
Chapter 1
Lattice QCD: A Brief Introduction

H.B. Meyer

Abstract A general introduction to lattice QCD is given. The reader is assumed
to have some basic familiarity with the path integral representation of quantum
field theory. Emphasis is placed on showing that the lattice regularization provides
a robust conceptual and computational framework within quantum field theory.
The goal is to provide a useful overview, with many references pointing to the
following chapters and to freely available lecture series for more in-depth treatments
of specifics topics.

1.1 Introduction and Scope

Lattice QCD is a framework in which the strong interactions can be studied from
first principles, from low to high energy scales. It is a mature subject started in
1974 [1]. Deep inelastic experiments had shown that in reactions involving a very
high momentum transfer, weakly coupled quarks appear as the prominent degrees
of freedom at the interaction point. The asymptotic states of the theory, however,
were clearly bound states of quarks called hadrons. Lattice QCD provided for
the first time a framework in which this apparent dichotomy could be addressed.
However, due to the complexity of non-perturbative phenomena at low energies, it
is only with the advent of supercomputers that the approach acquired the potential
of being quantitatively predictive [2]. By now, lattice QCD is an important source
of information for tests of the Standard Model, where it provides results for
various hadronic matrix elements that are complementary to those obtained using
phenomenological approaches. It has also become a viable basis for calculations of
nuclear few-body quantities (see chapter “Nuclear Physics from Lattice QCD”), and
for the exploration of part of the QCD phase diagram (chapter “High Temperature
and Density in Lattice QCD”).

The goal of this introduction is to give a concise overview of the theoretical
basis on which the lattice QCD calculations described in the following chapters
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rest. Several textbooks are available [3–6] for more detailed introductions. Quantum
field theory has many facets, and those that are of central importance in lattice QCD
are not necessarily the ones most emphasized in standard QFT textbooks, which are
mostly concerned with the perturbative calculation of the scattering amplitudes. The
presentation is meant to help the interested reader orient himself in the subject, and
also to provide the young practitioner with a minimum background to embark on a
lattice calculation. A number of excellent lecture series on more specific topics are
freely available on the arXiv preprint server, and often I refer the reader to them.
The reader is assumed to have had some exposure to the path integral formulation
of quantum field theory, and to have some familiarity with the basics of strong
interaction physics.

1.2 The Lattice Formulation of Quantum Field Theory

In this section we introduce lattice field theory as a way to ‘discretize’ continuum
field theories. The Euclidean path integral is introduced, but the discussion remains
largely at the classical level; quantum effects are treated in the next sections. We
treat the cases of the scalar, Dirac spinor and (non-Abelian) gauge fields.

1.2.1 Scalar Field Theory

In this chapter we will be working entirely in d -dimensional Euclidean space; the
scalar product of two vectors reads a � b D a�ı��b� D a�b� and there is no
distinction between covariant and contravariant indices.

The Euclidean partition function for a real scalar field � reads

Z D
Z
D� exp.�SŒ��/ (1.1)

with the measure formally defined as D� D Q
x d�.x/. In continuum field theory,

the action in d spacetime dimensions is defined as

SŒ�� D
Z
ddx

�
1

2
.@��.x//

2 C 1

2
m2�2 C 1

4Š
��4

�
: (1.2)

The parameter m corresponds to the mass of the scalar particle and � to the
strength of its self-interaction. The path integral measure needs to be given a precise
meaning, since the partition function (1.1) involves an integral over an accountable
number of degrees of freedom. If a perturbative treatment of the theory is desired,
propagators and Feynman rules can nonetheless be derived and the corresponding
momentum integrals can be regulated using dimensional regularization.
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The lattice regularization provides an intuitive way of rendering the number
of degrees of freedom countable and all correlation functions finite. The limit of
the lattice spacing going to zero can be taken once the (renormalized) correlation
functions have been calculated; it is referred to as the ‘continuum limit’. Here the
interactions do not have to be treated perturbatively.

We will restrict ourselves to four-dimensional cubic lattices,

� D
n
x 2 R

d
ˇ̌
x D a n; n 2 Z

d
o
: (1.3)

The length a is referred to as the lattice spacing. A lattice field �.x/ is the
assignment of a real number to every point on the lattice.

We write unit vectors in the four directions as O�, � D 0; 1; : : : d . In order
to formulate an action for the lattice field theory, it is natural to introduce the
discretized forward and backward derivatives

@��.x/ D 1

a
.�.x C a O�/ � �.x//; @?��.x/ D 1

a
.�.x/� �.x � a O�//;(1.4)

as well as the symmetric derivative Q@� D 1
2
.@� C @?�/. Discretizing the continuum

action in the same way one would discretize differential equations, (making the
simplest choices) we arrive at

SŒ�� D ad
X
x

�
1

2
.@��.x//

2 C 1

2
m2�.x/2 C 1

4Š
��.x/4

�
: (1.5)

Exercises

1. Show that the finite-difference operators @�, @�
� all commute.

2. Show the following properties of the forward and backward derivatives:

@�.�.x/ .x// D @��.x/ .x/ C �.x/@� .x/C a@��.x/@� .x/;(1.6)

ad
X
x

�.x/@��.x/ D �ad
X
x

@�
��.x/ �.x/: (1.7)

3. Show that in the � ! 1 limit, the scalar lattice action reduces to the Ising model

SIsing D �	
X
x


.x/
.x C a O�/ (1.8)

with the rescaled field 
.x/ taking values in Z2 D fC1;�1g. Remember that
additive constants in the action do not influence correlation functions and can be
dropped.
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4. Generalize the lattice treatment of the scalar field theory to a complex scalar
field, and to a two-component complex scalar field. The latter case is the relevant
model for the Standard Model Higgs.

1.2.1.1 Analysis in Momentum Space

It is worth recalling the representation of lattice fields in momentum space, perhaps
familiar to the reader from condensed matter physics. If we set

Q�.p/ D ad
X
x

e�ipx�.x/; (1.9)

then clearly Q�.p C 2�
a
n/ D Q�.p/ for n 2 Z

d . The independent momenta are
therefore restricted to the Brillouin zone,

B D
n
p 2 R

d
ˇ̌
ˇ jp�j � �

a

o
(1.10)

and the position-space field can be written as

�.x/ D
Z
B

ddp

.2�/d
eipx Q�.p/: (1.11)

This representation shows very clearly that the lattice thus introduces a momentum
cutoff of order 1

a
, since higher-momentum modes do not appear in Eq. (1.11).

Exercises

1. Show that in momentum space the forward and backward derivatives operators
act multiplicatively with the factors

@� �! 1
a
.eiap� � 1/; (1.12)

@�
� �! 1

a
.1 � e�iap�/; (1.13)

Q@� �! i Vp�; (1.14)

4 �
X
�

@�
�@� �! � Op2; (1.15)

where

Vp� � 1
a

sin.ap�/; Op� � 2
a

sin. 1
2
ap�/: (1.16)
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2. Show that the propagator is given by

h�.x/�.y/i D
Z
B

ddp

.2�/d
eip.x�y/

Op2 Cm2
(1.17)

D
Z �=a

��=a
dd�1p
.2�/d�1

e�˝p jx0�y0jCip.x�y/

2
a

sinh.a˝p/
(1.18)

with ˝p D 2
a

asinh. a
2

q
Op2 Cm2/. The second equality is best established using

contour integration (see Sect. 1.2.2.2).

1.2.1.2 Symmetries

A very important aspect of any regularization is, how much symmetry of the original
action (1.2) it preserves. More precisely, the question is which of the discrete
symmetries and which of the continuous symmetry generators are preserved. It is
clear that translations, rotations and boosts are no longer continuous symmetries of
the lattice action. This is a general downside of the lattice regularization: it breaks
space-time symmetries, i.e. the Poincaré group, and only a discrete subgroup remain
as a symmetry. Recalling that Noether’s theorem applies to continuous symmetries,
this implies that on the lattice we cannot expect to find four conserved currents
associated with space-time symmetries (the energy-momentum tensor). Fortunately
this does not represent an obstacle to most calculations, for reasons explained below.

Exercise Give the list of symmetries of the complex scalar field theory on the
lattice. Apart from Poincaré symmetry, have any other symmetries of the continuum
theory been broken by the regularization? Give the expression of the conserved
current associated with the U(1) symmetry transformation

�0.x/ D ei˛�.x/; .��/0.x/ D ��.x/e�i˛: (1.19)

1.2.2 Fermions

From here on, we consider field theories in four spacetime dimensions. In the
continuum Euclidean theory, the action for a Dirac fermion of mass m reads

SfŒ ; N � D
Z
d4x N .x/.��@� Cm/ .x/ (1.20)
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where all four 4 � 4 matrices �� are hermitian and satisfy f��; ��g D 2ı�� .
Correspondingly, the propagator, which coincides with the Green’s function of
.��@� Cm/, reads

h .x/ N .y/i D
Z

d4p

.2�/4
eip.x�y/

ip=Cm
(1.21)

with p= � p���. Via Wick’s theorem, n-point functions can be expressed as a sum
of products of propagators with appropriate minus signs.

The original Wilson formulation of fermions on the lattice assigns a Dirac spinor
 .x/ to every lattice site x 2 �. The corresponding action [1] reads

SfŒ ; N � D a4
X
x

N .x/.Dw Cm/ .x/; (1.22)

Dw D
X
�

�
�� Q@� � a@�

�@�

�
: (1.23)

The first-order derivatives are discretized symmetrically in the first term, but an
additional term proportional to the lattice Laplacian operator has been added. It is
clear that the first-order derivatives alone would not couple neighbouring points,
thereby not attributing a large action to certain high-momentum modes; this feature
would lead to unwanted additional long-range degrees of freedom called ‘doublers’.
The doubling problem is fixed by the addition of the Laplacian term. A more precise
analysis will be given below in momentum space.

Exercises

1. Verify that the following transformations are symmetries of the Wilson action:
Parity:

 .x/ ! �0 .x0;�x/; N .x/ ! N .x0;�x/�0 I (1.24)

Euclidean time reversal: with �5 � �0�1�2�3,

 .x/ ! �0�5 .�x0;x/; N .x/ ! N .�x0;x/�5�0 I (1.25)

Charge conjugation1:

 .x/ ! . N .x/�0�2/>; N .x/ ! .�0�2 .x//
>: (1.26)

1This transformation law applies for certain representations of the Dirac matrices, e.g.

�0 D
�
0 1

1 0

�
; �i D

�
0 �i
 i
i
 i 0

�

with 
i the Pauli matrices.
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2. Give the expression of the conserved current associated with the U(1) symmetry
transformation

 0.x/ D ei˛ .x/; N 0.x/ D N .x/e�i˛: (1.27)

3. With respect to the obvious scalar product of lattice fermion fields, show that the
Wilson-Dirac operator satisfies the �5-hermiticity relation

D

w D �5Dw�5: (1.28)

1.2.2.1 Path-Integral Representation of Correlation Functions

Wick’s theorem for fermionic n-point functions (see for instance [7], Sec. 4.2.2)
has a representation in terms of a path integral over Grassmann variables. Let us
recall how this works. Let �1; : : : ; �n and N�1; : : : ; N�n be anticommuting generators
of a Grassmann algebra. Let also � and N� be n-component vectors of anticommuting
variables and A an n � n c-number matrix. If the ‘integration’ rules are defined as

Z
d�i D

Z
d N�i D 0; (1.29)

Z
d�i �j D

Z
d N�i N�j D ıij; (1.30)

Z
d�i N�j D

Z
d N�i �j D 0; (1.31)

then the Gaussian integral for the generating functional

ZŒ�; N�� �
Z
d�1 : : : d�n d N�1 : : : d N�n (1.32)

exp
�

�
X
i;j

. N�iAij�j /C
X
i

. N�i �i C N�i�i /
�

is given by

ZŒ�; N�� D c � det.A/ exp
� X

i;j

N�i .A�1/ij�j
�
: (1.33)

Note that the determinant appears in the numerator rather than in the denominator.
Applying this machinery to a lattice fermion field (�i WD  ˛.x/,A WD DwCm), one
obtains the following ‘path-integral’ representation of the lattice n-point functions,

h .x1/ : : :  .xn/ N .y1/ : : : N .yn/i (1.34)

D 1

ZŒ0; 0�

Z
DŒ �DŒ N � .x1/ : : :  .xn/ N .y1/ : : : N .yn/ exp.�SfŒ ; N �/
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with

DŒ � D
Y
˛;x

d ˛.x/; DŒ N � D
Y
˛;x

d N ˛.x/: (1.35)

Since Wick’s theorem gives all correlation functions in terms of the propagator,
only the latter remains to be specified. Using Eq. (1.14, 1.15), the expression for the
propagator is easily found,

h .x/ N .y/i D
Z
B

d4p

.2�/4
eip.x�y/

i
P

�. Vp���/C 1
2
a Op2 Cm

: (1.36)

The spectrum of a theory is given by the location of the poles in its two-point
functions. To find the poles, we first rewrite the momentum-space propagator as

1

i
P

�.�� Vp�/C 1
2
a Op2 Cm

D �i P
�.�� Vp�/C 1

2
a Op2 Cm

Vp2 C . 1
2
a Op2 Cm/2

: (1.37)

Exercises

1. Show that

Vp2� D Op2� � 1

4
a2 Op4�: (1.38)

2. Use this identity to write the denominator of Eq. (1.37) as

Vp2 C . 1
2
a Op2 Cm/2 D ˛.p/ Op20 C 
.p/; (1.39)

˛.p/ � 1C am C 1

2
a2 Op2

; (1.40)


.p/ � m2 C .1C am/ Op2 C 1

2
a2

X
k<l

Op2k Op2l : (1.41)

3. Conclude that the poles of the propagator are located at p0 D ˙i!p with

!p � 2

a
asinh

�a
2

p

.p/=˛.p/

�
D

p
m2 C p2 C O.a/: (1.42)

1.2.2.2 The Propagator in the Time-Momentum Representation

A representation of correlation functions that is particularly useful in lattice QCD is
the mixed time-momentum representation .x0;p/. The reason is that it allows for a
spectral interpretation in terms of energy eigenstates of definite overall momentum
p. Having located the poles of the propagator, its time-momentum representation
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can be obtained by a contour integration using the residue theorem. We choose a
rectangular contour with one side coinciding with the segment Œ��=a; �=a� on the
real axis, and long vertical sides going up for x0 � y0 > 0. The contributions from
the vertical sides of the rectangle cancel each other, and the contribution from the
horizontal side at large Imp0 is exponentially small; therefore, the

R �=a
��=a integral is

entirely given by the residue of the integrand at the pole p0 D Ci!p ,

h .x/ N .y/i x0>y0D
Z �=a

��=a
d 3p

.2�/3
e�!p.x0�y0/eip�.x�y/�.p/; (1.43)

�.p/ D
8<
:

�i�� Vp� C 1
2
a Op2 Cm

˛.p/.�i/ @ Op20
@p0

9=
;
p0Di!p

: (1.44)

Explicitly, the result is

h .x/ N .y/i x0¤y0D
Z �=a

��=a
d 3p

.2�/3
e�!p jx0�y0jCip�.x�y/

2Ep

� (1.45)

�
sign.x0 � y0/

1

a
sinh.a!p/�0 � i� � Vp C 1

2
a Op2 Cm � a
.p/

2˛.p/

�
:

with Ep defined in Eq. (1.47). The case x0 < y0 is treated analogously and can be
checked by using relation (1.28).

Exercises

1. Show that

�.p/ D 1

2Ep

�
1

a
sinh.a!p/�0 � i� � Vp C 1

2
a Op2 Cm � a
.p/

2˛.p/

�
; (1.46)

Ep � ˛.p/

a
sinh.a!p/: (1.47)

2. For the case x0 D y0, show by direct calculation of the p0 integral that

h .x/ N .y/i x0Dy0D
Z �=a

��=a
d 3p

.2�/3
eip�.x�y/

2Ep

� (1.48)

�
�i� � Vp C 1

2
a Op2 CmC 2Ep � a
.p/

2˛.p/

�
:

3. Verify, using Eqs. (1.48) and (1.45), that the propagator satisfies

.Dw Cm/h .x/ N .y/i D 1

a4
ıx;y: (1.49)
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1.2.3 Gauge Fields

We start by recalling a few properties of gauge fields in the continuum. The fermion
theory (1.20) has a global U(1) symmetry. If the single fermion field is replaced
by anN -tuplet (corresponding toN ‘colors’), the global symmetry becomesU.N/.
Here we will focus on the SU(N ) subgroup. Promoting the latter symmetry to a local
one requires introducing gauge fields A�.x/ D Aa�.x/T

a 2 su.N / belonging to the
Lie algebra. We will use traceless hermitian generators T a, normalized according to
Tr fT aT bg D 1

2
ıab and satisfying the commutation relations ŒT a; T b� D if abcT c:

The structure constants f abc are real and totally antisymmetric. With �.x/ 2
SU.N /, the gauge-transformed fields are defined as

 �.x/ D �.x/ .x/; N �.x/ D N .x/�.x/�1; (1.50)

A��.x/ D �.x/A�.x/�.x/
�1 C i�.x/@��.x/

�1: (1.51)

The covariant derivative of the fermion field

D� .x/ D .@� � iA�.x// .x/ (1.52)

then transforms like  .x/ and the fermion action

SfŒ ; N � D
Z
d4x N .x/.��D� Cm/ .x/ (1.53)

is gauge invariant. The field strength tensor

G�� D Ga
��T

a � @�A� � @�A� � i ŒA�;A�� (1.54)

(or equivalentlyGa
�� D @�A

a
� � @�Aa� C f abcAb�A

c
�) transforms covariantly,

G�
��.x/ D �.x/G��.x/�.x/

�1: (1.55)

Fig. 1.1 Geometric
interpretation of the
dynamical variables  .x/
and U�.x/ on a cubic
spacetime lattice. The product
U�.x/ .x C a O�/ transforms
in the same way as  .x/
under the gauge
transformation (1.50). The
plaquette defined in
Eq. (1.64) is also displayed

�
�ν̂

μ̂

�

ψ(x) ψ(x + aμ̂)
��

Uμ(x)

�

� ��

Pμν(y)

y
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In particular, the gauge action

SgŒA� D 1

2g20

Z
d4x Tr fG��.x/G��.x/g (1.56)

is gauge invariant.
The logic to be followed is similar on the lattice. We consider a gauge

transformation acting on a lattice fermion field as in Eq. (1.50). The raison d’être of
the gauge field is to make finite-difference operators gauge covariant. Specifically,
if U�.x/ 2 SU.N / is a variable which transforms as

U�
� .x/ D �.x/U�.x/�.x C a O�/�1; (1.57)

then

r� .x/ � 1

a

�
U�.x/ .x C a O�/ �  .x/� : (1.58)

transforms like  .x/ itself (see Fig. 1.1). Because of its role in the finite-difference
operator, U�.x/ is naturally associated with the ‘link’ joining the points x and x C
a O�. It is therefore referred to as a ‘link variable’. Similarly,

r�
� .x/ � 1

a

�
 .x/ � U�.x � a O�/�1 .x � a O�/� : (1.59)

also transforms like  .x/.
From the classical point of view that the lattice action ought to be a discretization

of the continuum action, the question of the relation between the link variableU�.x/
and the continuum gauge field A�.x/ poses itself. To answer this question we recall
the definition of a Wilson line. If x.s/ is a path from x.0/ D y to x.1/ D z, the
Wilson line for a given gauge field is defined by a path-ordered exponential,

U.ŒA�I z; y/ D P exp
�
i

Z 1

0

ds
dx�
ds

A�.x.s//
�

(1.60)

� 1C
1X
nD1

in
Z 1

0

ds1

Z s1

0

ds2 : : :
Z sn�1

0

dsn
dx�1
ds1

: : :
dx�n
dsn

� (1.61)

� A�1.x.s1// : : : A�n.x.sn//:

A crucial property of the Wilson is its transformation under a gauge transformation
(1.51) of the field A�.x/,

U.ŒA��I z; y/ D �.z/U.ŒA�I z; y/�.y/�1: (1.62)
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Comparing this transformation law to Eq. (1.57), we conclude that the link variable
can (at the classical level) be thought of as the straight Wilson line going from
x C a O� to x, defined on the continuum gauge field.

Exercises

1. Show that Ut � U.ŒA�I x.t/; y/ satisfies .@t C Px�.t/A�.x.t///Ut D 0 with
U0 D 1.

2. Prove that U.ŒA�I z; y/ 2 SU.N /. Hint: show that @t .U


t Ut / D 0.

3. Prove relation (1.62). Hint: show that �.z.t//U.ŒA�I z.t/; y/�.y/�1 satisfies the
differential equation in Exercise (1) for the gauge transformed field A�.

1.2.4 Lattice QCD

Given the transformation property (1.58) of the covariant derivative, the following
fermion action is gauge invariant,

SfŒ ; N ;U � D a4
X
x

N .x/.Dw Cm0/ .x/; (1.63)

Dw D
X
�

.�� Qr� � ar�r�
�/

with r�, r�
� and Qr� respectively the forward, backward and symmetrized covariant

derivatives, Qr� D 1
2
.r� C r�

�/. More generally, operators such as

N .x/�� .x/; N .x/��r� .x/; and N .z/U�1.z/ : : : U�n.y � a O�n/ .y/;

where a quark and an antiquark field are joined by a product of link variables along
a given path, are gauge invariant.

Gauge invariant operators made solely of the link variables are easily con-
structed. The gauge transformation of a Wilson line returning to its starting point,
U.ŒA�Iy; y/ is a similarity transformation (see Eq. (1.57)), and therefore the trace
of the loop is gauge invariant. The simplest non-trivial Wilson loop on the lattice is
the plaquette

P��.x/ D U�.x/U�.x C a O�/U�.x C a O�/�1U�.x/�1: (1.64)

The trace Tr fP��.x/g is gauge invariant. For a long-wavelength classical continuum
field A�.x/, it must therefore be possible to represent it as a linear combination
of local gauge invariant operators with appropriate powers of the lattice spacing



1 Lattice QCD: A Brief Introduction 13

a to get the dimensions right. The lowest-dimensional non-trivial gauge invariant
operator is Tr fG��.x/G�
 .x/g. A straightforward calculation then shows that

P��.x/ D N � 1

2
a4Tr fG��.x/G��.x/g C : : : (1.65)

The simplest lattice action for the gauge fields is thus

SgŒU � D 2

g20

X
x

X
�<�

Re Tr f1� P��.x/g: (1.66)

The total action

SŒU; ; N � D SfŒU;  ; N �C SgŒU � (1.67)

can thus be regarded (for N D 3) as a discretization of the continuum QCD action.
For every quark flavor u; d; s; c : : : , a term (1.63) is added to the action with the
appropriate (bare) quark mass.

The details of the action (1.67) appear quite arbitrary, however, the precise form
of the action should not matter—in a sense specified in Sect. 1.3—in the regime
where the correlation lengths are much longer than the lattice spacing. For instance,
another widely used type of fermion action is the Kogut-Susskind or ‘staggered’
action [8,9]. See [10] for a description of staggered fermions as they are used today.

Exercise How do the discrete symmetries C , P and T act on the lattice gauge
fields for the action (1.67)?

1.2.4.1 The Path Integral

So far we have presented a lattice action for the fermion and gauge fields. In order
to fully formulate the quantum theory, we need to specify the integration measure in
the path integral. While this was done in Sect. 1.2.2.1 for the fermions, the definition
of the measure

DŒU � D
Y
x;�

dU�.x/ (1.68)

still needs to be given. With an integration measure in hand, expectation values are
defined as2

hO1 : : :Oni D 1

Z

Z
DŒU �

Z
DŒ �DŒ N � O1 : : :On exp.�SŒU; ; N �/: (1.69)

2The partition function Z is chosen such that h1i D 1.
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The measure is required to be ‘SU.N / invariant’; that is

Z
dU f .UV/ D

Z
dU f .VU/ D

Z
dU f .U / 8V 2 SU.N /: (1.70)

An immediate consequence of this property is the following. Suppose we calculate
the expectation value of OŒ ; N ;U �. The latter operator can be decomposed into
irreducible representations of the SU(N ) symmetry group associated with any given
point x. It then follows from Eq. (1.70) and the gauge invariance of the action that
all the non-singlet contributions vanish. A further crucial observation is that gauge-
fixing is not required for the path integral to make sense, because the volume of the
gauge group is finite,

Z Y
x

d�.x/ D 1: (1.71)

An explicit form for the measure is given in the exercise below.

Exercises If U 2 SU.N / is parametrized by t1; : : : tn, n � N2 � 1, let

gij � �2Tr
n
.U�1 @

@ti
U / .U�1 @

@tj
U /

o
(1.72)

1. Verify that gij is a positive-definite metric on SU(N ).
2. Let

dU D c dt1 : : : dtn
p

det.g/ (1.73)

with c chosen such that
R

dU D 1. Show that the measure is independent of the
parametrization.

3. Show that property (1.70) is satisfied.

1.3 The Approach to the Continuum and Renormalization

We give an overview of how the weak-coupling expansion is set up in the lattice
regularization. A systematic and rigorous derivation of the expansion can be found
in [11]; many explicit formulae are given in [12]; and a general strategy for
numerical perturbative computations was first given in [13]. We then discuss the
renormalization group, the approach to the continuum and the ‘improvement’ of the
lattice theory.



1 Lattice QCD: A Brief Introduction 15

1.3.1 The Weak-Coupling Expansion

The perturbative expansion is based on the idea that for g0 very small, the path
integral should be dominated by the fields that minimize the action. Perturbation
theory is then a saddle point expansion around such field configurations. The gauge
fields minimizing SgŒU � are of the form U�.x/ D �.x/�.x C a O�/�1 and are
thus gauge-equivalent to the ‘unit-configuration’ U�.x/ D 1 8�; x. The small
fluctuations of the link variables are then parametrized by a gauge potential,

U�.x/ D exp.ig0aA�.x//; A�.x/ D Aa�.x/T
a: (1.74)

If the plaquette entering the action is expanded in the A�.x/,

P��.x/ � exp.ig0a
2G��.x//; G��.x/ D Ga

��.x/T
a; (1.75)

then one finds

SgŒU � D a4

4

X
x

Ga
��.x/G

a
��.x/C O.g20/; (1.76)

G��.x/ D @�A�.x/ � @�A�.x/C O.g0/: (1.77)

The relations familiar from continuum field theory are thus recovered, with the
derivatives replaced by finite differences. One can also show that the Jacobian of
the change of integration variables is of the form

dU�.x/ D
� N2�1Y
aD1

dAa�.x/
� �
1C g20N

12
a2Ab�.x/A

b
�.x/C : : :

�
: (1.78)

Although the lattice QCD path integral exists even prior to gauge fixing, an
important aspect of perturbation theory is to factor out the integration over the
gauge group. One can show that the condition @�

�A� D 0 is equivalent to the
condition that the variation �@!A�.x/ of the field A�.x/ under any infinitesimal
gauge transformation �.x/ D 1C i�!.x/ is orthogonal to A�.x/ itself3; it is thus
a natural gauge-fixing condition. The result of the procedure is that the perturbative
expansion of an observable O is given by the functional integral

hOi D 1

Z

Z
DŒU �DŒc�DŒ Nc�OŒU � exp.�StotŒA; c; Nc�/; (1.79)

3With respect to the scalar product .A; B/ D a4
P

x;�;a A
a
�.x/B

a
�.x/.



16 H.B. Meyer

where c and Nc are Fadeev-Popov ghosts, and

StotŒA; c; Nc� D SgŒU �C SgfŒA�C SFPŒA; c; Nc�; (1.80)

SFPŒA; c; Nc� D a4
X
x

Nca.x/4ab
FPc

b.x/; (1.81)

SgfŒA� D �0a
4

2

X
x

@�
�A

a
�.x/@

�
� A

a
�.x/: (1.82)

It is understood that U�.x/ D exp.ig0aA�.x// and that the integration measure
is given by Eq. (1.78), and the Fadeev-Popov operator is given by 4FP!.x/ �
g0@

�
� @!A�.x/.

The gauge-fixed action leads to Feynman rules in the usual way. The gauge-field
and ghost propagators read

hAa�.x/Ab�.y/i D ıab
Z
B

d4p

.2�/4
ei.p.x�y/C 1

2 ap�� 1
2 ap�/

Op2 � (1.83)

�
ı�� � .1 � ��1

0 /
Op� Op�

Op2
�
;

hca.x/cb.y/i D ıab
Z
B

d4p

.2�/4
eip.x�y/

Op2 : (1.84)

In the continuum formulation, a momentum cutoff can be problematic in gauge
theories since the modes that are cut off depend on the gauge. The way the lattice
regularization preserves the consequences of gauge invariance (BRS symmetry [14])
while introducing a momentum cutoff is that more and more vertices appear at
higher orders.

The fermions also lead to Feynman rules as in the continuum; the propagator was
given in Eq. (1.36), and the quark-quark-gluon vertex is given by

ig0.T
a/ij

�
�� cos. 1

2
a.p C p0/�/ � i sin. 1

2
a.p C p0/�/

�
; (1.85)

with p the incoming momentum of a quark with color index j and p0 the outgoing
momentum of the other quark line.

The vertices rapidly become algebraically complex to write down. It soon
becomes essential to employ an automated way of generating the Feynman
rules [13], see [15] for an overview of recent results obtained in this way. High-
order lattice perturbation theory has been used to determine the strong coupling
constant [16].
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1.3.2 The Renormalization Group

Lattice QCD (see Eqs. (1.63), (1.66), (1.67)) can formally be viewed as a four-
dimensional classical statistical mechanics system. Thus removing the cutoff from
the quantum field theory, i.e. taking the continuum limit, can be viewed as the
approach to a second order phase transition where all correlation lengths in lattice
units4 diverge. First the values of the parameters for which this happens must be
found. We consider initially the case of the pure-gauge theory.

For illustration, we consider one particular observable that may be computed in
perturbation theory, the rectangular Wilson loop

L�.x; d/ � U�.x/U�.x C a O�/ : : : U�.x C .d � a/ O�/; (1.86)

W��.x; d; d
0/ � L�.x; d/L�.x C d O�; d 0/L�.x C d 0 O�; d/�1L�.x; d 0/�1 (1.87)

As we shall see in Sect. 1.4.1, if we define a static potential V.R/ via

hW0k.x;R; T /i T!1D c.R/ exp.�TV.R//C : : : ; (1.88)

it has the interpretation of the potential energy between two quarks in the limit where
the latter become infinitely massive. To remove an ultraviolet-divergent additive
constant, we consider the ‘static force’ F.R/ � � @V

@R
. Computationally, the force

also depends on the bare coupling and the lattice spacing.5 A one-loop calculation
in the pure SU(N) gauge theory yields the result

F.R; g0; a/
R�aD CF

4�R2

�
g20 C 11N

24�2
g40.log.R=a/C c/C O.g60/

�
(1.89)

with CF D .N 2 � 1/=.2N / and c a numerical constant. Now, we expect the force
at a fixed separation R to reach a finite limit when a ! 0. The form (1.89) clearly
shows that this is only possible if g0 is adjusted as a function of a. How exactly
it must be adjusted can be worked out by requiring that F actually be independent
of a,

0 D a
d

da
F.R; g0.a/; a/ D

�
a
@

@a
� ˇ.g0/ @

@g0

�
F.R; g0; a/

ˇ̌
ˇ
g0Dg0.a/

; (1.90)

with

ˇ.g0/ � �a@g0
@a
: (1.91)

4The correlation lengths � are defined by the fall-off of correlation functions, C.x/ �
exp.�jxj=�/.
5Dimensional analysis implies F.R; g0; a/ D 1

a2
OF .R=a; g0/.
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Inserting the one-loop expression (1.89) into Eq. (1.90), one finds

ˇ.g0/ D �b0g30; b0 D 11N

48�2
: (1.92)

The definition (1.91) of ˇ.g0/ can now be read as a differential equation for g0. The
negative value of the beta function means that g0 must be made smaller in order to
reduce the lattice spacing. The asymptotic solution of the differential equation is

g20 D � 1

b0 log.a�/
C : : : (1.93)

This is the expression of the ‘asymptotic freedom’ property of QCD at the level of
the bare regularized theory. Note that an arbitrary mass scale � had to be introduced.
Its appearance is sometimes referred to as dimensional transmutation.

More generally, consider first the pure SU(N) gauge theory in perturbation
theory. The bare parameters of the theory, g0 and �0, as well as the momentum-
space bare n-point correlation functions G0.p1; : : : ; pn/ of the gauge potential
Aa�, can be traded for renormalized parameters g; � and renormalized correlation
functions G.p1; : : : ; pn/. The latter have a finite continuum limit; they are well-
defined functions of the external momenta, g, � and a renormalization scale � that
is introduced when defining the finite-part of correlation functions. One could say
that the divergences have been absorbed into the bare parameters. The latter can
be adjusted as a function of the lattice spacing in such a way that g, � and � stay
constant as a ! 0. The bare coupling g0 can then be expressed as a function of a�
and a renormalized coupling g. For instance, a renormalized coupling based on the
static force may be introduced by setting

F.R/ D CFg
2.R/

4�R2
(defines g.R/): (1.94)

The perturbative result (1.89) then shows that

g2.r/ D g20 C 11N

24�2
g40 log.Nr=a/C O.g60/; Nr � r exp.c/: (1.95)

In the presence of fermions, the coefficient of the beta function is modified,

b0 D 11N � 2Nf

48�2
: (1.96)

Thus asymptotic freedom remains a property of the theory as long as Nf <
11
2
N .

In addition to g0 and �0, the fermion masses need to be renormalized. While in the
continuum theory, chiral symmetry prevents the appearance of an additive correction
to the masses, the explicit breaking of chiral symmetry by the Wilson action (see
Sect. 1.5.2) means that a tuning of the bare mass m0 to a ‘critical’ value mc is
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necessary in order to reach the point where the renormalized quark massm vanishes.
One writes

m D Zm.m0 �mc/: (1.97)

In the statistical-mechanics language, g0 D 0 corresponds to a free-field theory
and the critical point is thus a Gaussian one. However, the quantities that are
of interest from the quantum field theory point of view are typically ratios of
correlation lengths corresponding (at the non-perturbative level) to ratios of hadron
masses.

1.3.3 The Continuum Limit and Universality

We have so far looked at a specific discretization of the continuum action, the Wilson
action. There is a degree of arbitrariness in the choice of the discretization. However,
the continuum limit is universal, as implied by the theory of critical phenomena.
Ratios of correlation lengths associated with source fields of different quantum
numbers do not depend on the details of the action. Only the list of long-wavelength
modes, the dimensionality of space and the symmetries of the action matter.

As far as the quantum field theory is concerned, the property of universality
implies in particular that if physical renormalization conditions are imposed (e.g.
a momentum-subtraction scheme, or the renormalized coupling defined from the
static NQQ force), the results will be exactly the same as if dimensional regu-
larization had been used. If a renormalization scheme is used which is tied up
with the regularization (such as minimal subtraction), the results differ by a finite
renormalization of the parameters (g; Nm;�) and the fields. We refer the reader to
[17] for an in-depth discussion of renormalization.

In practical calculations it is important to know at what rate the continuum limit
is approached. An important framework to analyze this question was developed by
Symanzik [18]. The idea is to write down an effective (continuum) theory for the
long-wavelength6 degrees of freedom of the lattice fields. The effective theory is
non-renormalizable, but comes with a clear power-counting scheme. The lowest-
order Lagrangian, if all goes according to plan, is the continuum QCD Lagrangian.
All higher-dimensional operators consistent with the symmetries of the lattice
action contribute, however their coefficients are suppressed by powers of the lattice
spacing. The discussion is thus analogous to the low-energy description of beyond
the Standard Model physics if one identifies a�1 with the scale of ‘new physics’.
One unusual aspect is that here not only Lorentz-scalar operators can appear, due to
the breaking of Lorentz symmetry by the lattice regulator.

6Compared to the lattice spacing.
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In the language of the Symanzik effective field theory, the dimension-three
operator N  must be included with a coefficient of order 1=a for the case of the
Wilson action. This statement is equivalent to the additive renormalization of the
quark mass in Eq. (1.97). However, direct inspection of the symmetries shows that
no other operators of dimension d < 5 appear that are not already included in the
naive continuum limit of the Wilson action. This is the real reason why Wilson
lattice QCD is a valid regularization of QCD. The discretization of the continuum
QCD action in a classical way was, in retrospect, only a useful guide. However,
this procedure did allow for the setup of the perturbative expansion in a relatively
standard way.7

From a practical point of view, the most important prediction of Symanzik’s
analysis applied to the Wilson action is that the continuum limit is approached
asymptotically with a correction term of O(a) multiplying a power series in log.a/.
In the pure gauge theory, the corrections are of order a2. It should be emphasized
that the approach to the continuum is predictable because of asymptotic freedom.
Since the continuum limit is at g0 D 0, the scaling dimension of operators is in first
approximation equal to their naive engineering dimension.

1.3.4 Improvement

In practice, the approach to the continuum with O(a) corrections can lead to large
systematic uncertainties on the final results, since it is computationally very costly
to reduce the lattice spacing. Therefore, a strategy has been developed to accelerate
the approach to the continuum [20, 21].

One way to formulate the problem is the following. One wants to tune the
coefficients of certain operators in the lattice theory such that in the action of the
Symanzik effective theory, the coefficients of the dimension-five operators vanish.
This condition guarantees for instance that the spectrum (masses and dispersion
relations of hadrons) approaches its continuum limit with O.a2/ corrections (up to
logarithms).

The symmetries of continuum QCD and the equations of motion can be used to
reduce the list of dimension-five operators in the Symanzik effective theory. Then
these operators are carried over in ‘discretized’ form to the lattice theory. It turns out
that, apart from a rescaling of the gauge action and the quark mass term, the only
new term appearing is the ‘Pauli’ or ‘clover’ term,

S ! S C i

4
cswa

5
X
x

N .x/
�� OG�� .x/: (1.98)

7Recently, the use of a gauge action with no obvious classical continuum limit, but respecting the
same symmetries as the Wilson gauge action has been studied [19].
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Here 
�� D i
2
Œ��; ��� and OG�� is a lattice-site centered discretization [20] of the

field strength tensor G�� . A condition to determine the value of the coefficient csw

that will eliminate the O(a) effects is provided by requiring that the PCAC relation
(see Sect. 1.5.1.1) be satisfied under different kinematic conditions [22]. In imposing
the condition, one must take into account that also composite operators such as the
axial current receive improvement terms.

1.4 Observables

In order to illustrate the way lattice QCD is used, we describe three types of
observables: the Wilson loop, the hadron spectrum and the chiral condensate.

1.4.1 The Wilson Loop and Its Interpretation

Apart from local operators, extended gauge-invariant operators such as

Or .x/ D NQ.x/L1.x; r/Q0.x C re1/; (1.99)

QOr .x/ D NQ0.x C re1/L1.x; r/�1Q.x/; (1.100)

can be used to probe mesons with different quantum numbers. Here Q and Q0 are
meant to represent different quark flavors. It is interesting to consider the two-point
function h QOr .x C te0/Or .x/i in the limit where the quark mass goes to infinity.

For a large quark mass, the quark propagator in a given background gauge field
can be expanded in a geometric series,

.Dw Cm/�1 D 1

m

1X
nD0

��Dw

m

�n
: (1.101)

Since Dw only couples nearest neighbours, .Dn
w /.x/ vanishes for 1

a

P3
�D0 jx�j >

n if  .x/ D uı0;x is a source field located at the origin, u being a 12-component
colored spinor. For x D .x0; 0/ with x0 > 0, the leading contribution

..Dw Cm/�1 /.x/ D exp.�x0 log.am//

2m
L0.0; x0/ .1C �0/ u (1.102)

� .1C O..am/�2//

is determined by the Wilson line joining the origin to x.
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Thus, if we perform the Wick contractions for the correlator hOr .x/ QOr .0/i, we
obtain a Wilson loop,

h QOr .x C te0/Or .x/i D c exp.�2x0 log.am// Tr fW01.x; r; t/g (1.103)

� exp.�tV.r//;

with c a constant. Writing the expectation value of the Wilson loop as the two-point
function of NQQ operators with static quarks separated by a distance r suggests
the interpretation anticipated in Eq. (1.88), namely, that it falls off exponentially in
Euclidean time, with an exponent given by the meson energy. The latter consists of
the (divergent) quark self-energies and the r-dependent interaction energy, or ‘static
potential’. The quark self-energies drop out in the force F.r/ D � @V

@r
. The latter is

often used in practice as a way of ‘setting the scale’, most commonly by defining
the reference length r0 through the condition r20F.r0/ D 1:65 [23]. The physical
value of r0 is about 0.50 fm [24].

1.4.1.1 The Strong-Coupling Expansion

The Wilson loop was originally proposed as an order parameter for the confinement
of quarks [1]. If all quarks are made very massive, the potential energy between
any two quarks has either an area law, hW0k.0; r; t/i � exp.�
rt/i, or a perimeter
law, hW0k.0; r; t/i � exp.�m.r C t//i. According to the interpretation derived
in Sect. 1.4.1, the two cases distinguish respectively between the static force F.r/
going to a non-vanishing or vanishing value at long distances.

The strong-coupling expansion is, in a sense, particularly natural on the lattice,
and simpler than the weak-coupling expansion. In this context it is customary to
introduce the parameter

u � 1

g20
(1.104)

and to expand the partition functions and observables in powers of ˇ. The Haar
measure plays a central role. Consider a single link variable U . The only non-
vanishing integrals of a monomial in components of U and U � up to order 2
included are

Z
dU D 1;

Z
dU UijU

�
lk D 1

N
ıilıjk: (1.105)

In addition, there is the ‘baryon-like’ contribution

Z
dU Ui1j1 : : : UiN jN D 1

N
�i1:::iN �j1:::jN : (1.106)
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To compute the partition function

Zu D
Z

DU exp
�

u
X
x;�;�

Tr fP��.x/g
�
; (1.107)

we write

exp
�

u
X
x;�;�

Tr fP��.x/g
�

D
Y
p

exp.uTr fPpg/ (1.108)

D
X
fnpg

u
P
p np

Y
p

1

npŠ
Tr fPpgnp ;

wherep � .x; �; �/ is the label of an oriented plaquette. Diagrammatically, in order
to compute the order un we must lay down n tiles on the cubic faces of the lattice.

Consider then the expectation of a Wilson loop,

hW0k.0; r; t/i D 1

Zu

Z
DU W0k.0; r; t/ exp

�
u

X
x;�;�

Tr fP��.x/g
�
: (1.109)

The Wilson loop contains at most a single power of any link variable. In view of
Eq. (1.105), each link variable must be ‘saturated’ by a corresponding factor of the
link variable coming from the expansion of the exponential. Let A D rt=a2. The
first non-trivial contribution appears at order uA and comes when the entire surface
of the Wilson loop is ‘tiled’ with plaquettes from the action. The integral then gives

hW0k.0; r; t/i � uA: (1.110)

Thus we have obtained an area law with

a2
 D � log u; u ! 0: (1.111)

Similarly, the mass gap mG of the pure gauge theory (corresponding to a
‘glueball’) can be computed by considering the plaquette-plaquette correlator,P3

i;jD1hPii.t; 0/Pjj.0/i � exp.�mGt/. The result is in leading order

amG D �4 log u; u ! 0: (1.112)

The reader is invited to consult [3] for a systematic discussion of the strong-coupling
expansion.
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1.4.1.2 Quark Confinement

That the theory exhibits linear confinement in the strong coupling regime g20 � 1

does not mean that this feature is present near the continuum limit (g20 	 1). As
a case in point, the ‘compact’ formulation of U(1) gauge theory admits a phase
transition at a bare coupling of order unity, beyond which the static potential is
of the Coulomb type. All numerical evidence points to a finite string tension 

in the continuum limit of SU(N 
 2) gauge theory; see for instance [25, 26].
Quite a bit can be inferred, however, by assuming that the linear potential survives
the continuum limit, and that the relevant effective degrees of freedom of a large
Wilson loop are the two transverse fluctuations of a two-dimensional sheet in four
dimensions [27, 28]. An effective bosonic string theory has been developed based
on this picture, yielding an expansion of the static potential in powers of 1=r ,

V.r/ D �C 
r � �

12r
C : : : (1.113)

The effective string theory makes even stronger predictions for the corrections
to the linear potential at large r ; see [29] and references therein. These sharp
predictions still remain to be fully tested by numerical simulations, but there is
good numerical evidence that the static potential follows the prediction (1.113).
Moreover, the spectrum predicted by the Nambu-Goto string action provides an
excellent description of the low-lying (closed-string) states [30].

1.4.2 Hadron Spectroscopy

Here we will adopt a continuum notation and consider that we are in the infinite-
volume, continuum Euclidean theory. The main purpose of this section is to
show that the spectrum of stable hadrons can be extracted from the long-distance
behavior of Euclidean correlation functions. An explicit analytic continuation of the
correlation functions to Minkowski space is not required.

For concreteness we will consider the simplest case of the pion. From Eq. (1.18),
we saw that the energy of a scalar particle could be read off from the large Euclidean
time of the propagator in the time-momentum representation. The form of the
free-field propagator, however, generalizes to (even non-perturbatively) interacting
field theories via the Källen-Lehmann spectral representation. The Heisenberg
representation, continued to Euclidean time, reads

O�.x/ D eH jx0j�iP �x O�.0/ e�H jx0jCiP �x (1.114)

Suppose we use as an interpolating operator O�.x/ D Nd�5u and write

h0j O�.x/jpi D p
�� e

�Ep jx0jCip�x: (1.115)
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Then define

G.x0;p/ �
Z
d3x e�ip�xh0j O�.x/ O�.0/
j0i D

Z
d3x e�ip�x h�.x/�.0/
i:

(1.116)

Inserting a complete set of states of total momentum p, and taking into account the
fact that the next states above the pion form a continuum of three-pion states,8

1 D
Z

d3p

.2�/32Ep

jpihpj C (projector onto states of energy> 3m� ): (1.117)

we have

G.x0;p/
jx0j!1D ��

eEp jx0j

2Ep

C O.e�3m� jx0j/: (1.118)

A typical operator that couples to the nucleon is (here C D �0�2)

�˛.x/ D �abc.u
a>C�5db/ua˛.x/: (1.119)

However, often operators are used that do not transform as a Dirac spinor under
boosts. In that case the other symmetries can still be used to constrain the possible
form of the two-point function. One can decompose

C2.x0;p/˛ˇ �
Z
d3x e�ip�xh�˛.x/ N�ˇ.0/i (1.120)

D .CC
2 .x0;p/C C�

2 .x0;p//˛ˇ; (1.121)

with

CC
2 .x0;p/ � 1

2
.1C �0/C2.x0;p/ (1.122)

D 1
2
.1C �0/

�
F.x0;p2/ � i G.x0;p2/ p � �

�
;

C�
2 .x0;p/ � 1

2
.1 � �0/C2.x0;p/ (1.123)

D 1
2
.1 � �0/

�
F.�x0;p2/� i G.x0;p2/ p � �

�
:

Charge conjugation implies that G is even in x0. Spectral positivity implies that
�0C2 is a Hermitian, positive-definite matrix. Thus, the functions F and G are real
and must satisfy

�F.x0;p2/ F.�x0;p2/ 
 p2G.x0;p2/2; (1.124)

sign.x0/ .F.x0;p2/� F.�x0;p2// 
 0: (1.125)

8One-particle states are normalized according to hp0jpi D .2�/32Epı.p � p0/.
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At zero momentum, CC
2 .x0; 0/ receives contributions only from positive-parity

baryons, while C�
2 .x0; 0/ only couples to negative-parity baryons (see the transfor-

mation of spinors under parity, Eq. (1.24)). Thus, one may extract the proton mass
mp from the long-distance part of the projected correlator

Tr fCC
2 .x0; 0/g � j�pj2 exp.�mpx0/; x0 ! C1; (1.126)

where the trace acts on the spin indices. Many more aspects of spectroscopy
calculations are covered in chapter “Lattice Methods for Hadron Spectroscopy”.

1.4.3 Spontaneous Chiral Symmetry Breaking and
Low-Energy Constants

In view of the special role of the pions in QCD as pseudo-Goldstone bosons
associated with the spontaneous breaking of chiral symmetry, both their masses and
couplings to the axial current are of interest. Consider the case where two degenerate
quark flavors, up and down, are very light and let  D .u; d />. Current-algebra
relations imply the Gell-Mann–Oakes–Renner (GMOR) relation

F 2
�m

2
�

m!0D 2m˙; ˙ D �1
2

lim
m!0

lim
V!0

h N  i; (1.127)

giving the leading-order dependence of the pion mass in terms of the quark mass.
The pion decay constant F� is defined by (the axial current Aa� is defined in
Eq. (1.143) below)

h0jAa�.0/j�bi D ip� ı
abF�; (1.128)

and its value (92.2 MeV) is extracted from the weak decay �� ! �� N��. In lattice
QCD it can be extracted for instance from the two-point function

Z
d3x hAa0.x/Ab0.0/i jx0j!1D ıab

2
F 2
�m� exp.�m� jx0j/: (1.129)

The GMOR relation (1.127) can be used to estimate the chiral condensate ˙ ,
knowing m� and F� for a range of small quark masses. However, the condensate
can also be extracted in an independent way. Consider the average spectral density
of the Dirac operator,

�.�;m/ D 1

V

1X
kD1

hı.� � �k/i: (1.130)



1 Lattice QCD: A Brief Introduction 27

The Banks-Casher relation [31] gives the condensate as the density of modes of the
Dirac operator around the origin in the chiral limit,

lim
�!0

lim
m!0

lim
V!1 �.�;m/ D ˙

�
: (1.131)

This relation has been used as a way to compute the chiral condensate in the chiral
limit [32]. Other methods exist as well,9 and a recent average given by the FLAG2
report [34] is

˙1=3 D 270.7/MeV (1.132)

in QCD with two flavors. The GMOR relation is found to be a good approximation
well beyond the physical values of the light-quark masses. The level of accuracy
reached in lattice calculations is however such that low-energy constants that appear
at higher orders in chiral perturbation theory are being determined with competitive
accuracy [34].

1.5 Theory Topics for the Lattice Practitioner

We give an introduction to a few theory topics which are, on one hand, of general
interest for aspiring quantum field theorists, and which on the other hand have
proved important in practical lattice calculations.

1.5.1 Ward Identities

Suppose that the Euclidean action SŒ ; N ;U � is invariant under a global transforma-
tion of the fields. Promoting the transformation to a local one generates interesting
relations among correlation functions. As an example in lattice QCD with the
Wilson action, consider then the local transformation

 0.x/ D ei˛.x/ .x/; N 0.x/ D N .x/e�i˛.x/: (1.133)

One finds, for an infinitesimal transformation,

SŒ 0; N 0; U � D SŒ ; N ;U �C ıSŒ ; N ;U �; (1.134)

9At the time of writing, the Yang-Mills gradient flow provides probably the most efficient way to
compute the chiral condensate with precision [33].
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ıSŒ ; N ;U � D i a4
X
x

@�˛.x/J�.x/C O.˛2/; (1.135)

with

J�.x/ D 1
2

� N .x C a O�/.1C ��/U


�.x/ .x/ (1.136)

� N .x/.1 � ��/U�.x/ .x C a O�/�;
while the integration measure is left invariant. If O is an observable which
transforms according to

OŒ 0; N 0; U � D OŒ ; N ;U �C ıOŒ ; N ;U �C O.˛2/; (1.137)

then

hOi D
Z

DUD 0D N 0 OŒ 0; N 0; U � exp.�SŒ 0; N 0; U �/ (1.138)

D
Z

DU D 0D N 0„ ƒ‚ …
DD D N 

.OŒ ; N ;U �C ıOŒ ; N ;U �/ (1.139)

exp.�SŒ ; N ;U � � ıSŒ ; N ;U �/
D hOi C hıO � OıSi C O.˛2/:

We conclude

hıOi D hOıSi: (1.140)

For instance, for O D J�.y/, we have ıO D �ia@�˛.y/S.�/.y/,

S.�/.y/ D 1
2

� N .y C a O�/.1C ��/U�.y/
�1 .y/ (1.141)

C N .y/.1 � ��/U�.y/ .y C a�/
�
:

It can be thought of as a point-split discretization of the continuum scalar operator
N  . Now choosing ˛.x/ D � eikx, we finally obtain the relation [35]

a4
X
x;�

Ok�
D
J�.y/J�.x/

E
eik.x�yC a

2 O�� a
2 O�/ D �a Ok� hS.�/.y/i: (1.142)

This relation tells us that the longitudinal part of the polarization tensor is a pure
contact term, and specifies the latter for the present regularization of QCD.
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1.5.1.1 Chiral Ward Identities

The consequences of the global continuous symmetries of QCD can be elegantly
worked out as Ward identities in the continuum Euclidean path integral (cf. [21],
Sec. 4); the results are equivalent to those derived in the algebra of currents acting
on the Hilbert space of the quantum states.

Perhaps the most important use of Ward identities in lattice QCD is to impose
renormalization and/or improvement conditions on composite operators. The Ward
identities can be derived in the continuum theory, and as long as on-shell correlation
functions10 are considered, they can be imposed in the lattice theory, thus providing
renormalization conditions for certain local operators.

As an important example, consider QCD with a doublet of degenerate quark
flavors, represented by a field  .x/ D .u.x/; d.x//> (there may be more flavors in
addition). The isovector axial current and pseudoscalar density read

Aa�.x/ D N ���5 �
a

2
 .x/; P a.x/ D N .x/�5 �

a

2
 .x/; (1.143)

where �a are the Pauli matrices acting in flavor space. For instance, the identity of
the partially conserved axial current (PCAC) for QCD with a doublet of degenerate
quark flavors

@�A
a
�.x/ D 2mPa.x/; (1.144)

valid in all on-shell correlation functions, is used to define the quark mass m in
Wilson lattice QCD, as well as to determine the finite renormalization of the axial
current [21, 36, 37]. Equation (1.144) also shows that the renormalization of the
quark mass m is known once the axial current and the pseudoscalar density are
renormalized, see [38].

Similar to the axial current, the energy-momentum tensor requires a finite
renormalization in order to satisfy the Ward identities of translation invariance.
See e.g. [39] for the use of continuum Ward identities to renormalize the energy-
momentum tensor in lattice field theory.

1.5.2 Chiral Symmetry on the Lattice

One drawback of the Wilson-Dirac operator (1.63) is that it does not preserve
chiral symmetry: in the massless continuum theory, the action is invariant under
the variation

ı .x/ D �5 .x/; ı N .x/ D N .x/�5 (1.145)

10By ‘on-shell correlation function’, we mean that all operators involved are located at a physical
distance from each other. By focusing on these, we avoid the discussion of contact terms, which in
general are regularization-dependent.
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of the fields. This property follows from the fact that, at vanishing quark mass,
the Dirac operator anticommutes with �5. The Laplacian term in the Wilson-Dirac
operator clearly spoils this property.

This is no coincidence, as the Nielsen-Ninomiya theorem [40–42] implies that
chiral symmetry cannot be realized in this form on the lattice. We give here a partic-
ularly simple version of the theorem quoted in [43]. If S D a4

P
x

N .x/D .x/ is
the free-fermion action, andDeipxu D QD.p/eipxu for u a constant spinor and QD.p/ a
4�4matrix, then the following four properties cannot be realized simultaneously:

i. QD.p/ is analytic and periodic in p� with a period 2�=a;
ii. QD.p/ D i��p� C O.ap2/ at small momenta;

iii. QD.p/ is invertible at all momenta that are non-vanishing mod 2�=a;
iv. D anticommutes with �5.

As an example in one dimension, consider the case QD.p/ D 1
a
�1 sin.p1a/. It

satisfies the one-dimensional analogue of the conditions (i), (ii) and (iv) above, but
violates (iii). The presence of a second zero of QD.p/ within the Brillouin zone at
p1 D �=a is a consequence of the existence of a zero at the origin, and that by
periodicity it must cross zero again with the same slope at p1 D 2�=a [44].

However one can show that a modified ‘chiral’ transformation [43],

ı .x/ D �5.1 � 1
2
aD/ .x/; ı N .x/ D N .x/.1 � 1

2
aD/�5; (1.146)

is indeed a symmetry of the action if the following ‘Ginsparg-Wilson’ relation [45]
is satisfied by the Dirac operator,

�5D CD�5 D aD�5D: (1.147)

In term of the propagator, this relation reads

h .x/ N .y/i �5 C �5 h .x/ N .y/i D a�3�5ıx;y; (1.148)

which shows that the ordinary chiral symmetry is realized on the mass shell. An
explicit lattice Dirac operator that satisfies Eq. (1.147) is the ‘overlap’ operator [46]

D D 1

a
.1 �A.A
A/�1=2/; A D 1 � aDw: (1.149)

It also satisfies the conditions (i), (ii) and (iii) above. The analyticity of QD.p/ for
real momenta implies the locality of D on a range of the order a.

The realization of a form of chiral symmetry on the lattice has important
consequences. In particular, relation (1.147) implies that the ‘topological charge’
Q defined as

Q D a4
X
x

q.x/; q.x/ � �a
2

Tr f�5D.x; x/g; (1.150)
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is equal to the index Tr f�5P0g of the Dirac operator [47], where P0 is the projector
onto the subspace of its zero modes.

We refer the reader to Sec. 5 of [48] and to [49, 50] for accessible and more
complete introductions to the subject of chiral symmetry and lattice fermions. In
particular, lattice domain wall fermions [51–53] are a widely used formulation of
chiral fermions.

1.5.3 Topology of the Gauge Field

Let D be a Dirac operator obeying the Ginsparg-Wilson relation (1.147). Then
Q provides a definition of the topological charge obeying the index theorem. Its
cumulants can be rewritten in such a way that, by power counting, no short-distance
singularities appear. A universal (i.e. regularization-independent) definition of the
cumulants of the topological charge can then be given [54]. In particular, the
topological susceptibility �t can be written

�t � 1

V
hQ2i D m1 : : : m5

Z
d4x1 : : : d

4x4 (1.151)

D
P31.x1/S12.x2/S23.x3/P54.x4/S45.0/

E
conn

with Prs.x/ D N r.x/�5 s.x/, Srs.x/ D N r.x/ s.x/ respectively the pseudoscalar
and scalar density with respect to quark flavors r and s.

Direct calculations of the topological susceptibility based on the overlap Dirac
operator (see Eq. (1.150)) have been performed in SU(3) gauge theory; as an
example, we quote [55]

r40�t D 0:059˙ 0:003: (1.152)

(the reference length r0 was defined at the end of Sect. 1.4.1). Other ways of
estimating �t motivated by semi-classical arguments yield comparable results (see,
for instance, [56, 57]).

1.5.4 Recursive Finite-Size Technique: Linking Vastly
Different Length Scales

Consider a renormalized coupling g2.�/. We saw an example defined via the force
between two static quarks, Eq. (1.95), where � D 1=r . At standard simulation
parameters, the smallest lattice spacing for which a linear system size of several
fm can be accomodated is about 0.05 fm. However, in order to make contact
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with perturbation theory in a completely controlled way, it is desirable to compute
the renormalized coupling at distances as small as 0:002 fm. It is clear that the
large hierarchy between the distances typical of non-perturbative physics and the
regime where perturbation theory becomes quantitatively accurate requires a special
treatment.

Probably the only strategy that addresses this issue in a completely satisfactory
way is the ‘recursive finite-size technique’ or ‘step-scaling’. The general idea is
that the inverse size of the system 1=L itself plays the role of the renormalization
scale �. This means that the confinement scale � 0:5 fm need not be accomodated
in a calculation of the renormalized coupling at a large renormalization scale. A
second key point is that attention must be paid to avoid zero modes of the quark and
the gluon fields in the perturbative regime. The latter can cause serious problems
with the stability and ergodicity of simulations. One set of boundary conditions that
removes all zero modes is the set implemented in the Schrödinger functional [58].
There may well be other useful choices [59]. The Schrödinger functional has been
used extensively to compute the running coupling [60–63] and has also proved very
useful in formulating renormalization conditions for various local operators; see, for
instance, [38, 64].

The idea of relating a quantity at high energy scales to the same quantity at small
energy scales in multiple manageable steps in order to avoid a large hierarchy of
scales is also used in other contexts. One of them is the calculation of the QCD
equation of state at high temperatures [65, 66].

1.6 Importance Sampling Monte-Carlo Methods: Basic Ideas

In this section we describe the ideas behind the numerical methods that are used in
practical calculations. First consider, for concreteness, the case of the pure gauge
theory, Eq. (1.66). The first idea is to interpret

pŒU � D 1

Z
DŒU � exp.�SgŒU �/ (1.153)

as a normalized probability distribution on the space of all gauge fields. The second
idea is to generate a representative sample of field ‘configurations’ fU1; : : : ; UNc g,
meaning that the fraction of the number of configurations belonging to a domain D
of field space is given by

Z
D
DŒU �pŒU �;
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with an error of order N�1=2
c . Third, the path-integral expectation value of observ-

ables can be estimated according to

hOŒU �i D 1

Nc

NcX
iD1

OŒUi �C O.N�1=2
c /: (1.154)

One thus needs a method of generating the probability distribution (1.153). Usually,
a complicated probability distribution must be generated iteratively; a Markov
chain is a general method that achieves this. The chain starts from an initial
configuration and then visits a sequence of configurations according to a given
transition probability. General criteria exist that guarantee that the configurations
visited after a sufficient number of iterations are indeed distributed according to
the desired probability distribution [67]. For the state-of-the-art update rule, see, for
instance, Sec. 2.3 of [67] and Appendix B of [68] and references therein.

The way fermions are treated in virtually all current lattice calculations is by
integrating them out, yielding the determinant of the Dirac operator in the numerator
of the path integral (see Eqs. (1.32–1.33)). The determinant can be treated as
part of the probability distribution pŒU �, provided it is positive on all gauge-field
configurations. The �5 hermiticity of the Dirac operator implies that the determinant
is real. For a doublet of mass-degenerate quarks, the square of the determinant
is thus positive. For the other quark flavors, chiral symmetry, if realized on the
lattice, guarantees that the determinant is positive; for non-chiral discretizations,
the eigenvalues appear to all be positive with a substantial spectral gap, so that the
property holds in practice.

The state-of-the-art algorithm to generate the distribution of gauge fields includ-
ing the effect of the quarks is the hybrid Monte-Carlo algorithm [69], with its many
important refinements of the last decade or so [67, 70, 71]. The generated sample of
gauge-field configurations (an ‘ensemble’) is stored on disk, so that observables can
be calculated on the configurations at a later stage. As an example, the two-point
function of quark bilinears O.x/ D Nu.x/� u.x/, O0.x/ D Nu.x/� 0u.x/ (with �; � 0
matrices acting on the spin degrees of freedom) are evaluated as

hO.x/ O0.y/i D 1

N

NcX
iD1

�
� Tr

˚
�D�1.ŒUi �I x; y/� 0D�1.ŒUi �Iy; x/

�
(1.155)

CTr
˚
�D�1.ŒUi �I x; x/g Trf� 0D�1.ŒUi �Iy; y/

��
C O.N�1=2

c /;

where D is the lattice Dirac operator in a given gauge field and the traces are taken
with respect to color and spin indices.
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1.7 Outlook

I hope that the introduction given here provides a useful overview of the most
important concepts and methods in lattice QCD. It is a theoretically sound quantum
field theoretic framework, and, with the steady increase in computing power and the
improvement of algorithms, it makes predictions that have a high phenomenological
impact [34, 72]. It has also had an influence on the way other problems are
approached, for instance in the simulation of theories that may represent strongly
coupled extensions of the Standard Model [73] and, more distantly, in theories
describing a gas of strongly interacting fermions [74–76]. The following chapters
give a far more detailed account of nuclear physics applications of lattice QCD.
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