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Abstract. We show that it is decidable whether a given a regular tree language
belongs to the classΔ0

2 of the Borel hierarchy, or equivalently whether the Wadge
degree of a regular tree language is countable.

1 Introduction

In [14] there was given an algorithm which for a deterministic parity tree automaton
A decides whether the language L(A) is Borel. This was further extended to a finer
classification in [12] and finally to a full Wadge classification in [13]. The algorithms
look for a pattern in the graph of the automaton and decide the Borel and Wadge classes
upon finding of these special patterns.

Similar problems for non-deterministic parity tree automata seem to be much harder.
Recently in [2] was provided an algorithm which decides for a given non-deterministic
parity tree automaton A, whether L(A) is a Boolean combination of open sets. For
other Borel classes there was no known algorithm. This paper provides a relatively
simple extension of the result in [2] to the class of Δ0

2 = Σ0
2 ∩Π0

2 sets, that is the sets
which are simultaneously presentable as countable unions of closed sets and countable
intersections of open sets. This result is presented in Section 4 in Theorem 1. The proofs
in [2] are based on an analysis of an algebraic structure computable fromA and the main
result states that the language L(A) is a Boolean combination of open sets if and only if
a certain finite number of algebraic requirements hold. Since the class Δ0

2 is bigger, in
order to characterize this class, the set of algebraic requirements must be relaxed. In this
paper we show that indeed this is the case. Our proofs closely follow the proofs from
[2] with some necessary adjustments. In particular the crucial concept of the topological
cutting game introduced in [2] is considered in this paper not only in the finite, but also
in the infinite case.

The approach presented in [2] and in the present paper in a certain sense is a rem-
iniscent of the approach applied to deterministic automata in [12,13,14]. Namely, the
algebraic structure computed from a given automaton A induces a graph with edges re-
flecting the algebraic properties. In the deterministic case it is possible to decide Borel
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and Wadge classes analyzing patterns in the graph of the automaton, in the present paper
we are looking for patterns in the algebraic graph.

Finally let us mention results which provide information about the set-theoretical
complexity of a language accepted by a non-deterministic automaton A assuming some
additional properties of A:

– Rabin in [16] proved, that if L and its complement are accepted by a non-
deterministic Büchi tree automata, then L is weakly definable, in particular it is
Borel.

– Recently in [5] it was shown using decidability results about the cost functions,
that for a given non-deterministic Büchi tree automaton it is decidable whether the
language is weakly definable.

– In [9] the decidability results regarding deterministic automata were lifted to a more
general context of game automata.

This paper consists of four Sections: the Introduction, a preliminary Section 2 introduc-
ing automata, set-theoretical and algebraic notations, a Section 3 introducing topologi-
cal games and linking these games to the Wadge hierarchy and Section 4 containing the
main result. All missing proofs can be found in the long version of the present paper
[8].

2 Preliminaries

Trees and Contexts. Given a finite alphabet A, a tree over A is a partial function
t : {0, 1}∗ → A such that its domain dom(t) is prefix closed. A node of a tree t is an
element v ∈ dom(t). A left child of a node v of t is the node v0, while its right child
is v1. A leaf of a tree is a node without children. We denote by TA the family of all
trees over A. A set of trees over A is called a tree language, or simply a language. A
multi-context over A is a tree c over A ∪ {�}, where

– � /∈ A, and
– � only labels some leaves of c.

A leaf of c labelled by � is called a port. Notice that a multi-context may have infinitely
many ports. For a multi-context c and a function η mapping each port of c to a tree t
over A, by c[η] we denote the tree given by inserting into every port x a tree η(x). When
η(x) = t for each port x, we just write c[t]. We say that a tree t extends a multi-context
c if there is a mapping η such that c[η] = t. Given a multi-context c and a language
L, by [c]−1L we denote the language of trees t ∈ L extending c. The class generated
by c and all possible mappings η is denoted by c[TA]. A finite multi-context is called a
prefix. A multi-context with only one port is called a context.

Topology. For a finite alphabet A, we equip the class TA of all trees over A with the
prefix topology. That is the basic open sets are sets of the form p[TA], for a prefix p over
A, and thus the open sets are of the form

⋃
p∈P p[TA] for some set P of prefixes.

The class of Borel tree languages of TA is the closure of the class of open sets of
TA with respect to countable unions and complementations. Given TA, the initial finite
levels of the Borel hierarchy are defined as follows:
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– Σ0
1(TA) is the class of open subsets of TA,

– Π0
n(TA) consists of complements of sets from Σ0

n(TA),
– Σ0

n+1(TA) consists of countable unions of sets from Π0
n(TA).

A much finer measure of the topological complexity is the Wadge degree (see [10,
Chapter 21.E]). If L ⊆ TA and M ⊆ TB , we say that L is continuously (or Wadge)
reducible to M , if there exists a continuous function f : TA → TB such that L =
f−1(M). We write L ≤W M iff L is continuously reducible to M . This pre-ordering
is called the Wadge ordering. If L ≤W M and M ≤W L, then we write L ≡W M .
If L ≤W M but not M ≤W L, then we write L <W M . The Wadge hierarchy is the
partial order induced by <W on the equivalence classes given by ≡W . A language L is
called self dual if it is equivalent to its complement, otherwise it is called non self dual.

Given a certain family of sets C, we say that M is C-hard if L ≤W M for every
L ∈ C. A C-hard set L is said to be C-complete if moreover L ∈ C.

Algebra. The Wadge hierarchy of the regular languages of infinite words is well under-
stood thanks to a classification result by K. Wagner ([18]). In particular from Wagner’s
result one can derive an algorithm which decides whether a given regular language of
infinite words is a Boolean combination of open sets. Being a Boolean combination
of open sets is equivalent to being in Δ0

2 class in the context of regular languages of
infinite words. This is not true for the regular languages of infinite trees (see [2, Section
4.1] and Proposition 7 in [8] - the long version of the present paper - for an analysis of
one special case). A natural algebraic interpretation of Wagner’s result can be found in
[15, Theorem V.6.2]. In the case of languages of infinite trees, the algebraic theory is
not yet fully developed. As a general reference may serve papers [1,2,3,4]. For details
of the approach applied in the present paper refer to [2, Section 3].

Following the approach presented in [2], the family of all trees TA is divided into
finitely many Myhill-Nerode equivalence classes HL. Similarly, there are finitely many
equivalence classes VL of contexts. The same holds for multi-contexts with a fixed
number of holes. Starting from an automaton accepting language L, one can compute
families HL and VL. The equivalence class of a tree t or a context v is denoted αL(t),
αL(v), respectively. For a given tree t and contexts v1, v2 multiplication of contexts
and trees v1t, v1v2 naturally induces multiplication between elements of HL and VL.
Similarly, for a given context v the operation of infinite power v∞ = vv . . . induces a
mapping from VL to HL.

Given a regular language L, its strategy graph GL is the pair (VL×HL, E) such that
((v, h), (v′, h′)) ∈ E iff there exists a tree t of type h such that t can be decomposed
as the concatenation of a context of type v and another tree, and each prefix of t can be
completed into a context of type v′. We thus say that the strategy graph is recursive if
there exists a strongly connected component that contains two nodes (v, h) and (v′, h′)
with h 	= h′. For a more formal approach to the strategy graph refer to [2, Section G].
We will need the following

Proposition 1 ([2]). If there exists a path from (v, h) to (v′, h′) in GL, then there exists
an edge from (v, h) to (v′, h′).
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3 Topological Complexity and Games

Topological Games. Let L and M be two languages. The Wadge game W(L,M) is an
infinite two-player game between Player I and Player II. It is defined as follows. During
a play Player I constructs a tree t and Player II a tree t′. At the first round Player I plays
a root of t and Player II plays a root of t′, and at each consecutive round both players
add a level to their corresponding tree (thus either Player adds some child to a leaf or
Player signalizes that the node will be also a leaf of the final resulting tree of the play
by not adding any children to it). Player I plays first and Player II is allowed to skip
her turn but not forever. Player II wins the game iff t ∈ L ⇔ t′ ∈ M . The game was
designed precisely in order to obtain a characterisation of continuous reducibility.

Lemma 1 ([17]). Let L,M be two languages. Then L ≤W M iff Player II has a
winning strategy in the game W(L,M).

From Borel determinacy ([11]), if both L and M are Borel, then W(L,M) is deter-
mined. The ordering <W restricted to the Borel sets is well-founded (see [10, Theorem
21.15]). The Wadge degree for sets of finite Borel rank can be defined inductively. First,
we remark that since every self dual set A is Wadge equivalent to the disjoint union of
a certain non self dual set B and its complement B�, it is enough to start associating a
Wadge degree only to non self dual sets and say that the Wadge degree of A equals the
Wadge degree of B. For each degree there are exactly three equivalence classes with the
same degree, represented by L, L� and L± — the disjoint union of L and L�. Clearly
L,L� <W L± and L± is self dual.

In [6], J. Duparc showed that for non self dual sets, it is possible to determine its
sign, + or −, which specifies precisely the ≡W -class. For instance, ∅ and complete
open sets have sign −, while the whole space and complete closed sets have sign +.
All self dual sets by definition have sign ±. Let κ be the length of Wadge hierarchy
of Borel sets of finite rank. Thus an ordinal α < κ determines a ≡W -class, denoted
[α]ε for ε ∈ {+,−,±}. In the same paper, in the context of Wadge degrees, Duparc
defined set-theoretical counterparts of ordinal multiplication by a countable ordinal,
and (quasi) exponentiation of base ω1. From now on [α]ε will also denote the canonical
sets of Wadge degree generated with Duparc’s operations.

Cutting Games. Below we define a family of two-player games of perfect information,
called cutting games. These games were introduced in [2]. For the argument in [2] the
most important was the finite version of the game. In the present paper we will consider
both infinite and finite versions of the cutting game.

Let Li (i = 1, 2, . . . ) be languages over the alphabet A, and let p be a prefix over the
alphabet A. The simple cutting game of length k, denoted Hp

k(L1, . . . , Lk) is played by
two players, Constrainer and Alternator. For each i ∈ {1, . . . , k} the i-th round of the
game is played as follows:

– Alternator chooses a tree ti ∈ Li extending the prefix chosen in the previous round
by the Constrainer; in the first round of the game Alternator must choose an exten-
sion of the given prefix p,

– Constrainer chooses a prefix of the tree ti.
– If Alternator cannot move, she loses, but if she survives k rounds then she wins.
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The infinite cutting game, denoted by Hp
∞(L1, . . . ), is played just like a simple game

but without the restriction to a fixed given number of rounds. Alternator wins iff she
can make infinitely many moves.

Let X be a language over the alphabet A. The X-delayed cutting game, denoted by
HX

ω (L1, . . . ) is similar to a simple cutting game, except that a mini game is played to
determine the prefix p and the length k of the match. The mini game goes as follows.
Firstly, Alternator chooses a tree t ∈ X . Then Constrainer chooses a prefix p of t
and a finite ordinal k. Finally the two players start to play the simple cutting game
Hp

k(L1, . . . , Lk).
When L2i = L and L2i+1 = L�, then we simply write Hp

k(L,L
�),Hp∞(L,L�) and

HX
ω (L,L�). It was verified in [2] that a given language M has a Wadge degree less

than ω iff Constrainer has a winning strategy in Hε
k(M,M�), for all but finitely many

k < ω. In [2] it was also remarked that the language L described in [2, Section 4.1]
and in Proposition 7 in [8], even if it is such that Alternator has a winning strategy in
every corresponding finite cutting game, she looses the infinite one. In the next two
propositions we establish a link between delayed cutting games and infinite Wadge
degrees on the one hand, and infinite simple cutting games and uncountable Wadge
degrees on the other hand.

Proposition 2. Let L be a tree language, [ω]+ ≤W L iff Alternator has a winning
strategy in HL

ω(L
�, L).

Proposition 3. Let L be a tree language. For every prefix p, dW ([p]−1L) ≥ ω1 iff
Alternator has a winning strategy in Hp∞(L,L�).

4 A Characterization of Languages of Uncountable Degree

Games on Types and Strategy Trees. Following [2], for a given regular language
of trees L, a prefix p and types hi ∈ HL (i = 1, 2, . . . ) we define games on types
Hp

k(h1, . . . , hk) and Hp
∞(h1, h2, . . . ). The Constrainer plays as in the simple and infi-

nite cutting games and the task of the Alternator is to play in the i–th round a tree of
type hi, that is an element of α−1

L (hi).
A type tree for L is a tree over the finite alphabet HL. For a given tree t, there is a

type tree σt induced by t such that for every node w ∈ dom(σt),

σt(w) is the type of the tree t.w. (1)

Let σ be a type tree, and t a tree. We say that a type tree σ is locally consistent with a
tree t if dom(σ) = dom(t) and for every node w ∈ dom(t) such that t(w) = a,

– if w is a leaf, then σ(w) is the type of a,
– if w has two children m� and mr, then σ(w) is the type obtained by applying a to

the pair (σ(m�), σ(mr)).

Definition 1. A finite strategy tree is a tuple s = (t, σ1, . . . , σk) where

– t is a tree, the support of the strategy and σ1 = σt,
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– σ� is locally consistent with t, for each 	 ≤ k,
– for each w ∈ dom(t), Alternator has a winning strategy in Hε

k(σ1(w), . . . , σk(w)).

An infinite strategy tree s = (t, σ1, σ2, . . . ) is defined analogously.

The root sequence of a strategy tree s = (t, σ1, σ2, . . . ) is the sequence of types
(σ1(ε), σ2(ε), . . . ). We define the alternation of a sequence (h1, . . . , h�) of types as the
cardinality of the set {i : hi 	= hi+1}. The same definition applies to infinite sequences
of types. Let s be a finite strategy tree. The root alternation of s is the alternation of
the root sequence, while the limit alternation of s is the maximal number k such that
infinitely many subtrees of s have root alternation at least k. We say that a set S of finite
strategy trees has bounded root alternation if there is a k such that the root alternation
of each s ∈ S is at most k, unbounded otherwise. Analogously for limit alternation.

A finite or infinite strategy tree s = (t, σ1, . . . ) is locally optimal if for every strategy
tree s′ = (t, σ′

1, . . . ) with same root sequence, and every i > 1, the depth at which σi

and σi+1 first differ is greater than or equal to the depth at which σ′
i and σ′

i+1 first differ.
The next Proposition is a very important technical point of [2].

Proposition 4 (Lemma G.2 in Appendix of [2]). For a regular tree language L, if
S is a set of locally optimal finite strategy trees with both root and unbounded limit
alternation, then the strategy graph GL is recursive.

The next Proposition establishes an important link between infinite cutting games and
strategy trees.

Proposition 5. Assume Alternator has a winning strategy in Hε
∞(L,L�). Then there is

an infinite strategy tree s∞ with infinite root alternation.

Proof. Assume Alternator has a winning strategy f in Hε
∞(L,L�). The infinite strategy

tree s∞ is constructed as follows. First of all, we can represent f as a tree satisfying the
following properties:

– the root is labelled by ε, and its unique child is labelled by Alternator’s move ob-
tained by applying the winning strategy f at the first round of the game,

– if a node v is labelled with a tree t, then for every prefix p of t there is a unique
child of v labelled by p,

– if a node v is labelled with a prefix p, then v has a unique child, and such a child is
labelled by the answer obtained by applying the winning strategy f to the position
in the cutting game given by the labels of the path from the root to v.

Notice that nodes at odd depth represent Alternator’s moves (according to f ) and are
therefore labelled by trees, while nodes at even depth represent Constrainer’s move and
are thus labelled by prefixes. From now on, we always identify f and the aforemen-
tioned tree.

Claim. For every node v of f labelled by a prefix p, there is an infinite sequence of
strategy trees (sv� : 	 < ω) such that for each 	

1. sv� = (t, σ1, . . . , σ�), with the type σ2k+1(ε) included in L and the type σ2k(ε)

included L� if v is at depth 2i with i even, else dually. In particular this means that
σ2k+1(ε) 	= σ2k(ε);
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2. sn�+1 extends sv� , that is sv�+1 = (t, σ1, . . . , σ�, σ�+1) and sn� = (t, σ1, . . . , σ�).

Given the Claim, from Property 1 we have that for each node v labelled by a prefix
p, and each 	 = 1, 2, . . . , sv� has root alternation 	 and defines a winning strategy for
Alternator in Hp

� (L,L
�) if v is at depth 2i with i even, in Hp

� (L
�, L) otherwise. Let

sε� = (t, σ1, . . . , σ�) for 	 = 1, 2, . . . .

The required infinite stategy tree is defined as s∞ = (t, σ1, . . . ).It remains to prove
the Claim. Firstly, by induction with respect to 	 = 1, 2, . . . we will assign a strategy
tree sv� to each node v of f labelled by a prefix. In the process of inductive construc-
tion we will also verify that Property 1 of the Claim is satisfied. Verification of Prop-
erty 2 will be done later. Let us start from a remark that given an infinite sequence
of type trees (σ1, . . . ), by compactness there is a converging subsequence (σ′

1, . . . ).
We assume that every time we have to choose a converging subsequence (σ′

1, . . . ) of a
given sequence (σ1, . . . ), we always choose the same subsequence and denote it’s limit
as limit(σ1, . . . ). We also assume that given a tree t, we have fixed an enumeration
(p1, . . . ) of all its prefixes such that sequence (pk)k=1,2,... converge to the tree t. For
	 = 1, it is enough to take for each node v

sv1 = (t, σt),

where t is given by applying f to the considered position and σt is defined by formula
(1) at the beginning of this section. By choice of σt, Property 1 is satisfied. For 	 > 1
we proceed as follows. We assume the construction performed for 	−1. Fix any node v
labelled by a prefix p. Assume that a tree t is the answer given by f at the position in the
game given by the path from the root to the node v. To every prefix p of t corresponds
a child w of v to which we already associated a strategy tree sw�−1 = (tp, σp

2 , . . . , σ
p
� ).

Let us thence consider the sequence (p1, . . . ), with limit t and the sequences (tp1 , . . . ),
(σp1

2 . . . ), . . . , (σp1

� . . . ). The limits limit(σpk

2 ), . . . , limit(σpk

� ) were chosen in advance
and are equal σ∗

2 , . . . , σ
∗
� . Since each tpk extends pk, the limit t∗ of (tp1 , tp2 , . . . ) is t.

Now, for each p, the type trees (σp
2 , . . . , σ

p
� ) are locally consistent with tp. Furthermore,

given a sequence of trees (t1, . . . ) that converges to t∗ and a sequence of type trees
(σ1, . . . ) that converges to σ∗, if σk is locally consistent with tk for every k, then σ∗ is
locally consistent with t∗. From this fact follows that the limits σ∗

2 , . . . , σ
∗
k are locally

consistent with t. Finally, define σ∗
1 to be σt as in formula (1). We have just proved

that sv� = (t, σ∗
1 , . . . , σ

∗
� ) is a strategy tree. From induction hypothesis together with

definition of σt and preservation of Property 1 under limits follows that sv� also satisfies
Property 1.

We now verify that the described procedure preserves Property 2. For 	 = 1 there
is nothing to check. For the induction step, we reason as follows. Assume the Property
holds for each node and for each k < 	. Now, let us consider an arbitrary node v. We
have to prove that sv�+1 extends sv� . By induction hypothesis, sw�−1 = (tp, σp

2 , . . . , σ
p
� )

and sw� = (tp, σp
2 , . . . , σ

p
� , σ

p
�+1), for every node w in the described procedure. Since

the limits have been fixed in advance, we have that sw� = (t, σt, σ
∗
2 , . . . , σ

∗
� ) and sv�+1 =

(t, σt, σ
∗
2 , . . . , σ

∗
� , σ

∗
�+1), meaning that the latter extends the former. This concludes the

proof of the Claim.
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Using the above Proposition, we can generalize to infinite games Proposition 5.2
from [2]:

Proposition 6. For a regular language L the following conditions are equivalent.

1. Alternator wins the game Hε
∞(L,L�),

2. There are tree types h, g ∈ HL, such that h 	= g and Alternator wins Hε
∞(h, g).

We will use the following Lemma, presented in [2] for finite strategy trees, with proof
extending straightforwardly to infinite strategy trees.

Lemma 2. For every finite or infinite strategy tree, there is a locally optimal strategy
tree with same root sequence.

The next Lemma follows immediately from the definition of a strategy tree.

Lemma 3. Let s = (t, σ1, . . . , σ�) be a strategy tree. For the gameHε
�(σ1(ε), . . . , σ�(ε))

and a strategy of Constrainer given by always cutting at level i, Alternator wins by play-
ing as follows:

– at first, Alternator plays t, then
– for each port w at level i of the multi context given by Constrainer’s move, Alter-

nator plugs in the tree given by her winning strategy Hε
�(σ1(w), . . . , σ�(w)).

In particular, if from a certain j < 	 on σk(w) = σk+1(w), j ≤ k < 	, then for each
round k such that j < k < 	 Alternator always plugs in the same tree of type σj(w)
chosen at round j.

An Effective Characterization. Everything now is ready to prove the main result of
this paper.

Theorem 1. Let L be a regular tree language given by a non-deterministic tree au-
tomaton A. The following conditions are equivalent:

1. The strategy graph GL is recursive.
2. dW (L) ≥ ω1

In particular, since the graph GL is computable from the automaton A, it is decidable
whether the language accepted by A is of Wadge degree greater than or equal to ω1.

Proof. (1) ⇒ (2). Assume the strategy graph is recursive. This means that there exists
a strongly connected component that contains two nodes (v, h) and (v′, h′) with h 	= h′.
Thanks to Proposition 1, if there exists a path between (v, h) and (v′, h′), there is also
an edge between (v, h) and (v′, h′). Moreover, for vertices (v1, h1), (v2, h2), . . . , if
for every i = 1, 2, . . . there is an edge from (vi, hi) to (vi+1, hi+1), this means that
Alternator has a winning strategy in Hε

∞(h1, h2, . . . ). So, take (vi, hi) = (v, h) for i
even, and (vi, hi) = (v′, h′) for i odd. This shows that Alternator has a winning strategy
in Hε

∞(h, h′). By Proposition 6 Alternator has a winning strategy in Hε
∞(L,L�).

(2) ⇒ (1). By Propositions 3 and 4, it is enough to verify that if Alternator has a
winning strategy in Hε

∞(L,L�) then there is a set S of locally optimal finite strategy
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trees with both root and limit unbounded alternation. Assume Alternator has a winning
strategy f in Hε

∞(L,L�). From Proposition 5 there is a strategy tree s∞ = (t, σ1, . . . )
with infinite root alternation. By Lemma 2 we can assume that s∞ is locally optimal.
Let us define

S = {(t, σ1, . . . , σk) : k = 1, 2, . . .}.
Note that each element of S is locally optimal. Now, assume limit alternation of S is
bounded. From this fact and since every element of S is a prefix of s∞, it holds that
with respect to s∞, the set of subtrees of t with infinite root alternation has to be finite.
This means that s∞ satisfies the following property:

(*) there is a finite set X of nodes of t satisfying the following properties:
– the root is included in X , and each node of X is at most at depth i in t,
– σk(v) 	= σk′ (v), for every node v in the set X , and σk(w) = σk′ (w), for every

node w of t of depth i+ 1, for some k, k′ , with k < k′ ≤ j.

The strategy tree s = (t, σ1, . . . , σj) from S, where j is given by the previous property,
also satisfies the property (*) above (for the same X and the same k, k′).

Let us consider the game Hε
j(σ1(ε), . . . , σj(ε)) where at first Alternator plays t and

then Constrainer uses the strategy given by cutting always at level i+1. We can therefore
apply Lemma 3 and assume that Alternator plays the winning strategy described there.
This implies that the trees played at round k and k′ are the same, say t′ (from the root
to level i they are the same, because the Constrainer insists on this and below they are
the same, because the Alternator plays the same answers in rounds k and k′). But by
local consistency, since σk(ε) 	= σk′ (ε), the two trees should have two different types,
a contradiction. We therefore conclude that limit alternation of S is unbounded.

5 Conclusion

The algorithm provided in [2] decides whether a given non-deterministic automaton
accepts a language which is a Boolean combination of open sets or equivalently is
of a Wadge degree smaller than ω. By the same approach we showed an algorithm
which decides whether a given non-deterministic automaton accepts a language in Δ0

2

or equivalently, a language of a Wadge degree smaller than ω1. We propose for further
research the following three generalizations of the result presented in this paper:

1. For a given n = 1, 2, . . . there are natural topological games which characterize
languages of Wadge degrees smaller than ωn. Moreover, there are known examples
of regular languages of degree ωn. It would be a desirable and perhaps more involved
extension of results in [2] if for a givenn one can provide an algorithm deciding whether
a given non-deterministic automaton accepts a language of degree smaller than ωn.

2. In the absence of examples of regular languages between Wadge degree ωω and
Wadge degreeω1, one could reasonably expect, that the decidability result in the present
paper should show that indeed any regular language of countable Wadge degree is of
Wadge degree smaller than ωω. However, this question still remains open.

3. Regarding higher Borel classes, in particular regular languages which are Boolean
combinations of Σ0

2 sets, the following extension of the method in [2] seems to be
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plausible. The cutting game is based around restrictions of moves by prefixes, that is by
languages in Δ0

1. Its topological counterpart on the next Borel level is a game, where
the Constrainer is allowed to play constraints which are regular languages in Δ0

2. This
leads to a natural topological characterization similar to the results in Section 3, but the
algebraic counterpart of this generalized cutting game is not yet fully understood.
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3. Bojańczyk, M.: Algebra for trees. In: Handbook of Automata Theory, European Mathemati-
cal Society Publishing House (to appear)
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