm˙

�
; (4.71)

where m D diag .mq;mq;ms/. Aside from this difference, the form of the
Lagrangian is the same as that in the two-flavor case, although the values of the low-
energy parameters f and  are different. Their values are now determined by the
three-flavor chiral limit. At O.p4/, there are seven Gasser-Leutwyler coefficients,
and a few more when external gauge fields are included [208].

16 In the isospin limit, there are two different quark masses but three
different meson masses in the pseudoscalar octet. Use the three-flavor chiral
Lagrangian to derive the constraint,

�GMO D 4

3
m2
K �m2

� � 1

3
m2
� D 0; (4.72)

which was originally found by Gell-Mann and Okubo. What happens away
from the isospin limit?

The tree-level masses of the pseudoscalar mesons lead to the relation�GMO D 0

in Eq. (4.72). Inserting the neutral-meson masses and dividing by the average octet-
meson mass, we see that experimentally �GMO=m

2
� � 0:15. Beyond tree level,

this relation is modified by one-loop mass corrections, and local counterterms from
the O.p4/ Lagrangian. Estimating the size of such corrections leads to �GMO �
m4�

m 2
��

2
�

. In SU.3/ �PT, the �meson is the most worrisome. Fourth-order contributions

from the � should be � 35%. This is about the size of corrections needed for the
Gell-Mann–Okubo relation, but notice that a factor of two can seriously upset the
situation.

To expand about the three-flavor chiral limit, we must add to m2
�=�

2
� � 0:02

two further expansion parameters, m2
K=�

2
� � 0:23 and m2

�=�
2
� � 0:27. Pending

unfortunate numerical factors, O.p6/ contributions to meson quantities (which
include two-loop diagrams) should be � 10%. To work at this order, one must
introduce � 100 low-energy constants, which makes it difficult to address issues
of convergence. The comprehensive study of �PT predictions at next-to-next-to-
leading order allows one to form relations sensitive to only O.p6/ low-energy
constants. While most are not well known, one can use these relations to assess
the convergence of the three-flavor expansion, with the result that the expansion
“mostly works” [209].
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17 Revisit electromagnetic mass corrections in three-flavor �PT. Find all
leading- and next-to-leading-order electromagnetic mass operators. Ignoring
the up- and down-quark masses, which octet-meson masses are affected by
leading and next-to-leading operators?

18 Accounting for strong and electromagnetic isospin breaking to leading
order, compute the mass spectrum of the meson octet using �PT. Devise
a way to determine the quark mass ratios mu=md and md=ms using the
experimentally measured meson masses.

4.5.2 Including Strange Baryons

The lowest-lying baryons form an octet under SU.3/V and can be packaged in the
matrix

B D

0

B@

1p
2
˙0 C 1p

6
� ˙C p

˙� � 1p
2
˙0 C 1p

6
� n

�� �0 � 2p
6
�

1

CA ; (4.73)

which accordingly transforms as B ! VBV�. While the chiral multiplets for these
baryons in the chiral limit are unknown, we are free to choose the SU.3/L˝SU.3/R
transformationB ! UBU� due to the ambiguity in resolving a baryon, and a baryon
plus any number of soft octet mesons.

In the three-flavor chiral limit, the octet baryons are degenerate, with a mass
we denote by MB . This mass must be treated as a large scale, and the baryon
fields decomposed into heavy baryon fields. Their interactions with octet mesons are
constrained by the form of spontaneous and explicit breaking of chiral symmetry.
Construction of the heavy-baryon chiral perturbation theory (HB�PT) Lagrangian
proceeds similarly to that for the heavy nucleon. To aid in the construction, we
appeal to the vector and axial-vector fields built from mesons, V� and A� in
Eq. (4.52). The former can be used to build a chirally covariant derivative,D�B �
@�B C �V�; B

	
, which transforms as D�B ! U

�
D�B

�
U �.

To O.p/, we have the gauged static-baryon term and two independent axial
interactions,

LHB�PT D Tr
�
B�iv �DB

�C 2D Tr
�
B�S�fA�; Bg�C 2F Tr

�
B�S�ŒA�; B�

�
:

(4.74)
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Further terms are required at O.p/ because of the nearness of spin- 3
2

baryon
resonances. These baryons form a decuplet under SU.3/V , so that Tijk !
V i 0

i V
j 0

j V
k0

k Ti 0j 0k0 , with Tijk completely symmetric. The size of the average mass
splitting between the octet and decuplet baryons, � � MT � MB D 270MeV,
necessitates inclusion of the decuplet because � � m� . Their leading-order
Lagrangian is given by

L.�/HB�PT D T �� .iv �D C�/T� C 2H T ��S � AT� C 2C


T ��A�B C B�A�T�

�

(4.75)

and includes an axial coupling of pions to the decuplet H , as well as an axial
transition coupling of pions to octet and decuplet baryons C . Notice the large mass
scale MB has been removed from the chiral-limit decuplet mass rather than MT .
While we could remove the mass of the decuplet fields, the splitting � would then
show up in time-dependent factors for the axial baryon transition, and these factors
would ultimately incorporate the baryon mass difference in Feynman diagrams
which involve both octet and decuplet baryons.

To include the leading-order effects of quark masses, we need terms of the O.p2/
Lagrangian. Focusing on the quark-mass dependence of the octet baryons, we have
three leading-order terms

Lm D bD Tr
�
B�fMC; Bg�C bF Tr

�
B�ŒMC; B�

�C b� Tr
�
B�B

�
Tr .MC/ :

(4.76)

Because there are three parameters and four octet baryon masses in the isospin
symmetric limit, there is a relation between the masses implied by leading-order
HB�PT, which has the form

MGMO D M� C 1

3
M˙ � 2

3
MN � 2

3
M� D 0: (4.77)

Experimentally, this relation is very well satisfied. Normalizing to the average octet-
baryon mass, we have MGMO=MB � 1%. Corrections to this relation can be
computed in HB�PT and first arise at O.p3/ from one-loop diagrams. Because
these contributions are non-analytic in the quark masses, there are no additional
parameters required beyond the various axial couplings entering the one-loop
diagrams.

To compute the one-loop corrections, we require the octet-baryon sunset dia-
gram, shown in Fig. 4.9. This diagram evaluates similarly to before. Additionally,
we require the sunset diagram shown in Fig. 4.12. The anatomy of this intermediate-
state decuplet contribution is as follows. By angular momentum, the virtual meson
must be in a relative p-wave, which at low energies requires the momentum
suppression factor p2` with ` D 1. This factor automatically appears in the
numerator when evaluating the Feynman diagram:



146 B.C. Tiburzi

Fig. 4.12 One-loop octet-baryon (B) self-energy diagram with intermediate-state decuplet (T )
baryon

� C2

f 2

Z

p

p2

Œip4 C��Œ.p4/2 C p2 Cm2
��
: (4.78)

The energy integral can be done by contour integration, which puts the meson on

shell with E� D
q

p2 Cm2
� . The diagram is then proportional to

C2

f 2

Z

p

p2

E�.E� C�/
� C2

f 2

Z �

m�

dE�
.E2

� �m2
�/
3=2

E� C�
; (4.79)

where the numerator factor is a combination of p-wave suppression, p2 D E2
��m2

� ,

and the available two-body phase space near threshold,
q
E2
� �m2

� . In changing

variables, we have included an ultraviolet cutoff � to regulate the divergences. For
large meson energies, there are multiple divergences,

Z �

dE E2

�
1 � �

E
C �2

E2
� �3

E3
C � � �

� 
1 � 3

2

m2
�

E2
C � � �

!

� �3 C��2 C�2�C�3 log�Cm2
� �Cm2

� � log�C finite: (4.80)

The first four terms are removed by the chiral-limit baryon-mass renormalization

condition, MN;˙;�;�

ˇ̌
ˇ
mqDmsD0

D MB . The remaining two divergences are pro-

portional to the quark masses. The first is a power-law divergence which can be
removed by a renormalization of the parameters bD;F;� . The logarithmic divergence
produces running of these couplings, which is possible due to treating � as a small
parameter. After renormalization, what remains is described by F.m�;�;�/, which
is a non-analytic function of m� and � that is given by

F.m; ı; �/ D .m2 � ı2/
"p

ı2 �m2 log

 
ı � p

ı2 �m2 C i	

ı C p
ı2 �m2 C i	

C ı log
�2

m2

!#

C1

2
ım2 log

�2

m2
C ı3 log

�2

4ı2
: (4.81)

For ı > �m, the function F.m; ı; �/ is real valued.
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Table 4.1 Estimated
one-loop correction to the
baryon Gell-Mann–Okubo
relation

Source D F C MGMO=MB

�PT [210] 0.61 0.40 1.2 0.79 %

Lattice QCD [211] 0.72 0.45 1.6 1.12 %

SU(6) Quark Model 3=4 1=2 3=2 1.29 %

Combining results for the two sunsets, and forming the linear combination of
octet baryon masses in Eq. (4.77), we have the one-loop result

MGMO D 4

3.4�f /2

�
�.D2 � 3F 2/�GMO.m

3
�/� 1

6
C 2�GMOŒF.m�;�;�/�

�
;

(4.82)

where �GMO.x�/ D 4
3
xK � x� � 1

3
x� for any octet-baryon quantity x, and

consequently the � dependence is only superficial. The one-loop correction is
determined using various estimates of the axial couplings, see Table 4.1, and is
in line with the experimental value for MGMO. This agreement is actually quite
surprising if we analyze the expansion of individual octet baryon masses. The one-
loop corrections are particularly large: for the nucleon, ıMN .� D ��/=MN D
�39%; for the Lambda hyperon, ıM�.� D ��/=M� D �67%; for the Sigmas,
ıM˙.� D ��/=M˙ D �89%; and finally for the cascade baryons, ıM�.� D
��/=M� D �98%. The expansion is worse with increasing strangeness because of
larger couplings to strange mesons. The expansion parameters governing the heavy-
octet-baryon expansion are not considerably less than unity, mK=MB and m�=MB

are both � 0:5. The success of three-flavor HB�PT to describe certain observables
seems to require a deeper explanation.

19 Recall the relation between the nucleon sigma term and strangeness,
Eq. (4.59). Using the baryon chiral Lagrangian at tree level, calculate the
matrix element on the right-hand side and express it in terms of the octet
baryon masses. Finally, obtain a rough estimate the size of the sigma term.

4.5.3 Excluding Strangeness

In the three-flavor chiral expansion, we treat the quark masses equally mq �
ms 	 �QCD. Unless one is exceptionally lucky, the strange-quark mass is
probably too large to be considered a perturbation about the chiral limit. With
notable exceptions, baryon observables exhibit poor convergence, and even meson
properties determined with lattice QCD extrapolate better without the constraints of
SU.3/ �PT [212].
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One approach to the problematic strange quark is to integrate it out in order to
use a two-flavor chiral expansion. This corresponds to the mass hierarchy mq 	
ms � �QCD. For the nucleon and pion, integrating out the strange quark results in
SU.2/ �PT developed above. For the nucleon, we treated it as an external source
of isospin, and nothing stops us from having external sources with nonvanishing
strangeness quantum number. As a result, one can consider SU.2/ �PT for strange
hadrons [213–215]. This description has limited predictive power, but is ideally
suited for lattice applications.

To exhibit the idea behind two-flavor chiral expansions for strange hadrons,
consider the kaon mass. At tree level in SU.3/, one has the expression

m2
K D 4

f 2

�
mq Cms

� D 1

2
m2
� CM2

K D M2
K

�
1C m2

�

2M2
K

C � � �
�
; (4.83)

where we have separated out dependence on the strange quark mass by defining the
two-flavor chiral-limit value of the kaon mass, MK D mK

ˇ̌
mqD0. From the physical

kaon mass, mK0 D 0:497 GeV, we can estimate MK using SU.3/ �PT at one-loop
order. Not surprisingly, the overwhelming majority of the kaon mass arises from
the strange quark, MK D 0:486.5/ GeV, where the uncertainty corresponds to that
from the fourth-order low-energy constants.

Now we extend the idea to hyperons. Consider for simplicity kaon contributions
to the mass of the ˙ baryon. These contributions schematically take the form

M˙ D MB C am2
K C b m3

K C � � � (4.84)

D MB C a0M2
K C a00m2

� C b0M3
K C b00MKm

2
� C b000 1

MK

m4
� C � � � ;

where, in the second line, we have expanded out the contributions from the strange-
quark mass. This expression can then be reorganized into an SU.2/ chiral-limit
expansion,

M˙ D M
.2/
˙ C Am2

� C B m3
� C C m4

� .logm� CD/C � � � ; (4.85)

where M.2/
˙ denotes the ˙ baryon mass in the two-flavor chiral limit. In the

SU.2/ expansion, the all-orders strange-quark mass dependence is contained in the
parameters,M.2/

˙ , A, B , . . .
The price to pay for a better converging expansion is a mild proliferation of

low-energy constants. Table 4.2 summarizes the various parameters entering the
two-flavor expansion of baryon properties. Computing the one-loop contributions
to baryon masses in two-flavor �PT and evaluating these at a scale of � D ��

shows perturbatively small corrections over a range of pion masses, see Fig. 4.13.
The dimensionless parameters underlying the two-flavor chiral expansion are
m2
�=�

2
� and m2

�=M
2
K , and m�=M

.2/ from the heavy-baryon expansion. Baryons
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Table 4.2 Comparison of SU.3/ and SU.2/ �PT for baryons. Listed for each theory are the
quantities required to be small for the perturbative expansion, the baryon multiplets entering the
theory, and their associated axial couplings

SU.3/ SU.2/SD0 SU.2/SD1 SU.2/SD2 SU.2/SD3

Expansion p p p p p

Parameters m� , mK , m� m� m� m� m�

� ��N �˙�, �˙�˙ ����

Baryon 8B 2N 1�, 3˙ 2�

Multiplets 10 T 4� 3˙� 2�� 1˝

Axial D, F gA g�˙ , g˙˙ g��

Couplings C g�N g�˙� , g˙˙� g���

H g�� g˙�˙� g����

Fig. 4.13 One-loop corrections to baryon masses as functions of pion mass in SU.2/ HB�PT. The
bands are generated by varying the renormalization scale � within ˙25% of ��

with increasing strangeness perform correspondingly better in SU.2/ �PT for
two reasons. The first reason is that the axial couplings decrease with increasing
strangeness. Secondly the heavy baryon approximation depends on the SU.2/
chiral-limit masses, and these increase with increasing strangeness. As a result, the
approximation works better the stranger the hyperon. Lattice QCD will ultimately
reveal whether this is a successful description of hyperons, and whether SU.3/
relations among couplings emerge.
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20 Use SU.2/ �PT to construct a low-energy theory of kaons. Do the same
for the �.

21 Find a process involving strange baryons for which a description in terms
of SU.2/ �PT must certainly fail.

4.5.4 Not-So-Heavy Baryons

Treating baryons as heavy is required to have a power counting scheme, however,
the static approximation is often severe. Recoil corrections can be treated in
perturbation theory, but this approach will not allow one to exactly capture the
correct analytic structure of amplitudes. Most unnerving, furthermore, is that the
heavy-baryon approximation can lead to unphysical singularities. In such cases,
one needs all-orders re-summation of recoil corrections, and this can be achieved
through relativistic-baryon �PT [216].

We will use the nucleon’s scalar form factor as an illustrative example. Using
relativistic nucleon spinors, this form factor is defined from the matrix element

hN.p0/jmq



uu C dd

�
jN.p/i D u.p0/�.t/u.p/ (4.86)

and differs by a trivial normalization factor from the scalar form factor we used
in Sect. 4.4, namely �N .t/ D 1

2MN
�.t/. Computing this matrix element at the

Cheng-Dashen point (t D 2m2
�) with HN�PT, we obtain the result �.t D 2m2

�/ �
�.t D 0/ D 3�g2Am

3
�

2�2�
with corrections at O.m4

�/. This result does not indicate

anything problematic about the heavy-nucleon approach.
For a general t-channel momentum transfer, the analytic properties of the

amplitude allow for a once-subtracted dispersion relation,

�.t/ � �.0/ D t

�

Z 1

4m2�

dt0
IŒ�.t 0/�
t 0.t 0 � t/

; (4.87)

where the integration proceeds along the two-pion cut. The fully relativistic
computation at one loop can be obtained using the imaginary part of the form-factor
diagrams with relativistic kinematics and the dispersion integral above. The result
has the form
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�.t/ � �.0/ D 3�g2Am�

4�2
�

(4.88)

"
.t � 2m2

�/

�
1

2
p
�

log
1C p

�

1 � p
�

� log

�
1C m�

2MN

p
1 � �

��

C2m2
�

�
1 � log

�
1C m�

2MN

��#
:

Above, � is the threshold parameter defined by � D t
4m2�

.
One can perform the same computation using HN�PT. This result agrees with

the heavy-nucleon limit, m�=MN 	 1, of the fully relativistic expression, which is
given by

�.t/ � �.0/ D 3�g2Am�

4�2
�

"
.t � 2m2

�/

�
1

2
p
�

log
1C p

�

1� p
�

�
C 2m2

�

#
; (4.89)

where the second term survives at the Cheng-Dashen point. The problem with the
above expression, however, is that it becomes singular at the two-pion threshold.

This unphysical behavior is due to the factor 1
2

log 1Cp
�

1�p
�

! � 1
2

log .1 � �/, as
� ! 1. Physically, we expect a branch cut to start at threshold, whereas HN�PT
produces an unphysical singularity right at threshold.

The fully relativistic expression has the correct analytic structure. As one
approaches threshold, the unphysical singularity is exactly canceled by the addi-

tional logarithm in Eq. (4.88), namely � log


1C m

2MN

p
1��

�
! C 1

2
log .1 � �/.

This logarithm, moreover, is responsible for the branch cut above threshold. The
complications with the heavy-nucleon approach can be linked to the emergence of
a large parameter as one nears threshold. This parameter is m�

MN

p
1�� , which is small

in the heavy-nucleon approach, m�=MN 	 1, but the strict heavy-nucleon power
counting is spoiled as one nears threshold, � ! 1. Consequently re-summation
of m�=MN terms becomes necessary to produce the physically correct analytic
behavior of the form factor.

If one requires �PT amplitudes in the vicinity of multiparticle thresholds, one
must be careful to perform re-summations to produce the correct non-analyticities.
On the other hand, when one is far from such thresholds, their effect can be captured
in a tower of analytic terms. This is the principle underlying the construction of
every effective field theory.
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4.6 Final Remarks

To conclude, we will summarize the results detailed in this chapter in just a few
sentences. �PT provides the tool to systematically account for the light-quark–mass
dependence of low-energy QCD observables. This effective field theory is written in
terms of the approximate Nambu-Goldstone modes that emerge from spontaneous
breaking of chiral symmetry. Their interactions, and interactions with low-lying
baryons are constrained by the symmetries and symmetry-breaking pattern of
QCD. The perturbative expansion of �PT is limited in practice by the size of
the physical quark masses relative to strong interaction scales. The nonrelativistic-
baryon approximation, and, in particular, the size of the strange-quark mass put
strain on the expansion.

Prior to lattice-QCD computations, �PT was the only way to do precision low-
energy QCD phenomenology. The era of high-precision lattice QCD has altered the
situation. Lattice gauge theory and chiral dynamics have been used in conjunction
as an essential way to extract physics from QCD. In the next era, we see lattice
computations testing the rigor of the chiral expansion directly, with the power
of resolving long-standing puzzles. As our understanding progresses beyond the
single-nucleon sector, we additionally may hope to expose the chiral dynamics of
light nuclei from first principles.
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