Chapter 2
Lattice Methods for Hadron Spectroscopy

Sinéad M. Ryan

Abstract Lattice hadron spectroscopy is crucial to inform and direct a new
generation of experiments. Useful calculations require control of both statistical
and systematic uncertainties. In these lectures selected methods for lattice hadron
spectroscopy are discussed in detail. The lectures aim to describe all aspects of
a calculation from quark propagation to fitting and interpreting data. After some
motivation for lattice spectroscopy, the path integral approach and construction of
correlation functions are discussed. There are detailed discussions of techniques
for quark propagators, including new developments in calculations of all-to-all
propagators. Lattice and continuum symmetries are contrasted and techniques for
spin identification in lattice calculations are discussed in some detail. Design
and construction of optimal operators as well as fitting and systematic errors
are addressed. Finally, open problems and challenges are described focusing on
resonances and scattering states.

2.1 Introduction

The nonperturbative spectrum of mesons and baryons built from light and heavy
quarks provides a fascinating arena in which to study the strong interaction. Indeed
many of the most recently discovered hadrons have unexpected properties and their
discovery has reignited theoretical and phenomenological interest in spectroscopy.
Within the Standard Model (SM), to separate electroweak physics from strong-
interaction effects we must first understand the hadon spectrum. Meanwhile beyond
the SM, models of electroweak symmetry breaking, such as technicolour, may
require nonperturbative techniques at the TeV scale which are similar to the
techniques developed for spectroscopy at GeV scales. To understand therefore the
new puzzling states which have been observed and to probe the physics at LHC
energies better techniques for spectroscopy will be crucial and will help us to
understand the nature of masses and transitions.
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While the quark model has provided a useful framework in which to understand
the structure of mesons and baryons it is limited to just a subset of the states
which QCD in principle allows. Lattice QCD offers the prospect of nonperturbative,
systematically-improvable model-independent calculations of hadron masses and
mixing (as well of course as a wealth of other properties of QCD). In these lectures
we will review some approaches and discuss new methods to address the significant
challenges which remain in the era of dynamical calculations at realistic quark
masses.

2.1.1 Notation and Basics

The objects of interest are formed from constituent quarks and antiquarks to make
bound states of mesons and baryons as well as molecular and multiquark states,
hybrid states and glueballs. In QCD the fundamental constituents are the quarks (in
six flavours) and gluons. The fields of the lagrangian are combined in colourless
combinations forming bound states.

The quark model is a useful classification of hadrons in terms of their valence
quarks—the quarks (g) and antiquarks (g) that give the quantum numbers of the
hadrons. States in the continuum are classified by the quantum numbers: J, the total
angular momentum; P, the parity and C, charge conjugation. Recall that |L — S| <
J < |L + S| and in the quark model naming scheme, n>5*! L, the values of L are
L =1{0,1,...} and S = {0, 1}. The parity is defined by P = (—1)**1 and charge
conjugation is C = (—1)**5), The latter is a good quantum number for ¢§ states
with the same quark and antiquark flavour e.g. charmonium but not for example for
heavy-light mesons, D), B(y), nor for baryons.

2.1.1.1 Mesons

Mesonic states are composed of two spin-half fermions, and described by 25! L
in quark model notation with S = 0 for antiparallel quark spins and S = 1 when
the quark spins are parallel.

States in the quark model follow a “natural spin-parity” series with P = (—1)’
and so have S = 1 and thus CP = +1. With these conditions, the allowed states
have JP¢ = 0=+, 0%+ 17—, 17—,27—,2F,.... However, states with P = (—1)”’
but CP = —1 are forbidden in a gg model of mesons, meaning that the states
JPC = 0,07, 17+,2%=,37F (even)™™, (odd)~ T, ... which are allowed by
QCD cannot be accommodated in a simple quark model picture and must therefore
be more than a simple bound state of a quark and antiquark. These are the “exotic”
states of QCD.
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2.1.1.2 Baryons

In this case there are three quarks in colourless combination (with baryon number
B = 1), J is half-integer and in particular C is not a good quantum number so
that states are classified by J . The spin-statistics theorem tells us that a baryon
wavefunction must be antisymmetric under the exchange of any two quarks. Since
all hadrons are colour neutral, the combinations of colour indices of the three quarks
must be antisymmetric and the remaining labels: flavour, spin and spatial structure
must be in totally symmetric combinations,

|qqq) 4 = |colour) 4 ® |space, spin, flavour)g. 2.1
The possible states are then

[Ispace)s ® |spin)4 ® |flavour) 4] ¢

2.2
[Ispace)s ® |spin)s ® |flavour)s] (2.2)

lqqq) 4 = [colour) 4 ®

and a linear combination

|qqq) 4 = a|colour) 4 ® [|space)s & |spin)4 ® |flavour) 4] ¢
+B|colour) 4 ® [|space)s ® |spin)s ® |flavour)s]s .

with @>+ 2 = 1. An outstanding question in baryon spectroscopy is that of missing
states. For three quarks (&, d, s) there is an (approximate) SU(3) flavour symmetry
and a decomposition in flavour given by

33®3=10s®8y B8y D 14, (2.3)

where A is antisymmetric, S is symmetric and M is mixed. The decuplet is
symmetric in flavour and the two octets have a mixed symmetry and since they are
related by a unitary transformation describe the same states. This analysis predicts
many more states than observed by experiments, a phenomenon known as the
missing resonance problem.

2.1.1.3 Gluonic Excitations: Hybrids and Glueballs

In addition to the mesons and baryons discussed above in terms of quark degrees
of freedom, QCD allows for a richer spectrum of states when we take into account
the gluonic degrees of freedom. We can formulate color-neutral states of pure glue,
called glueballs and states in which excitations of the gluonic field in a hadron form
so-called hybrids.
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Theoretical discussions of glueballs focus on states made from two or three
gluons and as for the conventional mesons and baryons these states are color neutral
and have integer angular momentum. The two-gluon states will have J = 0 (scalar
or pseudo-scalar) or J = 2 (tensor). Three-gluon states can have J = 1 (vector) or
J =3.

Glueballs will mix with ordinary mesons and are therefore difficult to identify
unambiguously in experiments. There is a considerable history of lattice calcula-
tions of glueballs. A pioneering quenched calculation mapped the spectrum of states
in great detail [77]. However, unquenched calculations must also take into account
the allowed mixing with ordinary mesons and are consequently more technically
challenging. See for example [78] and references therein.

2.1.2 Current and Future Experiments

Before we delve into the details of lattice hadron spectrum calculations it is
worthwhile to review briefly some of the experimental activity underway. There
is significant new effort being devoted to understanding the light and charm spectra
and to answering the questions:

1. Are there resonances that do not fit the quark model?
2. Are there gluonic excitations in these spectra?
3. What structure does confinement lead to?

2.1.2.1 Current Status

Since the early 2000s there has been a renaissance in charmonium spectroscopy.
The unexpected discovery of new narrow structures above the open charm threshold
by Belle and Babar led to substantial renewed interest in what was believed to
be a well-understood sector. There has been much speculation about the nature
of the so-called “X,Y,Z” states including possible molecular and hybrid states.
Intriguingly the Z*(4430) is a charged state and so cannot be a simple c¢¢ meson.
However, very little is definitively known and as yet no clear picture has emerged.
BESIII continues to take data, with an aim to accumulate 10% to 10° J /¥ and ¥’
decays. These states decay primarily by cc¢ annhilation and hadronisation to light
mesons. The experiment has reported new states including the X(1835), X(2120)
and X (2370) [79]. However, no quantum number assignments have been made yet
and both independent confirmation and measurement of the quantum numbers is
essential.
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2.1.2.2 Planned Experiments

The GlueX experiment at the Hall D facility at JLab plans to have first physics
results in 2015. The primary goal is the search for and study of gluonic excitations in
the meson spectrum, produced in yp collisions. Photoproduction of exotic hybrids
is expected to be particularly effective, while also allowing an extensive study of
the conventional spectrum. As well as discovery, GlueX should in principle be able
to confirm the existence of new states seen at BESIII, through a complementary
production mode and in addition measure or confirm the measurement of quantum
numbers. Using their proposed kaon identification system GlueX will additionally
be able to study baryons, including excited = baryons.

The PANDA experiment at the Facility for Antiproton and Ion Research (FAIR)
which is under construction at GSI in Darmstadt will collide antiprotons with a fixed
target. The hadron spectroscopy program at PANDA includes a search for gluonic
excitations: glueballs and hybrids and charmonium spectroscopy: in particular of
states above threshold. The goal is to find the missing D and F wave states
in charmonium and to understand the nature of the X, Y, Z states. PANDA will
also study the D meson spectrum, again to address the question of unexplained
states which do not fit into the quark model picture for heavy-light systems. A
comprehensive programme of baryon spectroscopy is also planned—in particular
for strange and charmed baryons.

In principle, lattice QCD can provide a complementary approach as well
discrimating between models and providing guidance for experimental searches to
address these questions by identifying properties of states in the continuum limit
of the theory and by going beyond precision ground state spectroscopy to compute
scattering and resonance widths. To achieve this we need new tools: techniques
for statistical precision, even at high spin; methods for operator construction and
spin identification on the lattice; new methods for resonance and isoscalar physics;
control of the relevant extrapolations (m,; — Mppysical, V' — 00,a — 0). A
discussion of recent progress to address some of these issues will be the main
topic of these lectures. The topics I cover are not exhaustive but will I hope give
a flavour of the progress being made, what you might expect to see in the near
future and how to judge the relative merits of such calculations. There are many
excellent textbooks, reviews and lecture notes available including this not exhaustive
list [3,5,6,21,80-86].

2.1.3 Lattice Hadron Spectroscopy

An important goal for lattice calculations is a determination of the low-energy
spectrum of quarks and gluons from the QCD Lagrangian

1 _
Laep == Fi, F" + 3 Wy (iy" Dy —my) ¥y, 2.4)
i
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where the index f represents flavour and the covariant derivative D, is defined
. 1 a a
D, =90,—ig EA Ay (2.5)

In such calculations there are just two input parameters, the coupling g and the bare
mass m ¢. The continuum theory is recovered by simulating at or extrapolating to
physical values of the light quark masses and in the limits @ — 0 and V' — oo.

At the Lattice conference in 2011, Hoelbling [87] reviewed progress in lattice
spectroscopy, described in Fig. 2.1. The plots show that many lattice collaborations
are now making simulations with Ny > 2, at light quark masses and large volumes.
In these lectures I will not discuss fermion discretisations, chiral extrapolations or
the details of simultations at or close to the physical point. Note that recent results
for the low-lying spectrum of hadrons in the light sector show internal consistency
between different lattice fermion formulations and impressive agreement with
experimental results [§8-92].
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Fig. 2.1 The landscape of recent dynamical lattice calculations, from Hoelbling’s review. The left
plot shows the lattice extent L vs the pion mass. The physical pion mass is at the dashed line and
the shading represents the relative error on the pion mass from 1 to 0.1 %. The right plot shows the
pion mass, M, vs the lattice spacing, a. The physical point is marked with a cross and the shading
from dark to light indicates the more desirable parameter space for calculations
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2.1.4 Correlators in a Euclidean Field Theory

Recall that in a Euclidean field theory, physical observables O are evaluated as an
expectation value over the relevant degrees of freedom

(0) = % {/DU DlI/DlI_/Oe_SQC”} . (2.6)

The quark fields are Grassmann and are integrated out analytically, giving (with
Ny =2)

(0) = % {/DU deth(’)e_SG} , 2.7

where Sg¢ is the gauge action. The expectation value is then calculated by impor-
tance sampling of gauge fields and averaging over these ensembles. Typically, in
hadron spectroscopy we are in interested in two-point correlation functions built
from interpolating operators, which are functions of the fields ¥. A simple example
is a local meson operator O(x) = ¥,(x)I'W,(x), where I is an element of the
Dirac algebra with possible displacements and a, b are flavour indices.

The two-point function is then

C(x,1) = (O(x)O01(0)) = (W (x) ¥, (x)¥(0) ", (0)), (2.8)

where I note that x = (¢, x);¢ > 0.
Using Wick’s theorem to contract the quark fields replaces the fields with
propagators in the expression for the correlation function

C(x,t) = —(Tr (M, ' (0,x)'M; ' (x,0)I""))
+8ap(Tr (MM (x, x)) Tr (I M71(0,0))). (2.9)

The trace is taken over spin and colour indices, which have been suppressed here
for clarity. M (;’lb) is the qqark propagator. .

Now, for flavour non-singlets (with a # b) the second term above vanishes and
the two-point correlation function can be written

C(x,1) = (Tr(ysM,; ' (x,0) ysI'M; ' (x,0)I"T)). (2.10)

To arrive at this expression we have also used ys hermiticity, namely that
M~'(x,y) = ysM~'(y,x)ys, to rewrite the correlator in terms of propagators
from the origin to all sites. These are the point (to all) propagators traditionally
used in lattice calculations. In one final step we consider correlators in momentum
space at zero momentum,
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C(p.t)y =) "™ C(x.1) 2.11)
and C(1) =C(p=0.1) =) C(x.1).

It is useful to bear in mind from what we have seen above that the fermion fields in
the lagrangian are present in calculations of the fermion determinant and contribute
to the integral over the gauge fields, while those fermion fields in measurements are
manifest in calculations of the propagators. The integral over gauge fields is done
using importance sampling and is not the subject of these lectures. We will however
see more about techniques to determine the quark propagators.

For hadron spectroscopy the goal is to extract the energy of (colourless) states of
QCD. This information is encoded in the two-point correlation functions which are
discussed above and which I now write as

C(1) = ($: (1|9} (0)). (2.12)

where, ¢; and q&; are operators acting on the quark fields to create a state at time
t = 0 and annihilate it at a later time 7. Using the Euclidean time evolution of such
operators, ¢(t) = e"'¢e~H" and inserting a complete set of states allows us to write
the correlator as

Ct) = Z [Pl - Eat (2.13)

2m,,

and note also that we are working in the low-temperature limit of QCD where
B = 1/kT = L, is large. From Eq.(2.13) it is easy to see that in the large time
limit the exponential fall-off of the correlator gives the ground state energy, Eo,
namely lim;_, o, C(t) = Ze £0'. The usual procedure then is to fit correlators to
an exponential and extract the ground state energy from the data at large times. A
useful quantity in this respect is the effective mass, which can be defined as

o ¢
A Meffective = 10g (C(l — 1)) . (214)

The effective mass should plateau at large time separations as the ground state
exponential dominates in the correlator. This is illustrated in Fig. 2.2 which shows a
single correlator and corresponding effective mass for the J /¥ meson, determined
on a 123 x 128 anisotropic lattice. Note that for operators ¢; = ¢ ; in Eq. (2.12)
the correlation function is positive definite and the effective mass converges
monotonically from above.
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Fig. 2.2 The left plot is a log plot of the correlator data, which is symmetric about the midpoint
of the lattice for mesons under periodic boundary conditions. The right plot is the corresponding
effective mass, determined using Eq. (2.14). Note that the data reach a plateau and remain constant
from approximately timeslice twenty-five. At earlier times, excited state contamination in the form
of additional exponentials is clearly visible

Now, it is clear from Eq. (2.13) that the correlation function contains information
on all states that can be created by the operators used. However, the technique
described above reliably gives the ground state while excited states, which would
require more exponentials and more free parameters in a fit, very quickly become
unreliable.

A different approach, designed to allow access to these excited states in a lattice
calculation is the variational method, which I will return to in Sect. 2.4.2.3. The idea
is that if we can measure a matrix of correlation functions

Ci(t) = (0l¢i ()¢} (0)]0), (2.15)

for all 7, j and solve a generalised eigenvalue problem C(¢)v = AC(t)v, then the
eigenvalues A are related to the state energies by

lim A = e 5 4+ O (e 45). (2.16)
(1—19)—>00
For this method to be practical we need (i) a good basis set of operators that
resembles the states of interest and (ii) all elements of this correlation matrix
measured [93]. In Sect. 2.4 we will look in more detail at the different approaches
to operator construction which facilitate the variational approach.

2.2 Some New (and Old) Ideas for Making Measurements

To improve the precision and range of calculations that lattice methods can tackle
let us take a closer look at quark propagators: the hadronic building blocks. In the
previous section we saw that using time translational invariance and for flavour non-
singlets a so-called point-to-all propagator can be calculated. The main advantage
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of these propagators is that their calculation does not require vast computing
resources. However, this comes at a hefty cost. Using point propagators restricts
the accessible physics, making calculations of flavour singlets, where ¢ = b in
Eq.(2.9) (e.g. the ') and condensates impossible as these objects need propagators
with sources everywhere in space. From a practical point of view point propagators
restrict the interpolating basis used since a new inversion is needed for every
operator that is not restricted to a single lattice point. Finally, from a philosophical
point of view the point propagator entangles the propagator calculation and operator
construction in a non-trivial way.

In this section I will discuss some different approaches used to calculate quark
propagators: smeared point propagators, all-to-all propagators and distillation.
Please see the references for a fuller description of these and other methods.

2.2.1 Smearing

Recall that hadrons are extended objects (O(1) fm whilst so far we have discussed
the calculations of hadronic properties in terms of point-like propagators and
interpolating fields. These may have small overlap with the state of interest, as
determined by the amplitude Z, = (¢|n) appearing in Eq.(2.13). Improvements
can be made by optimising the projection onto the state of interest using “smearing’:
one uses an extended operator (for example of the form E],ﬁl)Fcﬁx,yq;Z) ) where the
function ¢y y is chosen to resemble a wavefunction. Essentially this works since the
ground state wavefunction is smooth with no nodes.

This idea has been realised using Coulomb gauge fixing [94, 95] and by using
iterative gauge-covariant smearing of the quark fields. This amounts to replacing

Wix, )= Gx,y,U@®).¥(y.1), (2.17)
y

where the function G is the (Gaussian) smearing function given by G(x, y, U(?)) =
(14+x,H)" and H is frequently the lattice covariant Laplacian in three dimensions.
Examples of iterative smearing procedures include Jacobi smearing [96] and
Wuppertal smearing [97].

In addition, the gauge noise in a Monte-Carlo calculation can be significantly
reduced by smearing the link, (U) fields that appear in G. Again, there are different
approaches here including APE [98], HYP [99] and stout smearing [100].

Distillation [101], which will be more thoroughly discussed in Sect. 2.2.2.1 in the
context of methods for all-to-all propagators can also be thought of as a variation or
re-definition of smearing.



2 Lattice Methods for Hadron Spectroscopy 45
2.2.2 All to All Propagators

Let us turn now to consider methods for determining the quark propagator from all
sites on the lattice to all sites. As already mentioned, point propagators restrict the
accessible physics and we would like a robust method to go beyond this. To compute
all elements of the quark propagator however would require full knowledge of the
inverse and this is prohibitively expensive. Recall that the lattice representation
of the Dirac operator is a large but sparse matrix and if we are satisfied with
an unbiased estimator of all elements then sparse matrix methods can be used.
Stochastic estimation should be acceptable—after all we are already using it to
generate the gauge fields. We will also discuss later in this lecture the crucial role of
variance reduction in these stochastic estimations.

To begin, we consider a spectral representation of the fermion matrix, Q = ysM.
This has the advantage that Q is hermitian and so its eigenvalues are easier to
compute. If the eigenvalues and eigenvectors {1), v()} of O can be computed then

N N
o g . 1 . .
— (i),(0) *(i) -1 _ (@) *(i)
0= E AWV @ v and so Q7 = E 0" Vv . (2.18)

i=1 i=1

Unfortunately, finding even a small subset of eigenvectors is computationally expen-
sive and so one is generally forced to truncate this representation for N,, << N. This
truncated sum now violates reflection positivity and must be corrected.

Let us go back and reconsider the fermion matrix, Q, by writing instead a
stochastic representation of this matrix. This proceeds in the usual way: an ensemble
of random independent noise vectors, {1}, 7. ..., Nw,]} is generated with the

property
{(nr(x) ® (M) = 8s.y. (2.19)

where the angle brackets indicate the expectation value over the distribution of noise
vectors. Z4 is a good choice, noting that each component of the noise vectors has
modulus 1, ie. 7'%(x)*n*(x) = 1 (with no summation), where i, j are colour
indices and «, § label spin.

The solution vectors, ¥},] are obtained in the usual way

W (x) = 0 (), (2.20)

In this approach the quark propagator from any point x to any point y is written

N,
- ij i . 1 j
) l(y, x)élg = ((lp[r] &® 77?,]))!43 = Nh—l>noo V Z ‘I’f,ff(Y)ﬂ[jf];(x)T- (2.21)
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For N, different sources the variance falls like 1/+/N, and it would be useful to find
methods that do better than this.

Exercise Verify that Eq.(2.21) indeed provides the inverse of the matrix Q by
multiplying the equation on both sides with Q.

2.2.2.1 Variance Reduction by Dilution

In stochastic methods variance reduction is critical and it is useful to ask if the
variance can be reduced below what has been mentioned. I will present one
successful approach, called “dilution”.

Recall that the exact propagator can be computed with a finite (but large) amount
of effort, namely by using point-propagators methods with Kronecker delta sources
everywhere on the lattice. This suggests a trick. We break the vector space of the
quark fields V into d smaller sub-spaces, V = V; @ V, @ ... spanned by subsets of
the basis vectors. This partitioning, called dilution, is arbitrary.

We can look at this in more detail. Dilute the noise vector n in some set of
variables so that n = ) j n/). For spectroscopy where temporal correlations are
relevant an important example is time dilution which we can write as

Ni—1

nx.0) =Y nVx.1) (2.22)

=0

and n)(x,7) = O unless ¢ = j. Each diluted source is inverted, yielding Ny pairs
of vectors {¥), )}, An estimator of Q ~! with a single noise source is then

Ng—1

> WO @ xo.0)" (2.23)
i=0

In the so-called “homeopathic limit” of dilution with a noise vector for each time,
space, colour and spin component, the exact propagator is recovered in a finite
number of steps. This of course is not practical in current simulations; however, the
path through dilution space may be optimised so that the gauge field noise dominates
for a manageable number of inversions.

Itis also possible to incorporate dilution with the stochastic estimation in a hybrid
method. Essentially the steps are: calculate N,, eigenvalues and eigenvectors of Q
exactly and determine QIT/:V; use the stochastic method with dilution to correct the
truncation. There are further details and a discussion of further optimisation in [102].

So, how does this dilution method compare with point propagators? The left pane
of Fig. 2.3 shows the correlator for a light pseudoscalar determined on a 123 x 24
lattice at B = 5.7 with Wilson fermions and 75 gauge field configurations. The
right pane shows an effective mass plot for three different states (the 17—, p and )
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Fig. 2.3 The left pane is a log plot of the correlator, as described in the text, comparing the point
propagators with all-to-all propagators calculated using time dilution. The right pane shows the
effective masses of three states again comparing the statistical precision of point and all-to-all
propagators

determined on the same ensembles. Both plots are taken from [102]. The light
quarks are relatively heavy with m,/m, = 0.50. One hundred eigenvectors were
determined and dilution in time, space even-odd' and spin was implemented (in
the right-hand plot). The plots shows an impressive improvement in the statistical
precision with which the correlator and effective masses are determined when using
dilution (in time only) compared to traditional point sources.

2.2.3 Distillation

I will briefly describe a rather different approach to the determination of quark
propagation, termed “distillation” [101]. Essentially the method is a redefinition
of smearing (as described above) which as we will see leads to rather dramatic
improvements in statistical precision and the range of accessible hadronic physics.

Consider a smeared quark field, ¥ derived from the “raw” quark field, ¥ in the
path integral by ¥(r) = O[U(¢)]¥(¢). The general expression for a (e.g. mesonic)
creation operator is then

Ou(t) = F(T(1), (2.24)

where I is an operator in position, spin, colour space and the aim of smearing is to
improve the overlap onto the state of interest.

'A cubic, or hypercubic, lattice may be divided into sublattices of “even” and “odd” sites,
sometimes also referred to as checkerboarding. A lattice point, x € Z* is even or odd depending
or whether the sum of its coordinates x,, is even or odd. For details see for example the textbooks
referenced.
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Let us look in more detail at the smearing operator [J. Smearing is known to be
very effective in building an operator that projects onto a low-lying hadronic state
and a popular (gauge-covariant) algorithm is Gaussian smearing. A linear operator
is applied,

Oy = exp(oV?), (2.25)

In this example V? is a lattice representation of the three-dimensional gauge-
covariant laplace operator on the source time-slice.

3
V2, =680y — Y Ui(x)8,izy + Ul (x — )iy, (2.26)

i=1
Correlation functions built from such smeared operators then look like
oM 'O, 'Oy . (2.27)

The key observation is that the Gaussian smearing operator acts as a projection
operator on the space of coloured scalar fields on a time-slice ie Ng x N.. This is
nicely seen by looking at the eigenvalues of the operator V2 as shown in Fig. 2.4,
taken from [101]. In brief then, distillation defines smearing to be explicitly a very
low-rank operator, ie Np << Ng x N,. The distillation operator is

a@) = Vi)V, (2.28)

and VY .(¢) is an Np X (Ns x N.) matrix. One is free to choose a definition
of O and in studies to date it has been defined as [Ja the projection operator
into Dp, the space spanned by the lowest eigenmodes of the three-dimensional
laplacian. This operator is idempotent so DZA = Oa and it is also easy to see
that limy,, »ngxnc) Oa = 1. Note however that this choice for V2 is not unique. It
does preserve lattice symmetries being translation, parity and charge-conjugation
symmetric. It is O(3) symmetric and as discussed in [101] is close to SO(3)
symmetric.

[ 1g
08 - _ 01F
_ 06 <~ 001f
041 0.001 5‘0 1(‘10 15‘50 200
0.2 i
0 ! ! ! ! ! !
0 2000 4000 6000 8000 10000 12000

Eigenvector index, i

Fig. 2.4 The eigenvalues of a Gaussian smearing operator. The main pane is the raw data, barely
visible while the inset shows the first 200 modes on a log scale. Only the first O(100) modes are
significant. The data are determined on a 163 spatial volume
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If we now consider an isovector meson two-point function
Cmeson(tl - Z‘0) = ((ﬁ(ZI)Dtl Ftl Dfl d(tl)(j(to)l:‘to E()Dfou(to)))s (2.29)
then integrating over the quark fields yields

Cmeson(tl - tO) = (2.30)
(Tr{i,a,c} (Dtl El Dl‘] M_l (tl ’ Z‘O)Ijt() EODIOM_l (t()a tl)))

Now, substituting the low-rank distillation operator for [J reduces this to a much
smaller trace, written

Chneson (11 — 10) = (Trop [p (1) T (11, 10) P (t0) T (0, 11)]), (2.31)

where both ¢ng and ‘L'g:Z are (N, x Np) x (Ny x Np) matrices and
o) =VIOLV@): t@t.t)=VIMT' .V (2.32)

In the low-rank space, all elements of the reduced quark propagator are now
accessible in a reasonable amount of compute time. As well as the reduction in
compute time, distillation offers a second advantage: the separation of operator
construction from quark propagation. Note that in Eq. (2.31) the function (¢, '),
known as the perambulator, contains the information on quark propagation while
the ¢ (¢) describe the source and sink operators and determine the quantum numbers
of the state to be constructed. The perambulators may be calculated and stored to be
combined a posteriori with any number of source and sink operators. In addition,
the number of eigenvalues used in [0 may also be increased a posteriori without
starting a calculation from scratch.

Distillation has proved particularly successful for calculations of isoscalar
mesons, which traditionally have been difficult if not impossible to determine with
precision. Figure 2.5 is taken from [103] and shows the disconnected contributions
to the two-point correlation function, denoted D for the ¥ysW operator in the light
meson sector together with the connected contributions, C. Figure 2.6 shows the
corresponding isoscalar spectrum of light mesons.

While distillation offers a new avenue for precision spectroscopy it is not suitable
for all hadronic physics. A particular example includes the strangeness content of
the nucleon for which the standard all-to-all algorithms must be used.

In addition, the cost of distillation grows rapidly with the spatial volume of the
lattice. Np scales with Ng and to maintain a constant resolution in the distillation
space the cost of a calculation scales with V2. Table 2.1 illustrates the cost scaling
as a function of volume for mesons and baryons. However, the method has been
successfully used on volumes up to 24 with Np = 128 for a range of physics.



S.M. Ryan

100 g
o
1}13
o Tog
80 9%0c000n00n0noonononoonone —CHF
o
o
60 o
o
- o
3 DD
£ 40 f o
8 oo
. DDD
— T o
+~ DDD
= 20 S0ogg
Too 58
O 9985005, —C
55
00T 22D
0 00000000V DOOCOOOTETTITY comoTaooTIIL s
OOV OCOOO0COOOTOCOTCOTCOTTTTITTT D
T o
20 FTCPeng,
o nusongy 06
©533553535538939880 D
40 -

‘ ‘ ‘ ‘ ‘ ‘ —/q
5 10 15 20 25 30 35 t

Fig. 2.5 Distillation allows for precision calculation of disconnected contributions. The plot
shows the connected as well as disconnected contributions, determined using distillation. Note
the statistical precision and persistence of the signal for the disconnected diagrams
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Fig. 2.6 The light meson isoscalar spectrum from the Hadron Spectrum Collaboration

Table 2.1 The cost scaling

of distillation from inversions

to contractions for mesons
and baryons

Fermion solutions Construct t | O(N. 52)
Operator constructions | Construct ¢ | O(N2)
Meson contractions Trlprpz] | O(ND)
Baryon contractions BrttB O(N$

One solution, to mitigate the cost of distillation with increasing volume, is
once again to use stochastic estimation techniques, together with distillation called
stochastic LapH [104]. A stochastic identity matrix is constructed in the distillation
space D by introducing a vector  with Np elements and

E[n;] =0 and E[nin}] = §;.

(2.33)
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Fig. 2.7 The ratio of the standard deviation from different stochastic estimators to the exact LapH
estimate on time slice 5 for a nucleon correlator. Filled symbols denoted noise introduced on the
entire lattice, open symbols use the “stochastic LapH” method outlined here

The distillation operator is then
O = E[Vyn'VT] = E[WwwT]. (2.34)

Of course this introduces noise into the computations and variance reduction once
again becomes important. A good approach, as we saw earlier, is then to use dilution
as before to “thin out” the stochastic noise. One can use Np orthogonal projectors to
make a variance-reduced estimator of Ip = E[WW'] = Zgll E[VPnn P VT
with Wi, = VPrn a N, x (Ns x N¢) matrix. Figure 2.7, taken from [105]
demonstrates the improvements achieved using different dilution strategies for noise
in distillation space for a baryon correlator compared to noise introduced across the
entire lattice.

2.2.4 Interim Summary

In this section we have discussed methods to calculate quark propagation and make
measurements. In this context it is useful to note that smearing and distillation are
both rotationally symmetric operations and so do not change the quantum numbers
of the states being determined. Algorithms which address the exponential fall in
signal-to-noise in correlators and which reduce the cost of making measurements
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are crucial. This is especially true for precision spectroscopy, the determination of
exotic states and isoscalar mesons and for a strategy to include multi-hadron states
in lattice calculations.

Exercise Do the linear algebra to derive Eqgs. (2.30-2.31).

2.3 Lattice Symmetries and Classifying States

In continuum QCD observable states are classified according to angular momentum
and parity, J© which label the irreducible representations (irreps) of the relevant
symmetry group: the improper rotation group O(3). These irreps include bosonic
(single-valued) and fermionic (double-valued) representations and in addition, the
projection of angular momentum onto some axis, J, labels rows of the representa-
tion.

On a spatially isotropic lattice the continuous rotational symmetry is broken and
the relevant symmetry group is Oy, the cubic point group. Eigenstates of the lattice
hamiltonian then transform under irreps of O, and lattice states are classified by
these irreps (A”) rather than by J©. A manifestation of this symmetry breaking
is that continuum states with the same J* but different J, values are in general
separated across lattice irreps. It is important then to design operators which couple
strongly to lattice eigenstates, i.e. which project into the irreps of Oj,.

Now, let us consider the symmetry group of the cube in more detail. The correct
group to consider is O the octahedral group which is dual to a cube. There are
24 rotational (orientation-preserving/proper) symmetries and 48 if one includes
combinations of reflection and rotation. This leads us to consider the cubic point
group O, = O ®{I, I,}. O has five conjugacy classes (O, has 10) and the number
of conjugacy classes gives the number of irreps. Using Schur’s lemma for a group
G and irreps I; of G,

G| =) dim(I})*, (2.35)

and a short calculation shows that for O we get: 24 = 12 4 12 4 22 + 3% 4 32
the dimensions of the five irreps of O labelled Ay, A,, E, T, T, respectively.
The extension to O includes the 24 improper rotations (spatial inversions) of O
such that

Llyl—=>|—-]- (2.36)
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The number of group elements is now 48 with 10 irreps labelled
Alga Alus A2g7 Azus Ega Eus Tlgs Tluv ngs T2u

and the (g, u) label the even (gerade) and odd (ungerade) behaviour under spatial
inversion.

For baryons one considers O”, the double cover of O. This 48-element group
is obtained from O by including a negative identity (corresponding to rotations
through 27). Therefore OP is the group through which the identity is recovered
after rotation through 4. It has eight single-valued irreps, five of which correspond
to irreps of O. The three new irreps are G, G,, H and once again, using Schur’s
lemmaweget24 = ). 1",.2 = 2242244 giving us the dimensions of the additional
irreps (2, 2, 4 respectively).

Having briefly covered the properties of the relevant symmetry groups for
mesons and baryons in lattice QCD the next section will discuss how a connection
is made between the states identified in a lattice calculation and their continuum
counterparts. I have not discussed group theory in detail and refer the reader to the
many excellent textbooks some of which are listed here: [106—109].

2.3.1 Connecting Lattice and Continuum Groups

In this discussion, I will focus on O and meson states for simplicity, the procedure
for the double cover group, O” and baryons is the same.

In SO(3) there are an infinite number of irreps (J values) whereas for O, as we
have just seen, there are just five irreps. Therefore there is not a one-to-one mapping
between the irreps but rather lattice irreps may contain many states from different
continuum irreps. To identify which continuum states can occur in a particular lattice
irrep we note firstly that O is a subgroup of SO(3). By restricting the irreps of SO(3)
labelled by J to rotations allowed on a lattice we generate representations that are
reducible ie J is reducible under O or Oy,. This procedure is called subduction and
using the relationship

1
(@) (@ ()
n; =-— E M Xe Xi s (2.37)

it is possible to find the multiplicity of the irreps of SO(3) in O. Note that in
Eq.(2.37) x is the character of a representation, Ng is the order of the group
and ny is the dimension of the kth representation. Table 2.2 gives an example
of this subduction process for continuum states up to J = 4. In principle then,
to identify say a J = 2 state, results from the E and 7, irreps at finite lattice
spacing should be extrapolated to the continuum where for a particular state the
results should agree. This is an expensive procedure, requiring simulations to be
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Table 2.2 The results of subduction showing the relationship between
the continuum and lattice irreps, up to J = 4. Note that as discussed
in the text a continuum spin may be appear in a number of lattice irreps
making spin identification for states with J > 1 complicated

A, A, E T T
J=0 1
J=1 1
J=2 1 1
J=3 1 1 1
J=4 1 1 1 1

repeated at multiple lattice spacings. Even if this were feasible it is not guaranteed
to yield an unambiguously determined state. Consider the following example in
the charmonium system. From Table 2.2 we see that a spin four state, 4T should
appear, at finite a, in the A, E, T}, T, irreps. However, in charmonium there is
also a near-degenerate triplet of P waves with quantum numbers (0*+, 171, 2%™)
which are distributed across the same irrep pattern, namely A;, E, T, 7. In a lattice
calculation, even after extrapolation to the continuum limit, it would be extremely
difficult, if not impossible, to disentangle a radial excitation of this triplet from the
4T+ ground state without some additional information. Before I discuss how to
tackle this problem let me briefly mention the group theory of two particles in a
box. This, of course, is relevant once states above threshold are considered where
multi-hadron operators must be included. In general, for mesons in flight the relevant
symmetry group is reduced to the little group of allowed cubic rotations that leave
the momentum invariant. There is a detailed description in [110, 111].

2.4 Building Operators and Extracting Energies

In this chapter we have spent some time looking at different methods for quark
propagation. Now, we will discuss operator construction and how to extract energies
from the correlation functions determined in a lattice calculation. The meson and
baryon operators are generally of the form O = W, (x,1)I} wWip(x,t) and O =
e (Wl (x, )T Wb (x,1))W¢(x,1).

The simplest operators we can consider are colour-singlet local fermion bilinears
such as O, = J)@u and O, = c?)/iu for mesons and Oy = eahf(u“C)@d”)u" and
Op = € u*Cy,d”)uc for baryons. The local operators written here give access
to states with J = 0, 1, %, % While one can choose different Dirac structures I” the
spin and parity of the hadrons will put constraints on the number of operators that
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can be constructed. To study higher-spin states with J > 1 (mesons) and J > 3/2
(baryons) additional operators must be used. In addition we would like many more
operators that all transform irreducibly under some irrep, enabling a variational
analysis.

One approach, using smearing techniques described in Sect. 2.2.1 is to use
smearing functions of different widths. Combining these sources can generate nodes
in the wavefunctions to better overlap with (radially) excited states. See for example
[112] for a discussion and results.

Another approach (and one which can be combined with different smearings)
is to use extended operators. Recall that lattice operators are bilinears, with path-
ordered products between the quark (and the anti-quark) fields. Different offsets,
connecting paths and spin contractions give different projections into lattice irreps.
Further simple examples are given in Fig. 2.8 for mesons and in Fig. 2.9, taken from
[113], for baryons. In this way one can make arbitrarily complicated operators to
access high-spin states and to allow for a variational analysis. An early success of
this approach was a determination of the Yang-Mills glueball spectrum [77]. QCD
is a non-abelian gauge theory and so allows bound states of pure glue. In this case
the interpolating fields are purely gluonic and built from Wilson loops, as shown in
Fig. 2.10. The spectrum which was extracted using these operators is also shown in
Fig. 2.10. Note that states with spin up to J = 3 were determined.

o—>—e

Fig. 2.8 Meson operators. Written in full these are Oup = ) . 7, (x)Wp(x), Ogﬁ =
> W (U (x)Wp(x + 1), Ogﬁ =3 W)U (x)U; (x + iWs(x + T — J) respectively

& @

single- singly- triply-
site displaced displaced

Fig. 2.9 Three different prototype extended baryon operators. The hollow circle is the reference
site
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Fig. 2.10 A selection of operators for glueball spectroscopy. These were used in a variational
calculation to determine the (quenched) glueball spectrum shown in the right plot

2.4.1 Constructing Good Operators

We have seen how operators of arbitrary complexity can be calculated to access,
in principle, high-spin states. However, it is useful to ask what makes a “good”
operator in order to maximise the statistical precision and to ensure reliable state
identification at finite lattice spacing. A useful list of properties for operators
includes

1. have definite momentum and transform under the symmetries of a lattice irrep

2. the basis of operators used should have a good overlap with the states of interest
(eigenvectors of the variational method) which are, or are close to being, linearly
independent

3. not noisy ie produce a correlator with acceptable statistical precision over a
reasonable number of timeslices

On the last point we have seen how to improve statistical precision using smearing
and distillation as well as noise reduction in all-to-all propagators using e.g. dilution.

Now, recall that in an earlier lecture we discussed the relationship between lattice
and continuum irreps. If we now rewrite Table 2.2 we see that a correlator, C(t) =
(0]¢ ()¢ 7(0)]0), contains in principle information about all (continuum) spin states
that appear in a lattice irrep, A€ (Table 2.3).

The objective is to build a basis of good operators according to the bullet points
listed earlier in this section. There are different approaches to optimising lattice
operators and I present one here [114].
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Table 2.3 The relationship

- Lattice irrep, A | Dimension | Continuum irreps, J
between lattice and

continuum irreps, determined A 1 0.4,...
by subduction. The table Ay 1 3,5,...
illustrates that lattice E 2 2,4,...
operators that transform T, 3 1,3,...
ac'cordmg'to'a lattice irrep T, 4 2.3,
will contain information G 3 7
about more than one ! 202"
continuum spin state G, 3 %, %, .
35
H 4 5550+

We begin by considering continuum operators built from # derivatives of the form
¢ =WI (Dj1Di»Di3...Diy) W. (2.38)

Construct irreps of SO(3) and then subduce these representations into Op. Now
replace the derivatives with lattice finite differences such that

D;¥(x) — é (Uj O + 7= Ul (x = D¥(x — j)) : (2.39)

where we note that on a discrete lattice, covariant derivatives become finite
displacements of quark fields connected by links.

The final step is the empirical observation, with for example a more detailed
discussion in [115], that the overlaps Z = (0|¢APC|J PCA)Y in the different lattice
irreps subduced from a common continuum irrep are the same up to rotation-
breaking effects.

To see this explicitly let us consider an operator for the J*¢ = 27+ meson.
Recall from Table 2.2 that a spin two state will be split across the 7> and E
lattice irreps. In the continuum an operator that creates a state with 27 quantum
numbers is

_ 2
(]5,']- =y (]/,'Dj + v D, — 58,:,']/ . D) v, (2.40)

Following the recipe described above we substitute gauge-covariant lattice finite
differences for D. By subduction we find that

¢ = {p12, 23, P31}

pF = {%(‘ﬁll —¢2n),

1

\/5(¢11 + ¢ + ¢33)} .



K S.M. Ryan
ST 2.0
i © aimy,= 0.6770(7) © agmy,=0.763(4)
[ z -
I @ aimr,= 0.676(1) © agmy,=0.776(3)
L O a;my,= 0.6768(7) © agmy,=0.777(2)
4 ®pe | @00 :
j & amy,=0.774(2)
[ & amp=0.767(3) 15+
I & amp=0.769(3)
3 .
[ 5®0
[ x10 o ®
N ! N 1oF @
2 F + +
! +><10 +
: 29 + 05t
1 I + ®em® ' g o +
[ % + x50
oL x10
[ AT ThAT ThATIThAT/T, AT T, 0.0 L A T, T, E

Fig. 2.11 An example of the agreement of overlaps of lattice operators from different irreps which
have been subduced from the same continuum operator. For more details see [116] and references
therein

States determined from variational analyses in these two different irreps should
then agree in the continuum limit and at finite @ be reasonably close, assuming
(hopefully) small discretisation effects. A second tool at finite a is to examine the
operator overlaps Z for the signature of continuum symmetry

Z = (0]¢p ™2ty = (0| B2t HE)) (2.41)

up to rotation-breaking effects. This approach has been followed by the Hadron
Spectrum Collaboration to good effect. Figure 2.11 taken from [116] shows this
operator overlap analysis for spin three and spin four states in charmonium. In each
case there is very good agreement across the relevant irreps (4,, Ty, T, for J/ = 3
and A\, Ty, T,, E for J = 4).

2.4.2 Fitting Data to Extract Energies

Hadron energies are determined from 2-point correlation functions. We begin by
considering a simple correlator of the form

C(p.1) =) e (O(x.)0O™(0.1)), (2.42)
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where O is a single interpolating operator for the hadron of interest. Recall that by
inserting a complete set of energy eigenstates |n) and assuming a discrete energy
spectrum as ¢ — oo and for hadrons at rest

1(0]O|ng)|* e ot (2.43)

1
C(t
)= 5%

n

where n is the lightest state that couples to O and has energy Ej.
Again, recall that a useful quantity for this analysis is the effective mass

C(t) ) t—00

a;Meg(t) = In (m —> constant, (2.44)

and an alternative definition appropriate for mesons, under periodic boundary
conditions, uses the hyperbolic cosine and is given by

(2.45)

a4 Meg(t) = cosh™ (C(z +1D)+C(t— 1))

2C(1)

At large time separations on the lattice the ground state dominates and the effective
mass should plateau at this energy. Of course the onset and length of the plateau
will depend on O. The hadron mass is extracted from fits to correlator data in this
plateau region. Such fits require some finesse however since statistical errors grow
exponentially with ¢ (except in the case of the pion) and fitting too far out in the
temporal extent increases the statistical uncertainty.

Figure 2.12 shows a typical effective mass plot—in this case for the vector J /¥
charmonium state. The cyan box highlights the plateau region, at large times, where
the effective mass converges to the ground state. In this region the correlator data is
fitted to the expected form, C(t) = Ae~Eot using, for example, a )(2 minimisation
algorithm with A and E free parameters and for some “reasonable” choice of time
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0.59 — excited states dominating here —
0.58 — -
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2'; 0.56 |- N
< 0.55 n ]
0.54 | =
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t/a

Fig. 2.12 The same plot as in Fig. 2.2 now with the plateau region and the region of excited state
contamination highlighted
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range. Statistical errors on the fitted energy can be determined using bootstrap or
jackknife (described later). The plot also shows a region where excited state energies
are significant and a single-exponential fit would not be reasonable.

2.4.2.1 Resampling Techniques

Bootstrap and Jackknife are examples of what is known as resampling and both are
used extensively to estimate statistical errors in lattice calculations.

The jackknife method was introduced by Quenouille in 1949 to estimate the
bias of an estimator and later further refined by Tukey (who also gave us the
FFT) in 1957. Consider a set of N measurements, and remove the first leaving a
jackknifed set of N — 1 resampled measurements. Repeat the analysis (in our case
the exponential fits) on this reduced set, giving parameters o (1). The resampling
is repeated, discarding the second measurement etc to get a set of parameters
aygy, i = 1,..., N. The statistical error is then estimated from averages over the
resampled set

N-1) &
03 = (—N) Z (otj(,-) — oz)2 , (2.46)

i=1

where « is the result from fitting the full dataset.

The second resampling technique is the bootstrap method, developed by Efron
in the late 1970s. In this case a new dataset is created by drawing N datapoints,
with replacement, from the original dataset of size N. Replacement means that a
configuration may appear twice in a sample; thus you do not get the original set
each time but a set with a random fraction of the original points with some appearing
multiple times. As for the jackknife method, the analysis is repeated on each set.

2.4.2.2 Notes on Fitting

When fitting correlator data to exponentials a good fit can be characterised by a few
measures

1. the fit should be stable with respect to the choice of time range in the plateau
region. In particular, it should be stable with respect to small changes in fy;,, the
minimum timeslice included in the fit.

2. the fit should include a reasonable range in . The number of points included will
of course depend on the temporal extent and resolution of the lattice.

3. the energy extracted should be stable if additional exponentials are added to the
fitting function.

4. for correlated fits, a good y?/Ng.o ., typically of order one when this quantity can
be reliably determined.

5. “reasonable” statistical errors on the fitted mass.
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Within the lattice QCD community there are some well-established quantities
which are used to describe the quality of fits, including

1. a sliding window plot: the fitted mass is plotted as a function of #y;,. A plateau
region in this plot means the fitted mass is stable as a function of #;,.

2. a fit histogram: the idea is to design a quantity that monitors the behaviour of
a good fit as described above. An example is to plot QNy,r/(Am) for each
(tmin» fmax) With Q = I'[(interval — Nparam)/2, x2/2] and choose the (fmin, fmax)
that maximises this quantity.

3. x-by-eye: always a good idea to check fit ranges do look reasonable on the
effective mass plots.

The analysis discussed so far is focused on determinations of ground state
energies. Looking again at the sample effective mass plot, shown in Fig. 2.12,
it is clear that while a single exponential dominates at large times, at short
time separations there are contributions from higher excited states in the form of
additional exponentials in the correlation function

C(t) = Ae Bt y Be= Bt . (2.47)

A two-exponential fit with parameters 4, B, Ey, E; may allow for a determination
of E|, the energy of the first excited state. A reasonable approach since the regions
where E(y and E; are distinct is to fit for £, as described, and freeze its value in a
fit for £,. However, these two exponential fits can be very unstable and a different
approach is needed especially to extract energies above just the first excited state.
There are a number of techniques for this including Bayesian analysis; y2-histogram
analysis and a variational analysis. I will discuss the latter in more detail.

2.4.2.3 A Little More on Variational Analysis
We have already seen the basics of a variational analysis and is described in [117,

118] and [93]. In a brief recap we consider a basis of operators O; fori = 1,..., N
in a given lattice irrep. Form a matrix of correlators

Ci(1) = (0i(H0}(0)), (2.48)
and treat this system as a generalised eigenvalue problem
CO)Va(t,10) = An(t,10)C(t0)Va(t, 10), (2.49)

where ¢ is a reference timeslice which you choose. The vectors v, diagonalise C(¢)
and for finite N one can show that a generalised effective mass is

ES(t,10) = —0, log A, (¢, t0) = E, + O(e”4En"). (2.50)
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The eigenvalues A, that are solved for in the GEVP and ordered such that A;(¢) >
Aa(t) > ... An(2) atlarge . The A; are then related to the energies of the states in
the irrep and these energies can be extracted from fits to the “principal correlators”.
When using jackknife or bootstrap techniques the eigenvectors resulting from
the GEVP should be also be monitored to maintain a consistent ordering in the
samples. Note that the procedure depends on the choice of reference timeslice, 7.
In an analysis this parameter should be varied to test the robustness of results. In
particular, if the value of 7 is too small then states with energies larger than that of
interest, say E, will contaminate the results. This is especially true if there is just
a small energy gap to £, and in this case a large distance in ¢ will be needed to
resolve a plateau. Values of ¢y too large may result in numerical instabilities.

2.4.2.4 Anisotropic Lattices

Let me make a brief comment here on the utility of anisotropic lattices for hadron
spectroscopy. If we can build a good basis of operators we have seen how we can
extract energies for low-lying states from the correlator at short distances. The lattice
correlator can only be sampled at discrete values of # and signal can fall quickly for
a massive state, while the statistical noise does not. A brute force approach to reduce
the lattice spacing in all directions is a costly solution to this problem. Nevertheless
one can mitigate the cost by reducing the temporal lattice spacing, a; whilst keeping
the spatial mesh coarse. This is an anisotropic lattice.

Of course, the anisotropic lattice reduces the symmetries of the theory from the
hypercubic to the cubic point group and for example, the dimension four operators
on the lattice are split

Ter.v Fp.v - {Terthjs TrFiOFiO}
Wy, D,W — {Wy; D; ¥, WyoDo¥} .

Note that on the 3 & 1 anisotropic lattice described here the spatial symmetries are
unchanged from the isotropic case and the group theory and operator construction
discussions from earlier sections are unchanged.

There is a cost to this approach however. The space-time symmetry breaking
introduces extra bare parameters in the lagrangian, arising from the so-called aspect
ratio, § = a,/a;, which must be tuned to restore Euclidean rotational invariance in
the continuum limit. For QCD one can think of this as demanding that quarks and
gluons “feel” the same anisotropy. This requires an a priori tuning of parameters. In
dynamical QCD where the fermions contribute through the determinant term in the
path integral two physical conditions, one in the gauge sector and one in the fermion
sector, must be simultaneously satisfied. A typical example uses the sideways
potential and the pion dispersion relation. Each time the lattice spacing (temporal or
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spatial) is changed the tuning must be repeated. In addition taking a continuum limit
is challenging as one should consider the temporal and spatial spacings separately.
Nevertheless, the anisotropic lattice as proved extremely effective for resolving
precisely the energy levels of hadrons from light to heavy.

2.4.3 A Lattice Error Budget

In this section I have not discussed the standard systematic uncertainties which
must be accounted for in a lattice calculation. These effect all lattice calculations,
not specifically hadronic quantities and have also been discussed elsewhere at this
School. They include lattice artefacts: which require an extrapolation to the con-
tinuum limit, a — O; finite volume effects: in spectroscopy energy measurements
can be distorted by the finite box. A rule of thumb is that m, L > 3 is reasonable
for many quantities; unphysically heavy pions: simulations at the physical point
are now a reality but most calculations still rely on chiral extrapolation to reach
physical up and down quark masses. Chiral perturbation theory (ChPT) is used to
guide these extrapolations but an open question is whether chiral corrections are
reliably described by ChPT; Fitting uncertainties: the choice of fit range and 7y and
how to choose these quantities has been discussed above.

2.5 Current Challenges

In this final section I would like to discuss some challenges for lattice hadron
spectroscopy. I will focus on one topic: resonances and scattering. The most recent
progress on this (and other topics in spectroscopy) has been described in plenary
and parallel sessions at Lattice 2013 [119].

2.5.1 Resonances and Scattering States

In this chapter we have assumed that all particles in the spectrum are stable, and that
quark bilinears or three-quark operators are a reliable way to reproduce the states of
interest. However, the majority of states are not stable and are in fact resonances or
scattering states. A resonance is a state that forms for example when colliding two
particles and which then decays quickly to scattering states. Resonances respect
conservation laws: if the isospin of the colliding particles is % then the resonance
must have isospin % (a A resonance). They are usually indicated by a sharp peak in

a cross-section as a function of the centre-of-mass energy of the collision.
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A challenge for lattice QCD is to distinguish and describe resonances and
scattering states. The difficulty for lattice calculations lies in the Maiani-Testa no-go
theorem [120]. Recall that importance sampling in Monte-Carlo simulations relies
on having a path integral with positive definite probability measure, which is the
motivation for the Wick rotation to Euclidean space. However, the Maiani-Testa
theorem states that in general, scattering matrix (S-matrix) elements cannot be
extracted from infinite-volume Euclidean-space correlation functions. In Minkowski
space the S-matrix elements are complex functions, above kinematic thresholds.
However, in a Monte-Carlo calculation (in Euclidean space) these matrix elements
are real and there is no distinction between the |in) and |out) states and information
about the phase due to final-state interactions is lost. Liischer showed how infor-
mation about elastic scattering can be inferred from the volume-dependence of the
spectrum. The formalism for the relativistic (elastic) case in a cubic box for a system
at rest is described in [117, 121] and was subsequently extended to moving frames
in [122-124].

This has led to renewed progress in recent years in studies of scattering states
and resonances which has been enabled by some of the new techniques described in
these lectures. In particular, to be able to determine volume-dependence reliably it is
crucial to have precise data and unambiguous spin-identification so that two-hadron
states can be distinguished from nearby excited states.

2.5.1.1 The Liischer Formalism

In general, on a finite lattice with periodic boundary conditions the hadron momenta
are quantised: p= 2Tﬂ {nx,ny,nz}, with n; € {0,1,2,...L — 1}, and the energy

spectrum is a set of discrete levels, classified by p. The allowed energies, for a
particle of mass m are

) 2
E= \/m2 + (Tﬂ) N2, where N*=n2 +n2 + n’. 2.51)

The density of states in such systems will increase with energy since there are more
momenta combinations for a given N 2 e.g. both (3,0,0) and (2, 2, 1) correspond to
N? = 9.1t is also of course possible to construct a system with zero total angular
momentum from two hadrons with back-to-back momentum, p and —p.

A brief example is given by the p — 77 system. The energy levels of two non-
interacting pions in a periodic box of length L are

E—2 5 5 _ 2n|n|
= m: —+ p, p= I (2.52)




2 Lattice Methods for Hadron Spectroscopy 65

where as usual #n has components n; € Z. Considering the interacting case, the

energy levels are
2
E=2\mi+p? p= (T) q (2.53)

where ¢ is no longer constrained to originate from a quantised momentum mode.
Therefore the energy eigenvalues will deviate from the noninteracting case. These
deviations contain information about the underlying strong interaction and yield
resonance information via the Liischer formalism described by

8(p) = —¢(q) + mn, (2.54)

where

3/2 L
T and g =2 (2.55)
Zoo(1:9%)

tang(q) = — o

As usual, p, is defined for level n with energy E, from the dispersion relation
E, =2,/m? + p2. The Zy is a generalised Zeta function given by [125]

Zints. g = . o9 Y (6, ) (2.56)

= =)

Once the phase shift is determined and for a well-defined resonance, one can fit a
Breit-Wigner to extract the resonance width I', and mass m,,

3
%cotS(p) = pp

1
(E2 mp). pp =g fmi—dmk. (2.57)

To extract these energy shifts one needs good operators for both single-hadron
and multi-hadron states. Distillation has proved a crucial tool in this regard. Our
example, p — m, is in isospin one, and in principle this involves disconnected
diagrams which, as already discussed, add additional complexity to lattice calcula-
tions. One can learn a lot however, by looking at the simpler / = 2, nx system.
The Hadron Spectrum Collaboration has produced a detailed study of this system
including many operators to map out the phase shift in great detail. Figure 2.13
shows the energy shifts in / = 2 mw scattering from [126]. The phase shift (for
[ = 0, the lowest wave and [ = 2) has been calculated for many different momenta
and different volumes as shown in Fig. 2.14. More recently [127], the [ = 1 phase
shift has been mapped out in great detail and a resonance width and mass extracted.
There are already similar calculations in the open charm sector both with much
fewer momenta points or lower statistics [128, 129]. More can be expected in the
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Fig. 2.13 Energy shifts in / = 2 for three volumes and three lattice irreps. Solid black lines are
the energy levels extracted from a variational analysis. The dashed lines are the expected non-
interacting levels and the orange boxes are possible 7™ scattering states
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Fig. 2.14 The phase shiftin / = 2, for/ = 0 and / = 2 at a pion mass of 396MeV

near future and new theoretical frameworks in scattering [130] hint at interesting
prospects for further results.
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2.6 Summary

There is much exciting work in spectroscopy that I have been unable to cover in
these lectures and I refer the reader to the proceedings of recent Lattice conferences
for further details. I chose to focus on methods, both old and new, for the basic
building blocks of spectroscopy and hopefully described their applications as well
as some of the attendant pitfalls. Lattice hadron spectroscopy is progressing rapidly
at the moment and new ground-breaking calculations and methods are emerging. We
can also expect many new discoveries and data for existing and planned experiments
in the next ten years. The challenge is for lattice calculations to keep pace!
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