Algorithms and Their Explanations

Marco Benini! and Federico Gobbo?

! Universita degli Studi dell’Insubria, via Mazzini 5, 21100 Varese, Italy
marco.benini@uninsubria.it
2 Universiteit van Amsterdam, Spuistraat 210, 1012 VT Amsterdam,
The Netherlands
F.GobboQuva.nl

Abstract. By analysing the explanation of the classical heapsort al-
gorithm via the method of levels of abstraction mainly due to Floridi,
we give a concrete and precise example of how to deal with algorith-
mic knowledge. To do so, we introduce a concept already implicit in the
method, the ‘gradient of explanations’. Analogously to the gradient of
abstractions, a gradient of explanations is a sequence of discrete levels
of explanation each one refining the previous, varying formalisation, and
thus providing progressive evidence for hidden information. Because of
this sequential and coherent uncovering of the information that explains
a level of abstraction—the heapsort algorithm in our guiding example—
the notion of gradient of explanations allows to precisely classify purposes
in writing software according to the informal criterion of ‘depth’, and to
give a precise meaning to the notion of ‘concreteness’.

1 Introduction

We are currently living in the age of the zettabyte (102! bytes), a quantity of
information “expected to grow fourfold approximately every three years. . .every
day, enough new data is being generated to fill all US libraries eight times over”
Floridi [9], page 5. This quantity of information is mostly produced through
digital computers, and therefore it is algorithmic in nature, at least in part.
Even from a syntactic point of view, algorithmic information is of a very different
character than ordinary information: while the latter relies on the classic theory
by Shannon and Weaver, the fundamentals of algorithmic information are in the
theory of computation as initiated by Turing—see Chapter 14 in Allo et al [2].

Furthermore, we need semantics to upgrade information (the agent in the
state of being informed) to knowledge (the agent in the state of being able to
perform a conscious informational analysis). Chapter 10 of Floridi [8] solves this
problem by giving two different logics at the basis of the states above (see also
Allo [3,1]) while Primiero [15] analyses the special case of information locally
valid, i.e., when functional information is in charge. Functional information,
commonly used in information sciences, particularly in software engineering,
entails realisable instructions to obtain reliable data not yet available. The aim
of this paper is to analyse knowledge, in the sense above, in the case of algorithms
inside this line of research known as Philosophy of Information, see Allo et al [2].

A. Beckmann, E. Csuhaj-Varji, and K. Meer (Eds.): CiE 2014, LNCS 8493, pp. 32-41, 2014.
© Springer International Publishing Switzerland 2014

Algorithms and Their Explanations 33

To do so, we will analyse the heapsort algorithm. The heapsort algorithm has
been chosen as the guiding example for two reasons: in the first place, heapsort
is a classical algorithm, deeply studied and used, and non elementary; in the
second place, heapsort exhibits in a nutshell all the features that appears in
larger and more complex software, so it provides an ideal case study to test and
to explain ideas about the epistemology of computing and programming.

The paper is organised as follows: in the next section, the terminology and
the basic concepts of the method of levels of abstraction are introduced, tailored
to our purposes. Section 3 is devoted to illustrate the heapsort algorithm from
three different points of view: the ones of a programmer, of a software designer,
and of an algorithm designer. Section 4 introduces the notion of gradient of
explanations, showing how the analysis conducted in Sect. 3 generates one, and
some consequences are drawn. The paper concludes with a brief summary and
discussion of possible future developments.

2 The Method of Levels of Abstraction

The method of levels of abstraction comes from modelling, a common practice
in science: in its standard presentation, variables model observations of reality,
where only necessary details are retained. The method is flexible, as it can be
used in qualitative terms without technicalities, as in Floridi [9], where ethical
issues are analysed, as well as in the advanced educational settings presented in
Gobbo and Benini [10]. Oppositely, the method can be used in a technical sense,
as for instance in the case of algorithmic information analysed in this paper.

In fact, algorithmic information presupposes that the informational organisms
in charge are computational in nature. In other words, computational informa-
tional organisms (c-inforgs), are formed by (at least) a human being and by some
kind of computing machine—typically a modern digital computer. As Gobbo
and Benini [13] argued information can be hidden to the eyes of the observers
according to the growth of complexity of the c-inforg itself, even if it can be
revealed if the agent holds the necessary knowledge to cope with the complexity
at the given level of abstraction. In fact, the key feature of a c-inforg is being
programmable, and not every variable in the given level of abstraction is granted
to be completely observable — instead it could be hidden, exactly because of the
nature of algorithmic information.

The method distinguishes three kinds of levels: proper Levels of Abstraction
(LoAs); the Lewvels of Organisation (LoQO), the machinery part of the c-inforg,
and Levels of Explanation (LoE). In general, the LoAs and the LoOs are always
strictly connected in every kind of informational organisms. In particular, in
the case of c-inforgs, this connection is particularly clear. In fact, each software
abstraction (LoA) is run over a correspondent hardware abstraction (LoO): the
history of modern computing shows a continuous drift from hardware to software;
in our terms, more LoAs are introduced so to abstract over the hardware, see
Gobbo and Benini [12] for details. Moreover, for each pair of LoA/LoO it is
possible to identify more than one LoE because c-inforgs are programmable,

34 M. Benini and F. Gobbo

and at least the programmer’s and end-user’s views are possible for the same
pair LoA /LoO, see Gobbo and Benini [11].

If a range of LoAs is made of discrete variables and each level can be nested
into another within a sequence, that range is called nested Gradient of Ab-
straction (GoA)—see subsection 3.2.6 in Floridi [8]. As we will see in the next
section, the explanation of algorithms needs a new concept which is implicit in
the method presented until now, that is a Gradient of Explanation (GoE), which
holds if a GoA is in charge. We will justify the epistemic need of GoE inductively,
via the examination of heapsort algorithm.

3 The Heapsort Algorithm

The heapsort procedure is a classical topic in the study of algorithms, see, e.g.,
pages 144-148 of Knuth [14]. In the following, the presentation is mainly based
on Chapter 6 of Cormen et al [5], although we adopt the method of levels of
abstraction to make explicit the various hypotheses and building passages, to let
the non-technical reader follow our arguments.

Heapsort solves the problem of sorting an array: given an array A with homo-
geneous elements and a total ordering =< among its elements, the problem asks
to construct an array B whose elements are ordered by =<, i.e., B[1] < B[2] =
B[3] = ---, and such that B is a permutation of A.

The reason why heapsort is an interesting solution to the sorting problem is
its efficiency: the resulting array B is constructed out of A using only a small and
constant amount of additional memory, in contrast with mergesort for example,
and the computing process takes a number of steps proportional to nlogn, with
n the number of elements in A. The time complexity is optimal, because no
comparison-based solution to the sorting problem may be computed in a number
of steps whose order of magnitude is less than nlogn in the worst case.

3.1 A Programmer’s View

When a programmer is asked to implement heapsort, he should consider to be
part of a c-inforg P. The LoO Py and the LoA P4 describing the computing
device in P are known to the programmer. For the sake of clarity, let us assume
the LoA P4 to be the bare programming language C and the LoO Py to be the
computer memory as seen through the primitives and libraries of the language.
The purpose of the programmer is to construct another LoA S4 on the top of
P4, providing a new operation, the sorting algorithm, which becomes observable
in the corresponding LoO Sp by the Heapsort syntax.

To perform the implementation, the programmer needs a complex and struc-
tured amount of knowledge. First, he knows the syntax of the programming lan-
guage that will be used to implement heapsort—C, in our illustration; also, he
knows how the various instructions and constructions of the language modify the
state of the machine, the so-called operational semantics of the language. These
pieces of knowledge come from being a programmer. Then, he needs to know the

Algorithms and Their Explanations 35

Heapsort(A : array) = MaxHeapify(A: array,i: IN) =
BuildMaxHeap(A) m<—1i
for i + len(A) downto 2 do 1+ left(2)
exchange(A[1], A[i]) r < right(7)
heapsize(A) < heapsize(A) — 1 if | < heapsize(A) & A[l] > A[m] then
MaxHeapify(A4, 1) m<+1
if r < heapsize(A) & A[r] = A[m] then
BuildMaxHeap(A : array) = ifn:n:éri then

heapsize(A) < len(A)
for i < |len(A)/2] downto 1 do
MaxHeapify(A, 1)

exchange(A[i], A[m])
MaxHeapify (A, m)

exchange(A[i]: element, A[j]: element) =
x « Ald;
Ali] < Aljl;
Al =

left(i: IN) = 2i
right(i: IN) =2i + 1

Fig. 1. The heapsort algorithm

description of the heapsort algorithm in some (semi-)formal notation which is
the specification of his task. For example, we may assume the programmer knows
the pseudo-code in Fig. 1. Of course, he needs to understand the notation: specif-
ically, he has to know that <+— means assignment; that for z < e downto n do B
means a loop; that indentation is used for grouping instructions; and so on.

This knowledge is not yet enough. For example, the presented pseudo-code
assumes the array A to be a data structure having two operations: len(A) which
tells the number of elements in the array A, and A[i] which gives access to the
i-th element of A, provided 1 < i < len(A). A careful inspection of Fig. 1 reveals
that the pseudo-code assumes that the ordering relation > is embedded into the
algorithm rather than a parameter.

It is clear that the amount of information described so far is enough to allow
the programmer to fulfil his implementation task. Thus, this amount of infor-
mation forms an explanation of heapsort, the one allowing to implement the
algorithm inside the c-inforg P, producing a new pair (54, Sp) of LoA and LoO,
respectively. This new abstraction allows the programmer to use the computing
device in P in a new way, because a new concept is available, heapsort.

The new LoA S4 and LoO Spo are explained by a corresponding LoE Sg.p
which can be stated in natural language as follows: ‘the LoE is all that is needed
to fulfill the purpose of encoding in C language the heapsort algorithm’.

The amount of knowledge necessary to fulfil the purpose is the one sketched
above, used by the programmer to implement S4 and So from P4 and Po.
As we have seen, this kind of knowledge can be adequately represented in what
Primiero [15] calls functional information. Also, it should be clear that almost no
creativity is involved here, and so at this rather low level of abstraction program-
mers are not exploiting the artistic possibilities inside the act of programming —
see Gobbo and Benini [11].

36 M. Benini and F. Gobbo

3.2 A Software Designer’s View

The point of view of a prototypical software designer is a step beyond the basic
programmer’s: in our terms, the LoE Sg.p is nested in another, broader LoE.
In fact, the software designer has to provide a specification to the programmer
so that the implementation shall be coherent with the needs of a software which
contains many other algorithms. Thus, the designer is aware of the sorting prob-
lem and recognises the problem as a node in a larger network of problems, whose
overall solution forms the software where the heapsort implementation is only a
small component.

Hence, the software designer is part of the c-inforg P together with the pro-
grammer, and they share the same LoA P4 and LoO Py. The programmer and
the software designer are similar to the carpenter whose LoE is to make a chair
(example in Floridi [8], section 3.4): the functional organisation (the blueprint)
and the realisation (the chair) are similar to the design of the algorithm and
its actual implementation in our example. The ‘only’ difference between making
the chair and the design and development of heapsort is the need for two agents
with different degrees of knowledge and specialisation. In fact, the designer and
the programmer have distinct LoEs, because their purposes are very different.
Precisely, the designer has to choose an algorithm which solves the problem he
is examining, the sorting problem in our example. The choice is guided by many
issues: how frequently the problem has to be solved inside the complete applica-
tion; the size of the array to be sorted; how the array data structure has to be
organised. All these issues, and maybe others, shape the particular instance of
the ‘right’ algorithm to choose. For example, the designer may choose heapsort
because he knows it is efficient—a feature which is relevant when arrays may be
large or it is not possible to predict their size in advance—and because stabil-
ity, the relative order of equal elements with respect to the ordering should not
necessarily be preserved by the sorting process. Also, he may choose heapsort in-
stead of mergesort or quicksort because a destructive manipulation of the array
is acceptable, and because a good performance in the worst case is preferred to a
better performance in the average case, which is the difference between heapsort
and quicksort, see Cormen et al [5].

But heapsort is an algorithm, i.e., an abstract, ideal computation, and before
becoming a valid specification, a number of decisions have to be taken. For exam-
ple, in Fig. 1 it is clear that the length of an array A is considered an attribute of A;
alternatively, the length could have been passed to the heapsort procedure as an ad-
ditional parameter. Moreover, although it is clear that the heap data structureis a
sub-type of array, having to obey an additional constraint, and this fact is rendered
by adding the additional attribute heapsize to heaps only, there is no explicit ‘re-
casting’ of types in the specification, which means that this piece of information in
not required to be made explicit, e.g., to the language type-checker. Furthermore,
the ordering relation >, see Fig. 1, is not structurally linked to the array data struc-
ture, suggesting that > is not a parameter of the heapsort procedure—while it may
be, if different orderings are required in distinct contexts of the same program. Fi-
nally, the decision to abstract over exchanges of elements and the identification of

Algorithms and Their Explanations 37

left and right branches in the heap suggests that the designer may want to leave
space for changing the heapsort procedure in future maintenance releases of the
program.

All the above descriptions of the possible reasons behind the shape of the
presented pseudo-code, and possibly others, form the LoE Sg,p which inter-
prets the LoA S4 and the LoO So. According to the designer’s perspective, the
programmer’s LoE could be fulfilled by other pairs LoA /LoO.

3.3 An Algorithm Designer’s View

Given a problem, usually arising from a concrete application, an algorithm de-
signer is faced with the task to conceive a computable method to calculate
its solutions. Often, software designers pick algorithms off the shelf, using and
adapting the vast literature Computer Science is continuing to produce. But,
ideally, an algorithm designer is another human agent in the same c-inforg P we
previously introduced: in fact, each instance of an algorithm has been conceived
for a specific computational architecture which has to be shared among the al-
gorithm designer, the software designer and the programmer to be effectively
implemented in the context (program) where it is intended to be used—recall
the parallel with the carpenter and the chair.

The first step in designing an algorithm is to polish the problem, to abstract
over what is not needed to solve it, and to eventually reveal the inner structure
which will be used to calculate the solution. This abstraction process is guided
by ingenuity and a well-established set of techniques (again Cormen et al [5]
for a comprehensive introduction). We will follow our example of heapsort to
illustrate the design process of an algorithm. At the first stage, the elements in
the array A can be considered to be composed by two distinct parts: the key
and the datum. Ordering considers just the key, so this is the only relevant part
with respect to the sorting problem. It is not important that elements really
have two distinct parts: as far as it is possible to extract the key value from an
element, the abstraction is fair, and this possibility amounts to have an effective,
computable predicate =<, representing the ordering relation. It is worth noticing
that the above abstraction leaves a trace in the properties of a sorting algorithm:
it is exactly the separation between the key and the datum that identifies the
stability of an algorithm. In fact, if in the input array A, A[i] < A[j] and the
key of the i-th element equals the key of the j-th element, stability says that
in the sorted array B, A[i] = B[k] = B[h] = A[j] exactly when ¢ < j. Thus,
elements which are equal with respect to <, may be different when considered
as elements, revealing how they have been rearranged. In general, the fact that
equality may not be identity in Computer Science has a number of consequences,
discussed in Gobbo and Benini [10].

Since elements can be identified with their keys when solving the sorting
problem, the idea behind heapsort is to define a sub-class of arrays, the heaps,
whose members have a distinctive property of interest. Posing parent(i) = |i/2],
left(z) = 2i¢ and right(i) = 2i + 1, we can interpret the elements in an array as

38 M. Benini and F. Gobbo

Fig. 2. A heap represented as a tree and as an array

S~

18‘13|12|9|8|11|3 3 7 1

if they were nodes in a tree, as illustrated in Fig. 2. Now, a heap H is an array
satisfying, for each valid index i > 1:

HJ[i] < Hlparent(i)] . (1)

By abusing terminology, an array A will be called a heap when its initial segment
running from index 1 to a known index heapsize(A) satisfies (1). Hence, the root
node H[l] in a heap H is the greatest element in H, see Fig. 2, and moreover,
its left and right sub-trees are heaps, too. Thus, we can sort the array by moving
the root past the end of the heap, and then we can combine the left and the right
sub-trees to obtain a new heap. In fact, this is exactly how heapsort operates,
see the Heapsort procedure in Fig. 1.

Therefore, the algorithm designer is left with two sub-problems: building an
initial heap out of a given array, and constructing a heap given two heaps. The
former problem can be easily reduced to the latter: given an array A, its elements
beyond [len(A)/2] are leaves in the tree representation, so they are trivially
heaps. Each node ¢ which is a parent of some other node, must satisfy (1): it is
immediate to see that exchanging the parent node with the greatest node among
Ali], Alleft(7)], and A[right(4)] forces (1) to hold, except for the sub-tree whose
root has been changed—something which can be recursively restored. Thus,
recursively applying this process, coded by the MaxHeapify procedure in Fig. 1,
from the sub-trees with lowest depth, eventually the whole array A is rearranged
in a heap, as done by BuildMaxHeap in Fig. 1. Some caution should be taken
since the tree may not be complete, and so the first conjunct in the if statements
of MaxHeapify. It is clear that induction on the structure of trees allows to
prove that MaxHeapify, BuildMaxHeap, and Heapsort operate correctly, so the
algorithm designer can formally derive the first essential property of heapsort,
namely that it solves the sorting problem.

The second property the algorithm designer wants to establish is the compu-
tational complexity of heapsort: a detailed analysis of the derivation is presented
in Chapter 6 of Cormen et al. [5]. For our aims, it suffices to notice that recursion
plays a fundamental role in the algorithm, and thus computational complexity
gets calculated as the solution of a system of recurrence equations.

So, the LoE Sg, 4 of the algorithm designer contains at least the theory of
binary trees, because of the induction and recursion principles used to derive the

Algorithms and Their Explanations 39

properties of heapsort, the mathematics of recurrence equations, to calculate the
complexities, and most of what is needed by the programmer and the software
designer, to ensure that heapsort will be implementable in the given architecture.

4 Gradients of Explanations

The heapsort example shows a very simple GoA: the c-inforg P, after the pro-
grammer has implemented the sorting procedure, exhibits two LoAs: the pair
(Pa, Po) describing the computing device, and the pair (S4, So) having heap-
sort as a primitive. The LoA S 4 abstracts over P4 by hiding the implementation
of heapsort, and provides a new action, sorting, along with its specification; at
the same time, Sp extends Pp by adding a new observable, the reference to
the procedure Heapsort, which reifies the action. The relation between (P4, Po)
and (S4,S0) is given by the implementation, which is the encoding of the action
‘sorting’ of S4 into Py4. It is the presence of an encoding that justifies to consider
the sequence ((Pa, Po),(Sa,S50)) as a GoA: encodings are an essential aspect
of c-inforgs, as discussed in Gobbo and Benini [10,11].

The sequence (Sg.p, SE;p, SE,4) given by the LoEs of the programmer, the
software designer, and the algorithm designer as described in Sect. 3, behave
similarly, being nested one into the other: in fact, each LoE explains (Sa4, So)
and, in turn, each LoE explains some parts of the preceding LoEs in the sequence.
For example, the algorithm designer proves that heapsort solves the sorting
problem and this statement together with its proof is in Sg,4; the software
designer knows the statement but has no need for the proof, so just the statement
is in SE;p; also, the programmer knows the statement because this has to become
part of S4 since the observable Heapsort has to be paired with a specification
but, again, the programmer has no need for the proof. Hence, the sequence
(SE.P,SE;D, SE;4) is a gradient, and since it relates LoEs, it is called a Gradient
of Ezxplanations (GoE).

The relations between the LoEs in the gradient is similar to encodings in
GoAs, but subtler. To understand these relations, it is useful to compare them
with encodings between pairs of LoAs: instead of considering an encoding as the
way a concept of the abstract LoA A gets implemented in the concrete LoA C,
we may think that the encoding is the way to construct the concept in A from
C'. This construction resembles mathematical induction, since new objects are
built starting from simpler ones. But there is a dual construction, coinduction,
see [4]: starting from a given, large universe, coinduction operates by progres-
sively discarding the elements of the universe not satisfying the construction
property. In a GoE, the LoEs are linked to each other via a relation that follows
the coinductive pattern: starting from a very general, wide and abstract universe
of concepts, each LoE in the gradient refines the next one in the sequence in the
sense of hiding what is not strictly needed to provide a coherent explanation of
the purpose the LoE has to fulfil. The first LoE in the sequence, in turn, is re-
fined by the LoA it is called to explain. This fact suggests that each LoA should
be considered a LoE with no content deputed to explain.

40 M. Benini and F. Gobbo

In the heapsort example, the LoA S, is explained by itself in an empty way—
a coherent explanation, but not so useful. In turn, S4 is a refined explanation of
Sg;p where the contribution of the programmer is thrown away. In the opposite
sense, which is the usual one when presenting LoEs, Sg.p explains Sy by the
knowledge a programmer has to provide in order to build the (S4, So) pair from
(Pa, Po). It is important to remark that the process of constructing gradients
is not necessarily inductive or coinductive: although, as a rule of thumb, GoAs
follow an inductive pattern, while GoEs follow a coinductive one, it is not difficult
to imagine counterexamples of any sort. It is the ‘direction’ of construction that
matters, not the instrument, exactly as in the case of the carpenter: a chair can
be made using different instruments, but the style and therefore the ‘personal
touch’ of the carpenter is given by the direction of construction.

An immediate consequence of having a GoE is the possibility to give a mea-
sure—in the sense stated by Gobbo and Benini [10]—of concreteness of the
various concepts that explain, in some sense, a piece in a c-inforg. Consider the
lowest LoE E in a gradient G over a LoA A that uses the concept C under ex-
amination: we define the measure of C' with respect to A as the distance from A,
calculated by counting the number of LoEs separating F from A. This measure
is loosely related to Krull dimension in commutative algebra (Eisenbud [6]), but
this relation is out of the scope of the present paper. This measure is a direct
expression of the level of concreteness of C' with respect to the LoA A: by def-
inition, it shows the distance between the ‘concrete’ basis of the GoE, the LoA
A, and the first occurrence of the concept C in the gradient. Also, the same
measure can be used to classify purposes. Since a purpose becomes explained in
some point of a GoE, the distance d between the concrete realisation of the pur-
pose, which is the explanation behind the LoA, and the first LoE that explains
the purpose, classifies the purposes. It is important to remark that the suggested
measure is relative to a gradient and based upon a LoA. It does not make sense
to use this measure to compare objects not pertaining to the same LoA or not
part of the same GoA.

5 Conclusions

By using the methods of levels of abstractions by Floridi [7], our analysis has
naturally driven the reader toward a novel concept, extending the aforementioned
method, which coherently fits into the epistemological framework. The newly
synthesised concept, called Gradient of Explanations (GoE) is analogous to the
Gradient of Abstractions (GoA) explained in paragraph 2.2.6 of Floridi [8], but
applied to levels of explanation instead of levels of abstractions. Despite this
similarity, which justifies why the new concept is conservative with respect to
the method, a GoE has a rather different epistemological status.

The consequences of the introduction of the GoE are not yet fully explored and
its formalisation is still preliminary. However, throughout this paper differences
in the status between GoE and GoA were clarified, permitting to derive some of
its consequences, using the heapsort example as a concrete guideline.

Algorithms and Their Explanations 41

Acknowledgements. Marco Benini has been supported by the project Cor-
rectness by Construction, EU 7" framework programme, grant n. PIRSES-GA-
2013-612638, and by the project Abstract Mathematics for Actual Computation:
Hilberts Program in the 215t Century from the John Templeton Foundation.

F. Gobbo holds the Special Chair in Interlinguistics and Esperanto at the Uni-

versity of Amsterdam (UvA), Faculty of Humanities, on behalf of the Universal
Esperanto Association (UEA, Rotterdam).

The content and opinions expressed in this article are the authors’ and they

do not necessarily reflect the opinions of the institutions supporting them.

References

11.

12.

13.

14.

15.

Allo, P.: Information and Logical Discrimination. In: Cooper, S.B., Dawar, A.,
Lowe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 17-28. Springer, Heidelberg (2012)
Allo, P., Baumgaertner, B., D’Alfonso, S., Fresco, N., Gobbo, F., Grubaugh, C.,
Iliadis, A., Hlari, P., Kerr, E., Primiero, G., Russo, F., Schulz, C., Taddeo, M.,
Turilli, M., Vakarelov, O., Zenil, H. (eds.): The Philosophy of Information: An
Introduction. Version 1.0. Society for the Philosophy of Information (2013)

Allo, P.: The Logic of ‘Being Informed’ Revisited and Revised. Philosophical Stud-
ies 153(3), 417-434 (2011)

Barwise, J., Moss, L.: Vicious Circles: on the Mathematics of Non-Wellfounded
Phenomena. CSLI Publications (1996)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press (2001)

Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry.
Graduate Texts in Mathematics, vol. 150. Springer (1995)

Floridi, L.: The Method of Levels of Abstraction. Minds & Machines 18(3), 303-329
(2008)

Floridi, L.: The Philosophy of Information. Oxford University Press (2011)
Floridi, L.: The Ethics of Information. Oxford University Press (2013)

. Gobbo, F., Benini, M.: What Can We Know of Computational Information? The

Conceptual Re-Engineering of Measuring, Quantity, and Quality. Topoi (forthcom-
ing)

Gobbo, F., Benini, M.: Why Zombies Can’t Write Significant Source Code: The
Knowledge Game and the Art of Computer Programming. Journal of Experimental
& Theoretical Artificial Intelligence (in publication)

Gobbo, F.,; Benini, M.: From Ancient to Modern Computing: A History of Infor-
mation Hiding. IEEE Annals of the History of Computing 35(3), 33-39 (2013)
Gobbo, F., Benini, M.: The Minimal Levels of Abstraction in the History of Modern
Computing. Philosophy & Technology (2013)

Knuth, D.E.: The Art of Computer Programming, Volume 3, Sorting and Search-
ing, 2nd edn. Addison-Wesley (1998)

Primiero, G.: Offline and Online Data: on Upgrading Functional Information to
Knowledge. Philosophical Studies (2012)

	Algorithms and Their Explanations
	1 Introduction
	2 The Method of Levels of Abstraction
	3 The Heapsort Algorithm
	3.1 A Programmer’s View
	3.2 A Software Designer’s View
	3.3 An Algorithm Designer’s View

	4 Gradients of Explanations
	5 Conclusions
	References

