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Abstract. The polynomial-size hierarchy is the hierarchy of ‘minicom-
plexity’ classes which correspond to two-way alternating finite automata
with polynomially many states and finitely many alternations. It is de-
fined by analogy to the polynomial-time hierarchy of standard complexity
theory, and it has recently been shown to be strict above its first level.

It is well-known that, apart from their definition in terms of polynomial-
time alternating Turing machines, the classes of the polynomial-time hi-
erarchy can also be characterized in terms of polynomial-time predicates,
polynomial-time oracle Turing machines, and formulas of second-order
logic. It is natural to ask whether analogous alternative characterizations
are possible for the polynomial-size hierarchy, as well.

Here, we answer this question affirmatively for predicates. Starting
with the first level of the hierarchy, we experiment with several natural
ways of defining what a ‘polynomial-size predicate’ should be, so that
existentially quantified predicates of this kind correspond to polynomial-
size two-way nondeterministic finite automata. After reaching an appro-
priate definition, we generalize to every level of the hierarchy.

1 Introduction

The k-th level of the polynomial-size hierarchy consists of the classes 2�k and 2�k

of all (families of) regular languages which are decided by (families of) two-way
alternating finite automata (2afas) with polynomially many states (i.e., of poly-
nomial ‘size’), where the start state is respectively existential or universal and
every computation path on any input alternates <k times between existential
and universal steps, if k > 0; or uses only deterministic steps, if k = 0. The
question whether this hierarchy is strict was raised in [6] and answered in the
affirmative by Geffert [3] for all levels above the lowest two: for all k ≥ 1,

2�k � 2�k+1 and 2�k � 2�k & 2�k � 2�k and 2�k � 2�k+1 .

For k = 0, the question is still open: the classes 2�0 and 2�1 are respectively the
classes 2D and 2N of all (families of) regular languages decided by (families of)
deterministic and nondeterministic two-way finite automata (2dfas and 2nfas)
with polynomially many states; hence, proving that 2�0 � 2�1 is equivalent to
confirming the long-standing Sakoda-Sipser conjecture that 2D � 2N [11,6].

The hierarchy is defined by analogy to the polynomial-time hierarchy of stan-
dard complexity theory, whose k-th level consists of the classes �kP and �kP
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of languages decided by polynomial-time alternating Turing machines (atms)
where the number of alternations is bounded as above [13,12]. The question
whether this hierarchy is strict is, of course, a well-studied open problem, also
hosting on its lowest two levels the famous question whether P = NP.

An important feature of the polynomial-time hierarchy, highlighting its ro-
bustness, is that its classes can be defined in several equivalent ways, which are
all quite natural but also quite different from each other conceptually. Indeed,
apart from their standard definition in terms of polynomial-time atms, these
classes can also be defined in terms of:

• Polynomial-time predicates. For example, a language is in class �1P = NP
iff it consists of every string which can, together with a suitable ‘certificate’,
satisfy a binary predicate which is decided by a deterministic Turing machine
(dtm) in time polynomial in the length of the string [12].

• Polynomial-time oracle Turing machines. For example, a language is in class
�2P = NPNP iff it is decided by a polynomial-time nondeterministic Turing
machine (ntm) which has access to an oracle for a language of NP [10,12].

• Logical formulas. For example, a language is in PH =
⋃

k≥0 �kP iff it consists
of every string which satisfies a formula in second-order logic [2,4].

It is natural to ask whether the classes of the polynomial-size hierarchy also
admit analogous alternative definitions, next to their original one in terms of
polynomial-size 2afas. That is, what kind of (i) ‘polynomial-size predicates’,
(ii) ‘polynomial-size oracle two-way finite automata’, and (iii) logical formulas
match 2afas with polynomially many states and finitely many alternations?

In this article we study (i). We identify a proper definition for polynomial-size
predicates such that suitably quantified predicates of this kind characterize the
classes 2�k and 2�k, for all k. Starting with the case k = 1, we experiment with
several natural ways of defining predicates which characterize 2�1 = 2N, namely
the (families of) languages decided by polynomial-size 2nfas. After we reach the
correct definition for this class, we generalize for all classes of the hierarchy.

This settles part (i). Part (ii) remains open: We know of no model of ‘oracle
two-way finite automaton’ for characterizing the classes of the polynomial-size
hierarchy. As for (iii), a partial answer was given in [8], where a class of suitably
structured formulas of monadic second-order logic with successor were proven
equivalent to polynomial-size sweeping 2nfas (i.e., 2nfas which turn their head
only on the endmarkers) when the length is polynomial and certain structural
parameters are appropriately bounded; the full answer involves suitably struc-
tured formulas of first-order logic with successor and transitive closure [9].

1.1 Preparation

If n ≥ 0, then [n] := {0, 1, . . . , n−1}. If Σ is an alphabet and the symbols �,� /∈ Σ
are endmarkers, then Σe := Σ ∪ {�,�}. If z ∈ Σ∗ is a string over Σ, then |z| is
its length and zi is its i-th symbol, if 1 ≤ i ≤ |z|; or �, if i = 0; or �, if i = |z|+1.
A language L ⊆ Σ∗ is decided (or solved) by a machine M if M accepts exactly
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the strings in L. A language family1 (Lh)h≥1 is decided (or solved) by a family
of machines (Mh)h≥1 if every Mh solves Lh. A family of automata (Mh)h≥1 is
polynomial-size if Mh has ≤ p(h) states, for some polynomial p and all h.

A two-way alternating finite automaton (2afa) is a tuple M = (Q,U,Σ, δ, qs),
where Q is a set of states, Σ is an alphabet, and δ ⊆ Q× Σe ×Q × {l,r} is the
transition relation, for l,r two direction-indicating tags; one state qs is special
(start/accept) and each state is universal, if in U ⊆ Q, or existential, if in Q\U .

An input z ∈ Σ∗ is presented on the tape between the endmarkers, as �z�.
The automaton starts at qs and on �. Whenever at a state p and on a symbol a, it
switches to state q and moves its head in direction d, for every q and d such that
(p, a, q, d) ∈ δ —never violating an endmarker, except to move off � into qs. The
result is a tree of configurations, i.e., state-position pairs from Q×{0, . . . , |z|+2},
with (qs, 0) as root; we call this tree the computation of M on z, compM (z).

The unique accepting configuration is (qs, |z|+2). A rejecting configuration is
any (p, i) where i ≤ |z|+1 and δ contains no tuple of the form (p, zi, . , . ). The
accepting and rejecting configurations are called halting. A non-halting config-
uration (p, i) is existential or universal, according to what p is; it is also called
deterministic, if δ contains exactly 1 tuple of the form (p, zi, . , . ).

A full computation path in compM (z) is any path π which starts at the root
and is infinite (looping) or ends at a leaf (halting); in the latter case, π is either
accepting or rejecting, according to what the leaf is. A full computation tree in
compM (z) is any subtree τ such that (1) τ contains the root, (2) each existential
configuration in τ has exactly 1 of its children in τ , and (3) each universal
configuration in τ has all of its children in τ . We call τ looping, if it is infinite;
accepting, if it is finite and all its leaves are accepting; and rejecting, otherwise.
If compM (z) contains an accepting full computation tree, then M accepts z.

Let k ≥ 1. If every full computation path in compM (z) for any z switches
<k times between existential and universal configurations, we say M is a 2�kfa,
if qs 	∈ U, or a 2�kfa, if qs ∈ U —a 2�1fa is also called nondeterministic (a 2nfa).
If every non-halting configuration ever exhibited by M is actually deterministic,
we say M is a 2�0fa or a 2�0fa or simply deterministic (a 2dfa). If δ never uses
the l tag, we say M is one-way (1afa, 1nfa, 1dfa).

Let k ≥ 0. The class 2�k (respectively, 2�k) consists of every language family
which is solved by a polynomial-size family of 2�kfas (respectively, 2�kfas):

2�k :=
{
(Lh)h≥1

∣
∣
∣
there exists a 2�kfas family (Mh)h≥1 and a polynomial p
such that every Mh solves Lh with ≤ p(h) states.

}
,

and similarly for 2�k. Easily, 2�k, 2�k ⊆ 2�k+1, 2�k+1 for all k. We also write
2D for 2�0 = 2�0; 2N for 2�1; and 2H for ∪k≥02�k = ∪k≥02�k.

2 The Case of 2N

The class 2N is the minicomplexity analogue of NP. The predicate characteriza-
tion of NP is given by the following well-known fact (which uses Def. 1):

1 For an example of a language family, see twl = (twlh)h≥1 on page 237.
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Theorem 1. A language L is in NP iff there exists a polynomial-time binary
predicate R such that, for all x: x ∈ L ⇐⇒ (∃y)R(x, y). 2

Definition 1. A binary predicate R is polynomial-time if there is a dtm M and
a polynomial p such that, for all x,y: R(x, y) ⇐⇒ M accepts 〈x,y〉 in time p(|x|).
E.g., if L is sat (the satisfiability problem [12]), then R is the predicate which is
true whenever x is a Boolean formula (the instance) and y is a truth-assignment
which satisfies it (the certificate); M is the dtm which computes the value of x
under y and accepts iff the result is “true”; and p is the small polynomial which
bounds the time spent by M as a function of the length of x.

Our goal is to replicate this setting for 2N. That is, we want a characterization
of 2N as captured by the following statement and definition:

Theorem 2. A language family (Lh)h≥1 is in 2N iff there exists a polynomial-
size binary predicate family (Rh)h≥1 such that, for all h and all x:

x ∈ Lh ⇐⇒ (∃y)Rh(x, y) .

Definition 2. A binary predicate family (Rh)h≥1 is polynomial-size if there ex-
ists a family of ‘deterministic finite-state acceptors’ (Mh)h≥1 and a polynomial p
such that, for all h and all x,y:

Mh has ≤ p(h) states & Rh(x, y) ⇐⇒ Mh accepts 〈x,y〉.
E.g., if Lh is twlh (the two-way liveness problem on h-tall graphs [6,7]), then
Rh should be the predicate which is true whenever x is a string of h-tall two-
column graphs and y is a path from the leftmost to the rightmost column of the
respective multi-column graph;Mh should be some kind of a deterministic finite-
state machine which scans the arrows of y and accepts iff they are all present
in the graph of x, the first one departs from the leftmost column, and the last
one arrives at the rightmost column; and p should be a polynomial bounding
the number of states needed to perform these checks.

All we need to do, in order to complete this setting, is to clarify what type of
acceptors we should use in Def. 2 so that Th. 2 holds. We explore our options in
the next sections. We start with two naive attempts, and explain why they fail.
We then continue with a more educated guess which, although it fails, too, it
captures a different minicomplexity class. The correct choice is given in Sect. 2.3.

2.1 Two Naive Attempts
Mh

b 00 0 1a b b 01 1#a

yx

The straightforward attempt is to
simply have each Mh be a 2dfa
which receives the pair 〈x,y〉 on its
input tape as the #-delimited con-
catenation x#y. But this model is
too weak. Intuitively, to check Rh(x, y), Mh must compare corresponding sym-
bols of x and y (i.e., symbols around xi with symbols around yi), a task which
is impossible for a finite-state machine when x and y become arbitrarily long.

2 Note that y need never be more than polynomially long, as R is polynomial-time.
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Mh

00 0 101 1
y

ba b ba
x

To enable Mh to compare corresponding symbols
of x and y, we may place x and y on different tapes,
each with its own, independent, two-way head. For-
mally, Mh = (Q,Σ,Δ, δ, qs), where Σ and Δ are
the alphabets for instances and certificates, respec-
tively, and the transition function has the form
δ : Q × Σe × Δe −→ Q × {l,r} × {l,r}. But now
the model is too strong:Mh can use the distance be-
tween � and the head on the second tape as counter
to solve problems that are even non-regular.

2.2 A Better Attempt

00 0 101 1

Mh

ba b ba
x

y

To fix our problems, we must preventMh from using
its second head as counter. One way to do this, is to
first require that x and y are (almost) equally long,
then remove the ability of the heads to move inde-
pendently. Formally, we require that |y| = |x| + 2
and δ : Q× Σe ×Δ −→ Q× {l,r}. Let us call this
type of machine a synchronous two-way determin-
istic finite verifier (2dfv∗). It looks promising.

For one, we can now prove the forward direction of Th. 2. It follows from the
next lemma, when we apply it to every member of a family (Lh)h≥1 ∈ 2N.

Lemma 1. If L is solved by an s-state 2nfa, then some binary predicate R is
solved by an s-state 2dfv∗ and is such that, for all x: x ∈ L ⇐⇒ (∃y)R(x, y).

Proof. Let N = (Q,Σ, δ, qs) be the 2nfa which solves L.
To motivate R, consider any x ∈ L. Let n := |x|. Consider any accepting com-

putation of N on x. Remove all cycles from it, to get the corresponding minimal
accepting computation —call it c. Because c is minimal, its representation in
the configuration graph of N on x (i.e., the graph with all configurations in
Q×{0, . . . , n+2} as vertices, and all computation steps allowed by δ as arrows)
is a path where no two arrows have a common endpoint. Split this (n+3)-column
representation into n+2 three-column graphs f0, f1, . . . , fn+1, one for each col-
umn but the last one, where each fi represents only the steps performed on xi.

f4f0 f1

· · ·

· · ·a b b

x2 x3 x4x0 x1

c

Since no two arrows have a common endpoint, each fi is really a partial injection
fromQ to Q×{l,r}. LetΔ := (Q → Q×{l,r}) be the alphabet of all such partial
injections. Then, we can use y := f0f1 . . . fn+1 ∈ Δ∗ as a certificate for x.
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Indeed, define R ⊆ Σ∗×Δ∗ so that R(x, y) holds iff (1) |x|+2 = |y|; (2) the
(|x|+3)-column graph derived from y (by viewing each yi as a three-column
graph; then identifying the last two columns of each yi with the first two columns
of yi+1; then dropping the first column of the leftmost yi) contains a path from
the top of the leftmost column to the top of the rightmost one; and (3) every ar-
row (p, q, d) of every yi is a legal step of N on xi: (p, q, d) ∈ yi =⇒ (p, xi, q, d) ∈ δ.
Then the argument of the previous paragraph proves that x ∈ L =⇒ (∃y)R(x, y).
Conversely, if R(x, y), then (3) means that the path guaranteed by (2) is an ac-
cepting computation of N on x, and thus x ∈ L.

Finally, R is solved by the s-state 2dfv∗ M = (Q,Σ,Δ, δ′, qs) which, on
input 〈x,y〉, interprets y as a (|x|+3)-column graph as above and follows the
unique path out of qs of the leftmost column, verifying that all arrows in the
graph are consistent with δ and that the path terminates at qs of the rightmost
column. Formally, every δ′(p, a, f) is either f(p), if f(p) is defined and all arrows
in f are consistent with δ; or undefined, otherwise. ��

To complete the proof of Th. 2, we would need the converse lemma: If a
binary predicate R is solved by an s-state 2dfv∗, then L := {x | (∃y)R(x, y)} is
solved by a poly(s)-state 2nfa. However, in trying to prove this claim, one would
find it hard to build the desired 2nfa N for L from the given 2dfv∗ for R: the
natural approach, where N simply guesses y symbol-by-symbol, fails because,
upon returning to an input symbol xi that has been visited before, N would
need to re-guess the corresponding yi identically as in all previous visits.

As a matter of fact, the backward direction of Th. 2 is false:

Lemma 2. There exists a polynomial-size binary predicate family (Rh)h≥1 such
that the language family (Lh)h≥1 where Lh := {x | (∃y)Rh(x, y)} is not in 2N.

Proof. For every h, let Rh ⊆ {0}∗×[2h]∗ be a binary predicate such that Rh(x, y)

holds only when x = 02
h−2 and y is the ordered string of all symbols of [2h]:

y := 0 1 2 3 . . . 2h−2 2h−1

A 2dfv∗ Mh can solve Rh by focusing on y and checking that (1) it starts with 0;
(2) each of the other symbols is derived from its previous one by adding 1; and
(3) the last symbol is 2h−1. To check (2), Mh goes through every pair of succes-
sive symbols, yi and yi+1, and checks that yi+1 = yi+1 by zig-zagging h times be-
tween the two positions and comparing the binary representations of yi and yi+1

bit-by-bit. Easily, this requires O(h) states, so (Rh)h≥1 is polynomial-size.

Finally, the only x admitting a certificate under Rh is 02
h−2, so Lh = {02h−2},

which needs ≥ 2h−2 states on a 2nfa [1, Fact 5.2]. Hence, (Lh)h≥1 /∈ 2N. ��
Overall, our current definitions led us to a strict superset of 2N (Lemmas 1, 2).

Before modifying them, let us see which class they really capture. The next two
lemmas show that it is the class 21N corresponding to exponential-size 1nfas [6].

Lemma 3. If L is solved by an s-state 1nfa, then some binary predicate R is
solved by a O(log s)-state 2dfv∗ and satisfies x ∈ L ⇐⇒ (∃y)R(x, y), for all x.
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Proof. Let N = (Q,Σ, δ, qs) be the 1nfa which solves L, with |Q| = s. Without
loss of generality, assume that Q = [s] and that qs = 0. Let t := �log2 s�.

To motivate R, consider any x ∈ L. Let n := |x|. Pick any accepting compu-
tation of N on x. This is a list p0, p1, . . . , pn+2 ∈ Q such that p0 = qs = pn+2

and (pi, xi, pi+1,r) ∈ δ for all i. Recast this (n+3)-item list into the list of n+2
successive pairs π0, π1, . . . , πn+1, where πi := (pi, pi+1).

qsq3

π0

q3q7

π1

q7q2

π2

q2q4

π3

q4qs

π4a b b

x2 x3 x4x0 x1

q3qs q7 q2 q4 qs

Now, letting Δ := Q×Q be the alphabet of all pairs of states, we can use the
string of pairs y := π0π1 . . . πn+1 ∈ Δ∗ as a certificate for x.

Therefore, we define R ⊆ Σ∗×Δ∗ so that R(x, y) holds iff (1) |x|+2 = |y|;
(2) y is really a sequence of states (i.e., every two successive symbols are of the
form ( . , p) and (p, . ) for some p) from qs to qs (the first and last symbols are
of the form (qs, . ) and ( . , qs), respectively); and (3) this sequence of states is a
computation of N on x (i.e., every symbol yi = (p, q) is a legal step of N on xi,
namely (p, xi, q,r) ∈ δ). Then the argument of the last paragraph shows that
x ∈ L =⇒ (∃y)R(x, y). Conversely, if R(x, y), then (3) means that the sequence
guaranteed by (2) is an accepting computation of N on x, and thus x ∈ L.

Finally, R is solved by a 2dfv∗ M which, on input 〈x,y〉, works as follows. It
scans y and, on every two successive symbols yi = (pi, qi) and yi+1 = (pi+1, qi+1),
checks that qi = pi+1 by zig-zagging t times between yi and yi+1 to test that
the corresponding bits of qi, pi+1 ∈ [s] are identical. At the start and end of the
scan, M also checks that the first and last symbols of y have respectively the
form (0, . ) and ( . , 0). This confirms condition (2). Condition (3) is checked in
the same scan: whenever M reads a new symbol yi = (pi, qi), it also verifies that
(pi, xi, qi,r) ∈ δ. Easily, M needs no more than O(t) = O(log s) states. ��
Lemma 4. If a binary predicate R is solved by an s-state 2dfv∗, then the lan-
guage L := {x | (∃y)R(x, y)} is solved by a 2O(s)-state 1nfa.

Proof. Let M = (Q,Σ,Δ, δ, qs) be the 2dfv∗ which solves R, with |Q| = s.
Pick any x ∈ Σ∗. Let n := |x|. To check whether x ∈ L, a 1nfa N guesses a

(n+2)-long y ∈ Δ∗ and an accepting computation of M on x and the guessed y.
The certificate is guessed one symbol per step, as N scans x on its tape; likewise,
the accepting computation is guessed one frontier per step [5, p. 547].

Formally, N := (Q′, Σ, δ′, Fs) for Q′ := {(U, V ) | U,V ⊆ Q & |U |+1 = |V |}
the set of all frontiers ofM and Fs := (∅, {qs}). When at a state (U, V ) reading an
input symbol a ∈ Σe, the automaton guesses a corresponding certificate symbol
b ∈ Δ, together with a frontier (U ′, V ′) such that (U, V ) is (a, b)-compatible to it
(with respect to δ [5, Def. 2]), and moves to state (U ′, V ′):
(
(U,V ), a, (U ′, V ′),r

) ∈ δ′ ⇐⇒ (∃b ∈ Δ)
[
(U,V ) is (a, b)-compatible to (U ′, V ′)

]
.

Therefore, N accepts x iff there exists a sequence of guesses bi, (Ui+1, Vi+1) for
i = 0, 1, . . . , n+1 such that the sequence of frontiers Fs = (U0, V0), (U1, V1), . . . ,
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(Un+1, Vn+1), (Un+2, Vn+2) = Fs fits the string (�, b0)(x1, b1) · · · (xn, bn)(�, bn+1)
of symbols over Σe×Δ [5, Def. 3], and thus contains an accepting computation
ofM on 〈x, b0b1 · · · bn+1〉 [5, Lemma 2 and converse]. Hence, N accepts x iff there
exists y ∈ Δ∗ and an accepting computation of M on 〈x, y〉; i.e., iff (∃y)R(x, y).

Finally, the number of states of N is
(

2s
s+1

)
= 2O(s) [5, p. 552]. ��

Theorem 3. A language family (Lh)h≥1 is in 21N iff there exists a binary pred-
icate family (Rh)h≥1 which is solved by a polynomial-size family of 2dfv∗s and
is such that, for all h and all x: x ∈ Lh ⇐⇒ (∃y)Rh(x, y).

By similar arguments, we can also characterize the class 1N corresponding
to polynomial-size 1nfas in terms of synchronous one-way deterministic finite
verifiers (1dfv∗s), the restriction of 2dfv∗s where the heads move only forward.

Theorem 4. A language family (Lh)h≥1 is in 1N iff there exists a binary pred-
icate family (Rh)h≥1 which is solved by a polynomial-size family of 1dfv∗s and
is such that, for all h and all x: x ∈ Lh ⇐⇒ (∃y)Rh(x, y).

2.3 The Right Choice

Mh

ba b ba
x

00 0 101 1 0
y

· · ·

To fix our problems, we must restoreMh’s ability
to move its heads independently, but still prevent
the use of the second head as counter. One way
to do this, is to have the second head be one-way.
Formally, δ : Q×Σe×Δ −→ Q×{l,r} again, but
now l,r indicate only the first head’s motion; the
second head moves always right. Let us call this
a two-way deterministic finite verifier (2dfv).

Now we can finally prove Th. 2. It follows from the next two lemmas.

Lemma 5. If L is solved by an s-state 2nfa, then some binary predicate R is
solved by an s-state 2dfv and is such that, for all x: x ∈ L ⇐⇒ (∃y)R(x, y).

Proof. Let N = (Q,Σ, δ, qs) be the 2nfa which solves L. To motivate R, pick
any x ∈ L. Pick any accepting computation c of N on x. Let m be its length. The
‘instructions’ followed by N along c are the pairs ι1, . . . , ιm ∈ Q× {l,r}, where
ιi := (q, d) iff in the i-th step N switched to q and moved its head towards d.

a b b

x2 x3 x4x0 x1

q3qs q7

qsq2q4q2 q1

r r l r r r r

ι1
q3

ι2
q7

ι3
q2

ι4
q4

ι5
q2

ι6
q1

ι7
qs

Hence, letting Δ := Q×{l,r}, we can use y := ι1 · · · ιm ∈ Δ∗ as certificate for x.
So, we define R ⊆ Σ∗×Δ∗ so that R(x, y) holds iff the list of state-position

pairs derived from (qs, 0) by following the instructions y1, · · · , ym ∈ Δ is an
accepting computation of N on x. It should be clear that x ∈ L ⇐⇒ (∃y)R(x, y).
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Moreover, R is solved by the 2dfv M = (Q,Σ,Δ, δ′, qs) which, on input 〈x,y〉,
simply follows the instructions in y and accepts iff they lead it off � into qs and
never violate δ: when at state p reading a ∈ Σe and (q, d) ∈ Δ, it checks that
(p, a, q, d) ∈ δ and, if so, switches to q and moves towards d. Easily, M ac-
cepts 〈x, y〉 iff y causes an accepting computation of N on x; i.e, iff R(x, y). ��
Lemma 6. If a binary predicate R is solved by an s-state 2dfv, then the lan-
guage L := {x | (∃y)R(x, y)} is solved by an s-state 2nfa.

Proof. Let M = (Q,Σ,Δ, δ, qs) be the 2dfv which solves R. Pick any x ∈ Σ∗. To
check that x ∈ L, a 2nfa N := (Q,Σ, δ′, qs) simulates M on 〈x, y〉, for y ∈ Δ∗

a certificate which is guessed on the fly, symbol-by-symbol. When at state p
reading symbol a ∈ Σe, the automaton guesses the next symbol b ∈ Δ on the
certificate tape, then switches to q and moves towards d, where (q, d) = δ(p, a, b).
Formally, (p, a, q, d) ∈ δ′ ⇐⇒ (∃b ∈ Δ)[(q, d) = δ(p, a, b)].

Easily, N accepts x iff there is a sequence of guesses b0, b1, . . . , bm such that
M accepts 〈x, b0b1 · · · bm〉; namely, iff there exists y ∈ Δ∗ such that R(x, y). ��

Note that all our certificates are finite strings, which makes sense for 2�1. But
we may also work with infinite certificates: easily, Lemmas 5 and 6 (and Th. 2)
hold even when R ⊆ Σ∗ ×Δω, where Δω := {all infinite strings over Δ}, and
2dfvs have infinite certificate tape. This variation of our definitions is optional
for 2�1; however, for 2�1 and for general 2�k, 2�k it is essential.

3 The General Case

We now turn to classes 2�k and 2�k for arbitrary k. For concreteness, we treat
only 2�3. (Our proof does generalize to 2�k, it is straightforward but tedious;
then, 2�k is handled by a dual argument.) So, our goal is to prove the following.

Theorem 5. A language family (Lh)h≥1 is in 2�3 iff there is a polynomial-size
quaternary predicate family (Rh)h≥1 such that, for all h and all x:

x ∈ Lh ⇐⇒ (∃z1)(∀z2)(∃z3)Rh(x, z1, z2, z3) .

Definition 3. A quaternary predicate family (Rh)h≥1 is polynomial-size if some
family of 2dfvs (Mh)h≥1 and polynomial p are such that, for all h and x,z1,z2,z3:

Mh has ≤ p(h) states & Rh(x, z1, z2, z3) ⇐⇒ Mh accepts 〈x, z1, z2, z3〉.

Now, each predicate relates a finite string x with three infinite strings z1, z2, z3.
Accordingly, a 2dfv M has three infinite certificate tapes, one per zj , with its
own head hj . Crucially, the heads are used in order : first, M reads from h1, keep-
ing h2, h3 stationary; later, it deactivates h1 and starts reading from h2, keep-
ing h3 stationary; eventually, it deactivates h2 too, and starts reading from h3.
Formally, M = (Q, J,Σ,Δ, δ, qs), where again δ : Q×Σe×Δ −→ Q×{l,r} but



Predicate Characterizations in the Polynomial-Size Hierarchy 243

now the single certificate symbol always comes from the currently active head;
and J ⊆ Q is the states which cause a jump to the next certificate tape: entering
q ∈ J causes M to deactivate the currently active head hj and activate hj+1.

As usual, the proof consists of two lemmas, each for a single direction and h.

Lemma 7. If L is solved by an s-state 2�3fa, then some quaternary predicate R
is solved by an O(s)-state 2dfv and is such that, for all x:

x ∈ L ⇐⇒ (∃z1)(∀z2)(∃z3)R(x, z1, z2, z3) .

Proof idea. Let A = (Q, . , Σ, . , . ) be a 2�3fa for L. Then A follows ‘instruc-
tions’ from Δ := Q×{l,r} and we define R ⊆ Σ∗×(Δω)3 so that R(x, z1, z2, z3)
iff either z1z2z3 is the list of instructions followed along an accepting full compu-
tation path on x, and z2 consists of those followed from universal configurations;
or z1z2z3 starts as such a list, but contains an invalid instruction in z2. ��
Lemma 8. If a quaternary predicate R is solved by an s-state 2dfv, then the
language L := {x | (∃z1)(∀z2)(∃z3)R(x, z1, z2, z3)} is solved by a 3s-state 2�3fa.

Proof idea. Let M = (Q, . , Σ,Δ, . , qs) be a 2dfv for R. Then a 2�3fa A :=
(Q1 ∪ Q2 ∪ Q3, Q2, Σ, . , q1s ), where each Qj := {pj | p ∈ Q} is a copy of Q,
checks whether an input x ∈ Σ∗ is in L by simulating M on 〈x, z1, z2, z3〉, for
some strings z1, z2, z3 ∈ Δω which are respectively guessed, universally selected,
and guessed, each of them up to some prefix and on the fly. This works in three
phases, where each phase j uses states exclusively from Qj . ��
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