
Chapter 3
Hadron Structure on the Lattice

K.U. Can, A. Kusno, E.V. Mastropas, and J.M. Zanotti

Abstract The aim of these lectures will be to provide an introduction to some of
the concepts needed to study the structure of hadrons on the lattice. Topics covered
include the electromagnetic form factors of the nucleon and pion, the nucleon’s
axial charge and moments of parton and generalised parton distribution functions.
These are placed in a phenomenological context by describing how they can lead
to insights into the distribution of charge, spin and momentum amongst a hadron’s
partonic constituents. We discuss the techniques required for extracting the relevant
matrix elements from lattice simulations and draw attention to potential sources of
systematic error. Examples of recent lattice results are presented and are compared
with results from both experiment and theoretical models.

3.1 Introduction

The proton was believed to be a point-like particle until the measurement of its
magnetic moment by Nobel-Prize laureate Otto Stern in 1933. The significant
deviation of the measured value �p � 2:5�N from the unit nuclear magneton
�N D e=2MN , where MN is the nucleon mass, provided first evidence for the
composite nature of the proton. The latest CODATA value now indicates that �p D
2:792847356.23/�N . Our modern understanding is that the nucleon is not a point-
like particle but a colour-singlet bound state of the fundamental building blocks
of hadronic matter: quarks and gluons. It is a challenge, however, to understand

K.U. Can (�)
Department of Physics, H-27, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 Japan
e-mail: utku.can@th.phys.titech.ac.jp

A. Kusno • E.V. Mastropas
Department of Physics, College of William and Mary, P.O. Box 8795, Williamsburg VA
23187-8795, USA
e-mail: akusno@email.wm.edu; emastropas@email.wm.edu

J.M. Zanotti
CSSM, School of Chemistry and Physics, The University of Adelaide, Adelaide SA 5005,
Australia
e-mail: james.zanotti@adelaide.edu.au

© Springer International Publishing Switzerland 2015
H.-W. Lin, H.B. Meyer (eds.), Lattice QCD for Nuclear Physics, Lecture Notes
in Physics 889, DOI 10.1007/978-3-319-08022-2__3

69

mailto:utku.can@th.phys.titech.ac.jp
mailto:akusno@email.wm.edu
mailto:emastropas@email.wm.edu
mailto:james.zanotti@adelaide.edu.au


70 K.U. Can et al.

how these constituents are distributed inside the nucleon and how they combine to
give the nucleon its fundamental properties. We can immediately think of questions
like: being a charge neutral object, does the neutron have a charged core in analogy
with an atom or is the charge distributed homogeneously? How do the constituents
combine to form the different hadrons? And can we find unravel the spin structure
of the proton?

The electromagnetic current is the perfect probe for investigating the charge and
magnetisation distributions of the nucleon, whereas the axial-vector current can
resolve the spin structure. For instance, it is still a mystery as to how much of the spin
of the proton is carried by quarks and gluons. Deep-inelastic scattering experiments,
for example, indicate that only 1=3 of the proton’s spin is carried by quarks and
antiquarks [131,132]. This problem was originally known as the “proton-spin crisis”
and demonstrates that questions still remain as to the fundamental structure of
hadrons.

Experimental probes of nucleon electromagnetic structure are based on electron-
proton scattering processes, since QED is a well-understood theory, and its small
fine-structure constant allows perturbative calculations. From the experimental
point of view it is also easy to accelerate electrons and tune their energies to
desired values. The electron-proton scattering processes can be considered in two
categories: elastic and deep-inelastic scattering.

In these lecture notes, we will first introduce some of the phenomenological
quantities used to assist in our understanding of nucleon structure and some of
the experimental processes used to determine them. We then turn our attention to
studying some of the techniques used to study these same quantities on the lattice,
together with some detailed examples for the more common calculations. We will
finish by placing the lattice methods in context by highlighting a couple of recent
results and comparing them to experimental determinations.

3.2 Experimental Probes

3.2.1 Elastic e–p Scattering

In elastic electron-nucleon scattering, the electron interacts with the nucleon via
photons and leaves the nucleon intact but with recoil. This process is dominated by
single-photon exchange, and it is possible to map out the charge and magnetisation-
density distributions of the nucleon by varying the momentum transferred to the
nucleon target. If we consider the nucleon to be a point-like particle, we can describe
the interaction cross section of this process with the Mott formula:

�
d�

d˝

�
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D .Z˛/2E2

4k2 sin4.�=2/

�
1 � k2

E2
sin2.�=2/

�
; (3.1)



3 Hadron Structure on the Lattice 71

whereZ is the atomic (proton) number, ˛ is the fine-structure constant,E and k are
the energy and momentum of the incoming electron, and � is the scattering angle
described as q2 D �4EE0 sin2.�=2/, withE 0 the outgoing electron energy and q the
transfer momentum. However, experimental data shows a clear deviation from the
point-like cross section, indicating that the nucleon has some internal structure. So it
is necessary to reconsider the cross-section formula and include a term that depends
on q2,

d�

d˝
D
�
d�

d˝

�
point

ˇ̌
F.q2/

ˇ̌2
: (3.2)

3.2.1.1 Rosenbluth Formula

We will attempt to rewrite the cross section starting from the S-matrix. For
simplicity, we will consider only the tree-level diagram, however, since the fine-
structure constant is small and one-photon exchange diagrams dominate the process.
This was expected to be a safe approximation, but in fact it is now known that the
inclusion of two-photon exchange effects are vital (see, e.g., [133]), especially at
large q2; nonetheless, we will not consider these here. The S-matrix is given by

S D .2�/4ı4.k C P � P 0 � k0/Nu.k0/.�ie��/u.k/
�i
q2

˝
P 0j.ie/J�jP

˛

D �i.2�/4ı4.k C P � P 0 � k0/M ;

(3.3)

where the Dirac-delta function ensures energy-momentum conservation, Nu.k0/ and
u.k/ are the fermion spinor fields with four-momenta k and k0, .�ie��/ is the
electron-photon vertex, and hP 0j.ie/J�jP i the photon-nucleon vertex. In the second
step we have introduced the invariant amplitude M,

M D 1

q2
Nu.k0/.�ie��/u.k/hP 0j.ie/J�jP i: (3.4)

The electromagnetic current is

J� D
X
i

ei N i�� i ; (3.5)

where the index i sums over all quark flavours with mq � mp , namely the up,
down and strange quarks. The cross section in terms of invariant amplitude can be
written as

d� D E 0

2EM2
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1C 2E
M

sin2.�=2/
jMj2 d˝

.2�/2
; (3.6)
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where E 0 is the energy of the scattered electron, and we write the squared invariant
amplitude in terms of leptonic and hadronic tensors:

jMj2 D e4

Q4
`��W�� : (3.7)

Here �q2 D Q2, the leptonic tensor is defined as

`�� D Nu.k0/��u.k/Nu.k/��u.k0/; (3.8)

and the hadronic tensor as

W �� D ˝P jJ � jP 0˛ hP 0jJ�jP i : (3.9)

The above hadronic matrix element between nucleon states is defined by two
Lorentz-invariant form factors (FFs),

hP 0jJ�.q/jP i D Nu.P 0/
h
��F1.q

2/C i��� q�
2M

F2.q
2/
i

u.P /; (3.10)

with ��� D i
2
Œ��; ��� and M being the mass of the nucleon. F1 and F2 are referred

to as the Dirac and Pauli form factors, respectively. Using the fact that both tensors
are symmetric and conserved (i.e. q�`�� D q�W�� D 0), the elastic scattering
cross-section in the lab frame can be written as

d�

d˝
D �Mott

�
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E.Q

2/C 	G2
M .Q
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1C 	 C 2	G2
M .Q

2/ tan2
�

2

�
; (3.11)

where we have defined the Sachs electric and magnetic FFs,

GE.Q
2/ D F1.Q2/� 	F2.Q2/;

GM.Q
2/ D F1.Q2/C F2.Q2/;

(3.12)

in terms of F1 and F2 and the factor 	 D Q2=4M2. Rewriting the cross
section in terms of the virtual photon’s longitudinal polarisation 
 D .1 C .1 C
	/2 tan2.�=2//�1, we end up with the Rosenbluth formula,
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D �Mott
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E.Q

2/C 	



G2
M .Q

2/
i
: (3.13)

So we see that it is possible to extract the electric and magnetic form factors from
the slope and intercept of a curve fitted to the experimental cross section plotted
as a function of scattering angle at fixed momentum transfer Q2. This is known
as the Rosenbluth separation technique. We note from Eq. (3.13), however, that the
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coefficient ofGE is suppressed at largeQ2, and hence the cross section is dominated
by GM in this domain. Therefore, it is harder to extract information on G2

E at large
momentum transfers.

3.2.1.2 Polarisation Transfer

Given the shortcomings of the Rosenbluth separation technique in extracting
accurate results for the electric form factor at largeQ2, it is clear that there is a need
for new experimental methods. The need for polarisation-transfer techniques was
pointed out in several papers [134–137]. With advances in experimental techniques
such as highly polarised and high-luminosity electron beams, polarised targets (e.g
1H, 2H, 3He) and large and efficient neutron detectors, the polarisation-transfer
experiments began to give us more insight about the nucleon’s structure.

It is possible to obtain the ratio Gp
E=G

p
M from the elastic scattering of longi-

tudinally polarised electrons from unpolarised protons in terms of the transferred
polarisation components perpendicular (Pt ) and parallel (Pl ) to the recoil proton’s
momentum in the scattering plane [135, 137],

G
p
E

G
p
M

D �Pt
Pl

E C E 0

2M
tan

�
�

2

�
; (3.14)

where E and E 0 are the incident and scattered electron energy, respectively, and �
is the electron scattering angle.

A recent analysis by the JLab Hall-A Collaboration [138] showed that, unlike the
conventional Rosenbluth-method estimation which provided �pG

p
E=G

p
M � 1, the

proton form-factor ratio clearly deviates from unity. Figure 3.1 from [138] shows
the behaviour of this ratio.

Fig. 3.1 Experimental data
with fitted predictions based
on Dyson-Schwinger
equation calculations. Empty
circles indicate the
unpolarised, whereas the
filled ones are obtained from
polarisation-transfer
experiments. Figure from
[138] )2 (GeV2Q
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It is evident that the Gp
E falls faster than Gp

M , and their Q2 dependences differ.
If the planned experiments forming part of the JLab upgrade1 find the slope of the
linear fall stays unchanged, then it might lead to the conclusion that Gp

E changes
sign. One last note is that the discrepancy between the Rosenbluth and polarisation-
transfer methods is believed to be due to the two-photon exchange (TPE) radiative
corrections to the cross-section measurements. A broad discussion about TPE can
be found in [133] and references therein.

3.2.1.3 Physical Interpretation

The physical interpretation of the electric and magnetic form factors is that for
small Q2, or in the limit M ! 1 such that Q2 � M2, we can assume that
the initial- and final-state nucleons are fixed at the same location and that they have
the same internal structure. We then have the physical interpretation that the Fourier
transforms of the form factors lead to density distributions. However, since M is
finite, one should consider nucleon recoil effects with increasing Q2. In this case,
the initial and final nucleon states no longer have the same momentum, thus their
wavefunctions differ (i.e. there is a relative Lorentz contraction), and it is no longer
possible to have a probability or density interpretation [139].

One method for circumventing this issue is to consider the Breit frame where the
initial and final momenta of the nucleon have the same magnitude. In this case, the
initial- and final-state nucleon wavefunctions are sampled in the same frame, and
we recover our density-distribution interpretation.

An alternative frame that also retains the density-distribution interpretation of
form factors in a model-independent way is given by the infinite-momentum frame
where the parton (quark) charge density in transverse space is given as a two-
dimensional Fourier transformation of F1,

�.b/ D
Z
d2q?
.2�/2

e�ib?�q?F1.Q
2 D q2?/; (3.15)

where q? and b? are the momentum transfer and distance of the quark to the center
of momentum, respectively, of a fast-moving nucleon in the longitudinal direction.

Pursuing the spatial density interpretation, we can expand the Fourier transform
of such a distribution, which allows us to write the electric form factor as

GE.Q
2/ D

Z
d3x eix�q�.x/ ' 1 � 1

6
Q2hr2i C : : : (3.16)

1See for instance, http://www.jlab.org/exp_prog/12GEV_EXP/.

http://www.jlab.org/exp_prog/12GEV_EXP/
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The charge radius of the nucleon is then defined by

hr2i D �6 dGE.Q
2/

dQ2

ˇ̌
ˇ̌
Q2D0

: (3.17)

We note here that there has been a lot of recent activity surrounding r D
q
hr2Ei.

Electron-proton scattering experiments found that the rms charge radius of the
proton is r D 0:875.8/.6/ fm, in good agreement with the atomic-hydrogen
Lamb-shift experiments and QED calculations [140]. Recent muonic-hydrogen
Lamb-shift measurements, however, indicate r D 0:84184.67/ fm, showing a 5�
difference [141], which has yet to be resolved.

3.2.2 Deep-Inelastic Scattering

In the previous section, we saw how elastic electron-proton scattering can provide
a framework in which to determine the electromagnetic form factors of the proton.
While elastic scattering occurs at small enough energies so that the final proton
would stay intact, we now consider an experimental process that occurs with high
enough energy that the proton is “smashed” into many fragments. This is known as
deep-inelastic scattering (DIS). The DIS process is dominated by a single quark in
the nucleon which is “knocked out” by a virtual photon (see Fig. 3.2).

As in case of elastic scattering, let us start with the expression for the S-matrix
for deep-inelastic scattering:

S D .2�/4ı4.k C P � P 0 � k0/Nu.k0/.�ie��/u.k/
�i
q2
hX j.ie/J �jP i: (3.18)

Fig. 3.2 Deep-inelastic
scattering
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We have here conservation of momentum ı4.k C P � P 0 � k0/, a leptonic piece
Nu.k0/.�ie��/u.k/ which can be calculated in perturbation theory, and a hadronic
piece hX j.ie/J �jP i. After smashing the initial proton with the probe, it is going to
break up into many fragments, and for an inclusive process we need to include in
the hadronic piece all possible final states, which we label X . The inclusive cross
section can be written in the following form:

d�

d˝dE
D ˛2

Q4

E 0

E
`��W

��: (3.19)

Here `�� is the leptonic tensor, W �� is the hadronic tensor which itself is a square
of the matrix element from Eq. (3.18), and we have here a sum over all possible final
states

W�� D 1

4�

X
X

hP jJ�jXihX jJ�jP i.2�/4ı4.P C q � PX/: (3.20)

Since the final states are summed over, the hadronic tensor W �� only depends on
the initial proton momentumP and photon momentum q. Using Lorentz symmetry,
parity and time-reversal invariance and current conservation, we can express this
hadronic tensor in terms of two invariant tensors

W�� D W1

�
�g�� C q�q�

q2

�
(3.21)

CW2

M2

�
P� � q� .P � q/

q2

��
P� � q� .P � q/

q2

�
;

where W1 and W2 are the so-called structure functions of the proton which depend
on two variables: the 4-momentum transfer squared

Q2 D �q2; (3.22)

and the energy transferred to the nucleon by the scattering electron

� D P � q
M

: (3.23)

The early data from SLAC indicated that these structure functions W1 and W2

are nearly independent of Q2 when plotted as a function of the dimensionless
combination

x D � q2

2P � q D
Q2

2M�
: (3.24)

This effect is known as Bjorken scaling, and x is called the Bjorken scaling variable,
although as we will discuss later, small scaling violations are observed at small x.
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3.2.2.1 Parton Model

If we work at fixed x, the limit of Q2 ! 1 is known as the Bjorken limit. The
effect of Bjorken scaling in this limit led Feynman to introduce the “parton model”.
According to his idea, the inelastic electron-proton scattering is a sum of elastic
scatterings of the electron on free partons within the proton (the term parton refers
to any particle with no internal structure). A key factor for investigating the proton
substructure is the wavelength of the probe

� � 1p
Q2

; (3.25)

and, of course, at large momentum transfer we are going to have higher resolution;
Fig. 3.3 represents it diagrammatically. If Q2 is small (i.e. the wavelength is large),
then the probe will only resolve the proton as a whole, but if we increase the value of
Q2 (decrease the wavelength of the probe), this means that we will be able to resolve
quantities inside of the hadron, so the probe will “see” quarks rather than a proton.
This picture is also valid for a fast-moving nucleon, i.e. the infinite-momentum
frame.

In the Bjorken limit, one defines the functions

F1.x/ D lim
Q2!1

W1.Q
2; �/; (3.26)

F2.x/ D lim
Q2!1

�

M
W2.Q

2; �/: (3.27)

And in Feynman’s parton model, the structure functions are sums of the parton
densities fi constituting the proton:

F1.x/ D 1

2

X
i

e2i fi .x/; (3.28)

F2.x/ D x
X
i

e2i fi .x/ ; (3.29)

Q2 small

e-

e-
Q2 large

e-

e-

Fig. 3.3 Large momentum transfer leads to higher resolution. The left diagram represents
resolving a proton at small Q2, while the right diagram has a Q2 high enough for investigating
proton substructure (quarks)
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where for quarks, the charge ei is also included. fi is the probability that the struck
parton, i , carries a fraction, x, of the proton momentum, and is called a parton
distribution function (PDF). Since the total probability must be 1, we have

X
i

Z 1

0

dx xf i .x/ D 1: (3.30)

Results from DIS tell us that the fraction of the nucleon momentum carried by
the quarks

R
dx xq.x/ is only about 50% (here q.x/ D fq.x/). This gives us an

idea that gluons must play a very important role in the structure of the nucleon by
carrying roughly half of its momentum. In fact, much of our knowledge about QCD
and the structure of the nucleon has been derived from DIS experiments. They told
us that there are two up and one down valence quarks with electric charge 2=3 and
�1=3 in the proton; the number of quarks is infinite because the integral over parton
densities

R
dx q.x/ does not seem to converge, so there is an infinite number of

quark-antiquark pairs living inside of the proton.

3.2.2.2 Parton Distribution Functions

Let us take a look at how these PDFs might look. For a point nucleon (i.e. if we
consider the nucleon as a single parton with no internal structure which carries all
momentum), F2 is a delta function at x D 1 (Fig. 3.4). If the nucleon is made up
of three quarks which equally share the momentum, then each quark carries 1=3 of
the momentum, and we will have a delta function at 1=3, as in Fig. 3.5. If the three
quarks are interacting, which means that they are exchanging some gluons, then they
can share momentum. So the PDF is going to be smeared around the peak of 1=3
(see Fig. 3.6). Finally, we should consider the case with sea quarks. Here, one quark
emits a gluon which turns into quark-antiquark pair, and then all valence quarks in
q Nq loop must have lower x than the original quark. Therefore, in Fig. 3.7 we should
see an enhancement at small x.

Fig. 3.4 PDF for a point
nucleon

F2(x)
x1

Fig. 3.5 PDF for a nucleon
with three quarks

F2(x)

x1/3
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Fig. 3.6 PDF for three
interacting quarks

F2(x)

x

Fig. 3.7 Enhancement at
small x for the nucleon with
sea quarks F2(x)

x

The proton contains two up and one down quarks which are termed “valence”
quarks: uv.x/, dv.x/. It is possible that a valence quark radiates a gluon which then
turns into a quark-antiquark pair which are termed “sea” quarks, and we are going
to call PDFs associated with us.x/, ds.x/, ss.x/. Then we can write the proton and
neutron structure functions as following (ignoring heavy quarks):

F
p
2 .x/ D x

�
4

9
Œup.x/C Nup.x/�C 1

9

�
dp.x/C Ndp.x/�C 1

3
Œsp.x/C Nsp.x/�

	
;

(3.31)

F n
2 .x/ D x

�
4

9
Œun.x/C Nun.x/�C 1

9

�
dn.x/C Ndn.x/�C 1

3
Œsn.x/C Nsn.x/�

	
;

(3.32)

where total PDF of any particular flavour in Eqs. (3.31), (3.32) is

q � qv C qs: (3.33)

Under isospin flip u $ d and p $ n, assuming charge symmetry means that the
distribution of the up quarks in the proton is the same as distribution of the down
quarks in the neutron:

u.x/ � up.x/ D dn.x/; (3.34)

and the distribution of the down quarks in the proton is the same as the distribution
of the up quarks in the neutron:

d.x/ � dp.x/ D un.x/: (3.35)

If we also assume that different flavours .u; d; s/ of the quarks occur with equal
probability in the sea, then we can write down this total contribution S :

S � us D Nus D ds D Nds D ss D Nss: (3.36)
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So we can now write the proton and neutron structure functions in terms of the
valence u in the proton and the valence d in the proton, and a sea quark contribution:

F
p
2 .x/ D x

�
1

9
Œ4uv.x/C dv.x/�C 4

3
S.x/

	
; (3.37)

F n
2 .x/ D x

�
1

9
Œ4dv.x/C uv.x/�C 4

3
S.x/

	
: (3.38)

We expect that at small x (x � 1) the sea quarks should dominate, so that

F n
2

F
p
2

! 1; (3.39)

while at large x (x ! 1) the valence quarks should dominate (and uv.x/ > dv.x/

since there are two up versus one down valence quarks in the proton), then

F n
2

F
p
2

! 1

4
: (3.40)

And this is exactly what is seen in DIS experiment results.
Recall the momentum sum rule:

X
i

Z 1

0

dx xf i .x/ D 1; (3.41)

but electron-proton DIS experiments find the light-quark contributions to be roughly

Z
dxxŒu.x/C Nu.x/� � 0:36; (3.42)

Z
dxxŒd.x/C Nd.x/� � 0:18: (3.43)

This tells us that almost half of the proton momentum is carried by electrically
neutral partons. These experiments were repeated by using neutrino scattering, and
they indicated that these neutral partons do not interact weakly (i.e. are not quarks),
therefore the missing momentum has to be carried by gluons. The need for inclusion
of gluons in the parton model is also evidenced by the scaling violations at finiteQ2

discussed in Sect. 3.2.2.
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3.2.3 Neutron Beta Decay

We all know that free neutrons are unstable: they are stable inside nuclei, but if a
neutron exists outside of the nucleus, then it has a lifetime of approximately 15min.
This is because it can decay to a proton by the weak interaction

n! pe� N�e ; (3.44)

emitting aW boson which in turn decays into an electron and electron antineutrino.
Neutron decay is the simplest way of studying the weak interaction. The decay

rate of the neutron is proportional to the matrix element of the weak V�A current:

hp.p0; s0/j.V� �A�/jn.p; s/i D (3.45)

Nup.p0; s0/
�
��f1.q

2/C i ���q
�

2M
f2.q

2/C q�

2M
f3.q

2/

�
�
���5g1.q

2/C i ���q
�

2M
�5g2.q

2/C q�

2M
�5g3.q

2/

�	
un.p; s/:

Because of the tiny mass difference between the proton and the neutron

Mn �Mp ' 1:3 MeV ; (3.46)

the momentum transfer here is so small that all the terms proportional to q may be
dropped, and we only need to consider to first order the contribution from the f1
and g1 terms. By convention, we call the value of f1 at zero momentum gV , and the
corresponding value of g1, gA:

gV D f1.0/; gA D g1.0/: (3.47)

According to the conserved vector current (CVC) hypothesis, which says that
the vector part of this weak V �A current is the same as the vector part of the
electromagnetic current, under isospin symmetry this f1.0/, or gV , will give us the
charge of the system, which is one .gV D 1/. There also exists the so-called Adler-
Weisberger relation which predicts gA D 1:26. So how do we extract gA from
experiment? The decay rate for a neutron at rest and with spin pointing in the sn
direction is given by

dR

dped˝ed˝N�
D G2

F jVudj2
.2�/5

Œ˛ C ˇve � vN� C �sn � ve C ısn � vN�� p2e .Emax � Ee/2:
(3.48)

Here ve and vN� are the velocities of the final electron and electron antineutrino,
respectively, GF is Fermi constant, and Vud is a CKM matrix element. E is the
energy of the electron, pe is the momentum of the electron, and Emax is the
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difference between the neutron and proton masses, which provides a bound on the
energy spectrum of the electron:

Emax DMn �Mp ' 1:3 MeV: (3.49)

So the decay rate is defined then in terms of the quantities ˛, ˇ, � and ı described
as functions of gV and gA:

˛ D g2V C 3g2A; ˇ D g2V � g2A;
� D 2.gAgV � g2A/; ı D 2.gAgV C g2V /; (3.50)

allowing us to extract gA from this experiment. We can see that even for an
unpolarised neutron (in this case the � and ı terms are zero, and we only have
the ˛ and ˇ terms which are expressed in terms of squares of gA and gV ), we
can define jgA=gV j through an accurate determination of the angular correlation
between the outgoing electron and electron antineutrino. To determine the sign of
gA, spin-dependent measurements are required; in other words, we want at least one
of the � or ı terms to be nonzero since they are proportional to a single power of gA.
Current best determination of jgA=gV j provided by Particle Data Group (PDG2012)
gives jgA=gV j D 1:2701.25/.

3.2.3.1 Axial Form Factor

Considering the general case of the matrix element of the weak V�A current, away
from q2 D 0, will give us access to the form factors as functions of q2. If we consider
only the axial-vector part of the weak current between the neutron and proton states
from Eq. (3.45), we find

hp.p0; s0/jA�.q/jn.p; s/i D Nup.p0; s0/
�
���5GA.q

2/C i����5 q�
2M

GT .q
2/

C �5 q
�

2M
GP .q

2/

�
un.p; s/: (3.51)

Similarly to Eq. (3.10) for electromagnetic form factors, this is written in terms of
Lorentz invariant form factors. The first term, which we call nowGA.q2/, is the axial
form factor, the third term, GP .q2/, is the induced pseudoscalar form factor, and
the second term, the tensor form factor GT , vanishes if charge symmetry assumed,
up D dn. The partially conserved axial current relation (PCAC) tells us that the
divergence of the matrix element of the axial-vector current is proportional to m2

�

which, as we go to chiral limit, should vanish:

@�A
� / m2

�

mq!0����! 0 ; (3.52)
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i.e. the axial current is only conserved in the chiral limit. This is, in general, not true
for Eq. (3.51). However if GP has a pion pole

GP .q
2/! 4MNf�g�NN.q

2/

�q2 Cm2
�

; (3.53)

and GA takes the following form in terms of g�NN and the pion decay constant f�

MNGA.q
2/ D f�g�NN.q

2/; (3.54)

then the matrix element in Eq. (3.51) satisfies the PCAC relation. Then at q2 D 0

we get the so-called Goldberger-Treiman relation

MNgA D f�g�NN : (3.55)

3.2.3.2 Axial Charge gA

As discussed above, the axial charge is defined as the value of the axial form factor
at q2 D 0, gA D GA.q

2 D 0/. This presents an ideal quantity for benchmark
lattice calculations of nucleon structure. The fact that it is defined at zero momentum
guarantees that calculations are statistically clean. This is also an isovector quantity
since this matrix element between the proton and neutron with a Nud current is related
under charge symmetry to the u� d proton matrix element

hpjNu���5d jni D hpjNu���5u � Nd���5d jpi; (3.56)

and therefore, disconnected contributions cancel. So in principle it should be
possible to perform precision lattice calculations of gA which can be compared to
the experimental value.

3.3 Determining Matrix Elements on the Lattice

Here we outline the procedure required for calculating matrix elements such as those
in Eqs. (3.51) and (3.10). We start with introducing lattice three-point functions
and the sequential-source technique used for calculating them. We then show how
to extract the relevant matrix elements from these three-point functions through
constructing ratios of lattice three- and two-point functions.
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3.3.1 Lattice Three-Point Functions

We start our discussion by introducing the lattice nucleon three-point function

G.t; 	 Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1ˇ˛ � (3.57)

� h˝jT f�˛.x2; t/O.x1; 	/ N�ˇ.0/gj˝i ;
which is also illustrated in Fig. 3.8, where a particle is created at t D 0 by
the creation operator N�ˇ.0/, interacts with the generic current O.x1; 	/ at some
Euclidean time 	 and is annihilated at some time t by the annihilation operator
�˛.x2; t/. In our case the creation (annihilation) operator has the quantum numbers
of the proton. A time-ordered product ensures that everything happens in correct
order. The ˇ˛ matrix is the spin-projection operator,˝ represents the vacuum state
and, finally, the Fourier transform projects the particle to a definite momentum state.
Inserting a complete set of states I D P

B.
0/;p.

0/;s.
0/ jB.0/; p.

0/; s.
0/ihB.0/; p.

0/; s.
0/j

before and after the current operator and exploiting the translational invariance
�.x; t/ D e OHte�i OP �x�.0/ei OP �xe� OHt , we find

G.t; 	 Ip; p0/ D
X
B;B0

X
s;s0

e�EB0 .p0/.t�	/e�EB.p/	ˇ˛ �
˝
˝ j�˛.0/jB 0; p0; s0˛ ˝B 0; p0; s0 jO.q/jB;p; s˛ ˝B;p; s ˇ̌ N�ˇ.0/ˇ̌˝˛ ;

(3.58)

where EB.p/ denotes the energy of the baryon B with momentum p. As the
Euclidean time evolves, 0 � 	 � t , excited states are exponentially suppressed
and the ground-state proton dominates

G.t; 	 Ip; p0/ D
X
s;s0

e�Ep0 .t�	/e�Ep	ˇ˛ �
˝
˝ j�˛.0/jN.p0; s0/

˛ ˝
N.p0; s0/ jO.q/jN.p; s/˛ hN.p; s/j N�ˇ.0/ j˝i ;

(3.59)

where we have simplified our notation andEp now denotes the energy of the proton
with momentum p D jpj.

Fig. 3.8 Quark-flow diagram
for a proton three-point
function described in
Eq. (3.57)



3 Hadron Structure on the Lattice 85

3.3.1.1 Three-Point Functions at the Quark Level

We now wish to derive a form for a lattice three-point function in terms of quark
propagators. We will start with the simple case of the pion for which we will use the
standard interpolating operator

�.x/ D Nd.x/�5u.x/; (3.60)

where Nd.x/ and u.x/ are the quark fields and �5 gives the correct quantum numbers
for a pseudoscalar meson. Inserting the local current operator,

O.x/ D Nq.x/ q.x/; (3.61)

where  stands for any combination of � -matrices and derivatives (e.g. �� for the
electromagnetic current), the three-point function of pion is then

G.t; 	 Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1

˝
˝
ˇ̌
T
˚� Nd.x2/�5u.x2/Nu.x1/ u.x1/Nu.0/�5d.0/


ˇ̌
˝
˛
;

(3.62)

where we are first considering the u-quark contribution to the full three-point
function. Writing the colour (Latin) and Dirac (Greek) indices explicitly,

G.t; 	 Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1 �
D
˝jT f� Ndaˇ .x2/�5ˇ�ua� .x2/Nub�.x1/�ıubı .x1/Nuc�.0/�5�˛d c˛ .0/gj˝

E
;

(3.63)

we now perform all possible Wick contractions,

G.t; 	 Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1�
˚
S ca
d˛ˇ.0; x2/�

5
ˇ�S

ab
u��.x2; x1/�ıS

bc
uı�.x1; 0/�

5
�˛

� S ca
d˛ˇ.0; x2/�

5
ˇ�S

ac
u��.x2; 0/�

5
�˛S

bb
uı�.x1; x1/�ı



;

(3.64)

where Sq stands for the quark propagator. Then we take the Dirac and colour traces
to obtain

G.t; 	 Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1

˚
TrŒSd .0; x2/�5Su.x2; x1/ Su.x1; 0/�5�

� TrŒSd .0; x2/�5Su.x2; 0/�5�TrŒSu.x1; x1/ �


;

(3.65)
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and using the �5-hermiticity, S�.x; 0/ D �5S.0; x/�5, we end up with

G.t; 	 Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1

˚
TrŒS�d .x2; 0/Su.x2; x1/ Su.x1; 0/�

� TrŒS�d .x2; 0/Su.x2; 0/�TrŒSu.x1; x1/ �


:

(3.66)

We can a similar result for the d -quark contribution Nd d , which, however, in the
isospin limit is identical to that for the u-quark. The first term of Eq. (3.66) stands
for the usual connected diagram whereas the Su.x1; x1/ in second term indicates a
quark loop and a disconnected diagram.

So in this case we have found that there are two dominant terms needed to
calculate the full pion three-point function; however, due to the number of quark
fields, it gets complicated when we consider the proton.

The interpolating operator of proton is

�˛.x/ D 
abc
�
uTa.x/C�5d

b.x/
�

uc˛.x/ ; (3.67)

leading to the three-point function for, e.g., the u-quark current insertion,

G .t; 	 Ip; p0/ D
X
x2;x1

e�ip0�.x2�x1/e�ip�x1 
abc
a
0b0c0�

D
˝
ˇ̌̌
T
n

uTa.x2/C�5d
b.x2/

�
uc˛.x2/Nu.x1/Ou.x1/Nuc0

.0/�
 Ndb0

.0/C�5 NuTa0

.0/
�oˇ̌ˇ˝E ;

(3.68)

where C is the charge-conjugation operator. After all possible connected Wick
contractions we can write this three-point function in terms of up and down pieces,

G .t; 	 Ip; p0/ D quC
u
 .t; 	 Ip; p0/C qdC d

 .t; 	 Ip; p0/; (3.69)

where for the electromagnetic current we have explicitly included the electric
charges of the up and down quarks .qu;d /, and C u

 .t; 	 Ip; p0/ and Cd
 .t; 	 Ip; p0/

are defined as

C u;d
 .t; 	 Ip; p0/ �

X
x1

e�iq�x1 � (3.70)

D
Tr
h
˙

u;d
 .0; 0Ix1; 	 Ip0; t/O.x1; 	/S.x1; 	 I 0/

iE
;
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where q D p0 � p is the momentum transfer. The ˙u;d
 term is the combination of

propagators shown in Fig. 3.9 and written as

˙u;d
 .0; 0Ix1; 	 Ip0; t/ D

X
x2

Su;d
 .x2; t I 0; 0Ip0/S.x2; t Ix1; 	/; (3.71)

where Su
 and Sd are

S
uIa0a
 .x2; t I 0; 0Ip0/ D e�ip0 �x2
abc
a

0b0c0�n QSd Ibb0

.x2; t I 0; 0/SuIcc0

.x2; t I 0; 0/

C TrD

h QSd Ibb0

.x2; t I 0; 0/SuIcc0

.x2; t I 0; 0/
i


C  SuIbb0

.x2; t I 0; 0/ QSd Icc0

.x2; t I 0; 0/
CTrD

h
 SuIbb0

.x2; t I 0; 0/
i QSd Icc0

.x2; t I 0; 0/
o
;

(3.72)

S
d Ia0a
 .x2; t I 0; 0Ip0/ D e�ip0 �x2
abc
a

0b0c0�n QSuIbb0

.x2; t I 0; 0/ Q QSuIcc0

.x2; t I 0; 0/

CTrD

h
 SuIbb0

.x2; t I 0; 0/
i QSuIcc0

.x2; t I 0; 0/
o
;

(3.73)

and we have defined QS � C�5S�5C . We also note that TrD indicates a trace of
Dirac indices, while the colour indices are still explicit.

Now that we have expressed the three-point function in terms of quark propaga-
tors, we can calculate it by computing and contracting the propagators. However,
because of the S.x2; t Ix1; 	/ propagator and the presence of sums over x1, x2 we
can not calculate the quantities given in Eq. (3.70) directly. The workaround is to use
the sequential-source technique in which we first compute the ordinary propagators
S.x; 0/ and then construct the sources SuIa0a

 or Sd Ia0a
 , as described in Eqs. (3.72)

G

t0
S

G

0 t
S

Fig. 3.9 Diagrammatic view of the ˙ term for up (left) and down (right) quark contributions.
The blue S combination corresponds to the Su;d

 .x2; t I 0; 0I p0/ piece and the black G stands for
S.x2; t I x1; 	/. Solid (dashed) lines indicate u.d/-quark propagators
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and (3.73). The sequential propagator˙u;d
 .0; 0Ix1; 	 Ip0; t/ is then computed via a

second inversion by solving the linear system of equations

X
x1

M.x2; x1/�5˙
�u;d
 .0; 0Ix1; 	 Ip0; t/ D �5S�u;d

 .x2; t I 0; 0Ip0/: (3.74)

Contracting the sequential propagator with the operator O.x1; 	/ and an ordinary
propagator from source to current S.x1; 0/, we can construct the three-point
function as in Eq. (3.70).

With this approach we have inverted the sequential propagator through the sink
by fixing the final-state particle and sink momentum. This allows us to investigate
the momentum dependence of the form factors for different insertion currents, since
the sum over x1 is performed last. Alternatively, we could have chosen to invert the
sequential source through the current, leaving the choice of final-state particle free;
however, we would need separate a inversion for each choice of q and operator.
The advantage of this method, however, is that the choice of quark sector, hadron
boost and polarisation are all free to be determined after the sequential propagator
has been calculated. Further information can be found in [142]. Choosing between
these two approaches depends on what we are interested in computing. Mapping
out the q2-dependence of various form factors for a single hadronic state would be
suited to choosing the “sequential source through the sink” method, as described
in Eqs. (3.70)–(3.74), while comparing results for a single operator for a number of
different hadronic states would be more suited to the “sequential source through the
current method”.

3.3.2 Extracting Matrix Elements

Recall the nucleon three-point function given in Eq. (3.57). Since we are interested
in determining the matrix element hN.p0; s0/ jO.q/jN.p; s/i, we should somehow
cancel the exponential time-dependent factors and wavefunction amplitudes, i.e.
h˝j�˛.0/jN.p0; s0/i and hN.p; s/j N�ˇ.0/j˝i, which are, in general, momentum
dependent. For this purpose we will use the nucleon two-point function,

G2.t;p/ D
X
s

e�Eptˇ˛ h˝ j�˛jN.p; s/i
˝
N.p; s/

ˇ̌ N�ˇ ˇ̌˝˛ ; (3.75)

and consider the combination of the nucleon three- and two-point functions

R.t; 	 Ip0;pIO/ D G .t; 	 Ip0;pIO/
G2.t;p0/

�
G2.	;p

0/G2.t;p0/G2.t � 	;p/
G2.	;p/G2.t;p/G2.t � 	;p0/

� 1
2

:

(3.76)
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With periodic or anti-periodic boundary conditions in time, the two-point function
in Eq. (3.75) can be written in terms of nucleon spinors

G2.t;p/ D
X
s

p
Zsnk.p/ NZsrc.p/

2Ep

Tr ŒNu.p; s/ u.p; s/�
h
e�Ept C e�E0

p.T�t /i

C v-spinor terms with opposite parity, (3.77)

where the Zsrc(snk) is the wavefunction overlap with the proton at the source (sink)
and T is the lattice time extent. Using the relation for spinors in Euclidean space

X
s

u.p; s/Nu.p; s/ D �i =p Cm ; (3.78)

together with the projection matrix 4 D .1C �4/=2, to maximise the overlap with
the positive-parity forward-propagating state we get

G2.t;p/ D
q
Zsnk.p/ NZsrc.p/

"�
Ep Cm
Ep

�
e�Ept C

 
E 0
p Cm0

E 0
p

!
e�E0

p.T�t /
#
:

(3.79)

Similarly, for the three-point function, when 0� 	 � t � 1
2
T , we get

G .t; 	 Ip0;pIO/ D
q
Zsnk.p0/ NZsrc.p/F.;J /e�Ep0 .t�	/e�Ep	 ; (3.80)

where

F.;J / D 1

4
Tr

��
�4 � i p0 � �

Ep0

C m

Ep0

�
J
�
�4 � i p � �

Ep
C m

Ep

��
: (3.81)

The nucleon matrix elements we are interested in will now have the form

hN.p0; s0/jO.q/jN.p; s/i D Nu.p0; s0/J u.p; s/; (3.82)

where we have labeled the combination of gamma matrices and Lorentz-invariant
form factors sandwiched between two nucleon spinors generically as J . For
example, for the electromagnetic current we have

J D ��F1.Q2/C i��� q�
2M

F2.Q
2/ : (3.83)
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3.3.2.1 Example 1: Form Factors

As an example, if we choose the unpolarised projection matrix 4, the electromag-
netic current as our operator, and p D p0 D 0, then the term proportional to F2.Q2/

in Eq. (3.83) vanishes and we have

hN.p0; s0/jJ�.0/jN.p; s/i D Nu.p0; s0/��u.p; s/F1.Q
2 D 0/ : (3.84)

Hence we are in a position to determine F1.Q2 D 0/.
First of all, we should remember that this matrix element is defined in Minkowski

space while we work in Euclidean space, so we need to Euclideanise it using rela-
tions for transforming Minkowski gamma matrices to Euclidean gamma matrices,
and we also need to transform our momenta:

�M0 D �E4 ; �Mi D �i�Ei ; pE4 D ipM0 � iE.p/; pEi D �pMi : (3.85)

After Euclideanisation we can see that the matrix element (3.10) can be written in
the form

hN.p0; s0/j Nq�E� qjN.p; s/i D Nu.p0; s0/�E� u.p; s/F1.Q
2/ (3.86)

CNu.p0; s0/
�E��q

E
�

2M
u.p; s/F2.Q

2/;

which looks very similar to Eq. (3.10), except for a factor of i in the second term.
Recalling that in our current example qE� D 0, we can rewrite this as

hN.p0; s0/j Nq�E� qjN.p; s/i D Nu.p0; s0/�E� u.p; s/F1.Q
2 D 0/ ; (3.87)

and Eq. (3.83) reduces to

J D ��F1.Q2 D 0/ ; (3.88)

which we can substitute into Eq. (3.81). If we insert the time component and the
spatial components of the vector of gamma matrices separately, we will get (after
taking the trace) the following:

F.4; �4/ D 1

2EpEp0

�
.Ep Cm/.Ep0 Cm/C p0 � p� ; (3.89)

F.4; �i / D �i
2EpEp0

�
.Ep Cm/p0 C .Ep0 Cm/p� : (3.90)
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If we now take the specific case relevant to our example where both source and sink
momenta are zero (p0 D p D 0), then we will get

F.4; �4/ D 2 F1.Q2 D 0/ ; (3.91)

while the spatial components vanish

F.4; �i / D 0 : (3.92)

Now we can go back to the ratio of three- and two-point functions (Eq. (3.76))
and, after working it through, we will find that it simply provides the factorr

Ep0Ep

.Ep0 Cm/.EpCm/ in terms of energies and mass, times the function F.;J .q//:

R.t; 	 Ip0;pIO/ D
s

Ep0Ep

.Ep0 Cm/.Ep Cm/F.;J .q//
�
0� 	 � t � 1

2
T

	
:

(3.93)

And if we look, again, at our very specific case:

4 D 1

2
.1C �4/; O D V4 � �4; p0 D p D 0; (3.94)

then the ratio in Eq. (3.93) will give us directly F1 at Q2 D 0:

R.t; 	 Ip0;pIO/ D F1.q2 D 0/: (3.95)

We can also choose certain combinations of parameters and kinematics which
provide access to the Sachs form factors,

R.t; 	 I 0;pI �4; 4/ D K
�
F1.q

2/� Ep �M
2M

F2.q
2/

�
D KGE.q2/; (3.96)

R.t; 	 I 0;pI �i ; 4/ D �iK
qi

Ep CM GE.q
2/; (3.97)

R.t; 	 I 0;pI �i ; j / D �iK
ijk
qk

Ep CM GM.q
2/; (3.98)

where K D p
.Ep CM/=.2Ep/ and j D i.1 C �4/�5�j =2. In Fig. 3.10 we

show some results from [143] for the ratio in Eq. (3.96) for several choices of
momentum transfer. As we can clearly see, the ratio decreases in size as we increase
the momentum transfer, indicating that the form factor GE.q2/ falls as a function
of q2.

More generally, we can consider all combinations that contribute at a fixed q2,
construct a set of simultaneous equations and solve for the two unknowns, F1.q2/
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Fig. 3.10 Ratio of three- and two-point functions from Eq. (3.96) from [143]
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Fig. 3.11 F
.u�d/
1 .q2/ for several values of 250 MeV < m� < 1:5 GeV from [144]

and F2.q2/. As an example, we show in Fig. 3.11 some lattice results for F1.q2/
from [144] for a range of pion masses 250 MeV < m� < 1:5 GeV compared to a
parameterisation of experimental data denoted by the shaded band [145]. As can be
seen, the lattice results lie above the experimental band, although this is now known
to be due to the large pion masses used in many lattice simulations [146].

3.3.2.2 Example 2: gA

In order to compute the nucleon axial charge, gA, we need access to the matrix
element given in Eq. (3.51) in the forward (q2 D 0) limit,

hpjNu���5d jni D Nu.p0; s0/���5u.p; s/gA : (3.99)



3 Hadron Structure on the Lattice 93

As we did in the previous section for the electromagnetic form factors, we wish to
isolate this matrix element from the lattice three-point function (Eq. (3.57)). In other
words, we wish to determine the matrix element Eq. (3.82) for the particular case
where the operator O is the axial current and the Dirac structure on the right-hand
side of Eq. (3.99) shows that in this particular case J in Eq. (3.82) is simply

J D ���5 gA : (3.100)

We can now substitute this into F.;J / defined in Eq. (3.81). For unpolarised
gamma nucleons, i.e.  D unpol, we find

F.unpol; �4�5/ D 0; F.unpol; �i �5/ D 0: (3.101)

Obviously, we need a different choice of projection matrix. In order to polarise our
nucleon states so that they have definite spin in a particular direction s, we will need
to use the spin-projectors

pol D 1

2
.1C �4/i�5� � s : (3.102)

Re-evaluating F.;J / in Eq. (3.81) with this choice, we find for time and spatial
components of the axial current

F.pol; �4�5/ D � 1

2EpEp0

�
.Ep Cm/p0 � sC .Ep0 Cm/p � s� ; (3.103)

F.pol; �i�5/ D i

2EpEp0

�
.Ep Cm/.Ep0 Cm/sC (3.104)

.p0 � s/pC .p � s/p0 � .p0 � p/s�
i
;

which now depend not only on the energy and momenta of the nucleon states, but
also on the direction of its spin.

In particular, we notice that for the spatial component (Eq. (3.104)) we have
terms that are proportional directly to p and p0, but there is also a term .Ep C
m/.Ep0 C m/s which is not proportional to momentum but proportional to the
nucleon’s energy and the direction of its spin. So even in the case when both p

and p0 are zero we have a nonzero contribution

F.pol; �i �5/ D 2isi ; (3.105)

and gA can be determined by choosing the direction of axial current to be the same
as the direction of nucleon polarisation. For example, if we choose the polarisation
of the nucleon to be in the z-direction, then we need to compute lattice three-point
functions with

pol D 3 D 1

2
.1C �4/i�5�3; O D Nq�3�5q : (3.106)
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Fig. 3.12 Summary of lattice calculations of gA by H.-W. Lin [147]

With these particular choice of kinematics (p D p0 D 0), the ratio defined in
Eq. (3.76) simplifies to provide a direct determination of gA

R.t; 	 I 0; 0I �3�5; 3/ D G3.t; 	 I 0; 0I �3�5/
G2.t; 0/

D igA ; (3.107)

Due to its status as a benchmark calculation for nucleon structure simulations,
gA has been heavily investigated on the lattice. In Fig. 3.12 we show a summary
of calculations by several lattice collaborations compiled by H.-W. Lin [147] in
2012. It is clear that there is broad agreement between the many different groups,
with the bulk of the results lying about 10 % below the experimental value. This
discrepancy has attracted much attention recently with several arguments such as
excited state contamination [148] and finite volumes effects [149] being put forward
as explanations. We will not go into a discussion regarding these issues here.

3.3.3 Moments of Structure Functions

In order to proceed towards lattice calculations of matrix elements relevant to
structure functions, we need to consider what is called the moments of the structure
functions. Moments are integrals with respect to the momentum fraction x, weighted
with some power of x, and as we increase this power, this increases the moment, e.g.
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Z 1

0

dxxn�2F2.x;Q2/ D ES
F2Ivn.M

2=Q2; gS/vSn .M/CO.1=Q2/: (3.108)

These moments can be separated at some renormalisation scale M in a scheme S
into a perturbative part, which is called a Wilson coefficient (E) and calculable in
perturbation theory, and a nonperturbative part which we label vn, where n is the
power of the moment. These vn come from forward proton matrix elements of local
operators, and hence are amenable to lattice calculations

D
N.p; s0/

ˇ̌̌
Of�1:::�ng
q

ˇ̌̌
N.p; s/

E
D 2Nu.p; s0/v.q/n pf�1:::�ngu.p; s/; (3.109)

where f: : :g indicates symmetrisation of indices and the subtraction of traces.
Expressions similar to Eq. (3.108) exist for moments of other structure func-

tions:

• unpolarised: F1/F2/F3 $ vn,
• polarised: g1 $ an, g2 $ an � dn,
• and transversity: h1 $ hn.

As our first example, we consider an operatorO which contains a gamma matrix,
similar to the electromagnetic current, and one or more covariant derivatives, where
the number of derivatives depends on moment we are looking at

Of�1:::�ng
q D .i/n�1 Nq��1 !D �2 : : :

 !
D �nq; (3.110)

 !
D D 1

2

�!
D � �D

�
: (3.111)

On the lattice the covariant derivatives take their usual definitions by a finite
difference

.
�!
D�  /.x/ D 1

2

h
U�.x/ .x C a O�/� U �

�.x � a O�/ .x � a O�/
i
; (3.112)

. 
 �
D�/.x/ D 1

2

h
 .x C a O�/U �

�.x/ �  .x � a O�/U�.x � a O�/
i
: (3.113)

The terms O.1=Q2/ in Eq. (3.108) are higher-twist contributions, which are
suppressed at large Q2. So our operators O here are all of twist two and provide
the dominant contribution in the deep-inelastic (large-Q2) limit.

Similarly, for the moments of polarised structure functions we consider a
polarised nucleon state and the matrix element is now dependent on the orientation
of the nucleon spin, s�,

D
N.p; s0/

ˇ̌
ˇO5If�1:::�ng

q

ˇ̌
ˇN.p; s/E D Nu.p; s0/

a
.q/
n�1

nC 1s
f�1p�2 : : : p�ngu.p; s/ :

(3.114)
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Here the operator contains a �5, so this is the axial version of Eq. (3.110)

O5If�1:::�ng
q D .i/n�1 Nq��1�5 !D �2 : : :

 !
D �nq: (3.115)

3.3.3.1 Moments of PDFs

The interpretation of vn in terms of moments of PDFs q.x/ is

v.q/n D
Z 1

0

dxxn�1 .q.x/C .�1/n Nq.x// D hxn�1iq ; (3.116)

where q.x/ ( Nq.x/) is the probability to find a quark (antiquark) with momentum
fraction x. Similarly, in the polarised case we have an which are simply the moments
of polarised PDFs:

a.q/n D 2
Z 1

0

dx xn .�q.x/C .�1/n� Nq.x// D 2hxni�q : (3.117)

�q.x/ here are written as

�q.x/ D qC.x/ � q�.x/; (3.118)

where qC.x/ (q�.x/) is the “probability” of finding a quark with momentum
fraction x and the direction of the helicity equal (opposite) to that of the proton.
In particular,

1

2
a
.q/
0 D h1i�q D �q (3.119)

is the fraction of the nucleon spin carried by quarks of flavour q. Also, the axial
charge gA is just

gA D �u ��d: (3.120)

3.3.3.2 Operators

As we have seen, on the lattice we need to consider twist-2 operators. We start their
definitions by first noting that by changing to Euclidean space from Minkowski
space we replace the Lorentz group by the orthogonal group O.4/. We also work
in discrete space-time which reduces this to the hypercubic group H.4/ 	 O.4/,
and since H.4/ is finite, mixings are possible [150]. In order to reduce operator
mixing, it is useful to use certain operator combinations which reside in certain
irreducible representations of H.4/. For example, if we look at v2 there are two
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different irreducible representations we can form that have different combinations
of indices:

Ov2a D Of14g; (3.121)

Ov2b D Of44g � 1
3


Of11g COf22g COf33g

�
I (3.122)

the first index here is the gamma matrix, and the second index is the derivative.
Since v2a and v2b are different representations of the same continuum operator, they
should agree in the continuum limit. Similarly,

Ov3 D Of114g � 1
2


Of224g COf334g

�
; (3.123)

Ov4 D Of1144g COf2233g �Of1133g �Of2244g ; (3.124)

provide access to higher moments. For more details on operator construction, see
[150].

3.3.3.3 Extracting Moments

Now, we want to extract these moments from calculations of lattice three-point
functions (Eq. (3.57)) using the methods outlined in Sect. 3.3.2. Let us take the v2a
operator as an example. In Minkowski space this operator takes the indices f01g

OM
v2a
D OM

f01g D
1

2
Nq

�M0
 !
D 1 C �M1

 !
D 0

�
q; (3.125)

and the matrix element from Eq. (3.82) can be written then as

i

4

�
N.p; s0/

ˇ̌
ˇ̌ Nq
�
�M0
 !
D 1 C �M1

 !
D 0

�
q

ˇ̌
ˇ̌N.p; s/

�

D hxi.q/ 1
2
Nu.p; s0/

�
�M0 p1 C �M1 p0

�
u.p; s/ ;

where we have used the more common notation for v.q/2 D hxi.q/, denoting the
fraction of the nucleon’s momentum carried by the quarks with flavour q. After
Euclideanisation of this operator,

�M0 D �E4 ; �Mi D �i�Ei ; pE4 D ipM0 � iE.p/; pEi D �pMi ; (3.126)

D4 D �iD.M/0; Di D �D.M/i ; (3.127)
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we can rewrite it as

i

4

�
N.p; s0/

ˇ̌̌
ˇ Nq
�
�E0
 !
D 1 C �E1

 !
D 4

�
q

ˇ̌̌
ˇN.p; s/

�

D hxi.q/ 1
2
Nu.p; s0/

���E4 p1 � �E1 EN .p/� u.p; s/ : (3.128)

Now if we use the standard spin-projector for an unpolarised nucleon, unpol D
.1C �4/=2, and

J D 1

2
.��4p1 � i�1EN .p// hxi.q/ ; (3.129)

in Eq. (3.81), we find that the ratio of three- and two-point functions becomes

R.t; 	 Ip;pIOv2a ; unpol/ D
Gunpol.t; 	 Ip;pIOv2a /

G2.t;p/
D ip1hxi.q/ : (3.130)

Following a similar process for v2b leads to

R.t; 	 Ip;pIOv2b / D �
E2

p C 1
3
p2

Ep

hxi.q/ : (3.131)

So we can see that in order to determine hxi using the v2a operator we have to work
with nonzero momentum, while in case of v2b we can work with zero momentum.

In Fig. 3.13 we present an example of lattice results for these ratios from the
QCDSF collaboration [151]. Here we see excellent agreement for the two different
representations v2a and v2b of the same continuum operator (here we are considering
the up-quark contribution), even though we look at finite lattice spacing, at different
choices of proton momentum.

3.3.3.4 Operator Renormalisation

Let us talk now briefly about operator renormalisation, which deserves its own set
of lectures (see, for example, [152]); we will consider here just the basic ideas
of renormalisation. The lattice itself is a regularisation scheme, and the matrix
elements that we measure using lattice operators will be in the lattice scheme; they
are so-called bare operators Obare. In order to compare a lattice calculation of an
observable to that in the continuum, i.e. from experiment or phenomenology, we
need to switch to a continuum regularisation scheme, e.g. MS. This is done by
applying some renormalisation constant

OS.M/ D ZS
O.M/Obare (3.132)
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Fig. 3.13 Comparison of the ratios for v2a in Eq. (3.130) and v2b in Eq. (3.131) for a u-quark in
the proton for different choices of momentum. Here the proton source and sink are placed at t D 0

and t D 17, respectively

(renormalise bare lattice operators in scheme S at scale M ). We have mentioned
mixing earlier, so if we have more operators with the same quantum numbers, but
same or lower dimension, then we need to include mixings between these operators,
i.e. we should actually include the sum of all of the contributions from the different
lattice operators to get the result for the continuum operator:

OS
i .M / D

X
j

ZS
OiOj

.M; a/Oj .a/: (3.133)

This procedure could in principle be done with lattice perturbation theory [12],
however this is well known to be poorly convergent. We are then forced to revert
to a nonperturbative method. The two commonly used methods are the Schrödinger
functional [153] and the Rome-Southampton method [154].

For recent work computing these renormalisation constants for many lattice
operators, see e.g. [155], and for a recent review of nonperturbative renormalisation,
see [156].

3.3.4 Generalised Parton Distributions

We have seen in the previous section how parton distribution functions provide a
description of the longitudinal momentum distributions of quarks and gluons in
the nucleon. Although less well-understood, there is increasing interest in gaining
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information on the transverse structure and angular-momentum distribution of
partons within the nucleon. Generalised parton distributions (GPDs) [157–159] have
opened new ways of studying the complex interplay of longitudinal momentum
and transverse coordinate space [160, 161], as well as spin and orbital-angular-
momentum degrees of freedom in the nucleon [162]. A full mapping of the
parameter space spanned by GPDs is an extremely extensive task, which most
probably needs support from nonperturbative techniques like lattice simulations.
Given this interest, there has been a large amount of activity within the lattice
community in the area of GPDs, and so we will devote some time here to
summarising some of the important aspects relevant for lattice simulations.

3.3.4.1 Definition

The generalised parton distributions of quarks are defined at leading twist through
the off-forward matrix elements of the light-cone operators

Z
d�

4�
ei�x

˝
P 0 ˇ̌ .�n�=2/ �� .n�=2/ˇ̌P ˛ D
U .P 0/

�
��H.x; �; t/C i�����

2m
E.x; �; t/

�
U.P / ;

Z
d�

4�
ei�x

˝
P 0 ˇ̌ .�n�=2/�5�� .n�=2/ˇ̌P ˛ D
U .P 0/

�
�5�

� QH.x; �; t/C i�5�
�

2m
QE.x; �; t/

�
U.P / ; (3.134)

for the helicity-independent and helicity-dependent distributions, respectively.
We note that the expressions in Eq. (3.134) are only valid in the light-cone
gauge where n � A D 0, otherwise we would need to include a gauge link
exp .�ig

R �=2
��=2 d˛ n � A.˛n// between the two quark fields to ensure gauge

invariance.
Figure 3.14 shows the electron-proton scattering process relevant for GPDs. Here

the proton stays intact as we had earlier for the determination of form factors, but
the probe has enough resolution to identify a single quark, as was the case for deep-
inelastic scattering. This process is known as deeply virtual Compton scattering
(DVCS), and the final states to be detected here are the proton together with the
scattered electron and a photon.

It is common to denote the momentum transfer (squared) in the context of GPDs
by� D P 0 �P (t D �2). Using the light-cone vector n, we define the longitudinal
momentum transfer by � D �n ��=2. The proper definition of the twist-2 tensor or
quark helicity-flip GPDsHT , ET , QHT and QET can be found in [163]. GPDs provide
a solid framework in QCD to relate many different aspects of hadron physics, some
of which we have already discussed in earlier sections
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Fig. 3.14 Graphical representation of GPDs as part of a scattering amplitude

• The forward limit � ! 0 of certain GPDs reproduces the well known parton
distributions, that is H.x; � D 0; t D 0/ D q.x/ D f1.x/, QH.x; 0; 0/ D
�q.x/ D g1.x/ and HT .x; 0; 0/ D ıq.x/ D h1.x/.

• The integral over the longitudinal momentum fraction
R

dx of the GPDs gives
the Dirac, Pauli, axial, pseudo-scalar, tensor etc. form factors,

R
dxH.x; �; t/ D

F1.t/,
R

dxE D F2.t/,
R

dx QH D gA.t/,
R

dx QE D gP .t/,
R

dxHT D gT .t/ etc.
• The Fourier transforms .2�/�2

R
d�?e�ib?��? of the GPDs H , QH and HT at

� D 0 are coordinate-space probability densities in the impact parameter b?
[164].

• The forward limit of the x-moment of the GPD E ,
R

dx x E.x; 0; 0/ D B20.0/,
allows for the determination of the quark orbital-angular-momentum contribution
to the nucleon spin, Lq D 1=2.hxi C B20 � �q/, where hxi is the quark
momentum fraction [162].

For more information on GPDs, see [165] for a review.

3.3.4.2 Matrix Elements and Moments of GPDs

For a lattice calculation of GPDs, we proceed in a similar way to our earlier
discussion of structure functions by working in Mellin space to relate matrix
elements of local operators to Mellin moments of the GPDs. But while for the
moments of PDFs we considered forward (t D 0) matrix elements of the twist-2
operators defined in Eqs. (3.110) and (3.115), here we will use non-forward matrix
elements of these same twist-2 operators. These matrix elements will specify the
.n � 1/th moments of the spin-averaged and spin-dependent generalised parton
distributions, respectively. In particular, for the unpolarised GPDs, we have

Z 1

�1
dxxn�1 Hq.x; �; t/ D Hq

n .�; t/ ;

Z 1

�1
dx xn�1 Eq.x; �; t/ D Eq

n.�; t/ ; (3.135)
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where [162]

Hq
n .�; t/ D

b n�1
2 cX

iD0
A
q
n;2i .t/.�2�/2i C Cq

n .t/.�2�/njn even ;

Eq
n.�; t/ D

b n�1
2 cX

iD0
B
q
n;2i .t/.�2�/2i � Cq

n .t/.�2�/njn even ; (3.136)

and the generalised form factors Aqn;2i .t/, B
q
n;2i .t/ and Cq

n .t/ for the lowest three
moments are extracted from the nucleon matrix elements [162]

hP 0jO�1
q jP i D Aq10.t/ Nu .P 0/��1u.P /C Bq

10.t/ Nu.P 0/
i��1���

2m
u.P / ; (3.137)

hP 0jOf�1�2g
q jP i D Aq20.t/ Nu .P 0/� f�1u.P /P �2g (3.138)

C Bq
20.t/ Nu.P 0/

i�f�1���

2m
u.P /P

�2g C C
q
2 .t/

1

m
Nu.P 0/u.P /�f�1��2g :

Note that the momentum transfer is given by � D P 0 � P with t D �2, while � D
�n ��=2 denotes the longitudinal momentum transfer, and P D .P 0CP/=2 is the
average nucleon momentum. We can construct an overdetermined set of equations
to solve Eqs. (3.137), (3.138) for the generalised form factors, Aqn;2i .t/, B

q
n;2i .t/ and

C
q
n .t/. This technique is described in detail in [166].

For the lowest moment, A10 and B10 are just the Dirac and Pauli form factors F1
and F2, respectively:

Z 1

�1
dxHq.x; �; t/ D Aq10.t/ D F1.t/ ; (3.139)

Z 1

�1
dxEq.x; �; t/ D Bq

10.t/ D F2.t/ ; (3.140)

while QA10 and QB10 are the usual axial-vector and pseudoscalar form factors,
respectively

Z 1

�1
dx QHq.x; �; t/ D QAq10.t/ D gA.t/ ; (3.141)

Z 1

�1
dx QEq.x; �; t/ D QBq

10.t/ D gP .t/ : (3.142)
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Similarly, the first moments of H;E; QH; QE are explicitly

Z 1

�1
dx x Hq.x; �; t/ D Aq20.t/C �2C q

2 .t/ ; (3.143)

Z 1

�1
dx x QHq.x; �; t/ D QAq20.t/ ; (3.144)

Z 1

�1
dxx Eq.x; �; t/ D Bq

20.t/ � �2C q
2 .t/ ; (3.145)

Z 1

�1
dxx QEq.x; �; t/ D QBq

20.t/ : (3.146)

Note that there are no C form factors for the polarised moments.
We also observe that in the forward limit (t D � D 0) the moments ofHq reduce

to the moments of the unpolarised parton distribution An0.0/ D hxn�1i.

3.3.4.3 Transverse Densities

In the same way as we discussed in Sect. 3.2.1.3 for obtaining charge and mag-
netisation densities through two-dimensional Fourier transforms of electromagnetic
form factors, Burkardt [161] has shown that generalised parton distributions gain
a physical interpretation when Fourier transformed to impact parameter space at
longitudinal momentum transfer � D 0. For example,

q.x;b?/ D
Z
d2�?
.2�/2

e�ib?��?H.x; 0;��2?/ ; (3.147)

(and similarly for the polarised �q.x;b?/) where q.x;b?/ is the probability
density for a quark with longitudinal momentum fraction x and at transverse
position (or impact parameter) b?.

Burkardt [161] also argued thatH.x; 0;��2?/ becomes�2?-independent as x !
1 since, physically, we expect the transverse size of the nucleon to decrease as x
increases, i.e. limx!1 q.x;b?/ / ı2.b?/. As a result, we expect the slopes of the
moments of H.x; 0;��2?/ in �2? to decrease as we proceed to higher moments.
This is also true for the polarised moments of QH.x; 0;��2?/, so from Eq. (3.136)
with � D 0 we expect that the slopes of the generalised form factors An0.t/ and
QAn0.t/ should decrease with increasing n. This was clearly seen in several lattice

simulations, e.g. [167, 168].
This idea was extended further to demonstrate how to use the first two moments

of proton [169] and pion [170] GPDs to gain insights into the transverse spin
distribution of hadrons. These results provided fascinating insights in to the complex
interplay between hadron and quark spin orientation and the transverse distribution
of quarks inside a hadron.
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3.3.4.4 Nucleon Spin

As we have discussed earlier, it has been long known from DIS experiments that
only about 30 % of the proton’s spin is generated from the intrinsic spin of the
quarks. This presents a puzzle as to how the remaining 70 % is generated through
quark orbital angular momentum and by gluons.

Ji has provided a way forward by showing that the total quark and gluon angular
momenta can be related to the second .n D 2/ moments of the GPDs H and E
[162]

Jq;g D 1

2
.A

q;g
20 .0/C Bq;g

20 / ; (3.148)

where A20.0/ and B20.0/ are the generalised form factors from Eq. (3.138) at zero
momentum transfer (t D 0). We now have Ji’s spin sum rule

1

2
D
X
q

Jq C Jg : (3.149)

The matrix elements in Eq. (3.138) can be computed on the lattice, and when
combined with the further decomposition

Jq D 1

2
�q C Lq ; (3.150)

together with a lattice determination of the quark spin fractions �q from
Sect. 3.3.2.2, we are able to not only provide a determination for the total amount
of the proton’s spin provided by the quarks, but also decompose this into quark spin
and orbital angular momentum contributions.

As an example, we show in Fig. 3.15 results from QCDSF [171] (left) and LHPC
[172] (right) for the total quark angular momentum contribution to the proton’s
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Fig. 3.15 Total angular momentum contribution of the quarks to the spin of the proton. Results
are from QCDSF [171] (left) and LHPC [172] (right)



3 Hadron Structure on the Lattice 105

spin as a function of m2
� and its decomposition into helicity and orbital angular

momentum contributions.

3.4 Summary

In these notes, we have studied various aspects of hadron structure, focusing on the
nucleon, and how they can be studied on the lattice. We started with a discussion of
elastic electron-proton scattering and how this leads to the idea of electromagnetic
form factors and phenomenological implications for the distribution of charge
(quarks) inside the nucleon.

By introducing the idea of deep-inelastic scattering (DIS), we motivated the
idea of parton distribution functions (PDFs) and how this leads to description of
distribution of momentum. These two ideas were combined into a general picture
of the structure of the nucleon through the introduction of generalised parton
distributions (GPDs). From these generalised functions, we saw how we can gain
insights into transverse densities and decomposition of the spin of the nucleon into
its quark and gluon constituents.

From the lattice side, we have learnt how we can determine the nonperturbative
matrix elements relevant for these phenomenological quantities on the lattice.
To do this, we introduced lattice three-point functions and showed how we can
extract these matrix elements via ratios of three-point to two-point functions. We
demonstrated the use of these lattice methods by providing some typical examples
of recent lattice results of phenomenologically interesting quantities, such as the
electromagnetic form factors F1 and F2, the average momentum fraction hxi, the
axial coupling constant gA, and moments of generalised parton distributions.
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